Monarch Data Systems ,

!
: ;
!
_ I
Monarch Data Systems . J 't i“ R
P.0. Box 207, Cochituate, Massachusetts 1778 . ABASIC Compiler for Atari® Computers
g ‘ - Reference Manual

 ——— ———— ——r—— ——

A BASIC Cowpiler
for Acari Couwputer Systems

Version 1.0

Hoparch Dats Systems
#.0. Box 207, Cochituate, Massuchusetcs 01778

Program, documentation and packaging
Copyrighe (C) 1982, 1983 Honaurch Data Systeas
B All rights rescrved

Unauthorizec duplication prohibited

"Atari" {s a registered tradewsck of Atari, luc.

Bection 1

Bec tlc»_n 2
Section 3

Bection 4

2

Section 5

Section 6

S8ection 7

B LA it §

Contents

1 Hou Does 1t Work?

2 System Requirements

3 Distributing Your Compiled Boftware
.4 Contents Of This Package

S Purpose Of This Manual

6 References

Making A Working Copy

Compiling A BASIC Program

BASIC Prograwming Cons{derations

. Integer Arithmetic

Unsupported Functions

Simulating Floating-Point Numbers
Simulating The BND() Function
Simulating Trigonometric Functions
Limited Size Of Constants

Order Of Operations

Unsupported Arithmetic Operntorl
Unsupported BASIC Statementa
Break Key Handling

1 Subroutines And FOR/NEXT Loops
4.12 ' Arrays And Stringe

4.13 Timing Loops

(D\JO\V!O'LJN

%
4
4
4
4
4.
4
4
4
4.
4.

r-i-»a
o

lAdvanced Usage
5.1 Changing The Load Address

5.2 CGenerating Relocatable Code

Technical Notes

6.1 Error Checking
6.2 Lowv Memory Usage
6.3 MHemory Allocation

rror Handlin

1 Compilation Errors

2 Illegal Statement Hessages
3 1llegal Function Messages
4

Run-Time Errors And Program Termipation

NP ww

(V]

o

17
17
17
17

18

.18

19
19
19

— .

‘Faster executlon speed

Section |

Introduct\un

ABC is a software Jevelopment tool designed to improve the
performance of your Atari BASIC programs. 1t lets you enjoy
the high speed and memory efficiency of compiled languages like
FORTH and C, without leaving the fawiliar environment of your
BASIC curtridge.

1.1 How Does It Work?

ABC stands for “A Basic Compiler." A compiler is a program
that sccepts source code (your BASIC program) and translates it
into another form, in this case a compact pseudo-code or
P-code. Once compiled thiu P-code can be executed by another
Both a couwpiler and an

To coumpile a BASIC program with ABC, you must ficst SAVE the
BASIC program on a disk. The ABC compiler veads your BASIC
program off the disk and translates it into P-code, one line at
a time. Then it perwanently links a copy of the ABC
interpreter to the P-code, and saves the ‘compiled program as a
binary disk file which can be loaded and executed like a
machine-language program. The BASIC source file is unaffected.

The benefits of uaing ABC include:

ABC-compilad programs run from four to

twelve times faster thnn the orxglnal BASIC version, depending
on the source code. This mukes it possible to use Atari BASIC

for professional gawe development and other speed~critical
applications.

Creater memory efficiency. The P-code produced by ABC is
conuideragiy wore compact than tokentzed BASIC. HNuwmbers are
stored in three bytes instead of the six required by the Atari
floating~point routines. Additionally, the ABC interpreter
requires only 4K of memory, about half that used by the BASIC
cartridge. The result is a compiled progrsm that requires much
less memory overhead than the original BASIC version,

Compiled prugrams can be run
vxthouf—fﬁe BASIC curtridge! This allows sccess to the upper
8K of wemory in a 48K systew, which is normally de-selected by
the cartcidge.

Non—cartrlgge envirowsent,

-—

Source code protection. ABC.P-code is a compressed and encoded
version of the original source -program which is very difficult
to understand without detailed knowledge of the ABC run-time
interpreter. Por this reason, a BASIC program processed by ABC
cannot be listed or disassembled and is extremely hard to
“break."

1.2 System Requirements

To use the ABC software, your Atari computer system must
include a minimum of 40K memory and st least one disk drive.
You must also have the Atari Disk Operating System, DOS 2.0S,
to create your working copy of the ABC disk.

The memory required to run a compiled program depends on the
size of the original BASIC source code, and may be little as

16K bytes,

1.3 Distributing Your Compiled Software

No royalties or licensing fees are required to distribute
software processed by ABC. However, we do requlre that your
softuare bears the following notice:

“Produced using copyrighted software products of Monarch Data
Systems, Cochituate, MA 01778."

Display the notice prominently on either the program title
screen or in the documentation provided with the product.
Pailure to reproduce this notice may constitute a copyright
infringement.

1.4 Contents Of This Package
Your ABC package should contain:

-~ A disk containing the ABC compiler, run-time interpreter
and & relocation utility;

-— A label for your working copy of the ABC disk;

— This reference msnual, and;

==~ A user registration form.

Plesse take the time to fill out and return the registration
form. This will enable us to supply you with revisions and
enhancements to the ABC system, and to keep you informed of new
products =g they become available,

y-- -

S

- ———

1.5 Purpose Of This Manual .

The ABC Reference Hanual is intended to shouw you how to operate
your ABC software. You should already be familiar with Atari
BASIC prograwaing and with Atari DOS 2.0S.

1.6 References

The follouing refereace documents are published by Atari.

Atari BASIC Reference Manual (Ccol14722)
Atnrt Disk Operating System Il Reference Manual (0016347)
Atari Technical Reference Notes (CO16555)

Section 2

Making A Working Copy

You will get a "BOOT ERROR" messuge if you try to boot your
original ABC disk. The reason i3 that the originat disk does
not include a copy of DOS 2.0$. To obtzia an operationul
version of ABC, you wust first wmake a “working copy" of the
original disk and write new DOS files on it so it will booc.

Never remove the write-protect tab from your original ABC
disk. This will lelp prevent accidental dawage to the software,

Use the following procedure to make a working copy of ABC:

a. Remove all cartridges from your computer.

b. Boot a disk containing Atari DOS 2.05. When the menu
appears, insert s blank disk into your drive and use option
"“1'" to format the disk.

c. Insecrt your original ABC disk and select DOS option "J" to
copy it onto the freshly formatted disk. When the
duplication ia completed, remove the original ABC disk and
store it in a safe place.

d. Select DOS option "H' to write the Ataci DOS files ounto
your working copy of ABC. Then remove the copy and put a
write-protect tab on it to avoid accidents.

e. Your woruing copy of ABC must bear a Monarch Data Systems
copyright notice. A pre-printed diak label with the
appropriate notice is iacluded in your ABC package.

We chose not to copy-protect your original ABC disk so that you
would Ye able to back it up conveniently. 1Ia return for our
condideration, we ask you not to duplicate or distribucte the
ABC software in any form except for the sole purpose of
creating a single working copy for your personal use. Any
other duplication or distribution of the ABC software is a
violation of Federal copyright lawe.

Section 1
Compiling A BASIC Program

A compiled program can only be as good as the original BASIC
source. Lf your BASIC code has bugs in it, ABC will faithfully
translate the bugs into P~code, resulting in incorrect
operation at best and a total system crash at worst, Then
you'll have to return to your BASIC source, track down the bugs
and re-compile. Alwvays make sure your BASIC program is working
properly before you try to compile it.

Once you're satisfied with your source code, SAVE Lt onto a
disk using a BASIC command in the form:..

SAVE "D1:PROCRAM.BAS"

Naturally, you can specify a different drive number if you
want, with any legal file name or extender. The ".BAS"
extender {s useful because it helps you tell the BASIC and
compiled versions of your programs apart.

The ABC compiler is supplied as an AUTORUN.SYS file that will

execute whenever your working copy is booted on Drive #1. Use

the following procedure to compile a SAVEd Atari BASIC program:

a. Remove all cartridges from your computer. Turn on Drive #1
and wait for the “BUSY" light to gp out.

b, Insert your ABC working disk into Drive #1 and turn on the
computer,

€. The ABC title screen and copyright notice will appear on
your TV set or monitor, Approximately one second later,
the system will begin reading the ABC run-time interpreter
into-memory.

d. When the interpreter is loaded, the program will ask you to
remove the ABC disk s.d ineert the disk that contains your
SAVED Atari BASIC program, :

Y o—— b

-

ABC will next request the name of your BASIC source progran
(the one you are compiling). Respond with a drive
specifier (Dls, D2:, etc.) and the full file nane,
including any extensions, A defsult drive specifier of
"D1:" and a ".BAS" extension will be provided if they are
aot supplied by you. 1f your f[ilename has no extender,
include a trailing period ("PROCRAM.") to prevear ABC from
trying to add the ".BAS" extender.

You will now be aslced to specify the name of the
destination file. This file will eventually becowe the
coapiled version of your BASIC prograwm. Again respoad with
a drive specifer and a full file name, The defaults are
“D1:" with a “.CMP" extender.

ABC will inmediately open & new disk file with the naume you
selected. It will then write a copy of the run-time
interpreter into the new file. A temporary "scratch pad"
file ia also created on Drive #) for ABC's own use,

(NOTE: 1In single-drive systews, the destination file is
always written on the dame disk as the source file. Make
sure the disk is not write-protected or you will get an
error message.)

The compiler now begins to scan your original BASIC
program. First, it displays the number of variables
(sywbols) used in your program, followed by the total
nuaber of program lines. Using this information, the
compiler proceeds to convert cach BASIC line into P-code.
The progress of the compiler is indicated by displaying
every 25th line nuwber of the BASIC program, with
intermediate lines represented by a single dot.

After a successful cowpilation, ABC will display a
"Compilation Cowpleted" wmessage. You will then be offered
a choice via the console switches of whether to re-~run the
compiler (START), reboot the system (OPTION) or return to
DOS (SELECT). To run the propram you just compiled, return
to DOS by presasing the SELECT key and use DOS option "L to
load the deatination file, which will begin executing
automatically.

. Section 4
BASIC Programming Considerations

To achieve the high speed and efficiency of the ABC system, it
was necesaary to place a few limitations on the Atari BASIC
code that can be compiled. Most programmers will find that
these "limitations” aren’'t very restricting at sll — in fact,
they may actually help to improve your programs by making you
explore alternative methods of problem-solving.

4,1 1Integer Arithmetic

Each constant and variable in an Atari BASIC program is stored
in floating-point format, using six bytes of binary-coded
decimal, Whenever you RUN a BASIC program, these numbers must
be translated back and forth from floating-point to "straight”
binary so that they can be used by the Atari operating system
ROM. This constant translatiag and the general "lazincss" of
floating-point operations are the main reasons for the
notoriously slow speed of Atari BASIC.

ABC avoids the speed limitations of floating-point by using
only integer (whole number) arithmetic. Values are stored as
three bytes of "straight" binary, with a usable range of
apprcximately -8 million to +8 million.

Most Atari programs do not need floating point arithmetic.
Games, graphics and systems software rarely employ fractions or
complex mathematical functions. As a result, you may find that
many of your favorite BASIC programs can be compiled with
little or.no alteration. And because of ABC's wide usable
number range, it's posaible to simulate almost any
floating-point function using simple integer operators.

4.2 Unsupported Functions

Because ABC does not employ floating-point math, it will not
accept a BASIC program that contains any of the following
functions:

ATN CLOG ‘cos EXP LOG
RND SIN SQR

o

4.3 Siwmulating Floating-Point Nuumbers

You can partially cowpensate for ABC's lack of floating-point
by scaling all of your interwmediate results. For example, if
you multiply & number by 100 before performing a division, you
will obtain two significant digits after the "imagioary" -
decimal poiant in your answver.

Suppose you need to divide 7 by 2, with an accuracy of two
significant digits. 1In regular Atari BASIC, this would be
coded as:

ANSWER = 7/2 (evaluates to 3.50)

In a BASIC program intended for compilation, you could use:
ANSWER = INT((7*%100)/2)

which evaluates to 350 in both Atari and ABC-coampiled BASIC.

This method is not intended as a substitute for the convenience
of sutomatic floating-point. But it should satisfy tae limited
need for fractiona in the majority of games and systeuws
programs,

4.4 Siwmulating The RND() Function

At first it may not seewm obvious why RND() is included on the
list of unsupported functions. In Atari BASIC, RND() returns a
value that is less than one and greater than or equal to rero.
This value cannot be represented by a whole number, aad
therefore requires floating-point. So if you need a randon
nuuber in your ABC program, you'll have to find & way to obtain
it without using RND(). :

Fortunately, the hardware provides a simple way to simulate the
RHD() functioa. The Atari operating aystem is constantly
gtoring a new randow integer between 0 and 255 into memory
location 53770. Almost any random value can be obtained by
PEEKing this location and scaling the reaulc appropriately.

To illustrate the technique, let's assign the memory address
53270 to the variable RANDOM:

RANDOM = 53770

Suppose your latest computer game needs a vandom value from 0
to 9, inclusive. You could obtain it with the following
expressiont

VALUE = INT(PEEK(RANDOM)*10/256)

To obtain a value from 0 to 99 you could use:

VALUE = INT(PEEK(RANDOM)*100/256)

In the event that you want a random value greater tﬁan 255, you
will have to break up the number into groups of one or Cwo
decimal digits. 1f, for instance, you need a value between 0
and 999, you could get the "hundreds” digit with:

HUNDS = IQT(QEEK(RANDOH)*lolzsé)

Now get the tens and ones digits togetherx

OTHERS = INT(PEEK(RANDOH)*100/256)

Combine the results:

VALUE *= HUNDS*100+OTHERS

and th; variable VALUE will contain a random number between 0

and 999.

4.5 Simulating Trigonometric Punctions

The asimplest way to simulate an Atari BASIC trig function is to
'preplre a look-up table. You can either enter the table values
in a DATA statement, use integer approximations to calculate
the values st run-time, or use Atari BASIC to compute the
values once and £111 an array with the results.

The essential trick is to convert each table element to & whole

number by scaling it by an appropriate factor. 1f you need
sccuracy to two significant digits, you would multiply by 190;
for three-digit accuracy, 1000, etc. Using the SIN() function
as an example: :

VALUE = INT(1000*SIN(X))

Then SIN(0) becomes 0, SIN(45) becomes 707 (norwally 0.707) and
S§IN(90) becomes 1000 (normally 1).

-10_

Now, suppose you have prepared tablees of scaled SIN and COS
values in srrays S() and C(), respectively, and you want to
draw a circle of radius R at center point X and Y. The
folloving instructions will accowplish this:

100 FOR I = 0 TO 359 .
110 PLOT X+R*S(1)/1000,Y+R*C(I)/1000
120 HEXT 1

To generute & trig table at run—time you can make use of the
trigonowmetric identitiess

sin(a+b) = sin(a)cos(b)+sin(b)cos(a)

caa(a+b) = cos(a)cos(b)-sin(a)sin(b)

By selecting the angle b as a constant and looking up its sime
and cosine, you caun iterate theough all the angles by the
increment of b and fill in en arcay with sppropriately scaled
values.

4.6 Limited Size Of Constants

< Although the range of variables that can be handled ABC exceeds

16 million, it cannot compile a BASIC program that contains a
constant larger then 65,535,

The blame again lies in the operating system. The Atari ROM
routines that convert binary-coded decimal to “straight"” binary
only support numbers in the raage from 0 to 65,333.

It's very easy to get around this limitation. As an example,
suppose your program uses a variable BICNUM with & value of
250,000. 1In regular BASIC, you would assign this value with
the expression:

BIGNUM = 250000

ABC would disapprove of all thouse zerces. But the expresaion:

BLCHUM = 25041000

yiclds exactly the sawe result without waking ABC unhappy.

-11-

Don't forget that the numbers in a DATA statement are not
regarded as constants. So you .can aleo use the expressious:

100 READ BIGNUM
110 DATA 250000

and still satisfy both BASIC and ABC.

4.7 Order Of Operations

ABC handles division operations differently than Atari BASIC.
Consider the following example (constants are used as s
convenience):

X = INT(S5/3*2)

The BASIC cartridge would first divide 5 by 3 (yielding a
result of 1.66), multiply by 2 (with a result of 3.32) and cthen
apply the INT function to obtain a final value of 3. But
because the ABC interpreter deals only with whole numbers, it
treats all division operations as an implicit INT(x/y)
function. This means that ABC would interpret the above
expression as: .

X = INT(INT(S5/3)%2)
which evaluates to 2 instead of 31

To make the above example work in both standard and compiled
BASIC, all that is aceded is a simple inversion of terms:

X = INT(5+%2/3)

This technique yields the desired result (3) in either case.

pivision {s the only ABC operation that does not conform to
Atari BASIC. Multiplication, addition aand subtraction are

performed in the normal manner. *

4.8 Unsupported Arithmetic Operators

Only one arithmetic operator is aot supported by the ABC

compiler:t the exponentiation operator "A " This operation is -

easily simulated (with greater speed) by using sequential
aultiplicscions.

-12~

‘e

4.9 Unsupported BASIC Statements

Oace an Atari BASIC program has been trunslated into P-Code, it
caanot be accessed by the BASIC cartridge. For this reason,
compiled prograws wust not try to use the loading, waving and
editing functions supported by the cartridge. 1n addition,
because ABC does not employ floating-point math, the DEG and
RAD statements have uo meaning to the interpreter.

ABC will not compile a BASIC prograw that contains any of the
following statementa:

BYE CLOAD CONT CSAVE DEC
DOS ENTER LIST LOAD LPRINT
HEW RAD RUN , SAVE

4,10 Breask Key Handling

When you hit the BREAK key during the execution of & normal
Atari BASIC program, the program STOPs at the current line
nuwber aud returns Lo the cartridge for the READY prompt.

A compiled program has no cartridge to return to, so hitting
the BREAK key does not stop the program unless the key was
struck during an 1/0 operation. This forces an Ecror #128
(Break Key Abort) which, unless TRAPped, causes the program to
terminate,

You can avoid problems with the BREAK key by disabling it with
appropriate POKEs. Refer ro Che Atari Technical Reference

Notes for more inforwmation on controlling the BREAK key.

4.11 Subroutines And FOR/NEXT Loops

Whea using ABC, it'e important to keep track of hou you exit

subroutines and FOR/NEXT loops. In the following exumple:

100 FOR I = 1 TO 100

110 IF 1 = S0 THEN COTO 130
120 NEXT 1

130 PRINT "Loop aborted."

. the lack of a POP sratewent would probably confuse ABC when the

loop index reached 50. The correct method iss

-13-

110 IF I = 30 THEN POP : GOTO 130

This is good programming practice aven in a non-ABC environment.

The ABC interpreter is designed to handle no more than 64
outstanding GOSUBs and/or FOR/NEXT loops simultaneously. 1If
you manage to write a BASIC program that requires greater stack
depth than this, congratulations:!

4.12 Arrays And Strings

ABC does not use the same memory allocation method for arrays
and strings as Atari BASIC. Consequently, programs that take
advantage of BASIC's array and atring allocation structure will
not operate correctly when compiled. The ADR() function will,
however,: always return correct values.

Consult Section 6.3 of this wanual for more information en
ABC's memory allocation scheme for arraya and strings.

4.13 Timing Loops

BASIC programmers often use "do-nothing" FPOR/NEXT loops to
cbtain time delays., These usually appear in the form:

100 FOR DELAY = 1 T0 100
-110 NEXT DELAY

You will be in for a shock if you compile and run the above
instructions. ABC will execute the loop so rapidly that the
delay vill seem to disappearl

The best way to write a controllable time delay for ABC is to
use one of the Atari's built-in hardware timers. The operating
system changes the value of memory location 20 every 1/60th of
2 second. By PEEKing this location in a FOR/NEXT loop, you can
obtain precise time delays that will Vork correctly in both the
BASIC and compiled versions of your software.

_1[‘.. '

The following time-delay subroutine can be appended to any
BASIC program:

1000 REM * ABC TIME DELAY SUBROUTINE

1010 REM * Sec the value of variable JIFFIES equal to
1020 REM * the desired time delay in 60ths of a second.
1030 REM * Then perform a GOSUB 1000 to obtain delay.
1040 FOR DELAY = 1 TO JIFFIES :
1050 TICK = PEEK(20)

1060 IF TICK = PEEK(20) THEN 1060

1070 NEXT DELAY

1080 RETURN

To get a 5-second time delay with this method, you could write:

100 REM * This is the body of your prograum.
110 JIFFLES = 60%5 : GOSuB 1000
120 REM * You just waited 5 seconds.

Section 5
Advanced Usage

The following information is included for advanced programmers
who may want to alter the default properties of the ABC
compiler. Software authors who wish to distcribute their
compiled programs should also read this section,

5.1 Changing The Load Address

The ABC compiler norumally produces code that is loaded at
memory address §$2600 (hex notation). This default address 1is
derived from the run-time interpreter that is automatically
loaded by the compiler (see Section 3). You can obtain an
alternstive load addresy by choosing a different run-time
interpreter when the ABC cowpiler is run.

Tuwediacely aftec the ABC copyright message is displsyed, the
coupiler scans the console suitchea for one second. 1€ you
press the OPTION key during this period, ABC will not proceed
to load the $2600 interpreter. Instead, it will ask you for
the nawe of one of the other interpreters included on your ABC
disk. Respond with WINTERP.Xnn' where un is the high byte of
the load address in hex. For exumple, if you wanted a load
address of $1FU0, answer the prowpt with “INTERP.XIF."

~15-

To find out which run-time interpreters are available om your
ABC disk, eanter DOS and use menu option "A" (direcrory) to
examine the list of "INTERP" files. Contact Monarch Data
Systems if you need an interpreter with a specific load address.

5.2 Generating Relocatable Code

When producing software for cowzercial distribution, it's a
good idea to make the code relocatable to assure compatibility
with different memory configurations. Your ABC disk includes a
special ucrility called “MKRELO" that can be used to produce a
compiled, fully relocatable version of your Atari BASIC
programs. :

The code—generating technique used by MKRELO is unusual. Tt
requires that you compile your BASIC source program twice,
using different load addresses. MXRELO then compares Cthe two
disk files and produces a third version of the program which
can be loaded at any address. .

The following procedure illustrates the proper use of MKRELO.
It sssumes that you have SAVEd 3 BASIC program called

“GAME .BAS" on a source disk which also contains DOS 2.0S. Make
sure there is plenty of free space on the source disk.

2. Boot your ABC working disk along with the default ($2600)
interpreter as described in Section 3.

b. Respond to the prompt for the BASIC source filename
("GAME .BAS" or just “GCAME' in this example).

c. Respond to the proapt for a destination filename, say
CAME X26."

d. When the first compilation is cowpleted, replace the ABC
working disk into Drive #1. Press the START key and
immediately press and hold the OPTION key until you receive
the prowpt for an interpreter filename. Respond with
“INTERP.XIF." L

e. After the compiler reads the $1F00 interpreter into RAM,

"~ replace the BASIC source disk and provide Cthe source
filename again (“GAME.BAS"). Then give ABC a destination
filename that is different from the one used for the ficrst
conpilation ("CAME.XIF," for instance).

€. When the second compilation ends, ceturn to DOS by pressing
the SELECT key. Re-insert the ABC disk and use DOS option
MY to load and sutomatically rum the MXRELO program.
Replace the program disk when the MKRELO title appears.

o

-16~

g. MKRELO will ask for the nawes of the two files created by
the previous compilations. Respond with “GAME.X26" focr the
Eicet prowpt and “GAME.XIF" for the decond proumpt.

h. You will now be asked for the filename of the final,
relocatable program. Respond with a suitable ticle (e.g.;
“GAME.REL") and press RETURN.

i. MKHRELO takes a while to finish because it compares the
files one byte st a time. Once the process is coapleted,
re-entecr DOS by pressing the SELECT key. To load and run
your relocatable program, use DOS option "L" aand respond
with the name of the file created by MKRELO.

Section &
Technical Notes

This section provides various technical detuils about the ABC
couwpiler and the P-code il produces.

6.1 Error Checking

Most program conditions that require wonitoring are checked
during run-time. Houever, one specific condition that is not
checked is subscript values. Aoy negative or out-of-bounds
subscript will cause the ABC interpreter to behave in an
unpredictable wanner. We decided not to check subscripts
becuuse it saves execution tiwe, and it was agsumed thal your
source prograws would be debugged before cowpilacion.

N

6.2 Low Mcuwory Usage

The ABC run-time interpreter uses all page zero locations from
$80 and $C2 hex, ‘inclusive. The standard BASIC line nuwber and
error nuwber locations are supported. However, other BASIC
reco-page variables (such as the high address pointer and
sywbol table pointer) are not supported. Page six ($600-36FF)
is fully available for USR rovtines aad other purposes.

6.3 Memory Allocation

Cowpiled prograns initially set the OS variable APPHIL ($0E~OF)
to the end of the losded program module. During the course of
prugraw execution, the value of APPMIL is asutowatically

ad justed upward for the following reasons?

Input Statement Buffer. -
The first INPUT statement causes allocation of a 255-byte
buffer, ’ ’

GOSUB and FOR Stack. .
The first GOSUB or FOR stafement causes allocation of a
128-byte stack., ’

0

DIM Statementa.

Each DIMensloned numeric arcay requiree nine bytes of control
information plus three additional-bytes per array element,
DIMensioned string variables require nine bytes of control
information plus one byte for each string character.

Applications may allocate memory by adjusting APPMHI upward,
but to be cpmpatible with the BASIC cartridge you should work
from MEMTOP ($2E5-2E6) downwards. It's also a good idea to
execute all DIM statewments, a loop or GOSUB and an INPUT
statement before allocating memory to make sure there'a enough
room for ABC to work comfortably.

-

Section 7
Error Handling

7.1 Compilation Errors

Most of the error messages that can result from a compilation
error are self-explanatory. However, there are two types of
messages that require some explanation. :

If your BASIC source program includes an illegal atatement or
function, the compiler will display s coded message number that
indicates which type of statement or function caused the

error. A list of error message numbers and their corresponding
statement/function follows,

~-18-

7.2 11llepal Statewent Messapes

- Code # Statement Name Code Statewent Name
4 LLST b] ENTER
14 BYE 15 CONT
19 DEC 22 NEW
24 LOAD s SAVE
3] RAD 37 RUN
L6 DOS 51 LPRINT
52 CSAVE 53 CLOAD

7.3 1llepal Function Messages

Code { Function Name Code # Function Name
68 ATN 69 [o{s 1]
71 SIN 72 RND
74 EXP 15 1.0C
76 CLOC 77 SQR

v

7.4 Ruu-Tiwe Errors And Program Termination

Only one type of message can result from a run-time error,

This message displays a standard Atari BASIC error number along
with the original BASIC line uwuwber that produced the P-code
where the error occurred. You will also see a menu which
allows you proceed in various ways by pressing a console key:

OPTION Reboot entire aystem
SLLECT lleturn to DOS
START Re-run the stopped prograw

The above menu will also appear if a BASIC END coummand is
encountered, or if the interpreter runs out of instructions to
execute,

-19-

