- AN _UHibkEa THE BLTJ4RATE
 DUPLICATOR

i DISK DOCTOR will tet you read, maily, or copy any sector of a disk,)
chieck and adjust RPM, copy all or part of any standard ATARI® formatted disk at "
maching language speed — including those with bad sectors -~ and let you creats

-~ bad sectors on your own disky; fix damaged filas, modify diractorias, recover "lost”

d3ta or delated files; répair damaged YTOC's and sector counts aulommcallv, md
forrmn damaoad dusk: :

Salot Sodba

R bv Stwc Kaufm
’ (luthor ot SUPERDUPER DU

READ " UNUSTABLE BASIC PROGRAMS right off of the DISK.A avm Vmals .
orking modnhaoie copies: of (ham automaucanyl

LABELS or. labels you creatst You havc {o see it 10 balieve it .
SEARCH me d-sk for anv anuonecof up io SIX BY"E" WITH WILU ARD

' COMPLETE DISK
. . TUTORIAL INCLUDED
- plus n mtw 10 6502 Au-mbw lnnwnoc

r

DISK DOCTOR I11I
by Steve Kaufmsan

1 INTRODUCTION

DISK DOCTOR 1! is a collection of utility prograas designed
to let you directly exasine and, {f desired, modify data stored
on a diskette. You can edit individual sectors, fix damaged ar
mi1stakenly deleted files, read “locked” BASIC prograss,
disassesble machine language programs with labels, search for a
series of bytes i) on the disk,
duplicate any standard format diskette at wmachine 1l anguage
speed, including those with bad sectors, wsodify the disk
directory and correct its table of contents, check and adjust
the speed of your 819 disk drive, and even format damaged disks.

DISK DOCTOR I1 has a combination of features and
canveniences unavailable on any other disk utility and should
enable any user to master the mysteries of DOS (Disk Operating
System) and the Atari disk systea. AN appendix to this sanual
offers a tutorial on the format of Atari disks, DOS and the disk
boot process, as well as a brief introduction to assambly
language for the beginning programmer. Note: an understanding
of assembly language is 00t required in order to use DISK DOCTOR
effectively.

Printer options are supported for all relevant functions.

The disk includes a file of system labeis to be used with
the disassembler as well as a program that allows the user to
create and edit his/her own label files.

DISK DOCTOR II is rgnt

» and 1ncludes a
program for recovering 08A+ version 4 double density files.

Min %

REQUIRED:
32K RAM
Atari BASIC Cartridge
819 disk drive or equivalent

OPTIONAL :
Atari printer or equivalent
850 interface or equivalent

Warning

Attempting to modify data on a disk can be hazardous to the
health of your disk if you don’t know what you are doing. Be
sure you have mastered the material in the appendix before

-

D1SK DOCYOR

attempting to use pDISK DOCTOR, and, whenever possible, always
“operate” on coples, not originals.

At the end of this manual 1s a form ta be returned to BJ
Saartware. Pleass register your purchase of this software so
that we can keep you informed aof revisions and new products that
may be of interest to you. Please note: Approximately 304
of all software brought to market after Oct., 1982 (and as much
as S@L of that issued after Feb. 83) is protected by advanced
formatting schemes that no software product alone can break.
Fortunately and wisely, the vendors of such software generally
off@r reasonably priced backup disks. By all mseans avail
yourselt of those offers. DISK DOCTOR 11, of course, will copy
itself. Registered purchasers are authori1zed to use DISK DOCTOR
11 to make one backup copy of the original disk. Do not try to
copy the individual files of DISK DOCYOR 11 onto another disk.
They will behave very strangely!

STARTING UFP

To use DISK DOCTOR, insert the BASIC cartridqQe 1into your
computer, turn on your disk drive and wait for the motor to
stopi then, as usual, insert the disk into the drive before
turning on the computer. 1 you are planning to use a printer
to print soae of the data generated by DISK DOCTOR, turn it and
your interface on now to avold NOLSYy error aessages later.

Turn on your computer. The drive will whir for a faw
mosants, the screen will flash, and the DISK DOCTOR logo will
emerdge .

The following “senu” will then appear:

Disk Doctor, main module

THE ULTIMATE DUPLICATOR

DOS file recovery/directory-edit
and forsat bad disks

0SA+ 4 recovery/directory—edit
RPM check/adjust — msake bad
sectors

6 Read a BASIC program from disk

7 List Dbject file blocks/locations
8 Create/edit a Label file

UN -~

h &

WHICH?
That’s it, type the nusber of the module of your
choice, hit the RETURN key, and off we go.

-2-

—F

DISK DOCTOR

1 DISK DOCTOR, MAIN MODULE

This is the program that you will be using most. It is the
longest of the prograes on the disk, so it takes a b1t longer to
load than the others. (Be patient, really fast drives for the
Atari are right around the corner!) The screen will darken to a
comfortable hue (a good compromise, 1 think, for both TV and
monitor users), and after the drive stops, you will see this:

DISK DOCTOR 11
by Steve Kaufman

SECTOR EDITOR

DISASSEMBLER

SEARCH FOR A CHAIN OF BYTES
DISK DIRECTORY

UTILITIES

FIND AN ADDRESS ON DISK
SYSTEM MENU

ITMmOoOD D

All it takes to activate any of the above cosmsands is &
keyntroke.

At this point, the disk that you wish to examine or modity
muat be 1nserted in the default drive. I you (like most of us)
have only one drive, resove the systea disk and insert the
target disk. If you have a second drive (set up as drive #2)

and it was on line when the oroarae started runming it will be
the default drive for all disk analysis and wmodification
functions. You may leave the systea disk in drive #1 (but

please don’t take the write—protect tab off, just 1n case')

In order to change the default drive, or to configure your
drive for double density operation, use the “Drive Configuration
option (“B") +{rom the “Utilities” submenu. See below. All of
the options of this program will run in single density, double
density or double density/double sided drive configurations.

A SECTOR EDITOR : This module is the workhorse of the progras,
performing the sector by sector analysis and modification of the
disk. Let’s try it out:?

Hit the "A" key and the following mini-menu will appear at
the bottom of your screen:

R,E,P,W, ar M?

These latters stand for Read (a sector of the disk), Edit a
sector, Print whatever you seen on the screen now to the
printer, Write the sector on the screen out to the disk, and go
back to the sain Menu of this sodule.

Hit "R™ now and you will be asked which sector of the disk
you wish to read. Let us read sector nusber 1 off the disk.
Type the nusber | followed by a RETURN and the following will
appear on your screen 1f you have a DOS formatted disk 1N yduwr
default drive:

DI1SK DOCTOR

SECTOR 1 (8861) FP. 3135 F& @

08 OO0 23 90 97 A8 13 AC 14Q.L.
98 07 o3 93 o8 B9 1C 41 B4
16 @8 7D CB 87 AC PE 87 FP ..K.y..

18 36 AD 12 87 85 A3 8D 84 6-...C..
26 @3 AD 13 87 85 44 8D 83 .-...D..
28 83 AD 19 87 AC oF 87 18 .~cey..-
38 AE OE 87 20 4C 07 38 17 ... 1.0,
38 AC 1t 87 Bl 43 29 83 48 ,..10).H
a3 CB 11 A3 F@ 9E Bl 43 AB H.C.1C(

a8 20 57 @7 &8 AC 2F 87 A9 W.hi/.)
=6 CO DO 81 68 PA A8 60 18 @P.h.(°.
%8 AS 43 4D 11 67 8D 84 93 ACm.....
60 B89 A3 A3 A4 69 06 8D 03 .CXDt...
&8 ©3 85 44 69 8D @B 83 8C ..D%....
76 BA B3 A9 32 AG 40 90 B4 ..)R Q..
78 A9 S50 A® 88 6D 82 93 8C P

This is a "picture” of the first of the 720 sectors (1440 14
double sided) on your disk, in this case, from the boot code
(sw@ appendix I). The information on the top row tells us that
this is sector 1 ($8@1 in hexadecimal) and that the last three
bytes ot the sector (ware they to be interpreted as DOS file
information) show that this is (or wes) a part of File number @
(F#) and that the next sector of this fi1le 18 to be found at
sector 313 (FP=file pointer§ both numbers are given in decimal).
The left hand colusn of numbers gives the relative hexadecimal
address within the sector of the starting byte of each line,
while the subsequent columns show the bytes themselves in both
hexadecimal notation and (at the far right) in character
representation. Note that if a byte 1s not equivalent to a
normal alphanumeric character a period 1s printed 1n 1ts place
(this is to prevent your printer fram having heart failure when
encountering certain control characters, as wall an wmaking the
alphanumeric characlers stand out).

The cursor is now back at the end of the aini-menuy asking
you for another command. To print what you now see on the
screen to your printer simply hit P. (The screen print routine
is 1n machine language, so 1f you have a printer buffer the
programs will be ready for anaother command almost instantly.) To
wite the sector that you now see back to the same or another
disk, hit W and you will be asked "Write to which sector?”. I+
you respond to this Qquery with a carriage return the prograsa
A6SUMES YOU want to write to the samse sector you took 1t from
(see EDIT beliow). 1f you respond with a 9 (zera) 1t assumes you
have changed your sind and takes you back to the sinl-—menuy for
another try. Otherwise give it a sector numsber from 1 to 728
(or $01 to $2D8 in hex) and the program will ask you to verify
that you really want to wite to such and such a sector.
Respond to that promspt with Y and the sector will be written and
the ward DONE appear on the screen. Any other response returns
you to the sini-eenu. You may want to try this now by copying
sector 1 to sector 729, since sector 729 is not used by DOS and
should have no data on it except zeros. 0K, now try to read
sector 720. 14 you have done everything correctly, it should
now be an exact duplicate of sector 1.

Any time a sector is showing on the screen, you &ay read the
subsequent sector merely be nitting the > key. Simslarly, the
previous sector aay be viewsmd by hitting <. I$¢ you are viaswing
a double density sector, you can anly sese half of it at one tise
(128 bytes). The left and right cursor control arrows will
scroll you through the sector, O bytes at a tise (NO need to
hold down CONTROL), or you can $lip from the low 128 bytes to
the high 128 bytes instantly by hitting the SELECT button.

—4—

DISK DOCTOR

By the way, throughout DISK DOCTOR, unless indicated atherwise
you m®may answer any request for sector number or RAM addrn;
information with either a decimsal number (the default mode) or
with the hexadecimal equivalent (always preceded by a
dollar-sign, e.g. $A3BA). . DISK DOCTOR itself adheres to
standard conventions and prefers to give sector numbers i1n
decimal, but addresses(both in RAM and within & sector) in hex.

OK. Now you have copied a sector from one place on the disk
to another, and perhaps printed out a copy. Now let’s modify
the sector befuore we write it back to disk. To do that simeply
hit E in response to the mini-menu. [{ you want to edit the
same susector that you already see (or just saw) on the screen,
simply hit RETURN in response to the prompt:*asdit which
sector?". Otherwise give a valid sector nusber (or @ to return
to the mini-wenu).

Now you see a display very similar to the former one, excspt
that now there is a cursor at the upper left hand corner of the
sector isage and the msessage “HIT ESCAPE TO EXIT*., Simply msove
the cursor with the usual cursor arrow keys to the byte or bytes
you nat_\t to modify, type in the proper HEX value, and when vyou
are finished with your aadifications hit the €SC key. DISK
DOCTOR will not let you type in the wong places, - nor enter
illegal values while editing. When you exit the edit sode you
are automatically put into the Write sode so that you can write
out your edited sector to the disk. Follow the directions given
above. After you have written the smodified sector to somewhere
on the disk, you may find 1t reassuring (I do') to Read that
same new sector to make sure that your corrections have “taken™.
By the way, when modifying valuable disks, do yourself a favor
and always kewep a careful record of what the esodified bytes
:::k.az:\‘k. before you aodified them' That way if you manage to

- ings even worse than
Back to whore vou st ted. they were before you can always go

I¥ you are editing a double density sector, the SELECT
button will flip the screen as usual, but to use 1t you sust
first position the cursor in one of the blank columns. Once
used, SELECT can not be used again {(nar can you see the cursor')
until the cursor is moved with one of the arrow keys. -

When you are done with all of your sector reading, wediting

and copying, hit M 1n response to the sini-senu pr t
ompt in
to return to the main senu. g ' order

B DIBASSEMBLER:

, I1f you hit B in response to the senu, you will enter the
disassesbly wmode. A disassembler turns sachine language code
back 1nto easier to remeaber and interpret mnewmonic “opcodes”
and “operands” (see Appendix),i.e assesbly language. Even 1f
you cannot yet program in assesbler, you should be able to use
these disasssmblies to some advantage if you learn the saterial
1n the appendix on 4582 asseably)language.

The first question this sodule asks is 1f you want your
printout to go to the Screen or Printer. Answer appropriately.-
I+ the output goes to the printer it will not appear on the
screen. Next you must determsine 1f you want to disassesble
ﬁcquent_'.lal files or DOS files. “Sequential® 15 just another way
of saying sector after sector, all 128 bytes of i1nformation. I#
you are .X”lﬂlnq a "boot” disk this will probably be the option
that you will choose. 1f you choose the DOS option, only 123
bytes (253 for double density sectors) will be displayed for
each ?actor. and disassesbly will proceed through the file using
DOS file pointers. For now let us choose Sequential.

DISK DOCTOR

1f everything has gone smoothly up to this point, you will
now be asked what sector to start with. Any time this prompt
appears on the screen, answering it with @ will return you to
the aenu. For now let us type 2 (RETURN) to disassemble
starting with sector 2 (almost always @ part of the boot code of
the disk). Then you sust specify what byte of that sector you
wish to start with. Let us enter 8 for now. Finally, you sust
indicate what starting semory address should be assigned to that
byte. Bince most disks have the DOS boot code on thes, let wus
respond to this one with $788, the proper address for the code
we are going to look at. I4 you have answered all the prompts
correctly and are examining either the DISK DOCTOR disk or
another disk with DOS on 1t, vou should see the following to
start with.

SECTOR 2 ADDRESS=%0786

o9 o780 a3 ?7?

1 #7781 23 ???

e2 @782 A7 31 LDA #$31

#4 2704 AD BF LDY #8OF

B#6 #7866 8D P9 #3 STA 0309
89 @789 8C 84 83 STY $9366
oC @78C AT 83 LDA s$@3

®E O78E ap FF 12 8TA $12FF

11 9791 AY o8 LDA esp@

13 8793 A8 B8 LDY es8@

15 6793 CA DEX ‘
16 07946 F@ 04 BEQ $#79C

18 6798 A9 91 LDA #s@}

1A O79A A0 06 LDY ssop

1C 879C ap o9 #3 8TA s8399
1IF B79F 8C o8 03 8Ty se@3e8
22 @#7A2 20 359 Es JEBR $E439
25 @745 19 1D BPL 867C4

Of course as you now know, the disassembly process will go on
forever if you let it. TO STOP THE DISASSEMBLY AT ANY TIME
SIMPLY HIT ANY KEY. There. Let’s try it again.. Simply answer
the “which sector?" prompt by 2, repeat the other same answers
as above and this time hit a key when you see about 3/4 of a

page of stuff. Ag with any ATARI program, to temporarily stop

t [d [Y also hjt CONTR nd
b th time. R at it to start it again. (Note
that once you have started the disasseably module vyou cannot
change the ma,or parameters--seguential /DOS, prainter/screen. To
4o 0 si1eply answer the "which sector?* prompt with 8 to return
to the main menu and hat B to return to disassembly from the
beginning.) Here's what all that you see seans:

At the beginning of each sector to be disassembled the
sector number 1% displayed along with the meaory address 10 hex
that you assigned to it (either directly or, by 1mplication,
when you specified a starting address several sectors earlier).
The display 1tself 1s divided 1nto four sections: The leftmost
coluan displays the hexadecimal nusber of the first byte of the
assembly language command relative to the start of its sector.
The second area gives the eqQuivalent memory address that you
have assigned to that byte. The third area consists of from one
to three coluans, depending on the Assembly language instruction
encounter ed, the first byte being the sachine language
instruction itself, the second and third, 1¢ presant, the data
on which that instruction operates. The rightmost column, of

—h—

B e A

DISK DOCTOR

Course, is the disasseabled version of the third colusn.

At this point you aight well want to experisent to see that
the bytes depicted by the disassesbly process are indeed the
same bytes discovered in that wsector by the SECTOR EDITOR
(option A from the aenu). Go ahead.

Some notes: If the disassembler can’t figure out what the
machine language instruction is it will indicate that fact by
returning "???" instead of an assembler opcode in the righthand
column. This will usually happen 1n only one of two cases: You
have asked 1t to etart disassembly in the aiddle of an
instruction, or you are trying to disassesmble data instead of a
machine language program. If the former is the case, siaply
back up a few bytes and try again. In the latter instance, read
the data with the SECTOR EDITOR rather than with the
disassembler. Most good programs have lots and lots of data
tables of various kinds. It is possible, however, +¢or data
bytes to have values deciperable into opcodes by the
disassembler. This situation is usually obvious, howsver, for
it typically produces strings of inordinately rare opcodes
interspersed with a sultitude of question marks.

If the disassesmbler cosss upon the end of a sector in the
middle of instruction, the operand of that instruction will be
indicatad by question marks (e.g. JBR $7777), and tha actual
bytes to be assigned to that instruction will be found at the
beginning of the next sector marked with <<< (@.g. <<< Sxuxux 6@
89, all of which simply means JSR $80980). This should produce
1ho problems in most cases. Just remssber that the L8P comes
t1rst (sew appendix'). In the rare instance of a branch
instruction occurring at the very last byte of a sector, retfter
to the relative branch table included 1i1n the appendix to
determine the branch location. (Remamber, the relative offset is
from the byte following the operand of the branch inatruction.)

There will be many times, of course when you cannot
determine in advance what address to assign to the startlrs byte
of the disassembly. Just Qgive it the starting address odf 6.
(It would be wise to note on your printout that the addresses of
this disassembly are not correct in such cases.

NOTE: If you use a starting address of 8, you may sncounter
a negative branch instruction that points to a minus address. 14
80, the disassembler will display the illegal address as “ssss",

MORE ON ADDRESSES: I{ you see a disassesbled progrea with
a lot of good caode with a few Question marks, it probably
indicates that you are trying to disassemble across a block
boundary (see the appendix and the i1nstructions to module 7 of
DISK DOCTOR). The proper procedure here is to run *7 0Object
file blocks / locations” from the main DISK DOCTOR menu fist and
disassemble the blocks of memory separately. Oobviously, the
1ndicated address of any byte that 1% across a block boundary
vis—a-vis the beginning of the disassembly will be either 4 or
S1x bytes too high per block boundary depending on the number of
header bytes of each block. The same caution applies when using
option F FIND AN ADDRESS ON DISK. Searching for an address
across & block boundary will provide erroneocus results.

EVEN MORE ON ADDRESSES: On rare occasions you msay encounter a
DOS file created by an append process and never recopied. In
such cases, the last sactor of the original (pre—append) file
may have less than 125 bytes of data even though it is not the
last sector of the new file. This can be fixed by recopying the
entire file into a new one. If you try to disassemble or find
an address in such a file, however, you will end up analyzing a
lot of extraneous information since the algorithms used by DISK
DOCTOR do not examine the last byte of sach sector to see how
many bytes are in use. (See Appendix 1.) Again, the proper
method in such cases is to use Option 7 trom the main DISK
DOCTOR menu first.

DISK DOCTOR

Now for the good stuff. [have designed the disassembler to
allow you to disassemble with labels, en.hor_ systea labels
(recognizable, by and large to experienced Atari prograasers) or
labels that you wsash to assign. Any two-byte address (not
zero—-page) can be assigned & label, up to a total of 96
different labels. To create or edit a label file to be used by
the disassembler you will have to use the special program that
must be called from the main DISK DOCTOR msenu, but for now let
us just use the file of system labels that comes on the disk.
To do so, answer the “which sector?" request with 8 to rctu{'n to
the menu; then choose option E, UTILITIES, and choose option D
trom the Utilities sub-senu.

TO LOAD THE SYSTEM LABEL FILE just hit the carriage rut;_;rn
when you are asked for a file name. To load another label file
just give the file name proper without extender. {(all label fl}es
are automatically assigned the extender .LDT). The {ile will
take a few moments to load. {1f the program can’t ¢ind your
label file on the disk it will provide a directory of all LLDT
files for you.) Now you can go back and try disassembly just as
beftore, only this time whenever the diiasufubl.r esncounters an
address for which a label has been assigned, it will gubst!tutc
the label for the address: Here’s an example of disassesbly
with labels (from the same sector we viewed before):

18 #8798 A% 81 LDA #s@1
1A #79A AD B9 LDY #s020
1C @7%9C aD 29 63 STA s@309
1F @79F 8C 88 #3 STY s@308 .
22 @#7A2 20 59 E4 JGR SEA459
23 P7A3 12 1D BPL 807Ca
27 @#7A7 CE FF 12 DEC ®12FF
2R @7AR 38 18 BM1 e97C4
2C #7aC A2 40 LDX #%49
28 S7AE AY? 52 LDA #8352
3¢ @7B0 CDh ®2 83 CMP DCOMND
33 #7B3 Fo 09 BEGQG $@7BE
35 @7B5 A9 21 LDA #%21
37 @787 CDh 62 o3 CHP DCOMND
3A @78BA Fo 982 BEQ $@7BE
3C ©e7BC A2 B8 LDX #s8p
3E @7BE B8E 83 #3 STX DSTATS
41 ©7C1 A4C A2 97 JMP S@7A2
44 @7C4 AE B1 13 LDX ¢1381
47 @7C7 AD 63 63 LDA DSTATS
4A PB7CA 60 RTS

Now you don’t have to constantly refer to your msemory map
literature to determine what on earth a program is daoing. Just
remesber a few mNemoNics, OFf assign your own meaningful labels.

NOTE: Once a label file has been loaded it remains in
memory and will be used for all subsequent disassesblies until
either another label file has been loaded in its place or the
“MAIN HMODULE" has been abandoned to return to the main DISK
DOCTOR menu.

A listing of the systea label file included on DISK DOCTOR can

be tound on page 12.

-8~

—

DISK DOCTOR

C S8EARCH FOR A CHAIN OF BYTES

Sometimws you will want to find a specific sequence of bytes
Oor several similar sequences of bytes that you know or suspect
are on a disk, but you don’'t know precisely where. This section
of the main module lets you search the disk, either sector by
sector (“"sequentially”) or to search through a single DOS file,
for any sequence of up to six bytes. If you want any given byte
or bytes in the sequence to be ignored (a “wildcard"), just
enter an asterisk ("#") in that position. Other bytes may be
entered in either decimal or hexadecimal notation (you needn’t
even be consistent), although the program will transform all of
them into hex when it displays the string of bytes that it is
searching for. If you wish to specify less than six bytes,

simply enter a carriage RETURN alone in response to the praompt.
For example:

BEQUENTIAL BECTORS OR DOS FILES? Here let us enter 8 |in
order to search tha sntire disk.

ENTER SBEARCH BYTE 1 78A%
ENTER SEARCH BYTE 2 7@

ENTER SEARCH BYTE 3 72$8D
ENTER SEARCH BYTE 4 7e
ENTER SEARCH BYTE S 73
ENTER S8EARCH BYTE & 7<RETURN)>

In this case We have told the program that we want to search for
every occurrence of the following five bytes of sachine 1l anguage
code: LDA #8) BYA $3xx = load the accumulator with zero} store
the accumulator anywhere on page three of semory. Of course you
needn’t search for machine codes it could be ATASCII characters,
a display list (look for 112,112,112!), etc. M ¢

Next the program will ask where you want to start the
search} then it will display the string you are looking for and
begin to read the disk and display (sector/byte) locations
wherein it finds your searched-for sequence. YOU CAN ABORY THE
SEARCH AT ANY TIME BY HITTING ANY KEY. 1¥f you aere searching
sequential sectors, the program will only abort at the end of
the disk, If reading a DOS file, it will stop its search at the
end of the file or if it encounters a bad file pointer. When
the search is over You will be in the mini-senu of option A so
that you can print out the results of the search or read a
relevant sector to the sCreen. 1f you want to search for more,
simply hit M for the Menu and C for the search option once more.

DI18K DOCTOR

D DISK DIRECTORY

This option allows you to examine the directory sectors of a
DOS disk (sectors 361-368) in directory format rather than in

sector format. This is prisarily designed to allow you to
locate the beginning of files quickly +for tracing or search
purposes. Of course you can modify directory entries by using

the Sector Editor of this main module. Unless you are very sure
of yourself, however, you'd be better off to use the separate
Directory Fixer module called from the main DISK DOCTOR menu.
(For the meaning of the heading line in the directory table, see
the instructions to that msodule)

After each sectrr of the directory is displayed, you have
the option of seeing the next sector (RETURN), returning to the
menu (M), or tracing a file (7).

Tracing a file is particulary useful for quickly locating
the place where a file link has gone bad, for example when you
try to load a program from the disk and you get an ERROR 164.
The file trace will display each sector of the file, starting
with the sector you indicate, and will continue until it reaches
the end of the file, finds a file number misaatch, or can’t read
a disk sectori then you will be in the msini-menu, where you can
print the trace to your printer or read the offending sector to
determsine exactly what is wrong.

1f you are examing a disk that runs in BASIC but seess to
have no directory on it, don’t worry. It is there. It is just
been moved to a non-standard location. Examine the sectors from
about 340 to 380 or so with the sector editor until you find it.
Then recopy those sectors ontoc sectors 341-368 of that or
another disk, and you will be able to read and adit the
directory as usual.

€ UTILITIES

The $0llowing sub-menu will appear when you seleact this
option:

A. Numeric Conversion

B. Drave Configuration
C. Establish XDR mask

D. Load Label File

E. Erase Disk

F. Fi)l Sectors

6. Calculate DOS pointer
H. Hi to Lo

n. Main Menu

A. This option sieply converts from decimal to hexadecimsal
nusbers and vice versa. Simply enter the number (1n the range
S-SFFFF) and the equivalent will appear (minus values are not
supported).

B. Ume this option esither to change the configuraton of a
drive or simply to change the default drive. 1§ you have a
single density drive, the program will be unable to read 1ts
configuration and will tell you sag, but that drive will now be
the default drive and single density operation will be assumsed.
(14 you have two or sore drives, and a drive other than nusber
one is double density by default or has previously been
contigured as double density before running this progras, you
will st11]l have to go through the configuration routine, just so
the program will know what 1ts density/sidedness is). Moreover,
1¥f you have a PERCOM, be careful . They will accept
configuration commands for functions they are i1ncapable of and
the program will behave accordingly. A drive with only one head
will accept a command to become double si1ded. But there 1s no
way thet you are going to be able to read sector 721 on that
drive, even though the program will let you try.

DISK DOCTOR

C. This important option lets you read or write a sector
using an “exclusive or" byte. (1 you don’'t know what that
means, you probably couldn’t use i1t to advantage anyways). Both
the A and B options of the main menu will use the XOR byte here
established. 1f an XDR value 1s 1n effect, that fact will
appear on the upper right of the sector display. Morevoer, when
you write a sector, the program will first ask you 1¥ you want
to recode using the XOR value. It 1s possible to read & mector,
change the XOR value using this option, then return to the
sector (using the EDIT option of the sector editor, followed by
a4 carriage return). The sector will appear as before, only
changing when you answer Y to the appropriate prompt after vyou
leave the EDIT mode. To eliminate the current XOR mask value
quickly, simply ask the main menu for the directory of the disk.

D. This has been covered above, under the Disassembler.

E. and F, These options allow you to fill a series of
sectors with a chosen byte (F) or the enti:re disk with zeros (E)
without reformatting the disk. Note: [If you just want to wipe
the old filegoff a disk but don"t care what data resains 1n the
sectors themselves, use the relevant option of the DOS file
recovery progras (main DDII senu option 3).

6. Enter the sector numsber to be pointed to, and the file
number and this option will display the proper bytes to enter
1into the second and thard last bytes of the preceding sector 1in
the file chain. See Appendix 1.

IMPDRTANT: Here, and in all +functions 1nvolving DOS file
structure, the retference is to files created and linked using
standard Atar: DOS, either in single density or Jdouble density
mode . (See Appendix I, and note that 05A+ versione 2 and 3 use
the same file structure). Standard Atar: DOS8 cannot bandle
disks with more than $83FF (1823) sectors however (lndeed, the
rumor 1s that that’s how many DOS 3.0 will use). Thus any cull
to the program for a DOS file structure function i1nvalving the
second side of double si1ded disks (sectors 721-1440) asumses that
the modified Atar: DOS available from BJ Smartware has been (or
will be) used to create those files. This is a fair assumption,
given that BJ DOS 1is the only known Atari-DOS-compatible DOS
available for full double sided operation. Any file that runs
1n normal DOS, will run 1n BJ DOS. 0Of course, BJ DOS aay also
be configured to run on single sided double density drives.

H. Choose this option and the data currently i1n the sector
buffer in bytes 129-256 will be moved to positions 1-128, 1
really can’t 1magine why you might want to do that, however!'!

OUBLE TY USER! JE: Due to a quirk in the Atar:
operating systes, the first 3 sectors on any disk msust be single
density. Don’t try to find the second halé of those sectors'
I1t’s not there. Due to a bug 1in early Percom double sided-
drives, sectors 1436-143%9 are also single density and sector
1448 cannot be accessed. 14 you have & recently menutactured
dual head Percom, try answering the “ls 1t a Percos” question
you will be asked upon configuration with *“N°. Then try reading
those sectors. 1§ you are successful, the bug has been fixed®

-11-

pISK DOCTOR

The Systes Label File

(LABELS.LDT)

m 143821
™m 149383}
m (0304}
m ($9303)
m (L
m (+4308)
™ 143401
832 18040}
(2 ($9342)
835 ($8343
83 (+930)
(3] ($9343)
(YY) ($8348)
M 1$8149)
559 (8822F)
580 1842381
S8l 89231}
823 (9926F)
3768 (D208}
s (30401)
54083 (802F 31
WA (80499}
% WX
"2 (28
% xh
i1] (802C3)
ne (99208)
" (W20t

7 ($0208)

F FIND AN ADDRESS ON DISK

This option enables you to
a byte on the disk an
address

address oOf

o
ISTAIS
PIUFLE
PBUFHI
DSECLO
DSECHI
HATASS
10C8
ccon
ICSTAT
10
1COM
1ChL
1CHH
SoaCiL
SBLSTL
SILSTH
GPAIOR
ML
CCTL
CHART
CHMABE
CHIAS
CoLond
CoLoRS
COLOR1
COLOR2
COLORY
PCOLRY

you any subsequent

byte. (Once you have
default starting a
this module for the
in response to the prosp
usual, you may choose to have
sectors (1n which case
(10 whi

DOS file pointers

sector of the §1
praper byte is
the
bottom of the screen.

pointer to

NOTE: Please refer
relative addresses in t
examining a DOS 4ile,
DISK DOCTOR menu f1rst.

This concludes our
return to the DISK DOCTOR s

located,

;eEnOr Y

correct b

ddress until v
pISK DOCTOR sy
t in order

the calculation is 1mme
ch case the computer
le in order to fol

(346) DTIMD
(w0301} DUKIET
(60300 DDEVIC
1$9267) MEMD
(077D ATACHR
(90362) PACTL
(4D497) PMBASE
(44278} STICKE
1902791 SHIEKD
(00278) PADDLS
(o271} PADBLL
(oD#8C) SITEN
speg8) SIIEPH
(sp20F) SKCTL
(sDAgB} VCOUNT
(s485) VSCROU
(49788) VDSLST
(49298 VSERIR
(38222) WVBLK]
(44224) WBLKD
149206} SHELOK
(902011 NUOCH
(s07081 WRCTL
(40262) MUDF2
($0203) MURCZ
(50204} NUDF3
($0205) AUOCY
($0206) MUDF4
(D207) MUDCA
speci fy

the

the sector

to the caution expre
he DISASSEMBLER instru

use the Dbject file ana

1ntroduction

yte and & confirma

to

d to let the compu
relative
defined a starting address,
ou define a
stem menu.

main

5m (SDPIF) COMSOL
$3m 14p81D} BAACTL
53248 (Shesd} WPOSPE
I (40206) INGEN
M1 1sDABA) HSCROL
53789 (40269) KBLODE
3 1402041 RANDDM
54286 ($D4E) IMIEN
$3273 (s0918) PRIOR
53264 (sDs1#} TRIGS
[L1] (96284) STRIGH
94282 ($DABR) WSYNC
3% (spait) TRIBL
&5 19028%) STRIBI
53274 1s0#1A) COLBK
43278 (s0#is) COLPFS
33271 (sp817) COLPFI
531 (sp#16} COLPF2
mn (spa19) COLPFY
378 (sH9E) HITCLR
3249 (9Des1) WPOSP)
3329 (509421 WPOSP2
53251 ($D993) WPOSP]
53232 (408981 HPOSM
53253 (SD845) WPOSNL
53254 (sD#gs) WPOSH2
53235 (40847} WPOSH3
364 (234} LPEM
383 (602)3) LPEWY
54014 140308} PORTA
817 1s0391) PORTR
1297 (sDe#9) SIZEPL
53758 1sDesR) S11EP2
53259 19be#8) SIZEP]
equivalent mesory
ter find for
that starting
it remains the
new one or leave

Simply hit RETURN

to use the sams address.) As
computer assume sequential

diate) or use the

must read every

low the pointers). when the

will diwsplayed with a

tory sessage at the

ssed with regard to
ctions.

14 you are

modul e,
ystem menu, simply choose option M.

\yzer ¢rom the main

to

sectaor number. {Such
destination disks.)
may request a listing of all the bad sectors on the source

by hitting the SELECT button
drsk,

DISK DOCTOR

2 THE ULTIMATE DUPLICATOR

This machine language program
complete single density diski 1ndeed to sake up to 235 copies of
a single disk on one read of the original. If you have two
drives, you may run it from the main msenu, but 1f you only have

one, you may save yourself soee disk swapping b

. y removing the
BASIC cartridge and rehooting DISK DOCTOR 11. When so bogt-d
THE ULTIMATE DUPLICATOR comes up 1mmediately. '

All destination disks must be
DUPL ICATOR.

allows vyou to duplicate a

formatted before using the
Preferably, use the format option from the DOS file
recovery module in order to verity the integrity of the disk.

When the DUPLICATOR first comes W i “ee
following display: poyew mll the

DISK DOCTOR II
ULTIMATE DUPLICATOR

o009
SOURCE 1<
DESTINATION 1
VERIFY -
START 201
FINISH 720

COPIES 001
<>, START,BELECT (map)

These values represent the default parameters for
capy of all the sectors (1-728)
a destination disk
without verify.
arrow Ccursor

making 1
from a source disk on draive | to
on drive 1 and witing the destination
_To change any of these values, simply sove the
ol with the > and < keys and hit the return key when
'@ cursor is positioned next to the parameter you wish to
change. As you hit the return key, the drive numsbers will
toggle through the 4 possible values and the veraify paranetar
will toggle from plus (with verify) to minus (without verify)
Writing without verify is more than twice as fast as uritxn-
nlth“;.rxfy, but is slightly less reliable. ¢
en you hit return when the cursor is restin
lower three values, the bottom most line (the ?pggnch D:xﬁ:t
will change to “"enter value”. Enter a decimal number from 1 to
72¢ for the sector numsbers, or from 1 to 255 for the numsber
cupi®e you want the program to msake. Hit return
number will be transtered to the proper paraseter. ’
Dnce the parameters are properly established
starting sector is lower than the finmish!) and your disks are
1nserted in the proper drives, hit the START button to begin
(The START button 1% the proper response to all general prn-pt;

?2 ;::hpgc;::; line, but any time the computer 1s walting tor you
O
ESC hay.) » YOu maey abort the entire procedure by hitting the

of
and that

(make sure the

You can abort the copy while the

source by holding the OPTION button,
wite out whatever

destination disk(s).

program 1s reading your
F whereupon the computer will
has been read up to that point to the -

The DUPLICATOR uses a compaction scheme that allows 1t to
copy almost any Jisk in only two

‘ passss on

will copy 1n only one pass. & 46K machine. Rany
. A? each sector is read or written, 1ts number appears on the
op of the display. 1f the computer encounters any bad sectors,

that sector number will be displayed to the right of the current

sectors will not be written to the

When the entire process 1s completed, you

disk

(sector “map”) To copy another
simply hit BTART to return to the original dl.pl‘:.

13-

D1SK DOCTOR

1+ the duplicate you make with the ULTIMATE DUPLICATOR does
not run properly, and the drive "squawks” when the aoriginal
loads, you will have to use the bad sector create m=sodule of
option 5 from the DISK DOCTOR 1]l main msenu.

= DOS File recovery/directory
adit and Format bad diskms

This module allows you to edit directories with ease, to
recover mistakenly deleted or lost files, to repair the
allocation map (Volume Table of Contents) of the disk and to
format disks that you cannot or don't want to format using DOS.
Double density Atari DOS and double density/double sided BJ DOS
are fully supported.

As 1n the main module, use the configuration option 'c*)
both to change aefault drives and to reconfigure or establish
double density deftault parsseters.

jo edit the directory, enter option A. You will see a
display like the following:

F# NAME EXT START LEN FLAB
'] DOS SYS 4 39 L
1 TEST DAT 43 188 D

The first column is the file nuasber assigned by DOS to this
file. The file name proper and extension (note ne period
between them) follow. In column 4 you will wsee the starting
sector of the file. Coluan 5 has the length of the file (the
same number you see when you do a directory from DDS.) The last
column will usually be of most interest. L means the file is
locked t(as far as DOS is concerned). If there 18 nothing 1in
that column it means the file is unlocked but in use. If there
is a D there it means the §ile is Odeleted (g far as DOS 15
congcerned) . That means that next time DOS tries to write a new
file to this disk 1t will use that file 8 for the new file since
the user doesn’t want the old file anymore. But untjl pog

actually writes a new file intg the sectgrs where the old_ file
wag, the old file 35 gti1l] on the disk. 1¥f you have
accidentally deleted a file and want to recover it, and you heave
not written any other new information to the digk w=mince then,

your file should be totally recoverable.

1O RECOVER AN ACCIDENTALLY DELETED FILE or to edit any other
information 1n the directory (you may want to put some special
characters 1n the file name. warning: if you do, you won’t be
able to read that file ¢from DOS), simply type in the appropriate
file number in response to the prompt line

ENTER F# TO EDIT,W TO WRITE SECTOR OR <CR> TO SEE MORE

Follow the prompts froms that point on. Each time you make a
change, that sector of the directory will be re-displayed on the

screen as changed. 14 you want to sake more changes, enter
another file #. When you are satisfied with your editorial
wor k , enter W in order to write the modified sector to the

disk. 1f you don’t write it to the disk, 1t won’t De there!

(1§ you want to add a file, or any other information, to the
end of the currently active directory area, you will have to
write out some dummy file names to the disk first, be it from
pOS, BASIC or the DISK DOCTOR main module, then go back to this
module.)

After you have changed the flag of a Deleted file back to
locked or in use, you still are not home free; for when DOS
deleted the file it also marked all of the sectors in the file
as free to be used again for other purposes. Nere you to try to

DISK DOCTOR

save & new {file to the disk now, you would almost certainly
1o se much of the old file as the sectors were reused. You must
fix it 50 those sectors are marked “in usa” again. Jo do wso,
simply choose B FIX THE ALLOCATION MAP.This part of the progras
reads through every file that is currently marked as active on
the directory, rebuilds the allbcation map accordingly, and
corrects the free sector count.

1f you should make a mistake and run the allocation map
repair module before the directory was properly prepared, simply
make your directory changes and rerun the msodule.

An alternative to fixing the allocation map after mistakenly
deleting a file is simply to mark it in use, copy it to another
disk (using DUP.S8Y8) and then write it back to the original.

E. Erame all files: Use this option to create a clean DOS
disk without reformatting. The reformatting process 1s a rather
drastic one to subject your disks to every time you want to
clean off old data or programs, and fraguently you may find that
an old disk when reformatted will result in bad sectors. Avoid
this prables by using this option.

F. Recover lost files: This option should be used 11§ a
directory sector (361-368) has gone bad. (Since these sectors
of the disk are mod:fied frequently, they tend to become bad
more easily than others. You will know you have this probles
if you get a 144 error when you ask for a directory.) The
proper procedure 1% to copy the defective disk to a new disk
with THE ULTIMATE DUPLICATOR. Note which directory sectors are
bad on the original. Then run this option on the pgw disk.

This procedure takes a while, s0 be prepared to wart. As
each file that belongs to the missing directory sector 1s
discovered, iis sectors will be printed to the screen. When the
process 1% over, the recovered files will now be listed 1N the
directory as FILEA, FILEB, etc. (Note: the recovered files msay
well include somse you have earlier intentionally deleted but not
yet overwritten.) You will now have to go 1n with the main DDII
sodule (or DOS, or BASIC, etc.) to try to determine just what
each of those anonymous files 1s. Dnce you have msade that
determination, give the files meaningful names with aption “R“
and delete those files that have to be deleted. Just for
safety’s sake, you should now probably run the allocation wmap
repair module, too.

FORMAT

The last option from this sub-menu allows you to ‘ormat
defective disks. 14 you have soms disks that DOS refuses to
format for you, run thes through this progras. 0+ course you

can also use this option to format healthy disks as well.

14 there are indeed damaged areas on the disk, the drive
will try to format the disk twice. Then the program will write
out the boot code, the VTOC and the directory sectors on the
disk. The first entry in the directory will not be a file, but
will be a statement of how msany bad sectors are on that disk.
Those sectors will have been marked as in use 1n the VTOC, wso
$rom now on DOS will avoid them entirely.

M DWNERS: Unlike Atari drives, Percom drives da not
send back an error message to the disk opesrating system telling
it that it could not format successfully. Theretore, 1f you
format normally you may well be using disks that are actually
faulty. Use DISK DOCTOR instead. There is one drawback. Some
Percom drives (especially slave drives) seem to have great
difficulty reading the inside sectors of a disk. Thus, although
successfully formatted, the drive say erroneously 1nfora the
computer that some of the higher number sectors are bad. The
program will mark them as bad sectors. In order to determine if
your drive is in this category, run SuperDuper Duplicator on
disks known to be sound. 1f your drive struggles to read the
innermost tracks, I would suggest you see it you can get the
drive replaced.

a4 O8A+ 4 recovery 7 directory
adi t

Since uneodified Atari DOS 2.8 cannot access more than 1823
sectors, a need was felt to provide an alternative DOS to handle
double sided drives and other non—-Atari manufactured drives.
Optimized Systeeas Software, Inc., the creators of Atari DOS
éilled this need with the 1ntroduction of their 0SA+ version 4
Disk Operating System. As of this writing, OSA+ 4 is the only
DOS being provided with PERCDOM drives. (This 1s lamentable.
Originally PERCOM provided a very usable modification of DOS 2.8
for their single sided double density drives that, unlike OSA+
4, was compatible with all Atar: software. Such a DG5S is still
available with MicroMainframe drives and from BJ Seartware.
Single density drive owners Maay ignore all that follows. As
delivered, O6A+ 4 will not run single density.)

By the way, if you have 0SA+ version 4.8 only, insist on
getting an update to version 4.1. The former is bug-ridden and
practically unusable.

- The file structure of O6A+ 4 is totally different from that
of Atari DOS, therefore totally different procedures are
required to recover lost files or to trace the sectors of a
f1le. This module 1s intended to provide those procedures.

As the program comes up, you will first be asked what drive
to configure for double density operation. .
A. Edit the Directory: This option functions similarly to the
equivalent option in the DOS directory edit program. The
information contained 1n an OSA+ 4 directory sector 1s somsewhat
different, however. In addition to the file name and length, a
f1le 1s marked as locked or unlocked and a sector number, the
nusber of the first sector “map® of the fi1le, is given. That
“map” sector 1s simply a 11st of all the data sectors in the

file. (If the file is a long one, there may be aore than one
map sectori the pointer to each map sector being found 10 the
previous map sector.) When you delete a file, as with Atar:

DOS, the fi1le name remains 1n the directory until overwritten
with another file, but the starting sap sector nusber 1s Simply
changed to #. So, once deleted, there 1s no simple way to +find
out out where that mistakenly deleted fi1le used to begin. Thus
the need for option B, RECOVER LOST FILES. Run this option and
the program will search the disk for all possible file maps not
currently found 1n the directory. (Wait, this takes time!)

Dnce you have a lList of possible file maps, you should run
option D, DISFLAY FILE MAP to oOetersine the actual sectors
included 1n the lost file(s) and check them out with the main
module 1f there i1s some doubt as to which f1le 15 which. Note
that 1f a f1le has more than one map, the second aap will
automatically be displayed when the first 1s fini1shed. Once you
are sure which maps go with what f1le names, put that
information in the directory with optaon A. Lastly, recopy that
recovered file onto a new 0SA+ 4 disk (else next time you write
a file to the old disk the recovered data will be overwritten
since the relevant sectors were marked as free 1n the VIOC when
you originally deleted that file.)

This same procedure should be followed in order to recover
files should a directory sector go badj though of course 1n this
case you will have many more file wmaps to deal with.
Unfortunately, there 1s little alternat:ve. 0SA+ A ofters
several distinct advantages aver DOS 2.0 when ever ything works
right, but when 1t doesn’t, it can be a real msess.

—_1 A

DISK DOCTOR

S RFM tewt and creatw bad

mectors

This option of the main menu allows you to test the speed of
your 818 drive and to adjust it. It also enables you to create
sectors on the disk that the drive cannot read when operating at
normal speed and to check the srror status of any sector on the
disk.

You will see the following menu:

A CHECK RPH

B WRITE BAD SBECTORS

Cc READ BECTORS FOR ERROR CODE
D S8YSTEM MENU

Yo check the RPM (revolutions per minute) of your drive,
simply hit the A kay in response to this menu, (It's wise to
have a rather unimportant [but formatted') disk in the drive
during this process since the disk will be read many tiess
during the check.) After the RPM begins to display, simply hold
down the OPTION key in order to abort the spesed check and return
to the menu. The normal spewd of the B1@ drive is 288 RPM, but
if you are within a range of 284-292 1 wouldn’t sess with 1t.
If you have to adjust it (and if you’ve been having trouble with
it, that may be the only maintenance it needs) refer to appendix
111 for the location of the adjusteent controls. You may adjust
the spesd while the RPM tester is spinning the disk.

The proper speed of PERCOM and MicroMainframe drives 1%
295390 RPM.

Bad Bectors:

There are several ways to create “bad” sectors on a disk,
i.e. sectors that the drive is unable to read. The sasiest is
simply not to format thems in the first place. To do this,
f0llow your normal process for formatting disks, but as the
drive starts to whir, count the clunks as the drive head msoves
$rom sector to sector. (The drive formats a disk by laying down
sector map information and data (all zerow on an B16, all 1A's
on a Percom), starting at sector one on the outside of the disk
and proceeding to sector 728 aon the inside. After 1t has
written data to each sector it reads the sectors 1n reverse
order to determine that the data has been properly written.
Only the writing process is formatting proper. The verification
read does not have to occur for the disk to be formatted.) Etach
clunk 1s one track (mighteen sectors). 14 you want to format,
say, oOnly the +first 499 sectors or so, when you hear the
twenty-third clunk (408/18=22,22), quickly pop open the Odrive
door and resove the disk. This will not damage the disk, since
the read/write head is lifted off of the disk as soon as the

door 1s opened. (Do 1t too often ,though, and 1t could l cosen
things up in your drive!)

1¢ you have a disk that is already {ormatted, however, or
want to create bad sectors only at precise points on the disk,
you will have to use another sethod, This 1s where our prograa
module comes in. What we want to do is write data to the sector
in question so that under normal circumstances it cannot be
read. We can do this either by writing the data at a speed
substantially dif+erent from the normal one, or by locating the
data somewhers that it is not supposed to be.

ey _

DISK DOCTOR

The former sethod is the most reliable when writing large
blocks o©of bad wsectors. 7To use it, choose option A and ad just

your drive speed to about 220 RPN, (The speed ims not as
ieportant as how the drive sounds. It should be reading the
sectors evenly ——beep - heep - beep -- but clearly struggling

to do s0.) When you have set the speed properly, hit the OPTION
key to go to the menu. Be sure the proper disk is inserted in
the drive. Hit B for the bad sector option. The program will
ask you to indicate the starting and ending sectors of the block
of bad sectors you wish to create. (Enter them in decimal.)
When you are finished creating bad sector blocks, enter @ to the

next prospt and you will be returned to the senu. (To adjust
RPM, see Appendix I11.)

Now you will probably want to adjust your drive speed back
to normal and test the results of your labors with option C.
When the drive is set to normsal speed again, that option will
let you see if the sectors you have worked on are indeed bad.
I+ the error number returned is 1, then the sector is 900d . An
error nusmber greater than 128 indicates a bad sector. ’

Owners of Percom drives (whose speed apparently is not user
adjustable) and those who want to create only a few bad sectors
at a time, can use another method. Attach a looped piece of
cellophane tape to the top edge of the disk, about a third of
the way from the right hand side when looking at the labeled
side, creating a “"tab* that allows you to pull on the disk while
it 1% inserted in the drive and the door is closed. Pull Qently
but firmly on this “"tab" as the drive is writing to a sector,
and, with some practice, you should soon be able to create bad
sectors wmore often than not - without having to undergo the
rather nerve-wracking experience of fiddling with the innards of
your drive.

Yet another method for those with access to a computer that
can format selected tracks of a diskette, is to format the disk
on your Atari and then to reformsat the selected track on the
other computer.

6 Read a BASIC program from disk

Hany times authors selling easily deciphered {i.e.
well-written) BASIC programs wish to protect their efforts from
such decipherment) but under normal circumstances, when you are
running & BASIC program and hit the SYSTEM RESET button, you
will be able to LIST the program that you have been running.

There are two ways to circumvent this possibility. One is
t0 put garbage i1nto the variable name table. This is the table
of variable names that is stored by BASIC along with the program
when it is saved to disk and read back into aeaory when the
progras is loaded. But BASIC does not use this table when
running the programi within the program itself each variable is
represefnited by a number, not by a name. The variable name table
1% used only when you ask BASIC to LIST the progras, or when you
add or edit program lines. If you try, then, to list .a Program

whose name table has been destroyed, you will get something
rather unhelpful.

DISK DOCTOR

A further element of protection is to destroy the laat
statement pointer of the program. After the line number of esach
statement in a BABIC program, BASIC puts & pointer consisting of
the offset ¢rom the beginning of the current line to the next
line. That way BASIC can find the beginning of any programs line
without reading through every byte of the program. 1t only has
to read the pointers. Due to a peculiarity in BASIC, you can
use this system to your advantage. BASIC automatically assigns
the line nueber 32768 (i.e. 32K) to the imsediate command line
(e.g. when you type LIST). If the pointer to that line numsber
ts wmissing, BASIC is unable to find the command line, and will
not respond to commands.

Many of the programs of DISK DOCTOR are protected precisely
in theses two ways. 7Try to load them in from BASIC and see what
happens. Up until now the only way you could read such programs
was to physically trace through the file on the disk with a
sector editor, restore the line pointer at the end of the
program, and put in some dummy variable names into the nase
table. This msodule lets you avoid all these steps. Moreover it

lets you create a working, modifiable copy of such prograss with
very little effort.

What DISK DOCTOR does is to read the prograa directly off of
the disk and to translate the BASIC "tokens” back into norsal
BASIC words. Instead of the original variable nases used by the
author (whether or not they are still on the disk), it will
assign the new variable "names”™ V8 thru V127. (Hardly very
seaningful, are they, but certainly such better than a string of
control characters.)

I¥ you need a directory of the disk to remind yourself of
the name of the program you wish to read, the progras will
provide it. Then simply enter the nase of the BASIC prograa you
wish to exasine. 1¥ you choose to have the output sent to the
printer or to the screen, any control characters in the program
will appear as an inverse C in the listing. 1f you send the
listing to a disk file, the correct control characters will t(be
incorporated into the file. When the listing is done, you may
request to see the equivalent variable Nnames in the variable
name table itself, but don’t be surprised to see garbage.

The listing will also include sector/byte information when
it discovers a faulty line pointer or other erronecus
information.This should enable you to QO back and repair certain
troubles in your own BASIC programs as well.

In order to create a working copy of the file, simply send
the listing to a disk file. When you ENTER that file from BASIC
(be sure to ENTER not LOAD it) you will undoubtedly sees a few
ERRDOR messages, due to the fact that it 1s not always readily
determinable whether or not a variable is a string variable. I+
you have any programming experience at all, however, you ought
to be able to fix those easily. Gome sxamples:

A$(1,4)=P8 will appear as Vi$(1,4)e=y2
B$=A%$(1,4) will appear correctly as V2e=Vis(1,4)
ADR(AS) will appear as ADR(V1)

In any case, there will be far fewer errors to correct i+ you
use this method then 1f you try to go in and restora the
variable nase table. In that case nearly every string and array
statement will need correction. You will also have to eliminate
any extraneous staiLesents such as “"end of program detected at®.

1f{ you see that the variable name table is intact, however,
the best way to get a useful listing of the progras is to use
this module to find the location of the broken line pointer and
to restore it. But this is best left to advanced users.
Novices may experisent a bit on their own programs to see how
this works: Write short programs; save them to disks then Qo 1n
with the main DISK DOCTOR module and examine what the saved
program actually looks like on disk.

DISK DOCTOR

7 List Object file blocks/locations

Machine language prograss (binary load DOS files, loaded
thru DOS option L) are frequently stored on disk in blocks of
memory rather than as a single long piece of code to be loaded
into one location. (This is due to several factors} the style
of the programsmer, the peculiarities of the assembler or linker
used, and whether or not several files have been appended to
another.) The first two bytes of any such file are always SFF
$FF, followed by the two bytes of the starting address where the
following code i3 to be loaded and the two bytes of the last
address of the load block. If there are additional blocks, they
may be introduced by a similar six byte header or only have the
four bytes of address inforsation.

This module lets you gquickly analyze this informsation.
Simply type the file nase (use wildcards 1f you wish) as you
would with DOS, and the memory blocks in the file, as well as
their locations on the disk, will be listed to the screen or
printer. The locations given refer to the start of the blocks
of code thesselves, not to the headers.

14 you wish the inforsation to be sent to vyour printer,
answer the “hardcopy?” proapt with Y.

The prograa will also indicate the initialization addresses
and run address of the target progras, as well as its length,

8 Create or Edit -vl_-bul f1ile

The last option from the main system menu allows vyou to
create and edit files to be used with the disasseabler of the
DISK DOCTOR main sodule. The program is self prompting and vyou
should have no trouble with it. It includes an option for
printing out a label file of eguivalents to the sescreen or a
printer.

You can create a file of up to 96 addresses and labels.
Addresses can be given in decimal or hex notation, but sust be
non zer o—page addresses. (l.e. $09PBA is a legitimate address
for the file, but will not be recognized by the disassembler.)
Labels can be from one to six characters long.

Label file names are automatically given the extension .LDT

As usual, it is not advisable to use file nases only one
character long.

Now you know all there is to know about DISK DOCTOR. Be
caretul, enjoy, and happy DISK DOCTORing.

et e

APPENDIX 1

THE ATARI DISK SYS8TEM

Atari compatible disk drives store data on the 3 1/4 inch
floppy disk in & series of 48 concentric circles or “"tracks".
These tracks are nusbered by convention from outside in, so that
the highest numbered track is the smallest circle near the
center of the disk.

wWhen you forsat a disk, each track is divided up into 18
divisions or “sectors® of data. Each sector is able to store
128 bytes of information in a single density environment and 236
bytes in a double density environment. The 818 disk drive can
only read and write 128 bytes to a sector. Even if you are
using "double density” disks, you will only get 128 bytes to a
sector on the Bl18. You sust have a double density capable arive
in order to pack those additional 12B bytes into a sector.

Now since there are 49 tracks, and 18 sectors per track,
there are obviously a total of 18+#48=728 sectors Oon one side of
a disk. Bince each sector can store 128 bytes of information, a
single-sided, single density Atari drive can provide “"on-line®
access to 128#728=92,160 bytes of data on one disk.

The operating system of ATARI computers allows the
experienced prograseer ismsediate access to any one of those 728
sectors. Indead many games and other sachine language prograas
are stored directly on the disk, sector by sector.

THE BOOT PROCESS

when the computer is cold-started (that is to say, turned
on) it checks to see if disk drive %1 is on. 1f so, 1t tries to
read the data on the first sector of the disk. If successful in
doing so, the computer looks at the first six bytes of the data
in that sector in order to determine what to do next. The
computer is primarily concerned to know how many sectors of deta
it should read off of the disk and where it should put that
data. A typical (and well known) saries of such bytes is

89 63 09 B7 AP 13

This is a very seaningful statement to an Atari computer. It
seans: read in three sactors of data (including sector 1) and
put them at sequential locations of RAM memory starting at
address $7693 start executing the machine language code at
location $7863 and when that is finished jump (=G0T0) to
location $1348 to run the program. But three sectors of 128
bytes each beginning at $780 will only reach to $B87F. How does
the prograsm that is to be executed at location $1348 get into
the computer? It gets there because the program starting at
location 8786 reads it in to RAM sector by sector.

This is what as known as the boot (<(bootstrap) process. The
computer automatically loads some of the prograas, and that part
of the progras loads the rest. This is the way that the great
majority of sachine language programs ars loaded from disk into
the computer.

-21-

APPENDIX 1

D08

For most users, however, the norsal way to access the disk
drive in order to store or retrieve data is through DOS, the
Disk Operating System, be it ATAR] DOS or any of the various
third-party DOS eqguivalents that use the same format. DOS is
nothing sore than a “booted” machine language program that
allows the user to access the disk using filenases rather than
worrying about where precisely on the disk each byte of
itnformation is going to be placed. DOS does all of those
calculations automatically. DOS keeps track of what sectors are
in use, how many sectors are available to be used, and which
files are locked, i1n use, or deleted.

In order to do all of this, however, DOS has to sacrifice
some of the room available for data. Only 123 bytes of each
sector on a DOS disk are available for data storage) the last
three bytes are used by DOS for housekeeping. Moreover, due to
a bug in DDS, it cannot use sector 720 of the disk. Thus, since
DOS reserves the three first sectors of the disk for its "boot*”
code, uses 8 sectors (361-8) to keep a directory of the files on
the disk, and uses 1 sector (360 the VIOC or Voluse Table of
Contents) to keep a "map" of all the other sectors on the disk
and their status, only 767 (728—-1-3-B-1) sectors are available
for data storage on a DOS disk, and only 787#123=88375 bytes of
data may be stored.

When DOS starts putting files onto a newly +formatted disk,
it writes the files all out in sequential sectors, one after the
other. But after a few files have been deleted, DOS soon finds
that it can no longer store information in a single file in
sequential sectors but eust jump around the disk looking for
free space to put the data. In order to da this, DOS uses a
system of pointers. Each sector of a file has a pointer to the
next sector of the file. At the end of the file, the pointer is
#. The location of the first sector of a file is kept as part
ot the directory.

The file pointer is a part of the last three bytes of each
sector. These three bytes (bytes 1235,126,127; remesber the
first byte of a sector is @, but the first sector of a disk |is
1!) sean the following:

byte 127 how many bytes of the sector are used. I4 the
sector is full it will contain the value $7D=123

byte 126 the low eight bits of the file pointer .

byte 125 the file number to which this sector belongs (bits
2~7) and the high two bits of the file pointer (bits #-1)

Examine, for example, the last three bytes of sector 4 on wmost
disks and you will probably see the following:

o9 @85 7D

This seans that this is a part of file number #, the next sector
of the file 15 sector 5, and this sector has 125 bytes of data.

When a new file is written to the disk, before writing out
wach sector DOS determines where it 1s QOing to put the next
sector and inmerts the appropriate file pointer into the end of
the sector. When DOS reads a file, whether it is providing data
for a GET command in BASIC, loading or entering a BASIC prograa,
or loading a machine language program, it retrieves sector after
sector according to the pointers until the end-of—file marker is
reached. But DOS also checks to make sure the file numbers in
each sector are consistent, and if they are not, you will get an
ERROR 164 swssage.

-2

APPENDIX I

Why should the file nusber be wrong? Although ATARI drives
are relatively reliable, a bad byte can always occur now and
then. And if one should occur in the VIOC, which s rewjitten
to the disk every tiee a file is added or deleted, the next tise
DOS needs file space it could appropriate a sector in the middle
of another file.

DOS als0 seems to have a particlarly hard time of {t when it
tries to write a new file on the disk and runs out of space in
the middle of the write. This will frequently result in a “free
sectors” statement that is incorrect.

DISK DOCTOR allows you to recover all or wmost of a file
wherein something has gone amiss, be it a single byte, a file
pointer, or a mistakenly deleted file. To fix a file where vyou
receive an ERROR 164, for example, trace the file, examine the
erronecus sector in the file chain (probably part of a totally
different +file), and fix the file pointer in the sector that
points to the bad one to point to the next sector in the file.
You ought to be able to recover the entire file except for the
bad sector.

SOME DOS FILE POINTER EXAMPLES (bytes 125,126 of each sector):

125 126 123 in binary file ® next sector
1C 12 oPo111/09 27 (=080111) 612
32 AS 901100/19 OC (=991100) 2RO
351 Fe 210100/01 14 (=0101008) 1F®

PROTECTING PROBRAMB

Since a program such as DISK DOCTOR can give you access to
every sector and byte of data on the disk, how can programs be
protected against indiscrisinate copying?

The wearliest disk software +for ATARI was not really
protected. Since most users only had access to the “duplicate
disk®” option in DOS, all that had to be done was to put data
into sectors that were msarked as unused in the VTOC, for the
“duplicate disk"” option dowes not really duplicate everything,
only those sectors that are sarked as in use.

Soon, however, ponderous (in speed, not in size) BASIC
programs (that take about 20 ainutes to write) that could copy
all the sectors of a disk becase widely available for
ridiculously high prices, and software authors perfected anather
scheme, still widely used, called bad sectoring. The trick was
to format a disk in such a way that not all the sectors on it
were resadable. In order for the program to run, it must try to
read one or more of those “"bad" sectors and find that they are
bad. 14 they are not bad, the progrem will stop, reboot the
disk, or some other such thingi for the program "knows" that it
is not on its original disk, the one with the bad sectors.

This scheme, too, was soon easily defeated. First by
skilled programmers who could examine the sachine code on the
program and alter the bad-sector checking code. Indead a

skilled prograsmer can turn a typical bootable disk program into
a binary DOS file and store six games in the space that used to
be taken up by one. But few (fortunately) are those able to do
things like that. If you wish to try to achieve such skill,
DISK DOCTOR can help you do it.

APPENDIX 1

DISK DOCTOR enables you to use another sethod to back up
disks protected by bad sectoring, that is to create bad sectors
on the destination disk exactly where you found them on the

source disk. 1 do not believe that making a backup disk of
software that you own is a crime. It is certainly not imsmoral.
But I am not a lawyer. Check with your own, if you are

concerned. Unguestionably, however, distribution of unlawfully
duplicated opyrighted material, especially if for personal gain,
is & serious crime. Please don’t do it.

The ATAR! disk drive is "intelligent”. It has its own on
board computer that does most of the serious work. It is for
this reason that protection technigues for ATAR] software
remained so primitive for so long. When the 819 is told to
format a disk, it formats it the way it wants to, and the user
has no control over the results. On other computers, the user
can specify how the sectors are to be organized in any given
track. For the sectors are not simply arranged sequentially
within a track. ldeally one tries to arrange the sectors =0
that the read/write head is positioned over the next sector as
200n as it is done processing the data from the previous one.
Thus optimum placement of the sectors of a track depends on how
long it takes to process that data and how Jast the disk is
spinning. To see how this is true, find someone with a Percom
drive and listen to a diwk that has been +ormatted on a Parcom
drive. On the Percom, that spins at 360 RPM, the disk loads
substantially sore guickly than does a normsal 819 formatted
disk. But try sriting to that disk on an 810. It takes audibly
longer than usual. That's because the sectors are arranged
differently on the track by the Percom drive. :

How, then, does the drive know where the sectors are if they
are not always in the same order? It knows because there is
actually more data in each sector of a disk than just the data
visible to the normal ATARI user. When formatting the disk the
drive lays down all sorts of additional information to enable to
find the various sectors, marking each sector with a sector
number. But when called by the computer, the chip in the drive
will only respond with the data of the sector (and the
checksus) .

As more and more clever people became interested in ATARI,
it was inevitable that special drives and modifications would be
developed that would allow large scale software houses to format
their disks in special ways. wWhen these disks are read
according to the code (usually itsel$ encoded) in the boot
progras of the disk, the data is read correctly and the programs
runs. When copied by any straightforward software process,
however , (such as SuperDuper Duplicator), crucial code-bearing
sectors are misread.

An example: One sophisticated msanufacturer regularly
revises every last sector of a track (18,36,54,etc.) so that the
drive thinks it is another second-last sector (17,35,53). The
only way to read that sector is to read the previous sector
twice very quickly in succession. The drive tries to read the
same sector it just read before,but since it hasn’'t had a chance
to make a complete revolution yet, it actually is tricked into
reading the second sector with the same “name”. This is what we
have referred to as special formattingi a procedure that cannot
be defeated by software alone. Unfortunately, as more and more
software houses (and individuals) acquire the hardware to anable
them to produce this kind of protection, the percentage of them
that seem to be offering backup disks for a nominal charge seess
to be decreasing. This is as lamentable as the achievesent of
relatively “unbresakable® protection schemes is laudable.

—24—

APPENDIX 11

™D ASSEMBLY 1L ANGUAGCE
A brief introduction.

In order to make use of the full potential of DISK DOCTOR,
familiarity with the =sachine language of the 6502 family of
computers is obviously necessary. But even a novice can $0llow
the logic of parts of the most complex prograas, i¥ the basics
of &502 Awsesbly language are mastered.

The fact ts that computers are extressly simple sachines.
They can only count to 1, and they can only follow simple
instructions. It is only by combining these simple instructions
and these simple numsbers into complex combinations that
computers can be sade to do complex things.

The result of this fact is that essentially assesably
language, too, is relatively simple to understand, although not
necessarily simple to program in.

The following discussion assuses that the reader has so®®
familiarity with the hexadecimal number systes, and such basic
concepts as “byte®, “K" and “RAM*. If not, please go read a
basic introductory book and comse back.

Now that you are back, let’s begin.

A machine language (assemsbly language is the same as machine
language, except that it uses snemonics instead of nusbers as
and aid to people) program is simply a series of tnstructions,
just like a BASIC program, that moves bytes of datas $rom one
place to another in the computer’s memory, performs sisple
aritheetic calculations and logical comsparisons on that data,
and puts the resul ts somewhere where the user can access them.
In order to do this, the CPU (central processing unit) sust be
able to keep track of where in the progras it is, and where it
is supposed to B0OTO when it is done doing what it is doing. it
must also have some “registers® (byte size locations in the
4£582) where it can manipulate that data, and the ability to
$etch and store data instantly from any place in RAM.

The 6382 CPU in ATARI homse computers has the following
registers: t

A the Accusulator, where msost calculations are peréormed.

X an “"index" register.

Y another “index" register.

8 the “stack pointer®.

P the status register.

PC the (two-byte) progras counter.

It must be kept in mind that these registers are not RAM
addresses. Indeed from a high level language like BASIC the
user has no direct access to these registers at alls; but they
are the things that are doing all the work in the computer.
(Even assewbly language provides no direct access to the progras
counter.) .

When a computation is perforsed, a byte is fetched +From a
meamory address, manipul ated, and then returned to memory or
(what is for the CPU absolutely esguivalent) sent to a mesory
location that actually +functions as a “port" to the outside
world.

Thus the major programsming commands of assembly 1anguags
sust necessarily be very similar to those in high level
languages like BASIC: store a certain value in a vari1able (LET
x=3), +tetch the value of a variable (LET y=X), fetch a value -
manipulate it - and put it in another (or the wsame) variable
(LET Y=Y+3). Prograa control commands too, are functionally
identical: BOTO, 60SUB, RETURN, IF xxx then B0OTO yyy,

-23~

APPENDIX I1

Fetching and storing can be done by either the A, X, or Y
registers, as Can COMparisons. Addition and subtraction,
however, can only be performed on a byte in the Accumsulator.

The fetch command is a "load™ cosmand, thus:

tDA load the Accusulator.

LDX load the X register.

LDY load the Y register.

The store command is just that:

STA store the value that is in the accusulator.

STX store the value that is in the X register.

8TY store the value in the Y register.

The actual sachine language code that corresponds to esach of
these snemonics differs, however, depending on the “address
mode®, that 1is to say, depending on just where it is that you
want the register to fetch from or store to. The 6362 supports
seaveral esoteric address modes, but the most common ones are
"1mmediate”, "absolute” and "indexed absoclute®. Moreover the
6562 assigns a very special role to addresses on “page zero”
(the first 236 bytes of RAM).

The immediate mode, indicated by the use of #, e.g. LDA 88,
means load the register in guestion with the value of the byte
immediately following the “opcode” (the mnesmonic 3 letter
instruction), in this case, load the accumulator with the value
2. .

The absolute mode, indicated by the presence of a full 2
byte address, e.g. LDX $A#P3 means load the register with the
value currently found at that RAM address. As is the case with
BASIC when you say LET T=N, N (in our case $A9S9) keeps the
value that it had before, but that value is also now found in 7T
(in our case, the X register). Thus the BASIC statesent POKE
4996,8 can be “translated” into assembly language as:

LDA #8 (load the Accusmulator with the value 8.

STA $1089 (store the value in the Accumulator into RAM
location $188€0). Indeed this simple ssquence of commands is the
one the beginning Atari user will be most interested in. You
will find that most instructions to the computer involving color
and sound and player missiles, will consist primarily of
sequences.

The indexed absolute mode, indicated by, e.g. LDA $1860,X
means load the Accumulator with the value in RAM location
s109P+whatever is in the X register. If X is 3, then load A
from $1663.

lero page addressing is particularly important because it
only takes one byte to define an address on page zero of memory,
but 1t takes two bytes to define all other addresses. Thus the
execution of commands involving zero page addresses is much
quicker than equivalent cossands using other RAM addresses.
There are some specilal address wsodes involving zero page

addresses, but the only one the beginner should worry about is
the folliowing:

LDA (38A),Y
This eeans: Load the Accumulator with the value +found at the
address contained in RAM locations $8A and %8B offset by the
value in the Y register' Complex, but very useful in many
applications. 14 &68A has value of @ and $6B has the value of
889 and Y contains the number &, this command eeans: Load the
Accumulator with the value currently found in location #8886,

such

NOTE: In 6302 lenguage the least mianificant Dvte of o
two-byte address is stored in the lower memory Jocation,

~-26-

APPENDIX I1

Other msajor opcodes to know are:

JMP sxxuxx jump to location $xxxx and continue the
program there (i.e. = BABIC 60TO).

JMP (SxuxxK) jump to the location contained in the two
bytes starting at ®xxxx. (NOte that “indirection® of addressing
is indicated here as above by parentheses.)

JSR sxxxx jump to the subroutine that begins at ®xxxx.

RTS8 at the end of a subroutine, return to the
calling program (=BASIC RETURN).

ADC add a value to the current value of the
Accumul ator.

8pC subtract a value from the current value of

the accumulator.

DEC, DEX or DEY decreass the current value of a memory
location or of the X or Y register by 1.

INC, INX or INY increase the current value of RAM , X
or Y by 1.

TXA, TYA, TAY, TAX transfer the value in the ¢first
register to the second: ®.g. TXA = transfer X to the
Accumul ator.

CMP, CPX, CPY compare the value in the accusulator (X
or Y) to another value.

Every time one of these operations is performed, the values
in P, the “status"” register may be changed. I+ an operation
results in a zero value or an absolute wequivalence, the
so-called “"zero” flag of P will be met. 1f an addition results
in a carry, the “carry® +flag will be set. (These flags ere
nothing other than single bits within the P register that are
either on or off.) Based on whether or not a flag is set or
not, a conditional branch can be accompiished (= BASIC IF - -
THEN). The conditional controls arel

BEQ@ branch if “"equals” zero.

BNE branch 1f not = zero.

BM1I branch on "minus®i i¢ the last byte result was $86
or larger (in computeresa, all values with the sost significant
bit "on" are considered “minus®, even i¥ they are ‘ucnd as
postive values by the progras.

BPL branch on plus) if the highest bit was not set.

BCC branch i the carry bit is not set (clear).

BCS branch if the carry bit is set.

Let us see now how all this goes together to create a short
assasbly language progras. A +$requent operation 1n such
programs is to clear a block of memory. Let us clear all the
memOry On "page six":

LDA @8 (load the Accumulator with).

TAX (transfer the A to X, now X contains & too).
loop STA $4600,X (put whatever is 1n A into sebe+X).
INX (increment X).

BNE loop (if X is not = zero, QO back to the statesent
called loop.

in the above program, each time that X is incremented, the
program will keep looping back upon iteelf (296 tiees) until X
is finally egual to zero again, at which time control will be
transfered to whatever statement $0llows the BNE instruction.
Each time that the progras loops, the value 1n the Accusulator
is put into successively higher mewmory locations on page six.
0f course all of this happens in a small fraction of a second.

-27-

APPENDIX I1

An important thing to resesber about branch instructions is
that they only take a one byte operand, that is to say you can
only branch to a total of 236 different locations from any one
starting point. These instructions use the idea of “minus”
arithmetic mentioned before, so that the byte sequence F8 s1@
asans branch (if equal to zeroj FP is the sachine language
equivalent of BEQ) hex 186 (decimsal 16) bytes ahead in the
programs. F§ oFF woemans branch one byte back, for SFF is one
"leas” than @, $SFE = -2 and s0 on down to 88~ -~ 128. The

branch is calculated starting at the byte fgllowing the operand
of the branch instruction itself.

BACKWARD RELATIVE BRANCH TABLE

LSD

o 1 2 3 4 S o 7 8 Q A B C D 3 F
8 128 127 P26 125 124 122 122 12t 120 119 18 M7 1+e "5 ila , 013
9 12 AL 110 109 08 107 10¢ ‘05 104 103 1C2 Q) 100 90 Qb 97
A 96 95 Q4 LX) 92 1 20 8y 68 87 8o as 84 83 a2 8i
8 BO 79 78 77 76 75 74 73 72 71 0 69 68 »7 [65
C o4 o3 62 ol 00 59 58 57 3¢ <5 54 53 52 S S0 ay
o] 48 47 46 45 a4 43 42 41 40 39 28 37 30 J5 3 33
t 32 3 30 29 28 27 20 25 P 2 22 21 20 9 8 i
Eol1e 15 4 12 o w9 8 v s 5 a4 a2y g

Additional 63582 opcaodes
AND logical and the Accumsulator.

ASL arithmetic shift left (shift all bits one to the left,
highest bit goss into the carry flag.

BIT logical and the accumulator in memory, but change neither;
zero,negative and "overflow® flags are affected.

BRK break (stop program execution).

BVS, BVC rarely used branch instructions: branch if the
“overflow"” flag is set or clear. Overflow 1is set if an
operation has resulted in a carry from bit six to bit seven of a
byte.

CLD, SED clear and set decimal mode: Unlike most small CPU’'s,
the 6382 can actually do decimal arithmetic directly. When this
mode is in force, #9 + 61 = 1¥ not PA as usual.

CL1l, SEI clear and set the i1nterrupt flag bit of the status
registers. If this bit is set on, so—called “"non-maskable”
interrupts cannot occur. An interrupt is a summons to the CPU
to put aside what it is doing for some more urgent task.

CLV clwar the overflow flag. 1 have never seen this one in a
program.

EOR logical exclusive-or the Accusulator.

LSR logical shift right. 8hift all bits one to the right, the
former lowest bit going into the carry bit of P. Equivalent to
dividing by two.

NOP no operation. This is a place holder, like REM in BASIC.
PHA, PHP “"push™ A or P to the stack for safekeeping.

PLA, PLP “pull®” (retrieve) the ¢irst (lowest) value on the
stack and place it in A or P.

-28-

APPENDIX 11

ROL, ROR “roll” left or right. Shifts all bits of a mesory
location or A one bit left or right, putting the value in the
carry flag into the vacated location, and the lost bit into the
carry flag.

RT] return from interrupt. After interrupting the CPU to do an
interrupt, the offending routine sust do an RT]l to send the CPU
back to what it was doing betore.

SBC subtract with carry. 7To get the correact results, the carry
flag must be set before all subtractions.

TX8 transfter X to the stack pointer.

A TYPICAL BOOT CODE SEGMENT

Since many users of DISK DOCTOR will want to try to exasine
booted software, let us have a look at a typical piece of code
that you might encounter in a boot code, the first sectors on a
disk that actually do the loading of the rest of the program:

1. LDA #8832
STA 8302
2. LDA #@
STA $384
ETA 9308
3. LDA #8873
BTA *99
4. LDA ®e18
STA 383
3. LDA #84
STA $30A
b, JSR SEA33
7. INC $38A

9. DEC 99

BNE E® (= decimal ~-32, go back to step 6.
10. CLC

RTS

This routine or something equivalent to it sust be perforeed
by any program that wants to access the disk drive directly.
What it does is poke certain values into an area of memory
called the Device Control Block and then jump to a subroutine in
the Operating System ($EA3S3) that takes over +¢rom there and
performs the disk access as specified by the values it finds in
the DCB. In fact, the procedure is s0 easy that it can be done
without difficulty ¢rom BASIC (have a look at the DISK DOCTOR
progams) by POKEing the appropriate values into the proper arsas
of memory and then doing a USR call to a string consisting of
nothing more than the 4 bytes 848 $4C $33 ¢t4 (i.e. PLA, JMP
$SEAS3 refer to the BASIC manual for the USR +unction and the
PLA) .

1. This command puts the value 8352 (="R’ for ’read’) into
the location $382 that specifies the disk command, 1n this case
a read of the disk. (Other possible command bytes are $57mwrite
with verify, $53=gtatus check. and $2i=format.)

2 Here we put zero into the high byte (M6B) of the sector

numoer we want to read from the disk andthe low byte of the RAM
addreas 1nto which that sector will be read.

APPENDIX II

3. Now we must aset Up & counter to keep track ot how many
sectors we are Qoing to read. Because of the speed factor
mentioned earlier, most Programss use zero page addresses like
$99 for this kind of a variable.

4. $325 1s the MSB of the buffer. Here we are saying that
we want the information on the disk to be stored starting at RAM
location $100@ (remesber we Put a @ into the LSE in 2.

S. 8384 is the LSB of the sector nusber to be read. We
want to start reading from the disk at sector K,
&, Let the Operating Systeam take over from here and do the
read.

7. Incresent the sector number .

8. Add 128 (hax %80, the size of one sector) to the buffer
address. CLC wmans “clear carry” and must be done before all
additions. Note that one can add a single byte value to a
aultiple byte amount simply by adding @ to all the higher bytes
withoyt doing a CL.C betore those additions. A

9. Decrement our counter. If 1t hasn’t reached zero vyet,
9o back and read the next sector into the next buffer area.

16, When finished, return to the Operating Bystem routine
that calls up the boot code. CLC is done first to show the 08

that the initialization perforsed by the boot code has been
successful.

APPENDIX 111
Rdjusting drive RPM

NOTE: It is strongly suggested not to open up your disk drive
while it is still under warranty. You are liable to invalidate
it. Under no circumstances Q0N up your drive jn_ a dirty
envirooment or when loaded with static electricity’ Moreover,
any damage you may do to your drive when trying to follow any o

the following instructions is entirely your gwn responsibility!

The cover of the B1f drive is sasily removed. Simply pry of+f
the +four 1little round plastic covers on the top of the drive,
loosen the screw beneath with a phillips screwdriver and gently
lift the top up and off.

The speed control is located on the printed circuit board lying
flat at the back of your drive.

If your drive (the older ones) has only two boards, the speed
control is a dime-sized wheel (probably blue or white) labeled
R142 at the left rear corner. Small sovements of this control
produce large changes in RPM.

1f your drive has three boards, the adjuster is a tiny screw
protruding from the top of a tiny “box" (green or tan, usually)
labied R184, just to the left of the only IC on that back board.
You will find that you will need a very tiny screwdriver or
knife to adjust this SCrew, and that it will take many
revolutions of the screw to change RPM substantially.

While doing all of this, please try not to displace or sever any
of the wires 1n the drive. My local repairman has a $4¢ dollar
minimum charge to work on B18’w!

1f you have a new B18 (made later than Jan. 83, or some PERCOMS)
you may be unable tu adyust your drive spewd substantially.
There are several solutions 1f you are unsuccessful at writing
bad sectors. If you have an B81€, you can replace the resistor
in guestiong the part 1% chedp, but installation 1s Quite
compl ex. A better solution (1ndeed one good +tor all B16 drives)
1% simply to replace the ROM chap in your drive with one that
will snable you tao duplicate practically anything. Check with
BJ Saartware for i1nformation on both of these products.

If{ you have a troublesome PERCOM, one approach (so we are told

