
•

•

•

DIF Clearinghouse
zo Box 638
Newton Lower Falls. MA 02162

DIF TECHNICAL SPECIFICATION

DIFtm is the format for data interchange
developed by Software Arts tm Products Corp.

(§) Copyright 1983 by Software Arts Products Corp.
All rights reserved.

Software Arts is a trademark of Software Arts Products Corp. and
Software Arts, Inc.
DIF is a trademark of Software Arts Products Corp.
TK, TKI and TK1Solver are trademarks of Software Arts, Inc.
VisiCalc is a registered trademark of VisiCorp.
VisiPlot, VisiTrend/VisiPlot are trademarks of VisiCorp.
TREND-SPOTTER is a registered trademark of Friena Information
Systems.

Limited License to Copy:

This Technical Specification is intenaed for the use of the
original purchaser only. The original purchaser is hereby
licensed to copy it for nis own use, provided that this notice,
together with the copyright, trademark and warranty notices, are
reproduced on each such copy. Copying of this document in any
form for purposes of resale, license or distribution is prohi-
bited.

No Warranty:

This document is being published to enhance the usefulness of
DIF, a format for data interchange, as used by the VisiCalc (R)
ana other programs.

NEITHER SOFTWARE ARTS PRODUCTS CORP. NOR THE DlF CLEARINGHOUSE
NOR VISICORP MAKES ANY WARRANTY. EXPRESS OR IMPLIED, WITH RESPECT
TO THE QUALITY, ACCURACY OR FREEDOM FROM ERROR OF THE DlF FORMAT
OR OTHER CONTENTS OF THIS DOCUMENT. INCLUDING, WITHOUT LIMITATION,
ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR OF FITNESS FOR A
PARTICULAR PURPOSE, AND SOFTWARE ARTS PRODUCTS CORP. SPECIFICALLY
DISCLAIMS ALL LIABILITY FOR DAMAGES RESULTING FROM THE USE OF
SUCH FORMAT OR OTHER CONTENTS.

VisiCalc is a registered trademark of VisiCorp.

•

.-

•

• Fr-Loay, January 28,

1. Introduction

1983
DIFt m Technical

SAM-115C

•

•

This document is the technical specification of DIF, a format for the exchange
of data, developed by Software Arts Product Corp. It is a reference document
and not a tutorial. It includes a description of the DIF file organization and
structure, required items, and optional standard items. It also explains the
use of the optional standard items by specific applications. The last section
is an example of a DIF data file.

Programs should use defined standard items when possible. The DIF
Clearinghouse will update this document to describe new items as they are
defined and record their use in specific programs. Programmers developing new
software that incorporates new optional items should inform the Clearinghouse
fully about them so that they can be standardized for common use by any
program supporting the DIF format.

Programmers should remember that the program reading the <lata can be extremely
simple. The program writing the data must handle it in such a way that it can
be read by any program supporting DIF.

Within this text, upper case characters are actual values to be entered as
shown and lower case characters name the value to be entered to a fiel<l. It is
assumed that the ASCII character set is being used. See the section on
Definitions for a discussion of character sets •

2. Constraints of the Format

The DIF format was designed for ease of use, and, for the sake of simplicity,
certain constraints have been imposed on the format. Because DIF is not
intended to be a universal representation for all <lata, one of these
constraints is the representation of data in tables with rows of equal length
and columns of equal length. A second constraint is that, because many users
program in BASIC, the files must be compatible with BASIC programs. Programs
written in another language, such as Pascal, can use a set of SUbroutines to
read and write DIF files.

Below is a list of specific constraints on a DIF file.

1. Because some BASICs have only primitive facilities for reading and
writing strings, the convention of keeping numbers and strings on
separate lines has been adopted.

2. Two items, VECTORS and TUPLES, are required to support systems that
require preallocation of space.

3. Because some systems do not allow programs to test for the end of a
file, a special data value, EOD, provides graceful termination to a
program•

Page 1

Friday, January 28, 1983
DIFt m Technical Specification

4. To simplify programming, there are only two formats within
file, and all fields are predefined as character strings
numbers.

SAM-115C •

the
or

5. Strings must be enclosed in quotes if they contain characters other
than alphanumerics.

6. The character set is restricted to the printable ASCII characters.

7. Although DIF places no explicit restriction on the length of data
strings, some systems may impose restrictions.

Since the DIF format is not meant to meet all the needs for data
representation, it may be necessary to use multiple DIF files or additional
formats for some applications. A word processor, for example, would not use a
DIF file to store text but could use DIF files for tables of values within a
report.

3. Organization of the DIF Data File

A DIF file is a text file using the standard printable character set of the
host machine. The model for the data is a table. Fields are called vectors;
records are called tuples. Data is organized into vectors of equal length.
Each tuple consists of a row of corresponding values read across each vector. •
The user determines the specific groupings of vectors and tuples. Often
vectors are treated as columns and tuples are treated as rows, but because DIF
can transpose columns and rows, the terms vectors and tuples are used instead
of the terms columns and rows.

The DIF file consists of two sections, a header section and a data section.
The header section contains descriptions of the file and the data section
contains the actual values.

4. The Header Section

The header section is composed of header items. There are four standard
required header items and several standard optional header items.

4.1 The Header Item

The header items describe the data organization. Each header item consists of
four fields arranged on three lines as illustrated below. The first line is a

•Page 2

SAM-115C•

•

Friday, January 28, 198j
DIFt m Technical Seecification

tOken 1, the second line consists of two numbers, and the third line contains a
string.

Topic
Vector Number, Numeric Value
"String Value"

4.1.1 The Topic

The first line of the header item is the Topic. It identifies the header item,
and must be a token.

4.1.2 The Vector Number

The first field on the second line is the Vector Number. If the header item
describes a specific vector, the Vector Number specifies the vector being
described. If the header item describes the entire file and not one
vector, the Vector Number is zero (0).

4.1.3 The Numeric Value

The Value is an integer and occupies the second field of the second line,
separated by a comma from the Vector Number. If the header item does not use a
numeric value, the Value is zero (0).

4.1.4 The String Value

The String Value occupies the third line of the header item. The String Value
is always enclosed in quotation marks. If it is not used, the line consists of
a null string, a pair of quotations marks with no space between them.

4.2 Header Items

There are four required header items. The other
document are standard optional header items.
should be used by new programs using DIF. If it
header item may be defined to meet the needs
details, see the section on Defining New Header

header items described in this
The defined standard items

is absolutely necessary, a new
of a particular program. For
Items.

•
1A token is an upper

short, 32 characters
information •

case string of alphanumeric characters. It is usually
or less. See the Definitions section for more

Page 3

Frioay, January 28, 1983
QIFt m Technical

SAM-115C.

A program may ignore all header items until it finds the header item DATA,
described below.

Tne following four header items are required:

4.2.1 The First Header Item

TABLE
a,version
"title"

The header item TABLE must be the first entry in the file. It identifies the
file as a DIF file. The version number must be 1. The "title" is the title of
tne table anO describes the data.

4.2.2 Vector Count

VECTORS
a,count
tilt

The header item VECTORS specifies the number of vectors in the file.

Note: This header item must appear before header items that refer to vector
numbers. Otherwise, it can appear anywhere within the header section.

4.2.3 Tuple Count

TUPLES
a,count
lin

The header item TUPLES specifies the length of each vector (the number of
tuples). This can be used by a program to preallocate storage space for the
data. This item may appear anywhere the header section.

Note: Programs reading the data assume that the tuple count is correct. Some
programs may be able to generate this information only after all oata has been
generated. These programs must reread the DIF file to count the tuples, and
rewrite the TUPLES item with the correct count.

Page 4

•

•

•

Friday, January 28, 1983
DIFt m

I ---

4.2.4 The Last Header Item

DATA
0,0
nIl

Technical
SAM-115C

The header item DATA must be the last header item. It tells the program that
all remaining data in the file are data values.

The following header items are optional.
to use them are noted with the item. For
program's specific use of the item,
Applications Programs.

4.2.5 Vector Label

The programs that are known
detailed information on each
see the section below on

•

•

LABEL
vec tor-s , line!;
"label"

The header item LABEL proviaes a label for the specified vector. The line
number provides an option for labels that span more than one line, and can be
ignorea by a system that allows single line labels only. The values ° and 1
are equivalent line numbers.

Note: Some programs do not use the LABEL field. If the first vector in a tuple
contains string values, the first data value in the tuple may be treated as a
label.

Used by the VisiPlot t m and VisiTrend/VisiPlot t m programs.

4.2.6 Vector Comment

COMMENT
vector#, line!;
"comment"

The header item COMMENT is similar to LABEL. It provides an option to systems
that allow an expanded description of a vector in addition to a label.

Used by the VisiPlot and VisiTrend/VisiPlot programs.

4.2.7 Field Size

Page 5

Friday, January 2e, 1ge3
DIFt m Technical Specification

SIZE
vector, bytes
IItt

SAM-115C •

The header SIZE provides to programs such as data base systems the option
to allocate fixed size fields for each value.

Because SIZE is an optional item, programs using SIZE must be able to read
files produced by programs unable to generate SIZE information.

Used by the CCA/DMS program.

4.2.8 Periodicity

PERIODICITY
vect.or-s , period
n"

Tne heaaer item PERIODICITY provides the option of specifying a period in a
time series.

Used by the VisiPlot and VisiTrend/VisiPlot programs.

4.2.9 Major Start

MAJORSTART
vector#,start
"n

The header item MAJORSTART specifies the first year of a time series.

Used by the VisiPlot and VisiTrend/VisiPlot programs.

4.2.10 Minor Start

MINORSTART
vector#,start
""

The header item MINORSTART specifies the first period of a time series.

Used by the VisiPlot and VisiTrend/VisiPlot programs.

Page 6

•

•

DFriday, January 2Cl,

4.2.11 True Length

TRUELENGTH
vector#,length
ff"

1983
DIFt m Technical

SA1'i-115C

The header item TRUELENGTH specifies the portion of a vector that contains
significant values.

Used by the VisiPlot and VisiTrend/VisiPlot programs.

4.2.12 Units

UNITS
vectorij,O
"name"

The heaaer item UNITS specifies the unit of measure for the values in the
given vector. Name is the unit, for example meters or ft.

Used oy the TKISolver(tm) program.

4.2.13 Display Units

DISPLAYUNITS
vectorij,O
"Name"

The header item DISPLAYUNITS specifies the unit in which the values in the
given vector should be displayed. This unit may be different from the one in
the UNITS field. The values in the given vector are always stored in the unit
specified in the UNITS field, and the application program is responsible for
making the value conversion between the UNITS and DISPLAYUNITS.

For example, a vector might be stored in kID, but displayed in the program in
miles. The UNITS field would be kID, the DISPLAYUNITS field would be miles,
and the values in the vector would be in kID. Any program using the vector
would have to define the conversion between kID and miles to display the values
in miles.

Used in the TKISolver program.

4.3 Defining New Header Items

If there is no standard optional header item to fUlfill the specific need of a
subsystem, a new header item may be defined. Because the DIF format is

Page 7

intendea for common use, new optional header items should be standardized
through the DIF Clearinghouse. They will then be added to this document.

Friday, January 28, 1983
DIFt m Technical

SAM-115C •
To be accepted as standard items, new optional items must be consistent with
existing conventions.

An optional item extends the format for a specific application. Any program
reading the DIF file should be able to operate without optional items. If a
reading program requires the information provided by an optional item, it
should prompt the user to supply the missing information and not require the
item itself.

5. The Data Section

The Data section consists of a series of tuples. The Data Values within the
tuples are organized in vector sequence.

Each Data Value represents one element of data in the file. The data may be
either the actual data or one of the two Special Data Values that mark the
beginning of a tuple (BOT) and the end of data (EOD) in the file.

Each Data Value consists of two lines. The first line consists of two fields
containing numeric values, and the second line consists of one field
containing a string value. The format is:

Type Indicator, Number Value
String Value

5.1 The Type Indicator Field

The Type Indicator is an integer that tells the program what kind of data is
represented by this value. There are currently three possible values.

-1 The data is a Special Data Value, indicating either the beginning of a
tuple or the end of data. The Number Value is zero (0) and the String Value
is either BOT or EOD. See the description below of Special Data Values.

o The data is numeric. The Number Value field contains the actual value and
the String Value field contains a Value Indicator. See the descriptions
below of the Number Value and String Value fields.

The data is a string value. The Number Value is zero (0) and the String
Value fiela contains the actual string value.

Page 8

•

•

• Friday, January 2b, 1983
DIFt m Technical Specification

5.2 The Number Value Field

•

When the Type Indicator is 0, the Number Value field contains the actual
value. The value must be a decimal (base 10) number. It may be preceded by a
sign (+ or -) and it may have a decimal point. It may be preceded or followed
by one or more blanks. If the data value contains an exponent of a power of
ten, the value is followed by the letter E and the signed or unsigned exponent
power of ten.

Note: This is the only place where DIF allows a non-integer value. Some
programs accept only integer values.

5.3 The String Value Field

The contents of the String Value field are aependent on the Type Indicator.

5.3.1 Special Data Value

If tne Type Indicator is -1, the String Value is one of the two Special Data
Values, BOT or EOD, and the Number Value is O.

Each tuple begins with the Special Data Value BOT (Beginning of Tuple). If a
program cannot generate a VECTORS header item before generating all data, it
can use the Special Data Value BO! to determine the number of vectors in the
file by counting the number of Data Values between BOTs when it rereads the
file. A program can also verify its position in a file by using the BOT
Special Data Value.

The Special Data Value EOD (Ena of Data) indicates the end of data in the
file. The EOD occurs at the end of the last tuple in the file. If the program
is unable to generate a TUPLES header item before generating all data, it can
determine the number of tuples by counting the number of BOTs before the EOD
when it rereads the file. A program can also use the EOD Special Data Value to
detect the end of the file.

5.3.2 Numeric Value and Value Indicator

If the Type Indicator is 0, the data is numeric, and the String Value is one
of the Value Indicators described below. The Value Indicator overrides the
value.

A subsystem may define Value Indicators for its own needs. New Value
Indicators should be registered with the DIF Clearinghouse.

The Value Indicators currently defined are:

V Value - This is the String Value most commonly used with a numeric
value. The Number Value contains the actual value.

Page 9

NA Not Available - The value is marked as not available. The Number Value
is O.

Friday, January 2d, 1983
Technical

SAN-115C •
ERROR

TRUE

FALSE

The value represents the result of an invalid calculation. The Number
Value is O.

Logical value. The Number Value is 1.

Logical value. The Number Value is O.

The String Value can be ignored in favor of the Number Value, or all values
with a Value Indicator other than V can be considered nonexistent. Quotes are
not permitted around the Value lndicator.

5.3.3 String Value

If the Type Indicator is 1, the String Value is the actual character string.
If the value is a token, the quotation marks are optional. However, if there
is a beginning quotation mark, there must be a terminating quotation mark.

6. Definitions

This section defines specific characteristics of DIF.

Character Sets This document assumes use of the ASCII character set. The
following characters are permitted:

!"(lI$%&' 0*+,-.1
0123456789:;<=>?
@ABCDEFGHIJKLMNO
PQRSTUVWXYZ[\jA
'abcdefghijklmno
pqrstuvwxyz{ I}-

(The first character in this list is a space.)

There are 95 printable characters, inclUding the space. lf the
host computer has more than 95 characters, the additional
characters must be mapped into the 95 ASCII characters to
transfer data to another machine.

Some computers permit only 64 characters. When data is
transfered to these machines, lower case characters and the
characters '{I}- are mapped into their corresonding upper case
characters. If these transformations affect the integrity of
the data, associated documentation should specify the effect •

Page 10

•

•

Friday, January 28, 1983
DIFt m Technical Specification

SAM-115C

String Delimiters
Some systems delimit strings With apostrophes instead of
quotation'marks. When files are transferred to or from these
systems, appropriate changes must be made.

•

EBCDIC

String Length

Tokens

Transfers between character sets should be transparent to most
users. To assure compatibility, strings should not contain
nonprinting characters.

EBCDIC is a binary representation of characters and is used
primarily for large IBM computers. An awareness of the
representation used is not essential, but if files are
transferred between machines they must be converted to the
standard representation of the host machine.

Because EBCDIC aefines more than the 95 standard printable
characters, users should avoid the additional characters when
preparing data files on an EBCDIC machine.

Some programs place a length limit on strings that they read.
This results in the truncation of long string values. Some
systems also limit the length of lines in a data file.
Programs should support a minimal string length of 64
characters, but longer ones are preferable.

A token is a string consisting of upper case alphanumeric
characters. It should have a maximum length of 32 characters •
Commonly, tokens mayor may not be contained within quotation
marks; however, a token that is a required string, such as a
header item topic, must be represented without quotation
marks.

•

Floating Point Numbers
A floating point number consists of an optional sign and a
series of digits followed by an optional decimal point. The
number way be followed by the letter E (exponent) and a signed
decimal exponent.

Note: Some systems generate the letter D to indicate a double
precision floating point number. This is not standard, but it
can be read by compatible programs within a single system.
When transfering data to other computers, the D must be
converted to an E.

7. Applications Programs

This section records the specific use of DIF by applications programs that
support it. Programmers Who intend to interface with any of these programs
should note the specifics listed here. Standardized optional items used by
these applications are listed in the general section on Optional Header Items.
However, if a program uses a header item that varies significantly from the

Page 11

Friday, January 2tl, 1983 SAM-115C
DIFt m Technical

conventions, it is mentioned only in this section. The accuracy of this
information is not guaranteed.

7.1 The CCA/DMS Program

Published and distributed by VisiCorp.

Uses: SIZE

7.2 The TREND-SPOTTER(R) Program

Published and distributed by Software Resources, Inc.

The TREND-SPOTTER program requires that the DIF file contain either only one
tuple or only one vector.

7.3 The VisiCalc(R) Program

Published and distributed by VisiCorp.

Program created and written by Software Arts(tm).

The VisiCalc program does not generate the LABEL items. Some programs
interfacing to the VisiCalc program have adopted the convention of exam1n1ng
the first Data Value in a tuple, and, if it is a string value, treating it as
a label.

7.4 TKISolver

Published and distributed by Software Arts, Inc.

Uses: UNITS, DlSPLAYUNITS

7.5 the VisiPlot and VisiTrend/VisiPlot Programs

Published and distributed by VisiCorp.

Early versions of the VisiPlot and VisiTrend/VisiPlot programs used the Number
Value and String Value incorrectly, storing the Number Value in the String
Value field. Programs exchanging data with these versions should check the
String Value. If it is not nUll, the string must be converted and the Number
Value computed.

Uses: LABEL, COMMENT, MAJORSTART, MINORSTART, PERIODICITY, TRUELENGTH

Page 12

•

•

•

• Friday, January 28, 1983
DIFt m Technical Seecification

I. Sample DIF File

SAM-115C

This is an example of a DIF data file. The data in the file is represented by
the table below.

PROFIT REPORT

YEAR ISALES ICOST IPROFIT

100
110
121

1980
1981
1982

90
101
110

10
9
11

The Data File

LABEL
1,0
"YEAR"
LABEL
2,0
"SALES"
LABEL
j,O
"COST"
LABEL
4,0
"PROFIT"
DATA
0,0
''''

Header

------>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

------>

REPORT"
----> Header

>
----> Item

TUPLES
0,3
""

TABLE
0,1
"PROFIT
VECTORS
0,4
IItI•

,
I

Page 13

Friday, January 28, 1983
DIFtm Technical Specification

SAM-115C •-1,0 ---------->
BOT >
0,1980 >
V >
0,100 >
V >
0,90 >
V >
0,10 >
V >
-1,0 >
BOT >

0,1981 ------> >
V > > Data
0,110 > >
V > > Part
0,101 ---> Data > Tuple >
V ---> Value > >
0,9 > >
V > >
-1,0 > >
BOT ------> >
0,1982 >
V >
0,121 > •V >
0,110 >
V >
0,11 >
V >
-1,0 >
EOD ---------->

Page 14 •

• Friday, January 2ti, 1983
DIFt m Technical Specification

II. Sample BASIC program that writes a DIF file

SAM-115C

This program enters student records into a file by prompting the user for a
student's name and test scores and copying the information into a DIF file.

100 REM - THIS PROGRAM CREATES A DIF FILE CONTAINING THE
110 REM - NAME AND TEST SCORES OF A GIVEN NUMBER OF STUDENTS.
120 REM - IT PROMPTS FOR A FILE NAME, THE TOTAL NUMBER OF
130 REM - STUDENTS, AND THE NUMBER OF TEST SCORES FOR
140 REM - EACH STUDENT. IT THEN PROMPTS FOR A STUDENT'S
150 REM - NAME AND TEST SCORES, AND WRITES THEM TO THE
lbO REM - FILE AS A TUPLE.

1000 PRINT "OUTPUT l"ILE NAME:"; :REM - GET FILE NAME.
1010 INPUT F$
1020 OPEN "O",l,F$:REM - OPEN FILE FOR OUTPUT.
1030 PRINT "NUMBER OF STUDENTS:";
1035 :REM - PROMPT FOR NUMBER OF
1040 INPUT NT :REM - TUPLES.
1050 PRINT "NUMBER OF TEST SCORES PER STUDENT:";
1060 INPUT NV :REM - NUMBER OF VECTORS IS
1070 NV = NV + 1 :REM - NUMBER OF SCORES + 1.
1080 GOSUB 3000 :REM - USE SUBROUTINE TO
1090 :REM - OUTPUT DIF HEADER.• 2000 FOR I = 1 TO NT :REM - OUTPUT A TUPLE FOR
2010 :REM - EACH STUDENT.
2020 T = -1: V = 0: S$ = "BOT"
2025 :REM - OUTPUT BOT SPECIAL
2030 UOSUB 4000 :REM - DATA VALUE.
2040 PRINT "NAl'!E OF STUDENT iP' ;1;
2050 INPUT S$:REM - GET NAME OF THIS STUDENT.
2060 T = 1: V = 0 :REM - OUTPUT AS STRING DATA
2070 GOSUB 4000 :REM - VALUE.
2080 FOR J = 1 TO NV-l :REM - PROCESS EACH SCORE.
2090 PRINT "SCORE ''';J;
2100 INPUT V :REM - GET SCORE.
2110 T = 0: S$ = "VII - OUTPUT SCORE AS A DATA
2120 GOSUB 4000 :REM - VALUE.
2130 NEXT J
2140 NEXT I
2150 T = -1: V 0: S$ "EOD" :REM - OUTPUT EOD SPECIAL DATA
2160 GOSUB 4000 :REM - VALUE.
2170 CLOSE 1 :REM - CLOSE THE OUTPUT FILE.
21bO STOP :REM - DONE.

3000
3010
3020
3030
3040

:REM - ROUTINE TO
PRINT'l,"TABLE":PRINT","O,l":GOSUB 3500
PRINTiil, "TUPLES": PRINTlil, "0,"; NT :GOSUB 3500
PRINT","VECTORS":PRINT","O,";NV:GOSUB 3500
PRINT","DATA":PRINT","O,O":GOSUB 3500

Page 15

OUTPUT HEADER.

Friday, January 28, 1983
Technical

SAM-115C •3050 RETURN
3500
3510
3520 PRINTH1,CHR$(34);CHR$(34)
3530 RETURN

:REM - ROUTINE TO OUTPUT A
: REM - NULL STRING ('''').
:REM - PRINT 2 QUOTATION MARKS.

400U
4010
4020
4030
4040
4050 PRINTH1,T;",";V
4060 PRINT/f1,S$
4070 RETUllN
5000 END

:REM -
:REM -
:REM -
:REM -
:REM -

ROUTINE TO OUTPUT A DATA
VALUE. T IS THE TYPE
INDICATOR, V IS THE
NUMBER VALUE, AND S$
IS THE STRING VALUE.

•

Page 16 •

Friday, January 28, 1983
DIFt m Technical Specification

III. Sample BASIC program that reads a DIF file

SAM-115C

•

This program uses the output DIF file from the previous sample program to
calculate an average score and letter grade for each student.

100 :REM - THIS PROGRAM READS A DIF FILE CONTAINING THE
110 :REM - TEST SCORES OF A GROUP OF STUDENTS, CALCULATES
120 :REM - AN AVERAGE SCORE FOR EACH STUDENT, MATCHES THE
130 :REM - AVERAGE TO A LETTER GRADE, AND PRINTS THE
140 :REM - STUDENT'S NAME, AVERAGE, AND LETTER GRADE.

500 DIM T(100) :REM - MAXIMUM OF 100 VECTORS.
510 DIM V(100) :REM - T IS THE TYPE INDICATOR, V IS
520 DIM V$ (100) :REM - THE NUMBER VALUE, AND V$ IS
530 :REM - THE STRING VALUE OF EACH DATA
535 :REM - VALUE.
540 GOSUB 5000 :REM - INITIALIZATION SUBROUTINE.
550 GOSUB 6000 :REM - SUBROUTINE TO READ HEADER.
560 FOR I = 1 TO NT :REM - FOR EACH TUPLE,
570 GOSUB 7000 :REM - GET ALL VECTOR ELEMENTS IN
575 :REM - TUPLE.
580 M=O :REM - M IS THE SUM OF THE SCORES.
590 FOR J = 1 TO NV :REM - FOR EACH VECTOR VALUE,
600 IF T(J)=1 THEN PRINT V$(J) :REM - PRINT NAME •
610 IF T(J)=O THEN M = M+V(J) :REM - ADD SCORES.
620 NEXT J
630 M = M/(NV-1): PRINT M :REM - PRItT STUDENT'S AVERAGE
640 IF M<=50 THEN PRINT "THIS STUDENT'S FINAL GRADE IS F"
650 IF M<=70 AND M>50 THEN PRINT "THIS STUDENT'S FINAL GRADE IS D"
660 IF M<=85 AND M>70 THEN PRINT "THIS STUDENT'S FINAL GRADE IS CIt
670 IF M<=94 AND M>85 THEN PRINT "THIS STUDENT'S FINAL GRADE IS B"
680 IF M>94 THEN PRINT "THIS STUDENT'S FINAL GRADE IS A"
690 NEXT I
700 CLOSE 2
710 PRINT "FINISHED CALCULATING GRADES"
720 STOP

•

5000
5010 PRINT "FILE NAME";
5020 INPUT F$
5030 OPEN "I",2,F$
5040 NV = 0
5050 NT = 0
5060 RETURN

:REM - INITIALIZATION CODE.

:REM - OPEN FILE FOR INPUT.
:REM - INITIAL VECTOR COUNT.
:REM - INITIAL TUPLE COUNT.

Page 17

Friday, January 28, 1983
DIFt m Technical Specification

SAM-115C •

:REM - NUMBER OF TUPLES.
:REM - GET NEXT HEADER ITEM.

:REM - READ HEADER. GET NUMBER OF VECTORS AND TUPLES.
INPUT#2,T$:REM - GET TOPIC.
INPUT#2,S,N :REM - GET VECTOR NUMBER AND VALUE.
INPUT#2,S$:REM - GET STRING VALUE.
IF T$="VECTORS" THEN 6500:REM - CHECK FOR KNOWN HEADER
IF T$="TUPLES" THEN 6600 :REM - ITEMS.
IF T$="DATA" THEN RETURN

:REM - "DATA" ENDS HEADER.
:REM - IGNORE UNKNOWN ITEMS.
:REM - NUMBER OF VECTORS.

6010 :REM - CHECK FOR 100 OR LESS VECTORS.
VECTORS. PROGRAM CAPACITY 100 VECTORS."

6000
6010
b020
6030
6040
6050
b060
6065
6070 GOTO bOlO
6500 NV = N
6510 IF NV<=100 THEN
6520 PRINT "TOO MANY
6530 CLOSE 2
6540 STOP
6600 NT = N
6610 GOTO 6010

7000 :REM - SUBROUTINE TO GET ALL VECTOR ELEMENTS IN A TUPLE.
7010 GOSUB 8000 :REM - GET NEXT DATA VALUE.
7020 IF Tl<>-1 THEN 9000 :REM - MUST BE BOT, ELSE ERROR
7030 IF S$<>"BOT" THEN 9000
7040 FOR K = 1 TO NV :REM - GEf EACH DATA VALUE.
7050 GOSUB 8000
7060 IF T1>1 THEN 9000
7070 T(K) = T1 :REM - SAVE TYPE INDICATOR.
7080 V(K) = V1 :REM - StVE NUMBER VALUE.
7090 V$(K) = S$:REM - SAVE STRING VALUE.
7100 NEXT K
7110 RETURN

•
8000 :REM - SUBROUTINE TO GET NEXT DATA VALUE.
8010 INPUT#2,T1,V1 :REM - GET TYPE INDICATOR, NUMERIC
8020 INPUT#2,S$:REM - VALUE, AND STRING VALUE.
8030 RETURN

9000 :REM - ERROR ROUTINE
9010 PRINT "ERROR IN FILE FORMAT"
9020 CLOSE 2 :REM - END PROGRAM
9030 STOP
9040 END

Page 18 •

• Friday, January 28, 1983
OIFt m Te£.hnical Specification

IV. Sample Pascal program using a OIF file

SAM-115C

This program is a Pascal program that reads data from a OIF file into an array
and displays the results on the terminal.

This is a simple program which reads OIF file data into an array and
displays the results on the terminal. It makes use of a procedure
called "get dif array" which handles only numeric data. It is written
for Apple Pascal 1.1 and may require modification to run on other systems.

program aif_read;

const
max vector = 10;
max:)uple = 10;

maximum number of vectors }
maximum number of tuples }

type
vector index = O•• max vector;
tuple index = O•• max-tuple;
dif_array = arrayl1•• max_vector, 1••max_tuple) of real;

I
r

•

var
in file
fname
matrix

text;
string[15);
dif_array;

num vectors
num::)uples
code, i, J

Page 19

vector index;
tuPle_index;
integer;

Friday, January 2ti, 1983
DIFt m Technical Specification

SAM-115C •"Get aif array" reads a DIF file and returns the file data (currently
only-numeric) in an array. Also returns number of vectors and tuples
-- these must be specified in file header -- and an error code. }

procedure get_dif_array (var dif file: text; var real array: dif array;
var nvectors: vector index; var ntuples: tuple index;
var return_code: integer); -

const
special

{ currently defined data types
-1; numeric = 0; char_string = 1; other 2",

type
header item

data value

var
hdr_item
data val
tuple, vector

recora
topic
vector num
value
string_value

end;
record
kind
number value
string value

end; -

header_item;
data value;
integer;

string;
vector index;
integer;
string

-1 •• 2; { currently defined data types}
real;
string

•
"Read_integer" reads an integer terminated with a comma. The routine
is required because this Pascal dialect's "read" procedure recognizes
only <space>, eo in and eof as delimiters of integer values. }

return result }

get next character

initialize }
get 1st character }
comma is delimiter }

•
- ord I '0')

end;
read

end;
number := sign * magnitude

end; {read_integer}

procedure read_integer (var number: integer);
var
sign, magnitude: integer;
ch : char;

begin
sign := 1; magnitude._ 0;
read (difile, ch);
while ch <> ',' do

begin
case ch of
'-' : sign := -1;
'0',' l' ,'2' ,'3' ,'4' ,'5' ,'6' ,'7' ,'8', '9'

: magnitude := magnitude * 10 + ord(ch)
{ case }
(aifile, ch)

Page 20

• Friday, January 2tl, 1983
DIFt m Technical

SAtvl-115C

•

"Read string" oeletes leading and trailing blanks and strips the
quotes from quoted strings. }

procedure read_string (var str: string);
begin
readln (difile, str);
while strL1] = I , do leading blanks
delete (str, 1, 1);

if str[1] = '''' strip quotes}
then begin

delete (str, 1, 1);
delete (str, post'''', str),

length (s t.r-) - pos ("", str) + 1)
end

else if post' " str) > 0 trailing blanks
then delete (str, post' " str),

length(str) - pos (" st.r) + 1)
end; read_string

Page 21

Friday, January 2ti, 1983
Technical Spec!.fication

SAM-115C •
get data type }
get number value
get string value

procedure read header item (var item: header_item);
begin - -

read string (item.topic); get topic}
read-integer (item. vector num); get vector number
readln (difile, item.value); get value}
read string (item.string value) get string value }

end; T read_header_item }-

procedure reaa_data_value (var value: data_value);
begin

read integer (value.kina);
readln (difile, value.number value);
read string (value.string value)

end; T read_data_value} -

if (nvectors = 0) or (ntuples 0) { check counts }
then return code :=
else begin -

for tuple := 1 to ntuples do read data}
begin
read data value (data_val); { BOT}
for vector := 1 to nvectors do
begin
read data value (data val);
if data val.kind = numeric
then real array[vector, tuple] .-

- data_val.number_value

begin get_aif_array }
return_code ._ 0;
nvectors := 0; ntuples := 0;
repeat

read_header_item (har_item);
if hdr_item.topic = 'VECTORS'

then nvectors := hdr item. value
else if hdr item. topic ; 'TUPLES'

then ntuples := hdr_item.value
until hdr_item.topic = 'DATA';

end
end;

read data value (data val);
if (data val.kind <> special) or
(data-val.string value <> 'EOD')
then return code-:= 2

end

Page 22

assume no problems
ini tialize }
read header }

vector count }

tuple count }

{ EOD }

•

•

Friday, January 28,e 1983
DIFt m Technical Specification

SAM-115C

begin

writeln;
write ('DIF file name: ');
readln (fname);
reset (in_file, fname);

(get DIF file name }

(open ana point to BOF }

close DIF file }
display results }

to num_tuples do

close (in file);
case code-of
0: begin

writeln;
writeln ('''', fname:15, "", ' contains " num vectors:3,

, vectors and " num tuples:3, ' tuples.');
writeln ('The data values follow in tuple order:');
writeln;
for i :=

begin
for j := 1 to num vectors do
write (matrix[j, i]:10:2);

writeln
end;

writeln
end;

1: writeln ('Error. Tuple or vector count not found.');
2: writeln ('Error. Data not properly terminated.')
end (case}• end. dif read

• Page 23

50001-9010

•

•

•i
j

