B A PROGRAMMING LANGUAGE e
i ESIGNED ESPECIALLY FOR THE ATARI 13Qx_

// /
m/

umzm zed Systems Software, Inc.

entweod Avenue, San .Jose, California 95129 (408) 446-3099

[g |

i

A REFERENCE MANUAL FOR

BASIC XE

This manual is Copyright (9 1985 by
Optimized Systems Software, Inc.

Portions of this manual are
Copyright (9 1980 by Atari, Inc.
and sre reprinted with the
permission of Atari, Inc.

All rights reserved. Reproduction or translation of
any part of this manual beyond that expressly
permitted by &107 or 8108 of the United States
Copyright Act is unlawful without the permission of
the copyright owner.

™

Optimized Systems Software, Inc.
12218 Kentwood Avenue San Jose, California 95129 (408) 446-3099

Page ii BASIC XE Reference Manual

Acknowledgements

Trademarks

Acknowledgements

0SS gratefully thanks Atari, Inc,, for its kind
permission to reprint portions of the Atari BASIC
Reference Manuasl, Please be aware that these
portions have been copyrighted ® by Atari, inc., and
respect the rights implied thereby.

We also thank those stalwart 0SS users whose requests
and pleas for an extended BASIC inspired us to create
BASIC XF, znd those beta-testers who helped us make
sure that BASIC XTI works the way we want it to.

Trademarks

DOS X1, BASIC X1, BASIC XE, 058, and Supercartridge
are trademarks of Optimized Systems Software, Inc.

Atari is a ~egistered trademark of Atari, Inc.
800 XL, &5 XE, 130 XE, 810 Disk Drive, 1050 Disk Drive,

410 Progrum Recorder, 1010 Program Recorder,
and 850 Interface Module are trademarks of Atari, Inc.

BASIC XE Reference Manual

Page i

Page iv BASIC XE Reference Manual

Preface
Caveat

Preface

You may wonder why BASIC XE needs a reference manual at all, It's just another
BASIC, right? Well...yes and no. BASIC XE is another BASIC, but it's a cut above
the other BASICs currently available for Atari XL and XFE series computers, It
needs {ts own reference manual so that you can find out just how to take
advantage of all the extras included in BASIC XE,

What's In This Manual?

This manual does not pretend to teach you how to program in BASIC. There are
several very good tutorials that cover the rudiments of BASIC programming on the
Atari, and we direct you to them if BASIC is completely foreign to you.

That doesn’t mean that this manual is useless. If you want to exploit BASIC XE's
advantages, it's a necessity. Between these covers you will find a complete
description of the BASIC XE language, including the special statements unique to
BASIC XE as well as those in standard BASIC., We have avoided computer jargon
whenever possible, resorting to it only when absolutely necessary. To decrease
bewilderment we define jargon terms when they are first used, and provide a
glossary of all the jargon used in the manual.

As you will notice when you look at the table of contents, this manual groups
commands that perform related tasks into chapters, rather than simply listing them
in alphabetical order. This enables you to find all the commands that could help
you with a specific task. We have included an alphabetized index at the end of the
book so that you can find single topics and commands quickly.

Where To Go From Here

If you are plsnning to read this manual cover to cover before you even boot
BASIC XE, that's fantastic! If not, may we suggest that you at least read the
introduction and scan the table of contents. This will give you a brief overview of
BASIC XE and an idea of where to find things In the reference manual.

Caveat

Because we're only human and so sometimes make mistakes, a caveat is required.
We have made every effort to ensure that this manual accurately describes the
BASIC XE system and language, However, due to the ongoing improvement and
updating of all 0SS products (including BASIC XE), we cnnnot guarantee the
absolute accuracy of the documentation. Therefore, 0SS, Inc., disclaims all
liability for changes, errors, or omissions in either the manual or the software
itself.

BASIC XE Reference Manual Page v

Page vi BASIC XE Reference Manual

Table of Contents

Introduction
Extras that RASIC XE Cffers YoU..ceceeeeoeoosrocanenososssssnoasenasal
How to Boot BASIC XE...vceevenssvsocscassorscnnosssesssvasssnassansac?
How to Use this MAnualivveennceccenccccccoscoscssssssassosnssorsad
Special Notations this Manual USeS....c.cceceevencccccnsoccscncnasnesd
BASIC XE's Operating ModesS..vevesecencccsocasecsccaccsssnocssnssnsecd
BASIC XE Keywords and SymbolS....ceveevsccccacsocsocssossnsscennescsd
A Glossary of Terms this Manual USeS......cicecesevscssoscasncscscsed

Variables (var)
Variable Types, Names, and Maximim......coeevevrarercscccrcorcreesasd
Arithmetic Variables (AVAT) . icueerisruisvesrescscnscssusccsscssvcsessd
Arithmetic Arrays and Matrices (mvar).....cveeevecvecerencescaseassl0
String Varfables {SVAL) ..uiuevrriserorsuocacasanescasssanosansonenssl?
String Arrays (SAVAL) c....eeveesecasnsesescsnosonsavsosncvnsannseeal?
Specifying mvar, svar, and savar Sizes.......DIM.. ... 0ieceenscnesald
Creating Private Variables....eoeveveeeceess . LOCAL cveteeataneansss14
Notes and Warnings Regarding LOCAL....cccevvesceecscesenscnsecensssld
Assigning Values to VarfableS...ccceveccocavosesancacsnsssccscsccsslb
Using Keywords as Varfable Names.......coev e . LET e iuiieenvncnsnnssl?

Operators (ops)

Arithmetic Operators (BODP).c.cceeeeeesncosssaoscorevsoasasannsocassld
Logical Operators (1op)..uiiiscescectosssnsssossosassanncsncsaneess20
Operator PrecedenCe.....oeeesssesesssonssssncessosccnsssnssescsonael

Expressions (exp)

String and Numeric ConstantS...ceessscssssencssncssscsescsssvssssees2d
The Internal Format Of NUMDErS.ccceesesccsccerrocosccsnssorossonass2d
Arithmetic Fxpressions (8eXP)...uiieeceerocsoscaroncosssnsrescscnnss2d
String Expressions (SeXp).ceeseeceeocacsscssnsrossesesnosssnsssasss2d

Editing Your Pr
Wiping the Slate CleaAn.....ovveecssessecsoes e NEWeeiiioionneseossa?h
Line Numbering the FASY WaY.cooevonssosseeees NUMic v ueienssorosees25
Looking at Your Program......cceseeseoeseessLIST i i.iiieniaesess. .26
Deleting Program Lines.....cceieceensncecess s DEBL iuiieriarinnsesss 26
Renumbering Your Prograim.....coeseseseeesees RENIM. . oot iuosonaneess2?
Putting Remarks in Your Program.....ssesseee e REMi.iiiieenceenanasa 27

Storing and Retrieving Your Program
Storing Your Program s TeXt...eeeeeeevnesseosLlISTeiineeneneeeess. .29
Retrieving Your Text Program.....eveseeseoeesENTER i vt ecenenes 29
Storing Your Program 88 Tokens,......cceeoeseSAVE cvtvteennecenese 20
Retrieving Your Tokenized Program.......e....LOAD. . ccctivaecncess RO
Storing Your Program on Cassette.............C8AVE......cvv0iasease0
Retrieving Your Program from Cassette........CLOAD...vovecesseacsssl0

BASIC XE Reference Manual Page vii

Table of Contents

Making Your Program Stop and Go
Making Your Program Go.....coeeesvcnascssosssRUNG G e seitreasesnssesdl
Finishing Your Program......eveceescsesesesssENDeoeisiaeiiecaenssadl
Making Your Program Re@lly GO..veveescesores s FAST. Lo ioiininennseeed2
Stopping Your Program.....eeeeecessccncssesseSTOP ciictiiacrreneessdd
Restarting Your Program,..ceveeesscncssncoessOONT eeieosnnneassneesdd
Finding Out What Your Program is Doing.......TRACE/TRACEOFF........33

Configuring the BASIC XE System
Personalizing BASIC XE. .. .caeresecvsnnnenssesSE i uciinisisnncesesss3B
Finding Out What's been Fersonalized,......f SYSc...ct0evsecvecssesdB
Changing Your Computer’'s Memory....oseseeece s LOMEM. ciivevaaononeaseed?
Resetting Varfables.....cieeessensssovencecedCLRecietsneccnnseneeeed?
Finding Out How Much Room You Have.........f FRE.....c..viutnennsaad?
Looking at VarfablesS....cvaaoscessoscrosnoesec LVAR L eiaierecanneessd?
Accessing the Extra Memory in a 130XE........EXTEND.cc vseseveesess3B

Exiting BASIC XE
GOINg 1o the DNOS..vevcvesessccavensconsessaseDOS (CPYoieninnesans 39
Going on Long TripS..c.ieeeecevscvacossassnssssBYEioiiieiiunnnsoseesedd

Beginning Data Input/Output
Introducing Atari 1/0.....0iiieiveneensacesncassosesaserssssancsonssdl
Preparing To DO Some T/0..ceeeeavsserseoeesesOPEN ccetieiaseneneed?
Cleaning Up After Doing 1/0....c.cveveenneeassCLOSE . veiiitnecnress 4l
Displaying Information......cieeeveennasee.e . PRINFL oiiiiiiinnee. 43
Getting Informmation....cevevvesecenccacceere s INPUT.Lotoieveionaonaadd
Storing a Single Ryte....oievocveerencenesessPUliiiiiiiveaeinnienesdh
Retrieving a Single Byte...c.veveeecesraseessBET e eriinrenccneesedd
Going Directly to the Printer.....cecveeeve . LPRINT. .o iiiiinnen. 45
Skipping to the Right Plance....cccessvcveesseTAB it ctseercccnssassdb

~ Another Way of Skipping......cveiencecceceef TABiuiioieetovrvenessadB

Advanced Data Input/Output
Formatting Informmation as You Display It.....PRINT USING...........47
Changing Your Character Display....csesess...NORMAL/INVERSE........50
Storing Blocks of Data on a Disk Drive.......BPUT.. ... iiuinncasersabl
Retrieving Rlocks of Data from a Disk Drive..BGET......ccvveaneessedl
Storing Records on a Disk Drive...ceveseees e RPUT citiinennanoeressd?
Retrieving Pecords from a Disk Drive.........RGET, . .ctiiiinnreeesesdd
Storing Rinary Files on a Disk Drive.........BSAVE...c..cvveeuaesssbd
Retrieving Rinary Files from a Disk Drive....BLOAD.........ccv0ues.54
Finding Out Where You Are on the Disk........NOTE. . ccoiriueeneeasssBD
Telling the Disk Where You Went To Be........POINT.. .. . veesneesssBB
Finding Out How a Device Feels...voeeveeeeee.STATUS. .. iiuvnveasass55
Doing X-tra Special I/0....eveevencrcconseaeeXIOiiiiineeriennnneees56

Page viii BASIC XE Reference Manual

Table of Contents

Managing Disk Files

Finding Out What's on a Disk...oovverereraeDIR . i iieennnsnse.B7
Protecting 8 Disk File.. ..vervieeesaeeeee s PROTECT. .. 0vvnne.eee .57
Unprotecting a Disk File.,ioeisersenacensee s JUNPROTBCT. i vvnenneea 57
Changing the Name of a Disk File.....o00u. oo JRENAME, (..t vivennaas 58
Deleting a NDisk File. . oieveiennieencnesc oo FRASE, (L vvenennness 58

Looping and Jumping Statements
Looping by Nunbers.....i i eieisesineoesessss . FOR/NEXT/STEP....v... .59
Looping for a While.....cvvvvievenarenesases JNHILE/ENDWHILE........60
Jumping Around in Your Program,..c..eceenersssB0T0 cinvocccssensosaabl
Getting Out of LOOPS..iiieerreeeerancensneesePOPicicicsrrneseceaans 2

Conditional Statements
The ne-Liner.....cvveiiirninnncnenscnnese o JF/THEN.. . oovvisnne. 63
Either/Or Options......covveesccssesssescesss IFJELSE/ENDIP. . ..,...64
Lots 6f Options...ccciieevieocssnnsoscccsceaesONesvenvvsssnasnseassabS

Handling Errors
Setting and Bajting Error Trops...eececceses TRAP ccensesonansaeas 67

Finding Out What's in the Trap.....cceccoeef ERR . vivinreinassnasessB?
A Program Fxample U/sing TRAP and ERR. . ..cvevenveenorcnssnscseennassB8
Using STOP and CONT in Frror Bandling....ccveverevecnssssvoscanssss B

Handling Strings
Getting a Character's Number..........s000.f ASC.oiuiiiiicnaceness.B9

Getting a Number's Character......oveneeeeef CHR$...0ivevevnansess B9
Finding Out the length of & String.........2 LEN ci0eevneesss 69
Searching Through a String..c.cvenvoceersse? FIND i iiiivananaes 70
Finding Out the Location of a String.......T ADR.....ivivecncrnasea0
Getting the First Part of a String.........f LEFT$. ... cevveeee..Tl
Getting the Middle of a String....vceeeeesf MIDS, L. iiininennasa TE
Getting the Last Part of a Strirg....c.....f RIGHTS. ... 00veennnese Tl
Changing & String into a Number............f VAL, oiiiinreeocannesa2
Changing e Mmber into & String..,.........t
Displaylng Hexadeclinal Nunbers.............t

HEXS$. .ovveensvnsenese2

Using the Game Controllers

Using the Paddles in Your Program..........f PADDLE. ... evvevnnsase 73
Pressing the Trigger on the Paddle.........f PTRIG. . c.ivvevncneeessT3
Using the Light Pen in Your Progrem........f PEN..0cceeneesad®3
Using the Joystick the Pord Way...oveeeneeof STICK. o ovuiverennoenss?3
Moving the Joystick Left and Right,........f HSTICK....c0ovevnneees 74
Moving the Joystick Up and Down...ivvesneeof VEBTICK, cvevvennsnansns 74
Pressing the Trigger on the Joystick.......f STRIG.... v 0eeesnenss 74

BASIC XE Reference Manual Page ix

Table of Contents

Graphics

Introducing Atari Graphics....eeieiviseeeneecverecevssssosossoscnseld
Selecting a Graphics Mode....viovoveeeserses JGRAPHICS . ciiiveneees .78
Changing the Color Palette....vcceevovecees-SETCOLOR...cvvvunase. .78
Picking 8 Color..uuevueiincennnrosnsosoesesasCOLOR L viiinnninnna.T9
Plotting PointS...ovuiesresnanansnoesenenenesePLOT. Looiniiaiian. .80
Drawing Lines......oeievensessncaosnsncsese. DRANTO....oviiniena.. .80
Moving Around the SCreen....eeeeieceeeeessss POSITION....o0vvoveo. .80
Finding Out What's on the Screen....v..o.e. .LOCATE. ci0iveennesaas RO
Coloring iIn BOXeS...vsseevsreeesconssasnesss XIO Filloooiaoioaaas a8l

Player / Missile Graphics
TRErOAUCINE P/M GraPRICS e eerecacerosoosassssarsnsrssssuescsassssBd
P/M Graphics Conventions. ... ceeseiesenssnsaccassscossssssecnsccessssfd
Setecting a P/M Graphlcs Mode...vvaeeneeseo. . PMGRAPHICS.85
Changing the P/M Color Palette...............PMOOIOR.........0.....86
Moving 8 P/Miu.iuiiiivneneronceseeasesnnesessPMMOVE,. ... iiueneee...88
Creating and Firing Missiles.......coevuvee . MISSILE . .00vnvenea. 87
Selecting a P/M's Width.eiveesieiennenseeses ,PMWIDTH...oiieeneee. o RT
Erasing 8 PlAYer...ovvesessosasessssereeseese s PMCLR .. evieenne... .88
Looking for a Collision...ieevevenveesaeesof BUMP, 000eeoea...B8
Cleaning Up Collisions....c.cvveevuisncesnoss . HITCLR. couvoeracn .. B8
Getting a P/M's Address......oosvuesesvsasoof PMADR.....ooiviines. B9
Using POKE and PEEK with P/M S..cuiuineinenrorrencassnccsoavsnsness8d
Using MOVE with P/M's.......... I 1}
Using BGET and BPUT with P/M'S...iuciiiiereierosvvevrosccasascnces B9
Using USR with P/M S, ..eiiirnrsoannonssonnes a1
Two Player/Missile Graphics Programs....cievesencansecssacensensess90

Sound
Making Music and Raspberries.....cceeeevees et SOUND coteiiiiieensss 93

Sorting Arrays
Introducing the Array Sorting Statements.........cveveacesesronseees95
Sorting String and Arithmetic Arrays.........SORTUP/SORTDOWN.......98

Using Fixed Data in Your Program
Putting Fixed Data in Your Program...........DATAoivvventaneo.99
Accessing the Fixed Data in Your Program.....READ,.......cc00eev...99
Deciding What Fixed Data to AccesS...........RESTORE.......c.c0e..100

Accessing Memory Directly
Looking at a fingle Byte of Memory.........Tf PEEK......... .00l 101
Changing a Single Ryte of Memory......... P 484 T X 1 1
Looking at Two Bytes of Memory......,.......f DPEEK......c..0nnee,. 102
Changing Two Rytes of Memory.....oceeuivaees..DPOKE, (i ininnoes. o102
Mov ing Your Computer's Memory Around.........MOVE. . cieinnrnoansses102

Page x BASIC XE Reference Manual

Table of Contents

Arithmetic Functions
Making a Nunber Positive...c.cevvcocncscessf ABS.cuciinceeeneeess 103
Getting Rid of FractionS....cvsevevosesncoef INTe i iieoeoraress103
Finding Out the Sign of a Nmber..ccocevevef SN eieiineneerensen03
Computing Square ROOtS...cusvesssscsvscessel SQR e rrnveeeeess.103
Exponentiating a Number....icoecennssccessef EXPoviiviecnreecsssaa]OA
Comput ing Natural Logarithms.....c.ccveeevesf LOGiicienenconsannsssl04
Comput ing Common Logarithms....ccceeveancaef CLOG ¢ vovecaneneeseasl04
Using the Computer's Random Numbers........f RND....o.oevecconcse 104
Selecting Your Own Random Numbers..........f RANDOM.......c.000s...104
An Example Program Using Arithmetic Functions.......c.evivevneesas105

Trigonametric Functions
Swapping Between Units of Measure............DEG/RAD, .. 0t veness107
Computing CoSineS..cvvsvecrceccsscccsescosef O08.iciivecsnnnenseasl0T
Computing Sines....vvevessesnceccancsenesesl SIN . iiiiereennes 107
Comput ing ArcTangents (TANTD) L iriinee el ATN i ivieiennnnnsss 107
A Table of Derived FUNCtioN8...cceeescsaccsssrevcrcssncscescsnsaarecllB

BASIC and Machine Language Subroutines
Accessing Subroutines by Line Number.........GQOSUB..cccvvveneess..108
Leaving Simple Subroutines........¢eccc0eee . .RETURN...ooiveneess..108
Introducing PROCEDURE and its Related Statements.......cco0eves0..110
Giving Nemes to Subroutines.........ccc..e...PROCEDURE....c.c.00..112
Notes and Warnings Regarding PROCEDURE........ccceteersencancsseaalld
Leaving Subroutines Elegantly....cccevseveee o BXITecerievereeoasase1lb
Accessing ProcedureS..ceeevraocsssrcscensasasCALL v ivivienenveeell?
Accessing Machine Code Subroutines.........f USR....ccvveereces...118

Appendices
A: ATASCII Characters and CodeS..cvvvsesvccescscssscscncnnssssasesA-l
B: BASIC XE MEMOTY MBPD.ccovoscvesesasreorscassssassccnseseasnssessssB-l
C: Compatability with Atari BASIC.....cevescrecenarecsercsccnsesssC-1
D: Data Space in Extended MemoOTY...eo.ceeorssssosssassscsassenssessD=l
E: Error Situations..c.veeeeviereesscnorcsnsentoososvsssssvsasssesssesE-l

Index

BASIC XE Reference Manual Page xi

Page xii BASIC XE Reference Manual

Introduction Extras That BASIC XE Offers You

Extras That BASIC XE Offers You

Of course BASIC XE provides all the commands available in standard Atari BASIC,
but that is only the tip of the iceberg., Youcan LOAD your SAVEd Atari BASIC
programs Into BASIC XF and make use of its speed immediately, but soon you'll
want to take fuller advantage of the extras that BASIC XF offers -- extras like:

Faster Program Execution New floating point math routines combine with the
FAST command to produce BASIC programs that execute at near-arcade speed.

Quick Access to the 130XE's Extended Memory Now you can control and utllize
the extra 64k of memory in & 130XE, and you don't even have to be a program-
ming genlus to do it. One simple BASIC XE statement makes all that space
available to your program.

Basy Program Formatting and Editing Unlike other BASICs, BASIC XE does not
care whether you use upper or lower case letters when you type in programs.
This alone can make your programs more readable. However, BASIC XE will do
even more for you. Jt will automatically prompt you with line numbers or
renumber an entire program st your request, Also, the LIST command has a
program formatter built in, thus making your programs easier to follow, no
matter how complex or Involved they are. Other editing features include wrap-
around and keybosrd repeat. If you enter a program line that's longer than the
length of the screen, it will "wrap around” to the next screen line so that you
can view it, Also, if you hold down any key for over half a second, it will start
repeating.

Advanced String Handling BASIC XE makes string handling easler and more
powerful at the same time. No longer must you DIMemsion strings before you
use them -- BASIC XE can do it for you. Also, you can now group related
strings together in string arrays just like you're used to doing with numbers in
numeric arrays. Finally, BASIC XE includes new operators and functions that
make string separation, concatenation, and searching a piece of cake.

Built-in Player/Missile Graphics With other BASICs you can use P/M graphics only
if you're a computer wiz. BASIC XE provides nine commands designed
especially for P/M graphics, and this monual shows you how several others can
be applied to P/M graphics. Now P/M graphics are as easy to control as
common playfield graphics.

Easier Joystick Control Not only does BASIC XE support the paddle and joystick
functions available in Atart BASIC, it also adds several others that make
Jjoystick tnput easier to use.

Explanatory Error Messages Instead of generating a cryptic error number when
something goes wrong, BASIC XE also gives you an explanation of the error so
that you can diagnose and fix the problem quickly. When you need more help to
solve the problem, you can look in Appendix E for a further discussion of error
situations.

BASIC XE Reference Manual Page 1

HRow to Boot BASIC XE Introduction

How to Boot BASIC XE

There's one thing you should do even before you boot BASIC XFE for the first time:
fill out and return the license agreement that came with BASIC XE. If you don't,
you won't he added to 08§'s users list, which mesns that not only will you not get
newsletters and update info, but you won't even be able to get technical help from
0S8 when you call, You ust have a license agreement on file to get technical
support! So please, please, plecase, RETURN YOUR LICENSE AGREEMENT!

As you have probably noticed by now, BASIC XF is a supercartridge and a disk. To
use all of the capabilities of BASIC XE, youneed to boot with hoth the cart. and
the disk, The proress is simple:

1} Turn on drive 1, making sure that it's connected to your computer.

2) Insert the BASIC XE Extensions Disk in drive 1 and close the drive door.
?) Insert the RASIC XE cartridge in your computer.

4) Turn on your computer and wait,

Soon you will see a titie screen telling you that the extensions are loading. After
this the screen will clesr and you will see the BASIC XE copyright message at the
top of the screen, and the familiar Ready prompt will appear right below that.
Now you're ready to program!

You can boot without the extensions disk if you want. One of two things will
happen, depending upon whether the disk vou boot with has the extensions file on
it (instructions for copying the extensions disk and file are below).

If the boot disk docs not have the extensions file on it, or if you boot. without a
drive, you can still use RPASIC XE. However, the following will not be aveilable:

BSAVE, CALL, DEL, EXIT, FAST, LCCAL, LYAR, MOVE,
PROCEDURE, RENUM, RGET, RPUT, SORTUP, SORTDOWN,
the fast math routines, and all P/M commands except HITCLR.

It the boot disk does have the extensions file on it, you will be able to use all of
the capnabilities of BASIC XF, just as if you had booted with the extensions disk.

Backing Up the Extensions Disk

The extensions cisk is in single density Atari DOS 2,0s format, so duplicate it using
whatever command your NDOS requires to duplicate this disk format.

Moving the Extensions to Other DOS's

The BRASIC XF extensions are in the file BASICXE,OSS on the extensions disk, It
you want to use a POS other than the one on the extensions disk, all you have to
dn is copy the BASICXF.CSS fil= to your DOS boot diskette. This file is in
standard DOS LOAD format, so copying it should not be a preblem,

Warning: BASIC XFE will not work with any 'translator’ program, nor will it work

with DOSXL.SUP or OurNOS if you use the extensions (because they try to use the
same memory).

Page 2 : BASIC XR Reference Manual

Introduction How to Use this Manual
Specials Notations this Manual Uses

How to Use this Manual

This section might seem superfluous because everybody knows how to use a
manual. That may be true, but all manuals have their own idiosyncracies, even this
one, and we thought you might want to know them.

The chapter groupings were designed around topics so that you can find out
everything about a single topic without having to jump from place to place. Also,
the chapters themsclves have been grouped into larger topical groups (e.g., the
Graphics and P/M Graphics chapters are together), with the simpler topics near
the beginning of the book. If you are looking for something specific, use the index,
it contains a multitude of references, including subheadings within larger entries.
Finally, if a topic confuses you, try the examples, That's what they're there for!

Special Notations this Manual Uses

This manual's job is to teach you how to use BASIC XE und its extensions without
befuddling you. To this end we have adopted several conventions in our
presentation of the language. We list them here at the beginning so that you can
familiarize yourself with them:

Capitalized Words In the text of this manual, all keywords and functions are
printed in uppercase to differentiate them from the other parts of a statement.

Lowercase Words In the text of this manual, lowercase words are used to denote
the various classes of items which may be used in a program, such as variables
(vsr), expressions (exp), etc.

Abbreviations in Section Headings If a statement has an abbreviation associated
with |t, the abbreviation Is placed in parentheses following the full name of the
statement in the heading (e.g., LIST (L.)).

An "f" Preceding 8 Keyword If an "f" precedes a Keyword In a section heading, it
means that the Keyword is a function, not a statement.

Items in Brackets When showing the usage format of statements and functions, we
use brackets ([]) to surround items which are optional in the format. If the item
enclosed in brackets is followed by an ellipsis (three dots), it means that item may
be used zero or more times in the format (e.g., [exp,...)] means that you may use
0,1,2,3, or more expressions, separated by commas),

Items Stacked in Bars Items stacked vertically in bars indicate that any one of the
stacked items may be used, but that only one at a time is permissible. In the
following example, you may cither use the GOTO or the GOSUB, but not both:
|GOTO | 2000
|GosuB

Notes, Cautions, and Warnings: You will find these starting paragraphs throughout
this manual. Notes are simply interesting asides, Cautions are just that (they point
out things to watch out for), and Warnings describe potentially catastrophic
situations and problems.

BASIC XE Reference Manual Page 3

BASIC XE's Operating Modes Introduction
BASIC XE Keywords and Symbols

BASIC XE's Operating Modes

We humans don't like to do things the same wny every time, but computers do.
RASIC XE solves this problem by having three "operating modes”. This helps keep
you and BASIC XF working on the same wavelength. The following paragraphs
describe these modes and outline what each is used for,

Direct Mode This is the mode you're in whenever vou see the "Ready" (or
XE Ready" if you've used the EXTEND statement) prompt. For this reason
Direct Mode is sometimes called Prompt Mode. Commands you issue in this
mode are exccuted immediately (Directly). Most of the time you will use this

mode only to tell RASIC XFE what you want to do next.

Deferred Mode You enter this mode when you use the NUM command, type in a
line that begins with a line number, or edit a program line., Commands you
issue in this mode will not be executed until you tell RASIC XF to do so. For
this reason Deferred Mode is sometimes called Program Mode, When you tell
RASIC XE to execute a program (i.e,, some numbered lines), it will use the line
numbers to determine the order In which you want the program executed.

Execute Mode BASIC XE goes into this mode when you tell it to start executing a
program and will remain in it until the program halts. The halt can occur
before the program is finished if the program causes an error, or if you press
BREAK or SYSTEM RESET.

RASIC XE Keywords and Symbols

The following table shows all the words and symbols that mean something spectal
to BASIC XE:

ARS DATA FPE LVAR PMWIDTH RUN TRAP
ADR DPEG GET Ming POINT SAVFE UNPROTECT
AND DEL ONSUB MISSILE POKE SET US ING
ASC PIM OTo MOVE, POP » SETCOLOR USR
ATN PIR GRAPHICS NFW POSITION SGN VAL
RGET POS HEX® NEXT POINT SIN VSTICK
RINAD DPEEK HITCLR NORMAL, PROCTDURE SORTDOWN WHILE
BPUT DPOKE HSTICK NOT PROTECT SORTUP X10
RSAVE DRAWTO IF NOTF. PTRIG SOUND ! "
BIMP ELSE INPUT NuM PUT SQR # $
RYF END INT ON RAD STATUS % &
CALL ENDIF INVERSF, OPFN RANDOM STEP ()
CIR ENTWHILE LFFT% OR RFAD STICK . /
CLOAD FNTER LEN PADDLE RFM STOP + -
CLNG FRASF LET PEEK RENAME STRS , <
CIOSE ERR LIST PEN RENUM STRIG <= <
CLR EXIT LOAD PLOT RESTORE SYS = >
COLOR EXP LOCAL PMADR RETURN TAB = A
CONT EXTEND LOCATE PMCLR RGET THEN ; :
cos FAST 10G PMCOLOR RIGHTS TO

cp FIND LOMFM PMGRAPHICS RND TRACF

CSAVFE, FOR LPRINT PMMOVE RPUT TRACEOFF

Page 4 BASIC XE Reference Manual

Introduction A Glossary of Terms this Manual Uses
adata to Expression
A _Glozsary of Terms this Manual Uses

adate Short for "ATASC{l Data”. Any ATASCII character, excluding
commas and carriage returns, (sce DATA for more info.)

aexp Short for "arithmetic expression”.

alphanumeric The letters A through 2 (either lower or upper case) and the
digits 0 through 9,

aop Short for "arithmetic operator”,

Arfthmetic An expression that evslustes to a numboer, For more informa-

Expression tion, sece the Fxpressions chapter,

Arithmetic A unary or binary aperator that performs a math operation.

Operator

Arithmetic A location where & single number is storad.,

Varfable

Array A onc-dimensional structure in which each element (cell) is
uniquely described by its clement number. The Variables chapter
gives a more In-depth definition.

avar Short for "Arithmetic Variable",

Binary Anything that has two states (on/off, up/down, action/stasis,
etc.) Not simply "a number system based on powers of 27,

Channel See the Introducing Atari 1/0 secticn of the Beginning Data
Input/Output chapter for a complete discussion,

cname Short for "Calling Name". The name used to CALL =
PROCEDURE; may be either a string constant or svar. Note:
substrings and savars rasy not Le used,

Command Anything you tell BASIC XE to do is a command, so both state-
ments and functions are commands., If you give a command in
Pirect Mode it will be executed immediately, but if vou're in
Deferred Mode RASIC XE will not execute the command until you
tell it to do so.

Device A peripheral (add-on) that you can use for /0. The Introducing
Atari I/0 section of the Beginning Data Input/Output chapter
discusses this term in further detail,

exp Short for "expression™.

Expression An expression is any legal combination of variables, constants,

operators, and functions used together to compute 8 value. FEx-
pressions can he either arithmetic or string.

BASIC XE Reference Manual Page 5

A Glossary of Terms this Manual Uses

Introduction

Floating Point to pexp

Floating Point

filespec

Function

Integer

1/0

Keyword

lineno

Literal String

Logical
Operator

lop

Matrix

Matrix Variable

mvar
Numerice

Operator

pexp

Numbers ropresented using a decimal point (4.5, -28.49)

Short for "file specifier”. A filespec is used when when doing
some types of 1/0. You can find a complete definition of this
term in the Introducing Atari 1/0 section of the Beginning Data
Input/Output chapter.

A lunction is a subroutine built into the computer so that it can
be called by your program. Functions and statements differ in
that functions must be used in expressions to accomplish their
task, whereas statements are selfsufficient. COS (Cosine), FRE
(remaining memory), and INT (integer) are examples of functions.

A whole number (not s fraction). Integers may be either positive
(4, 183) or negative (-4, -183),

Short for "Input or Output”. This term refers to the transfer of
date between your computer or BRASIC program and peripheral
devices like printers, disk drives, etc.

Any word that
language.

means something special in the BASIC XE

Short for "line number". A constant that identifies a particular
program line. Must be an integer from 0 through 22767. Line
numbering determines the order of program execution.

A synonym of "String Constant”,

An operator that performs a comparision where the resultis
either "true” (1) or "false" (0),

Short for "Logical Operator”.

A two-dimensional structure composed of separate elements,
Fach element {cell) in a matrix is uniquely described by its row
and column number,

An arithmetic variable of 1 (an array) or 2 {matrix) dimensions.
See the mvar section of the Variables chapter for more info.

Short for "matrix variable".
A synonym of "Arithmetic".

Operators are used in expressions to tell BASIC XFE how it should
evaluate the variables, constants, and functions in the expres-
sion. There are two operator types: arithmetic and logical.

Short for "Passing FExpression". An expression whose value will
be passed passed via CALL to a PROCEDURE, or passed via
EXIT back to the CALL. pexp may be an exp, avar, svar, savar,
or mvar. Note: svars, savars, and mvars must be preceded by a .

Page 6

BASIC XE Reference Manual

Introduction

A Glossary of Terms this Manual Uses
pmnum to Variable

pmnum

pname

Program Line

savar
sexp

Statement

String Constant

String
Expression
String Variable

String Array
Variable

Subsatring
svar
var

Yariable

A player or missile number in P/M Graphics. Players are numn-
bered 0-3, and missiles 4-7,

Short for "Procedure Name". The name used to Identify a
PROCEDURE. pname must be a string constant,

BASIC XF. program lines are made up of three elements: the line
number, the program statement(s) (multiple statements are
separated by colons), and the line terminator (a RETURN). In an
actual program, the three elements might look like this:

100 PRINT "I'm a program line.":GOTO 100

If a program line will not fit on one screen line, it wiil wrap
around to the next screen line so that you can see the entire
program line.

Short for "Receiving Variable", A var which will receive a the
value of a parameter passed either from CALL to PROCEDURE,
or from EXIT back to CALL. Note: svars, savars, and mvars
must be preceded by a !,

Short for "String Array Variable”,

Short for "String Expression”.

Statements are subroutines built into RASIC XE that will perform
specific tasks for you. Statements and functions differ in that
functions must be used in expressions to accomplish their task,

whereas statements are selfsufficient.

A group of characters enclosed in quotation marks, "OSS is the
best" is a string constant. So are "123456789" and "Hello".

An expression that evaluates to a string constant. May consist
of an svar, an savar element, a string constant, or a function that
returns a string constant.

A variable where a single string is stored.

An array variable whose elements are strings.

Simply a part of a string (e.g., "abc" is a substring of "abedef").
Short for "String Variable.

Short for "Variable",

This is the term used to describe a quantity which may (or may

not) change. In BASIC XE, there are two basic types of ~
variables: string and arithmetic.

BASIC XE Reference Manual Page 7

Your Additions to the Glossary Introduction

Your Additions to the Glossary

Page 8 BASIC XE Reference Manual

Variables Variable Types, Names, and Maximum
Arithmetic Variables

Types of Variables

BASIC XE supports two basic types of variables: arithmetic variables and string
variables. In addition, it supports both arithmetic and strings arrays, and
arithmetic metrices. Arithmetic variables, arrays, and matrices are used to store
numbers, and may be used only where numbers are required. String variables and
arrays store character strings and may be used only where a character string Is
required.

Varisble Names

All variable names must start with an alphabetic letter, but the rest of the
characters in the name may be either letters or digits. Also, varifable names must
be less than 120 characters long. Finsally, string varable and array names must end
with the dollar sign (%) character. The following examples should make these
requirements clearer:

Arithmetic Names String Names
Rate Name$
Playerlscore AS

Temp Title$

Number of Variables

BASIC XE limits you to a maximum of 128 variables, If you need more than 128
(which is unlikely), you might use elements of an array as individual variables
instead of having a separate name for each. You might also use LOCAL to create
reusable private variables. To clear the variable name table of extraneous names
(possibly after an error 4), LIST your program to disk or cassette, type NEW to
clear the variable name table, and then ENTER your program back into memory.
We suggest that you use SET §,0 and SET 12,0 before doing this.

Arithmetic Variables (avar)

Arithmetic variables are used to store numbers, and are the most common variables
used. Here are some examples of arithmetic variables in use:

1988 Input “avar Value)) %
118 Print “N; 3R

128 Print “Na2: “KAZ
130 Print “o/X: “iKAB.5
148 Print “eAN: “IExpix)

158 Print “1n(X); *;Log(X)
15@ Print "log(X): ";Clog(X)
170 Print :Goto 109

BASIC XE Reference Manual Page 9

Arfthmetic Arrays and Matrices Variables

Arithmetic Arrays and Matrices (mvar)

An arithmetic array is a group of separate arithmetic variables (called elements or
subscripts of the array) which share a common name, and may accessed only by
specifying the number of a given element as well as the name of the arithmetic
array. If you think of an arruy as a string of pearls the idea is easier to under-
stand. If you want to list the worth of each pearl (for insurance purposes), your
list might look like:

Pearl 1: $1000.00
Pearl 2: $950.00
Pearl 3: $1125.00
Pearl 4: $1100,00
Pearl 5: %1050.00
Pearl 6: $1200.00

Translated into a BASIC XF arithmetic array, your list would be:

198 0in Pearl(s)

110 Pearl(0)=10808
120 Pearl(1):-3%9

138 Pear)(2)=112%
140 Peari(3)=-1169
158 Pearl(4)=105%6
160 Pearl(S)=1280

Notice that the elements of the BASIC XE arithmetic array are numbered starting
at zero. This doesn't seem right because we humans don't think of zero as a
number, but - as far as computers and mathematiclans are concerned - it is.

The DIM statement on line 100 is used to tell BASIC XE how many elements you
want reserved for the arithmetic array named "Pearl”. DIM is discussed in greater
detail in its own section later in this chapter.

An arithmetic matrix is similar to an arithmetic array, except that it is two dimen-
stonnl, This means that there are two numbers required to specify a given
element: a row number and a column number. Our string of pearls analogy can be
extended to describe matrices if you consider a matrix as a bunch of pearl strings.
Now, your price list would look something like:

String 1 String 2 String 3
Pearl 1: £1000.00 Pearl 1: $B75.00 Pearl 1: $1100.00
Pearl 2: $950.00 Pearl 2: $1075.00 Pear]l 2: $980.00
Pearl 3: $1125.00 Pearl 3: $1300.00 Pearl 3: $1115.00
Pearl 4: $1100.00 Pearl 4: $£990.00 Pearl 4: $1120,00
Pearl 5: 81050,00 Pearl 5: $1250.00 Pear! 5: $890.00
Pearl 6: $1200.00 Pearl €: $1035,00 Pearl 6: $1225.00

Page 10 BASIC XE Reference Manual

Variables Arithmetic Arrays and Matrices

Translated into a BASIC XE arithmetic matrix, your list would be:

108 Din Pearisi2,5%)
9)=1000:Pearlstl1,8)=875:Pearis(2,8)-1189

1 +1)=980
138 Pearlste,2)=s1 S:Pearis(2,2)=-1118
140 Pearls(e,3)=114 Pearls{1,3} iPearls€2,33:=4128
150 Pearlis(9,4)=1050:Pearis(1,42=1250:Pearis(2,4)-8%0

166 Pearliste,5)=1200:1Pearls(1,5)=1035:Pearls(2,5)-1228

As with arfthmetic arrays, the first element index is 0 rather than 1, so the first
pearl on the first string is accessed using the subseript (0,0). The first 0 is the
number of the pearl string (the row number), sind the second is the number of the
individual pearl (the column number). This analogy might lead you to believe that
a matrix is just an array where each element is itself an srray {our list is one of
strings of pearls, and each string of pearls is a group ot individual pearls). This
conception of matrices is, In essence, correct and Is very useful when trying to
manipulate matrices.

When you use a single element of an arithmetic array or matrix, you are actually
using a single number (which iz what an arithmetin variable 1s). This means that
avar, array(element), and matrix{(row,column) may all be used whenever a number is
wanted,

BASIC XE Reference Manual Page 11

String Variables Variables
String Array Variables

String Variables {svar)

String variables are used to store literal strings of characters, A literal string of
characters is simply some characters enclosed in double quotes; for example,
“This string enclosed in quotes is & literal strine®

“Nywbers in quotes are strings too - 12345"
“Even contrel charcters are - b Hiv/AJA"

are all literal strings. As mentioned earlier, string variable names are just like
arithmetic variable names, except that they must end with a dollar sign (3).

Refore you use a string variable, you need to tell BASIC XE the size (maximum
number of characters) of the variable. This is done using the DIM (dimension)
statement as follows:

DIM String$(66), A$(10)

Note: When you manipulate strings a character at a time, remember that the
element numbering begins at 1, not 0 (as with arithmetic arrays and matrices). For
example, if you want to get the first character of AS$ (which contains the string
"ABCDEFG"), you would use A$(1,1), and get "A" as the result, If you try to get
the "A" by using A $(0,0), you will get an error.

Bonus: BASIC XF can automaticelly dimension a string variable for youif you

don't manually DIMension it. For more information about this feature see the
discussion of SET 11,aexp.

String Array Variables (savar)

A string array is very similar to an arithmetic array, except that each element is a
string variable, not an arithmetic variable.

String array variables resemble string variables in three aspects: their names must
end with a doliar sign, they must be DiMensioned before being used, and their
element numbering begins at 1, not . However, there are two dimensions to a
string array: the number of strings in the array, and the length of the strings. The
following examples show how to specify both of these dimensions:

DM Sarray$(4,40), As(10,100)

This example first dimensions a string array called "Sarray$" to contain 4 strings,
each 40 characters long, and then dimensions "A$" to 10 strings, each 100
characters long.

To access one of the strings in a string array you specify the string's number
(r~member, the first string is number 1, not 0) followed by a semicolon (;), as
follows:

188 Dim Test$(3,S)

118 Test$(1;)= ?his "

128 Test$(2;)="is a *
130 Test$(IjI=""test."

As you may notice, savar(element;) is equivalent to svar, and may be used
wherever svar is used, unless stated otherwise.

Page 12 BASIC XE Reference Manual

Variables DIM

DIM

mvar(aexpll ,aexp2])
Format: DIM |svar(aexpl) [,...1
savar(aexpl,aexp?)

The DIM statement is used to reserve space for arithmetic arrays and matrices,
and strings and string arrays.

For arithmetic arrays DIM reserves space for aexpl+l arfthmectic elements. For
arithmetic matrices it reserves space for aexpl+1 rows of aexp2+1 elements each,
The "+1" is there because arithmetic indexing begins at 0, thus giving you aexp+l
total indices.

DIM reserves space for up to aexpl characters when allocating strings, and space
for aexpl strings, each of up to aexp2 characters, when allocating string arrays.

The following examples illustrate the use and effect of the DIM statement. The
first one reserves 10t arithmetic elements for an array named Al. The second
allocates space for 7 rows of 4 columns each for a matrix cslled Grid. The last
example reserves 20 bytes for the string Bstr$, and then allocates 100 strings,
each of up to 40 characters, for the string array Friends$.

108 Din A1(106)
119 Din Gridt(6,3)
120 Din BStrSi28),Friends$(100,48)

Note: BASIC XE is capable of automatically DIMensioning string variables. For
more information, see SET 11,aexp.

BASIC XE Reference Manual Page 13

LOCAL Variables

LOGAL
Format: LOCAL avart [,avar2...)

Examples: 100 LOCAL Templ
320 LOCAL Sum,N,Count ,Misc

The LOCAL statement allows you more flexibility in your programming because it
enables vou to have temporary arithmetic variables within PROCEDURE and
GOSVUB subroutines. The way LOCAL works is very simple, When a LOCAL state-
ment {3 executed, all avar names {(no mvars, svars, or savars) following it become
private until the next EXIT {s encountered. What does 'become private’ mean?
Simply that you can change the value of a LOCAL avar within its
LOCAL/EXIT bounds without affecting its value outside of these bounds, as it you
had a private copy of the variable. When you use LOCAL, you don't have to worry
about conrlicts between routines in your program that use variables with the same
name.

A simple example will help:

18 Test=1234567:Print 18, Test
20 Gosub 40:Print 20,Vest

38 End

40 Local Test:Print 48,Test
S0 Test=0.54321:Print 56,Test
60 Exit

Note the that PRINT statements purposely display the current line number as well
as the value of Test, This {s simply to make tracing the flow of the program
easier, Does it surprise you to find that the output of the ahove program will look
something like this?

10 1234567
40 1234567
59 8.54321
20 1234567

Let's examine that program a little closer. Line 10 is simple enough - we just
assign a value to the variable Test and verify that it has been accepted. In line
20, we first GOSUB to a routine and then again display the contents of our
variable, Note that in the progrsm’s running this PRINT is the last thing executed
{other than the END). Line 40 begins the interesting part of this program. We
declare that Test isa LOCAL variable and, ance again, display {ts value, Line 50
is a repeat of line 10 except that we assign a different value to our now-private
variable Test. Note that the PRINT verifies our change. Finslly, in line 60, we
use EXIT to restore Test to its original value, as shown by the PRINT in line 20.

The point of all this was to show that our subroutine (lines 40 through 60) could do
what it liked with the LOCAL veriable without affecting its value in the rest of
the program,

Ronus: when you POP a LOCAL variable the non-private value is restored, so you
can use LOCAL and POP to create private variables even when you're not in a
subroutine,

Page 14 BASIC XE Reference Manual

Variables Notes and Warnings
Regarding LOCAL

Notes and Warnings Regarding LOCAL

Note: the fact that LOCAL may be used with GOSUB subroutines is not an
accident. EXIT was specially designed to find out what type of subroutine
(PROCEDURE or GOSUB) it is terminating, and handle the returning condition
appropriately. This smasall fact alone allows you to modify your existing programs
to use LOCAL variables without having to change all GOSUBs to CALLs. Also,
there are occssions where it could be advantageous to use GOSUB instead of
CALL. In particular, GOSUBbing to an absolute line number is significantly
quicker than any other type of subroutine access when your program Is in
FAST mode.

Note: variables do not change value when they are made LOCAL. You can see this
in the example earlier in this section, The PRINTed value of Test in line 40 is still
1224567, even though it has becn made private. If you want your LOCAL variables
to be zeroed before you use them, you must equate them to zero yourself,

Note: since you are still limited to 128 different variable names, you might -
consider using the same LOCAL variable names in all your subroutines if you are
pushing the name limit., For example, you might start each subroutine with the line

Each subroutine then has four variables available exclusively for its own use, and
you have used only four names from your maximum of 128.

Technical Note: LOCAL pushes the current value of an avar onto BASIC XE's
stack when that variable is made private. When an EXIT is encountered, the value
is popped off the stack and into the avar, thus restoring its previous value.

Warning: you may use LOCAL only at the beginning of subroutines that are
terminated by an EXIT (not a RETURN), unless you POP the previous values
before RETURNing. For more info, see POP,

BASIC XE Reference Manual Page 15

Assigning Values to Varfables Variables

Assigning Values to Variables

The assignment statement is used to assign a value to a variable, and is of the
general form varfable=expression. The variable and expression must be of the
same data type {(arithmetic or string) or you will get an error,

Arithmetic Assignment

Arithmetic assignment is the simplier of the two, so we'll discuss {t first, The
syntax is simple: avar=aexp, but the extensions are numerous. When you remember
that subscripted arithmetic arreys and matrices are functionally equivalent to
simple arithmetic variables, all of the following become valld:

100 Din Array(ie) ,Matrix(1e,16)
120 Arithvarz27.4
130 Matrixte,e)=27.4

String Assignment

String assignment can be done two ways: by substring and by entire string. Before
discussing these two methods, we need to discuss what "string” and "substring”
mean. The following table defines these terms when used as both as the source
and destination in an operation (e.g., in A$="abc", A% is the destination, and "abc"
is the source):

String As Source String As Destination String
S8 characters 1..LFN value characters 1..DIM value
S$(n) characters n..LEN value characters n,.DIM value
s¢(n,m) characters n..m characters n,..m

Assigning an entire string is easy; the form is simply svar=sexp. Whatever svar had
in it before Is wiped out and sexp is put in. The LEN value is set to the length of
the sexp string. Here are some examples:

18 Dim 5318(50),528(58)
20 515:="A string assignmwent*
30 S2$="Another string assignsent"

Substring assignment can be done using either the format svar(n,m)=sexp or
svar(n)=sexp. In the first case, cheracters n through m (inclusive) of svar will be
changed to sexp. If sexp evaluates to a string longer than the specified
destination substring, only the characters up to the substring length will be
assigned. If the sexp string has fewer characters than the destination substring,
orly LEN(sexp) characters will be changed in the substring. Also, RASIC XF will
update the length of svar if the substring assignment makes it longer, The second
method of substring assignment replaces n through the DIM value of svar with the
sexp string, and then updates the length of svar, The example on line 90
illustrates this type of substring assignment, The others show the two subscript
method:

48 Ren “lUse DIN'S from above"

S0 S1$="ABCD"

60 S15(4,8)=""1234* " :Ren S15:"ABCDL1234"

70 515¢1,4)=""ab":Rem S15:=""3bCD1234"

88 2="BASIC XE - Precision Software"

99 S2$(10)="FROM 055" :Rem **S2$=BASIC KE from 0SS"

Page 16 BASIC XE Reference Manual

Variables Assigning Values to Variables
LET

To assign a value to a string array (savar), first you specify which string element
of the savar you want to use (followed by a semi-colon}, and then treat it just like
a normal string (svar). The following ecxamples help clarify this procedure:

10 Dim Sas(ie,4®)
:;:‘.‘n' aSSiannent:Ren “savar version of 26 above™

123456 :Rem “savar version of 68 above
ASIC KE - Frecision Software"
60 3a$CI310)="from 053" :Ren “savar version of 99 above™
BASIC XE aleo allows you to do string concatenation {(tacking one string onto the
end of ancther) essily using the assignment statement. To concatenate strings,
simply change the sexp in the string assignment format to sexpl,sexp?,sexpl,....
sexp? is then concatenated to sexpl, sexpd is concatenated to the result, and so
on. The following examples show concatenation:
18 Dim ASC19)3,85(268),C%(402
=* frowm 0SS5*

BASIC XE™
$," a hot language™,a$
50 8$=8%,4a8
&8 Print C$:Print BS

Note that line 50 is equivalent to
56 s$(Len(BS)+1)=AS

Note: it is possible to store into the middle of a string by using subscripting;
however, the beginning of the siring will contain garbage or nulls.

LET

Format : LET <assigmment statement>
Example: LET COTO=3.5
LET LETTFRSg="a"

LET allows you to assign values to variables with names that start with or are
identical to & keyword, In the first example, LLT allows GOTO to be used as an
erithmetic variable rather than as the GOTO statement. The second allows the
use of LETTERSS, the first the letters of which are the keyword LET.

There are a few keywords which CANNOT be used as variable names even when
vou use LET. They are the unary logical operator NOT, and all the function names
{ABS, LEN, etc.) Herc is an example of what will happen If you try to use NOT as
the first three letters of a name, Type in this program:

10 CSHARP=37 s
20 LET MOTE=CSHARP
X0 PRINT NOTE

When you RUN it, a "1" will zet printed on the screen, not a "37". M you LIST the
progrem you will see why, Line 30 is listed as
3¢ Print Not E

because BASIC XF does not allow "NOT" as the start of a variable name and inter-
prets it as the keyword NOT.

BASIC XR Reference Manual Page 17

Space For Your Notes Variables

Space For Your Notes

Page 18 BASIC XE Reference Manual

Operators Arithmetic Operators

Operators

BASIC XE has two types of operators: Arithmetic Operators and Logical
Operators. As you will see in the expressions chapter, either of these two types of
operators may be used in arithmetic expressions, while neither may be used in
string expressions,

Before discussing these two types of operators, a reminder of the meaning of
'binary' is neceded. As stated in the glossary, this term does not mean simply "a
number system based on powers of 2, In which 0 and L are the only digits". When
'binary' is used to mean this, it Is an abbreviation of 'binary number system', and
applies only to numeric representations within this system. Anything which has
only two states (on and off, up and down, action and stasis, ete.) can be considered
binary. When we are discussing operators, 'binary' means that the operator
requires two operands. For example, ® is a binary operator because it multiplies
one value by a second (4*3 means something, while *3 means nothing), Similarly,
‘unary' is used to describe an operator which requires one operand (- is a unary
operator when we use it to signify that a number is negative, e.g. -5),

Arithmetic Operators (aop)

BASIC XE supports 8 binary and 2 unary arithmetic operators. The binary ones

are:
Symbol Function
Addition

Subtraction
Multiplication

Division

Fxponentiation

Bitwise AND

Bi twise OR

Bitwise FOR (Fxclusive OR)

R DN 01+

The tirst four are straightforward enough since they are the arithmetic operators
we use all the time, but the last four require some explanation.

The ” operator is used to raise a number to a specified power. For example, 43
simply means "multiply 4 by itself 3 times", or 4*4*4, which equals 64,

The &, !, and % operators allow you to perform bitwise operations on positive
integers up to 65,535, If you use them with non-integers (e.g., 4.3, .528, ete.),
the number will be rounded to the nearest integer before the operation. If you try
to use them with negative numbers an error occurs, The following tables show the
results of comparing two bits for each of these operators:

8it A Bit R Result Bit A Bit B Result Bit A Bit B Result

1 a1 =1 1 !t 1 =1 1 % 1 =0
0 &4 1 =0 0!t 1 =1 0 % 1 =1
1 & 0 =0 1 ' o =1 1 % 0 =1
0 & 0 = 0 o ! 0 =0 0 % 0 = 0

BASIC XE Reference Manual Page 19

Logical Operators Operators

The following examples Hlustrate the results of using each of these bitwise
operators with the operands § and 39:

& exsmple ! example % example
0n000101 (5) onpootot (5) 00000101 (5)

& o01nrotil (29) ! 00100111 (39) % 00100111 (39)
00000101 (5) 00100111 (39) 001006010 (32)

The two unary arithmetic operators are plus (+) and minus{(-), and are used to
denote the sign (positive/negative) of a number. For example, +5 means "positive
five" and -5 means "negative five". Note: If you do not specify the signofa
number, RASIC XF assumes that the number s positive.

Logical Operators (lop)

RASIC XE supports three types of logical operators: relationsl, unary and binary.

The relational operators compare two expressions, giving a boolean (true/false)
result, and are most frequently used in conditional statements (i.e., the IF state-
ments), They may nlso be used iIn arithmetic expressions, returning a 1 if the
relation is true, and a 0 if it's false,

< The first exp is less than the second exp.

> The first exp is greater than the second.

= The exps aie equal to each other.

<= The first exp is less than or equal to the second,

>= The first exp is greater than or equal to the second.
<> The two exps are not equal to each other.

Examples of the relational lops may be found in the Expresstons chapter.

The unary logical operator is NOT, and is used to reverse the result of an
expression, For example, the expression 2<3 {s obviously true, but the expression
NOT(2<3) is false, since NOT inverts the truth of "2 is less than 3",

There are two binary logical operators: AND and OR. Do not confuse them with
the bitwise binary arithmetic operators & and !, They are not the same! AND and
OR are used to create compound logicsl expressions like

IF X=3 OR Y=9 THEN ONTO 400

WHILE Done=0 AND Bafl=0
Note how these operators are different. Only one of the two operand expressions
must be true for the logical OR tc be true, while both must be true for the logical
AND to be true.

Page 20 BASIC XE Reference Manual

Operators Operator Precedence

Operator Precedence

Operators require some kind of precedence (a defined order of evaluation) or we
wouldn't know how to evaluate expressions like 4+5*3, Is this equal to (4+5)*3 or
4+(5*3)? Without operator precedence it's impossible to tell, RASIC XE's normal
precedence is very precise, as shown in the following table, The operators are
listed in order of highest to lowest precedence, Operators on the same line are
evaluated left to right In an expression.

() Parentheses

<> =<=>=<> Rel. lops in String Comparisions

NOT + - Unary NOT lop, Unary Plus and Minus aops
A Exponentiation

%!a& Bitwise FOR, OR, AND aops

*/ Binary Multiplicative aops

- Binary Additive aops

<> =<K=3= <> Rel. lops in Numeric Comparisons

AND Binary AND lop

OR Binary OR lop

If you're ever in a situation where you're unsure of the evaluation of an
expression, use parentheses to insure the proper order of evaluation., Fxamples of

operator precedence during expression evaluation can be found in the
Expressions chapter.

BASIC XE Reference Manual Page 21

Space For Your Notes Operators

Space For Your Notes

Page 22 BASIC XE Reference Manual

Expressions String and Numeric Constants
Internal Format of Numbers

Expressions

Expressions are constructions which obtain values from vartables, constants, and
functions using a specific set of operators. BASIC XE supporis two types of ex-
pressions: arithmetic (aexp) and string (sexp). Refore discussing these two types of
expressions something needs to he said about the constants HASIC XE allows.

String and Numeric Constants

String constants are frequently called literal strings because they are just a group
of characters enclosed in double quotes ("):
“This sString enclosed in quotes is a String constant®

“Aunters in quotes are strings too - 12345"
“s9 are control charcters are - b P43 ALA"

To gct a double quote into a string ~onstant, use two double quotes in a row (™).

RASIC XF allows you to enter numeriec constants (numbers) in one of two ways -
decimal or hexadecimal. Decimal numbers may either be integers, fractions, or
scientific notation. The following examples illustrate these three types of
numbers:
Integers Fractions Sci. Notation
4027 -67.254 4.22E2
-2 325.04 23.4E-14

The "E" in the scientific notation examples stands for "Exponent”. The number
following 1t is the power of ten (e.g., 4.33F2 means "4.33 * 102", or 423).

Hexadecimal numbers can only be {ntegers, and the digits must be preceded by a
dollar sign (8), as in the following examples:
$4A20 -%0A $GFF
-$E -$7B2D SFFFF
Notice that the unary minus (denoting a negative number) precedes the dollar sign.
The maximum hexadecimal value allowed s $FFFF (65,535 decimal).

Internal Format of Numbers

Note: this section is provided for those of you who are interested in the technical
aspects of BASIC XE. You corn skip this secticn without impairing your ability to
use BASIC XE.

All numbers in BASIC XE are Binary Coded Decimal (BCD) floating pointing point
with a five byte (10 BCD digit) mantissa snd a one byte exponent. The most
significant bit of the exponent is the sign of the mantissa (0 for positive, 1 for
negative), and the rest ol the bits are the value of the exponent in excess 64
notation. Internally, the exponent represents powers of 100 (not powers of 10).
For example, 0.02 equels 2'10'2, which equals 2*100™ ", so the intcrnal represen-
tation is
3F 02 00 00 00 00

$3F is the exponent (-1) plus 64 ($40), and the mantissa is 2, The implied decimal
point is always to the right of the first byte of the mantissa, An exponent less

BASIC XEB Reference Manual Page 23

Expressions Arithmetic Expressions
String Expressions

than %40 indicates a number between 0 and 1, while an exponent greater than or
equal to $40 represents a number greater than or equal to 1. Zero is represented
by a zero mantissa and a zero exponent,

In general, numbers have a 9 digit precision. For exampie, only the first 9 digits
are guaranteed to be significant when INPUTting a8 number. You can sometimes
get 10 significant digits in the special case where an even number of digits are to
the right of the decimal point.

Arithmetic Expressions (aexp)

Arithmetic expressions are those which evaluate to a number, and are made up of
one or more of the following list of operands, separated by operators:

1) a nuncric constant (number)

2) an avar (or subscripted mvar)

1) a function which returns a number

4) string camparision using relational lops

The first three are straightforward, but the fourth requires explanation. You may
use string comparisions in arithmetic expressions because the comparision results
in a 1 (true) or 0 (false). For example, "ABC"<"ACC" would return a 1, since
"ABC" vprecedes "ACC" when the two are alphabetized. Conversely,
"ABC"™>"ACC" evsluates to 0. An arithmetic expression can stimply be one of the
above described operands, or two or more of them separated by operators (either
arithmetic or logical). The following examples of arithmetic expressions Include
the evaluation order of the operators (if any) and the result:

Expression Evaluation Order Result
A (4+(2177)%2) 7,%5,+,% 30
"AR">TACT+T*(ASC("A")) > ,ASC,*,+ 455
X=100 : Y=2 N/A

INT(X*Y/3) *./,INT 66

String Expressions (sexp)

String expressions are much simpler than arithmetic expressions since there are
fewer things they can be. The following list shows al) the valid string expressions:
1) a string constant (literal string)

2) an svar (or subscripted savar)
3) a function which returns a string
4) a substring of an svar or savaer

Notice that nothing has been said about operators in string expressions. That is
because none are allowed (with the special exception of the comma (,) for concate-
nation in string assignment). A string expression may be only one of the above, as
In the following examples:

"A literal string” A%(3)

AS Sas(1;3)
Sas(1;) As(4,8r)
STRE(126.83) Sa$(1;4,8)

Page 24 BASIC XE Reference Manual

Editing Your Program NEW
NUM

Editing Your Program

The statements in this chapter ease the job of editing a BASIC XE program, so
that progremming need not be considered a chore. This chapter covers the atate-
ments NEW, NUM, LIST, DEL, RENUM, and REM.

NEW

Format: NEW
Fxamples: NFW
100 NEW

This command erases the BASIC XE program currently in memory. Therefore,
before typing NEW, make sure you have saved your program (using SAVE, CSAVFE
or LIST) if you want to keep it. NEW also clears BASIC XE's Iinternal symbol table
so that no variables are defined. NEW is normally used In Direct Mode but is
sometimes useful In Deferred Mode as an alternative to END, when you want &
program wiped out after it has RUN.

NUM

Format : NM Tstartl[,inc]
Examples: NWM

NIM 50

NWM ,1

NUM 50,1

The NUM command enables RASIC XE's automatic line numbering abflity. This
facility can increase your program entry speed because it puts in the program line
numbers for you. If no start or inc Is given (first example), NUM will start
numbering from the last line number currently in the program in increments of 10,
If there is no current program, NUM will start with line number 10. If the starting
line number alone is given (second example), NUM will start numbering from that
line number in increments of 10. It the increment alone is given (third example),
NUM will start numbering from the last line currently in the program, in
increments of inc. If both the starting line number and the increment are given
(last example), NUM will start numbering from the given line number in increments
of inc. Note: nefther start nor inc may be 0.

Four things cause the automatic line numbering to stop:
1) If you press <RETURN> immediately following the line number.
2) £ BASIC XF encounters a syntax error on a program line you type in.
3) If the line number the automatic numberer would use already exists.
4) If the automatic numberer would generate a number larger than 327R7.

Note: using NUM in Deferred Mode always returns you to Direct Mode.

BASIC XE Reference Manual Page 25

LIST Fditing Your Program
DEL

LIST (L.)

Format : LIST f1linenoll[,l tineno21]
Fxamples: LIST

LIST 10

LIST 10,100

LIST 10,

Note: this section covers only the editing uses of LIST. For its program saving
uses, see the Storing and Retrieving Your Program chapter.

LIST causes the program currently in memory to be displayed so that you can edit
or study it. If LIST is used alone (without linenol or 2), the entire program is
displayed {first example). If you follow it with a single line number, only that line
will be displayed (second example). If you specify two line numbers (separated by
commas), lines lineno) through lineno2 will be LISTed (third example). H you give
the starting line number, & comma, and no ending line number, the ending line
number is assumed to be the last line in the program (last example).

Note: You cen control the automatic indention of structured statements (FOR,
WHILE, etc.) when they are LISTed using SET 12,aexp. You can also control the
casification using SET 5,aexp. See SET for more info.

DFL

Format : DEL linennl[,lineno2)
Examples: DEL 100
DEL 1000,1999

DEL deletes program lines currently in memory. If a single line number is given,
only that line will be deleted {first example), If two line numbers are given, lines
linenol through linero2 (inclusive) will be deleted (second example).

Page 26 BASIC XE Reference Manual

Editing Your Program RENUM
REM

RENUM

Format : RENWM [start](,inc]
Examples: RENWM

RENWM 100

RENIM , 20

RENWM 1000,5

RENUM renumbers the program in memory, using start as the starting line number,
and inc as the increment between line numbers. If start is not specified, 10 is
used. If Inc is not specified, an increment of 10 is assumed., Note: neither
start nor inc may be 0.

Al line number references (e.g., in GOTOs, GOSURs, etc.) are also renumbered
I they are numeric constants. Line number expressions (e.g., GOTO 10*A) will
not be renumbered.

Caution: if you are RUNnIng a program in FAST mode, a RENUM in that program
will do nothing.

Caution: If you use LIST in Deferred Mode (i.e., in a program) the line number
values you want to list will not be renumbered by RENUM,

Caution: RENUM wil) not renumber an absolute line number after a line number
expressed as an expression. If you RENUM the statement

10 On X Cosub 180,3I%Y,200 N

the 100 will be renumbered, but the 200 will not since it follows a line number
expression (3*Y). This situation Is possible only in the ON statement.

Warning: If you have a reference to a line number that does not yet exist (e.g. a
GOTO 50 when line 50 doesn't exist), RENUM will not renumber that reference.
After the RENUMbering, however, the non-existent line number might exist, thus
making the reference valid, but it will most likely not refer to the program line
you want {t to.

REM (R.)

Format: REM text

Examples: RFM This i{s a remark
10 RFM Routine to calculate X
20 GOSUB 300 : RFM Find Totals

REM stands for "remark” and is used to put comments into a program. This
command and the text following it on the same line are ignored by the computer.
However, it is included in a LIST along with the other numbered lines. Sfince all
characters following a REM are treated as part of the REMark, no statements
tollowing it (on the same program line) will be executed.

BASIC XE Reference Manual Page 27

Space For Your Notes Editing Your Program

Space For Your Notes

Page 2R BASIC XE Reference Manual

Storing and Retrieving Your Program LIST
ENTER

Storing and Retrieving Your Program

BASIC XE allows you to store your programs in either of two formats - as ATASCII
text, or as the tokenized gibberish internal to BASIC XE. LIST and
ENTER perform program 1/0 using the first format, while SAVE and LOAD, and
CSAVE and CLOAD use the second. The reason the tokenized format is offered is
that it is generally more compact than the ATASCII format and always cuts down
on disk/cassette use and I/0 time.

LIST (L.)

Format : LIST "filespec"[,]linenol]f,[1inenoc2]]
Examples: LIST "C:"

LIST "D:DEMO.LIS"

LIST "P:",20,100

LIST allows you to write out the ATASCII text version of the program in memory.
As evident from the examples, filespec may refer to any device. You mey add any
of the line number specifications (described In the previous chapter's discussion of
LIST) to LIST only a portion of your program to filespec.

Note: the quotes around filespec are required by LIST, unless of course a string
variable is used.

ENTER (E.)

Format : FNTER "filtespec”
Examples: ENTER "C:"
ENTER "D2:DFMO.LIS"

The ENTER command allows you to read in a program you have saved using the
LIST command, and will not work with programs which have been SAVEd or
CSAVEd. To use this command, you simply need to give the filespec of the
program, Note: whereas both LOAD and CLOAD clear the program memory space
before reading in the new program, ENTER does not, and so is useful when trying
to merge programs together,

Bonus: You can modify what BASIC XE does after completing an ENTER using the
SET 9,aexp command (see SET for more info).

BASIC XE Reference Manual Page 29

SAVE, LOAD Storing and Retrieving Your Program
CSAVE, CLOAD

SAVE (8.)

Format : SAVE "filespec”
FExamples: SAVE "D:TEST.BXE"
SAVE "C:"

SAVE rllows you to save the tokenized form of a RASIC XF program to any device.
A file saved using this command may then be read back into program memory using
LOAD or loaded and immedintely executed using the RUN command.

LOAD (LO.)

Format : LOAD "filespec"
Fxamples: LOAD "D1:GAMF1.BXE"
100 LOAD "C:"

LOAD allows you to load the SAVEd verszion of a program into memory from any
device, It will not work with programs saved using LIST or CSAVE.

CSAVE(CS.)

Format: CSAVE
Fxamples: CSAVE
100 CSAVE
100 CS.

CSAVE is used to save the tokenized version of a program. The difference
between CSAVE and SAVE "C:" is that CSAVE leaves shorter Inter-record gaps
and so makes cassette I/0 faster. On entering CSAVE two bells sound to Indicate
that the PLAY and RECORD buttons must be pressed, followed by <RETURN>,
Do not, however, press these buttons until the tape has been positioned. Note:
tapes saved using the two commands SAVE and CSAVE are not compatible. Note:
due to a flaw in the Atari OS ROMs (not BASIC XE), it may be necessary on some
machines to enter an LPRINT before using CSAVE, otherwise it may not work
properly. For specific instructions on how to connect and operate the hardware,
cue the tape, etc,, see the Atari 410 or 1010 Program Recorder Manual.

CLOAD

Format: CLOAD
Example=: CLOAD
100 CLOAD

This command cen be used in either Direct or Deferred Mode to load a program
from cassette tape, and may be used only with programs which have been CSAVEd.
On entering CLOAD, one bell sounds to indicate that the PLAY button needs to be
pressed, followed by <RETURN>. However, do not press PLAY until the tape has
been positioned. Specific instructions for CLOADing a program are contained iIn
the Atari 410 or 1010 Program Recorder Manual.

Page 30 BASIC XE Reference Manual

Making Your Program Stop and Go RUN
END

Making Your Program Stop and Go

The statements discussed in this chapter enable and control the execution of your
RASIC XE program. They are RUN, END, FAST, STOP, CONT, TRACE, and
TRACEOFF.

RUN

Format: RUN ["filespec")
Examples: RUN
106 RUN "D:MENU"

This command causes BASIC XE to begin executing # program, If fllespec is not
specified, the current RAM-resident program {8 executed; otherwise BASIC XE
retrieves the tokenized program form the specified file and then executes ft.
Refore execution beging, RUN sets all avars to zero, unDIMensions all mvars,
svars, and savars, CLOSEs all open files (channels), and turns off all SOUNDs, If
an error occurs while your program is RUNning, execution will ha!t and an error
message wil) be displayed (unless the error has been TRA Pped).

Although RUN without a fllespec is most frequently used in Direct Mode, it can
also be used in Deferred mode. For example, RUN the following program (press
<BREAK> to exit):

10 Print “Continuous RUMRing*
28 Run

Note: RUN must be the last (or only) command on a program line when used in
Deferred Mode.

If vou want to begin progrsm execution somewhere other than at the first program
line, use GOTO in Direct Mode. Caution: variables are neither cleared nor
inittalized by GOTO.

END
Format: END
Examples: FND
4000 END

END is used to terminate the execution of a program. In addition to this, it also
clnses all files (channels), silences any sounds, and turns off P/M's (if they were
turned on via PMG.). 1t docs not change the graphles mode, however. END is not
required in most progrnm- because BASIC XE automatically closes all files and
silences any sounds after the last program line has executed,

Note: i{f you have any subroutines (ollowing the main program you should put an
END at the end of the msin program, or the subroutines may be executed as part
of the main program.

END may also be used in Direct mode to close files, silence sounds, and turn off
P/M's,

BASIC XE Reference Manual Page 31

FAST Making Your Program Stop and Go

FAST

Format: FAST
Examples: FAST
100 FAST

During normal program execution BASIC XF must search from the beginning of
your program for a specified line number whenever it encounters a GOTO, GOSUB,
FOR, or WRILE (this is how most other BASICs do it too). However, you can
change this by using the FAST command. When BASIC XE sees FAST, it doesa
precompile of the program currently in memory. During the precompile BASIC XE
changes every line number to the address of that line in memory. Then, whenever
a GOTO, GOSUB, FOR, or WHILE is executed, no line number search is needed,
since BASIC XE can simply jump directly to the specified line's address.

Note: if the lineno used in the GOTO or GOSUB is not a constant(j.e., isa
variable or an expression), that lineno will not be affected by FAST, and so will
execute at normal speed,

Note: the following statements and situations will terminate FAST mode
execution:

DEL

ENTER

EXTEND

LIST

LOAD

LYAR

RUN "filespec”

SAVE

returning to Direct Mode.

Caution: when you use FAST in Deferred Mode, it must precede your first GOSUB,
FOR, CALL, WHILE, and/or LOCAL. We recommend that you use it as the first
statement in your program.

Caution: if you are using ENTER to create program overlays, you will notice that
the notes and caution above seemingly combine to preclude the possibility of
ENTERed overlays executing in FAST mode. There is only one way to get around
this: the main program (the part that calls the overlays) cannot be in a loop,
subroutine, or local region when it ENTERsS the overlay. If you insure this, you
may then meake FAST the first statement in your overlay without creating
problems,

Page 32 BASIC XE Reference Manual

Making Your Program Stop and Go STOP, CONT
TRACE/TRACEOFF

STOP

Format: STOP
Examples: 100 STOP

When you use the STOP command in Deferred Mode in a program, BASIC XE
displays the message "Stopped at line lineno", terminates program execution, and
returns to Direct Mode. STOP does not close files or turn off sounds (as does
END), so the program can be resumed by typing CONT. This can be very useful in
error handling. For more information on this, see the Handling Errors chapter.
When used In Direct Mode, STOP simply displays "Stopped”, and returns to Direct
Mode.

CONT

Format : CONT
Examples: CONT
100 CONT

In Direct Mode, CONT resumes program execution which has been interrupted by a
STOP statement, a <BRFAK> key abort, or an error. Caution: execution resumes
on the line following the halt, so any statements following the halt, but on the
same program line, will not be executed.

In Deferred Mode, CONT may be used for error handling. For these uses, see the
Handling Errors chapter.

TRACE / TRACEOFFP

Formats: TRACE
TRACFOFF

Exanples: 100 TRACE
TRACEOFF

These statements are used to enable or disable the line number trace facility of
BASIC XE. When in TRACE mode, the line number of & line about to be executed
is displayed on the screen, surrounded by brackets ({}).

Exceptions: The first line of a program cannot be TRACEd, nor can the target
line of a GOTO, GOSUB, or CALL, or the looping line of a FOR or WHILE.

Note: a statement issued in Direct Mode is TRACEd as having line number 32768,

TRACEOFPF is used to turn TRACRing off once it has been enabled.

BASIC XEB Reference Manual Page 33

Space For Your Notes Making Your Program Stop and Go

Space For Your Notes

Page 34 BASIC XE Reference Manual

Configuring the BASIC XE System SET
SETs 1 -7

Configuring the BASIC XE System

The statements and functions in this chapter allow you to change how BASIC XE
will function, as well as find out the current configuration, The statements
discussed are SET, LOMEM, CLR, LYAR and EXTEND, and the functions are
8YS and FRE,

SET
Format: SET aexpl,aexp2
The SET statement allows you to change a variety of BASIC XF. system-level func-
tions. aexpl is the function you wish to change, and aexp2 is the value to alter

the function. The table following summarizes these SET parameters (default
values are given In parentheses):

aexpl aexp2 Meaning
0 (0) 0 <BRFAK> key functions nomally.
Note: Returning to Direct Mode does a SET 0,0.
1 <RRFAK> causes a TRAPable error (#1) to occur.
128 <BRFAK>s are ignored by BASIC XE. Other subsystems
(E: for example), however, will still recognize
<RREAK>s .,

1 (10) 1...128 Tab stop setting for the camma in PRINT statements.

2 (63) 0...255 Prompt character for INPUT (default is "7").

3 (0) 0 FOR loops execute at least once (ala Atari BASIC).
1 FOR loops may execute zero times (ANSI standard).
4 (1) 0 Instead of reprampting, a TRAPable error (#8)
occurs.
] On a multiple variable INPUT, if the user enters too

few items, he is reprompted (e.g., with "??")

5 (1) 0 BASIC XE acts 1like Atari BASIC in that {t {is
sensitive to character case on program entry (either
type-in or ENTER) . Lowercase and/or inverse
characters cause syntax errors, except when used in
REM , DATA, or string constants.

1 BASIC XE converts text to a nice, readable format
upon entry. Keywords and variable names are
capitalized, while REM text, DATA ftems, and string
constants remain unchanged.

6 (0) 0 Print error messages along with error numbers.
1 Print only error numbers (ala Atari BASIC),
7 (0) 0 P/M's that move vertically to the edge of the screen
roll off the edge and are lost.
1 P/M's wrap around fram top to bottom and visa versa.

BASIC XE Reference Manual Page 35

SET= 8 - 15
SYS

Configuring the BASIC XE System

Don't push (PHA) the mmber of parameters to a
USR call on the stack (advantage: some assembly
language subroutines not expecting parameters may be
called by a simple USR).

Do push the count of parameters, ala Atari BASIC.

ENTER returns to Direct Mode on camnpltetion.
Fnd-Of-ENTER creates a TRAPable error (#32).

The four missiles act independently.

The four missiles are grouped together for movanent
purposes. However, their widths and colors remain
independent,

BASIC XF will automatically DIM a string to this
size if you do not DIMension it yourself.

RASIC XE works like Atar{i BASIC.

The LIST program formmatter does not indent when you
use structured statements {POR, WHILFE, etc.).

LIST indents when you use structured statements.

YAL produces an error (#18) if you use a hex digit

VAL will turn hex digit strings into numbers,
provided that the string begins with a "$".

PRINT USING truncates numbers when they contain more
digits than specified in the format.

This situation produces a TRAPable error (#23).

In EXTENDed Mode only, ADR("string") will produce an

ADR("string") will always return the address of

f 8YS

acxp) aexp2 Meaning
] 1 0
1
9 (0) 0
1
10 (0) [
1
11 (40) 1...255
0
12 (1) 0
1
13 (1) 0
string.
1
14 (0) n
1
15 (n) 0
arror 3.
1
string.
Format: SYS (aexp)
Example:

100 IF SYS(0)=0 THFN SET 0,128

The SYS function is used to find out the status of a RASIC XF system function
alterable using SET. aexp is the number of the system function as defined in the
previous section.,

Page 36

BASIC XE Reference Manual

Configuring the BASIC XE System LOMEM , CLR
FRE, LVAR

LOMEM

Format: LOMFM addr
Example: LOMEM DPEFK(128)+1024

LOMEM {s used to reserve space below the normel program space. You could then
use this space for screen display information or assembly language routines, The
usefulness of this may be limited, though, since there are other more usable
reserved areas available. Caution: LOMEM wipes out any user program currently
in memory.

CLR

Format: CLR
Example: 200 CIR

The CLR statement clears the wvelues in the Variable Value Table and
unDIMensions all svars, savars, and mvars. It does not clear the Variable Name
Table (only NEW does), so all the names remain, If you wish to use an svar, savar,
or mvar after using CLR, you must reDIMension it first,

t FRE

Format : FRE(aexp)
Examples: PRINT FRE(0)
100 IF FRE(0)<1000 THEN PRINT "Memory Critteal”

The FRE function returns the number of of RAM bytes left for your use, Normally
FRE(0) returns the total amount of memory left, but if you have used the
EXTEND stetement, FRE(0) returns the amount of data space left, and
FRE(1) returns the amount of program space left in the extended memory area.

LYAR(LV.)

Format: LVAR ["filespec™)
Example: LVAR "P:"

LVAR will list all veriables currently in use to filespec. Each variable i{s followed
by & list of the lines on which that variable {2 used. The example above will list
the variables to the printer. If ffleapec is not specified, LVAR lists to the screen,

Note: svars and savars are denoted by a trailing "$", and mvars by a trailing "(".

Warning: LYAR must be the last (or only) statement on a program line,

BASIC XEB Reference Manusal Page 37

EXTEND Configuring the BASIC XE System
For 130XE Owners Only!

EXTEND

Format : EXTEND

Until you use the EXTEND command with a 130XE, BASIC XE operates very much
like Atari BASIC. From the viewpoint of most programs, RASIC XE in 'normal'
mode is Atari BASIC. Faster, and with many additional capabilities, but
very memory compatible.

EXTEND tells RASIC XE to switch from Atari BASIC 'normal' mode to 'extended'
mode. In extended mode, BASIC XE programs reside in the 'extra’ 64K bytesof a
130 XF, labeled 'extended memory' in the second diagram of Appendix B.
Programs can use up all 64K bytes of the extended memory without intruding upon
the data space (for strings, arrays, etc,) in main memory (again, see Appendix B).

You may use the EXTEND command in Nrect Mode at any time--either when you
have no program in memory or after a program is in place, EXTEND will transfer
any program in main memory to the extended memory. Once in extended mode, the
only ways to return to 'normal' mode are to use the NEW command or to LOAD a
program which was SAYEd in normal mode.

On the other hand, you will automatically enter extended mode if you LOAD a
program that was SAVEd from extended mode. Once you have EXTENDed a
program, you can restore it to normal mode only by LISTing and re-ENTERing it.

Note: EXTEND can only be used in Direct Mode, never in a program.

Note: You must be using an Atari 130XE computer (or equivalent) for this
command to work. If BASIC XE cannot find the extended memory banks, you wiil
see an Frror 60, "Fxtended Memory Not Availsble".

Note: BASIC XF fnllows recently established Atari Corporation guidelines when it
uses the extended memory. In particular, if the extended memory fs already in use
(e.g., by Atari DOS 2.5's RamDisk), RASIC XE will not let you EXTEND your
program and will give you an Error 60, as ahove, Early versions of DOS 2.5, as
well as other programs, may not yet follow these new guidelines, so be sure the
extended memory is available before using the EXTEND command.

Technical Note: BASIC XF fills the extended memory with your program from the
'bottom' up. Referring to the second diegram in Appendix B, this means that
approximately the first 16K bytes of your program will go in Bank 0. The next 16K
bytes go in Bank 1, ete. These numbers are not exact, because (1) BASIC XE
always maintains a minimum of $100 bytes of free space In each bank, and (2)
BARIC XE never breaks program lines between banks.

Still, if you subtract about $400 from the value returned by FRE(1), you will have
a lower beund on the amount of space left in extended memory. Then you could,
for example, use bank 3 to store miscellaneous data, provided that
FRE(1)-8400 shows at least 1fK bytes left. See appendix D for details, or see your
Atari 130XE owner's manual for information on how the hardware side of the bank
selection works.

Page 38 BASIC XE Reference Manual

Exiting BASIC XE DoOSs
BYE

Exiting BASIC XE

The following two commands, DOS and BYE, are used to leave BASIC XE to use
some other utility,

DOS (CP)
Format: DOS
DOS is used to go from BASIC XF to the Disk Operating System (D 08). If you have
not booted a DOS into memory, the computer will go into Self-Test Mode and you
must press <SYSTEM RESET> to return to BASIC XE. If you have botted with a
DOS, control passes to DOS. To return to BASIC XE, type "CAR" if you are using
DOS XL, or press "R" if you're using Atari DOS.

DOS is usually used in Direct Mode, but it may be used in a program as well. For
more details on this, see your DOS manual.

Note: CP (command processor) is exactly equivalent to DOS.

BYE (B.)
Format: BYE

The function of BYE is to exit BASIC XE and go directly into your computer's
Self-Test Mode. To return to BASIC XE, press <SYSTEM RESET>.

BASIC XE Reference Manual Page 39

Space For Your Notes Exiting BASIC XE

Space For Your Notes

Page 40 BASIC XE Reference Manual

Beginning Data Input/Output Introducing Atari 1/0

Introducing Atari 1/0

The Atari Personal Computers consider everything except the guts of the
computer (i.e. the RAM, ROM, and processing chips) to be external devices - for
example, the Keyboard and Screen Editor., Some of the other devices are Disk
Drive, Program Recorder (cassette), and Printer. The following is a list of the
devices, ordered according to the device specifier. For some devices the
specifier alone is needed as "tilespec”, while others require both the specifier and
a file name:

C: The Program Recorder - handles both Input and Output. You can use the
recorder as either an input or output device, but never as both simulta-
neously.

D1: - D8: Disk Drive(s) - handle both input and Output. Unlike C:, disk drives can
be used for input and output simultaneously. Floppy disks are organized
into a group of files, so you are required to give a file name along with the
device specifier (see your DOS manual for more Information). Note: if you
use D: without a drive number, D1: is assumed.

E: Screen Editor - handles both Input and Output. The screen editor simulates a
text editor/word processor using the keyboard as input and the display (TV
or Monitor) as output. This is the editor you use when typing in a BASIC XE
program. When you specify no channel while doing 1/0, E: is used because
the 1/0 channel number defaults to 0, which is the channel BASIC XE opens
for F:,

K: Keyboard - handles Input only. This allows you access to the keyboard without
using E:.

P: Paralle]l Port on the 850 Module - handles Output only, Usually P:is used for a
parallel printer, so it has come to mean "Printer" as well as "Paraliel Port".

R1: - R4: The RS-232 Serial Ports on the 850 Module - handle both Input and
Output. These devices enable the Atari system to Interface to RS-232
compatible serial devices like terminals, plotters, and modems. Note: if you
use R: without a device number, R1: is assumed.

S: The Screen Display (TV or Monitor) -~ handles both Input and Output. This
device allows you to do either character or graphics 1/0 on the screen
display. The cursor is used to address a screen position.

Each of these devices is used for I/0 of some type, although only a few of them
can do both input and output {you wouldn't want to input data from a Printer),
Because they work differently, each device has to tell the computer how it
operates, This done through the use of a device handler. A device handler for a
given device gives information on how the computer should input and output data
for that device,

One of the sub-systems in the computer is the Central Input/Output (CIO) proces-
sor. It is CIO's job to find out if the device you specify exists, and then look up
1/0 Information in that device's handler. This makes it easy for you, since you
don't need to know anything about given handler. To let CIO know that a device
exists (i.e., is available for I/0) you need to OPEN the device on one of the CIO's

BASIC XE Reference Manual Page 41

Beginning Data Input/Output OPEN

elght channels {numbered 0-7). When you want to do I/0 involving the OPENed
device, you must then use the channel number instead of the device name,

When you see "filespec” in the following sections, it refers simply to the device
(and file name in the case of D:) in a character string. The string may be elther a
string constant, an svar, or an savar element.

If you use channel #7, it will prevent LPRINT or some of the other BASIC XE 1/0
statements from being performed.

OPEN

Format: OPEN #chan, aexpl, aexp2, "filespec"
Fxamples: 100 OPEN #2,8,0,A%
OPEN #4,4,0,"D: INPUT,TNT"

As mentioned above, a device must be OPENed on a specific channel before it can
be accessed. This "opening” process links a specific channel to the appropriate
device handler, (initializes any ClO-related control varfables, and passes any
device-specific options to the device handler, The parameters for the OPEN
command are defined as follows:

chan This is the number of the channel which you want to associate with the
device filespec, Also, this is the number you use when you later want to
de 1/0 involving the specified device (using INPUT, PRINT, etc.).

aexpl This is the 1/0 mode you want to associate with the above channel. The
numeric codes are described in the following table:
sexpl Meaning
4 Input Only
6 Read Disk Directory Only
R Output Only
9 Cutput Append
12 fnput and Output
Note: other modes may exjst for special devices or extensions to a
device.

aexp2 Device-dependent auxiliary code., See your device manual to see if it
uses this number, If not, use a zero,

filespec The device {(and file name, if required) you want to be associated with
the specified channel,

Page 42 BASIC XE Reference Manual

Beginning Data Input/Output CLOSE
PRINT

CLOSE (CL.)

Format: CIOSE #chan
Fxamples: CLOSE #4
100 CLOSE #1

CLOSE is used to close a CI0 channel which has been previsusly OPENed to allow
1/0 on some device. After you CLOSE a channel, you can then reOFEN it to some
other device, and thus associate that chennel number with a different device,

Note: you should CLOSE all channels you have OPENed when you are tinished
using them,
PRINT (PR. or %)

Format : PRINT {#chan] [];]

[

exp..."’.

Examples: PRINT
PRINT X,Y,.7;A$
100 PRINT "The value of X is ";X
100 PRINT "Cormas","cause” ," tabs"
100 PRINT #3,AS%
100 PRINT #4;"$";HEX$(X);" is "X

PRINT is used in either Direct or Deferred Mode to output data. In Direct Mode,
it prints whatever exp information is given, In the second example, the screen will
display the current values of X,Y,Z, and A$. I the fifth example, A$ i3 PRINTed
out to the device associated with channel 3.

The comma option causes tabbing to the next tab location. Several eommas in a
row cause several tab jumps. To set the tab spacing caused by the use of a comma,
use SET 1,aexp (see SET for more infn).

A semicolon causes the next exp to be output immediately after the preceding
exp without spacing or tabbing. Therefore, in the sixth example spaces surround
the 'is’ so that it and the values of X will not butt up against each other,

If no comma or semicolon is used st the end of a PRINT statement, then a
<RETURN> is output ard the next PRINT will start on the following line.

Note: numbers smaller than 0.01 or with more than 10 significant digits will be
PRINTed in scientific notation,

BASIC XR Reference Manual Page 43

INPUT Beginning Data Input/Output

INPUT (1)

Format : INPUT | (#chan,]

["string™]

varl [,var2...)

Examples: INPUT X
100 INPUT SA%(4;)
100 INFUT X,Y,Z(4),R$
100 INPUT #4,A%(5,9)
100 INPUT "SS#,Name>> ™,Ssnum(X),Names$(X;)

INPUT is used to input various data and store it directly into variables. The first
data element INPUTted will be stored in varl, the second in var2, and so on. If
you are INPUTting more than one arithmetic variable, the numeric data elements
may be entered on a single line if they are separated by commas, or on separate
lines, each followed by a <RETURN>, In the latter case, BASIC XE will prompt
with a double question mark to indicate that more input iIs needed. When
INPUTting a group of strings, each must be typed on a line by itself, or as the last
item on the line when combined with numeric input.

Note: you can make BASIC XE produce a TRAPable error instead of the double
prompt by using SET 4,aexp. Also, you can change the default question mark (?)
prompt to any character using SET 2,aexp (see SET for more info).

The fifth example above shows off one of the most powerful additions to INPUT.
If a literal string immediately follows the INPUT, that string will be used as the
prompt, thus allowing you to create prompts that are more explanatory than the
standard "?".

We strongly recommend that:
1) no more than one variable be used on each INPUT line.
2) INPUT and PRINT should not be used for disk data file access
(RGET and RPUT are suggested instead).

Bonus: as you can see from the third and fourth examples above, you can
INPUT directly in mvar elements and/or substrings. This addition (not in Atari
BASIC) can be extremely useful and make your programs very efficient.

Page 44 BASIC XE Reference Manual

Beginning Data Input/Output Pulll..i GET

PUT (PU.)

Format : PUT #chan,aexp
Examples: PUT #6,ASC("A")
100 PUT #0,4%12

PUT is used to output a single byte of data to an open channel, The data output is
aexp, and it i{s output to channel chan.

Format: GET #channel, avar
Fxample: 100 GET #0, X

GET is used to input one byte of data from an open channel. This byte of
information is stored in avar,

LPRINT (LP.)

Format: LPRINT [expl[];{exp...)M|;|]
B

Example: LPRINT "Calculation of X squared:"

LPRINT causes RASIC XFE to output data on the printer rather than on the screen.
It can be used in either Direct or Deferred Mode, and requires neither device
specifier nor OPEN or CLOSE statement.

Caution: LPRINT cannot be used successfully with most printers when a trailing
comma or semicolon is used. If advanced printing capabilities are required, we
recommend using PRINT # on a channel previously OPENed to the printer (P:).

Note: the semicolon and comma options are discussed in the PRINT section of this
chapter,

Note: although LPRINT may be used with USING just like PRINT, we recommend
using PRINT #x; USING Instead.

BASIC XE Reference Manual Page 45

TAB Beginning Data Input/Output
{ TAB

TAB

Format: TAR [#chan,l aexp
Fxamples: TAB #2,20
100 TAB 12

TAB outputs spaces to the device specified by chan (or the screen if chan is not
specified) up to column aexp. The first column Is numbered 0.

Note: the column count is kept for each device and is reset to zero each time a
carriage returp is output to that device, The count is kept in Aux6 of the JOCB
(See OS decumentation).

Note: if aexp is less than the current column count,a <RETURN> is output and
then spaces are put out up to column aexp.

f TAB

Format: TAFR{aexp)
Example: PRINT #3;"colunns:"TAB(20);20;TAR(30);30

The TAB function's cffect is identical to that of the TAB atatement (see above).
The difference is that imbedding a TAB function in a PRINT USING or PRINT can
simplify your programming task greatly. The TAB function will output sufficient
spuces so that the next item will print in the column specified (only if the
TAB(aexp) is followed by a semicolon, though).

Note: if mexp s less than the current column count, a carriage return is output and
then spaces are output up to column aexp.

Caution: the TAB function will output spaces on some device whenever it is used;
therefore, it should be used only in PRINT or PRINT USING statements,

Page 46 BASIC XE Reference Manual

Advanced Data Input/Output PRINT USING
Numeric Formats # & *

Advanced Data Input/Output

The statements in this chapter deal with special applications or advanced concepts
of data 1/0. Unless you are already familiar with these or similar statements (i.e.
it you've used BASIC XL), we suggest that you play with them a little just to get a
feel for what they can and can't do,

PRINT USING

Format: PRINT [#chan|;]] USING sexp, expl [,exp2...]

3

PRINT USING allows you to specify a format for the data you wish to output.
sexp is the string which defines the format you wish to use, and is made up of one
or more format fields. Fach format field tells how one of the exps which follow
sexp is to be printed. The first field specifies the first exp's format, the second
field specifies the second exp's, and so on. The valid format field characters are
#&*+3,.%!and/ (each will be explained separately in just a moment). Non-
format characters terminate a format field and are printed as they appear.

Note: the comma (,)} and semicolon (;) spacing options of PRINT are overridden in
the expression list of PRINT USING, but apply after chan if it is used (ie. ',
produces a tab, and ';’ produces no spacing).

Warning: sexp must contain at least one valid format field, otherwise BASIC XE
will print sexp repecatedly as it searches for a format field.

Numeric Formats: the characters for formatting numbers are:

Blank Fill s Insert a Comma

& Zero Fill + Sign (+/-) pre/postfix

* Asterisk Fill - Sign (- only) pre/posttix
+ Decimal Point $ Dollar Sign prefix

& and *:if there are fewer digits in the output number than specified in the
format, then the digits are right justified in the field and prefixed with the proper
fill character, If there are more digits in the output number than specified in the
format, then the rightmost digit(s) of the number which fit in the fleld format are
displayed (see last example). The following table illustrates these capabilities and
limits (bars have been placed around the output so that you may visualize the field
boundaries):
Value Format Output
123 EI1T] 123
123 &&%d 0123
123 bk *123
1234 #iid 1234
12345 LT 2345

Note: if you don’'t want numbers truncated, you can use SET 14,1. BASIC XE will
then force a TRAPable error (#23) rather than truncate the number.

BASIC XE Reference Manual Page 47

PRINT USING Advonced Data Input/Output
Numeric Formats ., +

. (period): a period in the format field indicates that a decimal point is to be
printed at that location in the number, Al digit positions in the format that
follow the decimal point are filled with digits. If the output number contains
tewer fractional digits than specified in the format, then zeroes are printed in the
extra positions. If the output number contains more fractional digits than
indicated in the format, then the output number is rounded so that there are the
specified number of fractional digits. Note: a second decimal point within a single
format {s treated as a non-format character, and so terminates the format field.
Here are some examples:

Value Format Output

12,488 BEREKE | 12.49
123.4 HRE. B4 |123.40

2.35 *t.4*. |*2.35,

,_(vomma): a comma in the format field indicates that a comma is to be printed at
that location in the output number, If the format specifies that a comma should be
printed at a position that is preceded only by fill characters (#,&,*), then the
appropriate fill character will be printed instead of the comma. Note: the comma
is a valid format character only to the left of the decimat point (if a decimal point
is used); when a comme appears to the right of a decimal point, it becomes a
non-format character and terminates the format field. Here are some examples:

Value Format OQutput
5216 H¥ 444 5,216

3 ‘,‘." .."'3

4175 44k, [4,175.]

+ and -: & plus sign in a format field indicates that the sign of the output number is
to be printed (+ if positive, - if negative}). A minus sign indicates that a minus sign
(-) is to be printed if the output number is negative and a blank if the output
number is positive.

The signs may be fixed or floating prefixes, or fixed postfixes, When used as fixed
prefixes, the sign format charscter be the first character in a format field:

Value Format OQutput
43.7 +hER BE + 43.70
-43.7 A L1 2% 1 - 43.70
23.58 -4&&.&& 023.58
-23.58 -&x&.&& ~-023.58

Floating signs must start in the first format position and occupy all positions up to
the decimal point. This causes the sign to be printed immediately before the first
digit rather then in a fixed location., Fach sign after the first also represents a
blank-fill digit position:

Value Format Output

3,75 +++ 44 +3.75]
3,75 ~-- 4 3.75)
-3.75 ---.#4 | -2.75|

Page 48 BASIC XE Reference Manual

Advanced Data Input/Output . PRINT USING
Numeric Format & String Formats % |

A trailing sign may appear only after a decimal point and as the last character in
the format field. It terminates the formst and prints the appropriate sign (or
blank):

Valuve Formet Output
Tqy i R, 733.17+|
43.17 Aky.a8- |043.17
-43.17 #dp.ene | 43.97-]

$ (dollar sign): a dollar sign In & format tield indicates that a $ is to be used as a
fixed or floating pretix to the output number, A fixed dollar sign must be either
the first or second character in the format field (second only if the first 1s a + or -
used as a fixed sign prefix):

Value Formnt Output
34.2 SEE.HI |$34.20]
34,2 +RRH4 KA |+824.20
34.2 -SSR k¢ | $34.20

SR4.2 BN HE (-8 234,20

Floating dollar ailgns must start as citker the first or second (second for reasons
outlined above) chararter in the format field and continue to the decimal point.
Each dollar sign after the first also represents a blank-fill digit position:

Value Format Output
34.2 $$938. #i $34.20|
34.2 +ER38S. 43t + 8714.2()[

-72692, 41 $38,888. 44+ |$72,692.41-|

Note: There may be only one floating character per format field.
Warning: using +, - or $ in other than proper positions will give strange results.
String Formats: the format characters for strings are &s follows:

% indicates the string is to be right justified.
! indicates the string is to be left justified.

If there are more characters in the string than in the format field, then the string
is truncated. Following are examples of string formatting:

String Format Output
"BASIC XE" 9Rsoene | BASIC XFI
"BASIC XE" tflirtree: BASIC XE
"RASIC XE" 99 *BASIC
"BASIC XE" i1t | RAS IC‘

BASIC XE Reference Manual Page 49

PRINT USING - Fmbedding Format / Advanced Data Input/Output
NORMAL/INVERSE

Embedding Charscters: the slash character {/) does not terminate the format field
but will cause the next character to be printed as is, thus allowing you to insert
non-format charscters In the middle of a format field, as in the following
examples:

Value Format Output
40R446R099 (H4HTVERRT-H44% | (40R)446-3099|
"oss" %/ .%/ %/ . 0.5.8.}

Bonus: if there are more expressfons in the list than there are format fields, the
format fields will be reused. For example,

PRINT USING "####",25,19,7
will output

| 25 19 7!
NORMAL /INVERSE
Format : NORMAL
INVERSE
Examples: NORMAL
100 NORMAL

150 INVERSE

NORMAL and INVERSE allow you to change the video presentation of all PRINTs,
LPRINTs, and PRINT USINGs. Anything you display after a NORMAL will be
output just as it appears in your program, while anything you display after using
INVERSE will be converted to fnverse video. In this case, characters that were
previousty in inverse video will appear in normal video.

Note: BASIC XE returns to NORMAL display whenever you return to Direct Mode
or reRUN a program from within itself.

Page 50 BASIC XE Reference Manual

Advanced Data Input/Output BPUT
BGET

BPUT
Format: BPUT #chan, aexpl, aexp2 f,bank]

BPUT outputs a block of data to the device OPENed on channel chan. The block
of data starts at address aexpl, and is aexp2 bytes long. You may also select an
optional bank number if you're in EXTENDed mode (see EXTEND for more info).

Note: aexpl the address may be a memory address, or the address of a string
(found using ADR).

The following example writes out an entire mode 8 graphicas screen directly from
screen memory:

Graphics 8:addr=Dpeek ($58)

Print “Filling Screen..."

For Sbyte=@ Yo (48%160)-1:Rewm *fill screen"
Poke AddrtSbyte,Randon(256)

Next Sbyte

Print ““bone Filling. Mow BPUTting..."

Close fit:0pen #1,8,0,“D:NODES.SCR" 1 Ren “ready to BPUT™

Bput %1,Addr, 40%160

Close 81

Print "Finished 8PUTting"

End

Note: nothing is written to the file which indicates the length of the data written,
We suggest that you write fixed-length data to make the rereading process
simpler,

BGET
Format: BGET #¥chan, aexpl, aexp2 [,bank]

BGET gets aexp2 bytes from the device OPENed on channel chan, and stores them
starting at address aexpl. As with BPUT, aexpl may be the address of a string; in
this case BGET does not change the length of the string - this is your
responsibility, You may also select an optional bank number if you're iIn
EXTENDed mode (see EXTEND for more info).

The following example will read in an entire mode 8 graphics screen directly into
screen memory:

189 Graphics 8:Addr=Dpeek ($58)

110 Close s1:0pen 331,4,0,"DINODES,.SCR" :Ren "ready to BGET™
120 Print "Now BGETting..."

130 Bget 81,Addr,49%1568

140 Close 81

158 Print “Finished BCETting"

168 End

Note: no error checking is done on the address or length so care must be taken
when using this statement, lest you wipe out part of DOS or your BASIC XE
program.

BASIC XE Reference Manual Page 51

RPUT Advanced Data Input/Qutput

RPUT
Format: RPUT #chan, exp {,exp...]

RPUT allows you to output fixed-length records to the device OPENed on channel
chan, Each exp constitutes one field element in the record. An arithmetic field
consists of one byte which indicates an arithmetic data type, and § RCD floating
point bytes of data. A string field consists of one byte which indicates a string
data type, 2 bytex of LEN length, 2 bytes of DIM length, and then DIM length bytes
of data. All this really means is that you can’'t INPUT data which has been
RPUTted, since more than just the data Is RPUT.

The following example RPUTs 20 records of the form "Name", " Address”, "City",
"State", Zip, Phone:

168 Din lines$(2l,30),ﬁddrSS(IO,SO),CitiQSS(II,ZI),5181055(20,2)
118 Piw Zips(20),Phones(20)
120 Cliose 81:0pen #1,8,0,"D:FRIERDS.DAT"
ﬁ' For Rechum=i To 28
.

Input “Name)) ", NamesS (Recnun;)
158 Input "Address)) *,addrs$(Recnun;)
160 Input “City)) n,CitiesS (Recnuw;)
170 Input “Stated) ,5tatess (Recnum;)
188 Input “Zip)) »,2ips(Recnun)

198 Input '‘Phoned) ', Phones (Recnun)
200 Print :Print ! e g .

218 Print NamesS(Recnun;):Print Addrs$S{Recnum;)

220 Print CitiesS(Recnum;);*, ";5tatesS(REChUN;) ;" ";Z2ips (Recnund
230 Print Using " (iis/) s/ ~gunn’ , Phones (Recnum)

240 Print :(Input * d “,Ans$
250 It (ANSS="Y*) Or (ADPSS=''y*) :Rem “‘do RPUT™
268 RPUT B1,Mames$s (ReCNUN;), AddrsS (Recnum;) ,Citiess tRecnun;)
278 RpUT f11,3tatess (ReCNUN;),Zips (RECNUN) ,Phones CReCNUND
;:: glzr'wrint "Re-enter record :Goto 148

n

388 Next Recnun
310 Close B1:Print :Print "Al)l Done™
320 End

Page 52 BASIC XE Reference Manual

Advanced Data Input/Output RGET

RGET
Format: RGET #chan, var [,var...]

RGET allows you to retrieve fixed-length records from the device OPENed on
channel chan, and assign the values to string or arithmetic variables, Note: the
input data and the varlable into which the data Is stored must be of the same type
(1.e. they must both be string or both be arithmetic).

Note: when the data type is string, then the DIMensioned length of the data string
must be equal to the DIMensioned length of the svar, Once the data string has
been assigned to the svar, RGET sets the LEN length of the svar to the
actual length of the inputted data string (not the DIM length of the data atring).

Warning: you may not RGET into mvars or savars. You must RGET the field into a
temporary avar or svar, and then transfer into the subscripted variable.

The following example RGETs 20 records of the form "Name", " Address", "City",
"State", Zip, Phone, and stores them in string and arithmetic arrays, dependent
upon the data type of the fleld:

100 Din Nanes$(20,30) ,4addrs$(20,30) ,Citiess$(20,20),5tates$(20,2)
110 Din Inaﬂ‘(!.),‘ll“rs(30).1:1!!“2.).7!!.!0’(2)

120 Din Zips(20) ,Phones(28)

130 Close #1:0pen 81,4,0,"D:FRIENDS.DAT"

148 For Rechunzi Yo 20

150 Rget 11, Tname$, TaddrS, Tcity$, Tstate$, T2ip, TPhone

160 Nawes$ (Recnumjd= ZTname$: A‘drs‘llocnuu.)=Ta

178 States$(Recnumi)=Tstate$:Zips(Recnum)=Tzip:Phones (Recnun) =Tphone
180 Next Recnun

1968 Close 211Print :Print “Got File*

290 Ren "NOw that we have records, let's show thew”

218 Input “Record to View? *,Rechun

220 If Recnun()8:1f Recnun)28 Then 3@

238 Gosub 3160

240 Clse :Ren “show all records"

250 For Recnum=1i Yo 28

266 Cosub 310
270 Next Recnun
200 En

290 Goto 219

300 En

319 Print NawesS$(Recnum;) iPrint Addrs$(Recnun;)
320 Print Cities$(Recnum;); ", ";StatesS(Recnum;) ;" ";Zips(Rechun)
;i: :::n‘t.' Using * (I88/) a8t/ - 8285838*° , Phones (Recnum) 1Print

(]

BASIC XE Reference Manual Page 53

rt::itsest(nocntﬂ:)-rtitvt

BSAVE Advanced Data Input/Output
BLOAD

BSAYE

Format: BSAVE aexpl,nexp,”filespec”
Fxanple: BSAVE $680,8GFF,"D:PAGEFLIP.BIN"

BSAVE allows you to store a binary image in standard Atari DOS LOADP format
(with header) so that you can later BLOAD it directly into the right place,
aexpl is the starting address of the region of memory you want to save, and
aexp? is the ending address of the region. A total of aexp2-aexpl+l bytes of
binary data are stored.

Technical Note: BSAVE saves the memory image as a single segment, with a single
header, No RUN or INIT vector is appended.

BLOAD

Format: BLOAD "fjlespec”
Fxample: RLOAD "D:PAGEFLI!P.RIN"

BLOAD is the complementary statement to BSAVE because it allows you to load a
standard Atari DOS LOAD format binary file, It can also be used to load
USR routines you have written using MAC/65 (or some other inferior assembler).

Warning: BLOAD performs no checks of the addresses specified in the segment
header(s). Yonu can eagily wipe out huge and finportant parts of memory with this
statement!

Technical Note: BLOAD will load binary files that are made up of any number of
segments. It will load but fgnore PUN and/or INIT vectors.

Bonus: if your binary file has a RUN vector, you can execute it via
SET 8,0:A=USR(DPEEK($2E0)).

Page 54 BASIC XB Reference Manual

Advanced Data Input/Qutput NOTE , POINT
STATUS

NOTE (NO.)

Format: NOTE #chan, avarl, avar2
Exanple: 100 NOTE #1,X,Y

NOTE stores the current disk sector number in avarl and the current byte offset
within that sector In avar2. This {s the current read or write position in the
specified file where the next byte to be read or written is located.

POINT (P.)

Format: POINT #chan, avarl, avar2
Example: 100 POINT #2, A, B

POINT sets the current disk sector to avarl, and the current byte number within
that sector to avar2, FEssentially, {t moves a software-controlled pointer to the
specified location in the file. This gives the user "random" access to the data
stored on a disk file. The POINT and NOTE commands are discussed in more detail
in your DOS Manual,

STATUS (ST.)

Format: STATUS #4chan, avar
Example: 350 STATUS #1,7

STATUS calls the status routine for the device OPENed on channel chan, and
stores the value returned in avar. This can be useful when dealing with devices
that produce special status values (e.g., R:).

Warning: if no device is currently OPEN on chsn, STATUS will still try to do
something. What it will do depends on the last thing thst was done on channel
chan, and can produce disastrous results, We strongly recommend using X10 13 on
channels which are not OPEN.

BASIC XE Reference Manual Page 55

XIO0 Advanced Data Input/Output

X10 (X.)

Format: XI0O omdno, #chan, aexpl, aexp2, "filespac”
Example: XIO 18,46, 0, 0, "S:"

X10 is a general input/output statement that allows you to access the special
capabilities of the device filespec. cmdno is an aexp, and specifies the function
you wish the device to perform. aexpl and sexp2 are put in the auxl and aux2
bytes of channel chan, and are dependent upon the function, A list of useful
emdnos follows:

andno operation example

2 Open Use OPEN instead

5 Get Text Use INPUT instead

7 Get Char lise GET or BGET instead
9 Put Text Use PRINT instead

11 Put Char Use PUT or BPUT instead
12 Close Use CLOSE instead

13 Status XI0 13,#6,0,0,"R4:"

17 Draw Line Use DRAWTO instead

18 Fill X10 18,#6,0,0,"S:"

32 Rename File Use RENAME instead

3 Delete File Use ERASE instead

15 Lock File Use PROTECT Instead
36 Unlock File Use UNPROTECT instead
7 Disk Point Use POINT instead

38 Disk Note Use NOTE instead

253 2.5 Format XI0 253,#1,%$22,0,"D2:"
254 Disk Format XIO 254,#1,0,0,"D2:"

Note: we strongly recommend that you use only cmdno's 13, 18, 253, and 254, since
RASIC XE has statements that perform all the others.

Page 56 BASIC XE Reference Manual

Managing Disk Files DIR , PROTECT
UNPROTECT

Managing Disk Files

The statements In this chapter allow you to perform DOS-type commands without
ever leaving BASIC XE. The statements are DIR, PROTECT, UNPROTECT,
RENAME, and ERASE,

Note: in the examples In this chapter, you will sometimes see the wildcard
characters ®* and ? in the filespec. For information on the use of these, see your
DOS manual,

Format: DIR ["filespec”]
Examples: 100 DIR "D:* .CoM"
DIR FILES
DIR "D2:TEST? .B*"

The DIR command shows a list of the disk files which match fileapec, and is similar
to the DOS XL DIR command. If no filespec is given all files on D1: are displayed.
The first example will display all files on DI1: with the "COM" extension. The
second example shows a string variable being used as filespee, This is legal, but
the string variable must contain a valid filespec, otherwise an error will occur,
The third example will display all files on the disk in drive 2 which match
TEST?.B*.

Note: DIR must be used as the last (or only) command on a progam line.

PROTECT
Format : PROTECT "filespec"
Examples: PROTECT "D:*.CoM"
100 PROTECT "D2:FILE,BXE"

PROTECT allows you to protect your disk files without going to DOS, and is very
similar to the DOS XL PRO command.

Note: Atari DOS uses the terms 'LOCK' and 'UNLOCK' instead of PROTECT and
UNPROTECT. They're just different names for the same Idea.

UNPROTECT (UNP.)

Format: UNPROTECT "filespec"
Examples: 100 UNPROTECT "D:DATA.001"
UNP. "D2:*.*"

The UNPROTECT statement allows you to unprotect disk files which have been
protected using either the BASIC XE PROTECT statement or the DOS XL PRO
command, and is similar to the DOS XL command UN Protect.

BASIC XE Reference Manual Page 57

RENAME Managing Disk Flles
ERASE

RENAME

Format: RENAME "filespec,[ilename”
Example: RENAME "D2:OLDNAME. EXT,NFWNAME, EXT"

RENAME allows you to rename disk files directly from BASIC XE. Note:the
comma shown between filespec and filename is required.

Caution: the new filename cannot include a device specifier (Dn:). Also, we
strongly suggest that you do not use wildesrds when RENAMEing.

ERASE

Format : ERASE tilespec
Exemples: ERASE "D:*.BAK"
ERASE "D2:TEST?,SAV"

ERASE will erase any unprotected files which match the given filespec. The first
example above would erase all files on the disk in drive 1 with the extension
"BAK". The second example would ersse all files matching TEST?.§AV on the disk
in drive 2. This command is similar to DOS XL’s ERA,

Page 58 BASIC XE Reference Manual

Looping and Jumping Statements FOR/STEP/NEXT

Looping and Jumping Statements

The statements discussed in this chapter allow you to have repetition and iteration
in your BASIC XE programs without a lot of trouble. The looping statements are
FOR and WHILE, and the jumping statement is GOTO. The POP statement is also
included because it directly affects the execution of the other three,

FOR / STEP / NEXT

Format: FOR avar=aexpl TO aexp2 [STEP aexpl]
[statements]
NEXT avar

The FOR statement is used to repeat a group of statements a specified number of
times. It does this by Initializing the loop variable (avar) to the value aexpl. Fach
time the NEXT avar statement is encountered, avar is incremented by aexp3 if the
STEP option is used. If this option is not uscd, avar s incremented by 1. When
avar becomes greater than aexp2, the loop stops executing, and the program
proceeds to the statement immediately following the NEXT avar. You can control
whether or not a FOR loop will execute at least once (a la Atarl BASIC) using
SET 3,aexp.

FOR loops can be nested {(one FOR loop within another). In this case, the
innermost loop is completed before returning to the outer loop. The following
program is an example of nesting (notice how LIST indents loops to show the
statements within a loop):

g: For %=1 Vo 3
Print '"CHINTOE ;N
i1e For vY=1 To 5 Step 2
40 Print * ¥ Loop: *;V¥;
Se Next Y
68 Print
70 Next X
88 End

The outer loop will complete three passes (X=1 to 3). However, before this first
loop reaches its NEXT X statement, the program gives control to the inner loop,
Note that the NEXT statement for the inner loop must precede the
NEXT statement for the outer loop. In the example, the inner loop's number of
passes is determined by the STEP statement (STEP 2). Using this data, the
computer must complete three passes through the inner loop before the tnner loop
counter (Y) becomes greater than 5. The following is the output of this program
when it is RUN:

3 1
Y Loop: 1 Y Loop: I Y Loop: S
2
Y Loop: 1 Y LooP:t I VY Loop: §
3
Y Loop:t 1 Y Loop: 3 ¥ Loop: S

BASIC XB Reference Manual Page 59

WHILE/ENDWHILE Looping and Jumping Statements

WHILE / ENDWHILE

Format: WHILE aexp
[statements]
ENTWHILE

WHILE allows you a looping statement which continues execution conditionally.
So long as aexp is non-zero (it can be either positive or negative), all statements
between WHILE and ENDWHILE will be executed. Before each pass through the
statements in the loop, sexp is evaluated to determine whether loop execution
should continue or not. For example, WHILE 1 will execute forever, and
WHILE 0 will never execute. The following program fis an example of the
WHILE loop:

189 RNAxX=S5:Crax=8:Currow=0:Curcol=6:Found=0:Target:=e
185 Din MatrixcRnax,Cmwax)

110 While Currow{Rmax and (Not Found}

120 Curcolz=®

130 While Curcol{Cnax And (Not Found)

140 If Matrix(Currow,Curcol)=Target Then Found:=1
158 curcol=Curcol g

169 Endvhile

170 currow=Ccurrowtt

188 Endwhile

198 XIf Found:Print “Found ';Target;" at *;

208 Print "Materix(;Currow-1;%,";Curcol-1;*")"
210 Else :Print Yarget;* not found”

220 Endif

Page 60 BASIC XR Reference Manual

Looping and Jumping Statements GOTO

GOTO (G.)
Format: GOTO lineno

The GOTO command i3 used to jump unconditionslly to another part of the program
by specifying o target line number (Iineno). Because there is no way to return
from a GOTO, the stztements which follow it will never be executed, unless of
course another GOTO jumps back to them. The following example program shows
several uses of GOTO:

180 Iryagain=i1e

1190 Input “Give me a number from i to 9 > *,Lucky
120 If Lucky(1 Then 116

130 If Lucky>® Thenh Coto 110

148 If LuchyXIntcluckyl Then Goto Tryagain

158 Print t1Print

4160 Goto 208+Luckyiie

200 Ren Mt CHOOSE A WORD #n

218 Lucky! itch*iCoto J00

220 Luchy ippin":Goto I68

238 Luchyd="Mandrilli*:Coto 300
248 Luchy eitgeist*”iCoto 390
250 Luchky loty*i6oto 380

268 Luchy reshet:Goto 306
276 Lucky rosier’iCoto Jeo
280 Lucky$ roughaw':Gote IN0

290 Lucky$="abattoir :Goto 30¢

3080 Print " Your 1utky crossword puzzle word is:*
J19 Tab C3S-Len(Lucky$d3/2

3208 Inverse :Print Lucky$:iNornal :Print

338 Goto Tryagain

Note: any GOTO statement that jumps to a preceding line may result in an endless
loop.

Note: using anything other than a numeric constant for lineno will meke
renumbering using RENUM difficult., However, readability may be markedly
improved.

BASIC XE Reference Manual Page 61

POP Loorping and Jumping Statements

Format: POP

To understand what POP does, we need to take a little journey inside BASIC XE to
find out more about how loops work. When BASIC XE secs a FOR, WHILE, or
GOSUB, it saves away its current position in the program. That way, when it
reaches the NEXT, ENDWHILE, or RETURN, it will know where to go back to.
Also, LOCAL saves the previous value of an avar when you make it private so that
it can later be restored. The place where RASIC XE saves these things is catled
the program stack, and s really just a list, Putting something on the stack is
called 'pushing’, and taking something off is called 'popping’, hence the command
POP suggests that it takes something off the stack. This is exactly what it does,
and is very useful when you want

1) to jump out of a loop before it has executed its specified number of times,

?) to get out of a subroutine (GOSUB) which does not give control back to the
main program through the use of a RETURN, or

3) to restore the previous values of LOCAL avars, thus ending a
LOCAL region without an EXIT,

Warning: {f you POP too many or too few items off the stack it will cause an error
(13, 16, or 28, dependent upon what you left at the top of the stack).

The following examples illustrate these uses of POP:

18 For I=0 To 93
20 Print I;
30 ftocal I

k1) Print
1.3 Pop
70 Print ©
80 Next I

968 Ren lines 20 and 30 way be swapped

108 Print At line 108%
118 Gosud 2900

128 Print "at line 120"
130 £nd
190 Ren kol
208 Print * At line 200"
218 Gosub 3

228 Print * At line 220"
238 Goto 280

290 Ren %
380 Print At line 3Je8“

310 For IZ1 To S

328 Print *» at line 320%

130 It I=3 And Flag Then Pop :Pop :Return
340 Next I

350 Print At line 3Sev

368 Flag=1

378 Return

Page 62 BASIC XE Reference Manual

Conditional Statements " IF/THEN

Conditional Statements

The statements discussed in this chapter allow you to execute parts of your
program only if the conditions you specify have been met. The conditional
statements are IF/THEN, IF/ELSE/ENDIF, and ON.

IF / THEN

Format: IF aexp THEN |lineno
statement[:statement...])

The IF/THEN conditional is used when you want to execute a group of statements
only {f certain conditions are met. These conditions may be either arithmetic or
logical, If the aexp following the IF is true (non-zero), the program executes the
THEN part of the statement. If, however, aexp is false (zero), the rest of the
statement is ignored and program control passes to the next numbered line. When
TREN is followed by a line number (lineno), execution continues at that program
line if aexp is true. Note: lineno must be a constant (not an expression).

Several IP/TREN conditionals may be nested on the same line. In the example,

100 If A=S Then R=9:If Y=3 Then Gote 200

the statement R=9 will be executed if X=5, while the statement GOTO 200 will be
executed only if X=5 and Y=3.

The following program demonstrates the IF/THEN conditional:

180 Graphics @:Print “IF DEMO"

110 Input “Enter Value 1..3)) »,a

126 I¢ A=1 Then Print “One*

138 It A2 Then Print “Two"

140 If A=3 Then Print “Three"

150 It a1 or a)3 Then Print “SIPIEEEEINTN"
168 Goto 11

170 End

BASIC XE Reference Manual Page 63

IF/ELSE/ENDIF Conditional Statements

IF / ELSE / ENDIF

Format: IF aer?p
{statements])
[ELSE
[statements]]
ENDIF

RASIC XE makes available an exceptionally powerful conditional capability vis
IF / ELSE/ ENDIF. I the expression gexp is true (non-zero) then all the
statements between aexp and ELSE wiil be executed, while the statements
between ELSE and ENDIF will be skipped. If aexp is false (zero), then the
statements betweer aexp and ELSE will be skipped, and those between ELSE and
ENDIF will be executed, If ELSE is not used, this conditional acts just like a
multi-line IF/THEN with IF and ENDIF as delimiters,

Cautfon: the keyword THEN {s not part of the syntax of this conditional.

The following program iltustrates IF / ELSE / ENDIF:

100 1¢ 1(2
118 Print “This *;
12» If 3

138 Print “cowputer *;
140 It 34

150 Print "is *;

168 Else

176 Print “broken!*
180 Endif

i%e Else

208 Print “program *;
210 If 48

228 Print “is a ;
230 I¢ 5¢6

240 Print “"boo-boo*
256 Endif

260 Else

279 Print "works ‘‘;
288 I¢ 6)?

298 frint *“poorly.*
3090 Else

318 Print *“great!’
320 Endif

330 Endi ¢

J40 Endi f

150 Else

68 Print "Xablooey!tti»
370 Endif

Page 64 BASIC XE Reference Manual

Conditional Statements ON

ON

Format: ON aexp [GOTO

GOsUB

tinenol[,lineno2...] '

Note: GOSUB and GOTO may not be abbreviated when used in conjunction with
ON.

The ON statement allows conditional jumps and subroutine cells. The condition is
determined by aexp. If it is negative, an error results, If it is non-negative,
aexp i3 rounded to the nearest integer, and program control is channelled
according to the following table:

value Control goes to

0 Statement after ON
1 linenol

2 1ineno2

H H

N 1inenoN

>N Statenent after ON

"N" is the last line number in the list of lineno's following the GOTO or GOSUB.
When ON/GOSUB is used, control returns to the statement following the
ON/GOSUB after the subroutine RETURNSs.

The following program demonstrates the ON statement, both with GOTO and
GOSUB:

100 Graphics 2:Print 36 ; {TNYENY] FILE RUNNER®
118 Print #6

120 Print #6;°f] run basic xe file":Print %6
138 Print 863K disk directory*ipPrint %6

148 Print #6;"N quit"

158 Input “Your Choice? ",Pick

168 On C((Pick)>3) Or (Pick=0)) Goto 15¢

178 If Pick=3 Then Graphics 8:End

180 On Pick Gosub 200,388

190 On Pick Goto 150,1d@

280 Trap 200

218 Input “File Name? *,F$§

228 If Find(F$,":",0)=0:7$="D:",F$

230 Else 17$=F

240 Endit

250 If Find(7S,".BKE",0):=0 Then T$=7$,".BXE"
268 Print "Running *“;T$;"...";:Run T$

270 Return

260 Trap @:Print * SUTNEARTAN 8" Err (0)

298 Return

300 Eraphics B8:Print "all Files with '.BRE' Extender:™
310 Irap 366

328 Print :Dir *D:%, BRE"™

330 Print :Print “Press for menu*
340 If Peek($d011)&1 Then 3490

350 Return

368 Trap &

378 1¢ Err¢e3<>136 Then Print * INANEIEIA %" Err ()
380 Cont

BASIC XE Reference Manual Page 65

Space For Your Notes Conditionsl Statements

Space For Your Notes

Page 66 BASIC XE Reference Manual

Handling Errors TRAP
ERR

Handling Errors

The statements and function in this chapter sllow you to detect and resolve
run-time errors without causing program execution to halt. Included are the
TRAP statement, the ERR function, snd a discussion of the error handling
applications of CONT and STOP.

TRAP (T.)

Format: TRAP lineno
Example: 100 TRAP 2000

The TRAP statement is used to direct the program to a specified line number if an
error is detected. Without a TRAP the program stops executing when an error is
encountered and displays sn error message on the screen,

TRAP works for any error that may occur after it (the TRAP statement) has been
executed, but once an error has been detected and trapped, it is necessary to reset
the error trapping with another TRAP statement. This resetting TRAP should be
done at the beginning of the arror handling routine, to Insure that the TRAP is
reset after each error.

To find out the error number And the line nurmber on which the error occured, use
ERR, as described in the following section.

TRAP may be dissbled by executing a TRAF statement with an lineno value of 0 or
greater than 32767,

Exuamples of TRAP may be found in the program on the following page.

t FRR

Format: FERR(aexp)

This function allows you to find out the error number and line on which the error
accurred when ysu sre writing your nwn error trapping routines. Using an aexp of
0 will return the error number of the Jast run-time error, and an aexp of 1 will
return the program line on which the error occcured, The results of using other
values of aexp are undefined.

Examples of ERR may be found in the program on the following page.

BASIC XE Reference Manual Page 67

A Program Fxample Using TRAP and ERR
Using STOP and CONT in Error Handling

Handling Frrors

A Program Example Using TRAP and ERR

Deg

Print “Angle Sine CoSecant"

For I=90 To 180 Step IS
Print lsing “mm ., tamstn ", I,%intIy,
Trap 200
Print Using ", mstes®, 173601

le:t I

En

Ren we get to line 200 if
Ren Sin(X) is equal to zero!
Print "undefined"

Goto Err(il+ie

Using STOP & CONT in Error Handling

CONT can be very useful in error handling because you need not fool around with

line numbers to continue program execution.

In the above example, execution

continues on the line following the error through the use of ERR(1) and a GOTO.
If CONT is used instead, line 210 becomes much simpler:
216 Cont

The use of STOP in errcr handling is limited but very useful. In fact, it is not
error handling at all; it is error creation. When you are developing a program, you
can put STOPs where the program should never see them. If you get a "Stopped at
lineno”, then you know you're doing something wrong,

Page 68

BASIC XE Reference Manual

Handling Strings ASC , CHRS
LEN

Handling Strings
This chapter discusses the functions in BASIC XE that are designed to make

manipulating string data quick and easy.
f ASC

Format: ASC(sexp)
Example: 100 A=ASC(A$)

ASC returns the ATASCII numeric value of the first character In sexp. If A$=
"ABC", then ASC(AS$) returns 65, and ASC(A$(2)) returns 66,

Note: Appendix A contains a table of ATASCII codes and characters.

f CHRS

Format : CHR$ (aexp)
Examples: PRINT CHR$(65)
100 A$=CHR2(65)

CHRS$ returns the character (in string format) represented by the ATASCII
numeric code aexp. Only one character is returned. In the above examples, the
letter A is returned, Using the ASC and CHRS$ functions, the following program
prints the upper case and lower case letters of the alphabet:

10 For C:=0 To 28

20 Print Chré(asc (*a*) +C) ,Chr$ CASC ("a") +£)
38 Next C

Note: there may be only one STR$ or CHRS$ in a logical comparison because
BASIC XE uses a single buffer to create the temporary string which both of these
functions use (e.g., IF CHR$(A)=CHRS$(B)... is always true, whether A and B are
equal or not.

f LEN
Format: LEN(sexp)
The LEN function returns the character length of sexp. This information may then
be printed or used later in a program. The length of a string variable is simply the

element number of the last character currently in the string. Strings have a length
of 0 until characters have been stored in them,

BASIC XE Reference Manual Page 69

FIND Handling Strings
ADR

£ FIND

Format: FIND{sexpl, sexp?, nexp)
Exsmple: PRINT FIND("ABCDXXXABC", "BC",N)

FIND is an efficient, speedy way of determining whether any given substring is in
any given master string. FIND will search sexpl, starting at position aexp+1, for
the substring sexp2. If sexp2 is found, the function returns the position where it
was found, relative to the beginning of sexpl. If sexp2 Is not found, a 0is
returned.

In the example above, the following values would be PRINTeds
2iftN=0or1l
9 if N>=2 and N<9
0 it N>=9

The following example shows an easy way to have a vector dependent upon a menu
choice:

16 Input "{Ihange, [@rase, or [§ist? ~, a8
20 On Find("CEL",AS(1,1),0) Goto 1..,2..,30.
38 Goto 18

This example illustrates how changes to sexp can affect the results of FIND:
18 Input “A string, please - *“,A$

20 For S5t=8 VYo Len(a$)-2

30 F=Find(a$,"a", 51341

49 If F21 Thea Print “Meither *AB' nor ‘'AC’ were found"itEnd

se It ASCF,F) * Then Print “Found "AB°' at pes. H3F-115125t41
g. It g:(l’,f): C*" Then Print “"Found 'AC’ at pos. #H' ;F-115t=3teL
o Next

f ADR

Format : ADR(sexp)
Examples: ADR(A$)
ADR(P$(55))

ADR returns the memory address of the string sexp. Knowing the address enables
you to use it in USR routines, BGET, BPUT, etc.

Warning: if you are in EXTENDed mode, ADR("string") returns an improper value
because the string constant is copied out of the banked program memory into a
temporary area. Because it's within a single statement,

J=UsrCAdr(”M.L. in char string”)

works, but

TzAdr{"M.L. in char string") :J=Usr(Y)

won't hecause it's two statements. If you use ADR("string") as in the first case
only, you can SET 15,1 so that BASIC XE won't force an error.

Page 70 BASIC XE Reference Manual

Handling Strings LEFTS$, MID$
RIGHTS

f LEFTS

Format : LEFT$(sexp, aexp)
Examples: 10 A$=LEFT$("ABCDE",3)
20 PRINT LEFT$("ABCD",S)

The LEFT$ function returns the leftmost aexp characters of the string sexp., If
aexp is greater than the number of characters in sexp, no error occurs and the
entire string sexp is returned.

In the first example, A$ is equated to "ABC", and in the second example, the
entire string "ABCD" is printed.

t MID$

Format: MID$(sexp,aexpl,aexp2)
Example: A$=MID$("ARCDEFG",2,4)

MID$ allows you to get a substring from the middle of another string. The sub-
string retrieved starts at the nexpl‘ character of sexp, and Is aexp2 characters
long. If aexpl equals 0 an error occurs (since there is no 0 character in a
string); if aexpl is greater than the LEN length of sexp, no error occurs (and no
characters are returned). aexp2 may be any positive integer, but if fts value
makes the substring go beyond the LEN length of sexp, then the substring returned
ends at the end of sexp.

In the above example, A$ is equated to "BCDE".

f RIGHTS

Format : RIGHT3 (sexp,aexp)
Example: A$=RIGHTS$("123456",4)

The RIGHTS$ function returns the rightmost aexp characters of sexp. If aexp is
greater than the number of characters in sexp, then the entire string sexp is
returned.

In the above example, A$ is equated to "3456".

BASIC XE Reference Manual Page 71

VAL, STRS$ Handling Strings
HEX$

Format: VAL{sexp)
Example: 100 A=VAL(A$)

VAL returns the numeric value represented hy a string, providing that the string is
indeed a string representation of a number (l.e. is a digit string). Using this
function, the computer can perform arithmetic operations on strings as shown in
the following exemple program:

10 B$="10008"

20

B=Sqr(val (8$))
38 Print “The Square Root of “;B$;* is ;B

Note: YAL does not permit the use of an sexp that does not start with a digit (f.e.,
that cannot be interpreted as a number), It can, however, interpret floating point
numbers (e.g., VAL("LE5") would return the number 100,000). Also, non-numeric
characters following a valid digit string will be ignored (e.g.,
VAL(™100ABC") returns 100).

Note: VAL will convert hex digit strings if they begin with a "$". (You can
disallow this via SET 13,0).
f STRS

Format: STR{ sexp)
Example: A$=STR$(650)

STRS$ returns the string form of aexp. The above example would return the actual
number 650, but as the string "650",

Warning: may be only one STR$ oronly one CHRS in a logical comparison. See
CHRS$ for more info,

Format : HEX$(aexp)
Examples: PRINT HEX$(5000)
PRINT "$";RIGHTS(HFX$(32),2)

The REX$ function will convert aexp to a four digit hexadecimal number in string
format (the second example shows how to get a two digit hex number).

Note: no dollar sign ($) is placed In front of the hex digit string.

Page 72 BASIC XE Reference Manual

Using the Game Controllers PADDLE, PTRIG
PENM , STICK

Using the Game Controllers

The functions discussed in this chapter allow you to access the paddle, joystick,
and light pen easily and quickly.
f PADDLE

Format: PADDLE(aexp)
Example: PRINT PADDLE(])

The PADDLE function retuins the current value of the paddle in port aexp (0-3).
The value returned will be between 1 and 228, inclusive, with the value increasing
as the paddle knob is turned counterclockwise.

{ PTRIG

Format: PTRIG(aexp)
Example: 100 IF PTRIG(1)=0 THEN PRINT "Missile Fired!"

PTRIG returns a 0 if the trigger button of the paddle in port zexp (0-3) Is pressed.
Otherwise, it returns a value of 1.
f PEN

Format: PEN(sexp)
Example: PRINT "light pen at ";PEN(0);",";PEN(1)

The PEN function simply rends the ATAFPRI light pen registers and returns their
contents, If aexp is 0, the horizontal position is returned; if aexp is 1, the vertical
position is returned.

f STICK

Format: STICK(aexp)
Exsmple: 100 PRINT STICK(1)

The STICK function returns the position value of the joystick In port aexp (0-1), as
defined In the following diagram:

11

BASIC XE Reference Manual Page 73

HSTICK , VSTICK Using the Game Controllers
STRIG

f BSTICK
Format: HSTICK(aexp)

The HSTICK function returns an easily usable code for horizontal movement of a
glven joystick. aexp is simply the number of the joystick port (0-1), and the values
returned (and their meanings) are as follows:

-1 it the joystick is pushed left

0 if the joystick Is centered

+1 it the joystick is pushed right

Here is an example of HSTICK in use:

10 Let Dir=Hstich(®)

20 If Dir=-1 Then Print “%e¢ Left"
38 If Dir=® Then Print "e Stopped™
40 If Dir=a Then Print "%+ Right®
38 Goto 10

f VSTICK
Format: VSTICK(aexp)

The VSTICK function returns an easily usable code for vertical movement of a
given joystick. aexp Is simply the number of the joystick port (0-1), and the values
returned {and their meanings) are as follows:

-1 it the joystick is pushed down

0 it the joystick is centered

+t it the joystick Is pushed up

Here is an example of YSTICK In use:

18 Let Dir=vstickhte)

20 If Dir=-1 Yhen Print k¢ Down"
30 If Dir=@ Yhen Print "e Stopped"
40 If Dir=1 Then Print “Ct up»

50 Goto to

f STRIG

Format: STRIG(sexp)
Fxanmple: 100 IF STRIG(1)=0 THEN PRINT "Fire Torpedo"

The STRIG function works the same as the PTRIG function, except that it is used
with the joysticks instead of the pnddles. aexp specifies the joystick port (0-1).

Page 74 BASIC XE Reference Manual

Graphics Introducing Atarf Graphics
Mode 0

Graphics

This chapter describes the BASIC XE statements that sllow you to manipulate the
wide variety of screen graphics available on the Atari personal computers. Before
going into the graphics commands, a little background about the modes available
would be useful.

Introducing Atari Graphies

The table below summarizes the graphics modes available via BASIC XE. A quick
glance down the "Type" column will show you that the Atari supports two types of
graphics, text and grid. In text graphics each pixel represents an ATASCI
character, while in the grid modes a pixel represents a box of color, The size of a
ptxel depends upon the graphics mode. In all graphics modes, position 0,0 is at the
upper left corner of the graphics area; moving right increases the column value,
and moving down increases the row value, The diagram at the end of this section
fllustrates this coordinate system visually.

If you look at the column headings in the table, you will notice two "Rows"
columns, "Split Rows" i{s the number of rows when you are using the graphies mode
in conjunction with a text window, and "Full Rows" refers to the number of rows
when used without the text window.

Following the table are short descriptions of these graphics modes,

Split Full
Mode Type Columns Rows Rows Colors

0 Text 40 N/A T24 1.5
1 Text 20 20 24 5

2 Text 20 10 12 3

3 Grid 40 20 24 4

4 Grid 80 40 48 2

5 Grid 80 40 48 4

[Grid 160 80 98 2

7 Grid 160 80 96 4

8 Grid 320 160 192 1.5
9 Grid R0 N/A 192 16
10 Grid 80 N/A 192 9
11 Grid 80 N/A 192 16
12 Text 40 20 24 4-5
13 Text 40 10 12 4-5
14 Grid 160 160 192 2
15 Grid 160 160 192 4

Mode 0: this mode is the 1 color, 2 luminance (brightness) default mode for Atari
Personal Computers. It contains a 24 line by 40 character screen matrix. The
default margin settings of 2 and 39 allow 38 characters per line, Margins may be
changed by POKFEing LMARGN and RMARGN (82 and 83). Some systems have
different margin default settings., The color of the characters is determined by
" the background color. Only the luminance of the characters can be different.

BASIC XE Reference Manual Page 75

Introduring Atari Graphirs Gropliies
Modes 1 thru R, 12 rhu 14

Modes 1 and 2: these two S-color medes are text modes. Characters in mode 1 are
twice the width of those in mode 0, but are the same height, while those in mode 2
are twice the width and twine the height of those in mode 8, In the split-screen
mode, PRINT will print dcta in the text window, and PRINT #6 will print data in
the mode | or 2 graphics window,

The default colors depend on the type of character input, ss defined in the
foliowing table:

SETOOLOR
Character Type Register Default Color
N..% & A2 0 Orange
Cntl Chrs & e..2 1 Light Green
Inverse 0,.9 & A..7 2 Dark Blue
Inverse Cntl Chrs & a..z 2 Red
Playfield and Border 4 Black

Note: see SETCOLOR to clinnge character colors,

inless othaerwise sperified, »ll rharacters are displsyed In uppercese non-inverse
form. To print lowercasc letters and graphics characters, use a POKE $2F4,$E2.
To return to upper csse, use POKE $2F4,8E0.

Modes 3, 5, 7, and 15: these four 4 color grid moces are also split-screen displays
in their default state, but may be changed to full screen by adding 16 to the mode
number. Mndes 3, 5, and 7 differ only in grid size. In mode 15 the pixels are
smelleat, thereby giving the highest resolution.

Mndes 4, 6, and J4: these three 2-coior grid mades have an advantage over the

4-color grid modes in that they require less PAM space. Therefore, they may be
used when only two colors a~e nesded and RAM is getting crowded.

Mode 8: this grid mode pives the highest resolution of all. As it takes a lot of RAM
ta obtain thic kind of resolution, it can only accommadate a maximum of one color
and two different huminances, n3 mode 0,

Modes 12 and 13: these two text modes ave very speecfal. 'nstead of using single
bits within & charanters definition in the charncter sot to determine how to
represent that charancter, they use bit pnirs and interpret them as colors, as
follows:

Rit SETCOLOR

Image Register

o0 T a
01 6
10 1
1 2/ 3*

* 1{ the character is in inverse video, register 3 is used, otherwlse register 2 is

used, This enables you to have § color on the scieen ot one time, although you
may have only 4 colars in a single character,

Page 76 BASIC XE Reference Manual

Graphics Introducing Atar{ Graphics
Modes 3, 10, and 11

Modes 9, 10, and 11: these are the GTIA modes, and are somewhat different from
all the other modes. Note that these modes do not allow a text window. Mode 9 is
a one color, 16 luminance mode. The main color is set by the background color,
and the luminance values are determined by the information in the screen memory
itsetf. Each pixel is four bits wide, allowing for 16 different values (0-15), These
values are interpreted as the luminance of the base color for that pixel. Mode
11 is similar to mode 9 in that the color information is in the screen memory itself,
but the information for each pixel is interpreted as a color instead of & luminance.
Thus there are 16 colors, all of the same luminance. The luminance is set by the
luminance of the background color (default is). Mode 10 is scmewhat of &
crossbreed of the other two GTIA modes and the normal modes in that it offers
lots of colors (like the GTIA modes) and uses the color reglsters (like the normal
modes). However, since mode 10 allows 9 colors, 1t must use the player color
registers as well as the other color registers. The following table shows how the
pixel values relate to the color registers and what BASIC XE command may be
used to set each color register.

Pixel System Reg. BASIC XE

Value Register Addr Statement

PCOLRO 704 PMCOLOR 0,scxp
PCOLR1 705 PMCOLOR 1,aexp
PCOLR2 706 PMCOLOR 2,aexp
PCOLRR 707 PMCOLOR 3,aexp
COILORO 708 SETCOLOR 0,aexp
COLOR1 709 SETCOLOR 1,aexp
COLOR2Z 710 SETCOLOR 2,aexp
COLOR3 711 SETCOLOR 3,aexp
COLOR4 712 SETCOIOR 4,aexp

WA AW N D

\upper Left ¢9,0)

GRAPHICS 4
Screen

Lower Right (79, 393,

Text Window

BASIC XE Reference Manual Page 77

GRAPHICS Graphics
SETCOLOR

GRAPHICS (GR.)

Format : GRAPHICS aexp
Fxanple: GRAPHICS 2

The GRAPRICS statement is used to select one of the graphics modes discussed
above, It automatically opens the graphics area of the screen (S:) on channel #6.
As a result of this, it is not necessary to specify a channel number when you want
to PRINT to the text window, since it is still open on channel #0. aexp is the
mode number as used in the table at the start of this chapter, and must be positive.

Modes 0, 9, 10, and 11 are full-screen display only, while modes 1 through 8 are
default to split-screen displays. To override the split-screen, add 16 to the mode
number (aexp). Adding 32 prevents GRAPHICS from clearing the screen memory.

SETCOLOR (SE.)

Format : SETCOLOR aexpl,aexp2,aexpd
Example: 100 SETCOLOR 0,1,4

SETCOLOR is used to set the hue and luminance of one of the color registers.
sexpl is the number of the color register (values 0-4 legal), sexp2 is the hue (see
following table), and aexp3 is the luminance (0-14, even numbers only, are valid).
the larger aexp3 is, the brighter the color. The following table shows the
aexp?2 values and corresponding colors:

aexp2 Color aexp? Color
0 Gray 8 Rlue
1 Cold 9 Light Blue
2 Orenge 10 Turquoise
3 Red-Orange 11 Green-Blue
4 Pink 12 Green
5 Yiolet 13 Yellow-Green
f Blue-Violet 14 Orange-Green
7 Rlue 15 Light Orange

Note: actun] colors will vary with type and adjustment of TV or monitor used.

The following table shows the default values for the five SETCOLOR registers:

Reg Value Color Lum Conlor
o 328 2 8 Orange
1 3CA 12 10 Green
2 $94 9 4 Dark Blue
3 346 4 6 Pink-Red
4 $00 [0 Black

SETCOLOR uses values 0 to 4 to specify the color register, while COLOR uses
different values, Translation between the two can be confusing, so careful study
of the table on the following page is advised.

Page 78 BASIC XE Reference Manual

Graphics SETCOLOR/COLOR Table

COLOR
SETCOLOR / COLOR Table
GR Mode |9aTue |res | ang Conments 6R Mode |valusreo]and- Comments
[} aracter Lumina ce
gt jenen) 3 (EREHeEy e ol
ﬁ i’;:
- TR || BT
tte ¢ "Bha or dor " 8k, Iit
Pixe)
SRR ¥) F——
— SRR | I U fiperteatd Biiele
1611 & 3 'xo‘, PF, & Border e.‘.‘fs get final Hue.
1 Lumipanc '
L bR R TR
S| 4 |PF & Bor rColr, hr
g e OB R K j’::ﬁagasga
‘;:t final Lume © etc' '
COLOR (C.)

Format : COLOR aexp
Examples: 110 COLOR ASC("A"™)
COLOR 3

The COLOR statement tets you choose which color will be used for all subsequent
PLOTs and DRAWTOs. The aexp value chooses the color and so must be a positive

integer 0..255. The color you get is dependent upon the graphics mode you're in,
as described in the table above.

Note: in text modes 0, 1, and 2, the number can be from 0 through 255 (8 bits) and
determines the character to be dispiayed (and its color in modes 1 & 2).

Note: when BASIC XE is first powerced up COLOR 0 is the default,

BASIC XR Reference Manual Page 79

PLOT, DRAWTO Graphics
POSITION , LOCATE

PLOT (PL.)

Format: PLOT aexpl,aexp2
Example: 100 PLOT 5,5

The PLOT command is used to plot a pixel in the graphics window. aexpl specifies
the column (X-cnordinate) of the pixel, and aexp2 specifies the row
{Y-coordinate)., The color of the plotted point is determined by the last
COLOR statement executed. To change this color (and the color of the PLOTted
point) use SETCOLOR. Valid pixel coordinates are dependent on the graphics
mode being used. The range of points begins at (0,0}, and extends to {columns in
mode)-1 in the x direction, and (rows in mode)-1 in the y direction,

DRAWTO (DR.)

Format: DRAWTO aexpl,aexp?
Example: 100 DRAWTO 10,8

The DRAWTO statement draws a line from the current position of the graphics
cursor (set by a previous PLOT, POSITION, or DRAWTO) to the location
{aexpl,aexp2). aexpl represents the X coordinate (column) nnd aexp2 represents
the Y-coordinate (row). The color of the line is determined by the. last
COLOR statement.

POSITION (POS.)

Format : POSITION aexpl,aexp?
Example: 100 POSITION 0,0

POSITION places the invisible graphics cursor at the location (aexpl,aexp2) on the
screen, and may be used in all graphics modes. In mode 0 only, POSITION affects
the text cursor, not the graphies cursor.

Note: the cursor does not actually move until the next command that uses the
cursor,

LOCATE (LOC.)

Format : LOCATE aexpl,aexp2,avar
Example: 150 LOCATE 11,15,X

The LOCATE statement retrieves the value of the pixel at coordinates
(sexpl,aexp2?), and stores it in avar.

Page 80 BASIC XE Reference Manual

Graphics XI10 Fill

X10 (x.) Fill
Format: X10 18,#6,0,0,"S:"

This special application of the XI10 statement fills an area on the screen between
previously PLOTted and DPRAWTOed bounds with a non-zero COLOR value, The
zeroes in the XIO are used as dummies, butl are required. The following steps illus-
trate the fill process:

1. Pick the COLOR.

2. PLOT bottom right corner.

2. DRAWTO upper right corner.

4. DRAWTO upper left corner.

5. POSITION the cursor at the lower left corner.
6. POKE address 765 with the fill COLOR value,
7. Make the XIO F1ll call.

This method is used to fill each horizontal line from top to bottom of the specified
area. The fill starts at the left and proceeds across the line to the right until it
reaches a pixel which contains non~zero dsta (will wraparound if necessary). This
means that XIO Fill cannot be used to change an area which has been filled in with
a non-zero value, as the fill will stop,

Warning: X10 Fill will go into an infinite loop if you attempt to put COLOR O on a
lHine which has no non-zero pixels. Pressing <BRFAX> or <SYSTEM RESET> can be
used to stop the fill if this happens.

BASIC XR Reference Manual Page 81

Space For Your Notes Graphics

Space For Your Notes

Page 82 BASIC XE Reference Manual

Player/Missile Graphics Introducing P/M Graphics

Player/Missile Graphics

This chapter describes the BASIC XE commands and functions used to access the
Atari's Player-Missile Graphics. Player Missile Graphics (hereafter usually
referred to as simply "PMG") represent a portion of the Atari hardware totally
ignored by Atarf BASIC and Atari OS. Fven the screen handler (the S: device)
knows nothing about PMG.

BASIC XE goes a long way toward remedying these omiasions by adding seven PMG
statements and two PMG functions to the already comprehensive Atari graphics.
In addition, four other statements and two functions have significant uses in PMG
and will be discussed in this chapter.

Introducing P/M Graphics

For a complete technical discussion of PMG, and to learn of even more PMG
"tricks" than are included In BASIC XE, read the Atarl document entitied "Atari
400/800 Hardware Manual” (Atarf part number C016555, Rev. 1 or later).

We stated above that the 8: device driver knows nothing of PMG, and in a sense
this is proper: the hardware mechanisms that implement PMG sre, for virtually all
purposes, completely separate and distinct from the "playfield” graphics supported
by S:. For example, the size, position, and color of players on the video screen are
completely independent of the GRAPHICS mode currently active. In Atari (and
now BASIC XE) parlance, a "player” is simply a contiguous group of memory cells
displayed es a vertical stripe on the screem. Sounds dull? Consider: each player
(there are four) may be "painted” in any of the 128 colors avaflable on the Atari
(see SETCOLOR for specific colors). Within the vertical stripe, each bit set to 1
paints the player's color in the corresponding pixel, while each bit set to 0 paints
no color at all! That is, any 0 bit in a player stripe has no effect on the underlying
playtield display,

Why a vertical stripe? Refer to the figure at the end of this section for a rough
idea of the player concept. If we define & shape within the bounds of this stripe
(by changing some of the player's bits to 1's}), we may then move the stripe
anywhere horizontally by a simple register POKE (or via the PUMOVE statement in
BASIC XE). We may move the player vertically by doing a simple circular shift on
the contiguous memory block representing the player (again, the PMMOVE state-
ment simplifies this process).

To simplify:
A player I8 actually seen as a stripe on the screen B pixels wide by 128 (or
256, see below) pixels high. Within this stripe, you can POKE or
MOVE bytes to establish what is essentially a tall, skinny picture (though
much of the picture may consist of 0 bits, in which case the background
"shows through"). Using PMMOVE, you may then move this player to any
horizontal or vertical location on the screen.

BASIC XE Reference Manual Page 83

P/M Graphics Conventions Player/Missile Graphics

To complicate:
For each of the four players there is a corresponding "missile” available.
Missiles are exactly like players except that:
1) they are only 2 bits wide, and all four missile share a single block
of memory.
2) each 2 bit sub-stripe has an independent horizontal position,
3) a missile always has the same color as its parent player.

Again, by using the BASIC XE statements (MISSILE and PMMOVE, for exampie),
you the programmer need not be too aware of the mechanisms of PMG.

Upos dbl s91

107 32
Hpos Wpos
48— —266
Wi {——P1ayer Shape
e 1 bits show
PHMCOLOR .

- HPOS146 ———)

112 224
Playfield nreaj 12?7 ___r;ss

P/M Graphics Conventions

1. Players are numbered from 0 through 3. Fach player has a corresponding missile
‘whose number is 4 greater then that of itr parent player, thus missiles are
numbered 4 through 7. In the BUMP function, the "playfields" are actually the
colors as defined by SETCOLOR, but are 8 grater than the SETCOLOR register
value, and so are numbered 8 - 11.

2. There is some Inconsistency in which wayis "up". PLOT, DRAWTO, etc. are
aware that 0,0 is the top left of the screen and that vertical position numbering
increases as you go down the screen. PMMOYE and YSTICK, however, do only
relative screen positioning, and define "+" to be up and "-" to be down,

3. "pmnum” i3 an abbreviation for Player-Missile Number and must be a number
from 0 to 3 (for players) or 4 to 7 (for missiles).

Page 84 BASIC XE Reference Manual

Player/Missile Graphics PMGRAPHICS

PMGRAPHICS (PMG.)

Format : PMGRAPHICS aexp
Example: PMG. 2

This statement is used to enable or disable the Player/Missile Graphics system.
aexp should evaluate to 0,1, or 2, as follows:

0 - Turn off PMG
1 - Enable PMG, single line resolution
2 - Enable PMG, double line resolution

Single and Double line resolution (hereafter refered to as "PMG Modes") refer to
the height which a byte In the player "stripe” occupies - either one or two
television scan lines (GRAPHICS 7 has pixels 2 scan lines high, like PMG. 2, and
GRAPHICS 15 has pixels 1 scan line high, like PMG, 1). The secondary implication
of single line versus double line resolution is that single line resolution requires
twice as much memory space as double line - 256 bytes per player versus 128
bytes. The following diagram shows PMG memory usage in BASIC XE, but you
really need not be aware of the mechanics if you use the PMADR function:

Current GRAPHICS Mode
43400 :‘:y": P"G‘_ ! +$868
44380 Player3
+4300 Flayer2 44780
+3288 Playert Player2
208 |y :;"l";: 7 18400
+$180 Playert
+$508
Player$
PMBASE +$400
NOTE r:smop $37E3) points O L R v8308
lliSll*O
PMBASE

BASIC XE Reference Manual Page 85

PMCOLOR Player/Missile Graphics
PMMOVYE

PMCOLOR (PMCO.)

Format: PMCOLOR pmnum,aexpl,aexp2
Fxample: PMCOLOR 2,12,8

PMCOLOR is ldentical to SETCOLOR in usage except that a P/M color register
rather than a playfield graphics color register {s set to hue aexpl and luminance
aexp2. Note: there is no correspondence in PMG to the COLOR statement of
playfield graphics - none is necessary since each player has its own color,

The example above would set player 2 and missile § to a medium (luminance 8)
green (hue 12),

Note: PMG has no default colors set on power-up or <SYSTEW RESET>.

PMMOVE

Format: PWMOVE pmnum [,aexpl] [;aexp2l
Examples: PMMOVE 0,120;)

PMMOVE 1, R0

PMMOVE 4;-3

Once a player or missile has been "defined" (via POKE, MOVE, GET, BGET, or
MISSILE), the truly unique features of PMG under BASIC XE may be utilized. With
PMMOVE, you may position each P/M shape anywhere on the screen independently
in the blink of an eye, Because of the hardware implementation, though, there is a
difference in how horizontal and vertical positions are specified.

aexpl is taken to be the absolute position of the left edge of the "stripe” to be
displayed. This position ranges from 0 to 255, though the lowest and highest
positions in this renge are beyond the edges of the display screen. Note: changing
a player's width {see PMWIDTH) will not change the position of its left edge, but
will expand the player to the right.

aexp? {s a relative vertical movement specifier. Recall that a "stripe” of player is
128 or 256 bytes of memory. Vertical movement must be accomplished by actual
movement of the bytes within the stripe - towards either higher memory (down the
screen) or lower memory (up the screen), RASIC XE allows you to specify a
vertical movement hetween -255 (down 255 pixels) and +255 (up 255 pixels),
inclusive,

Note: the +/- convention on vertical movement conforms to the value returned by
VSTICK. For example, PMMOVE 2;VSTICK(2) will move player 2 up or down {(or
not move him) in accordance with the joystick position.

Note: SET 7,aexp may be used to tell PMMOVE whether a P/M should "wrap
around” {from bnttom of screen to top of screen or vice versa) or should disappear
as it scrolls off the screen.

Page 86 BASIC XE Reference Manual

Player/Missile Graphics MISSILE
PMWIDTH

MISSILE (MIS.)

Format: MISSILE pmnum,aexpl,aexp?
Fxample: MISSILE 4,48,3

The MISSILE statement allows an easy way for a parent player to "shoot" a missile.
pmnum is the missile number (4-7), aexpl specifies the absolute vertical position of
the beginning of the missile (0 is the top of missile memory), end asexp2? specifies
the vertical height of the missile, For exampie, MISSILE 4,64,3 would place a
missile 3 PMG pixels high at pixel 64 from the top.

Note: MISSILE does not simply turn on the bits corresponding to the position
specified. Instead, the bits specified are exclusive~or'ed with the current missile
memory. This allows you to erase the previous missile pmnum when creating
another. For example:

10 Missile 4,48,1
20 Missile 4,41,

The first statement creates 8 missile 1 PMG pixel high at vertical position 40. The
second statement erases the first missile while creating another 1 PMG pixel
missile at vertical pesition 41, thus giving the effect of a moving missile.

PMWIDTH (PMW.)

Format: PMWIDTH pmnum,aexp
Fxample: PMWIDTH 1,2

Just as PMGRAPHICs allows you to select single or double pixel height,
PMWIDTH allows you to specify the screen width of players and missiles,
However, where PMGRAPHICs sclects the vertical resolution mode for all players
and missiles, PMWNIDTH allows the width of each player or missile to be specified
separately . aexp is used for the width and should have a value of 1, 2, 0r 4 -
representing the number of color clocks (equivalent to a pixel width in GR. 7) wide
each bit in a player definition will be.

Note: PMG. 2 and PMWIDTH 1 combine to allow each hit of a player definition to
be equivalent in size to a GR. 7 pixel, while PMG, t and PMWIDTH 1 combine to be
equivalent to a GR. 15 pixel - not altogether accidental occurences.

Note: although players may be made wider with PMWIDTH, the resolution then
suffers, Wider high-resolution "players" may be made by placing two or more
separate players side-hy-side (as in the second example program at the end of this
chapter).

BASIC XE Reference Manual Page 87

PMCLR , BUMP Player/Missile Graphics
HITCLR

PMCLRK (PMC.}

Format: PMCLR pmnum
Example: PMCLR 4

PMCLR "clears" a player or missile area to all zero bytes, thus "erasing” the P/M.
PMCLR is aware of what PMG mode is active and clears only the appropriate
amoint of memory. Caution: pmnum vslues 4 through 7 all produce the same
action - sll missiles nre cleared, not just the one specified. To clear a single
missile, try SET 7,0 : PMMOVE N;255.

tBUMP

Format: BIWMF(pmnum,sexp)
Fxanple: IF BUMP(4,1) THEN E=R(MP(0,8)

BUMP accesses the P/M collision registers of the Atarf and returns a 1 (collision
occurred) or 0 (no collision occurred) as appropriste for the pair of objects
specified. Note that the second parsmeter {acxp) may be either a player number
or playfield number (see the section on PM 3 conventions, above). Valid BUMPs:

Player to Player: RIMP(0-3,0-3)
Player to Playfield: RUMP(0-2,8-11)
Missile to Player: RIMP(4-7,0-3)
Missile to Playrield: BiMP(4-7,8-11)

Note: BUMP(p,p), where the p's are 0 through 3 and Identical, always returns 0
{i.e. a player can't collide with Itself).

Note: we advise that you reset the collislon registers if you have not checked them
in a long time or after you ere through checking them st any given point in a
program, You can do this using HITCLR.

HITCLR

Format: BITCLR
Example: 100 HITCLR

HITCLR resets the collision registers used by RBUMP, thus avoiding spurious
collisinn reedings. We suggest that you use HITCLR just before you do something
that might create a collision (move or create a P/M, chenge the playfield, etc.).
Alternatively, you could use HITCLR immedintely after you check for collisions
(using BUMP).

Page 88 BASIC XE Reference Manual

Player/Missile Graphics PMADR, Using POKE and PEEK with P/M's
' Using MOVE, BGET and BPUT with P/M's

f PMADR

Format : PMADR (pmnum)
Example: PO=PMADR(n)

The PMADR function returns the memory address of any player or missile. It is
useful when you wish to MOVE, POKE, BGET, etr., data to (or from) a player area.
Note: PMADR(m) - where m is a missile number (4 through 7) ~ returns the same
address for all missiles.

Using POKE and PEEK with P/M's

One of the most common ways to put player data into a player stripe may well be
to use POKE. In conjunction with PMADR, it Is easy to write understandable
player loading routines, for example:

10 For Locz48 To S2

29 Read AiPoke Pmadr(®)tLoc,A
30 Next Loc

40 Data $99,4$88,9FF,988,%99

PEEK might be used to find out what data is in a particular player location.

Using MOVE with P/M's

MOVE is an efficient way to load a large player and/or move a player verticslly by
a large amount. This ability to MOVE data either upwards or downwards allows for
interesting possibilities. Also, it would be easy to have several player shapes
contained in stripes and then MOVEd into place at will. For example,

Move Adr(a$),Pmadrii2),128

could move an entire double line resolution player from A$ to player 2, and

Poke Pradr(1).$ffiMove PRadr(l) ,Pradri1)+1,127

would fill player 1's stripe with all "on" bits, creating a solid stripe on the screen.

Using BGET and BPUT with P/M's

As with MOVYE, BGET may be used to [ill 8 ptayer memory quickly with a player
shape, The difference is that BGET may obtain a player directly from the disk!
For example,

Boet B3,Pradr(e),Sse

would get a PMG.2 mode player from the disk file OPENed on channel 3, and

sg9et #4,Pnadr(4),5$508

would fill all the missiles and players in PMG.1 mode - with a single statement!

BPUT would probably he most commonly used during program development to save
a player shape (or shapes) to a tile for later retrieval by BGET.

BASIC XE Reference Manual Page 89

Using USR with P/M's Player/Missile Graphics
Two P/M Graphics Programs

Using USR with P/M's

Because of USR's ability to pass parameters to an assembly language routine, PMG
functions (written in assembly language) can be incorporated easily into to
BASIC XE. For example,

AZUST (Publink,Pradr (2),588)

might cell an assembly language program (at address PMBLINK) to blink player 2,
whose size is 128 bytes.

Two P/M Graphics Programs

108 Setcolor 2,8,8:Ren ““Note: still in GR.O™

116 Pugraphics 2:Rew double line res"

120 Let Width=0:Y=4B8:Ren “initidlizing"

1390 Puclr 0:Pnclir 4:Ren clear player & and nissile 0"

148 Pucolor 9,13,8iRen "a nice green player”

150 P=Puadr(0) tRem "gets address of player o

168 For I-P#Y To P+Y¢4:Rem "2 S elenent player"™

170 Read V1:Rem “see below for DATA schewe"

3180 Poke I,V1:Rem “actually setting up®

198 Next I

200 For K=1 To 120:Ren "player novement loop*

219 Pwnove 0,K:Ren "moves player horizontally™

220 Sound @,XK+N,8,151Ren “just making some noise"

230 Next X

240 Missile 0,Y,1:Ren "a one-high nissile at top of player"
250 Migsile 0,Y42,1:Rem "“another, in wniddle of player”

260 Missile 0,Y44,1:Ren “and at botton of player”

270 For N=127 Yo 255:Ren "missile wovement loop"

288 Pumove 4,H:Ren “"noves missile 8"

2% Sound 0,255-X%,10,15

300 It (K&7)=7:Ren ""every eighth horiz. position"

I10 Missile 8,Y,5:Rem “you have to see this to believe it*™
320 Endif :Rem "you could have had an ELSE, of course"

I38 Next X

348 Pamove B8,0:Rem "so width doesn't change on scresn*

350 MidthzMidtht2:1Ren "we'll nake the player wider®

368 It Midth)4 Then Widt
370 Puwidth 8,Hidthi:Ren "the new width"
388 Pmcir l:non "no nore mnissile“

398 Goto 208:Rem *“do it all again'

400 Ren
410 ReN *HHHE the pnyer 5 shape DATA MHH"
420 Ren * 84218421

430 Ren "$39
448 Ren “$BD
450 Rem “SFF
460 Ren “$BD
470 Ren "$99 s

480 bata $39, ,$8D,$99

Notice how the data for the player shape is built up - draw a picture on an 8-wide
by n-high picce of grid paper, filling in whole cells. Call filled in cells '1', and
empty cells '0'. Convert the 1's and 0's to hex notation and, viola! -- you have
your player,

This program will run noticably faster if you use multiple statements per line. It
was written as above for clarity, only.

Page 90) BASIC XE Reference Manual

Player/Missile Graphlcs Two P/M Graphics Programs

A more complicated program, sparsely commented.

108 Graphics O:Rem "not necessary, just prettier”

1168 Pugraphics 2:Paclir 8:Pucir 1

128 Setcolor 2,0,0:Pncolor 0,12,8:Pncolor 1,12,6
PO=Pnradr (¢ nadr (1) iRen “addr’'s of 2 players”

140 VO=-68:V0ld=Ve:Ren "starting vertical pos'n"

150 HO=110:Rem "starting horizontal pos‘'n"

168 For LOC=VO-8 To VO+7:Ren "2 16~high double player"

170 Read X

108 Poke Po+Loc,Int(X/$0180)

130 Poke PL+LoC,K&SFF

208 Next Loc

210 Ren *‘aninate it"

220 Let Radius=40:Deg

230 Mhile 1:Ren "infinite loopti”

240 C=Randon(15) :Pncolor §,C,8:Pncolor 1,C,8

258 For Angle=@® To 355 Step S:Ren “in ODEGrees, remenber”

268 Unew=UStRadiusksin(angle)

270 Vchange=Vnew-Vold:Rem “Change in vpos"

280 Hnew=H8+RadiuskCos (angled

2% Pwsove O,Hnew;Vchange :Pnunove i,Hnewts;Vchange
300 Ren "move two players togsether®

310 Vold=VUnew

320 Sound 0,Hnew,18,12:150und 1,Vnew,19,12

330 Rext Angle

340 Ren “just did a full circlel”

358 Endwhile

360 Ren "we better NEVER get here!*

378 Rem "tk the fancy player DATA Heee"
I88 Ren * 84218421]04218424

398 Rem “$0 s......

400 Ren
410 Ren
428 Ren
430 Ren
440 Ren
450 Ren
460 Ren
470 flen

S50 Ren
S60 Data $03C0,$0C30,510008,52004,54002,34E72,50051,$8E71
570 Data $6001,$9009,840812,$47E2,$2884,5$1008,$0C30,$083CO

The factor slowing this program the most is the SIN and COS8 being calculated in
the movement loop. ¥f these values were precalculated and placed in an array this
program would move!

BASIC XE Reference Manual Page 91

Space For Your Notes Player/ Missile Graphics

Space For Your Notes

Page 92 BASIC XE Reference Manual

Sound SOUND

Sound

This chapter is devoted to the SOUND statement, and shows how to access the
many forms of sound availahle on Atarl Home Computers.

SOUND (50.)
Format: SOUND mexpl,aexp®,aexpl,aexpd

The SOUND statement causes the specified note to begin playing as soon as the
statement Is executed. The note will continue playing until the program
encounters another SOUND with the same aexpl or an END. aexpl is the voice on
which you want the sound produced, and ranges between 0 and 3, inclusive.
aexp? is the frequency (pitch) of the scund, and ranges between 0 and 255,
inclusive. The lower aexp?2 is, the higher the frequency. aexp3 i{s a measure of the
sound's distortion (fuzziness). Valid numbers are 0 -14, even numbers only., A
value of 10 creates pure tones like a flute, and a 12 produces sounds similar to a
guitar. aexp4 is the volume of the sound, Valid values are 1 - 15; the lower the
number, the lower the volume.

Here is a table for various musical notes using a distortion of 10:

Note: Low Notes High r.lotes
[o] 14 29 60 121 243

B 15 31 64 128 255
B 7 A* 16 33 62 126
A 17 35 72 144
Ab /Gt 18 37 78 152
G 19 40 81 162
Gb s/ F* 21 42 e5 173
F 22 45 91 182
E 23 47 96 193
EY 7 p* 24 50 102 204
D 26 53 108 217
PP/ c* 27 57 114 220

Middle C i{s marked by a "-". This program plays a C scale using the above values:

18 Read A:If A)25S Then End

28 Sound O,A,18,10:Print 4

30 For Wait=1 Vo 4e®:Next Wait
19

SO Data 14,15,16,17,18,3$9,21,22,23,24,26,227,29,31,13
68 Data 35,37,40,42,45,47,50,53,57,608,64,68,72,76,81
78 Data 85,%1,%96,102,108,114,121,128,136,14¢4,153,162
80 Data £73,102,193,204,217,210,243,255,256

Notice that the DATA statement in line 80 ends with a 256, which Is outside of the
designated range. The 256 is used as an end-of-data marker,

BASIC XE Reference Manual Page 93

Space For Your Notes Sound

Space Por Your Notes

Page 94 BASIC XE Reference Manual

Sorting Arrays Introducing the Array Sorting Statements

Introducing the Array Sorting Statements

Rather than go directly into the descriptions of SORTUP and SORTDOWN, we
thought it best to begin with some comments and hints about their use, because
they have many foibles in common.

First and foremost, note that SORTUP and SORTDOWN can only be used to sort
arrays, In their simplest form they are extremely easy to use. For example,
consider the following short program:

10 Dim Array$(s,2e)

20 for 1=t To S:Input “String) ",Array$(I;)iNext I

30 Sortup arravs

48 For I=1 Yo S5:Print Array$(I;)iMext I

30 Run

This progrem simply sorts 5 INPUTted strings and then shows the sorted order. At
this time, we would like to suggest that you type in this program and try it out
(Keep it around - we will use it more later). Give several different sets of words
as answers, Note how necatly it sorts the words into ascending order,

Or does it? Try entering some words in uppercase and some in lowercase. What
happens? Does it surprise you to find that "200" comes before "apple”? Actually,
the reason for this behavior is readily understood once you realize that
SORTUP works on characters using ATASCH ordering (see Appendix A for a list of
ATASCIH codes).

Even if we restrict ourselves to the "printable"” characters in the ATASCII set
(alphanumeric and standard symbols), we find no real help. Digits come before
uppercase letters which come before lowercase letters, but symbols are intermixed
in no real useful fashion. Because the éffects of this hodgepodge ordering may not
be desirable in a sorted list, you may wish to limit a sort to a substring of the
string elements in a savar. For example, If you have a savar where each string
within it contains both a person's name and their phone number, you may wish to
perform a sort based solely on names. Further, to ensure that the sorted order is
consistent, you may wish to ensure that the names are stored in uppercase only.

Fortunately, SORTUP and SORTDOWN offer you the abijlity to sort based on sub-
strings. And, while BASIC XE does not provide a built-in method of obtaining
uppercase, non-inverse strings, it isn't very hard to build a subroutine that will do
the real work for you, For example, the following PROCEDURE converts all
characters in its svar parameter String$ (not a savar) to non-inverse, and converts
lowercase letters to uppercase: -
"O Procedure “To lpper' Using !%tring$
19 Local I, Tewp

n. For I=i Vo Lentstnnsn
830 Tewp=ASC (StringSCI))&S$2¢

840 If Tenp)SE8 And Tenp($7b Then Tewp=Tenpld$S¢
8se String$ (I, I)=Chrs(Tenp)

869 Next I

870 Cxit

BASIC XE Reference Manual Page 95

Introducing the Array Sorting Statements Sorting Arrays

For now, don't enter this subroutine. Instead, let's investigate the concept of
substrings, as mentioned above. Just change line 30 in that little program we
typed in earlier so that a LIST gives you the following:

18 Dim Array$(s,2d)

26 For I=1 To S:Input "String) “,array$(X;):Next I

39 Sortup array$ Using ;31,5

40 For I=1 To S:Print Arrays$(I;):Mext I
38 Run

Once again, enter some strings in response to INPUT's prompt. This time, though,
pay special attention to the third through fifth characters of each string. Notice
anything funny about the sorted order? That's right, it is based solely on the
characters in those positions. If you have worked with BASIC XE string arrays at
all yet, the notation in line 30 may be both familiar and confusing. Perhaps
changing line 40 to the following will clarify the meaning of line 30:

40 For I=1 To S5:Print Array$(I;3,5),Arrays$(I;) Next I

This little example should serve to remind you that you may reference characters
within an element of a string array just as easily as you may reference them in an
ordinary string. The "magic" character is the semi-colon. It separates the array
element number from the desired character positions. (And, as the second usage of
Array$ in that same line shows, the semi-colon is always necessary when referring
to an etement of a string array.)

Now, since the SORTUP of line 30 refers to the entire savar Array$, there isno
need for the following parentheses (and, indeed, they are not sllowed). Instead,
the keyword USING tells BASIC XE that we will be working with only part of the
array and/or its elements. In particular, the semi-colon following USING serves as
a reminder that the aexps following it should be used to define a substring of the
string elements in a savar.

There is one last capability of the sorting statements which we will discuss before
moving on to other helpful hints, The program we have been working with seems
all fine and good if we want to enter exactly five elements into the array.
Suppose, though, that we did not know how many elements we'd be working with.
Fear not, RASIC XF shall provide. Time for another example:

10 Dim String$(2s,28)

20 for 1I=1 To 29:¥Input “String) ",stringS(I;)

25 If Len(String$<I;)) Then Next

38 Sortup String$ Using 1 To XI-1

;: :or J=1 To I-1:Print String$eJd;)::Next J
un

The first change you will notice is that the FOR loop on line 20 now INPUTs 20
strings. The second change is the insertion of line 25. Instead of blindly
continuing to ask for input until 20 items have been entered, the program only goes
back for another if the length of the current string is non-zero. That means that
you may stop entering items at any time by hitting the RETURN key alone in
response to any INPUT prompt.

Page 96 BASIC XE Reference Manual

Sorting Arrays Introducing the Array Sorting Statements

And look at the SORTUP in line 30. Can you guess what the Using 1 To I-1 is for?
That's right, only the first 1-1 elements of the array will be sorted! And if, for
some reason, you wanted to never sort the first element of the array, you could
have written

38 Sortup Strings$ Using 2 To I-1

(Why would you ever do that? Well, maybe you keep specfal information about a
savar fn its first element, thus having the actual data start at the second element.)

Well, so much for sorting string arreys. We haven't yet mentioned how to sort
arithmetie arrays, but it's just as easy. You use the same statements,
SORTUP and SORTDOWN, but you use the name of an artthmetic array as the first
argument, like this:

sortup a¢)

Notice that instead of following the array name by a dollar sign {as with string
arrays), you follow it by a pair of parentheses (to Indicate that the array is
arithmetic). Since no element range was specified In our example, this statement
will sort ell elements of the array A().

If you don't want to sort the whole array, you can specify a range of elements to
sort, just like we did when sorting string arrays. The following will sort elements
3 through S, inclusive, of the array Temp() in descending order:

sortdown Temp() UsSing 3 To §

There are two restrictions to bear in mind when sorting srithmetic arrays, First,
you can't specify substring indices (because numbers don't have substrings).
Second, and more fmportant, you can only sort arithmetic arrays, not matrices!
Thus, if you have the following DIMension line in your program:

10 Dim AC49) ,B(19,28),C(50)

you could use SORTUP and SORTDOWN to sort A() and C(}, but not B(), since it
has two dimenstons and so is a matrix.

Finally, there are a couple of rules to keep in mind:

1) The ending element number to be sorted must be greater than or equal to the
beginning element number (i.e, you can't sort elements 3 TO 1),

2) Roth element numbers must be within the DIMensioned bounds of the array, and

3) the previous two rules also apply to the numbers you use to specify a substring
range when sorting savars.

BASIC XE Reference Manual Page 97

SORTUP Sorting Arrays
SORTDOWN

SORTUP / SORTDOWN

Format: SORTUP |array [USING [aexpl TO aexp2][;aexp3,aexpdl]
SORTDOWN|
Examples: SORTUP Aarray

SORTDOWN Aarray USING Min TO Max
SORTUP Sarray$ USING ;1,4
SORTDOWN Sarray$ USING 5 TO 10

Note: the jaexpl,aexp4 option may be used only when sorting savars. You can
not use it when sorting arithmetic arrays!

SORTUP sorts the elements of an array in eascending ATASCH or numeric order
(dependent upon the array's type), while SORTDQWN sorts in descending order. If
no element range aexpl TO aexp? is specified (18t and 3rd examples), all elements
are sorted.

If an element range is specified, both beginning and ending elements must be
given, separated by the keyword TO.

Note: if no substring ;rexp3,aexp4 is specified (4th example), the sorting is done
using the string elements in thelr entirety, If a substring is specified, both the
beginning and ending of the substring must be specified, separated by a comma. If
an element range is not being used but a substring is, the keyword
USING must precede the substring-marking semicolon (374 example).

Note: if a string element is shorter than the specified ending position of the
substring being used, the substring for that element will be shortened accordingly.
If two compared strings are equal, but one is longer than the other, the longer one
is greater than the shorter one (e.g., "abc"<"abcd"). This is intuitively correct as
well as being consistent with the other string comparisons available in BASIC XE.

Page 98 BASIC XE Reference Manual

Using Fixed Data in Your Frogram DATA
READ

Using Fixed Data in Your Program

The three statements in this chapter allow you to insert and utilize fixed data in
your BASIC XE programs. These statements are DATA, READ, and RESTORE.

DATA (D.)

Format : DATA adata [,adata)

Examples: 100 DATA 12,13,14,15,18
110 DATA Mike,Becky,Tormy,Kathleen
120 DATA "adata with a , In 1t"

DATA is used in conjunction with READ to access elements in a data list. A
DATA statement may be anywhere in a program, but it must contain at least as
many adata items as used in the READ statement that accesses them; otherwise an
"No DATA to READ" error (#6) is displayed on the screen. When more than one
DATA statement {s used, the adata items form a single list. For example, the first
two examples could just as well be combined into

100 DATA 12,13,14,15,16,Mike,Racky,Toomy,Kathleen
Note: all characters except comma (,) and <RETURN> are legal in adata,

However, if you put adata in double quotes ("adata”), then all characters except
double quote (") and <RETURN> are allowed (as in the last example).

READ

Format: READ varl [,var2...]
Exsmples: 200 READ A,B,C,D,F
210 RFAD A%,B%,C$,DS$,FS$

The READ statement is used to retrieve adata items in a DATA list, and store
them in program variables for use. When a READ i3 executed, the first available
adata item is stored in varl, the second is stored in var2, and so on. The
adata item and the variable into which it is to be stored must be of the same data
type (arithmetic or string).

The following program sums a group of numbers using READ and DATA:

1% Fer N=4 TO0 S

20 Read PIM=N4D

30 Next M

40 Print "Sun is ;N
50 End

69 Data 30,15,106,87,47

BASIC XEB Reference Manual Page 99

RESTORE Using Fixed Deata in Your Program

RESTORE (RES.)

Format: RESTORE [1inenol
Examples: 100 PESTORF
RESTORE X+2

BASIC XE uses an intercnal 'pointer' to keep track of the next adata item in the
DATA list to be READ. When used without the optional lineno, RESTORE resets
this pointer to the first sadata item in the first DATA statement in the program.
When lineno is specified, RESTORE sets the pointer to the first adata item in the
DATA statement on the program line linenn. This permits repetitive use of the
same adata items, as shown in the following example:

10 For N=2 To 1 Step -1
29 Restore sotn

38 Read a,B:M-AatB

40 Print “Total is *;M
S8 Mext n

60 End

81 Data 30,18

82 bata 10,20

Page 100 BASIC XE Reference Manual

Accessing Memory Directly PEEK
POKE

A ing Memory Directly

The commands in this chapter allow you to access memory directly, and are very
useful when you want to inspect and/or modify Atari variables and routines. Each
of the commands in this chapter allows you to specify an optional bank number.
For a discussion of the meaning of this number, see EXTEND.

The statements discussed here are POKE, DPOKE, and MOVE, and the functions
are PEEK and DPEEK,

f PEEK

Format: PEFK(aexp [,bank])
Examples: 1000 IF PEFK($4000,4)=255 THEN PRINT "Main Memory $4000=255"
100 PRINT "Left Margin is "; PEEK(R2)

PEEK Returns the value stored at memory location aexp, The addreas specified
must evaluate to an Integer hetween 0 and 65535. The value returned will be a
decimal integer between 0 and 255, inclusive, This function allows you to examine
either RAM or ROM locations. In the first example sbove, PEEK s used to
determine whether location $4000 in main memory contains the vatue 255. In the
second example, PEEK is used to find the current left margin.

POKE

Format: POKE aexpl,aexp2 [,bank]
Examples: POKE 82,10
100 POKE 82,20

The POKE statement puts the value aexp? into memory locatfon aexpl. aexpl may
range in value between 0 and 65535, inclusive, and aexp?2 has range 0..255. The
tirst example changes the screen's left margin from its default value of 2 to a new
value of 10. To restore the margin to its normal default position, press <SYSTEM
RESET>,

Note: POKE cannot be used to alter ROM locations,

While you are becoming familiar with this statement we advise that you first
PEEK at the memory location and write down the value before you POKE in a new
value. Then, if the POKE doesn’t work as anticipated, you can POKE the original
value back in,

BASIC XE Reference Manual Page 101

DPEEK , DPOKE Accessing Memory Directly
MOVE

f DPEEK

Format: DPEEK(aexp [,bank])
Example: PRINT "Varfable Name Table is at ";DPEEK($82)

DPEEK is very similer to the PEEK function, except that it allows you to find out
the two-byte value at the memory locations aexp and aexp+l. This i8 especially
useful when looking at locations which contain address information, asin the
above example. If you did this example using PEEKSs, it would look like

Print "Variable Name Table is at ";Peek(138)+Peek(131)%128
It's obvious that using DPEEK is much easfer.

DPOKE

Format: DPOKE aexpl,aexp? [,bank]
Example: DPOKE 88,3%8000

DPOKE is similar to POKF, except that it allows you to put a two-byte value into
memory locations aexpl and aexpl+l. aexp? is the value, and must be an integer
value 0..65535, inclusive. In the above example, the address of the upper left-hand
corner of the screen (this address is stored at locations 88 and 89) is changed to
$8000. To do this using POKEsS you would nced to do an amazing amount of math
to get the right number into each of the two bytes.

MOVE

Format: MOVE aexpl,aexp2,nexp3 {,bank]
Example: MOVE 3$D000,$8000,3%400

Caution: be careful with this command! MOVE will move any number of bytes from
any address to any address at assembly language speed. No address checks are
made! aexpl {s the starting address of the block you want to move, aexp2 is the
starting address of the place where you want the block moved to, and aexp3 is the
length of the block, The sign of aexp3 (the length) determines the order in which
the bytes are moved, as follows:

Positive Negative

(from) ~> (to) (from+len-1) -> (to+len-1)
(from+1) -> (to+l) (from+len-2) ~> (to+len-2)
(fromtlen-1) -> (to+len-1) (from) -> (to)

When the length is positive, the destination block can overwrite lower part of the
source block. When the length is negative, the destination block can overwrite the
upper part of the source block.,

Note: MOVE cannot automatically move memory between banks. To do so you must
first MOVE the block to main memory and then MOVE it to the other bank.

Page 102 BASIC XE Reference Manual

Arithmetic Functions ABS , INT
SGN, SQR

Arithmetic Punctions

The arithmetic functions supported by BASIC XE are ABS, INT, SGN, SQR, EXP,
LOG, CLOG, RND, and RANDOM, At the end of the chapter you will find a
program that shows these functions in use.

f ABS

Format: ABS{aexp)
Fxample: A=ABS(-160)

ABS returns the absolute (positive) value of aexp.

f INT

Format : INT(aexp)
Examples: I=INT(-3,445)
X=INT(14.753)

INT returns the greatest integer less than or equal to aexp. This Is true whether
the expression evaluates to a positive or negative number. Thus, in the first
example, -4 is assigned to I, and 14 is assigned to X in the second example. Note:
this function should not be confused with the INT functfon on calculators which
simply truncates all decimal places. For those of you with a mathematical back-
ground, you may think of INT as the "Floor" function,

f SGN

Format: SGN(aexp)
Example: 100 X=SGN(-100)

SGN returns a -1 if aexp evaluates to & negative number, a 0 if aexp evaluates to
0, or a 1 is aexp evaluates to a positive number.

f SQR

Format: SOR(aexp)
Example: X=SOR(100)

SQR returns the square root of aexp. Note: aexp r:ust be positive.

BASIC XB Reference Manual Page 103

EXP, LOG, CLOG Arithmetic Functions
RND, RANDOM

Format: FXP(aexp)
Example: PRINT EXP(3)

The EXP function returns the value of e (approximately 2.71828179), raised to the
power aexp (i.e., e®¢XP),

f LOG

Format: LOG(aexp)
Example: A=LOG(20)

The LOG function returns the natural logarithm (In) of aexp. LOG(0) gives an
error, and LOG(1) is 0.

Note: LOG and EXP are complementary functions (i.e., both LOG(EXP(n)) and
EXP(LOG(n)) equal! n, within the bounds of the accuracy of BASIC XE's math
routines).

t CLOG

Format: CLOG(aexp)
Fxanple: A=CLOG(10)

The CLOG function returns the base 10 logarithm (logy o) of sexp. CLOG(0) gives
an error, and CLOG(1) is 0.

f RND

Format: RND(aexp)
Fxample: 10 X=RND(0)

RND returns a hardware-generated random number greater than or equal to {, but
less than 1. aexp is a dummy and has no effect on the number returned, but is re-
quired anyway.

f RANDOM

Format : RANDOM(aexpl{ ,aexp2])
Fxamples: X=RANDOM{(99)
Y=RANDOM(10,20)

The RANDOM function rrturns a random integer dependent upon aexpl and aexp?2.
When aexpl alone is specified (as in the first exampie), the value returned Is
between 0 and aexpl-1, inclusive. When both aexpl and aexp2 are specified (as in
the second example), the value returned is between aexpl and aexp2, inclusive,

Page 104 BASIC XE Reference Manual

Arithmetic Functions An Example Program Using Arithmetic Functions

An Example Program Using Arithmetic Functions

500 cansolo‘SdIA' start $01
510 Open %1,4,0,"K:

Test=-2,71826183

Print :Print “Me start with a value of “;Test
Test=abs(Test)

Print :Print "“Its absolute value is “;Test
TestzInt{Test)

Print 1Print "And the integer part of that is ";Test
0 Test=Sqrivest)

98 Print i1Print “Mhich has a square root of “;Test
Test=Test/2

Print (Print “"Half of that gives **;Test

Print * (remember that nuwher, half SQR(221“
Testz=Sgn(Test)

Print Print “The *'S6N* of that is ";Test

deg

Testzatn(Test)

Print 1Print “shose arclanjent of ";Test;* is"
Test=Int(Test)

Print * close. Correct result is “;Test;* degrees”
Print JPrint “The sine and cosine ot “:Test;" degrees:*
Print sine = ";5in(Yest)

Print cosine = “;cos(Test)

* {look at the number you rememberedl™

1Print “hit 'an tor next partfien;
Peek(Console)d5tart:Endwhile
cs

t
Print “The common thase 10) log of 100 is “;Test
TestzLog(Test)
Print :Print ""Which has natural log of *;Test
Test=Exp(Test)
Print :Print “'e’ is the base of the natural logs,”
Print » 10 that power is “;Test
Print sPrint * (which is pretty darn close to 21*
Print (Print "Hit any hkey to continue...";
Cet 81,Key
Graphics 0
Print Print “Now lels flip sowe cOins, using that”
Print " value as 1 greater tham the maximun'
Print * pseudo-randown value we want:*:Print
Count=@
While abs(Countd (3
I+ Randon(Test) :Countz=Count+iiPrint ,* Heads"
For ¥=12 Yo & Step -l.zlsound .,10 2,ViNext v
El1se 1Count=Count-1:p
For ¥=15 Yo @ Step - 0,12,V:Hext v
Endift

t
.zs SOund 9,

Endwhile
If Count)@:Print * { Heads won 1%
Else :Print * f Tails won 1"
1018 Endif

BASIC XE Reference Manual Page 105

Space For Your Notes Arithmetic Functions

Space For Your Notes

Page 106 BASIC XE Reference Manual

Trigonometric Functions DEG/RAD
COS,SIN, ATN

Trigonometic Functions

Discussed in this chapter are the trigonometic functions C0S, SIN, and ATN, and
the statements DEG and RAD. Also included is a table that shows you how to get
other trascendental trig functions using the ones provided.

DEG / RAD

Format: DEG
RAD

These two statements allow you to specify whether the angles used In the trig
functions are in DEGrees or RADians. Note: BASIC XF defaults to radians. Also,
all trig functions following a DEG or RAD are performed using that angle
measurement until the mode is changed by another RAD or DEG, respectively.

f COS

Format: COS{aexp)
Example: 100 PRINT COS(0)

COS returns the cosine of aexp. The operation is done in radians or degrees,
dependent upon whether DEG or RAD has been most recently used.
f SIN

Fomat: SiIN(aexp)
Example: 100 X=SIN(0)

The SIN function returns the sine of aexp. The operation is done in degrees or
radians, dependent upon whether DEG or RAD has been most recently used.
f ATN

Format: ATN(aexp)
Example: 100 X=ATN(1)

ATN returns the arctangent (Tan"!) of aexp. The operation is done in degrees or
radians, dependent upon whether DEG or RAD has been most recently used.

BASIC XE Reference Manual Page 107

A Table of Derived Functions Trigonometric Functions

A Table of Derived Functions

The following table lists some of the trigonometric and hyperbolic functions you
can derive from the arithmetic and trigonometric functions available in BASIC XE.
The term "x" is the value on which you wish to perform the derived function, and is
simply an aexp. Also, you will see "C" in some of the functions. This is a constant
dependent upon whether the angles are measured in degrees or radians, €C=90 in
DEGree mode, and C=1.57079633 (pi/2) in RADian mode.

Trigonometric Function Derivation

Tangent SIN(x)/C0S(x)

Cotangent COS(x) /SIN(x)

Secant 1/00S(x)

Cosecant 1/SIN(x)

ArcSine (§in™1) ATN(x/SOR(1-x"2))

ArcCosine (Cos™1) -ATN(x/SOR(1-x"2))+C
ArcCotangent (Cot™1) ATN(x)+C

ArcSecant (Sec™1) ATN(SOR(x*2-1))+(SGN(x-1)*C)
ArcCosecant {Csc™1) ATN(1/SOR{(x*2-1))+(SGN(x~1)*C)
Hyperholic Function Derjvation

SineH TEXP{X)-EXP(-x))/2

CosineH (EXP(x)+EXP(-x))/2

TangentH -EXP(-x)}/(EXP(X)+EXP(~x))*2+1
CotangentH EXP(-x) /(EXP(x)-EXP(-x))*2+1
SecantH 2/(FXP(x)}+EXP(-x))

CosecantH 2/(EXP{x)-EXP(-x))

ArcSineH (Sinp~1) LOG(x+SOR(x2+1))

ArcCosineH (CosH"') LOG(x+SOR(x*2-1))
ArcTangentH (TanH™') LOG((1+x) /(1-x))/2
ArcCotangentH {CotH™1) LOG({x+1)/(x-1)})/2
ArcSecantH (Sech™ 1) LOG((SQR(I-XAZ)*I)\/X)
ArcCosecantH (CscH™l) LOG({SON(x)*SQR(x"2+1)+1}/x)

Page 108 BASIC XE Reference Manual

BASIC XE and Machine Language Subroutines GOSUB
RETURN

BASIC XE and Machine Language Subroutines

A subroutine is simply a piece of a program that accomplishes a single task. This
means that a program is really just a bunch of subroutines strung together. Rut
what if you want to execute the same subroutine & bunch of times? You could
type it in every time you want to use it, but that could mean a lot of boring typing.
The solution is to use one of BASIC XE's special subroutine calls. They all allow
you to write a subroutine once, and then have it get executed several times in
different parts of your program.

How you get a subroutine executed (i.e., how you call a subroutine) depends upon
the type of subroutine you are using. The GOSUB subroutine structure lets you
call a BASIC subroutine by line number, the 'SR function lets you cell 8 machine
language subroutine by address, and PROCEDURE allows you to call a BASIC
subroutine by name! Since each of these subroutine structures is different, they
are discussed in depth in separate sections, starting with the easlest to
understand, GOSUB.

GOSUB (G0S.)
Format: GOSUB lineno

GOSUB allows you to ‘'call’ an unnamed subroutine written in BASIC XE.
lineno specifies the starting line number of the subroutine. A GOSUB subroutine
must end witha RETURN or EXIT (if you use LOCAL avars within the subroutine)
so that program execution may continue with the statement after the GOSUB.

To prevent accidental triggering of a subroutine whose code follows the main
program, place an END statement between the end of the program and the start of
the subroutine.

Caution: Like the FOR and WHILE statements, GOSUB uses the program stack to
save its return lineno, 1t the subroutine is not allowed to complete nonnally (e.g.,
you exit via 8 GOTO) the return lineno must be POPped off the stack or it will
cause an error. Also,if you use LOCAL avars within a GOSUB subroutine and do
not exit via EXIT, you must POP the previous avar values off the stack yourself.

RETURN (RET.)

Format: lineno RETURN

RETURN is used to exit a GOSUB subroutine that does not contain LOCAL avars.
If the subroutine does use LOCAL, you must end it with an EXIT.

When you RETURN from a GOSUB, program execution continues at the statement
after the GOSUB call.

BASIC XE Reference Manual Page 109

Introducing PROCEDURE and BASIC XE and Machine Language Subroutines
its Related Statements

Introducing PROCEDURE and its Related Statements

Before describing the individual statements used to create and call named
subroutines, we present an introduction to them because they are interdependent,
and we felt that having a small but effective demonstration of their use would

make it easler to understand the later deflnitions,

If you have programmed at all in any dialect of BASIC, you have used the
GOSUB...RETURN construction. For example, you might see a program lke the
tollowing (This program is for demonstration purposes only, but it is a fairly
amusing little thing to spring on an unsuspecting friend):

20 Valuez100

38 Min=10:RKax=I8:Gosub 169

40 Resultiz=Nun

S0 MinTi@¥Value:Max=%0%ValuetCosub 100

66 Result2=Num

78 If Result2dValuedResultl Then 76

80 Print "You appear to be conservative':End

90 Print “You seem ready to take rishs*:End

109 Ren “The Subroutine'

118 Print :Print "Please Sive ne 3 nunber between"
129 Print Min;'* and “;Max;

130 Input “, inclusive) *,Nun

148 If NumdzMin aAnd Nun{=Max Then Return

150 Inverse :Print "Can't you read? That number is”
160 Print ' out of the range 1 gave you. “:iNormal
1780 Goto 100

In a small program like this one, the GOSUB may be just fine. As programs get
larger, though, lines like GOSUB 3250 become less and less meaningful. Atarl
BASIC (and thus BASIC XF) allows you to do something like this:

18 Let Getinrange=108
20 Value=109
30 Min=18:Max=%8:Gosub Cetinrange

By giving a name to the suhroutine, we can make our code more readable. A
disadvantage to this method is that BASIC XE (in common with Atari BASIC)
allows only 128 unique variable names. Using a variable name as a subroutine
name diminishes the pool of available names. This, then, is the first advantage of
BASIC XE's new procedures: we use string constant to name them, s0 we need
waste no variable names! Look at the listing opposite -

Page 110 BASIC XE Reference Manual

BASIC XE and Machine Language Subroutines Introducing PROCEDURE and
its Related Statements

20 Tenp=100

38 Call "Get In Range® Using 10,90 To Resultl

80 Call "Get In Range” Using 10%Tenp,%0%Tenmp To Result2
70 1f Result2{TewpMResultiiType$=""conservative"

80 Else :Types$="a risk taher®

90 Endif

95 Print Using "You seenr t0 be XXXXAXXVXXZX/.",Type$:End
108 Procedure *“Get In Range" Using Min,Max

110 Local TempiTenp-1e438

120 Mhile Temp{Min Or Tewp)Max

130 If Tenp{)1e498:Print

140 Inverse :Print "Can't you read? That nusber is*
15e Print * out of the range I gave you. “iNormal
169 Endif

176 Print :Print “Please give mwe 3 nunber between™
180 Print Min;* and *;Max;

190 Input ¥, inclusive) *,Tewp

200 Endwhile
210 Exit Tewp

Confused? Not too surprising. Let's take a lonok at the new lines a step at a time.
First, in line 30, note the CALL to the PROCPDURE named "Get In Range". See
how clear accessing this subroutine ls, since we can use any characters we like in
the name string. That's pretty easy, right?

But what about the USING that oappears In both the PROCEDURE and
CALL statements? In line 30, we are 'using' values of 10 and 90. But in line 100,
we are 'using' the variables Min and Max. Isn't that neat? We didn't have to
assign the values 10 and 90 to Min and Max before we called the subroutine:
CALL does the work for us! This is called 'passing parameters’ to a procedure.

It gets better. Notice the EXIT statement of line 210, It allows the procedure to
return a value (the contents of Temp) to the CALL. The value is placed into the
variable that follows the TO in the CALL statement (Resultl, In this case). That's
reasonable, right? If you can 'pass' parameter values, you should be able to
'return’ parameter values. But doesn't using the variable Temp in the procedure
subroutine wreak havoc on its later use in the main program (e.g., in line 50)?

Ah, but there's line 110, with its deceptively simple-locking LOCAL Temp state-
ment. By using {t we have crested a 'private' copy of Temp for use in the
procedure. Any changes to Temp between the LOCAL and the EXIT won't affect
its vaiue in the rest of the program. Wow!

The example we just worked through uses all of the new procedure-oriented
statements: PROCEDURE, CALL, and EXIT. By no means, though, did we use all
of the capabilities of these statements.

BASIC XER Reference Manual Page 111

PROCEDURE BA3IC X¥ and Mnchine Language Subroutines

PROCEDURE (FROC.)

Format: PROCFDURE pname [USING rvarl [,rvar2...])

FExomples: 1000 PROCEDURE "Calculate Pay" USING Hours,Rate,!Taxtable()
87 PPOCEDIRE "Print Msg" USING !Msg$
4040 PROCFOURE "Ouit"

Note: if rvar Is an mvar, sver, or savar, it must he preceded by an exclamation
point (1). See rvar in the glassary fcr more infn,

The PROCEDURE statement is the nucleus around which named subroutines in
BASIC XE are built. It defines the beginning of a subroutine which will be
terminated by EXIT, and executed vin CALL.,

pname is the name of the PROCEDURE, and is simply a valid string constant. In
the examples above you can see that spaces have been vsed in the pnames to add
clarity to the program, As & matter of good programming style, you use names
thet describe what the PROCEDURE does, shortening them only if you begin to
run out of memory.

When you CALL a PROCEDURE, the return lineno i{s pushed onto the BASIC XF
stack so that execution can continue with the statement following the CALL when
the PROCEDURE is done,

If you pass parameters to the PROCEDURE (via USING), CALL will push the
current 'values' of rvarl,rvar?,.. onto the stack, then put the pexpl,
pexp2,... 'values' (sre CALL) into the receiving variables, and finally pass control
tn the PROCEDURE. This is a fairly strajghtforwnrd process when the rvars are
avors, because the 'values' pushed onto the stack are simply numeric constants,
Take the following set of stutements as an example:

18 Junk=29

28 €Call “Yest™ USing 12¥37

38 Print Junk

490 Etnd

78 Procedure “lTest” Using Juak
8e Print Junk

90 Exit

In this example, when the PROCEDURE nared "Test™ ¢t lire 70 Is CALLed, the
current velue of the rver Junk (20, as assigned in line 10) is pushed on the stack,
Then the value of the rexp (12%17, or 204) is copied into Junk. Any subscquent
references to Junk within tha PROCEDURE will find that it contains this new
value, For exemple, the PRINT on line 8G will display the valur 408, When the
EXIT on line 90 is exeecnoted, it will restore Junk to its prior value of 20, thus the
PRINT on line 20 will display the value 20,

All that this means is that USING {when used in conjunction with CALL and
PROCEDURE) does an implicit LOCAL. The purpose of this might not be
perfectly clear, Thanks to the implicit LOCAL, we can reuse the variable name
dJunk in our procedure and so conserve on names (remember, we are allowed only
128) without worrying about changing it within the procedure. The second
advantage is more difficult to see from this simplistic example: we are able to pass
values into the procedure without knowing what variable names are used within it.

Page 112 BASIC XK Reference Manual

BASIC XE and Machine Language Subroutines PROCEDURE

The example in the previous section shows this feature to some advantage, and
demonstrates how the resultant code can be both smaller and more readable.

When the rvars are not avars ({.e. they're mvars, svars, or savars), the methodology
is the same, but the results are more complex. The difficuity lies in understanding
just what the 'velue’ that gets pushed on the stack is. A journey inside BASIC XE
is required to answer this question, In BASIC XE the value of any variable is the
contents of its entry in the Variable Value Table. This table reserves eight (8)
bytes per variable - a flag byte, the variable's number (0..127), and six bytes of
'information',

For simple avars, the 'Information’ is the numeric value of the variable, For svars,
savars, and mvars, the flag byte indicates that the 'information’ is the address and
characteristics of the actual data, For example, an svar needs information about
its address, its DIM length, and ita current LEN length, The string data itself is
located at the given address. The 'information' for both mvars and savars consists
of an address and two DIMensions.

Thus, when CALL pushes the 'value' of & rvar that's a svar, savar, or mvar on the
stack, it is pushing this special information, Similarly, when CALL coples a pexp
that's a svar, savar, or mvar into one of these types of rvars, it is not copying the
actual string or array. Instead, it is copying the special information. This is the
reason that rvar and pexp require the ! prefix when they refer to these types of
variables, Consider this sequence:

10 Fun$="Swimning is fun.”IX$="Right1"

20 Call "Mhat Fun® Using iFuns$
30 Primnt Fun$, X$

nd
50 Ren “The Procedure”
68 Procedure “What Fun“ Using !XS$
70 Print Fun$,u$
a8 RS €1,53=""Laugh”
90 Exit

Hopefully, you will actually try this little program, If so, you will find that line 70
shows that, as we have described above, the "'value' of Fun$ has been copied Into
X$. The PRINT in line 70 will display

Swinming is fun. Swimming is fun.

The real surprise comes when the PRINT in line 30 is executed (following the
successful EXIT in line 90). The resultant display is

Laughing is fun. Right?

Do you see why? If the 'value' of Fun$ is copled to X$, then the address of
Fun$ i now In X$'s entry in the Variable Value Table. Thus, any change we make
to X$ affects affects the contents of Fung. Complicated, yes?

A similar action place takes place when a savar or mvar is passed as & parameter -
changes to the rvar within the PROCEDURE will affect the pexp varfable in the
CALL.

Technical Note: in computer lingo, avars passed to a procedure via a 'call by
value', while the other types of variables are passed via a 'call by reference'.

BASIC XE Reference Manual Page 113

BASIC XF and Machine Language Subroutines Notes and Warnings
Regarding PROCEDURE

Notes and Warnings Regarding PROCEDURE

Note: BASIC XF insists that paired pexps and rvars be of the same type. For
example, the following will cause error 24 ("USING Type Mismatch”):

408 Call “Oh No!" Using 33
]
720 Procedure “Oh NO!™ Using !A$

Note: BASIC XE does not make sure that you have the same number of rvars as
pexps in a CALL to a PROCEDRE. If a CALL does pass too many pexps, the extra
ones are ignored. If it passes too few, a value of zero I3 assigned to all remaining
rvars parameters. This, in turn, can cause a type mismatch, since only avars may
receive a numeric value. Exception: if the CALL passes no parameters, RASIC XE
does nothing at all to the parameter passing area. This is on purpose, since passing
parameters takes time. Thus, even a PROCEDURE expecting only numeric
parameter(s) may report a mismatch error, since it attempts to obtain those
parameters from the miscellaneous data left in the parameter area. Generally, we
recommend passing the correct number of parameters unless you have a specific
purpose which can use the "default” feature to a real edvantage.

Note: you must be careful when changing the value of a svar passed as a
parameter. Recall that the length of a svar is found in its Variable Value Table
entry, and that the entry is copied intact to the PROCEDURE's rvar. If you then
change the length of the rvar string within the procedure, it will indeed change
the rvar's length in the table. However, when you EXIT, the rvar entry is
not automatically copied back to the pexp used in the CALL! This can produce
some bizarre results. To demonstrate - modify line 80 of the last example program
to read

80 HS="Laugh":Print X$

Not surprisingly, the new PRINT in line 80 shows us that the contents of X$ are
simply "Laugh". Howcver, look at the display resulting from line 30:

Laughing is fun. Right?

Do you see the problem? Changing X$ iIn line 80 changed the contents of Fun$,
but it did not change the length of Pun$., Presumably, this could be a feature
under the right circumstances, but there are stranger conscquences possible, For
example, try changing line 80 to read

80 XS="MNR"

Now line 3¢'s PRINT will display

KR¥mning is fun. Right?

which is almost surely not we wanted.

One solution to this situation is simply to avoid changing a passed string within »a
procedure block. This may not be satisfactory, though, so we have provided
another mechanism which you can use to circumvent the problem. Change lines 20
and 90 in the original program to read

28 Call "Mhat Fun* Using 'Fun$ To (Fun$
98 Exit RS

Using the TO guarantees that the complete new "value" of X$ will be copied back
to Fun$. On this same topic, you may be relieved to know that this difficulty with
length does not exist with mvars or savars,

Page 114 BASIC XE Reference Manual

BASIC XE and Machine Language Subroutines Notes and Warnings
Regarding PROCEDURE

Warning: one way to get in real trouble with either strings or arrays is to pass one
back (via EXIT) which was not passed in (via CALL). Fxamine the following
program excerpt:

100 Call “Oops” To !(A$

1160 call "Oops" Vo BS

128 Print A$,B$:End

388 Procedure "Oops*®

319 Input "t*n sonething) ",Line$

320 Exit !Line

H you type in and RUN this program, giving different responses when you are
prompted, you will be surprised at the results of the PRINT of line 120: A$ and
B$ will be identical (up to the length of the shorter), taking on the value of the
second INPUT. If you recall our discussion of what actually gets passed when a
string or array is involved, this seemingly bizarre result can be explained.

When Line$ gets passed back, what is actually transferred is its Variable Value
Table entry, first to A$, and then to B$. But the table entry consists (among other
things) of LINE$'s address. Thus you end up with all three variables pointing to
the same piece of memory!

The proper solution is to pass a string both in via USING and back out via EXIT.
For savars and mvars, you need only pass the value in, since anything the
PROCEDURE does these varisble types is properly reflected in the original
variable.

The only way you can get in trouble with arrays is if you pass an unDIMensioned
array to a procedure which then DIMensions it. Unless you pess back the "value”
via EXIT (similar to the fix for strings just given above), the space DIMensioned
within the procedure is lost, since no variable's entry will refer to it after the
EXIT is executed.

Warning: PROCEDURE must be the first statement on a line, CALL cannot find a
PROCEDURE if is not at the beginning of a line. Strange and wondrous (and
woefully unpredictable) things can happen if you violate this rule, Similarly, you
should never allow a program to "fall through” to a PROCEDURE, Always make
sure that the program immediately preceding each PROCEDURE finishes with a
GOTO, STOP, END, RETURN, or EXIT. We recommend grouping all procedures at
one spot in your program, preceded by an END statement.

BASIC XE Reference Manual Page 115

EXIT BASIC XE and Machine Language Subroutines

EXIT

Format: EXIT [pexpl [,pexp2...]1]

Examples: 290 EXIT 10*Maxvalue
799 EXIT Flag,!Names$
24990 EXIT !Inverse(),Rows,Columns
835 EXIT

Note: if pexp is an mvar, svar, or savar, it must be preceded by an exclamation
point (1), See pexp in the glossary for more more info.

It you have been reading this manual front to back you have encountered several
examples of the statement EXIT by now. If youhave not, we refer you to the
three previous sections for some {llustrative examples.

EXIT performs the following three functions:

1) If there are any variables on the stack (i.e., {f you panssed parameters or used
LOCAL) EXIT restores them to their proper places in the Variable Value Table.

2) It there are any pexps after the EXIT, it places them into the rvars following
the TO in the CALL statement.

3) EXIT checks to see whether the current subroutine was invoked via CALL or
GOSUB. If it was a GOSUB, EXIT simulates the action of a RETURN.

Warning: no error will result if an EXIT statement tries to pass pexps back to &
GOSUB. Instead, they are simply ignored. Similarly, if you pass back too many
pexps to & CALL, the excess ones will be ignored. This design allows a single
PROCEDURE to serve more than one function, returning more values to some
CALLers than to others, Remember, though, that all rvars expected by the
TO portion of a CALL statement must be matched by type by the pexps of EXIT.

Varning: because POP is smart enough to pop variable 'values' off the stack, you
can leave subroutines with LOCAL avars and/or parameters without using EXIT.
You must, however, make sure that you POP gll variables off the stack, as well as
POPping the return lineno, -

Page 116 BASIC XE Reference Manual

BASIC XE and Machine Language Subroutines CALL

CALL

Format: CALL cname [USING pexpll ,pexp2...]] [TO rvar[,rvar...]]
Exanples: 10 CALL "Test"

720 CALL "Totals"™ USING !Values() TO Sum

800 CALL "Get Num" TO Mumber

106 CALL Proc$ USING 7,!'A% TO Result

Note: if rvar or pexp is an mvar, svar, cr savar, it must be preceded by an
exclamation point (1). See rvar and pexp in the glossary for more more info.

The CALL statement has been both discussed and demonstrated esrlier in this
chapter. In this section, then, we will not dwell on such things as the mechanics of
parameter passing., Rather we will discuss the subtleties of the CALL statement
itself.

First, unlike a PROCEDURE statement, the name specified bya CALL may be a
svar instead of being a string constant (see the last of the above example lines).
However, you have no other choice of format than that shown. You may use
nefther a substring nor an element of a string array as a CALLed name. This is not
an onerous restriction, though, since the great butk of your CALLs will probably
be made with string constants. For those rare occasions when you wish to choose
one of several PROCEDUREs based on the value of some index, may we suggest a
program format similar to the following:

30 Input "Give we an Index) *,Index
40 Nane$zProc$tindex;2:Call Name$

Note: the name that you CALL with (whether constant or variable} must match
exactly that given in a PROCEDURE statement. All characters are considered In
the match, with upper case, lower case, and inverse video all distinct.

Caution: we remind you ot the possible problem assocfuted with using & svar as a
pexp: if its length is modified in the procedure, the change is not reflected in the
svar unless TO is used, Similarly, any array that's not DIMensioned at the time of
the CALL should receive the same treatment.

Technical Note: the number of levels you may nest CALLs is limited only by the
emount of FREe memory laft for stack use. Like GOSUB and WHILE, CALL uses
four (4) bytes of stack space, and each parameter passed occupies 12 bytes,

Note: CALLs are slow in comparison to GOSUB lineno in FAST mode. However,
when compared to normal GOSUBs in slow mode, they mry actuslly be Just a bit
faster {f they don't pass parameters. Parameter passing can, indeed, slow things
down remarkably. But, when you compare it to the method of doing several assign-
ments before a GOSUB, followed by one or more afterward, it may actually save
time in some situations.

BASIC XE Reference Manual Page 117

USR BASIC XF and Machine Language Subroutines

Format: USR{aexplf, iexp2...])
Fxample: 100 RFS=USR{ADDR,A*2)

The USR function returns the result of a machire-langusge subroutine,
aexpl must be an integer, and is used as the address of the machine language
rcutine to be perfcrmed., The input arguments aexp?2, aexpl,... are optional, and
are used as parameters to the machine lungunge subroutine, These aexps must be
between 0 and 65535, and will be rounded to the nearest positive integer if they
are fractional, They are then pushec on the hardwate stack in the reverse of the
order given, so the machine language program may then pull them In proper
forward order, Additionslly, a one byte count of parameters Is pushed onto the
stack last, and must be popped by the USR routine. This may be chunged using the
SET 8,aexp.

Also, if all arguments are properly pulled from the stack, then the USR routine
may return to BASIC XE simply by executing an RTS instruction. Ftnally, the
routine may return a single 16-bit value to BASIC XFE (as the "value" of the
function) by placing a result in FRO and FRO+1 ($D4 and $D'5) before returning.

Note: see ADR if your mnchine language subroutine is in a string, as this might be
problematic if you are ir. EXTENDed morle.

The following example uzes & USR routine to ASL a number (the argument to the
USR routine) and then return that value to BASIC XE.

BASIC XF statemoent:
Nasl=lisr ($680,X2

USR routine at $680:

199 pPLA ;Get & of paraneters
110 chr st sIf not 1 EXIT

128 BWE END

138 Pl.a M5B

140 Tax ;have it

A58 [4N H%1

160 fASL & 3450 LS8

170 sIn $04 jSave it

180 THA ;Get MSH

190 ROL A JROL it to g9et carry
200 sta $0S jS5ave it

218 END RTS

Page 118 BASIC XE Reference Manual

ATASCH Characters and Codes

Appendix A

NORMAL Video

NORMAL Video

- PI.P
¢! (7
ol m [V 4ol B | ——vs 0O
s e et
£
[n FnFFFL Ln
— g g g gy, oy LY [Tl ATATE)
] X HHHHH"M - XKW
Xl NMECOOAWULOTI "X I T Z000XNFIDBIX > NOVNBNL A UVD V- OAC =~ ECOOATL W 3D B x 2 nOMWWW
[
%— MCOOUOWULOXrmOIY I ZO0ACEN IO RX)N ¢ @S0V V- L =X~ ECO0QATLA® DD INXNANO=Twva
Xf @ = NOITININDO BCDEF'123456789ABCDEF0]23456799MBCDEF9123456789AB olwu
o TTCTT T TTTTTTTTTONNDNNNINNINNEMNIGINOOOOOCUOOVOIOVGCOCOOONANANBPBANNNANNANNA
I POV RN OPAR R AR P AR RPRARP PR AR AR PA PP AP ALA RO PPARNP AR RAPN PP OR O RPPPRRNRRPOS
C_ TN ONVO®D NN TINON DD NOITIN O D= NOTUICN DD = (NMTINON DO D (NMTINON DD =M TWION
®] VOO0 VO ONRNANNNNANNNANDO OO OO O OO NN NN
[~] -
—he e
»l [4
™1 [pu U |
[~ OXEXXD=s PN A - [
[ABCDEFGM]JKLHNOPQRSTUUUXYZSTTW
- WO CF.rl. nnnTTT | -
W Jddddddddd d Al ddd bl)b ed [VRINTY ('S w
2 nRmmamaRmnmmmmmmmmnamnnamnmxumwnpmmmmmmmmm T z
-
x| nmCcmcn"UCmccccccccmmcmnmCCCEEEEF_ssSSSSSSSSI * = S NDNMTINONOONY n Ay
. -
w
m— AT e r NS sl 1 2a® e | $e L Pl ? P EPI® G-z BANDT AR =] N\ O—NMTUIONOO o sonr § AL
(-9

]
vn o123456789ABCDEF°’234567G9ABCDEF°‘23456739 ABCDEF‘]Z?-G.:Jé?B?““M”“”

NN NN

H “"‘"’"“""""“"""‘,"’”"""“3"""""“","“‘

VU ®@=NOTNONDOB—~NNTINONDORD e NMNTINONOND = NMTIONADOD=NMTUION DO N T ON 00N D = (NM
2 CYCYTETTTTTIONNNNNNNNGN 0000

Page A-1

BASIC XE Reference Manual

ATASCII Characters and Codes Appendix A
INVERSE Video

INVERSE Video

Dec ex Chr Keystroke Dec Hex Chr Keystroke
28 $88 [INV CTRL 192 $C8 NV SHIFT 3
29 81 l: IN CTRL A 193 $C1 N A
38 82 W CTRL B 194 $C2 N B
31 $83 ;‘ NJ CIRL C 195 $C3 N €
32 s84 ! N CTRL O 196 $C4 YR
33 s85 3 INVCTRL E 197 $CS N E
34 %86 K In CTRL £ 198 $C& N F
35 487 y I CIRC 6 199 ¢(7 N B
34 s88 NV CTRL H 208 $C8 N H
37 $89 g I CTRL I 281 $C9]

38 $8A N CTRL J 282 $Ca N J
39 488 h NV CTRL K 283 $CB W K
a8 $8C N CTRL L 284 $CC WL
41 $80 g INV CIRL M 205 $CD N M
42 $SE NU CTRL N 288 $CE N N
43 $gF INV CTRL D 287 SCF N 0
44 398 INV CIRL P 88 308 N P
45 $91 INV CTRL @ 89 $D| N Q
46 52 # INU CTRL R 18 $D2 N R
47 493 N CTRL § 211 $03 WS
48 $94 § t& CTRL T 12 4D4 W T
49 $95 NJ CTRL U 13 $pS WU
38 $38 F INVCTRL V 14 $Dé NJ Y
§1 837 @& INV CTRL W 215 $D7 N W
52 s98 B 1N CTRC X 216 308 N X
53 899§ INUCTRL Y 2172 $D9 N Y
54 %94 & IN CTRL 2 218 sDA N 2
55 $98 EQL RETURN 219 408 N SHIFT [
54 $9C @ ESC SHIFT DELETE 220 $DC N SHIET \
S? $90 f] ESC SHIFT JNSERT 221 $0D NV SHIFT 3
58 s9 SC CTRL TAB 222 $DE NV SHIFT ~
59 $9F @ ESC SHIFT TAl 223 $DF NV SHIFT _
40 A8 'V SPACE BAR 224 $E0 NJ CTRL .
&1 sA) @ INV SHIFT ! 225 $E} W a
%42 @ NV SHIFT * 28 $E2 N b
143 843 & INV SHIFT # $E3 NV ¢
164 $A4 H INV SHIFT ¢ 28 $E4 V]
345 NV SHIFT % 29 $ES N e
6 $A& KB 1N SHIFT & 238 $E4 W of
&7 sa? NV SHIFT ~ 231 $E7]
&8 $AB NV SHIFT ¢ 32 $E8 NV

169 A9 INV SHIFT) 33 $E9 N i
79 I YV 234 $EA W
21 $AB O 1INV + 235 $EB 1V K
72 $AC v, 236 SEC Ny
23 sAD @ Il 237 $ED N m
724 $AE B 1INV, 238 SEE WV n
175 saf W/ 239 SEF N o
74 3880 NV B 248 $Fe W op
77 $Bl N) 241 $F! 1 q
78 $Bg N 2 242 $F2 N r
79 B3 N 3 243 $£3 s
189 $B4 N 4 244 $F4 Nt
81 $BS I S 245 $£5 W ou
82 $B& ING & 244 £ NV v
83 $87 v 7 247 $F7 N w
83 488 1INV 8 248 $F3 VR
185 $89 N9 249 $F9 Ny
186 NV SHIFT 258 $FA Nz
187 BB N 251 sEB N CTRL_;
188 $BC N 252 SFC NV SHIFT
189 $BD N = 253 $FD NV ESC CTRL 2
196 $BE IN) 254 SFE ESC CTRL DELETE
191 $BF INV SHIFT 2 255 SFF ESC CTRL INSERT

Page A-2 BASIC XE Reference Manual

Appendix B BASIC XE Memory Map
$0000 - LOMEM

BASIC XE Memory Map

Below you will find a table containing the low memory locations used by
BASIC XF, In the descriptions you will find the abbreviations 'AtB' and 'BXF',
They stand for 'Atari BASIC' and 'BASIC XE', respectively.

Most of these locations are documented only because they are used to delimit
areas in the memory maps on the following pages. The only locations that might be
of use to you are LOMEM, STOPLN, ERRRAV, and PTABW. These, however, are
associated with BASIC XF commands as follows, so you need never use PEEK or
POKE:

LOVEM LOMEM
STOPLN ERR(1)
ERRSAYV ERR(0)
PTARW SET 1,aexp

Note: unless otherwise specified, all zero page locations $80 - $FF are used by
BASIC XE.

Location(s) Label Usage
$E-$F APPMHI System pointer to free memory.
$20-%2F Z710CB Temporary storage for Floating Point routines.
$43-3%349 FMSZPG Temporary storage for Floating Point routines.
$80, 881 LOMEM Low memory pointer.
$82,283 VNTP Variable name table pointer.,
884, $R5 VNTD Pointer to the end of variable name table plus one.
*86, 887 VVTP Variable value table pointer.
$88,3%89 STYTAR Statement table pointer.
$8A, $8R STMCUR Current statement pointer.
£8C, $8D STARP mvar, svar, and savar value table pointer.
$BE, $8F RUNSTK Runtime stack pointer.
290,891 MFMTOP High memory polinter.
$BA, $BR STOPLN Line number at which the program stopped.

*C3 FRRSAV The nunber of the most recent error.

*C9 PTABW Number of columns between tab stops.

$CB-8D1 = ----- Unused by BXE!!

$N4-8D9 FRO Floating point register 0.

SEO-$ES FR1 Floating point register 1.

$480-$57F ----- Used by BXE for various purposes. Caution: some

AtB programs use this area during RUN, BXE pro-
grans that use only AtR commands can do this also,
but those that take advantage of the new commands
may not use this space.

$580-%67F ----- Nomally unused by BXE, but INPUT or ENTER fram an
external device can wipe it out.

$680-$6FF ----- Unused by BXE!! We suggest that you use this area
for your USR routines.

$700-LOMEM ----- DOS and any other device handlers (R:, etc,) reside

here. The LOMEM statement can change the size of
this space.

BASIC XE Reference Manual Page B-1

BASIC XE Memory Map
Low Memory ~ Standerd

Appendix B

Low Memory ~ Standard

The disgrams on this and the facing page show how BAFIC XE uses memory
between LOMEM and the start of cartridge memory ($A000). The diagram on this
page shows how memory is used if you do not use the EXTEND statement, and the
one opposite shows the memary configuration in EXTENDed mode.

$AB00 ket
JOR. R _
PMG. RAM
4
49088 + 4
FREXB) |
i L
sg000 4]
APPMH] povmmmcm e -
BAS{C XE
+ gn ime 4
tack
RUNSTK p-~---~ N J
va
s7000 4 "0
svar,
P <
savar,
Space
STARP pre-ecmmmeme
44800 4]
] 1
[Your l
$3686
BASIC XE
44008 ¢+]
Program
4
o
+3e80 + |
A8 var Values
WP .-~-E--£-!!__
v
wrp L2AC__TAneR

LOMEM

Page B-2

BASIC XE Reference Manual

Appendix B BASIC XE Memory Map
Low Memory - EXTENDed

Low Memory - EXTENDed

sAdep Rent
G6R. RAM
PMG. RAM
.
$9800 + 4
o o
b 4
b 4
The Extended RAM | 130XE
+8008 Jr ¢ Extende na
L 1 {1 1 4+ | 4 |
4 - ’ - Fy 4
FRE(8)
3 4 + <+ 4
47000 4 4 4 3 i
b F Y T -r d
4 L 3 + + s
b -r 4
J FREC1)
44000 4 b 1 4 J
i T L 4 4
Your |]
J— i v 1 1
PM 4 + 4
S1¢ XE S1C XE
s3088 ¢ Rgn‘?rn + Ba + 4
RUNSTK + i]
Program
L <+ 4
3 L .} 4 4
mvar,
$4800 Jh
svar, Bank 8 Bank 1 Bank 2 Bank 3
savar
Space
s3608 4 J
STARP p-—--~-=—=--um 4
WT: 2::-!512::
WP ::(; B :,:" ¢ $368 byte Buff
roMen L2222 uffer | yte Buffer.

BASIC XE Reference Manual Page B-2

BASIC XE Memory Map Appendix B
Righ Memory

Vigh Memory

The dlagram on this page shows the memory configuration from the start of
cartridge memory to 3FFFF {the end of address spacs). Those areaz lebelled
'MASIC XE Extensions' are used by BASIC XF. anly when you have booted using the
disk extensions,

ROM RAM
+
Atari Reserved
3 -
Operating hy
$Fove +
1 System Atari
3 -r L
$£803 Standard Character Sets
Atari’s BASIC XE
Flaating Pt.] Extensions

| G71a, POKEY, and P1A -

4 ¢
bse Internationg! Char, Set
Atari
o ':f 4 BASIC XE A
erati
':Yshmng 1 Rt]
+Co08 d
I Unusable
- +*
Atari BASIC XE BASIC XE
st960 4 4) 1r .
BASIC Extensions r Car tridge
b b 4 L
+ + 4
< + 4
34008

Page B-4 BASIC XE Reference Manual

Appendix C Compatability with Atari BASIC

Compatability with Atari BASIC

Generally, BASIC XF {s totally compatable with Atari BASIC, Virtually all
progrems you have written in Atari BASIC will execute properly under BASIC XF.
However, there are a few subtle differences hetween the two RASICs, and some of
these can affect whether a progrem will load and run or not, This appendix
presents a list of known differences, but we can't guarantee that it covers all the
differences.

Yariable Names

When you SAYE or CSAVE a program in Atari BASIC, and then LOAD or CLOAD it
into BASIC XE, you will never encounter a conflict in variable name usage. If,
however, you LIST a program from Atari BASIC, and try to ENTER {t into
BASIC XE, you might discover that RASIC XE will not accept some lines that you
know are legal in Atari BASIC.

The reason, of course, is that BASIC XE has a much larger list of commands than
does Atari BASIC, and in neither BASIC cnrn you start a variable name with a
command name unless you precede it with LET. To illustrate how this can create a
problem, consider this program line that's valid in Atari RASIC:

160 NUMBER=?

Because NUM Is 8 BASIC XE statement the above line will look like

100 Kuw Ber=7

to BASIC XF. Since your program probably doesn't have a variable named Ber, the
expression Ber=7 will evaiuvate to zero, thus making the original statement turn
into

180 Nun @

which is certainly not what you intended!

In most cases variable name conflicts will result in syntax errors, but in this parti-
cular case (and a few others) the result appears valid to BASIC XF, thus creating
possibly disasterous consequences.

How can you detect and fix such problems? The easiest way is to examine a
RASIC XE LISTing of the program, and, thanks to BASIC YE's program formatter,
the discrepancies will stick out.

Remember, however, that even LET will not allow you to use function names as
variable names, so you need to change variable names that hegin with (or matech) a
BASIC XE function name to something else (e.g., change RUMP to BMP or VRUMP).

BASIC XE Reference Manual Page C-1

Compatability with Atari BASIC Appendix C

Programs that RUN Too Fast

One of the reasons you bought BASIC XE in the first piace was probably its speed.
However, little did you realize that some of your BASIC programs (most likely
games) would RUN too fast! The only solution to this is to put delays in your
program. You can do this easily by CALLing a PROCEDURE that waits for some
time, dependent upon the value you pass it, as follows:

1890 Procedure "Hait” Using Tine

1010 Local Temp

1920 For Tewp=1 To Time:Mext Tewp
1030 Exit

Now, just insert CALLS to this routine where you need to waste some time:
198 Call “Mait* Using 28

Memory Conflicts

BASIC XE attempts to conform to all memory location usage published in any or all
of the following books:

Atari RASIC Reference Manual, by Atari, Inc.

De Re Atari, by Chris Crawford el alia

Mapping the Atari, from COMPUTE! Books

Master Memory Map, by Educational Software, Inc.

A few programs written by extemely knowledgeable individuals have made use of
one or more of the following unpublished facts about Atari RASIC:
1) Atari BASIC uses certain memory locations only at certain times,
2) Certain zero-page locations have special meaing to Atari BASIC, and
3) Certain subroutines internal to Atari BASIC begin at certain addresses in
the cartridge.

Obviously, we couldn’'t have added speed and features to BARIC XF without adding
code and making more use of the memory reserved for BASIC, Although we kept
changes to & minimum, we can't possibly be held responsible for conflicts created
hy programs that depend use such methods to accomplish their task. They were
created specifically for use with Atari BASIC, and must remain that way.

Automatic String DIMensloning
BASIC XF will automatically DIMension strings to 40 characters for you, and this

should have no effect on your Atari BASIC programs, but, if you really want to
insure total compatibility, use SET 11,0.

Indented LISTings

When BASIC XFE LISTs a program it automatically indents control structures (FOR,
WHILE, etc.). This can be a problem if you LIST an Atari RASIC program with
extemely long lines and then try to ENTER it into BASIC XE. To solve problems
that arise from this, usec SET 12,0.

Page C-2 BASIC XE Reference Manual

Appendix D Data Space in Extended Memory

Data Space In Extended Memory

When you use BASIC XE with an Atari 130 XE computer, there are three ways to
use the "extra” 84K bytes of RAM memory which this machine gives you. Although
you can use only one of these ways at a time, the flexibility is nice and may allow
you to write some mresting programs, You should already be familiar with two
of these ways:

1) You can use RASIC XF's EXTEND command to give yourself a 64K program
workspace without affecting a data space of 30K bytes or more, or

2} You can boot with a DOS that allows you to use this memory as a super-fast
RamDisk (Atarf DOS 2.5 is n good example),

This Appendix will introduce you to the third way to use this memory.

If you don't use the memory for large programs, and if youdon't use it for a
Ram Disk, then BASIC XF allows you to use it for your own purposes. In fact,
BASIC XE has several statements and functions which were designed to help you
use this memory. If you will refer to the descriptions in this manual of the
following commands, you will tind that each allows you to specify an optional bank
number:

MOVE POKE

BGET DPOKE

BPUT PEEK

DPEEK

The bank numbers that can be used with these commands are {llustrated in
Appendix B. Not shown in that diagram is Bank 4, which is simply the "main"
memory from $4000 to $7FFF, BASIC XE assigns it this bank number for your
convenience, but In any of these commands "Bank 4" is assumed if no bank number
is given.

With the exception of MOVE, all of these commands can be used easily and safely

to store or retrleve data iIn any of the extended memory, so long as neither

BASIC XE nor DOS is trying to use the memory at the same time. For example,

you could copy & small disk file hy

1) OPENing the file with its original disk inserted,

2) using BGET to read it into one of the banks,

3) CLOSEing and reOPENing the file after inserting another disk, and

4) using BPUT to write the flle from the extended bank. Tf the file is longer than
16K bytes, you could use 2, ?, or even all 4 banks to hold it while waiting for
the disks to he swapped.

Use of the MOVE statement requires a little more care, though. The bank number
you specify for a MOVE refers to both the source and destination addresses. Thus
a command of the form

Move $4000,35000,%$200,3

would move 512 ($200) bytes from location $4000 in bank 3 to location $5000 in
bank 3. This is often exactly what you want and will probably make you gloriously
happy. But consider a command like this:

Move Adr(Goodies$),$4000,Len(Goodiess),2

This is dangerous and probably will not work!

BASIC XE Reference Manual Page D-1

Data Space in Extended Memory Appendix D

It you refer to the memory map of Appendix B again, you will note that it is
possible {(or even probable) that BASIC XE will store your strings and arrays
somewhere In the address range $4000 through $7FFF in main memory. Assume,
for the moment, that the string Goodies$ is stored at address $6050. The above
MOVE command would try to move bytes from location $6050 in bank 2 to location
$4000 in bank 2. Almost certainly not what you wanted.

How can you avoid this problem? First, always MOVE any object that is located in
main memory from $4000 to $7FFF to an intermediate location that is outside
those bounds. Then MOVYE from the intermediate location to the appropriate bank.
What intermediate arcas are available? If you are writing your own program from
scratch, then there are several good locations avsailable, if you will refer to
Appendix B again, If you aren't using it for any other purpose, page 6 of memory
(2600 to 36FF) is & good spot. Note that this limits your MOVEs to 258 bytes each.
This may require a little work on your part, such as jn this routine:

910 Por Loc=0 To Len(X?) Step 256

920 Move Adr{X$)+Loc,$600,256

930 Move $600,%$4000+Loc,256,3

940 Next Loc

(There is a flaw in the above program: if X3 is -- for example -- 10 characters
long, then the first set of MOVEs will move 246 bhytes too much. I this could
cause a problem, yonur program would have to check for this situation and make a
shorter MOYE on the last section of each string.)

The program titled "SHOWPIC" on page D-5 shows another good location to use for
a MOVE buffer: the graphics screen memory. In this program, the screen memory
is used to actually hold pictures, but there is no reason you couldn't use excess
memory in this area (between APPMHI and HIMEM) for any purpose you choose.

To help get you started using extended memory in new ways, we here explain the
"SHOWPIC" program, step by step. As its name implies, it shows pictures. In fact,
it will show up to eight pictures in slide show fashion, and its big feature is the
speed at which it shows them.

To use the program, ynu need two or more picture files that have been saved in
what is known as "Micro-Nlustrator” format. The first 7680 bytes (40 bytes per
Hne by 192 lines) of a file in this format are simply a dump of either a
GRAPHICS 24 (which js 8+16, a full sereen two color mode) or GRAPHICS 31 (a
full screen also, 15+16) screen memory. Most popular drawing programs for Atari
8-bit computers either use this format or provide A means of using it. For
example, standard Kosla Pad and Atari Artist software use a condensed format,
but both allow you to produce a Micro-lllustrator file by pressing
"Control-Shift-Insert” (push the Insert key while holding down both the Control
and Shift keys). Doing this always produces a file of the name "PICTURE," so you
must go to DOS and rename the file before you save another picture on the disk in
the same way.

Since picture files in this format are large, we suggest putting the program
"SHOWPIC" on a disk with nothing but DOS and the pictures. The picture files
may use any 8-character name, but all must have the extension ".PIC" in order for
"SHOWPIC" to find them. The paragraphs that begin on the following page explain
the workings of "SHOWPIC" in some detall, and the numbers used are those of the

Page D-2 BASIC XE Reference Manual

Appendix D Data Space in Extended Memory

lines being explaine.

180 The string File$ is uvsed only to read aline from the Jirectory. The
string arcay Files$ will hold the names nf up to eight files,

180 As noted above, a Micro-Illustrator picture {is simply 7680 bytes
"dumped” from screen memory,

200 The states of the Start, Select, and Optlon keys are found by PEEKing
location $DO1F, If the Start key is pressed, the least significant bit ($01)
of the location will be zero.

240 We will read a portion of the directory of the disk in drive 1. Feel free
to change the drive number end/or the filename extension.

250 We will read in a maximum of 8 file names.

260,270 As we read in & filename, we chack it. If there are fewer than 8 picture
files on the disk, we will read the line which tells how many free sectors
there are. If we find that line, we exit from the FOR loop early.

280,290 Because the directlory listing formst does not produce standard file
names, we must builld a proper name for later use by OPEN. Again, you may

change the drive number and/or filename extension if you wish,

300,310 Regardless of how we exit the loop, we successfully read in one fewer
than the value of the loop variable.

320 Even when youread the directory, you must close the file,

360,370 We chose a full screen black and white pieture. We also chose colors
which looked good on our monitor. If you are using color pictures, change
to GRAPHICS 31 and use appropriate SETCOLORs,

380,390 We will read in only as many files as we found in the directory.

400 This one statement reads in the entire pleture! Location $58 contains

* address of the beginning of screen memory (l.e., the address of the byte for
POSITION 0,0). See any good Atart memory map book.
440 We put pictures 1 and 2 in bank @, pictures 3 and 4 in bank 1, etc.

450,460 If it's an odd-numbered picture, we put it in the lower half of the bank.
Even-numbered ones go to the top of the bank.

470 As explained above, this MOVE is safe because screen memory is located
sbove $7FFF. T1f you use a program which somehow lowers HIMEM, this
might not work!

480,490 Finish up with this file and loop for the next one.

500 At this point, all the pictures have been read fn from disk and saved in
various parts of extended memory.

BASIC XE Reference Manual Page D-3

Data Space in Extended Memory Appendix D

530 Just Initialization. See lines £00 through 630,

570 Remember that a WHILE loop executes so long as the expression
following WHILE Is true. But a constant other than zero is always true., So
we loop until the user hits EREAK or RESET.

600-620 This is a !lttle snexky., Fvery time we get to line §00, Ple will be equal
to Oldpic, s0 the WHILE locp will execute at least once. BASIC XE's
RANDOM function conveniently chonses a valid picture number. Then we
go back up to the top of the WHRILE loop to find out if we picked & different
pieture, If not, we try asain,

630 And this ensures that the loop of lines €0 to 620 will execute at least
once next time,

670-700 Dnes this code look almost the same as that in lines 440 to 470° It
should. The only difference i3 that now we are moving from the extended
memory into the screen memory.

740 As long as ynu hold the ftart key down, RASIC XE will loop on this line.
Remember, the "&" symbol means "bit-wise AND,” so the test here Is of a
single bit in the console register.

750 The end of the "torever” lonp.

Finally, a lest hint of anothir direction to explore, Although this program used
BGET to move a picture into sereen memory and then MOVEd the picture into
extended memory, vou can also use BGET to read directly into extended memory.
It won't look as pretty as Lhe files sre being read in, but you could remove line 400
and change line 470 to read as follows:

470 Bget #1,Address,Plesize,Bank

The fast slide show portion of the program is unaffected, beranse the pictures are
still in the memory locations where it expects them. And, if you lLit Hreak but
want to continue the show, just type in the following line:

GRAPHICS '24:GOTO 500

to use the default colors. Or add SETCOLORSs hefore the GOTO If you wish,

Page D-4 BASIC XE Reference Manual

Appendix D Data Space in Extended Memory
SHOWPIC Program

SHOWPIC Program

180 RN IHHEHHHEHHE-

110 Ren # »

120 Ren % SHOWPIC #*

138 Ren % *

140 REM MHHUHEHHEOHEHE

150 Ren

168 Ren set up buffers, arrays, constants
170 Ren

180 Din Files$t8,20),Files$¢20)

198 Picsizez40%192

208 Console=$deif:startz$e1

218 Ren

220 Rem find all the pictures files

210 Rem

248 Open 81, O,I,"Dl »,pICT

250 For Pic=1 To

2680 Input 811,File 5

278 If filcS(z,l)()" “ Then PopiGoto 180
288 Files$(Pic;)="D1:" File$(3,10)," *
2% FilesS(Pic; ;Find(Files$(Pic;d,*" *,0))=", PICY
Je® Next Pic

J18 Maxpic=Pic-1

320 Close 81

330 Ren

340 Renm read in all the files

358 Ren

J60 Graphics 24

378 Setcolor 2,6,0:15etcolor 4,8,8:5etcolor £,6,8
388 For Pic=1 To Maxpic

3% open #1,4,0,FilesS(Pic;)

400 Bget %1,Dpeek {558) ,Picsize

410 REN
428 Renm move picture into extended memory
430 fen

440 Bank=Int((Pic—-1)/2)

450 Address=$4008

460 It Picki=0 Then address-$6888

478 Move Dpeek($58) ,Address,Picsize,Bank
489 Close 81

490 Next Pic

560 Ren

518 Rem now sShow the pictures

520 Ren

530 Oldpic=0:Pic=@

548 Ren

5§50 Ren we want to do this forever

560 Remw

570 While 1

Sas Ren be sure we don’'t show same one
530 Ren . twice in a row
680 Mhile Pic=01dpicC

610 Pic=Randon(i,Maxpic)

620 Endwhile
638 01dpic=Pic

640 Ren
650 Ren nove from extended mewnory to screen
660 Ren

670 BankzInt((Pic-~1)/2)
689 Address=$4900
690 If Pickl1=0 Then Address=$5089
708 Move Address,Dpeek($58),Picsize,Bank
718 Ren
720 :en allow user to look at one
en

748 Mhile Peek(ConsoleldStart=0:Endwhile
756 Endwhile

BASIC XE Reference Manual Page D-5

Data Space In Extended Memory Appendix D
Space For Your Notes

Space For Your Notes

Page D-6 BASIC XE Reference Manual

Appendix E Error Situations
Numbers 1 - 9

Error Situations

Whenever something that BASIC XE wasn't expecting happens, BASIC XF will stop
whatever it's doing and give an error (unless, of course, you TRAP the error). An
explanatory message will accompany the error number {f you have booted with the
extensions disk, otherwise the error number alone will be displayed. All errors
that involve BRASIC XE directly have personalized error messages, but some
obscure system errors simply produce the message "(See Manual)". This are errors
like #173 (can't format disk), and occur very rarely. The "(See Manual)" does not
necessarily mean this manual, but the manual for the device or subsystem that
produces the error,

Error Screen Message and Further Description

1 BREAK key not TRAPped
While SET 0,1 was specified, the user hit the <BREAK> key. This
TRAPable error gives the BASIC XE programmer total system control.

2 Memory Full
You have used all available memory. You can't enter any more
statements, nor can you define any more variables.

3 Value Out of Range
An expression or variable evaluates to an incorrect value. For example,
if a value 0-7 is required, and you use a negative number or a number
greater than 7, an error 3 will occur (e.g., SETC. 99,0,0).

4 Too Many Variables
No more variables can be defined. The maximum number of variables is
128,
J/V)
s Access Past String DIM °
You tried to access a character beyond the DIMensioned length of a
string.

[] No DATA to READ
A READ statement is executed after the last adata item in the last
DATA statement has already been read.

7 Val > 32767
BASIC XF encountered a line number larger than 2767, Some other
commands (e.g., POINT) can also produce this error,

8 INPUT/READ Type Mismatch
The INPUT or READ statement did not receive the.type of data
(arithmetic or string) it expected.

9 DIMensioning
Either you tried to reDIMension an already DIMensioned var, or used an
unDIMensioned variable as though it were DIMensioned.

BASIC XE Reference Manual Page E-1

Error Situations Appendix F
Numbers 10 - 20

Error Screen Message and Further Description

10 Expression too Complex
An expression is too complex for BASIC XE to handle. The solution is to
break the calculation into two or more BASIC XE statements.

11 Overflow/UnderFlow
The floating point routines have produced a number that is elther too
large or too small.

12 Line Not Found
The target lineno nf 2 GOTO, GOSUB, or IF/THEN does not exist,

13 NEXT without FOR
A NEXT avar was encountered without a corresponding FOR avar.
Note: Improper use of POP could cause this error,

14 Line Too Long or Complex
The progam line just entered is either longer or more complex than
BASIC XE can handle, The solution is to break the line into multiple
lines by putting fewer statements on a line, or by evaluating the
expression in multiple statements.

15 Line Not Found
The line containing 8 GOSUB or FOR was deleted after it was executed
but before the RETURN or NEXT was executed. This can happen if,
while running a program, a STOP is executed after the GOSUB or FOR,
then the line containing the statement is deleted, then you type
CONT and the program tries to execute the RETURN or NEXT.

16 RETURN without GOSUB
A RETURN was encountered when execution is not in a GOSUB routine,
Note: improper use of POP could also cause this error.

17 Bad Line
You tried to RUN a program that had a line with an already-marked
syntax error on it (i.e, it has the "EFRROR -" on it). Note: the SAVEing
of a line that contains a syntax error can be useful when debugging your
program, but don't forget to change it before RUNning again.

18 Not a Number
If the sexp in a VAL does not start with a number, this message number
is generated. For example, VAL("ABC"} would cause this error,

19 Too Big to LOAD
The program you're trying to LOAD islarger than available memory.
This could happen if you have used LOMEM to change the address at
which the BASIC XE tables start, or if you're LOADing using a DOS
different from the one used when the program was SAVEd.

20 Invalid Channel #
If the device number given in an 1/0 statement is greater than 7 or less
than 0, then this error is issued.

Page F-2 BASIC XE Reference Manual

Appendix E Error Situations

Numbers 21 - 40

This error results if you try to LOAD a file that was not created by

This error occurs if the entire format string in a
PRINT USING statement is longer than 255 characters. It also occurs if

The value of an aexpin a PRINT USING statement Is greater than or

The format field in a PRINT USING statement and the corresponding
exp to be output using that format are not of the same data type

A string being retrieved by RGET has a different DIMensioned length

The record element being retrieved by RGET and the varfable to which

The end of a control structure like ENDIF or ENDWHILE was

An illegal player/missile number, Players must be numbered from 0-3

You attempted to use a PMG statement before initislizing P/M's via

When RENUMbering, the maximum line number (32767) was exceeded.

Error Screen Message and Further Description
21 File Not LOAD format
SAVE.
22 USING String Too Big
a single format field is longer than 59 characters.
23 USING Yalue Too Big
equal to 1E+50.
24 USING Type Mismatch
(arithmetic or string).
25 RGET DIM Mismatch
than the string variable to which it is to be assigned.
26 RGET Type Mismatch
it 1s assigned are not of the same data type.
28 Invalid Structure
encountered without a corresponding IF or WHILE.
29 P/M % Out of Range
and missiles from 4-7,
30 P/M Graphics not Active
PMG. 1 or PMG. 2.
32 ENTER not TRAPped
End of ENTER. This is the error resulting from using a SET 9,1,
34 Can't NUM/RENUM
aexpl or aexp2 in a RENUM or NUM statement evaluated to zero.
35 Can't NUM/RENUM
40 String Type Mismatch

You attempted to use an svar as an savar, or visa versa,

BASIC XE Reference Manual Page E-23

Error Situations Appendix E
Numbers 65 - 147

Error Sereen Message and Further Description
65 EXTENDed Memory Not Avallable
You tried to LOAD =an EXTENDed program or use the
EXTEND statement on a computer that doesn't have extended memory.
100 Extensions not installed!
You used a command avialeble only if you hoot with the disk extensions,
See How to Boot BASIC XE iIn the introduction for a list of these
commands.
129 Channe! Already OPEN
You are trying to OPEN a CIO channel that is already OPEN,
130 No Device Fandler
ClO could not find the device you speeified in its device tabhle.
131 ¥rite Only
You are trying to read from a (10 channel that was OPENed for writing
only.
132 Bad Device Cmd
The 1/0 command you issued does nnt exist for the device. This can
happen € your X10 command or OPEN mode is wrong.
133 Channel Not OPEN
You trind to use a C10O channe! that you haven't yet OPENed.
135 Read Only
You are trylng to write to a CIC chanrel that was OPENed for reading
only.
136 End-Of-File
There is no more ctuta in the file you are reading.
138 Device Timenut
The device vou tried to acerss did not respomd within fts allotted time.
139 Device NAK
The device does not acknowledge.,
141 Screen Position
You tried to sceess a position not velid in the current graphics mode,
144 Device Done
Either the 1/0 operation you attempted didn't execute properly, or you
tried to write to a write~protected disk.
145 Invalid GR Mode
You attempted to use a graphics mode that doesn't exist.
147 No Memory for GR Mode
You don't have enough room for the graphics mode you specified.
Page E-4 BASIC XE Reference Manual

Appendix F Error Situations

Numbers 160 -~ 171

DOS does not recoghize the drive number you gave. This can happen if

NOS does not have any more buffers available on which to OPEN files,

You used an fllegsal disk file neme. See your DOS manual for legal file

Error Screen Message and Further Description
160 Invalid Drive #
you specified an illegal drive number or if the drive is not on.
181 Too Many OPEN Files
182 Disk Full
There is no room for more data on the disk.
165 Bad File Name
names,
167 File PROTECTed
You tried to write to a PROTECTed file.
189 DIRectory Full
The disk directory is full, so you can't create any new files.
170 File Not Found
DOS can't find the file you specified on the disk,
171 Bad Point Value

You attempted to POINT to a non-existent place on the disk, or you did
not OPEN the file in update mode (12).

BASIC XE Reference Manual Page F-§

Error Situations Appendix E
Space For Your Notes

Space For Your Notes

Page F-6 BASIC XE Reference Manual

Index !
avar

INDEX

Underlined page numbers refer to sections where the term is defined.

as bitwise OR 19-20, 21

in PRINT USING format 47, 49

with PROCEDURE parameters
7, 112-117

preceding I/0 channel 41-42
fn PRINT USING format 47-49

in variable assignment 16-17
as equal operator 20,21
> greater than operator 20,21
>= greater or equal operator 20,21
? as filespec character §7
A exponentiation operator 19, 21

$ ABS - absolute value 17, 103
after svar or savar 9, 12 adata - ATASClldata 5 ~
in hexadecimal constant 23 ADR - address of variable 70
in LYAR variable list 37 with BPUT and BGET 651
in PRINT USING format 47, 49 with USR calls 118

% and SET 15,aexp 36

<

as bitwise EOR 19-20, 21
in PRINT USING format 47, 49

as bitwise AND 19-20, 21
in PRINT USING format 47-49

as multiply operator 19, 21
in PRINT USING format 47-48
in filespec string 57

as plus operator 19-20, 21
in PRINT USING format 47-49

for string concatenation 17
spacing in 1/0 43
in PRINT USING format 47-49

as minus operator 19-20, 21
as unary minus 23

in PRINT USING format 47-50
in PRINT USING format 47-49

as divide operator 19, 21
in PRINT USING format 47, 50

spacing in 1/0 42

savar element 12

with SORTUP/SORTDONWNN 96, 98
less than operator 20,21

<=]ess or equal operator 20,21
<> not equal operator 20,21

Alphanumeric §, 95
AND - logicel AND operator 19-21
aop - srithmetic operator 5, 19
Arithmetic
Assignment 18
BCD Storage 23
Constant 24, 61, 63
Expressions 24
Floating Point 8, 23
Matrices 10-11
Operators 19-20
Variables 9
Arrays §
Arithmetic 10
String 7, 12
DIMensioning 13
Assignment 18
with RGET 53
as PROCEDURE parameters
113-117
Sorting 95-98
ASC - ATASCII value 24, 69
Assignment to variables 16-17
ATASCH 5, 29, 69, 75, 95, 98
ATN - Arctangent 107, 108
Automatic DIMensioning 12, 13
see also SET
avar - Arithmetic variable 5,9
assignment 16 -
in expressions 24
as LOCAL variable 14, 111,
112-113, 116

BASIC XE Reference Manual

Page I-1

BCD Index
EXTENDed mode

BCD DATA 99, 100
see Binary Coded Decimal and SET 5,aexp 35
BGET 51 Data 1/0 47
with ADR 70 Deferred Mode 4
with PMADR 89 DEG 107, 10R
Binary Coded Decimal 23, 52 DEL _2-,_‘25,ﬁ, 22
Binary operators 5, 19-20, 21 Derived Trigonometric Functions 108
Bitwise operators 19-20, 21 Device 5, 41
AND (&) 19-20 Storing programs to 29-30
OR (1) 19-20 OPENing and CLOSEing 42-43
FOR (%) 19-20 DIM 12
BLOAD 54 Arrays and Strings 10, 12, 13
BPUT 51 autoDIM size 36
with ADR 70 DIM size and RPUT/RGET 52-53
with PMADR 89 DIM within PROCEDURE 115
Brackets 3 DIR 57
BREAK key 4 Direct Mode 4
Trapping 35 Disk File 41
BSAVE 2, 54 poSs
BUMP B84, B8 Disk Operating System 2, 41,
BYE 39 51, 55, 57, 58
command 39
CALL 2, 110-111, 117 DPEEK 101,102
in TRACE mode 23 DPOKE 101, 102
Channel for 1/0 5, 41-42 DRAWNTO 80
CHRS$ 69 - setting the COLOR 79
CLOAD 29, 30 with fi11 81
CLOG - base 10 logarithm 103, 104
CLOSE - ELSE 64
an OPEN channel 43 END 31, 93, 109, 115
done by LPRINT 45 ENDIF ¢4
CLR - clear all variables 25, 37 ENDWRILE 60, 62
cname - CALLed name 5, 117 ENTER 29
COLOR 79 - to clear variable table 9
registers 77 in FAST mode 32
values 78 SET S,aexp 35
SETCOLOR relationship 79 SET 8,sexp 236
when PLOTting 20 ERASE 57, 58
when filling 81 ERR 67, 68
Concatenating Strings 17 Frror Handling 33, 67-R8
Conditional Error Message 35
Expression 20 Execute Mode 4
Statements 60, 63-64, 65 EXIT 2, 110-11], 116
Constant and LOCAL 14-15
see String Constant from a GOSUB 109
and Arithmetic Constant exp §, 20
CONT 31, 33 67-68 EXP - exponential 103, 104
COS - cosine 107 Expression 5, 23-24
CP 39 Arithmetic 24
CSAVE 29,30 String 24

EXTEND 4, 32, 35, 38
EXTENDed Mode 38, 51, 101

Page I-2 BASIC XE Reference Manual

Index

FAST
Numeric Constant

FAST 2, 31, 32

filespec 6, 41-42

Fill with X10 5€, 81

Fill character -
in PRINT USING 47-48

FIND 70

Floating Point 6, 22

FOR 26, 35-36, 59
POP within FOR loop 62

PRE 35,37

Functions
Arithmetic 103, 104, 105
Game Controller 73, 74
P/M Graphics 88, 89
String 69, 70, 71, 72
Trigonometric 107, 108

GET 45, 58
Glossary 5-7
GOSUB 109
ON ... GOSUB 65
RENUMbering 27
in FAST mode 32
leaving with POP 62
with LOCAL 14-15
EXITing a GOSUB 116
GOTO 27, 31-33, 61, 68
ON ... GOTO 65
GRAPRICS 78, 85
Graphics 31, 41, 51, 75, 78
Mode 75-76, 79

Hexadecimal Constant 23, 36, 72
HEXS 72 -
HITCLR 2, 88

HSTICK 74

IF 63-64

Indentation 26, 25, 36

INPUT 24, 35, 44, 52, 56
Custom Prompt 44
Detault Prompt 35, 44
Reprompt 44

INT 103

Integers 6, 19, 101-102
hexadecimal integers 23

INVERSE 50

LEFTS 71
LEN 16, 53, 69, 71
LET 17
lineno §, 29
see also Line Number

Line Number 4, 6
LIST range 26, 29
RENUMbering 27
autoNUMber 25
and FAST 32
in TRACE mode 33
error line €8
with GOTO & GOSUB 81, 109
with IF ... THEN 63
with ON 65
with TRAP 67
with RESTORE 100
LIST 9, 25, 26, 27, 29, 32, 36
Literal String
see String Literal
LOAD 29, 20, 32
LOCAL 2,9, 14
POPping LOCALsS 62
with GOSUB 109
implicit LOCALs 111-112
and EXIT 116
LOCATE 80
LOG - natural logarithm 304
Logical Operator 6, 17-19, 20
LOMEM 35,37
Loops 32, 35, 59, 60
lop §, 20, 21, 24
LPRINT 42, 45, 50
LVAR 2, 32, 35,37

Matrix Variable 8, 9-11
DIMensjoning 13
assigning 16
as PROCEDURE parameter 97
MIDS$ 71
MISSILE 84-86,87

Modes
Graphics 78, 79
QOperating 4

P/M Grephics 83
MOVE 2, 89, 102
mvar 6, 10, 24, 83, 112

NEW 9, 25
NEXT 59, 62
NORMAL 50
NOT 17,20, 21
NOTE 55
NUM 4, 25
Numeric Constant
see Arithmetic Constant

BASIC XE Reference Manual

Page I-3

ON
Statement

Index

ON 27,65
OPEN 41, 42, 45, 56

status of OPENed channel 5§

Operating Modes 4
Operators 5, 6,19
Arithmetic” 19-20
Bitwise 19-20
Logical 20
Precedence 21
OR 19, 20, 21

PADDLE 73

PEEK 89, 101, 102

PEN 73

pexp 6, 112, 114, 115, 118

PLOT 79, 80, 81

P/M Graphics 83-85, 90
Conventions 84
Fifth Player 36
Modes 85
Wraparound 86, 88

PMADR 85,89

PMCLR RS

PMCOLOR 77, 86

PMGRAPRICS 85

PMMOVE 83-84, 86, 88

pmnum 7, 84, 89

PMWIDTH 86, 87

pname 7, 112

POINT 55

POKE 89, 101, 102

POP 62, 109, 116

POSITION 80

PRINT 35, 43, 45, 46, 50, 76

PRINT USING 36, 46, 47

PROCEDURE 2,14,170-115,112

Program
Fditing 25-27
Entry 25-27, 29, 35
Execution 31-33
Formatting 26, 35, 36
Line 4,7
1/0 29-30

PROTECT 57

PTRIG 73

PUT 45

RAD 107

RANDOM 104

READ 99-100

relational operators 20, 21, 24
REM 27 -
RENAME 58

RENUM 2,27, 61

RESTORE 100

RETURN 15, 62, 65, 109, 110,
RGET 2, 44,53 -
RIGHTS 71

RND 104

RPUT 2, 44,52

RUN 30, 31, 32

rvar 7, 112, 114, 117

savar 7,12
DIMensioning 13
assigning 17
in expressions 24
sorting 95-98
as parameters 112-113, 116, 117
SAVE 25, 30, 32
SET
table 35-36
0 <BRFEAK> key trapping 35
1 -PRINT tabs 43
2 -INPUT prompt char 35
3 -FOR loops 59
4 ~INPUT reprompting 44
5 -LIST format 26-27
8 -print error messages 35
7 -P/M wraparound 86, 88
8 -PHA of USR arguments 118
9 -ENTER trapping 29
10-5th player enable 36
11-autoDIM 12-13
12-indentation of LIST 36
13-YAL w/ hex constant 72
14-USING format overflow 47
15-ADR w/ literal string 70
SETCOLOR 76-77, 78, 79-80, 84
sexp 7, 16, 17, 23, 24
SGN 7103
SIN 107
SORTDOWN 2, 95, 98
SORTUP 2, 95, 98
SOUND 93 -
SQR 103
Statement 7
Assignment 16-17
Conditional 63-65
DATA 99-100
Data I1/0 41-46, 47-58
Disk File 57-58
Graphics 75-81
Loops 59-62
P/M Graphics 83-91
Program Editing 25-27

Page I-4

BASIC XE Reference Manual

Index

Statement
X10

Statement (contd.)
Program Execution 31-33
Program 1/0 29-30
Sorting 95-98
Subroutine 109-118

STATUS 55

STEP 59

STICK 73

STOP 33, 68

STR$ 72

STRIG 74

String
Array see savar
Assignment 16-17
AutoDIMensioning 12, 13
AutoDIM Size 36
Concatenation 17
Constant 23, 44
Expressions 24
as filespec 42
Functions 69-72
as PROCEDURE name 110-112,
117
Substrings 16
Variables 12

svar 1,13
assigning 16-17
in expressions 24
as PROCEDURE parameters 112,

116-117
SYS 35,36

TAB
statement 46
function 46
tab stops 35, 43
THEN 63, 64
TO
with FOR 59
with SORT 97, 98
with CALL 111, 114-118, 117
with EXIT 116
TRACE 31,33
TRACEOFF 31,33
TRAP 31, 35-36, 44, 47, 67

UNPROTECT 57
USING
with PRINT 47
with CALL and PROC. 111-112,
117
with SORT 96, 98
USR 36, 70, 90, 118

VAL 36,72

var 7

Varfables 7, 9
Arithmetic 9
LOCAL variables 14-15
Matrix 10-11
Maximum number 9
Names 9
String 12
Typesof 9

VSTICK 74, 84, 86

WHILE 26, 36, 60, 62

XIO 55, 56, 81

BASIC XE Reference Manual

Page I-5

BASIC XE~ ‘
Just look at what you get for

one low sticker price:

BEST MILEAGE: With over 60,000 more bytes
Zor your programs, BASIC XE lets you use all the
memory you paid for.*

-
MORE HORSEPOWER: Run Atari BASIC p?o-
grams 2 to 6 times faster.* Even with its incredibiz
power, BASIC XE is compatible with Atari BASIC.

CLASSIC DESIGN: Show off the sleek struc- \
tured styie of your own programs when you use « !
BASIC XE statements like PROCEDURE,
IF..ELSE, and WHILE.. ENDWHILE. \
YREE ACCECSORIES: Get over $100 wort}l of :
Atari BASIC options FREE when you buy BALIC ﬂ
XE: complete Pluayer/Missile Graphics support,

string arrays, DOS access, SORT commands, read-
able listings...over 50 extras at no additional charge. -

T

	Title
	Preface
	Table of Contents
	Introduction
	Variables
	Operators
	Expressions
	Editing Your Program
	Storing and Retrieving Your Program
	Making Your Program Stop and Go
	Configuring the BASIC XE System
	Exiting BASIC XE
	Beginning Data Input/Output
	Advanced Data Input/Output
	Managing Disk Files
	Looping and Jumping Statements
	Conditional Statements
	Handling Errors
	Handling Strings
	Using the Game Controllers
	Graphics
	Player/Missile Graphics
	Sound
	Sorting Arrays
	Using Fixed Data in Your Program
	Accessing Memory Directly
	Arithmetic Functions
	Trigonmetric Functions
	BASIC and Machine Language Subroutines
	Appendices
	Index

