THE
MAC/65
TOOLKIT

An Essential Aid for ALL MAC/65
Programmers.

N @ @ Precision
@.‘S\,z.s \ Software Tools
v/) e,

MAC/65 ToolKit version {,00

A Reference Manual For

The MAC/65 ToolKit Diskette

The programs and manual comprising the MAC/65 ToolKit
are Copyright (c) 1984 by

Optimized Systems Software, Inc.
Precision Software Tools
1221B Kentwood Avenue
San Jose, CA 95129
(408)445-3099

All rights reserved. Reproduction or translation of any part of this work
beyond that permitted by sections 187 and 188 of the United States
Copyright Act without the permission of the copyright owner is unlawful.

MAC/65 ToolKit version 1.09

£ nt
Introduction 1
Using The MAC/65 ToolKit 1
The MAC/85 ToolKit Abbreviations 2
Supporting Macros 3
The MAC/65 ToolKit Error Codes 3
KERNAL.MSS Macros 4
PMGR.M85 Macros 21
Using The SCROLL.MéS Library 26
SCROLL Memory Locations 26
SCROLL.M45 Macros 28

Note: The macro descriptions in the last three
sections are alphabetized for your conveni-
ence. Also, there is a synopsis of the macros
at the beginning of each pertinent section.

MAC/65 ToolKit ver (.00 Page {

Inm tion

The MAC/45 ToolKit is an extensive collection of macros coupled with
precisely written run-time code which greatly facilitates machine language
programming on the Atari computer using either the disk or cartridge
version of MAC/é5.

The MAC/65% ToolKit is perfect for both the beginning and the professional
machine language programmer, The beginner will find his/her transition to
machine language is greatly simplified by the ToolKit‘s BASIC-like syntax.
The professional programmer will appreciate the time and money that the
ToolKit saves by providing debugged and precisely written code for most
common operations. Included on the ToolKit diskette are three libraries:

KERNEL.Mé65 ~ this file provides: 2 byte operations, integer math,
IF...,THEN, DO loops, ERROR handling, I/0 (including multiple byte and
binary load), graphics, sound and random number generation,

PMGR.M65 -~ a group of routines which set up player-missile graphics,
move players, missiles, detect collisions, and much more.

SCROLL.Mé5 - routines which implement automatic screen fine scrolling
capabilities.

Using The MAC/85 ToolKit can cut your programming time in half.
Programs which previously would not have been attempted in machine
language are now done easily thanks to the ToolKit‘s 1/0 support and
graphics routines.

System Requirements: The MAC/55 ToolKit is designed for use with
MAC/65 on ATARI computers with 48K of RAM or more.

To Boot This Disk simply boot your DOS disk with the MAC/65 cartridge
inserted, and then put this disk in your drive. THIS DISKETTE DOQES
NOT HAVE DOS ON IT AND WILL NOT BOOT DIRECTLY.

sin The C/a88S o0lKi

The general procedure for accessing the ToolRit routines is to use the
JINCLUDE directive to make the desired ToolKit commands available. After
the MAC/65 ToolKit libraries have been included, all that is required is a
macro call which, for the most part, uses syntax similar to that of the
equivalent BASIC statements (eq. OPEN 45,8,0,"D:FILE). It is best to
include The ToolKit files you plan to use at the very beginning of your
source code as in the following example:

1088 JMP MYCODE
1018 + INCLUDE #D:KERNEL .M4S
1828 . INCLUDE #D:PMGR.M&D

1838 MYCODE ;YOUR SOURCE CODE STARTS HERE

Page 2 MAC/65 ToolKit veri.e0

Note: KERNEL.M65S is required to run either PMGR.M&S or SCROLL.M&5.
The MAC/6% Tool Kit uses the following general rules:

1 . All macro calls preserve the value of the X and Y registers. The
value of the accumulator and status register are, in general, uncertain
unless specifically noted in the manual,

2. All the ToolKit global labels begin with QQ; the exceptions are the
special labels used in SCROLL.M&5 (See Using the SCROLL.M45 Library)
and the loop counters 1,J, and K. You should not begin any labels in
your code with QQ to avoid potential conflicts,

3. The ToolKit uses the following convention to simplify the passing
of numeric input. If a parameter evaluates to less than 254, immediate
mode addressing is assumed, otherwise direct memory mode is used.
Consider the following examples:

POKE 42600,5 POKE $2008,300

expand to
LDA #5 LDA 300
STA $2808 STA $2600

Bacause of these conventions, the programmer should be careful to
aveid the following, which will produce undesireable results:

A} Calling ToolKit macros with page @ labels as parameters.
B) Referencing forward labels in macro calls,

Naturally, the ToolKit macros specifically designed for branching have
no problem with forward referencing of the branch point.

C/765 T {it bbreviat

v - a numeric parameter passed in a macro call. If v < 256 immediite mode
addressing is assumed, otherwise direct mode addressing is used.

str - literal ASCII data, For example: "THIS IS A STRING". Remember:
MAC/45 literals require double quotes as delimiters.

adr - used directly as a memory address. For example:

DPOKE adr,v
expands to

LDA #v

STA adr

LDA #8

STA adr+l
if the value v is less than 256.

MAC/6%5 ToolKit veri.00 Page 3

- the numeric value of a label is used. For example:

VPOKE adr,#
expands to

LDA #<(#

STA ade

LDA 8#>#

STA adr+l

Supporting Macros

The following macros are used internal to the ToolKit‘s cading but are not
considered part of the ToolKit since they were not designed for your use,
(You may use them at your own risk if you read and understand their
operations.)

PHY - save Y register on stack

PHX - save X register on stack

PHR - save X and Y register on stack
PHY - pull Y register from stack

PHX ~ pull X register from stack

PLR - pull X and Y register from stack
PLDA - MAC/65 version of LDAP

PLDX -~ same as FLDA except load X register
SGET - load a literal string.

CHAN - load X register for IOCB channel
BLT - branch if less than

BGT - branch if greater than

rrorer ode
The ToolKit routines generate a couple of their own error codes. Namely:

ERROR 175 ($AF) - detected by PRINUM; indicates integer magnitude is
too large to display in specified field width.

ERROR 176 ($B0) - detected by BLOAD, indicates file is not in binary
format,

Please Nots: The commands which follow are presented in alphabetic order
by library. This was done to facilitate user referencing.

Page 4 MAC/65 ToolKit veri.00

KERNEL.M&S Macrog

The routines in this file allow you to do many diverse operations, so we’ll
group and synopsize of all of them for your convenience:

Graphics
COLOR v - To specify the color value to be used by PLOT.

DRAWTO vi,v2 - To draw a line.

FILL v - To fill a screen region,

GR v - Similar to the BASIC GRAPHICS command.

LOCATE vi,v2,v3 - Similar to BASIC's LOCATE.

PLOT vi,v2 - Similar to BASIC’s PLOT.

POS vi,v2 - Similar to BASIC’s POSITION.

SETCOLOR vi,v2,v3 - Similar to BASIC’s SETCOLOR.
TXTPOS vi,v2 - To position the cursor in the text window.

Integer Math
CALC v - To begin a math calculation.

DIV v - To do division.

MINUS v ~ To do subtraction.

MUL v - To do multiplication.

PLUS v - To do addition

RND v - To generate a random number.

STORE adr - To save the result of a math calculation.
DINC adr - Two byte increment.

DDEC adr - Two byte decrement.

170
BGET v,adr,# - To get data from an 10CB channel.
BLOAD str - To load a binary file.
BPUT v,adr# - To put data to an JOCB channel,
CLOSE v - To close an 10CB channel.
CLS -~ To clear the screen,
CR fv] - To output a RETURN to an IOCB channel.
GET v,adr - To get onz byte from an IOCB channel.
ININUM v,adr - To get a record from an IOCB channel.
INPUT v,adr - To get a record from an IOCB channel.
OFEN vi,v2,v3,5tr ~ To open an [OCB channel.
PRINT v,adr/str - To output records to an IOCB channel.
PRINUM vi,adr,v2 - To print out an integer value.
PUT vi,v2 - To put one byte to an IOCB channel.

Program Control
DOI vi,v2 - To begin a DO loop using the I counter.
DOJ vi,v2 - To begin a DO lcop using the J counter.
DOX vi,v2 - To begin a DO loop using the K counter.
GOSUB adr - To preserve the X & Y registers when doing a JSR.
IFEQ vi,v2,adr - Equality test.
IFGT vi,v2,adr ~ Greater than test.
IFLT vi,v2,ade - Less than test,

MAC/83 ToolKit veri.09 Page §

IFNE vi,v2,adr - Inequality test.
LOOPI - Denotes end of DOI loop.
LOOPJ - Denotes end of DOJ loop.
LOOPK - Denotes end of DOK loop.
TRAP adr - Similar to BASIC’s TRAP,

Miscellaneous
BCLR adr# - To zero a specific number of bytes in RAM,
BMOVE adri,adr2,# - To move a memory block,
DINC adr - To do a two-byte increment.
DPOKE adr,v - Do a two byte memory poke low byte first,
PGCLR v - To zero a2 memory page.
PGMOVE vi,v2 - To move 2 memory page.
POKE adr,v - Pokes one byte into RANM.
SOUND vi,v2,v3,v4 - Similar to BASIC’s SOUND,
STOP - Debugging aid to stop program execution.
VPOKE adr# - Pokes the two byte numeric value of a label or
expression into memory low byte first.
WAIT v - To perform a time delay.

And now for the descriptions of the macros themselves. They have been
alphabetized for your convenience.

BCLR adr,#
Purpose: To set a specific number of bytes in RAM to zero.

Params: adr - address of first byte to clear.
- number of consecutive bytes to clear.

Example: Clear 1900 bytes starting at location HERE:
1800 HERE #=x+1pB8

g000 BCLR HERE,1000

BGET v,adr ¥

Purpose: Gets a number of bytes from a device opened on a specified
channel and stores the bytes at the memory buffer specified.

Params: v - channel number to get bytes from
adr - address of first byte of memory buffer
- number of bytes to get

Example: Get 5000 bytes from channel t and store in BUFFER
1088 BUFFER #*=%+58080

9068 BGET 1,BUFFER,5808

Page 6 MAC/65 ToolKit ver1.09

BLOAD str

Purpose: Loads a binary file into memory from the specified device
using 10CB channel 5. Caution: BLOAD can cause a file to
load on top of your currently executing program, usually
causing a system crash, unless you are careful about the
address ranges in use.

Params: setr - device specification

Example: Load an object file into memory:
1886 BLOAD *D:FILE.OBJ"

r{adr2,#

Purpose: Moves a specified number of bytes from ocne memory location
to another.

Params: adri - address of first source byte,
adr2 - address of first destination byte.
- number of bytes to move.

Example: Move 5600 bytes from FROM buffer to TO buffer.
1008 FROM *=%+5880
1810 T0 *=%+5000

9008 BMOVE FROM,TO,5088

BPUT v,adr,#

Purpose: PUT a number of bytes from a specified buffer to a device
opened on a specified channel

Params: v - channel number to PUT bytes to.
adr - address of first byte of memory buffer.
- number of bytes to PUT

Example: PUT 5008 bytes from BUFFER to channel 1,
1868 BUFFER »=#+5000

ge88 BPUT 1,BUFFER,S5888

MAC/6S ToolKit ver .60 Page 7

CALC Y

Purpose:

Params:

Example:

Begin a math calculation by loading FR®
(decimal location 212) with a two byte integer value.

v = value if <256 or memory to load FR9 from.

This shows use of all math macros, RESULT =

(25439)/104200-50:

CLOSE v
Purpose:

Params:

Example:

CLs

Purpose:

Params:

COLOR v
Purpose:

Params:

Example:

1818 RESULT .WORD 0

3000 ;SOLVE EQUATION & STDRE AT RESULT
3eie CtalLC 25

3020 MUL 38

3830 DIV 1@

3048 PLUS 208

3050 MINUS 5@

3848 STORE RESULT

Ta close an IOCB channel.
v - channel number to close.

Close channel {:
1810 CLOSE 1

To clear the screen.

NONE

Specifies the color value to be used by PLOT. This macro is
similar to the BASIC command COLOR.

v - Color register used by PLOT.

1e1e COLOR 1

Page 8 MAC/&85 ToolKit veri.80
CR vl
Purpose: To output a3 RETURN to an I0CB channel.
Params: ([v] - optional channel number. If no channel is specified, a
RETURN is output to channel 9.
DDEC adr
Purpose: To decrement a two-byte value.
Params: adr - address of the two-byte value to decrement.
DINC adr
Purpose: To increment a two-byte value.
Params: adr - address of the two-byte value to increment.
IVv
Purpose: Divides the two byte integer currently at FR® by the value
given. The quotient is a one byte integer left at FR8. FRO+{
will be set to 9 and the remainder will be left at FR{ (=224
decimal).
Params: v - divisor
Example: See CALC example.
DOI wi,v2
Purpose: Begins a loop using the two-byte memory location labeled I
as the counter. I will range from the first integer value given
to the last and will always use a step value of i,
Params: vi - starting value of I
v2 - value of I at which to terminate the loop.
Example: Emulate the BASIC command FOR I=START TO END STEP {:

1018 START .WORD @
1028 END WORD @

3836 DOI START,END

MAC/&5 ToolKit veri,0 Page 9

DOJ visv2

Purpose:

Params:

Example:

QQK V! .VZ

Purpose:

Params:

Example:

DEQKE adr,y

Purpose:

Params:

Example:

Begins a loop using the two-byte memory location labeled J
as the counter, J will range from the first

integer value given to the last and will always use a step
value of 1.

vi - starting value of J
v2 - value of J at which to terminate the loop.

Emulate the BASIC command FOR JsSTART TO END STEP {:
1618 START .WORD @
1820 END .WORD @

3630 DOJ START ,END

Begins a loop using the two-byte memory location labeled K
as the counter. K will range from the first integer value
given to the last and will always use a step value of §.

vl - starting value of K
v2 - value of K at which to terminate the loop.

Emulate the BASIC command FOR K27 TO 25 STEP {:
1010 DOK 7,25

Do a two byte memory poke, low byte first,

adr -~ memory address to poke low byte.
v - value if 256 or address of first byte of source memory
word.

Move the display list pointer to page @:
1018 DISPL = 548
1826 FRE = 212
1830 DPOKE FR8,DISPL

Note: Also see VPOKE.

Page 10 MAC/65 ToolKit ver .00
DRAWTO vi,v2
Purpose: Draw a line using the most recent COLOR from the current
screen cursor position to the screen position specified. This
command is similar to the BASIC command DRAWTO.
Params: vi - horizontal coordinate.
v2 - vertical coordinate.
Example:
1818 DRAWTO 15,33
FILL v
Purpose: Fill screen with specified color.
Params: v - color value
Example: Emulate BASIC FILL program from page 54 of the Atari

BASIC reference manual:

GET v,adr

Purpose:

Params:

Example:
TEMP:

1010 GR S+16

182e COLOR 3

1036 PLOT 70,45
1848 DRAWTO 50,16
1658 DRAWTU 30,180
1868 POS 18,45
1088 FILL 3

Gets one byte from device opened on specified chiannel and
store at memory lccation specified.

v - chan number to get input byte from.
adr - memory address to store byte.

Get 1 byte from channel é and save byte at memory lncation

1018 GET é,TEMP

MAC/65 ToolKit veri.0d Page i1

GOSUB adr

Purpose: Preserves the X & Y registers while calling a subroutine
Params: adr - address of subroutine.

Example: Call CIO:
1818 CIO = $E454
1820 G0SuB C10

GRyv

Purpose: Opens the screen with the specified graphics mode. This
macro is similar to the BASIC GRAPHICS command.

Params: v - graphics mode (same as in BASIC).

Example:
1618 GR ?7

vi,v2,adr

Purpose: Compares two two-byte integers and branches to address
given if they are equal.

Params: vi - ist integer
v2 - 2nd integer
adr - address to jump to

Example: Jump to QUIT if ANS=16480:
1810 T1 .WORD 18080
1028 ANS .WORD 8
3000 IFE@ ANS,T1,QUIT
3618 STOP
3820 QUIT

Page 12 MAC/&E5 ToolKit veri.00

FGT visv2,3dr

Purpose: Branches to address given if ist integer is greater than the
2nd integer.

Params: vi - i1st integer
v2 - 2nd integer
adr - address to jump to

Example: Branch if COUNT)>LIMIT:
1e1e LIMIT = 25680
1620 TEMP .WORD @
1840 COUNT .WORD @

30186 VPOKE TEMP,LIMIT

3028 IFGT COUNT,LIMIT,QUIT
3030 sTOP

3040 QUIT

Note: Since LIMIT is not a memory address and is >256 we must first
poke its actual value into the memory address TEMP for IFGT to work
properly. If we did not do this, IFGT would compare COUNT to the
two-byte integer at memory location 25099,

IFLT vi,v2,adr

Purpose: Branch to address given if the 1st two-byte integer is less
than the 2nd two-byte integer

Params: vi - {stinteger
v2 - 2nd integer
adr - branch address

8xample: Branch to QUIT if COUNT<25:
19182 COUNT .WORD @

1828 IFLT COUNT,25,QUIT
1030 BRK
1848 QUIT

FNE vi,v2;adr

Purpose: Same as IFEQ except now branch if not equal.
Params: vi - {st integer

vZ - 2nd integer

adr - branch address

Example: See IFEG example:

MAC/65 ToolKit veri.de Page {3

ININUM viade

Purpose: Gets a line from the device opened on the specified channel
then converts the string to a two-byte integer and stores it
in the specified memory location low byte first.

Params: v - channel # to get line from
adr - address to store integer value at

Bxample: Get a number from the editor and store in TEMP:
fe1e TEMP .WORD @

3000 ININUH 9, TEMP

l!gu T Vﬂ!l‘

Purpose: Gets a line from a device opened on the specified channel and
stores it in specified memory buffer

Params: v - channel # to get line from
adr - address to store line at

Example: Get record from editor and store in BUFFER:
1018 BUFFER #=%+254

3010 INPUT 8,BUFFER

E viv2iv

Purpose: Gets a byte from the specified screen location and
stores it in the specified memory location. This macro
is similar to the BASIC command LOCATE.

Params: v - horizontal screen location
v2 - vertical screen location
v3 - address to store byte

Example: Get byte at 5,5 and store in TEMP:
i618 TEMP .BYTE @

3000 LOCATE 5,5,TEMP

Page {4 MAC/65 ToolKit veri.pe

LOOPI

Purpose: Performs the same function as the BASIC command NEXT I
Params: NONE

Example: Determine the sum of the numbers { - 18 and store at
RESULT:
1018 RESULT .WORD @

3020 cALC @

3936 Dol 1,10
3040 PLUS 1

3050 LOOPI

3040 STORE RESULT

LOOFJ

Purpose: Same as LOOPI, but for the J counter.
Params: NONE

Example: See LOOPI.

LOOPK
Purpose: Same as LOOPI, but for the K counter.
Params: NONE

Example: See LOOPI.

MINUS v

Purpose: Subtracts a two byte integer from the two byte integer
currently at FR@ and leaves the result at FRO.

Params: v - value if {256 or memory location to find value
to subtract from FRe.

Example: See CALC example.

MAC/85 ToolKit ver .00 Page 135

MUL YV

Purpose: Multiplies the one byte value given by the one byte value
located at FRO. The result is a two byte integer left at FRO.

Params: v - value if <256 or memory location of multiplier.

Example: See CALC example.

OPEN vi,v2,vd,str

Purpose: Opens a device on an I0CB channel. This macro performs the
same function as the BASIC OPEN command.

Params: vi - IOCB channel to open
v2 - AUX4
v3 - AUX2
str - device specification

Example: Open the RECORDER on channel { for short gap output:
1018 OPEN 1,8,128,°C:"
PGCLR v
Purpose: Sets a specified page of RAM to zero
Params: v - number of the page to clear.
Bxample: Clear page 4:

1019 PGCLR &

PGMOVE vi,v2

Purpose: Moves a page (256 bytes) of memory from one page to another

Params: vi - source page number,
v2 - destination page number.

Bxample: Moves the bytes of page 54 to page é:
1010 PGMOVE 54,6

Note: This routine works much faster than BMOVE,

Page 14 MAC/&6S ToolKit veri.e

PLOT vi,v2

Purpose: Plots a point on the screen at the specified location using
the color register specified in the most recent COLOR
command.

Params: vi - horizontal coordinate
v2 - vertical coordinate

Example:
1018 PLOT 5,7

PLUS v

Purpose: Performs a two byte integer addition of the value given with
the two byte integer value now at FRO. The resulting sum is
left at FRO.

Params: v - value if <236 or memory location to find value to add to
FRO.

Example: See CALC example.

POKE adr,v

Purpose: Poles one byte into RAM

Params: adr - memory location to poke byte
v -~ value if <256 or memory location of source byte

Example: Set the top of RAM at 32K boundary:

1810 RAMTOP = 186
1020 POKE RAMTOP,128

POS vi,v2

Purpose: Positions the screen cursor. This macro is similar to the
BASIC POSITION command.

Params: v{ - horizontal coordinate
v2 - vertical coordinate

Example: Position cursor at x=5,y=4@:
1618 POS 5,19

MAC/65 ToolKit veri.00 Page 17

PRINT viadr/str

Purpose: Print records output to a specified channel. The output
record can be optionally a literal string ("hello") or from a
memory buffer. NOTE: PRINT always outputs an EOL ($9B) at
the end of each record. If no EOL is detected in an output
string the length defaults to 255 bytes,

Params: v - channel number to output record to
adr/str - address of memory buffer or a literal string

Example: Print HELLO on the screen:
1616 ;USING LITERAL STRING
1920 PRINT &,"HELLO"

1018 §FROM MEMORY
1820 STR .BYTE "HELLO®,$98B

3018 PRINT &,STR

PRI dryv

Purpose: To print out an integer of a given length to a specified
channel.

Params: vi - the IOCB channel

adr - the address of the integer
v2 - the width of the number in characters.

Example:
1088 PRINUM 8 ,VALADR,S

PUT vi;v2

Purpose: Puts a { byte value to device opened on specified channel.

Params: vi - channel number to PUT byte to
v2 - value or mem address of byte to PUT

Bxample: PUT byte from TEMP to device on channel {:
1618 PUT {,TEMP

Page 18 MAC/&65 ToolKit vert.#d

BND v

Purpose: Generate a random # less than the specified value (which
must be <{2%4) and leave the random number in the

accumulator.
Params: v - Random number will be less than this value.

Example: Generate a die roll 1-6 and store in DIE:
181e DIE .BYTE @

7000 RND &
9810 cLC
9628 ADC #1
9830 STA DIE

viveyV.

Purpose: Sets the specified color register to the specified color hue
and luminance values. This macro is
similar to the BASIC command SETCOLOR.

Params: vi - color register
v2 - color hue
v3 ~ color luminance

Example: Set border color to white:
1816 SETCOLOR 4,8,14

SOUND vi,v2,v3,v4

Purpose: Plays a sound of a specified pitch, distortion and volume
using the specified voice. This macro is similar to the BASIC

command SOUND.

Params: vi{ - voice {8~3)
v2 - pitch (8-255)
v3 - distortion (0-14)
v4 - volume (0-15)

Example:
1010 SOUND 2,284,10,12

MAC/65 ToolKit ver{.00 Page 19

STOP

Purpose: Debugging aid: sounds a tone and then waits for the START
key to be pressed before continuing execution,

Params: NONE

Example:
10180 STOP

STORE adr

Purpose: Stores the two bytes starting at FR6(=212) to a specified
address. This macro is usually used to store the result of a
math calculation since the math functions use FR#.

Params: adr - address to store two bytes now at FRO & FRO+1.

Example: See CALC example.

TRAP adr

Purpose: Sets address to which program execution will jump if an error
is detected (usually an I1/0 error), It is is initialized to jump
to QRERR which is part of the ToolKit’'s object code. QRERR
will print the ERROR number on the screen and then do a
SYSTEM RESET,

Params: adr - address to jump to on error

Example: Break to monitor on an error:
1010 GUIT STOP

3010 TRAP QUIT

T viv

Purpcse: Positions the cursor in the text window while in a split
screen mode.

Params: vi - horizontal coordinate
v2 - vertical coordinate

Example:
1618 TXTPOS 25,2

Page 28 MAC/6S ToolKit veri.d

VPOKE adr,#

Purpose: Pokes the two byte numeric value of a label or expression
into memory low byte first.

Params: adr - memory location to poke low byte,
- label whose value will be poked.

Example: Poke the number 290908 into RAM location 560:
10180 VPOKE 548,29800

WAIT v

Purpose: Performs a time delay. The time wait equals the value given
times 1/60th of a second.

Params: v - number of jiffies (1/80th of a second) to wait.

Example: Do nothing for { second:
1818 WAIT 46

MAC/485 ToolKit ver .09 Page 21

PMGR.M&85S Macros

the routines in this file allow you to create and move players and missiles
using a vertical blank routine, as well as check for collisions. The
following is a synopsis of the macros:

MMHOVE vi,v2,v3 - Moves a missile

MPFC vi,v2 ~ Missile to Playfield collision test

MPLC vi,v2 - Missile to Player collision test

MSIZE vi,v2,v3 - Set height & width of missile

PLPFC vi,v2 - Player to Playfield collision test

PLPLC v1,v2 - Player to Player collision test

PMCOLR vi,v2,v3 - Sets player/missile color

PMGR v - sets up single line resolution player/missile graphics
PMMOVE vi,v2,v3 - Moves a player

PSIIE v{,v2,v3 - Sets height and width of player

SETVEC adr - Changes the address the player/missle vertical blank
interrupt routine exits to.

SHAPE v,adr - Tells the player movement routine the address of the
first byte of player shape data

HEQ!E !1|VZ|V§

Purpose: Moves missile to specified positon on screen

Params: vi - missile # (0-3)
v2 - harizontal coordinate
v3 - vertical coordinate

Example:
1818 MMOVE 8,125,125

MPFC vi,v2

Purpose: Checks if a collision has occurred between a specified missile
number and playfield number. The zero flag is set if NO
collision has occurred.

Params: vi - missle number (8-3)
v2 - playfield number {8-3)

Bxample: Jump to KILL routine if collision occurs:
1018 MPFC 2,1
1926 BNE KILL

Page 22 MAC/65 ToolKit veri1.00

MPLC vi,v2

Purpose: Checks if a collision has occurred between a specified missile
number and player number. The zero flag is set if NO
collision has occurred.

Params: vi - missle number (8-3)
v2 - player number (6~3)

Example: Jump to KILL routine if collision occurs:

1810 MPLC 2,1
1020 BNE KILL

viv2,v
Purpose: Set height & width of missile
Params: vi - missile number
v2 - missile width (1=single, 2=double, 4=quad}
v3 - missile height in screen lines

Example: Set missle 2 to normal width and 16 lines high:

1818 MSIZE 1,2,16
PLPFC vi,v2
Purpose: Checks if a collision has otcurred between a specified player

number and playfield number. The zero flag is set if NO
collision has occurred.

Params: vi - player number (8-3)
v2 - playfield number (8-3)

Example: Jump to KILL routine if collision occurs:
1618 PLPFC 2,1
1029 BNE KILL

MAC/685 ToolKit ver .00 Page 23

ELELQ VhVZ

Purpose: Checks if a collision has occurred between specified player
numbers. The zero flag is set if NO collision has occurred.

Params: vi - player number (86-3)
v2 - player number (0-3)

Bxample: Jump to KILL routine if collision occurs:

te1e PLPLC 2,1
1020 BNE KILL

viv,v
Purpose: Sets player/missile color

Params: vi{ - player number (8-3)
v2 = color hue
v3 = color luminance

Example: Set player { to gray:
1018 PMCOLR 1,0,8

PMGR v

Purpose: This macro sets up single line resolution player-missile
graphics at the specfied PMBASE. It also installs the player
and missile movement routine to execute during the vertical
blank interrupt.

Params: v - RAM page to set as player-missile base

Example: Set PMBASE {4 pages below RAMTOP:
1810 RAMTOP = 184
1826 BASE .BYTE @

3810 SEC

3020 LDA RAMTOP
3638 SBC #16
3048 STA BASE

3059 PMGR BASE

Page 24 MAC/&85 ToolKit veri.09

PMMOVE vi,v2,v3

Purpose: Moves player to specified position on screen

Params: vi - player number (8-3)
v2 =~ horizontal coordinate
v3 - vertical coordinate

Example:
1010 PMOVE 8,125,125

PSIIE vi,v2,v3
Purpose: Sets height and width of player

Params: v{ - player number
v2 - player width (1=single, 2=double, 4=quad).
v3 - player height in screen lines

Example: Set player 1 to double width and 14 lines high:
ie1e PSIZE 1,2,16

SETVEC adr

Purpose: Changes the address the player/missle vertical blank
interrupt routine exits to. At setup, the player/missle
vertical blank routine exits to the ROM routine XITVBV (exit
vertical blank interrupt) at $E462,

Params: adr - address to exit to

Example: Install routine DONOTHING to execute during VBI:
101e SETVEC DONOTHING
9960 DONOTHING
9810 JMP XITVUBV

MAC/E5 ToalKit veri.0e Page 25

SHAPE v,adr

Purpose: Tells the player movement routine the address of the first
byte of player shape data

Params: v - player number (8-3)
adr - address of data

Example: Alternate shape of player {:
1826 LOOP SHAPE {,PICTURE]

1838 WAIT 15
1649 SHAPE 1,PICTUREZ2
1858 WAIT 15

1848 JMP LOOP

Page 26 MAC/&85 ToolKit ver 1.00

Using the SCROLL M&5 Library

The Scroll library controls fine scrolling and is a little more complicated
than the other libraries. In addition to macro calls for dimensioning a
scrolling display, the user controls the speed and direction of the scroll
by a direct memory poke. The memory locations which a programmer may
wish to use are explained in this section, These locations are identified
by global labels which are NOT prefixed by QQ.

You do not need to understand the details of fine scrolling as the routines
in SCROLL.Mé5 manage this complex process for you. Therfore, this
manual does not attempt to tutor you on this subject. The interested
reader is referred to De Re Atari and to a series beginning in the October,
1983 issue of ANALOG magazine for more information on fine scrolling,

SCROULL Memory Locations

The SCROLL.Mé5 macro SCRDIM installs a routine to execute as a deferred
vertical blank interrupt routine. If you wish to have another routine
execute as part of the vertical blank interrupt process, it must be
installed prior to using SCRDIM, SCRDIM saves the address located at the
deferred vertical blank interrupt vector at location decimal 543 and jumps
to it when it has concluded its processing. After dimensioning your
display using SCRDIM, the only thing you must do to execute fine scrolling
is to POKE the proper location.

Parameters to the macro SCRDIM:

MODE - ANTIC mode (2-7) Note: SCRDIM always uses the split screen
mode.

XDIM - Enter the horizontal dimension in characters of your entire
display. It must be ¢ 256.

YDIM - Enter the vertical dimension in characters of your entire
display. It must be ¢ 256.

SCRBAS - the address of the first byte of display data. Some care
must be taken in choosing this value since ANTIC will be confused if
any mode line jumps over a 4K boundary. If your screen display is less
than or equal to 4K, placing the screen on a 4K boundary will eliminate
this problem. If your screen is greater than 4K, you must choose the
screen address so that one mode line ends and another begins precisely
on a 4K boundary.

SDISPL - the address at which you would like SCRDIM to write the
dieplay list, Your only concern in choosing this value is that the
display list must not cross a {K boundary. The maximum length display
list is for mode 2, 4, and 6 and is 72 bytes long.

MAC/87% ToolKit ver {.09 Page 27

ion by th cr 1
X0LIM - Horizontal right limit of fine scrolling.
YOLIM - Vertical lower limit of fine scrolling.

XLOC - the location which contains the horizontal character coordinate
of the upper left corner of the display screen.

YLOC - the location which contains the vertical character coordinate of
the upper left corner of the display screen.

t set by SCRDIM

SCROLL - the location which controls the direction of the fine scroll,
The number you POKE here is the same number the STICK(®) BASIC
function returns when the joystick is moved in that direction (15=no
scroll, 7=right to left, 1i=left to right). Using this convention allows
you to easily control a fine scroll with a joystick.

VSPEED - the location which controls the vertical fine screlling speed.
Do a POXE VSPEED,® for the fastest speed. Larger numbers will result
in incrementally slower speeds.

HSPEED - the location which controls the horizontal fine scrolling
speed as above.

The following is an example to do a continuous horizontal fine scroll at
maximum speed:

1019 POKE HSPEED,8
1020 L1 POKE SCROLL,7
1830 LDA XLOC

1849 CMP XaLIM

185@ BNE L1

1940 POKE XLOC,8
1679 JHP L1

Other locations used by the scrolling routines:

These locations should NOT be modified by the programmer!

CSRBAS - Address of first byte of current display
SHSROL - Horizontal fine scroll shadow register
SVSROL - Vertical fine scroll shadow register
LINES - Internal variable

JMPBYT - Internal variable

RVBIV - Address through which SCRDIM exits
CWIDE - Character width in color clocks

CHIGH - Character height in screen lines

MLINES - Internal variable

Page 28

MAC/4% ToolKit veri.l

SRBYTW - Display screen width in bytes

SDIR - Scroll direction shadow

HCOUNT - Counter controlling horizontal speed

VCOUNT - Counter controlling vertical speed

OLDVBV - Holds the previous value of the vertical blank interrupt

vector.

ECROLL.M&ES Macros

This file contains two macros to enable fine screen scrolling as follows:

SCRDIM vi,v2,v3,adri,adr2 - Sets fine scrolling parameters.
SETXY vi,v2 - Sets up coarse boundaries for further fine scrolling.

M viv2,v r r

Purpose:

Params:

Sets dimension parameters for fine scrolling {see Using the
SCROLL.M65 Library).

vi - ANTIC mode (2-15)

v2 - horizontal dimesion of display (<256)
v3 - vertical dimension of display {({256)
adr!{ - address where display list is written
adr2 - address of 1st byte of display data

Example: Set up fine scrolling using ANTIC mode 7. Display size is
£4x54, SCREEN is 8K bytes from RAMTOP, and display list is in page 6:

SETXY vi,;v2

Purpose:

Params:

18 SCRDIM 7,44,64,9408,{RT-32]%256

Does a coarse scroll. The specified x,y coordinates of the
entire display are placed at the upper left corner of the
screen, Note: When in the fine scrolling mode, ANTIC
retrieves more bytes per line than are displayed on the
screen. Therefore the left edge of the screen will be slightly
off the left of the visible screen.

vi - horizontal coordinate
v2 - vertical coordinate

Example: Move display setting left corner at x=5,y=8:

18 SETXY 35,8

STOPSCROLL

Purpose: Turns off the fine scrolling vertical blank interrupt routine.

MAC/85 ToolKit veri.0t Page 29

This macro should be called before exiting a program back to
DOS. The screen, however, is not returned to a3 standard
graphics mode, so the macro GR should also be used to change
screen modes before exiting the program.

Params: NONE

Example:

19 STOPSCROLL

THE MAC/65 TOOLKIT

Lets You \Write Code FASTI

The MAC/65 ToolKit gives you dozens of macros you
can use in your programs, allowing you to write
assembly code almost as easily as you write a

BASIC program.

Macros such as SETCOLOR, POKE, PLOT, GET, PUT,
and more are easy to use and understand. Complete
player/missile graphics support can simplify even a
difficult project. And, fine scrolling Is supported so
well it’s almost automatic.

Why waste timel Write your program with The
MAC/65 ToolKit today and use it tomorrow!|

Requires an Atarl Computer with 40KB
Memory, Disk Drive, and an MAC/65
SuperCartridge.

OSS PRECISION SOFTWARE TOOLS
FOR ATARI HOME COMPUTERS

BT 7. . \. Y. A The most powerful Basic
THE BASIC XL TOOLKIT¢... Programming Alds

R . B Fastest structured language
THEACTIONITOOLKIT Programming Alds

MACABS0 " 0. . eeiie s eaee Fastest macro-assembler
THE MAC/65 TOOLKIT Programming Alds

R . 8. & .- BV . A small C language compller
R .\ . B . N Now with BUG/65

THE WRITER'STOOL Writing was never so natural

Optimized Systems Software, Inc.
R L R T T S T TATR T LR

1221B Kentwood Avenue, San Jose, California 95129 (408) 446-3099

© 1964 Optimized Systems Software, Inc

	The MAC/65 Toolkit (Cover)
	OSS Inc.
	Table of Contents
	Introduction & Information
	Using The MAC/65 Toolkit
	The MAC/65 Toolkit Abbreviations
	Supporting Macros

	Error Codes

	KERNEL.M65 Macros

	BCLR

	BGET

	BLOAD

	BMOVE

	BPUT

	CALC

	CLOSE

	CLS

	COLOR

	CR

	DDEC

	DINC

	DIV

	DOI

	DOJ

	DOK

	DPOKE

	DRAWTO

	FILL

	GET

	GOSUB

	GR

	IFEQ

	IFGT

	IFLT

	IFNE

	ININUM

	INPUT

	LOCATE

	LOOPI

	LOOPJ

	LOOPK

	MINUS

	MUL

	OPEN

	PGCLR

	PGMOVE

	PLOT

	PLUS

	POKE

	POS

	PRINT

	PRINUM

	PUT

	RND

	SETCOLOR

	SOUND

	STOP

	STORE

	TRAP

	TXTPOS

	VPOKE

	WAIT

	PMGR.M65 Macros

	MMOVE

	MPFC

	MPLC

	MSIZE

	PLPFC

	PLPLC

	PMCOLR

	PMGR

	PMMOVE

	PSIZE

	SETVEC

	SHAPE

	Using the SCROLL.M65 Library

	Scroll Memory Locations

	Parameters to SCRDIM

	Locations set by SCRDIM

	Locations NOT set by SCRDIM

	Other locations used by the scrolling routines

	SCROLL.M65 Macros

	SCRDIM

	SETXY

	STOPSCROLL

	The MAC/65 Tookit (Back Cover)

