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Preface

Microprocessors have evolved from units that handled data in
4-bit slices with rudimentary instruction sets into devices that rival,
or surpass, minicomputers in architecture and software instruction
repertoire. The Zilog Model Z-80 represents a microprocessor that is
extremely sophisticated from both a hardware implementation and
software implementation viewpoint. The Z-80 microprocessor is
truly a computer on a chip that requires only a few external compo-
nents—a 5-volt power supply, a simple oscillator, and read-only
memory—to construct a complete computer system. The instruction
set of the Z-80 includes that of the Intel 8080A as a subset, making
the Z-80 an ideal software replacement for the 8080A; the Z-80 has
many new instructions and addressing modes to supplement the
8080A instructions. A search of a string of characters, for example,
can be implemented with one instruction after initialization, the one
search instruction replacing four equivalent instructions in other
microprocessors.

In addition to the Z-80 microprocessor itself, Zilog has imple-
mented other devices to supplement the power of the Z-80. A PO
provides parallel 1/O with two 8-bit ports, software configured I/0O,
vectored-interrupt capability, and automatic priority interrupt en-
coding. A CTC, or Counter-Timer-Circuit, provides programmable
counting and timing functions for real-time events. Otber major
devices are also available. Zilog and other manufacturers have de-
veloped microcomputer systems based on this family of Z-80 devices,
and the systems have played their role in narrowing the gap between
“minicomputer systems” and “microcomputer systems,” a division
that becomes less and less distinct from month to month.

The purpose of this book is threefold, to acquaint the reader with
the hardware of the Z-80, to discuss the almost overwhelming (in
number of instructions) software aspects of the Z-80, and to describe
microcomputer systems built around the Z-80.




Section I discusses Z-80 hardware. The architecture, interface sig-
nals, and timing are discussed in the first two chapters. Addressing
modes and instructions are covered in the next two chapters; both
addressing and instruction repertoire are fairly easily grouped and
explained, although they may appear confusing at first glance. The
effect of arithmetic operations and other operations on CPU flags is
presented in Chapter 6. The powerful interrupt sequences of the
Z-80 are discussed in the next chapter. Chapter 8 describes interfac-
ing examples of I/O and memory devices.

Section II describes Z-80 software. A representative Z-80 assembler
program is introduced in the first chapter of the section. An assem-
bler is almost a necessity with a microprocessor having such a large
instruction set, but machine language aspects are also covered.
Chapters 10 through 15 present the common programming opera-
tions of moving data, arithmetic operations, shifting and bit opera-
tions, list and table procedures, subroutine use, and I/O functions in
relation to instruction set groups. Many examples of each kind of
operation are provided. The last chapter of the section details some
commonly used subroutines written in Z-80 assembly language.

The third section discusses microcomputers built around the Z-80.
Chapter 17 covers Zilog products including the microcomputer
board products in the Z-80 family and development systems. Four
other Z-80 microcomputer manufacturers are described in the last
chapter. Technical Design Labs, Inc., Cromemco, Inc., The Digital
Group, Inc., and Radio Shack. The hardware and software aspects
of all five manufacturers are presented.

The Z-80 will prove attractive to many users, not only as a succes-
sor to the 8080A, but as a powerful computer in its own right.

The Z-80 will soon have a successor, in this dynamic microcom-
puter development environment, but for the time being it represents
microcomputer “state-of-the-art.” The author hopes that the reader
will derive a great deal of benefit from the book and that the Z-80
will solve a few hardware and software implementation problems.

Much credit for this book goes to my wife, Janet, who has solved
my major software implementation problems—manuscript prepara-
tion.
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SECTION I

Z-80 Hardware







CHAPTER 1

Introduction

In 1971, Intel Corporation introduced the first microcomputer on
a chip, the Intel 4004. Although the 4004 was truly not a self-con-
tained computer on a single Large-Scale-Integration (LSI) chip, it
contained a great deal of logic associated with computer central
processing unit implementation. One LSI chip replaced hundreds of
circuits that were to be found in conventional minicomputers at the
time. Although the 46-instruction repertoire was not large, it was
adequate for control applications which required decision making
that could not easily be implemented in programmable-logic arrays
and in which extensive mathematical processing was not required.
The 4004 handled data 4 bits at a time and could perform 100,000
additions of two 4-bit operands per second.

The next generation of microprocessors from Intel retained the
PMOS (P-channel metal-oxide semiconductor) fabrication tech-
niques of the 4004, but offered an 8-bit wide data bus and a larger
instruction repertoire of 48 instructions. Designated the 8008, the
microprocessor had a faster instruction cycle time than the 4004 as
data for both instruction execution and decoding and for operands
could be handled in 8-bit slices. In addition, the 8008 could address
16,384 memory locations of 8 bits each, contained seven 8-bit regis-
ters, had memory stack capability, and had a single-level interrupt
capability. The 8008 could perform approximately 80,000 additions
of two 8-bit operands per second. The instruction set of the 8008 was
not compatible with the 4004.

The 8008 and 4004 had achieved widespread usage through the
electronics industry in a very short time after their introduction,
primarily because there was little else available in the way of micro-
processors. To achieve compatibility with the 8008 insofar as instruc-
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tion repertoire, the Intel 8080, introduced in late 1973, included
the instruction set of the 8008 and supplemented it with 30 more
instructions. Users of the 8008 could now change to a faster, more
versatile microprocessor while not discarding 8008 software pro-
grams, since all 8008 software would presumably execute on the
8080. The 8080 was an NMOS (N-channel metal-oxide semiconduc-
tor) microprocessor that allowed faster clock rates. Additions of two
8-bit operands could now be carried out at rates of 500,000 per sec-
ond. In addition, all other instruction times were much shorter than
the 8008 as the 8080 was built around a 40-pin chip, requiring the
CPU to do much less time sharing of the data bus between data
transfers and instruction implementation.

The 8080 supplemented the hardware features of the 8008. In
place of 16,384 (16K) memory addresses, the 8080 could address
65,536 (64K ). Rather than a limited 7-level memory stack, the 8080
offered a memory stack in external memory itself instead of the CPU.
A binary-coded decimal or bed capability was built into the arith-
metic and logic unit in the CPU; additions of two bed operands
could now be implemented. Expanded addressing modes to permit
direct addressing of external memory was offered. Although the 78
instructions of the 8080 still seemed strange to many programmers,
the instruction set decidedly had moved away from one for pri-
marily control applications to one that was more general purpose in
nature.

In 1976, Intel brought out several variations on the 8080. The
Intel 8085 included a serial input/output capability on the micro-
processor chip itself. In addition, the 8085 had a requirement of
only a single-phase clock (the 8008 and 8080 were two-phase clocks)
and a single 5-volt power supply (the 8008 and 8080 required two
and three voltages, respectively). As the number of supporting
packages had grown impressively (such chips as a programmable
peripheral interface, interrupt controller, and crt controller) Intel
provided very powerful computing capability at faster and faster
speeds (770,000 8-bit adds per second), while still retaining com-
patability with existing software written for the 8008 and 8080.

Although the 8085 was an improvement over the 8080 in many
features, the instruction set remained very similar to the 8080. Only
two new instructions were added, one to read serial and interrupt
data, and one to write serial and interrupt data. Many of the inherent
inadequacies of the 8008 and 8080 remained.

The Zilog, Inc. Z-80 microprocessor chip has provided another
level of sophistication for the widely used 8008/8080 base. Bearing
in mind that the super computer of today is the surplus bargain of
tomorrow, the Z-80 has supplemented the instruction set and capa-
bilities of the 8080 in the same fashion as the 8080 increased the
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capabilities of the 8008. In addition, Zilog has produced a family
of support chips that supplement the Z-80. The Z-80 is software
compatible with the 8080, allowing existing 8008 and 8080 software
to be executed on the Z-80. While the limitations of the 8008 and
8080 instructions and architecture must of necessity be retained in
the Z-80, the Z-80 offers new instructions, new addressing modes,
and new hardware features that provide more capability and versa-
tility than ever before.

Z-80
8008/8080
A REGISTER| FLAGS A FLAGS'
B C B' ct
D E D' E'
. . s H L H' L
Fig. 1-1, Register comparison 8008,

8080, and Z-80.

INTERRUPT | MEMORY
VECTOR | | REFRESH R

INDEX REGISTER 1X

Y z-80

STACK POINTER SP
PROGRAM COUNTER PC

Jooon

In addition to providing the eight 8-bit CPU registers of the 8080,
the Z-80 duplicates the eight registers to offer sixteen registers. Two
index registers offer indexing capability not provided in the 8080.
An interrupt-vector register and memory-refresh register provide
special interrupt functions and dynamic memory-refresh capability.
Fig. 1-1 shows the basic register arrangement of the 8008, 8080, and
Z-80.

UNUSED
%
25 POSSIBLE
80 2-80 INSTRUCTION
INSTRUCTIONS TYPES (ONE
BYTE OP-CODE)
e 30 8080
INSTRUCTIONS
8080 -~
8
8008 INSTRUCTIONS

Fig. 1-2. Instruction comparison 8008, 8080, and Z-80.
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The 78 instructions of the 8080 are provided in the Z-80, but the
total number of instructions comes to 158. Many of these are logical
extensions of 8080 instructions, but many are extremely powerful
and a complete departure from the 8080. Fig. 1-2 shows the relative
differences between the 8008, 8080, and Z-80.

All Input/Output and interrupt capability of the 8080 is retained
in the Z-80. I/O is expanded, however, to operate from any CPU
register and to operate in “block” fashion, that is, to facilitate transfer
of many bytes at a time over a programmed (non-DMA) I/O chan-
nel. Interrupts include the standard external interrupt capability of
the 8080, but supplement this with a separate “nonmaskable” inter-
rupt similar to the Motorola MC6800 and MOS Technology MCS
6502. Other interrupt capability allows for interrupt vectoring any-
where in memory, rather than just to eight locations in page 0, and
for up to 128 levels of interrupts, rather than eight.

The Z-80 Microcomputer Handbook is divided into three sections.
Section I covers the hardware aspects of the Z-80. Architecture, in-
terface signals and timing, addressing modes, instruction set, flags,
interrupt sequences, interface of memory and I/O devices, and DMA
operation are discussed. When applicable, differences between the
8080 and Z-80 are discussed. Section II discusses Z-80 software,
grouped in similar manner to Zilog Z-80 documentation. Section II
also provides programming examples of Z-80 code. Many times, a
short section of a program will greatly clarify the somewhat pedantic
descriptions of individual instructions. Section III discusses five
microcomputer manufacturers that have built microcomputers
around the Z-80 microprocessor chip. Appendix A provides complete
electrical specifications for the Z-80. Appendix B cross-references
8080 instructions to the Z-80 instruction set and Appendix C provides
a short description of each Z-80 instruction. Appendix D reviews
binary and hexadecimal representation while Appendix E lists
ASCII character codes. The last appendix, Appendix F, lists Z-80
Microcomputer manufacturers.
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CHAPTER 2

Z-80 Architecture

The architecture of the Z-80 is shown in Fig. 2-1. Thirteen CPU
and system control signals are sent to or generated in the instruction
decode and CPU control portion of the microprocessor. The data bus
is eight bits wide and is the path for all data transferred between
external memory and input/output devices and CPU registers. The
address bus is sixteen bits wide. Normally the address bus would
specify an external memory address of 0 to 65535 (0 to 64K —1)
since the Z-80 has a full complement of input/output instructions
and no “memory-mapped” input/output would be required. (In
memory-mapped input/output, a portion of the memory addresses
must be dedicated to addresses of input/output devices).

The main path for data within the CPU is an internal data bus
which connects the CPU registers, arithmetic and logical unit, data
bus control, and instruction register. The arithmetic and logical unit
performs addition, subtraction, logical functions of ANDing, ORing,
and exclusive ORing, and shifting operations between two 8-bit
operands. In addition, binary-coded decimal (bed) operations may
be performed under control of a Decimal Adjust Accumulator in-
struction.

GENERAL-PURPOSE REGISTERS

The Z-80 registers consist of fourteen general-purpose 8-bit regis-
ters designated A, B, C, D, E, H, and L and A", B, C, D, E’, H,
and 1. Only one set of seven registers and the corresponding flag
register F or F” can be active at any given time. A special Z-80 in-
struction selects A and F or A’ and F’, while a second instruction
selects B, C, D, E, H, L, or B, C’, D', E/, H’, or L. The possible com-
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7-80 MICROPROCESSOR
INTERNAL
DATA BUS
DATA 3BIT
U P g BT DATA
CONTROL BUS
cPu
L recisTERS [
ADDRESS 16817
BUS ADDRESS
ALY P CONTROL BUS
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SYSTEM CPY
CONTROL PR INTERNAL
SIGNALS SIGNALS CONTROL
A _|[FAGS| A |FLAGS]
B | c | B | C
D | £ | 0| E
[T T O
| R
X
v
SP
PC
Fig. 2-1. Z-80 Microp hi

binations of A and F and the remaining six general-purpose registers
are shown in Fig. 2-2.

The advantage in two blocks of general-purpose registers is that
a programmer may rapidly switch from one block to another. In the
simplest case, this provides more register storage in the CPU. Reg-
ister storage in the CPU is to be preferred over storage in memory
as data can be accessed by a program much more rapidly from CPU
registers than from external memory. In a more sophisticated use of
the block switching capability, the unused set of registers may be
used to hold the environment after receiving an interrupt. This con-
cept will be discussed in a later chapter in this section.

Just as in the 8080, the general-purpose registers are somewhat
specialized in function. Eight bits of data may be moved between
memory and any of the seven registers or from one register to the
next. Arithmetic and logical operations, however, such as adding
two operands or exclusive ORing two operands can only be done
using the A register (or A’) and another register or memory location.
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A F NON PRIME
B C NON PRIME
D £

1 L

A F NON PRIME
B c' PRIME

D' E'

[N L

Fig. 2-2. Register block bi

A' F' PRIME

B C NON PRIME
D 3

H L

A F' PRIME

B’ ' PRIME

o' 3

H L'

The result of the operation always goes into the A register. In gen-
eral, then, the currently selected A register is the main register for
performing arithmetic and logical operations as shown in Fig. 2-3.

The remaining six registers are grouped into register pairs B,C;
D,E; and H,L. For many operations in the 8008, 8080, and Z-80 the
data within the three register pairs represents a memory address.
The H.L registers, for example, originally specified a High memory
address of eight more significant bits and a Low memory address of
eight less significant bits as shown in Fig. 2-4. The same is true of
the B,C and D,E registers. In the 8080, the capability also was pro-
vided to allow the B,C and D,E to specify a memory address, giving
three register pairs that could hold a memory address pointer to
data in memory. In general, the three register pairs will hold mem-
ory addresses as shown in Fig. 2-4, although a second use for them
is to allow double-precision arithmetic.

8-BIT
ARITHMETIC OR
LOG I CAL RESULT
AL FLAGS
OPERAND 1 OPERAND 2
MEMORY OPERAND
AIOR A [Eor 89 cen OTHER GEN-
{oo) [ EEY ERAL PURPOSE
| I REGISTERS

Fig. 2-3. Arithmetic and logical operations.
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16-BIT MEMORY ADDRESS
OR DOUBLE-PRECISION VALUE

';,Eglsm PAIR [ CH) T c(C) ]

REGISTER PAIR [ D T 3] ]

SFEISTER PAIR [ 0 T O ]
8HIGH-ORDER BITS 8LOW-ORDER BITS

Fig. 2-4. Register pairs.

Double-precision arithmetic involves adding, subtracting, incre-
menting (adding one), or decrementing (subtracting one) a 16-bit
value. Most arithmetic and logical operations in the Z-80 are oriented
towards 8-bit operations, but the Z-80 allows limited operations be-
tween the register pairs and the stack pointer and index registers IX
and IY. The general philosophy for this probably evolved from the
requirement to manipulate memory address pointers in some con-
venient fashion, since all external memory addresses are 16-bit ad-
dresses and two 8-bit operations would have to be performed if 16-
bit arithmetic were not implemented. Fig. 2-5 shows the use of the
register pairs in double-precision operations.

16-BIT RESULT

ALY
ADD, A
INCREMENT, DECREMENT

Fig. 2-5. Register pair double-
precision operation.

B, C REGISTER PAIR

D,E REGISTER PAIR
H,L REGISTER PAIR
SP
X
1Y

FLAG REGISTER

The flag register is selected along with the A register. At any given
time A and F or A’ and F” are selected. Although the flag register is
a register of eight bits as are the other seven CPU registers, it is more
a collection of eight bits conveniently grouped into one register than
a general-purpose register. The bits within the flag register specify
various CPU conditions that have occurred after an arithmetic, logi-
cal, or other CPU operation. For example, it is convenient to know
if the result of the addition of two operands resulted in a zero result,
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a positive (zero or greater) result, or a negative result. A zero flag
and a sign flag in the flag register may be tested by the program after
the add to determine the nature of the result. Other flags are the
carry flag (C), the carry from the high order bit of the accumulator,
the parity/overflow flag (P/V), specifying a parity or overflow con-
dition, the half carry flag (H), which is essentially a bed carry or
borrow from the low order bed digit, and the subtract flag (N), set
for bed subtract operations. The flag register format is shown in Fig.
9.6, The interaction of CPU operations and the flags is discussed in

BIT BIT

7 6 5 4 3 2 1 0

e (5 L2 [ o [x e[ v [ ]

l L(ZARRV FLAG
SUBTRACT FLAG

DUAL PURPOSE PARITY/
OVERFLOW FLAG

INDETERM INATE
BCD HALF CARRY FLAG
INDETERM INATE
ZERO FLAG
SIGN FLAG

Fig. 2-6. Flag register format.

detail in a later chapter in this section. Throughout this book the
term flags, flag reigster, and condition codes will be used inter-
changeably.

SPECIAL-PURPOSE REGISTERS

The remaining CPU registers that are available to the programmer
are the I R, IX, 1Y, SP, and PC registers. Two of these registers are
exactly the same as they are in the 8080, the SP, or Stack Pointer, and
PC, or Program Counter. The PC register is a 16-bit register that
holds the location of the current instruction being fetched from mem-
ory. Instructions in the Z-80 are one, two, three, or four bytes long.
If a sequence of eight instructions is being executed, as shown in
Fig. 2-7, the PC will hold the indicated values. Note that the PC
always points to the start of the next instruction, and that the CPU
will automatically increment the PC by one, two, three, or four
depending on the length of the instruction being executed. The PC
is available to the programmer only in the sense that it may be
loaded or stored. No arithmetic or logical operations on the PC are
permitted.
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Whereas the PC contains a pointer to external memory that speci-
fies the address of the next instruction to be executed, the SP contains
a pointer to an external memory stack. The concept of a memory
stack is not unique to microprocessors, but virtually every micro-
processor does have stack capability. The external memory stack is
simply an area of memory set aside for temporary storage of CPU
registers, the flag register, and the program counter. Certain instruc-
tions cause transfer of control from the current jump or branch in-

EXTERNAL CONTENTS OF
MEMORY PC AT END OF
LOCATION * INSTRUCTION
0100 INSTRUCTION 1 (1 BYTE) o101
0101 0103

INSTRUCTION 2 (2 BYTES)

0103 0106
INSTRUCTION 3 (3 BYTES)

0106 INSTRUCTION 4 (1 BYTE) 0107
0107 INSTRUCTION 5 (1 BYTE} 0108
0108 INSTRUCTION 6 (1 BYTE) 0109

0109 INSTRUCTION 7 {2 BYTES) G}OB

Fig. 2-7. Program counter operation.

U8 | \ysreuctions2eyies | OO

0100
% ALL VALUES HEXADECIMAL

struction to another instruction and cause the current contents of the
program counter (pointing to the instruction after the jump or
branch) to be automatically saved in the stack area. This saves the
location so that at some later time a return may be made back to the
next instruction in sequence after the jump or branch.

Not only is the PC saved for certain types of jumps or branches,
but it is automatically saved for interrupts. Here, the address of the
current instruction being executed is saved in the stack as the inter-
rupt occurs and a special interrupt processing routine is entered.
This action will be discussed in detail in a later chapter in this sec-
tion. Lastly, CPU registers and the flag register may be saved and
retrieved from the stack under program control using special stack

~ instructions.

As data is entered or pushed into the stack area, the stack pointer
is decremented by one count. As data is retrieved from the stack or
pulled, the stack pointer is incremented by one count. A good anal-
ogy to stack operation is a poker hand that is laid down on the table
in a pile consisting of King of Hearts, Jack of Spades, and Ace of
Diamonds with the King at the bottom. When the cards are re-
trieved, the first card picked up is the last laid down, the Ace of
Diamonds, followed by Jack of Spades and King of Hearts. This type
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of stack operation is a LIFO operation, or last in, first out. The con-
tents of the SP during a typical instruction sequence is shown in
Fig. 2-8. Note that the stack builds from higher numbered memory
to lower numbered memory as more data is stored in the stack.

The remaining registers of the Z-80 are not contained in the 8080.
The index registers IX and IY are two 16-bit registers that permit
indexed addressing in Z-80 programs. While the 8080 had indexed-
like instructions, it did not permit true indexing. When an instruction
is executed in an indexed addressing mode, one of the two index
registers is used to calculate the memory address of the operand.

MEMORY STACK
{STACK) POINTER
LOCATION CONTENTS
0100
o101
0102 0103
0103 —s{ DATAA
(D "PUSH DATA A
0100
0101
0102 —»] DATAB 0102
0103 DATA A
Fig. 2-8. Stack Pointer (SP) operation. (2 PUSH DATA B
0100
0101
0102 DATA B 0103
0103 —»{ DATAA
(3 PULL DATA B
0100
0101 — DATA C2
0102 DATA C1 0101
003 DATA A
(& PUSH DATA C
(TWO BYTES)

The effective address of the memory operand is obtained by adding
the contents of the index register and a 16-bit value contained in the
displacement field of the instruction employing the indexed address-
ing mode. Indexed operations of this kind are extremely powerful
for efficient programming and will be discussed in more detail later.

The Interrupt Vector Register I is an 8-bit register that can be
loaded with 8 bits of data specifying a memory address. This ad-
dress, when combined with a lower-order 8 bits of address supplied
by the interrupting device, represent a memory address whose con-
tents in turn specify the memory address of the software interrupt
handling routine for the device. Suppose that a paper-tape reader
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interrupts the Z-80. After the Z-80 recognizes the interrupt, it signals
the paper-tape-reader controller to pass over the low order 8 bits
of the address. The paper-tape-reader controller then passes over
the 8 least significant bits of the address which are combined with
the 8 higher order bits of the I register. If the paper-tape reader
supplied 14H (A suffix of “H” will represent base 16, or hexadecimal
in all subsequent discussions) and the I register contained FFH,
then the combined address would represent FF14H. The Z-80 con-
trol logic would then go to external memory location FF13H, pick
up its contents and transfer control to the location specified, in this
case EOOOH as shown in Fig. 2-9. In general, the I register holds the
8 most significant bits of an interrupt vector table which may hold
interrupt vectors for 128 interrupting devices.

LOW ORDER 8 BITS
FROM DEVICE

irecister  [1]aafifa[a]a]1] [ofoToJ1]e]1T0]0]

16817 MEMORY
MEMORY ADDRESS = FF14H
LOCATION
FF10
FFLL
FF12

FFI3 CONTENTS OF FF14 ]

FFl4 E [ o POINTS TO INTERRUPT
FF15 0| o PROCESSING ROUTINE
FF16

FF17

E005

E003
E002
E001
E000 START AT INT ROUTINE

Fig. 2-9. | Register actions.

The I register is used in one of three interrupt modes which the
Z-80 may utilize under program control. One of the other two modes
is identical to the 8080 interrupt action, allowing up to eight vec-
tored interrupts. The last interrupt mode permits a special ninth in-
terrupt. In addition to the three external interrupt modes, a non-
maskable (always active) external interrupt permits a high-priority
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interrupt to yet another interrupt location. All four kinds of interrupt
groupings are discussed in a later chapter in this section.

The last special-purpose register is the 7-bit Memory Refresh reg-
ister R. When external memory is made up of dynamic memories,
the R register allows automatic refreshing of this kind of semicon-
ductor memory which periodically (typically every 2 milliseconds)
needs to have every cell read or refreshed to retain its contents. The
contents of the R register are incremented by one after every in-
struction fetch and the contents are sent out along the least signifi-
cant 7 bits of the address bus while the Z-80 CPU is not accessing
memory. Every cell of external memory with a predefined configura-
tion of its address bits equal to the R register can now be refreshed
without fear of contention (simultaneous read) of the same memory
cell by the Z-80 CPU. The R register is normally not used by the
programmer.

MICROCOMPUTER COMPONENT PARTS

As in any microcomputer, the microprocessor chip itself does not
constitute the complete computer system. Fig. 2-10 shows the com-
ponent parts of a typical Z-80 system. The Z-80 microprocessor chip

ADDRESS  DATA
BUS BUS
EXTERNAL
MEMORY
(RAM, ROM
PROM,
EPROM,
2-80 ETC.)
MICROPROCESSOR
AND ASSOCIATED
LoGIC
110 DEVICE
CDNTR{)LLER fe—— 1/O DEVICE 1
N —
2 je—— 110 DEVICE 2
CONTROL
PANEL
LOGIC
{IF ANV}
N 110 DEVICE 3
Fig. 2-10. Z-80 Mi P system t parts.

along with supporting circuitry interfaces to external memory. Con-
trol signals are passed between CPU circuitry and external memory,
memory addresses are passed along the 16-bit address bus, and data
is passed along the 8-bit address bus. External memory may be any
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combination of the many kinds of external memory available today.
RAM (random access memory) is semiconductor memory that can
be both read and written into. ROM (read only memory) is a pro-
duction-type memory that contains a program or data or both which
can be read but not altered. PROM (programmable read only
memory) may be programmed in the field with inexpensive equip-
ment, but may not be altered once programmed. EPROM (erasable
programmable read only memory) may be programmed for a read
only operation, but may be periodically erased under ultraviolet
light. Many wags have suggested another type, a WOM or write
only memory, but in most cases the former memory types are com-
monly used.

The Z-80 microprocessor and associated CPU circuitry interface
to I/O device controllers along with external memory. I/O device
controllers perform several functions. Firstly, the I/O device con-
trollers buffer data passing between the Z-80 CPU registers or ex-
ternal memory and the I/O device. The buffering matches the high-
speed data-transfer rate of the Z-80 CPU to the relatively low-speed
rate of the I/O device. It is important for the CPU not to have to
wait until the I/O device accepts data, as the wait time may repre-
sent tens of thousands of Z-80 instructions. A Teletype Corporation
ASR-33 Teletype, for example, accepts data at the rate of 10 bytes
per second. While waiting for the Teletype to accept a byte of data,
the Z-80 microprocessor could be executing 1/10 second worth of
instructions or about 30,000 instructions. The Teletype controller
allows the Z-80 to pass a byte in several microseconds and signals
the Z-80 when the Teletype is done processing the data from the
Teletype device controller.

Another function performed by the 1/O device controller is for-
matting of the data. A floppy disc transmits data as a serial bit
stream. The floppy disc controller, among other functions, converts
the serial bit stream into 8-bit parallel bytes in proper format for
transmission to the Z-80 CPU over the data bus.

A third function of the I/O device controller is that of level con-
version. Data from CPU logic is in TTL (or Transistor-Transistor
Logic) signal levels, which are nominally 0 volts and 5 volts. A Se-
lectric 1/O typewriter may require 24 to 48 volts to drive the sole-
noids of the Teletypes and obviously some voltage level conversion
is required.

Other functions of the I/O device controller are timing, synchro-
nization, control-signal handshaking, and transmission of device
status. A wide range of 1/O devices interface to the Z-80 through
their respective device controllers, ranging from 5 character-per-
second Teletype equipment, audio cassette equipment, analog-to-
digital converters, and 100,000 byte-per-second graphic display
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equipment, to mention a few of the virtually dozens of devices.
Some of the more common generic types will be covered in a later
chapter of this section along with special-purpose LSI chips of the
Zilog Z-80 family which are designed to permit ease of interfacing.

The last functional block of Fig. 2-10 is that of the control panel.
Many current microcomputers have dispensed with a control panel
except for one sparsely configured with a power switch and a reset
switch. Pressing the reset switch causes a nonmaskable interrupt
which transfers control to a special monitor program in PROM or
ROM memory. The monitor program allows the user to interrogate
memory locations, change the contents of memory locations, modify
registers, load and save programs on I/O devices and other func-
tions. If a control panel is present, it performs the same functions
as the monitor program by allowing the user to manually address,
examine, and change data in CPU registers and memory. The only
advantage that a control panel would have over a monitor program
is that only the CPU, memory, and control panel are required to
execute programs. However, any viable system must have some kind
of 1/0O device and in almost all cases, the control panel is an added
complexity.

Section III discusses many of the more popular Z-80 microcom-
puter systems and will give the reader an overview of what is avail-
able in current Z-80 microcomputers insofar as system architecture
is concerned.
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CHAPTER 3

Interface Signals and Timing

The Z-80 CPU chip is a 40-pin dual in-line package. The pinout
of the chip is illustrated in Fig. 3-1, with the pins logically grouped
according to function, rather than the actual physical representation.

ADDRESS AND DATA BUS

The address bus is represented by signals A15 through A0, where
A15 is the most significant bit of the address bus and A0 is the least
significant bit. A15 through A0 are active high and are a tri-state
output meaning that when the address bus is inactive, its outputs
are in a high-impedance state. The address bus lines considered to-
gether represent a 16-bit memory or device address. Since 2'¢ ad-
dresses can be held in 16 bits, external memory of 65536, or 64K
may be addressed directly by the Z-80 CPU. When I/O devices
are addressed, the least significant eight lines of the address bus,
AT7-A0, hold the 1/O device address, which may be 0 through 255;,.
In addition to memory or I/O device addresses, the least significant
seven lines of the address bus hold the contents of the R, or Memory
Refresh Register, for certain times during execution of each in-
struction.

The data bus, signals D7 through DO, are tri-state active high
signals with D7 representing the most significant bit and DO repre-
senting the last significant bit. The data bus is bidirectional, per-
mitting data to be transferred to CPU registers from external mem-
ory or I/O devices or from CPU registers to external memory or I/0.

BUS CONTROL SIGNALS

Associated with the address bus and data bus are two CPU bus
control signals, the input signal BUSRQ and the output (acknow]-
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Fig. 3-1. Z-80 interface signals.

edge) signal BUSAK. Signal BUSRQ is an active low signal that is
generated by an external device to gain control of the CPU busses.
During the time the external device has control of the busses, it will
probably perform a direct-memory access (DMA) operation. DMA
permits an external device to go directly to memory and transfer
data between memory and the device. The CPU must be “locked
out” during a DMA operation to avoid the conflict of the CPU re-
questing memory service at the same time and from the same mem-
ory location as an external device. When the external device brings
down (logic 0) the W%Request signal, the CPU responds
with acknowledge signal , Bus Acknowledge. BUSAK is an
active low output that signifies that the address bus, data bus, and
CPU output-control signals are now in the high-impedance state
and can be controlled by an external device for DMA operations.

MEMORY SIGNALS

__There are four signals associated with memory operation, MREQ,
RD, WR, and RFSH. The first, MREQ, Memory Request, is a tri-
state active low signal indicating that the address bus holds a valid
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memory address. Essentially, this is part of a chip enable signal for
external memory to inform external memory to output data for a
memory read or to input data for a memory write. The RD and WR
signals are tri-state active low outputs to external memory indicating
whether the memory operation is to be a read or write. When signal
MREQ goes low, either RD or WR will also be low during a portion
of the machine cycle. When MREQ and RD are both low, an ex-
ternal memory read will be performed. When MREQ and WR are
both low, an external memory write will be performed. Both reads
and writes utilize the address on the address bus and transfer data
along the data bus.

The RFSH signal is not associated with normal memory opera-
tion. It is used only when dynamic memories are used as external
memories. Dynamic memories periodically require a refresh to
maintain the data stored within the memory cell. This is essentially
4 memory read operation with the data not being transferred from
the memory. Typical dynamic memories are set up so that a refresh
signal can be input to the memory, along with five or six address line
inputs. To refresh an entire memory, six address line inputs would
require sixty-four separate refreshes (2°) with the entire refresh
cycle lasting no longer than 2 milliseconds. When the output signal
RFSH is low and signal MREQ is also low, external dynamic memory
will use the contents of the least significant seven bits of the address
bus to implement one of the refresh cycles. RFSH is active at every
instruction fetch, and since the R register is continually being in-
cremented after each fetch, the address lines will continually reflect
a new address for the next refresh cycle. For the above example of
six address line inputs, it will take sixty-four instruction cycles to
refresh dynamic memory or approximately 256 microseconds (.256
milliseconds) at about 4 microseconds per instruction, average.

INPUT/OUTPUT SIGNALS

Signal IORQ is a tri-state, active low output signal used for Input/
Output Requests. When signal JORQ goes low, the least significant
eight bits of the address bus, A7-A0, hold an I/O device address.
Signals RD and WR must then be used to determine whether the
1/O operation is to be an 1/O read or write. Signal IORQ is also
used in conjunction with signal M1 for interrupt responses as dis-
cussed below.

OTHER CPU SIGNALS

Signal M1 is an active low output signal that indicates the micro-
processor is in the fetch cycle of the instruction. Every instruction
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has a fetch cycle as the first byte of the instruction, the operation
code, is fetched from memory and then decoded. In the Z-80, unlike
the 8080, several instructions have two-byte operation codes and
signal M1 will be low during each of the fetches of one byte.

The RESET signal is an active low input signal that is used as a
master CPU reset. This signal would be brought low immediately
after power up, or at_any time when the microcomputer system
was to be reset. When RESET is brought low, the following actions
oceur:

1. The interrupt enable flip-flop is disabled, preventing system
interrupts except for NMI (see below).

. Register I, the Interrupt Vector Register, is set to 00H.

. Register R, the Refresh Register, is set to 00H.

Interrupt mode 0 is set. .

. The address bus goes to a high-impedance state.

. The data bus goes to a high-impedance state.

. All output-control signals go to the inactive state.

N O YUk LMo

The WAIT signal is a signal associated with slow memories or
1/0 devices. As long as the WATT signal is low, the CPU will “mark
time,” doing nothing, while the external memory or 1/O device re-
sponds to a previous memory or 1/O request. The WAIT signal en-
ables slow memories or (rarely) slow I/O devices to be interfaced
to the Z-80 without buffering.

The HALT signal is_an active low output signal that goes low
during the time that a HALT instruction is being executed. A HALT
instruction in a program is typically used for one of two conditions.
Either the program has performed all of its functions and termi-
nated, or a halt has been reached and the program is waiting for an
interrupt to occur. When the CPU is in a halt state, it performs no-
operations instructions (NOP) to ensure proper memory refresh
activity.

INTERRUPT-RELATED SIGNALS

The remaining logic signals are associated with interrupt process-
ing. Signal NMI is a negative-edge triggered input that specifies a
nonmaskable interrupt is to be performed. When this signal is mo-
mentarily brought low, the CPU will recognize this interrupt at the
end of the current instruction. When the CPU recognizes the NMI
interrupt, the following actions occur:

1. The current contents of the program counter PC is saved in the
memory stack.
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2. The CPU transfers control to memory location 0086H, that is,
instruction execution starts from location 0066H which must
contain an NMI interrupt processing program.

An NMI interrupt of this kind cannot be disabled and will always
be recognized by the CPU at the end of the current instruction cycle.
The exceptions to this are that signal BUSRQ will take precedence
over a NMI signal, and that a continuous WAIT state will prevent
the current instruction from ending and thus prevent the NMI from
being recognized.

The main interrupt request is signal INT, an active low input
?ggal that is supplied by external devices to cause an interrupt. The

NT signal will be recognized by the CPU at the end of the current
instruction if the interrupt enable flip-flop IFF in the CPU has been
set by the program and if the BUSRQ signal is not active. If these
conditions are met, the CPU accepts the interrupt and acknowledges
the interrupt by sending out an IORQ during the fetch (M1) time
of the next instruction. Since TORQ never occurs during M1 for an
I/O instruction, the interrupting device recognizes the IORQ and
‘M1 condition as an interrupt acknowledge. Further actions taken for
this interrupt are discussed later in this section.

CPU ELECTRICAL SPECIFICATIONS

The electrical specifications for the Z-80 microprocessor chip are
shown in Chart 3-1. All inputs and outputs are TTL compatible
facilitating interfacing. There is only one power-supply voltage, a 5-
volt power supply. The Z-80 microprocessor chip alone requires a
maximum current of 200 milliamps. Unlike the 8080, there is only a
single-phase clock input required, which is also at TTL levels. The
frequency of the clock for the original Z-80 was 2.5 megahertz, how-
ever, faster versions will accept a 4-megahertz clock at this time of
writing. Detailed specifications for other dynamic parameters are
provided in Appendix A.

CPU TIMING

All instruction execution in the Z-80 may be broken down into
a set of basic cycles. There are two kinds of cycles, the most basic
being a clock cycle, or T cycle. If a 4-MHz clock is being used for
the Z-80, each T cycle will be a constant length (period) of 250
nanoseconds as shown in Fig. 3-2. The T cycles are used to control
operations within a larger cycle called the machine cycle, or M
cycle. Every instruction executed within the Z-80 consists of from
one to six machine cycles (with the exception of special block-
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Chart 3-1. Z-80 Electrical Specifications

ABSOLUTE MAXIMUM RATINGS

Temperature Under Bias 0°C #0 70°C

Storage Temperature —65°C to +150°C

Voltage On Any Pin —0.3Vto +7V
with Respect to Ground

Power Dissipation 1awW

® DC CHARACTERISTICS

*Comment

Stresses above those listed under
“Absolute Maximum Rating” may
cause permanent damage to the
device. This is a stress rating only
and functional operation of the
device at these or any other con-
dition above those indicated in
the operational sections of this
specification is not implied. Expo-
sure to absolute maximum rating
conditions for extended periods
may affect device reliability.

Ta = 0°C to 70°C, Ve = 5V = 5% unless otherwise specified

Symbol Parameter Min. | Typ. | Max. | Unit Test Condition
Vine Clock Input Low Voltage | —0.3 045 | Vv
Vie | Clock Input High Voltage | Ve™ Vee | V
Vi Input Low Voltage —0.3 0.8 v
Vin Input High Votlage 2.0 Vee v
Vou Output Low Voltage 0.4 \ lor = 1.8 mA
Von Qutput High Voltage 2.4 v lox = —100 pA
toe Power Supply Current 200 | mA | t.= 400 nsec
L% Input Leakage Current 10| pA | Vin=010oVec
lLon Tri-State Qutput Leakage 10| #A | Vour =2.410Vee
Current in Float
Iron Tri-State Output Leakage —10 | A | Vour =04V
Current in Float
lup Data Bus Leakage Current =10 | pA | 0SS Vin K Vee
in Input Mode
® CAPACITANCE Ta=25°C,f=1 MHz
Symbol Parameter Typ. Max. Unit Test Condition
Ce Clock Capacitance 20 pF
Unmeasured Pins
1 i F
Civ nput Capacitance 5 Pl Returned fo Ground
Cour Output Capacitance 10 pF
[1] Clock Driver Ve
330Q I
Vee
om [ J
Z-80

An external clock pull-up resistor of (330(2) will meet both the ac and dc clock re-

quirements.
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Fig. 3-2. Basic instruction cycles.

related instructions), and each of the machine cycles is comprised
of three to six T cycles as shown in the figure.

There are seven basic machine cycles that can occur during Z-80
operation:

. Operation code fetch cycle (M1 cycle)

Memory data read or write cycle

1/0 read and write cycles

Bus Request/Acknowledge cycle

. Interrupt Request/Acknowledge cycle

. Nonmaskable Interrupt Request/Acknowledge cycle
. Exit from a HALT instruction

NSO U

Ml CYCLE

Every instruction execution is made up of one operation code
fetch cycle, or M1 cycle. A few instructions have two bytes for the
operation code and therefore have two M1 cycles. An ML cycle
allows the CPU to read the operation code byte from external mem-
ory, decode the operation to be performed, and implement a portion
or possibly all of the operation (for short instructions that are one
machine cycle long.) Fig. 3-3 shows the timing diagram for an INC
R instruction which will also illustrate the M1 cycle. The INC R
takes only one machine cycle to fully execute the M1 cycle. Four T
cycles are required.

As the CPU enters the M1 cycle, signal M1 falls to indicate that
this cycle is active. The contents of the program counter is gated to
the address bus in preparation for the fetch of the_op code of the
next instruction. On the falling edge of T1 signals MREQ and RD
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go low, indicating to the external memory that there is a valid
memory address on the address bus. The external memory will now
gate the contents of the specified memory location onto the data
bus somewhere before the rising edge of T3 (unless it is a slow
memory as discussed later in this chapter). On the rising edge of
T3, the operation code byte on the data bus is clocked into the CPU.
Shortly thereafter, the RD signal goes to an inactive level, along with
MREQ and MI. The remaining two T cycles of MI are used to pro-
vide a refresh time for external dynamic memories. Signal RFS[% is
brought low and MREQ is again active to indicate to external dy-
namic memory that refresh can proceed. The data bus will now have
the contents of the R register present to provide a refresh address.

INC R INSTRUCTION——————————]
M1 CYCLE
n 7 n T n
S e VN M VY (i VD S VS [ VS A
m-as P ){ REFRESH ADDR. ){
N I Tl
B T\
wn ]
o —
DB0-087
T \ —

_,'__ INC R EXECUTION ———‘———

Fig. 3-3. M1 (op code fetch) cycle.

During the last two T cycles of M1 the CPU decodes the opera-
tion code of the instruction, which is an INC R. The INC R takes
the contents of the specified general-purpose register R (A, B, C,
D, E, H, or L or their primes), increments it by one count, and puts
the result back into the register, setting the appropriate condition
codes. Since no further memory accesses have to be made and the
accesses of CPU registers can easily be made in several hundred
nanoseconds, no further machine cycles are required.
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MEMORY DATA READ AND WRITE CYCLES

The memory read and write cycles will be illustrated with ex-
amples of the execution of two instructions. Fig. 3-4 shows the exe-
cution of an LD R, (HL) instruction which loads the contents of
the memory location pointed to by the H,L register pair into CPU
register R. The M1 cycle is identical to that previously discussed.
At the end of M1, the CPU has decoded the instruction and initiates
a memory read cycle to obtain the eight-bit operand from memory.
The address bus, MREQ, and RD signals are activated just as in
the case of the M1 cycle. The address bus holds the contents of the
H,L register pair during this time and external memory gates the
operand onto the data bus. On the falling edge of T3, the memory
operand is clocked into the CPU, loading register R.

LD R, tHL) INSTRUCTION
M1 CYCLE MEMORY READ CYCLE

n 2 i} 7] m ? B
L3 dwwr
A0 - ALS MENORY ADDR,
MREQ T\ J 1
RO T\ I
13
DATA BUS {in}
D0- D7 =
WA Y S N VA R

}_.__ INSTRUCTION FETCH—'——LD R.HL EXECUTION—|

Fig. 3-4. Read cycle.

A memory write is shown in Fig. 3-5. The instruction in this case
s an LD (HL), R which takes the contents of the specified CPU
register R and writes it into the external memory location pointed
to by the HL register. The MREQ and address bus outputs are
active as in the previous examples. No RD signal is output, but the
contents of the specified CPU register are gated onto the data bus
after the falling edge of T1. This data remains on the data bus and
at the falling edge of T2 the WR signal becomes active. With MREQ
and WR active, external memory writes the data on the data bus into
the specified memory location, using address bus outputs A15-A0.
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Fig. 3-5. Write cycle.

I/0 READ AND WRITE CYCLES

An 1/O Read or Write cycle occurs during an input or out-
put instruction. Input and output instructions generally are three
or four machine cycles long and from 10 to 20 T cycles (2.5 to 5
microseconds long for a 4-MHz clock). The more sophisticated I/O
block-transfer instructions (INIR, INDR, OTIR, OTDR) transfer
up to 256 bytes, however, and repeat machine cycles until all bytes
have been transferred, resulting in total instruction times that are
dependent on the number of bytes to be transferred and the speed
of the I/O device. Fig. 3-6 shows an input cycle and Fig. 3-7 shows

110 READ CYCLE
] 7 Tw 1 n

P i U VY e U o U e W

YA G PORT ADDRESS

TR \ Y

® \ Inn

DATA BUS LN}

et Tt L e e IR
R TR

Fig. 3-6. 1/0 Read cycle.
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an output cycle. The I/O device address is placed on lines A7-A0
of the address bus at the start of the machine cycle and the IORQ
is enabled after the rising edge of T2. If a read is taking place, sig-
nal RD is enabled at the same time as IORQ. The external device
controller recognizes a read by the TORQ and RD and gates its data
onto the data bus, where, on the falling edge of T3, it is clocked
into the CPU.

1/0 WRITE CYCLE

n i3 Tw 3 n

o _f\ \ \ | W B

A0 - A7 X PORT ADDRESS

[ \ 1
W \ [

DATA BUS ———{ out

L2 I DY A A WO AR

Fig. 3-7. 1/0 Write cycle.

If_a write is taking place, the ‘WR signal is enabled in place of
the RD at the same time as TORQ. Previous to the WR data from
the CPU has been placed in the CPU register (during T1). This
data is available during the remainder of the write cycle and the
external 1/O device controller will input it somewhere in this period.

Note that for both input and output cycles, signal WAIT is inter-
nally enabled after T2. This causes the CPU to defer further I/O
processing until the WATT line again is deactivated and effectively
adds one clock cycle to the time of the input and output cycle. This
condition is implemented to give the CPU additional time to sample
the external WAIT line to respond to slow I/O devices. Additional
WATT states may be imposed by the external 1/O device controller
for as long as it takes the I/O device controller to execute the 1/O
instruction. These would be inserted for n number of T cycles after
the CPU-imposed wait cycle.

BUS REQUEST/ACKNOWLEDGE CYCLE

At any time, an external device can gain control of the address
bus Al5-A0, data bus D7-D0, and MREQ, RD, WR, TORQ, and
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RFSH lines by enabling the input signal BUSRQ. Normally, the
reason for this would be to allow an external device controller to
communicate directly with external memory to transfer data be-
tween high-speed 1/O devices and memory without CPU interfer-
ence (Direct Memory Access or DMA). See Fig. 3-8. When signal
BUSRQ is enabled, the CPU detects the signal during the rising
edge of the last T cycle of a machine cycle. The T cycle is then
completed and on the next T cycle the CPU responds to the request
by output signal BUSAK. At the same time, the address bus, data
bus, and other signals are set to the tri-state high-impedance state.
Now any changes to the lines will not be affected by the CPU nor
will the CPU affect the state of the lines. When the 1/O device
controller has completed the DMA transfer (typically one byte),
it will deactivate BUSRQ. This condition will be detected by the
CPU on the next rising edge of a T cycle and it will bring up or
disable BUSAK on the next T cycle after that. The CPU will then
continue processing from the point at which it gave control to the
bus requestor.

ANY M CYCLE BUS AVAILABLE STATES

LASTT T T T, n

STATE X X N
® I e W g VD e VD g VS e VD VIR W
USROG SANPIE \
BOSAK \ —
o-as T D-——-1 —
00 - D7 _— —
MREQ, RD, ) S vy Rttty {—

R. 10RQ,

¥

Fig. 3-8. Bus Request/Acknowledge cycle.

INTERRUPT REQUEST/ACKNOWLEDGE CYCLE

If the CPU interrupt enable flip-flop has been set to allow ex-
ternal interrupts, and if a bus request action is not taking place,
the CPU is free to recognize external interrupts. An external device
makes the interrupt request by enabling signal INT. During the
rising edge of the last T cycle of the last machine cycle of an in-
struction, the CPU polls the state of the INT line, and, if low, starts
an interrupt cycle as shown in Fig. 3-9. During T1 of the interrupt
cycle, the M1 signal is enabled. T2 and two WAIT states are pro-
vided (the WAIT states are internally generated) to give sufficient
time for external daisy-chained interrupt circuitry to respond to the
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interrupt acknowledge and place an interrupt response vector on
the data bus. The external interrupt logic identifies the interrupt
acknowledge from the CPU by the combination of M1 and TORQ.
After detecting these two signals, the external interrupt circuitry
responds by placing the proper data on the data bus, which is
clocked into the CPU during the rising edge of T3. During T3, the
M1 and IORQ signals are disabled and refresh action is started.
Further action during the external interrupt cycle is dependent on
the interrupt mode and is discussed later in this section.

LAST M CYCLE
OF INSTRUCTION M

LASTT

STATE n 2 Tw Ty k]
® _JL_\_IL_\_I’_—\_J’_\_J’_\_J’_\_A'_\_
(LY Aoyt W iy Dumpmmpupny SO PSS! ESuund b
AQ - AT5 X FC (REFRESH
M \ /—
MREQ A
ToRQ
DATA BUS {)
WAW  Z)TIITIQTIICTICIITIITIITIICIIIIIT \IIEIIIIC
RO

Fig. 3-9. 1 pt Req / Ack ledge cycle.

NONMASKABLE INTERRUPT REQUEST CYCLE

The CPU action during this machine cycle is shown in Fig. 3-10.
The NMI signal cannot be disabled by the CPU interrupt enable

—— LASTM CYCLE
usLT n 12 ™ ™ !
® ﬁL_\_I_"\__J_\_"—'\_"_'\_JL_'\__"_—\_J—
[ e W Y Sy epptngt iyt Saphniinte Sy R
AD-Al5 ) G PC X REFRESH_|X
Mi \ /
MREQ I\ I
RD \ /
RFSH A= I
Fig. 3-10. N kable Interrupt R cycle.




flip-flop. The NMI interrupt also takes priority over the external
interrupt. It is recognized during the last T cycle of the last ma-
chine cycle of the current instruction as in the case of the external
interrupt. Fig. 3-10 shows the first portion of this interrupt action.
TORQ is not enabled since on external device needs to be notified
that the interrupt was accepted. The first machine cycle is similar
to a memory read operation, except that no data is read from ex-
ternal memory. Refresh operations are carried on in T3 and T4
as RFSH and MREQ are enabled, and the contents of the R reg-
ister are placed on the address bus A7-AO. The NMI interrupt se-
quence is discussed later in this section.

EXIT FROM HALT INSTRUCTION

When a software HALT instruction is executed, signal HALT is
enabled automatically by the CPU, The CPU continually generates
ML cycles for this HALT and does not advance the program counter.
Data from memory is ignored. Refresh logic is enabled during the
last two T cycles of M1 as before to enable proper refresh of ex-
ternal memory while the CPU is in _the halted state. The HALT
state can only be interrupted by a RESET or receipt of an NMI

M1 M1 M1

HALT INSTRUCTION
IS RECEIVED DURING
THIS MEMORY CYCLE

Fig. 3-11. Exit from HALT instruction.

or external interrupt, both of which cause normal interrupt pro-
cessing as before and cause the CPU to advance the program coun-
ter to the next instruction before the program counter is stored in
the memory stack. The HALT instruction exit is shown in Fig. 3-11.

MEMORY OR I/0 WAIT STATES

In general, WAIT states may be initiated after any memory or
1/O request. When external memory or I/O receives an RD or WR
signal and an. MREQ or TORQ, it can respond by a WAIT input
to the CPU. The CPU will detect the WAIT condition and defer
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further processing until the memory or I/O device controller has
had time to respond. External memories must be capable of re-
sponding in a little over one T cycle, or 250 nanoseconds for a 4-
MHz clock, while input/output device controllers transferring data
to the CPU have about two T cycles or 500 nanoseconds.




CHAPTER 4

Addressing Modes

The Z-80 has a wide repertoire of instructions, ranging from a
simple instruction to set the interrupt enable flip-flop to a block-
search instruction that searches a string of bytes for a given byte.
Because of the wide range of functions that Z-80 instructions per-
form, instructions range in length from one byte to four bytes. In
addition to differences in length, instructions differ in how external
memory is addressed. Some instructions require no operand and can
be executed during the last portion of an M1 (fetch) cycle. Other
instructions require an operand from a CPU register and a second
operand either from another CPU register or external memory. The
second operand may be specified in a variety of ways. As an exam-
ple, the ADD instruction adds two 8-bit operands. One of the op-
erands is in the A register, while the second can be in another CPU
register (Register Addressing), an immediate value in the ADD
instruction itself (Immediate Addressing), in memory and pointed
to by the contents of the HL register pair (Register Indirect Ad-
dressing), or in a memory location whose address is computed by
adding a 16-bit displacement in the instruction and the contents of
an index register (Indexed Addressing). This chapter will describe
the various addressing modes of the Z-80, using examples of specific
instructions. The next chapter discusses instructien types and de-
scribes which addressing medes are valid for each instruction.

The Z-80 has the following addressing modes, generally ordered
from simple to complex:

1. Implied Addressing
2. Immediate Addressing
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. Extended Immediate Addressing
. Register Addressing

. Register Indirect Addressing
Extended Addressing

Modified Page Zero Addressing
. Relative Addressing

. Indexed Addressing

. Bit Addressing

SOPAD YA W

ot

IMPLIED ADDRESSING

In this kind of addressing, the operation code of the instruction
is fixed. There are no variable fields within the instruction, and the
instruction always performs exactly the same function. Examples of
this kind are the CPL and LD SP, IY instructions.

The format of the CPL, Complement Accumulator, is shown in
Fig. 4-1. This instruction takes the contents of the A register, forms
the ones complement (changes all zeros to ones and all ones to
zeros) and stores the result back into the A register. No condition
code bits are affected. The source and location are fixed and no
other register can be used.

CPL COMPLEMENT ACCUMULATOR
Fig. 4-1. Implied addressing in
L4 0 CPL instruction.
e o 2 -opone

The format of the LD, SP, IY instruction is shown in Fig. 4-2.
Load SP with IY takes the 16-bit contents of the IY register and
transfers it to the SP register. The contents of the IY register re-
mains unchanged and no condition-code bits are affected. The two-
byte configuration FDF9H will always produce the same action of
loading the SP register from the IY register.

LD SP, 1Y LOAD SP WITH IY
7 0 Fig. 4-2. Implied addressing in LD

M1 T 17101 SPIY instruction.
BYTEO FOH1 5o cone ‘
oviEL [11111001] MK

All of the instructions discussed in the next chapter under General-
Purpose Arithmetic and CPU Control are of this kind, as are the
instructions under the Exchange, Block Transfer, and Search Group.
In the latter group, the actions are more elaborate, but the instruc-
tion format is fixed.

42




IMMEDIATE ADDRESSING

In the immediate addressing mode, the second or third byte of
the instruction itself is the operand. Immediate addressing is valu-
able when it is necessary to load or perform an arithmetic or logical
operation with constant data. The immediate addressing instructions
ADD A,N and XOR N are examples of this addressing type.

The format of the ADD AN instruction is shown in Fig. 4-3. The
contents of the A register are added with the contents of the second

ADD A N ADD VALUE NTO ACCUMULATOR

Fig. 4-3. Immediate addressing in
ADD AN instruction. BYIEO [T 1 0 0 0 1 1 0] C6H=0PCODE
BYEL [ N ] IMMEDIATEVALUE

byte of the instruction and the result put into the A register. If two
bytes of the ADD A,N instruction were C633H (ADD A,33H) and
the A register contained 80H, 80H and 33H would be added to
produce a result of B3H and this result would be put into the A
register. The condition codes would also be set on the results of
this instruction.

The format of the XOR N instruction is shown in Fig. 4-4. The
contents of the A register are exclusive ORed with the second byte
of the instruction and the result put into the A register. The condi-
tion codes are set on the result of the instruction. If the instruction
were EE35H and the contents of the A register were 33H, 35H and
33H would be exclusive ORed to produce 06H, which would be
put into the A register.

XOR N EXCLUSIVE OR IMMEDJATE AND ACCUMULATOR

BYTE 0 EEH = OP CODE
BYEEl [ N | IMMEDIATE VALUE
Fig. 4-4. Immediate addressing in XOR N instruction.

In general, the immediate addressing mode is used for instruc-
tions in the 8-bit Arithmetic and Logical Group discussed in the
next chapter.

EXTENDED IMMEDIATE ADDRESSING

When the instruction is an immediate kind of instruction, but
16 bits of immediate data are required, the instruction format is
of the “extended” immediate kind. The extended addressing mode
is used in only a few instructions in the 16-Bit Load Group of in-
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REGISTER INDIRECT ADDRESSING

Instructions in this group include the original 8008 instructions
that utilized the H and L register pair (High and Low) as a mem-
ory address pointer. In the 8008, data in memory could only be ad-
dressed by the HL pointer. The 8080 added the capability to use
register pairs B,C and D,E as pointers and also added the capabil-
ity of Extended Addressing, where each memory location could be
individually addressed. Register Indirect Addressing is a detriment
where data must be addressed in random (noncontiguous) memory
locations. When data is grouped in contiguous blocks, such as tables
or strings, however, accessing data by the pointer method is some-
what more efficient. The reason for the inefficiency in accessing
random memory locations is that the pointer register must be loaded
with the address of the new byte of data to be accessed before each
instruction of this kind is executed. Access of contiguous data is
made simpler by instructions that automatically increment and dec-
rement by one the register pairs used as pointers. The two proce-
dures for accessing blocks of random and contiguous data are shown
in Table 4-1, along with the relative times. Note that the examples
are for illustrative purposes only to point out the deficiencies in
register indirect addressing; the Z-80 has more efficient ways to ac-
cess data and they will be described later in this chapter.

Table 4-1. Data Access Using Register Indirect Addressing Charts

CALL &RTN:
THIRD DATA BYTE
FIRST DATA BYTE
SECOND DATA BYTE
FIRST DATA BYTE THIRD DATA BYTE
FOURTH DATA BYTE
SECOND DATA BYTE
FOURTH DATA BYTE LAST DATA BYTE
RANDOM ACCESS SEQUENTIAL (CONTIGUOUS) ACCESS
1. LOAD DATA POINTER WITH ADDRESS OF 1. LOAD DATA POINTER WITH START OF DATA,
NEXT DATA BYTE (5 UNITS). 2. LOAD BYTE USING REGISTER INDIRECT
2, LOAD BYTE USING REGISTER INDIRECT ADDRESSING (3.5,
ADDRESSING (3.5. 3. PROCESS DATA BYTE (X).
3, PROCESS DATA BYTE (X), 4, BUMP REGISTER POINTER BY 1(2,5).
4, DONE? IF NOT, GO TO 1(7)., 5. DONE? IF NOT, GO TO 2(7.
5. DONE. 6. DONE,
X +15.5 UNITS/BYTE X + 13 UNITS/BYTE
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code bits are set according to the results of the shift. Valid values
for the R field of the instruction are as follows:

R Register Shifted
000
001
010
011
100
101
111

Note that all bit permutations are possible except 110,. If 110.
were to be specified in this instruction, the instruction would become
another kind of addressing mode, Register Indirect Addressing and
would shift an external memory location rather than a CPU register.
Strictly speaking, the seven registers that may be specified result in
seven unique instructions, which could be viewed as seven Implied
Addressing instructions.

The AND R instruction is shown in Fig. 4-8. Here the instruction
is a one-byte instruction (because it was an 8080 one-byte instruc-

PrImoOO®

AND R LOGICAL AND OF REG ISTER R AND ACCUMULATOR

o 1t 0P one

R = CPU REGISTER CODE
Fig. 4-8. Register addressing in AND R instruction.

tion) with the least significant three bits of the byte specifying the
register to be used in the instruction. The coding of the registers is
identical to the coding used in the RL R. AND R takes the contents
of the specified R register (A, B, C, D, E, H, or L), logically
ANDs it with the contents of the A register, and puts the result
back into the A register. The condition codes are set on the result
of the anping operation. As an example, the instruction shown in
Fig. 4-9 would anp the contents of the D register with the A reg-
ister contents and put the results in the A register.

AND D

l)lll2 = CODE FOR D REGISTER

Fig. 4-9. Regi ddressing 1

Instruction groups that utilize this addressing mode would in-
clude the 8-Bit Arithmetic and Logical, 16-Bit Arithmetic, Rotate
and Shift, and Bit Set, Reset, and Test groups.
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LD 1Y, NN LOAD 1Y WITH VALUE N

nvr50111111n1m4}
P CODE
BviEl [0 010000 1] anf®
BYIEZ N LS BYIE } 16-B1T IMMEDIATE VALUE
BYTE 3 NmS BYTE
Fig. 4-5. E ded i di ddi ing in LD 1Y,NN instruction.

structions. An example would be the instruction LD IX,NN which
is shown in Fig. 4-5. Note that the first wo bytes comprise the oper-
ation code, and that the next two are the immediate data itself. LD
IX,NN loads the 16 bits of immediate data in bytes two and three
of the instruction into the IX register. The condition-code bits are
not affected. As in the case of all 8080 16-bit data, the data is
grouped least significant byte followed by most significant byte.
The instruction LD IX;123FH would load the IX register with
123FH and would appear as shown in Fig. 4-6.

LD I1X,123FH
BYIEO 110111001 0P CODE Fig. 4-6. Extended immediate
BYTEL f0 0 1 000 01 ddressing data
BYE2 [0 01 1 1 1 1 1] 3/
BYE3 [0 0 0 1001 0] 1M

REGISTER ADDRESSING

In the register addressing mode, one or more of the CPU registers
is addressed by the instruction. The instruction format would con-
tain a field(s) which would specify which CPU register(s) was to
be utilized in performing the instruction. Examples of this kind of
addressing would be the RL R and AND R instructions.

The RL R instruction format is shown in Fig. 4-7. The least sig-
nificant 3 bits of word 1 of the 2-byte instruction is a 3-bit field that
specifies one of the general-purpose CPU registers A, B, C, D, E, H,
or L. This instruction takes the contents of register R and shifts it
left one bit position. The most significant bit of the register is shifted
into the carry, while the previous contents of the carry are shifted
into the least significant bit position of the register. The condition-

RL R ROTATE LEFT THROUGH CARRY REGISTER R
BYIEO [T 1001011} CBH-OPCODE

YEl [0 001 O] R | 00010,-0P CODE
R = CPU REGISTER CODE

Fig. 4-7. Register addressing in RL R instruction.
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LD A, (BC) LOAD ACCUMULATOR
Fig. 4-10. Regi indi dd i WITH LOCATION POINTED TO BY
CONTENTS OF B,C

g
in LD A,(BC) instruction.
BYTE0 QAH = OPCODE

Examples of the instruction format for this way of addressing are
shown for an LD A, (BC) instruction ( Fig. 4-10) and an INC (HL)
instruction (Fig. 4-11). The LD A,(BC) is a one-byte instruction
that loads the contents of the memory location pointed to by regis-
ter pair BC into the A register. No condition codes are affected.
The INC (HL) instruction increments the contents of the memory
location pointed to by the HL register pair by one. The condition
codes are set on the results of the increment.

INC (HL) INCREMENT LOCATION

Fig. 4-11. Reg ir di ddressing POINTED TO BY CONTENTS OF HL
in INC (HL) instruction. ByiE0 [0 0 1 1 0 10 0] 3 -0PCODE

When register indirect addressing is employed, the register pairs
utilized as pointers hold the memory address as a 16-bit address as
one would expect:

Register Most Significant Least Significant
Pair Byte Byte
B,C B Cc
D,E D E
H,L H(igh) L{ow)
SP SP bits 15-8 SP bits 7-0

Register indirect addressing is primarily used for 8008 compatible
instruction groups such as the 8-Bit Load, 8-Bit Arithmetic and
Logical, and Rotate-Shift groups.

EXTENDED ADDRESSING

The extended addressing instructions hold the address of the data
in the instruction itself, in a fashion similar to many minicomputers
and larger machines. Although this means that the instruction word
is longer, all locations in memory can be addressed directly, and
this mode is many times called direct addressing. The format of
this kind of addressing is shown for an LD A,(NN) instruction and
an LD (NN),HL instruction.

The LD A,(NN) is a classical computer instruction shown in
Fig. 4-12. Bytes 1 and 2 of the instruction specify a location in
memory. The 8-bit contents of this location are loaded into the
accumulator, No condition codes are affected. Byte 1 of the address
is the least significant byte, while byte 2 is most significant.
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The LD (NN),HL instruction is an extended addressing instruc-
tion that does the opposite of the first example. It takes the contents
of register pair H,L and stores it into the memory location specified
in bytes 1 and 2 of the instruction (see Fig. 4-13). Just as in all
instructions like this, the address of the memory location is ordered
the least significant byte (byte 1) followed by the most significant

LD A, (NN} LOAD ACCUMULATOR
WITH CONTENTS OF LOCATION NN
Fig. 4-12. Extended addressing in

BviEo 0 0 11101 0) 3H-0PCORE LD A,(NN) instruction.
BYTE 1 LS BYTE 16-BIT
BYTE 2 Nws 8YTE ADDRESS

byte (byte 2). The contents of the L register are stored in memory
location NN and the contents of the H register are stored in memory
location NN+1. An interesting thing to note about instructions like
these that move data from CPU registers to memory is that Zilog
chose to refer to them as LDs or Loads, when the usual mnemonic
is ST for Stores. This classification may be rather confusing until
one has worked with the mnemonics for some time.

LD {NN), HL LOAD LOCATION
NN WITH CONTENTS OF H,L

BytE0 [0 0 1 0 0 0 1 0] 2n=opcooe Fig. 4-13. Extended addressing in LD
BYTEL Ny s BYTE 16-BIT (NN),HL instruction.
BYTE 2 Nus BYTE ADDRESS

Note that the 16-bit address in the instruction can address 2!¢ or
65,536 memory locations. The size of the address field in this instruc-
tion format together with the 16-bit width of the register pairs are
the primary limitations to the size of external memory that can be
employed without special memory banking schemes. Extended ad-
dressing is used primarily for instructions in the 8- and 16-bit Load
groups.

MODIFIED PAGE ZERO ADDRESSING

This addressing mode is used only for one instruction, the RST P
or Restart Page Zero instruction. The effect of this instruction is to
cause a branch to one of eight page 0 locations after pushing the
current contents of the program counter into the stack. Page 0 in
the Z-80 as in other computers is defined as the area of external
memory that can be addressed in 8 bits. Since 2° = 256, memory
locations 0 through 255 constitute page zero. The format of the
RST P is shown in Fig. 4-14. The T field in the instruction is three
bits wide. Depending on the configuration of bits in the T field, a
branch may be made to locations OH, 8H, 10H, 18H, 20H, 28H,

48




RST P RESTART 70 LOCATION P

ByiE [T 1] 1 1 1 1] 1,/111,-0PCODE

Fig. 4-14. Modified page zero
addressing in restart instruction.

BEBEEEEE~
~owa W m ol

30H, or 38H as shown. This instruction is discussed more fully in
the next chapter.

RELATIVE ADDRESSING

Relative addressing is primarily used in minicomputers or micro-
computers to shorten instructions and reduce the amount of memory
that programs occupy. If direct (extended) addressing is used to en-
able addressing all of memory, the address portion of the instruction
is two bytes long (16 bits can address 64K). In both page zero and
relative addressing, the address portion of the instruction is one byte
long, reducing the instruction size from three bytes (op code plus
address) to two bytes. Page zero addressing allows addressing only
of page zero; relative addressing allows addressing of 256 memory
locations grouped around the current instruction. Fig. 4-15 shows
how this scheme is implemented. The second byte of the instruction
is a signed value of —128; to +127y (10000000, to 01111111,).
When this value is added to the current contents of the program
counter, a memory location —126 to +129 bytes away is addressed
since the program counter points to the instruction after the relative
addressing instruction. As the current instruction moves through

BYTEO OP CODE

BYIE1 | DISPLACEMENTVALUE | -128170 +127yg

MEMORY

CURRENT -12610 LOCATIONS BACK

INSTRUCTION -
I

LOCATION +12919 LOCATIONS FORWARD

Fig. 4-15. Relative addressing.
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memory, the block of memory that can be addressed moves (or
floats) along with the current instruction. The premise for this man-
ner of addressing is that in most cases it is sufficient to address mem-
ory in the immediate area of the current instruction; most programs
will operate on data near the current instruction.

Relative addressing on the Z-80 is used only for the Jump Group
of instructions, allowing conditional and unconditional jumps back
up to 128 locations or forward 129 locations from the current in-
struction. An example of relative addressing for a jump is shown
in Fig. 4-16.

JR Z, E JUMP RELATIVE IF ZERO

LOCATION 0300H 28H = OP CODE
G0 [00 00 10 1 0] VALE=10,=AH

pC————= 0302H

INSTRUCTION WILL JUMP TO 0302H + AH = 030CH
IF ZERO FLAG SET OR WILL EXECUTE NEXT
INSTRUCTION AT 0302H IF NOT SET

Fig. 4-16. Relati ddressing in JR Z,E i

INDEXED ADDRESSING

Indexed addressing is an addressing mode that permits using the
two index registers in the Z-80, IX and IY. Many instruction groups
permit using the indexed addressing mode and it is one of the most
powerful features that the Z-80 offers. The format of this addressing
mode is shown in Fig. 4-17. The op code of the instruction is in
bytes 0 and 1; while the third byte holds an 8-bit signed displace-
ment of —128,, through +127y. This displacement is added to the
contents of the specified index register IX or IY to determine the
effective address of the memory operand.

BYTE O OP CODE

BYTE1 0P CODE

BYTE 2 D 16-BIT SIGNED VALUE -128T0 +127;,
(BYTE 3 (VARIES OR NONE)

EFFECTIVE ADDRESS = (IX) + D OR
v +D
Fig. 4-17. Indexed addressing.

For example, consider the instruction LD (IY + D),N that uses
the IY index register. This is shown in Fig. 4-18. The LD (IY + D),N
loads (stores) the immediate value N into the memory location
specified by the effective address. If the contents of IY are 1003H
(the index registers are 16-bit registers), an LD (IY + D),N with a
displacement field of 40H will store N into memory location 1043H.
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The indexing operation is powerful because many programs must
have the ability to process tables or lists of data in memory. Ex-
amples of the use of indexing are provided in section II. Instruction
groups using the indexed addressing mode are the 8-Bit Load, 8-Bit

1D {IY + D), N LOAD LOCATION (1Y + D} WITH VALUE N

a3 [T 1111101
sviEz [0 0 1101 10| ¥
BYIEL [0 10 00 0 0 0l D-d
BYIEQ N VALUE T0 BE STORED
() - 10034
D= aH
EFFECTIVE ADDRESS = T40H

Fig. 4-18. Indexed addressi I

Arithmetic and Logical, Rotate and Shift, and Bit, Set, Reset, and
Test Groups.

BIT ADDRESSING

The last addressing group is the bit addressing group. Bit address-
ing is used in conjunction with the previous addressing modes to
provide testing, setting, or resetting any one of the 8-bits in an
operand. These operations would have to be performed by as many
as three instructions in the 8080 or other computers. An example
of this is provided for the SET B,(IX+ D) instruction shown in
Fig. 4-19. The SET instruction sets a specified bit, and in this case
the address of the byte containing the bit to be set is given by
(IX 4+ D), an indexed addressing operation. The bit specified in the
B field of the instruction will be set after the instruction has been
executed. No condition codes are affected. The bit to be set is as
follows:

B Field Bit to be Set
000 XXXXXXX1
001 XXXXXX1X
010 XXXXXT1XX
011 XXXXTXXX
100 XXXTIXXXX
101 XXIXXXXX
110 XIXXXXXX
111 IXXXXXXX

Other examples of the bit addressing mode are shown in Fig. 4-20,
which shows the “before” and “after” condition for various SET B,R
instructions specifying a bit set for CPU register C.
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Chart 4-1. Z-80 Addressing Modes
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Chart 4-1. Z-80 Addressing Modes—cont
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the A register with the contents of the interrupt Vector Register I.
LD AR loads the A register with the contents of the Memory Re-
fresh Register R. LD LA and LD R,A do the reverse. No condition
codes are affected for the latter two. The former two set the
condition codes as shown. These four instructions do not exist in
the 8080 or 8008 as neither microprocessor had the I or R registers.

The LD R,S instructions load the specified CPU register in the
R field with the contents of another CPU register (LD R,R’), an
8-bit immediate value (LD R,N), or an 8-bit value from a memory
location [LD R,(HL); LD R,(IX+D); LD R,(IY+D)]. None of
the condition-code bits are affected after the load. LD S,R does the
opposite of LD R,S, that is, the contents of a CPU register R is
transferred to a memory location using either an HL register pointer
method of addressing [LD (HL),R] or indexed addressing [LD
(IX+D),R or LD (IY+D),R]. This is in fact a “store” kind of in-
struction (called a MOV in the 8080 and 8008). LD S§,N is similar

LD AL LD AR

CPU_A REG

CPU A REG

CPU R REG

L 1,A LD R, A

8BITS

CPU A REG

LDR,S TYPE
LD BH 1D C,HL (HU) = 1001H

CPU B REG CPU C REG
8BITS MEMORY 8BITS
CPU H REG 1000H
1001H

LD S,R TYPE (STOREY

LD (X +30H),D  (IX) = 104H LD (0}, A (STORE) (DE) = 2005
CPU D REG CPU A REG
88ITS
MEMORY MEMORY 8BITS
1084 2004
1084H 205
2006

Fig. 5-1. Eight-bit load group examples.
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CHAPTER 5

Instruction Set

The table of addressing modes given in Chapter 4 cross-references
Z-80 instructions with its addressing modes. For discussion pur-
poses, the instruction repertoire of the Z-80 may be classified into
the groups shown in Chart 4-1. These groups are:

. 8-Bit Load

. 16-Bit Load

. Exchange, Block Transfer, and Search

. 8-Bit Arithmetic and Logical

. General-Purpose Arithmetic and CPU Control
16-Bit Arithmetic

. Rotate and Shift

. Bit Set, Reset, and Test

Jump
. Call and Return
. Input and Output

O ®END U W

-

8-BIT LOAD GROUP

The 8-Bit Load Group is shown in Table 5-1. About half of the
instructions in this group load an 8-bit value into a CPU register
from another CPU register, immediate value in the instruction, or
memory location. The other half of the instructions store an 8-bit
value from a CPU register or immediate value into a CPU register
or memory location. In all cases, the source register remains un-
changed after the transfer.

Four of the instructions simply transfer the contents of the I and
R registers into the current A register and vice versa. LD Al loads
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except that an immediate value is stored into a memory location
[LD (HL),N; LD(IX+D),N; or LD (IY+D),N]. None of the con-
dition codes are affected by the load (store).

The last instructions of this group load or store the A register
only with a memory location specified by register pointers BC, DE,
or by an extended (direct) addressing. A is loaded by LD A,(BC};
LD A,(DE); or LD A,(NN) and stored by LD (BC),A; LD (DE),
A; and LD (NN),A. No condition codes are affected.

Examples of this group are shown in Fig. 5-1 which illustrates the
various addressing modes and instruction types.

LD HL,1025H

Lb H, 1025H Jo o1 ofo 0 0 1
INSTRUCTION 251
10H

CPU H REGISTER
CPU L REGISTER

to N, ix 11
INSTRUCTION  [§ 0

1

0

20H

ET }MDIIORVADDRESS 5020H

HIGH ORDER IX REGISTER
LOW ORDER

FBITS\ Y-8BITS

© MEMORY
5020H
5021H

LD SPHL

CPU_H REGISTER
CPU_L REGISTER

8BITS

HIGH ORDER
LOW ORDER

Fig. 5-2. Sixteen-bit load group examples.

STACK
POINTER 88ITS
REGISTER

16-BIT LOAD GROUP

This group allows any register pair BC, DE, HL, or SP, or the IX
and IY registers to be loaded by an extended immediate instruction
(LD DD,NN; LD IX,NN; or LD IY,NN). See Table 5-2. Here a
16-bit immediate value in the instruction is loaded into the selected
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SET B,(IX +D) SET B OF LOCATION {IX + D

BYEO [1 1 011 101
el [1 10 0 10 11| J oFCOE

BYTE 2 D D VALUE

BYE3 [t 1] 8 11 0 11,/110, - OP CODE

B =BIT CODE 0-7
Fig. 4-19. Bit addressing/indexed addressing in SET B,(IX+ D) instruction.

As the combinations of addressing modes employed in the various
instructions can be almost overwhelming on first encounter, Chart
4-1 provides a reference chart for instruction groups. The chart fol-
lows the same notation as has been used in the above description

REGISTER C INSTRUCTION
BEFORE AFTER
[oroc10000] [o1010001] sHoOC
*
[Cooo0o0000] [ooo1000o0] SET 4,C
*
101111 1] 11111 11] SET 5,C
*
[ooo1o0010] [1oo01o0010] sr7c
*
* = BIT SET

Fig. 4-20. Bit addressing example.

and that will be used in a discussion of the various instruction meth-
ods in the next chapter. Instructions and addressing modes used in
the 8080 are designated by a single line under the dot. Those used
in the 8008 and 8080 are designated by a double line under the dot.
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register pair, IX, or IY. Any register pair IX or IY can also be loaded
or stored directly (extended addressing mode) by LD DD,(NN);
LD IX,(NN); LD IY,(NN); LD (NN)HL; LD (NN),DD; LD
(NN),IX; or LD (NN),IY.

The contents of HL, IX, or IY can be transferred to the SP regis-
ter by LD SP,HL; LD SP,IX; or LD SP,IY.

The remaining instructions in this group allow 16-bit register pairs
BC, DE, HL, or AF (A register and flags) to be pushed onto or
pulled from the stack.) Fig. 5-2 shows examples of the use of these
instructions.

EXCHANGE, BLOCK TRANSFER,
AND SEARCH GROUP

The exchange instructions in this group allow various exchanges
of 16 bits of data between register pairs in the same set of registers
and exchanges between the two sets of registers (see Table 5-3).

CPU_D REGISTER
¢ 1

CPU_H REGISTER
[ ¢ 1]

L

Fig. 5-3. EX DE, HL instructions.

EX DE,HL simply exchanges the contents of register pairs DE and
HL in the current set of registers as shown in Fig. 5-3. EX AF,AF,
however, exchanges the contents of the A register and flag register
of the current set of registers and the inactive set of registers as
shown in Fig. 5-4. EX X swaps the contents of the current set of BC,
DE, and HL with the inactive set of BC’, DE’, and HL’ as shown
in the same figure. No condition codes are affected in any of the
above instructions. These instructions permit switching back and
forth between the two sets of CPU registers with one or two in-
structions.

ACTIVE CPU REGISTERS

A F
8 BITS 8 c 8BITS (EX AF,AF)
(EX AF,AF) D E
H U
NACTI
INACTIVE CPU REGISTERS B BITS X X0
[ F
B' cr
D' £
H L

Fig. 5-4. EX AF,AF’; EX X instructions.
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The three additional exchange instructions operate using the SP
register as a pointer to the stack area. The stack pointer is not af-
fected by execution of the instructions. Either HL, IX, or IY may
be exchanged with current top of stack by instructions EX (SP),HL;
EX (SP),IX; or EX (SP),IY. Examples of the three kinds of ex-
changes are shown in Fig. 5-5.

BX (SP), HL (5P) = 1025

CPU_H_REGISTER

MEMORY

1024 (TOP OF STACK)
10261 (TOP OF STACK +1
EX (SP), IX (SP) = 2043H
IX HIGH ORDER
1X LOW ORDER
MEMORY
243 (TOP OF STACK)
204 (TOP OF STACK + 1)
EX (SP), IV (SP) = 128AH
1Y HIGH ORDER
TV LOW ORDER
MEMORY
1284H {TOP OF STACK)
1288H (TOP OF STACK +1

Fig. 5-5. EX (SP) instructions.

LDI, LDIR, LDD, and LDDR are four block transfer instructions
that use register pairs BC, DE, and HL. All four instructions trans-
fer a block of data from one place in memory to another. The block
may be 1 to 84K bytes. Register pair BC must be preset with the
number of bytes to be transferred, register pair HL. must point to
the starting address of the source block, and register pair DE must
point to the starting address of the destination block. Instruction
LDI performs the following actions when executed:

1. A byte is transferred from the source block to the destination
block using registers HL and DE as pointers.
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2. The HL and DE registers are incremented by one to point to
the next byte of each block.

3. The byte count in BC is decremented by one.

4. If (BC) #0, the P/V bit in the flags is set.

Instruction LDD performs the same functions as LDI except that
the HL and DE registers in step 2 are decremented by one (LDI =
Load and Increment, while LDD = Load and Decrement). LDI,
therefore, transfers data from block start to block end while LDD
transfers data from block end to block start. The action of LDI and
LDD are shown in Fig. 5-6.

1000H
MEMORY | 100MH ~— (HU AFTER LDD
5.?{‘35.5 10024 ~<+— (HL) BEFORE INSTRUCTION
10034 ~<+— (HL) AFTER LDI
1008
8BITS
{
2004
MEMORY | 2001 ~— (DE} AFTER LDD
DES‘IINBALI’A% 204 «s— (DE) BEFORE INSTRUCTION
200H ~+— (D) AFTER LDI
2004
LDI ACTIONS l
1. TRANSFER BYTE FROM 1002H T0 2002H ‘
2, ADD 1 TO HL TO POINT TO 1003

4. SUBTRACT 1FROM BC (BYTE COUNT
5. GO ON TO NEXT INSTRUCTION
LDD ACTIONS
1, TRANSFER BYTE FROM 10024 TO 2002H
2. SUBTRACT 1 FROM HL TO POINT TO 1001H
3. SUBTRACT 1FROM DE TO POINT TO 2001H
4, SUBTRACT 1FROM BC {BYTE COUNT)
5. GO ON TO NEXT INSTRUCTION

Fig. 5-6. LDI and LDD instructions.

3, ADD 1TO DE TO POINT TO 2003H ‘

LDIR and LDDR perform identical functions to LDI and LDD
with a supplemental action. If the byte count is not zero (P/V flag |
set), then the instruction continues transferring data until the byte
count is 0. This means that there will be N executions of an LDIR r
or LDDR, where N is the initial value of the BC register. LDIR
and LDDR are automatic transfers of a block of data while LDI and
LDD are “semi-automatic,” requiring a separate test of the P/V flag
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for completion. Both are useful, as will be demonstrated in section IL.
Fig. 5-7 shows the actions of LDIR and LDDR.

The search instructions CPI, CPIR, and CPDR are similar to the
block transfer instructions in that a block of memory locations is
involved and these memory locations are scanned from start to end,
or from end to start. The A register holds an 8-bit search key that
can be 0 to 255. BC, as before, holds a byte count of 1 to 255 and
HL holds the starting address of the block (CPI or CPIR) or end-

10004 e G0 AT START (010
MEmoRy | 100 '
SOURCE { 10024
BLOCK | 10030 $uook

1004 |«— L) AT START (LODR)

201H |<— (DE) AT START (LDIR)
2014 ‘ LDIR

MEMORY
DESTINATION { 2016H
BLOCK

20H $1o0R
20184 e (HL) AT START (LDDRI
LDIR ACTIONS
1. TRANSFER BYTE
" ADD 1
L iTohe THESE ACTIONS REPEATED
4, SUBTRACT 1 FROM BC N TIMES WHERE N = #
5, IF (BC)§ 0GOTO STEP 1
6. GO ON T0 NEXT INSTRUCTION
LDDR ACTIONS
1, TRANSFER BYTE
2. SUBTRACT 1FROM HL THESE ACTIONS REPEATED
3. SUBTRACT 1 FROM DE
NTIMES WHERE N = #
4. SUBTRACT 1 FROM BC ey
5. IF(BC)§ 0GOTO STEP 1

o

. GO ON TO NEXT INSTRUCTION
Fig. 5-7. LDIR and LDDR instructions.

ing address of the block (CPD or CPDR). When a CPI instruction
is executed, the contents of the memory location addressed by HL
is accessed and compared to the A register. If the memory byte
equals the A register, flag Z is set in the condition codes. The byte
count in BC is then decremented and the pointer in HL is incre-
mented to point to the next memory location. CPD functions in the
same manner except that the pointer in HL is decremented. CPI
and CPD will search a block for a given byte semi-automatically
as a test of the Z flag must be made after every execution of CPI
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or CPD to determine whether the byte was found. Fig. 5-8 shows
the actions of CPI and CPD. :

CPIR and CPDR are similar to CPI and CPD except that they
are fully automatic. If the byte count in BC is not equal to zero at
the end of execution of the instruction, and the current memory byte
does not equal the key value, the instruction is again executed for
another comparison. The instruction is continually executed until
either the byte count in BC is zero or until a memory location
matches the key, as shown in Fig. 5-9.

300%H [<——— HL AT START (CPD
3006H J-e—— HL AFTER CPI

3007H
3008H
3000H
300AH
3008H [-¢——— HL AFTER CPD

300CH j=¢——— HL AT START (CPD)

CPI ACTIONS
1, READ NEXT BYTE
2, ADD 1TOHL
3, SUBTRACT 1 FROM BC
4, COMPARE BYTE TO (A} AND SET FLAGS
5. GO ON TO NEXT INSTRUCTION
CPD ACTIONS
READ NEXT BYTE
SUBTRACT 1 FROM HL
SUBTRACT 1 FROM BC
COMPARE BYTE TC {A} AND SET FLAGS
GO ON TO NEXT INSTRUCTION

Rlad ol 20 o

Fig. 5-8. CP! and CPD instructions.

8-BIT ARITHMETIC AND LOGICAL GROUP

The 8-bit arithmetic and logical instructions are used to add, sub-
tract, AND, OR, exclusive OR, or compare two 8-bit operands, one
of which must be in the A register. The second operand may be an
immediate operand, may be in another CPU register, or may be in
memory and referenced by HL register indirect addressing or by
indexed addressing. The two operands are obtained, the designated
function is performed, and the result goes into the A register. The
condition codes are set as presented in Table 5-4.

There are two kinds of adds, ADD A,S and ADC A,S. In the first,
the contents of the A register and the second operand are simply
added and the results put into A; in the second, the contents of the
A register, the second operand, and the current state of the carry
flag are added and the results are put into the A register. The second

68




11AAH fe——HL AT START (CPID)
11ABH
TACH le——HL AT END (CPDD)
11ADH ]
Bock 1o uae |——HL AT END (CPID)
BE L1AFH
1180H
11BIH 1
1182H e——HL AT START (CPDD)
AT START
(HU = 11AAH FOR CPIR 11B2H FOR CPDR
®0 -9
(A =3%
CPID ACTIONS
1. READ NEXT BYTE
2. ADD 1TOHL
3, SUBTRACT 1 FROM BC %ﬁr’gr‘gﬂ;
4 COMPARE BYTE TO (A) AND SET FLAGS [ Tivs
5. IFBC{ OANDBYTE{ A TO STEP 1
6. GO ON TO NEXT INSTRUCTION
CPDD ACTIONS
1, READ NEXT BYTE
2, SUBTRACT 1 FROM HL
3, SUBTRACT 1FROM BC 2}%55%%"50[‘;5
4. COMPARE BYTE T0 (A} AND SETFLAGS | RLPEe
5. IFBC 0 AND BYTE { A GO TO STEP 1
6. GO ON TO NEXT INSTRUCTION

Fig. 5-9. CPIR and CPDR instructions.

add permits multiple-precision addition and is discussed in Section
I1. Subtracts are analogous to the adds. SUB S subtracts the second
operand from the contents of the A register, while SBC A,S sub-
tracts the second operand and the current state of the carry from
the contents of the A register. The add and subtract instructions are
shown in three addressing mode examples in Fig. 5-10.

There are two additional instructions in this group, the INC §
and DEC § instructions. They increment or decrement the contents
of a CPU register (A, B, G, D, E, H, L) or memory location by one
and set certain condition codes as listed in Table 5-4. As an immedi-
ate instruction makes no sense for this one-operand instruction only
register, register indirect HL, and indexed addressing modes are
permitted as shown in Fig. 5-11.

GENERAL-PURPOSE ARITHMETIC
AND CPU CONTROL GROUP

The instructions in this group are listed in Table 5-5. They are
all implied addressing instructions involving one or no operands.
Two of the instructions involve one operand, CPL and NEG. Both
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CPL and NEG operate on the contents of the A register. CPL ones-
complements the contents of the A register, changing all zeros to
ones and all ones to zeros, as shown in Fig. 5-12. NEG negates the
contents of the A register changing all zeros to ones and all ones
‘to zeros and adding one as shown in the figure. The effect of CPL
is to find the value —[(A)+1] and NEG to find the value —A, where
(A) is the previous contents of the A register. Condition codes are
set as shown in Table 5-4.

ADDA B
]r 8-BIT RESULT
ALY
{ADD}
8BITS, 8BITS
CPU A R
ADC A, (HL)
_ﬁ 8-BIT RESULT
ALU
wobWimH
CARRY)
8B ITSI ‘ 8BITS
CPU A REG CY]
¥ &l MEMORY
OPERAND
SBC A, (IX +D)
]rﬂ" BIT RESULT
ALU
(SUBTRACT
WITH CARRY)
8BITS ‘ ’ja BITS
[cPu AREG] [ov
. MEMORY
OPERAND

Fig. 5-10. Add and Subtract instruction examples.

Two of the instructions in this group operate on the carry (CY)
flag of the condition codes. SCF sets the carry flag to a 1; CCF com-
plements the current state of the carry — a 1 is set to 2 0, and a 0
is set to a 1. These instructions are useful in setting the carry prior to
arithmetic or shifting operations.

The NOP instruction does nothing and is used to “pad” a pro-
gram area or is implemented automatically by the Z-80 during a
HALT state to guarantee dynamic-memory refresh.
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INCD I }'ssns

INC D
instucrion [0 00 1 o1 0 0] A
—
SPECIFIES (INCREMENT)
d
88ITS
CPU D REG

INC HD —_“r 8BITS

INC (HL)
INSTRUCTION [0 0 1 1 0 1 00

AL
(INCREMENT}

l:_"L__L %;ns

——] MEMORY
OPERAND
INC (1Y +D) -
INC (1Y +D) J{
INSTRucTion |1 1 1 1 1101 -
S lDO Lo (INCREMENT)
8
BITS
L [ ] MEMORY
L OPERAND

(1Y + D)
Fig. 5-11. INC and DEC instruction examples.

DI and EI disable or enable external (non-NMI) interrupts by
resetting or setting the interrupt enable flip-flops IFF1 and IFF2.
IM 0, IM 1, and IM 2 set interrupt modes 0, 1, or 2. The meaning

of the various modes is discussed in Chapter 7.

CPL
(% BEFORE INSTRUCTION (1 0 11 01 1 0] (74
Os =~1s, | 1s=0s
(A} AFTER INSTRUCTION [0 1 0 0 1 0 0 1} ©73
NEG

(A) BEFORE INSTRUCTION |1 0 1 1 0 1 1 0f (-74

0s.+1s, | 1s+0s

01001001
+ 1

(A) AFTER INSTRUCTION 0100101 0] (+74

Fig. 5-12. CPL and NEG instruction examples.
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The last instruction in this group is the DAA instruction. DAA,
or Decimal Adjust Accumulator, allows the Z-80 to perform binary-
coded decimal (bed) addition or subtraction. (The 8080 can per-
form only bed addition automatically.) The DAA is performed di-
rectly after an ADD, ADC, INC, SUB, SBC, DEC, or NEG and
changes the binary results of the operation into bed results. Bed
addition will be discussed in detail in Section II.

ADD HL,SS

Fig. 5-13. Sixteen-bit arithmetic —
register encoding. 00 = BC
01 = DE
10 = HL
1 = 5P

16-BIT ARITHMETIC GROUP

All of the instructions in this group operate on 16-bit double-
precision values in either register pairs BC, DE, or HL, or in 16-bit
SBC L, SP

[T 1 10 11 07]
[0 T2 1[0 0 1 7]

}16 BITS

ALU
(SUBTRACT
WITH CARRY}

16 snsi }10 BITS
HL | SP

ADD IX,IX

[11o\i 110 1]
[0 oftr o1 0 0 T]

-

ALY
(ADD}

16BITS
losIts _J (SECOND OPERAND)
X ]

» Fig. 5-14. Sixteen-bit arith ic il i 1
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CPU registers IX, IY, or SP. Increments and decrements of BC, DE,
HL, SP, IX, or IY can be performed by INC SS, INC IX, INC IY,
DEC SS, DEC IX, or DEC IY. The SS-type instructions increment
or decrement BC, DE, HL, or SP depending on the SS field of the
instruction as shown in Fig. 5-13. The remaining increment and
decrements are all implied addressing types.

Three of the instructions in this group permit adding, adding with
carry, or subtracting with carry. The contents of BC, DE, HL, or
SP can operate on the contents of the HL register with the result
going to the HL register. The condition codes are set as shown in
Table 5-8, and an example of the instructions is shown in Fig, 5-14.
ADD IX,PP and ADD IY,RR permit addition of BC, DE, SP, or the
same index register to IX and IY, respectively. The condition codes
are set as listed in the table, and an example of the instruction is
shown in the figure.

ROTATE AND SHIFT GROUP

The instructions in this group include the 8080 (8008) instruc-
tions that rotated only the A register and new instructions to shift
A, B, C, D, E, H, or L or a memory operand in just about every
possible shift configuration. Table 57 shows the rotate and shift
instructions.

RLCA ACTION

[P arar.yatata\
RLA ACTION

1 YA N0

ovfe] — SHIFTLETONE [ 051

RRCA ACTION

1o yyiyoy oy 0

iy ey

RRA ACTION

7~~~y y o &
(9BITS)

Fig. 5-15. RLCA, RLA, RRCA, RRA instructions.

ki




mou oy o] 3| ¢ (PHAYPHX)(HYI=S
*$'DTY 404 umoys oL 00 rlo—« .E_
se aJe sajels pue « - 3 SR
lewioy uoydNLsU| Lo 100 1t
%1 9 TR | 4 (P+A) OT
v 1N
1 101
H 0oL oLl
3 110 «
a 010 1o 100 Lt P+ANP+X1OHY4 (P+x1) o1
2 100 114 9 101
g 000 ott
‘Boy 4 st 4 110 T 4 (IH) 213
1 19351601 1
RN 143) 3Ry 8 z 1o 100 1L 3 4 PRyt
LO—U_SE:UUH
By ajeioy 14 L it 1o 00 e| @ Vi
Jojejnwndoe
sejnour> 4yl ojeioy y L LliL 100 00 [ BN J vouu
._Oam_a_.::uua
1j9] 24ei0y 14 1 1L oo 00 o| O At
LO—H_DEDUUM . ‘\\ \\ B o :
sejnoup> yyo) aimioy |y | 1L 000 00 o o -!- [Ad] vou
sjuewwo) seieig | sepAd o1z E¥S 9 s |A/d o >oquis 1 w
140 W jo 8
-oN “on epod-do sBeyg

dnoxs) 31ys pue d3e30Y 'LG 9[qEL

78



-uopeiedo Syt JO 3|Nsal ey o) Bulpioe papdeye st Bey = 9
fumouyun st Bey = X ‘1es Bey = | ‘4esaa Bey = ( ‘papaye jou Bey = @

uoeioN Gely

papayeun
sl Joje|nwinade

oy} 40 ey saddn
ayi jO jusUOd Byl
(1H) uoyes0] pue
uOAM_DEiuUB

By} usamiaq iybu
pue 13j HBIp aei0y

apod umoys
yum s'OTY o [500)
aoejdas 9p0od3-dO

18

8l

L
ol

L
to1

oot
ot

o1
ot

10
9%

10
Lt

OH EE-E! v
[ ]

P+AVPHXYOH=S

[A}—{0«—L|«0

PHANP+XNORYI=S
A3 okln‘

PHANPEXOH) =S
o0-+{0o—2—{x9]

(P-HAYE+XV R I=S

5]
|

Ml

(PHANPHXIOHY
[AfeT{0+—4£

S

[

aw

an

Lt

sVIS

s

SOy

79




RLD ACTION 4BITS
7 43 [0 7 7 43 o

A [uncHANGED 1 1 | MEMORY OPERAND
4BITS 4BIiTS
RRD ACTION 4BITS
7 43 0 7 43 0
A [uncHANGED | ] C I | MEMORY OPERAND
4BITS 4B1TS

Fig. 5-16. RLD and RRD instructions.

RLCA, RLA, RRCA, and RRA rotate the A register only. The first
letter of the mnemonic stands for Rotate, the last Accumulator, and
the second the direction of the rotate, left or right. RLCA rotates
left with the most significant bit going into the carry (CY) and the
least significant bit position. RRCA performs a similar operation
with a right shift. RLA and RRA perform a nine-bit shift with the
previous contents of the carry shifting into the A register and the
bit shifted out from the A register going into the carry. All four
shifts are shown in Fig. 5-15.

Two shifts of this group RLD and RRD operate on the contents
of a memory location, addressed by register indirect addressing HL,
and the A register, and shifts four bits at a time. These two shifts
are implemented to facilitate bed operations, where each bed digit
is made up of four bits. If the reader considers bits 74 of the A
register or memory location bed digit position 0 and bits 3-0 bed
digit position 1, then these shifts are somewhat easier to follow.
RLD shifts the memory operandgcp; into memory operand gepo and
memory operandgcepo into Apcp;. The previous contents of memory
operandgop; are replaced by Agpcp: as shown in Fig. 5-16. Instruc-

SRA S

a¥a'a e e e
OPERAND .[1 SHIFT R IGHT ONE
SLAS

[Favatatatatatay)
{__SHIFTLEFTONE _ J=—0 OPERAND

SRL M
e e e e )
0 SHIFT RIGHT ONE Y]

Fig. 5-17. SRA, SLA, SRL instructions.




tion RRD operates in the reverse direction as shown in the illustra-
tion. The condition codes are set as shown in Table 5-6.

The remaining shifts in this group operate either on CPU registers
or on a memory location addressed by register indirect HL address-
ing or indexed addressing. Those with a mnemonic starting with
an R are rotates, and those with a mnemonic starting with an S are
arithmetic (SLA S, SRA S) or logical (SRL S). SLA S and SRA §
perform arithmetic left and right shifts. Arithmetic shifts sign-extend
the sign bit to the right on a right shift and sometimes retain the
sign bit on a left shift. The Z-80 SRA S does extend the sign bit on a
right shift as shown in Fig. 5-17, but does not retain it on a left shift.

RiCS OPERAND

Ty w0
SHIFT LEFT ONE
I—— L

RLS OPERAND
LAY

SHIFT LEFT ONE

9 BITS)

BRES OPERAND
NN N

NN
I SHIFT RIGHT ONE ImmS)

ERM OPERAND
[Va'a"a s

avavall
SHIFT R IGHT ONE

(9BITSH

Fig. 5-18. RLC, RL, RRC, RR instructions.

Any of the seven current CPU registers can be shifted when register
addressing is used with the R field specifying the register as shown
in Fig. 5-17. The condition codes are set as listed in Table 5-6. In-
struction SRL S performs a logical right shift with a zero going into
the sign bit position. Note that for all three shifts a zero is shifted
into the operand and that the carry is set by the bit shifting out of
the operand.

Shifts RLC, RL, RRC, and RR are rotate shifts performing either
an 8-bit shift (operand without carry), or a nine-bit shift (operand
with carry). RLC and RRC rotate in 8-bit fashion, while RL and
RR rotate in 9-bit fashion. All four shifts are shown in Fig. 5-18.
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BIT, SET, RESET, AND TEST GROUP

The instructions in this group set, reset, or test one of the eight
bits in a CPU register (A, B, C, D, E, H, or L) or memory operand.
Register, register indirect, or indexed addressing may be used (see
Table 5-8). In all three types, the B field specifies which bit of the
byte is to be operated on as follows:

NOOUAWN—=QO =
=1
o

BIT B,R tests the bit and sets the Z flag if the bit is a zero and
resets the Z flag if the bit is @ 1. SET sets the indicated bit and does

SET 7,D

0 1 0 1 1 1 1 1] DBEFORE INSTRUCTION

RES 5, HL)

H
F4

MEMORY
DPERANDXXBXXXXX

THIS BIT RESET
BIT 0,(IX + D)

BIT 0,(IX + D)
INSTRUCTION

1
22 e

D
0 1Jo 0 o]t 1 0

[——
BIT 0 SPECIFIED
(IX+D

MEMORY I'x X x X X X X 011

OPERAND /
SETZ IFBIT=0
RESETZ IF BIT =1

Fig. 5-19. SET, RES, BIT instruction examples.
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JP 107AH
JP107AH

INSTRUCTION |1 1 0 0 0 0 11
7AH
T0AH
JP 2, 107AH
1P 107AH 1T 1J0 1 0J0 1 0
TAH 010, = JUMP ON
10H NO CARRY

Fig. 5-20. JP and JPCC instruction examples.

not change the condition codes, while RES resets the indicated bit
and does not change the condition codes. Fig. 5-19 shows the three
kinds of bit instructions and examples of their use with various ad-
dressing modes.

JUMP GROUP

The instructions in the jump group are shown in Table 5-9. Basi-
cally, these can be divided into jumps, calls, and returns. Jumps
cause a transfer to another location in memory and do not save the
contents of the program counter to mark where the jump occurred.
Calls perform the same action as a jump, but save the PC in the
memory stack so that return may be made to the instruction follow-
ing the call. Returns effect the transfer back to the instruction fol-
lowing the call by popping the stack and restoring the contents of
the top of stack to the program counter. Calls and returns are used
for subroutine processing. Subroutines are segments of code ranging
from several instructions to hundreds of instructions that are called
from many parts of a program. This avoids redundancy in writing
the subroutine code many times throughout the program and saves
memory and development time.

Two of the jump instructions JP NN and JP CC,NN exist in the
8080 and 8008 in extended addressing and are shown in Fig. 5-20,
The NN field is the jump address. JP NN jumps unconditionally to
the address, while JP CC,NN jumps to the address if the conditions
CC are met. The encoding of the CC field is as follows:

cc Condition

000 Z=0 (nonzero)
001 Z=1 (zero)

o010 cC=0 (no carry)
011 c=1 (carry)

100 P=0 (parity odd)
101 P=1 (parity even)
110 §=0 (positive)
11 S=1 (negative)
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JRE
J H

JR 103AH INSTRUCTION 0 0 0 1 1 0 0 0| 1000H
X 38H 1001H
PC-NEXT INSTRUCTION ) 1002H

DISPLACEMENT FIELD = 103AH - PC
= 103AH - 1002
=38H
Fig. 5-21. JR E instruction example.

In addition to extended addessing, the Z-80 allows register indirect
HL and indexed addressing for the JP NN instruction.

The remaining jumps are all of the relative addressing kind. JRE
emulates the former jump. JR E is an unconditional relative jump
to the effective address and is shown in Fig. 5-21. JR C,E; JR NC,E;
JRZE; and JR NZ,E are relative conditional jumps that perform the
jump if the carry is set or reset or if the zero flag is set or reset, re-
spectively. The DJNZ E instruction is unique in that it decrements
the contents of the B register. If the result is nonzero, the jump is
performed; if zero, the next instruction in sequence is executed.

The two call instructions in this group also appear in the 8080 and
8008. CALL NN is an unconditional call and CALL CC,NN condi-
tionally calls the subroutine at address NN. The conditions CC are
the same as in the previous list. Likewise, RET and RET CC are
also identical to the 8080 and 8008 instructions. RET uncondition-
ally returns to the instruction after the call, while RET CC condi-
tionally returns based on the CC field and the state of the condition-
code register.

-
—
-
-

o1
100
101
10
11
Fig. 5-22. RST P instruction.
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RETI and RETN are two special instructions that provide for
special actions for returning from an external maskable interrupt
(RETI) and nonmaskable interrupt (RETN). They will be dis-
cussed in Chapter 7.

RST P is also an instruction present in the 8080 and 8008. It is
used for two operations. The primary operation is as an instruction
that an interrupting device “jams” onto the data bus to effect a
vectored interrupt, The subordinate function is to allow a special
call to one of eight page 0 locations. The interrupt functions will
be discussed in Chapter 7. When the RST P is used to call a page 0
location, the instruction acts as any unconditional call. The jump is
made to one of eight page 0 locations based on the T field of the
RST P as shown in Fig. 5-22.

INPUT AND OUTPUT GROUP

The last grouping of Z-80 instructions (Table 5-10) is the Input
and Output group. The instructions in this group allow for transfer
of 8-bit bytes of data to and from CPU registers A, B, C, D, E, H, or
L with any of 256 possible I/O device addresses specified in the in-
struction. In addition, block transfers similar to the block transfers
in the previous block transfer group can be implemented. Up to 64K
bytes may be transferred semi-automatically or automatically be-
tween an 1/O device and a memory block by using the 1/O block
transfer instructions (INI, INIR, IND, INDR, OUTL, OTIR, OUTD,
and OTDR). The 1/0O instructions will be covered in detail in Chap-
ter 15 of this section.
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CHAPTER 6

Flags and Arithmetic Operations

The Z-80 flags have been briefly mentioned in previous chapters.
This chapter discusses the flags in detail and the operations in the
Z-80 which affect them. The flag register format is shown in Fig. 6-1.
Although the flags exist as individual flip-flops within the CPU, they
are logically grouped to simplify saving and restoring the flags for
interrupts and other functions.

The Z flag, S flag, CY flag, and parity (overflow flag) may be
tested by the conditional jumps described in Chapter 5. The condi-
tional jump effectively tests the results of arithmetic, logical, shift,
1/0 or other operations preceding the conditional jump. The H and
N flags are used to facilitate decimal or (bed) arithmetic operations.

Z FLAG

The Z flag (bit position 6) is set if the result of certain instruction
executions was zero. The Z flag will be set if the result is zero and
reset if the result is nonzero for the instructions shown in Table 6-1.

BIT BIT
7 6 5 4 3 2 1 0

I NOT NOT
N z Iusml H IUSEDI PN| N I 4 ]
|_ |-—CARRY FLAG

DAA ADD/SUBTRACT FLAG
PARITY/OVERFLOW FLAG

DAA HALF-CARRY FLAG

ZERO FLAG
SIGN FLAG

Fig. 6-1. Flag register format.
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Table 6-1. Zero Flag Actions

Group Instruction Action
8-Bit LD Al Set Z if 1 register==0, otherwise reset Z
Load Group b AR Set Z if R register—0, otherwise reset Z
Search Group g:l‘)’,g:l!)RR, Set if A==(HL), otherwise reset
ADD AS
SUB §
8-Bit OR S
Arithmetic XOR §
Group CP S
INC S
DEC $
General- DAA
Purpose
Arithmetic NEG
Group
Set if result=0, otherwise reset
16-Bit ADC HL,SS
Arithmetic SBC HL,SS
Group
RIC S
RL
RRC §
Rotate and RR S
Shift Group SLA S
SRA S
SRL §
RLD
RRD
Bit Test Group BIT B,S Set if designated bit=0, otherwise reset
Input and INR,(C) Set if input data—0, otherwise reset
Output Group INLIND, Set if B — 1 = 0, otherwise reset
INIR,INDR, Set
OUTI,OUTD Set if B — 1 == 0, otherwise reset
OTIR,OTDR Set

As the table shows, the Z flag is affected principally for arithmetic,
logical, and shift operations. Loads and stores have no effect on the
Z flag except for the two cases of LD AY and LD A R. The search
group is essentially a comparison or subtraction and the Z flag is
also affected here. The bit test group is effectively a logical anp
and the Z flag is again set or reset on the result. Note that except
for the instructions shown, no other instructions have an effect on
the Z flag. Once the Z flag is set or reset by an ADD A,S, for exam-
ple, it will not be reset until the next instruction in this group is
encountered. This is an important point as it means that the condi-
tional jumps on the Z flag, JP ZNN; JP NZNN; JRZE; and JR NZE,
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do not have to be immediately executed after the instruction that
affects the Z flag. As long as no other instructions in Table 6-1 ap-
pear before the test, the conditional jump may be deferred as long
as desired. In actual practice, the conditional jump will occur close
to the instruction setting the flag, however.

The Z flag would normally be tested for a variety of conditions.
Some of the more common ones are shown below:

1. Equality of two operands after a CP (compare).

2. Increment or decrement of an index count down to 0.

3. Bit test result of 0.

4. Result after a shift of 0, signifying no additional data in oper-
and.

5. Zero field after anp.

SIGN FLAG

The S flag (bit-position 7) is set if the result of certain instruction
executions are negative and reset if they are positive. Since in two’s
complement notation, positive quantities have bit 7=0 and nega-
tive quantities have bit 7 =1, the sign flag reflects the true sign
of the result. The S flag is affected by the instructions shown in
Table 6-2.

Sign flag actions are very similar to zero flag actions as shown
in the table. The sign flag is primarily affected by arithmetic and
shift operations, including the comparisons in the search group.
Note that for some instructions the flag is affected, but that the state
is not known. The same ground rules on testing of the sign flag
apply as for testing of the zero flag; the conditional branch must
be performed before an instruction is executed that affects the flag.
Some of the common conditions for which the sign flag is tested are:

1. Compoarisons of two operands (greater, less than, etc.)
2. Increment or decrement of an index count past 0
3. Shift of a 1 (or 0) bit into sign bit position

CARRY FLAG

While the zero and sign flag were associated with arithmetic, shift,
and logical operations, the carry flag is associated principally with
arithmetic and shift operations as shown in Table 6-3, although it is
reset by the logical instructions.

The carry flag is used to:

1. Test the results of the comparison of two operands
2. Test the results of a shift operation
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the test. In the shift instructions, the carry is set or reset by the state
of the bit shifted out of the operand and this provides a convenient
way of testing and conditionally branching on a carry (1 bit) or no
carry (0 bit). Finally, the carry is set from the high order bit of the
result during multiple-precision adds or subtracts. The first add is
an ADD (without carry) while successive adds of higher-order oper-
ands are ADC types, which add in the carry from the lower-order
result (see Fig. 6-3).

MULTIPLE-PRECI SION ADD

MS BYTE LS BYTE
00011100 01110111 + 7,287 (16 BITS)
+ 01011111 11111100 + 24,512 (16 BITS)

1< Smwn

01nnom

MULTIPLE-PRECISION SUBTRACT

+31,859 (16 BITS)

MS BYTE LSBYTE
00001010 00001010 +426 (16BITS)
00100000 00000001 —(+8199 (16BITS)
00001010 00001010 + 426 (16BITS)
nom I -8193 (16BITS)

1 00001001 “T76T (681TS)
11101010

Fig. 6-3. Carry in ltiple-p

PARITY/OVERFLOW FLAG

The parity/overflow flag (bit-position 2 in the flag register) is a
dual-purpose flag. In the parity case, the flag is set to represent odd
parity or the result of the operation. Odd parity occurs when the
sum of the eight bits of the result is even. In this case, the parity
bit is set. If the sum is odd, the parity bit is reset. (See Fig. 6-4).
When the P/V flag is used to represent overflow, the flag is set if
arithmetic overflow occurs after an arithmetic operation. Arithmetic
overflow will occur if in an add or subtract operation of two numbers
of like signs the sign of the result changes, indicating that the result
is too large to be held in eight (or sixteen) bits. Examples of over-
-flow conditions are shown in Fig. 6-5. Table 6-4 lists the instructions
that affect the parity/overflow flag.

RESULT = 00101011
gt

4 ONE BITS =EVEN PARITY, SET PV FLAG
Fig. 6-4. P/V flag used as
parity indicator.
RESULT = 00111110

5ONE BITS =0DD PARITY, RESET P/V FLAG
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Table 6-3. Carry Flag Actions

Group Instruction Action

:[D)'(J; ::g Set if carry from bit 7, otherwise reset

8-Bit sus § Set if no borrow, otherwise reset
3 . SBC §

Arithmetic
Group AND S

OR S Reset

XOR S

CP S Set if no borrow, otherwise reset
General- DAA Set if bed carry, otherwise reset
Purpose NEG Set if A was not OOH before negate, otherwise reset
Arithmetic [ ccp Set if CY was 0 before CCF, otherwise reset
Group

SCF Set

ADD HL,SS N . .

t if fi 15, oth:

ToBin ADC HLSS Set if carry from bit otherwise reset
Arithmetic SBC HL,SS Set if no borrow, otherwise reset
Group

ADD IX,PP . . .

f hy
ADD IY.RR Set if carry from bit 15, otherwise reset
RLCA
f it 7

RLA Set from A bit

RRCA .

RRA Set from A bit 0
Rotate RLC S Set from bit 7 of operand

RL S
and
Shift RRC § .
Group R S Set from bit 0 of operand

SLA' S Set from bit 7 of operand

SRA § Set from bit O of operand

SRL S Set from bit O of operand

Fig. 6-2. Carry comparisons.

COMPARE 20: 7
00010100 (20;): 00000010 (2

00010100 (20 10}
oY mumo -2

[1]~—00010010° (418, WiTH CARRY, 20>2)

COMPARE 20: 20
00010100 (2079): 00010100 (2079

00010100 ( 2019
cY  10NW (2

T0000000 (0WITH CARRY, 20 = 200
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Table 6-5. H and N Flag Actions

Group Instruction H Action N Action
8-Bit Load D Al
Group LD AR
Reset
Block LDILDIR, ese Reset
Transfer LDD,LDDR
and Search | Cp|,CPIRCPD, | Set if no borrow from bit 4, [ ¢ .
Group CPDR otherwise reset
ADD AS Set if no carry from bit 3, other- R
ADC AS wise reset eset
SUB S Set if no borrow from bit 4, S
SBC AS otherwise reset t
AND §
8-Bit OR S Set Reset
Arithmetic XOR §
Grou : -
P s Set if no borrow from bit 4, Set
otherwise reset
INC S Set if carry from bit 3, otherwise Reset
reset
Set if no borrow from bit 4,
DEC § otherwise reset Set
DAA Indeterminate Not affected
o cPL Set Set
Purpose Set if no borrow from bit 4,
Arithmetic NEG otherwise reset Set
Group CCF Not affected Reset
SCF Reset Set
ADD HLSS Set if carry out of bit 11, other- Reset
ADC HL,SS wise reset esel
16-Bit - -
Arithmetic SBC HLSS Set if no borrow from bit 12, Set
Group otherwise reset
ADD IX,PP Set if carry out of bit 11, other- Reset
ADD IY,RR wise reset ese
RLCA
RLA
RRCA
RRA
RLC S
Rotate RL S
and Shift RRC § Reset Reset
Group RR S
SLA S
SRA S
SRL &
RLD
RRD
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Table 6-4. Parity/Overflow Flag Actions

Group Instruction Action
8-Bit D Al
' t F
Load Group D AR Contents of 1FF2
iDI,LDD,
Block CPICPIR, Set if BC — 1 72 0, otherwise reset
Transfer and CPD.CPDR
Search Group -
1DIR,LDDR Reset
ADD AS
C A, |
:33 s S Set if overflow, otherwise reset |
SBC AS
AND S
8-Bit OR § Set if parity even, otherwise reset
Arithmetic XOR §
Group CP S Set if overflow, otherwise reset
Set if operand was 7FH before increment,
INC S .
otherwise reset
DEC § Set if operand was 80H before increment,
otherwise reset
General- DAA Set if (A) parity even, otherwise reset
Purpose Set if (A) was 80H bef te, other-
Arithmetic NEG t i was efore negate, other-
wise reset
Group |
16-Bit
Arithmetic ::CC }::'0:,5555 Set if overflow, otherwise reset
Group
RLC S
RL'S
RRC S
RR S
::i'fa:eG::j SLA' S Set if parity even, otherwise reset
P SRA S
SRL §
RLD S
RRD $
Bit Test BIT BS Unknown
Group
IN R(C) Set if parity even, otherwise reset
Input and ::B‘mglk
Output Group 3 v ki
P OUTI,OTIR, Unknown
OUTD,0TDR
i
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ADD 11 AND 22 IN BCD

00010001  (11BCD)
0010|0010 {22 BCD) |
001110011  (33BCD} CY =0, H=0

ADD 19AND 29 IN BCD

0001|1001 (19BCD)
00101001  (29BCD)

Sow0 | 1001

010670010 (42 BCD!WRONG) CY =0, H =1
0000|0110 ADJUST BY +6 TO LOW ORDER BCD DIGIT
0100/ 1000 (48 BCD CORRECT)

ADD 91 AND 92 IN BCD

1001 | 0001 (91 8CD)
1001|0010 (52 BCD)
(1] oo | o1 (23 BeotwRONG) CY =1, H -0
0110 { 0000  ADJUST BY +6 TOHIGH ORDER BCD DIGIT
T000T00IT (83 BCD WITH CY = 1 CORRECT)

ADD 99 AND 99 N BCD

1001 | 1001 (99 BCD)
1001 | 1001 (99BCD)
o ——
ﬁ 0011|0010 (32 BCD'WRONG) CY =1, H =1
0110 | 0110 ADJUST BY +6 TO BOTH BCD DIGITS
ﬁl 1001 | 1000 (98 BCD WITH CY = 1 CORRECT)

Fig. 6-6. Bcd addition and use of CY and H.

Some examples of the above are shown in Fig. 6-6. For a subtract
(N =1), a binary result must be corrected by subtracting a six from
a bed digit position under certain conditions. If there is a half-carry,
a six is subtracted from the least significant bed digit position. If
there is a carry, a six is subtracted from the most significant bed
digit position. If there are both a carry and half-carry, a six is sub-
tracted from each bed digit position. Fig. 6-7 illustrates the condi- |
tions for bed subtract corrections.

Multiple-precision bed arithmetic is easily possible by maintain-
ing the carry from the last bed addition or subtraction.
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Table 6-5. H and N Flag Actions—cont

Group instruction H Action N Action
Bit Test
Cros BIT BS Set Reset
roup
INR,(C) Reset Reset
Input and INLINIR,
Output IND,INDR, X
Group OUTI,OTIR, Indeterminate Set
OUTD,OTDR

o 42y
PIV + 01000000 + 6410
lonnn +19139 (OVERFLOW, YOO LARGE TO HOLD IN 8 BITS)

10000001 12519

IV +1000000  -12610
WO0101 2519 (OVERFLOW, TOO LARGE TOHOLD IN8BITS)
00100000 +32pp

PIV 00000 3210
[0] ‘oo S (NoOVERFLOW)

Fig. 6-5. Overflow conditions and P/V flag.

H AND N FLAGS

The H and N flags (bit-positions 4 and 1, respectively) are two
flags that cannot be tested by conditional jump instructions. They
are used by the Z-80 CPU for bed arithmetic operations. H repre-
sents the half-carry from the four least significant bits of the result
(least significant bed digit) and N is the subtract flag, which is set
to indicate whether an add or subtract was last executed. Table 6-5
shows the instructions affecting the H and N flags.

Note that in the general case, an add instruction resets the N flag
and a subtract sets the N flag. This is also true for increments (adds)
and decrements (subtracts). When the DAA instruction is executed
after an add or subtract, it senses the N flag and half-carry H flag
and properly adjusts the result from a binary to bed result. For an
add (N =0), a binary result must be corrected by adding a six to
the bed digit position under certain conditions. Those conditions
are:

1. If there has been a carry from the bed digit (H=1o0r C=1).
2. If there was no carry but bed digit position has a value greater
than 1001,.
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3. Provide a means to do multiple-precision arithmetic

When a carry is tested after a compare of two unsigned operands,
the carry will be set if in the comparison OP1 : OP2 (OP1 — OP2),
OP1 is greater or equal to the second operand OP2. Some examples
of this are shown in Fig. 6-2. The comparison could also have been
tested by the sign bit, which is a more common way to implement

Table 6-2. Sign Flag Actions

Group Instruction Action
8-Bit LD Al Set if | register is negative, otherwise reset
Load .
Group LD AR Set if R register is negative, otherwise reset
Search CPI,CPIR,
Group CPD,CPDR
ADD AS
ADC AS
SuB s
SBC AS
8-Bit AND § Set if result is negative, otherwise reset
Arithmetic OR §
Group XOR S
CP S
INC §
DEC §
General- DAA Set if msb of A = 1, otherwise reset
Purpose
Arithmetic NEG
Group
16-Bit ADC HL,SS
Arithmetic
Group SBC HL,SS
RLC S Set if result is negative, otherwise reset
RL S
Rotate RRC S
and RR S
Shift SLA S
Group SRA §
SRL S
RLD B . N " .
RRD Set if A is negative after shift, reset otherwise
Bit Test BIT B,S Unknown
Group
IN R,(C) Set if input data is negative, otherwise reset
Input and INLINIR,
Output IND,INDR, Unknawn
Group QUTI,OTIR,
OUTD,OTDR
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SUBTRACT 11 FROM 99 IN BCD
1001 | 1001 (99 BCD)
0001 | 0001 (11BCD
10001000  (88BCD) CY =0, H=0

SUBTRACT 19 FROM 91 IN BCD

1001 | 0001  (91BCD}

(19 BCD)
ﬁ (78 BCDLWRONG} CY =0, H = 1
0110  ADJUST BY -6 TO LOW ORDER BCD DIGIT
@ 0111 { 0010 {72 BCD WITH CY -0, CORRECT)

SUBTRACT 91 FROM 19 IN BCD

0011001 (19BCD)
cy 10010001  (91BCDI
[1] 1000 | 1000 (88BCDIWRONG) CY =1, H =0
Gy 0O 0000  ADJUSTBY -6TO HIGH ORDER BCD DIGIT
[1] oo0l100  (@8BCDWITH CY -0, CORRECT

SUBTRACT 99 FROM 11 IN BCD

0001 [ 0001 (11 BCD)
a0 | 1001 998CD)

~OLTTI000 (78 BCDUWRONG) CY =1, H =1
010 | 0110 ADJUST BY -6T0 BOTH BCD DIGITS
00011 00 (12BCD WITH CY =0, CORRECT

Fig. 6-7. Bed subtraction and use of CY and H.
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CHAPTER 7

Interrupt Sequences

Interrupts in the Z-80 serve the same purposes as interrupts in
other microprocessors and computers—they signal the microproces-
sor that an external event has occurred that requires attention. Many
times the external event is associated with the transfer of I/O data
to and from the microcomputer timing functions, or abnormal or
catastrophic external conditions.

When interrupts are associated with transfer of 1/O data, the in-
terrupt is a mechanism to overlap CPU processing time with the
I/0 activity. As an example of this kind of interrupt, let us assume
that a microcomputer system is connected to a “high-speed” paper-
tape reader. The paper-tape reader may be able to read data at the
rate of 500 frames, or bytes, per second. Each new data byte will
be available every 1/500 second or 2 milliseconds. If the program
that reads data from the paper-tape reader is implemented without
interrupts, it will read a byte of data by an IN instruction every 2
milliseconds and the entire read operation will take approximately
2.5 microseconds, as shown in Fig. 7-1. For the remainder of the
time the program is simply continually querying the paper-tape
reader (by means of another IN instruction to read status informa-
tion) whether the next byte is available. If 500 bytes are to be read,
and if the average CPU instruction time is 2.5 microseconds, then
(1/2.5 X 10—% — 500) = 399,500 instruction times are lost while the
CPU is idle awaiting the next byte of data.

Interrupts allow the CPU to make use of the idle time associated
with I/O activity. With proper use of interrupts, the CPU may exe-
cute another portion of the program while the I/O idle time occurs
and be informed of the availability of the next data byte by inter-
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FRAMEL FRAMEZ FenD
il

nereernes PAPER TAPE
o ® MoV
o e, 50 INCHES/SEC

10 FRAME S/INCH

FRAME N DATA
AVAILABLE DATA AVAILABLE FROM READER
FRAME N + 1 N
oariRAMEN +1 3 —-| 20MILLISECONDS
1 ]
1 ! DATA TRANSFER T0 CPU
1997, 05 IDLE TIME

7

ACTUAL 1/0 TIME

250 SEC—

Fig. 7-1. 1/0 idle time example.

rupt action. An interrupt sequence will then be entered and the CPU
can quickly pick up the next I/O data, do some minimal processing,
and exit the interrupt sequence to return to the interrupted program.
If multiple I/O activity is required, many I/O devices can operate
in this fashion, signaling the CPU by vectored interrupts which de-
vice requires I/O attention. The Z-80 expands the 8-vectored inter-
rupt capability of the 8080 to 128 separate vectored interrupts that
are usable for I/O or other types of functions.

A second use of interrupts is to provide CPU timing functions.
It is convenient to provide measured time intervals to the CPU to
enable the CPU to maintain a real-time clock for system time-out
functions or time-of-day indications. Typically, the time interval is
provided via interrupts, with a programmable counter-timer inter-
face that interrupts the CPU every tenth of a second, or so. The
CPU will recognize the interrupt as a timer interrupt, enter the
proper software interrupt processing routine, and adjust a system
clock and/or perform other timing functions, and exit the interrupt
routine to continue processing at the interrupted point.

A third use of interrupts is to signal abnormal or catastrophic
system conditions. Typical conditions of which the CPU would be

105




informed is pending power failure or failure of a redundant portion
of the computer system in a real-time system. Often these functions
are implemented using a nonmaskable interrupt, since the interrupt
must be recognized immediately and not deferred until current pro-
cessing is completed. The Z-80 has provision for this kind of inter-
rupt with a special NMI (nonmaskable interrupt) input that pro-
duces a separate interrupt action from other external interrupts.

Z-80 INTERRUPT INPUTS

As Fig. 3-1 shows, there are two interrupt inputs to the Z-80 micro-
processor chip, the NMI, nonmaskable interrupt, and the INT, or
normal external interrupt. The NMI input allows a single NMI
interrupt while the INT allows up to 128 separate vectored inter-
rupts by means of encoding from external device controllers or in-
terrupt logic. The NMI is always recognized by the CPU. If the
NMI becomes active, the automatic NMI actions are unconditionally
implemented. The INT is recognized by the CPU only if an inter-
rupt enable condition is present in the CPU. The interrupt enable
is provided by a programmable flip-flop that can be set (interrupts
enabled) or reset by the EI or DI instructions. The INT interrupt
action is more complicated than the NMI action, since an external
device must provide encoded data relating to the identification of
the interrupting device. In addition, there are three different inter-
rupt mode for the maskable INT interrupt modes 0, 1, and 2, that
are set by instructions IM 0, IM 1, IM 2. Each mode provides a dif-
ferent interrupt action.

NMI INTERRUPT

When an NMI interrupt occurs (NMI goes low to active state),
the interrupt is recognized at the end of the current instruction.
The CPU then effectively performs a Restart instruction to location
0066H. As Chapter 5 describes, a Restart pushes the current con-
tents of the PC into the stack, and transfers control to one of eight
locations 0000, 0008H, . . . 0038H. The NMI action is the same as
a Restart, but the transfer address is always 0066H. As an example
of the stack actions during the NMI, let us assume that the CPU
was executing the instructions shown in Fig. 7-2. The NMI inter-
rupt occurs during the RRCA instruction. At the end of the RRCA,
the contents of the program counter is 102BH. As the NMI interrupt
is implemented by the CPU, the contents of the PC is pushed into
the stack as shown, and the stack pointer decremented by two. The
instruction at location 0066H is then executed.
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We will assume in this case that the external condition causing
the interrupt is not a catastrophic one, and the system will remain
operative. Since the flag register and all CPU registers must be re-
stored exactly as they were at the time the interrupt occurred when
a return to location 102AH is made, the routine at 0066H must some-
how save the environment. The easiest way to do this in the Z-80
is simply to switch to the alternate set of registers by two exchange

(1) MAIN PROGRAM

MEMORY
LOCATION INSTRUCTION
10244 1D A 20034
10271 1D B,(IY +D)
10244 RRCA =——Nm1 2
1028H cpiux+py  NTERRUPT
e
28H SAVE RETURN ADDRESS
sP— 10 N STACK
{4 Nt INTERRUPT PROCESSING
MEMORY
LOCATION INSTRUCTION
0066 B AF, AF' EXCHANGE AF
006TH XX EXCHANGE OTHERS
i OTHER INTERRUPT
— PROCESSING
F RETURN ADDRESS
T 10 PC
00ACH X AFAF RESTORE AF
00AH XX RESTORE OTHERS
00A2H RETN RETURN

Fig. 7-2. NMI interrupt processing.

instructions. Interrupt processing now praceeds for the NMI condi,
tion. The size of the interrupt processing routine is dependent on the
amount of processing to be performed. At the end of processing, twa
exchange instructions restore the CPU registers and flags to their
status at the time of the interrupt and a special instruction RETN
is executed to return from the NMI interrupt. RETN pops the pro-
gram counter from the stack and causes the CPU to start execution
of the next instruction at 102AH. At this point, all CPU registers
and flags appear as if the NMI interrupt had never occurred.
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There is a subtlety about the NMI that has not been mentioned
previously. There are actually two interrupt flip-flops in the Z-80
CPU, designated IFF; and IFF,. IFF; is the flip-flop associated with
disabling or enabling the maskable interrupt. IFF; is used to tem-
porarily store the state of IFF; when an NMI interrupt occurs. In
addition to storage of IFF,, the NMI resets IFF, so that no mask-
able external interrupt can occur. This avoids the reentrancy prob-
lems of simultaneous NMI and maskable interrupts. When the
RETN is executed, the previous state of IFF; is restored by trans-
ferring the contents of IFF.. The maskable interrupt status (en-
abled or disabled) is now the same as before the NMI interrupt.
If the program can allow an external maskable interrupt to occur
during the time an NMI interrupt is being processed, an EI instruc-
tion can be executed after storage of the registers and flags. Exter-
nal interrupts would then be enabled during NMI processing time,
although this action would probably not be typical in most appli-
cations.

MASKABLE INTERRUPT MODE 0

Interrupt mode 0 is the default CPU interrupt mode on start up.
When signal RESET initially becomes active, mode 0 is set in the
CPU. Mode 0 may also be set by execution of an IM 0 instruction.
Interrupt mode 0 is identical to the interrupt processing in the 8080.
If mode 0 is set and the interrupt enable flip-flop IFF, is set and
an external maskable interrupt occurs, the following actions take
place:

1. Interrupt occurs (INT goes low)

2. At end of current instruction, CPU recognizes interrupt

3. CPU responds by IORQ and MI signal

4. External device recognizes the TORQ and MI response and

outputs a Restart instruction to data bus encoded with 000,
to 111, as T field

5. CPU strobes in Restart and executes the instruction causing

transfer to page 0 location corresponding to T field (0, 8, 10
..., 38H)

6. Instructions defining the interrupt processing routine are exe-

cuted

7. An RETI instruction is executed returning control to next in-

struction after interrupt

Mode 0 interrupt processing is similar to the NMI interrupt pro-
cessing. Both execute a Restart, both transfer to a page 0 location,
and both require an RET instruction at the end of the interrupt
processing. Let us illustrate a maskable interrupt mode 0 by hy-
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pothesizing a paper-tape-reader controller with interrupt capability.
Fig. 7-3 shows the interrupt action. When the next frame of tape
has been read, the paper-tape controller brings the INT line low.
When the interrupt is recognized by the CPU, lines TORQ and M1
are brought low (not to scale in figure). This is decoded by the
controller as an interrupt acknowledge and the controller jams an
RST 20H instruction onto the data bus. The CPU executes the RST
20H, pushing the contents of the program counter (3332H) into the
stack and transferring control to page 0 location 20H. At 20H a JP
FEEQH is executed to transfer control to the paper-tape interrupt

m NEXT
rniwz
PAPER TAPE
READER = L]
Nt (2 CONTROLLERICPU
CONTROLLER INTERRUPT
—= [, COMMUNICATION
T0RQ
m Lﬂ—
—
RESTART
o
i
[t] [
32H SAVE LOCATION |
sp—| 3 OF INTERRUPT |
|
© (4 INTERRUPT PROCESSING AT 20H
RETURN TO MEMORY .
3332H LOCATION INSTRUCTION
0020H JMP FEEOH
(3 PAPER TAPE INTERRUPT
) PROCESSING ROUTINE
FEEOH PUSH AF
sp 5 FEEIH PUSH BC
[0 | | INTERRUPT FEE2H PUSH DE
TION
]%gc;c FEE3H PUSHHL

FEFOH
FEFIH
FEF2H
FEF3H
FEF4H
FEFSH

OTHER 2 PROCESSING

POP HL
POP DE
POP BC
POP AF
El
RET |

Fig. 7-3. Mode 0 interrupt processing.
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processing routine at FEEQOH. (The interrupts have automatically
been disabled on the receipt of the maskable interrupt and will not
be reenabled until an EI instruction is executed.) The paper tape
saves the contents of the registers and flags by a series of pushes
into the stack (an'alternative way to save the environment from reg-
ister switching). Instructions are then executed to read in the char-
acter, reset the interrupt states in the paper-tape controller, and, in
general, process the data. At the end of the interrupt processing rou-
tine, the environment is restored by a series of pops in reverse order,
an El instruction is executed for the next character interrupt, and
an RETI returns control to location 3332H.

The above example considers only one interrupting device, the
paper-tape-reader controller. It is possible to have many interrupt-
ing devices in this mode and mode 2 of the Z-80 interrupt sequence.
When many devices are capable of interrupting, some means of pri-
oritizing the devices must be implemented to avoid simultaneous
interrupt requests from two or more devices over the same inter-
rupt line. If a prioritizing scheme is not used, confusion will result
as each device thinks that it has received an interrupt acknowledge.

In a prioritizing scheme, each device is assigned a priority from
high to low as shown in Fig. 7-4. The eight devices shown here
connect to a priority interrupt control unit (Intel 8214). The pri-
ority interrupt control unit and associated logic allows only one de-
vice to interrupt at a time and handles all interrupt communication
between the CPU and interrupting devices in interrupt mode 0.
If several devices have simultaneous interrupt requests, the control
unit will determine the highest-priority request, bring down the
INT line, and jam the proper Restart instruction onto the data bus

DECREASING PRIORITY ————

DEV DEV DEV DEV
2 3 4 7
14

INTEL
82]

AND OTHER
LOGIC

INT | RESTART
0 0

cPU | cPu
"MI AND TORQ

Fig. 7-4. Priority encoding for interrupt mode 0.
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after interrupt acknowledge. At any time during the servicing of
one interrupt, one or more higher-priority interrupts may become
active. When this occurs, the interrupt sequences for the higher-
level interrupts are entered. If the interrupt control flip-flop IFF,
has been properly maintained to prevent interrupts from other de-
vices at critical times, such as saving the environment, there should
be no conflicts in servicing n number of interrupts in nested fashion.
Further examples of prioritizing will be discussed for the mode 3
interrupt sequence.

MASKABLE INTERRUPT MODE 1

The next two interrupt modes, mode 1 and mode 2, are not com-
patible with the Intel 8080. Mode 1 is set by the IM 1 instruction.
The interrupt actions of mode 1 are identical to the nonmaskable
interrupt response, except that the Restart location is location 0038H
rather than 0066H. If mode 1 is set and the maskable interrupts are
enabled, then an interrupt request on INT will cause a Restart to
location 0038H. The contents of the program counter will be saved
in the stack and the interrupt servicing routine at location 0038H
will be entered. The advantage of mode 1, as in the NMI interrupt,
is that no external logic is required to jam the Restart onto the data
bus at the proper time. An external interrupt can be implemented
with only enough logic to bring INT active and recognize the inter-
rupt acknowledge. Of course, only one interrupt level is permitted
in this mode.

MASKABLE INTERRUPT MODE 2

The last and most powerful interrupt mode is interrupt mode 2.
This mode allows up to 128 interrupts from external devices, each
fully vectored to an interrupt location anywhere in memory. Fur-
thermore the peripheral modules in the Zilog family, such as the
Z-80 PIO (parallel 1/0), Z80-SIO (serial I/0), and Z-80-CTC
(counter-timer circuit) may easily be connected in daisy-chained
fashion to allow for complete prioritizing of all interrupt levels.

Mode 2 is set by an IM 2 instruction. The heart of this interrupt
mode is an interrupt vector table anywhere in memory. In general,
the table is (2 X N) bytes long, where N is the number of interrupts
in the system and the start of the table is pointed to by IIIIIII-
00000000,, where I is the contents of the Interrupt Vector regis-
ter I. For any interrupt, the I register supplies the eight most sig-
nificant bits of the table address while the interrupting device sup-
plies the eight least significant bits of the table address. The table
has up to 128 entries as shown in Fig. 7-5. Each entry is two bytes
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long and represents a memory address for the interrupt servicing
routine for a particular device in standard 8008/8080/Z-80 order—
most significant byte last.

I REGISTER
LOCATION
[ ADORESS OF TNTER-
111111100000000, RUPT PROCESSING
*1 1 ROUTINEDEVICED ]
2 2BYTES
3 1 ENTRY
“ UP 10 128
5 2 ENTRIES
“ (256 BYTES)
+254)9
425519 121

Fig. 7-5. Interrupt mode 2 interrupt vector table.

The general sequence for interrupt mode 2 is this:

1. If IM 2 is set and IFF; = 1 and INT is active, the CPU recog-
nizes the interrupt at the next M1 cycle.

2. The interrupting device responds to the interrupt acknowledge
with an 8-bit value.

. The 8-bit value is merged into a memory address with the
contents of the I register.

. The CPU pushes the contents of the PC into the stack.

. The contents of the interrupt vector table is accessed using the
address computed in step 3.

. The PC is loaded with the contents of the interrupt vector
table entry to effectively cause a jump to the interrupt servicing
routine defined by the address vector in the table.

[0 ]

=3

Fig. 7-6 shows an example of this process. The interrupt vector
table is located at FOOOH. The table has ten entries of two bytes
each defining ten interrupt servicing routines for the ten interrupt-
ing devices. Note that two of the addresses are identical, indicating
that the same interrupt service will be performed for two devices.
The interrupt vector register I has previously been loaded with FOH.
When an external interrupt is generated for device number 5 and
the interrupt acknowledge is received, the device controller places
an 8-bit vector on the data bus, in this case 02H. The 02H is merged
with the I register to form address FOO2H. The CPU now reads the
two bytes at locations FOO2H and F003H to find the address of the
interrupt servicing routine, after pushing the current contents of the
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(6 INTERRUPT PROCESSING
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8102H RETI (N STACK —=PC

Fig. 7-6. Interrupt mode 2 example.

PC into the stack. The table entry is 8030H, and the CPU transfers
control to this location for interrupt servicing. The interrupt servic-
ing is then performed and an RETI is executed, terminating the in-
terrupt action and returning control to the interrupted location as
the PC is loaded with the return address from the stack.

Note that the interrupting device could supply any eight bits for
the vector, not necessarily that address associated with its I/O
device address in the execution of IN and OUT instructions, al-
though it is convenient to have device address 0 associated with
table entry F000, device 1 associated with table entry FOO2H, etc.
Note also that the interrupting device really supplies only a 7-bit
address. The least significant bit is always 0, since each table entry
is 2 bytes long. Device number n would conveniently supply vector
2 X N, if the table were ordered in this fashion.

In a prioritizing scheme used by Z-80 peripheral devices, each
device has an implicit priority as shown in Fig. 7-7. Here the devices
are Zilog Z-80 PIO (Parallel I/O) modules. Each PIO has automatic
interrupt prioritizing “built-in” and is specifically designed for inter-
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Fig. 7-7. Z-80 interrupt prioritizing interrupt mode 2.

EI\FTt mode 2 operation. Every PIO is connnected to the Z-80 CPU
INT line in a “wire-or” configuration (INT is directly connected,
without buffering by gating). If the IEI (interrupt enable in) signal
from higher priority devices is high (positive), no higher priority
device has requested service and an interrupt request may be gen-
erated from the PIO. Prior to the interrupt request, the IEO (inter-
rupt enable out) goes low, indicating to lower-priority devices that
they may not request interrupt service by bringing down the INT
line. When the interrupt acknowledge occurs, the PIO automatically
jams the proper 8-bit mode 3 vector onto the data bus to vector the
interrupt to the proper memory location. At the end of interrupt
servicing, the RETI is detected by decoding the instruction op code
and the interrupt for the current PIO is completed. IEO for the cur-
rent PIO is brought high, enabling interrupts from lower-priority
devices.

A prioritizing scheme such as the above not only handles the prob-
lem at simultaneity of interrupt requests, but also enables multilevels
of interrupts. To illustrate the operation of nested interrupts let us

HIGHEST DEVICE 0
prioRITY [DEvice] PROCESSING
0 DEVIGE 0
INTERRUPTS
DEVICE )
1
DEV
Lowest | 2
PRIORITY

DEVICE 1
INTERRUPT
PROCESSING
——DEVICE 1
INTERRUPTS

EVICE 2
INTERRUPT PROCESSING

MAINLINE MAINUNE | e o MAINLINE

PROGRAM PROCESSING “~|NTERRUPTS PROCESSING
TIME—————

INSTRUCTION MAIN-5] 20004 | 3000H | 40004 20001 [ MAIN-

LOCATIONS LINE Z|€Tc, | EC. | EVC. [ETC. | ETC. | LINE

Fig. 7-8. Nested interrupt example.
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use the configuration shown in Fig. 7-8. As before, the interrupt vec-
tor table is at location FOOOH and the interrupt vector register has
previously been loaded with FOOOH. The interrupting devices are
labeled 0, 1, and 2; and they have priority in that order. Interrupt
mode 2 has been previously set. During execution of main-line pro-
gram location 0A82H, device 2 interrupts. Interrupt processing rou-
tine 2000H is entered and the environment is saved as shown. After
enabling interrupts, device number 1 interrupts the interrupt proc-
essing routine for device number 2, jumping to location 3000H.
Finally, device 0 interrupts during the middle of the interrupt proc-
essing routine for device number 1, causing interrupt 0 processing
routine at 4000H to be entered. This routine is completed by an
RETI and the processing routine at 3000 is reentered. This routine
is then completed and, after the RETI, the processing routine at
1000H is again reentered. Finally, the lowest level processing rou-
tine at 1000H is completed, an RETI executed, and a return mode
to the main-line program at 0A82H. At one time during the se-
quence, three nested interrupts were involved. Assuming that the
environment was properly saved and restored and the interrupts
were disabled at proper times, no problems should have been en-
countered with this scheme, or even a great deal more complex
interrupt structure.
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CHAPTER 8

Interfacing Memory and

1]0O Devices to the Z-80

As the Z-80 requires only a single-phase clock and a single 5-volt
power supply, a minimum Z-80 system can be implemented with few
additional components. This chapter will describe simple interfac-
ing cases of the Z-80 and ROM memory, static RAM memory, dy-
namic RAM memory, and the Zilog Z-80 PIO.

MINIMUM Z-80 SYSTEM
The components required for a minimum Z-80 system are:

1. a 5-volt power supply

9. a single-phase TTL-compatible clock

3. ameans to reset (restart) the system

4. ROM or PROM memory to contain the program
5. I/O interfacing and devices

6. the Z-80 CPU

Fig. 8-1 shows a minimum system with the above components. A
momentary switch resets the CPU_and starts program execution at
location 0 by bringing down the RESET signal to a logic 0. As the
reader will recall from Chapter 3, the RESET signal disables inter-
rupts, sets the I and R registers equal to 0, sets interrupt mode 0,
and sets the program counter to 0. A simple timing circuit provides
a square-wave clock input at 2.5 to 4.0 MHz. The clock runs con-
tinuously. The ROM memory is a fast-access (greater than 250 nan-
oseconds) 512 X 8 ROM addressable by lines AQ — A8 of the Z-80.
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Fig. 8-1. A minimum Z-80 system.

No WAIT conditions are necessary as the memory will always re-
spond in time for data to be read, even at a 4MHz clock rate. The
output of the ROM is a three-state output, so that the lines are in
a high-impedance state when the ROM is not being addressed. The
eight output lines connect directly to the Z-80 data bus lines DO-
D7. The output device is a quad latch whose four flip-flops are set
by D0-D3 when an output operation is performed.

When the RESET switch is pressed, the RESET input goes low,
initializes the CPU, and starts program execution at location 0 of the
ROM. The ROM program is accessed by making memory requests
MREQ and RDs, as no memory writes are possible, of course, with
a read-only device. For this particular ROM, bringing both chip-
select (CS) inputs to a logic 0 selects the ROM and gates the con-
tents of the memory location addressed by A0-A8. The program is
addressed by addresses XXXXXXX000000000, through XXXXXXX-
111111111, where X may be any address, as address lines A9-A15
are not connected. (For clarity, all memory addresses would prob-
ably be in the range 0-5ll;.) The program probably requires
some memory storage for variables, and this is provided by the 14
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Fig. 8-3. RAM, ROM
memory mapping.

ple, any I/O device address will address either the input or output
I/O devices.

When the RESET switch is pressed, program execution starts at
location 0 in ROM. The program can address RAM by addressing
locations FFFOH through FFFFH and can utilize a stack area by
setting the stack pointer somewhere in this region. The RD signal to
ROM is somewhat redundant in that all memory accesses to ROM
must be reads. The RD/WR input to the RAMs is derived from the
WR signal from the CPU. I/O inputs are handled a similar way as
in the previous example. When an IN instruction is executed,
and M1 become active and the WR signal is also active. Data bus
outputs D3-DO are latched into the output latches during the output
cycle. When an OUT instruction is executed, RD goes active, and
enables the program to sample the input data lines 10-13. The for-
mat of the output and input data is shown in Fig. 8-4. Data bits
seven through four are ignored on output. For input, data bits D7-
D4 will be zeros.

The system shown in Fig. 8-2 is an extremely powerful system
even with the minimum memory configuration. Because it allows
both the input and output, this system could be used to:

INPUT DATA FORMAT

17 0
Fig. 8-4. Input- and output-data
OUTPUT DATA FORMAT formats RAM/ROM configuration.

X X X X 0 0 0 0] ©=0UTPUTDATA BITS
X = DON'T CARE
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Fig. 8-2. Z-80 interfacing with RAM and ROM.
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Fig. 8-5. Dynamic RAM refresh.

780 PIO INTERFACING

The Z-80 PIO (Parallel I/O) is a 40-pin Z-80 compatible device
that provides simple interfacing between the Z-80 and peripheral
devices that accept 8-bit parallel data (see Fig. 8-6). Two 8-bit
1/O ports are provided. They can be programmed for either input
or output transfers. In addition to the two sets of eight bidirectional
data lines (A7 — A0 and B7 — BO) there are two sets of two control
lines used for handshaking between the I/O device and the PIO, A
RDY and A STB, discussed later. Data is transferred between the
PIO and the Z-80 CPU by data bus lines D7 — DO. Six control lines
control PIO operations under program control from the Z-80 CPU.
PORT B/A SEL selects port A or B. CONTROL/DATA SEL selects
transfer of either control data or operand data to the PIO. Chip en-
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1. Decode bcd inputs and output bed data in sequence after
processing

2. Use the switch inputs for burglar or fire-alarm sensing with
appropriate signal outputs

3. Input pulse-rate data representing instantaneous speed or other
analogs and process the data

4. Provide digital-to-analog input decoding and analog-to-digital
outputs

DYNAMIC MEMORY INTERFACING

Dynamic RAM memory is interfaced in much the same fashion as
static RAM memory insofar as memory reads and writes for data and
operands are concerned. Due to the electrical requirements of the
RAM, however, every cell in the RAM must be refreshed periodi-
cally. Essentially, this means performing a read cycle for the cell
without accessing the data from the cell about every 2 milliseconds.
Through the R register in the Z-80, a means is provided to generate
the refresh cycle automatically. At every M1 time during an instruc-
tion cycle, signals M1 and memory request MREQ become active
to signal the external dynamic RAM memory that one refresh cycle
may take place. The RAM then performs a refresh utilizing the cur-
rent address on the data bus from the R register. Since the R register
is continually sequencing from 0 to 255 in modulo 28 fashion every
M1 cycle, a new refresh address is continually available to the
dynamic RAM memory.

Fig. 8-5 shows a 4096-byte memory made up of eight 4096 by 1
dynamic RAMs. Each RAM has 12 address inputs split between six
row inputs and six column inputs. The requirements for refresh are
that within a 2-millisecond period each of the 64 possible rows are
addressed. Since this cannot be assured by random access of the
data, as in program execution, it must be systematically performed.
To accomplish this, signals RFSH and MREQ are ANDed as shown.
When both signals are false, signal CE, chip-enable refresh, goes
active and a read is performed for each of the eight chips, using
address lines A5-AQ as the row address. As 64 refresh cycles must
be performed to refresh all of the cells within a chip, the average
time to perform a complete refresh is 64 X N, where N is the average
instruction time for the Z-80. With N = 2.5 microseconds, it will take
160 microseconds to refresh all 8-K bytes. Signal CE is also enabled
by the normal nonrefresh read or write cycle of the Z-80, when one
of the bytes is accessed for instruction execution, data retrieval or
storage.
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Fig. 8-7. PIO registers.

PIO MODE 0

Port A may be any mode, 0 through 3. Port B may be mode 0, 1,
or 3. Mode 0 is the output mode of the PIO. In mode 0, the 8-bit
data-output latch is active and the 8-bit data-input register is in-
active. Data may be written to the data-output register by address-
ing the port and transferring eight bits of output data via an OUT
instruction. Data may also be read back from the port by an IN in-
struction, although normally this would not be done as the program
would always be cognizant of what data was written out. Data in
the output register may be overwritten at any time by another OUT
instruction.

I S | X X 1 1 1 1
——
¢ 0  OUTPUTMODE Fig. 8-8. P10 operation mode
0 1 INPUT MODE control word.
1 0  BIDIRECTIONAL MOBE
1 1  CONTROL MODE
X = DON'T CARE

124




able is the signal to the PIO indicating that the PIO address has been
decoded in an I/O operation. M1 is the CPU machine cycle one
signal. TORQ and RD are the Z-80 signals related to any I/O opera-
tion. Three interrupt-control signals provide the interrupt INT, IEI,
and IEO functions discussed in Chapter 7, that is, the eternal inter-
rupt to the CPU and interrupt priority encoding. The clock input
signal, @, is the clock signal from the Z-80 CPU.

(Dn D —— fe——>-A0
D1 e——] fe—a1
D2 -] e — V3
DATA § D3 —= le—- 43| PORT A
BUS | D4 e—r aqf VIO LINES
D5 —— fe—25
D ety le——s- A6
D7 ] le—sa7
T0 CPU
OR PORT BIA SEL ARDY
ADDRESS CONTIATA SEL | T } PORT A
DECODING L |LASTE_  § HANDSHAKE| TO
(CHiP | CONTROL ! THIP ENABLE 2-80P10 B(OTERNAL
BB il P le—80 DEVICE(S)
TORG—— le—51
RD———» je—B2
[e—-83( PORT B
TN e————— leespaf /O LINES
INTERRUPT |-
controL )l "] fe—85)
TE0+— B
fe——»-B7
® B RDY
e | PORTB
l+22T8 [ HANDSHAKE

T

+5  GND
Fig. 8-6. PIO interface signals.

Internally, the PIO appears as shown in Fig. 8-7. Each port of the
PIO has a number of registers associated with the port. The main
controlling register is the 2-bit mode control register. It is set by
addressing the PIO port and sending a control word from the CPU
with the format shown in Fig. 8-8. The two most significant bits of
the control word determine the mode as follows:

D7, D6 Mode
00 0 output
01 1 input
10 2 bidirectional
11 3 control
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after the mode 3 control word has been transferred. In the second
control word, each bit corresponds to a port I/O line as shown in !
Fig. 8-9. If a bit is one in the control, the corresponding port line is
an input line. If a bit is a zero, the corresponding line will be an
output line. The second control word sets the 8-bit Input/Output
Select register shown in Fig. 8-7. Once mode 3 is set, data may be
read or written to the port at any time. No handshaking signals are
active; the STB signal is not used and the RDY signal is always low.
Outputting data to the port will affect those lines programmed as
outputs, while inputting data will read all lines, including those pro-
grammed as outputs.

76543210

| I— CORRESPONDS TO PORT 1/0 LINE O
CORRESPONDS TO PORT 1/0 LINE 1

CORRESPONDS TO PORT 100 LINE 2
CORRESPONDS TO PORT 110 LINE 3
CORRESPONDS TO PORT 1/0 LINE 4
CORRESPONDS TO PORT 1/0 LINE 5
CORRESPONDS TO PORT /0 LINE 6
CORRESPONDS TO PORT /0 LINE7

Fig. 8-9. P10 mode 3 input/output programming.

PIO INTERRUPTS

Each port of the PIO may be programmed to provide an external
interrupt to the Z-80 CPU for input or output operations. When an
OUT instruction with the port address is executed and the 8-bit con-
trol word shown in Fig. 8-10 is output to the PIO port, any subse-
quent mode 2 interrupts generated from the PIO port will use the
interrupt vector of the control word which is stored in the port.
Chapter 7 describes how the Interrupt Vector Table address is com-
puted using the contents of the I register and the externally sup-
plied vector. In this case, the PIO control word supplies the least
significant 8 bits of that vector. Bit 0 is always a one, as is consistent
with mode 2 interrupt operation. The PIO will only operate in the
CPU mode 2 interrupt function and not in mode 0.

76543210

VECTORFIELD 0]
N e/

SPECIEIEs T

LOWER GRDER Fig. 8-10. PI1O ;nten;’upl vector
ADDRESS BITS control word.
FOR CPU INTER-

RUPT MODE 2
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As data is written out to the PIO, the RDY signal associated with
the port goes high, indicating to the external device that data is
available on the port I/O lines. After the external device has read
the data, it responds with signal STB, resetting the port RDY signal
and generating an interrupt (if the PIO has been programmed for
an interrupt).

PIO MODE 1

PIO mode 1 is the input mode. If a port is in mode 1, the data-in-
put register is active and the data-output register is inactive. The
sequence of operations for inputting data into the PIO from an ex-
ternal device is as follows:

1. External device senses RDY line from PIO. If true, external
device_puts data on port I/O lines and momentarily brings
down STB line.

2. Data is strobed into port data-input register. This resets the
RDY line and causes an interrupt (if the PIO has been pro-
grammed for an interrupt).

3. Z-80 CPU reads the data from the PIO using an IN instruction
with an 1/O address of the PIO port.

4. RDY line is set by action of IN instruction, causing external
device to ready next byte of data.

The actions in mode 1 are repeated for each byte of data to be
read in. The input operation is initiated by an IN instruction in
which the data is ignored as the RDY line is set for the first time.

PIO MODE 2

PIO mode 2 is the bidirectional data mode. Since mode 3 uses all
four handshake lines, only port A may be used for this mode. The
port A handshake lines are used for output operations and the port
B handshake lines for input operations. When A STB is low, data
from the data-output register of port A is gated onto the port I/O
lines. When a A STB is high, data may be input into the data-input
register by B STB. Signals A RDY and B RDY may both be active
at the same time, indicating that both output data is available from
the PIO and that the PIO is ready to receive input data from the
device.

PIO MODE 3

Mode 3 operations are set by addressing one of the two ports by
an OUT instruction and transferring a second 8-bit control word
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3. Port 1/0 lines set to high-impedance state
4. Handshake signals low (inactive)
5. Vector address registers not reset

Z-80 PIO CONFIGURATION

Fig. 8-12 shows one PIO replacing the four data-output lines and
four gated input lines of Fig. 8-2, effectively doubling the I/O capa-
bility of the Z-80 system and providing complete interrupt control.
Data lines from the Z-80 bus are input to the PIO data line inputs.
Port A output lines are used to write to an external device while
port B input lines are used to read to an external device. The two
sets of handshake lines are used in the same fashion. The INT line
from the Z-80 PIO is input to the CPU directly. Since there is only
one PIO in the system, there is no daisy-chained interrupt priority
and IEI is set to VCC. IEO is not used. Inputs M1, TORQ, and RD
are connected directly to the equivalent Z-80 signals.

TO CPU SIGNALS FIGURE 8-2

AT A6 Bz

A0 '
PORT A
Al | [ } 110 LINES
[ porTA
PORT AR SEL Plo [ HANDSHAKE | 10
CONT/DATA SEL EXTERNAL
CHIP ENABLE PORT B DEVICES
110 LINES
— " rorrs
2-LINE TO HANDSHAKE

4-LINE DECODER
Fig. 8-12. P10 use in minimum configuration system.

As the PIO is the only I/O device in this system, there is no need
to decode the I/O address. However, a decode is shown for larger
systems. The PIO address is determined by the three most-significant
bits of the I/O address A7 and A6. This scheme would allow for four
PIOs or, as shown, three PIOs and other I/O addresses in the range
00000000 through 00XXXXXX;. The output of the two to four de-
multiplexor enables the PIO for I/O address 01XXXXXX.. The port
A/B select line is connected to A0 and the control/data select line
to Al. The address mapping for the addressing configuration is
shown below:
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In conjunction with the port interrupt vector address register,
each PIO port has an interrupt control word register of 2 bits and
an interrupt mask register of 8 bits. The interrupt control word reg-
ister holds data relating to the interrupt control word shown in Fig.
8-11. The interrupt control word is transferred to a port by address-
ing the port with an OUT instruction and transferring the control
word. Bit seven of the control word controls the interrupt of the
PIO. If bit seven is a one, the port will generate an interrupt; if
reset, the port will not generate an interrupt. As previously dis-
cussed, the interrupt occurs on the rising edge of the STB signal for
modes 0, 1, and 2. Bits six, five, and four are used only for PIO mode
3. Bit five defines the active state for the port 1/O lines; if a 1, the
active state is a high state. Bit six specifies either an anxp or or
function for interrupt operation. If bit six is a 1, all bits must go to
an active set (high or low) before an interrupt is generated. If bit
six is a 0, any bit in the active state will generate an interrupt. The
port lines that are monitored for the AND or or condition are fur-
ther defined for a mask. If bit four is a 1 after the interrupt control
word has been received by the PIO, then the next word sent to the
PIO must be a control word mask which is loaded into the port in-
terrupt mask register. If a bit position is a 1 in the mask, then the
corresponding line will be used as an active line for interrupt gener-
ation.

4321
[Evd]m]o 1 1

l— MASK-MA SK WORD TO FOLLOW

HIGHLOW-DETERM INES MODE3
ACTIVE STATE FOR INTERRUPT  { on/'y

AND/OR FUNCTION FOR
INTERRUPT DETECT

ENABLE INTERRUPT
1 <ENABLE

Fig. 8-11. P10 interrupt control word.

PIO INITIAL CONDITIONS

__The PIO is initialized on a power-up or M1 condition without
RD or TORQ. The latter condition enables a reset without power-
down and without adding additional signals to the PIO for reset.
The initial PIO conditions are as follows:

1. Port interrupt enable flip-flops, output registers, and mask reg-
isters reset
2. Mode 1 selected
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CPU registers. No memory stack is implemented, as no external
RAM memory is provided and CPU registers cannot perform a stack
function.

Data output is provided by the quad latch. Since this is the only
I/0 device in the system, any 1/O instruction with any 1/O address
will address the latch and latch the contents of data bus lines DO-
D3 when signals TORQ and MI occur during an I/O cycle. Note
that there is also no decoding of RD or WR and that even a read
I/0 instruction will output data to the latch. Output lines A, B, C,
and D interface to the outside world.

The above example is admittedly a limited application of the
Z-80, but it does serve to illustrate the simplest usable configura-
tion of a Z-80 system. Even with this simple system, a program
could be implemented to provide a variety of dedicated functions,
such as:

1. Play music via the output latches

2. Provide simple digital-to-analog outputs (with a few additional
external components)

3. Provide timing functions of almost any duration

4. Provide automatic telephone dialing (with additional external

logic)

INTERFACING ROM AND RAM

A more usable system with ROM (or PROM) and RAM memory
and limited I/O capability is shown in Fig. 8-2. A larger ROM
(1K X 8) is used to provide 1024 bytes of program area. Two 256
X 4 bit high-speed RAMS (no WAITS necessary) are used to pro-
vide 256 bytes of read-write storage of dynamic variables. The RAM
(and all system components) are three-state devices to enable “wire-
ORing” all inputs and outputs to the data bus lines. One RAM reads
and writes the four least significant bits of data from the data bus
D3-DO0, while the second RAM is used for D7-D4. A quad latch
is used as before for I/O communication for 4-bit outputs from the
CPU. In addition, four external input lines are sampled by gates G1
through G4.

The memory mapping for this configuration is shown in Fig. 8-3.
The ROM memory area is located in locations 0000H through 3FFH.
The RAM memory area is located at locations FFOOH through
FFFFH (256 locations). Address lines Al0 through Al4 are not
used. Whenever address line Al5 is a 0, ROM memory is being ad-
dressed, and whenever A15=1, RAM memory is being accessed.
The I/O addresses in the Z-80 are separate from memory addresses
(as opposed to a memory-mapping 1/O). As in the previous exam-
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IN/OUT

10 Address Meaning
00000000, Non-PIO addresses
001111171,

01XXXX00 Port A, data

01XXXX01 Port B, data

01XXXX10 Port A, command
0I1XXXX11 Port B, command
10000000 Other PIO expandability

IRRRRR RN

To output and input data to the I/O devices not under interrupt
control, the following steps must be taken:

1

2.

Reset the PIO (power on). This clears the interrupt enable
and PIO interrupt vector registers.

Load interrupt control word or 07H into CPU register R. Out-
put to devices 01000010, and 01000011, with OUT instruc-
tion. This disables PIO interrupts in both ports.

. Load operating mode control word 00001111; into CPU regis-

ter R. Output to device 01000001, with OUT instruction. This
sets up the A port as an output port.

. Load operating mode control word 01001111, into CPU regis-

ter R. Output to device 01000011, with OUT instruction. This
sets up the B port as an input port.

. Input data from device 01000001,. This inputs data from port

B. Initial data is discarded, but the B RDY line is activated,
informing the external device that the CPU is ready for data.

. Port A is now ready to output data and port B is ready to in-

put data. Since no interrupts are programmed, output must
be timed so that the external device has sufficient time to re-
spond to the output and to provide input data. A timing loop
must be included in both the read and write 1/O drivers for
this PIO.

To perform I/O under interrupt control, the interrupt vector reg-
isters must first be output to the PIO and the proper interrupt con-
trol words must be output. If the interrupt processing routine ad-
dress for the output device was at FFOOH and the interrupt process-
ing routine address for the input device was at FF02H, then the
CPU I register must have been loaded with FFH before I/O activ-
ity. Next, sometime before the first I/O activity the PIO interrupt
vector registers must have been loaded as follows:

—Load interrupt vector control word 00H into CPU register R.
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Output to device 01000010, with OUT instruction. This sets
the port B interrupt vector register to 02H.

Finally, the interrupt control word of 80H must have been output
to device addresses 01000010, and 01000011.. This would enable in-
terrupts for both port A and port B. Interrupts would occur on port
A each time the external device strobed into the output data (A
STB went momentarily low) and on port B each time the external
device strobed data into the PIO input register (B STB went
momentarily low). Interrupts for port A would vector to the address
specified in FFOOH and interrupts for port B would vector to the
address specified in FFO2H as described in Chapter 7.

The above description illustrates the interfacing for one Z-80 PIO.
The configuration shown could be used for a variety of uses includ-
ing Teletype 1/O, keyboard decoding, high-resolution a-to-d or
d-to-a I/0, and 16-line process-control applications. Using similar
procedures to those shown above, the reader can see how multi-PIOs
and additional ROM, PROM, or RAM memory can easily be added
to the system. Further examples of microcomputer systems built
around the Z-80 family of components will be provided in Section
III.
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SECTION II

7-80 Software







CHAPTER 9

Z-80 Assembler

The previous section described the hardware aspects of the Z-80,
including the inherent instruction set of the microprocessor. Section
II describes how to use that instruction set efficiently to build sets of
instructions to perform software functions such as multiplication,
division, double and multiple-precision arithmetic, and table and
string manipulation. To facilitate the writing of software programs,
an assembler program is employed. The assembler provides an easy
way to automatically assemble machine language instructions from
a higher-level symbolic assembly language.

MACHINE LANGUAGE

Machine language is the most rudimentary form of any program.
It consists of the actual machine language operation codes and oper-
ands necessary to implement the instructions of the program, ex-
pressed in binary or hexadecimal numbers. Suppose, for example,
that a short program is required to add the numbers from one to ten.
An extremely inefficient way to perform this task is shown below.

XOR A
ADD A1
ADD A,2
ADD A3
ADD A4
ADD A5
ADD A6
ADD A7
ADD A8
ADD A9
ADD A,10
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The program consists of an instruction to clear the A register (the
XOR) and a succession of ten immediate instructions to add the
numbers one through ten to the contents of the accumulator. The
program is written in the mnemonics that Zilog uses for the equiva-
lent machine-language code, along with the register to be used and
the immediate 8-bit data value. To assemble the equivalent machine-
language code, one would have to look up the hexadecimal form of
the operation code and the format of the instruction and write it
beside each mnemonic representation of the instruction as shown
in Fig. 9-1. The figure shows that the XOR A is a one-byte instruc-
tion of the form 10101RRR,, where R is the register required. In this
case, R = 111,, indicating A. The ADD format is a two-byte instruc-
tion of the form 11000110, followed by an 8-bit field representing
the 8-bit immediate operand. The equivalent machine-language
instruction for an ADD A8, for example, is the op code 11000110,
or C6H, followed by 00001000, or 08H.

The entire program representing the addition of one through ten
could be loaded into the Z-80 microcomputer by means of a control
panel (if the microcomputer has one) or monitor program and then
executed. The actual numbers that would be keyed in are the num-
bers shown in the left-hand column of Fig. 9-1, twenty-one 8-bit
bytes of machine code representing the program.

Let us take another program example to illustrate the machine-
language assembly process once again. This time we will assemble

MACHINE CODE  INSTRUCTION FORMAT INSTRUCTION
AFH 10101111 XOR A
c6 coH ADD A,1
0 [
c6 [ ADD A,2
0 0H
6 [ ADDA,3
03 oH
c6 ceH ADD A4
[ 0
6 o6 ADDA,5
05 osH
6 c6H ADD A6
[ 06H
c6 c6H ADD A,7
[74 (0]

3 CceH ADDA.8
[ 081
6 o ADD A9
09 oH
c6 CoH ADD A,10
0A 0AH
Fig. 9-1. M i bly p prog 1.
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a program to add the numbers from one to ten in a slightly different
implementation. We will use the A register to hold the total as
before, but we will let the B register hold the current number to be
added. This will vary from 10 to 1 as we go in reverse, adding 10,
then 9, then 8, and so forth down to 1. At that point, we will detect
that the next number to be added is 0 and stop. The program in
Zilog mnemonics looks like this:

XOR A CLEAR A

LD B,10 SET COUNT TO 10
LOOP ADD AB ADD NEXT NUMBER

DEC B PREPARE NEXT NUMBER

JP NZ,LOOP JUMP IF NUMBER+0

HALT HALT

The A register is first cleared by the XOR A instruction. Next, the
B register is loaded with 10 by the LD B,10 instruction. The next
three instructions comprise a loop. As long as B holds a number
from 10 to 1, the contents of B will be added to A (ADD AB), the
contents of B will then be decremented by one (DEC B}, and the
jump will be made to the first instruction of the loop which is labeled
“LOOP” as a point of reference of where to return. When the B reg-
ister is decremented, the Z flag is set if the result is zero and reset if
the result is nonzero. If the B register is nonzero (9 through 1) the
JP NZ,LOOP instruction will detect the nonzero (NZ) and jump
back to LOOP. If the B register holds a 0, the Z flag is set and the
conditional jump back to LOOP will not be made, causing the CPU
to execute the next instruction (HALT).

Manually assembling the machine code for this program is a little
more complicated than the preceding example. First of all, while
the previous program could be relocated or loaded anywhere in
memory, since the instructions contained no addresses, the second
program does contain addresses (JP NZ, LOOP must specify the
address of LOOP in bytes two and three of the instruction). A deci-
sion must therefore be made where in memory this program is to
execute. We will arbitrarily choose location 0100H as the start. The
next step in the assembly process is to calculate the length in bytes
of each instruction and write it opposite each mnemonic. After this
step, the program appears as shown below:

Location Length Instruction
0100H 1 XOR A
LD B,10
1 LOOP ADD AB
1 DEC B
3 JP NZ,LOOP
1 HALT
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Now the locations of each instruction can be filled in, using the
length to adjust each location. The location always specifies the first
byte of the instruction.

Location Length Instruction
0100H 1 XOR A
0101H 2 LD B,10
0103H 1 LOOP ADD AB
0104H 1 DEC B
0105H 3 JP NZ,LOOP
0108H 1 HALT
0T109H

As a double check on the accuracy of this step, the total length of
the program from the location column (0109H-0100H =9 bytes)
can be compared with the total number of bytes from the length
column, nine. Now the instruction formats can be filled in, as shown
in Fig. 9-2. The only difficult instruction is the JP NZ,LOOP. This
is a three-byte instruction with the last two bytes specifying the con-
ditional jump address. Since the jump is to LOOP, which is at loca-
tion 0103H, this address must go into bytes two and three in reverse
order 03H, 01H, as is the format from time immemorial (or at least
since the 8008).

LOCATION LENGTH  MACHINE CODE INSTRUCTION FORMAT INSTRUCTION
0100H 1 AF XOR A
0101H H 0604 LD B,10
01034 1 ) Jooo] LOOP  ADDA,B
0104H 1 05 [ooo 101 DECB
0105H 3 20301 11J000] 010] 0000 0011] 0000 0001 ] JP NZ,LOOP
0108H 1 7 01110110 HALT
019H

Fig. 9-2. M 1 bly p gl 2.

Although it is feasible to assemble long programs by manual
methods, it is extremely uneconomical. There is too much of a
chance for error in calculating locations, filling in instruction fields,
and formatting addresses. In addition to the certainty of rote errors,
there are several other factors that make machine-language opera-
tions unworkable. The most important of these is relocatability.
Program two could execute only at location 0100H. To execute at
another location, the address in the JP instruction would have to be
changed. In larger programs, many addresses would have to be re-
figured and manually assembled. A second factor is ease of editing.
Few programs run the first time and most require several iterations
before the program performs the way that was expected. Each itera-
tion involves adding, deleting, or modifying instructions of the pro-
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gram, necessitating recalculating addresses where they are used in
the program.

THE ASSEMBLY PROCESS

Because of the inherent limitations of manual assembly, all mi-
crocomputer manufacturers offer an assembler program to auto-
matically perform the machine-language function from symbolic
assembly language. Many times the assembler may be run on the
microcomputer itself. In this case, the assembler is a resident as-
sembler. In a few cases, the assembler must be run on another com-
puter, typically an IBM 360/370 configuration. In the latter case,
the assembler is a cross-assembler. In either case, the assembler
quickly assembles programs written in Z-80 or other source assembly
languages, producing an object module representing the machine
code, and a listing of the program in both assembly and machine
language form. A few of the features that an assembler provides are:

1. Symbolic representation of locations, operation codes, and
arguments

2. The ability to intermix comments with the symbolic form of
the instruction

. Automatic assembly of forward and backward references to
symbolic locations

. Automatic representation of various number bases

. Expression evaluation

. Pseudo-operations or nongenerative assembler instructions
that define locations, equate symbols, reserve memory, and
other convenient features

W

D U

ASSEMBLY FORMAT

The mnemonic representation of instructions have been used
throughout this text. They are simply a convenient way to write
down the instruction as it is much simpler to write “ADD A,B” than
to write “add the contents of the B register to the contents of the A
register.” The mnemonics used for the Z-80 in this text closely follow
the ones used by Zilog. There are some slight differences in repre-
sentation of addressing types. The tables in Chapter 5 or Appendix
C list all instruction mnemonics and the possible addressing formats.
Other microcomputer manufacturers described in this book may use
somewhat different mnemonics in their documentation for their
products.

The standard assembly-language format used in this book is
shown in Fig. 9-3. There are four columns, the label column, the
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op code column, the arguments column, and the comments column.
Each representation of a Z-80 instruction must have an operand.
Most instructions have arguments, such as “LD (HL),R” where
“(HL),R” are the two arguments. Instructions such as EI or HALT
have no arguments. The label field is optional. When a label is
present, it may be one to six alphabetic or numeric characters, the
first character of which must be alphabetic. The optional comments

op
COLUMN | ABEL | {CODE; ARGUMENTS COMMENTS
NUMBERS {1 6|7is 13 oo
NAME12] [LD | |(HL) R THIS IS A SAMPLE SOURCE LINE
NAME13| [EI ENABLE INTERRUPTS
IMP | INZ,STOP GO TO HALT-WAIT FOR INTERRUPT
e o \
HOLDS (OPCODE\ ARGUMENTS OPTIONAL
OPTIONAL| OF 2-4 | AS REQUIRED COMMENTS
NAME -
OF 16 | ACTERS
CHAR-
ACTERS
BLANK  BLANK BLANK

Fig. 9-3. Typical Z-80 assembly language format.

column describes the action of the instruction as was shown in Fig,
9-2. The four columns make up an assembly language line. In gen-
eral, the length of assembly language lines has been determined by
the length of lines on the input devices such as teletypewriters and
punched-card readers. In actual practice, as in the assemblers dis-
cussed in the manufacturers section of this book, Section III, the
end of the line is represented by a carriage return, line-feed code,
or similar device-oriented condition.

In general, each assembly language line (or source line) repre-
sents the complete set of information about one Z-80 instruction.
Each line will generate from one to four bytes representing a Z-80
instruction. One of the several exceptions to this rule is a comment
line, which is originated with a semicolon and is nongenerative; it
generates no machine-language code but serves for reference only.
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A partial typical page from an assembler listing is shown in Fig. 9-4.
The information printed to the left represents the source line num-
ber, the memory location for the first byte of the instruction, and up
to eight hexadecimal digits for the machine-language code of the
instruction (two hexadecimal digits represent one byte). This is
information generated and listed by the assembler. The information
printed to the right represents a direct image of the source line itself.
Additional data printed on the listing would consist of diagnostic

105 ;

106 i* BXASH-00-00 *
107 i* *
108 * FUNCTION: THIS SUBROUTINE CONVERTS AN 8-BIT BINARY VALUE *
109 i IN THE C REGISTER TO TWO ASCII HEXADECIMAL DIGITS. *
110 i .
1 i* CALLING SEQUENCE: (HLI-BUFFER AREA POINTER *
n2 ie (C)=8-BIT VALUE TO BE CONVERTED *
m i CALL BXASH *
i i (RTN WICHARACTERS IN BUFFER, BUFFER +1*
115 it AND HL INCREMENTED BY 21 *
116 ;

1w ;

118 1036 3EFO  BXASH LD  AFOH

19 108 Al AND C MASK 1

120 1039 OF RRCA

121 103 OF RRCA

122 108 OF RRCA

123 103C OF RRCA ALIGN FOR CONVERSION

124 103 D710 CALL CVERT CONVERT

125 1040 3EOF L AR MASK 2

126 102 Al AND € GET SECOND CHARACTER

127 1083 CD47I0 CALL CVERT CONVERT

128 1046 €9 RET

129 ;

130 1047 C630  CVERT ADD A30H CONVERT T0 0-15

1Bl 1049 FELO P10 TEST FOR 0-9

Fig. 9-4. Typical Z-80 listing.

messages indicating assembly errors such as a reference to an unde-
fined, or multiply-defined symbol, invalid arguments such as invalid
hexadecimal digits and the like. Since the listing format is dependent
on the microcomputer system and the kind of assembler, this dis-
cussion is meant to provide a general picture of how a typical listing
would appear and is not meant as a detailed guide.

SYMBOLIC REPRESENTATION

The label column of the source line represents the name of the
location. A program could be written with references only to abso-
lute locations such as “LD A,123AH.” In this case, however, it would
be necessary to know the exact location to be used, necessitating
definitions of numeric addresses to be used for variables and con-
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stants. It is much more convenient to write “LD A RESULT” than
to specify an absolute location. The assembler will automatically
resolve the symbol “RESULT” into the equivalent machine-code
address. The references to symbolic rather than absolute locations
may be either backward references to previously defined symbols,
or forward references to yet-to-be-defined symbols. Let's see how
the assembler resolves the symbols with a short program. )

The program below compares the contents of the A register to
the contents of the B register by a compare instruction. It then
branches (jumps) out to three addresses dependent on whether
A<B, A=B, or A>B, represented by location LTHAN, EQUAL, or
GREATR. LTHAN is a backward reference, while EQUAL and
GREATR are forward references.

10AAH  LTHAN

1202H CMPARE CP B COMPARE A:B
1203H JP ZEQUAL JUMP IF A=B
1206H JP M,LTHAN JUMP IF A<B

1209H GREATR €
14AFH EQUAL

The arrows represent instructions not defined. The locations to the
left represent the locations after assembly. Most assemblers make
two passes. The first decodes the mnemonics, constructs as much of
the instruction as possible, counts the bytes in the instruction, and
constructs a symbol table representing all labels and symbols in the
program. The second pass resolves all addresses by the symbol table.
The reason for two passes is that forward references cannot be re-
solved until the symbol is encountered. After the first pass for the
above program, the symbol table will show:

Symbol Value
CMPARE 1202
EQUAL 14AF
GREATR 1209
LTHAN 10AA

On the second pass, the values of EQUAL and LTHAN will be
filled into the JP instructions at 1203H and 1206H.

Certain symbols in the Z-80 system are reserved and cannot be
used by the programmer. The assembler has set these symbols aside
to define registers or addressing modes. Many of these symbols ap-
pear in the instruction formats of Appendix C. Reserved words in
the Z-80 system would include:
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Register Names: A,B,C,D,E, F, H L
Register Pair Names: AF, BC, DE, HL, IX, IY, SP, AF’
Condition Code Flags: C, NC, Z, NZ, M, P, PE, PO

REPRESENTATION OF NUMBER BASES

Another assembler feature present on all assemblers is the ability
to convert from one number base to the other. This means that argu-
ments for instructions may be specified in the most convenient base.
The ADD AN instruction, for example, adds an 8-bit immediate
value to the contents of the A register. Binary, decimal, or hexadeci-
mal values of N may be specified by a suffix of B, no suffix, or H to
enable specifying any of the three number bases: “ADD A,1007,
“ADD A,64H”, and “ADD A,01100100B” all amount to the same
thing, adding 100y, to the contents of the A register. These three
suffixes will be used in the examples of Section II, although the for-
mats actually used in a particular Z-80 assembler undoubtedly will
be different.

EXPRESSION EVALUATION

Most assemblers have limited expression capability. Expressions
may consist of symbolic and literal data and in more sophisticated
assemblers, absolute and relocatable symbols. Expression operators
allow addition, subtraction, multiplication, and in some cases, divi-
sion and shifting. The operators are usually represented by predict-
able symbols, such as “+”, “—”, “*”, and “/” for addition, subtraction,
multiplication, and division. Elaborate expressions find little use in
assembly language programs and in some cases may overpower the
assembler, but simpler expressions may be used to assemble the
length of a table, calculate system parameters, and create fields
within data words. Examples will be given in this and other chapters.

PSEUDO-OPERATIONS

In each source line, the portion responsible for generation of the
instruction operation is the op code. There are some assembler oper-
ation mnemonics, however, that do not generate machine-language
instructions but, rather, inform the assembler of special actions to be
taken. These operation mnemonics are called pseudo-ops, since they
are not truly operation codes that represent valid machine-language
instructions. The pseudo-ops discussed here are similar to those in
all assemblers. As they are shown, the parentheses represent an op-
tional label.
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\

Label (if any) Pseudo-Op Argument (if any)

ORG N
END

NAME1 EQU NAME2

(NAME1) DEFB N

(NAMET) DEFW N

(NAMET) DEFS N

(NAME1) TXT STRING

The ORG pseudo-op establishes the origin of the program. When,
for example, “ORG 1200H” is used before the first source line of
code, the assembler location counter will be set to 1200H. Subse-
quent instructions will advance the location counter by the number
of bytes in each instruction so that the assembler may keep track of
symbol locations and the current instruction location. The ORG may
also be used within a program at any time to start assembly from a
new location.

The END pseudo-op is the last statement in a program and signals
the assembler to start pass two or to end the assembly process.

The EQU pseudo-op equates a label to another label or a numeric
value. The EQU is used for convenience in assigning recognizable
names to constants or expressions. An example of an EQU repre-
senting the length of a table is defined below. Here “$” represents
the current assembler location (the contents of the assembler loca-
tion counter).

Source

Location Line

0100H TABLE

0101H

0102H

0103H

0104H

0105H

LENGTH EQU $ — TABLE
103FH LD IX,LENGTH

The length of the table in this example will be 0106H (the current
location counter)—0100H (the start of the table) or 6 bytes. The
EQU does not generate code, but makes an entry in the symbol
table under “LENGTH” for a value of 6. Later in the program,
when the 16-bit immediate instruction LD IX,LENGTH is en-
countered, the assembler searches the symbol table for the symbol
LENGTH and resolves it with the value 6. Execution of LD IX,
LENGTH will then load 6 into the IX register.
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The pseudo-ops DEFB and DEFW define constants and variables
in the program. The argument for the DEFB is a numeric or sym-
bolic expression that can be resolved in eight bits. The argument
for DEFW must be resolved in sixteen bits. Both pseudo-ops are
necessary because without them the assembler could not generate
tables of data, constants, or locations for variables. The following
source lines generate a table of ten bytes, each byte representing
data from 1 to 10.

0100 01 TABLE DEFB 1

0101 02 DEFB 2
0102 03 DEFB 3
0103 0405 DEFW 0405H
0105 06 DEFB 6
0106 0708 DEFW 0708H
0108 09 DEFB 1001B
0109 0A DEFB AH
010A

DEFS is a pseudo-op that reserves a number of bytes. In many
cases, it is necessary to set aside a block of memory without actually
filling it with meaningful data, as in allocation of I/O buffers and
working storage areas. The effect of DEFS is to increment the as-
sembler location counter by the argument, which represents the
number of bytes to be reserved. When the assembled object module
is loaded by the loader program after assembly, the block of storage
allocated by the DEFS will not be affected and will retain the mean-
ingless data in the memory area before the load. An alternative way
to reserve storage is to use an ORG pseudo-op. Both of the state-
ments below reserve 22H bytes starting at location 1234H.

1234H BUFFER EQU $
1234H DEFS  22H
1256H NEXTI LDD

¢
1234H BUFFER EQU $
1256H ORG $ + 22H
1256H NEXTI LDD

The last pseudo-op discussed here, TXT, is similar to the DEFB
and DEFW in that it generates data for use by the program. The
data in this case is ASCII text data. ASCII representation is used
for most I/O devices and is shown in Appendix E. Alphabetic,
numeric, and special characters must be encoded in ASCII format
before being transferred to the I1/O device for printing, display, or
punching. The TXT pseudo-op generates one ASCII character for
each text character in the argument string. The argument string is
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started by any character and is encountered by the same character.
It is convenient to use unusual characters as the delimiters.

0100 43555253 TXT $CURSE YOU RED BARON$
0104 4520594F

0108 55205245 Delimiter

o10C 44204241

0120 524F4E00

0124

The pseudo-ops above are some of the most commonly seen and
will be used in the examples of Section II. The actual pseudo-ops
used in Z-80 microcomputers software will vary, however, and the
reader must refer to the manufacturer’s literature for the mnemonics
and formats used.

ASSEMBLY MECHANICS

Once a program has been written, the actual assembly mechanics
are quite easy. The source statements are entered via the keyboard
and a copy of the source lines is recorded on some type of I/O
medium such as paper tape, magnetic tape, or floppy disc. In many
cases, a utility program called an editor is used to transfer the key-
board input to the storage medium. After the program has been
copied onto the medium, the assembler is loaded into the micro-
computer if a resident assembler is being used, or into the host com-
puter if a cross-assembler is employed. The assembler will then read
the source from the storage medium for the first pass. If paper- or
magnetic-tape cassettes are used as the storage medium, the paper
tape or cassette may then have to be repositioned manually to the
start of the source image; in other cases, the system will automati-
cally restart from the beginning of the input medium. The assembler
then executes the second pass producing a listing such as the one
shown in Fig. 9-3 and an object module. The object module is essen-
tially the machine-language code in a special loader format. The
object module may physically be paper tape, magnetic tape, or
floppy disc. The object module output of the assembler can now be
loaded into microcomputer memory by the loader utility program
and, after the load, be available for execution.

As previously mentioned, few programs run the very first time,
and subsequent reassemblies, loads, and executions will undoubtedly
have to be performed until a final version is produced. For each
iteration (and in some systems there are dozens), the assembler
greatly simplifies the coding process.
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CHAPTER 10

Moving Data—Load, Block
Transfer, and Exchange Groups

This chapter discusses one of the most basic operations in any
computer system, moving data between CPU registers and external
memory, or between two areas of external memory. The moves may
be eight or sixteen bits at a time. The moves may involve transfer-
ring data from one location to another, copying the contents of a
source location to a destination location, or they may involve ex-
changing the contents of both locations. Some of the moves involve
storage and retrieval of data from the portion of external memory
used as a stack. The most sophisticated of the moves transfers up to
64-K bytes in one instruction.

8-BIT MOVES

The 8-bit load group allows data to be moved from a CPU register
to memory or from memory to a CPU register in a variety of ad-
dressing modes. Moving data to, or from, the A register is a special
subset in this group. The A register is given precedence because it
is the primary register used for arithmetic, logical, and shifting op-
erations in the 8080 and 8008; and these uses still carry over to the
Z-80.

Any of the general-purpose CPU registers can be loaded with the
contents of another CPU register or immediate value by a LD R,R’
or LD R,N instruction, respectively. The following code loads A, B,
C, D, and E with 0 through 4, respectively, and then reverses the
order (4 through 0) by LD R,R’ instructions.
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LD A0 LOAD 0

LD B,1 LOAD 1
LDC2 LOAD 2
LD D,3 LOAD 3
LDE4 LOAD 4
LD H,A SAVE A
LD LB SAVE B
LD AE ETOA
LDB,D DTOB
LD DL BTOD
LDEH ATOE

When data is to be moved from memory to CPU registers, there
are several methods that can be used to implement the move. These
methods are “mirrored” for moving the data from CPU registers
back to memory, so that a good way to illustrate the move is to show
how data can be moved from one block of memory to another.
Obviously, the easiest way to implement a move of this kind is with
the block-transfer instructions, but the discussion of this group will
be left until later in the chapter. The general methods for moving
eight bits of data at a time from memory to CPU registers or back
again are:

1. Using any CPU registers and HL as a pointer in register in-

direct mode

2. Using indexed addressing with any CPU registers

3. Using direct (extended type) addressing with the A register

only

4. Using BC or DE register indirect addressing with the A register

only

We will discuss each of these methods in turn and illustrate 8-bit
data movement to and from CPU registers with a short program for
each method.

8-BIT MOVES USING HL

The following program loads the A, B, C, and D registers with
four variables from memory labeled VAR1, VAR2, VAR3, and VAR4.
Register pair HL is first set up as a pointer by a 16-bit load instruc-
tion that loads the start of the 4-byte block into HL. Each time the
next variable is loaded, the HL register is incremented by one to
point to the next byte of the block.

LD HL,START POINT TO START

LD A,HL) LOAD VARI
INC HL POINT TO START + 1
LD B,(HL) LOAD VAR2
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INC HL POINT TO START + 2

LD C,HL) LOAD VAR3

INC HL POINT TO START + 3

LD D,(HL) LOAD VAR4
START EQU $ THIS EQUATES START TO VAR1
VAR1 DEFS 1 THESE VARIABLES FILLED
VAR2 DEFS 1 IN WITH VALUES SOME-
VAR3 DEFS 1 TIME DURING PROGRAM
VAR4 DEFS 1 EXECUTION

Note that the above method worked quite well as the four vari-
ables were in one contiguous block. If the variables were in random
locations, a little more work is involved as shown next in a short
program that stores the contents of A, B, C, and D in four locations
labeled STORI1, STOR2, STOR3, and STOR4. Each time a new
register is stored, the HL register pair must be loaded with a new
address since it cannot simply be incremented or decremented.
Although there are many other ways to implement this problem in
the Z-80, programs written for the 8008 had to use this method to
access random data, as only the HL register pair was available as
a pointer.

LD HL,STOR1 STOR1 ADDRESS

LD (HL),A STORE A

LD HL,STOR2 STOR2 ADDRESS

LD (HL),B STORE B

LD HL, STOR3 STOR3 ADDRESS

LD (HL),C STORE C

LD HL,STOR4 STOR4 ADDRESS

LD (HL),D STORE D
STOR1 ~ DEFBO THESE VARIABLES INITIALLY SET

S TO 0 BY DEFB. THEY WILL

STOR2 DEFB 0 BE FILLED WITH A-D.

STOR3 DEFB O
STOR4 DEFB O

8-BIT MOVES
USING INDEX REGISTERS

The index registers IX and 1Y in the Z-80 are registers that are
analogous to the HL register. Each of the index registers is a data
pointer, but with an important difference. The effective address is
obtained by adding an 8-bit displacement value to the contents of
the index register. This means that within each instruction a dis-
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placement can be added to the pointer to access data within a
“block” of 256 bytes, starting from the location the index register
points to —128 bytes and ending with the index register +127 bytes
as shown in Fig. 10-1.

LOCN-128

LOCN-2
LOCN-1
X OR IY ————— LOCN+0
LOCN+1
LOCN+2

LOCN+127

Fig. 10-1. Index register block access.

Suppose that the requirement was to store the A, B, C, and D
registers into locations BLOCK —4, BLOCK, BLOCK + 4, and
BLOCK + 8, respectively. The following instructions would accom-
plish the task:

LD IX,BLOCK POINT TO BLOCK

LD (IX — 4),A STORE A INTO BLOCK — 4
LD (X + 0),B STORE B INTO BLOCK

LD (X + 4)C STORE C INTO BLOCK + 4
LD (IX + 8),D STORE D INTO BLOCK + 8

The displacements in the third byte of the instruction would be
—4, 0, 4, and 8, respectively. Here the process of storing data within
the 256-byte block was made much more efficient than the example
using the HL register pair pointer. Or was it? Let's compare the rel-
ative sizes and timing of the two programs. The first program using
the HL registers used four three-byte instructions (LD HL,STORX)
and four 1-byte instructions (LD (HL),D) for a total of sixteen
bytes and 17 microseconds. The program above used five 3-byte in-
structions for a total fifteen bytes and 22.5 microseconds! It appears
that the first implementation was faster and only slightly more ex-
pensive in terms of memory usage than the second. This is only one
example of how execution speeds and memory storage requirements
must be compared between one method of implementation and an-
other if one is concerned about program efficiency.
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If the IY register was to be used instead of the IX, the instruction
format would be virtually identical, with “IY” substituted for “IX.”
The index register-oriented instructions can be used to advantage
for moving data as in the following routine that moves the three
bytes in BLK2 through BLK2 + 2 to BLKI through BLK1 + 2. The
move is implemented in reverse fashion starting at BLK2 + 2 and
BLXK1 + 2. IX holds the source pointer while IY holds the destination
pointer. Both index registers are decremented by a DEC IX or DEC
1Y instruction.

LD IX,BLK2 + 2 INITIALIZE START OF SOURCE

LD 1Y,BLK1 + 2 INITIALIZE START OF DEST
NXT1 LD B,(IX) SAME AS (IX + 0)

LD (IY),B SAME AS (IY + 0)

DEC IX POINT TO NEXT BYTE SOURCE

DEC IY POINT TO NEXT BYTE DEST
NXT2 LD B,(IX) NEXT

LD (IV),B

DEC IX

DEC IY
NXT3 LD B,(IX) NEXT

LD (Iv),B

Code such as the above is inefficient in memory storage because
the same basic operation is repeated many times. The transfers at
NXT1, NXT2, and NXT3 are almost identical. If 100 bytes were to
be transferred, it would of course be ludicrous to repeat the identi-
cal actions 100 times. The most efficient way to implement repetitive
actions is by looping back to the same set of instructions for as many
times, N, as required. This is done in the following program which
uses IX and IY as source and destination pointers as before and
moves 100 bytes from BLK2 to BLKL. The initial count, N =100,
is held in the C register and is decremented down to 0. The loop at

LD 1X,BLK2 STRT OF SRC BLK
EXECUTED ONCE ONLY LD 1Y,BLK1 STRT OF DST BLK
LD C,100 SET N = 100
LOOP LD B,(IX) LOAD BYTE
LD (IY),B STORE BYTE
100 INC IX BMP IND BY ONE
|
TIMES INC 1Y
DECC N —1
JP NZLOOP GO IFNTDN (Z=1)
DONE DONE HERE
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LOOP is executed 100 times as long as N = 100 to 1, the Z flag is not
set and the conditional branch JP NZ,LOOP is made. IX and IY are
incremented by one each time through the loop to point to the next
position in the blocks.

The values of IX, IY, C, and B for the first 5 and last 5 iterations
of the loop are shown in Fig. 10-2.

X
BLK2
BLK2+1
BLK2+2
BLK2+3
BLK2+4
BLK2+5

BLK2+95
BLK2+9%6
BLK2+97
BLK2+9%8
BLK2+%9
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BLK1
BLK1+1
BLK1+2
BLK1+3
BLK1+4
BLK1+5

|

BLK1+95
BLK1+%
BLK1+97
BLK1+%8
BLK1+99

R L

omrmwa
8

BYTE 100

Fig. 10-2. Indexing example.

8-BIT MOVES USING
THE A REGISTER
AND EXTENDED ADDRESSING

The A register can be loaded or stored using extended address-
ing. In this case, the address specified is in the instruction itself, and
completely random addressing can be done without the need for

MEMORY

| 8-BITMOVES VIA A REGISTER
AND EXTENDED ADDRESSING

8-BIT MOVES A REGISTER
TO OTHER CPU REG ISTERS

~|zlmjo|o|e

d

INITIALIZATION
ITERATION 1 {AFTER)
2

3
4
5

l
!

ITERATION 96 (AFTER}
97
9%
9
100

Fig. 10-3. A regi
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setting up any pointers or index registers. This instruction is prob-
ably the one most frequently used for moving eight bits of data into
CPU registers and for storing CPU register data via the A register,
as shown in Fig. 10-3. The A register is the path for all of the other
CPU registers in this case.

The following routine loads A, B, C, and D with VARI, VARZ,
VAR3, and VAR4 after first storing the registers in STRA, STRB,
STRC, and STRD using this kind of addressing.

LD (STRA),A STORE A

LD A,B

LD (STRB),A STORE B

IDAC

LD (STRC),A STORE C

LD A,D

LD (STRD),A STORE D

LD A,(VAR4) GET VAR4 FOR D
DDA

LD A,(VAR3) GET VAR3 FOR C
LD C,A

LD A,(VAR2) GET VAR2 FOR B
LD B,A

LD A,(VAR1) GET VAR1 FOR A

8.BIT MOVES USING
THE A REGISTER AND BC OR DE
REGISTER INDIRECT

The four instructions LD A,(DE); LD A,(BC); LD (DE),A; and
LD (BC),A use BC or DE as pointers in a manner similar to the
way HL is used as a pointer for the previously discussed moves.
Here again, this addressing mode is very efficient as long as the data
being accessed is contiguous data in a block or table. A few exam-
ples ago, the use of the index registers for moving data from one
block to another was presented. The following routine does the
same, and it can be seen that the actions are virtually identical. BC

LD BC,BLK2 START OF SOURCE BLOCK
LD DE,BLK1 START OF DEST BLOCK
LD L,100 SET N = 100

AGAIN LD A,BQ) LOAD BYTE
LD (DE)A STORE BYTE
INC BC BUMP INDICES BY ONE
INC DE

DECL N — 1
JP NZ,AGAIN GO IF NOT DONE (Z = 1)
DONE (V
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points to the source block, DE points to the destination block, and
L contains the count, 100 in this case.

16-BIT MOVES

Data movement discussed above involved moving eight bits at a
time. The Z-80 has many instructions to move data two bytes, or
sixteen bits at a time, however. Data moved in this width are loaded
or stored between register pairs BC, DE, and HL; registers SP, IX,
and IY and memory. Sixteen-bit data operations allow the following:

1. Immediate loads of BC, DE, HL, SP, IX, IY

9. Transferring data from memory to BC, DE, HL, SP, IX, or IY,
or the reverse

3. Transferring data from the HL, IX, or IY to SP

4. Pushing and popping BC, DE, HL, AF, IX, or IY to the stack

Many of the loads of the register pairs, SP, or index registers will,
of course, involve loads of memory addresses. Sixteen bits will hold
all 64-K external-memory addresses for the Z-80, and the instructions
in this group have specifically been set up for handling address-
related data. If convenient, though, all instructions can be used to
load and store nonaddress operands, such as 16-bit double-precision
values or ASCII character data.

IMMEDIATE LOADS OF 16 BITS

Many of the immediate loads have previously been illustrated in
this chapter. BC, DE, HL, IX, and IY are typically loaded with the
starting address of data blocks containing data to be processed as in:

LD BC,DATA1 LOAD ADDRESS OF DATA 1
LD DEDATA2 LOAD ADDRESS OF DATA 2
LD HL,DATA3 LOAD ADDRESS OF DATA 3
LD IX,DATA4 LOAD ADDRESS OF DATA 4
LD 1Y,DATAS LOAD ADDRESS OF DATA 5

$ .
DATA1 DEFS 100 DATA BLOCK OF 100 BYTES
DATA2 DEFS 50 DATA BLOCK OF 50 BYTES
DATA3 DEFS 20 DATA BLOCK OF 20 BYTES
DATA4 DEFS 60 DATA BLOCK OF 60 BYTES
DATA5 DEFS 100 DATA BLOCK OF 100 BYTES

The stack pointer register, SP, almost always points to the area of
memory allocated as the stack area, however, and not to a predefined
data block. The SP is initialized to an address value that represents
the top of stack by an LD SP,NN instruction. Since the SP always

152




points to the last used location in the stack and is decremented be-
fore storage of data is performed, the SP must be loaded with an
address value corresponding to one greater than the first location to
be used as the stack. If, for example, stack storage is to occupy 100H
bytes from address 3SFFFH down to 3F00, the SP would be initial-
ized as follows:

0100 LD  SP,4000H LOAD TOP OF STACK
OR
LE SP,TOPS
3F00 DEFS 100H DEFINE STACK AREA
4000 TOPS EQU $ OF 256 BYTES

Subsequent pushes to the stack (there can be no pops as there has
been no data storage in the stack at this point) will decrement the
SP by one before storage. The first byte of data will be stored at
3FFF, the next at 3FFE, and so forth.

16-BIT TRANSFERS TO AND FROM MEMORY

The BC, DE, HL, SP, IX, IY, or SP registers may be loaded from
or stored to memory by instructions in this group. As an example,
suppose that the BC, DE, and HL registers are to be loaded with the
addresses of three blocks of memory, but their contents are to be
saved and restored for later use. As an alternative to storage in the
stack (covered a little later in this chapter), the three register pairs
may be saved by:

LD (SAVB),BC SAVE BC

LD  (SAVD),DE SAVE DE
LD (SAVH)HL SAVE HL

§
SAVB DEFS 2 STORAGE FOR BC
SAVD DEFS 2 STORAGE FOR DE
SAVH DEFS 2 STORAGE FOR HL

Notice that the storage locations reserved for each of the register
pairs must be #wo bytes. Later, when the register pairs are to be re-
loaded with their original values, the instructions below may be
executed:

LD  BC,(SAVB) RESTORE BC
LD  DE,SAVD) RESTORE DE
LD HL(SAVL) RESTORE HL

As in many groups of instructions, the format of the assembly lan-
guage arguments is extremely important. In the following code, LD
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HL,SAVL loads the address of SAVL (1000H) while LD HL,
(SAVL) loads the contents of SAVL.

LD  HLSAVL LOADS 1000H
LD  HL(SAVH) LOADS 123AH
1000 SAVL DEFW 1234H CONTENTS OF 1000H
1S 1234H
16-BIT DATA TRANSFERS TO THE STACK

The Z-80 allows the transfer of data from the HL, IX, and IY reg-
isters to the stack pointer register, but not the reverse. Examples of
these transfers are:

LD SP,HL HL TO SP
LD SP,IX IX TO SP
LD SP,IY IY TO SP

16-BIT STACK OPERATIONS

The title of this subsection is a misnomer, for all stack operations
involve the transfer of sixteen bits or two bytes of data at a time.
Eight bits cannot be pushed or popped to the stack as in other micro-
computers. This is not a great disadvantage, although it may create
a little more overhead when only one register is to be saved in the
stack for temporary storage. In the Z-80 register pairs BC, DE, HL,
AF, and registers IX and IY may be pushed and popped to the
memory stack. As each is pushed to the stack, the data in the high-
order byte of the register pair is put into the top of stack —1 and
the data in the low-order byte is put into top of stack —2. The SP
register is decremented by one before each byte is pushed. The fol-
lowing explains stack action on a push of a register pair, IX or IY.

LD , SP,1000H INITIALIZE SP TO 1000H

PUSH AF A TO OFFFH, F TO OFFEH

PUSH BC B TO OFFDH, C TO OFFCH

PUSH DE D TO OFFBH, E TO OFFAH

PUSH HL H TO OFF9H, L TO OFF8H

PUSH IX IX15-8 TO OFF7H, IX7-0 TO OFF6H
PUSH IY 1Y15-8 TO OFF5H, 1Y7-0 TO OFF4H

As the reader would suspect, the F(lags) register is treated as an
8-bit lower-order register on stack operations.
As data is popped from the stack, the process is reversed. The
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low-order byte is pulled from the top of stack and put into the F, C,
E, L, IXyy, or IYy,, registers, the SP is then incremented and the
high-order byte is put into the high-order register of the register
pair or higher-order byte of the IX or IY registers.

Stack storage is employed for the following reasons:

1. Storage of the environment during interrupt processing
2. Temporary storage of CPU registers

3. As a way to transfer data between CPU registers

4. Subroutine use

Stack operations during interrupt actions and subroutine use will
be discussed later. The other two uses are somewhat obvious. At any
time, data from one of the register pairs, IX or 1Y, may be saved in
the stack by execution of a PUSH instruction. Later the data may be
retrieved by a POP instruction. There is no condition that states that
the data POPped must be restored to the same register pair and the
stack may therefore conveniently be used to transfer data between
registers, as in the following example which exchanges the BC and
1Y, and DE and IX registers.

PUSH BC STACK NOW HAS BC
PUSH IY STACK NOW HAS BC, IY
PUSH DE NOW BC, 1Y, DE

PUSH IX NOW BC, 1Y, DE, IX
POP DE IX TO DE

POP IX DE TO IX

POP BC IY TO BC

POP Y BC TO IY

The stack register may also be used to facilitate processing of
strings of data, although care must be taken to maintain the stack
pointer properly when this is done. As an example of this, suppose
that locations 1777H through 1700H had a string of ASCII charac-
ters with the first character in 1700H and the last in 1777H. (Data
can easily be stored in this fashion by use of the increment type in-
structions.) The following code processes each of the characters,
one at a time, providing that the stack is not used for any other
storage anywhere in the processing. This means that no maskable or
nonmaskable interrupts may occur or that no other routines that use
the stack may be employed during the time the processing occurs.

LD (SAVP),SP SAVE CURRENT STACK POINTER
LD SP,1700H INITIALIZE SP TO DATA
PO{’ BC FIRST BYTE IN C, NEXT IN B
‘ (PROCESS) (LOOP HERE 128 TIMES)
LD SP,(SAVP) RESTORE SP TO ORIGINAL STACK
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Although the processing above will certainly work, it is probably
best to process the string data by other means, especially since inter-
rupts will cause catastrophic results. The block instructions imple-
mented in the Z-80 will permit processing of string data in a much
cleaner fashion.

BLOCK TRANSFER INSTRUCTIONS

The Block Transfer instructions in the Z-80 offer a means to move
up to 64-K bytes of data automatically or semi-automatically from
one area of memory to another. The ground rule for moving data is
the following:

NEVER MOVE LARGE BLOCKS OF DATA FROM ONE AREA
OF MEMORY TO ANOTHER UNLESS UNAVOIDABLE!

There are many ways to avoid large data movements. Data should
be input or output directly to a buffer in which they can be proc-
essed. Tables can be set up properly to avoid reformatting of data.
Programming structures such as linked lists may be employed in-
stead of contiguous tables. The primary reason for avoiding block-
data transfers is the enormous amount of time that they require. To
move 1000 bytes of data at 10 microseconds per byte requires 10
milliseconds or 1/100 of a second. Although the time required per
byte in the Z-80 is about one third of this, block movements still take
large amounts of time in comparison to other program operations.

With the above proviso in mind, let us see how the block transfer
instructions in the Z-80 can be set up. The first of these is the LDI
instruction. The LDI requires that the HL register pair points to the
source data block and that the DE register pair points to the desti-
nation data block. The BC register pair contains a byte count. To
transfer 100H bytes of data from a data block starting at location
1000H to a data block starting at 2000H, the following code could
be employed.

LD HL,1000H SET UP SOURCE PNTR
LD DE,2000H SET UP DEST PNTR
LD BC,100H 100 BYTES

After initialization, each time an LDI was executed a byte would
be transferred from the location pointed to by the HL to the location
pointed to by DE. The byte count in BC would then be decremented
by one. When the byte count reached zero, the P/V flag would be
reset. The P/V flag therefore can be tested to determine the end of
the transfer. The following code transfers the data:
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LD HL,1000H SET UP SOURCE PNTR
LD DE,2000H SET UP DEST PNTR
LD BC,100H 100 BYTES
LOOP LDI TRANSFER BYTE
JP PE,LOOP GO IF NOT DONE
DONE

Note that the P/V flag is set if the byte count is not equal to 0.
This is equivalent to “parity even” or PE. The jump will be per-
formed as long as P/V equals 1 and 100 bytes have not been trans-
ferred.

This block transfer instruction is “semi-automatic” compared to
the LDIR that transfers the specified number of bytes in BC auto-
matically in one instruction. What is the advantage in having some-
thing other than a fully automatic block transfer? One obvious ad-
vantage is that the LDI allows intermediate processing to occur
between the transfer and the jump back to the next transfer. Suppose
that the data must not only be moved, but that the movement be
terminated on zero data. Thus, a maximum of N bytes would be
moved; however, if any of the source bytes were 0 the move would
stop. The following code terminates the move if the next byte to be
moved is zero. The source byte about to be moved is first tested
before the move occurs, and if zero, the move is terminated. The OR
A,A, instruction tests the zero/nonzero status of the byte without
affecting the byte. The Z flag is reset if any bit in the byte is a one
and set if all bits are zeros.

MOVE LD HL,1000H SET UP SOURCE PNTR
LD DE,2000H SET UP DEST PNTR

LD BC,100H 100 BYTES MAXIMUM
NEXT LDI TRANSFER BYTE

JP PO,DONE GO IF DONE (MAXIMUM)

LD A,(HL) GET NEXT BYTE

OR A TEST BYTE FOR ZERO

JP NZ,NEXT CONTINUE IF NOT ZERO
DONE <

Another advantage of the LDI is that it can be used to move non-
contiguous data, Suppose that there is a table of data that is 100H
bytes long and that every fourth byte is to be moved to a new data
area as shown in Fig. 10-4. The number of transfers must be 256/4
or 64 and the new storage area will hold the source bytes as shown.
The following code moves the data:

LD HLSRTAB SET UP SOURCE PNTR
LD DE,DSTTB SET UP DEST PNTR
LD BC,100H/4 SET UP BYTE COUNT
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NEXT LDI TRANSFER BYTE

INC HL POINT TO NEXT BYTE
INC HL
INC HL
JP PE,NEXT GO IF NOT DONE
DONE  §
SOURCE TABLE DESTINATION TABLE

SRTAB BYIE] e
+ +1-a
+? +

+3 +3

+4 BYTE 2

463

2% BYTE 64
+253
+254
+255

Fig. 10-4. Moving noncontiguous data with LDI.

There are several subtleties in the above code. The expression
100H/4 will work in many assemblers and enables an assembly-time
calculation of the number of bytes. After the LDI has transferred
the Ith byte, the HL register points to I+ 1. The three increments
bump the HL to point to I +4.

If no processing is to take place between the transfer of individ-
ual bytes, then the LDIR may be used. The LDIR is set up in exactly
the same manner as the LDIL. If N bytes are to be transferred, how-
ever, the LDIR will execute N times. For each transfer, the LDIR
takes 5.25 microseconds (the LDI takes 4.0 microseconds) except
for the last transfer (BC =0) in which the LDIR takes 4.0 micro-
seconds.

LD HLSTRTS SOURCE START
LD DE,STRTD DEST START

LD BC,64 # OF BYTES
LDIR TRANSFER 64 BYTES IN
DONE < ABOUT 335 MICROSEC.

In the LDI and LDIR instructions, data is transferred in forward
order, that is, it is transferred starting from low memory and ascend-
ing to high memory. The only difference between the LDI and
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LDIR and the LDD and LDDR is that the latter two transfer data
in descending order. HL, and DE are set to the ending address of
the source and destination data blocks, respectively, and each is
decremented to point to the next lower byte by the LDD or LDDR.
To transfer data from the previous example, the code would read:

LD  HLENDS SOURCE END

LD DEENDD DEST END

LD BC,64 # OF BYTES

LDDR TRANSFER 64 BYTES
DONE
STAB  DEFS 64 SOURCE TABLE
ENDS EQU $-1
DTAB DEFS 64 DESTINATION TABLE

ENDD EQU $—1

EXCHANGE GROUP

There are six instructions in the exchange group. Two of them
transfer data between the current set of CPU registers and the
primed (”) set. Three others allow the HL and index registers to
exchange their contents with the top of the stack. The last simply
exchanges the contents of DE with HL.

When the CPU is initialized, one set of the two eight-register sets
becomes the current set. The other set containing A’, ¥/, B, C’, I,
E’, H’, and L’ may be accessed via the two exchange instructions
EX AFAF’ and EXX. EX AF,AF’ swaps the contents of A and F
with A’ and F’. To temporarily store A and F, the following code
could be used:

EX AFAF SAVE AF
PROCESSING
EX AFAF RESTORE AF
Likewise, EXX swaps BC, DE, and HL with BC’, DE’, and HL".
EXX SAVE BC, DE, HL
LD BC,NEW1 NEW ADDRESSES
LD DE,NEW2
LD  HLNEW3
PROCESSING
EXX RESTORE BC, DEHL
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EX AF,AF’ and EXX would probably be used most frequently in
saving the environment during interrupt processing. One reason for
not using the instructions at other times is that if the primed registers
are used for temporary storage and also used for interrupt storage,
it is very probable that some of the temporary data will be de-
stroyed if interrupts are permitted while both sets of CPU registers
are being used. It is best to reserve the primed registers for process-
ing use only and utilize the stack or memory for temporary storage.

The EX DE HL instruction swaps the contents of register pair
DE and HL. The instruction is useful for moving data from the DE
to HL for the limited arithmetic operations that can be performed
to HL. As an example of this, suppose the contents of DE were to
be doubled. The following code would move DE to HL, add HL to
itself to double the contents and move the result back into DE.

EX DEHL DE TO HL
ADD HL,HL HL + HL TO HL
EX DEHL HL TO DE

The remaining three instructions in this group exchange the con-
tents of the top of stack with either HL, IX, or IY. The SP is not
affected by the swap. Clearly, the manufacturer had a good reason
for the exchange of HL and top of stack [EX (SP),HL — Intel] and
the index registers [EX (SP), IX or .. .. IY — Zilog]. It will be left
as an exercise for the reader to discover for himself what those rea-
sons are. (Seriously, one application is to permit adjustment of the
return address for a call to enable a return to a location other than
the one following the call.)
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CHAPTER 11

Arithmetic and Logical Operations—
8-and 16-Bit Arithmetic Group,
Decimal Arithmetic

The arithmetic and logical operations covered in this chapter in-
clude adds, subtracts, logical ors, anps, exclusive ORs, compares,
increments, and decrements. All of these operations can be per-
formed in 8-bit precision and the adds, subtracts, increments, and
decrements can also be performed in 16-bit precision using register
pairs. The functions performed in these groups are some of the most
basic operations that a computer can perform. Additionally, the Z-80
allows bed or decimal adds and subtracts by means of a special
“decimal adjust.”

8-BIT ARITHMETIC OPERATIONS

In 8-bit arithmetic operations, two 8-bit operands are added or
subtracted. One of the operands must be in the A register while the
other operand may be an immediate operand, an operand in an-
other CPU register, or an operand from memory. The result of the
operation always goes to the A register. The add or subtract func-
tion sets the condition-code flags in the flag register on the result of
the operation as discussed in Chapter 6. A variety of addressing
modes may be used to fetch the second operand, including register
indirect and indexing addressing.

The simplest operation in this group is an 8-bit add. If a checksum
of a block of 63 bytes was to be computed, the following routine
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would add together all 63 bytes after clearing the A register. The
checksum is then stored at the beginning of the block in location
BLK. (A checksum such as this would be used for comparison pur-
poses on subsequent retrievals of the data block; by repeating the
add and comparing the result with the inherent checksum, the valid-
ity of the data could be established.)

suB A A — A CLEARS A
LD 1X,BLK+63 SET PNTR TO END OF DATA
LD B,63 SET COUNT TO 63
Loop ADD A/(IX) ADD NEXT BYTE
DEC IX INDEX — 1
DEC B COUNT — 1
JP NZ,LOOP CONTINUE IF NOT 63 BYTES
DONE L([') (IX),A STORE A IN BLK
BLK DEFS 64 CHECKSUM + 63 DATA BYTES

In the above program, the last instruction LD (IX),A stored the
checksum held in A to the location pointed to by the contents of
the index register IX. As the data started at BLK+63 and ended at
BLK+1, the index register pointed to BLK+0 after the last iteration
of the loop and the checksum could be. stored without further ad-
justment to the index register.

If the block of data were to be read in from the 1/O device and
the checksum to be calculated and compared, a subtract instruction
could be used to advantage.

LD IX,INBLK+1 SET PNTR TO START OF DATA

LD A((IX-1) GET CHECKSUM

LD B63 SET COUNT TO 63
LooP SUB  (IX) SUBTRACT NEXT BYTE

INC X POINT TO NEXT BYTE

DEC B COUNT — 1

JP NZLOOP CONTINUE IF NOT 63 BYTES
DONE OR A TEST CONTENTS OF A

JP NZERROR GO IF ERROR IN DATA
NERROR NO ERROR

ERROR

The IX register is first set to the start of the data at INBLK+1.
The next instruction loads the checksum byte at INBLK (IX—1 is
(INBLK+1) — 1 = INBLK) into A. Then the data at INBLK+1
through INBLK+63 is subtracted from the partial checksum in A.
At the end (DONE), the contents of A should be 0 if the data is
valid. An or is done which simply serves to set the flags for the con-
ditional branch JP NZ,ERROR. If A is not zero, location ERROR is
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executed, presumably an error routine, otherwise the next instruc-
tion at NERROR is executed.

When two 8-bit operands are added or subtracted the sign, zero,
parity, and carry flags are affected. Examples for use of the zero flag
have been presented previously. The sign flag may be tested by a
conditional jump on P(ositive) or M(inus). The following example
tests for an ASCII character between 30H and 39H (decimal 0
through 9).

LD A,(CHAR) GET ASCII CHARACTER

TESTO9 SUB  30H SUBTRACT 30

JP M,ERROR GO IF LESS THAN 30

SUB 10 SUBTRACT 10

JP P,ERROR GO IF 3A OR GREATER
OK ADD 10 THIS CHARACTER 30 TO 39

In this somewhat inefficient test (a compare is called for in place
of the SUB 10), the ASCII character is loaded and an immediate
30H is subtracted from the character. If the character is less than
ASCII 30H (decimal 0), the result is negative, the sign flag is set,
and a jump to ERROR is taken. If the character is greater or equal
to 30H, 10 is subtracted from the first result yielding a negative num-
ber for all valid ASCII characters (now 0 through 9) or a positive
number for all ASCII characters greater than ASCII 39H (decimal
9). A test at the JP causes a jump to the error routine if this limit
check fails. Finally, the decimal equivalent of the ASCII character
is restored by adding 10 to yield 0 — 9 for the converted character.

If an add or subtract results in an effective add of two 8-bit oper-
ands of similar signs, overflow is possible and can be tested by a
conditional branch on the P/V flag. Overflow will occur and the P/V
flag will be set if the result exceeds —128 (80H) or +127 (7FH).
The following code tests for overflow and effects a jump to an error
routine if overflow has occurred.

LD A,(OPNDT) LOAD OPERAND 1

LD B.A INTO B

LD A,(OPND2) LOAD OPERAND 2

ADD AB ADD OPND 2 TO OPND 1

JP PE,ERROR JUMP |F OVERFLOW
NERROR < NO OVERFLOW HERE

The carry flag finds most use during double-precision or multiple-
precision operations. If the required precision is 16 bits, many opera-
tions can be implemented by the 16-bit arithmetic instructions dis-
cussed later in this section. For the general case, however, where
the precision may exceed 16 bits, the Z-80 has addition and subtrac-
tion instructions that make use of the carry and allow operands to

163




be any size, one byte to n bytes. If an operand of four bytes or 32
bits is required, for example, numbers from 0 to 4,294,967,296 may
be handled (or the equivalent range of negative and positive num-
bers). To add or subtract two four-byte operands, a carry or borrow
must be propagated to the higher-order bytes. This means that an
add or subtract to the three higher orders will not suffice; there must
be an add or subtract with carry (carry also represents a borrow
in the Z-80 and other machines). The following code performs a
four-byte add and subtract on two four-byte operands located in
OP1 and OP2. OP2 is added or subtracted to OP1 and the result put
in OPL. The first add or subtract is of the lowest order and no carry
or borrow exists from previous orders, therefore, an ADD or SUB is
used. Subsequent adds and subtracts utilize the ADC (add with
carry) and SBC [subtract with carry (borrow)] instructions to
propagate the carry or borrow.

ADD4 LD IX,OP1+3 POINT TO LOW-ORDER BYTE
LD 1Y,0P2+3 POINT TO LOW-ORDER BYTE

LD A(IX)
ADD A,(lY) OP1 + OP2 BYTE 3
LD (1X),A STORE RESULT IN OP1+3
LD A(IX-1)
ADC  A(Y-1) OP1 + OP2 BYTE 2
LD (IX=1),A STORE RESULT IN OP1 + 2
LD A,(1X—2)
ADC  A[(IY—2) OP1 + OP2 BYTE 1
LD (IX—2),A STORE RESULT IN OP1 + 1
LD A(IX—3)
ADC A(Y-3) OP1 + OP2 BYTE O
LD (IX—3),A STORE RESULT IN OP1
DONE g
suB4 LD 1X,0P1+3 POINT TO LOW-ORDER BYTE
LD 1Y,OP2+3 POINT TO LOW-ORDER BYTE
LD B,4 INITIALIZE COUNT
XOR A CLEAR CARRY
LOOP4 LD A, (IX) LOAD BYTE
SBC (IY) OP1 — OP2
LD (1X),A STORE RESULT
DEC IX POINT TO NEXT HIGH-ORDER
DEC Iy
DEC B DECREMENT COUNT

JP NZ,LOOP4 GO IF NOT DONE
DONE g

The examples of add and subtract illustrate two different ap-
proaches to the solution of the same problem. The add example
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utilizes a linear or in-line approach while the subtract example is an
iterative approach using a loop. In the add, a separate load, add, and
store is performed for each of the four bytes. All but the first add
adds in the carry from the lower-order byte by an ADC instruction.
The subtract example has some subtleties in it. The index registers
are initialized to the low-order address of the operands. A count of
four for the four subtracts is set up in the B register. For the first
add, the carry must be cleared and an XOR instruction is used to ac-
complish the clear. An XOR always clears the carry. Now the first
operands are subtracted and the result stored in the low-order byte
of the destination operand. The IX and IY registers are decremented
by one to point to OP1+2 and OP2+2. The count in the B register is
decremented and, because it is not yet zero, the jump is taken to
LOOP4. On the next subtract, the carry will be set, or reset, depen-
dent on the last SBC instruction since no other instruction in the
loop affects the carry. After four subtracts from low to high order,
the count in B is 0 and the instruction at DONE is executed and the
result is in OP1 to OP1+3.

8-BIT LOGICAL OPERATIONS

The 8-bit logical operations are similar to the 8-bit adds in that
the same addressing modes are permitted and the A register con-
tains the primary operand and holds the result at the end of instruc-
tion execution. The three logical operations that can be performed
are the logical anp, or, and exclusive oR. The rules for these logi-
cal operations are shown in Table 11-1.

Table 11-1. Logical Operations

Instruction Logical Operation Symbol
AND o 0 1 1 A is the symbol for AND
ALALALAL
] ] 0 1
OR 0 [] 1 1 V is the symbol for OR
viv!ivovl
0 1 1 1
XOR 0 [} 1 1 @ is the symbol for exclusive OR
®o0 ©1 SO0 &1
0 1 1 0

Each logical operation is done for every bit position on a bit-by-bit
basis. One bit position does not affect any other bit position and
consequently there can be no carry.
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The AND instruction can be used to mask in, or mask out, un-
wanted fields within data bytes. Suppose, for example, that an 8-bit
byte in memory holds two packed bed digits, one in bits 7-4 and the
other in bits 3-0. It is necessary to test the second bed digit. The
first bed digit would be masked out and the second bed digit would
remain for testing by the following code.

LD A,(DIGITS) GET 2 BCD DIGITS
AND OFH MASK OUT HIGH ORDER
TEST <

Since bits 7-4 of the immediate data value were 0, the correspond-
ing bits of the result in the A register can never be one. As bits 3-0
of the immediate data value were ones, however, all bits of the low-
order bed digit “fall-through” to the result. If the data at DIGITS
was 37H, the result after the anD instruction was executed would
be 37H A OFH = 07H.

The or instruction is used to merge data into a field or to uncon-
ditionally set certain bits within a data byte. If one bed digit was in

the A register in the form 0000]J]]J. and the second was in the B .

register in the form KKKKO0000;, a merged result of the form
KKKXK]JJJ2 could be obtained by: :

OR B MERGE TWO BCD DIGITS

As another example of the ORing function, suppose that the high-
est order, or most significant bit, in a table of ten bytes was to be
unconditionally set. The following code would set the msb of each
of the ten bytes without affecting the remainder of the byte. Note
that an ADD of 80H would not necessarily do the same thing as
adding 80H to values of 80H to FFH would reset the msb.

LD IX, TABLE SET UP INDEX

LD B,10 SET UP COUNT
LOOP LD A(X) GET BYTE FROM TABLE
OR  80H SET MSB
LD (IX),A STORE BYTE BACK IN TABLE
INC IX POINT TO NEXT BYTE
DCR B DECREMENT COUNT

JP NZ,LOOP JUMP IF NOT DONE
DONE g

The exclusive or instruction is not used as frequently as the anp
and or instructions. One use is to “toggle” a bit between a one and
a zero, either for timing or for maintaining a count of two. The fol-
lowing instructions allow a loop starting at LOOP to be reentered
twice only:
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LD A0 SET COUNT TO 0

LooP

(PROCESSING)

XOR 1 TOGGLE COUNT

JP NZ,LOOP GO IF 1 FOR SECOND PASS
DONE i DONE WITH TWO PASSES

8-BIT COMPARES

A compare operation is functionally similar to a subtract except
that the result of the comparison does not replace the source oper-
and. Only the condition-code flags are set on the result of the com-
parison. A compare can therefore be used to test one operand against
another and a following conditional jump can be made on the results
of the comparison. As in the add or subtract, the 8-bit compare can
use a variety of addressing modes including register indirect and
indexed addressing.

As an example of a compare, let us look at the following pro-
gram which finds the smallest number in a list of positive numbers.
As each new number is accessed, it is compared with the previous
smallest number. If the new entry is smaller, it replaces the previous
smallest number in the B register. When the last number in the list
has been compared, the B register holds the smallest number in the
list. The numbers in the list may range from 0 to +127 in unsorted

GTSMLL DX IX,LIST SET UP LIST ADDRESS

LD C,—1 STORE TERMINATOR
LD B,127 INITIALIZE SMALLEST NUMBER
NEXT LD A,(IX) GET NEXT ENTRY
CP C COMPARE TO —1
JR Z,DONE GO IF AT END OF LIST
INC X POINT TO NEXT NUMBER
CcpP B COMPARE NEW-SMALLEST
JP P,NEXT GO IF NEW >=SMALLEST
LD B,A NEW TO SMALLEST
JP NEXT CONTINUE
DONE g SMALLEST IN B
LIST DEFB 20 LISTOF NUMBERS
DEFB 32 UNSORTED
DEFB 1 MAY BE 0-127
DEFB 0
DEFB 37
DEFB 112
DEFB 3
DEFB —1 TERMINATOR
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or random order. Because only positive numbers are represented, a
magnitude compare rather than an algebraic compare (positive and
negative numbers) may be performed. Because no negative num-
bers are allowed, a —1 is used to terminate the list. This makes the
check for the end of the list somewhat easier than decrementing a
count as the current number may be tested for a —1 state before the
smallest comparison is made.

The index register is set up with the address of the list in the first
instruction. Next, the terminator value —1 is stored in C for each
register comparison and the smallest number in B is initialized to
127,0. Since 127 is the largest permissable value, all of the numbers
in the list must be less than or equal to 127. The list shown is gener-
ated at assembly-time, but a list generated dynamically could just
as easily be used. As each entry in the list is picked up, it is com-
pared to —1 and if equal to (Z), a relative branch is made to DONE.
The assembler will automatically fill in the proper displacement in
the JR instruction to cause a branch to DONE. Next, the index reg-
ister is incremented in preparation for the next comparison. A com-
parison is then done of the current value to the smallest in B; if the
current value is smaller, it replaces the contents of B. A jump to
NEXT is then made for the next comparison.

The above example is of a magnitude or unsigned comparison.
How is the signed comparison implemented? There are four cases
in the comparison of signed numbers, comparison of a ++, +—,
—+, and ——. If the signs of the operands are the same, there will
be a carry if the contents of A are greater than or equal to the second
operand. If the signs of the operands are different, there will be a
carry if the contents of A are less than 0. The following routine per-
forms an algebraic compare on two operands, either of which may
be —128 to +127. Jumps are made on three equality combinations
<, =, or > based on a comparison of A:B (A—B).

CMPARE CcpP B A:B
JP Z,EQUAL GO IF A=B
PUSH AF A AND FLAGS
XOR B
JP P,SAME GO IF SIGNS THE SAME
POP  AF RESTORE A, FLAGS
TEST JP C,LESST A<B
JP GREAT A>B
SAME POP AF RESTORE A, FLAGS
CCF COMPLEMENT CARRY FOR TEST
JP TEST

The program above first tests the equality of A and B. If they are
equal, a jump is made to equal. Then the flags and A are saved in
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the stack and an XOR is done to test the sense of the two operands.
If the sign flag is set after the XOR, the signs are different. If the
signs are the same, A and the flags are restored. The CY flag holds
the results of the previous comparison which is complemented by
CCF for the test at TEST. The branch to LESST is taken if
(+):(+) or (—):(—) and there is no carry, or if (+):(—) or
(—):(+) and there is a carry. The branch to GREAT is taken for
the inverse conditions.

8-BIT INCREMENT AND DECREMENT

The increment instruction INC and decrement instruction DEC
can be used to increment or decrement contents of a CPU register
or memory location by one. Any of the general-purpose 8-bit regis-
ters A, B, C, D, E, H, and L may be modified. Note that the associ-
ated register of the register pair is not affected. When a memory
location is modified, register indirect addressing using the HL reg-
ister or indexed addressing may be used. The instructions are
straightforward and should hold no surprises for the programmer.

16-BIT ARITHMETIC OPERATIONS

Just as the A register was the main accumulator that was used for
8-bit arithmetic and logical operations, the HL register is used as
an accumulator for 16-bit arithmetic operations. Register pairs BC,
DE, HL, and SP may be added to, or subtracted from, the contents
of the HL register. The add may be with or without carry, but the
subtract is always with borrow. The Z-80 instruction also allows BC,
DE, HL, or SP to be added to the contents of IX or IY in a simple
add without carry, and allows any register BC, DE, HL, SP, IX, or
IY to be incremented or decremented by one in a 16-bit operation.

In the 8-bit examples, two programs performing four-byte addition
and subtraction were listed. The 16-bit instructions offer an alterna-
tive way to implement the problem. If the four-byte operands are at
OP1 and OP2, the following two programs compute OP1 + OP2 and
OP1 — OP2 and place the four-byte result in OP1.

ADD4 LD HL,(OP1+2) GET TWO LS BYTES OP1
LD BC,(OP2+2) GET TWO LS BYTES OP2

ADD HLBC BC + HL TO HL

LD  (OP1+2)HL STORE LS BYTES OF RESULT

LD  HL(OP1) GET TWO MS BYTES OP1

LD  BC(OP2) GET TWO MS BYTES OP2

ADC  HL,BC ADD WITH CARRY

ID  (OP1)HL STORE MS BYTES OF RESULT
DONE g
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suB4 LD HL,(OP1+2) GET TWO LS BYTES OPI1
LD DE,(OP2+2) GET TWO LS BYTES OP2

OR A RESET CARRY

SBC HLDE HL — DE TO HL

LD  (OP1+2)HL STORE LS BYTES OF RESULT

LD HL,(OP1) GET TWO MS BYTES OP1

LD DE,(OP2) GET TWO MS BYTES OP2

SBC  HL,DE SUBTRACT WITH BORROW

LD (OP1),HL STORE MS BYTES OF RESULT
DONE 5

Notice that in the above subtract example the carry (borrow) had
to be cleared by an OR A (or AND A) before the first subtract was
done. The next subtract utilizes the carry (borrow) from the lower
order. The 16-bit arithmetic operations resulted in a much more
compact implementation of the problem. As the HL and other regis-
ters involved may be easily stored in the stack, use of the HL. and
other register pairs for n-precision arithmetic is very conveniently
done.

The contents of IX and IY may be altered by an add from BC,
DE, SP, or the index register itself. The obvious use for this is in
indexing through tables, or other data structures in memory where
data is located every nth byte in the table. If n is loaded into one of
the register pairs, the index register may easily be altered to index
to the next location. Let us see how this works. The following pro-
gram searches a table of 128 entries for a given key value. Each
entry is seven bytes long and the byte corresponding to the key is
located at the third byte in the entry as shown in Fig. 11-1. If a
match is found, the program exits to DONE with the match location
in IX. If no match to the key is found, IX contains —1.

SRCH LD B,KEY LOAD KEY VALUE

LD IX, TABLE+2 START OF TABLE + 2

LD C128 INITIALIZE COUNT

LD DE,7 INCREMENT VALUE
LOOP LD A(IX) GET TABLE ENTRY

CpP B COMPARE TO KEY

JP Z,DONE GO IF MATCH

ADD IX,DE INDEX + 7

DEC C DECREMENT COUNT

JP NZ,LOOP GO IF NOT 128TH ENTRY

LD IX,—1 SET NOT FOUND FLAG
DONE 3

The 16-bit increments and decrements have been used in many
examples above. They are generally straightforward except for one
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A REG ISTER 8-BIT KEY

TABLE +0
+1
+2 KEY 1
+3 ENTRY 1
+4
+5
+6
+

Fig. 11-1. Table search example.

+889
+890
+891 KEY 128
+892 ENTRY 128
+893
+89
+895

caution. The 16-bit INCs or DECs do not affect any condition code
flags. One implication of this is that a register pair cannot easily be
tested for a decrement of a count down to zero or a limit condition.
If a register pair is to be used to hold a count, a 16-bit add or sub-
tract may be used in place of the INC or DEC to increment or decre-
ment the register pair, as these instructions do set the carry and, in
some cases, the zero flag, Here is an example of how the ADD HL,SS
instruction may be used to control the number of iterations through
a LOOP.

LD DE,—1 LOAD —1 TO DE

LD IX, TABLE START OF TABLE

LD HL,COUNT LOAD COUNT OF N—1
LOOP (v

(EROCESSING)

INC IX POINT TO NEXT BYTE OF TABLE
ADD HL,DE DECREMENT COUNT BY 1

JP C,LOOP CONTINUE

The count is initialized to one less than the number of iterations
required. The last instruction of the routine tests the state of the
carry. The next to last instruction effectively decrements the count
in HL by one. No carry is produced (only if —1 is added to a 0 in
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HL). Therefore, a condition of carry marks the termination of the
loop after N iterations. The Z flag is not affected by the ADD HL,SS,
but is affected by ADC and SBC.

GENERAL-PURPOSE ARITHMETIC INSTRUCTIONS

Two instructions in the general-purpose arithmetic group fall into
a discussion of 8- and 16-bit arithmetic operations. The CPL and
NEG instructions complement and negate the contents of the A reg-
ister, respectively. The CPL forms the one’s complement of the A
register contents, while the NEG forms the two’s complement of the
A register contents. Both operations are convenient during normal
processing in most programs,

DECIMAL ARITHMETIC OPERATONS

When an 8-bit add or subtract is performed, the arithmetic and
logical unit in the Z-80 CPU performs a straight binary add or sub-
tract. Some early computers performed bed adds and subtracts

BITB,(HU

7 0
BYTEO *
% THISBYIE ~FOR ALL
1 THREE INSTRUCTIONS
Aok #%  THISFIELD - FOR ALL
THREE INSTRUCTIONS
HBHD 0 Hokk THES FIELD CHANGES
I " FOR INSTRUCTION
1100101 1] %% THIS FIELD COMPUTED
v 1] o8 Ji1 o] % |N GTADD
F i £
"
RES B, (HU 0
aviEo [T 10010 1 1]+
1f10] 8 11 0]
FHE KK FK
*ok
INCREASING
T SIGNIFICANCE
7 43 0 7 4 3 0
[BeopiciT3[Bep viciT 2] [eco Gt 1]BCD DIGIT 0]
113 102 111 II"
POSITION  POSITION POSITION ~ POSITION

Fig. 11-2. Four-digit bcd representation.
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rather than binary operations and data was retained in memory in
bed form. The Z-80 combines the simplicity of bed representation
with the efficiency of binary storage by the equivalent of bed adds
and subtracts. The binary add, or subtract, is first performed and
then the DAA, or Decimal Adjust A instruction, is performed to ad-
just the binary result in the A register to bed form. Multiple-preci-
sion bed adds and subtracts may be performed as easily as multiple-
precision binary operations. Suppose that two two-byte bed oper-
ands are held in locations BCD1 and BCD2. Each operand consists
of four bed digits as shown in Fig. 11-2. The following code performs
a bed add of BCD2 to BCD1 with result stored in BCDI. The sec-
ond example subtracts BCD2 from BCDI, stores results in BCD1.

BCDADD LD A, (BCD2+1) GET LS BCD DIGITS OP2

D BA
LD  A(BCDI+1)  GET LS BCD DIGITS OP2
ADD AB
DAA BCD ADD
LD  (BCD1+1),A  STORE LS RESULT
LD  A,BCD2) GET MS BCD DIGITS OP2
D BA
LD  A,BCDI) GET MS BCD DIGITS OP1
ADC AB
DAA BCD ADD .
LD  (BCDD)A STORE MS RESULT
DONE 4
BCDSUB LD IX,BCDI+1 POINT TO LS OP1
LD 1Y,BCD2+1 POINT TO LS OP2
D B2 LOOP COUNT
OR AA CLEAR CARRY
LoOP D  AX) GET BCD DIGITS OPI
LD B,Y) GET BCD DIGITS OP2
SBC AB OP1 — OP2
DAA DECIMAL ADJUST
D (X),A STORE RESULT
DEC IX POINT TO HIGHER ORDER
DEC 1Y
INC B BUMP LOOP COUNT
JP NZLOOP CONTINUE
DONE {

As the subtract example shows, the routines may be easily gener-
alized to operate on (N X 2) bed digits. The carry flag is always
set by the CPU after the DAA operation to represent the carry from
the bed operation so that the carry (or borrow) is properly propa-
gated to higher-order bed operations.
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CHAPTER 12

Shifting and Bit Manipulation—
Rotate and Shift, Bit Set, Reset,
and Test Groups

The instructions in this general category are basically concerned
with shifting for arithmetic reasons or with manipulation of bits or
fields of data. The Z-80 allows many combinations of shifts, supple-
menting the basic 8080 base containing four rotate A register in-
structions with logical and arithmetic shifts to CPU registers or
memory. With the proper use of shifts, many arithmetic operations
such as multiplication and division may be implemented in addition
to manipulation of fields within words. The bit-oriented instructions
permit testing and storage of data on a bit basis, either in CPU reg-
isters or memory.

LOGICAL SHIFTS

Logical shifts are perhaps the simplest shifts to understand. In a
logical shift of eight bits, there is no consideration of the sign. The
data is shifted right, or left, one bit at a time. The data is not “re-
circulated” to the opposite end of the register or memory location as
it is shifted; bits that are shifted out of the register are lost except
that they set the CY flag. Zeros fill vacated bit positions. There are
two shift methods that perform a logical shift in the Z-80, one being
the SRL or Shift Right Logical, and the other being the SLA or
Shift Left Arithmetic. The latter, although designated “arithmetic,”
performs a classic logical shift. All shifts in the Z-80 operate on

174




eight bits of data; there are no 16-bit shifts except those imple-
mented in software.
Logical shifts are usually implemented for one of two reasons:

1. To multiply and divide by powers of 2 or other factors.
2. To align fields within data bytes.

SRL BEFORE

0 1010011 ﬁ 5

2
SRL AFTER

00101001 E} 29H WITH CARRY =1

SLA BEFORE

lhioroo11 1

SLA AFTER

I OheToo110 AGH WITH CARRY =0

Fig. 12-1. Multiplication and division by shifting.

MULTIPLICATION AND DIVISION BY SHIFTING

Fig. 12-1 shows an SRL and SLA performed on the hexadecimal
value 53H. The result after the SRL is 29H with the carry set. The
result after the SLA is A6H with the carry reset. The effect of the
SRL has been to divide by 2, while the SLA has multiplied by 2.
For each bit position shifted right, the SRL divides by 2 so that n
SRLs divide by 2». For each bit position shifted left, the SLA will
multiply by 2; a shift of n bit positions divides by 27 As an example
of this, consider the routine below. This routine finds the average
of eight test scores where each test score represents a number from
one to ten. Since the maximum total is 80, a single byte may be used
for the total. The total is divided by eight by a shift right of three bit
positions implemented by three SRLs. The average is a truncated
average to the next lowest integer.

FNDAVE LD Y, TESTS—1 POINT TO TABLE OF TESTS

LD B,8 SET UP COUNT

XOR A ZERO A FOR TOTALIZATION
LOOP INC 1Y BUMP POINTER

DEC B DECREMENT COUNT

JP M, JUMP1 GO [IF 8 ITERATIONS

ADD  AJ(lY) TOTALIZE

JP LOOP CONTINUE
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JUMP1 SRL A DIVIDE BY 2
SRL A DIVIDE BY 4
SRL A DIVIDE BY 8
DONE €
TESTS DEFS 8 TABLE OF TEST SCORES

This program is implemented somewhat differently than previous
loops. (Not as efficiently either!) Here the IY register and count are
modified before the processing. A test is made of the minus state of
the sign flag to terminate the loop. If the total number of test scores
has not been processed, the next score is added and the loop con-
tinues. Note that the initial value in 1Y is equal to (TABLE —1)
but is equal to TABLE by the time the first score is retrieved.

By a combination of shifting and addition, multiplication or divi-
sion by any number that can be factored into powers of two is pos-
sible. A frequently seen use of this method is multiplication or divi-
sion by 10 which can be factored into (8 +2). The example below
illustrates multiplication by 10 of an 8-bit number, assumed to be
25 or less to fit with an unsigned 8-bit byte.

MULTO LD A,NUMBER GET MULTIPLICAND

SLA A MULTIPLICAND X 2
LD BA SAVE

SLA A MULTIPLICAND X 4
SLA A MULTIPLICAND X 8
ADD AB MLCND*(8+2) = M*10

Logical shifts are commonly used to align data within fields, al-
though in some cases a rotate and mask operation may be performed.
The following routine is one method of converting two hexadecimal
digits into their corresponding ASCII values of 0 — F. A logical shift
is used on the first digit to align it (right justified) so that the ASCI
conversion may be performed.

CVERT LD A VALUE GET TWO HEX DIGITS
LD B,A SAVE
SRL A
SRL A
SRL A
SRL A ALIGN FOR CONVERT
ADD A,30H CONVERT TO ASCII
CcpP A,3AH
JP M,0K1 GO IF NO CORRECTION
ADD A7 CORRECT FOR A — F
oK1 LD (BUFR),A STORE FOR OUTPUT
LD AB GET 2ND DIGIT
AND FH MASK OUT 1ST DIGIT

176




ADD A,30H CONVERT TO ASCIt

cp A,3AH

JP M,0K2 GO IF NO CORRECTION

ADD A7 CORRECT FOR A — F
OoK2 LD (BUF+1),A STORE FOR OUTPUT
DONE <

A left logical shift may also be implemented by addition. The A
register or HL register pair may be added to itself to shift data or
simply to multiply by powers of two. The ADD A, instruction is
one byte and takes 1 microsecond while a corresponding SLA is
two bytes and takes 2 microseconds. Needless to say the ADD A
should always be used. The 16-bit shifts of the HL register may be
implemented by the ADD HL,HL instruction. The code below
duplicates the multiply by ten above, but with 16 bits.

MUL1O LD HL,(NUMBER) GET MULTIPLICAND

ADD  HLHL 2 * MULTIPLICAND
PUSH HL

POP DE TRANSFER TO DE
ADD HLHL 4 * MULTIPLICAND
ADD  HLHL 8 * MULTIPLICAND
ADD  HLDE 10 * MULTIPLICAND

ROTATE-TYPE SHIFTS

The Z-80 has eight rotate-type shifts, some of which are redundant.
The rotates basically shift the eight bits of the operand and a carry
or eight bits of the operand alone. In the first case, the shift is really
a 9-bit shift if the carry is considered an extension of the register or
memory location. Both the rotates with the carry and the rotates
without the carry have their uses. All rotates preserve all eight or
nine bits of the data and shift a CPU register or memory operand

CPU REG ISTER
AREGISTER ONLY OR MEMORY OPERAND

RLCA [ ——————— 3 ] RLC
e |

v lge— "

RRCA  — RRC
]

RRA |:]7 ] @] RR

Fig. 12-2. Shift actions.
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1-bit position to the right or left. For those shifts that do not shift
through the carry, the carry is set to the value of the bit shifted out
of the register and around. Fig. 12-2 recaps the shift actions.

Rotate shifts are used to align fields within bytes for access and
storage and to enable multiple-register shifts. Data in a CPU register
or memory location may be tested by a rotate shift, but not neces-
sarily destroyed.

Discounting the fact that we can obtain the parity of an 8-bit
operand very easily by performing an AND A or OR A, let us illus-
trate how a rotate may be used to compute the parity of a memory
operand.

PARITY ~ XOR A CLEAR PARITY AND C
ID B8 INITIALIZE COUNT
LD HLMEMOP  MEMORY OPERAND ADDRESS
LOOP RIC  (HL) SHIFT OUT BIT TO CY
JR NC,JUMPI GO IF NOT A ONE BIT
XOR 1 FLIP PARITY INDICATOR
JUMP1 DEC B DECREMENT COUNT
JR  NzLOOP GO IF NOT 8 BITS
DONE A REGISTER NOW 0 IF EVEN
e # OF 1 BITS, 1 IF NOT

The A register and carry are first cleared by the XOR. Now the
RL (HL) instruction is executed eight times. At the end of eight
times, the contents of MEMOP are identical to the contents before
the routine was entered. The A register Isb was set or toggled each
time a one bit was shifted around to bit 0, so that after eight shifts
the A register bit 0 holds a one if the total number of one bits was
odd, or a 0 if the total number of one bits was even.

Another example of the use of the rotate is shown next. Here, the
rotate is used to convert an 8-bit binary operand to binary-ASCII

BXASB EQU §$ BINARY-TO-ASCII-BINARY
LD A,(BYTE) GET BYTE TO CONVERT
LD C8 SET # COUNT
LD IX,BUF+7 BUFFER, LAST BYTE
LOOP LD B,30H ASCIl 0
RRCA SHIFT OUT BIT
JR NC,JUMP1 GO IF BIT = 0
INC B CHANGE TO ASCII 1
JUMP1 LD (1X),B STORE ASCll CHARACTER
DEC IX POINT TO HIGHER-ORDER SLOT
DEC C DECREMENT COUNT
JR NZ,LOOP GO IF NOT 8 TESTS
DONE 5
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digits. As there will be eight ASCII characters representing 0
(ASCII 30H) or 1 (ASCII 31), a buffer of eight bytes is allocated
to hold the results of the conversion. The bits in the operand to be
converted are tested one at a time by shifting the A register right in
a rotate shift. The rotate could be either an RRCA rotate or an RRC
A rotate. Both perform the same action (the RRCA is compatible
with the 8080 rotate of this kind). Since the RRCA takes one byte
and 1 microsecond and the RRC A takes two bytes and 2 microsec-
onds, the RRCA was chosen.

If the value at BYTE was 10111001,, the character stored at BUF
through BUF+7 for this routine would be 31, 30, 31, 31, 31, 30, 30,
31, all hexadecimal. .

The rotate shifts may be used in conjunction with logical shifts to
facilitate multiple-precision shifts. Suppose that we wish (for some
unfathomable reason) to shift a 3-byte operand located at UDGE
two bit positions to the left in a logical shift. The rotate may be used
to propagate any carry along the 3-byte chain as follows:

SLUDGE EQU $ SHIFT LEFT UDGE

LD 1X, UDGE+2

SLA - (IX) 0 TO BIT O, BIT 7 TO C
RL (IX—1) CTO BITO, BIT7 TO C
RL (IX-2) CTOBITO, BIT7TOC
SLA  (IX) 0TO BITO, BIT7TO C
RL (X=1) CTOBITO, BIT7TOC
RL (1X-2) CTOBITO, BIT7TOC

Another variation of this implementation uses the HL register.

SLUDGE LD HL,(UDGE+1) TWO LS BYTES
LD 1Y, UDGE

ADD HLHL SHIFT LEFT 1 TO C
RL Y C TO MS BYTE
ADD HLHL SHIFT LEFT 1 TO C
RL Y C TO MS BYTE

LD (UDGE+1),HL STORE LS BYTE

ARITHMETIC SHIFTS

We have already covered the shift left arithmetic in previous ex-
amples. Various manufacturers implement arithmetic left shifts in
one of two ways. Many equate a left arithmetic shift to a left logical
and leave it go at that—the sign is simply shifted out on the first shift.
Other manufacturers retain the sign on a left shift. The bit in bit
position six is shifted out into the carry and bit seven remains.

In any event, the Shift Right Arithmetic is unambiguous. The sign
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bit position, bit seven, is retained, and extended into bit position six.
Fig. 12-3 shows a large negative number reduced by shifting. As a
right arithmetic shift is performed, the number in the register or
memory operand is truncated, that is, bits that are shifted off the
right are lost. In fact, the instantaneous value of the carry after a
right shift represents the remainder of a divide-by-two operation.
If the fractional portion of the arithmetic portion of the shift is to be
retained, the bits shifted off must be saved in another register.

10001001 ORIGINALVALUE--INlo
110001 0 0] AFTERSRAL=-60),

1110001 AFTERSRA?'-”m
Fig. 12-3. SRA action.

11110080 AFTERSRA?--ISm
11100 AFTER SRA4 =-8

1111110 0] AFTERSRA5=-4

-
o — o

The following routine performs an arithmetic right shift and saves
the fractional part of the number in the B register. If the binary
point is considered to be between the two registers, then the bit
positions of the fractional portion represent 1/2, 1/4, 1/8, etc.

ARSSVF LD  A,(NUMBER) GET NUMBER

LD B0 CLEAR FRACTION
SRA A N/2

RR B SAVE 1/8

SRA A N/4

RR B SAVE 1/4

SRA A N/8

RR B SAVE 1/2

DONE ¢

The effect of an arithmetic right shift on a positive number is to
truncate the number and retain the quotient of the divide while
ignoring the remainder. An example of this is the divide 1011,/4
implemented by a 2-bit arithmetic right shift (this is not a value
judgement). The number after the shift is 2; the remainder of 3/4
has been lost. The effect of an arithmetic right shift on a negative
number is to round up if the fractional part is ignored when the
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number is converted to positive form. The divide 11110101/4 is
11111101, with a remainder of 01000000 if the fractional remainder
is saved. 11111101, is —3; the quotient has been rounded up to the
nearest integer.

Since the arithmetic right shift extends the sign bit position, it
normally should not be used to align data in fields. Erroneous one
bits will be extended to the right if a negative number is arithmeti-
cally shifted prior to masking and testing.

THE 4-BIT BCD SHIFT

All of the above shifts shift one bit position to the right or left per
shift instruction. The RLD and RRD instructions perform a 4-bit
shift to the left and right respectively, working with the A register
and the location referenced by the HL register. The instructions are
recapped in Fig. 12-4. Although this shift may be used conveniently
for any processing that deals with 4-bit fields, it is very convenient
for processing bed data. Each 4-bit shift brings in a new bed digit.
Let us see an example of the way the shifts may be used to manipu-
late bed data.

The program below converts ASCII characters, assumed to be the
digits 0 — 9, into bed digits. Ten characters, representing a 10-digit
bed value of 0000000000, — 9999999999,, are stored in INBUF
through INBUF+9. The conversion will put the 5-byte packed bed
result in INBUF through INBUF-+4, two bed digits per byte, in the
same order. See Fig. 12-5.

BCDAXB EQU $ BCD ASCII TO BCD
LD 1X,INBUF POINT TO BUFFER
LD HL,INBUF POINT TO BUFFER

LD B,5 SET UP COUNT

LOOP LD A(1X) GET CHARACTER
SUB A,30H CONVERT TO BCD 0 — ¢
RLD ROTATE TO (HL)
LD A (IX+1) GET NEXT CHARACTER
SuB  A30H CONVERT TO BCD 0 — 9
RLD ROTATE TO HL
INC X BUMP CURRENT CHARACTER
INC X POINTER
INC HL BUMP STORAGE POINTER
DEC B DECREMENT COUNTER

JR NZ,LOOP GO IF NOT DONE
DONE g

In the above program, the ASCII characters were accessed two
per iteration through the loop. Each was converted to bed by sub-
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=
=
=]

4 BITS

i 43 [0 7 IR |
I

[}
T 1 MEMORY OPERAND

LI ] [ T T POINTED 70 BY HL
4BITS aENS
UNAFFECTED
RRD
= 4B1TS
7 a3
A - °| [ L 43 °J MEMORY OPERAND
POINTED T0 BY HL
LS 4BITS

Fig. 12-4. RLD, RRD action.

traction of 30H and the resulting bed digits were rotated into the
location pointed to by HL. At the end of the loop, the HL pointer
was incremented by one and the IX by two; HL is the pointer to
the next storage location, while IX points to the current ASCII char-
acter to be processed. The loop has five iterations to process five sets
of two characters at a time.

BEFORE BCDAXB AFTER BCDAXB
1 [ 4 0
INBUF+0| ASC!I CHARACTERO N BUF + 0 [BCD DIGIT 6 [BCD DIGIT 1
+1 1] +1 2 3
+2 2 +2 4 s
+3 3 +3 6 7
+4 4 +4 8 9
+5 5 +
+6 ] +6
+7 7 +7 (UNUSED)
+8 [ !
+9 9 +91 1
L -

Fig. 12-5. ASCH to bcd conversion.

As a further example of the use of the 4-bit rotates, let us convert
the opposite way, going from packed bed digits in INBUF through
INBUF+4 into ASCII characters representing the digits 0 through
9. Here, we must go backwards through the buffer as we are filling
two bytes of ASCII data with each packed byte of two bed digits.
IX will hold the address of the next location to be used for storage
in the buffer, while HL will point to the current pair of bed digits.
As two bed digits will be processed at a time, five iterations will take
place. The first two bed digits are picked up from INBUF+4 and
stored in INBUF+9 and INBUF+8. The conversion will continue
until the digits at INBUF are accessed and the ASCII characters that
result are stored at INBUF+1 and INBUF as shown in Fig. 12-6.
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BEFORE BXBCDA AFTER BXBCDA
1 __ 33

0 7
IN BUF +0 |BCD DIGIT 0|BCD DIGIT 1 \INBUH_O‘ ASCIT CHARACTER 0 .
+1 2 3 FI 1
+2 4 5 +2 2
+3 6 7 +3 3
+4 8 9 +4 4
+5 +5 5
+6 +6 []
+7 {UNUSED) +7 7
+8 +8~ 8
09L ____________ ! ) el 9

Fig. 12-6. Bcd to ASCII conversion.

BXBCDA EQU $ BCD TO BCD ASCII
LD  IX,INBUF+9 PNT TO LST BYTE OF BUFFER
LD  HLINBUF+4 POINT TO FIRST TWO DIGITS

Lb B)S5 SET UP COUNT
LOOP XOR A CLEAR A .
RRD GET MS DIGIT TO A
ADD A,30H CONVERT TO ASCII
LD (IX)A STORE IN BUFFER
XOR A CLEAR A
RRD GET LS DIGIT TO A
ADD A,30H CONVERT TO ASCHI
LD  (IX—-1A STORE IN BUFFER
DEC IX POINT TO NEXT
DEC IX STORAGE
DEC HL POINT TO NEXT 2 DIGITS
DEC B DECREMENT COUNTER
JR NZLOOP GO IF NOT DONE
DONE g

The only subtlety in the program above is that the A register must
be cleared before each bed digit is shifted in, as the shift does not
affect bits 7 — 4 of the A register.

BIT SET, RESET, AND TEST GROUP

The instructions in this group enable any of the eight bits in a
CPU register or memory operand to be tested, set, or reset. Register
indirect or indexed addressing is permitted for addressing operands
in memory. The instructions in the group are rather powerful as they
enable fast and efficient bit manipulation. Bits within bytes may be
operated on by combinations of load and masking operations, rather
than the bit instructions, but the resultant code is at least three in-
structions as shown here:
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BITEST EQU $ TEST BIT

LD HL,BYTE POINT TO BYTE
LD A,(HL) GET BYTE
AQID A, VALUE MASK OUT BIT
VALUE EQU 1 (OR 2, 4, 8, 16, 32, 64, 128)
BITSET EQU $ SET BIT
LD HL,BYTE POINT TO BYTE
LD A,(HL) GET BYTE
OR  AVALUE SET BIT
LD (HL),A STORE BYTE
BITRST EQU $ RESET BIT
LD HL,BYTE POINT TO BYTE
LD A,(HL) GET BYTE
AND A NOTVAL RESET BIT
LE (HLLA STORE BYTE
NOTVAL EQU FEH (OR FD, FB, F7, EF, DF, BF, 7F)

Each of the three routines above can be replaced with one equiva-
lent bit test, set, or reset instruction. To test bit 7 in an 8-bit byte in
memory, the following code is used:

LD  HLBYTE POINT TO BYTE

BIT 7,(HL) TEST MS BIT
JR  Z,ZERO GO IF BIT IS A ZERO
ONE BIT IS A ONE

To set a bit in a memory operand,

LD  IX,BYTE POINT TO BYTE
SET  5,(IX) SET BIT 5

To reset a bit in a memory operand,

LD  1Y,BYTE POINT TO BYTE
RES 1Y) RESET BIT 1
Of course, any of the three bit instructions may also be used to
test, set, or reset any bit in a CPU register:

BIT 78 TEST MS BIT OF B REGISTER

As an example of how the bit processing instructions may be used,
consider the following example. A 256 column by 256 line video dis-
play is being used in a Z-80 microcomputer system as shown in Fig.
12-7. Each pixel, or picture element, is represented by one bit in
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256 COLUMNS

VDTTB1+1 VDTTBL+31
+6
vorrsr«o [[ATLITITITITATITTTTITIITIT Rowo
+32 1
+64 2
+%
!
i
MEMORY TABLE '
2% MAPPED TO VDT ]
LINES SCREEN 8192 !
BYTES = 64K BITS |
1
)
1
1
1
]
VDTB1 + 8191
[} rowass
+8160 C
0
L
-2
H
H

|——BIT FOR ROW 0, COL 55

BIT FOR ROW 0, COL 48
Fig. 12-7. VDT bit map for 64K pixels.

memory and can be on (white) or off (black). The first line is rep-
resented by the data at VDTTB1 through VDTTB1+31, each byte
holding eight pixels worth of data. The entire 8K bytes (64K bits)
is output to the VDT by direct memory access of the VDTTBI data
by the electronics in the VDT controller. The display program will
continually update the display buffer VDTTBI1 to change the dis-
play. For display of plots and other data, it is convenient to address
the pixels by row, column representation. The pixel in the upper left-
hand corner is 0,0 (row 0, column 0), the pixel in the upper right-
hand corner is 0,255, the pixel in the lower left is 255,0, and the pixel
in the lower right corner is 255,255. The problem is to convert a pixel
address from row, column representation to the actual bit address
and access the bit in VDTTBI to test the current value, set the bit,
or reset the bit to change the display. The following examples are
three portions of the program. Data is passed to the programs in the
A register and B register, A representing the row and B the column.
The set and reset programs simply set or reset the required pixel.
The test passes back an argument representing the current value of
the pixel in the Z flag, Z=0 for on (white), and 1 for off (black).

;  THIS ROUTINE TESTS THE VALUE OF A PIXEL

TESTPX LD C,46H LOAD SKELETON (BIT)

JUMP CALL GTADD GET ADD IN HL, BIT # IN A
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OR AC MERGE BIT #
LD (MODIFY),A STORE BIT INSTRUCTION

INSTRU BIT 0,(HL) TEST, SET, OR RESET BIT
RTN RETURN

MODIFY EQU  INSTR+1 SEC BYTE OF BIT INSTR

; THIS ROUTINE SETS THE VALUE OF A PIXEL TO 1

SETPX LD C,CéH LOAD SKELETON (SET)
JMP  JUMP

; THIS ROUTINE RESETS THE VALUE OF A PIXEL TO 0

RESTPX LD C,86H LOAD SKELETON (RES)
JMP  JUMP

THIS ROUTINE PUTS ADDRESS OF BYTE CONTAINING
PIXEL IN HL, BIT # IN A ALIGNED IN BITS 5-3
GTADD PUSH BC SAVE B,C IN STACK

H

SRL A TRUNCATE 3 LSBS OF B
RR B ALIGN 3 ADDRESS BITS
SRL A

RR B

SRL A

RR B

LD LB DISPLACEMENT NOW IN HL
LD HA

ADD  HL,VDTTBI1 VDT TABLE ADDRESS
POP BC RESTORE B,C

LD AB GET LOWER-ORDER BITS
CPL

AND 7 GET BIT ADDRESS

SLA A ALIGN BIT ADDRESS
SLA A FOR BIT INSTRUCTION
SLA A

RET RETURN

These routines are probably more sophisticated than any we have
considered thus far. In the first place, they are true subroutines,
callable by a CALL instruction. The return is made with the RTN
instruction, There are three entry points in the subroutine TESTPX
which tests the value in a pixel, SETPX, which sets a 1 into the
pixel, and RESTPX, which resets a pixel to 0. Depending on the
function to be performed, they are callable by something similar to:

LD A,ROW GET CURRENT ROW

LD B,COL GET CURRENT COLUMN
CALL SETPX SET PIXEL TO ON
< RETURN HERE

Subroutine TESTPX (which also encompasses the SETPX and
RESTPX functions) calls yet another subroutine GTADD. Subrou-
tine GTADD converts a row, column address to a byte address in
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1 GITADD REGISTERS ON ENTRY

o

7 [ -
AREGISTER | ROW (0-255) ] [ _cotwN®©25 ] BREGISTER

2, DISPLACEMENT OF BYTE CALCULATED

A [RRRRRRRR] [cCccclccc] s

| —
[0O0 0 RRRRRRRRCCCCC] H

13 BITS = ADDRESS
0708191

3. FIND ACTUAL ADDRESS OF BYTE
VDDTB2 + RRRRRRRRCCCEEZ =ADDRESS HL

4, FINDBIT#7-0

o

10
[C € <] COMPLEMENT

5. ALIGN BIT #FOR BIT INSTRUCTION
7653 0
[0 ofcc coao] arestsmr

6. RETURN FROM SUBROUTINE
Fig. 12-8. Subroutine GTADD action.

HL and a bit address in A. Let us investigate GTADD in detail first.
The parameters on input to GTADD are as shown in Fig. 12-8, the
row # 0 to 255 in A and the column # 0 to 255 in B. The byte dis-
placement of the byte containing the pixel bit is given by (ROW
X 32) + (COLUMNY/8). The bit address 0 — 1 (most significant bit
to least significant bit) is given by the remainder of COLUMN/8.
GTADD calculates the byte displacement by shifting A and B and
then calculates the actual address within the table by adding the
displacement to the address of the start of the table. The byte
address is then stored in HL. The bit address of the pixel is found
by masking the three least significant bits of the column address in
B. Since these are the inverse of the Z-80 bit position numbers, they
are complemented before the mask to set the corresponding Z-80 bit
position numbers. After the bit position number is found, it is aligned
to bits 5 — 3 of the A register for reasons which shall become obvi-
ous. The entire action of subroutine GTADD is shown in Fig. 12-8.

To test the value of a pixel, subroutine TESTPX is called. A and B
contain the row and column of the pixel, respectively. The first ac-
tion taken is to load the C register with a value corresponding to the
second byte of a BIT instruction. Value 46H represents the second
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byte of BIT 0,HL. Subroutine GTADD is then called to compute the
byte and bit address of the pixel within VDTTBI. Aligned bit
number in A on return is ORed with BIT 0,HL code in C to produce
the BIT B,HL form of the instruction. This is stored in the second
byte of the BIT instruction (location MODIFY). The BIT 0, (HL),
now a BIT B,(HL) instruction, is then executed setting the Z flag
on the results of the bit test. The Z flag is still valid when the RTN
instruction is executed to return to the main calling program.

SETPX and RESTPX operate in similar fashion, except that the
instructions loaded in C are the second bytes of SET 0,(HL) and
RES 0,(HL). The B field is merged on the OR after the return from
GTADD. The three instructions executed at INSTRU for the three
entry points are shown in Fig. 12-9.

BITB,HL
Bvieo [T 1 001 01 1]#
% THIS BYTE FOR ALL
1 [o1] 8 11 0] THREE INSTRUCTIONS

%% THIS FIELD = FOR ALL
THREE INSTRUCTIONS

EC XTI . seiok THIS FIELD CHANGES
FOR INSTRUCTION
BYIEO (11001 01 1% %% THIS FIELD COMPUTED
v [T 8 114 *E N GTADD

RES B, HU

=25

BYIEO *
1 o 5 Tr 0]
ek Kk *
ok
Fig. 12-9. Instruction modification for VDT bit routine.

The previous program utilizes many of the shifting, bit manipula-
tion, indexing, and logical functions discussed in this and previous
chapters. It also introduces several new concepts. One of the most
important is that an instruction is simply data that can be modified
as any other data value. The instruction at INSTRU was dynamically
changed rather than changed at assembly time to reflect the function
performed. The above implementation also illustrates the use of
subroutines and subroutine calls. This subject will be covered in
more detail in Chapter 14.

SOFTWARE MULTIPLICATION AND DIVISION

The subject of software multiply and divide is discussed in this
chapter because the implementation of these functions, in the gen-
eral case, is primarily shift and bit test operations. There are several
kinds of implementations possible for multiply and divide opera-
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tions, but most are inefficient. The multiply by shifting and adding
powers of two works well for decimal and other multipliers. The in-
verse of this, shifting and subtracting powers of two, also will work
well for division of small divisors. Other methods for multiplication
and division include successive addition (multiplication) and sub-
traction (division) and a variation of this based on table “lookup”
of powers of ten. All of these implementations, however, suffer in
the general case from large execution times. As an example of the
execution times involved, consider the following program which
divides by successive subtraction of the 8-bit unsigned divisor from
a 16-bit unsigned dividend.

DIVIDE LD HL,(DIVDND) 16-BIT DIVIDEND
LD A,DVISOR 8-BIT DIVISOR
NEG NEGATE DIVISOR
LD CA - DIVISOR TO BC
LD B,FFH
LD DE,0 CLEAR QUOTIENT

LOOP ADD HL,BC SUBTRACT DIVISOR
JR NC,DONE GO IF DONE
INC DE BUMP QUOTIENT
JP LOOP CONTINUE

DONE <

The divisor is effectively subtracted from the dividend until the
residue goes below 0. For each successful subtract, the quotient is
incremented by one. The best case execution of this program is about
95 microseconds. The worst case time is about 1/2 second! With an
average time of about a millisecond, the program is far too slow for
software that requires many divide operations.

The generic form of most multiply routines emulate a paper and
pencil multiplication exercise. The digits of the multiplier are ex-
amined one at a time, multiplied against the multiplicand, the pro-
duct added to a partial product, and a shift made to the next digit

MULT LD LO CLEAR L

LD HA MULTIPLIER TO H

LD CB MULTIPLICAND TO C

LD B,0 0, MULTIPLICAND TO B,C

LD A8 ITERATION COUNT
LOOP ADD HLHL SHIFT LEFT ONE

JR NC,JUMP1 GO IF NO CARRY

ADD HL,BC ADD MULTIPLICAND TO PARTIAL PROD
JUMP1 DEC A DECREMENT ITERATION COUNT

JR NZ,LOOP GO IF NOT 8 ITERATIONS
DONE g
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position. Let us see how this works in a simple unsigned multiply
of two 8-bit operands. The multiplier is passed in the A register and
the multiplicand in the B register.

The register arrangement at the start of the multiply is shown in
Fig. 12-10. The multiplier is shifted out one bit at a time. If the
multiplier bit is a one (carry set), the multiplicand is added to the
partial product; if a zero, no add is made. After eight iterations, the
multiplier has been shifted completely out of H and HL holds the
16-bit product. The worst case time for this multiply is under 100
microseconds, a factor of 10 better than for a successive addition
method. The same general implementation may be carried out for
multiplies of greater widths although a product exceeding 16 bits
will require additional code for shifting more than one register pair.

H L
MULTIPLIER
BITS <—| _ 8-BITMULTIPLIER | [] Je—SHIFT PARTIAL PROBUCT
uT
8 ¢ } s.camosTonL
[ 0 ] 8-BITMULTIPLICAND |
Fig. 12-10. An 8-bit multiply regi P

The general form of division of the Z-80 and similar microproces-
sors is also related to the paper and pencil method. In this case, the
restoring division of manual methods is used. The residue or partial
dividend is examined to see if the divisor “will go” into it (is less
than or equal to the dividend). If the subtract can be made, a one
bit is put into the quotient and a shift is made for the next divide.
If the subtract cannot be made, the value of the residue is restored
by adding back the dividend and a zero bit is put into the quotient.
The following routine divides a 16-bit unsigned dividend in HL by
an 8-bit unsigned divisor in the B register to yield an 8-bit quotient
and 8-bit remainder.

DVIDES LD c,0 NOW - DIVISOR IN BC
LD D,8 ITERATION COUNT
LOOP ADD HLHL SHIFT LEFT ONE
XOR A CLEAR C
SBC HL,BC
INC HL SET Q=1
Jp P,JUMP1 GO IF POSITIVE RESULT
ADD HL,BC RESTORE
JUMP 1 RES oL RESET @ BIT TO 0
DEC D DECREMENT COUNT
JR NZ,LOOP CONTINUE IF NOT 8
DONE <
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SHIFT
RESIOUE =—] 16-BIT D]V IDEND Je—QuoTIENT BITS
QUOTIENT
HL-BC 1 8 ¢
[ sBimowisor | 0 ]

Fig. 12-11. A 16-bit by 8-bit divide register arrangement.

The register arrangement at the start of the divide is shown in
Fig. 12-11. The divisor is subtracted from the residue in HL after a
left shift of the residue (0 is in the msb of the dividend for the first
shift). The quotient bit is preset to a 1 in the lower end of the L
register. If the subtract will not “go,” a restore is done (ADD
HL,BC) and the quotient bit reset to 0. At the end of the divide, the
residue or remainder is in H and an 8-bit quotient has been shifted
into L. Overflow is possible if the quotient cannot be resolved in
eight bits.

The preceding is a brief introduction to implementations of un-
signed “multiplies” and “divides.” In many software projects such
simple operations will suffice; in other systems, more elaborate
arithmetic operations such as floating-point implementations will be
required.
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CHAPTER 13

List and Table Operations—
Search Group

This chapter discusses three kinds of data structures, strings, tables
and lists, and the techniques used to access them. The search group
of Z-80 instructions are specifically implemented to search through
tables and strings of data, and they are described in detailed exam-
ples in the discussion.

DATA STRINGS

Data strings are sequences of data, and the common usage refers
to character data. The assembler pseudo-operation TXT generates
a string of ASCII characters as in the following example:

MESG1 TXT $THIS IS A CHARACTER STRING$

String operations are important in text processing and compiler
operation, and some higher-level languages have been implemented
specifically to deal with string manipulation.

The Z-80 has the capability to search a sequence of data bytes for
a given byte. The search may be made for character or other data
as the implementation is only concerned with finding a data byte
that matches a search key. The implementation of the search in-
structions is very similar to the implementation of other Z-80 block-
related instructions. An 8-bit search key is loaded into the A regis-
ter. The HL register pair is loaded with the starting address of the
data string, and the BC register pair is loaded with the number of
bytes to be searched. If the CPI instruction is used, the search will
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be done “semi-automatically,” that is, one instruction will be exe-
cuted. The byte pointed to by HL will be accessed and compared to
the contents of the A register. The contents of HL will be incre-
mented and the contents of BC will be decremented. If BC + 0 after
the decrement, the P/V flag will be set. The S, Z, and H (half-carry)
will be set if the comparison result is negative, equal, or produces a
half-carry, respectively. The next instruction in sequence will then
be executed. Examples of CPI use will be presented under table
operations in this chapter.

If the instruction is a CPIR instruction, all of the setup and execu-
tion details are the same, except that the CPIR will continue execu-
tion until either a match is found with the search key in the A regis-
ter or until the byte count has been decremented down to zero
(BC = 0). Testing of the P/V and Z flags will indicate the terminat-
ing condition.

As an example of CPIR use, consider the following example. A
string of 64 characters, starting at STRING, is to be searched for the
character “$.”

SRCHD LD A 24H DOLLAR SIGN
LD HL,STRING ADDRESS OF FIRST CHAR
LD BC,64 64 BYTES MAXIMUM
CPIR SEARCH STRING FOR $
JP Z,FOUND GO IF CHARACTER FOUND
NOT FOUND
FOUND DEC HL POINT TO $

LD (PNTR),HL SAVE POINTER TO $

The A register is loaded with the hexadecimal equivalent of an
ASCII dollar sign. Register pair HL is initialized with the address of
the start of the character string, STRING. Since 64 characters are
to be searched, a byte count of 64 is loaded into BC. The CPIR se-
quences through the 64-character string. If a dollar sign is found,
CPIR is exited to the next instruction with the Z flag set. If the
dollar sign was at the last character, both the Z flag and the P/V
flag will indicate terminating conditions; the Z flag will be set indi-
cating the character was found and the P/V flag will be reset indi-
cating that the byte count was decremented down to zero. It is neces-
sary to test the Z flag first, therefore, to see if the character was found
before testing the P/V for end of string. If the character is found, the
HL register points to the byte after the character, so the pointer
must be adjusted by one to point to the location of the dollar sign.
The terminating conditions for a typical successful search for this
example are given in Fig. 13-1.

As described in a previous chapter, the CPDR works in similar
fashion to the CPIR, except that it decrements from the end of the
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list. The contents of HL is decremented after each iteration of the
instruction; the contents of BC is, of course, decremented as in the
CPIR. The initialization for a 64-character string for use with a
CPDR is as follows.

SRCHD LD A,24H DOLLAR SIGN
LD HL,STRING+63 ADDRESS OF LAST CHAR
LD BC,64 64 BYTES MAXIMUM
CPDR SEARCH FOR $ BACKWARDS

CPIR and CPDR work extremely efficiently for one-character
keys. The time per iteration if the key is not found is 5.25 microsec-
onds, making the average search time through a 64-character string
(64/2) X 5.25 = 168 microseconds. The corresponding code for an
access, compare, conditional test, adjust of byte count and pointer,
and conditional test would be about double the CPIR or CPDR and
occupy a great deal more memory.

If a key of more than one character is required, the compare
string instructions may also be used, but the comparison process will
not be quite as efficient as a search for a single byte. If the first char-
acter search is made on a frequently occurring character (such as

A p—

STRING +0
+1
*2 SEARCH DIRECTION
+3
+4
+5
+6 FIRST MATCH
N 20 -
+8
+63
L
{ STRING +8
B c
[ [ I £ ]
z PIV

Fig. 13-1. String search terminating conditions.
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an “¢” in an alphanumeric string), then a significant amount of time
will be wasted in comparing the remainder of the string to the search
string; if the first character of the search string occurs less frequently
(such as a “q”), then the number of “failing comparisons” will be
fewer and the overall search more efficient. One general way to
search for a given string of more than one character is given in the
next sample instructions. Here, a search is made for a two-character
string. The first level of the search is performed for the first letter
of the key string. When the first letter is found in the string to be
searched, the next character is compared to the second key character.
If a match is made, the routine exits; but if a match is not made, the
routine restarts from the point at which the first character was found.
Here, the search is through a string of 64 characters. The search is
over if no match has been found by the 63rd character.

BIGSRC LD HL,STRING START OF STRING
LD BC,63 63 BYTES MAXIMUM

LOOP LD A,(CHAR+0) FIRST CHARACTER OF KEY
CPIR SEARCH FOR 1ST CHAR
JP NZ,NFND GO IF NOT FOUND

SECLVL LD D,(HL) GET SECOND CHAR
LD A, (CHAR+1)  GET SECOND CHAR OF KEY
CcpP AD COMPARE
JP NZ,LOOP GO IF NOT FOUND

FOUND g HL POINTS TO MATCH + 1

If the first key character has a match, then the second level com-
parison at SECLVL is entered. HL at this point points to the match
plus one so that the next character can be picked up directly. A is
then loaded with the second key character and a comparison made.
If there is a compare, FOUND is executed; if there is no compare,
LOOP is reentered. The BC and HL registers are already properly
set for the next CPIR comparison in the no match case!

A variation of the above technique can be used to search for a
given length key or a hashing comparison may be made for the sec-
ond level compare. In the latter case, a one-for-one compare of each
of the remaining bytes in the key and string is not made. The re-
maining bytes of the string are used to compute a hash value which
is then compared with a precomputed key hash value. If the two
hash values are equal, then a direct compare is made. If the two
hash values are not equal, then the search continues. The hash
algorithm may be any scheme that produces a relatively unique
value. If the hash algorithm adds the remaining bytes together, for
example, a relatively unique hash value is found as shown in Table
13-1. Here, about 1 in 30 five-character strings will produce the same
hash value, as is the case for “BROWN” and “MAUVE.”
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Table 13-1. Five-Character String Comparison

Character Total of
String ASClI Bytes
WHITE 57H, 48, 49, 54, 45 181H
GREEN 47, 52, 45, 45, 4E 171H
BROWN 42, 52, 4F, 57, 4E 17EH
MAUVE 4D, 41, 55, 56, 45 17EH

An implementation of a search based on this simple hash is shown

in the following code.

HASHSR LD

LD
ADD
ADD

LOOP LD

SECLVL PUSH

MAYBE LD

FOUND <

IX,CHAR
A(IX+1)
A(IX+2)
A(IX+3)
A(IX+4)
DA
HL,STRING
BC,60
A,(CHAR+0)

NZ,NFND
HL

IX

A,(IX)

A, (IX+1)
A, (IX+2)
A,(IX+3)
D

NZ,LOOP
IY,CHAR+1
A(1X)
A(lY)
NZ,LOOP
A(X+1)
A(Y+1)
NZ,LOOP
A(IX+2)
A(Y+2)
NZ,LOOP
A, (IX+3)
A(IY+3)
NZ,LOOP

START OF 5-CHAR KEY
LOAD KEY CHARACTERS

SAVE IN D

START OF STRING

60 BYTES = DONE
FIRST CHARACTER
SEARCH FOR 1ST CHAR
GO IF NOT FOUND
SAVE POINTER

POINT TO 2ND CHAR

COMPUTE HASH

COMPARE TO KEY HASH
GO IF NO MATCH

POINT TO 2ND CHAR OF KEY

GO IF NO MATCH 2ND CHAR

GO IF NO MATCH 3RD CHAR

GO IF NO MATCH 4TH CHAR

GO IF NO MATCH 5TH CHAR
FOUND!

If a match is found on the first character, SECLVL is entered. A
hash is then computed for the remaining four characters of the
string and compared to the precomputed key hash in D. If there is
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no match, LOOP is reentered. If there is a match, MAYBE is en-
tered where a direct one-for-one comparison is made culminating in
FOUND, if all of the remaining characters match. The portion of
code from MAYBE to FOUND could have been shortened consider-
ably by subroutine or loop use, but the code was expanded for
clarity.

TABLE OPERATIONS

Strings are a subset of tables, as they are contiguous lists of items.
Each entry in the string consists of one ASCII character. A table is

TABLE ENTRY 1
TABLE +1281p 2
TABLE +256 3
TABLE +384 4

ENTRY N
ENTRY 100
TABLE +2560 101

Fig. 13-2. Employee table format.

.ol'_—_—'_

LAST NAME
+14
+15

FIRST NAME
+24
+25 OTHER

DATA

+127, [

made up of a number of entries that may be any number of bits long
and may contain subgroupings of data. Within the table, entries may
be ordered, in random order, or indexed by some external key.
Ordering may be done on any subgroup within the table entry. Let
us use a table of names and addresses to illustrate the use of an
indexed table in the Z-80. LASER PERIPHERALS, INC. has 101
employees. A table used in the payroll program is referenced by em-
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ployee number 1 — 101. Each entry of the table consists of data on
the employee as shown in Fig. 13-2. The following program picks
up the employee name from the table and moves it into a print

buffer.

GETNME EQU $ EMPLOYEE ID IN A
LD HLTABLE START OF EMPLOYEE TABLE
DEC A CHANGE ID # TO INDEX 0-100
LD BA INDEX TO B
LD c,0 BC NOW HAS INDEX * 256
SRL B
RR C BC NOW HAS INDEX * 128
ADD HL,BC TABLE + (INDEX * 128)

LD BC,15 # CHARACTERS IN LAST NAME
LD DE,BUFFER PRINT BUFFER ADDRESS
LDIR TRANSFER LAST NAME

0

The ID # (in A) is first converted to an index # of 0-100,,. The
index is then multiplied by 128 as each entry starts at a 128-byte
block. When this displacement is computed, it is added to the start
of the table to find the start of the last name of the employee. An
LDIR is then used to move the data into the print buffer.

Suppose that the entries in the above example were not in any
order or not indexed by ID number. If the ID # was 1 — 255, then
a search through the table could be made for a given ID # key by
using the CPI or CPD instruction. The ID # is located in the last
byte of each 128-byte entry in the table (see Fig. 13-2). Searching
for the ID # from end of the table back would proceed as follows:

GETID LD HL,TABLE+128*NENT—1 LAST ENTRY+127
LD BC,NENT BYTE COUNT = # OF ENTRIES
LD A KEYID LOAD KEY ID #
LD DE,—127 DECREMENT VALUE
LOOP CPD SEARCH FOR ID ONCE
JR Z,FOUND GO IF FOUND
JP PO,NFND GO IF AT END (NOT FND)
ADD HL,DE DECREMENT HL
JP LOOP CONTINUE
FOUND < HL POINTS TO ID # + 1
NENT EQU 101 NUMBER OF ENTRIES

In the previous program, the HL register was set up to point to
the address of the last entry of the table + 127. Since each entry is
128 bytes long, the total length of the table is TABLE + (N * 128).
NENT is the number of entries in the variable length table. The
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value TABLE + (N * 128) points to the last byte of the table plus
one, so one is subtracted from the expression to point to the last ID
# in the table. A search is then made, one ID at a time, by a CPD.
If a match is not found, 127 is decremented from HL to point to the
next ID (the HL register pair has already been decremented once
by the CPD). If the ID # is not in the table, BC is decremented
down to zero and the NFND routine is entered. )

The preceding routine shows a search for a 1-byte key in a table
of entries. Searches for n-byte keys may be made using the same
methods to sequence through a table, forward or backward, and
may use the string comparison techniques described in previous
examples.

When it becomes necessary to order tables, the block transfer rou-
tines may be used to advantage. Although it is good programming
practice not to move large blocks of data from one set of locations in
memory to another, at times data must be inserted in tables, deleted
from tables, or the key value must be modified and the table re-
ordered. In the following routines, the general parameters are
TABLE, the starting address of the table, NENT, the number of
entries in the table, and LENT, the length in bytes of each entry.
The address of the last word in the table + 1 is given by LASTW.
The inputs to the multiply routine are in the A register (multipli-
cand) and B register (multiplier). The output of the multiplier rou-
tine is a 16-bit product in the BC register. The key for the search
is always assumed to be in the first byte of the table entry.

The first routine in this set deletes an entry from the table. A
search is first made to find the entry by a CPL. When the entry is
found, the entries below the delete entry are moved up by an LDIR
instruction. Note that this instruction must be an LDIR as an LDDR
would overwrite data to be moved as the move was implemented.
Finally, the number of entries in the table are decremented by one.

DELETE LD HL,TABLE START OF TABLE
LD BC,NENT # OF ENTRIES IN TABLE
LD A KEY SEARCH KEY
LD DE,LENT # OF BYTES PER ENTRY
DEC DE # OF BYTES PER ENTRY — 1
LooP CPI SEARCH ONE ENTRY
JP Z,FOUND GO IF FOUND
JP PO,NFND NOT FOUND!
ADD HL,DE POINT TO NEXT ENTRY
JP LooP CONTINUE
FOUND DEC HL POINT TO 1ST BYTE OF DELETE
PUSH HL
LD HLLASTW  LAST WORD + 1
OR A CLEAR C
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POP BC # OF BYTES TO MOVE + LENT

SBC HL,BC
OR A
SBC HL,DE # OF BYTES TO MOVE + 1
DEC HL # OF BYTES TO MOVE
PUSH BC
PUSH HL
POP BC TRANSFER TO BC
DESTA POP DE DESTINATION ADDRESS
LD HL,LENT # OF BYTES PER ENTRY
ADD HL,DE SOURCE ADDRESS
LDIR MOVE DATA
DONE é

In the above routine, a search was first made to find the entry. If
found, the remainder of the routine is concerned with setting up the
parameters for the move. The HL register points to the destination
address + one at this point, so it is decremented and saved in the
stack, eventually (at DESTA) to be put into DE. The number of
bytes to move is then given by LASTW — HL — LENT, and this
value is computed and put into BC. The source address is provided
by HL + LENT; this is computed and loaded into HL for the
LDIR. The actions of this move are shown in Fig, 13-3.

AFTER

DELETE
TABLE ENTRY 1
2
THIS DATA
NOT ALTERED
ENTRY 70 DELETE -
LENT =
#OF BYTES NEW
PER ENTRY #0F LOCATION
BYTES
0 MOVE
TABLE#N ENTRY N "} ML

Fig. 13-3. Delete table entry actions.

The next routine inserts an entry into a table. Here, a search is not
made on the basis of finding a value equal to a key value, but on
finding the two adjacent entries that are less than and greater than
the key value (or less than or equal, or greater than or equal). All of
the search instructions set the sign flag on each iteration of the
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search, so that this comparison may be easily made. When this kind
of search is made, a CPI or CPD must, of course, be used as the
search is only terminated on equality.

INSERT LD HL,TABLE START OF TABLE

LD BC,NENT # OF ENTRIES IN TABLE

LD A KEY SEARCH KEY

LD DE,LENT  # OF BYTES PER ENTRY

DEC DE # OF BYTES PER ENTRY — 1
LOOP CPI SEARCH ONE ENTRY

JP M,LTHAN GO IF ENTRY GT KEY

JP PO,END NOT FOUND

ADD  HLDE POINT TO NEXT ENTRY
JR LOOP CONTINUE
LTHAN DEC HL POINT TO GT ENTRY=INSERT POINT

A search is first made through the table forwards for the first value
that is greater than the search key. If no value is found greater than
the search key, then the new entry must be appended to the table
to retain the ascending order of the table. The code for this would
be at END and is not shown. If a greater than value is found, then
the pointer value in HL minus one defines the source starting ad-
dress for the move. The destination address is the length of one
entry plus the source starting address. The number of bytes to be
moved is the total number of table entries minus the current entry
multiplied by the number of bytes per entry. The move must be a
LDR to prevent overwriting data that has not yet been moved. The
actions of the INSERT are shown in Fig. 13-4. Note that this insert
is correct even if the new entry will be inserted as the first entry of
the table.

The third routine of this set modifies the key value of a table entry.
As the new value disturbs the order of the table, the table must be
reordered. One way to implement a modify of this kind would be to

AFTER
INSERT
TABLE ERTRY 1
2 THIS DATA
3 NOT ALTERED
4
s
3 Ty JENTRY
#0OF
BYTES T0
MOVE NEW
LOCATION

ENTRY N
\

Fig. 13-4. Insert table entry actions.
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ORIG INAL AFTER AFTER

CONTENTS DELETE INSERT
TABLE ENTRY 1 ENTRY 1 ENTRY 1
ENTRY 2 ENTRY ENTRY 2 2
ENTRY 3 <10 8¢ ENTRY 4 NEW ENTRY 3
TR MODIFIED e
ENTRY N-1
ENTRY N-1 ENTRY N ENTRY N-1
ENTRY N ENTRY N
NEW ENTRY 3 NEW ENTRY 3

Fig. 13-5. Modify table entry actions.

delete the entry using the delete routine, and then to insert the modi-
fied entry using the insert routine. The actions of the MODIFY are
shown in Fig. 13-5.

The search instructions lend themselves to sequential searches
through tables of data where each data entry is accessed in sequence
while moving through the table forward or backwards. Various other
search algorithms are possible for ordered data entries. A binary
search accesses table entries by comparing the sense of the (key:
table) entry comparison. In a table ordered with entries in ascend-
ing order, the next entry accessed will be the middle entry of the
remaining entries before the current entry, if the current entry is
greater than the key value; or the middle entry of the remaining
entries after the current entry, if the current entry is less than the
key value. The algorithm converges on the sought entry in N = (log:
NENT) + 1, where NENT is the number of entries in the table, as
shown in Fig. 13-6. A table of 1000 entries can be searched for a

TABLE +0 ENTRY 1

1 2

2 3

3 4

4 5

5 6

6 7 ASCENDING ORDER

Fig. 13-6. Table for binary
search example.

TABEND-1 N-1
TABEND N
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given entry in 11 jterations or less [N = (log; 1000) +1=9XX+1
=11], whereas a sequential search will take an average of 500 ac-
cesses.

The following routine petforms a binary search for an 8-bit value
for a table of 256 entries, or less, that starts at TABLE and ends at
TABEND. Each entry has one byte, the search key itself, as shown
in Fig. 13-6.

BINSRC LD B,0 SET LOW INDEX = 0
LD C,TABEND-TABLE  SET HIGH INDEX = LAST
LD D,0 INITIALIZE DE
LD EC INITIALIZE LAST INDEX
LD 1X,KEY POINT TO KEY
JP JUMPT FIRST TEST = LAST ENTRY
LOOP LD AC
suB  AB HIGH-LOW
SRL A (HIGH-LOW)/ 2
LD EA MIDPOINT DISPLACEMENT
JUMPT LD HL,TABLE TABLE START
ADD  HL,DE START + (HIGH-LOW/2)
LD AL
ADD AgB LOW + (HIGH-LOW/2)
LD LA
JP NC,JUMP2 GO IF NO CARRY TO MSB
INC H BUMP MSB
JUMP2 LD A,(HL GET ENTRY
cP 1X) COMPARE WITH KEY
JpP Z,FOUND GO IF MATCH
Jp M, JUMP3 GO IF ENTRY LT KEY
LD B,E CURRENT TO LOW
Jp LoopP CONTINUE
JUMP3 LD C,E CURRENT TO HIGH
Jp LOOP CONTINUE

The routine, first of all, compares the last entry of the table with
the search key (to avoid truncation errors in computing the next in-
dex). If the key is not found, the iterative portion of the routine is
entered. For each iteration, new low and high limits are established
based on the results of the last comparison. The current index in E
is put into either C (high) or B (low) as the new limit. The mid-
point displacement of the area to be searched is then computed
(HIGH — LOW)/2, and added to the address of low to find the
next location for the search. The value in the next location is then
compared with the search key and if unequal, the next binary search
area and location are computed. In the above loop, there is no check
on terminating conditions for the search. If the key exists, as we have
assumed, it will eventually be found and the instruction at FOUND
will be executed. If the key does not exist, no termination of the loop
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will occur. To prevent an endless loop, a simple comparison should
be made of the (i+1) index value [(HIGH — LOW)/2] to the ith
index value. When the two values are equal, the binary search has
ended without a match. The binary search actions of this routine for
a 15-entry table are shown in Fig. 13-7.

TABLE+0
+
+2
+3

—= 1
1
B
5
I
+“ W
+5 2
+* 2 ® ENTRIES IN
+ 5
M = ORDER
Y — §
+10 72 -
1 8
" )
+13 )
TABEND 100 ()
LTERATION LOW INDEX HIGH INDEX ~ ENTRYACCESSED  SENSE OF MATCH
INITIALIZATION ~ TABLE+0 TABLE+14 TABLE+14 >
1 +0 e 47 <
2 Pl +14 +10 >
3 + +10 +8 <
4 48 +10 +9 =

Fig. 13-7. Binary search example.

LIST OPERATIONS

When sorted data must be altered frequently and entries deleted,
inserted, or modified, the overhead of altering data tables becomes
significantly large. A list is a data structure that reduces the over-
head by eliminating movements of large blocks of data when items
are changed within the list. A single-ended list consists of entries that
are noncontiguous in memory. Each entry consists of the data as-
sociated with that list entry and a pointer (address) to the next data
items in the list. As the data items are linked by the address pointers,
the entries in the list may be in any order in memory. The head of
the list is referenced by a variable in memory. The last item in the
list often has a —1 or other invalid address to signify that it is
the last item. Fig. 13-8 shows a typical single-ended linked list of
nine data items with four bytes per entry. The last two bytes are the
pointer to the next item in the list. The head of the list is referenced
by HEADLS.
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HEADLS 1010

MEMORY
LOCATION

1000H 004

1004 1014 j |
1008 1000 J

100

1010 1020 =

1014 1024

1018

101C

1020 1008

1024 1030

1028

102¢

1030 =)

1034

1038 BYTEO [ KEY VALUE
103¢ 1[__OTHER DATA
1040 2 LINK ADDRESS
1044 3| TONEXT ENTRY

- SHADED AREAS UNUSED ENTRY FORMAT

~ VALUES INENTRIES ARE ADDRESS LINKS TO NEXT ENTRY N LIST
Fig. 13-8. Typical single-ended linked list.

When data is to be deleted from the list, the previous pointer is
simply changed to the link address of the deleted item. When data
is to be inserted the pointer of the data item before the insertion
point is changed to the address of the new item. The address of the
new data item is loaded with the link address of the data item before
the insertion point. These actions are illustrated in Fig. 13-9.

The following Z-80 code shows a search of a single-ended linked
list for a given search key value. Each data item of the list consists
of an 8-bit data value and a 2-byte link address.

INSERT LD HL,HEADLS HEAD OF LIST

LD A KEY SEARCH KEY
LD BC,1 FOR END OF LIST COMPARISON
OR A RESET CARRY

Loop ADC  HL,BC NEXT ADDRESS + 1

JP ZEND END OF LIST, NOT FOUND

DEC HL NEXT ADDRESS

LD D,(HL) GET NEXT ENTRY

CcpP D : COMPARE NEXT TO S KEY

JP Z,FOUND GO IF FOUND

INC HL POINT TO ADDRESS

PUSH HL TRANSFER HL TO IX

POP  IX

LD H,(IX+1) GET MSB OF ADDRESS

LD L,(X) GET LSB OF ADDRESS

Jp LOOP CONTINUE
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L1ST DELETE ACTIONS

PREVIOUS POINTS TO 1000H PREVIOUS-POINTS TO 1006H
1000H VALUE 1000H
1006 6D
LINK e
]
10034 VALUE 100 VALUE
NEXT LINK
LINK NEXT
]
10064 VALUE 1006H VALUE
1003 1003
LINK LINK

LIST INSERT ACTIONS

L

1000H VALUE ) 1000H VALUE )
1006 3000
LINK LINK
I
1003H VALUE 10034 VALUE
NEXT NEXT
LINK LINK
1006H 1006H
1003 . 1003
LINK LINK
3000H VALUE 3000H VALUE
1006
XXXX LINK
ENTRY TO
BE INSERTED

Fig. 13-9. List delete and insert actions.

The address of the first entry of the list is loaded from HEADLS.
A check is made to see if the address of the next data item is a -1
which would signify the end of the list, or an empty list (HEADLS
= —1). The check is made, incidentally, by adding one to the ad-
dress in HL by addition of BC to HL. The ADC HL,SS and SBC
HL,SS are unique in that they set the Z flag if the result is zero; none
of the other 16-bit arithmetic instructions affect the Z flag. If the
address is a valid address, the data value from the next list entry is
retrieved and a match is tried. If no match is found, the link address
of the data item is loaded into HL in preparation for the next
comparison.

List operations for inserts and deletes are similar to the sequential
searches discussed under table operations. More overhead is in-
volved in finding the insertion or deletion point for the list, but once
the proper list entry is found, only a slight additional amount of
code is involved to change pointers and the data movement over-
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head is avoided. The following code illustrates insertion of a new
data item in a list after the data item pointed to by IX.

INSERT LD B,(IX+2) GET LINK ADDRESS
LD C(IX+1)
LD A, (NEWLKA) NEW LS ADDRESS BYTE
LD (IX+1),A REPLACE ITEM (M — 1) ADDRESS

LD A, (NEWLKA+1)
LD (IX+2),A

LD IY,NEWLKA NEW LINK ADDRESS
LD (1Y+2),B STORE NEXT LINK
LD (1Y+1),C ADDRESS

At entry, IX points to the list entry immediately preceding the
insertion point. The link address of this list entry is picked up in BC.
This link address will point to the list entry which will be immedi-
ately after the inserted entry. The address of the new data item is
in the 2-byte location NEWLKA, and NEWLKA+1. This address is
stored in the link address bytes of the previous list entry. Finally, the
link address of the list entry which will precede the inserted entry is
stored in bytes one and two of the insert entry.

The preceding paragraph briefly discusses list operations using the
Z-80 instruction set. More sophisticated list operations such as dou-
ble-ended lists are commonly used but the techniques involved are
somewhat similar to the lists described.
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CHAPTER 14

Subroutine Operation—Jump,
Call, and Return Groups

The instructions in these groups allow the user to jump condition-
ally, or unconditionally, to locations within the relative addressing
range or to jump directly with extended addressing to any memory
location. If the jump is to a memory location and a return is not to
be made back to the instruction following the jump, then the jump
is a JP or JR. If the jump saves the return address in the stack, then
the jump is a CALL. CALLs are used to transfer control to subrou-
tines, which are simply segments of code designated as subroutines
that occur in one place in memory. These segments can be used by
many different parts of the program, avoiding duplication of the
code at every point where the functions of the subroutine are to be
performed. Each subroutine is entered by a CALL, which saves the
return address of the instruction following the CALL in the stack;
each subroutine is terminated by an RET, or return. Returns may
be conditional, or unconditional. If the return is conditional, it is
based on the condition-code settings just as a conditional jump is.
The RST or restart instruction is a special CALL that can be used
for page zero subroutine call use or for interrupt responses.

JUMP INSTRUCTIONS

The unconditional jump instruction, JP, has been used in many
examples in previous chapters and should be no problem to the
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reader. When a choice must be made between a JP and an uncondi-
tional relative jump JR, the relative jump should be chosen if the
jump address is within the relative addressing range of the instruc-
tion. The JR uses two bytes, as opposed to the three bytes of the JP.
(The JP is faster, however, 2.5 microseconds compared to 3.0 micro-
seconds for the JR.) The relative addressing range of the JR is up to
126 locations back from the JR or up to 129 locations forward from
the JR. The assembler used for the Z-80 will give a diagnostic mes-
sage on the assembly listing, if this range is exceeded, and a JP can
then be substituted for the JR. The JR will be possible in most of
the jump cases.

The conditional extended-addressing jump JP and relative-address-
ing jump JR enable a jump to a location based on the state of the
zero flag, carry flag, parity flag, or sign flag as shown in Table 14-1.

Various assemblers will use different mnemonics for the condition.
NZ, Z, NC, C, P, and M are self-explanatory, but the PO and PE
mnemonics may be replaced with more descriptive mnemonics such
as V or NV for overflow and no overflow; and P and NP for parity
or no parity.

Table 14-1. Conditional Jumps

Flag Extended Form Relative Form
NZ nonzero JP NZ,LOCN JR ZLOCN
Z zero JP Z,LOCN JR NZ,LOCN
NC no carry JP NCLOCN JR CLOCN
C carry JP C,LOCN JR NC,LOCN
PO parity odd JP PO,LOCN none
PE parity even JP PELOCN none
P sign positive JP P,LOCN none
M sign negative JP M,LOCN none

Three jump instructions JP (HL), JP (IX), and JP (IY) effec-
tively cause an unconditional jump by loading the program counter
with the contents of the HL, IX, or IY registers. When a multiple
path decision must be made and a jump to one of several points is
effected, these instructions may be used to advantage. As an exam-
ple, suppose that in a large program we have a “mode” word that
indicates what mode the system is in currently. This could be used
to indicate the pass number of a three-pass assembler or any combi-
nation of conditions the programmer desires. For our purposes, let
us assume the mode word MODE represents states of the system as
shown in Fig. 14-1. Note that some combinations of states are not
possible, but that the general range for the four bits of the mode
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"MODE" WORD STATE ENCOD ING

ST AL ENCODING
FOR MICROPROCESSOR CONTROLLED: AUTOMAT:

OTHER BITS MODE

XX X X[0 00 0| NoSANDWICH

X X X X[0 0 0 1| PEANUT BUTTER SANDWICH

X X X X|0 0 1 0f JELLY SANDWICH

X X X X0 0 1 1] PEANUT BUTTER & JELLY SANDWICH

X X X X]0 10 0| NOTPOSSIBLE

XX x x[o10 1] peanut BUTTER, BANANA SANDWICH

X X X X101 1 0] JELLY AND BANANA SANDWICH

XX X X101 11 peANUT BUTTER, JELLY, BANANA SANDWICH

X X X X{1 0 0 0| NOTPOSSIBLE

XX X X|1 00 1| PANUT BUTTER, HOLD THE BREAD

X X X XJ1 0 1 1| PEANUT BUTTER AND JELLY, HOLD THE BREAD

76543210

X = DON'T CARE

Fig. 14-1. Mode word example,

word is from 0 through 11. The following code takes the mode word
and “jumps out” based on a jump, or branch table, to the proper
processing routine for the current system mode.

TESTMD LD BC,JUMPTB JUMP TABLE ADDRESS

LD A,MODE GET MODE WORD
AND  A,FH STRIP OFF MODE BITS
LD LA
LD H,0 MODE TO BC
ADD HLHL MODE * 2
ADD HLBC JUMPTB + (MODE * 2)
JP (HL) JUMP OUT
JUMPTB JR MODEO
JR MODE1
JR MODE2
JR MODE3
JR ERROR NOT POSSIBLE
JR MODES5
JR MODEé6
JR MODE7
JR ERROR NOT POSSIBLE
JR MODE9
JR MODE10
JR MODE1

The mode field is first multiplied by two and then added to the
address of the jump table. Each entry in the jump table is two bytes
long, so the multiplication by two indexes into the table properly,
causing a jump by the JP (HL) to the jump in the table correspond-
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ing to the mode. The alternative to the jump table would be coded
such as the following:

LD A,MODE GET MODE WORD

AND AFH STRIP OFF MODE BITS
JR Z,MODEO GO IF MODE 0

cp Al

JR Z,MODE1 GO IF MODE 1

CP A2

The jump table approach is somewhat cleaner to implement and
for a large number of combinations is more efficient in memory stor-
age and execution-time requirements.

The most interesting instruction in the jump group is the DJNZ
instruction, a 2-byte relative-addressing instruction. The DJNZ is a
decrement and jump if nonzero-type instruction. The contents of the
B register is decremented by one. If the result is nonzero, a jump is
made to the address specified. If the result of the decrement is zero,
the next instruction in sequence is executed. This instruction replaces
the code:

DEC B DECREMENT COUNT IN B
JR NZ,LOOP GO IF NOT AT END

In any case, where an iterative routine is implemented with a loop
count of 256 or less, the DJNZ may be used to advantage. Using one
of the previous examples as an illustration, here is a typical use of
DJNZ.

PARITY XOR A CLEAR PARITY AND C

LD B,8 INITIALIZE COUNT

LD HL,MEMOP MEMORY OPERAND ADDRESS
LOOP RLC (HD) SHIFT OUT BIT TO CY

JR NC,JUMP1 GO IF NOT A ONE BIT

XOR 1 FLIP PARITY INDICATOR
JUMP1 DIJNZ LOOP GO IF NOT 8 BITS
DONE A REGISTER NOW 0 IF EVEN

# OF 1 BITS, 1 IF NOT

The DJNZ executes in 3.25 microseconds for the jump and 2.0
microseconds if the result is 0. The equivalent DEC and JR execute
in 4.0 and 2.75 microseconds for the jump and no jump, respectively,
and use one more byte in memory.

SUBROUTINE USE

A subroutine is CALLed by a CALL instruction and terminated
by a RETurn instruction. A subroutine almost always executes a
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return instruction to properly pop the return address from the stack.
If this is not done, subsequent pops will pull the wrong data from
the stack. The only other alternatives to executing a return is to rein-
itialize the stack by an LD SP instruction for some catastrophic sys-
tem malfunction, or to increment the stack pointer by two to “reset”
the SP to the point at which the return would have left it, The latter
grooegure is poor programming practice although it can easily be
one by:

ADJUST INC SP DO NOT RETURN
INC sP TO CALLING PROGRAM

We have seen subroutine use in previous examples. The simplest
case is a subroutine that performs one function only. No parameters
are passed to the subroutine and the subroutine executes its prede-
fined function and returns to the calling program. An example of
this is the code below which shifts the DE register pair one bit posi-
tion to the right in a logical shift.

SHRL SRL D SHIFT HIGH ORDER
RR E SHIFT LOW ORDER
RET RETURN TO CALLING PROGRAM

In many cases, however, subroutines will perform a function that
requires a parameter or number of parameters defining the function.
A simple example of this would be the more functional subroutine
that follows which shifts the DE register logically right a specified
number of times. The argument N is passed in the B register.

MSHRL CALL  SHRL SHIFT DE ONCE
DJNZ MSHRL  CONTINUE N TIMES
RET RETURN TO CALLING PROGRAM

When there are many arguments to be passed to the subroutine,
there are a number of solutions. The contents of the CPU registers

PUSH AF SAVE A PARTIAL RESULT
PUSH BC SAVE BC

PUSH DE SAVE DE

PUSH IX SAVE BUFFER ADDRESS
LD AMODE SYSTEM MODE

LD  BCSOURCE  1/O BUFFER ADDRESS
LD  DECOMIST  1/O COMMAND LIST

LD  IX,ERADR ERROR MSG ADDRESS
CALL WRTAPE WRITE OUT TAPE RECORD
POP  IX RESTORE

POP DE ALL

POP BC REGISTERS

POP AF

¢
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may be temporarily saved in the stack, and then used as parameter
storage before the subroutine is called. Once the subroutine action
has been completed, the original register contents can be retrieved
from the stack.

Another way of passing a number of arguments is to put the argu-
ments (or parameters) into a parameter list in memory. The address
of the list can then be loaded into one of the register pairs, or index
registers, and passed to the subroutine, which can then easily pick
up the arguments.

LD 1Y,IOBLK LOAD PARAMETER LIST
CALL WRTAPE WRITE OUT TAPE RECORD

The following subroutine, BXOAS, converts a 16-bit binary value
in the DE register to a string in octal digits and stores those digits in
a specified buffer area. The parameters to be passed are defined in
a calling sequence that is nothing more than a description of the
parameters used in the subroutine, how they are passed, and how
the subroutine is used. Many times it is convenient to define the
calling sequence in the assembly code itself as follows:

R e e s e s

;3 % SUBROUTINE BXOAS *
3 *
3% FUNCTION: THIS SR CONVERTS A 16-BIT *
3 *® BINARY NUMBER IN D,E TO A SIX-DIGIT *
e ASCIl CHARACTER STRING. *
3% CALLING SEQUENCE: *
y % (H,L) = POINTER TO CHARACTER BUFFER + 5 *
3k (D,E) = BINARY # *
3 ¥ CALL BXOAS *
3k (RETURN WITH CHARACTERS *
3% CONVERTED, (HL) = FIRST CHARACTER *
M POSITION IN BUFFER — 1, ALL OTHER *
e REGISTERS SAVED *
3% ERROR CONDITIONS: NONE *

;**************************************************

BXOAS PUSH DE SAVE NUMBER
PUSH AF SAVE A, FLAGS
PUSH BC SAVE BC
LD C 6 LOAD ITERATION COUNT
LOOP LD A7 MASK
AND A E GET CURRENT OCTAL #
ADD A, 30H CONVERT TO OCTAL AsClil
LD (HL), A STORE
DEC HL BUMP CHARACTER PNTR
DEC DECREMENT ITERATION CNT

C
JR Z, DONE GO IF DONE
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LD B, 3 FOR SHIFT SUBROUTINE

CALL MSHRL SHIFT DE 3 PLACES RIGHT
JP LOOP CONTINUE
DONE POP BC RESTORE ALL
POP AF REGISTERS AND
POP DE RETURN
RET

The preceding subroutine illustrates another important aspect of
subroutine use. It is important to know which registers the subrou-
tine uses and which registers are saved. BXOAS saves all registers
used, such as DE (shifted and masked), A (used for conversion),
and C (used for iteration counting). In addition, BXOAS calls an-
other subroutine, MSHRL, which uses the B register, so that the
B register must also be saved. The preceding sequence, by the way,
uses three levels of subroutines. BXOAS calls MSHRL, which calls
SHRL. This nesting of subroutines can be extended to as many levels
as convenient. Stack operations are automatic and create no prob-
lems as long as there is a return for every call and a pop for every
push.

All of the above examples have dealt with unconditional CALLs
and RETurns, but conditional calls and returns may also be made.
The conditions and mnemonics for these are the same as for the con-
ditional extended jumps, as shown in Table 14-2.

The uses of the conditional calls and returns are identical to the
applications of their unconditional counterparts. In the following
example, an argument is loaded into A and subroutine ABSVAL is
called if the number is negative. A bit test instruction tests the sign
bit to reset the Z flag if the number is negative.

LD A, (IX) LOAD FIRST ARGUMENT
BIT 7, A TEST SIGN
CALL NZ, ABSVAL TAKE ABS VAL [F NECESSARY

An example of a conditional return is in the following routine
which finds the integer portion of the square root of an 8-bit number.

Table 14-2. Conditional Calls and Returns

Flag Call Return
NZ CALL NZSRTN RET NZ
z CALL Z,SRTN RET Z
NC CALL NC,SRTN RET NC
(o) CALL C,SRTN RET C
PO CALL PO,SRTN RET PO
PE CALL PE,SRTN RET PE
P CALL P,SRTN RET P
M CALL M,SRTN RET M
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The square is in the A register on entry and the integer portion of
the square root is in B on exit.

SQRT b B,0 INITIALIZE SQ ROOT
b C1 INITIALIZE FIRST ODD #

LOOP SUB A,C SUBTRACT NEXT ODD INTEGER
RET M RETURN IF DONE )
INC C
INC C BUMP TO NEXT ODD INTEGER

INC B BUMP PARTIAL SQ ROOT
JP LOOP CONTINUE

None of the instructions in the jump, call, or return groups alter
the condition codes when a jump is made to another memory loca-
tion, or subroutine. This means that a subroutine may pass back
parameters in the condition-code flags themselves as in the follow-
ing example where the carry from a 4-byte add is passed back on
exit from the subroutine, in addition to the other flags.

ADD4 LD BC, (ARG1T + 2) LS 2 BYTES OP 1
LD HL, (ARG2 + 2) LS 2 BYTES OP 2

ADD HL,BC OP 1 +OP 2 1S

LD (ARG1 + 2), HL STORE RESULT LS

LD BC, ARG1 MS 2 BYTES OP 1

LD HL, ARG2 MS 2 BYTES OP 2
ADC HL, BC OP 1+ OP 2 MS

LD (ARG1), HL STORE RESULT MS

RET RETURN WITH C, Z, P,

SET

The RST, or restart instruction, is rather a “leftover” from the
8080 implemented for compatibility. The NMI and mode 1 interrupt
capability serves small microcomputer configurations well, and the
mode 2 interrupt capability is excellent for larger configurations
with many interrupts of different levels.

If the RST is not to be used in external interrupt circuitry (mode
0), then it may be used as a special 1-byte call. The RST performs
the same actions as a call, but allows a jump to only one of eight
page zero locations, 00H, 08H, 10H, 18H, 20H, 28H, 30H, or 38H.
The advantage of using the RST is that if frequently called subrou-
tines are vectored from page 0 some memory will be saved as the
1-byte RSTs replace 3-byte calls. The stress here is on “frequently
called.” If 100 parameter calls are made to a subroutine in the course
of a program, then 200 locations in memory will be saved, a signifi-
cant savings for minimum configuration systems. Although the eight
locations available for each CALL limits the subroutine action quite
severely, some subroutines may be implemented in eight bytes and
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in others the page 0 location may simply hold an extended address-
ing JP to another memory area. If all of the above is worth the trou-
ble, typical RSTs would appear as follows.

ORG 0
LD (HL), A STORE A
INC  HL INCREMENT
RET
ORG 08H
LD A, (HD) LOAD A
INC  HL INCREMENT
RET
ORG 10H
RLCA ROTATE A 4 LEFT
RLCA
RLCA
RLCA
RET
§
STRING EQU ©
LDINC EQU O8H
RO4LF EQU 10H

RST  LDINC LOAD BYTE 1
RST  STRING STORE

RST  LDINC LOAD BYTE 2
RST  STRING STORE

RST  LDINC LOAD BYTE 3
RST_ ROALF ROTATE 4

AND A, FH STRIP BCD DIGIT

The three routines at locations 0, 08H, and 10H are typical of the
commonly used routines that could be placed in page 0. The call is
made to the proper page 0 location by the RST with an argument
previously equated to the page 0 location. RST LDINC would be
identical to RST 0, for example.

REENTRANCY

The subroutine calls, returns, and stack instructions facilitate the
writing of reentrant code. Reentrancy in a portion of code means
that the code may be reentered due to interrupt processing. Reen-
trancy is no problem if the environment is saved when the interrupt
is received and if in the routine that is reentered, no common mem-
ory locations are altered. If common memory is altered, then reen-
trancy may destroy the results or partial results of the previous users
of the reentered routine.
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Consider the following example. The routine below stores the con-
tents of the A register in temporary storage location in memory
called TEMPL. No interrupts are active. Several instructions after
the store, an interrupt occurs. As the interrupts are enabled, the in-
terrupt is acted on and the interrupt processing routine is entered.
During the course of the interrupt processing, the interrupt process-
ing routine calls subroutine FINDIT. As the subroutine was being
executed when the interrupt occurred, it is reentered. During the
course of the routine, a new value is stored in TEMPI. Later, the
subroutine is executed and a return made back to the interrupt proc-
essing routine. Eventually, the interrupt processing routine finishes,
restores the environment, and executes a RETI or RETN to return
back to the interrupted point, in this case location BACKHR. At the
next instruction, the contents of the A register is reloaded, but the
value reloaded is the value stored for the second entry of FINDIT,
not the first! Reentrancy has destroyed the previous contents of
TEMP1.

REENTRY —— FINDIT é

LD (TEMP1), A SAVE A TEMP

LD A, (HL) GT NXT PARAM
LD B, (IX+ 30H) GT 2ND VALU
ADD A, B
INTERRUPT - LD (HL), A STORE RESULT
ENTER HERE > BACKHR LD A, (TEMPT) RESTORE
AFTER
INTERRUPT
PROCESSING
RET RETURN
TEMP1 DEFS 1 TMPRY STRG

TEMP2 DEFS 1

There are many ways around reentrancy. The easiest is to never
alter common memory locations within a subroutine. The stack ac-
tions for storage will automatically save parameters and provide
almost unlimited temporary storage of variables. With stack storage,
a subroutine can be reentered as many times as practical while still
preserving temporary storage for each entry level. If it becomes
necessary to use areas of memory for storage, then reentrancy is still
possible if there is a separate user area for each level of reentrancy.
In a simple example of this, let us say there are five users that cause
five separate interrupts. The interrupt processing for each of the
interrupts calls subroutine GETCH that reads the next available
character from a keyboard input and stores it in the next buffer loca-
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tion for the user. The interrupt processing routine would call the
subroutine with a user number.

LD A3 THIS IS USER # 3
CALL GETCH LOOK FOR NEXT CHARACTER
OR A SET FLAGS

JP NZ,AVAIL GO IF CHARACTER AVAILABLE

The subroutine at GETCH would utilize the user number to find
the predefined user area (or task block) for storage of data and vari-
ables if required.

GETCH PUSH AF SAVE USER #
SLA A (USER #) * 2
LD CA (USER #) * 2 IN BC
LD B,0
LD HL,BUFTB TABLE OF BUFFER ADDRESSES
ADD  HLBC
LD E,(HL)
INC HL
LD D,(HL) GET BUFFER ADDRESS
CALL  READK READ KEYBOARD
JP Z,0Ut GO IF NONE AVAILABLE
LD (HL)A STORE CHARACTER
BUFTB DEFW BUFFO TABLE OF BUFFER
DEFW  BUFFI1 ADDRESSES USERS
DEFW  BUFF2 0 THRU 4
DEFW  BUFF3
DEFW BUFF4

Other ways to avoid the reentrancy problem are “lock-outs” of
subroutines in use, disabling of interrupts during critical sequences,
and replication of code for each level of user, but the above tech-
niques are probably the most common and the use of stack for tem-
porary storage is the cleanest implementation.
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CHAPTER 15

I]0 and Interrupt Operations—
I10 and CPU Control Groups

The I/0 instructions allow the Z-80 system user to input or output
data a byte at a time under programmed I/O. Compatibility with
the 8080 is provided in the Z-80 IN A,(N) and OUT (N),A instruc-
tions which transfer data by means of the A register only. Data may
be transferred between any general-purpose CPU register and the
I/0 device controller with the IN R,(C) and OUT (C),R instruc-
tions, however. I/O block transfer instructions allow semi-automatic
or automatic transfer of up to 256 bytes of data with an operation
similar to the other block-oriented instructions.

The interrupt actions in the Z-80 are controlled by the interrupt
enable, disable instructions and by the interrupt mode instructions.
Several interrupt modes are possible, depending on system configu-
ration. The maximum interrupt capability of a Z-80 system will han-
dle many levels of interrupts with priority encoding and automatic
vectoring.

A REGISTER I/O INSTRUCTIONS

The IN A,(N) and OUT (N),A I/O instructions are downwards
compatible with the equivalent IN and OUT 8080 instructions. Both
instructions are a 2-byte immediate instruction with the first byte
specifying the operation code and the second byte specifying an
8-bit I/O address N from 0 through 255. As described in Chapter 8,
when an IN A,(N) instruction is executed, the I/O port address N
is placed on address lines A7 through A0. The addressed device con-
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displays, and others require no more sophisticated communication
than the above. There may be embellishments with more particulars
about device states (parity, device ready, etc.), but the above rou-
tines, or ones like them, are quite usable for simple I/O devices.

Prior to the input and output operations above, a clear command
may have been issued to the I/O device. This is generally done be-
fore each block of I/O transfers when the device should not be
“hung” in an erroneous busy state to clear the status and initialize
data transfers. Depending on the I/O device controller involved, this
may range from a simple write of a clear command to the status port,
or something more elaborate.

1/0 INSTRUCTIONS USING C REGISTER

The remaining nonblock transfer I/O instructions utilize the C
register in holding the 1/O address, 0 through 255. Data may be
transferred to one of the general-purpose CPU registers A, B, C, D,
E, H, or L by the IN R,(C) instruction. Data may be transferred
from one of the registers to an I/O device by the OUT (C),R in-
struction. In both cases, the C register must be loaded with the I/O
device address. The contents of the C register is output to address
lines A7 through A0 while the contents of the B register are output
to address lines Al5 through A8. The B register contents may be
used for communication of status or for outputting the current byte
count, as in the I/O block transfer instructions to be discussed. They
may, of course, also be ignored, as the C register holds the actual
device address and the data bus is used to transfer data to and from
the I/O device controller. Setup of the registers for these I/O in-
structions are similar to the previous I/O instructions using the A
register.

WRITEC LD D,(HL) GET NEXT CHARACTER
LD C,30H DEVICE ADDRESS
LOOP IN E(C) GET STATUS
JP Z,LO0OP GO IF NOT READY
out DQ) OUTPUT DATA BYTE
RET RETURN

In the preceding routine, the D register was loaded with the data
to be output and the C register was loaded with the device address
of 30H. Here the status port address is the same as the data port
address, assuming a “write only” device that supplies status for a
read. The IN E,(C) instruction inputs status into the E register. One
bit of status, ready (1) or not ready (0) was assumed. If the device
was ready, the data in the D register was output by the OUT D,(C)
instruction.
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stored in the teletypewriter controller buffer (no earlier than 100 ms
for a typical teletypewriter).

As described in previous chapters, this routine is very much 1/0
bound. Most of the execution time of the routine is spent in the
three-instruction loop waiting for the next data byte to appear and
set the ready status. The alternative method of interrupt transfers is
described later in this chapter. It is one way to overlap processing
and I/0. The maximum data transfer rate of the above loop can be
easily calculated. The four instructions require a total execution
time of 10.0 us. If a high-speed I/O device was able to transfer one
byte every 10 us, this timing loop would just be able to keep up
with it with perfectly synchronized timing. The absolute maximum
data transfer rate would thus be 100,000 bytes per second. High-
speed I/O devices rarely use a timing loop such as this; most devices
that are high-speed, relatively synchronous devices will use DMA,
or direct-memory-access. DMA allows the device controller to access
external memory independently of CPU processing, and enables
overlap of I/O transfers and CPU processing that is transparent to
the program being executed. DMA operations ‘are described later in
this chapter.

The OUT (N),A instruction functions quite similarly to the IN
A,(N) instruction. The output process proceeds as follows: The
ready status of the device controller is first tested by reading in the
status. If the device controller is ready (done processing the previ-
ous character), the program performs an OUT (N),A, outputting the
previously loaded A register to the data bus. The output sets the
“busy” status in the device controller. When the character has been
transmitted from the device controller buffer to the 1/O device, the
busy status is reset. A typical output subroutine for one character
output would appear as shown next.

WRITEC EQU $ WRITE CHARACTER ROUTINE
LOOP IN A1) GET STATUS

BIT 1A TEST READY STATUS

JP NZ,LOOP GO IF NOT READY

ouT (0),A OUTPUT BYTE

RET RETURN

Here, the status is assumed to be compatible with the input routine,
bit 1 of the status indicating that the output section of the device
controller has finished writing the last byte. When the device con-
troller indicates “not busy” (bit 1 =0), the contents of A are output
to the data channel of the device.

The above routines are designed to output, or input, one character
at a time in simplistic fashion, yet many devices, such as teletype-
writers, paper-tape readers and punches, line printers, certain crt
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DCR C DECREMENT COUNT
JP NZ,STATUS LOOP IF NOT 100 BYTES
RET RETURN

Although the INI is extremely convenient, as it handles the over-
head operations of storage and memory and pointer maintenance,
the I/O operation s still a programmed 1/O loop. No other code can
be executed until the I/O transfer is complete; the CPU is I/O
bound at the speed of the I/O device. If an I/O block transfer is
done to a Teletype ASR-33 printer, the transmission rate will still
be 10 bytes per second, or 100 ms between bytes with most of the
time devoted to the “test status” portion of the I/O loop.

The INIR instruction is identical to the INI instruction except that
the total number of bytes specified in the B register are transferred
with the INIR instruction. As data is input, it is stored into memory
in forward (low memory to high memory) fashion. Each iteration
of the INIR takes 5.25 us if more data is to be transferred (B regis-
ter not zero). The maximum data transfer rate is therefore close to
190,000 bytes per second. The INIR has no capability to test device
controller status; there is no “built-in” handshaking logic. The ques-
tion arises, then, of how the CPU is informed when the next data
byte is available. The answer is that it is not informed. The 1/O
device controller must be fast enough to transfer data at a 200 kb/sec
rate or must insert I/O wait states to effectively make the INIR in-
struction time equal to the data transmission rate of the I/O device
(see Chapter 8). The actual time of the INIR instruction is, there-
fore, dependent on the I/O device and the INIR transfer will com-
plete after N bytes have been transferred at the I/O device speed.
If the hardware wait state is used it has been substituted for the soft-
ware status check of the INI instruction. The following code shows
a typical INIR input loop.

READC LD HL,BUFFER BUFFER ADDRESS

LD B,200 BYTE COUNT

LD C,30H 1/O DEVICE ADDRESS

INIR INPUT 200 BYTES
DONE 5 DONE HERE

The IND and INDR instructions operate exactly the same as the
INI and INIR instructions except that the transfers build I/O data
down from high to low memory. Everything else is the same as
shown next.

READC LD  HLBUFEND END OF BUFFER
LD BC,25600+23H 100 BYTES & DEV ADD
STATUS IN D) GET STATUS
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The IN instruction using the C register is different from the former
A register IN instruction in that input data does set the condition
codes in the C register I/O instruction case. The sign flag, zero flag,
and parity flags are all affected by the input data and can be tested
after execution of an IN R,(C) instruction, as was done in the previ-
ous exanple.

I/0 BLOCK TRANSFER INSTRUCTIONS

The I/O block transfer instructions enable data to be input or out-
put in blocks of 1 to 256 bytes. The block access is either forward
through a block, or backwards through a block, as is the case in the
other Z-80 block instructions. Again, the transfers are either a byte
at a time per block instruction (semi-automatic) or the complete
block in one instruction (automatic).

The INI instruction transfers one byte of data from an I/O device
controller to memory. The C register is initialized with an I/O ad-
dress as in the case of an IN R,(C) instruction. As the INI is exe-
cuted, the input data is stored into the memory location pointed to
by the HL register. After the data is stored, the HL register pair is
incremented by one and a byte count in the BC register pair is dec-
remented by one. The Z flag is set if the contents of the BC register
pair equals zero after instruction execution. The following code
shows the setup of the registers for INI execution and the INI input
loop.

LD  HL,BUFFER BUFFER ADDRESS

LD  BC,25600+23H 100 BYTES & DEV ADD
STATUS IN D,©) GET STATUS

BIT 0,D TEST

JP ZSTATUS LOOP IF NOT READY

INt INPUT ONE DATA BYTE

JP NZSTATUS LOOP IF NOT 100 BYTES
DONE RET RETURN

The LD BC loads the B register with 100;, and the C register with
93H. The INI and JP instructions total 6.5 us and as a result, the
maximum data transfer speed is 50% greater than the 1/O loops
above. The INI replaces the following code in a conventional micro-
Pprocessor.

STATUS
IN A©) INPUT ONE BYTE
LD (HL,A STORE IN MEMORY
INC HL BUMP POINTER
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tively simple device that supplied one interface signal, busy or
ready. Although there are a number of devices that interface in such
a simple fashion, there are many other devices that require more
elaborate interfacing. A reel-to-reel magnetic tape has a variety of
functions that may be performed including reading a record, writing
a record, writing an end-of-file, forward or backward skips over
records or files, and so forth. In addition, the tape provides many
status outputs such as end-of-tape, load-point, parity error, end-of-
file, and off-line. Obviously, a software routine for this device has
to be considerably more complicated than just the simple loops de-
scribed. To provide a complete subroutine for servicing the more
sophisticated I/O devices or to provide additional capability for the
simple 1/O devices, most large software systems include a software
I/0O driver subroutine for each kind of I/O device in the system.
The I/O driver handles all communication with the device type and
acts as a software interface between portions of the system programs
that require I/O service and the I/O devices.

To illustrate this concept, assume that several floppy discs are con-
nected to the Z-80 system. The physical characteristics of each disc
are shown in Fig. 15-1. The basic functions that one would want to
perform with a floppy might be the following:

1. Read track N starting at sector M for J bytes into a specified
buffer.

2. Write from a specified buffer J bytes starting from track N,
sector M.

3. Position head to track N (in preparation for read or write).

® 32 SECTORS

o 77 TRACKS
@ 41K BITS OF DATAITRACK
SECTOR 31 SECTOR 0
SECTOR 4 OF
TRACK 20
17
/"
4
£
!
-b %z 360 RPM

s N
s SRRSO

Fig. 15-1. Typical floppy-disc characteristics.
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BIT 0D TEST

JP ZSTATUS LOOP IF NOT READY

IND INPUT ONE DATA BYTE

JP NZSTATUS LOOP IF NOT 100 BYTES
DONE RET RETURN

The OUTI instruction transfers one byte of data from a memory
location pointed to by the HL register pair to the device whose de-
vice address is in the C register. After the transfer, the contents of
the HL register pair is incremented by one and a byte count in the
R register is decremented by one. The Z flag is set if the contents of
the B register after the decrement is zero. The OUTI is very similar to
the INI except, of course, for the direction of the I/O transfer. The
following code shows the code to set up and implement the OUTI
transfer.

LD HL,BUFFER BUFFER ADDRESS

LD BC,25600+23H 100 BYTES & DEV ADD
STATUS IN D,(C) GET STATUS

BIT 0,D TEST

JP Z,STATUS LOOP IF NOT READY

OuTI OUTPUT 1 DATA BYTE

JP NZ,STATUS LOOP IF NOT 100 BYTES
DONE RET RETURN

The OTIR is an automatic output instruction analogous to the
INIR. From 1 to 256 bytes will be output from the specified block in
memory according to the byte count in the C register. The same im-
plementation as the INIR applies. If the device is slow compared to
the 190,000 byte-per-second rate of the OTIR, I/O, wait states must
be employed to match the speed of the I/O device and the CPU. A
typical output loop using the OTIR is shown next.

WRITE LD HL,BUFFER BUFFER ADDRESS

LD B,200 BYTE COUNT

LD C,30H 1/O DEVICE ADDRESS

OTIR OUTPUT 200 BYTES
DONE 6 DONE HERE

The OUTD and OTDR are almost identical to the OUTI and
OTIR except that the data is written from the output buffer starting
at the buffer end and working back. All other actions are the same.

SOFTWARE I/0 DRIVERS

The above discussion included examples of short subroutines in-
tended to read or write one character or block of characters to an
1/O device. The 1/O device in question was assumed to be a rela-
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troller outputs the data byte to be transferred to the data bus after
decoding the address and IORQ (and RD). The CPU then strobes
the data into the A register. When an OUT (N),A instruction is exe-
cuted, the address N is output to address lines A7 through A0, as in
the case of the IN instruction. Some time later within the OUT in-
struction cycle, the CPU outputs the contents of the A register onto
the data bus and also provides the IORQ and WR signals. The 1/O
device controller then strobes the 8-bit data into its internal register.
Both the IN A,(N) and OUT (N),A instructions output the device
address on A7 through A0 and duplicate the I/O device address on
Al5 through A8.

The simplest form of an IN instruction loop goes through the
following sequence:

1. Is the next data byte ready from device controller NP
2. If not, go to 1.

3. Input the data byte.

4. Exit the subroutine.

The preceding sequence requires that the device controller know
when the next data byte is ready and has some way of communicat-
ing the ready status to the CPU. The device controller must also be
able to decode the query for ready status and the request to transmit
the data byte. A simple way to implement the preceding instruction
is to assign one I/O address to the status query port, and one to the
1/O data port. Some format for the status must also be established
so that the CPU can decode the status in software. Assuming that a
Teletype keyboard is being read with a status port address of 1 and
a data port address of 0, the routine to read in one byte of data
would appear as follows.

READC EQU $ READ CHARACTER ROUTINE
LOOP IN A GET STATUS

BIT 0OA TEST READY STATUS

JP Z,LO0P GO IF NOT READY

IN A0 GET BYTE

RET EXIT

The subroutine first reads the status from the Teletype controller.
The controller responds by outputting the status byte which in this
case is all zeros in D7 through D1 and a 1 in DO if the next byte is
ready. The routine keeps on reading status until the status indicates
data ready. After this condition is detected, the CPU reads in the
data byte by addressing the data port of the teletypewriter controller
(device address 0). The action of reading in the data byte resets the
ready status in the teletypewriter device controller. The status re-
mains reset until the next character is typed by the operator and
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BYTE O T UNIT#-0,1,2,3
YiEo  [ONTT] _ SECTOR{ iTd 01,2
1 TRACK ¥ Bt et
: [0 FUNCTION 1= & INIERRUPT, 0 WAIT
FUNCTION: 0 = READ, 1 = WRITE:
3 BUFFER 2= POSITION, 3 = STATUS
p— LT
5 #0F BYTES FOR READ OR WRITE
6 STATUS BITS
7 STATUS TOF C: 0 = NORMAL
8 TYPE OF COMPLETION 1= ABNORNAL, SEE

Fig. 15-2. Floppy-disc 1/0 driver-parameter block.

4. Read current status from the disc.

As many as four disc drives usually connect to one controller, so
all of the preceding functions would also have a unit number of 0
through 3. Besides the previous physical functions, there may be
system options that might be desirable to implement. Some of these
might be:

1. Provide error indication if a read or write error.
9. Provide interrupt capability if desired.

A representative block of parameters to be passed to the floppy
disc I/O driver might appear as in Fig. 15-2. Basically, four functions
are implemented in word two bits 6 — 0. Function 00H is write, 01H
is read, 02H is position, and 03H is read status.

For a write or read, the buffer address is held in bytes 3 and 4
and the number of bytes to be transferred is in bytes 5 and 6. The
starting track and sector are in bytes 1 and 0 with the drive number,
0 — 3, in bits 7 and 8 of byte 0. The status after the read or write is
loaded after the read or write operation. The type of completion is
a 0, if no error occurred, or a —1, if an error occurred with further
status available to define the error in byte 7.

For a position function (02H) only the number of the drive, sec-
tor, track, and function need be specified. The I/O driver would
position the drive to the indicated track and sector and provide the
type of complete and status.

A status function (03H) would require only the drive number and
function. The I/O driver would pass the current status into the
status byte and also provide a type completion code.

The I bit in byte 2 would enable a calling program to perform a
“wait-for-complete” I/O if I =0 or an interrupt driven I/O for I =1.
If a wait for complete I/O was required, the I/O driver would not
return to the calling program until the function requested was com-
pletely finished. If I=1, then the I/O driver would set up the
proper interrupt logic in the controller, start the read, write, or posi-
tion, and then return to the calling program. At the termination of
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the function, the floppy-disc interface would detect the termination
of the read, or write, and provide an interrupt to the Z-80, initiating
the expected interrupt action.

The parameters above could be passed to the floppy-disc I/O
driver in a variety of ways, but the most typical would probably be
to pass a pointer in the HL or index registers.

LD 1Y,IOBLK LOAD IOBLK POINTER
CALL DISCD READ DISC
LD A(Y+8) GET TYPE OF COMPLETE

BIT 7.A TEST TOC
JP NZ,ERROR GO IF ERROR ON READ

¢

10BLK EQU
SECTOR DEFS
TRACK DEFS
FUNC DEFS

BUFFER DEFS
NOBYTS DEFS
STATUS DEFS
TOFC DEFS

The preceding code shows a pointer to the 1/O block being passed
in the IY index register and an IOBLK with the location of the
parameters defined. In many cases, the proper parameters will be
put in dynamically at run-time rather than being preassembled, as
many of them change depending on the type of I/O call.

The implementation of the I/O driver “DISCD” is not shown be-
cause it is strictly dependent on the type of floppy-disc drive and the
interface design. There will be quite a bit of latitude in how the
actual interface is implemented. Perhaps the 8080-type interrupt
mode 0 will be implemented instead of the mode 2 table-vectored
interrupts. Possibly I/O will be nonDMA instead of direct transfers
to memory. In any event, the I/O driver must translate the parame-
ters provided into proper 1/O instructions to initiate and complete
the I/0O actions required.

In many microcomputers, firmware in the device controller per-
forms the I/O driver functions, providing the user a more simple
interface than that described.

_m NN = — — s

DMA ACTIONS

In the preceding interface, DMA, or direct-memory access, may
be required. In many cases, the performance of DMA will be the
responsibility of the hardware logic of the device controller. It will
automatically communicate with the CPU via the BUSRQ and
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BUSAR signals described in Chapter 8 to “lock out™ the CPU dur-
ing a cycle-stealing access to memory to transfer data indepen-
dently of CPU instruction execution. Although the format of the
commands sent to the interface vary from system to system, a typi-
cal sequence would involve sending a buffer address, a byte count,
and a command code to define the nature of the DMA (read, or
write, and possibly other auxiliary functions). A sequence might
go somewhat as follows:

LD C,30H ADDRESS OF DISC BFR PORT

LD A,COMAND START COMMAND

out (O),A START DMA SETUP

LD DE,BYTES # OF BYTES FOR DMA

LD BC,BUFFER BUFFER ADDRESS

out (0.8

our (Q),.C OUTPUT TO DISC BFR REG

out ().D

our (Q,E QUTPUT TO DISC BYTE REG
LOOP IN A,(31H) GET STATUS OF DMA

BIT 0A TEST BUSY

JP Z,LOoP GO IF STILL BUSY

In the preceding sequence (and it is hypothetical although rep-
resentative), the buffer address and byte count are sent out in a
4-byte predefined sequence to 1/O port 30H. I/O port 30H is the
address of the floppy-disc controller DMA control registers. When
the controller receives the “start DMA setup” command, it expects
that the next 4-bytes output to port 30H will be the two bytes de-
fining the address for the DMA and the two bytes defining the num-
ber of bytes to transfer. After receiving the fourth byte, DMA action
starts immediately. Here, a second port address, 31H, may be
queried for status on the state of the DMA. The code shown here
is the familiar wait loop that continually checks ready status, dur-
ing time of DMA activity. Since one associates DMA with automatic
transfers transparent to the user program, the code at this point
would probably not wait for DMA complete, but finish any clean-up
actions required in the DISCD driver, and return to the calling pro-
gram. The calling program could then perform additional processing
functions until the interrupt associated with the floppy-disc DMA
occurred, if an interrupt was specified, or conceivably could periodi-
cally check DMA complete by another type of call to the DISCD
driver program.
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INTERRUPT OPERATIONS

The interrupt operations associated with the Z-80 system operation
are somewhat like the detailed I/O operations—rather difficult to
describe in the general case, without reference to a particular sys-
tem. The actual CPU instructions involved are the IM 0, IM 1, IM 2,
EIL and DI instructions which were discussed in earlier chapters in
conjunction with various interrupt modes. IM 0, IM 1, and IM 2 set
the appropriate interrupt mode, which is very much related to how
the system is configured for interrupts. Each device controller or
PIO will have its own address and hard-wired interrupt response
and probably only one of the three modes will be used for any given
system. DI and EI simply disable or enable interrupts, allowing
maskable external interrupts to become active. When the interrupt
enable flip-flop is set, interrupts cause an interrupt action dependent
on the interrupt mode in force (see Chapter 7). Ultimately, any in-
terrupt transfers control to an interrupt processing routine, usually
unique for every kind of interrupt.

In the interrupt processing routine, the first order of business is to
ascertain that other interrupts are disabled until the contents of all
registers and flags that will be used in the interrupt routine can be
saved. All maskable interrupts are disabled on an interrupt until the
issuance of the next EI instruction, so the following sequence can be
executed:

PTAPE EQU $ PTAPE INTERRUPT ROUTINE
PUSH AF SAVE ALL

NO MASKABLE PUSH BC REGISTERS

INTERRUPT PUSH DE AND FLAGS

CAN OCCUR PUSH HL

IN THIS PUSH IX

SEQUENCE PUSH 1Y :
El ENABLE INTERRUPTS

Here all registers except SP have been saved, indicating that the
interrupt processing will be quite extensive and will probably utilize
all registers. If the interrupt processing is relatively minor, and it is
known that certain registers will not be used, then those registers
need not be saved. It is hard to imagine an interrupt processing rou-
tine, however, in which flags would not somehow be affected, and
the PUSH AF (or EX AF,AF’) must always be executed. Once the
environment has been saved, then higher priority interrupts are free
to occur and be processed.

Interrupt processing actions are virtually unlimited, except that

230




in good system design interrupt processing is kept relatively short
compared to other tasks in the system. At the end of interrupt proc-
essing for the particular interrupt involved, the SP will point to the
last register pair saved and the environment may be restored by pops
(or exchanges) and a return made to the interrupted location by
either an RETI (return from maskable interrupt) or RETN (return
from nonmaskable interrupt).

RETURN DI DISABLE INTERRUPTS

POP 1Y RESTORE
NO MASK- POP IX ENVIRONMENT
ABLE POP HL
INTERRUPT POP DE
CAN OCCUR POP BC
IN THIS POP AF
SEQUENCE El ENABLE INTERRUPTS

RETI RETURN FROM INTERRUPT

Both the DI and EI prevent another maskable interrupt from oc-
curring during their execution. The EI instruction prevents an inter-
rupt from occurring until one instruction after the EI, allowing suc-
cessful completion of the RETI instruction to effect the return from
interrupt.

As the maskable interrupt (NMI) can occur at any time, it may
oceur at a time when maskable interrupts are disabled and registers
are being saved or restored or lock-out conditions for reentrancy are
in force. Order may still be retained, however, if the NMI interrupt
routine avoids stack use and utilizes a separate memory area to save
the environment. After processing is done and an RETN is executed,
the previous state of the maskable interrupt is restored and process-
ing can continue. As the NMI is usually implemented for cata-
strophic conditions, the validity of the system may be in question at
the end of the NMI routine and the recovery action may not be
required anyway.
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CHAPTER 16

Z-80 Programming—Commonly

Used Subroutines

This chapter discusses commonly used usbroutines and provides
some guidance about how to efficiently implement them in Z-80 as-
sembly language. Among the subroutines considered are comparison
routines, timing loops, multiply and divide subroutines, multiple-
precision arithmetic routines, routines to convert from ASCII to
binary, decimal and hexadecimal, and back again, a routine to “All”
data, a string comparison, and a table search. While these are cer-
tainly not all of the routines that will ever be used in Z-80 programs,
they do represent functions that need to be implemented again and
again, and could be made part of a permanent library of routines
that may be called on as required. Each subroutine discussed here
is considered from the standpoint of a separate functional module,
rather than in-line code. System design may utilize precanned mod-
ules such as these with overall system functional requirements in a
combination of “top-down” (system requirements) and “bottom-up”
(functional low-level subroutines) implementation.

COMPARISON SUBROUTINE

Many decisions are made based on the results of comparisons of
one operand with another. A convenient subroutine for comparison
would compare algebraically 8-bit operand A with 8-bit operand B
and provide an indication of A<B, A<=B, A=B, A>=B, or A>B.
If the call to the subroutine is followed by three relative jumps, then
the calling sequence could be:
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LD A,(OPERA) OPERAND A

LD B,(OPERB) OPERAND B

CALL CMPARE A:B

JR LTHAN RETURN HERE IF A < B
JR EQUAL RETURN HERE IF A = B
JR GTHAN RETURN HERE IF A > B

As in some high-level languages, the missing equalities of A<=B
and A>=B may be constructed by proper use of the return points,
such as this sequence that returns to location LTEQL if A<=B and
to GTTHAN if A>B.

LD A,(OPERA) OPERAND A
LD B,(OPERB) OPERAND B
CALL CMPARE A:B

JR LTEQL A < B RTIN
JR LTEQL A = B RTN
JR GTHAN A > B RTN

The actual code within the subroutine would be an expansion of

that in Chapter 11.

CMPARE CP B A:B
EX (SP),HL GET RETURN
JR ZEQUAL GO IFA =B
PUSH AF SAVE A, FLAGS
XOR B
JP P,SAME GO IF SIGNS EQUAL
POP AF RESTORE A, FLAGS

TEST JP C,LESST A<B
JP GREAT A>B

SAME POP AF
CCF
JP TEST

GREAT INC HL BUMP TO CALL + 4
INC  HL

EQUAL INC HL BUMP TO CALL + 2
INC HL

LESST EX (SP),HL RESTORE RTN
RET RETURN

The comparison is made after first retrieving the return address
from the stack (stack pointer remains unaffected). The return ad-
dress is then incremented to a return point to +2 or +4 bytes past
the return location stored by the call to reflect the return on <, =,
or >.
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TIMING LOOP

A timing loop may be used for a variable time delay for I/O proc-
essing, real-time interval timing, or a delay for operator response.
It is convenient to have a timing loop that will run from milliseconds
to 30 seconds or so. If the average instruction execution time is 2.5
s (4-Mhz clock), then 12,000,000 instructions will have to be exe-
cuted for a 30-second delay. A two-level nested loop will work if
each segment of the loop can delay about 3,000 counts or if one can
delay 300 counts, while the other delays 30,000 counts.

DELAY LD DE—1 FOR DECREMENT
LOOP1 LD HL,14814 INITIALIZE INNER LOOP
LOOP2 ADD HL,DE HL — 1

JR C,LOOP2 GO IF NOT 0

DINZ LOOP1

RET

The inner loop above takes 0.1 second to decrement HL from
14814 to 0. The outer loop is determined by the B register input
value so that:

DELAY = (B) X 0.1 sec. approximately

The maximum delay is 25.6 seconds with B = 256, but longer delays
can be implemented by altering the initialization value of HL.

MULTIPLY AND DIVIDE SUBROUTINES

An 8-bit by 8-bit unsigned multiply was discussed in Chapter 12.
The operands in this multiply are somewhat limited for many appli-
cations. A 16-bit by 16-bit multiply would handle most microcom-
puter applications; if more precision were required, a floating point
multiply would have to be implemented. In the 16-bit by 16-bit
multiply below, the multiplier is input in DE, unsigned, and the mul-
tiplicand is in BC, unsigned. The 4-byte output is passed in D, E, H,
and L. Overflow is not possible.

MULT16 LD A6 ITERATION COUNTER
LD HL,0 ZERO PRODUCT
LOOP BIT 7,D . TEST NEXT MIER BIT
JP Z,JUMP1 GO iF 0
ADD HL,BC ADD M'CAND
JP NC,JUMP1 GO IF NO CARRY
JUMPY INC DE CARRY TO MS BYTES
DEC A DECREMENT ITERATION COUNT
RET 4 RETURN
EX DE,HL
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ADD  HLHL SHIFT DE

EX DE,HL

ADD HL,HL SHIFT HL

JP NC,LOOP GO IF NO CARRY
INC DE CARRY TO MS BYTES
JP LOOP CONTINUE

The above implements a 16-bit by 16-bit unsigned multiply to give
a 32-bit product. A signed multiply would require a product sign
check, followed by a step to take the absolute value of the operands.
The unsigned multiply could then be called and the product recon-
verted to the proper sign. The sign check is easily implemented by
an exclusive OR of the signs of the two operands.

SIGNC LD AD OPERAND 1
XOR B XOR OF SIGN
LD A0
JP P,JUMP2 GO IF + RESULT
CPL -1 T0 A
JUMP2 LD (SIGN),A STORE 0 FOR +, —1 FOR —

A 16-bit by 8-bit unsigned divide was implemented in Chapter 12.
As was the case of the 8 by 8 multiply, the operands are somewhat
too small to be practical in many cases. A 32-bit by 16-bit unsigned
divide is shown next that will cover divides in which the quotient
can be resolved in 16 bits. The 32-bit dividend is input in H,L,D,
and E while the 16-bit divisor is in register pair BC.

DVDE6 LD A6 ITERATION COUNTER
LOOP ADD HL,HL SHIFT HL LEFT
EX DE,HL DE TO HL FOR SHIFT
ADD HL,HL SHIFT (DE)
EX DE,HL
JP NC,JUMP1 GO IF NO CARRY
INC HL CARRY TO MS 2 BYTES
JUMP1 OR A RESET CARRY
SBC HL,BC SUBTRACT DIVISOR
INC DE SET Q =1
JpP P,JUMP2 GO IFQ =1
ADD HL,BC RESTORE
RES 0,k SET Q = 0
JUMP2 DEC A DECREMENT COUNT
JP NZ,LOOP GO IF NOT DONE
RET RETURN

At the completion of the divide routine, the 16-bit quotient is held
in DE and any remainder is in HL. Overflow will occur if the quo-
tient cannot be held in 16 bits. (No overflow indication is provided.)
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OR
LD
DJNZ
RET

AC
CA
LOOP

MERGE WITH RESULT
SAVE RESULT IN C
GO IF NOT DONE
RETURN

The next subroutine converts two ASCII characters, assumed to
be ASCII hex digits (0-9, A-F) to an 8-bit value in the A register.
On input, HL points to the first character in the string, on output,
HL points to the third character in the string.

c,0
A(HL)
CVERT

ASXHEX LD
LD
CALL
INC
LD
CALL
INC
RET

CVERT SLA
SLA
SLA
SLA
SUB
cp
JP
suB

JUMP1 ADD
RET

HL

A,(HL)
CVERT

HL

C
C
C
C
30|

H

A10
M,JUMP1
A7

AC

CLEAR RESULT
GET FIRST CHARACTER
CONVERT

GET SECOND CHARACTER
CONVERT

POINT TO THIRD CHAR
RETURN

ALIGN RESULT

CONVERT TO 0-15
CHECK FOR A-F

GO IF 0-9

CONVERT A-F TO 0-15
MERGE RESULT
RETURN

The bed conversion routine in this set converts two ASCII charac-
ters, assumed to be the ASCII bed digits 0-9, to an 8-bit value in the
A register representing two bed digits. As before, HL points to the
first character of the string on input and the third character of the

string on output.

ASXBCD LD
INC
SuB
RLCA
RLCA
RLCA
RLCA
LD
LD
suB
AND
INC
RET

A, (HL)
HL
A,30H

CA
A,(HD
A,30H
AC
HL

GET FIRST CHARACTER
BUMP POINTER
CONVERT TO BCD

ALIGN TO BITS 7-4
SAVE RESULT

GET SECOND CHARACTER
CONVERT TO BCD
MERGE

BUMP POINTER

RETURN

The decimal conversion routine makes use of a multiply by 10 by
shifting and adding. The five characters to be converted (leading
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LOOP LD A, (DE) GET SOURCE BYTE

SBC A,(HL) SOURCE-DEST-CARRY

LD (HLL,A STORE RESULT

DEC HL DECREMENT DEST PNTR
DEC DE DECREMENT SOURCE PNTR
DEC C

JR NZ,LOOP GO IF NOT N SUBTRACTS
RET RETURN

ASCII TO BASE X CONVERSIONS

It is convenient to have subroutines that will take a string of
ASCII characters representing ASCII binary, decimal, hexadecimal,
or bed digits and convert the ASCII characters to the proper number
of base representation. By employing these routines, data can be en-
tered from a keyboard and converted to variables to be used in exe-
cution of a program, or to instructions.

The general philosophy in the following routines will be that there
is a string of ASCII characters, starting at location (HL), that must
be converted to the proper internal format. ASCII characters repre-
senting binary numbers will be converted eight at a time since eight
bits can be held nicely in an 8-bit register. ASCII characters repre-
senting hexadecimal will be converted two at a time as two hex
digits may be held in eight bits; ASCII bed characters will be con-
verted two at a time for the same reason. When the data represents
ASCII decimal digits, the question becomes one of a convenient
length for conversion. Eight bits will hold the decimal values of 0 to
955, and sixteen bits will hold up to 65,536. Neither range lends itself
to consecutive conversions of strings of data as in the binary, hexa-
decimal, and bed cases. The decimal conversion will arbitrarily be
made of six ASCII characters, as this represents a reasonable range
of values to be input to a program. After each conversion, the pointer
to the string will be incremented by the number of characters con-
verted so that subsequent conversions can be made from the next
character in the string.

The following routine converts eight ASCII characters, assumed
to be ASCII ones or zeros, to an 8-bit binary value in the A register.
On input, HL points to the first character, and on output, HL. points
to the ninth character in the string.

ASXBIN LD B,8 SET COUNT
LD C,0 CLEAR RESULT
LOOP SLA C SHIFT RESULT
LD A(HD GET ASClI
INC HL BUMP POINTER
suB 30H CONVERT TO 0 OR 1

237




The second routine of this group converts an 8-bit binary value in
the C register to two ASCII hexadecimal digits. On entry, HL points
to the buffer area and on exit, HL points to buffer + 2.

BXASH

CVERT

JUMP1
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INPUT OUTPUT

ASXBIN
H  —
7 0
[ sBisIvRY___|A
8 AsCh \mu
BINARY CHARACTERS
ASXHEX
7 0
) )} [mmmww_]a
! i
2 AscH \(HLI
HEX CHARACTERS
ASXBCD
h— 7 0
(HLY | — } BCD DIGIT 1[BCD DIGIT2] A
H B
2 AsCIl \mu
BCD CHARACTERS
ASXDEC
(x 7 0

} tm-m nmmv:l "

5 ASCH
DECIMAL CHARACTERS X
Fig. 16-1. ASCI{ to base X conversions.

LD A,FOH
AND AC
RRCA

RRCA

RRCA

RRCA

CALL CVERT
LD AFH
AND AC
CALL CVERT
RET

ADD A,30H
Ccp A10
JP M, JUMP1
ADD ,

LD (HL,A
INC HL
RET

MASK
GET FIRST CHARACTER

ALIGN FOR CONVERT
CONVERT

MASK

GET SECOND CHARACTER
CONVERT

RETURN

CONVERT TO 0-15

GO IF 0-9

CONVERT 10-15 TO A-F
STORE IN BUFFER
BUMP POINTER

RETURN




zeros are not ignored) are pointed to by IX on entry. On exit, IX
points to the start of the string + 5, and HL holds the converted
result. The ASCII characters are assumed to be the ASCII decimal
characters 0 through 9.

ASXDEC LD B,5 SET UP COUNTER
LD HL,0 CLEAR RESULT
LOOP ADD HLHL RESULT X 2
PUSH HL
ADD HL,HL RESULT X 4
ADD HL,HL RESULT X 8
POP DE
ADD HL,DE RESULT X 10
LD A(IX) GET NEXT ASCHl CHARACTER
SUB A,30H CONVERT TO 09
LD EA
LD D,0 0-9 IN BC
ADD HL,DE MERGE IN RESULT
INC IX BUMP POINT
DINZ LOOP GO IF NOT 6
RET RETURN

Fig. 16-1 shows the actions of the four routines in the ASCII to
base X conversion group.

BASE X TO ASCII CONVERSIONS

The conversions in this group operate in reverse from the ASCII
to base conversions of the previous subroutines. Here, a binary value
is converted to ASCII binary, hexadecimal, bed, or decimal charac-
ters. On entry, a pointer to the buffer area is used to store the ASCII
result; on exit, the pointer points to the next available storage byte
in the buffer.

The next routine converts an 8-bit binary value in the C register
to a string of eight ASCII binary characters stored in buffer through
buffer + 7. On entry, HL points to the buffer area and on exit HL
points to buffer + 8.

BXASB LD B8 SET COUNT
LOOP LD A,30H ASCIl ZERO
BIT 7,C TEST MSB
JP Z,JUMP1 GO IF 0
INC A ASCII ONE
JUMP1 LD (HL,A STORE ASCII CHARACTER
SLA C SHIFT FOR NEXT COMPARISON
INC HL POINT TO NEXT POSITION
DINZ LOOP GO IF NOT DONE
RET RETURN
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P10TAB DEFW 10000

DEFW 1000
DEFW 100
DEFW 10
DEFW 1

Fig, 16-2 shows the actions of the four routines in the base X to
ASCII conversion group.

INeuT ouTPUT
BXASB
)
QUTPUT BUFFER
FILLED WITH 8
ASCI1 BINARY CHARACTERS
BXASH
- H
c BT BINARY _—
H QUTPUT BUFFER
FILLED WITH 2
ASCI1 HEX CHARACTERS
BXBCD
¢ [EcoviGiT[eco oGt z}/E/mu
H H
L QUTPUT BUFFER
FILLED WITH 2
ASCI1 DECIMAL CHARACTERS
BXDEC
nx1
! 16 BIT BINARY }/ /

(1X)
OUTPUT BUFFER

FILLED WITH 5
ASCI1 DECIMAL CHARACTERS

Fig. 16-2. Base X to ASCII conversions.

FILL DATA ROUTINE

The following routine £ills a block of memory with a specified 8-bit
binary value. This routine is useful in zeroing tables or for filling a
known data value into buffers (such as all blanks to initialize a print
buffer). The value to be filled is input to the A register, the starting
address for the £l is contained in the HL register, and the number
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The next routine in this set converts an 8-bit value in the C regis-
ter, assumed to be two bed digits, to two ASCII decimal digits 0-9.
On entry, the HL register pair points to the buffer area and on exit,
HL points to buffer + 2.

BXBCD LD A,FOH MASK
AND AC GET FIRST BCD DIGIT
RRCA
RRCA
RRCA
RRCA ALIGN FOR CONVERT
ADD A,30H CONVERT TO 0-9
LD (HL,A STORE
INC HL
LD A,FH
AND AC GET SECOND BCD DIGIT
ADD A,30H CONVERT TO 09
LD (HL,A STORE
INC HL
RET RETURN

The last routine converts a 16-bit binary value in the HL register
to five ASCII characters 0-9. On entry, IX points to the start of the
character buffer; on exit, IX points to the start of the buffer + 5. To
avoid a 16 by 8 divide with a remainder, use is made of a table
lookup to find powers of ten. The table consists of 10¢, 10%, 10%, 10%,
and units, and is indexed by the current iteration count of the loop.
A successive subtraction of the power of ten is performed to find the
number of times each of the powers of ten will “go into” the residue.
The number of times each can successfully be subtracted is the deci-
mal digit for that power of ten.

BXDEC LD IY,PTOTAB POWER OF TEN TABLE
LOOPO XOR A SET DIGIT CNT = 0 |
LD D,(IY) !
LD EQY + 1) LOAD — POWER OF TEN |
LOOP1 OR A CLEAR CARRY
SBC HL,DE SUBTRACT POWER OF 10
JP NC,JUMP1 GO IF DONE
INC A BUMP DIGIT COUNT
JP LOOP1
JUMP1 ADD HL,DE RESTORE TO POSITIVE
LD (1X),A STORE DIGIT COUNT
INC IX BUMP BUFFER POINTER
INC Y
INC Y POINT TO NEXT POWER OF 10
Ccp E TEST FOR 5 DIGITS
JP NZ,LOOPO  OUTER LOOP
RET RETURN
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of bytes to fill is in the B register. Up to 256 bytes can be filled at
one time (if the B register specifies 0, then 256 bytes are filled).

FLDATA LD (HL),A STORE BYTE
INC HL BUMP POINTER
DINZ  FLDATA CONTINUE IF B NOT O
RET RETURN

STRING COMPARISON

The following routine compares a string of data with another
string of data. The strings may be of any length up to 256 bytes and
typically would be search keys in a table or possibly textual strings.
A comparison result indicating whether string A is less than, equal
to, or greater than string B is returned. The address of string B is
passed in the HL register pair and the address of string A in the DE
register pair. The number of bytes in the strings (both lengths must
be equal, of course) is passed in the B register. If the byte count is
0, 256 bytes will be compared. The comparison result is returned in
the A register. If A<0, string A is < string B; if A=0, string A=
string B; and if A > 0, string A is > string B. All comparisons are of
8-bit unsigned values.

COMSTR LD A,(DE) GET BYTE OF STRING
SUB (HL) A—B
RET NZ GO IF NOT EQUAL
INC DE BUMP A PNTR
INC HL BUMP B PNTR
DINZ COMSTR CONTINUE IF NOT AT END
RET RETURN

TABLE SEARCH ROUTINE

The following subroutine is a general-purpose routine for search-
ing a table of n entries where each entry is made up of m bytes. The
key for the search is eight bits and the search value for each entry
is assumed to be in the first byte of the table. The parameters input
to the routine are the search key in the A register, the start of the
table in the IX register, the number of entries in the B register, and
the number of bytes per entry in the E register. These are illustrated
in Fig. 16-3. The search progresses down through the table. If the
key is found, the address of the first matching entry is returned in the
IX register; if the key is not found, a —1 is returned in IX. All pa-
rameters in A, B, and E are maintained so that the subroutine can be
immediately reentered to search for the next matching key; the value
of the search key and number of bytes per entry will be unchanged,
and the number of entries in B will be modified to reflect the number
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A signed divide can be implemented in the same manner as the
signed multiply. The sign of the quotient is determined by an exclu-
sive OR of the signs of the two operands. The absolute values of the
two operands are then taken and the unsigned divide is called. After
the divide, the quotient and remainder are converted to the proper
sign.

MULTIPLE-PRECISION ARITHMETIC ROUTINES

The routines in this group provide n-precision adds and subtracts.
From 1 byte to many bytes of precision may be used. The add mul-
tiple routine adds the n-precision destination operand starting at the
location pointed to by HL to the n-precision source operand starting
at the location pointed to by DE. The n-precision result is put into
the destination locations. The number of bytes of precision is con-
tained in C. The carry is set on return to reflect the last (most sig-
nificant) add.

MPADD LD B,0 NOW HAVE N IN BC
ADD HL,BC POINT TO LS BYTE + 1
DEC HL POINT TO LS BYTE
EX DE,HL
ADD HL,BC LS BYTE + 1
DEC HL LS BYTE
EX DE,HL SOURCE POINTER IN DE
OR A CLEAR CARRY

LOOP LD A,(DE) GET BYTE
ADC A(HL) SOURCE + DEST + CARRY
LD (HL),A STORE RESULT
DEC HL DECREMENT DEST PNTR
DEC DE DECREMENT SOURCE PNTR
DEC C
JR NZ,LOOP GO IF NOT N ADDS
RET RETURN

The subtract multiple routine operates identically to the add mul-
tiple routine above, except that the destination operand is subtracted
from the source operand and the result is stored in the destination
location. The carry is set on return to reflect the last (most signifi-
cant) borrow.

MPSUB LD B,0 NOW HAVE N IN BC
ADD  HLBC POINT TO DEST LS BYTE + 1
DEC HL POINT TO LS BYTE
EX DE,HL
ADD  HLBC POINT TO SOURCE LS BYTE + 1
DEC HL LS BYTE
EX DE,HL SOURCE PNTR IN DE
OR A CLEAR BORROW
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SECTION III

Z-80 Microcomputers




Courtesy Zilog, Inc.
Fig. 17-1. Zilog Z-80 MCBT™ microcomputer board.

mable baud-rate generator. A 19.6608-MHz crystal oscillator pro-
vides both the basic 2.547-MHz clock for microprocessor operation
and frequencies for various serial 1/O. Three-state buffers are used
on all data, address, and control lines and a 122-pin connector is used
to provide interfacing to other logic in the system, or compatible
MCB modules. External power supply requirements are +5 VDC
at 10 watts maximum.

MCB MEMORY

The nominal memory mapping for the MCB is shown in Fig. 17-3.
The 4K bytes of EPROM, PROM, or ROM are normally located in
block 0 (memory locations 0000H to OFFFH) with the 4K bytes
of RAM in block 1 (1000H to 1FFFH). Both the read-only memory
and RAM, however, can be relocated anywhere in the 64K byte
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CHAPTER 17

Zilog, Inc.

Zilog, as do many microprocessor chip manufacturers, offers a
complete microprocessor development system, the Z-80 Develop-
ment System. This is a turn-key system with which the commercial
user can develop Z-80 programs. The Z-80 Development System in-
cludes dual floppy-disc drives, 16K capacity RAM memory, full
software including a debug package, operating system, editor, as-
sembler, and file maintenance. In addition to the development sys-
tem, Zilog offers a complete set of microcomputer modules including
a Microcomputer Board (MCB), Disc Controller Board (MDC),
and a RAM Memory Board (RMB). The modules may be supple-
mented by chassis, power supplies, and floppy discs to make up the
microcomputer configurations desired.

Z-80 MCB™ MICROCOMPUTER BOARD

The Z-80 MCB™ is a complete 7.7- X 7.75-inch single-board com-
puter shown in Fig. 17-1. A block diagram of the MCB is shown in
Fig. 17-2. The heart of the MCB, of course, is the Z-80 microproces-
sor chip. RAM memory consists of 4K of dynamic RAM on the MCB
board. Up to 4K of EPROM, PROM, or ROM may be used on the
MCB. Zilog provides a monitor program that is available in 1/2K,
1K, and 3K versions. Parallel 1/O capability is provided on the MCB
with a single PIO chip. I/O capability for serial I/O devices such as
teletypewriters and teletypewriter-compatible devices is imple-
mented by a USART chip (Universal Synchronous/Asynchronous
Receiver/Transmitter). A Zilog CTC™, Counter Timer Circuit, pro-
vides a real-time clock capability and is also used as a program-
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E #BYTES/ ENTRY
B #OF ENTRIES
A 8-BIT KEY VALUE
(X0
ENTRY 1 #BYTES/ENTRY
ENTRY 2
#ENTRIES
ENTRY N-1
ENTRY N
BYTEO KEY
1
2
TYP{CALENTRY
M BYTESLONG, KEY
INBYTEO
M-1

Fig. 16-3. Table search routine.

of entries remaining in the table. The reentry address is a second
entry point in the routine. The initial entry is at SRTAB, while the
“reentry” point is at SRTABL.

SRTAB LD D,0

LOOP cP A(IX)
RET z

SRTAB1  ADD  IX,DE
DINZ LOOP
LD 1X,—1
RET
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NOW HAVE # BYTES/ENTRY IN D,E
COMPARE SEARCH KEY TO ENTRY
GO IF MATCH

BUMP IX TO NEXT ENTRY

GO IF NOT LAST ENTRY

FLAG FOR NOT FOUND

RETURN




+5VDC

UP T &

PROM/ROM/

ADDRESS BUS ~4+——i} EPROM
MICRO- 1 4k DYNAMIC

DATA BUS ~———— PROCESSOR o

CONTROL SIGNALS ~t———n- 110 PORT EXTERNAL
e TORTXTAL | ADPRESS = pogr seiEcrs
8% 4—— OSCILLATOR

USART | Z80-PI0 | Z80-CTC

SERIAL  PARALLEL 4]
1o 1 110
Fig. 17-2. Z-80 MCB™™ functional block diagram.

addressing range of the Z-80 by slight modifications to the MCB
board. The MCB uses 4K bytes of dynamic RAM in an eight-chip
4K x 1 configuration. At least part of the possible 4K bytes of
ROM in the MCB will probably be one of the versions of the Zilog
monitor. The remaining area available for read-only memory can

0000H 4K BYTES PROM,
OFFFH ROM, EPROM
1000H 4K BYTES RAM
IFFFH
2000H
Fig. 17-3. Z-80 MCB™ nominal
memory mapping.
56K BYTES],
UNUSED

/

be used for EPROM (erasable programmable read-only memory) or
ROM (read-only memory). As EPROMs require +5V, —5V, and
+12 VDC, these three voltages must, of course, be externally sup-
plied to the MCB when EPROMS are used. EPROM use also re-
quires minor modifications to the MCB.

FFFFH
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MCB 1/0 PORTS

The MCB provides address decoding both for the on-board 1/O
sections (CTC, PIO, and serial data) and for external I/O devices.
By jumping the proper pins, eight groups of 32 device addresses are
selectable. The MCB is provided with the I/O address decode in the
block of addresses COH through DFH. A decode of the two least
significant address bits ABL and ABO results in four signals (SGO,
SG1, SG2, and SG3) provided externally on the connector. A decode
of address lines AB7 through AB2 generates eight signals, GP0
through GP7. Three of the latter are used to address the CTC, PIO,
and serial I/O section (GP5, GP6, and GP7). The remaining five can
be used in conjunction with SGO0, SG1, SG2, and SG3 to address ex-
ternal I/O devices. External I/O devices may also be addressed by
an external decode of the address lines and control signals which are
also brought out to the connector.

MCB PARALLEL I/0

The MCB offers a two-port programmable 1/O interface by means
of the PIO device on the board. The PIO enables bidirectional data
transfers with full handshaking and interrupt capability as discussed
in Chapter 8. The 1/O ports of the PIO connect directly to a set of
wire-wrap pins that can be connected to four 16-pin IC sockets on
the MCB board. Appropriate drivers can be provided in the sockets
for external I/O equipment and wire-wrapped connections can be
easily made to edge connector pins.

MCB SERIAL 1I/O

Serial I/O is provided by the 8251 USART on the MCB. The 8251
is a programmable communication interface that can be programmed
to handle virtually any serial data transmission scheme now in use.
Baud rates from 50 to 38,400 and above are selectable by jumper
connections. One of the four channels of the CTC is used to gen-
erate a baud-rate clock with the USART. The CTC is configured by
the MCB software to provide a clock signal 32 times the serial com-
munication frequency. Either an RS-232 or current-loop interface
may be selected by jumper connections to provide direct connection
of a teletypewriter, or many other serial data devices. With proper
programming and slight circuit modifications, the USART may be
configured to perform the functions of a modem (modulator/de-
modulator) to allow direct phone-line communications with the
USART and MCB.
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MCB INTERRUPTS

Both the PIO and CTC operate in the mode 2 interrupt mode of
the Z-80, with daisy chaining between the CTC and PIO. The IEI
and IEO signals for the interrupt priority chain are brought out to
edge connector pins to allow external I/O devices to be connected
for interrupt mode 2 servicing. The external I/O devices operate in
conjunction with PIO interrupt logic as discussed in previous
sections.

MCB CONFIGURATIONS

The minimum configuration for the MCB consists of the MCB, a
5-volt power supply, and a teletypewriter as shown in Fig. 17-4. The
MCB must have monitor software installed in the read-only memory

+5VDC

Fig. 17-4. Minimum MCB system. mce
USART

!

Teletype ASR-33

section. Either the 1/2K or 1K version will suffice. This configuration
offers a complete program development system as a teletypewriter
offers keyboard input and output, and, if the Teletype ASR-33 is em-
ployed, paper-tape input and output. Programs may be developed
and debugged with this system and saved on paper tape. Note that
assembly-language capability is not provided; and that assembly-
language programs (such as a time-sharing service) must be assem-
bled on another system and then loaded into the MCB system.
Limited debugging capability is provided by the MCB monitor.
Other modules in the MCB series provide the capability of system
expansion, A Memory/Disc Controller Board (Z-80 MDC) adds the
capability of communication with a floppy disc (Shugart 800) and
additional RAM memory. The board provides an additional 12K
bytes of RAM with complete buffering and control on the board
(no additional logic is required ). The disc-controller portion of this
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board provides control of up to four floppy-disc drives. The board
provides CRC parity generation and checking and full-status reading
and control under CPU software control. An extra bidirectional 8-bit
PIO port is provided with the addition of this board. The 2K and
4K versions of the MCB system monitor must be used when the Z-80
MDC board is added to provide software for the disc I/O operations.
The MDC is fully compatible with the MCB board and requires only
a 5-VDC supply.

A Z-80 RMB, or RAM Memory Board, is another module in this
series. Additional dynamic RAM storage of 16K bytes is provided
with the RMB board. The RMB board is fully compatible with the
MGCB and MDC boards and requires only a 5-VDC supply.

Other modules in this series include a VDB, or Video Interface
Card, PROM memory boards, serial and parallel I/O boards, PROM
or EPROM programmer boards, wire-wrap boards, extender boards,
and a standard card cage that will hold up to nine standard modules.

A complete microcomputer system, the Z-80 MCS™, is also avail-
able from Zilog. The MCS uses the MCB and MDC and provides
dual floppy discs, power supplies, card cage, and chassis.

MCB MONITOR

A description of the 1K version of the Z-80 MCB PROM™ moni-
tor is provided below. The word monitor as applied to microcom-
puter systems essentially means “debugging program” in the smaller
versions, as the program offers a set of debugging commands that
will display the register contents; memory contents; alter register or
memory with given data; save to paper tape and load memory from
paper tape; and control program execution while debugging. The
monitor for the MCB is discussed, not so much to provide a detailed
example of this support program, but as an example of the capabili-
ties of an on-board monitor of this kind.

The commands in the 1K MCB monitor are as shown in Table
17-1. “AAAA” stands for an address value, “NN” stands for a number

Table 17-1. MCB 1K Monitor Commands

Sequence Command

1 DISPLAY AAAA NN CR

SET AAAA DD DD DD DD . .. DD CR
REGISTER RR (blank)

BREAK AAA {N} CR

JUMP AAAA CR

GO CR

PUNCH AAAA AAAA CR

LOAD CR

©®NO LA WN
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of bytes, “DD” represents two hexadecimal digits, and “R” is a
mnemonic for a register.

The commands above are entered on the system entry device
which would typically be a teletypewriter or video display keyboard.
The monitor will recognize the command by its first letter, and typ-
ing the full command is optional. Each field of the command is de-
limited by a blank. All numeric values represent hexadecimal digits.
Leading blanks may be omitted, and entering more than four char-
acters results in the last four being used as the value. The @
represents a carriage return character on the keyboard device. If'an
invalid command is entered, the monitor responds with a question
mark prompt and a new command can be input.

The DISPLAY command displays the contents of address AAAA
to address AAAA + (NN — 1) on the display device. To display
locations 1000H to 10FFH, the user would type:

DISPLAY 1000 100 (CR)

SET stores the given data bytes, which may be any number, into
memory starting at location AAAA. To store the values 1, 2, 3, 4,
etc., into the locations from 0300H, the user would type:

SET30012345678910

REGISTER displays the contents of a given register. The user
types in the command “REGISTER” followed by a one- or two-
letter mnemonic signifying the register to be displayed. Valid reg-
ister mnemonics are A, B,C, D,E, F,H, L, LA, B, C, D, E, F
W, L, IX, IY, PC, or SP. The mnemonic is followed by a blank
rather than a carriage return. To display the contents of register IX,
the user would type:

REGISTER IX (®)

After the mnemonic and blank have been typed, the monitor will
print the contents of the register on the same line. The user then has
three options. If the register is not to be modified, and the next reg-
ister is not to be displayed, a carriage return may be typed. If the
register is not to be modified, but the next register in the sequence
A, B, etc., is to be displayed, a line feed may be entered; the next
register in sequence will then be displayed. The contents of the reg-
ister may be modified to a new value by typing a blank, a new value,
and a carriage return or linefeed. To modify registers A’ through E’
the following sequence would be followed:

REGISTER A’ 12 13 (A" modified to 13 from 12)
14 15 (B’ modified to 13 from 14)
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15 @ (C’ unchanged)
1617 @ (@ modified to 17 from 16)
1718 €) (¢ modified to 18 from 17)

BREAK sets a breakpoint at address AAAA. A breakpoint is an
instruction location which, when executed, returns control to a moni-
tor, or debugging program. A typical debugging method is to set a
breakpoint, execute the program that is being debugged from a loca-
tion before the breakpoint, and then examine the contents of memory
and/or registers when the breakpoint is reached (if it is reached!).
The BREAK command replaces the instruction at the specified ad-
dress with a restart to 38H instruction. When the instruction that is
breakpointed is executed, the RST 38H is instead executed, and the
breakpoint routine is entered. The contents of all registers are then
saved and a message indicating that the breakpoint has been reached
is printed by the monitor. If the optional N field is entered along
with the address of the breakpoint, the breakpointed instruction at
AAAA will execute N times before the break occurs. This is helpful
in breakpointing iterative code, as it eliminates a breakpoint at each
repetitions of an instruction. To set a breakpoint at location 10AAH
after 123H times through a loop, the following command would be
entered:

BREAK 10AA 123 (€

The JUMP command causes the monitor to jump to the specified
address. If previous breakpoint was entered, all registers are restored
to their contents before the breakpoint. The following command
starts execution at location 123AH:

Jump 123A R

The GO command is similar to the JUMP command, except that
it is used after a breakpoint to continue execution from the break-
pointed location.

The PUNCH and LOAD commands are used to save and restore
the contents of memory. Typically, this would be done after debug-
ging a program or partially debugging a program by patching.
PUNCHing the contents of a block of memory saves the contents of
memory on paper tape; the paper tape can subsequently be reloaded
by a LOAD command to restore the previous contents.

The format of the PUNCH command specifies a starting address
for the punch and an ending address for the punch. To save locations
1000H through 1FFFH on paper tape, the command would be:

PUNCH 1000 1FFF (R
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The monitor would then punch tape leader (blank or null tape),
followed by memory locations 1000H through 1FFFH, or about 100
inches of paper tape at 10 characters (bytes) per inch. At the end of
data, a trailer of blanks would be punched.

The punched paper tape could then be read into memory at any
later time by inputting the LOAD command to the monitor. The
monitor would then load the tape, inputting data on the first non-
blank character of the paper tape. Data regarding the memory loca-
tions to be loaded and checksum data is stored on the tape along
with the actual memory data. If the tape is loaded correctly, the
monitor will await the next command; if invalid data has been read,
the message “BAD CHKSUM”will be printed.

The monitor program described above offers a convenient way to
debug short programs in the MCB. The disc versions offer even more
debugging aids, disc I/O capability, and rudimentary file-manage-
ment functions.

Z-80 DEVELOPMENT SYSTEM

The Zilog Z-80 Development System is a complete program devel-
opment and hardware development system. The basic system in-
cludes a Z-80 CPU with 4K bytes of ROM, 16K bytes of RAM
(expanded to 60K bytes), and two floppy-disc drives with a con-
troller. A teletypewriter or other terminal may be connected to the
system by the RS-232 or current loop serial interface included in the
system. A programmable hardware breakpoint module allows hard-
ware breakpointing on specified control signals and/or addressing
and data bus configurations. The user may develop his system by an
in-circuit emulator which essentially connects the user’s hardware
with the Z-80 Development System resources. An optional parallel
1/0 card enables interface of the system to other kinds of peripheral
equipment, such as line printers, paper-tape punches, and so forth.
System software includes a ROM-based operating system and debug
package, and a resident assembler, editor, and file-maintenance
package.

Z-80 DEVELOPMENT SYSTEM HARDWARE

The development system is made up of modules as shown in Fig.
17-5. The Processor Module contains the Z-80, 3K bytes of ROM,
and 1K bytes of RAM. This memory contains the operating system,
peripheral drivers, bootstrap loader, and debug software. The editor,
assembler, and file-maintenance routines are stored on floppy disc
and are available on command from the operating system.
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HARDWARE MODULES

PROCESSOR
. MODULE
Z-80, 3K ROM, 1K RAM

(OPTIONAL)
| ‘%’8’:{3 ADDITIONAL
M 16K RAM MEMORY

REAL-TIME
STORAGE
MODULE

BREAKPOINT
BOARD

FLOPPY-DISC rorpy | Fuoppy
— CONTROLLER DISC DISC
BOARD 1

IN-CIRCUIT USER
— Erggliﬁ'\‘TDOR HARDWARE

(OPTIONAL
Lo PARALLEL 1/0
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Fig. 17-5. Zilog Z-80™ development system.

System memory consists of one 16K byte memory module made
up of dynamic RAM. Memory is expandable to 60K bytes of user
memory (4K of addresses are utilized by the Processor Module).
The additional memory below and beyond the 4K used in the pro-
cessor may be in either Monitor Mode or User Mode. In User Mode,
the entire set of additional memory is dedicated to the user’s soft-
ware; the user has control over system peripherals and CPU. In the
Monitor Mode, this memory serves as main memory for editing and
assembling.

The Real-Time Storage Module Board contains a 256 by 32
“storage array.” The storage array essentially stores events in the
array as they occur on a rolling basis. The user may specify the kind
of events to be recorded under control of the debug software, and
may specify combinations of memory reads or writes, and I/O reads
or writes. As each event occurs during user program execution, the
state of the address bus, data bus, and control bus are stored in the
next location of the 256 places in the array. When the system returns
to Monitor Mode from User Mode, the array may be interpreted and
printed to enable the user to analyze the last events that occurred.
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The Hardware Breakpoint Board enables the user to specify hard-
ware breakpoints that effectively “trap” the occurrence of events that
have a specified combination of address bits, data bits, and I/O bits.
The Breakpoint Board, Real-Time Storage Module Board, and soft-
ware debug module are used together to facilitate tracing system
activity during user debugging.

The Floppy-Disc Controller Board is the hardware interface be-
tween the two floppy discs of the system and the Z-80. The optional
Parallel I/O Board contains two Z-80 PIO chips which can be soft-
ware configured as required to interface the system to other kinds
of peripheral equipment, such as line printers, paper-tape equip-
ment, or PROM programmers.

The In-Circuit Emulator Board is the interface between the user’s
own equipment and the Z-80 Development System. It is an exten-
sion of the system bus including cabling to the address bus, data
bus, CPU control signals, and system clock. Additional logic controls
User and Monitor Modes.

780 DEVELOPMENT SYSTEM SOFTWARE

The Z-80 Development System is controlled by a small operating
system, OS Z-80, which retrieves the assembler, editor, and file main-
tenance from disc storage. OS Z-80 is resident in the read-only mem-
ory of the Processor Module.

The debug software of the system is also resident in read-only
memory and contains commands similar to the MCB debug com-
mands. In addition, there are commands related to the Hardware
Breakpoint Module and the Real-Time Storage Module; these com-
mands specify the breakpoint and storage conditions and allow a
history of events to be printed.

The Editor software is brought into memory from disc under con-
trol of OS Z-80. The Editor is a line-oriented editor which allows a
user to append, delete, or insert lines of text and provides file man-
agement of the text files. A powerful feature of the Editor is a
MACRO capability, which permits a user-specified set of commands
to be invoked as required.

The Assembler of the system is a subset of the Z-80 cross assem-
bler. The Assembler is invoked by an OS Z-80 command, which
loads the Assembler software from the floppy disc. The Assembler
permits assembly of text files from disc with object output also
stored on disc. The object module representing the  assembled file
may then be loaded for execution by a Debug LOAD command. The
ability to text edit, assemble, and load from floppy disc greatly facili-
tates program development when compared to a system operating
only with paper-tape input and output.
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The last item of utility software supplied with the Z-80 Develop-
ment System is the File-Maintenance software. This software per-
mits file management of text, or other files, stored on the floppy discs.
Under control of the File Maintenance software, disc files may be
renamed, erased, copied from one disc to another, appended to an-
other file, or combined. File contents may be printed or punched
and information about the current files, or disc, may be listed on the
system printing device.

OTHER ZILOG PRODUCTS

In addition to the MCB modules and Z-80 Development System,
Zilog offers a Z-80 Simulator program and Macro Cross Assembler
for use on time-sharing services or larger computer systems. The
Simulator will execute Z-80 programs by interpreting Z-80 instruc-
tions while running in a host computer. The Macro Cross Assembler
allows assemblies of Z-80 programs on machines other than the Z-80.
PL/Z, a higher-level language similar to PL/I, and BASIC are also
offered for off-line support of Z-80 products.
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CHAPTER 18

Other Z-80 Microcomputer Systems

The Zilog MCB series and Z-80 Development System discussed in
the previous chapter are primarily oriented toward the commercial
user of Z-80 hardware. The systems are designed to provide powerful
tools in Z-80 hardware and software development. In many cases,
the user will design his own specialized Z-80 System around the Z-80
microprocessor chip, using the Z-80 Development System for re-
search and development, or for new versions of firmware, or soft-
ware, for production systems. In other cases, modules of the MCB
series will be incorporated in new designs.

The manufacturers discussed in this chapter have a somewhat
different orientation. While the systems discussed here are being
offered to the commercial user or OEM (Original Equipment Man-
ufacturer), they also are being offered to the computer hobbyist. As
a result, many of the system components are available as kits in addi-
tion to fully assembled modules. Many of the recent hobbyist kit
manufacturers have produced products that have not come up to
commercial standards in design, production, documentation, or sup-
port. The four manufacturers discussed here all provide quality
products that are well designed, produced to commercial standards,
and, in some cases, quite innovative. Other manufacturers of Z-80
equipment also are producing quality components and the discus-
sion of these four manufacturers is not meant to imply that other
units are not equal in quality.

The four manufacturers described in this chapter are Technical
Design Labs, Inc.; Cromemco, Inc.; The Digital Group, Inc; and
Radio Shack. The products produced by Technical Design Labs and
Cromemco are S-100 bus compatible. The S-100 bus has become a
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de facto standard bus since MITS, Inc. produced the first hobbyist
microcomputer, the MITS 8800, using the 8080A as a base. The sig-
nals defined for their system bus, many of which are identical or
very much related to the 8080A pin signals, have become the MITS
bus. As 100 pins are involved (and because other manufacturers are
reluctant to promote competitors), the bus also has become known
as the S-100 bus. Cromemco and Technical Design Labs products
will, therefore, operate compatibly with other products that have
been designed for the S-100 bus, and there are a great many such
products.

The Digital Group, however, has established their own bus which
is not S-100 bus compatible. There are both advantages and disad-
vantages to this. If a microprocessor is widely different from the
8080A-related bus, then much logic has to be devoted for conversion
from the microprocessor logic signals to S-100 bus signals. Subse-
quent timing problems and bus status problems also have to be dealt
with. On the other hand, if a module is S-100 bus compatible, then
a system user may utilize all of the diverse products available for the
§$-100 bus in his system, ranging from speech synthesizers to special-
purpose I/O interfaces. Fortunately, the Digital Group offers a wide
variety of modules for their bus and this disadvantage is somewhat
alleviated.

The fourth manufacturer, Radio Shack, offers a turnkey micro-
computer system available to the computer hobbyist or small busi-
ness user only in assembled form. The bus, of course, is not an S-100
bus, although an interface between the Radio Shack system and S-
100 bus may be made available.

The following discussion is not meant to compare the four manu-
facturers point by point, but rather to provide a factual description
of what is currently being offered by each. Since the microcomputer
market is so dynamic, these descriptions will suffer with time, but
should provide some guidelines to the reader in making an evalua-
tion of Z-80 microcomputer equipment.

TECHNICAL DESIGN LABS, INC.

Technical Design Labs’ basic Z-80 module is the TDL ZPU™ card
which is an $-100 bus-compatible CPU board. In addition to the
ZPU, TDL offers an S-100 16K byte memory card, and a System
Monitor Board, which contains a monitor, RAM, and 1/O porting.
In addition to the Z-80 modules, TDL has a mainframe microcom-
puter, the TDL XITAN Microcomputer, which provides a system
package based on the Z-80 modules. While not offering a great deal
of I/O hardware at this time of writing. TDL software appears to
be very impressive. TDL offers a monitor, a line and character-
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oriented text editor, a relocating macro assembler, a BASIC and
SUPER-BASIC interpreter, a text output processor, and disc soft-
ware for an S-100 bus-compatible floppy disc of another manufac-
turer.

TDL ZPU™ BOARD

The TDL ZPU™ card is supplied either as a kit or fully assembled
and tested. The board is shown in Fig. 18-1. The board contains the
7-80 microprocessor chip and buffering for the Z-80 bus signals.
Most of the other logic is devoted to generation of S-100 bus-com-
patible signals. The ZPU™ has two clocks on the board. One is fixed
at 2 MHz by a crystal oscillator; the other is frequency variable by
means of a small potentiometer. The frequency of the second clock
can be adjusted from about 1 MHz to 4 MHz if the second clock is
selected. FEither of the two clocks, or an external clock, may be
selected for Z-80 timing, but the system clock (the bus clock) is
always the 2-MHz output.

Courtesy Technical Design Labs, Inc.
Fig. 18-1. TDL ZPU™ board.

When the ZPU™ is installed to replace an 8080A microprocessor
card in an older system, there are certain options which may be
utilized. The $-100 bus has no provision for a RFSH signal from the
Z-80. An existing S-100 bus signal, SSTACK (pin 98), may be uti-
lized to bus the refresh signal to the remainder of the system. The
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NMI signal, nonmaskable interrupt, may be connected to the S-100
bus by connecting the NMI signal to the VIO signal of the S-100
bus, the highest-priority vectored-interrupt line on the bus. The
ZPU™ board requires +5 VDC only.

TDL Z16™ BOARD

The Z18 board (Fig. 18-2) is a low-power, static memory board
with a cycle speed of 200 nanoseconds. The board may be obtained
in kit, or assembled form, with memory increments from 4K to 16K
bytes. The fully populated version is 16K bytes (thirty two 4K by
1-bit chips). Power-supply voltages required for the Z16 are *5
VDC, and 12 VDC, and are available on the S-100 bus.

Courtesy Technical Design Labs, Inc,
Fig. 18-2. TDL Z-16™ board.

The Z16 board has several unique features. One of these is a
memory-protect capability which will prevent selected 1 to 4K
segments of the 16K board from being accessed for a write. The
memory protect is switch selectable. A battery backup capability is
provided on the board, with the addition of an external battery pack
with voltage sensing. Logic for memory-bank switching is also pro-
vided on the board. By means of an external Memory-Management
Board, banks of 16K memory may be connected, or disconnected,
from the system bus. This means that two (or more) complete 64K
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banks of memory may be alternately connected and disconnected
from the system bus under software control for multiprogramming
or other uses.

TDL SYSTEM MONITOR BOARD

The SMB board is a multipurpose board that provides a monitor,
RAM, and I/O device controllers. The SMB contains a 2K monitor,
the ZAPPLE™ monitor in PROM. The monitor is a comprehensive
debug package and collection of software I/O drivers, including a
serial 1/O driver and an audio tape-cassette driver. In addition to the
9K of PROM, the SMB contains 2K bytes of RAM, available to the
system user. Two serial 1/O ports are available. They can provide
serial I/O at 110 to 9600 baud and interface to either a 20-mA cur-
rent loop, or RS-232 device. Baud rates of 110 (Teletype), 300, 600,
1200, 4800, and 9600 are jumper-selectable. One parallel I/O port is
available to the user and can be software configured to either an
input, or output port.

Courtesy Technical Design Labs, Inc.
Fig. 18-3. TDL SMB™ board.

A second parallel I/O port (on a Motorola PIA, a programmable
1/O device similar to a PIO) connects to a set of 8-dip switches
which are used to configure the SMB board for I/O. By means of
proper settings on the dip switches, the four system logical devices
can be set to a physical device. The four system logical devices are
the console device, tape-reader device, and listing device. These
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logical devices may be set to various physical devices that can be
connected to the system-teletypewriter, high-speed serial (CRT),
paper tape, line printer, cassette, or user-defined device. As these
switches are examined on system reset they allow simple reconfigura-
tion of system devices without rewriting monitor software.

The SMB contains a built-in 1200-baud audio-cassette interface
enabling data to be read from a standard Phillips-type cassette re-
corder. Also provided on the board is the capability to automatically
restart to the monitor program on system power on and/or reset.

TDL XITAN™ MICROCOMPUTER

The ZITAN™ Microcomputer is essentially a power supply, card
cage, minimal front panel, and other packaging to contain the TDL
ZPU™, SMB™, and Z16™ boards. In this utilization, it is identical
with most other “box without front panel” microcomputers including
the Zilog Development System. If the manufacturer provides an
adequate monitor, there is little reason for a front panel, as the front
panel functions, and a great deal more, are implemented in the
monitor.

TDL SOFTWARE

The ZAPPLE™ monitor in the SMB board provides over 20 debug
and file commands. In addition, the monitor contains I/O routines
for standard system devices or user-defined (user-written) 1/O de-
vices. All I/O in the other utility software is done via the I/O drivers
in the ZAPPLE™ monitor.

The ZAPPLE™ text editor is both a line-oriented and character-
oriented text editor that allows the user to edit text files. Lines may
be inserted, or deleted. Character strings may be located by a search
command and another string may be substituted, in addition to nor-
mal insertion and deletion of character strings. A macro capability
for text editor command strings may also be used, to enable auto-
matic repetition of given command strings.

A Relocating Macro Assembler is available from TDL. Both the
relocatability and macro capability are sophisticated additions to the
minimal assemblers seen from many microcomputer manufacturers.
Relocatability allows an assembled object program to be loaded into
any portion of memory. The alternative to relocatability is an abso-
lute object output which can only be loaded and executed in one
area of memory. When a great deal of system software development
is to be done, relocatability facilitates changes to the programs and
permits a larger program to be partitioned into relocatable modules.
Changing various parts of the system does not require changing
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and/or reassembly of each module as might be the case if all of the
programs were absolute.

Macros are assembly-time predefined segments of code (as op-
posed to subroutines, which are run-time segments of code). Macros
are made up of one, or more, instructions and constitute a section of
code that performs a specific function, or set of functions. A macro
may be invoked at assembly time to repeat the instructions associ-
ated with it. The net effect is to substitute a multisource line macro
expansion for a macro call and a set of parameters defining the in-
puts to the macro. Calling the macro avoids writing the source lines
associated with the macro at each point in the program where the
function is to be performed; the macro call generates the instructions
automatically. Macros also may be defined in the general case, so
that a macro call may have macro parameters, or arguments defined,
with the macro to generate code related to the arguments. Macro
capability allows such things as assembly-time simulation of com-
puters other than the host computer and predefined procedures.

TDL offers a BASIC and SUPER-BASIC higher-level language.
Both are interpretive BASICs, that is, the source language state-
ments or compressions of them are interpreted and executed at run-
time rather than producing an executable output module at compi-
lation time. The 8K BASIC is very complete and has such features
as a trace function to display line numbers as the lines are executed
and a listing of program variables. The 12K SUPER-BASIC is an
expanded BASIC with many editing and formatting commands ap-
pended to the basic functions.

The Text Output Processor is a utility package which provides
output formatting for text files. Output files are prepared by the Text
Editor with embedded format control words. When the file is listed
by the Text Output Processor, the processor performs formatting
based on the control words to control line spacing, headings, page
length, spacing, and other word-processing functions.

CROMEMCO, INC.

Cromemco, Inc. offers two microcomputer systems designed
around their Z-80 CPU card, the Z-1 Microcomputer System, and the
Z-2 Computer System. Both the Z-1 and Z-2 use S-100 bus-compati-
ble boards in the system. The Z-1 has a control panel, while the Z-2
does not (see Figs. 18-4 and 18-5). In addition to the Z-8¢ CPU
card, Cromemco offers a variety of other boards including 4K and
16K byte RAM, an 8K PROM board with an integral programmer,
an I/O board, a PROM programmer board, a digital-to-analog I/O
board, and a color graphic interface. Software includes a 1K moni-
tor, Z-80 assembler, and CONTROL BASIC.
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Courtesy Cromemco, Inc.
Fig. 18-4, Cromemco Z-2 computer system.

CROMEMCO CPU CARD

The Cromemco CPU board is primarily made up of the Z-80,
buffers, and logic associated with S-100 bus compatibility. The clock
on the CPU board is selectable to either a 2-MHz or 4-MHz clock
rate. Cromemco will guarantee operation of the Z-80 microprocessor
at 4 MHz, but the feature is nice as many older systems have in-
herent limitations of the system clock rate due to slow memories, or
other system components. As in the case of TDL, the SSTACK line
in the S-100 is used for a Z-80 function, this time to indicate whether
the clock is set at 2 MHz or 4 MHz.

Another feature of the CPU board is an on-board WAIT-state
generator. The WAIT state for the S-100 bus is identical in function
to the WAIT state in the Z-80—it allows slow memory, or I/O de-
vices, to send a WAIT signal to the CPU to provide extra time to
respond to the CPU. A jumper-selectable WAIT-state option on the
CPU board inserts a WAIT state in the Z-80 between the T2 and
T3 cycles of every machine cycle. This enables the CPU board to be
used with slower speed memories without additional WAIT logic
generated by the memory board itself.

The power-on memory jump option on the CPU board allows the
user to select a jump address on any 4K boundary. A jump is auto-
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Courtesy Crorne;noo, Ing.
Fig. 18-5. Cromemco Z-2 computer system (cover removed).

matically executed to that address when the system reset switch is
activated. The jump address would probably be the start of the sys-
tem monitor to enable the user to load programs for execution on
start-up, or to regain control during program execution failures.

CROMEMCO MEMORY

Cromemco memory boards include 4K byte and 16K byte RAM
boards. The 4K RAM is a static RAM while the 16K RAM is dynamic
with a “transparent” (to the user’s program) refresh. Both the 4K
and 16K RAM boards have a bank-select feature which permits
memory expansion to eight banks of 64K bytes. In addition to the
RAM memory, Cromemco offers two types of PROM boards. A 16K
PROM board holds sixteen 1K byte 2708 EPROMs when fully popu-
lated. The 2708 is an erasable PROM. Exposure to ultra-violet light
erases the contents of the PROM and allows reprogramming. PROM
programming is possible by use of another Cromemco board, the
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BYTESAVER™ board. This board contains a maximum of eight 1K
byte 2708 EPROMs. One of the PROMs contains software that con-
trols the on-board PROM programmer hardware. Using the BYTE-
SAVER, any of the other PROMs on the board may be programmed
in a few seconds by copying a 1K “memory image” of the program,
or data in memory.

OTHER CROMEMCO BOARDS

A T-UART™ board provides two serial I/O ports, two 8-bit paral-
lel 1/O ports, and ten independent programmable internal timers.
Baud rates of 110 to 9600 baud are software selectable.

A Digital Interface Board provides digital-to-analog, analog-to-
digital and parallel I/O output and input. Up to seven channels of
analog inputs (—2.56V to +2.54V) may be input with the board
and converted to eight bits of digital data. The same number of
channels are provided for analog outputs (—2.56V to +2.54V) which
are converted from 8-bit digital data. In addition to the a-d and d-a
conversions, eight bits of data may be input, or output, to a separate
port for other control applications. The Digital Interface Board al-
lows a Z-1, or Z-2, to interface to a variety of control applications,
including real-time process control. Conversions are 5.5 us, which
are quite fast for a card of this kind.

Other Cromemco hardware are the TV DAZZLER™, which pro-
vides color graphics capability using an ordinary television, wire-
wrap boards, extender cards, and a “joystick” console for analog-
control inputs.

CROMEMCO Z-1 AND Z-2 MICROCOMPUTER SYSTEMS

The Z-1 Microcomputer System includes the Z-1 chassis with
power supply (28 amp), twenty-two 5-100 bus type card slots, and
front control panel. The control panel allows an operator to examine
and modify memory locations, perform a reset or external clear
function, single step the CPU a cycle at a time, or execute the pro-
gram from a given location. Indicator lights display the address and
data-bus contents and system status.

The Z-1 includes the Z-80 CPU board, two 4K static RAM boards,
an 8K PROM (BYTESAVER™) board with eight 2708 EPROM:s,
a resident monitor in PROM, and an RS-232 serial input/output
interface.

The Z-2 Computer System in kit form includes the Z-2 chassis
with 30-Amp power supply, one card socket and guide, front panel,
and CPU board. In assembled form, the Z-2 includes the above items
plus all 21 card sockets and guides and a cooling fan.
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CROMEMCO SOFTWARE

The Cromemco 1K monitor includes commands to examine and
modify memory, move and compare blocks of memory, read and
load paper tapes, and program 2704 and 2708 PROMs using the
BYTESAVER™ board. The monitor is supplied in the Z-1 system.

A resident 8K assembler is available in PROM, or on paper tape.
A BASIC interpreter is available in PROM, or on paper tape. This
BASIC is a special CONTROL BASIC that occupies 3K of memory
and is designed for control and automated testing applications. The
CONTROL BASIC allows the use of strings, multiple files, and sub-
routines, and also allows files to be programmed in PROMs on a
BYTESAVER™ board.

THE DIGITAL GROUP, INC.

The Digital Group offers a number of CPU boards, among them
the Motorola 6800, MOS Technology 6502, 8080A, and Z-80. All CPU
boards are interchangeable and system compatibility is maintained
at the CPU board level. A variety of system boards, peripherals, and
microcomputer system combinations are offered by the company.
System boards include a parallel I/O board, 8K static RAM, TV
Readout and Audio-Cassette Interfaces, 4K EPROM memory
board, and a Color Graphics Board. Peripheral equipment is gen-
erally housed in cabinets that match the other system cabinetry in
styling and color. Keyboards, tv monitors, cassette drives, and a
matrix printer are available. As with the other Z-80 microcomputer
manufacturers, combinations of the various system components are
offered as complete systems.

DIGITAL GROUP Z-80 CPU BOARD

As the Digital Group equipment is not S-100 bus compatible,
much of the CPU card can be devoted to logic other than that dedi-
cated to S-100 bus conversion. The Digital Group Z-80 CPU Board
contains the Z-80 microprocessor, 2K bytes of 500-nanosecond static
RAM, and 256 bytes of EPROM (1702A) containing a bootstrap
loader. The bootstrap loader would ordinarily be used to load a
small operating system from cassette which has the capability of
cassette read and write, keyboard entry, and tv display. The system
clock on the CPU board runs at 2.5 MHz. Logic is provided on the
board to support DMA operations and all three Z-80 interrupt
modes. Single step, and power on, reset are provided externally to-
the board.
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DIGITAL GROUP MEMORY BOARDS

Two types of 8K memory boards are available, both using 2102
static RAM memory chips. One version is a 500-nanosecond mem-
ory, while the other board is a low-power 250-nanosecond memory.
No wait states are required for the Z-80 CPU with the 500-nano-
second version. A 1702A EPROM board holds 4K bytes of 1702A
EPROM memory (16 chips as the 1702 is a 256-byte EPROM chip).

DIGITAL GROUP 1/0 INTERFACES AND DEVICES

An Input/Output Board provides four 8-bit input ports and four
8-bit latching output ports. The 1/O board supports either a mem-
ory-mapped I/O scheme as in the Motorola 6800 microprocessor,
or the 8080/Z-80 1/O mapped scheme. (In the memory-mapped
scheme, 1/O devices are not addressed by 1/O instructions but as
16-bit addresses).

A TV Readout and Audio-Cassette Interface Board allows both
a character-oriented tv display and audio-cassette recording and
playback. The TV Readout portion of the board provides a 64-
character by 16-line display with a 7- by 9-dot matrix display of
characters. The board will store the 1K characters in on-board RAM
storage. One hundred twenty eight ASCII characters are display-
able including both upper- and lower-case alphabets, numbers,
extended math symbols, and Greek alphabet. The cursor may be
positioned forward and backward under software control. Output
of the tv section of the board is to a standard monitor (Digital Group
or others) or to a standard television with input to the video section.

The Audio-Cassette portion of the board records, or reads, data
on standard Phillips-type audio-cassette recorders using FSK (fre-
quency-shift keying) recording. Data rates are 1100 baud which is
the equivalent of 100 characters per second, approximately 10 times
faster than a standard teletypewriter.

A separate Cassette-Storage System is also available, using one
to four Phi-Deck cassette transports. The Phi-Deck is a quality
audio-cassette drive with a file-search capability and other func-
tions. Data rates are 800 bytes per second (!) and a search speed
of 100 inches per second. A software operating system (driver) is
supplied to implement recording of multiple blocks, single blocks,
reading, CRC check, fast reverse and forward, and block search.
The Cassette-Storage System requires a Phi-F interface board, and
either a two- or four-drive cabinet with transports.

Another peripheral and interface offered is the Digital Group
96-Column Impact Printer. This is a relatively inexpensive 120
character per second, 96 character per line printer that prints on
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an 8% inch page. The printer is a 5- by 7-dot matrix printer that
prints 12 characters per inch horizontally and 6 lines per inch ver-
tically. The associated interface card may be interfaced to existing
I/0 ports.

A 4098-pixel Color Graphics Board provides a color display of
a 64 by 64 matrix. Three on-board 4K dynamic memories (red,
green, and blue) result in eight different hues in any of the 4K
pixels. The Color Graphics Board is driven by two 8-bit parallel
I/0 ports.

Other 1/O equipment includes a 76-key ASCII keyboard with
cabinet, a stand-alone cassette interface, prototyping boards and
extenders, and miscellaneous hardware.

DIGITAL GROUP SYSTEMS

Various system combinations are offered by The Digital Group
ranging from a four-board Z-80 system with 10K of RAM, I/O
boards, and TV Readout/Audio-Cassette Interface, to a “hard copy”
system with Z-80 CPU, TV Readout/Audio-Cassette Interface, two
I/O Boards, 18K of RAM, Cassette Drive Interface with four Cas-

(A) Table-top arrangement.
96 COLUMN PRINTER, POWER SUPPLY,
INTERFACE CARD & CAB INET

9" MONITOR
AND
9&CB CAB INET

MON

CB-CPU
Z-80 CPU-STANDARD SY STEM
CABINET

KEY 1&CB
& FOUR DRIVE DIGITAL
TWO FULL SIZE FLOPPY DISK DR IVES CAPACITANCE KEYBOARD CASSETTE UNIT
CONTROLLER CARD AND CAB INET AND CABINET AND CABINET

(B) Cabinet identifier.
Courtesy The Digital Group, Inc.
Fig. 18-6. The Digital Group System 7—the ultimate.
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sette drives, Monitor, Keyboard, and 96-Column Printer like the
one shown in Fig. 18-6A. All of the systems are of the “box without
control panel” type and include all cabinetry, cabling, power sup-
plies, and so forth to make up a turn-key system. Virtually all sys-
tem components and complete systems may be obtained in kit, or
fully assembled, form.

DIGITAL GROUP SOFTWARE

Software available from The Digital Group includes a Cassette
Storage Operating System, TINY BASIC, MAXI-BASIC, a Text-
Editor, Z-80 Assembler, Z-80 Disassembler, and a variety of other
applications programs and games.

The Cassette Storage Operating System, PHIMON, requires about
3K of memory. It is essentially a file-manage package operating with
the Phi-Deck cassette transports. Programs may be loaded or saved
on tape as files, and system utility files such as Debugging Software
may be loaded in for execution. Complete file-manage functions,
such as display and updates of tape directories are available to
the user.

A small subset of BASIC, TINY BASIC, and MAXI-BASIC are
available as higher-level interpretive packages. MAXI-BASIC for
the Z-80 provides bed floating-point arithmetic, formatted output,
multiple statements per line, and multiple-line functions. Arrays may
be any number of dimensions and string manipulation is provided.
MAXI-BASIC requires 8K of memory and the recommended system
configuration is 18K.

The Z-80 Assembler is a two-pass assembler requiring 12K plus
working storage. The recommended system configuration is 18K.

RADIO SHACK

Radio Shack offers a Z-80 microcomputer system called the TRS-
80. This system is unique from any other Z-80 system discussed in
previous paragraphs as it is a completely integrated turnkey system
(in the basic configuration). The user can purchase the system, take
it home, plug it in, and can immediately compile his own BASIC
program or run a predefined Radio Shack applications program!

RADIO SHACK HARDWARE

The basic TRS-80 system is shown in Fig. 18-7. It consists of a
single-board computer enclosed within a cabinet that also contains
the 53-key ASCII keyboard. A 12-inch monitor is used as a video
display; 16 lines of 64 characters-per-line may be displayed with
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automatic scrolling, In addition, graphics capability of 128 horizon-
tal by 48 vertical elements is provided. A cassette recorder for sec-
ondary storage is included in the system. Transfer rates to the re-
corder are at 250 baud.

Memory in the TRS-80 consists of 4K bytes of ROM and 4K
bytes of dynamic RAM. The ROM is dedicated to a BASIC inter-
preter, keyboard scanning routines, and drivers for the video dis-
play and cassette.

Fig. 18-7. The Radio Shack TRS-80 microcomputer system.

The basic TRS-80 system may be expanded with up to 62K bytes
of additional memory. Within the keyboard case up to 12K of ROM
and 16K of RAM may be added. An “expansion module” is option-
ally provided for memory above these limits.

Although the system includes all cabling and connections for the
video display and cassette recorder, additional I/O devices may be
added by means of a 40-pin external connector on the rear of the
cabinet. The Z-80 address bus, data bus, input/output, read, write
interrupt, and interrupt acknowledge signals are available on the
connector. Line printers, a floppy disc, a serial I/O unit, and modem
are some of the peripherals currently available or available in the
near future.
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RADIO SHACK SOFTWARE

The 4K version of Radio Shack BASIC includes floating-point
arithmetic, numeric, array, and (limited) string manipulation. It
also includes video-graphics commands and cassette save and load
commands. The SET(xy) command turns on graphics point x.y,
RESET (x,y) turns point x,u off, and POINT (x,y) determines the
state of the point. CLS clears the screen. Direct cursor control is
provided with the PRINT AT(x) command.

The 4K version of BASIC will be supplemented by a 12K version.
Other software, such as editors, assemblers, and disc operating sys-
tems are planned. In addition, a wide range of applications software,
such as game programs and business applications packages are cur-
rently available.
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APPENDIX A

Z-80 Electrical Specifications

Z-80 electrical specifications, Z-80 CPU ac characteristics, and ac
timing diagram are provided in the tables and figures on the follow-

ing pages.
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CAPACITANCE
Ta=125°C, f=1 MHz

Symbol Parameter Typ. Max. Unit Test Conditions
Cs Clock Capacitance 20 pF

" 5 F Ui d Pins
Cix Input Capacitance pl Returned to Ground
Cour Output Capacitance 10 pF

Fig. A-1. Clock driver.

An external clock pull-up resistor of (330(2) will meet both ac and dc clock requirements.

Vee
> f

Vee

0 n

¢
Z-80
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TIMING MEA SUREMENTS ARE MADE AT THE FOLLOWING

VOLTAGES, UNLESS OTHERWISE SPECIFIED; " "p"
CLOCK 4.2V 0.8v
OUTPUT 2.0V 0.8V
INPUT 2.0V 0.8V
FLOAT AV 0.5V

et - -4 |-
-4 A
- -
- -y D(D)
@) DA T T
T, T, Nl Tear
Ry LY DHMD | =
M1 L Vi I ] w—TcA
TR DHRF) Sl To
RFSH ]
LB |
M DHOMR)-
MREQ TACMJ[
_ ool ToHdROI-
RD
R .
LR Ty D?
10RQ
Twr —
RO bt l/
T
DLOWR) Toe
- —t e } OHBWR)
swn|| T S -
[ iy [}
WAL 2 —e. Togm  |Towm
HALT

Tsum||",
Jr— r—
i Ny el
Wiy s80

Tsrs)|(TH
RESE I, S

Fig. A-3. Z-80 ac timing diagram.




APPENDIX B

8080 and Z-80

Instructions Compared

Table B-1. 8080 and Z-80 Instructions

8080 z-80 8080 .80 8080 z-80
N . " . . .

ACI ADC AN IN IN A,(N) POP H POP HL
ADC M ADC A,(HL) iINR M INC (HL) POP PSW POP AF
ADC r ADC AR INR r INC R PUSH B PUSH BC
ADD M ADD A,(HL) INX B INC BC PUSH D PUSH DE
ADD r ADD AR INX D INC DE PUSH H PUSH HL
AD! ADD AN INX H INC HL PUSH PSW PUSH AF
ANA M AND (HL) INX SP INC SP RAL RLA
ANA r AND R Jc JP C,NN RAR RRA
AN1 AND N M JP M,NN RC RET C
CALL CALL NN JMP JP NN RET RET
cc CALL CNN JNC JP NC,NN RLC RLCA
M CALL M,NN INZ JP NZNN RM RET M
CMA cPL P JP P,NN RNC RET NC
cme CCF JPE JP PENN RNZ RET NZ
CMP M CP (HL) JPO JP PONN RP RET P
CMP r CP R iz JP Z,NN RPE RET PE
CNC CALL NC,NN LDA LD A,(NN) RPO RET PO
CNZ CALL NZ,NN LDAX B LD A,(BC) RRC RRCA

cpP CALL P,NN LDAX D LD A(DE} RST RST P
CPE CALL PENN LHLD LD HL,(NN} RZ RET Z
CPI N LXI B LD BC,NN SBB M SBC A,(HL)
CPO CALL PO,NN LXI D LD DENN SBB r SBC AR
cz CALL Z,NN LXI H LD HLNN sB1 SBC AN
DAA DAA LXI SP LD SP,NN SHLD LD (NN),HL
DAD B ADD HL,BC MVl M LD (HLLN SPHL LD SP,HL
DAD D ADD HL,DE MVI ¢ LD RN STA LD (NN)A
DAD H ADD HL,HL MOV M,r LD (HL)R STAX B LD (BC),A
DAD SP ADD HL,SP MOV r,M LD R,(HL) STAX D LD (DE)LA
DCR M DEC (HL) MOV r1,r2 LD RR’ STC CF

DCR r DEC R NOP OP SUB M SUB (HL)
DCX B DEC BC ORA M OR (HL) SUB r uB

pCX D DEC DE ORA 1 OR R sul sus N
DCX H DEC HL ORI OR N XCHG EX DEHL
DCX SP DEC sP out OUT (NLA XRA M XOR (HL)
DI DI PCHL JP (HL) XRA r XOR R

El El POP B POP BC XRI XOR N
HLT HALT POP D POP DE XTHL EX (SP),HL




APPENDIX C

Z-80 Instructions

Instructions for the Z-80 Microcomputer are presented in Tables
C-1 through C-11 on the following pages.




Table C-1. Eight-Bit Load Group

Symbolic Flags OPCode [ T oM | ot
Mnemonic | Operation C[Z PV S|N|H |76 543 210 | Bytes | Cycles | Cycles | Comments
LDt ¢ Ter slefeleleofor r r [T 1 4 LT Reg.
LD,n ren ofefe|e|e|efoo ¢ 110 ]2 2 7 W B
- n - o C
LD (HL) | 1ML ofofofefois]or ¢ 110 |1 2 7 0 D
LDx, (ax+d) | re(xed) | o|e|e[e|ofe |11 011101 |3 s 19 o1 E
01 r 110 100 H
- d - 101 L
D5 aYH) | reay+d) |efele|e|o|eftr 1rrsor |3 5 19 mo A
. o1 ¢ 110
- d -
LD HL),r { (HL)«1 ofo|e|o]efeor 10 ¢ |1 2 7
LD (X+d),r | (Xsdyer | ofefofofe]e 11011 101 |3 5 19
oL 110
- a4 -
LD aY+d),r | avedyer | o|e[o|e]ele|t1 111101 | 3 5 19
01110 «
- a -
LD HL),n | (HL)<n o|ejefe|e|e |00 110110 |2 3 10
- 0 -
LD X+d)n | X+dyen | ofe|e|e| o] e[t 011 01 | 4 H 19
00 110 110
- d -
P
LD (IY+d), n {IY+d) <= n o|ofo|e|elwf11 111101 4 5 19
00 110 110
- 4 -
no-
LD A, (BC) A~ (BC) e|o|eje|ele 00 001 D10 1 2 7
LD A, (DE) | A« (DE) olefelelele]o0 011010 | L 2 7
LD A, () | A« (n) o|of[e|e|efe]oo 111010 3 4 13
- on -
e n -
LD (BC), A (BC)+ A efeje|e]|e]e |00 000 010 1 2 7
LD (DE), A | (DF) A o|e|o|o]ee]00 010010 1 2 7
Do), A | () -A ofe|o|ofefe]oo 110010 | 3 4 13
« n =
-0 -
LD A, Ael of tf1Ft| 0] 0 |11 101 101 | 2 2 9
o1 010 111
LD AR AcR of t|1FF | 0f 011 101 101 | 2 2 9
01 011 111
LDIL A I<A ol ol ofefe|elir 101 101 2 2 9
01 000 111
LDR, A R-A ol ool o|o|ef11 101101 | 2 2 9
01 001 111
Notes: 1, ' means any of the registers A, B,C, D, E,H L
IFF the content of the interrupt enable flip-lop (FF) is copied into the P/V flag
Flag Notation: @ = flag riot affected, 0 = flag reset, 1 = flag set, X = flag s unknown,
4= flag is affected according to the result of the operation.
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Table C-2. Sixteen-Bit Load Group
Figs OpCote | No. | No. | No.
Symbolic i of of M of T
Operation clz }V N| H| 76 543 210 Bytes Cycles | States Comments
LD dd, nn dd «nn o|o[ofefefei00 dado 001 3 3 10 dad Pair
R 00 BC
- n - o1 DE
LD IX, nn IX <nn o|o[o]|of «)ef11 011 101 4 4 14 10 HL
00 100 00t 1n SP
o -
Toa-
LD1Y,nn 1Y «=nn o|efe|ef o011 111 101 4 4 14
00 100 001
Sa -
T -
LD HL, (nn) H« (an+1) o|e[o|ef eie]|00 101 OLO 3 s 16
Le@n) - n -
I
LD dd, (nn) dde(nn&I) elo[e]|elo|efil 101 101 4 6 20
Ml_*(mﬂ 01 dd1 01t
.
A
LD IX, (nn) IX"*(nnbl) olofo|ea|o|e|11 011 101 4 6 20
lXL>(M\) 00 101 010
P
.
LD IY, (nn) IYH'(nnH) eflef el ol «[00 101 O10 4 6 20
IYL-lnH) 00 101 010
S -
LD (nn), HL (nn+1) — H o|efofefeielon 100 010 3 5 16
(an) ~ L - n -
A
LD (an), dd (nn*ll'»dd“ ole|[efe| o ef 11 101 101 4 6 20
(m\\»ddl o1 ddo o011
B
T
LD (nn), IX (nn'l)—lX" o(e|/o|[o] ofe] 11 011 101 4 6 20
(am) = 1X 00 100 010
i
PR,
LD @, 1Y | (me1) 1Yy | o o[ o] ofof 11 111 101 | 4 6 20
(nn)—-lYL 00 100 910
S -
Ta
LD SP HL SP~HL o|e|oje| el el 11 111 001 1 1 6
LD SP, IX SP«IX o|ofefefafafl1l 011 101 2 2 10
11 t11 001
LD SP, 1Y SP1Y o|of[o|efofafl11 111 101 2 2 10
11 111 001 qq Pair
[PUSH qq (SP-ZD*QHL efefe e ofefil qq0 101 1 3 11 00 BC
(SP-1) - qqg o1 DE
[PUSH 1X (SP—Z)‘—[XL o of[ofe| ofef11 011 101 2 4 15 10 HL
(SILI)»IXH 11 100 101 1n AF
PUSH 1Y (S?-I)'IYL olo[e|o| efef1l 135101 2 4 15
(9-\)>IYH 11 100 101
POP qq. qay - (SP+1) | | o o] o| wf of 11 qa0 001 | 1 3 10
aqy (D)
|POP IX IX"—[S?tU o|elo|e| e af1]1011 101 2 4 14
IX; +(SP) 11 100 001
[por 1v g spen) [ o o] ol o o o| 111101 | 2 4 14
IYL‘»(SP) 11 100 001
[Notes:  dd is any of the register pairs BC, DE, HL, SP
qq isany of the register pairs AF, BC, DE, HL
(PA“'()“. (PAlR)L refer to high order and low order eight bits of the register pair respectively.
Eg.BC = C, AFy=A
Flag Notation: e = flag not affected, 0 = flag reset, t = flag set, X = flag is unknown,
1 flag is affected according to the result of the operation.
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Table C-3. Exchange Group and Block Transfer and Search Group

Mnemonic

EX DE, HL

EX AF, AF'
EXX

EX (SP), HL
EX (§P), IX

EX(SP), 1Y

LDIR

LDDR

CPl

CPIR

CPDR

:hﬂ % | v No, No.
Symbolic il of ofM | ofT
Operation c|z|v{s|{n|H{76 543 210 | Bytes | Cycles | States | Comments
DE - HL o[efele]ofe 1t 100 011 |1 1 0
AF = AF olefefefe|e o0 001 000 | 1 1 4
o|ofe|efe|etrr ori 001 |1 1 4 Register bank and
Y o
L. bank exchange
He@Prl) [ofofefofefefir 100 0m |1 H 19
L~ (sP)
Dtyesp+1) [ele|ea|olo |01 101 |2 6 23
1X) = (SP) 11 100 01t
WyesPen) [ofofelolete i mron |2 6 2
1Y) - (SP) 11100 031
@)
(DE)« (HL} [efels)e|o}o |11 101 101 |2 4 16 Load (HL) into
DE «DE+1 10 100 000 (DE), increment the
pointers and
HL « HL+1 decrement the byte
BC = BC-1 counter (BC)
(DE)—(HL) [o|e]ofe[o|0]1r 101 100 |2 H 21 IfBC*0
DE ~ DE+1 10 110 000 | 2 4 16 IfBC=0
HL « HL#1
BC - BC-1
Repeat until
BC=0
) o
@)~ @L) elefsfefofo 1101001 |2 4 16
DE ~ DE-| 10101 000
HL — HL-1
BC ~ BC-1
)~ ML |e[efofefojofn 101101 |2 5 2t IBC#0
DE « DE-{ 10 111 000 | 2 4 16 IfBC=0
HL < HL-1
BC — BC-1
Repeat until
BC=0
Q|
A-(HL) o|t|t|t]|1]s|1 101001 | 2 4 16
HL — HL+1 10 100 001
BC ~ BC-1
QO
A-(HL) oftftfs|t)sjr0na0r |2 H 2 IfBC % 0 and A # (HL)
HL ~ HL#1 10 110 001 | 2 4 16 IfBC=0or A = (HL)
BC - BC-1
Repeat until
A =(HL}or
BC=0
QO
A-(HL) eltjtftf1]s]rit01100 | 2 4 16
HL ~ HL-L 10 101 001
BC - BC-1
Q0
A-(HL) el el efef1]s]1e 101001 | 2 s 21 IfBC % 0 and A * (HL)
HL ~ HL- 10 111 00t | 2 4 16 I£BC=0orA = (HL)
BC — BC-L Notes: (D P7V flag is O if the result of RC-1= 0, otherwise P/V = 1
Repeat until @ Zfagis 1 if A = (HL), otherwise Z = 0.
A=(HLyor | FlagNofation: e = flag not affected, 0 = flag reset. | = flag set, X = flag is unknown,
BC=0 1= flag is affected according 10 the result of the operation.
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Table C-4. Eight-Bit Arithmetic and Logical Group

Flags OpCode
0 No. No. No.
Symbolic i of of M | of T
Mnemonic Operation c|z|v{s|N|H[76 543 210 | Bytes | Cycles | States | Comments
ADD ¢ AcA+r t]efvit]o]fs 1 1 4 ' Reg.
ADD AAr vit|o 2 2 7 000 B
n n tle|v|s 001 e
-.no- 010 D
ADD (HL) A« A+@HL |t|t]vft|o]t|10@0Q 110 | 1 2 7 011 E
ADD (IX+d) | A-a+(X+d) [t|t|Vit]o[t|n o io |3 s 19 :g? ;_'
1o 1t A
-4 -
ADD (1Y+d) | A—A+(Y+dy [t]t|V]t|ofs {11 1100 |3 5 19
10 [000] 110
- a4 -
ADCs Aca+s+CY[t]t|vit|o sivany of r,n,
SUB's A A -s lefvie]s L), (IXrd),
. . (1Y+d) as shown for
SBCs AcA-s=CY1 Vil ADD instruction
AND's A-a s |ofifp]i]o
ORs A=AV s ojt1fpltfo The indicated bits
e replace the 000 in
XOR 5 AcAos MNHRN the ADD et above,
CPs A-s eV
INC T Pertd o|t|v[s]o 1 i 4
INC (HL) HLy - HL+1| e [t [V]1]0 1 3 1"
INC (IX#d) | (IX+d) « t|vit|o 3 6 23
(IX+dy+1
INC (Y+dy | (IY+d) elt{vit]oftfro e o o3 6 2
aYsdy+ 1
DECA ded ot|vitii]e dis any of r. (L)

UX+), (1Y +d) as
shown for INC
Same format and
states ax INC.
Replace 100 with
101 m OP code.

Notes:  The V symbol in the P/V flag column indicates that the P'\' flag contains the overflow of the result of the
operation Similarly the P symbol indicates panty. V = | means overtlow. V = 0 means not overflow. P =
means parity of the result is even, P = 0 means panty of the resalt is odd

= flag not affected. 0 = fag reset, 1 = Mg set, X = flag is unknown,
flag is affected according to the result of the operation

Flag Notation:
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Table C-5. General Purpose Arithmetic and CPU Control Groups

Thg TpLode
B No. | No. | No.
Symbolic / of ofM | ofT
Mnemonic | Operation c|z|V]s|N{n|76 543 210 | Bytes | Cycles| States | Comments
DAA Convertsace. | 4[4[ P[¢]e(2]00 100 111 | 1 1 4 Decimal adjust
content into accumulator
packed BCD
following add
or subtract
with packed
BCD operands
cPL A-K ofe|efof1|1fo0 101 111 | 1 1 4 Complement
accumulator
(one's complement)
NEG Avo-a  |t|e|v]e]|1]t]1r 100101 | 2 2 8 Negate acc. (two's
o1 000 100 complement)
oCF Y -TY t|ofe|e]o|x]|0o0 111111 | 1 1 4 Complement carry
flag
SCF CY ~1 1|e|ef[ef0|0f00 110 111 1 1 4 Set carzy flag
NOP No operation || e|e]e|e|e[00 000 000 | 1 1 4
HALT CPUhalted | @/ ofofe|e]|o|or 110 110 | 1 1 4
DI IFF +0 ofeofefefef1r 110011 | 1 1 4
El IFF « 1 ofofe]ofe|eftr o |1 1 4
MO setinterrupt | o| e[| oo |11 101 101 | 2 2 8
mode 0 o1 000 130
™1 Setinterrupt | o] o[ e|e]e|11101 101 | 2 2 8
mode 1 o1 010 110
™2 Setinterrupt | o] o[ | e|e]e|11 101 101 | 2 2 8
mode 2 01 011 110
Notes:  IFF indicates the interrupt enable flip-flop
CY indicates the carty flip-flop.
Flag Notation: = flag not affected, 0 = flag reset, | = flag set, X = flag is unknown,
+ = flag is affected according to the result of the operation.

288




Table C-6. Sixteen-Bit Arithmetic Group

No. | No. 0.
Symbolic Flags OpCode | of of M | of T
Mnemonic | Operation CTZ[A[SN[F[76 543 210 | Bytes | Cycles | States | Comments
ADDHL,ss | HL<HL+ss [t|e]e|®]0|X]00 sst 001 | 1 3 1 = Reg.
00 BC
ADCHL,ss | HL—HL+ss+CY[t [1]| V[t {0 |x |11 101 101 | 2 4 15 ?‘l] gf
01 sl 010 1 sP
SBCHL,ss | HL-HL-ssCY |t| [ V] {1 |x}11 101 100 | 2 4 15
01 50 010
ADD IX, pp IX~1X+pp t|e[efef0 [X[it 011 101 2 4 15 [l Reg.
00 ppl 001 00 BC
o1 DE
10 1X
11 SP
ADD 1Y, 11 1IYeEY+ar t(ef[ef[e]o |X[15F ti1 101 2 4 15 " Reg.
00 rrl 001 00 BC
o1 DE
10 1y
[} bid
INC ss. ss 58 + 1 o] e/ o[ofele00 ss0 011 1 1 6
INC IX IX<IX+1 [o|e|o|efele|iron 101 ] 2 2 0
00 100 011
INCTY IYe-lY+1 o(e|e|ofo|efll 111 101 2 2 10
00 100 011
DEC ss ss ~ 58 - 1 o(o|e|efe|o[00 ssl O11 1 i 6
DEC IX IX-1X-1 ejw|olofe e |11 011 101 2 2 10
00 01 011
DEC 1Y 1Y 1Y - | 0] @|wfole a1l 111 101 2 2 10
00 101 011

Notes:  ss is any of the register pairs BC, DE, HL, SP
pp is any of the register pairs BC, DE, IX, SP

1 is any of the regis

Flag Notation:

1 pairs BC, DE, 1Y, SP.

« = Nlag not affected, 0 = Mag reset, 1 = Nag set, X = flag is unknown,
t = fag is affected according 1o the sesult of the operation.
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Table C-7. Rotate and Shift Group

Flags OpCode
11 No. | No. | Ne.
Symbolic I of of M | of T
Mnemonic Operation c|z| v|s|~|n|76 543 210 Bytes | Cycles | States | Comments
RLCA t|e]elelojoloo 000 111 1 1 4 Rotate left circular
[ =—9 accumulator
RLA Cmeg==1a {t|e|e|e]ofolocorornr| 1 1 4 Rotate left
7 accumulator
RRCA -—.l t|e}e]e|ofo]oo 001 111 1 t 4 Rotate right circular
N accumulator
RRA Lo |¢|s]«|e]o]o]oo ot | 1 1 4 Rotate right
B accumulator
RLCT s|e|pfs]o]of11 001 our| 2 2 ] Rotate left circular
00[060] « register 1
RLC (HL) tfe|p[s]o]ofur 001 01| 2 4 15 . Reg.
oo [080]110 000 B
RLC (X+d) — 2 [slele]sfofo|n ot hon]| 4 6 2 3‘.’3 S
el i1 001 011 oe D
- d - 100 H
o0[838] 10 oL
A
RLC (1Y+d) t|s|p|efofo| i 01| 4 6 b2l n
11 001 011
- 4~
oofogo]110

RLs Cmer=—7a |[t|e]P]t]0]0 Instruction format and
L) T TVedh states are as shown
for RLC,s. To form

] new OP-code replace
RRCs [ —= - t|t[p]s]of0 [800] of REC,s with
er e shown code
RR's s|t]e|sfofo
SLAS Gl = [t 12|P[3 |00
9
SRA's s tltP|s]ofo
T o v
SRLs sa|efs]oo| OO
RLD oft]p|t]olo|in 101 101} 2 H 18 Rotate digit left and
01 101 111 right between the
accumulator
[3 and location (HL).
RRD A [ awofe ts|e]sfofo 11 101 101} 2 5 18 ‘The content of the
o1 100 111 upper half of the
accumulator is
unaffected

fag not affected, 0 = flag reset, 1 = flag set, X = flag is unknown,
flag is affected according 10 the result of the operation.
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Table C-8. Bit Set, Reset and Test Group

Thags Op< ode
B No. | No. X
Symbolic i of ofM | of T
Mnemonic | Operation c|z|v|s|n|uf76 543 210 | Bytes | Cycles | States | Comments
BITb.r ze%, ol t[x[xfo[1]11 001 011 ] 2 2 8 ' Reg.
b x 000 | B
Brro, L |20, [e|¢fx]x{of1]1rooron f 2 3 12 0% S
0 b 110 o | E
BITb, (X+d) [ Z-TXed), |« | X{X[o|1f11 010101 | 4 H 2 100 | H
11 001 011 101 L
11
- d -
o1 b 110 b Bit Tested
BITb, (aYs) | 20050, [efs[x{x|o]1]1r t11 101 ] 4 s 20 000 | 0
001 1
11 001 011 Wl
“ 4 - 011 3
o1 b 110 0o | 4
o1 | s
1o | 6
11N 7
SETb,r rh*l olele|o|e o011 2 2 8
r
SET®b, (HL) | (HL) « 1 of{e[ofe]e on | 2 4 1s
110
SETb. (X+d) | UX+d)y 1 |efoe|elele 01| 4 6 2
o1
110
SETb, (IY+d)| (IY+d), =1 |eje|e oo 101 | 4 6 23
o1l
110
RESb, s To form new OR
ocode replace {T1]
of SET bs with
Flags and time.
() states for SET
instruction
Notes:  The notation s, indicates bit b (0 to 7) ot location s.
N
Flag Notation: e = flag not affected, 0 = flag reset, | = flag sct, X = flag is unknown,
= flag is affected according to the result of the operation.
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|
Table C-9. Jump Group
Flags Op-Code
o No. | No. | Mo
Symbolic ¥ of ofM | of T
Mnemonic | Operation c|z|v|s|n|H[76 543 210] Bytes | Cycles | States | Comments
W nn PC-nn ol oo felele|1r 000 011 3 3 10
- n -
- n -
1P cc, nn If conditioncc| o @ [o |o {efe]11 cc 010f 3 3 10
is true PC +nn, - on -
otherwise
continue -
Re PC—pPC+e |ofe|o[o|o|eloo 011 000] 2 3 12
- e
RC,e HC=0, o|efelo|efeloo 111 000| 2 2 7 If condition not met
continue - el ~
HC=1, 2 3 12 If condition is met
PC—PCte
JRNC, e Cc=1, ele|e|olo|ef0D 110 000 2 2 7 If condition not met
continue
- e2 -
If C=0, 2 3 12 If condition is met
PC—PCte
RZe Hz=0 o|o|e|efe|efoo 10t 000| 2 2 7 If condition not met
continue - o2 =
wz=1, 2 3 12 1f condition is met
PC—PC+e :
JRNZ,e fz=1, olefe|o|ale]|00 100 000 2 2 7 1f condition not m¢
continue - 2 -
1z =0, 2 3 12 If condition met
PCPCre
JP (HL) PC « HL ofofefofelef1l 101 001 1 1 4
P UX) PC+~1X s|le|ejolefa}ll 011 tOI 2 2 8
! 11 101 001
1P QY) PC 1Y ofafafe]|e]e]tr 0| 2 2 8
11 101 001
DINZ,e BBl ofe]|ofe|e]el00 010 000} 2 2 8 B =0
IfB=0,
N - e=2 -
continue
IfB#0, 2 3 13 B#0
PCPC+e
© represents the extension in the relative addressing mode
¢ is a signed two's complement number in the range <-126, 129>
€2 in the op-code provides an effective address of pc +¢ as PC is i
incremented by 2 prior to the addition of . i
Flag Notation: e = flag not affected, 0 = flag reset, 1 = flag set, X = flag is unknown, I
4 = flag is affected according to the result of the operation. i
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Table C-10. Call and Return Group

Flags OpCode
, No. | No. | mo
Symbolic i of ofM | ofT
Mnemonic | Operation | €[] V|s|N]H|76 543 210 -Bytes | Cycles | States | Comments
CALL nn @piyre, | oe|e|e]e]e 11 oor 01| 3 B 17
(SPD)-PC). - =
PCenn - -
CALLce,nn | Icondition | efe|efe|efe|11 e 100| 3 3 10 Ifecis faise
cois false e on .
Pl PR s 17| seccis e
same s
CALL
RET pc s | o|e|e]e]e|ef11 001 001] 1 3 10
PCSPH])
RET cc If condition | o|e|e]e]e|s|1t e 000 1 1 s Ifecis false
ccis false
poriind 1 3 1 Ifccis true
same as itis
RET NZ
z
Ne
RETI Retunfrom | o |e|ofe|e]e |11 101 101} 2 4 14 ot ¢ camy
interrupt o1 001 101 00| PO purty ot
parity even
RETN Retum from | o || el | fo|11 101 101 2 4 14 Ho| B Ty en,
interrupt 01 000 101 1| M sign negative
RSTp Ge-pepcy [ofelefo]efe [t ¢ ] 1 3 1
(SP-2)-PC.
il
P
L e |e
000 | 0oH
001 | 08H
010 100
ot1 | 18H
100 | 204
101 28H
110 | 300
1] 388

® = flag not affected, 0 = flag reset, 1 = flag set, X = flag is unknown
4 = flag is affected according to the result of the operation.
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Table C-11. Input and Output Group
Flags Op-Code
- No. | No. | M.
Symbolic 1 of of M of T
Mnemonic | Openation c|z|v|s|n|u|76 543 210 | Bytes | Cycles | States | Comments
INA,(n) [ A-m ofefe]e]efe|t1orron] 2 3 10 10 Ag~ A,
- n - AcctoAg~ A
IN£ () r—(Q) ef | P|t|o]t]11 101 101 2 3 11 Clvo~A7
ifr =110 only o1 1 000 BtoAg~ A
the flags will
be affected
INI HL-© | of t]x|x|1]x[11 100 101 | 2 4 15 Ctoay~ A,
B-B-1 10 100 010 BtOAﬁ"AlS
HL+HL+1
INIR (HL) ~ (©) o 1| X| X[ 1| X]| 11 101 101 2 5 20 Cto A, ~ A
(If B # 0)) 0 7
B«B-1 10 110 010 BIDAB'-AIS
HL<HL+1 2 4 15
Repeat until (B =0)
B=0
IND (HL) ~ (©) o 1 X| X} E|X]| 11 101 101 2 4 15 Ctvo"A.’
BeB-1 10 101 010 BioAg~ Ayg
HL«~HL-1
INDR EL-© | eo| 1| x[x[1]x{u 101101 | 2 H 20 Croag~ A,
B~B-1 10 111 010 (168 » 0)| BloAg~Ajg
HL —HL-L 2 4 15
Pepeat unil are=o)
JOUT (n), A] ) —A of[e|efofefe] 1l 010 011 2 3 1 niqu"A
Acc 10 A,
ouT(CLr | (Ot ofefe[e]o]eftt o1 101 ] 2 3 12 CloAy~A,
@ o1 r 001 BtoAE~A]s
OouTl (C) ~(HL) o ¢ X| X} 1| X]11 101 101 2 4 15 Cto Al) ~ A.I
BeB-1 10 100 011 BloAy~Ag
HL~HL+1
OTIR ©«-mn el x| x[1]x]t1 100100 | 2 s 20 ClAy~A,
B—B-1 10 110 011 (If B * 0) BloAg~Apg
:"’"" 'l’ 2 4 15
epeat until (=
B=0 arB=0)
outp @«-mn el t| x| x| t{xfr 00| 2 .4 15 Coag~A
BeB-1 10 101 011 BIHAS‘A’S
HL < HL-1
JOTDR (©) =~ (HL) eb1 x| x]ix{1i 101 101 2 5 20 Cto A, “'A7
(af B.# 0 0
BeB-1 0 1 on BloAg~ A
:"“""'l; 2 4 15
epeat un IfB=
B=0 (f B =0)
Notes: (D) 1If the result of B - 1 is zero the Z flag is set, otherwise it is reset -
Flag Notation: e = flag not affected, 0 = flag reset, 1 = flag set, X = flag is unknown,
+ = flag is affected according to the result of the operation.
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APPENDIX D

Binary and Hexadecimal

Representation

BINARY AND HEXADECIMAL REPRESENTATION

Binary Representation
In binary, positional notation is used similarly to decimal notation:

’[T___Axw"-— 4
3X 100 = 30
2X 10° = 200
b 1 X 10° = 1000
1234

101111,

RNNRRN
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Hexadecimal Representation

Decimalo Binary: Hexadecimal,o
[ 0000 4]
1 0001 1
2 ooto 2
3 0011 3
4 0100 4
5 0101 5
6 o110 6
7 o 7
8 1000 8
9 1001 9

10 1010 A
1 1011 B
12 1100 C
13 1101 D
14 1110 E
15 nn F

Hexadecimal to Decimal Conversion

..... AB92H
I A 16 POSITION= 1
16" POSITION 16
16" L 16° POSITION = 256 !
POSITION L 16" POSITION = 4096
To convert:
AB92H
It_._-zxw": 21 = 2
9X 1= 9X16 = 144
11X 16°=211 X 256 = 2816 |
10 X 16° = 10 X 4096 = 40960
43,9220

Steps in Conversion:
1. Multiply each digit weight by hex digit.
2. Add to get total equal to equivalent decimal #.

296




Decimal to Hexadecimal Conversion
119910 = 4AFH Steps in Conversion:
1. Divide decimal # by 16.
Save remainder.
. Repeat until quotient = 0.
. Remainders in reverse order
represent hexadecimal
equivalent.

PP

0

16)4 REMAINDER 4

16)74 REMAINDER 10
1651199
12
79

g

15 REMAINDER 15 ——

Hexadecimal Addition and Subtraction

OPERAND 2
0O 1 2 3 4 5 6 7 8 9 A B C D E F
ojo 1 2 3 4 5 6 7 8 9 A B C D E F
1/ 2 3 4 5 6 7 8 9 A B C D E F 10
2|2 3 4 5 6 7 8 9 A B C D E F 10 11
3|3 4 5 6 7 8 9 A B C D E F 10 11 12
4|4 5 6 7 8 9 A B C D E F 10 11 12 13
5|5 6 7 8 9 A B C D E F 10 11 12 13 14
OPERAND 6 [ 6 7 8 9 A B C D E F 10 11 12 13 14 15
1 7|7 8 9 A B C D E F 10 11 12 13 14 15 16
8|8 9 A B C D E F 10 11 12 13 14 15 16 17
919 A B C D E F 10 11 12 13 14 15 16 17 18
A|Jl]A B C D E F 10 11 12 13 14 15 16 17 18 19
B|B C D E F 10 11 12 13 14 15 16 17 18 19 1A
€C|C D E F 10 11 12 13 14 15 16 17 18 19 1A 1B
DD E F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C
E|[E F 10 11" 12 13 14 15 16 17 18 19 1A 1B 1C 1D
FlF 10 11 12 13 14 15 16 17 18 19 1A 18 1C 1D 1IE

To add operand 1 to operand 2 find sum at intersection. If two digits, a carry to high

order is represented.
To subtract operand 1 from operand 2 find difference in operand 2 column. If operand 2
greater than one digit the high-order 1 represents a borrow from next digit.
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APPENDIX E

ASCII Character Code

The ASCII character code is shown in Chart E-1 on the follow-
ing page.
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13a ~ { | } z A x ~m A n 4 s Pl b d 2
° u w ! L] ! ! y 6 ) ° P > q e N
- { ( AN ] z A X M A n L S ] Y d
o N w 1 b r 1 H b 4 El a 2 k| v ® ¢
¢ < = > ! 6 8 £ 9 S 4 € z L 0o €
/ - ‘ + » ( ) . 2 % $ # « i S T
sn sy () s4 os3 [ ans | w3 | NvD | @13 | NAS [ MWN | #oa | €a | 2xa | 1da | 3@ 1
IS os £ 44 1A il 1H sa | M8 | dov | ONI | 103 | xu3 | x1s | HOS | N O
4 3 a 3 1 v 6 8 z 9 [ ¥ [ T 1 [

3poD Iepeley) IIDSV T-H HeyD

11914 X3H INVOIINOIS 1SV3T

11918 X3H INVOIINDIS 1SOW
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APPENDIX F

Z-80 Microcomputer Manufacturers

Computer Systems
26401 Harper Avenue
St. Clair Shores, Michigan 48081

Cromemco, Inc.
2432 Charleston Road
Mountain View, California 94043

The Digital Group, Inc.
P. O. Box 6528
Denver, Colorado 80206

MiniMicroMart, Inc.
1618 James Street
Syracuse, New York 13203

Quay Corporation
P.O. Box 386
Freehold, New Jersey 07728

Radio Shack, A Division of
Tandy Corporation

One Tandy Center

Fort Worth, Texas 76102

S. D. Sales Company
P.O. Box 28810K
Dallas, Texas 75228

Technical Design Labs, Inc.
Research Park

Bldg. H

1101 State Road

Princeton, New Jersey 08540

Zilog, Inc.
10460 Bubb Road
Cupertino, California 95014




Index

Absolute symbols, 141
Address and data bus, 26
Addressing modes, 41-54
Algebraic compare, 168
Alphanumeric string, 195
A register

1/0 instructions, 219-222

used for random addressmg, 150
Argument, 185, 212-213
Arithmetic and loglcnl operations, 17,

161-1
Arithmetic shifts, 179-181
ASCII

binary characters, 239
character code, 299
decimal digits, 241
hexadecimal digits, 240
to base X conversion, 237-240
to bed conversion, 182
Assembly
format, 137-139
mechamcs, 144
process,
-time calculatxcms, 158

Backward references, 140

Banking schemes, memory, 48

Base X to ASCII conversions, 239-242
Basic instruction cycles, 32

Controller, 2!
Counterétingxer circuit (CTC), 111, 247-

CPU, 15
electrical sgeciﬁcations, 30-31
registers,
timing, 30-31
CRC parity generation, 252
Cromemco, Inc., 265-269
Cross-assembler, 13
Current assembler location, 142
Cycle-stealing, 229

Daisy-chained interrupt circuitry, 37
Data

bus, 26

strings, 192-197

structures, 192
Debugging program, 252
Decimal, 141

Ad;ust Accumulator instruction, 15

arithmetic operations, 172-173

to hexadecimal conversion, 297
Decrement, 66
Decrementing ( subtracting one) 18
DEFB and DEFW pseudo-ops,
Delete table entry actions, 200
Delimiters, 144

Bed, 102-103 Diagnostic messages, 139

to ASCIHI conversion, 183 igital Group, Inc., The, 259, 269 272
Binary, 141 Dlsc contmller board (MDC), 2

anﬁ" d 1 295- field, 21

297 Dlvnde .

-coded decimal (bed), 15 -by-two operation, 180
Bit signed, 236

addressing, 51 unsigned, 235

example, 54
position, 44
Set, Reset, md Test group, 84-88,

Blank or null txpe, 253
Block

fashion, 14
transfer instructions, 156-159
transfers, 92
Branch instruction, 20
Breakpoint, 254

7
Bus Acknowledge Signal (BUSAK), 27
Bus Request Signal , 26-27

Calls, 88
Carry flag (CY), 19, 72, 95-98
Chip enable sxgnal 38
Clock, 105
Compare, 167-168
Comparison subroutine, 232-233
Complement Accumulator (CPL), 42
Conditional

calls and returns, 214

jumps,
Condition codes, 19

DMA actions, 228-230
Double-precision operation, 18, 163
Dynamic

memory interfacing, 121-122

memories,

RAM refmsh, 122

detor,
Effective nddress, 21, 50
8-bit
arithmetic operations, 161-165
compares, 167-169
increment and decrement, 169
load group, 5
arithmetic and logical, 65-69
logical operations, 165-167
moves, 145-152
multiply register arrangement, 190
8080 an(18 Z-80 instructions compared,

8251 USART, 250
Electrical speciﬁcaﬁons
CPU, 30
Z-80, 31, 276-277
Employee table format, 197-198
Environment,
EPROM, 24
ERROR routine, 162
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Exchange
block E.trangfer, and search group,

group, 159-160
Expression evaluation, 141
Extended addressing, 43—48
External memory, 23-24

Fetch, 2.

cycle (Ml) 28-29
File- Maintenance software, 258
Fill data routine, 242-243
FINDIT subroutine, 217

Instrucuon
cnmpanson 8008, 8080, and Z-80, 13
cation for VDT bit routine, 188
set, 5592

4004, 11
Interface signals and timing, 26-40
Interfacing

memolry and I/0 devices to the Z-80,

16-1:
ROM and RAM, 118-121

Five-ct string i 196

=

ag
carry (C or CY), 19, 95-98
half-carry (H), 19
HandN, 100-102
panty/overﬂow (P/V), 19, 98-99
register format, 19, 93
sign, 19, 9
subtract (N) 19
zero (Z), 19, 93-95
Flags and arithmetic operations, 93-103
Floating point, 234
Floppy disc, 24
characteristics, 226
u)ntml board, 25
1/0 driver-parameter block, 227
Shuart 800, 251
4-bit bed shlft, 181-183
Four-digit bed representation, 172
Forward references, 140
Frames, 104

GETCH subroutine, 218

Half-carry, 102, 193
flag (H), 19

HALT signal, 29-30

H and N flags, 100-102

Handshaking, 24, 122, 224

Hardware Breakpomt Board 257
Hashing, 1

Hash sear (‘j‘l 1

Hexadecimal, 141, 296, 297

High and Low reglster pair (HL), 46-47

HL pointer, 46-47

IFF (interrupt flip-flop), 108
Image of source line, 1
Immediate

addressing,

loads of 16 blts 152-153
Implied addressmg 41-42
IN-Circuit Emulator Board, 257
Increment, 66
Incrementing (adding one), 18
Indexed addressing, 50-51
Indexing, 150, 170
Index

register block access, 148

registers IX and 1Y, 21, 147
Initialized, 152
Input- and output-

data fo;‘%mts RAM/ROM configuration,

group, 92

signals ( ), 28
Insert table entry actions, 201
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16, 2!
enable ﬂlp-ﬂop ([FF) 29-30
handling routine,
mode, 2, 112-114
nonmaskable { always active), 22-23
operations, 231
response vector, 38
sequences, 104-115
Vector Register, 29

1/0
block transfer instructions, 223-225
device controller, 24-2
instructions using C register, 222-223
read and write cycles, 35-36

I register actions, 22

“Jams,” 92
Jump, 20, 85-92

Large-Scale-Integration (LSI) chlp, 11
Least slgmﬁcant byte (1sb), 4

Level conversion, 24

LIFO operation, 21

Limit check, 163

Lmked lists, 156

delete and insert actions, 206
and table operations—search group,
192-207
operations, 204-207
Loader format, 144
Load group
blt set, reset, and test, 84-38
and return, 85-89
8 b1t 55-59, 68-69
exchange, block transfer, and search,

general—purpose arithmetic and CPU
control, 69-
input and output, 92
jump, 88-92
rotate and shift, 77-84
16-bit, 59-64, 7577
Load (LD), 48’
and Decrement instructions (LDD),

and Increment instructions (LDI), 66
Location counter, 142
“Lock-outs,” 218, 229
I.og‘u:al sh:fts, 174-175
LOO!
Looping, 149
LSI chips, 25

Machine
cycle, 28
language, 133-137




Macro Number bases, representation of, 141
Cross Assembler, 258
expansion, 26 Object module, 137,
Magnitude compare, 168 Op code fetch cycle (Ml), 32-33
Manual assembly process program 1-2, Operant, 81
s OS Z-80 operating system, 257
Macslﬁable interrupt, 111-113 Overflow conditions and P/V flag, 101

configurations, 251-252 “Pad” a program, 72

interrupts, Page zero addressing, modified, 48-49
1/0 parts, 250 Paper-tape-reader controller, 25
memory, 248 Par:

monitor, 252-255

nominal memory mapping, 249

parallel 1/0, 250 Parity (P), 209

serial 1/0, 250 -overﬂow flag (P/V), 19, 98-99
Memory Patching, 254

-bank switching, 262 PIO (parallel 1/0), 122

bytes, 24
1/0 Board, 257

banking schemes, 48

data read and write cycles, 34-35
-mapping 1/0, 118

operand, 77

or I/0 WAIT states, 39-40

initial conditions, 127-128
interfacing, 122-124
interrupts, 126-127

mode 1, 2, and 3, 125-126
registers, 124

vector control word, 126

refresh (R), register, 23
Request Signal (MAEO), 2728 Pixel, 184-185

signals, 27-28 PMOS, 11
Merge data, 166 Poppmg the stack, 88
Microcomputer Priority

encoding for interrupt mode 0, 110

board (MCB), 247
mterruf(t) control unit (Intel 82 14),

component parts, 23-25
Microprocessor chip, 23
Minimum Z-80 system, 116-118
Mnemonics, 134-135
Mode

word example, 210

1
Processor module, 257
Programmable counter-timer interface,

105
Programmed, 24

0 interrupt processing, 1/0 loop, 224
Modem (modulator/ demodulator) 250 PROM, 24
Modified gage zero addressing, 48- ! Prompt, 253
Modify table entry actions, 202 Pseudo-operations, 141-144
M1 fetch cycle, 28-29, 32-33 Pulled, 20
Monitor Punch tape leader, 255
mode, 256 Pushed,

program PROM, 25
Most significant

add, 236

borrow (carry), 236

byte (msb), 47 166

data—lcad, block transfer, and
exchange groups, 145-160
noncontiguous data with LDI, 159
Mult le-precision
metic routines, 236-237
operanons,
Multiplication and division by shifting,

Multiply2 ;g;l divide subroutines, 234-
Multiprogramming, 263

Nested interrupts, 111

Nesting, 214

NMI (nonmaskable interrupts), 106-108
NMOS, 12

Nongenerative comment line, 138
Nonmaskable (always active) interrupt,

22-23
/Acknowledge cycle (NMI), 32
cycle, 38-39
No parity (NP), 209

P/V flag, 98-99

Radio Shack, 259, 272-274
RAM (random access memory), 24
memory board (R , 227
ROM memory mapping, 120
RDY signal, 125
Read
cycle,
sxgnal (‘RD) 27-28
Real-time
clock, 105
storage, 256
Reentrancy, 216-218
problems, 10
Beentra.nt code, 216
“Reentry” point,
Ref)esh signal (
gister
ddressmg, 44-45
block combinations, 17
compa.nson 8008, 8080 and Z-80, 13
flag, 18-19
gengra.l-pnrpose, 15-18

mdnl'%ct addressing, 46-47
X, 19

), 27-28




Reglster—oont

pairs, 1

PC, 19-20

R, 19

SP

speclal -purpose, 19-23
Relative

addressing 49-50

ranch, 168

Relocatable symbols, 141
Representation of number bases, 141
RESET signal, 116-117
Resident assembler, 137
Residue, 1
Restoring, 190
Returns, 88
R field values, 45
Right justified, 176
RLD and RRD action, 182
Rolling basis storage, 256
ROM, 2
Rotate

and shift group, 77-84

-type shifts, 177-179

Semiconductor
N-channel metal-oxide, 12
P-channel metal-oxide, 11
Sﬁ:’l{al bits, 24

Sl
actions, 177
instructions, 80 81
logical, 174-175
right arithmetic (SRA), 179-180
Shifts, rotate-type, 177-179
Signal levels, 24
Signals, memory, 27-28
Sign flag, 19, 95-96
Smgle—ended linked list, 205
16-bit
arithmetic operations, 169-172
by S-Iigldivide register arrangement,

data transfers to the stack, 154
load group, 59-64, 75-77
moves, 152
stack operations, 154-156
transfe;ito and from memory, 153-
1

Software
1/0 drivers, 226-228
mulhplxcahon and division, 188-191
Source
line, 138
Spe Wi oo 19-23
cial-purpose registers,
Stack pointer (SP), 19-21
Storage array, 256
Strin,

g
comparison, 243
search termmatmg conditions, 194
Subroutin
GTADD action, 187
operation—jump, call, and return
groups, 208-: 218
use, 211-216

304

Subtract flag (N), 19
SUPER-BASIC, 265
Symbolic
assembly language, 133
representation, 139-141
Symbols, 141

Table
for binary search example, 202
operations, 197-204
search
examples, 117
routine, 243-244
Technical Desslgn Labs, Inc. (TDL),
0-2

Tim:
interface signals and, 26-40
loop, 234
“Toggle,” 166
Toggled, 178
“Top-down” and “bottom-up” subroutine
system, 232
Top of stack, 152
Trailer of blanks, 255
Tri-state output, 26
Truncation errors, 203
TTL (Trgnsnstor -Transistor Logic), 24,

USART chip, 247
User mode, 256

VDB, 252

VDT bit map for 64K pixels, 185
Vectored interrupts, 105

Video Interface Card, 252

WAIT signal, 29-30

“Wire-or” configuration, 114
Wire-wrap pins, 250
WOM (write only memory), 24
Wntczl

cycle, 3

signal ( R), 27-28

ZAPPLETM, 263-264
Z-80

ac timing diagram, 281
addressing modes chart, 52-53
architecture, 15-25

CPU, 26, 278-280

development system, 255-258
instruction, 283-294

interrupt inputs, 106
MCB;TBmlcrooomputer board, 247-

facturers, 300
Microprocessor architecture, 76
PIO configuration, 128-130
programming—commonly used
subroutines, 232-244
simulator, 258
Zero (Z) ﬂag, 19, 84, 9395
actions, 94
Zilog, Inc 247-258
0 mmropmcessor or chip, 12-14







