GFA
DEBUGGER

BOOK Il GFA DEBUGGER

Table of contents

1 Using the GFA Debugger

1.1 The EditOr ..., 5
1.2 Starting the GFA Debuggercoooveivveinviincnnen. 6
1.3 Keyboard AsSsSignmentsccccooeviiiiinincn e 7
1.3.1 Program Break Keys.........ccooviiiieiiinnn 10
1.4 Mouse SettingS.......coovevrircreeecc 11

2 Debugger Commands

21 Debuggingcccooviiiiii i 13
2.2 Memory Managementcoocceeeeviienceninieeen. 43
2.3 Disk Operationscccccevvveiveeeinieir e 64
2.4 Additional Commands...........cccceiiiniienicicnincennnn. 75
3 Function Analysisc.ccccoviiiiiiene 79
APPENDICES

A Disk ConstruCtionccooceevviiiiiiieeeceeeeee e 87

B Alphabetical Command List..............cooerevrenicciens 92

The Editor

1. Using the GFA Debugger

1.1. The Editor

The editor of the GFA Debugger is screen oriented, in contrast to
many other debuggers. This means that you are no longer required to
make all inputs in one ‘command’ line, but you can move the cursor
freely around the screen and correct errors in any line.

The editor also has many valuable functions for easy user input.

Four Debugger screens are available and there is still an additional
screen for the program being debugged. You can scroll through
listings of the disassembiler in dumps, disk directories, and in ‘trace
back’ memory.

GFA-Debugger

1.2 Starting the GFA Debugger

The program disk contains two versions of the GFA Debugger. One is
memory resident, the other can be run from the desktop or through
the GFA ASSEMBLER.

Memory Resident Debugger

The memory resident debugger may be copied into your Auto folder
on your boot disk for automatic loading and installing each time your
computer is booted. The debugger captures system errors and gives
the user the opportunity to search errors in programs. This memory
resident version can be called, by the CALL DEB.PRG after being
instalted into memory, or through the GFA ASSEMBLER using the
‘Execute Program’ function from the Assembler menu.

Executable Debugger

This is the ‘normal’ version of the debugger and can be started from
the desktop or by using the ‘Execute Program’ function of the
Assembler menu from the GFA ASSEMBLER. The GFA Debugger can
be passed the name of a program or object file by a command line.
Rename the debugger as GFA DEB.TTP from the GEM desktop, or
when calling from the assembler, enter the name of the program in
the command line.

When the debugger starts, a check is made to determine if an
exception has occurred. The debugger reads the register that would
recover the operating system during an exception. This makes it
possible to determine what actually caused the exception.

Note: The GFA Debugger requires Trap #6 for internal memory
access.

The Editor

1.3 Keyboard Assignments

The keyboard settings correspond to those of the GFA ASSEMBLER.
The following keys are used to move the cursor around the screen:

Cursor up Moves the cursor up.
Cursor down Moves the cursor down.
Cursor left Moves the cursor to the left.
Cursor right Moves the cursor to the right.

Control + Cursor up
Scroll cursor up.

Control +Cursor down
Scrolls cursor down.
The cursor must be in a line which contains a line
from the Memory dump, disassembiler listing, disk
directory or trace back output for scrolling. Now
the cursor can be moved up or down within the
corresponding function the same as the text cursor
in the editor.

Shift + Cursor up
Moves the cursor to the upper left corner of the
display area (Home position).

Shift +Cursor down
Moves the cursor to the lower left corner of the
display area.

Shift + Cursor left
Moves the cursor to the beginning of the line.

Shift + Cursor right
Moves the cursgr to the end of the line.

GFA-Debugger

Home Moves the cursor to the upper left corner of the
display area (Home position).
Shift + Home Clears the screen.

Delete Erase the character under the cursor. All
characters to the right of the cursor are moved one
character to the left.

Backspace Erase the character to the left of the cursor. Ali
characters to the right of the cursor, including the
character under the cursor, are moved one space
to the left.

Control + Delete
Erases the line the cursor is currently in.

Control + Cursor right
Erase the line the cursor is in beginning at the
present cursor position.

Control + Cursor left
Erase from the start of the line the cursor is
presently in up to the present cursor position.

Shift + Control+ Cursor right
Erase the screen starting at the cursor position.

Shift + Control + Cursor left
Erase from the beginning of the screen to the
present cursor position.

Insert An empty line is placed in front of the current line.
Shift + Insert Toggle between ‘Insert’ and ‘Overwrite’ modes.

Tab The cursor is moved to the next tab position. The
tab positions are preset 10 spaces apart. In lines
containing a disassembly listing or disk contents
the cursor will be moved to the next position with
some meaning.

The Editor

Return Input the current line for execution.

Enter Same as Return.

F1..F4 Move between the four debugger screens.

Esc Jump to the screen displaying the program to be

debugged. Pressing any key will cause a return to
the Debugger Screen. Note: Moving between
screens may only be done if nothing has been set
with the command ‘samescr’, because the
debugger uses the same screen as ‘Execute
Program’.

Control + Help The screen contents are printed.

Numeric key pad
You can enter the decimal ASCIl code of a
character by hoiding the Shift key and pressing the
appropriate keys on the numeric key pad. When
the Shift key is released the character will be
displayed at the cursor position. All ASCII
Characters, between 1 and 255, may be used in
your text.

Numeric keys 1 to 9
If you hold the Control key and press a numeric
key pad number you can save up to 10 lines,
including the cursor position. These lines may be
recalled by holding the Control key and pressing
the corresponding numeric keypad number. This
function enables transferring lines between the
four screens of the debugger.

GFA-Debugger

1.3.1 Program Break Keys

These keys enable stopping a running program on various conditions.

Control + Alternate + right Shift

Stop program. With this function you can stop the program that was
started from within the debugger or if the debugger is resident in
memory the program that is now being executed. Also a program that
is ‘hung up’ and hasn’t reset any important system parameters can be
stopped using this method.

Left Shift + right Shift

Stop the program at the next observed Trap call (see Section 2.1)

Left Shift + right Shift + Control

Stop the program at the next trap or next breakpoint that is
encountered (independent of the contents of the counters). With
these last two key combinations it is possible to first create a desired
situation in the program and then stop the program at the set position.

Note: The program exit keys are only effective within the program
being debugged. This avoids program exits in the operating
system and the debugger. As a result, it may be necessary to use
the program exit keys more frequently with a program using
operating system routines (especially keyboard scans, dialog
boxes and similar functions), or alternatively to wait until the
processor is unlikely to be in the operating system (following an
expected input, for example).

10

The Editor

1.4 Mouse Settings

Clicking the left mouse button once will set the keyboard cursor to the
mouse cursor position.

Double click left mouse button:

If the mouse cursor is over a label then the memory dump or
disassembler listing corresponding to the value of the label will be
output beginning with the next line. Labels with an address shown in
the text segment are disassembled while other labels are output in a
memory dump.

Right mouse button:

A part of a line or the entire line can be marked by holding down the
right mouse button. The marked portion of the line is shown in inverse
video. When the mouse button is released, the marked line is copied
to the current cursor position. In insert mode this area is inserted, in
overwrite mode this area will write over the text in the present cursor
position. This is how commands for addresses or strings can be
expanded.

If the command ‘scrollon’ (mouse scrolling) is active, the screen will
scrolt up or downwards when the mouse cursor touches the upper or
lower screen edge. This makes it possible to move through memory
quickly and comfortably.

11

GFA-Debugger

2. Debugger Commands

All the commands of the debugger are listed in logical groups. For
each command first the syntax, including the possible parameters, is
listed followed by a short description of the meaning, an extensive
explanation, and when necessary, one or more examples.

Parameters that are shown with brackets {} may be omitted. For
parameters that were omitted, default values will be used.

The commands of the debugger can be passed parameter symbols or
complex expressions. it is recommended to use a symbol table for
testing a program when assembling or linking (see the earlier section
of this manual concerning the GFA ASSEMBLER for more informa-
tion).

Note: The commands ‘qon’ and ‘dir’ both use the data buffer. When
one of these commands is executed the contents of the buffer is
erased. This means that a contents directory read in with ‘dir’ is usabie
until another directory is read in or the ‘qon’ command is executed.

12

Debugger Commands

2.1 Debugging

e {'Filename’}{,num}

Loads a program or object code to be debugged into memory
{(identification of abject code is through the filename extension .0),
‘filename’ is the name of the program that is to be ioaded, ‘num’ is the
maximum number of symbols that the user may want to define.

When a program is loaded, the operating system (GEMDOS) reserves
the rest of available memory for the program. This memory remains
reserved until the program freely gives up some of it. Only one
program at a time can be loaded. The debugger itself is not disturbed
by the second program.

When object code is loaded it is somewhat different. The object
codes are not directly executable because they contain unresoived
references (externally defined symbols) and their relocation informa-
tion is in a different format than that of an executable program. The
debugger prepares an ‘O’ file during loading so that it can be treated
like an executable program. Memory in excess of the data length is
not required.

Also, undefined symbols can lead to error functions through the
isolation of abject modules. If the desired program or object module
contains a symbol table, the listing will be much more readable during
disassembly. If you develop programs you should always use a
symbol list during assembly/linking to make debugging easier. These
symbols and additional defined symbols can be used in all
calculations.

13

GFA-Debugger

You can learn more about the data format of programs and object
modules in Appendix B of the GFA Assembier portion of this manual.

If an ‘e’ is entered in the command line, and the file name is omitted,
the GEM Fileselect box will appear for selecting the filename to be
loaded. This also applies to the commands ‘is’, ‘fl’, 'r and ‘w'.

Example:

e ,50 Loads a program/O file and sets aside memory for 50
self-defined symbols.

The filename is selected from the GEM fileselector.

14

Debugger Commands

ek ‘String’

Places a string in the basepage of a loaded program for use as a
command line. ‘String’ is the command line that is to be entered for
the program.

Programs that analyze the command line normally use the filename
extension .TTP. When a .TTP program is executed from the desktop, a
box will appear in which the command line is input. GEMDOS will now
automatically load the data name into the command line of the
program. A .TTP program may also be an application for a file with a
specific extension and be executed by double clicking on one of the
specified file types.

These possibilities are not available during debugging. Therefore, the
command ‘ek’ loads a string into the command line of the called
program from within the debugger.

The command line of the programs basepage in constructed in the
following manner:

iength.b : Length of the command line including the ‘cr’
contents.b : String
13.0 : Carriage return for marking the end of a line.

When using the ‘ek’ command , only the actual string must be given.
The length and the ending carriage return are automatically deter—
mined.

Example:
e ‘editor.prg’ —>Loads the program ‘editor.prg’
ek ‘test.doc’ ~>Loads the command line with test.doc
g —>Starts the program

16

GFA-Debugger

ee ‘String’

Loads the address of '‘String’ as the environment in the base page of
a loaded program. ‘String’ is a list of strings stored in a buffer and the
address is loaded into the basepage of the program as the
environment. The strings are separated by a Null byte. The end of the
string list is identified by two Null bytes.

Environment strings are used by MS DOS to pass data about the
system environment (for example, the data access path) to the
program. This is not used by the operating system of the Atari ST.
These strings may be used by programmers to pass data between
programs.

Example:

One program loads another program and passes this program a
parameter, such as the name or address of a data area for the loaded
program to use.

16

Debugger Commands

Displays the parameters of a loaded program or object code.

Important information is available to the editor after loading. The
addresses and length of the three segments TEXT, DATA and BSS
may be determined from this information. These addresses are often
required during debugging. This information can also be determined
by using the functions ~ “text, ~ ~data and "~ "bss (refer to Section 3).

new

Clear work space.

If a program is read into memory with the ‘e’ command, all available
memory is reserved for this program. No additional programs or
object code can be read into memory. The ‘new’ command releases
the work area in order to load a new program.

Because of the many errors in GEMDOS, this command does not
always function reliably.

17

GFA-Debugger

Is {'from’}{,'t0’}

List symbols in alphabetical order, ‘from’ is the letter after which the
symbols are to be listed, ‘to’ is the first character of the symbol
representing the stopping point for the listing.

The input of the desired table section is somewhat like that of a
telephone book. The output is threefold. Each symbol follows it's
value and datatype:

: Belongs to Text segment
: Belongs to Data segment
: Belongs to BSS segment
: Externally defined

: Absolute defined

: Datatype COMMON

See also the corresponding explanations in the Assembler/linker
portion of this manual. The output can be paused by pressing the
space key and stopped by pressing the <Esc> key.

OrxXxwg -

In {from,to}

Lists symbols in numerical order, ‘from’ is the value after which
symbols should be listed, ‘t0’ is the value to which the symbols should
be listed.

Similar to ‘Is’, but slightly different in the sort criteria.

18

Debugger Commands

diffscr

Two different screens are used for the debugger and the program.

The GFA Debugger is able to differentiate between the screen of the
program to be debugged and the screen used by the debugger itself.
Therefore the program can be run undisturbed on its own screen. No
debugger messages will be displayed on the program screen. The
GFA Debugger can even work in medium resolution while it is
debugging a program running in low resolution with a different color
palette. Switching between screens is as simple as pressing the
<Esc> key to go to the program screen and then pressing any key to
return to the debugger screen.

samescr

Only one screen is used for the debugger and the program.

In some cases it may be desirable to have the program and the
debugger displayed on the same screen. One example would be
when a program has little screen output and is to be traced. Switching
between screens is no longer necessary.

19

GFA-Debugger

g {ad}{,breakpoint}

Start program ‘ad’ is the address at which program execution shall
begin. If a starting address is not specified, program execution will
begin at the position of the Program Counter, ‘breakpoint’ is the point
at which program execution is to be stopped. if a breakpoint is
specified, it is saved as breakpoint 0 (Refer to the commands
‘b0-b9="), otherwise no breakpoints will be changed.

This command is used to start a program. If an address is specified,
the program will be started at that address, otherwise at the present
PC (which can be called through x). By loading a program and
displaying the program parameters (by using the command ‘v’) the PC
will be set to the start of the TEXT segment.

The address of a breakpoint can be given as the second parameter.
Program execution will stop at this position. A program started with ‘g’
can be stopped by using a GEMDOS command such as P TERM
(GEMDOS $4C) or through a breakpoint (see command ‘b0..9="), a
trap {see command ‘ob’) or through a program break (see Section
1.3.1).

Example:

e ‘test.prg’ —> Load program

g.position1t —> Start program at the label ‘position1’ break (Note: the
PC is set to the beginning of the TEXT segment with
the ‘e’ command.)

20

Debugger Commands

c {ad}{,breakpoint}

Call subroutine, then return to the debugger.

The command ‘c’ does almost the same thing as the command ‘g’,
but it also places a return address on the stack. This permits a
subroutine that ends with ‘RTS’ to be executed.

Example:
r ‘test.img’ —> load subroutine to free memory area
¢ ~“memad —> call (for ~ ... see Section 2.4)

21

GFA-Debugger

bssc

Erase the BSS segment of the program.

This command erases the BSS segment of the loaded program. If the
program does not change its TEXT or DATA segments, it can be run
from the beginning again after the ‘bssc’ command. in the case that
the program reserves memory using the GEMDOS function ‘Mshrink’
(GEMDOS $4A) the program should not be executed again. The PC
should be set behind the corresponding function call.

Example:

e ‘testprg’ -> Load the program

g —> Start the program
bssc -> Erase the BSS area
g~ “text —> Start the program from the beginning.

initx

Erase the register contents

All data and address registers are erased by this command. The PC,
USP, SSP and SR are set to default values.

22

Debugger Commands

b0 = ...b9 = ad{,counter}

Set breakpoint, ‘ad’ is the address at which program execution is to
stop.

‘Counter’ determines how many times the breakpoint can be passed
before program execution will be stopped. |f no value is specified,
program execution will be stopped at the first encounter of the
breakpoint.

A breakpoint is a point within a program at which program execution
is to stop. This point may be where the programmer needs to view
specific data to find an error. After the breakpoint, the program may
be executed one step at a time, in order to localize the error.

Example:
e ‘test.prg’ —> Load error filled program
bi=position2,3 -> Program execution shall be stopped
after the third encounter of this position.
g.positiont -> Execute program. position1 is now

breakpoint 0 and the program execution
is stopped at the position ‘position1’ the
first time it is encountered.

In this example the program is stopped at two positions, namely
position1, the first breakpoint, or position2, the third breakpoint. By
using many unrelated breakpoints an error which could be in one of
several routines can be pinpointed.

23

GFA-Debugger

b

List breakpoints

All ten possible breakpoints are listed. Breakpoints that are not set are
shown with an address of $0. If a breakpoint has a counter that does
not equal 1 it will be shown behind the corresponding address. The
counter is decremented by one each time the corresponding address
is encountered. The current counter values are shown in this list (they
may be different from the original values), if this program segment has
been executed one or more times.

be

Erase all breakpoints

All set breakpoints are erased. Program execution will no ionger be
stopped by a breakpoint.

Output register contents

The debugger records all the processor registers for the program
being debugged. Before a program is started or a single command is
executed all registers are passed to the processor. After the program
or a command is executed, the registers are again saved. These
registers can be viewed using the 'x’ command or the ‘x list
command. The registers can be changed (see next command).

24

Debugger Commands

x list

Input register contents. ‘List’ is a list of processor registers that are to
be changed in order to start a subroutine with specific values, or to
correct small errors (false register value).

This command permits any processor registers to be given a new
value.

Exampie:

X pc=$12345 ; Set PC to $12345
x pc=label1, usp=""memad+" “memfre, sr=$0300; Set PC to the
value of labell1, usp
to the end of
memory, and sr to

$0300.
x d0=12 ; Set dO to dec. 12
x a3=%$50000, $12345, " “resvector ; Set a3 to $50000,
a4 to $12345, and
ab to $42a

Note: The Registers PC, USP, SSP and SR can only be set in this
order. The data register and the address register can be set
individually or in increasing order in a command line. Only the first
register to be set is given and as many registers are set as there are
values. If an attempt is made to set a register higher than d7 or a7 an
error message Iis returned.

25

GFA-Debugger

t {num}

Trace . ‘Num’ is the number of commands that are to be traced. If a
value is not specified, only one command is executed.

The Trace command is used to test part of a program. The register list
is output after each executed program command. If ‘num’ is not
specified, one command (at the current PC position) is executed. If a
value is specified for ‘num’, the corresponding number of commands
will be executed.

ta

Auto-trace

Auto trace is an expanded version of the Trace command. The next
command in sequence is executed each time the space bar is
pressed. If the program is in a subroutine, the subroutine can be
executed by pressing the <Return> key. The program will execute the
subroutine and the trace command will be executed when control is
returned to the calling program. The Auto trace mode can be
canceled by pressing the <Esc> key.

26

Debugger Commands

regon

Register contents are displayed on the upper screen edge.

This command is a necessary expansion of both the trace commands,
displaying a list of the contents of the registers, with their current
values, at the upper screen edge. It is much easier to read the value
of these registers by executing the program line by line, because the
register contents list is shown only once on the screen and the

executed commands can be listed in order.

Note: The register contents can be directly changed in this area. If the
register is permanently set at the upper part of the screen the function
scrolling (see section 1.3) will only be seen in the portion below the
register contents. The register contents can be set individually for

each of the four debugger screens.

Example:

e ‘test.prg’ Load program

regon Show register contents

ta Turn on Auto Trace
<space> <space> <space> <space>Four command executions
<Esc> End Auto trace

regoff

End display of the register contents.

The area used for viewing the registers is returned.

27

GFA-Debugger

memon1 Expressioni

memon2 Expression2

The memon commands are an expansion of the regon commands:
When the Registers are displayed at the upper edge of the screen
there will be one or two hexdump memory excerpts at the address
represented by ‘Expression1’ or ‘Expression2’. The individual screen
areas are divided by horizontal lines.

Memory access can be controlled using this command.

‘Expression1’ or ‘Expression2’ allow the same input as the usm
command. With \n’ (0<=n<=9) the subconditions defined in usO ...
us9 can be used in the calculation. Inputs so made are compiled into
short machine programs as with ‘usm’ commands to increase
execution speed. To check for errors (odd addresses, etc., compare
to ‘usm’) these programs will be executed .once when they are input.
They will report a system error if an error is encountered.

‘memon2’ can only be used when ‘memont’ is active. The memory
block can be turmned off through: (a) the regoff command (b) through
‘memont’ (turns both areas off) or ‘memon2’ without an expression.
usm and us0...us9 can also be turned off in this way, simply by
omitting the expression!

Example:

memon1 ;a1 32 bytes hexdump are presented beginning with
the contents of register al.

ta Turn on auto trace

<space> <space> Execute 2 ccmmands beginning at the PC
position.

28

Debugger Commands

mv

The address specified with memon1 and memon2 can be shown as
plain text formulas. (see aiso ‘uv’ command).

u {num}

Hide trace (invisibie trace), ‘num’ is the number of commands that are
to be invisibly traced. If a value is not specified only one command
will be executed.

This command differs from the trace command in that not every
command will be followed by a list of the process registers. Only after
the specified number of commands have been executed or if
execution is stopped are the registers displayed.

gon

Turn trace back on

The debugger stores the commands that have been executed after
the hide trace command and can display them at a later time. These
commands are saved by using hide trace (see above). Qon erases
the trace back buffer, which is rewritten beginning with the next ‘u’
command.

The GFA Debugger can store up to 4096 commands. it is possible to
run a reasonable size program portion and to view the program
execution steps later for a better overview of the order in which it (the
program) executes them. The commands that have been saved can
be viewed by using the ‘ql' command (see later).

29

GFA-Debugger

qoff

Turn trace back off

This command turns off trace back. Commands that have already
been saved remain in memory to be viewed later.

ql {from{,to}}

Listing of commands saved in the Trace back buffer. ‘From’ is the
point at which the listing is to begin. Specified as the number of
commands. The default value is 0. ‘To’ is the number of commands
which are to be listed. The default value for to is 20.

Any section of the trace back buffer can be listed. After every
command in which a PC jump is found (for example through loops, a
subroutine call, a return to a program, etc.) an empty line will be
output. The scrolling function can be used with the trace back listing
(see Section 1.3 and 1.4).

Exampie:

e ‘test.prg’ —> Load program

qon ~> Turn on trace back
u 1000 —> Hidden Trace 1000 commands
gl 200 —> List 20 commands beginning with the 200th.

30

Debugger Commands

usm Expression, us0 Expression...us9 Expression

Sets conditions for breaks during hide trace.

By setting break conditions it is possible to direct execution around
error filled program areas. If the set break criteria are encountered, the
debugger will return the corresponding PC position.

Break conditions are the logical results (true or false) of any complex
calculation (with diverse special functions). The input is as with the
editor/assembler , in clear text and is automatically compiled and
buffered as a short machine language program. The user can list this
program and modify it as desired. During program execution in hide
trace mode this subprogram will be called after each command is
executed. lf a value of true(=-1) is returned, a program break will
follow. The delay factor involved is dependent on the complexity of
the break criteria and increases linearly with the degree of complexity.

SUBCONDITIONS: us0O Expression ... us9 Expression

Expression: Detail of a subcondition. A sub condition is never
considered by itself, but only if it is addressed from the main
condition. Sub conditions return a Boolean value (-1 or O, true or
false). This is discussed further in the ‘usm’ command.

NB. USM and USMO..9 can be disabled by not entering an expression
after them.

Expression is any formula desired. The following special functions
may be placed next to the selectable functions:

31

GFA-Debugger

1. DIRECT ADDRESSING :

b;address type This is equivalent to the following assembler
sequence:

move.b addresstype,d0 ;get value
extw do ,extend to long word
ext.l do ;resuit in dO

You can find absolute addresses as well as those used in
coordination with processor registers. The registers contain the values
that are returned from the program being observed. They are not
changed by break.

w;address type This is similar to functions like ‘b addresstype’ with a
work width of ‘word’ and is equivalent to the assembler sequence:

move.w Address type,d0
ext.l do

The user must be sure that only even addresses are accessed when
addressing memory. Otherwise a bus error, which that will be
detected and reported by the debugger, will occur. This also will apply
if non accessible addresses are accessed.

l;Address type Comparable to ‘b;’, ‘w;’ , assembler sequence:
move.l Address_type,d0

32

Debugger Commands

2 INDIRECT ADDRESSING:

b:Address_type Commands that use the 'b;’, ‘w;’, and ‘I’ function
present a further enlargement of the corresponding ‘b;’, ‘w;’, and ‘I
variations. The value itself is of no interest but the contents of the
memory lines which contain this value is. In machine language this
would be expressed as:

move.l #Value,a0 ; Value=line number.
move.x (a0),do : Result=contents of memory line

=> Value is the argument of an indirect address.

The following applies for the assembler function ‘b;":

moveaa.l Address type,a0 ; Get the value
move.b (a0),d0 ; Contents

ext.w do ; expansion to long
ext.| do ; result in dO

Care must be taken to ensure that address_type does not contain any
odd or illegal memory addresses because value will always be treated
as a long word. Otherwise a bus error will occur.

w: Address_type Similar to the function ‘b:address_type’ with the
expansion to word width. The equivalent assembler sequence is :

movea.l Address type,a0 : Get the value
move.w (a0),d0 ; contents
ext.l do ; resultin 'd0’

B b

l:Address type This is comparable to ‘b, ‘w:. The equivalent
assembler sequence is:

movea.l Address type,al ; get value
move.l (a0),d0 ; resuit in dO

33

GFA-Debugger

PRINCIPAL CONDITIONS: usm Expression

Conditional comparison similar to usO ... us9. There is yet another
extended special function to combine the results of conditions:

3. CALLING SUBCONDITIONS:

\0 ...\9 Call of the subcondition us0 ... us9 (return value —1/0,
See above)

An interested user can compare the compiled routine with the given
break conditions and estimate the amount of time required and use
the inline assembler to optimize the routine. Many of the special
function addressing-types used in Sections 1 and 2 are not possible,
and are emulated.

Example:

(a)

usm (\0&\1)]\2

us0O w; d0=100

us1 |,a0=""physbase
us2 b:(sp)+=%1101

This will lead to a program break if the subconditions us0 and us1 or
the subcondition us2 is true. The logical operations work bitwise. This
makes no difference because the value returned by usO ... us9 is a
boolean value (-1 or 0).

34

Debugger Commands

usO is true only when the lower word from register dO contains the
value 100.

us1 is true only when a0 is shown on the physicai screen.

us2 is true only when the upper longword on the stack points to a
byte in memory which contains the binary value %1101.

(b)
usm(w;(a3)+&w;(a3))=%101010

This leads to break if the AND Combination (processor command) of
both the addresses specified by a3 return the word %101010. An
assembler program would look like:

move.w (a3)+,d0 ; 1. Word
andw (a3),d0 : 2. Word, AND Combination
cmp.w #%101010,d0 ;result is compared with
; %101010
beq .Condition_true ; condition is true
bne .Condition_false ; Condition is false
(c)
us5 w;d5=%$10

This accomplishes nothing, because the main condition is true.

35

GFA-Debugger

uv

Show condition.

The break conditions for the Hidden Trace Mode as defined with the
commands us0 ... us9 is shown in clear text (formatted). (This text can
be modified as desired)

Example:

If we entered the us0O ... us9 and usm definitions as shown in Example
(a) as the given conditions, then ‘uv’ will return the following:

usm (\0&\1)[\2

us0 w;d0=100

usl |,a0=""physbase
us2 b:(sp)+=%1101
us3

us9

ul

Lists those conditions generated in the machine language program.

The compiled machine language programs from the Hidden Trace
break conditions are saved in a 4k buffer in the BSS segment of the
debugger. This area can be dissassembled using the ‘ul’ command.
The beginning and end of the control subroutine is also named. A
break control routine ends with ‘rts’ and saves all user registers. If the
result is true then the zero fiag in the CCR Register of the processor is
set.

36

Debugger Commands

! Assembler Command

An assembler command is executed. This debugger command places
an assembler command in a buffer and executes it. This mode is
comparable to a command in direct mode of an interpreter in a high
level programing language. The result of a single command or the
results of a small program can be seen immediately. This command
uses all processor registers that can be called with ‘x’ except the PC.
The PC remains unchanged.

Example:

$F0000: $ ‘Hello, User !',0 ->Set string

$F0012: | move.} #$f0000,—(sp) —>Set string address on the stack
$F0012: ! move #9,-(sp) ->GEMDOS Conws call

$F0012: ! trap #1 —->Call GEMDOS

$F0012: ! addg.| #6,sp —>Clean up stack

Note: $fO000 is an unused address in the work area. All further
prompts are given by the debugger.

37

GFA-Debugger

o list

Observe Trap calls. ‘List' is a list of all trap calls which should be
observed. Each entry consists of two elements: The trap number and
the number of the function.

Legal trap numbers are:

1 GEMDOS
115 GEM VDI
200 GEM AES
13 BIOS

14 XBIOS

The function numbers correspond to the function numbers as
documented by Atari. If a value of -1 is passed as the function
number, all calls to this trap will be captured.

The ‘0’ command is implemented to provide an overview of a program
or to quickly locate erroneous operating system calls. If an operating
system call is found within a program that is one the list of calls to
observe, it will be listed with its function number, name, and
parameter.

The parameters used with traps 1, 13 and 14 will be shown, along with
the corresponding length (word or longword). Parameters containing
ASCII characters will also be displayed.

The address of the array is listed next to the function name and
number with GEM VDI and GEM AES calls. The GEMDOS functions
‘Pterm’ ($0), ‘Ptermres’ ($31) and ‘Pterm’ ($4c) and GEM function 0
(term), that end a program are captured. If the operating system
function generates a return value, this value wili be output after the
trap is executed.

38

Debugger Commands

The trap calls are observed with each debugger controlled execution
of a program line (that is with g, ¢, t, ta and u).

For conditional breaks of the operation system, refer to Section 1.3.1.

Notes: In order to follow the operating system calls of programs with
many calls, use the printer protocol ‘pon’. Refer to Section 2.4 for
more information.

Example:
e ‘'test.prg’ Load program
pon Printer protocol on

0 1,-1,200,10,200,19,13,3,14,0,14,10 Observe all GEMDQS traps,
GEM AES, appl_init, appl_exit,
BIOS Bconout, XBIOS Initmous
and Flopfmt.

g Start program

39

GFA-Debugger

ob List

Observe with a break after each output

The command ‘ob’ corresponds to the ‘o’ command, but the program
is stopped after each parameter output and return value. This permits
the parameters to be changed as desired. (For example, after disk
access an error message could be inserted to test the program in any
possible situation.)

Note: if you decide to stop the program while it is running, press both
<Shift> keys simultaneously (the key combination <Shift> left +
<Shift> Right) will also work (refer to Section 1.3.1).

co

Continue after observe.

Resume program execution after a break in the program. If the
program is stopped by a trap call listed in the ob command
parameters, the program execution will be interupted and the
debugger will report. In order to continue program execution the
command ‘co’ must be entered.

40

Debugger Commands

Trace a Trap during program execution:

Without observe:

trap #n ————— Exception start » Routine in S mode

more <«—————— Exception end rte

With observe:

trap #n—— Exception start ———— Observe returns all parameters

——— Routing in S mode
Observe returns «—— rte

all parameters
more «— Exception end ——— back

With observe and break:

trap #n—— Exception stat ——— Observe returns all parameters

Debugger « back to

. {eg. change parameters)

<C O > » Routine in S mode

Observe returns «—— rte
all parameters

Debugger « back to
(eg. change parameters)

. End

41

GFA-Debugger

oboff

Turn off observe on break

Observe mode remains active for the specified functions. This
command cancels the ‘0’ command. This can be useful if program
execution has been stopped using both shift keys in order to examine
a specific trap more closely. The program may then be restarted
without further program interuptions. Observe mode may be entered
again without passing a new parameter list.

ooff

Turn off observe

The settings of the ‘0’ command remain in effect until this command
turns them off.

42

Debugger Commands

2.2 Memory Management

d {from{,to}}
da {from{to}}
dw {from{to}}
di {from{to}}

Output memory contents. ‘From’ is the starting address for the section
of memory to be output. ‘To’' is the ending address of the memory
section to be output.

If the ending address is omitted, 11 lines of the memory will be listed.

The four commands d, da, dw and dl output the contents of memory
lines. The only difference is the format of the output:

d Outputs 16 Bytes as Hex numbers and ASCII strings.

da Outputs 64 Bytes as ASCII strings.

dw Outputs 8 Words as Hex numbers and as ASCIl strings.

dl Outputs 4 Longwords as Hex numbers and as ASCII strings.

The memory output process can be paused by pressing the space
bar and continued by pressing the space bar a second time. It may be
stopped completely by pressing the <Esc> key.

The dump of the memory contents may be scrolled by using the
scrolling functions (with the cursor keys or mouse. Refer to Section
1.3 and 1.4 for more information.)

43

GFA-Debugger

Example:

dio -> Long word output of 11 lines beginning at
address 0.

dw ~ “text -> Word output of 11 lines beginning with the
TEXT segment.

da string,string+100 —> 100 byte ASCIHl output beginning with the
Symbol ‘string’
d ~“data,” "bss -> Byte output of the DATA segment

44

Debugger Commands

$ Bytes, Strings, Words, Longwords
$a Bytes or ‘String’

$w Word

$1 Longword

Permit values to be stored in memory locations. Only Hex numbers
and strings are permitted as input values.

One or more memory locations can be given new values.

The four commands store different values in memory:

value length = 1-2 characters: Byte is stored
value length = 3-4 characters: word is stored
value length = 5-8 characters: long word is stored

If an attempt is made to place a word or a long word at an odd
address, an error message will appear.

$a stores one Byte
$w stores two bytes (a Word)
$l stores four bytes {a Longword)

With $a, $w and $I the size of value (byte, word, or long word) doesn’t
matter. After a line is stored in memory, a prompt with the address of
the last value stored will be displayed.

45

GFA-Debugger

Example:

$50000: $3c,‘'hello’,3¢2,fc0000,404 —> Stores beginning at address

$50000; $3c.b ‘hello’.b
$03c2.w $fc0000.| $0404.w

$5000E: $a ‘Hello, here is the GFA Debugger!’,fc0000,404

$50032: $w ‘GFA’,0,f8000,10 —>

$5003E: $i 180000,0,'a’,ffc04 —>

Stores the bytes ‘Hello, here is
the GFA Debugger!” and 00
and 04 beginning at $5000E
Stores the word
0047,0046,0041,0000,8000 and
0010 beginning at $50032
Stores the longword
000f8000,00000000,00000061
and 000ffc04 beginning at
$5003E

Note: The first prompt address ($50000) is an address within free
memory. All additional prompt address are automatically caiculated by

the debugger.

46

Debugger Commands

I {from{,to}}

Disassemble

To debug a program it is almost imperative to change the coded
program back into clear text to follow the flow of the program. A
disassembler listing should return text as close to the original source
text of the program as possible. Of course, this is not entirely
possible. It's impossible to know if the program was created with the
help of macros or with conditional assembly. For this reason the
returned translation will be line wise. If the disassembled program
contains a symbol table, all the numerical values will be replaced by
the proper symbols. Label definition at specific addresses are shown.
These symbols are shown in a specialized mnemonic followed by a
double period.

Piease Note: The form of the disassembler listing can be influenced to
some degree by the commands dion, dloff, cson, csoff, dec, hex, oct,
and bin.

47

GFA-Debugger

dion

Turns on hex dump during disassembly

A hex dump can be output next to the mnemonics of the assembler
command during disassembler. This option is turned on when the
debugger is started.

The hex code is enclosed by brackets ‘[“]" and subdivided depending
on the function, into a hex word for the opcode and additional word,
long words for the operand. The output of hexcode is especially
useful when working with symbols if an explicit value is determined in
addition to the name of the given address. The text in brackets will not
disturb the value of the command with the Inline assembler.

dioff

Deselect ‘dlon’

Suppress the output of the hexdump.

48

Debugger Commands

cson / csoff

Turn on/off output of small absolute values as symbols.

if a program or object module with a symbol table is loaded, the
debugger will assign each number value the first matching symbol
found in the table (when possible). If many absolute definitions are
contained in a symbol table, each corresponding number vaiue will be
replaced.

Because the symbols are used for only a specific position in the
program, they could make other sections of the program unreadable.
For this reason it is often more informative to use: addq.l #6,sp rather
than addq.| #Symbol xy,sp

49

GFA-Debugger

hex, dec, oct, bin

Setting of the number base for numerical values during disassembly.

Explanation:

hex : Output in hexidecimal system (base 16)
dec : Output in Decimal system (base 10)
oct: Output in Octal system (base 8)

bin : Output in Binary system (base 2)

50

Debugger Commands

[hexcode] {symbol:} Mnemonic {Operand{,Operand}}
or just {symbol:} Mnemonic {Operand{,Operand}}

inline assembly of individual commands.

Permits direct memory assembly at the prompt address. Input of
assembler commands is the same as with the editor/assembler. The
commands set for program direction and macro processing (Pseudo
Opcodes) are not implemented. Instead all documented system
variables and many other important addresses are accessible using
function names:

Sytem function syntax:

~* Variable
‘Variable’ can take the following name:

(The value following the equal sign, the return value}.

User symbol definitions: (only if the symbol memory is made
available with the ‘e’ command)

At Prompt address : Symbol: {68k ASM command} (The colon
can be omitted, if the desired symbol can
not be mistaken for a debugger command.)

direct : Symbol = Expression
or : Symbol .equ Expression

Symbol equ Expression

Symbol .set Expression

Symbol set Expression

Symbol == Expression

Symbol .= Expression

51

GFA-Debugger

Syntax Check:

As with the Assembler/Editor, each command entered is checked
before being executed after the Assembler command is entered.
Incorrect input is not assembled, but is reported with the correspond-
ing error message.

After the command has been correctly entered, it will be output in
control format. The Prompt address knows the address of the last
assembled command so that small assembler programs couid be
entered from within the debugger.

PC Relative Offsets:

Offsets to the PC position are calculated as: Target address =
*+Offset

This is especially important with Bcc and Dbcc Mnemonics if they are
not used symbolically.

52

Debugger Commands

fl fromto, {a}, ‘filename’

Reassembly of memory sections or program sections.

The ‘fi’ directive defines an association between the disassembled
listing on the screen and the reassembled program in a data file.

The memory area between ‘from’ and 'to’ is interpreted, tokenised,
and then listed in the file specified by ‘filename’. Numerical operands
(jump lines, immediate addressing, etc.) are replaced by symbols
(from the loaded symbol table or automatically created) if their values
lie in the range specified by ‘from‘ and ‘to’.

The user can also specify if the source text is to be added to an
already existing file or put into a newly opened data file. If the first
option is desired, the corresponding instruction should have the
parameter ‘a’. If a new data file is to be created any previous files with
the same name will be erased.

Example:

Compare to the example for the ‘is’ command which follows. A text
segment is created.

53

GFA-Debugger

is ‘filename’

Symbolic reassembly of a program/object code.

If the user is analyzing a program written by someone else, it is often
desirable to translate a machine code program into source text form
in order to change it or further apply it. This process is fully automatic.
If a program is loaded into memory using the ‘e’ command it can be
converted into tokenized form, that is, a form readable by the GFA
ASSEMBLER.

If the assembler code has its own symbol table, these symbols will be
used during the reassembly process. Otherwise generic symbols in
the form of ‘L Address’ will be generated.

‘Address’ returns the hexidecimal value of the symbol. The source
code thus created separates itself into Text, Data, and Bss segments.
Jump tables are recognized in the data segments, and saved
symbolically as DC.I Pseudo Opcodes. All additional data will be set
with DC.b commands.

The subdivisions of the BSS Segment come from the symbol
definitions in the BSS Segment and have the form:

Symbol1: .DS.bn 1
Symbol2: . DSbn 2

Symboln: .DS.bn n

‘n_i’" is equal to the number of bytes until the next symbol.

The Source text contains a header with the name of the reassembled
file and it's header information. Behind all Mnemonics (text segments)
the memory address (from where they were taken) will follow as
comments as well as the appropriate hex code. After aill .DC.b
sequences (data segments) a string with the corresponding ASCII
Characters will follow as a comment.

54

Debugger Commands

Note: The user should take into consideration that most programs (for
example, the GFA ASSEMBLER) are copyright to the author.

Example:

The reassembler listing of a demonstration program without it's own
(shortened) symbol table:

. FILE:D\SORT\DEMO.PRG

; TEXT DATA BSS

; BASE: 00041570 00044b12 00045d42

- LEN : 000035a2 00001230 00009446

TEXT
bsr L. 0417b4 ; 00041570: 6100 0242
bsr L 041f64 ; 00041574: 6100 09ee
bsr L 041928 ; 00041578: 6100 03ae
cirw —(sp) : 0004157¢: 4267
trap #$1 ; 0004157e: 4e41
movea.l#L_045fae,a3 ; 00041580: 267c 00045fae
L 041586: clrl d5 ; 00041586: 4285
clr.l d4 ; 00041588 4284
L _04158a: move.b$0(a3,d4.w),d3 ; 0004158a: 1633 4000
bsr L 0415a4 ; 0004158e: 6100 0014
asll #%$4,d5 ; 00041592: €985
orb d3.d5 ; 00041594: 8a03
cmpi.b #$7,d4 ; 00041596: 0c04 0007
beq L 0415a2 ; 0004159a: 6700 0006
addq.b #$1,d4 ; 0004159¢e: 5204
bras L 04158a ; 000415a0: 60e8
L 0415a2: rts ; 000415a2: 4e75
.DATA

55

GFA-Debugger

L_044¢20: DC.I L_044c44, L_044cEc ; 00044¢20: "......."
.DC.IL_044c7a, L_044c92 ; 00044c28: "........ "
.DC.IL_0O44cct, L_Q44cee ; 00044¢30: "........ "
.DC.IL_044d17, L_044d42 ; 00044c38: “........ .
.DC.I L_044d6¢C ; 00044c40: " "

L 044c44: .DC bS2e,$22,520,$55,560,562,565,86b ; 00044c44: ".” Unbek”
.DC.bS61,%60,560,574,565,572,520,842 ; 00044c4c: “annter B”
.DC.bs65,566,565,568,56¢,520,521,80 : 00044c54: “efeht 10"

L_044c5¢: .DC.bS2e,522,520,54e,569,$63,568,574 ; 00044c5c: V" Nicht”
.DC.b%20,567,565,86e,581,567 565,566 00044c64”" genlgen”
.DC.b364.520,550,$61,572.561.56d,565 00044c6c: *'d Parame™

.BSS

L 045d42: .DS.b $4
L_045d46: .DS.b $4
L_045d4a: .DS.b $2
L 045d4c: .DS.b $2
L_045d4e: .DS.b $2
L_045d50: .DS.b $2

.END

56

Debugger Commands

hn from.to,ad or hn from,to,'String’

Search for an address or a string. ‘From’ is the starting address for the
search, ‘to’ is the ending address for the search, ‘string’ is the search
string.

The debugger will search the specified area for the expression. All
ASCIl characters from decimal 1 to 255 may be used in the search
string. If the expression is found within the specified area a list will be
displayed with the address of every location at which the expression
was found.

This list is followed by a memory dump of the first area in which the
expression was found. The cursor will be in the middle line of the
corresponding byte.

Example:

hn”~data,” "bss,'GFA’ Searches the data segment of the execu-
ted program for the string ‘GFA'’

hn 0,$f8000,” "basepage Searches the work memory (1MB.) for the
address of the basepage of the executed
program.

57

GFA-Debugger

hf from,to,'Command_part’

Searches for a part of an assembler command.

Normally we search for all commands that access a specific memory
position or a specific processor register, or we may be interested in a
command from which we know only one operand explicitly.

To find such areas use the ‘hf instruction. This function is the
opposite of the character string search used in the assembler/editor.

The * wild card is defined as: \
The ? wild card is defined as: ™

The specified search criteria is compared to the disassembler listing
from the starting address to the ending address. Characters output
through formatting of the disassembler must be taken into conside-
ration. They may be replaced by the \ wild card symbol.

All corresponding lines are listed along with their positions in memory.
The search can be paused by pressing the <space> bar and stopped
by pressing the <Esc> key.

Example:
debugging a program, input:
hf~ “text,” ~text+$200, 'movea.\,a™"

(Search the first 512 Bytes of the text segment for all ‘move’
commands that write to an address register using longwords.)

The following output will be generated:

$BB024:[2668 0008
$BB046:[2059

$BB062:[2068 004cC
$BBOB6:[2279 000d3d70
$BB12A:[2079 000cbf6c
$BB158:[2279 000d3d74

movea.l B_P_L(a0),a3
movea.l (a1)+,a0
movea.l $4c(a0),a0
movea.l bildadr,al
asciiout. movea.l textpos,a0
movea.l bildpos,al

| W Ry SR GO R e S

58

Debugger Commands

hm from,to,"Command’

Search for a complete assembler command. In contrast to the ‘hf
command, the search does not use wild cards or abbreviated
assembler commands.

A syntactically correct expression is expected, just as when using the
inline assembler. The specified search criteria is transformed into hex
code by the inline assembler and searched for in this form.

The result of this is a much faster search than with clear text, which is
required when searching large areas of memory.

Example:

hm~ “text,” “data, trap# 14

Searches for all trap 14 calls in the text segment and displays all ‘hits’
in the same format as the ‘hf’ command.

59

GFA-Debugger

mc areal,area2

Compare memory areas.

‘Areal’ and ‘area2’ are the addresses of the areas that are to be
compared. This command will compare any previously loaded data.

The debugger shows a two line memory dump in which the first byte
of the difference was found.

Example:

r ‘datal.xxx’,$50000 Read datat starting at address $50000
r ‘data2.xxx’,%60000 Read data2 starting at address $60000
mc $50000,$60000 Compare the data and find the first difference.

60

Debugger Commands

mmc areal,area2

Compare memory areas for different mnemonics. ‘Areal’ and ‘area2’
are the addresses of both the areas that are to be compared.

This command is the expanded version of the ‘mc’ command. The
command ‘mmc’ compares a command word in both areas. That is it
compares the first word of ‘areal’ with the first word of ‘area2’.

If a difference is found both the assembler commands found at this
address are output. Usually the length of the command is determined
and then the command words of the next two commands are
compared with each other.

With this command it is possible to compare two programs or object
modules in order to determine the difference between an older
varsion and a newer version.

Example:

r ‘progl.prg’,$50000 Read program 1

¢ ‘prog2.prg’,$60000 Read program 2

mmc $5001¢,$6001c Compare programs after the text
segment until the first difference is
found.

Note: The ‘I command (See section 2.3) is used because it requires
no memory reservation. Therefore as many programs as desired can
be loaded to as many addresses as desired.

61

GFA-Debugger

m from,to,to1

Moves memory area.

‘From’ is the starting address of the block of memory which is to be
moved (the source), ‘to’ is the ending address of the block of memory
which is to be moved. ‘To1’ is the starting address of the block of
memory to which the source is to be moved (the destination). This
command moves a memory area intelligently. It can move a memory
biock a shorter distance than it's own length without hacking off part
of the target area. If the area to be moved is greater than the length of
the block to be moved, the block will be copied, leaving the source
area intact.

Example:

m $50000, $60000,$80000 Memory area does not overlap
m $50000, $60000,$55000 Memory area overtaps
m $50000, $60000,$45000 Memory area overiaps

mcl from,to

Erase memory area.'from’ is the starting address and ‘to’ is the ending
address of the memory block to be erased.

Example:

mcl “~“MEMad,” “MEMend Erase work area

62

Debugger Commands

fill Number,List

Fill memory area. The fill command initializes a block of memory with
a specified numerical pattern beginning at the prompt address.

'Number’ specifies how often the numerical pattern defined in ‘list’ is
to be placed in memaory.

‘List’ is a group of expressions expanded with extensions (.b, .w, .I)
for the data format (Byte, Word, Long Word) which defines the fili
pattern. If the word or long word is set to an odd address the
debugger will place it at the next higher even address and leave the
odd address undisturbed. The expressions are formatted with all
extensions. '

Example:
$40000: fill 100, Text to be inserted”.b,0.b,” " physbase

The string ‘Text to be inserted’ is stored in memory 100 times starting
at the prompt address, $40000. The string ends with a null byte. The
next byte remains unchanged in order to reach an even address.
Finally the base of the physical screen is inserted as a longword.

63

GFA-Debugger

2.3 Disk Operations

dir ‘drive:’ or dir ‘path’

Display the disk directory.

‘Drive:’ is the disk drive specification for an ‘exact’ directory. ‘Path’ is
the file path for output of a directory. If only dir is specified with no
path or drive specification then a directory of the default drive will be
output.

With this function either an exact contents directory or a normal
directory of any path can be output. An exact directory contains, in
contrast to a normal directory the start cluster and sector for each
data file.

Example:
dir gives an ‘exact’ directory from the current drive
dir ‘c:’ gives an ‘exact’ directory from drive C

dir ‘a\auto*.*’" normal directory from the path a:\auto\ .

64

Debugger Commands

setdrv ‘L’ or setdrv n

Set the default drive. ‘L’ is the drive description for the new default
drive. ‘N’ is the number of the new drive (A=0, B=1, C=2, etc.).

The default drive is the drive from which the debugger or the
executing program was started. All data input without a specified path
will be processed through this drive. This command permits the
default drive to be changed from within the debugger. If a program is
loaded from one drive and must find data automatically, for example,
a resource file or information file, it will only find it if setdrv is executed
to change the default drive before the program is started.

Example:

setdrv ‘d’ or setdrv 3

Both commands set drive d as the new default drive.

65

GFA-Debugger

delete 'Path’

Erases the file specified by path. ‘Path’ is the mask of the filename for
all files to be erased. The wild card symbols * and ? may be used.

All data with the given specification is erased.

delete ‘hello.nix’ Erases the file ‘hello.nix’ in the current directory.
delete ‘\hugo\a*.ttp’ Erases all data that begins with the letter ‘a’ and
ends with the extension ‘. TTP’ in the sub directory “\hugo\’.

Debugger Commands

r ‘Data’{,ad}

Reads data. ‘Data’ is the filename or path that is to be read into
memory, ‘ad’ is the address at which the data is to be placed. If the
address is not specified, the data will be stored at the beginning of
the free memory area.

This command permits any data to be read into memory. The memory
area required is not reserved.

Example:

r ‘test.img’ The file ‘testimg’ is loaded starting at the beginning of the
free memory area.

w {‘data’{,ad len}}

Write data to disk.

‘Data’ is the file name or path under which the memory area is to be
saved. ‘ad’ is the beginning address of the memory block to be saved.
‘len’ is the length of the area to be saved. if data was previously read
into memory with ‘v’ ‘Data’, ‘ad’, then the ‘len’ need not be specified,
the data is saved with the parameters used when it was loaded.

This command can be used to write a memory block to the disk.

v

Display the parameters of the loaded data or sector. If a data file is
loaded using ‘r’ or a set of sectors with ‘rsec’ (as explained next), this
command can be used to display the start address in memory and the
length or number of sectors.

67

GFA-Debugger

rsec {‘L’,}from,num{,ad}

One or many consecutive sectors are read in. ‘L’ is the disk drive from
which the sectors are read into memory. ‘From’ is the first sector to
read. ‘Num’ is the number of sectors to read in. ‘Ad’ is the address
where the sectors are to be stored. If a disk drive is not specified the
sectors will be read from the default drive. If an address is not
specified the sectors will be stored at the start of the free memory.

Example:

rsec ‘a’,0,1 Reads the boot sector from drive A
d Displays the first 176 Bytes of the sector

wsec {{'n’,}from,num{,ad}}

Write one or many consecutive sectors to disk. See ‘rsec’ for
parameters.

If ‘rsec’ was previously executed, all parameters can be omitted. The
sectors will then be saved with the previous ‘rsec’ parameters.

68

Debugger Commands

Example:

rsec 18,100 Read 100 sectors beginning with sector 18
Modify sectors
wsec Write modified sectors to disk.

or

rsec ‘a’,0,1440 Read all drive A

; Change disk

wseac Copy double sided disk (if enough memory).
secno ad

Calculates sector number and bytes in sector beginning at the
specified address, ‘ad’ is the address from which the sector number is
calculated. This command can be used to determine which sector
corresponds to what position of the specified address in memory
after a number of sectors have been read with rsec.

Example:
rsec 18,10 Read 10 sectors beginning with sector 18
secno $5020e Determine which sector corresponds to this

address.

69

GFA-Debugger

getbpb {'L’}

Read in Bios BPB. ‘L’ is the disk drive from which the BPB is to be
displayed. If ‘L’ is not specified, the BPB from the default drive (see

setdrv) will be displayed.

This command reads the BIOS Boot Parameter block using BIOS
function #7.

Example:
getpbp ‘a’ Gets the BPB from disk drive A:

70

Debugger Commands

sclu {'L'}clu or sclu {'L'}-sec

Show cluster status. ‘L’ is the drive from which the cluster status is to
be read. ‘Clu’ is the cluster from which the status is to be shown. ‘Sec’
describes a sector and is prefixed with a negative sign. This sector is
converted into a cluster from which the status can be shown.

This command makes it possible to check the status of a specific
cluster. In order to bypass the conversion of the sector into a cluster,
prefix the sector number with a negative value. The following values
are possible as a cluster status:

0 The cluster is free (but not necessarily empty).

$ff7 The cluster is defective. {(May be $fff7 for a hard disk)

$fff The cluster is occupied, it is the last cluster of a data file.
(May be $ffff with a hard disk)

n If the cluster is occupied, returns the number of clusters
following it.

setclu Nr,value

Set cluster to a new value. Its old value will be displayed and an alert
box appears. This instruction can be used, for example, to mark a
cluster recognised as damaged, or to ‘manually’ protect a cluster.

Caution: Use this instruction only with the grea-
test care, since its mistaken use can cause the loss of valu-
able data on your disk/hard disk.

If the old cluster vaiues are not identical in the two FAT's, an error
message appears and nothing will be changed.

71

GFA-Debugger

fclu {'L,}beg{.dir}
Iclu {'L’,}beg{,dir}

Load {lclu} and search {fclu} data file. ‘L’ is the drive from which the
cluster is to be read. ‘eg’ is the starting cluster from which the data file
is to be searched. ‘Dir'" defines the direction in which the data file is to
be searched. If ‘dir’ is not specified, a positive number is used as the
default.

The command ‘fclu’ searches a data file on the disk. For this a cluster
is given at which the search is to begin. If a positive number is used
as the mode value, the data is searched beginning with the cluster to
its end. if a negative number is used, the data file will be searched
from the present location to the start. In this manner you can
determine which data file a specific sector belongs to. (Sectors can
also be specified by placing a negative prefix in front).

The command ‘Iclu’ loads the cluster found in the forward search.

Example:

fclu 100,-1 Searches the data file to its beginning
iclu 70 70 is the first cluster of the data file. The data file is
read into memory.

Note: If clusters are read into memory, the start sector, number of
sectors, and the start address in the memory can be displayed with
the command ‘rv’.

72

Debugger Commands

eclu {'L',}beg,num

leclu {'L’,}beg,num

Find free clusters (eclu)/ and load them (leclu) into memory. ‘L’ is the
disk drive which is to be searched for the clusters. ‘Beq’ is first cluster
to search for, ‘num’ is the number of free clusters to searched for.

The command ‘eclu’ makes it possible to find free clusters on the
disk. The beginning cluster and the number of clusters to be found is
passed. The debugger sea rches the FAT starting with this cluster and
the number of free clusters found is displayed.

The command ‘leclu’ reads the found clusters into memory.
Example:

A data file that was previously erased needs to be restored. This
function may be used if no write or erase functions have been
executed on the disk drive in qu estion since the file was deleted. If
another data file was erased, the data from that file may be found
between the sectors of the data file that is to be restored.

A program on drive C: is erased.

setdrv ‘c’ All commands operations are executed through drive C
dir Displays the complete directory of disk in drive C:.

73

GFA-Debugger

The data file is still shown in the directory of the disk, but the first
character is now a ‘¢’, meaning that the file has been deleted. Read
the starting cluster and length from the displayed directory, and pass
this information as the parameters for the ‘leclu’ command:

leclu Startcluster,Length/1024+1

Note: 1024 is the length of a cluster (for example leclu 1298,9675/
1024+1)

Caution: If clusters from other deleted programs are found between
the clusters of the program to be restored, those are also read so that
all the corresponding clusters are in memory. Then search through the
area loaded into memory for clusters that do not belong to the
program. This is easy if no other clusters which do not belong to the
program to be restored have been loaded.

Foreign sectors can be eliminated by moving all following sectors by
using the ‘m’ command (the sector numbers can be calculated using
the command ‘secno’ from an address). For example, if sector 60 and
61 do not belong to the program the command:

m~(60+2),” “MEMend, 60
will move all sectors after sector 62 up two sectors.

After all sectors are in the proper sequence, save the file using the ‘w’
command as a finished program.

74

Debugger Commands

2.4 Additional Commands

scrollon, scrolloff

Turns the mouse scrolling function on and off (Refer to Section 1.4).

Note: The default setting for the scrolling function when the debugger
is started, is on.

pon, poff

Printer output is enabled {pon) or disabled (poff).

With this command controls the printer. When it is turned on, all
output is displayed on the screen as well as being sent to an attached
printer.

75

GFA-Debugger

Comment mark. This command has no effect. It prevents the
debugger from trying to evaluate the commands following it.

h Expression

Calculate.

This command performs a mathematical operation and the result is
shown in decimal, hexidecimal, binary and octal format.

Example:

h~ ~physbase
h 1+23

h 3 *(7+4)

k

The starting and ending address of the area in memory used by the
debugger is displayed.

76

Debugger Commands

asm {num}

To assembler. ‘Num’ is the maximum number of new symbols that the
user intends to define. This is needed by the assembler if a program
is to be written into the debuggers memory.

If the debugger was called from the GFA ASSEMBLER, operation will
temporarily return to the assembler. The Assembler will operate
normally. The amount of available memory depends on the amount
selected when the debugger was called. If a program is assembled or
linked in the assembler, it is automatically sent to the memory of the
debugger. The assembler remembers that it was called from the
Debugger, in displays the text Back to Debugger under the File menu
heading. To return to the Debugger, select this function from the
menu.

The ‘asm’ command has two basic purposes:

The source text of the program being debugged may be viewed while
working with the debugger. This permits a quicker overview, with the
comments and spacing, than provided by the disassembled listing of
the debugger.

The assembler can pass programs or object modules directly to the
debugger to be tested.

Example:

asm Return to the assembler in order to assemble a program.
During assembly a symbol table is to be created. Now exit
the assembler by pressing <Esc> + <F1> + < FO> or
selecting Back to Debugger from the menu, and the
debugger is active again.

The parameters of the program can be listed in the debugger
and the program can be tested.

77

GFA-Debugger

resident {num}

Exits the Debugger, but the Debugger remains resident in memory.
‘Num’ is the size of the area that is to be reserved in memory. This
command has the same effect as if the resident version of the
debugger had been loaded from the auto folder.

quit
Exits the Debugger.

doreset
A system reset is executed.

This command is useful if a program is partly tested and the address
of the exit routine of the program is not known or can not be called
(the data channel to GEM is closed or other important vectors must
be called). A return to the desktop from the Debugger or starting a
program may lead to a system crash.

78

Function Analysis

3. Function Analysis

The process of analyzing functions in the debugger is almost identical
to that of the assembler. In the debugger the function analysis follows
the hierarchical order and permits any number of bracketed levels.
This analysis process differs from the Assembler in that:

The debugger does not support macro management. Operations that
support macro management are not supported.

The break conditions for the command ‘usm’ and ‘us0’ ‘us9’ can use
address types. More exact information can be found in the
explanations previously given for these commands.

The following variables are predefined in the debugger:

79

GFA-Debugger

MEMORY and Color Registers:

memconf
dbaseh
dbasel
vcounthi
vcountmid
vcountiow
syncmode
color0
color1
color2
color3
colior4
colorb
color6
color7
color8
color9
color10
color11
color12
color13
colori4
colorib
shiftmd

$11ff8001 ; Memory configuration

$fff8201 ; High byte of the screen address
$ffff8203 ; Mid byte of the screen address
$ftff8205 ; High byte of the video address counter
$ffff6207 ; Mid byte of the video address counter
$ffff8209 ; Low byte of the video address counter
$ffff820a ; Synchronization mode

$ffff8240 ; Color registers 0-15

$ffff8242

$fff8244

$ftff8246

$ffff8248

$ffff824a

= $ffff824c

$ffffg24e
$1fff8250
$ffff8252

= $fffig254

DMA and DISK:

80

Diskctri
DMAmMode
DMAhigh
DMAmid
DMAlow

$ffff8256
$ffff8258
$ffff8256a
$ffff825¢
$ffff825e
$1fff8260 ; Screen Resolution

$ffff8604 ; Disk Controller Register selection
$ffff8606 ; DMA Status/ Mode

= $ffff8609 ; DMA Base and counter : high

$ffff860b ; DMA Base and counter : mid
$ffff860d ; DMA Base and counter : low

Function Analysis

1770 REGISTER:

cmdreg
trackreg
sectoireg
datareg

SOUND CHIP:

PSGselect
PSGread
PSGwrite
PSGtoneAf
PSGtoneAc
PSGtoneBf
PSGtoneBc
PSGtoneCf
PSGtoneCc
PSGnoise
PSGmixer
PSGampA
PSGampB
PSGampC
PSGenvlipf
PSGenvlipc
PSGportA
PSGportB

$80 :1770/FIFO Command Register Selection
= $82 :1770/FIFO Track Register Selection

$84 :1770/FIFO Sector Register Selection

$86 ;1770/FIFO Data Register Selection

i

I

]

$ffff8800 ; (W) Register selection
$ffff8800 ; (R) read Data
$fff£8802 ; (W) write data

0 ; Channel A: Fine setting
1 : Channel A: Course setting
2 ; Channel B
3
4 ; Channel C
5
6 ; Noise generator
7 . 1/O direction, Mixer
8 ; Channel A, B, C: Amplitude
9
$a
$b ; Envelope curve period fine tuning
$c ; Envelope Course tuning
= $%e ; PORT A (output only)
$f : PORT B (Centronics output)

Bits in “PSGportA’:

RTSout
DTRout
STROBE
ouT

i

$8 . RTS output

$10 ; DTR output

$20 ; Centronics strobe output
$40 ; General purpose output

81

GFA-Debugger

68901 (MFP):

ACIA;’s 6850:

82

MFP
MFPgpio
MFPaer
MFPddr
MFPiera
MFPierb
MFPipra
MFPiprb
MFPisra
MFPisrb
MFPimra
MFPimrb
MFPvr
MFPtacr
MFPtbcr
MFPtcdcr
MFPtadr
MFPtbdr
MFPtcdr
MFPtddr
MFPscr
MFPucr
MFPrsr
MFPtsr
MFPudr

$fffffa00 ; Register Base
$fffffa00+1 ; I/O

$fffffa00+3 ; Active edge
$fffffa00+5 ; Data direction
$fffffa00+7 ; Interrupt enable A
$fffffa00+9 ; Interrupt enable B
$ffffa00+$b ; Interrupt pending A
$fifffa00+$d ; Interrupt pending B
$fffffa00+$f ; Interrupt in Service A

$fffffa00+$11 ; Interrupt in Service B
$ffffa00+$13 ; Interrupt mask A
$ffffa00+$15 ; Interrupt mask B
$ftfffa00+$17 ; Vector Register
$ffffa00+$19 ; Timer A control
$fffffa00+$1b ; Timer B control

= $fffffa00+$1d ; Timer C & D controi

i

I

AClAkeyctrl =

AClAkeydr

ACIAmidicr
ACIAmididr

It

$fffffa00+$1f ; Timer A data
$Hfffa00+$21 ; Timer B data
$ffftfa00+$23 ; Timer C data
$fffffa00+$25 ; Timer D data
$tffffa00+$27 ; Sync char
$tfffa00+%$29 ; USART control reg
$tifffa00+$2b ; Receiver status
$fffffa00+%2d ; Transmit status
$fffffa00+$2f ; USART data

$fffffcO0 ; keyboard ACIA control
$fffffc02 ; keyboard data
$fffffc04 ; MIDI ACIA control
$fffffc06 ; MIDI data

Function Analysis

Documented BIOS VARIABLES and LINEA VARIABLES: (Refer to
The Concise Atari ST 68000 Programmer’s Reference Guide for more
information.) sfc

etv_timer= $400 VPLANES = 0
etv_critic = $404 VWRAP = 2
etv term = $408 CONTRL = 4
etv xtra = $40c INTIN = 8
memvalid= $420 PTSIN = 12
memcntlr= $424 INTOUT = 16
resvalid = $426 PTSOUT = 20
resvector= $42a COLBITO = 24
phystop = $42e COLBITH = 26
_membot=$432 COLBIT2 = 28
_memtop=$436 COLBIT3 = 30
memval2 = $43a LSTLIN = 32
flock = $43e LNMASK - 34
seekrate = $440 WMODE = 36
_timr ms=$442 X1 = 38
_fverify = $444 Y1 = 40
_bootdev= $446 X2 = 42
palmode = $448 Y2 = 44
defshiftmd = $44a PATPTR = 46
sshiftmd = $44c PATMSK = 50
_v_bas_ad= $44e MFILL = 52
vbilsem = $452 CLIP = 54
nvbls = $454 XMINCL = 56
_vblqueue= $456 YMINCL = 58
colorptr = $45a XMAXCL = 60
screenpt = $45e YMAXCL = 62
_vbclock = $462 XDDA = 64
_frclock = $466 DDAINC = 66
hdv_init = $46a SCALDIR = 68
swv vec = $46e MONO = 70
hdv_bpb = $472 SRCX = 72
hdv_rw = $476 SRCY = 74
hdv_boot= $47a DSTX = 76
hdv_mediach= $47e DSTY = 78

83

GFA-Debugger

_cmdload=$482
conterm = $484
trpldret = $486

criticret = $48a
themd = $48e
~md = $49e
savptr = $4a2
_nflops = $4a6

con_state= $4a8
save row= $4ac
sav_context=%$4ae
_bufl = $4b2
_hz 200 = $4ba
_drvbits = $4¢2
_dskbufp=$4c6
_autopath= $4ca
_vbl list = $4ce
_dumpfig=$4ee
_prtabt = $4f0
_sysbase= $4f2
_shell p = $416
end os $4fa
exec_0s = $4fe
scr_dump=$502
prv_Isto = $506
prv_Ist = $50a
prv_auxo= $50e
prv_aux = $512

84

DELX =
DELY =
FBASE
FWIDTH
STYLE
LITEMSK
SKEWMSK
WEIGHT
ROFF
LOFF
SCALE
CHUP
TEXTFG
SCRTCHP
SCRPT2
TEXTBG
COPYTRAN =
SEEDABORT =

Il

80
82
84
88
90
92
94
96
98
100
102
104
106
108
112
114
116
118

Function Analysis

DEVICE NUMBERS:

PRT = 0 ; Printer

AUX = 1; RS 232;

CON = 2 ; Screen ;(vt 52 Emulator)
MIDI = 3 ; MIDI

IKBD = 4 ; Keyboard

RAWCON = 5 ; Screen (raw characters)

PROGRAM VARIABLES:

basepage : Basepage Address of a loaded pogram.

text : Text Segment data -" -

data ; Data Segment -

bss Segment ; Bss Segment -" =

symbols ; Symbol Table -"—

MEMfree . Beginning of the free memory area (including loaded
; program.)

MEMbase . Length of the free memory area (including loaded
; program.)

MEMend : End of the free memory area (including loaded
; program.)

physbase ; physical screen address

logbase ; logical - " -

85

GFA-Debugger

86

Appendices

APPENDIX A

Disk Construction

A disk (or a hard disk partition} is made up of the foilowing parts:

1) Bootsector

2) FAT

3) Contents directory
4) Data

Numbers are saved on the disk in Intel format (backwards, beginning
with the low byte) in order to make it easier to exchange the disk with
MS DOS format disks.

All information on the disk is divided into sectors. Each sector is
typically 512 bytes in length.

1) The boot sector is the first sector on the disk. It contains important
data about the disk construction and possibly a boot program with
which another program can be executed or the operating system can
be loaded from the disk.

Also, if the computer is be booted from a hard disk, the boot partition
must contain a small boot program.

87

GFA-Debugger

The boot sector is constructed as follows:

Offset Contents Meaning

$00 O BRA.S Jump to Boot program

$02 2 Oems Reserved for user

$08 8 Serial number 24 Bit Serial number
$0B 11 BPS Number of Bytes per Sector

$0D 13 SPC Number of Sectors per Cluster (2)
$0E 14 RES Number of reserved sectors

$10 16 NFATS Number of FATs on Disk

$11 17 NDIRS Number of Directory Entries

$13 19 NSECTS Number of Sectors on a disk
$15 21 MEDIA Media Descriptor (not used)

$16 22 SPF Number of Sectors in a FAT

$18 24 SPT Number of Sectors per Spur

$1A 26 NSIDES Number of Sides of Disk

$1C 28 NHID Number of hidden sectors (not used)

$1E 30 Execflg Word copied after cmdload
$20 32 Ldmode if Ldmode=0 load file otherwise read
number of Sectors in Sectcnt starting av

Ssect
$22 34 Ssect if Ldmode<>0 load starting here
$24 36 Sectent if Ldmode<>0 Sectcnt read sectors

$26 38 Ldaddr load address for File
$2A 42 Fatbuf Address for FAT and DIR Buffer

$2E 46 Fname Filename: 8 Character Name, 3 character
Extension
$39 57 Reserved

$3A 58 Bootcode Boot program
$01FE510 CHECKSUM space used for checksum
$0200512

88

Appendices

The BIOS Function 7 ‘Getbpb’ and the Debugger command ‘getbpb’
returns the following data:

BPB.w Bytes per Sector (512)

SPC.w Number of Sectors per Cluster (2)
BPC.w Bytes per Cluster (1024)

SID.w Number of Sector in Directory

SPF.w Number of Sector per FAT

SF2.w Sector number of second FAT

SCL.w Sector number of the first data clusters
NCL.w Number of Data Clusters on the disk

2) The data on the disk is divided into clusters on the sectors of the
disk. This does not mean that all sectors of the data are in
consecutive order. If a file is lengthened, it could happen that data
from another file is stored in between the sectors of the newly
lengthened file. Therefore there is a list (FAT: File Allocation Table) for
every data cluster. The FAT contains the number of the next cluster
which continues the data of each file.

This FAT is stored on the disk twice. Both FATs are consecutive on
the disk following the boot sector. The operating system utilizes FAT2,
but intializes both FATSs.

Each FAT entry is 12 bytes long.

Since only 4096 clusters, that is 4 megabytes, can be accessed in 12
bytes, a hard disk must use a 16 byte format. This permits an
additional three entries:

0 Cluster is empty
$fff ($ffff on hard disk) Cluster is last of a data file
$ff7 ($fff7 on hard disk) Cluster is defective.

89

GFA-Debugger

The 16 byte entries on the hard drive are very easy to decipher:

Each 16 bit word is in Inte! format. Each word in the FAT corresponds
to a cluster. The first two cluster numbers (0 and 1) and also the first
two FAT entries are not vacated. On the hard disk these entries
typically contain the entry O.

The 12 bit entries are a bit more difficult to read. These entries are
always two entries combined with three bytes. Furthermore the entries
are bracketed within each other. These entries looks like this:

23 c1 to, the following bits correspond to:

Bits 8-11 from entry 1
Bits 4-7 from entry 1
Bits 0-3 from entry 1
Bits 8-11 from entry 2
Bits 4-7 from entry 2
Bits 0-3 from entry 2

O T WN

These entries can be read automatically and shown with the
command ‘sclu’.

90

Appendices

3) The directory contains the name, length, creation time, creation
date, start cluster and an attribute byte, which shows that the data is
write protected or that it should not appear in the directory for every
data file saved. Each entry in the directory is 32 bytes in length and
has the following construction:

File name (8 Bytes)

File Extension (3 Bytes)
Attribute (1 Byte)

free Area (10 Bytes)

Time (2 Bytes, bitwise)
Date (2 Bytes, bitwise)
first cluster (2 Bytes)

Length (4 Bytes)

This information can be listed with the debugger command ‘dir’ for
each entry.

4) The data, as was explained above, is divided through the clusters
of the disk. The start cluster for every file can be found in the
directory, all further clusters can be found in the FAT.

9

GFA-Debugger

Appendix B

Alphabetical list of Debugger commands

... 76
ettt ettt eter e et eeeeiieetereerieesiesieseneeeratettertateaetaaatnatanatantanannenn 37
$Bytes,Strings,Words,Longwords or ‘String’cc.ccoccocoee 45
[Hexcode] {Symbot} Mnemonic {Operand}ccccoimennene, 51
2 1] 1 1 RO USSP 77
o PP PPN 24
D=, D Om e 23
Yo TSNS PR POPUPOPPUPPURPR 24
)1 2 TOUUUTT OO PO PO OO U PV UPUPUTROPPRRRNt 50
S S ettt e e ee e e e e e e aaaaaaaeaaanaaeeaaaaaaaee 22
ettt e e ee st e et eea e reeh et eetr et er e aeranets 21
o]0 JPUT DT T OU TP 40
(01510] 1 HUUTTOT SO UOUPP PP 49
(0310) 1 [HUUURRUTR OO OUO U 49
o [T RTURTUUP PP UP R 43
s F- I UUUOTU T U U TS URPUUPUPPOPUINt 43
(o 1= oI URT U OO PPPRPRPN 50
ARIBLE ... e e e e e e aeeeeees 66
(o |11 £-To] SUUUTTRT OSSR OUSURPPPPN 19
Lo |1 AP USSR 64
o | OSSP 43
IOTE e et rr e aeae e 48
(o | (o] 2 IRUURTUUUS O U OUUURRURUUR 48
(o [0 £=1:1=] SRR OSSOSO 78
o 1", Z TSP 43
Bttt e et e et ieeeeeetereeeeesarebierareartrrrereren e enaeetaaetenraenneatn 13
L= Yo LU U RRPORPNt 73

92

Appendices

B et ———— et e et eee e e ee et aeeae e iiarsrebiree st arree 16
=] SO U OUU 15
1{o] 1¥ TR P UEPSt 72
111 RO RTTR 63
Bl e e 53
& T P PO U 20
GO ..ttt e 70
1 TP P RPN 76
£ 1= CUTT OO OO ORIt 50
o} ST R TR 58
510 4 I EUTTT T T O RTNt 59
8] TSR 57
(111 o ST U 22
[ST UR PP 54
K ettt et e e et et e ettt e e et e e e et e e r e eaare e aaaaas 76
b ettt ettt tir s e s bt a e b araan 47
o [O PO 72
LB U e e e e e e ae et 73
[18
U 18
1 1 TR 62
D 1 oo ee ettt er e ee e ae e raataraaaaan 60
(111=10.010] A FUVUUSTUTTU RSO r OO U OO U U U 28
12011 1 (o PP 61
(111 7T OO TIR 29
8 1= L T TSP TR 17
[TP UT TR OO TR PO 38
(o] o JOUT OO 40
(0] 0]0) 1 FUUTTUTUTT SO P O PO 42
o o) AVUUR ST 50

93

GFA-Debugger

OO e e 42
POT e ettt areae 75
PON s 75
L6 | PP VPRRN 30
QO et a e 30
16 [0 o OO PR 29
Lo 1| O 78
L et e e e e e ettt e et e e aetestatantanetararaaarar et arereeraeranran 67
FEQOTE .. et 27
L= [0 3 S TSSOSO SUPPPIOP 27
OO, .. ree e 78
(13T o PRSPPI 68
DV e et e ettt e e et e e r et e e e rarrarearrrn———— 67
SAIMIBSCT uuitiiii i reee e e ee e et et ee st s et e e e s amaee s ran s rene s e ranns 19
SCIU e, 71
SCIONOT oo e 75
SCEONON. Lo, 75
t1 = o] 1 [0 RS TR UR USRS URPRR 69
=] (o |1 O SURUURSRRTRRR 71
=2 (e | AV AU ST URUSURTT 65
Bt e e e et ———aaaeeee e e e ——aaaareeaen—aaaaaaea 26
B e e 26
Uttt e e e e e e e et a et e et et aeaaeaero st nnaan e anranns 29
U ettt e eate e e e e e e e e b tareareraaaaereranaarans 36
1 1] 1 OO TP PR 31
Ul e e e et e ettt ettt e an e eyt aar s aaaan 36
N e e e et e e bttt e e e ettt e ——————— 17
Y et ettt ettt e e ra ettt et arear e ran et et aararrn——aanaen 67
W L ittt vttt et ettt eae s s e e e e raen e e arrt e e reararreres 68
Kttt et e ettt ee et et et aertaterrtarr ettt rarernerraerarres 24

94

Appendices

Assembler command ... 37,51
Fi XU (o 30 1 1= (o= R TSRO TIPOR 26
Call SUDTOULING ..o 21
Change MEMONYccccroiiiiiiiicirii i 45
Clear WOTKSPACEccoveiveieiirire i 17
(0] [T (=T £ PO T TR 71
Compare MEeMOrY aAr8aScccoiriiirrermsmseseneiinne e 60,61
DiSasSeMbIE ..o 47
Display parameters ... 17
Display 1egISters ... 27
Environment String ... 16
Erase BSS ..ot e e 22
Erase breakpOintScoccciiiiiiiiiiiiecc e 24
Fill MEBMOIY oot 63
HEX dUMP oot e s e 48
HIE traCe ..o 29
Input register contents ... 25
List breakpointSccooiiiiiiiciiic e, 24
List CONAIIONS ..ooiieeiiiee e 36
List SYmMDbOIS ..o 18
Load Program/object cOde ... 13
MOVE MEMOIY ..ottt st 62
Observe trap CallS ..o 38
QUIPUL MEBMONY oot 43
Output register CONeNtSccccovvvmieiiiiin e 24
Place string in Basepage ... 15

95

GFA-Debugger

REAA Aata ..ot e e e e e e e aees 67
2 {=T: (0 T =10 (o | RNNRUU SRR RUPSURRR 68
Reassemble ..., 53,54
Search addreSs/SHiNG ..ovoeveeeeee e 57
Search COMMANG ..ot 59
Search part commandc.cocoviiiiiiieieeece e 58
Set Dreakpoint ..o s 23
ShOW CONAILION ..o e, 36
Start Program ..o 20
LILE: (o= TSRS TTUSRURRRRRPR 26
Trace DACK ..o, 29.30
WIHEE QAL ..o i 67
() (== 1= o (o] 68

96

Appendices

Technical Support

Technical support is available to registered users of GFA products.
Please ensure that you complete the registration form and return it to
GFA. We will only provide support to registered users.

Due to the nature of problems associated with programming, it is
preffered that all problems are notified in writing, rather than phone. A
source code listing should be provided to support the problem. If
possible (and in any case with code longer than 20 lines), a disk
containing the source code should be supplied, together with return
postage, so the disk and answer can be sent back.

GFA is always improving its products and is always interested in
suggested improvements. As a result, upgrades will be available to
registered users.

Help and advice is also available from the independent GFA User
Magazine. The magazine is compiled by GFA users for GFA users.
The magazine is available from:

GFA User Magazine
186 Holland Street
Crewe

Cheshire

CW1 38J

UK

Contact:

Tel: 0270-256429

Email on CIX {gfa@cix)

Or on the FoReM network of BBS's via MicroMola.

97

GFA-Debugger

NOTES

98

GFA Data Media (UK) Ltd
Box 121
Wokingham
Berkshire
RG119LP

