Technical Reference Guide
First Edition
September 1989
CONFIDENTIAL

ATARI Por tfolio

DI DOED OB DO OODHOOD DD PDPPPPPLEPPPEPPPRP

The information in this guide is proprietary and confidential. This guide and the information herein
may be used only in accordance with the written agreement under which it was supplied.

Copyright © 1989 and 1980, Distributed Information Processing (DIP), Ltd.

All righis reserved. Copyright in this Portfolio Technical Reference Guide, the soltware contained in
the Porifolio, and all technical drawings of and relaling to the hardware design {"the Copyright
Material") is vested in Distributed Information Processing Limited ("DIP"). Accordingly no part of the
Copyright Material may be reproduced, siored in a refrievat system or {ransmitted in any form or by
any means without the prior written permission of DIP,

Atari, the Alari togo and Porifolio™ are trademarks or registered trademarks of Atari Corporation. 18M
PCis a trademark of International Business Machines Corporation. Lofus 1-2-3 is a trademark of
Lotus Development Corporation. MS-DOS is a trademark of Microsoft Corporalion. Turbo C, Sidekick
are rademarks of Borland Corporation. XTALK is a trademark of Microstuf Corporation.

NATARI

Atari Corporation
1196 Borregas Avenue
Sunnyvale, CA 94089-1302

F QUGG GGGNONGGGHGGOOGGHOOOOOOOOGOGHGOEOOOGOGOOO 600NN 0000 F |

IRRRRNRARRARRRR

| a2
]

T T

CONTENTS

t Technical Overview of Portfolio. ... =

2 Hardware

2.1 System Description................... .. BT 10 P Tl 2~
Zoz ' SNCI T RNTE] el TR SRR ————— S 2-4
2.3 Memory Cards...............oo 2-6
24 O Al S (S I RT e R so. Wi L N R 2-8
2.5 Power Supply Uit 2-9
2.6 Portfolio Expansion Port............. . 2-11
2.7 FERpE E R R ST i, e 1 o [2=
AR S ETRR S [y ML AL —reEy e 2-21
3 Soitware

3.1 General Description. 3-1
3.2 Differences Between Portiolio BIOS and IBM PC BIOS. Sl
3.3 System SpecificBIOS................ 3-6
3.4 Differences Between MS-DOS and Portfolio DOS..... s
3.5 Device Drivers and Peripheral Software... 3-24
3.6 Memory Cards ... 3-28
3.7 Screen Handling. =he3-30
3.8 Power Managsmen! 3-31
3.9 Special File Formats. 7 . ..3-33
3.10 IBM PC Development System..........cooooiiii 3-37
4 Peripherals _

4.1 Portfolio Serial Communications..........................__.._.... 4-1

4.2 Smart Parallel Interface File Transfer ProiocoI'Description 4-3
4.3 IBMPC Card Drive. ..o 4-4

4.4 EPROM Writer Adaptor Boards.................... =

Appendixes _

A Example .RBUN Program...................... e A1
B Diagram of Portfolio Character Set........................... . B-1
C Example Peripheral Design...........ccooovoooin e
D Memory size and assignment............. o B D-1

\PLAPAPLA PP AL P AL A

Tdddddddadde

TrrrTFrFLET
AR AR AN AR A

rreen
Ll el Gl g

Frerr

A A

- -
'F'ﬁ

Grelelels

G

YTELF T

AR

Gk

TELILY
4 G

| ol Bl B
e

| TECHNICAL OVERVIEW OF PORTFOLIO

The Alari Portfolio is the first product that provides the functionality of a standard
desktop PC in a package which can fit into a pocket,

The main requirements for the Portfolio technology are that the product should be

pocketable, compatible, have low power consumption and above all be inexpensive
to purchase.

The Portfolio is the size of a video cassette (VHS) and weighs less than one pound
{450 grams).

The Portiolio provides a high degree of software compatibility with the industry
standard desktop microcemputer, the IBM PC. This is achieved by supplying a PC-
compatible BIOS, MS-DOS-compatible operating system as well as Lotus 1-2-3 file-
compatible spreadsheet. The Portiolio also provides an expansion bus connector
which allows peripherals to be copnected o the product.

The Portfolio is inexpensive to manufacture as the software is provided on and runs
from ROM and with the large scale integration of system logic, using an ASIC, the
overall compaonent cost and size are reduced.

The Portfolio uses credit card-sized memory cards instead of magnetic disks, and a
|.CD display. These components have a low power consumption and hence the
product can use the consumer standard AA batteries and achieve a long battery life.

This Technical Reference Guide describes the Portfolio technology in detail and
provides the necessary information for a third party to develop hardware and
software applications for the Portfolio. This document only provides information
specific to the Portfalio technology. if you want information on the standard IBM PC

hardware, BIOS, or MS-DOS then the fotlowing publications should provide the
required information: :

IBM Personal Computer Publications:

Technicai Reference (BIOS and Hardware)
Disk Operating System (PC-DOS)

Microsoft Press Publications ISBN Reference
FPeter Norton Programmer’s Guide 0-514845-46-2
The MS-DOS Encyclopedia 1-55615-049-0
IBM ROM B10S (Quick Reference Series) 1-55615-135-7
MS-DOS Functions (Quick Reference) 1-55615-128-4

{

s r AR AR A A A AR AR A A A A A AR AN R AR AR A AP A AR AR AR

2. HARDWARE

2.1. System Description

OSCILLATORS |
POWER SUPPLY KEYBOARD
CONTROL
ON BOARD RAM
80C88 4KB MDA 124KB
SYSTEM 1 COMPATIBLE SYSTEM
LOGIC '
| , INCLUDING |' et
| — : ———{ CHARACTER | DEDICATED | LCD
EXPANSION ASIC | GENERATOR | VIDEO DRIVE
PORT ROM RAM
| I
' : VIDEQ CONTROLLER
|
TONE DIALLER 128KB ROM A
AND SOUNDS
— I
CARD MEMORY | 128KB ROM B

BLOCK DIAGRAM OF PORTFOLIO SYSTEM

2.1.1 Microprocessor Unit

The Portfolio uses an 80C88 MPU, the same processor as the original IBM PC, It is
the CMOS static version which ailows the MPU clock to be halted when no
processing is taking place and hence power consumption is Kept to 2 minimum. The
Portfolio is faster than the original IBM PC, the clock running at 4.9152MHz instead
of 4.77MHz. However, the Portfolio processor uses minimum mode, so bus lock
cannot be used. (See section 2.6 for more details.)

2.1.2 System RAM

The current Portfolio uses four 32 KByte Static RAM chips, giving a total of
128KBytes. These have a very low standby current which allows them to maintain

their contents for extended periods with minimal drain en batteries.(See section 2.2
for more details.)

2.1.3 System BROM

The current Portfolio has in total 256 KBytes of ROM which contains all of the BIOS,
DOS, command processor and application software. This ROM currently comprises
of two 128 KByte chips. (See section 2.2 for more details.)

2.1.4 LCD Display

The LCD is a 240 x 64 pixel display. It is driven by a set of LCD screen drivers which
are controlled by a graphics LCD controller. The screen behaves in the same way
as an IBM PC monochrome text screen (MDA). The controller also uses a dedicated
Video RAM chip and a character generator ROM. For graphics it is pixel compatibie
provided the PC-compatible BIOS is used. (See sections 2.2.2,2.8and 3.7.)

2.1.5 Tone Dialler + Sound

The Portfolio speaker is driven by a Dual Tone Multiple Frequency (DTMF)
telephone dialler chip. This produces all the necessary dual tones required for tone

dialling plus a set of melody tones for musicai applications. The keyboard click also
uses this circuit. (See section 3.3.1))

OO LA RO LR A LE L E LR ELE LA LE L LA LOEL L LOOLOELELOLOOOEO O O OO OOGE 0 F

;
7
’
-
Il‘
4
4
.
’
,
?‘
',I
f
>
:
:
;
:
:
4

2.1.6 ASIC

This circuit contains most of the system logic. (See section 2.4 for more details.)

2.1.7 Keyboard -

The Portfolic uses a 63-key QWERTY ‘switch-matrix’ keyboard. The ASIC

generates a set of physical scan-codes which are translated by the BIOS 1o IBM PC-
compatiblie scan-codes.

2.1.8 Memory Card Connector

The Portfolio contains a memory card connector on the side of the product. Credit
card-sized memory cards can be inserted into this connector, allowing for data and
Programs to be accessed by the Portiolio soitware. (See section 2.2.4, 3.6.)

2.1.9 Expansion Port

On the right-hand side of the product there is a 60-pin connector which provides the
necessary signals for various peripherals. {See seciion 2.6,2.7and 3.5.)

2.1.10 Power Supply Unit

This supplies ali the power required in the system. It produces various supply lines.
The cireuit includes a switching regulator that steps up the valtage from 3 AA celis to
SV, The regulator may be switched ofi. (See section 2.5 and 3.8 for more details,)

2-3

2.2 SYSTEM MEMORY

2.2.1

FFFFF

E0000

C0000

81000

BO0O0O
A0000

aF000

3F000 |

00000

Memory Map

SYSTEM ROR A= (128 BYTES)

SYSTEM ROM B - (128K BYTES)

'CREDIT CARD MEMORY

AEQUIVALENT TO
AORBY)

MIRROR OF VIDEO RAM (NOT USED)

VIZED BAkA MEA A BYTES

L NOTUSED -

NOT USED

EXPANSION RAM AREA UP TO
512K BYTES

SYSTEM RAM - 124K BYTES
(INCLUDING C:)

Diagram of Portfolio Memory Map

(all addresses in hex)

2-4

T S P e P P R g APy e e G LA o et B L e A o e A A AL AL AL R A A A A E L E RN)" L

ARRRAAARAAAAAAAAAAAAARRRAA AN A AN AR,

i

P

L AERRE TR Y

FEE

JUSdddddd

| 1
tl 11

P

|

)

SO U

L&

)

Lol

(R RS

LS

L

2.2.2 RAM

There is a totaf of 128 KBytes of on-board RAM provided with the Portfolio.

4 KBytes of this RAM are mapped to BOOOOh to make up the video RAM which is
compatible with the IBM PC MDA screen, This gives a total systern RAM of 124
KByles.

The system RAM can be expanded up to 636 KBytes by use of memory expansion
peripheral(s).

The Portfolio allows the user o have an internal RAM disk (known as C:) which can
be user configured, This RAM disk uses the top of the system RAM.

2.2.3 System ROM A

This contains the BIOS, operating system and some of the application software. The
reset vector sits at FFFFOh. This ROM cannot be mapped out of the memory map.

2.2.4 System ROMB

This contains the rest of the application software. This ROM may be switched out of
the memory map and replaced by either the internal memory card or an externai
memory card on a peripheral. The BIOS disk services would normally perform this
switching function. (See section 3.6.)

2-5

2.3 Memory Cards

The Portfolio uses credit cérd-sized memory cards which a're specially designed for
the Portfolio. There are similar memory cards available from other vendors. DO

NOT use these cards with the Portiolic_) as they may harm the card and the Portiolio.

These come in three main types: RAM, OTPROM and Mask ROM. (See below for
explanation.)

The cards are formatied to look like MS-DOS disks. It is possible to run a program
directly from a card and hence reduce the amount of system RAM required. (See
section 3.6.3 for more details.) :

2.3.2 RAM cards

The RAM cards are currently available in three main sizes: 32, 64 and 128 KBytés.

The-cards are made up of Static RAM and each card contains a lithium back-up
cell. This cell will maintain the data on a card when it'is not in a F’ortfolio_fcr a year
or mare.

2.3.3 OTPROM cards

The One Time Programmable ROMs cards that are currently available are 64 and
128 KBytes. They are read-only cards and would typically be used for holding fixed
data or software. They can be programmed in a standard EPROM programmer like
a normal PROM (see section 4.4).

2.3.4 Mask ROM

These cards are "factory programmed” and have a low unit cost. This makes them

suitable for issuing mass production software. Currently available only as 128 KByte
option,

2.3.5 Future Card Sizes

The Portfolio BIOS contains support for ROM and RAM cards of greater than 128
KBytes. If these become available, they will be made up of 128 KByte pages with a
page register at offset 000Ah. It is imperative that NO application software uses this
memory card location, no matter what the card capacity.

2-6

B AR AR OO RGO OAGRGRRRORAGGAGRGOOAAGGAGRANMANGOGOGOGOAOGOGOANGR AR RRRRG), L|

2.3.6 Memory Card Pin-out

Below is a pin out of typical memory cards. Differences between the various card
types are highlfighted. {Pin 1 is on the right with the connections up and pointing to
you.)

APAMARA AN AR AR

Pin COMMON RAM OTPROM. hMask ROM
32k 64k 128k
P] A16
I-—_@ 2 Al5
- : 3 r VBB VPP NC VPP NC
W 4 At2
-'"“ 3 A7
o> 5 A6
. o 7 AS
g’ 0
~ v 10 A2
L= M
oL~ 13 Do
F 14 D)
. - 15 D2
- 16 GND
- 17 03
i > 18 D4
—— 19 D5
- 20 D6
= 21 D7
." — 22 CE
- 23 A10
il :’ 24 OE OE OQENVPP OE OE
25 Al
.— = 25 AS
E 27 A8
t v 28 Al3
= 29 Al4
i 30 WE NC NC PGM NC
oy 31 vee
l - 32 CDET
-,_’ Notes: NC No internal connection,
l_ ca VCC Operating supply: 5 Volts.
= GND Signhal ground
- CDET This is ihe small pin {internalty connected
i to GND), used to detect presence of card.
-] Ax Card address fine x.
l-"; Dx Card data line x,
- VBB Card ballery voliage.
I " PGM OTPROM program line. OV in program mode
- VPP OTPROM program veliage.,
l.- - 12.5V Program mode, 5V normally
i ” OE Low to indicate a read cycle.
. s WE Low to indicate a write cycle.
l__ -
,
=
IL__ ;
- -
L
K 2.7
Ilf‘.
Ild- :
T
L

2.4 Custom ASIC Chip

The Portfolio custom ASIC chip provides most of the necessary system logic. Itis a

gate array implemented using silicon gate CMOS technology, which allows for very
low power and high speed operation.

This Application Specific Integrated Circuit (ASIC) is used 1o generate all the select
lines for the memory, memory cards and other system blocks. It also contains

several system control functions. These functions are controlled using a set of
registers which control the varicus parts of the system such as memory chip size.

2.4.1 System Clock

The clock is 4.9152MHz, with a 50% duty cycle produced by a crystal oscillator. The

ciock can go in to a stop mode. A custom chip interrupt will cause the clock to
restart.

2.4.2 Timer

The system timer tick count is generated from a 32768Hz crystal oscillator which will
generate an interrupt every 1 second or every 128 seconds.

2.4.3 Keyboard Contiroller

The keyboard controlier will scan an eight by eight push to make key-switch matrix.

A pressed or released key will cause an interrupt. The processor will abtain the scan
code from a control register.

2.4.4 Interrupi Handler

This controls the critical error for the memory cards, keyboard and tick count

interrupt. This is extended outside the ASIC to allow for externai peripheral
interrupts.

2.4.5 Soft Contrast for LCD

A control register holds the contrast value for the LCD display.

A ARG NOGGONO GG GGHGGOGANNROHHGGGONGGGGGNGGGOF

I

'

Jaddddde

Juldele)e

T

e

Jdddele

p

%

ANAARAA AN ANAS

r

%

THREL

ARRERETRET R TETEY Y

okl i i

TEIEIEREYR"

LY

§
L||FI||'1"

| |

Ty

2.5 Power Supply Unit

The Portiolio has sevéral power supply lines and control lines. These are used for

various purposes and have different power characteristics as explained below. They
are all availabie on the expansion bus.

When batteries and a power supply are connected to the Portiolio simultanecusly,
the Portiolio will be supplied by the higher voitage ("initial source”)

(See section 3.8 for soflware issues.)

2.51 Power Modes

i} NO POWER MODE
This is the state when no initial source is connected to the Portfolio (e.g. changing

batteries). If an initial source has been supplied and then removed, the system RAM
will be backed up by an internal capacitor, :

i) OFF MODE

This is the state the Portfolio goes into when the "OFF command is used. The
custom chip and RAM are powered directly from the initial source.

il STANDBY MODE

This is the state that the Portiolio will be in while waiting for a key press. The whole
system is powered from the output of the internal five volt regulator. However, the
system clock CCLK is halted in order to stop the processor and save power.

iv) RUN MODE

This the state in which the Portfolio is actually processing. The whole system is

powered from the output of the five voit regulator and the system clock CCLK =
running, thus causing maximum power usage.

2.5.3 VCC (Memory Card supply voltage)

This line foliows 5VS. It is designed to be used by an external memory card so that

plugging in and pulting out a card will not cause spikes on 5VS. This line should not
be used for any other purpose.

=

2.5.2 5VS - Five Volt switched supply line

This is the output of the five volt regulator. During STANDBY and RUN modes, this

fine will supply five volts. At any other time this line will float low. FPeripherals may be
designed that use this supply.

SVS is capable of supplying up to 40 mA at 5V +/- 5% io a peripheral, This assumes
that the main unit is taking maximum power. The Portiolio will run correctly outside
the 5% supply tolerance; however, this is not recommended.

Use of 5VS by a peripheral will decrease the unit's batiery life. Also, since alkaline

batteries develop a voltage drop (due to internal resistance) the low battery warning

wilt accur when the batteries are less depleted than it the peripheral was not
plugged in.

2.5.4 VRAM (Memory Power Supply)
This is the supply for the system RAM:

STANDBY and RUN 4.5V
OFF initial source voltage - 0.5V
NO POWER current voltage across a capacitor.

During NO POWER Mode the voltage will decay, so care should be taken that ne
current is taken from this line or the system BAM could be corrupted. When the cold
reset switch is pressed this line is pulled to GND through a small resistor,

2.5.5 VEXT (External voltage)

This is the external power supply voltage connected directly to the external jack
socket. This enables peripherals with their own power source fo make use of the
Portfolio external power supply. It is possible to supply the Portfolio via this
connection. However, care should be taken to avoid external power suppily conflicts.

2.5.6 BATD (Battery detection signal)

This control signal is used to isolate system RAM from the rest of the circuit when
the batteries are removed. It would normally carry the initial source but when the

initial source is removed. it is pulled to GND. This {ine could be used by a peripheral
to access ihe initial source.

2 D R AR CE AR BEA R IE TR R A O A A A A A A A A ST A AN A S A 4} -ﬂ!_Iﬂ!‘N\#\élﬂlﬂl\‘l!}ﬂ.lt‘\élﬂlél!lﬂlﬂll

2.6 Portiolio Expansion Port

The Portiolio uses a 60-pin expansion connector which can take custom designed
peripherals, (See section 4 for more details on current range of peripherals.)

2.6.1 Expansion Poit Connector Pin-out

Locati_on of pin 1 -If you are looking into the Portiolic expansion port then the top
pin on the right is 1 and the bottom right is 2.

Lo EE A ddddEd

ABUE 1 2, 5VS
REDY .3 4. VCC
BCOM .5 6. NCC1
NMD1 .7 8. WAKE
DTR .9 10. DEN
PDET .11 12. IINT
COLK .13 14, MRST
HLDA .15 16. HLDO
IACK 17 18. CDET
JOM 19 20. A19
A18 21 22. A17
A16 23 24. A15
At4 25 26. A13
A2 24 28. Ati
A10 29 30. A9
A8 31 32. VRAM
HLDI .33 34, ALE
GND 35 36. NMIO
OA7 37 38. OAB
OAS5 39 40. OA4
OA3 A1 42. QA2
OA1 A3 44. OAOD
ADO 45 46. AD1
AD2 A7 48. AD3
AD4 .49 50. ADS5
AD6 51 52. AD7
EINT 53 54. NRDI
VEXT 55 56. EACK
BATD 57 58. NWRI
5VS .59 60. BBUF

2.6.2 Explanation of expansion pin names

This section explains the functions of the expansion port. It assumes a knowledge of
80C88 minimum mode. Detailed Timing for relevant signals can be found in a
microprocessor data sheet, ideally OKI MSMB80C88ARS-2.

REDY oulput

This line indicates {o the CPU that the custom chip is ready. This fine is
active high.

VCC output
This is the Credit Card power sSupply.

BCOM output

This is the communications select fine, used for peripheral
implementations. It is low if I/O locations 807X are being accessed. This
signal is active within 100nS of IO address being valid (see section 2.7).

NCCA1 ouiput

This is the external credit card chip select line. It is fow if the external
credit card is selected. See BCOM for timing.

NMD1 input

This is the external credit card detect line. It goes low to indicate that a
card is plugged in.

DTR input/output

This is the 80C88 data direction signal. During CPU HOLD this line may
be driven.

DEN input/output _
This is the 80C88 data enable signal. L.ow indicates a data cycle. During

CPU HOLD this line may be driven.
PDET input

This is the peripheral detection line. It should be tied high on a terminating
peripheral that has a PID. (See section 2.7 for more details.)

INT output

This is the internal interrupt request line to the CPU (INTR). It goes high to
indicate an interrupt request.

2-12

f RO OO ONOOIOOOOOOOOOAOOIOHOAOGOONONOOOOOOOOEE LA IO NN NGER

SIS SISSSSIISSSSSSSTSISSSITSSITTS IS SIS TSI I S SIIIIIIIIIIIS

IACK

EINT

EACK

CCLK

MRST

HLDI

HLDO

HLDA

tnpul/outpul
This is the 80C88 interrupt acknowledge line (INTA). It goes low to

request an interrupt vector after an IINT. During CPU HOLD it may be
driven by exiernal hardware.

nput
This is the external interrupt request line. It may be driven high by external

hardware on a terminating peripheral to request an interrupt. This interrupt

line has lower priority than the on board interrupts. This signal is level
triggered.

output

This is the external interrupt acknowledge line from the Portfolio. It goes

low 1o request an interrupt vector after an EINT. it follows \INTA on the
processor, but is delayed by up to 40nS.

output

This is the main processor clock (4.9152MHz, 50% duty cycle). Since the
clock pauses when no processing is taking place, dynamic logic should
not use this line. It may be used for synchronising peripheral togic. During

halt mode this line is high. This signal is only available to terminating
peripherals.

cutput

This indicates system reset. MRST will noimally be high, except when a
terminating peripheral is instalied. The terminating peripheral will experi
ence a short reset when inseried. If a terminating peripheral is installed
then MRST goes high to indicate system reset. MRST will remain high at
any time the reset key is pressed. it will also go high when the main

computer system powers up. Under these conditions MRST wili remain
high for over 300mS.

input

This is the hold request line and will drive HOLD on the 88C88. It may be
driven high by external hardware to requisition the system bus.

output

This is the 80C88 hold request line (HOLD). HLD! should be used to
request a HOLD.

output

This is the 80C88 hold acknowledge line (HLDA). It goes high to indicate
that the bus is now free. This state will be called CPU HOLD.

WAKE input

This line is used by a peripheral to wake up the main computer when it is
powered down. This line is set low tc request wake up. Wake up can be
confirmed by waiting for a falling edge on MRST. It will take 300-400mS

for wake-up to be confirmed. When wake up is confirmed, the wake input
should be released.

CDET input

This signal is tied low to indicate to the main computer that an external
credii card drive is present.

iOM input/foutput

This is the 80C88 memory access select line. If high then a /O cycle is

taking place, if low then a memory cycle. During CPYU hold this line may
be driven.

VRAM ouiput

This is the RAM power supply. It wiil backup RAM when ihe batteries are
removed, therefore any current taken from this line should be pAs.

5VS ouiput
This is the switched 5V output. There are two 5VS lines.

GND cutput
Signal ground line.

VEXT ocutput
This is the external power supply line.

ALE inputioutput
This is the address latch signal from the CPU. It latches the address bus
on its falling edge. During CPU HOLD this line may be driven.

A8-A19 input/ouiput

These are the upper part of the address bus from the CPU. During CPU
HOLD these lines may be driven.

ADO-AD7 input/output

These are the multiplexed address/data bus from the CPU. During CPU
HOLD these lines may be driven.

OAO0-OA7 outpui
These are the lower latched address lines.

2-14

|

dt B A5 @8 s d % d 8 &% v d v A dn

L -

NRDI inputfoutput '

This is the 80C88\RD signal. It goes low to indicate a CPU read cycle.
During CPU HOLD this line may be driven. -

NWR! input/output

This is the 80C88 \WR signal. It goes low to indicate a CPU write cycle.
During CPU HOLD this line may be driven.

BATD output

This s the detect line for the batteries. It goes low if the batteries are

removed without a power supply being present. This can be used to
prevent accidental corruption of RAM.

ABUF/BBUF input

These are insertion detection pins. A terminating peripheral should have
these lines connected 1o the adjacent 5VS line. (See section 2.7 on
peripheral design.)

NMIO output
This is the 80C88 non-maskable interrupt request line.

JddddddddddddddddIIIddIIIId

2.6.3 Comparison between IBM and Porifolio expansion bus

=
L— The IBM PC and Portfolio expansion buses are analogous; however, the
- implementation of these buses are very different, See the comparison below:
= | |
l— d IBM PC Portfolio
T a) 4O is partially decoded. /0 MUST be fully decoded.
L . b) AD-A19 are latched address OAQ-OA7 are latched address A8-A19 are
L= : address lines DIRECT from the processor.
| n ¢) DO-D7 are bulffered data - ADO-AD7 are multiplexed address/data lines
L - DIRECT from the processor, _
== d) IRQ2-IRQ7 are inputs to EINT/EACK allow connection of peripheral
S the inlerrupt controller, with an interrupt controller.
[e} |IORAOWIMEMR/MEMW are NRDI/NWRIAOM are MIN mode bus controt
l-. B MAX mode bus conlrol signals signals.
1 ") DRQ1-DRQ3IDACKO-DACK3IAENITC No analogous signals, however, enough control
l—. < are DMA contro! signals signals exist to aliow DMA control on a peripheral.
1 F g} 1fO CH RDY inserts wait No analogeus signal.
- states for slow I/O.
:‘ P h} ALE Is address laich enable. ALE is address latch enable
T) OSCis 14.31818 MHz Clock. No equivalent signal.
Y |
1 I} CLKis 4.77 MHz, 33% duty CCLK is 4.9152 MHz, 50% duty clock which halts.
] F cycle clock
| * k) I0CHCK No signali.
=
=
L= 2-15
-2
E
L- -
E

TYPICAL TERMINATING PERIPHERAL

BBUF

ABLIF

SE

EAMT

EACH

B0

OAD-OA3

v

DECCODE ‘ —

LOGIC

| READ AT
v BO7F

FICREGISTER |

|

AOO-ADYT

——

MAIN

PERIPHERAL

LCGIC

=
—

NCC1

GND

! EXPANSION BUS
(TOWARDS PORTFOLIO)

2-16

EXPANSION

ROM

AR i

?
4
ﬂ
-
‘g
u
%
>
2
>
d
2
2
>
=l
>
g
a
;ﬂ
"
i
g
=l
i
i
-
>
7
=i
>
i

YEYE N YRR R TR R TS

ARV YE SRR Y Y

) |
i

T T Tl R T R T R T T T T R U T D O D U TR L R e e R s &

2.7 PERIPHERAL DESIGN ISSUES

There are two types of peripheral that can be connected to the Portiolio- These
peripherals either continue the system bus ("Through Peripheral”) or not
("Terminating Peripheral”). Different considerations are required for designing these

types of peripherals. Appendix C iliustrates an example peripheral design. (See
section 3.5 for software issues.)

2.7.1 Terminating Peripherals (see diagram)

A peripheral of this type signals its presence to the Portiolio by having PDET tied
high. If PDET is high then the Portiolio expects to see a Peripheral Identifier(PID).
This is read from I/O location 807Fh. The returned number must be in the range
40nh-7Fh. Please note tha! identifiers under 40h and over 7Fh are reserved for use
by DIP and must NOT be used by non-DIP applications.

A read at /O location 807Fh should NOT be used by any peripheral i ANY way
other than as stated above.

A terminating peripheral can have an expansion ROM which contains support
software for the peripheral. This eliminates need for software to be supplied
separately. The chip select for this ROM should be connected to NCC1. At various
times during a boot sequence, the ROM will be checked for an identifier. If this is

present then the software contained on the ROM will be executed. (See section 3.5
for more details.)

The Portfolio has only limited expansion bus buffering. To make best use of this the
following rules should be obeyed.

i) ABUF and BBUF should be tied to the adjacent 5VS lines. This will cause the
processor to hoid while a connector is half in.

it) Only OAD-OA3 should be used. BCOM should be used for higher addressing on
peripherals.

iit) Peripherals using the external interrupt facility should be reset by MRST into a
state where interrupts are disabled until the vectors are set up correctly. This is to
prevent spurious interrupts occurring before the interrupt vector is set up.

2-17

|

TYPICAL THROUGH PERIPHERAL

BBUF
ABUF
EVE
EAS
POET
|
¥ LIME >
OAD-OA3 : ; ORIVER
—_ ' > | —p— »
L
= »
LINES | ON EXPANSION BUS NOT EXPLICITLY MENTIONED
A= —— s
¥
!
=k
PERIPHERAL
!
L —_— CIRCUIT
L ¥
SIGNAL TO LATCH ADO ON WRITE
, AT 807C. LATCHED VALUE CALLED 'D'.
¥
NCCH D=0 R
-—— S NCC1{OUT}=NCCH -
AT SMC=5V o | (il _.-I':
{IN} i o o
SMC=NCC1
NCCH{OUT)=5V
CDET SMC SELECT LINE FOR
"DRIVE B:* MEMORY CARD
GND .
[EXPANSION BUS EXPANSION BUS }

| (TOWARDS PORTFOLIO) {AWAY FROM PORTFOLIO)

2R ARAAAADRAAAAARAAAAARARAAAAAGTAARAARAARAAAARTRIARARATARRTEAARREREAARIALERAOAN

AR RNAARARARRARNRRAR AR RN AA N AR AR AR AR R AR AR AR AR A AR AR A

2.7.2 Through peripherals (see diagram)

On these peripherals the system bus is continued so that further peripherals can he
connected to the system. For exampie, a memory expansion unit would be this type
of peripheral. In order that terminating peripherals will operate correctly the following

recornmendations should be taken into account when designing "through"
peripherals.

i) ABUF and BRUF should not be connected to 5\:’53, but brought straight through
the peripheral.

i) 1f OAD-OA3 are used on the peripheral, they should be buffered before the
“through” connector,

iii) PDET should not be connected to 5VS, but brought straight through the
peripheral,

iv) The I/O locations 8070-807F should not be used so as o provide compatibility

with terminating peripherals using these locations (such as DIP serial and parallel
peripherals), 807Ch can be used as stated in vi) below.

v) “Through” peripherals risk crashing the system bus as virtually no buffering exists.

Itis therefore recommended that these peripherals are only inserted or removed
from the Porttolio when powered down,

vi) To ensure that ROM extensio

through peripherals which contai
follows the following rules:

ns on terminating peripherals function correctly,
N a memory card interface must supply logic that

* A write of zero to /O 807Ch will cause NCC1 to be directed to the through
expansion port.

* A write of one to IO 807Ch will cause NCC1 to be directed to the peripheral
memory card interface.

2.7.3 Allocation of Peripheral ID (PID) bytes
The PIDs have currently been allocated as foliows:
FID PERIPHERAL

00k Communication Card
01h Serial Port
02h Parailel Port
03h Printer Peripheral
04h Modem
05-3Fh Reserved
40-7Fh User Peripherals
80h File-Transfer Interface
81-FFh Reserved

For custom user peripherals a specific PID can be allocated by contacting the Atari
Portfolio Product Manager in writing, describing the use of the peripheral.

2-20

R B R RS AR R R R RO R R R R R RO R R R R R R RN R R R R R RN RO RO N R R RN ERCRERERORER R R R EOR YRR RS

——
.
=
.

A 2
=- . 2.8 LCD Display
_H : The Portfolio uses a 240x64 pixel LCD display which uses the "Super-twisi’
t - technology. This corresponds to 8 lines of 40 characters text dispiay.
I The circuit inciudes a graphics LCD screen controller with dedicated screen RAM
. ’ chip and character set ROM, used in such 2 way as to be compatible as possible
o with an IBM Monochrome Display Adapter (MDA). (See section 3.7 for more
i details.)
.
ey The LCD circuit has the following characteristics:
H. :
. * Full IBM PC Extended character set {(see Appendix B)
.
5 ' * Virtual 80x25 MDA screen page with various screen modes
=
- *PC-BIOS compatible pixel Set/Reset for graphics
=}
= * Each character is implemented as an array of 6x8 pixels
-._-i
. * Software controlled contrast
:: * Block or underiine cursor
t: Note: Screen text altributes and various cursor modes are not supported by the
= Portfolio.
.

o
=5
.~
l_:é
i >
=
B
-
-
i
L -
R
_—
e
e
L
-
=
- 2-21
t_

|‘L'"TT

Y'\'Wl

B ddadaadddotddsdedadtdddvddudidddddddddddddddddddddd

3 SOFTWARE
3.1 General Description

3.1.1 Overview

The Atari Portfolio software is contained on ROM and predominantly executes from
ROM, and hence minimizes the use of RAM. This software prevides as much PC
compatibility as possible given the hardware constraints. (See sections 3.2 and 3.4
for BIOS and DOS comparisons.)

This software also includes some more advanced features which enable the
Portfolio to be used more effectively in a portable environment than a standard PC.
Most of these software features are accessed using Interrupt 614, the Atari Portfolio
specific functions. {See section 3.3.1.)

To aid development of application software for the Atari Porlfolio which require the
use of these specific functions there is a TSR {Terminate and Stay Resident)
Emulator program for the I1BM PC. This program emuiates most of the funclions.
{See section 3.10 for more infermation.)

3.1.2 Portfolio Programming

The Portfclio cbeys [BM's own programming guidelines for PC compatibility,

however these are a ot more flexible than the industry-standard definition of a
‘clone’ PC.

Most ‘'well-behaved PC programs run with no problem on the Portfolic, provided
that they do not go below the BIOS to directly use the hardware. The main
development issues are the screen size and memory capacity. Below are the

vartous points to take into consideration when developing a program for the
Portfolio.

SCREEN - (See also section 3.7.)

The Portfolio has a 40 column by 8 line text display which uses video RAM at the
same address as the PC Monochrome Display Adaptor (MDA) and uses the same -
character set. However the Portfolio LCD controller does not support text attributes
such as bold, undetline and reverse or the various cursor sizes. i you want to use

the Portiolio graphics facility then use the standard BIOS pixel read and write
interrupt.

3-1

MEMORY - (See also section 2.2.)

The Portfolio has an internal memory disk C: which can be configured in 8KB
intervals, minimum 8KB. This leaves a maximum of 118 KByte usable RAM of which
10 KBytes are used by the operating system and BIOS. Therefore it is recommended
that programs should not use more than 100KBytes of system RAM. If you want to

use the buliit-in 'pop-up’ applications with the external program then allow for some
free RAM (minimum of 17 KBytes).

MEMORY CARDS - (See also section 3.6.)

These memory cards appear to a DOS program like a standard floppy disk. The
Portfolio has DOS resident all of the time and therefore does not need to boot from
a disk. If you want {o automatically boot into a program then you can put
AUTOEXEC.BAT on a memory card, overriding CAAUTOEXEC.

RS232/SERIAL - (See also section 4.1))

The only cecmpatible method for accessing the serial port is through the BIOS.
However most off-the-shelf serial programs go directly to the hardware.

KEYBOARD- (See also section 3.2.1.)

The Atari Portfolio supplies full IBM PC scan-code compatibility provided access is
through the BiOS. in other words it is possible to generate every keypress or
combination that a standard PC can generate (SHIFT, CTRL, ALT, NUM PAD). Itis

also possible to generate other non-PC key combinations necessary for functions
such as contrast and switching off.

POWER - (See also section 3.8.)

For power conservation, it is recommended that programs are designed which do
not poll the keyboard continuously.

ADVANCED

There are also more advanced features which enable custom programs for the
Portfolio to perform more sophisticated tasks, such as running programs directly
from the memocry cards (section 3.6), peripherals with built-in software on ROM
(section 3.5), language information and access to the built-in tone dialier.

BB OB BN RN ER R R R RN CR O CR R R Rl RN R R R RO R CRCE O CRaRCRCN R CACRCRCRCRCRCReReR YRRy

IANAARANAAN]

.

BANAANANAP

TP .-

TFTITIrrrTRErrrTY Y Y

|
L

FErRrLTLTtTITrE

3.1.3 Troubleshooling
Running well-behaved standard oii-the-shelf PC Programs:

* Make sure that the DISPLAY SETUP (see user manual) is set o Static PC for
External programs.

*1f the program writes djitrectly to Video RAM 1hén ensure that DISPLAY REFRESH
Is set to KEY_BOARD or FAST TIMED, whichever is more appropriate.

*Endeavor to allocate encugh system RAM.

Although many popular programs are 'well-behaved’ there are also many programs
which directly address the hardware. This can cause a preblem on the Portfolic as
the 10 addresses are different. The most common of these incompatibilies occur
with the keyboard and hardware interrupts. The Portfolio does not have a
Programmabile interrupt Controller (PIC) or a dedicated Keyboard controller,
therefore some programs which access these such as Basic and XTALK will not
function correctly. The Portiolic also uses a different Timer Tick than a PC which
affects some 'dirty’ programs such as Sidekick. Another hardware area that differs

on the Portfolio is the use of the speaker, which should be accessed using the
BIOS.

3.2 Differences Between Portiolio BIOS and IBM PC BIOS

For the purposes of this document, Portfolio BIOS is defined as the progfam which
communicates between the DOS and the hardware. (See recommended books in
section 1 for mare information on the standard PC BRIOS.)

There are a few differences between Portfolio BiOS and the standard IBM PC
BIOS. These are generally in areas where the hardware differs to such an extent |
that complete compatibility-is unobtainable. For exampte, in the Video Services (Int

10H) the Portfolio only has two screen modes: 80 by 25 Text and 240 by 64
Graphics.

3.2.1 Interrupt dih‘erence’s

The following list highlights ihe main dlfierences between the DIP BIOS and IBM PC
BIOS:

Int 0SH * Keyboard

The Portiolio keyboard is not at the same IO address as a standard IBM
PC, therefore any program which requires the keyboard to be at port 60H

will not work correctly.
Int 1I0H Video Services

Service O0H, Mode G7 to OAH are supported but only in Text or Graphics

mode. Service 01H, Cursor size is set to either block or w/line. (See
section 3.7.)

Int 13H Disk

The Portfolio has modified Memory Card/Disk services 0 to 05H and 83H.
(See section 3.3.2 for more details.)

int 15H Extended
No Extended services are available.

Int 16H Keyboard
Only service 0, 1, 2, 4 are supported.

Int 18H BASIC
Not supported.
Int 1AH Clock

Only services 0-07H supported.

Int 1ICH Timer tick
Irivoked less frequently than IBM PC (see section 3.3.1).

3-4

Lﬂl‘l‘l‘l‘l‘l‘\‘\‘l‘\‘\‘l‘l‘l‘l‘l‘lfl‘l‘lf\fl‘\‘lfl‘l‘l‘l‘l‘\‘lflQ‘l‘l‘l‘\‘l‘l‘lﬂ‘l‘\‘l‘%k%k%gkfL‘\E\EE\SL "

JIJJJIJIIIIIITITIIII

JJJds

=R .

okl ok

§

| o = el ol b

AAAR

3.2.2 Portfolio BOOT procedure

On a COLD boot (batteries removed, COLD Reset switch pressed,; then batteries
replaced), the BIOS executes a limited Power On Self Test (POST) to verify system
integrity. This will destroy data in system memory (both pragrams in the Translent
Program Area and those on internal drive C:). The Portfolio system then performs
BIOS and DOS initialization before jumping to the COMMAND processor. This will
always reset the machine unless there is a hardware fault.

On a Hardware WARM boot (WARM Reset switch pressed or batteries replaced
without pressing the COLD Restart switch), the Portfolio performs BIOS and DOS
initialization before jumping to the COMMAND processor,

On a Software WARM boot (Ctrl-Alt-Del on keyboard), the seguence of operations
is sirmilar o those for a Hardware warm boot. The difference between the two is that
a Hardware warm boot also resets the ASIC and Processor which may be

necessary if the interrupts have been disabled because the keyboard will not
recognize user key presses.

3.3 System Specific BIOS

3.3.1 Int 61H - DIP exiended BIOS services

Function Description

OH Service Initialization

7H Format Credit Card Memory (CCM)
8H Get size of Internal disk

gH Format Internal disk

BH . Determine it CCM present
DH Get Screen size '

ER Get/Set Screen mode

FH Get/Set Cursor mode

10H Get/Set virtual screen position
11H Move virtual screen position
i2H Screen refresh

i5H Sound generation

16H Melody tone

17H Dial number

18H Mute states

19H Get Serial port parameters
1AH Get Peripheral ID hyte

1BH Set Peripheral iD byte

1CH Preset Peripheral 10 data
1EH Get/Set Clock tick speed
tFH Get-key/Tick Screen refresh
20H Disable revectoring of Int 9H
24+ Get/Set ROM space state
26H Gel/Set Power State

28H Gel/Set Language

2CH Get BIOS version number
2DH Turn system off

2EH Enable/Disable status line
30H File transfer via smart cable

Note: There are other reserved Int 61H services which are used internally by the
Operating system. It is not recommended that these services are invoked by

applications software, as they may be modified or deleted in future versions of the
software.

3-6

SR RRFRARARTAOOARAAAAANINRARARRANREAAANRRROE XA RRAA QORI EY) €} € &

RRRRRRRRARAANARRARAAN)

=Y

-|I| L.l.|-|l-|l-\.l-|.] L b

Loa

inmpny

i

D D T T o e N N e e e

&

Fn 00H Service Inilialization 3.10
Parameters:

AH 00H
Returns:

None

Note: This service should be called once only as part of its initialization by any
application program that intends to use any Int 61H function calls.

Fn 07H Format Credit Card Memory ' 2.3,3.6,3.32
Parameiers;

AH 07H

AL Drive number {0 or 1)
Returns: :

CF Set if error during format

AH Error code (See INT 13H)

Note: Drive number 0 selects drive A:, and drive number 1 selects drive B;. This
service should not be used to format the internal disk (drive number 2).¥

Fn 08H Get size of Internal disk 3.3.2
Parameters:

AH 08H
Returns;

AX Segment Address of disk

BX Size of disk in Kbhytes
Fn 09H Format internal disk 3.3.2
Parameters:

AH 0gH

BX Size of disk in Kbytes
Returns:

If CF=1

BX Maximum size possible (K)

Note: The system is rebooted if successful. Al files on drive C: will be lost

3-7

|

Fn 0BH Determine it CCM present and valid 2.3, 3.3.2, 3.6

Parameters: .

AH CBH

AL Drive number (0 or 1)
Relurns:

CF=0 Card present and correct

if CF=1
AH Error code (See Int 13H)

Note: This can be used to determine if a valid CCM is in the specified drive. Drive
number O selects drive A:, and drive number 1 selects physical drive B:.

Fr ODH Get screen size 28,37.2.14
Farameters: :
AH 0DH
Returns:
AX ‘Physical screen size
DX Logical screen size
Note:

AH/DH Row number
AL/DL Column number

Fn OEH Get/Set screen mode 2.1.4, 2.8, 37
Parameters:
' AH OEH

AL=0 Get mode
AL=1 Set mode

DL New mode
Returns:

If AL=0 .
- DL Mode
If AL=1
DL Old mode

3-8

ERARAQARAAQRAAQAAQAAQAAQAAAAAAAAAAAAAAAARARAARRRQR B RTE RN RN R AR R AL <

IR AR AR AN AR AR A AR A A AR AR A AN AN AR N AN AN AN A A A N A o

Note: The mode is changed by seiting one of the fellowing mode bits in DL

Clear bits (00H)80 by 25 mode
bit 0 (01H) 40 by 8 mode

bit 1 {02H) Tracked mode

bit 7 (80H) Graphics

These bits are mutually exclusive. When changing to 40 by 8 mode, if the
cursor position or virtual screen origin is off the screen, then the virtual
screen origin will be set to (0.0), the Screen cleared and cursor homed.

Fn OFH Get/Set Cursor mode 214, 28 37
Parameters:
AH OFH

AL=0 Get mode

Al =1 Set mode

BL. New Cursor mode

AL=2 F-orce mode
Returns: If AL=0

BL Cursor mode

if AL> O

=1 Old Cursor mode
Note: Cursor mode is as foilows:

§ Cursor off

1 Underline

2 Block

Force mode automatically sets the BIOS cursor size {o reflect the Keyboard
Numlock state.

3-9

Fn 10H Get/Set virtual screen position 214, 28 37
Parameters:

AH 10H

AL a Get position

AL 1 Set position

i AL=1

DH Row number

DL Column number
Heturns:

lf AL=0

DH Row number

DL Column number

Note: The virtual screen

position is the top left origin of the 40 by 8 window on the
logicai screen.

Fn 11H Move virtual screen position 2.1.4, 37
Parameters:
AH 11H
Al Number of lines to move cursor
DL Direction to move cursor
1 Up
2 Down
3 Left
4 Right
Returns:
None

Note: This maves the origin of the virtual screen within scroll margins. it enly works

it in Static or tracked mode, and has a similar effect to pressing the Al-
Cursor keys.

Fn 12H Screen refresh 2.1.4,2.8. 37

Parameters:

AH 12H
Returns: None

Note: This service copies the contents of the Video RAM to the LCD coniroller,
and is slightly faster than invoking Int 10H service 0.

3-10

tqqqglaglg1§\ﬂ§\ g-\ TN ST AT TR ST e O i e el T Tl B R R A ol e e Ll s R e s e R

@

LT 0 L L L O O O T

SETRI RN RNV ES Y AV AT AT AT N

Fn 15H Sound generation

Parameters:
AR
AL

Returns:
None

15H

Sub service:

0 Key-cilick
1 Beep

2 Alarm

Fn 16H Melody tone generator

Parameters:
AH
CX
DL

30H
31H
32H
33H
34H
35H
36H
37H
38H
39H
3AH
29H
38H
3CH
3DH
OEH
3EH
2CH
3FH
04H
05H
25H
2FH
06H
Q7+
Returns:
None

16H

Length of tone in 10 mSecs intervals
Tone code (See below)

D#5
ES
F5
| i)
G5
G*5
A5
A®S
B5
Cb
C#g
D6
D#6
E6
F5
F#6
G6
G#*6
AB
A¥H
Bo6
c7
C#7
D7
D#7

622.3 Hz
659.3 Hz
£98.5 Hz
740.0 Hz
784.0 Hz
830.6 Hz
880.0 Hz
932.3 Hz
887 8 Hz
1046.5 Hz
1108.7 Hz
1174.7 Hz
1244.5 Hz
1318.5 Hz
1396.9 Hz
148G.0 Hz
1568.0 Hz
i661.2 Hz
1760.0 Hz
1864.7 Hz
1975.5 Hz
2093.0 Hz
2217.5 Hz
2349.3 Hz
2489.0 Hz

2.1.5

2.1.5

Fn 17H Dial number

Parameters:

AH 17H

DS:Sl String of characters

CX Length of string
Returns:

None

215

Note: String to be in ASCII. Valid characters are: 0 123456789 ABCD*#

Letlers must be in upper case.

Fn 18H Mute states

2.1.5
FParameters:
AH 18H
Al 0C Get mute state
01 Set mute state
02 Get key click state
03 Set key click state
04 Get bleep state
05 Set blegp state
06 Get alarm state
07 Set alarm state
08 Get DTMF duration
09 Set DTMF duration
HAL= 1,35 70r9
DL 0 Off (Muted)
1 On
Returns:
fAL= 0,2, 4,60r8
DL 0 - Off (Muted)
1 On
Fn 19H Get Serial port parameters 2.7,4.1, 3.5
FParameters:
AH 19H
DX Serial port number
Returns:

Note:

It AH=0, Composite parameters in AL

It AH<>0, Error

This service returns composite
Service 0 (Initialize).

parameters identical fo those used by Int 14H

k. 44 £
I NN N N NI NN NN N N N N N N T N I T I I T T T I T T T T T T T I T T I T I T I T N T T T T I T T I I T T Y T A

ANANAAARARR,;

R
LR SN B BN 1

e

L W g g g

TETESTETA"

; EYRTATE TR IR ST AN E YRR T

HmE RE N

1

El
®

LU JIVIJIJ S U

- %

Fn 1AH Get Peripheral ID byte 2 Nima3 5
Parameters:

None
Returns:

AH Peripheral ID byte

AL 0 if no peripheral installed

Nete: This returns the peripheral D code for the current terminating peripheral.
(See Fn 1BH.)

Fn 1BH Set Peripheral 1D byte 2.7. 3.5
Farameters:
AH 18BH

AL=0 Set Serial ID
AlL=1 Set Parallel iD

DL Current peripheral 1D
Returns;

None

Note: There may be peripherals designed that contain circuitry that is similar to the
Serial or Parallel peripherals. In order that these peripherals may use existing
BIOS services they must identify themselves as being software compatible.
DL should be set to the Peripheral ID code. (See Fn 1AH.)

Fn 1CH Preset/Return Peripheral data 2.7,35, 41
Parameters:
AH 1CH

AL=0 Preset Data v'alues
AL=1 Return Data values

BH Table entry number
It AL=0

BL Data value

DX 10 address

Returns:

if AL=1

BL Data value

DX IO address

£ e

Note: This service is used to preset peripheral 1O data in a table associating an 1O

address with a data value. Service 0 will actually output the data to the
specified IO locations. On Power-up, the table entries will be scanned for
non-zero |O address values, and the associated data will be wriiten out. This

would typically be used to restore Interrupt numbers following Power-up. The
first four table entries out of 10 max are reserved.

Fn 1EH Get/Set Clock tick speed 24, 38

Parameters:
AH 1EH
AL Subservice
G Get speed
1 Set speed

If AL = 1
BX Clock tick speed

0 Tick every 128 seconds

1 Tick every second
Returns:

HAL=0
BX . Clock tick speed

0 Tick every 128 seconds
1 - Tick every second

Note: 1 sec speed uses much more power.

3-14

| B R ERE R R (R R R R e i A AR e A e AR R R R AR AR Y R (R AR AR AR AR AR AR R R RNk R AR R R AR E

'IJTJTJ’JTJIIIIJT'JIJ'«l'J'IJ'J'JJ'«ITJ'J'J'J'-J'J'J'I«YJJJJJ«YJ«YJTJJJ‘J’JJJJJJJ‘J

Fn 1FH Get-key/NMI invoked screen refresh 2.8 3038

Parameters:
AH 1FH
AL=0 Get refresh state
AL=1 Sel refresh state

If AL=1
DX New state
Returns:
i AL=0
DX Current state
If AL=1
X Qld state
Note:
DH Refresh on NMis state
DL Refresh on keys state

DH/DL=0 Revectoring disabled
DH/DL=1 Revectoring enabled

If bit 7 of the state is set, then the state is unchanged.

Fn 20H Disable revectoring of Int 9H 3.2
Parameters:
AH 20H

AL=0 Get revectoring of int 9H state
AL=1 Set revectoring of Int 9H state

HAL=1
DL=0 Disable revectoring

DL=1 Enable revectoring
Returns: '

If AL=0
DL=0 Revectoring disabled
Dl =1 Revectoring enabled

Note: Thisis used to automatically revector Int 9H to the BIOS. This prevents
apphcations software from setling up its own Int 9H. Note that the Porifolio

keyboard |O address is not IBM compatible. This service is automatically
invoked on a boot.

Fn 24H Get/Set ROM/CCM space siate 2.2.4
Parameters:
AH Z4H

AlL=0 Gei ROM state
Al =1 Set BOM state

If AL=1

DL New ROM state

DH New CCM state
Returns:

If AL=0

DL Current ROM siate

DH Current CCM state

lf AL=1

DL Old ROM state

DH Old CCM state
Note: ROM siate in DL is as follows:

DL=0 Normal applicatichs ROM
DL=1 CCM Drive A:

DL=2 CCM Drive B;

DL =3 Expansion ROM

CCM state in DH is as follows:

DH=0 CCM Drives Disable(d)
DH=1 CCM Drive A: Permanently enable(d)
DH=2 CCM Drive B: Permanently enable(d)

CF=0 No error
Ck=1 invalid option or error

Note: This service should be used with care, as it can swap either Memory cards
or an extension ROM into the CO00:0 to ODFFFF address range. This range
is normally used by the internal applications ROM. its primary use is to aliow
advanced users direct access to extension ROMs and Memory cards.

B AR ORR AR ROR AR ORAOAOANAOAAARAOA AN OA N OAARARORNROAR RN RRERNR RN EAERENEREOAENENERENENEVELENENELELE

J&l’d’}

Jdddddddd.

AR AR AR A AN A R AR A AR AR A AR AR

Fn 26H Get/Set Power conirol 21Nl CASRIES
Farameters:
AH 26H

AL=0 Get Power control state
AL=1 Set Power control state

If AL=1

DL - New stiate
Returns:

It AL=0

DL Current state

it AL=1

DL QOld state

Note:

CL=0 Normal Power-down on low battery
DL=1 Prevent Power-down but display warning
DL=2 Prevent Power-down with no warning

This is used to prevent the Portfolio from powering down on a low battery.
It is not recommended for use except for conditions in which a power down
might be critical to an application or peripheral.

SR

Fn 28H Get/Set Text/Keyboard language

FParameters:

AH 28H

AlL=0 Get Languages

AlL=1 Set Languages

AL=3 Language table pointers

If Al=1
DX New languages

Returns:

Note:

it AL=0
DX Current languages

i AL=1
DX Old languages

If AL=3 '
ES:CX Keyhoard table pointer
ES:DX Language table pointer

DH ~ Textlanguage~ *
DL - Keyboard language

Both DH and DL will be 0, 1 or 2, corresponding to the language in the
ROM.

if bit 7 of the language/keyboard code is set, then it remains unchanged.

The tables consist of a count byte, followed by the language identification
codes for the resident languages. These are as follows:

ENGLISH
FRENCH
GERMAN
SPANISH
ITALIAN
SWEDISH
DANISH

NP WN = O

RAOOQAOA QN OAOAGOAGORGOANAONANAGOROGOGHAOANRAOAOAGOOAGONO RO ERE AR I @) EL R Ity

Fn 2CH Get BIOS version number

Farameters:
AH 2CH
Returns:

DS:BX Address of BIOS version number

Note: The version number consists of a Major and Minor version number, followed
by a'$ terminator. A typical example is: '1.050%’

Fn 2DH Turn system oft 2.1.10, 25, 3.8
Parameters:

AH 2DH
Returns:

None

Note: This is similar to typing OFF at the command line.

Fn 2EH Enable/Disable system status line

Parameters:
AH 2EH
AL=0H Disable status line
AL=1H Enable status line
DH Row number

DL Column number
Returns:

Naone

Note: This is similar to invoking the status line using the LOCK key.

43JdddddddIdIdIdddddddIIdIIIddddISdddIIdSIdIddddddddddddd

Fn 30H File Transfer services

Farameters:
AH 30H _
Al 0 Transmit block
1 Receive block
2 Open ports
-3 Close ports
4 Wait 500mS
DS:DX Start of Data buffer
it AL=0
CX Bytes to Send
i AL=1
CX Maximum buifer size
Returns:
it AL=1
CX Byles Received
DL Error Code
0 No error
1 Buffer size too small
2 Timeout on transmission’
3 Checksum failure
4 nvalid sub-service
5 Peripheral not installed

Note: This is used by the File Transfer utility built into System Setup.

3.3.2 Disk services

The Portfolio Credit Card Memor

level by Int 13H.

There are six standard diskette sub-sérvices.

4.2

y (CCM)/Disk services are provided at the BIOS

plus one special service. These are as

below:
OH Heset CCM/Disk system
1H Get CCM/Disk status
2H Read CCM/Disk sectors
3H Write CCM/Disk sectors
4H Verify CCM/Disk sectors
5H Format CCM/Disk track
83H Write CCM/Disk boot sector

3-20

BRAAAAGAAGAAOAGOOAOOAAGORGOABRGARAOAGAGROG OO AROLOAGGARAOGRORRAAR AN E

JJdddddddddddddddddddddddddddddddddddddd

F

FYrrrt1rrEEF

bad b bbb b sl

'n'tunnn-.n

lh.

T YR E

Services 0 to 4 are similar to standard IBM PC BIOS disk services. They can access

the three internally supported disk drives A, B and C (referred to as drives 0, 1 and
2 respectively). 1

Int 13H uses the BIOS Parameter Block (BPB) on the Boot sector (first sector) of
the drive to determine the drive characteristics. During formatting. it is necessary to

use a Format BPB, which is supported by service 83H. This service is used instead
of service SH to format the first track of a CCM/Disk.

The parameters to service 5 are unlike those on a normal PC as detailed below:

int 13H Fn 5H
Parameters:

AH 5H

DL Drive number

CH Side/Head
CH Track number
Returns:

Ck=1 Error code in AH

Note: Writes defined byte onto one track of CCM. Byte is
specified in the Disk base table.

The Disk base table is similar to that used by an IBM PC. The table for both CCMs
is pointed to by interrupt 1EH, and the table tor the internal disk is pointed to by
interrupt 41H. The format of both disk base tables is as below:

Offset 03H Bytes per sector code (0=80H, 1=1001, 2=200H)
Oifset 0AH Format data bytes (Normaily FBH)

During formatting using Interrupt 61H (see section 3.3.1), the CCM/Disk sector size
is dynamically set according to the disk size. See bejow:

Disk size Sector size

0 to <=32 Kbytes 8GH/128 bytes per sector
>32 1o <=64 Kbytes 100H/256 bytes per sector
>64 Khytes 200H/512 bytes per sector

This ensures that a small disk size allows a reasonable number of sectors. Since

Pottfolic DOS allocates one sector per data cluster, this allows the same number of
small data tiles on a 32K CCM as a 128K CCM.

There are various Int 61H services that provide extended disk services (see section
3.3.1.): : - :

Int61H Fn 7H Format a CCM .

Int 61H Fn 8.H. Get the siie of the Intern‘albis’k :
Nt 61H Fn 9H | Format the Internal disk e

it 61H Fn OBH - Determine if a valid CCM is present.

Note: A CCM may also contain a BIOS extension which does not affect the

operation of the CCM, but can maodify the Operating system or Power-down/Power-
up sequence. (See section 3.5.)

3-22

EAERARAQAAARRARAGAAAARAARANAAEAAGRAEARRA R TR E AR ER AR R R RRR R R R (L L)

I3dssasvsasssasadasnsnsnsnsannsnsnssssnsnsnnndndnsnsnsnanan;

3.4 Ditferences Between Portfolio DOS and MS-DOS

For the purposes of this manual, Portfolio DOS is defined as the program which
communicates between the Command processor or User application, and the BIOS.
it does NOT include the Command processar. (See recommended hooks in section
1 for more information on the standard MS/PC-DOS)

There are a few differences between Portfolio DOS and MS-DOS. These are mainly
enhancements to Portfolio DOS 2.11 to make it more DOS 3 XX compatible:

int 21H Fn 37H Get/Set Country
Portiolio DOS is DOS 3.XX compatible

int 21H Fn 4BH Execute program

As well as providing standard EXEC services it also allows a program to be
RUN directly off a CCM (section 3.6.3)

Int 28H Keyboard busy

Not supported. This would normally be cailed during console 1O polling,
however Portfolio DOS does not poll the console, but actually watts for a
key using Int 16H Fn OH. (See section 3.8 on power management.)

Int 2AH Internal MS-DOS function not fully supported

3-23

3.5 Device Drivers and Peripheral Software

3.5 1 Device Drivers

Device drivers are used by DOS to communicate with the BIOS. They provide a
standard interface which isolates the DOS from the device specific BIOS. The
Portfolio has the following resident device drivers in ROM:

CON, CLOCKS, PRN, LPT1, AUX, COM1 and Disk driver

CON performs all Consoie 10

PRN/LPT1 perform all Paralle! (Printer) 1O
AUX/ICOM perform ali Serial IO

CLOCKS$ special driver to access the BIOS Clock

These are all character devices that process strings of characters one character at a
time. They are all identified by their names.

The Disk device driver is a Block device which requires all 1O to be done in blocks. It
addresses all the normal Portfolio disk drives (A, B and C). it has no name.

Itis possibie to replace these resident device drivers (and add new ones) by the use
of installable device drivers. These may be loaded by DOS using the 'DEVICE='
command in CONFIG.SYS. If a character device is loaded that has the same name
as one of the above device drivers, then it replaces it. This mechanism is used by

programs such as ANSLSYS which is actually a CONsole device driver with added
features.

[f a Block device driver is added, it supplements the existing Disk device driver., An
example of this is the Virtual disk driver VDISK.SYS, which would add drive D:.

The structure of an installable Bevice driver is compatible with any MS-DOS 2.11
device driver.

3-24

R Bk A EE ATE A TE AT AT AT A sl ave aBt et i ol Al it ot B R A gt st am sl am a1 agn s at IE At 4T 2B vt 2l s g aB s e E a2l sz B 2B s Tia B a bz a2 ad B e s e B

Jddddddddddddd

ARy

innnnnvdnsnrrndnsnnsnsrnsnnnnsnrnnsnndnnsns

3.5.2 Peripheral Design

There is a special design issue associated with Portfolio peripherals, due-to the
Portiolio auto power-down power conservation feature. This means that most

peripheral devices will need to be re-initialized on power-up. {See Appendix C for
more information.)

There are twe methods provided to fulfill this requirement:

DintetH Fn 1CH

This service stores a list of |O addresses and associated data values, which will be
output on a power-up. If all initialization specific {O writes are made via this service,
then they will automatically be repeated on all pOWer-up seguences.

A typical use for this service might be to restore an interrupt number in an interrupt
driven serial peripheral,

2) Use a ROM extension. This would generaily be required when the sequence of

operations during power-up could not be supported by the Int 61H service. This will
require the peripheral to contain an extension ROM. (See 3.5.3.)

There are two exceptions to the above. The serial port parameters are read during
the power-down sequence and correctly re-programmed on the subsequent power-
up. The Parallef port is also initialized on Power up.

Each peripheral is identified to the Portiolio by its Peripheral ID code (PID)} (see

section 2.7). This is actually a hardware 10 jocation on the peripheral which may be
read using Int B1H Fn 1AH.

The other software issue associated with custom peripheral design concerns the
Serial or Parallel peripherals. if the custom peripheral wants to use existing BIOS
services then they must identify themselves as being hardware compatible:

Int 61H Frn 1BH configures the BIOS to recognize a peripheral to be Serial or
Parallel compatible.

<l Zs

3.5.3 ROM Extensions

ROM extensions are sections of code that can be executed at various stages during
the BOOT sequence, and during Power Up and Power Down. They may be on a

Credit Card Mernory (CCM) of on a extension ROM on a peripheral. A typical use of
such an extension is to modify the operating system or initialize cusiom peripherals.

There are three main types of extensions: A Specific BIOS extension. a Specific
DOS extension, and Common extensions:

* The Specific BIOS extension is invoked after BIOS initialization.
* The Specific DOS extension is invoked after DOS initialization.
* The Common extension is invoked before and after both BIOS and DOS

initialization, before Command processor initialization and during Power-Down and
Power-Up,

The ROM extensions are searched for on Drive A, then the exiension ROM and

then Drive B. If a valid extension is found and executed, then the search for that
particular type of extension is terminated.

The format of a ROM/CCM extension is as follows:

Offset Size

00H dw 7 Identification code

02+ db 7 Number of 512 byte
;blocks(unused)

03H db 5 dup (7) 'Specific BIOS/DOS exten.

40H db ‘DIP ROMIT ;OEM user text

50H db 5 dup (?2) ;Pre-bias jmp vector

55H db 5dup (?) . .Bios-ext jmp vector

5AH db 5 dup (7) Fre-dos jmp vector

5fH db S dup (7) ;Dos-ext jmp vector

64H db 5 dup (7) .Post-dos jmp vector

63H db 5 dup (?) :FPower-Down jmp vector

6eH db 5 dup (?) Power-Up jmp vector

AA55H 'Specific BIOS extension

S5AAH :Specific DOS extension

5555H :Common extensions
3-26

o= T

r o

o . T

’Eqqi-l‘l‘_l‘l'l‘l‘l‘1‘1‘1‘1‘1‘\“l‘\‘\.\l\‘\tll\“ll\l\‘\l‘i AW AR a B e AT i AT ST 2 ST AT T a B

ARARARAARAAAAARR

IAAAA AR AP ARA AR AP AR PP

¢

ARRARAAA AR A AR AR A A A 2

Thus, if the word at Offset 0 is AAS5H. then after BIOS initialization a FAR CALL will
be made to Offset 3. The 5 bytes following this offset alfow for a short/normalffar
jump to the extension code. If the word was S5AAH, the call would be made after
DOS initialization. If the word is 5555H, then all the common extensions would be
called at the appropriate times.

Note: All the jump vectors must be set up to a suitable return when using a
common extension, even if they are not used.

All ROM extensions must preserve the processor registers. Extreme care must be
taken when using extensions, especially those which are invoked half way through
the boot sequence, as these may adversely affect the operation of the Portiolio. The
Pre-BIOS exiension is called almost immediately on jumping from the Reset vector.
and so has no stack set up. It must return via a FAR JUMP to GFFFE:OH. All the
other extensions must return via a FAR RET. It is recommended that the Post-DOS
extension is used in preference to those preceding it.

The OEM user fext field at Offset 40H is to allow an OFEM to Identify the ROM.

See Appendix C for examples of using an Extension ROM.

3-27

3.6 Memory Cards

3.6.1 Format

Each credit card memory (CCM) must be formatted before use, this program
creates a format analogous with a standard floppy disk format.

All formatted memory .cards .coniain only 1 sector per cluster as opposed to the 2 or
more found in larger systems. (See section 3.3.2 for more details.)

The Atari Portfolic BIOS has been written to handle future paged Credit Card
Memories (CCM). The BIOS assumes that the page register; is one byte located at
oftset 10 (OAH) within the Boot sector (First sector) of the Memory card. For this
reason DO NOT use this memory location in programs. Pl ! .

3.6.2 Autoboot Mechanism

The Portfolio has the ability to invoke AUTOEXEC.BAT from drives other than drive

o . 3

If a memory card is in drive A: or B: and AUTOEXEC.BAT file exists, it is executed

in preference to autoexec on C:. B: will have priority over A if an AUTOEXEC.BAT
exists on both A: and B:.

If it is required that the AUTOEXEC.BAT on drive C: is always executed, terminate
the batch file on drive A: with the command:

C:AUTOEXEC

The CONFIG.SYS file is always loaded from drive C- and cannot be overridden

3.6.3 Run

A RUN file is a specially written program that can be directly executed from a Credit
Card Memory (CCM) without having to be loaded into the Transient Program Area

(TPA). An obvious advantage of this method of execution is that it minimizes system
memory usage. '

A RUN file can be executed from the Command processor by typing RUN

<filename>, or by invoking Int 21H Fry 4B8H at the DOS level as for a normal
program, but with AL set to 80H.

3-28

LM(lﬂ(l!lﬂé'lllél A AR AR AR AR AR AR A AR AR Ak AR AR A AR A A A AR A AR AN AR AR AR IR AR AN AR AR Ak AR AR AR SR A AR AR IR AR A AR SN e

SS8000000bdBbBbbdsbddbbdsbddbddbodstdtttinddttitddtdsba

There are several requirements for the programs which can use the RUN command:

* The program needs to be specially written to be used with the RUN cofmmand.

* The program needs to be on drive A: or drive B' and it needs io occupy
conseculive clusters on the disk. This situation cannot be guaranteed if a file is
simply copied to the drive.

* The file needs to have a .RUN extension.

Writing .RUN Programs

Atmost all standard programs assume either that their data is in system RAM, or that

they can store data in their code segment. Although a .RUN file is similar to a .COM
file, care should be taken when dealing with data.

The initialization code of the .RUN program has to perform the following {these
points are illustrated in Appendix A):

* Reduce the systern memory usage down to the minimum requirement. There must
be at least 10h paragraphs, i.e. the size of the PSP.

* Allocate data and stack using DOS interrupt 21h fn 48h and sef ss:sp to point to
this block.

* Copy all initialized variable data from the memory card to the allocated data block
in system RAM.

* The program can then perform most functions it wishes to, including any DOS
calls. The program MUST terminate with DOS mnterrupt 21h function 4Ch
"terminate process”,

* The program does not need to copy the non-variable {constant) data from the
ROM card into RAM before using it. This data can be used directly from the card.
This means prompis or text messages need not take up any RAM.

The built-in applications can be invoked while a program is being RUN using the hot
Keys as usual.

If during execution of a RUN file the Credit Card Memory (CCM) is removed from
the drive, the next instruction to be executed on the card will be interrupted by an
error handler, This displays the error message: 'ERROR: Card Access’ and
terminates the process. A RUN file may not EXEC another file from within itself.

Appendix A prbvides an example of a RUN program which illustrates how to
program a typical RUN program.

Y

3.7 Screen Handling

The Portfolio BIOS supports two main Video modes, Text and Graphics. The BIOS
Video Interrupt 10H may be used {o set the screen mode:

Mode Type PC Resolulion Portiolio
Mode 7 Text {80,25) <80,25>
Mode 8 Graphics (160,200} <240,84>
Mode 9 Graphics (320,200) <240.64>
Mode A Graphics (640,200) <240,64>

As can been seen, the Portfolio interpretations of these modes is fairly simple.

The Text modes are actuaily viewed using a 40x8 window. There are 3 sub-modes:
Static PC, 40x8 and Tracked. il ']

Static PC mode is where the physical screen area acts as a window onto the larger

80x25 text screen. The window may be moved using the Alt-Cursor keys, or int 61H
Fn 1. L : '

40x8 mode actually sets the logical screen size to 40 columns by 8 rows. This mode
1$ intended for use by software writien specifically for the Portiolio. such as’'the the
Command processor and the internal applications.

Tracked mode is similar to static mode, except that the Screen window positions
itself at the cursor. ' '

This mode can be set using Int 61H Fn 0FH.
The Video RAM (VRAM) for the text screen is at segment 0BOOOH therefore it is
possibie to write directly to the Video RAM. but any screen refreshing must be

invoked by the application. There is only one text page.

There are other Int 61H Video services:

Int 61H Fn CDH Get the logical and physical screen sizes
Int 614 Fn OFH Set cursor size :
Int61H Fn 104 Sel the virtual screen window origin
on the 80 by 25 screen
tnt 61H Fn 12H Force a screen refresh

In Graphics mode, the Graphics screen has a 240 by 64 pixel resolution and can be
written to or read from using BIOS pixel read/write Int 10H Fn OCH or Fn ODH

respectively. The Atari Portfolio has three cursor modes: Block, Underline and Off. If
the cursor size is set in the BIOS then either Block or underline mode will be set up.

3-30

B R R R R R R R R SR A IR R R R E R R R AT R IR R R O RO R AR R AR AR R A AR AR AR R AR AR AR AR R AR AR AR AR AR A AR AR AR AR AN AR ORE 2

333350000000000008000000000d0sBsdd0dBddvvtutddddddddddae

3.8 Power Management

The Portfolio is designed to minimize power consurmnption and hence maximize

baitery life. Thig is reflected in the hardware design, but is enhanced by various
software features.

The main power wasting operation in most computers is waiting for user entry at the
keyboard. Once the Portfolic Keyboard BIOS Getkey ready service (Int 16H Fn 0)
has detected keyboard inactivity, it will start to decrement a timeout counter. On

timeout, the Portfolio will enter its power-down sequence. Once powered-down, any
hardware interrupt will initiate a power-up sequence.

This imeout is dependent on whether the machine is set to fast or slow timer ticks
(Int 81H Fn 1FH), but is always between 128 and 256 seconds.

Itis important that ail keyboard input is done via a DOS or BIOS keyboard service
that waits for a key press. Polling the keyboard continuously will quickly wear out the
batteries. This will be obvious as the Portfolio wil never power down.

Another power wasting operation is refreshing the LCD controller from the Video
RAM. If an application writes directly to the Video RAM, then it must be refreshed at
appropriate intervals using Int 81H Fn 12H. It is possible to force a screen refresh
on a keypress or on a timer-tick using Int 81H Fn 1FH. Many applications which run
on the Portfolio, but are designed for the IBM PC require this refresh on keys as
they assume automatic screen refreshing. Refresh on timer ticks is dependent on
the tick speed. This can be set using Int 61H Fn 1EH.

Note: The timer tick {(int 8H and Int 1CH} is not the same as the IBM PC timer tick

which occurs 18.2 times a second. It is either generated once every 128 seconds, or
onhce per second.

As a general rule, an applicatidn should avoid refreshing the screen except where
necessary. With refresh on both keys and timer ticks, and with timer ticks set to fast
(i.e. 1 tick per second), the processor spends a lot of its time refreshing the screen.

Generaling sounds using Sound generation, Melody tone generation or Tone

dialling {Int 81H Fn 15H, 16H or 174 respectively} can draw a high current from the
Fortfolio batteries.

The Alarm will timeout after about 15 seconds to prevent the batteries from being
averly strained.

3-31

All peripherals will add to the power consumption, unless they have their own power

source. {tis recommended that an external power supply is used wherever practical
when using peripherals. |

During Disk access, Tone generation, Timer tick and on each press of the return
key. the Portfolio checks to see if its batteries are running fow. If a low battery is
defected, the Portiolio-automatically powers down after displaying a low baitery

message. On power up, it will display the same message to indicate to a user the
reason why it powered down.

Itis possible to prevent the Portfolio from powering down using Int 81H Fn 26H. This
service must ONLY be used ii absolutely necessary, because this may force the

Portiolio to operate outside its electrical specification with possible damage 1o the
hardware.

3-32

AANANAGAAAGAGOAOAAGROR RO R R R R R ORI AR OR R RO RO AR A RAR R IR AR AR E RO A RS RO RS

RARAAAARRAAAAR AR AR AR AR AR A AR A AR A AAAR AR A A AAAARRA R

i

ipnnnrenn

Aale

3.9 Special File Formats

3.9.1 Diary saved file format

The built in diary saves its data in a standard ASCIl fite format. To eliminate different

daie farmats for different countries, the Biary stores the information in English
format.

Certain information, such as repeat entries and alarm information is saved along
with the diary entries.

The following is an example diary file:

6/07/89
14:14 Technical reference
20:00 Go home

if an entry is a repeating entry, the time is preceded by a code letter indicating the

repeat period. The following tabte lists the code letters and their assoclated repeat
periods:

d Daily

w Weekly

n Non weekend, i.e. Mon-Fri
m Monthly

y Yearly

If an alarm is associated with an entry, the '@’ symbol is placed on the line before
the time.

It an entry has an alarm and itis a repeating entry, the repeat symhol preceeds the
alarm symbol.

For example:
6/07/89
CY 20:00 Go heme
7107189

d. 14:48 Hello therel
w® 18:10 Goto tennis

The first entry is a non repeating entry with an alarm. The second is a daily repeat
and the third is a weekly repeat which will sound the Portiolio’s alarm.

The diary sorts the entries chronologically when it loads any given file.

3.9.2 System File Formais

There are three files used by the system which obey a standard file format. These
are:

Clipboard (C\S YSTEM\CLIPBORD.DAT)
Undelete (C:\SYSTEM\UNDELETE‘DAT)
Permanent data (C:\SYSTEM\F’EF{MDATA.DAT)

All three files are loaded into RAM when the applications are invoked. Operations
affecting any of the information stored in these files only change the RAM copy. All

three files are written out when the user quits all the applications, i.e. presses
<ESC> at the top leve! menu.

3.9.2.1 CLIPBORD.DAT

This is the file which the applicati'ons use as the clipboard. it is a single block of data
ending with a zero byte (00R). Carriage returns are stored as ODh without the trailing

0Ah Line feed. The maximum size of the clipboard is 8K characters. This must
include the 0 terminator.

If the file does not contain a 00K termination byte, then the file is not loaded into the
clipboard. Similarly, if the file is greater than the maximum number of aliowed
characters, it isn't loaded. In both cases when the file is not loaded, it will be
overwritten with a fresh file upon exit from the application.

tt the clipboard has the normal text format of ODH,0AR the file will only foad correctly
into the Editor and the Diary.

3.9.2.2 UNDELETE.DAT

The undelete file is used to store all the characters or blocks of data deleted from ail
the applications. It is made up of a number of "blocks” of data. Each block

fepresents a group of characters defeted with one command. The format of a block
is as follows:

<DATA> <00h> <DIR>

The <DATA> is the charactér or characters which are deleted. If a block of data is
deleted containing carriage returns, these are stored as <0Dh>, not <ODh><0AR>.

The 00h byte is used to determine the length of the deleted block.

3-34

d ' ' ; ARERERER
A UGN TN T I L T N GG I T T T T I T T T I T T T I T T I T I T I I Y YY™Y

AP AR AR

r

ARRPPAARRAAAR AAAP

\AARNARA?

irtrlrtrlrlr(nnnrlrlrlrir!rtr(r (rlnn“rlrﬁnrlrl

|

The <DIR> is a one byle code indicating in which direction the deletion was made_ |
the data was deleted to the left e using the BACKSPACE key. then this byte will

contain <00h>. If the data was deleted from the right, i.e. using , this byte will
be <01h>

The maximum number of characters which the undeletion file can contain is 2000, i

the file contains more than this number of bytes, then it will be ignored and replaced
with a new file upon exiting from the application.

If the UNDELETE.DAT file doesn't have the correct format, the efiects are
unpredictable. It is likely the data in the file will be Inaccessahle.

3.9.2.3 PERMDATA.DAT

The format of the system data file is as follows:

Byte(s) Function
in Hex
0] Non zero: undelete buifer enabled.
1 Nen zero: undelete buf is saved on exit
2 Non zero: clipboard is enabled.
3 Non zero: clipboard is saved on exit
4.8 Reserved,

Worksheet:
7 Nen zero: frame on upon entry,
8.58 Drive/PathiName of last used file.
57 0: Auioload iasl spreadsheet, Gffh don't
58..5b 3 character 0 terminated currency string.
5¢ Initial decimal point, *.’(2eh) or ',’(2dh)
5d Printer default paper width.
Se..60 Reserved.

Diary:
61 Non zero: frame on upon eniry.
62..b0 Drive/Path/Name of last used file.
bi.b4 Reserved,

Editor;
b5 Non zero: frame on upon entry.
b6..104 Drive/PalhiNamie of lasl used file.
105..106 Top line on screen O is first line in file
107..108 Cutrent cursor fine no, 0 is first line.
108..10a Cursor: number of bytes into current fine,
10b Right margin.
10c Non zero: word wrap on.
b0d..10e Reserved.

3-35

104
110..15e
15f..168
169. 16t
170
171.. 1bf
1c0
fcl. 1c2
1c3..1ca
1cb..1d5
1d6..1e0
lel..1eb
lec.. 1{6
117
118
119
1fa
1fb
ic..24a
24b.24e
24f
250
251
252, .2d1
2d2
2d3
2d4
2d5
2d6
2d7
2d8
2d9

Address book:

Non zero: frame on upon entry.
Drive/Path/Name of ast used file.
Dial prefix in ASCHl; zero terminated.
Reserved.

Calculator:

Non zero: frame on upon entry.

Reserved.

M1 sign: Bit 7 set for negative number.
M1 exp: signed word, 0:1.000<=mant<2.000
M1 mantissa: '

Memory 2.

Memory 3.

Memory 4.

Memory 5.

Format: 0-General, 1-Fixed, 2-Sqi., 3-Eng.
Number of decimal places

Separators: 0 - none, non-zerc-separators
Decimal point: 0 -°, non-zero *,’

Setup:

Reserved,

Drive/Path/Name of printer file destination
Reserved,

Printer dest, O:Parallel, :Serial, 2:file.
Lines per printer page.

Printer selup code length.

Selup codes, ASCI chars, i.e. ESC=1Bh.

End of line code 0 <CR>
1 <CR><tE>
2 <CR><l F><|F>

Number of top paper margin lines.
Bottom paper margin lines.

Left paper margin character indent.
Baud rate 110

150

300

600

1200
2400
4800
9690
None
Odd
Even

7 bits.

8 bits.

1 stop bit.
2 stop bits,

Parity

Data bits

Siop bits

— D W N W= DB =

The PERMDATA.DAT file currently contains 730 bytes.

3-36

LA RE A RO R RO R AR R AR O N R R LR R AR O O AR R A N R R AR AR AR ORI R AR RO R AR AN L ANV LS E R\ AL O EA L\ O AL

AR AR AR AR AR AR AR R AR AR AR AR AR AR AR A AR AR R AR

| |
J

¥

ldddaddddsddddddns
'1||..I;1Ir|h}|.h.!|a. nonononnny

3.10 IBM PC Development syslem

The Portiolic contains a few system specific extended BIOS functions which are
accessed using interrupt B1H. 1f you want to emulate these functions when
developing programs on a standard IBM PC then this is possible by running the
program {81.EXE on a PC. This program will remain Terminate and Stay Resident
(TSR) and hence enable you easily develop custom programs. To ensure upward

compatibility of your programs, if you plan to use an
that you use 161 Fn OH first, (See section 3.3.1.)

int 61H Services supported by IBM hosted version:

Fn No

OH

7H

8H

9

BEH

DH

EH

FH

10H
TiH
12H
16H
16H
i7H
184
19H
TAH
iBH
1CH
1EH
1FH
20K
24H
26H
28H
2CH
2DH
zEH
30K

Key:

Function description

Service Initialization

Format Credit Card Memory
Get size of Internal disk
Format Internal disk
Determine i{ CCM present
Get/Set Screen size
GetfSet Screen mode
Get/Set Cursor mode
GetlSet virfual screen position
Move virtual screen posilion
Screen refresh

Sound generation

Melcdy tone

Dial number

Mute siates

Get Serial port paramelers
Get Peripheral ID byle

Sel Peripheral ID byte
Presel Peripheral |0 data
Get/Set Clock tick speed
Get-key/Tick Screen refresh
Disable revecioring of Int 9+
Gel/Set ROM space state
Gel/Set Power State
Get/Set Language

Get BIOS version number
Turn system off
Enable/Disable status line
File fransfer via smart cable

v Service supporied
X Service not supporied
Service parlly supported

3-37

y 1861 functions then make sure

Supported

B T T T

Jdde

€

4 PERIPHERALS

<

Teelc el

4.1.1

Idde

Standard:
Line Voltages:
Current Loop:
Cormnector:

€

s

ARA

Connactor Pin ouf:

APARARRAARR

Interface IC:

Base Address of 82c50:
Interrupt Support:
Divisor Clock:

JJddd

4.1.2 10 Registers

Jddddde

|

thus:

IO Address
XXXX+0

XXXX+1
XXXX+2
XXXX+3
XAXX+4
XXXX+5
XXXX+6
XXKX+T

A ARARF AR AR AR RS

|

4.1 Portfolio Serial Communications
Hardware Specification

EIA RS232C compalible

+{- Qv

Not Supported

8 Pin D-Shell Plug (AT compalible}

82C50A

Pin Name

1 cD Carrier Detect

2 A Receive Data

3 TD | Transmit Data

4 DTR Data Terminat Ready
5 GND Signal Ground

53 DSR Daia Set Ready

7 RTS Request To Send

8 CTS Clear To Send

9 Rl Ring Indicator

Stored at Memory Location 400h
Yes (see below)
1.8432 MHz

R

R/W
RiW
RIW
Riw
R/W
Riw
R/wW

Since the same computer interface (with the exceplion of interrupt handling) is used
on the Porifolio as on the 1IBM PC/AT, the 1O registers have the same function. The
base address for the serial port may be found by reading memory location 400h in
the BIOS data area. [f the value at this address is XXXXh, then the |0 registers are

Register of 82c50A

RBR
THR
IER
IR
LCR
MCR
LSR
MSR
SCR

4-1

Receiver Buffer Register
Transmitler Buffer Register
Interrupt Enable Register
Interrupt {dentification

Line Control Register
Modem Control Register
Line Status Register
Modem Status Register
Scratch Register

4 1.3 Interrupt Support

Since the Portfolio does not contain an 8258 compatible Peripheral Interrupt
Controller, interrupts are handled in a different way than on an IBM PC/AT

The serial port has register called the Serial interrupt Vector Register {SIVR). An
eight bit number can be written to this register. This number is the interrupt number
thal is to be used with the seriai pori. For example, writing 10 to SIVR will cause a
call to the double word poinier heid at memory address 10*4.

SIVR is at /0 location 807Fh and is write only. [t should be set up before 82c50A
interrupts are enabled.

When an interrupt is generated by the 82c¢50A, it is passed on to the CPU. If no

other interrupts are pending then the CPU will read the contents of SIVR and
service that interrupt number.

inferrupis are acknowledged by accessing the 82¢c50A and reading IIR. This will

allow the operation required to service and acknowledge the interrupt to be
determined.

4.1.4 Other Usefu} Information

To determine whether a serial portis instalied, it is recommended that use is made
of BIOS Interrupt 11h - Get Equipment List.

Since the Portfolic wili attempt to poewer down while waiting for a key stroke (INT
16h service 00h), it is recommended that terminal emulation software polls the
keyboard until a key is waiting in the buffer (INT 16 service 01h).

To setup SIVR itis recommended that INT 61h service 1Ch is used:

AH = 1Ch
AL =0 set up 1O address
BH=5 10 table entry 5

BL = Byte to write
DX = |Q address

Use of this function will ensure that SIVR is always set up correctly (unless table
entry 5 is reused for a different address).

in order to maintain future compatibifity it is recommended that on exit from the
program, the table entry used above have iis address set to zero. This should be
followed by a write of 2Ah 1o I/O BO7Fh.

4-2

‘Ehﬁuluubuuuvuvvvvvvvvvvvuvuuuwuvuuuuuuwuuuunuuuuuuuuuuuuuj
b i

Jdddddddddddel

Jue

JJ

L

J333300dddddddddaddddiddddddds

¢

mew

4.2 Smart Parallel Interface
Fite Transtfer Protocol Description

The IBM PC and many compatibles have uni-directional centronics parallel ports. In
order to allow an inexpensive but useful peripheral it was decided that the Portiolio
paraliel centronics part would allow programs to be sent to and from {BM PCs as
well as to a printer. This is accomplished by using a synchronous serial transfer
protocol. Status lines on the iIBM PC which can be accessed through the BIOS are
used as inputs on the IBM. The Portialio parallel port is fufly bi-directional.

The file transfer BiOS should be used with the following considerations (see section
3.3.1): '

* Before sending or receiving the ports should be opened.
* Sending a block expects the other end to be receiving a block, and visa versa.
* A timeout will oceur if there is no answer within 500mS.

* Sending a block will automaticaily transfer the length of the block. The receiver will
return an error if the buffer is too small.

* On any failure, wait 500mS (o allow the other end to timeout) and attempt to re-
transmit/receive the block.

* A error at one end will normally cause an error at the other, so block order should
not be lost.

* A checksum will be sent with each block to provide simple error detection.

* At the end of the transfer the ports should be closed.

4.3 IBM PC Card Drive

The IBM PC card drive consists ot an expansion bus card and plastlc box with a
cable. The expansion card can be used in a IBMPC/AT or compatible. The cable is
used {o connect the card to the plastic box. There:is a slat in the front of the box that
allows the insertion of a Credit-card memory, as used on the Portfolio.

By running the approprlate block dewce dnver software the card drwe can access
the card in the same way as a normal disk.

The card uses a block of four. le! locations. These are locaied at a start address

indicated by optional finks on the board. When these are changed from the default
setting, the device drive driver must be told of the change in the CONFIG.SYS file.

:
A4

AR A AR RO ARAGNAGAAGAGANANAGAGAGAGAGAANAAGAARAGAGRAAGAGOAGOAOAOMMMAAMAMANED

3358d333III3IIIIIIITIIIIIITSIIIITIIIIIIIITIITITITII I

-l
'-115”

o

4.4 EPROM Writer Adaptor Boards

PROM programming adaptors are available which allow PROM (OTP) memary
cards to be programmed using a standard PROM programmer. The adaptors
convert the PROM card to the same outline as a standard DIL PROM. Use model
HPC-501 to program 512 KRit cards and model HPC-502 for 1 Mbit cards.

When programming the PROM card the PROM programmer should be set up asa
Fujitsu PROM. If however, Fujitsu settings are not available, scme of the other

12.5V PROM Pregramming specifications will also work. The ideal programming
specification is:

VPP 12.5V

64 KByte use 27C512 (Ideally Fujitsu CMOS)
128 KByte use 27C1001 (Ideally NEC CMOS)

Once the correct ROM type has been chos

en use the following procedure to make a
copy of a RAM card:

i) Select a PROM card with the same capacity as the RAM card and use the correct
adaptor for the card capacity

i} Place adaptor in PROM socket of the programmer, ensure that it is inserted the
correct way.

iii) Place RAM card in to adaptor and LOAD the contents in to the programmer
using the relevant option.

iv) Place PROM card in to the adaptor and program as for a normal PROM chip.

WARNING:

1) DO NOT ATTEMPT TO PROGRAM THE RAM CARD

2) Some PROM programmers do not like the power being turned ON and OFF so
remove the cards before switching ON or OFF.

4-5

JOSIGIIIIITITIIIITITITL

J30ddd0dd

A

SE50000000000080080060 0

APPENDIX A: EXAMPLE .RUN PROGRAM

Section 3.6 highlights the main design issues 1o take into account when creating =
RUN program.

Included on the Portfolic Emulator Disk are the following files:

RNRN.ASM Assembler .RUN program
MAIN.C Example C RUN Program
RU_C.ASM C Header

BUILD.BAT Creates program using Turbo C tools

The above files iliustrate two programs which use the Atari Portfolio .RUN function.

RNBN is an assembler program which prints out the original calling parameters
and then three numbers.

MAIN is a program which illustrates a .RUN program written in C. RU_C ASM is
the C Header necessary for Borland's Turbo C compiler and BUILD.BAT illustrates
how to create the program using Turbo C 1ools.

Notes on interfacing "C” files to the RUN command

For "C" files, several more segments need to be declared to ensure “C" gets the

data and code in the correct positions in the .RUN file. The .COM fiie is converted
into a .RUN file by renaming.

RU_C.ASM is the header which can be used tc interface to a “'C” program. If "C”
source files are being used without any provided “C" libraries then the file RU_C

can be used as the header directly. If library code is reqguired the header will need
to be enhanced to perform the necessary library initialization.

The RU_C.ASM header works with Turbo C and can be used as a guide to
moditying other "C” headers used by different “C” compiler libraries.

Most “C” headers supplied with “C” compilers can be assembled for ditferent
memory models. The example code in RU_C.ASM needs 1o be placed in the "C”
startup header and assembled for the SMALL model.

Run Files Greater than 64K

To build a RUN file with a code size greater than 64K, it is necessary to have
more than one code segment. One way to achieve this is to build the program

A-1

using the MEDIUM memory model. In this way, the code size is only limited to the
available space on a CCM (up to 128K)

Unlike an .EXE file, which has fixups resolved at run time, a .RUN file must have
the fixups resolved before the program is committed to a ROM card. Therefore it is
necessary o resolve the fixups based upon an absolute memory address for the
file, and it must be known in advance where the file will reside on the card. If the
program is the first file on the card, its position will be calculated as follows:

Fixup Address (in paragraphs) =
COOGH + (Boot sectors + FAT sectors + Rooi D_ir sectors) * (sector size in paras)

The number of sectors used can be found by using a disk utility program (such as
Nortons Ultilities).

Example:

For a 128K card formatied with 512 bytes per sector, 1 sector for the Boot Record,

1 sector for the FAT, and 8 sectors for the Root Dir, the address (in paragraphs) of
the first file on the card will be C140H.

This value should then be used for the fixup segment address, before the program
is copied to the ROM card. ' '

Due to the mechanism used by the operating system to execute .RUN fites, the file
must have an apparent size less than 54K Therefore, after the program has been

copied to the card, the file size entry in the F]Oc’:tDir_must be set to a value less
than 64K, ; . '

Since data fixups must be resolved at fun time, it is not possible to have more than
64K of data. This means thai the HUGE memory model cannot be used.

A-2

R RO GRA R A AARAARNA AR AR QAA AR A ROE AR R AR R AR R A B E R BB R BB RO OR R R R ERERERERERE RS

!

=
i
B
i
- -
=_.. -
e
II 5t
x

2
=
T
- -
=
-
B,
=
.-
e
=
:.. -

Rataiats

A EVEYETE R AR AR RENET

lddnas

-
k i U Ll

-

SIS JJddddddy

VITLL RHRN.ASH

camment *
{c) Copyright DIP, 1989
Example .RUN program

*

DGROUP group _text, dats, cdata

STACKSIZE equ 400 ; byte in stack.

; code segment.
_text segment public byte "CODE
assume cs:_text,ds: data

org i] ; IP is 0 on entry.

. ea-**xa*i****w*****t******wwne****m************t*****w*w*x******ww******.
.
. TN main

. RUN command test routine.
i On entry, DS, SS and ES ail point to the PSP in RAN.
i CS5 is a ptr into the credit card, so may actuaily be in ROM!

i ¥When this routine is executed, the whole of RAM is allocated to the
i process,

. Parameters:
Wone

Returns:
Hone

.
. ***N*\k******'\k**i******9{***i“k*********\i’*i‘****i’**kt****&'i‘****i’***k*******:
+

rOra_main proc near
mowv bx, 10h { 10h paras to keep the PSP,
moy ah, 04ah :madify memory.
int 21k
jc rorn err - Error reducing memory.
mov bx,OFFSET rarn wend : alloc for initialtised data,
sub bx,OFFSET rarn_dstart ; uninitialised data and a
add bx,0fh ; stack.
moy cl,4
shr bx,ci v cale paras in init data area.

add bx, STACKSIZE/16

add in paras in stack.
mov ah, 48h

allocate memory.

int Z21h allocate stack and data.
Je rorn_err PO Menlory.

mov 55,ax ; set stack to point to RAM.
mov Sp.OFFSET rnrn_uend+STACKSIZE

push es I preserve PSP pointer.

nov ¢x,0FFSET rnrn dend

sub cx,0FFSET rnrn_dstart ; bytes in initialised data.

moy s1,0FFSET DGROUP:rnrn dstart ; copy from here,

push cs

pop ds : source is on memory card.

xor di,di .

mov es,ax ¢+ target is allocated RAH.

cld

rep movsh Ccopy init data from card to RAM,
pop es ; restore PSP ptr.

mov $i,5dh

mow ¢x, 11

rarn fcbl:

oy dl,es:{si] getl char from FCB built into PSP.
tne si
Mo ah,?2
o int 21h print name of first parsed FCB.
loop rorn_fecbi
o si,6dh
oW cx, 11
rorn_feb2:
Moy dl.es:[si)
inc 51
moy ah,2
int Z1h i print name of second parsed FCB.
loop rnvn_fch? i
push 58
pop ds . DS is ptr to data in RAM.
mov al,_rarn_val i get initialised data.
call rorn_disp display the value.
inc _rarn_val
MoV al, _rnrn_val i get changed data.

caltl rarn_disp display the value.

moy rorn_unin, 44

moy al,rarn_unin i get uninitialised data.
call rnrn_disp display the value.

xar al,al i return errorisvel of 0.
Jmp short rnrn_end
rrn_err:
ROy dx,OFFSET DGROUP:rnrn_mem
ptsh cs
pop ds I write directiy from ROM card!
moy ah,9 , write string.
int 2ih i tell user there was memory error.
moy al,l | terminate with error code of 1.
rorn_end: '
push ax i save errorlevel code in al.
mov ah,1 wait for a key.
int 21h
pop ax i get errorlevel code back.
mov ah, 4ch ; terminate process.
int 21h
rarn_main endp

-*********k*****k*********i*******tt*******************i**********t*****-
:
i rnrn_disp

: Display the value in AL with a trailing space.

: Parameters:
. AL Value to print, less than 100, i
Returns: F i
Nene ! | R
:w********t****i****k*********************t************a*iﬂ*************;
rarn_disp proc near
aam . . i convert to two numbers.
add ax,3030h : . convert to ASCii digits '0'..'9
push ax i save to print 2nd char.
mov dl, ah
Moy ah,? priat 1st digit.
int Z21h

A-4

¢ set a piece of uninitialised data.

|
mm‘k‘l‘l!l‘\!l*\‘lﬁfulflmmuL(l(l.mnmulmlmuuuuuuuuuununuununuuuu-]

Iddddiddddddede

LY irﬂrlri ol irl._rf.

p

333308000 ddddddddddddd I Idddddde

pop dx
mow ah, 2 print Zod digit.
int Z1h
mov dt, "
MOy ah,? [print a space.
int 21h
ret
rirn_disp endp

_text ends

v initialised and uninitialised RAM data.

; this is para since the segment will start at zero when it is copied
7 oover into RAM.

_data segment public para 'data’

rnen_dstart label byte
public _roarn_val
_rorn_val db 42
rorn_dend label byte
rarn_ustart label pyte i uninitiaiised data start.
nrn_unin db ?
rien uend label byte ; uninitialised data end.

: the stack is added on here, after initialised and wuninitialised data.
_data ends
_cdata segment public byte 'data’

¢ initialised data which doesn't get transferred to RAM.
rRrn_mem db "Out of memory$”

_cdata ends
end PhR_main

* MAIN.C
Copyright DIP Lid, 1989

RUH file 'C' interface main program.

*/

char buf{z]; /% this is BSS, unitialised. */
char *str="Hello wor]d";. /* this is _DATA, initialised, */
unsigned int _ brklvl; 7* required by Turboc 1ibrary. */

int main()
{

puts(str); ' > brinf initialised hello. */
buf%ﬂ}='!': ’x iﬁit{é]ise'uninitialised &ata. */
buf]l]=0:

puts{&buf[0]}; % print uninitialised data. */
return(C): .

vaid exit()

‘/t

Durmy exit function required for the Turboc libraries.
¥/ i

{} '

A-B

R R R L L L R R L R R L L L L L R L R R R R R L L AR AR R L AL R R LA E R

TITLE RU_C.ASH

comnent *

Copyright DIP Ltd., 1089

'C" header for creation o! .HUN {iles.

Memory usage:

; Segment and Group declarations

; code and fixed data (less than 64k),

TEXT SEGHMEWT BYTE PUBLIC 'CODE'

CTEXT ENDS

; code ends (marker segment)
TEXTEND SEGHEMT BYTE PUBLIC 'CEND'

TTEXTEND EHDS

; initialised data transferred into RAM,
DATA SEGMENT PARA PUBLIC 'DATA’

"DATA ENDS

; uninitialised data which is allocated space in RAM.

B35 SEGMENT WORD PUBLIC 'BSS’

78SS ENDS

Wosuduudddddddddddddddddddddd

TBSSEND ENDS

RlRklE

i
—
— - extrn
I, ‘
~H- STACKSIZE
=
=
-
M= TEXT SEGMENT
-
II“-:; org
- = start proc
. -
—
II":: mov
- add
IIL :: moy
T
IIL - add
.J:
-._- push
-
lIu-r- shr
Ilh_:: shr
- shr
IIL - shy
llh :: add
e
_ B
-
-3

1 32 1 1
nn

i

'!I

L

DGROUP GROUP _DATA, BSS, BSSEND
ASSUME CS:_TEXT, DS:DGROUP

_main:near

equ 128

near

dx,ds
dx, 10h
ds,dx

bx, STACKSIZE

i At the start, S5, DS and ES all point
: €S is a ptr into the memory card.

bx,offset DGROUP:edata

bx

b, 1
bx, 1
bx,1
bk, 1
bx, 11k

(

sy

; uninitialised data end (marker segment).
BSSEND SEGMENT BYTE PUBLIC 'STACK'

dgroup is all data segments.

; main 'C° routine.

; stack size in hytes.

to the program segment prefix.

ip is zero on entry.

near is irrelevant, use fn 4¢ to
terminate,

; ensure DS:0 is ptr to 1st data byte.

: bx has bytes of reqd RAM.

; this will be stack ptr.

10h for PSP, 1 for rounding.

ahort:

start

_TEXT

_TEXTEND

etext

mov
int
Jic

pop
mow
mov
oy

push
pop

push
pop

Mmov
add
and

Xor

mow
inc
shr

cld
rep

nush
pop

mov
moy
sub
xor
rep

caltl
mov

int

mov
int
endp

ENDS

ah, 4ah
Z21h
abort,

bx

ax,ds
55, ax
sp, bx

ds
es

Cs
ds

reduce RaH 1o required RAM.
can't reduce.

get caic'd p back.

stack is in RAM,

target”ig allocated RAH after pse.

source is memory card.

si, offset _TEXT:etext | get ptr to last byte in code.

si, OFh
si. GFFFOh

di,di

round up to lst byte in data.

: data is para aligned on the card.

; d5:51 is ptr to start of init data.
put data at 0 offs into alloc'd RAM.
es:di is ptr to alloc'd RAM target.

¢x, offset DGROUP:bdata : get bytes in initialised data.

cx
cx,1
MOVSW

es
ds

round up: ensure last byte is copied.

copy init data from memory card.

DS back fo ptr to RAM.

di,offset DGROUP:bdata { ptr.te where:uninit data goes in RAM,
cx,offset DGROUP:edata | ptr to end of all data. - ’

cx,di
al,al
stosh

_main
ah, 4ch
21h

ax,4c01h
21h

. calc bytes in BSS.
: clear to zero.

invoke program.

; terminate with main's return code.

i abort with error.

SEGMENT BYTE PUBLIC 'CEND'

1abel

_VEXTEND . ENDS

_DATA

_errno
“DATA

855
bdata
BSS

_BSSEHD
edata
_BSSEKRD

SEGHENT
public
dw
ENDS .

SEGMENT
lahei
ENDS

SEGMENT

tabel
ENDS

byte

errno

byte

hyte

start

;Last hyte of text segment

R R R R R RO R R RO RO R ERAR N R R CRE R R E RO EOR R OA RO AR ERR RO OB R R OR AR R R ROR RO OR R R CRORER AL CRERERERE R

240

274

208

e

............................... CyFm R
1 - _lll.lrlll . r=a'roaly -ll-lllll.
l'l .-.Il -.l lll Iltrll.l -ll.lll.l i JLEG i i

140

LD e T T T T
ll. | - = e T |- S T

140

144

78

117

0

(all numbers in decimal)

[

11

18

...._l-i.r:-_ |
e By | f . e i - | i e
= . aElcy e H |t | lll_-._il vl 8 4

L] + . § - [}

S L T . A i =" = - ...I a l.. -
A e | [FPriTEEREE ST D PRI SR [a———— [T [[1
P m e | - ru it ol |
I |] ' vl ' | | i |
@ copoooobn PO = e i |- -

APPENDIX B DIAGRAM OF PORTFOLIO CHARACTER SET

EEEEE W DEmEWEE W |0 s _IIIIIIII
i vEmmmn s e ey o

L) —_ m - = ~ i1 o= u. - _ -

A ttttttt ttt.rrrct

40900004000 004dddddddddddddddddadde

lillq.lt,lh]'l.i'ulnli.'

rrEe

SAddJddddddaddd dady

ot ol o ol ol) ol

e

APPENDIX C Example peripheral design

As an illustration of a typical Atari Portiolio peripheral we have designed a
peripheral which flashes an LED in time with the system tick. In order that this
peripheral operates transparently to the user we have used a ROM extension.

Peripheral Specification

i) have a single LED which will toggle on a timer tick.
i) have a PID of 84h.

i} have all software an an extension ROM.

iv) only operate with the machine powered on.

v} be a terminating peripheral.

vi) the peripheral will power up with the LED of,

Hardware Design (see schematic)

See section 2.6 & 2.7 for more information.

* There is decode logic to read the PID from 807Fh. (Since there is no need find out
it the LED is on or off, the laich will be decoded for a write at 807Fh. io save
decoding logic.)

* Each successive write to 807Fh will toggle the LED

*1f the latch is set, the LED wili be ON

*1f the latch is reset, the LED will be OFF

* The circuit will be powered from 5VS

* The buffering signals ABUF/BBUF and PDET are also used

Software Design (see listing of file PDEM.ASM)

* A ROM extension will be used to hook a TSR onte INT 1Ch

* Each call to INT 1Ch will toggle the LED by writing to I/O 807Fh.
* If the peripheral is removed, the TSR will de-install itself.

* On power up, the LED is assumed tc be reset.

ROM Extensions (see listing of XBOM.ASM)
This example program illustrates how o design a simple ROM extension. [t can
either function as a specific BIOS, specific DOS, or Common extension, according

to the ID code at 0C000:0. Each extension moduie identifies itself, and where it was
invoked from. It is a good demonsiration of the potential power of ROM extensions.

C-1

aialatAVAS LS AT ARARAIAS AIANARAIATAVA AR TR SR T SRAUATRIESAUAVASANASACANATATAGE AR ANATRRENA AN BY O 00 Ua Padalntalyly b

THAIHd I8 3a 3TdWUXE &0d S1L0WARIS

"] 30 9

x

B ==

Jor= et e

0
i
3
>
b=
i 9
i
1
ol
[ER ey N o]
[R rifeas f vl e o
-
Fri
Lotlon K ¥

o
3,
=
o
S

1304 NOTSHuad O

D — 0L SHOTLJENKHOY " O

Tl B Wod SN S1 3Ge. 7
0ITHY L ST 190 Frs

2E0Hbe ST 3340 a0
breoHks G d0)
peIHBg ST 17
— 153G
2T
ek
G,
o]
==
wiE
lars aNo
1304
i) = T
SHG
Y
JNBY

=3 p—_— BT

SnG+

—

IAARRRARAAR RS

IAATY

L]

-
1!

IARAn AR AR

PAEAA A KA Ak KR A A AR A ok ok R R AR A Ak LR R R AR R R R A

Module:

Copyright:

PIDEH. ASH
B 1d, 1989

Peripheral ROH Exiension

:'lk*\"ﬁi‘i‘i‘*)*****i‘:’.‘*‘l‘}\'i‘ih‘i‘i‘\"ki‘*i‘*)\i(**'kﬁ'i‘*’i'w****i‘!‘*s‘:*i‘***i‘**t*i‘i")\')\'*i-

nameg

DOSX

¢seg

Xrom main
bixt type

bixt size

bixt gdos

bhixt user

XTom_proc
INTR_NUMB

genx vect

XROH
assume
equ
segment
org
labei
dw

db

org
label
Jnp
org

iabei
db

cs:cseq,ds:dseqg

055aaH

OH
near
DOSX
a

3H
hyte
genx_vect

40K
byte
'Crt Plant Periph’

+

iSpecific OOS extension

;Extension Vector table
;Start label for MASH
;Identification code

iHum 512 byte blocks in ROM

;Specific DOS extension
;Specific extension vector

1 OEH user text

;The plan is to allocate some memory, Copy a section
¢ of code to memory, and then paint the Specified
; vector to that code.

proc
equ
label
push

push
push

FAR
TcH
near
ax

bx
ds

; TIMER TICK

;Preserve fegisters
; required to set up
; tocal stack

iAllocate User RAM. Note that this can QLY be done

; after DOS initialisation.

moy
mov
int

moy
Mo
mov

shl
shl
shl
shi

:Set up

mowv
MoV

push
push
push
push
push
push

bx, (ALOC_SIZE+0fH)./10H

ah, 48H
Z2IH

ds, ax
stak_save,ss
stak save+?,sp

bx,1
bx,1
bx,1
bx, 1

User stack.

55,ax
sp, bx

(3
dx
51
di
bp
es

iParas to allocate
;Allocate memory

;Set DS to allocated RAM
;Preserve Caller stack

iConvert size to bytes

;Set up stack at top
; of allocated memory

(Preserve registers
: YOU MUST ALWAYS PRESERVE
i ALL USER REGS

;Copy the ISR to the allocated area

push ds . (Preserve DS
push rs 1Set .up Source
pop ds

Moy si,of fsot tick code

push sS 3Set up destination
pop es

Moy di,offset load base

moy €x,COBE SIZE : :Bytes to copy
cld ;Initialise flag
rep . movsb ;Copy TSR to RAM
pop ds ;Restore DS

;Get the specified vector, and set it to the ISR

mov ax, 3500H+IHTR_NUMB :Get current Int 1CH

int 211

moy tick vect,bx :Preserve vector

moy tick vect+2,es

mov ax,2500H+INTR NUMB :Set interrupt vector

mev dx,offset load base '

int 21H

mov ax, 15014 ;Generate Confidence BEEP

int 6lH

pop es iRestore registers

pop bp

pop di

pop si

pop dx

pop Cx

mov 55,stak_save ;Restore Caller STACK

moy sp,stak save+?

pop ds ;Restore remaining regs

pop bx

pop ax

ret JFAR return to calier
Xrom_proc endp

:interrupt Service Routine (ISR)

PID CODE equ H4H :Peripheral PID code
LEDS_PORT equ 807fH ;LEDs 170 address
tick code label byte 1 TSR code
push ax ;Preserve registers
push dx .
push bx
push ds
push es
mov ah,laH ;Get Peripheral PID
int 61H i
or al,al :Peripheral installed?
Jz . tick_none iNo, so uninstall
cnp - ah,PID_CODE iCorrect peripheral?
jne tick ncne sNo, so uninstall

Peripheral installed, so toggle LEDs

mov dx, LEDS PORT iToggle LED address

R R ERAQRAARRAQARAAARARAGAARGEARRARRARAAGAAGRAAGRAAAGAGAGOAGOAMGGOAGMHAONGOGON0L

|

.
el e

o

|

5

P

L]

W)

Joly

r

k

P

AN

JJdds

L]

&

L

|

L 1

r

L]

=1
Jd

\R\7

el e

nnn

1

r

L

r

L

L]

77

L1

r

L

|

-

L

ARRRRY

Y

-

i-AﬂaiAnai-al**t-i-i-wa***1\w:n*ni-s\-*\\k*\ki\ii-v‘.-*****ii;\-*A\\is***wwwwaxil*t.

Hodule: POILM.ASH
Copyright @ DIP Ltd, 1989

Peripheral ROM Extension
: ;
’ **'.**i‘k*i********i\'k\\'***i:**w*i t'k*ak**ki‘ﬂ'*****'A'*i'akii'i'w*}k**i'*')'kﬂ'ww .
: :

nane XROM

assume cs:cseg,ds:dseq

DOSX equ 055zaH :Specific DOS extension
cseq segment
org OH ;Extension Vector table
Xrom main label near ;Start label for MASH
bixt type dw DOSX ;ldentification code
bixt_size db 0 ;Hum 512 byte blocks in ROM
org 3
bixt gdos label byte :Specific DOS extension
jmp genx_vect ;Specific extension vector
org 40H
bixt user tabel byte ;OEM user text
dh ‘Crt Piant Periph’

;The plan is to ajlocate sone memory, Copy a section
: of code to memory, and then point the Specified
; vector to that code.

XFOm_proc proc FAR

IHTR_NUMB equ icH (TIMER TICK

genx_vect label near
push ax ;Preserve registers
push b ; required to set up
push ds ; local stack

:Allocate User RAM. Note that this can ONLY be done
; after BOS initialisation.

noy bx, (ALOC_SIZE+0fH)/10H ;Paras to allocate

moy ah, 48H ;Allocate memory

int 21K

moy ds,ax ;set DS to allocated RAM
mov stak_save,ss iPreserve Caller stack
moy stak_save+2,sp

shil bx, 1 :Convert size to bytes
shi bx, 1

shi bx, 1

shl bx,1

:Set up User stack.

moy S5,ax :Set up stack at top
mov sp, bx ; of allocated memory
push Cx . ;Preserve registers
push dx ; YOU MUST ALWAYS PRESERVE
push si i ALL USER REGS
push di
push bp
push es
=3

iCopy the ISR to the allocaled area

push ds ;Preserve DS
push cs :Set up Source
pop ds

moy si,offset tick_code

push 5§ ;Set up destination
pop es

mov di,offset load base

mov cx,CODE_SIZE : :Bytes to copy
cld (Initialise flag
rep movsb :Copy TSR to RAM
pop ds ;Restore DS

;Get the specified vector, and set it to the ISR

mow ax, 3500H+ INTR_NUMB :Get current Int 1CH

int 21H

mov tick vect,bx iPreserve vector

mov tick vect+2,es .

oy ax, 25000+ INTR_NUMB :Set interrupt vector

mov dx,offset load _base

int 214

oy ax, 15014 ;Generate Confidence BEEP

int 61H

pop es iRestore registers

pop bp

pop di

pop 5i

Dpop dx

pop cx

mov s5;stak save iRestore Laller STACK

may sp.stak_save+?

pop ds ;Restore remaining regs

pop “bx

pop ax

ret +FAR return to caller
XPOM_proc endp

i Interrupt Service Routine (ISR)

PI0_CODE equ 64H ;Peripheral PID code
LEDS_PORT equ 807 R ;LEDs 1/0 address
tick_code label byte ;TSR code
push ax :Preserve registers
push dx -
push bx
push ds
push es
mov ah, l1ai - ;Get Peripheral PID
int 61H .
ar al,al iPeripheral installed?
jz tick none ;No, so uninstall
cmp ah,PID_CODE ;Correct peripheral?
ine tick none (No, 3o uninstall

Peripheral installed, so toggle LEDs

Moy dx, LEDS PORT :Toggle LED address
C-4

S T T T T T T T o R R T T R e TR R T e T Tt Tl T T T e R T e e g N — A g S A

o)

I,
L LR TR

lalal

"

|

tick none:

hTuliIu

[| | |
HT W/ hJ e’

}

tick exit:

CODE_SIZE

cseg

dseg
data_sptr

stak_save
tick vect

load_base

LGAD SIZE
ALOC_SIZE

dseg

sk addddaddildidladd daldaddadaidaldalels

\1 \E hI Hl 1.1 'I.I 'q!ll 'uI \.I hll' 'H.‘ 'h! 11 ‘lli IHI .'llll|' N

pop. - ax

. egu $-tick_code

out dx, al =1 gt Lan i
imp short tick_exit R

assume cs:dseg _ . iforce DSEG offset
slavatid Peripheral, sc uninstall TSR

moy - * " ax,2500H+INTR HUHB s Set interript vector

Moy bx.offset tick vect: - Get old vector
moy ds, cs: [bx+2]
mow - dx,cs:[bx] -

it 2IH

:Now vedtor reset; free allocated memory

T push’. ¢s ;Seqment of block
pop £s -
moy- ah, 4GH ;Free memory
int 21H
pop- . es _.iRestore registers
pop ° -ds e MR
‘pop - dx
pop, bx

Jmp - dword. ptr cs:tick vect™ SJump to old TSR
;Sizé of ISR
ends

:Data segment TEMPLATE (Mo initialised data here!)

segment’

Tabel - hyte ;Start of Data

de = 7 iCaller stack stored here
_dw . 1 : -
“dw ? ;01d vector stored here
dw ?

label byte “;Start of ISR

equ- ($-data sptr)+CODE_SIZE iload module size
equ LOAD SIZE+100H ;Load moduie + Stack

ends

end " " xrom_main

Module:

Copyright:

X, ASH
OIF Ltd, 1989

. ROM Extension DEMO program

. A ROW extension way be vun from a Credit Card Memory

or an Extension ROM, :

The Extension code must preserve ALL_registers!

: The Pre-BIOS vector HUST veturn by a FAR JHP to :
! OFFFE:0, as no stack is set up at this stage :

:***%’***'l'*i.'**************_*I‘***tl’*****ti‘i‘***>\'******ﬂ.‘**ﬁ'********i‘:i .
il

frame

LF
CR

BIOX
DOSX
8100

cseq

Xrom_main
bixt type

bixt_size

bixt gbio
bixt_gdos

bixt user

bixt preb:
bixt_bext:
bixt pdos:
bixt_dext:
bixt ados:
bixt pwdn:

bixt_pwup;

XTOM_proc

genx_vect

XROM
assume
equ

equ

equ

equ

equ
segment
org
label
dw

db

org
label -

label
Jmp

org
iabel
db

org -

Jmp
org
Jop
org
Jmp

arg
Jmp

arg
Jmp

org
Jmp

org
Jmp

proc

cs:csey

Dal
OdH

OaassH

055aaH
05555H

OH
near
BiOX
o

- 3H

byte
byte
genx_vect

40H
byte
'Test ROM (C) DIP'

50H
preb_vect

55H
bext_vect

Sal
pdos_vect

5fH
dext vect

64H
ados_vect

6594
pwdn_vect

GeH
pwup_vect

FAR

:Determine extension type

tabe)

near

C-6

iline feed
;Carriage return

:Specific BIOS extension
Specific DOS extension
;Complete control

;Extension Vector table
;Identification code

;Num 512 byte blocks in ROM

:Specific. BIOS extension
;Specific DOS extension
:Specific extension vector

;0EH user text

;Pre-bios jmp vector
;Bios-ext jmp vector
;Pre-dos jmp vector
;Dos-ext jmp vector
;Post-dos jmp vector
:Power down jmp vector

iPower up jmp vector

AAGAGAGIAAAAAGRAARAGARAGAGAAGRARAGRAQAGAGAGGAGOAAOGAGOOOOINLN RO N LI

LN

LA

RO

JJdddddIddde

nat_genb:
II"" not :
" _gend:
*
2
" preb_vect
x
.
... = preb retn
¥
b
- ext_vect
.
e
=
._- i pdos_vect
.I ¥
=
—
=_ r dext_vect
=
- o
II":' ad
¥ 0s_vect
='—1.
III-’
.—3 pwdn_vect
.]
s
.l-)
N
....— pwup_vect
L]
=_.._.'
T,
l E xrom disp

L
],11|,l

push

cp
Jne

mov
Jmp

chp
jne

Moy
Jmp

moy
Jmp

{abel
Jmp
dw
dw
tahel

push
moy

Jmp
label

push
mov

Jnm
1abe?

push
moy

dmp
label

push
mov

Jmp
labe]

push
mav

Jmp
{abe]

push
moy

Jnp
label

push
push
push
push
push

call

Moy
int

ar

bp

cs: |07, BI0X
not_qgenb

bp,offset gbto text
shart. xrom disp

¢ [07,005%
not gend

bp.offset gdos_text
short xrom disp

bp,offset invl _text
short xrom disp

near
dword ptr cs:preb_retn

0
gfffeH

near

bp
bp,offset bext text
short xrom disp

near

. bp
bp,offset pdos text
short xrom_disp

near

bp
bp,offset dext_text
short xrom disp

ngar

bp
bp,offset ados_text
short xrom disp

- Tiear
bp
bp,offset pwdn text
short xrom_disp
near
bp

bp.offset pwup_text
short xrom_disp

near
ax
b
X

dx
es

disp text

ax, 2400H
|

dl,dl
C-7

;Preserve BP

:Specific Bi0S extension
sHa

iSpecific BIOS extn text

;Specific DOS extension ?
s Ho

;Specific DOS extn text

iInvalid text

;Pre-Bl0S extension

;Post-BI0S extension

sPre-00S extension

;D08 extension

;Post-DOS extension

;Power-Down extension

;Power-Up extension

:Main display routine

;Preserve registers

:Display text in fil

;Get ROM state

;Normal ROM 7

not norm;

not_drva:

not_dryh;

not_xirom:

stat_disp:

Xrom_proc

inz

Moy
Jmp

dec
jnz

oy
JHp

dec
nz
mow
Jmp
dec
Jnz
moy
Jmp
Moy

call

moy
call

pop
pep
pop
pop
pop
pop

ret

endp

‘not_norm

bp,offset novm text
short stat disp

dl
nat_drva

bp.ofiset drva text
short stat disp

di
not_dryb

bp,offset drvb text
short stat _disp

di
not_xrom

bp,offset xrom text
short stat disp

bp.offset invl _text

disp text

bp,offset crif text

disp text

es
dx
Cx
3%
ax
bp

Mo, so Skip
:Get_normaf ROM text
Drive A ?

(No, so skip

i0et Drive A text
Drive B 7

ilo, so skip

iGet Drive B text
Drive 8 ?

:Na, so skip

:Get Drive B text
:Display text in Bp

:Finally CR, LF

:Restore registers

;FAR réturn

-***1***************t*************W**********Erwﬁ*******ﬁ**i****o

3
3 3
; Hain Display routine 3
? §
;**********ﬁ*********t**l*********************ww*****kt*********-

.

disp text proc near
xor - - bh,bh ;Page 0
mov ah,3 iGet cursor position in DX
int 10H
push cs ;Access text
pop es
Xor ch,ch (Initialise
mov cl.es:[bp] iGet length
inc bp :Advance to text
moy ax,1301H Hrite string
int 10H
ret
disp_text endp
ghio text db gdos_text-$-1
db 'Spec BIQS Extension - '
gdos_text dh bext_text-$-1
db "Spec DOS Extension -
bext text db pdos_text-$-1
db ‘Com BIOS Extension - *
C-8

‘“‘“kgﬂ“‘?‘(‘“‘l‘l‘k‘l(l““‘l(h‘l‘l‘l(l‘lll AR IR AR (i iR T i A i i d e s T R R o A S e D

IJJSIIITIIIIIITIIIII TSI IIIJJdIdddddd de

Je

"

L

JJds

w

\ANAAAAAAARNANARA

pdos text
dext text
adas_text
pwdn_text
pwup_text
norm_text
drva text
drvh_text
xrom_text
invl text

crlf text

cseq

dh
dh

db»
db

dh
db

dhb
dh

db
db

db
db

db
dh

db
db

db
db

db
db

db

ends
end

dext text -S|
Pro-D0S Pxtepsios -

ados_texat-$h-i
"Com DOS Ixtensten -

pwdn_text-$-1
‘Post-D0S Extension -

prup text-$-1
"Povier Down Extension

norm_text-$-1
‘Power Up Extension -

drva_text-§.1
‘Normal ROM!'

drvb_text-$-1
'CLH Drive A

xrom_text-$-1
'CCH Drive B

invl text-§-1
"Extn ROM’

crlf text-$-1
‘Invalid”
2,CR,LF

Xrom main

(E.E!

Widddddddddd I JIJIIIIISIIIIII I ddSe

-
A

L

APPENDIX D Memory size and assignmeni

REDUCING STACK OR MEMORY SI7F

Some compiled (EXE) programs require reduced slack or memory size
reguiremenis when designed for the Portislio. Reduced stack or memory size
requirements are also needed when executing some built in applications.
Microsoft's Assembler includes a utility (EXEMOD) which allows modification of

maximum required memory word in the EXE header. Madifying the header allows
the applications room in which to execute.

MEMORY ASSIGNMENT

Portfolio software developers should inciude the following interrupt information in a
header:

INT 21 fn 4ah

This DOS function reduces memory used to the amount required by the program,
rather than defaulting to all memory.

-1

