Copyright © 1981 by Special Software Systems
All Rights Reserved

Published & Distributed Exclusively By

PERSONAL COMPUTER SOFTWARE

9421 Winnetka Avenue
Chatsworth, CA 91311

' *Atari is a registered trademark of Atari Computer, Inc.

Copyright © 1981 by Special Software Systems
All Rights Reserved

Published & Distributed Exclusively By

PERSONAL COMPUTER SOFTWARE

9421 Winnetka Avenue
Chatsworth, CA 91311

*Atari is a registered trademark of Atari Computer, Inc.

LIMITED WARRANTY

This software product and the attached instructional materials are sold
“AS IS," without warranty as to their performance. The entire risk as to the
quality and performance of the computer software program is assumed
by the user. The usef, and not the manufacturer, distributor or retailer
assumes the entire cost of all necessary service or repair to the computer
software program.

However, to the original purchaser only, DATASOFT warrants that the
medium on which the program is recorded will be free from defects in
materials and faulty workmanship under normal use and service for a
period of hinety (90) days from the date of purchase. I during this period
a defect in the medium should occur, the medium may be returned to
DATASOFT or to an authorized DATASOFT dealer, and DATASOFT will
replace or repair the medium at DATASOFT'S option without charge to
you. Your sole and exclusive remedy in the event of a defect is expressly
limited to replacement or repair of the medium as provided above. To
provide proof that you are the original purchaser, please complete and
mail the enclosed Owner Warranty Card to DATASOFT.

if failure of the medium, in the judgment of DATASOFT, resulted from
accident, abuse or misapplication of the medium, then DATASOFT shall
have no responsibility to replace or repair the medium under the terms of
this warranty. ‘

The above warranties for goods are in lieu of all other express warranties
and no implied warranties or merchantability and fitness for a particular
purpdse or any other warranty obligation on the part of DATASOFT shall
last longer than ninety (90) days. Some states do not allow limitations on
how long an implied warranty lasts, so the above limitation may not apply
to you. In no event shall DATASOFT or anyone else who has been in-
volved in the creation and production of this computer software program
be liable for indirect, special, or consequential damages, such as, but not
limited to, loss of anticipated profits or benefits resulting from the use of
this program, or arising out of any breach of this warranty. Some states do
not allow the exclusion or limitation of incidental or consequential dam-
ages so the above limitation may not apply to you. This warranty gives you
specific legal rights, and you may also have other rights which vary from
state to state.

The user of this product shall be entitled to use the product for
his/her own use, but shall not be entitled to sell or transfer repro-
ductions of the product or instructional materials to other parties
in any way.

NOTICE:

Special Software Systems and Datasoft Inc. reserve the right to make improvements in
the product described in this manual at any time and without notice. Licensing rights
for Inter-LISP may be obtained through the publisher.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or
by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior written per-
mission of the publisher. Printed in the United States.

CHAPTER

1.0
1.1
1.2

2.0
2.1
2.2
2.3

3.0
3.1
3.2

4.0
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.1

5.0
5.1
5.2
5.2.1
5.2.2
5.3

6.0

7.0
7.1
7.2
7.3
7.4
7.5

TABLE OF CONTENTS

PAGE

INTRODUCTION 1
Overview of Inter-Lisp/65 1
HowToUse ThisManual 2
USINGINTER-LISP/65.......................... 3
HowtoRunlisp........... 3
Lisp Supervisorand Lisp Data Types................... 3
Lisp Keyboard Functions....................... 6
LISPARITHMETIC 7
NumericAtoms. i 7
ArithmeticExpressions 7
BASICLISPFUNCTIONS 9
The SETQFunction...............oo oo . 9
The QUOTE Function.coiuu ... 9
The EVALFunction 10
The SET Function. oo, 10
TheCARFunction............. 11
TheCDRFunction.......................... 12
The CONS Function........... ... e i, 13
The LISTFunction............ 0. 14
The APPEND Function0oiui . 14
The LENGTH Function, 15
The LASTFunction i, 16
OTHER LIST PROCESSING FUNCTIONS 17
The Surgical Functions: RPLACA & RPLACD........... 17
Retrieving ListElements 18
ASSOC Performs Keyed List Access................ 18
The @ Function Performs Sequential List Access. 19
The Packing Functions: PACK and UNPACK............ 20
INPUTANDOUTPUT 21
DEFININGNEWFUNCTIONS 23
The LAMBDAFunction. 24
The NLAMBDAFunctionoiiuuii... 25
The MACROFunction................ouuuiiii.. 26
How Inter-Lisp/65 Evaluates Functions................ 27
Retrieving Function Definitions 28

TABLE OF CONTENTS (Continued)

CHAPTER PAGE
8.0 CONDITIONALS AND PREDICATES 29
8.1 Relational Functions. 29
8.1.1 The NUMBER Property 29
8.1.2 The GREATER Property 29
8.1.3 TheEQProperty....... 29
8.1.4 The ATOM Property. oo .. 30
8.1.5 The MEMBER Property e 31
8.1.6 The COND Function................. 31
8.2 The Sequential Execution Functions 32
8.2.1 The PROGN Function 32
8.2.2 The PROG Function........... 33
8.2.3 The AND Function. 34
8.2.4 The ORFunction 34
9.0 SYSTEM AND MISCELLANEOUS FUNCTIONS 35
10.0 TEXTANDGRAPHICS 38
10.1 Changing ScreenModes..................... 38
10.2 GraphicControl 39
10.3 TextControl 42
10.4 Other Useful Screen Commands 43
11.0 LOADAND SAVE 44
12.0 DEVICEINPUTANDOUTPUT 46
12.1 Sequential File/Device Access 46
12.2 Disk Random Access Functions 47
13.0 ERRORHANDLING. 49
14.0 SAMPLEPROGRAMS 51
14.1 The TowersofHanoi 51
14.2 The LISPEditor. 51
14.3 Doctor 60
14.4 The RPN Calculator 60
145 - MACLISP Function Simulator 61
14.6 The CLISPFunction. 62
14.7 LISPLights 63

APPENDIX

A

B

TABLE OF CONTENTS (Continued)

PAGE
Inter-Lisp/65 Command Summary.................... 64
LISP Errorsby Error Number. 75
Some Utility LISP Functions. 78
Inter-Lisp/65MemoryMap 80
Atari System ErrorMessages 81
Overviewof LispStorage 83
Notes and Pitch Values for Sound Function............ 85

INTER-LISP/65 V2.0 DATASOFT

1.0 INTRODUCTION

1.1 OVERVIEW OF INTER-LISP/65

Welcome to the world of LISP programming. INTER-LISP/65 is an
implementation of a subset of the standard “INTERLISP" dialect of LISP.
This version includes many enhancements to LISP which will allow the
LISP programmer to take advantage of the graphic and sound capabilities

of the ATARI computer. Over seventy pre-defined functions are included.

SOME FEATURES OF INTER-LISP/65 ARE:

* eight digit floating point arithmetic, including multiplication,
division, exponential, and logarithms

e PEEK, POKE and XIO functions for access to monitor and
hardware functions.

* STICK and STRIG for game controller input.

® Sequential disk file functions: including OPEN,CLOSE, PR#,
IN#, NOTE and POINT.

¢ PAGE and TAB screen control functions.

* Debugging facilities including: BREAK and BAKTRACE.

INTER-LISP/65 V2.0 DATASOFT

System requirements for INTER-LISP/65 consist of an ATARI 800*
computer, equipped with 48K of RAM memory and at least one disk drive.
The package you have purchased should contain:

One (1) 5 1/4” diskette containing the following files:

* DOS SYS

* AUTORUN SYS
* EDIT

* DOCTOR

* HANOI

* CLISP

* MACLISP

* LIGHTS

* CALC

(NOTE: AUTORUN.SYS IS THE LISP PROGRAM)
One (1) INTER-LISP/65 reference manual

One (1) LISP programming text by Winston and Horn, published
by Addison Wesley.

1.2 HOW TO USE THIS MANUAL

This manual assumes that you have some knowledge of the LISP
language. It is not intended to provide an exhaustive treatment of LISP.
Instead it gives synoptic descriptions of the commands available in INTER-
LISP/65. These descriptions should be sufficient to explain the
differences between INTER-LISP/65 and the dialect of MACLISP
discussed in Winston and Horn. This should allow you to transiate easily
between the two dialects. For those who do not wish to perform the
translations while working the exercises in Winston and Horn, a MACLISP
emulator has been written in INTER-LISP/65. To use it, load the file
MACLISP from your diskette.

If you are a novice LISP programmer, we suggest that you read Chapter
2.0 of this manual and then try the examples in Winston and Horn on your
ATARI. If you encounter errors while trying the exercises, refer to Chapter
13.0 of this manual.

INTER-LISP/65 V2.0 ' DATASOFT

2.0 USING INTER-LISP/65
2.1 HOW TO RUN LISP

Remove all cartridges from your ATARI and power up your ATARI
computer. Insert the LISP system diskette, and “boot” your system.
(Note: If you forget to remove the cartridges the program will ask you to
remove them and reboot the disk.) After a few moments LISP will respond
by displaying the copyright statements and the message:

>>> INTER-LISP/65 V2.0 July 1981 <<<

which indicates the version of LISP you are running, (2.0 in the current
example). LISP will then display the prompt:

LISP
which indicates LISP is ready to accept input.
2.2 LISP SUPERVISOR AND LISP DATA TYPES
Unlike BASIC which has immediate and deferred execution commands,
LISP accepts inputs called s-expressions {short for symbolic expression).
It then evaluates them and prints the result. The program which performs
this loop is called the “’LISP SUPERVISOR".
Try typing a 1 followed by RETURN. LISP responds by printing

1

This is the decimal value, (or evaluation), of the input which was the
number 1. Now type:

X
followed by RETURN.
LISP will respond with

NiL

INTER-LISP/65 V2.0 DATASOFT

This is LISP’s way of saying that the ‘atom’’ X is currently undefined, (i.e.
it has no value).

LISP has two types of data — atoms and lists. Collectively these data
types are the symbolic expressions, {or s-expressions}, referred to above.
Numbers are atoms as are alpha-numeric strings like A, ABC and AB123.
Some pre-defined atoms are T, which has the value of logical TRUE, and
NIL, which has the value of logical FALSE. Blanks (spaces), are used to
delineate the end of an atom.

Lists are constructed from atoms or from other lists. All lists must start
with a left parenthesis and end with a right parenthesis. For example:

(A BC)
is a list whose elements are the atoms, A, B and C.

The expression,
((A B} C)

is a list whose elements are the list
(A B) and the atom C

The list (A B) in this example is sometimes referred to as a sub-list.
LISP data types can be summarized by the following diagram:

SYMBOLIC-EXPRESSIONS

ATOMS LISTS
NUMBERS SYMBOLIC
FIXED FLOATING

INTER-LISP/65 V2.0 DATASOFT

Atom values can be altered by use of the SETQ function. You may type:
(SETQ LANGUAGES '(LISP PASCAL BASIC FORTRAN))
This establishes the list

(LISP PASCAL BASIC FORTRAN)

as the value of the atom LANGUAGES. If you now type

LANGUAGES<CR>

LISP responds with:
(LISP PASCAL BASIC FORTRAN)
LISP
The single quote mark in the above example is used to indicate that the

s-expression which follows should not be evaluated, (i.e. the expression
should be taken literally). This is why LISP responds with:

(LISP PASCAL BASIC FORTRAN)

when you enter LANGUAGES, but

'LANGUAGES

yields
LANGUAGES
LISP

In fact, the single quote mark is a short hand for the QUOTE function
which returns its argument (not the value of the argument).

(QUOTE X)
X

LISP

INTER-LISP/65 V2.0 DATASOFT

Atoms may also be used to represent functions. Function definitions are
established by using the DEFINE and DEFINEQ functions. These will be
discussed in Chapter 7.0.

2.3 LISP KEYBOARD FUNCTIONS

INTER-LISP/65 allows you to use all of the standard ATARI cursor control
sequences as described in the ATARI reference manual. Additionally a
LISP print, or evaluation, may be aborted by typing a Control-B. {This has
the same effect as the BREAK function described in Chapter 9.0).

INTER-LISP/65 uses a character type ahead buffer. Thus, many
commands may be entered on one line and will be executed sequentially.
An exception occurs with a LOAD command. A LOAD command causes
the input buffer to be flushed. All input which follows the LOAD
command and which lies before the next Carriage Return will be ignored.
Therefore, entering:

(LOAD 'D:DOCTOR) (DIR)<CR>
will load the file D:DOCTOR , but the (DIR) will be ignored.

When reading s-expression from the keyboard the usual prompt is LISP; if
you entered an “unbalanced” s-expression then the prompt character is
changed as follows. If you have entered a return before all left parentheses
are paired with right parentheses then the prompt becomes a single
question mark (?). If you have entered a return before closing a quoted
atom (one beginning with a ") then the prompt is changed to a double
quote mark (").

IMPORTANT NOTE: DO NOT HIT THE SYSTEM RESET KEY during
execution of a LISP program except in a dire emergency! INTER-LISP/65
V2.0 uses a modified version of the Schorr-Waite algorithm during
"‘garbage collection”’. Therefore, an inopportune RESET could result in all
of memory being destroyed. However, it is ok to use the reset key to abort
a program provided it is “‘reading’’ from the keyboard.

INTER-LISP/65V2.0 DATASOFT

3.0 LISP ARITHMETIC

3.1 NUMERIC ATOMS

The numeric atoms in INTER-LISP/65 are eight byte, binary coded
decimal floating point numbers, {i.e. numbers in the range
—9.99999999E - 97 to 9.99999999E + 97). If the result of any arithmetic
expression results in a number exceeding these limits then an error
message is displayed and control is passed to the error handler. (Refer to

Chapter 13.0.)
3.2 ARITHMETIC EXPRESSIONS
LISP treats all expressions to be evaluated as functions. The same applies
to arithmetic expressions. In BASIC you would write X + Y to add the
numbers X and Y. LISP, however, treats + as a function which assigns
the sum to two operands. Thus:

+ (X, Y) > X+Y
and it is written as such in LISP, as follows:

{(+ XY).

This notation is sometimes referred to as Cambridge prefix notation.

The following table contrasts the corresponding BASIC and LISP
expressions:

BASIC LISP
X*y (* XY)
X/Y {/ XY)
X+Y (+ XY)
X-Y (SUB X Y)
EXP (X) (EXP X)
LOG (X) (LOG X)
INT (X) (INT X)

INTER-LISP/65V2.0 DATASOFT

More complex arithmetic expressions are constructed in the obvious way.
For example, the expression:

X - Y/ {X+Y)
would be written in LISP as:
{(/ {SUB X Y) (+ XY)).

These arithmetic expressions demonstrate the general syntax of LISP
expressions. The EVAL function (which is discussed in the next section),
expects lists in the form:

{functionname argument
argument ...)

If functionname refers to an undefined expression, then an error will
result. (See Chapter 13.0 for a discussion of the LISP error handling
procedure.)

NOTE: On input to LISP all numbers should be delimited by one of the
LISP delimiting characters (i.e. a blank, parenthesis, single or double
quote). For instance, if one were to enter the string:

123AB 45

then LISP would interpret this as a 123 foliowed by a 45. The AB falls into
the “'bit bucket”’.

INTER-LISP/65 V2.0 DATASOFT

4.0 BASIC LISP FUNCTIONS

This chapter discusses the basic LISP functions available in INTER-
LISP/65.

4.1 THE SETQ FUNCTION

SETQ establishes values for atoms. SETQ is, in effect, the LISP
assignment function.

LISP
(SETQ X 3.4) (SETQ Y 4.5)

3.4
4.5

LISP
(+ XY)

7.9
LISP

Note that the value returned by SETQ is the value assigned to the variable,
(or atom).

4.2 THE QUOTE FUNCTION

The QUOTE function returns its single unevaluated argument as its value.
On input the single quote mark is equivalent to QUOTE. For example:

LISP
(SETQ X 3)

3

LISP

INTER-LISP/65 V2.0 - DATASOFT

LISP
(QUOTE X)

X

LISP
X

X
4.3 THE EVAL FUNCTION
The EVAL function evalutes its single argument which is itself evaluated,
so that in effect EVAL actually results in two evaluations. Thus, using X as

in section 4.1 above, gives:

LISP
(EVAL (QUOTE X))

3

since the evaluation of (QUOTE X) is
X

which when evaluated yields
3

4.4 THE SET FUNCTION

SET is similar to SETQ except that the variable is evaluted. SET is
somewhat like a “‘computed assignment’’ function.

LISP
(SETQ X ‘A)

A

LISP
(SET X 100)

10

INTER-LISP/65 V2.0 DATASOFT

100

LISP
X

A

LISP
A

100
45 THE CAR FUNCTION

(CAR X)

The CAR function returns the first element of a list. If the argument is
atomic, an error will result.

Examples of CAR:

. (CAR NiL)

returns NIL.

LISP
(SETQ A "({X Y) 2))

(XY} 2)

LISP
(CAR A)

(XY)

LISP
(CAR (CAR A))

X

The CAR function has retained its name from the first implementation of
LISP on the IBM 7090* computer. The first element of a list was stored in
the address register. Hence the term, “’Contents of Address Register’".

1"

INTER-LISP/65 V2.0 DATASOFT

100

LISP
X

A

LISP
A

100
4.5 THE CAR FUNCTION

(CAR X)

The CAR function returns the first element of a list. If the argument is
atomic, an error will result.

Examples of CAR:

‘ (CAR NIL)

returns NIL.

LISP
(SETQ A "((X Y) 2))

((XY) 2)

LISP
(CAR A)

(X'Y)

LISP
{CAR (CAR A))

X

The CAR function has retained its name from the first implementation of
LISP on the IBM 7090* computer. The first element of a list was stored in
the address register. Hence the term, “‘Contents of Address Register’’.

1

INTER-LISP/65 V2.0 ' DATASOFT

4.6 THE CDR FUNCTION

{CDR X)
The CDR function returns the list which is obtained by deleting the first
element of the list. If X is an atom then an error will result; however, (CDR
NIL) returns NIL.
Examples of CDR:

LISP
(SETQ A'((XY) 2))

{(Xvy) 2)

LISP
(CDR A)

(2)

LISP
{SETQ B (X .Y))

(X.Y)

LISP
(CDR B)

Y

LISP
(SETQ EXAMPLE "(THIS IS AN EXAMPLE OF CDR))

(THIS IS AN EXAMPLE OF CDR)

LISP
(CDR (CDR EXAMPLE))

(AN EXAMPLE OF CDR)

12

INTER-LISP/65V2.0 DATASOFT

CDR gets its name from the first LISP implementation on the IBM 7090
where the tail of a list was stored in the decrement register, hence the
acronym ‘‘Contents of Decrement Register”’.
4.7 THE CONS FUNCTION

(CONS X Y)

In brief, CONS reassembles the CAR and CDR of a list. In fact CONS is
short for CONStructor.

For example,

LISP
(SETQ A (X Y))

(XY)

LISP
(CAR A)

X

LISP
(CDR A)

(Y)

LISP
(CONS "X (Y}

(XY)

LISP
(SETQ A {X.Y))

(X.Y)
LISP
(CAR A)

13

INTER-LISP/65V2.0 - DATASOFT

X

LISP
(CDR A)

Y

LISP
(CONS "X Y)

(X.Y)
4.8 THE LIST FUNCTION

{LIST X1 X2 ... XN) produces the list whose elements are the evaluated
arguments X1 ... XN.

Thus:

LISP
(LIST 'A’'B 'C)

(ABC)

LISP
(LIST "(A) "(B) "(C))

((A) (B) (C))
4.9 THE APPEND FUNCTION

(APPEND XY Z ...)
APPEND returns the list which is the ““concatenation’’ of its arguments,
(which are themselves lists). APPEND is used more frequently than
CONS.

Examples:

LISP
(SETQ X "(A))

14

INTER-LISP/65 V2.0 DATASOFT

(A)

LISP

(SETQ Y ‘(B))
(B)

LISP

(APPEND X Y)
(A B)

Note that CONS would behave as follows:

(CONS X Y)

{{A} B)
LISP

4.10 THE LENGTH FUNCTION

LENGTH returns the number of elements in a list. If the argument is not a
. list then a zero is returned.

LISP
(LENGTH (A B C))
3

LISP
(LENGTH "'A)

0

LISP
(LENGTH "((A B) C (D) E))

4

LISP

15

INTER-LISP/65 V2.0 DATASOFT

4.11 THE LAST FUNCTION

LAST returns the last CDR of a list. If the single argument is an atom or
NIL then NIL is returned.

LISP
(LAST "(THIS IS THE END))

(END)

LISP

16

INTER-LISP/65 V2.0 DATASOFT

5.0 OTHER LIST PROCESSING FUNCTIONS

5.1 THE SURGICAL FUNCTIONS: RPLACA & RPLACD

RPLACA and RPLACD are mnemonics for “REPLACE CAR” and
“REPLACE CDR”, respectively. They create new lists by actually
modifying the list structure of the arguments.

(RPLACA X Y) replaces the CAR of X by Y and alters the list X.

LISP
(SETQ X "(BASIC IS GOOD))

(BASIC IS GOOD)

LISP
(SETQ Y X)

(BASIC IS GOOD)

LISP
{RPLACA X 'LISP)

(LISP IS GOOD)

LISP
X

(LISP IS GOOD)

LISP
Y

(LISP IS GOOD)

Note that altering X also modifies Y in this case since Y is identified with X
via the SETQ.

{RPLACD X Y) replaces the CDR of X by Y and returns the modified list as

its value. Continuing with X and Y, retaining the values in the RPLACA
example above, one has the following:

17

INTER-LISP/65V2.0 . DATASOFT
LISP
(RPLACD X '(IS BEST))
{LISP IS BEST)

LISP
X

(LISP IS BEST)
LISP
Y
{LISP IS BEST)
LISP
5.2.0 RETRIEVING LIST ELEMENTS
5.2.1 ASSOC PERFORMS KEYED LIST ACCESS

The ASSOC function performs keyed searches on lists which are referred
to as association lists or a-lists for short. The structure of an a-list is:

((KEY1 DATA11 DATA12 ... DATAIj)
(KEY2 DATA21 DATA22 ... DATAZ2K)

(KEYn DATANn1 DATAR2 ... DATANI))

(ASSOC KEY ALIST) will search the argument ALIST for the sub-list
whose CAR matches the key specified by KEY. If a match is found then
the entire sub-list is returned as the value of ASSOC. Otherwise NIL is
returned. If ALIST refers to the sample a-list shown above then the call:

(ASSOC 'KEY2 ALIST)

18

INTER-LISP/65 V2.0 DATASOFT

will return the list:
(KEY2 DATA21 DATA22 ... DATA2K)
As an example, suppose we have assigned the list

((SEX MALE) (HEIGHT 178) (AGE 32))

to the atom HENRY, then the following calls to ASSOC produce the
indicated results:

LISP
(ASSOC "SEX HENRY)

(SEX MALE)
LISP
(ASSOC 'HEIGHT HENRY)

(HEIGHT 178)
LISP
(ASSOC 'AGE HENRY)

(AGE 32)

5.2.2 THE @ FUNCTION PEFORMS SEQUENTIAL LIST ACCESS

(@ LIST D) returns the | th CDR of the list specified by LIST. This
expression is equivalent to the expression:

(CDR (CDR (CDR ... (CDR LIST) ...)))
I<eeeo- I TIMES ----- >1

(@ LIST 0) or {@ LIST) just returns the value of LIST. Note that this
expression is useful for array-like processing. If X is the list:

(1234

then (CAR (@ X 1)) will return the number | + 1. If X is the list:

((123)(456)(789))

then (CAR (@ (CAR (@ X 1)) J)) returns the {i,j) element of the 3x3 matrix
represented by X.

19

INTER-LISP/65 V2.0 - DATASOFT

5.3 THE PACKING FUNCTIONS: PACK AND UNPACK

PACK and UNPACK convert atoms to lists and vice versa.

(PACK X) converts a list of atoms to the atom which is the concatenation
of the atoms in X. In this implementation any elements of X which are

themselves lists are ignored.

LISP
(PACK'(SUITCASE)

SUITCASE

LISP
(PACK "(FRONT (THIS WILL BE SKIPPED) END))

FRONTEND
(UNPACK X)

The function converts the atom X to the list whose elements are the single
character atoms in the atom X.

LISP
{(UNPACK 'SUITCASE)

(SUITCASE
LISP

UNPACK and PACK can be used to create elaborate string manipulation
functions. The following examples return the length of a string (atom) and
the right most characters of a string, respectively:

(DEFINEQ LEN$ (LAMBDA (STRING) (LENGTH (UNPACK
STRING))))

(DEFINEQ RIGHT$ (LAMBDA (STRING START) (PACK (@
(UNPACK STRING) START))))

20

INTER-LISP/65 V2.0 DATASOFT

6.0 INPUT AND OUTPUT

In this chapter we describe the LISP input and output functions. Note that
the LISP output functions described here differ slightly in effect from
those described in Winston and Horn.

(READ)

The READ function accepts one entire s-expression from the current
source of input. If the first character is not a left parenthesis, then the
input characters are assumed to form an atom. READ then continues to
accept characters until it encounters one of the LISP special characters,
(namely a blank, (", "), carriage return), which is interpreted as a
separator. If the first character is a left parenthesis, characters are read
until all left parentheses are matched by right parentheses. (Note that if
you don’t count parentheses, this can produce the illusion that your
computer is “hanging”’. Just type a few more parentheses). The value of
(READ) is the s-expression entered.

(READA)

The READA function accepts one atomic s-expression from the current
source of input. For READA, left parenthesis and right parenthesis are
treated as atomic symbols provided they are the first characters
encountered by READA. Otherwise they are treated as separators in the

usual manner. The value of READA is the single atomic expression
entered.

(READC)

READC accepts one character from the current source of input. The
READC function does not wait for a terminating carriage return. The value
of READC is the single character atom entered.

(PRINT X)

The PRINT function prints the evaluation of its single argument to the
current source of output. The value of PRINT is the value of its argument.
The PRINT function always terminates with a carriage return.

21

INTER-LISP/65 V2.0 - DATASOFT

(PRIN1 X)
The PRINT1 function prints the evaluation of its single argument without a
terminating carriage return. If X is a quoted atomic expression, (e.g.

“ABC’), then it is printed without the quotes. Thus:

LISP
(PRIN1 {QUOTE ""ABC"))

yields
ABC"ABC”

Note the absence of a carriage return after the first ABC (which is
followed by “ABC"’, the value of PRIN1).

Similarly:

LISP
(PRIN1 (A B))

yields:
(A B)}(A B)
(PRIN2 X}

which is similar to PRIN1 except that quoted atoms are printed with the
quotes.

(TERPRI)

TERPRI! (nmemonic for ‘terminate print’) prints a carriage return to the
current output device, and returns NIL.

INTER-LISP/65 V2.0 DATASOFT

7.0 DEFINING NEW FUNCTIONS
Just as SET and SETQ establish values for atoms, DEFINE and DEFINEQ
establish function definitions for atoms. For example, to define a function
which doubles the value of a number you could type:

LISP (DEFINEQ DOUBLE (LAMBDA (N) (+ N N)))
INTER-LISP/65 responds with:

(LAMBDA (N) (+ N N))

LISP
Note that the syntax of DEFINEQ and DEFINE in this implementation
differ slightly from the standard INTERLISP implementation. DEFINE is

similar to DEFINEQ except it evalutes its first argument. Example:

LISP
(DEFINE 'DOUBLE (LAMBDA (N) {+ N N)))

You may now use your new procedure in other expressions or even
directly from the supervisor. Try typing:

LiSP
(DOUBLE 6)

and INTER-LISP/65 should respond with:
12

LISP

You could also write a quadrupling procedure using the DOUBLE
expression as follows:

LISP
(DEFINEQ QUADRUPLE (LAMBDA (N) (DOUBLE (DOUBLE N)))})

23

INTER-LISP/65 V2.0 . DATASOFT

7.1 THE LAMBDA FUNCTION

The Lambda function allows construction of new user defined functions
which are locally defined variables. The syntax is:

(LAMBDA (X1 X2 ... XN) BODY)

where, X1, X2 ... are the local variables of the.procedure defined by the
s-expression BODY. In other words, the first argument of the LAMBDA
function is the list of local variables to be employed within the procedure
body. Thus: ’

(DEFINEQ GREATER (LAMBDA (X Y)
{COND (> X Y) X)
(TY)
m

defines a function ‘‘greater’* which returns the greater of the two ““input’’
variables X and Y. When you “‘call’’ this new function by entering the
s-expression:

(GREATER 3 1)

the va?ues of the arguments, (in this case the numbers 3 and 1), are
“bound” to the formal arguments X and Y which occurred in the
definition of GREATER. The values of the arguments at the moment the
function is called are referred to as the “‘actual arguments’. The binding
of actual arguments to the formal arguments is in effect only while the
LAMBDA function is being evaluated. Once a LAMBDA function is
exited, the formal arguments are reassigned the values they had prior to
the evaluation of the LAMBDA function. This can have some surprising
effects. For instance, try the following example on your ATARI:

LISP
(SETQ X 'FIRSTVALUE)

FIRSTVALUE

LISP

24

INTER-LISP/65 V2.0 DATASOFT

(DEFINEQ SETVAL (LAMBDA (X Y)
(SET X Y)
)
(LAMBDA (X) (SET X Y))
LISP
(SETVAL "X SECONDVALUE)
SECONDVALUE

LISP
X

FIRSTVALUE
7.2 THE NLAMBDA FUNCTION
The syntax of the NLAMBDA function is:

‘ (NLAMBDA (A) BODY)

Note that only one formal argument is allowed. The NLAMBDA function
is similar to the LAMBDA function in that it also defines user functions.
The major difference is that while LAMBDA evaluates its arguments,
NLAMBDA does not evaluate its single argument. An example should
clarify this difference:

LISP
(DEFINEQ DEMONSTRATION (NLAMBDA (A) A))

(NLAMBDA (A) A)

LISP
(DEMONSTRATION OF THE NLAMBDA FUNCTION)

(OF THE NLAMBDA FUNCTION)

Note that the entire unevaluated list which followed the function name
was returned as the value of DEMONSTRATION.

o 2

INTER-LISP/65 V2.0 - DATASOFT

7.3 THE MACRO FUNCTION

The MACRO function is an extension of the NLAMBDA function. It too is
of the general form:

(MACRO (A) BODY)

For a MACRO, the single argument A is bound to the entire s-expression
associated with the call of the MACRO. Again the argument A is
unevaluated. Finally, the evaluation of BODY is evaluated as the MACRO
is exited, (hence the terminology MACRO). The main use for MACRO is
to construct code and then execute it. An example should clarify this:

LISP
(DEFINEQ FIRST (MACRO (S) (CONS ‘CAR (CDR S))))

(MARCO (S) (CONS (QUOTE CAR) (CDR S)))

If you execute FIRST by entering:

LISP
{(FIRST "(A B))

then the value of S will be:

(FIRST (QUOTE (A B)))
Thus the result of the MACRO body:
(CONS (QUOTE CAR) (CDR S)))
will be:
(CAR (QUOTE (A B)))
which when evaluated gives:
A
LISP

Note that FIRST is equivalent to CAR.

26

INTER-LISP/65 V2.0 DATASOFT

7.4 HOW INTER-LISP/65 EVALUATES FUNCTIONS

Recall that when LISP encounters a list it expects the first element to refer
to a function, thus:

(FUNCTION ARGUMENT1
ARGUMENT2

ARGUMENTR)
If FUNCTION is an atom, as in
{+ 10 —5)

then the function definition is retrieved. The function retrieved must be a
list beginning with one of the atoms

SUBR,NSUBR,LAMBDA,NLAMBDA or MACRO

which signal the beginning of the function definition. if no function is
present, or the list obtained does not begin with one of the reserved func-
tion types, then an EVALUATION ERROR will result. (See Appendix B.)

If the function name is already a list then the function definition is not
retrieved. In this case the list must begin with one of the function atoms
given above. Typically, this will be a LAMBDA expression.

Note that on occasion it is convenient to perform a ‘“‘computed’’ function
call. For example, the atom FUNCTION may have a value which is the
name of a function, say CAR. However:

(FUNCTION X)

will not return the CAR of the list X because EVAL will look for a function
by the name of FUNCTION (instead of the value of FUNCTION which is

CAR). To properly retrieve the function definition the APPLY* function is
used. Thus:

27

INTER-LISP/65 V2.0 ' DATASOFT
LISP
(APPLY* FUNCTION ‘(A B))
will return:
A
if FUNCTION has the value of CAR; and it will return
(B)
if FUNCTION has the value of CDR.
7.5 RETRIEVING FUNCTION DEFINITIONS
When LISP encounters an atom, the context specifies whether the atom
is used as a variable or as a function. Thus, when you type an atom at the
supervisor level, LISP retrieves the value of the atom typed, (i.e. it treats
the atom as a variable}. To retrieve the function definition, use the GETD

function instead:

LISP
(GETD ‘DOUBLE)

(LAMBDA (N) {+ N N))

LISP

28

INTER-LISP/65 V2.0 DATASOFT

8.0 CONDITIONALS AND PREDICATES
8.1.0 RELATIONAL FUNCTIONS

INTER-LISP/65 contains several functions which determine relations
among their arguments. The value of these functions is either true, (T), or
false, (NIL), depending upon the statement made about the arguments.

8.1.1 THE NUMBER PROPERTY

(# N) determines whether the sole argument is a numeric atom, Example:

LISP
#1)

T

LISP
(#'A)

NIL
®

8.1.2 THE GREATER PROPERTY

(> X 'Y) determines whether the first argument is numerically greater than

the second. Non-numeric arguments evaluate to zero. Thus {> 1 'A)
returns T.

8.1.3 THE EQ PROPERTY

(EQ A B) determines if the two arguments represent the same internal
LISP pointer. Care must be applied here since two s-expressions may be
displayed, (by PRINT), identically yet may be distinct lists in memory.
(This care is not needed for atoms, since each string is stored only once;
therefore, all references to them have the same internal pointer.)

For example —

LISP
(EQ "(A B) '(A B))

NIL

29

INTER-LISP/65 V2.0 " DATASOFT

while the following demonstrates that A and B are EQual.

LISP
(SETQ A '(A))

(A)

LISP
(SETQ B A)

(A)

LISP
(EQ A B)

T
Also,

LISP
(EQ A 'A)

T
Also,

LISP
(EQ11)

T
8.1.4 THE ATOM PROPERTY
(ATOM X) returns T if the argument X is not a list. For example:

LISP
(ATOM 'X)

T

30

INTER-LISP/65V2.0 DATASOFT

8.1.5 THE MEMBER PROPERTY

(MEMBER X Y) tests the list Y for the first occurrence of the element X.

The entire sub-list, for which X is the CAR is returned as the value of
MEMBER.

LISP
(SETQ FRUITS '(BANANNA ORANGE APPLE LEMON))

(BANANNA ORANGE APPLE LEMON)

LISP
(MEMBER "APPLE FRUITS)

{APPLE LEMON)

LISP
(MEMBER 'COMPUTER FRUITS)

NIL
8.1.6 THE COND FUNCTION

It is, perhaps, an understatement to say that COND is the most useful of
all of the LISP functions. COND provides all of the power of the if-then-

else construct found in other structured languages such as Pascal. The
syntax of COND is:

(COND (TEST1 RESULT1)
(TEST2 RESULT2)

{TESTn RESULTnN))

COND evaluates each of the test-result pairs sequentially and returns the
result which corresponds to the first non-NIL test. If the result is a
sequence of expressions then each of those are also evaluated
sequentially. COND is equivalent to the BASIC statement:

IF TEST1 THEN RESULT1 ELSE IF TEST2 THEN RESULT2 ...
ELSE IF TESTn THEN RESULTn.

31

INTER-LISP/65 V2.0 - DATASOFT

If a RESULTn expression is absent, the value of the non-NIL TESTn will
be returned as the value of the COND. Hence:

(COND {{PRINT X) X))
is equivalent to:
(COND ((PRINT X))
since PRINT returns the value of its argument.

As a detailed example, consider the following COND which returns the
decimal value of a given hex digit assigned to the atom HEX {remarks are
to the right of the semicolon and are not part of the COND expression):

(COND ((# HEX) HEX) ;A NUMBER JUST RETURN THE NUMBER
((EQ HEX "A) 10) ;ELSE IF A RETURN 10
((EQ HEX 'B) 11) ;ELSE IF B RETURN 11
((EQ HEX 'C) 12) ;ELSE IF C RETURN 12
((EQ HEX 'D) 13) ;ELSE IF D RETURN 13
((EQ HEX "E) 14) ;ELSE IF E RETURN 14
((EQ HEX 'F) 15) ;ELSE IF F RETURN 15
(T (PRINT "(NOT A HEX DIGIT)))) ;ELSE SHOW AN ERROR

8.2.0 THE SEQUENTIAL EXECUTION FUNCTIONS
8.2.1 THE PROGN FUNCTION

The PROGN function allows evaluation of a sequence of functions. The
syntax is:

(PROGN X1 X2 X3 ... Xn)

Each expression Xl is evaluated in order. The value of Xn is returned as the
value of PROGN.

N IRV

32

INTER-LISP/65 V2.0 DATASOFT

Example:

(PROGN (PRINT "FIRST) (PRINT "'SECOND) (PRINT 'THIRD))

FIRST
SECOND
THIRD
THIRD

LISP

Note that all three prints are evaluated but that the value of PROGN is
"THIRD (the value of the last argument).

8.2.2 THE PROG FUNCTION

The PROG function allows construction of iterative procedures. The
syntax is:

(PROG (X1 X2 ... Xn)
STATEMENT1
STATEMENT2
STATEMENT3

STATEMENTN)

Each statement is evaluated sequentially. The statements can be

functions or atoms. The atoms serve as labels for looping via the GO
function.

When a PROG is evaluated, each of the local variables, {such as Xl in the
above example), are initialized to NIL. They are restored to their old values
when the PROG is exited.

If, at the end of STATEMENTn, the PROG has not encountered a
RETURN, then the PROG is terminated and the value of STATEMENTR is
the value of the PROG. If a RETURN function is encountered, its

argument is returned as the value of the PROG and the PROG is
terminated.

33

INTER-LISP/65 V2.0 DATASOFT

The GO function can be used to transfer control to the statement
immediately following an atomic label. If the GO attempts to transfer
control to a label outside the currently executing PROG, an error will
result.

As an example, consider the following function which iterates a given
function “N’* times:

(DEFINEQ REPEAT (LAMBDA (N FN)

{(PROG (M)
(SETQ M N)
LOOP
(COND ({EQ M 0) (RETURN))

((APPLY* FN)))

(SETQ M (SUB M 1))
(GO LOOP)

M

8.2.3 THE AND FUNCTION
The syntax of AND is:

(AND X1 X2 ... Xn}
AND evaluates its arguments Xi sequentially until a NIL argument is
encountered. In that case the value of AND is NIL. If none of the Xi are
NIL then the value of Xn is returned as the value of the AND. In INTER-
LISP/65 (AND) returns NiL.
8.2.4 THE OR FUNCTION
The syntax of OR is:

(OR X1 X2 ... Xn)
OR evalutes its arguments Xi, (where i is an integer}, sequentially until a
non-NIL argument is encountered. In this case the value of OR is the Xi

thus encountered. If all of the Xi are NIL then NIL is returned as the value
of the OR. In INTER-LISP/65, (OR) returns NIL.

34

INTER-LISP/65 V2.0 DATASOFT

9.0 SYSTEM AND MISCELLANEOUS FUNCTIONS
{NEW)

Reinitializes INTER-LISP/65 and deletes all user defined expressions.
(OBLIST)

Returns the list of currently entered atoms.

(PEEK A)

Returns the contents of the byte at the memory location specified by A. If
A is not numeric, the content of location 0 is returned, (a usually
meaningless result).

(POKE A N)

Stores the eight bit (in the range 0-255) quantity specified by N in the
memory location specified by A. Only the low byte of N is used; thus
(POKE A —1) is equivalent to (POKE A 255) while (POKE A 256) is
equivalent to (POKE A 0).

(MEM)

Returns the number of unused bytes of memory. MEM forces a garbage
collection and is the slowest of all INTER-LISP/65 functions.

(DIR DRIVENO)

Displays the contents of the disk directory on drive specified by
DRIVENO, and returns NIL. {DIR) is equivalent to (DIR 1).

(SOUND VOICE PITCH DISTORTION VOLUME)
The SOUND function causes the specified note to be played. Sounds are

generated continuously until another SOUND function is evaluated with
the same value for VOICE. Legal values for the arguments are as follows:

35

INTER-LISP/65 V2.0 - DATASOFT

VOICE: specifies which voice (0-3).

PITCH: specifies the pitch (0-255); high values correspond to low
notes.

DISTORTION: specifies the distortion level; must be an even
number between 0-14.

VOLUME: specifies the volume; must be a number between 1 and
15, with 15 corresponding to the loudest volume.

A table of notes and their associated PITCH values is provided in
Appendix G.

(STICK PORT)

The STICK function returns the number corresponding to the deflection

of the specified PORT (0-3). The correspondence of STICK values and
deflections is as follows:

TOP

LEFT 11 & 5 » 7 RIGHT

DOWN
(STRIG N)
Returns T if the button on joystick N is pressed, otherwise NIL is returned.

36

INTER-LISP/65V2.0 DATASOFT

(BREAK MESSAGE)

BREAK halts the current evaluation thread and passes control to the error
handler {Chapter 13.0). The list MESSAGE (which is not evaluated) is
printed at the current output device. The main use of this function is for
debugging LISP expressions. By inserting a BREAK you can halt
execution and thus examine the current values of atoms.

(XIO CMD 10CB AUX1 AUX2 FILEDEV)

This function invokes a general call to the CIO function resident in the
ATARI operating system. OCB specifies the 1/0 control block associated
with the call. CMD is the command number as follows:

TABLE 9-1
X110 COMMAND NUMBERS

MD OPERATON EXAMPLE
3 OPEN SAME AS OPEN
17 DRAW SAME AS DRAW
18 FILL SEE CHAPTER 10
32 RENAME (XI0 32100 'D:OLD,NEW)
33 DELETE {X10 33 1 0 0 'D:JUNKFILE)
35 LOCK FILE (XI0 35100 'D:SAFE)
36 UNLOCK FILE (X10 36 1 0 0 'D:SAFE)
37 POINT SAME AS POINT
38 NOTE SAME AS NOTE
254 FORMAT DISK (XI0 254 1 00 'D2:)

The AUX1 and AUX2 values depend upon the specific function or device
which is being accessed, you should refer to the appropriate manual for
the specific values required by each command.

37

INTER-LISP/65 V2.0 ~ DATASOFT

10.0 TEXT AND GRAPHICS

10.1 CHANGING SCREEN MODES

(GR MODE)

This expression places the ATARI computer into the graphics mode

specified by MODE. The following table summarizes the characteristics of
the various graphic modes:

TABLE 10-1
RAM
MODE TYPE COLUMNS ROWS ROWS COLORS REQUIRED
(SPLIT) (FULL) (BYTES)
0 TEXT 40 N/A 24 2 993
1 TEXT 20 20 24 5 913
2 TEXT 20 10 12 5 261
3 GRAPHICS 40 20 24 4 273
4 GRAPHICS 80 40 48 2 537
5 GRAPHICS 80 40 48 4 1017
6 GRAPHICS 160 80 9% 2 2025
7 GRAPHICS 160 80 96 4 3945
8 GRAPHICS 320 160 192 1/2 7900

The split screen modes are obtained by adding 16 to the base mode
number. Thus, to enter split screen mode 3 you would set mode to 19
(3+16). To inhibit a screen erase going into a given mode, add 32 to the
base mode number. Thus {GR 51) places the ATARI into split screen
mode 3 and does not erase the screen.

LISP uses IOCB number 6 for all graphics functions; therefore, you
shouldn’t open any other device using IOCB number 6.

The GR function returns the system status number as the value of the

function. Typically this will be a one (1) indicating a successful open. A
table of system error numbers is provided in Appendix E.

38

INTER-LISP/65 V2.0 DATASOFT

10.2 GRAPHIC CONTROL
{COL N)

where N is an integer from 0 to 255 representing a color to be used by the
PLOT and DRAW functions. The interpretation of the color number N is
dependent upon the particular graphics mode of the ATARI computer. In
text mode 0-2, N may be a number from 0 to 255 and determines the
character to be displayed and its color. In the graphics modes (3-8) N can
be a number within the range of permissable colors for the particular mode
(see Table 10-2).

(COL) is equivalent to (COL 0).
(SETCOL REGISTER HUE LUMINANCE)

This function is used to assign the hue and luminance to a given color
register specified by REGISTER. The interpretation of, REGISTER is
dependent upon the current graphics mode. In the graphics modes
‘REGISTER is associated with the value in the COL function. The
interpretation of REGISTER for the text modes is shown in Table 10-2.

Table 10-3 displays the values of HUE and the associated colors. The
LUMINANCE is a number between 0 and 7 with 7 corresponding to the
brightest luminance.

TABLE 10-2
GRAPHICS MODE CHARACTERISTICS
MODE 0:
COLOR DEFAULT COL N COMMENTS

REGISTER VALUE
0 — 0-255
1 LIGHT BLUE 0-255 CHARACTER LUMINANCE
2 DARK BLUE 0-255 BACKGROUND COLOR
3 -~ 0-255
4 BLACK 0-255 BORDER COLOR

39

INTER-LISP/65 V2.0

TABLE 10-2

DATASOFT

GRAPHICS MODE CHARACTERISTICS (Continued)

MODES 1,2:
COLOR DEFAULT COL N COMMENTS
REGISTER VALUE
0 ORANGE 0-255 CHARACTER
1 LIGHT GREEN 0-255 CHARACTER
2 DARK BLUE 0-255 CHARACTER
3 RED 0-255 CHARACTER
4 BLACK 0-255 BORDER AND
BACKGROUND
MODES 3,5,7:
COLOR DEFAULT COL N COMMENTS
REGISTER VALUE
0 ORANGE 1 GRAPHICS POINT
1 LIGHT GREEN 2 GRAPHICS POINT
2 DARK BLUE 3 GRAPHICS POINT
3 — —
4 BLACK 4 BACKGROUND
MODES 4,6:
COLOR DEFAULT COLN COMMENTS
REGISTER VALUE
0 ORANGE 1 GRAPHICS POINT
1 — —
2 — —
3 — —
4 BLACK — BACKGROUND

40

INTER-LISP/65 V2.0

TABLE 10-2
GRAPHICS MODE CHARACTERISTICS (Continued)

DATASOFT

MODE 8:
COLOR DEFAULT COLN COMMENTS
REGISTER VALUE
0 —
1 LIGHT GREEN GRAPHICS POINT
LUMINANCE
2 DARK BLUE GRAPHICS POINT
3 -
4 BLACK BORDER
TABLE 10-3
SETCOL HUE NUMBERS
GRAY 0 BLUE 8
LIGHT ORANGE 1 LIGHT-BLUE 9
ORANGE 2 TURQUOISE 10
RED-ORANGE 3 GREEN-BLUE 1
PINK 4 GREEN 12
5 YELLOW-GREEN 13
PURPLE-BLUE 6 ORANGE-GREEN 14
BLUE 7 LIGHT ORANGE 15

{(PLOT X Y)

The PLOT function displays the current color (specified by the last
evaluated COL function) at the specified graphic location. X and Y are the
coordinates of the point to be plotted. The graphic coordinate system is

identical to the coordinate system described in the ATARI Basic*
programming manual.

INTER-LISP/65 V2.0 DATASOFT

{(DRAW X Y)

The DRAW function draws line from the current cursor location to the
specified point using the current color (specified by the last evaluated COL
function) at the specified graphic location. X and Y are the coordinates of
the destination point. The graphic coordinate system is identical to the
coordinate system described in the ATARI* BASIC programming manual.

(XiI018600'S:)

This function invokes the special graphics “fill'”” command resident in the
ATARI screen hander (S:). Prior to calling this function you should POKE
into location 765 the color register number to be used for the fill operation.
To cause the fill to work properly move to the lower right corner of the
figure then draw to the upper right, then to the upper left. Finally move to
the lower left corner and perform the XIO call.

The following PROG illustrates the technique:

(PROG NIL
(GR 5)
(COL 3)
(PLOT 70 45)
(DRAW 50 10)
(DRAW 30 10)
(PLOT 10 45)
(POKE 765 3)
(XI0 186 00 ’'S:)
LOOP
(GO LOOP))

10.3 TEXT CONTROL
(PAGE)

Erases the text screen and places cursor in the upper left hand corner of
the display. Returns NIL.

(TAB N)

Tabs the cursor to column N on the CRT display. Zero corresponds to the
left most column.

42

INTER-LISP/65 V2.0

10.4 OTHER USEFUL SCREEN COMMANDS
(POKE 752 1)

Supresses screen cursor.

(POKE 752 0)

Enables screen cursor.

(POKE 128 0)

Disables LISP prompt.

(POKE 128 ASCII)

Changes prompt to the character specified by ASCI!
(POKE 82 LEFT)

Sets left margin to LEFT.

(POKE 83 RIGHT)

Sets right margin to RIGHT.

(POKE 201 WIDTH)

Sets width of the ATARI tab key.

DATASOFT

INTER-LISP/65 V2.0) DATASOFT

11.0 LOAD AND SAVE ‘

INTER-LISP/65 contains two internal expressions to LOAD and SAVE
s-expressions from an external device. The LOAD expression is similar to
the BASIC LOAD command. For example, to LOAD s-expressions from
the disk file HANOI just type:

{LOAD 'D:HANOI)
The file name is quoted because LOAD evalutes its arguments.
The disk will ‘whirl’ for a few seconds while the s-expressions are read
from the disk. After LISP has loaded the file it will return the system status
of the function. Typically this will be a one (1) indicating a successful
open. A table of system error numbers is provided in Appendix E. In this
case LISP responds with:

1

LISP

You can determine which s-expressions have been loaded by typing ’
D:HANOI

Whenever expressions are saved in the file, FILE, a directory list is saved

as the first s-expression on the file. When you re-load the first

s-expression in the file it is assigned to the atom which represents the file's

name.

Saving S-expressions is performed by entering

(SAVE PROPS FILE)

where PROPS is a list of the expressions to be saved on file FILE. For
example, if you have made changes to the HANOI program, (after yéu
have loaded it), entering:

(SAVE D:HANOI 'D:HANOI)

“ o

INTER-LISP/65 V2.0 DATASOFT
will save all of the expressions in the list D:HANOI onto the file D:HANOI.
Similarly:
(SAVE (A B C) 'D:STUFF)

will save the expressions A, B and C in file STUFF. The values saved will
be both the values bound to the atoms (in this case A,B and C) and any
function definitions with the names A,B and C. If you reload STUFF by
entering (LOAD 'D:STUFF) then D:STUFF will be set to the list (A B C).
Note that the directories, D:HANOI, D:STUFF, etc., are only assigned at
the moment of a LOAD, not at the moment of a SAVE.

Note that s-expression can also be stored on a cassette tape using, for
example:

(SAVE'(A B C) 'C:)

SAVE can also be used to save s-expression onto the screen! This is useful
for obtaining a quick list of the s-expression in. a file's directory list.

For example:
{(SAVE D:HANO! 'E:)

would display all of the expressions specified by D:HANOI on the ATARI
video display.

In a similar manner,
(SAVE D:HANOI 'P:)

yields a listing of all the properties in the list D:HANOI on the printer.

45

INTER-LISP/65 V2.0 DATASOFT

12.0 DEVICE INPUT AND OUTPUT

This chapter provides a description of the device 1/0 functions which are
available to the INTER-LISP/65 programmer. All of these functions
behave similarly to their corresponding BASIC counterparts. You are
advised to read the appropriate device manual and the ATARI DOS
manual prior to using these functions.

12.1 SEQUENTIAL FILE/DEVICE ACCESS
(OPEN I0CB ACCESS FILESPEC)

This function creates an /O control block for the sequential file or device
specified by FILESPEC. Some examples of valid FILESPECs are:

C: THE CASSETTE

D:FILE THE FILE BY NAME FILE ON DRIVE NUMBER 1
P: THE PRINTER

E: THE KEYBOARD/SCREEN EDITOR

S: THE SCREEN

ACCESS specifies the type of 1/0 to be associated with the file or device.
Values for ACCESS are as follows:

ACCESS OPERATION
4 OPEN FOR INPUT
8 OPEN FOR OUTPUT
12 OPEN FOR INPUT AND OUTPUT
6 DISK DIRECTORY READ
9 OPEN FOR APPENDED OUTPUT
(CLOSE 10CB)

Causes the file or device associated with IOCB to be closed. CLOSE
returns the system status number as its value. (See Appendix E.)

{IN# 10CB)

46

INTER-LISP/65 V2.0 : DATASOFT

Causes all subsequent LISP input to be received from the file or device
specified by IOCB. The association of IOCBs with files is performed by the
OPEN function described above. IN# returns NIL.
The following LISP evaluations:

(IN# 4) (SETQ X (READ)) (SETQ Y (READ))

are equivalent to the BASIC commands:

INPUT #4;X
INPUT #4;Y

(PR# IOCB)
Causes all subsequent LISP output to be sent to the file or device specified
by IOCB. The association of IOCBs with files is performed by the OPEN
function described above. PR# returns NIL.
The following LISP evaluations:

(PR# 4) (PRINT 'X=) (PRINT X)
are equivalent to the BASIC command:

PRINT #4;”"X="";X
12.2 DISK RANDOM ACCESS FUNCTIONS
(POINT 10CB SECTOR BYTE)
This function can be used to specify the sector and byte at which the next
LISP 1/0 function will read or write. Typically this function is used in
conjunction with the note command described next. POINT returns the
system status number. (See Appendix E).
(NOTE 10CB)
This function returns the current sector and byte position of the file

specified by IOCB. The sector and byte are returned as a dotted pair. For

47

INTER-LISP/65 V2.0 DATASOFT

example, if the current sector and byte were 32 and 120 respectively, then
an evaluation of NOTE would return:

(32 . 120)

As an illustration of the technique required for using POINT and NOTE,
consider the following example.

The following PROG creates a data file (D:PEOPLE) and a memory of the
locations of the SALLY and HENRY data using the NOTE function to
write a directory (or index) file (D:PEOPLE.DIR) :

(PROG NIL
(OPEN 4 12 'D:PEOPLE)
(PR# 4)
(SETQ HENRY (NOTE 4))
(PRINT (HENRY (AGE 32}})
(SETQ SALLY (NOTE 4))
(PRINT "(SALLY "(AGE 28)))
(CLOSE 4)
(OPEN 5 12 'D:PEOPLE.DIR)
(PR# 5)
(PRINT HENRY)
{PRINT SALLY)
(CLOSE b5)
(PR# 0))

The following PROG reads the data file created by the previous PROG
using the POINT function:

(PROG NIL
{OPEN 4 4 'D:PEOPLE.DIR)
(IN #4)
(SETQ HENRY (READ))
(SETQ SALLY (READ))
(CLOSE 4)
(OPEN 5 12 '‘D:PEOPLE)
{IN# 5)
(POINT 5 (CAR SALLY) (CDR SALLY))
(PRINT (READ))
(POINT 5 (CAR HENRY) (CDR HENRY))
(PRINT (READ))
(CLOSE 5)
(IN# 0))

INTER-LISP/65 V2.0 ‘ DATASOFT

13.0 ERROR HANDLING

When LISP encounters an error, an error message is displayed and control
is passed to the error handler. Error messages are of the form:

4 ERR A the type of error

A Lemmmmmeee- the current value

{CDR X) Lommmmmmmee the expression which encountered the
error

ERR> Lommmmmmneee the error handler prompt

In this example, A was passed as the current binding of the variable X in
the (CDR X) expression. Since A (the literal) is not a list, an error has
occurred. All of the LISP error messages can be found in Appendix B.
Note that the error handler uses a different prompt character. Its function
is to remind you that the LISP supervisor still has ‘‘unfinished’’ business
residing on the evaluation stack.

Once within the error handler, you may proceed in several ways by using
one of the error processing expressions described below:

(RESET)

You can use this command to “‘abort’ the current evaluation thread.
Control is immediately passed back to the LISP supervisor (not to be
confused with the RESET key).

(RETURN X)

You can use this expression to continue evaluation of the current
evaluation thread. The single argument is evaluated and used as the value
of the expression which produced the error. Control is then passed back
to the supervisor which continues evaluation from the point which
produced the error.

{BAKTRACE)

This command displays the sequence of evaluations which lead to the
error. Each evaluation displayed is preceded by two “plus” signs, as
follows:

INTER-LISP/65 V2.0 DATASOFT

LISP I

(BAKTRACE)

+ + (BAKTRACE}
+ +(CDR X)

+ + (PROGN (SETQ Y (CDR X)))
NIL

Additionally, while within the error handler you may perform any
operation which would normally be available from the supervisor. This
includes defining new functions, loading files, setting variables, etc.

50

INTER-LISP/65V2.0 - DATASOFT

14.0 SAMPLE PROGRAMS

Your INTER-LISP/65 system disk is supplied with sample programs to
demonstrate some of the capabilities of LISP.

14.1 THE TOWERS OF HANOI

This program graphically displays the solution of the famous Towers of
Hanoi puzzle and provides an excellent example of the power of recursive
programming. The object of the puzzle is to move all of the disks from
their starting post to the third post under the restrictions that only one disk
may be moved at a time, and that a disk may only be placed upon a larger
disk.

Running The Program
Power up LISP and enter
(LOAD 'D:HANOI)
After a few moments LISP should respond with
1
which indicates a successful load.
Now type,
(HANOI)
Your ATARI should now show its intelligence by solving the Towers of
Hanoi puzzle with methodical speed. After the “program’’ is finished you

can return to text mode by entering (GR 0).

14.2 THE LISP EDITOR

Your INTER-LISP/65 system disk contains a powerful LISP expression
editor to aid in the creation and manipulation of LISP programs. The
editor contains a general “pretty printer”’ algorithm which is invaluable
during the debugging of LISP functions.

51

INTER-LISP/65V2.0 DATASOFT

USING THE EDITOR:
With INTER-LISP/65 running, enter:
(LOAD 'D:EDIT)
INTER-LISP/65 will respond with:
1
after the editor is loaded. To enter the editor, type:
(EDIT EXPRESSION)

where EXPRESSION is the list you wish to edit. Note that to edit a
function you can enter (EDIT (GETD "FUNCTION)). You can also enter
the editor by just typing:

(EDIT)

in which case, you can use the E and EF commands desrcibed below to
specify the s-expression to be edited.

Once in the editor you may use the following commands:

A - Advances to next element of list

D - Go down to the first element of current element
{must be a list))

B - Backup to previous element
R s1 - Replaces current element by s1.
X s1s2 - Exchanges all occurences of s1 by s2.
DEL - Deletes current element
I S1 - Inserts S1 after current element

LI - Places one level of parentheses about current
element

52

INTER-LISP/65 V2.0 DATASOFT

RE - Removes one level of parentheses from current
element

G - Groups items into a list. Enter ““A”" command until
last element to be grouped is displayed. List is then
closed by entering another “‘G"’.

PRE s1 - Inserts s1 in front of current item

PP - Pretty prints the entire list being edited

-

- Pretty prints current expression and all items
following it

T - Returns to top element of list
EX - Exits editor
C - Displays disk catalog
E s1 - Edits the list specified by s1.

EF s1 - Edit the function specified s1.

(72}

- Save expressions in list s1 on file s2 disk. The editor
prompts for the property list to save and file name

L - load expressions from disk file s1. The editor
prompts for the file name

PU S1 - Deletes file S1 from the disk.
LOCK S1 - Locks file S1
UNL S1 - Unlocks file S1.

H - Displays edit commands

53

INTER-LISP/65 V2.0 DATASOFT

The following text gives a detailed example of use of the editor program.
User input is indicated by a terminating [CR] symbol. Explanatory notes
are surrounded by brackets [like this]l. All other text (including the
prompts) is output from LISP or the editor.

[User loads editor]

LISP
(LOAD 'EDITOR) [CR]

1
[user enters editor]

LISP
(EDIT) [CRI

NIL

[since no argument was supplied the editor responds with NIL. User now
decides to write a factorial function. Note that “Edit> "’ is the editor’s
prompt]

Edit> EF ! [CR]

Creating--> !

[! is currently an udefined function so the editor indicates that the function
| is being created.]

Input> (LAMBDA (C)) [CR]
LAMBDA

[the user has begun the defintion of ! by indicating it is a lambda
expression with an argument of C. Note that the prompt is “Input> *
while in the create mode].

Edit> A [CR]

(C)

INTER-LISP/65 V2.0 : DATASOFT

[move across to the (C)]
Edit> | [CR]

[goes to insert mode. the editor will now insert the next s-expression read
after the current item].

?(COND ((EQ N 0} 1)) [CR]
(COND ((EQ N 0) 1))

linserts a COND expression. Note that the editor prompts with a question
mark, **?"’, since the expression to insert was not supplied.]

Edit> PP [CR]
[and pretty prints to see how it looks]
(LAMBDA (C)
(COND ((EQ N 0)
m
Edit> T [CR]
[goes to top of the expression]
LAMBDA
Edit> A [CR]
[moves across |
(C)
Edit> R (N} [CR]
[replaces incorrect argument}
(N)

Edit> A [CR]

55

INTER-LISP/65 V2.0

(COND ((EQ N 0) 1))

Edit> D [CR]

COND

Edit> A [CR]

((EQNO0) 1)

Edit> | [CR]
[to insert rest of factoriall

AT (* N (1 (SUB N)))) [CRI

(T (* N (1 {SUB N))))

Edit> PP [CR]

(LAMBDA (N)

(COND ((EQ N 0)
(1T)(* N (1 {SUB N))))

[everthing looks fine now]

Edit> S

Properties> ‘(1)

File> D:FACTOR [CR]

DATASOFT

[decides to save the single factorial property on file named FACTOR. Note
that the editor displays ‘‘Properties> "* to prompt for the properties to be

saved and displays ‘‘File> " to prompt for the file name.]

Saved

INTER-LISP/65 V2.0 * DATASOFT

[the editor responds with the fact that the file has been saved]
Edit> EX [CR]
EXIT

[the user exits the edit program and returns to LISP>

LISP
(14) [CR]

24

[exits the editor and tests the factorial 1]

[some time later user re-enters editor and decides to write more functions]
LISP
(EDIT) [CR]
NIL
Edit> L
File> D:FACTOR [CR]
Loaded--> (1)

{editor indicates successful load and indicates which properties have been
loaded by displaying the file's directory list]

Edit> EF ABS [CR]
Creating--> ABS
Input> (LAMBDA (N)) [CR]

57

INTER-LISP/65 V2.0 DATASOFT

LAMBDA
Edit> A [CR]
(N)
[moves across]
Edit> | [CR]
?(COND ((> N 0) N) (T (SUB 0 N)))[CR]
(COND {({> N 0) N) (T (SUB 0 N)))
Edit> PP [CR]
(LAMBDA (N)
(COND ((> N 0)

N)
(T (SUB 0 N))))

[user decides to replace the formal argument name N by X]
Edit> T [CR]

LAMBDA

[goes to top since the Xchange command replaces only occurrences
starting at current position in the s-expression up to end of list]

Edit> X N X [CR]
[replaces all ocurrences of N by X]
LAMBDA

Edit> PP [CR]

INTER-LISP/65 V2.0 - DATASOFT

(LAMBDA (X)
(COND ((> X 0)
X)
(T {SUB 0 X)}))

[DONE!]
Edit> E D:FACTOR [CR]

[decides to add ABS to directory list of FACTOR. Note that this does not
affect the file only the in-core list]

!
Edit> PP [CR]
M

Edit> | ABS [CR]

‘ ABS

Edit> PP [CR]

(I ABS)

Edit> S

Properties> D:FACTOR

File> D:MATHEXP [CR]

{all of the s-expressions in the list D:FACTOR, i.e. ! and ABS, will be
saved on the file MATHEXP. Again note that only the file MATHEXP is
affected even though the modified directory list of the file FACTOR is
used as the properties of the S command]

Saved
Edit> EX [CR]

EXIT

® "

INTER-LISP/65 V2.0 DATASOFT
LISP
(ABS -1) [CR]
1
LISP
[END OF SAMPLE EDIT SESSIONIK
14.3 DOCTOR
This program is a translation of the DOCTOR program as described in
Winston and Horn on page 219. This file also contains the powerful string
matching function as described on page 230 of Winston and Horn. This
version of the program is rather primitive but you should have fun
exercising your LISP programming skills to create more elaborate (and
intelligent) conversational programs.
Enter the command:
(LOAD 'D:DOCTOR)
After the file has loaded entering

(DOCTOR)

will start the program. Note that all user input to the program must be in
the form of lists.

14:4 THE RPN CALCULATOR

This function can be found in the file CALCULATOR. To load the program
type:

(LOAD 'D:CALCULATOR)
The function is evaluated by typing:

(CALC)

INTER-LISP/65 V2.0 DATASOFT

The program now enters entry mode by displaying the prompt:
ENTER>

If you enter a number it is pushed onto the stack {which is displayed after
each entry). If you enter an operator then the operation is performed on
either the top two numbers for binary operators or just the top number for
unary operators. The operators recognized by CALC are:

BINARY OPERATIONS

+ add top two stack numbers

- subtract top two stack numbers

* multiply top two stack numbers

/ divide top two stack numbers

p power of the top two stack numbers

UNARY OPERATIONS

exponential

natural log

square root

negative

duplicate top of stack
quit program

o0 a0 3 nw —o0

14.5 MACLISP FUNCTION SIMULATOR

The file MACLISP contains INTER-LISP/65 functions which will simulate
the MACLISP functions:

FUNCALL, DEFPROP, GET, REMPROP, MAPCAR, DEFUN,
REVERSE, APPLY, SUBST, NCONC and DELETE.

These functions will be available after loading the file MACLISP. Note that

these functions do not behave altogether the same as their corresponding
MACLISP counterparts since they are just simulators.

61

INTER-LISP/65 v2.0 DATASOFT

The property list is simulated by attaching an ordinary LISP list to an
atom'’s value cell. All properties which are not function types will be
appended onto this ordinary LISP list. If one of the property access
functions detects a MACLISP function type of EXPR, FEXPR, or MACRO
the proper INTER-LISP/65 function list is constructed and inserted in the
atom’s function definition cell.

14.6 THE CLISP FUNCTION

The file CLISP contains a function which will convert an s-expression
containing algebraic arithmetic expression to Cambridge prefix notation
used by INTER-LISP/65. For example the expression:
(A *B)
will be converted to:
(* AB)
while
(X = (A - B))
will be converted to:
(SETQ X (SUB A B))
Other exprssion are converted similarly.
The syntax of the function is
(CLISP (QUOTE FUNCTIONNAME))
where FUNCTIONNAME is the name of the function to be converted.

CLISP will retrieve the function definition and redefine the function to be
the converted function.

62

INTER-LISP/65 V2.0 ~ DATASOFT

As an example if | is defined as follows:
(DEFINEQ ! (LAMBDA (N)
(COND ({EQ N 0) 1)
(TIN*{(N - 1))
then
(CLISP 1)
will convert ! as if it had been defined as follows:
(DEFINEQ ! (LAMBDA (N)
(COND ((EQ N 0) 1)
(T (*N({(SUBN 1H)
)
14.7 LISP LIGHTS
This program demonstrates the use of high resolution graphics in LISP.
To load the program type:
(LOAD 'D:LIGHTS)
To run the program enter:

(LIGHTS)

The program runs forever, to terminate execution press control-B twice in
quick succession.

INTER-LISP/65 V2.0 DATASOFT

APPENDIX A
INTER-LISP/65 COMMAND SUMMARY

(AND X1 X2 ...XN)

The logical "AND’ of the operands, X1, X2 ...; if any of the Xl are NIL,
then NIL is returned. Otherwise, XN is returned.

(APPEND LIST1 LIST2 LIST3 ...)

Concatenates the lists specified by its arguments and returns the
concatenated list as its value.

(APPLY* FUNCTION ARGUMENT1 ARGUMENT2 ...)

Applies the function specified by the value of FUNCTION to the
arguments, ARGUMENT1, ARGUMENT2 ... Thus if the value of
FUNCTION is '+’ then the following two expressions are equivalent:

(+27)
and

(APPLY* FUNCTION 2 7)

(ASSOC A L)

Searches the second argument L for the sublist whose CAR matches A; if
a match is found, then the sublist is returned. Otherwise, NIL is returned.

(ATOM X)
Returns T if X is not a list. Examples:

(ATOM 'A) returns T
(ATOM ’(A B)) returns NIL.

{(BAKTRACE)

Displays the sequence of evaluations leading to the current evaluation.
Returns NIL.

64

INTER-LISP/65 V2.0 DATASOFT

(BREAK MESSAGE)

Prints the unevaluated MESSAGE and stops execution of the current
expression. Control is passed to the error handler.

(CAR X)

Returns the first element of list X. If X is a non-NIL atom, an error will
result. (CAR NIL) returns NIL.

{CDR X)

Returns list obtained by omitting the first element of the list X. If X is not a
list, an error will result. (CDR NIL) returns NIL.

(CLOSE 10CB)

Closes the disk file specified by FILE, and returns the system status
number as its value.

(COL X)

Sets current graphic color to the color register specified by X. If X is not
numeric, the color is set to color register zero. (COL) is equivalent to (COL
0).
(COND (P1 V1) (P2 V2) ... (PN VN))
Evaluates the ‘predicates’ of each argument and returns the
corresponding value for the first non-NIL predicate, {i.e. it returns V1 if P1
is non-NIL), else if P2 is non-NIL it returns V2, etc. Each VN is an
“implicit” PROGN. This expression is equivalent to the BASIC statement:
IF P1 THEN V1, ELSE IF P2 THEN V2 ...
ELSE IF PN THEN VN

(CONS X Y)

Returns the dotted pair whose CAR is X and whose CDR is Y.

65

INTER-LISP/65 V2.0 DATASOFT

(DEFINEQ FUNCTION FUNCTIONDEF)

Establishes FUNCTIONDEF as the function associated with the atom
FUNCTION and returns FUNCTIONDEF.

(DEFINE FUNCTION FUNCTIONDEF)

Similar to DEFINEQ except FUNCTION™ is evaluated. Returns
FUNCTIONDEF as its value. '

(DRAW X Y)

Draws from current cursor tocation to the pomt (x , y) specified by X and
Y; returns NIL.

(EQ X Y)

Returns T if X and Y are the same atom, {either numeric or symbolic), or X
and Y point to the same list. (Two lists may PRINT equally but reside at
distinct memory locations.) (EQ X) is equivalent to (NOT X).

(EVAL X)

Returns the value of X.

(EXP N)Returns e (2.718289...) to the N th power.

(GETD NAME)

Returns the function list which is attached to the atom specified by name.
NAME is evaluated. If NAME is not an atom then NIL is returned as the
value of GETD.

(GO LABEL)

Used within a PROG to transfer control to the expression following
LABEL. LABEL is not evaluated and it must be symbolic. GO is only valid
inside a PROG and it cannot be used to branch to a label which is outside
of the currently executing PROG. " ' S -

66

INTER-LISP/65 V2.0 DATASOFT

(GR MODE)

Sets screen to graphic mode specified by MODE. Returns the number
equal to the system status of the mode change. (A 1 indicates success.)

(INT N)

Returns the nearest integer of N by rounding N. Thus ~.5 returns —1
while — .4 returns 0 and .5 returns 1.

(INF 10CB)

Causes all subsequent input to be received from the file or device
associated with IQCB. Returns NIL.

(LAMBDA (X1 ... XN) BODY)

The 'lambda’ expression or user defined procedure LAMBDA is evaluated
by passing the evaluated argument list (X1 ...XN) to the procedure body
BODY.

(LAST X)

Returns the last CDR of the expression X. If X is an atom or NIL then NIL
is returned.

{(LENGTH X)

Returns the number of elements in the list X. If X is an atom or NIL then
zero is returned.

(LISTABC..)
Returns the list whose elements are A, B, C ...

(LOAD FILE)

Accepts s-expressions from file FILE until a NIL expression is read.
Returns the system status number as its value.

67

INTER-LISP/65 V2.0 » DATASOFT

{(LOG N)

Returns the natural logarithm of N.

(MACRO (A) BODY)

The MACRO expression: A MACRO is evaluated by passing the entire
calling expression as the value of the single argument A. The value of the
MACRO is the evaluation of the results of the evaluation of BODY. In
somewhat loose terminology MACRO behaves like ““EVAL squared’’. The

main use of MACRO is to construct code and then execute the code.

{MEM)

Returns the number of bytes of free memory. (MEM) causes a garbage
collection, consequently it should not be used too liberally in functions.

(MEMBER X Y)

Searches the list Y for an element which matches X and returns the sublist
of Y for which X is the CAR if a match is found.

(NEW)

Erases all user defined lists from memory. NEW reinitializes LISP and thus
has no value.

NIL
The empty list, logical ‘false’ or end of list. NiL is an atom.
(NLAMBDA (A) BODY)

The 'NLAMBDA' procedure. NLAMBDA is similar to LAMBDA except
that the single argument A is not evaluated before passing it to BODY.

(NOT X)

See (EQ X Y).

INTER-LISP/65V2.0 DATASOFT

(OBLIST)

Returns the list of currently entered atoms.

(OPEN I0CB ACCESS FILESPEC)

Creates an 1/0 control block (specified by 10CB) for the file or device
specified by FILESPEC sequential file FILE, (i.e. sets up a file or device for
subsequent 1/0 operations). It returns the system status number as its
value.

(OR X1 X2 ... XN)

Returns the value of the first non-NIL XlI. If all Xl are NIL, then NIL is
returned.

(PACK L)

Returns the atom whose characters are the concatenation of the atoms in
the list L. Example:

(PACK (AT O M))
returns
ATOM.
{(PAGE)
Clears the CRT screen. Returns NIL.
{PEEK A)
Returns the contents of memory location A.
(PLOT X Y)

Plots at the graphics point at coordinates {X, Y) in the current color.
Returns the system status number as its value.

69

INTER-LISP/65V2.0 DATASOFT

(POKE X Y)

Sets the memory location X to the number Y. Returns NIL.
(PRINT X)

Prints and returns the value of X.

(PRIN1 X)

Prints the expression X with no carriage return. If X is a quoted string, e.g.
“ABC”, then it is printed without the quotes. Returns the value of X.

(PRIN2 X)

Prints the expression X with no carriage return. Returns the value of X.

(PROG (X1 X2 ... XN) S1S2 ...SN)

Evaluates each of the ‘statements” S| sequentially. Each of the
arguments Xl is set to NIL prior to execution of the PROG body and are
restored to their old values upon exiting the PROG. PROG returns the
value of the Si evaluated before an exiting statement is encountered.

(PROGN X1 X2 ... XN)
Evaluates each “statement’”’ Xl sequentiaily and returns the value of XN.
(PR# 10CB)

Causes all subsequent output to be directed to the device or file
associated with IOCB. Returns NIL.

(QUOTE X)
The literal X. An equivalent form on input is 'X.

(READ)

Accepts an S-expression from the current source of input and returns the
S-expression as its value.

70

INTER-LISP/65 V2.0 DATASOFT

(READA)

Accepts one atomic expression from the current source of input. Returns
the atom as its value.

{READC)

Accepts one character from the current source of input and returns the
single character entered as the value of the READC. READC flushes the
LISP input buffer so that the ““A’" in the following will be ignored:

LISP
(READC)A <CR>

{(RPLACA X Y)
Replaces the CAR of X with Y and returns the modified list as its value.
(RPLACD X Y)

Replaces the CDR of X with Y and returns the modified list as its value.

(RESET)

Cancels the current thread of expressions being evaluated. Returns
control to the LISP supervisor. RESET has no value.

(RETURN X)

Causes an exit from the current PROG with the value of X. RETURN can
also be used to return from the error handier. In this case (RETURN X)
evaluates X and returns it as the value of the expression which produced
the error,

(SAVE PROPS FILE)

Saves the expressions specified by the list PROPS on the file or device
FILE. Returns the sytem status number as its value.

7

INTER-LISP/65 V2.0 » DATASOFT

(SETCOL REGISTER HUE LUMINANCE)
Sets the hue and luminance of the specified color register. Returns NIL.
(SET X Y)

Sets the value of X, (which must be a legal variable), to the value of Y.
Returns the value of Y.

(SETQ X Y)
Sets the ‘‘variable’ X to the value of Y and returns the value of Y.
(SOUND VOICE PITCH DISTORTION VOLUME)

Sets the pitch, distortion and volume to be played by the specified voice.
Returns NIL.

(STICK N)

Returns the number corresponding to the current deflection of the joystick
specified by N.

(STRIG N)

Returns T if the button on joystick N is depressed; NIL otherwise.

(SsuB X Y)

Returns the number X — Y.
T

Logical “TRUE".

(TAB N)

Tabs horizontally N spaces on CRT screen. Returns NIL. (TAB) is
equivalent to (TAB 0).

72

INTER-LISP/65 V2.0 DATASOFT

(TERPRI)
Prints a carriage return and returns NIL.
(UNPACK X)

Returns the list whose elements are the characters of the atom X.
Example:

(UNPACK 'ATOM)
returns
(ATOM).
(XIO COMMAND IOCB AUX1 AUX2 FILESPEC)
Performs a general call to the ATARI operating system function CIO

{(Central 1/0 utility). The function to be performed is specified by
COMMAND. Returns the system status number as its value.

(# N)

Returns T if N is a numeric atom.
(+ XY)

Returns the number X + Y.
(>XY)

Returns T if X is greater than Y.
(* X Y)

Returns the product of X and Y.
(/ XY)

Returns the number X divided by Y.

73

INTER-LISP/65 V2.0 : DATASOFT

@XM

Returns the Ith CDR of the list X. This expression is equivalent to the
expression:

(CDR (CDR (CDR ... (CDR X} ... }))
I<---- | TIMES ------ >1

Note that (@ X 0) returns the value of X. This expression is useful for array
processing. If X is the list:

(1234)
then (CAR (@ X 1)) will return the number 1+ 1. If X is the list
((123)(456)(789))

then (CAR (@ (CAR (@ X 1)) J)) returns the (l,J) element of the 3 x 3
matrix represented by X.

74

INTER-LISP/65 V2.0 . DATASOFT

APPENDIX B
LISP ERRORS BY ERROR NUMBER

ERROR 1: “EVALUATION ERROR"”

LISP has encountered an undefined function. A somewhat trivial example
which would produce this error is:

LISP
(T

since T is not a function.
ERROR 2: ‘““SYSTEM ERROR”

A bad system error has occurred. If you have, unsaved S-expressions it is
better if you save them on a scratch disk and re-initialize LISP.

ERROR 3: ""MEM FULL"

LISP has used all available memory.

ERROR 4: “LIST ERROR"”

LISP expects a list and has not encountered one.
ERROR5: "UNUSED”

This error message is not used.

ERROR 6: ""ATOMIC ERROR"

LISP expects an atomic expression and has not encountered one. This
error is also displayed for invalid assignments as in

(SETQ T 5)
ERROR 7: “UNUSED"”

This error message is not used.

75

INTER-LISP/65 V2.0 DATASOFT

ERROR 8: ‘'BAD SUBR ERROR”

LISP has encountered a SUBR or NSUBR whose CDR is not of the
correct form.

ERROR 9: ""FORMAL ARGUMENT ERROR”

LISP has encountered an illegal argument to LAMBDA, NLAMBDA or
MACRO. Examples are:

(LAMBDA (T) (SETQ T NIL))
| T is reserved.

(NLAMBDA ({N)) (SETQ N 1))
S (N) is not atomic

This error is considered fatal and causes the current evaluation to be
aborted; control is passed back to the LISP supervisor, NOT the error
handler.

ERROR 10: "“UNUSED”

This error message is not used.
ERROR 11: ""UNUSED”

This error message is not used.
ERROR 12: ‘““NO LABEL ERROR"

A GO expression references a label which is not defined within the
currently executing PROG.

ERROR 13: “REPLACE ERROR’’

A RPLACA or RPLACD has attempted to modify a non list structure.
ERROR 14: “ARITHMETIC OVERFLOW"

Evaluation of an arithmetic expression has resulted in a number larger than

the largest number which LISP can store. The most frequent cause of this
error is an attempt to divide by zero.

76

INTER-LISP/65 V2.0 "~ DATASOFT

ERROR 15: "“STACK FULL ERROR”

LISP has used all available memory during evaluation of a function. If this
error occurs during an extensively recursive function then it may be
impossible to repeat other extensively recursive functions even though
(MEM) may indicate a large pool of free memory. You should still be able
to execute any of the predefined LISP functions. To fully recover from this
error you need to save any unsaved expressions on a disk, re-initialize
LISP, and then reload your files.

Certain LISP functions return the system status error numbers, a
description of these errors can be found in Appendix E.

77

INTER-LISP/65V2.0 ' DATASOFT

APPENDIX C
SOME UTILITY LISP FUNCTIONS

The following utilities are provided on your LISP system disk in file UTILS.
(VTAB R)

Tabs to row R

(LAMBDA (R) (POKE 656 R))

(GOXY R C)

Positions cursor at row R and column C

(LAMBDA (R C) (PROGN (VTAB R) (TAB C)))

{REFLECT)

Prints charaters upside down

(LAMBDA NIL (POKE 755 4))

(NORMAL)

Prints character right side up

(LAMBDA NIL {POKE 755 2))

(HLIN X1 X2 Y)

Draws a horizontal line from (x1 ,y) to (x2 ,y)

(LAMBDA (X1 X2 Y) (PROGN (PLOT X1Y) (DRAW X2 Y)))
(VLIN Y1 Y2 X)

Draws a vertical line from (x, y1) to (x, y2)

(LAMBDA (Y1 Y2 X) (PROGN (PLOT X Y1) (DRAW X Y2)))

78

INTER-LISP/65 V2.0 DATASOFT

(MOD X Y)

Returns the number x modulo y

(LAMBDA (X Y) (SUB X (* (INT (SUB (/ X Y) .B)) Y)))
(RAN RANGE)

Returns random number between 0 and RANGE

{LAMBDA (RANGE) (* {/ (+ (PEEK 53770) (* 256 {PEEK 53770))) 65536)
RANGE))

{TIME)

Prints the time since power on in the format HH:MM:SS and returns the
number of seconds since power on.

79

. INTER-LISP/65V2.0 DATASOFT

APPENDIX D
INTER-LISP/65 MEMORY MAP

All adresses are in hexadecimal.

$BFFF >

DISPLAY LIST

<--- HIMEM : $81,$82

NUMERIC ATOMS

$8000 >

LISTS

‘ FREE SPACE

< TOP : $97,$98

<-- BOTTOM : $87,$88

ATOMIC STRINGS

INTER-LISP/65

$2200 >
DOS, SYSTEM
AND LISP
WORK SPACE
$0 >

80

INTER-LISP/65 V2.0 . DATASOFT

ERROR #

1
128
129
130
131
132
133

. 134
135
136
137
138
139
140
141
142

143

APPENDIX E

ATARI SYSTEM ERROR MESSAGES

MEANING

SUCCESSFUL COMPLETION

BREAK ABORT: User hit break key during 1/0
IOCB is already open.

Nonexistent device.

IOCB open for write only.

Invalid command for device.

File or device not open.

lllegal device number

IOCB open for read only.

END OF FILE detected.

Truncated record.

Device time out.

Device NAK: grabage at serial port or bad disk drive.
Serial bus framing error.

Cursor out of range

Serial bus data frame overrun.

Serial bus checksum error.

81

INTER-LISP/65V2.0 DATASOFT

144

145

146

147

160

161

162

163

164

165

166

167

168

169

170

171

Device done error.

Read after write compare error.
Function not implemented.
Insufficient ram for screen mode.
Drive number error.

Too many files open

Disk full

Unrecoverable system |/O error.
File number mismatch: (trashed disk)
File name error.

POINT commad data length error
File locked.

Special command invalid.

Disk directory full (64 files).

File not found.

POINT command invalid.

82

INTER-LISP/65 V2.0 " DATASOFT

APPENDIX F
OVERVIEW OF LISP STORAGE

INTER-LISP/65 stores data in three distinct memory areas, according to
the data type. Atomic strings or ““print names’’ are stored starting at low
memory in increasing order; numbers are stored starting at address $8000
in increasing order; and lists are stored in the heap (which starts at $7FFF)
in decreasing order. A memory full error occurs when the print names
collide with the heap. This storage arrangement is shown in Appendix D.
The following discussion provides the particulars of the storage of the
various types.

Print names are stored as zero byte terminated strings with the sign bit of
each character equal to zero.

Each list element occupies four contiguous bytes in the list area of

memory. Two bytes represent the CAR and two bytes represent the CDR,
thus:

CAR CDR

The format of the two byte CAR or CDR cell is:

15 14 13 12 11 10 9 8 7 6 56 4 3 2 1 0

N DATA FIELD G|A
where N = NUMERIC BIT
G = GARBAGE COLLECTION BIT

A = ATOM BIT

1l

If the numeric bit is set then the data field points to the address where the
numeric value is stored. Numeric atoms require eight bytes of storage for
the actual numeric value of the atom.

83

INTER-LISP/65 V2.0 DATASOFT

If the atom bit is set, then the data field points to a cell whose CAR points
to the print name of the atom and whose CDR points to the value of the
atom.
A list which PRINTSs as

(A B)

is represented in memory as

0 o——1— » 0 0
v v
: o] \% 0 \%
v
llAII IIBII

In this diagram V represents a pointer to the “‘property’’ list of the atoms A
and B. Each property list requires a minimum of eight bytes of storage.
Since this diagram also represents the manner in which new atoms are
entered into the atomic symbol table, it should be clear that defining a
new atom requires eight bytes of memory in addition to the length of the
atom’s print name. Thus defining the atom ATARI requires eight plus
eight plus six or twenty-two bytes of storage. Assigning a value or
function definition to an atom ,of course, requires additional memory.

INTER-LISP/65 V2.0 DATASOFT

APPENDIX G
NOTES AND PITCH VALUES FOR SOUND FUNCTION
C 29
B 31
A# 33
A 35
G# 37
G 40
F# 42
F 45
E 47
D# 50
D 53
C# 57
C 60
B 64
A# 68
A 72
G# 76
G 81
F# 85
F 91
E 96
D# 102
D 108
C# 114
MIDDLE C 121
B 128
A# 136
A 144
G# 153
G 162
F# 173
F 182
E 193
D# 204
D 217
C# 230
C 243

85

INTER-LISP/65V2.0 DATASOFT

*ATARI is a registered trademark of ATARI COMPUTER INC.

*IBM 7090 is a registered trademark of IBM INC.

86

Interlisp/65 V2.2

‘ Documentation Addendum, July, 1982
Version 2.2 corrects an error in the (GR) function which did not
allow variable arguments as in: (GR X).

Also, user memory has been increased by 1152 bytes.

Documentation corrections for V2.2:

Page 53: Change catalog command description to read
“C S1 - displays catalog on drive specified by S1°.

Change UNL to UNLOCK.
Page 56: Change all occurrences of (SUB N) to (SUB N 1).

. Page 60: Section 14.4; The function CALC is on file CALC.
Change all occurrences of CALCULATOR to CALC,

Page 80: Change the “$220@" to read '$1D8QJ"".

Additional demonstration programs:

* The random access functions on page 48 are included in the
file RANDOM. The function WRITE__PEOPLE creates the
file. READ__PEOPLE will read the file.

* File BOX contains a GTIA demonstration; after loading type
(BOXER) to execute the demo. Terminate with Control B.

* File GTIA contains two more GTIA demonstrations. Typing
(GTIA1 9) or (GTIAT 11) will demonstrate GTIA modes 9
‘ and 11. Terminate with Control B.

SOFTWARE OPPORTUNITY

Datasoft is offering a unique opportunity to software
authors. Send us your program or program.concept for eval-
uation. If it is accepted for publication we will enter into a
marketing agreement to sell your product through our
Domestic and International distribution channels.

And the opportunity does not end there. We offer you
something few other publishers can. We call it “Product
Roll-Over”. We have the capability to take a program and
transfer it to other popular microcomputers (Atari, Apple,
TRS-80 and NEC). We can even plan distribution on machines

still in development that we feel will be a large part of
tomorrow’s market.

Datasoft works with several large microcomputer manu-
facturers on new and exciting projects. We are involved with

many “famous-name” companies entering our industry for
the first time.

So get the most exposure for your programming efforts.
Write us for a free programmer’s package and get a starton a
rewarding future. It’s waiting for you today.

Send your name, address and phone number to:

Datasoft Inc.®
Programmer’s Package
9421 Winnetka Avenue
Chatsworth, CA 91311

Or call us at (213) 701-5161 and ask for our Software
Manager.

¢

