ULTIMOn.

*. The on-board monitor/debugger

OWNERS MANUAL

A reference manual for

TJIL'T EMOR !

An in-built machine code Monitor/Debugger
capable of stopping a program

Last Revision Date: 20,/01/86

For use on Atari
400, B800, XI. and XE Computers

By John Lawson
Copyright. (c)1985 Computer sSupport (UK) Limited
All Rights Reserved
This hardware is available only from
Computer Support (UK) Limited and approved dealers

TABLE OF CONTENTS

COPYRIGHT NOTICE. i 2
PREFACE. 2
TRADEMARKS., 3
HOW TO RUN ULTIMON!. 3
SCREEN TABBING. 4
COMMAND ENTRY. s, 5
COMMAND DESCRIPTIONS. i, 6
A -~ Alter Memory Location Contents..... 8
B - Breakpiont Set...... e e ...8
C ~ Compare two Blocks of Memory....... 8
D - Disassemble Memory................. 9
E -~ Examine Memory Contents............ 9
F - Fill Memory....... 10
FM - Format. a Diskette.................. 10
G ~ Go at Address.......... 10
GP - Go at Program Counter.............. 10
I - Basic Interpreter OFF/ON. 11
J - Jump to Subroutine at Address......11
JP - Jump to Subroukine at PC........... 11
L. - Locate a String of Bytes........... 11
M - Move a Block of Memory............. 11
P - Alter Processor Status Register....12
P~ Dump Secreen to the Printer......... 12
Q -~ Quit out of ULTIMON!............... 12
R~ Read from Deviece................... 13
S5 -~ Single Step. 13
S ~ Bupercartridge OFF/ON.. 13
T - Trace through Memory............... 13
U - Display Update Mode. 14
W - Write to Device.................... 14
X - One Byte Read...................... 14
- = Pop Stack......14
= - Push Stack... 15
Alter 6502 Registers................... .1 15
Link Device Type Selechk. 15
Link Device Number Selecct............... 15
Link Density Select.............. 15
A NOTE ON PIRACY., 16
NOTES. . . oo 17

ULTIMON! ()1986 CS

TABLE OF CONTENTS

XOS/ULTIMON! is subject to Copyright (c)1985, the Copyright
is liecenced to COMPUTER SUPPORT (UK) LIMITED. Copying of
XOS/ULTIMON! in whole or part for any perpose without the
prior written permission of COMPUTER SUPPORT (UK) LIMITED
will be considered a breach of the Copyright laws of the
United Kingdom, for which the offender will be liable for
prosecution and a fine of £1000.

COMPUTER SUPPORT (UK) LIMITED will definately prosecute any
person(s) found to be pirating their products, COMPUTER
SUPPORT (UK) LIMITED will also sue the above mentioned for
loss of sales and earnings.

If you know of anyone pirating our products call us.
Remember copying of software/hardware for any perpose other
than personal backup makes vou no less than a common thief,
it also sees an end to further development of exiting
products for the machine in question.

Each ULTIMON! chip has a unigque serial numbetr, we can
therefore pinpiont the source of any piracy.

ULTIMON! (¢)1986 CS

FREFACE

400 and 800 ULTIMON! users should ignore any reference to
X08 as the Operating System remains the same as before.

TRADEMARKS
Credit 1is herby given to the various trademarks that have
been refered to throughout this manual.

ATARI, 400, 800, XI, and XE are all trademarks of Atari
Corporation.)

088, MAC/85, ACTION, BASIC XE and BASIC XL are all
trademarks of 0SS Inec.

UTIMON! is a trademark of Computer Support (UK) Limited.

ULTIMON! (¢)1986 CS

aoda addMWT W EDULLTIUND
AL & XE MODELS

Fitting the X0S5 is a relatively simple task. In most cases it simply involves
unplugging an IC and replacing it with another. Some of the newer machines have got
this IC soldered directly to the circuit board, but again, this should should be no
problem providing you are proficient with a soldering iron.

1) Turn the computer upside down and remove the screws. holding the case together.
2) Turn the case back up the right way and 1ift carefully, you will find on the XL
wodel that the top and bottom are still joined by the keyboard cable.Unplug this
from the lower part of the computer and the two halves should separate. On the XE,
this cable is at the front,

3) now you should see that most of the circuit board is covered by a metal shield
which Wwill need to be removed.

ihis shield is usually held by screws or simple metal lugs which only need to be
bent slightly to allow the cover to come off.

4) Now all is revealed and the next job is to locate the old Operating system chip
and remove ft!?,

On the XL machines In the upper right hand side of the circuit board you will find
the required chip, about two inches to the right of the cartridge slot. It’'s easy
to locate because it is the only 28 pin chip on the board. On the Atari XE the chip
is located fairly centrally and slightly to the front of the tircuit board,
Diagrams are included to help you locate the correct IC.

If you are lucky, you may find that it is in an IC socket and all that is
required, is to swap the old chip for the new one, making sure you put it round the
right way with the little indicator notch on one end of the IC facing the same way
a3 it did on the chip that you have just taken out.

9) Unfortunately not many of us are this lucky and you may find that your 05 chip
ts soldered directly to the circuit board, which means you are going to have to
Yi4t out the board and de-solder ths pins. This is no job for the complete novice,
50 please get assistance i4 you're unsure of your capabilities,

5) Included with the X058 chip is an IC socket, so you won't have ta worry about
ruining the X085 with heavy handed soldering. Solder the socket with its notch
facing left, the same way as on the old chip.

The chip js eg ic electricity, before handling be sure to
temporarily 'EARIH" yourself by touching a water pipe or some similarly earthed
itenm,
Once the socket is jp place, plug in the X0S, making certain that it is fitted the
right way round, with the cutout notch facing left (Please note, fitting the chip

the wrong way round will destroy it)., All that remains is to reassemble your
conputer and the job isg completed.

If for some reason you do not feel that you would like to tackle the titting.
Computer Bupport will do the job for you providing you send ycur computer hy

Securicor ar some other form of insured carrier, Cost of this service is £15 which
fncludes return carriage,

ATARI XE . SHOWING PoSITION of 0§ CHiP ATARL XL, Swowine Position OF ‘0% Cuip
Y
| | S
28 Pin A—— —
‘O% culp
| J— CARTRIDG T /’ 3
1 Siev 28 Pin |
:::1 0% CwiP |
=
RIBMF
FRouT —’ FRANY

HOW_TO_RUN_ULTIMON !

The are several ways to enter ULTIMON!, the following will
discribe them.

1) Whilst a program is running, [SHIFT]+[CONTROL]+[TAB],
this method works in most cases depending on what the
program is doing to the interrupts.

2) After Warmstart, hold [SHIFT]+[CONTROL]+({TAB] and press
[RESET]. T '

3) Hold [SHIFT]+[CONTROL]+[TAB] during powerup.
4) From BASIC command line, typre BYE then hit [RETURN],
this was used to run the self test program on the XL and XE

(memo pad on 400 and 800)

5) ° From a BASIC program with X=USR(59300) (400/800
X=UUSR(49163) .

6) From machine code, JMP $C0O0C or .JMP BLKBDV ($EA71).
XL/XE USERS NOTE. During powerup, if there is no drive 1

present and cassette boot or basic has not been enabled t.he
system will default o ULTIMON!

ULTIMON! (c)1986 CS

SCREEN _TABBING

A new and exiting feature has now been added ho ULTIMON!,
the ability to TAB between screens. After interrupting a
program on the fly you may press [TAB] to toggle between
the ULTIMON! screen and the program screen, on first
impressions you’ll proberly think the program is running
again, it’s not, only the screen display and vectored
interrupts are, you can still command UILTIMON! without
tabbing back to the ULTIMON! screen, just type the command
and the ULTIMON! screen will appear but only until you
press the [RETURN] for that command. Using this feature
you may also cause a screen dump of any GRAFHICS MODE 0O
screen by enbtering ULTIMON!, then press [TAB], now hold
[CONTROL] whilst pressing [P] (ULTIMON! screen dump).

There is one difference between the XI, and the XF versions
of ULTIMON! and this affects screen ’tabbing’. The XI,
version uses the highest available RAM for it’s screen
display which can be either $BC40, $9C40 or $7C40 deprending
on what cartridge, (if any) is fitted, the display list
occupys the bytes just below, therefore when you enter
ULTIMON! its screen will draw there, if the program that
you have stopped has it’s screen there the ULTIMOMN! screen
will over write it hence a screen tab will just display
garbage or nothing. The XE version does nobt have these
problems as it draws it screen in the highest block of the
banked 64K, therefore sbopping a program on an XE with XE
ULTIMON! will not clear any part of the program at all.

XL, OWNERS NOTE. We will be marketing an extra 256K battery
backed ramdisk that will make your X[fully compatable with
the XFE you ecan therefore apply for an update XE ULTIMON!
for the cost of £6.00, just return vour chip along with the
money.

Note, We will nobt accept back a chip for update if the
label has been removed or tbtampered with. If any chip
returned to us has broken legs it shall replaced and we
will charge for supplying a new one.

ULTIMON! (2)1986 CS

COMMAND_ ENTRY

ULTIMON! wuses spaces as parameter delimiters, any space

between numbers will force the next number to be read as a

new perameter. Spaces are not compressed therefore 2 spaces

or more in a command
There should not be
this will also cause

The command line is
go no further,

All the input and
notation.

[RETURN] repeats the

will rcause a syntax error.
any spaces after the last parameter as
a syntax error.

only 32 character spaces long, it will

output of ULTIMON! is in hexadecimal

last command.

ULTIMON! (c)1986 CS

COMMAND_DESCRIPTIONS

Throughout the descriptions of commands there is a ’'Syntax’
line and an ’Example’ line followed by a discription of
what the command does.

On the ’Syntax’ line 1 have used the underline symbol as a
'space’.

ULTIMON! (c)1986 CS

COMMAND . DESCRIPTIONS

A_- Alter Memory Location Contents

Syntax: A_<START>_<BYTE>_[<BYTE>]...
Example: A B4FE 56 78 FF OO[RETUEN]

The A command alters the contents of a memory location or a
consecutive sequence of memory locations beginning at

START, +the maximum number of consecutive bytes on one
command line is 9.

To use this command, first find the address where the
alteration is +to take place then type A then a space then
the byte you would like to store there, followed by either
a return or a sequence of space then byte (up to 9) and
finally a return.

B_- Breakpiont Seb

Syntax: B_<ADDR> <REG>
Example B 3E80 2[RETURN]

The B command allows the user to preset upto 6 breakpionts
throughtout the code, To remove a breakpiont just enter
zero as the address, followed by the breakpiont register
numher.

Note. All breakpoints should be cleared manually before
leaving ULTIMON!, +through the JP, J, GP, G, QD, QC or QR
commands.

Q..;:_.,_ng.ga re two Blocks of Memory

Syntax: C_<FROM> <TO>_<START>
Example: C 2000 4FFF 5000[RETURN]

The C command will compare one block of memory against

another and then report the start of where any differences
have accured.

To wuse this command, first establish the two blocks of
memory that you wish compare then type C followed by a
space now the starting address of block 1 then another
space now the end address of the block 1 then another space
and finally +the start address of block 2 now return, the
end address of block 2 is taken care of automatically.

If the compared blocks were Lhe same then ULTIMON! will
come back unchanged, if there were differences then the
’Display Memory’ part of the screen will split down and
display the +two blocks (block 1 abt the top). starting at

ULTIMON! (c)1986 CS

COMMAND _DESCRIPTIONS

where the differences were.

D - Disassemble Memory
Syntax: D_<ADDR>

Example: D 9FAE[RETURN])

Immediate Key: [=] At any +time will increment the
disassembly by a logircal line.

The D command disassembles the memory into standard MOS
Technology (designers of 8502 chip) opcodes.

To wuse this command, establish the address that you would
like to start disassembling from then type D followed by
that address now a return.

The format of each disassembly line is as follows:
ADDRESS OPCODHE BYTES ATASCII

ADDRESS = the address of the opeode, OPCODE = the
disassembly interpretation of this byte, BYTES = the byte
or bytes that form this particular opcode, ATASCII = {:he
ATASCII interpretation of these byvtes.

E_- Examine Memory Contents

Syntax: E_<ADDR>

Example: E 4000[RETURN |

Immediate Keys: [=] at any time will inerement the display
one page at a time.

[-] at any time will decrement the display
one page abt a time.

The E command displays the contents of a 'half page’ of
memory beginning at the address specified, at any time you
may increment or decrement the ’half rage’ display by
pressing [=] for inecrement or [-] for decrement.

At the b5th 1line down you will see ’Ad’ (meaning address)
this 1is the start of the 'half page’ display, the ’'half
page’ display is 16 horizontal lines long, this is refered
to during any display memory contents or disassembly.

To wuse this command, first establish the starting address
of the area you wish to examine now type E followed by a
space then the address and return.

The format of each display line is as follows:

ULTTIMON! (c)1986 CS

10
COMMAND_DESCRIPTIONS

AAAA 00 00 00 00 00 00 00 00 12345678

AAAA = the hexadecimal address of the first byte being
displayed on +this 1line, 00 = the hexadecimal contents of
succesive memory loecations beginning at location AAAA, and
the 12345678 = the ATASCII character interpretation of the
succesive memory locations.

F_ - Fill Memory

Syntax: F_<FROM>_ <TO> <BYTE>
Example: F 8000 8FFF 55[RETURN]

The F command will fill a block of memory.

Consider the following example:
F 2000 2FFF 55[RETURN)

this will fill from 2000 through to 2FFF with 55's.

FM_- Format a Diskett:

fer)

Syntax: FM
Example: FM{RETURN]

The FM command will format a diskette in the density that
the drive may be selechbed to.

G_-_Go_at Address

Syntax: G_<ADDR>
Example: G F11B[RETIIRN]

The G command will change the program counter to the
address specified then go Lo it.

GP - Go_at Program_Counter

Syntax: GP
Example: G[RETURN)

The GP command will continue from where the program counter
left off.

ULTIMON! (¢)1986 CS

-}

COMMAND_ DESCRIPTI

[
{
I

I<x> - Basic Interpreter OFF/ON XL/XE ONLY

Syntax: I<X>
Example: I<X>[RETURN]

The 10 command will disable the built in BASIC interpreter
then move the screen up into the now available RAM.

The I1 command will move the screen down then enable the
BASIC interpreter.

J = Jump_to_Subroutine at_Address

Syntax: J_<ADDR>
Example: J F6A4{RETURN]

The J command will push the ULTIMON! go address to the
stack then go to the subroutine address specified.

JP_~ Jump_tio

ubroutine at PC

Syntax: JP
Example: JP[RETURN]

The JP command will push the ULTIMON! go address to the
stack then go from the program counter.

L. - Locate a String of_Bytes

Syntax: L_<START>_<END>_<RYTE>_[<BYTE>]...
EXample: L 2000 8000 20 A4 F6 A9 FF{RETURN]

The L command will locate a sequental string of hexadecimal
bytes upto 8 bytes long.

To use this command first establish the bytes that you wish
to 1locate, now the address range then type I, followed by a
space then the starting address then the end address and
lastly the byte or string of bytes, there must be a space

between every byte and no spaces between the ending byte
and the return.

M_- Move a Block_of Memory

ULTIMON! ()1986 CS

11

12
COMMAND _DESCRIPTIQNS

Syntax: M_<from>_<to> <start>
Example: M 3000 3FFF 6000[RETURN]

The M command will move a copy of a block of nemory
beginning at FROM and ending at TO to START

Consider the following example: ‘
M 4000 SFFF 7000[RETURN]

this will move a copy of the block 4000 through to BFFF
into 7000 through to 7FFF.

Note. take care not to forward overlap a move, as this will

desﬁroy the overlapping part of your code, a backward
overlap is okay.

Alter Processor_Status Register

Syntax: P<byte>
Example: P24[RETURN]

The P command will change the contenls of the ULTIMON!
proccessor stabtus redgister shaddow (this will be placed
into the real proccessor status register on a ’execute from
program counter’,

Note: No spaces are required.

P - Dump Screen to_the_Printer
Immediate: [CONTROL]+P

Printer dump may be called at anv time without interfering
with what you may be doing with the command line.
Note. This routine can also be called from outside ULTIMON!

Q - Quit out of ULTIMON!

Syntax{ Q<X>
Example: Q<X>[RETURN]

The Q command will quit out from ULTIMON! to the particular
media you require.

QD = quit out to disk based media
QC = quit out to cassete based media
QR = quit out to cartridde (ROM) based media

ULTIMON! (¢)1986 CS

COMMAND_DESCRIPTIONS

Note: if CAINI, CARTAD, CASINI, DOSINI or DOSVEC contains
zero’s then there is likely to be a system lockup depending
on which media has been selected.

R~ R from Device

Syntax: R_<SECNO>_<BUFFER> _<NOSFCS>
Example: R 1 4000 2F[RETURN]

The R command will read a sector or string of sectors from
the 1linked disk device, SECNO is the starting sector
number, BUFFER is the starting address that the data is to
be stored to, NOSECS is the number of sectors to be read.

5_~— Single Step

Syntax: 8§
Example: S[RETURN]

The S command will allow the user to single step through
the code being displayed on the disassembly page. Holding
return will continually single step until you let go.

Note. This command only works from the disassembly page.

S8<X> -~ SBupercartridge OFF/0ON

Syntax: S<X>
Example: S<X>[RETIRN]

The 80 command will disable any supercartridge that may be
plugged in then move the screen up into the available RAM.

The S1 command will move Lhe screen down then enable the
supercartridge that may be plugged in.

Note. The only supercartridges in existance at the time of
writing are MAC/65, ACTION, BASIC XE and BASIC XL.

T_ = Trace through_ Memory

Syntax: T
Example: T[RETURN]

The T command will allow the user +to single step
continually through the code being displayed on the
disassembly page. Until the user presses the [ESC] key.

ULTIMON! (e)1986 CS

13

Note. This command only works from the disassembly page.

U -~ Display Update Mode

Syntax: U_<addr>
Example: U OOOO[RETURN]

The U command will display the memory contents exactly as
the D command but - will then continue sampleing the same
area of memory until +the [ESC] key is pressed, this is
handy if you would 1like to see if a memory location or

string of memory locations is being updated during vertical
blank interrupts.

W - Write to Device

Syntax: W_<SECNO> <BUFFER> <NOSECS>
Example: W 40 2000 80| RETURN]

The W command will write a sector or sktring of sectors from
the linked device, SECNO is the starting sector number,
BUFFER is the starting address that the data is to be read
from, NOSECS is the number of seclors Lo be written.

X - One Byte Read

Syntax: X <ADDR>
Example: X DHOB[{RETURN]

The X command is for a one byte read the address and result
of that read is stored on the 1st and 2nd lines and is kept
there until the next X command.

Note. This command is mainly of use to those electronics

experts that wish to experiment with the address and read
lines.

Pop _Stack

Syntax: [CONTROL]+[-]
Example: [CONTROL]+[-]1[RETURN]

The command will remove the top hkwo bytes (word) from the
stack.

Usefull for removing a return address and then using the
push command to replare it with an alternative one.
Note. no spaces required

ULTIMONY (n)1986 CS

14

COMMAND. DESCRIPTIONS

Push Stack

Syntax: [CONTROL]+[=] <addr>
Example: [CONTROL}+([(=] 725C[RETURN]

The push stack command will push fwo bytes (a word) to the

stack, wusing this option you could push a return address
for the next RTS.

Alter 6502 Registers

Syntax: A<byte> X<byte> Y<byte>
Examples: AFE[RETURN] X22[RETURN] YHKC[RETURN]

The A,X and Y commands will change the contents of the
ULTIMON! register shaddows (these will be placed into the
real registers on the JP, .J, GP, ¢, QD, QC and QC commands.
Note. only one register can be changed per command line, no
spaces are required.

Link Device Type Select

Syntax: D[<D>1[<C>]
Example: DC[RETURN]

The DD and DS commands will link the serial 1/0 to either

Cassete or Disk. 128 byte or 256 byte I/0 transfer can
also be used on Cassette.

Link Device Number Select

Syntax: N[<1>]1[<2>31{<3>}{<4>]
Example: N2{RETURN]

The N1, N2, N3 and N4 commands will select the linked drive
number for disk I/0.

Note. This will have no affect on Cassette 1/0.

Link Density Select

Syntax: L <S>TI<D>]
Example: :D{RETURN]

ULTIMON! (c¢)1986 CS

18

COMMAND_ DESCRIFTIONS

The :D and :S commands
either single or double
transfer).

ULTIMON! supports single, dual

Single Density
Dual Density
Double Density

Note. The first 3 sectors of
Single Density.

ULTIMON!

will
deansity

toggle the device link to
(128 byte or 256 byte

or double density disk 1/0.
DS (default)

DS (default)
DD_

ton

a Double density disk are in

(c)1986 CS

16

A NOTE ON _FIRACY

Generally what happens is that the person who is the cause
of piracy is not aware of thal;, in most cases this person
gives a copy to a friend/relative on the understanding that
it will not be passed on from there, this understanding is
soon forgotten and the end result of continually passing on
the software/hardware c¢ould be hundreds of lost sales to
the publisher. Piracy is generally on a large scale.

The persons that have endangered the very existance of this
your favorite hobby are those Lhat have spent all thier
time cracking protecktion then they pass the unprotected
pieces of software on, once is enough to kill the sales of
any program. If the ubove mentioned persons spent their
time writing programs and not cracking them, we would
proberly see a better range of software available today and

at cheaper prices, the trouble is their intelligence stops
at the keyboard.

Back 1in the days when piracy was in its infancy there were
dozens of new programs becoming available every week, due
to piracy +there 3is now proberly only 2 good programs
appearing every month on average and these rearly pay the
author a reasonable salary for the 3-6 months he/she may
have worked to write it, imagine if you worked for that
amount of time then earned only a months salary, you would
not do it again!

Programmers co¢an earn a reasonable salary 1if they move
towards business computers, but surely we do not want that
to happen do we? ,

PLEASE, BUY PROGRAMS DON’T STEAL THEM!

ULTIMON! (c)1986 CS

17

NOTES

ULTIMON! (¢)1986 CS

18

e et i s et L L e e i e b 8 A ot et ¢ - e e - —— —

ULTIMON!

()1986 CS

19

) ’ o B o e

ULTIMON!

(c)1986 CS

20

The reference manual for

Xos!

A Revised Operating Systenm
with most entry points compatible with ATARI Rev. B

Last Revision Date: 27/03/86

For use on ATARI
XL and XE Computers

By John Lawson
Copyright (c)1986 Computer Support (UK) Limited
All Rights Reserved
This hardware is available only from
Computer Support (UK) Limited and Approved Dealers

CONTENTS

COPYRIGHT NOTICE.ttt eeeeonenencesccannns
TRADEMARKS ittt ittt it ittt eetncenanccnannnens
OVERVIEW. . i ittt ittt ittt inestvnsannaascesns

POWEE U e e v v e oo eevecenossosnecnacssoenases
Forced Warmstart.......covecececeen. e e
Anti-Coldstart...... et e e et
Cursor Control.t icterneeeesocnanss
Character Set....cieiieeeeroreccoccnnnes
Faster Cassette Baud Rate.......cccccue..
Joysticks 3 & 4. ..t iiitneeeenonnnnans
SYSTEM INITIALTISATTION. ..ttt eereereceoeoacaconoones

X0os! (c)1986 Cs

COPYRIGHT NOTICE

X0s! 1is subject to Copyright (c)1986, the Copyright is
licenced to COMPUTER SUPPORT (UK) LIMITED. Copying of XOS!
in whole or part for any purpose without the prior written
permission of COMPUTER ° SUPPORT (UK) LIMITED will be
considered a breach of the Copyright laws of the United
Kingdom, for which the offender will be 1liable for
prosecution and a fine of £1000.

COMPUTER SUPPORT (UK) LIMITED will definitely prosecute any
person(s) found to be pirating their products, COMPUTER
SUPPORT (UK) LIMITED will also sue the above mentioned for
loss of sales and earnings.

If you know of anyone pirating our products call us.
Remember copying of software/hardware for any purpose other
than personal backup makes you no less than a common thief,
it also sees an end to further development of exciting
products for the machine in question.

Each XOS! chip has a unique serial number, we can therefore
pinpoint the source of any piracy.

X0s! (c)1986 Cs

TRADEMARKS

Credit is hereby given to the various trademarks that have
been referred to throughout this manual.

ATARI, 400, 800, XL and XE are all trademarks of Atari
Corporation.

MAC/65, ACTION, BASIC XE and BASIC XL are all trademarks of
0SS Inc.

XOS! is a trademark of Computer Support (UK) Limited.

. A,

X0s! (c)1986 CS

OVERVIEW

X0S! is an Operating System that uses the same entry points
and vectors as Revision 'B' Atari Operating System.

Why do you need XO0S?

A fair amount of existing software was designed for use on
the old type 400/800 Atari systems, when the new XL/XE
series machines were designed the Operating System was
changed mainly for the self test, parallel port handler,
international character set and warmstart routines, whilst
adding these routines to the Operating System the
programmer decided to alter the positions of the existing
routines therefore any program that used the 0.S. to
perform some of its tasks would be jumping to the wrong
place causing unpredictable results (usually a lockup).

Because X0S! is based around Revision 'B' Operating System
most of the routines are in the same place the result is
that the XO0S! system is more compatible with existing
software than the XL/XE Operating System.

—t A

Xos! (c)1986 Cs

ENHANCEMENTS

P

Powerup

During powerup, the [OPTION] key has to be held down to
enable the BASIC INTERPRETER (the opposite effect to that
of a normal XL/XE Operating System).

During powerup, the [SELECT] key has to be held down to
enable the 0SS supercartridge, if there's one plugged in

that is. Once selected pressing [RESET] will not disable
it.

Holding [CONTROL]+([TAB] down during powerup causes the
~system to ignore the initialisation and execution of a
standard cartridge, this saves you removing the cartridge
when you do not need it.

NOTE. Using this function will not give RAM where the
cartridge may be.

Holding [2] key down will boot the system from drive 2, the
default is drive 1. ’

NOTE. Single stage boot only, as all multi stage loaders
look back to drive 1 to continue with the boot process.

Forced Warmstart

Pressing the [4] key whilst holding [CONTROL] down forces
the system to do a warmstart regardless of the contents of
COLDST ($0244) the result is like pressing reset.

Note. Forced warmstart will not re-boot a disk.

Anti-Coldstart

There are 3 powerup bytes in an XL/XE they normally contain
three different numbers, when you press [RESET] the system
examines these powerup bytes to see if they have been
altered since powerup if they have the system will do a
Coldstart otherwise there will be a Warmstart.

X0S! keeps replacing these numbers on vertical blank
interrupts therefore the system can not coldstart through
altering these locations.

Cursor Control

The XOS! cursor is considerably faster than the standard
cursor, this makes editing text much quicker than normal.

Xos! (c)1986 CsS

ENHANCEMENTS

Character Set

The character set has been completely re-defined to allow a
more readable display, all characters with the exception of

the 'I' and some of the control characters are 7 pixels
wide, rather than 6.

Faster Cassette Baud Rate

Cassette load/save now defaults to 820 baud. The Operating
System automatically calculates the baud rate as a tape is
loading, therefore any tape written by the XOS system at
820 baud should 1load on other Atari's with no problems,
although it will be faster. XO0S will alsoc read a normal
600 baud tape with no problems.

Joysticks 3 & 4

All the Joystick, Paddle and Trigger registers that were
used for sockets 3 & 4 on the 400/800 are in use with XOS.
The registers for socket 1 echos its contents to the
registers for socket 3, the same for that of 2 & 4 (this
will hopefully ensure any programs that used sockets 3 & 4
will now work with two sockets)

X0S! (c)1986 Cs

SYSTEM INITIALISATION

Bootstrap

During a powerup XOS! looks to see if the [2] key is down,
for a Boot from Drive 2, if the last key that you pressed
before turning off was a [2], then you powerup again soon
after XOS! will try to Boot from Drive 2 (the system does
not completely power down until approx 2 minutes has

elapsed), if this happens just hold the [SPACE] down during
powerup. ’

Reset

X0S! uses a bank select shadow register this is called
"BKFLG" (Memory Location §$07) when the [RESET] keys is
pressed, the contents of BKFLG are stored into PORTB
(Memory Location $D301), this is the only time this shadow
address is used. Also XO0S! uses three powerup bytes these
addresses are called "PWRBT1, PWRBT2, and PWRBT3" (Memory
Location $033D-$033F) these are set, during a [RESET] to
$5C, 893 and §25 respectively, they are kept that way on
VBI's this is known as Anti-Coldstart as mentioned earlier.

RAM O.S. Default

If you find a need to have a TRANSLATOR or other RAM based
0.S. in ~control, then wusing the special Reset routine
mentioned above, you can set the system to default to your
new O.S. on pressing [RESET]. The following describes how
to do 3just that; once powared to the RAM based 0.S. read
the contents of PORTB, ndw store it to BKFLG, the only
thing left to do 1is to store the three PWRBT numbers to
their consecutive 1locations as mentioned above. If the
Warmstart routine on your RAM based 0.S. clears the PWRBT's
then you must set them again after a System Reset, ideally
all the above should be done by your 0.S. automatically.

X0s! (c)1986 CsS

R650X, R651X .

R6500 Microprocessors (CPU)

ADDRESSING MODES

The R6500 CPU family has 13 addressing modes. In the following
discussion of these addressing modes, a bracketed expression fol-
lows the title of the mode. This expression is the term used in the
Instruction Set Op Code Matrix table (later in this product descrip-

tion) to make it easler to identify the actual addressing mode used
by the instruction.

ACCUMULATOR ADDRESSING [Accum|—This form of ad-

dressing is represented with a one byte instruction, implying an
operation on the accumulator.

IMMEDIATE ADDRESSING [IMM]—In immediate addressing,
the second byte of the instruction contains the operand, with no
further memory addressing required.

ABSOLUTE ADDRESSING |Absolute]—In absolute address-
ing, the second byte of the instruction specifies the eight low
order bits of the effective address while the third byte specifies
the eight high order bits. Thus, the absolute addressing mode
allows access to the entire 64K bytes of addressable memory.

ZERO PAGE ADDRESSING [ZP]—The zero page instructions
allow for shorter code and execution times by fetching only the
second byte of the instruction and assuming a zero high address

byte. Careful use of the zero page can result in significant
increase in code efficiency.

INDEXED ZERO PAGE ADDRESSING [ZP, X or Y]—(X, Y
indexing)—This form of addressing is used with the index reg-
ister and is referred to as “Zero Page, X" or “Zero Page, Y.
The effective address is calculated by adding the second byte
to the contents of the index register. Since this is a form of “Zero
Page” addressing, the content of the second byte references
a location in page zero. Additionally, due to the “Zero Page"
addressing nature of this mode, no carry is added to the high

order eight bits of memory and crossing of page boundaries
does not occur.

INDEXED ABSOLUTE ADDRESSING {ABS; X or Y]—(X, Y
indexing)— This form of addressing is used in conjunction with
X and Y index register and is referred to as “Absolute, X" and
“"Absolute, Y". The effective address is formed by adding the
contents of X or Y to the address contained in the second and
third bytes of the instruction. This mode allows the index register
to contain the index or count value and the instruction to contain

the base address. This type of indexing allows any location rel-
erencing and the index to modify multiple fields, resulting in
reduced coding and execution time.

IMPLIED ADDRESSING (implied]—In the implied addressing
mode, the address containing the operand is implicitly stated in
the operation code of the instruction.

RELATIVE ADDRESSING [Relative]—Relative addressing is
used only with branch instructions and establishes a destination
for the conditional branch. - !
The second byte of the instruction becomes the operand which
is an “Offset” added to the contents of the lower eight bits of
the program counter when the counter is set at the next instruc-

tion. The range of the offset is —128 to +127 bytes fom the
next instruction.

INDEXED INDIRECT ADDRESSING [{IND, X)j—In indexed
indirect addressing (referred to as (Indirect, X)), the second byte
of the instruction is added to the contents of the X index register,
discarding the carry. The result of this addition points to a
memory location on page zero whose contents are the low order
eight bits of the effective address. The next memory location in
page zero contains the high order eight bits of the effective
address. Both memory locations specifying the high and low
order bytes of the effective address must be in page zero.

INDIRECT INDEXED ADDRESSING [(IND), Y}—In indirect
indexed addressing (referred to as (Indirect), Y), the second
byte of the instruction points to a memory location in page zero.
The contents of this memory location are added 1o the contents
of the Y index register, the result being the low order eight bits
of the effective address. The carry from this addition is added
to the contents of the next page zero memory location, the result
being the high order eight bits of the efective address. .
ABSOLUTE INDIRECT [Indirect}]—The second byte of the
instruction contains the low order eight bits of a memory loca-
tion. The high order eight bits of that memory location are con-
tained in the third byte of the instruction. The contents of the
fully specified memory location are the low order byte of the
effective address. The next memory location contains the high
order byte of the effective address which is loaded into the six-
teen bits of the program counter. (JMP (IND) only)

R650X, R651X R6500 Microprocessors (CPU)
INSTRUCTION SET

The R6500 CPU has 56 instruction types which are enhanced mulator, index registers, Program Counter, Stack Pointer and
by up to 13 addressing modes for each instruction. The accu- Processor Status Register are ilustrated below.

Alphabetic Listing of Instruction Set

Mnemonic Function Mnemonic Function
ADC Add Memory to Acgumulator with Carry JMP Jump to New Location
AND "AND" Memory with Accumulator JSR Jump to New Location Saving Return Address
ASL Shift Left One Bit (Memory or Accumulator)
LDA Load Accumulator with Memory
BCC Branch on Carry Clear LDX Load Index X with Memory
BCS Branch on Carry Set LDY Load index Y with Memory
BEQ Branch on Result Zero LSR Shift One Bit Right (Memory or Accumultator)
BIT Test Bits in Memory with Accumulator
BMI Branch on Result Minus NOP No Operation
BNE Branch on Result not Zero
BPL Branch on Result Plus . ORA “OR" Memory with Accumulator
BRK Force Break
BVC Branch on Overflow Clear PHA Push Accumulator on Stack
BvVS Branch on Overflow Set PHP Push Processor Status on Stack
PLA Pull Accumulator from Stack
cLC Clear Carry Flag : PLP Pull Processor Status from Stack
CLD Clear Decimal Mode
CLI Clear interrupt Disable Bit ROL Rotate One Bit Left (Memory or Accumulator)
CLv Cilear Overflow Flag . ROR Rotate One Bit Right (Memory or Accumulator)
CMP Compare Memory and Accumulator RTI Return from Interrupt
CPX Compare Memory and Index X RTS Return from Subroutine
CPY Compare Memory and Index Y
SBC Subtract Memory from Accumulator with Borrow
DEC Decrement Memory by One SEC Set Carry Flag
DEX Decrement index X by One SED Set Decimal Mode
DEY Decrement Index Y by One SEI Set Interrupt Disable Status
STA Store Accumulator in Memory
EOR “Exclusive-OR" Memory with Accumulator STX Store Index X in Memory
STY Store Index Y in Memory
INC Increment Memory by One
INX Increment Index X by One TAX Transfer Accumulator to Index X
INY Increment index Y by One TAY Transfer Accumulator to Index Y
TSX Transfer Stack Pointer to Index X
TXA : Transfer Index X to Accumulator
TXS Transfer Index X to Stack Register
TYA Transfer Index Y to Accumulator
7 Y 7 0
| A j ACCUMULATOR A njv]i{e|o]r]z]c]processor staTus REG o
7 0
% Y ”3 INDEX REGISTER 'Y LCARRY 1 - TRUE
X _]INDEX REGISTER X —ZERO 1 = RESULT ZERO
15 7 0
t PCH | PCL | PROGRAM COUNTER “PC" IRQ DISABLE 1 = DISABLE
8 7 0
[1] S] STACK POINTER g L‘—‘————-DECIMAL MODE 1 = TRUE
L BRK COMMAND 1 = BRK
- OVERFLOW 1=TRUE
NEGATIVE 1= NEG.

Programming Model

Y S 1

h 3

R650X, R651X

R6500 Microprocessors (CPU)

INSTRUCTION SET OP CODE MATRIX

The following matrix shows the Op Codes associated with the
R6500 family of CPU devices. The matrix identifies the hex-
adecimal code, the mnermonic code, the addressing mode, the

number of instruction bytes, and the number of machine cycles
associated with each Op Code. Also, refer to the instruction set
summary for additional information on these Op Codes.

o Lso 0 1 2 3 4 5 6 7 8 9 A B (o} D E F
7]
= BRK ORA R ORA ASL RMBO PHP ORA ASL ORA ASL BBRO
0 | Implied |(IND, X) ZP P P implied | MM Accum ABS ABS pdd 0
17 2 6 2 3 2SS 2 5 13 2 2 1 2 3 4 3 6 |3 5"
BPL ORA ORA ASL RAMB1 CcLC ORA ORA ASL BBR1
1 | Relative}(IND), Y P X | ZP, X P Implied | ABS, Y ABS, X | ABS, X P 1
2 2| 2 8 2 4 2 6 25412 3 4 3 4413713 5"
JSR AND 8iT AND ROL RMB2 PLP AND ROL g AND | ROL BBR2
2 | Absolute; (IND, X) P 2P 2P P Implied | IMM | Accum ABS ABS ABS 2P 2
3 6 2 6 2.3 23 2 5 2 S5 1 4 2 2 1t 2 3 4 3 4 36 (3 5
BMI AND AND ROL AMB3 SEC AND AND ROL BBR3
3 | Relative | (IND, Y) P X | ZP. X ZP implied | ABS, Y ABS, X | ABS, X 2P 3
2 2|2 5 2 4 2 6 25|t 2 3 &4 3 | 3713 5
RTI EOR EOR LSR AMBA4 PHA EOR LSR JMP EOR LSR BBR4
4 | Implied | (IND, X) ZP zZP P Implied | IMM | Accum ABS ABS ABS P 4
1 8 2 6 23 25 25 13 2 2 1 2 33 3 4 3 6 |3 5°
BvC EOR EOR LSR RMBS cu EOR EOR LSR BBRS
5 | Relative | (IND}), Y P, X | zP, X ZP Implied | ABS, Y ABS, X | ABS, X paad 5
2 2712 5 2 4 2 6 25 1 2 3 4 3 44137 1|3 5"
RTS ADC ADC ROR | RMB6 PLA ADC ROR JMP ADC ROR BBR6
6 | Implied | (IND, X) ZP 2P 2P Implied | IMM | Accum Indirect] ABS ABS zpP 6
16 2 6 2 3 25 1 4 2 2 1 2 35 3 4 3 6 {3 5
BvS ADC ADC ROR | RMB? SE! ADC ADC ROR BBR7?
7 | Retative | (IND, Y) P, X | ZP. X ZP Implied | ABS, Y ABS, X | ABS, X P 7
2 2|2 § 2 4 6 2 5 1 2 3 & 3 ¢ 37 {3 5"
STA . STy STA STX SMBO DEY TXA STY STA STX 8BS0
8 (IND, X) zP zP zP ZP implied Implied ABS ABS ABS ZP 8
2 6 2 3 2 3 2 3 25 1 2 1 2 3 4 3 4 3 4 3 5
BCC STA STY STA 8TX SMB1 TYA STA XS STA B8S1
9 | Relative | (IND, Y) P, X | ZP. X | ZP, Y P Implied [ABS, Y |implied ABS, X zp 9
2 21 2 6 2 4 2 4 2 4 25 (12 35 |12 35 3 5
LDY LDA LDX Loy LDA LDX SMB2 TAY LDA TAX Loy LDA LDX BBS2
A MM | (IND, X) | IMM 2P pid pdd 2P Implied | IMM | Implied ABS ABS ABS zP A
22 2 8 2 2 2 3 2 3 2 3 25 1t 2 2 2 12 3 4 3 4 3 4 {3 5
BCS LDA LDY LDA LDX SMB3 CLV LDA TSX LDY LDA LOX B8BS3
B8 [Relative| (IND), Y P, X ZP. X | ZP, Y zP implied | ABS, Y |Implied ABS, X| ABS, X | ABS, Y P4 8
2 212 5 2 4 2 4 2.4 2 5 t 2 3 & 1 2 3 4 3 4 3 4 |3 5
CPY CMP CPY ‘CMP DEC SMB4 INY CMP DEX CcrY CMP DEC BBS4
(o} IMM | (IND, X) 2P zpP ZP P implied | IMM | Implied ABS ABS ABS ZP (o}
2 2 2 6 2 3 2 3 25 2 5 1 2 2 2 1 2 3 4 3 4 36 |3 5"
BNE CMP CMP DEC SMBS CLD CMP CMP DEC BBSS
D | Relative | (IND), Y ZP, X | ZP, X P Implied | ABS, Y ABS, X | ABS, X P D
2 2| 2 5 2 4 2 6 2 5 1 2 3 &4 3 44137 3 5"
CPX sBC CPX sBC INC SMBé6 INX SBC NOP CPX s8c INC B8BS6
E IMM | (IND, X) ZP P ZpP ZP Implied | IMM | Implied ABS ABS ABS ZP E
2 2 2 6 2 3 2 3 25 25 1 2 2 2 1 2 3 4 3 4 36 |3 5
BEQ SBC S8C INC SMB7? SED SBC SBC INC B88S7
F | Relative| (IND), Y ZP. X | ZP, X P4 implied | ABS, Y ABS, X | ABS, X P F
2. 2712 5§ 2 4 2 6 25|12 3 4 34413713 5
0 1 2 3 4 5] 7 8 9 A B C D E F
0 *Add 1 to N it page boundary is crossed.
**Add 1 to N if branch occurs to same page;
BRK | —OP Code add 2 to N if branch occurs to different page.
0 | Implied | —Addressing Mode
1t 7 —Instruction Bytes; Machine Cycles

Ed

/

R650X, R651X R6500 Microprocessors (CPU)

INSTRUCTION SET SUMMARY

INSTRUC TIONS IMMEDIATE | ABSOLUTE | ZEOPAGE | ACCUM weeies | oowo o | ower v |2 race x] aes x ASS. Y | meLAtwe | onomect § 7 pace. v {;ﬁﬁ's“"“"‘“‘
MNEMONIC OPERATION opfn | sjop| nfetorln]lefor{nlaforinfelorfniejorjnlefor]nfafor]nfefopr]nlajorinfelorinteforinie Lt\’," :’ :)2- .‘ZS MNEMONIC
abC AsMLC oA hines] 2f2 f60] a{3l65)3}2 e slafrlslafrsja)efrolalslrafatn NVve.e... .20) ADC
AND AAM -A miael2f2 Jeo] afa]es]af2 atfef{afm]sf2los| a2 faofafr|sefajs N.':.woao2:1anNnD
ASL C-{ i1-0 OE[6)3106) 512 oA} 2|1 wyef2 e 7]y Noo+o oo Z2C] asnt
BCC BRANCHONC . 0 (2 0| 2|2 B Y L
BCS BRANCHONC - 1 (21 eof 2f 2 fe e e e e e e BES
BEQ BRANCHONZ2 = 1 (2 rol 2| 2 c e e | BEQ
Bt AsM cfafafaalal2 MM o o 7 b BT
BMI BRANCHONN - 1 (2 wla2l2 e X'
BNE BRANCHONZ - 0 (2 oob2! 2 dene
aPL BRANCHONN - 0 {2 wiz2l2 N
BHK BREAN 00{7 4 © e et et a‘un
BvC BRANCHONY . 0 (2 o122 e e e -]l BvC
BVS BRANCHONY : 1 (2 ol 2{2 e e e e e avs
cLC 0-C - w2 e e s e s 0l CLC
cL o 0-0 08} 211 v ep - cie
ct 0 -t S8l 2] e e e s 0. C Lt
cLyv 0-v B8l 21t s 0 . v e v e s CLV
cme A-M c9j2]2|col a|3lcsla}2 cief2|or|s|2josfa|2foo|af3josiajs Neoweosaoz2c)lewme
cCPx X-M €0l 2| 2jec| ajaqea] a2 Neo-wvaozc|cex
CPY YoM cof 2} 2lccl e afcal 3} 2 N.....z2cjcey
DEC M. 1=m ce| 6] 3ics| 5| 2 06| 6} 2|oef 7] Noe s o2 B 4
DEX X .t =X CAl 2} 1 L Y 4 DFEx
DEY Yo otey 88| 2|1 [£ 2 BN
EOR AVM <A i est 2] 21aDj 4 [3es) 342 : avjefafsr|sf2yssiaj2lsg|alalsejefs ;‘ N v oo o2 EOR
INC Mot eM : EE| 6] 3]E6]5 2 N i Felef2frej 79 1 IR B
tN X X o 1ex ‘ ! e8| 2] i N oo+ 2] 1inx
1N Y Yoty ; cey 2| N o « o o o 2Ny
ImMP JUMP TONEW LOC 1 «lals ! sclol s N T
L] JUMP SUB i 0|63 ; . Jdoisn
LD A M- A i jagl 2] 2japlajafasizl2 ! avlejalsijsi2]es{a|z]{eof afr]aalals H ' N e s - 21 LDa
LD X Mo x oo {a2l 24 2 {ae} «| 3]sl 3} 2 i BE[« |3 :; 86, ¢, 2N - 2o
LOY M.y m |aol 2f 2 |ac| afa]as] 3y 2 : se|al2fpc| o} H N -2 vox
LSH o-¢. " FcC 4E6316524A1E1 561 6| 2|5t 7] 3 [0. .. c2clisn
NOP NO OPERATION [eal 21 . « s sl nOP
onRa AVM - A 09{ 2{ 2jop| 4 3fosi 3|2 onfe]2fitlsf2stajaltofaiatrelags | Ne++++2-l0nra
PHA A Ms S. 1.5 EE T 7 f e e v T P
PHEP B -Ms s 1.8 o8l 3|1 I P T
PLA Se =S Ms - A 68| 4 {1 . i Ne « oz lpLaA
PLP Se1es Ms «P 28fa| [(RESTORED: PP
ROL T cl-J el eislas| szl 2] wletefrels]a : N+ -+ 2clmOL
ROR LT se| 6|3]66| 5} 216a] 2] wlel2frejr|a) + -+ 2cC| ROR
R ATAN INT wlejr ! RESTORE a1
R1S RTAN SUB 6016t ! ars
sac A-m.T-A mifes] 2z Jeo| a {1 3fes| 3| 2| erv]ef2]sr|sjatesfaj2|sof afa]ro]a] . « - 23] s8BC
SEC | 1-C w2l ! e e ol sEc
SED v -0 rel 2 e e e Jseo
S E ¢ 1 {211 T I S E
StaA A-Mm 8Dt 4| 3]8s}at2 stletz]ariel2|oste]2lonjoirfes|s]n 'l fsta
ST x X .M st a3l 32 Wi 4|2 f st
5TY Y oM 8Cj 433184} 32 Qaf 4| 2 sty
TAX A X AAp 2| Noe o e ? T A
TAY A -y Al 2| \ M T A
TS x S .x BAl 2| ¢ | ey e s
Tx A x-A gal 2t N ? T
Txs x -5 9al 2| 1 A . P
Ty v -aA gl 2] ¢ [l B)
o ADD 1tg N IF PAGE BOUNDARY 15 CROSHED] INDE X X . AN » MEMI Y BT
oo s S s
b CARRYNOT BORROVY 4 ACCUMuLATOR \ AND . NO CYCLES
e F N DECIMAL MODE = 6 LAG 1S Ny ALID M MEMURY PEREFEEC TV E ADDRE S v 08 . NO BYTES
ACCUMULATORMUST BE CHECRED FOR JERO RESULY My MEMORY PERSTACR PORTER v Friiuspt on

