
TYNE & WEAR

USER GROUP

MarchIApril 1997
Poblished by TWAUG Edit& & Rinlcd by AMG

~ ~ ~ b y a u t i l o t s , I n t h E s
n , isrt\ekmm op5rrionawd
*nstwemtthe*d
TWAUG.
The At& Fuji symbol md M m e
am the tradefTlwks d Atad Caa-
p@mwrt. The F* symt>sr bll we front
cover, Is far infornr- puqmm
rn&.
TWRW fs antirely indepewht 86d
is in notfay conMwithktar3
coFpxm or my zbsw&e

D o ~ ~ t o ~ a ; 3 U a n ~ ~
WAUG fm P Ct#ft then phone
klan m: 0 1 670 - 82242 LEB2

It k dffkxilt, whm urr-mwpd, with
only the un-emplognrsm t.mwR4
comim into ttfe house to keep up the
suMptfon , we sincereigc sywipaWa
with myone out of WO& but why not
be a writer.

PUBLISHING!
This new look newsletter is set
up with the Desktop Publishing
program "TIMEWORKS 2", on
the Mega 1 ST with 4 meg
memory. Files are converted to
ASCII and transferred to the ST
with TARI-TALK. Those files
are then imported into the DTP
and printed with the Canon BJ-
30 Bubble Jet Printer at 360 dpi,
with excellent result.

TWAUG

TWAUG subscriptions
Home 1 Copy £2.50
- DO -..... 6 Copies.. £1 2.50

Europe 1 Copy £2.50
.... - DO - .6 Copies.. £1 3.50

averseas ... 1 Copy f 3.50

-- DO -- 6 Copies.. £16.00

Issue 27 is due mid-May 97

I ISSUE CONTENT
........................... REMINDER & NEWS 2

......... CONTRIBUTIONS & CONTENT 3

... LETTERS 4

REPLY ... 7

................................... CODING CAPERS

... by TOM0 10

M. Tornlin describes content of issue disk

... and SALE 13

GRAPHICS DISPLAY LIST
by Mike Rowe 14

... BIT WISE

...................................... by MikeBibby 19

.. ATARI ASSEMBLER EDITOR CART.

DISK CONTENT 34

USER GROUPS ADVERTS
for LACE & OHAUG 35

ADVERTISING ..
MICRO DISCOUNT 36

Letters
27th January 1997

Dear Max, John and Alan,

You ask how many subscribers use
an Atari ST as a second computer. I
do for one! It gets very little use in
comparison with my 800XL but, if
some ST articles appeared in the
newsletter I might use it more. My
B-bit is quite ancient now, (aren't they
all?), and there must come a time
when it packs up and cannot be
repaired. I am dreading that moment
because I have a huge amount of
disk files which I would hate to lose.

Porting them across to my ST would
be a solution because, unlike the
B-bit, there are still numerous
second-hand ST's on offer, and
several firms repairing them. But I
haven't the faintest idea of how to go
about connecting the two computers.

l think we have the basis for a
'ull-blown article here; somebody
nust have done the job so would
'hey write about their
2xperience ,...... please!! Is the
iardware/software still available?
Nhat price and where? Is there a
J.i.y hardware kit and, once the two
ire connected, how difficult is it to
jetting them to respond.

use TARI-TALK for such transfers. It
would be great if one of you could
find the time to write of your
experience with it, although I have
been told that particular interface is
no longer on the market.

I have one small criticism concerning
the newsletter. Recent issues seem
to contain mostly programming
articles. I still read them but,
considering the age of the 8-bit, feel
that most of us have trodden that fielc
before. I realise it can't be easy
getting the right mix, especially if
peopie are noi sending you articles.
Perhaps our American friends could
be persuaded to part with some of
their published articles. You have
printed the odd one in the past.

Despite criticising I, for one,
appreciate your dedicated, hard work.
The new style newsletter is much
easier on the eyes now using the
bigger font, and improved layout.
Thanks also must go to all contribu-
tors who, obviously, spend a lot of
time and effort producing material to
keep us, the readers, happy. Also,
special thanks to John Foskett for his
work on the Issue 25 disk. Together
with all his previous contributions, he
must have sent TWAUG a terrific

tour publishing details mentions you amount of material. Although not a

Letters
games man myself, I do enjoy your
demos, John.

Best wishes to TWAUG for the future.

Sincerely,

Dennis Fogerty.

PS. The Textpro disk file of this letter
has been saved on the enclosed disk.
Should save you a bit of typing if you
want to print part, or all, of this letter.

P.P.S. You often provide 'ARCed'
files on your disks but I don't ever
recollect seeing the documents for
this utility. Also on the enclosed disk
is the file SARC24.ARC which
contains "Super Arc", "Super Un-Arc"
and relevant documents (1 1 pages). I
have taken SARC24.ARC from the
A.I.M. disk AprilIMay 1991. 1 have
found the docs very useful - hope you
do too.

Monday 17th February 1997

Dear Max,
In response to your "Survey", I
enclose my subscription along with
this letter ... late due to operation after
hand-injury! (Can't write/cycle/drive!!)

The &bit computer has followed us
wherever we moved to ... this home
some 10 years ago! We've since
gathered a family of three ... who also
use the &bit. We've also recently
bought (cheap?) a (new) Jaguar
(M O) ... it seems a good game-
machine - the children enjoy it. I'm
not certain whether games are
available ... but it came with two
games! We have many, many games
for the 8-bit.

We bought a "Mega 1" some years
back, and attached a hard drive. We
have drive "B:" in S1/4 and 3l/2. The
thought being that I could always
consume surplus disks from the
8-bit ... that drive has been des-
perately under-used! The Mega has
since been upgraded to a Mega 4.
The children like to play games on it
too ... though it has been used
extensively for word-processing as
the keys are easier to program for

Letters
complex chemical formulae!

The &bit takes less time to load
Textpro", and has also been used
extensively for word-processing. It is
attached to a daisy-wheel printer
(bought cheap) as it prints directly to
envelopes ... not so with the
dot-matrix attached to the Mega.

Due to the support of music we have
remained loyal to Atari, though 1 have
recently bought a PC (£20) for further
word-processing. It is also possible
that I'm going to get a 166 MMX for
extensive graphics for a small
business i'm running.

I've enjoyed staying with Atari, and
won't be getting rid of any of the
machines. I've gathered a small
supply of surplus Sbits so each of
our children can have their own! It
also suffices as an instant spares
supply!

What a long-winded letter ...

Terry R. Weizemann

Games for Jaguar are available, read
"REPLY section at the end of the
"Letters'. -

Max, -
Re your query about articles on the
Atari ST - I personally would not be
interested.

I use a PC 386 DX40 in addition to
my 800XL, and use S102PC to
handle all my Atari files on the PC's
hard disk - works like a charm!

All the best

Terry Chamberlain

2711 I97

Dear John L? Max,

Enclosed cheque for 6 copies. Thank
you for the hard work you are putting
in, which the results justify.

I am at last, having a serious look at
"Cracking the Coden, and have
dusted down my old assembler!

Keep battling,

Allan Doyley

Letters
Please find enclosed cheque for
£12.50 for 6 issue sub.

With regards to your ST Survey I
would be pleased if you did include
ST articles in the newsletter as I feel
that I am not getting much out of the
newsletter particularly issue 25 which
dealt mainly with programming. Also I
recently picked up a 520 STFM for
E30 and I am currently looking for a
suitable printer, so articles on WP
and DTP would be welcome.

Gordon Tully

Dear John

Please find enclosed a cheque &
order form for the next six issues of
~ewstetter.
Thank you "Collectively" for your
sfforts in the past & those to come, it
S always looked forward to, and the
=ontents are most useful.

Thank you all again,

4tarily yours

Dear TWAUG,

Please find enclosed my subscription
for the next six issues. In particular I
am enjoying the BIT-WISE and
DISPLAY LIST articles at the
moment. As to whether to include ST
articles in the magazine I would
welcome it since I have an ST also,
which I bought without any manuals. I
would be interested to read any
information about it although I still
enjoy the 8-bit as well and don't see
any problem with including articles
about both computers in the
magazine.

Yours
Brian Walker

WOW!!!
What a pleasant surprise, all that
correspondence! I am simple over the
moon, keep it up and keep sending
those letters, at least I now know that
you are enjoying reading our
newsletter. Your mail can be critical
or complementary they are all welco-

me. Our thanks to all for your reply.

And now I would like to reply to each
letter individually.
The first reply is to Dennis Dogerty's
letter.

There are a number of ways to port
8-bit material to the ST. Tari-Talk is
an easy way to transfer Word
Processor files, DOS files and
Listings, but unfortunately Tari-Talk is
no longer available from Page 6. We
will try and find out what's available
and let you know. The STXFormer is
also a cheap way of porting 8-bit
material to the ST. It is an emulator
and it's a cable you plug into the back
of the 1050 drive and into the printer
port of the ST. When using
Nul-Modem you also need the 850
Interface, or there is the Black Box
that does the trick also, but these last
two items cost money to purchase.
The first two items are less
expensive.

Terry Weizemann thinks his letter is
long-winded, not at all. It is always
nice to hear from our members what
zomputers they got and what they are
~ s e d for. 16132 System is advertising

the prices range from £25.00 to
£60.00. The address is:

16/32 Systems

173 High Street
Strood, Kent, ME2 4TW

Tel: 01 634 - 71 0 788

Dr.Terry Chamberlain isn't interested
in ST material which is quite
understantable not having an ST. Thc
TWAUG newsletter is an 8-bit
missive, first and formost and wi!!
remain so. I do not intend to fill the
newsletter with ST material, the idea
is to include article that will help our
members to manage their machines
better. According to the replies a
number of our members would like to
see ST material to help them with
their problems.

I must thank Allan Doyley for the
complimentary note and I am very
pleased that you are having a seriou:
look at "Cracking the Code". At least
know that all my typing it out wasn't
for nothing.

I am sorry Gordon Tully that issue 25
wasn't particularly appealing to you,
rest assured this issue sees the last
of those articles. I had requested
some feed back before I started
those articles and none came, so I
presumed that every body was
satisfied with those articles.

The article for beginners was
requested and so was the Display
List article. The Binary Code articles 1
put in because at the time I needed
some material to fill up the pages and
I had nothing else on hand, and as I
said above I had no feed back.

But when you read Brian Walker's
letter you will see that the BIT-WISE
and DISPLAY LIST articles are
appreciated.

Frank Aitkin is also very satisfied with
our newsletter, thank you so much for
your note.

Your letter, Brian Walker, gave me a
real buzz, knowing that there are still
members, who enjoy the material I
put in the newsletter. Even so these
articles aren't new they are still very
in interesting to read. Not every body

likes to read that type of material but
these articles, especially Display List
comes in handy when you are playing
about with demo programs. So thank
you Brian for your letter and I will do
my very best to include in future
issues material to help you with your
ST.

Coding
MUSICAL REFERENCE

written by TOMO.

Hello there again, as you see I have
got round to writing another subject
for you after all! Actually, the subject
I'm referring to this issue should have
been part of "appendix B1: SOUND
AND MUSIC" in my programming
manual, but since it didn't quite get
included, here it is for all to use.

On your Atari, you have a full 9
Octave musical scale, but little does
everyone realize how to a m s s it. It's
all to do with location 53768; $D208.
See my manual, page-1 26 for full
details. When the Atari is powered-up
or initially turned on the 64KHz clock
is set as default, but this clock on it's
own can only access about 7 octaves
properly. The other 2 octaves can be
accessed with a 15KHz clock, whilst a
3rd clock of 1.79MHz can be used to
access all 9-octaves and at a higher
level of tuning precision, although
having the gain of power also has it's
drawbacks.

The table of figures that I've included
here in this article are for reference
purposes mainly, and they show
every one of the Atari' musical notes
over all of it's 9-octaves and

throughout each of it's 3 clocks.

Very quickly, the reason behind PAL
AND NTSC tables is because the
clock frequencies are fractionally
different (shown at the base of each
scale). You don't have to veer away
from the more popular NTSC values
since the actual difference to the
human ear is fairly insignificant
unless your a professional musician.
If in the case you are a pro. musician
then you might find fault in the
temperament of my scale. Note, it's
not set at the international standard
or the concert pitch. It's actually
slightly above international, but don't
let me lead you to think that POKEY'S
strings wouldn't take the stretch! If
someone wants to improve on it then
please go ahead!

In addition, you'll notice that I've
supplied the fractional part (to the first
digit) of each frequency value in the
15KHz and 64KHz clocks. This is
simpty there to show you how near
(or far) the Atari pitch is from the
aimed pitch. Anyway, since you can
only use the integer value as the
frequency, you should realize that
frequencies with the same integer
value are there simply to allow you to
make your own mind up concerning
which note this integer belongs too.

Have fun!

Oh, as a last point. The clock
frequencies were all calculated via
the given facts of the crystal
oscillations (listed below) given to me
in kindness by Terry Chambertain,
thanks for all your help Terry! The 2
main (fastest) CPU clocks are easy to
achieve by dividing the CPU crystal
by 2, however, the 64KHz and 15KHz
clocks are achieved by 2 division
ratios, 56 and 228. Divide by 56 to
obtain the 64KHz clock and 228 for
the 15KHz clock! Simple when you
know how isn't it!

CRYSTALS:

PAL-CLR-CLK = 4.43361 8MHz "
CPU-CLK = 3.546894MHz 1 2 =

1 -77345MHz

NTSC-CLR-CLK = 3.579545MHz "

CPU-CLK = 3.579545MHz 1 2 =

1.78977MHz

Until next time, have fun.

MULTIPLE FONT
OUTPUT ON THE 1029
written by TomoHawk.

Although the Atari 1029 printer isn't
very much of a qualitable output
compared to many other printers, it
still is used by some I'm sure, so I've
sent you a program that will print your
desired files, programs or text on the
1029 in any computer font you like.
All you have to do is run the program
and when option-D is selected to use
a computer font, just insert a disk
containing *.FNT files. Just use the
OPTION and SELECT keys to pick
the font file of your choice, press
START and the font will be converted
into a 1029 font during load.

In actual fact, 1029 fonts are only
7-rows deep, so l-row of the
computer font has to be lost. The
current condition of my program gets
rid of the bottom row of a computer
font character. If you wanted to get
rid of a different row then you can
sort it all out by changing the
successive numbers in the array 'NA'
on lines 280-292.

The actual characters of a computer
font are uncoded from their normal
horizontal binary sums and recoded
into vertical sums. For example;

Coding Capers
128643216 8 4 2 1

1 0 0 0 0 0 0 0 0

2 0 0 o x X 0 0 0

3 0 O X X X X 0 0

4 0 X X 0 0 x x o
5 O X X X X x x o
6 O X X 0 0 X X O

7 O X X 0 0 X X 0

8 0 0 0 0 0 0 0 0

If the above X's denoted the bits set
in a computer font character, then the
binary sum for row-l would be 0,
row2 15+8 = 24 and so on ... But the
same character on the 1029 would
have to be uncoded from these sums
to the pattern above, and then
recoded horizontally like so:

C - l C-2 C-3 C-4 C-5 C-6 C-7 C-8
128 no such row---------

6 4 0 0 0 0 0 0 0 0

Instead of coding them vertically, they
would now get coded horizontally, so
col-l would be 0, col-2 8+4+2+1 = 15
etc..

Anyway, I'm sure you follow. Hope
this piece of text and program comes
in useful for you. Happy computing.

Looking for more 1029 printer
utilities? There is a double sided disk
of just such utilities in the TWAUG's
library.

This disk is crammed full of goodies:
Picture Dump program

Poster printer program

Print Shop utility program

Screen Dump, List 1029, Label
Printer, and much more.

Library Number W433

There is another very good program
available from MICRO DISCOUNT

it's called PRINT-WORKS, it is a
Document Processor for the Atari
1 029 printer.

'Hi' Guys.
I have been meaning to contact you
for a long time, but being short of
money I have not been able to send
of for a subcription. John Foskett
from Kingston told me that you were
short of things to publish, and I hope
these few things will help you.

Find enclosed disk Side B (boot with
basic) an article on making power
supply units for the Atari &Bit
Keyboard, which you may see fit to
publish as an article or include in your
P.D. library, i f you have one it's up to
you. Also on Side B of the disk you
will find all the documents, and a
program from Analog Mag which will
print out the circuits for you, on an
Epson or compatible printer. I don't
know if you like hardware articles, but
it could help somebody out there who
understands the basics of electronics.

On Side A of the disk you will find a
National Lottery Calculator program I
wrote which you may see fit to use
also a Program which will dump
Colour 62 sector picture files to a
Citizen ABC colour printer in full
colour. The colours which you can
select from within the program before
dumping to the printer by pressing
keys 1 to 4 on the keyboard to select
the colours you wish your printer to
print. I don't know if this program will
work with any other make of colour

printer, but I should think it will. I also
have put on Side A of the disk a list of
Epson printer codes (Mini Office I1
file) a Doc file which will print out in
colour the code's which controls
Citizen printer for large text, wide text,
colour printing, ect., these printer
codes should also work OK with other
Epson compatibles. Side A also
covers a project on building an Epson
or compatible printer interface which
you may find a use for. Read all
documents before use. In fact you will
have to print them out to read them
properly. Also a doc file for the Atari
Assembler Cartridge and a doc file for
MS-DOS commands Versions 3 to 5

Yours sincerely,

M.Tomlin W.A.C.O.

SALE
Atari 800XL Computer, 1050 Drive,
850 Interface, all leads and power
units, 2 joysticks over 100 games and
Star-LC10 printer

£70 or near offer

contact: G. Lewsley

225 Homethorpe, Hall Road

Hull HU6 9HP

Tel: 01 482 - 856 179

GRAPHICS - DISPLAY LIST

MIKE R O W ' concludes his series on how to produce
brighter displays

modes?

T HIS issue's article, the last in Firstly there is another Antic mode
the series, takes a look at which is not supported directly by any
some non-standard graphics of the current machines. This is Antic
modes and rounds off with Mode 3, which can be obtained easily

non-standard display. by creating your own display list.

Right at the beginning I said 16 It is essentially similar to Graphics 0
modes were available to the Atari but with one difference - it allows true
user, but this can be stretched by a descenders. That is, the tail in the
further 12 modes when you include small y comes properly below the rest
text windows where available. of the letter.

In reality things are not this simple.
These 28 modes are only those
directly available using the operating
system on XL and XE models only.

Graphics modes 12-15 are available
on the 400 and 800 but only by
creating your own display list as
demonstrated in the second article in
the series.

In reality it is possible to get many
more modes than this -would you
believe over 100 different graphics

This is because it interprets the data
for the character differently. A normal
character is 8 pixels wide by 8 lines
deep. In Antic Mode 3 it is 10 lines
deep and the two bottom scan lines
appear blank. In addition some
characters, notably lower case as
well as a few others, are displayed
with the first two bytes of the
character appearing at the bottom of
the character.

As you might imagine, the standard
character set would not be suitable

GRAPHICS - DISPLAY LIST

for this mode. You really need a
custom set.

In the example in Demo 1 I have
used the internal set for briefness.
However, I have offset the character
set one byte lower and moved the
lower case set's last bytes to the first
bytes. This gives a workable version
of the character set.

In addition, to show the true lower
case, I have redefined some of the
characters to give true descenders.

Secondly several useful modes are
based on Graphics 9, 10, 1 1. The first

0 to 15 are poked here in the use of
player-missile graphics to decide
priority - that is, which player shows
in front or behind what.

However numbers from 64 up - bits 6
and 7 - will enable the GTlA modes.

If in Graphics 8 you POKE 623,64 (bit
6) you get Graphics 9. POKE 623,128
(bit 7) gives graphics 10, POKE
623,192 (bits 6 and 7) gives Graphics
11.

Leading on logically from this, the
same could be done in any mode.
This gives a theoretical maximum of

52 full
screen
modes

with text

Ataris produced did not have windows.

Gra~hics 9 - 11. That is a staggering 104 graphics

Before late 1979 the computer had a
chip called CTIA, which provided
Graphics 0 to 8 only. After this they
fitted the GTlA chip allowing the three
new modes.

In fact the display list is exactly the
same for these modes as it is for
Graphics 8.

The secret of the difference lies in
memory location 623. Numbers from

modes.

Don't det too excited. This is indeed
possible, but most of them are quite
useless, some are identical to others
and all the text windows are illegible.

The last point can be circum-
navigated and will be dealt with later.

Probably three new modes are
definitely usable and significantly
different. These are shown in Demos

GRAPHICS - DISPLAY LIST

II and Ill.

Demo II is a 7 colour 80x96 mode
which takes only 4k of memory.
Essentially it is a cross between
graphics 7 and Graphics 10. For
some reason you can only get seven
out of eight colours of Graphics 10.
Notice also that the colour registers
used are not 0-7 as expected but are
as in Table I.

Apart from this, the mode is just like
Graphics 10 but with half the vertical
resolution and half the memorv

If the other characters are printed
they appear as an allowable
character but in a different combina-
tion of colours. This is much the
same as Graphics 2 and is how the
different colours are obtained.

However this cannot explain the
availability of seven colours. This
occurs because of the way the
character set data is interpreted. A
normal character is lit pixel by pixel
controlled by eight bits giving a
horizontal resolution of eight per

usage. Similar hybrid
modes can be used
with Graphics 9 and
11 but are probably
less useful.
Demo Ill is a seven
colour 20x1 2 text
mode which is a cross
between Graphics 2
and Graphics 10 (by
using Graphics 1 a
seven colour 20x24
mode can be
obtained). Again,
because of the way
the operating system
works, seven colours
as above are available. Also, as
Graphics 2 proper, only 64 different like Graphics 12 (Antic 4) in that the
characters can be displayed at once - eight bits give a horizontal resolution
characters 32 to 95 -space to Z. of four per character - that is, each

GRAPHICS - DISPLAY LIST

pixel of the character is controlled by
two bits allowing control over the
colour of each pixel. The character is
therefore laid out as in Figure VI.

In graphics 12 this gives four colours
(five with inverse) but in addition to
the other method of colour selection
mentioned before seven colours
become available in the new mode.
Therefore a custom character set is
essential.

Due to the peculiarities of this mode,
normal capital letters do not show up.
Lower case and inverse will print the
character in different colours as will
printing characters 0-31 and 96-1 27
normally and in inverse. This is not
straightforward in the way it occurs,
and is best discovered by experimen-
tation.

All the GTlA modes interpret
character set data like this and this is
why the text windows are illegible. A
text window is easily obtained,
however, by using Display List
Interrupt to change back from the
GTlA mode at the text window. This
is shown in Demo IV, but the principle
will work with any GTlA mode.

Some of the examples above may be
difficult to grasp at first, especially Ill,
but if studied carefully they are
reasonably straightforward. Feel free
to experiment with the programs to

discover more.

Finally, to illustrate the power of the
display list, I'd like to answer a
problem posed by a reader. He wants
a display comprising one row of Mode
2, 11 2 rows of Mode 15 and eight
rows of Mode 0.

Although quite possible this is far
from the easiest combination of
screen modes. Firstly he has based
his screen on an 8k mode - Graphics
15.

You may remember I mentioned any
screen display crossing a 4k
boundary needs a new load memory
scan instruction in the display list
where the 4k boundary is crossed.

In the 8k modes this therefore means
that the list of mode numbers is
interrupted half way down by three
numbers.

The first is the mode number - say 14
for Basic mode 15 - + 64. This tells
the operating system that the next
two numbers are the low and high
bytes of the screen memory after this
point, that is the points to the next 4k
block of screen memory.

If you now interfere with the display
list above this the screen memory
may well no longer remain consecu-
tive at this point.

The second problem lies in the

GRAPHICS - DISPLAY LIST

decision to have a Graphics 2 line at
the top of the display. This obviously
causes problems as above. However
in addition this mode requires only 20
bytes of memory per line. Graphics
15 requires 40 bytes per line.

As the OS expects 40 bytes per line
everything below the Graphics 2 line
will be offset by half the screen. Also
the second 4k block of screen
memory will be 20 bytes out of
alignment with the first 4k of screen
memory.

So much for the problems. Now the
solution!

Well there are many solutions really
but I think the easiest and probably
shortest is shown in Demo V.

Here I have considered each of the
three modes as individual screens. I
started with a Graphics 15 full screen
display, changed the top line to
Graphics 2 and kept a track of the
location of the start of screen memory
for this line in L01 and HI1 .
I then inserted a new load memory
scan instruction (LMS) and offset the
screen memory for this by 120 bytes.
This is to avoid the necessity for
moving the location of the later LMS
which is there to cope with the 4k
boundary which is crossed by
Graphics 15.

I again kept track of the start of this
block of screen memory in L02 and
H!2. Finally after the requisite number
of Graphics 15 lines I again inserted
an LMS for the eight Graphics 0 lines.
The display list is ended straight after
this.

Now we have the display needed to
treat each part as a seperate screen
or possibly as a sort of window. This
means as well as poking the mode of
the area of screen we are using into
location 87, we must also poke the
start of memory fot that block of
screen into 88 and 89.

The easiest way to do this is as a set
of subroutines to be called. This will
also mean that each block starts at
location 0,0, thus avoiding printing to
position 1 17,4 which could otherwise
occur. The OS would not allow this in
Graphics 0.

Phew - glad I got that off my chest. I
think I'll take a break now.
THE END.

BIT WISE

~ --p-

numbers our micro works in.

We have seen that its memory is
divided up into bytes - a set of eight
two-state, binary units called bits.
Each bit can have the value 1 or 0.

If a bit has the value 1 we say it is
set. If a bit has the value 0 we say it
is clear.

As we're dealing with eight bits at a
time, we can use various combina-
tions of the bits in a byte to code any
whole number (integer) in the range 0
to 255.
To do this we associate a code
number with each bit. Figure I shows
the scheme.

Our eight bits are labelled b7 ... b0 and
the numbers associated with each
number are shown above each bit.
(The more mathematical among you
will see that they're in ascending
powers of two.)

To discover the value coded in a byte
we simply add the numbers
associated with every bit that is set
(l) , ignoring all clear bits (0). So:

%10101000

codes the number:

1 2 8 + 3 2 + 8 = 1 6 8

We also learned to
do tricks with, or to

put it more properly, manipulate,
binary numbers. We could create the
complement of a number - a sort of
binary opposite - by changing every
clear bit to set ("setting" the bit) and
changing every set bit to clear
("clearing" the bit).

So the complement of the number:

%10101000

gives us:

%01010111

We can add and subtract binary
numbers, as well as multiply and
divide. We learned other ways of
combining them too, with the logical
operators AND, OR, EOR.

EOR, which stands for Exclusive OR,
is also called XOR.

When combining two binary numbers
under the influence of these
operators we compare each bit in one
number with the corresponding bit of
the other.

Then, according to a rule which
depends on the operator we're using,

Match/April 1997 19

BIT WISE
we decide whether that particular bit
(the result bit) in the "answer" byte is
set or clear. Table I shows the rules
for the operators.
As we've said, a micro's memory is
divided in to byte-size compartments,
called memory locations. Each
location has a number associated
with it so we know which one we're
talking about.
These numbers are known as
memory addresses.

Much of what a microprocessor does
involves meving infcrmatio:: - i:: :he
form of binary numbers - from one
location to another.

If you cast your mind back to earlier
articles, I said that each bit was like a
switch - its two values 1 and 0 could
be used to signify that the switch was
on or off respectively.

Imagine that we could wire up one of
our bits to a machine's onloff switch.
Then by setting that bit we could
switch the machine on, and by

l I
Table I: Rules for logical operators

clearing it we could switch it off.

This sort of thing is possible, though
we'd need to use some clever
electronics. In fact, since we deal with
eight bits at a time, we could arrange
things so that a single byte controlled

Figure I: Values associated with bit positions

the on/off status of eight separate the control byte with new numbers.
machines -each machine m7, m6 ... Loading it with:
m0 corresponding to an individual bit %11110000
of that byte, b7, b6 ... bO. We'll term
that byte the control byte. is one way of switching off half the

machinrx . . . -
We call such arrangements
memory-mapped output, since what Sometimes, though, we might want to

we put in memory maps, or sets the switch a particular machine or two on

pattern for, or off without knowing (or caring)

what whethe

happens in r the

the outside others

world. Most are on

microproces- or off.

sors support This
this or some means
similar sort of output. Figure II shows
the type of scheme we mean.

Assuming we've got things connected
up properly, if we then load the
control byte with:

% l l l l l l l l
all the machines would be on.
Remember that i f a bit is set the
corresponding machine is on. If we
want to switch all the machines off,
we can load the control byte with:

%00000000
And, of course, we can have any
onloff pattern of machines, setting or
clearing the relevant bits by loading

we need some way of affecting only
the bits controlling those machines,
while leaving the others unchanged.

Suppose we wanted to switch off a
machine - say m6. We can do this by
making b6 of the control byte zero.

To clear that one bit to zero we AND
the control byte with another byte -
called the mask - the bits of which are
set (1) except for b6, which will be
zero. That is, we AND the control
byte with:

%10111111

We then make this result our new
control byte, and off the machine

BIT WISE
goes.

To see how it works in practice, let's
assume that initially all the machines
are on, so the control byte is:

%11111111

To switch machine m6 off we must
AND it with:

K10111111

The sum is:

As you can see, the outcome is that
when we update the control byte with
the result, m6 is switched off while
the others remain on.

The trick isn't hard to see. Let's
consider things from the point of view
of bits in the mask. If the bit is a 1,
when you AND it with the relevant
control bit the resulting bit is the
same as the control bit. That is,
ANDing a bit with 1 leaves that bit
unchanged.

Think about it. If the control bit were
1, then as 1 AND 1-1, you're with 1.
The bit's unchanged.

If, on the other hand, the control bit
were 0 then, as 0 AND 1-0, the bit

remains unchanged as 0.

In other words bits in the mask with 1
in them leave the corresponding
control bit unchanged.

So for machines whose onloff status
we don't want to alter -we may not
even know if they're on or off - we set
the corresponding bit in the mask to
1.

However if the bit in the mask were
clear (0) it wouldn't matter what the
state of the original control bit was -
the result would still be 0.

Say the control bit was 1, then as 1
AND 0=0 the resulting bit is a 0.

Alternatively, if it were 0, since 0 AND
0-0 the resulting bit is again 0.

So bits in the mash with 0 in them set
the corresponding bits in them set the
corresponding bits in the result byte
to 0.

This means to switch specific
machines off we construct a mask
consisting of 1 S for the machines we
wish to leave unchanged and OS for
the machines we want off - in the
appropriate bit positions.

We then AND the mask with the
control byte and then make the
resulting byte the new control byte.

BIT WISE
Fine, but how do we switch on
specific machines?

Well, we update the control byte by
ORing it with another mask. This time
we put 1 in the bits corresponding to
the machine we want on, and 0 in the
bits corresponding to the machines
whose onloff status we wish to leave
unchanged.

This works, since when you OR a bit
(whether 0 or 1) with another bit
whose value is 1, the answer is 1.

That is 0 OR 1 =l and 1 OR 1 =l.
So ilsing a 1 ir; :he relevant bit of a::
OR mask will set the corresponding
result bit. When this becomes the
new control byte the corresponding
machine will be turned or left on.

control byte (no matter what value)
with 0 leaves that bit totally
unchanged since 1 OR 0-1 and 0
OR 0=0.
So when we OR the bits of the mask
that are 0 leave the corresponding
bits of the control byte unchanged.

This means, to switch specific
machines on we use a mask
consisting of OS for the machines we
wish to leave unchanged, and I s for
the machines we want on - in the
appropriate bit positions.

We then OR that mask with the
control byte and make the resulting
byte the new control byte.

Hence, to ensure that m6 is definitely
on, we OR the control byte with:

On the other hand, ORing a bit in the %01000000

BIT WISE
For example, if m6 is off, and all the
rest on, to switch m6 on we do the
following:

% l O l t l l l f control byte

AND OmOtOOOOOO mask
%11111111 New control

I byte

Of course, both AND and OR have
uses for the micro enthusiast other
than controlling machines.

To illustrate one, consider the Ascii
character set. The codes for A to Z
are in the range 65-90, while their
lower case equivalents, a to z, are in
the range 97-122.
Looked at in this decimal way, there
seems little relation between the
upper and lower case sets. If we look
at them in hex, though, we can see
that:

A...Z runs from & 41 to & 5A

a...z runs from & 61 to & 7A

I hope you can see the pattern.

In fact the numerical Ascii difference
between a lower case character and
its upper case equivalent is always
& 20. Looked at in binary, this
difference is %00100000. In other
words, bit five is set for lower case,

and is clear for upper case -
remember, we start with the zero bit.
For example, the code for A is:

%01000001

whereas the code for a is:
%01100001

Similarly, the code for Z is:

%01011010

and the code for z is:

%01111010

In both cases the only difference is in
bit five.

So if we have an Ascii code for a
letter, we can force it to be upper
case by clearing bit five to zero. We
can do this by ANDing the code for
the letter with the mask % 11 01 11 1 1
(& DF).

Remember, the bits in the mask that
contain 1 will leave the corresponding
bits in the Ascii code for the letter
unchanged in the resultant byte,
whether they be 0 or 1. On the other
hand, the bit in the mask with 0 in it
will force the matching'result bit to be
zero.

So:

BIT WISE

It won't surprise you to learn that we
can reverse the procedure - forcing
upper case into lower case - by using
OR to set bit five. This time the mask
will be %00100000, the OS leaving
things unchanged in the resultant
byte, the 1 forcing a corresponding 1
in bit five of the result bit.

So:

One further use for AND is to tescif a
particular bit in a byte is set. We just
AND that byte with a mask consisting
of a 1 in the bit being tested, with OS
in all the rest. The bits with 0 in them,
of course, set the corresponding bits
in the resultant byte to zero.

Since the rest of the bits are already
cleared to zero by the mask, the only
thing that could stop the entire
resultant byte being zero is the value
derived from the bit under investiga-

tion:

0 If that bit is set, the correspond-
ing result bit will be set also (1
AND 1=1) so the resultant byte
will be non-zero.

0 If the bit being checked is dear,
the corresponding result bit will
be clear (0 AND 1-0) so the
resultant byte is zero.

In machine code we can differentiate
between zero and non-zero bytes
fairly easily.

Let's see how this works in practice. If
we were testing for bit four being set,
the mask would be %00010000.

Try ANDing this value with
%W1 101 00, where bit four is set, and
also with %00101100, where bit four
is dear, and you'll see that the
resulting bytes are non-zero and zero
respectively.

So what of EORIXOR? Well, its
function is to return a 1 if the pair of ,

bits being combined differ, and 0 if
they're identical. Given this, we can
use XOR to test which bits in a byte
differ. For example:

out the

%11111111. Since themaskis all Is,
the result depends entirely on what's
in the byte under investigation. Bits
that contain I S will give 0 (since 1
EOR 1 -0), while bits that contain zero
will give i, since 0 EOR 1 =l. -

This is exactly what we want to which is, of course, non-zero, since

h a ~ ~ e n with a NOT - chanae the OS the bytes differ.

to 1s and vice versa. For &am~le: We've probably already mentioned
the use of EOR in graphics
application programs where it's widely
used for its "hey presto" effect. This
is based on the fact that if you EOR a
first byte with a second and then EOR

We can also use EOR/XOR to test if
two bytes are identical. If the result
when we EOR is zero, they must
have been identical since every pair
of bits must have given zero, which
only happens when the bit values are
the same.
If there's a non-zero result there must
have been a pair of bits that differ, so
the two bytes under consideration
must differ. For example:

the result of that once more with the
second byte, the first byte reappears.
Look at this, if you don't believe me:

BITWISE

We use this EORing technique to
draw things on a background and
then move on, leaving the back-
ground unchanged. In this case the
first byte is the background colour
number. If we then EOR our second
byte - corresponding to the colour
number of whatever it is we're
drawing - on to the background, it will
be displayed in the resultant colour
number. It's rather like mixing colours
mathematically.

To get rid of what we've drawn, we
draw it again with the same colour
number, once more under ine
influence of EOR. Of course EORing
twice with the same byte gives us the
original byte back. This results in
whatever it is being drawn appearing
in the original background colour. Hey
presto - it's gone.

Well, that's the end of the series.
Hopefully you'll have gained some
idea of the power of binary numbers
and the ways they can be combined.
I've only touched on a fraction of the
potential uses, but you'll be well
equipped to work things out for
yourself from now on.

ATARI ASSEMBLER

EDITOR CARTRIDGE

Summary of All Commands

Using the EDITOR

NEW Command:
This command clears the edit text
buffer. After this command you cannot
restore your source program; it has been
destroyed.
DEL Command:
This command deletes statements from
your source program.
DELxx RETURN:
Increment statement number by 10 after
each RETURN. The new statement
number, followed by a space, is auto-
matically displayed.
NUMnn RETURN:
Has the same effect as NUM, but the
increment is nn instead of 10.
NUMmm,nn RETURN:
Forces the next statement number to be
mm and the increment to be nn.
RETURN:
RETURN Cancels NUM Command.
REN Command:
This command renumbers statements in
your source program.
REN RETURN:
Renumbers all the statements in incre-
ments of 10, starting with 10.
RENnn RETURN:

ATARI ASSEMBLER
EDITOR CARTRIDGE

Renumbers all the statements in incre-
ments of m, starting with 10
RENmm,nn RETURN:
Renumbers all the statements in incre-
ments of m, starting with mm.

FIND Command:
FIND/SOUGHT/, RETURN:
Finds the first occurrence of the string
SOUGHT. The statement containing
such occurances are displayed.
FIND/SOUGHT/,A RETURN:
Finds all occurances of the string
SOUGHT. All statements containing
such occurrences are displayed.
FIND/SOUGHT/xx,yy,A RETURN:
Finds all occurrences of the string
SOUGHT between statement number xx
and yy. All the statements that contain
the string are displayed.
In these examples, the string SOUGHT
is delimited (marked off) by the charac-
ter I. Actually any character except
space, tab and RETURN can be used as
the delimiter.
For example, the command:- FIND
DAD finds the first occurance of the
character A. The delimiter is defined as
the first character (not counting space or
tab) after the keyword FIND. This
feature is perplexing to beginners; its
purpose is to allow you to search for
strings that contain slashes (/) or, for

that matter, any special characters. The
general form of the command is:-
FJND delimiter string delimiter [lineno,
lineno] [A] In the general form, sym-
bols within a pair of brackets are
optional qualifiers of the command.

REP Command:
This command replaces a specified
string in your source program with a
different specified string.
REP/OLD/NEW RETURN:
Replaces the first occurance of the
string OLD with the string NEW.
REP!OLD,NEW!xx,yy RETURN:
Replaces the first occurance of the
string OLD between statements number
xu to W with the string NEW.
REP/OLD/NEW/A RETURN:
Replaces all the occurances of the string
OLD with the string NEW.
REP/OLD/NEW/xx,yy,Q RETURN:
Displays, in turn, each occurance of the
string OLD between statements xx and
yy. Q stands for "query." To replace
the displayed OLD with NEW, type Y,
then RETURN. To retain the displayed
OLD, press RETURN.
In these examples, the string OLD AND
NEW are delimited by the character
"I". As with the FIND command, any
character except space, tab and
RETURN, can be used as the delimiter.

ATARI ASSEMBLER
EDITOR CARTRIDGE

For example, the command REP+RTS
+BRK+,A replaces all occurrences of
RTS with BRK. The delimiter is the
character "+".
The general form of this command is:-
[Q] REP delimiter OLD delimiter NEW
delimiter [lineno,lineno] [,A]
In general form, symbols within a pair
of brackets are optional qualifiers of the
command and the symbols within braces
(A and Q) are alternatives.
COMMANDS TO SAVE AND
RETRIEVE PROGRAMS LIST:
Saves or displays a source program.
PRINT is the same as LIST: but omits
line numbers.
ENTER: retrieves a source program.
SAVE: saves an object program.
LOAD: retrives an object program.
With each of these commands there is a
parameter that specfies the device that is
the source or destination of the program
that is to be saved, displayed or retrie-
ved. The possible devices are different
for different commands, and the default
device is also different Some of the
commands have optional parameters that
limit the application of the command to
specified parts of the program. The
parameter that specifies the device that
is the source or destination of the
program is written as follows:-
#E: is the screen editor.

#P: is the printer.
#C: is the Program Recorder.
#D[n]:FILENAME is a disk drive. n is
1,2,3,4, or 8 (RAMdisk).
#D:FILENAME is interpreted as Dl: A
program save on or retrived from a
diskette must be named ie:- (FILE-
NAME)
LIST Command. Example:-
LIST#D:MYFILE (diskdrive).
LIST#C(Prograrn Recorder).
LIST#P: (Printer).
LIST%E: (EditorflV Screen)
These commands are used to save a
m r c e file.
You can of course LIST some line
numbers as with BASIC ie:-
LIST#D:MYFILE,100,500 would list
lines 100 to 500 to disk from a source
code which starts at line 10 till 3000.
ENTER Command:
Used to enter a source file Example:-
ENTER#D:MYFILE ENTER#C:
Only a fool would try to ENTER a
source program from the EDITOR,
PRINTER.
PRINT Command:
This is the same as LIST, except that it
prints statements without statement
numbers. (line numbers)
SAVE Command:
FORMAT Example:
S A V E # C : ' < 1 2 3 5 , 1 7 3 6

ATARI ASSEMBLER
EDITOR CARTRIDGE

SAVE#D:MYFILE< 123,1736
Saves an object program residing in hex
address 1 to address 2 on cassette or
disk, the commands are:-
SAVE#D:<addressl ,address2
LOAD Command FORMAT: Command
LOAD#C: LOAD#D:MYFILE:
These commands will reload the
memory locations address1 to address2
with the contents that were previously
saved. The numbers address1 and
address2 are those that were given in the
original SAVE command.
USING THE ASSEMBLER
ASM Comqand:
This Chapeter is long and covers lots of
information. I shall brush over some
commands.
ASM RETURN:
On receiving this command, the Assem-
bler translates the source program in the
edit text buffer into object code and
writes the object code into the memory
locations specified in the source pro-
gram. When this process is completed,
the assembled program is displayed on
screen. You may specify that the assem-
bled program is to be stored directly on
diskette, useing any name (subject to the
resbictions of DOS).
In the general form of the ASM
command.
Example:-

A S M # D : S O U R C E , P : , D 2 : S E M -
BLED.OBJ RETURN:
The above command takes the source
program that you had previously stored
on disk and called SOURCE, assembles
it, list the assembled form on the
printer, and recordes on the diskette the
machine code translation of the program
(the object program). The object pro-
gram is given the name "SEM-
BLED.OBJW.
Note that the commands of this form
store the machine code on disk, not in
computer RAM.
The defadt value is the screen (#E:).
The other possibilities are the printer
(#P:), the program recorder (#C:), and
the disk drive (#D[n]:NAME.
To make a default selection, enter a
comma, as in the following usefull
command:-
ASM,#P: RETURN:
The above command takes the source
program from the default edit text
buffer, assembles and lists it on the
printer as before, and stores the machine
code (object program) directly into
computer RAM.
DIRECTIVES operations:
Summary Directives are instructions to
the Assembler. Directives do not, in
general, produce any assembled code,
but they affect the way the Assembler

ATARI ASSEMBLER
EDITOR CARTRIDGE

assembles other instructions during the
assembly process. Directives are also
called psudo operations or pseudo ops.
You will have to read the Assembler
manual for more information on Direc-
tives.
DEBUGGING:
The Debugger allows you to follow the
operation of an object program in detail
and make minor changes in i t A
knowledge of machine code is helpful
when you use the debugger, but it is not
essential. The debugger is able to con-
vert machine code into assembly
Iangluge (clkssezble), sc you cm
make code alterations at particular
memory locations. All numbers used by
the Debugger, both input and output, are
hexadecimal. The Debugger is called
from the editor by typing:-
BUG RETURN:
This produces on screen:- DEBUG:
The command to return to the Writer/
Editor is:- X RETURN.
DEBUG COMMANDS:
DR Display Registers
CR Changes Registers
D or Drnmmm Display Memory
(rnrnmm = Memory Range)
C or Cmmmm Changes Memory (Ditto)
Mmmmm Move Memory
Vmmrnm Verify Memory
L or Lmmmm List Memory with Disas-

sembly.
A: Assemble One Instruction Into
Memory
Trnmmrn: Trace Operation
S or Smmmm: Single-Step Operation
Gmmrnm: Go (Execute Program)
X: Return to EDITOR
BREAK:
Pressing the BREAK key halts ope-
rations.
EXAMPLES: DR Display Registers
DR RETURN A=BA X=12 Y=34 P=BO
S=DF
CHANGE REGISTERS CR< 1,2,3,4,5
?a?7JPS4
THE EFFECT OF THE COMMAND
ABOVE IS TO SET THE CONTENTS
OF REGISTERS A,X,YQ, and S to
1,2,3,4, and 5.
You can skip registers by using commas
after the <.
For example: CR<,,,,E2 RETURN
D or DISPLAY MEMORY
Dmmmm,yyyy where yyyy is less than
or equal to mmm shows the contents of
address mmmrn Examples-
D5000,O = 5000 A9
D5000 = A9 03 18 E5FO4C 23 91
D RETURN 5008 18 41 54 41 52 49 20
20
D5000,500F RETURN
5000 A9 03 18 E5 F0 4C 23 91
500B 18 41 54 41 52 49 2020

ATARI ASSEMBLER
EDITOR CARTRIDGE

C or Crnmmm Change Memory
Cmmrnm <yy changes the contents of
address mrnrnm to yy
Examples:- C5001 <23 RETURN
C500B<2 1,EF RETURN
C700B~3 1,,,87 RETURN
Mmmmm Move Memory
Mrnrnmtmyyyy yzzz copys memory
from yyyy to memory starting at
rnmmrn.
Address mmrnrn must be less than yyyy
or greater than zzzz
Example:- M1230<5000,500F RETURN
Vmmmm Verify Memory
Vmrnmm<yyyy yzzz compares memory
yyyy to zzzz with memory starting at
mmrnrn, and shows mismatches.
Example: -V7000<7 lW,7 123 RETURN
L or Lmmmm List Memory with Dis-
assembly
This command allows you to look at
any block of memory in disassembled
form.
Examples:- L7000 RETURN List a
screen page (20 lines of code) starting at
memory location 7000.
Pressing the BREAK key during listing
halts the listing.
L RETURN
This form of command list a screen
page starting at the instruction last
shown, plus 1.
L7000,O RETURN

These forms list the instructions at
address.
L7000,7000 RETURN 7000 only
L7000,6000 RETURN
L345,567 RETURN This form list
address 345 through 567
Note The command Lmmmm differs
from Dmmrnm in that Lrnmmm dis-
assembles the contents of memory.
Example:-
L5000,O RETURN
5000 A9 03 LDA #$03
This example shows that the Debugger
examined the contents of memory
address 5000 and disassembled A9 to
LDA. Since A9 must have a one-byte
operand, the Debugger made the next
byte the operand. Therefore, although
the Debugger was "asked" for the
content of location 5000, it shows a
certain amount of intelligence and
replied by showing the instruction that
started at address 5000. To illustrate
this, the number 03 corresponds to no
machine code instruction, so the Debug-
ger would interpret 03 as an illegal
instruction. However, if the first instruc-
tion you wrote was LDA $8A, then you
would have obtained the following,
apparently inconsistent, results while
debugging. Example:-L5000,OO A9 8A
LDA #$SA.
Because the disassembler starts dis-

ATARI ASSEMBLER
EDITOR CARTRIDGE

assembling from the f i s t address you
specify, you have to take care that the
first address contains the first byte of a
"real" instruction.
DEBUG
To assemble an instruction, first enter
the address at which you wish to have
the machine code inserted. The number
that you enter will be interpreted as a
hex address. Now type < followed by at
least one space, then the instruction.
A RETURN 5001<LDA $1234 RE-
TURN
5001 AC34 12 Computer Responds.
<alY ?\ETUT(lh!
5004 CB Computer Responds.
Since the mini-assembler assembles only
one instruction at a time, it cannot refer
to another instruction. Therefore, it
cannot interpret a label. Consequently,
labels are not legal in the rnini-assem-
bler.
You can use the Directives:- BYTE,
DBYTE, and WORD.
Grnmmm Go (Execute Program)
This command executes instructions
starting at mmmm.For example:-
G7I300 RETURN
Executes instructions starting at location
7I300.
Execution continues indefinitely. Execu-
tion is stoped by pressing the BREAK
key.

Tmrnmm Trace Operation
This command has the same effect as
Gmmmm, except that after execution of
each instruction the screen shows the
instruction address, the instruction in
machine code, the instruction in assem-
bly language (disassembled by the
debugger-not necessarily the same as
you wrote it in assembly language) and
the values of Registers A,X,Y ,P and S.
The execution stops at a BRK instruc-
tion (machine code 00) or when you
press the BREAK key on the keyboard.
S or Smmmm Step Operation
This cernmad has the SZEP effect as T
or Tmrnmrn, except that only one
instruction is executed. To step through
a program, type:-S RETURN repeatedly
after the first command of Smrnmm
RETURN
X EXIT To return to the Editor type:-X
RETURN

Compiled From the Atari Assembler
Editor Users Manual.

M. Tomlin. June l996 Textpro Ver.
1.2a (Document is 1 1 Pages to print
out).

DISK CONTENT

This issue disk content was supplied by M. Tomlin (WACO), and by A.
Thompson (TOMO)

This issue disk is full of programs and I am sure come in handy.

Most of these programs have been supplied by Mr. Tomlin and they
include:

EPSONBAS.GEN---for the Citizen ABC colour printer

PGWRlTER.COM,

TINITEXT.BAS

VIEWDOC.BAS

FORMAT.BAS

LOTTERY.BAS

CIRCUIT.BAS----that's on Side B

You will also find the doc files for these basic programs on the disk.

TWAUG has also included an Art program called PlXEL ARTIST.

Andrew Thompson has supplied us with his Coding Caper programs:

MUSICAL REFERENCE and MULTIPLE FONT OUTPUT for the Atari 1029

All in all a good selection of programs.

ENJOY

I ADVERTISING USER BRWPS

LACE

receive a momhly newslew
and have aclcess to a monthly
meeting. They also suppot? the
ST and keep a &ge s&cWn d
ST avld 8-bit PO software.

Mr. Roger Lacey
LACE Secretary
41 HglrysonRdad
Crofton Park
London SE4 1HL
Td,: 0181 - 6% ws

Offas
The complete Mail Order
service fos Atari 8 Bit

Tel S m d y F a
0121 353 5730 w h W h & a 012! 3521464 1 ~ B74 3EA.

