®

STUDENT PILOT

& .
Use with
ATARI® 400™ or ATARI 80OO™

ATAR I B A Warner Communications Company @ PERSONAL COMPUTER SYSTEMS

STUDENT PILOT

J Reference Guide

N\

ATARI®

o A Warner Communications Company

Every effort has been made to ensure that this manual accurately documents this product of the ATARI Computer Division. However,
because of the ongoing improvement and update of the computer software and hardware, ATARI, INC. cannot guarantee the accuracy of
printed material after the date of publication and cannot accept responsibility for errors or omissions.

Reproduction is forbidden without the specific written permission of ATARI, INC., Sunnyvale, CA 94086. No right to reproduce this docu-
ment, nor the subject matter thereof, is granted unless by written agreement with, or written permission from the Corporation.

1980 ATARI. INC
1981 ATARI, INC

PROGRAM CONTENTS ©
PRINTEDINU.S.A MANUAL CONTENTS ©

.

(

¢

N E E E R E N EREENEEEEREREEREDRD
.

PREFACE

PILOT is a simple, easy-to-understand programming language. It stands for Programmed
Inquiry, Learning Or Teaching, and was originally developed by Dr. John Starkweather at
the University of California, San Francisco. PILOT was designed to enable teachers to
write programs for their students. However, due to the pioneering work of Dr. Dean
Brown at Stanford Research Institute’s Education Laboratory (1967-1974), PILOT proved
to be a good language for teaching computer programming to children. PILOT was con-
ceived as a tool to make writing conversational programs easy. It was originally designed
for text output only. However, we have incorporated Turtle Graphics, a concept
developed by Dr. Seymour Papert and the LOGO group at the Massachusetts Institute of
Technology. The Turtle Graphics concept enables the user to draw pictures when pro-
gramming in PILOT. These capabilities, along with the ability to generate sounds, make
ATARI® PILOT a very versatile language.

Preface iii

TABLE OF CONTENTS

PREFACE

INTRODUCTION

1 PILOT INFORMATION

Terms

Operating Modes

Variables

Arithmetic Operators
Relational Operators

Error Messages

2 COREPILOT

Type
Accept
Match
Jump
Compute

End
Use

Remark

xCcm O%X»

Random Numbers

3 EXECUTIVE COMMANDS

AUTO

RUN

LIST

REN

NEW

VNEW

DUMP

LOAD
LOAD C:
LOAD D:

SAVE
SAVE C:
SAVE D:
SAVE P:

DOS

iv Table of Contents

Automatic Line Numbering

Run a Program
List a Program
Renumber a Program
New Program
New Variables
Dump String Variables
Load a Program
Loading From Cassette
Loading From Diskette
Merging Programs
Save a Program
Save to Cassette
Save to Diskette
Save to Printer
Disk Operating System

iii

vii

[y

QAOCTULR WN

12
14
17
19
21
24
26
30

4 GRAPHICS

GR: Graphics
Turtle Graphics
Where To Go — X and Y Coordinates
What Direction and How Far To Go
Initial Location, Heading, and Pen Color
Shortcuts for Graphics Programming

GR:CLEAR Clear the Graphics Screen

GR:GOTO Go to the Point X,Y

GR:DRAWTO Draw to the Point X,Y

GR:FILLTO Fill to the Point X,Y

GR:TURNTO Turn to N Degrees

GR:TURN Turn N Degrees

GR:GO Go N Units

GR:DRAW Draw N Units

GR:FILL Fill N Units

GR:PEN Choose a Pen Color

GR:PEN ERASE Set Pen Color to Erase

GR:PEN UP Lift the Pen

GR:QUIT Quit the Graphics Mode

5 SOUND AND PAUSE

SO: Sound
PA: Pause N Units

6 CONDITIONALS

Y or N String Match Conditions

COMPARISON Numeric Conditions

JM: Jump on Match
APPENDICES

A SPECIAL FUNCTION KEYS AND SCREEN EDITING
B PILOT I/O ERROR CODES

55

56
57
57
58
58
59
60
62
64
66
68
70
72
74
76
78
80
81
82

85
86
89
93
95

98
101

103
106

Table of Contents v

INTRODUCTION

) N 3
E e EEEEEEEEE NN |

¢

This reference guide is designed for your use if you are learning PILOT at home or in
school, or if you already know PILOT and need a handy guide to the language. It gives
brief explanations of all the main PILOT commands and examples of their use.
Throughout this guide there are illustrations to enhance your understanding and enjoy-
ment of PILOT. You are the pilot character; you give PILOT commands to the computer.
Anytime you are in Graphics mode, the turtle character is ready to obey your commands.
Each PILOT command is highlighted in large bold letters at the top of a page so you can
easily find any command to which you wish to refer. This reference guide is divided into
the following sections: PILOT Information, Core PILOT, Executive Commands,
Graphics, Sound and Pause, and Conditionals.

[n the first section, you will find terms to know and general information about the PILOT
language. You should be familiar with the contents of this section in order to use this
guide.

The second section reviews the Core PILOT commands. You put these commands
together as a set of numbered statements to form a program. You can also execute them
one at a time in Immediate mode, just as you would use a pocket calculator.

The third section reviews Executive commands. These commands allow you to do various
things with programs as a whole. You give executive commands directly from the
keyboard; usually they are not part of a program.

The fourth section covers turtle Graphics commands, which you use to draw designs or
pictures on the screen. When PILOT is in graphics mode, an invisible turtle, holding an
invisible pen, moves around the screen following your commands, drawing lines, and fill-
ing in spaces.

The fifth section has to do with the SOUND and PAUSE commands. SOUND is most fre-
quently used when you want to make music, but can also help you create sound for a
special effect. PAUSE lets you create a dramatic effect in a program, but it is used most
often when creating music; for example, when you need to indicate how long a tone is to
be played.

The last section discusses Conditional commands. Any PILOT command can be made
conditional; that is, it will only be carried out if certain conditions are met. This section
reviews the various kinds of conditions you can set up in your programs.

This is just a reference guide. If you need further explanation of any PILOT command, or

if you wish to learn PILOT from a book, you should refer to the PILOT Primer: An In-
structional Manual for the PILOT Programming Language.

Introduction ix

PILOT INFORMATION

EE B EEEEEEEEEEEEEERNE

This section contains general information about PILOT. It includes explanations of terms
often used in this guide, PILOT operating modes, variables, arithmetic and relational
operators, and error messages.

TERMS

COMMANDS Commands tell the computer what to do. There are two kinds of
commands: Program Commands and Executive Commands.

Program Commands are the building blocks of the PILOT
language. They are composed of one or two letters followed by a
colon (:). When placed in a logical sequence, these commands
make up a program.

Executive Commands tell the computer what to do with a program
as a whole. Executive commands are either a short word such as
RUN or an abbreviation such as DOS.

CONSTANT A constant is a value expressed as a number rather than
represented by a variable name. For example, in the statement:

C:#X =100
#X is a variable, and 100 is a constant.

CURSOR The white square that moves across the television screen showing
your location on the screen as you type.

EXPRESSION An expression is any combination of variables, constants, and
arithmetic or relational operators used together to compute a
value. For example, #A + #B\ 2 is an expression; so is
#A <L =#B.

INPUT Any information put into the computer from the keyboard, cassette
tape, disk, and so on.

LABEL Code name or symbols given to a statement in a program to iden-
tify that statement for reference by a J: or U: command. PILOT
labels may be any combination up to 254 characters. Labels must
start with an asterisk (%) and a letter; for example, % HERE or
sk M35PDQ.

MEMORY The part of the computer where information is stored. This infor-

mation is both program statements and data (constants and
variables) that the program uses when it is run.

2 Pilot Information

L I N N N N BN N NN N NN NNINININ.]

OUTPUT Information put out from the computer memory to external
devices.

PILOT PILOT stands for Programmed Inquiry, Learning Or Teaching.

PROGRAM A set of statements in a logical sequence that tells the computer

what to do. The computer follows the program statements in
order, from beginning to end, unless a J: JUMP or U: USE com-
mand breaks the sequence.

SCREEN DISPLAY What you see on the television screen.

STATEMENT A statement is one line of a program. All PILOT statements begin
with line numbers (used for editing and sequencing). A PILOT
statement may be labeled with a ¢ LABEL between the line
number and the command.

STRING A group of characters—Iletters, numbers, punctuation, or ATARI
Graphics (CTRL) characters. The following are all
strings:

ABCXYZz7Z

“Quotes Too”
02BAK9

AR TATATATAY
5+ 2 =

Note that quotation marks are not used to identify a string. Any
group of characters, including quotation marks, is a
string in PILOT.

A string is like a constant, in that it may be stored in a
string variable.

VARIABLE A variable is the name of a place in memory to store a string or
numeric value that is used by a program. This value may (or may
not) change as the program is executed. (See the following page
for an explanation of the different types of PILOT variables.)

OPERATING MODES

PILOT has two kinds of modes: Programming Modes which determine how PILOT com-
mands are used by the computer; and Screen Modes which determine the layout of the

display screen.

Pilot Information 3

Programming Modes l

AUTO The mode in which the statements will automatically be numbered .
when writing a program. l

IMMEDIATE The Immediate mode is used when you want your commands to
respond right away after pressing the § ¥ key. 1

RUN In Run mode, PILOT is executing (carrying out) the program cur-
rently stored in memory.

Screen Modes

GRAPHICS The Graphics mode is used when you want to draw a picture of
any kind.
TEXT The Text mode displays only text (letters, numbers, punctuation)

and graphics (CTRL) characters.

VARIABLES ?

PILOT has two main kinds of variables: string variables and numeric variables.

String Variables can store strings of up to 254 characters. They are named with a $ sym-
bol, followed by any combination of letters and numbers. For example, $SNAME,
$M29ABD, $FOOD9 are acceptable string variable names. String variables cannot be
used in arithmetic expressions. A program can contain any number of string variables up
to the limits of memory.

Numeric Variables can store numbers from -32768 through 32767. They are named
with a # symbol, followed by a single letter; #A, #B, #C, and so on up to #Z are the
acceptable numeric variable names. A program can have up to 26 numeric variables.
They can be used in arithmetic and relational expressions.

Note: PILOT has two other kinds of variables that are not discussed in this guide. Pointer
variables, named with an @ symbol followed by a decimal memory location, are used to
examine or change the contents of a specific memory location (equivalent to PEEK and
POKE in the BASIC language). Special variables, named with a % symbol followed by a
letter or a letter and a number, are used to sense the values of the various ATARI con-

trollers (joysticks, paddles, and light pen) and to read other special values maintained by
the PILOT system.

The use of controllers and special graphics variables is explained in The PILOT Primer,
An Instruction Manual for the PILOT PROGRAMMING LANGUAGE. '

4 Pilot Information

ol B B F E N NN N NNNNI/N®NN®N~NHN,]

«

-«

¢

Information on the use of pointer variables and other special variables may be obtained by
phoning ATARI, INC., Customer Support:

(800) 538-8547 (Outside California)
(800) 672-1430 (Within California)

ARITHMETIC OPERATORS

The ATARI PILOT language uses five arithmetic operators:

+ addition

- subtraction (also denotes a negative numbers; e.g., -5)
<% multiplication

/ division

\ modulo (the remainder after a division)

Note: PILOT only performs integer (whole numbers) arithmetic.

Parentheses () can be used to change the order in which arthmetic is performed. For ex-
ample C:#A=5+6 % 2 puts the number 22 in variable #A; on the other hand,
C:#A=5+ (6 % 2) puts the number 17 in variable #A.

RELATIONAL OPERATORS

PILOT allows the result of the comparison between two variables or constants to be used
as a condition for executing a command. The comparison is made with the use of the
following relational operators:

#A < #B #A is less than #B

#A > #B #A is greater than #B

#A = #B #A equals #B

#A < =#B #A is less than or equal to #B
#A > =#B #A is greater than or equal to #B

#A < >#B #A is not equal to #B

(See Section 6, Conditionals.)

Pilot Information 5

ERROR MESSAGES

If you make an error, PILOT responds by showing the command or statement in error. It
highlights the source of the error or the first character it does not understand. It also types
out a message explaining the error.

The are two kinds of errors: Syntax errors result from incorrectly typing in a command.
Syntax errors are found by PILOT as you are typing commands or program statements in-
to the computer.

The second type of error is a Run-time error which results from mistakes in the logic of
your program - for example, trying to jump to a statement that you have not labeled.
Run-time errors are only found when you type RUN and PILOT tries to execute your
program.

The following are some common PILOT error messages:

WHAT’S THAT? Indicates that PILOT could not understand your command or what
you wanted it to do. This message is often the result of typing or
spelling errors.

I/0 ERROR xxx In the course of performing an 1/O operation the I/O subsystem
detected an error and returned the status indicated. See Appendix
B for a list of I/O error codes.

NO ROOM Indicates that the requested operation could not be performed
because there was not enough free memory.

WHERE? Indicates that the ¢ LABEL named in a U: (USE) or J: (JUMP)
command does not exist in the program storage area.

U: TOO DEEP The program has exceeded eight levels of nested USE commands.

DIVIDE BY 0 A COMPUTE command has just attempted to perform a division
by zero.

6 Pilot Information

2 CORE PILOT

T A A S S A A BB EEEEEEEEREER

The T: (TYPE) command tells the computer to display what you type. You must type T:
first, then your message. For instance, T:HELLO will cause the computer to respond

HELLO as you see in Figure 2-1.

Figure 2-1

The T: command will display anything you can type from the keyboard literally. That is,
the T: command will not add 2 + 2; it will display it as 2 + 2 (see Figure 2-2).

S i

Figure 2-2

8 Core Pilot—T:

Figures 2-3 and 2-4 are examples of programs using the T: command. Notice that Figure
2-4 uses graphics characters that are created by holding down the key while typing
the letters.

©

18 T:THIS IS
20 T:A VERY SHORT
38 T:PROGRAM

Figure 2-3

=

18 T:THIS PROGRAM MAKES A DESIGHN
28 T:USING GRAPHICS CCTRL)

CHARACTERS
I8 T:

48 T: E
58 T:

=

Figure 2-4

The backslash (\) has a special meaning to the T: command. Rather than printing the
next output on a separate line, the backslash tells the computer to continue on the same
line (see Figures 2-5 and 2-6).

=

Core Pilot—T: 9

T A A S S E S S EEEEEEEEER

Note: The computer will automatically move to the next line when it runs out of room.

18 T:THIS WILL
28 T:aALL PRINT A\
38 T:0N OME LINE.

Figure 2-5

i@ T:DO YOU READ ME? \
28 A:
38 T:G00D

Figure 2-6

When a T: command sees a string ($) or numeric (#) variable, it automatically replaces
those variable names with their contents if they have been given a value (see Figure 2-7).

10 Core Pilot—T:

4 F S a S B EEEEES

L N NN

ie
206
30
40
56

T:HHAT'S YOUR NAME? N\
f: SNAME

T:HOW OLD ARE YOU?
hA:vA

T :SNAME IS it YEARS OLD.

READY

Figure 2-7

Core Pilot—T: 11

A:

Accept -

The A: (ACCEPT) command tells the program to wait for information to be typed from
the keyboard. Figure 2-8 is an example of a simple use of the A: command.

18 T
28 A
38 T:IDON'T WEAR SHOES.

48 T:COMPUTERS DON'T HAVE FEET.

WHAT COLOR ARE YOUR SHOES?

READY
|

Figure 2-8]

The A: command also lets you give a value to a string ($) or numeric (#) variable as
shown in Figures 2-9 and 2-10.]

i8 R:COPY CAT PROGRAM

28 T!HI,I'MaCOPY CAT

I8 T:TYPE SOMETHING, AND I WILL
SHOMW YOU .

48 =*AGAIMNW

58 A:S5COPY

68 T:S5COPY

78 J:#AGAIN

READY
B

Figure 2-9

12 Core Pilot—A:

S B N N N N N N N N N NNNNNININ.]

«

e

¢

18
Z20
38
48
58
608

R:AGE OLD PROGRAM

T:HOW OLD ARE YOU?

A:nyY

c:uL=-i1868-nYy

T:JUST THINK, IN L YEARS,
T:YOU'LL BE 1886.

READY

Figure 2-10

Core Pilot—A:

13

M:
Match Y

The M: command matches the answer entered by a user (during an A: command) with
one or more answers expected by the program. Also, M: automatically creates a YES or
NO condition —Yes (Y) there was a match, or NO (N) there was no match. Figure 2-11
shows how this works.

i8 R:WEATHER TO DO

28 T:HOW'S THE MEATHER OUTSIDE?
38 A:

48 M:NICE _ . GOOD _.HOT,.GREAT

58 TY:GOTO THE PARK AND PLAY .
658 TN:5TaY HOME AND REaD A BODK.
78 E:

READY
]

14 Match—M:

' N N E EF BN NENENENERNNENNIMN,]

!

Figure 2-11

In Figure 2-11, if the answer matches nice, good, hot, or great, the program types “Go to
the park and play” (line 50). If the answer does not match, the program types “Stay
home and read a book” (line 60).

In the list of match choices, if you put a space followed by a single letter, the computer

’ will match anything starting with that letter. For example, in Figure 2-12 below, the
M:(space)Y will match any word that starts with the letter Y; this would include YES,
YUP, YEAH, YOU BET, or even YUK!

186 R:HAVES

28 *WATER

2B T ALAASSNANSAANANS
4B T AANUNNSNNNININS
58 Ti: /NS
68 T:MORE WAVES?

78 a:

60 M: Y_.O0K_.0.K._,ALRIGHT ,.SURE
98 JY: *HATER

188 E:

READY

]

MORE WAVES? NO MORE
READY o

Figure 2-12

Note: The JY: command in line 80 of Figure 2-12 is a conditional JUMP command. See
J J: (JUMP) or Section 6, Conditionals, for an explanation.

Match—M: 15

The computer will look to see if any of the choices in a match list are contained, exactly,
in any part of an answer. The program in Figure 2-13 below will match on SAL or SAM
as any part of the answer. This means that all of the following will create a match: SAL-
LY, SALT, SALAD, SALUTE, SALAMI, SAMMY, SAMUEL, and SAME.

18 R:5aM'S5 & 5ALLY'S5 PROGRAM
280 T:HI, WHAT'S YOUR NAME?

I8 *AGAIN A: SNAME

48 M:S5aAM,SaL

58 TN:I ONLY TaLK TO PEOPLE NAMED
60 TH:SAMOR SaALLY . . .

78 TN:PLEASE TELL ME YOLUR NAME
AGAIN:

88 JN:*AGAIN

98 TY:NICE TO MEET YOLU, $SNAME.
iee E:

READY
E

Figure 2-13

16 Match—M:

' F N F F N E N ENENENENEENENENENENNDNTHN,]

The J: (JUMP) command lets you jump from one spot in a program to another. The J: is
ALWAYS followed by a *¢ LABEL indicating to which statement you want to jump. The
destination of your J: command must also be labeled with the same ¢ LABEL.

Figure 2-14 shows how the J: command can be used to make a simple loop. The pro-
gram keeps looping (repeating), filling the screen with ROUND ROBIN.

18 R:LOOPING PROGRAM
20 *0OVER

20 T:ROUND ROBIN M
48 J: *0VER

READY
||

Figure 2-14

Jump—J: 17

Note: Figure 2-14 is an example of a never-ending loop. To stop it, press the
key.

% LABELS can stand alone as in line 20 of Figure 2-14, or they can be placed in front
of another command, as in lines 70 and 130 in Figure 2-15. This screen also shows you
how the J: command is used conditionally following an M: command. That is, JY:
(JUMP only if there is a match), or JN: (JUMP if there is no match).

18 R:RIDDLE PROGRAM . ’ £ .
28 T:DO ¥YOU LIKE RIDDLES? \ [H A RIDDLE FOR YO
I8 A: fafe BLACK aND AND RED &
40 M:YES,YUP,YEAH,SURE 0K, DUER 7

O0.K. ALRIGHT A PAPER b E P ALl 0
58 JN:¥BYE ‘ NOPE 55 AGATN

6686 T:0K, HERE'S A4 RIDDLE FOR YOU: NHA BLACK AND W E AND RED A
70 #*AGAIN T:WHAT'S BLACK AND DVER

WHITE AND RED ALL OVER? h BLLU M .

88 a: DPE HE AGATIN

38 M:SLUNBURMNED PENGUIN Hat BLACK AND MW E AND RED AL
186 TH:MOPE, GUESS AGAIN DUER
118 JN:*¥AGAIMN f INBLIRNED PE i
126 T:TERRIFIC; YOU GOT XT! RN DU GO
138 *BYE T:S5SEE YOU aROUND . SEE YOLU aARC D
i4@ E:

READY
L

Figure 2-15

18 Jump:—J:

S B N N NN NN NN N NNENNINMN.

e

.

¢

Any time you want to do arithmetic in PILOT, you must use the C: (COMPUTE) com-
mand with numeric variables. As an example, the program in Figure 2-16 lets you input
two numbers, and then it computes their average (#A).

186 R:AVERAGE PROGRAM

28 *DOAGAIN

38 T:THIS PROGRAM COMPUTES THE
AVERAGE

48 T:0F TWO NUMBERS

56 T:

58 T:FIRST NUMBER? \

78 hA:8F

868 T:SECOND NUMBER? \

98 A:nS

100 C:va-uwF+u5/2

iieé T:

128 T:THE AVERAGE OF &F ANMD &85 IS
8o .

138 T:

148 J:¥DOAGAIN

READY
|

Figure 2-16

Note: PILOT will evaluate arithmetic expresions from left to right unless you have
used parentheses to show a different grouping.

Compute—C: 19

The C: command is often used to count things in a program. For example, you might
want to give a person three chances at answering a riddle. A numeric variable such as
#G is used to keep track of the number of guesses made so far. A numeric condition is
used to find out whether or not #G has reached the limit (three in this case). Figure 2-17
below shows you how this looks in a program.

186 R:THREE GUESSES

28 C:nG=1

380 T:HERE'S A RIDDLE.

480 T:YOU GET 3 GUESSES:

58 *AGAIN T:WHAT KIND OF PERSON
LOVES coCcoa?

60 A:

78 M: COCONUT . COCOANUT . COCOA
NUT ,

886 TY:VERY GOOD; YOU'"RE SMART!
98 JY:¥BYE

188 JI(sG=33: *NOMORE

1186 T:NOPE, GUESS aGAIN

128 C:8G=#G+1

138 J:*AGAIN

140 *NOMORE T:SORRY, THAT'S 3
GUESSES.

158 T:THE ANSHWER IS

168 PA:99

i7e T:''4aCOCOANUT."'"®

188 *BYE T:BYE BYE

198 E:

Figure 2-17
REaADY

Note: The numeric conditional in the J: command in line 100 is explained in Section 6.

You may also use the C: (COMPUTE) command to give a value to a string ($) variable
within a program. For example, the program in Figure 2-18 keeps adding one more star
(%k) to the value of the string variable $GROW until the value reaches 21 stars.

18 R:GROWING STARS

28 C:S5GROM=

38 C:55TAR=*

48 C:8C=0

568 *LOooP

68 C:uC=BC+1

78 C:S5GROWM=SGROWSSTAR
86 T:5GROMW

28 JIuC{21):%L00OP

iae E:

READY
B

Figure 2-18

20 Compute—C:

d RANDOM NUMBERS

Besides the examples above, the C: (COMPUTE) command will let the computer select
numbers at random. For example, if all the numbers allowed by PILOT were mixed up in
a large fish bowl, the computer would reach into the bowl and choose one by chance.

J The random number is expressed as a ? for the value of a numeric variable in a C: com-
mand. For example,

C:#R=7.

The program in Figure 2-19 generates random numbers and types them out.

16 R:RANDOM NUMBERS
20 *AGAIN

38 C:uR="7

48 T:8R

58 J:*AaGAIN

READY
[

J Figure 2-19

Compute—C: 21

You can tell the computer only to select random numbers from 0 through an upper limit.
Simply place a backslash (\) and the upper limit after the question mark (?). For exam- "
ple, C:#R =?\ 10 will choose a random number from 0 through 9. The COIN TOSS

program in Figure 2-20 randomly generates only 0’s (HEADS) and 1’s (TAILS).

i@ R:COINFLIP
28 *MORE

38 C:u8R=7?\2

48 TI(uR=0):HEADS
58 TIBR=1):TaIlLs
6568 J:*MORE

READY
]

A numeric variable can be used as the upper limit for selecting a random number. For
example, the program in Figure 2-21 allows you to type in the maximum amount that a
drunkard will turn at each step as he staggers for 200 paces.

18 *DRUNKMALKER

28 GR:CLEAR

36 T:ENTERMAXIMUM TURNC(B-3683:\
48 A:HR

58 T:> [CLEAR SCREEMN]

58 T:DRUNKEN HALKER MAH. TURMN =
#R D EG.

78 C:8C=8

88 *WaLK

98 GR:DRAWS

iege PaA:5

118 GR:TURM ?\8R

iZ8 C:uC=nC+1

136 JIBC{Z208):*HalLK

i48 E:

READY
&

Figure 2-21 ‘

22 Compute—C:

Ea—

The GUESS MY NUMBER program in Figure 2-22 gives you a more complete example
of how you can use the random number feature of PILOT.

i@ R:GUESS MY NUMBER
280 T:I'M THINKING OF 4 NUMBER

38 T:FROM 1-188
48 T:

58 T:TRY TO GUESS WHAT IT IS.

68 T:

768 T:IMWILL TELL YOU IF YOUR GUESS
LR 100 LOWEGEY TO0O HIGHER

98 T:

180 T:ARE YOU READY TO PLAY?

118 a:

128 M:Y,SURE ,OK,ALRIGHT

138 JMN:*BYE
148 *BEGIN

158 T:7 [CLEAR THE SCREEN]
1608 C:HR=7\1008+1

178 C:8C=8

188 T:0K, I HAVE a4 NUMBER IN MIND.
198 T:

288 *AGAIN

218 T:

228 T:YOUR GUESS? \

238 A:HG

248 C:nC=nC+1

258 T(uG{sR):EIIEEI": GUESS
aGAIN . . .

268 TinG>uR):ELERFIH],. GUESS
AGAIN . .

2780 JIBG{O>BRI:*AGAIN

286 T:YOUGOT IT. . .IN ONLY siC
GUESSES!

298 U:*BEEP

88 T:

18 T:DO YOU WANT TO PLAY AGAINT \
320 A:

IIB M:Y,SURE 0K _ ALRIGHT

348 JY:*BEGIN

I58 *BYE T:0K, SEE YOU AROUND .
368 E:

378 *BEEP

I80 C:HN=0O

398 C:85=-16-uC

400 *BEEPAGAIN

418 S0:13

428 PA:8

438 S0:0

448 C:BN=BN+1

450 JIuN{uS5S):*BEEPAGAIN

460 S0:13,17 .20 ,25

478 PA:60

488 S0:8

498 E:

READY
|

Figure 2-22

Compute—C: 23

The E: command marks the END of something. In Figure 2-23 below, it marks the END
of your program.

10 R:SUDDEN ENDING

28 T:ONCE UPON A TIME

38 T:THERE HWas5 A COMPUTER

46 T:NAMED HAL .

58 T:HAL STARTINGACTING STRANGE.
68 T:50 aN ASTRONAUT NAMED DAVE
70 T:PULLED OUTHAL'S . . .

88 E:

READY
|

Figure 2-23

24 End—E:

|

T A A FE S SESESEESEEESESEES

«

28

R:FANFARE PROGRAM
T:MWELCOME TO PILOT
U:*TRUMPETS

Pa:i0

U:*TRUMPETS

T:THE END

E:

#*TRUMPETS
50:1,5,9,13

1886 PA:128
1ié 50:0,.606,08.08
128 E:

READY

«

e

Figure 2-24

The end of a program is not necessarily the last line of the program. In Figure 2-24, the
E: command is used to mark the END of the program at line 70, and it is also used to
mark the END of the s TRUMPETS module at line 120.

End—E: 25

The U: command tells the computer to USE a module. A module is a program (sub-
program) within a program.

Every module must begin with a % LABEL and must end with an E:. Figure 2-25 shows
a module that draws a triangle.

26 Use—U:

188 *TRIANGLE
1190 GR:3I(DRAW IO :TURN 12863
128 E:

READY

Figure 2-25

If you type U: sk LABEL in Immediate mode, you can check out a module without run-
ing the entire program. For example, Figure 2-26 is the result of typing

U: ¢ TRIANGLE.

Figure 2-27 shows the ¢ TRIANGLE module within a larger program. When the com-

Figure 2-26

puter sees U: 3¢ TRIANGLE, it jumps to the statement labeled # TRIANGLE and uses
that module. At the end of the module, the computer continues with the command

following U: ¢ TRIANGLE.

ia
20
za
48
50
658
78
88

R:HWHEEL OF TRIANGLES
cC:u8T=8

GR:CLEAR

*AGAIN C:8T=8T+1
U:*TRIANGLE

GR:TURMN 36

JIHTS108) (*AGATIN

E:

188 *TRIANGLE
1i8 GR:3C(DRAW 36 ; TURN 128)
1ze E:

READY

Figure 2-27

Use—U:

27

The program in Figure 2-27 uses the ¢ TRIANGLE module ten times to draw a wheel

of triangles. The final result of this program is shown in Figure 2-28 below.

Figure 2-29 shows a program that uses several modules (s BOX,

Figure 2-28

sk MOON, and sk STAR) to make a picture.

28 Use—U:

iéa

28

za

48

Sa

68

78

88

28

iaa
iia
iz8
i1za
148
158
is8
i78
2929
480
418
426
438
448
588
S5ia
D28
538
580
618
5206
638
G540
658
788
7iB
728

RE®
| |

R:PICTURE
GR:CLEAR
GR:GOTO -25,.-18
GR:PEH BLUE
U:*B0OH
GR:TURMNTO 28 G0 25
GR:PEN RED
U:*TRIANGLE
GR:GOTO @25
GR:PEN YELLOHW
u:=*=MOON
GR:GOTO —48 .25
U:=*STaAR
GR:GOTO —-18 .35
U:*5TaRr
GR:GOTO 35,28
U:*5TaR
E:
*BOHK
GR:TURNTO 96
GR:3I(DRAMW 25 TURN 282
GR:FILL 25
E:
#¥TRIAGMGLE
GR: TURNTO 158
GR:Z(DRAW 25 TURN 1283 ;FILL 24
E#
*MOOM
GR:TURNTO 78
GR:38(DRAMW 1; TURK 53
GR: TURNTO 56
GR:S(TURN -28_: FILL 53
E:
#5TaR
GR:S5(DRAK 18 ; TURK 1443
E:

[k)

sk TRIANGLE,

Figure 2-29

Note: It is possible to have modules used within modules up to eight layers deep. For ex-
ample, the ¢ TRIANGLE module could itself use a #% FILL module; the % FILL
module could use a %% PENCOLOR module, and so on.

Use—U: 29

' F EF N N NN EFENEENENENENERNDNENIN.
e

Remark

The R: (REMARK) command lets you say something about the program. However, any
REMARKS made will be ignored by the computer when you RUN the program. The only
time you see them is when you LIST the program onto the television screen. For exam-
ple, Figure 2-30 is a program made up almost entirely of REMARKS.

1@ [o 363636363636 36 36 36 3636 36 36 36 3636 36 3636 36 36 36 3 36 36
20 R:* ¥*
386 R:* *
48 R:* THE MOTHING PROGRAM ¥*
58 R:* *
58 R:i* *
70 R o 26336363636 3636 36 36 36 36 3636 3636 6 36 36 3636 H 236
86 T:LTHIS IS ALSO a4 REMARKI

98 T:THIS PROGRAM DOES NOTHING.
188 R:THAT'S FOR SURE!

118 R:THIS IS THE END OF THE
PROGRAM.

128 E:

READY

B

Figure 2-30

Note: Square brackets [] are used to indicate a remark on the same line as a command

as shown in line 80 above.

When you type RUN and press

Figure 2-31 is all you will see on the screen.

Figure 2-31

REMARKS are particularly helpful when you write longer programs because they will re-
mind you how the program works long after you have written it.

30 Remark—R:

‘

3 EXECUTIVE COMMANDS

AUTO

Automatic Line Numbering

Use the AUTO command when you want to type a program into the computer memory.
AUTO automatically numbers your program lines for you.

While you are in the AUTO mode, the computer will make everything you type part of

your program. No Immediate mode commands can be entered until you exit from the
AUTO mode by pressing the

When you type AUTO your screen turns yellow as in Figure 3-1. When you leave the
AUTO mode, your screen turns blue.

Figure 3-1

Remember that the computer enters the line numbers, which you cannot see until you
exit from the AUTO mode and LIST the program.

32 Executive Commands—AUTO

b

Figure 3-2

Figure 3-3

You can tell the AUTO command where to start numbering and by how much to increase
each new line number. For example, AUTO 100,20 tells the computer to begin number-
ing at 100 and increase each line by 20 (if you leave off the second number, it will
automatically increase by 10’s).

Executive Commands—AUTO 33

RUN

Run a Program

The RUN command tells the computer to execute the program currently in memory.
Figure 3-4 shows a listed program and Screen 3-5 shows the program after RUN is typed.

34 Executive Commands—RUN

T N M NSNS SESSESSsE S aaEEREEREEE

o

.

-

|
|
i
1
{
:
 :

o

Figure 3-4

Figure 3-5

Executive Commands—RUN 35

LIST

List a Program

AT, ‘_\\\3\\\3‘ %

mm\m\

36 Executive Commands—LIST

S N N N OF §F B B FEEE R EmEEmEEEE =B

LIST tells the computer to display the program currently stored in memory. Use this com-
' mand anytime you need to see the entire program, a few lines of the program, or just
one line of the program. For example, Figure 3-6 shows the listing of an entire program.

=S

Figure 3-6

The command LIST 40,80 tells the computer to start listing at line 40 and end at line 80,
as vou see in Figure 3-7.

.
-

?24

Figure 3-7

Executive Commands—LIST 37

The command LIST 50 tells the computer to LIST only line 50, as you see in Figure 3-8. ‘

Figure 3-8

Note: To get a printed listing of your program on paper, you must SAVE your program
to the printer (see the SAVE command).

38 Executive Commands—LIST

REN
Renumber a Program

«

The REN command renumbers the program statements, beginning with the first line of the
program. It renumbers the lines by 10’s, starting at 10, so you can add more lines of pro-
gram if necessary. Figure 3-9 shows a program before renumbering.

i
§
i
i
i

Figure 3-9

Figure 3-10 shows the same program renumbered by 10’s starting with 10.

R —————

Figure 3-10

Executive Commands—REN 39

S M N BN N F NN S EEEEEaEEaEEREaEEaEs

REN will also let you begin renumbering at any number and increase each statement by
any amount you want. For example, REN 100,5 will renumber your program statements
starting at 100 and increase each line by 5.

Figure 3-11 shows the program in Figure 3-10 renumbered, starting at 100, increasing by
o's,

o

Figure 3-11

40 Executive Commands—REN

N N N N N N N N N N N N NN NNNNDE

@

«

“

NEW

New Program

Executive Commands— NEW 41

The NEW command lets you erase the program in the computer memory. You must be
careful when you use this command. Make sure you do not want the program any more
before typing NEW.

Figure 3-12 shows the listing of a program before NEW is typed.

Figure 3-12

Figure 3-13 shows the attempted listing of a program after NEW is typed.

Figure 3-13

42 Executive Commands—NEW

VNEW
New Variables

.

The VNEW: command clears the numeric and/or string variables by using the command
as follows:

VNEW:$ (clears the string variables)
VNEW: # (clears the numeric variables)

VNEW: (clears both string and numeric variables)

The VNEW: command does not erase the program from memory.

Figure 3-14 shows a program with string and numeric variables.

Figure 3-14

“

Executive Commands—VNEW 43

o E S E S ESSEESEEsEESESsEEaEEES
®

Figure 3-15 shows the variables with values assigned.

Figure 3-15

44 Executive Commands—VNEW

Figure 3-16 shows the variables after VNEW has been typed.

e

Figure 3-16

®

©

Executive Commands— VNEW 45

" N N N N NN NN NEEENEREENRENNRDED

DUMP

Dump String Variables

If you want to see the contents of all the string variables in the computer’s memory, type
key. The DUMP command does not clear the memory,

DUMP and press the
and therefore is helpful when you want to find errors in your program.

The program in Figure 3-17 is a listing of a program.

i8 R:a MabD LIB

28 T:PLEASE ANSHER THESE
QUESTIONS:

380 T:NAME AN UGLY COLOR: %\

48 A:S5COLOR

98 T:NAME ACITY: A\

68 A:5CITY

78 T:MAME a FAMOUS MOVIE STaARLET?
88 A:SSTARLET

280 T:WHAT'S YOUR GREATEST FEAR?
188 A:SFEAR

118 T:% [CLEAR SCREEN]

128 T: MEMS FLASH
138 T:

148 T:LAST WEEK, THE FAMOUS
ACTRESS,

158 T:S$S5TARLET, TRAVELED TOSCITY
1680 T:WEARINGDARK SUNGLASSES AND A
178 T:5COLOR HAT S0 THAT MO ONME
HOLULD

1868 T:KMOW THAT SHE WaS aFRaID OF
128 T:S$FEaAR.

288 T: THE END
218 E:
READY
|
Figure 3-17

Figure 3-18 is a RUN of that program.

46 Executive Commands —DUMP

{

.

Figure 3-18

Figure 3-19 is a DUMP of the variables in that program.

pUMP '
SCITY='SLUNNYUVALE®'
5 'L IME

P ——————

Figure 3-19

“

Executive Commands —DUMP 47

- F A S S S A S S S EEEEEEERES
“

LOAD

Load a Program

The LOAD command tells the computer to LOAD a program you have saved on cassette
or diskette into the computer memory.

LOAD C:

Loading From Cassette

In order to LOAD a program from cassette (indicated by C:), type LOAD C: and press
the key.

The computer will beep, signaling you to position the cassette t and press the PLAY
button on the cassette recorder. When you are ready, press {51 n the computer
console to start the tape loading. If you turn up the volume control on your television set,

you will soon hear a series of beeps. This tells you that the cassette is loading properly.

48 Executive Commands —LOAD, LOAD C:

.

o«

LOAD D: FILENAME

Loading From Diskette

If you are loading a program saved on a diskette, you must know the name of the pro-
gram. For example, if the name of the program you want to LOAD is COLORS.PLT,

you would type LOAD D:COLORS.PLT and press the |

key. The D: tells the

computer you are loading from the disk drive. Again, if the volume control is turned up
on the television set, you will begin hearing a series of fast beeps telling you that a pro-

gram is being loaded.

MERGING PROGRAMS

The LOAD command does NOT clear out memory before loading a program. This allows
you to merge two programs —that is, load one program into memory on top of another
one. When you merge two programs, the program loaded last will write over and replace
any statements having the same line numbers as the first program.

Note: Unless you want to merge two programs, you should always type NEW to clear

memory before loading a program.

Figures 3-20 and 3-21 show two different programs, Program One and Program Two.

S R:PROGRAM ONE

i8 R:CITYSCAPE

28 GR:CLEAR

I8 U:¥BUILDINGS

48 U:*5KY

58 T: THECITY ATNIGHT
88 E:

188 *BUILDINGS

118 GR:GOTO 7?5 ,-31;:CLEAR
izZe8 C:uD=8

138 C:pL=1

148 #NEXTBUILD

158 C:8C=?.3+1 [RANDOM COLORI]
168 JIBC=nl J):*NEXT BUILD
i78 GRIHC=13:PEN RED

188 GRIBC=2):PEN YELLOM

198 GRIBRC=I3:PEHN BLUE

288 C:#H=?.15+5 [RANDOM BLDG
HIDTHI]

218 C:8Y=?.38+5 [RANDOM BLDG
HEIGHT]

228 GR:TURNTO 8 :DRAMW Y ;TURKNTO
188,60 8Y

2Z0 GR:TURNTO -928:G0 #X TURNTO 8 ;
FILL &Y

248 C:8D=uD+uX

258 C:gL=nC

268 GR:TURKNTO 188 ;G0 BY

278 JIRD{156) :*NEXKTBUILD
I8 SKY

218 GR:PEN YELLOM

228 C:uMN=8

3II8 *MORE

248 C:BH=?\158-72

358 CiRY=7?\58+5

368 GR:GOTO X . 8Y

X780 GR:S(DRAW 4 :TURM 1443
868 CiHN=-HN+1

398 JIuN<{Z8):*MORE

488 E:

Figure 3-20

Executive Commands—LOAD D: 49

5 R:PROGRAM THO

386 *5KY

3186 GR:GOTOD 30,40

328 U:*MOOMN

338 C:u5-8

48 *MORESTARS

358 C:u8X=?\158-79

368 C:nY=?\58+5

I78 C:8C=?\3+1

Z88 GRI(BC=1):PEN RED
298 GRI{VC=2Z):PEN BLUE
488 GRIVC=I):PEN YELLOM
418 GR:GOTO 88X . 8Y

428 C:nS5=uS+1

428 JIBS{70):#*MORESTARS
448 E:

458 *MOOMN

468 GR:PEN YELLOW

478 GR:TURNTO 78

4868 GR:38I(DRAW 1 :TURN 53
498 GR:TURNTO 58

588 GR:SI(TURN -28;FILL 53
518 E:

READY
|
Figure 3-21

Figure 3-22 shows what happens if you LOAD Program Two on top of Program One.

5 PROGRAM THO 488 GR(HC=3):PEN YELLOMW

i8 R:CITYSCAPE 418 GR:TOTO utH .8y

28 GR:CLEaAR 4728 C:85=n5+1

I8 U:¥BUILDINWGS 438 JIHS5{70):*MORESTARS
48 U:*SKY 448 E:

58 T: THECITY ATNIGHT 458 *MOOMW

88 E: 468 GR:PEN YELLOMW

188 *BUILDINGS 478 GR:TURNTO 78

118 GR:GOTO 75;:-31:CLEAR 488 GR:38(DRAW 1 TURN 53

izé C:uDb=a 498 GR:TURNTO 58

138 C:inlL=1 588 GR:SC(TURN -Z8_:FILL 52
148 =*NEXTBUILD 518 E:

158 C:8C=?\3+1 CRANDOM COLOR]

168 J(RC=H#LI :*NEXTBUILD READY

178 GRI{HC=13:PEN RED |

188 GRE{HC=Z):PEN YELLOH

198 GREHC=3I3:PEN BLUE

288 C:uX=7?\15+5 [RANDOM BLDG
HWIDTHI

218 C:8Y=7?.38+5 [RANDOM BLDG
HEIGHT]

228 GR:TURMNTO 8 ;:DROMW 8Y ;TURNTO
188 ;G0 8Y

236 GR:TURNTO-28 ;GO RH TURNTO 6;
FILL 8#Y

248 C:8D=BD+uH

258 C:glL=nC

268 GR:TURNTO 188 ;G0 8Y

278 JIHD<{158) i *NEXTBUILD
Ia6 #*5KY

Zie GR:GOTO 36,48

228 U:*MOOM

338 C:85=8

248 *MORESTARS

358 C:gH=?\158-79

368 C:nY=7?\568+5

378 C:BC=?\3F+1

380 GRCHC=1):PEN RED

98 GROHC=Z):PEN BLUE

Figure 3-22

50 Executive Commands —LOAD D:

SAVE

®

Save a Program

The SAVE command lets you save all or any part of a program you have written. In
order to SAVE a program, you must have either-a cassette or disk drive attached to your
computer. You can get a printout by saving your program to the printer.

SAVE C:
Save to Cassette

To SAVE a program to cassette, type SAVE C:. The computer will beep twice, which
tells you to position the cassette type, and press the PLAY and RECORD buttons (at the
same time). Then press the - key on the computer console to begin saving your
program. As this occurs, you will hear a high-pitched hum and a series of low beeps.
When you SAVE to cassette in PILOT, you cannot give the program a name. You must
make a note as to the location of the program on the tape by the numbers shown in the
counter window on the recorder. Then when you want to LOAD the program back into
memory, you must first move the tape until that number shows in the counter window.

If you want to SAVE only part of your program, you need to type the line numbers you
want saved. For example, typing SAVE C:10,50 will SAVE lines 10 through 50 to the
cassette.

“«

Executive Commands—SAVE, SAVE C: 51

o o A E S SA S ESEEESEESEEESN
«

SAVE D:FILENAME
Save to Diskette

If you are saving to a diskette, you must give the program a name of up to seven
characters. You can extend the program name by adding a period and three more
characters. This is helpful if you have more than one version of a program. For example,
if Version 3 of your COLOR program was in memory and you wanted to SAVE it on a
diskette, you might type:

SAVE D:COLORS.V03

The disk drive will start humming, and if your television volume control is turned up
slightly, you will hear the beeps telling you that the program is being saved.

If you are saving only part of the program to diskette, you need to type in the lines you
want saved after the program name. For example, typing SAVE D:MODULE1 10,50 will
SAVE only lines 10 through 50 on the diskette under the program name, “MODULE1.”

SAVE P:
Save to Printer

To get a listing of part or all of your program printed on paper instead of the television
screen, you must SAVE your program to the printer. To get a listing of your whole pro-
gram, turn on the printer, and type SAVE P:. If you only want a listing of lines 20
through 50, type SAVE P:20,50.

52 Executive Commands—SAVE D:, SAVE P:

DOS
Disk Operating System

®

When you want to work with your disk files for any reason, type DOS and press £
This will bring up the DOS Menu (Figure 3-23) to your television screen.

«

Figure 3-23

Select the function you want to perform from the DOS Menu, type the letter for that func-
tion, and press EEILLE. For example, if you want to see what files are in the Disk Direc-
tory, you would type the letter A (see DOS Menu) and press T twice. You will then
see a listing of all the files in the directory (Figure 3-24). Our sample Disk Directory is
listed on the following page; yours will have different filenames.

«“

Executive Commands—DQOS 53

FFEFEFEEFE N S S NN ERERERENRS

Figure 3-24

54 Executive Commands—DOS

4 GRAPHICS

GR:

Graphics

The GR: (GRAPHICS) command tells the computer you are going into the Graphics mode
to draw a picture. Figure 4-1 shows you what the basic Graphics screen looks like.

Figure 4-1

The black background is for drawing, and the blue strip at the bottom of the screen (the
text window) is for displaying messages or writing commands.

56 Graphics—GR:

-

¢

i FFFFFEFEFEFEFEEEERENENRNNIHN.]

TURTLE GRAPHICS

The method by which you draw is called turtle graphics. Imagine that the screen is the
playground of an invisible turtle who draws on the screen with a tiny pen. The
GRAPHICS commands tell the turtle where to go and what to do with the pen.

The GR: command does not draw anything by itself; it must be used with Graphics Sub-
commands. For example, the PEN Subcommand tells the turtle either to lift the PEN or to
draw in one of four colors. The Graphics Subcommands are explained in more detail on
the pages to follow.

Commanding the turtle to move is like giving someone directions to the nearest gas sta-
tion: either you give directions where (go to Fourth and Main St.), or you give specific
directions which way and how far (go 3 blocks to Fourth, take a right and go 4 blocks to
Main St.).

WHERE TO GO - X AND Y COORDINATES

The Graphics screen is really an invisible grid of numbered lines which looks like a piece
of graph paper. The center of the screen is a point (called the origin) where the X and Y
axes Cross.

The X axis goes horizontally from the left (-79) to right (+79). The Y axis goes vertically
from the bottom of the screen (-47) to the top of the screen (+47). The bottom of the
screen includes the text window.

Every point on the screen is named by two numbers (X,Y). These two numbers are called
the X and Y coordinates of the point. They tell the distance horizontally and vertically
from the point to the origin. Figure 4-2 shows the screen layout with some labeled points.

Figure 4-2

Graphics—GR: 57

The Graphics Subcommands GOTO, DRAWTO, and FILLTO use coordinates to tell the
turtle where to go.

WHAT DIRECTION AND HOW FAR TO GO

The turtle is always at the center of an invisible circle which moves with him wherever he
goes. This circle is divided into 360 one-degree angles, with the O-degree angle pointing

up.

The turtle is always pointing in some direction within this circle, and can turn to the right
(+) or left (-) in 360 different angles. Figure 4-3 shows some different headings. The
Graphics Subcommands TURNTO and TURN, change the turtle’s direction.

Figure 4-3

Each step the turtle takes, either forward or backward, is called a turtle unit. The units
are the same size as the individual units making up the invisible grid; therefore, if the tur-
tle moved from the origin to the right edge of the screen, he would move 80 turtle units.
The Graphics Subcommands GO, DRAW, and FILL tell the turtle to move forward or
backwards in whatever direction he is facing.

INITIAL LOCATION, HEADING, AND PEN COLOR

When you first enter the Graphics mode, the turtle is located at 0,0 (the origin). He is fac-
ing O degree (straight up) and the PEN color is yellow.

58 Graphics—GR:

¢

SHORTCUTS FOR GRAPHICS PROGRAMMING

You can program more than one GRAPHICS subcommand in the same program state-
ment. Each subcommand MUST be separated by a semicolon (;). For example:

GR:GOTO 0,0; DRAW 10; TURN 45; PEN RED; DRAW 5

If you want a series of subcommands repeated a specific number of times, enclose the
series of subcommands in parentheses and precede the left parenthesis by the number of
times you want that series repeated. For example, the program in Figure 4-4 shows the
long way to draw a box. The program in Figure 4-5 shows a short way to to draw the
same box.

18 R:LONG WAY BOX
28 GR:CLEAR

25 GR:GOTO —15,-5
38 GR:DRAM I8

48 GR:TURN 9@

568 GR:DRAW 30

68 GR:TURN 98

78 GR:DRaMW 3@

80 GR:TLRN 98

98 GR:DRaW 38
188 GR:TURN 9@
118 E:

READY
&

Figure 4-4

18 R:SHORT WaY BOX

280 GR:CLEaAR

386 GR:GOTO -15,-5

48 GR:4C(DRAW 30 :TURKN 283
58 E:

READY
®

|
:
|
|
:
1
!

Figure 4-5

Graphics—GR: 59

GR:CLEAR
Clear the Graphics Screen -

[
|

GR:CLEAR erases what is on the screen. When you enter a new GR: command the pic-
ture begins at the point you left off with the last drawing.

Figures 4-6 through 4-8 show you how GR:CLEAR can be used in a program. The pro-
gram draws a pentagon, pauses for you to look at it, then clears the screen and draws a
star. The program continues to go back and forth between the pentagon and the star, giv-
ing you a flashing effect.

18 R:THE PENTAGON AND THE 5TaR
20 GR:CLEAR

36 *LOOP

40 U:*PENTAGON

56 PA:S

68 GR:CLEAR

76 U:*¥5TaAR

806 PA:5

986 GR:CLEAR

196 J:*LOOP

118 #*PENTAGON

129 GR:GOTO -15,6

138 GR:TURNTO -18

140 GR:SC(DRAMW 26 :TLURN 723
1506 E:

168 *STAR

176 GR:GOTO0 -15.6

188 GR:TURNTO 19

196 GR:SC(DRAMW 31 ;:TURN 1443
2060 E:

READY

60 Graphics—GR:CLEAR

Graphics—GR:CLEAR 61

Figure 4-6
Figure 4-7
Figure 4-8

e ——

o
HEEEEEEEEEEEREFEEEEEEErFrE

GR:GOTO

Go to the Point XY

62 Graphics—GR:GOTO

The command GR:GOTO X,Y tells the turtle to pick up the pen, move to the point with

coordinates X and Y, and put the pen down there. The pen leaves a dot on the screen at
the point (X,Y). Figure 4-9 is a short program that makes “The Big Dipper” using GOTO
commands.

18 R:THE BIG DIPPER
15 GR:CLEAR

280 GR:GOTO 40 .48
38 GR:GOTOD 28,35
48 GR:GOTO 5,25

58 GR:GOTO -16_.18
68 GR:GOTO -18_.-5
78 GR:GOTO -38_.-16
88 GR:GOTO -48,5
98 T: THEBIGDIPPER
i88 E:

READY

Figure 4-9

The X and Y coordinates in the GOTO command may either be numbers, numeric
variables, or numeric expressions. The program in Figure 4-10 uses numeric variables #X
and #Y as coordinates. These variables are given random values so the dots appear at
random on the screen. (The color of the dots is also chosen at random.)

186 R:NIGHT SKY

280 GR:CLEaAR

38 T: NIGHT SKY
48 C:15=0

58 *MORE

68 C:uH=7\158-79

78 CinvY=7\47

80 C:nC=?\3+1

286 GRI(C=12:PEN RED
188 GRCBC=2Z):PEN BLUE
118 GRCVBC=313:PEN YELLOM
120 GR:GOTO 8#H _.8Y

138 C:85=85+1

149 JiuS5{168):*MORE
i58 E:

READY

Figure 4-10

Graphics—GR:GOTO 63

GR:DRAWTO
Draw to the Point XY -

The command GR:DRAWTO X,Y tells the turtle to put the pen down and draw a straight
line to the point with coordinates X and Y. The line is drawn in the pen’s current color, t

64 Graphics—GR:DRAWTO

and the turtle ends up at point X,Y. For example, the program in Figure 4-11 uses
DRAWTO to make the outline of a barn.

18 R:BARN

28 GR:CLEaAR

38 GR:PEN RED

480 GR:GOTO -38_.40

580 GR:DRAMTO 45 .48

658 GR:DRAWTO 68,25

78 GR:DRAWTO 65,5

880 GR:DRAMWTO 65,5

96 GR:DRAWTO 65 ,-38
1868 GR:DRAMWTO -16,-36
1i® GR:DRAMWTO -10,5
126 GR:DRAWTO -15,25
136 GR:DRAMWTO -30,40
148 GR:DRAW TO -45 .25
156 GR:DRAWTO -58,5
168 GR:DRAWTO -58_,.-36
178 GR:DRAWTO -10,-398
180 GR:GOTO 65,5

1928 GR:DRAWTO -58.,5
280 GR:GOTO -35,.30
216 GR:DRAWTO -25,30
2286 GR:DRAWTO -25,.15
230 GR:DRAWTO -35,15
248 GR:DRAWTO -3I5,30
258 GR:GOTO -46,.-30
2680 GR:DRAWTO -48,.-16
278 GR:DRAWTO -20,-190
280 GR:DRAWTO -28,.-38
238 E:

READY
]

Figure 4-11

The X and Y coordinates in the GOTO command may either be numbers, numeric
variables, or numeric expressions. The “Modern Art 1” program in Figure 4-12 uses

numeric variables #X and #Y as coordinates. These variables are given random values
so the lines are drawn at random. The colors of the lines are also chosen at random.

i8 R:MODERN ART I

28 *BEGIN

380 GR:CLEAR

48 T:

58 T: MODERHN ART
68 C:8BL=7\280+7

78 C:n5=86

86 *MORE

98 C:8BH=?\158-79

188 C:inY=?\94-47

118 C:nC=7\4

1280 GR(BC=6) :PENUP
138 GRI®C=13) : PEN RED
146 GRI(®C=2Z) :PEN BLLUE
156 GROBC=3I) :PEN YELLOMW
168 GR:DRAWTO 88X .Y

178 C:85=185+1

180 JIinsS{nLd :*MORE

196 PA:1666

2808 J:*BEGIN

READY
|

Figure 4-12

Graphics— GR:DRAWTO 65

GR:FILLTO
Fill to the Point X.Y

The command GR:FILLTO X,Y tells the turtle to draw a line to the point with coordinates
X and Y. As he moves, the black background between the turtle and any figure or line
directly to his right is filled with the current pen color. Figure 4-13 shows how FILLTO is
used to fill parts of a barn in red.

186 R:RED BaRN

28 GR:CLEaAR

38 GR:PEN RED

48 GR:GOTO -3940

58 GR:DRAWTO 45,48

58 GR:DRAWTO 68,25

78 GR:DRAWTO 65,5

886 GR:DRAWTO 65,5

98 GR:DRAMWTO 65,-38
18686 GR:DRAWTO -168_,.-36
116 GR:FILLTO -18,5
128 GR:FILLTO -15,25
1380 GR:FILLTO -Z8_.486
140 GR:DRAWTO -45,25
158 GR:DRAWTO -58.5
166 GR:DRAWTO -58,-38
176 GR:DRAWTO —-18.-36
186 GR:GOTO 65,5

1286 GR:PEN ERASE

2080 GR:DRAMWTO -10.5
218 GR:PEN RED

220 GR:DRAWTO -58,5
230 GR:GOTO -35,.36
248 GR:DRAWTO -25.38
250 GR:DRAWTO -25,15
268 GR:DRAMWTO -35,15
276 GR:FILLTO -35,306
288 GR:GOTO -26,.-306
2989 GR:DRAWTO -286.-16
388 GR:DRAMWTO-48.-186
316 GR:FILLTO -406,.-36
328 E:

READY

Figure 4-13

If there is nothing to block the color filling in before it reaches the right edge of the screen,
the filling “wraps around,” and color continues to fill in from the left edge until a barrier is
reached. When there is nothing blocking the fill anywhere in its path, the line being filled
from becomes its own barrier. This is shown in Figure 4-14.

66 Graphics—GR:FILLTO

18 R:FILLING UP SPACE

28 GR:GOTO 30,45 ;TURNTO 180 ;PEN
YELLOW

30 U:*PARTBOX

48 GR:GOTO —-48,15 ;TURNTO 96 ;PEN
YELLOMW

58 U:*PARTBOX

68 GR:GOTO -50,-26 ;TURNTO 30 ;PEN
YELLOMW

78 U:*TRIANGLE

88 GR:GOTO 15,0 ;TURNTO 98 PEN
YELLOMW

98 U:*BOX

188 GR:GOTO 58,5;TURNTO -30 :PEN
YELLOMW

126 U:*TRIANGLE

286 GR:GOTO -58,-38

218 GR:PEN RED

228 GR:FILLTO 508,36

236 GR:PEN YELLOW;:GOTO 51,31
299 E:

488 *BOX

418 GR:4C(DRAMW 18 ;TURN 283

428 E:

588 *PARTBOX

518 GR:3(DRAMW 28 ;TURN 283

528 E:

580 *TRIANGLE

618 GR:3IC(DRAMW 15;TURN 1283

628 E:

READY
]

Figure 4-14

FILLTO, like GOTO and DRAWTO, may use either numbers, numeric variables, or

numeric expressions as coordinates.

Graphics—GR:FILLTO 67

GR:TURNTO

Turn to N Degrees

The command GR:TURNTO N tells the turtle to turn in place until he is heading toward
the angle N degrees. The top of the screen is O degree. Positive angles (+) are measured
clockwise from O degree; negative angles (-) are measured counterclockwise.

Since the turtle is invisible on the screen, you cannot see him turn, but you can see the
direction of his new heading by executing a GO, DRAW, or FILL command after the
TURNTO. Figure 4-15 shows a program that uses TURNTO to let you make a design on
the screen with right angles and 10-unit lines.

18 R:SKETCHING PROGRAM 318 J:*LINE

28 T:THIS PROGRAMLETS YOU DPRAKW A 3280 #LEFT GR:TURMTO -90
30 T:DESIGN ON THE GRAPHICS 330 *LINE GR:DRAW 18
SCREEMN 348 .J:*COMMAND

480 T:USIMNG THE COMMANDS:
58 T: READY
68 T:[p @
78 T:HOWN

80 T:QIGHT

98 T:WEFT

1806 T:[HLEaR

iie T:

120 T:PRESS RETURM TO BEGIN . . .

136 A:

149 *BEGIM

1506 GR:CLEAR

160 T:STARTING X LOCATION? \

170 A:uX

180 T:STARTING Y LOCATION? \

196 a:ny

2080 GR:GOTO X . 1Y

218 ®*COMMAMD

220 T:WHICHMWaY ((EEMor BLEARI? A\

238 A:

240 M: U, D, R, L, C

250 JM:*¥UP . *DOMWN . *RIGHT ,*LEFT,

#*BEGIMN

260 *UP GR:TURNTO @

2760 J:®*LINE

2860 *DOWN GR:TLURNTO 186

298 J:¥*¥LINE

I80 #RIGHT GR:TURNTO 906

68 Graphics— GR:TURNTO

Figure 4-15

The directional angle, N, in the GR:TURNTO N command may be either a number, a
numeric variable, or a numeric expression. The program in Figure 4-16 uses TURNTO
with the numeric variable, #T, to create a starburst pattern with lines coming out from the
origin every 5 degrees.

18 R:STARBURST

28 C:uT=e

25 GR:CLEAR

36 *LO0oP

48 GR:GOTO B8

58 GR:TURNTO uT

658 GR:GO I :DRAM 25
78 C:8T=RT+S

88 J(HT{IGOI:*LOOP
98 E:

READY
S

Figure 4-16

Graphics—GR:TURNTO 69

GR:TURN
Turn N Degrees -

The command GR: TURN N tells the turtle to turn N degrees clockwise (+N) or

counterclockwise (-N) from the direction he is currently facing. Since the turtle is invisible

on the screen, you cannot see him turn, but you can see the direction of his new heading .
by executing a GO, DRAW, or FILL command after the TURN. Figure 4-17 shows a pro-

gram that makes a 13-pointed star with a 166-degree turn at each point.

186 R:13-POINTED STaAR
28 C:8C=-8

38 GR:CLEAR

48 GR:GOTO -16,.-5
58 GR:TURNTO 14

58 *L0OOP

78 GR:DRAM 58

86 GR:TURN 166

28 C:C=nC+1

186 JE(uC{i4) :*LOOP
iie E:

READY
|

Figure 4-17

70 Graphics— GR:TURNTO

The directional angle N, in the TURN (N degrees) command can be either a number, a
numeric variable, or a numeric expression. The program in Figure 4-18 draws first a
triangle, then a square, then a pentagon, and so on, all on top of each other. The
amount the turtle turns in line 90 is 360 degrees divided by the number of sides in the
polygon he is currently drawing.

18 R:EUCLID

28 C:885=3

38 GR:CLEAR

48 *BEGIM

58 C:8C=8

68 GR:GOTO 16 ,.-36
78 GR:TURNTO -98

86 *LOOP

98 GR:DRAW 20 :TURMN 368./85
188 C:8C=#C+1

118 JERBC{KS5):*L00OP
128 C:85=uS+1

138 JInS5{21):*BEGIN
148 E:

READY
L]

Figure 4-18

Graphics— GR:TURN 71

GR:GO

72

Graphics— GR:GO

GO N Units

The GR:GO N command tells the turtle to pick up the pen, move N units in the direction
he is facing, and put the pen down there. The turtle leaves a dot on the screen at the loca-
tion where he ends up. The program in Figure 4-19 uses the GO command to draw a

box with dotted lines.

18 R:DOTTED BOX

28 GR:CLEaAR

380 GR:4018C(G0 3I) :TURN 928>
48 E:

READY
|

o

-
u
.
a
.
u
=
»
»
»

EsasunannE

Figure 4-19

The number of units, N, in the GR:GO N command can be either a number, numeric
variable, or a numeric expression. The program in Figure 4-20 tells the turtle to take a
“random walk.” That is, he starts at the origin, turns a random number of degrees, goes a
random number of units, turns at random again, moves at random again, and so on. At
the end of this walk, all the places he stopped and turned are marked by dots on the
screen.

16 R:RANDOM WALK

28 *BEGIN

386 C:nC=8

48 GR:CLEAR

58 T: RANDOM MWALK
56 GR:PENYELLOMW:GOTO®,8_:PENRED
78 ®*LOOP

88 GR:GO ?\5

28 GR:TURNKM ?7\368

188 C:nC=nC+1

116 J(8C{S601) :*LOOP

126 T:

138 T:END OF WALK

148 PAa:9%66

156 J:*BEGIN

READY
]

Figure 4-20

Graphics— GR:GO 73

GR:DRAW

Draw N Units

74 Graphics—GR:DRAW

—
== ==

The command GR:DRAW N tells the turtle to draw a line, N units long, moving in the
direction he is currently facing. The line is drawn in the current pen color. The program in
Figure 4-21 uses the DRAW and TURN commands to make a simple house.

18 R:S5SIMPLE HOUSE

280 GR:CLEAR

386 T: HOUSE
48 GR:GOTO -15,.106

58 GR:TURNTO 9@

6568 GR:DRAW 36 :TURN 28
78 GR:DRAW I0:TURK 28
86 GR:DRAW 36 :TURM 28
98 GR:DRAMW 38 :TURM 36
1866 GR:DRAKW 30 :TURN 126
118 GR:DRAW 30 :TURN 128
128 E:

READY
|

Figure 4-21

The number of units, N, in the GR:DRAW N command can be either a number, a
numeric variable, or a numeric expression. Figure 4-22 shows a program that draws
spirals at any angle you choose. Each time the turtle turns, the side of the spiral grows
longer by the amount you type into the computer.

18 R:SQUIRAL
28 GR:CLEAR

38 *BEGIM

46 T: SQUIRAL

58 T:

60 T:TURNING ANGLE €1-17937 \
78 A:nA

80 T:SPEED OF GROMTH €1-1837 A\
98 A:nI

180 GR:CLEAR;GOTO ©,0 TURNTO 6

i1i8 T: SQUIRAL
iz28 T:

125 T:ANGLE =uAa GROWTH =8I
1368 C:85=6

148 *MORE

150 GR:DRAMW 85 :TURN 1A
168 C:#5=n5+8I

170 J(#5{2808) : *MORE

180 T:AGAIN?Z \

198 a:

280 M: ¥ _,SURE ,0K_,ALRIGHT
218 JY:¥BEGIN

226 GR:OQUIT

238 E:

READY
|
Figure 4-22

Graphics— GR:DRAW 75

GR:FILL
Fill N Units

The GR:FILL N command tells the turtle to draw a line, N units long, moving in the
direction he is currently facing. As he moves, the black background between the turtle and
any figure or line directly to his right is filled in with the current pen color. Figure 4-23
shows how FILL can be used to draw a solid triangle, square, or circle.

186 R:SOLIDS

286 GR:CLEAR

38 T: TRIAMNGLE SQUARE CIRCLE
40 GR:GOTO -50_,.8_ :TURNTO 156 :PEN
RED

586 U:*TRIANGLE

58 GR:GOTO -15_,.16 ;:TURNTO 98 :PEN
BLUE

76 U:*SQUARE

80 GR:GOTO 40,10 TURNTO 908 :PEN
YELLOW

96 U:*CIRCLE

186 E:

200 *TRIANGLE

210 GR:2(DRAMW 20 ;TURK 1283

226 GR:FILL 19

2306 E:

300 *SQUARE

3198 GR:3(DRAW 26 :TURK 981

326 GR:FILL 20

336 E:

480 *CIRCLE

4106 GR:18(DRAWM 2 ;TURMN 163

4280 GR:1BCFILL 2;TURNK 183

READY
]

Figure 4-23

Note: To color in a polygon (such as a triangle, square, or circle) using the FILL com-
mand, you must first DRAW the right half of the polygon and then FILL the left half.
Sometimes, the filled side must be shorter than the drawn side so that the color will be
completely contained within the figure. For example, in Figure 4-23, the two drawn sides
of the triangle are 20 units long, whereas the filled side is only 19 units long.

If there is nothing to block the color filling in before it reaches the right edge of the screen,
the filling “wraps around,” and color continues to fill in from the left edge until a barrier is
reached. When there is nothing blocking the fill anywhere in its path, the line from which
the filling takes place becomes its own barrier. The “Sunset” program in Figure 4-24
shows how FILL can be used to fill large areas of the screen with color.

76 Graphics—GR:FILL

' B N N N N N N N N N NN NN NN N N |

i8

i5

28

8

48

45

58

iea
116
YEL
128
138
288
218
BLU
2208
238
Ioa
Iie
326
)
X408
488
418
RED
428
4386

R:SUNSET

GR:CLEAR

U:*SLUN

U:*REDCLOUDS

;:*SKY
U: *SUNBATH

E:

#SUNBATH
GR:GOTO0 @ ,.-13 ,TURNTO 186 :PEN
LOKW

GR:FILL 26

E:

®SKY
GR:GOTD 8,18 :TURNTO 8 :PEN
E

GR:FILL 37

E:

#¥SUN
GR:GOTO 8,10 ;:TURNTO 28
GR:3G{(DRAW 1 ;TURN 53
GR:3G6(FILL 1;:TURN 51

E:

¥REDCLOUDS
GR:GOTO 8,18 :TURNTO 928 ;PEN

GR:Z6C(FILL 1;TURN 53
E:

READY

Figure 4-24

The number of units, N, in the GR:FILL N command can be either a number, a numeric
variable, or a numeric expression.

Graphics—GR:FILL 77

GR:PEN

Choose a Pen Color

78 Graphics— GR:PEN

The GR:PEN COLOR command tells the turtle to choose a pen color — yellow, red, or
blue. For example, the program shown in Figure 4-25 draws polka dots in yellow, red,
and blue in random positions on the screen.

18 R:POLKA DOTS

20 *BEGIN

36 C:uN=-06

48 GR:CLEAR

58 T: POLKADOTS
508 *POLKA

78 C:8H=?\150-75

88 C:BY=7\62-31

28 C:8BC=?\3+1

1866 GRI(#C=1):PEN YELLOHW
118 GRC(8C=2):PEN RED
126 GRC(8C=3):PEN BLUE
136 GR:GOTO 8K .BY

146 U:*¥DOT

156 C:nN=nN+1

160 JI(8N{508):*¥POLKA
1706 PA:126

186 J:*BEGIN

196 E:

260 *DpOT

216 GR:TURNTO 986

220 GR:10(DRAW 1 :TURN 183
230 GR:16C(FILL 1:TURN 18>
248 E:

READY
|

|
i
i
!
{
!

Figure 4-25

Graphics—GR:PEN 79

GR:PEN ERASE
Set Pen Color to Erase -

You can also tell the turtle to draw in the black background color by using the command
PEN ERASE. This command lets you “erase” anything you have already drawn by
redrawing it in the black background color. Figure 4-26 shows how the PEN ERASE com-
mand is used repeatedly to draw a star, erase it, and redraw it in a different place. This
gives the effect that the star is moving.

i R:SHOOTIMG STAR

28 *BEGIN

38 C:nC=06

48 GR:CLEAR

586 T: SHOOTING 5TARS
68 GR:GOTO -75,46

780 GR:TURNTO 126

86 *LOOP

90 GR:PEN YELLOMW

168 U:*STaAR

118 GR:PEN ERASE

126 U:*STaAR

136 GR:GO S

140 C:uC=nC+1

158 JE(BC{I2):*LOOP

1680 PA:126

170 J:*BEGIMN

180 *STaR

198 GR:SI(DRAW 10 TURN 1443
2606 E:

READY

Figure 4-26

80 Graphics—GR:PEN ERASE

GR:PEN UP
- Lift the Pen

The PEN UP command tells the turtle to pick up the pen off the screen. While the pen is
up, all movement by the turtle will be invisible. To put the pen back “down,” you choose
a pen color.

«

Graphics— GR:PEN UP 81

GR:QUIT

Quit the Graphics Mode

The command GR:QUIT lets you leave the Graphics mode and return to Text mode.
Figure 4-27 shows you the screen before the GR:QUIT command, and Figure 4-28 shows
you the screen after the GR:QUIT command.

Figure 4-27

82 Graphics—GR:QUIT

D B N N N N N N N NN NNENNENRDNENIHN.

Figure 4-28

Graphics —GR:QUIT

83

5 SOUND AND PAUSE

SO:

Sound

The SO: command lets you create musical tones on your computer. You can program up
to four tones to play at the same time. Each separate tone is then called a voice. When a
group of people get together to sing, they divide into several voices: bass, baritone, alto,
and soprano. When you program SO: commands, you can program several voices to
play together. When different voices play a sound at the same time, it is called a chord.

The tones you can play in PILOT range from 0 to 31. If you enter the command SO:13,
you will hear a single tone equal to middle C on a piano. The command SO:1 produces
a tone equal to the note C, one octave below middle C. The command SO:31 produces
the note F sharp, one octave above middle C. SO:0 turns a tone OFF.

Figure 5-1 shows a piano keyboard with the key numbers corresponding to the PILOT
SOUND commands.

01 23456 7891011 1213141516 1718 192021222324 25 2627128 2930 3]

Figure 5-1

Typing the commands in Figure 5-2 one at a time will produce a scale.

Figure 5-2

86 Sound and Pause—SO:

$

A scale is a series of notes played one after another. Think of a ladder on which you take
one step at a time to go up or down. A scale is similar, only with musical notes being
played in a specific order. This particular scale covers the octave between middle C and C
above middle C. An octave is a range of notes from one note to another note of the

same name (higher or lower).

The program in Figure 5-3 repeatedly moves up and down the scale shown on page 86.
When this program is RUN, the computer moves through the SOUND commands so
quickly that all the tones blur together, and this scale sounds like a siren. The PA: com-
mands in this program increase the length of time the tones are sounded. Without them,
this scale sounds like rumbling static. The PA: command is explained later in this section.

18 R:S5IREN

28
X
5
48
45
58
55
58

*BE
50:
Ph:
50:
Ph:
50:
Pa:
50:

Figure 5-3

GIM
i3
i
i5
i
i7

The SO: command lets you create sound effects and tunes in your PILOT programs.
Figure 5-4 shows how you might use SOUND to reward correct answers in a simple

geography quiz program.

Sound and Pause—SO: 87

18 R:E-Z GEOGRAPHY 300 *DAHDAH

28 T:WELCOME TO E-Z GEOGRAPHY 3168 C:nc=0

38 T: 320 *LOOP ‘
49 T:I aMGOING TO ASK YOU A 330 50:13,17,20,25
QUESTIOMN 348 PA:15S

58 T:ABOUT UNITED STATES 350 50:0,8,0,0
GEOGRAPHY 368 cinc=nC+l

68 T: 378 JCHC{S5) :*LOOP
78 T:ARE YOU READY?Z 388 E:

88 A:

98 T:GOOD READY

188 T: B

118 PA:68

128 T:WHICHOF THEFIFTY STATES IS
136 T:LOCATED FARTHEST TO THE
EAST?

i48 T:

158 A:5S5TATE

168 M: aLasSKn

178 TY:EXTRAORDINARY! YOUGOT IT!
i8e UY:*DaHDaH

1386 JY:*#THATSALL

280 T:MOPE, THE ANSHWER IS . . . \
218 PA:36

228 T:aLaSKa

2386 T:aLASKA EXTENDS S0 FAR WEST
THAT

248 T:IT CROSSES THE
INTERNATIONAL

58 T:DATE LIME INTO THE EAST.
268 T:

278 *THaATSaALL T:

286 T:THAT'S ALL FOR NOW. SEE YOU
AROLND .

298 E:

Figure 5-4

You may use either numbers or numeric variables to tell the computer which tones to play
in a SO: command. Values greater than 31 are reduced to numbers between 0 and 31.

Figure 5-5 shows how the SO: command can be used with a numeric variable to make
sound effects for the shooting star program of Figure 4-26.

1 GR:QUIT

i86 R:SHOOTING STAR WITH SOUMND
EFFECTS

20 *BEGIMN

38 C:nC=8

48 GR:CLEaAR

58 T: SHOOTING 5TARS
58 GR:GOTO -75,.490

780 GR:TURNTO 128

88 C:nS5=?\280+1

38 *LoopP

166 C:u#P=3i-uC

116 S50:u8P

126 GR:PEN YELLOW

136 U:*STaR

148 GR:PEN ERASE

158 U:*¥S5TaR

168 GR:GO S

178 Cc:uC=nC+1

188 JC(sC{3I2):*L00P

196 Pa:24e

268 J:*BEGIMN

2i6 ®*5TaR

220 GR:SC(DRAW 125 TURN 1443
238 E:

READY
&

Figure 5-5

88 Sound and Pause —SO:

PA:

Pause N Units

Use the PA:N command when you want a program to PAUSE for any reason during the
RUN of a program. For example, PA: may be used to freeze what is on the screen for a
few moments before clearing the the screen. PA: also allows you to write text on the
screen a little at a time or to pause for dramatic effect: “The correct answer is....
(pause)...An Embarrassed Zebra.” The program in Figure 5-6 pauses for dramatic effect
before announcing a lucky number in the PILOT Lucky Number Drawing.

186 R:LUCKY NLUMBER
286 T:WELCOME TO THE PILOT
386 T:LUCKY NUMBER SWEEPSTAKES

48 T:

58 PAa:9%08

6568 T:NOWGET READY . . . M
78 PA:98

88 T:HERE WE GO.

98 T:

ige PA:58

1i8 T:ROUND AND ROUND THE CPU GOES

128 T:WHERE SHE STOPS, NOBODY
KMNOWS.

138 T:

148 PA:96

158 C:8R=7?\300080

168 T:AND THE PILOT LUCKY NUMBER

IS. ..

i7e T:

188 PA:13886
198 T:iuR
288 T:

218 PA:186

220 T:CONGRATULATIONS TO THE
COMPUTER

238 T:WHOSE SERIAL NUMBER IS tR.
248 E:

READY
B

Figure 5-6

Sound and Pause —PA: 89

The units in the PA:N command may either be a number or a numeric variable. Each unit
is equal to 1/60th of a second. Thus PA:60 will pause for 1 second; PA:30 will pause for
/2 second; PA:300 will pause for 5 seconds, and so on.

The PA: command is often used in combination with the SOUND command to tell the
computer how long to sound one or more voices. For example, the program in Figure
5-7 uses SO: and PA: to add a random three-chord polka to the Polka Dots program of
Figure 4-25.

i8 R:DOTS POLKA
28 *BEGIM
38 C:8N=0
48 GR:CLEAR
56 T:

68 T:

78 *POLKaA
80 C:8X=?\158-75

28 C:nY=?\62-31

188 C:H#C=7\3+1

1186 GRIBC=1):PEN YELLOMW
128 S0CuC=12:13,17,.28
138 GRI(®BC=2Z):PEN RED
148 S0C8C=23:13 .18 ,.22
158 GRC{BC=3):PEN BLUE
168 S0(uC=33:15,26_.24
176 GR:GOTO 8K _.8Y

i86 U:*DOT

1928 U:*=UMPaH

2080 C:BN-BN+1

218 J(uM{S58):*POLKA
228 U:*FIMALE

238 J:¥BEGIMN

248 E:

386 *pOT

318 GR:TURNTO 98

3280 GR:18(DRAM 1 :TURN 1832
3386 GR:16C(FILL 1;:TURKN 182
348 E:

488 *UMPaH

418 C:8BR=-H#N\I

428 PAIRR=6G1I:Z6

438 50:68,0.,06

448 PA(g#R=01:5

458 E:

580 *FIMALE

518 50:13 ,17 .26

528 PA:68

538 S50:1X,.18,.22

548 PA;:68

558 50:15,.26,.24

568 PA:68

578 50:13 ,17 ,28,25
580 PA:1286

5908 50:8,6,8

588 PA:480

618 E:

DOTS POLKA

READY
[|

Figure 5-7

90 Sound and Pause —PA:

E

The SO: and PA: commands can be used together to make music. The table in Figure
5-8 shows the PAUSE values for various musical notes.

The program shown in Fi

PAUSE VALUES FOR MUSICAL NOTES

PA:16
PA:32
PA:64
PA:128
PA:256

Sixteenth Note
Eighth Note
Quarter Note
Half Note
Whole Note

Figure 5-8

gure 5-9 uses SO: and PA: to play the the song “Mary Had a

Little Lamb.”
18 R:MARY HAD & LITTLE LAME 390 S0:15,13.8
28 R:ARRANGED IN 4 VOICES 488 Pa:32
380 R:FOR COMPUTER 410 S0:17,13.8
48 C:uT=8 428 Pa:3I2
50 *CODA 438 S0:17,.13.8
68 C:nT=nT+1 448 Pa:32
78 S0:17,13..8 450 50:17,13,8
88 Pa:zd4 468 Pa:32
58 S0:15,13,8 470 50:15,12,8
188 Pa:s 488 PA:32
116 50:13.8 490 S0:15,12,8
120 PA:32 580 PA:Zz
130 S50:15,13.8 510 S0:17,13,8
148 PA:32 520 PA:32
158 S0:17,13,.8 530 S0:15,12,8
168 Pa:32 548 PA:3I2
170 50:17,.13,8 550 S0:13,8,5.1
188 Pa:32 560 PA:19%
190 S0:17.1%,8 578 S0:@
200 PA:6G4 S80 J(HT{2):%CODA
218 S0:15,12.8 598 E:
220 Pa:iIz
230 S0:15,12.8 READY
240 PA:3Z E
250 S50:15,12.8
260 PA:64
270 S0:17,.13,8
280 PA:32
290 50:20,17.13.8
360 Pa:3Iz
310 S0:26,.17,13,8
320 Ph:64
330 SP:17.13,8
340 PA:24
350 S0:15,13.8
360 Pa:g
370 50:13.8
380 PA:3IZ

Figure 5-9

Sound and Pause —PA: 91

6 CONDITIONALS

CONDITIONAL COMMANDS

A condition is something about which a YES or NO decision can be made. For example,
the weather could be a condition for deciding what to do today: Is it raining outside? If
YES, go to the movies; if NO, go flying.

In PILOT, there are two types of conditions:

e String match conditions

e Numeric conditions

94 Conditionals

YORN

String Match Conditions

A MATCH command always sets up a YES or NO condition: YES (Y) there was a

match, or NO (N), there was not a

match. For example, in the program shown in Figure

6-1, any answer containing the name “GRANT” produces a YES condition; any answer

not containing “GRANT” produces

18 R:GRANTS TOMB

28 T:HWHHO HAS BURIED IN GRANT'S
TOMB?

38 T:

48 A:5$AMYONE

58 M: GRANT

68 T:

78 TY:YES, THaAT IS CORRECT.
SANYONE WAS BURIED IN GRANT'S
TOMB.

88 TH:NO, SANYOKE WAS NOT BURIED
IN GRANT'S TOMB ; GRANT HAS.

28 T:SEE YOU ARODLUND .

i8e E:

READY
|

a NO condition.

Figure 6-1

You can make any PILOT command (T:, A:, M:, J:, C:, U:, E:, GR:, SO:, and PA:)
conditional on a YES-match or NO-match by putting a Y or an N between the command
and the colon (:). Here are some examples:

TY:HELLO If there is a match, type “HELLO”; otherwise, skip this
command.

TN:WRONG If no match, type “wrong”; otherwise, skip this command.

EY: If there is a match, end the program; otherwise, keep going.

JN: s NEXT If no match, jump to ¢ NEXT; otherwise, skip this command.

UY: sk BOX If there is a match, use the module sk BOX; otherwise skip this
command.

SOY:13,17 If there is a match, sound notes 13 and 17; otherwise skip this
command.

Conditionals—Y OR N 95

Figure 6-2 shows a program that uses String Match Conditions.

18 R:DRAGON FEED

28 T:CAN YOU NAME SOMETHING THAT
38 T:DRAGONS LIKE TO EAT?

48 A:SFOOD

58 M: YES, YUP, OK, FINE,
SURE, CAN, THINK I CAN, THINK 50
68 T:

78 TY:PLEASE NAME SOMETHING THEN.
80 aY:SFOOD

98 M: NO, NOT, CAN'T, DON'T,
UNSLRE

188 TY:SORRY TO HEAR THAT.

118 JY:*YONDER

128 M:PEOPLE, PRIN, KNI, CAKE,
PRETZ, FLOMWER

138 T

148 TY:YES_,.DRAGONS SURE DO EAT
SFOOD.

158 TN:VERY INTERESTING! IDIDN'T
KNOW THAT DRAGONS ATE SFOOD.

168 *YONDER

i78 T:

180 T:THAT'S ALL FOR NOW. SEE YOU
AROUND .

198 E:

READY
|

Figure 6-2

You can see how this program works-in Figures 6-3 and 6-4.

96 Conditionals—Y OR N

Figure 6-3

97

Conditionals—Y OR N

Figure 6-4

COMPARISON
Numeric Conditions

A YES/NO decision based on comparing two numbers is called a numeric condition. For
example, if the amount of money in my pocket is equal to, or more than, the price of a
hot fudge sundae, I will order the sundae (YES condition); if it is less, I will order
something less expensive (NO condition).

There are six possible comparisons you can make between two numbers. In PILOT, you
express these comparisons using the following symbols:

#A = #B #A equals #B

#C < 20 #C is less then 20

#G > #H #G is greater than #H

#G <> 3 #G is not equal to 3

#L <=5 #L is less than or equal to 5

#B >= #C #B is greater than or equal to #C

You can make numeric comparisons between two numeric variables, or between a

numeric variable and a constant, and you can make any PILOT command conditional on
a numeric comparison. Enclose the comparison in parentheses and place it between the

command and the colon (:), like the Y or N in a string match condition. Here are some
examples:

J (#G < 3): %k AGAIN JUMP if the value is #G is less than 3 to sk AGAIN;
otherwise keep going.

T (#A = #B): RIGHT! Type “Right!” if the value of #A equals the value of
#B; otherwise, skip this command.

A(#P< =5):$3ANS Accept input from the keyboard if #P is less than or
equal to 5; otherwise skip this command and keep
going.

SO(#N<>#R): 3,7 Sound the tones 3 and 7 if the value of #N is not
equal to the value of #R; otherwise, skip this
command.

98 Conditionals— COMPARISON

S AN E S BN E E E E EEEEEEEEnR

A common use of numeric conditions is setting up counting loops in programs. Figure 6-5
shows a simple example of how a numeric condition is used to print something repeatedly

for a desired number of times.

18 R:GOOD BEHAVIOR

28 T:WHAT IS5 YOUR FULL NAME? ™
38 A:SNAME

48 T:HOW MANY TIMES? A\

58 A:8T7

68 T:9 [CLEARS THE SCREEMN]
78 C:nC=1

88 *REPEAT

98 T(RC{183: A\

188 T:#C. I HILL NOT TALK IN CLASS
ANYMORE .

118 C:uC=u8C+1

128 JERC{=uTI:*REPEAT

138 T:

146 T:SINCERELY,

158 T:SNAME

i68 E:

REaADY
|

Figure 6-5

1222 TT T

Conditionals — COMPARISON 99

Figure 6-6 shows how you can use a numeric condition to limit a person to three guesses

in a guessing game.

18 R:HHAT aM I?

28 T:WELCOME TO " "WHAT AM I?'®
38 T:I'LL GIVE YOU I HINTS A\
48 T:TO GUESS WHATIAM . . .

56 PA:60

68 T:

78 T:ARE YOU READY? \
868 A:

28 T:

188 M: Y, SURE_ . OK,FIME_,ALRIGHT
1i8 JN:%*GOODBYE

128 C:BG=1

iZe =LoopP

148 T(RG=1) :IROLL ALONG, BUT I DO
NMOT HAVE HHEELS.

158 TIHG=2) :T HAVE A MOUTH, BUT I
CAMNOT SPEAK.

168 T(H#G=3) :I HAVE A BED, BUT I
MEVER SLEEP.

178 T:HHAT aM I?

i8e T:

1298 A:S$ANSHER

288 M:RIVER,STREAM,CREEK

218 JY:®*RIGHT

228 J(uG=3) :*NOMORE

238 T:NMOPE, GUESS AGAIN.

248 T:

258 C:uG=uG+1

268 J:*LOOP

278 *NOMORE

288 T:

238 T:NMOPE, THAT'S THREE GUESSES.
388 T:I aM a RIVER.

316 J:*GOODBYE

328 ¥RIGHT

338 T:

340 T:THAT'S CORRECT! I aM
SANSHER.

3568 *GOODBYE

368 T:

378 PA:68

388 T:SEE YOULATER.

398 E:

READY
=]

100 Conditionals— COMPARISON

Figure 6-6

e

JM:

Jump on Match

The JM: command causes the computer to jump, conditional on matching one of a list of
match alternatives. It is a variable jump rather than a constant jump. In the simple

J: % LABEL command, you always jump to a single % LABEL. This variable form of
the JUMP command lets you jump to one of a variety of %k LABELS, depending on
what matches in an M: command.

The JM: command must be paired with an M: command as follows:

A:
M: Stringl, String2, String3, String4.....
JM: ¢ LABEL1, sk LABEL2, sk LABEL3, sk LABELA4.....

The JM: command should have the same number of labels as the M: has strings. The JM:
command will jump to the # LABEL in the same position as the first string that matches
the accepted input. In other words, if STRING1 is a match, JM: will jump to

LABEL1; if STRINGZ2 is a match, JM: will jump to % LABELZ2, and so on. If there

is no match, or if the position of a matched string does not correspond to the position of a
% LABEL, then the JM: command will be skipped.

Figure 6-7 is an example of the use of the JM: command. The program draws colored
boxes on the screen in the size, color, and location of your choice.

186 R:BOKES IN COLOR 248 *RED

28 T:CHOOSE a SIZE, COLOR aND 258 GR:PEN RED
LOCATION. 260 J:*CONTIMNUE
38 T:THIS PROGRAM DRAKWS BOKES 278 *BLU
ACCORDING TO YOUR CHOICES. 280 GR:PEN BLUE
48 T: 238 J:¥CONTIMNUE
58 T:PRESS RETURN TO BEGIN 3868 *YEL

68 A: 316 GR:PEN YELLOMKW
78 GR:CLEaAR 3268 J:*CONTIMUE
8686 *LOOP 330 *BLA

96 T: 248 GR:PEN ERASE
1868 T:SIDE LENGTH? A\ 258 J:*CONTINUE
118 A:85 368 *BOH

1280 T:WHAT COLOR (RED .BLUE, 370 GR:GOTO ¥ .Y
YELLOW . BLACKI? \ 388 GR:TURNTO 26 ;3C(DRAMW 25 TURN
138 A:SCOLOR Bl

146 M: RE, BLU, YE, BLA 298 GR:FILL 85
158 JM:*RED .*BLU _, *YEL .*BLA 488 E:

166 *CONTIMLUE

178 T: READY

180 T:HLOCATION? A\ =

1986 A:nX

200 T:YLOCATION? \

216 a:ny

228 U:*BOH

236 J:¥*LOOP

Conditionals —JM: 101

102 Conditionals —JM:

T ‘

- HLOCATIONZ 30
Y LOCATION? @ ‘
- 51D

Figure 6-7

APPENDIX A

Special Function Keys
and Screen Editing

SPECIAL FUNCTION KEYS

A number of keys on the ATARI 400/800™ Personal Computer System keyboards have
a special function or purpose. These functions are described below.

Reverse (Inverse) Video Key, or ATARI Logo Key: Pressing this
key causes the text to be reversed on the screen (dark text on light
background). Press the key a second time to return to normal text.

Lowercase Key: Pressing this key shifts the screen characters from
uppercase (capitals) to lowercase. To restore the characters to up-
percase, press the fil[i# key and the EETET

simultaneously.

Escape Key: Pressing this key causes a command to be entered
into a program for later execution.

Example: To clear the screen, you would enter:

13T

This will cause a curved arrow to appear on your screen as
follows:

18T: %

Control Key: This key is used in conjunction with other keys to
print special graphics control characters. See back cover or PILOT
Reference Card for the specific keys and their screen-character
representations.

Control 1: Holding down
whatever is happening on
Pressing [Eif

and pressing 1 temporarily stops
e screen (e.g., a program listing).
.= 1 again restarts the screen action.

Break Key: Pressing this key during program execution causes ex-
ecution to stop. The line number and statement where the execu-

tion stopped are displayed on the screen followed by
* %k *READY* * *'

Appendix A 103

System Reset Key: Similar to [f

{ in that pressing this key

stops program execution. Also returns the screen display to the
Text mode, clears the screen, and returns margins and other
variables to their default values.

BT advances the cursor
to the next tab position. In Deferre mode, set and clear tabs by
preceding the above with a line number the command T:, a
quotation mark, and pressing the =% key.

Default tab settings are placed at columns 5, 14, 22, 30, and 38.

Back Space Key: Pressing this key replaces the character to the
left of the cursor with a space and moves cursor back one space.

Clear Key: Pressing this key while holding down the [FT
110 key blanks the screen and puts the cursor in the upper left

corner.

Return Key: Terminator to indicate an end of a line of PILOT.
Pressing this key causes a numbered line to be interpreted and ad-
ded to a PILOT program in RAM.

An unnumbered line (in Immediate mode) is interpreted and ex-
ecuted immediately. Any variables are placed in a variable table.

SCREEN EDITING

The keyboard and display are logically combined for a mode of operation known as
screen editing. Each time a change is completed on the screen, the =71 key must be
pressed. Otherwise, the change is not made to the program in memory.

Example: 10 T:REMEMBER TO PRESS RETURN
15 T:AFTER LINE EDIT
20 T:THIS LINE IS GOING AWAY
30 T:THIS WILL BE THE FIRST
40 T:LINE ON THE SCREEN.
50 E:

104 Appendix A

To delete line 20 from the program, type the line number and press the
Merely deleting the line from the screen display does not delete it from the program

In addition to the special functlon keys described above, there are cursor control, insert,
and delete keys that all mediate editing capablhtles These keys are used in conjunc-
tion with the keys as follows:

Moves cursor up one physical line without changing the program
or display.

Moves cursor one space to the right without disturbing the program
or display.

Moves cursor down one physical line without changing the pro-
gram or display.

Moves cursor one space to the left without disturbing the program
or display.

Like the other keys on the ATARI keyboard, holding the cursor control keys for more
than 12 second causes the keys to repeat.

Insert key: Press the [EITi# and £ =1 keys simultaneously
to insert a line. To insert a single character, press the § and
| INSERT IS 51multaneously

Inserts one physical line.

Inserts one character space.

i

Delete key: Press the §ilfi# and {EEST
delete a line. To delete a single character, pre
simultaneously.

Deletes one phuysical line.

Deletes one character or space.

Note: You should not use screen editing features other than Backspace/Delete in AUTO
mode. Instead, return to the Immediate mode and LIST your program to use screen
editing.

Appendix A 105

keys simultaneously to

APPENDIX B

PILOT |/O Error Codes

This appendix lists the ATARI 400/800 Computer Systems’ /O error codes within the
context in which they will be seen in ATARI PILOT. Not all of the system codes are
presented here, because some of them cannot occur within the PILOT environment.

130
131

135

136
138
139
140
141
142
143
144
145
146
147
160
161
162
163
164

A nonexistent device was specified.

A READ command followed a WRITE command with the same device
specified.

A WRITE command followed a READ command with the same device
specified.

End-of-file condition.

Device timeout; device doesn’t respond. (See Note)
Device NAK. (See Note)

Serial bus framing error. (See Note)

Screen cursor out of range (READ from or WRITE to ‘S)).
Serial bus data from overrun. (See Note)

Serial bus data from checksum error. (See Note)
Device DONE error. (See Note)

Disk read after write compare error. (See Note)
Function not implemented for device (e.g., OUT:K).
Insufficient RAM for operating the graphics screen.
Disk drive number error.

Too many concurrent disk files being accessed.

Disk is full (no free sectors).

Fatal system data 1/0O error.

File number misrhatch. (See Note)

106 Appendix B

165 Disk file naming error.

Q

167 Disk file locked.
169 Disk directory full (64 files).
170 Disk file not found in directory.

Note : These errors indicate problems over which the user has no direct control; they
are due to hardware problems and should seldom be seen.

Appendix B 107

o

RETURN

CO17811 REV.A

PRINTED IN U.S.A.

Programmed |
Inq'uiry o
Leaming

Or

Téachéng

with “Turtle” Graphics

O
)
Z
—]
e
®)
. I
O
=
>
-
=
@)
wn
A
rm
=<
oy
@)
Ea
=z
O

Pocket Reference Card

N\

ATARI®
A Warner Communications Company @

s

Numeric variables
#A to #Z

String variables

$ followed by
alphanumeric name
(example: $FOOD)

Machine variables

% followed by one or
two characters
(example:%Y)

Pointer variables

@ followed by a
number or by B and a
number (example:
@B77)

Integer variables can contain a number from -32768 to 32767.

String variables can contain literal strings of up to 255 characters.

Machine variables contain the status of light pen, joystick, cursor location, and other machine

parameters.

Pointer variables refer to the contents of bytes (B) or words whose decimal address in memory is

given by the numeric portion of the variable name.

r

+ Addition

/ Division

— Subtraction

* Multiplication

\ Modulo operation (remainder after division)

? Random number generation (generates random number between
-32768 and 32767).

Equal

> Greater than

< Less than
>= Greater or equal
< = Less or equal

< > Not equal

o
~

Atari, Inc., Computer Division

P.O. Box 427

Sunnyvale, CA 94086

Program Contents ©1980 ATARI, Inc.
Manual Contents ©1981 ATARI, Inc.

Printed in U.S.A.

r

Command

T:

SO:

PA:
JM:
MS:

POS:
VNEW:

CALL:

Function

Type to screen

Accept from keyboard

Match command

Remark
Jump command
Ends program

Compute command

Use module

Sound command

Pause command
Jump on match

Match to make strings
Position text cursor

Clears variables

Calls machine language
program

Example
T:THIS IS SOME TEXT

T#A or T:$NAME

A:
A:#B or A:$FOOD

M: YES, YUP, SURE

R: LOOP BEGINS HERE
J: *JUMPHERE

E:
C: #A=#A+ 4B
U: *NEXTSET

SO: #A #B #C 4D

SO: 13

PAZ 5

JM: *HERE, *START, *END
MS: IS, ARE, WILL

POS: 12,15
VNEW:

VNEW: # or VNEW: $
CALL: 4096

Result
Prints THIS IS SOME TEXT on the screen.

Prints contents of numeric variable (#A) or string
variable ($NAME) on the screen.

Places keystrokes in the accept buffer.

Places keystrokes in the accept buffer and in the
variable #B or $FOOD.

Checks each entry in the list against contents of
accept buffer and sets Y and N flags. (See
CONDITIONALS.)

Remark for user only—no effect on program.
Jumps execution to the label *JUMPHERE.

Terminates program execution.

Performs computation shown to right of colon
(add #B to #A and put the result in #A).

Uses the module *NEXTSET and returns at the
end of that module.

Generates up to four musical tones (tones in-
crease by V2 step per number).

Generates Middle C.
Stops PILOT execution for 5/60 second.
Jumps to label corresponding to match field.

Splits contents of buffer into $LEFT, $MATCH,
and $RIGHT.

Positions cursor at 12th column and 15th row.
Clears all variables.
Clears all numeric or all string variables.

PILOT jumps to execute machine language pro-
gram at decimal location 4096.

Comm
CLEAR

QuIT

PEN

GOTO
DRAW

TURNT

FILLTO

GO
DRAW
TURN

FILL

N

The execution of any PILOT command can be made conditional on the presence or absence of a string match or on the truth of a

numeric relationship.

String Match Conditions

The conditional variables Y (YES) and N (NO) are set by the result of a match (M:) command.

Numeric Conditions

Relational operators are used to compare two numbers or variables. If the relation is true, the accompanying PILOT command

will be executed.

Examples:

TY: GOOD GUESS
*RESTART
E (#A< 7):

IN:

(prints GOOD GUESS if result of preceding match command was true).
(jumps to *RESTART if result of preceding match command was false).

(ends program execution if #A is less than 7).

_J
)

—
/_
LIST
RUN
SAVE
DOS
NEW
LOAD
AUTO
REN
TAPE: |
TAPE: |

TSYNC

READ

WRITE
CLOSE

T

creen.

£A) or string

er

er and in the

- contents of
s (See

program.

"HERE.

1t of colon
ZA)
urns at the

tones in-

:F‘d
:ch field.

SMATCH,
i 15th row.

bles.

nguage pro-

I
B)

the truth of a

)T command

r

Command
CLEAR

QUIT

PEN

GOTO
DRAWTO

TURNTO
FILLTO

GO
DRAW
TURN
FILL

Function Example Result
Clear screen GR: CLEAR Clears text and-graphics window.
Return to text mode GR: QUIT Clears graphics window and returns to text-only
mode.
Sets pen color to red, GR: PEN RED Sets pen color to red.

yellow, blue, or erase

(background color) or lifts GR: PEN UP Lifts pen.

pen

Cursor move (absolute) GR: GOTO 0,0 Moves cursor to 0,0 (center of screen).

Draw line (absolute) GR: DRAWTO 10,15 Draws line from previous cursor position to coor-
dinate 10,15.

Turn cursor heading (ab- GR: TURNTO 0 Turns cursor to 0 degrees (straight up).

solute)

Fill (absolute) GR: FILLTO -6,5 Draws line from previous cursor position to -6,5
and fills to the right with color.

Cursor move (relative) GR: GO 25 Moves cursor 25 units in present heading.

Draws line (relative) GR: DRAW 17 Draws 17 units in present heading.

Turns cursor (relative) GR: TURN 48 Turns cursor heading by 48 degrees to the right.

Fill (relative) GR: FILL 30 Draws line 30 units along present heading and

fills to the right with color.

__/

LIST

RUN
SAVE
DOS

NEW
LOAD
AUTO
REN
TAPE: ON
TAPE: OFF
TSYNC:

READ

WRITE

CLOSE

T

Lists program statements on screen.

Starts executing program at first statement.

Saves program to cassette (SAVE C:) or to disk (SAVE D:filename). To list a program on a printer, type SAVE P..
Enters the Disk Operating System command menu.

Erases all PILOT program statements in memory.

Loads a program from cassette (LOAD C:) or disk (LOAD D:filename) without erasing resident program list.
Enters auto numbering made for writing programs.

Renumbers program lines.

Turns cassette motor on.

Turns cassette motor off.

Allows PILOT to synchronize specially prepared tapes.

Reads data from attached device to the accept buffer (Example: READ: C, $DATA reads from cassette to buffer and
variable $DATA).

Writes data to an attached device (Example: WRITE: R1, HELLO THERE writes HELLO THERE to RS-232 port R1).

Closes device previously opened with READ or WRITE (Example: CLOSE:C).

C017812 REV.2)

