DISKEDIT 2.9

A Soft Unlimited Product

DISKEDIT 2.0 1is a major upgrade from 1.8. New features include
SuperSearch w/wildcards, mass boolean operations, two way buffer
transfer, memory editting, SOFTPROMPT Defmode user input, an RPM
Tester, and more.

This documentation and the DISKEDIT program are protected by
U.S. copyright 1laws, and may not be copied for any other use
than personal backup protection. Copying this software for
redistribution or trade is a criminal offense and punishable by
fines and imprisonment. Likewise, wuse of this software for
software piracy 1is also illegal. Soft Unlimited developed this
software as a disk analysis and development tool and may not be
held responsible for illicit use of the program.

This product is sold as-is. Soft Unlimited will, however,
replace defective disks at no charge, if returned within 10 days
of purchase, Disks returned after 10 days must be accompanied
by $5.80 to cover handling and postage for replacement. So,
don't forget to make a backup of the program as soon as you get
your disk. A program called PCOPY is included on the DISKEDIT
disk to allow you to backup DISKEDIT. When you boot up with
DISKEDIT the first time, press the BREAK key and then type RUN
"D:PCOPY", PCOPY will prompt you for the source disk, so just
press return. When you see the FORMAT? prompt, place a
formatted disk in the drive and press return again. You now have
a duplicate of DISKEDIT. Please don't start passing copies of
DISKEDIT around. I am selling my software for what I consider a
reasonable price, because I am gambling that the lower price
will 1lower the tendency to trade. No single SOFT UNLIMITED
program will ever have a suggested retail price of more than
$25.00, unless piracy destroys our profit margin,

khkhkhkhkhkhkhkhkhkrkhkhkhhkhhkhkkhkhkhhkhhkhkhkhhhkhhkhhhkhkrkhkhdk

* DISKEDIT and ULTRACOPY may be ordered *
* FROM: *
* SOFT UNLIMITED *
* 3546 PILGRIM LANE *
* PLYMOUTH, MN 55441 *
* DISKEDIT-$24.95 Suggested Retail *
* ULTRACOPY-$20.00 Suggested Retail *
kkkkhkhkkkhkhkhkhkkkhkhkkhkkhkkhkhkhkhkkkkhkkkkhkkkhkhkkkk

DISKEDIT - A Disk Analysis Tool

Written by Todd Burkey 2/1/82

INTRODUCTION:

Program DISKEDIT was written primarily as a learning experience in
order for me to better understand the internal workings of the ATARI
Disk 1I/0 subsystem. Starting with a simple routine to read and write
sectors from the disk to memory and back, I soon found the need to
add editing capability, viewing routines, data transfer routines,
multi-disk selection, a boolean <calculator, a disassembler with
relocatable printout 1locations, and finally a disk mapper to 'see'
the contents of a disk at a glance and a disk copier to move the data
around. After getting some suggestions from users of 1.0, I added
single key entry, a mass boolean operation option, search tools,
memory editting, two way buffer transfer, and a default mode
prompting system. I also sped up the mapper to full assembly speed
and gave the user the ability to map around blocks of bad sectors.
The 2.0 release 1is also easier to upgrade to double density copy,
read, and write modes. All of the control program is written in BASIC
with extensive wuse of relocatable assembly code routines wherever
speed was required (disk I/0, Mapping, Boolean operations, viewing,
and copying). The final product is a program that will work in a
system as small as 24K and loads very quickly as one complete program
unit (few data statements were used to create assembly routines upon
execution; instead, strings allow the high speed loading.)

As an added bonus, I have decided to market this software as listable
source. All of the assembly routines used in DISKEDIT are fully
relocatable and may be inserted in other programs by 'LIST'ing the
line out to a disk file and then 'ENTER'ing the line back into the
source program. None of the routines are what I would consider
copyrightable, so feel free to use them in new software development
projects., Just don't forget to «credit the original developer. The
program, however, 1is copyrighted and as such may not be copied for
resale or redistribution.

Any suggestions for improving this software will be welcomed from the
users., In fact, at reqular intervals (possibly every 6 months) a new
production release of DISKEDIT will be available to registered users
for a §$5.00 update fee (trading in your old disk). Users who return
the registration form will be notified whenever a release 1is
available., Registration 1is automatic for direct purchases from Soft
Unlimited.

Diskedit was developed for use by both the experienced ATARI hacker
and the beginning user. Anyone can use DISKEDIT as an everday DOS
utility (i.e. recovering lost files, fixing scrambled sectors, etc.),
but to fully utilize the capacity of DISKEDIT, some familiarity with
Assembly language 1is important. Beginning ATARI users should obtain
a 6502 reference manual and the ATARI OS manuals for reference when
using DISKEDIT to 1look at source code. Many users have informed me
that DISKEDIT turned out to be very helpful in their learning of
Assembly 1language (i.e. by looking at game code and figuring out what
is being done, they learn Assembly as a side benefit.)

#
00 :
g8:
10:
18:
20:
28:
30:
38:
40 :
48
50:
58:
A
19
78:

S#

EXECUTION:

Program DISKEDIT will automatically load once the system is powered
up. Make sure the BASIC cartridge is inserted prior to powerup.
Loading will take less than one minute. Once loaded, the screen will
blank for 10 seconds as the software deletes lines that are not
necessary for the rest of the session and then a title page will
appear, with a brief description of the command options. The RPM of
the source disk will then be tested and everything will be all set to

go.

COMMAND SUMMARY:

The following command descriptions cover all possible legal responses
to the menu level prompt shown below.

S# (OR A,C’D’E,M,R,S'T,V’?,<,>)?

This prompt will be returned to upon successful completion of any
command and 1is also the trap return point for user errors. The menu
can optionally be returned to at any point by pressing ESC in
response to a command level guestion. Also, if you break out of the
program and want to continue, type GOTO 230 to continue (or reboot
the DISKEDIT disk). This version of Diskedit also uses a default mode
data entry routine which which shows the wuser what the default
response will be (i.e. 1in answer to a null input) for most of the
prompts. This response 1is then echoed so that you know what was
input.

COMMAND-A:

This command allows the wuser to toggle back and forth between the
HEX/ASCII and the disk sector MAP displays (see figs. 1 and 2).
DISKEDIT initializes in the HEX/ASCII mode, since this mode is used
for editting and prompting. The MAP mode is most useful when the user
wants to do a fast scan of which sectors have been mapped. This mode
should not be used until the map option has been used at least once.

SECTOR: 53 <$0835> NEXT S#=54 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

HEXIDECIMAL ASCII XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
55 52 4B 45 59 2C 20 33 URKEY, 3 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
35 34 36 20 50 49 4C 47 546 PILG XXXXXEXXXXXXXXXXXXXXXXXXXXKXXXXXXXXXX
52 49 4D 20 4C 41 4E 45 RIM LANE XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
2C 20 58 4C 59 4D 4F 55 , PLYMOU XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
54 48 2C 20 4D 49 4E 4E TH, MINN XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXKXXXXX
45 53 4F 54 41 206 35 35 ESOTA 55 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
34 34 31 2E 20 48 4F 4D 441. HOM XXXXXXXXXXXXXXXXX XXX XX XXX XXX XX XXX XX
45 3A 36 31 32 2D 35 34 E:612-54 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX X
32 2p 31 3¢ 32 37 2C 20 2-1027, XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
57 4F 52 4B 3A 35 34 31 WORK:541 eebex?eececececeecececeeceeeceeecececeeceeeeeee
2D 32 30 36 34 9B 04 08 -2064%.. eceeeeceeceeeceeceeeeecceeeeeeeeeeeeeeee
6D 0D 2B OFE 00 00 00 00 ..teeeces eeeeeececeeeeeeeeeeeeeeeeeeeeeeeceeeee
P08 00 16 OB B0 19 OF 36 .eeeeseb eeeeeeceeceeceeeceeeeeeeeceeceeceeeeeeeeee
80 2D OFE 41 80 10 00 00 .-.A.... eeeeeececeeeeceeeceeeeeeeeceeeeeeeeeeee
e 00 00 00 00 00 00 00 ..ceeeeee Press A to Return

00 00 00 00 P90 P4 36 71D ceevvees
(OR A,C,D,E,M,R,S,T,V,2,<,;,>)?

Fig. l: HEX/ASCII Fig. 2: MAP (unformatted)

COMMAND-C:

This command allows selective copying of sectors from one diskette to
another. Any number of sectors may be copied, but use of this
software to copy more than 158/87/22 sectors (for 40K/32K/24K
machines respectively) will require that the user reinsert the source
disk one or more times (unless two drives are used). This copier has
the unique feature of being able to relocate sectors through a user
specified destination start sector. This allows you to place more
than one game on a disk, if you use a menu to pick the game to load.
A sample execution printout follows:

s# (OR A,C,D,E,M,R,S,T,V,?2,<,>)2C

READ 128 BYTES/SECTOR (Y/N)[Y]?Y <---Reply N for 125 bytes

START SECTOR[1]7?3

END SECTOR[720] 7?2200

DEST. START SECTOR[3]103

INSERT SOURCE DISK, RETURN WHEN READY?

INSERT DESTINATION DISK?

INSERT SQURCE DISK, RETURN WHEN READY?

INSERT DESTINATION DISK?
MAIL ORDER ONLY: Include $1.00 Shipping) o
A program called ULTRACOP is available from Soft Unlimited for
DISKEDIT owners for $12.00. This is a 160% assembly code copier that
copies using advanced data compaction techniques. The data
compaction will allow you to copy most game disks in one pass (a boon
to us one disk drive owners.)

COMMAND-D:

This command allows the user to disassemble any part of memory within
the range of byte @ to byte 65532, This is a one pass disassembler
which allows the user the option of setting up the printed addresses
as different from the actual memory locations. This is a useful
feature when disassembling binary load files or boot files when the
start address 1is known. Another useful feature built into the
disassembler is the SUPERSEARCH function. This allows you to search
any place in memory (including the Transfer buffer) for a 1, 2, or 3
byte sequence of numbers., A special wildcard search is also allowed
in that two bytes seperated by any byte can be searched for (i.e.
search for all STA $83xx as shown below in the example., A sample
execution printout is shown below in fig. 3.

PRINTER (Y/N/Q) [N]?N

SEARCH (9-NO,1-1,2-2,3-SPLIT,4-3) [8]?22
VALUE #1([$20]7?2$8D

VALUE #3[$E4]2S$03

PRINTOUT RANGE {[+/- 10 BYTES]?4
OUTPUT MODE (H-HEX,D-DEC,B-BOTH) [H]?B
OF BYTES[ALL] 218000

OFFSET ADDRESS|[$1000]2$714

START ADDRESS|[T BUFFER]?=514
SECTOR:22 BYTE: 34

1817 9719 : AD 12 87 LDA $0712

1820 871C : 85 43 STA $43

1822 @71E : 8D 04 03 STA $0304

1825 8721 : AD 13 97 LDA $@713
[

USE PRINTER [N]? <---Use the ESC key to exit

Fig. 3: Listing

-4-

The disassembly may be interrupted at any point by simply hitting any
key on the keyboard. Pressing the space bar will stop the printout
for viewing, and pressing the bar again will resume printout. Two
final things are important to remember, When typing in the memory
location to start viewing at, a C/R response will default to the
start of the system buffer (from the Transfer commands' data) and an
"=" followed by a number will start at the system buffer address +
the number offset. Also, the current sector may be disassembled at
any time by starting at address $680 (the page 6 buffer I used to
store the sector.)

COMMAND-E:

This command allows editting of the last sector read or the memory
viewed using the P command. The editting is performed by moving an
arrow around on the screen using the keyboard arrows until the arrow
points to the byte to be editted. The user then inputs the new value
as either a decimal number, a HEXidecimal number (preceded by a
dollar sign), or an ASCII character (preceded by a period). The
screen will automatically be updated in both the HEX and ASCII
displays, and the arrow will point to the next byte on the screen.
When the wuser 1is finished editting, pressing ESC will return to the
main menu. The information can then be written out to the disk drive
with the W command.

SECTOR: 53 <$0035> NEXT S#=54

HEXIDECIMAL ASCII
PP: 55 52 4B 45 59 2C 20 33 URKEY, 3
P8: 35 34 36 20 50 49 4C 47 546 PILG
10: 52 49 4D 20 4C 41 4E 45 RIM LANE
18: 2C 20 50 4C 59 4D 4F 55 , PLYMOU
20: 54 48 2C 20 4D 49 4E 4E TH, MINN
28: 45 53 4F 54 41 20 35 35 ESOTA 55
30: 34 34 31 2E 20 48 4F 4D 441. HOM
38:>45 3A 36 31 32 2D 35 34 E:612-54
49: 32 2D 31 38 32 37 2C 20 2-1027,
48: 57 4F 52 4B 3A 35 34 31 WORK:541
56: 2D 32 30 36 34 9B P4 00 -2064%..
58: 0D 0D 2B OE 00 00 00 00 ..+.....
60: 00 60 16 OB B0 19 BF 36 .eceeeeb
68: 80 2D OE 41 80 10 00 60 .-.A....
70: 00 00 00 00 00 00 00 00
78: 00 00 00 00 00 04 36 7D .cevevess
>>>NEW VALUE?
S$# (OR A,C,D,E,M,R,S,T,V,?2,<,>)?

Fig. 4: Editting Session

COMMAND-F:

This option is used to format a diskette (notice that the F prompt is
not included in the menu-it is hidden to prevent accidental
formatting of your disks by the curious.) The disk to be formatted
will be the one last identified as the destination disk (disk drive 1
is default). You will be prompted as to whether you really want to
format that particular disk after you enter the F option (just in
case you typoed.)

COMMAND-M:

This option 1is used to create a map that will allow you to see where
bad sectors on a disk reside and also where the sectors containing
data are located. The map command will search every sector of a disk
for data, determining the status of each sector (bad, empty, data
filled, or repeating data). You will be able to watch the progress of
the mapping on the screen as Diskedit creates its map buffer
(described under the A option-see fig. 2). As each sector is
analyzed, you will see a character appear on the screen. Four
different characters are used in the map. An x means that the sector
contains data. An e means that the sector is empty (all zeroes). An
underscore (printed as a ? in the V option) means that the sector
contains 128 identical non-zero bytes. A b means that the sector is
bad. Since a complete map will take several minutes (yes, even at
full assembly code speed like this is) the user has interrupt control
by pressing any key during the scanning. Once interrupted, the
program will return to the main menu, but mapping may be continued by
again using the M option and specifying a new start sector. Popping
in and out of the mapping process is common when mapping around
blocks of bad sectors (unless you are wearing earplugs.)

s# (OR A,C,D,E,M,R,S,T,V,?2,<,>)?M
START SECTOR[1]?21
PURGE MAP[N]?Y

COMMAND-P:

This command 1is used to relocate your view/edit buffer from the last
sector read buffer ($680-S6ff) to any point in memory. Basically, you
can look at any point in memory, and then edit that area using the E
option. The most common use for this command is to view parts of the
Transfer buffer (see T option) and then edit the data prior to
transfering the data back to a disk. The T buffer may be accessed the
same as it is in the D option (using the = prefix before the number
of bytes offset into the buffer.) This command should be used with
extreme care when looking at memory locations outside of the Transfer
or last sector buffers. Editting the wrong bytes in the lower 4
pages of memory or inside the program itself can easily hang the
system. As long as you have a write-protected disk in the drive,
however, it 1is still fun to play around with page 2 locations
(colors, sounds, etc.)

s# (OR A,C,D,E,M,R,S,T,V,2,<,>)7?P
MEMORY START [T BUFFER]?$200

COMMAND-R:

This command drops the user into an arithmetic section which allows
standard calculations (+,-,*,/) as well as Boolean operations between
two operands. An extension of this command has been added which
allows the same calculations to be performed at the BYTE level on a
MASS of data. If the MASS function is selected, numbers entered as
Dec or Hex will be interpreted as a constant value. Numbers preceded
by a '.' will be interpreted as an actual memory location and numbers
preceded by a = sign will be read as offsets into the transfer
buffer. The user will be required to specify the number of bytes to

-6-

perform the arithmetic on as well as the area in memory he wishes to
store the results. Use this option with care. A sample session is
shown below.

Ss# (OR A,C,D,E,M,R,S,T,V,?2,<,>)7?R

op: (+,-,*,/,And,Or,Xor,Not) [~-]? +

MASS OPTION[N]?N

FIRST OPERAND? $123

SECOND OPERAND? 33

HEX: $123 + $21 = $@l44

DEC: 291 + 33 = 324

op: (+,-,*,/,A-AND,O-OR,X-XOR,N-NOT) [-]7?

COMMAND-S:

This command allows the wuser to select what drives will be used to
read and write data from., The system will default to read and write
from drive 1 unless told otherwise., A sample session is shown below.

S# (OR A’C,D,E,M,R’S,T,V,?,<,>)?S

DRIVE # FOR READING DATA? 1
DRIVE # FOR WRITING DATA? 2

COMMAND-T:

This command is much like the Copy command, except that now copying
is performed from disk to memory or memory to disk. This command is
used primarily to load an entire program or game into the Diskedit
Transfer buffer for editting using the P command or Search and
Disassembly using the D command. Data can be loaded or copied from
any part of the buffer. This command does purge the map buffer, so
be sure you have a good copy of your disk map before transferring or
copying data. A sample execution printout follows.

s# (OR A,C,D,E,M,R,S,T,V,?2,<,>)?2T

BYTES INTO BUFFER[@]?20 ---# of bytes offset
TRANSFER DISK TO MEM[Y]?Y

READ 128 BYTES/SECTOR (Y/N)[Y]?Y

START SECTOR[1]23

END SECTOR[158]7140

INSERT SOURCE DISK, RETURN WHEN READY?

Note that the 128/125 byte readin option becomes very useful now,
since binary 1load files contain only 125 bytes of object code. By
specifying N in response to the prompt, the user can obtain a
continuous disassembly listing (assuming the file is contiguous). See
NOTES for more info.

COMMAND-V:

This command lets you get a formatted printout of the disk map. You
can choose to print to either the screen or the printer. The
character codes used are described under the M option. A sample
printout is shown below.

pPO000000111111111122222222223
123456789012345678901234567890

o~ e P e e Re R R)

XXXXXXXXXXXXXXXXXXXXXXXXKXXXXXX<30

KX XXXXXXXXXXXXXXXXXXXXXXXXXXXX<60

XXXXXXXXXXXXXXKXXXXXXXXXXXXXXXX<90

XXXXXXXXX?2?2?22XX?2?2?22XXXXXXXXX<120
KXXXXXXXXXXXXXXXXXXXXXXbxxbxxx<150
XXXXXXXXXXXXXXXXXXXXXXeeexXXxxx<180
XXXXXeeeeeeceeeeeceeeceeeeeceeeee<210
ceeeceecececeeceecececeececeeceeeeceeeeed24d
cceeeceecececeececeeceececececeeceeceeeceeel270
ceeeeceecceeceececececeececeeeececeeee<3fyd
cceeecececeeceeeececceececececeeceeeeee<33f
ceececcececececececeececeeeeccecceececeeeex<360
Xxeeeeeceeeceeeceeceeececeeeceeeeeeeee<390
ceeceececececeeeceeeceececceeceeeeceeeeld2ld
ceececceeccceceeceeceececececeeceeeeeee<450
cececeeceecececeeeeceeceececceececeeecee<480
cececeeceeceeeeeceecececeecceeeeeeee<blyd
cceeeecceeceeceeceecececeecececeeecececeee<544
ececeececececeececeececeececececeeeeceeceeee<570
cececececeececceecececeecceceececeeeeeceee<600
ceceeceececececececececececececeeceeceeceeceeee<63P
ceceeecececeeceecececececeeececceeeeceeee<660
eceeeeccceeeeecececeecececeeeececeeeee<699
ceeececeeececeeceececcececeeeececeeeeeee<7 2l

Fig. 5: Disk Map

COMMAND-W:

This command will write out the current sector in memory to any user
specified sector.

COMMAND-C/R:

A carriage return at the menu level will be interpretted as a request
to read the next DOS sector. This command is only of use when you are
tracing your way through a DOS created program or data file.
Diskedit recognizes the next sector pointer (calculated from the last
3 bytes in a sector), but the info is useless on boot (non-DOS)
sectors (see NOTES).

COMMAND-"'>"':

Use this command to read the next sector (i.e. if you are currently
viewing sector 101, 182 will now be displayed.)

COMMAND-"'<"':

A 1less than sign will read the current sector # less one into memory
(i.e. if you are currently viewing sector 181, then 160 will now be
displayed.)

COMMAND-n:

Any number entered at the menu 1level will be interpretted as a
request to read that sector. The number may be either DECimal or
HEXidecimal. Hexidecimal numbers must be prefixed with a dollar sign.
The allowable range of sectors is 1 to 720,

COMMAND-?:

This command reprints the 1list of options shown at boot time and
performs an RPM test of the source disk for you. A good speed to
keep your drive at is 288 +/- 2 rpm.

SUMMARY

This version of DISKEDIT has been tested for a variety of user
responses and should never abort with an error message. If you ever
see a BASIC error pop up and the program stop, feel free to write me
a nasty letter. It 1is hard to take all possible situations into
account, but hopefully I have made DISKEDIT foolproof. DO NOT write
me 1if you make changes to the program and then have errors occur.
For vyour reference, I suggest listing the program when you get it and
then disassembling the assembly code routines (just hit break after
the program boots up and find the starting addresses of the STRINGS;
then GOTO 230 and use the D option). The program is modular (i.e. the
main loop is in lines 0-1000, the copy routine is in lines 4000-5000,
etc.)and fairly easy to understand.

NOTES :

There are only a few fundamental concepts to remember while working
with the ATARI 810 disk system. First, a sector contains 128 bytes
of information. Certain sectors, however, contain less actual data.
For example, the very first sector read on a disk when the system 1is
brought up, sector 1, contains 6 header bytes of information that
tell the system:

1) Whether to silence the loading sounds
(byte @0=S$FF for silent load, else 00).

2) How many sectors to load in initially (byte 1).

3) Where in memory to start the load process at (bytes 3
and 2).

4) Where in memory to set the DOS init address (bytes 5
and 4).

After the initial number of sectors are loaded, control will pass to
the 1instructions starting at byte 6 of the first sector (i.e. the

load address+6). Also important to remember is that binary load
files are stored as 125 bytes of information with a 3 byte pointer
attached at the end. The pointer points to the next sector in the

file and also contains a checksum for the file # and # of bytes in
the sector. This 1is the reason I included the optional 125 byte
readin capability. If you have a sequential, contiguous binary load
file and move several sectors of 128 bytes each into memory for
disassembly, Jjunk would appear in the disassembly every 125 bytes as
the disassembler would try to disassemble the pointer. The 125 byte
readin will <chop off the pointer as it is read into memory, giving
you a continuous disassembly. Incidentally, the 125 byte readin is
also wuseful if you wish to convert a binary load file to a boot file
using the Copy command.

For those of you 1looking at DOS disks, the only other bit of
information I <can add 1is to look at sectors 368, 361, and 362
(362-368 if vyou have a 1lot of files.) Sector 360 is the disk map
sector that «contains all of the information about which sectors of
the disk are free and which have already been used for file storage.
This information is coded (a zero bit indicates a used sector and a 1
bit indicates an available sector), so I would recommend studying the
ATARI operating system manual before trying to modify this sector.
Sectors 361 to 367 are the sectors I usually work with. These
sectors contain all of the file names that are stored on the disk,
their size in sectors, and their starting sector number. Each file
takes up 16 bytes (2 lines) of these sectors. The first byte is a
status Dbyte. If it is equal to an ASCII b then the file is active,
otherwise the file is a deleted or 'accidentally lost' file. The
next two bytes contain the size of the file and the following two
bytes contain the start sector number. Finally, the last 11 bytes
contain the name of the file. These sectors become very important
when vyou 1lose a file by opening it for output and then turn off the
machine, reboot, or hang the system. By simply editting the first of
the sixteen bytes of the appropriate line, you can recover your data
file and copy it to another diskette,

For the beginning user, I would suggest looking at these sectors on a
DOS disk and experiment with tracing your way through some files.

-10-

BACKING UP YOUR BOOT DISKS

By popular demand of many DISKEDIT users who wish to back up
copy-protected disks for personal backup protection, I have added
this section for those unfamiliar with disk protection methods.
Please <check all applicable copyright laws before you copy any
software (Soft Unlimited can not be held responsible for illicit use
of the software.) There are many schemes on the market to
copy-protect disks, but there 1is no unbreakable copy protection
mechanism available yet for ATARI disks. This is because the computer
always has to be able to read sector 1 on a disk and this will tell
the computer (and you) what to do next. With sufficient patience any
disk can be backed up.

The most common scheme used by manufacturers is to format a disk
initially with bad sectors and then have the boot program check to
insure that these sectors are indeed bad (remember those disks that
go clunk?). These checks are easily found by disassembling the
program and then simulating a bad check by editting the code. In the
example below, assume that we have already determined that sector 258
is bad by doing a ‘disk map.

Original Source Modified Source
LDa $@2 LDA $02
STA $030A STA $030A
LDAa S$091 LDA $86
STA $030B STA $0303
JSR S$SE453 NOP, NOP, TAY

Putting a negative number ($86) into location $383, the accumulator,
and the Y register and NOPing out the JSR to the DISKIO routines will
allow most programs to be backed up, and without those noisy sector
checks. You can <create bad sectors by slowing your disk speed down
prior to writing a sector, but I don't recommend this procedure, If
you are patient and the problem is just a bad sector check, you will
find it.

Other things to keep in mind include: 1) the sequence of sectors in
the original disk may allow faster read-in; hence you may need to
null out timing checks, 2) multiple sectors with the same number may
exist (i.e. the second time you read sector 17, you may get different
data than the first time); hence you will have to be careful copying
the two sectors surrounding bad (missing) sectors, and 3) don't
forget that the program may check itself to see if you modified it.

In summary, the sequence of steps you must take to backup a disk
include: 1) map the disk to find data and bad sector locations, 2)
copy all sectors with data to a blank disk, 3) look at sector 1 and
determine how many sectors are loaded and where in memory they are
stored, 4) find and fix any bad sector checks by viewing sectors,
disassembling, editting, and writing, and 5) cross your fingers and
try booting the disk. Don't be afraid to go in and modify sections of
code 1in DISKEDIT for special backup requirements you may have. By
putting a loop in the copy routine code (4000-5000), you could copy
all odd numbered sectors from on disk to another. By placing calls
to the BOOLean routine in a loop, you could mix entire sections of
code together (a common data scrambling technique). You should never
find yourself doing something repetitive with DISKEDIT.

-11-

Most Asked Questions
kKA kkAkhkrkkkkkkkkhkhkkkk

In this section I will attempt to answer any questions people ask the
most about DISKEDIT, disk backup, etc.

Q) Can I write bad sectors w/o modifying my 8107

A) No. The Atari 810 handles all of the formatting and track I/O on
diskettes, so the only way to write bad sectors, duplicate sectors,
or checksum errors 1is by installing a new ROM on your 818 (i.e. you
provide new commands for your 818 processor.) Slowing your disk drive
down (prior to writing a sector) will create a bad sector, but this
will not back up most of the games on the market today. For your
interest, a new 4K bank select EPROM will be available through Soft
Unlimited in March, 1983. This unit has already been tested
successfully on the best protected games on the market-no problems.
The EPROM and software will go for around $75.00 (excellent when
compared with other products of 1lesser capability on the market
today.)

Q) What are bad sectors?

First I should state that bad sectors are a generic term used for any
sector that can't be read on the 810 disk drive. To best answer the
guestion, I must address bad sectors, duplicate sectors, and what I
tend to call Sort-Of-Bad (SOB) sectors, I will have to explain this
in laymans terms, since that is the way I think anyway. More detailed
information <can be gleaned from the Atari Technical User Notes (which
have been signigicantly improved in the last release by the way-there
is actually an index with page numbers!)

The best way to think of a sector is that it is a small area on the
disk that contains 128 bytes of user information and several bytes of
disk informattion. The disk info is used by the disk drive to tell
what sector number it is 1looking at and to checksum the data. A
Checksum is a simple means of quickly checking to see if data has
been accidentally modified. By adding together all of the bytes of
data in a sector and then comparing this value against the checksum
value (calculated when the data was stored), the disk drive can tell
whether data has gotten scrammbled. This reading and writing of the
disk information is completely controlled by the 818's microprocessor
and ROM instructions.

A bad sector (found on disks that go clunk when they boot up) is
simply a sector that doesnt exist on the disk. It was either not
formatted in the first place or was formatted, but the sector number
info was changed so that the 810 thinks it is a different sector
number. In any case, the 810 will not find the sector on the disk
and after scanning back and forth a bit trying to find the sector
(that is what the «clunk is) it will return an error code to the
computer. A game program will be set up to expect this code to be
returned and if it doesn't see it, the program will usually crash, go
out and format the copied disk, or something else equally as nasty.

-12-

Duplicate sectors are sectors created by renaming 2 or more
consecutive sectors on a disk to the same number. If a disk has
double sectors on it, the game will expect to be able to read two
sector 18s for example, and obtain different data each time it reads
the sector. Games that use this protection scheme usually load in
quiet (no «clunk), but <can be easily identified when a copy of the
game starts loading in fine, but gets to one point and then just
seems to read the same sector over and over. SOB sectors are usually
the trickiest to work with, because they have the characteristic of a
guiet read-in, but the computer 1is told the sector is bad. Also,
data is actually read in to the computers memory. This type of
sector 1is originally created with a bad checksum value; hence a
checksum error 1is returned even though the data is good. The game
program will be expecting both the data as well as the checksum
error.

I hope that this information has been of some use. Please keep in
mind that there 1is no way to create these types of bad or duplicate
sectors through software, A hardware modification of the 810 is
required (replacing the microprocessors' instruction set) to do so.
Some companies claim that their software will write bad sectors, but
they will require you to pull out a screwdriver and fiddle with your
disk drive speed to write a sector slower or faster than normal.
This sometimes works but only on some peoples' drives and only for
games that expect missing (bad) sectors. Two recently marketed
programs, that purportedly clone or replicate a disk, operate using
this feature (so the English tell me,) so be warned.

Q) How can I back up disks protected in such ways?

A) First, you need a program like DISKEDIT to allow you to get in and
look at the code on a disk. Also, a program like ULTRACOPY will prove
invaluable in performing the large backups of entire disks and also
the specialized copying around bad sectors that can get tiring if you
have one disk drive. DISKEDIT does have a sector copier built in, but
you can only copy 158 sectors at a time (between swaps of the source
and destination disks) unless you have two disk drives. I should also
caution against trying to sell copied software or selling the
originals and keeping the copies. This is clearly against the law.
The only reason to copy a game is for backup protection in case you
destroy the original accidentally.

Before going into the ways to get around copy protection mechanisms,
I will give a brief description of how the ATARI reads and writes
data to and from a disk. After looking through my notes on my
presentation to the SPACE group on this subject I think I had best
start at the beginning. An ATARI 81# diskette (when formatted) 1is
composed of 728 sectors of 128 bytes each. The sectors are numbered
from 1 to 720 and are arranged on the diskette in groups of 18. Each
group of 18 is <called a track and is best thought of as a ring of
sectors on the diskette that can be accessed by the head with minimal
movement. Movement from track to track can be heard when reading or
formatting diskettes (unless you have greased your rails recently.)

~-13-

The ATARI performs Disk I/0 in much the same manner that it performs
I1/0 to other peripherals. Basically, several memory locations are
reserved 1in memory as pointers, To perform a disk operation, a
program must do a jump subroutine into the OS at a particular point
(JSR SE453 or JSR $E459; JSR S$E453 sets up some pointers and then
jumps into $E459) and the 0OS will inspect these memory locations to
decide what has to be done. The memory locations tell the OS what
sector to read/write, where in memory to read/write the data from/to,
what operation to perform (i.e. read/write/format), what disk to do
the operation to, and how many bytes to transfer (128 for the ATARI
818, 256 for a double density drive.) The memory locations are as
follows: $301-disk drive number (8-3), $302-disk operation
($52=read, $21=format disk, $57=write), $304&$305~-memory location for
data I/0, $30A&S$30B-Sector number, and if JSR $E459 is used then
$308&$309 must contain the number of bytes to transfer and $303 must
be set up with $80 for a write operation and $40 for a read operation
($393, $308, and $309 are set up by JSR $E453). The OS will return a
value in memory location $383 and the Y register to indicate the
successfulness of the 1last disk operation. A successful operation
will return a 1, otherwise a negative number >$7F is returned.
Knowing just this much, it 1is possible for most people to back up
game disks that are protected with simple bad sector checks. Using a
disk edittor, you can find out which sectors are bad and then
disassemble the program to find out where it stores a bad sector
pointer into memory locations $30A and $30B. The following JSR S$E453
or JSR $E459 can then be no-oped out or converted to a LDA $80, TAY
to simulate a bad sector read. Be warned that some games do a
checksum of the sector containing the bad sector check (to see if you
changed the «code), but this can usually be sidestepped by switching
the values that are stored into $30A and $30¢B instead of no-oping the
JSR out (i.e. if the original bad sector was $306A=$8# and $30B=$513,
setting $3@A to $13 and $30B to $@ will tell the OS to try to read
sector $1398 and return an error code since that sector doesn't
exist.) Note that the ATARI reads two byte addresses second byte
first. As I indicated above, there are a variety of ways to change
the arrangement of sectors on a disk, and a game program will be
written in such a way that it expects to see just such an arrangement
(i.e. a specific bad sector, double sector, or a checksum sector.)

Disks that are protected with double sectoring (i.e. two sectors with
the same number) are a little more difficult to back up. Usually,
these are the disks that read in silently. The only way to find a
double sector on a disk 1is to locate the bad(missing) sectors and
then search the sectors that are adjacent to the missing ones (i.e. a
missing one is Jjust one that has been renumbered to become a double
one). To identify a double sector, you must read in the suspect
sector, note the first couple of bytes in the sector, and then read
the sector again before the disk drive powers down (you have to do
this so that the heads will be positioned correctly). Compare the
bytes that you saw before with the new ones and you can usually see a
double sector fairly easily. Once you find a double sector, do a
sector copy of the disk onto a blank disk and then read the double
sector until you get the 'second' sector and write this on the
destination disk in the sector that was bad on the original disk. I

-14-

must stress here never to write anything out to your original disk.
Once you have copied all of the data including double sectors over to
the backup disk, you must go into the code and determine where the
game 1is reading in the double sector. When you find this spot, you
can usually just increment the sector pointer ($30A,$30B) by editting
the code (i.e. change where it tries to read the same sector twice)
and you will be all set, Some games scramble their code, but most
disk editters have boolean unscrambling capability, so this is no
problem. If you don't let the thought of assembly code overwhelm you,
you will soon find that backing up software is relatively easy and
quite interesting if you take time out to look at the actual game
code. You will also discover that many of the more recent games are
protected in quite complex, but surprisingly simple to break methods,

After talking with the author of a program similar to DISKEDIT
(DISKASM), 1 have to say that I agree with his comment that the cost
being added to software for protection schemes is getting ridiculous.
Maybe if everyone becomes conversant in backing up their own
software, the developers will just stop protecting the software and
drop costs down to a reasonable price range. These aren't the days
when there were just 16,000 ATARI computers out there and a high cost
was Jjustified based on percentage sales, Any comments from anyone on
this subject?

Q) How come you sell DISKEDIT and ULTRACOPY so cheap?

A) Two main reasons. First, I think the potential market for each is
big enough that I don't need to price it as if the product were only
going to sell for a couple of months. I wrote DISKEDIT and ULTRACOPY
in such a manner that they will continue to evolve and remain a
useful tool for my own use and hopefully for other users. Second, I
don't have any overhead from trying to copy protect the software and
plastering the magazines with flashy ads. Occassionally I will
advertize, but most of my sales will remain word of mouth. If a
product is good, it will sell itself,

Q) What good is this program if I don't know assembly?

A) The only reason it helps to know assembly when using diskedit is
if you are intent on backing up the more complicated games. I
originally developed the software to help me learn more about the
disk and to recover lost disk files and games. The assembly
experience will come with time if you just use the disassembler on
some games and study the printouts. Don't be afraid to ask your
friends why things are getting stored to certain addresses, It also
will help if you get an ATARI OS Users manual to use as reference
(don't try to read it, just look up what you need as you need it.)
When you reach the point where you start taking long printouts to bed
with you for 1light reading, you <can call yourself an experienced
hacker and take a loooong break from your ATARI,

ADDENDUM A-DISK STORAGE

This 1is the first of hopefully many addendums that will address the
fundamentals of the DISK system as well as some more advanced
concepts. I have decided to devote the first section to disk storage,
since this subject is glossed over in most documentation I have seen
available to date. If you have further questions about the Disk
system after reading this material, I strongly recommend that you
obtain the ATARI technical user notes for reference.

DISK STRUCTURE:

A diskette that has been
formatted on an ATARI
8l disk drive contains
40 tracks. Each track
circles the disk in the
form of a ring and is
composed of 18 sectors.
Each sector 1is composed

— e . . —— —— —— —y — ——

of 128 bytes of
information. A disk can
contain, therefor,

49*18*%128=92160 Dbytes of
information (a byte can
be thought of as one
character representing a
value between g and
255-880 to FF hex). The
diagram to the right
depicts this structure
in detail.

t

q

|

|

|

l -
)

Note that this will be the 1last I talk about tracks. The disk
structure 1is best thought of as having 720 sectors (40*18), since
this 1is the way they are addressed by the ATARI computer. Because of
a discrepancy in the ATARI 0SS, we will think of these sectors as
being numbered 1 to 728, even though ATARI DOS can only read sectors
1 to 719.

SECTOR TYPES:

I have discussed before the types of bad sectors that exist, so I
will now describe the types of 'good' sectors that you will encounter
when 1looking at a disk. Aside from empty sectors (sectors containing
all zeroes), there are five main sector types-—autoboot (BOOT), DOS
file (FILE), non DOS file (NOTF), volume table of contents (VTOC),
and directory (DIR) sectors.

A boot sector 1is a sector that 1is automatically loaded when the
computer is turned on. All DOS or game disks have one or more boot
sectors 1in a contiguous block of sectors beginning with sector 1 (see
INFO on page 10.) In DOSII disks, sectors 1-3 are the boot sectors
(these in turn load in the D0S.SYS binary program and execute it.) In
non DOS (i.e. game) disks, all that may autoload in is sector 1
(which 1in turn loads in the rest of the game), or all of the game may

load in as part of the boot.

A NOTF sector is any sector on a disk that is accessed directly by
sector number via the disk handler (via a call to the OS through
SE453 for example). In other words, this type of sector only exists
on a game boot disk or on a non standard DOS disk, since DOS can not
be used to read or even create it.

The final 3 sector types (DOSF, DIR, and VTOC) are found on DOS
disks. The DOSF file is the file that contains your programs and
databases. DOS stores files on a disk in such a manner that it can
always 1look at any sector of a file and determine which file the
sector belongs to and what sector is next in the file chain. This
capability 1is not without some cost however, since not only data must
be stored on a DOSF sector, but also some bookkeeping overhead is
required. A DOSF sector thus will contain only 125 bytes of user
information followed by 3 bytes that will indicate the file index
#, the next sector # in the chain, and the # of usable bytes in the
sector. DOS keeps track of which files are stored where by using a
set of sectors called the directory. Each DIR sector contains 8 index
locations for file information (16 bytes/file). Each location
contains information on the name of the file (bytes 6 to 16), the
starting sector number of the file (bytes 4 and 5), the size of the
file (bytes 2 and 3), and the status of the file (the
first byte). Eight sectors are reserved on a DOS disk for the
directory info (sectors 361 to 368). Finally, the VTOC (volume table
of contents) sector is the sector that contains information regarding
which sectors on a disk are used and how many are free.

All three of the DOS file ¢types are used for any DOS file I/O
operation. For example, lets say that you want to store a BASIC
program to disk. When you do a SAVE of the program, DOS assigns the
file a location in the first available location in the directory
sectors. DOS then scans the VTOC directory to find the first
available sector to start storing the data to. This sector number is
placed in the file directory sector (bytes 2 and 3) and then 125
bytes of your file 1is transferred to this sector along with a
trailing 3 bytes. DOS then updates the VTOC and continues the scan,
transfer, and update process until all of the file is transferred.
When done, the file status byte is updated in the directory sector to
indicate that the file is good and closed.

FINDING FILES:

Now that you know something about how the disk is structured, the
only thing 1left 1is to go through a quick example of how to find a
file on a disk. The assumptions made in this example are that you
have Jjust SAVEd a BASIC program to a newly formatted disk which has
DOS and DUP written to it. If you look at sector 361, you will see
that your file is the third entry in the directory table and that it
starts at sector number 85 (byte 4 at the file location equals 85).
If you 1look at sector 85 now, you will see the start of your program
(in tokenized form of course,)

In the following sample cases, I hope to give you a better
understanding of the differences between standard DOS disks and most
autoboot game disks.

SAMPLE #l1l: A newly formatted DOS II disk, with DOS&DUP.

SECTOR # TYPE DESCRIPTION/FUNCTION

1 BOOT Tells computer to autoread sectors 1-3 into mem @ $700
2 BOOT Once this three sector boot program is put into memory,
3 BOOT the computer begins executing it at $786

4 FILE DOS.SYS. This is loaded and executed by the boot program.
. FILE DOS provides the user the ability

42 FILE to access (SAVE,LOAD,OPEN,etc) disk files.

43 FILE DUP.SYS. This gives the user file deletion, copying,

. FILE and other file managment functions.

84 FILE

85 FILE | START of available file space for user programs.

. FILE) The first file stored on a disk after writing DOS&DUP
359 FILE j will be stored at the lowest sector number available.
360 VTOC~Tell DOS what sectors are available for storage.

361 DIR These 8 sectors tell DOS where each file

. DIR ; is stored. Each sector contains 8 file entries

368 DIR _} of 16 bytes each (giving you 64 file locs total).

. FILE~More file storage space.

720 FILE~~This sector is accessible only via the DISK handler,

SAMPLE #2:A boot game-non DOS.

SECTOR # TYPE DESCRIPTION/FUNCTION

1 BOOT Tells the computer to boot the next 6 sectors.
2 BOOT This is the continuation of the boot routine.

3 BOOT Once loaded, this routine will begin executing
4 BOOT and load sectors 257-4060 into memory. Execution
5 BOOT will then pass to the game code. Note that

6 BOOT these 6 sectors may contain a bad sector check.
7-255 --—--—+— Empty sectors. '

257 NOTF This is the game code.

. NOTF Note that these sectors may also

400 NOTF contain a bad sector check.

4¢91-450 -----— More empty sectors.

450-728 ---- —Bad (unformatted) sectors.

Assume that sector 1 used in case 2 contained the following first six
bytes: byte 1=0 (normal noisy load), byte 2=6 (load 6 sectors), byte
3=8 and byte 4=6 (start 1loading into memory at address $600), and
bytes 5=6 & 6=6 (set the system reset vector to address $606). This
is Jjust for example purposes only. It is best to just look at a game
disk and play around with it.

