A ———.
-

Q ATARI®* PROGRAM EXCHANGE
Z0elclalalablaliala -i = I u “1r34m r, 7 FI Y ;—'J F Y.
s
: : § 1
3 A 4
i1 i 1' [:
1 b
SIEl 1
i _
l 3 r L 3 f
LT | 1
3 |
; 1
’ 1HH r {
J'L: 3 1 Fl 3
i i J
‘ o :
A] 1 1 g
¥ i- 1 1 i ;
3 s r i
]
i 2l i
' ifd s
f] i i | :
111t 15 4 r
E 3] . g 1 {
i1 ; i 3 o z 4 d ‘P
] ISIRERRELE 3
111t SIS AS N E :
bt £ J FEEEEH Y L_A LAk L] .__f: ._JT 2 E4d EJ LD ED Ld bd

ATARIPASCAL LANGUACE SYSTEM
APX-20102

March 1982

User-Written Software for ATARI Home Compufers

- e

| <

NON-EXCLUSIVE, ROYALTY-FREE LICENSE TO USE
THE RUN-TIME SYSTEM RSSOCIATED WITH THE
ATARI® PASCAL LANGUAGE SYSTEM

I. Purpose

In order to pramwte widespread use of the Pascal camputer language on
ATARI® Hame Camputers, Atari, Inc. ("Atari”) will grant a non—exclusive,
royalty-free license to distribute the Run—Time System associated with the
ATARI Pascal Language System ("Pascal").

II. The License

Subject to the conditions stated herein, Atari will grant to the original
purchaeser of Pascal ("Licensee") a non-exclusive, royalty-free license to
distribute the Run-Time System associated with Pascal ("Run—-Time System").
Licensee is only authorized to distribute the Rum—Time System in an object code
form which is identical to the Run-Time System of Pascal (APX product
APX-20102), and only in conjunction with and on the same media (e.g., diskette)
as application programs developed by Licensee which reguire the Run—-Time System
for their proper operation. Except as provided above, Licensee shall not use
or purport to authorize any person to use any of the copyrights, trademarks,
service marks, or trade names of Atari without Atari's prior written consent.

The Run-Time System consists of the following files: PASCAL, MON,
PASLIB.ERL, FPLIB.ERL, GRSND.ERL. This license conveys rights which relate
solely to these five (5) named files. These files are encoded on the diskette
which is part of Pascal.

III. The License Term

This license will run for a term of three (3) years from the date of
purchase of Pascal. Two (2) extensions, each for a duration of one (1) year,
will be granted upon receipt of written reguest from Licensee. Reguests for
extension should be submitted two (2) months prior to the expiration of the
then current term.

IV. Acceptance
Licensee will be deemed to have accepted the terms and conditions of

this Agreement when he/she distributes to any third party an application
program which incorporates the Run—Time System licensed hereunder.

£59(A1) 2/24/82

&

V. Additional Terms and Conditions

A. Licensee understands and agrees that:

(1) The Run-Time System is distributed on an "as is" basis without
warranty of any kind by Atari.

(2) The entire risk as to the performance and guality of the’

Run-Time System is with Licensee.

(3) Should the Run-Time System as incorporated into Licensee's products
prove defective following its purchase, Licensee and not Atari,
Atari's distributors, or retailers, assumes all costs associated with
or resulting from use of Licensee's products including all necessary
repair or servicing.

(4) Atari shall have no liability to Licensee or to custamers of Licensee
for loss or damage, including incidental and/or conseguential damage,
caused or alleged to be caused, directly or indirectly, by the
Run-Time System. This includes, but is not limited to, any
interruption in service or loss of business or anticipstory profits
resulting fram the use or operation of the Run—Time System.

B. Licensee shall indemnify and hold Atari harmless from any claim,
loss, or liability allegedly arising out of or relating to the operation of the
Run-Time System as used by Licensee or custamers of Licensee pursuant to this
Agreement.

C. Licensee shall not suggest, imply or indicate in any manner that any of
his/her software products which incorporate or use the licensed Run-Time System
are approved or endorsed by Atari.

D. Licensee acknowledges that a failure to conform to the provisions
of Subsection C of Section V will cause Atari irreparable harm and Atari's
remedies at law will be inadequate. Licensee acknowledges and agrees that
Atari shall have the right, in addition to any other remedies, to obtain an
immediate injunction enjoining any breach of Licensee's obligations set forth
in Section V.C above.

E. No waiver or modification of any provisions of this Agreement shall be
effective unless in writing and signed by the party against wham such waiver or
modification is sought to be enforced. WNo failure or delay by either party in
exercising any right, power or remedy under this Agreement shall operate as a
waiver of any such right, power or remedy.

F. This Agreement shall bind and work to the benefit of the successors and
assigns of the parties hereto. Licensee may not assign rights or delegate
obligations which arise under this Agreement to any third party without the
express written consent of Atari. Any such assignment or delegation, without
written consent of Atari, shall be void. s

#59(n2) 2/23/82

——aa

G. The validity, construction and performance of this Agreement shall
be governed by the substantive law of the State of California and of the
United States of America excluding that body of law related to choice of law.
Any action or proceeding brought to enforce the terms of this Agreement shall
be brought in the County of Santa Clara, State of California (if under State
law) or the Northern District of California (if under Federal law).

H. In the event of any legal proceeding between the parties arising fram
this Agreement, the prevailing party shall be entitled to recover, in addition
to any other relief awarded or granted, its reasonable costs and expenses,
including attorneys' fees, incurred in the proceeding.

VI. Specific Disk Operating System Exclusion

The license granted herein does not relate in any way to the ATARI®
Disk Operating System, DOS II. Inguiries relating to such a license should be
sent to:

Atari, Inc.

Hame Computer Division

60 East Plumeria Drive

San Jose, CA 95134

Attn: Software Acguisition Group

For Atari: %\- \ S)
\ -
(Atari, Inc. By: g\ CALN L

N~ 2
1265 Borregas Avenue Name: Bruce W. Irvine
P.O. Box 427 Title: V.P., HCD Software
Sunnyvale, CA 94086 Date: -5 =K

(e) #59(A3) 2/23/82

PREFACE
PASCAL — WHAT IS IT?

Pascal was crestad by Niklaus Wirth to facilitate teaching 2
systematic approach to computer programming and problem solving. This
high—level structursd programming language is suited for professional
software developsrs, making it an excellent tool for developing and
ma2intzining programs.

PURPOSE OF THIS MANUAL

This reference a2nd operaticns manual defines the language features of
ATARI Pascal and can help you to understand how to use these features.
This manual assumes familiarity with the Jensen and Wirth’s "Pascal
User Manual and Report" and/or International Standards Organzation
(1S0) draft standard (DPS/7185). The standard Pascal features that
differ in ATARI Pascal from those in the standard and in Jensen and
Wirth’s "Report" ar2 described here. This manual also contains
information on how to operate the compiler and linkevi a description
of thes implsmzntation of ATARI Pascal dats typesi and a summary of
built-in features and examples of their usage

AUDIENCE

This manual is specifically designed for advanced programmers who

ate familiar with Pascal and with the features of the ATARI BOO Home
Computer System. This manual is not suited for learning Pascal or the
ATARI BOO Home Computer.

HOW TO USE THIS MANUAL

We recommend starting with the Introduction and Overview (Chapter 1)
and then proceed through Chapter 2, which describes how to operate the
system, recommendations for backup and a sample program to get you
started. The test of the manuval is technical and should be referred to
as needed.

PRODUCT CONSIDERATIONS

The ATARI Pascal Language System was designed for use by experienced
softwsre develcpers. The steps required toc compile an ATARI Pascal
prcgram are time consuming. Memory limitations, diskette capacity and
access time will affect product performance. As with other APX
programs, ATARI does not support this product after the sale.

REPORTING FROBLEMS

All documented problems submitted to The ATARI Program Exchange will
be studied and considered in future revisions of this product.

e L)

Q)

CHAPTER 1:

Lk A ek A
L4 I - S I

CHAPTER 2:
2.1

2 1: 1
2.1.2
2.1.3
2.2

2. 2.1
2.2.1.1
2.2.1.2
2.2.2
2.2.3
2.2.2.1
2.2.3.2
2.2.3.3
2.2.3.4
2.2.3. 5
2.2.3. 6
. 2.7
2.2. 4
2.2.5
2.2. 6
2.3
2.:3.3
2. 32
2321
2.3 2.2
2.3.2.3
2.3.2.4
2.2.2.95
2.2.2. 6
2. 3. 2.7
2.3.2.8
2.3.2.9
2.3.2.10
2.4

2.9
2.9 1
CHAPTER 3:

TABLE OF CONTENTS

ATARI PASCAL INTRODUCTION AND OVERVIEW

Manual Overviesw

Systzm DOverviauw

System Requiresments

Run—Time Requirements

ATARI Psscal Distrvibution Diskette Information

HOW TO OPERATE THE PASCAL LANGUAGE SYSTEM

Compile, Link and Run & Sample Program
Compile Sample Program

Link Sample Program

Run SEzmple Program

Compiler Operation

Invocation and Filenames

RPOS and GUIT Options

Compile

Compilation Dsta

Compiler Toggies

Entry Point Record Generation (E)
Include Files (I)

Strict Type and Portability Checking (T.W)
Run—Time Range Checking (R)

Run—-Time Exception Checking (X}
Listing Controls (L.,P)

Summary of Compiler Toggles

Built—in Routines and Include Files
Error Messages

Line Mumbers

Linker Operation

Invocation and Commands

Linker Option Switches

Run—-Time Library Search (/S)

Memory Map (/M)

Load Map (/L) and Extended Load Map (/E)
Program (/P) and Data (/D) Origin
Continuation Lines (/C)

Linker Input Command File (/F)

Linker Switch Summary

Relocatable File Requirements

Linker Error Messages

Attributes of Linkable Modules

Objyje2ct Program Execution

ATARI Program—Text Editor (MEDIT)
Running the ATARI Program—Text Editor

ATARI PASCAL LANGUAGE SYSTEM EXTENSIDNS

oy

AL OWMN

o

POWWOUERVWEUNOUOLLPVLEYVUEURLUNLLNURUEELLVUDLEUEEUVEWYE OV

VONCGDWN -

NN NNNNNNNNNNNNNNNNNG O GNP AR R AA AP AA R R RER ARSI R ADARAON NN

N ra

Pt b b A b hed A b
N p WM~ O

. 18

1%
20
21

22

o

P =

VANBRPBUUDWWE WL LN

HO0ONOCUORDN -

N o=

Modular Compilation

Data Allocation and Parameter Passing
Data Allocation

Paramster Passzing

Program Segmentation-—Chaining
Built—-in Procezdures and Parameters
MOVE, MOVERIGHT, MOVELEFT

EXIT

TSTRBIT, SETBIT., CLRBIT

SHR, EHL

HI, LO, SWAP

ADDR

SIZEOF

FILLCHAR

LENGTH

CONCAT

COPY

POS

DELETE

INSERT

ASSIGN

WNEB: GNB

BLOCKREAD, BLOCKWRITE

OPEN

CLOSE, CLOSEDEL

PURGE

IORESULT

MEMAVATIL, MAXAVAIL

Quick Reference Guide to Built-ins
Non—-Standard Dzta Access
Absolute Variables

INLINE

Syntax

Applications

Graphics and Sound Documentation
Screen Types

VYariables

Graphic Procedures and Functions
Initialize Procedure

Graphic Procedure

Textmode Procedure

Setcolor Procedure

Color Procedure

Plot Procedure

Locate Procedure

Position Procedure

Drawto Procedure

Fill Procedure

Sound Procedures and Functions
Sound Procedure

Soundoff Procedure

Controller Functions

Paddles

Paddles Function

2&
=)
[

~
(=

31
32
a4
3s
a7
38
39
40
41
42
43
44
45
46
47
ag
49
50
51
52
53
54
55
56
57
58
59
59
60
50
60
62
63
63
b4
b4
b4
64
64
65
&5
&5
65
&5
b6
66
b6
b6
b6
&7
67

Y

URTEY

WO
Y B B |

Bn =

0
I
b
o
=f
m
2

it SR R R
P et e e B R S S
AON -

ONNNNNC DWW~

CHAPTER

o 05
N =

0
1z
P
o
~f
m
A

CrCCOOOROREO NS WM
WM -

NNNNNNNNNNNNNNNNN
PUNNMNNS = -

SN

PWUN -

n

=t

Trigger Function
Joysticks
Stick Function

RUN-TIME ERROR HANDL ING

Rang=2 Chescking
Exception Checking
User Supplied Handlers
Fatal Errors

STRUCTURE/FORMAT OF A PASCAL PROGRAM

Data Types
CHAR
BOOLEAN
INTEGER
REAL

Byte

Word

String
Definition
Assignment
Comparisons
Reading and Writing Strings
Set

COMPATIBILITY

Incompatibilities with UCSD Fascal
Additional Fsatures Available With ATARI Pascal

LANGUAGE DEFINITION

Introduction

Summary of the ATARI Pascal Language
Notation, Terminology., and Vocabulary
Identifiers, HNumbers, and Strings
Constant Definitions

Data Type Definitions

Simple Types

Scalar Types

Standard Types

Subrange Types

Structured Types

Array Types

Record Types

Set Types

File Types

Pointer Types

Types and Assignment Compatibility

&7
&7
&7

48

&8
&8
69
&9

70
70

70
70

71

Fé |
7o |
71
71
71
72
74
75
79

76

77
78

80

80
81
83
84
85
86
86
8é
86
86
86
87
88
a8
B9
82
0

>

0:0:0:0:0:000:0:0:0:0000000DODONNNNNNN

NNN
b
B

T S Sy S PPN
WNNNNNNRRER==000000
ap M-

WM -

N) = = s e e

SESENESRSENE MR AN R RS

O N) = =t

[e i O
WM -

WN = AR AR

PWWLWWMNMMN~

P e

P~

Declaration and Denotation of Variables
Entirte WYariables
Componant VYarisbles
Indez=zd Variables

Field Designators

File Suffers

Referenced Variables

Expressions

Operators

The Dperator NOT

Multiplying Operators

Adding Operators

Relational Operators

Function Designators

Statements

Simple Statements

Assignmznt Statements

Procedure Statements

GOTO Statements

Structured Statements

Compound Statemzants

Conditional Statements
If Statements

Case Statements

Repetitive Statemeénts

While Statements

Fepeat Statements

FOR Statements

With Statements

Procedure Declarations
tandard Procedures

File Handling Procedures

Dynamic Allocation Procedures

Data Transfer Procedures

FORWARD

CONFORMANT ARRAYS

Function Declarations

Standard Functions

Arithmetic Functions

Predicates

Transfer Functions

Further Standsatrd Functions
INPUT AND OUTPUT

The Procedure READ

The Procsdure READLN
The Procedure WRITE

The Procedure WRITELM
Additional Procedures

Programs

o
v

g2
g2

=)
=

92
92
92
93
94
94
94
94
94
94
95
95
95
54
%6
96
96
%6
96
96
97
97
97
97
97
98

100

100

101

101

101

102

104

104

104

104

104

104

106

106

106

106

106

106

108

@

9

APPENDIX A:
APPENDIX E:
&FPFENDIX C:
APPENDIX D:
APPENDIX E:
APPEMDIX F:

APPENDIX G:

IHGEX

LANGUAGE SYNTAX DESCRIPTION
RESERVED WOREDS

ERROR MESSAGES

ATARI PASCAL FILE I/0
BIBLIDGRAPHY
PLAYER/MISSILE DEMO PROGRAM

HELPFUL HINTES

TAELE OF FIGURES

Figure 1-1

Figure D-1

Figure D-2

Figure D-3

Schematic Diagram of ATARI Fascal Operation
File Input and Output

Text Files

Writing to a printer and number Farmatting

109
117

118

143
152

153

130
138

140

i

0
L

APTER 1: ATARI FASCAL INTRODUCTION AND OVERVIEW

This manual describes the ATARI Fascal Language System being offered
through the ATARI Program Exchange as a software development tool for
professional developers. ATARI Pascal is a pseudo—code compiler which
supports the International Standards Organization (ISO) draft standard
(DFS/7185 as of 10/1/80): including variant records:, s=2ts: typed and
text files:, passing procedures and functions as paramesters: GOTO out
of a procedure, conformant arrays and program parameters. Additions
to the standard available in ATARI Pascal include: .

Additional predefined scalars: EYTE, WGRD, STRING.
Operators on integers % (and), !, / (or) i, 2 (NOT)
Else on CASE statement
Null Strings
Absolute Variables
External procedures
Additional built—in procedures and functions:
graphic, scund, and controller definitions
real and trancendental definiticons
move and fill procedures '
bit and byte manipulation
file manipulation procedures
heap management aids
string manipulatiaon
address and siz=of functions
Modular compilaftion facilities

In addition, run—time errvor handling provides for divide by zero
check, hesap overflow check, string overflow check, Tange check and
user—supplied error routines.

ATARI Pascal has besn designed for data processing applications
consisting of compilers, editors, linkers, business, and entertainment
packages. It is designed to operate with the ATARI Disk Operating
System 2. 0S and is compatible with the ATARI Program Text—-Editor [TMI.

This chapter presents an overview of this manual, the system and
compilation and run—time system requirements, and it describes the
files on the distribution diskettes.

Because of the availability of many text books on the Pascal
programming language, this document is not a tutorial but rather a
reference manual and a detailed description of the extensions and
additions that make ATARI Pascal unique. Refer to the bibliography for
additional reference materials.

B

1.1 Manual Overvisw

The fcllowing provides a brief overview of each chapter contained in
this manual.

Chapter 1:

Chapter 2:

Chapter 3:

Chapter 4:

Chapter 5:

Chapter é:

Chapter 7:

Appendix
Appendix

Appendix

Appendix
Appendix
Appendix

Appendix

A:

This chapter introduces and outlines the fesatures of ATARI
Pascal:, provides an overview of the system and identifies
the system rtequirements.

This chapter gets you started. It describes the
options of the compiler and linker and it presents
step-by—step instructions to compile, link, and Tun a
sample program. '

This chapter describes the extensions to ATARI Pascal. It
presents such fzatures as modular compilation, built-in
procedures, graphics and sound extesnsions.

This chapter briefly summarizes of the run—time error
handling rtoutines.

This chapter describes the sfiructure of a program generated
by the compiler. Data storage is also discussed in this
chapter.

This chapter briefly compares ATARI Pascal and UCSD Pascal.
This chapter defines the language features of ATARI Pascal.
A complete description of the language syntax

The teserved words list

A complete description of each compilation error
message :

ATARI Pascal File I/0
A bibliography of additional Tteading suggestions
Player/Missile Demo FPraogram

Helpful Hints

n

&

|

1.2 System Overview

The ATARI Pascal Language System contains the Pascal monitor,
compiler, linker, run-—-time subroutine library and interpreter. Figure
1-1 shows a diagram of the relationship among these products.
Reference to the ATARI Program—Text Editor (APX-20075) has been
included to show its relationship to ATARI Pascal.

e ———— + s
i TEXT EDITOR!
e R e e e +
H
v
Source
Program
file
]
v
e S + {———=Ctemporary work file
¢ COMPILER i <==— error message file
Fmm e ——— +
i :
v e >relocatable file run—time library

listing file !

g
N s

e e
H LINKER H
e +
i
Vv
executable program
1
Vv
e =
i INTERPRETER t
e +

Figure 1-1 Schematic Diagram of ATARI Pascal Operation

The ATARI Program—Text Editor may be used to create and modify the
Pascal scurce program. The compiler is used to translate the source
program infto relocatable machine code. The user then links this
machine code with the run—time subroutine library to produce an
executable object program.

1.3 System Requirements
The ATARI Pascal Language System requires the ATARI B00 with 48K of

RAM and fwo ATARI B10 Disk Drives. The ATARI 825 BO—Column Printer and
the ATARI 850 Interface Module are optional. ATARI Pascal also

requires fthe ATARI Program—Text Editor. When wvsing ATARI Pascal, no
cartridoe should be inserted in the cartridge slot.

1.4 Run—-Time Requirements

The ATARI Pascal Language System generates programs that use a variety
of tun—time support subroutines that are extracted from PASLIB, the
run—time library, and other relocatable modules. These run—-time
routines handle such neseds as “multiply" and "divide" and file input
and output interface to the Operating System.

1.5 ATARI Pascal Distribution Diskette Information

The ATARI Pascal Language System is distributed on diskettes
compatible with the ATARI 810 Disk Drive. The sysiem consists of two
diskettes containing obgyect: source and rtelocatable files. Listed
beiow are the names of each file and a brief description of their
contents.

Diskette 1 PASCAL /L INKER

File Contents

DOS. SYS ATARI Disk Operating System

DUP. SYS ATARI Disk Operating System

PASCAL Interpreter used to execute all Pascal object programs.

MON Pascal monitor loaded by the PASCAL file, providing the
menu to specify the desired operation: compile, link, edit
OoT Tun.

LINK Pascal linker used to take relocstable files (.ERL) and
run—time library files as input to create obgject files
(. COM).

LIMNK. OVL Pascal linker part two.

PASLIE. ERL Run—time subroutine library in relocatable form. Should
always be linked last.

FPLIB. ERL Run—time support routines for floating point arithmetic
and transcendental functions.

GRSND. ERL Run—time support routines for graphic, sound and
controller functions.

CALC. FAS This is the source file for the Pascal demo program.

o

[]
L
w
E ol
D
et
ot

e 2 Pascal Compiler

rile Contents

PHO
PH1
PH2
PH3
PH4

ERRORS. TXT

GEFROCS
FLTPROCS
MOVES
BITPROCS
HEAPSTUF
DSKPROCS
STEPROCS
IéOPRDCS

STRPROCS

Phase O of the Pascal compiler used for syntax scan and
creation of token file.

Phase 1 of the Pascal compiler used to create the
permanent symbol tables and build the user symbols.

Phase 2 of the Pascal compiler containing code generation
initialization.

Phas= 3 of the Pascal compiler used to creaée the
relocatable object code file.

Phase 4 of the Pascal compiler used to complete the object
code generation.

File containing ATASCII text for error messages.

This file is the include file containing graphic, sound
and controller definitions.

This file is %the include file containing teal number and
transcendental function declarations.

This file is the include file containing declarations for
character arrays.

This file is the include file containing declarations for
bit manipulation Toutines.

This file is the include file containing declarations for
heap procedures.

This file is the include file containing file manipulation
procedures.

This file is the include file containing standard Pascal
Toutines including the floating point routines.

This file is the include file containing ISO standard
Pascal routines excluding floating point roufines.

This file is the include file containing string processing
procedures and functions.

CHAPTER 2: HOW TO OPERATE THE PASCAL LANGUAGE SYSTEM

This chapter describes how to use the ATARI Pascal Language System
contained on the PASCAL/LIMNKER and Pascal Compiler diskettes. It

covers the following

information:

Section 1 provides step-by—-step instructions on how to compile,
link and Tun a sample program.

Section 2
Section 3
Section 4

Section 5

describes

describes

describes

describes

the compiler and its options.
the linker and its options.
how to run an object program.

the ATARI Program Text—-Ediftor.

2.1 Compile, Link and Run s Sampie Program

BeFoTe compiling and running the sample program described in this
section, make a backup copy of 311 diskettes included in this
package.

2.1.1 Compile Sample Program
Step Gne

Place the PASCAL/LINKER diskette into disk drive 1 and boot the Disk
Operating System 2.0S. Then use option C to copy the sample
calculation program "CALC.PAS" to a blank diskette on disk drive 2.
At this time use the L option to load the file named "PASCAL" from
disk drive 1. The Pascal menu will then appear.

ATARI Pascal
Versicn 1.0 : 1-Mar—-82
{c) 1982 by ATARI

Eidit Clompile
Liink Riun
D)as _ Qluit

Enter letfer and [RETURNI:
Step Two

Respond to the Pascal menu displayed on the screen with the command
"C" [RETURNI] to begin compilation.

When prompted for your source filename, type “D2:CALC. PAS" [RETURNI.

The monitor will then prompt you for a token and code file name.
Respond with [RETURNI for each.

A message will then be displayed "Change D1 to compiler disk." At this
time place the Pascal Compiler (diskette 2) into disk drive 1 make
sure the sample program "CALC.PAS" is in disk drive 2 and then press
CRETURNI.

The compiler will be loaded into memory and prompt you to choose a
listing device. Respond "P:" (printer):, "E:" (screen), or [RETURNI
(no listing).

The compiler will proceed to display the following compilation
statistics.

Loading Compiler
ATARI Pascal
Yersion 1.0 - 1-Mar—-82
(c) 1982 by ATARI

o

Syntsax Scan

Creating: D2:CALC. TOK
Listing file, P: or E:

<return® for none

File does not contain line numbers

< 02 s 22 3n Sei net
Including Text from File:
< TR o e i i e a5 e B
< FEY - ann s wie e BE S e
< BEY . s wow a0 05 @G S B
< B % G s 5 S s 2 e
< 128>

End of Phase 0O

Source lines processed:

Loading Phase I

Open as input:. D2: CALC. TOK
Open as output: D2:CALC. ERL

Available HMemory:

User Table Space:

Yersion 1.0, Phase 1
#HEEH

Remaining Memory 2100

Version 1.0, Phase 2

SUBREAL i8
ADDREAL 43

TF &4
CALC i19
MENU 215
CALCULAT

External: TRUNC
External: SGRT
External: SIN
External: ROUND
External: OuUTPUT
External: LN
External: INPUT
External: EXP
External: cos
External: ARCTAN
Lines 130
Errors: C
Code 1737
Data &4
REPLACE D1 THEM

Type <rzturn> to continue

Minutes

later........

D1: STOPROCS

..............

(syntax / token file generation)

(total symbol table space)
(after predefined symbols)

(one # for each toutine body)
(after user symbols)

(decimal offset from beginning)

(place diskette 1 PASCAL/LINKER)
(in disk drive 1, then press C[RETURNI

©

The ?gstem will prompt you to "REPLACE D1 THEN Type C[RETURNI to
ccnt%nue." At this time remove the FPascal Compiler from disk drive 1
and insert the PASCAL/LINKER in disk drive 1 then press L[RETURNI.

The compilation process will then be completed and the Pascal menu
will display.

NOTE: If the compiler fails to complete compilation: check to see if
the diskettes arz in the proper drives. If they are try <SYSTEM
RESET>. If both of these attempts fail, the only recourse is to turn
off your computer and turn it on again.
2.1.2 Link Sample Program
Step One
To create the relocatable object file, respond to the Pascal menu with
the command "L" ERETURN] to begin the linking process. At this time
the following will be displayed.

Loading Linker

when LIMNKER prompts with "#" enter

your .ERL file names z==parated by

cemmas ending with PASLIB/S

Then type L[RETURNI

LINKER V1. G
When prompted for your filename by an asterisk (#), you don’t need to
use an extension (.ERL) but you must use the device prefix "Da2:".

The Pascal library routines must then be linked along with your
program.

At this time respond to the filename prompt with the following:
02: CALC, FPLIB, PASLIB/S [RETURN]

NOTE: This program may be used as an example of using the Floating
Point Library (FPLIB) routines.

The linker will then display the following statistics and print
“"LINK COMPLETE TYPE C[RETURNI".

D2: CALC. ERL <ABATH>
D1: FPLIB. ERL C2FFAH>
D1: PASLIB. ERL <1FS0H>

Undefined Symbols

—— No Undefined Symbols ——

O

114G5 bytes written to D2: CALC. COM

Total Data : OOBEH bytes
Total Code : 2BCEH bytes
Eemzining : 1442H bytes

Link complete type CRETURNI

At this time press [RETURN] and the PASCAL menu will display.

10

2.1.3 Run Sample Program

To run the sample program rtespond to the Pascal menu with the command
“R" then [RETURN] to run the cbject program.

You will then be prompted for the filename and should respond with the
following:

p2: CALC. COM

The calculation program will begin execution displaying the message
"ENTER FIRST OPERAND?" Try this example for adding 5.5 to 79.256.
First respond with "5.5" then CRETURN]. The message "R1 = 5. SOOE+00"
should be displayed followed by "ENTER SECOND OPERAND?". Respond with
"99. 258" then LRETURNI. The message "R2 = 9. 72560E+1" should be
displayed followed by "ENTER OPERATOR: " followed by a list of
operators. Respond with the operator "+" then C[RETURNI. The result
“104. 756" should then be displayed. You should now press the [ESCAPE]
¥=2y to veturn to %the DOS mesnu.

You have now completsd the compilation, linking and running of your
first ATARI Pascal program!

11

w

2.2 Compiler Operation

2. 2.1 Invocation and Filenames

The ATARI Pascal Language System is executed under the ATARI Disk
Opersting System (DDOS 2. 0S). To execute the compiler, place the
PASCAL/LINKER (diskette 1) in disk drive 1 and LOAD the file called
PASCAL from the DOS menu. This file is the Pascal interpreter and will
automatically call the Pascal monitor with a filename of MON. The
monitor then displays the following menu:

ATARI Pascal
Version 1.0 : 1-Mar—-82
(c) 1982 by ATARI

Eidit Clompile
L)Yink Riun
Dlos Qluit

Enter letter and [RETURNI:

ct the first character of the desired function and enter this
acter Tollowsed by a [RETURNI.

-
0 ke
-4 m

2.2.1.1 DOS and GQUIT Options
The "DOS" and "GUIT" operation allows you to exit the Pascal menu and
raturn %o the ATARI Disk Operating System.

2.2.1.2 Compile

When you select "C" for "Compile," the monitor will request you

to enter three file names and then load the compiler. The first
request is for the source file name. You may then respond with the
filename prefix (D2:) to identify the device, the input filename, and
the =xtension .PAS. The Compile function then requests the name for
the token and code files. If there is sufficient room on the diskette
containing the source file you may tespond by simply depressing
[RETURN] in response to these requests. If there is not sufficient
room you may specify that these files be placed on separate diskettes
by specifying the FULL file name as desited. NOTE: ©HNane of the'
Compiler files may be cassette based.

A message will then be displayed "Change D1 to compiler disk." At this
time place the Pascal Compiler (diskette 2) in disk drive 1, place the
dizskztte containing your source program in disk drive 2 then press
CRETURNI. ATARI Pascal then crestes a relocatable file <name>. ERL
which must bBe linkted with the Pazcal linker %to the rtoutines in the
run—time library (PASLIB).

12

2.2.2 Compilation Dsta
The ATARI Pascal compiler will periodically display characters during
the first two phases of the compilation (Phase O and Phase 1).

A period (.) will be displayed on the console for every source code
line syntax scanned during Phase O. At the beginning of Phase 1, the
available memoTy space is displayed. This is the number of bytes (in
dacimal) of memory before generation of the symbol table.
Approximately 1K of the symbol table space is consumed by pre-defined
identifiers. When a procedure or function is found: a pound sign (#)
will be displaysd on the console. 4%t the completion of Phase 1, the
numbar of butes remaining in memory is displayed in decimal.

Phase 2 generates object code. When the body of each procedure is
encountered the nam= of the procedure is displayed so that you

can see where the compiler is in the compilation of the program. The
linker /M (Map) option will list the absolute addresses of the
procedures in each module. Upon completion the following lines
display:

Lines : lines of source code compiled (in decimal).
Errors: number of errors detected.

Code : bytes of code generated (in decimal).

Data bytes of data reserved (in decimal).

13

o

2.2.3 Compiler Toggles

A compiler toggle may be included in the source program %o signal the
tompiler that you wish to enable or disable certain options. The
format of this toggle is (#%_ _ _ _ #) where the blanks are filled in
with the toggle. The compiler does not accept blanks before the key
lztter or trailing or imbedded blanks in names but will skip over
leading blanksi e.g., (#%E +#) is the same as (#$E+#), but the (%% E
+#) will be ignored.

Examples:

(#FE+#)
(#*%P3)
(#%I D: USERFILE. LIB#)

2.2.3.1 Entry Point Record Generation (E)

$E+ and %E- control the gsneration of entry point Tecords in the
relocatable file. $E+ causes the global variables and all procedures
and functions to be available as entry points (i.e., available to be
referenced by EXTERMAL declarations in other modules). $E— supresses
the generation of these records thus causing the variables,
procedures, and functions to be logically private. The default state
is $E+ and the toggle may be turned on and off at will.

2.2.3.2 Include Files (I)

$I<filename> causes the compiler to include the named file in the
sequence of Pascal source statements. Filename specification includes
drive name and extension in standard format.

The format is as follows:

(#3IDn: XXXXXXX3#)
ar
(#$IDn: XXXXXXX. PAS#)

where n is the disk drive number
where XXXXXXX is the Include file name

Using these standard Include file procedures as examples, you may
create Include files to be used during the compilation process.

2.2.3.3 Strict Type and Portability Checking (T:W)

$T+, 27—, %W+, and $W- control the strict type checking '/ non—portable
warning facility. These features are tightly coupled (i.e. strict type
checking implies warning non—portable usage and vice versa). The
default state is $T— ($W-) in which type checking is relaxed and
warning messages are not genetrated. This may be turned on and off
throughout the source code as desired. A use of non—-standard loagic
and/or built—in routines will cause error 500 to be generated. This
error is not fatal but serves as a warning to the programmer. Code

14

| ©

generated with errvor 500 during the compilation will still execute
properly.

2.2.3.4 Run—-time Range Checking (R)

¥R+ and $R- control the compiler’s generation of run—-time code which
will perform range checking on array subscripting and storing into
subrange variables. The default state is $R— (off) and this toggle may
be turned on and off throughout the source code as desired.

2.2.3.5 Run—time Exception Checking (X)

$X+ and $X- control the compiler’s generation of run—-time code, which
will perform run—time 2rror checking and error handling for what is
termed egceptions- Exceptions are:

Zeto divide
String averflow/truncation
Heap overflouw .

The system philosophy under which ATARI Pascal operates states that
z2ro divide and string overflow are treated in a "reasonable” manner
when exception checking is disabled. Zero divide returns the maximum
value for the data type and string overflow results in fruncation of
the string rather than modification of adjacent memory areas. The
default state is $X- and may be changed throughout the source code as
desired. See chapter 4 for more discussion of run—time error handling

and options.
2.2.3.6 Listing Controls (L,P}

The $P and $L+. $L- toggles control the listing generated by the first
pass of the compiler. $P will cause a formfeed character (CHR(12)) to
be inserted into the .PRN file. %L+ and $L- are used to switch the
listing on and off throughout the source program and may be placed
wherever desired.

15

2. 2. 3.

Vi

Summary of Compiler Toggles

Listed below is a summary of available compiler toggles:

Compiler Toggles

£E

$1I

%R

T

SW

sX

sP

/-

‘name>

+/-

+/=

Ff—

+/-

/-

Defavult

Controls entry point generation SE+
Includes another source file into the
input stream (e.g. (#$I XXX.LIB#)
Controls range checking code ER-

ST—
Controls strict type checking and generation SW-
of warning messages
Controls exception checking code o
Enter a formfeed in the .PRN file
Controls the listing of source code s+

2.2.4 Built-in Routines and Include Files

The ATARI Pascal compiier contains only the logic necessary for
defining "magic" pre—-defined procedures, functions and variables.
These are such routines as READ, WRITE. ADDR, SIZEOF, etc. which
require in—line code generation by the compiler or require support for
4 wvariable numbsv of parameters.

All other voutines are defined using a special keyword “PREDEFINED"
and two special types ANYTYPE and ANYFILE. You must include in

the source program declarations for these routines. This is normally
done using the %I toggle to include STDPROCS and other similar files.
STDPROCS contains declarations for procedures and funcifions defined by
the ISO standard for Pascal. Additional files contain declarations for
procedures and functions which are extensions to the ISO standard such
as string routines, ASSIGN, IORESULT etc. You may edit STDPROCS

and these files to contain only the routinss necessary for a given
program.

This method of d=fining built-in routines is present because the ATARI
200 Home Computer has limited memory for all the declarations and user
zymbols used in compiling large programs.

17

2.2.5 Error Messsges

Compilation errors are numbered in fthe same sequence and meaning as
those in Jensen and Wirth’s "User Manual and Report". The error
messages, brief e2xplanations, and some causes of the error are found
in Appendix C.

Error 407, Symbol Table Dverflow: Occurs in Phase 1 when not enough
symbol table space vemains for the current suymbol. This may be
alleviated by bresking the program into modules.

2.2.6 Line Numbers

ATARI Pascal allows line numbers. When line numbers are desired, the
first line of the program source file must contain a numeric value. If
then assumes all lines contain line numbars and the line number must
start in column one. Line numbers may be of any length and it should
be noted that they are ignored by the compiler.

18

©

2.3 VLinker Operation
2.2.1 Invocation and Commands

LINK is used by =2xecuting the linker from the Monitor. Enter ‘L’ from
the Pascal menu followed by C[RETURN] and the linker will load. The
linker will then prompt the user for the name of the main program and
modules to be linked, separated by commas. The output is directed to
the same diskette as the main program unless you specify an output
file name followed by an =qual sign before the main program name.

Example:
CALC.,FPLIEB/S, PASLIB/S
C2: CALC=CALC, FPLIE, PASLIB/S (CALC.COM is written to D2:)

The above command. will link one of the demo programs with the run—-time
package. The items to be linked may be preceded by a disk drive device
prefix:

D2: CALC, D1:FPLIEB, D1: PASLIB/S
2.2.2 Linker Option Switches

The linker lets you to place a number of "switches" following the file
names in the list. Each switch is preceded by a slash (/) and is a
single letter. There is a parameter on the /P and /D switches.

2.3.2.1 Run—time Library Search (/S)

The examples above show the use of the /5 switch which, commands the
linker to s=arch the previously named rtelocatable file, PASLIB:, as a
library and extract only the necessary modules. The /S switch
extracts modules only from libraries and does not extract procedures
and functions from separately compiled modules. It is position
dependent in that it must follow the name of the run—-time library in
the linker command line as in the examples above. PASLIB is a
specially constructed, searchable library. Other .ERL files supplied
with the system, wunless explicitly specified, are not searchable.
User—created modules are not searchable. The order of modules within
a library is important.

Each searchable library must contain routines in the correct order and
be followed by /S for searching to occur. If /S is not specified the
entire - contents of the library is loaded.

2.3.2.2 Memory Map (/M)

A /M following the last file named in the parameter list generates a
map to the. screen.

2.3.2.3 Load Map (/L) and Extended Load HMap (/E)

19

A /L Toilowing the last module named causes the linker to display
module code and data locations as they are being linked. A /E
following the lssf module works as a modifier to /M and /L and causes
the linker to display all routines including those beginning with %
?: or @, which are reserved for run—time library routine names.

2.3.2.4 Program (/P}) and Data (/D) Origin

To support relocstion of object code and data areas, the linker
supports the /P and /D switches. The /P switch controls the location
of the object area (ROM) and the /D switch controls the location of
the data area (RAM). The syntax is: /P:nnnn or /D:nnnn where "nnnn" is
3 hexadecimal number in the range O...FFFF.

In addition, if you specify /D, the linker will not save any of the
data area in the .COM file. This is a good way for reducing the data
storage on diskette for programs, since only the code will be loaded
from diskette and not uninitialized data arsas. Notes that local file
operations are not guaranteed if this is us=d bascause the system
depends on the linker zeroing the data area to make this facility work
properly.

Also, if /D is used, more space is gained in the linking process
because the data is not intermixed with the code as it is being
linked. Using this switch is the first way to solve and "out of
memoTy" messages displayed by the linker.

sing the /P switch and /D switch does not cause the linker to leave
empty space at the beginning of the .COM file. The philosophy of the
linker is that if the /P switch is used: you v2ally want to move the
program to another system for execution. This means that if you
specify /P:B000, the first byte of the .COM file will be placed at
location BOCOH and not 32K of zeros before the first byte. In
addition, if you specify /D the linker will not save any of the data
area in the .COM file. This is a good way for reducing the data
storage on diskette for programs since only the code will be loaded
from a diskette and not uninitialized data areas.

The switches /P and /D are specified after the last routine to be
loaded and may be in any order.

2.3.2.9 Continuation Lines (/C)

If a line needs to be continued enter /C after the last character on
the line before pressing the [RETURNI] key.

2.23.2.6 Linker Input Command File (/F)

The linker lets you enter data into a file and have the linker process
the file names from the file. You specify a file with an extension of
.CMD and follow this file name with a /F (e.g., CFILES/F). The linker
will read input from this file and process the names Jjust as if they
were typed from the computer keyboard. If the file contains more than
one line, you must use /C after sach line. If you wish to return to

20

Y

?he comegter console for more input you may place /C on the last line
in the_r:le. Dzta on the command line following the /F is ignored. A
.CMD file may not contain & line containing /F.

2.3.2.7 Linker Switch Summary

/S Search preceeding name as a library extracting only the
required routines.

/L List modules as they are being linked.
/M List all entry points in tabular form.
lE List e2ntry points beginning with %, ? or @ in addition to

other entry points.

/P:nnnn Relocate object code to nnnnH.
/D:nnnn Relocate data area to nnnnH.
/F Take preceeding file name as a .CMD file containing file

names (s22 above for syntax).

LG ‘ Continuation Lines

2.32.2.8 Relocatable File Requirements

The distribution diskettes contain several .ERL files that must be
linked into the program. The particular files depend on what group of
routines the compiler must reference:, based on the contents of your
program. Below is a list of s2ach file and the routines it contains. If
you have any of these routines as an undefined reference, then link
the appropriate relocatable file to tesolve the undefinad reference.

FPLIB Floating point real numbers @ XOP, @RRL, @WRL (searchable)
PASLIE Comparisons, I/0, arithmetic support, etc.
GREND Graphics, sound, and controllers support

2.2.2.9 Linker Error Messages

The linker allows up to forty names on the command line (or command
file input) for files to be linked.

Errors encountered in the linking process are usually
self—-explanatory, such as "unable to open input file: xxxxxxxx" and
"Duplicate symbol—- xxxxxxx." Duplicate symbol means that a run—time
routine or variable and user Toutine or wvariable have the same name.
Undefined refersnce indicates the appropriate relocatable file has not
been included. Refer.- to the preceeding paragraph on Relocatable File
Requirements.

If you vun out of memory while linking, you may vemove the data from
the code space with the /D switch. You may need to run a test link
with the /D switch set very high to find out what the code size is;
then relink with the /D switch set just asbove the last code address
(with some Ttoom for code expansion). '

2.3.2.10 Attributes of Linkable Modules

The linker will bind together ATARI Pascal main programs, Atari Pascal
modules, and assembly language modules created by an appropriate
assembler.

2. 4 Object Program Execution
Once the source program has been successfully compiled and linked with
the appropriate run—time libraries you may execute or "Run" the

program.

When you s=2lect "R" for Run from the Pascal menu, you will then be
asked for the objyject filename %to Tun.

Example:
C2: CALC. COM

The object program will then be loaded into memory and exscuted.

23

2.9 ATARI Program—Text Editor (MEDIT)

The ATARI Program—Text Editor is a versatile tool that can be used %o
create and modify source programs written in ATARI Pascal. This
product may be ordered through the ATARI Program Exchange (APX-20075)
or may be purchased with the ATARI Macro Assembler (CXB8121)

2.5.1 Running the ATARI Program—-Text Editor

The Pascal menu provides an option of calling the ATARI Program-Text
Editor. The default value of this option is disk drive 2. Prior to
using this cption you must first make the following modifications.

1) Copy MEDIT from the distribution diskette to a blank diskette on
disk drive 2. :

2) Load D2:MEDIT from the DOS menu using the "/N" option to prevent it
from vunning (this will require the temporary presence of MEM. SAV
which can be dslsted afterwards).

3) Save it back from DOS as follows: D2:MEDIT/&, 2600, 2&01.

This append operation tells the "Pascal" program pointer to begin
execution at the MEDIT entry point. .

Note: The append operation may also be used to Tun any assembly
language file from Pascal. The file must be appended with the start
address and start address plus one. If the file consists of many
disconnected modules scattered throughout the program, make sure
the appended start address used is the vTun—time entry point.

24

CHAPTER 3: ATARI PASCAL LANGUAGE SYSTEM EXTENSIONS

This chapter describes the function and use of ATARI Pascal
extensions.

It covers the following areas:

31 Modular Compilation

3.2 Dasta Allocation and Parameter Passing
2.3 Program Segmentation - Chainiﬁg

3.4 Built—-in Procedures

3.9 NMon—Standard Data Access

3.6 Irnbeldded Assembly Code

3.7 Graphics and Sound Extensions

2.1 Modular Compilation

ATARI Pascal supports a flexible modular compilation system.

Programs may be developed in a mocnolithic fashion until they become
too large to mansge (or compile) and then split into modules at that
time. The ATARI Pascal modular compilation system allows full access
to procedures and variables in any module from any other module. A
compiler toggle is provided to allow you to "hide" (i.e. make private)
any group of variables or procedures. See section 2.2.3.1 for a
discussion of the $E toggle.

The structure of & module is similar to that of a program. It begins
with the reserved word MODULE, followed by an identifier and
semi—colon (e.g., MODULE TEST1;) and ends with the reserved word
MODEND, followed by a period (e.g., MODEND.). In between these two
lines you may declare label:, constant, type, variable:, procedure and
function sections just as in a program. Unlike a program: however,
there is no BEGIN..END section after the procedure and function
declarations, Jjust the word MODEND followed by a peried (.).

txample:

MODULE MOD1;

“<label, const,rtgpe. var declarations>
<{procedure / function declarations and bodies>
MODEND.

To access variables: procedures and functions in other modules (or in
the main program) a new reserved word, EXTERNAL. has been added and is
used for two purposes.

First, the word EXTERNAL may be placed after the colon and before the
type in a GLOBAL variable declaration denoting that this variable list
is not actuvally to be allocated in this module but rather in another
module. No storage is allocated for variables declared in this way.

Example:
I.J:Ke : EXTERMAL INTEGER:; (# in another module #)

R: EXTERNAL RECORD (# again in another module *)
i o (# some fields *)
ENDi

You MUST BE responsible for matching declaration identically, because
the compiler and linker do not have the ability to type check.

Second, the EXTERMNAL word is used to declare procedures and functions
which exist in other modules. These declarations must appear before
the Tirst normal procedure or function declaration in the

26

mocule/program. Exfernals may only be declared at the globsl
(outermost) lzvel of a program or module.

Just as in variable declarations, the ATARI Pascal language requires
you to make sure the number and type of parameters match exactly and
the returned tupe matches exactly for functions, because the compiler
and linker do not have the ability to type check across modules.
External roufines may NOT have procedures and functions as parameters.

Note that in ATARI Pascal external names are significant only to seven
characters and not =ight. When interfacing to assembly language, limit
the length of identifiers accessible by assembly language fo six
characters.

Listed below are a main program skeleton and a module skeleton. The
main program teferences variables and subprograms in the module, and
the module refersnces wvariables and subprograms in the main program.
The only differences betw=en a main program and a module are that at
the beginning of a main program there are 16 bytes of header code
and a main program body following the procedures and functions.
Main Program Example:

PROGRAM EXTERMAL _DEMO;
“£lab=1l, consisnt, type declarstions>
VAR

I.J : INTEGER; (# AVAILABLE IN OTHER MODULES #)

K.L : EXTERNAL INTEGER: (# LOCATED ELSEWHERE %)
EXTERNAL PROCEDURE SORT (VAR G:LIST; LEN: INTEGER);
EXTERNAL FUNCTION IOTEST: INTEGER:
PROCEDURE PROC1;
BEGIN

IF IOTEST = 1 THEN

(# CALL AN EXTERNAL FUNC NORMALLY)

END;

BEGIN

SORTC. ... %;

(% CALL AN EXTERNAL PROC NORMALLY)
END.

Module Example: (Note these are separate files)

MODULE MODULE_DEmMO;

27

e ————"
-

“label, const, type declarztions>

VAR
I,J : EXTERNAL INTEGER; (# USE THOSE FROM MAIN PROGRAM #)
KL : INTEGER; (# DEFINE THESE HERE #)
EXTERNAL PROCEDURE PROC1; (# USE THE ONE FROM THE MAIN PROG #)
PROCEDURE SORT(...)i (# DEFINE SORT HERE)
FUNCTION IOTEST: INTEGER; (# DEFINE IOTEST HERE %)

<maybe other procedures and Ffunctions here’

MODEND.

2.2 Data Allocation and Parameter Passing
2.2.1 Dats Allocstion

In addition to accessing variables by name, you must know how
variables are allocated in memory. Section 5.1 discusses the storage
allocation and format of =2ach built—in scalar data type. Variables
allocated in the GLOBAL data area are allocated essentially shown
here. However, variables in an identifier list before a type (e.g.., A
B, C€C : INTEGER) are allocated in reverse order (i.e., C first,
following by B, followed by A).

Example:
A : INTEGER;
B : CHAR;
I.J K : BYTE;
L : INTEGER:

STORAGE LAYOUT:

+0 A LSB
+1 A MSB
+2 B
+2 K
+4 J
+35 I
+4 L LSB
+7 L MSB

Structured data types: ARRAYs, RECORDs and SETs require addifional
explanation. ARRAYs are stored in ROW major order. For example
A: ARRAY [1..3,1..3]1 OF CHAR is stored as:

+0 AC1,11
+1 Al1, 23
+2 Al1, 31

+3 AL 14
4 ACZ; 23
+5 AL2, 31

+& AL3, 11
+7 AL3, 21
+8 AL3, 31

This is logically a one—dimensional array of vectors. In ATARI Pascal
all arrays are logically one—dimensional arrays of some other type.

RECORDs are stored in the same manner as global variables.

e

SETs are always stored as 22-byte items. Each element of the set is
stored as one bit. SETs are byte-oriented and the low order bit of
23ch byte is the first bit in that byte of the set. Shown below is the
sat ‘A’ L7

BEyte number

00 01 02 03 04 05 06 07 08 09 OA OB OC OD OE OF 10 ... 1F

00 00 00 00 00 00 00 00 FE FF FF 07 00 00 00 00 00 ... 00

The first bit is bit &5 ($41) and is found in byte 8, bit 1. The last

bit is bit 20 and is found in byte 11, bit 2. In this dicussion bit O
is the least significant bit in the byte.

30

(?>\

3.2.2 Pe=vameter Passing

When callling an aszsembly language routine from ATARI Pascal or calling
an ATARI .Pascal routine from assembly language, parameters are passed
on the stvack. The parameter passing stack in ATARI Pascal is different
than the 6502 hardware stack. This software stack is at locations $400
through €¥6FF in memory. The hardware X register must be saved and
vestored duTing execution of assembly language routines and is used as
the pointser to the software stack. You may load the top of the stack
using "LL2A 5600, X", etc. Upon entry to the routine, the top of the
hardware stsck contains the return address. On the software stack,

in veversze order the declaration, (A;B:INTEGER:;C:CHAR), would result
in C on tsop of B on top of A. Each parameter requires at least one
15-bit WOSRD of stack space. A character or boolean is passed as a
16-bit woetd with a high order byte of 00. VAR parameters are passed by
address. The address represents the byte of the variable with the
lowest mezmoTy address.

Non—scalaT parameters (excluding SETs) are always passed by address.
If the p=tameter is a value parameter then code is generated by the
compiler in a Pascal routine to move the data. SET parameters are
passed bw value on the stack and then the interpreter is used to store
them.

The example below shows a typical pasrameter list at entry to a
procedure:

PROCEDURE DEMO (I.J : INTEGER; VAR Q:STRING: C.D:CHAR);

AT EMTRY STACK (2600, X):

L

+0 D
+1 BYTE OF 0C
+2 c
+3 EYTE OF 00

+4 ADDRESS OF ACTUAL STRING
+5 ADDRESS OF ACTUAL STRING

+4 J (LSB)
+7 J (MSB)
+8 I (LSB)
+Q I (MSB)

The assembly language program must remove all parameters from the
evaluation stack before returning to the calling rToutine.

SETs are stored on the stack with the least significant byte on

bottom (high address).

Function values are returned on the stack. They are placed "logically"
underneath the return address before the return is executed. They
therefore remain on the top of .the stack sfter the calling program is
re—entered following the return. Assembly language functions may only
return the scalar types INTEGER, REAL, BOOLEAN and CHAR.

31

3.3 FProgram Segmentation—— Chaining

There are times when programs exceed the memory available and also
many times when szgmentation of programs for compilation and
maintenance purposes is desired. ATARI Pascal providses a “chkaining"”
mechanism in which one program may transfer control to another

program.

You must declare an untypsed file (FILE;) and use the ASSIGN and RESET

procedures to initialize the file.

You may then execute a call to the

CHAIN procedure, passing the name of the file variable as a single
parameter. The run—time library routine will then perform the
appropriate functions to load in the file you opened using the RESET
statement. Program size does not matter. A small program may chain to

a large one and a large program may

chain to a small one. If you

desire to communicate between the chained pregram you may choose to
communicate in two wsys: shared global variables and ABSOLUTE

variables.

If you use the shared globsl variable method, you must guarantee that
at least the first section of globsl variables is the same in the two
programs wishing to communicate. The remainder of the global variables
need not be the same and the declaration of external variables in the

glcbal section will not affect this
matching declarations:, you must use
the linker (see section 2.3.2.4) to
location in all programs wishing to

To vuse the ABSOLUTE wvariable method
record vused as a communication area

mapping. In addition fto having
the /D option switch available in
place the variables at the same
communicate.

you would typically define a
and then define this record at an

absolute location in each module. This method does not require using
the /D switch in the linker but does require knowledge of the memory

used by the program and system.

Listed below are two example programs that communicate with each other

using the ABSOLUTE wvariable method.

The first program will CHAIN to

the second program:. which will print the results of the first

program’s execution:

(8]
n

Example:
FROGRAM PROG1;

TYPE
COMMAREA = RECORD
I.J,K : INTEGER
END;

VAR
GLOBALS : ABSOLUTE [=8000]1 COMMAREA;
CHAINFIL: FILE;

BEGIN (* MAIN PROGRAM #1 =)
WITH GLOBALS DO
BEGIN
I
7
K :
END;

3i

3i
I % J

i uu

ASSIGH(CHAINFIL, ‘D1: PRDG2. COM*);
RESET(CHAINFIL)Y;
IF IORESULT <> G THEN
EEGIN
WRITELN(‘UNABLE TO OPEN D1:PROGZ.COM’);
EXIT
END;

CHAIN(CHAINFIL?
END. {(# END PROG1 #)

(# PROGRAM #2 IN CHAIN DEMONSTRATION)}
PROGRAM PROGZ2;

TYPE
COMMAREA = RECORD
I.J,K : INTEGER
END;

VAR
GLOBALS : ABSOLUTE [$80001 COMMAREA;

BEGIN (# PROGRAM #2)
WITH GLOBALS DO
WRITELN(‘RESULT OF “, I, TIMES ‘. J, * IS =, K)

END. (# RETURNS TO OPERATING SYSTEM WHEN COMPLETE 3)

33

2.4 Built—in Procedures and Parameters

This section describes ATARI Pascal’s built—in procedures and
functions. Each routine is described syntactically, followed by a
description of the parameters and an example program using the
procedure of thes function. Section 2.4.2.5% is a quick reference
cf a1l built—in procedures and functions.

34

3.4.1 MOVE, HMOYERIGHT, MOVELEFT

PROCEDURE MOVE (SOURCE, DESTINATION, NUM_BYTES)
PROCEDURE MOVELEFT (SOURCE, DESTINATION, NUM_BYTES)
PROCEDURE MOVERIGHT (SOURCE, DESTINATION, NUM_BYTES)

These procedures move the number of bytes contained in NUM_BYTES from
the location namsd in SOURCE to the location named in DESTINATION.
MOVE is a synonym for MOVELEFT. MOVELEFT moves from the left end of
the source to the left end of the destination. MOVERIGHT moves from
the right end of the source to the right end of the destination (the
psrameters passsd to MOVERIGHT specify the left hand end of the
soutrce and destination).

Use MOVELEFT and MOVERIGHT to transfer a byte from one data

structure to another or to move data around within 3 single data
structure. The move is done on a byte level so the data structure
type is ignored. MOVERIGHT is useful for transferring bytes from the
low end of an array to the high end. Without this procedure, a FOR
loop would be Teguired to pick up each character and put it down at a
higher address. MOVERIGHT is also much, much faster. MOVERIGHT is
ig=zal to use in an insert character routine whose purpose is to make
room for characters in a buffer.

MOVELEFT is useful for transferring bytes from one array to another,
deleting characters from a buffer, or moving the values in one data
structure to another.

The source and destination may be any type of variable and both need
not be of the same type. These may also be pointers to variables or
integers used as pointers. They may not be named or literal constants.
The number of bytes is an integer expression greater than zero.

Watch out for these problems:

1. Since no checking is performed as to whether the number of bytes is
greater than the size of the destination, spilling over into the
data storage adjacent to the destination will occur if the
destination is not large enough to hold the number of bytes.

2. Moving zero bytes moves nothing.

3. No type checking is done.

Exzmple:

PROCEDURE MOYE_DEMO;
CONST
STRIMBSZ = B20;
VAR
BUFFER : STRINGLSTRINGSZI;
LINE : STRING;
PROCEDURE INSRT(YAR DEST : STRING; INDEX : INTEGER; VAR SOURCE :
STRING};
BEGIN
IF LENGTH(SOURCE} <= STRINGSZ - LENGTH(DEST) THEN
BEGIN .
MOVERIGHT(DESTL INDEX 1, DESTL INDEX+LENGTH(SOURCE) 1.
LENGTH(DEST)—INDEX+1};
MOVELEFT(SDOURCEC11, DESTCLIMDEX]1, LENGTH(SOURCE});
DESTLO] :=CHR(ORD(DESTLOl1) + LENGTH(SOURCE))

END;
END;
BEGIN
WRITELN(“MOVE_DEMO. o i
BUFFER :=. ‘Judy J. Smith/ 235 Drive/ Lovely, Ca. 95&447%;
WRITELN(BUFFER?};:
LINE := ‘Roland “;
INSRT(BUFFER, POS(‘’S‘, BUFFER)+2,LINE);
WRITELN(BUFFER);
END;

THE OUTPUT FROM THIS PROCEDURE:
MOVE_BPEMO. ;... ..

Judy J. Smith/ 355 Drive/ Lovely, Ca. 956éé
Judy J. Smith/ 355 Roland Dive/ Lovely, Ca. 95666

26

3.4.2 EXIT
PROCEDURE EXIT;

EXIT is the equivalent of the RETURN statement in FORTRAN or BASIC.
It will leave the current procedure/function or main program. EXIT
will also load the registers and re—enable interrupts before exiting
if EXIT is used in an INTERRUPT procedure. It is usually executed as
a statement following a test.

Ezample:

PROCEDURE EXITTEST:
(#EXIT THE CURRENT FUNCTION OR MAIN PROGRAM. #)

PROCEDURE EXITPROC(BOOL : BOOLEAN);

BEGIN
IF BOOL THEHN
BEGIN
WRITELH(EXITING EXITPROC’);
EXIT:
END;
WRITELN(‘STILL IN EXITPROC, ABOUT TO LEAVE NORMALLY ’);
END;

BEGIN
WRITELN(’EXITTEST.......)i
EXITPROC(TRUE};
WRITELN(‘IN EXITTEST AFTER 1ST CALL TO EXITPROC ‘)i
EXITPROC(FALSE);
WRITELN(‘IN EXITTEST AFTER 2ND CALL TO EXITPROC‘};
EXIT;
WRITELNC‘THIS LINE WILL NEVER EE PRINTED‘};
END;

Output:

EXITTEST. o« 5.: 5=

EXITING EXITPROC

IN EXITTEST AFTER 1ST CALL TO EXITPROC

STILL IN EXITPRODC, ABOUT TO LEAVE NORMALLY ’
IN EXITTEST AFTER 2ND CALL TO EXITPROC

37

O

2.4.3 TSTEIT, SETBIT: CLRBIT

FUNCTION TSTBIT(BASIC_VAR, BIT_NUM) : EODLEAN;
PROCEDURE SETBIT(YAR BASIC_VAR, BIT_NUM);
PROCEDURE CLRBIT(VAR BASIC_VAR, BIT_NUM);

TSTBIT returns TRUE if the designated bit in the basic_var is on, and
refurns FALSE if the bit is off. SETBIT sets the designated bit in the
parameter. CLREIT clears the designated bit in the parameter.

BASIC_VAR is any B or 1& bit variable such as integer, char, byte,
word, or boolean. BIT_NUM is 0..15 with bit O on the rtight. Attempting
to set bit 10 of an B bit variable does not cause an error but has no
effect on the end result.

These procedures are useful for generating wait loops or altering
incoming data by flipping a bit where needed. Another application is
in manipulating a bit mapped screen.

Example:

PROCEDURE TST_SET_CLR_BITS;

VAR
I : INTEGER:;
BEGIN
WRITELM('TST_SET_CLR_BITS.......) ;
I := 0
SETBIT(I,S);
IF I = 32 THEN
IF TSTRBIT(I,S) THEN
WRITELN('I=",13%;
CLRBIT(I,S);
IF I = 0 THEN
IF NOT (TSTBIT(I.S)) THEN
WRITELN(‘I=",1)i
END;

Output:

TSY SET_CLR_BITS.%.
I1=322

I=0

38

3. 4.4 SHR, SHL

FUNCTION SHR(BASICT_VAR, NUM) : INTEGER:;
FUNCTION SHL(BASIC_WAR, NUM) : INTEGER;

EHR shifts the PASIC_VAR by NUM bits to the right, inserting O bits.
SHL shifts the EASIC_VAR by NUM bits to the left, inserting O bits.
BASIC_VAR is.an Z or 146 bit wvariable. NUM is an integer expression.

The uses of SHR =nd SHL are generally obvious. For example, suppose a
10 bit value is Zo be obtsinad Trom two separate input ports. You can
use SHL %o read Them in: ;

VAR
PORT1 : ABSOLUTE ([$DO001 BYTE:
PORT2 : ABSOLUTE [2D232]1 BYTE:;

X := EHL(PORT1 2 $1F, 3) ! (PORT2 % $1F);

The above examples reads from portl, masks out the three high bits
returned from the INP array:, and shifts the result left. Next, this
result is logically OR‘d with the input from port2, which has also
been masked.

The following procedure demonstrates the expected rtesult of executing
these two functions.

Example:

PROCEDURE SHIFT_DEMO;
VAR I : INTEGER;

BEGIN
WRITELN('SHIFT_DEMO)i
I := 4; :

WRITENLN(“I=", 1)

WRITELN(“SHR(I, 2)=",8SHR(I.2)};

WRITELN(’SHL(I,&)=",SHL(I,4));
END;

Output:
SHIFT_DEMO. z .55«
1=4

SHR(I,2)=1
SHL (I, 4)=64

39

- ———

3.49.5 HI, LD, SWAP

FUNCTION HI(BASIC_VAR) : INTEGER;
FUNCTION LO(BASIC_VAR) : INTEGER;
FUNCTION SWAP(BASIC_VAR) : INTEGER;

HI returns the upper 8 bits of BASIC_VAR (an 8 or 1& bit variable) in
the lower B bits of the result. LO returns the lower 8 bits with the
upper B bits forced to zero. SWAP teturns the upper B bits of
BASIC_VAR in the lower 8 bits of the result and the lower 8 bits of
BASIC_VAR in the upper B bits of the result. Passing an 8 bit variable
to HI causes the result to be O and passing 8 bits to LO does nothing.

These functions snhance ATARI Pascal’s abilities to read and write to
1/0 ports. If a data item has 16 bits of information to send to a port
that can handle 8 bits at a time, use LO and HI to send the low byte
followed by the high byte. Similarly, reading 16 bits of data from a
port that sends 8 bits at a time may be performed by SWAPping the
first B8 bits into the high byte:

VAR
PORT& : ABSOLUTE [=D2341 BYTE:
PORTS = LO(B)Y:
PORT& = HI{E};

E := SWAP(PORT&) ! PORTG

The following example shows what the expected results of these
functions should be:

Example:
PROCEDURE HI_LO_SWAP; =
VAR
HL : INTEGER;
BEGIN
WRITELNL'HI_ 1O SHAP. _....:)i
"HL := $104;

WRITELN(“HL=",HL);

IF HI(HL) = 1 THEN
WRITELN('HI(HL)Y=",HI(HL));

IF LO(HL) = 4 THEN
WRITELNC/LO(HL)Y=",LO(HL));

IF SWAP(HL) = %C401 THEN
WRITELN(‘SWAP (HL)=", SWAP (HL));

END;

Dutput:
HI_LO_SWAP.......
HL=2&0

HI(HL)=1
LOCHL)=4

SWAP (HL)=10235

40

3.4.58 ADLR
FUNCTION ADDR(VARIABLE REFERENCE) : INTEGER;

ADDR returns the address aof the wvariable Teferenced. Variahble
reference includes procedure/function names, subscripted variables and

"tecord fields., It does not include named constants, user defined

types:, or any item that does not occupy code or data space.

This function is vused to return the address of anything: compile time
tables generated by INLINE, the address of a data structure to be
used in a move statzment, and so on.

Example:

PROCEDURE ADDR_DEMO(PARAM : INTEGER);
VAR
REC : RECORD
J : INTEGER;
BOOL : BOOLEAN;

END;
ADDRESS : INTEGER:;
R : REAL;
S1 : ARRAY[C1.. 101 OF CHAR;
BEGIN
WRITELN('ADDR_DEMO.)i

WRITELN(’ADDR(ACDR_DEMO)=', ADDR(ADDR_DEMDO));
WRITELN(‘ADDR(PARAM)="', ADDR(FPARAM) }i
WRITELN(‘ADDR(REC})Y="‘, ADDR(REC));
WRITELN("ADDR(REC. J) ‘, ADDR(REC. J))i
WRITELN('ADDR(ADDRESS)=‘, ADCLR(ADDRESS))i
WRITELN(‘ADDR(R})=", ADCR{(R))i
WRITELN(“ADDR(S1)=", ADR(S1));

ENDi

Output is system dependent.

41

3.4.7 SIZEOF

FUNCTION SIZEOF(VARIABLE OR TYPE NAME)

SIZEOF veturns the size of the-parameter

statements for the number of bytes
not keep changing constants as the
any variable: character, array.

Example:

PROCEDURE SIZE_DENMO;
VAR
B : ARRAY[1..101 OF CHAR;
A : ARRAY[1..15]1 OF CHAR;
BEGIN

WRITELN(‘SIZE_DEMQO....... Y
A 1= THEHERRHAXRAANER
B := ‘0122456789 /;

WRITELN('SIZEQOF(A)="', SIZEOF(A),
MOVE(B, A, SIZEQF (B})i
WRITELNC A= , A}

ENDi

Output:

SIZEDF{A)=15 SIZEQF(B)=10
A= Q123450478 F 4434

record,

INTEGER;
in bytes. It is vused in move
to be moved. With SIZEOF you need

program evolves. FParameter may be
etc, or any user—defined type.

SIZEOF(B)="',SIZEQOF(B));

42

3.4.8 FILLCHAR
PROCEDURE FILLCHAR(DESTINATION, LEMGTH, CHARACTER)

This procedure fills the DESTINATION (a packed array of characters)
with the number of CHARACTERs specified by LENGTH. DESTINATIODN is
packed array of characters. It may be subscripted. LEMNGTH is an
integer. expression. If LENGTH is greater than the length of
DESTINATION, adjacent code or data is overwritten. Also, if it is
negative, adjacent memory can be overwritten. CHARACTER is a literal
or variable of ftype char.

The purpose of FILLCHAR is to provide a fast method of filling in
large data structures with the same data. For instance, blanking out
buffers is done with FILLCHAR.

Example:
PROCEDURE FILL_DEMO;
VAR
BUFFER : PACKED ARRAYC1..256] OF CHAR;
BEGIN :
FILLCHAR(BUFFER, 23&, * ‘)i {# BLANK THE BUFFERS =}
ENDi

43

2.4.9 LENGTH
FUNCTIONW LENGTH(STRING) : INTEGER;

This function returns the integer value of the length of the string.

Example:

PROCEDURE LENGTH_GEMO;

VAR
S1 : STRING [401;
BEGIN
Sl := ‘This s&ring is 32 characters long”’;

WRITELN(‘LENGTH OF “,E1, '=’, LENGTH(S1})i
WRITELN(‘LENGTH OF EMPTY STRING =7, LENGTH(’“));
END;

Dutput:

LENGTH OF This string is 33 characters long=33
LEMGTH OF EMPTY STRING = ©

44

o —
~ .

\

3.4.10 COMNCAT

FURCTION CONCAT (SOURCE1l, SDURCEZ2,

» SOURCE) : STRING;

This function returns a string in which all sources in the parameter

list are concatenated.
literals:, or characters.
with no problem. If the
the string is truncated
next section concerning

A SOURCE of
total length

restrictions

Example:

PROCEDURE CONCAT_DEMO;

VAR
51,82 : STRING;

BEGIN :
S1 := ‘left link:. tight link~’;
€2 := ‘root Toot voot’;
WRITELN(S1, '/, 52});
81 := CONGAT(SI: * “:S2: 1111 LeYy;
WRITELN(S1);

ENDi

Output:

left link, vight link/root Toot root

left link, tTight link roo0t rtoot root

The sources may be string variables.

at 256 bytes.

string

zero lsngth can be concatenated
of all SOURCES exceeds 56 bytes
See the note under COPY in the

when using both CONCAT and COPY.

111 b8

45

3.4.11 COPY
FUNCTION COPY (SOURCE, LOCATION, NUM_BYTE) : STRING:

Copy returns a sfring containing the number of characters specified in
NUM_BYTES from SDURCE beginning at the index specified in LOCATION.
SOURCE must be a string. LOCATION and NMUM_BYTES are integer
expressions. I+ LOCATION is out of bounds or is negative, no error
occurs. If NUM_BYTES is negative or NUM_BYTES plus LOCATION exceeds
the length of the SOURCE, truncation occurs.

Example:
PROCEDURE COPY_DEMO;
BEGIN
LONG_STR := ‘Hi from Cardiff-by—the sea’;
WRITELN (COPY(LONG_STR: 9, LENGTH(LONG_STR)-9+1)};
END; -
Outputi

Cardiff-by—the—s=a

Note:
COPY and CONCAT are "pseudo" string returning functions and have only (:
one statically allocated buffer for the return value. Therefore, if

these functions are used more than once within the same expression,
the value of each occurrtence of these functions becomes the value of
the last occurrence. For instance, "IF (CONCAT(A, STRING1) =
(CONCAT(A, STRINGZ2))" will always be true because the concatenation of
A and STRING1 is replaced by that of A and STRINGZ2. Also, "WRITELN
(COPY(STRING1. 1,4}, COPY(STRING1,5,4))" writes the second set of four
characters in STRING1 twice.

o

3.4.12 POE
FUNCTION POS(PATTERN, SOURCE) ': INTEGER;

This function returns the integer value of the position of the first
occurrence of PATTERN in SOURCE. If the pattern is not found, a zero
is returned. SOURCE is a string and PATTERN is a string, a character,
or a literal.

Ezzmple:
PROCEDURE POS_DEMO;
VAR
STR, PATTERN : STRING;
CH : CHAR;
BEGIN
STR := ‘ABCDEFGHIJKLMNO’;
PATTERN := ‘FGHIJ’;
CH := ‘B’;

WRITELN(‘pos of ‘,PATTERM, * in ‘,STR, * is ‘, POS(PATTERN.STR)});
WRITELN(’pos of “,CH,* in ‘,STR. ‘is * .POS(CH,ETR)}i
WRITELN(’pos pf “7z‘7 in /,STR:,’ is 7, POS{’z’,5TR});

- END;

Output:

pos of FGHIJ in ABCDEFGHIJKLMNO is &
pos of B in ABCDEFGHIJKLMNO is 2

pos of ‘z’ in ABCDEFGHIJKLMND is O

47

3.4.13 DELETE
PROCEDURE DELETE (TARGET, INDEX, SIZE)i

This procedure is used to remove SIZE characters from TARGET. .
beginning at the byte named in INDEX. TARGET is a string. INDEX and
SIZE are integer expressions. If SIZE is zero, no action is taken. If
it is negative, serious errors result. If the INDEX plus the SIZE is
greater than the TARGET or if the TARGET is empty. the data and
surrounding memory can be destroyed.

Example:
PROCEDURE DELETE_DEMO;
VAR
LONG_STR : STRING;
BEGIN
LONG_STR :=' get rid of the lezading blanks’;

WRITELN(LONG_STR);
DELETE(LONG_STR, 1, POS(‘g “, LONG_STR)—=1)i
WRITELN(LONG_STR};

EMD;

Outpufz

get Tid of the leading blanks
get vid of the leading blanks

48

R L L

<

3.4.14 INSERT

PROCEDURE INSERT(SGURCE,

This procedure is used to
the location specified in

DESTINATION is truncated.
Erxample:

PRGCEDURE INSERT_DEMO;
VAR
LONG_STR : STRING;
S1 : 'STRING [101];

BEGIN
LONG STR := ‘Remember
S1 := ‘Mother ‘s Day., ’;

INSERT(S1, LONG_ETR, 10);
WRITELN(LONG_STR}:

INDEX.
character or string, literal or
expression. SOURCE can bzs empty.
DESTINATION is empty, destruction of data occurs.
into DESTINATION causes DESTINATION to be longer than allowed

DESTINATIGN,

insert the SOURCE into the DESTINATION at
DESTINATION is a string.
INGEX is an infeger .
If INDEX is out of bounds or

¥+

INSERT(‘to celesbrate’, LONG_STR, 10);

WRITELN(LONG_STR);
END:;

Cutput:

Remember Maother ‘s Day, May 9

Remember to celebrate Mother’s Day. May

variable.

S0OURCE is a

If inserting SOURCE

49

2. 4.15 AESIGN
PROCEDURE ASSIGN (FILE, NAME);

Use this procedure to assign an external filename to a file variable
prior to a RESET or REWRITE. FILE is a filename, NAME is a literal or
a variable string containing the name of the file to be created. FILE
must be of type TEXT to use the special device names below.

Note that standard Pascal defines a "local" file. ATARI Pascal
implements this facility using temporary filenames in the form
PASTMPxx where "xx" is sequentially assigned, starting at zero at the
beginning of each program. If an external file REWRITE is not
preceeded by an ASSIGN, then a temporary filename will also be
assigned to this file before creation.

NAME is normally a diskette filename in the standard format:
dn: filename. ext but can also be a special device name.

DCevice Names

Console screen editor device
Console screen output device
Console keyboard input device
Printer output device

Innn

NDTE: Cassette (C:) files are not supported by ATARI Pascal.

Examples of ASEIGN usage:

ASSIGN(PRINTFILE, “‘P: *);
ASSIGN(F, ‘D2: MT280. OVL *);
ASSIGN(KEYBOARD, “‘K:)i
ASSIGN(CRT. “S: *);

Note: After ASSIGN(CRT. ‘S:’) you must use REWRITE, as the assign
¢oes not open the file.

S0

3.4.1& WHE, GNE

FUNCTION GNE(FILEVAR: FILE OF PAODC): CHAR;
FUNCTION WNE(FILEVAR: FILE OF CHAR; CH:CHAR) : EOOLEAN;

These functions allow you to have BYTE-level access to a file in

a high speed manner. PAOC is any type that is fundamentally a Packed
ArTay OF Char. The size of the packed array is optimally in fthe range
128. . 4095.

GNB will let you read a file a byte at a time. It returns a valuve of
type CHAR. The EOF function will be wvalid when the physical
end—of-file is resached but not based upon any data in the file.

WNE will le% you write a file a byte at a time. It requires a file and
a character to write. It returns a boolean value that is frue if there
was an errorT while writing that byte to the file. No interpretation is
done on the bytes that are written.

GNB and WNB are used (as opposed to F~, GET/PUT combinations) because
they are significantly faster.

o1

| ©

2.4.17 BLOCKREAD, BLOCKWRITE

BLOCKREAD (F:FILEVAR; BUF:ANY; VAR IOR: INTEGER:; SZ,RB: INTEGER)i
BLOCKWRITE(F: FILEVAR; BUF:ANY; VAR IOR: INTEGER; SZ,RB: INTEGER)i

These procedures are used for_direct diskette access. FILEVAR is an
untyped file (FILE;). BUF is any variable large enough %o hold the
data. IOR is an integer that receives the returned value from the DOS.
SZ is the number of bytes to transfer and RB should always be O.

The dsta is transfertved either to or from the user’s BUF wvariable for
the specified number of bytes.

O

3. 4.18 OPEN

PROCEDURE OFEM (FILE, TITLE, RESULT):

The DF—:’EN proce=tuTe increases the flexibility of ATARI Pascal. FILE is
any F11? type :ariable. TITLE is a string containing the filename
RESULT is a UA%T iNTEGER parameter and upon return from OPEN has the
same value as ZDORESULT. The maximum number of files that may be opened
a% any-one tirm= 1s three not including Console (E:, 8:, or K:) files.

The OPEN proc=cure is the same as executing an ASEIGH(FI
S LE ,
RESET(FILE) amt RESULT := IORESULT Sequencg_ » TITLE)

Examples:

OPEN (INFILE, ~“D:FNAME.DAT’, RESULT);

53

st A

gt &

3.8.19 CLUSE: CLOSEBDEL

PROCEDURE CLOSE (FILE, RESULT);
PROCEDURE CLOSEDEL (FILE, RESULT);

The CLOSE and CLOSEDEL procedures are uvsed for closing and closing—
with—delete respectively. The CLOSE procedure must be called to
guarantee that data written to 3 file using any method is properly
purged from the File buffer to the diskette. The CLOSEDEL is normally
vzed on femporary files to deiete them atter use. FILE and RESULT are
the same as used in OPEN (see section 3. 4. 18},

Files are implicitly closed when an open file is RESET.

The CLOSE procedure is used in the file section of the appendix.

o4

- o ——.

3

4. 20 PURGE

PROCEDURE PURGE (FILE J;

The PURGE procedure is used to delete a file whose name is stored in a
string. You must first ASSIGN the name to the file and then execute
FURGE.

Example:

ASSIGN(F, ‘D2: EADFILE. BAD ");
PURGE(F)i (# DELETE DZ2:BADFILE. BAD %)

25

2. 4.21 IORESULT

FUNCTION IORESULT : INTEGER

After each I/0 operation the value returned by the IORESULT function
is set by the run—time library routines. On the ATARI Home Computer,

the general rtule is that a non-zero value mesans an error and zsro is a
good tesult.

Example:

ASSIGN(F, “D2: HELLO " };
RESET (F);

IF IDRESULT <> O THEN
WRITELN(’C:HELLO IS NOT PRESENT’):

56

3. & 22 MEMAYVAIL, MAXAVAIL

FUNCTION MEMAVAIL : INTEGER;
FUNCTION MAXAVAIL : INTEGER;

The functions MEMAVAIL and MAXAVAIL are used in conjunction with NEW
and DISPOSE to manage the HEAP memory area in ATARI Pascal. The
MEMAVAIL function returns the largest total available memory at any
given time irrespective of fragmentation. The MAXAVAIL function will
first garbage collect and then report the largest block available.

The MAXAVAIL function can be used to force s garbage collection before
a time—sensitive section of programming.

The ATARI Pascal system fully supports the NEW and DISPOSE mechanism
defined by the Pascal Standard. The HEAP area grows from the end of

the data area and the stack frame (for Tecursion) grows from the top
of memory downward.

27

| ©

3.4.2

23

(Alphabetical within =ach group:)

Character artay manipulation routines

Bit and byte manipulation

PROCEDURE FILLCHAR (
PROCEDURE MOVELEFT (

PROCEDURE

PROCEDURE
FUNCTION
FUNCTION
PROCEDURE
FUNCTION
FUNCTION
FUNCTION
FUNCTION

String handling rvoutines

File

FUNCTION
FUNCTION
PROCEDURE
PROCEDURE
FUNCTION
FUNCTION

handling routines

PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE

.FUNCTION

PROCEDURE
PROCEDURE
PROCEDURE
FUNCTION

Miscellaneous Toutines

FUNCTION
PROCEDURE
FUNCTION
FUNCTION

Quick Reference Guide to Built—in Procedures asnd Parameters

DESTINATION, LENGTH, CHARACTER)};
SOURCE, DESTINATION, NUM_BYTES):

MOVERIGHT(SOURCE, DESTINATION, NUM_BYTES)i
toutines

CLRBIT(BASIC VAR, BIT_NUM);

HI (BASIC_VAR) : INTEGER;

LO (BASIC VAR) : INTEGER:

SETBIT(BASIC_VAR, BIT_NUM);

SHL (BASIC_VAR, NUM) INTEGER:

SHR (BASIC_VAR., NUM) : INTEGER;

SWAP (BASIC_WVAR) : INTEGER:

TETBIT(BEASIC_VAR, BIT_NUM) BOOLEAN;

COMNMCAT (SOURCE1l, SOURCEZ,...,S0OURCEn ?} STRING;

COPY (SOURCE, LOCATION, NUM_BYTES) STRING;

DELETE (TARGET. INDEX:. SIZE)i

INSERT (SOURCE, DESTINATION., INDEX)i

LENGTH (STRING) INTEGER;

POS (PATTERN, SOURCE) INTEGER:;

ASSIGN - (FILE, NAME)i

BLOCKREAD (FILE, BUF, IOR, NUMBYTES: RELBLK};

BLOCKWRITE(FILE, BUF, IOR, NUMBYTES, RELBLN);

CLOSE (FILE, RESULT)i

CLOSEDEL (FILE, RESULT)i

GNB { FILE) CHAR

IDRESULT INTEGER;

OPEN (FILE, TITLE:. RESULT });

PURGE { FILE)

WNE (FILE, CHAR) BOOLEAN;

ADDR (VARIABLE REFERENCE) INTEGER;

EXIT;

MaAXAVAIL INTEGER;

MEMAVAIL INTEGER;

FUNCTION SIZEOF(VARIABLE OR TYPE NAME} INTEGER;

S8

3.9 Non—Standard Data Access
3.95.1 Absolute Wariables
<absolute var> ::= ABSOLUTE [<constant>] <var>

ABEOLUTE variables may be declared if you know the address at
compile time. You declare variable(s) to be absolute using

special syntax in a VAR declaration. ABSOLUTE variables are not
allocated any space in your data segment by the compiler and you are
responsible for making sure that no compiler—allocated variables
conflict with the absolute variasbles. NOTE: STRING VARIABLES MAY NOT
EXIST below [$100] in memory.

Ezamples:

1: AESOLUTE [£28000]1 IKTEGER;
SCREEN: ARSOLUTE ([($CC001 ARRAYLO..15] OF ARRAYLO.. 631 OF CHAR;

59

3.6 INLINE

ATARI Pascal has a very useful built—in feature called INLINE. This
feature lets you insert data in the middle of an ATARI

Pascal procedure or function. In this way small machine code or P-code
sequences and constant tables may be inserted into an ATARI Pascal
program.

3. & 1 Syntax

The syntax for the INLINE feature is very similar to that of a
procedure call in Pascal. The word INLINE is used followed by a left
parenthesis "(" followed by any number of arguments separated by the
slash "/" character and terminated by a Ttight parenthesis ")". The
arguments between the slashes must be constants or variable references
that evaluate to constants. These constants can be of any of the
following %types : CHAR, STRING, BOOLEAN, INTEGER or REAL. Note that a
STRING in quotes does not generate a length byte but simply the data
tfor the string.

Literal constants of type integer will be allocated one byte if the
~value falls in the range 0 to 255. Mamed: declared, integer constants
which will always be allocated two bytes.

3.6.2 Applications

The INLINE facility can be used to insert code or to build

compile time tables. The following two sections give examples of each
of these uses.

&0

@

The program fragment below demonztrates how the INLINE faecility can be

used to construct a compile time table.
Ezample:
PROGRAM DEMO_INLINE;

TYPE
IDFIELD = ARRAY [1..4] OF ARRAY [1..10]1 OF CHAR;

VAR
TPTR : ~IDFIELD;

PROCEDURE TABLE;

BEGIN
INLINE("ATARI i
‘HOME & &
‘COMPUTER © 7/
‘SYSTEMS. .. 7)i
EXDi
_BEGIN (# MAIN PROGRAM #)
TPTR := ADDR(TABLE)+5; {#¥ +5 for P—-code only #)
WRITELN(TPTR™E31}; (# SHOULD WRITE ‘COMPUTER ° :)

END.

61

< Graphics and Sound Documentation

The graphics, sound, and controller package consists of an include.
file, GSPROCS:, and a Pascal module, GRSND.ERL. The include file
defines the entry points available in the Pascal module. The Pascal
module must be linked with your program.

To use the package, type (#%ID:GSPROCS#) following the global
variables of your program, and execute INITGRAPHICS as the first
statement in your main program.

Ezample:

PROGRAM GRSND;

VAR

(# INCLUDE THE GRAPHICS AND SOUND DEFINITIONS #)
(#%ID: GSPROCS*)

{# LOCAL PROCEDURES #)

PROCEDURE XXXX;
BEGIN

BEGIN

(* MAIN PROGRAM =)
BEGIN
INITGRAPHICS(S); (% INITIALIZE GRAPHICS PACKAGE WITH A MAXIMUM
GRAPHICS MODE OF S #)

S

The following s=ctions describe each of the items available in the
graphics and sound package.

3.7.1 Screen Types
TYPEs:

SCRN_TYPE = (SPLIT_SCREEN, FULL_SCREEN);
CLEAR_TYPE = (CLEAR_SCREEN, DO_NOT_CLEAR_SCREEN);

These screen types are used by the GRAPHICS procedure to define the
type of screen and whether or not the scresn will be cleared during
fthe GRAPHICS procedure.

3.7.2 Variables

VARs:

SCRNFILE : EXTERNAL TEXT;
GRRESULT : EXTERMAL INTEGER;

SCRNFILE may be vwsed to do standard Pascal I/D'tu the screen such as:
WRITE(SCRNMNFILE, "A%);

This variable will send an "A" to the screen and depending on the
current mode, the "A" will be displayed in some manner. Note this
technique is normally used only in graphics modes 1 and 2. For the
other graphics modes, use the procedures described below.

GRRESULT is used to determine if any errors occurred during one of the
graphics procedures. The following are the procedures and functions
that alter GRRESULT.

INITGRAPHICS GRRESULT = 0 OK. 253 = ERROR
GRAFPHICS GRRESULT = 0O DK, 255 = ERROR
PLOT GRRESULT = RESULT FROM XIO CALL
LOCATE GRRESULT = RESULT FROM XIO CALL
FILL GRRESULT = RESULT FROM XIO CALL
DRAWTO GRRESULT = RESULT FROM XIO CALL

63

R

3.7.3 Graphic Procedures and Functions
3.7.2.1 Initialize Procedure
PROCEDURE INITGRAPHICS(MAX_MODE: INTEGER)

INITGRAPHICS must be the first statement of a program that uses the
graphics and sound module. There is one parameter:

MAX_MODE Mazimum mode used by this program should be a value
from O to 9.

If an error occurs, the GRRESULT = 255; otherwise; GRRESULT = 0.

3.7.3.2 Graphics Procedure
PROCEDURE GRAPHICS(MODE: INTEGER; SCREEN: SCRN_TYPE; CLEAR:CLEAR_TYPE);

GRAPHICS performs the same function as the GRAPHICS statement in ATARI
BEASIC, except it has three parameters instead of one.

MODE The desired graphics mode O to MAX_MODE
SCREEN FULL_SCREEN or SPLIT_SCREEN
CLEAR CLEAR_SCREEN or DO_NOT_CLEAR_SCREEN

If an error occurs:, then GRRESULT = 255; otherwise, GRRESULT = 0.

I

3.7.3.3 Textmode Procedure
PROCECDURE TEXTMODE;

TEXTMODE closes "S:" and reopens "E:". GRRESULT is unchanged.

B 7. 3.48 Setcolor Procedure
PROCEDURE SETCDLDR(REGISTER,HUE,LUMINANCEfINTEGER):

SETCOLOR performs the same function as the SETCOLDR statement in ATARI
BASIC. GRRESULT is unchanged. 4

REGISTER A value from O to 4. Refer to section- 9 of the ATARI
400/800 BASIC Reference Manual under SETCOLOR.

HUE A value from O to 1S5. Refer to section 9 of the ATARI
400/800 BASIC Reference Manual under SETCOLOR.

LUMINAMNCE & even value from O to 14. Refer to sectio @ of the
A4TARI 400/B00 BASIC Reference Manual under SETCOLOR.

&4

3. 7:8:9 Color Procedure
PROCEDURE COLOR (COLDR_VALUE: INTEGER);

COLOR performs the same function as the COLDOR statement in BASIC.

-~

COLOR_VALUE A value from O to 255. Refer to section ? of the ATARI
400/800 BASIC Reference Manual under COLOR.

3. .36 Plot Procedure

PROCEDURE PLOT(X, Y: INTEGER);

PLOT performs the same function as the PLOT statement in ATARI BASIC.
It plots a point in the current color at the screen position X.Y.

X the horizontal coordinate on the screen.
;¢ _ the vertical coordinate on the screen.

GRRESULT = value of an XIO PUT character call.

< R e A 4 Locate Procedure

FUNCTION LOCATE(X,Y: INTEGER): INTEGER;

LOCATE performs the same function as the LOCATE statement in ATARI
EASIC. It returns the pixel value at the screen position X.Y.

X the horizontal coordinate on the screen.
Y the vertical coordinate on the screen.

GRRESULT = value of an XIO GET character call.

3. 7.3. 8 Position Procedure

PROCEDURE POSITION(X, Y: INTEGER);

PDSITION performs the same function as the POSITION statement in ATARI

BASIC. It moves the invisible graphics cursor to position X.Y. Note
the cursor is not moved until the next I/0 function is performed.

X the horizontal coordinate on the screen.
Y the vertical coordinate on the screen.
3.7.3.9 Drawto Procedure

PROCEDURE DRAWTOC(X., Y: INTEGER);

DRAWTO performs the same function as the DRAWTD statement in ATARI

BASIC. It draws a line from the current graphics position to position

X, Y in the current color.

X the horizontal coordinate on the screen.
Y the vertical coordinate on the screen.

GRRERESULT = wvalue of an XIO DRAWTO call.

3. 7:3. 10 Fill Procedure

PROCEDURE FILL(X,Y: INTEGER};

FILL performs the same function as the XIO 18 call in ATARI BASIC
except it performs a plot at position X:Y to move the cursor to X.Y at

the end of the FILL.

b the horizontal coordinate on the screen.
W the vertical coordinate on the screen.

GGRESULT = wvalue of an XIO FILL call.
3.7.4 Sound Procedures and Functions

2.7.4. 1 Sound Procedure
PROCEDURE SOUND(VOICE, PITCH, DISTORTION, VOLUME: INTEGER}:
L’ SOUND performs the same function as the SOUND statement in ATARI

BASIC. It turns on the sound channel indicated by VOICE at the
indicated PITCH, DISTORTION, and VDLUME.

VOICE One of the four sound channels at 0 to 3.
PITCH A value between O and 255. Refer to section 10 of the
ATARI BASIC manual under SOUND.
1
DISTORTION A even value from O to 14. Refer to section 10 of the
ATARI BASIC manual under SOUND.
VOLUME A value from O to 15. O is off; 15 is maximum volume.
3.7.4.2 SoundofF'Procedure

PROCEDURE SOUNDOFF;

} SOUNDOFF turns off the sound to all the sound channels.

3. 7.9 Caontroller Functions
t() 3.7.5.1 Paddles

(=)

s
- amainte

2.7.59.1.1 Paddle Function
FUNCTION PADDLE(PDLNUM: INTEGER): INTEGER;

PADDLE performs the same function as the PADDLE statement in ATARI
BEASIC. It returns the current value of one of the eight paddles.

PDLNUM Is the paddle number to veturn; must be a value between
0 and 7.
2. 7..9.1. 2 Trigger Function

FUNCTION PTRIG(PDLNUM: INTEGER): INTEGER;

FTRIG performs the same function as the PTRIG statement in ATARI

BASIC. It returns the current trigger value of one of the eight

paddles.

PDLNUM Is the paddle number to returni must be a value between
0 and 7.

3.7.5.2 Joysticks

3.7.5.2.1 8Stick Function

FUNCTION STICK(STKNUM: INTEGER): INTEGER;

STICK performs the same function as the STICK statement in ATARI
BASIC. It returns the current value of one of the four joysticks.

STKNUM Is the joystick number to Teturni must be a value
bztwsen 0 and 3.

&7

CHAPTER 4: RUN-TIME ERROR HANDLIMNG
The ATARI Pascal system supports two types of tun—time checking:
range and exception.

Range checking is performed on array subscripts and on subrange
assignments. The default condition of the system is that these checks
are disabled. You may enable them around any s=ction of coding desired
using the $R and £X toggles (see sections 2.2.3.4 and 2.2.3.5). These
sections describe the implementation of this mechanism and how you may
take advantage of this mechanism to handle run—time errors in a
non—standard manner.

The general philosophy is that error checks and error roufines will
set Boolean flags. These Boolean flags along with an error code will
be loaded onto the stack and the built—in routine @ERR is called with
these two paramesters. The GERR routine will then test thes Boolean
parameter. If it is false the=n no error has occurred and the Z2ERR
routine will exit back to the compiled code and execution continues.
I+ it is true the @RERR routine will print an error message and lets
you continue or abort.

Listed below are the error numbers passed to the GERR routine:

Value Meaning
1 Divide-by—0 check
2 Heap overflow check
3 String overflow check
4 Range check

4.1 Range Checking

When range checking is enabled the compiler generates calls to @CHK
for each array subscript and subrange assignment. The @CHK routine
leaves a Boolean value on the stack and the compiler generates calls
to @GERR after the @CHK call. If range checking is disabled and a
subscript falls outside the valid range, unpredictable results will
occur. For subrTange assignments, the value will be truncated at the
byte level.

4 2 Exception Checking

When exception checking is enabled, the compiler will load the error
flags (zero divide, string overflow, and heap overflow) as needed and
call the BERR rtoutine after each operation that can set the flags. If
exception checking is disabled the run—time routines attempts to
provide a friendly action if possible: divide by zero rtesults in a

58

C

- me—— TV

maximum value being returned, heap overflow does nothing, and string ,
overfliow fruncates.

4.2 User Supplied Handlers

You can write your own 2ERR routine to be used instead of the system
Troutine. You should declare the routine as:

PROCEDURE EGERR(ERROR:BOOLEAN; ERRNUM: INTEGER);

The toutine will be called: as mentioned above, each time an errvor
check is needed and this routine should check the ERROR wvariable and
exit if it is FALSE. You may decide the appropriate action if

the value is trus. The wvalues of ERRNUM are as shown in section 2.0.

4.4 Fatal Errors

“Fatal Errors" message can be deciphered for debugging purposes but
may be confusing. The error can be translated to the Pascal error
message and to the ATARI standard error message. The following example
will illustrate the translation process:

Fatal Error 464. 88 —--2> Pascal Error . ATARI Error

Using base 16 (non—standard, &4 —— 100 and B8 -- 136
16 10 16 © 10

A Pascal 100 error for our systsm refers to an operating system error.
In this example we would then look at the ATARI Error 13& message to
sae that our error relates to an "EOF".

The fellowing are predefined Pascal fatal errors.

&4: Errvor while chaining.

65: Bad pseudo code.

66: Bad pseudo code.

47: Undefined psesudo opcode.

68: Stack overflow (program too complex).

&9

CHAPTER 5: STRUCTURE/FORMAT OF A PASCAL PROGRAM

This chapter describes the data types and how they are stored. It also
discusses tThe use of strings.

A descripfion of the layout of a .COM file in memory under DOS 2.0S is
presanted.

5.1 Data Tuypes

This section describes how the standard Pascal data tupes are

implemented in ATARI Pascal. Table — summarizes the data types.
Data Type Size. Range

CHAR 1 B8-bit-byte 0..255

BOOLEAN 1 B8-bit-byte false.. true
INTEGER 1 8-bit-byte 0.. 255

INTEGE 2 2-bit-bytes —-32748. . 227467
EYTE 1 S-bit—-byte 0..2S

WORD 2 8-bit-bytes 0.. 65535
FLOATING REAL 4 B-bit-bytes 10E-98. . 10E+98
STRING 1..2968 bytes @ = @@ 000z @ e =
SET 22 8-bit-bytes 0..255

~ % (A | CHAR

The data type CHAR is implemented using one 8-bit byte for each
charactar. The reserved word PACKED is assumed on arrays of CHAR. CHAR
variables may have the range of CHR(O).. CHR(255). When pushed on the
stack, a CHAR variable is 16 bits, with the high—order byte containing
00. This is to allow OD, ODD, CHR, and WRD to work together.

5.1.2 BOOLEAN

The data type BOOLEAN is implemented using one B8-bit byte for each
BODOLEAN variable. When pushed on the stack, 8 bits of O are pushed to
provide compatibility with built—in operators and routines. The
reserved word PACKED is allowed but does not compress the data
structure any more than one byte per element (this occurs with and
without the packed instruction). ORD(TRUE) = 0001 and ORD(FALSE) =
00G0. The BOOLEAN operators AND, OR and NOT operate only on ONE byte.
Refer to the % and ! operators for 146-bit boolean operators.

iXEXIXIXIXIXIxi0r1} (X means don’t care)

70

2.1.2 INTEGER

The data type INTEGER is implemented using two B-bit bytes for each
INTEGER variable. MAXINT = 32747 and INTEGERS can be in the rTange
—-32768..32767. An integer subrange declared to be within the 0..255
Tange occupies only one byte of memory instead of two bytes. Intsger
constants may be hexadecimal numbers by preceeding the hex number with
a dollar sign (e.g. $0OF3B).

5.1. 4 REAL

The implem=ntation of the data type REAL in ATARI Pascal is the same
as that used by ATARI BASIC. Six bytes of data are required to
implement 3 floating point number. The first byte contains the
mantissa sign, the =2xponent in excess—44. The base of the exponent is
106. The vemaining five bytes contain the mantissa in binary coded
decimsl. The pracision is approximataly 8 digits.

e et e o e e o A Ak St b e +
i i i H i
low mem imantissa sign/exponent excess 64! msi { 1s thigh mem
e e e o A e i s i T e +
ms most significant bits

ls = least significant bits

5.1.5 Byte

The BYTE data type occupies a single byte. It is compatible with both
INTEGER and CHAR types. This compatibility can be very useful when
manipulating control characters,- handling character arithmetic, etc.
Characters and integers may be assigned to a BYTE.

5.1.6 HWord

WORD is an unsigned, native machine word. All arithmetic and
comparisons performed on expressions of type WORD are unsigned.

5.1.7 String

5.1.7.1 Definition

The pre—declared type STRING is like a packed array of characters in
which the byte O contains the dynamic length of the string, and bytes
1 through n contain the characters. Strings may be up to 255
characters in length. The default length is 80 characters that may be
altered when a wvariable of type STRING is declared (see example
below).

71

The string "This is & Wottle" js 16 characters long. The following
diagram shows how these characters are stored in a string declared %o
be 20 characters long.

low mem 11&6iTihiils! fils! la! |Wioltitiliel?2i?2i?!?! high mem

If the number of characters in the string is less than the declared
length, the bytes on the =2nd are not defined. Note that the length
is stored in the first byte and the total number of bytes required
for the string is 17.

Example:

VAR .
LONG_STR: STRING; (This may contain up to 80 characters)
SHORT_STR: STRINGL101; (This may contain up to 10 characters)

VERY_LONG_STR: STRINGL255]; (This may contain up to 255 charvacters,
the maximum allowed.)
9.1.7.2 Adssignment
Assignment to a string variable may be made via the assignment
statement:, reading into a string variable using READ or READLN, or the
pre—defined string functions and procedures.

Example:

PROCEDURE ASSIGN;

VAR L
LONG_STR : STRING;
SHORT_STR : STRING [121;
BEGIN
LONG_STR := ‘This string may contain as many as eighty characters’;

WRITELN(LONG_STR):

WRITE(“type in a string 10 characters or less : “};
READLN(SHORT_STR);
WRITELN(SHORT_STR);

SHORT_STR := COPY(LONG_STR.1,11);
WRITELN(COPY(LONG_STR..)=', SHORT_STR);
END;
Output:

This string may contain as many as eighty characters

type in a string 10 characters or less ': {123456} (USER INPUT)
122454

COPY(LONG_STR. .)=This string m

72

9

The individuval characters in & string variable are accessed as if the
string were an array of characters. Thus:, normal array swubcripting via
constants, variables, and expressions allows assignment and access to
individual bytes within the string. Access to the string over its
entire declared length is legal and does not cause a run—time error
even if an access is made to a portion of the string beyond the
current dynamic length. If the string is actually 20 characters -long
and the declared length is 30 then STRING [25] is accessible.

Example:
PROCEDURE ACCESS;
VAR
I : INTEGER;
BEGIN
I :=15;
LONG_STR := “12245478%abcdef’;

WRITELN(LONG_ETR);)

WRITELN(LONG_STRL&1, LONG STRL i-5 1);

LONG_STRL16] := “#*;

WRITELN(LONG_STRL161);

WRITELM(LONG _STR); (# will still only write 15—-characters *)
END; B -

Output:
12345478%abcdef

ba
3+

122454678%abcdef

73

o

5.1.7.3 Compariscns

Comparisons are wvalid between two variables of type STRING (regardless
of their length) or between a variable and a literal string. Literal
strings are sequ=nces of characters between single quotation marks.
Comparisons may aliso be made between 3 string and a character. The
compiler “"forces" the character to become a string by using the CONCAT
buffer; therefore, comparison of the tesult of the CONCAT function and
a character is not meaningful because this comparison would always be
equal.

Example:

PROCEDURE COMPARE;

VAR
S1,52 : STRINGL101];
CH1 : CHAR;

BEGIN
S1 := ’‘012345478";
g2 = ‘22234578 7;

IF 81 < S2 THEN _
WRITELN(S1, * is less than ‘,S2);

S1 := ‘alpha beta’;
IF S1 = ‘alpha beta ’ THEN
WRITELN(‘trailing blanks don’‘t matter’)
ELSE
WRITELN(’trasiling blanks count’);
ir 81 = ¢ alpha beta’ THEN
WRITELN(’blanks in front don‘‘t matter’)
ELSE
WRITELN(‘blanks in front do matter’);
IF €1 = ‘alpha beta’ THEN
WRITELN(S1, * = *,81);
S1 1= 127 -
EH1 = *Z%
IF 81 = CH1 THEN
WRITELN(’strings and chars may be compared’);
EMND; :

Dptput: .

0123454678 is less than 222345478
trailing blanks don‘t matter
blanks in front do matter

alpha beta = alpha beta

strings and chars may be compared

74

5.1.7.% Reading and Writing Etrings

Strings may be written to a text file using the WRITE or WRITELN
procedure. WRITELN will cause a carriage return and line feed
following the string. Reading a string is always done via the READLN
statement because strings are terminated with a carriage return and
line feed. Using READ will not work, becauss the end-of-line
characters are incorrectly processed. Tabs are expanded when they are
read into a variable of the STRING type.

5.1.8 Set

The SET data type is always stored as a 32 byte item. Each element of
the set is stored as one bit. The low order bit of =ach byte is the
first bit in that byte of the set. Shown below is the set "A".."Z"
{bits 65.. 122

Byte number ©00 01 02 03 C4 05 06 07 08 09 OA OB OC 3 1BF

Contents 0C 00 00 00 00 00 00 00 FE FF FF 07 00 ...00

75

CHAPTER 6&: COMPATIBILITY

Pascal is considerably more standardized than BASIC. Nearly every
version of Pascal is based on a definition of the language contained
in "Pascal User Manual and Report", by Kathleen Jensen and Niklaus
Wirth, Springer-VYerlag, 1974. The Pascal Language System is a
superset of the Pascal described in this book. In addition: ATARI
Pascal meets a more recent standard, namely the IS0 standard
(International Standards Organization, similar to ANSI). It is
expected that any Pascals developed from now on will certainly be
compared fo this standard, and will strive to meet it. ATARI has
learned the importance of compatibility from its experience with ATARI
BEASIC. A Pascal that meets the newly developed ISO standard is a very
positive step toward compatibility.

A possible compatibility problem is that the ATARI Pascal Language
System is not entirely compatible with UCSD Pascal. UCSD Pascal has
atteined considerable popularity on small computers. While it is true
that ATARI Pascal is not completely compatible with UCSD Pascal, it
shouid be remembered that both versions are written around a common
core—— Pascal as defined by Jensen and Wirth. The differences, though
present, are nof as significant as, for example, the differences in
various BASICs. In addition, the superiority of the Pascal Language
System Justifies the incompatibilities involved.

A brief comparison of the features that differ between the two Pascals

follows. Parts of this comparison is necessarily somewhat technical,
as most of the differences are deep in the details of the language.

76

C

5.1 Incompatabilities With UCSD Fascal

(]

1. The predefined type INTERACTIVE is available only in UCSD Pascal.
On the ATARI Computer, any file associated with the computer console
is automatically interactive, and therefore this type is not needed
and would only clutter the lsnguage unnecessarily.

2. The predefinesd procedure SEEK is available only in UCSD Pascal.

2. UCED Pascal wuses UNITS to implement modular compilation. They are
geasy to understand, but atve much mote rTestrictive than ATARI Pascal’s
implementation of modular compilation.

4, UCSD Pascal provides SEGMENT procedures to allow overlays from
diskette. ATARI Pascal will use the standard DOS methods for invoking
overlays. '

5. Sets can be considerably larger in UCSD Pascal.. They are :
considerably faster in ATARI Pascal. The ATARI Pascal implementation
is more in keeping with the spirit of the Jensen and Wirth standard.

&. UCED Pascal includes bit—level packing on PACKED structures.

Bit—-level packing costs in both the size of the interpreter, and the
speed of execution of the program (particularly on a machine based on
the 6502 microprocessor which does not contain multiply and divide). -

7. UCSD Pascal has a construct EXIT <procedure name> that is not
included in ATARI Pascal, although ATARI Pascal permits EXIT without
the procedure name. Many Pascal purists feel that the construct as
implemented by UCSED is not a structured construct, and is therefore
counter to the philosophy of the language.

8. UCSD Pascal includes the type LONG INTEGER that is not available
in ATARI Pascal.

?. Several features in UCSD Pascal are operating system dependent,

e.g.. long file names, and unit I/0 (similar to XIO). These have not
been implemented in ATARI Pascal. '

77

£.2 Additional Features Avsilable with the ATARI Pascal Language
System

1. The ATARI Pascal Language System is a complete ISO standard
Pascal. Some of the ISO features not included in UCSD Pascal are
conformant array handling, procedures and functions as parameters,
local files: PACK and UNPACK procedures, READ and WRITE for non—text
files, WRITE and WRITELN of Boolean expressions, and GOTOD out of a
procedure into a surrounding procedure.

2. The Pseudo code implemented in ATARI Pascal was optimized for the
6502 microprocessor.

3. ATARI Pascal uses the same operating system as all other ATARI
programs. ATARI Pascal and ATARI BASIC files are the same format, and
data files can be read by either language. You do not have the
inconvenience of learning two different and incompatible operating
systemsi as you do with UCSD Pascal. In addition, ATARI Pascal allouws
access to I/0 in a manner very similar to ATARI BASIC. XIO, graphics,
sound, game confrollers, and named devices are all implemented.

4. UCSD segment procsdures are limited to six per program which limits
the development of large applications. ATARI Pascal should allow the
development of more complex applications.

5. ATARI Pascal has nine or ten digits of precision on real numbers.
UCED Pascal has only 6.5 digits of precision.

&. ATARI Pascal permits the programmer to trap errors:. and prevent
programs from aborting. $

7. ATARI Pascal provides protection when Teading in a string. I+ the
string is too long for the rteceiving variable, ATARI Pascal will
truncate the string. UCSD Pascal will overwrite the bytes following
the string in memory, rtesulting in undefined program errors.

8. ATARI Pascal has extended the CASE statement by adding an ELSE
clause. If the case selecting expression would not result in the
execution of a statement with the CASE, the ELSE clause is executed.
ELSE simplifies error checking. Execution of a similar unmatched
CASE in UCSD Pascal causes an undefined tTesult.

?. Modular compilation is much more flexible in ATARI Pascal. Local
static variables, external procedures and functions located in the
main program, and external global variable usage are all missing from
UCED FPascal.

10. ATARI Psscal has a built in BYTE data type. This data type
eliminates the use of confusing CASE variant records when manipulating
characters as integers.

11. ATARI Pascal has a built-in WORD data type. An unsigned 1&-bit

data type is very useful for address arithmetic and machine—level
programming.

78

12. UCSD Pascal does not fully implement compatibility between strings
and characters. Strings and characters are tcotally compatible in
ATARI Pascal.

13. For system dependent applicstions: ATARI Pascal allows relaxation
of type checking rules. This relaxation allows machine I/0 and memory
manipulation to be done without cluttering the program with confusing
CASE variant records. '

14. ATARI Pascal has the built-in bit-manipulation routines TSTBIT,
SETBIT, CLREIT. SHL, and SHR. Bit manipulation in UCSD Pascal must be
done with CASE variant records, which are confusing and machine
dependent.

15. In both ATARI Pascal and UCSD Pascal, the GET/PUT file I/D is
quite slow. ATARI Pascal also contains GNB and WNB, which are high-
speed I/0 rtoutines for byte I/0.

16. ATARI Pascal fully implements the NEW and DISPOSE procedures,
including fragmentation management and te-use of disposed areas. UCSD
Pazcal implemznts a much more restricted version of thzse procedures.
This feature is wvital to any program doing dynamic data management.

17. ATARI Pascal allows full use of files. UCSD Pascal does not allow
local files, files in records, or arrays of files.

18. ATARI Pascal includes the ADDR function. This returns the address
of a variable, procedure, or function. This function is useful when
doing machine dependent programming.

19. ATARI Pascal has a built—-in INLINE feature that can be used to
generste compile—time constant data. This feature eliminates run—time
initialization of constant tables, increasing execution speged and
decreasing code size.

20. ATARI Pascal allows output in any number base from two through
sixteen.

21. ATARI Pascal allows input of either decimal or hex numbers.
22. ATARI Pascal has not extended the parameter list on any ISO

standard routine (specifically RESET and REWRITE). For acessing
external files: a new procedure (ASSIGN) has been added.

79

CHAPTER 7: LANGUAGE DEFINITION

7.1 Introduction

Chapter 7 defines the language features of ATARI Pascal that are
common to sach implementation of the compiler. It is assumed here that
you are familiar with Jensen and Wirth’s "Report" and/or the IS0 draft
standard (DPS/7185). The ATARI Pascal features that differ from those
in the IS0 standard and in Jensen and Wirth’s "Report", are described
by section. In each section, BNF (Backus Normal Form) syntax is
provided for refsrence. The complete BNF description of the language

is present in an appendix. Each section corresponds to Wirth’s
"Report".

80

= Summary of the ATARI Fascal Language

Features of the ISD Pascal include the data types REAL, INTEGER, CHAR,
EODLEAN, mulfidimensional ARRAYS, user—defined RECORDS, PDINTERS
types, file variables, user—defined TYPES and CONSTANTS, and SETS
(implemented in this version with a base type of 254 one byte
elements). ENUMERATED types. and SUBRANGE types.

Also included in ISO Pascal are PROCEDURES, FUNCTIONS, and PROGRAMS.
Passing procsdures and functions as parameters to a Pascal routine are
part of the ISO standard, as well as conformant arrays. Arrays of the
same index type and element type but different sizes may be passed to
the same procedure. External parameters with the PROGRAM statement
are supparted at the syntax level.

TYPED and TEXT files are supported as defined in the standard using
the Pascal routinss RESET, REWRITE, GET, PUT, READ. WRITE, READLN, and
WRITELN. The default I/0 files IMPUT and OUTPUT are defined.

All IS0 statements are supported including WITH, REPEAT...UNTIL, CASE,
WHILE loops, FOR loops, IF..THEN..ELSE, and GOTO.

PACK and UNPACK are supported, but do not affect the outcome of the
program (data structures are always pack=ed at the byte level). NEW
and DISPOSE are implementedi they allocate and deallocate HEAP space.

Modular compilation is an extension of the ATARI compiler. Variables
and routines may be made public and/or private and may be called from
any other module or from the main program.

The extended data types STRING, BYTE. and WORD are implemented in the
ATARI Pascal compiler. The STRING type includes a length byte followed
by the maximum number of bytes possible. Routines are supplied to
INSERT a character or a string, DELETE from a string: find the
POSition of a character in a string, COPY a portion of one string to
another, and CONCATenate two or more strings and/or characters
fogether. BYTE is a one—-byte data item for representing numbers from O
to 255. WORD is two bytes for the 8-bit CPU.

Additional procedures to manage files on diskette are implemented. A
file on diskette is associated with an internal file and may be closed
ar deleted.

Manipulating BITS and BYTES is done using routines to TEST, SET.
CLEAR, SHIFT RIGHT:. and LEFT, return HI or LOW of a variable:, and SWAP
the high and low bytes of a wvariable.)

Miscellaneous routines to access items in a program are to return the
address of a variable or routine, return the size of a variable or
type, move a given number of bytes from one memory location ¢to
another and fill a data item with a certain character. Also. the
amount of HEAP space available at any given time is accessible.
Garbage collection on the HEAP is supported.

81

Logical operzfors for non—-Booleans are implemented.
HEX liferal numbers may be vused with a dollar sign (%).
Include files arve subported.
An ELSE clause on the CASE statement is provided.
Program CHAINING is supported. Chaining is such that the code for one

program is totally replaced by code for the next program:. but heap
space may be maintained across a CHAIN.

o

B2

7.3 MNotation, Terminology,

Lletter>r z2:= A ¢+ B 1 €
Kt LiM
uitrviw
& 3 ¢ 4 39
ot piq
y { z { @

Ldigit> ;=0 § 1 § 2
A I B I C

Tspecial symbol2> = (r

+

l"J l .
Il

I

)
1
o)
'._— 1
1
L]

1
'

- m- w-

oW

-~ o~ %D

wn
= ma w0

- TrxZ 0

and Yocsbulary

M oee< O M

- mm me m-

e N TN

C=0DbEO
< = UL
» 3 o+ C

E3 N+

51718191
(only allowed in HEX numbers)

are listed in the appendix)
S -

1]
1 ~ I
L] 1
1
'

(the following are additional or substitutions:)

t = 1 23 3

(. is a synonym for L[
.Y is a synonym for 1
7 and \, are synonyms
' and | are synonyms

&

Extznsions:

The symbol "@" is a legal letter in addition to those listed in the

\

?

1 & 1 &

"Report"”. This symbol has been added because the run—time library
routines are written using this special character as the first letter

of their name. By adding

users are allowed to ca
information. -

A comment beginning with

Il@ll

conflict with user names is avoided but
11 these rToutines. See section 7.4 for further

L1 (Al

must end with "#)"“.

Ccomment> ::= (# < any characters > #*)

83

7.4 Identifiers: HMNumbers, and Strings.

<identifier> 1:= <letter> {<letter or digit or underscore>}
<letter or digi¢d> = <letter> | <digit> |
<digit sequence> ::= <digit> {<digit>}
<unsigned integer> :.= % <digit sequence’> |
<digit sequenceZ>
Lunsigned Teal> = <unsigned integer> . <digit sequence> |
<unsigned integer> . <digit sequence>

E <scale factor2>
<unsigned integer> E <scale factor2

<unsigned number> = <unsigned integer | <unsigned real’>

<scale factor> ::= <unsigned integer> | <sign><{unsigned integer>
<sign2> sE= e il =

Lstring> ::= ‘Lcharacter> {<characterd}’ | *'

All identifiers are significant to eight characters. External
identifiers are significant to either six or seven characters
depending upon usage. The underscore character (_) is legal between
letters and digits in an identifier and is ignored by the compiler
(i.e., A_B is equivalent to AB). Identifiers may begin with an "@".
To allow declaration of external run—time routines within a

Pascal program. Users are, in general, advised to avoid the "@"
character to eliminate the chance of conflict with run—-time routine
names.

Numbers may be hex as well as decimal. Placing a “$" in front of an
integer number causes it to be interpreted as a hex number by the
compiler. The symbol <digit> now includes: "A", "B", "“C", "“D", "E"
and "F". These may be upper or lower case.

84

©

7.5 Constant D=finitiaons

<constant identifier> ::= <identifier>

Cconstant> g <unsigned number>
<sign><unsigned number>
<constant identifier>
<sign><constant identifier>
<string>

<constant defination> ::= <identifier> = <constant>

I

_—— e - -

In addition to 311 constant declarations available in standard Pascal,
ATARI Pascal supports declaration of a null string constant:

Example:

nullstr = °7;

85

O

7. & ‘Data Type Definitions

-

type> pi= <simple type
<structured type>
<pointer typeZ

Ltype definitiond::= <identifier> = <type>

7.6.1 Simple Types

<scalar type>
<subrange type2
“type identifier>
<type identifier®> ::= <identifier>

Lsimple type>

7.6.1.1 Scalar Types

<scalar type> ::= (<identifier <, <identifier>})}

7.6.1.2 Standard Types
The following types are standard in ATARI Pascal.

INTEGER
REAL
BOOLEAN
CHAR

EYTE
WORD
STRING

Three additional standard types exist in ATARI Pascal. Refer to the
Appendix for information on representation and usage of all standard
and structured types. '
STRING : Packed array L O0..n 1 of char

byte O is dynamic length byte

bytes 1..n are characters

BYTE : Subrangse 0..255 with special attribute that it is compatible
also with CHAR type.

WORD : Unsigned native machine word

2.6.1.3 Subrange Types
{subrange type> ::= <constant> .. <constant>

7.6.2 Structured Types

8&

{structured tuype> ::= Cunpacked structured typed>

FACKED <unpacked structured typel
<array type>
<record typed>
<set type>
<file type>

“unpacked structured type>

- m m—-

The reserved word PACKED is detected and handled by the ATARI Pascal
compiler as follows:

All structures are packed at the BYTE level even if the PACKED
reserved word is not found.

7.6, 2. 1 Array Types

‘Larray type>

]

<normal array> |
<string array>
STRING <max length>

L <intconst> 1 |
Tempty>

“<unsigned integer> |
<int const id>
“identifier>

ARRAY [<index type> 4, Lindex type>}] OF
<component typel
L{simple typeX

<type>

<{string array>
<max length>

inu

Linconst>

Rl

<int const id>»
“normal array>

I n

Lindex typeZ>
{component typel

Il

Variables of typs STRING have a default length of 81 bytes (B0 data
characters). A different length can be specified in square brackets
following the word STRING. The length must be a constant (either
literal or declared, e.g., STRINGLS] or STRINGLxyzl (where xyz is a
constant (xyz=10)). It represents the length of the DATA portion
(i.e, one more byte is actually allocated for the length).

87

8 - = Record Types

“<record typeZ
<field list>

Il

Lfixed part>
<record section>

nu

Il

<variant part> .

]

<variant> =2

<case label list> R
<{case label> -
<tas field>)

noun

7.6.2.3 Set Types

Tset type> =
<‘base type> ::= <simple

RECORD <field list> END

<fixed part> H
<fixed partd> ; <variant part> |
<variant part>

<record section> {;<record section>}
<field identifier> {,<field identifier>l}
Ltype> | <empty> B

CASE <tag field> <type identifier> OF
<variant> {i<{variantli}

“case label list> : (Lfield list>) H
Tempty>

<case label> {,<case labell}
<constant>

<identifier> : |

<empty>

SET OF <base type>

type>

The maximum range of a base type is 0..255. For example, a set of

[0.. 100007 is not legal.
but set af 0..2546 is not.

The set of CHAR or set of 0..255 is legal

88

7.6.2. 48 File Types
“file type> ::= file {of Ltypel)

Untyped files are allowed. They are used for CHAINING and are also
vsed with BLOCKREAD and BLOCKWRITE procedures. Be extremely careful
when using untyped files.

When you wish to read 5 file of ASCII characters and use implied
conversions for integers and Teal numbers use the pre—-defined type
TEXT. TEXT is NOT the same as FILE OF CHAR. It has conversion implied
in READ and WRITE procedure calls and also may be used with READLN and
WRITELN. A file of type TEXT is declared in the following manner: "“VAR
F : TEXT". The INCORRECT syntax for declaring a TEXT file is "VAR F :
FILE OF TEXT". See the appendix on Pascal file handling.

7.6.3 Pointer Types

Cpaointer type> ::= “Ltype identifier>

Pointer types are identical to the standard except that weak type
checking exists when the RELAXED type checking feature of the compiler

is enabled (the default). In this case, pointers and WORDS used as
Fointers are compatible in all cases. '

e?

7.6. 4 Types and Assignment Compatibility

The most common standard Pascal gquestion concerns type conflict
errors messages from the compiler. Types must be identical if the
variable is passed to a VAR parameter. Types must be compatible for
expressions and assignment statements. To understand the difference
between compatible and identical types, think of types as pointers to
compile—time vecords. If you declare a type (such as T=ARRAY [1..101]
OF INTEGER), %then anything declared as type T rteally points to the
record describing type T. If, on the other hand, you declare two
variables as follows:

VAR
Al : ARRAY [1..10]1 OF INTEGER;
A2 © ARRAY [1..10]1 OF INTEGER;

they are not identical. The compiler created a new record for each
type and therefore Al and A2 do not point to the same record in memory
at compile—time. The general rule is that if you cannot find your way
back to a type definition, then the types are not identical.

CHR, ORD, and WRD are type converson operators that generate no code
but tell the compiler that the following 8-bit data item is to

be considered type CHAR, INTEGER:. or WORD respectively.

These operators may be used in =2xpressions and with parameters except
VAR parameters.

Below is a section from the ISO draft standard (DPS-7185) which is (:
available from the American National Standards Institute. The ISO
standard definition of compatible types is as follows:

Types Tl and T2 shall be designated compatible if any of the four

statements that follow is true.

(a) Tl and T2 are the same type.

(b) Tl is a subrange of T2 or T2 is a subrange of T1l, or both T1 and
T2 are subranges of the same host type.

(c) Tl and T2 are designated packed or neither Tl nor T2 is
designated packed.

(d) T1 and T2 are string—types#* with the same number of components.

...Assignment compatibility. A value of type T2 shall be designated
assignment—compatible with a type Tl if any of the five statements
that follow is true.

taj} Tl and T2 are the same type, that is neither a file—type nor
a structured-type with file component (this rule is to be
interpreted recursively).

(b) T1 is the real—-type and T2 is the integer—type.

(c) Tl and T2 are compatible ordinal—types*# and the value of type
T2 is in the closed interval specified by the type TI1.

(d) T1 and T2 are compatible set-types and all the members of the
value of type T2 are’'in the closed interval specified by the
base—type of TI1.

(e) Tl and T2 are compatible string—typess:.

20

©

At any place where the rule of ascignment-compatibility is used:

{a) It shall be an errtor if Tl and T2 are compatible ordinal—-types®#*
and the value of type T2 is not in the closed interval specified
by the type T1.

(b) It shall b= an error if Tl and T2 are compatible set—types and
any member of the vslue of type T2 is not in the closed interval
specified by the base—type of the type TIL1.

String—types in IS0 Pascals are arrays of characters,
Ordinal types are named subranges of numbers or enumerations.

T Declaration and Denotations of Yariables
<variable’ 1= Lvar>

<external var>
Labsolute var>

- -

Lexternal var> ::= <EXTERNAL <var>
“<absnlute var> ::= ABSOLUTE [<constant® 1 <var>
Lvar> - ::= Lentire variable>

<component variable>
{referenced variable>

ABSOLUTE variables may be declared if you know the address at compile
time. You declare wvariable(s) to be absolute using special syntax in a
VAR declaration. ABSOLUTE variables are not allocated any space in
your data segment by the compiler and you are responsible for making
sure that no compiler—-allocated variables conflict with the absolute
variables. NOTE: STRING VYARIABLES MAY NOT EXIST AT LOCATIONS <= $100..
This is done so that the run—time routines can detect the difference
between a string address and a character on the top of the stack.
Characters have the high byte of O when present on the stack. After
the colon (:) and before the type of variable(s):, you place the
keyword ABSOLUTE followed by the address of the variable in brackets

[P 1

Ezamples:

& ABESOLUTE [$800]1 INTEGER:
SCREEN: ABSOLUTE [sCC0O0] ARRAYLO..15] OF ARRAYLO.. 631 OF CHAR;

71

i (A (I | Entire Yariables

<variable identifier>
{identifier>

<entire variableX .-
Zvariable identifier>

o

T T 2 Component Variables

<component variable> ::= <indexed variable> !
<field designator> |
<file buffer>

7.7.2.1 Indezed VYariables
{indexed variablel <array variable> [<expression> {,<expression>}]

<array variablel ::= <variable>

STRING variables are to be treated as a PACKED array of CHAR for
subscripting purposes. The wvalid range is O..maxlength:, where
maxlength is 80 for a default length.

7.7.2. 2. Field Designators

<field designator> <record wariable? . <fisld identifier>
<record variable> :: <variable>
Lfield identifier> ::= <identifier>

o

R (O e File Buffers

<file buffer> = <file variable>*
£file wvariable> ::= <variable i .

i Referenced Variables

<referenced variable> ::= <pointer variable>"
<pointer variable> ::= <variable>

72

7.8 Expressions

“<unsigned constant> ::= <Cunsigned number>
Lstring>
\ NIL
<constant identifier>
<factor> ::= <variable>

<uynsigned constant>

“<function designator>

(expression>)

<logical NOT operator> <factor>
<set>

<set> = [<element list> 1
<element list> = <element> {,<element>}
<emptyZ
L{element> = Lexpression>
Lexpression> .. <expression>
<term> := <factor>» <multiplying operator> <factor>
<simple expressiond> ::= <term>

<simple expression>» <adding operator> <{term>
<adding aperator®> <term> '
<simple expressionZ

<simple expression> <relational operator>
“simple exzpression> '

Lexpression>

An additionsl catesgory of operators on 16-bit variables are % !

((also {), (also \ and ?) denoting AND: OR and ONE’s complement NOT.

e respectively. These have the same precedence as their equivalent
boolean operators and accept any type of operand with a size <= 2
bytes.

r

93

7 = T | Operators

T B il The Operator NOT
<logical NOT operator> ::=NOT I

\ and ? are NOT operators for non—Eoolean operators.

7:.8:1.2 Multiplying Operators
<multiplying opsvrator> ::= % | / | DIV | MOD ! AND | &

% is an AND gperator on non—Boolean operators.

7.-8.31:3 Adding DOperators

<adding operator> ::=+ | - | OR ' | | !

! (synonym {) is an OR operator on non-Boolean operators.

7.8.1. 4 Relational Operators

“<relational aperators> ::= =1 <> | € | <= 1 2= 1 IN

7.8.2 Function Designators

{function designator> ::= <function identifier>) i
<function identifier> (<parm> {,<parm>}

{function identifier> ::= {identifier>

94

7.9 Statements

<{statement> = Llabel> : <unlabelled statement> !
<unlabelled statement>

<unlabelled statement> := Lsimple statement> H
Lestructured statement>

<labei> ::= <unsigned integer>

7. 3 Simple Statements

‘{simple statement> ::= Lassigned statement>

<procedure statement>

‘goto statement>

{empty statement>
Cempty statementl o= Lemptyl

7.9.1.1 Assignment Statements

Cassignment statement> ::= <variable> := <expression>
<function identifier> := Lexpression>

To the list of exceptions to assignment compatibility add:

1. Integer expressions may be assigned to variables of type pointer.
For exzample:

TYPE X = RECORD
(# field declarations #)
END;
VAR P : ~X;
I : INTECGER:;

2. Expressions of type CHAR may be assigned'to variables of type
STRING.

3. Variables of type CHAR and literal characters may be assigned to
variables of type BYTE.

4. Expressions evaluting to the type WORD may be assigned to pointer
variables.

5. Expressions evaluating to the type INTEGER may be assigned to
variables of type WORD.

@5

7.9, 1.2 Procedure Siatements

<procedure identifier>{<parm> 4,<parm>}) |
<procedure identifier>
<identifier>
<procedure identifier>
<function identifier
Lexpressiaon>
<variable>

“<procedure statementl

{procedure identifier>::
<parm> :

The maximum number of parameters for a procedure or function is fifty

(5G).
7.9.1.3 GOTO Statements

“goto statement> ::= goto <label>>

7. 9.2 Structured Statements

Tstructured statement> ::= <repetitive statement>
“<conditional statement>
Lcompound statement
<with statement>

- e -

7.9.2.1 Compound Statements

<compound statement> ::= BEGIN <statement> {,<statement>} END

7.2.2.2 Conditional Statements

<conditional statement> ::= <case statement> |
<if statement>

7.2.2.2.1 If Statements

Cif statement> ::= IF <expression> THEN <statement> ELSE <statementd
IF <expression> THEN <statement> :

7.2.2.2.2 Case Statements
{case statementd ::= CASE <expression> OF

<case list> {,<case 1list>}
{ELSE <{statement>}

END
<case list> = <label list> : <statement> :
<empty>
Llabel list> . ::= <case label> {,<case label>}
<case label> ::= <non-teal short scalar constant>

ATARI Pascal implements an ELSE clause on the CASE statement. In
addition, if the selecting expression does not match any of the case

&

selectors,

the program Flow will

"drop through" the CASE statement.

The standard says this condition is an error.
Example:
CASE CH OF
‘ar WRITELN("A’);
‘Qr’ WRITELN(‘Q“);
ELSE
WRITELN('NOT A OR Q“)
END

2.2.3 Repetitive Statements

Lrepetitive statement> ::= <repeat statement> |

7.9.23 1

‘while statement>

7:9.2.8.2

<repest statement>

7.2

<for statement>
<for list>

<ctrlvar>

Ts

<with statzment>
<record

Note that the ISO standard
LOCAL variables are allowed as FOR loop control
This prevents such programming errors as the inadvertent

Wirth in that only
variables.

variable list

Cwhile statement>
<for statement>

While Statements

::= WHILE <expression> DO <statement>

Repeat Statements

::= REPEAT <statementy {,<{statement>} UNTIL

{expression>

2.3.3 For Statements

FOR <ctrlvar> := «<for list> DO <statementd>
Cexpression> DOWNTO <expression> |
<expression> TO <expression>

Lvariable>

2.4 With Statements

WITH <record variable list> DO <statement>
<record variable> {,<record wvariable>}

differs from Pascal defined by Jensen and

use of a GLOBAL variable as a FOR control variable when nested five

levels deep.

You‘re limited to 16 FOR and/or WITH statements in a single

procedure/function.

This limitation is so that the compiler can

allocate a fixed number of temporary locations (16 words) in the data
segment for the procedure/function.

97

o

7.10 Procedure Declarations
Cprocedure declaration>>

<block>

<procedure heading>

<parmlist> 3z

Lfparm>

<{parm group>

“<conformant array>r»

<conarray2>

Lindxtyp>

Lordtypid> 3

1"\

scalar type idgntiFier}
<subrange type identifier>

<label declaration partl

<constant definition part>

<tuype definition part> o

EXTERNAL <procedure heading> i
<procedure heading> <blockX
<label declaration part>
<constant definition part>

<type definition part>

<wvariable declaration part>
<procfunc declaration part>
<statement part>

PROCEDURE <identifier> <parmlist>
PROCEDURE <identifier>;

{ <{fparm> {,{?parm}} }

“<procedure heading>
Lfunction heading>
VAR <parm group>
<parm groupZr

<identifier> {,<identifier>}
<type identifier>

<identifier> {,<identifier>}
<conformant arrayl

ARRAY [<indxtyp> {i<indxtyp) 1 OF
<conarray2>
<type identifier> |

-

<conformant array>>

<identifier>. . {identifier> : <ordtypid>

<scalar type identifierl H
“<subrange type identifier>

Lidentifier>
<identifier>

<empty> :
LABEL <label> {,<label>} ;

Tempty> H
CONST
<constant definition>
{;i <constant definition>} ;

Cempty> H
TYPE
Ltype definitionz>
{; {type definition>} i

%8

“variable declaration

<{procfunc part>

<{proc or funcl

<statement partd

[T}

ol
W

Cempty> ;

VAR
<variable declaration>
{i<variable declaration>}

{<proc or funcd> ;i I}

<procedure declaration>
<function declaration>

<compound statement>

.
’

&9

A U o R | Standard Procedures

The following is a list of ATARI Pascal built—in procedures. See
Chapter 3 Tor parameters and usage. These procedures are pre—declared
in a scope surrounding the program. Therefore, any user routines of
the same name will take precedence.

NEW DISFPOSE EXIT INSERT
DELETE COFY CONCAT FILLCHAR
MOVELEFT MOVERIGHT CLRBIT HI

Lo ' SETBIT SHL SHR

SWAP TSTBIT LENGTH POS

ADDR . MOVE MAXAVAIL MEMAVAIL
SIZEOQF

7-10. 1.1 File Handling Procedures

All standard file handling procedures are included. In addition the
procedure ASSIGN(F, string) is added where "F" is a file and "string"
is a literal or variable string. ASSIGN assigns the external file name
contained in the string to file F. It is used preceding a RESET or
REWRITE. See Section 3.4.1i5 for morve details.

Listed below are the names of the file handling procédures:

GET PUT RESET . REWRITE
ASSIGN CLOSE CLOSEDEL PURGE
OPEN BLOCWREAD BLOCKWRITE READ
CHAIN FAGE IORESULT

GNB WNB WRITELN

WRITE READLN

100

7.310.1.2 Dgnaﬁic f&llocation Procedures
HNEW DISPOSE

In addition to NEW and DISPOSE, MEMAVAIL and MAXAVAIL are also
included.

7.10.1.3 Data Transfer Procedures

PA&CK (A, I, 2} UNPACK (Z, A, I)

7.10.2 FORWARD

Forward procedure declarations are implemented in ATARI Pascal. It is
recommended that this feature not be used unless strict Pascal
conformance is required. The three pass compiler, makes forward
declarations unnecessary. ' =

101

s 2 B CONFORMANT ARRAYS

Note that the ISO standard has added the CONFORMANT ARRAY SCHEMA for
passing arrays of similar structure (i.e., same number of dimensions,
compatible index %ype, and same eslement type), but different upper and
lower bounds. You may now pass, for example, an array dimensioned as
1..10 and an array 2..50 +to a procedure expecting an array. You
define the array as a VAR parameter and in the process of declaring
the arrayr you also define variables to hold the upper and lower bound
of the array. These upper and lower bound items are filled in at

RUN-TIME by the gensrated code. To pass arrays in this manner. the
index type must be compatible with the type of the conformant array
bounds.

Below is an example of passing two arrays to a procedure that
displays the contents of the arrays on the file OUTPUT:
PROGRAM DEMDCON;

TYPE
NMATURAL = 0..MAXINT; - (#FOR USE IN CONFORMANT ARRAY DECLARATION)

VaR
Al : ARRAY [1..10]1 OF INTEGER:;
A2 : ARRAY [2..20]1 OF INTEGER:
(“’ PROCEDURE DISPLAYIT (
VAR AR1 : ARRAY [LOWBOUNDI1. . HIBOUND: NATURALJ OF INTEGER
)i
(* THIS DECLARATION DEFINES THREE VARIABLES:
AR1 : THE PASSED ARRAY
LOWBOUND : THE LOWER BOUND DF AR1 (PASSED AT RUN-TIME)
HIBOUND : THE UPPER BOUND OF AR1 (PASSED AT RUN-TIME)
3%}
VAR

I : NATURAL;
(# COMPATIBLE WITH THE INDEX TYPE OF THE CONFORMANT ARRAY *)

BEGIN
‘ FOR I := LOWBOUND TO HIBOUND DO
WRITELM(‘INPUT ARRAYC’, I, 1=’, AR1LI1)
I ENDi

BEGIN (¥ MAIN PROGRAM)

é:) DISPLAYIT(A1); (# CALL DISPLAYIT AND PASS A1 EXPLICITLY AND
1 AND 10 IMPLICITLY =)

102

DISPLAYIT(AZ)

END.

(% CALL DISPLAYIT AND PASS a2 EXPLICITLY AMND
2 AND 20 IMPLICITLY)

103

7. 11 Function Declarations

Lfunction decl>

EXTERNAL <function heading> !
<function heading> <block>

Il

<function heading>::= FUNCTION <identifier><parmlist>:<result typed; !

FUNCTION <identifier> : <result type> i

<result type> <type identifier>

Z.1%3.1 Standard Functions

Listed below are the names of the standard functions supported:

ABS SGR SIN cos
EXP LN SART ARCTAN
oDD TRUNC ROUND ORD
WRD CHR SuUcc’ PRED
EOLN EQF IORESULT MEMAVAIL
MAXAVAIL ADDR SI1ZEOF POS
LENGTH

T. 1%, L. 1 Arithmetic Functions

7.11. 1.2 Predicates

Z-1%. 3.3 Transfer Functions

WRD(x) : The value x (a variable or expression) is treated as the WORD

(unsigned integer) wvalue of x. Integer literal constants are not of
type WORD. Therefore, if W is of type word, W:=3 is illegal, and you
must use W := WRD(3).

7. e O 8L Further Standard Functions

File handling: (F is a file variable. See files in appendix.)

PUT(F) GET(F) RESET(F) REWRITE(F) PAGE(F) EOF(F) EOLN(F)

Dynamic Allocation: (Tn is a variant record selector, P is a pointer)
NEW(P) NEW{P,T1,T2,...,Tn) DISPOSE(P) DISPOSE(P,T1,T2,...,Tn)

Data Transfer Procedures: (See page 106 of Jensen and Wirth for a more
complete description.)

PACK(A, I, Z) UNPACK(Z,A, I)

Arithmetic functions:

104

ABES(X) DR AES(I) - special returns the type of its argument
SGR(X) OR SGR(I) - if passed integer returns integer, etc.

Transfer functions: (SC is a non-real short scalar)

Implemented at compile-time and generate no code:
GDD(SC) : BOOLEAN ORD(SC) : INTEGER CHR(SC) : CHAR WRD(SC) : WORD

Implemented at run—time and do generate code:

SUCC(<any scalar type except real>) PRED(<any scalar type except
real>) .

105

F A 5 INPUT AND QUTPUT
ATARI Pascal supports all standard Pascal I/0 facilities.
7.12. 1 THE PROCEDURE READ

Reading into subranges is implemented but no Tange checking is
performed, even with range checking turned on.

7.12.2 THE PROCEDURE READLN

<readcall> 2= Read or readln> {({I{filevar> ,2} {<varlist>})}
<read or TveadlnZ::= READ | READLN

<filevar> 1= <variable>

<varlist> ::= Lvariable> {,<variable>}

7.12.3 THE PROCEDURE WRITE

7.12. 4 THE PROCEDURE WRITELN

Lwritecall> ::=Curite nr.mriteln} {({<filevar> .} {exprlist})}
Zwrite or writeln> ::= WRITE | WRITELN

<exprlist> 1:= Lwexpr> {, Cwexpr>l}

Cwexpr> ::= <expression> {:<width exp> {:<dec expr>}}
<width expr> ::= <expression> 7)
<dec exprZ> _ ::= ZLexpression?

To write integers with a base other than ten use a negative decimal
place field specifier.

For example:

WRITE(I:15:-158)
(# this writes I in HEX#)

You may not use functians that perform input or output as a parameter
to a WRITE or WRITELN statement. These include access routines such as
GNE. The file pointers become modified by the reading routines,
cauvsing the output to be done to the input file.

7.12. 5 ADDITIONAL PROCEDURES

See Section 7.10.1.1

WORD input and output is not performed with the standard READ and
WRITE proczcdures. Two new procedures are READHEX and WRITEHEX. These

106

new procedures allow Hex I/0 on variables of any one-, two—, or
four—byte tupe such as integer, char, byte subrange, enumersted,

and long integer. See the section in Chapter 3.4 on ATARI Pascal
extensions.

word,

107

7.13 PROGRAMS

Cprogram> ::= <program heading> <block> . {
<module heading2>

<label declaration part>
<constant definition part>
“<type definition partd>
<variable declaration part>
<procfunc declaration part>
MODEND .

<program heading> PROGRAM <identifier> (<prog parms2> } i

MODULE <identifier> ;

<module heading>
<prog parms> ::= Lidentifier> {,<identifier>}

The sbove is identical to the standard with the additiqn of modules,
Refter to Chapter G.

108

Y

APPENDIX A:

Llatterd> 2:

<digit>

<special symboll

P
~h

identi

Lletter or digift>
<digit sequenceZ pr=

<unsigned integer>

<unsigned TealZ>

<unsigned numberz

ier>

<scale factor>

<sign>

<string>

Lconstant identifier> ::

Lconstant>

= LTletter:

Llaetter> |

<digit> {J{digit>}

$ <digit sequence>

<digit sequence>

{{letter orT

<digitd> !

<unsigned integer> .

<unsigned integer> .
E <scals factor>

<unsigned integer>

::= <unsigned integer>

= o+) =

1= ¢ <character> {<character>}’ |

Il

::= <unsigned number>
<sign>»<unsigned number>

<unsigned integer>

<identifier>

LANGUAGE SYNTAX DESCRIPTIOM
AT BICIDIEIFIGIH!I | JI
KIiLIiMINIO!PIGIR!S I T
UiviuWwixiy:!tztatitb ctd!
e {1 gthit1ilagilkiiiain/l
o fplgqitrisitleiv!iw!lxi
g § z | @ |
0 {12131 83851617181 % :
AIBICI!I!D!E:F (only allowed in HEX numbers)
= {reserved words are listed in appendix B}
+ = % 0/ =000
<=1 >= 41 vy vy
= 7 . ¥ oo b 3 5 7 % * §
{the following are additional or substitutions:}
(I Nt R LY TS Lo
(. is a synonym for [
.} is a synonym for 1]
\, and ? are synonyms
!y and | are synonyms
&

digit or unscore>}

<digit sequence>
<digit sequence>

E <scale factor>

<unsigned real>

<sign><unsigned

1 fr

-

integer>

109

Zconstant definition> ::=

LtypeZ

<type definition>

<simple typel

<type identifier>
<scalar typel> ::= (
<subrange type> ::=

<structured typeZ

<unpacked structured

<array type> Zi =

<{string array> i =

<max length> ti=

<inconst> T=

<int const id> =

<narmal array> L=

Lindex type> - =
<component typel ::=
<record type> : L=

<field list> =

<cons

tant identifier> H

<sign><constant identifier>

<stri

Liden

1= <simple ¢

<structur
‘pointer

1:= Lidentifi

1:= <scalar ¢t

<subrange
<type ide

<identifi

<identifier

<constant> ..

ng>
tifier> = <constant>

ype> H

ed type> |

type>

er>» = <type>
ype> :
type> :

ntifier>

er>
> 4, <identifier>})

<constant>

::= <unpacked structured type>
PACKED <unpacked structured type>

type> = <array type> |
<record typel> |
<set type> H
<file type>

<normal array> |

<string array>

STRING <max length>

L <inconst> 1 |

<Lempty>

<unsigned integer> |

<int const id>
<identifier>
OF

ARRAY [<index type> {,<index type>}]

<component type>
Lsimple type>

<type>

RECORD <field list> END

Lfixed part>
Lfixed part>: ;

<variant part>

110

-

<fixed part>

<record section>

{<variant part>

Lyariant>

<ctase label list>:
Lcase label>

Ltsg Tield>

<set type>
“base type>
<file type>

Lvarishle>

<external var>
<absolute var>»

{var>

Declaration
<identifier>

Zentire variablel

<variable identifier>

<component variable> ::= <indexed variable>

<indexed variablse>

<arrtay variablel

::= Lidentifier> : |

= Lvar>

<variant part>

Lempty>

<variant?> {;<variant>}

|
)

label list. : (L{field list>)
y>

ca
-2 M

ul
0

o
(3l

0

:= <Lcase label {,<case label>}

:= Lcaoanstant>

Lempty>

::= SET OF <base type>
1:= <simple typeZ

:= file {of <type>l}

L{external wvar> H
<absolute var>

::= EXTERMNAL <var>
::= ABSOLUTE [<constant> 1 <{var>

::= ZLentire variable> H
i
1

{component variable>
{referenced variable>

of variable of type STRING:

:= <record section> {i<record section>}

1= {field identifier> {:{FieHd identifier>}: <type>!

::= CASE <tag field> <type identifier> OF

1
'

{,<identifier>} : STRING {[<constant>1}

.= <yariable identifier>

Lidentifier>

<field designator>
<file buffer>

::= <array variable> [<Cexpression> {,<expression>}]

::= Zvariable>

111

<field designator> ::= <record variable> . <field identifier>

<record variable> ::= <variable>
<field identifier> ::= <identifier>
<file buffer> ::= <file variable>™
<file variable> ::= <variable>

Il

<referenced variable>::= <pointer variable>™

<pointer variabls> ::= Lvariable>

<unsigned constant> ::= <unsigned number> '
<string> H
NIL H

“<constant identifier>

{factor> ::= Zvariable>
<unsigned constant>
<function designataor>
(<expression>)

- m- m- m-

<logical not operator> <factor2

<set>
<set> ::= [<element list> 1]
Lelement list> ::= <element> {,<element>} H
Lempty>
{element> ::= Lexpression> H
“expression?» .. <expressionZ
<term> ::= <factor> <multiplying operator> <factor>
{simple expression ::= <{term>

<simple expression> <adding operator> <term>

<adding operator> <term>

-

<expressionZ %3 simple expression>
s

.
a
e

<simple expression>

<logical not operator> ::= NOT | \ | ?

imple expression> <relational operator>

N\ and ? is are NOT operators for non—Booleans.

<multiplying opérator> ::= % | / | DIV | MOD { AND { %

=

% is an AND operator on non—Booleans.

<adding operator> ::=+ | - ' DR ! | 1§ !

112

1o (g 2 ‘
* (synonym !} is an OR operator on non-Booleans.

~rvelational PPETSROTSY ==) £ 4 £ 0 L= 1 S ! = ! IN

{function designator® ::= <function identifier> H
<function identifier> (<parm> L, <parm>)

“function identifier> ::= <identifier>

Lstatement> ::= 41label> : <unlabelled statement> i
<unlabelled statement>

“unlabelled statement®::= <simple statement>
<structured statement>

“label> ::= <unsigned integer>

{Eimple statement> ::= <assignment statement>
' ' <procedure statement>
Zgoto statement>
Tempty statement>

P)

Lempty statement> ri= Lemptyl

<assignment ststement>::= <{variable> := <expression> i
<function identifier> := <{expression>

<procedure statement> ::= <procedure identifier> (<parm> {, <parm>})!

<procedure identifier>
<procedure identifier>::= <identifier>

<{parm> ::= <procedure identifier>
<function identifier>
<expression>?
<variableZ

<goto statement> ::= goto <label>

“structured statementl::= <{repetitive statement>
<conditional statement>
<compound statement>
“with statement>

- ms ==

<compound statement> ::= BEGIN <statement> {,<statement>} END

<conditional statement> ::= <case statement> :

<if statement>

“if statement> ::= IF <expression> THEN <statement> ELSE <statement> |
IF <expression> THEN <statement> :

"113

‘case statement> ::= CASE <expression> OF
<case list> {,<case list>}
{ELSE <statement>}

END

fease list> ::= <label list> : <statement> |
Lempty>

““1sbel list> 1= <case label® {,<case label>}

Il

{repetitive statement> {repeat statement>
<while statement?

{for statement>

]
L
i
1]

Zwhile statement> ::= WHILE <expression> DO <statement>

<repeat statement> ::= REPEAT <statement> {,<statement>¥> UNTIL
{expression>

“for statement> FOR <ctrlvar> := <for list> DO <statement>

<expression> DOWNTO <expression> |

Lfor list>

<expression> TO <{expression> :
<ctrlvar>z ::= <variable>
<with statement> ::= WITH <record variable list> DO <statement>
{record variable list> ::= <record variable> {,<record wvariablel}

I

EXTERNAL <procedure heading> |
{procedure heading> <block>..

procedure declaration>

“block> ::= {label declaration part’>
<constant definition part>
<{type definition part>
<variable declaration part>
<procfunc declaration part>
<{statement part>

{procedure heading> ::= PROCEDURE <identifier> <parmlist>
PROCEDURE <identifier> i
PROCEDURE INTERRUPT [<constant> 1 i

<parmlist> ::= (<fparm> {,<{fparm>})

{fparm> ::= <procedure heading> !
<function heading> |
VAR <parm group> i
<parm group>

]

<{parm groupZ> i Lidentifier> {:<identifier>}
<type identifier>

114

<identifier> {,<identifier>}
<conformant array>

<conformant array> 1= ARRAY

<indxtyp> L <indxtyp) 1 OF

<conarray2>

<conarray2> ::= <type identifier>

<conformant array>

<indxtyp> o= Lidentifier> ..

<identifier>

Tordtypidr - ::= <scalar type identifier> '
<subrange type identifier>

“label declaration part>

Zconstant definition part>

<type definition part

<wvariablie declaration part>::

<indxtyp>

Cordtypid>

<label declaration part>

Lconstant definition part>

<type definition part>

<variable declaration part>

I

Zempty> i

LARBEL <label> {,<label>} ;

Lempty> |
CONST
<constant definition>
{;i Cconstant definition} i

Lempty>
TYPE
Ltype definition.
{i<type definition>} ;i
<emptyr 1
VAR
<variable declaration>

<identifier>. . <{identifier> :

<scalar type identifier> |
<subrange type identifier>

<empty> i

LABEL <label> {,<labell} i
Lempty> !

CONST -

<constant definition>
{;<constant definition>};

<empty> i
TYPE
<type definition>
{; <type definition>} ;i
<empty> |
VAR
<variable declaration>
{i <variable declavation>}

<ordtypid>

Lordtypid>

115

<procfunc part>

<proc ar func>

<statement part>

<function decl>

<function headingZ::

<result tgp?)
<readcall>
<read or rteadln>
<filevar>
Tvarliist>
Lwritecall>

- {write or writeln>

<exprlist>

Lwexpr2

<width exﬁr}

<dec expr>

<program>

<program heading>
{module heading>

{prog parmsZ

e

I

i:= {<proc or, func> ;i 2}

::= ZLprocedure decliaration> |
p
<function declaration>

::= <compound statement>

::= EXTERNAL <function heading> |
<function heading> <blockZ>

FUNCTION <identifier>lparmlist>:<{result typelii
FUNCTION <identifier> : <result typeZ ;

<type identifier>
<read or readln> {({<{filevarZ ,) {Lvarlist>})2}
READ | READLN
<variable>
<variable> {, Ivarisble’}
write or writeln> {({<filevar> ,2» {exprlist))2
WRITE | WRITELN
Zwexpr> {,{wexprl}
Lexpression> {:<width expr> {:<{dec expr>}}
{expressionZ>
<expression>
<program heading> <block> . :
<module heading>
<label declaration part>
<constant definition part>
<type definition part>
<variable declaration part>
<procfunc declaration part>
MODEND .
PROGRAM <identifier> (<prog parm>) ;
MODULE <identifier> ;

Cidentifier> {,<identifier>}

116

APPENDIX B:

RESERVED WORDS

The following are the reserved words in ATARI Pascal

AND
ARRAY
BEGIN
CONST
CASE
oo

ATARI Pascal also has extended reserved words:

ABSOLUTE

DOWNTO cOTO NOT

ELSE IF OF

END IN OR

FILE LABEL PACKED
FOR MOD PROCEDURE
FUNCTIGN NIL PROGRAM

EXTERNAL PREDEFINED

RECORD
REPEAT
SET
THEN
10
TYPE

 — ————

UNTIL
VAR
WHILE
WITH

117

-)

APPENDIX C: ERROR MESSAGES

Recursion stack overflow: evalution stack collision with symbol table;
correct by reducing symbol table size, simplifying expressions.

: &

tw

10=

13

13:

i4:

153

16&:

Error is simple type
Self-explanatory.

Identifier expected
Self-explanatory.

‘PROGRAM’ expected
Self-explanatory.

)’ expected
Self-explanatory.

‘7 pxpected
Possibly an = used in a VAR declaratiaon.

Illegal symbol (possibly missing ‘i’ on line abave)
Symbol encountered is not allowed in the syntax at this point.

Error in parameter list
Syntactic =vror in parameter list declaration.

‘OF * expect=ad
Self-explanatory.

‘(' expected
Self-explanatory.

Error in type
Syntactic error in TYPE declaration.

‘L’ expected
Self-e2xplanatory.

‘1’ expected
Self-explanatory.

‘END’ expected

All procedures, functions, and blocks of statements must have an
‘END‘. Check for mismatched BEGIN/ENDs.

“;* expected (possibly on line above!l
Statement s=parstor required hsre.

Integer expscted.
Self—-explanatory.

= expected
Possibly a : vused in 2 TYPE or CONST declaration.

118

17

18:

1%

20:

20:

2z

S2:

23:

54

L5 b5

S&:

7 BF e

°9:

99:

101:

102:

‘BEGIN' expected
Self-ezplanatory.

Error in declaration part

Typically an illegal backward reference to a type in a pointer

declaration.

Error in <field-list>
Syntactic error in a record declaration

7, sxpected

Self-explanatory.

‘%’ expected
Self-explanatory.

Error in constant
Syntactic error in a literal constant

‘:=' expected

Self-explanatory.

‘THEN’ exp=cted
Self-explanatory.

‘UNTILY expected
Can result from mismatched begin/end sequences.

‘DO’ expected
Syntactic svror.

‘TO’ or ‘DOWNTO’ expected in FOR statement

Self-explanatory.

‘IF’ expected
Self-explanatory.

'FILE’ expected
Probably an error in a TYPE declaration.

Error in <factor> (bad expression)
Syntactic error in expression at factor level.

Error in variable
Syntactic error in expression at variable level.

MODEND expected
Each MODULE must end with MODEND.

Identifier declared twice
Name already in visible symbol table.

Low bound exceeds high bound

For subrange the lower bound must be <= high bound.

119

103:

104:

105:

106:

107:

108:

10%9:

11G:

113

112:

113:

114:

1152

116:

11°#:

1318:

Identifier is not of the asppropriate class
A variable name vused as a type: or a tupe used
a8s & variablie, etc. can cause this error.

Undeclared identifier
The specified identifier is not in the visible symbol table.

Sign not allowed
Signs are not allowed on non—integer/non—-real constants.

Number expected

This ervor can often come from msking the compiler totally
confused in an expression as it checks for numbers after all
other possibilities have been exhausted. '

Incompstible subrange types
{e.g. "A’.. ‘2" is not compatible with O..).

File not allowed here
File comparison and assignment is not allowed.

Type must not be real
Self-explanatory.

<tagfield> type must be scalar or subrange
Eelf-explanatory.

Incompatible with <tagfield> part
Eelector in a CASE-variant record is not compatible with the
<tagfield> fyps=e.

Index type must not be real
An array may not be declared with rteal dimensions

Index type must be a scalar or a subrange
Self-explanatory.

Base type must no% be rteal
Ease type of a set may be scalar or subrange.

Base type must be scalar or a subrange
Self-=xplanatory.

Error in type of standard procedure parameter
Self—-explanatory.

Unsatisified forward reference
A forwardly declared pointer was never defined.

Forward reference type identifier in variable declaration
You attempted to declare a variable as a pointer to a type not
yet declared.

119:

120:

130:
13%:

133

134:
139:

136:

fe—specified paramsters not OK for a forwsrd declared procedure
Self-ezplanatory.

Function result type must be scalar, subrange or pointer
A function has been declared with 2 string or other non—-scalar
type as its valuve. This is not allowed.

File value parameter not allowed
Files must be passed as VAR parameters.

A forward declared function’s rtesult type can’t be re—specified
Self-explanatory.

Missing rteswult type in function declaration
Self-explanatory.

Error in type of standard procedure parameter
This =2rror is often caused by not having the parameters in the

-proper order for built-in procedures or by attempting to

read/write pointers, enumerated types, etc.

Number of parameters does not agree with dsclaration
Self-explanatory.

I1legal parameter substitution
Type of parameter does not exactly match the corresponding formal
parameter.

Result type does not agree with declaration
When assigning types to a function result, the types must be
compatible. :

Type conflict of operands
Self—-explanatory.

Expression is not of set type
Self-explanatory.

Tests on equslity sllowed only :
Occurs when comparing set for other than equality.

File comparison not allowed)
File control blocks may not be compared because they contain
multiple fields unavailable to the user.

Illegal type or operand(s)
The operands do not match those required for this operator.

Type of operand must be Boolean
The operands to AND, OR and NOT must be BOOLEAN.

Set element type must be sralar or subrange
Self-explanatory.

137
138:

139
140:

141:

143:

144:

145:
14&:
147:
148:
149:
15G:

& 1581:

Set element types must be compatiable
Self-explanstory.

Type of variable is not array
A subscript has been specified on a non—array variable.

Index type is not compatible with the declaration
Occurs when indexing into an array with the wrong type of
indexing expression.

Type of variable is not record
Attempting to access a non—-record data structure with the ‘dot”
form or the ‘with’ statement.

Type of variable must be file or pointer
Occurs when an up artrow follows a variable which is not of type
pointer or file. 2l

Il1legal params=ster solution
Self-e2xplanatory.

Illegal type of loop control wvariable
Loop control variables may be only local non-real scalars.

Illegal type of expression
The expression used as a selecting expression in a CASE statement

LY
must be a non—-real scalar. (:i

Type conflict :
Case selector is not the same type as the selecting expression.

Assignment of files not allowed
Self—-explanatory.

Label type incompatible with selecting expression)
Case selector is not the same type as the selecting expression.

Subrange bounds must be scalar
Self—-explanztory.

Index type must be integer
Self-explanatory.

Assignment to standard function is not allowed
Eelf-explanatory.

Assignment to formal functicn is not allowed
Self-ezplanatory.

No such field in this Ttecord
Self-explanatory.

Type ertor in read '
Self-explanatory. (:)

122

154:
153
1564:
157:
158:

15%:

169:
170:
1712
172.

174:

183:

Actual paramster must be a wvariabie
Occurs when attempting to pass an expression as a2 YAR parameter.

Control variable cannct be formal or non—local
The control wvariable in a FOR loop must be LOCAL.

Multidefined case label
Self-=xplanatory.

Too many cases in case statement
Occurs when jump table generated for case overflows its bounds.

No such wvariant in this Tecord
Self-explanatory.

Real or string tagfields not allowed
Self-explanatory.

Previous declaration was not forward

: Again forward declared

Parameter size must be constant

Missing variant in declaration
Occurs when using NEW/DISPOSE and a variant does not exist.

Substitution of standard procedure/function not allowed

Multidefined label
Label more than one statement with same label.

Multideclared label
Declare same label more than once.

Undeclared label
Label on statement has not been declared.

Undefined Label

" A declared label was not used to label a statement.

Error in base set

Yalue parameter expected .
Standard file was re—-declared

queclared external file

Pascal function or procedure expected
Self—explanatory.

External declaration not allowed at this nesting level
Self—-explanatory.

123

167z

1 E:

19=:

194:C

201:

S97:

400:

401:

403:.

Attempt to open library unsuccessful
Self-explanatory.

Mo private files
Files may not be declared other than in the GLOBAL wvariable

section of a program or module because they must be statically
allocated.

Mot enough rcom for this operation
Self-explanatory.

Comment must appear at top of program

Error in real number — digit expected
Self-explanatory.

String constant must not exceed source line

Integer constant exceeds range
Range on integer constants are —-32768... 32747

Too many scopes of nested identifiers
There is a limit of 15 nesting levels at compile-time.
This includes WITH and procedure nesting.

Too many nested procedures or functions
There is a limit of 15 nesting levels at execution time.

Procedure too long
A procedure has generated code that has overflowed the internal
procedure buffer. Reduce the size of the procedure and try again.

Expression too complicated .

Your expression is too complicated (i.e. %too many recursive
calls needed to compile it). Reduce the complication using
temporary variable.

Too many FOR or WITH statements in a procedure
Only 1& FOR and/or WITH statements are allowed in a single
procedure (in recursive mode only)

Illegal character in text
A non—Pascal special character was found outside a quoted string.

Unexpected end of input
"End. " encountered before returning to outer level.

Errver in writing code file, not snough Toom
Self-explanatory.

Error in reading include file
Self-explanatory.

({ \

404:

S00:

Error in writing list file, not enough Toom
Self-explansiory.

Call not allswed in separate procedure
Seilf-explanatory.

Include file not legal
Self-explanatory.

Symbol Table Overflow
Error in closing code file.
An ertor occured when the .ERL file was closed.

Make more voom on the destination diskette and &try again.

A non—standard feature has been used when the T+ or W+ toggles
are enabled. This is a non—fatal information—only error.

e}

APPENDIX D: ATARI PASCAL FILE I/0

The
use
way
for

0

sections in this appendix describe ATARI Pascal files and how fto
them. Since working from an example will be the most effective

of describing these concepts, program exsmples have been included
each area of file handling.

The first section defines the terms used, such as "file,"
"window variable," and "TEXT."

The second section shows how to use =211 the file operation
procedures with examples. These include ASSIGN, RESET. REWRITE.

sequential file access procedures, CLOSE, etc.

The third section defines Pascal TEXT files. Sample programs
demonstrate the use of built—-in Boolean functions EDLN and EOLF,

READLN, WRITELN, formatted I/0, and writing to the prinfter.-

The fourth section presents some less frequently used file
operations.

-

(O

®

1, DEFINITIONS

Tﬁe terms and definitions included here are arranged to logically
discuss the concepts of files as you read through.

FILE

A file is data arranged in logical, equal-sized elements very much
like an open—ended array accessed via a pointer. The size and
arrangement of the data is controlled by your program. A file is
generally stored on a secondary storage medium. For the purpose of
this documentation, secondary storsge is assumed to be a diskette. You
may write data to a file or read data from a file using the file
operation procedures provided with ATARI Pascal. This data in the file
may be accessed sequentially (record 1 accessed before record 2,
record 2 is accessed before vtecord 3, etc), or directly.

FILENAME -

The filename is the name of the file on diskette. It is the name
displayed in the directory listing of the storage medium. In ATARI
Pascal the filename is represented in a program by a SETRING (a dynamic
sequence of ASCII characters). For example, "D2:TEST.FPAS" is the
filename in literal string format for the file located on drive "D2"
with the name of “TEST" and the extension of ".PAS".

TYPE
The type of file defines the size and format of the individual file

elements, the smallest accessible units of a file. For example, a file
of type INTEGER (2 B-bytes) may be visvalized as:

+— —+— ———————————— F————— e Fm—————— Fm———————— +
1000010001 0000G00DG 100100001 100000001 100000001 1 00000000
+——— +—— —————— —t————— e — ———————— +
{ rTecord O H record 1 : Tecord 2 H

This file contains the integers 8,33,and 1 (stored inverted in this
sample). The smallest retrievable element iz two byftes. Eee the
explanations of untyped files or byte files it you want to treat this
file differently than a file of integers. Files may be of the standard
Pascal scalar types: BOOLEAN, INTEGER: CHAR, or REAL. Files may also
be of the structured types STRING, arrays:, and records. The predefined
type TEXT is used for ASCII files. Text files are similiar to FILE of
CHAR except that they are subdivided into lines, and numbers written
to them are converted to ASCII (and may be -formatted), and numbers
read from them are converted to binary. A line is a sequence of
characters terminated by an end-of-line character: which is vsuvally a
carriage return/line feed. Also., unlike FILE of CHAR, TEXT files will
accept PACKED ARRAYL1..N] OF CHAR or ARRAYC1..Nl OF CHAR (writing an
UNPACKED ARRAY is not IS0 standard), and STRINGE as data. A Boolean
value is converted to the ASCII szequence "TRUE"™ or -"FALSE" on write
but the reverse is not true. For further expianations on typed and
text files, see the operations section.

A non—1S0 standard concept regarding files is the UNTYPED file. This
concept is uvsed for fast block input and ocutput (entire sectors are
read or written) regardless of the kind of data contained in the file.

FILE INFORMATION BLOCK (FIB)

The FIB contains information necessary for the run—time routines to
perform file operations on a disk file. The filename, the type of the
file, the access type (read or write), end—of-file and end—of-line
flags, and a diskette buffer (the size of one diskette sector) are
among the kinds of information kept in the FIB.

WINDOW VARIABLE OR WINDOW POINTER

The window variable is a buffer the size of a file element and is
located just past the FIB in ATARI Pascal. A way to think of it is
that it moves along the file and acts as @ ‘window’ to the element of
the file to be read or written. For this Teason, it is considered a
pointer to the +file element being accessed. It is denoted as "F~"
where "F" is the name of a file variable. To read from a file, the
element which is accessible is moved to the window variable. To write
to a file, the da%ta must be transferred from the window variable to
the file.

FILE VARIABLE

The file variable consists of a FIB and @ window variable. It is tﬁe
actual data item allocated by the compiler and referenced in a Pascal
program. An example will clarify what a file variable is, as well as
what the FIB and window variable are. The statement, "VAR F : FILE

OF INTEGER:; " causes the compiler to create a file variable F with its
own FIB in the data area and its own window variable (2 bytes) to hold
a 16-bit integer. The window variable is denoted by F*. Suppose "I" is
an integer in the same program and has the wvalue 2. Suppose also that
the file already contains the value 1 in the first element as below:

+ + ——— —t———————— | F————————— +
100000001 100000000 § H i H H
+—— ——— —_—— ——t———————— Fom—m—————— Fm———————— +
Fm e ——— Fr———————— Fm—————— +
i FIB 1 100000010:00000000¢ window variable
o e Fm——————— +

To write the contents of I to the file, the window variable must
contain 2 (F” := I puts the contents of I into the window variable)
and be "positioned" over the second element of the file. Given the
command PUT(F) described in the operations section. the number 2 is
written to the file.

par)
=

[
(o4

C

2. FUNDAMENTAL FILE OPERATIONS

Sample programs and explanations demonstrate the use of file operation
procedures in ATARI Pascal. You will see how to open, create, read.
write, delete, and close files. Demonstrated also are the use of typed
and text filesi the file status functions IORESULT, EOF, and EOLN; and
how to assign to a window variable.

Figure D-1 lists a program named WRITE_READ_FILE_DEMO that creates a
typed file on diskette, writes dats to the file, closes the file, then
re—opens the file to read the data back. The procedures used to
perform these are ASSIGN, REWRITE, RESET. IDORESULT., PUT, GET., and
CLOSE. WRITE is used to display the results on the ferminal. The
output work is done in WRITEFILE and the input work is done in
READFILE. Creating, opening, and closing the file is done in the main
body of the program.

The WRITELN statements on lines 37, 43, 44, and 49 write the string
passa2d to them to the default OUTPUT file (the console). This
precsdure and READLN are discussed later in this section under TEXT
files.

First note the form of the declaration of OUTFILE. It is declared to
be of type CHFILE:, which is defined as a FILE OF CHAR in the TYPE
declaration section (lines 3 and 4). This is done because the file is
passed as a parameter to the WRITEFILE and READFILE rouftines and a
parameter list cannot declare a new type. For example, the following
parameter declaraction is illegal in Pascal because only type
identifiers are allowed in a parameter list:

PROCEDURE WRITEFILE(VAR F : FILE OF CHAR)i

1 0 PROGRAM WRITE_READ_FILE_DEMD;

2 0

3 0 TYPE ' -

L 1 CHFILE = FILE OF CHAR;

S 1 VAR

1) 1 OUTFILE : CHFILE:

7 1 RESULT : INTEGER;

8 1 FILENAME: STRINGL1&61;

9 1 .

10 1 PROCEDURE WRITEFILE(VAR F : CHFILE);
11 1 VAR CH: CHAR; /

12 2 EEGIN

13 2 FOR CH:= ‘0 TO “9‘ DO

14 2 BEGIN

15 3 F~ := CH; (#CHR(I + ORD(‘Q7")); %)
16 3 PUT(F)

17 3 END;

18 2 END;

19 1 ;

20 1 PROCEDURE READFILE(VAR F : CHFILE};
21 1 VAR I : INTEGER;

2 2 CH : CHAR;

HFDWWWWOWWWWMNMNMMNNMN R = e = =D WWLWWwNn MM

BEGIN
FOR I : O TO 2 DO
BEGIN
CH := F~i
GET(F);
WRITELN(CH);
END;
END:;

BEGIN
FILENAME := ‘TEST. DAT‘;
ASSIGN(OUTFILE, FILENAME);
REWRITE(OUTFILE);
IF IORESULT = <> O THEN
WRITELMN(‘ETror creating ‘,FILENAME)
ELSE
BEGIN
WRITEFILE(OUTFILE);
CLOSE(OUTFILE, RESULT);
IF RESULT = <> 0 THEN
WRITELN(‘Error closing ‘, FILENAME}
ElL.SE :
BEGIN :
WRITELN(‘Successful close of ‘,FILENAME);
RESET(QUTFILE);
IF IORESULT = <> O THEN
WRITELN(’Cannot open ‘.FILENAME)
ELSE
READFILE(QUTFILE)
END;
END; .
END. - = EEEE SEs w—a

Figure D-1: File Input and Output.

130

=

O

FROCEDURE. ASSIGN(YAR F: FILE YARIABLE; STR : STRING);

Purpose: Associate the file wvariable F with an external file on
diskette mamed in STR.

ASSIGN is the first file operation to be executed in line 34. This
procedure associates a file variable (OUTFILE) with an external file
on a disk=tte given in FILENAME (in this case it is "TEST. DAT"). The
string pessed to ASSIGN is placed into the FIB and the name is
interpret=2d. After 2zecuting the ASSIGN procedure, the file variable
passed ta the ASSIGN procedure is always associated with the diskette

file named in the name paramester until, or unless, another ASSIGN is
done to the file variable.

PROCEDURE REWRITE(YAR F : FILE WARIABLE):

Purpose: Create a file on diskette using the name in the FIB (either .
filled irm by the ASSIGN sistement previously or null (if null, a
temporare file is created.).

The REWRLITE procedure is called in line 35 of Figure D-1. Executing
this procedure causes the creation of a file with the name contained
in the FIB of F. Any existing files by that name are deleted so
NEVER use REWRITE on a file which contains usable data. In this
example, tThe file on diskette will be named “TEST.DAT" and is located
on the default diskette (because no other diskette was specified in
the file name string passed to ASSIGN).

If no previous ASSIGN had been performed, the name field of the FIB is
empty and a temporary file is created with the name "PASTMPOO. $%%. "
Temporary files are generally used for scratch pad memory and data
which is not needed after execution of the program. The digits at the

last two positions in the name are used to give each temporary file a
unique name.

The EOF function and the EOLN function return true because OUTFILE is
an output file. DUTFILE is open only for writing sequentially and is
ready to rteceive data into its first element. If the operation is not
successful, the ICRESULT function returns a non zero in this case (see
line 36).

FUNCTION IORESULT : INTEGER:;

Purpose : Return the integer value indicating status of file
aperation.

The value of this function is set after any input or output operation
and may be checked at any time. Note in Figure D-1 it is called after
each file operation in lines 34, 42, and 44&. It is used here to stop
the program if a file operation did not work as planned. Note that you
cannot "WRITE(IORESULT)" because IDRESULT is reset to O after each I/0

operation. The meaning of the wvalues teturned by IORESULT is presented
in Chapter 3.

131

(“_\

PRCCEDURE PUT(VAR F : FILE VARIABLE);

Purpose :_Transfer the contents of the window wvariable associated with
r to the next available record in the file.

Procedure WRITEFILE, beginning on line 9 of Figure D—-1, writes the
characters "0O" to "“9" to the TEST.DAT file. The PUT procedure causes
the data to be written to the file. Always before executing a PUT., an
assignment is made to the window variable as in line 15. Following is
a diagram of what is occurring:

100110000! Window variable after assignment (line 15) and CH is equal
dhereses + to ‘0.

Fm——————— Fm——————— Fm—m———— Fm———————— Fm—————— Fm——————— +
H : H H H H M e s ek 2
t——————— Fm————— e —————— Fm——————— F———————— Fm——————— +
File before any PUT statement is executed.
Fm——————— +
1001100001 Window variable after PUT in line 16&.
e ———— -
F——————— o ——— Fm————— F——————— Fm—————— Fm——————— +
1001100001 H i H H bt o B T e e
Fm——————— Fm—————— Fm——————— e o ——— Fm——————— Fm——————— +

File after the first PUT is executed in the FOR loop in Figure D-1
lines 13 through 17.

PROCEDURE WRITE;

PRODEDURE WRITE(expression,...,expression);
PROCEDURE WRITE(VAR F:FILE VARIABLE, éxpression;...,expression);
Purpose : Shorthand for 'F* := data; PUT(F); * also performs

conversions to ASCII on numbers when F is a TEXT file.

Expression includes contents of variables, strings, array elements:
constants: and expressions. When a file variable is not specified,
the default OUTPUT file is assumed. The WRITE procedure does the same
operations on the file as lines 15 and 16. It executes an assignment
followed by a PUT and is merely a shorthand version. GET and PUT are
provided because the ISO standard requires them and in some versions
of Pascal, such as UCSD Pascal, WRITE can only be used on TEXT files.

PROCEDURE CLOSE(VAR F : FILE VARIABLE; RESULT : INTEGER)i

Purpose : Flush the buffer in the FIB associated with F so all data is
written to the diskette.

The next statement to be executed after returning from WRITEFILE is
line 41, where the file is clcsed. "CLOSE must be executed to assure
that the data written to "TEST. DAT" is actually saved on the diskette.
Up until this point the data is written to the buffer in memory and
now must be saved by flushing the buffer. RESULT is the value returned

132

by the Operating System indicsting whether the close is successful. It
is included as a parameter to maintsin compatibility with previous
versions of the compiler. In this program a value of non zero means an
error closing the file, and any other value indicates success.

PROCEDURE RESET(VAR F : FILE VARIABLE);

Purpose : Open an existing file for reading. The window variable is
moved to the beginning of the file.

After checking RESULT, the procedure RESET is called in line 47.

RESET opens an existing file for rteading and tTesets the window
variable to the beginning of the file. F™ is assigned the first
element of F. If F is already open, RESET calls CLOSE. EOF and EOLN
return FALSE. If a RESET is done on a file that does not exist,
IORESULT contains a non zero. All other values of IORESULT indicate
success. In the sample program, OUTFILE is opened by the RESET
procedure so0 that it may be read. Below is a3 diagram of the file and
window variable after the RESET is executed in line 47. Note that with
non—computer console typed files, such as OUTFILE, the procedure RESET
does an initial GET. which moves the first element of the file (in
this case the ASCII value for the number 0) into the window variable.

10C116000100110001:i100110010100110011100110100:001101011....
F——————— e ————— Fm—m—————— Fom Fm—————— e +

The initial GET is not performed on console files or untyped files.
You would always have to type a character before your program could
execute, because the GET procedure is waiting for a character. = -~

-

PROCEDURE GET(VAR F : FILE VARIABLE): v

Purpose : Transfer the currently accessible record to the window
variable and advance the window variable.

After checking that the RESET procedure is successful, procedure
READFILE is called in line 51. This procedure rteads each element of
the file passed to it (in this case the =lement is a character? and
writes that element to the screen. READFILE begins on line 20. The
work is done in the FOR loop of lines 24 through 29.

The GET procedure advances the window variable by one element and
moves the contents of the file pointed to into the window variable.
If no next element exists, EOF becomes TRUE. See Section 3 on TEXT

" files for more details on GET and. TEXT files. The diagram below

describes what is happening within the FOR loop on lines 26 and 27 the
first time through the loop.

133

U

o ————— + .
i00110000! Window variable (OUTFILE) after line 26

P i +
e Fo——— S e i R A +
100110000:00110601:00611001C:00110011!00110100:001101011. ..
P e F—————— e ——— F———————— e e *

After executing line 26, CH contains the ASCII for O (00110000).
After executing line 27, the window variable is advanced.

+

1001100611 Window variable after GET in line 27.

F———————— +
B e —————— F———————— Fm——— e —————— fm——————— +
100116000:00110001:00110010:{00110011100110100:00110101. ..
Fm———————— + + ¥ ———— - 4 +

Line 28 writes the contents of CH to the default output file which is
the computer console. Procedure READFILE displays the characters "O"
through "9" in a column on the computer console. Calling CLOSE after a
RESET is not necessary in the sequential case, because the file
aiready exists on the diskette and has not been altered in any way. If
OUTFILE is accessed randomly, a CLOSE might be necessary.

PROCEDURE READ(data, data,....datal;

PROCEDURE READ(YAR F : FILE VARIABLE , data, data, ..., datal:
Purpose: When used with non—computer console files execute "data :=
F~i GET(F);" for each data item read. When used with computer console
files., execute “GET(F); data :=F~". If F is not specified the default
INPUT file is us=d. See the section on TEXT files for information on
conversions.

The READ procedure is the same as an assignment and a call to GET. If
READ is used rather than GET in the current example, the FOR loop body
would look like this:

FOR I := 0 70 9 DO
BEGIN
READ(CH);
WRITELN(CH?}
END;

Reading past end—of-file on computer console input results in a system
crash.

134

i TEXT FILES
DEFINITION

A TEXT file is a file of ASCII characters subdivided into lines. A
line is a sequence of characters terminated by a nonprintable
end—of—line indicator, usually a carriage return and a line feed
character. It is similar to a file of CHAR except that automatic
conversion of numbers is performed when they are read from and written
to the file. Also, wvariables of type STRING may be tead from a text
file and BOOLEANs:, STRINGs, and PACKED ARRAYs may be written to text
files. Access to a TEXT file is via GET and PUT for character I/0
(which do not do conversions), READ and WRITE, which have been defined
earlier in this section, and READLN and WRITELN, .which are used in
Figure D-2 and defined in this section.

The format of a TEXT file in memory is a FIB and a 1-byte window
variable. On diskette, the file looks like the sample below in which a

carriage return is represented by ">", linefeed by “/" and end of file
bg ll#- L1}

e —————————————————————— s

This is a 1ine>»/This is the next line>/This is the last linel/#

(s ot i P e, Y . S S o P i s e e et e S s it e st g e e S B ot i e i G N 40 o AR +

FUNCTION EOLN : BOOLEAN;
FUNCTION EOLN(VAR F : TEXT) BOOLEAN;

Purpose: Indicate the state of the file be returning true only when
the window variable is over the end-of-line character. When no file is
specified the default INPUT file is assumed.

This function returns true on diskette text files when the last valid

character on a line is rtead using a READ statement. Because the
sequence of statements for a READ (on non—computer console files)
is “CH := F™~; CGET(F)i; ", the window variable is positioned over the

end—of—line character immediately after the last character is read.
Thus, EOLN returns TRUE on NON-COMPUTER CONSOLE TEXT files when the
last character is read . Also, a BLANK character is returned instead
of the end-of—line character. The above sequence is teversed on
computer CONSOLE files (READ is an initial call to GET followed by an
assignment from the window variable). When you use computer CONSOLE
files, EOLN will return true after the carriage return / line feed is
read instead of after the last character as in disk files. A blank is
still returned in the character.

FUNCTION EOF;
FUNCTION EOF(VAR F : FILE) : BOODLEAN;

Purpose: Indicate the state of a file by Teturning frue only when the

window variable is over an end-gf-file character. When no file is
specified, the default INPUT file is assumed.

135

EDF is a function that returns true when the end-of-file character is
read. It is similar to EOLN in that the last character read will set
EDF teo true on MNOM-COMPUTER CONSOLE files. On computer CONSOLE files
EOF is true only when the end-of-file indicator is entered. Reading
past end—of-file on computer console files is not supported (the
system can crash). Reading past the end of the file on diskette files
is not supported. A blank is teturned by the window variable when EOF
is true. Also, note that on non-text files, EOF may not become true at
the end of the valid data because the data may not fill up the entire
last sector of the file.

Figure D-2 is a program that writes data to a text file and reads it
back %o be displayed on the output device. The procedure WRITEDATA
actually writes to the TEXT file and the procedure READDATA retrieves
the information stored in the file. The program is divided into a main
body and two procedures to demonstrate the usefulness of breaking up
code into blocks that perform certain functions. This method makes
code much easier to read and debug.

The file is declared in line 3. Note that the declaration is NOT
"WAR F : FILE of TEXT". TEXT is treated as a special version of FILE
of CHAR: so FILE of TEXT translates to FILE of FILE of CHAR
{nonsensical).

The program begins execution on line 25 with a call to the ASSIGN
procedure. Lines 25 through 29 create a TEXT file named TEXT.TST on.
the logged—in drive. If the file creation is successful, then the
sample data is initialized in lines 31 and 32, followed by & call to
the WRITEDATA toutine in line 33. WRITEDATA uses the WRITELN
procedure:, which is only used with TEXT files.

PROCEDURE WRITE;

PROCEDURE WRITELN:;

PROCEDURE WRITELN(exprT,expT:...exprT)i
PROCEDURE WRITELN(F); '
PROCEDURE WRITELN(F, exprT,expr,...expT)i

Purpose: Put ‘the data into the file associated with F, =nding the
output with an end—-of-line character. If no file is specified the
expressions are written to the OUTPUT file. A WRITELN with no
expressions merely outputs a carriage return / line feed. The WRITE
procedure is redefined as a conversion rather than a replacement faor
PUT.

This procedure writes the data passed to it to the file named, placing
an end—of—-line character after the last item of data written. If no
file is named, the file is written to the default OUTPUT file. Data
may be literal and named constants, integers. rteals:, subranges,
enumerated, Boolsans, strings, and packed arrays of characters, but
may not be structured types such as records. Numeric data is converted
to ASCII and strings are treated as arrays of characters (the Iength
byte is not written to the file).

136

(O

Formatted Output

In Figure D-2 three lines that make up the body of WRITEDATA (9, 10,
and 11) do the actual file output. Line ? sends the contents of the
variable string S followed by a carriage teturn /7 line feed to the
TEXT file F. Line 10 formats the contents of I in a field of four
spaces and sends this formatted output to the file F. The real number
literal in line 11 is formatted into a field of nine spaces, four of
which must be to the right of the decimal place. This formatted number
is then written to the file F. The field format may be specified for
any data type. For non—-real numbers only the field width is specified,
not the number of places after the decimal point. The data is right
Justified in the field. If a number is larger than the 4.5 significant
digits can represent, the output is always expressed in exponental
notation. Also, if the field width is too small to express the number
it is written in exponential notation. For further information on
formatting consult a Pascal textbook and experiment.

The body of the WRITEDATA procedure could have been written as follouws
with the same tTesults.

WRITELM{(F.,S);
HRIT?LN(F.I:4. 45. 46789 : ? : 4)i

Control teturns to the main body of the program and line 34 is
executed. If the CLOSE is successful, the RESET in line 3% opens the
file F (which is still associated with "TEXT. TST" on the diskette),
moving the window variable to the beginning in preparation for reading
data from the file F. Following a successful RESET:, the procedure
READDATA is called to tead back the information placed in “TEXT. TST"
and display it at the computer console.

R

S0 00] O Cn R G e

Pb ped ek e
WNHQ

-
A

|l

D) NI b ek
Q00N>

n
W

n

non
~N e

n

WWLWWWUWWLWWN
itg&gﬂ]ﬂtbu1b(ﬂﬁdh‘0-0

n

LA P HM
cororupb

Nest

COFRNWLWMWWLWNNMNMNMNDNMDM= e =t =DM - =DM e Q00

Source Statement
PROGRAM TEXT1C_DEMO;

VAR F : TEXT;
I : INTEGER;
€ : STRING;

PROCEDURE WRITEDATA;
BEGIN

WRITELN(F, S);

WRITE(F. I:4);

WRITELN(F, 45. 678%9:%:4);
END:

PROCEDURE READDATA;
YAR R : REAL;
BEGIN
READLN(F, S);
READ(F, I);
READ(F,R);
WRITELN(S);
WRITELN(I: 4, " “,R:9:4)i
END;

BEZIN
ASSIGN(F, ‘TEXT. TST 7);
REWRITE(F);
IF IORESULT <> 0 THEN
WRITELN(‘Error creating’)
ELSE
BEGIN
I := 35
S := ‘THIS IS A STRING‘;
WRITEDATA
CLOSE(F, 1);
IF IORESULT <> O THEN
WRITELN(’Ertor closing”’)
ELSE
BEGIN
RESET(F};
IF IORESULT <> O THEN .
WRITELN(‘Error opening ‘)
ELSE
READDATA;
ENDi
END;

Normal End of Input Reached

Figure D-2 Text Files

138

PROCEDURE READ;

PROCEDURE READLN;

PROCEDURE READLN(F);

PROCEDURE READLN(F, wvariable, wvariable,...,variable};

Purpose: Read from the Ffile associatsd with F into the wvariables
listed. In all cases, read until an end—of-line character is Found,
skipping any unread data, and advance to the beginning of the next
line. READ is vedefined to perform conversion of rveals, Eooleans, and
integers.

READLN, like WRITELN, has as parameters an optional file variable and
any number of variables to receive the data from the file. If the file
variable is not specified, input is taken from the default INPUT file,
the keyboard. The variables in the parameter list are the same type as
the data being r=2ad from the file. However, no type checking is done,
so it is up to you to construct a parameterlist compatible with the
format of your file. Any numbers are converted on input but the
formatting is lost. Numbers must be separated from =ach other and
other data types by a blank or a carriage return line feed.

READLN recognizes but does not transmit the end—of—-line character. The
action is to read data until it encounters an end-of—-line and
character. The action is to read data until it encounters an
end-of-line and advance the window variable to the beginning of the
next line. The data in "TEXT. TST" looks like the following:

THIS IS A STRING>/
3% 45. &7B9%/%

After Teading the string in the first line to read the integer 35, you
must use READ and not READLN. If a READLN were used here, the 35 would
be read properly because the first blank terminates the number.
However, the window variable would be advanced past the real number to
the end of the file. Then, if you try to rTead the real, all one gets
is EOF, and then you wonder what happened to the real number known to
be out there.

STRINGS must always be read with a READLN because they are terminated
with end-of-line characters. If the data to the file had been ‘THIS
IS A STRING 35>/‘, the value tTeturned for S would be the entire line,
including the ASCII 35. '

Lines 20 and 21 write the data to the computer console in the same
format as it is contained in the file.

After executing READDATA, the program is finished. A CLOSE is not

necessary because the data in "TEXT. TST" is not altered in any way
since the last CLOSE on that file.

139

Writing to the Printer

Writing to the prinfter is very simpie. as demonstrsted in Figure D-3.
A file variable is declared to be of type TEXT as in line 5 of Figure
D-3. This File variable is ASSIGNed to the printer in line 11. The
filename ‘P: passed to ASSIGN means that F is to be associated with
the list device so0 that all data written to F is routed to the
printer. REWRITE is called to open the list device for writing. Note
that a CLOSE is not necessary since the data has already been written
and the buffer does not need to be flushed. Lines 23 and 25 use
standard Pascal formatting directives. In line 23, R is to be written
in a field seven characters long, with three digits to the right of
the decimal place.

Statement Nest Source Statement
1 0 PROGRAM PRINTER;
2 O (#WRITE DATA AND TEXT TO THE PRINTER #)
= o
4 o} VAR
S 1 F : TEXT:
& 1 I : INTEGER:;
7 1 S : STRING;
8 1 R : REAL;
? 1
10 | BEGIN
i1 i ASSIGN(F, “P: “)i
i2 1 REWRITE(F);
13 1 IF IORESULT <> 0 THEN
14 1 WRITELN(‘Error rewriting file‘)
i5 1 ELSE
16 1 BEGIN —-
17 2 S := ‘THIS LINE IS A STRING’;
i8 2 I := 55i
19 2 R := 3. 141563;
2 2 WRITE(F,S);:
21 2 WRITE(F.I);
22 2 WRITELN(F)i
23 2 WRITELN(F,R: 7:3}i
24 2 WRITE(F, I,R);
25 2 WRITE(F, I:4,R:7:3)i
26 2 WRITELN(F);
27 2 WRITELN(F, ‘THIS IS THE END. 7}
28 2 END
29 0 END.
29 0 —e————— — -
29 o Normal End of Input Reached

Figure D-3 Writing to a Printer and Number Formatting

140

4. MISCELLANEOUS FILE RDUTINES

A sample program is not provided for the following routines.
PROCEDURE OPEN (F: FILE WVARIABLE, TITLE : STRING VAR RESULT
INTEGER); ;

Purpose : Identical to the sequence ‘ASSIGN(F,TITLE) i RESET(F); ‘.

PROCEDURE CLOSEDEL (F : FILE VARIABLE; VAR RESULT : INTEGER);

Purpose : Close file F and delete it. Used with temporary files.
Exactly the same as CLOSE followed by PURGE.

PROCEDURE PURGE (F : FILE VARIABLE);

Purpose : Deleste the file associated with F from the Diskette. An
ASEIGN must be exscuted sometime before the call to PURGE so that the
file control block for F centsins the name of the file to be deleted.
On some operating systems, the file may be required to be closed
before this procedure can function properly. In this case CLOSEDEL is
a vuseful procedure.

141

APPENDIX E: BIBLIOGRAPHY

Grogono, Peter, Prooramming in Fascal , Addison—Wesley, Reading.
Massachusetts, 1978.
A good introduction for self-teaching.

Wilson: I.R, and Addyman. A.M, A Practical Introduction to Pascal
Springer-Verlag, MNew York, 1979.
An advanced textbook

Jensen: Katheleen, and Wirth. Nikiaus, Pascal User Manual and
Report ., Springer-Yerla, New York. 1974.)
First definition of Pascal. Best used as a8 reference document.

"Draft Propocsal ISO/DP 7185 Praogramming Languages—Pascal®
Not designed for the novice. A precise language definition.
May be obtained from American National Standards Institute,
International Sales Dszpartment,

1420 Broadway

New York: New York 10018

Findley, William, and Watt, David A., PASCAL: An Introduction to
Mzthodical Programming » Computer Science Press, Potomac, Maryland,
1978.

Conway, Richard, Gries, David, Zimmerman. E. Carl, A Primer on
Pascal Winthrop Publishers, Cambridge, Massachusetts, 19276&.

Miller: Alan R., Pascal Programs for Scientists and Engineers’
Sybex, Inc.. Berkeley, CA., 1981.

De Re Atari, "A Guide to Effective Programming", APX-%20008

ATARI 400/800 Disk Operating Sustem II Reference Manual., C016347

ATARI 400/800 BASIC Reference Manual, CO015307

’

142

C

APPENDIX F: Player/Missile Demo Program

The Player/Missile Demo program may be entered using the ATARI
Program—Text Editor and used as an example for modular compilation and
use of the built—in graphics and sound procedures. Compile each of the
modules separately (PMDEMO, PMMIS, PEEKWPOKE, PMSND). Then link these
modules together slong with the Graphics and Sound Library (GRSND).
When the linker responds with the asterisk repond with the following:

D2: PMDEMO, D2: PMMIS, D2: PMSND, D2: PEEKPOKE, GRSND, PASLIB/S
Once linked tog=sther you maﬁ execute the program using the "Run"

command. A Joustick is required to move the player and fire tThe
missile.

143

O

PROGRAM PLAYER/MISSILE (INPUT, OUTPUT);

(#

This program, written in Pascal, demonstrates the player/missile
capabilities of ATARI Pescal. It is based on the player/missile
demonsiration program written in BASIC. Error checking has been
implemented so that the player does not cause system crashes when it
goes off the screen. The player is held just off the visible screen
until the input From the joystick changes its position to a point on
the visible screen. In addition a visible missile will be fired when
the button on the joystick is pressed. Also implemented are sounds
associated with the movement of both the player and the missile.

Four modules must be compiled separately and then linked together to
form the executable object file. These modules include PMSOUND

(D2: PMSND. PAS), PEEKPOKE(D2: PEEKPOKE. PAS), PMMISSILE(D2:PMMIS. PAS) and
program player/missile (D2:PMDEMO. PAS).

The executable file is D2:PMDEMOD. COM and can be run by typing "R" in
the Pascal monitor. A joystick is required for program execution.

The player will r=spond to the joystick by moving vertically,
horizontslly, snd diagonally. The missile is fired by pressing the
button on the joystick. Both the player and the missile may be moving
simultaneously.

3#) .

TYPE

SCRN_TYPE=(FULL_SCREEN, SPLIT_SCREEN);
CLEAR_TYPE=(CLEAR_SCREEN, DO_NOT_CLEAR_SCREEN)};

VAR
PMBASE, (*PLAYER-MISSILE BASE ADDRESS#*)
X, (#PLAYER AND MISSILE HORIZONTAL POSITION#*) -~ ~
Y: (#PLAYER VERTICAL POSITION:)
MISY, (#MISSILE VERTICAL POSITION#*)
A: INTEGER;
FIRED: BOOLEAN; (=#FLAG SET TO TRUE WHEN MISSILE FIRED, RESET WHEN
y MISSILE HAS MOVED OFF THE TOP OF THE SCREEN3)

EXTERNAL PROCEDURE INITGRAPHICS(MAX_MODE: INTEGERY);

EXTERNAL PROCEDURE GRAPHICS(MODE: INTEGER; SCREEN: SCRN_TYPE; CLEAR:
CLEAR_TYPE); : '

EXTERNMAL PROCEDURE SETCDQUR(REGISTER.HUE:LUHINANCE:INTEGER):
EXTERNAL PROCEDURE SDUND{VDICE,PITCH:DISTORTIDN.VdLUNE:INTEGER)i
EXTERNAL FUNCTION STICK(STKNUM: INTEGER): INTEGER:

EXTERNAL FUNCTIDN STRIG(STKNUM: INTEGER): INTEGER:

EXTERNAL PROCEDURE MAKENOISE; (#IN MODULE PMSOUNDs3t)

144

EXTERNAL PROCEDURE BIGBANG; (%IN MODULE PHMISSILE#)

EXTERNAL PROCEDURE MOVEMISSILE; (#IN MODULE PMMISSILE#)

EXTERNAL PROCEDURE POKEBYTE (ADDR, VAL: INTEGER); "

EXTERNAL FUNCTION PEEKEYTE(ADDR: INTEGER): INTEGER: (#IN MODULE

PEEKPOKE#*)

PROCEDURE SETPLAYER;

(#IN MODULE PEEWPOKE#*)

(#SETPLAYER initializes the player by first clearing out the player’s

section of memory and then initializing that memory with the proper

values so that the player takes on the shape printed below. %)

VAR 1: INTEGER;
BEGIN

(#*CLEAR PLAYER AREA IN MEMORY#)
FOR I:=PMBASE+512 TO PMBASE+&40 DO POKEBYTE(I., Q);

POXEBYTE(704, 168);

(#SET PLAYER COLOR TO PURPLE#*)

(#INITIALIZE PLAYER AREA WITH MISSILE SIZE, SHAPE%)

1: =PMBASE+512+Y;

POKEBYTE(I, 153); (#PLAYER WILL LOOK LIKE THIS: #*)

I:=I+1;
POKEBYTE(I, 189);
I:=1I+1;
POKEBYTE(I, 255};
I:=I+1; '
POKEBYTE(I, 1B%9);
I:=I+1;
POKEBYTE(I, 153}
END;

PROCEDURE MOVERIGHT:

{3
(3
(3
(3
(%

*)
#)
*)
*)
#*)

(#MOVERIGHT moves the player to the right on the screen by
incrementing the player’s horizontal position register.*#)

BEGIN

IF X<214 THEN BEGIN (*MOVE RIGHT ONE COLOR CLOCK#*)

X:=X+1; (#INCREMENT*)

(#POKE NEW VALUE INTO HORIZONTAL POSITION REGISTER#*)
POKEEBYTE (53248, X)

END (#ELSE HOLD STILL,

END;

PROCEDURE MOVELEFT;

JUST OFFSCREEN AT RIGHT:)

(#MOVELEFT moves the player to the left on the screen by decrementing
the player’s horizontal position register. i)

BEGIN
IF X>40 THEN BEGIN

X:=X—-1; (#DECREMENT3)

(#¥*MOVE LEFT ONE COLOR CLOCK=#*)

(#POKE NEW VALUE INTO HORIZONTAL POSITION REGISTER#*)
POKEBYTE (53248, X) ’

END (3#ELSE HOLD STILL.

EMND;

JUST OFFSCREEN AT LEFT3*)

145

O

PROCEDURE MOVEUP;
(*MOYEUP moves the player up on the screen by moving the player up in
the player’s memcry area. #)
VAR I: INTEGER;
BEGIN
IF ¥Y>1 THEN BEGIN (#MOVE PLAYER UP ONE UNIT IN MEMORY AND ON
SCREEN=)
FOR I:=0 TO & DO POWKEBYTE(PMBASE+511+Y+I,
PEEKBYTE(PMBASE+512+Y+1));
Y:=Y-1 (#PLAYER HAS MOVED UP ONE UNIT#*)
END (#ELSE HOLD STILL, JUST OFFSCREEN AT TOP OF SCREEN3)
END;

PROCEDURE MOVEDOWNM;
(#MOVEDOWN moves the player down on the scre=en by moving the player
down in the player’s memory area. #)
VAR I:INTEGER;
BEGIN
IF Y<120 THEN BEGIN
{#MOVE PLAYER DOWN ONE UNIT ON SCREEN AND IN MEMORY#*)
FOR I:=5 DOWNTO O DO °DAEBYTE(PHBASE+51”+Y+I,PEEKBYTE
(PMBASE+S511+Y+1I));
Y:=Y+1 (#PLAYER HAS MOVED DOWN ONE UNIT#)
END (#ELSE HOLD STILL, JUST OFFSCREEN AT BOTTOM OF SCREEN3t)
END:

BEGIN (=MAIN PROGRAM*)

INITGRAPHICS(0);
GRAPHICS(0, FULL_SCREEN_, CLEAR_SCREEN); (#CLEAR SCREEN#*}
POKEBYTE(755, 1) (*POKE DUT CURSOR#)

SETCOLDOR(2,0,0); (#SET BACKGROUND COLOR TO BLACK=:)

X:=120; (#S5ET HORIZONTAL COORDINATE OF PLAYER#)

Y:=48; (#8ET YERTICAL COORDINATE OF PLAYER*T"" SEmEnE RS Spese

A: =PEEKBYTE(10&)-8;

POKEBYTE(54279, A); (#SET PLAYER-MISSILE ADDRESS BASE REGISTER#¥)

PMBASE: =25&6%*A; (#SET PLAYER-MISSILE ADDRESS#)

POKEBYTE(S59, 46); (#SET DMACTL IN 0OS SHADOW:¢)

POKEBYTE(S53277,3); (#SET GRACTL-—-ENABLE PLAYER AND MISSILE DMA TO
PLAYER AND MISSILE GRAPHICS REGISTERS#)

POKEBYTE(S324L, X)i (#SET PLAYER HORIZONTAL POSITIONS)

SETPLAYER; (#CLEAR AND SET PLAYER-MISSILE MEMORY AREA#)

{% MOW FOR THE MOVEMENT AND MISSILE FIRING)
FIRED: =FALSE; (®%INITIALIZE "FIRED" FLAG3*)
WHILE 422 DO BEGIHM
A:=STICK(0);
IF A<>15 THEN MAKENDISE; (#GENERATE MOVEMENT SOUND3*)
(=MOYEMENT#)
IF A=5 THEN BEGIN
MOVERIGHT;
MOVEDOWN
END ELSE IF A=6 THEN BEGIN
MOVERIGHT;
MOVEUP

146

A

END ELSE IF A=7 THEN MOVERIGHT
ELSE IF A=9 THEN BEGIN
MOVELEFT:
MOVEDOWN
END ELSE IF A=10 THEN BEGIN
MOVELEFT;
MOVEUP
END ELSE IF A=11 THEN MOVELEFT
ELSE IF A=12 THEN MOVEDOWN
ELSE IF A=14 THEN MOVEUP
ELSE IF A=15 THEN SOUND(O, 182,2,0);
(#*PLAYER IS STANDING STILL, S0 MAKES NO SOUNDS#*)
IF FIRED THEN MOVEMISSILE (#CONTINUE MISSILE ON ITS TRAJECTORY#)
ELSE IF STRIG(0)=0 THEN BIGBANG; (#FIRE MISSILE#)
END; (#WHILE#)
END.

147

MODULE PMHMISSILE;

(#The routines in this module handle the firing and flight of the
missile for the player/missile graphics demonstration program. #)

YAR PMBASE, X, Y, MISY: EXTERNAL INTEGER;
FIRED: EXTERNAL BOOLEAN;

EXTERNAL FUNCTION PEEKBYTE(ADDR: INTEGER): INTEGER;
EXTERNAL PROCEDURE POWKEBYTE (ADDR, VAL: INTEGER};

EXTERNAL PROCEDURE SOUND(VOICE,PITCH,DISTORTION, VOLUME: INTEGER);

PROCEDURE MOVEMISSILE;
(#Movemissile is called by procedure bigbang when the missile is
first fired, and later by the main program as the missile continues
its trajectory. The main program calls movemissile until the missile
has moved off the top =dge of the screen and the "fired" flag has been
reset, #}

CaAR I: INTESER:

BEGIN
IF MISY>S THEN BEGIN
FOR I:=0 TO 1 DO POKEBYTE(PMBASE+383+MISY+1, PEEKBYTE(PMBASE+384+
MISY+I});
(#*MOVE MISSILE UP IN MISSILE MEMORY#)
MISY:=MISY-1 (#MISSILE HAS MOVED UP ONE3#)
END;
IF MISY<=5 THEN FIRED: =FALSE (#*MISSILE HAS MOVED OFF THE TOP EDGE
OF THE SCREEN, S0 RESET THE "FIRED"
FLAG)
ENDi; - — e 2 —~ - - -

PROCEDURE BIGBANG;
(#Bigbang is called whenever the user presses the fire button on the
Joystick. Bigbang launches the missile and starts it on its
trajectory. ¥)

YAR I: INTEGER:

BEGIN
FOR I:=PMBASE+384 TO PMBASE+512 DO POWKEBYTE(I,O0);
(#CLEAR MISSILE AREA IN MEMORY=3)
SOUND(3, 46,12, 14); (#FIRE!!' (BEGIN FIRING NDISE)#*}
POKEBYTE(S53260, G); (#SET NORMAL MISSILE SIZE#*)
FOKEBYTE{S53252, £+3);
(#SET MISSILE HORIZONTAL POSITION EQUAL TO PLAYER HORIZONTAL
POSITION*)
MISY:=Y-1; (#SET MISSILE VERTICAL POSITION EQUAL TO THE POINT JUST
ABOVE PLAYER VERTICAL POSITION%*)
I1: =PMBASE+384+MISY; .
POKEBYTE(I, 3); (#SET MISSILE SHAPE IN MEMORY#*)
FIRED:=TRUE; (#SET MISSILE FIRED FLAG TO SHOW THAT A MISSILE HAS
BEEN FIRED3#)

148

MOVEMISSILE;

(#START MISSILE ON ITS TRAJECTORY3)

EDUND(3, 46, 12,0 (#STOP THE FIRING SOUMD3)

END;

MOCEND.

149

MODULE PMSOUND;

(#This module contains procedure makenoise, which confrols the sound
generation for the player ‘s movement. This procedure was put into its
own module. #)

EXTERNAL PROCEDURE SOUND(WOICE,PITCH, DISTORTION, VOLUME: INTEGER);
PROCEDURE MAKENDICSE;
(#GENERATE ENGINE SOUND WHEN PLAYER MOVES. #)
BEGIN
SOURD(G, 182, 2, &)
END;

MODENMD.

150

g;

MODULE PEEKFPOKE;

(#This module contains procedures for performing BASIC style PEEKs

and POKEs. #)

PROCEDURE POKEBYTE(ADDR, VAL: INTEGER);

(%

POKEBYTE: BASIC STYLE OF MEMORY LOCATIONS

POKEBYTE PROVIDES A METHOD, SIMILAR TO THE BASIC POKE, FOR THE

PASCAL USER TO SET MEMORY LOCATIONS.

ENTRY: POKEBYTE(ADDR.VAL): (SAMPLE CALL)

#)

ACDR = ADDRESS TO BE POKED

VAL = VALUE TO BE POKED INTO ADDRESS
EXIT: CONTENTS OF ADDR IS NOW VAL
CHANGES: ADDR (ADDRESS)
CALLS: —-NONE-

VAR

PTR: “CHAR; (#POINTER TO ADDRESS TO BE CHAMGED#*)
BEGIN

PTR: =ADDR; (#SET PTR 70 POINT AT DESIRED ADDRESS#*)

PTR™: =CHR(VAL) (#POKE NEW YALUE INTO ADDRESS POINTED TO BY PTR#*)
END; ’

FUNCTION PEEKBYTE(ADDR: INTEGER): INTEGER;

(%

3}

PEEKBYTE: SIMPLE BASIC STYLE PEEK AT MEMORY LOCATIONS

PEEKBYTE PROVIDES THE PASCAL USER WITH A METHOD, SIMILAR TO THE
BASIC PEEK, TO FIND OUT THE CONTENTS OF MEMORY LOCATIONS.

ENTRY: INTEGERVARIABLE := PEEKBYTE(ADDR); (SAMPLE CALL)
ADDR = ADDRESS TO BE LOOWKED AT

EXIT: PEEKBYTE = CONTENTS OF THE ADDRESS GIVEN BY ADDR

CHAMGES: INTEFERUARIABLE IN THE CALLING ROUTINE

CALLS: —NONE-

VAR
PTR: “CHAR; (#POINTER TO ADDRESS TO BE LOOKED AT*)

BEGIN
PTR: =ADDR; (*SET PTR TO PDINT TO DESIRED ADDRESS#)

PEEKBYTE: =ORD(PTR”™) (®#PEEKBYTE "PEEKS AT" AND
RETURNS CONTENTS OF ADDRESS POINTED TO BY PTR#)
END;

MODEND.

151

APPENDIX G: HELPFUL HINTS

The following are assorted statements that may prove to be useful when
using the ATARI Pascal Language System.

; [

Compilation of Pascal programs using Floating Point numbers (REALS)
requires that the Include file FLTPROCS or STDPROCS be identified
within the declaration body of the source. In addition the FPLIB
must be linked wifth your compiled source and PASLIE. Failure to do
so will cause your compilation and/or linking to srror. Refer to
the demo program CALC for an example.

Identifiers are significant to only eight characters.

CLOSEDEL can be vused with any file so be careful. You may
accidentally delete something that you didn’t expect to.

While standard procedures are built into the compiler, others
requitre the appropriate Include files for declaration purposes.
Check these files to determine if you need them. These Include
files may be listed on the printer by use of the copy option under
o0s.

The reserved word "PREDEFINED" allows certain procedures and
functions to become part of the scope surrounding the program. In
addition any file parameter is passed as two paramefers as required
by the run—time routines. ’

152

INDEX

ABSOLUTE variables, 22,
ADDR : 41
AND .
and 16 bit variables, ?4
ARCTAN 104
ARRAY
as procdural param=zters 102
storage 2
ASSIGN 50,
ssignment compatibility F0
Available memory message 8,
ECD REAL - 71
Eit and byte manipulation 38,
ELOCKREAD 52
ELOCKWRITE S2
EDOLEAN - - 70
Built—-in procedures
ADDR 3 ’ 41
ASSIGN 10)
BLOCKREAD 52
BLOCKWRITE 52
CLOSE 24
' CLOSEDEL 24
CLRBIT 3
CONCAT 45
COoPY 44
DELETE 48
EXIT 37
FILLCHAR 43
GNB 51
HI 40
INSERT 49
IORESULT 56
LENGTH 44
LO 40
MAXAVAIL 27
MEMAVAIL 57
MOVE 35
MOVELEFT 35
MOVERIGHT 35
OPEN 33
POS 47
SETBIT 38
SHL 39
" SHR 39
SIZEOQF 42
summary of - o8
SWAP 40

oL

131

13

7?3

153

TETBIT
HWNB
PURGE
BYTE
Byte manipulation
(see Bit and byte manipulation)

CALC. FAS
Chaining 1
Chaining
absolute variable communication
example
global variable communation
how—to
maintain heap
CHAR
CHR
CLOSE
CLOSEDEL
CLREIT
Comments
syntax
Compatibility with UCSD
Compiler control toggles
entry point control $E
listing controls $P/%$L
run—time rtange checking control %R
run—time exception checking control %X
source code include mechanism %I

2
o

21
29
71, Bé&

strict/relaxed type checking control $T/%W, 14

summary
syntax
Compiler
output
output
available memory
compile time informational output
gexecution
operational description
PHASE 1
PHASE 2
remaining memory
sample output
separate compilation
step—by—step instructions
system rvequirements
user table space
CONCAT
Confromant arrays
Constant data at compile—time
cary

7
03
32
33
22
32
32
70

70, 90,

54, 132

54, 141
38

83

77

14

15

15

15

14

16

14

8 13

8, 13
8

7. 13

7, 18
13

13, 18
13
8
7
26
S
3
8
a5
102
61
445

105

154

Data storage
Data types
BOOLEAN
BYTE
CHAR
INTEGER
Tange
REAL
SET
size
STRING
WORD
DELETE
Distribution disk
contents
minimum configuration

End of file
EOF
EOLN
Error handling
Tun—time
Ertor message
type conflict
Error messages
Exception checking
(see Compiler control toggles)
EXIT
Extensions to IS0 standard
(see IS0 standard extensions)
Extensions
SUMMaTy
EXTERNAL
and entry point symbols
and modular compilaftion
and procedures/functions
and variables
routines as parameters

FIB
(see File Information Block)
File Information Block
File wvariable
File variable untyped files are allowed
Filename
definition
Filenames
associating external and internal
compiler input
linker input
Files
ASCII text

70

70
71
70
71
70
71
75
70
71
71
48

1238,
104,
104,

&8
20
18,

37

81

i4
26
26
27
26

128
128
?0

127

S0
7
2.

89

134,
133
133

‘118

12
12

135

133

v

ASSIGN procedure

associating files with external

names

buvilt-in procedures
chaining

closing

creating
definition
deleting

devices E:, S:: K:, P:,
error handling
example
fast byte routines
formatted output
hex output

implied conversions
local

local files and linker /D switch

“opening (s=2=2 also RESET)
pre—defined type TEXT
primitive file access
printer ouiput
temporary, (see local)
text
untyped
window wvariable
writing to printer

FILLCHAR

Floating Point REAL
Formatted output
FORWARD

FPLIB. ERL

GET

GNE

GOTO
GSEND. ERL

Hesp mansgement
IS0 standard
MEMAVAIL and MAXAVAIL

parameters
Hezadecimal numbers
HI
I1/0

(see Files)
Identifiers
and @
external signifigance
legal Pascal

50

100
100
151
o4,
131
127
24,
50
56
130
o1
137
106
?0
S0
20
53
8%
o2

S50,

135,
8%
128,
140
43
71
106,
101

133
51
26

4,

142
27
104
106
40

383,

26
82

132

55

14
138

132, 133, 134

137

9, 19, 71, 152

143

84

156

Include files
INLINE
code examples
syntax
INSERT
INTEGER
IORESULT
IS0 standard extensions
absolute variasbles
additions to assignment compatibility
tules

4,

61
&0
49
71
56.

21

5

ENF syntax description of ATARI Pascal, 109

built—in procedures and functions
chaining

34
32

concise list of ATARI Pascal fscilities, 1

ELSE clavse on CASE statemsnt
external procedures
INLINE
modular compilation
null strings
operators
WRD type transfer function
IS0 standard
assignment compatibility
changes from Jensen and Wirth for
FOR loops
draft used by ATARI
extensions for conformant arrays
summary of features
_type compatibility

LENGTH
Line
Line numbers
Linker
/D and chaining
attributes of compatible modules
command file facility switch /F
data origin switch /d
effects of /P and /D on .COM +file
contents
effects of using /D on local files
extending map switch /E
gaining memory space
input filenames
invocation
library search switch /S
load map switch /L
program origin switch /P
sample
sample output
saving space by using /D
switch summary

6
78
&0
26
g4
Q4

. 104

20

97
1
102
81
90

44
135
18

32

22

20
19

20
20
12
19
i9
19
19
19
20

4

9
20
21

5, B

131,

14,

138,

152

140

157

switches
LINK
Listing
LO
Local files
(see Files)

MAaYAVAIL

MEMAVAIL

Modular compilation
and $E ftoggle
and EXTERNAL
example
overview
syntax

MOVE

MOVELEFT

MOVERIGHT

NOT
and 1& bit variables

oDD

OPEN

Operators
AND
and 16 bit wvarizbles
NOT
OR

Option Switches
compiler
linker

OR

and 16 bit variables
ORD
Output

formatted

PACKED

PASLIB

PASLIE. ERL

Pointers

Portability

POS

Printer
assignment
writing example
writing to

Program sample
CHAIN Demo

57
57

26
26
26
26
26
35
35
35

94

70, 104
53, 133,

70, 24
?3

70, 94
70, 94

16

)
=

3
70, 71,

137
70, 8é&
9, 152
89
i4
47
50
140
140

33

141

7?0,

104

158

O

DEMOCON (conformant arrays)
DEMO_INLINE

External_Demo (Modular ccmpilation)

PRINTER

Procedure
Procedure
Procedure
Procedure
Procedure
Procedure
Procedure
Procedure
Procedure
Procedure
Procedure
Procedure
Procedure
Procedure
Procedure
Procedure

ACCESS (strings)
ADDR DEMO

ASSIGN (strings)
COMPARE (strings)
CONCAT_DEMO
COPY_DEMO
DELETE_DEMOD
EXITTEST
FILL_DEMO
HI_LO_SWAP
INSERT_DEMO
MOVE_DEMO
POS_DEMO
SHIFT_DEMO
SIZE_DEMO
TST_SET_CLR_BITS

Procedure TEXTIO_DEMO

Procedure WRITE_READ_FILE_DEMO

PURGE
PUT

Range checking
(see Run—time)
READ
READLN
REAL
BCD
floating point
RECORD
storage
Remaining memory message
Requirements
Tun—time
system
Reserved words
RESET
REWRITE
Run—time Library
source
Run—time
error handling
exception checking
fatal errors
range checking

Scalars
storage
SET

102

&1
27

140

73
41
72
74
45
45
48
37
43
40
49
36
47
29
42
38
138
129 .
55, 141
129

134
139

71
71

)
=

117
133
131

=1=]
&8
&9
68

29
30

159

O

SETBIT
SHL
SHR
SIZEOF
Space veduction
and linker /D switch
STRING
STRING implementation details
STRING
access
and READLN
assignment
comparisan
CONCAT
COPY
default length
definition
explicit length declaration
null string
run—time error
use as arraus of characters
trings
CDELETE
INSERT
LENGTH
POS
SWAP
Symbols
Symbols
identifier significance
use of @ in identifiers
use of hexadecimal numeric literals
uvuse of underscore in identifiers

TEXT files
definition
TSTBIT
Type checking toggle
Type conflict
erTar
Types
ABSOLUTE attribute for variables
data implementation
extended
file types
implementation of PACKED
pointers
pre—defined
range of SET type
restrictions on use of AESOLUTE
with strings

38

3
d

o |
g

42

20
135
71

75
139

71

74

45

46

87

71, 86

87

a5

68

92

48

49

44

47

40

B3

84
83
84
B4

135
38
14

89

59
70
8&
89
84
8%
86
88

1560

Y

User table space

Window variable
(zee Files)
WHE
WORD
WRITE
WRITELN
and text files

o1
71, B6
132

136

161

