r—t

FIRST AND FINEST

OS/A-+

OS/A-+-

OS/A-+

OS/A+
OS/A+

Systems Software for
Apple and Atari Computers

a reference manual for

0SS/ A+

an Operating System for Atari Computers +
an Operating System for Apple Computers +
an Operating System for Advanced users

The programs, disks, and manuals comprising
0S/A+ are Copyright (c) 1982 by
Optimized Systems Software, Inc.

This manual is Copyright (c) 1982 by
Optimized Systems Software, Inc., of
10379 Lansdale Avenue, Cupertino, CA

All rights reserved. Reproduction or translation of

any part of this work beyond that permitted by sections

107 and 108 of the United States Copyright Act without
the permission of the copyright owner is unlawful.

PREFACE

0S/A+ is the result of the efforts of several persons,
and we believe that proper credit should be given. The
original Apple version of the console processor (CP)
and the original version ("version 2") of the File
Manager System (which 1is, of course, identical with
Atari's DOS 2.0S) were written by Paul Laughton, ex of
Shepardson Microsystems, 1Inc., who also authored the
original Apple DOS (version 3.1). The current versions
of all other portions are primarily the work of Mark
Rose, of 0SS, with the collaboration of Bill Wilkinson
and Mike Peters.

We realize that 0OS/A+ is not the most sophisticated,
most complete, operating system for any and all
microcomputers, but we believe that the inherent power
and flexibility that it exhibits within its compact
size are a good match for the size and features of the
machines it is intended for.

TRADEMARKS

The following trademarked names are used in various
pPlaces within this manual, and credit is hereby given:

0S/A+, BASIC A+, MAC/65, and C/65 are trademarks of
Optimized Systems Software, Inc.

Apple, Apple II, and Apple Computer(s) are trademarks
of Apple Computer, Inc., Cupertino, CA

Atari, Atari 400, Atari 800, Atari Home Computers, and
Atari 850 Interface Module are trademarks of
Atari, Inc., Sunnyvale, CA.

Chapter

Chapter

Chapter

Chapter

TABLE OF CONTENTS

1 -- Introduction

1.1 Systems Requirements

1.2 Getting Started

1.3 Overview of 0S/A+

1.4 Why Two Atari Versions?

2 -- The 0S/A+ Console Processor (CP)
2.1 Booting Up

2.2 Default Drives, File Specs
2.3 CP Commands

2.4 Overview of Intrinsic Commands
2.5 Overview of Extrinsic Commands
2.6 Overview of Batch Processing

3 -- Intrinsic Commands Detailed

3.1 CARtridge

3.2 DIRectory

3.3 END

3.4 ERAse

3.5 LOAd

3.6 NOScreen

3.7 PROtect

3.8 REMark

3.9 REName

3.10 RUN

3.11 SAVe

3.12 SCReen

3.13 UNProtect

~— Extrinsic Commands Detailed
ADOS
BASIC
C6h5
CONFIG
COPY
COPY 24
DO
DUPDBL
DUPDSK
HELP
INIT
MAC65
RS232

HHEHEEFEOOIINUTB WD

wN O

Table of Contents (Continued)

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

N NN NN NN
.

© %0 00 Co
R . .
AU W
I
|

W N

0w
|
1

. .
w N

Interfacing to 0S/A+
Structure of the IOCBs
Standard 0S/A+ Commands
Device Names
Disk FMS Commands
Error Handling
Global System Calls (Apple)

Batch Processing Detailed
Execute File Format
Execute Intrinsic Commands
Execute File Stops
STARTUP. EXC

User Written Extrinsic Commands
SYSEQU.ASM
0S/A+ Memeory Locations
Execute Parameters
Default Drive
Extrinsic Parameters
RUNLOC

Device Handlers
Device Handler Table
Rules for Device Handlers
Rules: Adding to 0S/A+
An Example Program

File Structure under Version 2
Disk Directory
Data Sectors
VTOC

File Structure under Version 4
Overview
Disk File Structure
Buffer Allocation
Adding Drives
Read/Write Sector

Version Differences
Features unique to version 4

Features unique to Apple version

Differences: Atari DOS & 0S/A+

Table of Contents (Continued)

Chapter 12 — Modifying 0OS/A+

12.1
12.2
12.3
12.4

Buffer Allocation

Specifying Active Drives
Saving the Modified Version
Moving to Double Density (v 2)

Chapter 13 — System Memory Maps

13.1
13.2
13.3
13.4
13.5
13.6

Apple Zero Page
Apple, 64K version
Apple, 48K version
Atari Zero Page

Atari, 0S/A+ version 2
Atari, 0S/A+ version 4

Chapter 14 — Error Codes

101
101
102
102
103

104
104
105
106
107
107
108

109

CHAPTER 1: INTRODUCTION

0S/A+ was originally an accident, brought about by the
fact that that we developed Atari's DOS and Atari's
BASIC on an Apple II computer. To simulate Atari's
indeed excellent 0S ROMs, we wrote our own simple CIO
(Central Input/Output) system. From there, it was only
logical that we install a Console Processor similar to
that of Digital Research's CP/M (their trademark).
Then when we introduced BASIC A+, we moved the "CP"
over to the Atari, and presto! There was born O0S/A+
version 1.0 for the Atari.
This manual actually describes three products:

0S/A+ version 2 for Atari Computers

0S/A+ version 4 for Atari Computers

0S/A+ version 4 for Apple II Computers

1.1 SYSTEM REQUIREMENTS

Although both versions of 0S/A+ for the Atari will run
nicely in 32K bytes of RAM, it isn't realistic to use
less than 40K or 48K and expect to do useful work with
most languages and/or applications. The Apple II
version requires 48K bytes of RAM, and we heartily
recommend 64K. Obviously, with all versions at least
one disk drive 1is required. Two disks are highly
recommended. The Atari version 4 system requires (and
runs on) only double density or larger disk drives.

1.2 GETTING STARTED

Anxious to try OS/A+? Can't wait to wade through all
this? Familiar with CP/M or R/T-11 or similiar
operating systems? If you can answer "yes" to all of
these, we recommend you read Chapter 2, at least.
Then you can refer to Chapters 3 and 4 to use more
system features. Or move to Chapters 5 and 7 to start
writing your own assembly language software.

Even if you are not skipping ahead, you may want to
skim through much of this for now; but plan to come
back 1later when you're ready to really understand the
system.

S [

Anyway, put your OS/A+ master disk (WITH write protect
tab on, PLEASE!) into Drive One (Drive One, Slot 6 for
Apple users), turn on your system, and try us!

P.S. Maybe the first command you want to 1learn is
"DUPDSK" (section 4.9), to back up your valuable system
master. Surprised? 0S/A+ is NOT copy protected. We
hope you are considerate of our rights so that we may
continue to be considerate of your convenience.

1.3 OVERVIEW OF O0OS/A+

0S/A+ (and, naturally, Atari's 0S) utilizes a software
concept which is built around a structured and layered
scheme. In particular, application programs are
expected to make calls to the 0S via the Central Input
Ouptput routine ("CIO"). 1In turn, CIO is a dispatcher
which examines the application program's request and
routes the necessary subrequests to the appropriate
device driver(s).

On the Atari, the device drivers may in turn call the
SIO (Serial 1Input/Output) routines to perform the
actual channel communications with devices on the
serial bus (obvious exceptions include the screen and
keyboard, which do not require serial bus service).
Finally, the device (on the serial bus) receives the
SI0 request and performs the actual 1I/0 needed. The
diagram on the next page illustrates this process.

—D

Application Application

Program Program
! |
| |
!
!
CIO
|
| |
Device Device
Driver Driver

BASIC User

Program
!
| Console
BASIC A+ Processor
| !
] |
I |
Device Device
Driver Driver
! |
(keyboard) (screen)

Figure 1-1
Overview of Hierarchy of 0S/A+

=3

The scheme used on the Apple II is identical excepting
only that SIO is not needed nor used, and the various
device drivers generally all communicate directly with
their respective peripheral(s).

Generally speaking, there is no reason why any one or
more portions of this hierarchical structure cannot be
replaced with another, equivalent section of code. On
the Atari computer, 1in fact, DOS (or, more properly,
the FMS or File Management System) itself is "added" to
the default structure only if a disk drive is present
at power-on time. Several manufacturers, for example,
have produced their own printer or screen drivers,
replacing the Atari-supplied drivers with minimal
effect.

Unfortunately, in the case of Atari computers, we
cannot say that any given portion may be replaced with
NO effect, simply because an unfortunately high portion
of software written for the Atari violates the
hierarchy (by direct calls to device routines, or
worse) . These violators are by no means 1in the
majority, or we might have no hope of ever producing an
improved Atari system. However, we should be aware of
at least the most important of these (quite frankly)
poorly written programs and maintain what compatibility
that we can when we change the systen.

Generally, the worst offenders are programs such as
VISICALC and MICROSOFT BASIC, both of which make
assumptions about memory layout and disk usage.
However, these programs (and most others) are shipped
with an operating system intact on the disk on which
they reside. Thus, although we may not force them to
take advantage of the expanded capabilities that our
device drivers may offer, at least we need only
maintain compatibility with a standard Atari 800 and
810 Disk Drive to allow their usage on otherwise
improved products.

1.4 WHY TWO ATARI VERSIONS OF OS/A+ ?

Because we like to add to the confusion, of course.
Seriously, when we originally produced Atari DOS, we
wrote it to Atari specifications. There is more detail
on this subject in Chapter 9, but suffice to say the
real problem with Atari's FMS (and hence with 0S/A+
version 2) is that it was never designed to handle
disks larger than 256 Kilobytes. But now PERCOM DATA
COMPANY has added double sided, double-density disks to
their catalog, with capacities of nearly 400 Kilobytes.

Given that we need to access more than 256K bytes per
disk and/or file, how can we expand on the Atari
system? An obvious solution 1is to 1introduce the
concept of "logical disks", wherein a larger drive
might contain two or more disjoint segments, each
wholly allocated to imitate an 810 (or 815...the
difference is solely in the number of bytes per sector)
disk system. Anyone who has tried the Corvus
equivalent of this scheme will recognize the
inadequacies of this solution.

So, given that we will no longer be compatible with
Atari products, why not sieze this opportunity to "do
it right"? Why not produce a wholly different file
manager system that is not bound by the restrictions of
Atari DOS? This is the path we have preferred to
choose.

Thus we come to OS/A+ version 4, a mapped file system.
Since we wrote not only Atari DOS but also Apple DOS,
we naturally thought of an extension on the Apple
scheme as the logical step up from Atari DOS and
version 2 of 0S/A+. We do not know if it might ever
happen, but wusing our version 4 scheme would,
presumably, enable a manufacturer to offer disk systems
which were MEDIA and FILE COMPATIBLE on both Apple and
Atari (and perhaps other A502 systems).

For more information on the philosophy and structure of
version 4, please see chapter 10.

——Gmm

As you might recall from Chapter 1, Figure 1-1, the
Console Processor (or sometimes the "Command Program",
but in either case always "CP") is NOT a priveleged
part of the system. CP functions as just an
easy-to-use interface between the human at the keyboard
and the machine level of the CIO calls.

In Chapter 1, we mentioned that any portion of the
0S/A+ system could be replaced without change to any of
the other sections. This is perhaps most true of CP.
For example, in a dedicated run-time environment, CP
has no reason to exist. Others have written their
equivalent of CP and placed it under the Atari DOS
system, but we believe that the CP of O0S/A+ is a
very well-designed, well-executed human interface,
especially considering that it occupies less than 800
bytes of your precious memory.

This chapter serves as an introduction to using the

0S/A+ system, especially as it is viewed through the
eyes of the Console Processor.

—f——

2.1 BOOTING UP (and returning to CP)

When an 0S/A+ disk 1is booted, the CP is immediatly
entered. On an Atari computer, if a cartridge has been
inserted which works with the disk (such as the BASIC
cartridge), then the <cartridge will be entered upon
bootup instead of the CP. Re-entry of 0S/A+ from the
cartridge 1is normally done through the use of the DOS
command (e.g, the BASIC command for this is DOS). Some
cartridges do not allow DOS-type exits and thus O0S/A+
cannot be used with these cartridges.

In any case, on either Apple or Atari machines, when CP
is entered it will clear the screen and display:

0SS 0S/A+ ATARI (or apple) VERSION x.xx
Dl:<cursor>

The Dl: is the command prompt. It serves two purposes.
First it tells the wuser it 1is ready to accept a
command. Secondly, it is a reminder of the default
disk drive. The default drive, in this case, being the
familar file spec for drive 1.

2.2 Default Drive and File Specifiers

Most CP commands and parameters deal with files of one
sort or another. O0S/A+ requires files be specified
with a filename of the form:

<device>: <optional-file-name>

The device for disk files 1is of the form Dn: where
n=1,2,3,4,5,5,7,8. For example, Dl: is the device name
of the primary (boot) disk drive. Other types of
devices are: Printer=P:, Cassette=C: (Atari only),
Screen=S:, etc. The optional-file-name 1is used for
named file accessing devices such as the disk units.
To work with the disk file TEST.ORG on disk drive
number 1, the operating system requires that the file
spec D1:TEST.ORG be used. Having to always specify the
D1l: can be tedious, especialy if most of the user's
file work is on a single drive.

_—T

cp is designed to prefix all filenames appearing in a
CP command line with the default drive - if and only if
a device has not been explictly specified. In the case
of D1:TEST.ORG, the user could enter only TEST.ORG for
a file name and allow CP to prefix it with the default
drive. Thus TEST.ORG becomes D1:TEST.ORG in the O0S/A+
system. If TEST.ORG happened to be on drive two and
the default drive was drive one, the user could enter
D2:TEST.ORG; and CP would see that the user has
explicitily specified a <device> and would thus not
append the default drive device to that file name.

If the user needs to work a great deal with files on
drive two, he can change the default drive so as to
avoid the now necessary D2: prefix typing. Where the
system prompts Dl:<cursor>, the user can respond with
D2:<return> to change the default drive to the D2:
device. The next CP prompt line will show D2:<cursor>.
Now files accessed on drive one will require the
explict Dl: prefix typing, while files on drive two
will not require prefix typing. Only devices of the
form Dn: (where n = 0-9) are allowed as default drives.
0S/A+ does not check to insure that the new default
drive actually exists. The user's first indication of
an invalid default drive will occur when OS/A+ attempts
to access a file on the invalid device (via user
command). The error message "INVALID DEVICE" will
indicate the situation. The user should then set the
default device to a wvalid disk unit. The default
device change command is one of the many intrinsic CP
commands.

2.3 CP Commands

CP has three general classes or groups of commands.
The classes are intrinsic commands, extrinsic commands,
and execute commands. Intrinsic commands are executed
by means of resident code in the O0S/A+ Console
Processor monitor. Extrinsic commands are executed by
means of loading and running programs. The execute
subset of commands provide for the batch execution of
CP commands from a file.

——g—

2.4 An Overview of Intrinsic Commands

The intrinsic commands are executed via code in the
0S/A+ Console Processor monitor (CP). These commands
do not require the loading of programs to perform their
functions. The following 1is a summary of the most
useful 0S/A+ and CP intrinsic commands:

DIRECTORY - List Directory

PROTECT - Protect a file (from change or erase)

UNPROTECT - Unprotect a file

ERASE - Erase (delete) a file

RENAME - Renames a file

LOAD - Load a binary file

SAVE - Save a binary file

RUN - Execute a program at some address

CARTRIDGE - Run Atari cartridge in the "A"

cartridge slot (Atari users only)

(The default drive change command Dn: is also

considered an intrinsic command.)

All intrinsic commands may be abreviated with the first
three characters. As a matter of fact, 0S/A+ only
looks at the first three characters while testing for
an intrinsic command. Each of the commands will be
covered in detail later in this manual; however, to
give you a feel of the intrinsic commands, let's look
at the DIRECTORY command. While 1looking at these
examples, assume the Dl: is the default device and has
been placed on the screen by CP.

D1:DIRECTORY list all files of disk on drive one

D1:DIRECT L] " n " " " "
D1:DIRTY L " " ” " w " "
D1:DIR] " " 1] ” " " "

D 1 : DI R * . * L] n " 1" " L1 ” "

D 1 : DI R D l : " " " " " ” " n

Dl: DIR Dl : * .* " " " " " ” " n

D1 DIR D2: list all files of disk on drive two
Dl: DIR D2: * ‘* ” " L} " " L1 L] n
D1:DIR *,0BJ files with extension .OBJ on drive one
D1:DIR D2:* ,AS files with extension .ASM on drive two

note: under version 4 of 0S/A+ the file spec necessary
to refer to all files on a disk is just "*", not "* *"

——O—

2.5 An Overview of Extrinsic Commands

The extrinsic commands are
OS/A+. Any program file of the load

containing the .COM

extrinsic command.

extrinsic command.
you will see a file
the COPY.COM file
command is entered.

programs that are run by

fi

le

format and
extension may be used as a 0S/A+

The 0S/A+ COPY command is one such

If

named COPY.COM .
what is executed when the COPY
Assuming that D1: i
device, the COPY command would look like:

is

The

s the

D1:COPY <from-file-name> <to-file-name>

or

D1:COPY TEST.OBJ D2:TEST.OBJ

from drive one to drive two. (COPY

to copy TEST.OBJ

has many more options available.

See t

he

COPY later in this manual for more details.)

Whenever any command
compares the command entered
only) to its intrinsic command list.
not in the intrinsic

extrinsic.

is given

list,

(first

it

to O

th

is

S/A+
ree

0S/A+ will process the extrinsic command by:

1) Prefix the command with the

a device is

not

specified).
2) Attach the .COM extension to the command.
3) Open the generated file spec for input.
4) Test file for program of
5) Load and execute the program.

default

you LIST the 0S/A+ DIRECTORY,
program in

default

section on

it first

characters
If the command is
assumed to Dbe

device (if

proper LOAD file format

The COPY command illustrated will execute only if the
file COPY.COM exists on drive one and is

file format. 1f

various error messages will

procedure implies
the default device

any

was

of

the Load

element of the procedure fails
Step
that a device may be specified. If

drive

-—10--

result.

two

and

the

1

of the

COPY.COM

program was on drive one, our example COPY would look
like:

D2:D1:COPY D1:TEST.OBJ TEST.OBJ

which again copies TEST.OBJ from device one to device
two. Never explictly specify the .COM extension as
part of the command. The command COPY.COM will result
in a file spec of D1:COPY.COM.COM, which 1is generally
invalid. If the file is not of the proper LOAD format,
the error message ADR RANGE ERROR will most likely
appear.

Some extrinsic commands (such as COPY) are supplied by
0SS. The number of possible extrinsic commands is not,
however, 1limited to these few; commands may be written
by the user to perform virtually any function. If you
are intrested in writing your own extrinsic commands,
see Chapter 7.

If an extrinsic command (i.e., a program running 1in
RAM) has control, the program may generally be rerun or
reentered by simply wusing the RUN command with no
parameters.

-11~

2.6 An Overview of Batch Processing

The 0S/A+ execute feature allows the user to execute
one or many CP commands with a single command. Let's
suppose that you wrote a set of BASIC programs that
must be run in sequence. You could issue the CP
extrinsic BASIC command (thus executing BASIC.COM),
then from BASIC run each program one at a time. If the
running time of the BASIC programs was very long you
could sit at the key board for hours just to type RUN
program name every once in awhile. O0S/A+ allows you to
create and execute an EXECUTE file which contains one
or many 0S/A+ commands. You would then enter one
command that would free you from the keyboard for more
important (or fun) things.

Any text file with the filename extension .EXC can be
used as an O0S/A+ execute file. The execution of the
file is 1invoked much 1like the extrinsic commands,
except the command is preceeded with a commercial "at”
symbol ("@"). To execute the EXECUTE file DEMO.EXC on
the D1: default device, type:

D1:@DEMO

CP will create the file spec D1:DEMO.EXC and then set
up 0S/A+ to read it 1line by 1line executing the CP

commands just as if they were being entered from the
keyboard.

——]12--

CHAPTER 3: THE INTRINSIC COMMANDS DETAILED

Intrinsic Commands are those commands which may be
given anytime the system is displaying the 0S/a+ prompt
(e.g., Dl: or D2:). Since these commands reside within
the Console Processor's memory, they do not need to be
loaded from disk.

Any intrinsic command may be accessed by using just the
first three characters of the command name (see section
2.4 for examples). A consequence of this is that no
extrinsic command program may start with three
characters which match any of the instrinsic commands.
For example, a program named "PROCESS3.COM" could not
be called by simply typing "PROCESS3", since 0S/A+
would view that as the 1intrinsic command "PROtect”.
Solutions: (1) Rename the extrinsic command file. (2)
Use "LOAD PROCESS3". If the program soes not then
automatically run, simply type "RUN" and it will
execute.

The intrinsic commands are detailed below, one to a
page in alphabetic order.

13-

Section 3.1
command : CAR

purpose: This command transfers control to a
cartridge

users: Atari users only
usage: CAR

arguments: none

options: none

Description

The CAR command allows the user to enter a cartridge
from 0S/A+. The cartridge will retain control of the
system until a DOS command is executed from the
cartridge.

——14--

section 3.2
command : DIRectory

purpose: The command allows the user to view the
disk directory

usage: DIR [Dn:]}[file-specifier]
arguments: optionally, a file specifier string
options: none

Description

The dir command searches the disk directory of the
specified disk (or the current default drive, if Dn: is
omitted) for all files matching the file-specifier.
The names of all files matching the specifier are then
printed to the screen, together with the length of the
file (in sectors). An asterisk preceding the file's
name indicates that the file is protected from erasure,
writing, or renaming.

The file-specifier may be any valid file name (see
sections on file structure) and may contain the
"wild-card" characters '?' and '*'., A question mark
('?') will match any character in a file name, while
an asterisk ('*') will match any string of zero or more
characters. For example,

DIR *AB.C??
will match and list

XAB.CXX

AB.CUR

BEOBAB.CNN

etc.

—=15—=

Section 3.3
command : END

purpose: Stop batch execution from within an
execute file

usage: END
arguments: none
options: none

Description

The END command causes 0S/A+ to stop reading commands
from a batch file and to resume prompting the user for
commmands. This command has no effect outside of a
batch file.

—=16—-

Section 3.4

command : ERAse

purpose: This command removes files from a disk
usage: ERA [Dn:]file-specifier

arguments: a file specifier string

options: none

Description

The ERA command permanently removes files from a disk.
All files matching the file-specifier string on the
specified drive (or the current default drive, if Dn:
is omitted) will be erased from the disk. These files
will no longer be shown when a DIR command is issued,
nor will they be available for any type of file access.

As this command causes the irreversible deletion of
files from the disk, it should be used with care. Use
the PRO command to guard files against accidental
erasure.

Examples:

ERASE *,BAK
will erase all files with an extension
of .BAK that are unprotected and that
reside on the current default drive.
ERA D2:DUP.SYS
will erase the file named DUP.SYS from
disk drive number two.

Notes:
If ERAse does not find any erasable files that
match the specifier, it will return a file not
found error.

—17--

Section 3.5

command : LOAd

purpose: Load disk files into memory

usage: LOAD file-name

arguments: a file name

options: none

Description

The LOAD command allows the user to load binary load
image files 1into user memory. The files must be

compatible with the normal binary object files used by
the normal host computer operating system. That is:

For Atari users, each segment of the memory image file
must be preceeded by two addresses, the starting and
ending addresses in RAM memory of the segment. The
entire file must be preceeded by two bytes with all
bits on ($FF, $FF). This format is identical to that
produced by Atari's Assembler/Editor Cartridge and most
upgraded products (including EASMD and MAC/65 from
0SSs) .

For Apple II users, each segment of the memory image
file must be preceeded by a two-byte address (the
starting address in RAM memory of the segment) and a
two byte number which represents the length of the
segment in bytes. This is identical with the file
format produced by the "BSAVE" command in Apple Dos
3.3, excepting only that the concept has been extended
to allow multiple segment in the file (as if two or
more BSAVED images were concatenated).

—18--

Section 3.6

command : NOScreen

purpose: Turns off command echo to screen during
batch

usage: NOS

arguments: none

options: none

Description

Normally, all commands encountered during batch
execution are echoed to the screen as if they were
typed in by the user. The NOS command can be used to
prevent this echo. All commands within an execute file
will then no longer be echoed until the execute file is
stopped for any reason or a SCR command is encountered.

This command only effects commands encountered in batch
mode.,

-—19--

Section 3.7
command : PROtect

purpose: This command protects files from acciden-
tal erasure, writing, or renaming

usage: PRO [Dn:]file-specifier
arguments: a file specifier string
options: none

Description

The PRO command allows the user to protect one or more
files from any erasure, writing, or renaming. All
files matching the file-specifier on the specified disk
(or the current default drive, if Dn: is omitted) will
be protected. These files will then be shown with a
preceding asterisk when a DIR command is issued. The
UNP command can be used to disable the protection, when
desired.

-——20--

Section 3.8
command : REMark

purpose: Facilitates remarks to screen during
batch execution

usage: REM any characters

arguments: a string of zero or more characters
options: none

Description

The REM command performs no operation whatsoever. Its
sole purpose is to provide a means of easily printing
messages to the screen from an executing batch file
(see section on batch execution). When encountered
during batch execution, the command line containing the
REM command will be echoed to the screen.

.}, [

Section 3.9

command : REName

purpose: Rename a file to a new name
usage: REN from-file-name to-file-name
arguments: two file names

options: none

Description

The REN command will search the specified disk (or the
default drive, if Dn: 1is not specified) for a file

whose name matches the specified from-file-name. If
the file 1is found, 1its name will be changed to the
indicated to-file-name. An error occurs if the

from—-file is not found on the disk. The to file-name
should NOT be preceeded by a disk drive specifier.

——22-=

Section 3.10
command : RUN

purpose: This command transfers control to a
address in memory

usage: RUN fhex-address]

arguments: an optional hexadecimal address
option: none

Description

The RUN command causes OS/A+ to immediately perform a
jump to the indicated address (or to the address
contained in the 0S/A+ RUNLOC, if no address is given).
The hex-address, if present, must consist of 3 or 4
hexadecimal digits.

The address in RUNLOC 1is set any time an extrinsic
command is issued or a program is loaded using the LOAD
command. Therefore, the RUN command may be used to
reenter a program such as BASIC after leaving the
program through a DOS command.

IMPORTANT NOTE:

Most standard O0OS/A+ interactive system programs will
set RUNLOC to point to their warmstart entry point.
Thus, for example, if the user returns to DOS in order
to perform an INTRINSIC command, he/she may reenter the
systems program by simply typing RUN. At the current
writing, BASIC A+ and MAC/65 (for example) both follow
this protocol: simply type RUN from CP to reenter at
their warmstart points.

——23m

Section 3.11

command : SAVe

purpose: Save a portion of memory to a disk file
usage: SAVE file-name start-address end-address
arguments: a file name

a hexadecimal starting address
a hexadecimal ending address

options: none

Description

The SAVE command allows the user to write portions of
memory to disk files in standard binary file format.
The two addresses define the portion of memory to be
written to disk; the second address must be greater
than or equal to the first. A file which has been
'saved' may be later returned to memory using the LOAD
command .

Example:
At the time of this writing, the BASIC A+ user with an
Atari computer having 48K Bytes of RAM could patch the
distribution copy of BASIC A+ and save the new patched
version to disk via

SAVE NEWBASIC.COM 8400 BCOO

(PLEASE verify these addresses in your BASIC A+ manual;
they ARE subject to change.)

-4

Section 3.12

command : SCReen

purpose: Cause batch commands to be echoed to the
screen

usage: SCR

arguments: none

options: none

Description

The SCR command causes commands encountered during
batch execution to be echoed to the screen. The NOS
command may be used to turn off the echo of batch
commands.

This command only effects commands encountered in batch
mode.

~—2G—m

Section 3.13
command : UNProtect

purpose: This command removes the protection
caused by the PRO command

usage: UNP [Dn:]file-specifier
arguments: a file specifier string
options: none

Description

The UNP command allows the user to remove the write
protection caused by the PRO command so that files may
again be erased, renamed, or written to. All files
matching the file-specifier on the specified drive (or
the current default drive, if Dn: is omitted) will be
affected. These files will no longer be shown with a
preceding asterisk when the DIR command is used.

-—26—m

CHAPTER 4: EXTRINSIC COMMANDS DETAILED

This chapter gives a descrption of each extrinsic
command supplied as a standard part of an O0S/A+ system
master diskette (except that some commands may be
specific to particualar versions of packages).

Remember that any program which 1is (or may be made
into) a DOS-compatible load file may be used as an
extrinsic "command". The sole exceptions to this rule
are programs whose names begin with three characters
which match any of the three character intrinsic
commands. For a list of the intrinsic commands and
further information on this point, see Chapter 3.

As all extrinsic commands cause programs to be loaded,
such commands may only be invoked when a disk
containing the particular command program has been
inserted in the appropriate drive.

L

Section 4.1

command : ADOS

purpose: This command allows access to version 2
and version 4 files at the same time

users: Atari version 4 users only
usage: ADOS

arguments: none

options: none

Description

This program 1installs O0S/A+ version 2 along with
version 4. This allows the user to access version 4
disks as Dn: while accessing version 2 disks as An:.
The usage of this command does require more memory for
the dos, so the low memory pointer ($2E7) will be moved
up accordingly. In order to restore the system to its
former state (i.e., version 4 only), press the system
reset key.

The DUPDSK command must not be used while the ADOS
command is in effect! This will result in a system
crash.

After wusing ADOS to install the version 2 file system,

you may use APCOPY to copy version 2 files to version 4
diskettes, or vice versa.

——28-=

Section 4.2

command : BASIC

purpose: This command loads and executes the
BASIC A+ language

users: BASIC A+ owners only
usage: BASIC [file-name]
arguments: optionally, the name of a saved

BASIC A+ program

options: none

Description

This command loads and executes the file BASIC.COM,
which is the BASIC A+ language., If the optional file
name is specified, BASIC A+ will automatically load and
execute that file. The file must have previously been
'SAVE'd from BASIC A+. Refer to the BASIC A+ manual
for information specific to the language.

*** FOR MORE INFORMATION, SEE YOUR BASIC A+ MANUAL ***

-——20—-—

Section 4.3

command : C65

purpose: this command loads and executes the 0SS
C/65 compiler

users: C/65 owners only

usage: C65 souurce—-file destination-file [~T]
arguments: two file specifiers

option: -T include C/65 source Text in

assembler output

Description:

This command loads and executes the file C65.COM, the
0SS small C compilier. Two filenames are required.
The first file given must be the name of a text file
containing C/65 source code and statements. The second
file specified will be <created (or reused, if it
already exists), and the compiler will write
MAC/65-compatible assembly language to it.

Option
If the -~T option 1is specified, the MAC/65 file will

contain the user's C/65 text lines. Each source 1line
precedes the assembly code it generates, if any.

*** FOR MORE INFORMATION, SEE YOUR C/65 MANUAL ***

——30-—

Section 4.4

command:

purpose:

users:
usage:

arguments:

options:

Description

If no parameter
the status of
Atari computer.

If one or more
to be request
configure them
consists of a
to 8) followed
"Mode") . The

CONFIG

Allows the user to change the status of
a configurable drive (e.g., PERCOM)

0S/A+ users with configurable drives
CONFIG [parml parm2 ...] [-N]}

an optional list of paramaters which
define the desired status of drives in
the system

-N no drive configuration table
will be displayed

s are given, this command simply reports
all drives currently attached to the

parameters are given, they are presumed
s to Percom-compatible disk drives to
selves. In particular, a parameter
single numeric digit (in the range of 1
by one or two alpha characters (the
digit 1is presumed to be a disk drive

number (corresponding to D1l: through D8:). The 1legal

character combi
Mode
S
D

DD

Options

Normally, the

nations usable as Modes are as follows:
Meaning

Configure this drive as a Single density,
single sided drive.
Configure this drive as a Double density,
single sided drive.
Configure this drive as a Double density,
Double sided drive.

CONFIG command will list out the current

drive configuration. Using the -N option will cause
this table to be omitted.

31—

Section 4.4 (CONFIG Continued)

Example:

CONFIG 1D 2DD
requests that Dl: be configured as double
density, single sided, while D2: will
become double density, double sided.

Notes:

If a configuration request is made, the file manager
system is reinitialized and the system status is
reported, as if the command CONFIG with no parameters
had been given.

If a configuration request is 1invalid (e.g., 1if the

drive is not capable of being configured via software),
the command will report an error.

——32--

command : COPY

purpose: This program copies files. Note the
cautions listed below.

usage: COPY source-file destination-file [-fgsw]
or
COPY file [-FQSW]

arguments: one or two file specifiers
options: -F force overwrite of existing file
-0 query before each file transfer
-S single disk copy
-W wait for user response before
copying
Description

The copy program copies one or more files without
changing the source file. 1In the first form, all files
matching the source-~file specifier would be <copied to
files indicated by the destination specifier, which may
be on the same or a different disk. In the second
form, the files indicated by the file name would be
copied to files having the same name on the same drive.
This enables the <copying of files on a single disk
system. The source and destination file specifiers
should be of one of the following forms:

1) [Dn:)file~name

2) Dn:
In form 1, the drive specifier (Dn:) is optional; the
current default drive will be assumed if no drive
specifier is given. 1In the second form, all files from
the indicated drive would be copied to or from another
disk.

Options

The -f option causes the program to overwrite an
existing file if it has the same name as a destination
file to be copied. If this option 1is not specified,
files whose destination names already exist will not be
copied.

33—

Section 4.5 (continued)

The -g option causes the program to ask the user
whether to copy each file.

The -s option indicates to the program that it must
perform the copy on a single drive. Copy will prompt
the user to insert source and destination disks at the
proper time.

The -w option indicates that the program must wait for

the user to insert the proper disks before initiating
the copy.

CAUTION:

Do NOT use COPY in conjuction with the ADOS command to
copy FROM version 2 diskettes TO version 4 diskettes.
Instead, use the COPY24 command utility found on your
Version 4 Master Diskette.

COPY may be used to copy version 4 files to version 2
diskettes, but COPY24 may be a more advisable choice.

Examples:

COPY *.*
will copy all files on the current disk on the
current drive to another disk on the same
drive. The system will prompt the user when
the diskette needs to be swapped. Generally,
DUPDSK 1is a more effective and faster means of
performing this function.

COPY *,COM D3: -F
will copy all files having an extension of
".COM" from the current disk drive to drive 3
(which could be the same as the current drive;
caution). If the file(s) already exist on
drive 3, they will be erased and rewritten.

COPY D2:C*.,* D1: -Q
will ask the user if he wants to copy each file
starting with the letter "C" from drive 2 to
drive 1.

=34

Section 4.6

command : COPY24

purpose: transfer files from version 2 to
version 4 diskettes (or vice versa)

users: Atari owners with OS/A+ version 4 only
usage: COPY24 filename [,filename...] [-D][-W]
arguments: from one to eight filenames, specifying

the files on the source disk which are
to be transferred

options: -D the version 2 disk (whether source
or destination) is a Double Density
disk
-W the version 2 disk is to be Written

description:

COPY24 is a valid command only when issued from the CP
of version 4 0S/A+ and, even then, only after ADOS has
been used to install the version 2 file manager.

Unless the "-D" or "-W" option(s) are specified, APCOPY
will copy all the files specified in the command 1line
from a standard Atari-format version 2 single density
diskette to a properly initialized version 4 0S/A+
diskette, where both diskettes will be used on the same
drive. The files are transferred one at a time, with
an appropriate prompt given when necessary to change
diskettes.

NOTE that there will be a prompt before the first copy
can proceed.

NOTE the restriction that both diskettes be used on a

single drive. This is done to insure that the drive in

use can be given the proper commands to reconfigure
itself.

(continued)

~-—35--

Section 4.6 (COPY24 continued)

options:

The "-D" option may be used when it 1is desired to
specify that the Version 2 diskette was formatted and
written as a double density diskette (whether by O0S/A+
version 2 or by Atari DOS 2.0 patched to enable double
density).

The "-W" option simply reverses the direction of the
copy. If you think of "COPY24" as meaning "COPY via
read from version 2 and write to version 4", then "-W"
may be thought of as meaning "Write to version 2 from
version 4, instead".

——36~—

Section 4.7

command : DO

purpose: This command allows the user to perform
several operations with one command line

usage: DO command [;command;command...]
or
DO
arguments: optionally, a list of commands separated

by semi-colons

options: none

Description

This DO command allows the user to issue several
commands on one 1line. These commands are not
restricted to O0S/A+ intrinsic and extrinsic commands,
however. For example, the following DO command would
load the BASIC 1language, enter a previously 'list'ed
program, and run the program:

DO BASIC;ENTER "D:PROGRAM";RUN

In the second form of the DO command, the DO program
will prompt the user for a list of commands, one at a
time, saving these away for use. The entry of just a
carriage return when prompted for a command will cause
the entire list of commands to be executed.

—37 ==

Section 4.8

command : DUPDBL

purpose: This program provides fast copying of
entire double density diskettes

users: ONLY Atari owners using version 2 0S/A+
AND ONLY those using double density disks

usage: DUPDBL
arguments: none
options: none

Description

The DUPDBL program will prompt the user for source and
destination drives, and will ask whether to format the
destination disk. The entire source disk will then be
copied to the destination disk in a manner somewhat
faster than the copy utility would provide. The two
disks, however, MUST be double density 0S/A+ diskettes
formatted under version 2 of 0S/A+ (or Atari DOS 2.0S
as patched for double density). 1IF the destination
drive is the same as the source drive, the program will
prompt the user to swap disks during the duplication
process.

w38

Section 4.9

command : DUPDSK

purpose: This program provides fast copying of
entire floppy disks of the same size and
type

users: Atari owners: all versions and diskettes

EXCEPT double density disks
under version 2 0S/A+
Apple owners: standard Apple disks only

usage: DUPDSK
arguments: none
options: none
Description

The dupdsk program will prompt the user for source and
destination drives, and will ask whether to format the
destination disk. The entire source disk will then be
copied to the destination disk in a manner somewhat
faster than the copy utility would provide. The two
disks, however, must be of the same size and type. If
the destination drive is the same as the source drive,
the program will prompt the user to swap disks during
the duplication process.

CAUTION: Do NOT attempt to use DUPDSK to duplicate
double density diskettes under version 2 of O0S/A+.
Unpredictable and disastrous results may occur! DO use
DUPDBL (see previous section) for this purpose.

—=30—-

command : HELP

purpose: This program provides a MENU of system
commands to help the beginning user.

usage: HELP

arguments: none

options: none

Description

Although we firmly believe that the command system of
the 0S/A+ Console Processor (CP) is superior to a menu
approach, we can readily understand how the wealth of
flexibility offered may overwhelm the new user.
Therefore, we have provided this HELP command which
provides menu access to the most frequently used system
commands.

To use the menu, simply type HELP (followed by a
RETURN, please!) any time the CP system prompt appears
(usually D1l:, followed by the cursor).

The available options are numbered from 1 to 9. To
choose an option, simply type a digit from 1 to 9,
followed by a RETURN. (Any invalid choice will exit
the menu, back to 0OS/A+.)

Note that each of these options (except number 9) are
exactly equivalent to an 0S/A+ CP command. 1In the list
which follows, the menu option is followed by its 0S/A+
equivalent and a short description of its effect.

1. CAR Runs any cartridge plugged into the
left cartridge slot. Always does a
"cold start™ of the cartridge.

2. COPY Allows the user to specify two filenames.
Will copy a file from the "FROM" file to
the "TO" file. [Allows use of ambiguous
(wild card) names. Use "*" and "?" in
filenames with caution.]

¥ p

DIR

COoPY

ERA

PRO

REN

UNP

Allows the user to specify a filename
(including an ambiguous filename with
"*" or "?") and then lists all files
which match the given name. If just
RETURN is given instead of a filename,
will list all files on the "current"
disk drive. [See section 2.2 for info
on how to change the "current" disk.]

"Duplicate a File". Special access into
the COPY utility to copy a single file
using a single disk drive. Not as

fast as option 2, but for use on systems
with only one disk drive.

Allows the user to specify a filename.
Erases the named file if it is on the
current disk and if it is not protected.

Allows the user to specify a filename.
Sets the system status for the named
file to "Protected" if the file exists.
[Protected files cannot be ERAsed or
written to.]

Allows the user to specify a FROM name
and a TO filename. RENames the FROM
file (if it exists and is not protected)
to the TO filename (if it does not
already exist).

Allows the user to specify a filename.
Resets the system "protected" status
for the named file if it exists.

Exit to 0S/A+. An unnecessary option,

actually, since a simple RETURN will
exit also.

_—4]——

command : INIT

purpose: This program initializes floppy disks
so that they may be read from
or written to

usage: INIT
arguments: none
options: none

Description

The INIT utility allows the user to format a floppy
disk so that it may be read or written by programs.
Under OS/A+ version 2, the user will be prompted for
information on exactly how to 1initialize the disk
(i.e., with or without a system file, etc.). Under
version 4, a system file, DOS.SYS, is not written by
the init program. In either case, the program will
prompt for a drive to init. When the initialization
process is complete, the floppy disk may now be used to
store data. Under 0S/A+ version 4, use COPY or DUPDSK
to transfer a system file to the new disk, if desired.

_—l 2

command : MAC6S

purpose: Loads and executes the MAC/65 macro
assembler

users: MAC/65 owners only
usage: MAC65 [filel (file2 [file3 1] [-A][-D]]
arguments: an optional set of one to three filename,

construed to be the source, listing, and
object files (respectively) of a MAC/65
assembly.

options: -A source file is Ascii
-D assembly must be Disk-to-Disk

Description:

This command loads and executes the file MAC65.COM, the
0SS Macro Assembler/Editor. If no filenames are given,
MAC/65 will be invoked in 1its interactive (Editor)
mode. Programs or text may then be edited and/or
assembled. See the MAC/65 manual for further details.

If one or more files are specified, MAC/65 will be
invoked 1in its "batch" mode. That is, it will perform
a single assembly and then return to 0S/A+. Generally,
this command line will perform the assembly in a manner
equivalent to giving the "ASM" command from the MAC/65
Editor. That is, if only one filename is given, it is
assumed to be the source file, implying that the
listing will go to the screen and the object code will
be placed in memory (but only if requested by the .OPT
OBJ directive). If a second filename is given, it is
assumed to be the name of the listing file. Only if
all three filenames are given will the object code be
directed to the file specified.

Note: if an assembly needs no listing but does need an

object file, the user may specify E: as the listing
file, thus sending the listing to the screen.

——43-m

Section 4.12 (MACA5 continued)

Options

The -A option is used to specify that the source file
is not a standard MAC/65 SAVEd file but is instead an
Ascii (or Atascii) file. This is equivalent to using
the interactive Editor mode of MAC/65 to use the
sequence of commands "ENTER#D..." and "ASM ,...".

The -D option is used to specify that the assembly MUST
proceed from disk to disk. If this option 1is not
given, the source file is LOADed (or ENTERed) before
the assembly, and then the assembly proceeds with the
source in memory (generally producing improved speed of

assembly) . If, however, the source file is too large
to be assembled in memory, the user may use this option
to allow assembly of even very 1large programs. (And

remember, even if the source fits, the macro and symbol
tables must reside in memory during assembly also.)

NOTE: the -D option can NOT be used in conjunction with
the -A option. The source file assembled under the -D
option MUST be a properly SAVEd (tokenized) file.

*** FOR MORE INFORMATION, SEE YOUR MAC/65 MANUAL ***

——l4--

Section 4.13

command : R5232

purpose: installs the serial device handlers
("Rn:") for use with the Atari 850
Interface Module.

users: Atari users with 850 Modules
usage: RS232

arguments: none

options: none

Description:

Using the command RS232 from O0S/A+ is functionally
equivalent to using Atari's AUTORUN.SYS file (which
boots the R: handlers at power on time under Atari
DOS). The driver for the various RS232 functions 1is
loaded at LOMEM, LOMEM is moved, and the R: device is
hooked into the handler table.

CAUTION: due to a bug 1in the software in the 850
Interface Module, hitting RESET will destroy the proper
LOMEM pointer, effectively ignoring the space occupied
by the RS232 handlers.

CAUTION: the 850 Interface Module 1is sometimes too
intelligent for 1its own good. In particular, one
cannot generally reload the software from the module
without turning the module off and back on again.

After giving the RS232 command, if the Dn: prompt
appears again below the 1line containing the "RS232"
command, the Interface Module has loaded its software
properly. If, however, the screen clears and the Dn:
prompt appears at the top of the screen, something went
wrong during the loading process. Unfortunately, the
software in the Interface Module does not return a
usable error code, preferring instead to do a system
warmstart (hence the cleared screen).

——45-—

---this page intentionally left blank—-

-G

--—this page intentionally left blank--

_—4 77—

Chapter 5: Interfacing to 0S/A+

As mentioned in Chapter 1, O0S/A+ 1is designed as a
layered operating system. Application programs
(including languages such as BASIC A+) are expected to
call the operating system "properly", through the
system call vector (labled "CIO"in SYSEQU.ASM). In
turn, CIO will determine which device is to receive
what I/0O request and handles most of the work
tranparent to the calling program.

If a program restricts itself to proper calls to CIO
using labels provided in SYSEQ.ASM, the program should
transfer wvirtually without change form one version of
0OS/A+ to another. (Probably the only other areas of
change would involve memory map usage and the length of
file names--12 bytes under version 2 and 30 bytes under
version 4.)

In any case, here with is a description of the proper
assembly language calling sequnces and parameters under
0S/A+.

48—

5.1 The Structure of the IOCB's

When a program calls the 0S through location "cCI1o", o0s
expects to be given the address of a properly formatted
IOCB (Input Output Control Block) . (This does not
apply to global commands under Apple version 4; see
section 5.6 for more details on global 0S commands) For
simplicity, we have predefined 8 IOCB's, each 15 bytes
long, and the program specifies which one to use by
passing the IOCB number times 16 1in the 6502's
X-register. Thus, to access IOCB number four, the
X-register should contain $40 on entry to 0S. Notice
that the IOCB number corresponds directly to the file
number in BASIC (as in PRINT #6, etc.). Actually, the
I0CB's are located from $0340 to $03BF on the Atari and
from $BD00 to $BD7F on the Apple II (but you really
should use the equates from the disk file " SYSEQU.ASM"
rather than relying on hard-coded addresses.)

When 0S gets control, it uses the X-register to inspect
the appropriate IOCB and determine just what it was
that the user wanted done. Figure 5.1 gives the 0S/A+
standard names for each field in the IOCB along with a
short description of the purpose of the field. Study
the figure before proceeding.

The user program should NEVER touch fields ICHID, ICDNO,
ICSTA and ICPTL/ICPTH. In addition, unless the
particular device and 1/0 request requires it, the
pProgram should not change ICAX1 through ICAX6. The
most important field is the one-byte command code,
ICCOM, which tells the operating system what function
is desired.

——49--

FIELD
NAME

OFFSET

WITHIN
I0CB

(bytes)

FIGURE 5-~1

IOCB STRUCTURE

SIZE
OF
FIELD
(bytes)

PURPOSE OF FIELD

ICHID

SET BY O0S. Index into device
name table for currently OPEN
file, set to SFF if no file
open on this IOCB.

SET BY 0S. Device number
(e.g., for "Dl:xxx" or 2 for
"D2:yyy")

The COMMAND request from user
program. Defines how rest of
IOCB is formatted.

SET BY 0S. Last status returned
by device. Not necessarily the
status returned via STATUS
command request.

ICBADR

BUFFER ADDRESS. A two byte
address in normal 6502 low/high
order. Specifies address of
buffer for data transfer or
address of filename for OPEN,
STATUS, etc.

SET BY 0S. Address minus one of
device's put-one-byte routine.
Possibly useful when high speed
single byte transfers are
needed.

ICBLEN

BUFFER LENGTH. Specifies
maximum number of bytes to
transfer for PUT/GET opera-
tions. NOTE: this length is
decremented by one for each
byte transfered.

ICAUX1

Auxiliary byte number one. Used
in OPEN to specify kind of file
access needed. Some drivers can
make additional use of this
byte.

ICAUX2

Auxilliary byte number two.
Some serial port functions may
use this byte. This and all
following AUX bytes are for
special use by each device
driver.

ICAUX3
ICAUX4

For disk files only: where the
disk sector number is passed by
NOTE and POINT. (These bytes
could be used separately by
other drivers.

For disk files only: the byte-
within-sector number passed by
NOTE and POINT.

IOCB STRUCTURE

—=51——

| 10CB field name} 0 | 1 | 2 |
! | | | |
[11 1| I
|] ¢l ¢ci C|
| | H| D] C|
[Type of | T | N O]
| command | Dl o1l MI
|OPeN [* 1 * 1 3]
CLOSE	*	12	
dynamic			
STATus] *	13	
Get TeXT }	!		
Record		5	
Put TeXT			
Record		1 91	
Get BINary		!	
Record ! }	71		
Put BINary			
Record	!	11	
EXTENDED COMMANDS: DISK			
REName	[* 1 32]		
ERAse	*	33	
PROtect	*	35	
UNProtect	*	36	
/NOTE | | 38 |
] POINT | I 37 |
LEGEND: Tkt
'buffer'
'filename'
_..52__

31 41 51 61 71
| | | | |
I | BUFFER] PUT-A- |
C | ADDRESS | BYTE |
S | ! | ADDRESS |
T | | |] |
A | ICBADR | ICPUT |
* | filenamel * |
* | |
| | |
* | filenamel] |
| | |
* | buffer | |
| | |
* | buffer | |
| | |
* | buffer | |
[| |
* | buffer | !
FILE MANGER ONLY
* | filenamel |
* | filenamel !
* | filename] |
* | filename] |
* | | |

Set by 0S when this
command is used

Address of a data buffer
Address of a filename

81 9110 | 11 | 12] 13
| Il 1] 11 1] 1
BUFFER | C | Cc] ¢} ¢
LENGTH | A | A A | a
| Il ul uUul] Ul u
I | X X1 x [X
ICBLEN | 1| 2] 3| 4
mode		
length		
length	I	
length		I
	! i	
length		
(See section 5.4)		
]		
		sec num
		sec num

'length'
'mode’
'sec num'
'byte'

IOCB field name|

51

I]
c 1 |
A | (as given in |
u | SYSEQU.ASM) |
X | |
6 | |

COMMAND NAMES

|byte! | CNOTE |

|bytel | CPOINT |

Length of a data buffer
Mode of OPEN (i.e., read, write, etc.)

Sector number,

see section 5.4.3

Byte in sector, see section 5.4.3

——53em

5.2 The Standard 0S/A+ Commands

The O0S 1itself only understands a few fundamental
commands, but 0S/A+ also provides for extended commands
necessary to some devices (XIO in BASIC). In any case,
each of these fundamental commands deserves a short
description.

5.2.1 OPEN

Open a device (synonyms: file, IOCB, channel) for read
and/or write access. O0S expects ICAXl1 to contain a
byte that specifies the mode of access: ICAX]l = 4 for
read access, 8 for write access, and 12 for both read

and write access. (Note: the disk file manager and the
screen device handler allow other modes, and they will
be discussed in a later section.) The name of the

device (and, for the disk, the file) must be given to
05; this is accomplished by placing the ADDRESS of a
string containing the name in ICBAL/ICBAH.

5.2.2 CLOSE

Terminate access to a device/file. Only the command
must be given.

5.2.3 STATUS

Request the status of a device/file. The device can
interpret this request as it wishes, and pass back a
(hopefully) meaningful status. As with OPEN, the
ADDRESS of a filename must be placed in ICBAL/ICBAH.

5.2.4 GET TEXT

A powerful command, this causes the 0S to retrieve
("GET") bytes one at a time from a device/file already
OPENed until either the buffer space provided by the
user is exhausted or a RETURN character (Atari $9B,
Apple $0D) is encountered. The user specifies the
buffer to use by placing its ADDRESS in ICBAL/ICBAH and
its maximum size (length) in ICBLL/ICBLH.

——54——

5.2.5 PUT TEXT

The analogue of GET TEXT, OS outputs characters one at
a time wuntil a RETURN is encountered or the buffer is
empty. Requires ICBAL/ICBAH and ICBLL/ICBLH to be
specified.

5.2.6 GET DATA

Extremely flexible command, this causes 0S to retrieve,
from the device/file previously OPENed, the number of
bytes specified by ICBLL/ICBLH into the buffer
specified by ICBAL/ICBAH. NO CHECKS WHATSOEVER ARE
PERFORMED ON THE CONTENTS OF THE TRANSFERRED DATA.

5.2.7 PUT DATA

Similar to GET DATA, except that 0S will output
ICBLL/ICBLH bytes from the buffer specified by
ICBAL/ICBAH. Again, no data checks are performed.
Figure 5.2 provides a table of 0S commands and their
usage of the wvarious fields of +the 1IOCB's. For
convenience, the disk file manager extended commands
are also shown, and they will be discussed in section
5.4.

5.3 Device Names

Device names under O0S/A+ are very simplistic; they
consist of a single letter (optionally followed by a
single numeral). Traditionally (and, in the case of
all Apple II files and both Atari and Apple disk files,
of necessity) the device name is followed by a colon.
The following devices are implemented under standard
0S/A+:

E: The keyboard/screen editor device. The normal
console output.

K: The keyboard alone. Use this device to bypass
editing of user input.

S: The screen alone. Can be either characters (ala E:)
or graphics.

=55

P: On the Atari, the printer. The standard device
driver allows only one printer. On the Apple, any
standard "Port" card may be accessed via this driver.
The device number (e.g.,"P3:") specifies the slot
number of the card.

C: The cassette recorder. (CAUTION: not imple- mented
on the Apple II)

D: The disk file manager, which also usually requires a
file name.

Other device names are possible (e.g., for RS-232
interfaces), and in fact the ease with which other
devices may be added is another mark for the claim that
0S/A+ is a TRUE operating system. The structure of
device drivers is material for a later chapter, but we
should like to point out that, on the Atari, the 0S ROM
includes drivers for all the above except the disk. 1In
fact, the drivers account for over 5K bytes of the ROM
code. The screen handler, with all 1its associated
editing and GRAPHICS modes, occupies about 3K bytes of
that. Of course, on the Apple 1II, all drivers are
loaded in at system boot time from the disk.

=56~

Figure 2 showed several O0S/A+ system commands not
discussed up until now. Generally, these "extended"
commands are accessed via the extended request routine
in a device driver's handler table (see chapter 8 for
details on device drivers). However, some of these
extended commands as implemented for the disk device in
the File Manager System are important enough to deserve
their own discussions. In this section, we examine
each of the extended disk operations in a 1little
detail:

5.4.1 Erase, Protect, and Unprotect

Also known as Delete, Lock, and Unlock, these three
commands simply provide 0S5 with a channel number (i.e.,
the X-register contains IOCB number times 16), a
command number (ICCcoM) , and a filename (via
ICBAL/ICBAH) . When O0S passes control to the FMS, an
attempt is made to satisfy the request. Note that the
filename may 1include "wild cards", as in "D:*_,??8"
(which will affect all files on disk drive one which
have an 'S' as the 1last 1letter of their filename
extension) .

5.4.2 Rename

Very similar to ERASE, et al, 1in usage. The only
difference is in the form of the filename. Proper form
is: "Dn:oldname.ext,newname.ext" Note that the disk
device specifier is not and CAN NOT be given twice.

5.4.3 Note and Point

Other than OPEN, these are the only commands
encountered in standard 0S/A+ which wuse any of the
AUXilliary bytes of the IOCB. For these commands, one
specifies the channel number and command number and
then receives or passes file pointer information via
three of the AUX bytes. ICAX3/ICAX4 are used as a
conventional 6502 LSB/MSB 16-bit integer: they specify

—57——

the current (NOTE) or the to-be-made-current (POINT)
sector within an already OPENed disk file. ICAX5 is
similarly the current (NOTE) or to-be-made-current
(POINT) byte within that sector. 1In the case of 0S/A+
version 4, the word sector might be more properly
replaced with the word "page", since the NOTE/POINT
addressing always uses 256 byte pages, regardless of
the physical sector size.

5.4.4 FMS Extensions of the OPEN Command

Open is not truly an extended operation, but for disk
I/0 we need to know that the FMS allows two additional
"modes"” beyond the fundamental 0OS modes (which are 4,
8, and 12 for read, write, and update). If ICAX1
contains a 6 when DFM is called for OPEN, then the disk
DIRECTORY is opened (instead of a file) for read- only
access. The filename now specifies the file (or files,
if wild cards are used) to be 1listed as part of a
directory 1listing. Note that FMS expects this type of
OPEN to be followed by a succession of GETREC (get text
line) 0S calls (and we present an example of this
below) . If ICAX1l contains a 9, the specified file is
opened as a write-only file, but the file pointer is
set to the current end-of-file. Caution: version 2 FMS
only appends on sector boundaries (normally this is
transparent to the wuser, but caveat artificer).
Finally, wunder version 4 FMS, mode 13 is also legal,
specifying that the file be opened 1in "Append/Update"
mode. See section 11,1 for more details on the
meanings of other bits in ICAX1 and ICAX2 under version
4 of 0S/A+.

—-—58 ==

5.5 ERROR HANDLING

This may not be the best place to introduce this topic,
but the information 1is needed for examples which
follow. There are four fundamental kinds of errors
that can occur with 0S/A+:

5.5.1 Hardware Errors

Such as attempting to read a bad disk, write a
read-only disk, etc.

5.5.2 Data Transfer Errors

Errors which occur when data is transferred between the

computer and a peripheral device. Examples include
Device Timeout, Device NAK, Framing Error, etc.

5.5.3 Device Driver Errors

Found by the driver for the given device, as 1in (for
the DFM) File ©Not Found, File Locked, Invalid Drive
Number, etc.

5.5.4 0S Errors

Usually fundamental usage problems, such as Bad Channel
Number, Bad Command, etc.

5.5.5 Error Codes Returned

On return from any 0S call, the Y-register contains the
completion code of the requested operation. A code of
one (1) indicates "normal status, everything is okay".
(I know, why not zero, which is easier to <check for.
Remember, we based this on Atari's 0S ROMs, which are
good, not perfect.) By convention, codes from $02 to
$7F (2 through 127 decimal) are presumed to be
"warnings". Those from $80 to $FF (128 through 255

-——59——

decimal) are "hard" errors. These choices facilitate
the following assembly language sequence:

JSR CIOV ; call the 0S

TYA ; check completion code

BMI OOPS ; if $80-$FF, it must be an error
In theory, O0S/A+ always returns to the wuser with
condition codes set such that the TYA is unnecessary.
In practice, that's probably true; but a little
paranoia is often conducive to 1longer life of both
humans and their programs.

5.6 CIO GLOBAL CALLS UNDER APPLE VERSION 4

0S/A+ Apple version 4 adds the capability of performing
global system calls which do not reference an IOCB.
These commands allow the user to change certain system
parameters and default values. Just as CIO expects the
number of the IOCB times 16 in the X register for
normal commands, the number of the global command must
be in the X register when CIO is called. Global
commands are numbered from $CO (192 decimal) to S$FF
(255 decimal), thereby avoiding a conflict with wvalid
IOCB numbers (the values from $80 to $BF are reserved
for future expansion of IOCB's and global commands).
The use of the A and Y registers will vary depending on
the particular global command desired.

Global system calls are accomplished in the following
manner :
1) set up A, X, and Y to conform to the require-
ments of the particular command desired
2) call CIO through the <CIO entry point (the
same location which is used for normal system
calls)
3) A, X, and Y now contain any values returned by
the particular system call which was performed

The following global system calls are implemented:

-——60~--

5.6.1 Set Default Device

command value (X reg) SFF 255 decimal

A register device name-- ascii value (i.e.,
'D'=544)

Y register sub-device number-- '1' to '9!

returns no return values

When a file is opened under Apple version 4 and a
device 1is not specified (i.e., a file name of "GEORGE"
instead of "D1:GEORGE"), CIO will automatically use the
current default device. This command allows the user
to set the value of that default.

5.6.2 Return Default Device

command value (X reg) S$FE 254 decimal
A register nothing
Y register nothing
returns device name in A
sub-device number in yY-- '1°'
to '9!

This command allows the user to inspect the current
value of the device system parameter.

5.6.3 Set System Date

command value (X reg) SFD 253 decimal

A register upper 4 bits: year lower
4 bits: month

Y register day

returns no return values

Apple version 4 supports a system date, although it
does not have an internal clock. This command allows
the user to set that date. The command expects the
high 4 bits of the A register to contain the number of
years past 1980 (i.e., a value of 4 means 1984) and the
lower 4 bits to contain the current month number
(1-12). The Y register will the current day of the
month (1-31).

_—61——

5.6.4 Return System Date

command value SFC 252 decimal

A register nothing

Y register nothing

returns system date in A and Y as in set

system date command

This command allows the user to inspect the current
value of the system date paramater.

——f2—

CHAPTER 6: Batch Processing Detailed

Chapter 1 provided an introduction to the capabilities
of "Batch" execution. This chapter provides further
details for the user who would like to create a custom
"EXeCute" file.

6.1 Execute File Format

An execute file 1is simply a text file. Each line of
the text file will become a CP command when executed.
The three basic rules of text file lines are that:

1) they must contain valid 0S/A+ console processor

commands,
2) they must be less than 60 characters in length
3) they must end in a carriage return (ATASCII $9B
on the Atari; ASCII $0D on the Apple).

0S/A+ allows the commands in an execute file to be
preceeded by numbers and blanks. This feature allows
the command lines to be numbered for readability and to
document their purposes. The execute file line:

LOAD OBJ.TEST <return>

and the line:

100 LOAD OBJ.TEST <return>
are the same to 0OS/A+ . O0S/A+ scans the line for the
first non- numeric, non-blank character before starting
to scan the command word. Virtually any text editor,
including the editors of MAC/65 or EASMD, can be used
to create and modify execute files.

Note for Atari users: One may also <create an execute
file (or, for that matter, any text file) by using
"COPY E: <diskfile>". (COPY will clear thescreen, at
which time you simply type in your text, line by line.
You terminate the copy by pressing CTRL-3, the end of
file signal for the E: device.)

—63——

6.2 Execute Intrinsic Commands

0S8/A+ has four special intrinsic commands designed for

use exclusively with execute files. These commands
are:
REMARK Remark or comment (does nothing)
NOSCREEN Turn of Echo of execute file

command lines to the screen.
(Default Mode)

END Stop executing the execute file
and return 0S/A+ to keyboard
entry mode (the CP).

See the section on intrinsic commands for a more
detailed explanation of these commands.

6.3 EXECUTE FILE STOPS

While an execute file 1is being processed, various
conditions may occur which will warrant a halt in the
batch execution. These conditions may occur because of
system-detected errors or because of a user program
detecting a condition it considers hazardous to the
system's health.

6.3.1 STOPS ISSUED BY 0S/A+

Humans are not quite perfect in the eyes of computers
and sometimes make mistakes. O0S/A+ commands specified

in error will generate error messages. If O0S/a+
discovers an error while executing an EXECUTE file, it
will print the error message as usual and STOP

executing the EXECUTE file. Note that this error stop
only occurs if the error is found by O0S/A+, not just
because a program generates an error.

Execution of an execute file will also stop after the
CARTRIDGE commmand is executed.

——64~-

It is sometimes desirable for a program in a chain of
executing programs to stop the execute process. The
usual reason for this is that the program has detected
an error severe enough to invalidate the processes
performed by the following program(s). The continued
execution of the execute files is provided for by a
single byte flag within 0S/A+. 1If a program sets this
byte to zero, then upon returning to 0S/A+ (DOS or CP
BASIC statements) the execute file execution will
immediately stop. The execute flag is located 12 bytes
from the start of 0S/A+, which is pointed to by memory
location 10 ($0A). The following Basic program segment
will turn off the execute file and return to 0OS/A+.

1000 CPADR = PEEK(11l)*256 + PEEK (10)
1010 EXCFLG = CPADR + 12

1020 POKE EXCFLG,0

1030 DOS

6.4 STARTUP.EXC

The execute filename STARTUP.EXC has special meanings
in the 0S/A+ system. When the system is first booted
(power up), OS/A+ will search the directory of the
booted disk volume for a file named STARTUP.EXC. If
STARTUP.EXC is on the booted volume, 0S/A+ will execute
that file before requesting keyboard commands.

65—

Chapter 7: User Written Extrinsic Commands

The writer of assembly language code will most 1likly
need to interface with the Atari Operating System (0S).
If the assembly code is to become an extrinsic command,

there may be a need to interface to O0S/A+ . See
chapter 5 for further information about the 0S8
interface. Sections 7.1 through 7.4, below, give

general information about the operations of 0S/A+,
especially when running in a "batch" environment.
Sections 7.5 and 7.6, then, give more detailed
information about command line parsing and the like.

7.1 SYSEQU.ASM

Every OS/A+ master disk contains an assembler source
file, SYSEQU.ASM, that has various commonly used Atari
0S5 and OS/A+ system equates. This file may be included
in an assembly language program via the 0SS MAC/65
include function (.INCLUDE #D1:SYSEQU.ASM)

7.2 0S/A+ MEMORY LOCATION

0S/A+ is designed to placed just after the Atari File
Manager. Since the actual location of 0S/A+ may vary
with different versions of a file manager, a fixed
location has been assigned to point to O0S/A+. The
location CPALOC(SOA on the Atari, see SYSEQU.ASM for
Apple value) is the same one Atari uses to point to
DUP. Most Atari programs the use a DOS exit vector
through CPALOC.

—656-—

7.3 EXECUTE PARAMETERS

The 0S/A+ execute flag is located CPEXFL ($0B) from the
start of 0S/A+. The CPALOC may be used as an indirect
pointer to access the execute flag.

LDY #CPEXFL ;GET DISPL TO FLAG

LDA (CPALOC) ,Y ;LOAO FLAG
The Execute Flag has four bits that control the execute
process.

EXCYES $80 If one, an execute is in progress

EXCSCR $4& If one, do not echo execute input
to screen

EXCNEW $10 If one, a new execute is

starting. Tells 0OS/A+ to
start with first line of the
file
EXCSUP $20 If one, a cold start execute is

starting.Used to avoid file-not-

found error if STARTUP.EXC is

not on boot disk.
0S/A+ performs the execute function by opening the
file, POINTing to the next line, reading the next line,
NOTE the new next 1line and closing the file. To
perform these functions, 0S/A+ must save the execute
file name and the three byte NOTE values. The filename
is saved at CPEXFN ($0C) into 0S/A+. The three NOTE
values are saved at CPEXNP($1C) into 0S/A+.
(CPEXNP+0=ICAUXS5; CPEXNP+1=ICAUX4; CPEXNP+2=ICAUX3).
By changing the various execute control para- meters, a
programmer can cause recursion and/or changing of ex-
ecute files.

7.4 DEFAULT DRIVE

Under Atari version 2, the 0S/A+ default drive file
spec is 1located at CPDFDV ($07) 1into O0S/A+. The
Default Drive here 1is ATASCII Dn: where "n" is the
ATASCII default drive number.

—6T7—-

7.5 EXTRINSIC PARAMETERS

The extrinsic commands may be called with parameters
typed on the command line. The 0SS command

D1:COPY FROMFILE D2:TO FILE

is an example of this. The entire parameters 1line is
saved in the 0S/A+ input buffer located at CPCMDB ($40)
bytes 1into O0S/A+ and is available to the user. Since
most command parameters are file names 0S/A+ provides a
means of extracting these parameters as filenames. The
routine that performs this service begins at CPGNFN
($03) bytes into 0S/A+ . The routine will get the next
parameter and move it to the filename buffer at CPFNAM
($21) bytes in 0S/A+. If the parameter does not
contain a device prefix, then 0S/A+ will prefix the
parameter with tlhe default drive prefix. The first
time COPY calls CPGNFN the file spec "D1:FROMFILE" is
placed at CPFNAM. The second time COPY calls CPGNFN
the file spec "D2:TO FILE" is placed in CPFNAM. If
CPGNFN were to be called more times, then the default
file spec would be set into CPFNAM at each call. To
detect the end of parameter condition, the user may
check the CPBUFP (SO0A into O0S/A+) cell. 1If CPBUFP does
not change often a CPGNFN call then there are no more
parameters. The filename buffer is always padded to 16
bytes with ATASCII EOL ($9B) characters. The following
example sets up a vector for calling the get file name
routine.

CLC

LDA CPALOC ;ADD CPGNFN

ADC #CPGNFN ;TO CPALOC VALUE
STA GETFN+1 ;AND PLACE IN
LDA CPALOC+1 ;ADDRESS FIELD
ADC #0 ;OF JuMp

STA GETFN+2 ; INSTRUCTION
GETFN JMP 0

—68——

The following routine gets the next file name to
CPFNAM,

LDY 4#CPBUFP ;SAVE CPBUFP

LDA (CPALOC) , Y ; VALUE

PHA

JSR GETFN ;GET NEXT FILE PARM
LDY #CPBUFP

PLA ;TEST FOR NO NEXT
CMP (CPALOC) , Y ; PARM

BEQ NONEXT ;BR IF NO NEXTPARM
LDY #CPFNAM ;ELSE GET FILE

LDA (CPALOC) , Y ;NAME FROM BUFFER

7.6 RUNLOC

The 0S/A+ RUNLOC ($3D into 0S/A+) is used as the 0S/A+
vector to routines with the RUN,LOAD and extrinsic
commands. An application that allows exits to O0S/A+
can change RUNLOC to provide a warmstart re-entry to
the application (if the user enters RUN with no para-
meters). If the application is not reusable and wishes
to forbid re-entry, the high order byte RUNLOC ($3E
into 0S/A+) should be set to zero, thusly:

LDY #RUNLOC+1 ;FORBID RE-ENTRY
LDA #0 ; TO ME
STA (CPALOC) ,Y

——69——

Chapter 8: DEVICE HANDLERS

As we have noted before, CIO is actually a very small
program (approximately 700 bytes). Even so, it is able
to handle the wide variety of I/0 requests detailed in
the first two parts of this chapter with a surprisingly
simple and consistent assembly language interface.
Perhaps even more amazing is the purity and simplicity
of the 0S interface to its device handlers.

Admittedly, because of this very simplicity, OS/A+ is
sometimes slower that one would wish (probably only
noticeably so with PUT BINARY RECORD and GET BINARY
RECORD) and the handlers must be relatively
sophisticated. But not too much so, as we will show.

——70=-

8.1 The Device Handler Table

At location "HATABS" in RAM, 0S/A+ has (loaded from ROM
on the Atari, loaded from disk on the Apple II) a list
of the standard devices (P:, D:,E:,S:, and K:) and the
addresses thereof. To add a device, simply tack it on
to the end of the 1list: you need only specify the
device's name (one character) and the address of its
handler table (more on that in a moment).

In theory, all named device handlers under 0S/A+ may
handle more than one physical device. Just as the disk
handler understands "D1:" and "D2:", so could a
keyboard handler understand "K1l:" and "K2:". (In fact,
the Apple version implements multiple port drivers via
"Pn:".) 0S/A+ supplies a default sub-device number of
"1" if no number is given (thus "D:" becomes "DI1:").

Following is the layout of the HAndler TABleS on the
Atari. The Apple II version is very similar.

*= $031A
HATABS

.BYTE '‘p! ; the Printer device

+WORD PDEVICE ; and the address of its driver

.BYTE c! ; the Cassette device

.WORD CDEVICE

.BYTE 'E’ ; the screen Editor device

+WORD EDEVICE

.BYTE g ; the graphics Screen device

-WORD SDEVICE

.BYTE 'K! ; the Keyboard device

+WORD KDEVICE

.BYTE 0 ; zero marks the end of the
table

<WORD 0 ; ...but there's room for
several

.BYTE 0 ; ...more devices

et cetera

—71 -

8.2 Rules for Writing Device Handlers

Each device which has its handler address placed into
the handler address table (above) 1is expected to
conform to certain rules. In particular, the driver is
expected to provide six (6) action subroutines and an

initialization routine. (In practice, the current
0S/A+ only calls the initialization routines for its
own pre-defined devices. Since this may change in

future O0S's and since one can force the call to one's
own initialization routine, we must recommend that each
driver include one, even 1if it does nothing.) The
address placed in the handler address table must point
to, again, another table, the form of which 1is shown
below (Figure 8.1).

HANDLER
.WORD <address of OPEN routine>-1
.WORD <address of CLOSE routine>-1
.WORD <address of GETBYTE routine>-1
.WORD <address of PUTBYTE routine>-1
.WORD <address of STATUS routine>-1
.WORD <address of XIO routine>-1
JMP <address of initialization routine>

FIGURE 8.1

Notice the six addresses which must be specified; and
note that in the table one must subtract one from each
address (the r-1" simply makes CIO's job
easier...honest). A brief word about each routine is
given in the following pages.

—7 2

8.2.1 Device OPEN

The OPEN routine must perform any initialization needed
by the device. For many devices, such as a printer,
this may consist of simply checking the device status
to insure that it 1is actually present. Since the
X-register, on entry to each of these routines,
contains- the IOCB number being used for this call, the
driver may examine ICAX1 (via LDA ICAX1l,X) and/or ICAX2
to determine the kind of OPEN being requested.
(Caution: O0S/A+ preempts bits 2 and 3, $04 and $08, of
ICAX1 for read/write access control. These bits may be
examined but should normally not be changed.)

8.2.2 Device CLOSE

The CLOSE routine is often even simpler. It should
"turn off" the device if necessary and possible.

8.2.3 Device PUT and GET BYTE Routines

The PUTBYTE and GETBYTE routines are just what are
implied by their names: the device handler must supply
a routine to output one byte to the device and a
routine to input one byte from the device. HOWEVER,
for many devices one or the other of these routines
doesn't make sense (ever tried to input from a
printer?). 1In this case the routine may simply RTS and
0S/A+ will supply an error code.

8.2.4 Device STATUS Routine

The STATUS routine is intended to implement a dynamic
status check. Generally, if dynamic checking 1is not
desirable or feasible, the routine may simply return
the status value it finds in the user's IOCB. However,
it is NOT an error under OS/A+ to call the status
routine for an unOPENed device, so be careful.

——73=-

8.2.5 Device Extended I/0 Routine(s)

The XIO routine does just what its name implies: it
allows the wuser to call any and all special and
wonderful routines that a given device handler may
choose to implement. O0S does nothing to process an XIO
call except pass it to the appropriate driver.

8.2.6 General Comments on Device I/0 Routines

In general, the AUXilliary bytes of each 1IOCB are
available to each driver. 1In practice, it is best to
avoid ICAX1 and ICAX2, as several BASIC and 0OS commands
will alter them to their will. Note that ICAX3 thru
ICAX5 may be wused to pass and receive information to
and from BASIC via the NOTE and POINT commands (which
are actually special XIO commands). Finally, drivers
should not touch any other bytes 1in the I0CBs,
especially the first two bytes.

Notice that handlers need not be concerned with PUT

BINARY RECORD, GET TEXT RECORD, etc.: 0S performs all
the needed housekeeping for these user-level commands.

—T74 -

8.3 Rules for Adding Things to 0S

1. Inspect the system MEMLO pointer (see
SYSEQU.ASM for the actual location).

2. Load your routine (including needed buffers)
at the current value of MEMLO.

3. Add the size of your routine to MEMLO.

4. Store the resultant value back in MEMLO.

5. Connect your driver to 0S by adding its name

and address into the handler address table.

6. For Atari handlers only:
Fool 0S so that if SYSTEM RESET is hit
steps 3 thru 5 will be reexecuted
(because SYSTEM RESET indeed resets the
handler address table and the value of
MEMLO) .

In point of fact, step 2 is the hardest of these to
accomplish. 1In order to load your routine at wherever
MEMLO may be pointing, you need a relocatable (or
self-relocatable) routine. Since there is currently no
assembler for 0S/A+ which produces relocatable code,
this 1is not an easy task. But it may not be necessary
if you are writing code for your own private system, as
opposed to for general consumption.

Step 6 is accomplished by making Atari 0S think that
your driver is the Disk driver for 1initialization
purposes (by "stealing"™ the DOSINI vector) and then
calling the Disk's initializer yourself before steps 3
thru 5 are performed again.

——75—

8.4 AN EXAMPLE PROGRAM

This driver, included in source form on your disk as
"MEM.LIS", builds a new driver and adds it to the
operating system. The "device" being driven is simply
excess system memory within your computer. Thus, you
may (for example) use this are as a pseudo-disk file
for passing data between sequentially called programs.

Some words of caution are in order. This driver does
NOT perform step 6 as noted in the last section (but it
may be reinitialized via a BASIC USR call). It does
NOT perform self-relocation: instead it simply locates
itself above all normal low memory usage (except the
serial port drivers, which would have to be loaded
AFTER this driver). 1If you assemble it vyourself, vyou
could do so at the MEMLO you find in your normal system
configuration (or you could improve it to be self-
modifying, of course).

Other caveats pertain to the handler's usage: it uses
RAM from the contents of MEMTOP downward. It does NOT
check to see if it has bumped into BASIC's MEMTOP ($90)
and hence could conceivably wipe out programs and/or
data. To be safe, don't write more data to the RAM
than a FRE(0) shows (and preferrably even less).

In operation, the M: driver reinitializes upon an OPEN
for write access (mode 8). A CLOSE followed by a
subsequent READ access will allow the data to be read
in the order it was written. MORE CAUTIONS: don't
change graphics modes between writing and reading if
the change would use more memory (to be safe, simply
don't change at all). The M: will perform almost
exactly as 1if it were a cassette file, so the user
program should be data sensitive if necessary: the M:
driver will NOT itself give an error based on data
contents. Note that the data may be re-READ if desired
(via CLOSE and re-OPEN).

A suggested set of BASIC programs is presented on the
next page.

-——76——

Ending of PROGRAM 1:

9900
9910
9920
9930
9940

OPEN #2,8,0,"M:"
PRINT #2; LEN(AS)
PRINT #2; AS
CLOSE #2

RUN "D:PROGRAM2"

Beginning of PROGRAM 2:
100 OPEN #4,4,0,"M:"
110 INPUT #4,SIZE
120 DIM STRINGS (SIZE)
130 INPUT #4, STRINGS
140 CLOSE #4

BASIC A+ users might find RPUT/RGET and BPUT/BGET to be
useful tools here instead of PRINT and INPUT. And, of
course, users of any other language(s) might find this
a handy inter-program communications device.

I & P

CHAPTER 9: VERSION 2 FILE STRUCTURE

0S/A+ version 2 was produced to provide the maximum
compatibility possible with Atari's DOS 2.0s. In fact,
the FMS used is identical to that used by Atari (for a
simple reason: we wrote Atari's DOS). For reasons
known best to Atari, we were instructed to create
Atari's FMS around a linked-sector disk space
management scheme. In essence, this means that the
last three bytes of each sector in a disk file contain
a link to the next sector in that same file. The
positive result of this 1is that one produces a
relatively small, memory-resident, disk manager which
is nevertheless capable of dynamically allocating
diskette space (unlike, for example, a contiguous file
disk manager). The biggest disadvantage of the scheme
seems to be that one may not do direct (random) access
to the bytes of such files, as one CAN do with either a
contiguous or mapped file allocation technique. Also,
a disk error in the middle of a 1linked file means a
loss of access to the rest of the file.

The purpose of FMS is to organize the 720 data sectors
avilable on an 810 (or its double density equivalent)
diskette into a system of named data files. FMS has
three primary data structures that it uses to organize
the disk: the Volume Table of Contents is a single disk
sector which keeps track of which disk sectors are
available for wuse 1in data files. The Directory
consists of directory sectors. It is used to associate
file names with the location of the files' sectors on
the disk. Each Directory entry contains a file name, a
pointer to the first data sector in the file, and some
miscellaneous information. The Data sectors contain
the actual data and some control information that 1link
one data sector to the next dat sector in the file.
Figure 9-1 illustrates the relation between the
Directory and the Data files.

——78—-

NOTE: since double density diskette sectors contain 256
bytes whereas single density (810 drive) sectors
contain only 128, certain absolute byte number
references may vary depending upon the diskette in use.
Throughout this chapter, in =such cases, the single
density number is given followed by the double density
number in square brackets [thus].

——T79 -

(sector $169)
first directory

sector
| FILEA | ptr | -=->> —=-—-e-o
-| FILEB | ptr | --+ | sector |
| | etec. | | | I 1 of |
(I | | ! | FILEA |
-1 | | | | I
1 | | ! | ————— e ataletats
Pl | | | {1 linkl -->> | more |
-1 1] |) | e | FILEA |
T S ——] | sectorsl|
| | (sector $16A) | | | !
| e I ettt |
| etc. | +-->> | sector |
______________ | 1 of |
| | FILEB |
] |
| == !
| | 1link| -->> etc.
Figure 9-1

Version 2 Directory Structure

Note that only eight file directory entries are
per sector, even on double density diskettes.

——80-~

stored

9.1 DISK DIRECTORY

The Directory starts at disk sector $169 and continues
for eight contiguous sectors, ending with sector $170.
These sectors were chosen for the directory because
they are in the center of the disk and therefore have
the minimum average seek time from any place else on
the disk. Each directory sector has space for eight
file entries. Thus, it is possible to have up to 64
files on one disk.

A Directory entry is 16 bytes in size, as illustrated
by Figure 9-2. The directory entry flag field gives
specific status information about the current entry.
The directory count field is used to store the number
of sectors currently used by the file. The last eleven
bytes of the entry are the actual file name. The
primary name is left justified in the primary name
field. The name extension 1is left justified in the
extension field. Unused filename characters are blanks
($20). The Start Sector Number field points to the
first sector of the data file.

Starting Length
Byte # of Field
of Field (bytes) Purpose of Field

0 1 Flag byte. Meanings of

$00 Entry never used
$80 Entry was deleted
$40 Entry in use
$20 Entry protected
$02 a version 2 file
$01 Now writing file
1 2 Count (LSB,MSB) of
sectors in file
3 2 Start sector (LSB,MSB)
of 1ink chain
File name, primary
File name, extension

Directory Entry Structure

-——81-——

9.2 DATA SECTORS

A Data Sector is used to contain the file's data bytes.
Each 128 [256] byte data sector is organized to hold
125 [253] bytes of data and three bytes of control
information as shown in Firgure 9-3. The data bytes
start with the first byte (byte 0) in the sector and
run contiguously up to, and including, byte 124 [252].
The control information starts at byte 125 [253].

The sector byte count is contained in byte 127 [255].
This value is the actual number of data bytes in this
particular sector. The value may range from =zero (no
data) to 125 [253] (a full sector). Any data sector in
a file may be a short sector (contain less than 125
[253] data bytes).

The left six bits of byte 125 [253] contain the file
number of the file. This number correspoinds to the
location of the file's entry in the Directory.
Directory entry zero in Directory sector $169 has a
file number of zero. Entry one in Directory sector
$169 has a file number one, and so forth. The file
number value may range from zero to 63 ($3F). The file
number is used to insure that the sectors of one file
do not get mixed up with the sectors of another file.

The right two bits of byte 125 [253] (and all eight
bits of byte 126 [254]) are used to point to the next
data sector in the file. The ten bit number contains
the actual disk sector number of the next sector. Its
value ranges from zero to 719 ($2CF). 1If the value is
zero then there are no more sectors in the file sector
chain. The last sector in the file sector chain is the
End-0f-File sector. The End-0f-File sector may or may
not contain data, depending upon the value of the
sector byte count field.

~=82--~

9.3 VOLUME TABLE OF CONTENTS (VTOC)

The VTOC sector is used to keep track of which disk
sectors are available for data file usage. The VTOC
sector is 1located at sector $168. Figure 9-3
illustrates the organization of the VTOC sector. The
most important part of the VTOC is the sector bit map.

The sector bit map is a contiguous string of 90 bytes,
each of which contains eight bits. There are a total
of 720 (90 x 8) bits in the bit map--one for each
possible sector on an 810 diskette. The 90 bytes of
bit map start at VTOC byte ten ($S0A). The leftmost bit
($80 bit) of byte $0A respresents sector zero. The bit
just to the right of the 1leftmost bit ($40 bit)
represents sector one. The rightmost bit (bit $01) of
byte $63 represents sector 7109.

Starting Length

Byte # of Field

of Field (bytes) Purpose of Field
0 1 Reserved (for type code)
1 2 Total number of sectors
3 2 Number of unused sectors
5 5 Reserved
10 90 Sector usage bit map

Each bit represents a
particular sector:
a 1 bit indicates an
available sector,
a 0 bit indicates a
sector in use.

100 28 Reserved (could be used
for version 2 type
DOS with more than
720 sectors per disk)

Structure of the VTOC Sector

-e83-——

CHAPTER 10: OS/A+ -- Version 4

0S/A+ version 4 is an operating system which provides
all the power and flexibility of the Atari CIO scheme.
But O0S/A+ also uses an advanced File Management System
(FMS) to provide fast and effective random access files
for virtually any disk drive. Although O0S/A+ comes
with a console processor (which is functionally
equivalent to that used by Digital Research's CP/M),
the Console Processor (CP) is NOT necessarily an
integral part of this system. In any case, the CP
provides many features and conveniences not available
via the standard Atari menu DOS.

-84

10.1 AN OVERVIEW OF THE STRUCTURE OF VERSION 4

On the Apple II, the FMS of OS/A+ 1is fully upward
compatible with the file scheme of Apple DOS 3.3, even
though it allows disk drive capacites from 128K bytes
to over 15 Megabytes. (In all cases, said capacities
also reflect the maximum size of file accessible under
0S/A+, except that a disk size might be 30 MB while a
file cannot exceed 16MB.)

0S/A+ version 4, as it appears on the Atari, is
virtually identical with 0S/A+ as implemented on the
Apple II, excepting only that it will not be compatible
with ordinary Apple 1II diskettes (which are not
readable by standard controller chips in any case). A
diagrammetic overview of the file structure of 0S/A+
version 4 follows:

[disk directory structure]

where the file pointers in turn point to:

The 1link, which occurs only if a file's map exceeds its
block size, points to another block containing a
continuance of the map of blocks.

The map of blocks (actually a map of sets of sectors,
to be discussed below) simply consists of a series of
2-byte disk addresses, each such address pointing to a
block of sectors.

There are no links to succeeding sectors or blocks, so
the entire space of each sector (and block) is
available for any data in any form.

——85——

There are several non-obvious advantages to this
scheme, so bear with us as we try to explain some of
them.

A.

We are able to handle disks with 128, 256, or 512
bytes per sector. (To be truthful, with 128 byte
per sector drives we would use pairs of sectors to
emulate 256 byte sectors, since ¢ 128 byte file map
is not really adequate.)

We allow each disk drive to be assigned its own
"drive blocking factor". That means that a
quadruple density floppy might have blocks
consisting of two 256-byte sectors while a 10 MB
disk might use blocks of four 512-byte sectors.
Note that this concept of blocking factors is not
new or unique: CP/M 2.2 allows blocking factors of
1KB, 2KB, and 4KB, depending on disk size. We are
simply a little more flexible.

We allow each file to be assigned 1its own "file
blocking factor". Thus, even on a floppy with 512
byte blocks, a given FILE may use 8 KByte blocks,
thus guaranteeing at most one disk read to access
any given sector of the file. ({On the Apple 1II
version of this product, where the drive blocking
factor is perforce 1 for standard Apple drives, a
file blocking factor of 8 -- 2 KByte blocks --
essentially doubles random access speed.)

Although not yet implemented nor planned for first
release, the directory structure is set up in such
a way that, if desired, we could implement multiple
and/or hierarchical directories (ala UNIX, for
example). Even CIO (on the Apple 1II)}) has been
altered to support the concept of a default device
and/or directory.

Random access files are easy and practical.

Unix-1like "LSEEKs" are accomplished (via the
"POINT" XIO call) to any byte of any file.

~—86——

Except for those rare programs that somehow depend
on having 125 bytes of data per sector, current
Atari application programs (including Atari BASIC
and programs written thereunder) will notice NO
CHANGE 1in their interface with the operating
system. Of course, some of the currently unused
options will be available to take advantage of such
features as file blocking factors, but they will
not be necessary to the proper functioning of the
system.

——87--

10.2 DISK FILE STRUCTURE

0S/A+ version 4 utilizes a mapped file structure which
allows true random access to data files. In such a
scheme, special segments of a file act as pointers to
the blocks of data comprising a file. By allowing the
user to specify the size of the data blocks pointed to,
0S/A+ is able to handle large and small files and disks
with unsurpasssed speed and utility.

The O0S/A+ random access file managment system treats
each disk wunder its control as a collection of
continuos physical sectors of either 256 or 512 bytes
in length, which are numbered starting with sector
zZero. These sectors are logicaly grouped into blocks
of n sectors in length, where n 1is a power of two
between 1 and 128. All files on a disk are allocated
space in segments of at least one block in length.

~—88~-

10.2.1 THE VTOC

In order to keep track of what blocks on a partiular
disk are available for use,the file manager maintains a
special section on each disk known as the table of
contents, or VITOC. The VTOC on a disk consists of from
1l to 255 sectors which contain a sequence of bytes,
known as the bitmap. Each bit of the bitmap may be
turned off or on to allocate or free a specific block
on the disk. Note that the VTOC is the only data area
on the disk allocated by sectors instead of blocks.
The format of the VTOC is as follows:

byte(s) value

0 unused (must be 2 on Apple Disk II)
1-2 block no. of first directory sector

3 unused (must be 4 on Apple Disk II)
4-5 unused

6 unused (must be S$FE on Apple Disk II)
7-26 unused

27 max. number of pointers in file map

sectors ($7A for disks with 256-byte
sectors; $F4 for 512-byte sector

disks)
28-2F unused
30-33 unused (must be FF,SFF,0,0 on Apple)
34 unused (must be $23 on Apple)
35 unused (must be $0on Apple)
36-37 unused (must be 0,1 on Apple)
38~ disk block bit map

-—89--

10.2.2 THE DIRECTORY

The disk directory holds information describing
existing files on a particular disk. The directory 1is
allocated on the disk by disk blocks, each sector of
which holds information on a certain number of files.
The blocks themselves are singly 1linked, each one
holding the disk address (block number) of its
successor with the last block having a null link. Each
sector of the directory contains a number of entries (7
for 256-byte sectors, 14 for 512-byte sectors) each
describing a particular file. The entry for a single
file contains the file's name, its length in sectors
(see exceptions for dos 3.3 diskettes), 1its type and
blocking factor (see sction immediately following), and
a pointer to the start of the file map for that file.

The file name consists of a string of up to 30
characters excluding spaces, commas, carriage returns,
or nulls. Characters within a directory entry will
have their upper bit inverted. the file name will be
padded at the right with inverted blanks (hex $A0).

The file type byte is used as follows:

bits 0-3: file use type ~-- wvalues ©0,1,2, and 4 are
currently used on the Apple system while only 0 is used
on the Atari.

bits 4-6: file blocking factor -- a value from 0 to 7
(see section 10.2.3 on file map)

bit 7: file protection -- if this bit is set then the
file is protected from accidental write access,
erasure, or renaming. The pointer to the start of the
file map is a two byte value which is the disk block
number of the first file map map block.

-—90--

Format of directory sectors:

byte(s) value

0 unused

1-2 block number of next directory block (0 if
this is the last block)

3~-A unused

B- directory entries (35 bytes each)

Format of directory entries:

byte (s) value

0-1 block number of first block in file map

2 file type

3-20 file name

21-22 length of file in sectors (on Apple Disk II

files, the count of sectors actually used
by the file)

10.2.3 THE FILE MAP

As previously mentioned O0S/A+ version 4 utilizes a
mapped file structure where special portions of a file
point to the locations on the disk holding the actual
data. These special sections comprise the file map,
which is a singly linked 1list of disk blocks which
contain pointers to the data blocks of a file. Each
sector within a file map block has the following format:

byte (s) value

0 unused

1-2 block number of next file map block (zero
if this block is the last)

3-4 unused

5-6 unused (reserved on Apple)

7-B unused

C-D block number of first data block in file

E- block numbers of data blocks

A pointer to a file block 1is merely the disk block
number of the start of a file block. For most
purposes, a file block is equivalent in size to a disk
block, However, the file manager allows the user to
specify a file blocking factor which alters the size of
data blocks for a single file, A file blocking factor
of zero implies that file blocks are equivalent to disk
blocks. A file blocking factor of 1, though, makes
file blocks equivalent to 8 disk blocks in 1length.
Similarly, a factor of 2 creates file blocks which are
16 disk blocks in length. While the use of a file
blocking factor has 1little or no consequence for
sequentially accessed files, it offers 2 distinct
advantages for random access files. First, the size of
the file map will be reduced, thereby decreasing the
average number of disk accesses requrired to access
data. Second, the file's data sectors are likely to be
less fragmented on the disk, thereby decresing the
average head movement required to access data sectors.
The only disadvantage of using a file blocking factor
is that disk space is allocated much more rapidly than
otherwise, making this technique undesirable for small
files.

The file manager requires a continuous block of memory
from which to allocate buffer space. The address of
the start of this space is contained in location
BUFSTART (see system memory map), and 1its 1length in
pages (256 Dbytes) 1is in BUFLEN. The values in these
locations may be changed by the user whenever all files
are closed; however, the system must then be
re-initialized either by jumping to the system reset
location or by calling the file manager 1initialization
subroutine (see memory map).

Space 1is allocated at system initialization time for
the buffers which will contain the VTOC's of each drive
in the system. When a file 1is opened, buffers are
allocated for both the file map and data sectors. All
buffers allocated are the same length as the sectors on
the particular disk involved.

——92—-

Example: Suppose a system has 2 disks with 256-byte
sectors. There will be 2 VTOC buffers (one for each
drive), a total of 512 bytes. Each open file will have
file map and data buffers, a total of 512 bytes per
open file. Therefore, allowing for 3 open files at one
time, there should be 3 512-byte buffers for the files,
plus the 512 bytes of buffer for the VTOCs, or 2K bytes
of total buffer space available (i.e., BUFLEN = 8
pages) .

10.4 ADDING DRIVES

In order to integrate a new disk drive into the system,
the disk must first be initialized with the 0S/A+
verion 4 file structure. Please refer to the section
describing the INIT utility for instructions on using
INIT. Source code of INIT 1is available for users
contemplating adding their own disk devices.

In order to access a new drive, it must be installed
into the disk drive table within the file manager.
This table consists of 8 entries of 16 bytes each
starting at location DRVTAB (see memory map). Each
entry in this table contains the folowing information:

byte(s) value
0 drive type-- 1=Apple Disk II:
O=other disk
1 reserved
2 size of disk sectors-- 1=256 byte
2=512 byte
3 disk blocking factor; sectors/block
4-5 sector no. of disks VTOC
6 no. of sectors in VTOC
7-8 address of read/write sector routine
minus one **
9-10 (set by file manager)
11 file map sector size-—- $S7A for 256 byte
sectors; S$F4 for 512 byte sectors
12-15 (set by file manager)

As can be seen, the drive table entry contains the
address of the routine to read and write sectors on the
disk. This routine may be located anywhere in memory.
(See the next section for a description of the
parameters to this routine).

——93——

Once the drive has been added to the drive table and
the read write sector routine has been loaded, the
system must be re-initialized by jumping to the system
reset location. The new disk may then be accessed as
Dn: where the disk is the nth entry in the drive table
(n starts from 1).

** Note that more than one disk drive may be serviced
by a single read/write sector routine.

10.5 THE READ/WRITE SECTOR ROUTINES

Each read/write sector routine receives its parameters
through the Device Control Block, or DCB (see memory
map). The format of the DC is as follows:

Byte 0: machine dependent (unused on Apple)

Byte 1: DCBDRV disk drive number (1-8).

Byte 2: DCBCMD command (0O=null, l=read, 2=write).
Byte 3: DCBSTA status byte (set by read/write

sector) .

Bytes 4-5: DCBBUF buffer address in low, high order.
Bytes 6~7: machine dependent (unused on Apple)

Bytes 8-9: machine dependent (unused on Apple)

Bytes 9-A: DCBSEC sector number--to be accessed in

low, high order

See the table in Chapter 13 for valid status values.

-—94—-

CHAPTER 11: VERSION DIFFERENCES

As much as we would like to, we can't produce all three
versions of 0S/A+ 1in such a manner that they will be
100% compatible. And, of course, there are also minor
differences between O0S/A+ and Atari DOS or Apple DOS,
as appropriate.

Some of the differences are obvious: with the Apple
version of O0S/A+, you can have file sizes of up to 16
megabytes versus the Apple DOS 1limit of 130K bytes.
Other differences are subtle: file names under 0S/A+
cannot contain space characters, as can Apple DOS
names.

In this chapter we will try to document as many known
major differences as we can. We will probably miss one
or two, so please don't hesitate to call or write us if
you intend to write software which will run on more
than one version of 0S/A+. We will try to keep a list
of any other differences we (or you) find.

Of course, if you are working entirely within one of
our OS/A+ configurations, most of this is unneeded
information. Perhaps you need to be aware only of the
differences between 0S/A+ and your computer's “"normal"
operating system.

-=05—-~-

11.1 FEATURES SPECIFIC TO VERSION 4 OF THE FILE MANAGER

This section applies to both the Apple II and Atari
editions of Version 4 0OS/A+.

11.1.1 RANDOM ACCESS:

As previously mentioned, 0S/A+ version 4 allows true
random access to data files. This capability 1is
provided through the wusage of the NOTE and POINT
operating system calls. Unlike 1its predecessor,
version 4 expects the data in ICAX3-ICAX5 to be a 24
bit RELATIVE position within a file (in mid, high,low
byte order). This allows the user to use the POINT
command to easily move to any position within a file of
16 megabytes or 1less in size. Similarly, the data
returned by the NOTE command is a 3 byte RELATIVE
position wvalue which 1is placed in ICAX3-ICAX5 by the
file manager. Notice also that a random access file
may contain "holes" created by writing non-contiguous
portions of a file without writing the 1intervening
data.

11.1.2 FILE TYPES:

Version 4 of 0S/A+ also supports a file type byte which
is also wused to indicate the file's file map blocking
factor (see section 10.4) and its protection. When a
file 1is created, this byte 1is set into the file's
directory entry; its value 1is zero by default. In
order to place a value other than zero into the file
type byte when a file is created, bit 6 of ICAX1l must
be set (i.e. add $40, or 64, to the mode during an
OPEN command) . The desired file type must be placed in
ICAX2 (the second value in a BASIC open statement).
Whenever a file 1is opened, the current value of its
type byte is returned in ICAX2.

11.1.3 SUPPRESSING AUTOMATIC CREATION:

Normally, when a file 1is opened in mode 8, it is
created, if the file did not previously exist, or
truncated, if it did exist. It is occasionally
desirable to suppress creation or truncation when
opening a file in mode 8, in which case an error would

——96-—

occur when attempting to open a non-existent file. If
a file is opened in mode 8 and bit 5 of ICAX1l is set
(i.e., add $20, or 32, to the mode value), then the
creation or truncation of the file will be prevented.

11.2 FEATURES UNIQUE TO APPLE VERSTON OF 0OS/A+

In all versions of 0S/A+, filenames given at the CP
level need not specify the disk device if it is the
same as the current default device (that is, the same
as the current CP prompt characters). Under version 4
0S/A+ for the Apple II, this default device concept is
carried throughout the system, even in BASIC A+ and
MAC/65.

CAUTION: this implies that all devices must then be
specified with a following colon. (On the Atari,
specifying "P" as a file is equivalent to specifying
"Pl:". On the Apple, "P" is the same as "Dn:P". On
both systems, "P:" will be interpreted correctly.)

See also sections 5.6.1 and 5.6.2 for other details.

11.2.2 FILE SIZE INFORMATION:

wWhenever a DIR command is issued at the CP level, or a
file is opened for directory access (mode 6), the
information returned contains information about the
size of the file in sectors. However, on any disk used
on an Apple Disk II unit, this information does not
always reflect the 1length of the file, as it does on
other disks. Rather, the file size shown reflects the
actual number of physical sectors currently occupied by
the file. Therefore, if a file contains "holes" (see
section 11.1.1 on random access), the file size may not
match the usual interpretation of "length".

—e97—-

11.3 DIFFERENCES: ATARI DOS AND 0S/A+

There are very few points of difference between Atari
DOS and version 2 of 0S/A+, other than the fact that
Atari DOS wuses DUP.SYS while 0OS/A+ uses its Command
Processor. And, actually, there are few differences
between version 2 and version 4 of 0S/A+ AS SEEN BY AN
APPLICATIONS PROGRAM (including BASIC A+, etc.). Since
the differences are generic, rather than specific to a
particular version, they will be discussed by category.

11.3.1 MEMORY USAGE

The only real problem that can exist here is in the
location of LOMEM, the beginning of user application
memory. If a program written for Atari DOS (or 0S/A+
version 2, for that matter) has assumed a particular
LOMEM, it may not run under a version with a higher
LOMEM. To illustrate, the following table 1lists the
LOMEM value that will result in each of several cases
if we assume a system configuration of 2 disk drives
allowing 3 disk files open at the same time.

version LOMEM contents
Atari DOS 2.0s, $1C00
single density disks
Atari DOS 2.0s, $1E80
double density disks
0S/A+ version 2, S1F00
single density disks
0S/A+ version 2, $2180
double density disks
0S/A+ version 4 $2C00

Of course, by changing the contents of SASA and SABYTE
(see chapters 12 and 13), the wuser may change the
location and number of buffers, so a certain measure of
LOMEM independence may be obtained by, for example,
placing the buffers somewhere within an application
program's memory space., However, even this is not
foolproof: examine the memory map of chapter 13 for
more details.

——98——

11.3.2 END OF FILE

Atari DOS and O0S/A+ version 2 both are capable of
knowing exactly where a file ends, since each sector
"knows" (via its 3 byte 1link information) how many
bytes it contains. 0S/A+ version 4, however, DOES NOT
KNOW exactly where the END OF FILE is. In fact,
version 4 will not report end of file until it reaches
the end of the last BLOCK in the file (see chapter 10
for a discussion of file blocks versus sectors).
Normally, this has 1little if any effect on a user
program.

In particular, if reading text lines, the system will
read the last line the same on either version. Then,
when an attempt is made to read the first line past the
end of file, version 2 reports an immediate error.
Version 4, however, will begin passing the trailing
zero bytes to CIO. However, CIO will not end the
transfer until it receives an ATASCII RETURN code ($9B)
(it expects to return an error 137, truncated record,
if the user buffer is too short for all those null
bytes) . But the file manager finally returns the end
of file signal, and CIO ignores any previous errors to
return the EOF code.

With binary files, the problem is more subtle, since a
binary record of all nuls is perfectly legal. However,
most user programs on the Atari will have been built in
such a way as to be aware of how many records are in a
given file. And, if they have not been so built, there
is wusually at least one field in the record which
cannot contain a null result, That field may be
checked for nuls as an end of file test. N,B.:
virtually any Atari DOS program which used indexed
files (via NOTE and POINT) will function properly under
version 4. Of course, programs which "take over" the
entire disk may fail, but that is because there are 256
bytes per sector and their direct SIO calls are now
improper, which has nothing to do with DOS.

~=00——

11.3.3 RANDOM ACCESS

This subject has been treated more thoroughly in
preceding sections and pages, but let wus at least
mention here that programs using NOTE and POINT
properly under DOS 2.0 or O0S/A+ version 2 will need no
changes to move to version 4.

Of course, programs using the direct random access
capabilities of version 4 (i.e., the ability to POINT
relative to the beginning of a file, without the need
to have previously NOTEd) will not transfer back to
version 2. Sorry, but that's the price one must pay
for using advanced features.

11.3.4 BUFFER ALLOCATION

All three Atari systems use the concept of a "Begin
Buffer Allocation Here" address and a "Allocate This
Many Buffers". The label SASA in the memory map (or,
better, SYSEQU.ASM) defines a word containing the
starting address of the buffers. The 1label SABYTE
defines the number of buffers to be allocated. All
very similar.

CAUTION: under Atari DOS and version 2 of 0S/A+, SABYTE
refers to the number of 128 byte buffers to allocate.
Under version 4 of 0S/A+, SABYTE contains the number of
256 byte PAGE buffers to allocate.

SECONDARY CAUTION: Remember the allocation requirements
differ between single and double density disks under
version 2 and Atari DOS.

11.3.5 SECTORS 1, 2, and 3

To insure compatibility with the Atari Computer boot
process, 0S/A+ (both versions) always reads and writes
Sectors 1, 2, and 3 in single density (128 byte) mode.
This single density "force"™ occurs at the BSIO level,
so programs using BSIO may do so in a compatible
fashion.

--100--

CHAPTER 12: MODIFYING 0S/A+

In addition to discussing various system parameters
which may be changed (in order to "customize" 0S/A+ for
a particular usage), this section will prove useful
should 0SS, 1Inc., send out corrections ("patches") to
0S/A+. The user would make the patches in accordance
with the directions provided and then save the
corrected version following the directions of this
section.

Both versions of 0S/A+ allow the user to specify the
starting address of the system file buffers and the
number of buffers to be used. The location of the
words which specify these parameters varies between
version 2 and version 4 and, 1in any case, is not
guaranteed to remain fixed in future releases.
Therefore, it 1is strongly suggested that the user
desiring to change one or both of these values check
the file ™"SYSEQU.ASM", supplied on the 0S/A+ disk, to
be sure of the latest system value. As of the printing
of this manual, the following locations were in use:

version label location use
2 SASA $070C start of buffers
4 SASA $1613 start of buffers
2 SABYTE $0709 $ of buffers
4 SABYTE $1616 # of buffers

Presuming the user wishes to change SABYTE, the first
question that needs answered is "How many buffers do I
need?" The rules follow:

For OS/A+ version 2: For single density diskettes, use
1 buffer per active drive AND 1 buffer per
simultaneously open file. For double density
diskettes, use 2 buffers per active drive and 2 buffers
per simultaneously open file. EACH BUFFER IS 128 BYTES
LONG.

—101——

For 0S/A+ version 4: For disks with 256 byte sectors
(e.g., floppy disks under double density), use 1 buffer
per active drive AND 2 buffers per simultaneously open
file. For disks with 512 byte sectors, double both
figures. EACH BUFFER IS 256 BYTES LONG.

CAUTION: Note the difference in the size of the buffers
specified by the SABYTE contents.

12.2 SPECIFYING ACTIVE DRIVES

Under version 4, the only way to specify an active
drive 1is to add its parameters to the drive table (see
Chapter 10). Also, the CONFIGure extrinsic command
will configure this drive table for you.

Under version 2, the byte location DRVBYT (at $70A, but
consult SYSEQU.ASM to confirm current 1location)
controls which drives are active. Each bit of DRVBYT
represents a given drive. The least significant bit of
DRVBYT represents drive 1, the next bit represents
drive 2, etc., up to the most significant bit which
represents drive 8.

If a bit 1is DRVBYT is on (set to one), the drive is
active. If a bit is off, the drive is inactive. Thus
a value of $05 would imply that "D1l:"™ and "D3:" are
active.

CAUTION: simply changing the bits in DRVBYT 1is NOT
sufficient to <change the system configuration. After
changing the bits, you must call the DOS initialization
routine, via DOSINI.

Saving a modified version of 0S/A+ is extremely simple.
With wversion 2, simply use the INIT command and, when
the menu appears, specify "Write DOS.SYS file only" (or
go ahead and 1initialize the disk if it 1is a new
disk...just be careful not to reinitialize a disk with
valuable goodies on it).

-=102--

With version 4, the process is both more complicated
and simpler. Since the version 4 boot process simply
searches for the filename "DOS.SYS", any file may be
renamed DOS.SYS and the system will attempt to boot it.
Saving a modified 0S/A+, then, is as simple as SAVing
the proper segment of memory. The EXeCute file
"WRITESYS.EXC" performs this function for you if you
simply type "@WRITESYS" from the CP prompt level.

12.4 MOVING VERSION 2 TO DOUBLE DENSITY

Version 2 of 0S/A+, as delivered, is ready to use on
double density disks (with 720 sectors of 256 bytes
each per diskette). The only requirement is that the
system be "moved" to a double density disk. The steps
to do so are very simple, presuming you have two disk
drives:

A) Configure drive 1 (Dl:) to be single density.

B) Configure drive 2 (D2:) to be double density.

C) Boot up 0S/A+ version 2 on drive 1 (single density)

D) Run the INIT utility to initialize drive 2 and
write DOS.SYS to drive 2.

E) COPY the desired files from drive 1 to drive 2.

F) You may now reconfigure Dl: to be double density
and boot from your new double density 0OS/A+.

If you only have a single drive, the problem 1is only
slightly more difficult, depending upon the type of
disk drive you have. Some manufacturers (e.g., PERCOM)
supply a "SDCOPY" (Single to Double COPY) program.
Simply copy DO0S.SYS (and other files) from the single
density disk to the double density. If your drive has
a "hard switch" for single versus double, follow the
manufacturer's directions (or borrow a friends drive,
if possible).

--103--

CHAPTER 13: SYSTEM MEMORY MAPS

13.1 APPLE ZERO PAGE MAP:

location

CPALOC

usage

user zero page

Apple monitor zero page

user zero page

0SS utilities zero page

warmstart flag

pointer to CP warmstart

read/write sector zero page

CIO zero page

device handler zero page

language or user zero page (0SS languages
such as BASIC, MAC/65, and C/65 use some
or most of this area; consult respective
manuals for detailed information)

--104—

13.2 APPLE SYSTEM MEMORY MAP - 64K version:

location usage

100~-1FF 6502 stack area

200-2FF Apple monitor GETLN input buffer (not all
of this page is used; consult Apple docu-
mentation)

300-3FF Apple monitor vector locations

400-7FF Primary text and lores graphics page

800-BFF Secondary text and lores graphics page

C00-1FFF user and language ram

2000-3FFF primary hires graphics page

4000-5FFF secondary hires page

H5000-AFFF user and language ram (with default buffers)

BOOO-B7FF disk buffers (default)

B800-BCFF 0ss CIO

BD0O-BD7F system IOCB's - 7 at 16 bytes each

BD80-BD8B system DCB - disk i/o control block

BD8C-BDA4 device handler table

BEOO-BFF5 file manager ram storage

BFF6-BFF7 low memory pointer (default is 800)

BFF8-BFF9 high memory pointer (default is AFFF)

BFFA-BFFC system reset vector

BFFD-BFFF 0S/A+ return vector

CO00-CFFF Apple II peripheral and i/o locations

DOOO-D6FF 0ss Cp

D700-D7FF E: and Pn: device handlers

D800-DDFF user memory {!!! graphics somewhere !!!}

DEQO-F1FF fms ~ D: device handler

F200-F7FF read/write sector routine for Apple II disks

F800-FFFF autostart rom

—105—

13.3 APPLE SYSTEM MEMORY MAP - 48K version:
——— to be defined --—-
F800-FFFF monitor or autostart rom

—106--

13.4 ATARI ZERO PAGE MAP:

location

0-9

A-B CPALOC
C-D DOSINI
E-42

43-49

4A-7F

80~FF

80-BF

D2-FF

system zero page

known to Atari DOS as DOSVEC
vector to FMS initialization
system zero page

fms zero page

system zero page

user and language zero page
BASIC A+ zero page

floating point zero page

13.5 ATARI SYSTEM MEMORY MAP-— version 2:

location
100-1FF
200-319
31A-33F
340-3BF
3C0-57F
580-SFF
600-6FF
700-1C7F

709 SABYTE
70A DRVBYT
70C SASA
1C80-1EFF
1F00-BFFF
CO00-FFFF

usage

6502 stack area

system ram

device handler table

IOCB's — 8 at 16 bytes each

system ram

E: text buffer

user ram

0S/A+ —— file manager and CP
number of 128 byte file buffers

bit map: accessible drives

address of start of buffers

file manager buffers—— default size
user, language, and graphics memory
I/0 locations and system rom

--107-

13.6 ATARI SYSTEM MEMORY MAP— version 4:

location usage

100-1FF 6502 stack area

200-319 system ram

31A-33F device handler table
340-3BF IOCB's - 8 at 16 bytes each
3CO-57F system ram

580-5FF E: text buffer

600-6FF user ram

700-1C7F 0S/A+ file manager

1613 SASA address of start of buffers
1616 SABYTE number of 256 byte buffers

1C80-1CFF read/write sector routine

1D00-22FF 0S/A+ CP — console processor
2300-2AFF file manager buffers—— default size
2B00-BFFF user, language, and graphics memory
COOO—FFFF I/0 locations and system rom

--108—-

CHAPTER 13: Errors

All 0S/A+ operations return a status value in the IOSTAT
0S/A+ convention is that status values of $80 or
greater indicate some sort of error.

DECIMAL

field.
ERROR CODE
HEX

$01 1
$02 2
$03 3
$80 128
$81 129
$82 130
$83 131

MEANING
No error or warning.

Truncated ASCII line. The 0SS did not
find a CR within BUFLEN for ASCII 1line
1/0.

End of file look ahead. The last byte
transfered from the device driver was
its end-of-file byte. The device driver
must set this status, so it is best to
verify that the device being used is
capable of returning this status before
depending on it.

Operation aborted. Set by Device Handler
(Also BREAK abort on Atari.)

File already open. Program is trying to
open a channel (IOCB) that has already
been OPENed.

Device does not exist. The device was
not found in the 0S device table. Often
caused by forgetting the disk drive name
when using a disk file (Atari only). On
the Apple II, since a default disk drive
is assumed, this error is rarer.

File is write only. Program tried to
read from a file which can only be used
for writing (i.e., file was OPENed with
AUX1 set to 8 or 9).

--109--

$84

$85

$86

$87

$88
$89

$8A

$8B

$8C

$8D

132

133

134

135

136

137

138

139

140

141

Invalid Command. CIO has rejected your
requested command. (Example: program
tried to do XIO to a device which has
no extended operations defined.)

Device/File not open. The IOCB has not
been OPENed for the operation. Most I/O
requests require that the channel be
OPENed before a request can be made.

The IOCB specified is invalid. (In both
Atari and Apple II versions, only IOCB
numbers $00,$10,%$20,%$30,%40,5$50,$60, and
$70 are valid. From some languages,
these will be seen as channels 0 to 7.

File is read only. Program tried to

write to a file which can only be used

for reading (i.e., file was OPENed with
AUX]1 specified as 4 or 6 for 5 on Applel]).

End of file. No more data in file.

Truncated record error. Usually occurs
when the line you are reading is longer
then the maximum record size specified in
the Call to CIO (line oriented I/0). Can't
occur with binary I/0 on version 2 0OS/A+.

Device timeout error. Atari: usually set by
the serial bus I/0O handler ("SIO") because
a device did not respond within the alloted
time as set by the 0S. Apple II: set by a
device handler.

Device NAK error. Atari: serial I/O error.
Apple II: set by a device driver (rare).

Serial framing error. Atari: serial I/O
error. Apple II: undefined.

Cursor out of range for specific graphics

mode you are in. (Could be used for
similar meaning by a non-graphics device.)

--110--

$8E

$8F

$90

$91

$92

$93

NOTE:

$A0

$A1

$A2

$A3

$a4q

$SAS

142

143

144

145

146

147

160

161

162

163

164

165

Serial bus overflow. Atari: computer
could not respond fast enough to serial
bus input (SIO error).

Checksum error. Communications over the
serial bus are garbled (Atari SIO error).

1) Device done error. A valid command on
Atari: disk rotational speed needs ad-
justment.

2) Write protect error. The diskette has
a write protect tab in place.

Illegal screen mode error. Bad graphics
mode number. Other devices: AUX1l and/or
AUX2 bytes in IOCB are illegal.

This error means the function you tried to
do has not been implemented in the device
handler. (Example: attempt to POINT the
graphics device.)

Not enough RAM for the graphics mode you
requested. (Could be used by custom
drivers for a similar message.)

Errors SAO0 through $AF are file manager errors.

Either a drive # NOT between 1-8 or drive
was not powered on.

Too many OPEN files. No free sector
buffers to use for another file.

Disk FULL. No free space left on disk.

Fatal system error. Either DOS has bug
or bad diskette.

File mismatch. Bad file structure or
POINT values wrong.

Bad file name. Check for illegal char-

acters in file name. Version 4 is more
liberal in this regard than version 2.

-=111--

SA6

SA7

$A8

SA9

SAA

SAB

$AC

$AD

166

167

168

169

170

171

172

173

The byte count in your POINT Call was
greater then 125 (for single density
version 2) or 253 (for double density
version 2).

The file specified is locked (PROtected).
Protected files cannot be erased or
written to.

The software interface for the specific
device recieved an invalid command
(example: tried to access a non-
existent track or sector).

All space allocated for the directory
has been used up (too many filenames
in use).

The file you requested does not appear
on this diskette.

You have tried to POINT to a byte in a
file that is not OPENed for update
(version 2 only).

Tried to OPEN a DOS 1 file with DOS II
(version 2 only).

The disk drive has found bad sectors
while trying to format the disk.

--112--

This Reference Manual and the program
OS/A+™ are Copyright ©1982
Optimized Systems Software, Inc.

00FS

No software rroduct is bus frees ands unfortunately,y 0S/4+ is no

excertion., This pade rerorts the known bugsy omissionsy etc.
irn the current relezses of 0S/a+. FLEASE read +this and make
rnotes in wour manual sccordinglw.

CAR [section 3.1y rage 141

The idntrinsic command CARtridde currentlw makes ro check to see
if 8 cartridge actuslly is erresent in the sustem. Using the

command whern no cartridge is rresent will cause the sustem to
hang®,

MOVING VERSION 2 TO DOURLE DENSITY [sectionm 12.4y rage 103]

VERSION 2 ONLY! You can NOT use COFY (or amw variant of COFY) to

transfer D0DS.SYS to 3 newly created double dermsity disk unless wou
COFY it under & different rame.

EXAMFLES THAT WORK!

1) COFY D1:DOS.SYS D2IGORF (This examele assumes that
REN D®*{GORF D2:N0S.5YS drive 1 is counfidgured to single
density aind drive two is

confidured double dernsitw.)

2) REN I'1!D0S.SYS D1t JUNK
SDCOFY D1 JUNK

REN D1JJUNK D1300S5,85YS (ON SINGLE DENSITY DISK)
CONFIG 1D

REN D11JUNK D1:iD0S,SYS (ON DOURLE DENSITY DISK)

Of course wou can create N0S.SYS on wour double density disk
using INIT or INITDEL, see addendum sheet for detzils.

HERE ARE STEF RY STEF INSTRUCTIONS FOR COFY24 USAGE:

SINGLE DISK DRIVE SYSTEM TWO DISK DRIVE SYSTEM
1)YBoot master Ver 4 disk 1)Root master Ver 4 disk
D Ture in ALDOS command 2)Tyre in CONFIG 2S5 (confisgure
drive 2 to single dernsity)
3)Ture COFPY24 ALIFN D1:FN 3)Twre in ANOS command
4)Read rromrts on screen to 4)Tere in COFYZ24 A2!FN D1:FN

firnish the coru,.
NOTE?! "FN* means the filensme uwou are going to corw

NEW UTILITIESy VERSION 2 ONLY

CLRDSK - This wutilitw is used to initislize disks Just like the Atari
810 disk drive does. Horefully ang srodgram that does riot
work with Fercom drives because of the waw thew format disks
will work with s disk that has been formatted using CLROSK.
(NOTE: CLRDSK formats the disk firsty then writes zeroes to
all sectors excert the DNIRECTORY, ROOT and VTOC sectors.)

INITOBL - This utility is used ON A ONE DRIVE SYSTEM to initizslize a
double density diskette a3nd write [OS.5YS to it. The
Frocedure that INITDEL wuses to initiaslize 2 double denmsitw
disk is as follows! (1) it confidures the drive to double
densitys (2) it initializes the disks (3) it reconfisgures the
drive back to sindle density so that wou can still read wour
single density master,

To det 3 directory of vour new double dersity disk wou
must first confidgure the drive to double density (see section
4+4 in the 0S/A+ manual) or boot the new double density
master, Or use SIDCOFY (below) to cory other files, etc.» to
the double dermsity disk,

If using & two drive sustem refer to sectionm 12.4 for
srecific details on initializing 3 double density diskette.

SHCOFY FN1 [FN2] [-FQWVR]
This wutilitw is wused +to COFY &3 Single density file to a
Double density file (hence SICOFY). The command works the
same way as the COFY command excert!
-R Reverse orientation of corvu? COFY idinstead from
double density to single densitu,.

NOTE *from® and *"to' drives MUST be the same when using SnHCoOFrY.
If wou want to corw from sindgle density to double density

between two different drivess Just use the CONFIG command to
set the drives ur rrorerluy and use the normal COFY command.

VERSION 2 and VERSION 4y CAUTION 11!

YOU SHOULD NOT USE A WILD CARD' SFECIFICATION IN THE DESTINATION FILE
NAME OF ANY VARIETY OF THE COFY COMMAND (COFYs SDCOFYsy COFY24y etc.).

ANNOUNCEMENT of .3 new BEGINNER’S GUILE to 0S/A+

Ex the time wou read thisy we will have comrleted 3 bramd rew
Bedinner’s Guide which is rarticularly oriented toward the Atari EBASIC
user., All of BASIC’s disk srecific carasbilities are exrlaineds ard
ster by ster exrlanations of most used functions are diven (including
making double density masters» double sided masters, etc.). This duide
will become rart of a future 05/A+ manuzl., For rows it is available to

redistered owners for $3.00sy check/cash onlysy including rostades etc.

ADDENDUM

This sheet 1is meant to be used as an addendum to the 0S/A+ manual
supplied with your disk drive. Since the manual was printed, O0OS/A+
(Ver 2 and Ver 4) have been updated (to Ver 2.1 and Ver 4.1). This
sheet reflects the changes and additions that have been made.

NOTE: Anything between the two braces {} are meant to be prompts by the

computer. Characters following the braces are to be typed by the
user.

1) DIR [FN1 [FN2]] If FN2 is specified the directory will go to that
file or device.

{D1:} DIR D2: P: This example will put the directory on the disk in
drive 2 to the printer.

2) TYPE FN1 [FN2] This command TYPEs ATASCII text files from FN1 to
E: (the screen). Or, if FN2 is specified, then
FN1 gets copied to FN2.
{D1:} TYPE D1:SYSEQU.ASM Copies the file SYSEQU.ASM to
screen.
{D1:} TYPE D1:SYSEQU.ASM P: Copies the file SYSEQU.ASM to the
printer

{D1:} TYPE D1:MYFILE D2:YOURFILE Copies the file MYFILE on drive 1 to
the file YOURFILE on drive 2.

NOTE: The TYPE command may not be used to copy binary files!

REVISED VERSION 4 UTILITY ONLY

3) COPY24 [-FQDVN] FN1 FN2
The flags used are the same as the COPY command except

-V Verbose: Filenames are echoed after they are copied. This flag
is also available to the COPY command.

-D The version 2 disk involved is double density.

Filenames may be specified with either "D" or "A" as the device
name where "D" refers to the Version 4 disk and "A" refers to the

Version 2 disk. The -W flag (wait) is assumed when using only one
disk drive.

{D1:} COPY24 A2:MENU.LIS D1:MENU.V4
This example will copy the Version 2 file MENU.LIS on
drive 2 to the version 4 file MENU.V4 on drive 1.

{D1:} COPY24 D2:MENU.V4 Al:MENU.LIS
This example copies the version 4 file MENU.V4 on
drive 2 to the version 2 file MENU.LIS on drive 1.

{D1:} copv24 A2:*.* D1: -
This example will copy ALL version 2 files on drive 2
to version 4 files on drive 1. NOTE: since the -Q
flag was used, you will be prompted before each file
is copied.

{D1:} COPY24 A1:MYFILE YOURFILE :
This example is assumed to be a single drive copy .
The version 2 file MYFILE will be copied to the
version 4 file YOURFILE.

