. J UIST
439 95!

<
\(\\

s s
]

\\\

L7 /WOHTHE

8- \B”’\AT‘A\ S

Over 100 standard C and
specialized functions to take
advantage of your Atari.
With commands to access
Player Missile Graphics,
Sound, Joystick & Paddle,
Dos, System Clock, 16
floating point functions and
much, much more.

Supports the extra memory
in the 130XE / compatible

upgrades, and the Mosaic

Board for 800’s.

From within the INCLUDED

editor, enter one command and
you can compile, optimize, link

and run your programs.

Your program can run under

nearly any DOS, in single or
double density.

Sleve of Eretosthenes

Langwuage = Time lo rua:
T TR S 27 minutes
Deeop Blue C...... 9 minutes
Lightspeed C.... 448 min.

= For Atari 400/800/130 XL/XE with min. 48k and 1 drive.

J

Quality Software From:

Raph £ Waldern

and ..

* ATARI, ATARI 130XE, ATARI 800XL, ATARI 1200XL, ATARI 800, ATARI
400, ATARI ST, ARE ALL TRADEMARKS OF ATARI CORP.

* ACTION!, MAC/65, AND OSS ARE ALL TRADEMARKS OF OPTIMIZED
SOFTWARE SYSTEMS,

* SPARTADOS IS A TRADEMARK OF ICD.

"'"FASTER THAN LIGHTSPEED C' Copyrighted 1985 RALPH E. WALDEN
Send all correspondance to:
Clearstar Softechnologies
1501 Wood Ave. Suite #36
Sumner, Wa., 98390

ATTN: Consumer Applications Division

ble OF

I. INTRODUCTION
II. DISK CONTENTS
III. LIGHTSPEED € AND STANDARD €

IV. CREATING A € PROGRAM
A. The Compiler
B. The Linker
"C. The Optimizer
D. Tips

V. LIGHTSPEED DOS

File Management

B. Command Processor

C. Runtime Library

D. Interpeter

E. Operating System Patches

>

VI. ASSEMBLY LANGUAGE INTERFACE
VII. FLOATING POINT
VIII. STDIO.C
IX. PLAYER/MISSILE GRAPHICS
X. MGR.OBJ
XI. CEDIT
XII. UTILITY FILES
XII. RAM DISKS
XIII.ACTION!*
A. STDIO.ACT
B. FLOAT.ACT
C. RUNTIME.ACT
XIV. MAC/65
A. FLOAT.M65
B.STDIO.M65
C. MACRO.M6S
XV. MISCELLANEOUS
XVI. A PRACTICE SESSION

APPENDIX A - Kernighan and Ritchie

-

INTRODUCTION

The Lightspeed C compiler is a subset of standard C as defined in
the book "The C Programming Language”, by Brian Kernighan end.
Dennis M. Ritchie. It contains &ll of the statements and most of the
operators found in standard C, except for those dealing with
structures, unions, and bit fields. Lightspeed C is a development
compiler, designed to compile and link programs much faster than C
compilers on other computers, and to produce very small runtime
files.

You can run C programs and the Lightspeed C Development System
itself with virtually any DOS system. However, Lightspeed will work
best if you use the provided Lightspeed DOS, Sparta DOS 3.2 from
ICD, or any DOS from Optimized Systems. These DOS systems have a
commend line that allows programs to work interactively with each
other. For example, a single command from the editor can save your
source code, compile, optimize, link and run it. If an error occurs,
the editor is re-entered, vour source code loaded, and the line with
the error listed. The Lightspeed DOS itself contains over 100
functions that may be accessed by programs written in C., ACTION!,
and assembly language (ACTION! and MAC/65 sssembly language are
available from Optimized Systems). You may access most of these
functions using other DOS systems by using the provided runtime
modules.

On disk #3 of the Lightspeed C Development System are three
separate runtime files which will allow you to run C programs with
other DOS systems. The three different versions of the runtime have
different starting addresses, and therefore affect which DOS you can
run your program with. All three versions are lacking the ACTION!
and MAC/65 routines, and the C functions getsec() and putsec().
LRUNTIME.OBJ contains 2]} the other functions described in this
manual. Jt has a starting address of around 0x2100 (hex).
MRUNTIME OBJ is lacking sin(), cos(), and atn(functions, and has a
starting address of around 0x2280 (hex). SRUNTIME OBJ lacks the
functions sin(), cos(), atn(), circle), sound(, and pmload(). It has a
starting address of around 0x2400 (hex). You should choose which of
these three files is the shortest, but contains all the functions you
need, and then append it onto the end of your C program. The
program DCOPY.COM, described in this manuval will allow you to
append a runtime onto the end of your file. WARNING! Once you have
appended a runtime file onto your program, you can NOT run it under
Lightspeed DOS. If you do, vour computer will crash.

If you have a ram disk and Sparta DOS 3.2, you will probably
went to use Lightspeed with Sparta DOS. You should set up a ram
disk as D8:, and copy whichever ?RUNTIME.OBJ file has all the
functions you will need. You need to rename it as RUNTIME.OBJ. On

side #3, you will find several .COM programs which already have
RUNLOADS .OBJ appended to them. You should copy these to a Sparta
disk and rename them (remove the preceeding SP). You should copy
RUNLOADS.0BJ to your ramdisk and rename it RUNLOAD.OBJ. When
the Sparta version of LINK.COM creates a .LNK file it will include
RUNLOAD.OBJ. Now every time you run one of the Lightspeed .COM
files, it will first load in the needed runtime from your ram disk
(takes about half a second). NOTE: Lightspeed DOS provides a
command line 120 characters long, whereas Sparts and 0S5 DOS
systems only allow 64 characters.

You could use Lightspeed with an earlier version of Sparta DOS,
but because it u{es unbuifered I/0, the compiler speed will be halved,
and the editor will load/save files 6 times slower. You could also run
Lightspeed on another DOS without a ram disk, but you would have
to(wait for the runtime to be loaded in on every file (about 7 seconds
longer per program). If you have Sparta 3.2 and & ram disk, use it,
otherwise you should stick to Lightspeed DOS.

Please note that you must remove any cartridges before running
the compiler, linker or optimizer. Hold down the OPTION key when
booting an XL or XE computer. If you accidentally boot an XL or XE
computer without holding down the OPTION key, then you may turn off
Basic by exiting to DOS and typing OFF. This runs the program
OFF.COM which will turn off the Basic ROM. It can also be used to
turn off an Optimized Systems Supercartridge.

Once yvou have used the Lightspeed Development System for awhile,
you should run CUSTOM.COM and set option #6 to turn the screen off
for compiling and linking. This typically speeds up compiling and
linking by about 20%.

There are 4 sides to the Lightspeed Development System. Sides
1-3 are in single density, and side 4 is in double density. The
following is a list of the files included on the disks in this package.
PLEASE, back up the disks BEFORE you use them!

Side o1

DOS.SYS ~ Lightspeed DOS

AUTORUN.SYS - gives directory of disk
BATCH.COM - creates batch file

OFF.COM - turns basic off

CB.COM - C beautifier

CC.COM C compiler

CEDIT.COM - C editor

COMPACT.COM - removes extra block headers
CONFIG.COM - change disk density
COPY.COM - file copy

CUSTOM COM - customize Lightspeed DOS
DCOPY.COM - multi-purpose utility
DIR.COM - 2 column directory

DO.COM - multiple commands on a line
FASTER.COM - C optimizer

FILECMP COM - compares two files
FLOAT.ACT - floating point for ACTION!
FLOAT .Mé5 - floating point for MAC/6S
GETNAME.C - routine for getting a filename
GRAPHICS.CCC - extended graphics
HEXDMP.COM - dump a file in hex
LINK.COM - C linker

MACRO.M65 - MAC/65 macros

MGR.C - equates for mgr graphics

MGR.OBJ - High speed graphics
MGRDEMO.COM - demo of mgr graphics
MOSDRIVE.COM - Mosaic ramdisk
PMDEMO.COM - demo of player/missile graphics
RAMLOAD.COM - batch file to load ramdisk
RUNTIME .ACT - runtime for ACTION!
STDIO.ACT ~ I/0 routines for ACTION!
STDIO.C - eguates for runtime functions
STDI0O.CCC - runtime functions

STDIO.H - for those who want a stdio.h file. ..
STDIO.M65 -~ 1/0 for MAC/65

TYPE.COM - type text & screen at a time

XEDRIVE .COM - ramdisk for 130XE
Side €2

DOS.SYS - Lightspeed DOS

FCALC ACT - floating point calculator in ACTION!
FCALC.ASM - {floating point calculator in assembdly
BATCH.C - source code

CB.C - source code

COMPACT.C - source code

CONFIG.C - source code

COPY.C - source code

CUBE.C - source code 3d cubes

CUSTOM.C - source code

DIR.C - source code

FCALC.C - source code for C flosting point calculator
FILECMP.C - source code

FSIZE.C - source code to give file sioze
GRAPHICS.C - source code

HEXDMP.C - source code

HVAL.C - source code for hex/int conversion
ISORT .C - source code for insertion sort

LIFE.C - source code for game of Life

MENU.C - source code

MGRDEMO.C - source code

PMDEMO.C ~ source code

QSORT.C - source code for quick sort

SIEVE.C - source code

SNAKE .C - source code

SORTDIR.C - source code for Sparta directory sort
TYPE.C - source code

WATFALL.C - source code

DIR.COM - Z column directory

LIFE.COM -~ the game of life

LIFE.LNK

MGRDEMO.LNK

PMDEMO . LNX

LIFE.OBJ

Side #3
DO NOT run these .COM files with Lightspeed DOS!
with Sparta DOS or other DOS systems ONLY!

They are for use

LRUNTIME OBJ - long runtime

MRUNTIME OBJ - medium runtime

SRUNTIME .OBJ ~ short runtime

RUNLOAD1.0BJ - load runtime from Di:

RUNLOADS.0OBJ ~ load runtime from D8:

RUNLOAD Mé5 - source code in MAC/65 tokenized format
SPCB.COM - C beautifier for non-Lightspeed DOS
SPCC.COM ~ C compiler for non-Lightspeed DOS
SPCEDIT.COM ~ C editor for non-Lightspeed DOS
SPCOMPAC .COM -~ file compacter for non-Lightspeed DOS
SPDCOPY.COM - multi-purpose utility for use with Sparte DOS ONLY!
SPFASTER.COM - C optimizer for non-Lightspeed DOS
SPLINK.COM - C linker for non-Lightspeed DOS

Side #4 Double Density
This contains duplicates of most of the files found on side #1 and #2,
but in double density.

LIGHTSPEED C AND STANDARD C

The Lightspeed C compiler is a subset of standard C as defined in
the book "The C Programming Language" by Kernighan and Ritchie.
Most programs written using Lightspeed C can be run on any
computer supporting standard C without alteration. For a complete
comparison of Lightspeed C and standard C, compare Appendix A at
the end of this documentation with Appendix A in the Kernighan and
Ritchie book. Lightspeed C supports the following:

1) The declarations char, int, pointer and extern.

2) Single dimension arrays. No pointer arrays - they won’t generate
an error, but won’t work like standard C. Note: floating point
functions are provided, but you must define a floating point number
&s: char namel6l;. It will act as & char array except in floating point
functions.

3) Unary operators: &,&,-,!,++,~-, 8- (tilde).

4) Binary operators:
M PN I S B IR T I TR R T ¥ S I I I
(comma), (op}= (example: var += 3 (var=svar+3).)

S) Statements: asm, break, case, continue, default, do, else, for.
goto, if,)sr, return, switch, while.

6) Compiler directives: #define, #include, #if, Welse, ®#endif, ®ifref
7) Constants: decimal, hexadecimal, octal, backslash.

Unsu;aported features of C (these are NOT in Lightspeed C):
1) Structures, unions.

2) Multidimensional arrays, pointer arrays.

3} Local static declarations.

4) Full {loating point implementation.

S} Function types (all functions return a 2 byte word which may be used
as an integer, pointer, or character).

6) Unary operator: sizeof.

7) Binary operator: type casting.

8) The types unsigned, long, short, float, double, and register.
9} Macro expansion in #defines

10) Assignments within declarations (int val=5; is not allowed)
11) arge and argv. Use the function getdos() instead.

Differences from standard C:

1) Characters are unsigned, and range from 0-255.

2) Strings and comments may NOT continue onto the next line. (line
refers to & logical line which may be up to 120 characters.)

3) C source code lines can be & maximum of 199 characters long after
any expansion from #define’s.

4) Functions may have a maximum of 126 arguments. They always
return & word which may be used as a char, int, or pointer.

5) When Lightspeed C encounters a /%, it considers that the end of the
line. Therefore, comments may not be imbedded within a line, and
they may not cross over to & new line.

6) Lightspeed C will do constant evaluation at compile time provided
there are no parenthesis between the numbers and operators:
num=5%6; will be num=30; at runtime. num=5%(6); will remain the
same. There is no order of precedence; evaluation is strictly right to
left. num=5%6+1; is num=35. Use parenthesis to override constant
evaluation.

7) A tab character is not "white space"”; CC will try to compile it.

8) Lightspeed C has an assembly language interface using
asm and jsr. asm will accept arguments from the function it defines,
Jsr does a direct subroutine call.

9) Braces in standard C are replaced with $(and 9).
The tilde is replaced with ~.

10) Varijables may not be declared within a statement block.
11) labels for the goto must be preceded by a colon.
12) Globals are not cleared at runtime.

BACKSLASH: Use of the backslash within & single or double quote will
generate the following codes:

\b - backspace delete
\d - cursor down

\e - escape
\f - clear screen
\g - bell

\l - cursor left
\m - control M
\n - return

\r - cursor right
\t - tab

\u - cursor up

Additionaly, a backslash followed by & number will convert the number
to its actual value. "\65\66" would generate the string "AB". Note:
you cannot put a control comma (graphics heart) within a string since
this is the end of the string character; you must use \0.

CREATING A C PROGRAM

The programs used in developing C programs all normalize the
filename you enter with the default drive and an extension (dependent
upon the program}. The default drive used is the drive you were
logged onto when the program wes run (the DOS prompt gives the
default drive, normally Di:). You may override the default drive by
including the drive specification at the beginning of the filename. If
you need to override the extension, you may either include your own
extension, or follow the primary name with 2 period if you want no
extension. The compiler, the linker, and the optimizer all require
48K, so0 you must remove any cartridges before using them. After you
read about how to use the compiler, linker, and optimizer, you may
want to skip to section XII for 2 practice session writing C programs.

The Compiler

The compiler takes source programs with the extension ".C" and
compiles them into an intermediary file with the extension ".CCC".
To run the compiler, type CC. After the CC you may type a space
and up to three lines of filenames to compile all separated by spaces.
You do not need to include the extension ".C", and if the file(s) is
on the default drive, then you do not need to specify the drive. You
mey include the filename FASTER which will run the optimizer on the
last file compiled. You may also include the filename LINK which will
teke the name of the last file compiled, remove any trailing number,
add the extension " LNK" and link the program. If you have included
the name LINK, then you may also include the name RUN which will
cause the program to be run after linking it.

Example:

CC TEST! TESTZ FASTER LINK RUN
Eifect: this will compile TEST1 and TEST2, run the optimizer on
TEST2, link the program using TEST.LNK, and then run the
program TEST.COM.

After all {ilenames passed to CC from DOS are compiled (and you didn‘t
include either FASTER or LINK), you will be asked for a filename.
You may either enter another filename to compile, or press RETURN
to exit to DOS.

When CC compiles a file, it creates s new file on the same drive
as the source file with the extension ".CCC" for use by the linker.
If any error is encountered, all compilation will stop and the line
with the error and an error message will be displayed. CC will ask
vou which drive CEDIT . COM is on. When you press the drive number
CEDIT will be run, and the source file with the error will be loaded.

CEDIT will then display both the line with the error and the
preceding line., followed by the error message. If you do not wish
CEDIT to be run when CC finds an error, then you must press
SYSTEM RESET. It is often the case that an error occurs eariier in
the program than the line listed. The compiler only lists the line it
couldn’t compile. If, for example, vou had too many opening braces,
then the error might not show up for many lines after the original
error.

While the program is compiling, the compiler will list each
function it is working on. If you use CUSTOM.COM (see pg. 41) to
turn off the screen during compilation (this speeds up CC by about
20%), then you won’‘t see the function names until compilation is
complete, or &n error occurs.

Note: Even though CC can compile almost any size source file, the
largest
".CCC" file the linker can handle is 9X (about 73 single density
sectors). It’s safer to create several small files and link them
together then to have one large file.

There are six compiler directives which you may include in the
source file. They are as follows:

®define string string - whenever CC encounters the first string
(all characters until the next space) it will replace it with the second
string (everything to the end of the line or /%).

Example:
#define EOL 154+1 /% this comment will be ignored &/
putchar(EOL); /% this will be changed to putchar(155) (note
constant evaluation) %/

The first string is only significant to 8 places. Constant evaluation
will be done on the second string.

#include filename - this will include the filename specified. The
filename will be normalized with the default drive and the extension
".H" The included file {s usually used as a header file containing
extern declarations and #defines. You may optionally include quotes
sround the filename to maintain compatibility with standard C. If the
filename is in lower case, it will automatically be converted to upper
case.

There are four conditiona) directives. They are #if, ®else,
®endif, and ®ifref. Unlike standard C, conditionals can not be nested
and constant evaluation is not done on the object of the conditional.
For example, #if 5%x0 would evaluate as #if 5 instead of the expected
tero. All conditionals must be the first statement on & line.

®if - Upon encountering an #if the compiler checks to see if the
next non-space character is a zero. If so, compilation is suspended
until the next conditional. If it is not a zero, then compilation will
continue normally.

#else - if the previous #if or #ifref evaluated true, then all
compilation will stop until the next conditional. If the previous ®if or
®ifref evaluated false, then compilation will continue after the ®else.
Remember that conditionsls may not be nested.

®endif - this may be used to end any conditional block started by
#if, ®else, or ®ifref.

Example:
#if DEBUG
printf("%d\n",ival),;
delse
fast();
#endif

Effect: if DEBUG was #defined as 1, then the value of ival would be
sent to the screen. If DEBUG was #defined as 0, then the screen
would be turned off.

®ifref name - This checks to see if the name has been previously
referenced or defined as a globa) or as a function. If it hasn’t,
compilation will cease until the next conditional. Only the current
source file will be checked for the name. By using ®#ifref you could
compile only functions which have been called in the main program. A
library of functions could be created, all preceded by #ifref, and
ending with #endif. You could then #include the filename at the end
of your program. This will work {ine as long as the resulting ".CCC"
file is less than 9K (about 73 single density sectors).

Note: The Lightspeed C compiler will not accept line numbers in
the source code. If you have source code with line numbers, you
must first load it with CEDIT and then save it. CEDIT will remove
the offending line numbers.

The Linker

LINK.COM joins together all the files that are to be part of the
same program. You must first create a file with the extension " .LNK"
which contains a list of the filenames to link together. The only file
types allowed are ".CCC” and ".0BJ" (object). All filenames are
normalited with the default drive and the extension ".CCC", so the
extension is only needed for ".OBJ" files (assembly language files
should have the extension ".0BJ"). To run the linker, type LINK.
After the LINK you may type & space and up to three lines of
filenames to link all separated by spaces. You may optionally include
the name RUN which will cause the last file linked to be run. All
filenames will be normalized with the default drive and the extension
“.LNK". 1If no ".LNK" file is found matching the filename then the
linker will create one with the filename you gave it and the file
STDIO.CCC. 1f the last character of the filename is a number, then
the number will be deleted. In this manner, you could have several
files with the same primary name and a different ending number, and
link the file using only the primary name.

Exanmple:

LINK TESTI1
Effect: this would link the file TEST.LNK. If TEST.LNK did not
exist, then it would be created with two filenames:

10

TEST.CCC
STDlIo.cCC

To override the number deletion, include the extension ".LNK" with the
filename.

The linker will create a file with the extension ".COM" which is
ready to run. When all files have been linked, the linker will ask
you for another filename. You may enter another filename, or press
RETURN to exit to DOS. After exiting to D05, you may run a file
created by the linker in the same manner as any ".COM" file. Type
in the name (without the extension “.COM") and press RETURN.
Remember that the resulting " COM" files can only be run if you have
first booted the Lightspeed DOS5.SY5 file. See the Introduction page
for getting the programs to run on a non-Lightspeed DOS system.

If errors are encountered while linking & program, they will be
listed on the screen. If the errors are fatal, then compilation will
stop and the error will be listed. You must then press a key to exit
to DOS. (There is no way for the linker to continue after a fatal
error.} There are a few errors the linker may not catch. It will
not catch duplicate function names in different files. It will also not
catch a function and a global with the same name if they are defined
in different files.

If you have used CUSTOM . COM to turn the screen off while linking
a file (it speeds up LINK by about 20%), the screen will be turned on
when all files are linked, or an error occurred.

Note: a ".COM" {file will be created even if an error occurs. Do
not try to run this file unless you want to crash your computer.

The ".LNK" file may have some additional lines in it besides
filenames. A line beginning with a non-alphabetic character is
considered to be & comment. It will be displayed on the screen, but
otherwise ignored. ‘=’ and ‘+’ have special meanings.

A ’-’ followed by a hex number will start the program at that
address, leaving free space (for assembly language routines) between
0x4004 and the new address. For example, -4800 would leave free
space from O0x4004 to Ox4800. The C program would begin at 0x4800.
You may locate the C program anywhere above 0x4004 (your program
will crash if you locate it below 0x4004).

A ‘+’ followed by & hex number will locate the stack at that
address. For example, +C200 would locate the stack at 0xC200 (useful
if you are using an XL or an XE with the Atari Trnnslalor and you
are short on memory for your program).

Note: If you use the Sparta DOS version of LINK, then the default
.LNK file will alsc contain the line:
RUNLOAD.OBJ

The Optimizer

FASTER.COM may be used to speed up a C program. FASTER
works on a previously compiled program (extension ".CCC") and
optimizes it producing smaller code that runs about 30 percent faster.
To run FASTER, type FASTER {followed by up to 3 lines of filenames

11

to optimize. Each filename will be normalized with the default drive
and the extension " . CCC". After each file is optimized, it‘s name
will be listed and the number of new instructions created (the new
instructions usually replace two or more old instructions). When
there are no more filenames in the command buffer, you will be asked
for a filename. You may enter a filename to optimize, or press
RETURN to exit to DOS. Note: FASTER is fairly slow. To speed it
up, the screen will be turned off while it is working. A lengthy
Program could take several minutes to optimize.

You may also include the filename LINK in the command string
which will cause the linker to link the last filename you entered.
This allows FASTER to be part of the compile batch process.

Example:

CC TEST TASTER LINK RUN.
Effect: this would compile TFET.C, optimize TEST.CCC, link
TEST.LNK, and run TEST.COM.

Example:

CC TEST1 TESTZ FASTER TEST1 LINK RUN
Effect: this would compile TEST!.C and TEST2.C, optimize TEST2.C
and TEST1.C, link TEST.LNK, and run TEST.COM.

Tips

Once you are familisr with the process of sending filenames
through the compilation process, there is way to save yourself some
typing. When sending a command line to the compiler, a8 ‘+’ can be
used to invoke FASTER, and a ‘-’ can be used to invoke the Linker.
The linker also accepts ‘~‘ which will run the program and ‘+’ which
will pass the program on to COMPACT.

Example:

CC TEST » - +
Effect: compiles, optimizes, links, and compacts TEST.C producing
TEST.COM.
j.150,810,8

The optimizer is fairly slow, as it takes as many passes
through vour code as necessary until it can‘t optimize it further.
While you are developing vour program, do NOT use the optimizer
- 1t’1] just take longer to get your program debugged. But once
your program is working the way you want it to, then use both
FASTER and COMPACT for the most efficient file. Even if your
program doesn’t need to be faster, FASTER wiil usually reduce it's
size so0 it will take up less disk space.

12

Lightspeed DOS

Lightspeed DOS was written specifically for developing and running
programs in C, ACTION! and assembly language. You you can write
programs in BASIC, but you will have 8K less space to do so. Since
the DOS .SYS file contains both the runtime library and the C
interpreter, the C programs you create using the Lightspeed C
compiler will ONLY run if you have first booted a disk with the
Lightspeed DOS.SYS file on it. If you want your program to run
under a different DOS, then you will need to append one of the
?RUNTIME OBJ files to it (see Introduction page for details). If you
append & RUNTIME.OBJ file to your program, it will NOT run under
Lightspeed DOS, so do this only {f you want to run the program under
a different DOS.SYS.

There are several important differences between Lightspeed DOS
and other DOS systems. They are as follows:

1) Lightspeed DOS allows & maximum of two disk drives, either
single or double density, and one single density RAM disk.
Lightspeed DOS comes configured as two single density drives. If
you want to change the density of a drive, you MUST use the program
CONFIG.COM. You can make that change permanent by writing out the
DOS.8YS file using DCOPY.COM.

2) MEMLO is fixed at 0x4000 (hex). Do not try to load or run any
program that has a load address between 0x700 and 0x4000. Use the
program COMPACT.COM if you are unsure of 8 program’s load
address.

3) You may point to ANY place on s disk. Because of this ability,
Lightspeed DOS will not catch & file number mismatch error (#164).

4) There fs no DUP.5YS. The program DCOPY.COM contains most
of the functions found in DUP.SYS.

Lightspeed DOS contains five parts: the file management system,
the command processor, the function library, the C interpreter, and
the Operating System patches. Each section is discussed below.

FILE MANAGEMENT:
This is essentially the same as the Atari file management system.
The major difference js that Lightspeed DOS does not check for a
{ile number mismatch. This allows you to point to any sector on
the disk and read or write to that sector.

COMMAND PROCESSOR:
This handles commands when you enter DOS. DOS will display Dn:,

where n is the default drive number. You have 3 options while in
Dos:

13

1) You may change the default drive number by typing Dn: and
pressing RETURN (n is the new drive number).

2) You may enter a cartridge by typing a control C and
pressing RETURN. A cartridge will ALWAYS do a cold start when
entered from DOS (08 is set to zero).

3) You may run a program by typing it‘'s name and pressing
RETURN. You do not need to include the extensfon for ".COM"
programs. You may override the default drive by entering the
drive you wish in front of the filename. You may pass up to 3
lines of parameters to the program being run by entering them
after the filename, separated by one or more spaces. In the
following examples, the default drive is assumed to be DI:.

Example:
CEDIT
Effect: runs the program D1:CEDIT.COM

Example:
D2:CEDIT
Effect: runs the program D2:CEDIT.COM

Example:
CC TEST
Effect: compiles DI:TEST.C

RUNTIME LIBRARY:

This contains over 100 assembly language functions that you may
call using C., ACTION!, or assembly language. Their description
is in the documentation for STDICO.C.

INTERPRETER:

This is what actually runs the programs you create using the
Lightspeed C compiler and linker. It‘s use is virtually invisible.
It does mean that you must boot 2 disk with the Lightspeed
DOS.SYS file in order to run any C programs unless you have
appended &8 PRUNTIME . OBJ file to them. Note: most of the
programs that come with the Lightspeed package were written in C
and require the Lightspeed DOS.SYS file.

OPERATING SYSTEM PATCHES:

This redefines three of the keys on the keyboard, and also allows
you to change some of the Operating System defaults. The
redefined keys are:

1) CAPS LOWER - this works like a toggle key. The first time
you press it you will get Jower case keys, and the next time you
press it you will get upper case keys. This affects only pre-XL
computers. It has already been changed in the XL and XE
computers.

2) INVERSE - This now works identically to CONTROL 1.
Pressing it will halt screen display until you press it again. To
get an inverse character, you must press the CONTROL key while
pressing the INVERSE key. CONTROL 1 is still active so you may
use either key.

3) CONTROL/SHIFT ESCAPE ~ by holding down both the
CONTROL key and the SHIFT key and pressing ESCAPE, you will
immediately exit to DOS. Any program in memory will be Jost.

The program CUSTOM.COM allows you to change some of the
Operating System defaults. The possible changes are: left margin,
screen background color, character brightness, sound on/off during
disk operations, key repeat speed, and screen on/off during
compiling and linking. Run the program CUSTOM.COM to make any
changes. You may use the W option in DCOPY to write the
DOS._SYS {ile and make the changes effective whenever you boot the
disk .

Additional notes: When Lightspeed DOS is {irst entered after
booting, it will attempt to run the file D1:AUTORUN.5YS. It will
display Error #170 {f the file is not found. You may ignore the error
as it has no effect other than notifying you that the file doesn‘'t
exist. You can create an AUTORUN.SYS file with the program
BATCH.COM, or rename any .COM file to AUTORUN.5YS. The
AUTORUN.SYS file that comes with Lightspeed is simply DIR.COM
renamed to AUTORUN.SYS.

1f you have an Atari with 52K of RAM, DOS will set MEMHI (0x6A)
to 0xCO rather than the expected 0xD0. SYSTEM RESET will
temporarily open the screen at 0xCC40, effectively erasing any data
between 0xCC20-OxCFFF. Also, clearing the screen will erase
0xC000-0xCO3F, or as high as 0xC200 with & high graphics mode.
With a 5ZK Atart, 0xC200-O0xCCiF is free for permanent data storage.
For &an XL or XE used with the translator disk, 0xC200-0xCEFF is
free.

15

ASSEMBLY LANGUAGE INTERFACE

On the aversge, a function written in assembly language will run
about 10 times faster than the same function written in C. Lightspeed
C provides two instructions for combining assembly language functions
with C programs. The most commonly used is the asm instruction. To
define & function using asm, type:

func() asm address-of-function;

The address of the assembly language function must be a constant,
normally given in hex. You do not need to declare any arguments in
funcO. Any arguments between the parenthesis of the cailing function
will be placed on a stack in the order that they occur. When your
routine gets control, the pointer to that stack will be at ¢C6. To get
the Jow byte of an argument use:

LDY #largumentnumber-1)%2
LDA ($C6),Y (To get the high byte, use LDY
#largumentnumber-~1J%2+1.)

If you want to return an integer, load A with the Jow byte, and X
with the high byte. To return a character, load A with the
character, and X with a zero. End your code with an RTS. Note: all
stack entries are two bytes. If a char is placed on the stack, the
first byte will be it‘s value, and the second byte a zero.

The other instruction for interfacing with an assembly language
routine is:

Jsr address-of-function;

The jsr statement will not pass any arguments to the assembly language
instruction, though you may return a value.

Example:
val=jsr 0x3033;
Effect: this would be the same as val=getkey();.

The page tzero locstions that are free are $80 through $BB.
Lightspeed C uses the Operating System’s floating point registers, so
though vou may use them, don‘t leave a value in them expecting it to
be there the next time your routine is called. You may use memory
from 6400 to $580, and from $600 to $700. You can locate your code
within the C program itself by using the -address option in the
".LNK" file, and locate your routine starting at $4004. For example,
~4800 in the " . LNK" file would give you free memory from $4004 to
$4800. Assemble your program with the extension ".0OBJ". Be sure
to include the filename in the “.LNK" {ile with the extension ".OBJ".

16

FLOATING POINT

Lightspeed DOS contains 16 floating point functions that can be
called from C, ACTION! or assembly language. Their use is virtually
identical in all three languages. The following description is for the
C language. See the section on ACTION! and MAC/65 for using
floating point with these languages. For an example of floating point
in all three languages, Jook at the files FCALC.C, FCALC.ACT, and
FCALC.ASM. The program FCALC.COM is the compiled and linked
version of FCALC.C.

All floating point operations are done using functions. For
example instead of using c=a+b, you would use fadd(a,b,c). In all
functions where a calculation takes place (as opposed to a type
conversion), the last argument will be where the result is stored.

To define a2 number as floating point use:

char namel6);

Example:
fdivia,b,c);
Effect: c=a/b

Example:
sin(a,b);
Effect: b=sin(a)

Note: before calling atn(, cos(, or sinQ for the first time in a
program, you must first call either deg() or rad().

The following is a list of the floating point functions available.

atnifp, result)
arctangent - takes the arctangent of fp and stores it in
result .

atof(fp,string)
ascii to floating point - converts the ascii number in
string to a floating point number and stores it in fp

clog(fp, result)
base 10 logarithm - takes the base 10 logarithm of fp and stores it
in result.

cos(fp, result)
cosine - takes the cosine of fp and stores it inr e s u 1 ¢t

deg()
degree mode for sine, cosine, and arctengent

17

explfpl, fpZ, result)
exponentjation ~ £pl1 is teken to the fp2 power and stored
in result. (result=fp1°fp2)

fadd(fpl, £fp2, result)
addition - adds fpZ to fpl and stores it in result. (resultsfplefp2)

fdivifpl,£p2,result)
division - divides £p1 by fp2 and stores it inr e s u 1 ¢t
(result=fp1/{p2)

fmulifpl,fp2, resuilt)
multiplication - multiplies £fp1 by fpP2 and stores it in
result. (result=fpixfp2)

fsublfpl, £pZ, result)
subtraction - subtracts £p2 fromfpl and stores it {n
result. (resultefpl-fp2)

ftoi(fp)
floating point to integer - RETURNS jinteger value of
£p. Rounding is performed.

itoftival, fp)
integer to floating point - converts the integer ival to fioating
point and stores
it in fp.

loglfpl, result)
natural logarithm - takes the natural logarithm of fp and stores it
in result. (resultslog(fp))

rad() .
radisns for sine, cosine, and arctangent

sin(fpl, result)
sine ~ takes the sine of fp and stores it in result.
(result=sin(fp))

sqr(fp,result)
square root - takes the square root of fp and stores it in
result. (result=sqrifp))

There is no ‘=’ function for floating point. If you need to assign
one floating point number to another (fa=fb} then use the function:

move(fb,fa,é);

18

STDIO.C

The following is an alphabetical list of the functions provided in
STDIO.C. The compiled version of this file is STDIO.CCC which may
be included in your " .LNK" files. 1In the absence of & ".LNK" file,
the linker will automatically include this file with your main program.
Globals and function names may not be the same, so you can not use
any of these function names as globe] names. Functions working with
floating point numbers will expect the name (address) of a previously
defined 6 member character array. Functions which return a specific
value will be indicated by & "RETURN" in all caps. If not specifically
indicated, & function returns a useless value. Most functions
involving input/output will return the negative of the error number if
an error has occurred. (funcO>=0) will be true if the function did
not encounter an error. True is defined as any non-zero number,
false is always a zero. The actual code for these routines is within
the DOS.5YS itself. Therefore these functions are also available to
languages such as ACTION! and assembly language as long as the
Lightspeed DOS.SYS {file was booted. C programs running outside of
Lightspeed DOS may also access these functions since they are
included int the ?RUNTIME.OBJ that must be appended to the .COM
file.

STDIO.C contains some function names that are duplicates of
existing functions - this is so you can compile both programs written
with Deep Blue C that used non-standard function names, and standard
C functions.

Note: unlike standard C, you cannot define a function type.
However, the value returned from & function may be used as a char,
an int, or & pointer. FILE type under Lightspeed C is int, rather
then the structure used in most standard C compilers.

abs(i)
int i;
RETURNS the positive integer value of %.

atnifpl,£fp2)
char fp1l6),£p2L6];
Taekes the arctangent of the floating point number in
fpl and stores the result in £p2.

atofifp,str)
char £plél,str();
Converts the ascii number in the string str to a floating point
number, and stores the result in fp.

19

atoi(str)
char stril,
RETURNS the integer value of the ascii number in str. Rounding is
performed if there is a decimal portion.

Example:
atoi("1.7"),
Effect: this would return a 2.

bgets(addr,len,jocb) /% use fread() for standard compatibility
1 9]
char faddr;
int len,iocb;
Gets & maximum of len number of bytes from the iocb number and
stores them starting at addr. RETURNS the actual number of bytes
received. Does NOT RETURN an error numbert! (use
status())

bputs(addr,len,iocdb) - use fwrite() for standard compatibility

char %addr;

int len,ioch,;

Put len number of bytes to the iocb starting at addr.

RETURNS true if no error, else the negative of the error number.

brkey(
RETURNS true if the break key was pressed.

calloc(bytes)
int bytes;
Clears and allocates the amount of memory in bytes, and RETURNS
a pointer to the beginning of the allocated memory, or zero if none
found. The allocated memory will be cleared (set to zero).
Memory is allocated from the top of computer memory downward.
Since the stack grows upward, care must be taken that malloc()
and calloc() memory is not overwritten by a later function which
has a large stack call (Jarge local arrays). malloc() and callocQ)
may be called as many times as needed as long as there is enough
memory.

cgetcliocd) /% same as fgetc() #/
int iochb;
RETURNS the character (byte) from the iocb specified, or a negative
error number. cgetcO will first check to see if a character was
put back by ungetc() for that iocb, and if so it will get that
character.

cgets(str, ioch)
char str{);
int focb;
Gets a record from the jocb and puts it in str. RETURNS the
length or the negative error number. The incoming record may be
of any length. It is the users responsibility to dimension the
string for the largest possible record. The ending return

20

character is converted to & zero to indicate the end of the string.
cputs(str,iocb) will put the return character back when writing
the string.

chain(filespec)
char filespecl];
Runs the {ile named in filespec. The entire string is passed, so
— you may pass commands to the file being run.

Example:
chain("CC TEST");
Effect: this will run the compiler and compile the file TEST.

ciov{iocb,command, addr,len, axl, ax2)
int iocb,command,len,axl, axz2;
char #addr;
A direct call to the Atari Operating System STDIO function. Use a
-1 to ignore any parameter.

Example:
ciov(4,3,"P:",8,-1);
Effect: this would open the printer using iocbh #4¢.

RETURNS true, or the negative error number.

circle(xc, yc,radius)
int xc,yc,radius;
Draws an approximation to a circle using xc,yc as the center point
— and the radius specified. Degree of roundness will be determined
by the graphics mode used.

clear(addr, len)
char 8$addr;
int len;
Stores zeros into Jen number of bytes starting at addr.

clogtfpl, £p2)
char fp1l6],£p206);
Takes the base 10 log of the floating point number in
fpl. and stores the result in £p2.

closelioch)
int jocb;
Closes the iocd specified.

closeall()
Closes iocbs 1 through 7.

color{c)
- char c;

Sets the color to be used in graphics functions (plot(), drawto(),
circle(), etc.)

21

clrtime()
Sets the lower Z bytes of the System clock to gero. (See gtime()).

consolel)
RETURNS ! if START is pressed, 2 if SELECT is pressed, 3 if
OPTION is pressed, else it returns gero.

copen(filespec, mode)
char filespecl], mode,;
Opens the device or file in filespec in the mode specified.
RETURNS the iocb number or the negative error number. The
mode specified should be & character constant in either upper or
lower case. The following constants are available:

‘r’ ~read
‘w’ -write
‘u’ -update (read/write)
‘a’ -append
‘d’ -directory
cosifpl, {p2)

char fpll6),fp2l6);
Takes the cosine of the flosting point number in fpl and stores the
result in fp2. RETURNS -146 if an error occurred.

cputc(c, focb)
char c;
int ioch;
Send ¢ (byte) to the jocb number specified. RETURNS true or the
negative error number.

cputs(str, focb)
char str(J;
int ioch,
Send the string in str to the iocb number specified. RETURNS true
or the negative error number. A string always ends with a zero.
Cputs replaces that zero with a return character when it sends it
out.

deg()
Degree mode for sin, cos and atn functions.

dfast()

Turns off the screen and turns on the critic mode only if the user
has selected screen off using CUSTOM.COM. Look at the
description for fast() for another way of doing this.

dpeek(addr)

char ¥addr;
RETURNS the Z-byte integer at addr.

22

dpoke(addr, i)
char #addr;
int i;
Stores the 2-byte integer i into addr. RETURNS the previous
value. The integer is stored in low byte, high byte order.

drawto(x,y)
int x,y;
Draws a line from the current cursor position (from previous plot)
to x,y. RETURNS true or the negative error number.

oxit(
Exits to DOS. Exit will turn on the screen if a fast() has turned it
off .

exp(fpl, fp2,£p3)
char {p1l6], £p2L6],£p3L6);
fpl is raised to the fp2 power and stored in £p3. Example:
exp(fpl,{p2.1p3) where fpi=4, fp2=0.5 would store & 2 in
fp3 (square root). ({p3=4'0.S) fpl, fp2, and £p3 are floating
point numbers

fadd(fpl,£p2,£p3)
char {pll6l,£p2l6,fp3L6;
Floating point addition. Adds fpl and £pZ and stores result in
fp3.

fastO
Turns off the screen and turns on critic mode. Opposite of slow().
Speeds up programs by about 20%.

fclose(iocb)
int. joch;
Closes the jocb specified.

fgetc(iochb)
int iocb;
RETURNS the character (byte) from the iocb specified, or a negative
error number. fgetcO) will first check to see if a character was
put back by ungetc() for that iocb, and if so it will get that
character.

fgets(str, ioch)

char stri);

int iochb;

Gets a record from the iocb and puts it in str. RETURNS the
length or the negative error number. The incoming record may be
of any length. It is the users responsibility to dimension the
string for the largest possible record. The ending return
character is converted to a zero to indicate the end of the string.
fputs(str, ioch) will put the return character back when writing
the string.

23

fopen(filespec, mode)

char filespec(), modell;
Opens the device or {file in filespec in the mode specified.
RETURNS the iocdb number or the negative error number. The
mode specified should be a string containing the character constant
in either upper or lower case. The following constants are
available:

‘r’ -read

‘w’ ~write

‘u’ -update (read/write)

‘a’ -append

‘d’ ~-directory

fputcic, ioch)
char c;
int jocb,
Send ¢ (byte) to the iocb number specified. RETURNS true or the
negative error number.

fputs(str, jocb)
char strl);
int iocb;
Send the string in str to the iocb number specified. RETURNS true
or the negative error number. A string always ends with a zero.
Cputs replaces that zero with a return character when it sends it
out.

fdivifpl, fp2,{pI)
char fpllé6],{p216],1p3L6);
Floating point division. Divides fpl by £p2 and stores result in
£p3.

ferase(filespec)
char filespec();
Erases the {ile specified by filespec. RETURNS true or the
negative error number. Example: ferase("DI:TEST"), would erase
that file.

find(addr . len.c)
char faddr,c;
int len;
Search for the byte c starting at addr for len bytes. RETURNS
offset from addr if found, else -1. Find ignores string
boundaries. Use strchr(to limit the search to a string.

flock(filespec)
char filespecl);
Locks the named file. RETURNS true or the negative error number.

fmulifpl, £p2,{p3)
char p1l6l,£fp2(6],{p3L6);
Floating point multiplication. Multiplies fpl by £p2 and stores
result in fp3.

24

fread(addr,size, num,ioch)
char #addr;
int size,num,ioch;
Gets a maximum of sizeXnum number of bytes from the jocb number
and stores them starting at addr. RETURNS the actual number of
bytes received. Does NOT RETURN an error number! (use
status())

free(bytes)
int bytes,;
This frees bytes amount of memory that was previously allocated by
malloc) or calloc(). free() works in reverse order to malloc() and
calloc() calls, i.e., it frees the memory allocated by the last
malloc) or callocO call. bytes should be the same number as the
previous mallocO or calloct) call.

frename(filespec)
char filespecl);
Renames the first filename in filespec to the second name in
filespec. RETURNS true or the negative error number.

Example:
frename("D1:MARIE EDITH");
Effect: DI:MARIE will be renamed as D1:EDITH.

fsubifpl, fp2, £p3)
char fpil6l,fp2l6l,{fp3L6I;
Floating point subtraction. Subtract £p2 from fpi1 and store the
result in fp3.

ftoi(fp)
char {pl6l;
RETURNS the integer value of the floating point number in fp.
Rounding is performed. For example a8 1.5 would be converted to
a 2, a 1.4 would be converted to a 1.

funlock(filespec)
char filespecll;
Unlock the file specified in filespec. RETURNS true or the
negative error number.

fwrite(addr,size, ,num, iocb)
char %addr;
int size,num,foch;
Put sizeXnum number of bytes to the iocb starting at
addr. RETURNS true if no error, else the negative of the error
number.

getchar(

NETURNS the ascii value of the key pressed by the user and echoes
it to the screen. Functionally equivalent to putchar(getkey());.

25

getdos(str)

char stril;

RETURNS zero if there sre no more commands passed from DOS,
else true. When a C program is calied from DOS, parameters may
be passed to it by separating them with spaces after the progrem
name. For example, D1: TEST 3 DATA.DT would run the program
TEST. The {irst time getdos() is called, D1:3 would be placed in
str. The second time it is called, D1:DATA.DT would be placed in
str. The third time, str would be unchanged, and a zero would be
returned. Note: the default drive number will always be placed at
the beginning of the string unless the user includes their own.
For example, TEST would be converted to D1:TEST, whereas
D2:TEST would remain the same.

getkey(
RETURNS the ascii value of the key pressed by the user. Does not
echo the key to the screen.

gets(str)
char stri);
Gets a record from the user (via the screen editor) and places it in
str. RETURNS the length of the string or the negative error
number. You will get a negative error number if the user presses
the bresk key.

getsec(addr, sector,drive)
char f*addr,drive;
int sector;
This reads the specified sector into addr from the drive specified.
It will read either 128 or 256 bytes depending on whether the
drive is single or double density.

getwlioch)
int focb,
RETURNS & 2-byte integer from the jocb specified or the negative
error number.

graphics(mode)
int mode; . .
Opens ioch #6 as the screen in the graphics mode specified (same as
Basic). No check is made to see if the screen overwrites data or
program area. graphics() will destroy any data allocated by
mallocO) and calloc(). If you need to allocate a block of memory
after 8 graphics call, use highmem() to get the address.

gtimeO
RETURNS the integer value of the lower 2 bytes of the Operating
System’s clock. The value returned will be in 60ths of a second.
Use gtime()/60 for seconds, gtime()/360 for minutes. You may
clear the clock by calling the function clrtime().

26

highmem()
RETURNS the address of the highest useable memory location
(located just below the display list). Note: highmem() is not
affected by malloc() and calloc() calls. You should use one or the
other in your program, but not both.

index(stril,str2)
char strill,strz(l;
Searches for the first occurrence of the string str2 in stri
and RETURNS the address if found, else it RETURNS zero.

inkey(Q
RETURNS true if the user has pressed a key which is waiting to be
processed, else it returns zero.

isalnum(c)
char ¢;
RETURNS true if c is alphabetic or numeric.

isalphalc)
char ¢,
RETURNS true if ¢ is alphabetic.

isascii(c)
char c;
RETURNS true if ¢ ¢ 128. Note: a return character is 155, and
would evaluate as false. All inverse characters will evaluate as
false.

isdigit(c)
char ¢;
RETURNS true if c¢ is a digit (number 0-9).

isspacel(c)
char ¢;
RETURNS true if c is a space.

itofUi, £p)
int i;
char fpl6l;
Converts the integer i to floating point and stores the result in fp.

Jocate(x,y)
int x,y;
RETURNS the value of the point at location x.y or the negative
error number. (Same as Basic).

logtfpl, {p2)
char {pllé),fp2lé),;
Takes the natural log of the floating point number in
fpl, and stores the result in £p2.

27

lomem(offset)
int offset;
RETURNS the address of the current stack location plus the offset.
This is often used for setting a pointer to the beginning of an
undimensioned array. Variable declarations within & function are
placed on the stack, so offset should be larger than the total
amount of memory needed by any function.
See the program CSORT.C for an example of this function’s use.

malloc(bytes)
int bytes;
Allocates bytes amount of memory and RETURNS a pointer to that
memory, or zero if none is found. Memory is allocated from the
top of computer memory downward. malloc) is the same as
callocO, only the memory is not cleared.

move(from, to, len)
int from,to,len;
Moves len number of bytes at address from to address to.
movel) will correctly handle overlapping data.

normalize(filename, ext)
char filenamel},ext();
Forces the filename to uppercase and adds the default drive to the
front of the filename if not specified, and adds the extension in
ext if no extension is included in filename. The default drive is
the drive you were logged onto when the program was run.

Example:
char s(20J;
strepy(s, "TEST"),;
normalize (s, "DAT"),
-Effect: this will change s to "D1:TEST.DAT".

noteliocb, sector,byte)
int jocb, #sector, ¥byte;
Stores the sector and byte numbers of the current place in the file
specified by the jocb number. When calling this function you must
pass the ADDRESS of sector and byte, rather than just their
names. A normal call might look like:

notelioch, §or,&byte);

openliochb.sxl.ax2, filespec)
int iocb,ax!,ax2;
char filespecl);
Opens the iocb number specified using filespec as the name and axi
and axZ as the mode. RETURNS true or the negative error
number. Use -1 to ignore either axi or ax2.

peek(addr)

char taddr;
RETURNS the byte at addr.

28

plotix,y)
int x,y;
Plot & point at x,y using the color previously set by color(c).
RETURNS true or the negative error number.

point(iocb, sector, byte)
int focd,sector, byte),
Sets the file pointer for the iocb specified to the sector and byte
number specified. RETURNS true or the negative error number.
Note: with Lightspeed DOS you may point anywhere on & disk.
There is no check for mismatched file numbers and no check to
see if you are still pointing within the file opened using
foch.

poke(addr,c)
char *addr,c;
Pokes ¢ into the address specified and RETURNS the previous value.

position(x,y)
int x.v:
Positions the cursor at the x,¥y position on the screen.
x is the horizontal position, and y is the vertical position.

printf0

The printf function enables you to print information to the screen
or any device. It takes a variable number of arguments. If the
first sargument is less than 255, it is assumed to be an iocb #, and
everything is sent to that iocb. Otherwise the output is sent to
the screen (iocb #0). The next argument is the format string,
followed by any additional arguments. Everything in the format
string will be sent out until a % is encountered. The character(s)
following the % determine how the argument is to be printed. The
first % is for the first argument after the format string, the
second for the second argument, and s0 on. Too few arguments
will cause garbage to be printed. The following characters may be
used after the %:

¢ - print a character

d - print an integer

{ - print a floating point number

- prints a return (no argument) (used by ACTIONY
- print a string

~ print an unsigned decimal! number

- print & hexadecimal number

% - print a percent sign (no argument)

Mo

Note: A character, integer, or hexadecimal value may be obtained
from any varisble defined as either char or int. A floating point
number is assumed to have been defined as & 6 element char array.
A number between the % and the character defines the field
width. If there aren‘t enough characters or numbers in the
argument, it will be filled out with spaces. A ‘-’ before the

29

number will left justify the field. A decimal point and & number
will determine the decimal part printed in a floating point number,
padded with up to 2 zeros if there aren’t enough. Here are some
examples:

printf(“>abcd("), produces dabed(
print{(")%s(", "abcd"), produces dabed(
print{(")%10s(", “abcd"); produces) abed<¢
printf(")%-10s¢", "abcd"); produces Yabced 4
printf("%c %d %x",65,65,65); produces A 65 41
putchar(c)
char ¢;

Send ¢ to the screen.

putsecl(addr, sector,drive)
char %Xaddr,drive;
int sector;
This writes 128 or 256 bytes from addr to the sector on the disk
drive specified. It will write 128 bytes on & single density disk,
and 256 on a double density disk. No checks are made to see what
sector you are writing to. Use with great caution!

putw(i, foch)
int i,ioch;
Sends the Z byte integer i to the focd specified in low byte, high
byte format. RETURNS true or the negative error number.

rad0
Changes to radians for sin0, cosO, andatn() functions .

rindex(stri1,str2)
char stri(l,str2(l;
Finds the last occurrence of str2 in stri and RETURNS the
address or zero if not found.

rand(max)
int max;
Returns & random integer between 0 and max. max must be less
than 256. Sending a zero is the same as sending a 256, the
returned value will be between 0 and 255 inclusive.

Example:
rand(z};
Effect: this would randomly return a 0 or & 1.

scanf(
scanf is like the reverse of printf. It enables vyou to input
numbers, strings or characters from the screen or any device. It
takes & variable number of arguments. If the first argument is
less than 255, it is assumed to be an iocb #, and input is from

30

that jocb. The next argument is the format string, followed by
the ADDRESS of all arguments needed by the format string.
scanf() will RETURN 1 if there are no errors, else it RETURNS &
negative error number. Arguments in the format string should be
preceded by & %. The character after the % determines the type
of the argument to store the vajue in. There are four possible
types:

¢ - character (ignores spaces, commas, and tabs)
d - integer (equivalent to the atoi() function)

f ~ {loating point number (equivalent to the atof) function)

s - string (a string begins with the first character which is not a
space, comma or tab, and ends with the first space, comma, tab or
return character.)

The input may be from & device, or from the screen. Input must not
exceed 120 characters, and always ends with a return. Arguments
can be separsted with spaces, commes, tabs, or returns. scanf(will
keep reading from the device or screen until all arguments are filled.

Example:

char strl201,c¢,{pl6d;

int id;

scanf("%c %d %f %s", &c,did.fp,str);
Input line: A -346.1 3.14 Hello, world!
Values:

c == ‘A’

d == -346 (Note that rounding took place)

fp == 3 14

str == “Hello"

setblock(addr,len, byte)

char #%addr,byte.
int len,
Fills addr to addr<+len with byte.

setcolor(n, hue, intensity)

int n;
char hue,intensity;
Sets color n to the hue and intensity specified. Same as BASIC.

sfind(strl,str2)

char strili, str2(l;
Searches for strz in strl and RETURNS the offset from the
beginning of stril if found, else it RETURNS -1.

Example:
sfind("Hi there, Edith!","Edith"),
Effect: returns a 10.

sin(fpl,{p2)

char fp1lel, £p2l6);
Tekes the sine of the floating point number in fp1, and stores the

31

result in £p2. RETURNS -146 if an error occurred.

slow()
Uscd after a fast() or dfast() call to turn the screen back on.

smatch(str, str2)
char stri(l,str2();
Checks to see if str2 is the same as strl even if stril is larger.
RETURNS true if a match, else false.

Example:

smatch("abcdefg", "abc"),;
Effect: would return true, whereas strcmp("abcdefg”,"abc™);
would return -100.

sound(voice, pitch,distortion, volume)
int voice,pitch,distortion, volume;
Turns on the sound register specified by voice. Same as Basic.

sprintf(str, ...)
char stril;
Same as printf, only the output is to the string str.

sqrifpl,fp2)
char fpl1l6l,{p2(6];
Takes the square root of the floating point number in
fpl and stores the result in £p2. The square root is an
approximation. For example, the sqr(of 144 would be 11.999998
instead of the expected 12.

status(iocb)
int jocb;
RETURNS the status of the jocb specified. A return value of 128 or
greater indicates an error.

stick(n)
int n;
RETURNS the value of joystick number n.

strcat(stri, str2)
char strill,strzl);
Plsces a copy of str2 at the end of stril.

strchr(str,.c)
cher strll,c;
This searches for the character ¢ in the the string str. It
RETURNS the position in the str. It RETURNS the position in the
string if found, or -1 if not found. It is the same as the
{ind() function, only the search is limited to a string.

strcmp(stri, str2)
char strill,str2l(l;
Subtracts str2 from strl. Zero means the strings are equal,
negative means str2)strl, positive means str2(stri.

32

Example:
strcmp(“abc”, "cde™);
Eiffect: returns -2.

strcpy(stri, str2)
char strill, str2fl;
Copies str2 to strl and RETURNS the length of the string copied.

strig(n)
int n;
RETURNS zero if the button on joystick #n is pressed, else it
RETURNS one.

strilen(str)
char strl);
RETURNS the length of the string str.

toascii(i, str)
int §;
char stril;
This converts the integer in i to an ascii string and stores it in
str.

tolower(c)
char ¢,
RETURNS the lowercase value of c.

toupper(c)
char c;
RETURNS the uppercase value of c.

ungetc(c, iocb)
char c;
int iocb,
Puts back the character ¢ to the iocb specified. You may only put
back one character, which will erase any previous character
stored. The character put back may ONLY be retrieved via the
cgetcO function. You cannot put back a gero.

The following is a list of the function names and their arguments by
category.

FLOAT

atn(fpl,£p2) ~ arctangent

atof(fp, ascii) - ascii to float
clogtfpl.{p2) - base 10 logarithm
cosifpl,fp2) - cosine

deg() - degree mode
exp(fpl,{p2,{fp3) - exponentiation
fadd(fpl,£p2,£p3) - addition
fdivifpl, {p2,{p3) ~ division
fmul(fpl, fp2,£p3) ~ multiplication

33

fsub(fpl, fp2,£p3) - subtraction
ftoi(fp) - floating point to integer
itof(i,fp) - integer to floating point
log(fpl, £p2) - natural logarithm
rad() - radians

sin(fpl,{p2) - sine

sqrifpl,{p2) - square root

GRAPHICS

circle(xc,yc,radius) ~ draws & circle
color(i) -~ sets color for plotting
drawto(x,y) - draws a line
graphics(mode) - sets graphics mode
locate(x.y) - returns color at x,y
plot(x,y) - plots a point

INPUT/OUTPUT

bgets(addr,len,iocb) - block input

bputs(addr,len, iocd) - block output

chain({ilespec) - runs filespec

cgetc(ioch) - inputs a character

cgetsi{ioch) - inputs a record

ciov(ioch,command, addr,len,axl,8x2) -~ calls CI0 (Operating System)
close(ioch) - closes ioch

copen(filespec, mode) - opens filespec in mode specified
cputc(ch,ioch) - puts a character to jocb

cputs(addr, joch) - puts & record to iocb
ferase(filespec) -~ ersses filespec

fclose(ioch) - closes iocb

{getc(iocb) ~ inputs a character

fgets(iocd) - inputs a record

flock({ilespec) - locks filespec

fopen({ilespec , mode) - opens filespec in mode specified
fputcich, iocd) - puts & character to ioch
fputs(addr,iocb) - puts a record to iocb
frename(filespec) - renames filespec

funlock(filespec) - unlocks filespec

getchar() - gets character from user

getdos(str) - gets next command from DOS command buffer
getkey() - gets next key pressed

gets(addr) - gets a record from the user

getsec(addr, sector,drive) - read a sector

getwlioch) - gets a word from iocb

inkey() - true if a key is waiting

notetiocb, §or, &byte) - get current location in ioch
opentioch,axl,ax2, filespec) - opens ioch
pointliocd,sector,byte) - sets pointer to iocb

printf) - formatted output

putchar(c) - sends character to the screen

putsecladdr, sector,drive) - write a sector

34

putw(w, ioch) - sends word to ioch
status(iocb) - gets status of the jocb
ungetc(c,ioch) - returns byte to iocb

MEMORY

calloc(bytes) - clear and allocate memory

clear(addr,len) - set block of memory to zeros

free(bytes) - free allocated memory

highmem() - returns high memory address

lomem(offset) - pointer to low memory

malloc(bytes) - allocate memory

move({from,to,len) ~ move block

setblock(addr,len,ch) - set block of memory to character ch

STRING FUNCTIONS

index(stl,str2) - searches for strz in stri
isalnum(c) - true if alphabetic or numberic

isalpha - true if alphabetic

isascii(c) - true if ascii (not-inverse)

isdigit(c) - true if numeric

isspace(c) - true if a space

normalize({ilespec,ext) ~ add default drive and extension to filespec
rindex(strl,str2) - last occurrence of str2 in stri
sfind(strl,str?) - find str2 in stri

sprintf() -~ printf() to a string

strcatistrl, str2) - concatenate str2 to stri
strcmp(strl,str2) - compare stri and str2
strcpy(strl,str2) - copy str2 to end of stri
strien(str) - length of str

toascii(i, str) - convert integer to a string
tolower(c) - lowercase of ¢

toupper(c) - uppercase of ¢

NOTE: mallocO) and calloc() are provided for compatibility with
standard C. With only 31K available for program/data/stack space,
they‘re not very useful on the Atari. It is suggested that you use
lomem() and highmem() instead. Also, calling a graphics mode after
& mallocO) or callocO) call will destroy their data.

35

PLAYER/MISSILE GRAPHICS

The file GRAPHICS.C is the source code for GRAPHICS.CCC and
contains several functions primarily for doing player/missile graphics
and alternate character sets. To use these functions include the name
GRAPHICS in vour ".LNK" file. Look at the source file PMDEMO.C
for an example of their use. The following is & list of the functions:

pminit(
This must be called before using any other player/missile functions
or character set functions. It can ONLY be used with 48K of RAM
(no cartridges!).

pmflush(
This should be called before exiting to DOS to turn off any
player/missile graphics and to restore the character set.

hitclear(
This clears the collision register

hitpf(who, hitwho)
int who, hitwho,
This will RETURN & 1 if player who collided with playfield
hitwho, or a zero if no collision occurred. If hitwho is a -1,
then it will RETURN a 1 if player who collided with any playfield.

hitpl(who, hitwho)

int who, hitwho;

This will RETURN a 1 if player who collided with player

hitwho, or a a zero if no collision occurred. If hitwho is a -1,
then it will RETURN a 1 if player who collided with any player.
Note: neither hitpf(0 or hitplQO clear the collision register.

pladdr(n)

int n;
This returns the address of player n.

pmclear(n)
int n;
This clears player n

pmcolor(n, hue, intensity)
int n;
char hue,intensity.
This sets the color of player n to the hue and intensity specified.
Same as setcolor(), only for the players.

36

pmagraphics(mode)
int mode;
This sets up the plaver/missile graphics. If mode is zero., it
turns them off. If mode is a one, it sets up single line resolution
graphics. If mode is & two, it sets up double line resolution.

pmload(n.x,y,shape)
int n.x,y;
char shapel);
This loads the shape into player n at the x and y position
specified. Shape must be an array where the first byte contains
the length of the array. Since the {first byte defines the length,
the array may contain geros. By using zeros before and after the
shape, you can erase the previous shape, allowing fast vertical
motion. See PMDEMO.C source code for & demonstration of this
function.

pawidth(n,width)
int width;
This sets the width of player n.

width == 0 - normal width
width == 1 - double normal width
width == 3 - four times normal width

When pminit() is called, it sets up an alternate character set by
moving the ROM character set to OxB400. The following 3 functions
are for use with this alternate character set. All moves involve 8
bytes regardless of whether there is a zero in the character array.

chaget{c,str)
char c,stri;
Get the ROM character definition for ¢ and put it in str.

chget(c, str)
char c,strll;
Get the character definition in the alternate character set for
¢ and put it in str.

chput(str,c)
char stril,c;
Move the 8 members of the array str into the alternate character
set definition for c¢.

The following are miscellaneous functions.

filltx,y.c)
int x,y;

37

char c;
Fill the graphics box pointed to by x,vy with the character
¢. The arguments x.y should be the coordinates for the upper left
corner.

hstick(n)

int n;
RETURNS 1 if joystick n is pushed to the right, -1 if to the left,
or zero if not pushed left or right.

paddle(n)
int n;
RETURNS the value of paddle n.

ptrign)
int n;
RETURNS zero if paddle trigger n is pressed, 1 if not.

wstick(n)
int n;
RETURNS 1 if joystick n is pressed forwards, -1 if pulled
backwards, or zero if not pressed forwards or backwards.

Note: hstick() and vstick() are easy ways to move players when no
diagonal movement is required.

Example:

pmload(n, x+=hstick(1}, ye=vstick(l),shape);
Effect: this would move the plaver in whatever direction the
JJoystick was pressed and update the x and y values at the same
time. If you defined x and y as type char, then you wouldn‘t
have to worry about the player moving out of it's memory area.

38

MGR.OBJ

MGR contains a set of graphics routines that completely replace
the normal Atari graphics. Functions such as plot and locate will
only be slightly faster then normal, but line drawing and fill
commands can be up to 13 times faster. If you run MGRDEMO you will
get an idea of the speed difierence between normal graphics and MGR
graphics. Except for the last fills, the demo uses oarange for Atari
graphics, and biue for MGR graphics so you can tell which is being
used.

The most important part about using MGR.OBJ is correctly putting
it in your .LNK {file. The {first two lines of your .LNK file should be:

-45800
MGR.0BJY

The -4800 is to allow room for the MGR.OBJ file which follows. The
next think to do is to merge mgr.c with your source file so that you
can access all the routines. The following functions are now available
to you.

mcolor(c)
char c;
Sets the color for MGR graphics to c.

mplot(x,y)
int x,v;
Plot a point at x,v.

mlocate(x,y)
int x.y;
RETURNS the value of the point at location x,y.

mdrawto(x, y)
int x,y;
Draws a line from the current cursor position (last graphics point)
to x,v.

mcircle(xc, yc, radius)
int xc,yc,radius;
Draws an spproximation to a circle using xc, yc as the center point
and the radius specified.

mbox(xr,yr,x1,yD
int xr,yr,xl,xr;
Draws a box using xr, yr as one corner and x!, yl as the opposite
diagonal corner.

mfbox(xr,yr,xl,yl)
int xr,yr.xl,vl;

Draws a solid box using xr, yr as one corner and xl, yl as the
opposite diagonal corner.

39

mfill(x, y)
int x.y;
Fills a surronded area. Color used is from last mcolor(} cail,
border area to stop fill must also be the same color. Unlike the
Atari fill, the area to be filled MUST be complete surronded.
mfill0 works horirontally, so x,y should be set to the widest area
of the object to fill.

mviill(x,y)
int x,v;
Same as mfill(), only {ill is done vertically, so the point should be
set at the tallest areas of the object to be filled.

Understanding the difference between Atari‘s fill(), mfill0) and
mviill() can be difficult. The first thing to keep in mind is that
mfill0 and mvfill) require a8 COMPLETELY surronded area. It might
help to think of mfill) drawing horizontal lines to fill the area, and
mv{ill) drawing vertical lines to fill the area. Under MGR, vertical
lines are faster then horizontal lines, so mv{ill0) should be used
whenever the shape to fill permits it. Close scrutiny of the
MGRDEMO.C source code should help clarify the differences.

CEDIT

CEDIT is an editor that is specifically designed for creating and
modifying C programs. It is designed to work interactively with the
Lightspeed C compiler, linker, and optimizer. To run the editor from
DOS, type CEDIT (filename). The filename is optional; if included,
CEDIT will load that file. The default drive and the extension ".C"
will be added to the filename if you don‘t specify them. The editor is
8lso run when the C compiler finds an error in your program. After
displaying the error, the compiler will ask which drive CEDIT.COM is
on. When you press the drive number, CEDIT will be run. CEDIT
will then load the offending source file. CEDIT will display the line
where the problem occurred, the preceding line, a pointer to the
error, and a brief error message. The preceding line is displayed
because many errors sre caused by a problem with the previous line.
The pointer points to where the compiler found an error, which may
not be where the error actually occurred. For example, having too
many opening braces may not show up as a problem until the end of a
function definition.

CEDIT uses line numbers to keep track of the lines in your
program. Some commands such as AUTO and MOVE, will automatically
renumber the program. Whenever lines are renumbered, the
numbering starts with line 1000, and increases by 10 for each line.
Line numbers are removed when the program is saved or compiled,
and added when the program is entered.

If you run CEDIT without including a filename to load, then you
will see a menu of commands on the screen. At the lower left of the
screen you will see the word "Command” in inverse. Whenever
"Command"” is displayed, you are in command mode, and you may
invoke one of the menu options by pressing the corresponding letter.
1f you press the letter of & command that you don’t want, then press
the BREAK key to return to command mode. When commands require
more than one line number, you may separate the numbers by either
spaces or commas. You may use a semicolon in place of s number,
which is equivalent to the last line number of your program.

There are three methods for entering text from the keyboard: line
entry, auto entry, and text entry. Auto entry and text entry mode
are entered by pressing ‘A’ or ‘T’ respectively. To enter line entry
mode, press a number or a cursor key. You may now enter a new
line, or edit an existing line that is displayed on the screen. In
both cases, the line must begin with a2 number that is greater than
256, or an error message will be displayed and you will be returned
to command mode. If a line contains only the line number, you will
get a blank line rather than having the line deleted (you must use the
DELETE command to delete a line). To edit a line displayed on the
screen, move the cursor to that line, make the changes, and press

4]

RETURN. If the line number already exists in your program, it will
be replaced by the new line. When you are done making changes or
adding lines, press the BREAK key to return to command mode.

The following is a list of the menu options and their descriptions.
To invoke one of the commands, press the first letter of that
command .

AUTO- Auto entry mode allows you to enter text without line
numbers. First, you will be asked to give the line number that the
new text will follow. You may enter & line number or press RETURN
to indicate the end of the program. If you haven’t entered any text
yet, auto entry will begin after line 1000. You may enter as many
new lines of text as you wish; all text will be inserted after the line
number you specified. After vou enter each line, the cursor will tab
to the indentation determined by the previous line. Tab stops will be
set every two spaces after this first tab position. The tabstop will
be indented by two spaces if the previous line contains an opening
brace, & case statement, or a default statement. If the line contains
a closing brace, two spaces will be removed from the front of the
line, and the tabstop will be set accordingly. In this manner,
statement and function blocks will be automatically formatted. Once
you have entered & line, you may not go back and change it while you
are in auto entry mode. If you move the cursor over a line that you
have already entered and press RETURN, that line will be entered as
& new line without replacing the previous line (use line entry mode for
editing an existing line). If you press RETURN while on a blank line,
a blank line will be entered into your program. When you have
finished entering text, press the BREAK key. Your entire program
will be renumbered, the new text will be run through the syntax
checker (see UNMATCH for a description), and the line number where
your new text begins will be displayed.

COMPILE- This command first asks you for the filename to save your
program to. If you have previously entered your program from a
disk, then that filename will be displayed, and the cursor will be
positioned at the beginning of the filename. You may use that
filename, or change it to a different name. The default drive and the
extension ".C" will be added if you don’t specify them. You may also
pass commands to the compiler by including them after the filename
(separated by spaces). See the compiler documentation for a
description of possible commands (pg. 7). If the filename displaved is
correct, pressing the TAB key will position you one space after the
filename for entering additional commands. When you press RETURN.
your program will be saved, and the command line will be sent to
DOS. DOS will then run the compiler (CC.COM) from the default
drive. Note: CC.COM must be on the default drive for this command
to work correctly. The other files/programs can be on any drive.

Example:

TEST LINK RUN
Effect: this will save your program to the file TEST.C, compile the
program, link it, and run it. If the compiler finds an error,
then it will run CEDIT, and the file TEST.C will be loaded.

42

If an error occurs while trying to save the file from CEDIT, then the
error number will be displayed, and you will be returned to command
mode, rather than compiling the program.

DELETE- This is used to deleting one or more lines. You may enter
one line number to delete one line, or two line numbers to delete a
block of lines. You cannot recover a line which has been deleted.

ENTER- This command allows you to enter a file and either merge it
with your current program, or replace it with the new program. You
will be asked to give the filename of the program you wish to enter.
The default drive and the extension ".C" will be added if you don‘t
specify them. You may follow the filename with a space and a "“-M" to
merge the file at the end of your current program. If the file you
enter contains line numbers, the line numbers will be removed. After
the new program is entered, the entire program in memory will be
renumbered starting at line 1000, in increments of 10. The first line
number of the new section will be displayed. If the number is
greater than 1000, then the new section was merged with the existing
program in memory. Note: If you have written programs for the
ACE-C compiler which have line numbers, you must first enter them
with CEDIT to remove the line numbers before compiling them. The
Lightspeed compiler does not accept line numbers.

FIND- This will ask you for the text to search for, and will then
display any line in your program that contains that text. You may
pause the command by pressing a key, and then restart it by pressing
& key again. To stop the find command, press a key to pause the
search, and then press the BREAK key. The text you enter must be
at Jeast two characters in length. If you need to search for
something that includes trailing spaces, then you may end the line
with a graphics heart. To get a graphics heart, first press the
ESCAPE key and then press & CONTROL COMMA.

INVENTORY- This will give you an inventory (directory) of the
filenames on a disk. When you give it the filespec to search for, all
filenames matching that filespec will be listed in two columns on the
screen.

Example:

D2:2.C
Effect: this would list all {filenames with the extension ".C" found
on drive number two.

LIST- This will ask you for the line numbers to list. You may
optionally precede the line numbers with a filename or device (for
example, "P:" to send the listing to the printer). Pressing RETURN
without a line number will cause the entire program to be listed. If
you enter one number, then only that line will be listed. If more
than 20 lines are to be listed, then the screen will be cleared first.
You may pause the listing by pressing a key, and restart it by
pressing a key again. To stop the listing, press a key to pause the
listing, and then press the BREAK key. Note: this command lists your

43

pPrograms with the line numbers, whereas the PRINT command lists the
program without line numbers.

MOVE- This allows you to move one or more lines from one part of
the program to another, and optionally delete the first dlock of lines.
MOVE requires three numbers! If you only wish to move one line,
then use that line number twice. The third line number is the line
the text is to follow.

Example:

1150 1160 1030
Effect: this would move a copy of lines 1150 through 1160 to the
area following line 1030.

Example:

1150 1150 1030
Effect: this would move only line 1150 to the area following line
1030.

Text is automatically renumbered after a move command, and the line
number is displayed where the new text is. After the third number
you may optionally add a space and a "D" (either upper or lower case)
which will cause the source lines to be deleted after the move. It is
not necessary for the third line to exist in your program. The move
will be to the first space available following where the line number
would be. Using a 900, for example, will cause the block of lines to
be moved to the beginning of your program. Using a semicolon will
cause the lines to be moved to the end of your program.

NEW- This will ask you if you wish to erase your entire program. If
you press the "Y" key, vour program will be erased. Press BREAK
or any other key but “Y" if you don’t want to erase your program.
You cannot recover a program

which has been erased.

PRINT- This works exactly the same as the LIST command, only the
line numbers are not listed. See the LIST command for details on
using this command. Note: the Print command can be used if you wish
to save only part of your program.

QUIT- This asks you if you want to exit to DOS. If you press a
"Y", control will return to DOS5. Any program in memory will be
lost. If you don’t want to exit, press the BREAK key, or any other
key except "Y".

RENUMBER- This will immediately renumber your program starting at
line 1000, in increments of 10. You cannot stop the renumber
command.

SAVE- This will ask you for the filename to save your program to.
The default drive and the extension ".C" will be added if you don‘t
specify them. The screen will be turned off during the save
operation. This will save your entire program. If you wish to save
only part of vour program, then use the PRINT command.

TEXT- This is identical to the AUTO command except that it does not
do automatic indentation, and it does not check for syntax upon
completion. It is normally used for creating ".LNK" files or other
non-C program files. Note: when TEXT is entered, you will be in
lowercase. You may enter filensmes for the " LNK" file in lowercase,
as all filenames are converted to uppercase by the normalize function
that LINK calls.

UNMATCH- This asks you for the line or lines to check for errors.
1f you press RETURN without & number, your entire program will be
checked. UNMATCH will list lines with unmatched parenthesis,
quotes, or apostrophes. It will also list a line that is missing a
semicolon. If there are no errors, it will display the message "No
errors”. You may stop the check at anytime by pressing the BREAK
key. UNMATCH is not perfect. It will very rarely miss an error,
but it will sometimes flag a line as an error when it‘s not.

WHAT- This tells you the size of vour program in bytes, how many
bytes of memory are available, and what the last line number in your
program is.

XCHANGE- This will ask you for the text to replace. After you
enter that, it will ask you for the text to replace it with. After you
enter that, it will ask you for the starting line number. If you want
to search the entire program, then press RETURN without a line
number. When & line is found containing the text to replace, the line
will be listed. Underneath the line will be & pointer to the text to
replace, followed by the text to replace it with displayed in inverse.
You now have four options. If you press ‘Y’, the text will be
replaced and the search will continue. If you press ‘Q‘, you will be
returned to command mode. If you press ‘A’, then all occurrences of
the text throughout the rest of the program will be replaced. If you
press any other key, the search will continue without replacing the
text in the current line displayed. The text you search for must be
at least two characters in length. If you need to include trailing
spaces, you may end the search or replace text line with a graphics
heart (ESCAPE, CONTROL COMMA).

?- This will display the menu of options available along with the
filename of the
Program you are editing (if the program was entered from a disk).

In addition to the regular commands, there is an additional set of
commands which may be accessed by pressing the CONTROL key and the
letter desired. These commands are shortcuts for typing in commonly
used statements or punctuation marks. If you want to display the
control letter rather than use it, press the ESCAPE key and then
press the control letter. It is recommended that you try out each of
the described letters to see how they work, and use the following
summary as a reference rather than a full description.

[- Displays: §(
J - Displays: $) Equivalent to typing & closing brace and a

45

U - Displays: $(

J - Displays: §) Equivalent to typing & clesing brace and 2

RETURN

/ - Displays: /¥ The secend time it i= pressed, it displays &/ .

- Displays: ; Equivalent tc typing a semicolcn and a RETURN
and changing to lower case.

- Displays asm Ox Switches to upper case.

- Displays: brezk;

- Displays: cher

- Displeys: #define Switches tc upper cass.

- Dis=plays: else

-~ Displays for(

Displays: Ox Switches tc upper case.

- Displays' int

~ Displays: \n

- Displays: printf("

- Displays: return

- Displays: ewitzhi

- Displays: while(

LUNYZ~IMMUOW>
1

WARNING: If yeu use the contrecl keys on an XL/XE with the key
repeat rate sped up, you must be very careful to not press the key
for very long or the line will get garbled. This is especially true of
the keys that include a RETURN jin their output. This is not a
problem on en 800.

While in command mcde, you may scroll the text by using the
OPTION and SELECT keys. COPTION will move the text upward by
displaying the next line after the last line listed on the screen. If
there are no more lines at the end of your program, then OPTION will
display the first line of your program. SELECT will move the text
downward by displaying the previous line of the first line number
displeved on the screen. If there is no previous line, then the last
line number of your program will be displayed. Like the control
keys, these two ccmmands will be easier to understand if you ectuzlly
use them rather than reading about them.

For thcse commands which request two or more line numbers (List,
Print, Move, Delete, and Unmatch), you ma optionally enter a dash
immediztely followed by a function name. This will replece the first
two line numbers. For example, pressing "L" for list and then typing
"-MAIN" would list the entire function maini) to the screen.
Presssing “M" for move and then typing “-main 1200 d” would move
the entire function main() to the area after line 1200. There are a
few requirements for this feature to work properly. The function
name may be entered in either upper or lower case; it will always be
converted to lower case before any function name that has uppercase
letters. The default for the List and Print commands is uppercase so
that you can opticnally enter a {filename or device (P:) befors the line
number/function reference. Note that this is an ezsy way to save a
single function to a file, or to print out a single functien. Within

46

UTILITY FILES

The following utility files are for use with Lightspeed DOS. Only
DCOPY.COM can be used with another DOS system. Many of the utility
files were written in C, and the source code is included so that you
can modify them, and use them as examples of C programs.
DCOPY.COM is presented first, as it is probably the most commonly
used. The additional files are listed in alphabetical order following
the description of DCOPY.

DCOPY.COM - This contains many of the functions found in Atari‘s
DUP.S5YS file. To run, type DCOPY after the DOS prompt. DCOPY
will display a menu of options, followed by the word "Command?".
The menu may be redispiayed at any time by pressing the BREAK
key. Commands which require a filename will display either the
previous filespec used or just the default drive. The cursor will be
positioned over the drive number. If the drive number is correct,
than press the tab key to position the cursor after the colon.

You may invoke a command by pressing the letter to the left of the
command. If vyou change your mind, press the BREAK key. The
following is & description of the available commands.

A- Append a file. This will ask you for the filename to append,
and then the filename to append the file to. Use this command
when you want to run a C program under another DOS besides
Lightspeed DOS. Once you have appended a runtime onto your C
program it will run under other DOS systems, but will NOT run
under Lightspeed DOS.

C- Copy a single file. This is the fastest way to copy & single
file, &and the only way to copy & file where the destination filename
is different than the source filename. You will be asked for the
name of the source file. If the name you enter contains any
wildcards (? or %) then it will be assumed a multiple file copy is
needed (see instructions for the M- command). If there are no
wild cards in the source filename then you will be asked for the
destination filename. If you specify different disk drive numbers,
or one of the files 15 not a disk drive (cassette, printer, etc.)
then copying will begin immediately. If the disk drive numbers
are the same, then you will be prompted as to when to insert the
source and destination disks. You may copy to or from single or
double density disks. NOTE: do not try to copy DOS.SYS. Instead
use the W- (write DOS.SYS) command.

D- Directory. This asks you for a filespec and then lists the
directory of all filenames matching that filespec (same as the A
option in DUP.SYS). The listing will be in two columns. You may
pause the listing by pressing any key. Press a key again to
continue with the listing, or press the BREAK key to abort the

47

listing.

E- Erase a file. This asks for the filespec to erase, and then
erases all files matching that filespec.

F- Format a disk. This asks for the drive number of the disk to
format, and then formats the disk in that drive.

L- Lock a file. This asks for the filespec of the file(s) to lock,
and then locks all files matching that filespec. You cannot write
to, erase, or rename a file which has been locked.

M- Multiple file copy. This can be used for copying one or more
files. It first asks for the filespec of the file(s) to copy, and
then the device to copy the files to. For example, if you use D2:
for the device, then all files would be copied to drive number 2.
You may optionally include a ‘Q‘ after the colon of the device; you
will then be queried as to whether to copy each file. All files
matching the first filespec except DOS.SYS will be copied (unless
the G option was invoked). If the drive numbers are different,
then copyving will proceed immediately. If the drive numbers are
the same, then you will be prompted to insert source and
destination disks as needed. The filenames being copied will be
displayed on the screen. If you have used the Q option, then the
filenames will be displayed followed by a question mark. Press the
Y key to do the copy, or any other key to ignore copying the
displayed files. Press the BREAK key to suspend file copying.
Note: if you invoked the C command (single file copy) and the
filespec you gave contained a wild card (? or %) then it will be
treated just as if you had invoked the M- command.

P- Print directory. This will ask you to place your printer
on-line. It will then ask for a filespec. All filenames matching
the filespec you enter will be listed to the printer in a single
column, and to the screen in a double column. Like the D-
command, you may pause the listing by pressing any key, and then
continue by pressing another key or stop by pressing the BREAK
key.

Q- Quit. This will return you to DOS.

R- Rename a file. Enter the drive and filespec followed by a space
and the filespec to rename it to. All filenames matching the first
filespec will be renamed to the second filespec.

U- Unlock a file. This asks for & filespec and then unlocks all
files matching that filespec. Unlock will allow any files previous
locked to be written to, erased, or renamed.

W- Write DOS.SYS. This will display Dn:DOS.SYS, where n is the
default drive. Change the drive number if needed and press
RETURN. This will then create a DOS.5YS file on Dn. Any
changes made previously with CUSTOM.COM will be saved with the
DOS5.SYS file.

48

Note: SPDCOPY is the Sparta version of DCOPY which can NOT
be run with Lightspeed DOS.

BATCH - this program takes & command line that you create, and
turns it into a .COM file which can be run repestedly. By using the
filename DO as the first command, you can cause several programs to
be run. You can rename the .COM file created to AUTORUN.SYS and
it will be run whenever DOS is booted.

Example:

DO XEDRIVE;DIR D4:% %
Effect: when you first boot the disk, this would run the program
XEDRIVE, then run DIR with the command D4:% &

When BATCH is run, it will ask for a filename. If the file already
exists, BATCH will load in the file, and display it so that you can
correct it or make any changes. Note: you are limited to a single
logical line of up to 120 characters.

OFF.COM - If you booted an XL or XE computer and you forgot to hold
down the OPTION key to turn off BASIC, then you can run this
program which will turn jt off for you.

COMPACT - Many programs such as MAC/65 and the Lightspeed linker,
create a program in small contiguous segments. COMPACT will
combine all those segments. The resulting file will be slightly
smaller, and load slightly faster. COMPACT will also remove any
headers ($FFFF) except for the first one. It will read in the file,
make any possible changes, and then write out the file. COMPACT
may also be used to see where a program would load in memory. This
is very important for programs not written using Lightspeed DOS. If
a8 load address falls between $700 and $4000 then DO NOT run the
program. At the least it could crash the computer, at worst it could
destroy & disk.

CONFIG - This can be used with disk drives which are capable of
switching between single and double density. When CONFIG is run it
will display the density of D1: and D2: (the density of D2: will be
displayed even if the drive doesn’t exist). You now have two options.
You may exit to DOS by pressing ‘Q’, or you may switch the density
of either drive by pressing the drive number. CONFIG will then
display the new density of the drive. CONFIG will not work correctly
with Atari drives (since the 1050 isn‘t capable of double density).
CONFIG will only change the density of drives 1 and 2, since
Lightspeed DOS only recognizes two floppy disk drives, and a ramdisk
must be single density. CONFIG should ONLY be run with Lightspeed
DOS.

49

COPY - This is mainly designed as an example of file handling in C.
In fact, the copy part is only functional if you have two disk drives
(one of them can be a RAMDISK). You run COPY by typing COPY
command filename, etc. Any single letter is interpreted &s a
command, and that command will work on all of the following filenames
until another command is encountered. For example, COPY P TEST.C
TEST.COM would protect DI:TEST.C and D1:TEST.COM. The following
commands sre available:

C - copy. Followed by filename, a space and the source and
destination drive numbers (NOT separated by spaces).

Example:
COPY C TEST.% 14
Effect: copies all files matching DL:TEST.#% to drive number 4.

E - erases the following filenames.

P - protects (locks) the following filenames.

R - renames the following filename to the next filename.
U - unlocks the following filenames.

1f COPY encounters a hyphen then the following filename(s) will be
passed to DOS.

Example:

COPY E D4 TEST.%x C TEST.® 14 P D4:% . % - D1:DIR D4:% . %
Effect: Erases D4 TEST. %, copies DI:TEST.% to D4:, locks all files
on D4:, runs DIR and lists directory of D4:

CUSTOM - This allows you to change some of the defaults set by DOS
and the Operating System. The new defaults will be invoked
immediately, and whenever SYSTEM RESET is pressed. The program
is menu driven, and self-explanatory. The following changes are
possible: left margin, background color, character color, TV sound
during disk input/output, key repeat speed (even on an 800), and
screen on/off during compiling and linking.

DIR - This is mostly a demo program for C, but it works the same as
the DIR command in DOS XL and OS/A+. After typing DIR, give the
drive number and filespec to search for. The screen will be cleared
and any filenames matching the filespec will be listed to the screen in
two columns.

DO - This program allows you to set up a series of commands which
will then be entered as if you were typing them in yourself. The
format is DO [command string), where command string is a logical line
of up to 120 characters. Individual commands are separated by
semicolons, which get converted to RETURNS.

50

Example:

DO COMPACT TEST.DIR TEST.%
Effect: this would compact the file TEST.COM, then list the
directory of files matching TEST.&.

If DO is called without any commands following it, then the previous
DO commands will be used. WARNING: DO uses memory starting at
$680. If you use load a program in this area, it will wipe out any
current or previous DO string. Note: if you are familiar with DOS
XL, or OS/A+ from Optimized Systems, you will recognize the
similarity between this version and Optimized System‘s version. The
main difference is that you can enter up to 120 characters instead of
60, and entering DO without a command string will rerun the last DO
command string.

FILECMP f{filel,file2 - This will compare two files, and show any
differences or tell you if they are the same. If a difference is
found, the conflicting bytes will be shown in decimal., ascii, and
hexadecimal along with the preceding four bytes, and the following
four bytes.

HEXDMP {ile - This will display the file in hexadecimal and ascii
format. When HEXDMP is first run, it displays the file starting at
position gero. You may then press RETURN to exit to DOS, or enter
the position number in the file you want to look at. Entry should be
in hexadecimal, or decimal if preceded by & period. You may use two
numbers with a + or - sign which will do the appropriate arithmetic to
get the actual position number. Example: SC + .16 - this would
display the file starting at $6C.

RAMLOAD.COM - If vou have a RAMDISK, running this will copy the
following {iles from D1: to D4: - CEDIT.COM, CC.COM, LINK.COM,
STDIO.CCC, DCOPY.COM, FASTER.COM, COMPACT.COM and DIR.COM.
This is a batch file, so you can modify it with BATCH.COM.

TYPE {file - This lists a file to the screen 20 lines at a time.

51

RAMDISKS

XEDRIVE - This is for use with the Atari 130XE. It will use the
extra memory as a single density RAMDISK with 499 free sectors. It
may be accessed as D4:

MOSDRIVE - This is for an Atari 800 with two or three Mosaic
memory boards. The program will ask how many banks you have.
Enter the total number of banks. It will automatically leave bank #0
free. It will then set up a ramdisk accessed as D4:. The maximum
number of sectors it will sllow is 70¢.

52

ACTION!

The language ACTION! from Optimized Systems is missing several
of the statements and much of the flexibility found in C. However,
those limitations enable ACTION! to generate code that runs about 10
times faster than Lightspeed code. There are times when it is worth
the greater effort to develop & program in ACTION! in order to gain
more speed. But keep in mind that ACTION! code is not standard - it
would take a lot of work to convert it to run under an ST or other
computer, whereas many C programs can be compiled without
modifications.

Lightspeed DOS contains a library of over 100 functions which may be
called from ACTION! The libraries STDIO.ACT, RUNTIME.ACT, and
FLOAT .ACT include many of these routines, and can be used as
guidelines for accessing all of the routines. Functions such as plot(
and locate() will run almost twice as fast as the ACTION! library
functions. Other functions such as printf (cprintfO in STDIO.ACT)
provide much greater flexibility. There is, however, one very
important difference between ACTION! and C. C defines a string as
any sequence of characters ending with a8 zero. ACTION! defines a
string where the first byte is it‘s length, and there is no ending
zero. Since C string functions look for that ending zero, there is no
direct compatability. Instead, if you are going to call any of the
Lightspeed DOS functions which handle strings, you must first convert
the string to a C string using stoc(), and when you return from the
function you must reconvert the string to an ACTION! string using
stoa() (both stoc) and stoa() are defined in the file STDIO.ACT).
Most of the functions in STDIO.ACT do this for you, so the above
procedure is needed only when you write your own functions to call
the Lightspeed DOS functions. Note that this also applies to strings
in quotes (stoc() and stoa() will work on strings in quotes).

Note: ACTION! also speeds up the auto key repeat. If you have
sped it up using CUSTOM, you will need to slow it down again to be
able to use the ACTION! editor. Use number ¢ as the key speed in
CUSTOM.

53

STDIO.ACT

STDIO.ACT provides access to about 40 of the functions available
with Lightspeed DOS (note that you can only use the “ . ACT" programs
on this disk with Lightspeed DOS). The first part of STDIO.ACT
contains three SET statements. The first two replace the LSH and
RSH instructions. The new code handles 8 place shifts much faster
than the original ACTION! code (example: val LSH 8). The third SET
replaces the function call code, and is needed for the rest of the
routines in this program. The resulting code is slightly faster than
the original ACTION! code. The following is a list of the procedures
and functions defined in STDIO.ACT. The description of the
functions calling Lightspeed functions will be brief since they are
described in full in section V. under STDIO.C. The first ¢ routines
are used for calling Lightspeed functions.

asetupl()
This is used with routines containing one argument. It must be the
first function in your routine. If there is any code between
asetupl() and the actual JSR to the Lightspeed function, than you
must include the code block [$A0$1) (LDY #1) just prior to the
Lightspeed function call.

asetupz()
This is used with routines containing two or more arguments. It
must be calied just before the JSR to the actual Lightspeed
function.

stasetupO
This is used if the routine has one argument which is a string. It
will first convert the string to a C string. It must come just
before the JSR to the actua) Lightspeed function.

stback()
This can be used if the function has one argument which is a
string. It will store the value obtained from the Lightspeed
function call, and convert the string back to an ACTION! string.

stoa(s)
This converts the C string s into an ACTION! string.

stoc(s)
This converts the action string in s to a C string.

54

~-PROCEDURES-~

circle(xc,yc,radius)
This draws an approximation of a circle using xc and yx as the
center, and radius for the size.

cirtime()
This clears the system clock.

drawto(x,y)
This draws a line from the last plot position to x,y. Unlike it's C
counterpart, it does not return a value.

fastO
This turns off the screen.

ferase(s)
This erases the file s.

flock(s)
This locks the file =s.

frename(s)
This renames the file s.

funlock(s)
This unlocks the file s.

hitclear(
This clears the collision register.

normalize(name, ext)
This normalizes name with the default drive and the extension given
in ext. Note that name and ext are ACTION! strings which are
converted to C strings before calling the normalize routine, then
converted back to ACTION! strings before returning.

plot(x.vy)
This plots a point at x,y. This is about twice as fast as the
ACTION! library routine. It uses the color stored in the ACTION!
library color variable (color=n). Unlike it's C counterpart, it
does not return a value.

putw(word, focb)
Sends the two byte word to the ioch.

pmcolor(n, hue, intensity)
Set player color n to hue and intensity.

55

slow(
Turns the screen on again after a fast() call.

cprintfl

This is the same as the printf function in STDIO.C, only you can
use & maximum of 8 arguments (ACTION! limitation). cprintf() will
convert the format string to a C string before using it. However,
if you are using any string arguments, you must first convert them
to C stings using stoc(). If you intend to use the strings again,
you must convert them back to ACTION! strings after the call using
stoa(). Note that ACTION! does not have backslash characters, so
you cannot use them in the format string. For a \n (RETURN) you
can use 8 %n.

~~FUNCTIONS--

abs{i)
RETURNS the positive value of i.

atoi(s)
RETURNS the integer value of the string s.

bgets(addr, len, ioch)
Block read of len bytes to addr from jocb. RETURNS actual length
resd. It does not indicate if an error occurred or not.

bputs(addr,len, focb)
Sends len byte from addr to iocb. RETURNS true if successful, or
the negative error number.

brkey(
RETURNS true if the bresk key was pressed, or zero if not. NOTE:
the SET at the beginning of the file which redefines the function
call code, also turns off the check for the break key which is why
this function will work.

ciovliocb,cmd,addr,len,axl, ax2)
Direct call to STD10 (Operating System). Use & -1 to ignore -any
vajue. RETURNS true, or the negative error number.

console()
RETURNS 0 if no console key is pressed, 1 for START, 2 for
SELECT, or 3 for OPTION.

copen(name, mode)
Opens name with mode specified. See description in STDIO.C (pg.
4) for possible modes.

dpokel(addr,word)

The same as pokec, only it RETURNS the value before the poke took
place.

56

find(addr,len,c)
Search for c, starting at addr, for len bytes. RETURNS offset
from addr if found, or -1 if not found.

fscanf(iocb.,s,...)
Same as scanf, only from a specified jocb.

getchar()
RETURNS key pressed by user, and echoes it to the screen.

getdos(s)
RETURNS the next filename from the DOS command buffer.

getkey(
RETURNS key pressed by user, but does not echo it to the screen.

getwlioch)
RETURNS a word (CARD) from iocb, or the negative error number.

gtime(
RETURNS the system clock in 60ths of a second.

hitpf(who, hitwho)
RETURNS true if player who hit playfield hitwho, eise it RETURNS a
zero. If hitwho is a -1, it will RETURN a 1 if player who hit any
playfield.

hitpltwho, hitwho)
RETURNS true if player who hit plaver hitwho, else it RETURNS a
zero. If hitwho is a -1, it will RETURN a 1 if player who hit any
other player.

inkey()
RETURNS true if & key is waiting to be processed, else it RETURNS
& zero.

isalnumi(c)

RETURNS true if c¢ is alphabetic or numeric, else it RETURNS a
zero.

isalphaic)
RETURNS true if c is ealphabetic, else it RETURNS a gero.

isnumeric(c)
RETURNS true if c is numeric, else it RETURNS a zero.

isspacelc)
RETURNS true if c is a space, else it RETURNS a zero.

locate(x,y)

RETURNS point at x,y. Same as the ACTION! library function, only
about twice as fast.

57

rand(max)
RETURNS & value from zero to max. or zero through 255 if max=0.
Same as the ACTION! library routine, only about three times
faster.

scanf(s, .. .)
Same as the scanf() function descrided in STDIO.C. Nete that if
strings are input, you will need to convert them to ACTION!
strings with the stoa() function before you can use them. Tc input
from & device, you must use fscanf. You can have s meximum of 8
arguments including the format string (ACTION' limitation)

toascii(i,s)
Converts the integer i to a string and places it in s.

tolower(c)
RETURNS the lowercase value of ¢

toupper(c)
RETURNS the uppercase vzlue of c.

58

FLOAT.ACT

FLOAT .ACT defines 16 floating point routines for use with
ACTION!. By including FLOAT.ACT at the beginning of your program,
you may define & floating point number as: FLOAT £p1(6).fp2(6), etc.
All of the floating point functions work identically to their C
counterpart. Please look up their full description in STDIO.C. The
following is a brief description of the functions available.

atn(fpl, fp2) - arctangent
atof(fp,ascii) - ascii to float
clog(fpl,fp2) - base 10 logarithm
cos({pl, {fp2) - cosine

deg() - degree mode
exp(fpl,{p2,{p3) - exponentiation
fadd(fpl,fpZ,{p3) - addition
fdiv({pl,b{p2, {p3) ~ division
fmul(fpl,fp2,fp3) - multiplication
fsub(fpl, fp2,£p3) - subtraction
ftoilfp) - floating point to integer
itof(i,{p) - integer to floating point
log(fpl,£p2) - natural logarithm
rad() - radians

sin(fpl,£fp2) - sine

sqr(fpl,fp2) - square root

Note: before you use atn(), cos(), or sin() for the first time in your
program, you must first have called either deg() or rad().

59

RUNTIME.ACT

It i{s sometimes desirable to run an ACTION! program without the
cartridge. If you limit yourself strictly to the routines provided in
STDIO.ACT, FLOAT.ACT and RUNTIME.ACT, plus any of your own
routines or other calls to Lightspeed functions, then your program can
run without the cartridge. You must include the file STDIO.ACT, and
then the file RUNTIME ACT at the beginning of vour program.
RUNTIME .ACT replaces three more of the system functions via the
SET command. The C multiplication and division routines used are
slightly slower than ACTION!’s, but otherwise you shouldn‘t notice a
difference. The following is 8 list of the routines which have been
replaced in RUNTIME ACT and may be used:

OPEN
PEEK
PEEKC
POKE
STICK
STRIG
CLOSE
GRAPHICS
MOVEBLOCK
POSITION
POKEC
SCOMPARE
SCOPY
SETBLOCK
SETCOLOR
SOUND
ZERO

You will note that there are none of the various Print and Input
derivatives included. You can replace all of the ACTION! print and
input routines with cprintf() and scanf() respectively. If you had to
have the ACTION! versions, you could do something like the following
for each print derivative:

PROC PrintlECINT i)
cprintf("%d%n",{)
RETURN

The above procedure works, but limits you to one argument and no
formatting possibilities.

60

MAC/65

Lightspeed DOS is an excellent environment for developing
programs in assembly language, provided the programs are intended to
be run with Lightspeed DOS. By using macros to call the Lightspeed
functions, vou can create source code which is compact,
understandable, and yet extremely fast. For example, FCALC.ASM
contains only about 55 lines of actual code, yet with macro expansions
it generates over 500 lines of code. There are three libraries
provided in MAC/65 tokenized format (only MAC/65 can read these
files!). FLOAT.Mé6S provides 16 macros for doing floating point
calculations. STDIO.Mé65 provides macro calls to several of the
functions found in STDIO.C. MACRO.M6S is a general purpose
library., and also contains seversl equates for Lightspeed DOS.

Any of the functions in STDIO.C can be called from assembly
language with a direct JSR call, or through a macro. If there are no
arguments to call, just do & JSR address, where address is the
address of the function (see source code for STDIO.C). 1f there are
parameters to pass, then you have two possible approaches. The
easiest approach is to include STDI1O.M6S at the beginning of your
file. Then use the macro ARGS for up to three absolute arguments
(addresses), or IARGS for up to three immediate arguments. Now do a
J5R to the function address. If the function returns & value, the isb
will be in the A register, and the msb in the X register. I suggest
you look at the code for STDIO.Mé5S for examples of how to call
functions in this manner. The second approach is to store the
arguments in a stack, set the word &t $Cé to point to the stack, load
the Y register with a 1, and do a JSR to the function address. The
stack used by STDIO.M65 is at $AQ0, which allows you to use some of
the ACTION! functions.

Note: MAC/65 is available from Optimized Systems. It is
unquestionably the best assembler available for the Atari, which is
why it is the only one supported in this package. It was entrusted to
write all of the code for the DOS and runtime functions containing
more than 100K of source code.

61

FLOAT.MéS

FLOAT.Mé5 contains 16 floating point macros which may be used
with Lightspeed DOS and MAC/65. It is stored in MAC/65 tokenized
format, so you can only load it with MAC/65. The parameters for the
macros must be labels to floating point numbers. The easiest way to
reserve space for a floating point number is to use:

LABEL .FLOAT 0

This will reserve the needed 6 bytes for floating point calculations.
To print out a floating point number, you can use the macro PRINTFS
described in the section STDIO.M65. Note that the macros are
indentical in function to the floating point routines for use by C.
The parameters and their order are the same. The following
descriptions are given by way of reference. For a full description
see their description under STDIO routines.

ATN {pl,£fp2 - fpZ=atn(ipl)

ATOF fpl,addr - converts the text stored in addr to floating point and
stores it in fpl.

CLOG fpl1.fp2 - fp2=clog(fpl)

COS fpl.1pZ - fp2e=cosiipl)

DEG - changes to degree mode for sine, cosine, &nd arctangent
functions.

EXP fp1,£p2,£p3 - fp3=fpl'ip2

FADD {pl1,fp2,£p3 ~ £p3=fpl+fp2

FDIV fpl.1p2,fp3 ~ fpI=fpi/fp2

FMUL fpl,fp2,.fp3 - fp3=fpla{p2

FSUB €pl1,fp2,1p3 - fp3=fpl-fp2

FTOI fpl,addr -~ converts fpl to an integer and stores it in addr.
ITOF ival.fp - converts ival to floating point and stores it in fp. ival
must be a number, not an address.

LOG -fpl,fp2 ~ fpZ=log(fpl)

RAD - changes to radians for sine, cosine, and arctangent functions.
SIN fpl,fp2 - fp2=sin(fpl)

FTOI fp. - converts fp to an integer and returns A msb, X lsb.

62

STDI10.M65

STDIO.M65 contains several macros which call functions within
Lightspeed DOS. It is stored in MAC/65 tokenized format, so you can
only load it with MAC/65. By following the examples of the macros
within this file, you can create a macro to call any of the functions
described in STDIO.C. 1If the function returns a value, then A wil}
have the Isb, and X will have the msb. In the following descriptions
either [IMMEDIATE) or [ABSOLUTE) may follow the macro name.
IMMEDIATE means that the arguments must be actual numbers, not
addresses where the numbers are stored. ABSOLUTE means that the
arguments must be the address where the value can be found. The
exception is string arguments which may be either the address of the
string, or the string itself in quotes. 1If you give the address of the
string, be sure the string ends with a zero. The following
descriptions are for a reference. For & full description, see the
section under STDIO. 1I/0 functions will usually return with Y=1 for
8 good return, or Ys=error &

BGETS addr.len,iocb {IMMEDIATE] - block input

BPUTS addr,.len,focb [IMMEDIATE] - block output

CLEAR addr,len [IMMEDIATE) - set block of memory to zero.
CLRTIME - clear System clock.

COLOR n - sets the color to be used by graphics functions.

CONSOLE - RETURNS A=0 if no console key is pressed, 1 if START, 2
if SELECT, or 3 if OPTION.

DRAWTO x,y (ABSOLUTE)

FAST - turns off screen.

FERASE f{ilespec - erases filespec.

FLOCK f{ilespec - locks filespec.

FRENAME filespec - renames filespec.

FUNLOCK f{filespec - unlocks filespec.

GETDOS string - gets next filename from DOS command string. The
string argument passed should be and address with enough space to

pass the largest command available from DOS (normally 16 bytes).

GETSEC addr,sector,drive (ABSOLUTE) - read sector. Note: ALL
arguments must be the address where the value can be found.

63

GRAPHICS mode [IMMEDIATE)

GTIME - RETURNS the System clock in 60ths of a second, A=low,
X=high.

LOCATE x.y (ABSOLUTE] - RETURNS value in A register.

MOVE from,to,len [IMMEDIATE] - moves block of memory. Will
correctly handle overlapping data.

NOTE iocb,sector,byte LABSOLUTE) - Gets position on disk.

NORMALIZE name,ext [ABSOLUTE] - name and extension can be in
quotes, or addresses where the strings can be found.

PLOT x.y (ABSOLUTE]
POINT iocb,sector.byte [ABSOLUTE] - positions place on disk.
POSITION x.y UIMMEDIATE]

PRINTF (ABSOLUTE] - Unlike C‘s printf, this will not print to an
iocb number. The first argument must be the format string, either in
quotes, or the address where it can be found. Note that all the rest
of the arguments are addresses where the value can be found. This
will NOT print strings or floating point numbers (see PRINTFS)! Note
that there are no backslash characters, but you can use & %n for a
RETURN.

PRINTFS [ABSOLUTE] - This is used for printing strings or floating
point numbers.

PUTSEC addr,sector,drive LABSOLUTE) - writes addr to sector on
drive.

RND max (IMMEDIATE] - RETURNS a random number from 0 to max
(not inclusive of max, i.e. 5§ will generate any number between 0 and
4). Use zero to generate 0-255 inclusive .

SCANF [ABSOLUTE] - Unlike C‘s scanf, you cannot use an jocb
number. The maximum number of arguments is 5.

SLOW - turns on screen after a FAST call.

SOUND voice, distortion, pitch,volume (IMMEDIATE]}

The following three macros are used for doing multiplication and
division on integers. The third parameter is optional; if included,
then the result will be stored in it. If there is no third parameter,
the result is in Ae=low, X=high.

IMUL ni,nZ (,n3) [ABSOLUTE] - signed multiplication of the word ni,
by nZ. RETURNS result in A=Jow, X«high, or n3 if specified.

IDIV ni,n2 (,n3)(ABSOLUTE) - signed division of the word nz, by the
word nl. RETURNS result in A=low, X=high, or n3 §i{f specified.

IREM ni,.n2 (,n3) [ABSOLUTE) - RETURNS remainder of division of nl
by nZ in A=]ow, X=high, or n3 if specified.

65

MACRO.M6S

MACRO.Mé65 contains several equates to Lightspeed DOS, and
several general purpose macros. It can only be loaded and used by
MAC/65 as it is stored in tokenized format. The following is 8 list of
the equates:

STDIO - Operating System’s Central Input Output routine address.
SI10 - Operating Systems Serial Input/Output address.
EOL - Return character.

PUTEDIT - a JSR to this address will send the contents of the A
register to the screen.

PUTSCREEN - a JSR to this address will send the contents of the A
register to the graphics screen (same as plot).

GETKEY - a JSR to this address will return in the A register the
ascii value of the key pressed by the user in the A register. To be
safe, use the macro GETKEY which zeros $2A first.

GETSCREEN - returns in the A register the graphics screen point
from the current position (same as locate).

MESSAGE - Will send the text pointed to by A,X to the screen. See
the macro DISPLAY for use of this.

ERROI:'! - & JSR to this address will send to the screen "Error #n"
where n is the number in the Y register.

MNUMBER - this will send to the screen in ascii format the integer in
$D4 (FRO).

CLOSEALL - a JSR to this address will close iocb’s 1-7.
DOSENTRY - address for entering DOS ($0A).

GETFILENAME & JSR to this address will get the next filename in the
DOS command buffer and store it in FULLFILENAME. If the first byte
of FULLFILENAME is a zero, then no file was found in the command
buffer. This routine is equivalent to the getdos() function described
in the documentation for STDIO.C.

DEFAULTDRIVE - this is the address of the 3-byte default drive
(Dn:).

POINTER - this is the pointer to the DOS command buffer. Changing
this pointer would affect what filenames are input from the

GETFILENAME and getdos() routines.

FULLFILENAME - this contains the filename retrieved from the DOS
command buffer and normalized with the default drive. If the first
byte is zero, then no filename was found.

COMMANDBUFFER this is a 120 byte area storing a!l the commands
passed when DOS calls a file.

The following is a list of the macros available with MACRO.Mé65. If an
argument is given in brackets, then the argument is optional.

READ addr,(iocb]l - read & record into addr, use jocb #0 if none
included.

WRITE addr,liocb) - write a record to iocb. If iocb is not included.
then the screen is assumed (ioch #0).

GET iocb - get a byte from jocb into the A register.
PUT iocb - put the byte in the A register to the ioch.
SCREEN - send 1 to 5 bytes to the screen.

Example:
SCREEN ‘H,‘1,EOL
Effect: this would send HI and a RETURN to the screen.

ADD - All arguments are addresses of word values. If one argument,
the value is increased by one. If two arguments, the second value is
added to the first value, and the result stored in the first value. If
three arguments, the second value is added to the first value and the
result stored in the third value.

IADD - same as ADD only you must have at least two arguments, and
the second argument is an immediate value rather than an address.

SUBTRACT - All arguments are addresses of word values. If one
argument, the value is decreased by one. If two arguments, the
second value is subtracted from the first value, and the result stored
in the first value. If three arguments, the second value is subtracted
from the first value and the result stored in the third value.

CLOSEALL - closes iocb’s 1-7.

TRANSFER from,to - transfers the contents of the word
from to the word to.

ISUBTRACT - same as SUBTRACT only vou must have at least two
arguments, and the second argument is an immediate value rather than
an address.

DISPLAY text - This sends the text and up to three additional bytes

67

to the screen. The text argument can be in quotes, or the sddress of
where the text can be found. If you use an address, the string must
end with a zero.

Example:

DISPLAY "Hello World!", EOL
Effect: This would send the text Hello World! to the screen followed
by a return.

GETKEY - this will return in the A register the ascii value of the
next key pressed.

DPOKE addr,val - this will store the immediate word val into the word
at address.

DZERO - this will store a zero into 1-5 WORDS.
ZERO - this will store a zero into i-5 BYTES.

ERROR - this will display "Error #n" where n is the number in the Y
register.

DOEDIT text - this will set up the text in the same manner as
described in DO.COM (pg. 42). The text may be in quotes, or the
address of the text. If using an address, the last byte must be a
zero.

SETUPEDIT text - this will run the DO editor on the text previous

converted by DOEDIT. See the documentation for DO.COM (pg. 42) for
8 description.

68

MISCELANEOQUS

QSORT - This is an example of how you can use pointer arrays (even
though technically they aren’t implemented). The program sorts
records and tosses out duplicates.

FCALC - This is a simple floating point calculator. Source codes are
given in C, ACTION!' and ASSEMBLY langusge (FCALC.ASM is in list
form, but can only be assembled with MAC/65). It is intended only to
show how to use floating point in the various languages.

LIFE - The game of LIFE, invented by the mathematician John Horton
Conway, during the 1960‘s. For each generation the following rules
apply:

1) Each live cell that touches less than one neighbor, will die from
loneliness.

Z) Each live cell that touches more than 3 neighbors will die from
overcrowding.

3) Each empty cell that touches exactly 3 neighbors, will give birth to
a live cell.

Try the following patterns:

The R pentomino:
XX
XX
X

A glider:
X

X
XXX

Z - glider spawner:

KXXXX
X
X
X
XXXXX

69

A Practice Session

This section should be read while at your computer so you can
try out the examples. It is designed to give you & hands on
experience at writing C programs using the Lightspeed C development
System. In the descriptions, the computer’s responses will be given
in bold type.

The first thing to do is to make a work disk. If you haven‘t
made a backup disk yet, make one now and then boot the back up
disk. Type DCOPY and press RETURN. Insert a blank disk into
drive #1. Press F for format, enter D1:, and press RETURN. Next
press W and again enter DI1: to write the DOS.SYS files. Now you
need to copy some files from your backup disk. The method used will
vary depending on whether you have two drives, a ramdisk, a single
drive, etc. Use the C option in DCOPY to copy the files. DCOPY will
prompt you to insert source and destination disks if you have a single
drive. Copy the following files to YOUuUr new work disk:

CC.CcoM
LINK.COM
FASTER.COM
CEDIT.COM
STDIi0.cCC
GRAPHICS.CCC

You could certainly copy other files such as DIR.COM and DCOPY, but
the above files are essential for writing C programs.

You are now ready to write your first C program. Insert the
work disk and type CEDIT and press RETURN. You will be presented
with & menu of options. Press A and the computer will respond with:

Line 1000+ press BREAK when done Now type the following three
lines:

mainQ $¢
printf(“\fHello World!\n");
$)

Press the break key. Note that CEDIT automatically indented the
second line for you since the first line had an opening brace. Now
press L and when you are asked for line numbers, just press
RETURN. Your three lines will be displayed on the screen preceeded
by line numbers. Check to make sure you didn‘t make any typos (if
you did, move the cursor to the error, correct it, press RETURN,
and press the BREAK key). Press C to compile the program. Type
the following line:

TEST LINK RUN

70

CEDIT will now save the file to DI:TEST.C and exit to DOS. Next the
compiler is loaded which compiles your program, then the linker links
your program, then your program is run which clears the screen and
displays "Hello World!".

Now type CEDIT TEST and press RETURN. The editor will be run
and it will load your program. Press L to list your program (just
press RETURN when it asks for line numbers). Now move the cursor
over the first quote in printf(" and delete it. Press RETURN and
press the BREAK key. Now press U and when it asks for the line
numbers, just press RETURN. The computer responds by listing the
lines with the erros, and what the errors were. The editor will
catch errors like missing quotes, parenthesis and apostrophes if you
ask it to. Let‘s try to compile it anyway. Press C. Note that this
time the computer responded with:

Enter>TEST

This is because this was the program you loaded. Press the tab key
and type
LINK RUN and press RETURN. The compiler will now run and will
display:

missing bracket

Press 1 to tell the compiler that CEDIT is on Di: (if CEDIT is on the
default drive, you could just press RETURN). The editor will be
loaded along with TEST.C and it will display the same error message
as the compiler did.

Note that in none of the above did we have to worry about
creating & .LNK file. As long as your program is on one source file,
and the only additional functions you call are in STDIO.CCC. then you
don’t need to make a .LNK file since LINK wil]l make one for you.
You might enter TEST.LNK at this point just to see the .LNK file
that was created. Also, if vou listed the directory of your disk you
would find the following files:

TEST.C - your source program.
TEST.CCC - created by CC for LINK.
TEST.LNK - the LINK file.

TEST.COM - your program, ready to run.

May I suggest vou try compiling and running SIEVE.C with and
without using FASTER.COM to get an ides of the difference in speed.
SIEVE.COM will take about 30 seconds to run even with the screen
off. You might also want to compile some of the other source
Programs just to get an idea of how the whole process works.

71

APPENDIX A

This appendix is for use with Appendix A in the book “The C
Programming Language" by Kernighan and Ritchie. It points out the
differences between the Bell Labs implementation of C and Lightspeed
C.

1. No major hardware differences.

2. Tabs are not considered white space.

2.1 Comments cannot be imbedded within a line. A comment does not
continue to the next line even if there is no closing %/,

2.2 B characters, 2 cases.

2.3 Additional keywords: asm, jsr.
Z2.4.1 No long constants.

2.4.2 No long constants.

Z2.4.3 \f - clears the screen (not a form feed). \r - cursor right (not
& carriage return). No bit patterns. Additional constants:

\d - cursor down

\e - escape key

\g - bell

\l.- cursor left

\m -~ control M

\u - cursor up
A backslash followed by a number from O to 256 (may be decimal, octal,
or hex) will be changed to it's character value. (\65 == ‘A).

2.4.4 No floating constants.
2.5 Strings may not continue over a logical line (up to 120 characters)
2.6 char 8 bits

int 16 bits

float 48 bits (6 member char array)
No other data types supported.
4. Only automatic and external storage classes supported. Data types:
char, int, pointers, single dimension arrays. No structures, unions
or bit fields.
S. No change.

6. All operands are converted to type int. A char is not sign

.

72

extended.
6.1 No short or long integers.

6.2 Floating point is implemented through floating point functions
operating on 6 member char arrays.

6.3 ftoi() and itof() is used for conversion between floating point and
integer. (See section describing Floating Point).

6.4 No change.

6.5 No unsigned (except char pointers).
6.6 All operands are converted to int.
7. No check for division by zero.

7.1 No change. (No structures or unions, and no operators applying
to them).

7.2 No casts or sizeof .

~

.3 = 7.15 No changes.

.1 - extern is the only storage class specifier which may be used.
.2 Type specifiers: char, int.

.3 No change.

.4 Functions are all type integer and may not be declared.
N;:: structures or unions.

.6 No initialization.

.7 Not implemented.

o o o O o oo o o
w

.8 Not implemented.

9® - 9.13 No change except labeled statements must be preceeded by a
colon.

10 - 10.2 No change.

11.1 Identifiers declared within a block exist throughout the function
they are defined in.

11.2 Functions exist throughout the program.
12.1 No macros.

12.2 #includes may not be nested.

73

1Z.3 #if - no constant expression. #®ifdef, ®ifndef - not implemented.
#ifref - true if identifier has been defined (identifier may be &
global or & function) within the current source file. Conditionals may
not be nested.

12.4 Not implemented.

13 . extern must be followed by type. A type definition outside of any
function is global (static), within a function it is auto.

14.1 Not implemented.

14.2 Not implemented.

14.3 Only single dimension arrays.

14.4 Pointers are 16 bits and may be passed from int to char pointer
to int pointer. (A function returning a pointer, actually returns an
integer).

15. No change.

16 . Function arguments are evaluated left to right. Multi-character
constants not implemented.

17. Not supported.

74

TR ~ LICGHTSPEED -C |

by Ralph £. Walden

Whelther you re a beginner...

Because It conlains most of the standard C functions, and aue fo it's
speed and /nteractive easlor, /t offers the /deal learning environment
for begiinners.

Or you re a pro...

With over 100 fhigh powered functions, more than 20 utihtes, /it's
ease of /nlerface o /languages like ACTION!* and MAC/65% /t's
speed of comprle and execulion, /t's portability adue fo standard
calls. and with 3 different run— tme packages allowing your
programs o run unaer nearly any DOS, there just isn’t a better
developrmment environment avallable for your 8 — bit Atari/

Or you don t even program m C-..
/7 you program in ACTION/!* or MAC/E5*, the included function and

macro /lbraries are & must for any programmes, orfering no ree
runtime lforaries for ACT7T/ION/*,

o LIGHTSPEED C is a must for you!

/he Flite Personal/ Accowrlant

/n todays world, /t’s more /mportant than ever 1o know where your hard
earned dol/lars are go/ng. And (hatl’s why we’'ve crealed “THE ELITE
PERSONAL ACCOUNTANT".
Creates networth reports, income Balances your checkbook, tracks your
statements, budget analysis, credit cards, keeps your budget, even
financial transaction reports. creates custom reports!
/1’s complele, /!’s easy, and /t’s written especially for the 8— bit Alar/.

The only home accounting package in ANTICS top 100! NEW PRICE
NOW $38.85

Exclusively for Atari 400/800/130 XL/XE with 48k and 1 drive.

