ATARI ST

Assembler

GFA
ASSEMBLER

No part of this publication may be copied, transmitted or stored in a
retrieval system or reproduced in any way including but not limited to
photography, photocopy, magnetic or other recording means, without
prior permission from the pubtlishers, with the exception of material
entered and executed on a computer for the readers own use.

Every care has been taken in the writing and presentation of this book
but no responsibility is assumed by the author or publishers for any
errors or omissions contained herein.

The author and publisher shall not be liable for incidental or
consequential damages in connection with, or arising out of, the
furnishing, performance, or use of these programs or information.

Written by: Roland Schutz
Peter Holzwarth

Edited by: George W. Miller
Les Player

Layout by: Andrew Quayle

Translations by: Gunter Minnerup

Published by: GFA Data Media (UK) Ltd.
Box 121
Wokingham
Berkshire
RG11 1FA
(0734) 794941

ISBN 1 85552 003 5

December 1990
Trademark and Copyright Notices:

GFA and GFA BASIC are trademarks of GFA Systemtechnik. Atari,
520S8T, 1040ST, Mega, GDOS and TOS are registered trademarks of
ATARI Corp. GEM is a registered trademark of Digital Resource.

Book | GFA ASSEMBLER

Table of Contents

Part |
Part ti
1.0

2.0
2.1
2.2
2.3
24

3.0
3.1
311
312
3.13
3.14
3.1.5
3.1.6
3.1.7
3.1.8
3.19
3.1.10

3.2

3.2.1
3.2.2
3.23
324
3.25

Introduction.......................cc 7
The EAitOor............ooovveiiie 1"
Selecting afile...............cccooevin 12
The Editor Screen..................cccccueunnnenn. 15
Contetnts of the Editor Screen 16
Key Assignments in the Editor.................... 18
Mouse Functions in the Editor.................... 24
Macro key definitioncccccnieennn. 26
TheMenuBar ..., 35
The File MenuUcocccovevirivev e 36
o) 21 (1T 37
Saving TexXt.. ... 41
Saving with a new namecccccoccenee. 41
Restore Filecoovveeeciieniiieeeer e 41
Loading a New File.........cccccoevvvvrivnnineennnns 41
Load BIOCKcovviirririeer et M
SaAVE BIOCKeveeeieeeeieeee e 41
Erase File.........coovvvermeeericecieieeeeeeeeee e 42
Format Disk.........ooovvveiiieeeiieeeeee e 42
Exiting the GFA ASSEMBLER 42
TheEditMenuc..cooeeiiiieeene. 43
Edit Parametercccccceveeveevieeeeivieeceeneee, 43
Text Attributes (Ascii/Assembler mode) 45
TaADS .o, 50
Special Characters.........c.coceevvvccnvncnncnne. 50

Text Compareccccoeeeeericnniiieceee e 51

3.3
3.3.1
3.3.2
3.3.3
334
3.35
3.36
337
338
339
3.3.10

3.4

3.41
3.4.2
3.4.3
3.4.4
345
3.46
3.4.7
348

3.5

351
352
353
354
3565
356
357
358

The Block Menuooooovvieiveeiiieeieennns 52

Setting Block Start ... 52
Setting BloCk End ... 52
Copy BIOCK........coocivrieeie e 52
Move BIOCK........oooeeeiee e 52
Erase BIOCKoooveeeei e, 52
To Block Beginning...........ccccovviiiiiiiiinnnnne 53
ToBlock ENd.....oooooi i 53
Remove Mark.......c.cooovvivveieeiiiiiieeec 53
Declare Global BlocK........cccccvvevviiiiiiiininnnn, 53
Use Global BloCkcooooeeeiiiiiiie, 53
The SearchMenu 54
St Mark ..o 54
GOtOMArK ..o, 55
Search Character Stringc.cccooveeeinieennn. 55
Continue Searchccvveeen. e e e r——— 57
Search & Replace......c.ocevvvveviciiiiiiniinnens 57
Jump to Text Beginning ..o, 58
JumptoTextEnd ... 58
Jump to the Previous Cursor Position........ 58
The PrinterMenuovvvveieeeeenenns 59
Printer Parameterscccovcieeee i 59
Printing the Entire Text ... 61
Print BIOCK ...c..neieeee e 61
Print with line numbersccccoooeeeeee il 61
Print without line numbers........................... 61
Print all pagescccoooeeeiiiiicicc 61
Print Odd Pages.....ccccoevveriinvcciiiiceccee 61

Print Even Pages.cooociiiiiiie 61

Part Il

1.0
1.1

12
1.3

2.0

2.1

2.1.1
21.2
21.2.1
2122
2123
2.1.2.41
21242
2125
2126
2127
2128
2129
21.2.10
213
214
215
21561
2.1.5.2
2.1.6

2.2
2.2.1
222
2.2.3
3.0

4.0

Using The GFA ASSEMBLER

The AssembieMenu 63
Parameter Settingscoooevviiiiieiic e 63
ASSEMbBIE..... .o 67
Cross—referencecoceeeeveveeeecceiiineineenne 76
Source Code Directives........................ 77
Pseudo OpCOdesS.......c..ccovvvvineeiiceineeeienns 77
Program Structure Commands.................. 77
Macros and .Include ..., 84
Macro Definition ... 86
Macro Call ... 87
Special Macro Functions................cevn. 87
Combining Source Files............ccccocecie 94
Straight Text Assembly ... 95
String Processing.....c.cccecevviiiniciicieee, 98
The lllegal commandc..cccoeveereennee 101
Including additional source code.............. 101
Additional macro functions from V1.3 102
Including absolute data............................. 105
Using symbol definition files 106
Conditional Assembly..........c.cccoviiiinnn. 108
Repeated Assembly..........cccccci 112
Commands for Memory Initialization........ 114
Text and Initialized Data Segments 114
Uninitialized Segments............cc.ccoceeieens 115
Commands for Formatting Listings 117
Calculations, Symbols, Operators 125
Definition of Symbolscccovviineens 125
Retrieve Symbols........ccoooeeeeii 126
CalculationS........cccuriiereeeerene e 127
Linker ... 129

Library Management 137

Part IV

Additional Information

1.0 Execute Program..........cccceeeveceveccciennnnnnen, 145
1.1 Loading the Programi...........cccccevrverrernnnn. 146
1.2 Loading the GFA DEBUGGER.................. 146
1.3 Loading a Compilerccceoceeevevienennne. 148
1.4 Loading GFABASIC ... 149
2.0 Calling the Memory Resident Debugger .. 150
Appendices
A1l Operation of the Input Fields 152
A2 Macro Functions (keys) Format................ 154
A3 Standard Printer Settings 158
A4 Printer Configuration Table 159
A5 When Memory Fails..........cccocoveevinnnn. 160
B1 Format of Executable Programs.............. 161
B2 Object Module Formatc.cocuenee... 163
B3 ABS File Format...............ccoovevivviceiies 165
B4 IMG File Formatccocoveeeiiiiiieee 166
B5 Library Constructionccccceeeeinnnene. 167
B6 Index Files (for Libraries)........c..c..cecuvenee.. 168
B7 Tokenised Source Code Format............... 169
C Error Messages

(from the Assembler and Linker) 170
D Cross Assembly (to Amiga)....................... 174

GFA ASSEMBLER INEXccoccecvieereirreririerenerirevene 177

Part |

Introduction

1.0 Introduction to the GFA ASSEMBLER

The purpose of this manual is not to teach Machine Language
programming, but to provide a reference manual for using the GFA
ASSEMBLER. Many good books are available for instruction in 68000
programming and should be consulted for specific information.
However, we do feel that due to its interactive editor, the GFA
ASSEMBLER is an ideal tool for both the beginner and the
experienced Machine Language programmer. We'll begin by describ-
ing the assembler program. We feel this first step is necessary,
because many users have already become familiar with various high
level programming languages on the Atari ST. The current trend is
towards writing either parts of a program, or the entire program in
Assembly Language. Many users will find it very interesting to learn a
programming language very close to Machine Language.

Machine Language is best defined as the individual bit settings
(ones and zeros) which contain the actual information interpreted as
instructions by the microprocessor, and executed directly. Assembly
Language programming is the use of a symbolic code in which
each statement represents one instruction which corresponds to a
Machine Language statement. This symbolic code is easier for
humans to read. A single statement in a high level language, such as
GFA BASIC 3.0 may include many Machine Language instructions. An
Assembler program converts the symbolic code, sometimes referred
to as opcodes, into the actual Machine Language instructions used by
the microprocessor. In this manual, we will be referring to the process
of writing in Assembly Language.

GFA-ASSEMBLER

User programs written completely or partly in Assembly Language are
characterized by high execution speed and short program length. This
is because an Assembly Language program can use the computers
memory more effectively. The GFA ASSEMBLER was designed by
Assembly Language programmers for Assembly Language program-
mers. It offers many functions and options that are designed
specifically for program development.

Here are a few of the major features of the GFA ASSEMBLER.

The Assembler and Editor are combined in one program. Errors are
discovered when they are entered. When you have entered a line into
the editor, it is checked for errors and an error message is returned at
the line containing the error. No turn around time. If an error occurs
during the assembly process you are returned to the editor with the
cursor in the line containing the error. With a separate assembler and
editor, the source code must be loaded, corrected, saved before you
may attempt to assemble it again. Automatic tokenising of the source
code. Assembly commands and address types are not saved in plain
text, but are converted into short keywords, or tokens. This prevents
extra space characters from being saved. This process saves memory
in the computer and on the disk and also shortens the loading and
saving time required for your source code. (A tokenised source file is
oniy about 50% to 60% of the length of the same file stored as plain
text.) Automatic formatting of assembly commands. All input is
directly formatted according to the tab positions, which can be set as
you prefer. This saves time when entering a program and provides an
easier to follow program listing.

Very fast assembly of source code into object files. You will soon
discover that the assembler is extremely fast. The editor of the GFA
ASSEMBLER can also be used to write programs in high level
languages. It offers all the options you would expect in a comfortable
and fast text editor. Through it's power to load programs and then to
pass this source code directly (that is with no detour through a disk),
the editor can also be used quite effectively with compiters.

Introduction

The powerful debugger, with which programs can be tested, is a
stand alone program. Therefore the Editor/Assembler is not exces—
sively large, and the debugger can be used without loading the
Editor/Assembler. (Of course the Debugger may be loaded in addition
to the Assembler). The debugger is symbolic and screen oriented.
The cursor can be positioned on the screen as desired.

GFA-ASSEMBLER

10

Part Il
The Editor

The Editor of the GFA ASSEMBLER has its own user interface. This
interface is quite similar to that used by GEM programs. However, this
interface is faster, while still permitting mouse as well as keyboard
input.

The GFA ASSEMBLER can be run in high resolution (monochrome
monitor) and medium resolution (color monitor). The GFA ASSEM-
BLER should not be run from low resolution, as system errors may
OCCuUr.

In order to understand the operation of the assembler, follow the
chain of events that are presented in the following section. If you'd
like to streamline your use of the GFA ASSEMBLER, click once on
GFA-ASM.PRG from the GEM desktop to select it. Then move the
mouse cursor to the Options heading on the Menu bar. Select Install
Application. Now enter the default extension .IS so that you may load
and run the GFA ASSEMBLER simply by selecting any file with the .IS
filename extension.

Please make a backup copy of your original disk and put the original
disk in a safe place. Now load GFA-ASM.PRG from your backup disk.

11

GFA-ASSEMBLER

1.0 Selecting a File

Shortly after starting the GFA ASSEMBLER a screen will appear which
gives you the chance to select a file to be loaded:

Load Assembler Source Page : .t f = ==----w--- Bytes free
ile ! . h_[Undel}: C:\ASSEMBLE.RS\GFA_Vi_5\¥.IS

8 ChCies 13 oo |
B! 1708

I cOoUNT IS __.i01? |

D! CRC IS _.._107 |

E: INIT IS ___1997 |

Fi MAKE_HEX IS __.3289 |

ROT_AZ IS ___6862

SEARCH IS .__1693

SEARCHL IS ____616

THAUS IS ___2045

i e v et e . St Sl S . i i . PP e e Y SV S o e

Figure 1: The File Selection Screen.

The Escape Arrow can be found in the upper left corner of the menu
bar and has the same effect when the mouse cursor touches this
arrow as when the Esc key is pressed. At the moment, nothing will
happen because a file must first be opened. If one or more files are in
memory, then the file selection screen can be exited by pressing the
Esc key. What is happening to the file is described next to the Escape
arrow. In in this example the message Assembler Source Load is
displayed. If you select a file that was not created with the GFA
ASSEMBLER, this message will change to ASCIl Source Load as the
file is loaded.

The path to the current directory is displayed in the middle of the
menu bar. If more then 69 files are in the current directory, an arrow
symbol appears next to the page number, at the middle of the upper
line of the menu. When this arrow is selected with the mouse cursor,
or the Cursor up and Cursor down keys, you can page through longer

12

The Editor

directories. When the Shift key is held down it is possible to page
through the directory by columns. To the right of the page number is
the identification letters of connected disk drives. The current drive is
displayed in reverse video.

You can change the current drive by either clicking on one of the
other drive letters or holding the Control key and pressing the desired
letter key.

To the far right the free memory area on the disk is shown, if there is
enough space in the window. If the current drive is a hard disk, the
free memory area is only shown after this area has been clicked on
with the mouse cursor.

The selected filename is shown on the left side of the second line in
the menu bar.Located to the right of the file name is the path to this
data. The path can be changed in the following ways:

To the next deeper directory: click on the directory.

To the next higher directory: Press the Undo key or click on the word
[Undo] in the middie of the second line with the mouse pointer.

Change the extension mask: either click on the Extension mask (at
the right end of the path), enter the new extension and press the
Return key, or, when no file name has been selected, simply enter the
new extension as the filename extension and press the Return key. In
the mask the Wild Card Characters '*’ and '?” may be used. If you are
in the main directory, the extension mask can be changed to *.*’

The file name can also be changed, by clicking on the desired file in
the directory.

Enter the name, access path and extension through the keyboard.
You can change the fields for the name and the extension, separated
by the period by using the cursor keys to position the keyboard
CUrsor.

When a program is loaded, the wild card extensions ™’ and *?’ can be
used in the file name or extension. You can select one of the file
names found on the disk or you can enter a new file name. Press the
Return (or Enter) key, or double click on the desired filename.

13

GFA-ASSEMBLER

If you have selected a file name that does not exist in the disk
directory, a new file will be created with this file name. The GFA
ASSEMBLER will also store the current access path. When you save
this file later with the Save function from the File menu or Save
Changes from the status screen (see Section 3.1.1), the file will be
saved in the proper directory.

The file selector also allows you to select more than one file for
loading or deleting. Just press down SHIFT while selecting. Using
wildcards, all files conforming to the pattern will be loaded or deleted.

WARNING:

Itis possible to delete an entire directory in one go (by entering *™*.*').

Now, load the file DEMO.TXT from the root directory of your disk.

14

The Editor

2.0 The Editor Screen

ﬁ_;ﬂ:Sd Insert 1 @M Line: K M Columa : 1 DEMS.TXT

This is a demo text which you can use to experiment with some of the
features of the GFA ASSEMBLER's editor.,

For example, mark a block with the mouse, copy or move it.
Find particular character string with the
Search fuaction, use the many special characters to draw little men:

Y ,insert markers into the text, or test your printer driver to
see if it is satisfactory, and if not, modify it!

Hote: fny printer capable of printing graphics can be made to output
tie itarl ipeclal cgaratters. Here are a few to test your printer:

b, 4 '
Thése’th;raite;s tan all be found in the range between 1 and 32
{decimal), but there are further special characters in the range above
128, such as &, Qor ¢,

Figure 2: The Editor Screen

If you have previously worked with other editors you'll notice two
things when the editor screen appears. First, the cursor blinks. This
makes it much easier to locate than with a non blinking cursor.
Secondly, there is an extraordinary amount of room available on the
screen. Only a single line is used as the status line. The editor always

displays 24 lines, each with 80 characters.

In case a line is longer than 80 characters the extra characters will be
replaced by an arrow symbol (pointing either left, or right) on the
screen. To access the part of a line out of view use the cursor keys

(see Section 2.2) or click the arrow with the left mouse button.

15

GFA-ASSEMBLER

2.1 Contents of the Editor Screen

The status line is used to display important information. For example,
which line and column the cursor is presently in and which text file is
being edited (the number of text files that the editor can contain is
only limited by the amount of memory available). in the upper left part
of the status line the Escape arrow can again be found, pointing to
the right now. This means that you can return to the menu by either
touching the Escape arrow or pressing the right mouse button.

You can exit the menu by clicking on the Escape arrow again, by
clicking the left mouse button once outside of the status line or by
pressing the Esc key. Next to the escape arrow, a digital clock is
displayed. This clock displays your system time. It may be set by
clicking on the time display or by pressing the F1 function key and
entering the correct time. After you have entered the correct time,
press the Return key. If you use a clock module, or have previously
set the correct time, the correct system time will be displayed.

. Beside the time display, the Edit mode is indicated. There are three
Edit modes:

Insert 1: Characters, that you enter are displayed at the cursor
position.When the Return key is pressed, the rest of
the line (following the cursor) will be moved to the
next line.

insert 2: Similar to Insert 1, however, pressing the Return key
moves only the cursor to the start of the next line.

Overwrite: Characters entered replace the characters that were
previously in that position. When Return is pressed,
only the cursor moves to the next line.

You can change between these modes by clicking the mouse button
on the mode display, or pressing ‘F2’.

16

The Editor

By pressing the Shift and Insert keys, it is possible to toggle between
Insert 1 mode and the Overwrite mode.

Two arrows follow this display on the status line (Cursor up and
Cursor down). Clicking on these arrows with the mouse cursor permits
paging through the text, either up or down, one page at a time. You
can aiso page through the text by pressing the cursor up or cursor
down key while pressing the Control key. Clicking on the area of the
status line which displays the line number or pressing the F5 key
permits entering a new line number. You may also enter a label name,
up to eight characters in length, or the name of a Macro. The file is
searched and if the line is found, or the line which contains the label
or the Macro is defined, the cursor moves to the beginning of this line.

When a label/ macro definition has been entered in the status line
(after F5) followed by SHIFT+RETURN rather than RETURN, the
label/macro is searched for from the current cursor position rather
than the beginning of the text.

A letter ‘N’ appears on the top line, which indicates whether the
keypad operates as cursor keys or as numbers. (If the ‘N’ is present,
then it indicates Numbers). See section on keypad keys later in this
section for their function.

17

GFA-ASSEMBLER

2.2 Key Assignments in the Editor Screen.

The keys in the keyboard contain the normal key assignments.
Additionally, many keys are assigned new functions.

The following keys are used to move the cursor around the screen:

Cursor up:

Cursor down:

Cursor left:

Cursor right:

Shift + Cursor up:

Shift + Cursor down:

Shift + Cursor left:
Shift + Cursor right:

Home:
Shift + Home:

Control + Home:

18

Moves the cursor up. If the top of the
screen is reached, the text is scrolled down
one line.

Moves the cursor down. If the bottom of
the screen is reached, the text is scrolled

up.

Moves the cursor to the left. If the left edge
of the line is reached, the cursor moves to
the end of the previous line.

Moves the cursor to the right. If the right
edge of the line is reached the cursor is
moved to the beginning of the next line.
Moves the cursor to the upper left corner.
Moves the cursor to the lower left corner.
Moves the cursor to the start of the line.

Moves the cursor to the end of the line.

Moves cursor to the upper left corner.
Moves cursor to the beginning of the file.

Moves the cursor to the end of the file.

The Editor

Other new functions:

Control + Cursor up:
Control + Cursor down:
Control + Cursor left:

Control + Cursor right:

Delete:

Shift + Delete:

Control + Delete:

Shift + Control + Cursor
right:

Shift + Control + Cursor
left:

Backspace:

Shift + Backspace:

Return:

Page up

Page down

Move one word to the left.
Move one word to the right.

Erase the character directly under the
cursor. All characters right of the cursor
are moved one character to the left.

Similar to Delete, however if the cursor is
at the end of the line, the next line is
attached to the current line.

Erases the word, including spaces in
front of the word, which contains the
Cursor.

Delete rest of line from cursor position.

Delete line up to cursor.

Erase the character to the left of the
cursor. All characters in the line to the
right of the cursor, including the charac-
ter under the cursor, are moved one
space to the left.

Similar to Backspace, except when the
cursor is at the beginning of the line. In
this case the current line is attached to
the end of the previous line.

Insert 1 mode: the rest of the line, after
the cursor, is moved to the start of the
next line. Insert 2 mode and Overwrite
mode: the cursor is moved to the begin-
ning of the next line.

19

GFA-ASSEMBLER

Enter:

Insert:
Shift + Insert:

TAB:

F1:
F2:

F3:

F4:

F5:
F6:
F7:

F8:
F9:
F10:
Undo:

Control + Help:

20

Same as Return.
An empty line is placed in front of the current line.

Toggle between Insert 1 and Overwrite modes.

Empty spaces fill in from the cursor position to the
next tab position.

Set clock (see Section 2.1)

Change between Insert 1, Insert 2, and Overwiite
modes (see Section 2.1)

Move screen one text tine up. Cursor stays in the
present line.

Move screen one text line down. Cursor stays in
the present line.

Enter new line number. -

Call special character box (see Section 3.2.4).
Repeat search further (see Section 3.4.4)
Erase line.

Call the Macro function box.

Save file assembied in background.

If you have just changed, or erased a line or a
block, a box will appear asking if you would like to
recover this information.

The currently displayed screen is sent to a
connected printer.

The Editor

If you have more than one file in memory: (see Section 3.1.1)

Control +.

Control + ?

When two text files are
3.1.1):

Control +]
Control + |
Control + ’
Control + ;

Escape

Numeric Keypad

Numeric Keys

File change backwards.

File change forwards.

displayed simultaneously (see aiso Section

Enlarge text window.
Shrink Screen

Right Screen

Left Screen

Menu bar

While holding the Shift key you can enter
the decimal ASCIl code of a character and
when the Shift key is released the character
will be displayed at the cursor position. In
this manner you can use ail ASCIl Charac—
ters from 1-255.

If you press the Alternate key and simul-
taneously press one of the numeric keys
1-9 you can place up to 9 marks in your file.
These marks can be called by pressing the
Control key and then the corresponding
Numeric key. (see also Section 3.4.1 -
3.4.2).

21

GFA-ASSEMBLER

The numerial key pad can be changed to function as the cursor keys
by using the key combination Ctrl+ (" (on the numerical key pad).

The keys have the following meaning:

Cursor up

Cursor to the right

Cursor down

Cursor to the left

Cursor to the start of the text
Cursor to the end of the text
Screen display one page up

Screen display one page down

©C W Lo =N &s&NO®

Insert a line

Erase a character

22

The Editor

If you are in the Edit Parameter Screen (see Section 3.2.1), then the
following key assignments are available. Further functions are
available by holding the Control key and pressing the corresponding:

Character key as follows:

Control +
Control +
Control +

Control +

Control +
Control +
Control +
Control +
Contro! +
Control +
Control +
Control +
Control +
Control +
Control +
Control +
Control +
Control +
Control +

Control +

A
F

-

X M ™ O T < I XWC®N-<DITO

Move cursor one word to the left.
Move cursor one word to the right.
Move to the next tab position (no spaces).

Erase the words under and after the cursor
position.

Page down one page.
Page up one page.
Erase one hne.

Move cursor to its last position.
Save with backup.

Load file over present.
Set beginning of block.
Set end of block.

Erase block markings.
Move block.

Save biock.

Print the entire file.

Print the defined block.
Search.

Search and replace.
Exit the GFA Assembler.

23

GFA-ASSEMBLER

2.3 Mouse Functions in the Editor

The function of the mouse in the Edit screen:

Click with the right mouse button: Menu bar appears. The menu
bar disappears when the left mouse button is pressed on the
Escape arrow or outside the status line.

For the functions of the mouse outside the status line see
Section 2.1.

Outside the status line:

24

Left mouse button pressed once: Sets keyboard cursor to the
mouse pointer position. If the mouse pointer is under the
bottom of the text the click is ignored. If the mouse cursor is in
a column that has not yet been written in and therefore is
longer then the current line length, the cursor will be placed at
the end of the line.

Double click on the left mouse button: Jump directly to a line,
Label or a Macro. The effect is the same as entering a line
number, a Label or a Macro in the status line {see Section 2.1),
only here nothing must be entered, except that the line number,
the label, or the macro name is found in text.

Hold left mouse button: Marks block. In this way you can
quickly mark a block that is contained within view on the
screen. The mouse cursor can not be moved outside the
current text area while marking a block.

Hold Right mouse button, and press the left mouse button:

Copy block. If a block is marked it is copied to the present
position of the mouse cursor.

Hold right mouse button, and double click on the left mouse
button: Move block. If a block is marked it is moved to the
present mouse arrow.

The Editor

Depending on the setting of the Edit Parameter Screen (see Section
3.2.1) the editor will react to the mouse arrow touching the upper and
lower screen edge:

with the Scrolling function the cursor will roll very quickly in the
corresponding direction.

With the function Menu Line the menu bar will appear when the
mouse cursor touches the upper screen edge and the
corresponding menu is pulled down. The menu is very similar to
that of a GEM Program.

25

GFA-ASSEMBLER

2.4 Macro Key definition

Keyboard macro functions can be substituted for often used key
combinations. This makes the use of the GFA Assembler easier.

Every event that is executed by the user through a key, the mouse or
the menu bar can be changed to a sequence of commands with the
macro functions of the GFA Assembler. Every key can be defined
eight times (in connection with keys like Shift/Control). With such a
definition you can execute with only one mouse click, a key press or a’
menu call, often used key combinations.

An example for the use of macros would be the saving of all sources
before assembling (see examples).

The GFA Assembler saves the keyboard macros internally as a
sequence of commands in an ASCIt file. Such a sequence of
commands looks like the following:

PROGRAM event
Command parameter,parameter,parameter,..

END

A list of all possible Events and commands with the parameters can
be found in Appendix A2.

After the starting the GFA Assembler, it searches for the macro table
with the name 'GFA-ASM.MON'. If the file is found it will be loaded
into memory. If this file is changed during the use of the program,
when you quit, it will automatically be saved in its current state.

The macro table may also be edited in the Editor as a text file (see
later).

26

The Editor

Record Macro The recording of a macro can only be started within
the edit screen, whereas it can be ended in any place.

To fill in a new Event you must activate the macro-record-mode and
then show the GFA Assembler what it is supposed to do later on.

Press the function key F9 and a box with various macro functions will
appear:

Macro - Functions:

Record Macro

Erase Macro

Show Macro Table

Use Macro Table

In this box click on the function record-macro. Another box will then
appear which will ask you to give it an event which is to be changed.
To give a key a new function press any key or even a combination of
keys (Alt+, Shift+). As mouse events you can exchange the single and
double click with the left mouse button. To define a certain menu
entry, choose this menu with the mouse or enter it the following way;
Esc,code,code (for the control of the menu see part 3).

The Macro Functions Box

After you have entered the event, the two boxes will disappear again
and in the status line a ‘M’ will appear in front of the current file name.
This ‘M’ shows you that all events which will be entered from now on
will be recorded as the new function for the earlier entered event.

Now enter all the keys, mouse clicks and menu calls. Finally press the
key F9 again to end the recording.

27

GFA-ASSEMBLER

Example 1:

The ‘Help’ key is to start assembling (instead of clicking on the menu
item):

press F9: Execute the macro function box selector.

click on record A key, a mouse click or a menu will be the
macro.

press Help: the ‘Help’ key will activate this macro.

Now you program the new function:
select Menu 6,item 2: Assemble function.

press Return: Start assembling with the same name
press F9: End of the macro recording session
Example 2:

Save modified sources before assembling.

press F9: Call the box with the macro function.
click on record A key, a mouse click or a menu will be the
macro.

select Menu 6,item 2;: Assemble function.

Now you program the new function:

select Menu 1,1: to the status—screen (see part 3.1.1)

Save Changes click on: all changed sources will be saved.
Return: back to the text

Menu 6,2: Assembler—box

Return: Start Assembly

F9: End of the recording session.

Hints:

With the macro function it is possible to reprogram every macro
event. In the event that important keys or menus are changed it might
happen that the assembler will become unusable.

28

The Editor

Every key can be exchanged individually, for example, the 1’ on the
numerial key pad might have a different function to the ‘1" on the
letter key pad.

Erase Macro

You can erase a previously defined macro by clicking in this box. if
you entered the previousl example where thje help key starts the
assembler, and wish to delete it, when you click in the delete box, you
will be asked which event to delete. You would then just press the
‘Help’ key, and that macro is erased.

Editing Macros

If you want, you can also edit any existing macro. Press ‘F9’, then
click in the macro functions box on the button ‘Show Macro Table'.
The text ‘GFA-ASM.MON’ will then appear as the current text in the
editor. If no macros have been set up, then the text will be empty.
Otherwise you will find a sequence of commands for all the events
that exist. You can now edit this text freely. Every change consists
with the following sequence of commands.

PROGRAM event 'PROGRAM starts the change for an event.
‘event’ is the event for which the change
should occur.

Command argument(s) 'Command’ stands for a sequence of com-
mands to be executed, when the event
nominated after ‘PROGRAM’ is entered.
‘argument(s)’ are the possible arguments
which may be passed on to the command.

END Ends the sequence of commands for this
event.

29

GFA-ASSEMBLER

Examples:
The prevoius examples might look like the following in a macro table:

Example 1:

PROGRAM KEY $00620000
MENU 6 2
KEY RETURN

END

Example 2:

PROGRAM MENU 6 2
MENU 11
KLICK 600 25
KEY RETURN
MENU 6 2
KEY RETURN
END

Further Examples:

PROGRAM DOUBLECKICK
KLICK
KEY WORDDEL

END

A double click will erase a word at the current position of the mouse.

PROGRAM KEY F1
LABEL "1”
END

Searches from the position of the cursor onwards the symbol
definition *1:" or *.1:".

30

The Editor

PROGRAM KEY $033B0000
TEXT "MAKE_HEX.IS”
LINE “start”

END

When the key combination ‘Shift+F1° are pressed the text
'MAKE HEX.IS’ is displayed as long as it is currently in memory.
Furthermore if the symbol ‘start’ is defined in the text, the cursor will
jump to that line.

A list of all the commands with their arguments can be found in
Appendix A2.

Not every key on the ST—keyboard has a name or a clear ASCIl code.
For example the key ‘1’ on the numerial key pad and the key ‘1’ on
the letter key pad have no name and both have the same ASCII code.
To differentiate such keys one can use the hexadecimal codes of a
key in the editor macro table. For example the key ‘1’ on the numerial
key pad has the hexadecimal value $006D0000 and the ‘1’ on the
letter key pad the value $00020000. These values change again if keys
like the Shift/Cntrl keys are used.

A new key combination 'Alt+FS9’ has been introduced so that you will
not have to look up the various hexadecimal values of keys anymore
(for example in the Tos & Gem book by GFA Systemtechnik). Press
any key after 'Alt+F9’ - even with a key combination — and instead of
the key the hexadecimal value ($qgss00aa) will appear at the position
of the cursor. The characters have the following meaning:

qq: qualifier (keys like Alt,Shift, Cntrl)
ss: the scan code of the key
aa: the ASCII code of the key

31

GFA-ASSEMBLER

Example:

The key ‘1’ above the letter key pad has the value '$00020031’ after
the keys 'Alt+F9 has been pressed. This means that no key like
Shift/Alt has been pressed and that the key has the scan code $02
and the ASCII value $31.

Please keep in mind that after the key command KEY either the Scan
code with Shift/Alt keys or the ASCIl code may be used. The scan
code is the only exact way to differentiate between certain keys, for
example, the 1" on the numerial key pad. Only this code should be
used when you want to differentiate between these two keys within a
keyboard macro.

Examples:

1) PROGRAM KEY "1~
KEY “No longer present!”
END

2) PROGRAM KEY $31
KEY “No longer present!”
END

3) PROGRAM KEY $00020000
KEY “No longer present!”
END

4) PROGRAM KEY $006D0000
KEY "No longer present !”
END

In the examples 1 and 2, both the ‘1" on the numerial key pad and the
1’ on the letter key pad have been changed and instead of the
character ‘1’ , ‘No longer present !" will appear. In example 3 only the
‘1" above the letter key pad and in example 4 only the ‘1" in the
numerial key pad are changed.

32

The Editor

To make a changed table accessable for the Assembler, click in the
macro functions box, on the button ‘Use Macro Table’. The text will
then disappear from the editor window and the text that was there
before will reappear.

With the possibility of editing macro tables you are in the position to
modify your changes afterwards, erase them or even create new
changes.

Furthermore you can choose between various macro tables by
loading them as if they were ASCII files and then pass them on to the
editor, using the button ‘Use Macro table’ in the macro functions box.

33

GFA-ASSEMBLER

34

The File Menu

3.0 The Menu Bar

The menu of the GFA ASSEMBLER is similar to the menu of GEM
Programs. It has the advantage of only being displayed when it is
needed and it is managed by the mouse as well as the keyboard.

You can call the menu from the Edit screen by either pressing the
<Esc> key, passing over the 'Escape arrow’ with the mouse, pressing
the right mouse button once, or if you are in the Edit Parameter
Screen (see Section 3.2.1) making the function ‘Menu Line’ active by
moving the mouse arrow against the upper screen edge.

The arrow in the menu bar points to the left, this means that you can
leave the menu list by clicking on this arrow or pressing the <Esc>
key.

You can pull down the individual menus by touching them with the
mouse cursor, pressing the corresponding function key (found before
the name of the menu item), or pressing the appropriate number key.
The file menu will appear, if you point the mouse arrow to the word
‘File’, press the function key <Ft1> or the numeric key '1’. It doesn't
matter if you use the number from the numeric keypad or from the
keyboard itself. During the time a menu is shown the 'Escape arrow’
points upward, this means that this menu can be exited when the
<Esc> key is pressed or the 'Escape arrow’ is touched by the mouse
arnow.

You can go directly to another menu in the same fashion as with any
GEM Program, move the mouse arrow to the desired menu item. You
can select the individual menu entries either with the mouse or with
the corresponding function key or numeric key. There are ten menu
entries in the ‘File’ and '‘Block’ menus. In order to reach the tenth
menu entry, either press the <F10> key or the ‘0' on the numeric
keypad.

The ‘Atari’ menu header, represented by the 'Fuji’ symbol, occupies a
special position within the menu system. It is only possible to activate
it by using the mouse cursor. in this menu you can activate the menu
item 'GEM Fileselect’ (with a check mark in front) or deactivate it (no
check mark). If this item is active, a GEM Fileselect box will appear

35

GFA-ASSEMBLER

instead of the normal file selection screen of the GFA ASSEMBLER.
When you exit this box the box will disappear immediately.

3.1 The ‘File’ Menu

The File menu contains items for selecting functions which manage
the loading and exchange of data between GFA ASSEMBLER and the
disk drives, RAM disks and any hard disks connected to the system.

A i 0 Edit f3: Block fd: Search f5: Printer f6: Rssembler
f1: Status ..,

f2: Save

f1: Save &5 .1
f4: Restore ..,
£3: Load Hew ...
f6: Load Block ..
£11 Save Block ..
f8: Erase File ..,
f9: Format Disk ..,
i0: Quit

Figure 3: The File Menu

36

The File Menu

3.1.1 Status

The Status screen -informs you about the file that is in memory. You
can also change to other text files or select to display two text files.

In order to try out the functions of the Status screen, load an
additional text file into memory. For example, load ASSEMBLE BS.

Call the Status screen {by selecting ‘Status’, from under the 'File’
menu, or by pressing <F1>) The following screen will now appear:

14
oFA - Assembler V1.5

Assembler!: Editor:

" Create File Table HN Menary Backup |
Text 1: ASSH_TX1 ASC {i Text 2: GFA-ASM HON

Roland Peter

Schiitz Holzwarth H LK | Page _i)02 H 0K

!
Erase Source Save Changes i
!
|
|

Loaded Texts

A--ATARRT IS |
f - - CIRCLES IS |
= - % OFA-ASH MON
- B - ASSH_TX1 ASC

e e s e — ——— —— —— ——

Figure 4: The Status Screen

The present time is displayed in the upper left corner of the Status
screen. To the right are the 'buttons’. The buttons can be selected by
using the mouse.

37

GFA-ASSEMBLER

In the lower part of the screen are the names of the files in memory.
Letters are placed in front of the names. Each letter has a specific
meaning as follows:

A: The file is assembly source. It is compressed in memory.
B: This file contains the ‘Global Block’ (see Section 3.3.9).

X: Changes have been made to this file which have not beensaved
to disk.

If you now want another file to be displayed, simply double click on
the name of the desired file. The status screen is then exited and the
file is displayed.

if you want to know how much memory area is occupied by a file,
click once on the file name with the right mouse button. An Alert box
will appear which can be exited by clicking on the ‘OK’ button or by
pressing the <Return> or <Enter> keys. The file in memory requires
approximately 15 to 20 per cent more than the same file stored as a
file on a disk.

In order to determine how much memory is still free, click on the
Copyright field ‘GFA ASSEMBLER 1.x' (x represents the present
version number). An Alert box similar to that used for the file memory
area will appear.

The buttons used for the status screen are:
Erase Source

Select a file name (click on a file name once with the left mouse
button) and then click on the button 'Erase Source’. The selected text
segment will now be erased from memory. (However, previously
saved versions will exist on the disk.) There is no verification question
before the source is erased. You should only click on 'Erase Source’
when you are sure you really want to erase the source.

Save Changes

All text, that has been changed, and not yet saved to disk in it's new
form, is saved. You are given the chance to change disks when you

38

The File Menu

have loaded files from various disks using the same disk drive. The
GFA ASSEMBLER records the disk identification number and name of
each file that is loaded. You should always give each disk you will be-
using to store GFA ASSEMBLER files a name and record this name
directly on the disk. Files that were loaded from a RAM disk, or a Hard
disk will also be written back to that drive. New files will be saved in
the directory that was last shown (see Section 1).

Create File Table

A file selection screen will appear in which you can select the drive
and path for saving the assignment table. The assignment tabie
contains all text that is presently in memory. Files that are loaded from
disk will also contain the identification number and name of the disk.

In order to use the assignment table, you must install the filename
extension "TAB' as an application for the GFA ASSEMBLER (see
Section 2). Then you can click on the file table from the GEM Desktop
and GFA ASSEMBLER wili load and then immediately load the
appropriate file. You will be prompted to change disks as required.

Memory Backup

All loaded text, that is in ram will be backed up, you can select where
to back up to via the fileselect screen.

Text 1,Text 2

If you would like to display two text files side by side enter the names
of both files in the fields (click on the desired filename, and then on
the text box). To return to the Edit screen, click on the 'Ok’ button or
press the <Return> key.

The file specified in Textbox 1, is displayed on the left side of the
screen, the file specified in Textbox 2, is displayed on the right side of
the screen (in order to display only one file at a time, double click on
the desired filename).

39

GFA-ASSEMBLER

2243 Insert! G M Line ! i5 KM Column : 1 FILL.IS
DEF fill,clear MACRE dotrap
i xdef to gfa basic, will then load intf] nove.w #\2,-(sp)
trap]
fill! nove.w #2,-(sp) iphuysbase addg.l #\,sp
trap #14 ENDM

addg.1 #2,sp
nove.] #32008,d1 ; length Pstart: movea.l d(sp),ald

novea,] d0, a0 nove.] #5100,46 |
loop: move.b #255, (af) add.] 12(ab3,d6 ; |
adda.w #1,a0 add.1 20(30),4d6 ; ‘
dbf d1, loop add. | 28(al),d6 !
rts k i back tof} flsr.s main ' run the
clear: move.w 82,-(sp) cir.m =(sp)) The exi
trap 84 move.,l db,~(sp) ; Keep t
addg.] #2,sp dotrap gemdos,keep,?
movp,] HIZ0AA.d1 l

Figure 5. Two text files in the Edit Screen

Visualize the cursor in Figure 5 as blinking in the left text area, and
stationary in the right. This means that you can work with the text in
the left side of the screen (because the left text is active), the text on
the right side is only being presented. The status line will always
contain the name of the text that is active at the moment in the upper
right side of the screen.

Page x

When there are more then 56 text files in memory you can page
through the contents directory by clicking on the ‘<<’ and '>>’
buttons. The line ‘Page x’ will always display the page that is presently
being pointed to by the directory. The number of text files that can be
in the memory at any one time is only limited by the amount of
memory present. You can write large programs in small sections and
not need to save the entire program when a small change is made. If
you are writing a mixed program, that is, a program written partly in
Assembly Language and partly in a higher programming language, all
parts of the program may be in memory at once.

40

The File Menu

Ok

You are returned to the Edit screen by either clicking on the 'Ok’
button or pressing the <Return> key.

3.1.2 Saving Text

The current file is saved in the directory from which it was loaded. The
disk from which the file was loaded must be in the drive. There is no
prompt for the proper disk to be put in the drive.

3.1.3 Saving with a new name

A file selection screen will appear on which you can determine where
the current file is to be saved to. Enter a new name for the file. The
path may also be modified, if so desired.

3.1.4 Restore File

When you have made changes to the current file and feel that you
have made too many errors, you may choose to start over by loading
the last saved version of the text file and replacing the present file.

CAUTION: If the memory is so full that the correct file will no longer
fit in the available memory area, the present file will be erased, but no
replacement will be made.

3.1.5 Loading a New File

Loads an additional text file or creates a new text file (see Section 1).
After the file has been loaded, the new file will be displayed on the
Edit screen.

3.1.6 Load Block

Loads a block of data at the present cursor position. This data will
then become part of the present file. The loaded file will be marked as
a block (see Section 3.3). It does not matter if the present file or the
file to be loaded is in ASCIl Format (in clear text) or in Assembler
format (compressed).

3.1.7 Save Block

This function saves a marked block to a disk. A file selection screen
permits the name to be used for saving the file to be entered.

41

GFA-ASSEMBLER

3.1.8 Erase Data

Data may be erased from a disk with this function. This may be
necessary if you do not have enough space available on disk to save
the file you are working on. The file selection screen is displayed until
you return to the Edit screen.

3.1.9 Format Disk

This function permits the formatting of a new disk. Remember to
specify a disk name. This name will be used by the GFA ASSEMBLER
(see Section 3.1.1).

3.1.10 Exiting the GFA ASSEMBLER

This function exits the work area and returns to the GEM Desktop. if
any work has not been saved, an Alert Box will appear giving you the
opportunity to save the file before quitting.

42

The Edit Menu

3.2 The ‘Edit’ Menu

Functions that have a direct effect on the editing of text are gathered
together under the Edit menu.

3.2.1 Edit Parameter

When you call this function, the following screen will appear:

Color ! | Black on HWhite White on Black

Turn Screen Off ' i no after 2 ninj| 5 nin 15 nmin

House Top, Bottom ! I Hothingll] Scrolling Menu Line

Text Change (Mouse) : | Touch Click

Info File : Lreate

Save with Backup : no yes

Automatic Backup : no after 5 ninj| 10 min 30 min
Ok

Figure 6: The Edit Parameter Screen

If you have a colour monitor you will see a colour palette displaying
the colours selected at this time in the upper part of the screen.
Monochrome users will see buttons labelled ‘Black on white’ and
‘White on Black'.

You may select the display colours by adjusting the RGB values for
the individual palette registers, or by clicking on the appropriate
buttons (for a monochrome system). Change the RGB value by
clicking the arrow symbol located to the right of the displayed palette
buttons.

You can also move the mouse to the corresponding R, G, or B value

43

GFA-ASSEMBLER

by pressing the cursor keys (cursor left, cursor right by pressing the
cursor up and cursor down keys.

The next line permits choosing automatic screen save, and the time
duration after which the screen should shut down. This function
protects the monitor from having an image ‘burnt in’ by a lack of input
over a long period of time. If ‘after 2 min' is set and no input has
occurred for two minutes, the screen will turn itself off. As soon as any
key is pressed (or the mouse is moved) the screen will turn on.

CAUTION:If you have a monochrome monitor and less than 32
KBytes of memory remain, this function will not operate.

The next line determines what happens when the mouse cursor is
moved to the upper or lower edge of the screen display. When the
‘Scrolling’ is set, the cursor will move quickly in the corresponding
direction. If ‘Menu Line’ is set, the menu line will appear, including the
corresponding menu entry. This makes the management of the
program very similar to that of a GEM Program.

The key combination <Control> + ‘Letter’ can be used to switch the
keyboard between the standard key assignments and command table
key assignment (see Section 2.2 and Section 3.2.7).

Clicking on the button labelled ‘Info File : Create’ causes the GFA
ASSEMBLER to automatically create a data fiie called ‘GFA-ASM.INF’
in which settings of the buttons, the contents of the input folders and
the tab settings are saved. This data is automatically loaded each time
the program is again, making it unnecessary to set these parameters
each time.

If the "Yes’ button is selected following the 'Save with Backup' entry,
the previous version of the file will be given the extension “.OLD’ when
a file is saved. This protects the old file from being overwritten. Finally,
if there has been no new input after changes have been made to a
text file, the new file can be automatically saved to disk after a
specified period of time. Only files that can be saved without requiring
a disk change will be saved.

44

The Edit Menu

3.2.2. Text Attributes

In the text attribute menu, important adjustments can be made for
each single text. The most important one is probably the choice if an
assembler source or just any other source is supposed to be edited.

Assembler Source/ASCII Source

The editor of the GFA Assembler can be used in ASCil mode for
general sources for any ASCII text. It offers a familiar and fast text
editor.

In the assembler source mode the editor offers further functions which
are especially set for the development of assembler sources:

intelligent Input of Assembler Programs

During program development, bugs can occur not only because of
errors in logic, but also during the input and correction of individual
processor commands. The most common error sources are:

Using prohibited address types. For example: move.w d0,4(pc)
Over writing word boundaries. For example: moveq #300,d0
Using prohibited extensions. For example: adda.b symbol.a1
Forgetting an operand. dbra dO

Syntax. Making a typing error when entering a command, operand, or
calculation

Inconsistency during line entry. As soon as a line is ended by pressing
the <Return> key, the file is checked for errors and saved in a
tokenised format. If an error is discovered, the incorrect command will
be displayed with an error message. The user is not required to
correct the error immediately. (The error could be caused by an
incorrect label which must be checked in another source code before
a correction can be made.)

If a program is assembled with these types of errors, they will be
displayed again by the assembler. If a line is entered properly, it is

45

GFA-ASSEMBLER

automatically set to the proper tab positions. Each line in Tokenised
format has the following principal format (however, all named
components must not be present in each line).

By using the character ' (ASCIl 173; accessible on the keyboard with
<Control>+ <0>) many such structures can be placed in a single line
as long as the maximum line length of 255 characters is not
exceeded.

Attention must generally be paid to ensure that:

- Assembler Mnemonics are recognized in upper and lower case and
any combination of cases (For example Move Operand). It is not
possible to give a macro the name of an assembler command.

~ Symbols and Macro names can automatically be set to upper or
lower case depending on your preference. This option can be set in
menu 6,1 (see part C, Section 1.1).

— Label definitions (max. 16 characters long) must always end with a
colon ("', ASCII $3A). A double colon (::') is a global definition of
the symbol. The double colon marks the difference between label
definitions and macro calls. Some assemblers do not insist on this
distinction. Included with the GFA Assembier is a utility to convert
their source code appropriately.

- Mnemonics (Processor commands) must be written out in full in
order to distinguish from similar Macro calls. For example, if you
want to automatically convert ‘'mo’ to ‘'move’, then a macro with the
name 'mo’ can never be used. The following conversions are
automatically executed during input:

add, sub, and, or, eor -> addi, subi, andi, ori, eori
add, sub —-> adda, suba
move -> movea

If you'd like to reduce the amount of typing required further, you may
assign Mnemonics or entire Assembler Commands to the keyboard
according to your individual preference (see Section 3.2.1).

46

The Edit Menu

The most frequently used Mnemonics extensions for the specification
of the workiwidth can be omitted. The Editor will automatically insert
the command specific Default extension. These will be the most
commonly used extensions For example, ‘'move’ will be given the
extension ‘.w', changing it to ‘move.w’. — The identification of value
overflow and incorrect addresses plays a role with limiting the Macro
programming possibilities (see the example below).

Example:
(a) move.w symbol,#4 ; can be reported with the input
move.w symbol\parm ;the address passed by “parm’
; can first be checked when the
; program is assembled
; {compare to writing a macro.)

(b)add.w #100,d0 ; IS corrected to
addiw #100,
or:
; during input
addw \parm,d0 . can be corrected during assembly.
(cyaddgw #9,d0 ; is reported as illegal during input.

addgw #9 symbol,d0 ; can first be checked when the
; value of ‘symbol’ is known.

(dymove.w (a0) (a1),do ; immediately recognizable
move.w \parm(al),d0 ; first checkable during assembly.

(e) move.b #1000-1,d0 ;s first reported during assembly
; because the editor
; carries out no calculations.

In general, you could say that the editor identifies the errors that the
perfect user would also be able to recognize during program input.
The deletion of a single line could have far reaching results during
assembly, especially with complex program segments. This is more
than likely the exception rather than the rule, but the help offered by
the automatic correction feature should not be underestimated.

47

GFA-ASSEMBLER

One problem area is a typing error that can not be seen as incorrect
by the computer.

Example:
incorrectly entered symbols or Macros.

Incorrectly written Mnemonics with no extension which could
be mistaken for a Macro call.

Label definitions without *:’ are treated as Macro calls.

Error filled brackets in expressions are silently executed during
a calculation.

A good check is that the displayed line will show the line in the proper
format after tokenising.

The following are declared as register names (in upper and lower
case):

d0 d1 d2 d3 d4 d5 d6 d7

a0 a1 a2 a3 a4 a5 a6 a7

M M 2 3 r4 5 6 r7 (Equivalent of d0-d7)

8 M9 10 ri11r12 r13 r14 r15 (Equivalent of a0-a7)

Sr cer usp

The complete Motorola 68000 command set is implemented.

Character combinations that are unrecognisable to the editor are
interpreted as comments and are marked with a semicolon and
placed at the end of the line.

We suggest you experiment with the practice file to in order to
become familiar with this input system.

Note:GFA ASSEMBLER Source code shouid always be saved to the
disk with the extension ‘.IS’ to make identification easier.

48

The Edit Menu

Assembler sources can be converted without any problems from one
mode to the other by pressing the correct button and OK/RETURN in
the following box. If you want you convert a text for example from the
assembler mode to the ASCIl format please click on ‘ASCIl Source’
and confirm your choice. After a short while the text will be turned into
ASCII text.

The other way round you can convert ASCIl Text (for example an
assembler source which you have earlier on produced with a different
editor) to source for the GFA Assembler by loading the ASCI! text into
memory (the GFA Assembler recognizes automatically that it is an
ASCII text) and then clicking on the button ‘Assembler Source’.

Spaces — Tabs in the text

The GFA Assembler editor only supports only text that use spaces to
separate words. Some editors also use tabs (ASCII 9). To be able to
continue using such files and to be able to produce text with tabs, a
function ‘Source uses Spaces’ and ‘Source uses Tabs’ exists.

In case there are tabs instead of spaces in a text file, you can obtain
spaces by choosing 'Source uses Spaces’ and all the tabs are
substituted by spaces. The current tab adjustment {Menu 2,3) is used
to make the spaces.

Please set this before the reformatting of text according to your
wishes. The other way round all spaces in the text are replaced by
tabs if you decide to access 'Source uses Tabs’, the current tab
adjustment setting is used.

MS DOS - AMIGA DOS

The ASCII format of Commodore Amiga files differs from that of MS
DOS for the separation of lines. The MS DOS sequence is ‘cr+if
whereas the Amiga only uses ‘If'. The ASCHl character set of the
Amiga also differs a great deal from the MS DOS standard in the use
of the special characters (for example German ‘Umlaut’). The GFA
Assembler is able to convert the character sets between each other.
When converting characters which do not appear in the destination

49

GFA-ASSEMBLER

character set, an upside down question mark appears in the source
code ' ’. The character conversion to MS DOS format is executed as
soon as the correct choice has been selected. The character
conversion to Amiga Dos format is only done when saving the source
code. It might happen that when saving longer texts that there is a
short delay before the drive goes on.

3.2.3 Tabs

The tabs can be defined freely over a width of 264 characters in
preset steps. In the bottom part of the screen a set area of 4 lines
appears. The first line stands for the first 80 columns, the second for
the next 80 columns etc. The vertical lines serve for orientation. You
can set tabs using the mouse by using the buttons to set or clear tab
icons, or by clicking directly on the column. If you want to set tabs
using the keyboard you can use the following keys:

1: Erase all tabs

2 t09,0: Sets tab icons, the key ‘0’ sets the
tabs in steps of 10.

Shift+numerial key pad: Set/erase single positions. The input

is done as with the special characters:
Keep the shift key pressed and enter
the column.

After the confirmation of the new choice of the tabs, the assembler
source will be displayed in the newly formatted way.

3.2.4 Special Characters

In the text, which you produce with the GFA Assembler, you can use
every character of the Atari character set (from ASCHi 1 to ASCII 255).
You can obtain the characters not present on the keyboard either
through the numerial key pad (see part 2.2) or using the special
characters box. '

This box can be calied either by using menu 2,4 or by pressing the
F6 key. It will always appear in the part of the screen where the cursor

50

The Edit Menu

is not. This way you will always be able to watch the line in which you
want to insert the special character. You can choose a special
character through the mouse by moving the mouse onto the special
character and then clicking the left mouse button. Through the
keyboard you can move the arrow of the mouse with the cursor keys
‘Cursor up’, 'Down’, ‘Left’ and ‘Right’ through the special character
box. With the ‘Insert’ key the special character will be inserted under
the mouse.

The special character box appears after every other key input.

3.2.5 Text Comparison

When you display two texts at the same time on the screen (see part
3.1.1) you can let GFA Assembler compare them automatically. The
comparison will take place from the position of the cursor onwards. It
does not make a difference whether or not one of the texts or even
both texts are in the assembler mode. When a difference is found the
cursor will jump in both texts to the corresponding position.

51

GFA-ASSEMBLER

3.3 The ‘Biock’ Menu

The Block Function enables moving, copying, erasing, and passing
information between text blocks.

Every text file in memory may have an individual block marked. The
starting and end points of the block can be set as desired. The
defined block area is displayed as underlined text.

3.3.1 Setting Block Start

The starting point of a defined block is set at the present keyboard
cursor position. The block stretches to the point where the block end
is marked. If no end block point has been defined, the block runs to
the end of the text. To remind you a starting point for the block has
been defined, a check mark will be placed in front of the word ‘Set
Start’ and the block will be shown as underlined.

3.3.2 Setting Block End

The end point of a block is set at the present keyboard cursor
position. If no block start point is marked, the block will begin at the
start of the text. To remind you an ending point for the block has been
defined, a check mark will be placed in front of the word 'Set End’
and the block wili be shown as underlined.

Note: Defining a small block which is shown within the screen disptay
can be down more quickly with the mouse. (See Section 2.3.)

3.3.3 Copy Block

A marked block is copied to the present cursor position. If the cursor
is within the block, the instruction is ignored.

3.3.4 Move Block

A marked block is moved to the present cursor position. If the cursor
is within the defined block, the instruction is ignored.

3.3.5 Erase Block

A marked block is erased. This operation can be ‘undone’ with the
'UNDO’ key.

52

The Block Menu

3.3.6 To Block Beginning

The keyboard cursor is moved o the beginning of a defined block.
3.3.7 To Block End

The keyboard cursor is moved to the end of a defined block.
3.3.8 Remove Mark

The block markings are removed.

3.3.9 Declare Global Block &—

When a block is declared as a 'Globat Block’, it may be copied to
other text files in memory. A check mark is placed in front of the
menu item ‘Block > global’, and the character ‘B’ is displayed in front
of the current text on the Status screen (see Section 3.1.1) to remind
you of a global block declaration.

3.3.10 Use Global Block

A block which has been declared 'Global' can be copied into the
currently active text file, beginning at the cursor position.

53

GFA-ASSEMBLER

3.4 The ‘Search’ Menu

The functions found under the ‘Search’ menu are used to quickly find
specific text position.

3.4.1 Set Mark

Setting and jumping to a mark allows moving easily to a frequently
used section of text. Marks can be set in each text file in memory,
independent of other files in memory. In order to set a mark, a box
with a list of the 9 available marks will appear.

T T T T T T T T D e D T T T T
Key~Instruction Assignment Table for fAssembler ¥¥
17.9.1987 Peter Holzwarth
Set Mark:

No. L. C, Text:
h: 1: ___7/7__4R +A ab...
A +A abcd) a3 /4 AC *A an...
C +A add
AC +A _and
| SA *A asl
| SC +8 asr

E B!

A +B bchg
C +B bclr
AC +B bra Cancel
SA +B bset
SC +B bsr
ACS+B btst

A0 00] O LA B C N

EC:

A+ chk

¢ € clr
+

Figure 8: The box ‘Set Mark’ with two set marks.

Marks that are already set are identified with the line, column and the
first eight characters after this position. In order to set a new mark at
the current cursor position, either click the left mouse button at the
corresponding line in the box or enter the number of the mark with the
keyboard. You can use a Numeric keypad number or the normal
keyboard numbers.

54

The Search Menu

3.4.2 Go to Mark

You can move directly to a marked text segment from the box ‘Go to
Mark.

Note: Marks can also be set and jumped to directly from the
keyboard. See Section 2.2 for instructions.

3.4.3 Search Character String

A specified character string may be searched for. If the string is found,
the cursor will be positioned at the start of the found string. This is
somewhat comparable to jumping directly to a label definition (see
Section 2.2).

H\!gg= ;w;ggsczusj;u\fugukqgulsig%viv?luuu\lvuuu@u@usglgﬂg : 4 MLE'BS
nnﬁ i Search String ! *-Joker : '¥' 7-Joker } '7!
B[c:8 [non |
i
A
C
Al
S
S Upper Case Sensitivity : [Yes |{ no |
3 s; Scope ¢ | Entire File || Block |
g From :{ cwsor || From Start |{ From End |
g Direction : [B Foruard B | | Backward !
A Source ¢ | this text | [ail texts |
K C A
g " Cancel " Start
o

Figure 9: The Box for 'String Search’.

The character string is input in the box as shown in Figure 9. There
are 20 such input areas used in order to limit the number of times an
frequently used character string must be entered. These input areas
may be switched to by clicking with the mouse cursor on the arrow
symbol located to the left of the input area. The number of the current
input area is shown in the box between the arrows. The search string

55

GFA-ASSEMBLER

can consist of any character from ASCIl 1 to ASCII 255.

The characters ™' and ‘?’° (or depending on preference additional
characters) are reserved for use as wild cards. The character at the
position in the string of the '?’ wild card is ignored. If you use the
string ‘h?llo’, the second character is not compared and character
strings such as 'Hello’, ‘Hxllo’, ‘H7llo’ and so forth will be found.

When the ™ wild card is used, any number of characters will be
ignored. For instance, the search string 'The meal * good’ finds
strings such as ‘The meal was good’ and ‘The meal was not very
good’ will be returned.

To use the characters "*’ and ‘?’ as characters in a search string,
define other characters as wild card characters for the search
routines. This is done by clicking the left mouse button on the
expression ' and '?’ and entering the new character. Both wild cards
may be used in the string as often as is desired. The meaning of the
buttons to differentiate between Upper and Lower case letters is
obvious.

Also no buttons sequence which is logically incorrect can be
activated. For example, searching backwards can not be initiated from
the start of the text area.

For text, the options 'This text' and ‘All text are available. If the “All
text’ button is active, the current text will be searched from the cursor
position for the search string first. If not found, all other texts in RAM
(beginning with the one immediately following the current text in the
status screen directory) will searched. The status line always displays
the name of the text being searched.

If the search string is found within the given search area the cursor will
be placed at the appropriate position. If the expression is not found,
the cursor remains at its present position.

When a search operation is in progress, a check mark is placed in the
menu in front of the 'String Search’ entry.

56

The Search Menu

3.4.4 Continue Search

'Continue Search’ is a way to continue searching for a specified
search string beginning at the cursor position. This function is only
accessible when a search or a search and replace was previously
executed {a check mark must appear in front of the appropriate
function).

3.4.5 Search & Replace

This function permits a search string to be replaced by another
expression. An input box is used to enter the text:

P20;48 Insert 1 WK Line 3 7 KM Column : 4 ASSEMBLE,BS
k[Search String : " %-Joker § B0 7-Joker : 7'
85]8 [nop |
A and replace with !
EE] |
S
S Upper Case Sensitivity ! [ves || wo |
K BF:' scope ¢ | Entire File || Block B
g From ¢ [tursor]| From start || From End |
g Direction : | B Forward @ | [===g Backward B |
A Replace :] One | Some [A1l |
¥ C:
g H Cancel n Start
; Lemmt o

Figure 10: The Search and Replace Box.

There is an additional input field in this box in which the expression
that is to replace the first expression can be entered. Wild cards are
not permitted in this expression. This means that the replacement
expression must always be as it is in the input field. There are also
three buttons in this box that determine how often the replacement
should occur. When you click 'Some’, an inquiry will be made each
time the search string is found and before the replacement is made.

57

GFA-ASSEMBLER

3.4.6 Jump to Text Beginning

This function (or with the key combination <Shift> + <Cli/Home>)
moves the cursor to the beginning of the text segment.

3.4.7 Jump to Text End

This function (or with the key combination <Control> + <Cir/Home>)
moves the cursor to the end of the text segment.

3.4.8 Jump to the Previous Cursor Position

This function returns the cursor to the position in the text where it was
located before a jump through the text. (For example, after a Label
search, Character string search, or jump to a mark.).

58

The Printer Menu

3.5 The Printer Menu

Within this menu entry are the functions for controlling the parameters
for the control of the printer. While characters are written in the
Spooler-Buffer (see later) or when the spooler is turned off, the
printing procedure may be interrupted by pressing the ‘Esc’ key. As
soon as all the characters are in the Spooler-Buffer the printing
procedure can be interrupted (Pause) or cancelled (Stop) by using
the printer parameter box.

3.5.1 Printer—Parameters

A box will appear for the adjustment of the page format of the spooler
and of the character—converter and configuration table:

Printer Parameter ! | Ok |

- Configuration Table ! Load Compile
- Format ! Lines per Page : 58_

Characters p.Line 806

Colunmns ! 1
Left Hargin: |
- Head Line ! Yes No futomatic
Text :

- Spooler ! Yes No Pause

Fig 11. The Printer Parameter Box

The configuration table which you could have provided in the first line
contains the information which makes it possible for the GFA
Assembler to communicate with various other printers.

59

GFA-ASSEMBLER

The configuration table is usually prepared in an ASCIl format in ASCIl
source mode and compiled using the button ‘Compile — Configuration
table’ to a far smaller ".CFG’ file and then stored. For the format of the
ASCII file see appendix A4.

When booting the GFA Assembler the table ‘PRINTER.CFG’ is
searched for and then automatically loaded into memory. You should
give the table of your standard printer this name. if no such file is
found, the GFA Assembler will print with its standard adjustments (see
appendix A3).

When you are working with various printers you can load and replace
the standard table by other ".CFG’ tables with the function ‘Load -
Configuration table’

In the input area for the page format you can adjust the paper size,
the size of the border on the left where it's not to be written on and
the amount of columns which are supposed to be printed next to
each other. The printing of 2 or 3 columns lying next to each other
can become very handy especially with very long assembler listings.
This will result in shorter printings and a better outline. To print more
columns adjust your printer to its maximum number of characters that
can be printed per line. A value that | would suggest is for example,
for assembler listings with 136 characters per line, 2 columns will fit
nicely next to each other.

To give your output its own headlines, activate ‘Headline’ by clicking
on the ‘Yes’ button. Following this you should enter your headline,
which is to be at the top of your page in the input field. GFA
Assembler can also produce headlines automatically if you wish.
Simply click on the button ‘Automatic’. In this mode the name of the
file, the date, the time and the page number will be printed at the top
of each page of the currently printed text, not minding if it is the entire
text or just a block.

To be able to send characters directly to the printer (for example
adjustments for the type of print, the amount of characters per line
etc.) simply enter in the input for the headline the corresponding order
of the characters and then do a double click on the input field.

In the last line of this box you an activate or deactivate the
printer—spooler which is integrated in the program. This spooler is

60

The Printer Menu

able to print while you continue to edit your texts. The size of the
spooler is dynamically looked after by the GFA Assembler, this means
that the spooler—buffer is always the size it needs to be. This spooler
is set out so that it will not create any prablems with laser printers or
with the use of a hard disk as it does not run on an interrupt, it is more
or less something like multi-tasking. This means that it prints while the
editor is waiting for an input. You can't print while assembling or other
such time consuming tasks.

You can interrupt the printing procedure temporarily through the
button ‘Pause’. The entire printing procedure is stopped using the 'No’
button and then the spooler reserved memory is set free again.

3.5.2 Printing the Entire Text

The entire text is printed according to the settings in the printer
parameter box.

3.5.3 Print Block

The block area is printed according to the settings in the printer
parameter box.

3.5.4 Print with line numbers

The desired area is printed with line numbers.

3.5.5 Print without line numbers

The desired area is printed without line numbers.
3.5.6 Print all pages

All pages ot the dersired area are printed.

3.5.7 Print Odd Pages

Only the uneven pages of the desired area are printed.
3.5.8 Print Even Pages

Only the even pages of the desired area are printed.

With these last two options, it is possible to print firstly the odd pages,
tun the paper over, and then print the even pages. This enables
printing a listing on two sides of the paper.

61

GFA-ASSEMBLER

62

Part lll
Using The GFA ASSEMBLER

1.1 Parameter Settings

= Dutput : §

Format Operands : Yes No |

Pseudo Opcodes UpperC LokerC '

-~ with Point : Yes Ho %

Stack Pointer : Sp al 1

Symbol Capitalization : LowerC UpperC 2
Macro Capitalization LowerC UpperC

- Assenbly :

Backround ! Ho Yes
Ok | ‘

Figure 12: The Assembler Parameters

The settings accessed through the Assembler Parameter menu,
shown in Figure 12, affect the output of the tokenized Assembler
Source code. It is also possible to select whether the name of the text
file to be saved should be the same as the source code loaded or if it
is to be selected by using the fileselect menu.

Format Operands

Output/suppression of a tab between an assembler mnemonic or
Macro call and it's operand.

63

GFA-ASSEMBLER

Psuedo Opcodes (UpperC or LowerC)

Pseudo opcodes, are used by the assembler and have nothing in
common with the mnemonics or the machine language command set
of the processor; output choice between upper and lower case.

Pseudo Opcodes (with point yes/no)

You can direct the output to put a full stop in the pseudo opcode
field.

Stack Pointer (sp/a7)

The Stack pointer (sp/A7) determines if the abbreviation 'sp’ (stack
pointer) or the register identification a7 is to be written.

Symbol Capitalisation (Lower/Upper)

Symbol text style determines in upper or lower case should be used
for symbol names. According to individual preferences, symbols can
be in changed directly into upper/lower case.

Button: Lower Upper Function
out out Nno conversion
out in to upper case
in out to lowercase
in in no conversion

Macro Capitalisation (Lower/Upper)

Macro text style (lower/fupper) is the reverse of 'Symbol Capitalisa—-
tion’.

Background Assembly (No/Yes)

If the 'Yes' is active the source code will automatically be assembled
during any inactive user periods. The user wili notice very little slow
down when the assembily is in progress.

If there are no errors with the assembled text, it can be saved by
pressing <F10>. The following information will appear in front of the
current filename during this process:

64

The Assembler Menu

>> multitasking assembly in progress
\' ready to be saved
? Break because of an error (n)

Note: The advantage of this pseudo multitasking assembly is that
unused time periods during input of the source code are used to the
fullest advantage. If the text encountered by the automatic assembler
contains instructions not yet in the source text, they are assembled
when this text is found in memory. Otherwise the assembly will be
stopped. (The user would have to pause for lengthy load times while
working with the editor otherwise.)

If the user changes the text of the current Source code during the on
line assembly, the assembly is immediately stopped and during the
next user pause it starts over from the beginning.

Use Source Name

The name assigned to the assembler created Source code is
assigned according to the extension rules. The user can set the
extension according to need as explained in the next section.

After the assembly is completed, the fileselect menu is displayed to
specify the desired filename. Because the file path of the assembler is
not known to the assembler during it's work (Programs, Object codes,
Protocol, Cross-reference) the files will use one of the following
temporary file names:

GFA_TEMP.PRG for programs
GFA_TEMP.O for object modules

GFA TEMP.LST for Assembler protocols
GFA TEMP_REF for cross—reference lists

The files are placed in the directory of the drive that the Source code
file was loaded from. Eventually, files of the same name will be
destroyed, as newer versions of the files overwrite older versions.

65

GFA-ASSEMBLER

When the final file name is determined, the data is renamed and
placed in the desired directory. The drive or hard drive may not be

changed.

66

The Assembler Menu

1.2 Assemble

The assembler is called using the Assembler menu item 6,2. It can
only be started if a tokenized text file is in memory in the active
window. The operation is as follows:

Assembler : | Cancel || Test |l Start with new Name Jf Start

- Listing

| No | to Screen {| to File || to Printer |

= Cross Reference !

[Mo || to File || to Printer |

- Code Improver :
Branch EER I Branch 11 pc - relative |[-> d(an) |
[np => bra 1 $xx.1 > Sux.m |

-2 noveq ﬂﬂ -> addq, subg ﬂ

| Create Program [| ndd Synbol Table |
[Create tbject Code | Y[Hith all Susbals !

Figure 13 The Assembler Menu
Explanation of the individual buttons:
Listing

This function sets the output medium for the assembler. The default
setting is ‘No’ which menus that all listing protocol directives in the
text are ignored (see Section Il 2.1 Pseudo Opcodes).

Cross-—reference

Cross—-reference lists are helpful during debugging to provide and
maintain an overview of large programs. The reference list uses all
defined symbols, Macro calls, and .Include files of the Source code
and records the line number which accessed the call. This shows
which routines are called most frequently and permits optimization of

67

GFA-ASSEMBLER

those areas.

Files with the extension .REF’ and the printer are available as output
devices for cross—reference lists. The page format depends on the
parameters set by the Printer Parameter Screen. The line width is
always 80 characters per line. There are two operating modes
reserved for the creation of a cross—reference are:

a) During the assembly
b) Separate cail from the Assembler menu entry, ‘Cross—reference’

For Cross-reference Lists created during an assembly, the value of
the symbol and its attribute word are named. The symbols and
macros from the .Include files are also included. An entry in the
cross—reference list has the following format:

Symbol definition

Symbol name line number/include number {value and attribute} {line
with references}

Variable/abs. value

Symbol name line number/include number {value and attribute} {line
with references} (If the value of the variable is changed with ‘set’, the
state at the end of the assembly is given.)

Macro definition <Macro name> Line number/ .Include number
{line with call}

(The line numbers following a slant line are the numbers of the
appropriate source text: 0 means Main text, every other higher
number gives the .Include file in which the line can be found).
Optimising
1) Branching is handled in two ways:
The Short version is one word long and contains the line
to be jumped to in the Low Byte with a relative 8 Bit

offset. This means only jumps of, from -128 to +126
bytes from the current program counter are possible.

68

The Assembler Menu

2)

3)

4)

With the Long version, the Offset follows the command
opcode as a separate Word. The jump distance permit—
ted in this case is from -32768 to +32766 Bytes. This
variation is more powerful but requires more memory and
execution time because of the required bus access.

It is best to use the Short version when possible. The computer
will automatically decide if this is possible. For this the address
of the line to be jumped to must be known. It is simple to
determine if the short jump is within reach if the address is
lower than the address containing the branch instruction
(backward optimization).

If the address is higher than the address containing the branch
instruction, then the assembler must assume that the line to be
jumped to is not within reach. If the address is later found to be
within reach of by a short jump, it can be optimized. This will
shorten the jump instruction command by 2 Bytes and the
entire text following the optimized command must be moved
forward by 2 Bytes (forward optimazation).

It is possible that because of one optimization the entire
program couid be come more compressed.

Absolute Jump (jsr, jmp) can be changed into a PC Relative 16
Bit Offset Variation (bsr, bra).

Another form of optimization is changing an absolute length
address into a PC relative address. This requires:

a) The address must be within reach (16 Bit Offset,
compare this with conditional branching).

b) The destination(PC) address must be permitted with
the command to be optimized.

c) If object code is created for the linker, the addresses
in question must be found in the same text segment.

With the PC optimization, jsr and jmp commands to an absolute
address concurs with the jmp->bra optimization. The PC
optimization has preference.

69

GFA-ASSEMBLER

5)

6)

70

Addresses that are found in the first and last 32 KBytes of the
address area are absolute short addraessed.

The address is not a long word as with the absolute long
addressing, but rather a word. Before the bus access it is
expanded to 32 Bits by the processor. With this type of
addressing the ATARI ST has a much faster access time. If
desired all non relocatable long word addresses can be
converted from absolute short by the assembler.

Addition and subtraction commands (addi, adda, subi, and
suba) are converted to addq and subq commands as iong as
the first sum is not smaller then 1 and not larger then 8.
Correspondingly, the command:

move.l #xx, Dn is converted to
moveq.l #xx,Dn when: 128 <= xx <= 127,

All of these optimizations are implemented in the GFA
ASSEMBLER. The default setting, which we will refer to as the
‘development mode’ does not create very compact program
code, but this setting is very useful during the development of a
program. When you have completed testing and developing
your program, select the desired level of optimization.

The Assembler Menu

7)

Absolute addressing —> indirect address register

When addressing constants and variables in assembler pro—
grams, you often have to use absolute—long addressing. These
have two drawbacks, however: their length of 4 bytes per
address and their slow speed.

To avoid these disadvantages, data areas are frequently
integrated into the program segment and PC—relative methods
of addressing used. Unfortunately PC-relative addresses are
only permitted with source operands.

There is an alternative in using the ‘indirect address register
with offset’ method. This is permitted wherever an absolute—
long address would also be possible. The base of the data
section to be addressed is loaded into an address register and
the individual data are accessed via word offsets. If a program
is completely converted to this method, up to 40% processing
time and storage space can be saved. Data sections which are
far apart can then, if necessary, be addressed via different
address registers. Should you not be able to spare enough
registers for this, however, you could carry out this optimisation
in parts of the program only.

The conversion to indirect address register addressing, howe-
ver, can distort a source text to the point of unreadability.
Further more, calculating the offset to the address in the base
address register is not always easy.

The GFA Assembler offers a method which enables the user to
carry out this optimisation more comfortably:

Sections of the source code can be surrounded with the
directives

.BASE register number, base_address ...; source text...—.
and .ENDB register number. All absolute addresses of
memory cells which can be found in the same segment
(cf. the SECTION instruction!) as the ‘base_address’ and
are not more than +-32 kbytes removed from the latter,

71

GFA-ASSEMBLER

72

will be converted to indirect address register addresses
with offsets. The offset is calculated automatically; the
address register used will be the one specified in
‘register_number’. The user will have to ensure for
himself that the ‘base_address’ value is actually found in
the address register specified at the time of program
execution. Several optimisations can be performed
simultaneously with regard to different address registers
(also different SECTIONS!). (Nesting of .BASE/.ENDB
structures!).

To activate the optimisation, the user has to additionally
click on the appropriate button (d(An)) in the assembler
call menu 6,2. Thus the user has the option to generate
non-optimised program versions with unchanged source
code (for symbolic debugging, for example). If .BASE
and .ENDB instructions are found in the source and the
assembly is without optimisation, the assembler will warn
the user with appropriate messages.

The new optimisation can only be used in conjunction
with the branch-forward-optimisation.

The Assembler Menu

Example program:

Code optimisation with
.BASE instructions:
Activated optimisations:
Branch forward, PC—relative,
d(AN))

TEXT

lea BASIS 1ab

movea.l #BASIS 2,a6
.BASE 5,BASIS 1

.BASE 6,BASIS 2

move.w Symbol_1,Symbol_2

tst.1 Symbol_3
beq Label
bclr#2,Symbol 4
Labei:

jsr Symbol 5
nop

nop
Symbol_5:

rts

.ENDB 5
.ENDB 6

| Manual optimisation
| (Same result)

I

I

I

I

|. TEXT

|lea BASIS _1,a5

|move.l #BASIS 2.a6

|

|

|move.w Symbol_1-BASIS_1(a5)
|Symbol 2-BASIS_2(a6)
[tst.1 Symbol 3-BASIS 1(ab)
|beq.s Label

|bclr#2,Symbol 4-BASIS 2(a6)
|Label:

ljsr Symbol_5(pc)

Inop

inop

|Symbol_5:

|rts

|

I

SECTION 6,BSS

BASIS 1:

Symbal 1: .DS.w 1
Symbol 3: .DS.I1

.SECTION 7,DATA

BASIS_2:

Symbol 2: .DS.w 1
Symbol 4: .DSb 1

.END

73

GFA-ASSEMBLER

Note:

The assembler makes two passes while in the development
mode. The short form branch can be specified with the '.s’
extension with forward branches. The programmer must ensure
that the branch instruction is within limits (otherwise an error
message will appear). The extension is ignored during forward
optimization.

Only the optimization of forward branches requires intensive
amounts of time (Because of the required address changes).

All additional optimization requires no additional time. Only in
combination with forward branches will the time required be
increased. (Because forward references are examined.)

Branches in other sections are not normally optimized. If a
reference contains an import, it will not be optimized.

PC optimization can be forced. During programming, data areas
are replaced by text segments. (Access of data is handled
through absolute tong addresses.)

Program / Object Code

if no unverified references appear in a source code (for example
through modular programming with include files) directly executable
programs can be created.

In other cases object code is generated in DRI format. More
information about object code is included in the section of this
documentation which discusses the linker.

If you are using a symbolic debugger, it is useful to use a dependent
symbol table. instead of incomprehensible hexidecimal addresses, the
symbol will appear during disassembly. More information is available
in the section of this manual which discusses the debugger.

A symbol table is always contained in the object code for the linker.
We can also determine, except for Export and Import, that the extra
symbols are placed in these tables so that they available later in the

74

The Assembler Menu

executable program. The choice between only global symbols and all
symbols is also allowed in the symbol tabie for the executable
program. Information about the action of the assembler during the
assembly process will be displayed in a window. Access to data files
is shown with the path used.

The upper of the two windows ('MESSAGES:) contains only
information for the user. The information in the lower window
('Warnings:") is for errors encountered during the assembly process.

There are two categories of errors during the assembly process:
Fatal Errors

Fatal errors lead to an immediate halt in the assembly. An
attempt to include a source file that is not available is an
example of such an error.

Warning

A warning does not hinder the assembly of the source code
and is shown only to inform the user of the progression through
the assembly process. When a warning is encountered, the
output medium (screen, printer, data file) can be determined by
a key press. Error messages, as well as the possible cause of
the specific error, can be found in the appendix.

If an assembly is ended prematurely, the assembler waits for a key
stroke so that all of the messages on the screen can be read. When
the <Return> key is pressed, the user is placed in the Edit Mode.

75

GFA-ASSEMBLER

1.3 Cross—reference

A cross-reference list can also be created separately. There must
have been no assembly accomplished. As was described in the
section about assembiler calls, the values and attributes of the symbol
and the include data can not be supported in this operation.

The output can be to either a printer or a data file (with the same path
as the source file). The data file will use the extension “.REF)’.

M 11:28 Insert § HH Line : 88 KB Column : 1 ATARI,IS
gendos 1
. ENDM

MACRO Cconout char
nove.m A, -(sp)

gemdos 2,4
. ENDH
~MACRN fauvio

Cross Reference

" to File " to Printer "" Cancel "

STIHGRU Cpriggt Cal

nove W \,-(sp) A
gendos 3,4
ENDH

MACRO Crawio parm
nove,M AL -(sp)

Figure 14: Cross-reference Box with three output device selections.

76

Source Code Directives

2.0 Source Code Directives

2.1 Pseudo Opcodes

2.1.1 Program Structure Commands

An assembly program is organized into three logical segments:
- Text Segment (contains program code)

- Initialized Data Segment

- Non-initialized Data Segment

The user determines in which of these data types program parts will
be assigned with the corresponding directive when writing the Source
file. It is also possible to further divide each of these three segments.
Programs in coded form can be arranged differently than that of the
source file. This makes structured programming easier and increases
the degree user friendliness. It is also possible to simulate field
structures from higher languages through a fourth virtual segment
which can define the offset for the access path of a data file.

The GFA ASSEMBLER has the following commands for the defining
program structure:

TEXT

The following program code belongs to the text segment.
.DATA

Inserts an initialized data segment.

.BSS

Beginning of a non-initialized data area. The .BSS area of a program
is not saved with the program. It is marked in the program header,
however. If a program is loaded, the operating system will reserve a
corresponding memory area at the end of the .DATA segment.

77

GFA-ASSEMBLER

NOTE: .DS instructions can be found at the end of .BSS segments.

ABS {Offset}

The .ABS segment is a help point for the programmer and is not
relevant to the assembler operation. It is similar to the .BSS segment.
It simply serves to define absolute symbols and requires no memory
area.

The optional parameter, ‘Offset’ determines an offset for all additional
definitions in the .ABS segment. The default setting for the offset is
zero.

The structure can be defined as in the following example by using the
.DS Directive. The program counter in these segments increases itself
automatically by the size of the reserved area from symbol definition
to symbol definition.

If the .ABS segment is omitted, the running value is not lost. When the
next .ABS segment is opened, the defined offset is used, as long as
none other has been explicitly given.

78

Source Code Directives

Example 1.1

controi:
ptsin:

Opcode:
Point_in_ptsin:

Point_in_ptsout:

Length_intin:
Length_intout:
Functions_Id:
Device Id:

X_coordinate:
Y coordinate:

Radius:

Draw_circle:

.BSS

DS. w14 :‘Work area for VDI
.DS.w 12

ABS 0

.DSw1 ;Offset in control Array
.DSwi1

.DSw1

.DSwi1

DSwi1

.DS.w 1

.DSw1

.DS.w 1 :Offset in ptsin Array
.DS.w 1
.DS.w?2
.DS.w1
.DS.w 1

JEXT

;circle middle point (200,100) and radius 75
;under VDI drawing

lea.l control,a0

move.w #3,Point_in_ptsin(a0)
clr.w Point_in_ptsout(a0)
move.w #10,Functions_Id(a0)
move.w dehandle,Device Id(a0)
move.w #200,X_coordinate(a0)
move.w #100,Y_coordinate(a0)
clr.w X _coordinate+2(a0)
clr.w Y coordinate+4(a0)
move.w #75,Radius(a0)

clr.w Radius+2(a0)

jmp VDI

79

GFA-ASSEMBLER

(In that example, the passing field is initialized with fast indirect
addressing. This increases the readability of the assembler source
code.)

.CARGS {#offset 1} ,Symbol 1.w(, symbol_2.1}{ ,#Offset 2}{
,Symbol 3.w)

The .CARGS command is a more compact form of .ABS Segment. It
influences the program counter of an eventual .ABS segment. If it is
used within an .ABS Segment, this segment is isolated, the .CARGS
command is executed and the .ABS segment is continued with the
program counter of the .CARGS command. As Symbol Extensions
only “w’ for a word length and ".I' for long word may be used. The
program counter will be increased by 2 or 4 Bytes respectively.

Only even expressions may be used as offsets. If the first expression
following .CARGS’ is not an offset, then 4 will be used as the default.
This is because of the possibility of using the .CARGS command for
passing parameter offsets on the stack, as it is used in the C
programming language.

Example 2.1

Function to determine string length. The string address is passed
through the stack. The return jump address of the routine must be
passed, also.

String_length: .CARGS .string

move.| .string(sp),a0;.string=4

moveq #-1,d0 ;default length
A addq.| #1,d0 ;reads to

tst.b (a0)+ ;'0’'=end

bne A

rts

80

Source Code Directives

Example 3.1

The structure definition from Example 1.1 can also be accomplished

with the CARGS command:

.BSS
Control: .DS.w 14

.CARGS#0,0pcode.w,point_in_ptsin.w,point_in_ptsout.w
.CARGS#6,Length_intin.w,length_intout.w,Functions_ID.w

.CARGS #12 DevicelD.w

pt sin:. .DS.w12

.CARGS#14 X_Coordinate.w,Y_Coordinate.w,#8 Radius.w

JEXT
etc.

Example 3.2

To get parameters passed to the program via the stack:

.CARGS #13*4+4,source.l,dest.l,width.w,height.w

TEXT
movea.l source(sp),a0
movea.l dest(sp),al

movea.w height(sp),dO
movea.w width(sp),d1

would result in the following code:

movea.l $38(sp),a0
movea.l $3c(sp).at
moveaw $42(sp),d0
moveaw $40(sp),d1

81

GFA-ASSEMBLER

-SECTION Number,Segment_Type

The .SECTION command is the easiest variation of the segment
definition. It enables setting up of 64 program segments with
independent program lines (Number O to 63). Each section will be
assigned to one of the four segment types (.TEXT, .DATA, .BSS, .ABS,
etc.). The Assembler sorts all used segment types according to type
and number during the assembly process. That is, the first text
sections will be assembied (in ascending number order), then all data
sections, and finally all BSS sections. The user is not required to
continually give the segment number, the segment number can be
specified as a macro passing parameter.

Each segment may only be assigned to one type. If a segment is
exited and then later returned to, the assembler will continue with the
old program counter value. (Exceptions are: .BS segments.)

Branches (Bcc) and PC relative addressing between the segments are
allowed, they are not optimized because of structural reasons.

Please note:

For reasons of compatibility with later versions on different computers,
the SECTION instruction permits a further string parameter following
the segment type. It will be ignored during execution.

Hints:

Because the operating system only differentiates between three
segments, sections about the assembly operation have no effect.
They are, however, an element of structured assembly programming.

The sections 0 to 3 are predefined with the commands .TEXT, .DATA,
.BSS , .ABS and can only be accessed with the corresponding type.

TEXT corresponds to .SECTION 0,TEXT

DATA .SECTION 1,DATA
BSS SECTION 3,BSS
ABS (offset) SECTION 4,ABS {offset}

82

Source Code Directives

-END

The .END command placed at the end of the source code is optional.
In a program file, it causes all following instructions to be ignored.
.END also marks the end of .INCLUDE files.

.LOCAL

Local symbols are valid only between two non-local symbols. Local
may be used to separate an area of local symbols without defining a
non-local label (More about symbols will be explained later.)

-ORG section_number, base address

Until Version 1.2 inclusive, the generation of absolute code already
adapted to a fixed memory address was only possible via the detour
of the Linker-ABS instruction. This option is now available at
assembier level with the ORG instruction. The ORG instruction is
SECTION-orientated, so that a distinct base address can be specified
for each program segment used {(up to 64).

Only finished programs, not object modules, can be generated.
Imports and exports are not permitted. Undefined symbols are
assigned the value of the corresponding SECTION base. NO
PC-RELATIVE REFERENCES may be made between absolute
program segments. A base address must be specified for each
SECTION (or TEXT,DATA,BSS) used. All SECTIONs without such a
base address will be ignored. The program code generated has no
header. Instead, a header file containing the program name and the
.HD extender are written.

This header has the following structure:

SectionBaseAddress.! ; ie. 2 longwords for each SECTION with
SectionLength.l ; ORG instruction
SymbolTableLength.| ; Length of symbol table, if used.

83

GFA-ASSEMBLER

.GLOBL, .EXTERN, .PUBLIC, .XDEF, .XREF

These symbols are synonyms for the global declaration of symbolis. If
the assembler is not creating an executable program, but is
generating object code for the linker, all symbols are imported or
exported with one of these command declarations. (The global
definition of labels is also possible through a double colon (),
compare this to the chapter about symbols.). XDEF exports a label,
and XREF imports a label.

.COMM symbol,expression

This command applies only to the linker. If object code is created, the
.COMM specified symbol is used as an Import and contains the
symbol status ‘common’. The linker checks all object modules for
such ‘common’ symbol status. Each of these symbols is assigned a
value according to expression during it's assembly. During linking the
‘common’ symbol is converted to a .BSS segment and supplied an
appropriate address. The following non-initialized data area is as
many bytes long as the largest of the values passed with expression
supplies.

With this option .BSS areas can be used within many object modules.

2.1.2 Macros and .include

Macros are the most important tool for structured assembly program—
ming. They allow many assembler Mnemonics and Pseudo opcodes
to be assembled under one function name. A macro can be called
from anywhere within the program with parameters, as with other
higher level programming languages. if the programer has many
macros that have been previously created, assembly language
programs may be written very quickly by using an .Include file to load
them during the assembly process. The .Include directive is the ‘big
brother' of the macro call and makes possible the binding together of
entire source codes during assembly. By using the .Include file for
macro and variable definitions. the user can create his programs in

84

Source Code Directives

small easily handled units, maintaining a good overview of the entire
application.

Here is an example demonstrating the power of macro programming: .

Example 2.1

.MACRO BCONOUT dev,char :BIOS Function

clr.w do ;clear dO
move.b \char,d0 ;Put character to
move.w d0,-(sp) ;print onto stack
move.w #\dev,—(sp) ;:Device number
move.w #3,-(sp) ;Function number
trap #13 ;BIOS call
addq.l #6,Sp ;correct stack
rts ;return from call
.ENDM
.MACRQO print string,device ;Print Macro
.DATA
. JAF \?string ;if string exists

\"a: .DC.b \string ;in datasegment

\"b: ;pass to output
.ELSE ;otherwise

\"a: .DC.b 13,10 ;pass CR

\"b:
.ENDIF
TEXT
lea.l \"a,a3 ;string address
moveq.| #\"b-\"a-1,d3 ;string length -1

A7 BCONOQUT \device,(a3)+ ;print 1 char
dbra d3,\” ;until all chars
.ENDM ;printed

macro_call:

print ‘Hello!’,2
print ,2

85

GFA-ASSEMBLER

2.1.2.1 Macro Déefinition

.MACRO Macro_name {name_1}{,} {name 2}
or
.MACRO_Name.MACRO{name_1}{,}{name_2}

A macro definition is established through the Pseudo Opcode
*“MACRO’. The pseudo opcode is followed by up to 16 parameter
names. Each parameter name consists of up to 16 characters. These
parameters may not be interchanged with Labels. They don’t define
any symbols, but they permit the symbolic testing of data passed by
calling a Macro. For this reason no Label operatars can be used. The
text following .MACRO makes up the body of the Macro. There are
absolutely no limitations placed on the commands used within them.
A macro definition is ended with the “ENDM’ directive. A macro can
be exited early using the ".EXITM' instruction.

Example: 2.1:
.MACRO Macro_name Parameter

;what is to be executed by the assembler when this macro is
;called is found here.

.ENDM

An exception to this is calling a macro from within a macro. Only the
inner most .MACRO .ENDM Command is assigned to this macro
definition. We do not recommend the use of this variation.

86

Source Code Directives

2.1.2.2 Macro Call

Macro_name {Parameter_1}{,} {Parameter_2}...

A macro can be called after it has been defined. A macro call allows
the assembler to execute the instructions defined in the body of the
"~ macro at the current point int the source code. Any number of
macro's may be called from within a macro (see Example 2.0). The
parameters following the call name of the macro can be any
expression that is recognized as syntactically correct by the editor
including address types. We recommend studying the inciuded
operating system definitions to build a better understanding of the
implementation possibilities of macro programming.

2.1.2.3 Special Macro Functions

There are many special functions possible within source code
by using a macro.

Checking the parameter passed:

\ Parameter

The ‘Backsiash’ has the following name.
\\Parameter

If one of the corresponding Macro definitions in ‘"MACRO Command’
matches the parameters specified, the expression will be calculated
and placed in the macro at the position of the given parameter
instead of checking the parameter.

Note:

a) There may be many such parameters passed in expressions
calculated together. Because the syntax pays no attention to later
calls during Macro definition, the programmer must ensure that
different addressing types are used or combined with each other.

87

GFA-ASSEMBLER

Example 2.3.1.1: Correct

.MACRO Example 1 Parameter_1,Parameter_2
move.w \Parameter 1+2(a0,d0.1),\Parameter 2
.ENDM

Example 1 4,(at)+ ;Call

would result in: move.w 6(a0,d0.1),(a1)+

Example 2.3.1.2: Incorrect!

.MACRO Example 2 Parameter
move.w #\Parameter,d0
move.w d1,\Parameter

.ENDM

Example 2 #8 ;Call

would result in:

move ##8,d0 ;Incorrect because of double addressing
move d1,#8 ;Incorrect because of illegal addressing

It is important to pay attention to the manner in which macro
parameters are used when they are passed to the macro. Errors are

caught with the appropriate message.

b) The programmer is not required to set all parameters that were
defined during macro definition. More expressions then were defined
during macro definition'may not be passed. Attempting to do so could

possibly lead to a loss of data.

88

Source Code Directives

Example 2.3.1.3:

.MACRO Example_3 Parm_t1.,Parm_2 Parm_3,Parm_4
;Body of macro
.ENDM

Call:

Example 3 ABC,DEF,GHI,JKL ;all parameters are set
Example_3 ,,GHI ;only Parm_3 is set

Example 3 ABC,,JKL ;only Parm_1 and Parm_4 are set
Example_3 ABC,,GHI,JKL, MNO :too many parameters

c) Attention must be paid to the search criteria in connection with the
framing of Macro calls (Example 2.0). The name used must be
exclusive to that macro.

If a Macro A is called from Macro B, and Macro_B passes a
parameter, Parm_1, this parameter can be reached by either macro
with the name given in the definition specified by Macro_b.

Example 2.3.1.4:

Defined: .MACRO Macro_a Parm_2
move.w \Parm_1,\Parm_2
.ENDM

as well as: .MACRO Macro_b Parm_1, Parm_3
K/iécro_A Parm 3
ENDM
Call from Macro B: Macro B d0,d1

returns: ...
move.w d0,d1

89

GFA-ASSEMBLER

'd0’" is connected directly to the passing parameter from Macro_Bin
Macro_A. ‘d1’ is first passed from Macro b in Parm 2

If a parameter has the same name in both Macro_A and Macro B then
the innermost macro (here Macro_A) can only access the value within
the macro.

To summarize: If a passing parameter is required, the assembler will
first look within the innermost macro (here Macro_A). If it doesn't find
the name,it will search in the next outer macro (here Macro_B) until it
finds either the normal source code or the name it was looking for.

Notes: Diverse assemblers support the passing of expressions,
commands, and address type fragments to macros. Because these
assemblers do not work with a tokenized source file format, new
commands, symbols, address types, and so forth, can be created
using simple text copying.

This is not supported by the GFA ASSEMBLER in order to avoid
undermining the intelligent input and structuring principles.

\n

- n may take the values from 0 to 16 and must follow the backslash.
The values 0 to 10 have the same effect.

— Parameters passed to macros can be refered to not only by their
name, but also by their position in the list of defined parameters. In
this way it is possible to avoid the automatic search for parameters
with identical names, including those in any higher nesting levels.

90

Source Code Directives

Example 2.3.2:

.MACRO Compare Source,Destination
...cmp.b\1,\2
seq Flag

.ENDM

Compare (a0)+,d0
results: ;...

cmp.b (a0)+,d0

\#

Returns the amount of the actual parameters passed on to a macro.
Can be used as a numerical expression in all calculations.

\?Parameter

Finds out whether or not a certain parameter was passed on during
the call.

Returns: true(=—1), when parameter is used false(=0), when parame-
ter is unused

\?n

~ n may take the values from 0 to 16 and must follow the backslash.
The values 0 to 10 have the same effect.

- Similar to:\?Parameter; it is only used for checking the parameter
number instead of the parameter name. This way you can also check
values not containing names.

91

GFA-ASSEMBLER

\IParameters

Finds out the addressing mode of code passed on to a printout. The
returned values stand for the following types:

Addressing modes:
: Dn & d(an) 12: #immediate data
An 7. d(AnXm) 13: SR
(An} 9 absolute 14: CCR
(An)+ 10: d(PC) 15: USP
—(An) 11: d(PC,Xm)

A A

-1: parameter not passed on
8: not yet used

\In - n may take the values from 0 to 16 and must follow the
backslash. The values 0 to 10 have the same effect.

- compare with \!Parameter

\'Parameter
Checking the type of data.

Returned Value:
-1: parameter not passed on

0: parameter is a numerical value

>0: parameter is a string, the length of the string is returned in
bytes

\'n

- n may have the values 0 to 16 and must follow the backslash. The
values O to 10 have the same effect.

— compare with \'Parameter

92

Source Code Directives

A~ {Name} — Macro—specific label definition.

If the user wants to call a certain macro in a program a few times it
might happen that redefinition errors occur when symbols are defined
in macros. To get round this simply change the symbol name before
every call.

The expression responds like a symbol (the second version is local).

While assembling, the '\~ is changed to "M”+Str$ (running macro call
number){+"’"Name”}.

Therefore it does not matter if one refers to the symbol over the
previous operator or with the explicit name. (Then one must find out
the call numbers by counting the macro calls.)

For more details with the use of symbols please read the
corresponding chapter !

Remarks: — From outside a macro you can only reach it's \™" symbols
through ‘MxxName'. (The call number has changed again then!)

- If a '\™ symbol is defined outside any macro on the level of a
source code it will receive the form MO{Name}.

— The entire length of a \™’ symbol including the "Mxx’ prefix may not
be longer than 16 characters.

~ Keep example 2.0 in mind !!!

93

GFA-ASSEMBLER

2.1.2.4.1 Combining Source Files
INCLUDE ‘Filename.ext’
.PATH ‘pathname’ specification of an access path.

If source code is loaded using the .Include instruction, it is used
exactly as if it were located at the INCLUDE Instruction in the main
source code. (INCLUDE itself can be used anywhere in the source
text.) If a file with the same name is aiready in memory (any number
of files can be in memory), the file in memory will be used. If this is
not the case then the current access path will be searched. Up to 16
File Paths may be specified in which to search for the specified file.
The paths are searched in the order in which they are specified, the
first file with a matching name will be used.

94

Source Code Directives

2.1.2.4.2 Straight text assembly
Macro functions

The tokenised entry with syntax checking by the editor forces the use
of syntactically correct and complete expressions. However, it tends
to put too many restrictions on the possibilites of programming
macros.

Examples:

(a) The following construction would be impossible:
.MACRO Loop Register_1,Register_2,Register 3
\~“Loop: move.b (\Register_1)+,(Register_2)+
dbra \Register 3,\"Loop
.EMDM

The call ‘Loop a0,a1,d0’ was supposed to produce:

MiLoop: move.b (a0)+,(a1)+
dbra d0,.M1Loop

However, the second line of the macro definition would have been
rejected when entered.

(b) Composite instructions would not be possible:
.MACRO Move extension, source, destination
move.\Extension \source,\destination
.ENDM

The editor would not accept ‘move.\Extension'.

In order not to impose such restrictions on the user, but also not to do
away with syntax checking, the following conventions have been
adopted in the GFA Assembiler:

All expressions, addressing methods and instruction lines which are to
be composed of different fragments and will appear syntactically
incorrect to the editor at the time of their entry, must be enclosed in
curly brackets {}.

95

GFA-ASSEMBLER

Within curly brackets any number of expressions (including strings
and string variables) or addressing methods may be contained,
separated from each other by commas or spaces. They will be syntax
checked individually, but not as a whole.

During assembly, the individual fragments will be concatenated and
interpreted. Strings will be processed without quotation marks. String
variables will have their contents passed. Macro parameters will be
processed into the expressions passed to them.

Some illustrative examples and notes:

(1) Example (a) must be written like this in the GFA Assembler:

.MACRO Loop Register_1,Register_2,Register_3
\"Loop move.b {(\Register_1,)+'},{’(’\Register 2,)+'}

dbra \Register 3,\"Loop

.ENDM

(2) Example (b) in the correct form:

.MACRO Shift Extension Source, destination
{'move.’ \Extension \Source,’,’ \Destination}
.ENDM

(3) Expressions passed as strings must only be in curly brackets if
they do not pass a syntax check individually:

{a,b,c.d,e} and {"a’,’b’,’c’,’de’} both result in
abcde

move.w {a,b,c,d,e},d0 results in
move.w abcde,d0

96

Source Code Directives

(4) If the quotes used as string delimiters are explicitly required in
expressions developed from plain text assembly, they need to be
entered twice since strings are processed without quotes:

Example:

The instruction cmp.b #'A’,d0 is to be composed:

{cmp.b ‘#'A’,,d0}

(5) Curly brackets may also be nested, that is, expression in curly
brackets may themselves contain curly brackets. Care needs to be
exercised here with strings:

{’d0"} produces 'd0’
{{d0”} produces {’d0’} first, but then dO!

(6) Curly brackets may also be involved in calculations and
addresses:

.MACRO Miracle digit | produces:
move,w # 1+{1\digit},d0 | move.w #1+15,d0
.ENDM |

Miracle 5

(7) Generally two basic types of application need to be distinguished:

- {} within expressions and address types (cf. example (1))
- {} as complete command lines (opcodes with parameters)
(cf. example (2))

(8) Curly brackets must only be used in macros.

(9) Caution: Intensive use of plain text assembly slows down
assembly speed significantly.

97

GFA-ASSEMBLER

Label definition with macro parameters

Within macros it is possible to define symbols the names of which can
be passed as macro parameters:

Example:

.MACRO Label_definition Name_1, Name_2
\Name 1: nop ; \equivalent
\Name_2: nop ; /formulations

.ENDM

Label definition Symbol _1,Symbol_2
results in:
Symbol_1:nop
Symbol_2:nop

However, only parameters which have been assigned a name during
the definition of the macro may be passed.”

Definitions such as \1: are not possible.
2.1.2.5 String processing
String variables

String variables are familiar from most high-level programming
languages. In assembly programming they permit, in conjunction with
macros and the new {} functions, an effective parameterisation of
source texts.

Five points are basically sufficient to explain their use:
Definition and use are as in absolute symbols defined with .SET.

Strings variables are in all respects equivalent to strings explicitly
delimited by quotes. They can be used wherever explicit strings could
also be used.

String variables are recognised only during the assembly process, and
cannot therefore be imported or exported during linking.

To distihguish them from ordinary numerical symbols, they begin with
a colon (3).

98

Source Code Directives

Strings can have a maximum length of 2565 characters.
Definition syntax:
:Name Stringexpression_1, Stringexpression_2 ...

All subsequent strings are stored (concatenated to one single string)
under :name.

Examples:

(a) :String 1°ig’
:String_1 ‘This *,:String_1,” a sample string’

.DC.b :String_2 is then equivalent to
.DC.b ‘This is a sample string’

(b) :Character ‘A’
=> cmp.b #:Character,d0 is equivalent to cmp.b #'A’,d0

String variables can also be used within curly brackets. It must be
emphasised that in that case not the variable itself, but its contents
will be read!

String functions

To simplify the use of string variables, the following functions which
should be familiar from BASIC, for example — are available:

99

GFA-ASSEMBLER

SYNTAX: | Description: |Example:
mid{string.x,y} (1)

|Fetch y characters from |mid{'123456',2,3}

|string starting with xth |

|character |produces ‘234’
left{string,x} (1)

|Fetch x characters from |left{'123456',4}

|string, starting from left |produces '1234’
right{string,x} (1)

|Fetch x characters from |right{’123456',4}

|string, starting from right |produces ‘3456’

dup{string,n} (1)
|dupilcate string n |dup{' 123’4}
ltimes to form new string |produces

| 123123123123
ten{string_1...,string_n} (2)

|gives the total length |len{'123’,’abc’}.

|of the specified strings |produces 6

asc{string} (2)
|gives the ASCII value of |asc{’ABC’}
|the first character of |produces 65
|the string |
chr{expression} (1)

|produces one-character |chr{65}
|string of ASCII value |produces ‘A’
|expression |
instr{string_1,string 2} (2)

|searches string_1 for|instr{’123456°,'345'}
[string_2 [returns 3
|Returns: -0 _not found |
|-n,n >0 j
|string_2 starts from nth |
|character in string_1 }

(1) Result is string

(?2) Result is numerical vailue

100

Source Code Directives

If the result of a string function is again a string, the function may be
used like a string variable wherever strings are permitted.

Caution:

The curly brackets used with string functions should not be confused
with those used in plain text assembly.

2.1.2.6 The ILLEGAL instruction

The assembler treats the ‘illegal’ instruction as a macro. This is not a
bug but intentional in order to permit the user to freely select an illegal
opcode. Should the ‘illegal’ instruction be required, therefore, it can
easily be defined by the user:

.MACRO illegal _
.DC.w $4afc ; or another illegal code
- .ENDM

2.1.2.7 including additional source text

INCLUDE ‘FILENAME.EXT'
PATH 'Filepath’ ; specification of search path
INCDIR ‘Filepath’ ; synonymous to .Path

Source text loaded subsequently with the INCLUDE instruction will be
processed by the assembler in the same way as if it was found
directly in the current source. (INCLUDE may be used anywhere in
the source text).

If a text by the same name is already in memory (since you can have
as many texts in RAM as you like!), that text will be used. If this is not
the case, the current path will be searched for it.

Additionally, the user can specify up to 16 file paths to be searched
for the text. The paths will be searched in the order in which they
were entered; the first file found with the searched-for name will be
used.

101

GFA-ASSEMBLER

2.1.2.8 Additional macro functions from Version 1.3

To make it easier to port source code into the GFA ASSEMBLER
format, the following has been added to the existing methods of
macro expansion (with parameters):

Lines beginning with an ‘@’ character will, like pure comment lines,
not be tokenised when entered. Only during assembly will the line be
processed as follows:

The line will be searched for the *\' backslash character, to find macro
functions.

If parameters are passed to the line, they will be inserted in the
position of their placemarkers (\parameter name).

The resulting line will be tokenised and assembled.
Advantages of this procedure:

Easier to import alien formats, since macro expansion works in the
same fashion (simply prefix line with ‘@"1).

Complex macro functions such as the copying together of new
instructions and addressing methods without recourse to the GFA
ASSEMBLER syntax with curly brackets.

Disadvantages of the procedure:
No syntax checking during input.

Slow assembly speed, so that intensive use over entire program
sections is not advised.

102

Source Code Directives

Example: Generating an addressing method

Existing GFA syntax |New method from Version 1.3

____________________________ I__._____.____.____..__..._.__.
MACRO example old addressregister | MACRO example_new

|addressreg
move.l {(’ \addressregister,’)’},d0 |@move.1 (\addressreq),d0
.ENDM |.ENDM
Example a0 |Example a0

All functions with curly brackets are only permitted within macros, with
the exception of the w{} and I{} functions described further below.

As from Version 1.3, compliance with this syntax is checked and any
deviation produces an error message.

If the user wishes to use the {} functions outside his currently defined
macro structures, the following trick is recommended:

; put includes, (macro) definitions etc here

.MACRO main

¥

: The program with the required macro functions
.ENDM
main ; call macro

The above structure is therefore broadly comparable to the C function
main{}. The entire program code is nested within a macro, which
becomes a program when called at the end of the source text.

103

GFA-ASSEMBLER

dec{expression} is equivalent to the BASIC function STR$(exp.n)
hex{expression} is equivalent to the BASIC function HEX$(exp.n)
bin{expression} is equivalent to the BASIC function BIN$(expression)
oct{expression} is equivalent to the BASIC function OCT$(expression)

The four functions above are used to transform numerical expressions
into strings. The resulting character strings may be used in macros
wherever explicit strings in the format ‘string’ (text enclosed in quotes)
would also be permissible.

Examples:

.DC.b dec{35} is equivalent to .DC.b ‘35’
.DC.b hex{35} is equivalent to .DC.b "$23’
.DC.b bin{35} is equivalent to .DC.b "%100011’
.DC.b oct{35} is equivaient to .DC.b ‘@43’

NARG resp. narg

Yields the number of the parameters passed to a macro as a
numerical value. The effect of this function is completely identical to
\#. It was include to enhance compatibility with other assemblers.

@

Returns the call number of a macro. Whenever a macro is called, the
assembler increments a counter. The current value of the counter can
be interrogated with this function. Thus you can, for example,
implement symbol definitions which change from macro call to macro
call.

104

Source Code Directives

Example:

The symbol definition \"SymbolRest:

when using the ~~@ function

reads {'M'.dec{~~@},’'SymbolRest:’}

The following functions are permitted everywhere, including outside
macros:

w{address} forces absolute short address
I{address} forces absolute long address

The following restrictions apply to ‘address’
'Address’ must not be relocatable.

‘Address’ must be located in the first or the last 32k block of the
address area and thus be representable as a word. (The processor
expands this to a longword when addressing).

Non-compliance with these points will produce an appropriate error
message.

2.1.2.9 Including absolute data
ABYTES ‘DATANAME.EXT

The file specified with 'DATANAME.EXT is inserted at the the current
program counter position as a data packet. The data contained in the
file will not be altered by this operation. This instruction enables a
problem-free transfer of data into the source text. One possible
application would be the inclusion of a complete bitmap into the data
segment of a game.

The .IBYTES instruction, like .INCLUDE, observes the search paths
specified with .PATH.

105

GFA-ASSEMBLER

2.1.2.10 Using symbol definition files

ITABGEN ;Generate symbol definition file
ATABEQU ‘DEFNAME .EXT’ ;Call symbol definition file,
.EQU-definitions
ATABSET ‘DEFNAME.EXT’ ;Call symbol definition
table, .SET definitions

The instructions pair .ITABGEN and .ITABEQU/.ITABSET permits
the generation and use of symbaol definition files. When a source text
uses numerous constants (that is, absolute and not relocatable
symbols), to symbolically address operating system functions or
hardware addresses for instance, it is often inconvenient to burden
the program text with this or to read in .INCLUDE definition files. The
user can use the following approach:

1. Generate a source text containing all definitions of the constants
(and only these).

2. Insert the .ITABGEN instruction into this text.

3. Assembie the text. No program or object module will be generated,
but a special symbol file with the name of the source text and the
extender " TAB'.

4. Insert the .ITABEQU ‘source text name’, and .ITABSET
‘'source_text_name’ into any position in the source text which is to use
the constants.

During assembly all definition instructions from the symbol file will be
executed as .EQU definitions where the .ITABEQU, and as .SET
definitions where the .ITABSET instruction is encountered.

The method described requires significantly less memory space and
processing time than defining the constants in an include file or
directly in the source text proper.

106

Source Code Directives

A source text with the .JTABGEN instruction will be assembied like an
ordinary source text, i.e. macros, conditional assembly and so on are
performed to the full extent. The only difference therefore consists in
the storage method. Any code or relocatable symbols are ignored
during the generation of a .TAB file!

The .ITABEQU and .ITABSET instructions, like .INCLUDE, observe the
search paths specified with PATH.

Structure of the symbol file:

Each entry into the symbol file is 20 characters long. It consists of a
longword with the value of the constant to be defined and 16
characters with the symbol name. In the event of symbols with a
length of more than 16 characters being found in the .ITABGEN file,
the extra characters are cut off. With symbols of less than 16
characters, the free bytes are filled with zeros.

In the last valid symbol bit 7 (%1000 0000) is set.

Example:

ATABGEN file: | ATABEQU file:

Name: ‘SYMBOL.TAB’ |[Name: any

ITABGEN |.ITABEQU ‘SYMBOL.TAB’
ABS 0 |;...source text

Name: .DS.b 8 |move.w status(a0),d0
Status: .DS.b 2 : Imove.| value(a0),d1
Value: .DS.b 4 ...

.END

107

GFA-ASSEMBLER

2.1.3 Conditional assembly

The main field of application for conditional assembly is in conjunction
with macros. Thus a macro can react differently depending on the
parameters passed when called, or the assembly of an entire source
text can be very flexibly controlied with only a few starting values.

Conditional assembly is very easy to use, because the lf—else—endif
structure so familiar from many high-level programming languages is
used. ‘Else’ has an alternating effect, i.e. source text named after a
double ‘'else’ will be processed again at ‘true’(=—1). There is also a
one-line variant: .IIF

Conditional assembly may be nested to any depth.
IF...ELSE...ENDIF...

IF Condition

; assembled if Condition true(=-1)

.ELSE ; ...
, assembled if Condition false(=0)
.ELSE

, assembled if Condition true(=-1)
..etc...
.ENDIF

1IF Condition, Command...

The commands following the condition are only assembled if true
(=—1). This structure is ended with the end of the line character.

This is best illustrated with examples:

108

Source Code Directives

Example 3.1: GEM DOS Call with Stack Correction

.MACRO GEMDOS Trap_Number,Stack_area
move.w #\Trap_number,—(sp) ;Gemdos function #

trap #1 ;Trap call

IF \Stack_area<=8 ;if the trap to correlate is
addq.! #\Stack area,sp ;not longer than 8 bytes
.ELSE :then faster addition
addall #\Stack_area,sp ;commands can be used.
.ENDIF

.END

Example: 3.2 Dump a string and it's address

.MACRO Dump String,Address,Segment

TJEXT

AF \?Address ;if dump is possible

move.l #\~ \Address ;for given string address,

.ELSE ;otherwise put address

pea \” ;onto stack, and set the

.ENDIF ;string in the

SECTION Segment,DATA ;given data segment and
\™: .DC.b\String,0 :mark it with Symbol

TEXT

.ENDM

Example 3.3 Conditional exit from a Macro

.MACRO Increment value,Line :Macro to increment
JIF \?Line, . EXITM ;Exit if no line is given
addi.l #\Value,\Line

.ENDM

109

GFA-ASSEMBLER

In addition to these universally known forms for giving the condition
input, there are various other command variations in which a condition
is tested. The following text is used when the condition is true.

AFEQ Expression ~...ELSE ...ENDIF etc..IIFEQ Expression, ...

Expression=0.

JAFNE Expression ...ELSE ...ENDIF etc. llIFNE Expression, ...

Expression<>0.

IFGT Expression ...ELSE ...ENDIF etc..lIFGT Expression, ...

Expression<0.

AFGE Expression ...ELSE ... ENDIF etc..IIFGE Expression, ...

Expression<=0.

IFLT Expression ...ELSE ... ENDIF etc..IFLT Expression, ...

Expression>0.

AFLE Expression ...ELSE ... ENDIF etc..IFLE Expression, ...

Expression>=0.

110

Source Code Directives

Additional synonyms for IF from Version 1.3

IFD symbol/expression equals .IF ~* defined symbol/expression
INFD symbol/expression equals .IF ! ~~defined symbol/expression
AFC string1,string2 equals AF ~* streq string1,string2
AFNC string1,string2 equals AF 1~ streq string1,string2

Example 3.4 Block Move

MACRO Move_block Start,Finish,Length

AFNE Length :Memory moving routine
lea.l \Start,a0
lea.l \Finish,a1 ;If the block to be
adda.l \Length,a0 ;moved is 0 Bytes
adda.l \Length,a1 ;in length, break with
move.w \Length,d0 .error message (.FAIL)
subq.w #1,d0
\7: move.b (a0)+,{a1)+ ;{copy loop)

dbra do,\”
.ELSE
FAIL
.ENDIF
.ENDM

.ASSERT Condition

- Breaks the assembly with an error message if ‘Condition’ is False,
when it has a value if 0.

111

GFA-ASSEMBLER

-FAIL
- Always breaks off assembly. (See Example 3.4)

Notes: Programmers can attempt to use a conditional assembly, to
distinguish between the passes of the assembler by calculating
symbol differences in optimization mode. This type of destructive
programming leads nowhere and ultimately confuses the assembiler. It
is recognized and forbidden.

2.1.4 Repeated Assembly

Repeated assembly means exactly that, the repeated assembly of
specified source file. This technique saves work when entering the
source code and increases the readability of the listing. Applications
that require extreme speed make use of this technique.

The enhanced memory requirement for the identical Program Code
part is exchanged for no loss in time through a loop (in the program).
Also, a running variable can be established with a Symbol definition
and source code segments with changed values can be repeated.

Syntax: .REPT Expression
;The text that is to be re used is found here.
.ENDR
The text bracketed by .REPT and .ENDR is directly assembled.

112

Source Code Directives

Example: 4.1:

Quick Block erasing for Bit Pattern graphics programming (16
Longwords).

Repeat form : | Alternative: | Conventional:
| (with running var: INDEX) |

lea.l Base,a0 | lea.i Base,a0 | lea.l Base,a0
. REPT 16 | INDEX set O | clr.l (a0)+
clr.l (a0)+ | .REPT 16 | clr.l (20)+
.ENDR | clr.dl INDEX *4(a0) | ... repeat 16x
| INDEX = INDEX+1 | clr.l (a0)+
| .ENDR | clr.t (a0)+
Example 4.2:

Initializing a Memory Block with numbers from 0-255

Loop : .DATA | Conventional: .DATA
Number =0 | .DC.b0,1,23,...
.REPT 256 | ...
.DC.b Number | .DC.b253,254,255
Number = Number+1
.ENDR

Hint:

If a Symbol is defined within a .REPT loop, there may be problems
with redefinition. The use of local symbols and the command .LOCAL
at the beginning or end of each loop iteration can help with this
problem.

113

GFA-ASSEMBLER

2.1.5 Commands for Memory Initialization
2.1.5.1 Text and Initialized Data Segments (.DATA)

There are many varied application possibilities for memory initializa-
tion, for example transferring text, jump tables, bit patterns, and so
forth, in data segments or dumping special data in text segments or
LINEA Opcodes.

.DC{.x} Expression {,Expression}{,Expression}...

x The working width: .b : Byte, .w : Word, .| : Long word, Expression
- any numerical value. The value is inserted at the given object code
position (program counter) in the given data width.

If the data width is a byte length, strings are also permitted. Strings
are inserted character—wise.

Example: 5.1: Loading a string into memory.

.DC.b 'Hello!' is identical to
.DC.b $48,$65,$6¢c,$6¢c,$6f,$21

.DCB{.x} Number,Fill Pattern

The .DCB-Command executes the command .DC{.x} Fill Pattern’,
Number times.

Example: 5.2: Initializing a memory block.

.DCB.w 5,-1 is identical to
DC.W ‘-1 ,—1 :—1 1—1 :_1

114

Source Code Directives

ANIT{.w} {#Num_1}Pattern_1{.I}{.Pattern 2{.w}}{,#Num_2,Pat-
tern_3{.b}}...

The .INIT command is the easiest of the commands available for
memory initialization. #Num_1 and #Num_2 each contain the number
of times the value is to be set with the given data width at the current
position. The Default data width is .w (word). The data width default
may be changed to the width specified in the .INIT command, after an
INIT command is executed for all additional Fill Patterns. This
instruction is especially useful when longer structures with mixed data
types and widths must be defined.

Example: 5.3:

ANIT.w -1.1,0.w,#8,'String".b,#3,’A’.b,'B’.b
; is identical to

.DC.I -1

DCwoO

.DCB.b 8,’String’

.DCb'A’ B A'B' A 'B

2.1.5.2 Uninitialized Segments .BSS and .ABS structures

These are explained in more detail in another section of this manual.

.DS{.x} Number

The program counter is incremented and an area of memory is
reserved to allow room for the data expressed by Number with the
specified data width (byte, word or long word) starting at the current
address. This area is then reserved.

1156

GFA-ASSEMBLER

Example: 5.4:

.DS.w 30 reserves 60 Bytes
.DS.1 2 reserves 2 Bytes

.EVEN

The EVEN instruction justifies the current PC address. Fill bytes of 0
are inserted into the text and data segment.

.CNOP offset, modulo

The CNOP instruction ensures that the following program code begins
at an address which is a multiple of ‘moduio’. Additionally the ‘offset’
value can be added to this address. To produce an address with the
required properties, rounding—up is used. If the CNOP instruction is
not used in the BSS segment, the ‘empty space’ up to the CNOP
address will be filled with zeros.

Offset and modulo may be numbers in the range of 0 to 255.

Examples:

.CNOP 3,4 ;The following code starts 3 bytes after the next
;longword address

.CNOP 0,5 ;Address to be a multiple of 5.

.CNOP 0,2 ;equivalent to .EVEN

116

Source Code Directives

2.1.6 Commands for Formatting Listings

During debugging of a program it is often helpful to have the action of
the assembler recorded either entirely or in part. This supplies the
programmer with a detailed picture of critical program sections, and
with intensive macro programming, a complete listing of the code
created for debugging. An assembly record can be sent to the screen,
an attached printer, or a file (on a floppy, hard disk, or RAM disk.)
These files use the .LST extension. By using special directives in the
source code, the user can specify areas of special interest for
recording.

-LIST

Activates the recording process. All work done by the assembler
following this command is shown according to the format as
illustrated in Example 6.1.

.NOLIST

Turns off the recording.

.TTL 'Header line’
.SUBTTL ‘Footer line’

Each recorded page is organized as follows:

System title line (Action,File,Date,Page)
{Header Line} (Definable by the user)

—————————— Empty line——————————-
{Footer Line} (Definable by the user)

117

GFA-ASSEMBLER

The definition of the Header and Footer line is used for all such lines
following it's definition. After the definition of the first Header and
Footer line all following definitions will initiate a form feed.

.PLEN {expression}
Sets the page length of a recorded page.

.LLEN {expression}
Sets the line length.

Page and line length can only be changed when the recording is
inactive. (For example, before a .LIST or after a .NOLIST instruction)

Hint:

Page Format Specifications:

— Five lines of each recording page are reserved for Header and
Footer lines. All remaining lines are used for the listing output. If no
Header Footer line is specified, an empty line will be used in it's
place. (Compare to .TTL, SUBTTL).

- If no page format is specified by the user in the source code, the
assembler will use the information found in the corresponding Printer
Parameter Screen (Menu 5,1) (For output through a file or printer). If a
Header line is active in this menu, the number of lines available is
reduced by 3. The actual number of characters per line {(columns) can
be obtained after searching the left edge and eventually the line
numbering (compare to the Editor). If this data is less than the
minimum value of 80 characters per line and 6 lines per page , a
default format of 80 characters on 58 lines will be used. If the output is
to the screen, the page format is always 80 characters on 25 lines
(one screen page). After each page is output a key must be pressed
to go to the next page. This permits browsing through the output.

118

Source Code Directives

— With printer output, each page is sent to a page buffer before it is
output. The size of this buffer may be specified when the printer is set
up in the Printer menu of the Editor. It is configured as follows: '

Columns*(tines—Header line)*(Characters+edge)
with: Columns: number of Columns
Lines: lines per page
Header line: 0 with no Header line
3 with a header-line
edge: Characters per column

The assembler may not exceed this buffer size with a changed page
format. If this is the case each line on the page will be shortened so
that it will fit on the page in the buffer. If there is enough room
available, it is recommended that a large buffer be installed for
recording in order to avoid long delays during assembly.

- In principle, it is possible to use many columns for assembly
recording. However, because each line must be at least 80 characters
wide, this will depend on the printer used.

— For printing, the parameters set during the printer set up in the
Editor will usually apply.

- Please do not mistake the header line of the record with the header
line of the Printer menu. The header line of the Printer menu will be
suppressed during the process of printing the record.

119

GFA-ASSEMBLER

.LMODE Expression 1 <=Expression <=3

As illustrated by example 6.1, an assembly recording is formatted in
column orientation. If the contents of a column exceed the reserved
length, it can be dealt with as follows:

1. Place output into the next line at the corresponding column
position.

2. Cut off the line.

3. Continue writing on the next line. All additional columns will be
moved to the right.

-PRINTER Expression {,Expression} ...

Like the .DC.b command strings can be specified here. If a record is
being output to the printer at the time the given character will be sent
to the printer and ended with a carriage return, line feed. This is used
to send printer commands, for compressed print mode, other fonts,
etc.

Example:
.PRINTER 27,15 Compressed fonts.

-PAGE {expression}

This command, without any parameters, sends a form feed. When a
parameters is passed, sends a form feed if there are fewer lines
available then expression (not counting lines reserved for Footer
lines).

120

Source Code Directives

.SPACE{expression}

Inserts expression empty lines. If no parameters is given the, default
value of 1 will be used.

.MLIST .NOMLIST

.MLIST Macro calls are listed in expanded format.

NOMLIST Only macro calls are listed, not the contents of the macro
itself.

.CLIST .NOCLIST

.CLIST The sections that are jumped over and not assembled are
listed during conditional assembly.

NOCLIST The actual instructions assembled in an .IF structure are
listed.

121

GFA-ASSEMBLER

Example: 6.1

The following Assembler record excerpts are from the assembly of the
source code in Example 2.0. A format of 80 characters by 20 lines is
used.

Column 1

Contains the line number of the work step in the source code. This is
concluded with one of the following status characters:

. The line is from a macro call

: The line is from an .Include File

+ During conditional assembly : true
-~ During conditional assembly : false

Column 2 Shows the running Object code address (referred to as
Base address 0). Be careful about changing Segment types.
Programs begin the data segment at the end of the text segment.
.BSS segments begin at the end of the data segment. In Object
modules all segments have a base address of 0.

Column 3 Gives the assembler code created in Hexidecimal format.

Column 4 Reserved for symbol definition.

Column 5 Lists the executed steps in clear text.

Column 6 Contains any comments.

122

Source Code Directives

{System-Status—Row: Explanation }
{Version: Function: Filename Date: Time: Page: }

GFA Asm V1.0 Asm-Prot.:D:\PRINT.LST Day:6.2.1990 Time:2:9:0 P:1
This is the headline.

6 000000 TEXT

8 000000 .MACRO bconout dev,char ;BIOS
18 000000 .MACRO Print String,Device ;Macro
34 000000 .LMODE 2

35 000000 Print ‘Hello!",2 ;print
19 000000 .DATA

20 . 00003c JF \?String ;if th

21 .+ 00003c 48616¢c6¢c6f21\~a .DC.b \String ;in Da
23 .+ 000042 \"b.ELSE

24 .— 000042 \"a.DC.b 13,10 ;other
26 . 000042 \"b.ENDIF

Here goes the footer.

{form feed}

GFA Asm V1.0 Asm—Prot.:D:\PRINT.LST Day:6.2.1990 Time:2:9:0 P:2
This is the headline.

28 . 000042 JEXT

29 . 000000 47f9 0000003c leal\™a,a3 ;Strin
30. 000006 7605 moveq.l #\“b-\"a-1,d3 ;Strin
31. 000008 \~ bconout\Device,(a3)+ 1 ;Tim
9. 000008 4240 clr.w d0 ;Bcono
10. 00000a 101b move.b \char,d0 ;out t
11 . 00000c 3f00 move.w d0,—(a7) ;onto
12 . 00000e 3f3c 0002 move.w #\dev,—-(a7) ;Outpu
13 . 000012 3f3c 0003 move.w #3,-(a7) ;Funct
14 . 000016 4e4d trap #13 ;BIOS-
15. 000018 b5c8f addq.l #6,a7 ;Stack
16 . 00001a .ENDM

32. 00001a51cb ffec dbra d3,\” ;loop
33. 00001e .ENDM

36 00001e SPC 3

Here goes the footer.
{form feed}

123

GFA-ASSEMBLER

Recognised, but ineffective instructions:

(The instructions described below are recognised and tokenised by
the editor, but will be ignored by the assembler. They have been
implemented for reasons of upward compatibility to future versions.)

ADNT ‘string’
AMIGA

124

Source Code Directives

2.2 Calcuilations, Symbols, Operators

2.2.1 Definition of a Symbol

The assembler distinguishes between relocatable and absolute
symbols.

Relocatable symbols are symbols that are at a position relative to the
program start. Absolute symbols can be any given value. They are
comparable to 32 Bit Integer variables in BASIC. When a symbol is
defined, the type is specified next to the value, and affiliation to a
segment is reported. Symbols may be up to 127 characters long, but
only the first 16 characters are significant. They can basically be
defined in two ways:

- By marking symbols in the program text. This type of symbol is
always relocatable. Offsets to the start of the program or segment are
used.

- By direct assignment with the following syntax:

Symbol_name {assignment-command} Value

Assignment commands are: equ, .equ , == (one shot definitions)
as well as: set, .set, .= (repeatable definitions)
and: reg, .reg (register listing definition.)

The symbols so defined carry the assigned expression as an attribute.

Example:

Symbol equ Symbol 2
If Symbol 2 is relocatable then Symbol will also be relocatable.

125

GFA-ASSEMBLER

A Symbol defined as a label can have two meanings.

- Local Symbols have a period before the symbol name and are only
recognizable between two not local symbols. Because of this, the
programmer may have to tie together many local symbol names in an
especially long source listing. (Local areas can also be separated by
using the directive .LOCAL without a non local label). In the
assembler, local symbols can also be exported.

— Normal symbols are known throughout the program. Jump points in
subroutines are marked with normal symbols, symbols within the
subroutine are locally defined and when necessary separated by
using .LOCAL.

- Global symbols are exported. Global declaration is only necessary
when working with Object Files. They can aiso be used in other ways.

- During the assembly process, settings can be adjusted for attaching
a Symbol table if all symbols or only global symbols are to be
included in this table. In order to sue a symbol table for debugging,
define all symbols as global.

— Global symbols can also be defined by using the ‘::' combination in
addition to the corresponding Pseudo Opcodes.

Example:

Label_1: ;Label 1 is normally defined
Label 2:: ;Label 2 is globally defined

2.2.2 Retrieve Symbols

Symbols may appear at any position in the source code where a
numerical value would normaily be permitted.

126

Source Code Directives

2.2_.3 Calculations

Calculations are made in GFA ASSEMBLER according to a specific
hierarchy and with as many brackets as desired. Each numeric
expression may be the result of a calculation. The following
operations are declared:

Logical comparisons with boolean results (0 and -1) (lowest priority):

= : Equal to (logical)
<> : Notequal

< : Less than

> : Greater than

<= :Less than or equal to

>= : Greater than or equal to

Arithmetic operators (sorted in ascending priority):

+ : Addition in 32 bit words

- . Subtraction in 32 bit words

* : Multiplication of 16 bit word

/ . Divides a 32 bit word by a 16 bit word

: / the sign is affected!
& : 32 bit AND operation
| : 32 bit OR operation
~ : 32 bit EOR operation
% : Modulo
<< : Bit Shift left
>> : Bit Shift right

Further operations: (expressions are presented).
- negative prefix (2's compliment)

~ bitwise NOT (1's compliment)
I'logical NOT (result is O or ~1)

127

GFA-ASSEMBLER

Special functions:

*

~~defined symbol
~*referenced symbol
~ ~Streq string1,string2
~“~date

~~time

~ “macdef Macroname

*INote:

With a multipass assembler, care must be taken to ensure that each
pass through the source code reaches the same conclusion with each
AF Pseudo Opcode. For this reason, only those symbols that have
been encountered before ~"defined will be considered as having
been defined. The ~“referenced function has therefore only limited
application. It is included in the command set only to furnish

: current PC

: is Symbol defined? *)

: Is Symbol referenced? *)

: String comparison

. Current system date in GEMDOS format
: Current system time in GEMDOS format
: Is macro defined?

compatibility with other assemblers.

If calculations other than + and — are executed the symbol value is

absolute.

If only + and — are used with odd numbers from relocatable symbols,

the result will aiso be relocated.

128

The Linker

3.0 Linker

The Linker plays an important part when used in combination with a
higher programming language and in the development of large
programs. Object modules of the same format can be combined to
form new programs regardless of when they were written. Difficuit
functions can be used from Routine Libraries (for example, from a
development package). The programmer must not reinvent the wheel
with each new program.

The Linker format used by the GFA ASSEMBLER is the same as that
used with Digital Research C (supplied with the Atari ST Developers
Package). This format has some restrictions that a programmer must
know: No calculations can be made during the linking process. This
means that during object module creation, the most that can be done
is that expressions can be imported. Values derived from symbols can
not be changed during linking.

- The distinctions between the assembler segments can not be done
by the linker. Only the segments TEXT, DATA and BSS are created
(see above) by the linker. During linking, the message and warning
windows from the assembler are displayed.

The user will be able to see what the Linker is actually doing as it ties
in various modules from the library. If assembly takes place during the
linking, any messages from the assembiler will appear in the Linker
window.

To differentiate between messages from the Assembler and the
Linker, the following special characters are used:

>>, > followed by assembler messages

=, = followed by linker messages

! followed by prompts to the user

-> followed by display of processing time of
assembler/linker

129

GFA-ASSEMBLER

In order to automate the Assembiler Linker process and reduce the of
commands to be entered, the linker can be controlled by a linker
control file. This is a normal ASCII File which must be created in the
source text mode of the Editor. Only one command per line is
permitted.

Operation
The following steps are required to start a linking operation:

— Creation of an ASCIi text in the editor's "“"General source” mode as
a link control file under any filename. This text must contain the linker
commands described in the manual.

~ All editor functions can be applied to link control files, including
Save, Load etc.

- To start the Linker, select menu 6,4. To be on the safe side, the Link
menu will only be displayed if an ASCII text (not tokenised) is in
memory. The switches shown in that menu have the following
purposes:

‘*generate’’
Program: Linker output is a program.

Object code: Linker output is again an object module. This is
equivalent to the “—p” control file command (partial linking).

IMG file: Supervision of relocations {(see manual).

Absolute: Activates the “-a” command. Important: The “~a” com-
mand is only executed if this button is also active. It is thus possible
to generate an executable program as well as absolute code without
amending the control file.

“Symbol table:” cf. "-1" and -8 commands in the link control file
“Load map:” cf. “~m” command in link control file.

“Link’’ starts linking.

130

The Linker

Command: (path_name is a place holder for any file path)

path_name Include an object module.

?path_name Include a library (archive).

When linking a library of individual modules, the linker will determine
which references have not yet appeared (that is, which symbols are
imported without being exported, and so are not defined).

Finally, all the modules of the library are searched for export of the
missing symbols. If the linker is successful the exporting module is
included.

Hints:

The analysis of an extensive library for internal connections during
linking is too time consuming. For this reason a library is used in
combination with it's ‘Indexfile’. A large amount of information is used
by the linker for handling the corresponding library. The first time a
library is used an index file is created and saved using the filename
extension .NDX. This file is then ready for future reference. This file
can also be created using the Library Management functions. More
information about the construction and function of the index file is in
the appendix.

If a symbol is exported from many modules, the symbol from the last
module will be used.

When exporting many individual modules (not belonging to a library)
containing a symbol with the same name, the first of those exported
will be passed on to other modules.

131

- GFA-ASSEMBLER

@path_name

Combines all modules of a library (in alphabetical order).

#path_name

Includes a Binary File. The specific file is placed in a DATA Segment.
If you want to be able to reference the data by using a symbol, we
recommend that a symbol be defined at the end of the data segment
of the object module.

Application example.: passing text, bit pattern graphics,resources, etc.

“Path_name

The specified file will be assembled during linking. There will be no
output to the disk. The object code will be directly linked to the
modules in memory. The primary advantage of this is that no
additional access to the disk is necessary. This option can be
executed only once during linking. The file to be assembled must be
in memory.

This option is most useful when only one of several object modules
has been modified, and the programmer wants to update the current
program.

WARNING: The ‘' option is not compatible with library manage—
ment. This means that symbols using ‘*~’ can not be created using a
library.

(Except, of course, if they are also required elsewhere and have
therefore already been imported). If this is a problem, the user should
use the '=" option already described above,to which this restriction
does not apply.

132

The Linker

=Path_name

Assembly during linking. If a file with the specified name is already in
memory, it will be assembled. Otherwise the file will be loaded from
the specified path. After assembly, an object file will be written to disk
and will be available for further link executions.

The file will also be inserted during the current link process.

As many such assemblies as required can be carried out. The
parameters set in the Assembler Menu are used during the assembly.

The parameter settings made in the Call Assembler menu (menu 6,2)
apply to the assembly.

133

GFA-ASSEMBLER

Command Operating parameter setting. The hyphen follows one or
more of the following commands:

sorS-
lorb —
m or M-

porP-

uorb-

aorA-

Syntax:

134

Add a symbol table,only for Export and Import

Symbol table with all symbols

Load map. An alphabetical directory of all symbols to
be used.

Partial linking: create an object module instead of a
program.

‘Unresolved’. Object modules with unused references
would normally lead to break in the linker. This command
will permit the linker to continueexecution. The linker uses
0 for the error filled symbols.

Absolute linking. Separated from segment specific code
by a specified address instead ofrelocatable code. This
could be used for codeintended to be burned into an
Eprom.

Parameter_1(text) Parameter_2(data)Parameter 3(bss)
The parameters can use the following format:

r The segment is relocatable.

x Exactly the same as the previous segment.

(Identical to 'r' for parameters with text).

$xx (Hex number) The segment encounteredshould be
relocated to the address specified by the Hex Number.

The Linker

Hints:

Data created by absolute linking has a different format the header..
The following construction applies:

Offset: Contents:

$00 Length of the text segment {(a

$04 Length of the data segment

$08 Length of the Bss segment

$0C Length of the symbol table

$10 Base address of the text segment (b
$14 Base address of the data segment (b
$18 Base address of the Bss segment (b
$1C End of header

(a = Bit 31 is set .i relocation information is present.
(b = Bit 31 is equal to 0, when the data is relocated.

The operating system will not support the absolute linked file format.
The programmer must ensure that each segment in memory is
correctly positioned.

The ‘A’ Command following other commands in the same line is not
evaluated.

+ Comment line

: Comment at the end of the line.

A comment can be inserted following "+ and ';’.

135

GFA-ASSEMBLER

136

Library Management

4.0 Library Management

If you'd like to create your own libraries, you will need a utility for
library management. Such a utility is integrated into the GFA
ASSEMBLER in the ‘Archive ... menu. It may be used similarly to the
way file management is handled under GEM. When the user selects
the ‘Archive ..." menu item under the Assembler Menu header, the file
selection screen will appear and the user can select the desired
library. If a name is given that is not available, or does not belong to a
library, a new library with this name will be created. Otherwise the
desired library file will be loaded. This work screen will now appear:

| Library - Archive of ! TEST_GFA.0__

Modify !][Update Library || Output |[Table of Contents H

| < ||[Page -1 “| » |

Erase Module Ready

TEST_GFA 0

Figure 15 Library Screen

The contents of the library will be shown in the iower part of the
screen. The work functions are executed in the upper part of the
screen.

<< or >> Page through the contents of modules.

137

GFA-ASSEMBLER

Update Library

The date each module was established is noted, as in the directory
under GEM. If the user changes the library, a new date will be
recorded. This option will automatically update the library. Individual
object modules which were changed are searched for in the folder
from which the library was loaded. If the date and time is older than
the new obiject file, it will be replaced by the new file. If this function is
selected, make sure the current system time is correct in order to
avoid destroying valuable information through an incorrect date and
time setting.

Add Module

Entire libraries or individual object modules can be inserted into a
library to expand it. They are selected through the fileselect screen as
needed.

138

Library Management

Hints:

A library is a collection of separate object modules into one file. No
sub-directories are supported by the file management.

Each module in a library must have a specific name. (Otherwise it
would not be possible to distinguish between modules.) A box will
appear in which names can be changed. The affected file can be
overwritten, or the process can be stopped if the module name
already exists.

A library can contain as many modules as memory will permit.

Load Object Module Page ! | Drive: fA: B! D: E: F!
File:FILL - Path [Undol: C:\ASSEMBLE.RS*.0
% GFR_ASS g |

FILL 0 116 |
PR 0 1812 |

cigp NAME ALREADY EXISTS!

Existing name ! FILL.Ooeee—-

New name ¢ FILL 0o

Cancel 0K

Figure 16 Name Exists Warning

Erase Module

Erase a module. The text is changed to reverse video with the left
mouse button. If the <Shift> key is held down, additional names may
be selected. The erase routine itself (selecting '‘Erase Module’ with the
left mouse button) is irrevocabile!

139

GFA-ASSEMBLER

Save Module

After selecting a module or modules, the selected module(s) will be
saved as individual object data files. You must choose the path to the
library and the module name.

I Library - Archive of @ my lib.____ |

Hodify ! H Update Library H Output ! ﬂ Yable of Contents u

Save Module ﬂ
| Erase Module | IR “| Page .1 |[»» |
Ready
TESTZ A
TEST
JEST1 .
FILL g’ Save Library:
FILL1 s
OPW
Same Hame ﬂr New Name jﬂ Cancel |

Figure 17 Save Module

140

Library Management

Select the modules with the right mouse button.

Creating additional information in a box. (Name, changeable size in
bytes date, time).

[Library - Archive of ! my_libeeeooo]

Modify ! E Update Library H Output @ H Table of Contents "

L Add Hodule |

| Save Module |
| Erase Module | << || page -1 |{ >]
Ready

TESTL

TEST

FILL MODULE-Info Name.....! TEST2,0ua—.
FILLL

0PK Length...: 164... Bytes

0K

Date:38.11.1989 Time:22:3:8

Figure 18 Module Information

141

GFA-ASSEMBLER

Select the Library name with the left mouse button. Library
Information Shows number of modules in archive, library size, free
memory area (the length of the library may not exceed the length of
available memory.}.

| Library - Archive of ! my_lib___ |

Modify [Update Library | Output : | Table of Contents |

| Erase Module | [<<]| page -1 |[»»]
Ready
TEST2 il
TESTY
TEST
FILL LIBRARY-Info Modules.. . ..covet Beeee
FILLL []f‘ Length....... o8 4752__ Butes
0PH ok Free memory....: 1646158Bytes
0K

Figure 19 Library Information

Ready

The library is saved to disk in its modified form. A new name may be
specified. The user is returned to the main menu of the Editor after
saving.

Index

The library access data from the library through an index data file. If
no index file exists for a library one must be created. In order to avoid
delaying link execution, exit archive management through ‘Index’ and
create the corresponding index file at the same time the modified
library is saved.

142

Library Management

Warning:

If changes are made to a library and the corresponding index file is
not initialized, the linker can become disoriented, leading to errors.

Contents

An ASCII File with a readable form of the index file will be assembled
in the same directory as the library. This will enable you to better the
internal connections of a library, as shown in the appendix..

143

GFA-ASSEMBLER

Example:
Excerpts from an archive contents directory. (extension: .DIR):

GFA Ass V1.2 index-Data:A:\COPY \GEMLIB.DIR Date:6.2.1986 Time:1:17:0 S:1
DEPENDENCYTABLE:

Module....depends on 10!

0:839396

1:696061 626364656667 7677818283 8485919394 9698 103 106 106 120 121
122

2:33606162636465677071727374757677 7879 808182 83 84 85 93 96 104
116 120 121 122

3:3183939698 103

4:3183939698 103

MODULE-SURVEY:

0 - channe!5.0...0000021 ;. xmainnw.o....00056a 2 :maliocdb.o.. 000fce
3 : noascii.0....00137a 4 : nobinary.o..0014ea 5 :nodisk.0.....00165e
6 : nofilesz.0..001866 7 : noficat.o...00181a 8 :noiong.o....001b26
9 : nottyino..001c46 10 : access.o0...0014852 11 :atoio......001fae
12 : atolo.....0021be 13 : calloc.0....0023fe 14 :exec.0......0025(6
15 : fdopen.o....00285¢ 16 : fgets.o.....002b0e 17 :fopen.o.....002¢b2

EXPORT-SURVEY:

atab....105 _ atab....105 __chini...83 __fdecl...64 __ main.... 58
__noasc..3 __nobin..4 __nodis..5 _ noflo...7 __nolon....8
__open...91 __prtin..78 __ prtd...79 __ prtsh...80 __ aflist..76

__afreeb...76 _ allocc....83 _ arith...118 _ atof...109 _ blkio..... 86

GLOBALandEXTERNA L Variables from Module :
channel5.0.(Offset: $000002)

EXPORT: _fds _erno ___cpmrv __errcpm _maxtile __chvec_ allocc __freec

__chinit ___chini __chke

IMPORT: _fds _ermo _blkfill __ cpmrv __errcpm
xmainnw.o..(Offset: $00056a)

EXPORT:__pname ___atab_ fds ___main _nowildc

IMPORT: main _strcpy _sbrk _exit _brk ___pname__ atab__ BDOS

_creata _strcat _opena _Iseek _strchr_close__fds

144

Part IV

Additional Information

1.0 Execute Program

A program may be loaded and run from within GFA ASSEMBLER with
the function ‘Execute Program’. The only condition is that there must
be enough free memory for the program to execute properly. If
GEMDOS encounters a memory error during loading or exiting the
loaded program, the memory error will be displayed and further
program loading will be forbidden.

¢

Insert 1 @K Line : 48 KM Column : 1 CLOCK.IS
MOVE. K #\2,-(sp)
trap #\i
addg.1 #\3,sp
EADM

star

ain
HE'H

Execute Pregran !

Tupe @ | .705 [| .PRG |

3
Emulate Disk : [Yes || No |
Conmand Line !
[cancel | Load ! GFABASIC.PRG [select |

moveq.l #3,do0 ; select a font,

lpa_ 1l fnntnat(nc) al ! not addrocc ¥n ctoro it in

Figure 20 Program Loader Selection Screen.

145

GFA-ASSEMBLER

The function ‘Execute Program’ has four principal uses:

1.1 Loading the Program The program can be tested from within
the Editor/Assembler. If an error is encountered (a bus error, address
error, etc) the GFA ASSEMBLER will display the appropriate error
message and stop loading the program.

1.2 Loading the GFA DEBUGGER

If you need to examine a program in more detail, use the GFA
DEBUGGER. The GFA Debugger (GFA-DBG.PRG) can load and run
your program. The program to be loaded may be specified in the
command line of the Debugger. You may select to run the Debugger
from the Editor/Assembier by selecting To Debugger from the
Assembler Menu. A special RAM resident of the debugger {GFA-
DBGA.PRG) must first be installed from your Auto folder when your ST
is booted. This method will permit you to return to the GFA
ASSEMBLER when you exit the debugger (with quit).

You will find this very useful when you want to look at the source
code of a program or if you want to load a program into the debugger
directly from the GFA ASSEMBLER. The flow chart on the next page
should clarify this process.

146

Additional Information

Assembler ;—-I

Debugger ;

perhaps: ‘new” ;

Assembler <...'asm’ :

assembile :

back to debugger

Iquitl

Assembler ;

Assembler loads debugger (menu
6,6)

Debugger waits for input

clear debugger's memory

Enter ‘asm’ command, debugger
switches temporarily back to
assembler ; you can work in
assembler as usual

assembling a program (menu 6,2)
or linking (menu 6,4)

back to debugger (menu 1,0)

, to display the program parameters
; you can now analyse the program

; the debugger is left with ‘quit’

the memory reserved for the
debugger is released again, you
have the full amount of RAM
available for the assembier.

147

GFA-ASSEMBLER

The framed area may be executed as often as desired. An error in the
program can be corrected in the source code, then the program can
be loaded into the memory and retested with the Debugger.

1.3 Loading a Compiler

If you use the GFA ASSEMBLER editor to generate source code
editor for higher level programming languages, or if you write only
time critical portions of your programs in assembly language and
other parts in another language, any compiler that uses batch
programs (that is one that is executable from another program or a
command) may be loaded. The name of the source file to be
compiled may be passed to the Compiler by using the command line.
In order increase your programming efficiency when using a compiler,
be sure that the ‘disk emulation’ ‘Yes’ button is activated. The editor
of GFA ASSEMBLER will pass the source code found in memory to
the compiler as if it were on disk, using the appropriate GEMDOS call.
Because the editor does not emulate a single disk drive, but only
passes the text in memory instead of reading the disk, the specified
file must be found on the disk. More precise information about the
emulation mode can be found in Appendix B.

The process of loading a compiler can be better explained with an
example: A Pascal Source file called TEST.PAS’ may be loaded into
the text memory of GFA ASSEMBLER. The text may be further edited,
and then you may use ‘Execute Program’ from the Assembler menu.
In the command line box enter ‘TEST.PAS’ and select the "Yes' button
next to ‘disk emulation’. Now select ‘Select’ and select your compiler
from the file selection screen. The compiler is loaded and it loads
‘TEST.PAS’ directly from the GFA ASSEMBLER. Disk access will occur
only when the file is to be read or data is saved. If the compiler is
interupted by an error, you will be returned to the editor where the
error may be corrected. For each subsequent call of the compiler, just
select ‘Execute Program’ <F6> from the Assembler menu and press
the <Return> key.

148

Additional Information

1.4 Loading GFA BASIC 3

GFA BASIC 3 has the capability of switching to the GFA ASSEMBLER.
Load GFA BASIC 3 from within the GFA ASSEMBLER using the
‘Execute Program’ function of the Assembler menu. Place the
command ‘INLINE’ at any place in the GFA BASIC 3 program text.
(The syntax for this command is described in the GFA BASIC 3
manual.) '

Then position the cursor at the INLINE command and press the HELP
key. An additional entry will appear in the menu line, ‘ASM * will
appear. Select this item or press the ‘A’ key. GFA BASIC 3 will pass
the address and the length of the area reserved by the INLINE
Command to the GFA ASSEMBLER.

When the source code is assembied or linked in the GFA
ASSEMBLER, it will automatically be copied into the GFA BASIC 3
program text. This assembly language routine may contain no
relocatable addresses. An error usually will generate the appropriate
error message. The following points should be noted in the
assembler:

If the memory area available is not sufficient for the GFA ASSEMBLER
and GFA BASIC 3 with its source code, switching will not be
supported. (There should be at least 200K of free memory.) In order to
be recognized, GFA BASIC 3 must be loaded from within the GFA
ASSEMBLER. Before GFA ASSEMBLER loads GFA BASIC 3, a dialog
box will be displayed which can be used to determined which portion
of the remaining free memory the GFA ASSEMBLER should maintain
for itself. To assembly source code, at least 60 KBytes of memory
should remain free. By using this function you can insert machine
code programs directly into a GFA BASIC 3 program. These programs
must be freely moveabie within memory.

In this case when the Assembler is called the button marked ‘Load:’
will be replaced with 'Load : GFABASIC.PRG'. If the assembler
encounters an instruction which is not relocatable or the program
becomes longer then the memory area available an appropriate error
message will be returned. In order to return to GFA BASIC 3, exit the
ASSEMBLER through the ‘Quit’ function of the File menu. If GFA
BASIC 3 is no longer required, exit BASIC by selecting 'Quit’ or

149

GFA-ASSEMBLER

‘System’. You will be returned to the GFA ASSEMBLER and the
loading sequence from GFA BASIC 3 is ended.

2.0 Calling the Memory Resident Debugger

If the debugger is found to be resident in memory (if the resident
version (GFA-DBGA.PRG) was loaded from the Auto folder, or if you
have previously installed the debugger, a check mark will be placed in
front of the 'To Debugger entry in the Assembler menu. It is then
possible to go directly to the Memory Resident Debugger without
loading it from the disk. Using the memory resident Debugger is
exactly the same as with the Debugger which can be loaded from
within the GFA ASSEMBLER.

The function is the same as ‘Execute Program’ when the Debugger is
so loaded into memory. The primary advantage is that the Debugger
need not be loaded from the disk and therefore saves time.

150

Appendices

161

GFA-ASSEMBLER

Appendix A1l.

Operation of the Input Fields

The input fields found in the boxes of the GFA ASSEMBLER, can be
divided into two groups:

1.) Buttons which are selected with the mouse. Activated buttons are
represented as being filled in. There is always a main button which
performs a central function. This main button distinguishes itself from
the remaining buttons because the frame around it is always thicker.
The main button may be selected by pressing the <Return> key. The
box may be exited by pressing the <Esc> key.

2.) Fields for input from the keyboard. In these input fields only
characters that are meaningful to the corresponding input are
permitted. (For example, for an input field which only expects numeric
data, only numbers are accepted). A cursor will blink in the input field
in which the input is to be made. All characters entered will be
inserted to the right of the cursor. The following keys are available for
editing the input field:

162

Appendix A

Cursor Left :
Cursor Right :

Shift + Cursor Left :
Shift + Cursor Right
Home :

Cir:

Delete :

Backspace :

Move the Cursor to the left.

Move the Cursor to the right.

Move the Cursor to the beginning of the field.
Move the Cursor to the end of the field.

Move the Cursor to the end of the field.
Erase the input field.

Erase the character to the right of the cursor.
All additional characters are moved one
space to the left.

Erase the character to the left of the cursor.

All additional characters are moved one
space to the left.

If many input fields are found in the box, you can move between the
fields with the ‘Cursor up’ and ‘Cursor down'’ keys.

153

GFA-ASSEMBLER

Appendix A2:
The format of macro tables

A macro table for the editor of the GFA Assembler is ASCII text in
which for every reprogrammed event, a sequence of commands is
present. Only one command is aliowed per line but some commands
allow many arguments. A command with its arguments may not be
longer that one line.

A sequence of commands for a reprogrammed event starts with the
command

PROGRAM event

‘event’ stands for one of the commands ‘KEY’, 'KLICK’, ‘DOUBLE-
CLICK' or ‘"MENU’ (see later) with its arguments belonging to them. A
key must always be entered after ‘'KEY’ and after 'MENU’, one always
has to enter the numbers of a menu and of a menu item. After ‘KLICK’
or 'DOUBLECLICK’ no other parameters are expected. This means
that the change of the mouse click has nothing to do with the position
of the mouse.

In the next few lines are some examples, which define what shouid
happen when the user executes a certain event.

The ifast command of such a sequence of commands is the command
END

The command 'END’ defines the end of a sequence of commands.
Between ‘END’ and the next 'PROGRAM’ may lie as much text as you
want to put there (comments etc.)

Between the lines PROGRAM...and END you may use the following
commands for the change of a command:

154

Appendix A

KEY key[key[key...]]

The command ‘KEY' starts the sending of key events. As arguments
you may pass the 'KEY' command as many keys as you want to. ‘key’
can be one of the following expressions:

n

$h:

$xxxx0000:

‘string’:
UP,DOWN,LEFT,
RIGHT:
CLO1,COLE:
LN1,LNE:
HOME,END:
PGUP,PGDN:
WORDL,WORDR:
DEL,SDEL:
BSP,SBSP:

WORDDEL:

LNRDEL,LNBDEL:

A number between 1 and 255 for an ASCIl code

A hex number between $1 and $ff for an ASCH
code.

A hex longword. In its upper word, in the lower
byte is the scan code and in its upper byte are
the special keyslike Control/Shift.

Characters consisting of one or a few ASCI|
characters.

Cursor movements

To the beginning/end of the line

To the beginning/end of the text

To the beginning/end of the page

Page up/page down

Word left,Word right

Delete,Shift + Delete

Backspace, Shift + Backspace

Erase word

Erase the rest/start of the line

155

GFA-ASSEMBLER

RETURN:
INSLN:
TAB:
F1..F10:
UNDO:
HELP:
PRTSC:
TXT+,TXT-:
LTXT,RTXT:

TXTW+, TXTW-:

SETM1..SETM9:

GETM1..GETM9:

KLICK [x,y]

Return

Insert a line

Tab

Function keys

Undo

Help key

Shift + Help

Change text, forwards/backwards
Change to the left/right text

Change the size of the text window bigger/
smaller

Set marks

Jump to marks

The command KLICK executes a mouse click at the pixel coordinates
X,y. x and y can be left out and a mouse click will be executed at the

current position.

DOUBLECLICK [x,y]

The command DOUBLECLICK executes a double click at the pixel
coordinates x,y. (x and y may be omitted).

156

Appendix A

MENU menu menu item

The command MENU executes the menu menu,menu item.

LINE N or LINE ““label”

The Command LINE sets the cursor to the line 'n’ or in the line in
which it found ‘label’ as a label or as a macro.

LABEL “‘iabel”’

The command LABEL allows the search of a symbol definition from
the position of the cursor onwards.

COLUMN n

The command COLUMN puts the cursor in the column ‘n’.

TEXT n or TEXT ““name”

The command TEXT shows the text with the number ‘'n’ or the text
with the name ‘name’.

157

GFA-ASSEMBLER

Appendix A3.

The Standard Printer Settings

If the GFA ASSEMBLER finds no data file with the name ‘PRIN-
TER.CFG’ when it is loaded, and if no ‘.CFG' data is loaded from
within the assembler, the GFA ASSEMBLER will print using the
following default settings:

$0D,$0A Carriage return
$0C Form Feed
$1B,'-',$01 Turn on underline
$1B,’~',$00 Turn off underline
$07 End printing

All characters are output to the printer exactly as they appear in the
text.

158

Appendix A

Appendix A4.

The Printer Configurations Table.

The printer configuration tables are in ASCHl format and use the
filename extension “.HEX' before being reconfigured into a '.CFG’
data file through the Configuration Table ‘Compile’ button. This text
file is comprised of four areas:

Printer name

Printer type

Control sequence for formatting
Character conversion table

The areas have the following contents:

Printer name: One line with the name of the printer. This area is not
used in the present version but must be included for compatibility.

Printer type: 6 Hex Bytes that characterize the printer type. This area
is not used in the present version but must be included for
compatibility.

159

GFA-ASSEMBLER

Control sequence for formatting: This is a table with the foliowing
construction:

-01 XX, XX, ... Control character that will be exchanged for
carriage return.

-1a XX, XX, ... Control character that will be exchanged for
‘'underline on’.

-1b XX, XX, ... Control character that will be exchanged for
'underline off.

- 1e XX, XX, .. Control character that will be exchanged for
form feed.

- 21 XX, XX, ... Control character that will be exchanged.

l—> Any number of Hex Bytes.

Number of the function. These entries must be in
ascending order. Other function numbers are also
translated, but are not used in this version of GFA
ASSEMBLER.

v

Character conversion table: This is a table in which all characters are
listed one after another for which one or many characters are to be
output. Every entry is made up of the Hex Code of the character and
the order in which the character is to be output.

As an example of such a text may be found in the file ‘PRINTER.HEX
on the program disk. This table can be modified for other printers.

Appendix A5: When Memory Fails

The GFA ASSEMBLER uses the available memory to execute
functions quickly on the ATARI ST. This means that if the memory is
nearly full, many functions will execute slower. In this case, the
functions 'Create File Table’, ‘Compile’ and the automatic screen save
will eventually be stopped. (See also page 173)

160

Appendix B

Appendix B.

Data Format for Assembler and Linker

Appendix B1:

Format of Executable Programs

An executable program, one that can be run directly from the desktop
by clicking on it with the mouse cursor, is comprised of:

Program Header
Text Segment
Data Segment
BSS Segment

Symbol table

Reiocatable Info

(28 Bytes)

(Program Code)

(Program data)

(not contained in the data, is first loaded when
the operating system is set up)

(optional, either contains all symbols used
during assembly or only global symbols, helpful
during debugging)

(Depending on memory usage, a program is
loaded into the operating system at various
addresses. The programmer can not know the
programs operational position during execution.
Therefore, all programs are so written as
though they start at memory address O. The
operating system calculates the relocation
information from the absolute address into the
physical address before the program is
executed.)

161

GFA-ASSEMBLER

Header Format: Ifd.Program

Position: Contents:
$00=0 $601a ‘Magic’

ID code for GEMDOS
$02 =2 Length of the Text segments
$06 = 6 Length of the Data segments
$0a =10 Length of the BSS Segments
$0e = 14 Length of the Symbol table
$12 = 18 10 Null bytes
$1c =28 Beginning of program

Relocation Information

The relocation information begins at an even address with a long word
which contains the relative distance to the first absolute address of
the program from the beginning of the program. The coordinates to all
additional absolute addresses are distances in bytes. If the distance
between 2 absolute addresses is larger than 254 Bytes, then 'n’ times
1is set.

The following applies: distance =n * 254 + rest

Where 'n’ is a number representing the distance divided by 254 and
‘rest’ is a number that is smaller than 254. Therefore n+1 bytes are
required.

162

Appendix B

Appendix B2:

Object Module Format (DRI Format)

Object modules can not be directly executed, they must first be linked
into an executable program with a linker, possibly, in combination with
other modules. They do closely resemble the construction of a
program;

Program Header (The same as with an executable Program)

Text Segment (Absolute address relative to the Segment
Base)

Data Segment

BSS Segment

Symbol Table (Not identical to a PRG Symbol table)

Relocations (No connection with program relocation
Information)

A linker gathers the text segments of the module into a combined text
segment with the data segments and BSS segments. When the object
module is created, its length is not known. All absolute addresses are
referenced to the SEGMENT start and are first calculated in reference
to the PROGRAM start by the linker. This applies to the symbol values
in the symbol table as well.

The relocation information of a program in relation to the relative
distances from the description of the object module is unsuitable. The
relocation information and data segment of the module are all in all
made up of words and long words with the following meanings:

$0000 Contains no information

$0007 Contains no information. Marks the beginning of an
opcode (all opcodes are words at whichthe operand is
inserted.) The GFA ASSEMBLER/Linker can work withthis
information, it will not produce anything in its object
module.

163

GFA-ASSEMBLER

$0005

$yyy6

164

Shows the relative offset (a long word) by which the
corresponding relative address in text or data segments
must be relocated. An additional word will follow with the
foliowing possible contents:

$0002 Absolute Address for Text Segment

$0001 Absolute Address for Data Segment

$0003 Absolute Address for BSS Segment

$xxx4 Unresolved reference. The name of the
appropriate symbols is reachable as follows:

($xxx4 — 4)/8 = Number of the name of the
module with the proper symbol table
(begins with 0).

The address relative to the symbol table
beginning is:
Address = (($xxx4 — 4)/8)*14

An unresolved reference or a data segment occurs at a
corresponding position in the text segment. Care should
be used that if a PC relative word address is used to
move beyond the segment limit, or when working with an
as yet unknown address, because the range of this type
of addressing (+ or — 32 KByte) can be over extended.
The linker will warn the user if necessary.

The appropriate Symbol address is calculated with the
unresolved long word addressing:

rel.Symbol address = (($yyy6 - 6)/8)*14

Appendix B

Construction of the Symbol Table

Each entry in the Symbol table is $e (=14) Bytes long and constructed.
as follows:

Address to
entry start: Contents Bit:meaning:(if Bit=1)
$0..$7 =0..7 SymbolName 0 Symbol of the BSS Segments
(filled with 0) 1 Text Segments

$8 =8 Symbol Status 2 Data Segment
$9 =9 not used 3 Symbol not defined
ad =10..13 Symbol Value 4 Register

5 Global Symbol

6 Constant Symbol

7 Symbol is defined
Notes:

The Symbol Type COMMON Not supported by the GFA Linker.

Warning: Symbols are basically only 8 characters long during linking.
if longer symbols are encountered during assembly they will be
shortened to 8 characters without any warning.

Appendix B3: ABS File Format

ABS files are created by using the ‘A’ Option of the linker. They have
the same format as an executable program with the limitations
described in the linker documentation. Besides this the header that
was described is to be paid attention.

165

GFA-ASSEMBLER

Appendix B4: IMG File Format

Occasionally it is not possible or desirable to relocate programs
before they are executed. If the user creates programs that are to be
freely relocatable in memory, no absolute addresses (except of
course hardware addresses) may be used. Header and relocation
information is superfluous. Such files can be created with the IMG
Option of the linker. The linker checks if absolute, or relocatable
addresses are contained within the program and warns if one is
found.

Header and retocation information is never created, a symbol table
can be inserted as desired.

166

Appendix B

Appendix B5: Library Construction

Libraries used by the linker contain object modules and have a very‘
simple structure: They begin with an identifications word ('Magic’,
$ff65), followed by the sequential object module in the format
described in Appendix B1. Each object has an additional header
which is 28 Bytes in length and made up as follows:

Address

Header Beginning
=0..13

$00..
$0e..
$10..
$12..
$14..
$16..
$1a..
$1c..
$38...

.$0d
$0f
$1
$13
$15
$19
$1b
$37

=14...
=16..
=18...
=20...
=22.
= 26..
=28..
= 56...

15

A7

19
21

25
27
55

Contents

Module Name

Date of creation in GEMDOS Format
Time of creation in GEMDOS Format
Null bytes

$01b6

Length of object module

Null bytes

Object module Header

Object module

The end of the library is marked by a null word.

167

GFA-ASSEMBLER

Appendix B6:

Index Files (for Libraries)

The linker understands the construction and all the exportable
symbols when the index file of a library is used. The index file can be
converted into an ASCII file containing the same information by using
the Management menu of the Assembler/Editor. These two files use
the extensions "NDX and ".DIR’ so they are not confused.

Construction of these files:

$it75 Identification (‘Magic’)
$xxxx Number of symbols exported from the library (word)
$yyyy Number of modules contained in the Library (word)

Module table 1)
Export table 2)
Dependency table 3)

1) One module entry is 20 Bytes long and contains the offset of the
module (the last four Bytes) relative to the library beginning next to
the module name (16 Bytes). The names of the modules in the library
are sorted alphabetically.

2) One Export entry contains the export name (8 Bytes) and the
number of the module to be exported as a long word (4 Bytes).

3) When a module is combined this will contain mainly unused
references that concermn exporting other modules. A mask concerning
every module exists which contains information about which modules
must be included in combination with the module selected. Each
maodule corresponds to one Bit of this mask.

168

Appendix B

Example: One index file to a library with 19 modules is to be created:
Each mask is 3 Bytes long (corresponds to 24 bits of which
only 19 are necessaryy).

Each mask has the following construction:

0000 0000 0011 1111 111 Module X,y,z=0:
0123 4567 8901 2345 678. Number Module not necessary

XXXX XXXX YYYY YyYYy Zzzz zzzzaccompanies X,y,z = 1:
Byte1 Byte 2 Byte 3 Mask bit Module is necessary

There are 19 such masks present. The format of the ASCIl format
index file is described in the Archive management documentation.

Appendix B7:

Tokenized Source Code Format

A special feature of the GFA ASSEMBLER is it's tokenized Source
Code format. Knowledge of this format is not usually necessary for
the user. Those developers that may be interested in this format can
obtain detailed information about it from GFA.

169

GFA-ASSEMBLER

Appendix C.

Error Messages from the Assembler and Linker

As already explained in the operating procedures to the Assembler/
Linker, not every inconsistency during assembly will lead to a work
stoppage. Therefore, small errors will be taken in stride. They are
always made known to the user.

The following is a list of all error messages with the possible
consequences. For more specific information, refer to the appropriate
Chapter.

Error message: Explanation:
Syntax error 1} { A command, Pseudo-Opcode
etc, was entered incorrectly.
Illegal address type 1)} | An address type not in use is

expected with an Operand for a
processor command.

lllegal Extension 1} | Incorrect command value (.b,.w,
1), not every command works
with all types of data width’s.
Command not complete 1) | Operand or dgl. is missing.

lilegal value 1} |In a value area—overwriting, illegal
data type, syntactically incorrect
calcuiation etc.

Not interpretable Input of unknown PseudoOpcode

Pseudo Opcode 1)

Symbol Name Too long 1) | Symbol name (those with *\™”
also) may only be 16 characters
long at max.

Branch out of reach *) | PC—relative branch out of reach.

Symbol redefined) | ———

170

Appendix C

Undefined symbol *)

Filename not specified *)

Relocation attempt *)

Symbol necessary 1}

Incorrect number of parameters *)
Include not possible *)

Memory full *)
Division by 0 .EVEN necessary *)

Only one assembly possible *)

Pass differentiation *}
Branch to next command *)

ENDIF without .IF *)
JIF without .ENDIF *)
.ELSE without .IF *)
LOOP not closed *)
Macro redefined *)
Macro not defined *)
.ENDM without .MACRO *)
overflowing .ENDM/EXITM *)
Unknown segment type *)

If an executable program is
created with the assembler all
symbols that are used must be
defined.

Filename (with .Include, linking) is
missing.

In IMG mode of the linker and
during program passing to GFA
BASIC absolute addressing is not
permitted.

Symbol (as function—operand)
was not given.

Include attempt on a non existent
source text file.

See below

Should words (processor
command data) be written at odd
address .EVEN must first be
executed.

In the linker control field the “*”
command is called more than
once.

Consuit .IF-documentation.

Only in the branch optimization
mode! Is not optimized,
Branch—-commands with word
offsets are coded.

.ENDR was forgotten

Macro’s must be defined before
they are called.

Consult SECTION command

171

GFA-ASSEMBLER

Error during linking *) | Fatal linking error (diverse
reasons)
Check segment type *) | .DS.x command in text or data

segment or .DC.x or 68k
command in BSS or ABS
segment.

Incorrect Segment Definition *) | Redefinition of a segment or
definition of a segment with
NR.>63

Error during protocol *} | File access error during
assembler protocol creation.
Relative addressing out of reach.2}| Linker can not detect 16 bit
references because of too large
an address (> approx. +/-

32kByte)

ASSERT/FAIL *) | Assembly stopped by user
command

Too many path’s specified. *) | There are a maximum of 16

Include—-Search_path’s allowed
(search in the order of input).
Incorrect page format *} | Meaningless page format or page
buffer too small (Choose a
smaller format or in the printer
menu increase the page buffer!)

Symbol meanings:
1) Is also reported during input

2) Exclusively linker error message
*) fatal error (Work is interupted.)

172

Appendix C

Procedure with full memory:

The GFA Assembler is memory-orientated in all respects. It can
therefore happen, especially with large amounts of data and the
smaller computer models, that the amount of available memory is
insufficient. We therefore suggest a few emergency measures to save
some memory space in such an event. The following should be tried
in this sequence when your RAM space is rapidly decreasing:

- Disable all desk accessories, RAM disks, operating system patches
and other “memory gobblers™! (if necessary with a system reset!)

— Do not use ASM from the debugger or BASIC!
— Remove all surplus texts from memory!

- Reduce the size of the spooler and page buffers in the printer
menu!

- Use INCLUDE from disk or hard disk! (For source files read in
during assembly/linking, 7 bytes per line are required by the editor’s
memory management)

- Avoid assembly during linking! (Generate source modules
separately first, then link!)

- Split your program into object modules for the linker!

- Remove (using “"Search and replace”) the comments from your
source code!

- Buy a RAM expansion!

173

GFA-ASSEMBLER

Appendix D

Cross Assembly

It is possible to generate programs and object modules for the
Commodore Amiga computer by inserting the pseudo opcode
‘AMIGA’ into an assembler source file. On encountering 'AMIGA’, the
assembler quits normal assembly and enters into cross assembier
mode. It is therefore advisable to place 'AMIGA’ at the beginning of a
source text.

The different program format of AmigaDOS explains the following
peculiarities of segmentation in cross assembler mode:

Every SECTION used produces a separate program segment at object
code level. It is neither necessary nor desirable to group sections into
text, data or BSS segments.

The SECTION instruction can take the name of the segment as an
additional parameter with text, data and BSS segments. AmigaDOS
linkers can combine segments with identical names.

Syntax: SECTION, Nr,Type,'SegmentName’

An entire object module can be assigned a module name (for
libraries!) in addition to its filename by using IDNT.

Syntax: IDNT ‘ModuleName’

An AmigaDOS program is loaded segment by segment. The relative
position of the segments is not predefined and depends on the
current state of the system. PC-relative addresses between segments
are therefore iliegal. The assembiler follows this rule in the optimisation
modes and reports any mistakes made by the user.

Developing AmigaDOS programs requires a set of INCLUDE files with
all system variables predefined. They are not included in the GFA
ASSEMBLER ST for copyright reasons. You can, however, copy the
original Includes to ST disks, load them as ASCIl files and convert
them - with minor syntax modifications — to assembler source text
mode. Another option is to use the includes that come with the GFA

174

Appendix D

ASSEMBLER AMIGA. These are derived from the original includes and
are supplied as 'IS’ files. The formats are 100% compatible. It is
necessary, however, to modify the directory paths used in the
includes (different device names, '/ instead of ', long filenames!).

To transfer programs to the destination computer, you can use the
appropriate utilities for reading MSDOS disks on an AMIGA (Dos-
2-Dos, for example). An easier way is to use parallel transfer via the
printer port. A driver (with a transfer rate of about 50kb/second!) is
included with the GFA Assembler. The necessary cable, together with
receiving software for the Amiga, can be obtained from GFA Data
Media. Please phone or write for further details.

WARNING: This is a special cable. Do not attempt to transfer data
with a home-made or a centronics cable, as your Atari ST (and
possibly your Amiga, too) would be destroyed! We expressly reject
any responsibility for damage resulting from a wrong use of the
transfer facility!

To use the cable, the following instructions must be employed:
OUT UNLINK

When the assembler encounters OUT or UNLINK in the source text,
the saving of the generated file is suppressed and instead it is
transferred via the paraliel port. UNLINK aborts the connection to the
Amiga after the transfer, OUT continues it so that several files can be
assembled and transferred in a row. To generate a number of
programs or object modules automatically, it is a good idea to use the
control file to control the linker:

Example:
=modul_1.is =modul_2.is

Executed as a linker control file, this generates the relevant code
before quitting with an error (because of the wrong format for the ST
or the missing files). This, however, has no consequences for the
correct automatic generation of the required files.

175

GFA-ASSEMBLER

Once the required code has been generated and transferred, it can
be further processed on the Amiga:

* execution of executable programs, or * linking in standard
AmigaDOS format

For debugging on the Amiga we recommend the GFA DEBUGGER
AMIGA which is included in the GFA ASSEMBLER AMIGA develop-
ment pack. (Symbolic debugging!)

Dos-2-Dos is a registered trademark of Central Coast Software
MS-DOS is a reqistered trademark of Microsoft Corporation

AmigaDOS, Commodore, Amiga are (registered) trademarks of
Commodore- Amiga, Inc.

176

Index

Assembler Index

#PAth_NAMe ... 132
e et ettt e ettt e et e e e e e et rrt e et et e et eneneeeeernn 128
e 2 O PR 127
ettt e rierert ettt ere e —nenaeetn e e aratatsanetetnnrnnrs 127

e e ettt e e e ettt et enarae e e e rras 127
B ettt eereeererreeeteeeesieie——a—bteseteesaesrarnrrratasaesenaannns 127
B iretee et e et e —eaeeeae e taee s e e ——reesoaetreaessa e eeeaarreteenares 127
T et e e e e e ee e n—rae e e e e ttteaes st aeses it beeeeaeeeaeanans 129
=Path Name ..o 133
> ettt e er et e et st e ee ettt teeeeanateraartennnas 127
7Path_NAME ... 131
@ ot r et 102
@PAath_NBMEccocveiceee et 132
ettt ettt et et ettt et e e aeeanan 87
ettt e e aara s 92
A e ettt e ettt e et e e e aaaae e 91
2N et et et e e as 91
AN et et e e et eeeeeeeae e 90
“Path_name ..., 103
T @ e 104
A m et eet s e e e s tras 134
ABS e e 78,165
ASCIE TOXE oot 45
ASSERT e 111
AMIGA oo 49,124,174
ATCRIVE oot 137
ASSEMDIE . 67
Assembly Languageccooceeieeiieeiee e 7
AUutOmatiC SCrEEN SAVEccovveeveeieeeeeeeeeeeeeeeeeeeenen, 44
B P e 155
B O e 77
Background ASSembly ..o, 64

177

GFA-ASSEMBLER

=3 T T U OO P TN 104
BIOCK FUNCHONS e iee e s e e e e e nnenae 52
BranChingcccoooeereerminiiinis et 68
CAR G S oottt r e e e e e et e s e 80
(0] 1 12 ST OO O PO PP PP RPPPR 121
(0] I @ oS 155
CLOE ettt a e e e e e e e e e e e e 155
(0] 1 (@] > USRS OPR 116
COMM oottt er et e e e e e eeeasssbnenneessessseseosssrnrans 84
ClOCK oot 16
COMPATISON oot s 51
Cross Assembler ... 174
CroSS—refEr@NCE ...ooooveeeeeeeeeireee ettt 67,76
DAT A et e a e et 77,112
D e et e e et aaa e e e aran 114
DEBUGGER ...t s st 150
] = U UUURUTROPPPPROPUPPPRRTN 155
DOUBLECLICK oot 156
] = IR U P PRSP 163
DS oo e e e e e e 115
|0 7= Yo RO USSR O U PPPPURRN 104
ELSE ottt e ettt e e s e e e e et e e 108
BN D oo 83,155
EN DI oo et e e e 106
EN DM oot a e 86
EN DR oot e e ee e 112
EVEN oo e ee e 116
E X T M oottt eaeee s 86
EXTERN oottt e e e e e 84
Edit MENU oot e 43
=00 [1 8 1 110 1o [JPUUUUTT U OO PP PO PP PPPPIS 15
EQU ittt 125
Execute Program ... 145
S i 0 TSRO OPOUPOPOPTUPTP 156

178

Index

FAIL e e 112
File Table Creationccccooviieceeoeiieeeeeee e, 39
Fle MENU ..o, 36
FHESEIECIOr ..o, 35
Format Operandscccocvveiiecvivviecieiiee e, 63
GETMEMT..9 e 156
GLOBL .. st ee e 84
Global DIOCKc.ooviiieeeeee e 38
HEL P e 156
HOME et 155
HEX s 104
BYTES e, 105
DN T e e 124,174
L et et 108
IFEQ e, 110
IFGE et e 110
I GT et 110
BE L e 110
L T et e 110
ENE e 110
e et 108
ILLEGAL oottt 101
INCDIR et 101
INCLUDE ..ottt 94
INIT et 115
INSLN e, 156
ITABEQU .o 106
ITABGEN ..o 106
ITABSET oot 106
INAEX e 168
INPpUt fieldS ..o 162
INSBIt e 16
Key assignmentscccocceoveeiieieecieeicee e 18,23
KBY Pad ..., 17,21,22

179

GFA-ASSEMBLER

L o oot e ea e 134
LABEL oottt vt s 157
LINE oottt ee ettt b e s e snn e san e eraea e 157
LIS T e 117
LLEN oot ie et e easa s e e et rereecae s smae s smne s e 118
LIMODE ..o ittt 120
[OSSP PP RPRPPSRRTO 155
LNBDEL oot rte e cennas st et 155
LN e 155
LNRDEL oottt err e eee e sseeee e s ne s 155
LOCAL ittt e e 83
I8 I I VPO PO PTOPO 156
LIDFAMES oooiiieceee et 137
Library Information ..., 141,167
731 0= SO T PP PP 129
LOAd oo r e 12,146,148,149
1Y U U ST P PP OPPORPTR 134
MACRO oot st 86
MENU oottt s st b s nr e n e 157
ML ST e e 121
Machine Language ..o 7
Macro Key Definition ... 26
MacCro Table ..o 154
Mouse FUNCHONS ... 24
NARG e s b 104
NOCLIST oottt e 121
NOLIST e s 117
NOMLIST ot 121
OUT e et 175
@ 73 SO PP PSP PPN 104
OPHMIZING .oveeiieeiee e e 83
P o e e 134
PAGE .ot e 120
PATH e ib b 94

180

Index

PGDN e 165
PGUP ettt 155
PLEN s 118
PRINTER ..o 59,120,158,159
PRINTER.CFGooieeeeee e, 60,158
PRISC e 156
PUBLIC oo 84
Page oo 18,19,40
Program/Object Codeccooceiieiiiiiiiiiiiicce 68
Pseudo OpCodesccccocceeeiieeciece e 64
RE P T e 112
RETURN .ot 156
R T et 156
RO e 125
Register NAMEeScccovviiiee e 48
S o e 134
SB P e 155
SDEL o 1556
SECTION .ottt 82
SETMEMT..9 e, 156
SPACE s 121
SUBTTL e 117
SEAICN ..o 54
Search & replaceccooeiiiviieieceeee e 57
St e 125
SEE TADS oo 50
SOUICE tYPES oo s 45,49
Special Charscocooooiiiiii i 50
Special functionscccocoeeeiiiii e, 128
Stack POINtErcovvieeiee e 64
Status SCIEEN ..o 37
Symbol Capitalizationcccccceeviiieeec e 64
Symbol table ... 75
Symbolic Code ... 7

181

GFA-ASSEMBLER

TAB oo e 156
L1 =3, LU ORT 77,157
T L ettt e e e te et e e s e e e e aas 117
T T N A ettt e et e e e e e e e e 156
T T N o et e e e 156
= 1o U RO 50
TOXE 172 ettt a e 39
L PR 134
UNDO ottt serer e 156
UNLINK s e 175
Use Source Namecccoovieiiiiieeee et 65
WORDDEL ...t ettt et e e eeeeaen e 155
WORDLL. et r e e e e e 155
WORD R .t 155
XD ettt a e e 84
XREF et 84

182

index

183

