ORIGINAL ARCHIVER OPERATING
INSTRUCTIONS

These instructions describe the
operational procedures for the
original ARCHIVER only.
Installation instructions have been
deleted. '

3

2.1.2 Normal Backup Procedure

1. Follow the boot procedure given above (with a copy
of the ARCHIVER/EDITOR only).

2. When the ARCHIVER page
changes to a brownish-yellow) then press C

Copy).

3. The ARCHIVER will respond by asking you to insert
source diskette. Now insert th~ program you wish to
backup and then press the START button.

is displayed (scrcen
(for

4, After a short time, you will be requested to insert
destination diskette. At this time, you should insert
the diskette you wish to put the copy on. When you
have done this, press the START button.

2. In the ARCHIVER/EDITOR program pressing the
ESC key will bring you back to the command mode
of the program you are currently in. The only ex-
ception is during actual disk 1/0, (R/W) in which case
holding down the OPTION button will stop the disk
1/0 at the end of the track read/write operation
which then allows you to abort the operation by
pressing the ESC key or to press START to
continue the 1/0 operation..

3. Whenever disk [/0 needs to he performed or continm
ued you must press the START button to proceed.

4. At anytime during the use of the EDITOR program
(except during disk [/ a CRTL-P will create
printout of what is currently on the screen on your
printer.

5. The CTRL and SHIFT keys need never be used
except for printing as described in 4. (However you
may press CTRL or SHIFT if you like, but these
key functions are disregarded and unnecessary.)

6. Whenever any writing is to hn performed the border
color will change to red. Whenever any reading is to
be performed the border color will change to white.

ANNI

ENRI R RN RHANE

RERER

NOTE

The destination diskette does not have to be
previously formatted. The ARCHIVER/
EDITOR program formats each track as it is
written {f the F+ parameter is selected.

5. If the ARCHIVER asks you to insert the source
diskette again and repeat steps 3 and 4.

6. Depending on the length of the program, from 1 to 3
pnasses may be required on a 48K computer. The
larger the computer memory is, the fewer the
nutnber of passes required. The ARCHIVER will
indicate on the screen when the copy is done.

7. We suggest that you put the original diskette away in
a safe place and use the backup copy from this time
on.

If you got a Read Format Error, most likely you did not follow
steps 3 and 4 of the boot procedure carefully. Otherwise the
command option parameters may require some changes to
enable vou to custom modify the diskette copying technique
(refer to sections 4.1 and 4.3).

2.2 SOME CONYENTIONS USED

1. All numbers used in the ARCHIVER/EDITOR program
are in Hexadecimal (HEX) which is a base 16 number-
ing system. If you do not understand hexadecimal
numbering, then refer to the table in Appendix A. In
this manual all HEX numbers are preceded by a $
symbol

CHAPTER]
SCREEN CONVENTIONS

This chapter deals with the various command lines and
prompts used by the ARCHIVER/EDITOR program. You
should read the following chapters to become aware of all the
many capabilities provided by this program.

3.1 ON THE SURFACE

Figure 3-1 shows the screen for the ARCHIVER. However, the

EDITOR, the FORMATTER, MAPPER, and the DISAS-
SEMBLER screens all have similar Option, Status, and Com-
mand lines. The Option and the Status lines provide 16 unique
paramcters for disk sector/track f{ormat changing. The
following paragraphs explain how to use each parameter.
S E il oy e
OPTION LINE /::tmm‘:h ol v Soeee -‘-:':-.ﬂ
STATUS LINE "!!!!!!!!!l.llll'l—*
migiidigiinnnnnnme
fFlllllllllllllllll
R 822 R X3EKSX .
jRanasuaanenngnInl
IR 23X .
siiid

COMMAND LINE . pywrww— 3?) WASIBE (<

Figure 3-1. Screen Program Lines

v e, ——r YT T = e e ——

e v amm m— —-

3.2 THE OPTION LINE

The option line contains perameters uscd by the ARCHIVER
(and EDITOR). Al of these pnramcters can be changed at any
time when you are in the command mode. To modify these
parameters type P . You will see a cursor on the option line.
To move the cursor right and left press the + or =+ key
(without pressing the CTRL key). Pressing RETURN
selects that parameter to be changed. After the parameter
has been changed the cursor will be on the option line ready to
select another parameter to change. Pressing the ESC key
returns control back to the command level. A description of
each parameter follows.

3.2.1 Source Drive

S:x This s the drive number from which all reading is
done. Pressing & RETURN when on this
parameter will increment the drive number and
wrap around at four (4) to one (1). NOTE: This
drive must be opened prior to reading from it,
otherwise an error will occur (this drive must also
have a CHIP installed).

3.2.2 Destinmation Drive

This is the drive number to which all writing is
done. Selecting the drive is accomplished the
same way as described in section 3.2.1 above.

Dzx

3-?

1.2.

3 Track Range

3.2,

R:ixx,yy

This is the range of tracks that will be copicd
using the ARCHIVER (or tracks
read/written/formatted... when using the
EDWQR). The xx is the start track and the

yy is the end track. When pressing RETURN
with the cursor positioned on this parameter a
prompt will appear on the command tine
requesting a new range of tracks. There are three
allowable syntaxes:

RETURN : same as typing 00,27 (tracks 00 to
27 HEX).
X,y ¢ set start to x and end track toy.
x : set both start and end tracks tox.

ESC will exit this option without modifying the
range of tracks. RETURN enters the range you
entered and updates the option line accordingly.
If you make an illegal entry a track range error
occeurs.

4 Verify

<
+

AANANNANDONNNNN!

This is the write with verify flag. Pressing &
RETURN simply toggles this parameter:

+ o Verify on.
- Verify off.

Il the verily is on, a verification will be done on
the track after it is written. NOTE: Because the
verify pass is separate from the write pass, it is
faster than the standard DOS write with verify.

3.2.5 Logic Seeking Read/Write
L+ This is the read;write logic secking flag. Hitting
a RETURN simply toggics this parameter:

+ 3 Logic seeking on.

Logic seeking off.

-t

When reading or writing multiple sectors with the
same number {i.e. two seetor $09) you must be
able to read or write the correct sector, there-
fore, there are logic sceking read/write com-
mands in the CHIP that automatically synchronize
to the format on the track and read/write the
correct sector. Since synchronizing to a track
takes a little more than one revolution, these
commands are slower than the standard read/
write commands. The only time you would want
to change this to a - is when the format cannot
be synchronized (see section 8.1). If the logic
seeking is off, it is suggested that you turn
compaction off {refer to section 3.2.6). Note:
The ARCHIVER/EDITOR programs only use the
logic seeking commands (if enabled) when a non-
unique numbered sector is to be read or written

RSN R D

[%)
3]
o

Compaction

This is the compaction fleg. Simply pressing
RETURN toggles this parameter:

(9]
+

+ Compaction on.
- Compaction off.

If you have compaction on when using the ARCH-
IVER, the sector will neither be read nor written
by the ARCHIVER/EDITOR if it is filled by a
single value (i.e. $00 etc.). If you are in the L-

mode you should have compaction off. Sectors
filled with the values $01-$08 will not be
compacted as these are format control bytes.
These "fill" bytes are placed in the sector
automatically when the track is formatted.

The C +/- parameter has the same funetion in the EDITOR
as it does in the ARCHIVER, however, in the EDITOR the
results are more readily apparent. Compaction only works on
sectors which are not bad snd that have single byte filling the
entire scctor. Also, sectors filled with the values of $01-308
will not be compacted. If the sector was compacted, the
EDITOR will NOT display the data in the sector. The EDITOR
will only display sectors it actually read. The CHIP actually
reads the data and reports back to the EDITOR that the sector
is to be compacted, thus saving time on reading a diskette.

e i ey = e e e

3.2.7 Pormat Read Type

A6+

This is the type of track rcading that the ARCH-
IVER/EDITOR program will use to determine the
format on the tracks. Either 4 or & bytes of
information about the sector can be selected (A4
or A6). The + or - is the toggle to turn on
(+) or off (-) the format verification logic.
Normally the A6+ will be desired. To change this
parameter, simply press RETURN with the
control cursor positioned on the A6 . The
meaning of each of the codes is as follows:

6 : Six bytes are returned to the ARCH-

IVER/EDITOR for cach sector, thus
the ARCHIVER/EDITOR will be able
to rotate the sequence so that the
end-of-track gaps will be identical
(AB+ only). This is mainly
cosmetic, but does have significance
on [rst formnts.
Beecause 6 bytes are returned, a max-
imum of 21 sectors per track can be
fetched. If there are more than 21
sectors, then a 4 mode should be
used.

4 Four bytes are returned to the
ARCHIVER/EDITOR for each sector,
thus some inforination about each
sector is mussing. This is intended
for 22 to 24 sector formats.

+ The track is cycled through twice
comparing the first sector sequence
to what the CHIP finds the second
time. This is an internal function of
the CHIP.

3-6

3.2.9 Sereen Code Conversion

S+

This is used in the EDITOR onlv. It refers to the
conversion of characters displayed on the normal
EDITOR page to the right of the sector display.
A BRETURN toggles this parameter.

+ Convert data to ATASCII
characters.
- No conversion. Display data as Atari

screen codes.

3.2.10 Bad Sector (CRC)

B+

This flag refers to the method of writing CRC bad
sectors. Pressing RETURN torgles flag on (+)
or off (-). This [lag should always be set to +
when in the ARCHIVER.

+ Write a {ull bad CRC sector.

- Only write a partial sector (CRC
bad). The number of bvtes written
depends on the last byte of the sector
data. That hyte refers to the number
of bvtes that will be written. This
aliows for the capability of increas-
ing the number of sectors on a track
to above 20 (i.e. two hall sectors
take about the same amount of room
as a full sector).

-t This mode is slightly faster than the
+ mode, however, no verify is done on
reading the format. This is generally
used for speed and also if the track is
badly garbled. (Unformatted tracks
can return strange sector headers on
some diskettes.)

For more information on the difference on the 6/4
byte read distinction, see section 5.15.

3.2.8 Format Flag

IR E RN I I NE

q
+

This is the format before write flag. Normally
you will want a P+ mode. Simply pressing

RETURN will toggle this flag when the cursor
is positioned on the F+ .

+ Format track before doing the write
pass.
-t Do not format This option is select-

ed if you already have an identical
format on the track or if you are
simply trying to put sectors on the
destination track. If there are mui-
tiple sectors with the same number
and the track formats are not identi-
cal the logic seeking read/write
commands will not work correctly.
Also, the verify may not work cor
rectly {f it tries to veri{y the wrong
sector. This flag also allows you to
convert slow formats by first
formatting the destination track with
a fast format and then write out the
sectors that were read from a slow
formatted diskette.

3.3 THE STATUS LINE

The status line is the third line on the screen. It will display
the current track, sector, composite sector number, the
amount of free buffer memory, current copy number and the
number of copies to make (in the ARCHIVER or the sector
data address in the EDITOR). The only directly adjustable
parameters are the CQ:xx which refers to the number of
copies to make and the LOC:xxxx which is the sector start
address. The status line parameters are as follows:

TR:xx This is the current track number the
ARCHIVER/EDITOR is processing. (Tracks
range from $00-$27.)

SE:xx This is the current sector number the
ARCHIVER/EDITOR {s processing. {(Scctors
range from $01-$12, a — means that the
sector number is invalid.)

FM:xxx This is the composite sector number used by
Atari DOS. These numbers are arrived at by
the formula FM = TR®*$12+SE. Where TR is
the track number and SE is the sector
number. The FM ranges from $001 to $2D0.

A — indicates that the sector number is
invalid.
#xxxx This is the current free memory for storage

of the sector data and track information.
When data is being read into the buffers, the
memory counter will decrement $80 for
each sector read and also for each track
read. NOTE: If compaction is on,
compacted sectors do not take up memory
space, however, there is a $80 byte over-
head to store sector layouts and varinus
other information for each track. On a 48K
machine this field will read $9900 (about
J8K).

v

R e

This s the number of the copy being made.

NU:xx
A $00 indicates it is on a read pass. A $01
to $FF is the number of the current copy
being written.

CO:xx This is the number of copies to be made per
each read pass. This is defauited to one
($01) whenever the ARCHIVER program
mode is entered. This value can range {rom
$01 to $FF.

LOC:xxxx This parameter is used with the EDITOR and

is the address location in which all
disassembly or dispiavs of sector data will
start. This is for purely comestic reasons
and does not affect the data (refer to
section 5.12).

3.4 THE COMMAND LINE

The command line is at the bottom of the display. This line
will contain all necessary screen prompts, input commands and
error messages. When using one key command entries no
RETURN is necessary to enable that command. Simply
press the desired key for the desired command input.
However, on numeric input pressing RETURN is necessary
to enter the numeric information.

Also, pressing the space bar will erose an error message or

copy done/aborted message immedintely. Otherwise the
message will disappear after approximately 4 seconds.

3-10

3.5 OPENING/CLOSING THE CHIP

Normally the CHIP will already be open if the Disk Drive is
booted correctly (refer to section 2.1). However, there mnay
be some cases in which you will need to open a drive.
(Opening a second drive for example or If the drive was nnt
booted correctly.) To open the CHIP, type an O when in the
command mode (in either the ARCHIVER or EDITOR). You
will be prompted to enter the open code and drive number.
Enter your code, and the drive number (optional—the defauit is
one). If you enter a wrong code or just press RETURN , the
CHIP will close. Pressing ESC aborts this option

3.6 SECTOR DISPLAY FORMAT

The ARCHIVER/EDITOR's sector Inyout displayed on the
screen is somewhat unique. Fieid (a) (shown in figure 3.2} is
the track number (HEX) from where the sector sequence
came, The numbers in field (b) rcpresent the actual sector
numbers on the track and are in the scquence as found on that
track. The numbers are read vertically (i.e. figure 3.2 shows
track = $01, sectors = $12, $01,...). Generally there will be
$12 sectors (18 decimal) on a track. llowever, this can vary
from one software protection schemc to another. Field (¢)
represents the status of the scetor. If there is a symbol under
the sector number, the scctor is considcred ‘bad" and will
return a bad sector status il rcad (a protection technigue).
Refer to table 5.1 in section 5.10 and to section 6.11 for each
symbol's meaning. The sector numbers can be in any order and
need not be unique. Two (or more) reads of the same sector
number need not return the same data.

R THE ARCHIVER V1.0 e

371 P:1 R:03,07 U+ L+ C+ A6¢ F& ST 8%
—i @87 SE:10 Fn' 88E_#16 s'ao TR 3

{A)

Figure 3.2 Track/Sector Display Format

For detailed information on the source of these sector num-
bers, refer to the section on the track layout (section 6.3) and

the following paragraph.

These track and sector numbers are not used internally by the
Atari computer. Instead, the operating system refers to each
sector as a number from $001-$2D0 (1-720 decimall. The
computer's disk operating system (or DOS) will access the Disk
Drive using this composite sector number. Then, within the
Disk Drive, the composite sector number is broken down into &
track and sector number using the relationship:

l AT A A AN AN A NN

composite = (track) ® ($12) + (sector)

l 3

Thus, the first sector in figure 3.2 ($12) would be called $24
(36 in decimal) within the computer. Notice in the figure that
there are two sectors with the number $09. If the Atari
computer were to read sector $2B (composite remember), it
would get one of the two possible sectors. This is called a
‘double sector'.

4.2 NUMBER OF COPIES

This command will allow you to sclect the number of copies
that will be made on each read pass. To enter the number of
coples you wish to make, type an N You will be prompted
to enter the number of copics to make. Type the number (in
HEX) followed by a RETURN . The number selected will be
reflected after the CO . When making copies on a single
drive, screen prompts will signal when to insert the source
diskette and when to insert the destination diskette. On a two
drive system (both with a CHIP), the first copy will be made
automatically and subsequent copics will be prompted. The
number after the NU indicates which copy Is currently
Yeing processed. A $00 means you are on the read pass.

4.3 AUTOMATIC COPY

The command to start making copies is initiated by pressing
the C key. When activated, screen prompts will be
displayed for Inserting the source (original) and destination
(backup copy) diskettes throughout the process. Remember to
press START to acknowledge to the prompt that you are
ready. The copy command C makes the number of copies
specified by the CO:xx field and does its functions according
to the parameters on the option line (if applicable). The
memory buffer containing the previously read data will be
cleared prior to each reed pass.

ANANNNNDNNNNNE

CHAPTER 4
THE ARCHIVER

The ARCHIVER is an automatic copier designed to copy your
protected {(or unprotected) software for backup purposes. The
ARCHIVER Is easy to use and will backup virtually all
protected software,

4.1 AN OVERVIEW

In general, diskettes can be copied by simply typinga C .
For some special disk formats it may be desirable to change
several of the ARCHIVER operating parameters. The
ARCHIVER will allow the making of multiple copies per each
read past. On a 48K system a disk will take up to 3 passes to
copy. However, most diskettes can be copied in one or two
passes depending on the amount of data on the diskette.

As a safety feature the ARCHIVER/EDITOR requires that you
press the START button before any disk reading or writing
will take place. If you wish to asbort the reading or writing
during disk 1/0 press the OPTION button and hold it down
until the track is completely read or written. To continue
press the START button and to exit the operation press the

ESC key. The ESC key will always return controi to the
previous command mode while disk /O is non-active.

4-1

If you have problems copying, check the following:

1. Change to a different destination diskette.

2. A6+ to A6~.

3. A6, L, and C to -.

4. If the diskette has 20 or more sectors on a track, then
read each sector/track using the Editor and write it onto

the destination diskette. Refer to sections 6.11 and 8.2.

5. Be sure you have a data separator board and that the
disk drive is running at the right speed.

4.4 ENTER EDITOR

To enter the EDITOR type B . All data currently in the

memory buffers will transf{er.

3.1 AN OVERVIEW

The EDITOR is designed to be easy to use yet it doesn't lack in
sophistication. One key commands allow you to browse through
the many parts of the EDITOR. Untike the ARCHIVER, only
one track's sector list will be displayed at a time. The
EDITOR allows you to move between sectors by simply
pressing the left and right arrow keys(« and +). You will
notice the dual purpose of the track format lines as both a
sector selection aid and as e sector layout display. This will
be discussed in more detail later. The normal EDITOR display
will be of the actual sector data of the sector that the cursor
is on (on the sector layout lines). If there is no track in
memory, the sector layout lines will be blank.

The main sector data display will contnin data only if there is

at least one track in the memory buffer and the sector that
the cursor (s on contains data.

5.2 READING TRACKS

To read in a range of tracks first be sure that the R:xx,yy
parameter s correct, then type an R followed by pressing
the START button to start the read process. As a safety
feature, if a track is currently in memory that was specified in
a read operation, the reading of that particular track will not
occur. That track will be skipped and the read process will
continue with the next track.

L SRR REEREECRANRRURORNNEY!

CHAPTER 5
THE RDITOR

The EDITOR will allow you to actually edit the sector data
and do many manipulations with {t. Custom formatting can
also be done, thus enabling you to make protection schemes or
modify protection schemes as desired. Because formats can
now have over 19 sectors, the EDITOR s necessary In order to
duplicate these sophisticated formats. (Formats greater than
19 sectors have never been used to protect diskettes designed
for use on the Atari eomputers before the introduction of the
CHIP.)

8

" ~ IR pa DA O D D D Zzzzzz2
0 ” b D bA. DA D DA D D ZZZTTL
netc DA D e P D DA DA D 2227272
1:38. ba D D& 048 0 DA DA D ZZZ2ZZ2
pe 28 pa O pA DA DA DA DA P4 ZZZT1ZZ
no2d b D hd DA DA DA DA bd 222222
TRy 52 ba bA ba - ba bA D& DA 2722222
5T kn na DA DA DA DO DA OD 272222
alo » 80 6D 6D 6D 6D 60 60
1edst Bp 80 8D 80 e D 90
H-". MY U U D 3L) U

S8 U 1] i U B U . B O

g Y gy U U DU . 1]
34 1 D B U] 1) 1 B D

u 7.- D U U U iRy D DD

Figure 5.1. EDITOR Screen

5-1

5.3 WRITING TRACKS

To write a range of tracks first set the track range (as in the
read). Press W along with START to initiate the writing
process. Only the tracks and sectors actually in memory
within the range selected will be written. If formatting is to
ocour before the write, the fill bytes will be written during the
format on compacted sectors. If a sector was deleted thnt
sector will not be written. If formatting is on then zeros will
{ill that sector.

5.4 ENTER EDIT MODE

Prior to entering the Edit Mode, the sector data must first be
displayed. If so, press B to enter the Edit Mode.
Otherwise, read in the track you want to edit, thenpress E .
The cursor appears within the sector data and you may start
editing the code. The commands available [or use while in the
Edit Mode are as {ollows:

« : Move cursor one byte toward the beginning
of the buffer (left).

+ 1 Move cursor one byte toward the end of
the buffer (right).

4 : Move cursor eight bytes toward the begin-
ning of the buffer (one line up).

4+ 1 Move cursor eight bytes toward the end of
the buffer (down one line).

5-3

RETURN Move the cursor to the beginning of the

next data line,

Delete the byte the cursor is on. All data
beyond the cursor moves up one byte and a
zero is placed in the last byte of the
sector.

DELETE :

INSERT Insert a byte at the cursor position. Al
data moves down one byte from the data
that the cursor was on. The last byte of

the buffer is lost.

Fill the entire buffer with the character
currently under the cursor.

CLEAR :

Move the cursor to the first byte in the
buffer.

Typing HEX numbers changes the data to
exactly what you see. The cursor will
automatically move to the next hyte when
a byte has heen entered. All spaces are
automatically skipped between each byte.

Exit the edit mode. All changes will be
saved to a memory buffer (not the disk)
and are permanent unless changed later,
This will also update the characters on the
right to their new value. (This is not done
automatically during the Edit Mode.)

The address at the left is arbitrary and is used strictly for
reference. The address can be changed by the L command
(see section 5.12).

5-4

5.7 CLEAR TRACK FROM BUFFER

The CLEAR key will delete an entire track from memory.
The next track will then be displayed. The memory Indicator
will sutomatically be incremented reflecting the deletion. If
you wish to delete all tracks from memory, simply holding
down the CLEAR key will do the job. Pressing RESET
also clears tracks from memory, but it sets all parameters to
their defauit values.

5.8 CLEAR SECTOR FROM BUFFER

The DELETE key will delete the sector currently displayed
If no sector is being displayed, a becp will sound to indicate
that there is nothing to delete. If a write occurs, that sector's
data will not be written, however, the sector header will be
put on the diskette (if formatting is on). Deleting a sector
simply ersses the data and does not modi{y the track layout.

5.5 DISASSEMBLY

The EDITOR has a built in disassembler. First enter the Edit
mode and then move the edit cursor to the byte at which you
wish to begin the disassembly. Exit the Edit mode (press

ESC) and then press D to begin the disassembly. The
disassembled listing will instantly be displayed on the screen.
To scroll up or down the listing press the up (4) or down (+)
arrows. The disassembly will not scroll above the hyte that
the edit cursor was on and the disassembly will not proceed
beyond the end of the sector. Scrolling will oceur in
increments of eight lines. To exit the disassembler, press the

ESC key. Pressing CTRL-P will dump the screen to a
printer if desired

5.6 MOVEMENT BETWEEN SECTORS

When in the command mode the cursor movement keys allow
you to move from one sector to the next. The right (+) and
left (+) arrow keys will move the sector cursor right and
left. This allows you to display any sector in that track. The
up (¢+) and down (+) keys moves the Edit display screen
between tracks. If the track is in memory that track will be
displayed, otherwise, that track will be skipped and the next
track present will be displayed. If the cursor happens to rest
upon & sector which Is not in memory the sector data window
will be blank. Sectors which have an x under them cannot
be viewed. This is because these sectors are inaccessable to a
normal 810 Disk Drive. As you move from sector to sector,
the track, sector, and composite numbers are automatically
updated.

55

5.9 TRANSFERRING SECTORS

Typing an H will copy the sector being displayed into a hold
buffer. Pressing the INSERT key will copy the buffer to the
sector the cursor is currently on. If a sector is being displayed
the new data will simply replace the old. If the sector was
originally empty the new data will simply be inserted. NOTE:
Al disk 1/0 uses the same buffer so the data held will be lost.

5.10 CREATING BAD SECTORS

When a sector is being displayed you can cause that sector to
be bad by pressing the B . When you do this, only a {lag is
changed so you must write the entire track in order for the
sectors to be written as bad. If there is no data in the sector
the sector will not be written. Thus that sector will not be
bad on the track. ONLY SECTORS ACTUALLY WRITTEN
WILL BE BAD (if they were selected to be bad). There are
seven types of bad sectors possible using this method (see
table 5.1). There are three flags that can flag a bad sectpr.
Any combination of these three flags can be set by pressing

B . The symbol under the sector number will cycle through
all combinations of bad sectors plus one of good sector. The
reason for having several types of bad sectors is that the three
flags mentioned above can each be read and examined on an
unmodified 810 Disk Drive. °

————

SYMBOL | BIT6 | BITS | BIT3
BIT 3 : CRC
r CLR SET CLR error bit.
A SET CLR CLR BIT 5 : Data
type flag #1.
T SET SET CLR
BIT 6 : Data
| CLR | cLR | SET type flag #2.
= CLR | SET SET
— SET CLR | seT
+ SET SET SET
(blank) CLR | CLR | CLR

Table 5.1. Types of Bad Sector Symbols

When you press the B key the symbols cycle through In the
order as shown above. Only the last entry is a good sector.

NOTE

These blt numbers refer to the status byte
returned when executing a STATUS COM-
MAND (not the 1/0 status returned after the
read).

$-8

The SE row contains the sector numbers which will be
placed in the headers of the track (refer to figure 5-2). The

LN row contains the number of bytes that will be in the
sector data and the FL row contnins the data fill byte that
will go into that particular sector. NOTE: Fill bytesof 1 to 8
must not be used as these bytes have special signficance to the
disk drive FDC circuit during formatting. Sector $03, for
example, will only contain $40 bytcs (64 decimal) and {f read
will return a bad status. Sector $05 will contain the normal
number of bytes, $80 (128 decimal} hut will be filled with all
$1A. There are two tabics of twclve sectors each in the
formatter screen layout page. Thev shouwld be considered
sequential (there wasn't enough room to {it 24 sectors on one
row!) The table below the sector tables contains the gap

length bytes.

Because a track is only so long only a limited number of bytes
can be placed on a track. After the § is the current number
of bytes the formatter has calculated your format will use on
the track. This number must remain between $BCO and $CBO
for your format to be reliable.

All editing changes in the formatter will remain intact until
you reboot the ARCHIVER/EDITOR diskette. No defaults are
stored back in this table. Therefore, you can go back and
forth between the edit page and the format page without loss
of the new format.

RERN NN AN RN NONNNE

5.11 CUSTOM FORMATTER

The Custom Formatter sllows you to create your own sector
layouts and format a range of tracks using your own layout.
You can create any sequence of sector numbers you desire.
The only restriction is that only sectors with numbers between
1 and 18 can be read.

To enter the Formatter type F . The Formatter has its own
screen layout which allows you to set the formatting
parameters (except for the range) In which you would like to
format. Thus, before entering the formatter, you should
select the range of tracks to format from the EDITOR.

.-

., i THE EDITOR V1.0 wedt .
‘ = Lz - pat pd AL Kt
LAY Gachs BaE 5hed i 0

o TR e o : :,.V‘-'
[sefelfoz]es[od]os e]a7]0s]0s[ei]02]0s)

io({so|so|so|sc|so]jsbisalsu}s
HEEHEHBEEEHEHE

I3 (0 53 3 CE2 3 5 O N 1 O P Py
HHEEEHAREAS
E T ERE L

Figure 5-2. Formatter Track Layout

-9

The commands used in the Formatter are:

Move cursor left one sector (or gap size

- 3
value).
+ t Move cursor right one sector (or gap size
value).
¢ : Move cursor up one parameter field (i.e.
FL - LN - SE - gap values-FL . .).
4+ : Move cursor down one parameter field.
DELETE : Delete sector cursor is on or if the cursor
is past the last sector, delete the last
sector.
INSERT : Insert a sector before the sector that the
eursor s on.
CLEAR : Clear entire format (start from scratch).
xy t Hex entry overwrites what is currently
dislayed.
ESC : Exit; go back to the Edit screen.
W 1 Format the range of tracks (R,y) using

the format created

-~

5.12 Address Changing

The address st which the sector berine may be changed by
pressing the L key. Answer the prompt by entering the new
address in hexadecimal. This address is used only as a
reference and does not physically relocate the buffer contents.

5.13 INSERTING CUSTOM FORMAT

Pressing the 1 key allows the insertion of custom formats

from the Formatter page into a rangc of tracks (Rxx,yy).

The old tracks (if any) will be replaced. No sector data will

transfer. To insert data in the new sectors, you must use the
INSERT keys.

5.14 MOVING TRACKS

Tracks can be moved (but not duplicatcd) by pressing the N
key. The track currently displayed will be renumbered to a
new track number that you enter. The track currently at the
destination spot will be deleted and the track you are on will
be deleted from its current place and be moved to the new
location.

The ST is the status of the scetor hender read.

accessed. Also, any A4
the TI and ST values.

This is becnuse the A4
for quality of information per scctor.
NOTE

Ti (time) value will only
read format mode.

The last sector’s
be correct on an AB8+

5.16 ENTER THE ARCHIVER

To enter the ARCHIVER froin the EDITOR you must type an

A . CAUTION: all dnta currcntly in the data buffers will be
How-

ever, the data will not be lost if you immediately return to the

lost as soon as the ARCHIVER command C is used.

EDITOR.

Anything

other than a zero means that the sector can not ever be
rend format mode will not return
mode
goes for quantity as far as scetors go, while the A6 modes

BB REREEERREEEE

v

5.15 TRACK MAPPER

Pressing an M is used for entering the Mapper page. This
function will allow you to examine the format of individual
tracks. The most significant function of this command is to
allow you to determine the gap size between successive
sectors.)

is the sector number that originates from the scctor
header. (Refer to figure 5-3.) The TR is the track nunber
as found in the sector header, and the LN is the sector
length byte. For more information on these values, refer to
section 6.3. The TI s the amount of time hetween that
sector and the succeeding sector in units of 2048 (decimnl)
microseconds. There are about 100 (decimal) units of time on
a track, so the sum of these numbers should be about 100.

The SE

IRRNE

[se[vi[e7[o4[v7]0d]07|aslaz]dd]d7]ud]7]

e

-m
IE23 () (22 3 22 (3) I S I I I Y

a Usjbsjas|bs|es|es
volce|eo|ot]|e0loe

tloslosjes|es]|esles
stivo|eo|oe|ee|ee]ee

==) ENTER TRACK NUMBER ==

Figure 5-3. Track Map Layout

5-13

CHAPTER 8
DISK FORMATTING THEORY

By far the most powerful feature of the CHIP over the Atnri
C ROM is its ability to create customn formats and
successfully write (and read) sectors of these formats. Ry no
means do we expect you to fully understand the peculinritics
of disk formatting and general 1/O with one reading.
Remember, it took a couple of years for software houses to
devise even the simplist of protection schemes, so don't expect
to learn it all in an hour. However, we feel that to usc the
ARCHIVER/EDITOR to its fullest, at least some basics should
be understood. In this chapter, the very basics will be
presented, and gradually the specifics of the track layout end

” protection schemes will be dealt with.

6.1 AN OVERVIEW

The Atari 810 Disk Drive is an intelligent drive which means it

m is just another computer, capable of reading and writing

diskettes and relaying the information to and {rom the main
computer. The CHIP is just a program much like the Atari 0s

m that adds a wide variety of functions to the 810 Disk Drive. A

description of the commands understood by the old ROM [of
and the operation of the SIO is given in the Atari OS manual <o
it will not be repeated here. For the remainder of this
chapter, only the workings of the disk drive and the CHIP will
be considered, so it !s assumed that you know the theory of
communication between the computer and the disk drive.

111

6.2 DSKETTE STRUCTURE

A diskette is composed of a thin mapnetie disk covered by an
outer rigid black cover. The outer cover (or jacket) has an
oval open area on both sides exposing the disk surface to the
drive read/write head. As the diskette spins about its central
hub while inside the drive, the read/write head hovers over the
jacket oval opening and reads the disk surface much like &8
cassette recorder would.

The diskette is electromagneticnlly divided into 40 tracks. A
track Is a ring about the center of the diskette. The disk
drive's head can be positioned preciselv over any one of the 40
tracks, thus data can be sequentially read in as the disk
surface spins underneath the head as in a cassette recorder.

The track data magnetic fields are converted into electric
pulses which are fed to the FDC (floppv disk controller). The
FDC is the interface between the rend/write heed and the

Srive’s rr}icroprocasor. The FDC is responsible for
ln?erprettmg and processing commands from the
microprocessor. The FDC performs all sector searches and is

an intermediary on all sector data transfers between the
microprocessor and the physical disk surface.

Because each track contains too much data that must be
handled for each revolution of the diskette a suhdivision of the
track is necessary. Thus, the teack is normally divided into 18
seguentia.l sectors of $80 (128) bvtes of data cach. Besides
being easier to deal with, error checking and relinbility are not
much of a problem. As you may be nwnare, all the protection
schemes deal with the sector in one form or another, so the
rest of this chapter will deal explicitly with the sector.

6.4 TRACK LAYOUT/FORMAT

Disk formatting is accomplished by the write track command.
Each byte for the entire track must be provided for proper
formatting including the gaps as well.

The FDC requests each byte in turn and places it directly onto
the surface of the diskette. However, there are exceptions to
the rule. If data bytes $F5 through $FE are fed to the FDC, it
recognizes these as special control bytes and take appropriate
action. The byte sequence is illustrated in figure 6-1.

Gap size restrictions:

GAP 1 : This is always 255 ($FF) bytes and may be over-
written by the last sector on the track. This is
to ensure that no garbage remains between the
last sector and the first.

GAP 2 1 (Post Index AM gap) This gap should be at least
one (1) byte.

GAP 3 : (PreID AM gap) This gap should be at least one
byte.

GAP 4 : (Post ID CRC gap) This gap must be $11 (17)
bytes in length. (See Read/Write sections.)

GAP5 1 (Post DATA CRC gap) This gap should be at

least one, however, in practice, it should be
over 9 bytes long. This is to protect the next
sector header {rom being overwritten.

-
-
-
-
)
-

{

?

SEERRERE

6.3 THE BASICS OF A SECTOR

A sector has two parts to it; the header and the data. Because
the track is circular, there is no way to distinguish the
peginning of a track from the middle, thus, a sector needs to
be able to identify itsell to the controller. This is the purpose
of the sector header. These sector headers are written during
formatting, so the sector can be identifled upon subsequent
reading and writing to and from the sector.

Figure 6-1 shows the typical 810 sector/track layout format

and the following paragraphs describe the various contents
that make up the sectors.

fo—— comPLET ucvon——o{

; LAST
asr| w laar| vara laar DATA

! l'"w’l ¢ l".w M 1l
— Nt

L—

FFFEFEE

L—MIA.

— ——

Tl e oo Jemnlammlm e [[:]:L[

11
TRACK RUMBEL
e 3 TRYTE CRC
e e o
(mOT US(O om rORa T asren
KAL) SRCTOR
SECTOR muvmE SRA SACTRA LLFEIN
art 013 ™ [%N

Figure 6-1. Sector/Track Format

8-3

6.5 THE READ COMMAND

When the processor issues the read command to the FNC, a
search for the sector header begins. The FDC reads the
headers of the sectors it finds and compares the sector number
and the track number to those given by the processor. [f the
test fails, the search continues. Next, the CRC is checked for
validity; if not correct, the search continues. If all is correct,
the FDC begins searching for the data AM. If found within 28
bytes, the sector is read byte by byte and is transferred to the
processor. Finally, the CRC is checked for validity at the end.
The CRC status error bit is set accordingly. Also, the type of

1 data AM byte will determine the status' of bits 5 and f of the

status register. If the sector is never found ie. ID fields don't
match, bit 4 of the status is set, and the processor (CHIP) will
reposition the head in hope that somehow the head had gotten
over the wrong track {grind!!), and try again.

! 6.6 THE WRITE COMMAND

1 This works identically to the read command except that once
NOTE: The write
requires that $11 (17) gap bytes be between the sector header
and the data. Also, the data AM byte's value depends upon the

last two bits of the write command byte. On three of the four
'‘bad'

the sector has been located, & write occurs.

possibilities, the processor will interpret the sector as
(see section 6.11).

.7 TIE CHIP'S LOGIC SEEKING READ/WRITE COMMANLDS

These are the read and
double sectors.
sequence it contai
syncronizes itself to the sequence,
described in section 6.5 and 6.6 will take place.
able to get the sector headers through a

in the sector header (track,...,CRC bytes).

write commands that are used for
The CHIP will first compare the sector
ns to what it finds on the diskette. When it
the write or read function
The CHIP is
read address

command {of the FDC) which returns the six bytes contained

6.8 READ FORMAT COMMANDS

Using the method described above, the sector sequence can be
fetched. On the A+ modes, the henders are continuously
read for slightly more than one revolution. After this, the
sector numbers are compared on the next revolution and the
first sequence is cropped to agree with what it finds the
second time through. The A- modes read for about one
revolution but no doubie check is made.

6.9 810 SPEED RESTRICTIONS

The disk drive's processor (and therefore the FDC) receives a
full sector of data every 1/18 of a disk revolution. This is
about .0115 second, however, the scrinl transfer between the
ecomputer and the disk drive is considernbly siower, {about .09
second). Now, since the diskette is turning at 288 RPM (or 4.8
rpms), if you do a little math, vou will (ind that only two
sectors can be read in one disk revolution. This is the concept
behind fast {ormats.

O LLLEEEELE :
§ ; o E !j
-

Above is the standard format uscd in the CUIP ns well as the
Atari ROM C. Notice that conscquetive numbercd sectors are
nine apart within the sequence and ten apart when crossing the
end of track gap (which is about half a sector in length). If
you are thinking ahead you may realize that even this format
can be improved upon.

6-6

The actual physical sectors would be as follows:

k, b, L d o L

You will notice that the two reads of sector 9 did not yield the
same result, thus this becones a valid protection scheme.
This is a rather new protection method (mid 1982), yet it is
simple to understand and to duplicate (with the CHIP), This
type of protection can ONLY be created with a drive
modification (which is exactly how they are created in the
first place).

This idea can easily be expanded upon to include triple or
quadrouple sectors. HOWEVER, the ability to consistantly and
reliably get the same results gets harder with the more
duplicate numbered sectors you have. Another appiication is
to create more than 18 sectors and number two with the same
number. Previously, this was difficult to grasp and realize the
feasibility of such a scheme, however, now with the EDITOR,
you may create as many as 24 sectors on a track, but because
there is only so much room, many sectors must be cut short
(and thus be bad sectors). A word of warning: the data in
short sectors is not always reliable and timing between sectors
is not the same. Timing becomes critical in importance and
slight variations in speed may have adverse effects on
protectiona.

J

!

»

1

LR ECCONRRRREEE

-

! ! _.! -! ! .! .!k

E[HBEEEEEEEEEEEE

In the above format, the sequential sectors are nine apart
except for the end of track gap, in which case they are eight
apart. Here, that gap is large enough such that the eighth can
just be read before the head passes it by (or rather it passes
the head by). This format is the fastest format possible on the

810 disk.

6.10 DOUBLE SECTORS

Now suppose that two sectors had the same number. If you
just randomly went and read that numbered sector, you could
get two different sets of data. This process can be preciscly
controlied by first reading the sector nine (9) places before the
one you really wish to read, and then read the one you want.

000

0000
132422

00000000001
5465768798292

abcdefghijk!l mnopagqr

The above sector sequence contains 1B unique sectors but 8
numbers are duplicated. (This is actually a format used in the
protection of one software house.) Now suppose you read
sectors in the following order:

12, 4, 9, 5 3, 9.

6-7

6.11 BAD SECTORS

The ability to write bad sectors has been around for quite &
while now. It was the first type of true protection, but s now
becoming not so important. It is possible to create two types
of bad sectors with a standard 810 Disk Drive. The fiest is &
CRC error and the second s a missing sector. The CRC error
pad sectors were created by one of two methods; the first
being slowing down the drive, and the second being the tape
method. The missing sector was created by writing to the
preceeding sector at a high RPM, thus causing the end of the
first sector to overwrite the header of the next.

Now, creating bad sectors is an easy and valuable function of
the CHIP. To ereate a missing sector, simply format the track
without that sector number. To create CRC bad sectors,
special operations must be performed by the CHIP While
writing the sector. These functions are all uu_tomatlc and easy
using the ARCHIVER/EDITOR, however, & briel description of
each type will be given below.

6.11.1 CRC Error Sectors

The CRC bytes are a sophistientned checksum of the
preceeding data in a sector. If the<e bytes do not agree with
the data read from the sector, a CRC error will oceur. This
type of bad sector is simply ecreated by stopping the write
process in midstream, thereby keeping the old CRC vet
allowing new data. The status CRC error bit (bit 3 of the
status) will reflect the error after a read. The CHIP also
carries this process a step further. You ecan specify the
number of bytes actually written when creating a bad sector
by putting the number of bytes to be written in the last byte
of the sector data. After the last byte is written, the process
stops, and on subsequent reads of that sector, the status will
reflect a CRC error (on the B- mode only).

6.11.2° Data Type Flags

Another way to create perfectlv good sectors with a bad
status is by setting data type flags in the write (FDC write)
command. When this is done, the data AM mark bits 0 and 1
are changed to reflect the type of data. Although these
sectors are perfectly good, the CHIP (nnd the ROM C) will
take these sectors as being bad and return an error. Bits 5 and
6 of the status will reflect the results of the read of these
types of sectors. With two bits, four combinations can be
made; only one of which is a perfectly good sector.

In all there are nine types of scctors: Only one of which is
good. The missing sector is another type and the remaining
seven are created by combinations of the data type flags and
the CRC error bit.

SRR RUREET,

6-10
BIT READ WRITE NOTES
7 [Not ready Not ready always CLR
8 [Data type Write proteet
S |Data type (a) Write (ault
4 |Record not found Record not found (sector missing)
3 |CRC error CRC error
2]Lost data Lost data shouidn't happen
1 DRQ DRQ always CLR
0 |BUSY BUSY always CLR
(a) : canbe reliably used.

X

NOTE: All bits are returned in low-true form (i.e., a good sector
returns a $FF status).

Figure 6-2. Hardware Status Bits

1 3.0

6.12 STATUS

The bits referred to as being status bits 36 are not
automatically had after reading a sector. The meaning of the
SIO status is as follows:

$90 : A bad sector of ANY type was encountered upon
the read.

$8A : Timeout. The sector was missing and the drive did
not respond {n time.

$8B : Device NAK. related to above, If the drive doesn't
respond in time, the SIO tries again, however.

$8C Serial bus. Related to above.

s

$01 : A good read/write

The $90 should usually be returned on bad sectors, however,
the timeout value of the disk interface routine is borderline
thus causing the errors $8A-$8C. A $90 can be insured by
setting the timeout value higher and using the SIO instead.

The status bits of the FDC are received by executing an S
(status) command after reading the sector in question. The
3 command will return 4 bytes of which only two are really
meaningful and only the second Is described here. For
reference to the others, see chapter 5 (Diskette Handier
Commands) of the Atari OS manual After a read, the
hardware status bits are reflected as in figure 8-2.

CHAPTER 7
SPECIAL CHIP FEATURES

This chapter deals strictly with the CHIP itself and illustrates
several features of the CHIP which are not fully supported in
the ARCHIVER/EDITOR program.

7.1 THE BOOT SECTOR

When the 810 Disk Drive is turned on with the CHIP
Modification installed, the head will first align itself on track
0, and then will immediately return to track $27 and rend
sector $2DO (if present). The CHIP checks the last two bytes
of the sector and compares them to $4A, $25 (or J% in ASCIN.
If the last two bytes are a $4A and $25 then the program
control will be transferred to the sector data for execution.
On the ARCHIVER/EDITOR diskette, the boot sector will
store a $80 in $195 which will open the drive. It also stores a
$02 in $191 which will make the drive shut off one second
after it was last accessed. A return is then executed which
brings the CHIP's program back to its warm entry.

7.2 MOTOR OFF DELAY

There are two ways to change the motor turn off delay when
using the CHIP. The first is to boot a boot sector when you
turn on the drive. The other method is to use a built in
command which does this automatically. Appendix D is a
basic program which first opens the CHIP and then adjusts its
motor shutdown delay time.

7.3 LOCKING FORMAT/WRITE/OPEN

The CHIP contains a variable within its memory which allows
the opening of the CHIP and of various write type comands.
This feature will probably NIVLER NEED TO HBE USEIM!
However, just in case, location $19D) contains the nceded
{nformation that will TOTALLY lock the CHIP {rom outside
mischief. The modifying of $19D would normally be done in
the boot sector, which you would need to write.

7.4 MACHINE LANGUAGE INTERFACE

The CHIP can allow user programs to he transferred to and
executed within the data buffer inside of the 810 Disk Drive.
This allows for even more flexihility to deal with unforeseen
situations, thus the CHIP truly is expandable. For more
information on the inner workings of the CHIP, please contact
Spartan Software of MN Inc.

7.5 TRACING

The CHIP also supports two types aof tracing. One of which
keeps track of how many times a particular track is accessed.
The other type keeps a listing of the sector numbers read,
given some starting sector. These features will be supported
by an ARCHIVER 2.0 when releused.

7-2

8.2 20 OR MORE SECTORS

The ARCHIVER can only handle rending and writing a
maximum of 19 sectors, however, the EDITOR ean handle 24.
If a diskette does contain more than 20 scetors, the custom
formatter must be used and some sectors must be shortened.
Notice that 20 full sectors can be written if you set ail gaps
(except the POST ID CRC) to onc (1). However, if more than
20 sectors are being used, you must do some intelligent
guessing on which sectors are shortened and go {rom thcre.
Once you made the format, writing the sectors is easy. The
sector sequences must match and the formatting flag should
be turned OFF. Also the bad sector flag must be turned to a
B- and CRC error bad sector symhols must be created under
the sector number (the B command, in the EDITOR of
course). Next the sector data must be modified so that the
last byte in the bad sectors is the actual number of bytes to be
written to the sector. Finally, you write the track and hope it
works, otherwise try again At the time of this writing, NO
software company had ever uscd 200 or more sectors in &
format (nor did they have the ability to).

8.3 GARBAGE TRACKS

Occasionally, you may run into tracks that return a read
format error. (This has only happenrd once to my knowledge.)
This is because the tracks' are badlv garhled and the second
pass does not return the same results as the first pass. This
will only happen on unformatted tracks, in which cnse random
numbers appear as the sector numbers. To solve this problem,
simply switch toa A6- read [ormat mode.

S REE e e RN PR R EEEEECE R

CHAPTER 8
USEFUL HINTS

This chapter will deal with tracks and useful things you may do
using your ARCHIVER/EDITOR program. This chnpter is
specifically designed to help the user backup a program that
wouldn't work when the defaults were used.

8.1 CYCLIC FORMATS

Consider the following {ormula:

-
~ o
wo
O
wo
o
~o
oo
wo
—C
(S =)
wo
-
wo
n o
~o
@
©wo

If you write out data using this format you may find that vou
get a verify error, why? The answer is really quite straight
forward. Since all the sectors are doubles, the logic seeking
commands will be used, but now how does the logic seeking
command locate the sector? It can't because it has no way of
distinguishing the first half from the second. The solution to
this problem is to tyrn the logic seeking commands OFF (L-)
und the compaction OFF (C-). Also, you should turn the
rerify off (V-). This will cause each sector to be read in
correctly because two sectors will be {etched per revolution
an | the sectors will automatically be written correctly.

8-1

8.4 GETTING RID OF LOUD SECTORS

Many software companies insist on checking missing sectors,
thus the loud noises as the program boots. Hecause most
software companies do not check the status after such a rend,
you may replace their format with a new one that contpms the
required sectors and the ones that made the noise. When the
new format has been created, you must insert bad sectors.
The easiest way to do this Is to position over the new sector
and press the B (first you must get data into that sector).
When you have selected all sectors that need to be bad, then
weite the sectors out, and usually the program will work.

Appendix B ARCHIVER Command Summary

c — Copy
START : start reading/writing
OPTION : halt
E - Enter EDITOR
N - Number of copies
xy : entry (HEX)
o - Open the CHIP
wxyz,d : wxyz is the code, d is the drive
P - Parameters
- : cursor left
- 1 eursor right
RET ¢ select parameter
ESC ¢ anytime will abort

Appendix C EDITOR Command Summary (Continued)

—

. L -~ Address change
f
M - Enter mapper
1 xy ¢ track number
’ N -— Renumber current track

: Xy t new number

o - Open CHIP
wxyz, d : CHIP code=wxyz, drive = d
P - Parameter
- t cursor right
- : cursor left
RET : select parameter
R - Read tracks
OPTION : halt
START : begin/continue
w - Write tracks
OPTION : halt
START : begin/continue
CLR - Delete track
DEL - Delete scctor
INS — Insert sector
ESC : return to command mode

Appendix C EDITOR Command Summary

ne

- 1

- ARCHIVER
- Bad sector select
- Disassemble

¢+ seroll up

: scroll down
- Enter edit mode
4 : cursor up one line
+ ¢ cursor down one line
- : ecursor left
* : cursor right
DEL : delete byte cursor on
INS : insert at cursor
CLR : fill
H + home cursor
RET : beginning of line
- Formatter
+ cursor up’
+ t cursor down
- ¢ cursor right
- ¢ cursor left
DEL : delete sector
INS : insert sector
CLR : delete all sectors
w : write format
- Hold sector

- Insert format

Appendix D CHANGING DRIVE MOTOR SHUTDOWN DELAY

RENENEE NN NN NN RN NN NRRNENRNEEDR

19 0IM as()

207 AT DRIVE 00 YOU WT 10 0PEN";

3 INPUT DRIVE:IF DRIVECI OR DRIVE)S THEN 29

407 "WAT 1S THAT DRIVE’S CNIP 10 CODE®;

SO INPUT A8:1F LEN(AS) (4 THEN 7 *PLEASE USE ¢ DIGITS.":GOTO 40
6 T=0:F08 Ani TO 410mASCIABIA,A))-48:Be0-((8)9)47) 1 CxCo1448:NDXT A
74 POKE 740,49

0 POKE 749, DRIVE

0 PORE 770,79

100 POKE 771,

110 POXE 774,19

120 CN1zINT(C/256) :CLORC-CHI 0236

138 POXE 770.CL0:POKE 779, LN}

140 RESTORE :FOR Ax] T0 41READ B:A8(A,AJCHRS (D) :NEXT A

130 X=USR(AOR(WS))

160 1F PEEXCTIION THEN 9 YERROR, TRY AGAIN." :60T0 20

170 7 *THE CNIP \AS OPENED SUCCESSFWLY.

70 POKE 08 - —

200 908E 171 0

260 7 1> "NJ WY INITS OF 172 SECONDS DO YOU Wl 10 SET THE DRIVE
SHITOBN 10°:

270 INPUT TINE:IF TRECI OR TINEIZSS THEN 264

0 POXE 770, TIE

290 POKE 1798

300 X=USR(ADR(AS))

30 IF PEEX(2213()1 THEN 7 *THE CHIP 1S NOT OPEN FOR CHANGE.
PLEASE OPEM IT AND TRY AGAIN.* :RIN

320 7 12 THE DRIVE WAS SUCCESSFULLY MODIF IED.*

330 0aTA 104,764,892

n READ FORMAT ERROR

APPENDIX E: ERROR MESSAGES

FORMAT ERROR

READ/WRITE ERROR (STD)

READ/WRITE ERROR (POS)

TOO MANY SECTORS

After formatting a track,
the verify found the track
to be bad. Try again, and
if it persists, the diskette
is likely bad.

The CIIIP was insuceessfu}
at getting the sector
sequence from the disk-
ette. If you suspcet more
than 21 =sectors, use &
A4 mode., otherwise use
a Ax- mode,

sector could not be read
(or written). This is a
standard read/write com-
mand and should never
happen, unle<s you have an
unreliable drive.

A logic seeking read/write
command (sector) (failed.
Could be a format mis-
match problem or an error
as in above.

More than 25 sectors was
encountered on the read
format. Trv piecing the
track together by using
A6- read mode repeat-
edly.

APPENDIX E: ERROR MESSAGES (Continued)

INPUT ERROR

VERIFY ERROR

OPENING ERROR

MEMORY FULL

Invalid entry, tev again, or
consult appropriate sece-
tions regnrding the partic—
ular function you tried.

The verily pass failed to
yield the same results Aas
the dnta written. Retry
the write process.

You ecntered the wrong
code or drive of your CIIP
when using the O com-
mand. Retry the open.

No more room to store the
dnta on reads, inserts, etr.
Write some - of what you
hnve buek out to the disk
and delete what is not
needed.

IR REBRRPRRREREEEE,

{

