Diamond GOS Developer's Kit

First printing

(C) Copyright 1990
REEVE Software

REEVE Software
29W150 Old Farm Lane
Warrenville, IL 60555
(708) 393-2317

Diamond Develop
Intfroduction

Diamond GOS is Reeve Software's powerful Graphical Operating System for Atari 800/XL/XE
computers. This manual documents the Diamond environment from a programming perspective
and provides detailed information on how to use Diamond's graphical abilities in your own
programs. The manual has been organized to provide detailed descriptions of each of Diamond's
routines in groups so that all routines dealing with menus are together...etc. At the end of the
manual each of Diamond's routines is summarized for quick reference.

Note: The disk included with Diamond Develop has been written in DOS 2.X format. If you are

using either SpartaDOS or DOS XE then all of the files from this disk must be copied to a disk
formatted by the DOS of your choice.

Index

Memory Layout 3
Functions 3

Data Structures 12

‘Mouse Drivers 15

Memory Drivers 15

Desk Accessories 15
Other Included Files 17
Appendix |: Function Reference 18
Appendix II: Memory Locations 28
Appendix lll: Languages 31
Conclusion 32

Diamond Develop

Memory Layout

One of the biggest problems with a Graphical Operating System is the amount of memory that
is consumed by all the fancy graphics used. Normally programs that deal with data use a text
mode to display numbers and figured, but Diamond must, at ALL times, use a graphics screen
that uses roughly 8K of memory, while a text only screen consumes less than 1K.

Diamond resides in a 64K cartridge. One of the most amazing things is that the amount of
data in the Diamond GOS cartridge is EQUAL to the amount of memory that can be addressed
by the 6502 chip in your Atari 800/XL/XE computer. Of the 64K that your Diamond cartridge
holds there are 8 8K banks of memory that are swapped in and out of memory at locations
$A000-$BFFF. The cartridge itself can also be banked out allowing us to use the 8K of memory
under the cartridge's memory so we don't really lose this memory, but are merely inconvenienced
in using it.

Diamond also uses memory from $8C00-$9FFF for miscellaneous storage locations, system
variables, and for calling Diamond. When Diamond is being used, screen memory resides at
jocations $6000-$7FFF (Actually it starts at $6035). This leaves us with 1 big chunk of memory to
program with which starts at LoMem and goes through to screen memory. Location $8000-
$8BFF also gives us an area to play with (we have developed a Diamond File Selector which is
normally placed here and is included in this package). Locations $A000-$BFFF can also be used
with the proper technique which gives us roughly 27K to program with.

Diamond uses memory from locations $9A80 to $9AD2 as system variables. These values
are used in conjunction with Diamond's various operations as listed in Appendix Il of this
document.

Calling Diamond

To call one of Diamond's routines using assembly or machine Ianguage)q.éimply load the
accumulator with the routine number and call location $8E00. To pass parameters to these
routines Diamond uses 16 pseudo registers that will be referred to as B0-B7 and WO-W?7 (they
actually reside at memory locations $80-$97 in page 0). The B registers are byte sized and the W
registers are words (two bytes). A call to Diamond in assembly language might look like this:

LDA #0 ;Select Low Res
STA BO

LDA #0 ;INIT routine
JSR $8E00 ;Call Diamond

obviously the second LDA is not needed here as the accumulator already contains O, but this will
be the general format for Diamond calls.

Diamond Functions

Diamond GOS consists of several routines to manipulate and poll the drop-down menus,
windows, icons...etc. We have broken these routines down into ten groups and they are listed
with their name followed by a routine number (in parenthesis) and an explanation of when, why,
and how you would use this routine.

System Functions

The following are considered to be Diamond's System Functions as they are general purpose
routines that didn't seem to fit into any other group. The first three are pertinent to initializing and
terminating a Diamond GOS application.

Diamond Develop

INIT (0) is called IMMEDIATELY before doing anything else to initialize Diamond for your
application. To call INIT simply place the resolution that you wish to use in BO (0=High (the
norm), 1=Low) and call Diamond. Sample assembler code to do this would appear as:

LDA #0 ;High resolution
STA BO
JSR DIAMOND ;Function=0 (0 already in Accum)

EXIT (1) is called to terminate your Diamond application in the same manner as INIT is used to
initialize Diamond. EXIT receives no parameters.

EXECDESKTOP (48) Once EXIT has been called an application will usually return to the
DeskTop via this routine. This routine also receives no parameters. The following code fragment
will terminate your Diamond GOS application and return to the DeskTop:

LDA #1 ;Exit function
JSR DIAMOND
LDA #48 ;Exec DeskTop
JSR DIAMOND

In summary a Diamond GOS application should call INIT first. The actual program will then
follow. After the program is done call EXIT and then EXECDESKTOP to make a legal exit to the
Diamond DeskTop.

BINLOAD (53) is used to load other programs into memory. It loads standard DOS 2.X format
files (as do all (most?) other DOS's). If no Run address is supplied (at $2E0) then once BINLOAD
loads the selected file it will return control to the calling program. BINLOAD can therefore be used
to load and run Diamond applications (as it is used by the Diamond DeskTop) or to load code
overlays as is used by Diamond Paint for printing.

A code overlay is used when a program is too big to fit in memory at once...BINLOAD can be
called to load a block of code, that block can be executed, BINLOAD loads another routine over
the previously loaded routine, executes it...etc. To call BINLOAD BO should be set to whether a
Diamond application is being loaded (0) or told to disable Diamond (1), and WO points to a
filename.

LDA #0 ;Diamond Enabled

STA BO

LDA #< FILENAME ;Get Addr of file
STA WO

LDA #> FILENAME

STA WO0+1

LDA #53 ;BINLOAD Function #

JSR DIAMOND

FILENAME .BYTE "D1:MYPROG.OBJ",$9B ;File to load
TOGGLEZERO (3) is, quite frankly, useless. It is used by our windowing routines and simply
swaps all registers (BO-B7/WO0-W7) with a built in buffer (hence two successvie calls to
TOGGLEZERO accomplishes nothing as the original swap will be swapped back with itself).
The following four functions relate to Diamond GOS's cursor which is simply a vertical bar (or
block) on the screen. This cursor is usually used to indicate where data entry is to take place
from the keyboard.

CURSORON (34) turns Diamond GOS's cursor on. No parameters are needed.

-4-

Diamond Develop
CURSOROFF (35) turns Diamond GOS's cursor off. No parameters are needed.

DEFCURSOR (36) sets up the type of cursor Diamond GOS is to use. Register BO will contain a
bit-pattern that defines the shape of the cursor, B1 the height (in pixels) of the cursor, and B2 the
flash rate of the cursor in 60ths of a second.

LDA #$80 ;Bit pattern = 10000000 (vertical bar)

STA BO

LDA #8 ;8 bit patterns high

STA Bl

LDA #15 ;Flash every 1/4th of a second.
STA B2

LDA #36 ;DEFCURSOR routine
JSR DIAMOND

MOVECURSOR (37) moves the cursor to a given location on the screen. BO is to contain the
new X position of the cursor, and B1 its new Y position.

The following three routines deal with calculations for Diamond. The 6502 does not have its
own multiply or divide instructions so we have provided two routines that accomplish these tasks.
In addition to this, sometimes it will be necessary to determine the address of a particular location
on the screen. This could be accomplished with a multiply by 40 (the screen width) by the Y
coordinate and adding the X coordinate to that, but we have supplied a routine called MUL40 to
do this for you.

MULTIPLY (39) will muitiply the number in W5 by the number in W6 and store the result at W7.
Please note that no error reporting for overflow is accounted for and that a bug in this routine
results in a system crash when an attempt to multiply by zero occurs.

LDA #5 ;Place 5 at W5 and Wé

STA W5

STA W6

LDA #0

STA W5+1

STA W6+1

LDA #39 ;Call multiply and 25 will be returned
JSR DIAMOND ;in W7

DIVIDE (40) will divide the number in W4 by the number in W5 storing the result in W6 and the
remainder in W7. As with multiply no errors are accounted for.

MULA40 (54) receives the X position in B6 (0-39) and the Y position on the screen in B7 and
returns the screen address at that location in W7.

The following two rOljtlneS just didn't seem to fit with anything else so here they are. \
J“ " Tl : '{ e "'\y Vg e f “\ [".'\'
DRAGBOX (45) is used to create a box and allow the mouse to drag that box around the screen
until the mouse button is released where it will return the final position of the box. This function is
used by Diamond DeskTop when the drive icons and trash can are dragged to a new location.

ADDQUE (38) adds a routine to our own VBI queue. Four slots are available and Diamond GOS
uses two of these slots. Any routines added here are cleared whenever Diamond is INITed.

Memory Functions
Memory routines deal with the rapid movement of large blocks of memory. Being as Diamond
supports a four byte address range for memory locations so do these routines, and thus moving

-5-

Diamond Develop

to and from extra memory no longer requires determining how to write to such memory. These
routines are divided into two groups. The first group involves moving between a linear block of
memory and screen memory, and the second group involves moving between two linear blocks
of memory. (Note: All memory routines return an error code in B7 where $FF means an error
occurred)

For screen memory moves the general register set up will be:

WO,W1 - Pointer to a linear block of memory

BO - X position on the screen (0-39)

B1 - Y position on the screen (0-191)

B2 - Width of area on screen (in bytes)

B3 - Height of area on screen

B4 - Clipping value for X (cut off point)

B5 - Clipping value for Y

B6 - X Offset

B7 - Y Offset o

EAPR s T R

usually registers B4-B7 will be set to 0 as these options were primarily intended for Diamond's
routines.

MOVETOSCREEN (27) moves an area of linear memory onto the screen.
MOVEFROMSCREEN (28) moves an area from the screen into linear memory.

CLEARSCREEN (29) erases an area on the screen. No linear memory address is needed here
so fill WO and W1 with dummy values of $2020 and $2020." _ . |

4
1

INVERTSCREEN (30) inverts an area of the screen. This routine does not need a linear address
either so fill WO and W1 with dummy values.

SWAPSCREEN (41) swaps an area on the screen with an area of linear memory.
FILLSCREEN (55) is similar to clear screen but instead of zeroing the background you can select
the 'fill' byte by placeing it in W2 (the low byte of W2). Dummy values need to be stored in WO
and W1. A fill byte of 0 would make FILLSCREEN identical to CLEARSCREEN.
For linear memory moves the general layout for registers is:

WO,W1 - Address of the source block

W2,W3 - Address of the destination block

W4 - Size (in bytes) of the move

MOVE (31) moves a block of size (W4) bytes from the source location to the desination location.

ZERO (32) clears (zeros) the destination block. The source block is not used an thus must be
filled with the dummy values of $2020 and $?£20

SWAP (33) swaps the source and destination blocks.
Note: In order to use these routines effectively please note the three system variables

TOTALRAM, SYSPTR, and EXTRA as these variables will reveal how much memory is actually
available for Diamond's use.

Diamond Develop

ext Function
Text routines are used for printing text to the screen. Two routines are supplied for this
purpose. Of the two PARAPRNT is more flexible and slower, and SYSDRAW is less flexible and
faster.

PARAPRNT (2) is used to print a string of text to the screen. BO and B1 contain the X and Y
offset of the text (usually 0), B2 contains the line spacing between lines (usually 8, as characters
are usually 8 pixels tall), W1 the X position of the text (0-319), W2 the Y position of the text (O-
191), and W5 the address of the text string to print. The text string must be null (0) termlnated
and can have several different codes imbedded:

1 H
AT B S . e
<o B S R

'

10 - Linefeed

13 - Carriage return

251,byte - Print the following character regardless of value (Use to print control
characters)

252, byte - Set style to byte (add the following values: Bold=1, Italic=2, Outline=4,
Underline=8, Inverse=16, Light=32, Mirror=64, Reverse=128)

253,word - Set font to address in word (Default font=System)

254,byte - Change height magnification (Default=1)

255,byte - Change width magnification (Default=1)

IDA #0 ; Zero offsets

STA BO

STA Bl

LDA #8

STA B2 ;Line spacing

LDA #10 ;Print at 10,10

STA W1

STA W2

LDA #0

STA Wl1l+1

STA W2+1

LDA #<STRING ;Point to the string

STA W5

LDA #>STRING

STA W5+1

LDA #2 ; PARAPRNT

JSR DIAMOND

STRING .BYTE 252,5 ;Bold-Outline text style

.BYTE 254,2 ;Double height
.BYTE "Hello, Everybody!"
.BYTE 13 ;Return
.BYTE "Hello, World!"
.BYTE O

The above example prints the message:

Hello, Everybody!
Hello, World!

at location 10,10 on the screen using Bold-Outline text with double height magnification.
SYSDRAW (44) allows printing of text, but limits this text to having to start in a column from 0-39

(instead of any pixel location on the screen) and does not allow the text to change styles or be
magnified...etc. When calling SYSDRAW WO is used to point to the string to print, B1 and B2 to

-7-

Diamond Develop

the X and Y position of the text, and B3 is used to set the style of the text. Please note that unlike
@s used with PARAPRNT that these strings must be terminated with a value of 255.

rawin nction

PLOTPOINT (24) plots a point on the screen. BO contains the X position (0-159), B1 contains the
Y position (0-191), B2 the color (0-3), and B3 the mode (0=Normal,1=XOR).

PLOTLINE (25) draws a line on the screen. BO and B1 contains the X1 and Y1 position, B2 and
B3 contain the X2 and Y2 position, B4 the color and B5 the mode. The following example draws
aline from 10,10 to 10,30 on the screen.

LDA #10 ;From 10,10
STA BO

STA Bl

STA B2 ;To 10,30
LDA #30

STA B3

LDA #2 ;Color 2
STA B4

LDA #0 ;Normal mode
STA B5

LDA #25 ;Line function
JSR DIAMOND

PLOTBOX (26) draws a box on the screen using the same information passed to PLOTLINE.

Mouse Functions

MOUSEON (11) enables the mouse cursor. This routine receives no parameters.
MOUSEOFF (12) disables the mouse cursor. This routine receives no parameters.

DEFMOUSE (13) defines a new mouse cursor with WO pointing to the new cursor structure. The
following example (which sets the mouse cursor to look like an hourglass) should help clarify this:

LDA #<NEWCURSOR

STA WO

LDA #>NEWCURSOR

STA WO+1

LDA #DEFMOUSE

JSR DIAMOND
NEWCURSOR

.BYTE 3,3 ;MOUSE HOT SPOT

.BYTE $FF ;11111111

.BYTE $42 ;01000010

.BYTE $3C ;00111100

.BYTE $18 ;00011000

.BYTE $18 ;00011000

.BYTE $24 ;00100100

.BYTE $7E ;01111110

.BYTE $FF ;11111111

lcons

The following routines pertain to icons. lcons are pictures that appear on the screen that are
used to signify something (i.e. the disk drives and trash can on Diamond DeskTop are icons).
Diamond supports a maximum of 32 icons at once.

-8-

Diamond Develop

INSTALLICON (4) places an icon on the screen. Once INSTALLICON has been used EVENT
will detect events for this icon. When called BO should indicate which icon is to be used (0-31),
B1 should hold the X position (0-39) on the screen, B2 should hold the Y position, B3 the width of
the icon (in bytes), B4 the height of the icon, and WO should point to that icon's image in linear
memory. The following would install an icon.

LDA #0 ;Use First icon

STA BO

LDA #18 ;Install in the middle of the screen
STA Bl

LDA #100

STA B2

LDA #5 ;Width=5

STA B3

LDA #20 ;Height=20

STA B4

LDA #<IMAGE ;Point to image address
STA WO

LDA #>IMAGE

STA WO+1

LDA #4 ;Install

JSR DIAMOND

IMAGE .BYTE (5 * 20 = 100 bytes of image data)

MOVEICON (5) moves an existing icon to a new position on the screen. When called, BO should
hold the number of the icon to move, B1 the new x position of the icon, and B2 the new Y
position of the icon.

REMOVEICON (6) removes an icon and stops any further event from being detected for the icon.
When called, BO should hoid the number of the icon to remove.

SHAPEICON (7) allows an icon's shape to be altered for animation purposes (i.e. the disk drives
and trash can on Diamond DeskTop). When used, BO should hold the icon number and WO
should point to the new image data to use.

OVERLAPICON (46) checks if any icons are overlapping a given point on the screen. B0,B1 and
B2,B3 represent X,Y coordinate pairs used to form a box around the area that you wish to detect
for. After being called, BO will hold the number of the overlapping icon (1-32) or O if no icon
overlaps that region. Please note that the icon numbers here are 1 greater than those passed in
the previously given routines.

Rialog Boxes
The following six routines relate to the use of Dialog boxes under Diamond. Diamond does not
allow Dialog boxes to be stacked (only one can be in use at a given time).

DODIALOG (14) is used to set up a new dialog box. When called BO should hold the width (in
bytes) of the dialog box, and B1 should hold the height (in pixels) of it. The dialog box will
automatically be centered for you. WO points to a list of objects to be drawn inside your Dialog
box and W1 points to a list of touch areas for your dialog box. Touch areas are those areas that
an activity can occur in. (See sample program DIALOG.M65 and DIALOG.APP)

UPDATEDIALOG (15) allows a dialog box to be refreshed with new objects (or for old objects to
be erased). W7 is used to point to a new object list for this routine.

-9-

Diamond Develop

EVENTDIALOG (16) detects events in a dialog box. This relies on your list of touch areas and
returns which touch area was clicked on as well as the number of clicks issued. BO returns the
touch area clicked on and B1 the number of mouse clicks.

RELEASEDIALOG (17) is used to remove the dialog box from the screen as it handies restoring
the screen to its condition prior to DODIALOG. No arguments are needed.

TEXTDIALOG (18) allows for a text area to be opened in a dialog box for keyboard input. BO
holds the length of the string to edit, B1 the starting position in the string, B4 the exit conditions
for TEXTDIALOG (0=RETURN key only, 255=RETURN key and when the string has been filled),
B5 and B6 correspond to the X,Y position in the dialog box for your text area, WO the text string
to edit, W1 a character filter to filter out unwanted input, and W2 an exit filter. When this routine
returns, BO will indicate what caused the exit (a character or 255 meaning the buffer was full) and
B1 will return the ending position in the string.

INVERTTOUCH (49) allows for a touch area to be inverted. While this serves no practical
purpose it can be used to 'pretty up' a program. When called, BO is used to pass the number of
the touch area to invert.

Drop-down Menus
The following three routines assist in setting up drop-down menus under Diamond. Diamond
supports up to 8 menus with the first one being used by desk accessories. The other seven can

contain a maximum of 22 items each.

SETMENU (8) sets up a new menu bar along with its menus. When called, WO should point to
the new menu bar and W1 should point to a table of (up to 8) addresses pointing to each menu
structure. (See example program MENU.M65 and MENU.APP)

MENUCHECK (9) allows for the insertion or deletion of a check by individual menu items. When
called, BO should contain the menu number (0-7), B1 the item number (1-22) and B2 the status of
the item (0=No check, 8=check). (Note: The 0 and 8 correspond to internal character values so
characters OTHER than a check can be placed by the side of a menu item.)

MENUENABLE (10) allows certain menu items to be disabled so that they can no longer be
selected. This is helpful in Diamond based applications as it prevents errors. As with
MENUCHECK, B0 corresponds to the menu number and B1 the item number. B2 should be O for
enabled and 1 for disabled. Menu items defauit to enabled.

Windows
Diamond supports a maximum of four windows that can be open at a single time. Diamond's
windows also have many different attributes that can be used.

WINDOPEN (19) is used to open a new window. BO contains the characteristics that the window
is to have (See accompanying table and add bit values), B1 contains the X position of the window
on the screen, B2 contains the Y position the window is to have, B3 contains the height of the
window, B4 contains the width of the window, and BS is used to determine if the window is to be
buffered or unbuffered (O=Unbuffered, 1=Buffered).

Unbuffered windows can erase the contents of windows behind them and are faster than
buffered windows. WO contains the address of a title bar for the window, W1 contains the
address of a subtitle bar for the window (both strings must be terminated with a 255), W2
contains the actual height of the window and W3 contains the actual width of a window. The
actual height and width refer to the number of positions the horizontal and vertical sliders can
have. Finally, if the window is buffered, W4 and W5 make up a double word pointer to an 8K area

-10-

Diamond Develop

of memory used for buffering. Once WINDOPEN is called a window ID # will be returned in W7
(this number will range from 1 to 4). (See sample program WINDOW.M65 and WINDOW.APP)

Available Window CI teristi

Bit Value Characteristic

0 1 Sizer

1 2 Horizontal scroll bar
2 4 Vertical scroll bar
3
4

8 Drag bar
16 Fuller

WINDCLOSE (20) is used to close the top (active) window. No parameters are needed.

WINDMOVE (21) is used to move the top window to a new position on the screen. BO is used to
pass the new X position of the window and B1 is used for the new Y position of the window.

WINDDRAW (22) draws new objects inside of the top window. This routine receives the address
of an object list in W7.

WINDCLEAR (42) erases the contents of the top window. No parameters are needed.

WINDGET (43) gets the position of the top window. After WINDGET has been called, BO and B1
will hold the X,Y position of the window on the DeskTop and WO,W1 will hold the relative position
(slider bars) on the window.

WINDSET (50) sets a new actual height and width for the top window. WO receives the new
width and W1 the new height.

WINDTITLE (51) redraws the title bar for the top window. B7 is used to hold a backround fill
character.

WINDACTIVATE (52) activates a new window and makes it the top window. BO is the number of
the window to activate.

OVERLAPWINDOW (47) checks for windows overlapping a given place on the screen (similar to
OVERLAPICON). The arguments passed are identical to those in OVERLAPICON.

Event Handling
EVENT (23) is used to detect events (i.e. a menu item being selected or a window being
closed...etc). EVENT receives no arguments and returns any event codes in the system variable

EVENTTYPE. The following is an example of how EVENT would be used followed by a table
listing all possible return codes for EVENT.

LOOP LDA #23 ;Event call
JSR DIAMOND
LDA EVENTTYPE ;What type of event occurred
BEQ LOOP ;If 0 then no event occurred
CMP #1 ;1l=Icon event
BEQ ICON
CMP #2 ;2=Window event
BEQ WINDOW
CMP #3 ;3=Menu item selected
BEQ MENU

-11 -

Diamond Develop
JMP LOOP
Event Type Table

EVENTTYPE +1 +2 +3 +4
0) No Event Detected
1) icon Event Icon #(1-31), # of Clicks, X position Y position
2) Window Event
1=Closed
2=Fulled
3=Dragged
4=Resized
5=X slider, New position
6=Y slider, New position
7=Work area, X position, Y position
8=New window, window #
3) Menu item Menu #(0-7), Item #(1-22)
4) Key pressed ASCII Keycode
5) Background # of Clicks, X position, Y position

i T I

Diamond uses a few basic data structures for fonts, object lists, drop-down menus, and dialog
boxes. A data structure is the way in which data is organized for various blocks of data.

Diamond GOS Fonts

Byte Significance

0] Pixel Height

1-12 12 Character Name

13 Byte width

14 Starting character

15 Number of characters defined

16+ Pixel width of each character (number of entries is equal to the number of
characters defined)

Character Data

Diamond GOS Mouse cursors

Byte Significance

0 X Action Spot (0-7)
1 Y Action Spot (0-7)
2-9 Mouse shape data

(See discussion of Mouse related functions for an example)

i ject List

O=Image
Word - Address of the image
Byte - X position of the image
Byte - Y position of the image
Byte - Width of the image
Byte - Height of the image

1=Text
Word - Address of the text string
Word - X position of the text string

-12-

Diamond Develop

Word - Y position of the text string
Byte - Line spacing
2=Line segment
Byte - X1 position
Byte - Y1 position
Byte - X2 position
Byte - Y2 position
Byte - Color
Byte - Mode
3=Box
Byte - X1 position
Byte - Y1 position
Byte - X2 position
Byte - Y2 position
Byte - Color
Byte - Mode
255=End of object list

Example:

OBJLIST
.BYTE 0 ;Image object
.WORD IMAGE
.BYTE 3,3 ;Position of object
.BYTE 4,16 ;Size of object
.BYTE 1 ;Text object
.WORD TEXT ;Addr of text string
.WORD 24,48 ;Position of text
.BYTE 8 ;Line spacing (8=normal)
.BYTE 3 ;Box
.BYTE 10,10,100,100 ;10,10 to 100,100
.BYTE 1,0 ;Color 1 in normal mode
.BYTE 255 ;End of object list

Diamond GOS Drop-Down Menus
Diamond GOS menu bars are relatively complex structures as compared with other Diamond
GOS data structures. All menu structures consist of a title bar formatted in the following way:

“Menu 1",255(separator),"Menu 2",255,"Menu 3",255,155(End) and up to 8 word sized
pointers to each individual menu structure. The first menu bar (which also serves Desk
Accessories) consists of a ten byte string (e.g. " INFO *). The other menu structures consist of
the following format:

X position under menu bar (0-39), Width (Width of each text entry + 2), # of Items in menu, a
0 for each item (the status of the menu, 0 meaning active), followed by:

253,0,"Menu text",253,0,254 for each entry and
253,0,"Menu text",253,0,255 for the last entry

The following example should clarify this:

MENUBAR

.BYTE " Desk ",255," File ",255,155
MENUPTR

.WORD DESKMENU

.WORD FILEMENU
DESKMENU

-13-

Diamond Develop

.BYTE " Info

FILEMENU
.BYTE 7,9,2,0,0
.BYTE 253,0," Oopen ",253,0,254
.BYTE 253,0," Close ",253,0,255

Diamond GOS Dialog Boxes
Diamond GOS Dialog boxes receive a pointer to an object list as defined and a pointer to a list

of ‘touch' areas. These touch areas are where Dialog Box Events are detected. The list of touch
areas has a simple format and looks like:

X1, X2, Y1, Y2, ;First touch area

X1, X2, Y1, Y2, ;Second touch area
255 :End of Touch Area list

-14-

Diamond Develop

Mouse Drivers

Diamond GOS mouse drivers are files that contain the necessary programming to read a
given input device. While this device does not have to be a mouse, we find it convenient to refer
to them as mouse drivers. When Diamond GOS first loads up from the Diamond GOS cartridge,
the user is set for the default ST Mouse Driver. If the user reconfigures for a different mouse
driver this driver is then added to the CONFIG.OS file on the user's Diamond GOS StartUp disk.

The actual mouse driver code consists of a double word pointer that are deposited in
MOUSEVEC and DLIMOUSEVEC in the system variable table and up to $300 (768) bytes of
code that will reside at location $9600 through $98FF.

Sample source code for our Joystick driver is included (as JOYSTICK.M65). These drivers
are then assembled into files (with a DRI extender) and then loaded into our configuration utility
for use with the Diamond GOS environment.

Memory Drivers

Memory drivers are similar to mouse drivers as they are also contained in the file
CONFIG.O0S. If no CONFIG.OS file is supplied, then a default 48K memory driver will be resident
which will not allow access to any additional memory (or actually about 256 bytes of it for desk
accessories).

A memory driver file consists of a series of vectors to the various memory handling routines
(MOVE, MOVETOSCREEN, MOVEFROMSCREEN) and up to $400 (1024) bytes of code that
will reside in memory at $9000 through $93FF that actually moves memory. This code is
assembled into a file that is then given an extender of DRV and loaded with the CONFIGUR.APP
utility as you would a mouse driver.

Sample source code from our 130XE memory driver has been included as MEMORYXE.M65.
As with Mouse drivers, these drivers are also loaded into our configuration utility for use with the
Diamond GOS environment.

Desk Accessories

Desk Accessories have their inherent power in the fact that they can be accessed from within
another program via the left most drop-down menu. Desk Accessories MUST reside in 'extra’
memory (under the 48K default driver there is roughly 300 bytes of extra memory for Desk
Accessories). Up to six accessories can be resident at one time given adequate memory.

Desk Accessories are loaded when Diamond GOS is started, and they must have an ACC
extender for their filename to be recognized. Accessories work by being loaded into extra
memory. When called they swap themselves into regular memory and are executed. When the
Desk Accessory is done, it must clean up after itself. It will then be swapped back out of memory
and control will be returned to the user's application.

The format for a desk accessory is dramatically different from a standard Diamond GOS
application (which shares the same file format as Atari DOS Il binary files) and is given below:

10 bytes for the accessory's name

2 bytes for the accessory's length in bytes

2 bytes for the base address (the accessory's load address)
2 bytes for the accessory's run (execution) address

The actual accessory program (object code)

Note: A desk accessory must occupy linear memory from its base to its base+(length-1).

-15-

Diamond Develop

To aid in the creation of Desk Accessories we have created a Desk Accessory Maker
program and a Desk Accessory Skeleton program for use with the Desk Accessory Maker. All
this DAM does is takes an assembled desk accessories object code and convert it into desk
accessory format. For example, if you assemble SKELETON.M65 into SKELETON.OBJ the OBJ
file will not operate as a desk accessory, however, after loading it into our DAM and then saving it
as an accessory your desk accessory will now be operable.

-16-

Diamond Develop
Other Included Files

Also included on your Diamond Develop diskette are several other files to aid in the creation
of Diamond GOS based applications. They are as follows:

IOMAC.M65 and SYSEQU.M65 - I/O Macros

LIBRARY.M65 - Some very helpful macros including:
BE addr - Branch if equal {(any distance from PC)
BN addr - Branch if not equal
BGE addr - Branch if greater than or equal
BLT addr - Branch if less than
BGT addr - Branch if greater than
BLE addr - Branch if less than or equal to
BER addr - Branch of error (used after a CiO call)
DINC addr - Double byte increment
DADD addr,value - Double byte add
DSUB addr,value - Double byte subtract
DMOVE value,addr - Double byte move

DMACROS.Mé65

All of the equates for Diamond functions and memory locations as defined in this manual, and
macros for each Diamond function. If you desire to use our macros please make a printout of this
to see how to pass arguements, however, using macros is much more limited and less efficient
than programming in more conventional means.

FILESEL.M65

As with most graphical operating systems, we have created a standard file selector program
for use with your programs. It occupies memory in the $8000-$8BFF range. A macro for calling
the file selector is also built into this file.

CONFIGUR.M65
This is source code to our Configuration utility to provide developers with source to a
complete Diamond GOS application.

DESEG.BAS

Designed for Mac/65 users DESEG will take an object file created with Mac/65 and get rid of
all the file segments that is creates. While less advanced users might not understand that, this
utility will shrink files assembled with Mac/65 a little and make them load a little faster which is all
that one really needs to know.

-17 -

Diamond Develop
Appendix I: Function Reference

The following list contains all routines currently available under Diamond GOS in numerical
order. Each routine listed contains the routine name, its number, a brief description, and a list of
arguments that can be passed to and that are received from the routine. For a more detailed
description of each routine and how they interact with each other please refer to the chapter on
Diamond's functions.

INIT (0) - Initializes Diamond GOS
Receives:
BO - Resolution (0=High/1=Low)
Returns:
None

EXIT (1) - Exits the Diamond GOS environment
Receives:
None
Returns:
None

PARAPRNT (2) - Prints a text string using Diamond's styling and font features.

Receives:
BO - X Offset
B1 - Y Offset
B2 - Line spacing i
W1 - X Position st e o I
W2 - Y Position o ‘ b
WS5 - Address of the text stnng

Returns:
None

TOGGLEZERO (3) - Swaps Diamond's pseudo-registers with a built in buffer. This routine is
used by WINDOPEN and isn't really all that necessary for user applications.
Receives:
None
Returns:
None

INSTALLICON (4) - Installs an icon so that it can be polied for events.
Receives:
BO - Icon number (0-31)
B1 - X Position (0-39)
B2 - Y Position (0-191)
B3 - Width (1-39)
B4 - Height (1-191)
WO - Address of the icons bit image
Returns:
None

MOVEICON (5) - Move an existing icon to another position on the screen.
Receives:
- lcon number
B1 - New X Position

-18-

VG

g
Diamond Develop d M , {
B2 - New Y Position avi
Returns: 7/
None ‘
2,2 |
REMOVEICON (6) - Removes an icon that has been instalied 23 k{
Receives: ro
BO - Ilcon number
Returns:
None

SHAPEICON (7) - Changes the shape of an existing icon (used to animate icons e.g. the disk
drives on Diamond DeskTop)
Receives:
BO - Icon number
WO - Address of new bit image
Returns:
None

SETMENU (8) - Initializes a new menu bar for Diamond
Receives:
WO - Address of the menu bar
W1 - Address of the menu trees
Returns:
None

MENUCHECK (9) - Insert or remove a check from a menu item (can also place characters other
than checks next to menu items)
Receives:
BO - Menu number (0-7)
B1 - ltem number (1-22)
B2 - Character to insert (0=Blank(erase check)/8=Check)
Returns:
None

MENUENABLE (10) - Enable or disable a menu item
Receives:
BO - Menu number (0-7)
B1 - Item number (1-22)
B2 - 0=Enable/1=Disable
Returns:
None

MOUSEON (11) - Turn the mouse cursor/arrow on
Receives:
None
Returns:
None

MOUSEOFF (12) - Turn the mouse cursor/arrow off
Receives:
None
Returns:
None

-19-

Diamond Develop

DEFMOUSE (13) - Defines a new mouse shape
Receives:
WO - Pointer to mouse shape data
Returns:
None

DODIALOG (14) - Creates a Dialog Box
Receives:
BO - Width of the Dialog Box
B1 - Height of the Dialog Box
WO - Address of the Object list for the Dialog Box
W1 - Address of touch areas for the Dialog Box
Returns:
None

UPDATEDIALOG (15) - Updates a Dialog Box (draws a new object list in a Dialog Box and over
existing objects)
Receives:
W?7 - Address of the Object List
Returns:
None

EVENTDIALOG (16) - Waits for an event to occur in a Dialog Box (please note that this actually
WAITS for something to happen before returning control to your program)
Receives:
None
Returns:
BO - Touch area affected
B1 - Number of mouse clicks

RELEASEDIALOG (17) - Terminates usage of the current Dialog Box (must be called after the
application is done using the current Dialog Box to clear the screen)
Receives:
None
Returns:
None

TEXTDIALOG (18) - Opens an area in a Dialog Box for text entry. This routine will also filter out
invalid input.
Receives:
BO - Maximum length of the string being edited
B1 - Starting position of the edit cursor (O=beginning)
B4 - Exit conditions (0=Only on C/R,255=When buffer is full)
B5 - X Position of the text area
B6 - Y Position of the text area
WO - The text string to edit
W1 - Character filter
W2 - Exit filter
Returns:
None

WINDOPEN (19) - Opens a window

-20-

Diamond Develop

Receives:
BO - Window characteristics
1 = Sizer active
2 = Horizontal scroller active
4 = Vertical scroller active
8 = Drag bar active
16 = Fuller active
B1 - X Position of the window
B2 - Y Position of the window
B3 - Width of the window
B4 - Height of the window
B5 - Buffer flag (0=No buffering, 1=Buffering)
WO - Address of the title
W1 - Address of the subtitle
W2 - Actual height of the window
W3 - Actual width of the window
W4,W5 - Double word address of the buffer if needed
Returns:
B7 - The window number used

WINDCLOSE (20) - Closes the active (top) window
Receives:
None
Returns:
None

WINDMOVE (21) - Moves the active (top) window to a new position on the DeskTop
Receives:
BO - New X Position
B1 - New Y Position
Returns:
None

WINDDRAW (22) - Draws objects in a window and updates the window's subtitle
Receives:
W7 - Address of the object list
Returns:
None

EVENT (23) - Check the Diamond GOS environment to see if any events have occurred. This
routine does not WAIT for an event.
Receives:
None
Returns:
None (all info is returned in the system variable EVENTTYPE)

PLOTPOINT (24) - Plots a single point on the screen
Receives:
BO - X position
B1 - Y position
B2 - Color (0-3)
B3 - Mode (0=Normal,1=XOR)
Returns:

=21 -

None

Diamond Develop

PLOTLINE (25) - Plots a line on the screen

Receives:

BO - X1 position
B1 - Y1 position
B2 - X2 position
B3 - Y2 position
B4 - Color
B5 - Mode

Returns:
None

PLOTBOX (26) - Piots a box on the screen

Receives:

BO - X1 position
B1 - Y1 position
B2 - X2 position
B3 - Y2 position
B4 - Color
B5 - Mode

Returns:

None

WO,W1 - Address of image data
BO - X position

B1 - Y position _
B2 - Height Brvrrca e
B3 - Width H2 byt

MOVETOSCREEN (27) - Moves a block image from memory onto the screen
Receives:

B4 - Clipping Value X
B5 - Clipping value Y
B6 - X offset
B7 - Y offset

Returns:

B7 - $FF (255) means an error occurred

WO,W1 - Address of image data
BO - X position

B1 - Y position

B2 - Height

B3 - Width

B4 - Clipping value X

B5 - Clipping value Y

B6 - X offset

B7 - Y offset

Returns:

MOVEFROMSCREEN (28) - Similar to MOVETOSCREEN but instead copies a block image
from the screen to memory
Receives:

B7 - $FF (255) means an error occurred

-20.

goreen
"’H/ﬁ a, 1€ et &%

Diamond Develop

CLEARSCREEN (29) - Clears an area on the screen
Receives:
WO,W1 - Dummy arguments (usually set to $2020,$2020)
BO - X position
B1 - Y position
B2 - Height
B3 - Width
B4 - Clipping value X
B5 - Clipping value Y
B6 - X offset
B7 - Y offset
Returns:
B7 - $FF (255) means an error occurred

INVERTSCREEN (30) - Inverts an area on the screen
Receives:
WO,W1 - Dummy arguments (usually set to $2020,$2020)
BO - X position
B1 - Y position
B2 - Height
B3 - Width
B4 - Clipping value X
B5 - Clipping value Y
B6 - X offset
B7 - Y offset
Returns:
B7 - $FF (255) means an error occurred

MOVE (31) - Moves a block of memory to another area in memory
Receives:
WO,W1 - Source address
W2,W3 - Destination address
W4 - Number of bytes to move
Returns:
B7 - $FF (255) means an error occurred

ZERO (32) - Clears (zeros) a block of memory
Receives:
WO,W1 - Dummy arguments usually initialized to $2020,$2020
W2,W3 - Address to zero
W4 - Size of block to zero
Returns:
None

SWAP (33) - Swap an area of memory with another area of memory
Receives:
WO,W1 - Address of block 1
W2,W3 - Address of block 2
W4 - Number of bytes to swap
Returns:
None

CURSORON (34) - Turns Diamond's cursor on

-23-

Diamond Develop

Receives:
None

Returns:
None

CURSOROFF (35) - Turns Diamond's cursor off
Receives:
None
Returns:
None

DEFCURSOR (36) - Defines the cursors shape and blink rate
Receives:
BO - Bit pattern to use for the cursor (default is $80)
B1 - Height of the cursor
B2 - Flash rate is 60ths of a second
Returns:
None

MOVECURSOR (37) - Moves Diamond's cursor to a new position on the screen
Receives:
BO - X position
B1 - Y position
Returns:
None

ADDQUE (38) - Adds a new address to Diamond's VBI queue. Diamond supports more than 1
VBI routine (up to four). New VBI routines can be added via ADDQUE
Receives:
W7 - Address of the new routine
Returns:
B7 - $FF (255) means no more addresses are available for use

MULTIPLY (39) - Word sized multiply (please note overflow error are not detected)
Receives:
WS5 - Muitiplicand 1
W6 - Mutiplicand 2
Returns:
W?7 - Result

DIVIDE (40) - Word sized divide (errors are not detected)
Receives:
W4 - Numerator
WS5 - Denominator
Returns:
W6 - Result
W7 - Remainder

SWAPSCREEN (41) - Swaps an area on the screen with a block image in memory.
WO,W1 - Address of image data
BO - X position
B1 - Y position
B2 - Height

-24-

Diamond Develop

B3 - Width
B4 - Clipping value X
B5 - Clipping value Y
B6 - X offset
B7 - Y offset
Returns:
B7 - $FF (255) means an error occurred

WINDCLEAR (42) - Clears the top (active) window
Receives:
None
Returns:
None

WINDGET (43) - Inquires about the top (active) window's actual position on the screen and
relative viewing position in the actual window space
Receives:
None
Returns:
BO - X position
B1 - Y position
WO - Relative X position
W1 - Relative Y position

SYSDRAW (44) - System text drawing routine (faster, but less flexible that PARAPRNT)
Receives:
WO - Address of the text string
B1 - X position
B2 - Y position
B3 - Style of the text
Returns:
None

DRAGBOX (45) - Create a drag box for dragging objects
Receives: , N
BO - Initial X position "+ > "
B1 - Initial Y position
B2 - Width
B3 - Height
Returns:
BO - New X position
B1 - New Y position
B2 - Mouse's X position
B3 - Mouse's Y position

OVERLAPICON (46) - Inquires about overlapping icons on an area of the screen
Receives:
BO - X1 position
B1 - Y1 position
B2 - X2 position
B3 - Y2 position
Returns:
BO - Overlapping icon number (O=None)

-95.

Diamond Develop

OVERLAPWINDOW (47) - Inquires about overlapping windows on an area of the screen
Receives:
BO - X1 position
B1 - Y1 position
B2 - X2 position
B3 - Y2 position
Returns:
BO - Overlapping window number (0=None)

EXECDESKTOP (48) - Makes a legal exit to the Diamond GOS DeskTop
Receives:
None
Returns:
None

INVERTTOUCH (49) - Invert a touch area in a dialog box
Receives:
BO - Touch area number
Returns:
None

WINDSET (50) - Sets a new actual width and height for the top (active) window
Receives:
WO - New actual width
W1 - New actual height
Returns:
None

WINDTITLE (51) - Redraws the title of the active window
Receives:
B7 - Fill character (O=Blanks,10=Shaded)
Returns:
None

WINDACTIVATE (52) - Activates a new window and makes it the top (active) window
Receives:
BO - New top window number
Returns:
None

BINLOAD (53) - Loads (and executes) a binary file
Receives:
BO - Diamond disable flag (0=Diamond App,1=Disable Diamond)
WO - Address of a filename to load
Returns:
None (May exectute a program if a run address is given)

MULA40 (54) - Quickly calculate the address of the position of a screen location
Receives:
B6 - X position
B7 - Y position
Returns:

-26-

Diamond Develop
W7 - The address of the byte on the screen

FILLSCREEN (55) - Fills an area on the screen with a given bit pattern
Receives:
WO,W1 - Address of image data
W2 - (Low byte only) The fill pattern
BO - X position
B1 - Y position
B2 - Height
B3 - Width
B4 - Clipping value X
B5 - Clipping value Y
B6 - X offset
B7 - Y offset
Returns:
B7 - $FF (255) means an error occurred

/ o
AR & e '
- o
ot & KN
- 3 ’
D ! SRR ! ¢
—, — !
[N) A (’
. i - ty
¥ /
- . P
~ bl -k !
~ ’ ’ !
[< ~ ~ &
N - IAY A ¢
" i Z
3 [. o .
(~
) w & KoK
s s 1
Y e e
. }
. i
. e -
4.,\‘ £ - 'f,/‘"‘"\ - \»‘([y
N B 2 yd
\ ~ ~t ; s e -7 < :
Yy f!l\ o= i R PR LS
G
1/, N
N
s /
AN ,
(' (S ! < ’ E

-927-

Diamond Develop
Appendix Il: Memory Locations

The following are Diamond GOS's system variables including the label as referenced in our
Diamond GOS Macro package, the absolute address of the location, and its purpose.

SCREENX ($9A80) - The current X position of the mouse (arrow) pointer. Values can range from
0to 159.

SCREENY ($9A81) - The current Y position of the mouse (arrow) pointer. Values can range from
Oto 191,

CLICK ($9A82) - Contains the number of mouse clicks read most recently from the mouse.
Values can ranges from 0 to 3 with the following meanings:

0 - No mouse button pressed

1 - Mouse button is being dragged (held down)
2 - A single click has been detected

3 - A double click has been detected

please note that once a single or double click has been detected this location will NOT be cleared
automatically so once you read i, find a single or double click has been detected, it is up to your
program to clear it.

ACTIVE ($9A83) - Mouse active status (a 0 here indicates that the mouse is active, a 1 means it
is not).

BACKBUF ($9A84) - A double word (4 bytes) location that points to an area of memory to be
used as a screen buffer for drop-down menus and dialog boxes. The default value is $0000A000
which points to the RAM under the Diamond GOS cartridge. (This must point to an 8K block)

TOTALRAM ($9A88) - A double word (4 bytes) location containing the size of the memory
useable by Diamond including any extra (bank selected) memory. A standard 48K system will
read $00010000 here as this value (64K) includes the ROM in your system.

SYSPTR ($9A8C) - A double word (4 bytes) that contains the address of the first byte of extra
(bank selected) memory.

CLICKTIME ($9A90) - This location holds the time (in 60ths of a second) that it takes to register
a mouse click so as to distinguish it from a drag. Valid values are in the range of 12 to 20 which
translates to holding the button down for 1/5th to 1/3rd of a second will generate a mouse click.

PORT ($9A91) - Contains the number of the (joystick) port that the current input device is being
read from. This value is usually aOora .

INTERRUPTS ($9A92) - Status of non-maskable interrupts (NMls) for the Diamond GOS
environment. If interrupts are temporarily disabled while using the Diamond GOS environment,
use the value held here to restore them.

EVENTTYPE ($9A93) - This five byte area is used in conjunction with Diamond GOS's EVENT
routine. Values from EVENT are passed back here.

SYSFONT ($9A98) - This word (2 bytes) area points to the System Font in use for Diamond
GOS. The font in use can NOT reside in bank selected memory.

-28-

Diamond Develop

NUMFONTS ($9A9A) - This location was originally intended to hold the number of fonts resident
in memory, however, it remains unused at this time.

RESETVEC ($9A9B) - This double word area (4 bytes) is used to save memory from locations
$A (10) through location $D (13) when Diamond GOS is initialized. Diamond GOS 'steals' these
vectors so it can trap the System Reset button. If the application needs these values they can be
found here.

DRIVES ($9A9F) - These seven bytes are reserved for the drive table that is used by Diamond
GOS. Diamond GOS uses drive letters (A-G) instead of drive numbers that are used under DOS.
These seven bytes correspond to the seven letters A through G and contain the number of the
drive that the given lettered drive is to reference. ASCI| values for '0' to '8 are usually found here
(‘0 indicates an inactive drive).

DEFAULTDRIVE ($9AA6) - This is the default drive that is used under Diamond GOS for saving
the DESKTOP and it will contain a number from O to 6 that corresponds to drive A-G.

MOUSEVEC ($9AA7) - A word sized VBI vector for the mouse driver. This word points to a VBI
(vertical blank interrupt) that handles the selected input device.

DLIMOUSEVEC ($9AA9) - A word sized DLI vector for the mouse driver. This word points to a
small routine that is used in detecting/processing motion from the selected input device that runs
in a DLI (display list interrupt). At present only the ST Mouse Driver uses this.

XOFFSET ($9AAB) - The mouse's x offset. The value here usually ranges from O to 7 and
corresponds to the x position in the mouse shape where action is to be detected. With the arrow
mouse pointer, both the XOFFSET and YOFFSET are set at 0 as the very tip of the arrow is to
be where actions are detected.

YOFFSET ($9AAC) - The mouse's y offset. This value typically ranges from O to 7 and is used in
conjunction with XOFFSET.

MOUSESHAPE ($9AAD) - This eight (8) byte area holds the mouse's shape data.

EXTRA ($9ABS) - This double word (4 bytes) holds the address of the first useable byte of extra
memory. It (unlike SYSPTR) points above any loaded desk accessories so you can be sure that
all memory pointed at and above is free for your application's use.

DESKTOPEXEC ($9AB9) - A word sized vector that points to the entry point for the Diamond
DeskTop.

REZ ($9ABB) - This location can be used to determine the current resolution that Diamond GOS
is being run under. A value of 0 here indicated high resolution (the normal resolution for Diamond
GOS), and a 1 here indicates low resolution (color) mode. Color mode is normally not used
because windows and text are distorted due to the lower resolution. An example of using
Diamond GOS's color mode is the work screen in Diamond Paint.

DOSTYPE ($9ABC) - This location can be used to determine which DOS (Disk Operating
System) Diamond GOS is running under. An 18 here means a form of DOS 2.X, and a 38
indicates that either DOS XE or a form of SpartaDOS is being used (and thus a hierarchical file
system/subdirectories).

-20 -

Diamond Develop

SPARTAFLAG ($9ABD) - This location is used to distinguish between DOS XE and SpartaDOS
when DOSTYPE is set to 38. A 0 here indicates that DOS XE is in use, and a 1 here indicates
SpartaDOS is being used.

BANK ($9ABE) - The current bank number that is active in our Diamond GOS cartridge (The
Diamond GOS cartridge consists of 8 8K banks of ROM).

5,

CMDLINE ($9ABF) - A \,‘byte command line buffer that is used by Diamond GOS. This is
where data is placed trony the command line for COM files. The command line is usually
terminated withaC/R ($98B). = 5,

£ /
BACKFILL ($9AD®) - A single byte to be used as the background fill pattern whenever iamond
GOS is initialized. The default is a $55 which corresponds to a %10101010 pattern, or & blue (on
130XE machines). e

Zi
DELAY ($9ABM) - Keyboard delay length in 60ths of a second for Diamond GOS keyboard input
before auto-repeat becomes active. The default value is 30 which corresponds to 1/2 of a
second.
L=

REPEATDELAY ($9ADB?2) - Once auto-repeat of a key occurs this is the length of time in
between successive repetitions of a key in 60ths of a second. The default value is set at 12 (1 /5th

of a second).

E N pe g R :
" . # N s ' A S/
SN Cowd T s s C ’ |
e e g Y ,‘) ! . 2! d f% T 7iC
CCEL; Coeric 2 ! & [T,
- ! o o A / ¢t
Pl = Cocesic ! . @n

-30-

Diamond Develop
Appendix lll: Interfacing Diamond with High-Level Languages

All previous discussion of Diamond has dealt with programming in 6502 assembly (or
machine) language. Diamond does not require that you use assembly language to program in.
The only requirement is that the accumulator be loaded with a value, registers and memory
location be accessible, and that Diamond can be called.

While it is not a requirement that you program Diamond in Assembly language there are some
things that just can't be done any other way (as assembly language is the only language that
allows you to truly tap the power of the system) and memory will be more limited than it is with
assembly langauge.

Atari Basic

Atari Basic can accomplish this via the USR statement and a routine that has been included to
do this for you in the file DEVELOP.BAS. Simply incorporate this into your Basic program and
pass the appropriate function values and such to this USR routine and Diamond GOS will do the
rest. DEVELOP.BAS demonstrates how to do this with the INIT and EXIT functions.

Another possibility would be to declare$ all of the symbols used in Diamond in
DEVELOP.BAS, however, we elected not to do this as that would consume a lot of precious
memory and a large chunk of Basic's variable name table so we recommend using the numeric
values supplied in this manual.

ACTION!

To access Diamond simply use the PROC statement (e.g. PROC DIAMOND=$8E0O(BYTE
areg) which will allow Diamond to be called via statements of the form DIAMOND (routine #).
Registers B0-B7 and WO-W7 can be POKEd and DPOKEGJ directly.

BASIC XL/XE

Basic XL/XE are both compatible with Atari Basic, however, please note that Basic XE will not
work with Diamond in its extended mode due to a memory conflict. At the moment we see no
way around this.

C and Pascal

There are several different C and Pascal compilers that have been released for Atari 8-bit
computers, however, due to the nature of these languages and the Atari 8-bit computers various
sacrafices have been made in their implementations. Also we are unaware of a standard for
calling assembly language routines and are unable to supply any more useful information than
has been supplied above. We would, however, like to hear from you if you have a C or Pascal
compiler that you really like using on your 8-bit machine as we would like to establish one for use
with the Diamond GOS environment.

-3] -

Diamond Develop
Conclusion

We hope you enjoy developing software for the Diamond Graphical
Operating System as we see a strong future for this program and Atari 8-
bit computers as a whole if we get some strong support from independent
developers. If you should design a program and would like us to make it
available to other GOS owners please feel free to send it to us. If you
would 1like us to evaluate your program for possible commercial
distribution we'd love to see that too.

Thqpk You,
C@&%w'ﬁz&%fi,/

Alan Reeve

REEVE Software OnLine

GEnie users can contact us online in the Atari 8-bit Roundtable. Our message library in the
bulletin board in category #14 and our software library is #26. Our EMail is REEVE.SOFT and we
check in roughly once a day to answer questions and such.

On CompuServe we can be reached at user ID 71521,2200. We do not check in quite as
frequently there so please be patient if your questions are not answered overnight.

—F L;Q@ Cpaca
ad

-32-

