ATAR]*400/800"

PILOT PRIMER

THE PILOT PROGRAMMING LANGUAGE
INSTRUCTION MANUAL

ESQUIRAL —
i PLEAQASE ENTER

GR:GOT0 @,8:FTURNTD O:CLEAR

T NL THE
" HA—SXO+ L

r
£ un
e
e

PILOT PRIMER
THE PILOT PROGRAMMING LANGUAGE
INSTRUCTION MANUAL

N\

ATARI®

0 A Warner Communications Company

ATARI wishes to acknowledge that the original manuscript for the PILOT PRIMER was written by Dorothy Kunkin and Keith Vann.

Every effort has been made to ensure that this manual accurately documents this product of the ATARI Computer Division. However,
because of the ongoing improvement and update of the computer software and hardware, ATARI, INC. cannot guarantee the accuracy of
printed material after the date of publication and cannot accept responsibility for errors or omissions.

Reproduction is forbidden without the specific written permission of ATARI, INC., Sunnyvale, CA 94086. No right to reproduce this docu-
ment, nor the subject matter thereof, is granted unless by written agreement with, or written permission from the Corporation.

PRINTED IN U.S.A. PROCRAM CONTENTS © 1980 ATARI, INC. MANUAL © 1980 DYMAX

ATARI PILOT owes a great deal to three outstanding computer
educators:

Dr. John Starkweather (University of California Medical Center, San

Francisco), who originated the first PILOT language for computer-based
education.

Dr. Dean Brown, whose pioneering work at the Stanford Research In-
stitute Education Laboratory between 1967 and 1974 showed PILOT to
be a language for children’s programs, as well as for teachers.

Dr. Seymour Papert, at the LOGO Project at Massachusetts Institute of
Technology, for the development of “Turtle Geometry” and “Turtle
Graphics,”” which ATARI PILOT uses.

PREFACE

WHAT IS PILOT?

PURPOSE OF
THIS MANUAL

HOW TO USE
THIS MANUAL

PILOT stands for Programmed Inquiry, Learning Or Teaching. PILOT is a simple,
flexible language that is easy to learn in a short period of time. It is an excellent tool
to introduce children and beginners to computers and computer programming.
PILOT was created as a text-oriented language for beginners who do not have an
extensive mathematical background. With the basic knowledge of computers that
can be acquired through PILOT’s simple programming constructs, PILOT can pro-
vide a solid base for future computer learning.

This manual is designed to:

® Teach you how to use the PILOT language on the
ATARI® Personal Computer System

* Provide an introduction to simple graphics and sound
through the medium of ATARI PILOT

Our goal is to enable you to design educational programs that respond ap-
propriately to a variety of inputs. This means tutorials, programs using interactive
dialogues, and games that genuinely respond to you. We want you to learn PILOT
and be able to use it successfully to meet your own goals.

If you are a teacher or parent, this manual will enable you to design interactive cur-
riculum materials that provide personalized, self-paced instruction for your
students or children.

This manual is specifically designed for the beginner who may
know little or nothing about computer programming. It begins with simple con-
cepts which grow as you proceed through the book. Sections 1 th rough 10 provide
the fundamentals of ATARI PILOT; therefore, all beginning readers should start
with the Introduction and proceed sequentially through Section 10. Readers who
are advanced programmers or are familiar with the PILOT language may want to
read the Introduction and each Section Summary before skipping ahead to the ad-
vanced sections.

Each section teaches a new concept. The sections begin with a checklist of the ma-
jor topics that will be covered in Concepts Introduced. At the end of each section is
a Summary that briefly reviews the contents of the section, followed by a Quiz to
test your understanding of the new concepts. Following the Quiz is a section ex-
plaining the more difficult concepts for the advanced programmer,

Preface iii

CAST OF The four colors below will appear throughout this manual to highlight special I
COLORS words of advice. Each color is related to a specific kind of message.

B Provides helpful hints on how to do things. Often offers
little reminders. W

Usually introduces a new topic or explains a difficult
concept.

B Lets you know about things you should do to avoid
problems.

B Will appear throughout the manual, to explain the
meaning of the special symbols we use such as quotes ("),
brackets (L 1), and others. H

iv Preface

CONTENTS

PREFACE iii

What Is PILOT? il
Purpose of This Manual ii
How To Use This Manual iii

Cast of Colors iv

1 INTRODUCTION 1
Getting To Know Your Computer 1
Getting To Know the Keyboard 2

2 GETTING STARTED WITH PILOT 5
Concepts Introduced 5
What Is the ATARI PILOT Cartridge? 5
Changing the Screen Display 5
Clearing the Screen 6
Correcting Mistakes 2

Some PILOT Commands 8
What Is a Command? 8

The TYPE Command, T: 9

The SOUND Command, SO: 9

The GRAPHICS Command, GR: 13
Section 2 Summary 16
Section 2 Quiz ¥ g

3 WRITING A PILOT PROGRAM 19
Concepts Introduced 19
Immediate and Deferred Commands 19
What Is a Program? 19
Executive Commands 20

The RUN Command 20

The LIST Command 21

The NEW Command 23

The AUTO Command 23

Contents v

More Commands 26

The TYPE Command, T: 26
The ACCEPT Command, A: 26
The REMARK Command, R: 31
The END Command, E: 32
Correcting and Changing Your Programs 32
Erase a Line 32
Insert a Line 33
Replace a Line 34
Line Renumbering 35
The RENUMBER Command, REN 35
Fancy Renumbering With REN 36
Section 3 Summary 37
Section 3 Quiz 38
4 DECISION-MAKING PROGRAMS 41
Concepts Introduced 41
Matching for Clues 42
The Function of the ACCEPT Command, A: 42
The MATCH Command, M: 42
Conditional Commands 44

The TYPE IF YES and TYPE IF NO Commands,
Y5 T 44
Putting It All Together 47

The END IF YES and END IF NO Commands,

EY:, EN: 48
Section 4 Summary 50
Section 4 Quiz 51
Advanced Decision-Making Techniques 53

Separating MATCH Strings With Vertical Bars 53
5 BRANCHING 55
Concepts Introduced 55
The Statement Label 55
The JUMP Command, J: 55
The JUMP IF YES and JUMP IF NO Commands,
J G 1 a7
The TRACE Command 59
Section 5 Summary 61
Section 5 Quiz 62
Advanced Branching Techniques 63
The JUMP Command in Immediate Mode, }: 63
The JUMP ON MATCH Command, |JM: 63
Mini-Quiz 65

vi Contents

VARIABLES 67
Concepts Introduced 67
What Is a Variable? 67
String Variables 69
What Is a String Variable? 69
Defining String Variables 69
Using TYPE and ACCEPT Commands
With String Variables 70
What Are the Values of Your String Variables? 72
The DUMP Command 72
The COMPUTE Command, C: 72
String Concatenation 73
Growing Strings 73
Generating Plural Strings 75
The ACCEPT Command Without Input 76
The COMPUTE IF YES
and COMPUTE IF NO Commands, CY:, CN: 77
Clearing Your Variables 77
Section 6 Summary 78
Section 6 Quiz 79
Advanced Programming With Variables 81
Assigning Variables Into Other Variables 81
String Indirection 81
The MATCH STRING Command, MS: 81
Sensing a Match 82
Mini-Quiz 83
USING NUMBERS 85
Concepts Introduced 85
Maximum Number Size 85
Modulo 85
Numeric Types 86
Constants 86
Numeric Variables 87
Assigning Value to Numeric Variables 87
The COMPUTE Command, C: 87
The Random Number 89
Arithmetic Operators 89
Operator Precedence 89
Relational Operators 89
Section 7 Summary 91
Section 7 Quiz 93

Contents wii

8 MODULES 95

viii Contents

Concepts Introduced 95
What Is a Module? 95
The Parts of a Module 96]
Calling a Module 96
The USE Command, U: 96
The Module End 97 |

The END Command, E: 97 |
Nested Modules 97
Conditional Modules 98

The USE IF YES and USE IF NO Commands,

UY:, UN: 98 |
Example: The Calculator Program 99 |
Section 8 Summary 101
Section 8 Quiz 102 l

9 MANY VOICES, MANY SOUNDS 105
Concepts Introduced 105 l
Definition List 105
The SOUND Command, SO: 106
Immediate Mode Sounds 107
Program Mode Sounds 108
The PAUSE Command, PA: 108
Random Music 109
A Special Song 110
Section 9 Summary 111
Section 9 Quiz 112
Advanced Programming With Sound 114
The PAUSE Command: Increments of 1/60ths 114
10 WELCOME TO GRAPHICS 115
Concepts Introduced 115 I
The GRAPHICS Command, GR: 116
The Graphics Screen 117
Cartesian Coordinates 117 I
Turtle Geometry 118
GRAPHICS Subcommands 120 l
The PEN Subcommand _ 120
Subcommands Using Cartesian Coordinates 121

The GOTO Subcommand 121 I

The DRAWTQ Subcommand 123

The FILLTO Subcommand 124

’

Subcommands Using Turtle Geometry
The TURNTO Subcommand
The TURN Subcommand
The DRAW Subcommand
The GO Subcommand
The FILL Subcommand
Repeating GRAPHICS Commands
Home, Sweet Home Program

Section 10 Summary
Section 10 Quiz
Advanced Programming With GRAPHICS
GRAPHICS Variables
%X
%Y
%A
%Z
Mini-Quiz

125
125
126
128
129
130
131
133

134
137
139
139
139
139
139
139
141

Contents ix

APPENDICES

A CONNECTING YOUR ATARI

COMPUTER SYSTEM 143
Concepts Introduced 143
Connecting Your ATARI Computer System 143
Inserting PILOT 147

Turning On PILOT in Your ATAR] Computer
Without a Disk Drive 147
Turning On PILOT in Your ATARI Computer
With an ATARI 810 Disk Drive 147
Turning Off Your ATARI Computer System 148
SPEAKING TO DEVICES 149
Concepts Introduced 149
The ATARI 810 Disk Drive 150
Speaking to Your ATARI 810 Disk Drive 151
Saving a Program on a Diskette 151
Write-Protecting a Diskette 152
Loading a Program From a Diskette 152
Merging Programs 153
The DOS Utility 155
The Disk Directory 156
Using the DOS Disk Directory 156
Creating Your Own Disk Directory 156
Returning to PILOT From the DOS Utility 158
DON’'T PANIC! (How to Handle Trouble
With the Disk Drive) 158
Screen Displays “Boot Error”’ 158
BUSY Light on Disk Drive Does Not Go Off 159
The Computer Does Not Respond 159
The ATARI 410 Program Recorder 159
Speaking to Your Program Recorder 159
Saving a Program on a Cassette Tape 159
Write-Protecting a Cassette Tape 161
Loading a Program From a Cassette Tape 161
Merging Programs 162
A Method to Manage Programs on Cassette Tapes 162
Saving the Cassette Directory 162
Adding Programs to the Directory and the Tape 165

Appendices xi

The ATARI Printers 165
Printing a Program 166

C SCREEN EDITING 167
Concepts Introduced 167
The Screen Editor 167
The Screen Editing Keys 168
The RETURN Key 168
The SHIFT Key 168
The CAPS/LOWER Key 168
The TAB Key 168
TAB Set 168
TAB Clear 169
TAB 169

The CTRL Key 169
The Inverse Video Key 169
The CLEAR Key 169
The Cursor Control Keys 170
Cursor Up 171
Cursor Down 172
Cursor Right 172
Cursor Left 174
Editing the Current Display Line 175
Backspacing 175
Deleting 177
Character Deletion 177

Line Deletion 178
inserting 180
Character Insertion 180

Line Insertion 181
Deferred Cursor Movements 182
D CONTROLLERS 185
Concepts Introduced 185
Sensing 185
Sensing the Position of the Joystick 185
Sensing the jJoystick’s Trigger 187
Sensing the Position of the Paddle 188
Sensing the Paddle Trigger 189

E PILOT I/O ERROR CODES 191

xii Appendices

ILLUSTRATIONS

Bloo =

'
— O

W o Uothbpwilhs S b uddhbhbno

F O N VE R PR O VR VS L N MtI\JNMI\JI\JNNMMM —_— =

PP PP

B R —

&
<

oo e
® N o

ol
©

ATARI Personal Computer System

The ATARI Keyboard

The ATARI Keyboard: Graphics Keys

The ATARI Keyboard: Cursor Control Keys

Clearing the Screen

Piano Keyboard

Whole and Half Steps

C Major Scale

C Major Triad

C Major Chord

GR: DRAW 10

Clearing the GRAPHICS Screen
Drawing a Box

Fill With Yellow

Return to Text Mode From Graphics Mode

Program Run

AUTO Mode

Return to Text Mode From AUTO Mode
Program List and Run

NAME Program Run

CLOTHES Program Run

TYPE and ACCEPT Commands: Program Run

Concept of the Accept Buffer

MATCH Command: Sample Runs

Sample Runs of the TO GO OR NOT TO GO
Program

Concept of Variables

Assigning Variable Names

Assigning Values to Variables

Changing a Variable’s Value

Defining a Variable With Input

String Variables: Program Run

Growing Strings: Program List and Run

Growing Strings With a Second
DUMP Command

ACCEPT Without Input: Program Run

Hlustrations

48

68
68
68
69
70
70
74

75
77

xiii

xiv [Hustrations

Fa b = WS = o —

A-7

A-8

Division Problem
The Modulo of 7\3
FOREVER Program Run

Program With Several Modules
Module Structure
Nested Modules

Position of Middle C
Relation of Piano Keyboard to Musical Scale
Musical Scales
PAUSE Values for Moderato
(Andante) Tempo
PAUSE Values for Different Tempos
PAUSE Values in 60ths of a Second

The GRAPHICS Screen

Cartesian Coordinates

The GRAPHICS Turtle

The 0- and 360-Degree Angle

Calculating Directional Angles

GR: DRAWTO 20,20

The Four Quadrants of the
GRAPHICS Screen

Filling the Screen With Dots Using GOTO

Drawing a Box

Filling With FILLTO

Turning the Turtle Toward 90 Degrees

Turning the Turtle Toward — 45 Degrees

Turning the Turtle 45 Degrees to the Right

Turning the Turtle 60 Degrees to the Left

TURN Subcommand: Program Run

DRAW Subcommand: Program Run

GO Subcommand: Program Run

Using the FILL Subcommand

Drawing a Box With Repeating
GRAPHICS Commands

Drawing a Star With Repeating
GRAPHICS Commands

Home, Sweet Home Program Run

The ATARI 810 Disk Drive

The ATARI 410 Program Recorder

The ATARI 820, 822, and 825 Printers

The ATARI 400/800 Computer With
Program Recorder

The ATARI 400/800 Computer With
Disk Drive

The ATARI 400/800 Computer With Program
Recorder and Printer

The ATARI 400/800 Computer With
Disk Drive and Printer

The ATARI 400/800 Computer With Disk
Drive, Printer, and Program Recorder

86
86
91

95
96
98

105
106
107

108
109
114

116
117
118
119
119
121

122
123
124
125
126
126
127
127
128
129
130
131

132
132
133
143
143
143
144
145
145
146

146

r

B

OO0 TEwWE
b o

1 b

alalnialalniale

W bt — D

OO0 00

Cassette Tape
Diskette

DOS Utility Program
Sampile Directory

The ATARI Keyboard: Screen Editing Keys
Using the Inverse Video Key
The ATARI Keyboard: The Cursor
Control Keys
Moving the Cursor Over a Character
Using the Cursor Up Key
Cursor Up Wraparound
Using the Cursor Down Key
Cursor Down Wraparound
Using the Cursor Right Key
Cursor Right Wraparound
Using the Cursor Left Key
Cursor Left Wraparound
Backspacing the Cursor Using the DELETE
BACK S Key
Single-Character Deletion
Multiple-Character Deletion
Character Deletion Completed
Line Deletion: Positioning the Cursor
Line Deletion Completed
Character Insertion: Positioning the Cursor
Character Insertion: Creating a Space
Character Insertion Completed
Line Insertion: Positioning the Cursor
Line Insertion: Creating a Space
Line Insertion Completed
Character Spiral Program Run

Joystick Positions

Sample Joystick Sensing
Sample Joystick Trigger Sensing
Paddle Pasitions

Sample Paddle Positions

150
150
155
156

168
169

170
170
171
171
172
172
173
173
174
174

177
177
178
178
179
179
180
180
181
181
182
182
184

185
186
187
188
188

Hlustrations av

1

INTRODUCTION

GETTING TO
KNOW YOUR
COMPUTER

WHAT IS A COMPUTER, ANYWAY?

A computer is a tool that can do many special things for you. A computer doesn’t
have a personality and it doesn’t think; it can only do what it is told to do.

Basically, a computer is a machine with a memory with the capability of making
comparisons. You can tell it to remember or store information in its memaory. After-
wards, you can ask it to tell you what it has stored in its memory. The computer can
perform calculations, sort the information stored in its memory, and engage in a
dialogue with you, all at lightning speed.

When you sit down in front of your computer, you become closely associated with
the system. Here is what the system looks like:

Figure 1-1 ATARI® Personal Computer System

What you say to the computer is called input. The computer’s response is called
output. Giving instructions to the computer is called computer programming. The
art of computer programming is to make sure that:

* The computer understands your input

* The output makes sense to you

Above all, remember one thing: it is you who makes the system work. Without you
1o tell it what to do, the computer is just another machine,

introduction 1

GETTING TO
KNOW THE
KEYBOARD

2

Intraxdiction

Here is the ATARI computer keyboard:

CLEAR WSE AT DELETE SYSTEM
> [l eaces HESE
@ o«
T Y U RETURN APTION
TAB

E3000000088BOE

Figure 1-2 The ATAR! Keyboard

The keyboard is similar to a typewriter. To type the character on the top half of the
key, you must press and hold the key while you press the key. To type the
character on the bottom of the key, simply press the key.

The keyboard is made up of five types of characters: alphabetic, numeric, punctua-
tion, graphics, and cursor control. The alphabetic characters (letiers A through 23,
numbers (0 through 9}, and punctuation characters are clearly marked on the key
caps. To type lowercase (small) letters, press the key first to put the
computer in lowercase mode. To change to uppercase letters, press the
key and the key.

The graphics characters are not labeled on the key caps but are accessible from the
alphabetic keys, as shown below:

@ { cLean B wkY
880860000068 &ED
T IVLI [+]
® - N
] s F G J B B AR o
D000EGNNEEDNS8
W ? .
ENCCCOBINs0nEs

Figure 1-3 The ATARI Kevboard: Graphics Keys

To access the graphics characters you must hold down the key (left side) and
then press the appropriate graphics keys,

The cursor control keys move the cursor in any direction to change, or edit, the
screen display. The cursor is the square that marks your place on the screen. The
cursor control keys are shown below:

- » CLEAR IMSERT DELETE SYSTEM
5 ? <) BALCK 5 RESET
- bl
% 1- ‘Y PETURN
o ~
||Iiiiilll ll:!ll 'IE" |I:II lI:il llE!' lI:Il lIiI' II:!I llilll III!I' lI!I' *

- v C b ? ' START

. . / :

Figure 1-4 The ATARI Keyboard: Cursor Control Keys

SELECT

This keyboard has a special feature: repeating keys. If you hold down a key for one
second or longer, it will continue typing until you release the key. Each time a
character is typed repeatedly, the computer makes a beeping noise. Repeating
keys is a convenient feature, but be careful; it’s fast!

Introduction 3

2

GETTING STARTED
WITH PILOT

CONCEPTS
INTRODUCED

WHAT 1S THE
ATARI PILOT
CARTRIDGE?

CHANGING THE
SCREEN DISPLAY

What Is the ATAR! PILOT Cariridge?
Changing the Screen Display
Clearing the Screen
Correcting Mistakes
Some PILOT Commands
What Is a Command?
The TYPE Command, T:
The SOUND Command, SO:
The GRAPHICS Command, GR:

Before getting started with the PILOT language you must turn on your system with
your ATARI PILOT cartridge inserted . Instructions on how to insert the cartridge
can be found in Appendix A, Inserting PILOT.

The ATARI PILOT cartridge is a small boxlike unit containing special instructions for
your ATARI computer about the PILOT language. When the ATARI PILOT cartridge
i inserted into your computer it becomes part of the system, allowing you to com-
municate with your computer in the PILOT language. If the cartridge is not inserted
into your computer, the computer cannot understand the ATAR! PILOT language,
and is useful only as a memo-pad.

Once the cartridge is inserted, your screen should look like this:
ATARIPILOTCCI COPYRIGHT aTARI 1288

READY
»

The cursor should be positioned at the beginning of the line below R in READY. The
cursor marks your place.

Type: HELLO. As you type HELLO the cursor moves one position to the right,
marking the place of the next character to be typed. The cursor should now be
positioned after the (3, waiting for further input.

ATAHRI PILOTY (C2 COPYRIGHT ATARI 1986
READY
HELLON

Press the RIID key. The computer responds immediately to your input as you

press the GENETY key.
ATAHRLI PILOT CC) COPYRIGHT ATARI 1988

READY
HELLO

GlELLO
#%% MHAT 'S THAT 7 Mx
n

Cetting Started
with Pilot 5

Press B3GR and keys

Getting Started
6 with Pilot

The computer responded with a * % x WHAT'S THAT? * * message because it
didn’t understand your input. When the computer doesn’t understand your input,
it displays your input followed by a * * * WHAT'S THAT? * * % message.

B As a rule, you must always press the key at the end of a line. Pressing the
key tells the computer that you have finished typing and that it's the com-
puter’s turn to respond. B

Let’s input something the computer understands. Type: T: HELLO. (Don’t press
the key yet!)

B To type a colon(:) hold down the EEIES key and then press the ; / : key. B

The computer understands commands. The T: is a TYPE command. This particular

command tells the computer to type HELLO. Press the key for the com-
puter’s response. The screen should display:

ATARI PILOT (C) COPYRIGHT ATARI 1988

READY
HELLO

CIELLO
H¥XWHAT 'S THAT ? %%
T:HELLO

HELLO

i}

Because the computer understands the command it responds correctly by typing

HELLO. Commands will be discussed at the end of this section and in the following
two sections.

CLEARING THE SCREEN

Before proceeding, let's erase, or clear the screen. Clearing the screen is simple;
hold down the key, and at the same time press the key (top row).

Clear the screen. POOF! Look what happens!

ATARI PILOT CC) COPYRIGHT ATART 1986

READY
HELLO

TELLO

#H% WHAT 'S THAT? *mx
T:HELLO

HELLO

g

Figure 2-1 Clearing the Screen

Your screen is now a blank screen except for the cursor waiting in the upper left
corner for more input.

B Always start each new activity by clearing the screen.

NEVER press the key to clear the screen. W

CORRECTING MISTAKES

There are three methods to correct spelling or typing mistakes when talking to your
computer on the keyboard. They are:

1. Retype the entire line.

2. Backspace to the mistake and retype the rest of the line.

3. Use cursor control keys to correct the mistake. This method is for advanced
programmers and is discussed in Appendix C.

1. Retype the Entire Line

Type: T: THIS IS MY FURST TIME (Do not press the key.) Does your screen
look like this?:

T:THIS IS MY FURST TIMEN

OOPS! We misspelled FIRST as FURST! To correct this mistake you must first move
the cursor to a blank line by pressing the key. Because this is a TYPE com-
mand, when you press the key the cursor first drops down to the following
line to display the message before waiting on a blank line below:

T:THIS ISMYFURST TIME
THIS ISMY FURST TIME
|

Now, retype the entire line, spelling FIRST correctly. When it is typed, press the

key.

Cetting Started
with Pilot 7

SOME PILOT
COMMANDS

Cetting Started
8 with Pilot

T:THIS ISMY FURST TIME
THIS ISMY FURST TIME
T:THISISMY FIRST TIME
THIS ISMY FIRST TIME

=]

Your line is now correct.

B To create more space between input and output lines press the key to
drop the cursor down one line. Or, if the screen below the cursor is blank, you can

easily move the cursor down the left side of the screen by pressing the key
several times. l

2. Backspace to the Mistake and Retype the Rest of the Line

To begin this activity, clear the screen by pressing the key, with the
key. Type: T: THIS IS MY FURST TIME (Do not press the key yet.)

T:THIS IS MY FURST TIMEN

This following exercise erases all the letters to the right of the F (URST TIME) and
retypes them correctly.

To backspace the cursor and erase the letters, press the key (top row)
for each letter to be erased. Each time the key is pressed, the cursor
will move over and erase the character to the immediate left. If we press the

key nine times, or hold the key down for nine repeating key
movements, the screen will change from this:

T:THIS IS MY FURST TIMENR

to this:
T:THIS IS MY FR

Once the cursor has erased the mistake, retype the rest of the line correctly.
T: THIS IS MY FIRST TIMER

If you’ve made no further mistakes, press the key. Look at your screen.
Your sentence is perfect! (And no one will ever know you made a mistake!)
T: THISISMY FIRST TIME

THIS ISMY FIRST TIME
]

WHAT IS A COMMAND?

A command is an instruction to the computer to carry out a specified task. In PILOT
there are about ten principal commands that instruct the computer to respond in
different ways. Each command is made up of two parts: the command label and the
action of the instruction. The command label is usually one to two letters in length,
followed by a colon (:).

I

THE TYPE COMMAND, T:

The TYPE command lets you type messages on the screen. The format for the TYPE
command is:

T: message

Whatever you enter following the colon will be your message. Here are some
examples:

FERELLC
T: MY NAME IS GODZILLA
T: BYE!

B Remember, to type a colon (:), hold down the key and press the :/; key at
the same time. W

Clear the screen and type in: T: GREETINGS! and press EBIEDE. Your screen
should look like:

T:GREETINGS!
GREETINGS!
|

The computer typed your message back! This is another example of an interaction
between you and the computer; you tell it to type a message and it responds by
typing the message. Whatever you enter following the T: the computer displays on
the following line. If nothing is entered following the T: the computer prints a blank
line. Again, the cursor waits on the line below the computer’s message.

Ready for another one?

Type: T: MY NAME IS BARRY and press (enter your own name instead of
Barry).

Does your screen display this message:

T:HELLO

HELLO

T:MY NAME IS BARRY
MY NAME IS5 BARRY

n

Putting information on the screen is as easy as can be. Go ahead and make up
some of your own!

THE SOUND COMMAND, SO:

Let’s try something different. Did you know that your computer is a musical instru-
ment? The SOUND command lets you create different musical tones (or notes) that

you hear through your television speaker. So, turn up the volume on your televi-
sion set.

Cetting Started
with Pilot 9

Cetting Started
10 with Pilot

(SILENT)
OFF

Each musical tone within the computer’s range has been assigned a numerical
value from 0 to 31. The range of the computer contains all the tones between the C
below middle C and the F# (F sharp) 18 tones above middle C. On the piano
keyboard shown below you can see the keys, their names, and their numeric
values.

2 4 7 9 N 14 16 19 21 13 26 28

1 3 5 6 § W12 13 .15 1 18 W32 28 15 73

L J f L Il |
ONE OCTAVE MIDDLE C ONE OCTAVE ONE-HALF
OCTAVE

Figure 2-2 Piano Keyboard

Examine the keyboard illustration for a minute. You can see that it is made up of
white keys and black keys. Each time you move from one key to another, you are
moving an interval. The simplest interval is a half step. To play a half step, you move
from one key to another without leaving any keys between them. C to C#, E to F,
and Bb to B are each half-step intervals. A whole-step interval is almost as simple. A
whole step is two half steps. To play a whole step, move from Eb to F or C# to D#;
these are both whole-step intervals.

14 16 1%

LE D|E F G

13 95 17 18 720
e SN
WHOLE HALF
STEP STEP

Figure 2-3 Whole and Half Steps

If you were to play the tones from middle C to the C above middle C on a piano us-
ing only half-step intervals, you would be playing a chromatic scale. Using the
SOUND command and the numeric values for each of the keys, you can “‘play’’ a
chromatic scale using your computer.

Clear the screen. Type SO: 13 ESITIN.

Hear that? That is middle C. To play the next tone in the chromatic scale, type SO: 14
EEITIR. Did you hear the tone change? Now, type in the following SO: commands
to complete your chromatic scale. Be sure to press after you enter each
numeric value.

| —— Al W

SO: 15
SO: 16
SO: 17
SO: 18
SO: 19
SO: 20
SO: 21
SO: 22
SO: 23
SO: 24
SO: 25

B Press the key to stop the sound. The key is located in the upper
right corner of your keyboard. B

If you would like to, you can play a chromatic scale beginning on D by typing SO:
14 for your first command, continuing to enter the succeeding commands and
numeric values until you reach SO: 26. In fact, you can play a chromatic scale start-
ing with any numeric value between 1 and 19.

A major scale is slightly different from a chromatic scale. You only use 8 numeric
values instead of the 13 you used for the chromatic. For example, the C major scale
consists of the tones C, D, E, F, G, A, B, and C. This type of scale uses both whole-
step and half-step intervals. The illustration below shows the format of a major scale
using the C scale as an example.

8 NOTES, OR 1 OCTAVE
W =WHOLESTEP H=HALFSTEP

C MAJOR SCALE

0

Figure 2-4 C Major Scale

Getting Started
with Pilot 11

This format works with any major scale whether you begin on C or F#. But, for the
moment, let’s stick to the C major scale. To “’play’” a C major scale using your com-
puter, type in the following SOUND commands with their attached numeric
values. Don’t forget to press the key after each line:

SO: 13
SO: 15
SO: 17
SO: 18
SO: 20
SO: 22
SO: 24
SO: 25

Press to stop the sound. Or, you can type SO: 0 to stop the sound. A
value of 0 does not have a tone associated with it.

Up to now, you have been using only one tone for each SOUND command.
However, you can use the SOUND command to play more than one tone. On a
piece of sheet music, you have different notes for soprano, alto, tenor, and bass
voices. Using the SOUND command and the numeric values of notes, you can
create your own voices and harmony. The format for using multiple voices with
one SOUND command is:

SO: voicel, voice2, voice3, voice4

Now you can play chords that consist of three or more tones.

Type:

S0O: 13,17,20 and press
SO: 0 and press

This is a simple C major chord.

«_ G (50:20)
<—E (S0:17)
= . 15043

5

Now clear the screen and type:

$O: 13,17,20,25 and press
SO: 0 and press

Figure 2-5 C Major Triad

B When using multiple voices, each voice must be separated by a comma or a
space. ®

You have now added an extra C to your C major chord.

Getting Started

12 with Pilot I

= <«— C (S0:25)
s G (502200
<—— E (50:17)
) Wee—t 3013

=

Go ahead and experiment with creating your own single and multiple voices by in-
serting any combination of voices between 1 and 31. For further information on the
SOUND command, refer to Section 9, Many Sounds, Many Voices.

Figure 2-6 C Major Chord

THE GRAPHICS COMMAND, GR:

The GRAPHICS command, tells the computer to enter the graphics mode and open
the graphics screen. Once in graphics mode, you can draw points and lines, or fill
spaces in three colors: red, blue, and yellow.

Clear the screen and enter the following command: GR: DRAW 10. Press the
key and watch what happens:

Figure 2-7 GR: DRAW 10

Did the screen turn black except for a blue strip at the bottom? Did a yellow (or
white) line appear in the middle of the screen? (Both answers should be yes.)

The GR: command tells the computer to enter graphics mode by displaying a black
screen. The blue strip at the bottom allows you to display up to four lines of text
without destroying the graphics.

The vertical line appeared on the screen when the DRAW 10 told the computer to
draw that line. Section 10, Welcome to Graphics, explains exactly how to draw
that line or any other figure in graphics mode.

Getting Started
with Pilot 13

Let’s try something using lost of color. To clear the graphics screen and remain in
graphics mode, type: GR: CLEAR and press EISIET0.

Figure 2-8 Clearing the GRAPHICS Screen

Here’s how easy it is to draw a box. Type this:
GR: 4(DRAW 20; TURN 90) [ISTI0

B The semicolon does not require the EIIER key. W

Glll: 4C(DRAKW 20 : TURN 982

Figure 2-9 Drawing a Box

Now, type: GR: FILL 40 and press EEIIS. Look at the blue strip at the bottom to
see what you type in. Press the EEIENY key and watch the box and the top half of
your screen fill up with YELLOW:

Getting Started
14 with Pilot

GR:4(DRAW 20 : TURN 963
GR:FILL 40
W

Figure 2-10 Fill With Yellow

To return to text mode, type: GR: QUIT and press [EEIEE. WOOSH! Now you're
back to text mode with the blue screen and the cursor waiting at the upper left corner.

GR:4C(DRAKW Z0:TURN 28)
GR:FILL 46
GR:UITH

Figure 2-11 Return to Text Mode From Graphics Mode

Getting Started
with Pilot 15

SECTION 2
SUMMARY

Getting Started
16 with Pilot

ATARI PILOT uses a system called TURTLE GRAPHICS to draw the preceding
graphics. Turtle Graphics can be explored further in Section 10, Welcome to
Graphics.

If your ATARI computer is turned on correctly with the ATARI PILOT cartridge
plugged in, the screen should display:

ATARI PILOT €C) COPYRIGHT ATARI 19808

READY
n

If your screen doesn’t look like this, then follow the start-up procedure for your
system in Appendix A.

The cursor marks your place on the screen. The cursor moves as you enter input.

The READY message means that the computer is finished responding and is waiting
for further input.

To end a line of input, press the key.
To clear the screen, hold down the key and press the key.

To correct typing or spelling mistakes you can either retype the entire line, or

backspace the cursor to the mistake with the key and retype the line
from there.

A command is an instruction to the computer to carry out a specified task. PILOT
commands are called by a command label usually one or two letters in length,
followed by a colon and an action statement,

The TYPE command (T:) prints a message on the screen. The message is displayed
on the line below the command. Here is an example:

T:MY COMPUTER DOES NOT HAVE EARS
MY COMPUTER DDES NOT HAVE EARS
u

The SOUND command (SO:) generates up to four voices of musical tones. Each
voice generates numbered tones ranging from 1 to 31. A tone of 0 means silence or
a rest. An example of the SOUND command is:

Sk 155,811

The GRAPHICS command (GR:) generates lines, figures, or colors in graphics
mode. The command to open the graphics screen is GR: followed by an action
statement (i.e., DRAW 10, FILL 40). The command to clear the graphics screen is
GR: CLEAR. To exit graphics mode and return to standard text mode, type: GR: QUIT.

SECTION 2 1. Ifacartridge isn't inserted into the computer, the computer can be used only as
QU|Z a . (Hint: try it and see. Make sure the computer’s
cover is closed.)
2. Aninput line is ended by pressing the ____ key.
(a) SYSTEM RESET
(b) CLEAR
(c) RETURN
(d) ESCAPE (ESC)
3. To clear the screen you should
(a) Turn off the television screen
(b) Turn off the computer
(c) Press the key
(d) Press the EE8 and keys.
(e) Press the key
(f) Press the EiEa and keys.
4. The unshifted key is used to
What is a command?
6. Match the commands with their command labels:
5 GRAPHICS
T: SOUND
GR: TYEE
7. The SOUND command generates musical . Each
is assigned a number from to
8. Toturn on and clear the graphics screen, type:
To turn off the graphics screen and return to text mode, type:
9. The command displays a message on the screen.
10. What is a cursor?

Getting Started
with Pilot 17

ANSWERS

Memo pad

(c)

(f)

Backspacing the cursor to the mistake in an input line for correction

A command is an instruction to the computer to carry out a specified task.

S0 GRAPHICS
T:%SOUND
GR: TYPE

Tones, tone, 0, 31
GR: CLEAR, GR:QUIT
TYPE (T:)

10. The cursor is the square on the screen that marks your place.

o v s wN =

Getting Started
18 with Pilot

s

;.1
®

3

WRITING A
PILOT PROGRAM

CONCEPTS
INTRODUCED

IMMEDIATE
AND DEFERRED
COMMANDS

WHAT IS
A PROGRAM

Immediate and Deferred Commands
What Is a Program?
Executive Commands
The RUN Command
The LIST Command
The NEW Command
The AUTO Command
More Commands
The TYPE Command, T:
The ACCEPT Command, A:
The REMARK Command, R:
The END Command, E:
Correcting and Changing Your Programs
Erase a Line
Insert a Line
Replace a Line
Line Renumbering
The RENUMBER Command, REN
Fancy Renumbering With REN

When the computer receives a command, one of two things happen:

® Itis obeyed immediately.
® |t is remembered and obeyed at a later time.

Commands obeyed instantaneously when you press the key are called
(immediate commands). The examples of the T:, SO:, and GR: commands in Sec-
tion 2 are immediate commands. Commands stored in memory to be obeyed later
are called deferred commands.

A program is a sequence of instructions that directs a computer to perform a
desired operation. A program is composed of statements. A statement is a com-
mand, or set of commands, that is preceded by a line number.

Line numbers help the computer differentiate between immediate and deferred
statements. Line numbers also keep the statements in numerical order. A statement
without a line number is an immediate statement. A statement with a line number is
a deferred statement, and is part of a program.

B A line number must be an integer between 0 and 9999. Duplicate line numbers
are not allowed. B

Writing A
Pilot Program 19

EXECUTIVE
COMMANDS

Writing A
20 Pilot Program

Here is an example of a program:

10 T: HELLO,

20T: 1 AM HAVING FUN
30 T: LEARNING TO

40 T: TALKIN

50 T: PILOT

Each TYPE command is preceded by a line number. The TYPE messages are stored
in memory in sequential order from 10 to 50 to be displayed at a later time.

Following is a new program using the TYPE command. Press the
end of each statement.

10 T: MY

20 T: COMPUTER HAS
30 T: A NAME.
40T:ITIS

50 T: FRED.

B Always press the EISIT) key at the end of each line to send the line to the com-
puter’s memory. Bl

What happened when you pressed at the end of line 502

Nothing? Well, that's what is supposed to happen! Nothing! Unlike immediate
commands, deferred commands are not obeyed when the EEITIS key is pressed.
To execute a program (a sequence of deferred commands) you must type:

RUN SIS

Go ahead! Type RUN, press and watch your program go!

MY

COMPUTER HAS
A NAME .

ITIS

FRED.

READY
|

Executive commands are immediate commands that tell the computer what to do
with your program. EXECUTIVE COMMANDS DO NOT HAVE LINE NUMBERS.
Here are four executive commands:

RUN
LIST
NEW
AUTO

THE RUN COMMAND
The RUN command tells the computer to execute, or perform, the program currently

in the computer’s memory. When you're ready to execute a program, type: RUN

and press ETEIEND.

‘

Try it. Your screen should still have the example program displayed on it. Type:
RUN and press EEIEE. Watch the computer display your programmed messages.
Your screen before and after the RUN command should look like this:

MY

:COMPUTER HaAS
1A NAME ,
1IT IS

:FRED.
Press [i28G0E key

MY

COMPUTER Has
A NAME .

ITIS

FRED.

READY
L}

Figure 3-1 Program Run

When the RUN command is issued (followed by a of course), the computer
automatically clears the screen before executing the program. When program ex-
ecution is completed, the screen displays the READY message and the cursor.

Because the computer can only remember one program at a time, every time

you issue the RUN command the computer executes the program currently stored
in memory.

THE LIST COMMAND

The LIST command displays the program statements currently in the computer’s
memory.

To display our example program clear the screen and on a new line, type:

LIST

Writing A
Pilot Program 21

The program statements, listed in sequential order, are displayed on the screen.

LIST

18 T: MY

28 T: COMPUTER HAS
386 T:ANAME.

48 T:ITIS

50 T:FRED.

READY
]

Once listed, you can check the program for mistakes, and then change, add, or
delete lines from the program. The various ways to erase, replace, or insert lines
from within a program will be discussed at the end of this section.

The LIST command lists entire programs or portions of a program, depending upon
how you enter the LIST command:

LIST 10,50 displays the entire program
LIST 10 displays line 10

LIST 30 displays line 30

LIST 20,40 displays lines 20 through 40
LIST 10,20 displays lines 10 through 20

B When entering two line numbers, the first line number must be smaller than the
second line number. If you list a line number not actually in the program, your
ATARI computer responds with a blank line. B

Let’s try some examples of the various forms of the LIST command using the pro- .
gram example.

First, clear the screen.
M To clear the screen, hold down the key while pressing the key. ®

Type: LIST 20

LIST 20
20 T:COMPUTER HAS

READY
|

Clear the screen. Type: LIST 10,30

LIST 10,30
10 T:MY

20 T:COMPUTER HAS
30 T:4 NAME.

READY
|

Clear the screen. Type: LIST 40,50

LIST 40,50
40 T:IT IS
50 T:FRED.

READY
4}

Writing A
22 Pilot Program

Are you beginning to understand how this works?
Clear the screen. Type: LIST 15
LIST 15

READY
&

Because there is not a line number 15 in the program, a blank line is displayed.

THE NEW COMMAND

The NEW command erases the current program from the computer’s memory, but
not from the screen. Be VERY CAREFUL when using the NEW command; it is easy

to lose your program accidentally, and there is no way to recover it.

To erase a program from memory, type:
NEW IS

Let’s test the NEW command on the example program.

Type: NEW EETES
NEM

READY
]

Try to LIST the example program again.
NEMW

READY
LIST

READY
|

Wow! It works! We have erased the program from memory!

B Always erase an old program with the NEW command before entering a new
program. Otherwise, you'll end up with a mixture of both. ®

THE AUTO COMMAND

The AUTO command automatically assigns line numbers to program statements as
they are entered. This convenient command replaces the task of sequential line
numbering as long as you enter the statements in the proper order.

To enter AUTO mode, type AUTO and press [GIEITY. The screen will turn gold and
retain any display currently on the screen.

Writing A
Pilot Program 23

Figure 3-2 AUTO Mode

To leave AUTO mode, enter a blank line and press the key.

In AUTO mode you do not type line numbers. Anything entered is treated as a pro-
gram statement, and therefore executive commands may not be entered while in
AUTO mode. Of course, if the computer doesn’t understand your input it still
responds with the * % WHAT’S THAT? * % x message. :

Let’s enter a program in AUTO mode. Type in NEW, press the key, and .
enter:

AUTO

T:HAIL!

T:HAIL!

T:THE GANG’S ALL HERE!

B Note that you do not type line numbers when in AUTO Mode. B

Although your input looks like three immediate mode statements, they are actually
deferred statements. This is evident because nothing happens when you press the

key.

Once you’ve entered the entire program, you must exit AUTO Mode before you
can issue a RUN, LIST, or NEW command. If you try, the computer responds with
an *x** IMMEDIATE ONLY ** * message. This means that executive commands

can be executed only in immediate or programmed mode, e.g., when the screen is
blue.

To exit AUTO Mode, press the key or enter a blank line.

Writing A
24 Pilot Program

Press [5G0 key

AUTO

T:HAIL!

T:HAIL!

T:THE GANG'S ALL HERE!

READY
B

Figure 3-3 Return to Text Mode From AUTO Mode

Now you can enter any executive command or change the program as you wish.
LIST and RUN the program:

Program in AUTO Mode auTOo
T:HAIL'!
T:HaAIL!
T:THE GANG'S aLL HERE!

READY
Program LIST LIST
10 T:HAIL?!
280 T:HAIL!
38 T:THE GANG'S ALL HERE!

READY
RUNE

Writing A
Pilot Program 25

MORE
COMMANDS

Writing A
26 Pilot Program

Program RUN

READY
=

Figure 3-4 Program List and Run

THE TYPE COMMAND, T:

Section 2 explained how to use the TYPE command (T:) in immediate mode. The
TYPE command may also be used as a deferred command within a program by
assigning a line number to it:

10 T: THIS IS AN EXAMPLE OF THE TYPE COMMAND

Continuation of the T: Command: When typing the T: command several times
in a row, a solitary colon, :, can be used in place of the command label. The colon
inherits the command label from the previous line.

Thus, type the program:

10 T: HAIL!
20 T: HAIL!
30 T: THE GANG’S ALL HERE!

It can also be written as:

10 T: HAIL!
20 : HAIL!
30 : THE GANG’S ALL HERE!

with the same results.

THE ACCEPT COMMAND, A:

The ACCEPT command accepts input from the keyboard during program execution.
When the computer encounters the ACCEPT command it will stop and wait for in-
put from the keyboard. The cursor will reappear and wait for the input. Until the
computer receives input, nothing will happen.

The format for a simple ACCEPT command is A:.

The ACCEPT command usually follows a TYPE command displaying a message tell-
ing you what to input. Look at the examples below:

10 T: WHAT IS YOUR NAME?
20 A:

30 T: THAT IS A NICE NAME.

10 T: WHAT COLOR ARE YOUR SHOES?
20 A:

30 T: DO THEY MATCH YOUR SHIRT?
40 A:

This is what happens when you run the first program:

Program 10 T:WHAT IS5 YOUR NAME?
28 A:
38 T:THAT IS A NICE NAME!
RUNE

Program RUN

HHQT IS YOUR NAME?

Cursor waits for your input

Writing A
Pilot Program 27

You enter input WHAT IS YOUR NAME?

ALICE
THAT IS a4 NICE NAME!

Computer’s response gEaDY

Figure 3-5 NAME Program Run

A RUN of the second program looks like this:

Program :HHAT COLOR ARE YOUR SHOES?

DO THEY MATCH YOUR SHIRT?

Program RUN

aHﬂT COLOR ARE YOUR SHOES?

Cursor waits for your input

Writing A
28 Pilot Program

You enter input HWHAT COLOR ARE YOUR SHOES?
ROWN

B
Computer’s response 20 THEY MATCH YOUR SHIRT?

Cursor waits for input

HHAT COLOR ARE YOUR SHOES?
BROMWN

. DO THEY MATCH YOUR SHIRT?
You enter input YES

Computer’s response - S

Figure 3-6 CLOTHES Program Run

Do you understand how the TYPE and ACCEPT commands work together?

B Always precede the ACCEPT command with a TYPE command to give the user a
hint about what should be input.

Let’s write a new program. Type:

10 T: MY NAME IS FRED.

20 T: WHAT IS YOUR NAME?
30A:

40 T: | AM A COMPUTER.

50 T: WHAT ARE YOU?

60 A:

70 T: | AM GLAD TO MEET YOU!
80 T: HAVE A NICE DAY!

Enter RUN and press to execute the program.

Writing A
Pilot Program 29

Program RUN
MY NAME IS FRED.
HHAT IS YOUR NAME?

You Enter input GODZILLA
WHAT ARE YOU?
- A MONSTER
You enter input I AM GLAD TO MEET You!

HAVE a4 NICE DaY!

READY
n

Figure 3-7 TYPE and ACCEPT Commands: Program Run

Now that you know how to use two interactive commands, you can write
question-and-answer programs and run them for your friends!

Continuing Text With the Backslash Character: PILOT uses a special character
that keeps the cursor from dropping to the next line. This character is the
backslash, \, produced by pressing the key and the \ + key. When the com-
puter encounters a backslash at the end of a TYPE command, the cursor stops and
waits ON THE PRESENT LINE instead of doing a carriage return. Any following text
will be displayed from that point. The program below uses the backslash:

10 T: THIS IS A VERY AUSPICIOUS OCCASION, \

20 T: MY FRIENDS. IT HAS COME TO MY ATTENTION \
30 T: THAT THERE WILL BE NO MORE FREE \

40 T: CAKE AND ICE CREAM!! \

A RUN of this program produces this result:

THIS IS A VERY AUSPICIOUS OCCASION, MY
FRIENDS. IT HAS COME TO MY ATTENTION THAT
THERE WILL BE NO MORE FREE CAKE AND ICE
CREAM! !

READY
i)

The backslash is especially useful when using a TYPE statement to prompt.input
from a subsequent ACCEPT command. By placing a backslash at the end of the
TYPE message and prior to an ACCEPT command, the TYPE message and the AC-
CEPT input will appear on the same display line.

Type NEW and press before entering the following program:

10 T: MY NAME IF FRED.

20 T: WHAT IS YOUR NAME? \
30A:

40T: 1 AM A COMPUTER.

50 T: WHAT ARE YOU? \

60 A:

70 T: 1 AM GLAD TO MEET YOU! \
80 T: HAVE A NICE DAY!

Writing A
30 Pilot Program

Below is the same program you entered earlier, except that backslash characters
have been added to the end of lines 20, 50, and 70. RUN the program and look at
what happens:

MY NAME IS FRED.

WHAT IS YOUR NAME? CLEOPATRA

I AMA COMPUTER.

HWHAT ARE YOU? A DROID

IAMGLAD TOMEET YOU! HAVE A NICE DAY!

READY
|

See how easy it is to put both TYPE and ACCEPT input and output on the same line
by adding just one character? For practice, make up some question-and-answer
programs for yourself using the backslash.

B Always type a space before the backslash character, to prevent the words
preceding and following the backslash from running together like this: WHAT 1S
YOUR NAME? CLEOPATRA. W

THE REMARK COMMAND, R:

The REMARK command lets you insert remarks into your program to make it easier
to understand. Remarks are usually titles or little notes explaining what the program
does and how it works. The computer ignores REMARK commands, so they can be
placed anywhere in a program.

The format for the REMARK command is:

R: anything

Look at the REMARK commands in the following program:
T0 R: 5k 3k ok ok sk ok %k ok ok ok ok ok ok sk sk 3% 3% 3% ok ok 5k ok % % % % % %

20R: * *
30R: * THE NOTHING PROGRAM *
40 R: * *

50 Rz s % %k %k ok ok ok 3 3k 3% s % sk ok ok % ok sk o % % % ok % % % %k %
60 T: This program does NOTHING
70 R: That’s for sure! This is the END of the program!

Upper- and lowercase letters: PILOT displays both upper- and lowercase letters.
To type lowercase letters, press the key once. Any alphabetic characters
typed after the key has been pressed will be displayed in lowercase. To
type uppercase letters, hold down the key while pressing the key.
Alphabetic characters typed after the and keys are pressed WILL

ALL BE UPPERCASE.
Upon program execution, the screen looks like:
This program does NOTHING

READY
|

The remarks don’t show up because they are ignored by the computer during pro-
gram execution. REMARK commands are only displayed when the program is
LISTed.

Writing A
Pilot Program 31

CORRECTING
AND
CHANGING
YOUR
PROGRAMS

Writing A
32 Pilot Program

Remarks can also be placed on the same statement lines as commands by using the
L character instead of the REM command. The [character must follow the com-
mand and precede the remark:

command L remark

Examples:
10 A: #N L ACCEPT A NUMBER
50 T: $NAME [DISPLAY A NAME

THE END COMMAND, E:

The end of a program isn’t necessarily the last line of a program. PILOT programs
can be terminated at any point with the END command.

The format for the END command is: E:

Note: PILOT assumes that the last line is the end of a program unless an END com-
mand is present elsewhere.

ERASE A LINE

To erase a line from a program, type in the line number and press the EISIEEY key.
This deletes the line from the program, in memory, although the line remains on
the screen until the program is LISTed again.

Enter this example program:

10 T: ROSES ARE RED,
20 T: VIOLETS ARE BLUE,
30 T: SUGAR IS SWEET,
40 T: AND SO ARE YOU!

RUN the program, It should look like this:

ROSES ARE RED ,
VIOLETS ARE BLUE ,
SUGAR IS SHEET
AND 50 ARE YOU!

READY
|

Let’s erase line 30. Type: 30 and press EIEIERY. LIST the program again.

30

LIST

186 T:ROSES ARE RED

28 T:VIOLETS AREBLLUE,
48 T:AND S50 ARE YOU'!

READY
B

Line 30 is erased from the program. Type: LIST 30 and press [IST0.

READY
LIST 38

READY
&

gram, this is what you should get:

ROSES ARE RED .
VIOLETS ARE BLUE ,
AND SO ARE YOou'!

READY
n

INSERT A LINE

numerical order. &

LIST

18 T:ROSES ARE RED ,

Z0 T:VIOLETS ARE BLUE ,
48 T:AND SO ARE YOU!

READY
B

inserted between lines 20 and 40.

READY

23 T:SUGAR IS SHEET,
LIST

18 T:ROSES ARE RED,

ZO T:VIOLETS ARE BLUE,
23 T:S5UGAR IS SWEET,
48 T:AND SO ARE YOU!

READY
|

RUN the program:

ROSES ARE RED ,
VIOLETS ARE BLUE,
SUGAR IS SWEET,
AND SO ARE YOU !

READY
=

Nothing but a blank line appears! Line 30 is gone forever. If you execute the pro-

New lines can be inserted anywhere in a program by assigning a new line number
to a statement. The new number must be given a number between the line number
preceding and the line number following the place where the new line will be in-
serted. LINE NUMBERS CANNOT BE INSERTED IN AUTO MODE.

PILOT always rearranges program statements so that their line numbers are in

Clear the screen and LIST the program:

Now, let’s reinsert the line removed during the previous example. To insert the
statement T: SUGAR IS SWEET, between 20 T: VIOLETS ARE BLUE, and 40 T: AND
SO ARE YOU!, we must pick a line number between 20 and 40. In other words, by
assigning T: SUGAR IS SWEET, any line number from 21 to 39, the statement will be

Type: 23 T: SUGAR IS SWEET, press EISI, and LIST the program again:

Voila! The program is back to its original order.

Pilot Program 33

Writing A
34 Pilot Program

REPLACE A LINE

Replacing a line is a short-cut method of deleting a line and inserting another in its
place.

Clear the screen and LIST the example program again. Let’s change the rhyme by
replacing line 23; T: SUGAR IS SWEET, to; T: DAFFODILS ARE PRETTY,. This can
be done in two ways.

First, you can delete line 23 by typing 23 and pressing GEIEL. Next, you type
in the new line: 23 T:DAFFODILS ARE PRETTY, and press 5. Then LIST the
program:

23

23 T:DAFFODILS AREPRETTY
LIST

18 T:ROSES ARE RED ,

20 T:VIOLETS AREBLLUE,
ZZT:DAFFODILS AREPRETTY
40 T:AND SO ARE YOU!

READY
|

You have replaced the old line 23 with a new line 23.

The second method of line replacement is to type the new line 23 on a new line,
without first deleting the old line 23. When the computer receives the new line 23,
it will automatically push the old line 23 out of memory and replace it with the new
line 23. The old line 23 is pushed out of memory because the computer doesn’t
allow duplicate line numbers.

Let's change line 23; T: DAFFODILS ARE PRETTY, back to the original line 23;
T: SUGAR IS SWEET,.

Clear the screen and LIST the program. Type: 23 T: SUGAR IS SWEET, press
and LIST the program again:

LIST

186 T:ROSES ARE RED ,

280 T:VIOLETS AREBLLUE,
Z2ZT:DAFFODILS AREPRETTY
48 T:AND 50 ARE YOU!

READY

23 T:SUGAR IS SHEET,
LIST

16 T:ROSES ARE RED

28 T:VIOLETS ARE BLUE
23 T:5UGAR IS SHEET,
48 T:AND S50 ARE YOU!

READY
]

B Remember that the line change is not displayed on the screen until the program
is LISTed again. W

LINE RENUMBERING

PILOT has a renumber command that automatically renumbers the line numbers of
an entire program. This is useful when you need to insert a statement between two
statements with consecutive line numbers.

Type: NEW and press to clear the computer’s memory . Enter the following
program:

5T: WHAT
6T: A
7 T: PROGRAM

A program RUN displays:

HWHAT
a
PROGRAM

READY
|

Now consider changing the above program to display this instead:

HWHAT

2]
SIMPLE
PROGRAM

READY
2]

How would you make the change? You could change the last half of the program
by line deletion and replacement to make enough room to enter a T: SIMPLE, or
you could renumber the program with the renumber command.

The RENUMBER Command, REN
The format for a simple REN command is: REN

REN by itself automatically renumbers the entire program starting with line number
10, and then counting by tens for as many lines as are in the program. This creates
enough space to insert extra lines.

Type: REN and press EEIN. Now, LIST the program. You should see:
REN

READY

LIST

18 T:HWHAT
20T:nh

38 T:PROGRAM

READY
|

You now have room to insert an extra line.

Writing A
Pilot Program 35

Type: 25 T: SIMPLE and press SIS LIST the program again. You should see:

READY

25 T:5IMPLE
LIST

18 T:WHAT
20T:A

25 T:S5IMPLE
30 T:PROGRAM

READY
|

Fancy Renumbering With REN
The following format for the REN command allows you to choose the starting line

number of the program. It also allows you to renumber a program with an incre-
ment other than 10.

REN starting line number
REN starting line number, increment

To renumber the program so that it begins with line number 100, type:

REN 100 £I5I0

A program LIST displays:
REN 180

READY

LIST

106 T:HWHAT
116T: A

128 T:5IMPLE
136 T:PROGRAM

READY
i}

To renumber a program with an increment other than 10, follow the starting line
number with a comma and the increment value. To renumber the program by 2,
type:

REN 100,2

A program LIST displays:
REN 100 ,2

READY

LIST

100 T:WHAT
182 T:A

1084 T:SIMPLE
106 T:PROGRAM

READY
=

Beware of choosing too high a starting line number or too large an increment. REN
will produce an error if a line number tries to exceed 9999.

Writing A
36 Pilot Program

SECTION 3
SUMMARY

If you enter: REN 9000,500, the computer responds with:

REN 9000 ,500
MH¥H¥E | TNE 2t 7 ¥x¥

A LISTing now shows:

REN 9000 ,500
%3 | INE 11 2 %33

LIST

2000 T:WHAT
25808T:A

184 T:SIMPLE
1086 T: PROGRAM

READY
]

Lines 104 and 106 were left over because their “‘new’’ line numbers would exceed
9999. To correct this, just REN again with a lower starting number and increment.

An immediate command is a command that is obeyed when the key is
pressed. Commands that are stored in memory, to be obeyed upon a RUN com-
mand, are called deferred commands.

A program is a sequence of deferred instructions that direct the computer to per-
form a desired operation. A program is made up of one or more program
statements. A program statement is a command preceded by a line number. Line
numbers keep the program statements in a specific order.

Executive commands, such as RUN, LIST, NEW, and AUTO, tell the computer what
to do with a program. They are immediate commands.

RUN is an executive command. It tells the computer to execute the PILOT program
currently in the computer’s memory.

LIST displays the program currently in memory. It does not execute the program.
The whole program, or specified lines may be listed with this format:

LIST lists entire program
LIST line x lists line x of the program
LIST line x, line y lists lines x through y of the program.

The NEW command erases the current program from the computer’s memory.
Once a program is deleted with NEW, it can’t be retrieved.

The AUTO command puts the system into Automatic Line Numbering Mode,
distinguished by a gold screen. In AUTO mode, program statements are input
without line numbers. The line numbers are automatically assigned as the
statements are input. The line numbers are not displayed until the program is
LISTed in immediate or program mode (blue screen). Executive commands may
not be issued in AUTO mode. To return from AUTO mode to immediate mode,
press the key alone, entering a blank line.

The TYPE command (T:) displays text messages. In successive TYPE commands, the

T: can be replaced by a single colon. The colon inherits the previous TYPE com-
mand label.

Writing A
Pilot Program 37

SECTION 3
QUIZ

Writing A
38 Pilot Program

The ACCEPT command is used in conjunction with the TYPE command. The AC-
CEPT command, A:, allows input from the keyboard to be entered during program
execution. The ACCEPT command delays program execution until input is re-
ceived from the keyboard, ending with the key.

To delete a line from a program, type the line number and press the key.
This erases the line from the program in memory, but not from the screen display
until the program is LISTed.

To insert a line into a program, enter it using a new line number. The new number
must fall between the line numbers where the line is to be inserted. The screen will
not show the inserted line in its correct position until the program is LISTed.

There are two methods to replace a line. Delete the old line and insert a new line
using the same line number. Or, simply assign the new line the old line number.
The change will not be shown on the screen until the program is LISTed.

1. A program is made up of commands that are exe-

cuted when issued a RUN command.

2. A program statement is
RUN, LIST, NEW, and AUTO are all examples of

commands. These commands are executed only in

mode.

The RUN command tells the computer

5. The LIST command displays the program in memory and then executes the
program. TRUE or FALSE?
To LIST lines 20, 30, 40, 50, and 60 of a program, you would enter:

7. The NEW command erases a program from the screen but not from memory.
TRUE or FALSE?
8. The AUTO command lets the computer to

program statements.
9. In AUTO mode the color of the screen is:

(@) Blue
(b) Black
(c) Gold
(d) Red
(e) Green

10. To exit AUTO mode, you
(a) Pressthe key.
(b) Pressthe key.
(c) Type: AUTO: QUIT
(d) Type: AUTO: CLEAR
(e) Press the key.

15l

13

14.

15,

16.
1ig,

The TYPE command is often used in conjunction with the ACCEPT command.
Why?
Match the following:

Insert a line Enter line number and press the key

Replace a line Assign a statement a new line number

Delete a line Use the same line number on a new or different
line

The computer ignores REMARK commands. REM commands are useful
because they allow you to

The command lets you terminate a program

before the last line of a program.
Typing a line number and pressing the EIEIEE key a
line.

To insert a new line you must

The REN command will renumber a program by any increment. TRUE or
FALSE?

Writing A
Pilot Program 39

Writing A
40 Pilot Program

ANSWERS

—
o]

13,
14.
15.
16.

7.

. LIST 20,60 §

g e R e s

Deferred

A command preceded by a line number.

Executive commands; immediate mode.

Execute the program currently in the computer’s memory.
FALSE. LIST displays the current program on the screen.

FALSE. NEW erases the program from memory, not the screen.
Assign line numbers

(c) Gold

(b) Press the EEI

key.

The TYPE command precedes the ACCEPT command to tell the user what
type of data to enter.

Insert a line Enter line number and press the EIEIEIY key

Replace a Iin% Assign a statement a new line number

Delete a line Use the same line number on a new or different
line,

Document your programs or add titles and notes to explain the program.
END (E:)
Erases

Pick a line number in the correct sequential position, type the line number,
the program statement, and press the key.

TRUE

4

DECISION-MAKING
PROGRAMS

CONCEPTS Matching for Clues
The Function of the ACCEPT Command, A:
INTRODUCED The MATCH Command, M:

Conditional Commands
The TYPE IF YES and TYPE IF NO Commands, TY:, TN:
The END IF YES and END IF NO Commands, EY: EN:
Section 4 Summary
-Section 4 Quiz
Advanced Decision-Making Techniques
Separating MATCH Strings With Vertical Bars

PILOT programs can use keyboard input to make decisions. Decisions are made in
PILOT in much the same way the person in the following sketch made a decision to
go to the ballpark.

TO GO OR NOT TO GO

IDEA: YOU WANT TO GO TO THE BALLPARK
TOMORROW. YOU MUST MAKE YOUR
PLANS TODAY. YOUR DECISION DEPENDS
ON THE WEATHER FORECAST.

SUNNY COOL
CLEAR RAINY
WARM BREEZY
HOT NOT VERY GOOD
BEAUTIFUL ANYTHING ELSE
NICE =
GO TO THE BALLPARK GO TO THE MOVIES

The advantage of using the PILOT language over other programming languages lies
in the ease with which it allows you to perform complex pattern-matching on user
input and then to make decisions relative to the presence or absence of a “match.”’
With just three commands (TYPE, ACCEPT, and MATCH) you can create a
reasonably sophisticated, interactive dialogue program. This section shows you
how to write educational, instructional, and just plain fun PILOT programs using
pattern-matching decisions.

Decision-Making
Programs 41

MATCHING
FOR CLUES

Decision-Making
42 Programs

The MATCH command functions like a detective. MATCH searches the keyboard
input received from an ACCEPT command for a specific pattern or patterns. If a
matching pattern is found, PILOT remembers that there is a match. If no pattern is
found, PILOT remembers that there isn’t a match.

THE FUNCTION OF THE ACCEPT COMMAND, A:

The ACCEPT command has a special function: to retrieve and retain your input so it
can be searched for a specific pattern by the MATCH command. Input from the
keyboard is retrieved by the ACCEPT command in the format:

A: your input
Your input is called a string.

A string is a series of letters, numbers, or symbols. Words, sentences, and phrases
are all strings.

HOW ARE YOU? is a string
KEITH is a string
APRIL 1, 1981 is a string

Anytime an ACCEPT command is executed, your input string is placed in a
specified area called the accept buffer. Think of the accept buffer as a compart-
ment in memory that “’holds’’ your input string.

Figure 4-1 Concept of the Accept Buffer

Any lowercase characters in your input string are converted to uppercase letters
before they are searched by a MATCH command.

THE MATCH COMMAND, M:

The MATCH command lists the pattern or patterns to be searched for and matched
in the accept buffer. Each pattern is also called a string.

The format for the MATCH command is: M: string

G SN BN o G I B B0 0 OGN O G U N B BN B o o

If a MATCH command specifies several strings each string must be separated by a
comma.

M: string, string. ..

Here are some examples:
M: TABLE
M: YELLOW,BLUE,RED
M: 1,2,3,4
M: ALL CATS ARE FURRY, ALL DOGS HAVE TAILS
M:,

The MATCH command followed by only a comma will match ANY input.

M Spaces are important characters in MATCH strings. For example:
M: A

matches any word in the input string beginning with the letter A. Because a space
always precedes the beginning of a word in the accept buffer, the combination of a
preceding space and the letter A tells the computer to match any word beginning
with the letter A.

Examples:
ATARI is a match
HOT AIR BALLOON is a match
BAGEL is NOT a match

However, this MATCH command:

M:A
matches input that has the letter A anywhere in the string:
EASY is a match
JANUARY is a match
AIRPLANE is a match W

Often you may want a MATCH command to search for a fragment of a word or
string, or for the ending letter(s) of a word. For instance, to search an input string
for a word that rhymes with moose, your MATCH command might look like this:

NMECICISE L LICE

The underscore character, __, also represents a space at the end of a string.

B To type an underscore character,

, hold down the key and press the
— — key. B

An underscore character placed at the end of a MATCH string means that a trail-
ing space is part of the string and must be part of the string to produce a match. In
this way, you can match for the ending letter, word, or fragment of a word in an in-
put string.

Decision-Making
Programs 43

Decision-Making
44 Programs

Using the M: OOSE __,UCE __ example, any input string that ends with OOSE or
UCE produces a match:

GOOSE is a match
LOOSE is a match
CABOOSE is a match
DUCE is a match
TRUCE is a match ¥

CONDITIONAL COMMANDS

The MATCH command searches the input string received from an ACCEPT com-
mand for a matching string. The computer remembers if there is a match or no
match. PILOT uses the MATCH command followed by conditional commands to
perform specific instructions conditional upon a match or no match. A MATCH
command must be preceeded by a conditional command.

Here are some of PILOT's conditional commands:

T¥: orY: TYPE IF YES command
TN: or N: TYPE IF NO command
EY: END IF YES command
EN: END IF NO command

The TYPE IF YES and TYPE IF NO Commands TY:, TN:

The TYPE command can be used with yes or no conditioners in the following formats:
TY: message
Y: message
TN: message

N: message

If a match is found and there is a command with a Y conditioner, it will be executed
(e.g., TY: message). If a match is NOT found and there is a command with a N con-
ditioner it will be executed (e.g., TN: message). Both the Y and N conditioners may
be used for a single MATCH command as long as they are not in the same state-
ment. But, if both the Y and N conditioners follow a single MATCH command, only
one of the commands will be executed; the other one is bypassed.

Here is a sample program to demonstrate the interaction of the M:, TY: and TN:
commands:

1 R: HISTORY PROGRAM

10T:

201

30 T: Who was the first president of \
40 T: the United States? \

50 A:

60 M: GEORGE WASHINGTON

701

80 TY: That's right!!

90 TN: No. The first president of the \
100 TN: United States was GEORGE \
110 TN: WASHINGTON.

If the correct answer (GEORGE WASHINGTON) is entered when the program is
executed, the program executes the TY: command to display:

HWhowas the firstpresidentof the
United States? GEORGE WASHINGTON

That'sright!!

READY
|

If an incorrect answer is entered, the program executes the TN: command to
display:

Who was the firstpresidentof the
United States? UNCLE SaM

No. the firstpresidentof the United
S5tates was GEORGE WASHINGTON.

READY
m

Try another one. Type NEW and enter the following program:

10 T: WHICH WORD DOESN’T BELONG:
20 T: CAT DOG COMPUTER CHIMP
30T:2\

40 A:

50 M: DOG

60 TY: YES, THE OTHERS BEGIN WITH ‘C’.
70 M: COMP

80TY: YES, THE OTHERS ARE ANIMALS.
90 M: COMP,DOG

100 TN: ARE YOU SURE ABOUT THAT?

Run the program with each of the four words in line 20 as input.

Here are three RUNS of the same program:

WHICH HORD DOESM'T BELONG:

CAT DOG COMPUTER CHIMP
? DOG .
YES, THE OTHERS BEGIN MITH 'C'.

READY
B

Decision-Making
Programs 45

I —

HWHICH WORD DOESN'T BELONG:
CaT DOG COMPUTER CHIMP

? COMPUTER

¥YES, THE OTHERS ARE ANIMALS.

READY
B

HHICH HORD DOESN'T BELONG:
CaT DOG COMPUTER CHIMP

? CHIMP

ARE YOU SURE ABOUT THAT?

READY
&

Figure 4-2 MATCH Command: Sample Runs

Notice that there are three different possible outputs, depending upon the input
string.

What happens if you input DOG AND COMPUTER? Try it and see.

Did your screen display:

WHICHHMWORD DOESN'T BELONG:
CAT DOG COMPUTER CHIMP

Z?D0G AND COMPUTER

YES, THEOTHERS BEGINWITHC' .

YES, THE OTHERS ARE ANIMALS.

READY
]

Because DOG AND COMPUTER produces a match in both MATCH statements,
both TY: commands are executed. l

B Look closely at line 70: .
70 M: COMP

e

Decision-Making
46 Programs

The MATCH command searched for only the first four letters of COMPUTER. This
is advantageous because it allows for spelling mistakes (computor, compater). B

Putting It All Together

You now possess enough information to understand how to make a program out of
the TO GO OR NOT TO GO sketch to decide whether or not to go to the ballpark.
Type in the following program:

10 T: WHAT IS THE WEATHER LIKE TODAY?

20A:

30 M: SUNNY,CLEAR,WARM,HOT,BEAUTIFU L,NICE,GREAT
40 TY: YOU SHOULD GO TO THE BALLPARK

50 TN: YOU SHOULD GO TO THE MOVIES

RUN the program with the following ACCEPT inputs:

SUNNY AND BRIGHT

CLEAR AND WARM

GREAT DAY

COOL AND BREEZY

RAINY, CLEARING TOMORROW
WINDY

NOT VERY GOOD

HHAT IS5 THE HEATHER LIKE TODAY?

Input: SUNNY SUNNY

YOU SHOULD GO TO THE BALLPARK

READY
|

Input: RAINY, CLEARING TOMORROW RATNY . CLEARTNE ToMoEmon o Y?

YOU SHOULD GO TO THE BALLPARK
READY
il

Decision-Making
Programs 47

Decision-Making
48 Programs

WHAT IS5 THE WEATHER LIKE TODAY?
Input: WINDY WINDY

YOU SHOULD GO TO THE MOVIES.

READY

Figure 4-3 Sample Runs of the TO GO OR NOT TO GO Program

The MATCH command matched the ““CLEAR” in RAINY, CLEARING TOMOR-
ROW. However, it doesn’t know that the CLEAR is referring to tomorrow’s
weather, while today’s weather is RAINY. You must be very careful about what strings
you specify in the MATCH command and the messages you use in the TY: and TN:
commands, or else you may get the wrong type of match.

Here is another fun program: a RIDDLE program. Type it in and give it a RUN:

10 T: RIDDLE

20 T: WHAT IS THE LONGEST WORD IN ENGLISH?
30 A:

40 M: SMILES

50 TY: YOU ARE ABSOLUTELY CORRECT!!

60 TN: SORRY, THE WORD IS ‘SMILES’!

70 T: THERE IS A MILE BETWEEN THE S's.

The END IF YES and END IF NO Commands, EY:, EN:

These commands allow the program to be conditionally terminated before the end
of a program.

The formats for the END IF YES and END IF NO commands are:
EY:
EN:

Notice that nothing follows the colon in the E:, EY:, and EN: commands.

If a match is found and there is an EY: conditional command, the program will ter-
minate. If a match is NOT found and there is an EN: conditional command, the pro-
gram will terminate.

M Remember that both an EY: and EN: command may follow a single MATCH
command if they are in different program statements. |l

The following program demonstrates the use of the END IF NO command. If the in-
put does not match the match string, the program displays a TN: message and ter-
minates the program with the EN: command. If the input matches, the program
continues. The only way to complete the entire program is to answer the three
questions correctly:

10 T: THIS PROGRAM MIXES TWO PRIMARY COLORS
20T: (RED, YELLOW, BLUE)

30T:

40 T: YOU MUST GUESS THE COLOR!

50T:

60 T: RED AND YELLOW MAKE: \

70 A:

80 M: ORANGE

90 TY: **x THAT'S RIGHT! TRY ANOTHER ONE! * * %
100 TN: * * * OOPS! THAT’S NOT RIGHT! * * %

110 EN:

120 T:

130 T: YELLOW AND BLUE MAKE: \

140 A:

150 M: GREEN

160 TY: * % * THAT'S RIGHT! TRY ANOTHER ONE! * % %
170 TN: * % * OOPS! THAT’S NOT RIGHT! * * %

180 EN:

1900

200 T: BLUE AND RED MAKE: \

210 A:

220 M: PURPLE

230 TY: * %% THAT'S RIGHT! * * *

240 TY:

250 TY: CONGRATULATIONS! YOU GUESSED ALL
260 TY: THREE QUESTIONS CORRECTLY!

270 TN: * * % OOPS! THAT'S NOT RIGHT! * * *

280 E:

Below is a sample RUN if all three questions are answered correctly:

THIS PROGRAMMIXES TWO PRIMARY COLORS
€ RED . YELLOMW, OR BLLUE)

YOU MUST GUESS THE COLOR!

RED AND YELLOMWMAKE : ORANGE
#*3¥% THAT 'S RIGHT! TRY ANOTHER ONE ! 3%

YELLOMW AND BLUE MAKE : GREEN
*%#¥% THAT 'S RIGHT! TRY ANOTHER ONE ! ¥

BLUE AND RED MAKE : PURPLE
#*¥#% THAT'S RIGHT ! %

CONGRATULATIONS! YOU GUESSED
ALL THREE QUESTIONS CORRECTLY!

READY
44
Here is a sample RUN if the first question is answered incorrectly:

THIS PROGRAMMIXES TWO PRIMARY COLORS
€ RED, YELLOW, OR BLUE)

YOU MUST GUESS THE COLOR!

RED AND YELLOWMAKE : BROWN
¥*34% 00PS! THAT'S NOT RIGHT ! 33

READY
|

Decision-Making
Programs 49

SECTION 4
SUMMARY

Decision-Making
50 Programs

As soon as the input did not match the MATCH string, the EN: command ter-
minated the program.

The beauty of the PILOT language lies in its ability to perform complex pattern-
matching on user input and then to make decisions relative to the presence or
absence of a “‘match.”

The MATCH command searches the keyboard input from an ACCEPT command
for a specific pattern. If a matching pattern is found, PILOT remembers that there is
a match. If no pattern is found, PILOT remembers that there is no match.
The format for the MATCH command is:

M: string

M: string, string . ..
If more than one string is specified in the MATCH command, the strings must be
separated by commas.

M:, will match upon any input.
The MATCH command is followed by a conditional command or commands. The
TYPE and END commands, combined with a yes or no conditioner, help PILOT
decide what action to take depending upon a match or no match. If a match is

found and there is a command with a Y conditioner, it will be executed. If a match
is not found and there is a command with a N conditioner, it will be executed.

The TYPE IF YES command (TY:) or (Y:) and TYPE IF NO command (TN:) or (N:)
display a message depending upon the success of the match.

TY: message

Y: message

TN: message

N: message
The END IF YES command (EY:) and the END IF NO command (EN:) terminate pro-
gram execution depending upon the success of the match:

EX:

EN:

SECTION 4
QUIZ

The MATCH command searches from the

command for a matching pattern. The pattern(s) to be matched are specified
in the command.

Your keyboard input is called a

Identify the string(s) below:

(a) HOWARD MEEDLY (e)aand b

(b) AUGUST 31, 1999 (f)bandd

(c) 12345 (g) All the above
(d) 12:45

A series of strings in the MATCH command must be separated by

Depending upon the success of a match, the conditional commands perform a
desired operation. If the match is successful, and the Y conditional command is
performed, what happens to the N conditional command (if it is present)?

Depending upon a yes or no match, the TY: and TN: commands
A program can be terminated before the last line of a program depending upon

the success of a match and the presence of an END IF NO command. TRUE or
FALSE?

The underscore character at the end of a MATCH string represents a

in the string.

Decision-Making
Programs 51

52

Decision-Making
Programs

ANSWERS

® NS U R W

Input (or strings), ACCEPT, MATCH
String

®

Commas

It is bypassed.

Display its message

TRUE

Space

ADVANCED
DECISION-
MAKING
TECHNIQUES

SEPARATING MATCH STRINGS WITH VERTICAL BARS

If a MATCH command specifies several strings to be matched, the strings must be
separated by commas or vertical bars (|). If vertical bars are used to separate the
MATCH strings, then a vertical bar must follow the colon, preceding each string:

M: 1 IS | ARE
M: | YELLOW | BLUE | RED

W To type a vertical bar, hold down the EIIEB key and press the | \ key. B
Vertical bars are especially useful when matching for punctuation marks such as
commas, periods, semicolons, colons, and the like:

s Bl (e EREll e 2 ST ol

M: I * | +

Ml

B Commas and vertical bars may not be used as separators in the same MATCH
command. W

Decision-Making
Programs 53

D

BRANCHING

CONCEPTS
INTRODUCED

THE
STATEMENT
LABEL

THE JUMP
COMMAND, J:

The Statement Label
The JUMP Command, J:
The JUMP IF YES and JUMP IF NO Commands, JY:, JN:
The TRACE Command
Section 5 Summary
Section 5 Quiz
Advanced Branching Techniques
The JUMP Command in Immediate Mode, J:
The JUMP ON MATCH Command, JM:
Mini-Quiz

So far, all of the programs that you have entered were obeyed in line number order
and proceeded from lower line numbers to higher line numbers. The term for this
is sequential program execution. PILOT allows you to break the normal sequence of
execution by using something called a label.

A statement label is a way of naming a PILOT statement line. The line number is not
actually a name. Line numbers do help locate PILOT lines in relation to each other.
A label does more: it tells the computer ““I'm special!” The computer remembers
the statement label’s location and its location within the program by the line
numbers.
The format for the statement label is:

line number */abel name

where: label name is any combination of letters and numbers beginning with an

asterisk and a letter. Embedded spaces are not allowed.
Examples:

10 * LABEL

50 *START

The JUMP command tells the computer to break sequential program execution and
jump to a labeled statement line.
The format for the JUMP command is:

): statement label

Examples:
100 J: * LABEL
250 J: *START
300 J: * DOAGAIN

Branching 55

56 Branching

If two or more statements have the same statement label, the JUMP command
jumps to the statement label with the lowest line number:

10 *FILL
50 J:% FILL

100 *FILL

Make sure that each JUMP command has a label to jump to. It is an error to jump to
a nonexistent label. If you try, the program will stop and display a * ** WHERE?
* % * message.

Following is an example program that demonstrates the JUMP command. The pro-
gram asks you to input colors:

T0 R: %% s %k %k % 5k 5%k 5% 5%k sk >k >k % % % % % % %
20R: * THE COLOR WHEEL *
30 R: % % 5k s % 5% 3k sk 3% 3k %k sk %k %k % % k % %
40 T: THIS PROGRAM TESTS HOW
50 T: MANY COLORS YOU KNOW

60T:

70 T: ENTER A COLOR: \

80 A:

90 * DOAGAIN

100, 1%

100, T: ENTER ANOTHER COLOR: \
120, A:

130, J: * DOAGAIN

140 E:

B Command indentation: A comma immediately following the line number allows
you to indent a PILOT command any number of spaces. Labels, however, may not
follow a comma.

This program is intentionally missing some commands that would allow the pro-
gram to stop by itself. These “missing’” commands are omitted because you have
not been introduced to them yet. (They will be discussed shortly.) Therefore, this
program goes into what programmers often call an indefinite loop. In other words,
it will not stop until you press the key to stop it. W

An example RUN of the program looks like this:

THIS PROGRAMTESTS
HOWMANY COLORS YOU KNOMW

ENTER A COLOR: RED
ENTERANOTHER COLOR: VIOLET
ENTERANOTHERCOLOR: GREEN
ENTER ANOTHER COLOR: PINK
ENTER ANOTHER COLOR:

120, a:
¥ READY ¥

The output at the bottom shows what statement was executing if you press the
key in mid-execution of a program. As you can see, the program repeats cer-
tain statements: it jumps from line 130, J: * DOAGAIN to label * DOAGAIN at line
90, and executes all the statements from 90 to 130 before it jumps to 90
* DOAGAIN again. This repetition of a group of statements is called looping. The
repeated group of statements is called a loop.

90 * DOAGAIN

130, J: * DOAGAIN

THE JUMP IF YES AND JUMP IF NO COMMANDS, }JY:, JN:

The JUMP command, in conjuction with the MATCH command, can use yes and
no conditioners to make program decisions. The rules for using conditioners with
the JUMP command are the same rules used for the TY:, TN:, EY:, and EN: com-
mands.

The formats for the JUMP IF YES and JUMP IF NO commands are:
JY: statement label
JN: statement label
where: statement label is the destination point of the jump

JY: and JN: change the sequence of program execution upon a yes or a no match in
the MATCH command. If a match is found and there is a JY: command, program
execution will jump to the label specified in the JY: command (e.g., JY: *LOOP). If a
match is not found and there is a JN: command, program execution will jump to
the label specified in the JN: command (e.g., JN: *TIME). If both the JY: and JN:
commands follow the same MATCH command, only one of the commands will be
executed; the other command is bypassed.

Here is a fragment of a program demonstrating the function of the JY: and JN: com-
mands:

20 * DOAGAIN —=—

60 A:

70 M: Y,YES,OK J
80]Y: * DOAGAIN

90 JN: *FINISH ———

120 *FINISH <€—oI

150 E:

Branching 57

Below is a sample program to demonstrate the M:, JY: and JN: commands:

TO R: % % sk sk sk sk e sk %k 5k 5k ok sk ok ok ok sk ok ok ok ok ok % k %
20R: * WHAT | SAW AT THE ZOO *
30 R: % % % % 5k %k %k 5%k 3 %k 5% % % 3 % %k 5k % %k % % % % % %
40 T: At the zoo there are LOTS of \

50 T: animals.

60T:

70 T: The last time you were at the \

80 T: zoo, did you see any animals? \

90 A:

100 M: YES,Y

110 JN: * TRYAGAIN

120 * DOAGAIN

130 T:

140 T: What kinds of animals did you \
150 T: see?

160 T:

170 A:

180 T:

190 T: GREAT! Did you see anything \
200 T: else? \

210 A:

220 M: YES,Y

230)Y: * DOAGAIN

240 IN: *END

250 * TRYAGAIN

260 T:

270 T: Are you sure you didn’t see \

280 T: any? \

290 A:

300 M: NO,N,NONE

310 JY: * DOAGAIN

320T:

330 TN: OK, but I don’t think you \

340 TN: looked very hard!

350 EN:

360 *END

370 T: You must have had a busy day at \
380 T: the zoo!

390 E:

As you can see, the program has three different statement labels: * DOAGAIN,
*TRYAGAIN, *END. The program also uses both TY:, TN:, JY:, JN:, and EN: com-
mands. A RUN of the program looks like this:

58 Branching

THE TRACE
COMMAND

At the zoo there are LOTS of animals.

The last time youwere at the zoo,
did you see any animals? YES

HWHhat Kinds of animals did you see?
ELEPHANTS

GREAT! Did you see anything else? YES
HWhat Kinds of animals did you see?
LIONS

GREAT! Did you see anything else? YES

GREAT! Did you see anvything else? NO
You must have had a busy day at the zoo!

READY
%)

The TRACE command lets you follow the execution of your program step-by-step
while the program is running. Often, when a program contains several JUMPs, it be-
comes difficult to follow the path of execution since the path no longer goes from
lowest to highest line number. TRACE can help you to ““debug’’ your programs
(find and solve problems and mistakes) by letting you see exactly what your pro-
gram is doing, each step of the way.

The TRACE command can be issued in either immediate or programmed mode.

The format for the TRACE command is:
TRACE: ON
TRACE: OFF

To demonstrate the TRACE command, issue the TRACE: ON command in im-
mediate mode prior to execution of THE COLOR WHEEL program:

TRACE: ON
RUN

Branching 59

60 Branching

This is what you see as you execute THE COLOR WHEEL program:

—— > 10 R o 36363636 5 363636336 36 3636 36 1 3 W
——>20R:%* THECOLORWHEEL *
——> T O R & 336366 3626 036 26363636 36 36 36 36 336
——>48T:THISPROGRAMTESTS HOM
THIS PROGRAMTESTS HOMW

—=—> 50 T:MANY COLORS YOL KNOH
MANY COLORS YOU KNOM

-—>68608T:

—=> 70 T:ENTERACOLOR: \
ENTERACOLOR: ——> 80 A:

RED
——> 98%DO0AGAIN
-—> 160 , T:
—-—> 118, T:ENTER ANOTHER COLOR: \
ENTER ANOTHER COLOR: ——> 128 , A
VIOLET
RV T J:*DOAGAIN
——> 98 *DOAGAIN
-—> 160 , T:
——>118, T:ENTER ANOTHER COLOR: \
ENTERANOTHER COLOR: ——> 120 , A
12e , a:
¥ READY 3%
B
The output at the bottom results from pressing the key to stop the program. .
But, we could TRACE the program forever if we wanted to.

B When tracing long programs, the program trace will often scroll off the screen.
To prevent this you can freeze and unfreeze the screen to stop the screen display.
To freeze the screen, hold down the key and press the 1 key. The screen
will instantly freeze and will not change until you unfreeze it. To unfreeze the
screen, do the same thing: hold down the key and press the 1 key; the pro-
gram trace will continue. B

Once out of program execution (ie. program end, or pressing the key), to
stop any further program trace, type: TRACE: OFF and press [SIELS.

The TRACE command may also be inserted into a program by assigning line
numbers to the TRACE: ON and TRACE: OFF commands. TRACE commands in a
program allow you to trace the entire program or any portion of the program.

10 R: % % %k %k % % % % 3%k %k >k % % % % % % %k %
20R: * THE COLOR WHEEL *
30 R %k sk s s %k 3k % ok %k sk ok ok ok ok ok ok ok ok k
40 T: THIS PROGRAM TESTS HOW
50 T: MANY COLORS YOU KNOW
60T:

70 T: ENTER A COLOR: \

80 A:

85 TRACE: ON

90 * DOAGAIN

SECTION 5
SUMMARY

100, T+

110, T: ENTER ANOTHER COLOR: \
120, A:

130, J: * DOAGAIN

140 E:

M If the TRACE command is not ““turned off’” within the program, you must issue
TRACE: OFF and press in immediate mode following program execution.
4

A label is a way of naming a PILOT statement line — a way to say it is special. The
format for a statement label is:

line number */abel name
The label name must begin with a letter and cannot contain any embedded spaces
or a space between the asterisk, *, and label name.
Examples:

15 *RIGHTON

55 *ANDA123
The JUMP command tells the computer to break sequential program execution and
jump to a specified label. The format for the JUMP command is: -

): *label name
A JUMP in immediate mode starts program execution at the specified label. The

JUMP command always jumps to the label with the lowest line number if two or
more statements have the same label. A jump to a nonexistent label causes an error.

The JUMP IF YES and JUMP IF NO commands direct program execution to a speci-
fied label conditional upon the success of a match. Both commands may follow a
single MATCH command, but they are mutually exclusive and only one will be exe-
cuted per MATCH.
The formats for the JUMP IF YES and JUMP IF NO commands are:

JY: label name

JN: label name

The TRACE command allows you to follow the path of execution of a program step
by step while it is running. The TRACE command is particularly useful in “debugging”’
programs.
The format for the TRACE command is:

TRACE: ON

TRACE: OFF

TRACE: ON and TRACE: OFF can be issued in immediate mode or programmed
mode (with line numbers).

Branching 61

SECTION 5
QUIZ

62 Branching

A special statement is distinguished from other statements by assigning it a

The special character identifying a label name is the

il
(b) *
(€) %
(d)$
The JUMP command breaks sequential program execution and jumps to a

specified

If there are two statements with the same label, the JUMP command, J:, jumps
to the label with the line number.

A jump to a nonexistent label is ignored by PILOT. TRUE or FALSE?

The JY: and JN: commands
depending upon the success of a match.

The TRACE command displays the path of program execution after the pro-
gram is terminated. TRUE or FALSE?

The TRACE command is useful for
The TRACE command can be used in both immediate and program mode.
TRUE or FALSE?

ANSWERS

-

Statement label, or label name, or label

(b)

Statement label, or label name, or label

Lower

FALSE

Direct program execution to a specified statement label
FALSE

Debugging a program

TRUE

e sl REohg e R Rl

Branching 63

ADVANCED
BRANCHING
TECHNIQUES

64 Branching

THE JUMP COMMAND IN IMMEDIATE MODE, J:

When the JUMP command is issued in immediate mode, it causes PILOT to
automatically start program execution at the label name specified in the JUMP com-
mand. WARNING: Errors may result if you do not start program execution from the
beginning.

THE JUMP ON MATCH COMMAND, JM:

The JUMP ON MATCH command is similar to the JUMP command, except that it
jumps to one of several labeled statements, depending upon which MATCH string
in the MATCH command produces a successful match.
The format for the JUMP ON MATCH command is:

JM: label label label

JM: label, label, label. ..
The label names may be separated by either a space or a comma.

Each label corresponds to a string in the MATCH string. If the third match string
produces a match, then the program jumps to the third label specified in the JM:
command:

20 A:
30 M: FIRST, SECOND, THIRD

W

40 JM: * ONE, ¥ TWO, * THREE

100 *ONE

200 * TWO <—

300 * THREE ————

Below is a fragment of a program to further demonstrate how JM: works (all pro-

gram statements unnecessary to the demonstration of this example have been
omitted):

30 A:
40 M: CAT, DOG, MOUSE

\

50 JM: *RUN, * CHASE, % RUN
100 *RUN ..,___l

200 * CHASE <—

.300 |5

If the input string at line 30 is either CAT or MOUSE, the JM: command directs pro-
gram execution to the label *RUN at line 100. If the input string is DOG, the JM:
command directs program execution to the label * CHASE at line 200. If the input
string is neither CAT, DOG, or MOUSE, the JM: command is bypassed.

MINI-QUIZ

1. The JUMP command may be issued in immediate mode to start program exe-
cution at the specified statement label. TRUE or FALSE?

2. If there is no match, the JIM: command is

InaJM: command, if the input string matches the fourth string of the MATCH
command (M:), the program

(a) Executes a)Y: command

(b) Jumps to the first label specified in the JM: command

(€) Jumps to the first through fourth label specified in the JM: command.
(d) Jumps to the fourth label specified in the JM: command

Branching 65

66 Branching

ANSWERS

T TRCIE

2. Bypassed, skipped, orignored
3. (d)

6
VARIABLES

CONCEPTS
INTRODUCED What Is a Variable?

String Variables
What Is a String Variable?
Defining String Variables
Using TYPE and ACCEPT Commands With String Variables
What Are the Values of Your String Variables?
The DUMP Command
The COMPUTE Command, C:
String Concatenation
Growing Strings
Generating Plural Strings
The ACCEPT Command Without Input
The COMPUTE IF YES and COMPUTE IF NO Commands, CY:, CN:
Clearing Your Variables
Section 6 Summary
Section 6 Quiz
Advanced Programming With Variables
Assigning Variables Into Other Variables
String Indirection
The MATCH STRING Command, MS:
Sensing a Match
Mini-Quiz

This section is about variables. Variables are an important part of PILOT program-
ming. Beginners should read this section thoroughly. Advanced programmers
already familiar with the concept of variables can read just the Section Summary
and the Advanced Programming With Variables section.

WHAT IS A variable is anything that is subject to change, like the time, date, or weather. In
‘ 8
A VARIABLE? computer programming, a variable is anything whose value is changeable. Below
are some examples:
A=X*5 A and X are variables.
Today’s date is a variable. (It changes every day.)
Body weight is a variable. (It changes all the time.)
A century is NOT a variable. It is a fixed value of

one hundred years.

Variables 67

68 Variables

Think of variables as compartments in the computer’s memory:

Figure 6-1 Concept of Variables

Because we may have more than one variable in memory, we must give each
variable a variable name to distinguish it from all other variables.

W Y.

Figure 6-2 Assigning Variable Names

When assigning variable names, it is easier for you to identify a variable if each
variable name represents the contents of the variable. The three variables above
are good examples. Variable WEATHER holds values such as sunny, cloudy, or
rainy that describe the weather. Variable DATE holds a date, (12/03/80). Variable
DAY holds the day of the week, Sunday. .. Saturday. If we had named the variables

1,2,3 or A,B,C we might forget which variable holds what values. Variable names,
just like the variables themselves, are changeable.

Let’s look at our variables in memory.

Figure 6-3 Assigning Values to Variables

Because variables have changeable values, the values may be changed at any time
and any number of times. When a new value is assigned, the new value pushes the
old value out; this is the concept of variables.

T —

' i
/ /
/

Figure 6-4 Changing a Variable’s Value

In PILOT there are two types of variables: string variables and numeric variables.
Numeric variables will not be discussed until Section 7, Using Numbers.

STRING WHAT IS A STRING VARIABLE?
ARIABLE
V. ABLES Do you remember the definition of a string? A string is any combination of letters,

numbers, symbols, words, or phrases. A string variable is a type of variable whose
value is a string.

String variables have string variable names. The variable name can be any com-
bination of letters, numbers, or symbols up to 254 characters in length, preceded
by a dollar sign, $:

$SNAME is a string variable name
$DATE is a string variable name
$REPLY2ME is a string variable name
$12 is a string variable name
$A is a string variable name

DEFINING STRING VARIABLES

The computer’s memory makes space (in the imaginary compartments for string
variables at the time the string variable is defined. A string variable is defined when
it is given a value. An undefined string variable has no value, like an empty com-
partment.

$FARAWAY is an undefined string variable
An ACCEPT command (A:) can be used to define a string variable with keyboard
input.

30 A: SFARAWAY

The keyboard input becomes the value of the string variable. If you enter CHINA in
response to the above ACCEPT command, $FARAWAY will be defined with a value
of CHINA.

Variables 69

1. UNDEFINED VARIABLE — 2. INPUT STRING VALUE — 3
‘CHINA’ FOR
30 A.;SFARAWAY

% Way

Figure 6-5 Defining a Variable With Input
USING TYPE AND ACCEPT COMMANDS WITH STRING VARIABLES

String variables are defined by the interaction of TYPE and ACCEPT commands.
The ACCEPT command, A:, followed by a string variable name defines the string
variable and saves the input as its value in memory.

10 T: WHAT IS YOUR NAME?
20 A: SNAME

30 T: WHERE DO YOU LIVE?
40 A: $ADDRESS

This is what happens when the above program is executed:

$NAME defined with

input value “CHRIS” WHAT IS YOUR NAME?
CHRIS
HWHERE DO YOU LIVE?
BERKELEY

SADDRESS defined with
input value “BERKELEY”

READY
|

Figure 6-6 String Variables: Program Run

The TYPE command can also use string variables. If the string variable has been
previously defined before the TYPE command, the string variable name in the TYPE
statement is replaced with the value of the string variable. If it has not been defined,
the string variable name is not replaced in the TYPE message. Type:

10 T: WHAT IS YOUR NAME?
20 A: SNAME
30 T: YOU, SNAME, ARE A VERY $FUNNY PERSON!

70 Variables

There are two string variables in the program: $NAME and $FUNNY. RUN the pro-
gram. Enter your own name when prompted.

HWHAT IS YOUR NAME?
CHRIS
YOU,. CHRIS,. ARE A VERY SFLUNNY PERSON!

READY
E

$NAME is defined by your input to the ACCEPT command on line 20. In line 30 the
string variable name $NAME is replaced with your name. The string variable name
$FUNNY is not replaced because it was not defined before line 30. To fix the pro-
gram to define $FUNNY before line 30, insert the following lines:

23 T: WHAT KIND OF PERSON ARE YOU?
26 A: $SFUNNY

RUN the program again.

WHAT IS YOLUR NAME?

CHRIS

HWHAT KIND OF PERSON ARE YOU?

NICE

YOU, CHRIS, ARE A VERY NICE PERSON!

READY
E

See how easy it is to use variables?

Following is an Automatic Letter Writer. You can use this program to create a letter
choosing the date, the city you live in, who the letter is addressed to, and how
you're feeling when you write the letter.

10 T: AUTOMATIC LETTER WRITER

20

30 T: (please answer the following questions)
A0

50 T:Whatis your name? \

60 A: $NAME

70 T:Where do you live, $NAME?

80 T:in\

90 AL $CITY

100 T: What is today’s date? \

110 A: $DATE

120 T: Who do you want to send this letter to?
130 T: (complete the following)

140 T: Dear \

150 A: $TO

160 T: (Now type one to three sentences about
170 T: out how you're feeling and what you
180 T: are doing. Remember the periods!)
190 T: (press RETURN after each sentence or
200 T: if you are finished with sentences)

210:T: =\ L SENTENCE PROMPT
220 A: $IMDOINGT1
230 T: =N\ L SENTENCE PROMPT

240 A: $IMDOING2

Variables 71

ZH0]: i L SENTENCE PROMPT
260 A: $IMDOING3

270 T: (press RETURN to see the letter)

280 A:

290T:

300T: $DATE

310T: $CITY

320T:

330T:

340T: Dear $TO,

350T:

360 T: How are you doing? Fine I\
370T: hope. $IMDOING1 $IMDOING2 $IMDOING3
380T: Anyway, | just wanted you to know\
390 T: I was thinking of you. Bye now.

400 T:

410T: Yours,

420 T:

430T:

440T:

450T:

460 T: P.S. Please write soon.

WHAT ARE THE VALUES OF YOUR STRING VARIABLES?
The DUMP Command

After you've executed a program using string variables, you can find the values of
the string variables by typing the executive command, DUMP. As the command
label implies, DUMP dumps or displays the string variable names and their values
on the screen.

A DUMP command following the execution of our example program might display
something like this:

READY

DUMP

$NAME = ' CHRIS'
SFLUNNY = "NICE"*

B The value of each string variable is enclosed in single quotation marks. Notice
that ‘CHRIS” and ‘NICE’ are the values entered in the example program. B

The COMPUTE Command C:
The COMPUTE command assigns strings into string variables.

To assign a string into a string variable, use the following format:
C: variable name =string

where: variable name is the variable name receiving the string
string is the assigned value

72 Variables

B The equals sign separates the variable name from the assigned string. W

Examples:

C: $BLOOP=CAT assigns the string ‘CAT’ into the variable
$BLOOP

C: $NUM=ONE assigns the string ‘ONE’ into the
variable $NUM

C: $ADDR=1234 GEARY ST. assigns the string ‘1234 GEARY ST.’ into
the variable $ADDR

C: $AGE=10 assigns the string ‘10" into the variable
$AGE

String Concatenation

The COMPUTE command also enables you to put strings together. This is called
concatenation.

Growing Strings

Following is an example of string concatenation. Type in the following two pro-
gram statements:

10 C: $SNAME =
20 C: $STAR = *

RUN the program. You will see only a READY message and the cursor. Now, enter
DUMP and press @EIEE. You should see:

READY
DUMP
SNaAME=""
SSTAR="%"

$NAME="" means that the value of $NAME is an empty string, whereas $STAR has
the value “*’,

Enter the remainder of the program:

30 *GROW C: $NAME = $NAMES$STAR
40 , T: SNAME

LIST and RUN the program:

LIST
18 C:SNAME=

20 C:SSTAR=

30 *GROW C:SNAME=SNAMESSTAR
40 , T:SNAME

READY
RUNE

Variables 73

74 Variables

Figure 6-7 Growing Strings: Program List and Run

Issue a DUMP command again:

READY
DUMP
SNAME="*"
SSTAR="*"
READY

[]

B Look at the value of $NAME now! Line 30 concatenated the value of $STAR onto
the end of the value of $NAME. In effect, this added a ‘*’ onto the end of an empty
string, making the value of $NAME a ‘*’.

Notice that there are no spaces between the two variable names $NAME$STAR. B

Add this line to the end of the program:
50 J: *GROW

LIST and RUN the program:

LIST

18 C:SMAME=

20 C:5STAR=*

30 ®GROW C:SNAME=SNAMESSTAR
40 . T: $NAME

58 J:®GROMW

READY
RUNE

50 J i *GROMW
#*u% READY #xx

Figure 6-8 Growing Strings: With a Second DUMP Command
Look at how $NAME keeps growing!

Press the key, and issue the DUMP command again:

DUMP
SNAME = ¥ 3636 336 56 3636 56 36 36 36 36 36 36 36 36 36 3636 1

SSTAR="*!
READY
|

$NAME seems to have grown somewhat!
Generating Plural Strings

Concatenating strings allows you to generate plurals; to change a singular string into
a plural string. Clear memory with the NEW command and type in this program:

10 T:WHAT IS YOUR FAVORITE FLOWER?

20 A:$FLOWER

30 T:WOULD YOU LIKE A DOZEN $FLOWER?
40 A:

RUN the program:

WHAT IS YOUR FAVORITE FLOWER?
ROSE

HOULD YOU LIKE ADOZENROSE?
YES

READY
14

A DOZEN ROSE doesn’t sound right, and it certainly is not proper English. We
need to change the input string ROSE to ROSES before it is displayed at line 30. To
do this we must add two lines and change line 30. Type in:

24C:$5=S
28 C: $FLOWERS = $FLOWERSS
30 T: WOULD YOU LIKE A DOZEN $FLOWERS?

Variables 75

76 Variables

Line 28 assigns the string variable $FLOWERS the value of the ‘‘concatenation’’ of
$S to the end of $FLOWER. In line 30, the variable name $FLOWER is changed to
$FLOWERS.

B In line 28, notice that there are no spaces between the two variable names
$FLOWERSS. Also, notice that there are no spaces on either side of the equals sign
in lines 24 and 25. W

LIST the program:

10 T:WHAT IS YOUR FAVORITE FLOWER?

20 A:5SFLOWER

24 C:55=5

28C:5FLOHMERS=5FLOMERSS

30 T:WOLULD YOULIKE ADDZEN SFLOWERSS?
40 A:

Now, RUN the program:

HWHAT IS5 YOUR FAVORITE FLOWER?
ROSE
HWOULD YOU LIKE ADOZEN ROSES?
YES

READY
i}

Perfect!

THE ACCEPT COMMAND WITHOUT INPUT

The A: = form of the ACCEPT command accepts the value of a variable instead of
input from the keyboard.
The format of ACCEPT without input is:

A: =variable name

where: variable name is the name of the variable whose value is placed in the
accept buffer.

Examples:
A: = $FRIEND places the value of $FRIEND into the accept buffer
A: =$VAR places the value of $VAR into the accept buffer
A: =$K places the value of $K into the accept buffer

Enter the program below:

10 C: $SNAME =
20 C: $STAR = *
30 *GROW C: $NAME = SNAMES$STAR

40, T: SNAME
50, A: =$NAME
60, M % % % % % % %
70, JN: *GROW

Line 30 concatenates an asterisk onto the end of the value of $NAME. Line 50
places the value of $NAME into the accept buffer. Line 60 searches for the value of
$NAME in the accept buffer for a match. If there are less than seven asterisks at-
tached to the value of $NAME, the program jumps up to * GROW. When seven
asterisks are added to $NAME, the program stops.

Figure 6-9 ACCEPT Without Input: Program Run

Using the A: = form of the ACCEPT command can save you from repeatedly input-
ting the same value.

THE COMPUTE IF YES AND COMPUTE IF NO COMMANDS, CY:, CN:

The COMPUTE command may be used with yes or no conditioners to make COM-
PUTE conditional upon a match or no match.
The formats for the COMPUTE IF YES and COMPUTE IF NO commands are:

CY: variable name = value

CN: variable name = value
A MATCH command must precede the CY: or CN: command. If the match is suc-
cessful, the CY: command is executed (e.g., CY: $VAR=CAT). If the match is un-
successful, the CN: command is executed (CN: $VAR=DOG). If both commands

follow the same MATCH command, only one will be executed. The other com-
mand is bypassed.

The CY: and CN: commands are applicable to computing numeric strings, which
is discussed in Section 7.

CLEARING YOUR VARIABLES

The NEW VARIABLES command, VNEW:, allows you to clear string variables
within a program. Clearing a string variable means to undefine the string variable.
The NEW VARIABLES command can be issued in either immediate or program
mode.

The format for the NEW VARIABLES command is:

VNEW:$ clear all string variables only

Variables 77

SECTION 6
SUMMARY

78 Variables

A variable is anything that is subject to change. PILOT has two types of variables:
string and numeric.

String variables store strings. A string is a series of letters, numbers, symbols, words,
phrases, or a combination thereof. A string variable name is any combination of let-
ters or numbers, preceded by a dollar sign ‘$’.

The TYPE and ACCEPT commands work together to let you input values to string
variables. The TYPE message tells the user what type of value to input. The ACCEPT
command followed by a string variable name saves the input in memory. Variables
are defined when a value is entered with the ACCEPT command or assigned by the
COMPUTE command. The COMPUTE command- assigns strings, numbers, or
variable names to variables.

The format for the COMPUTE command is:
C: variable name =value

Singular strings can be made plural through string concatenation. Concatenation
means to join two strings together. By joining a variable whose value is ‘S’ to the
end of a variable with a singular value, the singular variable becomes plural.

C: $ROSE=ROSE
C:$5=5
C: $ROSES = $ROSE$S

Values of the variables can be displayed by issuing the DUMP command in im-
mediate mode. The variable’s values will be displayed in this format:

string variable name ='value’

The VNEW command issued in immediate or programmed mode, allows you to
clear, or “undefine’” all string variables within a program. The format for the VNEW
command is:

VNEW: $

SECTION 6
QUIZ

PILOT uses two types of variables. They are
and

is an example of a string variable name.
(a) #DATE
(b) %ANT
(c) #Z
(d $Xx
A string variable can have a number as a value. TRUE or FALSE?
The COMPUTE command (C:) assigns:

(@) Strings into variables

(b) Names to variables

(c) aand b

A variable is defined when it is assigned a value by the COMPUTE command or
when

The executive command that displays the values of string variables is the
command.
The A: = form of the ACCEPT command
instead of input from the keyboard.

Concatenation is the joining together of two strings, end to end. To make the
value of string variable $ANIMAL plural, fill in the missing program statements:
10T: WHAT IS YOUR FAVORITE ANIMAL?

20 A: $SANIMAL

30C:

40 C:

50T: DO YOU SEE MANY $ANIMALS$S IN THE ZOO?

60 A:

Variables 79

80 Variables

ANSWERS

ARG S Lo b

String variables, numeric variables

(d)

TRUE

(a)

A value is input with the ACCEPT command.
DUMP

Assigns the value of a variable to the accept buffer.
A: = $NAME

30C: $5=S
40 C: $ANIMALS = $ANIMALS%S

ADVANCED
PROGRAMMING
WITH
VARIABLES

ASSIGNING VARIABLES INTO OTHER VARIABLES

The value of variables can be assigned into other variables with the COMPUTE
command in the format;

C: $variable name = variable name
Examples:

C: $HERMAN = $GEORGE

C: $NUM=$ONE

C: $GEO=$BOX

STRING INDIRECTION

Values of string variables can themselves be other string variable names. The dollar
sign ($) is both a string variable indicator and an indirection operator.

String indirection can best be explained by example:

C: $LADDER = ANE assigns $LADDER the value ‘JANE’
C: $JANE=ATARI assigns $JANE the value ‘ATARI’

C: $ATARI= LUNCH assigns $ATARI the value ‘LUNCH’
T: $LADDER produces ‘JANE’

T: $$LADDER produces ‘ATARI’

T: $$$SLADDER produces ‘LUNCH’

T: $$$$LADDER produces ‘$LUNCH’

As many §’s as desired may precede the variable name portion. String indirection is
allowed anywhere a simple string variable is allowed.

THE MATCH STRING COMMAND, MS:

The MATCH STRING command acts exactly like the MATCH command, except
that it produces three pre-named string variables upon a successful match.
The format for the MATCH STRING command is:

MS: string

MS: string,string. ..

MS: variable name

where: string can be any character, number, word, symbol, phrase, or a com-

bination of these.

Like MATCH, if MATCH STRING specifies several strings, the strings must be
separated by commas or vertical bars.

If MATCH STRING specifies a variable name, the value of the variable is the match
string.

Variables 81

82 \Variables

If there is a match, MS: divides the input into three pre-named string variables:
$LEFT, $MATCH, and $RIGHT:

$LEFT is the value of everything to the left of the matched item
$MATCH is the value of the matched item
$RIGHT is the value of everything to the right of the matched item

This example program demonstrates how the MATCH STRING command divides
input into three variables;

10 T: ENTER A STRING: \

20 A:

30 MS: AND

40 T: THE LEFT VARIABLE IS: $LEFT

50 T: THE MATCH VARIABLE IS: $MATCH
60 T: THE RIGHT VARIABLE IS: $RIGHT

The string that will produce a match is AND. The input string | LIKE CATS AND
DOGS produces this output:

ENTERA STRING: ILIKECATS AND DOGS
THELEFT VARIABLE I5: ILIKE CATS
THEMATCHVARIABLE IS: AND

THE RIGHT VARIABLE IS5: DOGS

READY
n

B Remember, that a string variable’s value replaces its variable name in a TYPE
statement (if defined). @

If a match is unsuccessful, the three strings ($LEFT, $MATCH, and $RIGHT) retain
any value they had prior to the MATCH STRING command.

The $LEFT or $RIGHT variables may have a null, or no value, depending upon
where in the input string the match occurred as shown below: (A null value means
that its value is nothing; this is different than undefined.)

ENTER ASTRING: AND

THE LEFT VARIABLE IS5:
THEMATCHVARIABLE IS5: AND
THE RIGHT VARIABLE I5:

READY
A

The ability to separate a single string into three separate strings makes MATCH
STRING a very powerful command. You can use it to rearrange your string input,
discard portions of your input, and so on.

SENSING A MATCH

When the ACCEPT and MATCH strings are evaluated for a successful or unsuc-
cessful match, the condition is remembered as true or false in the computer’s
memory. You can display the MATCH SENSING variable to find out if the match is
true or not.

The MATCH SENSING variable %M contains the value of 1 if the match is true, and
a value of 0 if the match is false.

Example:
T: %M
0 (0 means no match)
T: %M
1 (1T means a match)

The %M variable may be displayed in either inmediate or programmed mode with
the TYPE command. It is a very useful variable for debugging (finding mistakes) in
your programs.

MINI-QUIZ

1. The value of variables can be assigned into other variables with the

command.
(@ A:
i C:
© A:=
(d) M:

2. The dollar sign ($) is both a string variable indicator and an indirection opera-
tor. TRUE or FALSE?

3. The MATCH STRING command acts exactly like the MATCH command, ex-

cept that it divides the input string into three string variables. They are:

(@) $BEGIN, $MIDDLE, $END
(b) $LEFT, SMATCH, $RIGHT
(c) $LEFT, $MIDDLE, $RIGHT
(d) $FIRST, $SECOND, $THIRD
(e) $L, $M, $R

Variables 83

ANSWERS

1. (b)
2. TRUE
3,y

84 Variables

%

USING
NUMBERS

CONCEPTS
INTRODUCED

MAXIMUM
NUMBER SIZE

MODULO

Maximum Number Size
Modulo
Numeric Types
Constants
Numeric Variables
Assigning Value to Numeric Variables
The COMPUTE Command, C:
The Random Number
Arithmetic Operators
Operator Precedence
Relational Operators
Section 7 Summary
Section 7 Quiz

To come this far, you have mastered many new concepts in your quest to learn
PILOT. The next concept is one you are already familiar with: numbers!

The world of PILOT graphics and sound revolves around numbers. There are a few
key rules and ideas to understand in order to use numbers; these are the topic of
this section,

The largest positive number PILOT understands is 32767. The smallest
negative number PILOT understands is —32768. PILOT handles arithmetic in
strange ways if you go beyond the + 32767 and — 32768 limits. For example, the
equation:

32767 + 1 will return — 32768 instead of 32768.
PILOT arithmetic uses only integers in the -32768 to 32767 range. Fractional

numbers are not allowed. The remainder from the division of two integers is
represented by a special arithmetic operator, called modulo.

The symbol for modulo is the backslash character, \, located on the \ . + key.
Modulo represents the remainder of one integer divided by another.

The modulo of one number by another number is the remainder of the division of
the two numbers.

a number\another number = remainder of (a number/ (another number))

Using Numbers 85

This is how modulo works:

PILOT division functions like longhand division. First, you divide the dividend by
the divisor:

2 <—— QUOTIENT
DIVISOR ——-3i 7 <—— DIVIDEND

ke
17 <—— REMAINDER

Figure 7-1 Division Problem
Dividing 7 by 3 equals 2 with a remainder of 1. PILOT keeps the quotient (the
answer) and drops off the remainder.
713=2

The remainder of 7/3 must be calculated by using the modulo operator , \ , as
shown in the following example:

7\3=1

The remainder of 7/3 = modulo of 7\3 = 1

2 <—— QUOTIENT
3i 7
— 6

1 «—— MobuLus

Figure 7-2 The Modulo of 7\3

Here are more examples:

5+4 = 5/4=1 (quotient)
5\4=1 (remainder)

999+ 12 = 99/12=8 (quotient)
99\12=3 (remainder)

10+5 = 10/5=2 (quotient)
10\5=0 (remainder)

NUMERIC There are two types of numbers in PILOT: constants and variables.
TYPES

CONSTANTS

Constant numbers never change. A 4 will always remain a 4. It will never be a 5 or a
2/3. It is “‘constant.”

B6 Using Numbers

NUMERIC VARIABLES

Variables change. A numeric variable has a changeable value. A numeric variable is
a variable whose changeable value is always a number.

Numeric variables have names. They are represented by the number sign (#) fol-
lowed by a single letter ranging from A to Z:

#) #X #O #K #A

#X=#Y-#Z #X,#Y, and #Z are numeric variables.

#A=4+6 #A is a numeric variable; 4 and 6 are constants.
Numeric variables have names. They are represented by the number sign, #,
followed by a single letter ranging from A to Z:

#) #X #O #K #A

B An important fact to remember is that because there are only 26 letters in the
alphabet, there are only 26 available numeric variable names. W

ASSIGNING VALUE TO NUMERIC VARIABLES

The same rules that govern string variables also apply for defining numeric
variables. One difference is that numeric variables are automatically assigned a
value of 0 instead of ““undefined.”’

Numeric variables can acquire an input value from the ACCEPT command.
A: # numeric variable name

Examples:
A: #N
A: #X

Numeric variables can also be assigned value with the COMPUTE command
described below.
THE COMPUTE COMMAND, C:

The COMPUTE command (C:) evaluates a numeric expression and assigns its value
to a numeric variable.

The format for COMPUTE is:

C: numeric variable = numeric expression

Examples:
C: #X=5%4
C: #A=-X/4
C:#B=10

All numeric calculations must be done with the COMPUTE command.

Using Numbers 87

Here is an example program:

10 T:THIS PROGRAM ADDS TWO NUMBERS
20T:

30T: ENTER A NUMBER: \

40 A: #A

60 T: ENTER ANOTHER NUMBER: \

70 A: #B

80T:

QC:#Z=#A+#B

100 T: THE SUM IS #Z

In this program, two numbers are entered with the ACCEPT command and assigned
to numeric variables. Line 90 calculates the sum of #A and #B and assigns the sum
to #Z. Line 100 prints the answer. A RUN of the program looks like this:

THIS PROGRAM ADDS TWO NUMBERS

ENTER A NUMBER: 186
ENTER ANOTHER NUMBER: S5

THE SUM IS 15

READY
=

This example program uses the COMPUTE command to assign the product of two
variables into a numeric variable:

10 T: THIS IS A MULTIPLICATION PROGRAM
20 T: ENTER TWO NUMBERS: \
30T:

40 T: FIRST NUMBER: \

50 A: #A

70 T: SECOND NUMBER: \

80 A: #B

90 C: #X=#A*#B

100 T:

TTOT#A X #B = #X

120

The COMPUTE statement on line 90 calculates the product of #A and #B, and
assigns the product into numeric variable #X. Execute the program with RUN and

press [ETEI.

THISISAMULTIPLICATION PROGRAM
ENTER THWO NUMBERS :

FIRST NUMBER: 20
SECOND NUMBER: 6

28 x 6 =120

READY
n

See how the COMPUTE command assigns value to variables?

88 Using Numbers

ARITHMETIC
OPERATORS

OPERATOR
PRECEDENCE

RELATIONAL
OPERATORS

THE RANDOM NUMBER

A random number is any integer number generated by the computer between
-32768 and +32767. The question mark (?) in a numeric expression generates a
random number. The modulo operator (\) limits the range of the random number
selected. Study the examples below:

? generates a random number between -32768 and 32767 inclusive.
\4 generates a random number between 0 and 3 inclusive.
\8 generates a random number between 0 and 7 inclusive.
A10 generates a random number between 0 and 9 inclusive.

When you limit the selected random number with the modulo operator, the result
will always be either a 0 or a positive integer less than the limiting number.

ATARI PILOT uses four symbols to designate addition, subtraction, multiplication,
and division:

+ addition

= subtraction

* multiplication
/ division

Unlike many arithmetic systems, PILOT has no special order in which the
arithmetic operators (+, -, *, /) are executed. In PILOT, a numeric expression is
evaluated from the left to the right:

4+ 4/2 equals 8/2 equals 4

To change the order of precedence, put a set of parentheses around the part of
the expression that you want evaluated first. Thus, in the above example, if you
want the 4/2 to be evaluated first instead of the 4+ 4, place the parentheses around
the 4/2:

4+ (4/2) equals 4+ (2) equals 6
As you can see, the order of precedence can change the value of the expression.

Numeric expressions are not limited to only one set of parentheses: rather, two sets
of parentheses can be nested inside of one another. The expression enclosed by
the innermost set of parentheses is evaluated first.

5+ ((2%6)/12) equals 5+ ((12)/12) equals 5+ (1) equals 6 &

Relational operators are a rather advanced concept. Relational operators compare
two numbers or numeric expressions and determine if one is greater than, less
than, equal to, or not equal to the other:

#A=#B #A is equal to #B

#A< >#B #A is not equal to #B

#A<#B #A is less than #B

#A>#B #A is greater than #B

#A< =#B #A is less than or equal to #B
#A> =#B #A is greater than or equal to #B

Using Numbers 89

The number or numeric expression to the left of the relational operator is com-
pared to the number or numeric expression to the right of the relational operator.

A relational operator declares whether the comparison is true or false. 1

5>4 is TRUE

5>6 is FALSE

0=0 is TRUE

O0<=-37 is FALSE

#C=0 is TRUE or FALSE depending upon
the value of #C

#A>#B is TRUE or FALSE depending upon

the value of #A and #B

Relational operators yield as follows:

* Avalue of 1if a declaration is true and a value of 0 if it is false — just like a
match and no match.

® The declaration 5> =2 is true and this yields a value of 1; the declaration
5<3 is false and yields a value of 0.

Relational operators can make program statements conditional by enclosing them
in parentheses and placing them between the command label and the colon in any
statement, as follows:

command label (relational expression) action of the instruction

Examples:
T #C>5): VERY GOOD JOB!
A#N< >#R):
) (# > =#B): * DOAGAIN

B The relational expression must be enclosed within parentheses. The relational
expression must be placed between the command label and the colon, :. B

If a statement contains a relational expression, it is executed only if the expression
is true.

The following example demonstrates the use of relational, or conditional, expressions.

10 C: #T =200
20 T: THIS PROGRAM WILL RUN \
30 *NOTAGAIN

40, T: FOREVER AND \

500, C: #T=#T-1

60,) #T>0): *NOTAGAIN
70, T: EVER! WHEW!I!

80, ES

The program counts down from 200 to 0. As long as the value of #T is greater than
0, program execution jumps to the * NOTAGAIN label. Once #T=0, the condi-
tional relational expression #T >0 is false and the JUMP command is not executed.

90 Using Numbers

SECTION 7
SUMMARY

Run the program and let it stop by itself. Below is a ‘“shortened”” RUN of the pro-
gram:

THIS PROGRAM WILL RUN FOREVER AND
FOREVER AND FOREVER AND FOREVER AND
FOREVER AND FOREVER AND FOREVER AND
FOREVER AND FOREVER AND FOREVER AND
FOREVER AND FOREVER AND FOREVER AND
FOREVER AND FOREVER AND FOREVER AND
FOREVER AND FOREVER AND FOREVER AND
FOREVER AND FOREVER AND FOREVER AND
FOREVER AND FOREVER AND FOREVER AND
FOREVER AND FOREVER AND FOREVER AND
FOREVER AND FOREVER AND FOREVER AND
FOREVER AND FOREVER AND FOREVER AND
FOREVER AND FOREVER AND FOREVER AND
FOREVER AND FOREVER AND FOREVER AND
FOREVER AND FOREVER AND EVER " WHEMW ! !

READY
|

Figure 7-3 FOREVER Program Run
PILOT uses integer numbers in the range of -32768 to + 32767.

Fractional numbers are represented by a special operator called modulo. Modulo,
represented by the backslash character (\) is the resultant remainder from a divi-
sion of two numbers.

PILOT has two types of numbers: constants and variables. Constants don’t change
value; numeric variables do. Numeric variable names are represented by a number
sign, #, followed by a single letter from A through Z.

#A #M #Z
Numeric variables can have only numeric values.

PILOT generates random numbers with a question mark (?) in a numeric expres-
sion. The backslash character (\) limits the random number generated.

? generates a number between -32768 and 32767
N3 generates 0, 1, or 2
A5 generates 0, 1, 2, 3, or 4

The COMPUTE command evaluates a numeric expression and assigns its value to a
numeric variable. The format for COMPUTE is:

C: numeric variable = numeric expression

C: #A=5+5

C: #Z=#A/4

PILOT uses four arithmetic operators. They are:

+ addition

- subtraction

* multiplication
/ division

Using Numbers 91

92 Using Numbers

PILOT evaluates numeric expressions from left to right. Parentheses placed around
any segment of an expression change the order of precedence. Whatever is enclosed
by the parentheses will be evaluated first, If parentheses are nested, the innermost
set is evaluated first.

Relational operators are used to compare two numbers or numeric expressions.
When evaluated, a relation will either be true (producing a value of 1) or false (pro-
ducing a value of 0). The relational operators are:

#A=#B #A is equal to #B

<> #A<>#B #Aisnotequalto B

a2 #A<#B #A is less than #B

> #A>#B #A is greater than #B

<= #A<=#B #A is less than or equal to #B
>= #A>=#B #A is greater than or equal to #B

Relational expressions can make a program statement conditional. A program
statement is conditionally executed only if its relational expression evaluates to
true.
Examples:

T (#A>#B): ENTER ANOTHER NUMBER:

A #N< >#R):

J(#V>=0): *xLOOP

The relational expression, enclosed within parentheses, must follow the command
label and precede the colon.

SECTION 7
QUIZ

10.

il [

b2

G

PILOT allows numbers in the range from
to
To express fractional numbers, the operator, rep-
resented by the is used.
1M\ =

What are constants?

What are numeric variables?

Numeric variable names are shownin _____ below:
(a) $A

(b) #A

c) BZ

(d) #NUM

(e) $NUM

(f) bandd

(g aande

A random number is generated by a anywhere in

a numeric expression.
What is the function of the COMPUTE command, C:, when used with
nurneric variables?

An equals sign (=) must always appear in the COMPUTE command. TRUE or
EALSE?

Match the arithmetic operators:

= addition
/ subtraction
+ multiplication
* division
change the order of precedence in a numeric
expression.

Relational operators compare two numeric expressions to decide if one ex-
pression is equal to, greater or less than, greater or equal to, or less than or
equal to the other. TRUE or FALSE?

Which conditional TYPE command is correct?

(@) T: #C>#A) THAT'S RIGHT!

(b) T #C>#A):THAT'S RIGHT!

(c) T: #C>#A: THAT'S RIGHT!

Using Numbers 93

94 Using Numbers

ANSWERS

52

1il.
|04
13

BT

Integer, -32768, + 32767

Modulo, backslash, \

4. Theremainderof (11\7)=4

Constants are numbers that never change their value.
Numeric variables are numbers with changeable values.
(b)

Question mark, (?)

The COMPUTE command evaluates numeric expressions and assigns the
value to a numeric variable.

TRUE

- addition

/ subtraction

+ multiplication
* division
Parentheses

TRUE

(b)

8
MODULES

CONCEPTS What Is a Module?

The Parts of a Modul
INTRODUCED Sl et g

The USE Command, U:
The Module End
The END Command, E:
Nested Modules
Conditional Modules
The USE IF YES and USE IF NO Commands, UY:, UN:
Example: The Calculator Program
Section 8 Summary
Section 8 Quiz

WHAT IS As you become a more experienced PILOT programmer and start writing longer

A MODULE? and more complicated programs, you will find that many program statements are
often used repeatedly within the same program. You could repeat the statements
each time they are needed, but this can become lengthy and tedious. Instead,
group the statements to be used more than once, and branch to them as they are
needed. This group of reusable statements is called a module. Modules are like
miniature programs within a big program.

Modules are a powerful technique to streamline your PILOT programs. With
modules you can:

* Make large PILOT programs easier to write, modify, and understand

* Conveniently save and reuse sections of programs

* Make PILOT programs shorter

A program with several modules may look like this:

MODULE

MODULE

Figure 8-1 Program With Several Modules

Modules 95

THE PARTS OF
A MODULE

96 Modules

A module is: reusable

A module has: a label
a task, e.g., getting input or displaying messages.

an end. The END command (E:) placed at the last line of the
module serves as an exit and returns program execution back to the
statement following the call to the module.

A module has the form shown in Figure 8-2.

*LABEL NAME

ODULE END (E:)
Figure 8-2 Module Structure

Here is a sample module:
500 * GETNAME

210, T: ENTER A NAME: \
520, A: SNAME
530, L

* GETNAME is the label of the module. Lines 510-520 perform the function of the
module. The END command at line 530 is the module’s end.

The above module, * GETNAME, could be branched to whenever a name needs to
be entered in the program. At the end of the module, program execution branches
back into the main program.

CALLING A MODULE

The USE Command, U:
The USE command calls, or branches to a module. It tells the computer to call a
module into use,
The format for the USE command is:
U: module label

where: module label is a label at the beginning of a module.

Examples:

50 U: *INFO
75 U: *START

M The USE command is always part of the main program. It is not part of a module.

NESTED
MODULES

When the USE command tells the computer to branch to a module at a specified
label, it is telling the computer to jump to the line containing that label. The dif-
ference between a USE and a JUMP command is that when the USE command is
executed, the computer remembers the line number of the statement immediately
following the USE. When the module is finished, program execution automatically
continues with the line number following the USE command.

This is how it works:

50U: *GOGETIT —
>60...

100 E:

200 *GOGETIT <

370 . E:

Modules can be placed following the program END command, E:, because pro-
gram execution will jump around the END command to branch to a module.
However, its usually best to place modules at the beginning of a program because
the computer can find them faster.

THE MODULE END

The END Command, E:
B Every module must end with the END command. @

The format for the END command is:
E:

Section 3 stated that the END command ends the program. The same END com-
mand used in a module ends that module, and signals to the computer to return to
the main program. END within a module does not end the entire program. Your
ATARI computer is smart: it knows the difference between a module END and a
program END.

Modules can be nested. Nesting means that a module can call another module,
which in turn can call a third module, and so forth. PILOT allows up to eight nested
modules in one program. There is nothing new to worry about when nesting
modules. PILOT remembers the correct line number to return to after each module
exit.

Modules 97

CONDITIONAL
MODULES

98 Modules

Here is a diagram of what a program with five nested modules could look like:

Module #1
Module #2
Module #3
Module #4

Module

#5

Figure 8-3 Nested Modules

It is a good idea to debug programs like this with the TRACE: ON and TRACE: OFF
commands.

THE USE IF YES AND USE IF NO COMMANDS UY:, UN:

In Section 4 you learned that the TYPE, JUMP, and END commands can be called
conditionally, depending upon the success of a match between an ACCEPT and
MATCH string. Modules can be called conditionally also by changing the USE com-
mand to a USE IF YES or USE IF NO command.

These commands have the format:
UY: module label
UN: module label

Depending upon a match or no match between the ACCEPT and MATCH string,
one of these commands will be executed. If both are present, one will be bypassed.

Here is part of a program that uses the UY: and UN: commands:

10T: DO YOU WANT TO PLAY A GAME?
20 A:

30 M: Y,YES

40 UY: *GAME

50 UN: *WORDS

60 E:

EXAMPLE: THE
CALCULATOR
PROGRAM

100 * GAME

500 E:
600 * WORDS

900 E:

If a "y’ or “yes” response is entered, the program plays the game by calling the
* GAME module. If the answer is not a match, the program calls the * WORDS
module.

Following is a rather complex program. It is called CALCULATOR because it will
calculate the answer to most simple addition, subtraction, multiplication, and divi-
sion problems. This program demonstrates not only modules and nested modules,
but also many decision-making commands such as MATCH, MATCH STRING,
JUMP ON MATCH, and END IF NO commands. It's a lengthy program, it’s but well
worth the effort to type it in and see how it works.

10 *START

20 U: *GETPROBLEM

30 U: *COMPUTE

40 U: *SHOWRESULT

50T: ANOTHER EQUATION?\
60 A:

70 M: Y, YES,YEAH,OK

90 JY: *START

100 E:

200 * GETPROBLEM

210, T: PLEASE ENTER A MATH PROBLEM: \
220, A: $PROBLEM

230, -

240, E:

300 *COMPUTE

310, U: *SEPARATE

320, A: =$PROBLEM

330, M: +,%,-,/

340, JM: xADD, * MULT, *SUB, * DIV
350, E:

400 *SHOWRESULT

410, T: $PROBLEM = $RESULT
420, E:

500 *SEPARATE

510, MS: +,%,-,/

520, EN:

530, A: #1 =$SLEFT

540, A: #) = $RIGHT

550, E:

600 *ADD

610, C: #R = #1+ #)

620, C: SRESULT =#R

630, o

Modules 99

100 Modules

640 * MULT
650, C: #R = #1* #)
660, C: $RESULT = #R
670, E:
680 *SUB
690, C: #R = #1-#)
700, C: $SRESULT = #R
710, ke
720 *DIV
730, C: #R = #I/#)
740, C: SRESULT = #R
750, C: #Q = #1\#) [get remainder]
760, C (#Q>0): $RESULT = #R rem #Q
770, E:
LIST and RUN the program. A sample RUN should look something like this:

PLEASE ENTER A MATH PROBLEM: 5+7
S+7 =12

ANOTHER ONE? ¥

PLEASE ENTER A MATH PROBLEM: 188./20
i8e8/28 =5

ANOTHER ONE? N

READY

=

I
I
|
I
I
I
I
A
1
3

SECTION 8
SUMMARY

A module is a group of repeatedly used statements clustered together. They are
building blocks which can make programs shorter and easier to understand.
Modules are powerful tools because they are reusable.

Every module must have a label, a task ,and an end. When the module is needed,
the main program branches to the module. When the module has been executed,
the module branches back to the main program.

The USE command, located in the main program, calls the module into action. The
format for the USE command is:

U: module label

Examples:
U: *MINI
10 U: *COMPUTE
100 U: *K555

Every module must end with an END command. The format for the END command is:
E?
The END command, when executed within a module, ends only the module and

NOT the program. END transfers program execution to the statement following the
calling USE command in the main program. -

Modules can be nested within one another, allowing a module to call another
module. Up to eight modules can be nested in one PILOT program.

The USE command can be used conditionally to call modules, depending upon the
success of an ACCEPT and MATCH string match. The formats for the USE IF YES
and USE IF NO commands are:

UY: statement label
UN: statement label

The conditional command rules apply for the USE IF YES and USE IF NO commands.

Modules 101

SECTION 8
QUIZ

102 Modules

A group of repeatedly used statements, separated from the main flow of a pro-

gram is called a

Modules must have a:

(@) Label, USE command, END command

(b) Label, task, END command

(c) Label, task, end

(d) USE command, task, END command

A module label is like any other label name. TRUE or FALSE?

The USE command must be in the first statement in a module. TRUE or FALSE?
The USE command specifies the of the module to

be called.

(@) Line number

(b) Label

The END command of a module has no effect on the main program. The E:
ends only the module. TRUE or FALSE?

What is a nested module?

Upto____ modules may be nested in one program.

a2

(b) 4

{£): 6

(d) 8

(e} 10

Modules can be called conditionally with the or

commands.

ANSWERS

BN

© ® N W

Module

(b)

TRUE

FALSE

(b)

TRUE

A module called by another module

(d)

USE IF YES command, UY:, USE IF NO command, UN:

Modules

103

J

9

MANY VOICES,
MANY SOUNDS

CONCEPTS
INTRODUCED

DEFINITION
LIST

Definition List
The SOUND Command, SO:
Immediate Mode Sounds
Program Mode Sounds
The PAUSE Command, PA:
Random Music
A Special Song
Section 9 Summary
Section 9 Quiz
Advanced Programming With Sound
The PAUSE Command: Increments of 1/60ths

PILOT has a special command that lets you create sound and musical tones. It is
called the SOUND command. In Section 2 you were briefly introduced to the
SOUND command when you learned to play a C scale and a chromatic scale. This
section will show you how to program the SOUND command so that you can write
music.

Below is a list of definitions you will need to make sounds:

TONE A tone is a musical note from low C (one and a half octaves below middle
C) to high F# (one and a half octaves above middle C). Each of these tones has a
corresponding number from 0 to 31.

CHORD Three or more tones played at the same time.

VOICE A voice represents one tone in a musical chord. The SOUND command
can be used to play up to four voices at the same time.

MIDDLE C So called because in music this note is in the middle of the music staff.

e/ = < MIDDLE C
(MIDDLE OF STAFF)

Figure 9-1 Position of Middle C

HALF STEP The smallest interval between two tones.
WHOLE STEP An interval of two half steps between two tones.

Many Voices,
Many Sounds 105

MAJOR SCALE A musical pattern consisting of the following steps: whole, whole,
half, whole, whole, whole, half (see Figure 9-3).

OCTAVE An interval of eight notes ranging from one note to the same note higher
on the musical scale, e.g., middle C to the C above middle C is one octave. For
example, C, D, E, F, G, A, B, and C.

THE SOUND COMMAND, SO:

The format for the SOUND command is:
SO: voice
SO: voice voice...

SO: voice, voice, voice, voice

B Each voice must be separated by a space or a comma. Up to four voices can
follow a SOUND command. W

Examples:

S0
S5 1.58
500

SO: 0 means no sound, or OFF.

Below is a diagram showing the correlation between tones and their numerical
values. The diagram shows the musical scale and a piano keyboard like the one
shown in Section 2.

I
|
T
|
. |
|

[AN]

<

Ol

—

ARE Sy e [U e,) BRI LT

________.__.__.0
>

B W YW W W 28 BOR AW

MIDDLE C
Figure 9-2 Relation of Piano Keyboard to Musical Scale

Many Voices,
106 Many Sounds

il ’

The following diagram shows several musical scales:

.

C scale

D scale G

|
F scale

G scale

— n_." _U__ﬁ_ —.
__)_n_.m—c — f— .

— @3 om = f—
—-—;-—Pﬂ -Q-— 00— —p— .
— - — (- — - U—ﬁ——_ . i

|
F
I
B
!
;
I

— D — - — b — () — f— .
p—— M — -0 — 0 — - — —— .__

C
H W w W H
I

[=
3

8 NOTES, OR 1 OCTAVE
W=WHOLESTEP H=HALFSTEP

Figure 9-3 Musical Scales

Keep these diagrams as a handy reference when using the SOUND command.
When you determine what note, or tone, you want to play (C,D,F#,A...), look up
the note and its corresponding numerical value on one of the charts and plug itinto
the SOUND command.

You can use the SOUND command in both immediate and program mode.

Immediate Mode Sounds

Section 2 explained how to use the SOUND command in immediate mode. Like all
other immediate mode commands as soon as you press the key, the com-
puter responds. In this case, the computer responds by generating a tone. The
sound continues to play until you either type another SOUND command, stop the
sound with a SO: 0 command, or press the key. However, you can’t make
sounds in rapid succession unless you are a very fast typist!

Enter the following SOUND commands: (make sure the volume is turned up on
your television set).

SO: 13 CEI

Depending upon how fast you can type, it may take a long time to type in each
tone. To speed up the tone changes, put the SOUND commands in a program,

Many Voices,
Many Sounds 107

Many Voices,
108 Many Sounds

Program Mode Sounds

Program mode allows you to play a series of SOUND commands in rapid succes-
sion once the program is RUN. Type:

10S0: 13
2050: 15
3050:13
40S0: 14
50E:

RUN the program. The program sounds like a short beep. The program executes so
fast that you can’t hear each individual tone. The PAUSE command used in con-
junction with the SOUND command helps to extend the length of tones so you can
hear them.

THE PAUSE COMMAND, PA:

The PAUSE command tells the computer to pause, or delay program execution tem-
porarily. PAUSE does not affect the sound in progress; the sound continues playing
while the computer pauses before executing the next statement. The length of the
pause determines the length of the tone.

The format for the PAUSE command is:

PA: numeric expression

Examples:
PA: 2
PA: #K *5/2
PA: 32

Below is a chart showing you what PAUSE values to use to determine the length of
each note. The chart is based on a ““Moderato’’ tempo.

e g

Note: Whole Half Quarter Eighth Six- Thirty-
teenth second

128 64 32 16 8 4

Figure 9-4 PAUSE Values for Moderato (Andante) Tempo

These values are not absolute. If you want to change the tempo faster or slower,
change the PAUSE values. All PAUSE values are relative to each other. If you
change the PAUSE value of a quarter note from 16 to 64 to change the tempo, then
you must change the PAUSE value of the whole, half, eighth, and sixteenth notes as
well. (The PAUSE values are calculated by powers of two: 2, 4, 8, 16, 32, 64, 128,
256)

Examine this diagram:

Note: Whole Half Quarter Eighth Six- Thirty-
teenth second
512 256 128 64 32 16 (very slow)
256 128 64 32 16 8
Tempos 128 64 32 16 8 4
64 32 16 8 4 2
32 16 8 4 2 1 (very fast)

Figure 9-5 PAUSE Values for Different Tempos

You can change the example program to play each tone more slowly by adding a
PAUSE command following each SOUND command. To extend each tone, insert a
PA: command after each SOUND command:

10S0: 13
20 PA: 16
30S0: 15
40 PA: 16
5050: 13
60 PA: 16
70S0: 14
80 PA: 16
90 E:

RUN the program. Each tone should be succinct and clear.

RANDOM Random music is generated by computing random numerical values for SOUND
MUSIC and PAUSE commands with the random operator, ?.
The following program generates random music:

10C: #A= 2

20C: #B=2?

30 *START

40, CQ): #A=#A+?

50, C(\3-1): #B=#B+?

60, SO: #A,#B

200 PA: 2\32

80, J: *START

Lines 10 and 20 compute two random numbers for numeric variables #A and #B.
Lines 40 and 50 recompute the values to two different random numbers. At line, 60
SO: #A, #B, the first voice plays #A. The second voice plays #B. The PAUSE com-
mand at line 70 generates a random length of a pause between 0 and 31,varying the
length of the tone. The JUMP at line 80 jumps to the label at line 30 to begin the
loop again. To stop this program, press the key.

Many Voices,
Many Sounds 109

A SPECIAL SONG The following program plays a tune to show you what can be done with the
SOUND command. Type it in and give it a RUN.

1 *START
5C:#T=#T+1
10S0:17,13,8
20 PA: 24
30S0:15,13,8
40PA: 8

5050: 13,8

60 PA: 32
70S0: 15,13,8
80 PA: 32
9050:17,13,8
100 PA: 32
110S0: 17,13,8
120 PA: 32

130 SO: 17,13,8
140 PA: 64

150 SO: 15,12,8
160 PA: 32

170 S0O: 15,12,8
180 PA: 32

190 SO: 15,12,8
200 PA: 64
210S0: 17,13,8
220 PA: 32

230 S0O: 20,17,13,8
240 PA: 32
25050: 20,17,13,8
260 PA: 64
270S0: 17,13,8
280 PA: 24

290 SO: 15,13,8
300 PA: 8
310S0: 13,8
320 PA: 32

330 SO: 15,13,8
340 PA: 32
35050: 17,13,8
360 PA: 32
37050: 17,13,8
380 PA: 32
390S0: 17,13,8
400 PA: 32

410 S0O: 15,12,8
420 PA: 32

430 SO: 15,12,8
440 PA: 32
450S0: 17,13,8
460 PA: 32

470 5S0: 15,12,8
480 PA: 32

490 SO: 13,8,5,1
500 PA: 192
510S0: 0

520 J(#T < 2): *START

Many Voices,
110 Many Sounds

SECTION 9
SUMMARY

The SOUND command lets you play musical tones on your ATARI computer. The
SOUND command generates tones.

A tone is a musical note from low C to high F#. Each tone has a corresponding
number from 0 to 31.

A voice represents one tone in a musical chord. Up to four voices may be played at
once in a single SOUND command.

A half step is the smallest interval between two tones.
A whole step is an interval of two half steps between two tones.

A major scale is a musical pattern consisting of the following steps: whole, whole,
half, whole, whole, whole, half (see Figure 9-3).

An octave is an interval of 8 notes in a major scale beginning with any note and
ranging to the same note 12 half steps higher on the musical scale.
The format for the SOUND command is:

SO: voice

SO: voice voice...

SO: voice,voice...
Each voice in a SOUND command must be separated by a space or a comma.

When SOUND commands are played in immediate mode the tone lasts until the
next SOUND command is issued, or the L8 key is pressed.

The SOUND commands in programmed mode play very rapidly unless used in
conjunction with PAUSE commands. PAUSE commands always follow SOUND
commands.

The PAUSE command tells the computer to delay program execution temporarily.
Everything is delayed except the SOUND command. The PAUSE command has the
format:

PA: number or numeric expression

Because PAUSE doesn’t affect the SOUND command, it is effective for determining
the length of tones. The length of the pause determines the length of the preceding
tone. Example:

SC: 15
PA: 16

For convenience, the whole, half, quarter, eighth, and sixteenth notes for various
tempos have been assigned a PAUSE value. These values can be referred to in
Figure 9-5.

PILOT generates random music with the random number operator (2). Used within
a numeric expression in the SOUND and/or PAUSE command, ? generates random
tones or pauses.

SO: 1\5%6
PA: 2\5+ 20

Many Voices,
Many Sounds 111

SECTION 9
QUIZ

Many Voices,
112 Many Sounds

The SOUND command generates musical

A total of tones can be played at one time,

Tones must be played in the range of

(a) 0-99
(b) 0-30
(c) 0-31 where 0= OFF
(d) 1-31 where 1=OFF

Each voice in a SOUND command must be separated by either a

or a

Match the following:

half step interval of two half steps
whole step half steps played sequentially
octave interval of a tone

chromatic scale 8 notes in a major scale

The PAUSE command tells the computer to

The PAUSE command must precede the SOUND command. TRUE or FALSE?

To generate random music, the is used to compute
the SOUND and PAUSE values.

ANSWERS

SIS

tones

four

()

space, comma

half step interval of two half steps
whole step half steps played sequentially
octave interval of a tone

chromatic scale 8 notes is a major scale

Delay program execution for a specified length of time.

FALSE (PAUSE follows the SOUND command.)
Random number operator, 2.

Many Voices,
Many Sounds

113

ADVANCED
PROGRAMMING
WITH SOUND

Many Voices,
114 Many Sounds

THE PAUSE COMMAND: INCREMENTS OF 1/60ths

In more technical terms, the PAUSE command delays program execution for 60ths
of a second. Each increment of one indicates a 1/60th of a second delay. The
PAUSE command may be used to synchronize musical and graphical presenta-

tions. PAUSE may also be used any place in a program where a delay in execution
is required or desirable.

Examples:
PA: 20 (will pause 20/60 = % of a second)
PA: #K/5%2 (will pause (#K/5%2)/60 = #K/150 seconds)
PA: 3600 (will pause 3600/60= 60 seconds)

The following chart should help you understand how to determine the length of a
PAUSE in 1/60ths of a second:

PAUSE
VALUE LENGTH

Figure 9-6 PAUSE Values in 60ths of a Second

10

WELCOME
TO GRAPHICS

CONCEPTS The GRAPHICS Command, GR:
INTRODUCED The Graphics Screen
Cartesian Coordinates
Turtle Geometry
GRAPHICS Subcommands
The PEN Subcommand
Subcommands Using Cartesian Coordinates
The GOTO Subcommand
The DRAWTO Subcommand
The FILLTO Subcommand
Subcommands Using Turtle Geometry
The TURNTO Subcommand
The TURN Subcommand
The DRAW Subcommand
The GO Subcommand
The FILL Subcommand
Repeating GRAPHICS Commands
Home, Sweet Home Program
Section 10 Summary
Section 10 Quiz
Advanced Programming With GRAPHICS
GRAPHICS Variables
% X
%Y
% A
%Z
Mini-Quiz
Congratulations! You’ve made it to ATARI PILOT graphics, one of the most en-

joyable and flexible features of your computer and the PILOT programming
language. This section enables you to enter the world of figures, pictures, and color.

Welcome to Graphics 115

PILOT cannot draw anything unless it is in graphics mode. In graphics mode, the
screen looks like this:

Figure 10-1 The GRAPHICS Screen

This is the graphics screen — all black except for a small strip of blue at the bottom
of the screen.

THE GRAPHICS The GRAPHICS command tells the computer to enter graphics mode and open the
COMMAND, GR: 8raphics screen.

The format for the GRAPHICS command is:

GR: subcommand

Because there are several different types of graphics capabilities, they can’t all be
handled under one command without the help of subcommands. The graphic sub-
commands tell the computer what to do in graphics mode.

Below are the subcommands available with the GRAPHICS command, GR:

CLEAR
DRAW
DRAWTO
FILL
FILLTO
GO
GOTO
PEN
QUIT
TURN
TURNTO

Each subcommand is described in detail in this section.

116 Welcome to Graphics

THE GRAPHICS
SCREEN

Type: GR:CLEAR and press to display the graphics screen. (The cursor re-
mains in the same position.) As you see, it is quite different from the blue text
screen we've been using so far. Four lines of text can be displayed at a time in the
text window at the bottom of the screen.

PILOT supports two drawing systems simultaneously when in graphics mode. They
are the:

* Cartesian coordinates (an absolute reference system)

® "“Turtle’” geometry (a relative polar reference system in which the origin is
always carried with the moving point — the turtle)

CARTESIAN COORDINATES

Think of your graphics screen as having an invisible grid laid over it. The grid is
made up of 12,800 units: 160 units across and 80 units high. Actually, the complete
graphics screen extends far beyond the borders of the visible computer screen: up
to 32767 units in two directions and to — 32768 units in the other two directions.

47
—79,47 ﬂ¢ 79,47

—-790 & 79,4
-79,—31 79, — 31
-79,—47 ¥ 79,— 47

8,—47

Figure 10-2 Cartesian Coordinates

The screen is also divided into four quadrants, divided by the X (horizontal) axis
and the Y (vertical) axis. The X and Y axes intersect in a point at the center of the
screen. This point, called the center point or origin has the coordinates 0,0. Every
point within each quadrant can be located and identified by a pair of coordinates in
the form (X,Y). A coordinate defines a point’s position relative to the origin. The first
number is the X coordinate: the distance along the X axis from the point to the
origin. (The value of X increases to the right of the origin, and decreases to the left.)
The second number is the Y coordinate: the distance along the Y axis from the
point to the origin. (The value of Y increases upward from the origin and decreases
downward away from the origin.) This is labeled in the diagram.

For example, point A (-60,27) in the diagram is 60 units to the left of the origin,

and 27 units upward from the origin. Point B (41, - 25) is 41 units to the right of the
origin and 25 units below the origin.

Welcome to Graphics 117

118

Welcome to Graphics

The subcommands that use the Cartesian coordinates are:

DRAWTO
FILLTO
GOTO

TURTLE GEOMETRY

Turtle geometry is a graphics system developed by Dr. Seymour Papert and the
LOGO group at the Massachusetts Institute of Technology. In turtle geometry, the
graphics display screen becomes the playfield of a tiny invisible turtle. The turtle is
always at the ““center pole”” of an invisible circle that moves with him wherever he
goes. This circle is divided into 360 one degree angles with 0 and 360 degrees point-
ing toward the top of the screen. No matter where the turtle is located, it will
always be pointing in a directional angle measured in degrees, called THETA.

Figure 10-3 The GRAPHICS Turtle

If the turtle walks straight forward from the origin (center of the screen) to the top of
the screen, its path is the 0 degree or 360 degree angle (the beginning and ending
of the circle). As the turtle moves on the screen, he carries this reference circle with
him. The turtle is always at the center of the circle.

END CIRCLE AT THETA = 360° BEGIN CIRCLE AT THETA=0°

Figure 10-4 The 0- and 360-Degree Angle

The turtle can turn to the left or right in 360 different angles. The turtle pointing
directly to the right (a quarter turn of the circle), is facing 90 degrees from the 0
degree angle. The turtle facing the bottom of the screen (a half turn of the circle), is
pointing 180 degrees from the 0 degree angle. Turning the turtle to the right until it
points directly to the left side of the screen faces the turtle towards the 270 degree
angle. Of course, these aren’t the only directions that the turtle can face: it can be
positioned to face toward any angle between 0 and 360 degrees.

The turtle can also be turned to the left: however, calculating its direction is a little
more complicated. To determine its angle, you must count counterclockwise from
0to 360 degrees, and then add a negative sign to the degree value. Thus, if the turtte
is facing the lower left corner, you calculate its angle by counting counter
clockwise from 0. The degree value is 135. Add a negative sign to the front of 135,
and the degree angle is — 135.

315° 335° 0° 220 45°
—45° —22° 360° — 338° =315
n\ K 1+ A A
~ \ / 27
292° 67°
—67° & -¥ — 2920
270° = 90°
w900 ¥ * _270°
247° &~ =9 1120
— 1129 —247°
\ ~
/
b
i 4 Y
225% 202° 180° 1575 135°
=135 — 157" —180° —202° —225°

Figure 10-5 Calculating Directional Angles

Welcome to Graphics 119

In turtle geometry, the turtle always moves a given distance relative to its current
position and direction. Rather than moving to an (X,Y) location, the turtle can be
told to turn and/or move a certain distance.

The subcommands that use turtle geometry are:

DRAW
FILL

GO
TURN
TURNTO

¥ Some important things to remember about the two systems are that the Cartesian
coordinates X and Y specify an exact location on the graphics screen, whereas turtle
geometry specifies direction and distance relative to the turtle. These two systems
are interchangeable; they can be used on the graphics screen simultaneously. The
turtle acts like a cursor in both systems, marking the current position on the screen.
When graphics mode is initialized, the X and Y coordinate positions and the turtle’s
directional angle THETA are all set to 0. In other words, when graphics mode is ini-
tialized, the turtle is placed in the center of the screen, pointing straight up.

GRAPHICS THE PEN SUBCOMMAND
SUBCOMMANDS {

All drawing is performed by the graphics pen. But this is one pen you will never
see; it is invisible!

The graphics pen has four colors. One of these colors is an uncolor, which is the
same as the background color. The other three colors are red, yellow, and blue.

The PEN command assigns a color to your graphics pen. The format for the PEN
command is:

GR: PEN color

Examples:

GR: PEN RED

GR: PEN YELLOW
GR: PEN BLUE
GR: PEN ERASE

When the graphics screen is first opened, the color is automatically yellow. The
color remains set until another PEN graphics command is given or until the
graphics screen is closed.

The ERASE color is the background color. GR: PEN ERASE is useful for erasing
mistakes. If you draw an incorrect line, change the PEN color to ERASE and redraw
the same line.

This is how GR: PEN ERASE works. Type in the following command:
GR: DRAWTO 20,20 and press

120 Welcome to Graphics

The screen should display:

GR : DRAWTO 20 .20
B

Figure 10-6 GR: DRAWTO 20,20

To erase this line, type:

GR: PEN ERASE
GR: GOTO 0,0
GR: DRAWTO 20,20

The first line changes the PEN color to the background color. The following two
lines (which you won’t understand as of yet), draw over the yellow line. And guess
what happens when you RUN the program; the line disappears!

There is one more type of PEN subcommand: the PEN UP subcommand. PEN UP
tells the computer to lift the imaginary pen off the screen. This is different than PEN
ERASE because PEN ERASE erases over other graphics, whereas PEN UP moves
over the graphics screen without erasing the display.

B The PEN subcommand does not draw anything. It simply selects a color or raises
or lowers the imaginary pen. Therefore, when you issue a PEN subcommand, you
won’t see any change in the screen display until you make the pen draw with one
of the following subcommands. W

After using the PEN UP subcommand, you must assign a PEN color with the PEN
subcommand before the PEN will show on the graphics screen again.
SUBCOMMANDS USING CARTESIAN COORDINATES

The GOTO Subcommand

The GOTO subcommand moves the turtle to a specified pair of Cartesian coordi-
nates (X,Y) without drawing a line. The turtle draws a dot at that location.

Welcome to Graphics 121

The format for the GOTO subcommand is:

GR: GOTO X,Y

where: X is the X-axis coordinate

Y is the Y-axis coordinate

For example, type in:
GR: GOTO 20,20 and press [EITLI

If you look closely at your screen, you should see a small dot in the upper right part
of the screen.

Following is a program that really demonstrates the GOTO subcommand. This pro-
gram plots random units on the screen with the GR: GOTO command. Type:

10 *START

20 C: #X=20\75

30C: #Y =2\45
40C:#N=#N+1

50 C(#N = 2): #Y = — (#Y)
60 C(#N =3): #X = — (#X)
70 C(H#N =3): #Y = — (#Y)
80 CHN =4): #X = - (#X)
90 GR: GOTO #X, #Y
T00CHN=4): #N=0
110 J: *START

Look at the diagram below. The screen is divided into four quadrants showing
when X and Y must be positive or negative.

x<@ x>6
y># 1 y>g

x<f & x>0
y<#g y<@

Figure 10-7 The Four Quadrants of the GRAPHICS Screen

122 Welcome to Graphics

-l D D Dl Dumn DEEE RO EEE$ i o s O eam O O Eaam O e maaa

In the above program, the random number operator ?, followed by the modulo
operator \, forces a positive number. The dots would be distributed where both #X
and #Y are always positive: the upper right quadrant. Lines 40 th rough 80 adjust the
values of #X and #Y so that some are positive and some are negative, preventing all
the dots from appearing in the upper right quadrant.

When you RUN the program, the screen slowly fills up with yellow dots.

Figure 10-8 Filling the Screen With Dots Using GOTO
The DRAWTO Subcommand

The DRAWTO subcommand moves the turtle from the current cursor position to the
specified point while drawing a line. The point is defined by an (X,Y) coordinate
pair.
The format for the DRAWTO subcommand is:
GR: DRAWTO X,Y
where: X is the X-axis coordinate
Y is the Y-axis coordinate

Examples:

GR: DRAWTO 15,35
GR: DRAWTO #),#K/2

The line is drawn in the color of the current pen color. If the pen is UP, then no line
is drawn.

The following program draws a box using the PEN and DRAWTO subcommands.
Clear memory and type:

10 GR: PEN RED; DRAWTO 20,0
20 GR: PEN BLUE; DRAWTO 20,20
30 GR: PEN RED; DRAWTO 0,20
40 GR: PEN BLUE; DRAWTO 0,0

Welcome to Graphics 123

124 Welcome to Graphics

RUN the program. You should see this on the screen:

Figure 10-9 Drawing a Box

B Multiple commands can follow a GR: command if they are separated by a
semicolon. W

The box is drawn counterclockwise, starting at the lower left corner. Notice that
DRAWTO begins each line from where the previous line ended.

To begin a line from a location other than the end of the previous line (the current
turtle position) use the GOTO subcommand to relocate the turtle. Then draw the
line to the desired point:

GR: GOTO A,B

GR: DRAWTO X,Y

where: A,B is the desired starting point
X,Y is the desired ending point

Experiment on your own to see how GOTO can really change things.

The FILLTO Subcommand
The FILLTO subcommand draws a line to the specified point, while filling in the
blank regions to the right of the line with the current pen color.
The format for the FILLTO subcommand is:
GR: FILLTO XY

where: X,Y are the coordinates of the destination point.

Examples:
GR: FILLTO 40,-10
GR: FILLTO 20,#C

Both the line and the fill space are drawn in the current pen color. If the pen is UP,
then no line or fill space is drawn.

FILLTO fills blank space to the right of the turtle until a graphic line or figure is
reached. At that point, the fill color stops. If there is nothing to block the fill color,
FILLTO fills out beyond the right edge of the screen, wrapping around and filling in
space from the left side.

To test the FILLTO subcommand, LIST the example “‘box” program from
DRAWTO. Draw a line from the lower left corner of the box (point — 20,0) to the
upper right corner of the box (20,20) and fill the space to the right with yellow. This
can be done with three subcommands. Add the following statements to the end of
the program:

50 GR: GOTO -20,0

60 GR: PEN YELLOW
70 GR: FILLTO 19,20

RUN the program. The screen should display:

y

Figure 10-10 Filling With FILLTO

Look closely at the box. The right side of the box is partly covered with the yellow
fill.

SUBCOMMANDS USING TURTLE GEOMETRY
The TURNTO Subcommand
The TURNTO subcommand sets the angle THETA to a value in degrees. This, in effect,
points the turtle in the specified THETA angle.
The format for the TURNTO subcommand is:
GR: TURNTO degree angle

Example:
GR: TURNTO 90
GR: TURNTO 180

Welcome to Graphics 125

126 Welcome to Graphics

If the turtle is positioned at the origin facing 0 degree, the command GR: TURNTO
90 turns the turtle 90 degrees to the righ%. THETA now equals 90:

i

@

|
L4
-
"
-
—
-
<
4
-
kel
(=]

END AT THETA =90°

Figure 10-11 Turning the Turtle Toward 90 Degrees

With the turtle facing 0 degree, the command GR: TURNTO - 45 turns the turtle 45
degrees to the left. THETA now equals — 45:

T\

BEGIN AT THETA=0°

Figure 10-12 Turning the Turtle Toward — 45 Degrees

The TURNTO subcommand, like the PEN subcommand, shows no visible effect
until a line is drawn with another subcommand.

The TURN Subcommand

This subcommand increments the angle THETA by the number of specified degrees
(THETA=THETA+ increment).

The format of the TURN subcommand is:
GR: TURN increment

Examples:
GR: TURN 45
GR: TURN -60
GR: TURN 45 turns the turtle 45 degrees to the right from whatever direction it is

currently facing. If the turtle is positioned facing 60 degrees, GR: TURN 45 would
position the turtle facing 105 degrees (Ttti\ETA=60+ 45).

L
I
-
[
e
=
-
=
<
r
2
el
[--]

Figure 10-13 Turning the Turtle 45 Degrees to the Right

GR: TURN —60 turns the turtle 60 degrees to the left of its current direction.

Figure 10-14 Turning the Turtle 60 Degrees to the Left

Here is a short example:;

10 GR: GOTO 0,0
20 GR: TURNTO O
30 GR: DRAW 30
40 GR: TURN 45
50 GR: DRAW 40

Welcome to Graphics 127

128

Welcome to Graphics

Lines 10 through 30 draw a line from the origin straight up to point 0,40. Line 40
adds 45 degrees to THETA (THETA =0+ 45). Line 50 draws a line 40 units long from
point (0,40) in the direction of THETA.

Your screen should look like this:

Figure 10-15 TURN Subcommand: Program Run

The DRAW Subcommand

The DRAW subcommand draws a line the number of units specified in the direction
of THETA in the current pen color,

The format for the DRAW subcommand is:
GR: DRAW line length

Examples:
GR: DRAW 20
GR: DRAW #X

The line is drawn in the current PEN color.

The following program demonstrates the GOTO, TURNTO, and DRAW subcom-

mands. Type:

10 *START

20 GR: GOTO0,0
30 GR: TURNTO #X
40 GR: DRAW 30
50C: #X=#X+10
60): *START

The program is one continuous loop. Line 20 repositions the turtle at the origin in
each loop. Line 30 faces the turtle #X degrees. Line 40 draws a line from the origin
facing #X degrees and 30 units long. Line 50 increments #X by 10 in each loop.

RUN the program. This is what you should see:

Figure 10-16 DRAW Subcommand: Program Run

DRAW lets you draw a line in a direction without having to specify exact Cartesian
coordinates,

The GO Subcommand

The GO subcommand moves the turtle forward the number of units specified in
the current THETA angle and plots a point.
The format for the GO subcommand is:

GR: GO distance between points

Examples:
GR: GO 10
GR: GO #L

The point is drawn in the current pen color.

We can demonstrate the GO subcommand by changing a couple of lines from the
previous example program. Replace lines 40 and 50 with:
40 GR: GO 30

50 C: #X=#X+1

Welcome to Graphics 129

130 Welcome to Graphics

LIST and RUN the program. The program draws a point 30 units from the origin
every degree for 360 degrees (a circle). Your screen should look like this:

Figure 10-17 GO Subcommand: Program Run

The FILL Subcommand

The FILL subcommand draws a line while it moves the turtle the number of units
specified in the current THETA angle. As FILL draws a line it also fills any blank
regions to the right of the line with the current pen color.

The format for the FILL subcommand is:
GR: FILL line length

Examples:
GR: FILL 30
GR: FILL #F

If the pen is UP, then no line or fill color is drawn. Following is an example of the
FILL subcommand: Enter:

GR: GOTO 0,0
GR: TURNTO 0
GR: DRAW 40
GR: TURN 90
GR: DRAW 40
GR: TURN 90
GR: DRAW 40
GR: TURN 90
GR: DRAW 40
GR: TURN 90

(This draws a square.)

GR: FILL 40

(This fills the square with yellow.)

GR:DRAKW 40

GR: TURN 90
GR:FILL 40
n

Figure 10-18 Using the FILL Subcommand

In each of the turtle geometry subcommands, if the line length specified is
negative, the turtle will move backward instead of forwards.

REPEATING GRAPHICS COMMANDS

You can repeat one or more GRAPHICS subcommands by enclosing them within
parentheses, (). A numeric expression placed in front of the left parenthesis tells
the computer how many times to repeat the GRAPHICS subcommands.

The format for repeating GRAPHICS subcommands is:

GR: numeric expression(subcommands)

where: numeric expression represents the number of times to repeat the sub-
commands

subcommands are the subcommands to be repeated. If there are
more than one, they must be separated by semicolons
Examples:
GR: 180(DRAW 1; TURN 2)
GR: 10(DRAW 20; TURN - 36)
GR: 360(DRAW 1; TURN 1)

Welcome to Graphics 131

132 Welcome to Graphics

Type in:
GR: 4(DRAW 20; TURN 90)

This command repeats itself four times to draw a box. RUN the program and
watch.

G.R !4(DRAH 20 ; TURN 28)

Figure 10-19 Drawing a Box With Repeating GRAPHICS Commands

This next example draws a star by repeating the commands five times:

10 R: STAR
20 GR: 5(DRAW 25; TURN 144)
30 E:

A RUN of this simple program produces:

Figure 10-20 Drawing a Star With Repeating GRAPHICS Commands

HOME, SWEET HOME PROGRAM

The following program draws a simple picture:

10 R: PICTURE

20 GR: CLEAR

30 GR: GOTO -25,-10

40 GR: PEN BLUE

50 U: * BOX

60 GR: TURNTO 30; GO 25

70 GR: PEN RED

80 U: *TRIANGLE

90 GR: GOTO 0,25

100 GR: PEN YELLOW

110 U: * MOON

120 GR: GOTO -40,25

130 U: *STAR

140 GR: GOTO -10,35

150 U: *STAR

160 GR: GOTO 35,20

170 U: *STAR

299 E:

400 * BOX

410 GR: TURNTO 90

420 GR: 3(DRAW 25; TURN 90)
430 GR: FILL 25

440 E:

500 *TRIANGLE

510 GR: TURNTO 150

520 GR: 2(DRAW 25; TURN 120); FILL 24
530 E:

600 *x MOON

610 GR: TURNTO 70

620 GR: 38 (DRAW 1; TURN 5)
630 GR: TURNTO 50

640 GR: 5(TURN -20; FILL 5)
650 E:

700 %STAR

710 GR: 5(DRAW 10; TURN 144)
720 E:

RUN the program. Does your picture look like this?:

Figure 10-21 Home, Sweet Home Program Run

Welcome to Graphics

133

SECTION 10
SUMMARY

134 Welcome to Graphics

In graphics mode, PILOT can draw lines and figures in red, yellow, or blue.
Graphics mode is characterized by the graphics screen, which is all black except for
four lines at the bottom of the screen. This blue strip is called the text window. It
displays up to four lines of text at a time.

The command that controls all of the PILOT graphics capabilities is the GRAPHICS
command, in the format:

GR: subcommand

Subcommands are commands that help the GRAPHICS command tell the com-
puter what to do while in the graphics mode.

To open the graphics screen, type: GR: followed by any subcommand except
QUIT. To close the graphics screen and return to text mode, type: GR: QUIT and

press (GEID.

The other subcommands available are:

CLEAR
DRAW
DRAWTO
FILL
FILLTO
GO
GOTO
PEN
QUIT
TURN
TURNTO

GR: CLEAR clears the graphics screen and the text window. GR: CLEAR is a good
command to use to open the graphics screen.

The subcommands may be divided into two categories: those that use Cartesian
coordinates and those that use turtle geometry.

Subcommands using Cartesian coordinates specify exact point locations on the
screen with the (X,Y) coordinates: X represents the distance from the point to the
origin (screen center) along the X (horizontal) axis; Y represents the distance from
the point to the origin along the Y (vertical) axis.

The subcommands that use Cartesian coordinates are:

DRAWTO
FILLTO
GOTO

Subcommands using turtle geometry specify directions that the turtle will turn, and
the distance it moves in that direction. The direction is a polar angle, called THETA.
THETA can be a degree from 0 to 360. Figure 10-5 shows some of the angles of
THETA.

Subcommands that use turtle geometry are:

DRAW
FILL

GO
TURN
TURNTO

There are three subcommands that don’t use Cartesian or turtle geometry: CLEAR,
PEN, and QUIT. GR: CLEAR clears the graphics screen, and GR: QUIT returns the
computer to text mode,

ATARI PILOT has an imaginary pen that draws on the screen. This pen has three
colors: red, yellow, and blue. GRAPHICS automatically uses yellow unless you
change the pen color with the PEN command. The following is an example chang-
ing the pen color to red.

Example:

GR: PEN RED
The PEN can also erase colors and lines; simply choose the ERASE color and redraw

over the area you want erased.
GR: PEN ERASE

If you want to move the pen across the screen without drawing any lines, specify UP:
GR: PEN UP

This is different from ERASE because it doesn’t erase anything.
The GOTO subcommand moves the turtle to a specified Cartesian coordinate (X,Y)

without drawing a line. The format for the GOTO subcommand is:
GR: GOTO X,Y

Examples:

GR: GOTO 5,10

GR: GOTO -40,40
The DRAWTO subcommand draws a line to a specified Cartesian coordinate (X,Y).
The format for DRAWTO is:

GR: DRAWTO X,Y

Examples:

GR: DRAWTO 15, 65
GR: DRAWTO #A, #B

The FILLTO subcommand draws a line to a specified Cartesian coordinate (X,Y)
while filling the blank regions to the right of the line with the current pen color. The
format for FILLTO is:

GR: FILLTO XY

Welcome to Graphics 135

136 Welcome to Graphics

Examples:

GR: FILLTO - 10, - 20

GR: FILLTO 5, L
The TURNTO subcommand sets THETA to a value in degrees and turns the turtle to
the specified degree angle. The format for TURNTO is:

GR: TURNTO degrees

Examples:

GR: TURNTO 90
GR: TURNTO -60

The TURN subcommand increments THETA by the number of degrees specified.
The format for TURN is:
GR: TURN increment

Examples:

If THETA =45 then

GR: TURN 45 ——THETA=90

GR: TURN — 60 —— THETA= —15
The DRAW subcommand draws a line for the length specified, in the direction of
THETA. The format for DRAW is:

GR: DRAW line length

Examples:

GR: DRAW 20
GR: DRAW #X

The GO subcommand moves the turtle a specified length in the direction of
THETA. The format for GO is:

GR: GO number of units from starting point

Examples:
GR: GO 20

GR: GO #L
GR: GO -5

The FILL subcommand draws a line the length specified, in the direction of THETA,
while filling in the blank regions to the right with the current pen color. The format
for FILL is:

GR: FILL line length

Examples:

GR: FILL 30
GR: FILL # A
GR: FILL -15

In all the turtle geometry subcommands, if the line length is negative, the turtle
moves backward instead of forward.

DR DR DR R D D Bl GEEE O GEEEEE $ Eaaam

o

SECTION 10
QUIZ

The graphics screen is all black except for a strip of blue at the bottom of the
screen, called the

The GRAPHICS command, followed by any subcommand except QUIT, puts
the computer into graphics mode. TRUE or FALSE?
To close the graphics screen, type:

Put the subcommands on the left under the coordinate system they respond to:
Subcommands Cartesian Coordinates Turtle Geometry
DRAW

DRAWTO
FILL
FILLTO
GO
GOTO
TURN
TURNTO

The subcommand assigns the color of the graphics
pen.

Match the subcommands with their functions:

GOTO Turn turtle to THETA angle

DRAWTO Move turtle specified length in THETA direction

FILLTO Draw line of specified length in THETA direction
and fill space to right

TURNTO Move turtle to point X,Y

TURN Increment THETA angle by specified degrees

GO Draw line of specified length in THETA direction

DRAW Draw line to point X,Y and fill space to right

FILL Draw line to point X,Y

Welcome to Graphics 137

138 Welcome to Graphics

ANSWERS

Text window

TRUE
GR: QUIT
Cartesian Coordinates Turtle Geometry
DRAWTO DRAW
GOTO GO
FILLTO FILL
TURN
TURNTO
PEN
GOTO Turn turtle to THETA angle
DRAWTO Move turtle specified length in THETA direction
FILLTO Draw line of specified length in THETA direction
and fill space to right
TURNTO Move turtle to point X,Y
TURN/ Increment THETA angle by specified degrees
GO Draw line of specified length in THETA direction
DRAW, Draw line to point X,Y and fill space to right
FILL Draw line to point X,Y

ADVANCED
PROGRAMMING
WITH GRAPHICS

GRAPHICS VARIABLES

PILOT has four variables that display information about the graphics turtle. These
variables can not be assigned or changed by the user. They can be displayed or used
in computations of numeric expressions.

% X
The variable %X returns the current value of the X coordinate of the graphics turtle.

Example:

T: %X
25

%Y
The variable %Y returns the current value of the Y coordinate of the graphics turtle.

Example:

%Y
20

% A
The variable %A returns the current value of THETA.

Example:

T:%A
90

% L

The variable %Z returns the current number equivalent of the screen color at the
current turtle location.

0 = ERASE (background)

1 = RED

2 = YELLOW

3 = BLUE
Example:

GR: GO0

T: %Z

2

B Always precede the T: %Z command with a GR: GO 0 command. B

Welcome to Graphics 139

140

Welcome to Graphics

Enter the following program:

10 GR: PEN RED
20 GR: TURN 50
30 GR: DRAW 40

To find the values of %X, %Y, %A, and %Z, enter a TYPE command for each
variable:

T: %X
31

T: %Y
26

GR: GO0
T:%Z
1

The above values tell us that the turtle is located at the (31,26) coordinate. The
THETA angle is 50 degrees. The turtle at the point is RED.
MINI-QUIZ

1. The variables %X, %Y, %A, %Z can be changed at any time by the user. TRUE
or FALSE?

2. Todisplay one of the above variables, you must use the

command.

ANSWERS
1. FALSE
2. TYPE . orT:

Welcome to Graphics

141

APPENDIX A

CONNECTING YOUR
ATARI COMPUTER
SYSTEM

CONCEPTS Connecting Your ATARI Computer System
8
| ED Inserting PILOT
NTRODUC Turning On PILOT in Your ATARI Computer Without a Disk Drive
Turning On PILOT in Your ATARI Computer With an ATARI 810 Disk Drive
Turning Off Your ATARI Computer System

CONNECTING You may connect other machines to your computer besides the television set.
YOUR ATARI These machines are called devices. Some of the devices that can be connected to
COMPUTER yourcomputer are the ATARI 810™ Disk Drive (Figure A-1), the ATARI 410™ Program
Recorder (Figure A-2), and the ATARI 820™, 822™, and 825™ printers (Figure A-3).
SYSTEM When attached to the computer, these devices assist in remembering programs.
/'mevmmuwmlmwwr\

Figure A-1 The ATARI 810 Disk Drive

Figure A-2 The ATARI 410 Program Recorder

i rnieaallh i

Figure A-3 The ATARI 820, 822, and 825 Printers

Appendix A 143

The first step in getting started is to learn how to assemble your computer system.
This is easy if you read this section carefully.

To hook up the computer with one or more devices, start by reading the introduction,
unpacking, system requirements, set-up and start-up instructions of the manuals
that apply to your system. Skip the sections referring to the BASIC language.
BASIC language commands will not work when the PILOT cartridge is inserted.
Read:

® ATARI 400™ Operator’s Manual or ATARI 800™ Operator’s Manual
® ATARI 810™ Disk Drive Operator’s Manual

® ATARI 410™ Program Recorder Operator’s Manual

® ATARI 820™ Printer Operator’s Manual

® ATARI 822™ Thermal Printer Operator’s Manual

® ATARI 825™ 80-Column Printer Operator’s Manual

Following are several diagrams showing you different ways to connect your system:

System with ATARI 400/800 and ATARI 410 Program Recorder

ATARI 400 OR 800

DATA CORD

AR |

ATARI 410 PROGRAM RECORDER

Figure A-4 ATARI 400/800 Computer With Program Recorder

144 Appendix A

W
fo

i
R

System with ATARI 800 and ATARI 820 40-Column Printer, or ATARI 810 Disk
Drive

ﬂiﬂl‘w LTI LILLELEY “ﬂ?\

ATARI 400 OR 800

ATARI 810 DISK DRIVE

Figure A-5 ATARI 400/800 Computer With Disk Drive

System with ATARI 400/800, ATARI 820 Printer, and ATARI 410 Program Recorder

ATARI 400 OR 800 /‘

ATARI 820 PRINTER

e
|
I
e
ATARI 410 PROGRAM RECORDER

Figure A-6 ATARI 400/800 Computer With Program Recorder and Printer

Appendix A 145

146 Appendix A

System with ATARI 800, ATARI 810 Disk Drive, and ATARI 820 40-Column Printer

ATARI 400 OR 800

ATARI 810 DISK DRIVE

/'Im-mn-lm r"n“'nn'nd“\
A —

ATARI 820 PRINTER

Figure A-7 ATARI 400/800 Computer With Disk Drive and Printer

System with ATARI 800, ATARI 810 Disk Drive, ATARI 820 Printer, and ATARI 410

Program Recorder.

ATARI 400 OR 800

ATARI 810 DISK DRIVE

TR

= [

o
LR '
J L
ATARI 410 PROGRAM RECORDER

Figure A-8 ATARI 400/800 Computer With Disk Drive, Program Recorder, and Printer

o

ATARI 820 PRINTER

INSERTING
PILOT

To insert the ATARI PILOT cartridge into your ATARI 400™/800™ Personal
Computer System:

1. Pull the lever on the top of your computer marked PULL OPEN. The top of the
computer will spring open, and if the television is turned on, the screen will fill
with static. Don’t panic; screen static is normal whenever the top of the com-
puter is open.

2. Hold the ATARI PILOT cartridge with the label toward you and the opening at
the bottom. Insert the cartridge into the proper slot of either the ATARI 400 or
ATARI 800 Personal Computer. Make sure the cartridge is all the way in and
secure. (Use the left cartridge slot on the ATARI 800.)

3. Close the computer top all the way. When you turn on the computer, the com-

puter won't operate if the top is even slightly open. The television screen will
display this message:

ATARIPILOT CC) COPYRIGHT ATARI 1980

READY
-]

TURNING ON PILOT IN YOUR ATARI COMPUTER WITHOUT A DISK DRIVE

Follow the steps below to turn your computer on correctly.

1. Make sure that your television switch box is connected properly. It should be
switched to the GAME or COMPUTER position. Turn on and tune your televi-
sion set to channel 2 or 3 and set your channel switch to the same number.
Be sure the PILOT cartridge is inserted.

2. Push the power switch on the right side of the computer forward to the ON
position.

3. The television screen should display:
ATARI PILOT C(C> COPYRIGHT ATARI 1980

READY
|
The system is now turned on.

B If the screen is full of static instead of the blue screen display, check all connec-
tions and make sure the top lid of the computer is closed securely. W

TURNING ON PILOT IN YOUR ATARI COMPUTER WITH AN ATARI 810 DISK
DRIVE

1. Make sure that the television switch box is connected properly. Make sure that
both the television and computer are tuned to channel 2 or 3 and that the
PILOT cartridge is inserted.

2. Make sure that the cords from the computer and the ATARI 810 Disk Drive
are properly and securely connected.

3. The computer should be turned OFF and there should NOT be a diskette in the
disk drive .

Appendix A 147

TURNING OFF
YOUR ATARI

COMPUTER
SYSTEM

148 Appendix A

Turn the disk drive power switch on the front of the disk drive to ON. Both red
lights on the front should turn on. The sounds you now hear are normal and
will stop shortly. Wait until the BUSY light (top light) goes off before proceed-
ing to step 5. NEVER interrupt the disk drive when the BUSY light is on.

Hold the diskette with the label facing up and the notch on the left side. DO
NOT TOUCH THE SHINY SURFACE OF THE DISKETTE that shows through the
opening in the protective jacket. If you touch the shiny surface, you may
damage the diskette.

Push in the door release lever located beneath the disk drive door. Insert the
diskette, held as described above, until you hear it click securely into place.
Close the disk drive door,

Turn on the power switch on the right side of the computer. The disk drive
should start making noises, which indicates that the computer is reading in
parts of the Disk Operating System (DOS). The DOS is required in order for the
computer to store and retrieve programs on the diskette.

This message will be displayed:
ATARI PILOT C(C) COPYRIGHT ATARI 1988

READY
=

The system is now turned on.

If you encounter any problems turning on your system with the disk drive, read the
section called Don’t Panic! in Appendix B, Speaking To Devices.

To turn off your computer system, turn the switch on the right side of your
computer to OFF. Turn your television set to OFF.

If you have an ATARI 810 Disk Drive, you should first:

1
2

3

Open the disk drive door by pressing the door release lever beneath the door.

Remove the diskette by pulling it straight out. Return the diskette to its
envelope.

Turn the disk drive power switch to the OFF position.

Your system is now turned off.

’ i

\..

APPENDIX B

SPEAKING TO
DEVICES

CONCEPTS
INTRODUCED

The ATARI 810 Disk Drive
Speaking to Your ATARI 810 Disk Drive
Saving a Program on a Diskette
Write-Protecting a Diskette
Loading a Program From a Diskette
Merging Programs
The DOS Utility
The Disk Directory
Using the DOS Disk Directory
Creating Your Own Disk Directory
Returning to PILOT From the DOS Utility
Don’t Panic! (How To Handle Trouble With the Disk Drive)
Screen Displays ‘‘Boot Error’’
Busy Light on Disk Drive Does Not Go Off
The Computer Does Not Respond
The ATARI 410 Program Recorder
Speaking to Your Program Recorder
Saving a Program on a Cassette Tape
Write-Protecting a Cassette Tape
Loading a Program From a Cassette Tape
Merging Programs
A Method to Manage Programs on Cassette Tapes
Saving the Cassette Directory
Adding Programs to the Directory and the Tape
The ATARI Printers
Printing a Program

The ATARI 400/800 Personal Computer System is made up of several devices that
transfer information from one to another. They include:

The keyboard

The disk drive

The program recorder
The printer

Three of these devices handle information in program-size chunks. They are: the
disk drive, the program recorder, and the printer.

Because the computer is just a machine that is run by electricity, when it is turned
off the electricity stops and it “forgets”” everything. This can be a problem if you
want the computer to remember something after it is turned off. To solve this prob-
lem, a device such as a program recorder, disk drive, or printer may be attached to
the computer to become part of the system. The program recorder, when in-
structed to do so, records the information in the computer’s memory onto a
cassette tape (Figure B-1), just like music is recorded onto a cassette tape. Or, if you
have a disk drive as part of your system, the disk drive, when instructed to do S0,
records information from the computer's memory onto a diskette (Figure B-2). A
diskette is a flexible 5% inch magnetic diskette, much like a miniature record.

Appendix B 149

THE ATARI 810
DISK DRIVE

150 Appendix B

TAPE SCALE

CASSETTE TAPE

WRITE-PROTECT NOTCH

Figure B-1 Cassette Tape

WRITE-PROTECT
NOTCH £

PROTECTIVE JACKET

Figure B-2 Diskette

When information from the computer’s memory is recorded onto a cassette tape or
diskette, the computer can be turned off without losing the recorded information.
Later, when the computer is turned on, you can tell the computer to get the infor-
mation from the cassette tape or diskette and put it back in its memory.

Another alternative is to send information from memory to the printer. The printer
is a device that will type on paper whatever you tell it to print.

The disk drive unit stores programs and data on diskettes. Each diskette can store
many, many programs on it. A total of four ATARI 810 disk drives can be attached to

the ATARI computer at one time, allowing you to store and retrieve a multitude of
programs.,

W_------——_-

SPEAKING TO YOUR ATARI 810 DISK DRIVE

The program (also called a file) currently in the computer’s memory can be saved
on a diskette and loaded or retrieved at a later time.

Saving a Program on a Diskette

15

The disk drive and computer should be turned on following the steps listed in
Appendix A, Turning On Your ATARI Computer With a Disk Drive.

Make sure a diskette is inserted into the disk drive.
Enter a program into the computer.

Think of a name for your program. A program name, or file name, must begin
with a letter, optionally followed by either letters, numbers, or a combination
of both. The computer remembers only the first eight characters of the program
name unless it is followed by a period; it will also remember up to three
characters following the period. Embedded spaces are not allowed. Graphic
characters are ignored. Anything following a punctuation mark other than a
period is ignored.

Here are some examples of correct and incorrect program names:

Correct Incorrect
PROGNAME PROG NAME
CAP.81 81.CAP

ATARI ATARICOMPUTERS

If you choose an incorrect program name, the computer will respond with a * * %
I/O ERROR 165 * * * error message when the command described below is given,

5. The SAVE command saves the program currently in memory on a diskette.

Type:
SAVE Dn: Program name
where: D is the disk drive

n specifies which disk drive (1-4). Because up to four disk drives may be attached,
the computer must know now which one to use. If n is not specified, it defaults
to 1.

Program name is the complete program name.

Here are some examples:

SAVE D: CHECKSUM Save CHECKSUM on Drive#1
SAVE D1: LETTER.1 Save LETTER.1 on Drive#1
SAVE D4: K Save K on Drive#4

If only part of a program is to be saved, the program lines to be saved must be
specified following the program name:

SAVE Dn: Program name x,y
where: x is the first program line to be saved

y is the last program line to be saved

Appendix B 151

152 Appendix B

This allows you to save sections and modules out of an entire program.

Examples:
SAVE D2: LUCKY 13,99 Saves lines 13-99 of LUCKY on Drive#2
SAVE D: MDYF 100,200 Saves lines 100-200 of MDYF on Drive#1

Be careful to include a space between the program name and the first line
number.

6. When you press the key the BUSY light will turn on and the disk drive
will start making noises as it saves the program. When the program has been
saved, the READY message and the cursor will appear on the screen.

Following is an exercise to take you through the steps of saving a program:

1. Turn on the computer and the disk drive if you have not done so already (make
sure a diskette has been inserted).

2. Type in the program below:

10 R: TEST PROGRAM

20T:

30 T: THIS PROGRAM TESTS \

40 T: YOUR ABILITYTO

50 T: SAVE AND LOAD A PROGRAM \
60 T: ON A DISKETTE

70 E:

3. Type: SAVE D: TEST [ISILID.

When the READY message and cursor are displayed on the screen, you have suc-
cessfully saved it on the diskette. If an error message appears, refer to Appendix
E, Error Codes, to determine the cause of the error. Then repeat step 3.

Write-Protecting a Diskette

Write-protecting a diskette prevents any programs or data from being saved on the
diskette. To write-protect a diskette, place an adhesive tab or a piece of cellophane
tape over the write-protect notch (shown in Figure A-2 in Appendix A.) If you try to
save a program on a diskette that is write-protected, the computer responds with
an *x % |/O ERROR 144 * * * message.

If at anytime you wish to ““unwrite-protect’” a diskette, simply remove the tape
from the write-protect notch.

Loading a Program From a Diskette

1. The disk drive and the computer should be turned on following the steps in Ap-
pendix A. Turn on your system with the diskette containing the desired program.

2. Type: NEW and press to clear memory.

3. Type: LOAD Dn: program name
where: D specifies the disk drive
n specifies which disk drive (1-4). If n is not specified, n defaults to 1.

program name is the saved program’s name.

-

Here are some examples:

LOAD D: CHECKSUM Loads CHECKSUM from Drive#1
LOAD D: LETTER.1 Loads LETTER from disk Drive#1
LOAD D4: K Loads K from disk Drive#4

If the program is not on the diskette, the computer responds with a * * * 1/O ERROR
170 * *x * error message.

Unlike saving programs, partial programs cannot be loaded. The entire program
must be loaded.
4. LIST, and/or RUN the program.

Following is an exercise to take you through the steps of loading a program.
1. Turn on the computer and the disk drive if you have not done so.
Insert the diskette containing the TEST program saved previously.

Type: LOAD D: TEST [IEI0.

When the READY message appears on the screen your program is loaded into
memory.

5. LIST and RUN the program.

ot e

Merging Programs

Programs can be merged when loading off a diskette and into memory. Merge
means to blend together or combine. If you have a program in memory, and you
load another program from a diskette into memory without clearing memory first,
the two programs will merge. If both programs use the same line numbers, the
statements loaded off the diskette have priority and are remembered.

Merging programs can be advantageous or disastrous. Used correctly, you can ex-
pand a current program by merging another program into it.

Thus, if the following program is in memory,
10 R: NAME PROGRAM

20T:

30T: WHAT IS YOUR NAME? \

40 A: $NAME

50T: HELLO, SNAME! HOW ARE YOU TODAY? \
60 A:

70 M: GOOD, FINE,GREAT,HEALTHY,EXCELLENT
80 TY: GREAT!

90 TN: THAT’S TOO BAD:

100 E:

and you load this program from a diskette,

100 R: ADDRESS PROGRAM

110 T: WHAT IS YOUR STREET ADDRESS? \

120 A: $STREET

130 T: IN WHAT CITY AND STATE DO YOU RESIDE? \
140 A: $CITYSTATE

150 T: WHAT IS YOUR ZIP CODE? \

160 A: $ZIP

170 T: THANK YOU FOR THE INFORMATION.

180 E:

Appendix B 153

the resulting merged program looks like this:

10 R: NAME PROGRAM

207T:

30T: WHAT IS YOR NAME? \

40 A: SNAME

50T: HELLO, $NAME. HOW ARE YQU TODAY? \
60 A:

70 M: GOOD, FINE,GREAT,HEALTHY,EXCELLENT
80 TY : GREAT!

90 TN: THAT'S TOO BAD!

100 R: ADDRESS PROGRAM

110 T: WHAT IS YOUR STREET ADDRESS? \

120 A: $STREET

130 T: IN WHAT CITY AND STATE DO YOU RESIDE? \
140 A: $CITYSTATE

150 T: WHAT IS YOUR ZIP CODE? \

160 A: $ZIP

170 T: THANK YOU FOR THE INFORMATION.
180 E:

Notice that line 100 in the first program is replaced with line 100 from the second
program.

The two programs have become one in memory. If desired, another program may
be merged with this one. Merging can be disastrous if the two programs merged
cannot function correctly. For instance, if the program in memory looks like this,

1 R: ADDITION PROGRAM

5T: ENTER A NUMBER: \

25 A: #A

50T: ENTER ANOTHER NUMBER: \
75 A: #B

100 C: #C=#A+#B

125 T: #A+#B=#C

150

and you load the TEST program from the diskette

10 R: TEST PROGRAM

20T:

30T: THIS PROGRAM TESTS \

40T: YOURABILITY TO

50T: SAVE AND LOAD A PROGRAM \
60T: ON A DISKETTE.

748 i

’

the resulting merged program looks like this:

1 T: ADDITION PROGRAM
5T: ENTER A NUMBER: \
10 R: TEST PROGRAM

154 Appendix B

2Rl

25 A: #A

30T: THIS PROGRAM TESTS \
40T: YOURABILITY TO

50T: SAVE AND LOAD A PROGRAM \
60 T: ON A DISKETTE

Z0E;

75 A: #B

100 C: #C=#A+#B

125 T: #A+#B=#C

150 E:

This program will not work, as you can plainly see.

B To avoid merging two programs by mistake always type NEW to clear memory
before loading a new program. B

The DOS Utility

Every diskette you use in your ATARI 810 Disk Drive is supplied with a DOS, which
stands for Disk Operating System. DOS allows you to manage and manipulate pro-
gram files.

To leave the PILOT language and enter the DOS utility, enter the DOS command in
the immediate mode:

Type: DOS

When in DOS, the screen displays:

DISK OPERATING SYSTEM II VERSION 2.085
COPYRIGHT 1980 aTarRI

DISK DIRECTORY . FORMAT DISK
RUN CARTRIDGE » DUPLICATE DISK
COPY FILE + BINARY SAVE
DELETE FILEC(S) . BINARY LOAD
RENAME FILE . RUN AT ADDRESS
LOCK FILE . CREATE MEM.5aV
UNLOCK FILE . DUPLICATE FILE
HWRITE DOS FILES

Aa.
B.
C.
D.
E.
F.
G.
H.

st.u:cr ITEM OF AT FOR MENU

Figure B-3 DOS Utility Program

We will discuss how to use the disk directory and return to PILOT under the DOS
utility.

Appendix B 155

156 Appendix B

The Disk Directory

Using the DOS Disk Directory. The disk directory is similar to a table of contents. It
tells you what files are on the disk and the length of each program file. Below is a
sample directory:

DIRECTORY--SEARCH SPEC, LIST FILE?

DpOS 5Y5 839
oup 5YS 842
PILTDEM T1ia 0658
VINCE PLT 883
PILTDEM TiB 032
PILTDEM TZ4 8656
PILTDEM T2ZB 048
256 FREE SECTORS

iEI.ECT ITEMOR FOR MENU

Figure B-4 Sample Directory

The number on the right of each program name is the program length in sectors. A
sector is a length of measurement for the diskette in computer jargon. Underneath
the list of program names is the number of unused sectors. A full diskette has 0 free
sectors.

To get a diskette directory:

1. Type DOS and press to get the DOS utility program.

2. At the bottom of the screen display, the DOS utility asks:
SELECT ITEM

Enter:

A CETD

3. The computer responds with:
DIRECTORY SEARCH SPEC .LIST FILE?

You can enter two responses:
1. To list the entire directory, press the key.

2. To search the directory for a specific file name, enter the file name. The com-
puter displays the file name and its sector length, followed by the number of
free sectors. If the file is not found, only the number of free sectors is displayed.

Anything entered other than a letter or file name results in no action or an

ERROR-165 message.

Creating Your Own Disk Directory. Instead of leaving PILOT to enter the DOS
utility to display a diskette directory, you can create your own directory.

Following is a program called MENU. If LOADed, SAVEd, and RUN as a PILOT pro-
gram, MENU allows you to create your own directory. Number each entry so that
you can select and automatically load a file by entering one number. Type in:

T——

10 R: PILOT MENU SELECT PROGRAM
20 R: 28-OCT-80
30 R: HARRY B. STEWART

40 R:

50C: @B1373=2 [AUX1 = READ DIRECTORY.
60 C: $DIR=D: %, % [WILDCARD = ALL FILES.
70C: #F =1 [FILE # = 1.

B0C:#R=0 [SCREEN ROW = TOP.
90 READ: $DIR,$FILE

100 R:

110 R: MAIN LOOP TO LIST FILENAMES.

120 R:

130 *LOOP

140C: #C=2 [SET SCREEN COLUMN.
150 U: *FILELIST [LIST FILENAME.

160T:

170 READ: $DIR,$FILE
180 J(@B228 =136): * DIRDONE [EOF TEST.

190 C: #C=20 [SET SCREEN COLUMN.
200 U: *FILELIST [LIST FILENAME.

210T:

220C: #R=#R +1 [GO TO NEXT ROW.

230 READ: DIR,SFILE

240 J(@B228 = 136): * DIRDONE

250 J(#R < 20): *xLOOP

260 T: SCREEN ABOUT TO OVERFLOW — CONTINUE (Y/N)2\

270 A: [GET ANSWER.

280 M: Y, [WAS IT YES-LIKE?

290 JN: * DIRDONE [NO — ALL DONE.

300C: #R=0 [YES — START AT TOP.
310T: O [CLEAR SCREEN. \

320 A: =$FILE [RESTORE ACCEPT BUFFER.
330): xLOOP

340 R:

350 R: DONE WITH DIRECTORY DISPLAY.

360 R:

370 * DIRDONE

380 CLOSE: $DIR

390 R:

400 R: FIND OUT WHICH FILE TO LOAD.
410 R:

420 *SELECT

430 T:

440 T: SELECTION?

450 A: #N

460 J(#N < 1): *SELECT

470 U: *ITEMNAME

480 A: SFILENAME = D:$$ITEM
490 M: $

500)Y: *SELECT

510 T: » LOADING '$FILENAME’.

Appendix B

157

158 Appendix B

520 LOAD: $FILENAME

530 E:

540 R:

550 R: FORMAT FILENAME FOR PRINTING.

560 R:

570 *FILELIST

580 C: $LEFT =

590 A: =$FILE! [ANCHOR FILE SIZE.
600 *FLOOP

610 MS: 01,1!,2!,3!,4!,5!,6!,7!,8!,9!

620 AY: =$LEFT! [STRIP OFF # SECTORS.
630)Y: *xFLOOP

640 POS: #C,#R [PRINT FILE NAME.
650 T: SLEFT\

660C: #C=#C+ 13

670C: #N=#N+1

680 POS: #C,#R [PRINT FILE #

690 T: (#N)\

700 A: =$LEFT [CONVERT NAME TO...
710 MS: - [...1/O FORM.

720 C: $FILENAME = $LEFT.$RIGHT

730 U: *ITEMNAME

740 C: $$ITEM = SFILENAME

750 E:

760 R:

770 R: CREATE STRING ARRAY NAME.

780 R:

790 *ITEMNAME

800 C: #X=100-#N [INVERT FOR SPEED.

810 C: SITEM = Z#X['Z’ KEEPS STRINGS ABOVE $LEFT, $MATCH & $RIGHT
FOR SPEED.

820 E:

Returning to PILOT From the DOS Utility

To leave the DOS utility and return to PILOT, choose option B from the DOS direc-
tory, or press the key.

When you return to the PILOT language, your screen displays:

ATARI PILOT (C) COPYRIGHT ATARI 1980

READY
|

and you are ready to go!

DON’T PANIC! (How To Handle Trouble With the Disk Drive)

There are three main types of problems that can occur while you are using your
disk drive. These are described below with the suggested remedies. Keep in mind

that switching the computer to OFF clears its memory.

Screen Displays ““BOOT ERROR." Either you turned on the system without insert-
ing a diskette, or the diskette was inserted upside down or backwards.

THE ATARI 410
PROGRAM
RECORDER

Remedy: Turn off the power switch on the computer. DO NOT TURN THE DISK
DRIVE OFF FIRST. Within 20 seconds, the BUSY light will go off. Open the disk
drive door, insert the diskette properly, and turn it on again. If the BOOT ERROR
message is displayed again, consult the section entitled ‘“Boot Errors’’ in the ATARI
400/800™ Disk Operating System Reference Manual.

BUSY Light on Disk Drive Does Not Go Off. The BUSY light on the disk drive goes
on when you start up or when the disk drive is busy sending information to or get-
ting information from the computer. If the BUSY light remains on when the disk
drive is not in use, something is wrong.

Remedy: See the remedy described for a BOOT ERROR problem.
The Computer Does Not Respond. This may have several causes.

Remedy: Turn the power switch on your computer to off and then to ON again.

You may need to repeat this several times until you see the READY message on the
screen.

The ATARI 410 Program Recorder stores programs on cassette tape. Ordinarily,
one program is stored on each side of the cassette tape, however more than one
program can be stored sequentially on each side if desired.

SPEAKING TO YOUR PROGRAM RECORDER

A program in the computer’s memory can be saved on a cassette tape and loaded
from the tape at a later time.
Saving a Program on a Cassette Tape

1. Make sure all cables are securely attached to their connectors. Turn on the
computer.

2. Open the program recorder lid by pressing the STOP EJECT key.

3. Inserta cassette tape as shown in the ATARI 410™ Program Recorder Operator’s
Manual.

4. Use the REWIND or ADVANCE button to rewind the tape or move to the desired
location on the tape counter.

5. If the tape has been rewound, set the tape counter (located below the lid) to
000 by pressing the tape counter button.

M If you are saving more than one program on the tape, advance the tape a few
counts past the end of the last program when saving a new program. Always write
down the first and last counter numbers so you can find the starting point of each
program. H

5. Enter a program into the computer.

6. The SAVE command saves the program cu rrently in memory on a cassette tape.
Programs saved on cassette cannot be given names.

Appendix B 159

160 Appendix B

Enter:
SAVE C: and press

where: C specifies the cassette or program recorder.

Example:

SAVE C:

To save only a portion of a program, the program lines to be saved must be
specified .

SAVE C: x,y

where: x is the first program line to be saved

y is the last program line to be saved
This allows you to save sections and modules out of an entire program.

Example:
SAVE C: 5,200 saves line 5 through 200

Upon pressing the key, you will hear two beeps. After the beeps,
depress the and buttons at the same time. Then press the
key again. At first, you will hear a high-pitched tone as blank leader is being
saved. Then, as the program is being saved, you will hear a series of raspy tones
coming from the television.

When the READY message and the cursor appear on the screen, the program is
successfully saved. Write down the counter number that marks the end of the
program.

This exercise takes you through the steps of saving a program onto cassette tape.

i
2

Turn on the computer with the program recorder connected.

Insert a new cassette tape. Rewind it to the beginning and set the tape counter
to 000.

Type:

10 R: PRACTICE PROGRAM

20T:

30 T: THIS PROGRAM LETS YOU PRACTICE
40 T: SAVING AND LOADING A PROGRAM
50 T: ON A CASSETTE TAPE.

60 E:

Type:

SAVE C: CET0.

Press and at the same time.

Press (CIEILID-

When the READY message and the cursor appear on the screen, the program
has been saved on the cassette tape. Write down the tape counter number.

Write-Protecting a Cassette Tape

To protect your programs on a cassette tape from being accidentally overwritten,
you can write-protect your tape. Every cassette tape has two write-protect notches
(shown in Figure B-1), one for each side of the tape. To write-protect one side of the
tape, punch out the write-protect tab that is on the left when the side to be write pro-
tected is facing up. Many prerecorded tapes are already write-protected for you.

If you decide to reuse a write-protected tape, place a piece of cellophane tape over
the write-protect opening.
Loading a Program From a Cassette Tape

1. Make sure all cables and connectors are securely in place. Turn on the com-
puter.

Insert the cassette tape containing the program you wish to load.

Rewind the cassette tape to the beginning by pressing the EETITER key. Set the
tape counter to 000.

4. Fastforward the cassette tape to a position before the beginning of the program

by pressing the EIIZIEE key. Press the key when the tape counter is
close to the number marking the beginning of the program.

5. To load the program, type:
LOAD C:

where: C specifies the cassette, or program recorder

Examples:
LOAD C: loads a program from cassette tape into memory

6. Upon pressing the key, you will hear one beep. Press on the pro-
gram recorder,

7. After about 5 seconds you will hear tones indicating that your program is being
loaded. If the program recorder must search the tape for more than 9 seconds
to find your program, it will give up looking.

8. When the screen displays the READY message, your program is successfully
loaded.

9. LIST and RUN the program.

B For additional help, read the first pages of the ATARI 410" Program Recorder
Operator’s Manual. B

The following exercise takes you through the steps of loading the PRACTICE pro-
gram previously saved on tape.
1. Turn on the computer with the program recorder connected.
2. Insert the cassette containing the PRACTICE program.
3. Rewind the tape to the beginning. The tape counter should be set to 000.
4. Type:
LOAD C:
5. After you hear one beep, press [Z¥53, then press GEILDS.

The computer makes tones as it loads the PRACTICE program. When a READY
message appears on the screen, the program is loaded.

7. LIST and RUN the program.

Appendix B 161

162 Appendix B

Merging Programs

When loading a program from a cassette tape, you can merge, or combine, the pro-
gram on tape with the current program in memory.

For more information about merging programs, refer to ‘‘Merging Programs’’ under
““Loading Programs From a Diskette.”

B To avoid accidentally merging two programs, always type NEW before
loading a program. W

A Method To Manage Programs on Cassette Tapes

This section describes how to save up to 30 programs on one cassette and create a
program directory.

This method centers on the program listed on the following pages. This program is
designed to function as a directory within the cassette tape. It allows you to enter
the program names saved on the tape and their corresponding counter numbers.
Later, you can look up the program name and its counter number and advance the
tape to its starting point.

B This program must be entered as the first program on each tape. B

Saving the Cassette Directory. To save the cassette directory, follow the steps
below:

1. Enter the directory program into the computer. (This program contains its own
“’help system.”” None of the lines should be removed. Lines 200-400 will even-
tually be replaced with program names.)

10 R: CASSETTE PROGRAM GUIDE

155 [ESC SHIFT CLEAR]

20T:

2hTF: * % k CASSETTE PROGRAM GUIDE * * *
30T:

35

40 U; * HELP

99 *START

100 T: (PROGRAM NAME) (BEGIN) (END)
11070

190 R: START ADDING PROGRAMS AT 200
200 R: THERE ARE NOT YET ANY PROGRAMS
210): *AAAABAAAABAAAABAAAABAAAAB
220): * AAAABAAAABAAAABAAAABAAAAB
230): *AAAABAAAABAAAABAAAABAAAAB
240): *AAAABAAAABAAAABAAAABAAAAB
250): *AAAABAAAABAAAABAAAABAAAAB
260): * AAAABAAAABAAAABAAAABAAAAB
270): *AAAABAAAABAAAABAAAABAAAAB
280): *AAAABAAAABAAAABAAAABAAAAB
290): *AAAABAAAABAAAABAAAABAAAAB
300): *AAAABAAAABAAAABAAAABAAAAB
310): *AAAABAAAABAAAABAAAABAAAAB
320): *AAAABAAAABAAAABAAAABAAAAB
330): *AAAABAAAABAAAABAAAABAAAAB
340): *AAAABAAAABAAAABAAAABAAAAB
350): *AAAABAAAABAAAABAAAABAAAAB

 am S WS S0 S0 20 MBS B S5 S8 NS S8 58 08 S0 S B By B

360): *AAAABAAAABAAAABAAAABAAAAB
370): *AAAABAAAABAAAABAAAABAAAAB
380 J: *AAAABAAAABAAAABAAAABAAAAB
390): * AAAABAAAABAAAABAAAABAAAAB
400): * AAAABAAAABAAAABAAAABAAAAB
410): *AAAABAAAABAAAABAAAABAAAAB
420): *AAAABAAAABAAAABAAAABAAAAB
430): *AAAABAAAABAAAABAAAABAAAAB
440): *AAAABAAAABAAAABAAAABAAAAB
450): *AAAABAAAABAAAABAAAABAAAAB
460): * AAAABAAAABAAAABAAAABAAAAB
470): *AAAABAAAABAAAABAAAABAAAAB
480 J: * AAAABAAAABAAAABAAAABAAAAB
490 J: * AAAABAAAABAAAABAAAABAAAAB
990 * AAAABAAAABAAAABAAAABAAAAB
997

998 T: CASSETTE TAPE SIZE IS: 673

999 L:

9000 * HELP

9010 T: DO YOU NEED HELP? \

9020 A:

9030 M: N

9040 U: *CLEAR

9050 EY:

9060 T: REWIND THE TAPE ALL THE WAY.
9070 T: SET THE TAPE COUNTER TO 000.
9080 T: LEAVE AT LEAST 10 COUNTS.

9090 T: BETWEEN THE END OF ONE PROGRAM
9100 T: AND THE BEGINNING OF THE NEXT.
9110 U: *RETURN

9120 EY:

9130 T: ** TO SAVE A NEW PROGRAM * *
9140T:

9150 T: SAVE IT TEMPORARILY ON THE
9160 T: REVERSE SIDE OF THE TAPE.

9170 T: THIS WILL GIVE YOU AN IDEA

9180 T: OFITS SIZE. (IT'SA GOOD IDEA

9160 T: TO KEEP THIS SIDE OF THE TAPE EMPTY).

9200 T:

9210 T: NEXT, FLIP THE CASSETTE BACK
9220T: TO THIS SIDE, TYPE: NEW,

9230 T: AND LOAD/RUN THIS PROGRAM
9240 T: TO FIND OUT WHERE TO SAVE
9250 T: YOUR PROGRAM.

9260 T:

9270 T: NEXT POSITION THE COUNTER
9280 T: AND SAVE YOUR COUNTER.
9290 T: INCLUDE THE BEGIN/END COUNT
9300 T: IN THIS PROGRAM.

9310 U: *RETURN

9320 FY:

9330 T: **RESAVING PROGRAMS * %
9340T:

9350 T: IT IS ONLY SAFE TO RESAVE

9360 T: PROGRAMS IF THEY GROW NO
9370 T: MORE THAN 10 LINES IN SIZE.

Appendix B

163

164 Appendix B

9380 T:
9390 T: TO RESAVE A PROGRAM WHICH HAS
9400 T: GROWN MUCH LARGER, SAVE IT
9410 T: AS A NEW PROGRAM.

9420 T: TO ERASE A PROGRAM, JUST

9430 T: JUST REPLACE ITS NAME WITH:
9440 T: (EMPTY)

9450 T: DON'T CHANGE THE BEGIN/END
9460 T: NUMBERS.

9470 U: *RETURN

9480 EY:

9490 T:

9500 T: WHEN FILLING AN (EMPTY) SPACE
9510 T: WITH A PROGRAM, KEEP IN MIND
9520 T: THAT, IN GENERAL:

9530 T: EVERY 20 PROGRAM LINES

9540 T: OCCUPY 12 COUNTS.

9550 U: *RETURN

9560 EY:

9570 T:

9580 E:

9590 *RETURN

9600 T:

9610 T: (PRESS RETURN TO CONTINUE)\
9620 A:

9630 U: *CLEAR

9640 T: MORE? \

9650 A:

9660 M: N

9670 U: *CLEAR

9680 E:

9690 * CLEAR

9700T: ¥ [ESC SHIFT CLEAR]

9710 E:

Insert a blank cassette tape into the program recorder. Rewind completely and
set the tape counter to 000,

Advance the tape to about 010 on the tape counter. Remember this number.
Save the directory program by typing:
SAVE: C CEIED

On another tape, save the directory program again, repeating steps 1-4. This
way you have the original, unchanged program to save onto other tapes.

LIST lines 200-250 of the directory to display the first lines to be filled with pro-
gram names.

Enter the directory program name as the first entry in the directory.
Example:

200 T: CASSETTE GUIDE 010 071

(010 is the starting point of the directory. 071 is the ending point.)

Since you have changed the directory you must re-SAVE it. Rewind and posi-
tion the tape at 010. ReSAVE the program by typing:

SAVE: C [0

THE ATARI
PRINTERS

The directory program is designed to remain the same size no matter how many
programs you save! If you save the directory program starting at the same location
on the tape every time, it will be resaved right over the old directory.

Adding Programs to the Directory and the Tape. To add a new program name to
the directory and to the tape, follow these instructions:

1. LOAD the directory. RUN the directory to see the ending number of the last
program saved.

2. Position the tape to the last program’s ending number plus 10. If the last pro-
gram ended at 090, position the tape to at least 100.

Type: NEW :
Enter the program to be saved.

=

Save the program:

Type SAVE C: EISIEDS.
Remember the beginning and ending points of the program.

Type NEW EIEITID.
Rewind the tape and LOAD the program directory.

Type:

MR o e O

LIST 200,500

Replace the first available J: line after 200 with a T: command, followed by the
program name and its beginning and ending tape numbers.

LIST 200,500

200 T: CASSETTE GUIDE 010 071

210): PROGRAM.1 080 100

220): *AAAABAAAABAAAABAAAABAAAAB
230): *AAAABAAAABAAAABAAAABAAAAB
240): * AAAABAAAABAAAABAAAABAAAAB
250 J: * AAAABAAAABAAAABAAAABAAAAB

;190 J: *AAAABAAAABAAAABAAAABAAAAB

10. Since you have changed the directory again, you must reSAVE the directory by
repeating steps 1-3 of ““Saving the Cassette Directory.”’

The ATARI printers type program statements or program outputs on paper, similar
to a LIST or RUN on the screen. The ATARI 820™ 40-Column Printer uses standard
adding machine paper. The ATARI 822™ Thermal Printer is a 40-column printer
that uses heat-sensitive paper. The ATARI 825™ 80-Column Printer uses roll or fan-
fold paper. The printer is a slow device compared to the computer, disk drive, or
program recorder and may often seem to rest while printing. The printer is unable
to print cursor control, escape, or graphic characters.

Appendix B 165

166 Appendix B

PRINTING A PROGRAM
1. Make sure the printer is attached to the computer and that both are turned on.
2. Enter the program to be printed on the computer.
3. To print the entire program, type:
SAVE P:
To print selected lines of a program, type:
SAVE P: X,Y
where: P: specifies the printer
x is the first line of the program to be saved
y is the last line of the program to be saved

4. When you press the key, the printer starts printing the program on the
paper.

When the program is printed, the READY message is displayed on the screen.
Press the yellow button or move the roller to advance the paper.

The following exercise takes you through the steps of printing a program:

1. Turn on the ATARI 400/800 computer and the printer, and the ATARI 830™ In-
terface Module if you are using the ATARI 825 Printer.

Enter or load the PRACTICE program.
Type:
SAVE P:

4. When the program has been printed, advance the paper and tear off the pro-
gram.

-
B = 55 TR P S S UE S Uw N BN D BN SR B B =

T

APPENDIX C

SCREEN EDITING

CONCEPTS
INTRODUCED

THE SCREEN
EDITOR

The Screen Editor
The Screen Editing Keys
The RETURN Key
The SHIFT Key
The CAPS/LOWER Key
The TAB Key
TAB Set
TAB Clear
TAB
The CTRL Key
The Inverse Video Key
The CLEAR Key
The Cursor Control Keys
Cursor Up ¢
Cursor Down {
Cursor Right —»
Cursor Left «
Editing the Current Display Line
Backspacing
Deleting
Character Deletion
Line Deletion
Inserting
Character Insertion
Line Insertion
Deferred Cursor Movements

Anything displayed on the television screen may be edited and changed in im-
mediate mode, using the built-in screen editor. The screen editor is part of the
computer (you can’t see it). It lets you double-check and correct your input before
it goes into the computer’'s memory. By learning to use the screen editor, you can
correct problems anywhere in your input.

Appendix C 167

THE SCREEN
EDITING KEYS

168 Appendix C

The black keys shown on the diagram below control the typewriter-like functions
of the keyboard.

' @ ciean [wsent W DELETE SYSTEM
7 8 < » BACK S RESET
-r.lR ST 3
8
A\ CAPS
J L i Y L SELECT

Figure C-1 The ATARI Keyboard : Screen Editing Keys

L]
>

THE RETURN KEY

The key has three functions:

1. It moves the cursor to the left margin and down one line of the screen.
2. It marks the end of an input line.

3. It activates the computer to respond.

The function of the key depends upon what the computer is doing at the
time the key is pressed.

THE SHIFT KEY

The key, when pressed simultaneously with another key, accesses the
character or function displayed on the top half of a key. The key is located on
both ends of the bottom row of the keyboard.

THE CAPS/LOWER KEY

The key accesses either lowercase or uppercase alphabetic letters. If
the key is pressed prior to typing any letters, the letters are lowercase. If the key is
pressed while holding down the key, uppercase letters are displayed instead.

THE TAB KEY

The key operates like the key on a regular typewriter to set or
clear automatic stopping positions of the cursor.

TAB Set
To set a tab position, move the cursor to the desired stopping position and press

the key while holding down the key. Up to 38 tabs may be set across the
screen.

®

®

TAB Clear
To clear a tab position, move the cursor to a TAB set position. Hold down the
key (located directly below the key) while pressing the key.

TAB

The EII) key by itself moves the cursor over to the next tab position. If the next tab
position is on the following line, the cursor drops down to the first tab position of
the following line.

THE CTRL KEY

The CONTROL key (labeled on the keyboard), functions as a second type of
key. The key accesses the graphics character set and the cursor control
functions. Holding down the key while pressing an alphabetic key causes a
graphics character from the graphic character set to appear on the screen. If
is pressed with a cursor control key, it moves the cursor.

THE INVERSE VIDEO KEY

The E8 key displays any following characters in inverse video (shown as a blue
character within a white square). To return to the normal display, press the g8 key
again.

IR LI T FUN DTICMS A TARTI COMPUTER

Figure C-2 Using the Inverse Video Key

THE CLEAR KEY

The key is used to clear the screen. “Clearing the screen’’ means to erase
all characters from the screen (but not from memory) and position the cursor in the
upper-left corner (the “home’’ position).

To clear the screen, hold down the key or the key while pressing the
key.

Appendix C 169

170 Appendix C

THE CURSOR CONTROL KEYS

The black keys shown on the diagram below show the cursor control keys.

C8RNBB0NANAGEED &
1 5 7 < > RESET
S00000000003AE
CI00000D000BAAE
EN000000088BR0E

R e —

Figure C-3 The ATARI Keyboard: The Cursor Control Keys

The cursor control functions, ; : £} . and

move the cursor in the direction shown by the arrows on the keytops. The
key MUST be held down while pressing the cursor control keys. When the cursor
moves over a character, that character is displayed in “‘inverse video.”’

MOVING [HE CURSOR OVER A CHARACTER

Figure C-4 Moving the Cursor Over a Character

The character remains unchanged unless you type another character on top of it.

CURSOR UP

Pressing the key while holding down the key moves the cursor up one
line.

P
MOVE THE CURSOR U

Figure C-5 Using the Cursor Up Key

If the cursor reaches the top of the screen, it ““wraps around’” to the bottom in the
same column.,

Figure C-6 Cursor Up Wraparound

Appendix C 171

172 Appendix C

CURSOR DOWN

Pressing the key while holding down the key moves the cursor down
one line.

MOVE THE CURSOR D
0

Figure C-7 Using the Cursor Down Key

If the cursor reaches the bottom of the screen, it wraps around to the top in the
same column.

Figure C-8 Cursor Down Wraparound

CURSOR RIGHT

Pressing the key while holding down the key moves the cursor one
space to the right,

-

" o me oo G G S0 OGN B G0 SN G G S0 S0 BN OGN S8 =w

MOVE THE CURSOR TO THE RIGHTIR

MOVE THE CURSOR TO THE RIGHT Bl

Figure C-9 Using the Cursor Right Key

If the cursor reaches the right side of the screen, it wraps around to the left side in
the same row.

Figure C-10 Cursor Right Wraparound

Appendix C 173

174 Appendix C

CURSOR LEFT

Pressing the key while holding down the key moves the cursor to the
left one space.

MOVE THE CURSOR TO THE LEFTH

MOVE THE CURSOR TO THE LEFQ

Figure C-11 Using the Cursor Left Key

If the cursor reaches the left side of the screen, it wraps around to the right side of
the same row.

Figure C-12 Cursor Left Wraparound .

EDITING THE CURRENT DISPLAY LINE

Backspacing

The key moves the cursor back one space at a time. Backspacing the
cursor erases any character it moves over. The key is located on the
top row of the keyboard.

Enter the following line (do not press the key):
10 T:THIS IS EASY#

To erase the EASY, backspace the cursor to the space following the IS by pressing

the key five times.

18 T:THIS IS EasYl

10 T:THIS IS EasHl

Appendix C 175

18 T:THIS IS Ealll

18 T:THIS 15 ER

18 T:THIS IS

176 Appendix C

18 T:THIS 158

Figure C-13 Backspacing the Cursor Using the DELETE BACK S Key

Deleting

Character Deletion. Pressing the key while holding the key
erases the character under the cursor. The characters to the right of the cursor
move one space to the left, making the line shorter.

Enter the following line (do not press the key):
10 T:THIS IS NOT EASY#

Using the and key move the cursor on top of the N in NOT.

16 T:THIS IS[JOT EASY

Figure C-14 Single-Character Deletion

We want to delete the characters NOT. To delete the N press the and

key once.

Appendix C 177

186 T:THIS ISQET EASY

Figure C-15 Multiple-Character Deletion
Great! The N is deleted and the characters OT EASY move one space to the left.

To delete the OT and a space, hold down the key and press the
key three times.

18 T:THIS IS [3asy

Figure C-16 Character Deletion Completed

Wasn't that easy? To exit the line, press [CIEITIS.

Line Deletion. The line deletion function erases one line from the screen, but not
from memory. To delete a line, move the cursor to any space on that line. Hold

down the key and press the key once. The line disappears,
moving all the lines below the deleted line up one line. This leaves a blank line at
the bottom of the screen.

Enter the following lines:

10 T: SCREEN EDITING IS EASY
20 T: ON MY ATARI COMPUTER.
30T: DON'T YOU AGREE?

178 Appendix C

Let’s delete line 20 from the screen but not from memory. Move the cursor up to
line 20:

10 T:SCREEN EDITING IS EASY
Ei® T:0N YOUR ATARI COMPUTER.
30 T:DON'T YOU AGREE?

Figure C-17 Line Deletion: Positioning the Cursor

Press the and key once. The screen displays:

16 T:SCREEMEDITING IS EASY
El® T:DON'T YOU AGREE?

Figure C-18 Line Deletion Completed

It's that easy! Line 20 is erased from the screen. Now, LIST the program for a surprise!

18 T:S5SCREENEDPITING ISEASY
30T:DON'T YOU AGREE?

LIST

18 T:SCREENEDITING ISEASY
28 T: ONMY ATARI COMPUTER.
S8 T:DON'T YOU AGREE?

READY
|

Line 20 is still in memory!

Appendix C 179

180 Appendix C

Inserting

Character Insertion. Pressing the key while holding the key inserts a
space beneath the cursor. The cursor remains on the space so that a new character
may be entered. All characters to the right of the cursor move one space to the
right, making the line longer.

Enter the following line:

10 T: THIS IS EASY

Using the and keys, move the cursor on top of the E in EASY.

18 T:THIS IS[EasY

Figure C-19 Character Insertion: Positioning the Cursor

Let’s insert the characters VERY between the IS and EASY to make the message
read THIS IS VERY EASY. To insert enough space between the IS and EASY to fit
VERY , press the and keys five times.

16 T:THIS IS

Figure C-20 Character Insertion: Creating a Space

Now, enter VERY and press the key. The line should now read:

18 T:THIS IS VERYEaSY

Figure C-21 Character Insertion Completed

Line Insertion. The line insertion function inserts a line onto the screen at the cur-
rent cursor position. To insert a line, move the cursor to where you want to insert
the line. Hold down the key and press the key once. All the lines below
the cursor move down one line, leaving a blank line at the current cursor position.

B Any information on the bottom line of the screen will disappear. B

Enter the following lines:

10 T: SCREEN EDITING IS EASY
20 T: DON’'T YOU AGREE?

Let’s insert a line between lines 10 and 20. To insert a line, move the cursor up to
line number 20. '

10 T:SCREEN EDITING IS EASY
e T:pON'T YOU AGREE?

Figure C-22 Line Insertion: Positioning the Cursor

Appendix C 181

DEFERRED
CURSOR
MOVEMENT

182 Appendix C

Hold down the key and press the key. Line 20 drops down one line.

168 T:SCREENEDITING IS EASY

28 T:DON'T YOU AGREE?

Figure C-23 Line Insertion: Creating a Space

Now there is room to enter a new program statement right between the other two:

18 T:SCREEN EDITING IS EASY
15 T:ONMY ATARI COMPUTER.H
20 T:DON'T YOU AGREE?

Figure C-24 Line Insertion Completed

That was easy, wasn't it?

Cursor movements may be placed within program statements to be executed only
upon the RUN command. To program cursor movements, press the key prior
to pressing the and cursor control keys. On the screen an insert arrow appears
where you want the cursor movement. A program statement with a deferred clear

screen movement ([E3 EIES EXE8 EYIND) looks like this:
(LER B

"sas wms om BN G G SN G G G O O G0 BN BN Gm OW ow am

The following program demonstrates how deferred cursor movements work. Type
it in and give it a RUN:

10 R: CHARACTER SPIRAL
20 * BEGIN

25C: #A =0

30 T:YCLCLEAR SCREEN 1
40 T: THIS PROGRAM WILL DRAW A SPIRAL
50 T: USING ANY CHARACTER YOU CHOOSE.
60T:

70 T: WHAT CHARACTER WOULD YOU LIKE
80T: TO USE? \

90 A: $CH

100 PA: 30

110 T: ¥ LCLEAR SCREEN 1
115 *ERASE

120 POS: 19,11

130 U: *CHAR

140C: #5=1

150 *START

160C: #C=0

170 *TOP

180 U: *RIGHT

190 U: *CHAR

200C: #C=#C+1

210: J(#C#S): *TOP

220: C: #C=0

230 *RIGHTSIDE

240 U: * DOWN

250 U: *CHAR

260C: #C=#C+1

270 J(#C#S): * RIGHTSIDE
280C: #S=#S+1

290C: #C=0

300 *xBOTTOM

310 U: *LEFT

320 U: *xCHAR

330C: #C=#C+1

340 J(#C < #S): * BOTTOM
350C: #C=0

360 * LEFTSIDE

370 U: xUP

380 U: *CHAR

390C: #C=#C+ 1

400 J(#C <#S): * LEFTSIDE
410C: #5=#S+1

420 J(#S<24): *START
430C: #A=#A + 1)\2

432 R: LESC, CNTRL, RT. ARROW, ESC, CNTRL, LFT ARROW
435C: $CH = e

440 J(#A =1): *ERASE

445 PA: 360

446): * BEGIN

450 *RIGHT

455 R: LESC, CNTRL, RT. ARROW1
460T: — \

470 E:

Appendix C 183

480 * DOWN

485 R: LESC, CNTRL, DOWN ARROW 1
490T: | \

500 E:

510 *LEFT

515 R: LESC, CNTRL, LFT ARROW 1
520 T: « \

530 E:

540 * UP

545 R: LESC, CNTRL, UP ARROW 1
550 T: 4 \

560 E:

570 * CHAR

580 T: $CH \

585 R: LESC, CNTRL, LFT ARROW 1
590 T: « \

600 E:

THIS PROGRAM HILL DRAMW A SPIRAL
USING ANY CHARACTER YOU CHOOSE .

HHAT CHARACTER WOULD YOU LIKE
To use? 7l

7222222722222227277227772727

772222777
DPRIPIPRIFY
7222227272
727777272727
222222222
: 22777772727
7272222227227

B R B R R R R

e o) o o) o

e e o ey g

Figure C-25 Character Spiral Program RUN

184 Appendix C

APPENDIX D

®

CONTROLLERS

CONCEPTS
INTRODUCED

SENSING

Sensing
Sensing the Position of the Joystick
Sensing the Joystick’s Trigger
Sensing the Position of the Paddle
Sensing the Paddle Trigger

The ATARI joysticks and paddles are called controllers. Controllers send informa-
tion to the computer. To use this information, a program must be able to sense it.

A controller sends its position to the computer. A joystick has 8 positions and the
paddle has 227 positions. When a program senses the information from a con-
troller, it receives a value corresponding to the position of the controller. This infor-
mation is stored in read-only sensing variables. (Read-only variables can only be
read; their values cannot be changed by the user.)

The value of a sensing variable is a number. A sensing variable is usable anywhere a
numeric variable can be used.

SENSING THE POSITION OF THE JOYSTICK

Up to 4 joysticks can be attached at one time. There are 8 sensing variables in
ATARI PILOT; 4 for the joysticks and 4 for the joystick’s triggers.
They are:
4 joystick sensing variables:
%)0, %)1, %)2, %)3
4 joystick trigger sensing variables:
%T8, %T9, %T10, %T11

The value of %J0, %)1, %)2, and %)3 depends upon the position of the joystick, as
shown below:

1
5 9
g
6 10
>

Figure D-1 Joystick Positions

Appendix D 185

This is how it works. Below are four diagrams, each representing a joystick. In each
diagram is an arrow showing the direction the joystick is pointing. Enclosed in a
box beneath the diagram is the value of that joystick’s sensing variable.

JOYSTICK #1 JOYSTICK #2
1 1
5 9 5 9
4 8 4 8
6 10 6 10
2 2
%)0 %1 3
JOYSTICK #3 JOYSTICK #4
1 1
5 9 5 9
4 <—® 8 4 8
6 10 6 10
2 2
%)2 & %)3 El

Figure D-2 Sample Joystick Sensing

Following is a short program that demonstrates how the joystick sensing variable
works:

Type in:

10 R: JOYSTICK SENSING

20 *START

30 T: JOYSTICK #1 POSITION = %)0
40 PA: 60

50): *START

186 Appendix D

® ®

oo oss o s BN WO G GI0 G BB BN OGN0 OO 0N BN G o% oW
®

Plug the joystick into controller jack #1.

RUN the program. Move the control handle around. As it moves you should see its

position value displayed every second. To sense the joystick more frequently,
change the PAUSE command (PA:)

SENSING THE JOYSTICK’S TRIGGER
The value of the joystick trigger sensing variables, %T8, %T9, %T10, and %T11
depends upon whether or not the trigger is pressed:

0 if trigger is up

1 if trigger is pressed

If pressure on the trigger is not sensed within 5/60 of a second after it was last pressed,
the trigger variable value becomes 0.

Below is an example of how the four trigger sensing variables work. The value in
the box is the sensing variable’s value:

JOYSTICK #1 JOYSTICK #2 JOYSTICK #3 JOYSTICK #4
TRIGGER TRIGGER TRIGGER TRIGGER
pressed not pressed not pressed pressed
% T8 |} % T4 % T10[] % 111K

Figure D-3 Sample Joystick Trigger Sensing

Example: Sensing a joystick trigger
100 J(%T8): *SHOOT

200 *SHOOT
(Branches to *SHOOT if the joystick #1 trigger is pressed.)

Following is a short program that demonstrates how the joystick trigger sensing
variables work. It is the same program used to sense the joystick variables except
for the changes in lines 10 and 30.

10 R: JOYSTICK TRIGGER SENSING
20 *START

30T: JOYSTICK #1 TRIGGER = %T8
40 PA: 60

50): #*START

Appendix D 187

SENSING THE POSITION OF THE PADDLE

Up to 4 pairs of paddle controllers may be connected to the computer at once;

making a total of 16 paddle sensing variables: 8 for the paddles’ positions, and 8 for
the paddles’ triggers.

8 paddle-sensing variables:

%P0, %P1, %P2, %P3, %P4, %P5, %P6, %P7
8 paddle/trigger-sensing variables:

%T0, %T1, %T2, %T3, %T4, %T5, %T6, %T7

The value of %P0 through %P7 depends upon the position of the paddle:

0 227

Figure D-4 Paddle Positions

The paddle postions range from 0 to 227 in a full clockwise rotation.

Below are two diagrams representing two paddles’ positions:

PADDLE #1 PADDLE #2
-——
\\
R
\
\ \
\ \
| 1
1 I
Vi)
/ /
/ #l
P
& 0 227
0 227
% Po [% P1

Figure D-5 Sample Paddle Positions

188 Appendix D

-

"o s s mu BB G OIN BN BN OB BN GIN O SN B mE on on

L 4

Example: Sensing the Paddle Position
225 J(% PO > 200): * DOWN

250 *DOWN =
(Branches to * DOWN if paddle #1 is turned nearly all the way clockwise.)

To see how %P0 through %P7 work, type in this program:

10 R: PADDLE SENSING

20T: *START

30T: PADDLE #1 POSITION = %P0
40 PA: 60

50): *START

RUN the program, turning the paddle clockwise and counterclockwise.

SENSING THE PADDLE TRIGGER

The paddle triggers, like the joystick triggers, have two values consisting of:

0 if trigger is up
1 if trigger is depressed

To create a Paddle Trigger Sensing Program, use the Paddle Sensing Program and

replace lines 10 and 30 with the following:

10 R: PADDLE TRIGGER SENSING
30T: PADDLE #1 TRIGGER = %T0

The following program does a ‘“paddle sketch,”” using the graphics screen and the

paddle controller sensing values. Type it in and give it a RUN:

10 R: * * * ATARI PADDLE-SKETCH * * %
20 R:

30 T: Plug the paddle controllers into controller jack #1.
40 T: Use the paddle on the right.
50T;

60 T: To draw: turn the paddle.

70 T: To pause: press the trigger.

80 T: To resume: press it again,

90 T: To stop: press BREAK.

100 T:

110 T: (press RETURN to continue)\
120 A:

130 R: BEGIN PROGRAM

200 *LOOP

210, U(%T0): * PAUSE

220, PA: 15

230, GR: DRAW 1

240, R: change direction

250, GR: TURNTO (36 * %P0/ 22)
260 =5 - % OOP

300 * PAUSE

310, PA: 10

320, E(%TO); Lresume on trigger
330 .] * PAUSE

Appendix D

189

APPENDIX E

PILOT {6}
ERROR CODES

S ex

130
131

135
136
138
139
140
141

142
144
145
146
147
160
161

162
163
164
165
167
169
170

tion i the

‘%enti

¢« Cn

¥

A nonexistent device was specified.

A READ command followed a WRITE command with the same device specified.
A WRITE command followed a READ command with the same device specified.
End of file condition.

Device timeout; device doesn’t respond. (See Note)
Device NAK. (See Note)

Serial bus framing error. (See Note)

Screen cursor out of range (READ from or WRITE to ‘S’).
Serial bus data frame overrun. (See Note)

Device DONE error. (See Note)

Disk read after write compare error. (See Note)
Function not implemented for device (e.g., OUT: K)
Insufficient RAM for operating the graphics screen.

Disk drive number error.

Too many concurrent disk files being accessed.

Disk is full (no free sectors).

Fatal system data 1/O error.

File number mismatch. (See Note)

Disk file naming error.

Disk file locked.

Disk directory full (64 files).

Disk file not found in directory.

Note: These errors indicate problems over which the user has no direct control:

they are due to hardware problems and should seldom be seen.

s

” |

an o

inf&Priv
‘in
i+ Ch

]
ow

nll

Appendix £ 191

LIMITED 90-DAY WARRANTY
ON ATARI® PERSONAL COMPUTER PRODUCTS

ATARI, INC. (“ATARI”) warrants to the original consumer purchaser that this ATARI Personal Computer Product (not including computer
programs) shall be free from any defects in material or workmanship for a period of 90 days from the date of purchase. If any such defect
is discovered within the warranty period, ATARI's sole obligation will be to repair or replace, at its election, the Computer Product free of
charge on receipt of the unit (charges prepaid, if mailed or shipped) with proof of date of purchase satisfactory to ATARI at any autho-
rized ATARI Service Center. For the location of an authorized ATARI Service Center nearest you, call toll-free:

In California (800) 672-1430 or write to: Atari, Inc.

Continental U.S. (800) 538-8547 Customer Service Department
1340 Bordeaux Drive
Sunnyvale, CA 94086

YOU MUST RETURN DEFECTIVE COMPUTER PRODUCTS TO AN AUTHORIZED ATARI SERVICE CENTER FOR IN-WARRANTY
REPAIR.

This warranty shall not apply if the Computer Product: (i) has been misused or shows signs of excessive wear, (ii) has been damaged by

being used with any products not supplied by ATARI, or (iii) has been damaged by being serviced or modified by anyone other than an
authorized ATARI Service Center.

ANY APPLICABLE IMPLIED WARRANTIES, INCLUDING WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE, ARE HEREBY LIMITED TO NINETY DAYS FROM THE DATE OF PURCHASE. CONSEQUENTIAL OR INCIDENTAL
DAMAGES RESULTING FROM A BREACH OF ANY APPLICABLE EXPRESS OR IMPLIED WARRANTIES ARE HEREBY EXCLUDED. Some
states do not allow limitations on how long an implied warranty lasts or do not allow the exclusion or limitation of incidental or con-
sequential damages, so the above limitations or exclusions may not apply to you.

This warranty gives you specific legal rights and you may also have other rights which vary from state to state.

DISCLAIMER OF WARRANTY
ON ATARI COMPUTER PROGRAMS

All ATARI computer programs are distributed on an *as is” basis without warranty of any kind. The entire risk as to the quality and
performance of such programs is with the purchaser. Should the programs prove defective following their purchase, the purchaser and
not the manufacturer, distributor, or retailer assumes the entire cost of all necessary servicing or repair.

ATARI shall have no liability or responsibility to a purchaser, customer, or any other person or entity with respect to any liability, loss, or
damage caused directly or indirectly by computer programs sold by ATARI. This disclaimer includes but is not limited to any interruption

of service, loss of business or anticipatory profits or consequential damages resulting from the use or operation of such computer
programs.

REPAIR SERVICE

If your ATARI Personal Computer Product requires repair other than under warranty, please contact your local authorized ATARI
Service Center for repair information.

IMPORTANT: If you ship your ATARI Personal Computer Product, package it securely and ship it, charges prepaid and insured, by parcel
post or United Parcel Service.

