HiSoft

. Interpreter

for the Atari ST

High Quality Software

o

HiSoft C

Interpreter for the Atari ST

System Requirements:
Atari ST Computer with a mouse and a disk drive

Program Copyright © Loriciels 1988, 89
English translation of manual Copyright © HiSoft 1989, 90

HiSoft C Version 2 April 1989

Printing History:
1st Edition April 1989 (ISBN 0 948517 16 6)
2nd (revised and corrected Edition February 1990 (ISBN 0 948517 25 5)

Set using an Apple Macintosh™ with Microsoft Word™ & Aldus Pagemaker™
LSBN: 084 a5L7 25 5

All Rights Reserved Worldwide. No part of this publication may be reproduced or
transmitted in any form or by any means, including photocopying and recording,
without the written permission of the copyright holder. Such written permission
must also be obtained before any part of this publication is stored in a retrieval
system of any nature.

It is an infringement of the copyright pertaining to HiSoft C and its associated
documentation to copy, by any means whatsoever, any part of HiSoft C for any
reason other than for the purposes of making a security back-up copy of the object
code as detailed within this manual.

Table of Contents

0 Infroduction 1
0.1 Always make a back-up 2
0.2 Registration Card 3
0.3 HiSoft C Disk Contents k}
0.4 The README File 4
0.5 Using this manual 4

1 Using HiSoft C 5
1.1 The Keyboard and the cursor 5

|] The Editor 5
el Moving the cursor 5
113 The special keys o]
1.1.4 Function keys 7
18 Menu short cufs 8
1.1.6 Keyword completion Q
a7 Menu commands 10
1.2 The File menu 11
1.3 Working with several files 13
13i Selecting a module 13
1532 The Module List 14
1.4 . Running a program 15
145 How's it done? 15
1.4.2 Error Messages 16
1.4.3 Trace Mode 7
1.4.4 Following variables 18
1.4:5 Poinfer Testfs 19
1.4.6 Variable Dump 20
1547 Memory dump 22
1.4.8 Stack display 23
1.4.9 Link at runtime 23
1.4.10 Execution Environment 24
1.4.11 Command tail 24

Contents HiSoft C Page i

1.4.12 Include files 25
1.4.13 System Memory Size 26
1.5 Find and replace 27
1501 Find 27
52 Find and replace 29
1.5.3 Searching in files 31
\Gsie] Find Identifier 32
1.6 Block operations 32
16 Defining a block a2
1.6.2 Block operations 33
1.6:3 Copying a block to a another file 34
1.7 The Help menu 35
11745 The macro commands 35
1.7.2 ASCIl code table 38
173 Print file 38
1.7.4 The Pocket Calculator 39
17l Help 40
{7 The Disk Opftions 40
1.8 Editor configuration 41
1.8.1 Saving the configuration 4]
15Bi2 Editor Options 41
1.8.3 Redefining the keyboard 43
1.9 Editor Mode 44
1.10 Projects 45
1.10.1 Whatis a project? 45
1.10.2 Loading a project 46
1.10.3 Executable functions 46
1.10/4 Assembly Language functions 47
1.10)5 Compiled C functicns 48
1.10.6 Loading executable procedures. 49
1.10.7 Calling executable functions 51
1.10.8 Project Information &l
1.11 The Disk Utilities 52
1.11.1 Loading the ufilities 52
1.11.2 Using the Utilities 53
Page ii HiSoft C Contents

2 Introduction to the C language

57

2.1 Your first program 57
2] The traditional approach S
2.1.2 The big moment 58
2:1.3 Functions 58
2.1.4 Statements 59
285 The C library 59
27,6 Calling Functions 59
2, 1.7 Strings 60
2.2 Variables 61
22 One more program 61
22D Function or Statement ? 61
2.2:3 Assignment 62
224 The putchar 62
225 Declaring variables 62
226 Integers 63
Rl Real numbers 64
228 Conclusion and Exercises 64
2.3 Calculations 65
2.3.1 A little program 65
232 Comments 65
2.3.3 Arithmetic operators 65
2.3.4 The arithmetic and frig functions 66
235 Types and assignments 66
2.4 Conditionals 68
244 Example 68
242 The Random 68
2.4.3 The if statement 68
2.4.4 printf 70
2.4.5 if...else... 71
2.4.6 Blocks 72
25 Loops 74
251 The while statement 74
2.5.2 The for statement 76
2:5.09 The do...while statement 78
2.6 Switch statements 79
2.7 Functions 83
Contents HiSoft C Page iii

2T Functions and subroutfines 83

2L Parameters 85

2.7.3 Return values 87

274 Summary 88

2.8 Armrays 89
2.9 Conclusion 92
3 Introduction to GEM 93
3.1 Programming with GEM 93
3.1.1 GEM itself 93

il The HiSoft C toolbox 94

3.2 Windows 95
3.2.1 What is a window? @5

322 Opening and closing a window. @5

3.2.3 The cpen_window Q6

3.24 The close_window Q7

3.25 Wifing in a window Q8

326 The print_window 98

3.2.7 The pos_window 99

328 Clearing a window 101

3.29 The size_window 101

3.2.10 The draw 103

3.2.11 Ways of passing arguments 103

3.2.12 Conclusion 104

3.3 Didlog boxes 104
3.3.1 What is a dialog box? 104

3.3.2 Creating a dialog box 104

333 The init_box 105

3.3.4 The text_box 106

235 The button_box 107

3.3.6 The draw_box 109

387 The readbut_box 110

3.3.8 The edit_box 113

339 The readstr_box 115

3.3.10 Graphics Text 116

3.3.11 The gtext_box {117

3.3.12 The color_box 117

Page iv HiSoft C Contents

3.4 Menus 119

3.4.1 What is a menu? 119

3.4.2 The init_menu 120

3.4.3 The title_menu 121

3.4.4 The item_menu 121

345 The draw_menu 121

3.46 The enable_menu 122

3.5 Evenis 123

3.5.1 What is an event ? 123

3.5:2 The layout of a GEM application 123

3:5.3 The event 126

3.54 Menu events 1127

3:5.5 Window events 128

3.5.6 Keyboard events 132

3.5.7 Mouse events 132

3.6 Conclusion 133

4 HiSoft C Library Functions 135

4.1 Library Summary 136

4.1.1 The HiSoft C library 136

4.1.2 ANSI file handling routines 138

413 Unix functions 140

4.1.4 ANS| Mathematical functions 140

4.1.5 String functions 141

4.1.6 Character functions 143

A5 Memocry functions 143

4.1.8 GEMDOS functions 144

4.1.9 GEM AES functions 147

4.1.10 GEM VDI functions 149

Appendix A Exercise Answers 289

Appendix B Language Reference 301

B.1 Lexicographic elements 301

B.2 The Pre-processor 305
Contents HiSoft C Page v

B.3 Operators

307

B.4 Variable types 308

B.5 Declarations 309

B.6 Statements 311

B.7 Operations on types 312

AppendixC Error Messages 315

C.1 Interpreter Error Messages 315

C.2 Editor Error Messages 326

C.3 Loading Error Messages 327

Appendix D Porting Programs 329

D.1 Porting from the interpreter to a compiler 329

D.2 Porting from compilers to 330

Appendix E Bibliography 331

Books about C 331

ST Technical Manuals 332

Appendix F Technical Support 335

Upgrades 335

Suggestions 335

Index 337
Page vi HiSoft C Contents

0 Infroduction

The C language has always been a compiled language. This means
that the programmer has to type in his or her program and then
compile it to change the program into machine code.

Unfortunately this process normally takes several minutes and only
then can you execute your program.

HiSoft C takes a different approach.

It is a C Interpreter. This means you type in your program and
execute it immediately as with a BASIC interpreter. There's no
waiting around for compilers and linkers.

To do this, HiSeft C has a powerful GEM-based editor which lets you
edit up to eight files at once. You can even create modular programs
and then, with a simple click of the mouse, run these modules
together.

This gives you an easy-to-use environment where you can spot
errors much more quickly than with a compiler. You can even single
step and put breakpoints in your code.

HiSoft C gives the (6} language the accessibility of BASIC without
losing the language’s power. So HiSoft C is aimed at two categories of
programmers:

o Beginners will find HiSoft C gives them a very easy way to learn
the C language.

C is the language around which the Atari ST is based and is the
language of choice for many professional programmers. Many
newcomers to the ST decide that they would like to try out this
powerful language. So they buy a compiler, but it seems to take
forever to get their first program to run because of numerous
compiler or linker errors.

This interpreter lets beginners discover the C language more
gently, using an environment that reminds them (or you!) of
BASIC.

o Experienced programmers will find HiSoft C provides a faster
way to develop their programs.

Infroduction HiSoft C Page 1

Compiled and assembly language functions can be loaded and
used with interpreted modules. HiSoft C also supports almost
the full C language as described in Kernighan & Ritchie “The C
Programming Language” (First Edition).

Developers can use HiSoft C to develop their programs with all
the advantages this gives and then, when their application is
finished, just compile to a finished product.

Porting programs written with the interpreter is easy as long as you
respect the standard rules of programming. Nevertheless, each
implementation of C (whether a compiler or interpreter) has its own
peculiarities and extensions; so some work may be needed. This is
the case when moving code between a compiler and the interpreter
and between two compilers.

HiSoft C has a library of 460 functions. These are detailed in Section
4 and include the usual ANSI, UNIX, C, GEM and DOS standard
functions. In addition, HiSoft C has a toolbox of functions which are
both simple and powerful, to make programming with menus, dialog
boxes and windows much easier.

So, thanks to HiSoft C, you can easily write programs that use all the
facilities of your machine, with or without GEM. Finally, if you need
faster running code you can use your favourite compiler (Lattice C
from HiSoft, we hopel!) to speed up your programs.

0.1 Always make a back-up

Before using HiSoft C you should make a back-up copy of both the
distribution disks and put the original away in a safe place. They are
not copy-protected to allow easy back-up and to avoid inconvenience.
The disks may be backed-up using the Desktop or any back-up
utility. The disks are single-sided but may be used in double-sided
drives.

If you have a double-sided disk drive you can copy the contents of
both disks on to one double-sided disk. If you have a hard disk, just
drag the files to a folder on your hard disk.

Before hiding away your master disks make a note in the box below
of the serial number written on them. You will need to quote this if
you require techmical support.

Serial No:

Page 2 HiSoft C Introduction

0.2 Registration Card

Enclosed with this manual is a registration card which you should
fill in and return to us after reading the licence statement. Without it
you will not be entitled to technical support or upgrades. Be sure to
fill in all the details, especially the serial number and version number.
The version number is given in the About box when you run HiSoft C.

0.3 HiSoft C Disk Contents

The HiSoft C disk 1 contains the following files:

HC.PRG

the interpreter itself

F1.IC - F11.I1C supplementary files the interpreter needs

README.TXT

see below for details

The HiSoft C disk 2 contains the following folders:

HEADER

HELP

EXAMPLES

SOURCE

DUMPFILE.*

RESOURCE.*

CHECKST.PRG

the standard C header files

the information files used by the editor help
command

example C programs

the source code to the HiSoft C toolbox. See
Appendix D.1

the files for the resource file of the DUMPFILE.C
example

the files for the rsource file of the RESOURCE.C
example

a program to give details of your machine. Please
include this information when writing to us.

Introduction

HiSoft C Page 3

0.4 The README File

As with all HiSoft products HiSoft C is continually being improved
and the latest details that cannot be included in this manual may be
found in the README . TXT file on the disk. This file should be read at
this point, by double-clicking on its icon from the Desktop and then
clicking on the Show button. You can print it by clicking on the Print
button.

0.5 Using this manual

Different sections of this manual are aimed at different readers.

After this introduction, Section 1 describes how to use the Editor
and Interpreter and so everyone should read this.

Section 2 is an introduction to the C language for those of you who
are new to the language.

Section 3 is an introduction for those new to programming in GEM,
whether experienced or novice C programmers. This section also
provides a description of the HiSoft C GEM toolbox for experienced
GEM programiners.

Section 4 describes the 460 functions of the HiSoft C library. This is
mainly designed for reference and includes a summary so you can
find which function you need for a particular job.

Appendix A contains the answers to the Exercises set in the tutorial
in Section 2. You will need to use this as you work through Section 2.

Appendix B is the reference language for the C interpreter and is
aimed at the experienced programmer.

Appendix C covers the interpreter’s error messages and is designed
to be used as a reference if you don't understand an error message.

Appendix D covers porting programs to and from HiSoft C from and
to other implementations.

Appendix E is the Bibliography which recommends some further
reading on the C langauge and the ST itself.

Appendix F covers technical support and upgrades.
Finally, there’s the index.

Page 4 HiSoft C Introduction

1 Using HiSoft C

This section describes how to write, modify and run a program with
HiSoft C.

1.1 The Keyboard and the cursor

11.1.1 The Editor |

As soon as you load HiSoft C a menu bar appears and a window
covers most of the screen. HiSoft C uses GEM and the mouse to make
your work easier. The menu lets you select the editor and execution
options. The program that you type in will appear in the window.

At the top left of the window you will see a flashing block cursor. This
indicates where the characters you type will be inserted.

The editor is a full-screen editor; that is to say you can move the
cursor where you like within the window and immediately change
the text as you wish.

HiSoft C lets you work with eight files at the same time. If you cannot
see the file that you want at a given instant you can very easily
switch from one to another.

'1.1.2 Moving the cursor

You can move the cursor in all four directions by pressing the cursor
keys labelled « — T and ! to the right of the keyboard. You can also use
Control S, Control D, Control E and Control X respectively.

You can position the cursor by moving the mouse and clicking at the
point to which you wish to move.

You can also use the vertical scroll bar and the window’s arrow icons
to change the cursor position.

The following keys are for rapid cursor movement within the text:

il = moves to the start of line

Sthifit = moves to the end of line

Control « moves to the end of the previous word
Control — moves to the start of the next word

Using HiSoft C HiSoft C Page 5

[1.1.3 The special keys

The following keys modify the text in some way:

pDelete

deletes the character under the cursor.

Backspace

deletes the character to the left of the cursor.

Return inserts a carriage return. If the cursor isn't at
the end of the line the line is split at the cursor
position and the cursor moves to the beginning
of the new line.

Control inserts a new line without splitting the current

Return one,

Tab inserts a tab character at the cursor position
thus moving the cursor to the next tab position.

Shd-ft Tab moves to the previous tab position.

Undo ‘Undoes’ any changes to the current line.

Help displays some help information on a specified
subject.

Home moves the cursor to the start of the C block. A C

block is a sequence of instructions surrounded
by curly brackets { and 7.

Shift Home

moves the cursor to the end of the C block.

ESE

See Section 1.1.6.

Alternate
to

1

select one of the eight possible files.

Alternate 8

There's no need to remember these by heart; they can be displayed
by selecting Cursor keys from the Help menu.

Page 6 HiSoft C Using HiSoft C

[1.1.4 Function keys

The function keys when used with the Shift key work as ten macro
function keys that can be modified by the user. See Section 1.7.1.

When the function keys are used without the shift key they have
the following meanings:

F1 Deletes to the end of the word : under the cursor.
A word consists of a sequence of characters
separated by blanks or the ends of lines.

F2 Insert the last word which has been deleted with
F1 to the right of the cursor. If F3 was used since
F1 then the line deleted by F3 is used.

F3 or Delete the line containing the cursor.
ControlY
F 4 Insert after the current line the last word

deleted with F1 or the last line deleted with F3.

F5 Insert an empty line after the current line and
position the cursor there.

Fé Join the next line to the end of the current one
by copying.

F7 Comment out the current line. If the line was
originally commented out the comment is
removed.

F8 Delete to the end of the current line. This may

not be recovered with F2 or F4.

F9 or Move the cursor 23 lines (a screen full) towards
Control=R the start of the file.

F10 or Move the cursor 23 lines (a screen full) towards
Control-C the end of text.

The function keys item from the Help menu may also be used to
display a summary of these keys.

Using HiSoft C HiSoft C Page 7

[1.1.5 Menu short cuts

The major commands can be accessed from the keyboard without
having to use the mouse to access the menus.

In general these combinations consist of either the Alternate or
the Control keys with a letter or digit.

To the right of the menu entries is a single letter. If this is a capital
(upper case) then this item may be selected with Alternate and the
letter key. If this is in lower case then it can be selected with Control
and the letter.

Here is a list of the key combinations and the corresponding menu
item.

Alternate A Abandon
Alternate B Bottom of file
Alternate F Find
Alternate G Go to line
Alternate I Insert file
Alternate J Load project
Alternate L Load file
Alternate M Module list
Alternate N Repeat find (Next)
Alternate 0 Save options
Alternate P Program Information
Alternate Q Quit HiSoft C
Alternate R Find & replace
Alternate S Save as
Shift Alternate S Savefile
Alternate T Top of file
Alternate V Information on the variables
Alternate X Run (eXecute)
Alternate 1Z Go to last position
Control 1 Set mark 1
Control 2 Set mark 2
Control 3 Go to mark 1
Control 4 Go to mark 2
Control C Page down
Control D Cursor right
Control E Cursor up
Control R Page up
Control S Cursor left
Control X Cursor down
Control Y Delete line

Page 8 HiSoft C Using HiSoft C

N

These combinations of keys may be modified to configure the
keyboard in the way that you want: you can thus make the editor
similar to any editor that you are used to.

See Section 1.8.3 for details.

[1.1.6 Keyword completion

This facility can save a lot of typing and looking up the syntax of
functions.

You type only the beginning of the name, and the complete function
call (including the parameters) is automatically created by the editor.

For example if you type:

SRR

and then press the Esc key, the editor will display:
strnicmptstiet ,str2, nd

on the screen, with the cursor one the first argument of thefunction.
You are now in Esc mode. Look at the top right corner of thescreen.
Esc is displayed, instead of Ins. The editor is waiting for you to type
in the arguments of the function. After each parameter, you should
press Return, and the cursor is positioned on the first character of
the nextargument.

The parameter names which are written by the editor are
automatically replaced by the new names you type. You don't need to
erase the old names with Backspace or Del; just type the new one
and press Return. If you don't want tochange the name of a
parameter, just type Return.

You exit Esc mode when you have typed in all the parameters, or
when you use cursor keys or select a menu item.

Esc mode can also be used with the C language keywords, as follows:

short cut statement

if for
W while
s switch

The list of the functions and parameters used by Esc mode is in file
F11.1¢. You can modify this as you wish.

Using HiSoft C HiSoft C Page 9

[1.1.7 Menu commands

You know how to select a menu item, now we will examine the various

menus in detail.

On the far left are the credits! The first entry under the Atari logo,
which is equivalent to the Desk menu on many ST programs, is the
credit for the author of the program.

Yariables By
Progran WP
Memory dump
Stack

Last error

In the Info menu on the far right, the
Program info command displays a dialog
box which gives some statistics for the
current program. With this you can see
how many lines your program has, the
free memory figure, how much memory
this program needs and where the
CLIESOE iSE ans the: fext, “Lhe Tether
commands on this menu will be
discussed later.

The Move menu commands are also useful:

Top of file moves the cursor to

Top of file

Bottom of file

Go to line ...

fig to last position

v Indentation
Auto line split
Set tab length

v Auto Write

Fe Hove curser --~

~~~~~~~~ Harks srerree
Set mark 1
Set mark 2
Ga to park 1
fg to park 2
~~~~~~~ Bntisns. 9o

T the front of your program and
b Bottomn of File moves to the end
B (oh good - you guessed).

Al
fjﬁ When you click on the Go to
%z line... item a dialog box appears
”;'w and asks you to enter the line
i number that you want to move
/.\2 to. You are not allowed to move
‘_‘g past the end of text.
A
o e There are a set of commands
that some people find incredibly
useful and other people find a
waste of time. As they weren't
difficult to program, they have

been put in HiSoft C.

These are the marks. You set a mark in your program at the cursor
position and then after you have moved the cursor you can return to
the place that you marked. There are two different marks that you

carn use.

Page 10

HiSoft C Using HiSoft C

The command Set mark 1 sets the first mark at the cursor position;
to return there use the Go to mark 1 command. Naturally Set mark 2
and Go to mark 2 perform the same operations for the second mark.

The Go to last position command is similar to the marks. It is as if a
mark was automatically placed at the last cursor position that the
text was changed. When you click on this command the cursor
moves to the last place that the text was modified.

This is very useful when you are typing in a program. It lets you
interrupt your typing, have a look at another part of the program
and then continue typing where you were before.

Note that the marks can be used to move between modules. If you go
to a mark that is in a different module, the module switching is
automatic.

1.2 The File menu

We will now describe most of the items

mmmmmmm Repag ~=mmmmm- on the File menu.
: "

If:ggrzlﬁl 8 ;éli The Quit command lets you leave HiSoft
______ P e C after asking whether you wish to

S £il S save any unsaved work. If you realise

ave “HIE = that you don’'t want to quit you can
§EEE{3;§;£§;}§ ””‘EE" cancel this command.

Save options o1} Abandon clears the program in
v Confirm abandon memory and leaves you with a blank
v Confirm overurite screen. If you have modified the
J/ Backup file program without saving it you will be

Text editor warned.

sgsgléu??st 0 Note that, with Abandon, only the
uuuuuuu T R —— current text is deleted. The other seven

Abandon o modules are left alone. This option, as

Nuit w0 well as the Load file, Insert file, Save File,

and Save as commands, only affects

the current module.

The Load file command loads a file into memory, surprisingly
enough.

Using HiSoft C HiSoft C Page 11

The file selector appears and you can choose the file which you wish
to load. If there is a file already loaded in this module that you haven't
saved then HiSoft C will ask for confirmation because the new
program overwrites the old one in memory.

The name you specify is displayed in the work window's title bar.
This is the name of the current file.

Save file stores the program in memory on disk under the current
name. If a name hasn't been given yet (the title bar shows No name)
then the file selector will appear for you to enter the file name and
possibly change the directory (folder) or drive.

Initially the file selector is set up in directory A: \EXAMPLES. This is
so that you can load the examples off Disk 2 straightaway. If you want
to save a file to a newly formatted disk, you will need to change the
directory to A: *.*, Otherwise you will try to save your program in a
non-existent directory.

If, when you save a file, a file with the same name already exists,
HiSoft C will ask you whether you wish to overwrite it. If you don't
want to, click on No and the save operation will be cancelled and the
existing file will be left as it was.

But if you do want to save the program with the same name, the old
version of the program will survive with a .BAK extension rather than
15

Every time you save a program to disk, HiSoft C remembers the
name of the file and the position of the cursor within the text. Thus
the next time you load HiSeft C it can re-load the last program saved
and re-position the cursor at the place that it was when you saved
the program. You can then continue working where you left off.

The Save as... command lets you save the current program under a
different name to that of the file that was loaded. The file selector will
appear so you can specify the new name. The program is then saved
under that new name.

Finally Insert File lets you merge a program from disk with the
program in memory.

You can insert a whole file in to the text in memory. The insertion
takes place before the line after the current cursor position.

When you select this option a file selector appears and you can
specify the file to insert. You can only insert HiSoft C coded files
rather than ASCII ones. If you need to insert an ASCII file you can
convert it first to the HiSoft C format. See Section 1.9.

Page 12 HiSoft C Using HiSoft C

For the same reason files may not be inserted when in Text Mode.
HiSoft C will let you suppress some of its dialog boxes if you wish.

For example, you can suppress the alert box that appears when you
quit with an unsaved program. You can also control whether a
backup is made, and even whether HiSoft C automatically loads the
last program saved. These commands are described in Section 1.8.

1.3 Working with several files

HiSoft C lets you work simultaneously with up to eight modules that
contain eight different programs.

However there is only ever one window open at once. The different
programs appear one after another in the same window.

1.3.1 Selecting a module

A module is an area where you can load, modify, execute and save a
program. There are eight such areas. The simplest way to select a
module is to simultaneously press the Alternate key and the
number you wish to select. For example, to select module 5 press
ALt=5.

The module’s name and the name of the file being edited are shown in

the window's title bar. But if you have selected module 5 for the first

time there won't be any file loaded. The window title will be module 5
No name

You can move to the next module by clicking on the “Full window”™ box
on the top right of the current window. So, if you are editing module 3
and you click on the full box you will select module 4.

Using HiSoft C HiSoft C Page 13

[1.3.2 The Module List

The option Module List on the File menu displays a dialog box
containing a list of the modules.

A\ Find Run Move Block Help Info Ins

Module list. I

[Module L : M:\KERMIT.C ot modified|
[Module Z : M:\DUMPFILE.C Not modified| H
[Module 3 : Ho name Not modified|
[Hodule 4 : Ho name Not modified|
[Hodule 5 : No name Hot modified|
[Hodule & ¢ Ho name Not modified|
[Hodule 7 : No name Hot modified|

§ [Hodule 8 : Ho name Hot modified|

} [Block: Undefined]

]

For each module the name of the file being edited and the state of the
file are shown. The state of the file is either Modified or Not
modified.

This command also lets you select a module easily.

For example, say you wish to edit the file bUMPFILE. Thanks to this
dialog box, you can see that this program is in module 2. Click on the
box corresponding to this module and module 2 and its file
DUMPFILE will appear on the screen.

If you wish to exit this dialog box without changing modules click on
OK.

This dialog box also has another purpose. It tells you if a block has
been marked in another module. If one has it enables you to transfer
it to another module. See Section 1.6.3 for how to cut and paste
between modules.

Page 14 HiSoft C Using HiSoft C

o .o ¢

1.4 Running a program

[1.4.1 How’s it done?

You have typed in a fine program or perhaps you have loaded an
example. The only thing left is to run it.

To do this, save your program, leave the editor and load the first pass
of the compiler with a stack size of 4096 bytes. If there are no errors,
load the second pass and specify that you want a GST output file.

There will be errors. And then you will need to include the file stdio.h
which is on disk 4. Load the editor again to fix this. And then you link
with the wrong libraries so it still doesn't work...

No don’t worry it's all lies. That's how it used to be.

To run your program click on Run program from the Run menu.
That’s it.

Press a key or click on the mouse when the program has finished
and you'll be back in the editor.

But we recommend that all programs should be saved before running
them. An array index that is a little too big or recursion that uses 20k
memory can both crash the machine and you will have to re-load the
interpreter.

If the computer crashes instead of displaying bombs (you've coming
across bombs no doubt) and returning to the Desktop, HiSoft C
displays a description of the error and positions the cursor at the
program statement that crashed HiSoft C.

This considerably reduces the problems caused by program errors
but doesn't remove them completely; after such a crash, GEM may
become confused.

When you start a program running, the work window and menu bar
disappear and are replaced with a blank screen. Then you are free to
open your own windows and display your own menu. See Section 3
for details of functions which let you do this.

You can also deliberately stop a program that is running by pressing
two of the shift, Control or Alternate keys simultaneously. For
example, press both shift keys or Control and Shift together.

Using HiSoft C HiSoft C Page 15

An alert box will appear and you are asked to confirm that you wish

to halt execution. The work window and editor window will be re-
displayed on the screen and the cursor positioned at the point where =
the program was interrupted.

The function stop() can be used within programs to stop the .
program.

Please note however that it is not possible to interrupt a program
whilst a built-in HiSoft C routine is running. That is to say when a e
library function is executing. This is because the library functions are
written in assembler rather than interpreted by HiSoft C and so the
interpreter does not have control. Thus the program may only be -
interrupted after the function returns. This normally isn't a problem
as most functions execute very quickly, but the event function may
run for several seconds and during that time the program can’t be
stopped. b

[1.4.2 Error Messages L

If you run a program you have written yourself the chances are that
there are either syntax errors or semantic errors.

If there is an error whilst running a program, HiSoft C displays an
error number and message in an alert box. See Appendix C for a
detailed description of the possible errors. -

As soon as you acknowledge the alert box describing your error, the
cursor is positioned at the place where the error was found, so you
can correct it straight away.

Once your program is displayed you won't be able to see the error
message any more. To re-display it click on the Last error item on the -
Info menu if this isn't disabled and this will display the last error
message detected by HiSoft C.

We will now describe the other items on the Run menu.

Page 16 HiSoft C Using HiSoft C .

[1.4.3 Trace Mode |

If you have an error in your

un Droaran my program that you can’t identify,
.,..IL--E., {gzg\%izmg ,,,,,, = the Trace Mode will let you
visualise the execution of your
Trace mode It baclo d
Variable dump program. It's a single step mode
Pointer test whereby for each instruction that
E[lnn is executed HiSoft C displays the
Shear scrgen program line that is executing on
OW cursor : the screen. You can therefore
Pausegazter ggggunun follow the execution of your
a1 e L RO e program.
v Link at runtime
Command tail To single step a program, all you
Include files need to do is to select Trace mode
System memory size from the menu; a tick mark will be
wwwwwww Project momemmmmms displayed to show that it has been
Load project " selected. Now, each time you
Tn%g ahout project execute a program, it will be in
trace mode.

To override this, click on Trace Mode again. The tick will disappear.

Before executing each instruction, HiSoft C displays the
corresponding program line on the top line of the screen. You must
now press a key. Depending on which key you press the program will
continue, with or without single step or will be terminated.

If you press Return, @ or Control-C execution continues but not in
Trace Mode.

If you press another single key, execution continues in trace mode;
the program line is deleted and the old screen re-drawn. Then the
instruction is executed and so on.

But if you press two of the shift, Alternate and Control keys at
the same time, execution is interrupted. The instruction that is
displayed is not executed.

This method of using trace mode is not of much use in some cases.
For example if you are interested in the behaviour of the program
around line 944 you want to go straight to the place that is causing
the problem.

For this reason, there is another way to access single step mode. Two
functions enable and disable this mode, trace_on and trace_off.

Using HiSoft C HiSoft C Page 17

For example, in the following program trace mode is activated in the
middle of the program and disabled towards the end.

main()

{

e o] R e R
prantf e 24w
PP R e 28 M)
trace_on();
piriEEnt FEEY 3
prantf L9440
trace_off();
ol g e o G B i e
X

After the trace_on instruction the progam is executed in single step
mode. Then, after the trace_off, trace mode is disabled and the
program runs normally.

Note that you don't have to select Trace mode with the mouse when
using these two functions, and you can also have multiple uses in the
same program, so you can use the trace functions where and when
you want them.

[1.4.4 Following variables

If you don't already know the C language, skip these sections on
variables and read them later.

In conjunction with trace mode you can follow the values of one or
more variables. You can see the value of one or more variables after
each instruction if you wish.

This facility must be used with Trace Mode.

After the display and execution of the current instruction, a dialog
box appears which lets you display the values of all the variables you
want. Close this box when you have finished and then the next
instruction will be executed. See Section 1.4.6 for a description of this
dialog box.

To enable variable dump mode just select the Variable Dump option
on the Run menu. As with trace mode there are two functions
var_on() and var_off () which let you enter and exit this mode
whilst a progam is running,.

Page 18 HiSoft C Using HiSoft C

—

In Trace Mode, if you press V (for variable) when about to execute an
instruction you will be placed in Variable Dump mode. Powerful, isn’t
it? If you press M then this will activate the Memory dump (see
Section 1.4.7) and pressing S will activate the Stack display (see

Sectfion 1.4.8).

[1.4.5 Pointer Tests

You may know that assigning a bad value to a pointer may have

catastrophic consequences.

Fortunately, HiSoft C tests the values of pointers every time you try
to write to an address pointed to by a pointer: If the value of the
pointer is junk then an error message (error 33) appears on the

screer.

These Pcinter Tests are active by default. But if you use pointers a lot
in a program that has been debugged you can suppress this option.
You'll gain a few tenths of seconds. To do this, click on the Pointfer
Test item of the Run menu and the tick will disappear.

But you do this at your own risk...

One bad pointer value can crash the computer if this option is
suppressed. Remember that, instead of displaying bombs, HiSoft C
displays an error message giving the problem that has happened
and positions the cursor at the piece of program that tried to crash

the machine.

Using HiSoft C

HiSoft C

Page 19

1.4.6 Variable Dump

The Info menu has five options. We already know about one of them,
program Info. We will now cover the Variables option.

This command allows you to display the names and values of
variables of a given type.

/N File Find Run Move Block Help BTYTN Ins
Module 1 i A:\EXAWPLES.\EVEKTS.C

nen-repl = 22
h =158
y_slider = 8
men_quit = 19
W = 158

il -] Ji] u-@8

| struct | i { 1| notfinis

/% event variables %/
int event_type; /% tupe of event#/

When you click on this menu entry a dialog box like that above
appears. This is the same as as the box that appears when Variable
dump mode is selected. The dialog box is split into two parts, the
right hand side is a window where the names and values of variables
are displayed.

On the left are ten selectable buttons. One of these lets you leave the
box and the other nine let you choose which types of variables you
wish to display.

A variable’s type is composed of an elemtentary type (char, shorf,
int/long, float/double or struct) and a class (none, poinfer, array or
function). For example, an ordinary integer variable is a combination
of int/long and none. An array of floating point numbers is float/dbl
and array. A pointer to a structure: sfruct and pointer. A function
returning a character: char and functicn.

Page 20 HiSoft C Using HiSoft C

All types of variables can be split up like this. To display all the
variables of a given type, you must select a type and a class by
clicking on the appropriate buttons with the mouse.

For example, to display all the pointers, select pointer and all the
primary types (char, short, int/long, float/dbl, struct). In this way you
will display all the pointers used by the program.

If you click a second time on a button, this button will be de-selected.
You can thus successively examine several types of variable.

Finally a little trick we haven't mentioned before. The process above is
a bit involved if all you want to do is display one variable. This is what
the two small boxes near the top right of the dialog box are for Type
the name of a variable in one and then click on the name you have
just entered with the mouse and the value of the named variable is
displayed in the second box.

The values are displayed in a format that depends on the class of the
variable. If it's a simple variable (none) then the value is displayed in
decimal. If it's a pointer the hexadecimal address to which it points is
displayed. For arrays, the address of the first element is shown and
for functions the address of the start of the code.

You may display several types of variables simultaneously.

If there are too many variables to display them all in the window use
the up and down buttons to scroll through them.

HiSoft C displays after each value the type of the value in a simplified
fashion. The base type is displayed first (int, char, double,
short...) followed by an indication of the class; if the variable is a
pointer a * is displayed, an array [is added, or for a function () is
added. For simple variables nothing is added.

For STATIC variables, the module in which they are declared is also
given. For example for a static variable declared in Module 1, HiSoft C
adds an extra mod: 1.

This command can not be selected until the program has been run,
nor can the variable dump be consulted if the program is changed.
Finally, only global and static variables may be displayed - local
variables are invisible.

If memory is very short, HiSoft C can not retain the symbol table
after execution and so this option is not available.

Using HiSoft C HiSoft C Page 21

1.4.7 Memory dump

This command lets you look at part of the memory of your computer.
You give it an address, and the memory area concerned is displayed
on the screen.

To do this, select Memory dump from the Info menu. A dialog box will
appear that nearly fills the screen. An editable field marked Address
lets you enter the hexadecimal address of the memory area that you
wish to examine.

/M File Find Run Move Block Help Ins
Module 1 ! A:\EXAMPLES,\EVENTS.C

Hemory dump

-~

h7abai76 65
b7acalbf Ge]
67ada: f 1d 65
b7aea!bf 66 6f
] 67afa: B8 BS
L 67bBaifl 72 al
] b7bla: 1 1 2c
1 b7b2a: 1 e FL]
= 67b3al e 6d 1
11 67bdaibd 65
1 67b5ai65 6e
H 67bkaife 1
| 67b7a162 6C
il 67bBai6d 61

"yent demonstartif
""on progran 3
" using the HiS}
::nft C toolbox |

oy

4
6
f
5
7

]

"ariables

" men-load,
" men_save,
" men_quit,
"men_find,
"en_replace;;

[

o
O~ = LD === 0N = (D WD U1

U O@ == DD —h & O

=~J
o ~J on o

Press Return and a display of 256 bytes starting at the address you
entered appears. You can click on the two arrows at the side of the
display window and these move 256 bytes forwards and backwards.
Each byte is displayed in both hexadecimal and ASCII.

This command is most frequently used to examine the contents of
structures and arrays having read their address using the Variable
dump command. It can be accessed in trace mode by pressing M.

The memory dump can also be activated and de-activated from
within your program using the mem_on() and mem_off() functions.
These work in the same way as the var_on() and var_off() functions
described in Section 1.4.4.

Page 22 HiSoft C Using HiSoft C

Yo Tl

11.4.8 Stack display

This command is similar to the previous command except that it lets
you examine the area of memory used by the interpreter’s stack. It is
here that the intrepreter stores your local variables in the order in
which they were declared and in order of function calls.

Thus this may be used to check the values of local variables. The local
variables of the current function start 8 bytes from the top of the
stack. This is the address of the local variable that is declared first,
with the second variable next, etc.

The stack display can be accessed in trace mode by pressing S. It can
be activated and de-activated from within your program using the
stack_on() and stack_off() functions. These work in the same way as
the var_on() and var_off() functions described in Section 1.4.4.

[1.4.9 Link at runtime

When executing your program HiSoft C can consider the modules in
two ways.

When the Link af runtime option is not selected, it considers the eight
modules to be eight different programs which have nothing to do
with each other. So when you run the program only the curent
module is executed.

On the other hand when Link at runtime is selected, HiSoft C
considers that all the modules form one single progam. This lets you
use the classic C programming style of using several modules. HiSoft
C executes all the modules together and ‘links’ between them in the
same way as a linker in a separate compilation system.

So you can declare a function or variable in one module and use it in
another module as if you were using a compiler and linker.

If you have selected Link at runtime, HiSoft C effectively links the
modules before running them,

Using HiSoft C HiSoft C Page 23

11.4.10 Execution Environment

There are three options on the Run menu that affect the execution of
a program.
They are selected or de-selected with the mouse. If an option is =
currently selected there is a tick in front of it.
| Run | Clear screen lets you view the =
Run progran mY execution of your program on a
........ Optigns ~—~==~==~ blank white screen rather than a
Trace mode GEM-type screen. -
gafl:bletdugp Show cursor starts execution of
olnler 1es the program in an environment
Clear screen similar to a .T0S program, with a as:
Show cursor - white screen and a solid text
Pause after execution Cursor.
~~~~~~ Enviresent ~~~~~~~ -
v Link at runtime Pause affer execution waits for a
Command tail key press or a mouse click when
Include files the program finishes execution
Sustem memory size before returning to the editor. =
~~~~~~~ HEEIge L mhomn e
Load project O
Infa sbout project -
These three options are saved and restored every time you save or
load a program with the File menu commands. k-
In effect, they are dependent on the program. The TOS environment
suits some programs but not others. The automatic saving of these
options lets the environment change with each program. o
1.4.11 Command tail x
The Command tadil option from the Run menu lets you enter a list of
arguments from the keyboard. These are passed to your program i
when it executes.
This lets you simulate passing parameters to the program with the
interpreter in a similar way to those passed to compiled .TTP e

programs.

Page 24 HiSoft C Using HiSoft C b

The parameters are separated by spaces except when enclosed in
double quotes. For example, the following list,

list of "three parameters”

consists of three parameters: "list”, "of" and "three
parameters”.

You access the program parameters in the classic C way, that is to
say, by having two parameters to the function main.

The first (argc) is the number of arguments in the command line.
The second (argv) is a pointer to an array of strings, which contain
the parameters, one parameter in each string,

The following program writes the parameters passed to it on the
screer.

main(argc,argv)
Nt S Aalngc
char **argv;
{
while(argc—-)
puts(argvlargcl);

[1.4.12 Include files =

The Include files option on the Run menu displays a list of the current
resident include files in a dialog box.

When a #include instruction is encountered during program
execution the corresponding file is loaded into memory. The include
files should be stored in a directory called \HEADER on the disk from
which HiSoft C was loaded, and you should enclose the file name in
angle brackets: < and >. If you use quote symbols (") then the
interpreter will look in the directory: this will normally be that from
which HiSoft C was loaded.

The include files remain in memory between executions to avoid
loading them repeatedly. This option displays a list of include files
that have been loaded by previous runs of programs.

You may have up to eight include files in memory simultaneously.
The dialog box can therefore show eight file names.

Using HiSoft C HiSoft C Page 25

It is possible to deliberately remove include files from memory by
clicking the Erase resident files in the dialog box. These files
are not deleted from the disk but only from memory. They will
automatically be re-loaded if you run a program that needs them.
The include files are automatically removed each time you load a
program to ensure consistency.

Do not use the include files from a C compiler with HiSoft C. This
will cause errors. HiSoft C has all the standard include files and only
these should be used with HiSoft C.

[1.4.13 System Memory Size

The system memory size is the amount of free memory that is not
allocated to HiSoft C but is free for use by the Atari ST's operating
system.

This memory is used for memory allocation (the mal loc function
and friends), loading resource files (rsrc_Load), the file selector and
loading compiled procedures.

By default this is fixed at 8K bytes. This is perhaps a little small for
mary purposes.

If you wish to load a large resource file, or use the memory allocation
functions extensively or load many compiled functions then this 8k
will be too small.

On the other hand, if you are using none of the facilities above you
may be interested in reducing this space thus increasing the
memory that HiSoft C can use.

Increasing the system memory size has the effect of reducing the
space reserved by the interpreter for the storing and running of your
programs.

So how do we modify this system memory size?

Select the System memory size item from the Run menu. Enter the
number of kilobytes you wish to allocate to system memory and click
on 0K. Save the HiSoft C configuration with Save Options from the
File menu. Quit HiSoft C and re-load it.

The system memory size is now the size you specified. It will be this
value each time you load HiSeoft C as this has been saved on the disk.
To change to a new value please repeat the sequence described above.

Page 26 HiSoft C Using HiSoft C

& HiSoft C uses this space itself. Always leave at least 6K bytes for
the system; it is impossible to reduce this any further.

1.5 Find and replace

[1.5.1 Finding

Thanks to the Find... item of the Find menu you can search for a
string of characters within a loaded program starting at the cursor
position.

When you select this option a dialog box appears on the screen and
you can type in the string to search for, thus,

FIND A STRING

EI 1 String th_slide| |E|

Direction | Forward |
Case sensitive
Magic mode | ND |

The string that you type in may correspond exactly to the item that
you are looking for. For example you could search for the end and
the editor would search for those exact characters in the text. In this
case you should leave Magic Mode set to NO.

But you may have more exotic requirements containing a number of
unknowns. For example, you might wish to find all the strings of
characters starting with the end and finishing with zz.

Equally you can search for every time a * is separated from a + by
zero or more blanks. It’s not blindingly obvious that this is useful but
there are many practical applications of this sort of thing. This is
what the Magic Mode is for.

Using HiSoft C HiSoft C Page 27

The string that you type will contain ordinary characters which
match exactly the same character in the text, but there are also

special characters as follows: ~
? matches any single character
X+ match with a sequence of one or more of character 0
x. 1l.e x, xx, xxx or more character x's
x % match with a sequence of zero or more of character _
x. That is nothing, x, xx, xxx etc
2k matches any sequence of characters. It could be no
characters at all or a string of characters :
2 matches any string of at least one character
NE matches a question mark
\+ matches a plus sign =
\ * matches an asterisk
Some examples: ;
String Strings Found:
Entered : =
"gwerty" "querty" only
"qu?rty"” "qwarty"”, or "qubrty", or "qwcrty", or
"quwerty", etc... —
Ygwe+Hpty" "quwerty" or "quweerty" Or "qweeerty" ...
"quwe*rty" "quwrty" Or "quwerty" or "qweerty" Oor
"qweeerty" ... L
MgWRHrty” All strings starting with "qw", and
finishing with "rty", with any string with
at least one character in between o
"Qu?*rty" All strings starting with "quw", and
finishing with “rty"”, with any string L
including "qwerty"
"qul+rty” "quw+rty" onl
q X q Y b -
Pquw\Erty” "qu*rty" only
MW Nty "gqw?rty" only e

The string that you are searching for must all be on one line of text.
When the characters are found the cursor is automatically moved to 1
that place. -

Page 28 HiSoft C Using HiSoft C

-

The direction of search, Forward or Backward may be specified by
clicking on the appropriate button.

If you wish the search to distinguish between upper and lower case
letters click on YES in the Case Sensitive field. If you want upper
and lower case to be considered the same click on N0. If you click on
NO, the string quERT is considered to the same as QWERT and quert
during the search.

You have eight possible search strings at your disposal. Thus you
can build up a little library of search strings that you commonly
search for, choosing with the Find command which one you want
this time.

Click on the arrow button to select the find string you want; the
current number is displayed.

When you have found a string you can use the Repeat Find
command to find further occurrences with the same conditions.

[1.5.2 Find and replace

You can search for a sequence of characters and replace it with
another. To do this choose the Find & replace item from the Find
menu.

SEARCH AND REPLACE A STRING

i Find th_slider B
IEI 2 Replaceihuriz_sliderlr EI

Occurence | Sone |
Case sensitive T
Direction
Magic nmode B N0k

The dialog box has two lines so you can enter two strings. The first is
the string to search for and the second is the string that will replace
it, You can switch between the two fields using the up and down
cursor keys.

Using HiSoft C HiSoft C Page 29

You can use all the same facilities that are available with the ordinary
Find... command.

You can use wildcards, access 8 find strings, select the search
direction and whether the search is to be case sensitive.

There are three modes for using replace. You choose which one by
clicking on one of three buttons. You can choose to replace one,
several or all occurrences of a string.

» Replace One occurrence

This replaces only one occurrence. The first one found is
replaced.

» Replace All occurrences

All occurrences found are replaced. This starts from the
cursor and in the direction specified.

During the operation of this command, if you press one of
the Shiff, Control or Alternate keys the replace operation
continues but in "Some Occurrences” mode. See below.

» Replace Some Occurrences

This is the most commonly used option. For each
occurrence the cursor is positioned where the string has
been found. A small dialog box with three buttons is
displayed. HiSoft C asks if you wish to replace this
occurrence. You can:

» Replace this occurrence and find the next one (click on Yes
or type Return).

 Not replace this occurrence and find the next one (click on
No).

e Stop searching without replacing this occurrence (click
on Stop).

This process continues until either all occurrences have
been found or you stop the search.

& Be careful not to do a replace operation that will leave a comment
line or a string without its terminator. An error message will appear
and the search will stop.

Page 30 HiSoft C Using HiSoft C

("\

[1.5.3 Searching in files

The option Find sfring in files from the Find menu lets you search for a
string within files on disk. A dialog box appears:

/N File Run Move Block Help Info Ins
i
i Find a string in files |
[String ! event] |
[File 1 ! A!\EXAMPLES.\DUMPFILE.C |
[File 2 : A:\EXAMPLES,\EVENTS.C |
| Find |
[File'3 |
.
[T FRIEET: |
EEETRIE: |
[File 6! | Case sensitive
[File?7: I VES |
1| 2 Zrie e | g

The files may be standard ASCII or HiSoft C coded files.

First define the files in which the search is going to take place. To do
this click on one of the 8 boxes for file names that you can see in the
dialog box. You can search up to eight files at once.

The file selector will appear; select a file and it will appear in the box
that you clicked on.

To remove one of the eight file names, click on the file name and then
select Cancel in the File Selector and the name will disappear.

To start the search click on Find. When the first occurrence is found,
HiSoft C will display a message indicating in which file, and on what
line within the file, the string has been found.

You can stop the search by selecting Cancel, continue the search in
the same file (Contfinue) or continue searching in the next file (Next
file).

Using HiSoft C HiSoft C Page 31

[1.5.4 Find Identifier

This option lets you find an identifier without having to type it. When
you use this command HiSoft C will search for the next occurrence of
the variable name under the cursor.

Thus, if the current line is:
printfetzdin",flag ddent):

and the cursor is on the i of flag_ident then HiSoft C searches in
the text from the cursor for the next occurrence of the identifier
flag_ident.

If the identifier is not found before the end of the current file the
search continues at the beginning.

If there is only one reference to flag_ident in the text the cursor
re-appears in the same place.

You can use this command with the mouse without pulling down
menus by first moving the mouse to the identifier that you wish to
search for, then pressing on the right button and then clicking at the
same time on the left button.

This way you can search for an identifier extremely quickly.

1.6 Block operations

You can define a block of text and carry out various operations on it.
For example, delete the text, copy it to another place or save it to disk.

[1.6.1 Defining a block

A block is a collection of consecutive whole lines in the text. There are
two ways of defining such a block, with the mouse or with the menu.

With the mouse, double click in the first and last line of the block that
you want to define.

Page 32 HiSoft C Using HiSoft C

With the menu, move the cursor to the

Set top of block first line of the block and select the menu

Bﬂttﬂﬂpﬂf block item Set top of block from the Block
,,,,,,,,,,,,,,,,,,, menu. Then move the cursor to the last

line of the block and click on the Bottom of

HoUC U LOES block item.

Copy block

Save block When you have defined a block it is shown

Goto block start highlighted in inverse video (white
"”a“_‘;”;i'""lz ““““““ characters on a black background).

1de oc

Delete block The block stays selected until you choose
~~~~~~~~~~~~~~~~~~~ Hide block or Delete block.

Inport Black

If a block is selected when you change a module the block isn't de-
selected but it is treated specially. See Section 1.6.3 .

You must select a block before using any of the commands described
below.

[1.6.2 Block operations

There are plenty of choices of operations to perform on blocks:

Move block

This command moves the block to the current cursor position. The
block is deleted from its original position and inserted after the line
containing the cursor.

Note that a block may not be moved if the cursor is currently inside
the block.

Copy block

This command copies the block to the cursor position. The contents
of the block are duplicated on the line after the current cursor
position.

Delete block

This command is used to remove a block of lines.

The block is destroyed.

Using HiSoft C HiSoft C Page 33



Hide block

All this command does is de-select the current block.

The text that was shown in reverse video is re-displayed in normal
video; the text is not changed.

Save Block

The contents of the block are written to a disk file. The file selector
appears and you can enter the name of the file to which the block will
be written. The text in memory does not change.

Goto block start

This command isn't the most powerful in the editor but it can be
useful on occasion.

[1.6.3 Copying a block to a another file =

HiSoft C lets you select a block in one module and insert its contents
in another module.

If you select a block and then change module the position of the block
isn't lost; the editor remembers which module the block is in and
which lines it contains.

This can be seen using the Module List command from the File menu.

You can insert the block after the current line by selecting Import
Block from the Block menu.

This is the only operation you can carry out on the block when you
are in another module, apart from re-defining it of course.

Page 34 HiSoft C Using HiSoft C



1.7 The Help menu

This section describes the various commands under the Help menu.

~~~~~~~ Tegpt ===~
Macro commands
Cursor keus
Function keus

== BrCaSSArifss o
Pocket calculator
Ascii codes
Print file
Help

~~~~~~~ I
New folder
Delete file

v Load disk util
Disk utilities

[1.7.1 The macro commands

You can set up ten programmable keys shift F1 to Shift F10.
(Press a shift key and the function key together).

When you press one of these keys a sequence of commands is
exccuted as if you had hit the equivalent keys.

Using HiSoft C HiSoft C Page 35



When you select the Macro Commands menu item, a dialog box like
that below appears:

/A File Find Run Move Block IETY Info
Module & : A:\EXAMPLES.\EVENTS.C =

Current [print_uindow CGFun," ) eed |
macro commands [printf (1\n!") ; €0eae |
(Shift F1 - F1B) [3oxd

SPECIAL CHARACTERS
Control Z : Alternate
Control P ! FiB
Control 0 & Fi
Control Y ¢ F9
Control A !} @
Control B | &
Control C ! ¥
Control D ! ¢

There are ten lines so you can enter ten sets of commands. Each line
corresponds to one key.

There are two sorts of characters that can be entered in the
command strings: control characters, which are interpreted as
commands to execute, and normal alphanumerics and punctuation.

When the macro command is executed, normal characters simply
appear on the screen as if they had been typed.

Now for the control keys:

The keys Control-P to Control-Y correspond to F10, F1 to F9
respectively. For example if you select the top line of the dialog box
(the first macro) and type Escape to clear it and then hit Control-
s, a stylised 3 digit will appear indicating F3. Then pressing shift
F1 is equivalent to pressing F3.

if you type Control-P, Control-Q, Control-R, Control-5,
Control-T, Control-U, in sequence the command will become
equivalent to typing F10, F1, F2, F3, F&, F5.

Page 36 HiSoft C Using HiSoft C



Be careful not to confuse the non-shifted function keys and the
shifted function keys that correspond to macro keys. The unshifted
ones are pre-defined and can not be changed. Also the ten macro
commands can not call each other although they may call the
unshifted function keys as we have seen above.

control-2Z followed by a letter is equivalent to pressing Alternate
and the letter at the same time. This can be used to access some of
the menu functions from macro commands.

For example, Alternate-T selects the Top of file command. If you
you enter Control-Z and then T in a macro command this will go to
the beginning of the file.

Also, Control-2 followed by one of the digits 1 to 8 will select the
corresponding module.

The only exception to the above is that the Quit command can not be
incorporated into a macro command.

Cursor movements may be added to macro commands. They are
represented by Control-A to Control-D and are echoed with
arrows pointing in the direction of the cursor movement.

In addition the following control codes can be entered:

. Control-Mis equivalent to the Return key.

J Control-H is equivalent to the Backspace key.

Use of control characters other than those above and attempts to call
menu items that do not exist (via a Control -z followed by a letter)
will give an error message.

By default the macro keys are set up as follows:

shift “Fil Add a call to the function print_window to the
file.

shift F2 Add a call to the function printf to the text.

Shift F3 Duplicates the current line.

Shift F4 Positions the cursor at the start of the file and
calls the Find command.

Skt S Adds a comment header line.

Shift Fé Deletes the new line at the end of this line, thus
joining the following line to it.

Using HiSoft C HiSoft C Page 37



Shift F7 Deletes the new line at the start of this line, thus
joining it to the previous line.

Shift F8 Spare.

Shift F9 Moves the cursor half a screen towards the start
of text.

Shift F10 Moves the cursor half a screen towards the end of
text.

[1.7.2 ASCIl code table

When you select the ASCIl code command, HiSoft C displays a dialog
box which shows the character codes used by the ST.

/\ File Find Run Move Block J[TY Info Ins

Module { : Ho name

| ASCII code table |
188 0:18 128 B@:30  @:48 P:58 M6 P:78 (:80
e R B 1R TRk T B L ST A i i B
el bt passalne b Rt ok v ddssil oy Dasse il = RS b el
DTS TR 2y T3 R T 550 Ser bt sa7Ie pulf
¢rgd  Mi14 S:24 4:34  D:44  T1:54  died  t:74 097
i85 S:15 %25 5:35 E:i45 US55 eied w73 £19C
F:86 bi:l6 &:26 6:36 Fi46 V:56 fi66 vi76  iB9
B2 “Aulpeiops Sy T heA? T NISTT T gl67 T 7Y “CiEC
vi88 B8iiB (:Z8 B:38 H:48 X:58 hi6B x:i78
e1p9 9919 90295 9539 B9 Yibe=in69e 79
RIOA  ailR 2R 1:3R JidA Z:SA ji6R  zi7A
J18B %11, +:2B° :i38 - KidE [:5B. kieB {:7B
o i [ Sl e LT S S T il [ i
%:8D 3”“ =120 =:30 Mi4D 1:5D mi6D }:7D
/:8E SE et 2E. o23TERs SNT4ES S ASE. cni6Eq -Si7E
NEBE iE 7R MIE T COvAE = iRE" 0'EF 1 7F

s

[1.7.3  Print file

The Print file option lets you print a disk file without monopolising the
CELY

If Print file is selected, HiSoft C lets you enter the file to print using the
file selector, and the file will be spooled for printing. You keep control
of the ST and can, for example, edit or run a program while the file is
printed - it’s magic!

Page 38 HiSoft C Using HiSoft C



S

However, despite the above, you can't use the File menu whilst
printing; loading and saving files is not possible, nor is leaving HiSoft
C. If you select one of these options you will be asked whether you
want to cancel printing so that the command you selected can then
be executed.

1.7.4 The Pocket Calculator

A calculator can be used in HiSoft C by clicking on the Pockef
cadlculator menu entry. It looks like this:

In brief, it uses reverse Polish notation, is integer-only but can
calculate in base 8, 10 and 16.

The four standard arithmetic operations are available. To calculate
20E3 - 1FE3 for example, click the digits for 20E3 and the larger
up-arrow button (this is the enter key). Then enter 1FE3 in a similar
way. Finally press - and the answer appears.

To change base click on the appropriate button on the right hand
side of the calculator. The displayed value is immediately converted to
the new base.

You can easily see which is the current base because only the
appropriate digits are enabled. So when you are in base 8, the digits 8,
9, A to F are disabled and displayed in grey. In base 10, only 0 to 9 are
enabled, and in base 16 you can use all the digits.

The ! button clears the calculator display.

The left arrow key deletes the last digit entered.

The +/- changes the sign of the number. Finally to leave the
calculator click on the close box at the top right of the display.

Using HiSoft C HiSoft C Page 39



You can paste the value displayed by the calculator into your
program by using the F1 and F4 keys.

11.7.5 Help

When you select the Help menu item, or press the He Lp key, a small
dialog box appears on the screen.

It asks you to enter the word that you would like help about. If you ™
give a valid keyword, help about the appropriate word will be
displayed.

If the program displays an error message because it does not know

the word that you are asking for help about, make sure that the disk

with the HELP folder is in drive A. (Strictly this is the current drive
when HiSoft C was loaded; so if it was loaded from drive C, the HELP ™
folder will need to be on drive C).

Obviously the help files doesn’t include every word in the Shorter
English Dictionary or even Kernighan & Ritchie. So if you don't know
which word to type to obtain help on the subject that you are
interested in type HIC. This will guide you to the information that
you are looking for.

The subjects covered by the help files are the library functions, in
particular the HiSoft C specific ones, the menus, the error messages .
and a few others.

You can display a list of several library functions with some
information about each one. For each function the type returned and
the number of parameters is displayed. To do this, enter the name of
the function preceded by a dash or minus sign (-). For example, -
objc will give all the functions starting with ob jc. This facility is e
available for all 460 library functions.

[1.7.6 The Disk Options | . e
You can carry out two disk operations directly from the HiSoft C
editor. N

You can delete a file by selecting Delete file (!) from the Help menu.
The file selector will appear and you can enter which file to delete.

You will be asked to confirm that you wish to delete the file before it is
destroyed.

Page 40 HiSoft C Using HiSoft C

p



|

You can also create a New folder. Again the file selector is used to
enter the name of the new folder that you wish to create.

You can also select Disk utility. This is a program that lets you copy,
delete, and rename files and folders, format disks etc. This program

is described in Section 1.11.

1.8

Editor configuration

1.8.1

Saving the configuration

The HiSoft C editor has many parameters that can be set by the user.

You can save the values of these options on disk so that you do not

have to set them up every time you use HiSoft C.

The Save options command from the File menu lets you save the
editor configuration file to disk. The options are saved in a file which
is automatically loaded when you load HiSoft C; thus the next time
you load the interpreter the configuration will be exactly the same as
when you selected Save options. Of course, you must have the disk
from which you load HiSeoft C present when you use this command.

[1.8.2

Editor Options

| File |
~~~~~~~ Read

Save options o1
v Confirm abandon
v/ Confirm overurite
v/ Backup file

Text editor

Load file 10}
Insert file 0]
~~~~~~ HE Db
Save file Oy
Save as. .. O]
""""" FS e Ly

There are ten menu commands that let
you configure the editor. They selectively
change how the editor works.

For example, if the Confirm abandon
item from the File menu is selected then
you will be asked to confirm that you
wish to abandon a file if you have
changed it without saving it to disk. By
default this option is selected. But if you
wish to suppress this, click on the menu
item. The tick mark will disappear and
the abandon confirmation box will no

longer appear.

Auto load

Module list 01y

Hbanduﬁﬁd 0A There are” the following other

Quit 90 configuration options on the File menu:
Using HiSoft C HiSoft C Page 41




Confirm overwrite. This option informs you if you are about to save on
top of a file that already exists. A dialog box appears asking you if you
wish to overwrite the old file. This option is selected by default.

Backup file. When you save a program, this option lets you keep the
previous version by renaming this file with a .BAK extension rather
than .c. Thus, you always have two versions of the program, the
current one and the last one. This is another option that is selected
by default.

Auto load. If this option is selected, then when HiSoft C is loaded it
automatically loads the last file that was saved and positions the
cursor at its position when the save took place. This option is not
selected by default.

Text editor. This option activates a special editor mode that lets you
use HiSoft C as a mini-word processor. See Section 1.9 for more
details. This option is not set by default.

The Pointer Test option from the Run menu is configurable. This
enables testing that pointers are valid during program execution. See
Section 1.4.5. This option is selected by default.

The Link at runtime option is also configurable and is discussed in
Section 1.4.9. This option is selected by default.

Some cursor control options follow; these are on the Move menu.

Top ﬁiﬁiil:UrSGT’ ou| Indentation. When this option is
Bott § fil WB selected and you press Return the
otton of file i cursor is not necessarily
Go to line ... = E’EE positioned at the start of the next
o to last positian &7 line, but under the first non-
””;“;‘“‘“’ iﬁiks ”””””””” 4 blank character in the line. This
et mar lets you enter text with a left
Set mark 2 A2 margil very easily as HiSoft C will
Gg to mark 1 ~3 enter the margin for you from the
Go 1o mark 2 A previous line. More importantly
~~~~~~~ Opttens ses=r however it lets you indent your
v Indentation programs in a readable manner
fiuto line split without having to press the space
Set tab length bar or Tab key all the time. This

/ Auto write option is selected by default.

Page 42 HiSoft C Using HiSoft C

Auto Wrap. When this option is selected, and you try to type a line
that is too long to fit in the work window the editor will automatically
enter a new line for you and you can continue to type on the next line.
The word that you are currently typing is placed on the next line.

When this option isn't selected and you type a long line the screen
scrolls sideways to let you enter lines longer than 80 characters.
This option isn’t selected by default.

Auto Write. When this option is selected and you type in an if or for
statement, the interpreter will insert a matching pair of curly
brackets, { and } on separate lines and places you on a line between
them: so that you can insert the code for the statements straight
away. If you don't like this, switch just it off.

If you do not like one or more of the options above then you can de-
select them by clicking on the corresponding menu entry. The tick in
front of the entry will disappear and you should then save the
configuration using Save options from the File menu.

Set tab length. You can change the size of tabs. By default this is five
characters but can be set to any value you like (within reason!). When
the editor configuration is saved the size of tabs is also saved.

Macro commands. The current settings of the macro commands are
saved as well so that you can set them up in exactly the way you like
and they will always be ready when you load HiSoft C.

And finally, the last part of the configuration is the path that is used
for loading and saving files. The name of the disk and directory that
you last used with the file selector is saved when you saved the
options.

This option is particularly useful if you have a hard disk as you don’t
have to select the right folder every time you use HiSoft C - you are
already there.

[1.8.3 Redefining the keyboard

You can modify the keyboard shortcuts that are used for the menu
commands.

By default, Alternate S is equivalent to selecting Save from the File
menu; but you could change this to Control N or any other
combination you wish.

Using HiSoft C HiSoft C Page 43

To do this you will need to know the keyboard scan codes
corresponding to the key sequence that you are going to use. For
example, for the combination Control N the code is 310E.

To find the scan code for a given sequence, run the following program
and type the key; the corresponding sequence will then be displayed
on the screen.

void main()

L
printf("%x\n" ,evnt_keybd());
evnt_keybd();

}

Once you know the code put the editor in to Text Mode and load the
file F5.IC from your backup disk 1.

Each line of this file corresponds to one command. The third line is
the line for the Save file command. To change this to Control N
replace the code for Alternate $ (1F00) with that for Control N
(310E).

Now save the F5.IC file, quit and reload HiSoft C. Type Control N
and this will be equivalent to saving the file.

Of course this should be performed with your backup copy in case
you make a mistake.

1.9 Editor Mode

HiSoft C has an editor mode as opposed to the interpreter mode. The
Editor Mode command from the File menu lets you change from one
mode to the other.

By default you are in interpreter mode in which HiSoft C encodes the
lines of your program which you type although you hardly notice
this. The program is saved on disk in this non-ASCII format; however
this speeds up the execution of the program.

You can remove he encoding thanks to Editor Mode. The memory
image is always faithfully what you have typed in and is saved to disk
in standard ASCII format. So you can use HiSoft C as a normal text
editor. Together with the Auto Wrap command you can almost use it
like a word processor - you can type away without ever pressing
Return.

But in Editor mode, you can run C programs. Clearly, you can't have
everything. To run programs you must be in Interpreter mode.

Page 44 HiSoft C Using HiSoft C

HiSoft C recognises two types of files: its own format and standard
ASCII. You are in you can load both type of file in either mode; the
editor will convert between them when you load.

In Interpreter mode, you can not load C programs in ASCII that have
been written with a compiler in mind; they will be automatically
encoded into the internal form. Similarly you can load a program
that you have developed with the interpreter when you are in Text
mode and then save it out so that you can compile it or even send it to
another machine.

1.10 Projects and Compiled Libraries

This section describes one of the more advanced features of HiSoft C;
beginners are advised to ignore this for now.

[1.10.1 What is a project?

As far as HiSoft C is concerned a Project is a collection of files that
make up a whole program.

All applications can be split into one or more files. The files are of two
types:

C source files which are programs that are written in C and
interpreted. A C program is composed of several modules; the
different modules are loaded together and then interpreted as it you
were using a linker with a compiler.

The source files are loaded for execution into one of the eight editor
modules. You can therefore split a C program into at most eight
modules.

The other type of files contain binary executable code.

These files contain compiled functions that can be called by an
interpreted C program.

A project lets you link interpretable C files with machine code files
and indicate to HiSoft C exactly which files make up the program.

Note that a project can consist of just interpreted C modules. In this
case loading the project loads several files in one operation.

Using HiSoft C HiSoft C Page 45

[1.10.2 Loading a project

|

A project is described in a file with extension .PRO. When you load a
project HiSoft C reads the file names of the C files and compiled files

and loads them into memory in one single operation.

For example, on the Examples disk there is the project FILL.PRO.
This describes a project consisting of a C file ad a function written in

assembler.

When you click on the Load project item on the Execute menu, the
file selector will appear. Select the filename of the project that you

want to load.

The loading of C and machine code files happens automatically
according to the description in the project file (FILL.PRO for

example).

All you now have to do is click on Run to execute the whole project.

[1.10.3 Executable functions

This section describes how to load machine code functions and link
them to an interpreted program.

You can build a function library in assembler, compiled C or another
language and then use these procedures with an interpreted C

program.

These functions must always be in a special format. You can only
have one function per file; the file name is the name of the function.

A library file=one procedure.

For example, if you write an assembler routine that you have called
elephant, then you must assemble the code of the said routine to a

file called ELEPHANT.COD.

In practice, HiSoft C ignores what is inside the compiled file - it
assumes that the name of the file is the name of the procedure.

You can pass parameters to the function and it can return a value.

You can write your procedures in assembler or C although there are
rules for writing them because library functions that are loaded by
HiSoft C have a different format to ordinary executable (. PRG) files.

Page 46

HiSoft C

Using HiSoft C

S

o

-

S

|

1.10.4 Assembly Language functions

If you aren’t an assembly language wizard it is probably best to skip
to the next section.

The entry point of your procedure is the first instruction of the
program and you must return with an RTS instruction.

Do not use the GEMDOS PTERM to finish the program.

You don't have to set up using the program's base page as HiSoft C
has already done so. Trying to do this again will cause unexpected
results.

The following is a complete example of a function written in
assembler. HiSoft C passes two parameters on the stack and the
function returns the value 1.

This example is purely to show how this is done and is not at all

As we have seen, the entry point of the routine is the first instruction
in the program and it terminates with a RTS. There is no base page
manipulation.

The two parameters that are passed are two pointers to strings of
characters. In the C program this function is called as follows:
writ(strl,str2).

The link instruction makes it easier to access the parameters
passed by HiSoft C. 8(aé) is the address of the first parameter,
12(a6) that of the second. If you have more than two parameters
the third will be at 16 (a6) etc.

All parameters are passed as 4 bytes (a long word) whether they are
characters, integers or pointers except for floats and doubles which
take 8 bytes.

Function number 9 of trap 1 displays a string of characters on the
screen,

Link a6, #0 ;Initialise A6 for the parameters.
move.l 8(aé),-(sp) ;write the first string

move.w #9,-(sp)

trap #1

move.l 12(a6é6),-(sp) ;urite the second
move.w #9,-(sp)

Using HiSoft C HiSoft C Page 47

trap #1

unlk ab ;Restore Aé
move.l #1,d0 ;store the value to be returned in DO
rts ;end of the function;return to HiSoft C

The unlk instruction restores the A6 and stack registers to their
original values.

The value returned by the function must be stored in DO. In our
example the value returned is always 1. This value is recovered by the
interpreted C program.

If the function returns a double precision 8 byte number then this is
taken from DO and D1.

Finally the RTS instruction finishes the function.

To produce an executable program you must assemble it to produce a
standard executable file with just the above instructions. You can if
you wish link with your assembly libraries (like the GEM ones
supplied with DevpacST) but don't forget the following golden rules:

e the first instruction in the executable file must be the first
instruction in the function.

¢ the function must finish with an RTS.

e don't mess with the base page.

[1.10.5 Compiled C functions AT

This section describes how to use compiled C functions in your
HiSoft C program.

As with assembler the C function must be at the very start of the
module. The assembler example above is the following in C:

#include <osbind.h>

writéstrl,;str2)
chap. *stpl- ®ctr2;
{

Cconws(str1);
Cconus(str2);
ceturnm ¢10;

J;

The procedure writ is the first in the module; it does exactly the
same thing as the little assembly language program.

Page 48 HiSoft C Using HiSoft C

st

| -

-

To turn this into an executable file that HiSoft C can understand you
must of course compile and link this function. But you must not
include the ‘startup’ code in you program.

With most C compilers you explicitly link with this startup module.
With Lattice C 5 this module is called ¢.0. With Lattice C 3, it was
called STARTUP.BIN, and with Megamax C it is INIT.0. You must
not link with any of these files. Remove the startup file from the file
list that is used when you link. Your program will now be the first in
the list.

With Aztec C, things are slightly easier, just compile with the +B
option. This will remove the reference to the .begin label, so the
start up code won't automatically be included.

Although you mustn't link with the usual startup code you can use
the normal libraries (C, Gem etc).

So you produce a . PRG file, but one that cannot be directly executed
by your ST because it does not have the correct initialisation. This is
the file that you can load under HiSoft C.

1.10.6 Loading executable procedu’res.
Project Files.

A project file consists of commands telling HiSoft C which files make
up a project and thus which files must be loaded.

These files are of two types: interpreted C files and executable code
files.

The project file consists of a series of lines.

If a line starts with a hash character (#), the line is treated as a
comment and ignored.

If a line starts with a dollar ($), it is a command.

If not, it is a file name.

Using HiSoft C HiSoft C Page 49

The commands are as follows:

$REP <directory name>

$C

$ASM

$32 and $64

Specifies the directory in which the
files are stored. You may have several
of these in the same project file.

Specifies that the following files are
the C files to be loaded. These files will
be treated as interpreted C.

Indicates that the following filenames
are those of executable files to be
loaded by HiSoft C.

Only relevant for executable files. They
give the size of the value returned by
the function stored within the
executable file.This size is 32 bits by
default for integers, characters,
pointers etc. This size must be 64 bits
for functions that return a double
precision real number,

You may have several $C and $ASM commands in one project file.

Here is an example project file:

First part (optional)

$REP specifies the directory (le

it

repertoire!) to load the files from. This $REP directive
may occur several times in the file.
#
3
#

REP D:\HC\EXAMPLES

Second part (optional)

C source files to load for HiSoft € to load.

The List of files must be entered after the $C directive

#
#
No more than 8 C files may be loaded
#
#

one file per Lline.
3C
faliGae
#

Page 50

HiSoft C Using HiSoft C

e

Third stage (optional)

Machine code files to load

Note that their format is special and is not that of
standard

executable files.

No more than 200 (!) may be loaded

The List of files must be entered after the $C directive
one file per Lline.

#

$32 indicates that the functions return a 32 bit value
(char,.-short,int or ‘Leng).

¥ $64 indicates that the functions return a 64 bit double
value

#

$ASM

$32

fill-cod

This file describes a very simple project containing only one C file fil.c
and one executable file fil.cod.

Both files are stored in D:\HC\EXAMPLES.

The fi Ll function is supposed to return a 32 bit value (the default
case). This is also a sensible value to use for all functions that do not
return values. If the function returns a double precision real value
then you must specify $64.

When you select the option Load project from the Run menu all the
files mentioned in the project file are loaded into memory.

[1.10.7 Calling executable functions ot

An executable function that you load and call in a C program must be
declared as extern. For example, the following line must be placed in
the interpreted C program in order to use the fill function:

extern voild filltC);

An executable function may have parameters and may return a value.
The definition and call are in the traditional C style.

[1.10.8 Project Information

When you click on the Info about project item from the Run menu a
list of loaded executable files appears on the screen together with the
type returned by the function (32 or 64 bits).

Using HiSoft C HiSoft C Page 51

1.11 The Disk Utilities

1.11.1 Loading the utilities

Disk Utilities is a program that can be loaded at the same time as the
Interpreter and be co-resident in memory. You can switch between
the disk utilities and the interpreter instantly to perform various
operations on files and directories (copying, duplicating, deletion)
and disks (formatting, information). When you return to HiSoft C
you will be in exactly the same state as when you left. You can thus
work with your files and disk without returning to the Desktop.

However, naturally the Disk Utilities use some memory. If you have
512K memory, you only have a limited amount of memory when
using HiSoft C and loading the utility will reduce this further.

So you can decide whether to load the Disk Utility depending on how
much memory you need.

If you have 512K, HiSoft C will not load the Disk Utility by default.
This gives a ‘decent’ amount of usable memory for writing C
programs.

If you have more than 512k the utility will automatically be loaded. It
is available for use the moment that the interpreter has loaded.

However, you can change the default.

To load the disk utility you should select the Load disk util option
from the Help menu. When a tick mark is present, every time you
load HiSoft C, it will load the utility as well. If you remove the tick by
selecting the menu item again then the utility is not loaded and your
programs can use the memory that it would otherwise use.

After selecting Load Utilfies you should save the options and re-load
HiSoft C. This is how HiSoft C remembers your choice. Then each
time you load the interpreter HiSoft C will load or not load the utility
as you have asked.

Page 52 HiSoft C Using HiSoft C

S’

[1.11.2 Using the Utilities

When you click on Disk ufilities, the screen is cleared and a new menu
appears. There is only one menu, called Options.

The menu item Return to HiSoft C does just that: it takes you back to
the interpreter.

The Format command produces a dialog box like this:

Disk drive : -
: 80

Humber of tracks !

Number of sectors :

Verify : -'ffis-

|_FORMAT |] Cancel I

You can use this to format a disk, single- or double-sided, and specify
several parameters (the number of sectors per track and the number
of tracks per side) which will give you a little extra space on your
disks. You may also indicate whether you want to verify that the disk
has been formatted successfully. Clicking on Format will bring up a
confirmation box and then format your disk.

Using HiSoft C HiSoft C Page 53

The File Selector option brings up a dialog box like this:

1 Itens

6188 Bytes

R

HEADER
HELP
ASCII.SCR
BLOCK. SCR
F1.IC
F2.IC

[

f
FEXRMPLES
Of

01

a

a
326864
326888
620
80

¥.PRG

K.Acc | K.c

¥,COoD | ¥.,PRO

Haol FREE: ¥.APP

<< [OOPY <«
<< MOVE <<

E.: .

ore
APSKEL.C
ARG.C
CELSIUS.C
COUNT.C
DFREE.C

| s==DELETEs=: |
DELETE DOSOUND.C

[_RewaiE] MTI;

NEW FOLDER EVENTS.C
EX_PTRFC.C

FILL.C
[our 1 |Gerciec

F3.IC 3735
F4.IC 25842
F5.1IC 465
F6.IC 22118
F7.1I6 17824
FB8.IC 41839
F9.1IC 9418

The two selectors display the files on the current drive (normally A)
when HiSoft C was loaded. To change drive, just click one of the
buttons at the top of the screen that indicate which drives are
available.

To select a particular folder or directory just double-click on its name.
To return to the parent of this directory double-click on the directory
calledir e

By default, all the files in a directory are displayed; a selection of files
can be displayed by choosing one of the ‘filters’ near the middle of the
screen. To display just the . C files click on the button *. C.

The two windows can display the contents of different files or
directories. To switch between windows, click on the appropriate
window'’s title or information bar.

To delete or rename a file select the appropriate file and click on the
DELETE or RENAME button. To copy or move a file, set up the
destination directory (where the file will be copied or moved to) in one
window and then select the file to copy in the other window. To
perform the copy or move click on the appropriate button. MOVE is
just like coPY except that the original file is deleted.

You may copy, move, delete or rename more than one file at once, just
hold a shi ft key down when clicking on a file; any currently selected
files will remain selected.

Page 54 HiSoft C Using HiSoft C

You can find out how much used and free space there is on a
particular drive by double-clicking on the appropriate drive button.

Finally, to create a new folder, first select the folder in which you
want the new one to appear and then click on the NEW FOLDER
button. You will then be prompted to enter the name of the new
folder.

Using HiSoft C HiSoft C Page 55

2 Introduction to the C

language

This introduction to the C language is designed for people with some
programming experience. We assume that you know and are familiar
with the fundamental ideas of programs, statements, variables,
conditionals and loops.

Some knowledge of the BASIC language is useful for this section as
we will make comparisons with BASIC.

This is designed as a practical tutorial. There are a number of
exercises and example problems. Appendix A contains answers to
the exercises and suggestions for solutions. Note that certain ideas
are discussed in the answers to the exercises. If you don't read the
answers you will miss some vital information.

This section does not attempt to be a complete C language course but
it nevertheless covers the working of a number of simple programs.

2.1 Your first program

2.1.1 The traditional approach

In just about every introduction to a programming language, the first
program is one to display hello on the screen. So to follow the
tradition of many generations of programmers, here is a C program
that displays Hello and then How are you? on the screen and
then waits for a key to be pressed.

main()

{

printf("Hello\n");
printfCtHew are you 2\n'");
printf¢tpeess a key\n");
evnt_keybd();

X

That's it. It seems a bit more complicated than in BASIC.

C Language Introduction HiSoft C Page 57

2.1.2 The big moment

Load HiSoft C if you haven't already.
It's waiting for you to type a program - go to it!

If you have problems typing the program, see Section 1, the section
describing the editor.

Always type carefully. In the C language upper and lower case letters
are treated differently. The language keywords are always written in
lower case. Two identifiers (variables or functions) made up of the
same letters, one in capitals and one in lower case are different. Thus
the names language and Language are not the same. You can't use
one in place of the other.

Now that you have entered this example, the only thing left is to run
it. To do this, click on the Run item on the Run menu. That's it.

Now let’s look at the program more closely.

[2.1.3 Functions, the fundamental unit in C —

A program written in C is made up of functions. They are the bricks
from which a program is built.

One of these functions has a special role; it’s called main.

This function is essential because main is where the program starts
executing. If there is no main function the program can't run.

The whole C program is built around this function. You can have
other functions as well as main and these are called from the
function main.

Keeping to this rule, the example above has a main function.
Obviously it is the only function present in this program. So our first
program is very simple in this sense although it may still seem
complicated with its funny names and punctuation.

Strictly, a function is a set of statements enclosed in curly brackets
and preceded by the function name.

The name of the function is followed by two round brackets
(parentheses). This is explained in more detail below.

Page 58 HiSoft C C Language Introduction

[2.1.4 Statements

A function is made up of statements which must always be
terminated by a semi-colon(;). The semi-colon indicates that the
statement is over. It is similar to the colon(:) in BASIC, but in C every
instruction is terminated by a semi-colon even if it is the only one on
the line.

[2.1.5 The C library

Our example has four statements. they are:

printf ¢Cihe UlloNn? s
printf("How are you ?\n");
printf(”press a key\n");
evnt_keybd();

printf and evnt_keybd are functions from the C library (yes,
functions again, well we warned youl). That is to say they have
already been written for ease of use. All implementations of C have
their own library of functions. They are invisible but very important.
HiSoft C has over 460 of them.

If 460 functions isn't enough you can, of course, write your own. You
have already started to write a function main. In fact there's no
fundamental difference between library functions and those that you
have written. Only that those in the library have been written already
(in C of course) and you have to create your own functions yourself.

[2.1.6 Calling Functions

Amongst the library functions are evnt_keybd which waits for a
key to be pressed (short for keyboard event) and printf which
displays a string of characters on the screen. The string is passed to
the printf function. The values that are passed to functions are
called the parameters or arguments of the function. The list of
parameters to pass are given enclosed in round brackets. To conform
to this rule the strings in our example are enclosed in parentheses in
order to pass them to the function.

A function may have one, several, or no parameters. In our example
the printf function has a single parameter. The main and
evnt_keybd functions don't have any parameters. This is why the
names main and event_keybd are followed by parentheses. We
haven’t seen any functions with several parameters yet. In this case
the arguments are separated by commas.

C Language Infroduction HiSoft C Page 59

[2.1.7 Strings

A string is a collection of characters enclosed in double quote signs.
What ever it contains a string is a valid element in language. The
following are legal strings:

"Hello"
and
"How are you 7"

In our program we added the two characters \n at the end of the
string just before the closing quotes. These two characters form one
unit and mean together “newline”. On the ST this means carriage
return and line feed. So because of the \n in our example How are
you? is on the line below hel Lo.

Exercise 1

Produce the following display on the screen:
he
LlLo How are

yiou: 2

and follow this with a message asking for a key press. There is
no need to use any extra printf statements.

Exercise 2

Try to run this program after deleting a few characters to see
what error messages they produce.

Page 60 HiSoft C C Language Introduction

2.2 Variables

[2.2.1 One more program

Here's a program that reads a key from the keyboard and displays it
on the screen. Then the program waits for another key before it
terminates:

int ch;

main()

{
ch = evnt_keybd();
putcharfch):
evnt_keybd();

i

Before typing this program, you must first delete the last program
that you've already typed. All you need to do is select Abandon from
the File menu. This is equivalent to New in BASIC.

Ok, so now type in this program and execute it by clicking on Run.
Press a key on the keyboard and the corresponding character will be
displayed on the screen. Press a key again and you'll be back in the
editor.

[2.2.2 Function or Statement ?

In C a function always returns a value. This is sometimes ignored by
the programmer. However, the evnt_keybd () function can be used
either as if it were a statement:

evnt_keybd();
or as if it were a function. That is to say it can be treated as a routine
that returns a value (the ASCII value of the key pressed in the case of
evnt_keybd()), like this:

ch = evnt_keybd();

C Language Introduction HiSoft C Page 61

2.2.3 Assignment

This last instruction assigns to the variable called ch, the value
returned by evnt_keybd. The variable ch then contains the ASCII
code of the key that was pressed. The symbol = is the assignment
operator as in BASIC. Also, like BASIC

i = 1;

gives the variable 1 the value 1. We're on familiar, friendly territory

here. But there are mines ahead!

[2.2.4 The putchar function

The statement

putchar(ch);

writes the character whose ASCII code is stored in the variable ch.
putchar is a C library function like printf or evnt_keybd. It has

one parameter that is the character to display.

2.2.5 Declaring variables

Well, we left the best bit until the end. In C, every variable must be
declared before it is used. This is so the user can indicate what type is

associated with each variable.

In BASIC, variables are reals by default, integers are followed by ¥
and string variables by $. Modern BASICs also let you use ! to

indicate single precision and # double precision.

This is how BASIC knows the type of each variable. In C it is totally

different.

A scheme like that used by BASIC is impossible because there are so
many types (in fact, there's theoretically an infinite number). The
user must declare his or her variables, i.e. specify the type, before
they are used. A variable may be a whole number or a real etc. This
procedure seems fussy at first, it requires more thought when
defining variables but means that some errors can be detected that

otherwise wouldn't be, mis-spellings in particular.

Page 62

HiSoft C

C Language Introduction

—"

\‘-u_ﬂ

[2.2.6 Integers

We now know that all variables must be declared before they are used
and that this declaration specifies the type of the variable. In our
example, the declaration of the variable ch is

ARiGseuC:hi®

The keyword int is short for integer. So the statement above makes
ch an integer. We say that ch is declared as type integer.

In HiSoft C integers are signed and use 4 bytes of storage.

An integer variable may therefore contain values between
-2147483648 and +2147483647, which is quite enough for most
purposes.

The type int is probably the most frequently used in C. But there are
others.

Whole numbers will often fit into only two bytes. This is the type
short. It's the equivalent to integers in most BASICs. The range of
values is -32768 to 32767.

We can make our variable ch of type short because a character code
can be between 0 and 255, which is entirely within -32768 to 32767.
We do this as follows:

shorct ch:

So this makes ch a short integer. This is the only change needed in
the program because the ASCII code for the character can be
represented by a short integer.

There are also whole numbers that fit into just one byte. This is the
amount of storage needed for a character. For this type, the variables
may take values between 0 and 255. This type is sensibly enough
called char. So to indicate that ch is of type char all we have to do is
use

clhiairs ©his
and the program will work just as well.

We used the type int for ch to start with because this is more or less
right, but it looks more elegant to declare it as type char. The
difference between these three integer types is only a question of size;
they are all integers.

C Language Introduction HiSoft C Page 63

2.2.7 Real numbers

HiSoft C supports real or floating point numbers. These are always
double precision, Their values can vary between -1.8 E 308 and 1.8 E
308, and can be as small as 1 E -307 without being zero. They have 16 ~—
significant digits and use eight bytes of storage. The type of these
numbers is float or double. As far as HiSoft C is concerned they
are equivalent. The declarations of real numbers look like this:

Float x:
double fL;

These two lines declare variables x and fl of real type. float and
double are exactly the same type.

Floats aren't often used in C. Integers are used much more ~—
frequently, although engineers tend to use floats a lot!

12.2.8 Conclusion and Exercises

We have seen in this example how to use integer variables in C.

The types discussed above are the primary types. We can also
construct arrays, structures and pointers based on these four types.

Exercise 3

=l Write a program which waits for two keys to be pressed and
then writes the two characters on the screen. You should declare two
variables.

-

Page 64 HiSoft C C Language Introduction . __

2.3 Calculations

2.3.1 A little program

Try the following little program:

/* Examples of calculations with reals */
double real;

int whole;

short small;

main()
{

whole = 1+56;

small = whole/2;

real = 10.2+2*small+sin(2.);
>

This example doesn't include much that is new. It just puts into
practice what we have already seen.

[2.3.2 Comments |

You can add comments to your programs. Comments start with /*
and finish with */. Between these two pairs of characters anything
goes. However a comment must fit on a single line (this is a HiSoft C
restriction because it is an interpreter).

Comments are normally placed between statements and frequently
at the ends of lines, whether they are empty or not.

[2.3.3 Arithmetic operators

The C language has the following binary operators:

multiplication
division

% modulus
addition
subtraction

These operators act on the two items to either side of the operator
following the usual rules.

C Language Introduction HiSoft C Page 65

The modulus operator is the remainder when the first operand is
divided by the second. Both arguments must be integers in this case.
For the other four operators the arguments can be integers or reals.

The following priority rules hold:

The operators multiplication (*), division (/) and modulus (%) all have
the same priority which is higher than the addition (+) and
subtraction operators (-). These rules are the same in most
languages, BASIC included.

Note that there are many other operators that we will cover later.

2.3.4 The arithmetic and trig functions]

In our example, we used the function sin which calculates the sine
function of the argument that it is passed. This argument must be
expressed in radians. This is only one of the trigonometric functions
available. Here'’s the full list:

cos, sin, tan, atan, Log, exp, sqr, asin, acos, floor

These function all take one compulsory parameter of type double.
They return real values equal to the cosine (cos), sine (s1in) tangent
(tan), arctangent (atan), natural logarithm (log), natural anti-log
(exp), square root (sqr), arc-sine (asin), arc-cosine (acos) or the
whole number part (f Loor) of the argument.

If you want to pass a whole number, for example to find the
logarithm of 5, you must follow the parameter with a decimal point to
indicate that the number is really a floating point number. Otherwise
you will be in for a surprise. For example,

log(5.2 + sin(2.3;

[2.3.5 Types and assignments

Returning to our example,

double real;
int whole;
short small;

The first three lines declare the three variables that we need in the
program. real is a real number, whole is an integer and small isa
short integer.

Page 66 HiSoft C C Language Introduction

1+56;
whole/2;

whole
small

The first statement stores the value 57 in the variable whole. Then
whole is divided by 2 and this value stored in the variable smal L.

whole and small aren't of the same type. But there is no problem
assigning an int variable to a short one. More generally it doesn't
matter which of the integer types (int, short or char) you assign to
another integer variable. The only problem is that the value may have
to be truncated. This is the case if you try to store 350 in a variable of
type char which can’t hold a value bigger than 255. No error
message will be given but the value stored will be equal to 350 modulo
256.

The division of whole by 2 is an integer division because whole and 2
are both integers. As whole is 57, whole/2 is 26 and not 26.5.

In general, within expressions where all the terms are integers, the
+,-,*% and / operators are all treated as integer operators and return
whole numbers.

If, on the other hand, at least one of the terms in an expression is a
real, all the other terms are converted to floating point numbers and
+,-,*% and / are used as real operators.

This is what happens in the third statement:
real = 10.2+2*small+sin(2.);

The terms 10.2 and sine(2.) are reals so the other terms in the
expression (2 and smal L) are converted to reals.

Then the calculations are performed and they return a real value
which is assigned to the variable real. Thus a floating point
expression is assigned to a floating point variable. In fact both sides
of an assignment must be of the same type, that is to say, either both
integer or both floating point. If you want to break this rule, you will
need to use the explicit type conversions (see your favourite book on
(&

C Language Introduction HiSoft C Page 67

2.4 Conditionals

2.4.1 Example

In C, like in BASIC, there is a conditional statement that lets you
execute a series of instructions if a particular condition is true.

Type the following program:

int num;

main()
RE
num = Random ();
if ({num J/ 2)*2 == num)
printf("The number %d is even\n",
num?l;

evnt_keybd();
37

The example uses the variable called num. It is declared in the first line
of the program and is of type int or integer.

[2.4.2 The Random function

Random is a function from the BIOS library (see Chapter 4 for a
description). Note that the first letter of this identifier is in upper
case and that all the others are in lower case. This is a convention
used by Atari for all the BIOS functions, so we use it too.

Right, back to where we were. Random returns a random number! It's
a 24 hit positive whole number, that is between 0 and 16777215.

In the example, the random number is stored in the variable num. So
we have an unknown value in num.

[2.4.3 The if statement =

We now suppose that we want to know whether this number is odd
or even. The mathematical definition is that a number is even if it is
divisible by two. More precisely a number, num, is even if (num/2)*2
is equal to num where the division is integer division.

Page 68 HiSoft C C Language Introduction

N

We can write this algorithm in the form:

If (num/2)*2 is equal to num then
write “the number num’ is even”

In C this becomes:

if ((num / 2)*2 == num)
printf(*The number %d is even\n", num);

The i f statement has the form:

if (condition)
statement;

The condition, which must be enclosed in round brackets, is
evaluated. If this is true then the given statement is executed. If the
condition is false then the statement is not executed and the
program continues executing at the following instruction.

One small detail. To test if two expressions are equal we use the two
characters ==. In BASIC only one equal sign is used. But two is better
than one ...

There are other comparison operators:

not equal

less than

greater than

less than or equal
greater than or equal
equal

WEYE AL VENE =

For example, the condition that tests if the two terms (num/2)*2
and num are different is

(num/2)*2 != num

There are also logical operators so that you can test several
conditions at the same time. These are equivalent to BASIC's AND,

OR and NOT keywords.

] OR Logical OR between two conditions
8& AND Logical AND between two conditions
i NOT Negation of a condition

These operators will be discussed further in future examples.

C Language Introduction HiSoft C Page 69

[2.4.4 prinif... again

Thus if our number is by chance even, then the printf statement is
executed.

We have already encountered printf, but that was in its most
simple form. We have only had one parameter. Now there are two and
also there's a strange %d in the string.

The two characters %d in the string "The number %d is even\n”
indicates where to insert the number num in the output to the screen.
For example, if num is 256 then the instruction:

printf("The number %Zd is even\n"”, numl;
writes on the screen:
The number 256 is even

So the value of the variable num is sent in place of the %d. The %d is
powerful if cryptic, isn't it?

Thus %d replaces an integer value in the string. That’s it. Does it seem
complicated? Well, its like that regardless!

More seriously, you can write several variables with the printf
function. For example here's an instruction that writes the values of
the three variables v1,v2 and v3:

printf("Here are three values : %d, %d and
Ldit o v S

If these three variables are 1, 2 and 3 respectively then this will
display:

Here are three values : 1, 2 and 3

You will have noticed that there are three lots of %d in the string and
also three variables to write. The three variables are substituted for
the three %d’s left to right.

The first variable (v 1) is substituted for the first %d and so on.

Exercise 4

Write a program (complete with variable declarations and so on)
which lets you see the three variables above.

Page 70 HiSoft C C Language Introduction

2.4.5 if...else...

Even the simplest of machines have BASIC IF... THEN...ELSE...
statements nowadays, and C doesn’t stop there.

Let's improve our previous program.

In the last example a message was only displayed if the number was
even but not if it was odd. Now let's have a message if it was odd as
well.

int num;

main()
{
num = Random ();
it Gnum#2 == 1)
prantfi" The number Zd is odd\n*, nl;
else

printf("The number %d is even\n", n);
evnt_keybd();
Ef

The algorithm for this program is simple:

Make num a random number.
if num is odd
then write “The number ‘num’ is even”

if not
write “The number ‘num’ is even”

Wait for a key press.
The form of the if...else instruction is

if (condition)
statement1;
else
statement?2;

The expression, which must be enclosed in parentheses, is evaluated.
If the condition is true then statement1 is executed. If the
condition is false, statement1 is not executed but statement?2 is
executed instead.

Examine the program in detail. There's a new little bit in the
condition of the if. We use the modulus or remainder operator which
is written as % in C. A number is even if its remainder when divided by
two is 0. It's odd if the remainder is 1.

C Language Infroduction HiSoft C Page 71

If the condition is true, that is to say the number is odd, then the
first of the two printf statements is executed. Thus we could get:

The number 257 is odd
If the condition is false then the second instruction is executed:

The number 256 is even

[2.4.6 Blocks

The examples we have seen so far only let you execute a single
statement conditionally with i f. Thus the syntax is:

if (condition)
statement;

and not

if (condition)
statementi;
statement2;
statement3;

What happens if you want to execute more than one instruction in
the body of an if?

Answer: There's a structure that is always considered as a single
statement but (and this is its secret) actually contains several
statements.

This groups several statements into a block. A block can be put
anywhere that you can put a single statement. Anywhere you see a
statement in a syntax description you can put a block instead.

In practice, a block is a set of statements (followed by semi-colons as
usual) and surrounded by curly brackets. Here's a block consisting of
two printf statements:

£
P N G
printf("How are you 72");

Page 72 HiSoft C C Language Introduction

Note that the curly brackets surrounding the block are on lines by
themselves and the statements are on separate lines. This is to make
it more readable. However, this layout is not compulsory. The block
above is equivalent to:

{printfC Hilt ") printf("How are you?");>»
The first block is more readable but the second is quicker to type.

Now that you know (we hope) what a block is, the syntax for an i f
statement can be written:

it Ccondition)

AL

statement;

dtattemanit o /* Setichisy ki
By
else
{

statement;

statement; /X etcC..n X/
i

This uses the rule that a block can replace any instruction and vice
versa.

The following sequence is equally correct.

if sCcondition?)
statement;

else
ot
statement;
statement;
X

Note that a block can contain just one statement.

Exercise 5

Write a program that generates an even random number from some
random number. The program should display neatly whether the
initial random number is odd or even. If it is already even it should be
left as it is.

C Language Introduction HiSoft C Page 73

2.5 Loops

Loops enable you to execute the same sequence of statements several
times.

In old-style BASIC there is only one sort of loop. Everyone knows the
famous FOR...TO...NEXT statement. There's a similar statement in C
called for.

In slightly more modern BASIC's there's a WHILE...WEND loop. This
executes a particular set of statements while a condition is true. This
statement is also called while in C.

Finally there’s a third statement which is a variant on the while
statement called do...while.

2.5.1 The while statement

Type and run the following program:

finik =
main()
{
T
while (i <= 20)
{
prantfGiyd squared is Adin® = a5 tixi)e
i = i+1;
5
evnt_keybd();
T

If you have followed the previous section you can probably guess
what this program does.

It finds the squares of all the numbers between 1 and 20.
The algorithm used by this program is:

initialise the number to one.

while the number is less than 20 do
write the square of the number
add one to the number

Page 74 HiSoft C C Language Introduction

Let’s look at this program in detail.

The variable i is declared in the first line as of type integer. The first
statement in the program is i=1; which stores the value 1 in the
variable 1.

The while statement repeatedly executes the block containing the
following two statements:

{
printf ("%d squared fs Zd\n”, i, drid;
i = ekl

¥

while the condition i<=20 is true. The two statements are repeated
twenty times during the execution of the program to write the
twenty squares on the screen.

The syntax of while statements is

while(condition)
statement;

or

while(condition)
{

statement;

statementy /% etc...*/
7

The one or more statements that form the body of the while
statement are executed whilst the condition is true.

The two groups of %d in the mysterious printf statement insert the
values of i and i*i in the string to be output. This follows the rules
we have seen in Section 2.4.4.

The statement i = i + 1 adds the value 1 to the variable 1, just like
you would write in BASIC.

The statement evnt_keybd waits for a key to be pressed on the
keyboard.

C Language Introduction HiSoft C Page 75

Note that if the condition in a whi Le statement is false on entry the
statements in the loop aren't executed at all, as in the following
program:

Al BT
maind()
{
1= 5
while(i<4&)
{
pEEnt T totio)
T4
o
¥
Exercise 6

The example above writes the first twenty squares in increasing
order. Write a program which writes the squares of whole numbers
starting with 20 and finishing with 1.

2.5.2 The for statement =

In BASIC the FOR...NEXT statement uses a loop counter variable.
When the said variable reaches a certain value the program stops
executing the statements between the FOR and NEXT statements.
It's nearly the same in C.

The following program writes the squares of the numbers between 1
and twenty that we've already seen using a for statement.

e it
main()
{
Fop =@y = NteE fa el GlEsiRg g 2y
printf"%d squared®iiss SLdNmE RN)
evnt_keybd();
¥

This example is exactly equivalent to the previous one. To prove it,
run it!

The algorithm for this program is as follows:
Varying i from 1 to 20 in steps of 1 do

write the square of i
Wait for a key press

Page 76 HiSoft C C Language Introduction

In BASIC this corresponds to

FOR I=1 TO 20

PRINT I;"squared is";I*I
NEXT I
A$ = INKEYS

if we remember BASIC correctly.
In detail, the C syntax for for statements is

for (statement1; condition; statement2)
statement3;
rest of the program;

or alternatively

for (statementl1; condition; statement2)
{
statement3;
statementd s ¥ iatc. i X/
¥
rest of program;

When HiSoft C comes across such a statement, it does the following:

It executes statement first of all (i=1). Next it evaluates the
condition (i<=20).

If this is false, HiSoft C starts executing the rest of the program. If,
however, the condition is true, HiSoft C executes statement3 then
statementé4... which constitutes the body of the for statement
(printf...)

Finally statement2 is executed (i=1+1).

The condition is evaluated once more.

If it is false, HiSoft C executes the rest of the program. But if it is still
true, HiSoft C executes statement3, statementé4 and then
statement?2 again. The condition is evaluated once more...

But perhaps we are repeating ourselves.

Looking at it another way, statement1 is executed. Then the body
statements followed by statement2 while the condition is true.

C Language Iniroduction HiSoft C Page 77

So the statement above is exactly equivalent to:

statementi;
while(condition)
{
statement3;
statementé4;
statement2;
>
rest of the program;

Note the numbering of the statements.

Exercise 7
This is the same as the last one. Rewrite the program above (with the

for statement) so that it writes the squares in reverse order using a
for statement.

Exercise 8

Write a program which finds the sum of the whole numbers between
1 and 100.

Exercise 9

Write a program that displays the ASCII character set. Remember
that putchar (ch) writes the character whose code is in the variable
ch.

[2.5.3 The do...while statement

This loop structure is used less often than the two previous ones. It is
based on the whi le statement and resembles it a lot.

chais ichi
main()
{
do
{
ch = evnt_keybd();
putchar(ch);
¥
whiiiles Ceh o li= 13D
by

A character is read from the keyboard, stored in the variable ch, then
written to the screen. This is repeated until the character read is a
Return (ASCII code 13).

Page 78 HiSoft C C Language Introduction

The syntax of the do...while statement is as follows:

do
statement;
while (condition);

or
do
{
statement1;
statement2;
statement3; /% etc..: */
X

while(condition);
Note the semi-colon after the while (condition);.
The statements are executed while the condition is true.

The difference between the = statement that we saw above and this
one is that the body of the statement is executed first and then the
condition is evaluated. If it is true, then the program continues to
loop. If not, the do...while loop finishes.

In the standard whi le loop the condition is tested before the body
statements. As a result, with a do...while the body statement is
always executed at least once, whereas with the while statement it
may never be executed.

2.6 Switch statements

A switch lets you execute one of several statements depending on a
condition. For example, if a variable or expression has one of several
values.

The statements that are executed are different depending on the
value. This is equivalent to the SELECT CASE statement in HiSoft
BASIC.

Let's take a simple slot machine as an example.

A number between 0 and 9 is chosen by chance. If you get a number 5
or 7 you win. 7 is the jackpot. If you get a 6 you lose.

C Language Introduction HiSoft C Page 79

The algorithm is:
Select a number by chance

Depending on the number
ifitis 6
write “you have lost”
ifitis 7
write “Jackpot”
ifitis bor7
write “you have won”
other values
write “you haven't won or lost”

Translated into C this becomes:

int num;

main()

G

prantfC"Put a3 10p coin 1n “thie sleothn™);
evnt_keybd();

num = Random() % 10;

switch (num)

{

case 6:
printf " Y.ou have gots G\Nnl);

pEEmERC S Youtve oS TNRt) s

break ;

case 7:
print £ Yo have gt 7TNnt)::
pipdintfl diaic kpiodNintiLs

case 5:
printf("You have won\n");
break ;

default :
printf("You have got 7%d\n", num);
printf("and have neither won nor Llost\n");
break ;

T

evnt_keybd();

T

Let's examine this program in detail.

The variable num is an integer which contains the number chosen by
chance.

To obtain this, we use the function Random to return a whole random
number. We take this value modulo 10 to make it a random number
between O and 9.

Page 80 HiSoft C C Language Introduction

Then we come to the interesting bit of this example.

It's the switch statement. Switch executes one of several
statements depending on an integer value. The expression is
evaluated and then compared with a list of constants. When a match
is found execution starts with the corresponding statement.

In our example, the said expression is the variable num. Depending on
the value of this variable we know whether you have won or lost
because number contains the value that was chosen by chance.

In C, the phrase “if it is 6” translates to case 6:. Don't forget the
colon.

Thus if the variable has the value 6 then the two statements:

printf{(”"You have got 6\n");
prantf (i You've, Losthn)

which follow case 6: are executed.

Just after these two statements is the keyword break. This means
in this case (if num=6) the switch statement is finished.

Thus if the value is 6 the messages are written on the screen and you
have lost.

Now, we'll look at the next case. It's the value 7; good news, it's the
jackpot and the appropriate message is written in the screen.

printf("You have got 7\n'");
print it dackpotn®) -

Next it's the turn of 5. You've won but not the jackpot. So just the fact
that you have won is displayed.

printf("You have won\n");

Immediately afterwards there’s a break statement which tells us
that the switch statement is over and the rest of the program is
executed.

If you have been paying close attention, you will have noticed that
there is no break statement after case 7.

C Language Introduction HiSoft C Page 81

Let’s take another look:

case 7:
printf("You have got 7\n");
printf("Jackpot\n");

case 5:
printf("You have won\n");
break ;

A 7 has been chosen. HiSoft C executes the two printf statements
after case 7. But there’'s no break to tell the interpreter to stop, so
it continues and executes the statement printf(”You have
won\n"); from case 5. After that, there's a break statement so the
switch is finished. The next statement in the program will then be
executed (event_keybd()).

The last part of the switch statement is defaul t:. This is a special
possible switch value that is executed only if no match has been
found. So in our slot machine program the following statements will
be executed if our random number isn't 5,6 or 7.

print i You " have got’ —/dNn '@, “niumd;
printf(”and have neither won nor Llost\n");

Note that you don't have to have a default in a switch statement.
In this case if the switch variable doesn't match one of the other
cases, no statements are executed as part of the switch.

More rigorously, the switch syntax is as follows:

switch(int_expression)

{

case constant-1:
statement-1;
break;

case constant-2:
statement-2;
statement-3;
break;

case constant-3:
statement-4;

Page 82 HiSoft C C Language Introduction

case constant-4:
statement-5;

default:
statement-6;
statement-7;
break;

}

So in English, this does the following:

If the int_expression is equal to constant-1, then statement-1
is executed.

If the int_expression is equal to constant-2, then statement-2
and statement-3 are executed.

Ifthe int_expression is equal to constant-3, then statements
4,5,6 and 7 are executed.

If the int_expression is equal to constant-4, then statements
5.6 and 7 are executed.

If the int_expression is not equal to any of the constants 1,2,3
or 4 then both statements 6 and 7 are executed.

Note that the expression following swi tch is in parentheses, a case
must be followed by a colon and all the case items are enclosed in
curly brackets.

Exercise 10

Write a program that reads a character from the keyboard, and then
displays it if it is A or B, otherwise it displays an asterisk instead.
Pressing the space bar should stop the program. You can use a
switch statement or several if statements.

2.7 Functions

[2.7.1 Functions and subroutines

At the start of this introduction to the C language we said that a C
program is made up of one or more functions which are called from
one another. The moment has come to prove it.

C Language Introduction HiSoft C Page 83

A function is a set of statements that are grouped together.
Generally there is something linking these statements, that is to say
they implement a particular operation.

There are two sorts of functions: library functions and those that
you write yourself.

Library functions are subroutines that are already written and are
available for your use. You've already used the library functions called
printf, putchar, and evnt_keybd.

The functions that you write yourself are the equivalent of
subroutines in BASIC that are called using GOSUB. (Actually they
are more like SUB and DEF FNxx definitions in HiSoft BASIC).

C functions have names of their own which are used to call them. In
addition you can pass information between the calling program and
the function.

Let’s look at a concrete example. We shall create a function called
wait.

This will write “press a key” on the screen and wait for a key to be
typed on the keyboard. This function is useful when you are
displaying messages, as it gives the user plenty of time to read what
is on the screen.

main()

{
printf("message 1\n");
wait(); :
printf("message 2\n");
wait();

T

wait()

{
printf("“"Press a key\n");
evnt_keybd();

3

The wait function consists of two statements. The first writes
Press a key and the second waits for a key to be typed.

The main function has four statements. When you run the program,
these and only these are executed. The statements in the function
wait are not executed unless they are called by the main function.

Page 84 HiSoft C C Language Introduction

The program starts by displaying message 1. Then it calls the
function wai t, which waits for a key to be pressed. After the user has
typed a key, message 2 is displayed. The function wait completes
the program and it terminates as soon as the user presses another
key.

So far functions seem just like GOSUB subroutines in BASIC.
However functions are more powerful than that. For example, they
can have parameters.

2.7.2 Parameters

Remember our function wait. Suppose we want to wait for a
particular key, but it isn't always the same one. For example, the first
time we want to wait for the a key and the second time the b key. This
is a little artificial, but better than nothing.

There’s a neat solution using parameters:

chapr c¢h;

main()

{
printf("message 1\n");
waitcra'l);
printf("message 2\n");
wait¢'b");

3
wait(c)
char c;
{
printf(“Press the Zc key \n*, €}
do
ch = evnt_ keybd();
while (ch !'= c¢c);
)

The only real difference between this and the last program is the
wait function. Now this function has a parameter which is the
character that must be typed on the keyboard.

The main function calls the wait function with a parameter 'a' and
then with a parameter 'b'. This indicates the key to wait for. Both of
these values are the integers whose values are the ASCII codes for a
and b.

Inside the wait function the parameter is called c. This is a variable
which contains the value that was passed as a parameter. During the
two calls it takes the value of first 'a' and then 'b'.

C Language Introduction HiSoft C Page 85

Be careful, the variable ¢ can only be used in the wait function. All
attempts to access it outside will be greeted with an error message.
We say that c is a local variable of the function wait.

You have learnt to declare all variables before using them, and
parameters are no exception to this rule. They must be declared just
after the name of the function and before the statements that make
up the function. See the example.

In our program, the variable c is of type char. This declares the
variable inside the function; you can not access it outside its
function, the wait function. Inside the wait function, we have a
variable containing the character to wait for.

The first statement in this function writes a message to the screen
asking the user to press the appropriate key.

Notice the bizarre %c inside the printf string. In a similar way to %d
meaning ‘write an integer here’, % c means ‘write a character here’. So
a character will appear on the screen rather than a whole number.

The ASCII code of this character is in the variable ¢ which was passed
as a parameter.

Thus, if ¢ has the value 97 which is the ASCII code for the character
'a', the statement:

priimtf " Press the fec-key \Xn'; ekt
displays
Press the a key
on the screen. If you change the %c to %d then
printtfCEPresis tBhe s dd-kiey: Nn', «c):
will show
Press the 97 key

Next, after indicating which is the key to wait for, HiSoft C executes
the following loop:

do
= evnt_keybd();
Ie='g) >

which reads a character from the keyboard (using evnt_keybd)
whilst that character is different to the parameter of the function.

Page 86 HiSoft C C Language Introduction

[2.7.3 Return values |

A function may return a value to the calling program. For example,
event_keybd sends back the code of the key that has been pressed.

Let’s look at an example. Suppose we want to create a power function
which raises a whole number to the power that it has been given. This
function will be called from the main program in a couple of places to

calculate 210 and 216, The algorithm used will be a brute force one.

The two parameters of this function are the number to raise and the
power to raise it to. The value returned by this power function is the
result of the calculation.

int val10;

int val1é;

int result;

main()

{
val10 = power(2, 10);
val16 = power(2, 16);

printf("2210 = %d, 2216 = %d\n", valilQ, val16);
evnt_keybd();
b g

power (number, exponent)
int number, exponent;

{
result = number;
while (exponent > 1)
{
exponent——;
result *= number;
i
return (result);
1

The two integer variables val10 and val 16 contain the result of the

calculations of 210 and 2!6. The main function stores 1024 in
val10 and 65536 in val16. The printf statement displays these
values on the screen, thus,

2210=1024, 2%16=65536

The power function has two parameters called number and
exponent, and they are both declared as type integer.

C Language Introduction HiSoft C Page 87

The statement:
exponent—--;
subtracts one from the variable exponent and the statement:
result *= number;
multiplies result by number.

The variable resul t will thus contain the result of the calculation
when the loop has finished. All it needs to do now is return this value
to the calling program. This is done with the very simple statement:

return (result);

This statement stops execution of the function and returns control
to the calling program. In addition, the value in parentheses is taken
as the result of the function.

[2.7.4 Summary

The general syntax of a function is as follows:

function-name(arg1, arg2, ...,argn)
type argil;
type argé;
type argn;
{
statement;
statement;
statement;
return (expression);
7

function-name is the name of the function.

arg1,arg2, ..., argn are the arguments to the function.

type is a type specifier (e.g. int,char, etc...)

The characters in italics are compulsory, the others are optional.

The arguments are optional. There may be none, one or several. But if
there are any, then they must be declared. The parameter

declarations must be after the list of arguments and before the
opening bracket and statements of the function.

Page 88 HiSoft C C Language Introduction

N

Exercise 11

Write a function which does nothing, with no statements, and no
parameters that is called from a main function which doesn’'t do
anything either. An exceptionally useful program...

Exercise 12

Write a program that reads two numbers from the keyboard and
displays their sum. The getchar function reads a character from
the keyboard, echoing it and returns the ASCII code of the character.
This is similar to our friend evnt_keybd except that getchar
displays the character on the screen. To build up to this, write a
function that reads a number from the keyboard where this may
have several digits.

2.8 Arrays

The C language has arrays like BASIC. For simple cases (arrays of
int, short, char or double) the structures used are almost
identical to those in BASIC.

Let’s consider the example of determining which numbers are
produced most frequently by the random number generator.

To do this we will have an array of twenty integers 0 to 19. We'll
generate a random number between 0 and 19. To count the numbers,
we will increment the array element whose index is the random
number. For example, if it is 6 we will increment element number 6 of
the array. When we've finished we will know how many times each
number has been chosen.

Increment means ‘add one to'.

Those of you who can read French, may be interested in the following
from the French version of this manual:

«Ajouter deux, c’est deuxcrémenter, ajouter trois, c’est
troiscrémenter, etc... Ne pas confondre deuxcrémenter avec
décrémenter, qui signifie retrancher un.»

C Language Infroduction HiSoft C Page 89

fint arnrlL203;

oy e
main()
{
fom G Sal et <0 205 S s
arrkEiElies L0k
for (i = 0; i<1000; i++)
arrLRandom() % 201++;
o= = 0ot < 20 ey
piEanmtefC2id. ssdNn s arr Dy
evnt_keybd();
}

The first line declares an array of 20 elements of type int. It is called
arr.

In BASIC, this corresponds to DIM ARR(20).

In BASIC, array indices are enclosed in parentheses, in C you use
square brackets. It's not our fault!

In the program we’ll need an integer variable. In a fit of originality it’s
called 1.

The first statement in the program is a for loop. It initialises all the
elements of an array to zero. The variable i varies from O to 19 (i=0

and i<20).

When we declare an array of integers with int arrC20]; the
indices vary between 0 and 19. So arr[01 is the first element and
arr[1917 is the last.

But be careful, there are no checks for array indices. If you want to
read from or, worse, write to element arr[4501] no-one will stop you.
But 9 times out of 10 the machine will crash.

Is this stupid? Yes and No. The language is defined this way and it
can be very useful in certain cases. Be very careful with your array
indices.

HiSoft C has an option to test to see if pointers have certain nasty
values and if so give an error. This may happen if you get your array
indices wrong or then again it may not.

Page 90 HiSoft C C Language Introduction

Let’s get back to our program.
The third statement is another for loop:

for (1 =07 Si=<li0b0; 4%
arrLRandom() % 201++;

This loop is executed 1000 times. That is to say the statement
arrCRandom() % 201++ is executed 1000 times. So the variable i is
a loop count that varies between 0 and 999 or 1000 times.

This statement that is executed 1000 times works as follows: a
random number is chosen using the Random() function. To make
this between 0 and 19 we find its remainder when divided by twenty
using Random()%20. So we've got a random number between 0 and
19

This value is used as the index for the element that we want to
increment. For example if 6 is chosen it will increment element
number 6 of arr, Using this we can determine which numbers occur
most frequently.

The element of the array we want is called arrCRandom() %201 as
Random() %20 is the index.

You can wipe your brow now, we're nearly there!

We have seen in several exercises that to add one to the variable i, we
can just write i++. This is equivalent to i=1i+1.

Sotoadd 1 toarrfRandom()%201] we just need
arrLRandom() % 201++;
That's it. It doesn't take long to write but it does a lot.

The program repeats this statement 1000 times, picking 1000
random numbers and incrementing the corresponding array
element.

When execution of the loop finishes, most of the work of the program
is done; all we need to do is display the results on the screen. For each
element of the array, we are going to write its index (between 0 and
19) and its value (theoretically between 0 and 19).

C Language Introduction HiSoft C Page 91

We have a loop whose counter goes from O to 19 and uses a printf
statement for the screen output:

00 <205 S+

for (i =
prETmt B CNd e i, s tannh)

We've used i yet again as the loop variable, this time varying between
0 and 19 (i=0 to i<20).
The printf function has three parameters.

The last two numbers represent the two numbers to write: i and
arrLil.

The first parameter gives the format with which the numbers are to
be written. It’s a string "%d : d\n". The first %d replaces the value of
i and the second writes the value in arr[iJ]. If, for example, i has
the value 6 and arrLi1]is 52, then the statement:

Pt nt G d s s e dNnY e prerain n Ca 1D
displays the following :
O eoe

The two characters \n cause the cursor to move to the start of the
next line so that the display for each element is on its own line.

2.9 Conclusion

We have seen in this section the basics (pardon the pun) of
programming in the C language. C is a language that needs more
care than BASIC or Pascal but it is also more powerful. We have seen
this in the last example.

You can write things very concisely in C. This can make programs
more difficult to read but can also mean that they run quicker when
compiled.

We haven't seen all the features of C so far; the C that is explained in
this section corresponds to a modern BASIC. C has many other
facilities. To summarise, structured types, pointers, 42 arithmetic &
logical operators, macro pre-processor, modular programs, pointers
to functions, recursion etc...

To discover all these, equip yourself with one of the books in the
bibliography, your HiSoft C disks and a large dose of patience!

Page 92 HiSoft C C Language Introduction

3 Introduction to GEM

This section will describe some of the secrets of GEM that you can
uncover using the toolbox of functions that will let you open
windows, use dialog boxes and menus.

3.1 Programming with GEM

13.1.1 GEM itself

GEM stands for Graphics Environment Manager. GEM lets you
“manage your environment graphically” via icons and windows,
letting you open windows, pull down menus move icons etc...

For the C programmer (that's you), GEM is available to you via a
library of functions.

For example, there's a function to open a window, and another to
close it. Another function draws a line between two points, another
displays text with formatting attributes, and another waits for a
menu selection.

GEM has about 200 of these functions altogether. Suitably used they
let you create programs with windows and pull down menus. All the
GEM AES and VDI functions are available from HiSoft C, but the
HiSoft C toolbox has been created to make things easier.

GEM Introduction HiSoft C Page 93

3.1.2 The HiSoft C toolbox =

GEM lets you create windows and pull down menus. However if
you've tried programming with GEM before, you've probably realised
that calling it is arduous to say the least.

The documentation doesn't help. The only official documents are
based on those for the IBM-PC and designed for professional
programmers (but then you have to be a registered developer to get
hold of it!) and doesn’t include a single proper example. Most of the
other books available are shortened versions of the official ones, but
are just as difficult for a beginner to use. There's one thing to be
thankful for, at least these are written in English (well American

anyway)!

Most people find learning to program GEM long and hard work.
GEM is powerful but huge. For example, to write a program which
opens a window on the screen and closes it immediately takes about
forty lines of C. In assembler, it's even worse and you need about 100
instructions.

This is because you need to use lots of functions to programm with
GEM. For this reason, HiSoft C includes a library or toolbox of
functions that lets you use most of GEM's facilities but is very much
simpler to use. The toolbox means you can use GEM effectively and
easily. These function provide a ‘software cushion’ between you and
GEM. You don't need to dive into hundreds of pages of
documentation to work out how to do each little thing.

We haven't ignored the purists however. All the standard GEM
library functions are available with their standard names. If you have
been through the struggle of learning GEM with another language
implementation, you can use your hard-earned skills straight away.

Page 94 HiSoft C GEM Introduction

3.2 Windows

13.2.1 What is a window?

You already know what windows are, because you have used the
GEM Desktop and HiSoft C. A window is a part of the screen with a
border which you can change using sliders, arrow boxes etc.

As far as GEM is concerned, a window is nothing more and nothing
less than a border on the screen. You might think that there is a

g GEM function that would let you move within a window on a virtual
screen of say 1000 lines and 200 columns and update the display...
but no. GEM has no concept of virtual screens.

by When you open a screen window, GEM draws the border; that's all. It
is up to the programmer to generate the display that appears in that
window. You have to create your own virtual window and use this to
bt generate the window display.
- Now we shall look at the HiSoft C toolbox functions for windows.
N
[3.2.2 Opening and closing a window.
b The first thing we need to do to open a window is to open it, as you
probably guessed. The function to do this is called open_window.
, When you have finished using a window you must close it using
close_window.
[Type in and run the following short program:
~
int window_no;
main()
\ £
hoes window_no = open_window(4095, 20, 20, 400, 150,
gdndow ", 't press @a kay ")
evnt_keybd();
close_window(window_no);
et ¥
In the first line, we declare an integer variable called window_no, then
, we have our usual main() and {.
The first statement proper in the program calls the open_window
function. This draws the window on the screen and has so many
N parameters that they are on two lines.

GEM Introduction HiSoft C Page 95

The evnt_keybd () waits for a key press once the window is opened
but before the window is closed with close_window.

3.2.3 The open_window function

Let’s look in detail at the open_window function. It has 7
parameters.

The first of these indicates the attributes of the window. For example,
whether it has a title, sliders, arrows, etc...

Each attribute has a number associated with it. The following table
gives a list of the numbers corresponding to the various attributes.

base 10 base 16 Attribute

1 0x001 Title bar with name
2 0x002 Close box

4 0x004 Full window

8 0x008 Window can be moved
16 0x010 Information line

32 0x020 Change window size
64 0x040 Up arrow

128 0x080 Down arrow

956 0x100 Vertical slider

512 0x200 Left arrow

1024 0x400 Right arrow

2048 0x800 Horizontal slider

If you want your window to have several attributes, you use the sum
of the numbers corresponding to each attribute.

For example, if you want a window with a title, two sliders, and a close
box then the parameter value is 1+2+256+2048 = 2307.

TRER 08 PROEEED, W uard (hr value 4033 This vaiie 1§ e g oF
all the attributes above, so our window will be drawn with all the
possible ‘gadgets’.

The next four parameters give the co-ordinates and size of the
window. They are, in order, the x and y co-ordinates of the top left of
the window, the width and the height.

These four values are expressed in pixel co-ordinates. The x co-
ordinate may be between 0 and 639 (in medium & high resolution)
and the y co-ordinate may be between 0 and 199 (medium) or 0 and
399 (high). The origin is the top left of the screen.

Page 96 HiSoft C GEM Introduction

In the example, our window has a width of 400 pixels and a height of
150. Its top left corner has co-ordinates (20,20).

The sixth parameter is the name of the window and it is a string. If
you don't want your window to have a title use the empty string " ".

Our window has the original name "window".

The final parameter is the text that is displayed in the information
line just below the title. Again, if you have no information line use a
null string "".

The open_window function returns an integer. This tells us which
window we have opened and gives us a handle to use when calling the
other window routines, so that they know which window to operate
on. So for example when we want to display text in our window we use
this handle to say which window to write to.

This is a similar idea to the file pointers that are used to access files.
When you open a file you are given a file handle to access it
subsequently.

If GEM can't open the window then the value returned is 0. Your
program should cope with this error condition.

So that's it. When you specify all the parameters, the window
appears on the screen as if by a miracle.

3.2.4 The close_window function

An opened window must always be closed, and you mustn't close a
window that hasn’t been opened. It makes sense. The
close_window function does this job for us:

close_window(window_no);

It has one parameter which is the integer returned by the
open_window function. This indicates which window is to be closed
and is used in the functions that use windows; close_window is no
exception.

The close_window function returns a value indicating the success
or otherwise of the close operation. If there is a problem, such as an
attempt to close a window that isn’t open, the value returned is O; if
all went well the value returned is not zero.

GEM Introduction HiSoft C Page 97

The returned value is only provided for information. Normally it will
always succeed. This value is often ignored, as in the example above.
The calling program simply ‘throws away’ the value returned.

13.2.5 Writing in a window

We have seen that a window is a screen area with a border, no more
no less. So we need some functions to change the display in the
window.

The print_window function lets us write into a window without
bothering about the position of the text. The following program, after
opening the same window as the previous example, writes some text
inside the window.

int window_no;

main()

{
window_no = open_window(4095, 20, 20, 400, 150,

" window ", ™ press a key ");

print_window(window_no, "line 1");
print_window(window_no, "this is Lline 2");
print_window(window_no, "this is Lline 3");
evnt_keybd();
close_window(window_no);

¥

This program is identical to the previous one apart from the three
calls to print_window that have been added. Three messages are

written in the window.

Run this program to see the effect of this function.

[3.2.6 The print_window function

print_window has two arguments.

The first is the integer handle of the window that is returned by
open_window. It indicates which window is to be written to.

The second is the text to display in the window. It is a string of
characters enclosed in quotes.

The print_window function returns a value indicating whether
there was a problem writing the text in the window. If an error occurs
then O is returned otherwise a non-zero value is passed back to the
calling function.

Page 98 HiSoft C GEM Introduction

,

In practice, this never fails unless the window handle is wrong or if
the string is a pointer to an invalid area of memory. Thus this return
value is often ignored as in the example above.

This function positions the text itself. The first time you use this
function, the text is written on the first line of the window.
Subsequent calls write the text on the following lines. Thus a newline
is always inserted at the end of each string that is written. If you
want to write somewhere else, use the pos_window function.
print_window works in a similar way to PRINT in BASIC.

If the text is too long to display in the window, the end of the message
isn't displayed - it's clipped to fit in the window.

If you write too many lines to the window, nothing is shown below
the bottom of the window and it will not scroll; any subsequent text
will not be displayed but will be ignored.

The display is always within the border of the window.

[3.2.7 The pos_window function

This function lets you change the position where the text written
with print_window is displayed.

The program below writes "hel lo” at line 5 column 5 and then
closes the window:

int window;

main()
{
window = open_window(2307, 20, 20, 400, 150,
Lt e St .
pos_window(window, 5, 5);
print_window(window, "hello");
evnt_keybd();
close_window(window);
>

The window is opened with a title, both sliders and a close box. The
values of these attributes are 1, 2, 256 and 2048. Their sum is 2307,
and this is used as the first parameter of open_windowu.

The co-ordinates and size of the window haven’t been changed from
the previous example. They are (20,20) and (400,150) respectively.

The window name has changed to "title" and there is no

information line and so the last parameter is an empty string ™.

GEM Introduction HiSoft C Page 99

The statement
pos_window(window, 5, 5);

indicates that the next string is to be displayed at line 5 column 5
within the window that we have opened.

Then the text is displayed at the position fixed by the pos_window
statement.

Finally, after waiting for a key, we close the window.

Let's take a closer look at the pos_window function. It has three
parameters.

The first is the integer that is returned by the open_window
function. It indicates which window is to be written to.

The next two parameters indicate where text is to be displayed. They
are first the column and then the line. Both values are specified in
characters relative to the top left of the window. Thus they must be
between 0 and 79 for the column and O and 24 for the line. If the
values used are too large, and the cursor is thus positioned outside
the window, no text will be displayed by the next print_window call.
No indication of this error is given.

If an error is detected then this function returns 0, otherwise a non-
zero value is returned. This will only happen if the window number is
wrong and so this is often ignored.

Note that the pos_window function doesn't actually display any
text. It must be used in conjunction with print_window. Text
specified to print_window appears at the position given by
pos_window.

Page 100 HiSoft C GEM Introduction

[3.2.8 Clearing a window

There's a function to clear out the inside of a window. The following
program opens a window, and writes "hel lo" into it and waits for a
key press. It then clears the window contents, displays "Hello,
world" and waits for another key. Finally the window is closed.

int window;

main()

{
window = open_window(2307, 20, 20, 400, 150,

Uteittilee Sy -

print_window(window, "hello™);
evnt_keybd();
clear_window(window) ;
print_window(window, "hello, world");
evnt_keybd();
close_window(window);
By

The function clear_window clears out a window. It has one single
parameter. This is the integer that is returned by the open_window
function. It indicates which window is to be cleared.

The value returned by this function is an error indicator. As usual it

is 0 if there is an error and non-zero if the operation is successful.
This value is normally ignored.

Exercise 13

Write a program that opens two windows and writes alternately to
them both.

3.2.9 The size_window function

This function lets you find out the size of the available work area
inside a window.

In practice, this space is the total space used by the window when
opened minus the space used by the window’s borders.

The borders contain the title bar, sliders etc...

GEM Introduction HiSoft C Page 101

Here's an example of a program that draws a straight line between
the opposite corners of its window.

fintaak, Lyt width chedghit - wing

main()

{
win .= open-windowe2307 20, 205 400 1750

lltitLell’llll);

size_window(win, &x, &y, &width, &height);
draw(x, vy, x+width, y+height);
evnt_keybd() ;
close_window(win);

¥

The first line of the program declares the integers x, y, width and
height which will contain the work area of the window.

The integer win is used to store the handle of the window that we are
using.

The window is opened by the open_window function. Then the size of
the inside of the window is obtained by calling size_window.

The function draws a line between two corners of the window, we wait
for a key press and then the window is closed.

Let's examine the size_window parameters in detail. It has five
parameters.

The first is the window handle as returned by the open_windowu
function. This indicates which window to find the size of.

The four other parameters are going to receive the co-ordinates of the
area inside the window. These are, in order, the x and y co-ordinates
of the top left corner, then the width and the height; these
parameters are modified during the call of the function. They are set
up to be the work area of the window.

In this program you should have noted the presence of the &
operator before the names of these parameters in the function call.

This & symbol is absolutely essential for the size_window function
and indicates that the parameters are to be modified by the function
(see Section 3.2.11 for the details of this).

Page 102 : HiSoft C GEM Introduction

[3.2.10 The draw function

The draw function is new.

It draws a straight line between two points. It has four parameters.
The first two parameters are the x and y pixel co-ordinates of the
first point. Their values must be between 0 and 639 for x, and 0 and
399 or 0 and 199 depending on the resolution for y.

The other two parameters are the graphics co-ordinates of the other
end of the line.

If the co-ordinates are outside the limits given above then only that
part of the line visible on the screen is drawn.

This function does not return a value.

[3.2.11 Ways of passing arguments =

A function parameter is only a copy of a variable. Only the value of the
variable is passed to the function. Thus, modifying a parameter
within a function does not modify the variable that is used when the
function is called. We say that the parameter is passed by value.

However, there is a method so that you can modify variables that are
passed as parameters. All you have to do is precede them with the &
operator.

Then it is the variable itself that is passed and it can be modified. We
say that this is a variable parameter.

If you have understood this properly, the hardest part is over,

Be careful, as in C if a parameter is to be used by value it must be
called that way. Similarly when using a variable parameter you must
use the & sign.

Otherwise 99 out of a 100 times the machine will crash.

As a general rule, parameters are passed by value. No problem. Every
so often a function must modify a parameter. Such a parameter
must always be preceded by a &.

GEM Introduction HiSoft C Page 103

Exercise 14

Write a program which opens a window of a random size.

Then, inside this window draw a ray of lines in all directions starting
from one corner of the window.

[3.2.12 Conclusion

We have seen in this section how to open a window and how to draw

and print inside it.

The use of sliders, arrows, and close boxes is described in Section 3.5

concerning events.

3.3 Dialog boxes

[3.3.1 What is a dialog box?

]

You have already seen dialog boxes. They are a sort of window
without sliders or title bars that appear in middle of the screen and

ask you for information.

For example, when you select Set Preferences from the Desktop, a
dialog box appears and asks if you want confirmation for copies,
what screen resolution you want etc.

Such a box consists of an outer box and various objects such as
buttons, text, and icons and which can be selected with the mouse or

changed with the keyboard.

[3.3.2 Creating a dialog box

There are two stages in using a dialog box in your program.

First create your box. That is, define its size and its various objects
(buttons, text, icons etc) that you want to put in it. This is the first

stage that the user of the program doesn’t see.

Then you must display the box on the screen and let the operator use

it. This is the second stage.

Note that the box creation stage is totally separate from its display

on the screen.

Page 104

HiSoft C

GEM Infroduction

S

S5

A box is thus created at the start of the program, once and for all, but
it can be displayed on the screen as many times as you like without
having to redefine it.

The creation of a box itself has several stages. First its size and the
number of elements within it must be defined with the init_box
function.

Then, one by one, we add the different objects that we want to appear
inside this box.

This is done with the help of the functions: text_box (add a string),
button_box (add an exit button), gtext_box (add graphics text),
edit_box (add an editable text field) and color_box (specify the
colours of the text, background, and border of graphics or editable
text).

Now that we have created our box, we can display it and let the user
modify it. This is achieved with the draw_box function.

It only remains to find out what modifications to the state of the
dialog box the user has made. We use the readstr_box (read a
string of text) and readbut_box (read the state of a button).

It is important to note that only the draw_box function has an affect
that the user can actually see. The creation of the box is invisible. It is
only when we call this function that anything appears on the screen.

3.3.3 The init_box function

This function creates and initialises a dialog box. It's the function
that must be called first and specifies the size of the box and the
number of objects that will be placed inside it. Put simply, an empty
box is created. This provides the ground work for you to position text
and buttons.

This function has three parameters.

The first two specify the size that you want to give the box. They are,
in order, the width and height. Both values are expressed in
characters. They must be between 1 and 24 for the height and 1 and
80 for the width.

The third parameter indicates the maximum number of elements
that you will be allowed to add to this dialog box.

GEM Introduction HiSoft C Page 105

For example, if you give this value as 5, you may put up to 5 elements

in the box. You can thus, for example, use 2 buttons and 2 strings. Or
equally, 1 button and 4 strings, so long as there aren’t more than 5 —
objects.

This function returns an integer. It is the handle for the box that we
have just created. This is its number. It lets us distinguish between
different dialog boxes when we want to use several.

For example, let’s create a dialog box 20 characters wide by 5
characters high. Inside it we only want a string of text and an exit
button, i.e. two objects. The statement to start off the creation of this
box is: -

box = init=box (20, 5, 2):;

This function doesn’t produce any result on the screen. It is only —
when we have completely defined this box that we can call draw_box
and it will appear on the screen.

[3.3.4 The text_box function

A dialog box contains messages to indicate, for example, how to use it. —
These strings of text are positioned in the box using the text_box
function.

You must create an empty box using the init_box function before
calling this function, like all the functions that add objects to a dialog
box.

The function text_box has four parameters that let you specify the
box to which it is to be added, where to position the text, and finally

the text itself.

The first parameter is the integer that is returned by init_box. It
indicates in which box the text dialog is to be positioned.

The following two parameters let you position the text within the
dialog box. They are the co-ordinates of the first text character in the

form column and then line. They are expressed in numbers of | _
characters relative to the top left of the dialog box. For example if you

give both values as O then the text appears in the top left of the box.

The last parameter is the text that is to be placed in the box. Itisa
string of characters enclosed in quotes.

Page 106 HiSoft C GEM Introduction

This function returns an integer. It is the number of the object within
the box. This value can be ignored, except when you need to
distinguish between objects that you have added to the dialog box.
This is generally ignored because text is simply displayed on the
screen rather than being used to exchange information with the
user. Its state is never tested as it would be if it were a button that the
user could select.

This example builds on the example of init_box. We have added two
text_box statements to add two text strings to the box:

bex = Gnit_.box{20, 5, 2);
text. box(box, 1, 1, "text 1"):
tiextivbioxbhiox ¥ 73 3,05 Yiteats 270)

These three statements don't make up a valid program because you
must have a button in a dialog box so you can click on it to exit the
dialog box.

[3.3.5 The button_box function

Buttons are used for two purposes in dialog boxes. They let the user
choose between several possibilities using radio buttons. For
example, when you want to search for a word using the Find
command of HiSoft C you are presented with a dialog box and you
can choose the direction of the search by clicking on the appropriate
button.

The second use of buttons is to close the dialog box. These are often
the usual Ok and Cancel buttons.

The button_box function lets us add one of these buttons to a dialog
box. We can specify its position and its type (radio or exit).

It has five parameters. The first four are the same as for the
text_box function.

The first is the integer that is returned by init_box. This handle
indicates to which dialog box the button is to be added.

The next two parameters are the co-ordinates to position the button
in the box. They are in character co-ordinates (line then column).

The fourth is the text of the button, as a string of characters in
quotes.

GEM Introduction HiSoft C Page 107

The final parameter is unique to the button_box function. It
indicates the button’s type. This value is detailed in the reference
section under button_box.

There are two types of button.

Radio (or choice) buttons let the user select one of several possibilities
without leaving the dialog box. For these this parameter should be 17.

Exit buttons cause the dialog box to be closed when the user clicks on
them. If you want to create such a button use 5 for the final
parameter.

This function returns an integer; this is the index of the object within
the dialog box. It is used to distinguish this button from other ones.

The following examples show some simple uses of the button_box
function:

ok-—=- buttonuboxitboxino 1, -2, “0K", 5)
This example creates an exit button (last parameter=>5) in the dialog
box given by box_no. This is placed at line 2 column 1 from the top
left of the dialog box. It contains the text "0K".
Finally the number of this box is stored in the variable called ok.

Now for a second example:

choiiceld..= button_tboxiCboxino, 4,13, “Choice 1% 173
chofdice2 =EbuttonEboxChoXaing, b 4, Y Choice 21 . 1.4
chofilice3: ==button- box(box nao, 4, 5; "Choice 3%, 17J;

These three statements create three buttons that will let the user
choose between Choice 1, Choice 2 and Choice 3. The value 17 as
the last parameter means that these are radio buttons.

The three buttons are inserted in the dialog box given by box_no all
in column 4 but one beneath another in lines 3, 4 and 5. The text
inside these buttons is Choice 1, Choice 2 and Choice 3
respectively.

These buttons aren't exit buttons (as the last parameter is 17). When
you click on one of them it will be selected and appear highlighted, but
the dialog box isn't closed.

When the user clicks, for example, on Choice 1 this will be the only
button selected. If either of the other two had been selected they will
return to normal.

Page 108 HiSoft C GEM Infroduction

Then, when the choice has been made, we click on 0K to confirm the
choice and exit the dialog box.

3.3.6 The draw_box function =

We have seen that this is the function that actually draws a dialog
box on the screen.

In general, a box is first created using the three functions that we
have just discussed. Then it is displayed in its full splendour all at
once.

The draw_box function provides this complicated display function.
The box is drawn on the screen, the mouse cursor appears and the

user can select the buttons and edit the text that have been drawn in
the box.

Then, when the user clicks on an exit button, the box is removed and
control returns to the calling program.

Here's an example so we don't get out of practice.
Type in and run the following program:

int box;

main()

{
boxs = Tnit box I8 =8 - d) =
button. boxCbhox, 6,6, " Ol S o
text boxChox, 2, 2; "“click- -on 0K");
draw_box{(box) ;

3y

Let’'s examine this example in detail.

The first line declares an integer variable called box. This will be used
to store the number of the box that we are building up.

The first proper statement initialises the box. It is to be 18 characters
wide (the first parameter) and 8 characters high (the second
parameter).

The box will contain a total of 2 items (third parameter).

GEM Introduction HiSoft C Page 109

The statement:
butten _box(bex, 6, 6, " (o)) CuSSSLLAE S £ R

adds the first of these objects to the box. It is a button with the text
ok and positioned at column 6 line 6. This is an exit button (last
parameter is 7). So when this button is clicked on the dialog box will
be closed.

The second object is added using:
text theox(box, 2, 2; “click on Okvi;

This is a string at column 2 line 2 and its textis click on OK.

Finally the statement:
draw_box(box);
draws the box on the screen and waits for the user to click on 0K.

The draw_box function returns an integer result representing
which button caused the box to be exited. This is the number of the
box as returned by button_box when the button was created. You
need to know which exit button was pressed if there is more than one
exit button.

This value is ignored in the above example because there is only one
exit button; it must be this one that caused the box to be closed, so
the program can safely ignore this information.

3.3.7 The readbutf_box function and radio
buttons

There are two types of buttons.

We have already seen that these are exit buttons, which cause the
dialog box to be closed and radio buttons that let the user choose
between several options.

For buttons in the latter category we need to know which button the
user has chosen. The draw_box function returns which exit button
the user clicked on but not the last exit button that was pressed.

To do this there is the readbut_box function. It tells us if a button is
selected or not.

Page 110 HiSoft C GEM Introduction

In the following example a dialog box is displayed on the screen and
the user is given a choice. She or he must click on a button
corresponding to their age. Finally the user must close the box by
clicking on 0K.

int box;

int agel1, age2, age3;

main()

{
box = init_box¢30, 10, 5);
button._box(box, 12, 8, " ©OK ", 7);
text_box(box, 4, 2, "Select your age .. Ay

agel = button beox(box, 1,5, '" 00=20 ", i?);
age? = button_beoxCbox, 11, 5,7 21-40 1lifg O
age3 = button_box(box, 21, 5, " &41-99 ", Ty

draw_box(box);

if (readbut_box(box, agel) == 1)
printf("Youngster...\n");

if (readbut_box(box, age2) == 1)
printf("In the prime of your Life\n");

if (readbut_box(box, age3) == 1)
printf("Ancient...\n");

printf("press a key\n");

evnt_keybd();

¥

The variable box contains the dialog box number. The integers age1,
age2 and age3 are where the numbers of the three buttons
containing age ranges are stored.

The first real statement initialises the box to have a width of 30

characters and a height of 10 characters. Inside the box we can

insert 5 objects which in this case will be, a string, an exit button and

three radio buttons.

In line 8 at column 12 we position the 0K exit button, thus,
button_bex(box, 12, &8, " e S T)

The value 7 as the last parameter means that this is a default exit
button. This is the button that will be selected if we type Return.

Next the string Select your age isadded at column 4 line 2.

text box¢box, <&, 25: "Selectdyoun age k)

GEM Introduction HiSoft C Page 111

The statement
agel:= buttonsboxtbox, 21755 2nls 00=20+ "5 7))

positions the first of the three radio buttons in the box. It represents
the choice of O to 20 years. The last parameter is 17 because this is a
radio button.

The index of this button is stored in the variable age1.

The two statements:

biitztone box(bionr, 1155, &l =00 =5, 17)
hiititon: box Chox, 2lorade —abl=99 - " 17

age2
age3

position the other two radio buttons next to the first at columns 11
and 21 where the first one was in column 1.

The three numbers of the radio buttons are stored in the three
variables age1 (0-20), age2 (21-40) and age3 (41-99).

Next the box is drawn on the screen using the call to the draw_box
function. The user must select one of the three ages and then press
on the 0K button.

The program must now work out which of the three buttons has
been selected with the help of the readbut_box function. This tells
us if a radio button has been selected or not and has two parameters.

The first is the number of the dialog box in which the button is
located. This is the integer that was returned when the box was
created with init_box.

The second parameter is the number of the radio button whose state
we are finding, within the box. This is the value returned by
button_box when the radio button was created.

The function returns a value, the state of the box. If this value is O
then the button is not selected. If however the result is 1 then the
button is selected. It's that simple.

Back to our example. The statement:

if (readbut_box(box, agel) == 1)
printf (" Youngster... \n'");

tests if the button 0-20 whose number is stored in the age1 variable
is selected. If it is then the value returned by readbut_box will be 1
and the printf statement is executed.

Page 112 HiSoft C GEM Infroduction

In the same way the next two statements test the other two radio
buttons.

Note that only one radio button is ever selected. If the user tries to
select another one, the original one is de-selected.

The readbut_box function should only be called after a draw_box
statement where a dialog box will have been displayed and the user
has selected a button. This button should always be a radio button
that has been created using button_box.

[3.3.8 The edit_box function and editable fields |

The dialog boxes we have created so far let you click on buttons as
much as you like, but they don’t let you enter text using the
keyboard. For example, when you create a new folder on a disk the
Desktop will display a dialog box and ask you to type the name of the
folder.

The edi t_box function lets you create such items so that you can
enter text.

For example the following program asks the user to enter the current
date :

Tntitbox:;
intiedit;?
char *date;
main()
{
box: = dnit box{33, 7, 3):
butition_box(box, 1&, 5, " 0K ™, @
text box¢box, 1, 1, "Enter to—day's datée::."2;
edit = editbextbox, 11,3, 52506878 Janey ",
el e el)
draw_box(box); /* draw the box */
date = readstr_box(box, edit); /* read the date */
puts(date); /* write the date on the screen */
evnt_keybd();
¥

This program starts in a way with which you are familiar. A dialog
box is created and an exit button called 0K and a text string Enter
to-day's date is added to it.

To change the standard recipe, we have added a new call to add a bit
of spice. This is the edit_box function and it has seven parameters.

GEM Introduction HiSoft C Page 113

Ok, let’s start at the beginning.

The first three parameters we have seen before. They are the dialog
box number, the column and line where the text will be displayed.

An editable field (where we can enter text) has three parts.

First there is the template (or site) of the field. It is where the text is
physically written. In general it uses the underline characters:
& ", These characters are replaced by the data that we want to
write. This is the fifth parameter to edit_box.

In our example the string consists of "__/__/_ ". This lets us type six
characters with slashes between each pair.

Thus, we need to know the maximum size of text in advance.

Next there are the characters that we are allowed to enter, or
validation string. We can just accept digits or only upper case letters
for example.

For each character that we can enter, we must specify which
characters are allowed. To do this, each "_" character in the template
field has another character associated with it. This is represented by
a string of characters indicating which characters are valid.

In this example, this string is "999999", meaning that only digits
are allowed. No other character may be typed. There are many other
possibilities however. For example, using just the character "A",
upper case letters only are allowed.

Here's the full selection:

Only 0-9

A-Z and space

A-Z, a-z, 128-255 and space
A-Z . a-.0-9 01282055 ng %
A-Z, a-z, 0-9, 128-255, _

A-Z, 0-9 and space

A7, a-z, 0-9, 128-255 and space
e 029 128255, Vit
NeZoa—7 091282265 N

all characters allowed

iDL O D] = Ml >0

Page 114 HiSoft C GEM Introduction

In the above A-Z includes non-English capital letters. 128-255
means that all characters with value greater than 128 can be used
including lower case non-English letters and the £ sign. Note that
the f validation character is not normally documented but is present
in all versions of the operating system that we have used.

We could replace the "999999" in our example with "XXxXXxXX". Then
the user could type any character on the keyboard not just digits.

Finally, the third part of an editable text field is the text that will be
displayed for the user to modify if he wishes. This is the fourth
parameter in the edit_box function call. In the example this will
write 250687. This is combined with the template (the fifth
parameter) to produce the display 25/06/87. When you run the
program, it won't be that date so you will need to delete it (using the
Esc or Backspace keys) and enter the new one.

We could replace the "250687" in the function call with "". This
would make the field empty when the dialog box is displayed
producing "__ /_ /", and you wouldn't have to delete the old date
before entering the new one.

An editable field may, or may not have a border round it. The last
parameter of the function specifies the border. 0 means no border, 1
to 3 mean borders of increasing thickness. If this parameter is not
between 0 and 3 no border is drawn.

This function returns the index of the edit field within the dialog box.
So at last, we have finished with the edit_box function.

Next in our example, the draw_box function is called to display the
box and let the user enter the date.

[3.3.9 The readstr_box function =5

This function is used to read text that has been entered using an
editable field. In our example we want to find the date that has been
entered by the user.

To do this we use the readstr_box function which is much simpler
than edit_box, it only has two parameters.

The first is the number of the dialog box, where the text that we want
to read is placed and the second is the number of the editable field
within that box. This is the value returned by edi t_box when the
itemn was created.

GEM Introduction HiSoft C Page 115

As if by magic, the value returned is the string of characters that was
typed; in our example the date.

For C experts, the type of the value returned is char*, that is pointer
to character. It's the address where the characters typed were
stored.

In our example we have a call to puts to display the string containing
the date on the screen.

[3.3.10 Graphics Text

It is possible to have text with graphics attributes in dialog box.

So far we have just had boring strings, but they may have different
colours, border, fill patterns and even different sized characters.

int box;

int text;

main()

{
box = init box(20, 10, 3);
buttontboxGbox, © +8; '‘as0kas! o)
text boxtbox, 3, 2, "click on 0K¥*);
text = gtext_box(box,1,5,"graphics text",1,2,1);
color_box(Cbox, text, 0, 2, 3);
draw_box(box);

i

This example displays a string in small characters, with a black
border, red characters (on a colour screen!) and on a green
background.

You will remember the usual box creation function (20 characters
wide, 10 high, containing 3 objects). A button and a string are added
to the box with text of 0K and click on OK.

Then a couple of new functions gtext_box (to create graphics text)
and color_box (to change the colour of the text). The box is then
displayed using draw_box as ever.

Page 116 HiSoft C GEM Introduction

& (8.l Wie

[3.3.11 The gtext_box function

This function places a graphics text item in a dialog box. This is
similar to a text_box but the text can have several effects applied to
it to relieve the boredom.

This function has severr parameters. The first is the number of the
dialog box to which the text will be added. It is always the first
parameter in all the object addition functions.

The next two parameters give the position of the text within the box
as in the text_box function for example.

The fourth parameter, if we've counted right, is the string of
characters that are the actual message text of the box.

So far this has been exactly the same as the text_box function. But
this changes with the next parameter which is the size of the
characters. If this is O then they are written as normal, otherwise
they are written as small text.

The parameter before the last one is for the border of the text box,
with 0 meaning no border, 3 a very wide one and 1 and 2 meaning
borders in between.

The background on which the text is written can have the ‘darkness’
of the fill specified. This is a value between O (white) and 7 (full black)
with values from 1 to 6 being shades of grey.

You may need to use the color_box function so you can read your
text!

The gtext_box returns an integer, which is the index of the object
within its box as ever. In general this value is ignored as the text is
simply displayed on the screen rather than being used in interaction
with the user. However there is one time when you need this value
and that is when calling color_box.

[3.3.12 The color_box function

As we have already said this function is used to set the colours of
graphics text. It has five arguments.

The first is the number of the dialog box in which the graphics text
has been added. The second is the index of the text within that box.
This is the value returned by the gtext_box function.

GEM Introduction HiSoft C Page 117

The last three parameters indicate the colours of the border, the
characters and the background.

With a monochrome screen only the values 0 and 1 should be used,
corresponding to white and black respectively.

If you are using a colour screen in medium resolution 4 values are
allowed:

0 white
1 black
2 red

3 green

For example, if you want a black border, red characters and green
background, specify these parameters as 1, 2 and 3.

If you don't like these colours they can be changed with the Control
Panel or using the GEMVDI vs_color function.

Note that if you want a non-white background you will need to
specify a non-zero fill pattern in your call to gtext_box.

Be careful, you can change the colour of text created with edit_box
or gtext_box only. You can not do this for buttons (button_box) or
non-graphics text (text_box).

Page 118 HiSoft C GEM Introduction

N

3.4 Menus

3.4.1 What is a menu?

You've used pull down menus. There is a bar at the top of the screen
with titles which have menus on them which drop down when you
move the mouse over them.

Using the HiSoft C toolbox, this is done as follows:

int title, elem;

main()
{
init_ menu(” Desk ", " About Menu”; 2, 5);
title_menu(" File ");
item_menu(" Load File");
item_menu(" Save File");
item_menu(" Quit");
title_menu(" Options ™);
item_menu(" Search™);
item_menu(" Replace”);
draw_menu();
event(&title, &elem, 0, 0, 0, 0);
&y

This program creates a menu with three titles: Desk, File and Options.
In the File menu there are three entries and in the Options menu
there are two.

The menu is drawn on the screen (using the draw_menu function),
then the user selects an item from the menu (using the event
function) before the menu disappears.

The event function is detailed in the section on events (See Section
3.5). This is a HiSoft C toolbox routine; it manages the mouse and lets
you pull down menus when the mouse reaches the menu bar. It
returns control to the program when a menu item is selected.

It is important to note that the init_menu, title_menu and
item_menu items create the menu in a way that is invisible to the
user. Nothing changes on the screen. Only during the call to the
drauw_menu function does the menu bar appear. The menus can't be
pulled down until the event call.

GEM Introduction HiSoft C Page 119

3.4.2 The init_menu function

This lets you initialise and reserve space in memory for a menu that
you wish to create. It is the function that must be called first during
creation of a menu.

init_menu has five parameters.

The first is a string of characters representing the title of the first
menu. This is nearly always Desk but you can change it if you like.
This isn’t the only choice you have...

The second argument is another string of characters. It’s the first
item on the Desk menu and is normally used to display an ‘About’
box for the program describing the program, its author etc. This
string must not be more than twenty characters long. In the
example, we've used "About Menu".

The next parameter is the number of titles of our own that we wish to
have without containing the Desk menu.

So in our example this parameter has the value 2.

For the HiSoft C editor, with the titles File, Find, Run, Move, Block,
Help and Info, there are 7 titles. To create such a menu this
parameter must have the value 7.

Note that this value is the maximum number of titles that you wish
to include in the menu bar. You can indicate that you want more titles
than you actually add to your menu.

Finally, the last argument indicates the maximum number of menu
entries, not counting the Desk menu items nor the menu titles.

For example, in the HiSoft C menu there are 63 entries. In the
program above, there are 5.

The init_menu function returns an integer. This is the index of the
‘About’ box in the Desk menu. This number is used to see whether it
was the item that was selected. (See Section 3.5 on events).

Page 120 HiSoft C GEM Introduction

—

BieTeTe Gie @ 1

¢ SR

13.4.3 The title_menu function |

After intialising a menu with init_menu, we can start to add the
titles in the menu bar after the Desk menu. This piece of magic is
performed with the help of the title_menu function.

The new title is added to the right of the Desk menu if there aren’t
any other titles. If you have already called title_menu then the new
title wiil appear to the left of the existing ones.

The title bar may not contain more than 80 characters.

title_menu only has one parameter. It is the string of characters
that you wish to add to the menu bar. So in our example it is " File
- or i 0ptions .

A value is returned by this function. It is the integer that identifies
the title that we have added to the menu bar. We need this to find out
from which menu the user has selected an item. See Section 3.5
Events.

13.4.4 The item_menu function

This function creates an entry beneath a menu. This item is added
below the last title that was added to the menu bar.

This function must not be called before using title_menu.
title_menu is used to create a title and then item_menu is used to
add the entries beneath that menu.

The value returned by this function is the integer that identifies the
item that we have added to the menu bar. We need this to find out
which item the user has selected. See Section 3.5 Events.

3.4.5 The draw_menu and delefe_menu
functions

These two functions display or remove the menu bar.

The function draw_menu must be called after the menu has been
created (using the init_menu, title _menu and item_menu
functions) and before the user can interact with the menu (using the
event function).

GEM Infroduction HiSoft C Page 121

If you forget this function, no menu events can occur and the event
function can wait for ever for a menu event that will never happen.

Quickly turn to Section 3.5 on events if the event concept isn't
crystal clear.

Neither of these functions have any parameters and both return an
integer indicating whether an error occurred. This is an integer with
value 1 (or true) if all went well or O (or false) if an error occurs.

Generally this value is ignored by the program, assuming
(hopefully!) that all went well.

3.4.6 The enable_menu, check_menu, &
select_menu functions

We've grouped these three functions as they are all used when
changing the state of a menu. We won't give an example here because
it would need to build on the other menu functions and so be rather
long. There is an extended example in the examples folder of master
disk 2 called event.c.

check_menu makes a tick (or check mark) appear or disappear in
front of a menu item. If the item isn’t already ticked the tick appears;
if it is ticked it will disappear.

enable_menu ‘greys’ an item in a menu. That is, it makes the item
appear grey so the user may not select it with the mouse. If the item
is already grey it appears as normal and so is enabled once more,
hence the name of the function.

Finally, select_menu makes a title appear in inverse (black on
white) or if it is already selected in this way it returns to normal. The
most common use for this is to restore menu titles to normal after
an item has been selected.

These three functions all have one parameter and it is used for the
same purpose in all of them.

This parameter indicates which item is to be selected, greyed or
ticked. This is the value returned by the item_menu or title_menu
function.

All three functions return an integer. This indicates the new state of
the item. If the item is now selected, disabled or ticked 1 is returmed; if
not 0 is returned. If you try to change the state of an item that does
not exist then 0 is returned.

Page 122 HiSoft C GEM Introduction

The select_menu function may only be used with titles; trying this
with menu items will always return 0.

select_menu has a rather special purpose. When you select a menu
with the mouse the title appears in inverse and remains that way
until you call select_menu with the number of the title as its
argument. You can see this in the paleochrome program.

Here is a tiny program fragment that ticks a menu entry.
1Rt Ttemny

item = item_menu(" menu item");
check_menuCitem);

3.5 Events

This is the section whose importance we stressed a few pages back.

[3.5.1 What is an event ?

Events are the fundamental items in a true GEM program.

They are single user actions as far as GEM is concerned. This might
be a key press, a mouse button press, the selection of a menu item or
the manipulation of a window (moving it, changing the size, clicking
on an arrow or slider etc).

An event is therefore GEM's way of telling you what the user has just
done with the mouse or keyboard.

A program running under GEM with pull-down menus and windows
is based around this concept. Some mis-guided programmers try to
avoid this, but this is a waste of time; it is much better to do things
GEM'’s way rather than fighting it!

[3.5.2 The layout of a GEM application

The event function is by far the most powerful and important GEM
function. GEM applications are built round this function.

It lets us wait for the user to complete one of the actions described
below.

So thanks to this function you can ask GEM to wait for a key press
and/or mouse click, and/or select a menu, and/or change a window.
It's powerful isn't it?

GEM Introduction HiSoft C Page 123

When you make the call you specify which events you want to wait
for. The function returns to the main program when one of the
specified events has occurred.

For example, you can wait until the user selects a menu or presses a
key. You call the event function ‘saying’ that you want to wait for a
menu or keyboard event. As if by magic, the function doesn’t return
until the user has chosen a menu item or pressed a key.

You will be told whether a key was pressed or that a menu item was
selected.

Typically, a GEM application uses events in the following way:

create the menu
create the dialog boxes
open the windows
While we haven't finished do the following:
wait for an event
Depending on the type of the event
If it is a mouse event:
deal with the mouse event
If it is a keyboard event
deal with the keyboard event
If it is a menu event
deal with the menu event
If it is a window event:
deal with the window event
Close the window
Remove the menu

If we translate this algorithm into C, we get:

int menu_title, menu_item; /* menu item selected */

int Xy 7 /* mouse co-ordinates */

int event_type; /* event type
(keyboard,mouse..)*/

int chy /* character typed on keyboard */
short windowlé1; /* window event details*/

int notfinished; /* indicates if the program */

/* has finished or not */

main()

i
create_menu();
create_dialog();
openwindows () ;

Page 124 HiSoft C GEM Introduction

while (notfinished)
{
event_type = event(&menu_title, &menu_item,
window,&ch, &x, &y);
if (event_type == 2) /* mouse button */
do_mouse(x, ¥);
if (event_type == 3) /* menu selected */
do_menu(menu_title, menu_item);
if (event_type == 1) /* key pressed */
do_key(ch);
if (event_type == 4) /* window changed */
do_window(window);
>

destroy_menu();
closewindows();
T

Let’s look at this in detail.

The variables declared at the start of the program are used to store
the type of event and details about a particular event. They are
modified by the call to the event function.

Thus the integers, menu_title and menu_item contain the indices
of the title and item of the selected menu if a menu event occurs.

The x and y variables contain the position of the mouse if the user
clicks on a mouse button.

ch will contain the key that was pressed on the keyboard if a
keyboard event has occurred.

The array window contains extra information about a window event.
For example that a slider has been moved or that the window size has
been changed.

event_type contains the type of event that has just happened. This
may be a menu, keyboard, mouse or window event.

The integer notfinished is used to indicate when the program has
terminated. If, for example, the user clicks on a close box or selects
Quit from the menu we would set this variable to O (false).

The first three statements in the program initialise the environment
by calling the functions which open windows, and create menus and
dialog boxes. We won't go into detail about these here.

Then we have a while loop which waits for and deals with events
until the user decides to exit the program.

GEM Introduction HiSoft C Page 125

Now for the big moment - the event function is called.

This waits for a keyboard, mouse or window event. See the detailed -
description of the function in the next section.

We then test which type of event occurred and, depending on the
event type, we call a specific function.

Then when the program terminates we call routines to close the
windows and remove the menu. .

Obviously this program is only a skeleton; it calls functions that we
haven’t described but which perform specific actions. However, this
example shows the layout of a GEM program that uses the HiSoft C
GEM toolbox.

On your HiSoft C disk, there are two programs showing the handling
of events called paleochr.c and event.c.

The commenting of these is un-even but you are likely to find them
very useful in understanding this complex mechanism.

[3.5.3 The event function L

We will now describe in detail the HiSoft C toolbox event function.

This function has 6 parameters whose syntax is as follows:

int menu_title;
int menu_item; -
int key_press;
TNt e ek
jnt Sclicky;
short windowlé1; _
init event_type;
event_type = event(&menu_title, &menu_item,
window, &key press, &clickx, &clicky);

Note that the parameters are modified by the call to the function.
This is the reason for the & character before the parameters. If you
omit one of these your program won't work and may even crash.

In general, these parameters let you indicate the type of events that
you wish to wait for and, in addition, the details of the event that
occurred are returned therein. -

Page 126 HiSoft C GEM Introduction

N

This function has one or two parameters for each type of event. If a
parameter corresponding to an event is zero, this indicates that you
do not wish to wait for this type of event. Otherwise this parameter
must be a variable and when the function returns the variable will
return the details of that event.

This function returns a whole number which indicates which event
has happened. So by examining this variable you can find out if a
keyboard event or a menu event has occurred.

Value Event type

1 key press

2 mouse button click

3 menu selected

4 window manipulated

GEM also has other types of events which are not used as
frequently, like timer events, which wait for a certain amount of time
to pass and events that wait for the mouse to leave an area.

You can not use the event function to access these events; you must
use the GEM functions evnt_multi, evnt_timer Or evnt_mouse
directly rather than a toolbox function.

3.5.4 Menu events

First of all, what is a menu event?

When you decide to wait for a menu event, you call the event
function. The mouse cursor will appear on the screen and the user
may ‘pull-down’ the menus and select an entry. At the precise
moment that the mouse button is released the menu event is
considered over. The event function returns to the calling program
indicating which menu item has been selected.

The first two parameters of the event function are concerned with
pull down menus. If you don't want to wait for events caused by
menu selection then these two values must be zero. In place of
gmenu_title and &menu_item, you put the value O.

Otherwise, the event function returns the numbers of the title and
item of the menu entry that was selected with the mouse.

GEM Introduction HiSoft C Page 127

Remember that these numbers are identical to the values returned -
by the title_menu and item_menu toolbox functions when you
create the menu. These two functions give unique numbers -
specifying the menu item. The same values are returned in the
menu_title and menu_item items to inform you which item has
been selected and the title of the sub-menu.

For example, if you select the Quit entry from the File menu the
variable menu_title will contain the number of the title File and
menu_item will return the number for Quit. These values are the .
same as those returned by title_menu and item_menu when the
menu was created.

[3.5.5 Window events

This event is the most difficult to handle as there are many different -
‘flavours’ of window event: changing the size, closing the window,
moving a slider etc...

The third parameter of the event function is concerned with events -
applied to windows. Remember that window events occur when the
user changes the window in any way. For example, clicking on the full
box, moving the window, or even clicking on an arrow etc. b

When such an event occurs the event function needs to return the

sort of event (changing the size, dragging a slider) and also extra -
details of that event, for example, when the window size is changed

the new size of the window that the user has asked for.

The place where the details of the event are stored must be big e
enough. To do this, an array of six short integers is used. The third
parameter of event is the name of this array.

When the function returns, the array contains the full details of the
window event.

If you haven't opened a window, or you don't wish to deal with events -
that can happen to your window then pass zero instead of the array
name.

The full list of GEM window events is as follows:

e Clicking in the close box

¢ Clicking in the full box —
» Clicking on the arrows

e Moving a slider

* Changing the size of a window -
» Moving a window without changing the size

Page 128 HiSoft C GEM Introduction

» Re-displaying the inside of a window
e Making a window the top one

The first (number 0) element of the array indicates which event has
taken place. The significance of the other elements depends on the
type of event; all the elements are never used at once.

There now follows a list of all the different GEM window messages
together with a description of the elements that are used:

¢ Clicking in the close box

element O: 22
element 1: the number of the window to be closed.
When the user clicks on the close box, the first element of the array

has the value 22 and the second element indicates which window has
been clicked on.

e Clicking in the full box.

element O 23
element 1 the number of the window to make full size.

o Clicking on the arrows or in the grey part of the slider.

If the user clicks on a window’s arrows this moves the window
upwards, downwards, to the right or to the left by one line/character.
If you click in the grey area of the slider the window should move by a
page in the corresponding direction.

element O : 24
element 1 : window number
element 2 : action to perform:
0 page up
1 page down
2 rOw up
] row down
4 page left
5 page right
6 column left
7 column right

For example, if element 2 contains the value 3, the user has clicked on
the down arrow of the window.

GEM Introduction HiSoft C Page 129

In this case the program should scroll the window one line towards
the bottom of the file.

e Moving the horizontal slider

GEM returns the new position of the slider as a value between O (the
leftmost position) and 1000 (the rightmost).

element O : 25
element 1 : window number
element 2 : slider position between 0 and 1000.

» Moving the vertical slider

GEM returns the new position of the slider as a value between 0 (the
top position) and 1000 (the bottom).

element O : 26
element 1 : window number
element 2 : slider position between 0 and 1000.

e Changing the size of a window

GEM returns the new size of the window.

element O : 27

element 1 : window number

element 2 : x co-ordinate of the top right of the window
(should remain unchanged)

element 3 : y co-ordinate of the top right of the window
(should remain unchanged)

element 4 : the new width of the window

clement 5 : the new height of the window.

Page 130 HiSoft C GEM Introduction

b

%

¢ Moving a window without changing the size

The user has moved the window by dragging on the title bar. GEM
returns the new window position that the user wants.

element O : 28

element 1 : window number

element 2 : new x co-ordinate of the top right of the window
element 3 : new y co-ordinate of the top right of the window
element 4 : the width of the window (unchanged)

element 5 : the new height of the window (unchanged).

e Making a window the top one
The user has clicked on a window to make it the front one.

element O : 21 or 29
element 1 : number of the window to become active.

¢ Re-displaying the inside of a window

This event occurs when a window is opened, or when it becomes
larger or when an object (another window or dialog box) has deleted
the interior of the window.

element O : 20
element 1 : number of the window to redraw.

Note : The toolbox function draw_box which displays a dialog box on
the screen saves the screen before drawing it and restores it
afterwards. If there is only one window on the screen and it cannot
change size this event can be ignored.

Obviously this list will give you something to think about. “Well, have
I got to cope with all these types if I'm going to use windows ?” I am
afraid so. However to help you, at least a bit, there's an example on
the HiSoft C disks called event.c. It will get you started.

This concludes our discussion of by far the most complicated event

type.

GEM Introduction HiSoft C Page 131

[3.5.6 Keyboard events

The fourth parameter of the event function is concerned with
keyboard events. Such events are simply keystrokes from the
keyboard.

When you wait for a keyboard event, you are waiting for the user to
press a key but it is a bit more serious than saying “Oi you, I'm
waiting for a keyboard event!”.

If you aren’t interested in what the user types you can use zero as
the fourth parameter. So if you put O instead of &key_press,
keyboard events will be ignored.

Otherwise the event function will return a code for the key you have
pressed in the key_press variable. The low order byte of this is the
ASCII code of the key; the higher order bytes are special keyboard
codes that GEM uses all the time. This lets you detect Help keys, Alt
combinations etc.

If you don't understand how to use the powerful/obscure facility,
don't worry; you can use the C expression key_press % 256 to
return the normal ASCII code of the key pressed where key_press
is the variable that you passed to the event function. Obviously in
this case you can't check for keys with no ASCII equivalent like Undo
or the function keys.

[3.56.7 Mouse events

A mouse event (also known as a button event in GEM-speak) is a click
on a mouse button. With the help of the event function, you can wait
for the user to click on the mouse.

The fifth and sixth parameters of the event function are concerned
with mouse events. As usual, if you don’'t want to wait for this event
then both parameters should be 0. Instead of &clickx and &clicky,
put the value 0. Otherwise the event function returns the position of
the mouse at the moment of the mouse click.

The examples below show how to call event for a few very simple
cases. The example programs paleochr.c and event.c show how
to handle all the types of event at once.

Page 132 HiSoft C GEM Introduction

int menu_title;
int menu_item;
int key_press;
it clickx;

it elicky;
short windowlé61;
int event_type;

main

{

event_type = event(0, 0, 0, &key press, &clickx, &clicky);
/* wait for a key press or a mouse click */

event_type = event(&menu_title, &menu_item, 0, 0, 0, 0);
/* wait for a menu to be selected */

event_type = event(0, 0, window, &key_press, &clickx,
&clicky);

/* wait for a key press, mouse click or window action */
3

3.6 Conclusion

This section has shown how to use GEM via the HiSoft C toolbox
facilities. Clearly, you can access the standard GEM AES and GEM
VDI functions directly. These functions are not described here. See
the books in the Bibliography that document these.

The toolbox functions which have simplified life for us, are
themselves written in C; we supply their source in the COMPILE
folder.

Have fun reading them, and you will probably soon be happy that we
have written them for you!

GEM Introduction HiSoft C Page 133

Page 134 HiSoft C GEM Infroduction

4 HiSoft C Library
Functions

This section describes all 460 functions in the HiSoft C library.

We start with a one line summary of each function in the libraries to
make it easy to find which function you need and then describe each
function in alphabetic order.

Some of the functions are specific to the HiSoft C interpreter and we
supply the source code to these free so that you can compile
programs that use them. These functions are marked as HiSoft C in
the reference section.

The GEMDOS library is used to access the lower levels of the ST
operating system.

The GEM AES and GEM VDI libraries are used to access the
appropriate higher levels of the ST operating system.

The UNIX library contains the low-level routines that are derived
from the standard UNIX libraries as used with most
implementations of C. We have had to make some changes to these
because of differences in the underlying operating systems. To make
them all exactly the same the ST would need to be running UNIX of
course.The differences between the HiSoft C and the UNIX functions
are described under the particular function.

Finally, there is the ANSI library. This contains many of the
functions described in the draft ANSI standard for C and which have
been implemented under UNIX and in many of the more recent C
implementations. In particular it is a good idea to use the ANSI file
handling functions rather than the lower-level UNIX ones as the
ANSI functions are much more portable.

If you have used Lattice C 3 you will be familar with these functions
apart from the HiSoft C ones. Of course, Lattice C 5 also includes
most of these .

Other compilers may have additional functions, or they may omit
some of them.

Each function is described in the same way. Its name and the library
that it comes from are given in the heading.

Library Summary HiSoft C Page 135

Then the syntax and types of parameters are described followed by
the usage of the function.

Finally, there may be some other sections, prefaced with an icon:

This icon is used to indicate a tricky point about a function or
a common error that beginners make.

& This is used to indicate a particular usage of a function or a
trick that may not be obvious.

function.

i This icon is used before an actual example of the use of a

& This icon is used to make references to other functions, other
parts of the manual or the name of a keyword used by the Help

system.

4.1

Library Summary

4.

The HiSoft C library

Debug control functions

trace_on
tirace off
var_on
var_off
stop

sets trace mode

disables trace mode
enables display of variables
disables display of variables
stops execution of program

Dialog Box functions

1n4 t biox
draw_box
text_box
button_box
gtext_box
edit_box
color_box
readstr_box
readbut_box
adr_box

creates a dialog box

displays a dialog box

adds a string to a dialog box

adds a button to a dialog box

adds graphics text to a dialog box

adds an editable field

sets the colours of a graphics text field
returns the text component of an editable field
returns the state of a button

returns the address of a dialog box

Page 136

HiSoft C Library Summary

Line A graphic

lineal
Lineal
Linea?2
Linea3
Lineaéd
Lineab
Lineaé
Linea?
Linea8
Linea?9
lineaa
Lineab
Lineac
lLinead
Lineae
Lineaf

s functions

initialises the lineA routines
plots a point

returns the colour of a point
draws a line

draws a horizontal line
draws a filled rectangle
draws a filled polygon
'blits’ a rectangle

writes a character

shows the mouse

hides the mouse

modifies the mouse form
defines a sprite

displays a sprite

copies raster form

seed fill

Menu Functions

init_menu
title_menu
item_menu
draw_menu
delete_menu
enable_menu
check_menu
select_menu

creates a menu

adds a title to a menu

adds an item to a particular menu title
displays the menu bar

de-installs the menu bar

‘greys’ a menu item

places a tick in front of a menu item
select/de-select a menu title

Rectangle functions

rect_intersect
rect_union
rect_point
mect=ainst

finds the intersection of two rectangles
finds the union of two rectangles
returns whether a point is within a rectangle
initialises a rectangle structure

Resource File functions

rs_drawalert
rs_drawobject
rs_drawdial
rs_erasedial
rs_addrdial
rs_addralert
rs_addredit
rs_addrbutton
rs_objxywuwh
rs_objstate
rs_objselect
rs_objunselect

draws an alert
draws an object or objects from an object tree
draws a dialog box
erases a dialog box
returns the address of a dialog box
returns the address of a dialog box
returns the addess of an editable string
gives the address of the text of a string or button
returns the co-ordinates of an object
returns whether an object is selected or not
selects an object

de-selects an object

Library Summary

HiSoft C Page 137

Window handling functions

open_window
close_window
clear_window
print_window
pos_window
size_window

Miscellaneous

draw

mouse

event
timer_value

opens a window

closes a window

clears the work area of the window

displays a string in a window

positions the text cursor of the window
returns the size of the work area of the window

functions

draws a line on the screen

returns the mouse position

waits for an event

returns the value of the interrupt timer

14.1.2 ANSI file handling routines

Opening and Closing files

fopen open a file

fclose close a file

fdopen open a file that has been opened using open
freopen close and then open a file

fcloseall close all files

Reading

fread read bytes from a file

fgetc read a character from a file

getc read a character from the standard input

ungetc put back a character so that the last one will be

read again

fgetchar read a character from a file

getchar read a character from the standard input

fgets read a string of characters from a file

gets read a string of characters from the standard

input
fscanf formatted input from a file
scanf formatted input from the standard input

Page 138

HiSoft C Library Summary

Writing
fwrite
fputc
putc
fputchar
putchar
fputs
puts
fprintf
PRt

Standard files

stdin

stdout
stderr
stdaux
stdprn

write bytes to a file

write a single character to a file

write a single character to the standard output
write a character to a file

write a single character to the standard output
write a string to a file

write a string to the standard output
formatted output to a file

formatted output to the standard output

Standard input file
Standard output file
Standard error file
Serial device

Printer device

Positioning within a file

fseek
ftell
rewind
fflush
flushall

Error handling

moves to a particular byte in a file

returns the current position within a file
moves to the beginning of a file

writes any remaining bytes in a file’s buffer
perform a fflush for all open files

feof returns whether at the end of a file
ferror tests whether an error has occurred
clrerr cancels an error condition

errno describes the last error

Various

setbuf changes the i/o buffer for a file
setnbuf suppress i/0 buffering for a file
cprintf formatted output to the screen
cscanf formatted input from the keyboard
remove delete a file

Library Summary HiSoft C Page 139

.13

Unix functions

Opening and Closing files

open
creat
close
dup
dup?2
fileno

open a file

create a file

close a file

duplicate a file handle

force a file handle to refer to another file

return the file handle of a file that has been opened
with fopen

Reading and Writing

read
write
lseek
tell

read bytes from a file

write bytes to a file

position within a file

return the current position of a file

File operations

access
chmod

rename
unlink

read the access attributes of a file
change the access attributes of a file
change the name of a file

delete a file

Directory operations

getcwud
chdir
mkdir
rmdir

read the current directory
change the current directory
create a new directory

delete a directory

[4.1.4

ANS|I Mathematical functions

Trigonometric functions

sin
cos
tan
acos
asin
atan
atan2

sine

cosine

tangent

inverse (arc) cosine

inverse (arc) sine

inverse (arc) tangent

special form of inverse (arc) tangent

Page 140

HiSoft C Library Summary

S

Exponential functions

exp raise to the power of e

log natural logarithm (to base e)
Log10 logarithm to base 10

pow raise to the power

sgrt square root

sinh hyberbolic sine

cosh hyberbolic cosine

tanh hyberbolic tangent

Floating point manipulation routines

floor nearest whole number (rounds down)

ceil nearest whole number (rounds up)

fabs absolute value

fmod floating point modulo

mod f return the whole and fractional part

Ldexp create a float given a mantissa and exponent
frexp return the mantissa and exponent of a float
matherr the error that occurred with a maths function
dgsort sort an array of double precision numbers

Integer functions

abs absolute value

iabs absolute value

Labs absolute value

max larger of two integers

min smaller of two integers

rand generates a random number

srand intialise the random number generator
sgsort sort an array of short integers
lLgsort sort an array of long integers
|4.1.5 String functions

Numeric/string conversions

sscanf converts from a string to numeric (integer, float

etc)

sprintf converts from numerics to strings
atof converts from ascii to float

atoi converts from float to ascii

atol converts from string to a long integer
strtol converts from string to a long integer
ecvt converts from float to string

fecvt converts from float to string

gevt converts from float to string

Library Summary HiSoft C Page 141

String Copy functions

strcpy copy from one string to another
strncpy copy from one string to another
strcat copy from one string to the end of another
strncat copy from one string to the end of another

Search functions

strtok splits a string into words

strspn counts particular characters in a string
strcspn counts all but particular characters in a string
strchr searches for a character within a string

String comparison functions

strcmp compare two strings
strncmp compare two strings
stricmp compare two strings ignoring upper/lower case
strnicmp compare two strings ignoring upper/lower case

Miscellaneous string functions

strlen return the length of a string

striwr upper case a string

strupr lower case a string

strrev reverse a string

strtime create a string containing the current time
strdate create a string containing the current time
strgetfn create a file name from its components
strsplfn split a file name into its components
tgsort sort a table of strings

Page 142 HiSoft C Library Summary

A

4.1.6

Character functions

Testing characters

isalpha
isalnum
islower
isupper
ispunct
isspace
Tedigidt
isxdigit
iscsym
iscsymf

isprint
j&asicai
isgraph
i sicnitl

tests if a character is alphabetic

tests if a character is numeric

tests if a character is a lower case letter
tests if a character is an upper case letter
tests if a character is a punctuation symbol
tests if a character is a space

tests if a character is a digit

tests if a character is a hexadecimal digit
tests if a character is valid in C identifiers
tests if a character is valid at the front of C
identifiers

tests if a character is printable

tests if a character is a valid ascii character
tests if a character is a graphics character
tests if a character is a control character

Modifying characters

tolower
toupper
toascii

converts to lower case
converts to upper case
converts to ascii

4.1.7

Memory functions

Memory allocation

malloc
realloc
calloc
free

allocate a block of memory

allocate a new block of memory

allocate a block of memory filled with zeros
free a block of memory

Block manipulation

memcmp
memchr
memcpy
memset
memccpy
repmem

compare two blocks of memory

find a character within a block of memory

copy a block of memory

fill an area of memory with a particular value
copy a block until a particular character is found
initialises a buffer to a given value

Program Termnation

abort terminate the program
exit terminate the program
Library Summary HiSoft C Page 143

4.1.8 GEMDOS functions]

gemdos call a GEMDOS function

bios call a BIOS function

xbios call an XBIOS function

Character input/output routines

Bconin wait for a character from a specified device
Bconout output a character to a specified device
Bconstat return the input status of a specified device
Bcostat return the state of an output device

Reading the keyboard

Cconin wait for a character from the keyboard with echo

Crawcin wait for a character from the keyboard without
echo

Crawio read a character from the keyboard without
waiting

Cnecin wait for a character from the keyboard

Cconrs read a string of characters from the keyboard

Cconis returns whether a character is present in the
keyboard buffer

Kbrate set the keyboard repeat rate

Ikbdws send a string of commands to the keyboard
controller

Keytbl set the keyboard mapping table

Bioskeys re-initialise the keyboard mapping table

Kbdvbase ‘return the address of the keyboard vector table

Getshift return the state of keyboard shift keys

Screen

Cconout write a character to the screen

Cconws write a string to the screen

Cursconf set the text cursor attributes

Physbase return the memory address of the physical screen

Logbase return the memory address of the logical screen

Getrez return the screen resolution

Setscreen change the address or resolution of the screen

Setcolor set the palette colours

Stepallette change the palette colours

Vsync wait for the next vertical sync pluse

Page 144 HiSoft C Library Summary

Serial and Midi functions

Rsconf
Cauxin
Cauxout
Cauxis
Cauxos
Midiws
Iorec

Disk functions

modify the RS232 configuration

wait for a character from the serial port

write a character on the serial port

return whether a character is ready to be read
return the serial output status

write a string to the MIDI port

return the address of the serial input buffer

Dsetdrv set the current (default) drive

Dgetdrv return the current drive

Dfree return the free space on the speecified drive

Ruabs read or write logical disk sectors

Floprd physical read of a floppy disk

Flopwr physical write of a floppy disk

Flopfmt formats a floppy disk track

Flopver physical verify of a floppy disk

Dcreate create a new directory

Ddelete delete a directory

Dsetpath set the default path for a particular drive

Dsetpath return the current path for a particular drive

Fsfirst read the first file name that matches a given
filespec

Fsnext read the next file name that matches a given
filespec

Fsetdta set the dta address (used by Fsfirst and
Fsnext)

Fgetdta read the dta address

Drvmap return the currently connected disk drives

Mediach returns whether a floppy disk has been changed

Getbpb returns information about a disk drive

Protobt creates a boot sector image

File handling

Fcreate create a new file

Fopen open a file

Fclose close a file

Fread read from a file

Furite write to a file

Fseek position within a file

Fdelete delete a file

Fattrib return a file’s attributes

Frename rename a file

Fdatime change a file's time and date stamp

Fdup duplicate a file handle

Library Summary HiSoft C Page 145

Fforce

Printing
Setprt
Cprnout

Cprnos
Prtblk

Sound

Giaccess
Ongibit
0ffgibit
Posound

force a file handle to refer to the same file as
another handle

configure the printer device
write a character to the printer
return the printer output status
print a screen dump

read or write a sound chip control register
set one bit of port A of the sound chip

set one bit of port A of the sound chip
execute a set of sound commands

Date and Time

Tgetdate
Tsetdate
Tgettime
Tsettime
Gettime
Settime

read the date

change the date

read the current time

set the current time

read the time and date
change the time and date

Memory allocation and application control

Malloc
Free
Mshrink
Pexec
PtermO
Ptermres

Puntaes
Setexc
Super
Supexec

allocate a block of memory

free a block of memory

return an area of memory to the operating system
load and execute a program

terminate the application

terminate the application without removing it
from memory

reboot the machine

set a vector

enter supervisor mode

execute a routine in supervisor mode

Programing the 68901

Mfpint
Jenabint
Jdisint
Xbtimer
Tickcal

Various

Random
Initmous
Sversion

initialise a 68901 interupt
activate an interrupt

deactivate an interrupt

initialise a timer

return the timer calibration value

return a random number
initialise the mouse
return the GEMDOS version number

Page 146

HiSoft C Library Summary

4.1.9 GEM AES functions

Application control

appl_init
appl_exit
appl_trecord
appl_tplay
appl_write
appl_read
appl_find

Event Confirol

evnt_dclick
evnt_keybd
evnt_timer
evnt_button
evnt_mouse
evnt_mesag
evnt_multi

Form functions

form_dial
form_do
form_alert
form_center
form_error

File Selector

fsel_dinput

intialise application
deinitialise application
start recording events
execute a string of events
send a message

read a message

find an application’s id

specify the mouse double-click speed
walit for a keyboard event

wait for a timer event

wait for a mouse button event

wait for a mouse movement event
wait for an AES message

wait for more than one event at once

perpare the screen for drawing a dialog box
let the user ‘fill in’ a form using the AES
display an alert box

centre a form on the screen

display an error box

make the GEM file selector appear

Graphics routines

graf_dragbox
graf_slidebox
graf_rubberbox
graf_grouwbox
graf_shrinkbox
graf_movebox

graf_watchbox
graf_mouse
graf_handle

graf_mkstate

move a rectangle using the mouse

move a rectanglel within another rectangle

size a rectangle using the mouse

draws an expanding box outline

draws a shrinking box outline

draws a moving box outline without finally
displaying the box

changes a box’s state when the mouse enters or
exits a box

changes the appearance of the mouse and can be
used to hide and show the mouse

returns the GEM VDI handle and character cell
information

returns the state of the keyboard shift keys

Library Summary

HiSoft C Page 147

Menu functions

menu_bar
menu_text
menu_tnormal
menu_dcheck
menu_ienable

displays the menu bar

changes the text of a menu item

displays a menu title in inverse or normal
dlsplays a tick in front of a menu 1tem

a ‘greys’ a menu item

menu_register adds a desk accessory to the desk menu

Object functions

objc_add
objc_delete
objc_change
objc_draw
obijc.-offset
objc_find
objc_order
objc_edit

add an object to a tree

delete an object from a tree

change an object’s state (ob_state field)
draw an object and optionally its children
calculate the co-ordinates of a given object
find an object given a co-ordinate

change the order of objects within a tree
edits a character within an editable field

Resource routines

rsrc_Load
rsrc_free
rsrc_gaddr

rsrc_saddr
rsrc_obfix

load a resource file

free the memory used by the resource file

finds the address of an item in a loaded resource
file

fixup an address within a loaded resource file
convert the co-ordinates of an object to pixel co-
ordinates

Clipboard functions

scrp_read
scrp_uwrite

Shell routines

shel_envrn
shel_write
shel_read
shel_find

find the clipboard directory
set the clipboard directory

read an environment string

indicate the next application to be loaded
find the name of the application

tfind a given program in the current path

Window functions

wind_create
wind_open
wind_close
wind_delete
wind_get
wind_set
wind_find
wind_update
wind_calc

create a window

open a window

close a window

delete a window

return information about a window

modify a window

find which window is below a given co-ordinate
forbid screen modifications

calculate the size of a window’s work area

Page 148

HiSoft C Library Summary

[4.1.10 GEM VDI functions

Workstations

v_opnvuk open virtual workstation

v_clsvuk close virtual workstation

v_clruk clear workstation

vs_clip set clipping rectangle

vg_extnd return extra information about the workstation
Graphics Attributes

Vs colior set the RGB components of a colour

vg_color return the RGB components of a colour

v_get_pixel return the colour of a point
vg_cellarray return the colours of a cell array
vgin_mode select a type of input
vsuwr_mode select writing mode

Font functions

vst_load_fonts load all the font definitions
vst_unload_fonts remove the font definitions

vst_font select a particular font
vgt_name find the name of a given font
vgt_fontinfo return information about the current font

Graphics text

v_gtext display graphics text

v_justified display justified text

vst_height set the character height

vst_point set the character height in points
vst_rotation set the angle of rotation of characters
vet _cololr set the colour of graphics text
vst_effects set the text graphic effects
vst_alignment set the vertical text alignment
vgt_attributes return the current text attributes
vgqt_extent return the size of a graphics text string
vaqt_width return the size of a single character
Area fill functions

v_fillarea draw a filled polygon

v_contourfill seed fill
vef_interiar select the type of fill
vsf_perimeter set whether areas are surrounded by borders

vsf_style select the type of fill
vsf_color select the colour of fills
vsf_udpat set user defined fill pattern

vgf_attributes return the fill attributes

Library Summary HiSoft C Page 149

Line drawing functions

v_pline draw one or more lines

vsl_type select the line type

vsl_udsty set a user-defined line type

vsl_width set the line width

vsl_color set the line colour

vsl_ends set how the ends of lines are to be drawn

vgl_attributes return the line drawing attributes

Marker functions

v_pmarker draw a set of markers
vsm_type set the type of polymarker
vsm_height set the height of polymarkers
vsm_color set the colour of polymarkers

vgm_attributes return the current polymarker attributes

Rectangle drawing functions
v_cellarray draw an array of rectangles

vr_recfl draw a filled rectangle without a border

v_bar draw a filled rectangle with a border

v_rbox draw an unfilled rectangle with a rounded border
v_rfbox draw a filled rectangle with a rounded border

Circular objects

v_arc draw a circular arc
v_pieslice draw a pie slice
v_circle draw a circle

v_ellarc draw an elliptical arc
v_ellpie draw an elliptical pie slice
v_ellipse draw an ellipse

Alpha mode routines
v_enter_cur enter alpha mode

v_exit_cur exit alpha mode

v_curtext draw alpha text

v_rvon inverse video on

v_rvoff inverse video off
v_curright cursor right

v_curleft cursor left

v_curup cursor up

v_curdown cursor down

v_curhome home the cursor to the top right
v_eeol erase to end of line

V_Eeeos erase to end of screen
vg_chcells return the size of the screen

vs_curaddress position the cursor
vg_curaddress return the current cursor position

Page 150 HiSoft C Library Summary

Ml

S

Mouse control functions

v_show_c display the mouse cursor

v_hide_c remove the mouse cursor

v_dspcur change the mouse position

v_rmcur make the mouse disappear

vsc_form define a new mouse form

vg_key_s return the keyboard shift key state
vg_mouse return the mouse position and button state

Screen Raster functions

vro_cpyfm copy a screen block

vrt_cpyfm copy a monochrome screen block

vr_trnfm copy a monochrone screen block (device
dependent)

Modifying vectors

vex_timv timer vector

vex_curv mouse cursor vector

vex_butv mouse button vector

vex_motv mouse movement vector

Library Summary HiSoft C Page 151

ABORT ANSI

abort(;

This function stops a running program immediately.

A o

ABS ANSI

ret = abs(val);
int ret,val;

This function returns the absolute value of the value passed as a parameter.
Both values are of type int.

& iabs, labs, fabs.

ACCESS UNIX

ret = access(name,mode);
int ret,mode;
char *name;

Tests if a file can be acessed for read and/or write depending on the value of
mode.

If mode = 0, test the existence of the file
If mode = 2, test if write access to the file is possible.
The other UNIX modes are ignored.

The value returned is O if access is possible and -1 if not. In the latter case
the variable errno contains the corresponding error number.

& chmod, errno.

Page 152 HiSoft C Library Reference

ACOS ANSI

ret = acosf{val);
double ret,val;

Calculates the arc-cosine of the value (between -1 and +1) passed as a
parameter. The value returned is between 0 and pi.

Both values (the parameter and the result) are double reals.

If the parameter is not between -1 and +1 the variable errno will indicate
the error condition.

& asin, atan, atan2, errno.

ADR_BOX HiSoft C

#include <gemlib.h>
p = adr_box(box_no);
int box_no;
OB ECT +*p;

This function returns the address of a dialog box. box_no is the number of
box whose address you wish to find. This is the same as the value that is
returned by the function init_box.

The value returned is a pointer to the tree structure of type 0BJECT.

& Section 3.3, init_box, Help command (adr_box).

APPL_INIT GEM AES

appl_id= appl_init();
int appl_id;

Initialise the application and the GEM AES.

The value returned is the application’s identifier (or appl_id) that is used in
the application library functions.

With HiSoft C, it is not necessary to call this function if you wish to use GEM.

If the value returned is -1 this indicates an error.

Library Reference HiSoft C Page 153

APPL_EXIT GEM AES

ret = appl_exit();
b2 i i

This function de-initialises the application as far as the AES is concerned.
If ret = 0 there has been an error.

When using HiSoft C, there is no need to call this function.

APPL_FIND GEM AES

appl_id = appl_init(name);
int appl_id;
char *name;

Finds the application identifier of the named application (normally a desk
accessory). The name must be at least eight characters, padded with blanks if

necessary.

APPL_READ GEM AES

ret = appl_read(appl_id,length,buffer);
int appl_id,length;
char *buffer;

Reads a message (of the specified Length) that has been sent by another
application. The message is stored in the given buffer. The application
identifer of the program whose message pipe is being read must be supplied
as the appl_id parameter.

The value returned is O if an error has occurred.

APPL_TPLAY GEM AES

appl_tplay(address,n,speed);
int n,speed;
char *address;

Executes a set of n events that have been stored by the appl_trecord
function at address at the speed given (100 is normal speed).

APPL_TRECORD GEM AES

appl_trecord(address,n);
e g
char *address;

Stores a set of n events at the address given by the address parameter.

Page 154 HiSoft C Library Reference

APPL_WRITE GEM AES

ret = appl_write(appl_id,length,buffer);
int appl_id,length
char *buffer;

Writes a message (of the length specified from buffer) so that other
applications may read them. The application identifier of the program that is
to read the message must be passed as the appl_id parameter.

The message can be read using appl_read.

0 is returned if there is an error.

& appl_read.

ASIN ANSI

ret = asinlval);
double ret,val;

Calculates the arc-sine of the value (between -1 and +1) passed as a
parameter. The value returned is between -pi/2 and +pi/2.

Both values (parameter and return value) are double reals.
If the value passed is not between -1 and +1 then the variable errno will

indicate that an error has occurred.

A acos, atan, atan2, errno.

ATAN ANSI

ret = atan(val);
double ret,val;

Calculates the arc-tangent of the value passed as a parameter. The parameter
and the value returned are double reals.

The result (in radians) is between -pi/2 and +pi/2 inclusive.

B oo

J Find the value of pi

void main()

prantfC"¥10.10f%, atan(l.Y*4});

Library Reference HiSoft C Page 155

ATAN2 ANSI

ret = atan2(y,x);
double x,y,ret;

Calculates the arc-tangent of y divided by x.

The value returned corresponds to the angle (expressed in radians between
-pi and +pi) formed by the positive x-axis and the vector from (0,0) to (x,y).

If x is zero this function returns +pi/2 or -pi/2 depending on the value of
Y.

It is an error to call this function with both parameters O (errno will
indicate this).

& atan, asin, acos, errno.

ATOF ANSI

x = atof(stringl;
double x;
char *string;

This function converts a string of characters to a double precision floating
peoint number.

The string may contain white space, a plus or minus sign followed by a
standard scientific format number.

The conversion stops at the first inappropriate character.

& atoi, atol, sscanf.
ATOl ANSI

i =" atoilstring);

s A

char *string;

This function converts a string of characters to an integer number.

The string may contain white space, a + or - sign followed by a string of
digits.

The conversion stops at the first inappropriate character.

& atof, atol, sscanf,

Page 156 HiSoft C Library Reference

ATOL ANSI

i = atoll(string);
Lionmg i3
char *string:

This function converts a string of characters to a long integer and it works in
the same way as atoi.

& atof, sscanf.

BCONIN GEMDOS

character_code = Bconin(peripherial);
int peripheral, character_code;

Waits for a character to be input from the specified peripheral:

printer (!)

serial port
screen/keyboard
MIDI

keyboard processor
screen

U= O

The character code returned consists of two bytes.

The low byte is the ASCII code and the high byte the keyboard scan code.

BCONOUT GEMDOS

Bconout(peripheral, <character);
int peripheral, character;

Writes a character to the given peripheral (see the Bconin function).

BCONSTAT GEMDOS

status = Bconstat(peripheral);
int status,peripheral;

Returns the input status of the peripheral given as a parameter (see the
Bconin function).

The returned value is -1 if the device is ready, O otherwise.

Library Reference HiSoft C Page 157

BCOSTAT GEMDOS

status = Bcostat(peripheral);
int status,peripheral;

Returns the output status of the peripheral given as a parameter (see the
Bconin function).

The returned value is -1 if the device is ready, O otherwise.

BIOS GEMDOS

ret = bios(no, argl, argé...>);
int no;
Hoinlg: cret argl aree, s

Executes a BIOS function using TRAP #13.
no is the number of the function.
ret is the value returned by the function.

argl, arg2... are the parameters for the particular function.

& xbios, gemdos.
BIOSKEYS GEMDOS

Bioskeys();

Re-initialises the standard BIOS key table.

& Keythl.

Page 158 HiSoft C Library Reference

BUTTON_BOX HiSoft C

button_no = button_box(box_no, x, y, button_name, state);
int . butten.no;box. no,x,y,State:
char *button_name;

Adds a button to a dialog box that has been initialised by init_box.
box_no is the number of the dialog box to which the button is to be added.

x and y are the co-ordinates (in characters) of the position of the button
within the box.

button_name is the string of characters giving the text of the button.
state gives the state of the button (the ob_state value).

The value returned is the index of the button within the box.

& init_box, Section 3.3.5, Help command (button_b).

CALLOC ANSI

adr = calloc{no_elements, element_size);

char *adr;

Long no_elements, element_size;

Allocates a block of memory of size no_elements * element_size.
The block is initialised to zero.

The value returned is a pointer to the block of memory or O if the block
cannot be allocated.

The memory is allocated from the system memory whose size is fixed when

the interpreter is loaded. It is possible to change this value if you have enough
memory. .

& Section 1.4.13, Malloc, Mfree, malloc, free, realloc.

CAUXIN GEMDOS

character = Cauxin();
int <character;

Reads a character from the serial port.

Library Reference HiSoft C Page 159

CAUXIS GEMDOS

status = Cauxis();
int status;

Returns whether a character has been received from the serial port
(status=-1) or not (status=0).

CAUXOS GEMDOS

status = Cauxos();
int status;

Returns whether the serial port is ready for output (status=-1) or not
(status=0).

CAUXOUT GEMDOS

Cauxout(character);
int character;

Write a character to the serial port.

CCONIN GEMDOS

character = Cconin();
int character;

Wait for a key-press and echo it to the screen.

Returns the character code read in the same form as that used by Beconin.

CCONIS GEMDOS

status = Cconis();
int status;

Returns whether a character has been typed on the keyboard (status=-1) or
not (status=0).

CCONOUT GEMDOS

Cconout(character);
int character;

Write a character to the screen.

Page 160 HiSoft C Library Reference

CCONRS GEMDOS

Cconrs(string);
char *string;

Read a string of characters from the keyboard.

On entry, the first byte in the string must contain the maximum number of
characters to read. On exit, the second byte contains the number of
characters actually read. The actual characters are stored starting at the third

byte.

CCONWS GEMDOS

Cconws{stringl;
char *string;

Writes a string of characters to the screen.

CEIL ANSI

ret = ceillval);
double ret,val;

Returns the whole number larger or equal to the value of the argument.

The value returned is a double real with a zero fractional part; not an integer.

& floor

CHDIR UNIX

ret = chdir(path);

int ret;

char *path;

Changes the current directory to the given path.

This function returns zero if there was no error; otherwise the type of error
can be found in the variable errno.

& Dsetpath, mkdir, rmdir, getewd, errno.

Library Reference HiSoft C Page 161

CHECK_MENU HiSoft C

state = check_menu(entry);
int state,entry;

Makes a tick in front of a menu item appear or disappear. The menu must
have been created with the function init_menu.

entry is the number of the menu entry as returned by item_menu.

The value returned is the new state of the menu entry (1 if ticked, O if not).

& init_menu, item_menu, Section 3.4.6, Help command (check_me).

CHMOD UNIX

#include <fcntl.h>

ret = chmod(name,mode);

int ret,mode;

char *name;

Changes the protection status of the file called name.
Unlike UNIX, only the write status can be changed.
If mode = S_IREAD, the file may only be read.

If mode = S_IWRITE, the file may only be written. These two values are
defined in the file fcnil.h.

On return, ret=0 if the operation was successful; otherwise the type of error
can be found in the errno variable.

& access, errno.
CLRERR ANSI

#include <stdio.h>

clrerr(fp);

FLEE, *fpg;

Resets the error condition on the given stream.

This function is called clearerr under UNIX system V so be careful when
porting programs.

A fopen, feof, ferror.

Page 162 HiSoft C Library Reference

CLEAR_WINDOW HiSoft C

clear_window(window_no);
int window_no;

Clears the interior of a window opened with the HiSoft C function

open_window. The number of the window to clear must be passed as a
parameter.

& open_window, Section 3.2.8, Help command (clear_wi).

CLOSE UNIX

ret = close(fhandle);
int fhandle, ret;

Close a file opened using open.
fhandle is the handle of the file to close as returned by the open function.
The value returned by close is zero if successful otherwise errno indicates

which error has occurred.

& open, fopen, fclose, errno.

CLOSE_WINDOW HiSoft C

close_window(window_no);
int window_no;

Closes a window that was opened by the HiSoft C function open_window.
window_no is the window number as returned by the open_window

function.

& open_window, Section 3.2.4, Help command (close_wi).

CNECIN GEMDOS

character = Cnecin();
int character;

Read a character from the keyboard.

Library Reference HiSoft C Page 163

COLOR_BOX HiSoft C

color_box{(box_no, object_no, bord,text,back);

This function enables you to change the colour of graphicé text of a dialog box
created by the HiSoft C function init_box.

box_no is the number of the dialog box created by init_box.
object_no is the object number as returned by gtext_box.

bord, text, and back are the colours of the border, the text and the
background respectively.

& init_box, gtext box, Section 3.3.12, Help command ‘(color_bo).

COS ANSI

ret = cos(val);
double ret,val;

Calculates the cosine of the angle (in radians) that is passed as a parameter.
The parameter and the result are both double reals.

&sin,tan.
COSH ANSI

ret = cosh{val);
double ret,val;

Calculates the hyperbolic cosine of its parameter. The parameter and the
result are both double reals.

If the argument is too big for the result to be in range the errno variable will
indicate this error.

& sinh, tanh, errno.

Page 164 HiSoft C Library Reference

CPRINTF ANSI

Length = cprintfl(format, arg1, arg2,...};
int Length;

char *format;

2999 sarglsangdy. o

This function writes formatted text. ???? indicates that the parameters may
be of different types.

The characters are sent direct to the screen, unlike printf where the
characters are sent to the file stdout. This function avoids the filing system
as used by printf.

Apart from this, this function behaves exactly like printf.

See the printf function for the description of the parameters.

CPRNOS GEMDOS

status = Cprnos();
it sitatus;

Returns whether the printer is ready (status=-1) or busy (status=0).

CPRNOUT GEMDOS

status = Cprnout(character);
int status, character;

Writes a character to the printer. The return value indicates that the
character has been printed (status=-1) or that the printer is busy
(status=0).

CRAWCIN GEMDOS

character = Crawcin();
int character;

Waits for a character from the keyboard. The full scan code is returned (See
Bconin).

Library Reference HiSoft C Page 165

CRAWIO GEMDOS

character = Crawio(parameter);
int c¢haracter, parameter;

Writes a character to the screen with the ASCII code passed as parameter.

Or... reads a character from the keyboard if parameter is -1. In this case the
value returned is the scan code (see Beonin) or O if there has been no key
pressed. The function returns immediately if no character has been typed.

CREAT UNIX

#include <fcntl.h>

fhandle = creat(name,mode);
int fhandle,mode;

char *name;

This function creates and opens for write a new file with the given name. If
the file already exists it is deleted.

The file is always opened for write.

The access privileges for the file are fixed by the value of mode:

S_IREAD the file is read only
S_BREADIS_INRITE both read and write is possible
or

fhandle is the file handle associated with the created file and is the return
value of the function.

If the value returned is -1, the file could not be created. The errno variable
will indicate the type of error.

& Fcreate, fopen, chmod.

CSCANF ANSI

n = cscanf(format, argl, arg2, ...);
At ng

char *format;

2227 argl,argz2;

This function is equivalent to scanf except that the characters are read
directly from the keyboard rather than via the file stdin.

2777 indicates that the parameters may be of different types.

See scanf for a description of the parameters.

Page 166 : HiSoft C Library Reference

CURSCONF GEMDOS

ret = Cursconf(period, attribute);
int ret, period, attribute;

Sets the text cursor attributes depending on the value of attribute:

the cursor is invisible

the cursor is displayed

flashing cursor

non-flashing cursor

set the flash period

the function returns the current flash
period

Gk WiN—= O

DCREAE GEMDOS

ret = Dcreate(directory_name);

int ret;

char *directory_name;

Creates a directory whose name is passed as a parameter.

The value returned is zero if the operation was successful.

DDELETE GEMDOS

ret = Ddelete{(directory_name);

int ret;

char *directory_name;

Deletes the directory whose name is passed as a parameter.

The value returned is zero if the operation was successful.

DELETE_MENU HiSoft C

ret = delete_menu();
int , ret;

Deletes a menu that has been created with init_menu and drawn with
draw_menu.

The value returned by this function is 1 if the operation was successful and 0
if not.

& init_menu, draw_menu, Section 3.4.5, Help command (delete_m).

Library Reference HiSoft C Page 167

DFREE GEMDOS

ret = Dfree(buffer, disk_no);
At ret, .disk_no;
lLong buffer[4]1;

This function returns information about the disk given by disk_no. The
numbers used are

0 the current drive
1 drive A
2 drive B
3 drive C

ete:

The function stores the information in the array buffer as follows

bufferCO] the number of free clusters on the disk

buffer[13] the total number of clusters on the disk (351 or
711 for floppies)

bufferl2] the sector size in bytes (normally 512)

buffer[3] the number of sectors per cluster (normally 2)

The value returned by the function is O if the operation was successful.

DGETDRV GEMDOS

drive_no = Dgetdrv();
int drive_no;

Returns the number of the current disk drive (0=A, 1=B, 2=C, etc.)

DGETPATH GEMDOS

ret = Dgetpath(path_name, drive_no);
int drive_no, ret;
char *path_name;

Returns the default path name (in path_name) for the specified drive
according to the value of drive_no (O=current disk, 1=A, 2=B, 3=C etc.).

The value returned is zero if the operation was successful.

Page 168 HiSoft C Library Reference

DOSOUND GEMDOS

Dosound(command_string);
char *command_string;

Executes a set of sound commands passes as a string of characters to the
function as a parameter.

A command consists of a command byte followed by optional parameters that
depend on the command.

Commands O to 15 have a parameter that is to be written to one of the 16
sound chip registers (command O for register 0, command 1 for register 1
ete.).

Command 128 has a byte argument that is written to a temporary register.

Command 129 is a form of loop statement and has three byte arguments. The
first is the register to use (the temporary register is initially assigned to this
register). The second argument is the increment and the third the
termination value:The increment is added to the appropriate register until
the termination value is reached. How frequently these assignments are
executed is set by the commands below.

Commands 130 to 255 have one argument. If this is zero then the sound is
terminated; otherwise the argument is taken as how frequently sound
commands are to be executed in fiftieths of a second.

DQSORT : UNIX

dgsortarr;nd;
double “*arr;
TNt NG

Sorts an array of n double precision floating point numbers into ascending
order.

& Igsort, sgsort, tgsort.

DRAW HiSoft C

draw(x1,y1,x2,y2);
pit RT T ax2 2

Draws a line between the two points (x1, y1) and (x2, y2).

This function does not return a value.

& v_pline, Section 3.2.10, Help command (draw).

Library Reference HiSoft C Page 169

DRAW_BOX HiSoft C

object_no = draw_box(box_no);
int object_no, box_no;

Draws a dialog box created by init_box.

A Section 3.3.6, Help command (draw_box).

DRAW_MENU HiSoft C

ret = draw_menu();
int ret;

Makes a menu bar created using init_menu appear. It is then possible to
click on menu items.

The value returned by this function is 1 if all went well and O otherwise.

& delete_menu, init_menu, Section 3.4.5, Help command (draw_men).

DRVMAP GEMDOS

active_drives = drvmap();
int active_drives;

Returns which disk drives are present in active_drives.

The value returned has bit 0 set if drive A exists, bit 1 set if drive B exists,
etec.

DSETDRV GEMDOS

active_drives = Dsetdrv(drive_no);
int drive_no, active_drives;

Set the default disk drive (drive_no= O for drive A, 1 for drive B ete.).

The value returned indicates which drives are active (see drvmap).

Page 170 HiSoft C Library Reference

DSETPATH GEMDOS

ret = Dsetpath(path_name);

int ret;

char *path_name;

Sets the default directory for the default drive to be path_name.

The value returned is zero if the operation was successful.

DUP UNIX

new_handle = dup(handle);
int new_handle,handle;

Duplicates a file handle. The new file handle (returned by the function) is
associated with the same file as the original one.

If the duplication isn’t possible -1 is returned and errno contains the reason
for the error.

& Fdup, Fforce, fdopen, errno.

5 See std.

DUP2 UNIX

ret = dup2(new_handle,handle);
int new_handle,handle;

Forces the file handle to point to the same file as new_handLle.

If an error occurs -1 is returned and errno indicates which error occurred.

& Fdup, Fforce, fdopen, errno.

Library Reference HiSoft C Page 171

ECVT UNIX

p = ecvt(a,prec,decpt,sign);
int prec,*sign,*decpt;
double a;

char *p;

Converts the floating point number a to a string of characters consisting only
of digits.

prec is the number of significant digits desired.

On return, decpt indicates where the decimal point would appear from the
start of the string. sign contains zero if the number a was positive or zero. p
points to the string of characters.

EDIT_BOX HiSoft C

object_no = edit_box(box_no, x,y, text, template,
Legal_chars);

int object_no, box_no, x, ¥;

char *text, *template, *legal_char;

Adds an editable text field to a dialog box created by init_box.
box_no indicates the dialog box to which the editable text is added.

x and y are the character co-ordinates of the text relative to the top left
corner of the box.

text indicates the text to be displayed. template describes the format of
the field. Legal_chars describes which characters may be entered.
object_no is the index of the object within the box.

& init_box, Section 3.3.8, Help command (edit_box).

Page 172 HiSoft C Library Reference

ENABLE_MENU HiSoft C

status = enable_menu(entry_no);
int status, entry_no;

Makes a menu appear in grey or makes it appear as normal if it was already
grey.

The menu must be created using the init_menu function.

entry_no is the index of the menu entry to change as returned by
item_menu.

The returned value is the new state of the menu: 1 if grey 0 if not.

& init_menu, item_menu, Section 3.4.6, Help command (enable_m).

ERRNO UNIX

#include <error.h>
errno;

errno is an integer variable defined by HiSoft C. It is initialised to zero; it is
set to a non-zero value following an error.

When a system function fails (generally returning -1), the reason for the error
is stored in errno. This variable is not reset to zero when a function
terminates correctly, thus it should only be checked when an error has
occurred.

HiSoft C does not use all the UNIX error codes. In the following list of all the
codes, those that are not used by HiSoft C are prefixed with an asterisk. The
names of the errors (following the UNIX standard) are defined in the file
error.h.

it “*EPERM The user doesn’t have permission to access this file.

9, NOENT The file name specified does not exist.

el *ESRCH Process does not exist.

4 EINTR The function has been interrupted by an event.

5 EIO I/O error during a read or write. This error is not
detected until the following call to the function.

6 ENXIO Non-existent peripheral or not working (no disk in
drive).

7 E2BIG An argument to the function is too large.

8 *ENOEXEC Error in the format of an executable file.

e] EBADF Invalid file handle. This error is given if the file is not
open, or a read is attempted on a write-only file or vice
versa.

Library Reference HiSoft C Page 173

10 *ECHILD No child process.

8! *EAGAIN No more processes available.

12 ENOMEM The program is asking for more memory than is
available.

13 EACCES Attempt to access a file in a way that does not
correspond to the access privileges of the file. For
example, trying to open a read-only file for write.

14 EFAULT Memory access error during a system call (access to an
illegal address) whilst trying to access its parameters.

15 ENOTBLK File name used instead of a device identifier.

16 EBUSY Device busy.

17 EEXIST Attempt to create a file which already exists.

18 *EXDEV Attempt to mount a volume that is already present on
another device.

19 NODEYV Trying to execute a system function that is
inappropriate for this device (reading from a write-only
device).

20 ENOTDIR Using an invalid name when a directory is required. For
example, the path name required by the chdir
command.

21 EISDIR Trying to write to a directory.

29, EINVAL Invalid function argument. For example, trying to read
or write a file after Lseek has returned a negative
value, or a bad argument to a mathematical function.

23 ENFILE The table of open files is full. No more files may be
opened.

24 EMFILE A process may not open more than 20 files
simultaneously.

25 *ENOTTY Not a terminal.

26 ETXTBUSY Opening a file that is already opened.

27 *EFBIG File too long.

28 ENOSPC Device full (no disk space).

29 ESiPIPE Call to a seek function for a device that only supports
sequential access.

30 EROFS Attempt to write or modify for a device which only
supports read access.

Bk *EMLINK Too many links to a file.

32 X EERIRIE Writing to a pipe without a proecess to read it.

33 EDOM The argument of a mathematical function is outside its
defined domain.

34 ERANGE The value calculated by a function is too big to be

represented by the machine.

Page 174

HiSoft C Library Reference

EVENT HiSoft C

event_type = event(&menu_title, &menu_entry,
window, &key, &xclick, &yclick);

int menu_title, menu_entry;

int key, xeclick, yeilicks:

int event_type;

short windowLlé61];

This function waits for an event as described in Section 3.5.3.

& evnt_multi, Section 3.5, Help command (event).

EVNT_BUTTON GEM AES

num = evnt_button{no_clicks, mask, state_required,
&x, &y, B&button_state, &keyboard_state);

int num,no_clicks,mask,state_required;

short x, ¥y, button_state, keyboard_state;

Wait for a given mouse button state.

no_clicks is the number of clicks to wait for.

mask indicates which buttons to test (1=left, 2=right, 3=both).

state_required indicates if the function should return when the button is
pressed (0) or when it is released (1).

num is the number of clicks that actually occurred.
x and y are the mouse co-ordinates when the mouse was clicked,

button_state indicates which mouse buttons were pressed when the
button was pressed or released.

keyboard_state indicates the state of the right shift (bit 0), left shift (bit
1), Control (bit 2) and Alternate (bit 3) keys. The corresponding bit is set if
the given key is down.

Library Reference HiSoft C Page 175

EVNT_DCLICK GEM AES

interval = evnt_dclick(new_interval, set);
int interval, new_interval, set;

Sets or returns the double-click speed of the mouse.

If set is 1 then new_interval is used to set the double-click speed
between O (450 ms) and 4 (165 ms).

If set is 0 then the current speed is being requested.

In either case, interval is returned as the new double-click speed.

EVNT_KEYBD GEM AES

key_code = evnt_keybd();
int key_code;

This function waits for a key to pressed on the keyboard. It returns a 16 bit
code. The bottom 8 bits are the ASCII code for the key.

EVNT_MESAG GEM AES

evnt_mesag(buffer);
short buffer[81;

Wait for a window or menu event.

The description of the message is contained in the array buffer.

EVNT_MOUSE GEM AES

evnt_mouse(sort, rx,ry,rw,rh,

&x, &y, 8&button_state, &keyboard_state);
int sort,rx,ry,rcw,.rh
short x, ¥y, button_state, keyboard_state;

Wait for the mouse to enter or leave the specified rectangle.

sort indicates whether the function should return when the mouse enters
(0) or leaves (1) the rectangle.

rx,ry,ru,rh give the co-ordinates of the rectangle.

button_state indicates which mouse buttons were pressed when the
mouse moved across the rectangle border.

keyboard_state indicates the state of the right shift (bit 0), left shift (bit
1), Control (bit 2) and Alternate (bit 3) keys. The corresponding bit is set if
the given key is down.

Page 176 HiSoft C Library Reference

EVNT_MULTI GEM AES

which_events = evnt_multi(event_types,
no_clicks, mask, state_required, /* evnt_button */
sortl,rx1,ryl,ruwl,rh1, /* evnt_mouse */
sort2,rx2,ryz, ru2,rh2; /* evnt_mouse */
buffer, /* evnt_mesag */
timel,time2, /* evnt_timer */
&x,8y,
&button_state, &keyboard_state,
&key_code,
&num) ;

Wait for one or more events.
event_types indicates the types of event to wait for: 1=keybd, 2=button,
4=mousel, 8=mouse2, 16=mesag, 32=timer. To wait for more than one
event, or () them together.

The other parameters are the same as described under the functions
evnt_keybd, evnt_mouse, evnt_timer, evnt_mesag and evnt_button

The value returned is the event or events that occurred.

& event.

EVNT_TIMER GEM AES

evnt_timer(timel1,time2);
unsigned int timel, time2;

Wait for a time interval. The interval is given by time1+65536*time2
milliseconds. temp1 and temp2 must be less than 655386.

[EXIT ANSI

exit{return_code);
int return_code;

This function terminates the current program.

The parameter return_code is the code returned to the calling program;
this is ignored by HiSoft C.

& abort, stop.

Library Reference HiSoft C Page 177

EXP ANSI

ret = exp(val);
double ret, wval;

This function returns e to the power val.
The parameter and the result are both double reals.

If the parameter is too large, the variable errno will indicate the reason for
the error.

& log, logl0, pow, errno.

FATTRIB GEMDOS

ret = Fattrib(file_name, set, attrs);
Reads (set=0) or sets (set=1) the attributes of a file.

The possible attributes (which may be combined) are

0 the current drive

2 tile is hidden

s file is system

8 user file

16 file is a directory

32 file has been written and closed

FABS ANSI

ret = fabs(val);
double ret,val;

This function returns the absolute value of the function.

The parameter and the result are both double reals.

& iabs, labs, abs.

Page 178 HiSoft C Library Reference

FCLOSE ANSI

#include <stdio.h>

ret = fclose(fp);
int ret;
EIEES ®fpi

Close a file that has been opened with fopen.
The file to close is given via the file pointer fp.

If the value returned is not zero, then an error has occurred during the close
and the errno variable may be inspected to find out why.

& fcloseall, fopen, open, close, errno.

FCLOSE GEMDOS

ret = Fclose(fhandle);
int ret, fhandle;

Close a file opened with Fopen.

The value returned is zero if the file was closed correctly.

FCLOSEALL ANSI

#include <stdio.h>

no = TclosealliCfp);
-t nioz
ELLE *tp;

Close all the files that have been opened with fopen.

The returned value indicates how many files have been closed. If this value is
-1 then an error has occurred whilst closing a file and errno may be
inspected to find out why.

& All the files are closed even stdin, stdout etc. After a call to this
function all the standard file input/output routines won't work unless you
explicitly re-open them.

& fclose, fopen, open, close, errno.

Library Reference HiSoft C Page 179

FCREATE GEMDOS

file_handle = Fcreate(file_name, attributes);
int file_handle, attributes;
char *file_name;

Creates and opens a file called file_name with the given attributes. See
Fattrib.

If the file already exists then it is deleted.

The function returns the file handle for use when writing and closing the file.

FCVT UNIX

p = fevt(a, n, &decpt, &sign);
i:mits SnLishigin,deacpt;

double a;

char *p;

This function is identical to ecvt except that n indicates the required
number of digits after the decimal point.

& ecvt.

FDATIME GEMDOS

Fdatime(date_time, file_handle, set);
int file_handle, set;
char *date_time;

Sets (set=0) or returns (set=1) the file's creation date and time.

The date and time are returned in the buffer pointed to by date_time (see
Tgetdate for the format).

FDELETE GEMDOS

ret = Fdelete(file_name);
iRt rets
char *file_name;

Deletes the file whose name is passed as a parameter.

The value returned is O if the operation was successful.

Page 180 Hisoft C Library Reference

FDOPEN ANSI

#iinclude <stdio.h>

fp = fdopen(file_handle, mode);
int file_handle;
FILE *fp;

char *mode;

This function enables you to use the ANSI file functions (ferror, fprintf,
fgets, etc) with a file that has already been opened with the UNIX open
function.

It is therefore a transformation from a UNIX file handle to a ANSI file pointer.
file_handle is the file handle of a file that has been opened using open.

mode gives the type of access for the file. Its value is the same as that
described under fopen.

fp is the returned value; this is the new file pointer for the same file.

If an error occurs the value returned is 0. See errno for which error.

& open, fopen, fileno.

see std.

[FDUP GEMDOS

new_handle = Fdup{(file_handle);
int new_handle,file_handle;

Duplicates a file handle. file_handle and new_handle will both use the
same file.

This function is very useful for re-directing the standard input/output files.

& dup.

Library Reference HiSoft C Page 181

FEOF ANSI

#include <stdio.h>

ret = feof(fp);
Nt ret;
FILE *fp;:

Tests whether the a file given by the file pointer fp is at the end of the file.
This function returns the value O if the end of the file has not been reached.

The file concerned must be opened using fopen.

& ferror.

FERROR ANSI

#include <stdio.h>

ret = ferror(fp);
int ret;
ELLE *fpi

Tests whether an error has occurred during i/o to the file fp.
This function returns O if an error hasn’t occurred on this file.

The file must have been opened using fopen.

& feof.

FFLUSH ANSI

#include <stdio.h>
ret = FflushGfp);
int ret;
FILE *fp;

Empties the output buffer for the file given by fp. If the buffer isn't already
empty the information in it is written to disk.

If the operation is successful O is returned. Otherwise the value EOF is

returned; for example, this will happen if the file is not open for write. In
this case errno will indicate which error has occurred.

& fflushall, fclose, errno.

Page 182 HiSoft C Library Reference

T

FFLUSHALL ANSI

#include <stdio.h>

no = fflushall();

1nt no;

Flushes the output buffer for all files opened with fopen.

If the operation was successful the number of files closed is returned.

Otherwise the value EOF is returned. This will occur if one of the files is not
open for write. The variable errno can be examined to find out the error that
has occurred.

& fflush, fcloseall, errno.

FFORCE GEMDOS

ret = Fforce(new_handle,handle);
int new_handle,handle;

Forces the given file handle to point to the same file as new_handle.

If an error occurs the value returned is negative, otherwise it is 0.

FGETC ANSI

#include <stdio.h>

c = getc(fp);
¢ = fgetc(fp);
iinE c;

EX BES T fipeE

Reads a character for the file fp that has been opened using fopen.

The value EOF is returned if the end of the file is reached or an error occurs.
If an error has occurred the variable errno indicates which error.

Be careful not to assign the result of this function to a variable of type char. If
you do this end of file detection will be impossible.

The two functions getc and fgetc are equivalent.

& fgetchar.

Library Reference HiSoft C Page 183

| s

V£ The program below reads a file byte by byte and displays it on the screen
byte by byte. An equivalent but much faster version is given under the
function fgets.

#linclude <stdio.h>
void main()

L
EDIE- *fD?
- 1 |5 e
fpii= fopenGbestatntyl, etd;
¥ Clfp)
{
piEEnEf G Eatal Senror L aeoliey e
exitCD);
X
while ((i = getc{(fpl)) != EOF)
putchar(i);
fclose(fp);
}

FGETCHAR ANSI

c getchar();
c fgetchar();
G f g Py o

nmn

Reads a character from the file stdin (the keyboard by default).

The two functions getchar and fgetchar are equivalent.

& fgetc.

FGETDTA GEMDOS

buffer_adr = Fgetdta();
char *buffer_adr;

This function returns the address of the buffer used by the GEMDOS
directory search functions.

Page 184 HiSoft C Library Reference

b

FGETS ANSI

#include <stdio.h>

p = fgets(buffer, Len, fp);
char *p, *buffer;

int Len;

FILE —*fp;

Reads a string of characters terminated by a new line ('\n') from the file
given by fp. This file must have been opened for read.

A maximum of Len characters are read. Reading stops if either Len
characters have been read or a '\n' character is read. A null character '\ 0"
is stored instead of the new line or after the last character read.

The value returned is the same as the buffer unless an error occurs. In this
case 0 is returned and errno indicates the source of the error.

& gets, fread, errno.

renr

i The program below reads a file line by line and displays it on the screen
a line at a time. Compare this with the fgetc example.

#include <stdio.h>
void main()

£
ELLE *fp;
char *p, bufCB2]1;
fipa=l fopen('test.ixe™, "ri"dp
dife i CleEp)).
{
prRiimEhcitatal derror") ;
ex 1.6 C0;
X
while (p = fgets{(buf, 80, fp))
pElinG G s b
fclose(fp);
}

FILENO ANSI

#include <stdio.h>

fd = fileno(fp);
AT g e
RILE: “®Fp;

Returns the file descriptor associated with the file pointer fp that has been
opened using fopen.

& fdopen.

J see std.

Library Reference HiSoft C Page 185

FLOOR ANSI

ret = floorCvar);
double ret,var;

Returns the whole number less than or equal to the value of the argument.

Although the result has a zero fractional part it is a double not an int.

&ceil.
FLOPFMT GEMDOS]

ret = Flopfmt(buffer, 0, drive_no, sectors_per_track, track_no,
side, reserved_sectors, Ox87654321, virgin);

int ret, drive_no, sectors_per_track, track_no, side;

int reserved_sectors, virgin;

char bufferC81921;

Formats a track (track_no) on a floppy (drive_no: 0=A, 1=B) on a given
side (side). The number of sectors per track (sectors_per_track) and

reserved sectors must be specified as parameters. virgin gives the word fill
value for new sectors.

The value returned is O if the operation succeeded.

FLOPRD GEMDOS

ret = Floprd{(buffer, 0, drive_no, sector, track,
side, no_sectors);

int ret, drive_no, sector, track, side, no_sectors;

char *buffer;

Reads sectors from a given floppy disk and stores the bytes at address
buffer. This function reads no_sectors starting at the given sector,
track and side from the drive drive_no (A=0, B=1).

The value returned is zero if the operation was successful.

FLOPVER GEMDOS

ret = Flopver(buffer, 0, drive_no, sector, track,
side, no_sectors);

int ret, drive_no, sector, track, side, no_sectors;

char *buffer;]

Verifies floppy disk sectors and stores the numbers of those that fail in
buffer. The other parameters are the same as for Floprd.

Page 186 HiSoft C Library Reference

S

FLOPWR GEMDOS

ret = F Lopwr{buffer, 0, drive_no, :sector, track;
side, no_sectors);

int ret, drive_no, sector, track, side, no_sectors;

char *buffer;

Writes one or more sectors to a floppy disk from buffer. The other
parameters are the same as for Floprd.

The value returned is O if the write was successful.

FMOD ANSI

a = FmodChy ¢l
double a, b, c¢;

Real number modulus.
This function returns b mod c.

a, b and c satisfy the relation : b = k*c + a.

& C % operator,

FOPEN ANSI

#include <stdio.h>

fp = fopen{name,mode);
FILE *fp;

char *name,*mode;

This function opens a file for the types of i/o given by mode.
name is the file to access including an optional path specifier.
mode is a string of one to three characters.

The first character must be present and should be one of:

open for read.
create and open for write.

a open for write having moved to the end of the
file (append). If the file does not exist it is
created.

The string may contain the character +. This indicates that the file is opened
for update (i.e. both read and write). If "r+" is used i/o starts at the
beginning of the file; if "w+" is used the file is created (any existing file is
deleted) and if “a+" is used then i/o starts at the end of the file.

Library Reference HiSoft C Page 187

The mode string may also contain the character "a" and if so the file is
treated as an ASCII file. In this case when reading CR/LF pairs (0x0d,0x0a)
are replaced by a single OxOa. When writing, OxOa is expanded to CR/LF. In
addition Ctrl-Z (0x1a) is considered to indicate the end of file. Alternatively,
you may include a "b" and the file will be treated as a binary file, so that no
conversions will be down.

Examples :
et open the file for read
Tp4" open a file for read/write
it open an ASCII file for read/write.
B ot open a new binary file for write

The value returned by the function is a file pointer for accessing the file that
has been opened. If this value is 0, the file could not be opened and errno
will indicate why.

& open, fdopen, freopen, fclose.

FOPEN GEMDOS

file_handle = Fopen(file_name, open_mode);
int file_handle, open_mode;
char *file_name;

Opens the file with name file_name for read and/or write depending on the
value of open_mode:

(0] open for read
il open for write
2 open for read/write

The value returned is either a positive file handle or a negative GEMDOS
error number following an error.

FORM_ALERT GEM AES

exit_button = form_alert(default_button, string);
int exit_button, default_button;

char *string;

Displays an alert dialog box on the screen and waits for user input.

default_button is the button number that will be returned if the user
types Return.

string is a string of characters describing the alert message.

The returned value is the button selected by the user.

Page 188 HiSoft C Library Reference

FORM_CENTER

GEM AES

#include <gemlib.h>
form_center(box_adr, &x, &y, 8w, &h);
OBJECT *box_adr;

short x,y,w,h;

Centres a dialog box in the screen.

box_adr is the address of the tree to be centred.

The function returns x,y,w.h as the co-ordinates of the box.

FORM_DIAL

GEM AES

ret = form_dial(type, x1,y1,w1,h1, x2,y2,w2,h2)};

TEtE stype, retg;
sy w4 E s A o i P
ot X2 y2 N2y e,

Initialise or finish the display of a dialog box.

FORM_DO

GEM AES

#include <gemlib.h>

ret = form_do(dialog, field_no);
figt ret, fielldino;

OBJECT *dialog;

Lets the user interact with a dialog box.

FORM_ERROR

GEM AES

ret = form_error(error_no);
int ret,errcor_no;

Displays a GEMDOS error message given by error_no.

Library Reference HiSoft C

Page 189

FPRINTF ANSI

#include <stdio.h>

Lien = fprintfCfp. format, argllarag2, . .« %
int len;
FILE *fp;

char *format;
27177 argl1;arg2; ..

Write formatted text to the file given by the file pointer fp. This file must
have been opened using fopen.

2777 indicates that the parameters may be of different types.

This function is the same as printf except that the text is written to a file
rather than to the standard output (the screen by default).

FPUTC ANSI

#include <stdio.h>

ret = fputclc,fp?;
ret = putclc,fpl;
int Sc, Tnet;

FILE *fp;

Writes a character c to a file given by fp. fputc and putc are identical.

If an error occurs the function returns -1 and errno indicates the reason for
the failure.

& fputchar, putchar, errno.

FPUTCHAR ANSI

¢ = fgetcharnC);
it i

Reads a file from the standard input (the keyboard by default). The ASCII
code of the character is returned by the function.

& putchar, fputc.

Page 190 HiSoft C Library Reference

S—

.

FPUTS ANSI

#include <stdio.h>

ret = fputs(s,fp);
finte =ret;

char *s;

FILE *fp;

Writes a string of characters to the file given by fp. The file must be opened
for write.

If an error occurs this function returns -1 and errno will indicate which
error.

& fwrite, puts, errno.

FREAD ANSI

#include <stdio.h>

num = fread{(buffer, item_size, n, fpl;
int num,n,item_size;

char *buffer;

ELLE *fp;

Reads n items of size (in bytes) item_size from the file given by fp. This
file must have been opened with fopen.

The items are read so long as end of file is not reached or an error does not
occur.

buffer is the address where the items are stored.

The function returns the number of whole blocks read. If this is less than n
then an error has occurred or the end-of-file has been reached. These two
cases can be distinguished by using the ferror and feof functions.

& fgets, fgete, feof, ferror, errno.

FREAD GEMDOS

bytes_read = Fread(fhandle, n, buffer);
int fhandle, bytes_read, n;
char *, buffer;

Reads n bytes from the file given by fhandle (as returned from Fopen). The
number of bytes to read is given by n and the bytes read are stored in
buffer.

The function's result is the number of bytes actually read. This value will be
less than n if an error occurs or the end-of-file is reached.

Library Reference HiSoft C Page 191

FREE ANSI

ret = free(mem);
char “*mem;
int ret;

This function frees a block of memory that has been allocated with malloc,
callocorrealloc.

The value passed as a parameter must have been returned by one of the
allocation functions and must not have already been freed.

The value returned is O if successful ; -1 if an error occurred.

& malloe, calloe, realloc, Malloc, Mfree.

FRENAME GEMDOS

ret = Frename(0, old_name, new_name);

#nt ret,;

char *old_name, new_name;

Renames an existing file old_name to have the name new_name.

The value returned is 0 if all is well,

FREOPEN ANSI

#include <stdio.h>

fp = freopen(file_name, mode, fp)
EILE - *fp,*fp;

char *file_name,*mode;

Close a file and open another one using the same file pointer.

The file fp is closed and is immediately re-opened to refer to the file
file_name in the given access mode. The mode and file_name parameters
are the same as for the fopen function.

The value returned is the file pointer and is the same as that passed as a
parameter.

This function is generally used to redirect the standard input/output files. For
example to divert screen output (via stdout) to a file.

& fopen, fdopen, dup.

Page 192 HiSoft C Library Reference

o

FREXP

ANSI

a = frexp(b, exp);
double a, b;
int *exp;

Split a floating point number b into its mantissa a (0.5<=a<1.0) and its
exponent exp (-1024<exp<1024).

The following relation is satisfied:

b = a * (2 * exp)

FSCANF

ANSI

#include <stdio.h>

n = fscanf(fp, format, argil,
Tt N
FILE *fp;

77923 *argl,®arg?2,---

ARG pem il

This function is equivalent to scanf except that input is taken from the file

fp rather from the standard input (stdin).

7227 indicates that the parameters may be of different types.

Note that

fscanf(stdin,format,argl,

is equivalent to

scanf(format,argT .« ;

& scanf, sscanf, cscanf.

)

Library Reference

HiSoft C

Page 193

FSEEK ANSI

#include <stdio.h>

ret = fseek(fp, pos, mode);
int ret, pos, mode;
FILE %*fp;

This function changes where in a file the next read or write will occur. The
position depends on the mode:

(¢} pos gives the number of bytes from the start
of the file.

1 pos gives the number of bytes from the
current position.

2 pos gives the number of bytes from the end of
the file (this number must always be 0 or
negative).

The value returned by the function is O if the operation was successful or
non-zero if an error occurred in which case errno indicates the type of
error.

& When mode=2, the number of bytes must be negative to move to before
the end of the file. It is not possible to position past the end of file.

A The ftell function returns the current position within the file.

& Iseek, ftell, rewind.

FSEL_INPUT GEM AES

ret = fsel_dinput(directory,file_name,&ok);
TNt Sret:

short ok

char *directory, *file_name;

This function makes the file selector appear on the screen, lets the operator
use it and returns the value selected.

path is a string containing the drive and directory. This is updated when the
function returns.

On input, file_name is the name of the default file, on exit it is the value
that the user has entered:; it should be at least 13 bytes long.

ok is returned as 1 if the user clicks on OK or 0 if on Cancel.

ret is O if an error occurred and 1 if there was no error.

Page 194 HiSoft C Library Reference

N

L

=) This function displays the file selector and stores in whole_name the
entire name of the file selected (the path + the name) and returns 1 if the
name is valid and O otherwise.

The path and file names are, by default, preserved between successive calls to
the function, so that if the user changes drive or folder, the file selector will
display those that the user has previously selected.

char path_namel70]1 = "A:*_*"_ file_namel12] = "";
char whole_nameC801;
int ask_for_name()

{
short ok_clicked;
char *p;
int ok;
ok = 0;
if (fsel_input(path_name,file_name,&ok_clicked) && ok_clicked)
{
strcpy(whole_name, path_name);
if (p = strrchr{whole_name, "\\'))
{
strcpy(p+1, file_name);
ok = 1;
}
}
return(ok); /* 1 if name ok, 0O otherwise */
¥

FSETDTA GEMDOS

Fgetdta(buffer);
char *buffer;

Set the GEMDOS data transfer address as used by the file search functions.

FSFIRST GEMDOS

ret = Fsfirst(file_spec, attributes);
init- “neit, Sattributess;
char *file_spec;

Searches for the first file matching the file_spec with the corresponding

attributes (see Fattrib). The file_spec may contain the wildeards * and
9

If a file is found, the function returns 0 and the GEMDOS data transfer area
(found using dta=Fgetdta()) contains the following information:

dtal21] file attributes
dtalf22] and dtal23] time stamp
dtal24] and dtal251] date stamp
dtalL26] todtal29] file size
dtal30] onwards file name
Library Reference HiSoft C Page 195

FSNEXT GEMDOS

ret = Fsnext();
TRt ret;

Searches for the next file satisfying the conditions given by Fsfirst. This
function must not be called without calling Fsfirst.

This function returns 0 if a file is found and the information found is stored
in the GEMDOS dta. See Fsfirst.

FTELL ANSI

#include <stdio.h>

pos = ftell(fp)
int pos;
ELISE: =¥:fpi;

Returns the position in the file fp of the next byte that will be read or
written.

A This position may be modified by using fseek.

FWRITE ANSI

#include <stdio.h>

jtems_written = fwrite(buffer, ditem_size, n, fp);
int ditems_written, n, fitem_size;

char *huffer;

FFEESS%fp;

Writes n items of size item_size bytes to the file given by fp. The file must
have been opened for write using fopen.

The items are written until n items have been written or an error occurs.
buffer is the buffer where the items to write are read from.

The function returns the number of entire items written as its result. If this
number is less than n then an error has occurred.

& fputs, fpute, ferror, errno.

Page 196 HiSoft C Library Reference

S

FWRITE GEMDOS

bytes_written = Fwrite(fhandle, no_bytes, addr);
int bytes_written, no_bytes, fhandle;
char *addr;

Writes no_bytes from the buffer at addr to the file given by fhandle.

This function returns the number of bytes actually written. After an error,
this will be less than no_bytes.

GEMDOS GEMDOS

ret ‘=" gemdos(no, argl, arg2...);
int no,result;

long argl;arg2,arg2...

Call a GEMDOS function.

no is the function to call.

argl,arg2... are the parameters for this particular function.

& GEMDOS functions may be called directly using their names. For
example Cconin() is equivalent to gemdos(1).

A bios, xbios.

GETBPB GEMDOS

bpb = Getbpb{(drive_no);
short *bpb;
int drive_no;

Returns a pointer to the Bios Parameter Block (bpb) for the disk drive given
by drive_no (0=A,1=B,...).

GETC UNIX

Equivalent to fgetc.

GETCHAR UNIX

Equivalent to fgetchar.

Library Reference HiSoft C Page 197

GETCWD UNIX

path = getcwd(p, Llength);
char *path, *p;
int Llength;

This function returns the current directory for the current drive.

If the pointer p is not zero then the name of the directory is placed in the
buffer pointed to by p and p is returned as the result of the function.

If p is zero, a block of memory of Length bytes is allocated using malloc and
the name is stored there. The value returned by the function is a pointer to
this block.

The value returned is therefore always a pointer to the current path or is 0 if
an error has occurred. In this case the variable errno will specify the error.

& If the parameter p is zero the program should ensure that it returns the
memory allocated by the implicit call to mal Loc by using the free function.

& Dgetpath, errno.

GETMPB GEMDOS

Getmpb(buffer);
char *buffer;
int bytes;

Returns a pointer to the Memory Parameter Block used by the system.

GETS ANSI

p = gets(buffer);
char *p,*buffer;

Reads a string of characters from the standard input file, stdin, which is the
keyboard by default.

Characters are read into buffer until a Return character is found. This isn't
placed in the buffer but a null character \0 is placed instead.

The value returned is equal to buffer.

Page 198 HiSoft C Library Reference

& This function doesn't make any checks that the buffer hasn't
overflowed. We therefore recommend that you use fgets(buffer, max,
stdin) which will stop if you enter max characters before a carriage return.

ZI'S fgets, fgetchar.

GETSHIFT GEMDOS

ret = Getshift(keys);
int ret, keys;

Activate some control keys if keys>=0 or read which keys are pressed if
keys=-1. The value returned is always the new current state of the keys.

The keys are given as a bit map as follows:

Right Shift
Left Shift
Control Key
Alternate Key
Caps lock
Clr/Home
Insert

[} &}V S ()

GETREZ GEMDOS

resolution = Getrez();
int resolution;

Returns the current screen resolution 2=high, 1=medium, O=low.

GETTIME GEMDOS

date_time = Gettime();
Long date_time;

Returns the date and time as a long integer in the same format as for the
functions Tgetdate and Tgettime.

Library Reference HiSoft C Page 199

GIACCESS GEMDOS

val = Giaccess(value, register_no);
int val, value, register_no;

Reads or writes a value from/to a given sound chip register.

For reading pass the register number in register_no; to write the register
number plus 128.

The value returned is the value read or written.

GRAF_DRAGBOX GEM AES

ret = graf_dragbox(width, height,
o dndt, yoiadto
xoe laimais <y LdimA b e baimiastic - ah - L<miict,
g€x_end, &y_end);
int width,heighit,x Snityy Tnat;
¥nt x_Llamit.y_ Limit, w_Limit;h_Limit;
short x_end, y_end;

Displays an outlined rectangle (with initial co-ordinates x_init, y_ini t) of
the specified width and height. The user may then move the rectangle with
the mouse until the mouse button state changes. The box is forced to remain
inside the rectangle given by x_Limit, y_Limit , w_Limit, h_Limit.

The final position of the rectangle is returned in x_end and y_end.

GRAF_GROWBOX GEM AES

ret = graf_growbox(x1,yTl, w1, 01, x2;y2, w2, h2);
int ®1,yTowlhil;
Jint. x2,y2,w2, h2;

Draws an expanding rectangle in the same way as when a window is opened
using the Desktop. x1,y1,w1,h1 specify the smaller rectangle and
x2,y2,w2,h2 the larger one.

The result of the function is 0 if an error occurs.

GRAF_HANDLE GEM AES

vdi_handle = graf_handle(&char_width, &char_height,
g&box_width, &box_height);

int wvdi_handle;

short <char_width,char_height;

short box_width,box_height;

Returns the VDI virtual workstation that the AES is using and also the size of
a character cell and the size of a boxed character.

Page 200 HiSoft C Library Reference

GRAF_MKSTATE GEM AES

graf_mkstate(&x,8y,&button,&keyboard);
short x,y,button,keyboard;

Returns the current position of the mouse (x,y), the state of the mouse
buttons (button) and the state of the shift keys (keyboard).

& evnt_button.
GRAF_MOUSE GEM AES

ret = graf_mouse(mouse_form, adr);
int ret,mouse_form;
char *adr;

Changes the mouse form.

GRAF_MOVEBOX GEM AES

ret = graf_movebox{(width, height,
x_Source, y source, x_dest, ¥y .dest);

int ret,width,height;

int x _source,y Source, x dest, y .dest;

Displays a box of size (width,height) moving between the two points
(x_source,y_source) and (x_dest,y_dest).

GRAF_RUBBERBOX GEM AES

ret = graf_rubberbox{(x,y, min_width, min_height,
gwidth, &height);

int ret: X- Y

int min_width, min_height;

short width, height;

Displays an outline box from (x,y) to the current mouse position and lets the
user change the size of the box without letting it become smaller than
min_width, min_height. When the user releases the mouse the current
width and height are returned in the variables width and height.

Library Reference HiSoft C Page 201

GRAF_SHRINKBOX GEM AES

ret = graf_shrinkbox{(x1,y1,w1,h1, x2,y2,w2,h2);
int x1;yl,wl,h1;
int x2,y2,w2,h2;

Draws a rectangle shrinking in the same way as when you close one of the
Desktop’s windows. x1,y1,u1,h1 specifies the smaller rectangle and
x2,y2,w2,h2 the larger one.

ret is zero unless there was an error.

GRAF_SLIDEBOX GEM AES

#include <gemlib.h>

position = graf_slidebox(tree_adr, parent, child,
verticald;

int position, parent, child, wvertical;

OBJECT *tree_adr;

Lets a child object slide within its parent,

GRAF_WATCHBOX GEM AES

#include <gemlib.h>

position = graf_watchbox{(tree_adr, object_no,
in_state, . out_stated;

int position, object_no, in_state, out_state;

OBJECT *tree_adr;

Changes an object’s state as the mouse moves inside or outside of the object
until the mouse button is released. This should only be called when the
mouse button is down.

The value returned (position) indicates if the mouse is within the object
(1) or outside it (0) when the mouse button is released.

GTEXT_BOX HiSoft C

object_no = gtext_box(box_no, x,y, text,

char_size, border, fill);
int object_no, box_no, x, Y., char_size, border, fill;
char *text;

Adds a graphics text item to a dialog box.

& Section 3.3.10, Help command (gtext_bo).

Page 202 HiSoft C Library Reference

IABS ANSI

ret = dabs(val);
int ret,val;

This function returns the absolute value of its parameter. Both values are of

type integer.

& abs, labs, fabs.

IKBDWS GEMDOS

Ikbdws(len, byte_string);
int Len;
char *byte_string;

Writes a string of Len bytes from byte_string to the keyboard processor.

INIT_BOX HiSoft C

box_no = init_box(width, height, objects);
int box _no, width, height, objects;

Creates and initialises a dialog box.

A Section 3.3.3, Help command (init_box).

INIT_MENU HiSoft C

entry_info = dnit_menu(desk_name, file_name, titles,
elements);

int entry_info, titles,elements;

char *desk_name, *name_info;

Initialises a menu.

& Section 3.4.2, Help command (init_box).

Library Reference HiSoft C Page 203

INITMOUS GEMDOS

ret = Initmous(type, param, 0);
fnt ret, type;
char *param;

Initialise the mouse depending on the type of the parameter:

0 disable the mouse

1 enable mouse in relative mode
2 enable mouse in absolute mode
4 enable mode in keyboard mode

param is a pointer to a parameter block:

paraml0] gives the origin of y co-ordintates:
l=top O=bottom

param[C11] is a parameter to the keyboard’s set
mouse button command

paraml23] is the horizontal mouse scale

param[3] vertical mouse scale

paraml4 and 51 maximum horizontal mouse position

paraml6 and 7] maximum vertical mouse position

paramC8 and 91 initial horizontal mouse position

paramC10 and 111 initial vertical mouse position

IOREC GEMDOS

buffer_adr = Iorec(device);
int device;
char *buffer_adr;

Returns the address of the i/o buffer for a device (0=RS232, 1l=keyboard,
2=MIDI).

Page 204 HiSoft C Library Reference

IS

ANSI

ret = fdsalnum(c); /* alphanumeric
ret = 1isalphafc); /* alphabetic
ret = isasciiic); I® ASCII

ret = dscntrlle); /* Control

ret = dscsym(c); /* C ddentifier
ret = dscsymfic); /* dnitial

ret " = Hsddigitic); /* decimal

ret = dsgraph{c); /* graphics

ret = dislower{c); /* Lower

ret = dsprintic); /* printable
ret = dispunctc); /* punctuation
ret = idsspacefc); /* space,

ret = dsupperfc); /* upper

rat = fsxdigitic); /* hexadecimal
19 G o s v R

character */

Wil

(<128) */
G320 %
character */
identifier

character */

*/

x.f
character */

These functions test the value of a character ¢ and return either (0= FALSE

or 1=TRUE) if the character satisfies a certain condition.

For example islower('e') returns 1 because e is a lower case letter and

isupper('e') returns O.

ITEM_MENU

HiSoft C

entry_no = fdtem_menul(title);
#nt entry. _no;
char *title;

Adds an entry to a menu.

JDISINT

GEMDOS

ret = Jdisint(int_no);
Jint ret; dAntEno;

Disables interrupt int_no of the 68901.

JENABINT

GEMDOS

ret = Jenabint(int_no);
int pefant_onosg

Enables the 68901 interrupt number int_no.

Library Reference HiSoft C

Page 205

KBDVBASE GEMDOS

descriptor_adr = Kbdvbase();
char *descriptor_adr;

Returns the address of the keyboard vector table.

[KBRATE GEMDOS]

period = Kbrate(delay1, delay2);
Long period;
int delay1, delay2;

Sets or returns the keyboard repeat rate. delay1 is the delay before key
repeat and delay2 after.

If both parameters are -1 then the current settings are not changed.

The function returns a long composed of the new values of delay1 and
delay?2.

[KEYTBL GEMDOS)|

old_address = Keytbl(unshift, shift, capslock);
char *old_address, unshift, shift, capslock.

Sets the BIOS keyboard translation tables.

LABS - ANSI

ret = LabsiCvald;
long ret,val;

This function returns the absolute value of its parameter. Both values are of

type Long.

& abs, iabs, fabs.

Page 206 HiSoft C Library Reference

N

b

N

LDEXP

ANSI

a=Ldexp(b,exp);
double a,b;
int exp;

Produces a floating point number from a mantissa b (0.5<=b<1) and
exponent exp. This is the inverse operation to frexp.

The following relation is true:

a = by AT

& frexp.

exp)

LINEA

HiSoft C

#include <linea.h>

param_adr = LineaO(); /* return address of LineA vars */
Linea1(); /* draw a point */

Linea2(); /* read colour of a point */
Linea3(); /* draw a Lline */

Lineaé4 () ; /* sdraw 'a horizontal Line */
Linea5¢(); /* draw a filled rectangle */
Linea6 () ; /* draw part of a polygon */
Linea7(blk); /* bit blk operations */

Linea8(); /* write a character */

Linea%9 () ; /* show mouse */

Lineaa(); /* hide mouse */

Lineab () ; /* change mouse form */
Lineac(save); /* undraw sprite */

Linead(x, ¥y, sprite, save); /* draw sprite */
Lineae(); /* copy raster form */

Lineaf(); I* seed fill */

LA_INIT *param_adr; /* Pointer to LineA variables */
LA_SPRITE *sprite, *save;/* Pointers to Sprites */

Tnt %, ¥ /* Sprite co-ordinates */

ciiair il /* SPointer “to a bitblk “structure */

Library Reference

HiSoft C Page 207

The following three structures are used when calling the LineA routines.
They are defined in the linea.h file.

typedef

{
short
short
short
short
short
short
short
short
short
short
short
short
short
short
short
short
short
short
short
short
short
short
short
short
short
short
short
short
short
short

short
short
short
short
short
short
short
short
short
short
short
short
short
short
short
short
short
short
short
short
short

struct

La_planes;
La_width;
*La_contrl;
*la_intin;
*la_ptsin;
*la_intout;
*lLa_ptsout;
La_colObit;
La_colibit;
La_col2bit;
La_col3bit;
La_Lstlin;
La_Lnmask;
La_wmode;
La_x1;
La_y1;
La_x2;

La: y2;
*La_patptr;
La_patmsk;
La_mfill;
Lal ebip:;
La_xmincl;
La_ymincl;
La_xmaxcl;
La_ymaxcl;
La_xdda;
La_ddainc;
la_scaldir;
La_mono;

La_xsource;
La_ysource;
la_dstx;
La_dsty;
La_delx;
la_dely;
*lLa_fbase;
la_fwidth;
la_style;
la_Litemask;
la_skewmask;
la_wieght;
Lal rof f;

tal Coififs;
la_scale;
La_chup;
la_textfag;

*la_scrtchp;

la_scrpt2
la_textbg;

La_copytran;

FJLA_VARIABLES;

La_variables

/*number of planes n */
number of bytes/lLine */

I*
/*
[*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
‘I'k
/*
/*
/*
%
/1&
/*
[*
/*
/%
/*
I *
/*
/*
[*
/*

[*
I*
I*
/*
[*
[*
[*
/*
I*
[*
[*
.,l'*
/*
/*
[*
/*
/*
[*
I[*
I *
[*

pointer to
pointer to
pointer to
pointer to
pointer to
colour for
colour for
colour for
colour for

whether Last Line point

the
the
the
the
the
plane 0 */
plane 1 */
plane 2 */
plane 3 */

polyline type */

display mod
x1 coord */
y1 coord */
x2 coord */
y2 coord */

e */

contrl array */
intin array */
ptsin array */
intout array */
contrl array */

is plotted*/

pointer to current fill pattern */

fill patter

n mask */

multi-plane fill flag */

clipping fl
minimum x c¢
minimum y ¢
maximum x ¢
maximum y ¢

ag */

Lipping
Lipping
Lipping
Lipping

value
value
value
value*/

accumulator for Linea8 */

fractional amount to scale up/down
scale direction flag (0O=down,1=up)

®/
*y
*/

i
*/

1 if mono-spaced,0=proprtional */

XigC o=
y co-ord of
X

char

ord of char in font form */
in font form */

co-ord of character on screen*/

coord y of character on screen */

Y
width of ch

height of character */

aracter */

pointer to font base */

width of fo
textblt sty
mask used t

nt form */
Le */
o "grey"

text*/

mask used to skew text */
width to thicken text */
offset above char when skewing */

offset below char when skewing*/

scaling fla

gty

character rotation vector */
text foregroung colour */
pointer to special effects buffers */

offset of 2nd buffer */

text background colour */
copy raster form type */

Page 208

HiSoft C

Library Reference

typedef struct La_init
{

struct La_variables *La_a0;
/* pointer to the LA_VARIABLES area */

Long la_a1; /* pointer to system font header List */
Long la_a2; /* pointer to LineA routines */
FLA_INIT;

typedef struct Lla_sprite
{

short Lla_xhot; /* x offset of sprite hot spot */
short la_yhot; /* y offset of sprite hot spot */
short Lla_format; /* 1 for VDI, -1 for XOR */

short Lla_col1; /* background colour */

short Lla_col2; /* foreground colour */

short La_imagel32]; /* sprite image */
/*(words of mask & data alternate) */
PLALSPRITE;

#include <linea.h>
LA_INIT *ptr;
LA_VARIABLES *p;
void main()
{

ptr = LineaD();

/* make p contain the address of the LineA variables*/
p = ptr->la_a0;

/* draw a point */
(p—>Lla_ptsin)CO]
(p=>Lla_ptsin)C1]
(p->Lla_intin)LCO]
Linea1();

100;
50;
1;

I mn

/* draw a Line */
p=>La_x1 105
p->Lla_y1 555
p->La_x2 305;
p->Lla_y2 105 ;
p->Lla_colObit = 1;
Linea3();

/* draw a rectangle */
p->Lla_x1 300;
p->Lla_y1 60;
p->la_x2 400;
p—>la_y2 120;
Linea5();

LOG ANSI

a = Llog(b);
double a, b;

Returns the natural log (to base e) of the argument. Both values are double
reals.

Library Reference HiSoft C Page 209

LOGI10 ANSI

a = Log10¢Cb};
double a, b;

Returns the log to base 10 of the argument. Both values are double reals.

LOGBASE GEMDOS

scr_addr = Logbase();
char *scr_addr;

Returns the address of the logical screen (that which software routines
modify).

LQSORT ANSI

LgsortCarr,n);
Long *arr;
Tt g

This function sorts an array arr of long integers into ascending order.

& dgsort, sqsort, tgsort.

LSEEK UNIX

ret = Lseek(fd, pos, mode);
int ret, fd, pos, mode;

Moves the input/output position on the UNIX file fd depending on the value
of mode:

(6} pos gives the number of bytes from the start of the file

1 pos gives the number of bytes from the current
position

2 pos gives the number of bytes from the end of the file
(this number must always be O or negative)

The value returned by the function is O if the operation was successful or
non-zero if an error occurred in which case errno indicates the type of
error.

Page 210 HiSoft C Library Reference

& When mode=2, the number of bytes must be negative to move to before
the end of the file. It is not possible to position past the end of file.

This function returns the new position from the beginning of the file.

& This function may be used to find the length of a file, as follows:

Lengithp=ailisiedlk Cfid, 2050205

& fseek.

MALLOC ANSI

adr = malloc(size);
char *adr;
unsigned Long size;

Allocates a block of memory of the size that is passed as a parameter.

The value returned is a pointer to the allocated memory or zero if the
allocation was not possible.

The memory is allocated from GEMDOS system memory whose size is fixed

when the interpreter is loaded. This can be changed if you have sufficient
memory.

& Section 1.4.13, Malloc, Mfree, calloc, free, realloc.

MALLOC GEMDOS

adr = Malloc(size);

char *adr;

unsigned Llong size;

Allocates a block of memory whose size is passed as a parameter.

The value returned is a pointer to the allocated memory or O if the allocation
was not possible.

This function returns the number of free bytes if the value passed is -1.

& malloc

Library Reference HiSoft C Page 211

MATHERR UNIX

#include <math.h>

ret = matherr(mathstr);
TNE Fet;
struct exception *mathstr;

This function is called when an error occurs during the execution of a
mathematical function. The details of the error are stored in the mathstr
structure which is modified by the function.

MAX ANSI

Larger = max(a, b);
int a, b, langer;

This function returns the larger of the two integers passed as parameters.

MEDIACH GEMDOS

test = Mediach{(drive_no);
int test, drive_no;

Tests if the floppy disk has been changed in drive A (drive_no=0) or drive B
(drive_no=1).

The value returned is:

0] the disk has not changed
1 the disk may have changed
2 the disk has changed

MEMCCPY UNIX

p = memccpy(dest, source, ch, bytes);
intibytes, “hy;

chiap *dest, *source, *p;

This function copies a block of memory from source to dest.
bytes gives the number of bytes to copy.

The copy stops when the number of bytes has been copied or the character
ch is found.

The value returned is a pointer and has the same value as dest.

& memcpy, strepy. strnepy.

Page 212 HiSoft C Library Reference

MEMCHR UNIX

pos = memchr(block, ch, bytes);
int ch, bytes;
char *block, *pos;

This function returns a pointer to the first character ch found in the block
starting at block and of Length bytes.

If the character cannot be found 0 is returned.

& strchr, strrchr.
MEMCMP UNIX

comp = memcmp(blockl, block2, bytes);

char *blockl1, *block2;

int comp, bytes;

This function compares two blocks, block1 and block2, of Length bytes.
If the value returned is O then the two blocks are identical.

If not, the comparison stops as soon as two bytes differ and the value
returned is positive or negative depending on whether the character from
the first block is larger or smaller than the second respectively.

& strnemp.

MEMSET UNIX

p = memset(buf, ch, Llen);
char *buf, *p;
int Len, ch;

This function fills a block of memory pointed to by buf and Len bytes long.
The value returned is a pointer to the same place as buf.

MEMCPY UNIX

dest = memcpy(dest, source, Llen);
int Llen;
char *dest, *source;

This function copies a block of Len bytes from source to dest. The value
returned is dest.

The areas to be copied may partially overlap.

Library Reference HiSoft C Page 213

MENU_BAR GEM AES

#include <gemlib.h>

ret = menu_bar(menu_adr, display);
int ret, display;

OBJECT *menu_adr;

Displays (display=1) or deletes (display=0) the menu bar given by
menu_adr.

The value returned is 0 following an error.

MENU_ICHECK GEM AES

#include <gemlib.h>

ret = menu_icheck(menu_adr, entry_no, check);
int ret, entry_no, check;

OBJECT *menu_adr;

Displays (check=1) or removes (check=0) a tick in front of menu entry
entry_no within the tree menu_adr.

The value returned is O following an error.

MENU_IENABLE GEM AES

#include <gemlib.h>

ret = menu_ienable(menu_adr, entry_no, enable);
int ret, entry_no, active;

OBJECT *menu_adr;

Enables (enable=1) or disables (enable=0) entry number entry_no from
menu tree menu_adr. Disabled menus are displayed in grey.

The value returned is O following an error.

MENU_REGISTER GEM AES

entry_no = menu_registerCappl_id, entry_name);
HSint appl_oidy T enticy_ no;
char *entry_name;

Adds the name of a desk accessory within name entry_name and application
id appl_id to the desk menu. The appl_id is returned by appl_init.

The value returned is the entry number within the desk menu.

Page 214 HiSoft C Library Reference

MENU_TEXT GEM AES

#include <gemlib.h>

ret = menu_text(menu_adr, entry_no, string);
int ret, entry_no;

char *string;

O0BJECT *menu_adr;

Changes the text for the menu entry entry_no of tree menu_adr to be
string.

The value returned is zero if an error occurred.

MENU_TNORMAL GEM AES

#include <gemlib.h>

ret = menu_tnormal(menu_adr, title_no, inverse);
int ret, title_no, finverse;

OBJECT *menu_adr;

Displays a menu title in inverse video (inverse=1) or normal (inverse=0).
The menu title is given by title_no and the tree address menu_adr.

The value returned is O following an error.

MFPINT GEMDOS

Mfpint{(vector_no, adr);
it Mector_nog;
chia'e radr;

Sets interrupt vector vector_no to be adr.

MFREE GEMDOS

ret = Mfree(pointer);
Nt neits
char *pointer;

Frees the memory array given by pointer which has been allocated by
Malloc.

This function returns zero if successful.

Library Reference HiSoft C Page 215

MIDIWS GEMDOS|

Midiws(len, str);
int Llen;
char *str;

Sends a string of Len characters given by str to the MIDI port.

MIN ANSI

smalzleir-e=iamigniGai=biy
int a, b, smaller;

Returns the smaller of two whole numbers a and b.

MKDIR UNIX

ret = mkdir(directory_name);

G 1 i o] W

char *directory_name;

Creates a new directory called directory_name.

The value returned is O if successful; if the operation fails -1 is returned and
errno will indicate the source of the error.

A Dcreate, errno.

MODF ANSI

frac = modf(dbl, &wholel;
double whole, dbl, frac;

Splits a double floating peint number into its whole (returned in whole) and
fractional part (returned as the result of the function).

Of course,

dbl = whole + frac;

& fmod, frexp, ldexp.

Page 216 HiSoft C Library Reference

N

MOUSE ANSI

status = mouse(&x, &y, button_no)d;
int x,y,status,button_no;

Reads the position of the mouse into (x,y) after the user has clicked a button.

If button_no=0 then the function doesn't wait for a click but returns the
mouse position immediately.

If button_no=1 then mouse waits for a click on the left button, 2 the right
button, 3 both buttons at once.

The value returned gives the state of the button in the same form as for the
parameter button_no.

& Help command, mouse.

MSHRINK GEMDOS

ret = Mshrink(base_page, bytes);
int ret, bytes;
char *base_page;
Free memory to system during initialisation.

base_page is the program’'s base page; bytes is the number of bytes to
return.

The value returned by the function is zero if the operation was successful.

OBJC_ADD GEM AES

#include <gemlib.h>

ret = objc_add(tree_adr, parent_obj, add_obj);
int ret, parent obji, @dd-obj;

OBJECT *tree_adr;

Adds an object (of index add_obj) to have parent parent_obj in the tree
tree_adr,

The value returned is O if an error occurs.

Library Reference HiSoft C Page 217

OBJC_CHANGE GEM AES

#include <gemlib.h>

ret = objc_change(tree_adr, object_no, 0, x, y, w, h,
object_state, draw_object);

int ret,object_no;

TRt e Vg Mg N

int object_state, draw_object;

OBJECT *tree_adr;

Changes the state of the object object_no in the tree tree_adr to be
object_state. Ifdraw_object =1 then re-draw the object with the

rectangle (x,y,w,h).

The value returned is 0 if an error occurs.

OBJC_DELETE GEM AES

#include <gemlib.h>

ret = objc_delete{(tree_adr, object_no);
int ret; obiject noy

OBJECT *tree_adr;

Removes the object object_no from the tree tree_adr.

OBJC_DRAW GEM AES

#include <gemlib.h>

ret = objc_draw(tree_adr, object_no, Llevel, x, y, W, h);
int ret, object_no, LlLevel;

int x, y, W, h;

OBJECT * tree_adr;

Draws an object (object_no) in a tree (tree_adr) within the clipping
rectangle (x,y.w.h).

If Level=0 then the function draws just the object itself.

If Level=1 then the function draws the object and its children.

If Level=2 then the object, its children and grand children are drawn.
The maximum Llevel is level 10.

Zero is returned if there was an error.

Page 218 HiSoft C Library Reference

OBJC_EDIT GEM AES

#include <gemlib.h>

ret = objc_edit(tree_adr, object_no, character, position,
kind, . &ret_positiond;

jnt ret, object_no, character, position, kind:

short ret_position;

O0BJECT * tree_adr;

Display a character in a G_FTEXT object (given as object_no of the tree
tree_adr).

position gives the index where the character is to be added. The position
after the addition is given as ret_position.

The operation performed depends on the value of kind:

0 ED_START reserved

Al ED_INIT display the string and turn the text cursor on
2 ED_CHAR validate the character and re-display string

3 ED_END turn text cursor off

The value returned is zero if an error occurred.

OBJC_FIND GEM AES

#include <gemlib.h>

object_found = objc_find(tree_adr, obiject_no, Level, x, ¥);
int object_no, Llevel, object foumd ;
L

OBJECT * tree_adr;
Finds which object is under co-ordinates (x, y).

The search is within tree tree_adr starting at object object_no (normally
0). The search descends to a level given by Level (see objc _draw).

The value returned is -1 if the object is not found; otherwise it is the index of
the object that has been found.

OBJC_OFFSET GEM AES

#include <gemlib.h>

ret = objc_offset(tree_adr, object_no, &x, &y);

int ret, object no;

shionE X, Vi

0BJECT * tree_adr;

Returns the co-ordinates of object_no of tree tree_adr in (x, y).

The value return is zero if an error occurs.

Library Reference HiSoft C Page 219

OBJC_ORDER GEM AES

ffinclude <gemlib.h>

ret = objc_offset(tree_ _adr, object_no, new_position);
int ret, object_no, new_position;

OBJECT * tree_adr;

Moves an object (object_no) from tree tree_adr within the tree structure.
The value new_position (0,1,2...) indicates which child (first, second,
third) of its parent the new object is to be.

The value return is zero if an error occurs.

OFFGIBIT GEMDOS

OFFaibhi EChS it NG)
int bit_no;

Resets (to 0) a bit of port A of the sound chip. Which bit to zero is passed as a
parameter.

ONGIBIT GEMDOS

Oongibit(bit_no};
int bit_no;

Sets (to 1) a bit of port A of the sound chip. Which bit to set is passed as a
parameter.

OPEN UNIX

#include <fcntl.h>

nf = open{(file_name, mode, access);
char *file_name;

int nf, mode, access;

This function opens a file file_name and returns its file handle. mode
indicates how the file is to be opened as given in the following table. These
constants are defined in the file fcntl.h):

O_RDONLY read only

O_WRONLY write only

O_RDWR read and write

O_APPEND write starting at the end of the file

O_TRUNC if the file exists, delete it

0_CREAT if the file doesn’t exist create it

0_EXCL (used only with o_cREAT) if the file exists
don’t open it

Page 220 HiSoft C Library Reference

The wvalues above can be combined using the OR operator e.g.
0GR EATEI O EXC

The access parameter specifies how the file may be accessed and takes one
of the following values:

access = S_IREAD : file is read only.

S_IREAD|S_IWRITE or mode = O : file is open for read/write.

access

The value returned by the function is the file number which must be used for
all input-output operations on the file.

If an error occurs, this function returns -1. The variable errno indicates
which error has occurred.

& When you open a file with this function, you can only use the Unix
input/output functions (read and write for example) and not the ANSI ones
(e.g. fread, furite, fprintf),

& creat, chmod, close, fopen, errno.

OPEN_WINDOW HiSoft C

window_no = open_window(attributes, x, ¥y, w, h, title,
comment);

int window_no, attributes, x, ¥y, MW, h;

char *title, *comment;

Opens a window.

& Section 3.2.3, Help command (open_win).

PEXEC GEMDOS

base_page = Pexec(execute, program_name, arg_Llist,
environment);

char *base_page;

int execute;

char *program_name, *arg_List, *environment;

Load and/or execute a program in memory.

If execute = 0, the program is loaded but not executed. If execute = 3, the
program is loaded and executed.

program_name is the name of the program to load. arg_List gives the
arguments that you wish to pass onto the program. environment gives the
environment variables to be passed.

The function returns the address of the base page of the program that has
been loaded.

Library Reference HiSoft C Page 221

PHYSBASE GEMDOS

screen_adr = Physbase();
char *screen_adr;

Returns the address of the physical screen (that which is actually displayed
on the monitor).

POS_WINDOW HiSoft C

pos_window(window_no, column, row);
int window_no, column, row;

Positions the text cursor within a window that has been opened by
open_window.

& Section 3.2.7, Help command (pos_wind).

POW ANSI

result = pow(number, exponent);
double result, number, exponent;

Raise the parameter number to the power of exponent.
The two parameters and the value returned are both double reals.
The three values satisfy:

result= number * exponent.

& log, logl0, exp.

Page 222 HiSoft C Library Reference

PRINTF ANSI

Length = printf(format, argl, arg2,...);
char *format;

int Length;

2oy argl, ardly

This function performs formatted output. The output is to the standard file
stdout (the screen, by default).

The printf function builds up its output based on a control string and then
sends it to the screen by default. The value returned by this function is the
number of characters output by printf.

The parameter format contains both ordinary characters to be simply
copied to the screen and format conversion characters with which to write
the other arguments to the printf function.

Each one of these conversion sequences outputs a string of characters that is
not explicitly contained in the format string.

2777 indicates that the parameters may be of different types.
You must have an exact correspondence between the control string and the
parameters arg1, arg2, ... Each conversion specification is associated with

one parameter that describes how that parameter is to be written to the
screen.

The type of the variable indicated in the specification must correspond
exactly with the type of the variable that is passed as a parameter. Otherwise,
the results are not predictable...

The conversion specifications are of the form:
%YCattributesICminimumlC.precision]lCLlItype

A specification always starts with the character %. There then follows various
elements in the following order.

1. An optional attributes field which can contain 0 or more of the following
characters:

= A minus sign indicates that the value converted is left
justified within the output field specified. Right
justification is used by default. This attribute does not
have a visible effect on the display unless you specify a
minimum width field.

0 The digit 0 is used only in the conversion of numeric
values (integer or floats) and when you a use a minimum
width field. Tt indicates that the number is to be
preceded by 0 characters rather than spaces.

+ The plus sign can only be used with signed values. It
indicates that the value is to be preceded by a plus sign if
it is positive. Negative values are always preceded by a
minus sign, this cannot be disabled.

Library Reference HiSoft C Page 223

Space This attribute is similar to plus. It can only be used for
signed values; it indicates that the value is to be preceded
by a space if it is positive. Negative values are always
preceded by a minus sign, this cannot be disabled.

H# This attribute may only be used with the numeric
conversions g, G, f, F, o, x and X. Its effects are
described under the appropriate conversion.

2. The optional minimum field is a whole number constant. This field can also
be replaced with an asterisk (*). In this case the next value from
arg1,arg2,... is used as the value of this field, which must be an integer.

This field specifies the minimum width for this conversion. If the converted
value isn’t large enough to fill the minimum length then characters (space or
0) are added to fill the space so that it is always at least minimum size. If the
the value converted is too big then the field grows to be large enough.

3. The optional precision field is preceded by a decimal point and must be
followed by an integer constant. If the decimal point is not followed by a digit
it is taken as zero, which is not the same as the absence of this precision
field.

This field can be an asterisk (*) in which case the next argument from
argl,arg2,... is used as the value of the field. The argument must be a
positive integer.

For the f format, fixed point numbers, this value represents the number of
digits after the decimal point. For the e format, exponential floating point
format, it is the number of significant digits. By default this value is 6. This
represents the maximum number of digits that will be generated.

When used with the s format this is the maximum number of characters to
write; any further characters in the string are ignored.

4, An optional letter L which when used with the d, o , u and x formats
indicates that the argument is of type Long.

5. A compulsory type indicator. This is one of the characters: ¢, d, e, E, f, F,
(ol timale L ARV IS e

d writes a signed whole decimal integer of type int or Long.
The result of the conversion is a sequence of digits
preceded by a sign if the argument is negative or if the +
attribute is used.

u performs the conversion for an unsigned decimal number.
This parameter must be of type int or Long. The result is a
string of decimal digits.

o writes a number in octal. The argument must be unsigned.
The value is converted into a sequence of digits. If the #
attribute is used the value converted is preceded by a zero.

Page 224 HiSoft C Library Reference

x, X writes a number in base 16. The argument is supposed to be
a string of type unsigned. The result of the conversion is a
string of hexadecimal digits. The letters a-f are used with x
and A-F are used with x. If the attribute # is used then the
characters are preceded by 0x or 0X (with X).

c the argument is used as a character. A single character is
converted. The type of the parameter can be char, short,
int or Long. In the last three cases, only the least
significant byte is used.

s the argument is written as a string of characters. It must be
a pointer to a string of characters terminated by a null
character. If the precision format was specified then this
indicates the maximum number of characters to write from
the string. The string will be truncated if this value is less
than the length of the string.

f write a floating point number (of type float or double)
without using exponential notation. A sequence of digits
preceded by an appropriate sign and containing a decimal
point is produced. The sign is present if the number is
negative or the + attribute is used. The number of digits
after the decimal point is fixed by the precision asked for (6
by default). If the precision is O or the value is a whole
number then the decimal point is omitted unless the #
attribute is used.

e,E write a floating point number (of type float or double)
using exponential notation. The result of the conversion is
number of the form -x.xxxxxxe-xxx (with e) or -
x.xxxxxxE-xxx (with E), x can be any digit. The sign
before the number is present if the number is negative or if
the + attribute is used. There is always exactly one digit
before the decimal point. The number of significant digits is
set by the precision attribute (6 by default). If the precision
is 0 or the value has only one significant digit then the
decimal point is omitted unless the # attribute is used.

g,6 write a floating point number (of type float or double)
using fixed point or floating point notation depending on
which would require the least characters. If the exponent is
greater than -4 and is less than the precision asked for, the
fixed point (f) notation is used, otherwise the exponential
form is used. In this case if 6 is used then E format is used,
if g is used then e is used. Non significant zeros and
decimal points are suppressed unless the # attribute is
used.

|
A %% in the format string outputs a single % character.

Library Reference HiSoft C Page 225

printf("To-day is the %d/%02d/%02d\n",day,month,year);
would display, for example:

To-day is the 19/07/89

If x=1.34 then
printf(“The value is X#*.*g",14,8);
produces

The value is 1.34000000

printf("%#07X\n" ,63);
produces

0000X3F

printf("<%10.5s><%-10.5s>","interpreter");
produces

< inter><inter >

&sprintf. cprintf, fprintf, Help command (printf).

PRINT_WINDOW HiSoft C

ret = print_window(window_no, string);
int ret, window_no;
char *string;

Writes a string of characters at the cursor position in a window (window_n o)
that has been opened using open_window.

& Section 3.2.6, Help command (print_wi).

Page 226 HiSoft C Library Reference

PROTOBT GEMDOS

Protobt(buf, serial_no, disk_type, executable);
int serdal_no, disk_type, executable;
char bufC5121;

Produces a boot sector image for track O sector 1. buf is used for the boot
sector image. disk_type is 2 for 80 track single-sided and 3 for 80 track
double-sided. executable is 1 if this is to be an executable boot sector, 0
otherwise.

PRTBLK GEMDOS

ret ‘= Prtblk();
it rety

Produces a screen dump on the printer.

This function returns 0 if the operation was successful.

PTERMO GEMDOS

PtermQC);

Terminates the running program and returns to the calling program
(normally the GEM Desktop).

[PTERMRES GEMDOS

Ptermres(bytes, return_code);
int bytes, return_code;

Terminates the current program, freeing only bytes of memory and return
to the Desktop. Used for so-called ‘TSR’ programs. Not useful in HiSoft C.

PUNTAES GEMDOS

Puntaes();

Reboots the AES; i.e. the whole machine.

Library Reference HiSoft C Page 227

PUTC ANSI

#include <stdio.h>

ret = putclch, fpd;
int ret, ch;
FLLE _*fp;

Writes the character ch to the file fp. The returned value is the same as the
value written, unless an error occurs. In this case, the value -1 is returned
and the variable errno indicates the nature of the error.

& putchar, fputchar, errno.

PUTCHAR UNIX

ret=" putichartchl;
int ret; <ch;

Writes the character ch to the standard output file stdout (the screen by
default). The returned value is the same as the value written, unless an error
occurs. In this case, the value -1 is returned and the variable errno indicates
the nature of the error.

& pute, fputchar, errno.

PUTS ' ANSI

red= plutis Csiticinags);
int ret;
char *string;

Writes a string of characters to the file stdout (the screen, by default). A
new-line is written after the string. The value returned is 0 or -1 if there was
an error. errno will give the type of error in this case.

& puts moves to the next line after writing the string. This is not the
same as fputs.

puts(string) is not the same as fputs(string,stdout).

& fputs, errno.

Page 228 HiSoft C Library Reference

p.

RAND ANSI

num = rand();
int num;

Returns a random 32-bit unsigned integer.

& srand, Random.
RANDOM GEMDOS

num = Random();
int num;

Returns a random 24-bit unsigned integer.

READ UNIX

num = read(nf, buffer, bytes);
fint pum ;o nf, bytess:
cihtar™ *buffer;

Reads bytes from the file nf which has been opened using the UNIX call
open.

buffer is the address to where the bytes are read. bytes is the number of
bytes to be read.

num is the number of bytes successfully read. Normally this will be equal to
bytes. However if the end of file is reached, then num will be less.

If num is -1 then an error has occurred and errno will indicate which error.

& The buffer that you are reading should be at least bytes long; otherwise
you will destroy other variables, with possibly fatal consequences.

& open, write, errno.

READBUT_BOX HiSoft C

ret= readbut_box(box_no, button_no);
int ret, box_no, button_no;

Returns 1 if a button (button_no) of a dialog box (box_no) is selected.

& Section 3.3.7, Help command (readbut).

Library Reference HiSoft C Page 229

READSTR_BOX HiSoft C

string =readstr_box(box_no, field_no);
char *string;
int box_no, field_no;

Returns the text entered by the user for an editable text field (text_no) in a
dialog box (box_no).

ZB edit_box, Section 3.3.9, Help command (readstr).

REALLOC ANSI

new_block = reallocCold_block, new_size);
unsigned 1int new_size;
char *new_block, *old_block;

This function allocates a block of memory whose length is given by
new_size. The contents of an old block (the memory pointed to by
old_block) are then copied to the new one and finally the old block is
freed.

If new_size is larger than the original block size the extra space is filled
with zeros. If the new_size is smaller than the original size then only part of
the block is copied.

& calloc, malloc, free.

RECT_INIT HiSoft C

rect¥nitCriectangle,” x. ¥y, "W, " hl);
short rectanglel4];
L e S b i e " s e

Assign the values x,y,w and h to an array rectangle.

x,y,w,h give the co-ordinates of the top left, the width and the height of the
rectangle respectively.

Thus rectanglel[0] will contain x, rectanglel11 will contain y,
rectanglel2] w, and rectanglel[3] h.

Page 230 HiSoft C Library Reference

& This could also be written

#include <gemlib.h>
rect_4init(&rectangle, x, ¥, W, h);
GRECT rectangle;

it oy Yo We hp

GRECT is a structure containing four fields, g_x, g_y, g_w and g_h. The
values passed as parameters are assigned to the corresponding fields in the
structure.

= gee rect_union.

RECT_INTERSECT HiSoft C

inter = rect_intersect{(rectl, rect2);
short rectlb4d, rect2Eael;
int inter;

This function determines the intersection of two rectangles (see
rect_init) rect1 and rect2. The function returns 1 if they do overlap in
which case rect2 will contain the intersection. If there is no intersection 0
is returned.

RECT_POINT HiSoft C

withiin: = Frectipoimntilriect, 2, ¥yl
short rectl41;
TNt X Y

Returns 1 if the co-ordinates (x, y) are within the rectangle rect (See
rect_init).

RECT_UNION HiSoft C

rect_union(rectl, rect2);

short recti1l4], rect2l4];

Calculates the union of two rectangles. That is to say the smallest rectangle
containing rect1 and rect2. rect?2 is returned containing the union.

Library Reference HiSoft C Page 231

union of two rectangles.

#include <gemlib.h>
GRECT arr1;
GRECT arr2;

void main()

rect_init(&arr1, 100, 100, 50, 100);
rect_dinit(&arr2, 150, 150, 50, 100);
rect_union(Rarr1, Earr2);
printF("id, 2d, >, arr2.g_ X, arr2.0.y);
printf("%d,%d\n", arr2.g_w, arr2.g_h);

}

short arr1C4],arr2C4];

void main()

5

rect anitCarel, 100, 1005 50 100);
rect_init(arr2, 150, 150, 50, 100);
rect_unionCarril, arr2);

These two programs below do exactly the same thing: they display the

printf(%d, zd. %d - %d\n", arr2C0d; arr2l0l,; arc2C2l, arr2E330%;

¥
Second program:

short arr1[41=(100,100,50,100%;
short arr2C41={150,150,50,100%};

void main()

{

rect_union(arri1, arr2);

prantf Ot vdaddyad, 2dNn®, arr2L03, arc2ll, acr2l2], arr2ZL30);
%

REMOVE

ANSI

ret= remove(name);
char *name;
ainit. Srieity

Deletes a disk file whose name is given as a parameter.

This function returns 0 if the operation was successful or another value if an

error occurred, in which case errno will indicate why.

& unlink, Ddelete, errno.

Page 232 HiSoft C Library Reference

RENAME UNIX

ret= rename(old_name, new_name);

int ret;

char *old_name, *new_name;

Changes the name of the file. The file old_name is renamed to new_name.

This function returns 0 if the operation was successful or another value if an
error occurred, in which case errno will indicate why.

A Frename, errno.
REPMEM

repmem{buf, element, size, num);
char *buf, *element;
int size, num;

This function initialises the area of memory pointed to by buf and sets up
each element to have the same value.

element is a pointer to a buffer containing the initial value of the elements.
size is the size of each element in bytes. num is the number of times to
duplicate.

& buf must be big enough, at least size*num bytes.

& memchr.
REWIND ANSI

#Hinclude <stdio.h>

ret= rewind(fp);
dinitier ety
FILEse o

Move the file position of the file fp to the beginning. This is the position at
which reading and writing occurs. The file fp must have been opened using
fopen.

The value returned is O if the operation was successful; non-zero otherwise.

A Calling this function is equivalent to fseek(fp,0,0).

& fseek, ftell, errno.

Library Reference HiSoft C Page 233

RMDIR UNIX

ret= rmdir(dir_name);
char *dir_name;
fnt: -rlext;

Deletes the directory (folder) named dir_name. The directory must be
empty.

This function returns -1 if an error occurred and O if the operation was
successful. As usual errno will indicate the reason for the error.

& Dcreate, errno.
RS_ADDRALERT HiSoft C

alert_adr = rs_addralert(alert_no);
iint ‘allert no;
char *alert_adr;

This function returns the address of an alert box within the resource file
loaded by rsrc_Lload.

alert_no is the number of the alert box of which you wish to find the
address.

[RS_ADDRBUTTON HiSoft C|

#include <gemlib.h>

text_adr = rs_addrbutton(dial_adr, button_no);
int button_no;

OBJECT * dial_adr;

char *text_adr;

This function returns the address of the string of a button or a non-editable
text object. This is the address of the string that is displayed.

dial_adr is the address of the dialog box (this can be found using
rs_addrdial). The box will normally have been loaded using rsrc_Lload.

button_no is which item to find the address of.

Page 234 HiSoft C Library Reference

b

RS_ADDRDIAL HiSoft C

#include <gemlib.h>

dial_adr = rs_addrdial(dial_no);
int dial_no;

OBJECT * dial_adr;

This function returns the address of a dialog box that has been loaded from a
resource file via rsrc_Lload.

dial_no is the number of the dialog box that you wish to find.

see rs_drawdial.

RS_ADDREDIT HiSoft C

#include <gemlib.h>

text_adr = rs_addredit{(dial_adr, edit_no);
int edit_no;

OBJECT * dial_adr;

char *text_adr;

This function returns the address of an editable text field in a dialog box. This
is the address where the characters typed by the user are stored.

dial_adr is the address of the dialog box (this can be found using
rs_addrdial). The box will normally have been loaded using rsrc_Lload.

edit_no is which item to find the address of.

£ see rs_drawdial.

RSCONF GEMDOS

Risconfispead;*handshalce, “contcaol, "rsrc, tsrz —stcr);
int speed, handshake, contrel, rsr, tsr, scr;

Configures the RS232 port. If any of the parameters is -1 then the
corresponding attribute is not changed.

speed contains a value between 0 and 15 which indicates the speed of
transmission as a baud rate.

0 : 19200 4 : 2400 8600 19134
1776600 5 : 2000 97300 131110
2. 4800 6 : 1800 10 : 200 14775
33600 7 : 1200 11 - 150 51:b0
Library Reference HiSoft C Page 235

The handshake parameter indicates what sort of handshaking is to be
used.

no handshaking (the default value)
XON/XOFF (AS/2Q) i.e software handshake
CTS/RTS i.e. hardware handshake

both XON/XOFF and CTS/RTS

WiNIHIO

control indicates how bytes are transmitted:

bit 7 1

bits 5.6 number of bits (00 = 8, 01= 7, 10=6, 11 = 5)

bits 3,4 start and stop bits (00 = neither, O1= 1 start & 1
stop, 10 = 1 Start & 1.5 stop, 11 =1 start & 2 stop).

bit 2 1 = parity on, O=parity off

bit 1 1 = even parity, O=even parity

bit O 0

The rsr, tsr, scr parameters set the corresponding register in the 68901.
Thay are not normally changed.

RS_DRAWALERT HiSoft C

button_no = rs_drawalert(alert_no);
int button_no, alert_no;

This function draws an alert box on the screen, waits for the user to click on
a button and returns which button was selected.

The index of the alert box to draw is passed as the alert_no parameter.

This box must be part of a resource file that has been loaded with
rsrc_Lload.

& The box’s number not its address is passed as a parameter.

RS_DRAWDIAL HiSoft C

#include <gemlib.h>
rs_drawdial(dial_adr);
OBJECT * dial_adr;

This function displays a dialog box on the screen.

The box is only drawn, this function does not wait for a mouse button click.

Page 236 HiSoft C Library Reference

.‘\

The screen is saved before drawing. It can be re-displayed by using the
rs_erasedial function.

The address of the form to display is passed as the dial_adr parameter.
This is the value returned by rs_addrdial. This form must be part of a
resource file loaded by rsrc_LlLoad.

& The address of the box, not its index is passed to this function.

& This function isn't enough to handle the complete interaction between
the user and a form. You should also call form_do (GEM AES), and then
restore the screen using rs_erasedial.

te==J This program loads a resource file containing a dialog box (with an
editable field Eb 1T, two buttons pRIVEA and DRIVEB to change the editable
field EDIT, four radio buttons CHOICE1, CHOICE2, CHOICE3 and CHOICE4,
and two exit buttons 0k and CANCEL) and an alert string. This program is one
of the examples on Disk 2.

#include "example.h"
Hinclude <gemlib.h>

main()
{

OBJECT*adr_dial;

int object_no;

int finished;
/* Load resource file */
if (!rsrc_Load{("example.rsc"))
{
/* check if error */
printfC"Fatal; error...An");
exit(0);
)

/* Address of form called DIAL */
adr_dial = rs_addrdial(DIAL);

/* draw the dialog box */
rs_drawdial(adr_dial);
graf_mouse(M_ON, 0);

restart:
finished = 0;

/* clear the editable text field */
strcpy(rs_addredit{adr dial »f TEXT), ") ;
do

{
/* give the user control */
object_no = form_do(adr_dial, TEXT);

/* de-select the button that caused the exit */
rs_objunselect(adr_dial, object_no);
rs_drawobject(adr_dial, object_no);

Library Reference HiSoft C Page 237

/* act depending on exit button */

switch (object_no)

{

case DRIVEA:
/* put A:*.* in the text field */
strcpy(rs_addreditCadr_dial, TEXT), "A:*.*");
/* display the new text */
rs_drawobject(adr_dial, TEXT);

break ;
case DRIVEB:
strcpy(rs_addredit(adr_dial, TEXT), "B:*.,*");
rs_drawobject(adr_dial, TEXT);
break ;
case 0K:
finished
break ;
case CANCEL:
finished = 2;
break ;

ik

b
b3
while (!finished);

/* if you click on 0K, ask for confirmation */
if (finished == 1)
if (rs_drawalert(ALERT) == 2)

goto restart;

/* remove the form & restore the screen */
rs_erasedial();

araf_mouse(M_OFF, 0);

/* display the result */

cprintf("Folder selected : %s\n",
rs_addredit{adr_dial, TEXT));

if (rs_objstate(adr_dial, CHOICE1))

cprintf(*“Choice 1 and ");

else

cprintf("Choice 2 and ");

if (rs_objstate(adr_dial, CHOICE3))

cprintf(~Chofce 31);

else

cprintf(“Choice 4");

cprintf("™ have been selected\n");

/* Free memory used by the resource file */
rsrc_free();

RS_DRAWOBJECT HiSoft C

#include <gemlib.h>
rs_drawobject(dial_adr, object_no);
O0BJECT * dial_adr;

int object_no;

This function re-draws a single object (cbject_no) in the dialog box given by
the address dial_adr.

For an example of its use see above.

Page 238 HiSoft C Library Reference

Ty

RS_ERASEDIAL HiSoft C

rs_erasedial();

This parameterless function removes a dialog box that has been drawn with
rs_drawdial. The screen is re-drawn as it was before the dialog box was
drawn.

You must only use this function after calling rs_drawdial and similarly if
you call rs_drawdial you should always call rs_erasedial.

See the example above.

RS_OBJSELECT HiSoft C

#include <gemlib.h>
rs_objselect{(dial_adr, object_no?;
OBJECT * dial_adr;

int- &bject _no;

This function selects object number object_no in the form at address
ddail —aldir.

The must be re-drawn for it to appear in inverse video.

& rs_objunselect, rs_drawobject, rs_drawdial.

RS_OBJSTATE HiSoft C

#include <gemlib.h>

state = rs_objstate(dial_adr, object_no);
OBJIECT = * daail_adr;

int object_no, state;

This function returns the state of the object object_no in the dialog box
given by dial_adr. The value returned is 1 if the object is selected and O if
not.

& rs_objselect, rs_drawdial.

Library Reference HiSoft C Page 239

RS_OBJUNSELECT HiSoft C

Hinclude <gemlib.h>
rs_objunselect(dial_adr, object_no);

OBJECT * dial_adr;

int object_no;

This function de-selects the object object_no within the tree dial_adr.

You should re-draw the object so that it appears as normal.

& rs_objselect, rs_drawobject, rs_drawdial.

RS_OBJXYWH HiSoft C

#include <gemlib.h>

rs_objunselect(dial_adr, object_no, rectangle);
OBJECT * dial_adr;

int oblect no;

short rectanglel4];

This function returns the screen co-ordinates of thr object object_no
within the dialog box dial_adr.

The co-ordinates are stored in the array rectangl e whose elements will
contain the x,y co-ordinates of the top left of the object and its width and
height.

& rs_drawobject, rs_drawdial, rect_init, rect_point.

RSRC_FREE GEM AES|

ret= rsrc_free();
Nt Eneit s

Frees the space used by resources loaded with rsrc_Load. You should always
call this function before terminating a program that calls rsrc_load.

If an error occurs the function returns 0.

Page 240 HiSoft C Library Reference

RSRC_GADDR GEM AES

#include <gemlib.h>

ret= rsrc_gaddr(object_type, object_no, &object_adr);
int ret,object_type,object_no;

OBJECT * ‘object _agdr;

This function returns in object_adr the address of the given object
(object_no) of the given type (object_type) of the loaded resource file.

If an error occurs the function returns 0.

RSRC_LOAD GEM AES

ret= rsrc_Lload(file_name);
char *file_name;
int ret;

Load a resource file into memory.

The value returned is 0 if an error occurs, for example if the file is not found
or there is insufficient memory to load the file.

The area where resource files are loaded is fixed during the
initialisation of HiSoft C. If you are loading a substantial resource file this will
be too small. The size of this area can be changed. See Section 1.4.13.

RSRC_OBFIX GEM AES

#finclude <gemlib.h>
rsrc_obfixCtree adr, object_no);
int object_no;

OBJECT * tree_adr;

Converts the co-ordinates of the object object_no in the tree tree_adr
from character co-ordinates to screen co-ordinates.

RSRC_SADDR GEM AES

#include <gemlib.h>

ret= rsrc_saddr(object_type, object_no, object_adr);
int ret,object_type, object_no;

OBJECT * abject. adr;

This function sets the address field of the object object_no of type
object_type tobe object_adr.

If an error occurs the function returns 0.

Library Reference HiSoft C Page 241

RWABS GEMDOS

ret= Rwabs(read_write, buffer, sectors,
sector_no,drive_no);

int ret, read_write, sectors, sector_no, drive_no;
char *buffer;

Read (if read_write = 0) or write (if read_write = 1) logical sectors on a
disk.

The number of sectors to read or write is given by sectors. The i/o starts
at sector number sector_no.

drive_no indicates which drive to read from 0=A, 1=B etc.

SCANF ANSI

object_no = scanf(format, argl, arg2,...);
char *format;
int object no;

The scanf function performs formatted input on the file stdin (the
keyboard by default).

The first argument (format) indicates the format of the reading. Extra
arguments are needed according to the format specified. Each of these extra
arguments is a pointer to a variable. Each value read from the keyboard is
stored in the variables given by these pointers.

The value returned by scanf is the number of values successfully read from
the keyboard and assigned to the variables arg1,arg2,...

The format parameter is a string indicating how to perform the read.
There are three sorts of elements that can make up the format string:

s« White space (spaces, tab characters and newlines).

A sequence of white space characters in the format string causes
all white space characters input to be ignored until a non-blank
character is entered. Exactly which white space characters are
used in the format string is irrelevant.

» Conversion specifications.

Conversion specifications start with a per-cent sign %. The rest of
the format of conversion specifications is explained later.

s All other characters.
Each such character must correspond to the same character in
the input. A % in the input is represented by %% in the format
string.

Page 242 HiSoft C Library Reference

Reading stops when:

° The end of file is reached (if stdin has been re-directed).
Clearly reading must stop at this point.

° There is a mis-match in the format and the characters read. Input
stops as soon as this occurs. The remaining conversion
specifications will be ignored.

® The whole format string has been scanned.

The value returned by scanf is the number of successful conversions. That is
to say the number of values assigned to the variables arg1, arg2...

If no characters can be read the function returns -1.

The syntax for format statements is as follows:
Z*mlc

They consist of the following elements in order.

1. A % character.

2. An optional asterisk * which indicates that the conversion should be made
as usual, but that the value obtained should not be stored in a variable. Thus
no argument is ‘consumed’ by this conversion,

3. A strictly positive decimal number m which gives the maximum number of
characters to be read during the conversion. This is only used when reading
strings of characters (%s).

4. An optional letter L indicating that the type of a parameter is long. This is
used with the conversion characters d, e, f, g, 0o, u and x.

5. A conversion character. This must be present and should be one of ¢, d, e,
f,a, h, n, 0, 5, u, x.

The scanf specifiers are similar to the printf ones. In some cases the
format strings can be the same. But this doesn't mean that a string that can
be used for output via printf can always be used to input the string.

The conversion characters are as follows:

c The corresponding argument must be a pointer to a

Character. character, i.e of type char*. The first character present
in the input is read and stored at the address pointed to
by the argument. Blanks are not skipped.

d The corresponding argument must be a pointer to a
Decimal integer, i.e. of type int*, or Long* if the long type (L)
integer. indicator is present. Blanks, if any, are skipped. A + or -

sign may be present. Characters are read until a non-
valid digit is found. There is no check for overflow. The
converted value is stored in the integer pointed to by
the argument.

Library Reference HiSoft C Page 243

e,f,g
Floating
point.

Floating point. These three types are equivalent. The
corresponding argument must be a pointer to a float or
double. As both float and double are double-precision,
the long type indicator (L) must be used. Otherwise the
conversion will not be done correctly.

The format required is
[blanks]CsignldigitsC.digits]Cexponent]

1. Optional blank characters are ignored.
2. An optional + or - .
3. A sequence of digits.

4. An optional decimal point, followed by further digits
if present.

5. An optional exponent consisting of a letter e or E
followed by an optional sign and sequence of digits.

The value calculated from the characters read is stored
in the double precision variable pointed to by the
corresponding argument.

h

short
decimal
integer.

The corresponding argument must be a pointer to a
short integer, i.e. of type short*. Blanks, if any, are
skipped. A + or - sign may be present. Characters are
read until a non-valid digit is found. There is no check
for overflow. The converted value is stored in the
integer pointed to by the argument.

o
Octal
integer.

The corresponding argument must be a pointer to a
integer, i.e. of type int*, or Long* if the long type (L)
indicator is present. Blanks, if any, are skipped.
Characters are read until a non-valid octal digit is found
(i.e not 0-7). There is no check for overflow. The
converted value is stored in the integer pointed to by
the argument.

5
Character
string

The corresponding argument must be a pointer to a
character, i.e. of type char*, or array of characters.

X
Hexa-

decimal
integer.

The corresponding argument must be a pointer to an
integer, i.e. of type int*, or long* if the long type (1)
indicator is present. Blanks, if any, are skipped.
Characters are read until a non-valid hex digit is found
(i.e not 0-9, a-f or A-F). There is no check for overflow.
The converted value is stored in the integer pointed to
by the argument.

& There are some characters that can be typed which will not be read by

scanf because the scanf function has not been asked to read them.

Page 244

HiSoft C Library Reference

Nt

For example, the newline character typed at the end of a line won't be read
by scanf unless the string finishes with a space.

This can also happen if the format string does not correspond to the user’'s
input. If scanf is waiting for a number (%d) and the user types digits then
the letters won't be read by scanf.

All characters not read by scanf remain in the input buffer and these
characters will be handled by subsequent calls to scanf.

This problem can appear particularly if you are trying to read a character
using %c¢. When using this conversion character, white space (i.e. spaces and
new lines) are not skipped.

If for example, you execute two scanf("%c",&c); statements one after
another and on the first call you type a character followed by Return, then
the first character will be stored in ¢ as you expected. But when it comes to
the second call the character read will be the Re turn, which is probably not
what you expected.

There are two ways to get round this problem.

The first is to always call getchar () after scanf to read the newline
character.

The second method is to force the input buffer to be emptied before calling
scanf. To do this use fseek(stdin,0,2). Don't forget to include the
<stdio.h> file.

& fscanf, sscanf, sprintf.

SCRP_READ GEM AES

ret= scrp_read(address);
int ret;
char *address;

Reads the name of the clipboard directory.

SCRP_WRITE GEM AES

ret= scrp_write(address);
TRt Sret;:
char *address;

Changes the name of the clipboard directory.

Library Reference HiSoft C Page 245

SELECT_MENU HiSoft C

state = select_menu(title);
int state, title;

Select or de-select a menu title.
The menu must have been created using the init_menu function.

title is the number of the menu title as returned by title_menu. The
value returned is the new state of the menu. 1 meaning selected, 0 otherwise.

& init_menu, item_menu, Section 3.4.6, Help command (select_m).

SETBUF ANSI

#include <stdio.h>
setbuf(fp,buffer);
FILE *fp;

char buffer[BUFSIZI];

This function must be used after a file has been opened with fopen, but
before any other operation on the file (read or write).

The buf fer whose address is passed as a parameter is used to replace the
default buffer for input-output on this file.

This buffer must be of size BUFSIzZ.

If the address passed is zero then the i/o on this file is performed without
using a buffer, causing a physical i/0 operation for each system call.

The first parameter is the file pointer for the file concerned.

SETCOLOR GEMDOS

Setcolor(colour_no, pallete_value);
int colour_no, pallete_value;

Sets the palette (to pallete_value) for the colour colour_no.

SETEXC GEMDOS

setexc(vector_no, vector_valuel;
int wvector_no;
char *vector_value;

Sets the interrupt or exception vector (given by vector_no between 0 and
255) to the vector_value passed as a parameter.

Page 246 HiSoft C Library Reference

o

SETNBUF ANSI

#include <stdio.h>
setnbuf(fp);
FILE *fp;

This function lets you suppress the buffering of a given file.

After calling this function every i/o call for the file given by the file pointer fp
will cause a physical i/o operation.

SETPALLETE GEMDOS

Setpallette(palette_adr);
short palettel161;

Sets the pallette of all 16 colours.

SETPRT GEMDOS

n_config = Setprt(config);
int config;

Read or write the printer configuration.
If the parameter is -1, then the configuration is read by the function.

Otherwise this parameter is a bitmap giving the new configuration as follows:

bit value O value 1

0 dot matrix daisy wheel

1 colour black and white
2 Atari printer Epson

5 draft mode final mode

4 parallel printer serial

5 continuous stationery single sheet

1Li5) must be O

The function returns the new printer configuration.

Library Reference HiSoft C Page 247

SETSCREEN GEMDOS

Setscreen(logical_adr, physical_adr, resolution);
char *LlLogical_adr, *physical_adr;

int resolution;

Modifies the screen addresses and/or the screen resolution.

The parameters are the logical screen address, the physical screen address
and the desired resolution (0, 1 or 2).

If a parameter is negative the corresponding parameter is not changed.

SETTIME GEMDOS

ret= settimel(date_time);
long ret, date_time;

Sets the intelligent keyboard controller's idea of the date and time. The same
format as Tgetdate and Tgettime is used.

The value returned is the time that has been set.

SHEL_ENVRN GEM AES

shel_envrn(address,name);
char *address, *name;

Finds the address of an environment variable.

SHEL_FIND GEM AES

ret= shel_find(buffer);
int ret;
char *buffer;

Searches for a file name using the AES path.

SHEL_READ GEM AES

shel_read(application_name, command_Line);
char *application_name, *command_LlLine;

Reads the name of the running application and its command line.

Page 248 HiSoft C Library Reference

SIN ANSI

ret= sin(val);
double ret,val;

Calculates the sine of an angle in radians. Both the argument and the result
are double reals.

& cos, tan.

SINH ANSI

ret= sinh(val);
double ret,val;

Calculates the hyperbolic sine of the angle given as a parameter. Both the
argument and the result are double reals.

If the argument is too large for the sinh to be calculated then errno will
indicate this error.

& cosh, tanh, errno.

SPRINTF ANSI

Length = sprintf(string, format, argl1, arg2,...)J;
int Length;
char *string, *format;

This function is similar to printf except that instead of writing to the
screen it writes to a string that is passed as a parameter.

A This function lets you easily convert from numeric types to ASCIL.

i) The following function converts an integer (hnumber) into a string
(string) containing its hexadecimal representation.

void conv_hex(number,string)
int number;
char *string;
{
s n e st ng st et S numbe)iz
>

& cprintf, fprintf, printf.

Library Reference HiSoft C Page 249

SQRT ANSI

ret= sqrtlval);
double ret, val;

Returns the square root of the number passed as a parameter. Both the
parameter and the result are double precision real numbers.

SRAND ANSI

srand(value);
unsigned 1int value;

Re-seed the random number generator.

& rand.

SQSORT UNIX

sqsort(tab,n);

short *tab;

int n;

This function sorts an array of short integers.

The array of shorts is modified so that they are in increasing order.

& lgsort, dgsort, tgsort.

SSCANF ANSI

number = sscanf(string, format, argl, arg2,...):;
int number;
char *string, *format;

This function is similar to scanf except that the characters, instead of being
read from the keyboard, are read from a string (string) that is passed as a
parameter to the sscanf function.

& This function may be used to perform ASCII to numeric conversion for
all the types used by scanf.

Page 250 HiSoft C Library Reference

) The following function converts a string (string) containing a
hexadecimal digit into an integer. The converted value is returned by the
function. If an error occurs -1 is returned.

int c¢onv_hex(string)

char *string;

{

int number;

if (!sscanf(string,"%x",&number))
number = -1;

return(number);

A cscanf, fscanf, scanf.

STD ANSI

#include <stdio.h>

FILE *stdin; /* default standard input file*/
FILE *stdout; /* default standard output file */
FILE *stderr; /* default error file */

FILE *stdaux; [* serial /o file %/

FILE *stdprn; /* printer file */

These identifiers are defined in the file stdio.h.

They represent the files that are always opened when you run your program.
stdin is the input file that is used by scanf, getchar, etc. If you wish to
take input from a file rather than from the screen, all you need to do is re-
direct to this file.

stdout is the output file used by printf, putchar, ete. If you want the
output to go to a file all you need to do is re-direct stdout.

stderr is the file that is used to write error messages.
stdaux corresponds to a file open for read/write to the serial port.

stdprn is an opened output file for the printer.

Library Reference HiSoft C Page 251

= The following program re-directs the standard output (stdout) to the
file text.txt on disk.

#include <stdio.h>
FILE *sv_stdout;
FILE *fp;

void main()

/* make a copy of stdout */

sv_stdout = fdopen(dup(fileno(stdout)), "w");

/* open the file to replace stdout */

it etp = fopentUtextotxt, "wr))

{
/* assign the new file to stdout */
dup2(fileno(fp), fileno(stdout));
printf("This is written to the text file");
/* restore the normal stdout */
dup2(fileno(sv_stdout), fileno(stdout));
printf("This is written to the screen\n");
fclose(fp);

else
printf{("Error number X%d\n", errno);
fclose(sv_stdout);

j Writes the contents of some variables to the printer.

#include <stdio.h>
void main()
{
o LR
char timel103;
i = timer_value();
strtimeCtime);
fprantiastdprn,. "SIt Ase Sdshnt Lt ime:
fprintf Ostdprn;" ““Timer wvalue = %d\n', =
fflush(stdprn);
¥

STOP HiSoft C

stop();

Stops the execution of the file and returns to the HiSoft C editor.

Page 252 HiSoft C Library Reference

STRCAT ANSI

ptr = strcat{stringl, string2);
char *ptr, *stringl1, *string2;

This function copies the string string2 to the end of string1. string1
thus becomes longer including all the characters of string2.

The value returned is a pointer to string1.

& string1 must correspond to an area large enough to contain all the
characters of the two strings.

! This program writes the string qwertyuiopasdfgh.

char string1[20] = "gwertyuiop";
char string2C8] = "asdfgh'";
void main()

{

puts{(strcat(stringl,string2));
>

A strncat.

STRCHR ANSI

p. .= strchrtstring, chd);
char *p, *string;
char ch;

Searches the string passed as a parameter for the first occurrence of the
character ch.

The pointer is returned pointing to the place in the string where the
character was found.

If the character isn’'t present in the string, O is returned.

& strrchr, memccpy.

Library Reference HiSoft C Page 253

STRCMP ANSI

comparison = strcmp(stringl, string2);
char *stringl, *string2;
int comparison;

This function compares stringl1 and string2. The two strings are
compared character by character. The comparison continues until all the
characters have been compared if the strings are equal or until the first time
two different strings are found.

string1 is less than string2 if the first character that is found to be
different is less in string1 than in string2.

The value returned is zero if the strings are equal, positive if string1 is
greater than string2 or negative if string1 is less than string2.

é& strncmp, stricmp.

STRCPY ANSI

ptr = strcpy(stringl, string2);
char *ptr, #*stringl, *string2;

This function copies string2 to string1. The characters that were
originally in string1 are deleted.

The value returned is a pointer to stringl.

string1 must point to an area of memory large enough to contain
string2.

STRCSPN ANSI

Lng = strecspnlstring, chs);
int Lng;
char *chs, *string;

This function searches for the first character in string that is not one of the
characters in chs.

The value returned is the number of characters ignored until a character in
chs was found.

& strspn.

Page 254 HiSoft C Library Reference

STRDATE HiSoft C

date = strdate(buffer);
char buffer[91;
char *date;

This function returns the current date in the form of a string: "dd/mm/yy".

The date is written to the buffer that is passed as a parameter. The value
returned is equal to the parameter.

char buffer[91;
void main()
{:
printf("Today dis %s\n",strdate(buffer));
>

& strtime.

STRGETFN HiSoft C

strgetfn(file_name, drive, path, name, extension);
char *file_name;
char *drive, *path, *name, *extension;

This function creates a full file name from a drive, a path, a filename and an
extension.

The first parameter is an array of characters where the name will be stored.

The four other parameters are strings containing the drive, directory, name
and extension respectively.

& The file_name array must be big enough!

o 1]

i

char file_namel60]1 = "d:\\hc\\examples\\strgetfn.c";
char drivel4], pathC401, namel101, extC41];

void main()

{
strsplfn(file_name, drive, path, name, ext);
/* drive is now "d:", path "\hclexamples" */
/* name is now "strgetfn", ext "c" */
strgettnttile. ames = ai"" , * NN, hie™, Spingt);
/* file_name is now "a:\hc.prg" */
¥
& strsplin.
Library Reference HiSoft C Page 255

STRICMP ANSI

comparison = stricmp(stringl,string2);
int comparison;
char *stringl,*string2;

This function compares two strings. It is similar to strcmp except that it
ignores differences between upper and lower case letters.

The value returned is negative, zero, or positive depending on whether
string1 is less, equal or greater than string2 respectively as for strcmp.

& stremp, strnicmp, strnemp.

STRLEN ANSI

Length = strlen(string);
int Length;
char *string;

This function returns the length of the string passed as a parameter.

strlen("abc") returns 3.

STRLWR UNIX

¢ch = strluwr{string);
chaipii*ich . isitesing;

This function converts all upper case letters in the string passed as a
parameter to lower case.

The value returned is a pointer to a string equal to the value passed as a
parameter.

puts(strlwr("Abc12DE&")); writes abc12de& on the screen

ZB strupr.

Page 256 HiSoft C Library Reference

STRNCAT ANSI

ptr = strncat(stringl1, string2, Lng);
char *ptr, *stringl1, *string2;
int [lng;

This function copies string?2 to the end of string1. Thus string1 is made
longer using characters from string2.

A maximum Lng characters will be added to string1.

The value returned is a pointer to string1.

& string1 must point to an area of memory that is large enough to
contain all the characters of the new string.

= This program writes the string "querty" on the screen

char string1l10]1] = "qwer";
char string2C6] = "tyuio";
void main()

{

putsiGstirncatlstrdingl; wstring2;,; 220
¥

& streat.

STRNCMP ANSI

comparison = strcmp(stringl, string2, Lng);
char *stringl, *stringd;
int comparison, Lng;

This function compares string?1 and string2. The two strings are
compared until either

(a) Lng characters have been compared and the strings are equal thus far. 0
is returned in this case.

(b) all the characters have been compared and the strings are equal. Again 0
is returned.

(c) Two different characters are found. If the character from string1 is less
than that from string2 then a negative integer is returned, otherwise a
positive integer is returned.

Thus strncmp is like stremp but a maximum of Lng characters are
compared.

& stremp, stricmp.

Library Reference HiSoft C Page 257

STRNCPY ANSI

ptr = strncpy(string1, string2, Lng);
char *ptr, *stringl1, *string2;
int Lhng;

This function copies up to Lng characters from string2 to string1. The
characters that were originally in string1 are deleted.

The value returned is a pointer to stringl.

If string?2 is shorter than Lng, null (0) characters are added until a total of
Lng characters has been added.

If string?2 is longer than Lng only the first L ng characters are copied and
the string is not terminated by zero.

& stringl1 must point to an area of memory that is large enough to
receive the new string.

& strcpy, memcpy.

STRNICMP ANSI

comparison = strnicmp(stringl, string2, Lng);
int comparison, Lng;
char *stringl1,*string2;

This function compares up to the first Lng characters of the two strings
string1 and string?2. This is similar to strncmp except that the
corresponding upper and lower case letters are treated as the same.

The value returned is negative, zero or positive, depending on whether
string1 is less than, equal, or greater than string2 as for strncmp.

& stremp, stricmp, strncmp.

STRREV UNIX

ch = strrev(string);
chair ¥ch, *string;

This function reverses the order of the characters in the string that is passed
as a parameter.

The returned value is a pointer to the same string.

Page 258 HiSoft C Library Reference

o

STRSPLFN HiSoft C

strsplfn(file_name, drive, path, name, extension);
char *file_name;

char *drive, *path, *name, *extension;

This function splits a full file name into its individual components.

These components are the drive, the path (directory), the name and the
extension.

The first parameter is a string of characters containing the file name to
analyse.

The four other parameters are arrays of characters where the drive, path,
name and extension will be stored.

& The arrays must be big enough!

& strgetfn.

STRSPN ANSI

Lng = strspnlstring, c¢hs);
At Ungi;
char *string, *chs;

This finds the number of characters at the start of string that are contained
in chs.

Thus the returned value is the number of characters ignored whilst finding
the first character that is not in the string chs.

& strespn.

Library Reference HiSoft C Page 259

STRTIME HiSoft C

time = strtime(buffer);
char buffer[9];
char *time;

This function returns the current time in a string of characters of the form
"“hh:mm:ss".

The time is stored in the buffer passed as a parameter. The returned value is
also equal to buffer.

char buffer[9];
void main()
{
printf("It dis Xs\n",strtime(buffer));
>

& strdate, timer_value.

STRTOK ANSI

ch = strtok(string, chs);
char' ~*c¢ch, ‘*string, *chs:

Splits a string into a string of tokens.

This function considers the parameter string to be made up of tokens
separated by one or more characters from the string chs.

A sequence of calls to this function returns these tokens one at a time.

The first time the function is called a pointer to the first token found in
string is returned. To find subsequent tokens, O is passed instead of
string. The function will then return a pointer to the second token, then
the third etec.

When the strtok function returns O this means that no further tokens are
present in the string.

The following program writes the words contained in the string "aaa
bbb ccc ddd" on separate lines.

char *str<ing = "aaa bbb c¢ccc ddd™;
char *chj;
void main()

1
ch = ‘sitrtekCstirdngzlts X5
do
puts{ch);
whiille Gohl 5= istrtiok(DL 7 -
¥

Page 260 HiSoft C Library Reference

STRTOL UNIX

n = strtol{(string, &end_pos, base);
int n, base;
char *string, *end_pos;

This function converts a string of characters into a long integer and returns
this as the value of the function.

The string must contain only valid digits from 0-9, a-z and A-Z to form a
number in the given base from 2 to 36.

The function ignores blanks at the start of the string and will note an initial +
or - sign. It stops, however, when an illegal character is found.

When it returns end_pos points to the first illegal character (or the null at
the end) of the string.

b= strtol("1000",8&p,16) returns the value 4096 = 1000 Hex.

& sscanf,

STRUPR UNIX

ch = strupr(string);
char #*ch, string;

This function converts all the lower case letters in the string passed as a
parameter into upper case.

The value returned is a pointer to the string.

puts(strlwr("Abc12DE&")) writes ABC12DE& on the screen.

& striwr.

SUPER GEMDOS

old_pointer = Super(stack_ptr);
char *old_pointer, *stack_ptr;

Change to 68000 supervisor or user mode.

If you are about to enter supervisor mode, stack_ptr is the value to use as
the supervisor stack pointer. The pointer returned is the current user stack
pointer.

When returning to user mode, stack_ptr is the value to be used for the user
mode stack.

Library Reference HiSoft C Page 261

SUPEXEC GEMDOS

ret= Supexec(routine_adr);
Long ret;
char *routine_adr;

Executes an assembly language routine in supervisor mode. The value
returned by the function is the value returned by the routine.

SVERSION GEMDOS

version_no = Sversion();
int version_no;

Returns the GEMDOS version number.

TAN ANSI

ret= tan(val);
double ret,val;

Calculates the tangent of the angle (in radians) that is passed as a parameter.
The argument and the return value are both double reals.

& sin, cos.

TANH ANSI

ret= tanh(val);
double ret,val;

Calculates the hyperbolic tangent of the argument passed as a parameter.

The argument and the return value are both double reals.

& sinh, cosh, errno.

Page 262 HiSoft C Library Reference

Eoe

TELL UNIX

pos = tell(nf);
int pos;
int e

Returns the current file position in the UNIX file nf (opened with open)
where the next byte will be read or written.

A This position may be changed using Lseek.

TEXT_BOX HiSoft C

no_object = text_box(box_no, x, y, text);

int no_object, box_no, X, Y;

char *text;

Adds an object of type text into a dialog box created by init_box.

See Section 3.3.4 for a description of this function.

TGETDATE GEMDOS

date = Tgetdate();
int date;

Returns the current date in the following format:

bits O to 4 Day (0-31)
bits 5 to 8 Month (1-12)
bits 9 to 15 Year (0-127) 0=1980, 1=1981...

TGETTIME GEMDOS

times = TgettimeC);
int time;

Returns the current time in the following format:

bits O to 4 Seconds (0-29) 0=0 sec. 1=2 sec etc
bits 5 to 10 Minutes (0-59)
bitsil Ll toil5 Hours (0-11)

Library Reference HiSoft C Page 263

TICKCAL GEMDOS

base = Tickcal();
int base;

Returns the clock tick interval in milliseconds.

TIMER_VALUE HiSoft C

value = timer_value();
int wvalue;

This function returns the video clock frequency in Hertz. 60 (colour monitor)
or 70 (monochrome monitor).

TITLE_MENU HiSoft C

no_title = title_menu(title_name);
finit nlo =t itles
char *title_name;

Adds a title bar to a menu. The menu must have been created with
init_menu.

See Section 3.4.3 for the description of this function.

TOASCII ANSI

new_ch = toasciilch);
int new_ch, ¢chy;

This function converts a character (between 0 and 255] to ASCII (code<128)
by removing the top bit.

The function returns the new character code.

TOLOWER ANSI

nch = tolower(ch);
intneh,; ehy

This function converts an upper case letter (passed as an integer) to lower
case. If the character isn’t an upper case letter then the value is returned
unchanged.

& toupper, islower.

Page 264 HiSoft C Library Reference

e

TOUPPER ANGSI

nch = toupper(ch);
int ‘nch,ch;

This function converts a lower case letter (passed as an integer) to upper
case. If the character isn't a lower case letter then the value is returned
unchanged.

& tolower, isupper.
TQSORT ANSI

tqsortlarr,n);
char *arrCxx1;
int ‘n;

This function formats an array (arr) of n pointers to string into increasing
order.

The array of pointers is modified in situ.

& It is not the values of the pointers, but the values of the strings that are
used for the sort.

E» The following program sorts an array of three strings into alphabetical
order, and writes them in that order.

The array arr is initialised to contain three pointers. The first points to the
string "zzzz", the second to "aa" and the third to "zer". After the sort,
the order of the pointers is modified. The first points to "aa", the second to
"zer" and the third to "zzzz". The strings themselves do not move.

char - *tabE3ledtzzze i, ag', “ger};
void main()

{
tegortcarn;: 508
puts(arrC0]1);
piuts CaineE 1)
putsCarrC21);
}

& Igsort, sgsort, dgsort.

Library Reference HiSoft C Page 265

TRACE_OFF HiSoft C

trace_off(); By
This function switches off single step mode. At the same, the display of
variables is suppressed.

T —
& trace_on, var_on, var_off, Section 1.4.3.

] o

TRACE_ON HiSoft C
trace_on(); -
This function switches on single step mode.

S

& trace_off, var_on, var_off, Section 1.4.3.

TSETDATE GEMDOS| -

ret= Tsetdate(date);
int date, ret; o

Sets the date using the following format

bits O to 4 Day (0-31) Qe
bits 5 to 8 Month (1-12)
bits 9 to 15 Year (0-127) 0=1980, 1=1981...

The value returned is O if the date is valid. s

TSETTIME GEMDOS

e
ret= Tsettime(time);
int - time, ret;
.
Sets the time, using the following format:
bits 0 to 4 Seconds (0-29) 0=0 sec, 1=2 sec etc
bits 5 to 10 Minutes (0-59) -
bits 11 to 15 Hours (0-11)
.
N
Page 266 HiSoft C Library Reference

~—

UNGETC ANSI

#include <stdio.h>
ret= ungetclch, fp);
Ainity ety ‘chg

FILE *fp;

This function cancels the affect of the last call to the fgetc function. The
next character to be read from the file fp will be ch.

& This function may not be called twice for a file between two reads of
that file. Only one character can be ‘put back’.

UNLINK UNIX

ret= unlink(name);

char *name;

int . ret;

Deletes the disk file called name that is passed as a parameter.

This function returns 0 if the operation was successful, or a non-zero if an
error occurred in which case errno will indicate the source of the error.

& remove, Ddelete, errmo.

V_ARC GEM VDI

v_arc(vdi_handle, x, y, radius, anglel, angle2);
int wdi _hiandble, x, ¥, radius, anglei, angle2;

Draws a circular arc of centre (x,y) of the given radius between the angles
angle1 and angle2. The angles should be between O and 3600 (tenths of

degrees).

VAR_OFF HiSoft C

var_off();

Stops the display of variables during execution.

& trace_on, Section 1.4.4.

Library Reference HiSoft C Page 267

VAR_ON HiSoft C

var_on();

Starts the display of variables on the screen during execution. Trace mode
must already be active.

& trace_on, Section 1.4.4.

V_BAR GEM VDI

v_bar(vdi_handle, arr_xy);
int wvdi_handle;
short arr_xy[&4];

Draw a rectangle with the current attributes.

arr_xy contains the (x,y) co-ordinates of two opposite corners of the
rectangle.

V_CIRCLE GEM VDI

v_circle(vdi_handle, x, ¥y, radius);
int vdi_handle, x, ¥y, radius;

Draws a circle centred at (x,y) with the given radius.

V_CLRWK GEM VDI

v_clrwk(vdi_handle);
int wvdi_handle;

Clears the screen.

V_CLSVWK GEM VDI

v_clsvwk(vdi_handle);

Close the virtual workstation opened using v_opnvuk.

V_CONTOURFILL GEM VDI

v_contourfilltvdi_ handle, x, y, fill_colour);
int wdi_handle, X, ¥, fill_colour;

Performs a seed fill in the fill_colour starting at the co-ordinates (x,y).

Page 268 HiSoft C Library Reference

Al

V_CURDOWN

GEM VDI

v_curdown(vdi_handle);
int wdi_handle;

Moves the text cursor one line down.

A v_enter_cur.

V_CURHOME

GEM VDI

v_curhome(vdi_handle);
int wvdi_handle;

Moves the text cursor to the top left of the screen.

& v_enter_cur.

V_CURLEFT

GEM VDI

v_curleft(vdi_handle);
int wvdi_handle;

Move the cursor left one character.

& V_enter.cur.

V_CURRIGHT

GEM VDI

v_curright(vdi_handle);
int wvdi_handle;

Move the text cursor right one character.

& v_enter_cur.

Library Reference HiSoft C

Page 269

V_CURTEXT GEM VDI

v_cur(vdi_handle, string);
int wvdi_handle;
char *string

Display a string of text at the current cursor position.

& v_enter_cur.

V_CURUP GEM VDI

v_cur{vdi_handle);
int wvdi_handle;

Move the text cursor up one line.

& v_enter_cur.

V_DSPCUR GEM VDI

v_dspcur(vdi_handle, x, y);
int vdi_handle, x, ¥;

Display the mouse cursor at position (x,y).

V_EEOL GEM VDI

v_eeol(vdi_handle);
int wvdi_handle;

Clear the screen from the current cursor position to the end of the current
line.

& v_enter_cur.

V_EEOS GEM VDI

v_eeos(vdi_handle);
int wvdi_handle;

Clears the text screen starting at the current cursor position.

& v_enter_cur.

Page 270 HiSoft C Library Reference

V_ELLARC GEM VDI

v_ellarc(vdi_handle, x, y, x_radius, y_radius,
start_angle, finish_angle);

int vdi_handle, x, y, x_radius, y_radius,
start_angle, finish_angle;

Draws an elliptical arc based on centre (x,y) and radii x_radius and
y_radius between start_angle and finish_angle. The two angles are
measured in tenths of degrees (that is between 0 and 3600).

V_ELLIPSE GEM VDI

v_ellipse(vdi_handle, x, vy, x_radius, y_radius);
int wvdd_handbe, x, ¥, x radius, y radius;

Draws an ellipse with centre (x,y), x radius, x_radius and y radius,
y_radius.

V_ELLPIE GEM VDI

v_ellpie(vdi_handle, x, y, x_radius, y_radius,
start_angle, finish_angle);

int vdi_handle, x, y, x_radius, y_radius,
start_angle, finish_angle;

Draws an elliptical pie slice given the centre (x,y), radius, start_angle
and finish_angle. The angles are measured in tenths of degrees between O
and 3600.

V_ENTER_CUR GEM VDI

v_enter_cur(vdi_handle);
int wvdi_handle;

Enter text mode. The screen is cleared and a flashing cursor appears.

VEX_BUTV GEM VDI

vex_butv{(vdi_handle, new_adr, old_adr);
int wvdi_handle;
char *new_adr, *old_adr;

Modifies the mouse interrupt vector.

Library Reference HiSoft C Page 271

VEX_CURV GEM VDI

vex_curv(vdi_handle, new_adr, old_adr);
int wvdi_handle;
char *new_adr, *old_adr;

Modifies the end of mouse cursor drawing vector.

V_EXIT_CUR GEM VDI

v_exit_curCvdi_handle);
int wvdi_handle;

Leaves text mode. The screen is cleared and the flashing cursor disappears.

VEX_MOTV GEM VDI

vex_motv(vdi_handle, new_adr, old_adr);
int wvdi_handle;
char *new_adr, *old_adr;

Modifies the mouse movement vector.

VEX_TIMV GEM VDI

vex_timv(vdi_handle, new_adr, old_adr);
int w~di_handle;
char *new_adr, *old_adr;

Modifies the timer interrupt vector.

V_FILLAREA GEM VDI

v_fillareaCvdi_handle, n, arr_xy);
int wdi_handle, n;
chiont arncseyEn®2 i1

Draws a filled polygon containing n points. The array arr_xy contains the
co-ordinates of all the points in the polygon (x0,y0, x1,y1,...).

V_GET_PIXEL GEM VDI

v_get_pixel{vdi_handle, x, vy, &rgb_colour, &colour_no);
int vdi_handle, x, ¥,
short rgb_colour, colour_no;

Returns the colour of the point (x,y).

Page 272 HiSoft C Library Reference

V_GTEXT GEM VDI

v_gtext(vdi_handle, x, Y., string);

int wvdi_handle, x, Y¥;

char *string;

Displays a string of graphics text characters. The position of the first
character is given by (x.y).

V_HIDE_C GEM VDI

v_hide_c(vdi_handle);
int wvdi_handle;

Hides the mouse cursor.

V_JUSTIFIED GEM VDI

v_justified(vdi_handle, x, vy, string,

length, word_spacing, char_spacing);
int wvdi_handle, x, y, Llength, word_spacing, char_spacing;
char *string;

Display a justified graphics text string starting at co-ordinates (x,y) in a
width of Length pixels.

If word_spacing = 1 then spaces may be added between words and/or if
char_spacing = 1 then space may be added between characters.

V_OPNVWK GEM VDI

v_opnvwk(arr1, &vdi_handle, arr2);
short wvdi_handle, arr1C111] arr2ZEsTa;

Initialise a virtual workstation for GEMVDI.

It is not necessary to call this function when using HiSoft C because HiSoft C
has already done this.

To find the vdi_handle use graf_handle.

V_PIESLICE GEM VDI

v_pieslice(vdi_handle, x, y, radius, start_angle, finish_angle);
int vdi_handle, x, y, radius, start_angle, finish_angle;

Draws a circular pie slice centred on (x,y) of the specified radius, between
the start_angle and the finish_angle. The angles are expressed in
tenths of a degree.

Library Reference HiSoft C Page 273

V_PLINE GEM VDI

v_pline(vdi_handle, n, arr_xy);
int wvdi_handle, n;
short afrxybn*21;

Draws a set of straight lines joining the n points stored in the array arr_xy
(D 0L et w1, X2, vels):

V_MARKER GEM VDI

v_pmarker{vdi_handle, n, arr_xy);
int wvdi_handle, n;
short arr_xy[Cn*21;

Draw n markers whose co-ordinates are stored in the array arr_xy
(x0.y0.x1,y1...).

VQ_CHCELLS GEM VDI

vg_chcells(vdi_handle, &screen_height, &screen_width);
int wvdi_handle;
short screen_height, screen_width;

Returns the size of the screen in characters.

VQ_COLOR GEM VDI

vgq_color(vdi_handle, <colour_no, wvalue_type, rgb_arr);
int wvdi_handle, colour_no, value_type;
short rgb_arrC3]1;

Returns the representation of a colour in rgb units.

VQ_CURADDRESS GEM VDI

vg_curaddress(vdi_handle, &row, &column);
int wvdi_handle;
short row, column;

Return the current text cursor position.

& v_enter_cur.

Page 274 HiSoft C Library Reference

VQ_EXTND GEM VDI

vg_extnd{vdi_handle, which, tab);
int vdi_handle, which;
short tabL[571;

Returns information on the given virtual workstation.

VQ_INMODE GEM VDI|

vg_inmode(vdi_handle, dev_type, &input_mode);
int wvdi_handle, dev_type;
short 4dnput_mode;

Returns the current input mode of a given device.

VQF_ATTRIBUTES GEM VDI

vgf_attributes(vdi_handle,fill_type);
int wvdi_handle;
short fill_typel4];

Returns the current fill area attributes (type, colour, style and writing mode
in that order).

vQ_KEY_S GEM VDI

vg_key_s(vdi_handle, B&key_state);
int wvdi_handle;
short key_state;

Returns the state of the control keys: right Shift (bit 0), left Shift (bit 1),
Control (bit 2), and Alternate (bit 3).

The corresponding bit is 1 if the key is down.

VQL_ATTRIBUTES GEM VDI

vqL_attributes(vdi_handLe,Line_type);
int wvdi_handle;
short Line_typel41;

Returns in the array Line_type information on the current line attributes
(type. colour, writing mode and line width in that order).

Library Reference HiSoft C Page 275

VQM_ATTRIBUTES - GEM VDI

vgqm_attributes(vdi_handle,marker_type);
int wvdi_handle;
short marker_typel&l;

Returns in the array marker_type the current marker attributes (type,
colour, writing mode and height in that order).

vQ_MOUSE GEM VDI

vgq_mouse(vdi_handle, &button, &x, &y);
int wvdi_handle;
short - button, Xx; Y75

Returns the state of the mouse buttons.

VQT_ATTRIBUTES GEM VDI

vgt_attributes(vdi_handle,text_type);
int wvdi_handle;
short text_typel101;

Returns in the array text_type information on the current text attributes
(font, colour, angle, horizontal alignment, vertical alignment, writing mode,
character width, character height, cell width, cell height in that order).

VQT_EXTENT GEM VDI

vgt_extent{(vdi_handle, string, extent);
int wvdi_handle;

short extent[8];

char *string;

Returns in the extent array (x0, y0, x1,y1, x2,y2, x3,y3) the co-ordinates of
a box that would surround the text of the string passed as a parameter.

VQT_FONTINFO GEM VDI

vgt_fontinfo(vdi_handle, &first_char, &last_char,
distances, &maxwidth, effects);

int wvdi_handle;

short «first_char, lLast_char, maxwidth;

shorit distancesC51,. effectsh3il;

Returns information on the current text font.

Page 276 HiSoft C Library Reference

VQT_NAME GEM VDI

vqt_name(vdi_handle, font_no, font_name);
int wvdi_handle, font_no;
char *font_name;

Returns the name of the font whose index is passed as a parameter.

vaTr_WIDTH GEM VDI

vgt_width(vdi_handle, character, Bcell_width,
Bleft_offset, &right_offset);

int vdi_handle, <character;

short cell_width, Left_offset, right_offset;

Returns the cell_width, and Left_offset and right_offset of the
given character.

V_RBOX GEM VDI

v_rbox(vdi_handle, arr_xy);
int wvdi_handle;
short arr_xy[41;

Draws a rectangle with rounded corners using the line attributes. arr_xy
contains the two opposite corners of the rectangle.

V_RFBOX GEM VDI

v_rfbox(vdi_handle, arr_xy);
int wvdi_handle;
short arr_xy[4];

Draws a filled rectangle with rounded corners using the fill attributes.
arr_xy contains the two opposite corners of the rectangle.

V_RMCUR GEM VDI

v_rmcur{vdi_handle);
int wvdi_handle;

Removes the mouse cursor.

Library Reference HiSoft C Page 277

VRO_CPYFM GEM VDI

#include <gemlib.h>

vro_cpyfm(vdi_handle, operation, arr_coords,
mfdb_source, mfdb_destination);

int wvdi_handle, operator;

short arr_coordsC81;

FDB *mfdb_source, *mfdb_destination;

Copies a block of memory from a source area (mfdb_source) to a destination
area (mfdb_destination) performing a raster operation on the block.

VR_RECFL GEM VDI

vr_recfl(vdi_handle, arr_xy);
int vdi_handle;
short arroxyE4d;

Draws a filled rectangle without a border using the fill attributes. arr_xy
contains the two opposite corners of the rectangle.

VRT_CPYFM GEM VDI

#include <gemlib.h>

vro_cpyfm(vdi_handle, operator, arr_coords,
mfdb_source, mfdb_destination, <colours);

int wvdi_handle, operator;

short arr_coords[8], colourslC2];

FDB *mfdb_source, *mfdb_destination;

Similar to the vro_cpyfm function except that the source area is considered
to be monochrome and is given the colours in the array colours when
copied.

VR_TRNFM GEM VDI

vr_trnfm(vdi_handle, mfdb_source, mfdb_dest);
int vdi_handle;
FDB *mfdb_source, *mfdb_dest;

Copies a memory area (described by mfdb_source) in standard format to a
destination area (described by mfdb_dest) in device dependent format.

V_RVOFF GEM VDI

v_rvoff(vdi_handle);
int vdi_handle;

Cancels the effect of v_rvon.

Page 278 HiSoft C Library Reference

V_RVON GEM VDI

v_rvon(vdi_handle);
int wvdi_handle;

After a call to this function, all text written with v_curtext will be written
in inverse video (white on black).

VSC_FORM GEM VDI

vsc_form(vdi_handle, mouse_form);
int wvdi_handle;
mouse_formLC371;

Re-defines the mouse form. The elements of the array are as follows:

0 X co-ordinate of hot spot
1 Y co-ordinate of hot spot
2 always 1
3
4

mask colour (normally 0)
data colour (normally 1)
5 to 20 mask
21 tal 37 data

VS_CLIP GEM VDI

vs_clipCvdi_handle, clip,. clip_arr);
int vdi_handle, clip;
shiort ‘elip_arrC&d;

Enables (clip=1) or disables (clip=0) clipping within the VDI rectangle
clip_arr (x0,y0,x1,y1).

VS_COLOR GEM VDI

vs_color(vdi_handle, colour_no, rgb_values);
int wvdi_handle, colour_no;
short rgb_values[3];

Sets the palette for a colour colour_no to be the red, green & blue values
(between O and 1000) in the array rgb_values.

Library Reference HiSoft C Page 279

VS_CURADDRESS GEM VDI

vs_curaddress(vdi_handle, row, column);
int wvdi_handle, row, column;

Positions the text cursor at position given by row, column.

& V.oentertieur.

VSF_COLOR GEM VDI

vsf_color{(vdi_handle, <colour_no);
ints wdiohandiles, ..colour _no;

Selects the colour used for filling areas.

VSF_INTERIOR GEM VDI

vsf_dinterior(vdi_handle, fill_typel;
int wvdi_handle, fill_type;

Selects the type of fill depending on the value of fill_type:

hollow fill

fill with the colour given by vsf_interior

use a pattern defined by vsf_style

use a hatch defined by vsf_style

use a user defined fill area defined by vsf_updat

BRI —IO

VSF_PERIMETER GEM VDI

vsf_perimeter(vdi_handle, perimeter);
int wvdi_handle, perimeter;

Indicates if GEM is to draw a perimeter round filled objects (if
perimeter=1) or not (perimeter=0).

VSF_STYLE GEM VDI

vsf_style(vdi_handle, style);
int wvdi_handle, style;

Selects a fill pattern style (1 to 24) or hatch (1 to 12).

Page 280 HiSoft C Library Reference

N

N

VSF_UDPAT GEM VDI

vsf_udpat{vdi_handle, image, planes);
int wdi_handle, planes;
short *image;

Sets up a user defined fill pattern.

planes indicates the number of planes in the design (16 =1 plane, 32= 2
planes, 64 = 4 planes).

image contains the bit pattern for the new pattern and should contain the
same number of words as the value of planes.

V_SHOW_C GEM VDI

v_show_c(vdi_handle, count);
int wvdi_handle, count;

Makes the mouse appear if count is zero.

VSL_COLOR GEM VDI

vsf_color(vdi_handle, colour_no);
int w~vdi_handle, colour_no;

Select the colour that is used for drawing lines.

VSL_END GEM VDI

vsl_ends(vdi_handle, start_type, end_type);
int wvdi_handle, start_type, end_type;

Sets the style used for the ends of lines: 0 = normal, 1 = arrow, 2= rounded.

VSL_TYPE GEM VDI

vsl_type(vdi_handle, Line_type);
int wvdi_handle, Line_type;

Sets the line style (0 to 7) that is used in drawing lines.

VSL_UDSTY GEM VDI

vsl_udsty(vdi_handle, style);
int wvdi_handle, style;

Defines the user defined line style.

Library Reference HiSoft C Page 281

VSL_WIDTH GEM VDI

vsl_udsty(vdi_handle, width);
int vdi_handle, width;

Defines the line width to be width (between 1 and 39).

VSM_COLOR GEM VDI

visifcolonvidi: handle, s.coliouranold:;
int wvdi_handle, <colour_no;

Selects the marker colour.

VSM_TYPE GEM VDI

vsm_type(vdi_handle, type);
int vdi_handle, type;

Selects the type of marker to be used (1 to 6).

VST_ALIGNMENT GEM VDI

vst_alignment(vdi_handle, horiz_align, vert_align,
&ret_horizontal, &ret_vertical);

imt wdihandlie, horiz align, vert aligh;

sort ret_horizontal, ret_vertical;

Defines the horizontal alignment (in horiz_align from O to 2) and vertical
alignment (in vert_align from O to 5) for text.

The values returned in ret_horizontal and ret_vertical are the values
set.

VST_COLOR GEM VDI

vsT_colorCvdi_handle, colour_no)d;
int wdi_handle, colour_no;

Selects the text colour.

Page 282 HiSoft C Library Reference

VST_EFFECTS GEM VDI

vst_effects(vdi_handle, effect);
int wvdi_handle, effect;

Selects the effects to apply to text using the bitmap effect:

bit effect

bold

light (greyed)
italic
underlined
outlined
shadowed

O i QN O

VST_FONT GEM VDI

vst_font(vdi_handle, font_no);
int wvdi_handle, font_no;

Selects which font to use (font_no).

VST_HEIGHT GEM VDI

vst_height(vdi_handle, requested_height, &char_height,
&char_width,
gcell_height, &cell_width);
int wvdi_handle, requested_height;
short char_height, char_width, cell_height, cell_width;

Attempts to set the height of characters to requested_height.

This returns the size actually selected which is never bigger than that which
was requested.

VST_LOAD_FONTS GEM VDI

fonts = vst_Lload_fonts(vdi_handle, reserved);
int wvdi_handle, reserved, fonts;

Load the fonts indicated in ASSIGN.SYS. Requires GDOS for use.

Library Reference HiSoft C Page 283

VST_POINT GEM VDI

height = wvst_point(vdi_handle, points, &char_height,
&char_width,
&cell_height, &cell_width);
int vdi_handle, points, height;
short char_height, char_width, cell_height, cell_width;

Selects the height of a character using points (1/72th of an inch) as the units.

VST_ROTATION GEM VDI

vst_rotation{(vdi_handle, angle);
int wvdi_handle, angle;

Specifies the angle of rotation of text characters. Possible values are :
O=normal, 900, 1800 and 2700.

VST_UNLOAD_FONTS GEM VDI

vst_unload_fonts(vdi_handle, reserved);
int vdi_handle, reserved;

Frees the space used by loaded fonts.

VSWR_MODE GEM VDI

mode_selected = wvswr_mode(vdi_handle, writing_mode);
int vdi_handle, writing_mode, mode_selected;

Selects the writing mode (l=normal, 2=transparent, 3=XOR, 4=inverse
transparent).

This function returns the value that has been selected.

VSYNC GEMDOS

Vsync();

Waits until the vertical screen interrupt.

Page 284 HiSoft C Library Reference

WIND_CALC GEM AES

ret= wind_calc(interior, attributes,

Xl =y owliy hig

gx2, &y2, &w2, B&h2);
int Treti: Hinteriior attribiitesoy oty W10 RS
short %2, Y2, w2, hd;z

Calculates the size of a window needed, returned in (x2, y2, w2, h2), to give a
workspace size of (x1, y1, w1, h1) if interior = 0. Or the size of the work
area given the border size if interior =1.

This doesn't apply to a particular window, but is useful for windows in
general.

attributes gives which ‘gadgets’ a window has (see Section 3.2.3).

WIND_CLOSE GEM AES

ret= wind_close(window_no);
int ret, window_no;

Close the window (window_no) which has been opened with wind_open.

The value returned is zero if an error occurs.

WIND_CREATE GEM AES

window_no = wind_create(attributes, x, y, w, h);
int window-no, aittindbulies:, et Ty dWiuhs

Initialises a window without opening it.
The attributes are the same as for open_window.
x,y.w,h are the co-ordinates of the window.

The value returned is the window's handle, or negative if the window cannot
be created.

WIND_DELETE GEM AES

ret= wind_delete(window_no);
int ret, window_no;

Deletes a window (window_no) after it has been closed.

The value returned is zero if an error occurred.

Library Reference HiSoft C Page 285

WIND_FIND GEM AES

window_no = wind_find(x,y);
int window_no, X, ¥

Returns the handle of the window under co-ordinate position (x,y). The
Desktop is window number O,

WIND_GET GEM AES

#include <gemlib.h>

ret= wind_get{window_no, type_info, &x, 8y, &w, &h);
int ret, window_no, type_info;

shoPrt X, =¥y tw, =hp

Returns in the parameters (x, y, w, h) information about the window
depending on the value of type_info:

WF_WXYWH co-ordinates of the work area

WF_CXYWH window co-ordinates

WF_PXYWH previous co-ordinates of the window
WF_FXYWH maximum co-ordinates of the window
WF_HSLIDE position of the horizontal slider (1 to 1000) in x
WF_VSLIDE position of the vertical slider (1 to 1000) in x
WF_TOP handle of the top window in x

WF_FIRSTXYWH co-ordinates of the first clipping rectangle
WF_NEXTXYWH co-ordinates of subsequent clipping rectangles
WF_HSLISIZ size of the horizontal slider (1 to 1000) in x

W VSIELSTZ size of the vertical slider (1 to 1000) in x

The value returned by this function is 0 if an error occurs.

WIND_OPEN GEM AES

ret= wind_open(window_no, x, ¥y, w, h);
Fht et s W Endow oL Xy YW,

Opens a window that has been created with wind_create. The co-ordinates
should be the same as, or smaller than the co-ordinates given to
wind_create.

Page 286 HiSoft C Library Reference

{ 2 (

(

WIND_SET GEM AES

#include <gemlib.h>

ret= wind_set(window_no, type_info, x, y, w, h);
int ret, window_no, type_info;

fink o, VopsiMy oh;

Sets, using the parameters (x, y, w, h), the attributes of the window
window_no depending on the value of type_info:

WF_KIND the window attributes

WF_NAME the window title (x top 16 bits, y bottom 16 bits)

WF_INFO the window information line (x top 16 bits, y
bottom 16 bits)

WF_CXYWH window co-ordinates

WF_HSLIDE position of the horizontal slider (1 to 1000) in x

WF_VSLIDE position of the vertical slider (1 to 1000) in x

WF_TOP handle of the top window in x

WF_HSLISIZ size of the horizontal slider (1 to 1000) in x

WF_VSLISIZ size of the vertical slider (1 to 1000) in x

WIND_UPDATE GEM AES

#include <gemlib.h>
ret= wind_update(param);
int ret, param.

Permit or ban certain of GEM's automatic control of the system depending on
the value of param:

BEG_UPDATE The application is writing to the screen. GEM
won't let the user pull down menus or ‘play’ with
windows.

END_UPDATE Cancel the effect of BEG_UPDATE. Menus may be
activated once more.

BEG_MCTRL The application is about to take control of the
mouse.

END_MCTRL Return mouse control to GEM.

The value returned by this function is O if an error occurs.

WRITE UNIX

num = write(nf, buffer, bytes);

int num, nf, bytes;

char *buffer;

Writes bytes to the file number nf that has been opened using open.

buffer is the address from which the bytes are read from the file.

Library Reference HiSoft C Page 287

bytes is the number of bytes to write to the file.

num is the number of bytes that were actually written to the file. Generally
this will be the same as bytes. However num may be less than this if an error
occurs (the disk is full for example).

If the value returned by the function is -1 or is less than bytes an error has
occurred. In this case the variable errno will contain an indication of which
error.

ZB open, read, errno.

XBIOS GEMDOS

ret= xbios(no, argtl, arg2...);

int no;

long ret,argl, arga,--=

Execute an XBIOS function using TRAP #14.

no is the function number.

ret is the value returned by the XBIOS function.

arg1, arg2... are the parameters for the particular XBIOS function.

& bios, gemdos.

XBTIMER GEMDOS

no_it = Xbtimer(timer_no, control_reg, data_reg,
routine_adr);

int no_49t, timer_no, control_reg, /data_reg;
char *routine_adr;

Initialises a 68901 timer.
timer_no (0-3) indicates which timer is to be initialised (A, B, C or D).

control_reg and data_reg are the values (bytes) to write to the control
and data registers of the timer.

Finally the interrupt routine for each timer event is passed as the
routine_adr parameter.

Page 288 HiSoft C Library Reference

Appendix A -
Exercise Answers

Exercise 1

main()

L

printf(The\nl Lo ™) ;
printf("How are\nyou ?\n");
printf("press a key\n");
evnt_keybd();

¥

Exercise 3

char chi, €ch2;

main()

{
ch1l = evnt_keybd();
ch2 = evnt_keybd();
putchar(ch1);
putchar(ch2);
evnt_keybd();

¥

Notes :

e The variables ch1 and ch?2 could be declared as char, short or int -
it does not matter.

¢ More than one variable can be declared in the same statement by
separating them with commas.

Exercise 4

e RS =V as i

main()

{

printf("Here are three values : %d, %d and %#d\n",v1,v2,v3);

evnt_keybd();
b

There is nothing complicated here. The evnt_keybd () call just waits
for a key to be pressed so you can admire the results of the program.

Exercise Answers HiSoft C Page 289

Exercise 5
int num;
main()
{
num = Random ();
if (num%2 == 1)
£
printf("The number %d is odd\n", n);
num = num + 1;
¥
else

printf("The number %d is even\n", n);
evnt_keybd();
a7

If the number num is odd, we write a message to this effect and add
one to this number.

If num is already even, we just need to write a message on the screen.

Exercise 6
int iz
main()
{
i = 207
while (i)
{
printfcd has square Zd\a¥, 1, 1%1);
T==5
by
evnt_keybd();
}
There’s a bizarre bit in this program, i--. This is actually very

simple. These three characters subtract one from i. This is
equivalent to the instruction:

qea= i =

But i--, takes less time to write and can execute quicker.

Page 290 HiSoft C Exercise Answers

.

There's a similar trick to add one to a variable. For example to add one
to the variable sum we can write

sum = sum + 1;
or equally well :
sum++;

There’s another trick in this program. A condition is either true or
false. False is represented by zero. True is represented by any other
value. Thus 0 is taken as false and any other value as true.

In our example the condition in the statement while (i) is
therefore true whilst the variable is not zero. The set of two
instructions are thus executed until i is zero. When i becomes O the
program stops.

Exercise 7

JinAesay
main()
{
for(i = 20; 10 ; d=-=)
praintf{*sd squared s “d\n", 1 A*);
evnt_keybd();
>

The variable i varies between 20 and 1 in the loop.

i-- is used to subtract 1 from the variable i.

Exercise 8
D [
main()
{

sum;

sum = 0;
figirs 1 = T; 1 == 1005 34+
sum += 1i;
evnt_keybd();
>

The variable sum contains the sum of the hundred numbers. The
variable i is the index that varies from one to a hundred.

The instruction
sum += 1;

looks a bit funny. And in fact it is. This is equivalent to

Exercise Answers HiSoft C Page 291

sum ="sum-+ 92

The only difference is that it is to quicker to type and execute.

The operators -= /= *= %= work in a similar way:

sum == 1i; sum = sum -
sum /= 1i; sum = sum /
sum *= i; sum = sum *
sum %= 1i; sum = sum %

The statements on the left are equivalent to the
right in the above table.

The operator % is the remainder operator.
The statement

i+

is used to add 1 to i as we have seen in Exercise 6.

Exercise 9
int ch;
main()
{
for: Cch =327 ch < 256; ch++)
£
putchar(ch);
1 CGehi s 16 == 02
pEant N)
>

evnt_keybd();
X

iz
i
iz

1

statements on the

This program displays the characters for the ASCII codes 32 to 255.

The statement:

putcharCch);

writes the character corresponding to the ASCII value in ch.

Page 292 HiSoft C

Exercise Answers

3 -

The conditional

sefitieth M6 == 0
prantf e nt);

is to tidy the display. The program writes 16 characters per line.
After 16 have been written, i.e. when i is divisible by 16, then the
following characters are written on the next line. To do this HiSoft C
executes the statement:

o il i M AN R L

which puts the cursor on the start of the following line.

Exercise 10

Here's the version of the program using a switch statement:

char™ c;
main()
{
do
{
c = evnt_keybd();
switeh (ic)
{
case 'a'
case 'b':
case 'A'
caisieni i B":
putchar(c);
break ;
default :
puitic hapi¢ %) 3
}
}
vihiilEer ~Gel T=sat s
T

The variable ¢ is of type char; it's used to store the character that is
typed at the keyboard.

We've used a do...while loop to repeat the reading of a character
and the echoing on the screen.

Exercise Answers HiSoft C Page 293

The C language lets us manipulate constants that represent the
ASCII code for characters. In fact these constants are of integer type.
The syntax for these character constants is that they are enclosed in
single quotes. So you can write, for example,

c = 'a' ;
This instruction stores the ASCII code for a in the variable c.

These constants can be used anywhere an integer constant could be
used, in particular in switch statements. The ASCII code for A is 65,
so case 'A' is equivalent to case 65.

In our example, if the character typed on the keyboard is a, b, A or B,
then it is echoed to the screen using the statement:

putchar(c);

Remember that putchar is a function to write a character on the
screen. Its parameter is the ASCII code of the character to write. The
default part lets us cope with all the other characters. If the key
pressed is not a or b then a star is written on the screen.

The looping condition is (¢ != ' '). This is to test if the space bar
was pressed. ' ' represents the space character; it is a single space
between two apostrophes.

The two characters != mean “is different to”. This is equivalent to <>
in BASIC. Note that the test “is equal to” which is = in BASIC, is == in
C. C distinguishes between the assignment operator which is written
with a single equals sign and the equality operator which is two
equals signs.

The following program is equivalent to the previous one but it uses an
i f statement instead of a switch.

char ¢z
main()
{
do
{
¢ = evnt_keybd();
if (c=='a' || c=='b"' || c=='A' || c=='B')
putchar(c);
else
putchar('*'};
i
whillel tg 1= "1 ")z
T

Page 294 HiSoft C Exercise Answers

h

You can see that the variable c is of type char. The program loops
reading a character and then writing one to the screen.

In place of the switch statement we've got an if statement. The
condition is a bit odd. The expression c=="a" tests if the variable c
contains the ASCII code for the character a. We also test if ¢ is equal
to the codes for the characters b, A and B. Between these four tests
there are a two vertical bars | |. They mean “or” and are equivalent to
OR in BASIC. The if condition in the program above is therefore:

if(cisequalto 'a' or cisequalto 'b' or c isequal 'A’' or c is equal
to "B

In this case we echo the character to the screen, otherwise (else) we
display a star.

Exercise 11

main()
{
none();
}
none()
{
35

Another version:

main{(){none();;Ynone(){}

Exercise Answers HiSoft C Page 295

Exercise 12

char cc;
int value;
main()

i
printf("Type two numbers separated by a space,\n");
printf{("then press Return\n ");

printf("Sum = %d\n", read_number() + read_number());
evnt_keybd();

b

read_number ()

{

value = 0;

c==geticharnt):
while (digit(c))

{
value = value*10 + c-'0"';
¢ = getchar ()

T

return (value);

T

digitCch)

char ch;:

{

if (ch >= "0 & ch <= '"9%)
return (1);

else
return (0);

X

The function digit has a parameter. It is a character. If it is a digit
the function returns 1 (true). If not it returns 0 (false).

The two characters && mean “and”. This is equivalent to BASIC's
AND operator. The condition:

chide= V0 =RE ol == g
istrueif ch >= '0' and ch <= '9' are both true.

Thus digit(ch) is true if it is a digit, and false otherwise.

Page 296 HiSoft C Exercise Answers

The read_number function reads a positive number from the
keyboard. The digits are read one by one as they are typed using the
statement:

c = getchar();

The variable va lue contains the value of this number. It is calculated
as the individual digits that make up the number are read.

The expression ¢ - '0' represents the value of the digit between 0
and 9 when c contains the ASCII code of a digit between '0" and '9"'.

For example, suppose we have already typed the two digits 10 on the
keyboard and then press 5 to make 105. The value variable will
contain 10 and c¢ will be '5' for this digit. c-'0" is 5, so
value*10+c-'0" is 105.

Finally the variable value is returned to the main program.
The main function has three printf function calls. The third one

displays the value read_number() + read_number (). This is the
sum of the two numbers that have been read from the keyboard.

Exercise Answers HiSoft C Page 297

Exercise 13

The program below is well commented. The comments are enclosed
with /* and */ character sequences.

int winl, winZ;

main()

{

/* open window 1 */

win1 = open_window(4095, 20, 20, 200, 150,

wENEimdiowWs s, - tpress.sa key)
/* write to the window */
print.window(winl, "hi 1");

print_window(win1, "This is window 1");
evnt_keybd();

/* open a second window */
win2z = open_window(40%95, 200, 80, 200, 110,
* owindow 2 Y, Y press a key: ")’
/* position the text in window 2 Line 4 column 2 */

pos_window(win2, 4, 2);

7% wpite "hi V" an window 2 “lLine' 4 wcolumn 2 */
prinit SwiandowCwing,; Sthd o b
evnt_keybd();

/* clear inside window 1 */
clear_window(win1);

evnt_keybd();

/* clear inside window 2 */
clear_window(win2);

evnt_keybd();

/* write to window 2 */
print_window(win2, "This is window 2");
evnt_keybd();

/* close window 2 */

close_window(win2);

/* clear inside window 1 */
clear_window(wini);

/* write in window 1 */

print_window(win1, "This window 1 again");
evnt_keybd();

/* close window 1 */

close_window(win1);

)

Page 298 HiSoft C Exercise Answers

Exercise 14

int window;
It X, Y, Wr D

ik e
main()
{
x = Random() % 100;
y = Random() % 50 + 20;
W = Randomi) % “600-x) + 50;
h = Random() % €200-y) + 50;
Wwindow = open_window(4095, x, y, w, h,
Umonre Sy - press a skey)
size_window(window, 8&x, &y, &w, &h);
for G = ywhe 4 F g g == 4)
draw(x+w, i, x, y+h);
For (4 = X*wy A > oxy i == 61

dnawbil, ™ ¥, oo, iyt hi)s
evnt_keybd();
close_window(window);

}

The integers x,y,w and h represent the size of the window. They are
defined with the help of the four calls to the Random function.

Then the window is opened. All the gadgets are drawn because the
the first parameter to open_window is 4095.

The size_window function stores the size of the usable area of the
window in x,y,w,h. This is not the same as the original size of the
whole window because of the presence of the sliders, title etc.

The for loops draw the lines as rays from the bottom left corner at
co-ordinates (x, y+h)

The program then waits for a key to be pressed and closes the
window.

Exercise Answers HiSoft C Page 299

Page 300

HiSoft C

Exercise Answers

~

Appendix B
HiSoft C Language
Reference

HiSoft C for the ST corresponds to the language described in
Kernighan & Ritchie in their book "The C language" (first edition).

B.1 Lexicographic elements

A lexicographic element is the smallest unit in the language. They are
the bricks that make up a program.

B.1.1 The keywords

The following words are the keywords of the C language. They must
be typed in lower case,

break case char continue
default do double else
extern float for goto

i°F int long register
return short sizeof static
struct switch typedef wunion
unsigned void while

These words can only be used as keywords.

The names of library functions are also considered keywords. They
must only be used for calling these functions. You may not re-define

a library function identifier.

When you type the name of a library function, only the first eight
characters are required. HiSoft C can automatically add the
remaining characters. For example, if you type vst_unlo HiSoft C
automatically displays vst_unload_fonts.

Language Reference HiSoft C Page 301

|B.1.2 Identifiers

A C identifier represents a variable.

It is made up of a set of alphanumeric characters. Only the first eight
characters are taken into account.

The legal characters in an identifier are letters (upper or lower case),
digits and the underline "_". Identifiers may not start with a digit.

»

Upper and lower case letters are considered different. Thus, ident is
not the same identifier as IDENT, N

B.1.3 Integer constants

Integer constants may be expressed in decimal, hexadecimal or octal.

o A decimal constant is a sequence of digits which does not start %
with zero.

° An octal constant starts with a zero and is followed by a set of
digits between 0 and 7. An error message is given if 8 or 9 is used =~
in an octal constant.

3 A hexadecimal constant starts with a 0, followed by an x or X _
and a sequence of hexadecimal digits. The hexadecimal digits
are 0 to 9, a to (or A to F) with the letters indicating the values
10 to 15 respectively.

A constant may be followed by a letter L or L which indicates that the
constant is of type long.

Note that a sign does not make up part of a constant but is
considered a unary operator.

B.1.4 Floating point constants

A floating point (or real) constant is a collection of the following -
elements: ;

a whole part, decimal point, fractional part, exponent.

The decimal point and fractional part or the exponent may be
omitted, but not both.

All floating point numbers are considered double precision.

Page 302 HiSoft C Language Reference N,

B.1.5 Character constants

A character constant consists of a character enclosed in two

apostrophes: 'A".

There are ways of writing certain special characters:

TN new line

UNTbi backspace

N tab character

"\ carriage return (no linefeed)
R apostrophe

N null character

You can also create character constants by specifying their ASCII
code in base 8,10 or 16: '\23' (character with ASCII code 23

decimal), '\012' (character with ASCII code 12 octal) or '\x45"

(character with ASCII

The value of a character constant is an unsigned integer equal to the

code 45 hex).

ASCII code for the character.

[B.1.6 String constants

A string constant consists of a set of characters enclosed in double

quotes and may include all the possible special characters (\n, 0xc¢
etc, as described abaove.

A double quote may be included in a string constant by using \".

Strings may be of any

HiSoft C inserts a null character (code 0) at the end of every string to

mark its end.

length, even O characters.

The value of a string is a pointer to the first byte of that string. Thus,

when the interpreter encounters the string "qwerty" it returns the

address where the string is stored in memory not the string itself.

Language Reference

HiSoft C

Page 303

B.1.7 Operators

=
An operator consists of one, two or three characters.
Single character operators: -
RS e e e B e B e e e e e
Multi character operators .
Y em sERETSS e, R S e S Ss B AN ape s L
- 4= * = = y L A= |= <<= >5>=
These operators consisting of several characters may not have their
components separated by white space.

-
B.1.8 Comments
Comments start with /* and finish with */. e

Comments may not be nested.
They must be opened and closed on a single line. The HiSoft C editor :
will not let you enter comments that are not closed.

When loading a file containing comments that are several lines long, -
HiSoft C automatically inserts the /* and */ symbols at the start
and end of each line.

[B.1.9 Separators

The separators split up the lexicographic elements. These are spaces, S
tab characters and end of line characters.

The ; (semi-colon) character terminates statements.

The curly brackets { and > characters are used at the start and end
of blocks of statements.

Page 304 HiSoft C Language Reference

p

B.2 The Pre-processor

B.2.1 Define

The #define directive has several differences to that given in K & R
because HiSoft C is interpreted rather than compiled.

The syntax is as follows:

#define name constant

#define name{(argl, arg2,...) expression
(without a semi-colon at the end).

The value given in #define must be used in expressions. A macro
may not be used outside of expressions.

Thus it is impossible to re-define a type in this way:

#define int WORD

You must use typedef instead.

It is also illegal to define a variable with the same name as a macro.

Nested defines are also illegal. That is a define may not reference a
value that is given by another define.

You can also write:

#define PI 3.141592
#define hello "hello"

to define both floating point and string constants.
Examples :
#define SIZE 512

#idefine URPEREa) €CGad .>= LAY 8% (a) s= YZE)

Language Reference HiSoft C Page 305

B.2.2 Include

The #inciude directive loads a header file. The syntax is

#include "file_name”
#include <file_name>

The version with double quotes looks for the file in the current
directory. The version with greater than and less than signs looks in
the \header directory on the current drive.

Include files may themselves include other files.

[B.2.3 Conditional Interpretation

It is possible to either interpret, or not interpret depending on a
condition. This is performed with the help of the #if, #ifdef and
#ifndef directives.

#if expression

is true if the expression is non-zero (and if the identifiers in the
expression are properly defined).

#ifdef didentifier

is true if the identifier is defined.
#ifndef identifier

is true if the identifier is not defined.

If one of these three directives is used there must be a following
#endif.

So, if the condition is true the lines between the #if and the #endi f
are interpreted. If the condition is false these lines are ignored.

The #else directive may be used. This causes lines between an if
directive and the #else to be interpreted if the condition is true and
the lines between the #else and the #endif to be interpreted if the
condition is false.

Page 306 HiSoft C Language Reference

Example:

#if LABEL
/* lines interpreted if LABEL is non-zero */

#else

/* lines executed if LABEL is zero */

fendif

The identifier I1¢ is always defined as 1 so that code may be added
that will only be used under the HiSoft C interpreter.

B.3 Operators

The C language operators are summarised below together with their
priority:

15 @) function call
15 L1 array index
15 . direct selection of a structure element
15 =z indirect selection of a structure element
14 * indirection
14 & address calculation
14 = unary minus
14 ! unary logical negation
14 E bitwise negation
14 i increment
14 e decrement
13 * multiplication
13 / division
13 % modulus
12 + addition
i = subtraction
il << shift left
11 >> shift right
10 < less than comparison
10 > greater than comparison
10 <= less than or equals comparison
10 >= greater than or equal comparison
9 == equality comparison
9 = inequality
8 & bitwise AND
7 2 bitwise exclusive OR
6 | bitwise OR
5 &R logical AND
Language Reference HiSoft C Page 307

logical OR

conditional operator

simple assignment

B} BOF COF >

A I
1

= A S 4§ o) —

W=
g=

= operation & assignment
>>=
o=

1 ’

sequential evaluation

Operator priorities may be changed by using parentheses.

B.4 Variable types

HiSoft C recognises all the types defined in K&R.

IB.4.1 Simple types

void the type of a function that doesn't
return anything. This type may only
be used with functions and may not
be used with structured types

char 8 bit unsigned integer

short 16 bit signed integer

unsigned short

16 bit unsigned integer

Tatk

32 bit singed integer

unsigned int

32 bit unsigned integer

Long

32 bit signed integer

unsigned Llong

32 bit unsigned integer

float 64 bit double precision floating point
in IEEE format
double 64 bit double precision floating point
in IEEE format
Page 308 HiSoft C Language Reference

[B.4.2 Structured types

As well as the simple types described above, types may be
constructed from other types:

o Arrays of any type
° Pointers to any type
° Functions returning a particular type

e Structures consisting of simple types, arrays, pointers, unions
or other structures.

e Unions containing simple types, arrays, pointers, structures or
other unions.

The rules for building structured types can be used recursively, so
that an array may contain arrays and a pointer may point to an
array of structures which contains pointers etc.

Be careful; in HiSoft C the maximum number of array dimensions is
16 and for the same reason the maximum depth of pointer
indirections is 16.

B.5 Declarations

A variable declaration is constructed as follows:

memory_ class type decl 1item1, decl_item?2,...;

[B.5.1 Memory classes

Memory classes indicate where the declared variable is to be
physically stored. It may be stored in ordinary memory, on the
stack, in a register or even in another module.

The class also indicates the scope of the variable, that is to say, the
area of the program where the variable may be accessed.

Language Reference HiSoft C Page 309

The memory class may be omitted. In this case if the variable is
declared outside a function the variable is considered global to the
module. If the variable is declared within a function it is considered
local to that function. No more than 40 local variables, including the
parameters may be declared within a function. This would be very

poor style, you should split the function into several smaller ones.

The available memory classes are as follows:

extern

indicates that a variable is declared in another
module.

static

indicates that the scope of the variable is
strictly limited to the module/function in
which it is declared.

register

used inside a function definition indicates
that the variable is to be stored in a register
rather than on the stack.

typedef

indicates that the “variable” declared is to be
considered a new type of variable. This new
type is equivalent to the type specified in the
typedef.

|B.5.2 The type

The type part of a declaration consists of one of the types described

above or a name defined using typedef.

The typedef is optional when declaring functions. In this case the

function is taken as of type int.

[B.5.3 Declared items

The following element in a declaration is a list of declared items,

separated by commas if there are several.

A declared item consists of an identifier (the name of the variable)
together with characters indicating if it is a pointer, a function, a

structure or an array, separated by commas if there are several.

A declared item may contain an initialiser preceded by an = sign.

Page 310

HiSoft C Language Reference

[B.5.4 Initialisers

For variables which are declared outside functions (global variables),
simple, pointer and array types may be initialised. However
structure types may not be initialised.

For variables declared inside functions, only simple and pointer
types may be initialised. Thus it is impossible to initialise arrays or
structures within functions.

B.6 Statements

HiSoft C supports all the statements described in K&R.

if else

while

do while

fioir

switch case default
break

continue

return

goto

A break instruction in a switch statement may only be used at the
end of a list of statements. Thus you may not use:

caser "%

i Gan)

£
e
break;

i

a++;

break;

default:
[RESetic o X

The program section above should be replaced by

case Ui
T a)
a==i
else
a++;
break;
default:
% eite. i %

Language Reference HiSoft C Page 311

The goto statement must reference a label in the same C block as the
goto statement itself. It is impossible to goto another block.

A C block is a sequence of statements enclosed in curly brackets.

The following two programs are not accepted by HiSoft C:

{
{
goto here;
here:
£
>
and
here:
{
goto here;
¥

On the other hand, the following is allowed:

£
here:
{
Ty
if (cond)
goto here;
iy

B.7 Operations on types

@.7.1 Pointer conversions

A pointer to a type may not be assigned to another pointer if it is not
of equivalent type (the same level of indirection) without an explicit
type conversion.

Page 312 HiSoft C Language Reference

So, storing an integer in a pointer variable gives an error message
unless you use a cast.

£

char *p;

o W s

p-= 1i; % Gl leaal *¥
p = Ccharx)i; /* allowed * /
¥

Be careful when assigning a pointer to an integer. Except with
pointers to characters, pointers must have even addresses; using
odd addresses will give an error message.

[B.7.2 Arrays and pointers

Arrays and pointers are strictly equivalent. In practice, the
statement tabLindex] is converted to *(tab+index).

When adding an integer to a pointer the value of the integer is first
multiplied by the size of the object that the pointer points to.

So, if p is a pointer to int, p+1 adds 4 to p (4 * the size of an int).

[B.7.3 Functions

As far as HiSoft C is concerned there are two classes of functions:

e HiSoft C library functions and loaded compiled (or assembled)
functions. These are stored in machine language and are executed
directly by the 68000.

e User functions written with the Interpreter's editor. These
functions are stored in source form and are not executed directly by
the 68000 but are interpreted by HiSoft C.

These two classes of functions are distinct; the 68000 cannot execute
an interpreted C routine and HiSoft C cannot interpret a library
function. This differs from a compiled C program where all functions
are in 68000 code.

With an interpreted C function there are two ways of calling it. You
can call it directly or find its address and store this as a pointer to a
function. This provides a method of passing functions as parameters
to other functions.

Language Reference HiSoft C Page 313

With a compiled C function (library function or a compiled one that
has be loaded) you can only call it; it is not possible to find its
address, this will give an error message.

Thus HiSoft C pointers to functions can only point to interpreted
functions not compiled ones.

[B.7.4 Structures and unions

The possible operations on pointers are accessing one of its
members, (via "." or "->") or calculating its address. All other
operations, such as assignment or passing as a parameter, are
illegal.

When you access a structure member (using *." or "->"), the
identifier on the left hand side must be a structure (with ".") or a
pointer to a structure (with "->"), and the identifier on the right
must be a member of a structure or union.

Page 314 HiSoft C Language Reference

AppendixC
Error Messages

Here is a detailed commented listing of HiSoft C's error messages.

C.1 Interpreter Error Messages

When an error is found whilst running a program, a window opens
with a description of the error that has occurred. Finally the cursor
is positioned at the precise place that the error was found. However
sometimes the actual cause of the error may be elsewhere (e.g.
omitting a declaration).

0 Program execution stopped

The program has been interrupted. The user has pressed two of the
Control, Shift or Alt keys. Alternatively a stop, exit or abort
statement has been encountered.

1 Syntax error

HiSoft C does distinguish between some little syntax mistakes. This
error doesn't appear as frequently as with some BASICs!

2 Missing ;

A semi-colon was expected at the end of a declaration or statement.

3 Missing parenthesis

A parenthesis has been opened but not closed or vice versa.

4 Out of memory

You've run out of memory. Well done! Seriously though, try removing
Desk accessories, ramdisks or other memory resident programs.

Error Messcages HiSoft C Page 315

S Missing integer

HiSoft C was expecting to find an integer, perhaps, as an array index.
Empty array indices are only allowed in function parameter

declarations.

(<] Too many dimensions

The maximum number of dimensions in an array and the maximum
number of indirections off a pointer is 16.

7 Duplicate declaration

A global variable has been declared twice. This is strictly illegal.
Neither may you have two structure field identifiers with the same
name.

8 Undefined structure name

A reference has been made to a structure that has not been defined.
Please define it.

9 Missing structure name

HiSoft C has expected to find the name of a structure but it has found
something else.

10 Empty structure

Either there are no elements declared in the structure or the
structure name is used with indirection.

11 Missing identifier

HiSoft C expected to find a variable identifier. This error can occur if
you omit the parameters in a function definition.

12 Duplicate declaration of local variable

A local variable is declared twice within the same function.

Page 316 HiSoft C Error Messages

13 Bad type for a function argument

Function arguments may not be of type function, union or structure.

If you need to pass a union or function as a parameter, pass pointers
to them.

14 Name mismatch in the parameter list

The function argument list and the declarations of those arguments
disagree.

15 Too many local variables

The maximum number of local variables in a function (together with
parameters) is 40. This error is probably due to very bad
programming style; split your function up.

17 Parameter not declared

A parameter is present in the argument list but there is no
declaration for it.

18 Missing }

A block has been opened using { but not closed with . Use the Home
key (see the Cursor key item on the Help menu).

19 Undefined label

There is a reference to a variable that has not been declared. Perhaps
it has been mistyped.

20 lllegal function declaration

There is an error in the declaration section of a function, or the entire
body (the statements) has been omitted.

21 Variable type error

The type specified is illegal. For example there is no such thing as an
unsigned struct.

Error Messages HiSoft C Page 317

22 No reference to local label

A local variable has been declared but is not used.

23 Missing main function

The function main has been left out. Every program must have a
function main so that execution can start.

24 Keyword found in an expression

A language keyword has been found in an expression.

25 “Ivalue" required

An “Ivalue” is a value that you can assign to, i.e. can appear on the left
of an = sign. You can have a=1; because a is an Ivalue. But 1=5 is
illegal because 1 is not an Ivalue.

So this error occurs when the left hand side of an assignment
statement is illegal.

It will also happen when using & the “address of" operator. The
argument to this must be an Ivalue. Note that the name of an array is
not an lvalue.

26 Pointer assigned to an integer

HiSoft C forbids assigning pointers to integers without using a cast.

27 Integer assigned to a pointer

HiSoft C forbids assigning integers to pointers without using a cast.

28 Pointer type mismatch, operator '=

You cannot assign a pointer value to another one, unless they point
to the same type, without using a cast.

29 llegal operator for pointer arguments

For example, pointers can not be multiplied together.

Page 318 HiSoft C Error Messages

30 Division by zero

An attempt to divide by 0 has been made. Often this will be caused by
a variable that has been assigned an inappropriate value.

naEn

31 Integer used with operator

The indirection operator * must be followed by a pointer or array.

32 Pointer used instead of an integer

A pointer, rather than an integer has been used to index an array.

33 Incorrect pointer value

The interpreter has spotted the use of an un-initialised pointer, and
rather than crashing the machine gives you this error message.

34 DO without WHILE

A D0 statement has been found, but there is no corresponding
WHILE. Perhaps some curly brackets have been added or left out.

35 ELSE without IF

An ELSE statement has been found, but there is no corresponding
WHILE. Perhaps some curly brackets have been added or left out.

36 CASE without SWITCH

A CASE statement has been found, but there is no corresponding
SWITCH. Perhaps some curly brackets have been added or left out.

37 DEFAULT without SWITCH

A DEFAULT statement has been found, but there is no corresponding
SWITCH. Perhaps some curly brackets have been added or left out.

38 Missing : in a CASE instruction

The correct syntax of a CASE statement is:

case [expressionl

However the colon has not been found.

Error Messages HiSoft C Page 319

39 Missing CASE in a SWITCH instruction

Immediately after a SWITCH statement there must be either a CASE
(or DEFAULT) statement, but there is something else instead.

40 Missing { in a SWITCH instruction

Immediately after a SWITCH statement there should be a curly
bracket. For example:

switch (a)
{
case 1= xeticiiry

41 Missing parameters in function call

A HiSoft C library call has been made and there aren't enough
parameters. Alternatively you may have got the function name
wrong. The Help command can be used to check the number of
parameters.

42 Missing , in a function call

Each parameter should be separated by a comma. A character that is
neither a , nor a) has been found after a parameter.

43 Unknown operator

Error in an operator. Or perhaps you have used a unary operator as
a binary one or vice versa. e.g. ++, --, ! and ~ can only be unary
operators. Thus i++ is legal but i++j is not.

44 Too many parameters in a function call

A HiSoft C library call has been made and there are too many
parameters. Alternatively you may have got the function name
wrong. The Help command can be used to check the number of
parameters.

45 Floating point value used with SWITCH

Only integer or pointer values can be used in SWITCH statements, not
floating point ones.

Page 320 HiSoft C Error Messages

46 Bad type for a function name

An attempt to pass an entire structure to a function has been made.
Only pointers to structures may be passed.

47 Bad function pointer usage

An attempt has been made to use a pointer to a function as a
function. For example,

char (*fct[51)() /* declare an array of pointers */
fete); FEealEl S HuneETanT Y

To access an element in the fct array the following should be used:

fog £ ISEG) f* call function */

48 Stack full

There have been too many recursive function calls and the stack has
overflowed. This is almost certainly because of a programming error.
For example,

function()

{
T
G oy e
function();
7

49 Bad usage for BREAK or CONTINUE

BREAK and CONTINUE statements may be used inside WHILE, DO or
For loops to change the order of execution. BREAK statements may
also be used in SWITCH statements. All other uses of these
statements are illegal.

50 Bad value for shift number

The second argument of << and >> (the shift operators) must not be
negative.

51 Integer value required with this operator

The logical operators (*, ~, |, &) and modulo (%) can only be used with
integers, not floating point numbers.

Error Messages HiSoft C Page 321

52 Floating point parameter expected

A library function needing a floating point number has been passed
an integer instead.

53 Structure identifier expected

Only structure variables may be used before the "." and "->"
operators.

54 Structure item expected

A field structure name must be used after the ".” and "->"
operators.

55 You can't use this operator on structure type
Using "." on a pointer to a structure or using "->" on a structure
variable.

56 Forbidden usage made on structure type

This operator may not be used on a structure variable. & to find the
address may be used and members may be accessed using " .". Apart
from this all others are forbidden.

57 Forbidden character

An illegal character not recognised by the language, has been found
outside a string or comment, for example a control character or
character greater than 127.

58 Missing ‘(' after a library function name

This message is also given if you try to calculate the address of a
library function.

59 Missing variable type

The name of the type of a variable is expected after sizeof.

60 Incorrect variable type

An array type can not be used with sizeof or casts.

Page 322 HiSoft C Error Messages

S

61 Preprocessor keyword expected

A preprocessor keyword is expected after a # sign.

62 Missing ':' after '?'

The only valid character after ? is the : of the 7: conditional
operator.

63 Bad function return value

The value in a return statement is not the same as in its declaration.

64 Too many items in an initialization

Too many items have been used in an initialiser (normally an array)
to match the declaration.

65 Macro name expected after #define

A non-empty macro name is required after a #define.

66 Empty macro definition

The entire body of a macro may not be empty.

67 Forbidden operator in an initialization

Only constants may be used in initialisers. For example, you can't
call a function inside a macro.

68 You cannot initialize aggregates

 struct type variables may not be initialised.

69 File name expected after #include

An invalid file name has been used after #include,

70 Too many include files

No more than 8 include files may be loaded at the same time.

Error Messages HiSoft C Page 323

71 You must check the "link at runtime" option to
use #include

To use the #include facility you must first select the Link at runtime
option on the Run menu.

72 Cannot load include file

The include file can not be loaded. It needs to be in the \HEADER
directory on the drive that HiSoft C was loaded from if < and > have
been used and in the current directory if quotes are used.

73 Bad type usage

Error in a type when using sizeof or a cast.

74 Bus error

68000 exception. An attempt to access an illegal address has been
made, such as one of the ST's low memory variables.

75 Odd Address access

68000 exception. An attempt to indirect using an odd address has
been made.

76 Unknown instruction

68000 exception. An illegal 68000 instruction has been encountered.

Fe Division by 0

68000 exception. An attempt to divide by 0 has been made.

78 CHK instruction

68000 exception. An exception has been generated by a CHK
instruction.

79 TRAPV instruction

68000 exception. An exception has been caused by a TRAPV
instruction.

Page 324 HiSoft C Error Messages

80 Supervisor mode required

68000 exception. An instruction that can only be used in supervisor
mode has been encountered.

81 Trace mode

68000 exception. An exception has been generated because we are in
trace mode.

82. Cannot initialize a local complex type variable

Arrays and structures that are local to a function may not be
initialised. See Appendix B.

83 Goto out of local block

goto's may not reference a label that is not in the same C block
({...}) asthe goto. See Appendix B.

84 Label name expected after goto

An item which is not an identifier has been found after a goto or the
identifier used is declared as a variable.

85 #endif or #else without #if

A #endif or #else directive has been found without an associated
#if, #ifdef or #1ifndef.

86 #endif expected after #if

A #if directive has been used, but the end of the text has been found
without encountering a #endi f.

87 This label is already used in the function library

An attempt to re-define a variable which is already used in a library
function has been made.

Error Messages HiSoft C Page 325

C.2 Editor Error Messages

101 Cursor is inside the block. Can't copy the block

You may not copy a block to a position inside that block.

102 The line is too long. Maximum length is 127 chars

The length of lines is limited to 127 characters.

103 This line number does not exist

You have entered a non-existent line number (there aren't that many
lines in the file).

104 No more windows!

All the GEM windows have been used up. Close desk accessories or
return to the Desktop.

105 You ran out of memory...

You've used all the available space.

106 The file you want to load does not exist

If this error occurs after the use of #INCLUDE make sure that the
disk containing the HEADER folder is present in the drive from which
HiSoft C was loaded.

107 Search failed: String not found

108 Disk error or disk full

Either the disk is full or the disk can't be read or written to, perhaps
because there is no disk in the drive.

109 Comment is not closed on current line

A comment must only be one line long. Add a */ at the end of the line.

Page 326 HiSoft C Error Messages

-

110 Error in char or int constant on current line

HiSoft C has found the start of a constant (octal beginning with 0,
hex beginning with 0x or a character beginning with ') but it is
incorrectly formed.

111 Can't find end of string on current line

A string of characters must be closed on the same line as it is opened.
Perhaps there is a " missing.

112 Syntax error in macro command

The contents of a macro command, given by shift and a function
key is wrong.

113 | can't give you help about this keyword

There is no help file corresponding to this keyword.

114 Error in project file line XXX

The contents of the project file that you are trying to load has an
error on the given line.

C.3 Loading Error Messages

The following errors may be given when HiSoft C is loading: :

| can't load the resource file

Make sure that you have all the F1.cC to F9.C files present on the
current disk.

| can't run in low resolution

Switch to Medium resolution using the Desktop.

Too much memory left to the system

So there’s not enough for HiSoft C to run. Use the System memory
size command on the Run menu.

Error Messages HiSoft C Page 327

Page 328

HiSoft C

Error Messages

s

Appendix D
Porting programs

D.1 Porting from the interpreter to
a compiler

Compiling a program written in HiSoft C doesn't pose too much ofa
problem if you have a compiler.

HiSoft C is almost totally compatible with Lattice C interpreted
programs can be compiled almost immediately with Lattice C 5: see
the Lattice C 5 manual for details.

With other compilers, you may have problems because of the size of
integers. Aztec C, for example, has a flag to enable 4 byte integers and
you should use this.

Moving to a new implementation of C can be tricky, you need to know
the compiler, include files and libraries well. It is not something
recommended for beginners. One problem to watch out for is that
HiSoft C expects integers to be 32 bit: so you should use the
appropriate compiler flags to ensure that this is the default.

The general procedure to use is as follows:

e Convert the program to ASCII format. HiSoft C interpreted
programs are tokenised in a special way. To convert a program to
ASCII load HiSoft C and choose Editor mode from the File menu (see
Section 1.8). Then load the file and it will automatically be converted
to ASCII and you can save it as ASCIIL

. For some HiSoft C specific functions (the GEM toolbox), the source

is supplied in the SOURCE directory on Disk 2 for you to compile.

If you have used the toolbox functions you will need to compile these
files (compil.c, Libwind.c, Libdial.c, Libmenu.c and
libresou.c) and link with the object files produced. There’'s an
example of a linker file in c. Lnk.

define.h contains some constants that are built into HiSoft C.

Porting Programs HiSoft C Page 329

If you are using Lattice C 5 you need not re-compile the Toolbox: you
can use the library that is supplied with Lattice.

Whichever compiler you are using, you must also rename your main
function to be ic_main. This is because the toolbox has to perform
some initialisation.

D.2 Porting from compilers to
-HiSoft C

Porting programs in the other direction, written for a compiler to the
Interpreter can be more difficult.

First of all because programs run more slowly under the interpreter
than when compiled.

Also some compilers have extensions to the K&R standard (for
example some of the features of the new ANSI C),

The other possible main sources of incompatibilities are the fact that
HiSoft C variables may not have the same name as a library function
and the restrictions on the use of #define. See Appendix B for
details.Remember that HiSoft C uses long (32-bit) integers as
standard, so be especially careful if porting code that assumes that
16 bit integers are being used. See Appendix B for details.

Page 330 HiSoft C Porting Programs

Appendix E

Bibliography

This bibliography contains our suggestions for further reading on
the subject of C, the ST, and GEM. The views expressed are our own
and as with all reference books there is no substitute for looking at
the books in a good bookshop before making a decision.

Please also note that none of these books on C describe HiSoft C for
the ST in particular. Should an example program fail to work as
expected please study the appropriate sections in this manual.

[Books about C

The C programming Language by Kernighan & Ritchie,
published by Prentice-Hall

The C programmer’s bible, which is very expensive, unfortunately.
There are two editions; the first one is more applicable to HiSoft C
(and most compilers). The second edition covers the new ANSI
standard which isn’t implemented by many compilers (at least not
until recently). If you have a lot of experience in, say Pascal, this is
also a good tutorial book.

Learning to program in C by Thomas Plum, published
byPrentice-Hall

A tutorial book which starts from first principles.

The Big Red Book of C by Sullivan, published by Sigma
Press

A cheap tutorial book.

The C programming Tutor by Wortman & Sidebottom,
published by Prentice Hall

A cheaper tutorial from the publishers of K&R.

Bibliography HiSoft C Page 331

C at a glance by Adam Denning, published by
Chapman & Hall

Another low cost tutorial book that mentions the ‘other’ HiSoft C for
Z80 computers.

ST Technical Manuals J

GEM Programmer's Guide Volumes 1 & 2 - VDI and AES
by Digital Research

The definitive guide to the VDI and AES, but marred by mistakes.
Only available to registered developers.

GEMDOS Specification by Digital Research

The definition of the GEMDOS calls. Only available to registered
developers.

A Hitchhikers Guide to the BIOS by Atari Corp

The definition of the BIOS and XBIOS calls, and corrections to the
GEMDOS manual. This is accurate, a good read and updated
regularly. Normally only available to developers.

The Anatomy of the Atari ST by Data Becker/Abacus

This book is the best documentation available for the user who is not
a registered developer. It describes the hardware and non-GEM
aspects of the operating system, including an (out-of-date) BIOS
listing. Thoroughly recommended, despite its inaccuracies.

GEM on the Atari ST by Data Becker/Abacus

This describes programming under GEM, though is not as complete
as the DR manual, but has similar errors. It describes calls mainly
from C, although there is more reference to the 68000 than in the DR
manual. Better than no book at all on GEM.

Page 332 HiSoft C Bibliography

N

h =

Concise Atari 68000 Programmer's Reference
by Katherine Peel, published by Glentop

An alternative to The Anatomy of the Atari ST. It contains information
on the ST's hardware, the operating system and GEM. Its coverage of
the various levels of the machine is comprehensive, though a couple
of sections are very inaccurate and some features are described that
simply don't exist. It is rather difficult to find one's way around as
the layout is based on large numbers of tables and it lacks an index.

Tricks and Tips on the Atari ST by Data Becker/Abacus

This contains a wide variety of material, including an accurate
description of the more esoteric ST BASIC commands, and good
sample listings including a RAM-disk driver and desk accessory.

Bibliography HiSoft C Page 333

Page 334

HiSoft C

Bibliography

N

Appendix F
Technical Support

So that we can maintain the quality of our technical support service
we are detailing how to take best advantage of it. These guidelines will
make it easier for us to help you, fix bugs as they get reported and
save other users from having the same problem. Technical support is
available in four ways:

Phone our technical support hour is normally between 3pm and
4pm, though non-European customers’ calls will be
accepted at other times.

Post if sending a disk, please put your name & address on it.

BIX™ our username is (not surprisingly) hisoft. Would UK
customers please use CIX or more old fashioned methods;
it's cheaper for everyone.

CIX™ our username is (still not surprisingly) hisoft.

For bug reports, please always quote the program, computer and the
version number of the program (the one displayed by the About box)
and the serial number found on your master disk.

If you think you have found a bug, try and create a small program
that reproduces the problem. It is always easier for us to answer your
questions if you send us a letter and, if the problem is with a
particular source file, enclose a copy on disk (which we will return).

Upgrades

As with all our products, HiSoft C is undergoing continual
development and, periodically, new versions become available. We
make a small charge for upgrades, though if extensive additional
documentation is supplied the charge may be higher. All users who
return their registration cards will be notified of major upgrades.

Suggestions

We welcome any comments or suggestions about our programs and,
to ensure we remember them, they should be made in writing.

Bibliography HiSoft C Page 335

Page 336

HiSoft C

Bibliography

j

N

Index

% operator 292

| A

Abandon
edit command 11

ABORT 152

ABS 152

ACCESS 152

ACOS 153

ADR_BOX 153
APPL_EXIT 154
APPL_FIND 154
APPL_INIT 153
APPL_READ 154
APPL_TPLAY 154
APPL_TRECORD 154
APPL_WRITE 155
Arithmetic operators 65
Arrays 89

ASCII code table 38
ASIN 155

Assembly Language functions 47
Assignment 62

ATAN 155

ATAN2 156

ATOF 156

ATOI 156

ATOL 157

Blocks 72
Bottom of File 10
button_box 107, 159

C

CREAT 166
CSCANF 166
CURSCONF 167
curser 5

= B

back-up 2

Backspace 6

BCONIN 157
BCONOUT 157
BCONSTAT 157
BCOSTAT 158

BIOS 158

BIOSKEYS 158

Block operations 32, 33

C block 6

C library 59
Caleulations 65
Calculator 33

Calling Functions 59
CALLOC 159
CAUXIN 159
CAUXIS 160
CAUXOS 160
CAUXOUT 160
CCONIN 160
CCONIS 160
CCONOUT 160
CCONRS 161
CCONWS 161

CEIL 161

CHDIR 161
check_menu 122, 162
CHMOD 162
CLEAR_WINDOW 163
Clearing a window 101
CLOSE 183
close_window 97, 163
CLRERR 162
CNECIN 163
color_box 117, 164
Command tail 24
Compiled C functions 48
Conditionals 68

COS 164

COSH 164
CPRINTF 165
CPRNOS 165
CPRNOUT 165
CRAWCIN 185
CRAWIO 166

DCREATE 167
DDELETE 167
Declaring variables 62
Defining a block 32
Delete 6
delete_menu 121, 167
DFREE 168
DGETDRV 168
DGETPATH 168
Dialeg boxes 104
Disk Contents 3

Disk Options 40

Disk Utilities 52
DOSOUND 169
do...while statement 78
DQSORT 169

draw 103, 169
draw_box 109, 170
draw_menu 121, 170
DRVMAP 170
DSETDRV 170
DSETPATH 171
DUP 171

DUP2 171

ECVT 172

edit_box 113, 172
editable fields 113
Editor 5

Editor configuration 41
enable_menu 122, 173

Index

HiSoft C

Page 337

end of line
editor command 5

ERRNO 173

Error Messages 16
Esc6

Escmode 9

event 126, 175
Events 123
EVNT_BUTTON 175
EVNT_DCLICK 176
EVNT_KEYBD 176
EVNT_MESAG 176
EVNT_MOUSE 176
EVNT_MULTI 177
EVNT_TIMER 177

Execution Environment 24

EXIT 177
EXP 178

B F

F1IC3

FABS 178
FATTRIB 178
FCLOSE 179
FCLOSEALL 179
FCREATE 180
FCVT 180
FDATIME 180
FDELETE 180
FDOPEN 181
FDUP 181

FEOF 182
FERROR 182
FFLUSH 182
FFLUSHALL 183
FFORCE 183
FGETC 183
FGETCHAR 184
FGETDTA 184
FGETS 185

File menu 11
FILENO 185

files
multiple 13

Find 27
Find and replace 29
Find Identifier 32

FLOOR 186
FLOPFMT 186
FLOPRD 186
FLOPVER 186
FLOPWR 187
FMOD 187
Following variables 18
FOPEN 187, 188
for statement 76
FORM_ALERT 188
FORM_CENTER 189
FORM_DIAL 189
FORM_DO 183
FORM_ERROR 189
FPRINTF 190
FPUTC 190
FPUTCHAR 190
FPUTS 191
FREAD 191

FREE 192
FRENAME 192
FREOPEN 192
FREXP 193
FSCANF 193
FSEEK 194
FSEL_INPUT 184
FSETDTA 195
FSFIRST 195
FSNEXT 196
FTELL 196
Function keys 7
Functions 58, 83
FWRITE 196, 197

Go fo line 10
GRAF_DRAGBOX 200

GRAF_GROWBOX 200

GRAF_HANDLE 200
GRAF_MKSTATE 201
GRAF_MOUSE 201
GRAF_MOVEBOX 201

GRAF_RUBBERBOX 201
GRAF_SHRINKBOX 202

GRAF_SLIDEBOX 202

GRAF_WATCHBOX 202

Graphics Text 116
gtext_box 117, 202

H

Help 6, 40

Help menu 35

HiSoft C toolbox 94
Home 6

G

GEMDOS 197
GETBPB 187
GETC 197
GETCHAR 187
GETCWD 198
GETMPB 198
GETREZ 199
GETS 198
GETSHIFT 189
GETTIME 199
GIACCESS 200
Go to last position 11

IABS 203

if statement 68
if...else... 71
IKBDWS 203
Include files 25
init_box 105, 203
init_menu 120, 203
INITMOUS 204
Insert File 12
Integers 63
IOREC 204

IS 205

isalnum 205
isalpha 205
isascii 205
isentrl 205
iscsym 205
iscsymf 205
isdigit 205
isgraph 205
islower 205
isprint 205
ispunct 205
isspace 205

Page 338

HiSoft C

Index

isupper 205
isxdigit 205
item_menu 121, 205

J

JDISINT 205
JENABINT 205

MEMCPY 213

Memory dump 22
MEMSET 213

Menu commands 10
Menu events 127

Menu short cuts 8
MENU_BAR 214
MENU_ICHECK 214
MENU_IENABLE 214
MENU_REGISTER 214

Parameters 85
PEXEC 221
PHYSBASE 222
Pointer Tests 19
pos_window 99, 222
POW 222

MENU_TEXT 215 previous word 5
L K MENU_TNORMAL 215 Print file 38
Menus 119 print_window 98, 226
KBDVBASE 206 MFPINT 215 printf 70, 223
KBRATE 206 MFREE 215 Program info 10
Keyboard events 132 MIDIWS 216 programs.
keyboard shortcuts 8 MIN 216 stopping 15
KEYTBL 206 MKDIR 216 Project Files 48
Keyword completion MODF 216 Project Information 51
Module List 14 Projects 45
modules 13 PROTOBT 227
L MOUSE 217 PRTBLK 227
Mouse events 132 PTERMO 227
LABS 206 MSHRINK 217 PTERMRES 227
LDEXP 207 PUNTAES 227
LINEA 207 ’—N—T PUTC 228
Link at runtime 23 putchar &2, 228
Load file command 11 PUTS 228
LOG 209 next wordword
LOG10 210 next editor command 5 Q
LOGBASE 210
t;osp;;: 210 { O ‘ Quit command 11
LSEEK 210
OBJC_ADD 217
OBJC_CHANGE 218 R
L M OBJC_DELETE 218
OBJC_DRAW 218 radio buttons 110
macro commands 35 OFJCEDIe12 RAND 229
MALLOG 211 OBJC_FIND 219 Random 68, 229
eAE OBJC_OFFSET 219 READ 229
use of 4 OBJC_ORDER 220 readbut_box 110, 229
marks 10 OFFGIBIT 220 README File 4
MATHERR 212 ONGIBIT 220 readsir_box 115, 230
MAX 212 OPEN 220 Real numbers 64
MEDIACH 212 open_window 96, 221 REALLCC 230
MEMCCPY 212 RECT_INIT 230
MEMCHR 213 RECT_INTERSECT 231
MEMCMP 213 RECT_POINT 231
Index HiSoft C Page 339

RECT_UNION 231
Redefining the keyboard 43
Registration Card 3

. remainder operator 292
REMOVE 232

RENAME 233

REPMEM 233

Return 6

Return values 87
REWIND 233

RMDIR 234
RS_ADDRALERT 234
RS_ADDRBUTTON 234
RS_ADDRDIAL 235

RS _ADDREDIT 235
RS_DRAWALERT 236
RS_DRAWDIAL 236
RS_DRAWOBJECT 238
RS_ERASEDIAL 239
RS_OBJSELECT 239
RS _OBJSTATE 239
RS_OBJUNSELECT 240
RS_OBJXYWH 240
RSCONF 235
RSRC_FREE 240
RSRC_GADDR 241
RSRC_LOAD 241
RSRC_OBFIX 241
RSRC_SADDR 241
Running a program 15

RWABS 242

Save as...command 12
Save file 12

SCANF 242

SCRP_READ 245
SCRP_WRITE 245

SETTIME 248
SHEL_ENVRN 248
SHEL_FIND 248
SHEL_READ 248
SIN 249

SINH 249
size_window 101
special keys 6
SPRINTF 249
SQRT 250
SQSORT 250
SRAND 250
SSCANF 250
Stack display 23

start of line
editor command 5

Statements 59
STD 251

sidaux 251
stderr 251
stdin 251

stdout 251
stdprn 251
STOP 252
stopping programs 15
STRCAT 253
STRCHR 253
STRCMP 254
STRCPY 254
STRCSPN 254
STRDATE 255
STRGETFN 255
STRICMP 256
Strings 60
STRLEN 256
STRLWR 256
STRNCAT 257
STRNCMP 257
STRNCPY 258
STRNICMP 258

SUPEXEC 262
SVERSION 262
Switch statements 79

System Memory Size 26
Tab &

TAN 262

TANH 262

Technical Support 335
TELL 263

Text Mode 13
text_box 106, 263
TGETDATE 263
TGETTIME 263
TICKCAL 264
TIMER_VALUE 264
title_menu 121, 264
TOASCII 264
TOLOWER 264
Top of file 10
TOUPPER 265
TQSORT 265
Trace Mode 17
TRACE_OFF 266
TRACE_ON 266
trig functions 66
TSETDATE 266
TSETTIME 266

Types and assignments 66
Undo 6

UNGETC 267

UNLINK 267

Upgrades 335

Searching in files 31 STRREV 258

select_menu 122, 246 STRSPLFN 259

SETBUF 246 STRSPN 259 Vv

SETCOLOR 246 STRTIME 260

SETEXC 246 STRTOK 260 e

SETNBUF 247 STRTOL 261 e

SETPALLETE 247 STRUPF} 261 AR

SETPRT 247 Suggestions 335 V_CLAWK 263

SETSCREEN 248 SUPER 261 V_CLSVWK 288

Page 340 HiSoft C Index

V_CONTOURFILL 268
V_CURDOWN 269
V_CURHOME 269
V_CURLEFT 269
V_CURRIGHT 269
V_CURTEXT 270
V_CURUP 270
V_DSPCUR 270
V_EECL 270

V_EEQS 270
V_ELLARC 271
V_ELLIPSE 271
V_ELLPIE 271
V_ENTER_CUR 271
V_EXIT_CUR 272
V_FILLAREA 272
V_GET_PIXEL 272
V_GTEXT 273
V_HIDE_C 273
V_JUSTIFIED 273
V_MARKER 274
V_OPNVWK 273
V_PIESLICE 273
V_PLINE 274

V_RBOX 277
V_RFBOX 277
V_RMCUR 277
V_RVOFF 278
V_RVON 279
V_SHOW_C 281
VAR_OFF 267
VAR_ON 268

Variable Dump 20
Variables 61

VEX_BUTV 271
VEX_CURV 272
VEX_MOTV 272
VEX_TIMV 272

VQ _CHCELLS 274
VQ_COLOR 274
VQ_CURADDRESS 274
VQ_EXTND 275
VQ_INMODE 275
VQ_KEY_S 275

VQ MOUSE 276
VQF_ATTRIBUTES 275
VQOL_ATTRIBUTES 275
VQM_ATTRIBUTES 276
VQT _ATTRIBUTES 276

VQT_EXTENT 276 Window events 128
VQT_FONTINFO 276 Windows 95
VQT_NAME 277 word

VQT_WIDTH 277 de!at_e 1o en.d 7
previous editor command 5
VR_RECFL 278

VR_TRNFM 278 WRITE 287

VRO_CPYFM 278

VRT_GPYFM 278 X

VS_CLIP 279

VS_COLOR 279

VS_CURADDRESS 280 XBIOS 288
XBTIMER 288

VSC_FORM 279
VSF_COLOR 280
VSF_INTERIOR 280
VSF_PERIMETER 280
VSF_STYLE 280
VSF_UDPAT 281
VSL_COLOR 281
VSL_END 281
VSL_TYPE 281
VSL_UDSTY 281
VSL_WIDTH 282
VSM_COLOR 282
VSM_TYPE 282
VST_ALIGNMENT 282
VST COLOR 282
VST_EFFECTS 283
VST FONT 283
VST_HEIGHT 283
VST _LOAD_FONTS 283
VST_POINT 284
VST_ROTATION 284
VST_UNLOAD_FONTS 284
VSWR_MODE 284
VSYNGC 284

A =

while statement 74
WIND_CALC 285
WIND_CLOSE 285
WIND_CREATE 285
WIND_DELETE 285
WIND_FIND 286
WIND_GET 286
WIND_OPEN 286
WIND_SET 287
WIND_UPDATE 287

Index

HiSoft C Page 341

9 9. 9 .0

)

.)

P il i@ uil®

LD N DA AP i A N A A s

HiS6ft

High Quality Software

HiSoft C for the Atari ST
ISBN 0 948517 25 5
£49.95 inc. Software

S
loriciels

