Keyboard

Owner’s Manual

=
LLy
n
&
-
M ;

fteeeooerperoreprererererererrrererrerrs

IMPORTANT INFORMATION

The ATARI XE keyboard uses and produces radio frequency energy. If not installed
and used according to the instructions in this manual, the equipment may cause
interference with your radio and TV reception.

If you believe that this equipment is causing interference with your radio or TV recep-
tion, try switching the equipment off and on. If the interference problem stops when
the equipment is switched off, then the equipment is probably causing the interfer-
ence. You may be able to correct the problem by trying one or more of the following
measures:

* Adjust the position of the radio or TV antenna.

* Reposition the equipment in relation to the radio or TV.

* Move the equipment away from the radio or TV.

¢ Plug the equipment into a different electrical outlet so the equipment and radio
or TV are connected to separate branch circuits.

If necessary, consult your Atari dealer or an experienced radio-TV technician for
additional suggestions.

A helpful resource is How to Identify and Resolve Radio-TV Interference Problems,
repared by the Federal Communications Commission and available from the U.S.
Government Printing Office, Washington, DC 20402, Stock No. 004-000-00345-4.

WARNING: This equipment has been certified to comply with the limits for a Class B com-
puting device, pursuant to Subpart J of Part 15 of the FCC rules. These rules are
designed to provide reasonable protection from interference when the equipment is
used Iin a residential setting. However, there is no guarantee that interference will not
occur in a particular home or residence. Only those computing devices that are certified
to comply with the Class B limits may be attached to this equipment. Operation of non-
certified devices with this equipment is likely to result in interference with radio and TV
reception. Shielded cables should be used on all I/0 connectors (except the joystick and
mouse connectors); otherwise, radio Issl may d Class B limits.

Every effort has been made to ensure the accuracy of the product documentation
in this manual. However, because Atari Corporation is constantly improving and
updating its computer hardware and software, it is unable to guarantee the accuracy
of printed material after the date of publication and disclaims liability for changes,
errors, or omissions. Reproduction of all or any portion of this manual is not allowed
without the written consent of Atari Corporation.

ATARI, ATARI BASIC, Missile Command, XE, and XL are trademarks or registered
trademarks of Atari Corporation.

A ATARI

Copyright © 1987, Atari Corporation
Sunnyvale, CA 94086
All rights reserved.

CAAANNAANGANAAAAAGAQG00033G034303 3030

Keyboard
Owner’s Manual

=
LS
z
. &
2
=

o R O R A A A O O O el

00000008088 STTIIIIIIIIISIIIIIIIIIEG

TABLE OF CONTENTS

oboobooo0oo0ooooobooooooo

INTRODUCTION 1
Meet the ATARI XE Keyboard 1
Using ThisManual 1

CHAPTER 1: GETTING STARTED 3
Connecting the XEKeyboard 3
Turning On Your XE Game System and Keyboard 4

Turning on a System witha Disk Drive 5
Running Cassette Programs 5
Understanding Your Keyboard 6
Adding ATARI Graphicscovviinenn... 9
Adding an International CharacterSet 9

CHAPTER 2: EDITING BASIC PROGRAMS

WITH THE ATARI XE KEYBOARD 11
Auto Repeat Function 11
ErrorMessages ..., 11
Uppercaseand Lowercase 12
Graphic Symbols i, 12
Cursor Control ..., 13
Clearing the Screen, 13
Inserting i 14
Deleting ... 14
Tabs 15
Inverse Video i, 16
Miscellaneous Keyscccoiivvniennnnnns 16

CHAPTER 3: WRITING A SIMPLE BASIC PROGRAM 17
NEW: Clearing the Computer's Memory 17
LIST: Checking the Computer's Memory 17
RUN: Executing Instructions 18
LINE NUMBERING: CreatingOrder 19
ERROR MESSAGE: Computer Talk for
“IDon'tUnderstand” 19
PRINT: Creating Blank Lines 21
?: Abbreviation for PRINT 21
Logical LineLength 21
Screen Displayiiiiii i 22
Printing Graphic Symbols 22
PRINT “K”:ClearingtheScreen 22
[Control] [1]: Stopping the Screen Display 22

CHAPTER 4: CREATING AN INTERACTIVE BASIC LOOP

GOTO: AComputer's Map
Comma:ATabMarker
Semicolon: ComputerGlue
Colon: ASeparator
DIM and INPUT: Dimensioning and

Inputting String Variables
?:Courtesy of INPUT
String Variables in PRINT Statements
Inputting Numeric Variables

Input Loops

CHAPTER 5: PROCESSING RANDOM NUMBERS
AND MATHEMATICAL FUNCTIONS WITHBASIC
Numbers

The Computeras aCalculator
Random Numbers

CHAPTER 6: MAKING DECISIONS AND SOLVING
PROBLEMSWITHBASIC
IF-THENCommands ...,

Evaluating with IFFTHEN
Quiz Writing with IF-THEN

FOR-NEXT Loop: The Counting Loop

Starting Point
STEP: Counting Incrementally
Counting Backward
The FOR-NEXT “Sandwich” Loop
DElaY LOOPS: «xvis s smmmnms s semmas s smmman s v o
Sample Programsccouuun...

CHAPTER 7: PRODUCING SOUND AND GRAPHICS
WITHBASIC,
SoundingOff

Sounding Off with Variables
MakingMusic,

Colorful Graphics,

GraphicsModeOcouuun....
GraphicsModes1and2
GraphicsMode3covuun...
GraphicsModes5and7

|

LARAAAAAAAAA0AANARONAATAAAATAAT TP DA PD

JJJJIdd

J

¢ i I dddddddddd

APPENDIX A: SAMPLE BASIC PROGRAMS 61
APPENDIX B: BASIC RESERVED WORDS 75
APPENDIX C: ATASCII CHARACTER SET 81
APPENDIX D: ERROR MESSAGES 91
INDEX 95
CUSTOMERSUPPORT 99

J3dd

L %

r

‘v

JJJIJIIIIISIISIIIIIIIIddddddd.

2]

INTRODUCTION

UDOD0DO0O00D0DO0OO0DO0ODDoDOoOoOooOoOoao

Meet the ATARI XE Keyboard

The ATARI®XE™ keyboard turns your XE into a full-fledged
computer system!

With the keyboard attached to the console, you can use ATARI
BASIC™, the XE’s built-in programming language, to create your
own programs. And if you're a serious game player, adding the
keyboard gives you the option of playing the most sophisticated
computer games requiring keyboard interaction.

Along with other add-ons such as a disk drive or program
recorder, the keyboard lets you use game and applications
programs available on disk and cassette. Now you can take
advantage of word processors, database programs, and much,
much more—all with your XE system.

Using This Manual

It's easy to operate the XE keyboard and use ATARI BASIC,
and you'll get the best results if you work with the keyboard
and BASIC correctly from the start. This manual explains how
to do that in clear, non-technical language that computer novices
as well as seasoned experts can understand.

The chapters in this manual are designed to be read in sequence.
You begin by connecting the keyboard and go on to learn about
the keyboard’s features. The remaining chapters offer tutorials
on ATARI BASIC for the first-time BASIC programmer.

Chapter 1: Getting Started explains how to connect the XE
keyboard to the console and turn on the system. You'll also
learn how to use the keyboard to display special graphics
and international language characters.

Chapter 2: Editing BASIC Programs with the ATARI XE Key-
board explains how to,use the keyboard to enter and edit
ATARI BASIC programs.

Chapter 3: Writing a Simple BASIC Program shows you step-
by-step how to create your first BASIC program.

Chapter 4: Creating an Interactive BASIC Loop explains how
to use BASIC commands to automatically repeat a segment
of a program.

|

Chapter 5: Processing Random Numbers and Mathematical
Functions with BASIC explains how to do math calculations
within a BASIC program.

Chapter 6: Making Decisions and Solving Problems with
BASIC explains how to write programs that mimic the way
humans approach a decision or problem.

Chapter 7: Producing Sound and Graphics with BASIC
explains how to jazz up your BASIC programs with colorful
graphics, music, and other sounds.

Appendix A: Sample BASIC Programs offers a sampling of
BASIC programs for you to try.

Appendix B: BASIC Reserved Words is a list of BASIC com-
mands and descriptions of their functions.

Appendix C: ATASCII Character Set is a list of all character
sets available with the XE keyboard.

Appendix D: Error Messages is a list of BASIC error codes
and their meanings.

Index helps you locate terms and procedures explained in
the manual.

Customer Support tells you where to find more information
about your Atari computer products.

Paragraphs marked Note or Warning appear throughout the
manual. Notes contain useful hints and other information
relevant to the topic being discussed. Warnings alert you to
potential problems and suggest ways to avoid them.

Note: In this manual, characters enclosed by square brackets
([1) represent keys. Sometimes a procedure requires you to
use two keys at the same time. In that case, the keys are listed
in order. For example, [Option] [Select] means to press and
hold down the [Option] key and press the [Select] key to
perform a function.

LRAAAAANAAA0ANOOANONOONRANNAIANDTRD PN D

\)

AR

LI A3 LLdIddddddddddddde

Y

CHAPTER 1
GETTING STARTED

O00O00D00D0DO0OO0OO0O0O0000aO0
Connecting the XE Keyboard

With a keyboard connected to your XE game system, you can
use the XE's built-in programming language, ATARI BASIC, as
well as play Missile Command™ and other games that use
keyboard control.

Before you connect the XE keyboard, set up your XE game
system as described in the ATARI XE Game System Owner’s
Manual. Make sure the XE console is turned off (the indicator
light on the [Power] key will be off). Then plug the XE keyboard
cable into the keyboard port on the left side of the console.

XE Console

Keyboard Port

Keyboard Hooks

The back of the keyboard has wide hooks for connecting it to
the console. To connect the two units, tip up the front of the
keyboard and engage the hooks into the slots under the front
edge of the console.

XE Keyboard

Turning On Your XE Game System

and Keyboard

Once you've connected a keyboard, you can use either of the
XE's two built-in programs, ATARI BASIC or Missile Command.
To run BASIC, simply turn on your console (press the [Power]

key). With the keyboard connected, the XE loads BASIC instead
of Missile Command and displays it on screen.

READY

To load Missile Command, hold down the [Select] key when
you turn on the console. The Missile Command title screen
will appear.

MISSILE COMMAND
COPYRIGHT 1981 ATARI

1PLAYER SKIPO BONUS

S T T T T T T W T T T T T W W W W M M I B B M G R B B R O R O B /)

.
-
-

3.

JIIIIIIIISV LTSI IIIdddddd

v

Turning On a System with a Disk Drive

Connecting an Atari disk drive to the XE lets you use disk-
based games and applications. You can also start up your
system with a disk program instead of Missile Command or
BASIC.

To start up your system with a disk program when a disk drive
is attached, follow these steps:

1. Turn on your video display and disk drive.

2. When the drive's busy light goes off, insert the program
disk you're going to use into the drive and close the latch.

3. Turn on power to the console. If the program runs with
BASIC, simply press [Power]. If the program runs without
BASIC, hold down [Option] and press [Power].

The disk-based program will load, ready for you to start working.

Running Cassette Programs

Connecting an Atari program recorder to the XE lets you use

programs supplied on cassette tapes. To run a cassette pro-

gram, follow these steps:

1. Connect a program recorder to your XE system by
plugging its cable into the SIO port on the back of the
console. Be sure your keyboard is also connected.

2. With all system components turned off, insert the program
cassette into the program recorder.

3. Turn on your video display and any other peripherals.

4. If the program must be loaded from BASIC, press [Power]
to turn on your console. When the BASIC ready prompt
appears, type CLOAD and press [Return] on the
keyboard.

If the program does not require BASIC to run, hold down
[Start], then press [Power] to turn on your console.

5. After you hear a beep, press the [Play] key on the recorder,
then press the [Return] key on the keyboard. The program
will load.

6. If the program is a BASIC program, the ready prompt will
reappear. Type RUN to run the program.

Understanding Your Keyboard

The XE keyboard is like having three keyboards in one. It works
like a conventional typewriter keyboard but can also be used to
display graphics or international language characters.

1 R ‘:*%;: jlr :{]‘}} j{% {]}.:*{;;’Z;; T [Vmier Ty oaie Yo
s[lla w [|[[E” TR T Y v i o I e - u....... =
B Yo V8 Ve Vo e Vo Vo V®
= A s o (F G W K{I"F R E IS
B Ve VA Vo Vs V@ Ve Vo Um -
Shti Z X C v B‘lbf "] (Mg 17 s 1l
8 Vs Ve Vo Va Vo Vo \I/ QIT
e

= 5 >

Like a conventional typewriter keyboard, the letter, number,
punctuation, [Shift], [Tab], [Caps], and [Space Bar] keys all
work just as they do on a typewriter.

As a graphics character keyboard, you can display decora-
tive characters on screen.

As an international character keyboard, you can display char-
acters used in foreign languages.

In addition, the XE keyboard has a number of special keys for
controlling the XE and the programs you run on it. Though the
function of each key varies from program to program, the fol-
lowing sections describe how these keys are used in ATARI

BASIC and, where applicable, how they are typically used in

other programs. Refer to the manual that comes with each pro-
gram you use for information on program-specific key functions.

Some of these keys are used together (pressed simultane-
ously) to add extra functions without increasing the size of
the keyboard.

Refer to Chapter 2, Editing BASIC Programs with the ATARI
XE Keyboard, on using the special keys to edit ATARI BASIC
programs.

Note: Most keys on the XE keyboard automatically repeat
when held down for more than half a second.

eqaaaqaaaqaaaqaaaaqaqaqaaaaaaaaaananaaanaY YT

JOJJIITIITTTIEIIIIISSIIIIIISIIIING

E
| <]

[Help]

Sometimes used to display instructions about the currently
loaded program.

[Esc]
Often used to move from one menu to another within a program.

[Delete Bk Sp]

In most programs, including ATARI BASIC, deletes the char-
acter to the left of the cursor and moves the cursor one space
to the left. Does not close up the space left by the deletion.

[Break]
Usually interrupts the current computer activity.

[Return]

Tells the computer that you are done typing or editing a line
of text or program response.

[Caps]
Shifts between upper- and lowercase letters.

Sometimes used with the [Shift] key to change keyboard modes.

In ATARI BASIC, exits from the graphics character keyboard
mode.

The 2 Inverse Video Key
Turns the inverse video screen display on and off. Inverse

video reverses the colors (or black and white) used on a
screen display.

[Control]

Always used with another key to perform a special function.
In ATARI BASIC, prints graphics characters when used with
the alphabet keys.

[Control] [1]

Often used in programming languages to stop and restart a
scrolling screen display.

[Control] [2]
Sounds the XE’s buzzer. Your monitor or TV speaker must be
turned up for the speaker to be heard.

[Control] [3]

Produces an end-of-file (EOF) response to a program that is read-
ing input from the keyboard (used by advanced programmers).

[Control] [Insert]

Inserts a space between characters in many programs includ-
ing ATARI BASIC.

[Control] [Delete Bk Sp]

Deletes the character under the cursor and shifts the remain-
ing characters on the line to close up the empty space.

[Control] [@]
[Control] []
[Controll [(B]
[Controll [O]

Moves the cursor up, down, left, and right.

[Control] [Caps]

Locks the computer into Control mode. This is handy when
you need to press a series of keys used in conjunction with
the [Control] key.

[Shift]
Used in conjunction with letter keys to type uppercase letters.

[Shift] [Insert]
Inserts a blank line in ATARI BASIC programs.

[Shift] [Delete Bk Sp]
Deletes a line from an ATARI BASIC program.

[Shift] [Caps]
Locks the computer into uppercase mode for letter characters.

CANAANNNNAANNONOOONOOOOTANONRTANONRRRRXONRT

NN

.

JIJIIIIIIISIITIIIIIIIIIII,

e
U

Adding ATARI Graphics

The ATARI XE keyboard has 29 built-in graphics characters. You
can let your imagination run wild with these and create works of
art, eye-catching signs, borders around text, or other graphic
creations. To display the graphics characters on your screen,
press [Control] and any of the keys shown below. (The keys in
the illustration show the graphics characters on the front of the
keycaps.) If you intend to use several characters, it may be
more convenient to lock in the Control mode by pressing
[Control] and [Caps]. Press [Caps] to exit from the Control
Lock mode and return to standard keyboard characters.

Adding an International Character Set

When you type pages in a foreign language, you usually have
to go back and laboriously add accent marks, cedillas, and
other diacritical marks by hand. The ATARI XE makes typing
foreign language documents easy because it supplies these
marks for you.

International characters are available when you use ATARI
BASIC. The keyboard diagram on the following page shows the
international characters that are associated with the letter
keys. To activate the internationai characters, type the state-
ment below and press [Return].

POKE 756,204

10

Pressing [Control] and any of the keys shown below will
produce an international character instead of a graphics
character. To return to the graphics character mode and
normal keyboard utilities, type the following line and press
[Return]:

POKE 756,224

€CEAaNANQAONNOAAAONNOOANOOOORAAONORTAONTRTTRXQTT

|

ARRRERRRR

|

<

|

«

I

(O (\J kl d k\ k\ k\ d k\ d k‘ A\TA—J—J—&

CHAPTER 2
EDITING BASIC PROGRAMS
WITH THE ATARI XE KEYBOARD

DDDDDDDDDDDDDDDDD

No matter how well you type on a typewriter, you will need to
familiarize yourself with the special features of the ATARI XE
keyboard before you begin editing with ATARI BASIC.

Auto Repeat Function
Begin by typing the letter A:

A

Continue to hold down the [A] key and watch the rows of A's
appear. When a line is filled, the cursor automatically drops
down to the next row. There is no need to press [Return].

AA
AA
AA

You are using the built-in auto repeat function of the ATARI XE
keyboard. Most of the keys, including the [Space Bar], have
auto repeat. Did you hear a buzzer when the A's almost filled
the third line? That warning buzzer—a built-in function of ATARI
BASIC—indicates that the instruction line is getting too long.
An instruction line can be no more than three lines long.

Error Messages

Find the [Return] key and press it. You should see the word
ERROR on the screen, followed by the three lines of A's that
you typed. Your computer is interacting with you now. It is
telling you that it doesn’t understand what you are typing
because the rows of A's aren't part of the BASIC language.
Clear your screen by pressing [Return] until the Error mes-
sage no longer appears. To avoid getting Error messages while
you are following the directions for editing, do not press [Return]
until you are instructed to do so.

1

12

Uppercase and Lowercase

To make lowercase As, press [Caps] once and hold down
[A]. You should see this:

daaaaaaa

To return to uppercase letters, press [Caps] and type more
A's. You should see this:

AAAAAAA

Try typing a word beginning with A, such as ATARI. Type in
the following words, switching between upper- and lowercase
letters with the [Caps] key:

ATARI XE atari xe

Unlike a typewriter, the computer has separate keys to con-
trol capitalizing and shifting. In both the lowercase and the
uppercase modes, the symbol that appears is always the one
shown on the bottom of a key. To get the symbol on the top
half of a key, use the [Shift] key. There are two [Shift] keys
on the keyboard. You can use either one.

Using [Caps], [Shift], and [1], try typing this:

Experiment with different words, letters, and punctuation
marks.

Graphic Symbols

Many of the keys have two or three symbols on them. Each
letter key has a letter on the top side and a graphic symbol on
the front side. Some of the other keys have three symbols or
words, all on the top side. One function of a key is activated by
pressing the key only, another by pressing [Shift] and the
key, and the third by pressing [Control] and the key. Graphic
symbols are produced by pressing [Control] and the key.

To type a graphic symbol (the symbol on the front side of a letter
key), use the [Control] key on the left side of the keyboard.
First press [Control]. While you are still holding down [Control],
press a graphic symbol key. Then release both keys.

LR AN T WA A AW T T D W T W W W W W T T W W G G G I /)

000ddddddIIITTTIISIIIIIIIIIIIIIINY

Hold down [Control] and try typing ATARI. You should see this:
Fol—y

Only five characters appear on the screen. If you use the
[Control] key when you press a number key, no graphic symbols
appear.

Graphic symbols are most useful in making screen designs,
borders, and simple artwork. You can lock the keyboard into
graphic symbols by holding down [Control] and then press-
ing [Caps]. Pressing [Caps] just once will put you back into
the lowercase mode.

Cursor Control

The [Control] key is used most frequently for directing the
movement of the cursor. The cursor is the small white square
that marks your place on the screen. Find the [Up Arrow] key
next to letter P. The arrow, like the [Control] key, is outlined in
white. This white marking indicates that the arrow function is
activated only by using the [Control] key. Press [Control] and
then [Up Arrow] and watch the cursor move to the top of the
screen. When it reaches the top, the cursor returns to the
bottom of the screen and starts moving up again. Now try out
the [Down Arrow], [Right Arrow], and [Left Arrow] keys.
Remember to use the [Control] key.

Clearing the Screen

The [Control] key is frequently used in conjunction with the
[Clear] key to erase everything on the screen. Press and hold
[Control], then press [Clear]. This action should clear your
screen and return the cursor to the upper left corner of the
screen. Try it again.

Now fill up the screen with more letters, numbers, words, and
graphic symbols. This time use [Shift] with [Clear] to clear the
screen. Both [Shift] [Clear] and [Control] [Clear] empty the
screen and return the cursor to the upper left corner.

13

14

Inserting

The [Control] key is used with the [Insert] key to insert spaces
in a line. To practice this function, type:

IIATARI XE!!!

Position the cursor on top of the first letter A in ATARI. Holding
down [Control], press [Insert] 11 times. You should see this:

m ATARI XE!!!

Eleven blank spaces have been added in the middle of the line.
This function is very useful for inserting words. Using the cursor
control keys (the arrows), return to the space next to the third
exclamation mark on the line. Press [Space Bar] once and
type THIS IS AN in the blank spaces as shown below:

IITHIS IS AN ATARI XE!!!

To add blank lines, rather than individual blank spaces, hold
down [Shift], then press [Insert]. A whole new blank line will
appear on the screen. Insert a few more blank lines, but
don’t insert so many that you have a blank screen. Keep the
sentence on the screen so that you can proceed to the next
exercise.

Deleting

Using the [Control] key with the [Delete Bk Sp] key makes
deleting just as easy as inserting. Position the cursor on the T in
the word THIS. Holding down [Control], press [Delete Bk Sp]
11 times. Your screen should look like this:

IIATARI XE!!!

You now know how the [Control] and [Delete Bk Sp] keys
work. To discover what the [Delete Bk Sp] key does when
pressed by itself, position the cursor on the first A and press
[Delete Bk Sp] three times. Your screen should look like this:

ATARI XE!!!

When used alone, the [Delete Bk Sp] key moves the cursor
to the left, erasing as it goes, but it does not close up the
space. Using the [Control] key with the [Delete Bk Sp] key
erases the characters to the right and closes up the gap.

caaaananaaaqanaaaaenaaanaaaaanYYRNYm

\

J3IIIIITIIISIIIIIIIIIIdIdddd

§4dddd

Jd

The third function of the [Delete Bk Sp] key requires the use of

the [Shift] key: Pressing and holding [Shift] and then pressing
[Delete Bk Sp] deletes an entire line and returns the cursor to
the left margin. It does not matter where the cursor is positioned
on the line when you press [Shift] [Delete Bk Sp]; the entire
line is erased from the screen.

Tabs

On a blank screen move the cursor to the left margin and
type an asterisk. Press [Tab]. Every time the cursor stops,
type an asterisk. You should have six asterisks spaced
across the screen as shown below:

* * * * * *

Press [Tab] only and notice that it stops at the same preset
tab marks every time. The first preset tab is five spaces from
the left margin (a normal paragraph indentation), and the fol-
lowing tabs are eight spaces apart. Position the cursor on top
of the first asterisk and move it in three spaces. Press and
hold [Shift] and then press [Tab] to activate the [Set Tab]
function. Move the cursor back to the left margin, then press
[Tab]. The cursor jumps to the newly set tab position.

Continue to press [Tab]. It continues to go to all the preset
tab positions, in addition to the new one. When the cursor
jumps down to the next line, it ignores the new tab position.
(But on all the following lines the cursor will go to all the tab
positions—the new one and the preset ones.) Return the
cursor to the first asterisk and press [Tab]. The new tab mark
is still there.

Return the cursor to the left margin. Press [Tab] to move it to
the first tab mark (three spaces in). Use [Control] with [Tab]
to activate the [Clr Tab] function. Press [Tab] to get to the
next tab position and clear that one also. Move the cursor
back to the left margin of the same line and press [Tab] only.
The cursor should skip two tab positions. Continue pressing
[Tab] until the cursor drops to the next line. [CIr Tab] did not
clear the second tab position on this line. (However, both tab
positions have been cleared from all the following lines.)

15

16

Inverse Video

Type the word ATARI. Find the [Inverse Video] key P and
press it just once. Type ATARI again. Press [Inverse Video]
again and type ATARI again. Your screen should look like this:

ATARI EGLUI ATARI

Inverse video creates blue letters on a white background, the
inverse of the normal screen colors. This function is very useful
for highlighting letters in your programs. Just one touch of the
[Inverse Video] key changes the way letters are displayed.

Miscellaneous Keys

Another important key is the Escape key [Esc]. When you
press it once, nothing happens. When you press it twice or
more, this graphic appears on the screen E . Press [Return]
and try again. In later sections you will need to use the [Esc]
key.

The [Break] key is in the upper right corner. When you press
this key, the cursor drops one line and moves to the left mar-
gin. In Chapter 7, Producing Sound and Graphics with
BASIC, you will learn how to use the [Break] key.

When you press the [Help], [Start], [Select], and [Option]
keys, nothing happens. These keys are programmable and
often have functions in software programs.

After you press the [Reset] key, the screen will turn blank for a
second or two, and the Ready prompt will appear. The [Reset]
key restarts the system. You should use this key very sparingly
because, in many programs, the information that you are enter-
ing or have entered will be lost.

€CA0ANNANOANNNOOOOONOOHOONNOONONORTRTQQONDQMN

JddJd

¢ e

JJJdddd

.

JIdIIIIIIIITITIIIIIIIIIIII

-
U

CHAPTER 3
WRITING A SIMPLE BASIC PROGRAM

ooooooooooooooooad

Once you know your way around the computer keyboard, it's
gasy to write your first program. To begin, clear the screen
and make sure the cursor is on the left margin.

NEW: Clearing the Computer’s Memory
Type in the word NEW, then press [Return]:

NEW

NEW tells the computer to get ready for a new set of instructions
by erasing any old instructions that might be in the com-
puter’'s memory.

LIST: Checking the Computer’s Memory

To make sure nothing is in the computer’s memory, ask the
computer to list any instructions that it might be storing. Type
LIST on a line by itself and press [Return]:

LIST

If you typed NEW correctly, nothing other than the Ready
prompt appears on your screen. Now you can begin a new
program. Type in the first line of instruction to the computer.
Type in the line exactly as it appears below and press [Return]
after the last quotation mark:

10 PRINT "I HEARD OF A POET NAMED SAM"

All instruction lines in BASIC programs are numbered. When
you type this one-line program, make sure that the 1 and the
0 in the number 10 are numerals, not letters. If you used let-
ters instead of numbers, you will get an Error message.

A numbered instruction line in a program can be longer than
one line on the screen. When the cursor runs out of space on
one line, it automatically drops down to the next line. You should
press [Return] only at the end of an instruction line to tell the
computer that you are done typing the instruction and that it
should store the instruction in its memory. Nothing dramatic
happens when you press [Return]; the cursor merely returns
to the left margin so that you can begin another line in the
program.

17

18

RUN: Executing Instructions

To make the computer execute your program, you have to
type RUN. The RUN command tells the computer to carry
out its instructions. Type RUN and press [Return] to see
what happens:

RUN
| HEARD OF A POET NAMED SAM

The computer’s first and only instruction, line 10, was to print
the words inside the quotation marks. Clear the screen, type
RUN again, and press [Return]. The computer follows its
instruction again and prints:

| HEARD OF A POET NAMED SAM

Even though the instruction is no longer on the screen, the
computer remembers what to do. Your program is stored in
RAM (Random Access Memory), the programmable section
of the computer's memory. When you type LIST, the com-
puter shows on the screen all the instructions stored in the
RAM portion of its memory. Type LIST. Your screen should
look like this:

LIST
10 PRINT "I HEARD OF A POET NAMED SAM"

If your screen looks different, you might have forgotten to press
[Return] at the end of each entry or to type LIST on a line by
itself. Type in the line below, then give the RUN command:

20 PRINT "I MET HIM ONE DAY, AND TO MY DISMAY,”
RUN

The words enclosed in the quotation marks in both lines of
the program appear on the screen. Type LIST to see the
instructions that the computer has stored in RAM. Both lines
10 and 20 appear.

ceqaaaaqanaanannaaaonaanaannaqaOY*YTYTN

$SISSITSTITIITIISIIIIIIIIIIIIIIIID

. 4
v

LINE NUMBERING: Creating Order

Each instruction line in a BASIC program must have a num-
ber in front of it. The numbers are called “line numbers.” The
computer executes the instructions, beginning with the small-
est number and continuing through the program until all the
instructions have been carried out. The usual procedure is to
number lines by tens so that enough numbers are available
for inserting additional lines later, if desired. Try inserting a
line now. Add line 15 (to the following example) and instruct
the computer to run the program. Your screen should look
like the following program:

15 PRINT "WHOSE POEMS WERE THE TALK OF THE LAND.”
RUN

| HEARD OF A POET NAMED SAM

WHOSE POEMS WERE THE TALK OF THE LAND.

| MET HIM ONE DAY, AND TO MY DISMAY,

The computer automatically inserted line 15 between lines
10 and 20. Write another line:

30 PRINT "HIS BRAINS WERE SILICON-SAND.”
RUN
LIST

The RUN and LIST commands cause all four lines of PRINT
instructions to appear on the screen.

ERROR MESSAGE: Computer Talk for
“I Don’t Understand”’

PRINT simply tells the computer to print whatever is inside

quotation marks on the screen. The computer doesn’t care

what words or symbols are inside the quotation marks; the

words don’t need to be spelled correctly or make sense. Try
out the instructions below:

40 PRINT "AYE SAY HYE; U SAY BL”
RUN

Even when the quotation marks enclose a nonsense sentence
containing misspelled words, the computer does what it is told
to do. However, try misspelling PRINT as shown below and see
what happens:

50 PRIMT "I SAY HI; YOU SAY BYE.”

20

The computer sends you an Error message. The computer
verifies only those instructions that are outside the quotation
marks because those instructions are intended for the com-
puter. Instructions that are inside the quotation marks are
intended for you, so the computer copies them exactly. Move
to a blank line but do not clear the screen. Run the program
to see what happens.

Error message 17 appears at line 50, the line in which you
intentionally misspelled PRINT. Error message 17 is called the
“syntax error.” It indicates that the instructions were indeci-
pherable to the computer. (For a complete listing of Error
messages, see Appendix D.)

There are several ways to correct an Error message. The easi-
est solution is to move the cursor to the line that contains the
typing error. Place the cursor on the offending M in PRIMT and
change it to N. Press [Return]. (In this case, you can press
[Return] regardless of the cursor’s position on the line, even if
it is in the middle of the word PRINT.) No new Error message
appears this time. Clear the screen and run the program. The
screen should not show any Error messages.

Another way to correct an Error message is to erase the
offending line. To practice this technique, type another line
that has an intentional error. This time omit the quotation
marks in the PRINT statement below, then run and list the
program:

60 PRINT | ONCE HAD A PROGRAM CALLED BOZON
RUN
LIST

An Error message appears when you press [Return] and when
you try to run and list the program. To erase the offending line,
simply type the line number and press [Return]:

60
RUN
LIST

Now the program runs and lists without errors, although line
60 does not contain any instructions. The line | ONCE HAD A
PROGRAM CALLED BOZON has been erased. Typing the line
number and pressing [Return] erases a line entirely from the
computer’s memory. Type the line correctly as shown below:

60 PRINT "I ONCE HAD A PROGRAM CALLED BOZON"
RUN

caannnanaannaaaona0000O0O0MOORYTYYTN

ARRN]

J

RRRRRRAR R AR R R AP RN AR R AR R NRRY

l

PRINT: Creating Blank Lines

Inserting a blank line after the poem would make the poem
more readable. Type in the following instructions to create a
blank line between lines 30 and 40:

35 PRINT
RUN
LIST

When nothing follows the PRINT command, the computer
creates a blank line. Insert another blank line between lines
50 and 60. Use 55 for the line number and type only the word
PRINT after it.

?: Abbreviation for PRINT

You can save time and effort by substituting a question mark
(?) for PRINT. Try the next program line below:

70 ? "THAT RAN FROM DUSK UNTIL DAWN.”
RUN
LIST

The program runs the same with ? as with PRINT. The question
mark is just a convenient shortcut. For clarity, all the following
PRINT statements in this tutorial use the word PRINT, but you
can substitute a question mark.

Logical Line Length

Sometimes the guotation marks contain too many characters
to fit on one or two lines. Make sure the sound is audible on
your television or monitor before you type the following sample:

80 PRINT "IT WOULDN'T RESPOND TO ESCAPE, BREAK, CONTROL,
OR LIST, AND IT WAS STILL RUNNING WHEN | TURNED OFF THE
SWITCH.”

When the cursor reaches the third line, a buzzer sounds. The
buzzer indicates when you are approaching the maximum
length of an instruction line. An instruction line can be no
longer than three screen lines. This limit is called a “logical
line.” (You may wish to turn down the volume now.)

21

22

Screen Display

Words are often broken in awkward places when the cursor
reaches the end of a line on the screen. Also, the spacing
between words when you type in the program lines is different
from the word spacing when the computer runs out the pro-
gram. To avoid both of these problems, determine what you
want each line to look like and type separate PRINT statements

for each line. Retype the sentence in line 80 so that it appears
in a poem format:

80 PRINT "IT WOULDN'T RESPOND”

90 PRINT "TO ESCAPE, BREAK, CONTROL, OR LIST,”
100 PRINT "AND IT WAS STILL RUNNING”

110 PRINT "WHEN | TURNED OFF THE SWITCH.”
RUN

LIST

Printing Graphic Symbols

You can also use graphic symbols in PRINT statements to pro-
duce simple artwork. To set off the poem, type the lines below.
Use [Control] [J] and [Control] [H] to create the graphics:

58 PRINT " ["
115 PRINT " "

Print ‘““ K ”’: Clearing the Screen

You can make your program look even better by making sure
the screen is clear when you start. Type a line number,
PRINT, and the first quotation mark. Press [Esc] once lightly.
Then press either [Shift] and [Clear] or [Control] and [Clear].
A bent arrow appears on the screen. Type another quotation
mark and press [Return]. Then run and list the program:

5 PRINT "R "
RUN
LIST

[Control] [1]: Stopping the Screen Display

Now the program looks better, but it is too long for all the
lines to appear together on the screen. When the computer
lists the program, you can stop the lines as they move up
and off the screen by pressing the [Control] and [1]. Type.
LIST. Use two fingers on your left hand to press [Control]
and [1] and one finger on your right hand to press [Return].
[Control] [1] both starts and stops the LIST function.

ennnananaannaaaennannanaanaaOaORYQYNTN

-
<

r\rsruryu\-\ryx

<

JJJ33IT33ISIIEddddddIddd.

Jd

CHAPTER 4
CREATING AN INTERACTIVE
BASIC LOOP

OO0o0oDODOooOoooooooooobad

Loops tell the computer to go back and repeat instructions in
the program automatically. The GOTO command saves you
the trouble of typing the same instruction lines over and over
again. The DIM and INPUT commands allow you to interact
with your computer on a question-and-answer basis. Putting
these three commands together—GOTO, DIM, INPUT—lets
you have an ongoing conversation with your computer.

GOTO: A Computer’s Map

The simplest computer loop is the GOTO loop. GOTO is always
followed by a line number that tells the computer where to go
on the next command. You need just two commands to create a
loop. Type in the program below to produce an infinite loop:

NEW

110 PRINT "CONGRATULATIONS!”
120 GOTO 110

RUN

To break this infinite loop, turn off the computer or use the
[Break] key. When you stop the loop with the [Break] key, one
of the following messages appears:

STOPPED AT LINE 110
or
STOPPED AT LINE 120

The computer is telling you where it was when it received the
command to stop.

Comma: A Tab Marker

The GOTO loop puts out an endless amount of work with just two
lines of instruction. To make the program fancier, list your pro-
gram, position the cursor in the space next to the last quotation
mark, insert a comma, and press [Return]. Run the program and
watch the special effects:

LIST

110 PRINT "CONGRATULATIONS!",
120 GOTO 110

RUN

23

24

The comma acts like a tab. Each time the computer moves
down to the next line and prints CONGRATULATIONS!, it
moves to the next tab position. The result is a barber-pole
effect. Remember to break the loop with the [Break] key.

Semicolon: Computer Glue

A semicolon produces another kind of effect. List the pro-
gram, change the comma in line 110 to a semicolon, press
[Return], and run the program:

LIST

110 PRINT "CONGRATULATIONS!";
120 GOTO 110

RUN

The semicolon glues the PRINT statements together with no
space in between. To put some space between the words, go
back and edit line 110 so that it looks like this:

110 PRINT "CONGRATULATIONS! ~;
RUN

Colon: A Separator

The colon is a separator. It permits two instructions to be
placed on one line. Change the semicolon in line 110 to a
colon and add the PRINT statement below:

110 PRINT "CONGRATULATIONS!”: PRINT "YOU JUST WON THE
LOTTERY.”
RUN

As you progress in your programming ability, conserving space
in the computer’'s memory becomes important. Consolidating
commands on one line with a colon is one way to help save free
bytes of RAM memory. (A byte is one character of information.)
To see how much memory is conserved, type the following
statement:

PRINT FRE (0)

The computer will answer with a number. Reprogram line 110
so that the two PRINT statements take up two program lines:

110 PRINT "CONGRATULATIONS!”
115 PRINT "YOU JUST WON THE LOTTERY.”
PRINT FRE (0)

eannnannanaOanOOOO6O0OO0OO6000NOONTOORTQQAONTTR

ARN]

d . [_‘\ r‘\ r__&-_k‘-\r \T \r\r\rr\r&_kr\rar\ry\r\r\r S-\ru‘\-srys\-ur

Compare the two numbers of free bytes available. The sec-
ond number is two or three less than the first. Because sim-
plicity is more important to a beginning programmer than
conservation of computer memory, the program lines in this
section will usually contain only one statement per line. One
exception will be a PRINT statement that inserts a blank line
between segments of the program. Type in the new line below
to see the effect:

110 PRINT:PRINT "CONGRATULATIONS!”
RUN

DIM and INPUT: Dimensioning
and Inputting String Variables

The XE must be programmed to respond to a question. You
can use a PRINT command to ask a question and an INPUT
command to enter a response into the computer. However,
when you give the computer an answer, the computer must
know where to put it. It places it in a spot called a “variable”
in RAM memory. If the answer is composed of letters,
numbers, or both, it is called a “string variable.” Your ATARI
XE needs to know how much space you will need for an
answer so that it can reserve space for it. This process is
called “dimensioning the string variable.”

The DIM (dimensioning) command always accompanies the
INPUT command for string variables because DIM determines
the expected size of the answers. For variables, the size refers
to the number of characters, including blanks, that are needed.
You have to tell the computer the maximum number of spaces
that the answer can occupy.

Change the loop program to a program that asks a question
and expects an answer. There is no need to rewrite the pro-
gram,; just write in the new lines—Ilines 10, 120, 130, and
140—as shown below. (Typing in the new line 120 automat-
ically erases the old line 120.)

10 DIM ANSWERS (100)

110 PRINT: PRINT "CONGRATULATIONS!”

115 PRINT "YOU JUST WON THE LOTTERY.”

120 PRINT: PRINT "HOW DOES THAT MAKE YOU FEEL?"
130 INPUT ANSWERS

140 PRINT ”I THOUGHT YOU WOULD SAY THAT.”

RUN

25

26

Line 10 tells the computer to save enough space in its mem-
ory for an answer that is a maximum of 100 characters. The
variable in this program has been named ANSWER. The vari-
able is going to store letters and numbers, so it is a string
variable. String variables are designated by a dollar sign after
the last letter of the variable name.

Line 130 allows you to enter an answer. When you run the
program, the computer displays the question on the screen,
and you then type in your answer. That answer is stored in
the string variable called ANSWERS$. If the DIM statement,
line 10, was omitted, an Error message would occur, and the
INPUT statement wouldn’t work.

?: Courtesy of INPUT

Run the program again. Two question marks will appear on
the screen. The second question mark will be on the line next
to the left margin. List your program and notice that you typed
only one question mark in the program. The INPUT command
always puts a question mark on the screen for you. Type the
variation of line 120 below:

120 PRINT "HOW DOES THAT MAKE YOU FEEL";

Run the program and type in your response when the com-
puter asks its question. Now only one question mark appears,
and your answer immediately follows the question on the same
line. Create some more dialogue by dimensioning more string
variables and inserting more INPUT statements. The DIM state-
ments should be at the beginning of the program:

20 DIM DATES (25)

140 PRINT:PRINT "WHEN WOULD YOU LIKE TO COME AND PICK UP
YOUR PRIZE;

150 INPUT DATES

RUN

String Variables in PRINT Statements

The computer program now asks two questions but doesn’t
respond to your last answer. To get a response, you can place
the string variable in the PRINT statement in the following way:

160 PRINT "I'M SORRY, BUT OUR OFFICES ARE ALWAYS CLOSED
ON ";DATES;". TOO BAD!”

ecnnnnnannaananaaaaa060600000000O0OTTR

PRRERRN

e

A3 dddIdddd4d.

13

The semicolon glues the string variable between two phrases in
quotation marks. Run the program. If the words are not spaced
correctly, compare your line to the line above. You probably left
out a space after the N of ON or forgot the period and the space
before TOO BAD!. Those spaces are important. Practice with
another string variable input:

30 DIM NAMES (1)
170 PRINT "BY THE WAY, WHAT IS YOUR NAME";

180 INPUT NAMES

190 PRINT "WELL, "; NAMES; ", | BET YOU WOULD LIKE TO KNOW
HOW MUCH YOU WON. FIRST YOU HAVE TO ANSWER A QUESTION.”

Run the program. Even though you typed in a full name, the
computer printed only the first initial. That happened because
the area dimensioned in RAM memory for the name was too
small. Most people’'s names are longer than one character.
Change line 30 to a more reasonable number of spaces and
run the program:

30 DIM NAMES (25)
RUN

Inputting Numeric Variables

So far you have been working with alphanumeric string vari-
ables—variables composed of letters, numbers, or both. For
instance, the computer would accept the name R2-D2 or 007
as a string variable. However, the number name would be
used only as a name, not as a number in any math problems.
Now try some numeric variables that can be used in mathe-
matical calculations. Numeric variables do not need a DIM
command or a dollar sign. Enter the following program lines:

200 PRINT:PRINT "HOW OLD ARE YOU";

210 INPUT AGE

220 PRIZE=AGE*1000

230 PRINT:PRINT "YOU HAVE JUST WON $"; PRIZE;" FROM THE
LOTTERY. YOU CAN COLLECT DURING OFFICE HOURS.”

In this program, the age that you enter is stored in the numeric
variable called AGE. Line 220 creates another variable called
PRIZE. Line 220 allows the computer’s built-in calculator to cal-
culate the prize money, which is $1000 multiplied by the age of
the winner. (To the computer, * means multiply.) The program
does the math calculation for you and stores the answer in
PRIZE. Line 230, which places the numeric value inside the
PRINT statement in the same manner as string variables, tells
you what the answer is.

27

28

Input Loops

To repeat your conversation with the computer, add a loop com-
mand to the program again. A GOTO statement at the end will
make the computer repeat the program from the beginning. For
program readability, use an REM statement to show where the
main conversation portion of the program begins. A REM (remark)
statement functions like a label for the programmer. The
computer does not carry out REM commands but only prints
them when you list your program.

100 REM *** CONVERSATION LOOP ***
240 GOTO 100

The computer must return to line 100, rather than line 10,
because it cannot go back over the DIM statements for string
variables. If it loops over the same DIM statements, you will
receive an Error message.

cooa0000600000060660600600606000000000000°07

J

J

)

r

«

\

«

\"

Jddé

«

3333333333333 8dddddddddddd,

$

CHAPTER 5
PROCESSING RANDOM
NUMBERS AND MATHEMATICAL
FUNCTIONS WITH BASIC

OO00O0O000O0OO0ODOO0ODDODOOOO

Initially computers were developed to process numbers quickly
and easily. To take advantage of the computer’s ability to calcu-
late a math answer in a few milliseconds, you must know how
to speak to a computer.

Numbers

Type NEW to erase the previous statement; then type the
statement below and press [Return]:

PRINT 10

The computer should print the number 10. Make sure you use
the numerals 1 and 0, not letters. Practice printing the follow-
ing numbers:

PRINT 1000000000
PRINT -100000000

Use the minus sign (=) on the [Up Arrow] key to indicate
negative numbers. Do not use commas in numbers. Type the
statements below to see what happens when commas are
used:

PRINT 9,876,543,210
PRINT 9, 876, 543, 210

In both examples, the computer interprets the commas as
separators in a series of numbers. It spaces the numbers out
across the screen according to its preset tab positions. To the
computer, the 9 is not 9 billion, Just the number 9 followed by a
series of other numbers.

30

Scientific Notation

The computer may not understand commas when it prints
numbers, but it does understand exponents. Often it will auto-
matically translate a large number into an exponential form.
Try the numbers below:

PRINT 99999999999
PRINT 55555555555
PRINT 111111111111
PRINT -11111111111
PRINT -98765432112

These numbers are large or small enough that the computer
prefers to rewrite them in scientific notation. Familiarity with
scientific notation is not essential for understanding the com-
puter, or even this chapter.

Scientific notation expresses a large number as a number
between 0 and 10 multiplied by a power of 10. An exponent
specifies the power of 10. In the following example, E + 13
means that the exponent is 13:

2.5E +13 =2.5 x 10" =25000000000000

You can use exponents to talk to your computer. The caret
on the [Right Arrow] key is the symbol for exponents. You
must use the [Shift] key to print the caret. Try the following
computations:

PRINT 2
PRINT 2
PRINT 2
PRINT 2
PRINT 2

> > > > >

O BN -
=

The first notation is 2 to the first power; the second, 2 to the
second power; and so on. The last notation is 2 to the sixty-
fourth power, which is a large enough number that the com-
puter needs to express it in scientific notation.

Unless you are a physicist timing electrons in their orbits or
an astronomer calculating the size of the universe, you will
rarely need to use scientific notation. But if you ever do, the
computer is capable of doing your calculations with even
these often unwieldy numbers.

COOONNNNOANNNOOOOHLOOOHOOLOHANOONOOARAARAR QA XD

JIJJ

\

<

SLLTIIISIIVTATIISISSI3Idddd .

The Computer as a Calculator

The computer can perform the same functions as a calcu-
lator. Use the plus sign (+) on the [Left Arrow] key to type
the statement below:

PRINT 1+1

When you press [Return], the computer immediately gives you
an answer, just like a calculator. Invent your own addition prob-
lems now. Make the numbers big or small, and try a long series
of numbers to add up. Experiment with lots of variations.

Use the minus sign (-) on the [Up Arrow] key for subtraction
problems. Try the three versions of the same problem below:

PRINT 4 - 1
PRINT 4-1
PRINT4-1

The same answer appears for each example as soon as you
press [Return]. The spacing in math problems is unimportant
to the computer. Try out problems of your own. Make long
problems that combine subtraction and .addition functions.

The multiplication sign—the asterisk (*)—is located on the
[Right Arrow] key. The division sign is the slash (/) on the [?]
key. Type the following statements:

PRINT 2 * 2
PRINT (2*2)
PRINT 6 / 3
PRINT (6/3)

The computer not only understands the use of parentheses in
math problems but needs them when the problems become
complex. Notice what happens in this problem with and without
parentheses:

PRINT 3* (2+2)
PRINT 3*2+2

The answer to the first problem is 12; the answer to the second
problem is 8. In the first problem, the computer first adds 2 and
2, then multiplies by 3 to arrive at 12. In the second problem, the
computer multiplies 3 and 2 first, then-adds 2 to arrive at 8.
Whenever the computer encounters parentheses in a math
problem, it does the computations inside the parentheses first
and then finishes the rest of the calculations.

31

32

Try out the problems below to discover some other interest-
ing facts about how your computer works. See if you can
predict the answers before you press [Return]:

PRINT (2+2)*3
PRINT 2+42*3

In the first problem, the computer does the computation inside
the parentheses first. In the second problem, the computer
does the multiplication first, then the addition. The computer
executes these mathematical functions according to rules of
order: first, computations inside parentheses; second, expo-
nential functions; third, multiplication and division functions as
they appear in the problem from left to right; and last, addition
and subtraction functions from left to right. The rules are sum-
marized in the following table:

Order of Mathematical Execution

1. () Computations in
parentheses

2. A Exponential functions

3. * Multiplication In order of appearance
/ Division from left to right

4. + Addition In order of appearance
= Subtraction from left to right

Random Numbers

The computer can perform other functions that your calculator
most likely cannot do. For example, your computer can pick
random numbers for you. Type the program below:

NEW
10 PRINT RND (0)
20 GOTO 10

RUN

€c00006006000006066606060660660a0a006000060a00007017

AL SIS0 333 dddddddddd

RND is the command for generating random numbers. The
infinite loop in the program above will generate random num-
bers endlessly. Remember to break the loop with the [Break]
key. To make changes in the program, you can just list the
program and use the cursor keys to insert characters, rather
than retype entire lines. Try out the various programs below:

10 PRINT RND (1)
RUN

10 PRINT RND (123)
RUN

10 PRINT RND (50)
RUN

10 PRINT RND (50000)
RUN

All four variations of line 10 generate random numbers between
0 and 1. The decimal point is always before the first digitin a
random number. The few random numbers that have a number
on the left side of the decimal point are still between 0 and 1 but
are so small that the computer has written them in scientific
notation.

The number in the parentheses is called a “dummy variable.”
It does not matter what number is used as the dummy vari-
able, but it is important that the parentheses appear and that
they enclose something (any number or letter). For typing ease,
O is usually placed in the dummy variable position. Change line
10 again as shown below:

10 PRINT (RND(0) * 10)
RUN

10 PRINT (RND(0) * 100)
RUN

10 PRINT (RND(0) * 1000)
RUN

Each program generates a different range of random num-
bers. PRINT (RND(0) * 10) generates numbers up to 10
because the statement instructs the computer to multiply the
random number by 10. Multiplying by 10 moves the decimal
point over one place. In PRINT (RND(0) * 100), multiplying by
100 moves the decimal point over two places, and in PRINT
(RND(0) * 1000), multiplying by 1000 moves the decimal point
over three places. If you want, you can multiply by much larger
numbers to generate large random numbers.

33

34

Because long numbers with many digits after the decimal
point are cumbersome, the computer has an instruction that
tells it to print only integers. Integers are whole numbers
without any decimal points. The instruction INT tells the com-
puter to drop everything after the decimal point. Reprogram
the three variations of line 10 on the preceding page and
compare the results:

10 PRINT INT(RND(0)*10)
RUN

10 PRINT INT(RND(0)*100)
RUN

10 PRINT INT(RND(0)*1000)
RUN

The programs generate numbers in the same ranges as before,
but the numbers are more readable without the digits after
the decimal.

To generate numbers in a more specific range, try the exam-
ples below:

10 PRINT INT(RND(0)*3)
RUN
10 PRINT INT(RND(0)*12)
RUN
10 PRINT INT(RND(0)*25)
RUN

The program generates random numbers that are always one
less than the number by which they are multiplied. The first
line 10 generates the numbers 0, 1, and 2. To generate ran-
dom numbers 0, 1, 2, and 3, the program would be written
this way:

10 PRINT INT(RND(0)*4)
RUN

To generate only the numbers 1, 2, and 3, the program should
look like this:

10 PRINT INT(RND(0)*3)+1
RUN

To generate three numbers starting at 20, write the program
this way:

10 PRINT INT(RND(0)*3)+20
RUN

€ OO0 00O0O0O06OO0O00000O0ONOOAAQOQOTMN

ALV VTSI ddddd a0

Random Number Game

Random number programs are very flexible. You can even use
them to play games with your computer. Type the following
program. Remember that to get the bent arrow in line 5, press
[Esc], hold down [Shift] or [Control], and press [Clear].

NEW
1 REM *** NUMBER.GAM ***
5 PRINT "R ~

10 SECRETNUM=INT (RND(0) *3) +1

20 PRINT: PRINT "I AM THINKING OF A NUMBER, EITHER 1, 2,
OR 3. TRY TO GUESS IT.”

30 INPUT GUESS

40 IF GUESS=SECRETNUM THEN PRINT "YOU WON."

50 IF GUESS < >SECRETNUM THEN PRINT "YOU LOST.”

60 GOTO 10

Line 10 assigns the random number to the numeric variable
called SECRETNUM. Line 30 lets the user type in a guess and
assigns this number to the numeric variable called GUESS.
(Remember that numeric variables do not need to be dimen-
sioned or tagged at the end the way that string variables do.)
Line 40 compares the guess to the secret number. If they equal
each other, the computer prints:

YOU WON.

Line 50 also compares the guess to the secret number. If
they are not equal (the symbols < > mean not equal to), the
computer prints:

YOU LOST.

Line 60 makes a loop so that you can play the game again.
(Chapter 6 explains IF-THEN statements in more detail.)

35

36

Math Programs

The computer’'s mathematical functions can be used for work
purposes, as well as for play. If you were a chef who pre-
pared food for banquets, you might need a computer to expand
your recipes. For instance, suppose that you are trying to figure
out how many pounds of sea scallops to buy to serve Coquilles
St. Jacques at a dinner for 62 guests. Your recipe indicates that
112 pounds of scallops feeds 5 people. The program below
would tell you how many pounds to buy:

NEW

1 REM *** COQUILLE ***

10 PRINT "R "

20 GUESTS=62

30 POUNDSTOBUY=1.5/5 * GUESTS

40 PRINT:PRINT "BUY ";POUNDSTOBUY;” POUNDS OF SCALLOPS.”
50 END

The program produces the answer (18.6 pounds of scallops),
but a calculator would achieve the same result with less work.
To make the program more useful, allow a variation in the
number of guests by inserting an INPUT statement. Type in the
additional lines below:

15 PRINT:PRINT "HOW MANY GUESTS DO YOU EXPECT?"
20 INPUT GUESTS

Run the program several times, entering a different number
of guests each time. The amount of scallops needed changes
each time. For 200 guests, 60 pounds of scallops are required;
for 436 guests, 130.8 pounds. The INPUT function makes the
program more practical.

e a0 00060000606060606000000000000000000907

rkr\v kv‘krkvkr l.r

«

).

<«

JdJdddddddddddddddddddddd

4

CHAPTER 6
MAKING DECISIONS AND SOLVING
PROBLEMS WITH BASIC

oooboooooobooooboboooaoa

The IF-THEN and FOR-NEXT commands enable you to write
programs that mimic the way humans approach a decision or
a problem. Especially useful for games and logic puzzles, the
commands let you, the programmer, make the choices for
the computer.

IF-THEN Commands

To practice the IF-THEN statement, type in the following
program:

NEW
1 REM *** BRNPROBE.QZ ***
5 PRINT "R "

10 DIM RAINS (3)

20 PRINT:PRINT "YES OR NO, IF IT WERE RAINING OUTSIDE, WOULD
YOU GO OUT WITH. AN UMBRELLA"

30 INPUT RAINS

40 IF RAINS="YES” THEN PRINT "YOU HAVE A FORMIDABLE 10.”
50 IF RAINS="NO" THEN PRINT "YOU ARE A BORN RISK TAKER.”

The Brainprobe Quiz evaluates your answer. In line 40, if the
answer stored in the string variable RAIN$ is yes, the computer
prints the IQ message. If the answer is NO, the computer reads
the next line, line 50, and evaluates the string variable RAIN$ again,
then prints the risk-taker message. However, if you answer
neither yes nor no, the program just ends. The program has no
instructions for responding to an indefinite answer. Try it out.

One way to encourage an expected reply is to create an infinite
loop. Insert the additional line below:

60 GOTO 20

37

38

Evaluating with IF-THEN

Another way to encourage a correct answer is to provide
hints. The following program uses numeric variables to elicit
a correct response:

NEW
1 REM *** NUMBER.QZ ***
5 PRINT "R ~

10 SECRETNUM=INT (RND(0) *10)+1

20 PRINT:PRINT "GUESS A SECRET NUMBER BETWEEN 1 AND 10.”
30 PRINT

40 PRINT "YOUR GUESS”;

50 INPUT GUESS

60 PRINT

70 IF GUESS=SECRETNUM THEN PRINT "YOU GOT IT!" :END

80 IF GUESS <SECRETNUM THEN PRINT "TOO LOW. TRY AGAIN.”:
GOTO 40

90 IF GUESS>SECRETNUM THEN PRINT "TOO HIGH. TRY AGAIN.”:
GOTO 40

Lines 80 and 90 evaluate the guess as greater than or less
than the secret number. The PRINT statement provides a hint
that the next guess should be higher or lower. The GOTO
commands in lines 80 and 90 create an lnﬂmte loop if you
continue to guess incorrectly.

Ending the Program

The Number Quiz is programmed to stop only when you dis-
cover the secret number. When you enter the correct answer,
line 70 gives the computer the instruction to end. END stops
the program, and the Ready prompt appears on your screen.

Trapping Errors

If you accidentally enter a letter instead of a number for GUESS,
the computer sends an Error message, and the program ends
abruptly. Make an intentional error by typing a letter key or
pressing [Return] only. To avoid ending the program, you can
use a TRAP command to trap the Error message. Add the
lines below and run the program again:

45 TRAP 100
100 PRINT:PRINT "PLEASE ENTER A NUMBER ONLY.”
110 GOTO 30

caa0000na0nn0a000006000000000000000007

ARRRRRN)

BRI IIINIINIIIIIIIIIIIII

In line 45, the TRAP command tells the computer not to stop
the program when a mistake is entered and sends the com-
puter to line 100. Line 100 tells the computer 1o print the
directions for correcting the mistake. Line 110 returns the
computer to the place where it left off. The TRAP statement
always comes before the INPUT statement, and it always
contains the number of the line that will resolve the problem.

Quiz Writing with IF-THEN

A program can easily provide hints when the correct answer
is a number, including a date. The following program uses |F-

THEN statements and the TRAP command to evaluate guesses:

NEW
1 REM *** LOVELACE.QZ ***
5 PRINT " & ”

10 PRINT:PRINT "ADA LOVELACE, DAUGHTER OF THE POET LORD
BYRON, WAS MATHEMATICALLY BRILLIANT.”

20 PRINT

30 PRINT "IN WHAT YEAR DID SHE WRITE HER AMAZINGLY
ACCURATE DESCRIPTION OF THE FUTURE USES OF THE COMPUTER";
40 TRAP 200

50 INPUT GUESS

60 IF GUESS=1842 THEN GOTO 100

70 IF GUESS <1842 THEN GOTO 110

80 IF GUESS>1842 THEN GOTO 120

100 PRINT: PRINT "CONGRATULATIONS! YOU GUESSED THE YEAR
CORRECTLY." :END

110 PRINT:PRINT "THAT WAS TOO EARLY. TRY AGAIN.”:GOTO 20
120 PRINT:PRINT "THAT WAS TOO LATE. TRY AGAIN.”:GOTO 20
200 PRINT:PRINT "PLEASE ENTER A NUMBER ONLY.”

210 GOTO 20

In the Lovelace Quiz, the placement of the PRINT messages
associated with the IF-THEN statements is different from

their placement in the Brainprobe Quiz and the Number Quiz.

This difference illustrates that there is often more than one
way to achieve the same results in programming.

39

40

Computer Bugs

The TRAP statement makes the Lovelace Quiz more error
proof, but it still is not perfect. Because the computer evaluates
the date as a number, it will accept 1842.78 as incorrect but
184278 as correct. Most programs have “bugs,” or problems.
When you can figure out the bugs and fix them, you have really
learned to program. Every beginner encounters many bugs and
makes many mistakes. To become a better programmer, study
this manual and perhaps have a more experienced person look
over your shoulder occasionally. You will learn how to identify
bugs so that you can avoid similar mistakes in future programs.

FOR-NEXT Loop: The Counting Loop

You are already familiar with the infinite GOTO loop. Another
Kind of loop is the FOR-NEXT loop. The FOR-NEXT loop is a

counting loop, which is not infinite. Type NEW and enter the

following program:

NEW

10 FOR X=1 TO0 4
20 PRINT "POTATO"
30 NEXT X

RUN

POTATO appears on the screen four times. Change line 10 to
read like this:

10 FOR X=1 T0 7

When you run the program this time, the screen shows POTATO
seven times. The computer is looping seven times through lines
10, 20, and 30. FOR tells the computer how many times to loop,
and NEXT tells the computer to go back to the top and start
again. NEXT is similar to GOTO. X is a variable. You can use any-
thing to represent the variable. Try this name for the variable:

10 FOR NUM=1 T0 7
30 NEXT NUM

When you run the program, there is no difference from the
previous program. Change the variable name again:

10 FOR JKL=1 TO 7
30 NEXT JKL

cananannanaqaaaanaaa0nn00nannnaanqaaqaqaO0Tn

AL IIIIIIIIININIIIIISIdddddddddddd

JKL is a nonsense name for the numeric variable in the FOR-
NEXT loop. Run the program to see that it, too, runs the
same as before. Now add this line:

15 PRINT JKL,
RUN

The PRINT statement in line 15 shows the value of the variable.
(Put the comma in for readability.) Each time the computer
repeats the FOR-NEXT loop, the variable takes on the value of
the next number in the series specified in line 10. The first time,
the variable is 1: the second time, 2; and so on. The last number
in the FOR statement controls the number of times the com-
puter loops through the program. Change that number in line 10
as shown below:

10 FOR JKL=1 TO 50
RUN
10 FOR JKL=1 TO 200
RUN
10 FOR JKL=1 TO 500
RUN

Starting Point

List the program. The first number in the FOR line is the
starting point for the count, and the last number is the stop-
ping point. Even negative numbers can be the starting point
for the count. Try these variations for line 10:

10 FOR JKL=1 TO 5
RUN
10 FOR JKL=0 TO 5
RUN
10 FOR JKL=3 TO 5
RUN
10 FOR JKL=10 T0 5
RUN

41

42

STEP: Counting Incrementally

List the program, delete the PRINT statement in line 20 and
the comma in line 15, and run the program. The computer
counts and prints the numbers very quickly. Use the STEP
command to make the computer count in increments. Try the
program below:

10 FOR JKL=0 TO 500 STEP 5
RUN

10 FOR JKL=0 TO 500 STEP 2
RUN

10 FOR JKL=0 TO 500 STEP 100
RUN

10 FOR JKL=0 TO 500 STEP 7
RUN

The computer will obligingly count by any sequence you specify.

Counting Backward

The computer can count backward if you use the STEP —1
command and the proper sequence of numbers (from larger
to smaller) for starting and stopping the count. For example:

10 FOR JKL=500 TO 0 STEP -1

RUN

10 FOR JKL=10 TO 0 STEP -1
RUN

10 FOR JKL=-1 TO -19 STEP -1
RUN

The computer can count backward in increments also:
10 FOR JKL=500 TO 0 STEP -20

RUN

10 FOR JKL=500 TO 0 STEP -3
RUN

10 FOR JKL=0 TO -500 STEP -50
RUN

You can also instruct the computer to start and stop at any
number you desire:

10 FOR JKL=500 TO 300 STEP -10
RUN

10 FOR JKL=25 TO 0 STEP -1
RUN

caaanannannnaanaanaan0000nNO00ONOOOQOTOQON

B33 ISSIITIITIISSISIISSIIIIIIIIIT

Now you know how to instruct the computer to count forward
and backward, to count consecutively and incrementally, and
to start and stop at specified numbers.

The FOR-NEXT ‘“‘Sandwich’’ Loop

List your program. FOR is on the top line, and NEXT is on the
bottom line. Whatever you want the computer to do is sand-
wiched in between. Type in the lines below:

10 FOR JKL=1 TO 5
20 PRINT "AVOCADO”

The computer will carry out any instruction or number of
instructions between the FOR and NEXT statements the speci-
fied number of times. Have the computer print other words:

16 PRINT "CHEESE"

17 PRINT "MAYONNAISE"
18 PRINT "MUSTARD"
19 PRINT "TOMATO"

21 PRINT "BACON BITS”
22 PRINT "LETTUCE"

23 PRINT:PRINT

RUN

The computer prints and counts too quickly for anyone to
read the screen clearly. Nonetheless, it prints the PRINT
statement exactly five times as instructed in the FOR-NEXT
statement. Other instructions, such as math computations
and INPUT statements, can also be part of the FOR-NEXT
sandwich loop.

Delay Loops

Erase all the PRINT statements so that absolutely nothing is in
the FOR-NEXT sandwich loop, except the FOR and the NEXT
statements. Run the program and see what happens:

15
16
17
18
19
20
21
22
23
LIST
RUN

44

Nothing happens. Change the number in line 10 and watch
carefully again:

10 FOR JKL=1 TO 500
RUN

The Ready prompt takes a few seconds to appear. Change
line 10 again:

10 FOR JKL=1 TO 5000
RUN

This time the Ready prompt takes considerably longer to
appear. The computer is counting but not printing its calcula-
tions. The process is similar to counting silently to yourself.
The time it takes the Ready prompt to appear on the screen
is the time it takes the computer to count to 5000.

FOR-NEXT loops are excellent devices for keeping the com-
puter from moving on. In fact, FOR-NEXT loops are used so
frequently for this purpose that they are sometimes called
“delay loops,” and the common variable name is DELAY.
Rewrite the FOR-NEXT loop, using DELAY as the variable
name and different numbers in the FOR statement:

NEW

10 FOR DELAY=1 TO 300
20 NEXT DELAY

LIST

RUN

Sometimes the delay loop is sandwiched on the same pro-
gram line:

NEW
10 FOR DELAY=1 TO 300:NEXT DELAY
LIST
RUN

eaaaqaqaqaaaaaqaaqaaaaaeaaaananaananaqanaaqaaqaaaan

E R R R R R R R R R R R R SRR RN

Sample Programs

The programs below use FOR-NEXT loops in a variety of
ways. The first program uses the FOR-NEXT loop as a simple
delay loop to leave the word HI on the screen long enough to
be read before line 30 clears the screen:

NEW

1 REM *** DLAYLOOP ***

5 PRINT "R ~

10 PRINT "HI"

20 FOR DELAY=1 TO 800:NEXT DELAY
30 PRINT "R "

40 PRINT "BYE"

50 FOR DELAY=1 TO 800:NEXT DELAY

The next program uses a numeric variable in the FOR-NEXT
loop. It also uses a TRAP command that refers the computer
back to the previous line, giving no specific message about
the error:

NEW
1 REM *** HOWHIGH? ***

10 DIM AS (1), HHS(1)

20 PRINT " K "

30 PRINT:PRINT "HOW HIGH DO YOU WANT TO COUNT”:

40 TRAP 30

50 INPUT HH

55 HHS=STRS(HH): IF HHS="0" THEN GOTO 30

60 FOR COUNT=1 TO HH

70 PRINT COUNT

80 NEXT COUNT

90 PRINT :PRINT "PLEASE ANSWER (Y/N). WOULD YOU LIKE T0
COUNT AGAIN";

100 TRAP 90

110 INPUT AS

120 IF AS="Y" THEN GOTO 30

130 IF AS="N" THEN PRINT:PRINT "BYE":END

140 GOTO 90

45

46

The last program paraphrases an old rock ‘n’ roll song and
uses “nested” FOR-NEXT loops. A nested FOR-NEXT loop is
a smaller delay loop inside a larger FOR-NEXT loop. The pro-
gram also uses OR to create multiple conditions in the IF-
THEN statement:

NEW
1 REM *** CLOCKRCK ***
5 PRINT "R~

10
20
30
40
50
T0
60
70
80
90

FOR X=1T0 9

PRINT X;

PRINT " 0'CLOCK"

FOR DELAY=1 TO 500:NEXT DELAY

IF X=3 OR X=6 OR X=9 THEN PRINT "ROCK!": FOR PAUSE=1
500:NEXT PAUSE

NEXT X

PRINT:PRINT "WE'RE GOING TO ROCK"

PRINT "AROUND THE CLOCK"

PRINT "TONIGHT!”

ca0000600000006606000060600000000000000"7

IR R R R R R R RN SR R R RN AR AR NP AR AR RARNN]

CHAPTER 7
PRODUCING SOUND AND
GRAPHICS WITH BASIC

UbOob0Oo0o0D0D0ooDoooooooan

Creating sound and graphics on some computers is very compli-
cated, but not on the ATARI XE. The SOUND command in ATARI
BASIC, combined with some simple programming techniques, is
all you need. Sound and graphics add new dimensions to your
BASIC programs—anything from arcade-game zaps and cracks,
musical themes, and songs to colorful graphic displays.

Sounding Off

Your ATARI XE can play up to four sounds at one time. The four
sound registers, or voices, are numbered 0, 1, 2, and 3. To select
the first voice, you type SOUND 0; for the second, SOUND 1; for
the third, SOUND 2; and for the fourth, SOUND 3.

The SOUND command in ATARI BASIC controls four elements:
¢ Voice (0-3)

* Pitch (0-255)

¢ Distortion (0-14)

* Volume (0-15)

The pitch, or frequency, of the sound is determined by a
number from 0 to 255, giving you a total of 256 frequencies
from which to choose. The pitch value is the second number
in the SOUND command. SOUND 1,50 specifies the second
voice with a pitch of 50. Make sure that the volume is turned
up on your TV or monitor, then type

SOUND 1,50,0,8

Press [Return]. A great explosion, isn’t it? To turn off the
sound, you just turn down the volume on your television, or
type either of the commands below and press [Return]:

END
SOUND 1,0,0,0

The purity, or distortion, of the sound is determined by any
even number between 0 and 14. In the SOUND command,
the purity of the sound is the third number. Try this:

SOUND 1,50,10,8

47

48

The number 10 produces a pure tone without distortion. To
put in a little distortion, change the 10 to 06:

SOUND 1,50,06,8

The computer sounds as if it's ready for takeoff. Type END
before the neighbors start complaining.

The last number in the SOUND command controls the volume.
The number must be between 0 and 15. Number 8 is a good
number for most uses. You risk damaging your TV speaker and
your ears if you go above 12.

To try some four-part harmony, enter the following:

SOUND 0,50,10,8
SOUND 1,100,10,8
SOUND 2,150,10,8
SOUND 3,200,10,8

Type END to stop the chorus.

Sounding Off with Variables

Variables in SOUND commands add versatility to your pro-
grams. Using variables, you can program the computer to
change the voice, pitch, distortion, and volume of sustained
sounds. Enter and run the following program:

NEW

10 REM * SET VARIABLES FOR SOUND VALUES
20 VOICE=0:PITCH=100:TONE'=8:VOL=8

30 SOUND VOICE,PITCH,TONE,VOL

40 GOTO 20

RUN

To stop the sound, press [Break] and type END. To sustain a
sound, you need to repeat the SOUND command in the pro-
gram. Two common methods are a FOR-NEXT loop or a GOTO
loop like the one in the example above. The following program
uses a variable for the pitch in a FOR-NEXT loop to produce the
computer’s entire range of pitches:

NEW

10 REM * SOUND EFFECTS WITH FOR-NEXT LOOP
20 VOICE=0:PITCH=0:TONE=10:VOL=8

30 FOR PITCH=0 TO 255

40 SOUND VOICE,PITCH,TONE,VOL

50 NEXT PITCH

RUN

cOOOO0O0O00000O060066OO0000O0AO0O0O0QO0OAQAATAOTTN

ALLLIIISI ARG ddddddddddddddd

Varying the volume in a program produces a variety of sounds.
Change VOL =8 to VOL =0 and press [Return]. Then add the
following line:

35 VOL=INT(RND(0)* 16)

This line randomly selects a value between 0 and 15 for the
volume variable. Run the program to find out how randomly
changing the volume affects the sound.

Making Music

The SOUND command can produce musical tones as well.
The following scale includes musical notes and their pitch
values:

Note Pitch Note Pitch

High C 29 B 64
B 31 A 72
A 35 G 81
G 40 F 91
F 45 E 96
E 47 D 108
D 53 Middle C 121
C 60

Type and run the following program:

NEW

10 REM ** SIMPLE SONG

15 DIM PITCHS (1)

20 VOICE=0:PITCH=0:TONE=10:VOL=8
30 REM ** €=121:D=108:E=96:F=91
40 TRAP 300

50 PRINT "1 ~

60 PRINT "NOTES FOR SIMPLE SONG”

65 FOR NOTE=1 TO 8

70 READ PITCH

80 SOUND VOICE,PITCH,TONE,VOL

90 GOSUB 200

100 PRINT:PRINT PITCHS

110 FOR PAUSE=1 TO 500:NEXT PAUSE
120 SOUND 0,0,0,0

130 NEXT NOTE

140 GOTO 300

150 REM ** DATA FOR NOTES

160 DATA 121,121,108,96,96,91,108,121

49

50

200 REM ** PRINT NOTES

210 IF PITCH=121 THEN PITCHS="C"

220 IF PITCH=108 THEN PITCHS="D"

230 IF PITCH=96 THEN PITCHS ="E"

240 IF PITCH=91 THEN PITCHS ="F"

250 RETURN

300 PRINT: PRINT "END OF SIMPLE SONG":END
RUN

The GOSUB-RETURN and READ-DATA commands allow the
computer to produce different notes by inserting a series of
values for the variable PITCH. GOSUB tells the computer to
go to the “subroutine’” that starts at line 200 and continues
to line 250; the RETURN command sends the computer back
to the line immediately below the GOSUB line. The READ
command tells the computer to pick up an item in the DATA
line and insert it into the variable. The computer continues to
loop through the program until all the values in the DATA line
have been used.

The program also uses a FOR-NEXT loop to determine how
long the notes last. Using different FOR-NEXT loops, try mod-
ifying the program to produce whole notes, half notes, and
other kinds of notes.

Colorful Graphics

Your ATARI XE has 16 graphics modes encompassing 256
colors. To get you started, this section presents 6 different
modes and some of the most essential graphics commands.

The 16 basic colors and their corresponding number values
are shown below. (The colors vary somewhat according to
the adjustment of the hue control on your television set.)

0 Gray 8 Blue

1 Gold 9 Light Blue

2 Orange 10 Turquoise

3 Red-Orange 11 Green-Blue

4 Pink 12 Green

5 Purple 13 Yellow-Green
6 Red-Orange 14 Orange-Green
7 Blue 15 Light Orange

e 60600000060 060666060000606a000000a00 000770

B33EIISIIIIIINIIIISIIIdIIIIddddddd

The remaining 112 colors are obtained by adding a value for
luminance, or brightness. The luminance must be an even
number between 0 and 14. The higher the luminance number
the lighter and brighter the color.

Color registers are another important element in Atari

graphics. The color registers can be thought of as paint cans.

Each register can hold any of the 128 colors. Because there
are five registers, a maximum of five different colors can be
displayed. The five color registers are numbered 0, 1, 2, 3,
and 4.

SETCOLOR is an essential graphics command. The format is
SETCOLOR 2,10,8: the first number is the color register; the
second is the color number; and the third is the luminance.

Graphics Mode 0

The color registers function differently in different graphics
modes. Their functions in graphics mode 0 (the text mode)
are shown in the following table:

Default Colors Register Function

0 Not used
Light Blue 1 Brightness of text
Dark Blue 2 Background

3 Not used
Black 4 Border

The default colors are the colors that the computer automat-
ically uses unless you instruct it to use some other colors.
Using SETCOLOR to change colors, type in the following:

SETCOLOR 2,3,4

51

52

When you press [Return], the screen turns orange. The color
transformation occurs because in the SETCOLOR command,
the 2 represents the screen color, the 3 equals the color
orange, and the 4 indicates the brightness. Change the 4 to

a 6. The orange changes to a lighter orange. Change the 6 to
a 7. Nothing happens because only the even numbers between
0 and 14 define the luminance. If you type an odd number, the
computer uses the color of the previous even number. Change
the 7 to an 8 and watch the color get lighter yet. The following
program shows all 128 colors and luminances:

NEW

10 REM ** 128 ATARI COLORS

20 REM ** 16 COLORS

30 FOR COLOR=0 TO 15

40 REM ** 8 LUMINANCES

50 FOR LUMINANCE=0 TO 14 STEP 2
60 SETCOLOR 2,COLOR,LUMINANCE

65 PRINT "COLOR=";COLOR;"
LUMINANCE = " ; LUMINANCE

70 REM ** PAUSE TO SEE COLOR

80 FOR PAUSE=1 TO 600:NEXT PAUSE
90 NEXT LUMINANCE

100 NEXT COLOR

RUN

When the luminance reaches number 10, the text disappears
because the default luminance of the text is also 10. (The
default luminance is the luminance that the computer automat-
ically uses unless it is instructed to do otherwise.) Whenever
the background luminance is the same as the text luminance,
the text seems to disappear. Pay attention to background and
text luminances as you work more with color and luminance in
graphics mode 0. Type GR.0 (which is an abbreviation for
graphics mode 0) to restore the normal screen colors.

Change SETCOLOR 2 to SETCOLOR 4 in line 60 and run the
program again. Because register 4 governs the border, the
border changes color this time instead of the background
area. Type GR.0O to restore the normal screen colors.

caoaanaaanaaaaaaaaaaoaanao0qa00qa0q 00N

JddJ

.

AL IAdddddddddddddd.

Graphics Modes 1 and 2

Graphics modes 1 and 2 provide large-size text and color
options. Graphics mode 2 is identical to graphics mode 1
except that each character is twice as tall. Mode 1 has 24
horizontal screen lines, and mode 2 has 12. To enter graphics
mode 1, type the following:

NEW
10 GRAPHICS 1
20 PRINT #6;"GRAPHICS MODE ONE"

Run the program. Graphics mode 1 is in orange text at the top of
the screen. At the bottom is a blue strip containing the word
READY. The blue strip is the text window and displays text in
graphics mode 0. Type GR.0 to return to the text mode.

To print large text on the screen in graphics modes 1 and 2,
use PRINT #6; followed by quotes and then the text that you
want to print. This statement is a variation on the PRINT
command that you learned earlier.

Now list the program. Change MODE to mode and run the

program. MODE turns green. Type LIST 20. Using the Inverse

Video key P71, change mode in line 20 to el and run the

program. MODE now turns blue. List the line again and change
to [[IEZA and run the program. Now MODE is red.

Enter and run the following program:

NEW

10 REM ** COLORFUL TEXT
20 GRAPHICS 1

30 PRINT #6;" ORANGE"

40 PRINT #6;"green”

50 PRINT #6;" [N
60 PRINT #6;" ECTR"

70 PRINT "COLORFUL TEXT”
RUN

53

54

As you can see, graphics mode 1 is capable of displaying five
colors at the same time—four different text colors and one
background color. The colors can also be changed by using
SETCOLOR according to the guidelines outlined in the follow-
ing table:

Register Default Color Character Style Color# LUM
0 Orange Uppercase 2 8
1 Light Green Lowercase 12 10
2 Dark Blue Inverse uppercase 9 4
3 Red Inverse lowercase 4 6
4 Black Background 0 0

Type SETCOLOR 4,15,5. Register 4 (the background) changes
to a reddish orange. But now the dark blue text is difficult to
read. Use SETCOLOR to change it. According to the table,
register 2 controls the dark blue text. SETCOLOR 2,8,6 does
the trick by making the dark blue text a little bit lighter. Add
the following lines to the Colorful Text program:

100 FOR COLOR=0'TO 15

110 SETCOLOR 2,COLOR,8

120 FOR DELAY=1 TO 400:NEXT DELAY
130 NEXT COLOR

Run the program. The text window at the bottom of the
screen changes color along with the dark blue text because
register 2 governs the text window as well as the text display.

Getting Rid of the Text Window

Sometimes you may not want the text window to appear in
your programs. To eliminate the text window, simply add 16 to
the graphics mode number. Change line 20 to GRAPHICS 17
and delete line 70. The PRINT command will always print in
graphics mode 0. If you are in modes 1 or 2, if you don't
have a text window, and if you use the PRINT command and
the PRINT #6; command, the computer gets confused and
prints everything in mode 0. Add this line:

70 PRINT "WINDOW TEST”

Run the program to see what happens. If you use PRINT and
PRINT #6; you must use a text window to have mode 1 show
up on the screen.

caoaanannaannnanao0o00000000000000n000a0m

ARSIV SIS dIdddddddddddd

Delete lines 100, 110, 120, and 130. Run the program.
WINDOW TEST and then READY appear at the top of the
screen. List the program. Line 20 specifies mode 17 (mode 1
without the text window), but where is it? Replace line 70
with this line:

70 GOTO 70

When you run the program, the mode 1 screen comes back.
When you use mode 1 or 2 without a text window, you must
use a GOTO loop to keep the display on the screen or it will
flash by too fast to be seen. Pressing [Break] returns you to
mode 0.

To see an example of mode 2, list the Colorful Text program
and change line 20 to:

20 GRAPHICS 18

Graphics 18 stands for mode 2 plus 16 (no text window). Run
the program. Now you have LARGE colorful text.

To return the screen to its original colors, press the [Reset]
button or type SETCOLOR 2,9,4. You will not lose your pro-
gram when you press [Reset] in ATARI BASIC. However, that
feature may not apply to other languages or programs.

Graphics Mode 3

The graphics mode 3 screen is a grid consisting of 40
columns and 24 rows (20 if you use the text window). Enter
and run the foltowing program:

NEW

10 GRAPHICS 3
20 COLOR 1
30 PLOT 0,0
RUN

In the upper left corner is an orange block. The block, or
pixel, is one unit in the graphics screen. The COLOR com-
mand determines the color of the pixel. The number after the
COLOR command determines which color register to use for
the color of the pixel. The COLOR command does not place a
color in the register; SETCOLOR does that. The COLOR com-
mand simply selects which register to use to plot the pixel,
and the pixel becomes whatever color is in the register. To
make this clearer, change line 20 to:

20 COLOR 2

56

Run the program. The orange pixel is now light green. Think
of each pixel as a text character. In modes 1 and 2, you used
uppercase and lowercase characters and Inverse Video to
select the colors of the text. In modes 3 and above, use the
COLOR command to select the color for the pixels.

PLOT: Plotting Points on the Grid

PLOT is like the PRINT #6; command except that it prints
pixels instead of letters and numbers. COLOR is like the
upper/lower/inverse color selection method; it selects the
register. The default colors are orange, light green, dark blue,
and black. To change the color in any of the registers, use
the SETCOLOR command.

The color registers are like four buckets of paint. SETCOLOR
selects the color that goes into each of the four buckets, and
COLOR selects the bucket into which the paintbrush will be
dipped. PLOT determines where the brush will be positioned
on the screen.

DRAWTO: Connecting the Dots
Add this line:

40 DRAWTO 39,0

Run the program. A light green line goes across the top of
the screen. After plotting a pixel, use the DRAWTO command
to plot a second pixel and draw a connecting line between
the two. Line 40 tells the computer to plot a pixel at column
39, row 0, and then connect them. Now type:

DRAWTO 39,19

The command plots a pixel in the bottom right corner of the
graphics screen, just above the text window, and then draws
a line to connect pixel coordinates 39,0 to 39,19. Now type:

DRAWTO 0,19
To complete the rectangle, type:
DRAWTO 0,0
Now type GR.0 and list the program. Add these lines:

50 DRAWTO 39,19
60 DRAWTO 0,19
70 DRAWTO 0,0

cannan0000000000606000006606000060006000a0007

AL dAdININIdddddddddddddddddd

SETCOLOR and COLOR

When you run the program, the computer draws a green rec-
tangle again. To brighten up the screen, type:

35 COLOR 1
45 COLOR 2
55 COLOR 1
65 COLOR 3

Run the program to see a rectangle of many colors.

To change the color in a register, use SETCOLOR. You might
conclude that COLOR 1 selects the color for register 1 and
that COLOR 2 selects the color for register 2. Unfortunately,
that conclusion is not true. Mode 3 has four registers and
four colors—but the registers are numbered 0, 1, 2, and 4,
and the colors are numberéd 0, 1, 2, and 3. To keep things
straight, make a list:

Color 0 = Register 4 Black
Color 1 = Register 0 Orange
Color 2 = Register 1 Light Green
Color 3 = Register 2 Dark Blue

Type GR.0, list the program, and change COLOR 2 in line 20
to COLOR 1. COLOR 1 selects register 0, and orange is the
default color for register 0. To change the color in register 0,
use the SETCOLOR command. Add the following line:

15 SETCOLOR 0,4,6

When you run the program, the orange lines change to a
pinkish color. You have changed the color of the lines by
using SETCOLOR to change the paint in the bucket (the color
in the register), not by using COLOR to choose a different
bucket (register). The color luminance of register 0 also
affects the luminance of the text in the text window.

Now add:
42 SETCOLOR 1,2,8

The light green at the right side of the box turns gold. Add
one more line:

62 SETCOLOR 2,11,4

57

58

Run the program. Not only does the left side of the box
change to green, but the text window also turns green. There-
fore, register 2 also controls the color of the text window.

Now you should be able to use SETCOLOR and COLOR to
achieve a wide variety of colors and hues in your programs.

Graphics Modes 5 and 7

The differences among modes 3, 5, and 7 can be illustrated
very easily. Change line 10 to:

10 GRAPHICS 5

Run the program. The rectangle is much smaller because the
pixels are smaller. With the text window, the mode 3 grid has
39 columns and 20 rows. The mode 5 grid has 80 columns
and 40 rows.

Now change line 10 to:
10 GRAPHICS 7

When you run the program, an even smaller rectangle
appears. The grid in mode 7 is 160 columns by 80 rows.

The smaller the pixels, the higher the resolution. Of the three
modes, mode 3 is the lowest and mode 7 is the highest. Try
drawing a rectangle around the screen borders in modes 5
and 7.

The following program illustrates all that you have tried in
this section. Type it in and run it:

NEW

5 REM ** BILL'S BOX (PLOT AND DRAW)

10 PRINT "WHICH MODE (3,5,0R 7)";

20 LEFT=0:TOP=0

30 INPUT MODE

40 IF MODE=3 THEN RIGHT=39:BOTTOM =19
50 IF MODE=5 THEN RIGHT =79:BOTTOM =39
60 IF MODE=7 THEN RIGHT=159:BOTTOM =79
70 GRAPHICS MODE

80 PRINT " GRAPHICS MODE " ;MODE
90 FOR COUNT=1 TO 1000
100 COLOR 2

110 TRAP 240

115 REM ** DRAW BOX
120 PLOT LEFT,TOP

130 COLOR 1

140 DRAWTO RIGHT,TOP

Y W Tt T T T T T T T W Y Y " Y W W W W T W O W W Y T W

JIJIJ

-

AN I ddddddddd.

150 COLOR 2

160 DRAWTO RIGHT,BOTTOM

170 COLOR 1

180 DRAWTO LEFT,BOTTOM

190 COLOR 3

200 DRAWTO LEFT,TOP

205 REM ** DELAY LOOP

210 FOR DELAY=1 TO 500:NEXT DELAY
215 REM ** SIZE OF NEXT BOX

220 LEFT=LEFT+ 2:TOP=TOP+ 2:RIGHT =RIGHT - 2:BOTTOM =
BOTTOM - 2

230 NEXT COUNT

240 PRINT " THAT'S ALL FOLKS!”
250 END

Try using SETCOLOR to change the colors in the Bill’s Box

program.

59

)

Y

«

r\rrbrhrhr

-«

333333 ddd 3NN I Idddddddddd

APPENDIX A
SAMPLE BASIC PROGRAMS

DDDDDDDDDDDDDDDDD

Your ATARI XE can work miracles with a little help from your
imagination and the right programming techniques. These sam-
ple programs will show off the versatility of your ATARI XE and
motivate you to try writing some programs yourself.

Just type in each program exactly as written, pressing [Return]
at the end of every line. When you're finished, type the word
RUN, press [Return], and watch your ATARI XE come to life.

Note: When spacing in program lines is critical, a note at
the bottom of the program will specify the exact number of
spaces needed.

The Atari Choo-Choo

Sound effects are an Atari specialty. If you close your eyes
when you run Atari Choo-Choo, you might think you're on the
Marrakesh Express.

10 POKE 764,255:POKE 580,1 .

20 GRAPHICS 17:POKE 712,148: POSITION 1,10:PRINT #5: "THE
ATARI CHO0-CHOO”

30 FOR X=15 T0 0 STEP -1-P:SOUND 1,0,0,X

40 R=INT(RND (0)*300)+1

50 IF R=30 THEN SOUND 3,36,10,10:SOUND 2,4810.10:GOSUB
90:SOUND 3,0,0,0:S0UND 2,0,0,0

60 NEXT X:P=P+0.03

70 IF P>=5 THEN P=5

80 GOTO 30

90 POKE 77,0:POSITION 8,12: PRINT #6: "toot”:FOR A=1

TO 400: NEXT A:POSITION 8,12: PRINT #6:" ":RETURN

Note: Line 90 requires four blank spaces between the
guotation marks.

61

The Big Bang

Close the door before you run the next program so that you
won't disturb the neighbors.

10 POKE 764,255:POKE 580,1

20 GRAPHICS 17

30 FOR X=10 TO 100:SOUND 0,X,10,10:SOUND 1,X-2,10,8:SOUND 2,
X+2,10,12:NEXT X

40 SOUND 1,0,0,0:SOUND 2,0,0,0

50 POSITION 4,11: PRINT #6; "BAROOOOMMM!”

60 FOR DECAY=15 TO 0 STEP -0.5: FOR B=1 T0 20:SOUND 0,
100,B, DECAY: POKE 712,B:NEXT B:NEXT DECAY

70 GRAPHICS 1+32:POKE 712,148

80 POKE 752,1:PRINT : PRINT " Press Start to set off another
explosion.”

90 IF PEEK(53279)< >6 THEN GOTO 90

100 GOTO 20

Sort those Words

This sorting program puts words in their proper places—in
alphabetic order. Replace the words in the DATA statements
in lines 10 and 20 to sort words of your own choosing. Remem-
ber to separate each of your words with a comma.

10 DATA ATARI,DISK DRIVE,MONITOR,COMPUTER,TOUCH TABLET,
PRINTER,KEYBOARD

20 DATA SOFTWARE,PROGRAM RECORDER,WORD PROCESSING,
ACCOUNTING,DATA BASE,FUN

30 DIM Z$(1000),A(50),A$(20),5(10)

40 S(1)=1:FOR L=1 TO 9: S(L+1)=S(L)*3+1:NEXT L

50 TRAP 80:GRAPHICS 0:? "HERE IS THE LIST:"

60 READ AS:B=LEN(ZS):C=LEN(AS): ZS(B+1,B+1)=CHRS(C):? AS
70 2§(B+2,B+1+C)=AS$: 0=0+1:A(Q)=B+1:G0TO 60

80 ? :? "READY TO SORT...",:P=0

90 P=P+1:IF S(P+2)<0 THEN 90

100 FOR I=P TO 1 STEP -1:5=S(I): FOR J=S+1 T0 Q:L=J-S:A=
A(J): B=A(L)

110 IF ZS(A+1,A+ASC(ZS(A,A))>ZS (B+1,B+ASC(ZS(B,B)))
THEN 130

120 A(L+8)=B:L=L-S:IF L>0 THEN B=A(L):60TO 110

130 A(L+S)=A:NEXT J:NEXT 1:? : ? "SORTED."

140 FOR L=1 TO Q:A=A(L): ? Z$(A+1,A+ASC(ZS(A,A))):NEXT L

CcCaonann0nnnnanano000606000060000000000aM0

« krﬁrkrkrkrkrkrk:r

P

«

AN IIdddddddd,

Players and Missiles

This program uses a technique called Player Missile Graphics
to create a pink monster that moves across your screen in front
of a blue vertical bar. If you want to make the monster scoot
behind the blue bar, simply change line 150 to 150 POKE 623,4.

10 POKE 764,255:POKE 5801

20 GRAPHICS 3+16

30 FOR X=16 TO 24:FOR Y=0 TO 23: COLOR 3:PLOT X, Y:NEXT Y:
NEXT X

40 MEMTOP=PEEK(741)+256*PEEK(742) -1

50 PMBASE=INT((MEMTOP-1024) /1024) *1024

60 ADJTOP=PMBASE+384

70 POKE 742,INT (ADJTOP/256):POKE 741,ADJTOP-256*PEEK(742)
80 POKE 54279,PMBASE/256

90 POKE 53277,2

100 POKE 559,34+8

110 PO=PMBASE+512

120 FOR A=P0 TO P0+128:POKE A,0: NEXT A

130 FOR A=P0+60 TO P0+67:READ B: POKE A,B:NEXT A

140 POKE 53256,3

150 POKE 623,1

160 POKE 704,108

170 POKE 53248,PEEK(20) :60TO 170

180 DATA 60,126,129,153,255,36,66,129

Topsy-Turvy

When you run Topsy-Turvy, your screen will be filled with
strange writing. To straighten it out, simply press [Start]. To
mess things up again, press [Select].

10 POKE 764,255:POKE 580,1

20 GRAPHICS 18:POKE 712,128: POKE 755,5

30 POSITION 5,3:PRINT #6; "WELCOME T0"

40 POSITION 2,5:PRINT #6; "THE TOPSY-TURVY":POSITION 6,7:
PRINT #6; "WORLD OF”: POSITION 6,9

50 PRINT #6;"COMPUTERS”

60 IF PEEK(53279)=5 THEN POKE 755,5:POKE 712,128

70 IF PEEK(53279)=6 THEN POKE 755,1:POKE 712,99

80 GOTO 60

63

64

Type-a-Tune
This program assigns musical note values to the keys on the
top row of the keyboard. Press only one key at a time.

KEY MUSICAL VALUE
[Insert] B

[Clear] BP (or A#)

0 A

Ab (or G#)

G

Fé#(or GP)

F

E

Eb (or D#)

D
Db (or C#)
c

- N W b OO N O ©

10 DIM CHORD(37),TUNE(12)
20 GRAPHICS 0:? :? " TYPE-ATUNE PROGRAM”

25 7 :? "PRESS KEYS 1-9,0,<,> TO PRODUCE NOTES. ”;

27 7:7 "RELEASE ONE KEY BEFORE PRESSING THE NEXT.”

28 7:7 "OTHERWISE, THERE MAY BE A DELAY.”

30 FOR X=1 TO 37:READ A:CHORD(X)=A:NEXT X

40 FOR X=1 TO 12:READ A:TUNE(X)=A:NEXT X

50 OPEN #1,4,0, "K:"

55 OLDCHR=-1

60 A=PEEK(764):IF A=255 THEN 60

63 IF A=OLDCHR THEN 100

65 OLDCHR=A

70 FOR X=1 TO 12:IF TUNE(X)=A THEN SOUND 0,CHORD(X),10,8:
GOTO 100

80 NEXT X

100 I=INT(PEEK(53775)/4):IF (I/2)=INT(I/2) THEN 60

110 POKE 764,255:SOUND 0,0,0,0:0LDCHR=-1 :GOTO 60

200 DATA 243,230,217,204,193,182,173,162,153,144,136,128,121,114,
108,102,96,91,85,81,76,72,68,64,60

210 DATA 57,53,50,47,45,42,40,37,35,33,31,29

220 DATA 31,30,26,24,29,27,51,53,48,50,54,55

cennnananananaanaea000a0006066006606000000M

IV IIIIIIIIIISIIIIdIIIIIIIIIII

To play “Mary Had a Little Lamb,” press the following keys:

[51[3] (11 [3][S] [51[5] ([3]([3][3] [5][8][8]
[S1[3] M1 [3] 8] [51([5] ([51(3][3](5][3][1]

Note: Make sure you insert three spaces between THE and
NEXT in line 27.

Higher Math

Your Atari computer is a fancy calculator. When you enter
two numbers into the program below, the computer will tell
you their greatest common denominator. For example, if you
enter 690911 and 11214017, you'll soon discover that their
greatest common denominator is 53147.

10 ? CHRS(125):? "Enter two numbers. Press Return after each
entry.”

20 INPUT N1,N2

30 GOSUB 90

40 ? "Their GCD is ";:? AN

50 POKE 752,1:POSITION 10,10: ? "Press Start to continue.”
60 IF PEEK(53279)< >6 THEN GOTO 60

70 POKE 752,0:? CHRS(125) :GOTO 10

80 REM ****SUBROUTINE****

90 AN=0:POKE 195,0:TRAP 130: M=(N1>=N2)*N1+(N2>N1)*N2:
N=(M=N1)*N2+(M=N2)*N1

100 IF INT(N1)< >N1 OR INT (N2)< >N2 THEN RETURN

110 P=M-INT (M/N)*N:M=N:N=P

120 IF P< >0 THEN GOTO 110

130 AN=M*(PEEK(195)=0): RETURN

65

Computer Blues

This program generates random musical notes to “write”
some very interesting melodies for the programmed bass.

1 GRAPHICS 0:? :? " COMPUTER BLUES":?
2 PTR=1

3 THNOT=1

5 CHORD=1

6 PRINT "BASS TEMPO (1=FAST)";

7 INPUT TEMPO

8 GRAPHICS 2+16:GOSUB 2000

10 DIM BASE(3,4)

20 DIM LOW(3)

25 DIM LINE(16)

26 DIM JAM(3,7)

30 FOR X=1 TO 3

40 FOR Y=1TO 4

50 READ A:BASE(X.,Y)=A

60 NEXT Y

70 NEXT X

80 FOR X=1 TO 3:READ A:LOW(X)=A
90 NEXT X

95 FOR X=1 TO 16:READ A:LINE(X)=A:NEXT X
96 FOR X=1 T0 3

97 FOR Y=1 T0 7

98 READ A:JAM(X,Y)=A:NEXT Y:NEXT X
100 GOSUB 500

110 T=T+1

115 GOSUB 200

120 GOTO 100

200 REM PROCESS HIGH STUFF

205 IF RND(0)<0.25 THEN RETURN
210 IF RND(0)<0.5 THEN 250

220 NT=NT+1

230 IF NT>7 THEN NT=7

240 GOTO 260

250 NT=NT-1

255 IF NT<1 THEN NT=1

260 SOUND 2,JAM(CHORD,NT),10,NT*2
280 RETURN

500 REM PROCESS BASE STUFF

510 IF BASS=1 THEN 700

520 BDUR=BDUR+1

530 IF BDUR< >TEMPO THEN 535
531 BASS=1:BDUR=0

535 SOUND 0,LOW(CHORD),10,4

cennananannannaanaOeOnOO00060606060000N0O0QMN

ARSI SIS IIddIIdddIdIdd

540 SOUND 1,BASE(CHORD,THNOT),10,4
550 RETURN

700 SOUND 0,0,0,0

710 SOUND 1,0,0,0

720 BDUR=BDUR+1

730 IF BDUR< >1 THEN 800

740 BDUR=0:BASS=0

750 THNOT=THNOT+1

760 IF THNOT< >5 THEN 800

765 THNOT=1

770 PTR=PTR -1

780 IF PTR=17 THEN PTR=1

790 CHORD=LINE(PTR)

800 RETURN

1000 DATA 162,144,136,144,121,108,102,108,108,96,91,96
1010 DATA 243,182,162

1020 DATA 1,1,1,1,2,2,2,21,1,1,1,3,2,1,1
1030 DATA 60,50,47,42,40,33,29
1040 DATA 60,50,45,42,40,33,29
1050 DATA 81,68,64,57,53,45,40
2000 PRINT #6:PRINT #6:PRINT #6
2005 PRINT #6;" Computer”

2006 PRINT #6

2010 PRINT #6;" Blues”

2030 RETURN

67

68

United States Flag

This program involves switching colors to set up the stripes. It
uses graphics mode 7 plus 16 so that the display appears as a
full screen. Note the correspondence of the COLOR statements
with the SETCOLOR statements. For fun and experimentation
purposes, add a SOUND statement and use a READ/DATA

combination to add “The Star Spangled Banner” after line 470.

10 REM DRAW THE UNITED STATES FLAG

20 REM HIGH RESOLUTION 4-COLOR GRAPHICS, NO TEXT WINDOW
30 GRAPHICS 7+16

40 REM SETCOLOR 0 CORRESPONDS TO COLOR 1
50 SETCOLOR 0,4,4:RED=1

60 REM SETCOLOR 1 CORRESPONDS TO COLOR 2
70 SETCOLOR 1,0,14:WHITE=2

80 REM SETCOLOR 2 CORRESPONDS TO COLOR 3
90 BLUE=3:REM DEFAULTS TO BLUE

100 REM DRAW 13 RED & WHITE STRIPES

110 C=RED

120 FOR I=0 TO 12

130 COLOR C

140 REM EACH STRIPE HAS SEVERAL HORIZONTAL LINES
150 FOR J=0 TO 6

160 PLOT 0,1*7+J

170 DRAWTO 159,1*7+J

180 NEXT J

190 REM SWITCH COLORS

200 C=C+1:IF C>WHITE THEN C=RED

210 NEXT |

300 REM DRAW BLUE RECTANGLE

310 COLOR BLUE

320 FOR 1=0 TO 48

330 PLOT 0,1

340 DRAWTO 79,

350 NEXT I

360 REM DRAW 9 ROWS OF WHITE STARS

370 COLOR WHITE

380 K=0:REM START WITH ROW OF 6 STARS
390 FOR I=0 TO 8

395 Y=4+I*5

400 FOR J=0 TO 4:REM 5 STARS IN A ROW
410 X=K+5+J*14:G0SUB 1000

420 NEXT J

430 IF K< >0 THEN K=0:GOTO 470

440 REM ADD 6TH STAR EVERY OTHER LINE
450 X=5+5*14:G0SUB 1000

460 K=7

470 NEXT |

CcO660060660000000606606066006606660600606606066000n0000M

AAIAAIIS SIS ddddddddddddd

500 REM IF KEY HIT THEN STOP

510 IF PEEK(764)=255 THEN 510

515 REM OPEN TEXT WINDOW WITHOUT CLEARING SCREEN
520 GRAPHICS 7+32

525 REM CHANGE COLORS BACK

530 SETCOLOR 0,4,4:SETCOLOR 1,0,14

550 STOP

1000 REM DRAW 1 STAR CENTERED AT XY
1010 PLOT X-1,Y:DRAWTO X+1Y

1020 PLOT X,Y-1:PLOT X.Y+1

1030 RETURN

Igpay Atinlay

This short program converts words or sentences into pig Latin.
One word of caution, though; don’t enter any one-letter words
like A or I.

10 DIM A$(256):5=2

20 ? "Type in a word or sentence. Please don’t exceed three
lines of text.”

30 INPUT AS

40 FOR X=1 TO LEN(AS)

50 IF AS(X,X)=CHRS(32) THEN PRINT AS(S,X-1);A$(S-1,5-1);
"AY";" ";:8=X+2

60 IF X=LEN(AS) THEN PRINT AS(S,X); AS(S-1,8-1); "AY”
70 NEXT X

80 ? :? :? "THAT'S ALL FOLKS!”

Grapheek

Just type this one in and watch the graphics action.

10 DIM AS$(35)

20 GRAPHICS 1

25 TRAP 90

30 AS="THIS IS A GRAPHICS DEMONSTRATION."”
40 FOR 1=1 TO 33:? #6;AS(L1);

50 S=PEEK(53770)

60 SOUND 0,5,10,14

70 FOR DELAY=0 TO 100:NEXT DELAY

80 NEXT |

90 SOUND 0,0,0,0:END

Note: Make sure you insert two spaces between GRAPHICS
and DEMONSTRATION in line 30.

69

70

Esrever

The title of this program is simply the word REVERSE printed
in reverse. To print words spelled backward, just type in this
short program. After you run it, a question mark will appear
on your screen. Enter a word or a short sentence and let your
ATARI XE do all the work.

10 DIM AS(180)

20 PRINT "Enter a word or short sentence and press Return.”
30 INPUT AS

40 FOR X=LEN(AS) TO 1 STEP -1

50 PRINT AS(X,X);

60 NEXT X

70 PRINT :PRINT :GOTO 20

Protecting Your Program

Ever wonder how you could protect your programs from prying
eyes and quick fingers? A couple of programming tips can help
keep pilferers out of your programs.

First type in this program:
10 FOR X=1 TO 50:POKE 710,X: NEXT X:GOTO 10

To protect the program, add another program line to disable
the [Break] key. This line prevents someone from breaking
into the program and listing it while it's running. Also, if you
design a program that requires keyboard entry, disabling the
[Break] key protects against “finger slip,” that dreaded mishap
when your finger accidentally hits the [Break] key and brings
your program to a screeching halt.

Delete GOTO 10 from the colorful program and add this line:
20 POKE 16,64:POKE 53774,64:G0T0 10

Now run your new program and try to stop it by pressing the
[Break] key. You can't get into it.

To be effective, the POKE statements must be inserted in
your program after each graphics mode command.

ceaoa00n0000000060060006060660006000060600000000M

J

BAIIIIIdIININIdddddddddddddddddd.

Disabling the [Break] key has its limitations. Some smart pro-
grammer will figure out that he or she can break into your
program and list it by simply pressing the [Reset] key. To foil
this culprit, add this line to your program: :

5 POKE 580,1

Now when the inquisitive intruder presses [Reset], the flashing
colors program is purged from the computer’s memory—no
program, no listing! The POKE statement should always be at
the beginning of your program.

71

72

Sea Gull Over Ocean

This program combines graphics and sounds. The sounds are
not “pure” sounds; they simulate the roar of the ocean and
the gull’s cry. To get the symbols in line 20, use [Control] [G],
[Control] [F], [Control] [R], [Control] [R].

10 DIM BIRDS(4)

20 BIRDS="\/--"

30 FLAG=1:ROW=10:COL=10

40 GRAPHICS 1:POKE 756,226:POKE 7521

50 SETCOLOR 0,0,0:SETCOLOR 1,8,14

60 PRINT #6;" the ocean”

70 R=INT(RND (0)*11)

80 POSITION 17,17

90 FOR T=0 TO 10

100 SOUND 0,T,8,4

110 FOR A=1 TO 50:NEXT A

120 IF RND(0)>0.8 THEN FOR D=10 TO 5 STEP -1:SOUND
1,0,10,!NT(RND(0)*10):NEXT D: SOUND 1,0,0,0
130 GOSUB 200

140 NEXT T

150 FOR T=10 TO 0 STEP -1

160 SOUND 0,T,8,4

170 FOR A=1 TO 50:NEXT A

175 IF RND(0)>0.8 THEN FOR D=10 TO 5 STEP -1:
SOUND 1,D,10,8:NEXT D:SOUND 1,0,0,0

180 FOR H=1 TO 10:NEXT H

185 GOSUB 200

190 NEXT T

195 GOTO 70

200 GOSUB 300

210 POSITION COL,ROW

220 PRINT #6;BIRDS(FLAG,FLAG+1)

230 FLAG=FLAG+2:IF FLAG=5 THEN FLAG=1
240 RETURN

300 IF RND(0)>0.5 THEN RETURN

310 POSITION COL,ROW

320 PRINT #6;" "

330 A=INT(RND(D)*3)-1

340 B=INT(RND(0)*3)-1

350 ROW=ROW+A

360 IF ROW=0 THEN ROW=1

370 IF ROW=20 THEN ROW=19

cennnnnaoanananaananea0n006600006000606000000M

\r\rbrkrkr\rkr\:r

|

«

J

A3334ddddddddINIIIIIIIIII,

380 COL=COL+B

390 IF COL=0 THEN COL=1
400 IF COL>18 THEN COL=18
410 RETURN

Note: Two spaces are required between the guotation marks
in line 320.

Kinetic Art

Put colors in motion with a program that creates a rainbow of
continually moving lines.

10 REM KINETIC ART BY NEIL HARRIS
20 GRAPHICS 10

30 DIM A(3,50)

35 FOR L=0 TO 3:FOR M=0 TO 50:A(L,M)=0:NEXT M:NEXT L

40 HUE=INT(RND(1)*8-+1):POKE 704-+HUE,INT(RND(1)*8)*16+INT
(RND(1)*4+4)

50 X1=INT(RND(1)*80): X2=INT(RND(1)*80):Y1=INT(RND(1)*192):
Y2=INT(RND(1)*192)

60 COLOR 0:PLOT A(O,WHICH),A(1,WHICH):DRAWTO A(2,WHICH),
A(3,WHICH)

70 BOUNCE=BOUNCE-1:IF BOUNCE >0 THEN 90

80 BOUNCE=INT(RND(1)*10+10): BX1=INT(RND(1)*3-4):
BX2=INT(RND(1) *9-4): BY 1=INT(RND(1)*13-6): BY2=INT(RND(1) * 13- 6)
90 CHANGE=CHANGE-1:IF CHANGE>0 THEN 110

100 CHANGE=INT(RND(1)*10+5): HUE=INT (RND(1)*8+1):

POKE 704-HUE,INT(RND(1)*256)

110 COLOR HUE:PLOT X1,Y1:DRAWTO X2,Y2

120 A(0,WHICH)=X1: A(1,WHICH)=Y1: A(2,WHICH)=X2:A (3,WHICH)=Y2
130 WHICH=WHICH+1:IF WHICH>50 THEN WHICH=0

140 X1=X14BX1:IF X1<0 OR X1>79 THEN BX1=-BX1:G0TO 140
150 X2=X2+BX2:IF X2<0 OR X2>79 THEN BX2=-BX2:60T0 150
160 Y1=Y14BYL:IF Y1<0 OR Y1>191 THEN BY1=-BY1:GOTO 160
170 Y2=Y2+BY2:IF Y2<0 OR Y2>191 THEN BY2=-BY2:G0TO 170
180 GOTO 60

73

3300000044403 338ddddddddddddddddddd

APPENDIX B
BASIC RESERVED WORDS

ObOoo0ODobOo0o0oo0o0oooooogoao

Note: The period is mandatory after all abbreviated keywords.

Reserved Brief Summary of

Word Abbreviation = BASIC Statements

ABS Returns the absolute (unsigned)
value of the variable or expression.

ADR Returns the memory address of a

string variable.

AND Functions as a logical operator. The
expression is true only if both sub-
expressions joined by AND are true.

ASC Returns the numeric value of a
single string character.

ATN Returns the arctangent of a number
or expression in radians or degrees.

BYE B. Exits from BASIC and returns to the

resident operating system or con-
sole processor.

CLOAD CLOA. Loads data from the program
recorder into RAM.
CHR$ Returns a single string byte equiva-

lent to a numeric value between
0 and 255 in ATASCI| code.

CLOG Returns the base 10 logarithm of an
expression.

CLOSE CL. Closes a file at the conclusion of

- I/0 operations. Functions as an 1/0
command.

CLR Performs the opposite function of
DIM: undimensions all strings and
matrices.

COLOR C. Chooses the color register to be
used in color graphics work.

COM Performs the same function as DIM.

CONT CON. Stands for “continue.” Causes a

program to restart execution on the
next line after being stopped by the
[Break] key or encountering STOP.

75

76

Reserved
Word
CcOoSs
CSAVE

DATA

DEG

DIM

DOS

DRAWTO

END

ENTER

EXP

FOR

FRE

GET

GOSUB

GOTO

Abbreviation

DE.

DO.

DR.

GE.

GOS.

Brief Summary of
BASIC Statements

Returns the cosine of the variable or
expression in degrees or radians.

Outputs data from RAM to the pro-
gram recorder for tape storage.

As part of the READ-DATA combina-
tion, identifies the succeeding items
(which must be separated by
commas) as individual data items.

Tells the computer to perform trig-
onometric functions in degrees
instead of radians. (The default
measurement is in radians.)

Reserves the specified amount of
memory for matrix, array, and string
variables. (All string variables,
arrays, and matrices must be dimen-
sioned with a DIM statement.)

Stands for “Disk Operating
System.” Causes the menu to be
displayed. (See DOS manual.)

Draws a straight line between a
plotted point and a specified point.

Stops program execution; closes

files; turns off sounds. May be used
more than once in a program. (CONT
can be used to restart the program.)

Stores data or program in untoken-
ized (source) form. Functions as an
[/O command.

Returns e (2.7182818) raised to a
specified power.

Used with NEXT to establish FOR-
NEXT loops. Introduces the range
that the loop variable will operate in
during the execution of the loop.

Returns the amount of remaining
user memory in bytes.

Used mostly with disk operations to
input a single byte of data.

Branches to a subroutine beginning
at a specified line number.

Branches unconditionally to a speci-
fied line number.

ennanannannanannana0nO6600006000000000M0

333NN IddddIddddIddd

Reserved
Word

GRAPHICS

INPUT

INT

LEN

LET

LIST

LOAD

LOCATE

LOG

LPRINT

NEW
NEXT

NOT

NOTE

Abbreviation
GR.

LE.

LO.
LOC.

LP.

Brief Summary of
BASIC Statements

Specifies one of the 16 graphics
modes. (GR.0 can be used to clear
the screen.)

Causes conditional branching or the
execution of another statement on
the same line (only if the first expres-
sion is true).

Causes the computer to ask for input
from the keyboard. Execution contin-
ues only when the [Return] key is
pressed after data has been input.
Also functions as an |/O command.

Returns the next lowest whole
integer below a specified value.
(Rounding is always downward, even
when the number is negative.)

Returns the length of the specified
string in bytes or characters. (One
byte contains one character.)

Assigns a value to a specific variable
name. (LET is optional in ATARI
BASIC and can be omitted.)

Displays or otherwise outputs the
program list.

Inputs from a disk into the computer.

Stores in a specified variable the
value that controls a specified
graphics point.

Returns the natural logarithm of a
number.

Commands the line printer to print a
specified message.

Erases all contents of user RAM.

Causes a FOR-NEXT loop to termi-
nate or continue, depending on the
particular variables or expressions.
(All loops are executed at least
once.)

Returns a 1 only if the expression is
NOT true; returns a 0 if it is true.

Used only in disk operations. (See
DOS manual.)

77

Reserved

Word Abbreviation
ON

OPEN 0.
OR

PADDLE

PEEK

PLOT PL.
POINT P.
POKE POK.
POP

POSITION POS.

PRINT PR. or ?
PTRIG
PUT PU.
RAD

78

Brief Summary of
BASIC Statements

Used with GOTO or GOSUB for
branching purposes. (Multiple
branches to different line numbers
are possible, depending on the value
of the ON variable or expression.)

Opens the specified file for input or
output operations.

Used as a logical operator between
two expressions. If either one is true,
a 1 is evaluated; if both are false, a
0 results.

Returns the position of the paddle
game controller.

Returns the decimal form of the con-
tents of a specified memory location
(RAM or ROM).

Plots a single point at a specified X,Y
location.

Used only in disk operations.
(See DOS manual.)

Inserts the specified byte into the
specified memory location. May be
used only with RAM.

Removes the loop variable from the
GOSUB stack. Used when departure
from the loop is made in an other-
than-normal manner.

Sets the cursor at a specified screen
position.

Causes output from the computer to
the specified output device. Func-
tions as an I/0 command.

Returns the status of the trigger but-
ton on a game controller.

Causes output of a single byte of
data from the computer to the speci-
fied device.

Tells the computer to give informa-
tion in radians, rather than in
degrees, for trigonometric functions.
(The default measurement is
radians. See DEG.)

eanananaanaaaaaanennO6O0O0OOO0OOO0O0QQOQMN

JR R 0 W U S I I)

Reserved
Word

READ

REM

RESTORE

RETURN

RND

RUN

SAVE

SETCOLOR

SGN

SIN

SOUND

SQR

STATUS

STEP

STICK

STRIG

Abbreviation
REA.

RES.

RET.

RU.

SE.

SO.

ST.

Brief Summary of
BASIC Statements

Reads the items in the DATA list
and assigns them to specified
variables.

Stands for “remarks.” Does nothing
but allows comments to be printed in
the program list for the program-
mer’s future reference. REM state-
ments are not executed.

Allows data to be read more than
once.

Returns the computer from a sub-
routine to the statement immediately
following the one in which GOSUB
appears.

Returns a random number between
0 and 1, but never 1.

Executes the program; sets normal
variables to 0; undimensions arrays
and strings.

Causes data and programs to be
recorded on disk under the filespec
provided with SAVE. Functions as an
I/O command.

Stores hue and luminance color data
in a particular color register.

Returns +1 if the value is positive; 0,
if zero; -0, if negative.

Returns the trigonometric sine of a
given value in degrees or radians.
Controls register, pitch, distortion,
and volume of a tone or note.
Returns the square root of a speci-
fied value.

Calls status routine for a specified
device.

Used with FOR-NEXT. Determines
the quantity to be skipped between
each pair of loop variable values.

Returns the position of the stick
game controller.

Returns 1 if stick trigger button is not
pressed; 0, if pressed.

79

80

Reserved
Word

STOP

STR$

THEN

T0

TRAP

USR

VAL

XIO

Abbreviation
STO.

Brief Summary of
BASIC Statements

Causes the program to stop but does
not close files or turn off sounds.

Returns a character string equal to
the numeric value given. (For
example, STR$(65) returns 65 as a
string.)

Used with IF. If the expression is
true, the THEN statements are
executed. If the expression is false,
control passes to the next line.

Used with FOR, as in “FOR X = 1
TO 10.” Separates the loop range
expressions.

Takes control of the program in case
of an INPUT error and directs execu-
tion to a specified line number.

Returns the results of a machine-
language subroutine.

Returns the equivalent numeric
value of a string.

Used with disk operations (see DOS
manual) and in graphics work. Func-
tions as a general I/O statement.

caaa06000000066060606000060000000000A00GQM

R R R R R R R R R R RN ARARRRAR AN AR AR AN

APPENDIX C

ATASCII CHARACTER SET

OD0DO0D0DD0OO0OO0OO0O0DOoOoDoooOoooao

Decimal
Code

0

O © © N O 0O b~ W N =

ik

=&
w

12
13
14
15
16

b4

Notes

Hexadecimal
Code

0

O W » © ® N O OO~ W N =

QT 2 M m O

ATASCII
Character

/(e

I EII00 (0] 7w (AN 2

Keystrokes
Control
Control A
Control B
Control C
Control D
Control E
Control F
Control G
Control H
Control
Control J
Control K
Control L
Control M
Control N
Control O
Control P

Control Q

European
Character

a

c

o O m Z

o

o

cC: o

an»

ATASCII stands for ATARI ASCII. Letters and numbers have the same values

as those in ASCII, but some of the special characters are different.

Except as shown, the characters from 128 to 255 are the reverse colors of

110127

Add 32 to the uppercase code to get the lowercase code for the same letter.

To get the ATASCII code, tell the computer (direct mode) to PRINT ASC
(*—_"). Fill the blank with a letter or a character. You must use the quotes.

The normal display keycaps are shown as white symbols on a black back-
ground; the inverse keycap symbols are shown as black symbols on a white

background.

82

Decimal
Code

18
19
20
21
22
23
24
25
26
27
28
29
30
31

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

Hexadecimal
Code

12
13
14
15
16
17
18
19
1A
1B
1C
1D
1E
1F
20
21
22
23
24
25
26
27
28
29
2A
2B
2C
2D
2E

ATASCII
Character

-]
[+]
(o)
o]

FIERFN HE HFH FEEE SO ® E R = A

Keystrokes
Control R
Control S
Control T
Control U
Control V
Control W
Control X
Control Y
Control Z
Esc Esc

Esc Control -
Esc Control =
Esc Control +
Esc Control *
Space bar
Shift 1
Shift 2
Shift 3
Shift 4
Shift 5
Shift 6
Shift 7
Shift 9
Shift 0

*

+

European
Character

o

o

o

CTTN00000Q00060066606666606066660606000 060 0QM

83

European
Character

« m O 0 w w @ T . =5 ¥

Keystrokes
’
<
>
Shift /
Shift 8

EEEHAVEIIPEEEDE DD EEEE

-

ATASCII
Character
o
)

E

.m&FO A O T v O N~ 0 O < @O O 0O

@ — W L O —~ o O < 0w ©O© ~ o O m
dnw233333333333333334444444444%4
©

x

[}

I

Eo

SO~ 0 O O - NN O ¥ 0 © ~ ©® O O N M YT 1 O N~ ® O O
mnw44455555555556&666666667NWUMB
(=)

A ol o ol ol ol ol o W o L N W LR R N W R

VOLLLLLLLLLLLLLLLBLLLBVLLLLLLLLLLLLLL O

e
So
®Q
g g
s
3£
wo
]
x I * —
o & o o a LB
..uLMNOPORSTUVWXYmemmmmabcdefgh|
3 L mo o »n o»w R
@ (&)
X
T
52
&“ % ~ : . . ol [=]1[7:][~=][=:][- ~ =10
28 = SSEEEE 9@ [E D=
T.nnd R g S
<5
©
£
oo
%dCDE_.r0123456789ABCDEFO123456789
g0 ¥ ¥ ¥ ¥ O 1 © O 1w W W WL O L O L O v L L O © © © © © © © © ©
c O
x
[
T
me
.md678901234567890123456789012345
530 N N KN ~ ® ® ® ©® ® ® O ® O D O O O O»O o o o oo 6 o O O O O o O
o0 - - - - - -
(a)

84

N334 3dddddddddNiddddIdddIdIdddddddd

Decimal
Code

106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124

125

126
127
128
129
130
131
132
133
134

Hexadecimal
Code

B6A
6B
6C
6D
6E
6F
70
71
72
73
74
75
76
77
78
79
7A
7B
7C

7D

7E
7F
80
81
82
83
84
85
86

ATASCII
Character

L.
i
.

=
=

DEEREEEE

=
s &

NadoEmmAYa s BEEEE

Keystrokes

y
z

Control ;

Shift =

Esc Control <
or
Esc Shift <

Esc Delete Bk Sp

Esc Tab
Control ,
Control A
Control B

Control C

N NNXNN

Control D

Control E

NN

Control F

European
Character

85

86

Decimal
Code

135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156

157
158
159

160
161
162
163

Hexadecimal
Code

87
88
89
8A
8B
8C
8D
8E
8F
90
o1

92
93
94

95

96
97

98

99

9A
9B
oC

9D
9E
9F

A0
Al
A2
A3

ATASCII
Character

EECdEdO0Da0dENIER 4 NG

P-4

CEEERNEDOL QA

Keystrokes

N XX Y Y Y V1Y

NYNNYNNT XN

A N B I B\ B |

NN N

YN N

NN

Control G
Control H
Control |

Control J
Control K
Control L
Control M
Control N
Control O
Control P
Control Q
Control R
Control S
Control T
Control U
Control V
Control W
Control X
Control Y
Control Z
Return

Esc Shift
Delete Bk Sp
Esc Shift >
Esc Control
Tab

Esc Shift
Tab

Space bar
Shift 1
Shift 2

Shift 3

ceqaqaaqaaqaaqaaaqaaanaqaaanaaaaenaaann0an0anagaaaan

IJ

JIJJIJJJ

€

JJd e

1ddd33dddddddddd

«

)

L}

¥

$3ddddd

Decimal
Code

164
165
166
167
168
169
170
171
172
143
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193

Hexadecimal
Code

A4
A5
A6
A7
A8
A9
AA
AB
AC
AD
AE
AF
BO
B1

B2
B3
B4
BS
B6
B7
B8
B9
BA
BB
BC
BD
BE
BF
Cco
Ct

ATASCII
Character

NG

EE NN CCEENS 0 EREER IR OEREREE

2]

Keystrokes

|

YN NN

NN

NN

NN

A B I A B I |

N

NYXYYNINNNN

Shift 4
Shift 5
Shift 6
Shift 7
Shift 9
Shift 0

*

+

® N OO b~ W N

Shift ;

Shift /
Shift 8
A

European
Character

87

88

Decimal
Code

194
195
196
197
198
199
200
201

202
208
204
205
206
207
208
209
210
211

212
213
214
215
216
217
218
219
220
221
222
223

Hexadecimal
Code

c2
c3

ca

C5

ce

c7

cs

C9

CA
CB
cc
cD
CE
CF
DO
D1

D2
D3
D4
D5
D6
D7
D8
D9
DA
DB
DC
DD
DE
DF

ATASCII
Character

NEE RN E FEEEE RS A DER R EERE

Keystrokes

>

N YT XTI TN XN AN YNNNYNNNNANN

N < X s < c 4 »® DO VO zZZZTrr X <

NN

N ¥N N

N

I o m m O O @

Shift ,
Shift +
Shift .
Shift *

Shift -

European
Character

ceqqaqaaaqaaaaqaaaqaaaaenaaeaaaaaa0a0a00nnaan

nr
a2
[JNTY
88
= @
3 L
wo
_ .l,__2
g P
x S e E &
[e] Q < C
mCabCde,.lghiilklm_no.p_u.rSiuvwazCSmuv
- .
»
> 1 . ©
S AKNNNLNKNNNNNNNNNNNNNNNNNNENNNNNNNS
-
S8
? 38 E——
2 NEEEEECEE RS OEEEP EEENE EEEE QRS
=
<5
©
E
m.m-O N ™M T O O N~ O O < mM O 0O L < m O O
— Ww uw o ~ o » < b © ~ ®» o
.anEEEEEEEEEEEEEEEEFFFFFFFFFFFFFF
@
x
)
I
Bo
T WO N~ DO O = N MY WO N~ O OO0 ~ &N ™ < 0 O I~ o —
.m.m222222333333333344444444%4%5%%
€0 © ¥ N N 4 4 A ¥ d d d dd AN NN Ny S & a8y
a

ereeeceeeceeereere

reeereeeLCceCerreePrereYe

/:

89

LW \

90

Decimal
Code

254

255

Hexadecimal
Code

FE

FF

ATASCII
Character

(4]
o

Keystrokes

P71 Esc Control
Delete Bk Sp

P Esc Control >

European
Character

ceqaqaqaaaaaannmnannenaaaan0a00606600n0qanam

I'ddJ

JdJdddd d

3dddddddddddddddddddddddd

CODE
2

11

12

13

14

15

16

APPENDIX D
ERROR MESSAGES

S A o R o A O

MESSAGE

Insufficient Memory Not enough RAM memory is left to
store the statement or the new variable name, or to dimen-
sion a new string array variable.

Value Error A value expected to be a positive integer is
negative; a value is not within a specific range.

Too Many Variables The maximum of 128 different vari-
able names has been exceeded.

String Length Error The user attempted to store string
variables that exceeded the dimensioned string length.

Out of Data The READ statement requires more data
items than the DATA statement(s) supplied.

Line Number Greater Than 32767 The line number refer-
ence is greater than 32767.

Input Statement Error The user attempted to input a non-
numeric value into a numeric variable.

Array or String DIM Error The DIM size exceeded 5460
for numeric arrays or 32767 for strings; an array or string
was redimensioned; reference was made to an undimen-
sioned array or string.

Floating Point Overflow/Underflow The user attempted

to divide by zero or to refer to a number larger than 1 x 1088
or smaller than 1 x 10799,

Line Not Found A GOSUB, GOTO, or THEN referenced a
nonexistent line number.

No Matching FOR Statement A NEXT was encountered
without a previous FOR, or nested FOR/NEXT statements do
not match properly. (The Error message is reported at the
NEXT statement, not at FOR.)

Line Length Error The statement is too complex or too
long for BASIC to handle.

GOSUB or FOR Line Deleted A RETURN or NEXT state-
ment was encountered, but the corresponding GOSUB or
FOR has been deleted since the last RUN command.

RETURN Error A RETURN was encountered without a
matching GOSUB.

0

17

18

Syntax Error The computer encountered a line with
improper syntax.

Invalid String Character The string in the VAL statement
is not a numeric string.

The following errors are INPUT/OUTPUT (I/O) errors that result
during the use of disk drives, printers, or other accessory devices.
Further information is provided with the auxiliary hardware.

19

20

21

128

129

130

131

132
133

134
135

136
137

138
139

140

LOAD Program Too Long Insufficient memory remains to
complete LOAD.

Device Number Error The device number is larger than 7
or equal to 0.

LOAD File Error The user attempted to load a non-load
file, not a BASIC tokenized file. Tokenized files are created
with the SAVE command.

Break Abort The user pressed the [Break] key during
an 1/O operation.

I0CB* Already Open The Input/Output Control Block is
already open.

Nonexistent Device The user tried to access an unde-
fined device (i.e., a device not in the handler table).

IOCB* Write-Only Error A READ command has been
sent to a write-only device (printer).
Invalid Command The command is invalid for this device.

Device or File Not Open No OPEN command has been
specified for the cevice.

Bad IOCB* Number The device number is illegal.
IOCB* Read-Only Error A WRITE command has been
sent to a read-only device.

EOF The computer has reached the end of the file.

Truncated Record This error typically occurs when the
record being read is larger than the maximum record size
specified in the call to CIO. (ATARI BASIC’s maximum record
size is 119 bytes.)

Device Time-Out The device doesn’t respond.

Device NAK Problems are located at the serial port or in
the peripheral.

Serial Bus Input Framing Error Information was lost
from the peripheral to the computer.

*|OCB refers to Input/Output Control Block. The device number is
the same as the |OCB number.

92

cennnnanannnannanaaennOO00O000660N0NON0O0O00MN

Jdddd

P

Jde

&4 S \Y!YKX—\,V\S_‘(V\T\X_\Y\Y \y S y\r‘x_\ ri.y-ﬁy-ﬁ rlS_tE.‘_J—Lr

141

142

143
144
145
146
147
160

161
162
168

164
165

166

167
168
169
170
17

172

173

Cursor Out of Range The cursor is out of range for a par-
ticular mode.

Serial Bus Data Frame Overrun Information was lost
from the peripheral to the computer.

Serial Bus Data Frame Checksum Error Information
was lost from the peripheral to the computer.

Device Done Error The user attempted to write on a write-
protected diskette.

Read After Write Compare Error The user tried to open
the Screen Editor with an illegal graphics mode number.

Function Not Implemented The function was not imple-
mented in the handler.

Insufficient RAM Not enough RAM memory is left for
operating the selected graphics mode.

Drive Number Error The user specified the wrong drive
number.

Too Many OPEN Files No sector buffer is available.
Disk Full No free sectors are available.

Unrecoverable System I/O Error The DOS version on
disk may be damaged.

File Number Mismatch The disk file may be damaged.

File Name Error The file specification has illegal charac-
ters in it.

POINT Data Length Error The second parameter of the
POINT statement is too large.

File Locked The user tried to access a locked file for pur-
poses other than to read it.

Invalid Command The command in a special operation
code is invalid.

Directory Full The user has used all the open space (64
file names) allotted for the directory.

File Not Found The user tried to access a file that doesn’t
exist in the diskette directory.

Invalid POINT The user tried to POINT to a byte in a file
not opened for update.

lllegal Append The user tried to use DOS Il to open a
DOS | file for append. DOS |l cannot append to DOS | files.
Using DOS I, copy the DOS | file to a DGS I diskette.

Bad Sectors at Format Time The disk drive found bad
sectors while it was formatting a diskette. Use another disk-
ette because a diskette with bad sectors cannot be for-
matted. If this error occurs with more than one diskette, the
disk drive may need repair.

93

33dddddddddddiidddddddddddddddddddd

INDEX

Iy Iy 0 o A O

A

addition function, 31
alphanumeric variables, 27
arrow keys, 8, 13, 29-31
ATARI BASIC (see BASIC)
auto repeat, 6, 11

BASIC
built-in programming
language, 3-4
disabling the language, 4
bent arrow, 22
blank lines, 14
in programs, 21
blank spaces, 14
[Break] key, 7, 16, 23, 48, 55
bugs, 40
byte, 24

C
[Caps] key, 7, 11-13
caret, 30
[Clear] key, 13, 22
clearing the computer’s memory, 17
clearing the screen, 13, 22
colon, 24
COLOR, 55, 57-58, App. B
color registers, 54
changing colors in, 54, 55, 57-58
designating, 56, 57-58
colors, 50-51
comma
in numbers, 29
with PRINT statements, 23-24
commands
COLOR, 55. 57-58, App. B
consolidating on one line, 24,
45-46
DIM, 25-27, App. B
DRAWTO, 56, App. B
END, 38, 47-48, App. B
FOR-NEXT, 40-46, 48, 50, App. B
FRE, 24-25, App. B
GOSUB-RETURN, 50

GOTO, 23, 28, 37-38, 48, 55,
App. B
IF-THEN, 35, 37-39
INPUT, 25, 26, 36, 38-39, App. B
INT, 34, App. B
LIST, 17, 18, App. B
NEW, 17, App. B
PLOT, 56, App. B
POKE, 9, 10, App. B
PRINT, 19, 20, 21, 22, 23, 24, 25,
26, 27, 54, App. B
PRINT #6;, 53, 54, 56
READ-DATA, 50
REM, 28, App. B
RND, 32-35, App. B
RUN, 18, 19, App. B
SETCOLOR, 51, 54, 55, 56, 57, 58,
59, App. B
SOUND, 47-49, App. B
STEP, 42, App. B
TRAP, 38, 45, 49, App. B
[Control] key, 7
for graphic symbols, 9
for international characters, 9
with arrow keys, 8, 13
with [Caps] key, 8, 13
with [Clear] key, 13, 22
with [Delete Bk Sp] key, 14
with [Insert] key, 8, 14
with [Tab] key, 15
with [1] key, 7, 22
with [2] key, 7
with [3] key, 8
counting loop, 40-46
cursor control, 13

DATA (see READ)
default color, 51, 54, 56, 57
default luminance, 52
delay loop, 43-44
[Delete Bk Sp] key, 14
deleting
lines, 14
program lines, 21
spaces, 14

95

96

DIM (dimensioning), 25-27, App. B
disk drive, 5

display screen, 4

distortion, 47-49

division sign, 31

DOS, App. B, App. D

[Down Arrow] key, 8, 13
DRAWTO, 56, App. B

dummy variable, 33

E
END, 38, 47-48, App. B
erase
computer’'s memory, 17
program lines, 20
screen, 13
spaces and lines, 14-15

Error message, 11, 17, 19-20, 26, 28,

38-39, App. D
[Escape] key, 7, 16, 22
exponent, 30

F

FOR, 41

FOR-NEXT, 40-46, App. B
nested FOR-NEXT loops, 45-46
with SOUND, 48, 50

FRE, 24-25, App. B

frequency, 47

G
garbage error, 20
GOSUB-RETURN, 50
GOTO, 23, 28, 37-38, App. B
to maintain graphics screen
display, 55
with SOUND, 48
graphic symbols, 12-13, 22
graphics capabilities, 50-59
graphics modes, 50
mode 0, 51, 54
mode 1, 53, 54
mode 2, 53, 54
mode 3, 54, 55
mode 5, 54, 58
mode 7, 54, 58

H
[Help] key, 7, 16

|
IF-THEN, 35, 37-39

increments in counting loops, 42-43

infinite loops, 23, 33, 37, 38
INPUT, 25, 26, 36, 38-39, App. B
inserting
blank lines, 14
blank program lines, 21
blank spaces, 14
program lines, 19
[Insert] key, 8, 14
installation of your computer, 3
instruction line
limit, 11, 21
numbering, 17, 19
INT, 34, App. B
international characters, 9
Inverse Video, 16
to change colors in graphics
modes, 53, 56

K

keys, descriptions of, 6-8

L

[Left Arrow] key, 8, 13, 31
line breaks, 22
line numbering, 17, 19
LIST, 17,18
logical line, 21
loop
counting, 40-46
delay, 43-46
FOR-NEXT, 40-46, 48, 50
GOTO, 23, 28, 37-38, 48, 55
infinite, 23, 33, 37, 38
lowercase, 12
to change colors in graphics
modes, 54, 56
luminance, 51, 52

math functions
addition, 31
division, 32
multiplication, 32
order of execution, 31-32
subtraction, 31

math programs, 36

memory, 17, 18, 24-25

ennnnnnnaanNnMannOaOOnNOONONOONOOONNRAQOAQD

$00000d00dddd800ddddddddddddddddddd

minus sign, 31, 32

Missile Command program, 3, 4
multiplication sign, 32

musical notes, 49-50, App. A

N

nested FOR-NEXT loops, 45-46
NEW, 17, App. B
NEXT, 40
(see FOR-NEXT)
numbers, 29
numeric variables, 27, 35

0]

[Option] key, 5, 16

order of mathematical functions,
31-32

P

parentheses
for order of mathematical
functions, 31-32
with RND, 33
pitch, 47, 49
pixel, 55
[Play] key, 5
PLOT, 56, App. B

_ plus sign, 31

POKE, 9, 10, App. B
[Power] key, 3, 4, 5
PRINT, 19
abbreviation for (?), 21
in graphics modes, 53, 54
to clear screen, 22
to create blank lines, 21
two statements on one line, 24
with colon, 24
with comma, 23
with graphic symbols, 22
with semicolon, 24
with string variables, 26-27
PRINT #6;, 53, 54, 56
program recorder, 5

Q

guestion mark, 26
abbreviation for PRINT, 21
[?] key, 31
guotation marks
to clear screen, 22
with PRINT, 19, 22

R

RAM, 18, 24, 25
random numbers, 32-35
READ-DATA, 50
register
color, 51, 54, 55, 56, 57
sound, 47
REM, 28, App. B
[Reset] key, 16, 55
RETURN (see GOSUB)
[Return] key, 5, 7,17
[Right Arrow] key, 8, 13, 30, 31
RND, 32-35, App. B
RUN, 18, 19, App. B

S

scientific notation, 30
screen display
format, 22
maintaining a graphics display, 55
stopping the LIST display, 22
[Select] key, 4, 16
semicolon, 24, 27
SETCOLOR, 51, 54, 55, 56, 57, 58, 59,
App. B
[Shift] key, 7, 8, 12
with [Caps] key, 8
with [Clear] key, 13
with [Delete Bk Sp] key, 15
with [Insert] key, 8
with [Right Arrow] key, 30
with [Tab] key, 15
software
cassettes, 5
built-in, 3, 4
SOUND, 47-49, App. B
sound capabilities, 47-50
[Start] key, 5, 16
starting point in counting loops, 41
STEP, 42, App. B
stopping point in counting loops, 41
stopping the screen display, 22
string variables, 25, 26, 27, 37
subroutine, 50
subtraction function, 31

97

98

T

[Tab] key, 15

clear tabs, 15

set tabs, 15
text mode, 51-52
text window, 53-54
THEN (see IF-THEN)
TRAP, 38, 45, 49, App. B

U
[Up Arrow] key, 8, 29, 31
uppercase, 12
to change colors in graphics
modes, 54, 56

\

variables, 25
dummy, 33
in SOUND commands, 48-49
numeric, 27, 35, 38, 41
string, 25, 26, 27, 37

voice, 47

volume, 47, 48, 49

canaaaaaaanaaaaaeaeaananaeaaaananannaanaan

Tdddd

Jde

e

»

p

-

$330ddddddddddddddddddddddd.

CUSTOMER SUPPORT

OoOooDoooooDoooooooan

Atari Corporation welcomes questions about your Atari com-
puter products. Write to:

Atari Corporation
Customer Relations
P.O. Box 61657
Sunnyvale, CA 94088

In the United Kingdom, write to:

Atari Corp. (UK) Ltd.
Customer Relations
P.O. Box 555
Slough

Berkshire

SL2 5B7

Please write the subject of your letter on the outside of the
envelope.

Atari user groups are outstanding sources of information on
how to get the most from your Atari products. To receive a list
of Atari user groups in your area, send a self-addressed,
stamped envelope to:

Atari Corporation
User Group List

P.O. Box 61657
Sunnyvale, CA 94088

In the United Kingdom, write to:

Atari Corp. (UK) Ltd.
User Group List
P.O. Box 555
Slough

Berkshire

SL2 5BZ

99

JNATARI

Copyright © 1987, Atari Corporation
Sunnyvale, CA 94086
All rights reserved.

Printed in Taiwan

C100609-001
C033513-0A1

Printed in Taiwan
K.1.8.1987

0000000000000 00O0N0NO00O00O000NAYTARANAOGN

