— - n - R
, =—————— Yy =M

BASK
TURBOCHARGER

By Jeff Bader

Atari, Atari 800 Computer, Atari 800XL Computer,
Atari 130XE Computer, Atari 1200XL Computer are
all trademarks of Atari Corp.

Copyright (C) 1987 by Alpha Systems, Macedonia,
Ohio 44056

Ist Printing July, 1987

All rights reserved. No part of this book may be
reproduced by any means without permission in
writing from Alpha Systems or the author.

Manufactured in the United States of America

10987 6 54 3

Acknowledgements

To those who made this book possible; Atari Corp,
Alpha Systems, and my parents.

BASIC TURBOCHARGER
TABLE OF CONTENTS

Introduction

Chapter

Chapter

Chapter

Chapter

1 A Little About BASIC and the
Routines in this Book

2 Moving Memory
(Programs 1 - 4)

Move Memory - Right, Move Memory -
Left, Move Memory & Reverse, Reverse
Memory

3 Fun With Text
(Programs 5 - 9)

Upper Case to Lower Case, Lower Case
to Upper Case, Normal to Inverse,
Inverse to Normal, Normal to
Inverse;Inverse to Normal

4 Fun With Memory
{Programs 10 - 19)

Fill Memory, Compare Two Memories,
Search Memory, Clearing Text Screens,
Fill Graphics O Screen, Fill Graphics
1 or 2 Screen, Altermating Screen
Fill Graphics 0, Alternating Screen
Fill Graphics 1, Altermating Screen
Fill Graphics 2, Line Fill

10

14

17

Chapter

Chapter

Chapter

5 Numeric Arrays
(Programs 20 - 28)

Starting Address, Array Number to
Decimal Equivalent, High Value
Search, Low Value Search, Sort in
Ascending Order, Sort in Descending
Order, Search for a Value, Sum Array,
Sum Array - Unlimited

€ Graphics & Antic Modes
(Programs 29 - 35)

Antic Mode 3, Antic Mode 4, Antic
Mode 5, Antic Mode C, Antic Mode E,
Graphics 8 Alternating Screen Fill,
Clear CGraphics 8, E, 9, 10 & 11
Screens

7 Disk Input/Output

Section I Loader/Saver Routines

(Programs 36 - 38)

Universal Loader/Saver, Sector
Loader/Saver, Character Set Loader

Section II Lloading and Saving Picture

Screens (Programs 39 - 46)

Magniprint L.oader/Saver, Micro-
Painter Loader/Saver, Graphics Master
Loader/Saver, Fun With Art Locader,
ComputerEyes Loader, Strip Poker
Picture Loader, Strip Poker Picture
Saver, Typesetter Icon Loader

Section III Koala Pad and Atari Touch

Tablet (Programs 47 - 51)

Load Horizontal Format Picture, Load
Vertical Format Picture, Universal
Loader, Universal Loader - Short
Form, Compressed Format Save

ii

23

29

34

Chapter

Chapter

8 Fun With Pictures
(Programs 52 - 56)

Picture Scrolling, Inverse Picture,
Epson/Gemini Picture Printer, NEC/
C.Itol Picture Printer, Picture Fade
In/0ut

9 Display List Interrupt Routines
(Programs 57 - 70)

Two Color Screen, Three Color Screen,
Four Color Screei, Multi-Color
Screen, Graphics 1 & 2 - 2 Color
Screen, Graphics 1 & 2 - 3 Color
Screen, Graphics 1 & 2 - 4 Color
Screen, Graphics 1 & 2 - Multi-Color
Screen, Graphics 8 & E - Multi-Color
Screen, Two Character Sets, Insert
Alternate Character Set, Flip Text,
Insert Flipped Text, Clear DLI
Routines

Chapter 10 Joystick Routines

(Programs 71 - 77)

Joystick 0 or 1 - 5 Position Read,
Joystick O or 1 - 9 Position Read,
Any Joystick - 5 Position Read, Any

Joystick - 9 Position Read, Joystick
0 & L - 9 Position Read, Joytick 2 &
3 -9 Position Read, Four Joystick

Read - 9 Positions

Chapter 11 Player/Missile Graphics

(Programs 78 - 86)

P/M in BASIC, Vertical Movement, 2 -
Line Vertical Movement, P/M Address
Setup, Player Setup, Vertical

Movement With Wrap Around, Horizontal
Movement With Wrap Around, Missile

Mover, Clear Player/Missiles

iii

53

59

69

76

Chapter 12 Player/Missiles in Vertical Blank 97
Interrupt (Programs 87 - 92)

One Player, Two Players, One Player
With Wrap Around, One Player - 2 Line
Vertical Movement, Two Player With
Wrap Arourd, Clear P/M in VBI

Chapter 13 Miscellaneocus 108
(Programs 95 - 105)
Random Non~Repeating Numbers, Atari
Rainbow, Color Static, Two Number
Comparisons, Cursor Blink, Low/High
Byte of a Number, PEEK a Two Byte
Register, POKE a Two Byte Register,
Time 1It, Delay Timer, Disable/fble

BREAK Key, Sound Off, Code/Decode a
Line of Text

Chapter 14 Number System Conversions 116
(Programs 106 - 111)

Decimal to Binary, Decimal to
Hexidecimal, Hexidecimal to Decimal,
Hexidecimal to Binary, Binary to
Decimal, Binary to Hexidecimal

Chapter 15 Bit Flipping, Reading, Clearing,
and Setting (Programs 112 - 119) 120

Bit Fflip - Number in a Memory
Location, Bit Flip - Direct Number
Input, Bit Set - Number in a Memory
Location, Bit Set - Direct Number
Input, Bit Clear - Number in a Memory
Location, Bit Clear - Direct Number
Input, Bit Read - Number in a Memory

Location, Bit Read - Direct Number
Input

Chapter 16 Text on a Graphics 8 Screen

124
(Program 120)

iv

Appendix A ATASCII and Display Character Code 126
Values

Appendix B Atari Text & Graphics Modes 128

INTRODUCTION

Welcome to the exciting world of Atari machine language.
Machine language is the fastest and most memory efficient
language available. Many of the powerful features of the
Atari 8-bit computers can only be accessed through the use of
machine language.

Bu* BASIC programmers have nc fcar! You don'h necd to
learn any machine language or Assembly Language (Assembly is
the language used to write machine language) to wuse the
programs in this book. All the more than 160 machine language
routines presented in this book are designed to be easily
included and executed from a BASIC program. Each routine is
included in a BASIC demonstration program that 1is fully

documented in the book and included on the disk. No typing
required!

Now you can load and save picture screens from the
popular picture creation programs on the market including
Micro-Painter and compressed format Koala and Atari Touch
Tablet pictures. You can do scrolling, array sorting, hex,
binary, and decimal numerical conversions, joystick reading,
Player/Missiles, multi-color screens, string searches,

picture printing, and many more operations using machine
language.

To the beginning or even experienced Assembly Language
programmer this book will prove invaluable. With the Assembly
Source Code also available on disk by separate purchase, the
machine routines in this book will provide a solid and varied
foundation of working programs to build upon.

But now no matter what level of programmer you are you
can write 'turbocharged' programs! So let's get started!

Chapter 1
A Littie About BASIC
and
The Routines in this book

Reading the following material will be of great help in
understanding how to properly execute and use the machine
routines in this book in your own BASIC programs. If you have
any problems, the answers will most likely be found in this
section.

Although no programming skills are required to run the
sample BASIC programs you'll need at least a beginnmers level
of BASIC programming knowledge to understand and use the
machine routines in your own programs. We recommend your
first steps into BASIC programmning come from Atari's 'Owners
Manual' and your next steps from the book ‘'Your Atari
Computer' by Osborne/McGraw-Hill.

A LITTLE ABOUT BASIC

The 'USR' Statement

Machine language code is a series of numbers stored in
the computer memory. Each number stands for an instruction
that the 6502 central processing unit of the Atari 8-bit
computer can understand. The BASIC 'USR' command will run the

machine code from a BASIC program. All we need to know is
where in the computer memory the machine language code
resides.

The USR call has the general form:

X=USR(Address, P1, P2, ...)

Where:

Address The decimal address of the machine code
in the computer memory.

P1,P2,... Numbers, called parameters, that are to be
passed from the BASIC program to the machine
program. None or several parameters may be
required by the machine program. A parameter
must be a positive decimal integer from O to
65,535.

X The Return Variable. Any legal Atari
variable name may be used. The Return
Variable will always contain a number from O
to 65,535 after the machine code has been
executed. This number is meaningless unless
the machine program was designed to return a
useful number back to the BASIC program.

The USR statement says to the BASIC program: "Go to the
'Address' indicated and you will find the beginning of a
machine language program. Execute the program and use the
numbers P1,P2,... when requested by the machine program. Wnen
the machine routine is completed go back to the BASIC
program, assign a value (0-65535) to the variable 'X' as
instructed by the machine program, and continue processing."

The parameters passed to the machine prcgram can be any
legal variable name, number, or equation. For example, the
following two USR calls are identical.

10 A=12:D=5
20 B=3*A+D
30 X=USR(Address,A,B)

or

10 A=12:D=5
20 X=USR(Address,12,3*A+D)

The location (Address) of the machine code in the
computer memory must be known either directly or indirectly.

Three methods are commonly used.

1) Direct Memory Access.

In this method the machine code is directly placed at a
known and unchangeable location in memory. The BASIC program
will load the machine code from either the disk, DATA
statements, or a string and place it Iinto the specified
memorTy .

LOAD the file 'DEMO' from the front of the program disk
and study the first program, DEMOl, in lines 10 to 70. The
actual machine code is contained in the DATA statements in
lines 40 through 60. Line 10 reads the machine code from the
DATA statements and places (POKE's) them into the computer
memory starting at memory location 1536, the start of Page 6.
Line 10 also clears the screen. Page 6 is the one of the most
popular places to send machine code. This area of 256 bytes
of memory was set aside by the by the designers of the Atari
computers for use by the programmer. It is, normally, not
used by the computer and is a safe place to put data, machine
programs, tables, etc. This area of memory starts at decimal
address 1536 and extends to 1791.

Line 20 is the USR call that runs the machine program
which places the Alphabet on the screen. The 'Address’
specified in this USR call is 1536 where the machine program
was just placed. Two parameters are required. The first
parameter is the line number (0-23 for a GRAPHICS O screen)
on which to locate the Alphabet. The second parameter moves
the string horizontally on the screen. RUN the program and
try different values for the two parameters.

@ REM DEMO. 1

18 FOR I=8 TO S57:READ A:POKE 153&+1,A:
NEXT 1:? CHR$(125)

28 X=USR(1536,9,7)

30 END

48 DATA 104,145,89,133,204,165,88,133,
203,104,164,178,240, 14, 165,203,24, 105,
4@ ,144,2,230,204,202,208

58 DATA 246,133,203,24,104,104,101,203
,144,2,230,204, 133,203, 162,24,168,0,16
9,33, 133,285, 165,205, 145

40 DATA 2083,236,205,200,202,208,246,94
78 END

Many of you have, no doubt, run into this kind of machine
language programming when typing in programs from magazines.
All those numbers in the DATA statements are the actual
machine language code. Using DATA statements is very popular
because it is a fairly safe way to type in a program from a
listing without making mistakes. However, READing all those
DATA numbers into memory in your BASIC program does take time
and is memory wasteful. The next two methods of accessing
machine code speeds up the process and saves memory space.

2) String Addressing

To speed up the process of getting to our machine code
the numbers in the DATA statements can be placed into an
ATARI string and the address of the string used in the USR
statement. This is exactly what the second program, DEMOD2, in
the file °'DEMO' does. The string P$ contsins the character
representation for all those numbers (ATASCII) in the DATA
statements from the previous program. This conversion process
can be accomplished by using the tables in your Atari's
'OWNER'S MANUAL', the table in the Appendix, or by using the
following BASIC statement.

? CHR$(NUMBER)

There are some probiems encountered when displaying
string characters on the screen. First, some characters
(27-31, 123-127, 187-191, and 251-255) can not be printed to
the screen because they perform screen editing functions. To
allow them to be printed to the screen POKE 766,1 (Default =
0) which deactivates their screen editing functions.

The second problem concerns the characters for numbers 34
(Quotation mark) and 155 (End-of-Line). The quotation mark
can not be placed inside a string because it would signal the
end of the string. The End-of-Line character has no
character. However, these numbers can be placed indirectly
into the string by use of the CHR$ command. For example, the
string is first set up with any character temporarily holding
the place of these two characters wherever encountered. Once
completed, the two problem characters are placed into the
string indirectly by use of the BASIC 'CHR$' command.

5

P$(X,X)=CHR$(34) or
P$(X,X)=CHR$(155)

X stands for the lecation within the string where these
characters are to be placed. Programs numper 54 and 55 use
this technique. Now that the machine code 1is properly
placed into a string the address of the string can be found
by the BASIC 'ADR' command. The computer will find the
location of the string and protect it from being stepped on
by the rest of the BASIC program.

Now back to our DEMOZ program. Line 100 does the
necessary DIMension of the string, P$, and clears the screen.
Line 120 is the USR call to the address of the string, P$,
and uses the same two parameters as the first program.
Notice, the program executes immediately when RUN because
there is no time required to fill a memory area with all
those numbers in the DATA statements.

@ REM DEMO.Z2
108 DIM P$(58):? CHR$(125
118 P$="h@Y1MK<Tlh hEfS_ i (L BIMGIENN-h

hellls 1KY “Evl' NAMIFICIHIIRINe
128 X=USR(ADR(P%$) ,9,7)
138 END

3)Direct Access

The third and most memory efficient way to run a machine
routine is to access the characters directly. If all the
characters and the rest of the USR call can be placed on one
logical line (approximately three screen lines) then the
actual characters can be substituted for the address of the
string (POKE 82,0 will give you more line space by moving the
left margin from 2 to Q).

The third and last program on the file 'DEMO' shows this
technigue which again gives the same results as the other two
programs.

150 REM DEMO.3

168 DIM P$(S58) :? CHR$(125)

178 X=USR(ADR(" h{yTIMOT1Ah hEIS M3 i (L5
REEEIA-H h ol EARTYEN Yl ' NERENICISIERINe "
9,7

Whenever possible, this book wuses this method of calling
a machine program. If you would like to convert all those
funny looking characters to their ATASCII decimal value you
can again use the table in the Appendix or use the table in
Atari's 'Owners Manual'.

In order to wuse methods 2 & 3 the machine code must be
written in what is called relocatable code. What is
relocatable code? It simply means that the machine language
routine can be placed anywhere in memory and it will function
properly. Non-relocatable code must be loaded into an exact
memory location regardless of what program or computer is
being used. It is easier and more memory efficient to write a

machine program in non-relocatable code but only method 1 can
be used to access the code. All the machine language routines

in this book were written using relocatable code.

Strings

A special precaution must be understood about the use of
Atari strings which will save you countless debugging time.
This precaution concerns the finding of the address of the
string.

Every string must first be DIMensioned to the maximum
length that string will see in your program. The location in
the computer memory, however, is not set until the string has
been assigned its first values. Consequently, if you try to
find the address of the string before it's assigned, with the
BASIC 'ADR' command, the wrong location may result.
Therefore, if the string bhas not been assigned values at
least once before you need it then use the following BASIC
statement to set and clear the string.

P$=" ":PH(X)=P$:P$(2)=P$

In this example 'X' stands for the number in the DIM

statement for the string, the maximum length of the string.

This statement is used throughout this book. Notice that this
lire also clears the string. It can also be used to fill a
string with any character of choice by replacing the blank
between the guotation marks with the desired character.

PEEKing & POKEing

If you understand PEEKs and POKEs then skip to the next
section. These two BASIC commands are used throughout this
book and to the beginning BASIC programmer their use may be a
mystery. In reality, they are really very simple commands.

A PEEK just means to look at the decimal number in one
memory register. A POKE places a number in one memory
register. These numbers can be any integer value from O to
255. When vyou encounter these commands in the programs in
this book they will be explained.

Since a memory register can only hold a number up to 255
then how can the computer address its full memory potential
of 65535 bytes? It does this by breaking up these higher
numbers into two parts and placing them into consecutive
memory locations. The Most Significant Byte (MSB) of the
original number is the integer result of the number divided
by 256. The Least Significant Byte (LSB) is the original
number minus the MSB. The LSB is always placed into the first
memory location and the MSB byte is placed in the following
location. The computer knows to multiply the MSB by 256 and
add the LSB to get the original number. You will run into
these two byte registers often in this book when dealing with

finding the address of the start of the screen memory and the
screen's Display List.

THE ROUTINES IN THIS BOOK

To run the various sample BASIC programs in this book,
first turn on vyour disk drive and insert side 1 of the
program disk. Side 1 contains the first 56 programs, DOS, the
DEMO program, and various sample character sets and pictures.
Side 2 contains programs 57 through 120.

Turn on your computer, with BASIC installed, and wait for
the familiar 'READY' prompt. Most of the programs on the disk
are SAVEd to disk, requiring the LOAD or RUN command to
operate. A few programs are LISTed to the disk (read their
explanations) and require the ENTER command. All the programs
have the general filename format of

PROGRAM. XXX

where XXX is the desired program number, 0Ol to 120.

There is no room on the disk to save your own programs.
All filename space is used. Therefore, there is no need to
write to our disk. The disk is not copy protected, so you
should make a backup copy for safe storage. We request you
respect our decision of not protecting the disk for your
convenience by making copies only for your backup purposes.
The large amount of work and expense that goes into producing
a low cost high quality product for the Atari computers can
only be justified by making a reasonable return.

Feel free to wuse any of these rcutines in your own
programs whether for fun or for profit. You have our
permission to use them in your own commercial programs, with
out any license fees. We do ask, though,that you mention this
book in your acknowledgments.

When you use these routines, be careful when renumbering
them. They may not work if they are renumbered improperly.

Chapter 2
Moving Memory

Moving memory from one ares to another within the
computer is one of the best uses for machine language. Even
very large blocks of memory can be moved thousands cf times
faster than in BASIC. You can use these routines for copying
graphics screens to other areas of memory, placing string
data into memory (and vice versa), and for all types of
memory moving.

The following program contains two memory moving machine
routines. The first one in line 30 moves up to a maximum of
256 (characters) bytes of memory. The second routine in line
60 moves any amount of memory. These routines move memory
starting from the first byte to the last byte. The
destination area may overlap the source area, except for the
last location. The source data is not erased but copied to
the destination area. The sample program below shows the
moving of the data in string S$ to Page 6 starting at
location 1536. Line 40 prints out the data in the new
location to prove the move took place. Three parameters are
required to be passed into the machine program.

Pl Starting source address.

P2 Starting destination address.

P3 Length of data to move.

@ REM PROGRAM.0O#1

16 DIM S$7185)

28 S$="MOVE THIS STRING INTO PAGE SIX

STARTING AT ADDRESS 153&. MOUVING MEMO

RY BY MACHINE LANGUAGE 1S WERY FAST."

28 X=USR(ADR(" hhiEh MAhTIRIhNEH hEEE eI RINy

Wie") ,ADR(SE)Y , 1534 ,LEN(S$)) :REM ¥
MAXIMUM LENGTH IS 254,

4@ FOR I=06 TO LEN(S$)-1:? CHR$(PEEK(1S

3&6+10) 1 :NEXT 1

58 END

68 X=USR(ADRC " hhih fIHh S1RH THH MEh SOl etasrs

NGRS IIIN TR NBUNTEIER e > P 1 ,P2,P3)

tREM USE TO MOVE ANY LENGTH.

10

It may be necessary to move the source memory to another
area of memory (higher) that partially overlaps the source
area. In this case we need to move the source memory starting
from it's last location and work down to it's beginning. The
machine code to accomplish this move is a little more
involved and slower (Of course, slower in machine language is
still almost to fast to measure!) than the PROGRAM.00l move
routines. The memory areas can overlap all but the first

location. .
Line 10 places the alphabet intoc Page 6 memory starting

at location 1536. The machine routine in line 20 (maximum
move is 256) then shifts the data up in memory 10 bytes
starting at 1546. Line 30 checks to make sure the move took
place. The same parameters are used as in PROGRAM.0O1.

Pl Starting source address.
P2 Starting destinmation address.
P3 Length of data to move.

2 REM PROGRAM.802 :

16 FOR I=0 TO 25:POKE 1536+1,1+&65:NEXT
I

286 X=USR(ADR(" hhiNshIdh RH RN H 7 s EEes

Be")> ,1536,1546,28) :REM MAXIMUM LENGTH

1S 25¢.
38 FOR I=8 TO 25:7 CHR®(PEEK(1544+1)) ;
tNEXT 1
4@ END

50 X=USR(ADRC " hh18hJ13h IR R T c I
elC1Zh N3 7 HACAEYERAE NN NIRRT e
"),P1,P2,P3) :REM USE FOR ANY LENGTH.

11

This program is like PROGRAM.Q01 except it sends the
memory to the new location in reverse order. The sample
program shows the reversing of memory between two strings.
Line 30 shows the very important step of setting and
establishing the length of the destination string, B$(see
Introduction Section) since it is the first time this string
has been encountered.

Pl Starting source address.
P2 Starting destination address.
P3 Length of data to move.

To send and reverse memory over 256 bytes in length use
the machine routine in line 60 of PROGRAM.001 then use line
70 of PROGRAM.(004.

8 REM PROGRAM.B83

18 DIM A%(24) ,B$(26)

20 As="ABCDEFGHI JKLMNOPQRRSTUVINXYZ"

30 B$=" ":B$(26)=B%:B%(2)=Bs%

48 X=USR(ADR (" hhiulhTah AWHAEH h ISR, BEI
(DAL DIEEIA=N I0Re " > ,ADR(AS$) ,ADR(BS) ,
LENC(A%$)) :REM MAXIMUM LENGTH IS 2356.

Se ? B$

The following program reverses the order of the contents
of the memory range specified. Line 30 contains the routine
to reverse up to 256 bytes of memory and lines 70 and 80
contain the routines to reverse any length.

The sample program demonstrates the reversing of the

alphabet in the string A$. Two parameters are required.

Pl Starting source address.
P2 Length of data to move.

12

8 REM PROGRAM.884

18 DIM A$(26)

20 A%$="ABCDEFGHI JKLMNOPQRSTUVWXYZ"

30 X=USRC(ADRC" hh18h1h h L) MR, BELEI

SHEDBIE SONMEEITINIIONT o« DEID RO ") ,ADR(C

A$) ,LENCA$)) :REM MAXIMUM LENGTH 1S 256

40 9 A%

S8 END

680 REM ¥¥USE THE FOLLOWING ROUTINE TO
REVERSE MEMORY OF ANY LENGTH. ¥¥

78 P$="hh{18hI3h Mdh - OG-0 KT

i el-F i Ml e AT RS IRE I RN

sREr 30) TR ARG TGRS iats L I S S

80 X=USR(ADR(P%)> ,P1,P2)

13

Chapter 3
Fun With Text

PROGRAM.005 Text: Upper Case To Lower Case

The following program will change UPPER case letters to
lower case. Simply specify the starting address of the
string or area of memory to change and the length of that
memory to change. The routine in line 30 is for a maximum
length of 256 and the routine in line 60 is for any length.
Two parameters are required.

Pl Starting address of memory to change.
P2 Length.

® REM PROGRAM.885

10 DIM A%$(28)

26 A$="CHANGE UPPER TO LOWER CASE"

30 X—USR(ADR(hhilShEh hIERVERIN(i) JELH -
GIONe "> ,ADR(AS) ,LENC(A%$)) :REM MAX]

MUM LENGTH IS 256.

48 ? A%

S8 END

68 X=USR(ADRC"hhiiSh Eah N TAEVEENS[M J8°0;

i TS RN AR BeliN") ,P1,P2) :R

EM USE FOR ANY LENGTH.

PROGRAM.006 Text: Lower Case Jo Upper Case

The following program does just the opposite of
PROGRAM.005, it changes lower case letters to UPPER case. It
uses the same two parameters as PROGRAM.(005

Pl Starting address of memory to change.
P2 Length.

14

@ REM PROGRAM.QGBS

16 DIM A%(24)

280 At="lower case to upper case"

38 X=USR(ADR("hh18hIah hHEvEINE .0t LH I
razigsisEde V) ,ADR(A®) ,LEN(AS))

48 ? A%

5@ END

60 X=USR(ADR (" hh18hTahIRh A EI 400 #4a0.

18 RXE_SHIRAIE SR ISeLNR") ,P1,P2) :RE

M USE FOR ANY LENGTH.

PROGRAM.Q07 Text: Normal To Inverse

This program changes normal text characters to inverse
text characters in the memory range specified. The address
and length of the memory to change are the required
parameters.

Pl Starting address of memory to change.
P2 Length.

2 REM PROGRAM.B0@7
10 DIM A$(22)
20 A$="NORMAL TO INVERSE TEXT"

30 X=USR(ADR(" hhiIhEah hCEHN STt "
> yADR(AS) ,LENC(AS))

40 ? A%

S@ END

68 X=USR(ADR(" hhiiShNIhABHIENEERE 1Y LI

SELSEINLTR SN JTINRGEe ") ,P1,P2) :REM
USE FOR ANY LENGTH.

PROGRAM.008 Text: Inverse To Normal

The next program does just the opposite of PROGRAM.0Q07.
It changes inverse text to normal text in the memory range
specified. The address and length of the memory to change are
again the required parameters.

Pl Starting address of memory to change.
P2 Length.

15

8 REM PROGRAM.QBS8

18 DIM A%(22>

20 At="MENE u EMZEEAS e

380 X=USR(ADR(" hhINh 4N hEERvELY) gt HUH D
) ,ADR(A$) ,LEN(AS$))

49 ? A%

S0 END

68 X—USR(ADR(* h h 186 ¥ ARH R YERE Y M

) PIDERIEMe "> ,P1,P2) :REM
USE FOR ANY LENGTH.

PROGRAM.009 Text: Normal To Inverse; Inverse To Normal

The following program is a combination of PROGRAM.007 and
PROGRAM.008. It changes normal text to inverse text and vice
versa at the same time. Again, it uses the same two
parameters as the last two programs.

Pl Starting address of memory to change.
P2 Length.

@ REM PROGRAM.BBY?

16 DIM A$(49)

20 A$="NORMAL TEXT CHANGED TONMEN=

HEANDERI RN | ¢

38 X=USRC(ADR(" hhiShah hCERVIIEDY) « JT2RY

e’ PMM") ,ADRC(AS) ,LENC(AS))

48 ? As

S8 END

68 X=USR(ADR(" hh18h T Nikih N Ry
* JTIGEFEIMIN SRR JTINEMERe) dAm) b

ME") ,P1,P2) tREM USE FOR ANY LENGTH.

16

Chapter 4
Fun With Memory

This program fills a memory area with your choice of a
number from O to 255. If a string is filled and then printed
to the screen the ATASCII character of that number will be
shown. If you fill a text screen (GRAPHICS O0,l,or 2) memory
area with a number the Display Character will be shown (See
Appendix). Before filling any strings make sure they are set
in memory, line 20, if encountered for the first time (See
Introduction).

The sample program shows the filling of a string, AS$,
with the number 42 which iIs the ATASCII value for the asterik
character. Three parameters are required.

Pl Starting address of memory to fill.
P2 Length.
P3 Number to place into memory.

8 REM PROGRAM.0 18

18 DIM A$(108)

28 AS=" ":A$(1080)=A%:A%$(2) =A%

36 X=USR(ADR(" hhilhBh hiih hlerMaRtle ") ,

ADR(AS$) ,LEN(AS) ,42) :REM MAXIMUM LENGTH
IS 256.

48 ? As

56 END

68 X=USR(ADRC " hhT8h "13h Th THh hEEEP Weraas

rd3ge") ,P1,P2,P3) :REM X

USE FOR ANY LENGTH OF MEMORY.

This program compares two areas of memory and puts a zero
in the Return Variable if the two memory areas are
equivalent. If the two memory areas are not equivalent then
the Return Variable will contain the location within the
memory areas where the first difference occurs.

The sample program shows two strings which are made equal
except for the 77th character (lines 20 & 30). The machine

17

routine works for any length of memory. Three parameters are
required.

Pl Starting address of one memory area.
P2 Starting address of other memory area.
F3 Length of memory to search through.

8 REM PROGRAM.B 1§

18 DIM A$(1680) ,B$(100>

28 A$="X":A$(100)=A%$:A$(2) =A%

30 B$=A%:BE(77)="Y"

40 LOC=USR(ADR(" hhIlEh I3 NRh NYh h "D v}

I IR RNEI S 13 /TR AN TN (A Ea viiN e ol
ElilhEe ") ,ADR(A%) ,ADR(B$) ,LEN(AS))
Se ? LoOC

Have you ever wanted to search through a string or memory
area for a certain word or number? This next program does
Jjust that. The Return Variable will contain the first
location within the memory searched where the desired
information is found. If the Return Variable contains a zero
then the desired information was not found. This routine is
good for any length of memory. You could search disk data by
first bringing up a file (PROGRAM.036) or a Sector of data
(PROGRAM.037) before using this routine. It is important to
place the exact information, in character code, you are
searching for in the first parameter string, otherwise, it
may not be found or the incorrect information may be found.

The sample program below will return a value of 25 in the
Return Variable 'LOC' (standing for Location) in line 60. The
word 'GOOD' starts at the 25th memory position in the string
A$. Four parameters are required.

Pl Starting address of the string holding the
characters to be found.
P2 Number of characters to be found.

P3 Starting address of the main memory to search
through.

P4 Length of the main memory in P3.

18

® REM PROGRAM.B812

186 DIM A$(72) ,FIND$(4) ,P$(93)

20 A$="NOW IS THE TIME FOR ALL GOOD ME
N TO COME TO THE AID OF THEIR COUNTRY"
38 FIND#$="GOOD"

46 P$="hhMahh h ' Dh "A8h N3 RH SERCIEN 13383
N ERE Kl v IR v NG /s me AN EInialE
EANNARR Jald KIHLBRVRCWe "

58 LOC=USR(ADR(P$) ,ADR(FIND%) ,LEN(FIND
%) JADR(A%) ,LENC(AS))

éa ? LocC

PROGRAM.(013 Clearing Text Screens

The three short machine routines below will clear and
blank the screen in the three text modes, GRAPHICS 0, 1, and
2. No parameters are required. Line 10 will clear a GRAPHICS
0 screen. To clear a GRAPHICS 1 screen, wuse line 30, for a
GRAPHICS 2 screen, use line 40.

® REM PROGRAM.813

18 X=USR(ADR (" hilly NI "INE v MNsT TSI

P 1%e ")) :REM CLEAR GRAPHICS @.

28 GOTO 28

368 X=USR(ADR(" h@y SERE<T1NN DBl HIHzIZ TImi

EYrRxiigme")) :REM USE TO CLEAR &
GRAPHICS 1 SCREEN.

48 X=USR(ADR (" hilly 1NN} INIIY Ficd 1g%e ")

:REM USE TO CLEAR A GRAPHICS 2 SCREEN.

PROGRAM.014 Fill Graphics O Screen

The routine in line 10 fills a GRAPHICS O screen with a
single character. The only parameter required is the Display
19

Number for the character to fill the screen (See Appendix).

Line 20 just prevents the return of our program to the screen
ecitor, so the cursor and 'READY' prompt won't appear.

Pl Display number of character to fill screen.

6 REM PROGRAM.B14

18 X=USR(ADR (" hilfy JEROTEBh h vl MINEE 30

YR e ") ,3) :REM THE NUMBER ‘3’ IS
THE CODE FOR “#‘ IN DISPLAY MEMORY.

26 GOTO 2ze

To fill a GRAPHICS 1 tex*t screen with a character, use the
machine routine in line 20. For a GRAPHICS 2 text screen, use
the routine in line 40. Unlike the GRAPHICS O screen, all the
text characters are not readily available. Register 756
controls which half of the characters are available for use.
The default value of memory 756 contains 224 and allows the use
of the upper case, numbers, and punctuation characters. POKEing
756 with 226 allows lower case and graphic characters.

Pl Display number of character to fill screen.

8 REM PROGRAM.615

18 GRAPHICS 1+16

28 X=USRCADRC " bl TI T bl vl HEMGIE Samg
EEY RMEIdNe " , 3

38 GOTO 3@

48 X=LISR{ADRC " iy UM L h N M IqTe) |
P1) :REM FOR & GRAPHICS 2 SCREEN.

PROGRAM.016 Alternating Screen Fill: Graphics O

If you want to fill a GRAPHICS O screen with two
alternating characters, use this machine language routine.
Again, make sure you use the Display value of the characters

20

you want. The two characters to place on the screen are the
two required parameters.

Pl Display number of the first character on the screen.
P2 Display number of the second character on the screen.

@ REM PROGRAM.B16

18 X=USR(ADR (" hiilY JTRI>TEh htih h IR Vil Sl
(2l RS NRINIEGEAN S "D TINEI TS SR
FREIe ") , 10,1 1)

28 GOTO Zze

PROGRAM.O17 Alternating Screen Fill: Graphics 1

Use this routine to put two alternating characters on a
GRAPHICS 1 screen. Refer to PROGRAM.015 fer further
instructions on selecting the characters. The parameters are
the same as for PROGRAM.(16.

8 REM PROGRAM.@17

18 GRAPHICS 1+148

20 X=USRC(ADRC" hilly RBEC JRSH b UEH IR vl HGT
[slEh RS MRS IS "WONEY XL TS AR
rradslisRe > , 10,11

3@ GOTO 306

PROGRAM.018 Alternating Screen Fill: Graphics 2

To put two alternating characters on a GRAPHICS 2 screen,
use this routine. Refer to PROGRAM.0QL15 for further
instructions on selecting the proper set of characters to
show on the screen. The parameters are the same as for
PROGRAM. 016.

® REM PROGRAM.0 18

18 GRAPHICS 2+1¢

20 X=USR(ADR " hify I TESh hEth h 1IN W sl
E ARV R IINe") , 10,1 1)

30 GOTO 30

21

PROGRAM.019 Line Fill

The next program really contains three machine routines
in one. It will fill a GRAPHICS O, 1, or 2 screen with a
single character between two specified lines. The variable
'M' in the program below is & multiplying factor, and also a
parameter that adjusts the routine for the graphics mode
being used. For a GRAPHICS O screen M=40 and the lines on the
screen range from 0 to 23. For a GRAPHICS 1 screen M=20 and
the lines also range from O to 23. For the GRAPHICS 2 screen
M=20 and lines range from O to 1ll.

Lires 10 to 50 asks you for the GRAPHICS mode and sets up
the correct value of 'M'. Four parameters are required.

Pl
P2
P3
P4

Starting line number (*M)
Ending line number (*M)

The. multipyling factor, M.
The character to Display.

8 REM PROGRAM.B 19
106 ? "KR":? 1?7 "WHAT
32> "1 1 INPUT CHOICE

GRAPHICS MODE (0,1

20 IF CHOICE=8 THEN
KE 7S2,1:? :60TO &0
38 IF CHOICE=1 THEN
:60TO 4@

40 IF CHOICE=2 THEN
:GOTO 640

o8 GOTO 1@

GRAPHICS @:M=48:P0
GRAPHICS 1+14:M=26

GRAPHICS 2+16:M=28

68 X=USR(ADR("@hh e Y IBH e XX E18h S
BENhAEh h4e il GRSEMCHED 1R hEEER Bl
IR ED MYMIAGEFIe ") | 5XM, PXM M, 4)

786 GOTO 70
8e

INCLUSIVE,
‘47 18 ‘%7,

22

REM LINE &8 FILLS LINES 5 TO ¢
THE DISPLAY VALUE OF

Chapter 5
Numeric Arrays

Arrays are a systematic way of naming a large number of
variables. Instead of giving pieces of data different
variable names, all the pieces are grouped together and given
one variable name. The individual pieces of data are
identified by a position indicator, called an index. Remember
to start with O as your first index counter, and use only
positive integer values in the array, or the routines in this
book won't work correctly.

Before using a numeric array you must specify the maximum
length of the array in & DIM statement, Jjust 1like in
DIMensioning an ATARI string. ATARI BASIC can have one or two
indexes which represent a one or two dimensional array. The

programs and machine routines in this book are all for a ane
dimension array.

To find the starting location of a string in ATARI BASIC
the ADR(string$) function 1is used. However, there is no
identical statement for finding the starting address of a
numeric array and a series of complicated steps must be
performed. Once this address is found, the data can be
manipulated. There are further complications to wusing the
data in numeric arrays, which we'll discuss in PROGRAM.(022.

PROGRAM.(020 Starting Address

The next BASIC program and machine routine finds the
starting address of & numeric array, and you'll need it to
run the other programs in this section. Consequently, to run
the other programs first 'LOAD' this program and then 'ENTER'
the other programs into this one.

The numeric array variable name in this example is called
'ABC'. It is first DIMensicned in line 10 along with the
string variable name 'NAME$' which, is set equal to the array
name 'ABC' in line 30. Line 20 fills our array with 20 random
numbers. Line 30 then places the ATASCII code value of each
character of the array variable name 'ABC' into PAGE 6 (must
start at 1536). This 1is done so the machine language routine
can use direct addressing of the array name to check for its

23

location in the variable table.

The actual machine language rcutine, P$, is called in
line 60. The Return Variable, ADDRESS, will contain the
starting address of the numeric array 'ABC'. The single
parameter in the USR call is the length of the name of the
array.

Pl The length of the name used for the numeric array.

@ REM PROGRAM.BZ@

16 DIM P$(183) ,ABC(206> ,NAME$ (3

20 FOR I=8 TO 19:ABCC(I)=INT(186XRND(®)
) INEXT 1

38 NAME$="ABC" :FOR I=1 TO LEN(NAME®$) :P
OKE 1535+1 ,ASC(NAME®(I , 1)) :NEXT I

48 P (1) ="hhhHENEIv/HYWar U CTLDIMC IS5
IR ENEICIOrv /) GE KEINANANS , LR
EREESCENE RIS ELBMHYNZ/RRER AEIRIT)"
58 P#(102) ="HvZNvle+ LA 1AL A G-/
b AR ERH-ANCISIc R - (1 Hem
7 e LRE: EROINCINe

ée2 ADDRESS=USR(ADR(P$) ,LEN(NAME$))

78 ? ADDRESS

Now that we can find the starting address of an array
(Tne zero index value), it would appear that we could just
PEEK the array locations to find our numbers. But no matter
how hard you try, you'll find the numbers Jjust don't make
sense. The problem lies in the fact that array numbers are
stored in a six byte format called Binary Coded Decimal. This
format allows precise mathematical calculations, but makes
direct manipulation of the numbers difficult.

PROGRAM.CZ1 will convert an integer array number into its
decimal equivalent.

PROGRAM.021 Array Number To Decimal Equivalent

This program converts an integer Binary Coded Decimal
(BCD) number in & numeric array into its decimal equivalent.
ENTER this program into PROGRAM.020 and you will find the
Return Variable 'NUMBER' contains the first number (zero
index) in the array generated by PROGRAM.020. To get the next
number in the array, you must move up in memory 6 bytes

24

(Remember, each BCD number takes 6 bytes of memory). This
routine uses two internal operating system ROM routines to
perform the conversion. The single parameter required by this
routine is the starting address of the integer BCD number you
wish to convert to decimal form. Of course, it is easier to
use BASIC to retrieve the array values, but we wanted to show
that the address arrived at in PROGRAM.020 was correct. Check
the result of PROGRAM.021 by looking at the first array
number using the BASIC statement '? ABC(0)'.

Pl Starting address of an integer array number.

6 REM PROGRAM.8621
78 NUMBER=USR(ADR{"hhII3h7HI =il e ") ,AD
DRESS) : ? NUMBER

PROGRAM.022 High Value Search

This program finds the highest value number in an integer
array. Line 70 is the machine routine that searches the
integer array and puts the highest value in the Return

Variable. ENTER this program into PROGRAM.020. Two parameters
are required.

Pl Address of the first array number to begin the search.
P2 The number of array numbers to search through.

Line 80 prints the entire array of the 20 random numbers
from BASIC for proof that the machine routine has found the

highest value.

® REM PROGRAM.B22

78 HIGH=USR(ADR("hhIOh™WIh IR Y wmdl [~ L]
TUNPRCUNEIEH e #0017 BLS mbl OWMRRRH
5L INNREIOC BINIANERNe) , ADDRESS , 20)

86 FOR I=8 TO 19:7? ABC(I) tNEXT 1:? "HI
GH= " :;HIGH

25

PROGRAM.023 Low Value Search

This program is the same as PROGRAM.022, except it finds
the lowest number in an integer array. It uses the same
parameters as PROGRAM.(022.

@ REM PROGRAM.f23

78 LOW=USR(ADR("hhIEhMhAEhE wdl 00T
(DACTNRLH FRo 081 /7L wi
MILANNE DA MATILNX W ') ,ADDRESS , 20)

88 FOR I=@ TO 19:? ABC(I) :NEXT 1:? “LO
W= ";LOW

PROGRAM.024 Sort in Ascending Order

If you want to sort an integer array in ascending order,
Jjust ENTER the following routine into PROGRAM.020. The
machine routine, D$, is too long for one line, so it must be
placed in a string. Line 100 prints out the newly organized

numeric array. The same two parameters from the last two
programs are used.

Pl Address of the first array number to begin the
search.

P2 The number of array numbers to search through.

8 REM PROGRAM.B24
ie DIM P$(183),D$(151),ABC(20),NAME$(3

)]
78 D3{ 1) ="hhIIVHBETHIILTEHTICID et 00
VEMICTRNCININH 50 P08l /TBE: wbl GENN

S /T-BEA L ISNHBATEL I TIEAICI/IEL) 12
80 D2 (102 ="HIFAV N} LN vy M0 KEED
PG LMC T RRGE UG Tl

98 X=USR(ADR(D%)> ,ADDRESS, 28}

168 FOR I=8 TO 19:? ABCC(I) :NEXT I

PROGRAM.025 Sort In Descending Order

This program is the same as PROGRAM.024 except that it
sorts the array in descending order.

26

@ REM PROGRAM.82S

18 DIM P$(183) ,D$(159> ,ABC(20) ,NAME$(3
)

78 D2(1) ="hhIETWhIECTHATE 11D w30
ENCTRA CUNE S (50 <4481 /78K ull
1R /N0E A LIS H MRS IR TITON O /T 132 "
86 D% 102) =" NNTINCN CNE Eivray
Lo By dF e aq Keg [iog Flibe Dih TR

98 X=USR(ADR(D$)> ,ADDRESS, 20)

160 FOR I=@8 TQ 19:? ABC(I) :NEXT 1

PROGRAM.026 Search For A Value

To search through an integer array for a snecfic number,
use this next program. ENTER it into PROGRAM.020. In the
sample program below we'll search for the number 33 in the 20
number array 'ABC'. Line 70 just makes sure the number 33 is
in the random array at an index value of 12. The Return
Variable in line 100 gives the Index value of the first
occurance of the desired number in the array. If the number
does not appear in the array the Return Variable returns the
number 65535. Four parameters are required. Note that the
first parameter is not the same as the first parameter in the
other array routines. It must always be the starting address
of the array, Index O.

Pl Starting address of the array.

P2 The integer number to be located in the array.
P3 The Index number to begin the search.

P4 The last Index number to be searched.

8 REM PROGRAM.B2&

18 DIM P$(183) ,D$(128) ,ABC(20) ,NAME$(3
)

78 ABC(12)=33

86 D% (1) ="hhLHMhAEH TR e NEIA NS/
3 Wi ABLHL RN RN ERRE G wkl SN
Cdn . B (St Rt L LENP ARENEL L Pa iy
20 D% 192) =" o MuIRIANHEIRNILRI

168 INDEX=USR(ADR(D%$) ,ADDRESS,33,8,19
118 ? "DESIRED NUMBER AT INDEX " ;INDEX

27

The machine routine in lirme 70 will sum the contents of
an integer array.The sum can not be over €5535. Again, ENTER
this program into PROGRAM.020. Two parameters are required.

Pl Address of the first array number to begin the search.
P2 Starting with the array number at the address Pl, the
number of array numbers to search through.

8 REM PROGRAM.B27
78 SUM=USR(ADR(" h hfEh - 18- 990N n

a8l /8L fMSNIRNE LD e ")
ADDRESS, 26>

8@ ? SuUM

In order to find the sum of an integer array when the sum
may be over 65535 use the next routine. The sum of the array
is not in the Return Variable, but in the array element one
Index value higher than the last value of the array.
Therefore, make sure you DIMension the array at least one

value higher than required. The same parameters are required
as in PROGRAM.027.

@ REM PROGRaM,@28

18 DIM P#$(183) ,ABC(21) ,NAME$(3)

78 X=USR(ADRC(" hhILIh NI TIHCHN 18 mdH-
ol 7Bk 00+ AN (AL 4805 28I
L legviaLWe "> ,ADDRESS, 260

80 ? ABC(2&)

28

Chapter 6
Graphics & Antic Modes

Atari computers have 17 different graphic modes; Antic
modes 2-9 and A-F, and GTIA modes 9, 10, & 11. Refer to the
Appendix for further information on Atari's Graphic modes.
Graphics modes O through 1l are addressable from BASIC using
the GRAPHICS command. A GRAPHICS mode call sets up a Display
List in the computer (starting at PEEK(560)+PEEK(561)*256),
which contains all the information necessary to set up the
screen. If you have an XL or XE computer you can also call
GRAPHICS modes 12, 13, 14, and 15 from BASIC, which represent
Antic modes 4,5,C, and E (many times referred to 7.5). The
remaining mode, Antic 3, 1s only obtainable by directly
changing the Display List.

The following five programs give machine routines to
quickly change the Display List to obtain Antic modes
3,4,5,C, and E. Now any Atari 400 or 800 owner can have all
the modes at their disposal. Note that if you are going to
write a BASIC program to pass around to your friends, to
place on a BBS, or to market, and you're using Antic modes 4,
5, C, and E, it's a good idea wuse the routines in this book,
instead of the XE or XL BASIC GRAPHICS call. Otherwise, the
program will not work on an Atari 400 or 800.

Antic mode 3 is a text screen mode much like the Graphics
O screen, but with 10 scan lines (horizontal lines) for each
character. The Graphics 0 screen has 8 scan lines per
character. Since there are two additional scan lines per
character, the true descenders on the lower case letters j,
p, g, and vy can be designed along with true subscripts and
superscripts. Since each character is 10 scan lines high, the
screen will fit only 19 rows of characters instead of the
normal 24 in Graphics mode 0. Of course, if you're into
modifying Display Lists you could make more rows of
characters beyond the normal screen border.

Designing a character set for this mode is tricky. The
characters are still designed with 8 rows (one byte per row)
but the computer will automatically add the two extra scan

29

lines. For lower case letters, the extra two lines are added
to the beginning of the character after the original two
lines are moved to the end of the character. That's why some
of the lower case letters in the program below are chopped
of f at the top, with the top appearing at the bottom. For all
the graphic characters, numbers, and uppercase letters, the
two extra lines are added to the bottom of the character.

A correct looking character set with true descenders is
on the front of the program disk in the file "ANTIC3.SET".
PROGRAM.038 in the Disk Input & Output section shows how to
load and display this character set in conjunction with
PROGRAM. 029.

No parameters are required for the machine language
routine in line 10, and it assumes the Display List is given
by the normal locations in memory, 560 and 56l.

@ REM PROGRAM.B29

18 X=USR(ADR{"h@ Clillve/] 1830 CLM- D
CRM/0H FRAGEHARNEEC TS ! LINMGe lo")
)

280 ? “"JiPpRqaYy”

Antic mode 4 (Graphics mode 12 on XL or XE) is a text
mode screen with GRAPHIC mode O size text. The machine
routine in line 20 changes the GRAPHICS O Display List into
an Antic mode 4 Display List. This mode, along with Antic
mode 5 can give multicolored individual text. The color and
the shape of the character is produced from the data in the
character set. Consequently, the normal Atari character set
is almost unreadable in these modes.

Each byte of the character is taken as four bit pairs.
Each of the four bit pair possibilites, 00, 01, 10, and 11,
determine the color of two bits to be displayed on the
screen. With this information you can really design some
great looking screens in this graphics mode.

30

8 REM PROGRAM.230

18 X=USR(ADR("hiR! CINS° [1MR- Clillve’ B O
DB/ IR0 SR 10")

28 LIST :REM SOMETHING TO LOOK AT.

The next program changes a GRAPHICS 1 screen into an
ANTIC mode 5 screen (GRAPHICS 13 on an XL or XE computer).

The seme information for PROGRAM.030 applies here, except the
characters are larger.

8 REM PROGRAM.B31

18 GRAPHICS 1+1¢4

28 ? #4:"ABCDEFGHI JKLMNOFGRSTUMNXYZ"
30 X=USR(ADR("h@! CHER° CINS Clilvw @M 0
ENRNE/0h G A RMRe NGRS Rk o)
)

46 GOTO 4@

The Antic mode C (GRAPHICS 14 on an XL or XE computer)
screen is comparable to the Antic mode E screen, but displays
only two colors. Each row requires 20 bytes of memory, and
one half of the total memory of a ANTIC mode E screen. Line
30 draws a line across the screen for something to look at.

8 REM PROGRAM.B832

18 GRAPHICS 7+1¢4

20 X=USR(ADR("hE Clilve BCINITINEvO-"
F HiggE o ek Ho et Ho b e H o e HIEER o S o0 1)
St RO WEm le"))

3@ COLOR 1:PLOT ©,40:DRAWTO 79,40

48 GOTO 46

Antic mode E (GRAPHICS 15 on an XL or XE computer) is one
of the most popular and wused color graphic mode screens.
Micropainter, Atari and Koala Touch Tablets, and most other
popular artist drawing programs wuse this mode. It is
sometimes referred to as graphics mode 7.5 or 7+.

31

Each point on the screen is actually two pixels wide with

four colors to choose from. £ach color is determined by one
of the four bit pairs possible in the display memory, 03, Ol,
10, or 11. Antic mode £ uses the same amount of memory as
GRAPHICS mode 8. The following routine will be used by a
number of the load and display picture screen programs in
this book.

8 REM PROGRAM.#33

18 GRAPHICS 8+16

20 COLOR 1:PLOT 8,0:DRAWTO 319,191

30 X=USR(ADR("hl B! DRE? CREEEIS-E Fe S
NPV p THHE T E o B 10 - R

48 GOTO 40

This program places two byte patterns on a GRAPHICS 8+16
screen in an alternmating seguence. The two parameters
required are two numbers from 0 to 255 whos binary image will
be placed on the screen. Each number represents 8 sequencial
dots on the screen in the pattern of the number's binary
equivalent.

Pl First number.
P2 Second number.

@ REM PROGRAM.B34
16 GRAPHICS 8+146:POKE 718,08 :REM MAKE
A BLACK BACKGROUND.
20 X=USRC(ADR " h@fvURIC AN HINEH h IR vl « HTI
(Sl (WEF ARFNLIGTEIMIGNe "> , 8,255
38 GOTO 30

This program clears the above graphics screens by writing
zero's to the screen memory. In the sample program, line 20
cutlines a GRAPHICS 8 + 16 screen so we have something to
erase. No parameters are required.

@ REM PROGRAM.B3S

186 GRAPHICS 8+14:POKE 710,09

20 COLOR 1:PLOT @,0:DRAWTO 219,08 :DRANT
0 319,1921:DRAWTD 08, 1921:DRANTO 0,8 :REM
DRAW SOMETHING ON SCREEM,

38 X=USRC(ADRC" h@y ;1R T1N0 viill « F2GIET TIWD0
*"))

48 GOTO 40

33

Chapter 7
Disk Input/Output

Section I

GENERAL LOAD & SAVE RCUTINES

Taking information from a disk or writing to the disk is
another great use of machine language. Large amounts of data
can be transferred quickly. This makes machine language very
useful for picture loading and saving.

This program will load any amount of data from an Atari
DOS disk file and place it anywhere in the computers memory.
Conversely, it will also take any amount of data from the
computers memory and save it to disk file. Using this machine
program you can develop your own picture loading and saving
formats and data transfer programs.

Four parameters are required. The first one, indicated by
the variable 'CH', 1is the channel opened for communications
to or from the disk. Line 20 opens channel #1. Tne second
parameter tells the machine program whether it will read from
Or write to the disk. A '7' for this parameter means read
from the disk. An 'l1' means write to the disk.

The variable 'RW', standing for Read/Write, is used in
the next parameter, and it's also used to indicate if the
opened channel in line 20 is for a read from (RW=4) or a
write to the disk (RW=8).

The third parameter is the address in the computer where
the data is to be read from or written to. The variable 'SD',
standing for Source/Destination, 1is set to the first memory
location of the screen memory as shown in line 40. The fourth
parameter is the amount of consecutive data (bytes) to
transfer. In the sample program below, 7680 bytes of data are
to read from the disk file 'DATA.PIC' and placed into a

34

GRAPHICS 8 screen memory. Line 30 sets up the GRAPHICS 8+16
screen and changes the background color to black.
To take data from the computer and write it to the disk
the only change required is to change the variable 'RW' to 8.
With this program you can transfer data to and from Atari
strings, Page 6, or any location in memory.

Pl Channel opened.
P2 Read from disk=7, write to disk=ll.

P3 Source or Destination of data in the computer memory.
P4 Amount of data to transfer.

8 REM PROGRAM.B34

12 CH=1:RW=4:REM USE RW=8 FOR WRITE TO
DISK.

28 CLOSE #H1:0PEN #CH,RW,08,"D:DATA.PIC"

38 GRAPHICS 8+14:POKE 718,90

468 SD=PEEK(88) +PEEK(8%) ¥x294:REM THE
LOCATION OF THE SCREEN MEMORY.

58 X=USR(ADR("hhhhhhAEhhOB4 KhOE hD4 hEI

4hHd UEle") ,CH,RW+3,8D,7480) :CLOSE #CH

468 GOTO &8

The last program reads datas from or writes data to an

Atari DOS file. This program reads data from or writes data
to a sector on the disk. Atari sectors (One sector holds 128

bytes of data) in normal density are numbered from 1 to 720.
In enhanced density the sectors are from 1 to 1024.

Four parameters are required for the machine routine in
line 40. The first ore is the source or destination of the
128 bytes of data to be transferred. In the sample program
below the variable 'SD' in line 30 points to the address of
the string 'S$' where the a sector of data from the disk is
to be placed. This location could be any available
consecutive area of computer memory. Page 6 is often used for
this purpose.

The second parameter is the disk sector number. The third
parameter is the disk drive number, 1-4, and the last
parameter tells the machine routine whether data will be

35

transferred to (RW=80) or from (RW=82) the disk.

Now you can develop your own BASIC program to read, edit,
and save sector data.

In the sample below, we'll read the 10th sector on the
disk in drive one and place the data in the string S$. Since
the string S$ was not yet fixed in memory line 20 is
required. POKEing memory address 766 with 1 in line 50 will
prevent the screen editor from acting upon any of the normal
display screen control functions (i.e., clear screen, cursor
movement, etc.) that might appear in the S$ string (See
Introduction for more information).

Pl Source or Destination address for the data in the
computer's memory.

P2 Sector number on disk

P3 Which disk drive, 1-4

P4 Read from disk=82, write to disk=80.

@ REM PROGRAM.B37

18 DIM S$(128)

20 S$=" ":8$(128)=8¢%:S%(2)=5%

38 RW=82:SD=ADR(S%) :SECTOR=1:DRIVE=1:R
EM USE RW=88 FOR WRITE TO DISK.

48 X=USR(ADR("hhmm<hmdi4hm Y hmhdhhmkhh
mKE SEe"),SD,SECTOR,DRIVE ,RWD

58 POKE 7646,1:? S$:POKE 764.,0

Although PROGRAM.036 could be used to perform the task of
loading an altermate character set, the short routine below
is tailored made for this duty. All you have to do is find an
appropriate spot in memory to store the new character set
(1024 bytes or 4 pages of memory) and run the machine program
below.

Two parameters are required. The first one is the channel
being opened to read from the disk, CH, and the second
parameter is the address where the character set is to be
stored.

36

In the sample below channel #1 is opened to read the
character set from the file 'CHAR.SET' (located on the front
of the program disk) in line 20. Line 10 looks at the high
byte of the beginning of the screen's Display List,
PEEK(561), and finds a location 4 pages back in memory, CB.
This will be a safe place to store the new character set.

After the new character set has loaded, line 40 then
switches to the new character set with POKE 756,CB. The
default address of memory address 756 is 224 which is the

standard Atari character set. You can place as many character
sets in memory as room allows. The address of the new
character set must be evenly divisible by 1024 for a GRAPHICS
0 screen and by 512 for a GRAPHICS 1 or 2 screen.

Pl Channel being opened, normslly 1-5.
P2 Address to store new character set.

8 REM PROGRAM.B38

16 CH=1:CB=PEEK(5&41> -4

28 CLOSE #HCH:QOPEN #CH,4,08,"D:CHAR.SET"
38 X=USR(ADR("hhhAMAAENINTES hID4 hIEJ 4D
14 @eOH4 URle") ,CH,CB) :CLOSE #CH

40 POKE 754,CB

37

Section II
LOADING & SAVING PICTURE SCREENS

Loading and saving picture screen files from popular
graphics creation programs on the market is a snap with the
programs below. You can even make your own picture conversion
programs by loading one picture from one format and then
saving it in another format.

The general strategy of loading a picture is to first
prepare the correct GRAPHIC screen, then call one of the
loader programs. To save a picture screen you must first
display the picture on the screen, then call the saving
routine. It is very important to remember to always CLOSE the

opered channel when all the data has been written, otherwise,
you may loose your file.

Magniprint from ALPHA SYSTEMS is the most powerful screen
printing program on the market. The program below will read
or write a Magniprint format picture to the disk.

The first byte of data in Magniprint format is the
graphics mode. A '14' indicates ANTIC mode E, a '9' indicates
a GRAPHICS 9 picture, and a '24' indicates a GRAPHICS 8
picture. This first byte of data is best read (GET) from the
disk or written (PUT) to the disk in BASIC. The machine
program will read or write all the other data.

Magniprint format next contains the color data for
registers 704-712, the actual Display List data, and then the
picture data.

In the sample program below, we create a GRAPHICS 8
screen with a border, line 30, and then save it in Magniprint
format. Line 10 opens a file on the disk, MAG.PIC, to receive
the data and places the first data, 24, in the file to
signify a GRAPHICS 8 screen.

If you were reading from the disk, 'RW' would equal 4,
and you would have to GET the first data in BASIC and set up
the correct GRAPHICS screen according to its value. If it was
a 'l4' indicating a GRAPHICS E screen then PROGRAM.033
(GRAPHICS 15 for an XE or XL) would be required.

Two parameters are required. The first one is the channel
being opened for the disk input/output. The second parameter

38

tells the machine program whether data is to be read from the
disk or written to the disk.

Pl Channel opened.
P2 Read from disk=7, Write to disk=11.

8 REM PROGRAM.B3?

18 RW=8:CH=1

26 OPEN HCH,RW,8,"D:MAG.PIC":PUT HCH,2

P .

38 GRAPHICS 24:POKE 71@,8:COLOR 1:PLQT
9.9 :DRAWNTO 319,08 :DRAWTOD 319, 191 :DRANT

0 8,191:DRAWTO 8,0

4@ X=USR(ADR(" hhhhhhhEhh3B< i JOH4 @ IDEJ

W=IDd VERSOIS@HOHI Q! DEJQe D4 UGle™) ,C

H.RW+3)> :CLOSE #CH

The next program loads or saves a picture in
Micro-Painter format. Micro-Painter format consists of the
picture data first, 7680 bytes, then the color registers 712,
708, 709, and 710. Since Micro-Painter is an ANTIC E screen,
PROGRAM.033 is used in line 30 to set up the correct graphics
screen. To save a picture to disk, just make RW=8 and skip
line 30.

The sample program will load a Micro-Painter picture from
the file 'MICPNT.PIC' on the front of the program disk and
display it on the screen. Three parameters are required. The
third one is the source or destination (the variable 'SD') of
the data in the computer memory, usually the display screen
starting address PEEK(88)+PEEK(89)*256.

Pl Channel opened.

P2 Read from disk=7, Write to disk=ll.
P3 Source or Destination of data in the computer memory.

39

8 REM PROGRAM.@40

16 DIM P$(9&) :RW=4:CH=1:REM USE RW=8
TO SAVE PICTURE TO DISK.

20 CLOSE #CH:0PEN #CH,RW,®8,"D:MICPNT.P

1c

38 GRAPHICS 24:A=USR(ADR("higm¢ CENS! CIW

RN o OB HINZ/MMTIINUEEFINER")) :REM P

ROGRAM. 832, GRAPHICS 24 TO ANTIC E.

40 SD=PEEK(88) +PEEK(89) ¥254

58 P$="hhhAAAAEIhh{IB4 hEIES KD Pe] 4 PofiHd

VERIwDI < 384 M\ G2 | VERIY | VERS | VEEE | V

Ele VGl | VEmY | VEmA | VEmF fo"

68 X=USR(ADR(P$) ,CH,RW+3,5D

78 GOTO 7@

Loading and saving & Graphic Master picture is very
similar to loading and saving a Micro-Painter picture. The
only differences are that the Graphic Master picture is a
GRAPHICS 8 picture, not ANTIC E, and the color data at the
end of the file is for registers 708, 709, 710, and 712. Use
the same parameters as for a Micro-Painter picture.

The program below is set up to load a Graphic Master
picture. Just place the filename of one of your Graphic
Master pictures in line 20 and run the program.

8 REM PROGRAM.B41

18 CH=1:RW=4

28 CLOSE #1:0PEN #1,RW,.9,"D:FILENAME"
38 GRAPHICS 24

48 SD=PEEK(88) +PEEK(89) ¥25¢

58 X=USR(ADR("hhhhAMEHhIIBY hIIES D4 Mely
I41@efHs VENRDOHBeDl]4@ DEJ @MDY UBle') ,C
H,RW+3,SD) :CLOSE #CH

68 GOTO 46

40

This program loads a Fun With Art picture from disk.
Since an ANTIC E screen is required, line 30 is required. Two
parameters are needed, the first being the channel opened for
communication to the disk, and the second is the location to
place the picture in the computer memory. The display screen
starting sddress is normally chosen so the picture will be
displayed upon loading.

Pl Channel opened.

P2 Starting address in computer memory to place picture
data.

@ REM PROGRAM.042

18 DIM P$(143) :CH=1

20 OPEN #1,4,8,"D:FILENAME"

38 GRAPHICS 24:A=USR(ADR("hiSS0 CIES! CI8
GRRARSAE o S HINE/ TR FFIRR")) :REM P
ROGRAM.B33, GRAPHICS 24 TO ANTIC E.

48 SCN=PEEK(88) +PEEK(89) X256

5@ P#(1)>="hhhAAAAEENDEI @014 0H! UEIKIr
VEMKISK VEmiY | VEMY | VEmE | VEmE Ke7a VB
N 01 4 WE0HS hOES hED4 VER 1 ACIvn] *

48 P$(102)="JdMH4 VEISNIIE 131 4 @NIHL 4304 §
[RID4JES i, BES UEle"

70 X=USR(ADR(P$) ,CH,SCN) :CLOSE #CH

80 GOTO 86

Computertyes is a picture digitizing hardware and
software system that can save pictures in either GRAPHICS 8,
Antic E, or GRAPHICS 9 format. The saved picture file doesn't
have a code to tell the computer what format it is,
therefore, this informstion must be supplied by the user. The
data format is the picture data only, 7680 bytes.

In the sample program below, the variable and first
parameter 'TYPE' indicates the graphics screen to setup. For

41

a High or Low Contrast capture, TYPE=0. You'll need an ANTIC
E screen, and line 40 will load the picture. For a Normal, 4,
or 8 Level capture, TYPE=l and you'll use a GRAPHICS 8+16
screen with a black background (POKE 710,0), as shown in line
30. For a Graphics 9 capture, setup a GRAPHICS 9 screen in
line 30 with TYPE=1.

Three parameters are required.

Pl 0 or 1l for the type of capture. See explaination
above.

P2 Channel opened.

P3 Starting address in computer memory to place picture
data.

8 REM PROGRAM.843
18 CH=1:TYPE=1:REM TYPE=0 FOR HIGH
OR LOW CONTRAST CAPTUREC(ANTIC E),
OTHERWISE TYPE=1.
26 CLOSE #1:0PEN #1,4,0,"D:DATA.PIC"
3@ IF TYPE=1 THEN GRAPHICS 24:POKE 716
,8:G0T0 Se
48 GRAPHICS 24 :A=USR(ADR{ " hpE=0 5 - — DM~ L]
GBS o SH HOVE/TRZISIAME ZEYINEGR")) (REM P
ROGRAM.833, GRAPHICS 24 TO ANTIC E.
580 SCN=PEEK(88) +PEEK(89) ¥254
60 X=USRC(ADR{("hhhigel/md ¥ s O mid Ovmi
Ih PAAMARIINDE h3ES hESDJ e B3] S @onHd UBle ") ,
TYPE,CH,SCN) :CLOSE #CH
70 GOTO 7e

Have you ever wanted to load a Strip Poker picture in
your own BASIC program? Now you can with the routine below.
Strip Poker files are specially coded to prevent 'cheap
looks' but the machine routine below will decode them Just
after the picture loads. Again, an ANTIC E screen is
required, as in line 30. Strip Poker pictures filenames are
listed on the disk as 'OP1.X' or '0OP2.X' where X is a number
representing the degree of undress.

42

Pl Channel opened.

P2 Screen address in computer memory to place picture
data.

@ REM PROGRAM.D44

18 DIM P$(114) :CH=1

280 CLOSE #1:0PEN #1,4,0,"D:FILENAME"
30 GRAPHICS 24:A=USR(ADR("hiE=0 CINI! CI8
REVRSAE o SH HNE/TIBIADL IFFYINZR")) :REM P
ROGRAM.833, GRAPHICS 24 TO ANTIC E.

48 SCN=PEEK(88) +PEEK(8%) X254

5@ P$< 1) ="hhhAAAAERINTGBS hIE< Eh 0D TN
ABKYIH TH VERWDI40HY VEmE | VEC | VB
1 VEmiE | VEDRE BN DE Iy "

68 P$(102)="HyCNFICHEMEIe "

78 X=USR(ADR(P%) ,CH,SCN) :CLOSE #1

86 GOTO 8@

With the next program you can now save pictures in Strip
Poker format created by ComputerEyes (best inm High or Low
contrast capture) or by any of the other picture programs
previously presented. Once the picture is brought up on the
screen, jump to the program steps below to save it in Strip

Poker format. Since Strip Poker uses only the top 73% of the
screen (rows O to 139), you'll want to make sure the picture

is positioned in that area of the screen. How are you going
to do that? The answer lies in using the scrolling routines,
PROGRAM.(052.

The program below uses the same parameters as
PROGRAM.044. Notice that we OPEN the channel number 1 in line
20 with an '8' instead of a '4' as in PROGRAM.O44. A '4'
means read from disk and an '8' means save to disk.

43

8 REM PROGRAM.845

16 DIM P$(128) :CH=1

20 CLOSE #CH:0PEN #CH,8,8,"D:FILENAME"
38 SCN=PEEK(88) +PEEK(89) %254

48 P%(1)="hhhAAAAECLEE "DB< JhHDEJ TASHOD4 0
il [4 THIEKXIHS YRR vRENE DTN SE
BENREDIMERIS VERYOIJOHIER | VERY | V"
Sé P#(102)="EQ3 | VEE | VER® VEe"

68 X=USR(ADR(P%$)> ,CH,SCN) :CLOSE #CH

To load a Typesetter Icon to an ANTIC E screen, use the
routine below. The Typesetter Icons that can be loaded by the
routine below are the 15 sector file pictures created from
the Sketch Pad portion of Typesetter.

You choose the colors for the picture. Line 40 not only
finds the start of the screen memory, but also sets the
background color to black. Note since the Typesetter Icon is
only one forth the size of a full screen, you can experiment
with the value of the variable 'SCN' below to move the Icon
around the screen.

Pl Starting address in computer memory to place the
picture.
P2 Channel opened.

® REM PROGRAM.B46

18 DIM P$(117) :CH=1

26 OPEN #CH,4,0,"D:FILENAME"

30 GRAPHICS 24:A=USR(ADR("hime CIEI1 CW8
EEI8AE o SH HONE/TINZIAANE SIFFIaER")) :REM P
ROGRAM.@33, GRAPHICS 24 TG ANTIC E.

40 SCN=PEEK(88) +PEEK(8%) X256:POKE 710,
@

58 P$(1) ="hhJEhI¥h hAAMAEETIEROH TN 4
30 "BEHENE THRR /T S GNDBY [VEEIREABITAEIIRS S
/THRENRAEN (TENNE: vRERN VAT IEEION"

60 P$C102) =" AN REdNRSe"

76 BB=USR(ADR(P$) ,SCN,CH) : CLOSE #CH

86 GOTO 80

44

Section III

KOALA PAD & ATARI TOUCH TABLET

These two drawing tablets are an excellent way to make
and save pictures. They save a picture in a compressed format
to save disk space. When a picture is to be saved, it's
scanned twice in both a horizontal and a vertical direction,
and then saved in the format requiring the least amount of
memory. This compressed format is quite complicated and
requires special routines to decipher. The next 4 programs,
47-50, present different ways to load a compressed picture
and display it on the screen. Select the routine that is most
appropriate to your needs.

Since Touch Tablet pictures are ANTIC E pictures, all the
load routines contain PROGRAM.(033. The last program,
PROGRAM.051, will save a picture that 1is displayed on the

screen into compressed format just the way the Touch Tablets
do it.

PROGRAM.047 Load Horizontal Format Picture

The first 27 bytes of a compressed Touch Tablet picture
contains information about the picture. The rest of the data
is the picture. The 8th byte is the compression type, 1 for
vertical compression and 2 for horizontal. If you plan on
loading just one type of picture, you can use either this
program or the next to save programming space over a dual
loading routine. The only parameter required is which channel
to open for reading the data from the disk(times 16).

The program below loads a horizontal compressed picture
called 'HOR.PIC' from our program disk. A horizontal picture
starts loading at the top of the screen and continues down
the screen line by line. The machine code 1is contained in
lines 40 through 60. Notice that the channel number in the
parameter must be multiplied by lé.

Pl Channel opened multiplied by 16.

45

8 REM PROGRAM.247

18 DIM P£(249) :CH=1

26 CLOSE #CH:OPEN #CH,4,0,"D:HOR.PIC"
38 GRAPHICS 24:A=USR(ADR("hiliEc DIME! EWA
KBRS o SH HONE/TOMRIRIEML_SFYANER" >) :REM P
ROGRAM. 833, GRAPHICS 24 TO ANTIC E.

4@ P$(1)="hhhECHENDES @en] 4 DES A THS BB
04 VEEhOHSE DE4 @D+ VERANID- @eliE< @ JIH
4 VERSCUEIDS @YIRGES @11 0HY VES QMvES"
S8 P%$(192)""mtalH'|l] an’m* lJ
ENE VEIN VEN

EHCeiCNX- T30) MOIHS MIEIE S AINIDY UEEH-'-"B
68 P$(203)="M VEME VEOHY] HEIES SN0
4 VERGHY o151 4 clitUN"

78 X=USR(ADR(P%$) ,CHX1&) : CLOSE #CH

880 GOTO 8@

This program is the mate to the last program. It loads a
picture in vertical compression. A vertical picture starts
loading from the left side of the screen and continues to the
right side of the screen. Loading a vertical compressed
picture is a 1little more complicated than a horizontal
picture and takes a little more machine code. The sample
program loads the picture 'VER.PIC' from the front of our
program disk. It uses the same parameter as the last program.

46

® REM PROGRAM,848

18 DIM P$(450) :CH=1

286 CLOSE #CH:O0PEN #CH,4,8,"D:VER.PIC"
380 GRAPHICS 24:A=USR(ADR("hiE? CINz=! I8
EBA(E o ST HINE/TRNEIAML ZFYRNER")) :REM P
ROGRAM.833, GRAPHICS 24 TO ANTIC E.

48 P$(1)="hhhEEREINGE el3] 4 OE 4 EMRNITIHY
g a0+ VEEHDHY B DEL @04 VEMDEIDS e
E40 f3H4 VENXTRNED @ IRDES Lain [4 OHd
50 P$(102) ="VEL THEHIIZF MK VECHERI
R i PLS EANDETTY e S o< TR Y UMD RV
ms*umammn PREAN VEEARES"
68 P$(203)="JFaesi PL. CAMAT e COEDGHX TN
Y SRR 1R T Y O SN DI TN T
VBRI VEDIN VECUUBYTMREIRE MR i PL: Ed"
70 P$(304) =" AT el COEDON- AN AN
RO T v S EY DL IOMTIETT T VENLE
VEDIMINE VIRl VEIEEIRINE S | L R el "
88 P$(405) =" RINEIMN< NS TNWLEL IEAN I ot 0]
RS 20E YD

?8 X=USR(ADR(P$), CHXlé) CLOSE #CH

iee GOTO 100

PROGRAM.049 Universal Loader

This program will load either a vertical or horizontal
compressed picture. Consequently, the machine routine is much
longer.

Pl Channel opened times 16.

47

® REM PROGRAM. 849
186 DIM P$(438) :CH=1

20 CLOSE #1:0PEN #CH,4,8,"D:FILENAME"
38 GRAPHICS 24:A=USR(ADR("hpEme 1+ P4 L]
(EBA208A(o OF HINE/TRMEISIAME ETINER")) :REM P
ROGRAM.833, GRAPHICS 24 ANTIC E.

48 P$(1) ="hhhECREINGBEA Hen] J OE 4 ORNLLH
SXTAANYTININDS @’ 0 VEDMILOHY VER IBES @
D4 VEMISEIOS QeE4 @ J3H UBMASEIDS SINES GO
58 P$(102)=") FIAMYEI40H! VEUNWZINTE
HEMIN) VECMAEIRFABNMANAICSS i PL: EANNIT o\ TRE DR}
TR YN RV X TS 0B DT R TRH "
=Y’] P${263)="de> PIES VEEGEIRNasE i PLy |
AT o(al EANE TN R TR 1RV B YIRS 0
MYESIER GEERAEC VERE VEIDN VESAmens”
70 P$(304) ="HAEMNEE G Pl AT 0lEt
CAE T TR0 RO ARt DN < U el w S 9nF
LI IAT A VEME VECDON NI V"
80 P$(405) ="ELAHIMESi Pl GINEE e LEION
XM TR AN o ROt YL COUEY * B
VEMGVEI1BHY VED GMWRMERCNIE VEERY R "
98 P$(506)="#WEH{+ VEDIE VESDN VENeREEA
PRSI O N /PO IR T A AN T SR o)
PEHI MIEFIE MANDS VEEH4 40N VERE VEDHY g
108 P$(487)="14 N J ANIDI UEKRSHJ i1
4 elAmas"

116 X=USR(ADR(P$) ,CHX 16> :CLOSE #CH

120 GOTO 120

This program will also load a Touch Tablet picture of
either compression format, but the machinre program was split
up to require less string memory. Lines 40 to 60 contain a
routine to check the type of compression. If it is
horizontal, the loading process is completed by the USR call
in line 70. The Return Variable 'X' in line 7C will contain
the type of compression. If the picture was a vertical
compression, the processing continues from line 70 to lines
80-120 where vertical decompression takes place. Notice that
no parameter is required for the vertical decompression, line
120, since it is stored in an accesible memory location from
the first machine program in line 70.

48

Pl Channel opened times 16. Only required for first
machine program. '

@ REM PROGRAM.@5@

10 DIM P$(393) :CH=1

20 CLOSE #CH:0PEN #CH,4,8,"D:FILENAME"
38 GRAPHICS 24:A=USR(ADR("hiE=s FINS! CLIN
ENRIN0AI o S HINE/TINEEIAME EYIEE")) :REM P
ROGRAM.833, GRAPHICS 24 TO ANTIC E.

48 P$(1)="hhhECIENDE Geri] < FES TPNLOHI IS
(D4 #XTIANYTI VEWhDHY VB DEJ@eDS VED
A0S JJIHY UBMIDS IEDE $e8t (2 Hemvn] 4 03"

S8 PE(102)="Hd UEIG-IWCII'HI VEERRF R
7 AR+ VERIE VEDDN VEM

DS/ TAUREY - e (TR Z AN PIH EIES
46 FE(Z02)="{EN04 UEEHJ LN VENE VEEIHL @
14 $A0ES MINDS UEMSH cliC13ES 1 4 eyl

780 X=USR(ADR(P$) ,CHX1&) :IF X=2 THEN 13
%}

86 P$(1) ="hMeEINGE BTN 1230 &Y TIRIE
40’ RV S DHY VEIR TMYEHIKIRF BRI VBRI
RTINS i PL. GASDETTY 0 SOl M LN Y IR

) P$<192>—"|=|lrmsm D vEERE
HEERe) PO UEIEEIRIINS | Pl CAMATD i CNES
R TR TN LR TR T S Y DX TEETE
100 P$(203) =" Rk VEME VEMY VEMAReAN
EIREEMMESANIICSA | PLS EAMETol “EaE A0 TR 1N
A 3 O v SRY UL IO ETR

110 P$(304)="(F VEME VECTOMIMEvIND UGE:
AEIRIAECS i PL: EASDNT o « ERERMO N WAL IREARI
Ea AR =T R e C Y DN

128 X=USR(ADR(P%$)>) :CLOSE #CH

136 GOTO 130

49

Now for the big program. This one will save any picture
displayed on the screen in compressed Touch Tablet format. It
saves the picture in the format which requires the least
amount of memory. The routine is completely relocatable and
does not require any of Page 6 to function. The anly
parameter required is the channel being opened to the disk
for data transfer(times 16).

Lines 20-50 contains the machine routine that scans the
picture vertically to determine the size of a vertical save.
Then control passes to lines 70 through 90, which scan the
picture for the size of a horizontal compression. The size of
these two compressions are stored internally.

Line 100 contains the filemame you want to call the
compressed picture and OPENs up channel 1 for a write to the
disk. Note that in order to read the picture using the Koala
or Atari Touch Tablet software, you must use the '.PIC'
extender.

The next machine routine in lines 110 through 130 writes
the 27 byte header to the disk, and selects the format with
the least memory by placing a 1 or 2 in the Return Variable
'TYPE' in line 130. If TYPE=1l, a vertical compression is made
as per lines 180 to 220. A horizontal compression, TYPE=2,
uses the machine routine in lines 150 to 170. Line 230
completes the save to the disk.

Be very careful to renumber the lines correctly when
using these routines in your own program.

The only parameter required is the channel opened for
writing to the disk for the USR call in lines 130 and 230.
Note the channel is not CLOSEd in 1line 130, since more
writing to the disk is required in line 230.

Pl Channel opened times 16.

50

8 REM PROGRAM.0351

186 DIM P$(4868) :CH=1

20 P$(1) ="hl" "EEeTIIRCTRTRITENY TIRCRN I
B R DEACLET o 5/0NE 0T OOl v SO IR
YOIl LDEINE O i PL RIDEINS BN 2NN

30 P$<102) =" «D/NAAITHNM Hile P01 RETH{0
LI BRENE IR0« (D> MECHNICTOMNCIES DU
oi/RINEINER TRl vCIEEY DR WG L1 PL: |
46 P$(203) ="HMENAE ERL 12 DPANIICL. #
b A1 CWRESTN) o1 4 SRR I'll!‘-weﬂl

(B + L g
S0 P$(304) ="\ hML/TNEGR i 4 THALEEINER"
49 X=USR(ADR(P%$)) :REM SIZE VERTICAL

COMPRESSION IN $CD & $CE.
76 P$(1) ="hEEeTRCIRICIRNY 1N T, DRI
(Sl CAEDE01 L2008« [3/FD0RATFE Hil 4 90 BT w--
W*M'ﬁ [+ L0. Pyt HER L] o)

86 P$(105)=" 120 3 MECHL $003 "3 CR-"0 .

i 4 TR0 KNP <R _MEH-cDEWE BRI oM 1IN

b e IR NN 0 3 /RANAE JHH-i 4 TR-1RINE

."

98 X=USR(ADR(P$)) :REM SIZE HORIZONTAL
COMPRESSION IN $CB AND $CC.

166 CLOSE HCH:OPEN #CH,8,0,"D:NEW.PIC"

110 P$(1) ="hShhERAPE/AAD ENANIELNICIN

SEDNNE RSN | 0 E1NE B I IINEKY

ERCIAETISK RSN] < B4 DI KW

128 P$(162)=" (MM TH’ VEERvN | MvilE

« FRRRST G VTR KW i DR ECTORE N H

4 VERECREIv:Re "

130 TYPE=USR(ADR(P$) ,CHX¥146) :REM NRITE
HEADER TO DISK

140 IF TYPE=1 THEN 188:REM VERTICAL
COMPRESSION

145 REM HORIZONTAL COMPRESS

156 P$(1) ="h@hhE "84 BTN IETUK 1K1

mmmm«mm4

$00 RACNHL ~EIll LIRNEN « Buiivid EDC DOAEIDIA"

140 P$(182)="13 maﬁcmml‘“

QOOS-IO\] 2 BTN IDH AL HE T ERAIIE ST

BH" EeDE @D+ VEMBISNGEN « S0« RIS |

51

170 P$(263) =" ETl:Alell FKIRETONOTTING] J X
Gt BefIHY 20 LMK IRIOCWRIOEISH [H CRRENN
E3E 4 D S0 1 4 gRINHY AT : GOTO 238

188 P$(1)="hEhhINKNE TI5< B’ (HC NGV HIHNI
Ymmrummomm
WeSHR mwmu.:hpn,
199 P$(182)= wemr
HedDix- XYL oL 1RING BDEIRE LINORN 2> 740NN
MMOWWVBM’WM

200 P$(203) ="y N &+i Pl CISEANANS TN
L2343 DA S | 4 TUERIDGS--EA K-MECIDNITEG KIH
(D] HeTIOCTRIRITEAITENH [H- el @anos V

218 P$(304)="EAdad@i«E+fi--ciIXNE.
ECRANARCIR CI0HL e SUTWROET R AN TN RN My [4
BI04 WeniH- Bl LLEENKTIDPDCRAEITEIE OH- [

226 P$(495)="uge0H BN VEIERE/SRAEINE
Siciolz LPnEN:, ElElE LRV I2ICONET TRAN<+opCRMN i
OSSN PTRE REME e "

2308 X=USR(ADR(P$) ,CHX14) :CLOSE #CH

52

Chapter 8
Fun With Pictures

Once you have a GRAPHICS 8+16 or ANTIC E picture
displayed on the screen, you can wuse the following routines
to scroll it around the screen. The picture will wrap around
the screen, not just run off the border. Now you can shift
any picture to any position on the screen and resave it using
the screen saving routines in this book.

The sample program below reads joystick zero (the first
Joystick) in lines 70 to 110 and passes the direction chosen
to the proper machine scroll routire. Later, we'll show you
machine routines to read the joystick. For fine scrolling to
the left use 1line 180. For fine scrolling to the right use
line 190. No parameters are required.

To demonstrate this routine, first load PROGRAM. (040, the
Micro-Painter screen loading routine, and ENTER this program
into it.

53

8 REM PROGRAM.BTZ
78 IF STICK(®>=14 THEN GOSUB 128:REM U

P

g8 IF STICK:@>=1i3 THEMN GOSUB 13@:REM D
OWN

8 IF STICK(®B>=7 THEN GOSUE 146:REM CO
ARSE RIGHT

188 IF STICK(@B)=11 THEM GOSUE 15@:REM
COARSE LEFT
118 GOTO 7@
120 X=USR{ADR " il SIErI2NF1CIEE v IS
(EEDACIRER - "IN vl YR SIS [viEMD A\EARIL 1Te
») tRETURM
138 X=USR(ADR " hIKZTCIZNF 160 < MGk« 315
P JOLPANF LTl) €a L) Wl B ball B IF o g
E8isMe " >) : RETURN
146 ¥=USR{ADR(" hiKZTTCINEFIMEONZM <l 1N 5
7 B AN SRR YENE SIS TPl Y DN Y
RS G IR BIRIRL A" > > : RETURN
156 X=USR(ADR!{ " hiIESIEIMNIVIELN < 15 R
iy =13 10 (G EZ R SIS AR v
BN SR RIS « Mo MAMABLL IS " >) : RETURN
148 REM ¥
176 REM REPLACE LINE 146 WITH LINE

180 AND LINE 158 WITH 198 FOR FINE

SCROLLING LEFT AND RIGHT.
180 X=USR(ADR(" HIK 1Y "IMvAE 303 SIS i
M0 BXIE NN | JHCH MITINRge ' >) : RETURN
1968 X=USR(ADR " hil 1P v EvilN* B 3T,
7 MR N1 (TR AL TEINgEe ') > : RETURN

PROGRAM.(053 Inverse Picture

The short routine below produces an inverse image of a
picture on the screen, like a negative of a photograph. It
replaces any zero's in the screen memory bytes with ones, and
vice versa. Try this routine when copying a picture to a
printer, since the results may turn out better.

Enter the program below into PROGRAM.040. Line 70 holds
the picture on the screen for a short time before it is
inverted. No parameters are required.

54

@ REM PROGRAM.853

76 FOR I=1 TO 500:NEXT I

28 X=USR{ADR (" hEMS<TRMEY N vill« B0] LI N21Z0N)
BHENRe "))

9@ GOTO 90

The routine below will print the picture on the screen
(GRAPHICS 8+16 or ANTIC E), on an Epson or Gemini compatible
printer. Lines 10 through 60 is PROGRAM.040, which brings up
a Micro-Painter picture on the screen.

Once the picture is on the screen, line 70 opens a
channel of communication, channel 2, to the printer. Line 80
sends the correct line spacing to the printer. The number 8
in line 80 requests 8/72 line spacing, some printers may
require a different line spacing.

Lines 90 and 100 contain the machine code, which scans
the picture and sends the appropriate dot image patterns to
the printer. This routine needs 198 memory locations in a
string or in Page 6 to function (third parameter). The
routine below uses Page 6, starting at memory location 1536.

The routine will print the screen in either normal or
inverse print (second parameter) and even checks for the two
codes that can't be printed. One of these is the number 155,
which is the End-Of-Line signal to the printer, and the other
is two number 13's in a row. In the first case, 153 is
substituted for 155, and in the second case, the second

number 13 is changed to an ll. Four parameters are required
for the USR call in lire 110.

P1 Channel opened to the printer.

P2 0 for normal print, 1 for a inverse (negative image)
print.

P3 Address of a 198 byte memory for temporary use.

P4 Starting picture memory address.

55

@ REM PROGRAM.8354
18 DIM P$(163) :RW=4:CH=1
28 CLOSE #CH:0PEN #CH,RW,8,"D:MICPNT.P

ICll
38 GRAPHICS 24:A=USR(ADR("hiR° Clds! C1N
EBLNSAGE o S HNE/TIRERIARLIIYINTH")) :REM P

ROGRAM.B33, GRAPHICS 24 TO ANTIC E.

48 SD=PEEK(88) +PEEK(89) ¥256

58 P$="hhhAAMAEHhEBS hEES hEDS e 4 el
VERWDI4JBJINGI RN | VERY | VERE | VERE | V

Ele VEML | VEmY | VEmA | VERE lo"

68 X=USR(ADR(P$) ,CH,RW+3,SD)

78 CHP=2:CLOSE HCHP:OPEN HCHP,8,8,"P:"

88 ? HCHP;CHR$(27) ;CHR$(65) ;CHR$ (8)

98 P$(1)="hhhAAAAESE 3B hh ah CE "h D4 5

f 1 LA S A TH S RO TH) (2 HDS B gt LR T K 1 L
Ll Dl LI L oy LTI TR f FL
100 P$(102) ="M 30/H Hi/B vl "B, REDTTEN

SN NI DINGET VENMCTRMIDTEIOMNGE(Ble
:P$(95,95) =CHR$(155)

110 X=USR(ADR(P$) ,CHP,®, 1534, SD) : CLOSE
HCHP :

If you have an older NEC or C.Itoh compatible printer,
you may need to wuse the following routine to print your
picture (Some of the newer models have Epson compatibility,
S0 try PROGRAM.054). Just ENTER this program into PROGRAM.0S54
for a demonstration. Line 80 is the proper line spacing
statement for the NEC *type printers, which is 16/144 inch
spacing. The same parameters are used in this routine as for
PROGRAM. 054

8 REM PROGRAM.B55

86 ? HCHP;CHR$(27) ;CHR$(84) ;" 16" :REM L
INE SPACING

70 P$(1)="hhhAMAEN JIB4 @ Sh hIREHESES AL
ek 1 i d L S TH R THD (el o TH) B TH) B o TH) 7
Uh LUl Ry 1) F il L)) Ve Us U IKiaP TIET B
100 P$C182)=" RIMNIG" B3NL/N Hi/Bivil " BT
(p Ko M FLHY UieE PHIRW S T KU LF L =T
P$(98,98)=CHR$(155

56

Here is a routine that will fade a picture into a blank
screen or into another picture. At first glance, the program
looks complicated because it requires three other programs in
this book to function. 1In general, a picture is loaded into
an area of memory that is not the display screen, then it is
faded into the active display screen.

Line 10 does the necessary DIMension statements and,
along with line 20, sets the display screen to ANTIC E, since
we are going to load a Micro-Painter picture, PROGRAM.040.
Line 30 points to an area of memory 31 pages (7936 bytes)
less than the high byte of the active screen's Display List.
This is a safe place to 1load the picture before it's faded
into the active screen area. Lines 40 to 60 load the
Micro-Painter picture (PROGRAM.040) into this specially set
up area of memory.

In order to get some randomness to the fade routine,
random number tables are setup. PROGRAM.093 is used to setup
these tables in lines 70 to 100, 200, and 210. what happens
is a string, S$, is setup, with the numbers ranging from O to
255, line 70-80, and these numbers are taken at random and
placed into Page 6. Page 6 must be used for this table. Then
the string, S$, is again used to set up 30 non-repeating
random numbers (representing the 30 pages of a screen) into
string T$.

Line 110 contains the machire code for the actual fade
routine which is called in lire 120. Eleven parameters are
required.

Pl Starting address where hidden picture was placed.
P2 Address of the 30 réndom number string.

P3-P1l1 Special numbers used internally in the machine
program. You can change these numbers for weird
effects as long the last ore is O. Keeping 255 as
the second to last ore will assure the full
picture is on the screen at the completion of the

57

fade routine. All numbers must be from 0 - 255.

Once the picture loads there will be about an
8 second delay to set up the random tables before
the picture begins to fade-in. Once the tables
are generated, they don't have to be constructed
again. Simply load another picture to the hidden
memory and call the fade routine again in line
120. Now the picture just loaded will fade into
the old picture.

@ REM PROGRAM.BS5&

10 DIM P$(9&) ,5$(256) ,FN$(17) ,T$(38) :C

H=1:RW=4

28 GRAPHICS 24:A=USR(ADR("hiiEe CA3E! CI8

EBANSAE o S SN/ TANZISIAME EYANTR" >) :REM P

ROGRAM.@33, GRAPHICS 24 TO ANTIC E.

380 SD=(PEEK(541)-31) ¥256

48 CLOSE #CH:OPEN #CH,RW,8,"D:MICPNT.P

IC"

58 P$="hhhAAAAEHh[IB4 h{IES hEID We] 4 GonHd

VElof14 5B MNGR ES | VERY | VERIZ | VBRI | V

Ele VEm | VENY | VEES | VEmS jo"

68 X=USR(ADR(P$) ,CH,RW+3,5D)

65 REM ¥X PICTURE DATA NOW LOADED INTO
AN AREA OF MEMORY THAT IS NOT THE
DISPLAY SCREEN AREA OF MEMORY.

70 S$=" ":S$(254)=5%:5$(2)=5%:512E=254

80 X=USR(ADR(" h h28h3h 2h 7iih h Ty s

l@3e")> ,ADR(S$)> , 1534,512E) : GOSUB 200

90 T$=" ":T$(30)=T$:TH(2)=T$:5]2F=30

186 X=USR(ADR(" hhih"¥h Rl hIEDI =T

@zFle "> ,ADR(S$) ,ADR(TS) ,SIZE) : GOSUB 286

185 REM %% RANDOM TABLES NOW MADE.

118 P$="hhJIRCIRH DAY TECIEE SR Miah STah h TS

/I e/ 1 ORI AR Do SR REINBIES DR AR A

(ERENEE] IR

128 X=USR(ADR(P$) ,SD,ADR(T$) ,2,34,42, 1

70,174,238,239,255,8)

130 GOTO 13@

195 REM ¥ SUBROUTINE FROM PROGRAM.®93

200 FOR N=SIZE TO 1 STEP -1

218 X=USR(ADR(" hhh IS\ INREDNT OS5 1Y

EDOINzeGe " > , INT (NXRND (@))) :NEXT N:RETUR

N

58

Chapter 9
Display list Interrupt Routines

Display List Interrupts (DLI) can only be obtained
through the wuse of machine language. When an image is
displayed on the TV or monitor screen, it's drawn line by
line starting at the top of the screen and working its way to
the bottom. Each line is drawn from left to right. When the
scanning beam reaches the right end of & 1line it turns off,
and must shift to the beginning of the next line. During this
time the computer checks an address in memory, decimal
locations 512 and 513, and jumps to the address indicated in
these registers. The default address is simply an instruction
that continues normal processing. However, if that address
points to a users own machine code it will be executed.

In order to select the proper line on the screen to
enable a DLI, the corresponding line in the Display List must
have its bit 7 set. Once the proper setup is completed
nothing will happen until the DLI is activated by placing 192
in memory location 54286.

All the routines in this book are set wup in the string
DLI$. You must use a string or Page 6 for these routires,
since they can not be called directly by a USR call.

One of the most popular uses of DLI's are to split the
screen into two or more background colors. The following
program will split a GRAPHICS O screen into two colors, the
background color and one selected by you. The background
color of a GRAPHICS O screen is color register 710.

Three parameters are required. The first one is the
address of the DLI routine. This may seem redundant because
we already wuse the address of the DLI routine in the USR
call, but it is necessary since we need to find the location
within the string, DLI$, that the actual DLI routine starts.
The DLI routine actually contains two machine routines. Don't
forget line 40, which activates the DLI routines.

59

Pl

P2
P3

Starting address of the DLI machine code.

‘Line number (1-23) to start the color change.
‘Color desired (0-255) for second background color.

8 REM PROGRAM.BS7

16 DIM DLIS(&1)

20 DLIs="h@! C1NS0 CAdhmb IheizZme LHABE hh
MHE 31 4 DT A ARAh h A e HEl T tie4zh @

30 X=USR(ADR(DLI%$) ,ADR(DLI%) ,16,22)

48 POKE 54284,192

PROGRAM.058 Three Color Screen

This program is a 3 color split screen version of the
last program. Five parameters are required.

Pl
P2

P3
P4

P5

Starting address of the DLI machine code.
First line number for first color change.

Second line number for second color change.
First color value (0-255).

Second color value (0-255).

8 REM PROGRAM.B58

1@ DIM DLI%(8&)

ze DLIs="hg! CINR0 CNMM ihm} hei ?me LA@E |
hhMHE i 4 DT SRR h Y6 h IREE v N e HNES
/8B I eh L @

38 X=USR(ADR(DLI%> ,ADR(DLI%),10,15,8,2

2

48 POKE 54286,192

PROGRAM.059 Four Color Screen

This program is a 4 color split screen routine. Seven
parameters are required.

60

Pl Starting address of the DLI machine code.
P2 First line number for first color change.
P3 Second line number for second color change.
P4 Third line number for third color change.
P5 First color value (0-255).

P6 Second color value (0-255).

P7 Third color value (0-255).

8 REM PROGRAM.OS%

1@ DIM DLI%®(102)

20 DLIs="hE! C14G0 CRH hmb Ih4iCme EA@F |
hhM K MELH-i 4 DT +EF2204ERH h T hoTRh h I Klde
HitzR HEN /PRI SRS SACE b iheiSh @
38 X=USR(ADR(DLI%> ,ADR(DLI%) ,4,12,20,8
122,46)

48 POKE 54286,192

The following routine allows up to 23 color changes on a
GRAPHICS O screen. The routine requires the line numbers and
then the color values be placed into Page 6 starting at
memory 1538 to function. Memory locations 1536 and 1537 are
used internally by the machine program. Line 30 places 23
line numbers (1-23) into Page 6 starting at 1538. Line 40
does the USR call, which changes the Display List at the linre
numbers in the Page 6 memory. Now the color values (line 60)
are plsced into Page 6, starting at 1538, by line 50. The DLI
routine will look 1into Page 6 for these color values. When
it's time to activate the DLI routine and make all those
color changes we simply POKE 54286 with 192 as per line 70.

Two parameters are required In the machine routine in
line 40.

Pl Starting address of the DLI machine code.
P2 The number of lime numbers to enact a color change.

61

@ REM PROGRAM.B4&0

18 DIM DLI$(98)

20 DLI$="h@! CIMEC CAdhmb Ih+i?me LH@E hh

mv/lvE /3 I/MHE ML 4 DY JRANv /R eHVHA

b3 VehilimtERlv/iNOva /R B /N L e

380 FOR I=1 TO 23:POKE 1537+1,1:NEXT I:

LINES=23:REM FIRST PUT 23 LINE NUMBERS
IN PAGE 6 STARTING AT 1538.

40 X=USR(ADR(DLI$) ,ADR(DLI%) ,LINES)

S8 FOR 1=8 TO 23:READ A:POKE 1538+1,A:

NEXT I:REM NOW PUT COLORS INTO PAGE &
STARTING AT 1538,

é8 DATA 4,8,12,16,20,24,28,32,34,40,44

,48,52,56,60,64,68,72,76,80,84,88,92,9

é

78 POKE 54284, 192

The following four programs are.DLI routines for changing
the background colors of GRAPHICS 1 or 2 screens. These
screens are Atari's multicolor text mode screens. For

GRAPHICS 1 you can change color on lines 1-23 and for a
GRAPHICS 2 screen lines 1-11.

PROGRAM. 061 Graphics 1 & 2, Two Color Screen

This program is the GRAPHICS 1 or 2 screen eguivalent of
PROGRAM. 057.

Pl Starting address of the DLI machine code.

P2 Line number to start second color.
P3 . Second color, 0-255.

8 REM PROGRAM.B& 1

16 DIM DLIS(&1)

28 GRAPHICS (+14

30 DLIs="hQ! CUNEC CAAhmb th+i2me CARF hh
MHE M 4 DREC A3 L e HilEiwh 1 Mah G

40 X=USR(ADR(DLI%> ,ADR(DLI%)> ,10,22)

58 POKE 54284,192

é8 GOTO 40

62

This program is the GRAPHICS 1 or 2 screen equivalent of
PROGRAM.058. The same parameters apply.

@ REM PROGRAM,842

16 DIM DLI$(8&)

286 GRAPHICS 1+1¢é

38 DLIs="hE1 (IR0 CR3M Ihmb h+i?me AR} |
hhi K B 4 0N S 3RMEING h TR H IR v N HitlE
/8RS SR 1 HH 2"

48 X=USR(ADR(DLI%)> ,ADR(DLI%) ,1@,15,8,2
2

Se POKE 54284,1%92

48 GOTO &@

This program is the GRAPHICS 1 or 2 screen equivalent of
PROGRAM.059. The sample program has a GRAPHICS 2 background

screen. The same parameters apply.

8 REM PROGRAM.@6&3

18 DIM DLI$C102)

28 GRAPHICS 2+14

36 DLIs="hig! CHERO DA hmt h+iCmv EHRE |
hhMHE M i 4 DA ARPRMSIS XN b R T Hse
HEE MM/ S0REE SRS REheh tie Haih @ "
48 X=USR(ADR(DLI%) ,ADR(DLI%$) ,3,4,9,8,2
2,48)

56 POKE S4284,192

60 GOTO 4@

63

This program is the GRAPHICS 1 or 2 screen equivalent of
PROGRAM.060. The same parameters and method of placing the
line numbers and color values in Page 6 apply.

8 REM PROGRAM.B&4

16 DIM DLI#®(?8&)

20 GRAPHICS 2+1¢&

30 DLIs="hE! CINR0 ER3hm} Ih+i ?me LARE Ihh

nv/ivE /3 INMHKE i 4 Y SR /lE e HHE

/3 Vehlis YElie/NDve /2 B /0 R R

48 LINES=11:FOR I=1 TO LINES:POKE 1537

+1,1:NEXT I:REM FIRST PUT LINE NUMBERS
IN TO PAGE & STARTING AT 1538.

58 X=USR(ADR(DLI%> ,ADR(DLI%) ,LINES)

&8 FOR I=6 TO 23:READ A:POKE 1538+1,A:

NEXT I:REM NOW PUT COLORS INTO PAGE &
STARTING AT 1538,

780 DATA 4,8,12,16,20,24,28,32,346,4@,44

,48,52,54,40 ,464,48,72,74,80,84,88,%92,9

é

86 POKE S428&,192

2@ GOTO %9

This program is the equivalent of PROGRAM.060 except it
is for a GRAPHICS 8+16 or Antic E screen. For these screens
color can be changed on lines 1-190. The sample program shows
the placement of 10 random color changes (line 60) to a
GRAPHICS 8 screen. Line 70 contains the line numbers where
the color changes are to begin. The same parameters apply as
for PROGRAM.060.

64

@ REM PROGRAM,.B845

18 DIM DLI$(187)

26 LINES=1@:GRAPHICS 24

30 DLI$="h@E! CHE=0 CNAhmb Ih+iHme EH@F hh
meZiva /3 1100l MK M-I 45 &1 /ABNS JTNAM
v/illle HHE F/Z Ve lim G iiv/iNDve /S B /00
h@ll

48 FOR I=1 TO LINES:READ A:POKE 1537+]
+A:NEXT I:REM LINE NUMBERS

S8 X=USR(ADR(DLI$)> ,ADR(DLI$) ,LINES)

68 FOR I=1 TO LINES:A=INT(2S&XRND(B))
POKE 1537+1 ,A:NEXT I:REM COLORS

76 DATA 20,408,46,80,90,100,110,130, 150
178

80 POKE 542864, 192

98 GOTO 50

PROGRAM.066 Two Character Sets

With the next short DLI routine you can place two
different character sets on a GRAPHICS 0, 1, or 2 screen at
the same time.

Lines 10 to 30 are from PROGRAM.038 which loads
'CHAR.SET', an alternate character set, from the front of our
program disk to a safe area of memory. Line 10 loads the
alternate character set to PEEK(56l1)-4 which is an address
evenly divisible by 1024 (See PROGRAM.038 for details). Line
50 then sets up the DLI routine in line 40 and line 60 turns
it on. Remember, you can change lines 1-23 on a GRAPHICS 0 &
1 screen and 1lines 1-11 on a GRAPHICS 2 screen. Three
parameters are required.

Pl Starting address of the DLI machine code.

P2 Line number to begin the alternate character set.

P3 Starting address of the alternate character set in the
computer memory.

65

8 REM PROGRAM.B&6

18 DIM DLI$(&1) :CB=PEEK{(361) -4

26 CH=1:CLOSE #CH:0OPEN #CH,4,8,"D:CHAR
.SET"

3@ X=USR(ADR " hhhhAAAEMNGES hOD4 hOEJER O
[4@enHd UBle") ,CH,CB) :CLOSE HCH:REM XXX
PROGRAM. 838, LOADS CHARACTER SET.

49 DLI$="hE! CIN=0 CAdhmb h4+i2me EA@P b

MHa i 4 DA JIRE H e HitEmh e I C"
5¢ X=USR(ADR(DLI$) ,ADR(DLI%) ,10,CB)
48 POKE 54284,192

PROGRAM.067 Insert Alternate Character Set

This program will change 1 or more lines to an alterrate
character set on a GRAPHICS 0,1, or 2 screen. This way you
can insert the altermate character set in only a few lines.
The program is like the last one except a third parameter is
required. The sample program inserts six lines of the
alternate character set in the middle of the screen. Line 5
was added to write something to the GRAPHICS 1 screen. Note,
that in 1line 10 the alternate character set was loaded to
PEEK(561)-5 to obtain an address evenly divisible by 512 (48K
memory). Refer to PROGRAM.038 for more details.

Pl Starting address of the DLI machine language routine.
P2 Line number to begin the alternate character set.

P3 Line number to return to the the normal character set.
P4 Starting address of the alternate character set.

® REM PROGRAM,@&7

S5 GRAPHICS 1+1&:FOR I=0 TO 23:7 #&63"
Machine Language" :NEXT 1

1@ DIM DLI%(95) :CB=PEEK(S5&1) -5

20 CH=1:CLOSE HCH:0OPEN #CH,4,8,"D:CHAR
.SET"

38 X=USR(ADR(" hhhhAMMESINDGES hD<4 hBEJIH O
I4geIHe UBle")> ,CH,CB) :CLOSE HCH:REM XXX
PROGRAM. 838, LOADS CHARACTER SET.

4@ DLIs="h@!1 CUNR9 Cldhmt Ih+iFme LARF Ihh
MHE M1 4 DA LN M KA MR- 4 DA L2 bR

Tikle HitRimh i JOETSAKTIRH CMERIRNC"

Se6 X=USR(ADR(DLI%) ,ADR(DL1%> ,8,14,CB)
68 POKE 54286,192

7@ GOTO 7@

66

If you want to flip the text beginning at some line on
the screen then wuse the next routine. This flipping of
characters is useful when displaying the bottom half of cards
using redefined characters. The routine below works for a
GRAPHICS 0, 1, or 2 screen.

The sample program shows the flipping of text on a
GRAPHICS O screen starting at line 10.

Pl Starting address of the DLI machine code.
P2 Line number to begin text flip.

@ REM PROGRAM.B48

18 DIM DLI$(S?)

20 DLIs="h@! CINE0 Ci¥-mb Ih+i .me LHR@} hh
MHE EEi 4 DAY LT3 HIOH wh lim HIH @ "

38 X=USR(ADR(DLI%) ,ADR(DLI%) ,18)

4@ POKE 5428%,192

This program will demonstrate flipping text within a
group of lines chosen by the wuser. The routime works for a
GRAPHICS 0, 1, or 2 screen.

Pl Starting address of the DLI machine code.
P2 Line number to begin text flip.
P3 Line number to return to upright text.

67

@ REM PROGRAM.@Q&%

16 DIM DLI$(%3)

26 DLIs="hQ! CING" CA¥mt h+iDme LH@EF Ihh
MHE B4 KT (RN DM HE i 4 DI 1N /T1E
¢HZkmh 18m HEM 313 CHH Cl/HE"

30 X=USR{ADR(DLI%) ,ADR(DLI%) , 18,12

468 FOKE $5428¢6,192

Now that we have all those fancy DLI routines, we need a
way of removing them without using the almighty RESET key!
The listing below shows the correct routine to use for a
GRAPHICS 0, 1, 2, 8, or ANTIC E screen. Just insert the
appropriate routine into your BASIC program where you want
the DLI to end. No parameters are required.

@ REM PROGRAM.B7@

18 REM X% CLEARS DLI FOR GRAPHICS @
OR 1 SCREEN.

28 X=USR(ADR("hE! CINR6 CLIH N FRME/AY

MRGENEIDE - av e HCwdie "))

30 REM

46 REM XX CLEARS DLI FOR GRAPHICS 2
SCREEN.

56 X=USR(ADR("hE! C1MRA CLNMEM IX PRUS/ZAN

PRAGE P me I+ WCEmAle "))

46 REM

78 REM ¥X CLEARS DLI FOR GRAFHICS 8 COR
ANTIC E SCREEN.

88 X=USR(ADR("h@E! CUMRE CLEHNX RM/AY

PRSI Y PRMESE ae o - B iie "

»

68

Chapter 10
Joystick Routines

Reading the joystick 1is not difficult in BASIC. To read
the value of the first Jjoystick, Joystick O, try the
following BASIC line.

10 ? STICK(0):GOTO 10

Depending on the position of the joystick, the following
numbers will appear.

14

10 /r 6
AN /’ Normal

11 €— 15=—> 7 Joystick

Response
9/l\5

13

Normally, when the joystick position is read some action
will be taken. This process takes a mess of IF...THEN
statements in BASIC. If the joystick numbers would have been
assigned as 0-8 then the powerful BASIC single statement
"ON...GOTO" or "ON...GOSUB" could be wused for all the
decision making. The joystick values may not make too much
sense in BASIC but they are perfect for machine language
reading of the joystick position.

The joystick machine routines in this section will change
the Jjoystick positions to the following values so the
"ON...GOTO" or "ON...GOSUB" statement can be used.

€9

Redefined
3&—0—> 4 Joystick

éﬁfl \5\ Response
8 7

2

Here are some important points to remember. The first
joystick port is Joystick 0, the second joystick port is
Joystick 1, etc.. Only the Atari 400 and 800 are capable of
addressing Joysticks 2 and 3 so don't use any of those
routines on your XE or XL.

Make sure you place the proper number of line numbers
following the ON...GOTO or ON...GOSUB statement to prevent an
error from occurring. For example, if you only want to use
the up and down position of PROGRAM.071, you still must
include the two line numbers for the left and right position
in the ON...GOTO or ON...GOSUB statement. Just use the line
number that sends the program back to the joystick read
routine.

Lastly, the neutral position of the joystick will return

a value of zero. The ON...GOTO or ON...GOSUB statements are
programmed to ignore this number and processing will continue

to the next BASIC line.

Since the majority of programs written use Joystick O and
only the neutral, up, down, left, and right positions, the

following short routine was developed. Line 10 is the machine
code and USR call statement. The Return Variable, 'X' in our

example, contains the position of the Joystick in our new
numbering system (0-4). Line 20 is the ON...GOTO statement
which branches control of the program according to the
position of the joystick.

The sample program prints out the position of Joystick O.
For Joystick 1 replace the code in line 10 with the code in
line 90. No parameters are required.

70

REM PROGRAM.071

12 X=USR(ADR("hEvHEvE) K28V 4V {F-1

) AT iEvTRIoN KRB 1 SEYH 5")

2@ ON X GOTO 40,50,4@,79

36 ? "NEUTRAL":GOTO 1@

4@ ? "UP":GOTO 1@

S@ ? "DOWN":GOTO 1@

68 ? "LEFT":GOTO 1@

76 ? "RIGHT":GOTO 1@

88 REM ¥X¥ USE THE FOLLOWING MACHINE
CODE FOR JOYSTICK 1.

90 X=USR(ADR(" hvIIEvEED NJeV 4V EE-V

) (T2 AlvTRI0 HTDB I EWH R O

This program is very similar to the last program but now
all 9 positions of the joystick will be read and translated

into the new numbering system.

@ REM PROGRAM.@72

18 X=USR(ADR("hllvJURvE) s &> HIeV B' V43
- U A370v DA E/NLAM/ 50 5 HARD J2/140NE
B4 1S\ DH L0 EX0/H3] LM EE)
20 ON X GOTO 46,S5e,40,70,80,96,100,110

386 ? "NEUTRAL":GOTO 1@

4@ 7 "UP":GOTO 16

58 ? "DOWN":G0TO 10

&8 ? "LEFT":G0T0 1a

78 ? "RIGHT":G0TO 1o

8a ? "UPPER LEFT":G0TC 1@
?8 ? "UPPER RIGHT":GOTO 1@

166 ? "DOWN RIGHT":GOTO 1@

116 7?7 "DOWN LEFT":G0TO 16

126 REM XX FOR JOYSTICK 1 USE THE
FOLLOWING MACHINE ROUTINE.

1380 X=USR{ADRC"hllviiIReEJJJIED HIs ™ ' N

) 43 b MD7ETRISOAE/LA1/ 0 N HAKD J3/4

"I - - -

71

This program is like PROGRAM.Q71 but

it

requires the

number of the joystick (0-3) as the only parameter, line 10.
The program below is set up to read Joystick O.

Pl Which joystick, 0-3.

8 REM PROGRAM.@73

16 X=USR(ADR("hlv;hhiiE L. S HEE [B_JJJJ+
ENSVEE HTED HZ0 V' +V 13- 42 llviNsel Kl

N N G G 00
20 ON X GOTO 486,.5@,40,76

3@ ? "NEUTRAL" :6G0TCO 10
48 7 "UP":GOTO 1@

50 ? "DOWN":G0TO 1o

@ ? "LEFT":GOTO 18

78 ? "RIGHT":GOTO 19

This program is like PROGRAM.072 but

it

requires the

number of the joystick (0-3) as the only parameter. The

program below is set up to read Joystick 1.
Pl Which joystick, 0-3.

8 REM PROGRAM.@74
16 DIM P$(121D)

2@ P$(1) ="hBeIIlhhils L RHEE FJJJJe Sl
EHED & HIeY RB'V4R. Y ﬁ?lﬂlow
1800 [N

/N 9 KR J3/0 A0\ GEYL 4000

30 P$(102)="LI300M @30/ LI0H 2"

48 X=USR(ADR(P%), 1)

58 ON X GOTO 70,80,90,100,110, 12e, 130,

148

48 ? "NEUTRAL":GOTO 40
786 ? "UP":G0TO 40

8@ ? “DOWN":GOTO 490

8 ? "LEFT":60TO 46

168 ? "RIGHT":GOTO 48

116 ? "UPPER LEFT":G0OTO 40
126 ? "UPPER RIGHT" :GOTOD 4@
136 ? "DOWN RIGHT":GOTO 4@
146 ? "DOWN LEFT":GOTO 4@

72

The program below reads all the positions of Joysticks O
and 1 at the same time. The converted value of Joystick O is
in the Return Variable and memory location 203. Its ON...GOTQ
statement is line 50. The value of Joystick 1 is in memory
location 204 and its ON...GOTO statement is line 70. The
sample program below will print the position of the two
joysticks in two separate columns.

@ REM PROGRAM.B7S

18 DIM P$(115)

26 PE(D="hBvVIEERD .0 HE+V V4@V
) 43 @ EATHROOA B/ 5 I KD JS/5.4N
(S AR 1SR, (SR [N EID/THE LI "
30 P$(102)="HNLAEvJJJJs "

48 X=USR(ADR(P$))

S8 ON X GOTO 90,100,118,120,138, 148,15
8,160

68 ? "NEUTRAL "y

70 ON PEEK(284) GOTO 179,18@,198,200,2
10,220,238 ,240

ga ? * NEUTRAL" :GOTO 49

?6 ? "UP ";:6G0TO 7o

168 ? "DOWN *3:60TO 7o

118 ? "LEFT "3:GOTO 70

126 ? "RIGHT *“31:60TO 70

136 ? "UPPER LEFT ";:G0TO 7@

148 ? "UPPER RIGHT";:G0TO 78

156 ? "DOWN RIGHT ";:60T0 76

1640 ? "DOWN LEFT ";:G0TO 7e

176 2 " UP" :GOTO 40

ige ? * DOWN" : GOTO 40

196 2 " LEFT" :GOTO 49

2068 2 °°® RIGHT" :GOTO 40

2te ? " UPPER LEFT":GOTO 4@
228 ? " UPPER RIGHT" :GOTO 4@
238 ? " DOWN RIGHT" :GOTO 40

248 ? * DOWN LEFT" :GOTO 4@

73

The program below is the mate to PROGRAM.075 for
Joysticks 2 and 3. You can only use this routine on Atari 400
and 800s. Note the position value of Joystick 2 is in memory
location 205 and the position value of Joystick 3 is in
memory location 206. The Return Variable does not contain any
useful value. No parameters are required.

8 REM PROGRAM.@74

186 DIM P$(110)

20 P$(D="hBHIHD & HErV E$ V4RIV M:
B AT B/ALA/ 30 AR KT J3/0LA0N 800 4
e IAROMFDH LIBEN [i0/B LI G
30 P$(162)=" HaJJJJ4L2"

48 X=USR(ADR(P$))

50 ON PEEK(205) GOTO 90,1090,118,128,13
@,140, 150, 140

48 ? “NEUTRAL "3

76 ON PEEK(284) GOTO 17@,180,190,208,2
18,220,230 ,240

ga ? * NEUTRAL" :GOTO 49

?6 ? "UP *"3:60TO0 70

106 ? "DOWN “3:6G0TO 7o

118 ? "LEFT *'3:60TO 706

1280 ? "RIGHT "3:6G0TO 7@

136 ? “UPPER LEFT ";:GOTO 7@

148 ? "UPPER RIGHT";:60T0 7@

1586 ? "DOWN RIGHT ";:G0TO 7@

1648 ? "DOWN LEFT *";:G0OTO 7@

i7e ? " UP* :GOTO 40

igg 2 " DOWN" : GOTO 48

198 ? " LEFT" :GOTO 48

208 ? " RIGHT" :GOTO 40

218 ? " UPPER LEFT":G0TO 48
228 ? ° UPPER RIGHT" :G0T0 4@
238 ? " DOWN RIGHT" :60T0 48
248 ? " DOWN LEFT" :GOTO 40

74

This program will read all 4 joysticks and place their
converted positions in memory locations 203, 204, 205, and
206 respectively. The numerical value in each joystick's
position will be printed in separate columns by 1line 50 in
the sample program. No parameters are required.

8 REM PROGRAM,877
186 DIM P$(135)
20 P$(D="hIHEWD . HE3Y BCV4EMYL &
BerE TENE HZ. TIRe NG HEL TR Hel A0
120 HIED FAANGE L4003
30 P$(102)="\IWH LDDMH /D00 CINH
I JJIM
48 X=USR(ADR(P$))
Se FOR JOY=8 TO 3:? PEEK(283+J0OY) ,:NEX
T JOY:? "4":GOTO 48
68 REM 1=UP, 2=DOWN, 3=LEFT, 4=RIGHT,
S=UPPER RIGHT, &é=UPPER LEFT,
7=DOWN RIGHT, 8=DOWN LEFT.

75

Chapter 11
Player/Missile Graphics

Introduction

The subject of Player-Missile (P/M) Graphics almost
deserves a book by itself. We will try to give some different
machine routines to take the drudgery out of setting up and
moving P/M. For more information on this subject, we
recommend the book "Your Atari Computer" from
Osborne/McGraw-Hill, or any of the fine articles on this
subject in Anmalog or Antic magazines.

Player-Missiles are special graphic objects. They are
independent of the background screen, and are designed for
rapid movement. You can wuse up to four players and four
missiles. Each of the four players can be as tall as a full
screen and up to 8 bits (1 byte) wide. Both players and
missiles can be displayed in single or double line
resolution, and single, double, or quadruple horizontal
width. In addition, each player can have it's own color and
its priority with background objects and other players
specified. Special collision registers can also detect the
"collision" of one player with missiles, other players, and
background objects.

Missiles are similar to players except they can only be 1
or 2 bits wide, and they must be the same color as their
corresponding player. The four missiles can even be combined
to form a fifth player!

To take advantage of all this power some set up work is
required by the user. Although the following explanation may
be above a beginner's level, you'll still learn quite a bit
about P/M by working your way through the explanation and
running the example programs.

Player/Missile graphics require a special area of memory
set aside for its use. The amount of memory depends on
whether single or double resolution graphics are used. Single
resolution graphics require 2048 bytes of memory, double
resolution requires 1024 bytes of memory. This memory is
partitioned automatically by the computer, as shown in Figure

76

L. In single resolution, each row of a player's shape will be
displayed on one P/M line. For double resolution, each row of
the player's shape will be displayed on two P/M lines,
doubling the height of the player, but lessening its
resolution. There are 192 P/M lines for a player or missile
in single resolution, 96 in double resolution, regardless of
the background GRAPHICS screen.

Offset from PMBADR
Double Resolution Single
0 0
Unused
— 8 bits=—
+384 +768
SARE
Missiles
+512 +1024
Player O
+640 +1280
Player 1
+768 +1536
Player 2
+896 +1792
Player 3
+1024 +2048
FIGURE 1: P/M Memory Layout

This special area of memory must be located in the
computer where it will not be disturbed. Normally, the P/M
memory can be located Jjust below the background screen's
Display List. For single resolution the P/M table must start

77

at an address that is evenly divisible by 2048. For double
resolution, it must be evenly divisible by 1024. The high
byte of this address is called PMBASE for Player/Missile
Base. The low byte is always zero.

Normally, PMBASE is fixed in a BASIC program by the
number of pages (256 bytes) it must be setback from the top
of memory, RAMTOP, which is determined by PEEK(106). For
example, for a 48K Atari computer, a GRAPHICS 8 background
screen, and single resolution P/M Graphics, a 40 page setback
is required from RAMTOP (=160). The BASIC statement to define
PMBASE would be:

PMBASE=PEEK (106)-40
The whole address would be:
PMBADR=(PEEK (106)-40)*256

Figure 2 gives the pages setback required for popular
background (playfield) screens. The P/M table is setup in the
computer with a simple POKE 54279,PMBASE. Single resclution
graphics Is selected by a POKE 559,62 and double resolution
graphics by a POKE 559,46. To activate the players and
missiles you must also do a POKE 53277, 3.

Pages Setback From RAMTOP, (location 106)
Playfield Resolution
GRAPHICS SINGLE DOUBLE
0 16 8
1+16 16 8
2+16 16 8
7+16 32 28
8+16 40 36
FIGURE 2: Player Missile Starting Address

To define a player's shape, start with some graph paper,
mark off a column eight blocks wide and design your figure.
Give each filled square on the grid a value of 1, and empty
squares a 0 (see Figure 3). When you read straight across
each line on the grid, you'll have an eight bit binary
number. Convert the binmary number to a decimal number with

78

PROGRAM.110, or by adding up the column values as shown in
Figure 3. This series of decimal numbers define the player's
shape when placed in the player's memory cell.

These numbers can be read into memory by placing them
into DATA statements and using a FOR...NEXT laoop, or by
nlacing their character equivalents into a string and then
copying it to the P/M memory area. In the example programs in
this book, all P/M shapes will be placed in a string, because
DATA statements are memory wasteful and take time to process.
A string can be copied almost immediately to the P/M memory
area with the programs in this book. The character
corresponding to the ATASCII decimal number can be obtained
from the Appendix.

Column Decimal
Values Binary ATASCII
©F NWVO g gy Number Number
’(:l‘ O M
00011000 24
00011000 24
01011010 90

01111110 126
01111110 126
01011010 90
01000010 66

Character String = 4=z 442B"

FIGURE 3: Defining A Player's Shape

The data's position within the memory cell for each
player determines its vertical location on the screen. For
example, take Player 0 in double resolution. Its shape data
can lie between +512 and +640 bytes above PMBADR. If the
shape data is placed near +512 bytes, the player will appear
near the top of the screen. If the shape data is placed near
+640 bytes, it will appear near the bottom. By moving the
data within the memory cell the shape will travel up and down
the screen.

Establishing a horizontal position and moving the player
horizontally is a snap compared to vertical positioning and
movement. Just POKE a number into the player's horizontal
position register and the player will move there almost
instantly (see Figure 4).

The horizontal position number can range from 0 to 227.

79

The left border of the screen is about 46, the right, 201.
This positioning scheme allows the player to disappear off
the screen on both sides. The equivalent vertical positioning
(as an offset from the beginning memory location for each
player) is 0-255 in single resolution with the borders around
31 and 217. For double, the values are 0-128 with the borders
around 15 and 106.

The overall width of the player can be changed with a
single register. POKE a 0, 1, or 3 in the proper size
register (see Figure 4) to get normal, double, or quadruple
width.

A player can have its color independently selected
through its color register as shown in Figure 4.

The priority of the player over background objects or
other players can be chosen by the priority register, memory
location 623. This is how a player can be made to duck behind
a background object or appear in front of another player.
Figure 4 describes this register.

One final aspect of P/M Graphics is the detection of
"collisions". By reading (PEEKing) the collision registers
(Figure 4) you can determine if a player has struck a
background object or another player, or if a missile has
struck a player or background object. The decimal number
returned from one of the collision registers of FIGURE 4 is
as follows:

No. of 2nd Object, Figure 4:

3 210

Resulting Decimal Number: 8 4 2 1
For example, if Player 1 collides with a playfield object
made with color from color register 709 (#1), then
PEEK (53253) will return a value of '2'. The playfield number
of 0-3 corresponds to color registers 708, 709, 710, and 712.
The collision registers do not automatically reset
themselves and you can not write to them. Conseguently,
register 53278 was set up to clear these registers. POKE

53278 with any number to clear all collision registers.

80

55¢ W
423 W)
1:

q:

8:

16:

784 (W)
785 (W
786 (W
7807 (W
53248 (W)
(R)

53249 (W)
(R)

53258 (W)
(R>

53251 (W)
(R)

53252 (W
(R)

53253 WD
(R

53254 (WO
(R)

53255 (W
(R

53256 (WO
(R

53257 (W)
(R)

53258 (W)
(R

53259 (W)
(R

53248 (WO
(R)

53261 (R
53262 (R
53243 (R)
53277 (W)
53278 (W
54279 (W

42 for single, 46 for double line resolution
Sete player/playfield priorities

All players priority over all playfields
PB & Pil,then playfields, then P2 & P3
All playfields priority over all players
PF8 & PFl,then players,then PF2 & PF3
Use 4 missiles as fifth plaver

Color of player/micscile @

Color of player/missile |

Color of player/missile 2

Color of player/missile 3

Horizontal position player @
Collision: Missile 8 to playfield
Horizontal position player 1
Collision: Missile | to playfield
Horizontal position player 2
Collision: Missile 2 to playfield
Horizontal position player 3
Collision: Missile 3 to playfield
Horizontal position missile @
Collision: Player @ to playfield
Horizontal position missile
Collision: Player 1 to playfield
Horizontal position missile 2
Collision: Player 2 to playfield
Horizontal position missile 3
Cotlision: Player 3 to playfield

Size player 06; 8, 1, or 3

Collision: Missile 8 to players

Size player 1; 0, 1, or 3

Collision: Missile | to players

Size player 2; 6, 1, or 3

Collision: Missile 2 to players

Size player 33 0, 1, or 3

Collision: Missile 3 to players

Size of missiles. See note
Collision: Player @8 to players
Collision: Player 1 to players
Collisien: Player 2 to players
Collision: Player 3 to players

3 to enable P/M Graphics, 8 to disable
Clear all collision registers

Put PMBASE here

(W) means write (POKE)> and (R) means read (PEEK)

Note: For 53248 place a 8, 1, or 3 in the appropriate
two bits for each missile for normal, double, or
quadruple size. For example, 0 gives all four missiles
normal size and 255 gives all quadruple size.

Important Player/Missile Memory Locations

FIGURE 4

81

This first listing of a Player/Missile program is mostly
in BASIC to allow you to follow the progress in converting
the program to machine language routines. Only the joystick
read routine and the clearing of the player memory cell are
in machine language because these routines have been
presented earlier.

Line 10 DIMensions the string 'PLAYER$' which holds the
shape information for the player and sets up a GRAPHICS O
black background screen with a red border. The 'POKE 752,1:?'
eliminates the cursor. Line 20 establishes the Player/Missile
Base Address's high byte (PMBASE), sets up the P/M memory
table, and finds the start of the first player, PLAYO, within
the memory just setup. Line 30 1is PROGRAM.010 which clears
the special area of memory just setup since any stray data in
that memory will show up on the screen. Line 40 chooses
single 1linme resolution and player priority over the
background screen. Line 50 activates Player/Missile graphics.

Line 60 contains information about the player. X and Y
determines the initial location on the screen for the player.
POKE 704,20 gives the player a color and POKE 53256,0 selects
normal width for the player.

Line 70 places the player's shape data, Figure 2, in the
string PLAYER$ and inserts this information into the Player O
memory cell. The player's vertical height, the number of
characters in PLAYER$, is assigned to the variable SIZEO.
Line 80 sets the initial horizontal position of Player O on
the screen.

Line 90 is a Jjoystick routine, PROGRAM.071, which works
with line 100 to send the program to the proper move routine;
up, down, left, or right. Lines 500 and 510 are the two
vertical position routines. They simply move the shape data
of the player higher or lower in the Player O memory cell,
thereby, moving the player on the screen. The variable 'Y!
keeps track of the vertical position on the screen with Y=0
as the start of the Player O memory cell, PLAYO. Usually, we
refer to the value of 'Y' as an offset from PLAYO.

Lines 520 and 530 are the left and right BASIC move
routines. The variable 'X' keeps track of the horizontal
position of the player.

One special warning. If you move the player too far off

82

screen the program may crash. For the programs in this book
the 'Y' offset value can range from 2 to 253 in single
resolution and 2 to 126 in double resolution. The horizontal
position register 'X' can range from 2 to 225. Actually, the
values can range from 0 to 255 for 'Y' (0-128 in double
resolution) and 0 to 227 for 'X' but for reasons dealing with
the way the player is moved and erased, use the tighter
limits. In later programs we will show how to control these
limits of travel to prevent the program from crashing. Run
the program to get an idea of the speed of the vertical
movement before moving on to the next programs.

83

8 REM PROGRAM.B78

18 DIM PLAYER$(?7) :GRAPHICS @:POKE 719,

@:POKE 712,64:POKE 752,1:7

20 PMBASE=PEEK(186) ~16:POKE 54279 ,PMBA

SE : PLAY@=PMBASEX256+ 1824 :REM SETUP P/M
MEMORY AREA.

30 BB=USR(ADRC "hhIIEhRhTIh Tl hERER Bvrna

Gl TIMMSEEISEN A Jale ') , PLAYO , 256,8) :RE

M PROGRAM.819 ,CLEAR P/M AREA.

40 POKE 559,62:POKE 623, 1

S8 POKE 53277,3:REM ACTIVATE P/M

60 X=80:Y=70:POKE 784,20 :POKE 5325&,0:

REM INITIAL POSITION,COLOR,AND WIDTH
OF PLAYER ZERO.

78 SIZE@=7:PLAYER$="4Li? ¢4ZB":FOR I=0 T

0 6:POKE PLAY@+I+Y,ASC(PLAYER$(I+1,1+1

>) :NEXT 1

88 POKE 53248,X

98 BB=USR(ADR("hIvIMEVEED H2eV B+V{E-

V 43 rilviiel HD0 PN ENH R)) :REM X
PROGRAM.@71, JOYSTICK ROUTINE.

168 ON BB GOTO 500,510,520,530

118 GOTO %@

588 FOR N=8 TO SIZE®:POKE PLAYB+Y-1+N,

PEEKCPLAYB+Y+N) :NEXT N:Y=Y-1:60T0 90

5180 FOR N=SIZE@-1 TO -1 STEP —-1:POKE P

LAYB+Y+N+1,PEEKC(PLAYB+Y+N) :NEXT N:Y=Y+

1:60TO 90

520 X=X-1:POKE 53248,X:G0T0 90

530 X=X+1:POKE 53248,X:G0TO 90

84

PROGRAM.(079 Vertical Movement Routine

This program introduces two machine routines in lines 500
and 510 for gquicker and smoother vertical movement. Lines 10
through 110 are the same as in PROGRAM.078. Two parameters
are required.

Pl Starting address of the player being moved plus the
'Y' vertical position offset.
P2 Vertical height of the player.

Lines 600 through 630 show the changes to make for double
lire resolution. You should make these changes to understand
what double resolution looks like.

Placing other players on the screen is easy. Just specify
their starting address, as in line 20, and place its shape
data in the proper player memory cell. For example, Player 1
would be specified as PLAYl = PMBASE*256+1280 (single
resolution), and lines 60 through 80 would be repeated with
characteristics for this player.

85

8 REM PROGRAM.879

18 DIM PLAYER$(7) :GRAPHICS 8:POKE 710,

@:POKE 712,66:POKE 752,1:7?

20 PMBASE=PEEK(1@6) -14:POKE 54279 ,PMBA

SE : PLAY@=PMBASEX 254+ 1024

38 BB=USR(ADR(" hhIHhNah7RH i hEREE Weria

R TANGEEMEN I 2 8e "> ,PLAYD ,256,8) :RE

M PROGRAM.® 18

40 POKE 55%,62:POKE 623, 1

58 POKE 53277,3

4@ X=86:Y=78:POKE 704 ,20:POKE 53256,0

70 S1ZE@=7:PLAYER$="4L7 ¢4ZB":FOR I=0 T

0 4:POKE PLAY®+I+Y,ASC(PLAYER$(I+1,1+1

») sNEXT 1

80 POKE 53248,X

98 BB=USR(ADR("hEvIMBvED) HIeV BV {E-

U 43 dviaioll K0 LM G R0)) :REM X

PROGRAM.B7 1

168 ON BB GOTO S80,518,520,538

118 GOTO 9@

S8@ BB=USR(ADR(" hhM8h TMNh BN LD FIaIEN

Mme") ,PLAYB+Y,SIZE@) :Y=Y-1:G0TO 90

518 BB=USR(ADR(" hhTEhAa¥h - DSINZTIIPY e

") ,PLAY@+Y ,SIZE®) :Y=Y+1:G0OTO 9@

528 X=X-1:POKE 53248,X:G0T0 9@

530 X=X+1:POKE 53248,X:G0T0O 98

4608 REM. %%

4616 REM FOR DOUBLE LINE RESOLUTION
CHANGE LINE 628 TO LINE 28 AND
CHANGE LINE 430 TO LINE 48.

4620 PMBASE=PEEK(184) -8:POKE 54279 ,PMBA

SE : PLAY@=PMBASEX256+512

4630 POKE 559,46:REM DOUBLE LINE
RESOLUTION.

86

PROGRAM.080 2-Line Vertical Movement Routine

ENTER this program into the previous one for faster
vertical movement. The player is moved 2 lines vertically
each time one of the vertical machine routines is executed
instead of ore line as for the previous program. Note the

vertical position offset 'Y' is changed by a value of plus or
minus 2 to reflect this change.

8 REM PROGRAM.@886

568 BB=USR(ADR("hhISh;INAAANE hh SISV
MSISIEBIMIe "> ,PLAYB+Y ,SIZEB) :Y=Y-2:6G0T0 ¢
e

516 BB=USR(ADR("hh1Rh AN H MSBENCIENIN"
rFrame") ,PLAYB+Y,SIZE®) :Y=Y+2:G0T0 %0

In this example program we will introduce two machine
routines, line 20 and 30, which do a lot of the setup work
for P/M Graphics. The first routine in line 20 sets up the
P/M memory areas, the P/M priorities, and the resolution. The
Return Variable contains the Player/Missile Base Address,
PMBADR. The machine routine 1in line 30 is a special P/M
memory clearing routine which will only work after the line
20 routine.

The example program changes the background screen to a
GRAPHICS 8 screen and selects double resclution just to show
how it 1is done. The variable 'RES' is assigned to the
Resolution selected.

The vertical move routines in lines 500 and 510 are the 2
byte move routines from PROGRAM.080.

The machine routines in lines 20 and 30 replaces the
BASIC lines 20 throgh 50 1in the previous programs. Three
parameters are required for the machine routinme in line 20.

87

Pl Pages setback from RAMTOP for the background screen
selected (See FIGURE 2).

P2 Priority of Players, Missiles, and Background. See
FIGURE 4, location 623.

P3 Single resolution = 1, Double resclution = 2.

¢ REM PROGRAM.981

18 DIM PLAYER$(?) :GRAPHICS 24:POKE 710

.8:POKE 712,66:RES=2

20 PMBADR=USR(ADR(" hhh il SEie\ILIh hmo

S hhHHS N. W/ e . A AT T 5 0

CCHCTNE D1 H-cifamaviRie "> ,40,1,RES)

30 Z2=USR(ADRC " hillvilE" Merailit SANGIERENY

3% ")) :REM CLEARS P/M AREA. MUST
BE USED AFTER LINE 20.

48 PLAY®=PMBADR+512

40 X=80:Y=78:POKE 704,20:POKE 53256,0

76 SIZE@=7:PLAYER$="4l7Z ¢42B":FOR I=0 T

0 6:POKE PLAYB+I+Y,ASC(PLAYER$(I+1,1+1

) :NEXT I

89 POKE 53248,X

99 BB=USR(ADR("hBviiEviE) HEeVY BV 43~

U 42 riivinioll K0 LI GBWH GG)) :REM X
PROGRAM.87 1

106 ON BB GOTO 508,510,520,530

118 GOTO %@

56@ BB=USR(ADR(*hhiiSh ANANAMNE |h hCENW YT

MSIZIERMAe ") ,PLAYO+Y ,SIZEB) : Y=Y~-2:G0T0 9

)

518 BB=USR(ADR (" h hiIBh EMZNAXH h IRENRIEENY
Fra@e”) ,PLAYB+Y,SIZED) :Y=Y+2:G0TO 99
520 X=X-1:POKE 53248,X:G0T0 %8

938 X=X+1:POKE 53248,X:G0T0 90

The next program moves the player's shape data into the
proper memory location using a machine routine. Lines 70 and
80 is the machine routine that replaces the BASIC lines 40
through 80 in the previous program. Eight parameters are
required which all describe the player of interest. Note that
lines 520 and 530 have been changed slightly to show how the
horizontal movement of the player is prevented from going off
screen and crashing the program.

88

Pl The Player/Missile Base Address, PMBADR.
P2 Player number, 0-3.

P3 Address of the player shape data.

P4 Initial horizontal position of the player.
P5 Overall width of the player, 0, 1, or 3.

P6 Single resolution=1, Double resolution=2.
P7 Initial vertical position offset of the player,
P8 Vertical height of the player.

@ REM PROGRAM.082

18 DIM PLAYER$(7) ,P$(92) :GRAPHICS 24:P

OKE 710 ,0:POKE 712,66:RES=1

20 PMBADR=USR(ADR(* hhhIiilj SEMa\NCESh hmo

B hhMHE BB/ e . B SvHDNN THE- & 8

U0 O H-cBfNEgviNe "> ,40,3,RES)

380 Z=USR(ADR(" hBviE BT SINGEEIEENY

Fapi3gme ")) :REM CLEARS P/M AREA. MUST
BE USED AFTER LINE 20.

49 X=80:Y=78:S12E0=7:POKE 704,208 :WIDTH

=1

680 PLAYER$="4b? (42B"

70 P$="hhIRhTRCIRMEMH h G JEEh REh hDeidh hild

ah h M HE=-0 KSR EA0D SR TR R DIRREE

hhilgh hEELENEEE DI MWL e

80 PLAY®=USR(ADR(P$) ,PMBADR,8 ,ADR(PLAY

ER$) ,X,WIDTH,RES,Y,SIZE®>

90 BB=USR(ADR("hEvERVWED HIeV EH+V {8~

U 43 rEvRief KRN0 LI GEWH A")) REM X
PROGRAM .07 1

16 ON BB GOTO S66,516,520,530

118 GOTO 96

500 BB=USR(ADR("hhIShAANANE h EITEIFVT:

SEizislMIe ") ,PLAYOB+Y ,SIZEB) :Y=Y-2:G0T0 ¢

)

518 BB=USR(ADR("hhIShA2NANH HERRRAZENY

Fyame") ,PLAYO+Y,SIZE®) : Y=Y+2:G0TO 980

528 X=X-1:POKE S53248,X:IF X<{(46 THEN X=

44

525 GOTO 96

530 X=X+1:POKE 53248,X:IF X>201 THEN X

=201

548 GOTO 99

89

Y'.

The vertical movement routines are in lines 500 and 510.
The string PU$ contains the 'up' routine and the string PD$
contains the 'down' routine. These routines allow the choice
of stopping the vertical movement at any selected location
(see the last paragraph of PROGRAM.078 screen limits), or
allowing the player to wrap around the screen. In addition,
these routines keep track of the 'Y' location of the player
in the Return Variable. Six parameters are required for each
routine.

The horizontal BASIC move routines show how the player
can wrap around the screen. For a faster version of these two
routines, see lines 83 and 84 in PROGRAM.(084.

Up Move Routine, Line 500.
Pl Base address of the player being moved.
P2 Present vertical position of the player, 'Y'.
P3 Vertical height of the player.
P4 Upper movement limit of the player.
P5 Lower movement limit of the player.
P6 0 for stopping at limits, 1 for wrapping around
screen.

Down Move Routine, Line 510.
Pl Base address of the player being moved.
P2 Present vertical position of the player, 'Y'.
P3 Upper movement limit of the player.
P4 vVertical height of the player.
P5 Lower movement limit of the player.
P6 0 for stopping at limits, 1 for wrapping around
screen.

90

@ REM PROGRAM.083

16 DIM PLAYER$(7) ,P$(92) ,PU$(85) ,PD$(8

4) :GRAPHICS 24:POKE 710,0:POKE 712,66:

RES=1

28 PMBADR=USR(ADR(" hhhilal SEMa\UCIh hmo

B hhHNE BB i . B SN U G B

CEMIa CIM0 HecifIngvinie ') , 40, 1,RES)

36 Z=USR(ADR(" h@viRE" BT XSG INETN

a3 3me ")) :REM CLEARS P/M AREA. MUST
BE USED AFTER LINE 20.

49 X=80:Y=70:UL=31:DL=220:S12E0=7:POKE

704,20 :WIDTH=0

468 PLAYER$="4k7 ¢4ZB"

70 P$="hhIh LSRN h ESH JHEh Tah h Deigh hid

ah M HE=0 K EAND EHETE TSI efE BRI

h hlih h RESBIEEE DT ICIR e

80 PLAY®=USR(ADR(P%) ,PMBADR,8 ,ADR(PLAY

ER$) ,X,WIDTH,RES,Y,SIZE®)

83 PU$=" hill*mikhT8h T13h hDENh hEENeh h RIS i

@Y RRAENAREEH h hh eh h IHh NSHEECEREIREIRNIES

it LETpr I LTE D

846 PD$="hlvIIhTI8h1EH hJgh h i hEH-citaiisHl

7 AT V MARERSh b h h o@ETEH h TS hEIEEIRBUEIR

RN iR e "

99 BB=USR(ADR("hEvIAEeED) HEeV FHV4E-

V) A3 idvIReR HIDA 13 SEH R) > :REM X
PROGRAM .87 1

180 ON BB GOTO 508,510,520 ,530

110 GOTO %@

568 Y=USR(ADR(PU$) ,PLAY®,Y,SIZE®,UL,DL

,8) :60TO %0

518 Y=USR(ADR(PD$) ,PLAY®,Y,DL,SIZEB,UL

,8) :GOTO 90

520 X=X-1:POKE S53248,X:IF X<46 THEN X=

201

525 GOTO 98

530 X=X+1:POKE 53248,X:IF X>2801 THEN X

=46

S48 GOTO %8

91

This program introduces two horizontal move routines in
machine language, which allow stopping at selected limits or
wrapping around the screen. The two routines in lines 520 and
530 require six parameters each. The parameters are the same,
Just in a different order. Note that the Return Variable must
be the value of the present horizontal position value, 'X' in
this example.

The vertical move routines in lines 83 and 86 are faster
versions of the routines in PROGRAM.083.

Left Move Routine, Line 520

Pl Which player, 0-3.

P2 Left move limit.

P3 Horizontal amount to jump each time the machine
routine is called.

P4 Present horizontal position of the player, 'X' in our
example.

P5 O to stop at limits, 1 to wrap around screen.

P6 Right move limit.

Right Move Routine, Line 530

Pl Which player, 0-3.

P2 Right move limit.

P3 Horizontal amount to jump each time the machine
routine is called.

P4 Present horizontal position of the player, 'X' in our
example.

P5 0O to stop at limits, 1 to wrap around screen.

P6 Left move limit.

92

@ REM PROGRAM, 084

10 DIM PLAYER$(?) ,P$(92) ,PU$(94) ,PD$(8

9) :GRAPHICS 24:POKE 710,8:POKE 712,464:

RES=1

20 PMBADR=USR(ADR(" hhhTDiHj SEh\ILMh hmo

D HhhHHD M.W/ e . B A TN SR 5 D

SUET C1E S YmgvRee "> ,40,1,RES)

38 Z=USR(ADR(" hRe:E Hers

i gge ")) :REM CLEARS P/M AREA. MUST
BE USED AFTER LINE 280.

40 X=80:Y=708:DL=224:UL=31:LL=44:RL=201

:SIZE@=7:POKE 704,20 :WIDTH=8

468 PLAYERS="4i? 442B"

76 P="hhiIhNCLEEIREIAH h Sh TNEh SIS hvi@h hild

tah h i B0 KL EABD RHESW T e AR

h holh b EETBUESE ISR e

88 PLAY®=USR(ADR(P$) ,PMBADR,® ,ADR(PLAY

ER$) ,X,WIDTH,RES,Y,SIZE®

83 PUs$="havEh 18 13h h EEREH h SIEETH h 1R

Y7 RAGEIERNI AT h h h oBwEIRIn h Eh h[EEMEISEN

TUCNEIRBNININ v IRTIIRCIED N e

84 PD$=" hvaaNh 718 "1 h ih h 1l h B el

I HEGIENLY V7 BMESEREH h b h o @CTRh hSIRCIEN h[ERED

AN i IATICINEI R NE ¢ "

98 BB=USR(ADR("hvIIEWED HIeV BH+V 4R~

YV 43 rBvTRIeS HaDa 1000 ENH 53")) :REM X
PROGRAM. 87 1

160 ON BB GOTO 580,510,528 ,530

118 GOTO 9@

5e@ Y=USR(ADR(PU$) ,PLAY®,Y,SIZE@,UL,DL

, 1) :60TO 90

S18 Y=USR(ADR(PD$) ,PLAY®,Y,DL,SIZEB,UL

, 1) :GOTO 98

528 X=USR(ADR(*hivaiiih hEih h213h hJ¥8h hTRISEN

HEADVENIhhhh b hESh hOvitae ") ,0,LL,3,X,

8,RL) :GOTO %@

530 X=USR(ADR(" hE*filih hgh hTRah h7iSh hTh-cll

[CIviNgh h h h oh hESh hvitmge ") ,8 ,RL, 3,X,

8,LL) :GOTO 90

93

PROGRAM.085 Missile Mover

Like players, missiles can be defined vertically the
whole length of the screen but only up to 2 bits wide. All
four missiles are placed in one memory cell as shown in
Figure 1. Missile 0 is described by the first two bits in
each byte of the memory cell, Missile 1 by the next two bits,
ete..

To move a missile in the horizontal axis you use the
horizontal position register for the missile just like in
moving a player. Moving a missile in the vertical position is
a little tougher than a player. When a missile is moved the
other bits in the byte must not be moved and the destination
location must not have the other bits disturbed.

Line 70 contains the correct routine to setup a missile
which is different than the one used to set up a player. The
parameters, however, are the same as for the player routine
except all the reeded information is for the missile. The
missile's shape is defined by line 60 as two lines high and
two bits wide. Lines 500 and 510 contain the missile move
routines. Three parameters are required for these routines.

Pl Base address of the missile memory cell plus the
present vertical position offset value.

P2 Vvertical size of the missile.

P3 which missile, 0-3.

94

@ REM PROGRAM.S8S

18 DIM MISSILE$(2) ,P$(87) :GRAPHICS 24:

POKE 710,0:POKE 712,66:RES=1

20 PMBADR=USR(ADR(" hhhiRell | SEMu\aCEEh hao

2an - L-F B % il . B aviEnag- e o B

(SEETEE OO H-cRrmEmviNe ") , 40, | ,RES)

30 2=USR(ADR(" hiwtREP

F22e ")) :REM CLEARS P/M AREA. MUST
BE USED AFTER LINE 2@.

40 X=80:Y=70:S1ZE@=2:POKE 704,64:WIDTH

=0

&0 MISSILE$="dd"

70 P$="hh.'l!ll!lh"imlhhu'91W!{.‘Iﬂh?B

hiEEh hEM g hOdah h i B AT v h ' h h Y

S8y KEEDTraEhiiRe

88 MIS@=USR(ADR(P$) ,PMBADR,® ,ADR(MISSI

LE$) ,X,WIDTH,RES,Y,SIZE@)

98 BB=USR(ADR("hIvIMEvERD) HEeV B4V i@~

U 43 rlviNoll IR LN W R)) :REM X
PROGRAM.871, JOYSTICK ROUTINE.

168 ON BB GOTO See,510,520,53@

118 GOTO %0

508 BB=USR(ADR(* hh18h MMaEh hih hIREE 7 2+ A

7SN LU M 1 W NN 1 [DINSISRI M ") yMIS

8+Y,S12E8,0) :Y=Y-1:G0TO 98

518 BB=USR(ADR(" hhI8h IMaah hBih hEaEH B0+ AA

DT LTI | DS | B BERAPY A3 ") yMIS8+Y

ySIZE@,0) :Y=Y+1:G0TO 50

520 X=X-1:POKE $3252,X:G0T0 98

530 X=X+1:POKE 53252,X:G0T0 99

598 REM X

S95 REM USE THE BELOW ROUTINES FOR
LINES 500 AND 518 FOR A FASTER
MOVE ROUTINE (2 BYTE MOVE) .

688 BB=USR(ADR(" hh Mh AANLIH hSIZH h I V' ©

FAA AN TN MR 1 CTT Y SR (3 DA e ¢

) ,MIS8+Y,SI1ZE@,8) : Y=Y-2:G0TO S0

618 BB=USR(ADR(" hhI18h TNMINASH hiIh hEXH MO~

MM SHE T LTRISG | ACENISISIE 1 (3 BRI PY Mo ¢) M

1S8+Y,S1ZE0,8) :Y=Y+2:60TO 98

95

Now that you have all those P/M running around the screen
you need some way to turn them off without using the 'RESET’
key. Just Jjump to the machine routine below in your BASIC
program to turn off the P/M Graphics. The routine clears all
the P/M memory area, starting at the missile memory cell,
deactivates P/M, and POKEs 559 with 34, the default value.

Pl P/M Base Address, PMBADR.

8 REM PROGRAM.88é&

18 BB=USR(ADR("hhlESEhTEE" M. a0
VHEAIXEN WYNtsET TIGEN IR/ TSR
B2 le") ,PMBADR)

96

Chapter 12
Player/Missiles in Vertical Blank Interrupt

You may have noticed that the movement of the players in
the previous examples is somewhat jerky. The reason is the
players are being moved while the screen is being drawn. The
screen is redrawn sixty times a second. when the scanning
beam reaches the bottom right of the screen it turns off and
moves to the upper left of the screen to begin again. During
this screen off time period (The Vertical Blank Interrupt,
VBI) the Atari computer does a little house cleaning, but
does have time to execute a machine program. If we can move
our player to during this time period, the Jerky movement can
be eliminated.

All the previous routines for setting up and defining a
player can be used with the next routines. The VBI routine
must be installed in a known area of memory. If you look at
Figure 4 there is an area of P/M memory that is not used.
This is an ideal area to place the VBI routines. The Joystick
routines are also placed in these routines, since direction
of movement must also be sensed in the VBI time period.

In the following examples, we'll also do some collision
detection, just to show how its done.

This program will move one player in the VBI. Setting up
the P/M memory, defining the player, and installing the
player in memory uses the same procedures as in the previous
non VBI P/M routines. Lines 10 to 80 are nearly the same as
the lines in PROCRAM.082 except we'll set up a GRAPHICS O
background screen. Lines 90 to 100 contain the VBI joystick
and player movement machine code. This code is installed in
the unused P/M memory area by the machine routine in line 110
(Actually installed at PMBADR+3), which also does some other
work, and activates the VBI routine. It requires six
parameters.

97

Pl P/M Base Address, PMBADR.

P2 Vertical height of player.

P3 Initial horizontal position of the player.
P4 Initial vertical position offset of player.
P5 Address of the VBI code less 3.

P6 Length of the VBI code.

Lines 130 to 160 shows a simple collision detection
routine. Line 130 places some inverse spaces on the
background screen as objects to impact. Line 140 turns on a
sound if the player hits these objects and line 150 turns the

sound off when the objects are not touched. Line 160
constantly resets all collision registers for another

detection. Refer to the appropriate register selections in
FIGURE 4 for further information.

98

® REM PROGRAM.887
10 DIM PLAYER$(?7) ,P$(131) :GRAPHICS 8:P
OKE 710,8:POKE 712,86:POKE 752,1:? :RE
S=1
20 PMBADR=USR(ADR(* hhh Dl j SEMm\ICIAh hmo
M>HhHMHT M.6/ ¥ 0. B B WD D i B
CHOYE CH ol Emvnge") , 16, 1,RES)
30 2=USR(ADR(*hBv:REr B
")) :REM CLEARS P/M AREA. MUST

BE USED AFTER LINE 20.
40 X=808:Y=70:S12E8=7:POKE 784,20 :WIDTH
=0
68 PLAYER$="4i7 ¢42B"
78 P$='hh'ﬂhmhhﬂ1‘l!h'lﬂ1hﬂ'ﬂhhm

80 PLAYB=USR(ADR(P$) ,PMBADR,8 ,ADR(PLAY

ER$) ,X,WIDTH,RES,Y,SIZE®)

20 P$(1)="ERXIHNG. 4 HEx L - BX4

Ve £438L bERYREEERICH HIRITIWY FERENMEL b

ERVIACBEIZIZNG-i HXebW ¥ HEREAP” RS bE!

100 P$(102)="ENHANi Hilmvd bFE HAICH HXlm

L bl

118 BB=USR(ADR(* h h ¥ih 308 h IS hEaash hIsd

h Hih SMiih h CISBUMAZAINE- LRI\ \Eie*) , PMBADR,

SIZE@,X,Y ,ADR(P$) -3 ,LENCP$))

120 REM % JOYSTICK & PLAYER MOVE
ROUTINES HAVE BEEN INSTALLED. NOW
LOOK FOR COLLISIONS.

138 POSITION 8,10:? "N -

| N
148 IF PEEK(S3252)(¢>8 THEN SOUND 0,80,
19,10

150 IF PEEK(53252)=8 THEN SOUND ©,0,0,
e
160 POKE 53278,0:G0T0 1480

99

The next program shows the set wup and movement of two
players. The second player is set up with its own defining
characteristics in line 50. We'll use the same shape for the
second player as the for the first player. The same machine
routine in line 60 is used to set up this second player, same
3s the first player. Line 90 just makes another USR call to
the same machine routine using the second player data.

Lines 100 and 110 contains the entire VBI code and is
installed into the unused P/M memory area by the machine
routinre in line 130. This routine requires 9 parameters,
three more than the one player routine to accommodate the
second player.

Pl P/M Base Memory Address, PMBADR.
P2 Vertical height of player zero.

P3 1Initial horizontal position of player zero.
P4 Initial vertical position offset of player zero.

P5 Vertical height of player one.

P6 Initial horizontal position of player ore.
P7 Initial vertical position offset of player onre.

P8 Address of the VBI routine less 6 bytes.
P9 Length of the VBI routine.

Lines 150 to 170 shows player to player collision

detection. See the previous program for an explanation of
this routine.

100

® REM PROGRAM.088

19 DIM PLAYER$(?7) ,P$(92) ,UBI$(144) :GRA

PHICS 8:POKE 710,0:POKE 712,66:POKE 75

2,1:? :RES=1

28 PMBADR=USR(ADR(" hhhI Dl SCa\ILWh hmo

NOHhHHE M./ 0. B BvICIN (T 5 O

(ZIACTG 1R -cliUBEviREe ") , 16,1 ,RES)

30 Z2=USR(ADR(" hlvtERr

Fas3Be ")) :REM CLEARS P/M AREA. MUST
BE USED AFTER LINE 28.

40 X=88:Y=70:SI1ZE0=7:POKE 784,20:WIDTH

=0

50 X1=110:Y1=120:S12E1=7:POKE 7905,33:W

IDTH1=0

68 P#="hhiih RCTEIAEIR hEShH TN SRh hBeiEh h 4

Eh b HE-0 KR E/A0D EHECNE TR v GRS

hhlh h(EEISUEEE DT IEDREE e "

76 PLAYER$="4dZ ¢4ZB"

86 PLAY®=USR(ADR(P$) ,PMBADR,8,ADR(PLAY

ER$) ,X,WIDTH,RES,Y,SIZE®

98 PLAY 1=USR(ADR(P$) ,PMBADR, 1 ,ADR(PLAY

ER$) ,X1,WIDTH1,RES,Y1,SIZED)

100 UBI${ 1) ="0NIIINR {TIEAx KBvIER WY

EEIEIEIIED HE) [P 1B 43P vl

SHl HZ3DEE BV FRAISISRMEESNDE HEINANINIRH DENY

"

110 VBI$(182)="HEXDEIZRNAN-i HdcDy”RERT

VnAE0 W AR HED AL TN HASBLACH HIMD

"

126 Ps$="hhJIBh DA Th hIRESH hIRNSH hRNERGTRN Y

BhiEh hERErINRRE /1NN, \Ele"

138 BB=USR(ADR(P$) ,PMBADR,SIZE@,X,Y,SI

ZE1,X1,Y1,ADRC(UBI$) ~6,LENCUBI$))

148 REM JOYSTICK/PLAYER MOVE ROUTINES
HAVE BEEN INSTALLED. NOW CHECK
FOR PLAYER-PLAYER COLLISIONS.

158 IF PEEK(53268)><>8 THEN SOUND ©,8@,

10, 10

160 IF PEEK(S53248)>=8 THEN SOUND ©,0,0,

)

170 POKE S53278,0:G0TO 150

101

The last two routines will bomb if you mnve the player
too far beyond the horizontal or vertical limits (See the
last paragraph in PROGRAM.078 for the 1limits). Notice that
there is no way to keep track of the players position in
BASIC, as was the case in the non-VBI routines. Use the next
routine to prevent the player from going out of bounds. It
allows the player to stop or wrap around the screen at
selected positions.

This program is similiar to PROGRAM.087 wup to line 80,
except for line 40, which contains the right screen limit
(RL), the left screen 1limit (LL), the upper screen limit
(UL), and the down screen limit (DL). Lines 90 to 110 contain
the VBI code which is installed into the P/M unused memory
area by PROGRAM.001 in 1lime 120. The three parameters
required for line 120 are:

Pl Address of the VBI code.
P2 P/M Base Address, PMBADR.
P3 Length of VBI routine.

Since we now have many screen limit numbers to keep track
of we are going to place them in Page 6. Consequently, you
must not use memory areas 1536 to 1546 in your BASIC program
when the P/M are activated.

Line 130 contains the VBI set up code which is activated
in line 140. This routine requires 10 parameters.

Pl P/M Base Address, PMBADR.

P2 Left screen limit.

pP3 Right screen limit.

P4 Upper screen limit.

P5 Down screen limit.

Ps 0O for stop at limits, 1 for wrap around screen.

P7 Vertical size of player.

P8 Initial horizontal position of player.

P9 Initial vertical position offset of player.

P10 Speed of horizontal movement, 1 being the slowest.

102

When you run the program you will notice that the player

appears and can be moved even though the BASIC program ends
after line 140 with the familiar 'READY' prompt. Remember
that our P/M routine 1Iis not tied into the BASIC program, but
occurs during the VBI interval. The BASIC program can go on
doing its own thing as long as it doesn't mess up the P/M
memory area or introduce another VBI routine.

@ REM PROGRAM.B889%

16 DIM PLAYER$(?7)> ,P$(234) :GRAPHICS 8:P
OKE 710,8:POKE 712,86:POKE 752,1:? :RE
S=1

20 PMBADR=USR(ADR("*hhhiTlli CEMa\IEIH hmo
A hhMHE M. B e+ . B BvHNN B 5 0

USRS CIRM H-ciifREmvIREe ") , 16, 1 ,RES)

38 Z=USRC(ADR(" hiliviiaEr

= gge "> :REM CLEARS P/M AREA. MUST

BE USED AFTER LINE 20.

40 X=78:Y=160:LL=48:RL=261:UL=31;:DL=22
8:POKE 704,20:WIDTH=0:S1Z2E8=7

Se X1=118:Y1=120:S1ZE1=7:POKE 785,33:W
IDTH1=0

68 PLAYER$="4bZ 44ZB"

70 P$‘"hh'l!lhmhhlh!h1lhhwhhm

86 PLAY2=USR(ADR(P$) ,PMBADR, 8 ,ADR(PLAY

ER$) ,X,WIDTH,RES,Y,SIZE®)

44 P$(1) "H’/‘lmv'l!-'-ﬂﬂx -

B B 4Eei) LZ7LbERN\/A v/ /Holl o/HiFr:

HENNE DERN/R o/kh /8 6 o/4+m\ /W HRIREW “

100 P$(182)="VNMMELOLEN4NF /5L BT W 4/Me

. bER//E /24N VARSI N/ /1

B 72LDR/ /3N /a o/ /T DR R vl

116 P$(200)="pNRILDEIENNAL bER//TSH /7m o211

M AT DT AR LALLM DR

120 BB=USRCADR(* hhiiih Mah Nl Nl h CERvINtE

ERizEe ") ,ADR(P$) ,PMBADR,LEN(P$)) :REM %
PROGRAM. 60 1

138 P$="hhmb/Ehme/Bhhe Vhhe! Z/bhmd Zhhan

/hha//hhmN\/hhed/hhm o/hhmh /N \Ele

149 BB=USR(ADR(P$) ,PMBADR,LL,RL,UL,DL,

1,S1ZE0,X,Y,3

103

This program is identical to PROGRAM.089 except it
contains a faster vertical movement routine (2 byte move) in

the VBI code of lines 90 to 110. Line 120 is from line 60 of
PROGRAM.Q01, since more than 256 bytes are being moved.

8 REM PROGRAM,090

18 DIM PLAYER$(?) ,P$(278) :GRAPHICS @:P
OKE 710,0:POKE 712,64:POKE 752,1:? :RE
S=1

28 PMBADR=USR(ADR (" hhh Tl i SENm\IEYHh h@mo
EDhhMHE MW a0 . B YNNG T 5 O

COUCIND DI H-clCIRavge ") , 16, 1 ,RES)

30 2=USR(ADR(" hiRvAE" BRaEIL TIMENEEN

RAEIAgRe ")) :REM CLEARS P/M AREA. MUST

BE USED AFTER LINE 2e6.

40 X=76:Y=180:LL=44:RL=201:UL=31:DL=22

8:POKE 7864,20:WIDTH=08:51Z2E08=7

48 PLAYER$="4bZ 44ZB"

70 P$="hhIhCEEAREINN hGh PIEH A hEeiEh h L4

taih hi H2-0 KB/ SRS TAARIADW(E GInT |
h h#38h h EELEN A DL "

868 PLAYB=USR(ADR(P$) ,PMBADR,8 ,ADR(PLAY

ER%$) ,X,WIDTH,RES,Y,SIZEB)

98 P$(1)="[Ee/MICHEA /TR /78 { WAx B F

B RO 1@ AMLOERN/N o/ B4 /L MESE o1

7380V Y PRSI BERN /S o/ R /2@ o/ o/
188 P$(102) ="m\/IV BULEENRIV77Va8l bENRLIN

4 /8 _ADIT W 4/ME DER/ /TR /ALAMAN VAR

BB VLN /DY /D58 /RS o/ T /"
110 P$(200) =" m o/ HEDEREIATEN vEDI RN

B DER//EES o/ 71 /m o/ TIEBGE DT vE R0

aBNEL b

126 BB=USR{ADR("hhIBnhMaH RN IEH S REh s Tl ot

(a2 DAL T AR) , ADR(P$)
,PMBADR,LEN(P%)) :REM PROGRAM.081

136 P¢="hhmi/Ehme/lihhm IVhhed Zhhed Z7hham

/hhm//hhe\/hbhmd/hhm o/hhEh /BN \Blo"

148 BB=USR(ADR(P$) ,PMBADR,LL,RL,UL,DL,
1,S1ZEB,X,Y,3

104

This program is the two player version of PROGRAM.(088
with stop or wrap limits. Page 6 memory from 1536 to 1561 is
used. A grand total of 17 parameters are used for the USR
call in lire 160.

Pl P/M Base Memory Address, PMBADR

P2 0 for stop at limits, 1 for wrap around screen.
P3 Speed of horizontal movement.

P4 Player zero left screen limit.

P5 Player zero right screen limit.

P6 Player zero upper screen limit.

P7 Player zero down screen limit.

P8 Player zero vertical size.

P9 Player zero Initial horizontal position.

P10 Player zero initial vertical position offset value.
P11 to P17 Player 1 equivalents of P4 to P1Q.

105

@ REM PROGRAM.@91

18 DIM PLAYERS$(7) ,P$(333) :GRAPHICS @:P

OKE 710,0:POKE 712,66:POKE 752,1:7 :RE

S_

280 PMBADR=USR(ADR(" hhh DOl i SEM\ICIH hmo

MDHhhMHE MR/ e . B v R i O

CTUCEN CUR -cllymavile ") , 16, 1 ,RES)

38 Z=USR(ADR(" hilwLiE® M2l SIMIZREWEANY

Fi32%e ">) :REM CLEARS P/M AREA. MUST
BE USED AFTER LINE 2@.

48 X=70:Y=100:L1L=44:RL=201:UL=31:DL=22

0:POKE 704,20:S12E6=7

50 X1=11@8:Y1=120:LL1=4&:RL1=201:UL 1=31

:DL1=2208:POKE 785,33:S1ZE1=7

&0 P$“"hhmtumhh.h'l!h“hh.ﬂﬂhhm

i M B S /A RN TARDIA Yviah AT

hhIleh hEEISIEAE DAL

78 PLAYER$="4bZ 44ZB"

88 PLAYB=USR(ADR(P$) ,PMBADR,8 ,ADR(PLAY

ER$) ,X,WIDTH,RES,Y,SIZE®)

76 PLAY 1=USR(ADR(P$) ,PMBADR, 1 ,ADR(PLAY

ER$) ,X1,WIDTH! ,RES,Y1,8IZE1)

108 P$(1)=" B/ UCUE /A h/AI81 470 WIe

= /2 /D o/ /B /T */ H /7 IR B

D KD XD @D MEERLIA /B /RN

110 P$(102> =" M FAEIAN0~ERE, RA/BA/IN/

ERDA/4m 4/ VEEFGY Y MAE0) D08 o /NS HENT

B2/ / I /2 MRS et R e /B i/]

120 P$(202) ="4 A/ MILbERFE VSN /4.1 0
1 /7RO R /R /R /e /N
/MJIIWMMB‘ ViSR//mh/

139 P$(304) ="REN/TLELBEED v a0l

MNEoN

148 BB=USR(ADR (" hhNh 213 2H=&H Wgh "Dl vt

S PRI IIRTY DPUTRIIR e ' > ,ADR(P$)
, PMBADR, LENC(P$))

156 P$="hEINhmF/hmv/Hthm IZlehhe ZhhEH

Zhhh /ZhhB//h hENZh hD4/7H W o/h h DA /NN 0M
TaH /0~ RN \Ble"

160 BB=USR(ADR(P$) ,PMBADR,1,3,LL,RL,UL
,DL,SIZE®,X,Y,LL1, RL1 uLt, DLl SIZEI X1
D

106

PROGRAM.092 Clear P/M In VBI

When you are ready to clear the P/M from the screen and
go about some other business in your BASIC program use the
next routine. Note that any information in the unused area of
the Player-Missile memory or Page 6 is not erased. Only the
memory starting with the missile memory cell through the last
player is erased. The routine also deactivates the necessary
P/M registers. There are two different routines depending on
the type of computer you have.

Pl P/M Base Address, PMBADR.

8 REM PROGRAM.B92

18 REM X FOR ATARI 488888 COMPUTER.
286 BB=USR(ADR("hhIEiShING/ M. (1IN 0
VI AKTTCEN DN SIS/ Ti NN S
(Sl G W AN \Eie") ,PMBADR)

386 REM

46 REM X FOR ATARI XL/XE COMPUTER.

58 BB=USR(ADR("hhJIEiSh1ER/ .2 (1IN0
VIR AKTUCHE WYlriNcIE I 5R/TINID e
' MEENIN \El¢") ,PMBADR)

107

Chapter 13
Miscellaneous

The following short program will generate up to 256
random numbers that do not repeat themselves. These numbers
will range from 0 to 255 in value.

The variable 'SIZE' in line 10 is the number of
non-repeating numbers desired. Linme 20 generates numbers from
0 to ore less than SIZE in numerical order. These numbers are
placed in the string S$. The second parameter is the starting
address of the second string or memory area where the
non-repeating random numbers will be generated from the S$

string. The third parameter is the number of random numbers
to generate.

Pl Starting address to generate first set of numbers from
0 to length of numbers desired.

P2 Starting address of non-repeating random numbers.

P3 Number of random numbers desired.

Lines 30 to 40 take the rnumbers out of the S$ string and
randomizes them into the second memory area starting at 1536.
Another string could also be used. Note that the USR call in
line 40 uses some BASIC programing and must be written as is.
It also must come after line 20 which sets up line 40 with
some needed information. Line 50 looks at the generated
random numbers to verify the numbers are non-repeating.

For this sample program we will randomize 52 numbers
which can be assumed to be 52 playing cards. The single
parameter for the second machine routine in lime 40 is:

PL INT(N*RND(Q)), where N is the loop counter from line
30.

108

8@ REM PROGRAM.@93

18 SIZE=52:DIM S$(SIZE)

20 X=USR(ADR(" hh Eh2¥h 7 2 h DED 233
@e") ,ADR(S$) , 1536,SI12E)

386 FOR N=SIZE TO 1 STEP -1

48 X=USR(ADR(" hhh ICEEEDI G Qs Faas)
laDadle ") , INT (NXRND(@))>) :NEXT N

S8 FOR 1=8 TO SIZE-1:? I,PEEK(1534+1):
NEXT 1

The following program produces the famous ATARI rainbow
effect. This effect can be done in GRAPHICS O, 1, or 2
screens. For GRAPHICS 1 or 2 screens either the letters or
the background screen can be 'rainbowed'. Line 10 sets up a
GRAPHICS 2 screen and prints "MACHINE LANGUAGE' on the screen
in four different colors. The four different colors are
assigned to color registers 708 to 711. The background screen
color is register 712. Registers and colors are assigned as
follows:

GRAPHICS O GRAPHICS 1&2

Upper Case 709 708
Lower Case 709 709
Inverse Upper Case 709 710
Inverse Lower Case 709 711
Background 710 712
Border 712 712

Line 20 sets up a loop to cycle the rainbow through each
of the color registers to show the full effect. The machine
routine in line 40 or 70 needs three parameters.

P1 Time guration of Rainbow effect.
P2 Width of individual color lines, 1 is widest.

P3 Code number, 0-4, for color registers 708 to 712,
respectively, to 'rainbow'.

109

8 REM PROGRAM.B89%4

18 GRAPHICS 2+14:POSITION 6,2:7 #6:;"Ma

Bilfe" :POSITION 5,7:? #4;" 1BRGRuEE'"

28 FCR C=86 TO 4

30 X=USR(ADRC("hhhilahh18h hIKR 4ol +cllim

A B GEeNERNSYe ") (4,1,0)

48 NEXT C

586 REM X

68 REM USE FOLLOWING ROUTINE FOR COLOR
DENSITY OPPOSITE ABOVE ROUTINE.

78 X=USRC(ADR(" hhhilhhi18h hE Hilveli< BN

An B GEeNENENe ") ,4,1,0)

86 REM FIRST PARAMETER IS DELAY TIME,
2ND IS LINE WIDTH (1 IS WIDEST,
AND 3RD IS COLOR REGISTER, ©6-4).

PROGRAM.095:Color Static
Here's an interesting variation of PROGRAM.094. Try it,
you'll like it!

Pl Time duration of effect.
P2 Code number for color register.

® REM PROGRAM.B95

18 GRAPHICS 2+14:POSITION 6,2:? #6;"Ma
HiIfe" :POSITION S5,7:? #4;" 1BRGHUEE'"
28 FOR N=8 TO 4

38 X=USR(ADR("hhhiEEhhiE<EvIsR il B 5
oxEdNANe ") ,3,N

48 NEXT N

If the first number is less than the second number, the
Return Variable will contain a 1. If they are equal, & 2 will
be returned. If the first number is greater than the second
one, a 3 will be returned. This type of comparison makes a

110

nice setup for a ON...GOTO or ON...GOSUB statement, by
eliminating three IF...THEN statements. The two parameters
required are the two integer numbers being compared.

® REM PROGRAM.0%4

19 A=20

20 B=99

36 X=USR(ADR("hi CREEYEAN hDIH hTNGIEH &M

ofle") ,A,B) :REM MAXIMUM PARAMETER
SIZE 1S 255.

49 ? X

58 END

68 REM ¥%

76 REM USE FOLLOWING ROUTINE FOR
NUMBERS UP TO 65535.

88 X=USR(ADRC"hil ClEvIILHEihMh I T TNEINE L]

JMfelaleINT INE ") ,A,B)

PROGRAM. 097 Cursor BLink

This program will blink the .cursor or any inverse
character. The blinking is set up in a Vertical Blank
Interrupt. The routine can not be addressed directly but must
be placed in a knowm area of memory. Use PROGRAM.092 to clear
this routine.

Pl Starting Address of the VBI machire code.

® REM PROGRAM.B97

i DIM VUBI$ (38

286 VBI$="hhiih+i L HIIN\ “Eie@onB INB LiJjJJ
.8 1.8 LbE"

38 X=USR(ADR(VBI%) ,ADR(VBI%>)

This routine will return the Low byte of an integer

number in the Return Variable and the High byte in memory
111

location 208. The maximum value of the number is 65535.

Pl Integer number to determine low & high byte values.

8 REM PROGRAM.0898

16 A=2355

28 X=USR(ADRC"hhEh v e ") ,A)
386 ? X,PEEK(208)

This program will read two consecutive memory locations
in the standard low/high byte convention and return the full
address in the Return Variable. It can be useful for repeated
readings of low and high byte registers, such as the Display
List and Screen Memory starting addresses.

The program below returns the starting address of the
screen memory. Line 20 prints out the full address, which is
the memory location of the upper left cormer of the screen.
POKEing a '64' into this memory location places the heart
character in that corner (remember to use the Display value -
see Appendix). Only the first memory address (low byte) of
the two byte address is required, as the single parameter.

Pl Low byte of a two byte address.

¢ REM PROGRAM.B99

18 X=USR(ADR("hhhiHRvE
)

28 ? X:POKE X, 44

This program does just the opposite of PROGRAM.099. It
will place an integer number up to 65535 into a two byte, low
byte then high byte, address.

The sample program shows the placing of the number 40201
into Page 6 locations 1536 and 1537. Line 20 prints out the

112

full address in BASIC of the 2 byte address to verify the
number was correctly inserted.

Pl First location of a 2 byte address.
PZ Number to place into the two addresses.

@ REM PROGRAM. 1060

10 X=USRC(ADR("hhJ1Sh 1Ml FhRW hIAke ") , 1534
,4020 1)

28 ? PEEK(1536é) ,PEEK(1537)

30 ? PEEK(1534) +PEEK(1537) X254

PROGRAM.101 Time It

These two routines will time an event in your BASIC
program. The first routine in line 10 turns on the timer. The
second routine in line 30 turns off the timer. The elapsed
time is in the Return Variable. This time is in Jiffies which
is approximently 1/60th of a second. The routine will be good
for up to 65535 jiffies or about 1092 seconds. No parameters
are required. The sample program shows the timing of a delay
loop in line 20.

@ REM PROGRAM. 1061

186 START=USR(ADR(" hEviieTH&Hllle ") >

20 FOR I=1 TO 388:NEXT I

380 TIME=USR(ADR{("hSle;RalIIe ") >

46 ? TIME

S8 REM TIME IS IN JIFFIES OR APROX.
1768 OF A SECOND. FOR SECONDS
JUST DIVIDE BY é8.

This short routine will cause a delay in processing for
up to about 4.5 seconds. The single parameter is the time
delay in jiffies, 0-255.

113

® REM PROGRAM. 102

19 X=USR(ADR("hhh v iedeileaNRe")> ,2

1))

20 REM PARAMETER 1S NUMBER UP TO 255
WHICH IS APPROXIMENTLY 4.5 SECONDS
OF DELAY TIME.

To disable the Break Key, use the routine in line 10. To
re-enable the Break Key use the routine in line 30. Remember
the Break Key is also enabled whenever a new GRAPHICS command
is called, so you may want to use the disable routine several
times thoughout your program.

@ REM PROGRAM. 183

18 X=USR(ADR(" hiliptMm ide "))
20 FOR I=1 TO 10880 :NEXT 1
30 X=USR(ADR("hiL¥MERm iHe¢") >

You can use this short machine routine to turn off all
four SOUND registers at once. Lines 10 to 40 turn on the
sound registers, and line 60 turns them off.

@ REM PROGRAM. 104

18 SOUND 0,16,10,6

20 SOUND 1,20,8,6

380 SOUND 2,100,6,6

40 SOUND 3,148,14,6

S0 FOR I=1 TO 5@08:NEXT I

68 X=USR(ADR(" hilL&iv 1o e "))

114

There may be times when you don't want your text lines
readable in a BASIC program. This occurs many times in
adventure game programming. You can code the text, and have
the text decoded in the program using BASIC, but this process
takes too much time. The following program will code or
decode a text string up to 256 characters long in the flash
of an eye!

The first routine in 1lire 30 codes the text in line 20.
It codes it to an unreadible form, as line 50 shows. The same
routine is used in line 60 to decode the coded string. Three
parameters are used.

P1 Starting address of the text.

P2 Length of the text.

P3 Seed number (1-255) for coding or decoding. Must be
the same for both routires.

8 REM PROGRAM. 185

18 DIM S$(256)

28 S$="THE CAT IN THE HAaT"

3@ X=USR(ADR(" hhIh 7kl h 7Hih h "ERVEERA RaE

MRAZAe ") ,ADR(S$) ,LEN(SS) ,4)

40 POKE 766,1:REM PRINT CONTROL
CHARACTERS WITHOUT ACTING ON THEM.

S8 ? S$:REM CODED.

68 X=USRCADR (" hh218h "3 h i h I EEEA BAE

MPRMASREEGe ") ,ADR(S$) ,LEN(S$) ,4)

786 ? S$:REM DECODED.

88 END

90 REM X

186 REM USE THE FOLLOWING ROUTINE FOR
UP TO 45535 LENGTH.

118 X=USR(ADR(" hhIShEh R T hTDEVERRE

R MRNISEITR A A MRNIRENe ") ,P1,P2,
P3)

115

Chapter 14
Number Systems Conversion

This program will convert a decimal integer number, up to
255, into its binmary equivalent. Line 20 sets up a string of
eight spaces for the binary number.

Pl Decimal Integer Number, <256.
P2 Address of string for Bimary number.

8 REM PROGRAM. 1084

1¢ DIM BIN$(8

280 BIN$=" *sREM MUST BE EIGHT
SPACES.

30 X=USR(ADRC("hhhillh TS TREINF EEH B0l M 1T
W 2le") ,243,ADR(BINS))
48 ? BINS

To convert a decimal integer to its hexadecimal
equivalent, use the next program. Note, the string to hold
the hexadecimal number must be set up as shown in line 20 for
decimal numbers wup tec 255, and as shown in line 70 for
decimal numbers up to 65535.

Pl Decimal Integer Number
P2 Address of string for hexadecimal number.

1le

@ REM PROGRAM. 187

18 DIM HEX$(S)

20 HEX$="$ ":REM MUST DO THIS.

3@ DEC=243

48 X=USR(ADR("hhhIlEhJ1Rh7120 CIBEED « MALA +

>i(?l'gi-l-l-iBHIHIIIIE‘I]J.JJ.J-I-[-_EO") s DEC ,ADR(HE

%))

98 ? HEX$

48 END

786 REM USE FOLLOWING ROUTINE FOR
DECIMAL NUMBERS UP TO &5535. BE
SURE TO SET HEX$="% ',

80 X=USR(ADR(" hhIWhMEh10h 038 K “DORE) . M

L&*i?@*i@MNJJJJ‘ﬂmm

Ellxe") ,P1,P2)

PROGRAM.108 Hexadecimal To Decimal

This program does the opposite of the last program. The
hex number is placed in a string, without the '$' sign, and
the Return Variable contains the decimal equivalent.

Pl Address of the hexadecimal number.

® REM PROGRAM. 188

10 DIM HEX$(4)

20 HEX$="FE"®

38 DEC=USR(ADR("hhIIShMRvT1IRS MvIReL:

1875 S0+ BERRRE */u /L e ') ,ADR(HEX

#)) :REM MAXIMUM HEX NUMBER = $FF.

486 ? DEC

S8 END

68 REM USE FOLLOWING ROUTINE FOR HEX
NUMBERS UP TO $FFFF.

78 X=USR(ADR("hhIShI1ME M KvIIEBAISALH B7)

< SHO+ INEAER S/7E//A/EHLTIE HE /AT e)
P

117

This number conversion reguires two strings to hold the
numbers. The binary string must be reserved with eight spaces
as shown in line 20. The other string contains the hex number
to convert.

Pl Address of the hexadecimal string.
P2 Address of the binary string.

8 REM PROGRAM. 109
16 DIM HEX$(2) ,BIN$(8)

28 BIN$=" " :REM MUST BE 8
SPACES.

30 HEX$="FE"

48 X=USR(ADR(" hh{Ih IEEv IR HYRBLAN

75 SHO+ HCBIEREE */1/8/W/uL Oh Tih RN\ F uisH B
ol MRV 4Ele") ,ADR(HEX$) ,ADR(BINS))
58 ? BINS

To convert an eight bit binary number to its decimal
equivalent, use this program. The binary number is placed in

a string, and the Return Variable contains the decimal
number.

Pl Address of the binary number.

118

8 REM PROGRAM.11@

16 DIM BINS(S)

20 BIN$="111106118"

38 DEC=USR(ADR("hil Klsh fi8h M0 1T REN N
O\ cIEM/F Mo ") ,ADR(BINS))

46 ? DEC

Two strings are required to do this number conversion.
The binary number maximum is 11111111 ($FF). The string to
hold the hex number must be set up as shown in line 20. As an
extra bonus, the decimal equivalent of the binary number is
also available in the Return variable.

Pl Address of the binary number string.
P2 Address of the hexadecimal number string.

8 REM PROGRAM. 111
18 DIM B#$(8) ,H$ (D

26 H$="¢ “:REM MUST DO THIS.
30 Bs="11111110"

48 X=USR(ADR(" hEl KEEh 18 T SR S e AN
NERIO N\ cUtR/\F 2000 CYI0N0) o ML +i 7L i
OEANEIAATT) J JJMLTHe ") ,ADRCBS) ,ADR(HS$))
50 ? H$,X

119

Chapter 15
Bit Flipping, Reading, Clearing, & Setting

The next set of routines will come in handy for more
advanced BASIC programmers and machine language programmers.
A bit in a bimary number is set when its value is 'l' and
cleared, or not set, when it is '0'. The maximum 8-bit binary
number is 11111111, which is 255 decimal, or $FF hex.

This program aliows any of the eight bits in a binary
number to be changed to its opposite value. The number is in
a known memory location. The sample program places the
decimal number 12 in memory location 1536, Page 6, where the
machine routine will act upon it.

Pl Address of number.
P2 Bit to flip, 0-7.

8 REM PROGRAM.112
16 POKE 1536,12

20 X=USR(ADR{ " hh 8h3h hEEEEC X AMIETNe *

) ,1536,4)

386 ? PEEK(1534)

40 REM EXAMPLE SHOWS THE NUMBER " 12"
BECOMES “28/ WHEN BIT 4 IS FLIPPED.

This routine does the same bit flipping as the last
program, but the number is read directly into the machine
routine as a parameter. The new number is found in the Return
variable.

120

Pl Integer Number, 0-255.
P2 Bit to flip, 0-7.

@ REM PROGRAM. 113

18 A=28

20 X=USRC(ADR("hhhNthHERIYTIUS X BMIEICRIe ")
yA,4)

36 ? X

To set a bit of a number in a memory location, use this
next routine.

P1 Address of number.
P2 Bit to set, 0-7.

@ REM PROGRAM.114

18 POKE 1534,2

28 X=USR(ADR(* hh2¥8hh hBEEVEIS X R ralfale "

) ,1536,3)

38 ? PEEK(153&)

48 REM EXAMPLE SHOWS THE NUMBER ‘2’
BECOMES ‘18’ WHEN BIT 3 1S SET.

PROGRAM.115 Bit Set - Direct Number Input
To set any bit of a number fed directly into the machine
routine use the next program. The new number will be in the

Return Variable.

Pl Integer Number, 0-255.
P2 Bit to Set, 0-7.

121

8 REM PROGRAM. 115

18 A=2

280 X=USR(ADR(" hhhith hEEEVIRLS X Bidgh ICNEe " >
AL

36 ? X

To clear a bit in a number stored in memory use this
routine.

Pl Address of number.
P2 Bit to clear, 0-7.

¢ REM PROGRAM. 116

16 POKE 1536,255

20 X=USR(ADRC" hhiEhA3h h CEIVELH-X R | GF2Ne

") ,1536,

386 ? PEEK(153&)

40 REM :EXAMPLE SHOWS THE NUMBER ‘2355
BECOMES “253“ WHEN BIT 1 IS CLEARED

PROGRAM.117 Bit Clear - Direct Number Input

To clear a bit in a number read directly into the machine
program use this next routine. The new number is assigned to
the Return Variable.

Pl Integer Number, 0-255.
P2 Bit to clear, 0-7.

@ REM PROGRAM.117

18 A=255

20 X=USR(ADR(" hhh=gh h CEEvIAE X MNT LCREe
") LA, D

30 ? X

122

To read the status of a bit in a number in a memory
location, use the next program. The status, 0 or 1, of the
desired bit is assigned to the Return Variable.

Pl Address of number.
P2 Bit to Read, 0-7.

@ REM PROGRAM. 118

18 POKE 1534,28

28 X=USRC(ADR(" hhi1shRh hEEv: EINCY | L3

Kuge") ,15356,2)

38 ? X

49 REM :EXAMPLE SHOWS THE NUMBER ‘28’
HAS BIT 2 SET(EQUAL TO “17).

This is the companion to the previous program when you
want to input the number directly to the machine program. The
Return Variable contains the status of the desired bit, O or
1.

Pl Integer Number, 0-255.
P2 Bit to read, 0-7.

@ REM PROGRAM.11%

18 A=28 ‘

20 X=USRCADR("hhhiMih hiallv: LRI jSL30 H1
me") ,A,2)

38 ? X

123

Chapter 16
Text on a Graphics 8 Screen

You can place normal GRAPHICS O text on a GRAPHICS 8
picture screen with the following routine. The program works
by first reading in the ATASCII value for the text you want
to place on the screen. Then the program goes to that
character in the internal Atari character set and copies its
shape directly to the screen memory.

Line 20 sets up a GRAPHICS 8 screen with a black
background and red border. Line 50 selects the ATASCII value
of 65 which is the letter 'A' character. Line 60 through 70
runs through the machine routine 5 times in order to place
the letter 'A' in each of the four corners and at the start
of the second line.

The first parameter is the ATASCII number of the
character to place on the screen and the second parameter is
the location offset on the screen to place the character.
Lire 100 contains the second parameter for the example
program. This offset can start at O (upper left corner of
screen) and continue to 7399 (lower right corner of screen).
But isn't a GRAPHICS 8 screen 7680 bytes in length? Yes it is
but since a text character is 8 lines high and 8 bits wide
then we have to back off from the very last byte of the
screen to fit it in the corner.

You can put 40 characters across the screen and start
them on any of the 192 1lines of the screen. Therefore, for
correct spacing, the first character on the second lire would
start on line 8 (remember the first line is line 0) and have
a location offset of 8x40 or 320.

Pl ATASCII value of character to place on screen.
P2 Location offset on screen to place character.

124

8 REM PROGRAM. 128

18 DIM P$(125)

286 GRAPHICS 8+14:POKE 718,6:POKE 712,46
é

38 P$(1)="haheYIlheX{RMNRi vINEE] C1RH h 2y
N FSIKSHD OS\GEM-1 CIEMRED oloENSHICH TIMERAN
M- 1 ENOBUEIRE N HEH I eTaiti- | (LA Vil
40 P$(102) =" 4 I L FEREIRAL IR A"
58 NUMBER=45:REM ATASCII CODE FOR ‘A’.
68 FOR I=1 TO S5:READ LOCATION

70 BB=USR(ADR(P$) ,LOCATION,NUMBER)

88 NEXT 1

%8 GOTO %8

168 DATA 8,39,7368,7399,320

125

Appendix A
ATASCI and Display Character Code Values

Character ~ ATASCII Display | Character ATASCII Display
space 32 0 A 65 33
! 33 1 B 66 34
" 34 2 C 67 35
F 35 3 D 68 36
$ 36 4 E 69 37
% 37 5 F 70 38
& 38 6 G 71 39
! 39 7 H 72 40
(40 8 I 73 41
) 41 9 J 74 42
* 42 10 K 75 43
+ 43 11 L 76 44
, 44 12 M 77 45
- 45 13 N 78 46
. 46 14 0 79 47
/ 47 15 P 80 48
0 48 16 Q 81 49
1 49 17 R 82 50
2 50 18 S 83 51
3 51 19 T 84 52
4 52 20 U 85 53
5 53 21 % 86 54
6 54 22 W 87 55
7 55 23 X 88 56
8 56 24 Y 89 57
9 57 25 z 90 58
: 58 26 [91 59
; 59 27 \ 92 60
< 60 28] 93 61
= 61 29 A 94 62
> 62 30 _ 95 63
? 63 31 CTRL , 0 64
@ 64 32 CTRL A 1 65

12¢

Character ~ ATASCII ~ Display | Character ATASCII Display

CTRL B 2 66 a 97 97

CTRL C 3 67 b 98 98 -
CTRL D 4 68 c 99 99

CTRL E 5 69 d 100 100 -
CTRL F 6 70 e 101 101

CTRL G 7 71 f 102 102 -
CTRL H 8 72 g 103 103

CTRL I 9 73 h 104 104 -
CTRL J 10 74 i 105 105

CTRL K 11 75 j 106 106 -
CTRL L 12 76 k 107 107

CTRL M 13 77 1 108 108 -
CTRL N 14 78 m 109 109

CTRL O 15 79 n 110 110 -
CTRL P 16 80 0 111 111

CTRL Q 17 8l p 112 112 -
CTRL R 18 82 q 113 113

CTRL S 19 83 r 114 114 ,
CTRL T 20 84 s 115 115

CTRL U 21 85 t 116 116 _
CTRL V 22 86 U 117 117

CTRL W 23 87 v 118 118 -
CTRL X 24 88 w 119 119

CTRL Y 25 89 x 120 120 -
CTRL Z 26 90 y 121 121

ESCAPE 27 91 z 122 i22 B
CTRL? 28 92 CTRL ; 123 123

CTRLWY 29 93 I 124 124 -
CTRLE 30 94 CLEAR 125 125

CTRL> 31 95 Back S 126 126 _
CTRL . 96 96 TAB 127 127

The following special characters, along with the Arrow, Clear,
Insert, Back S, Tab, and Escape keys must be preceeded by the ESC key -
to display

CTRL 2 253 253 CTRL Insert 255 255
CTRL Back S 254 254 E.O.L. 155 155

For inverse characters, add 128 to the above values.

127

Appendix B
Atari Text & Graphic Modes

Screen
Antic BASIC Number Bytes Memory
Mode Mode Columns Rows of Colors per Line Bytes

TEXT
2 0 40 24 12 40 960
3 40 *x 12 40 *x
4 12* 40 24 5 40 960
*
5 13 40 12 5 40 480
6 1 20 24 5 20 480
7 2 20 12 5 20 240
GRAPHIES
8 3 40 24 4 10 240
9 4 80 48 2 10 480
A 5 80 48 4 20 960
B 6 160 96 2 20 1920
C 18 160 192 2 20 3840
D 7 160 9 4 40 3840
*
E 15 160 192 4 40 7680
F 8 320 192 12 40 7680
GTIA
9 9 80 192 1° 40 7680
10 10 80 192 10 40 7680
11 11 80 192 164 40 7680
1 _ ; 2 ,
3 Full Screen, No Window One Color, 2 Luminances
One Color, 16 Luminances 16 Colors, One Luminance
* XL/XE Only *#* User Defined

128

BASIC TURBOCHARGER source codes

2-Disk set with the complete source codes for all the routines and
programs from BASIC TURBOCHARGER $15.00
Other 8-Bit Products From Alpha Systems
Atari Scftware Protectecion Techniques and Advanced Atan
Protection Techniques

Learn the secrets of software protection including routines to
protect your own programs, and reviews of commercial back-up
software - Both books and disks $39.95

Chipmunk Disk Back-iUp System - Creates working back-up
copies of most software - No hardware modifications needed!

(write for full list of what it will back-up) $34 85
Scanalyzer - Scan, analyze & modify any program $29 95
Impersonator - Cartridge back- Up system $29.95

Magniprint |1+ - Prints almost any picture from 1/8 pg to 6'. Add
multi-size text, any font, choose your own print shades $24.95

Magniprint il« & ComputerEyes - Complete video digitizer and

print package (Gr. 9 software $12.00 extra) $119.95
Graphics Transformer - Change pcitures from one format to
another Use ComputerEyes pictures in Print Shop! $22.95
Parrot - Sound digitizer you have to hear to believel $55.95

Your Atari Comes Alive - Create exciting computerv controlled
devices, incl. speech recognition & more! book & disk $24.85

Call or write for free catalog of all our fine 8-bit products
Add $3 00 shipping/handling per order. Ohio res. add 5 1/2% tax.

ALPHA SYSTEMS 1012 Skyland Dr.

Macedonia, OH 44056
Order Line (216) 374-7468

LIMITED WARRANTY

Alpha Systems warrants the original purchaser of this computer software product
that the recording medium on which the software programs are recorded will be free
from defects in materials and workmanship for ninety days from the date of
purchase. Defective media returned by the purchaser during that ninety day period
will be replaced without charge, provided that the returned media have not been
subjected to misuse, damage, or excessive wear.

Following the initial ninety day warranty period, defective media will be
replaced for a replacement fee of $6.50.

Defective media should be returned to:

ALPHA SYSTEMS
1012 SKYLAND DRIVE
MACEDONIA, OH. 44056

in protective packaging accompanied by: (1) a brief statement describing the defect;
(2) a $6.50 check or money order (if beyond the ninety day warranty period); (3)
your return address; (4) the problem disk.

What is Not Covered by this Warranty

This warranty does not apply to the software programs themselves. the programs are
provided "as is".

This warranty is in lieu of all other warranties, whether oral or written, express or
implied. Any implied warranties, including imputed warranties of merchantability and
fitness for a particular purpose, are limited in duration to ninety days from the date
of purchase. Alpha Systems shall not be liable for incidental or consequential damage
for breach of any express or implied warranty.

The provisions of the foregoing warranty are subject to the laws of the state in
which the disk is purchased. Such laws may broaden the warranty protection
available to the purchaser of the disk.

Tell Us What You Think

We at Alpha Systems are sincerely interested in bringing you the best possible
products at the lowest possible prices. Please write wus if you experience any
difficulties with our products, or have any comments or ideas for improvements. We
will do our best to make our products better meet your needs. When you write,
please enclose the following: 1) Your name, address, and phone number. 2} Your
comments, or a description of your problem. 3) A description of your system. 4) If
you are reporting a problem, plcase also include a description of what you were
doing when the problem occurred, any printouts or other output showing the problem
if possible, and any suggestions you may have regarding the cause and solution.

BASIC

OCHARGET

By Jeff Bader

Machine Language Routines
For Atari BASIC Programmers

TURBOCHARGE your BASIC programs! Now anyone,
2ven beginning BASIC programmers, can put
the speed, power, and flexibility of machine
language into any BASIC program. This unique
book and disk package contains over 160
ready to run machine language routines that

can easily be used -in any BASIC program.

These routines have been written, tested,
and used by some of the best professional
programmers. Just a few of the many topics

covered are:

Moving Memory Player/Missiles

Graphics Modes Sorting & Searching
String Search Disk Input/Output
Timing Routines Joystick Routines
DI.I Routines Bit Manipulations
Graphics- & Text Special Effects

Many More!

Each —reutine is Tisted and completely
explained in the book, and included on the
disk, They’'re ‘ready to use, no typing
required! All the work has been done for
vou. There’s no license fees, so you can
use these routines in your own commercial
programs. Don’t wait - TURBOCHARGE your
BASIC programs today!

I —

=—=SYSTEMS

