
USER

I,'

PUBLISHING!
This new look newsletter is set

lp with the Desktop Publishing
nogram TIMEWORKS 2", on
he Mega 1 ST with 4 meg
nemory. Files are converted to
\SCII and transferred to the ST
~ i t h TARI-TALK. Those files are
hen imported into the DTP and
~rinted with the Canon BJ-30
3ubble Jet Printer at 360 dpi, with
:xcellent result.

TWAUG

NEEDS YOU

TWAUG subscriptions
dome 1 Copy £2.50
DO -..... 6 Copies.. f 12.50

%rope 1 Copy f 2.50

CO - 6 Copies.. f 13.50
lverseas ... 1 Copy f 3.50
- 190 -- 6 Copies.. f 16.00

Issue 26 is due mid-March 97

I ISSUE CO
REMIM)ER & NEWS 2
CONTRIBUTIONS & CONTENT 3

DON'T LET BASIC BUG YOU
Tutorial in Basic by Mike Bibby 4

GRAPHICS DISPLAY LIST
by Mike Rowe I1

GAMES REVIEW
by Kevin Cooke 19

BIT WISE ...

by Mike Bibby 24

NEW YEAR GREATINGS
from TWAUG to members 31

SURVEY & SALES 32

ARTISTIC LMPRESSION
WOT? NO MAIL? by Max 33

DISK CONTENT 34

.................... USER GROUPS ADVERTS

.......................... for LACE & OHAUG 35

ADVERTISING ..
............................ MICRO DISCOUNT 36

TWAUG N E W S L E m E
DON'T LET BASIC BUG YOU

I loops

S I promised last issue,
we've more FOR ... NEXT A loops this time, so if you're

not too sure of them
perhaps you'd better find a few
minutes for a bit of quick revision.

Actually Program I should be fairly
straightfonnrard. All it does is to print
out

A BLACK BOX

three times. The loop variable
COUNTER keeps track of how
many times lines 50 to 80 - the body
of the loop, between the FOR and
NEXT - are repeated. Since line 30
reads:

30 FOR COUNTER-1 TO 3

this will be three times. Notice that
lines 50 and 60 have semi-colons to
"glue" the words together. Line 70

omits this, though, as we want to
move on to a new line:

80 PRINT

Program I

So why the message "A black box"?
Well, the idea is to stress that it
doesn't really matter what's inside
the "box" formed by the FOR and
NEXT, it will be done as many times
as is specified in the FOR
Statement.

Solving the
I I

Admittedly our knowledge of Basic
isn't yet so encyclopaedic that we
could think of many other things to
go inside the box, but we can see
the possibility.

The point is, given lines 30 and 90,
whatever lies in the box between
them will be done three times and
you don't have to know what's inside
the box to be aware of this. There
are stupid exceptions to this which
we'll meet, but they involve bad

programming, which, of course, you
won't be interested in ...

150 FOR LOOP-1 TO 4 I
60 PRtNT 'DOING L W F

70 NEXT LOOP
I I

Program II
Now take a look at Program II.
Again, a simple loop. Nothing there
to trouble you - it just prints out:

DOING LOOP

four times. Lines 50 to 70 form the
chunk of program that prints this
message out four times.

The only odd thing about this
program - and Program I, come to
that - is that our line numbers

haven't gone up in consecutive tens.
You'll see why in a minute.

Returning to Program I, as I've
stressed it doesn't matter what went
inside the loop formed by lines 30
and 90 - it would be done three
times.

So in a wheels within wheels
manner, let's put a loop inside the
loop of Program I. We'll take the loop
of Program II -lines 50 to 70 - and

put them in place of the lines that
give the "A Black Box" message in
Program I - also lines 50 to 70 (now
you see one of the reasons for the
line numbers).

tOWEM PROGRAM tli
20 PRINT CHR$(t 25)
30 FOR COUNTEBm1 TQ 3
50 FOR LOOP4 TO 4

60 PRINT "DOING LOOP'

90 NEXT CQUNYER

Program Ill

Program Ill is the result. We now
have two loops, one nested inside
the other like those Russian dolls. In

fact we

you won't be surprised to lea& that
we call the loop that goes round the
outside the outer loop, and the one
on the inside the inner loop.

' Wheels within wheels

.... loops within loops '
Before you run it, see if you can
think through what happens. tines

' 30 to 90 ensure that we do the

JanwIFebruary 1997

DON'T LET BASIC BUG YOU continued

intermediate lines three times. Of
these lines 50 to 90 form a loop
printing out "Doing loop" four times,
followed by a blank line (line 80).

So the outcome is that we get the
message "Doing loop" 12 times in
all, in three sets of four, each
separated by a blank line.

To help you see what's going on
more clearly, Program IV gives
another version. I've changed the
loop variable in lines 30 and 90 to
S n t o reflect the fact we're doing
things in sets, and added:

40 PRINT "SET ";SET

to mark off each set. Note this line is
inside the outer loop but outside the
inner loop, so it only appears each
time the outer loop is done. I've also
altered line 60 sa that the variable
LOOP is printed out as it cycles
through its various values.

To get a feel for nested loops, try
changing the limits of the loops in
lines 30 and 50, predicting what
you'll get b e h y o u run the altered
program.

After your experiments restore the
original Program IV, swap lines 70
and 90, then RUN the result. You
should be able to work out what's
going wrong. Remember, they're
nested loops - the start and finish of
the inner loop must fit neatly inside
the start and finish of the outer.

Anyway, untangle yourself from this
mess by swapping the lines back
and changing line 50 to:

50 FOR LOOP-1 TO SET

then run it. You should get:

DOING LOOP 1

DOING LOOP 1
DOING LOOP 2

DOING LOOP 1
DOING LOOP 2
DOING LOOP 3

We're still doing the outer loop three
times, so we still get three sets of
output from the inner loop. Now
though, because of the change to
line 50, the number of times the
inner loop is done varies, depending
on the value of SET: That is, the
number of times the inner loop's
done depends on the value of the
outer loop's variable!

In this case the longer in the tooth
the outer loop is the more often the
inner loop is done. The effect is that
there's one more "Doing loop" in
each successive set.

(As we've already seen, we refer to
the loops as outer and inner. Some
people like to use these words as

TWAUG NEWSLEmB
DON'T LET BASIC BUG YOU continued

labels for their loops to help them
keep track. Program V reinterprets
Program IV in this way. Personally, I
prefer more meaningful labels - its
up to you.)

20 PRfNT CHR$f 1 25)
30 FOR SET=1 TO 3
40 PRiW 'SET ";SET
50 FOR LOOP-f TO 4

60 PR tNT 'OOfNG LOOP *;LOOP

70 N€XT LOOP

80 PRINT
90 NEXT SET

t 1
Program IV

Program V1 uses the idea of making
the number of times we do the inner
loop dependent on the outer loops
variable to print out a triangle of -

asterisks.
When deciphering what's going on
with nested loops it's helpful to have ,
a quick look at the line defining the
outer loop - in this case line 30 - to ,
get an idea of the range of its

inner loop - here lines 40 to 60.

The effect of this inner loop is to
print out LENGTH number of
asterisks on a line: Our inner loop
goes from one to LENGTH and a
semicolon follows the asterisk in the
PRINT Statement of line 50, which
forms the body of the loop. After
printing the required number of
asterisks, line 70 moves us on to the
next line of the display.

So looked at as a black box, what's
inside the outer loop (lines 40 to 70)
simply prints out a separate line of
LENGTH asterisks.

10 REM PROGRAM V
20 PRINT CHR$(125)
30 FOR OUTER=l TO 3

40 PRINT "SET';OUTER
50 FOR INNER-T TO 4

60 PRINT TIOING LOOP ";INNER

70 NEXT INNER

80 PRf NT

90 NEXT OUTER
Program V

variable. Then concentrate on the We repeat this outer loop 10 times,
with the value of LENGTH

' The start and finish of the inner varyingxfrom one to ten. SO
the first time round the

loop must fit neatly inside the outer loop we get one
asterisk on a line, the

start and finish of the outer ' second time two asterisks,

DON'T LET BASIC BUG YOU continued

and so on.

I use a similar technique in Program
VII to produce a triangle of letters.
Here the outer loop variable, FINIS&
ranges from one to LEN-/STR/NG@.
Since STR/NG$is ABCDEFGHIJ,
this boils down to our familiar from
one to ten.

Program VI

I've chosen F/N/SHas a label
because its value determines where
we end our printing of characters
from STR/NG$in the inner loop.

The inner loop prints out successive
characters from STRING$ by picking
them out with:
'0 PRINT STRING$(LE?TER,LE?TER);

as L E n i varies from one to
LENGTH Remember: STR//NG$ v
picks up the first letter of S7R/NG*s;
STR/NG$g2/ the second and so
on.

The semicolon of line 70 ensures
they all appear on the same line.

Once the inner loop is complete and
the line finished, line 90 moves to a
fresh line of the display.

The outer loop is then repeated,
F/N/SHbeing increased by one, so
that this time our inner loop will print
out one extra character from
STR/NG$and so on.

Actually we could accomplish all this
with far less effort, as we saw from
Program IV last issue. However it
illustrates the techniques of nested
loops quite well.

Now take a look at Program VIII.
Before you start looking, it hasn't got
nested loops - that will come later!
The idea of the program is to add
together all the whole numbers
(integers) between one and a
number you've input, then print out

4T'YXYAUG liKEWSLE=R
DON'T LET BASIC BUG YOU continued

:he result.

30 PRf NT "Number *;

40 INPUT NUMBER

1 50 PRINT
j 60 TOThL=O
1 70 FOR INTEGER4 TO NUMBER
80 TOTAL=TOTAL+INTEGER

90 NEXT INTEGER
100 PRtNT "Total is ";TOTAL

Program Vlll

For instance, if you input 5, the
program would do the sum
1 +2+3+4+5 and print out the answer,
15.
As you can see, the numbers we
add go up in steps of one, so it's a
natural for a loop.
The number we're going to total up
to is called NUMBER Lines 30 and
40 get its value for us. Our answer is
going to be stored in the appro-
priately named 7O;rAL which we set
to zero with line 60.

For a moment, think about how you
do a sum like 1 +2+3+4. The answer
doesn't just leap into your head all at
once. You do it by adding two
numbers, then adding the answer to
the next number, then adding that

new answer to the next number and
SO on.
In other words you think "One and
two gives three. Three and three
gives six. Six and four gives me ten.
No more to add, that's the answer".
We call it keeping a running total.
This is how the micro does it, adding
each new number to the answer
arrived at so far.

See how Program Vllt works,
assume you've input 4, so we're
asking the micro to do the sum
we've just worked through. The
actual work of adding is done in line
80, the body of the loop. This adds
the integer we're considering to the
total so far.
/NTEGERgoes from 1 to 4
successively. Since TO;rAL is initially
zero, the first time through the loop
line 80 boils down to TOTAL-O+1,
so our total so far is one - correct.

We don't actually do this first 0+1
step when we do it in our heads, but
the micro is a very formal beast.

Next time through the loop,
/!TEGERis 2, and the current value
of T0)rAL is one so, TOTAL*
TOTAL+lNTEGER, whtch boils down
to TOTAL4 +2 and TO?XL assumes
the new value three.
Next time through, /N7EGERis

DON'T LET BASIC BUG YOU continued

value six.

the next time through - the final in
this case - line 80 is equivalent to
TOTAL=6+4 and TOTAL becomes
ten. We then drop through the loop
and print the total out with line 100.

Program IX uses exactly the same
tecnique, but this time I wrap the
whole thing up in an outer loop that
"does the input" for me, giving
endpoints for the ranges I'm totalling
over from one to ten (line 30,100). In
other words 1 get all the totals for:

1

1 +2

1 +2+3

and so on.

I've also gone to some trouble to
improve the appearance of the
output. Just before I add /NTEGER
to the running total (line 70) 1 print it
out, together with an accompanying
+ sign (line 60). Thus the effect of
the inner loop is that not only do we
calculate T O M , but all the integers
being summed appear on the same
line with + signs between them.
When we drop out of the inner loop
we then print out the answer.
However, we need to do a bit of
tidying up first. You see, each
integer is followed by a +, from line
60. After the last integer though, we
don't want a +, we want =. !

Program IX
Well, once the cursor has printed the
final + it moves on to the next space
on that line of the screen (the effect
of the semi-colon). All we do is to
move the cursor back with the
magical CHR$(30), overprint our +
with an = and print TOirAL. Line 90
shows how it's done.

Then, of course, line l 0 0 loops us
back if we haven't done all our totals.

A final point. Before each repedition
of the inner loop, in other words
before we do each running total, we
set TOTAL to zero. It's vital we set it
back to scratch this way each time,
otherwise we'll be adding in the
previous running total to our current
one. Try leaving line 40 out and
running the program if you don't see
what I mean.

3xiEJmR

GRAPHICS - DISPLAY LIST

w e have examined the
nature of the display list
and how to alter it to
create more professional

displays. Now let's move on to using
the display list to create special
effects, in this case vertical scrolling
and page flipping.
Page flipping is a term used to
describe an action directty
comparable with turning over the
page of a book - instantly switching
from one page or screen of
information to a different one.

On many computers the screen
memory is restricted to a set area of
memory and nowhere else. On Atari
computers any portion of memory
can be used as the screen memory
even including the ROM areas. As
these cannot be altered this is of
little practicle use, but illustrates the

versatility of the machines.

Thus for many machines to change
from one displayed screen to
another you would need to erase the
screen memory and redraw or
reprint the new screen.

On the Atari you can just simply skip
to a new area of memory, which is
almost instant even by machine code
standards. The procedure to
accomplish this is unbelievably
simple.

You may remember in the first article
in the series I described the
construction of the display list. I
mentioned that the fifth and sixth
numbers in the list were the memory
location from which the screen
display would be taken in the order
low byte, high byte.
It follows then that changing these
two numbers would, with only two

I pokes, change the area of memory

GRAPHICS - DISPLAY LIST
being displayed, that is page flipping.
Program I demonstrates this.

This program skips through three
areas of ROM, displaying them on a
Graphics 0 screen. The speed is
impressive, but the display is
practically useless. More useful
~ o u l d be a program skipping
through previously created screens.

Program I1 is a very simple
demonstration of this. It creates 10
simple Graphics 2 screens
dentifying each one differently.

This is done by using a Graphics 2
=all from Basic which makes the
3perating system create a Graphics
2 screen at the top of memory and
:hen the message printed on the
screen. The machine is then made
o think that the top of memory is
1.5k lower by changing the value in
ocation 106.

rhis number indicated the top of the
available memory in pages - one
,age in memory terms is 256 bytes.
rherefore if you subtract two from
his location you get the top of
nemory lowered by 0.5k. You can
hen make another Graphics call and
he screen will be located 0.5k below
he previous screen.

'his has been repeated 10 times in
he example to give 10 Graphics 2

screens. The values for the screen
memory for each screen are stored
in the variables arrays SCREENLOM
and SCREENHI and it is a simple
matter to repoke these values back
into the first display list to give the
effect of flipping through the screens
1-1 0 as in the example.

This can now be seen to be more
practical. However it is not greatly
faster than redrawing each screen.
Where the technique really comes
into its own is in the higher resolution
graphics modes.

Here it can take several minutes to
draw a screen, or to load a screen
from data stored on disk or tape and
to redraw the screen even in
machine code.

Each time a change is made can be
very slow and useless for animation.
Here page flipping can provide a
tecnique for giving animation to very
detailed drawings.

The drawbacks become more
pronounced however. First memory
limitations. If you use a Graphics 8
screen then five screens have
already consumed 40k, not to
mention where your program and
DOS will go.

In practice two or three screens of
Graphics 8 are the limit. The Atari

GRAPHICS - DISPLAY LIST
130XE could, of course, ease this
problem somewhat by switching in
and out different blocks of memory
for the screens.

A second problem is that the 8k
modes have a second set of
numbers pointing to screen memory
half way down the display list, as
explained in previous articles, to
avoid screen memory crossing a 4k
boundary.
You must remember to calculate the
new values for these and also to
alter these when flipping.

Thirdly, drawing the screens in Basic
is both slow and also memory-
hungry, especially if using data
statements.

This can be avoided by either
loading predrawn screens off disk or
tape directly into memory - used
extensively in commercial programs
- or by having a separate program
for drawing screens which then loads
in the second program in which the
flipping takes place.
For this reason Program Ill uses a
very simple ~ r a ~ h i & 8 picture just to i
demonstrate the possibilities.
Those who are thinking ahead will
perhaps have realised that if you can j
flip to anywhere in memory why not /
flip just one screen line. Do it

!

repeatedly and voila - scrolling1
This is shown in Program IV, which
scrolls through ROM using 20 byte
(one screen line in Graphics 2) page
flipping. The scrolling is, however,
jerky and quite unprofessional in
appearance.
Believe it or not, some software
manufacturers released Atari
programs commercially with scrolling
of this type.

Those who have seen programs with
good quality vertical scrolling, such
as Caverns of Mars or Firefleet, will
know that the Atari can produce
superb scrolling.
You will remember from my first
article in issue 23 that a 32 added to
the display list graphics mode
number gives vertical scrolling.
However this does not give instant
scrolling with that single change - in
fact alone it makes no difference.

Also an operating system memory
location is involved - decimal 54277
($D405). In Program V the vertical
scroll is enabled in line 3 of a
Graphics 1 screen by adding 32 to
that line in the display list and then
54277 is altered and there it is
-smooth scrolling. But only of one
line and only to the height of one
character.

I GRAPHICS - DISPLAY LIST
If all the graphic mode numbers in
the display list are altered by adding
32 to them then all the lines will
scroll together. However it is only to
a maximum of 16 scan lines -two
characters height in Graphics 1.

Now a bit of lateral thinking will
provide the full answer. If you
combine the two techniques of
coarse and fine scrolling you will
have true, full screen fine scrolling. ,

In other words fine scroll all the lines
one character (eight lines in
Graphics 1) by incrementing 54277
from 0 to 7. Then do a coarse scroll
by one character by pointing the
display list screen memory one line
on and simultaneously poke 54277
back to 0.

Repeat this continuously and you
have your scrolling, all in Basic, no
machine code in sight. Program VI ,
shows this technique.

But wait a minute - the screen
flickers or flashes occassionally.
Well, if you are a perfectionist - and i
with a perfect machine shouldn't we I
be? - it does flash occassionally.

!

This is because Basic is not
instantaneous with its alteration in i
the values in the display list and in i
location 54277.

I I If the screen is in the middle of being j

drawn when a change is made a
flicker occurs or the wrong line is
displayed for a split second. Don't
despair, there is a solution, but it
means machine code.

In Program VII the same technique
as Program V1 is used, but instead of
Basic poking the changes a small
machine code subroutine is used.
This does several pokes at once with
machine code speed shortening the
time lapse between the pokes, thus
theoretically decreasing the glitches
produced on screen.

As you will see, this is the case, but
they still occur. In fact the only way
to prevent the flicker completely is to
make sure that the changes do not
occur pat way down as the screen is
drawn.

This means doing the dirty work
during the vertical blank interrupt
(VBI). As briefly explained in my
previous articles, this means a short
machine code routine which runs
each time after the screen has been
drawn and before the next starts.

Vertical blanks are a subject
deserving of an article of their own,
so I will go into no further detail than
this at present.

At last you have it. True vertical
scrolling as good as any arcade

GRAPHICS - DISPLAY LIST
game.
The only snag left is screen memory.
Of course you are covering a much
bigger area than one screen, so
simple Plots and Prints will not really
be adequate as such.
You have three real choices as to
how to design your screens. Firstly
you can use a long string to hold the
data. This has the advantage that it
relocates itself automatically and
thus memory management is taken
care of.

The snag is that you may acciden-
tally cross a 4k boundary and cause
chaos when the scroll reaches this
point.

Another method is to calculate an
area of memory you know is free
and directly poke (or load off disk or
tape) the screen data into that area.
This is the method used in Program
VI.

you a n use a similar
nethod to the page flipping demo in
'rogram II - that is, repeated
jraphics calls after lowering the top
3f memory pointer.

This is not straightforward and will
llso involve playing around with the
%splay list memory pointers and
ocations 88 and 89 to ensure that
he screen data is continuous with

the previous screen's data, thus
avoiding garbage showing up
between the screens as you scroll
over them.

The advantage is that you can use
Plot and Draw from Basic. I
recommend the first two methods.

There you have it - your vertical
scrolling completed. What? Your
favourite games use horizontal or
diagonal scrolling ?

Before continuing with pan 5 of this
scrolling article let me tell you first
that all the DEMO programs are on
the issue disk. There are 7 small
demo programs and they are named
VERTDEMO.l to VERTDEM0.7

GRAPHICS - DISPLAY LIST

orizontal scrolling is
essentially achieved in a
similar way to the vertical
scrolling described above.

However, as you will see, things are
never quite that simple.

You will remember that coarse
vertical scrolling can be achieved by
moving the start of screen memory
down the screen data one line at a
time. Horizontal scrolling can be
similarly achieved by moving the

number in screen memory. Play
around with A$ to confirm this.

Back to the program. The high and
low bytes of the address of A$ - that
is, screen memory - are calculated
and stored in LO, OLDLO, HI and
OLDHI. A cursor display list is
created in Page 6 (memory location
1536), and the operating system is
told that it is there by poking the low
and high bytes of the display list into
decimal 560 and 561.
Now we are ready to scroll. Firstly

increase the low byte of the address pointers for screen memory along
one character at a time. This is
shown in Demo #l.

Firstty you need to decide what data
you want to show. I have chosen to
hold the data in a string (A$). You
will notice that you have to use
CHR$(O) that is Control, (the heart
symbol) to represent a space. This is
because whenprinting to the screen
a space is CHR$(32) but the Atari
converts this to a 0 in screen
memory. In fact all the numbers
printed are stored as a different

of screen memory by 1. If the
number is greater than 255 then
reset L 0 to 0 and increase HI by 1.
You now have the new address of
screen memory moved along by one
byte - one character. Theses values
can now be placed in the two bytes
following the LMS command (Load
Memory Scan -see previous articles)
as in line 210. Repeat this and there
you have coarse scrolling of one
line.

Smooth scrolling is again similar to

GRAPHICS - DISPLAY LIST
dertical smooth scrolling. Demo #2
shows how this is used: A similar
$splay list is used but a decimal 16
S added to the mode byte. This is 71
. that is, Antic mode 7 + LMS
nstruction 64. Adding a 16 enables
smooth scrolling in tha line.
The horizontal smooth scrolling
register is decimal 54276 ($D404).
This can be poked with numbers uo
to 15 which will move the line along
one pixel at a time up to a maximum
of 16 - two Graphics Mode 2
characters.

Now obviously combining these WO
tecniques will result in true smooth
horizontal scrolling. Demo #3 is
essentially the same as Demo #1 but
with the smooth scrolling added to it.

Now we begin to get the first
drawback, screen flicker. This is
because the changes often o w r
part way through the creation of the
sween on the television.

Things can be improved somewhat
by making some of the changes
more rapidly in machine code, as in
Demo #4. the machine code here
simply pokes each memory address
with the byte following it but much
more rapidly than in Basic.

Okay, so we have reasonably good
smooth scrolling of one line. Not

going to make much of a game is it?-
The next step is to extend this to full
or part screen scrolling.

Unfortunately things are not as
simple as in vertical scrolling, where
the rest of the screen will follow the
first line.

Firstly the screen memory needs to
be considered. In vertical scrolling
the screen is the same width as a
normal screen. However in
horizontal scrolling the screen is
going to be much wider. Therefore
using operating system commands
such as DRAW or PRINT are really
out of the question.

Secondly each llne needs to have its
own LMS instruction. Therefore the
display list will consist of groups of
three numbers.
the first will be a 64 (LMS) + mode
number + 16 (for smooth scrolling).
The LMS instruction means that the
next two numbers will be the low and
high bytes of the screen memory for
that line.

Now we have a display list consisting
of numerous individual lines each
similar to the single line in Demo #l
to 4. To scroll these you need to
move each of the memory location
pointer along one byte at a time.

Demo #5 does just this in Basic. As

GRAPHICS - DISPLAY LIST
you can see, the "scroll" goes in
waves down the screen. Basic is just
too slow.
Demo #6 is
the same
program
with a
machine
code routine
doing the
job of
increasing the 10 screen location
pointers in the display list. Now the
screen moves along in a single
block.
The next step is to add the smooth
scroll. Demo #7 does this with an
improved machine code routine for
the coarse scroll. However it is less
generalised, and will only work for a
10 line screen scrolling in one
direction.
You now have your smooth
horizontal scrolling. Disappointed? I
would be, because there's that flicker
and flashing again.
The same problem arises as before,
because the changes happen pan
way through drawing the screen,
only now things are worse because
so many alterations are being made
to get smooth scrolling.
As in vertical scrolling, the only way

around this is to use machine code
during the vertical blank interrupt
(this is the small delay between the

drawing of
each screen).
Although VBI
routines are
too complica-
ted to discuss
at the end of
this article,

Demo #8 will give you some idea of
how much improvement they can
give in scrolling.
As a parting note, on the XL and X€
models smooth, upward vertical
scrolling is very easy in Graphics 0.
Try this. First load a relatively long
Basic program. Secondly type POKE
622,255 then press Return. Thirdly
type GRAPHICS 0 then Return. Now
list the program.

Again all the DEMO
programs are on the issue
disk. The programs are
named HORIDEMO.l to
HORlDEM0.8

GAMES REVKW
Hello there! Well, the AMS '96 show has been and gone so
hopefully some of you will have managed to have made it there. I
had to miss this one due to work commitments so I'll have to change
my normal routine and attend the next one. If you've still got any
money left, here's a review of a couple more items of software
which you may wish to try:

Review by Kevin Cooke

Title: AUTODUEL
Sold by:

Micro Discount
265 Chester Road,

Streetly,
West Midlands B74 3EA,

ENGLAND.

Tel:0121 353 5730

Price: 5 Pounds 95p (+ P&P)

utoduel is a strategy1
arcade-type game, based on
the CAR WARS board game A by Stew Jackson. If it gives

rou an idea as to.-?hat the game is
tbout, the title screen says
'Autoduel -where the right of way
joes to the biggest guns"!

For those users who are new to the
Atari and decide to buy this, you'll
probably be very surprised when it
pops through your letterbox. 'Why?",
I hear you ask! Well, in the "good 01'
days" of Atari computing, the bigger
software companies spared no
expense on their software packag-
ing. Autoduel is no exception. Inside
of the glossy box is a thick
instruction manual (much like the
one that comes with the Alternate
Reality series of games), a
quick-reference card, a leaflet
detailing other software by Origin, a
road map and wait for it ... even a
tool kit containing a miniature
spanner, hammer and screwdriver!
Yes, all real and made of metall Of
course, you're unlikely to actually
use any of them but it's a nice
freebie1

Of course, the main items in the box
are the two disks. Thoughtfulty, when

GAMES REVlEW
you load the first disk, your computer
asks you whether you would like to
use one or two disk drives - a nice
thought for those of us that own
more than one as it cuts down
considerably on disk swapping.

The game is set on a futuristic Earth
(in America to be precise) and your
character starts off as a nobody
owning only $2000. By traveling from
city to city, you must aim to increase
your money and status. This can be
done in a number of ways - either by
traveling the roads, acting as a
vigilante by clearing it of outlaws, by
fighting in the American Autoduel
Association's (AADA) arenas, or by
acting as a courier for the AADA.

You start off the game in New York
with your immediate aim being to get
some money. There are two viable
methods for doing this at this early
stage in the game - by traveling by
bus to Atlantic City and gambling in
the casino, or by competing in
Amateur night at the AADA arena.
The arena are kind enough to loan
you a poor, but adequate "Killer
Kart" with a front-mounted machine
gun for this purpose and, after
you've won a few matches, you'll
soon have more money and

prestige. At this stage, you can
either become a full-time competitor
in the arenas (and improve until you
reach the top where you can earn
really big money), or take another
job. Whatever you choose, you'll
have to buy a car from the choice of
7, pick it's chasis type, armour type,
suspension, weapons, tyre type and
power plant to get it moving (these
futuristic cars don't need conven-
tional engines!). What components
you use on your car will depend on
what you want to use it for, and of
course, the all-important money
factor!!!

Once you start to play Autoduel, you
soon realise that it is more a way of
life than a game - you almost start to
feel that you ARE your character.
Every detail has been seen to in the
game - the instruction manual gives
in-depth descriptions of playing
methods, theory of car designs,
information about the arenas,
outlaws, etc. whilst the map allows
you to plan your journeys effectively.

There isn't much sound at all in the
program but, then again, in a game
of this type where you are likely to
spend long periods of time playing it,
music would almost certainly start to

GAMES REVIEW
get on your nerves anyway.
Graphically, the game is very good.
Everything is well designed and set
out, making play a joy.
The only let-down is the fact that the
graphics are artifacted - a method
that creates very colourful graphics if
you happen to live in America but
which, in the UK produces black and
white screens. However, as colour is
not an integral part of the game, no
problems are caused and you soon
get used to it.
Apart from this, I can't recommend
Autoduel enough. The mixture of the
arcade drivinglarena sections with
the added strategy of designing your
cars, etc. make it almost perfect.
The only other programs with depth
anything like this are SEVEN CITIES
OF GOLD (which is no longer
available anyway) and the two
ALTERNATE REALITY programs.

If you own these and are still looking
for more, or if you feel like an
envolving arcade game, give this a
try. At this price, it's a snip!

Title:
EUROPEAN SUPER SOCCER

Sold by:
Micro Discount,
265 Chester Road,

Streetly ,
West Midlands B74 3EA,
ENGLAND.
Tei:0121 353 5730
Price: 1 pound 50p (+ p&p)

E uropean Super Soccer ("ESS"
from now on!) is a footie game

written by Brian Jobling (of Zeppelin
fame) for Tynesoft a few years ago.
The game kicks off with a lovely title
screen and some very lively, if not
particularly apt, music.
At the time the game loads, one very
large footbalter is shown on the title
screen, indicating that the game is in
one-player mode. By pressing the
OPTION key, another player
appears on the other side of the
screen and the player can now play
a two-player game. Pressing the
select key will change the player's
kit-colour - a nice touch.

GAMES REVKW
Whichever game mode you choose,
pressing start will bring part of the
pitch onto the screen. ESS is a
horizontal scrolling game and so you
only see about one fifth of the whole
pitch at any one time.

When you start playing the game,
you realise that it's actually OK. The ;
scrolling is smooth, the graphics are
well done with the players being well j
defined (if a little blocky).

Actually, there's not a lot that can be
said about a football game. If I had
to make any criticisms, they would
have to be that the ball never moves
above waist level (no headers here!).

Also, instead of having the two
teams in strips of totalty different
colours, the author opted to have
player one in (for example) a red
shin and black shorts and player two
in a black shirt and red shorts. This
means that it can be difficult to find
your own players for much of the
time. Under the circumstances it may
have been better if the author had
made team one all dressed in red
and team WO all dressed in black.

In two player mode you get to
choose your team from a list of six :
before the computer randomly I

chooses it's team. By the way, how l

22 January/February 1997

long have the USA and "Atari World"
been European teams?!!!

Overall, ESS is a fairly good version
of football (or soccer!). The computer
doesn't play particularly harshly so, if
you're always getting a thrashing at
other football games, this one could
be right up your street!

I don't think that ESS beats Anco's
KICK OFF or Thorn Emi's SOCCER
for playability but if you're looking to
add another footie game to your
collection, it's worth a try at this
price.

[Now for the bad news - I've just
spoken to Derek Fern and he tells
me that he has sold out of all of his
copies of Autoduel at the show. He
has contacted American Technovi-
sion in the USA to try and obtain
more stocks but they have
apparently decided to leave the Atari
scene and move totally onto the PC.
If you want to try Autoduel, keep a
look out in future editions of Derek
Fern's catalogues - who knows, he
may get more stocks of it. In the
meantime, why not take a look and
see what other software he has on
off er? 1.

GAMES REVKW
Now, onto other things. It is
with great regret that I have to
announce that, from this issue
onwards I am no longer able to
do this review column for
TWAUG. College work and
my part-time job has been
gradually eating into my spare
time and, these days, it seems
that the only time I get on the
computer is to write this
review column and college
essays! ! ! Apart from this, I
keep getting VERY close (and
sometimes missing!) the
deadlines and it's not fair on
the TWAUG team to put them
under extra pressure. I feel this
is the stage to bow out
gracefully and let some other
able person write the reviews.

I hope that you've enjoyed
reading my columns as much
as I have writing them. I must
state that I am NOT leaving
the Atari 8-bit scene (you may

well see some more programs,
articles and reviews from me
in the TWAUG, Futura and
Page 6 magazines if or when I
get time to write them) so, if
you have been writing to me,
don't stop - I enjoy getting the
letters!
All that remains for me to do
is to wish TWAUG all the best
for the future and hope that the
forthcoming years are as good,
or better, than the last few.

This review by Kevin Cooke should
have been in the last issue, but as i
mentioned then I was unable to
retrieve it from the disk and as soon
as Kevin read about my predicament
he immediately sent me another
disk.

This will be the last of the reviews
unless we find a replacement
reviewer, so we are still hoping some
kind and able person will come
forward and offer his or her
contribution to TWAUG.

BIT WISE
MIKE BIBBY gives you the

The insi

n previous articles we've seen
that binary numbers can be
added and subtracted just as our
more familiar decimal numbers

are. And, of cwrse, we can multiply
and divide them.

There are, however, other ways of
combining two binary numbers that
are extremely useful in dealing with
computers. They're also easy to use,
so let's have a look at them.
Firstly, we'll see how we can NOT a
binary number - simple, one-bit
numbers first. By the way, we're
going to be dealing exclusively with
binary numbers, so we can drop the
% sign.

The rules for doing a NOT are
simple:

If the bit is Q then it becomes 1

If you like, the NOT converts a bit
into its opposite.

SoNOT1 - 0

And NOT 0 = 1
Why do we use the word NOT?

Well, mathematicians often use the
number 1 to mean true and 0 to
mean false.

So NOT 1 means not true, which
means false, which is 0. That is,
NOT 1 is 0. And, as not false is mosl
certainly true, NOT 0 is 1.

If we are to NOT a binary number
consisting of several bits, we simply
apply the rule for NOT to each bit
individually.

So NOT 10110010

becomes 01 001 101

Some people think of this process a:
turning the number on its head, so
it's sometimes called inverting.
Others call it taking the complement

BIT WISE
of the number.

NOT just works on a single binary
number. However, there are other
sums or operations that have a set
of rules for combining two binary
numbers.

For instance, we can AND two binary
numbers. Let's look at the rules for
4NDing a single bit with another bit.

Nhen you think about it, there are
'our possible combinations of bits
:hat we could AND - 0 with 0,O with
1 ,l with 0 and 1 with 1.

Ne write that we are ANOing, say, 0
and 1 asOAND I .

The rules for ANDing are:

we're doing when we're ANDing is
asking whether "this and that" is
true.

"This and that" can only be true
when both "this" is true AND Wat"
is true - hence the use of AND to
describe the process.

For example, consider the statement
that it is dry and sunny.

This is true only if dry is true and
sunny is true - case d.

If either of the two, or both are false
- case a, b, c - the whole statement
is false, since it isn't both dry and
sunny.

We can AND pairs of binary
numbers of more than one bit - just
apply the rules of ANDing to each bit
individually.

For example:

AND 10010110

AND 101 1001 1
gives 1001 001 0

We can also OR two binary
numbers. The rules for ORing a
single bit with another bii are as
follows. Again there are four
possible combinations:

In this case you only get a false

Votice that the only time theresult is
1 - true - is when the two bits ANDed
3re both 1 - true. This helps us to
see why we use the word AND to
jescn'be the operation.

f you think of the first bit as "this"
3nd the second bit as "that", what

result, 0, when both bits are false. If

JanuaryIFem l997 2.

BIT WISE
either or both bits are true, l , the
result is true. It's easy to see why we
use OR to describe this. If one OR
the other OR both is true the whole
thing is true.

0 OR O=O (case e)
0 OR l=l (case f)
1 OR 0=1 (case g)
1 OR 1=1 (case h)

Let's use the meteorological analogy
again. Consider the statement that it
is dry and sunny.

This is only false when it is NOT dry
and NOT sunny - case e

Above we looked at the AND and
OR operations on binary numbers -
logical operations, as they are
known. These are simply rules for
combining numbers bit by bit. We
shall continue our exploration now
with a look at the EOR operation.

€OR stands for Exclusive OR -
sometimes people call it XOR. Either
way it's the same thing. EOR is a
variant on the way we normally use
the term OR.
For example, if I say:

Mike 0 R P efe w w s g h s m
this is true if Mike wears glasses, OR

-otherwise it ~STRUE -
cases f, Q, h. EOR - A way to find
To sum up, with OR the
whole thing is true if either I Pete wears glasses, OR both Mike
or both the things being ORed is i and Pete wear glasses.
true.

As we did with AND, we can OR
pairs of numbers with more than one
bit - we just apply the rules of ORing
to each bit individually.

For example:

10010110

OR 10110011

gives 10110111

i Now it's this last case of OR we're
j interested in, where they both wear
I glasses. EOR works just like OR up
i to this point. However, EOR does not
; "allow" both of them to wear
1 glasses. Either one does, or the
j other, but not both.

j To put it another way, the one who
i wears glasses does so e m - .
I If both are wearing glasses then

BIT WISE
while:

Mike OR Pete wea/sg/asses wou Id
be true.

Mike EOR Pere wea..sg/asses would
be a downright lie!

We could signrfy that a statement is
true with the letter T, and use F for
false. At school our teachers used
ticks for truth and crosses for false.
Since we're using computers,
though, we'll use numbers: 1 will
denote true and 0 will denote false.
We've chosen 1 and 0 because they
fit in so well with the binary system.

So, in the above example, if Mike

combination of spectacle user. The
ones and zeros are known as truth
values, states or conditions.

As you can see, there are four
possible cases as far as Mike and
Pete wearing glasses are concerned:
neither can wear them as in case 1,
where both Mike and Pete has 0
value.

Then again, Pete may wear them (1)
whereas Mike does not (O), case 2,
and so on.

If you look carefully at the numbers
involved in all four cases, you see
that we've got four pairs of bits we

out who's telling the Exclusive truth

has glasses we can give Mike the ; can combine. Each pair of bits is
value 1. If Pete hasn't glasses we 1 made up of the "truth bit" for Mike
can give Pete the value 0. Table I I and the "truth bit" for Pete.

IT WISE
:he result for any OR combination of wears glasses, but not bath - it's
MO bits. All we have to do is to find 1 exclusiwely one or the other.
;he row that Starts with the ~ W O bits j if do mean EOR in this exdusive
{alues we're combining and then : sense we'd write our statement
ook in the third column for the result.

Mike wears Pete wears Mike OR Pete

glasses glasses wears glasses

0 0 0

1 1 t

Table II

Table Ill shows a similar table for:

M120 AN D P m wear ghssss
Again the first two columns are
identical, covering all four possible
cases. The third column combines
them according to the AND rules.

Look again at Table II. This
corresponds in a sense to our binary
rule for OR: you get a 1 if either or
both bits you combine contain a 1.

However if when talking about Mike
and Pete you mean OR in the
exclusive sense, EOR, then the
combination of Mike wearing glasses
and Pete also wearing glasses would
have to be false. This is because
EOR means either one or the other

about them as:

Mike EOR Pete
wears glasses

Its Truth table is
given in Table IV:

If you look at each
case, you'll see that
the only time Mike
EOR Pete is true is

when either one or the other wears
glasses, but not both (or neither).

More formally, if both bits are 0, or
both bits are 1 the result is 0. If
either is 1 and the other is 0 the
result is 1. To put it another way, if
the bits are identical the result is 0,
otherwise the result is 1.

Let's have a look at how we EOR
binary pairs of numbers. Its the
same as for OR and AND - just
apply the rules for EORing to each
pair of bits in succession. For
example:

%10110110

EOR %11100101

gives %01010011

BIT WISE
makes it quite useful - lets look
what happens when we take a
number, EOR it with a second
number and then go on to EOR
the result once more with that
second number.

Table Ill

Take a look at what happens when
you EOR a number with zero:

%10110110

EOR %00000000

gives %10110110

that is, when you EOR a number
with zero it leaves that number
unchanged. Also something
interesting happens when you EOR
a number with itself:

%10110110

EOR %10110110
gives %00000000

Pihenever you EOR a number
with itself, the result is zero. This
is as it should be: remember,
when you EOR two identical bits
the result is zero.

First number %l0101 101

Second number EOR %01101 M)O

Result %l 1000101

Second number EOR %t&MWXO
Final result %10101101

as you can see, the first number has
magically re-appeared! This always
happens when you EOR twice with
the same number as, in a sense, the
two EORings cancel each other out.
Table V summarises the process for
all four possible pairs of one-bit

Now EOR has a property which j cases the final resutting bit (when

JanuaryFebroary 1997 - 2

BIT WISE
the first bit has been EORed twice
with the second) is identical to the
first bit.
Another way to think of it is that we
are doing:

l first number EOR second number
v
Taking the underlined part first,
we've already seen that any number
EORed with itself gives a zero result.
So what we're really doing is:

1 first number EOR 0
which, as we've also seen, must
leave just the first number, since
EORing with zero leaves a number
unchanged.
All this may seem rather abstruse,
but actually it's quite useful. In fact
we tend to use AND, OR and EOR
quite often in graphics, particularly in
animation.

To simulate movement
we frequently print
something on the
screen, then after
leaving it there for a
while to register on the
eye, we blank it out
and print it in a new

Sometimes we blank the character
out by printing it again in the same
place but in the background colour.
We can, however, use EOR. If we
use EOR to place our character on
the screen - never mind exactly how
for the moment - when it comes to
wanting rid of it, we can just repeat
ourselves.
That is, we just EOR the character
on again. As we've seen, the effect
of two EORs is to cancel each other
out. In this case, they cancel out to
the original background - and the
character disappears.
The point is, logical operators, as
AND, OR and EOR are known, can
be invaluable to both the Basic and
machine code programmer. Next
time we'll take a brief look at the idea
of masks.

position and so on. Table V i

30 January/Febnmy 1997

T.W.ASJ.G.'s SURVEY
We would like to find out how
many of our subscribers use an
Atari ST for a second
computer!

I for instance use a MEGA 1
ST to do the work on the
newsletter, because I find I cm
do the work a lot faster with a
DTP program than 1 could
using Daisy-Dot 3 on the 8-bit.

I have been toying with the
idea of including in the
newsletter material concerning
the ST, maybe at some future
date.

This is the reason for this
survey, if we could get some
feed back on this matter it
would be very helpful.

The membership to the
newsletter is around the 80
plus and I am sure some of you
would like to air your views on
this matter.

We would be very happy if
everyone would write us a
note.

MAX

Upgraded 800XL to 256K complete
with Power supply for £40 or near
off er.

Contact:

Alan Turnbull on

01 670 - 822 492

These computers make an ideal
inexpensive gift.

Please do not forget, when sending
letters and renewal forms to TWAUG
to use the new address below.

The reason for repeating this
message is bemuse some mail had
still been addressed to the POST
BOX. Fortunately John had been
able to retrieve it. John had been
told that any mail addressed to the
box irr future will be return to the
sender, or if no return address on
envelope, they will dispose of that
letter.

TWAUG
c/o J. Matthewson
80 George Road

Wallsend, Tyne & Wear
NE28 6BU

ISK CONT

This dlsk has been dedicated to TWAUG for issue #25 by John Foskett,
we thank him whole-heaftedly.

Side A contains a varisty of program and demos. The programs by John
are:

My First Demo, a Mini r scrolling Demo, Battle ship, Crazy Baii and
a Card Game.

Now also on Side A, I included the demo program I have typed in to go
with the artide Display List. I've named the program so that you know
which program is which when rmdlng the artide. From page 11 to page
15, the program are namsd VERTDEMO.l to VERTDEMO.7. From page
16 to page 18, the ram are nmed HORIDEMO.l to H081DEM0.8.

All these programs run al ht, I've tested them after each I had saved
them to disk.

Side B is in Autofun Basic, that John Fosket set up, it run the
Crazy BaH B the MyWS with the
manual. It , this is a bonus for
you to enjoy.

D.H.A.U.G.

