e S

OMNIMON! (TM)
USER'S GUIDE

by
David Young, CDY Consulting
SYSTEM REQUIREMENTS: ATARI 800/400 Home Computer

*** ATARI and ATARI 800/400 Home Computer are trademarks of ATARI, Inc.
**%* OMNIMON! is a trademark of CDY Consulting.
*%% OMNIMON! program and manual contents Copyright 1982 CDY Consulting

AUTHOR'S EARNEST ENTREATY

I have done my best to offer here a quality program at a reasonable
price. This is my livelihood. Please do not make copies of this program
for any reason other than personal backup. Thank you.

INTRODUCTION

Greetings fellow ATARI Home Computer owner. I am sure you are just
as proud of your system as I am of mine and enjoy buying accessories to
extend its power and convenience. From that point of view, OMNIMON! is
one of the most powerful additions you can make to your computer. Any
serious ATARI owner will find it indispensable after using it for the
first time.

OMNIMON! is a resident machine language monitor which, once
installed, is always available to you. What that means is that you never
have to load it and you can call it up no matter what program happens to
be running at the time. Once running, OMNIMON! gives you complete
control over your computer., This includes the ability to easily examine
and modify memory or the 6502's registers, to dump data to a printer, and
to read and write to the disk drive(s) without DOS. It also has a
complete set of debugging tools including a disassembler, single step,
and a unique JSR function for testing out subroutines. And all of these
features are available to you at any time, no matter what program is
running, simply by pressing SYSTEM RESET along with either the OPTION or
SELECT button!

If you have been wanting to learn assembly language programming,
OMNIMON! can make it a very pleasant experience. Since it is ROM
resident, you can always get back to OMNIMON! even if your program hangs
up in an infinite loop. (See the description of OMNIMONA, the advanced
version of the monitor, for a method of recovery if the system is locked
up.) You can even call OMNIMON! at critical points in your program to
examine things before continuing execution. OMNIMON! is extremely user
friendly so even programmers with little experience should find it very
easy to use,.

OMNIMON! USER'S GUIDE

GETTING STARTED

After installing OMNIMON! in your computer (if you have not done so,
see OMNIMON! INSTALLATION INSTRUCTIONS), you should be able to powerup
your computer as usual. To enter the OMNIMON! program, hold down the
OPTION key and press SYSTEM RESET. This method of entering OMNIMON! will
cause a warmstart up to the point that the application program would
normally be given control. Instead OMNIMON! takes control and you should
see the OMNIMON! header written across the top of the screen indicating
that the program is running:

David Young OMNIMON! Copyright 1983

~ PC NV-BDIZC ACCUM X-REG Y-REG STACK
g AXXXX XX XX XX XX XXX

When you are ready to exit OMNIMON!, hold down the START button and type
RETURN. This will cause the warmstart to go to completion, giving control
back to the application program. Notice that pressing SYSTEM RESET by
itself will cause a normal warmstart. Later we will discuss another
method of entering OMNIMON! which preserves the PC and CPU registers of
the interrupted program.

Once you have OMNIMON! running, the first command to learn is the
'"HELP' command. As 1s failrly standard practice in user friendly software,
OMNIMON! uses '?' (RETURN) to give you a list of all the commands
available. So type-'?' followed-by RETURN and you will see the following:

CPU/CHG:C

DPY/CHG:D (adr adr)
EXECUTE:E (byt)

JSR :J adr

LINK DR:L (drivei)
PRINTER:P

RD DISK:R (sec# adr #)
SEARCH :S adr byt byt ...
TOGGLE :T

WR DISK:W (sec# adr #)
DIS/CHG:X (adr adr)
PSH STK:+ byt byt ...
POP STK:-

The HELP command not only provides a list of commands but also
indicates the parameters each command expects. Parameters in parentheses
are optional. If they are omitted, OMNIMON! will try to interpret the
command in a manner convenient to you. Usually this means executing the
command on the next logical memory location or sector. If you are anxious
to start using OMNIMON!, you can do so immediately with just this little
bit of knowledge. With a little experimentation you should have little
trouble figuring out what most of the commands do. When you are ready to
learn some of the more subtle features built into OMNIMON!, read the rest
of this documentation.

v OMNIMON! USER'S GIDE

There are a few important things to point out before proceeding:
1) All numerical input and output is done in hex.
2) Parameters are delimited by a space or other non-hex character.

3) The command being processed will be aportedrif an illegal parameter is
encountered or if a necessary Paramete{/ﬁﬁ/%ﬁf'supplied. S
4) It is not neeessary to retypg a command if it is already present on
the screen. Just position the eursor on the same line, make changes if
yvou wish, and type RETHJRN, All the normal ATARI editing commands are

available. —_—

\ -

5) The processing of most commands can be stopped by holding down the
START button. This allows you to terminate a long listing, search or
single step. Use CTRL-1 to temporarily halt and restart a listing.

DISPLAY MEMORY: D (start addr) (end addr)

This command is used to view data in memory in either hex or
character format, depending on the current data format (see TOGGLE). In
hex format the data is output to the screen as 1 or more lines of 8 hex
bytes separated by spaces. In character format the data is output as 1 or
more lines of 24 byte character strings. On each line, the address of the
first byte precedes the data,

Tn either data format the letter 'A* is appended to the start of
each line. This in fact represents the ALTER MEMORY command (see the
following command description)., The effect is that, once you have used
'D' to display part of memory, you car alter any byte(s) by simply
positioning the cursor, typing the change(s), and hitting RETURN. You
must type RETURN on each line that you alter for the change to take
effect. Also, the current data format pust match the way the data was
represented on the line. One ether limitation in the character mode is
that a line containing the character representing $9B is not alterable
past that character. The OS cannot handle a record with an imbedded $9B.
If you wish to alter a line after a $9B cnaracter, redisplay the line
starting just past it.

To display memory, type 'D' followed by optional start and stop
addresses and then RETURN. You can display up to 32K bytes ($8000) with
one command. If you omit the stop address, only a single line of data
wili be printed. If you omit the start address, the next logical line of
data will be printed (either the next 8 or 24 bytes of memory, depending
on the data format). One last convenience is8 that once you have used the
'D' command, OMNIMON! will default te that command if you just type
RETURN. This allows you to scroll through memory by holding down the
RETURN key. This default «ill remain in effect until one of the other
‘persistent' commands (R or X) are used, at which time they will become
the default.

OMNIMON! USER'S GUIDE

TOGGLE DATA FORMAT: T

As mentioned previously, all numerical data is represented in hex.
However, when dealing with ASCII text it is more convenient to work in
character format. The TOGGLE command (T) is used to switch between hex
and character format. It affects three commands: ALTER MEMORY (A),
DISPLAY MEMORY (D) and SEARCH MEMORY (S). Other commands are unaffected
by the current data format.

To switch data formats type 'T' (RETURN). Upon first entering
OMNIMON! the data type defaults to hex.

ALTER MEMORY: A addr byte byte ...

This command is used to change 1 or more contiguous bytes of memory.
You can type the change either as hex bytes (separated by spaces) or as
ATASCII character strings, depending on the current data format (see
TOGGLE). While it is possible to use the 'A' command by itself at any
time, it is not recommended. To display the area of memory first with
the 'D' command and then to position the cursor and make the change is
much safer (see DISPLAY MEMORY). This way you not only verify that the
memory at that location is the memory you intended to change, but also
that the current data format is compatible with the data you are typing.

To use the ALTER MEMORY command, type 'A' followed by an address.,
Use a space to separate the address and the data and then start typing
the data. If in hex format; type- hex bytes delimited by spaces. If in
character format, type a continuous character string. Terminate the
command with RETURN. At that point the indicated changes will be made.
The command line can be as long as you like or until the computer
squawks. SQUAWK!

SEARCH MEMORY: S addr byte byte ...

Searching is something that computers do very well and OMNIMON! has
a very nice search function that works in either hex or character mode.
It will scan memory for any sequence you specify and display it in a
manner similar to the DISPLAY MEMORY command every time it is found. This
means you can alter any occurrence of that sequence by simply positioning
the cursor, typing the change and hitting RETURN (see DISPLAY MEMORY).

To use the SEARCH MEMORY command, type 'S' followed by the address
where you would like the search to begin. Then type a space followed by
the search sequence. This will be hex bytes separated by spaces in hex
mode or a character string in character mode (see TOGGLE). The search
will begin when you hit RETURN. The search sequence can be any length up
to the limit of the ATARI terminal input buffer. Even though it only
takes a few seconds to search all of memory, a search can be aborted by
holding down the START button.

OMNIMON! USER'S GUIDE

PRINTER ON/OFF: P

If you want a hardcopy record of your OMNIMON! session, you can use
the 'P' command to cause anything being output to the screen to be echoed
to the printer. In character mode, inverse video characters are printed
as normal video and unprintable characters are translated to dashes (-).
Otherwise, everything on the screen will show up on the printer. There is
even a special single step mode (see EXECUTE) that will trace through a
program while outputting only to the printer and not to the screen. This
is useful for programs that use the screen in modes other than GRAPHICS O.

The 'P' command is a toggle function. Typing it once will enable
output to the printer and typing it again will disable output. If the
printer is not turned on or selected, the message 'I/0 ERROR' will
result. Care should taken if the printer is enabled while reading or
writing to the disk (see READ DISK or WRITE TO DISK).

DISK INPUT/OUTPUT

Anyone who owns my disk utility DISKSCAN knows how useful it is to
be able to edit raw sector data on a disk. One of my goals in designing
OMNIMON! was to incorporate some of the features of DISKSCAN. Imagine, a
resident mini-DISKSCAN!

Well, the end result has far exceeded my expectations. With OMNIMON!
you can not only read and write individual sectors, but multiple sectors
to and from anywhere in memory. And it not only works in sequential mode,
but it can also follow sector links. In fact, you can read in an entire
DOS file from a disk without even booting up DOS! And the frosting on the
cake is that OMNIMON! works equally well in single or double density, a
dream come true for the growing number of double density drive owners.

LINK/SEQ MODE & DRIVE #: L (drive#)

When you first enter OMNIMON!, the program assumes that you wish to
talk to drive #1 and that the sector mode is sequential. If you wish to
address other drives or follow sector links, use the LINK command to put
OMNIMON! in the correct mode. The LINK command is actually two commands
in one. When used by itself (without a parameter) 'L' means to toggle
from sequential to linked mode or vice versa. When followed by a drive #
(1-4), 'L' means to switch the drive ID to the specified drive. From that
point on, all disk I/0 will be directed to that drive.

To toggle between the sequential and linked sector modes, type 'L
(RETURN) '.To direct disk I/0 to a different drive, type 'L' followed by
the drive # and RETURN.,

READ DISK: R (sector#) (buffer addr) (# sectors)
The READ DISK command is one of the most powerful, user friendly

functions of OMNIMON!. It can be used to read one or more sectors, either
sequentially or linked, from any disk drive, single or double density. We

OMNIMON! USER'S GUIDE

will start out by using the READ DISK command to read one sector at a
time. You will find it behaves somewhat differently when operating on
more than one sector at a time.

To read a single sector into memory type 'R' followed by the sector
and RETURN. OMNIMON! will assume a buffer address of $6000 unless you
specify something different after the sector #. From that point on
OMNIMON! will assume that new buffer address for subsequent disk I/0.
Once you have the sector in memory you can operate on it with any of the
other OMNIMON! commands including DISPLAY, ALTER, SEARCH, DISASSEMBLE,
etc. One convenient feature is that, after a READ DISK command, OMNIMON!
will assume the buffer address if you use 'D' or 'X' without a start
address. (Try typing 'D (RETURN)' after reading a sector into memory).

Now, if you wish to read the sector which logically follows the last
sector read into memory, type 'R (RETURN)'. In segquential mode, the next
physical sector on the disk will be read. In linked mode, OMNIMON! will
reference the sector link of the current sector to determine the next
sector to read. In either case, the new sector will be read into memory
at the SAME buffer address, overlaying the old sector.

NOTE: IF THE PRINTER IS ENABLED WHILE READING SINGLE SECTORS, THE SECTOR
AND BUFFER ADDRESS MUST BE SPECIFIED EACH TIME. This is because the
printer and disk share the SIO DCB (Device Control Block).

Ready for a couple more examples of user friendliness? One is that
the 'R' command, 1like *D*and *X';7 is a *persistent' command. That means
that once you use the 'R' command, OMNIMON! will default to that command
if you just type RETURN. This default will remain in effect until one of
the other persistent commands are used. What this means is that you can
read through an entire file (or disk, if in sequential mode) by reading
the first sector and then simply holding down the RETURN key. One other
convenience is that OMNIMON! will not read past the end of file if it is
in linked mode. Thus, 1if you were reading through a file as suggested
above, simply hold down the RETURN kKey until 'EOF' is printed. At that
point, the last sector of the file is at the buffer address. You are free
to add something to the end of the file (perhaps an autorun vector) and
then to write the sector back out with the WRITE SECTOR command.

Reading multiple sectors is somewhat different from reading single
sectors. For one thing, the sector #, buffer address, and sector count
must be specified each time. The other difference is that, instead of
consecutive sectors overlaying each other, the buffer address is
incremented between sectors so that the disk data fills memory. The exact
amount by which the buffer address is incremented depends on the sector
mode and the density of the drive. The effect is that in seguential mode
all bytes of the sector are preserved, while in linked mode the sector
links are overlayed. This is a desirable feature if you want to read an
entire DOS file into memory. If you find this discussion confusing, it is
recommended that you read my tutorial on ATARI DISK DATA STRUCTURES in
the DISKSCAN USER'S GUIDE or the MARCH 1982 issue of COMPUTE! magazine.

OMNIMON! USER'S GUIDE

An example may be of help. First, put OMNIMON! in character mode
with 'T' and sequential mode with 'L'. Now type 'R 169 6000 8'. This will
read in the 8 sectors of the directory into the buffer at $6000. Now type
'D' followed by several RETURNs. You will be able to read the names of
the files on the disk. Choose the filename of a short file, put OMNIMON!
in hex mode with 'T', and use 'D addr' to display the 5 bytes just prior
to the filename. The first byte is the status while the next two are the
size of the file and the next two are the start sector. Now put the
program in linked mode with 'L'. Read in the entire file with 'R (start
sector) 6000 (file size)'. Type 'D' and hold down the RETURN key to
scroll through the data of the file.

If the file happens to be a BINARY LOAD file, a slight wvariation of
this technique is recommended. Instead of specifying an arbitrary buffer
address of $6000, look at the first sector of the file to determine the
load address. Then subtract 6 bytes to account for the load vector and
use that number as the buffer address. Then, after the file is loaded, it
can be executed, searched, disassembled or otherwise manipulated to your
hearts content. Notice that the entire program will be loaded to the
correct place in memory only if there is but one load vector at the.
beginning of the file. OMNIMON! as a rule ignores load vectors. If you
must load a file with multiple load vectors, use DOS.

Once you have a binary load file in memory you can create a boot
disk by switching over to sequential mode and writing the program back
out to a disk starting at sector 1. You will need to leave 6 overhead
bytes at the beginning of the first sector. See the ATARI OPERATING
SYSTEM USER'S MANUAL for details on the boot process. The converse of
this process would be to create a binary load file from a boot record.
This can be done by first booting up DOS, going to OMNIMON!, and reading
in the boot record in sequential mode to a convenient place in memory.
Then you would exit back to DOS and do a BINARY SAVE on that portion of
memory. Then you may have to use OMNIMON! to change the load vector at
the beginning of the file to make it load in at the correct place. In
fact, you may have to use OMNIMON! to load the file if it loads on top of
DOS. The same technique can be used to make a binary load file out of a
cartridge but you will have to append a few load vectors to get the
program going. For example, the following 3 load vectors should be
appended to the end of BASIC: 6A 00 6A 00 90 E2 02 E3 02 F6 F3 EO 02 El
02 00 AO.

One final convenience is that each time a single sector is read, its
is printed along with the buffer address. This also occurs when
multiple sectors are read, but only when the printer is on. Thus, if you
read in an entire file with the printer on, you get a sector map of that
file. Now if, while inspecting the file in memory, you find that you wish
to make a change to the file on disk, you can compare the buffer address
to the sector map of the file to determine the sector where that piece of
data resides. Then you can use 'R sec#' to fetch that sector, make the
change, and use 'W sec#' to stcore the sector back on disk.

OMNIMON! USER'S GUIDE

WRITE TO DISK: W (sector #) (buffer addr) (# sectors)

The WRITE TO DISK command allows you to write one or more sectors
worth of memory out to disk. The one big difference between it and the
READ DISK command is that it only works in the sequential mode. That
means that it will not create a DOS file, i.e., it will create neither a
directory entry nor sector links. If you do wish to create a DOS file out
of memory it is best to use the BINARY SAVE option of DOS. However, it is
not always possible to get DOS into memory without losing your data. In
this case, OMNIMON! may be the only way save your data. If you do wish to
create a DOS file out of the memory you have written to disk with
OMNIMON!, use the technique described in the last section. You could also
use the BINARY LOAD FILE function of DISKSCAN in the sequential mode
which will pick up sectors and redeposit them as a DOS file.

IMPORTANT: Use a scratch disk when writing multiple sectors worth of
memory to disk with OMNIMON!. The program pays no attention to data
already on the disk and may overlay it.

The primary purpose of the WRITE TO DISK command is to support the
modification of one sector at a time. A typical scenario is as follows:

Turn the printer on, read a file into memory as
described in READ DISK, and turn the printer off.
Search the file to find the data to be changed.
Compare the address of the data in memory to the
sector map created while the file was being read in.
Read that particular sector into memory with 'R
sec#'. This insures that you not only have the data
of the sector but also the sector link. Then alter
the sector and write it back out with 'W sect#'.

Another application for the WRITE TO DISK command would be to move a
block of memory from one location to another. This is accomplished by
writing the data out from one buffer address and reading it back in at
another. It is important to use a scratch disk for this operation or at
least be very careful that you are writing to an unused portion of a disk.

Be careful when omitting the sector # because the default has
already been incremented in anticipation of the next READ DISK. In fact,
the only safe time to omit the sector # is when that sector is the last
one of a linked file,

SEVERAL WAYS TO ENTER OMNIMON!

We have seen how to enter OMNIMON! by holding down OPTION and
pressing SYSTEM RESET. This causes a normal warmstart followed by a jump
subroutine (JSR) to OMNIMON!. When you exit OMNIMON! after entering it in
this way (by holding down START and pressing RETURN), the warmstart goes
to completion in a normal fashion. This is fine for some applications but
there is another way to enter OMNIMON! which disturbs the program running
as little as possible.

OMNIMON! USER'S GUIDE

When you hold down SELECT and press SYSTEM RESET, the program
running at the time is interrupted. However, instead of doing the entire
warmstart, parts of it are skipped over so as to preserve the state of
the system as much as possible. Specifically, the 0S variables and the
stack are left undisturbed. Usually this allows you to reenter the
program by simply exiting OMNIMON! in the normal fashion. For instance,
you can pop into OMNIMON! from either DOS or BASIC, execute some OMNIMON!
commands, and pop back into the interrupted program almost as if you had
never left it. I say 'almost' because the 0S is likely to return a bogus
value if it was waiting for a keystroke when it was interrupted. For that
reason it is best to hit BREAK upon return to the program. Of course, if
the program makes use of any graphics other than MODE 0, it is unlikely
that you will be able to successfully reenter the program without
restarting it. This is also true of programs which alter the interrupt
RAM vectors ($200-$224) because OMNIMON! restores them to their original
values.

There are a couple of small problems with using SELECT/RESET
(instead of OPTION/RESET) to interrupt DOS or BASIC. OMNIMON! makes use
of the SIO interrupt routines in the 0S ROM by altering the interrupt
vectors at $20A-$20D. This is so the printer and disk interface of
OMNIMON! will work even if DOS is not in memory. Now if you return back
to DOS with START/RETURN these interrupt vectors will remain in effect.
But DOS hangs up occasionally unless it is using its own special SIO
handlers. If you wish DOS to restore its special vectors, exit OMNIMON!
with SYSTEM RESET. Another problem with SELECT/RESET is that MEMLO ($2E7)
gets restored to $700 so that the FMS or any other program in low memory
is unprotected. For that reason it is best to exit OMNIMON! back to BASIC
with RESET. Alternatively, always use OPTION/RESET to enter OMNIMON! from
BASIC.

Another way to enter OMNIMON! is particularly useful for debugging
assembly language programs. This is accomplished by putting 'JSR $COO01°'
at critical points within the program. At each of these points OMNIMON!
will be entered and you will have all of its facilities available for
examining the intermediate results of your program. When you are ready to
continue executing your program, just exit OMNIMON! with START/RETURN.
There are some restrictions on this technique however, specifically
special graphics and time critical I/0.

Yet another way to enter OMNIMON! is from BASIC with a
'X=USR(49152)'. In fact, this is the recommended way to enter the monitor
if you have not modified the interrupt vectors at $FFFA-$FFFD as
described in the OMNIMON! INSTALLATION INSTRUCTIONS. You can exit back to
BASIC in the usual manner (START/RETURN).

It should also be pointed out that OMNIMON! will be entered
automatically if a 6502 BRK instruction (0) is ever executed. Thus, you
can set a breakpoint anywhere in your program by storing a 0. When you
pop into OMNIMON! after executing a BRK instruction, you should restore
the original instruction and subtract 2 from the PC. Now you can continue

OMNIMON! USER'S GUIDE

executing your code when you exit OMNIMON!,
CPU REGISTERS: C

You will notice that, upon entering OMNIMON!, the 6502's internal
registers are printed out with the following heading:

PC NV-BDIZC ACCUM X-REG Y-REG STACK

The meanings of these headings are self-explanatory except for
'NV-BDIZC'., These are the individual bits of the status register spelled
out. Thus, this is a snapshot of the state of the CPU just prior to
entering OMNIMON!. The PC (program counter) is pointing to the next
instruction to be executed. The program will continue executing at this
point when you leave OMNIMON! with START/RETURN.

The CPU state can be examined at any time with the CPU REGISTERS
command 'C'., In addition, the CPU state can be changed by simply
positioning the cursor over the value, typing the change, and hitting
RETURN. The new values for the registers will be in effect when you leave
OMNIMON! to resume execution of the suspended program. The only CPU
register that cannot be changed directly is the stack pointer. This can
be changed only by the PUSH STACK (+) and POP STACK (-) commands.

One application for the 'C' command is to GOTO anyplace in memory.
This 1s accomplished by altering the PC to point to the address where you
wish execution to resume when you press START/RETURN. Typically this
might be back to DOS, whose address can usually be found by looking in
location $000A (DOSVEC).

Another area of interest 1s the stack. Remember, the stack pointer
always points to the next FREE entry. All the values between the stack
pointer and $1FF are typically return addresses of nested subroutine
calls. This, in fact, 1s a vertical cross section of the execution
history of the program. This is extremely useful for finding your way
around in a program you wish to modify in some way. If you wish to to
locate the part of a program which is performing a certain function, just
start the program executing that function and press SELECT/RESET. Because
the stack is preserved with this method of entering OMNIMON!, you can
tell where the program is and where it has been by noting the PC and the
return addresses on the stack. Another way of locating a certain piece of
code is to search ('3') for a particular address it might reference.

-10-

OMNIMON! USER'S GUIDE

PUSH STACK: + byte byte ...

The PUSH STACK command is for adding bytes to the stack and thereby
increasing the stack pointer (which grows downward in the 6502)., These
bytes will be available to the code pointed to by the PC when OMNIMON! is
exited. Notice that the first byte after '+' is the first one to be
pushed onto the stack.

Please note that the stack pointer displayed with the 'C' command is
not the ACTUAL stack pointer while OMNIMON! is running. OMNIMON! uses the
stack for its own purposes and is actually nested somewhat deeper. It is
not wise to make changes directly to the stack unless you use PUSH STACK
or POP STACK. Even then you must be careful not to cause the stack to
overflow or underflow.

POP STACK: -

The POP STACK command takes bytes off of the stack one at a time and
decreases the stack pointer (which actually increases in value). Be
careful to not cause the stack to underflow.

DISASSEMBLE MEMORY: X (start addr) (stop addr)

Just as it is possible to display memory in hex or character format,
it is also possible to translate 6502 machine code to assembly language.
OMNIMON! does this in a handy fashion by printing out the object code
along with the instruction. Once again, it is possible to change the
object code (to the left of '*') by positioning the cursor, typing the
change, and hitting RETURN. Another convenience is that the value at the
address specified with indirect addressing modes (without regard to the
index register) is printed in parentheses.

Just like the 'R' and 'D' commands, 'X' is 'persistent'. Once you
have disassembled one or more instructions, you can continue
disassembling simply by holding down RETURN. This will remain in effect
until 'R' or 'D' are used. The disasscmbler can be aborted at any time by
pressing the START button.

-11-

OMNIMON! USER'S GUIDE

EXECUTE MEMORY: E (option/# steps)

The EXECUTE MEMORY command is actually a single step command in
disguise ('S' is used for SEARCH). This command causes the instruction
pointed to by the PC to be executed. Then the registers are printed out
along with the NEXT instruction to be executed. If the step count was 1
(or not specified) then execution will stop. Otherwise it will continue
single stepping through the code for the specified # steps. The maximum
number of steps at one time is 31 for reasons soon to become clear.

While the low order 5 bits of the optional parameter are a step
count, the high order 3 bits have special meaning. The MSB means 'step
forever'., Thus, 'E 80' means 'step forever and print the trace to the
screen'. Notice that the trace will also be echoed to the printer if it
is enabled. Stepping can be aborted by pressing START.

Bit 6 of the parameter means 'don't print the trace to the screen'.
However, the trace will still be output to the printer if it is enabled.
Thus, 'E CO' would step forever without printing the trace to the screen.
In combination with the printer this is useful for stepping through
programs which use special graphics modes.

Bit 5 of the parameter means 'sample the results of every 32
instructions'. Thus, 'E EO' would step forever without printing to the
screen and the trace would be output to the printer every 32nd
instruction (if it is enabled). This is kind of a weird mode, but

somebody may find a use for it someday.

One other nice feature of the 'E' command is that it will treat a
call to the 0S as a single instruction instead of stepping through all
the code in the 0S. OMNIMON! does this by temporarily giving up control
of the CPU but intercepting it on the return from the 0S. However, you
should avoid stepping through CIO calls to the screen editor (E:) unless
printing to the screen is disabled with bit 6, OMNIMON! considers any
address above $C000 to be 0S.

We have seen that the EXECUTE MEMORY command is very powerful and
flexible. One restriction, however, is that it will not step through a
'SEI' instruction. If you are stepping through a program and encounter a
SEI, disassemble on past it to find the 'CLI'. Just past the CLI put a
temporary BRK instruction (0). Now step through the SEI. OMNIMON! will
temporarily lose control of the program but will regain it when the BRK
instruction is executed. Now restore the original value to the location
where the BRK was set. After subtracting 2 from the PC you are ready to
continue stepping.

-12-

OMNIMON! USER'S GUIDE

JSR: J addr

The JSR command is a very powerful feature for executing a
subroutine and returning control back to OMNIMON!. It can be used for
testing out subroutines during the development of an assembly language
program. With some care it can also be used to call the 0S to, say,
format a disk.

When you execute the 'J' command you will notice that the registers
are printed out but that the subroutine is not yet executed. In fact, the
'J' command does nothing more than change the PC to the specified address
and push the address of OMNIMON! on the stack to act as the return
address for the subroutine. Now you are free to set up for the subroutine
call by altering the registers or memory if necessary. When you are ready
to actually execute the subroutine press START/RETURN. Upon return you
will notice that the PC is restored to its original value but that the
other registers reflect the results of the subroutine.

As an example, put a fresh disk (or one you don't mind formatting)
in drive 1. With the printer disabled, store a 1 in $301, a $21 in $302,
and a $80 in $303. Now execute a 'J E453' and press START/RETURN. The
disk in drive 1 will be formatted and then control will be returned to
OMNIMON!,

Sometimes after interrupting a program with OMNIMON!, you will not
be able to restart it without reinitializing it. The start and
initialization addresses for a program are typically at $000A and $000C
respectively. Since a proper initialization routine is always a
subroutine, you can use 'J (init addr)' to initialize the program. When
control returns to OMNIMON!, you need only change the PC to the start
address and exit OMNIMON! with START/RETURN to restart the program.

QUESTIONS?
I welcome comments, suggestions and dealer inquiries:
DAVID YOUNG
CDY CONSULTING
421 HANBEE
RTICHARDSON, TX 75080
(214)235-2146
LIMITED WARRANTY
For a period of one year following the date of purchase CDY

CONSULTING will repair or replace any OMNIMON! unit proven to be
defective. Please return the defective unit to the place of purchase.

-13-=

Binary Load Files

This is one area that most people are a little fuzzy on.
It"s not suwrprising really, since there does not appear to be any
detinitive documentation on it anywherea! A aexhaustive
presentation will be made here even though it will be quite
short.
Definition: load vector -~ from 4 to & bytes consisting of 2
optional bytes of FF FF, a 2 bvte start address, and
a 2 byte end address (in that order).

Example: FFOFF dd dée g2 36 - The first 2 bytes are optional
and ignored during the load process. The second 2
bytes are a start address of %600 ard the last 2
bvtes are an end address of $6527.

The only time that the first 2 bytes of FF FF are required
is at the beginning of & binary load file. If those bvtes are not
there, DUOS will refuse to perform the bhinary load. (The "G°
command of OMNIMONL will, however, load 1t gladly.) The rest of
the time the first 2 bytes of FF FF, if they exist, are ignored.
The only time that these 2 optional byvtes should ccour anywhere
else but at the beginning of a file is i+ 2 hinary load +Files
were appended together.

What does & load vector do? It tells DOS (or the “§6° command
af OMMNIMON) whiere in memory to put the 1 or more bytes which
follow in the +ile. How many hytes is determined by subtracting
the start address from the end address and adding 1. In the
example above, S bytes would be read from the file and put in
locations %663 to 682,

What happens when enough bytes have been read in to satisfy
a load vector? These things will happen in this order:

1) Locations $2E2 and $2E7 will be examined. I+ they are both
o =l goto step 2. I+ thev are nonzeroa, a JBR will be made to

the address contained in these locations. Upon return, zero
PEEZ and $Z2ET and fall into step 2.

2y If the end of file is not reached (i.e., there are more bvtes
in the filed, another load vector is assumed to immediately
follow and will be processed as previously described.

2y I+ the end of file (EOF) is reached, examine locations $2ES
and $2E1. I+ they are zero, terminate the bimary load. If they
are nonzero, do oa JBR to the addrese in these locations.
Upoan return, terminate the load.

Btill confused? Let me trv Lo simplify. If vou see a load
vector like "ER2 82 EX @27, v kmow that the subroutine at the
address specified in the following 2 bytes will get executed
itmmediatel v, prior to continwing the load process. I+ vou see a
load vector like “E@ @2 E1l ©2°, vou know that the subroutine at
the address in the following ta 7 bytes will be esxecuted after
the end of file is reached.

NMow that vyou understand everything there is to know about
Binary load files, let’s take a typical example! converting the
BABIC cartridge to binary load file. I use this example because
it is instructive and, because of the lack of copyright notice,
appears to be legal. Using this technique on other cartridges
could be illegal and may not work anyway due to the booby traps
designed to prevent them from running out of RAM.

Whenever attempting something new, it is advisable to try it
out marnually from OMNIMON first whenever possible. Let’s see what
it takes to get the BRASIC program to run out of RAM:

~Turn on the computer with BASIC installed and pop into OMNIMON.

—~Insert a formatted scratch disk into the drive and execute the
following command: "Wl AGEE 48 (RETURN) ™.

~Remove the BASIC cartridge, boot up DOS and pop into OMNIMON.

~Because OMNIMON restores MEMLO to €739, we should reinitialize
DOS by doing a JSR to the address at DOSINI ($C, D). For 2.68
that would be *"J1544 (RETURN) (START/RETURN) ™.

~Move the screen down by storing a $99 in location $6A and doing
a JER #FIF6: A 6A @9 (RETURN)Y ", "J F3F6 (RETURN) (START/RETURN)
~Read BASIC back into memory with . "R1 AG@H 44 (RETURN) ".

~Find the initialization address by looking at location $BEFFE.
Since that is $BFF?, execute *J BFF? (RETURM) (S8TART/RETURN) .

~-Find the start address by looking at location $BFFA. Since that
is $AGOY, execute TJ AEEEH (RETURM) (START/RETURN) * .

BASIC will now come up running. Now we want to create a Dbinary
load file to simulate the last 4 steps.

~Type "DOS" to get to the DUOS menu.

-Jse the "K° command to save BASIC as & birary load +ile giving
it the start address of AGGE and the end address of BFFF.

~Fop into OMNIMOM and put it in linked sode. Read the first
sector of the new file into $6406049 {(see top of page 7 i+ vou
don”t know how to find the first sector of a file).

=Hold down RETURN until “"EOF® is printed out. You now have the
last sector of the +ile in menor v.

~Determine the last byte of that sector o vse by looking at the
byte count ($&687F). Start adding the foliowing bhyvtes at location
H6OAE + byte count (we are appending ta the file):bR @0 &A @0 0
B2 @2 EI 92 Fé& F3 @8 98 @98 98 09 @6 93 &0 FA BF &0 FE BF Eg @2
162 dgg 98,

=~Increase the byte couwnt ($&E7F) by %1E and write that sector
back out to the disk with W (RETURMN) ©,

Here is an explanation of these load vectors: The +irst 11
bytes move the scoreen down and the rest load a little routine

inta #9888 to initialize and start the cartridge. Disasssemble
them to see how. Except for the booby traps, vouw should be able
to gagily estend this technigue to 16K certridges. However, some
cartridges assume that memory i1s olear, S0 vow can append the
following load vectors: 6% 98 0% 98 AF 98 AY @7 85 DS A9 #d 85 D4
A9 @l 91 D4 ES DA DB FB ES DB AT 2P CH 0% L9 FP ER 92 EI @2 @9
8 &9 This will clear out DJIS before starting the cartridge.

Ramdisk Hardware Modification

A very useful modification can be made to vouwr Ramdisk board
to make it much better behaved. It will save you from having to
flip the switch on the Ramdishk in order to run software which
loads into the $FCE-$FFF range. As it stands, writing to this
address range will cause Ramdisk banks to be switched in in place
of user memory. This usually causes the program to crash. This
mod disables the $FCE-$FFF range and doubles the other select
renge +from $CFCEH-$CFFF to $CFBE-$CFFF, which should cause no
problem. If yvou do this mod carefully it will probably not affect
the warranty but it is best to check with AXLON to be safe. In
the past they have recommended it.

1) Locate pin 18 on the card edge of the RAM board in the front
RAM slot {(the slot just behind the 0S5 board). It does not
matter what type of FRAM board this is (16K or 3I2E). Follow the
etch back to a convenient place to solder (perhaps the pin of
an I and solder one end of a 6" wire to this spot. On an
ATARI 16K board this would be Z8581 pin 1.

2) Locate the 74L81ZE3 IC on the Ramdisk. Solder the other end of
the wire to pin 13 of this IC. Referring to the diagram below,
make the indicated cut on the underside of the Ramdisk board
and the mod is complete.

Coldstart Switch

This switch connects the RESET buttomn directly to the Reset
pin on the &5#E, allowing youw to do a coldstart without coycling
power . This is especially useful in conjunction with the Ramdisk
because its contents are preserved as long as you don’t cyole
power . (This dis not true under the original Memory Management
System supplied by AXLON.) It is also possible to recover from
aystem lockup by pushing the coldstart switch a&nd popping into
OMNIMONL. with SELECT/RESET. From that point vou can many times
restart the program by hitting SYSTEM/RESET (e.g.., BARIO.

Installation is accomplished by disassembkling the computer
and locating the pads on the motherboard as indicated in the
drawing for the B@¢d., On a 49¢ the pads are located in the back
right bhand corner betwesn R1I7Y and CR1E3. A spring loaded switch
(cheap Radio Shack pushbutton is fine) should be put in series
with a 47 Ohm 174 watt resistor between the two pads. Mount the
switch just to the left of the cartridge hatch.

J4LS(33 - here

POKEY

:

hcut‘_’L

4229 ere

s a8 b

PIA

¥RIB3 oN

2/03%

ATARI 400 N
‘5 \ underside
N of board
1

300 Reset mod Ramolick Aod

OMNIMON Enhancements

When the OMNIMON wunit is puwrchased it comes with the
standard version of the OMMIMON ROM (the chip with the OMNIMON!
label) installed. The many fine features of the standard version
are satisftfactory for the needs of many users. However, you may
tind & need for additional tools as you become more advanced or
as you expand youwr system (AXLON Ramdisk, Happy Enhancement, Rit®S
8@ Column, atod). The variouws enhanced versions of OMNIMON are
designed to meet vouwr neesds.

The different Versions will he described below along with

the price of sach. To order, send a check o MO tod

CDY Consulting

421 Hanbee

Richardson, TX 75486

It yvou order youwr OMNIMON board directly from CDY (214-235-2146),
you may order one or more of the enhancements at the same time at
& B0.08 discount. I vou already have a boart toa friend ta
order one s that vow both can get & discouant on
ernhancements. Yows check, money order, Yiss, Master Card or
are accepted.

Standard Version (H99, 95 This is the FO board svervone muset
Fave to get started. It hes a HELF ocommand which is wusst+ul for
beginning OMMIMON users because it lists all the commands and
Pprarameters. The entianced versions replace this Comimano Wi b
other useful features.

Advanced Version A ($1%.08): This version has features which most
users will find useful: He:x Conver sl o, VMerity Lo compare d
hlocks of memory, Happy Upload/Download to talk to the Rok
butfers in a Happy deive, support +or the RESET mod whioh
allows vyou to recover from system loockan, arnd printer A0
redirection to allow yvou to echo all OMNIMON interacticns to,
2Aay, & disk file.

Ramdisk Version R ($23.38): This (or the L version) is & must for
all AXLON Ramdisk owners! It allows vou to use yvour FRamdisk
under many environments which up to now were not compatible
with this product. This includes most DOE's (At ari, s+,
MY DOZ, etc.) and many games and word processors. The contents
of Ramdisk are preserved under coldstart which, in canjunction
with the lockup recovery, makes vouw prograns in Ramdisk such
sater. Youw can even boot from Ramdisk! 6 simple hardware mod is
described which makes the Ramdisk compatible with all software
(no need to ever twn it off).

Banked Version L ($Z3.08) . This version was designed for those of
vou who do not need the debugging commands of OMNIMIN so much
as some powerful disk I/0 facilities. Among these facilities
vour will find the Ramdishk support described above and a binary
load command which will load ANY binary load file without DOS
and doubles as a disk directory command. Other commands unigue
to this version include move oemnory, programmability (it will

gk OMNIMON USER™S GUIDE page 22

remembar & seguence of commands), and heradecimal arithmetic
by =y %, /). Also, it i user extendible, i.e., there are certain
fived entry points into OMNIMOM through which external software
can access many of the most useful routines in the monitor. The
documentation explains the use and calling mechanism of each
routine. But what if vou are wnwilling to give up the debugging
commands for all of this? MNot to worry., The U version is made
to conplement the L version. Read an.

Banked Version U (%15.6@): The debugging commands left out of the
L version are present in the U version with the addition of
a couple of new ones. U and L were desigred to work together.
In fact, U shouwld not be used without L. But how do o vou uss
both 4k programs when there is only one 4K socket provided? T+
vou order U and L together they will come in & single 8 ohip
with a switch attached. You simply mount the switoh and then
you o are free to toggle back and forth betwesn the lower and
upper (L. and W) banks. It will evern prompt vouw when yvou try to
use & command which is in the other bank. The twoe new commands
are & mini-assembler and a relocate command Ffor translating
HIEE code to executable code anvwhere in memory.

OMNIMON Version#/Feature Correspondence Matrix

Command Standard Advanced-A Ramdisk-R Banked-lL Banbed-Ll

AL Alter Memory # * * * *
B:RBoot (Ram)disk - - ¥ * -
CrCRY Registers ¥* * # * *
DiDisplay Memary * * * # *
E:Single Step * * - - *
FrFill Pragm Buffer - - - * -
GiBin Load /7 Div - - - ¥ -
H:iHex Conversion - * * & -
HiHex Arithmetic - - e * -
IiInstall Ramdisk - - * ¥ -
Jidump Subroutineg # * * - *
LiDrive Control * * * ¥* -
M:Move Men Block - - - #* -
MiReloco 6582 Code - - - - ¥
O: Operate Prgm Buf -~ - - * -
FiFrinter Control * * * ¥ *
FioRead from Disk * * * * -
Sihearch Memory * #* #* ¥ -
T:Tgl He«/Ohr Mode * * * #* #*
Uilser®s Command - - - * -
ViVerifty Memory - * * #* -
WilWrite to Disk * * * * -
AiDisassemble Mem * * * - #*
Yitssemble to Mem - - - - *
ZiExit monitor - - - * -
Lockup Recovery - #* * * -
Frtr 170 Redirect - * * * *
Happy Support - * * * -
BRit3 Bupport - * * ¥* *

— k'S % —

Ramdislk Support -

8K OMNIMON USER™S GUIDE page 23

AXLLON Ramdisk Support: *I° and B’ commands

These commands allow Ramdisk owners to take full advantage
of the power and flexibility of this marvelous device. The
resident Ramdisk handlers in OMNIMONL allow you to use your
Ramdisk with any DOS which uses standard SI0 calls ($E459 and
$E453) ., Operation of the Ramdisk in conjunction with drives other
than single density is possible if the DOS will support them
(2.g., 08A+, MYDOS, etc.). In addition, you will find it possible
to use the Ramdisk with other boot programs which reguire a lot
of disk access (@.0Q.. DBEMSs ., word processors, geames, etc.). The
general rule is that any program that will restart when you hit
SYBTEM REBET (instead of rebooting) should be able to use the
Ramdisk just like any other single density disk drive. It also
makes things easier if the program has no disk copy protection.

The main command to support Ramdisk is 71 (cdrive#) . This
command installs the resident Ramdisk handlers into whatever
software is currently in memory. It does so by searching all of
menory for all references to $E459 and $#E453 and replacing them
with hooks into OMMIMON ($CFC8 and $CFCR respectively). In this
way all §5I0 calls are intercepted and examined to see i+ the
Ramdisk is being addressed. I+ it is, the special handlers take
over. Else, the call is passed on to SI0.

Installation Technigue #1

The basic technigue for installing the Ramdisk handlers is
to boot-up the software, pop into OMNIMONL with OFTION/RESET, use
the 17 command and then restart the program by holding down the
START switch and typing RETURN. This is the same as doing a
warmstart with & brief stopover in OMNIMONL. I+ hitting RESET
causes th program to reboot (e.g.. ATART DOS 2.45%) then yvou may
use SELECT/RESET to interrupt the program. I+ the program
restarts whern vyou exit OMMIMONL with STAORT/RETURN, then
evervthing is probably fine. I+ vou are unable to restart the
program without rebooting thern another method can be used {mee
Installation Technigue #2).

Let’s take a typical example:

1) Be sure that yow Ramdisk is enabled and boot up ATARI DOS
2,85 (or any of the many modified versions). Once the DOS menu
appears, pop inta OMMIMONL with SELECT/RESET.

2) Now type “I(returm ”. (I+ vou do rnot specity a drive # atter
the *17, drive #1 will be assumed.) Drive # s equal to or
greater than the Ramdisk drive # will be incremented by 1.

3) Return to the DOS menu by holding down the START switch and
typing RETURN. Hit RETURN once again to get the menu back.

4) Format the Ramdisk with the I command of DUS.

3 Write DOS files to the Ramdisk with the H command of DOS.

&) Hit SYSTEM RESET. If yvou did the previous steps correctly, the
DOS menu should appear very guickly since it will now boot out
of the Ramdishk.

Now vyou can treat the Ramdisk just like any other single
density drive in the system. If you wish to assign it a different
drive #, pop into OMNIMONL and use the 17 command again with the
new drive #. Notice that once the "I° command has been used, the
"RT and "W commands of OMNIMONL will also treat the Ramdisk just
like another disk drive. Use the "L#)° command to address the
different drives in the system.

Ramdisk installation can be accomplished from assembly
language by storing the drive # in TIBNUM ($94) and doing a JSR
INSNUM ($CF24). The following 11 bytes appended to the end of a
binary load file will automatically install the Ramdisk handlers
where drv# = 1 to 4): 924 4@ 94 @9 drv# ER @2 EZ @2 24 C(CF.
Appended to the end of DUFP.SYS, these load vectors will take the
place of installation technigue #1 whern vou boot up DOS.

Installation Techniqgue #2

This method will allow yvou to use Ramdisk with many boot
programs which do not use DOS or have their own file management
system. This method will work only if the program is on an
unprotected disk.

1) Boot up a disk sector copying program. Install the Ramdisk as
drive #1 using technigue #1.

2) Duplicate the boot disk using the Ramdisk as the destination
drive.

X)) Pop into OMNIMOML again and select the Ramdisk with the L7
command. (It ig already selected i+ it is drive #1.)

4) Now we must install the Ramdisk handlers into the program on

the Ramdisk. This is done by reading the program into memory,

using the 1" command and writing the program back out to

disk. I¥ the program takes the entire disk then the following

sequence will work: R1 4@ e, TL,WY O 4@@ 1@g, R1dgl 44

1069, T, Wigl 499 1008, RZE1 4693 D@, T, WEZ@1L 488 D@, This is not as

much typing as it loocks because of the screen editing features

of OMNIMON.

Now type “EBlreturn)’®. This command will boot off the selected

drive but most of the time will work only on drive #1. It is

gspecially useful for booting off the Ramdisk.

This method may not work with some programs because they
have interrupt routines located in the address range of %4909 to
s7FFF. Because Ramdisk uses this area of memory for its bank
switching, vyou carn see how an interrupt routine in this region
would rnot work too well during Ramdisk 1/0.

Once the program is in the Ramdisk, you can always reboot it
with the "B command, even if you have run other programs since
copying it up there. This is especially true if vou do the simple
hardware mod described next. But don™t cyole powesr or the
contents of Ramdisk will be lost. I+ vou wish to do & coldstart,
do a “JE477 (return) START/RETURN® from OMNIMON or install &
coldstart switch as indicated on the next page. By the way. the
Ramdisk uses banks 1 to 7 while the user bank is bank #.

OFTIONASL SWITCH FOR OMNIMON! »
CAUTION: Make sure your OMNIMON!* board works in your system before installing this switch.

For the purpose of running software which is incompatible with a modified ATARI 0S¥* or other
hardware or software that does not want any memory in the $C880 address space a DPDT switch
with center off (Radioc Shack #275-428 or equal) may be added. A 12" to 14" length of four{(4)
conductor 26 gauge wire is enclosed with your OMNIMON'!' board. Solder one end of the wire to

4 of the é contacts on the DPDT-center off switch as shown below. The individual wires should
seperate by pulling them apart but starting the seperation by snipping between the wires with
small wire cutters helps. Form the other end of the wire as shown below. Remove the 1.,8" jumper
wire between the J and K sockets, save this wire incase you want to remove the switch later.
Insert the wires on the formed end as shown below into the sockets labeled K, J, BND and M.
Make sure the wires are fimly in the sockets and not shorting against anything else. Tie the
wires to the board as shown below with small waxed string (waxed dental floss workes good).

The switch positions have the following meanings:

OMNI ~ OMNIMON!'* resides at address $C888 with SELECT or OPTION/RESET interrupt active,

DIS. - OMNIMON'!'#* resides at address $C880 with SELECT or OPTION/RESET interrupt disabled
(Atari 05#* is unmodified) and

REM. - address space $C868 is empty and Atari 0S** is unmodified.

To have the Optional Switch added to your board,

return it with a check or money order for $15.688 to:

The Peipheral Connection, attn./ Bill Williams, (817)445-5944

2814 S, Cooper St., Suite 256, Arlington, Texas 74815

Above pricing is in U.S. dollars on a U.S, bank. Canadian orders add $5.88 and other foreign
orders add $15.88 for postage and handling.

*# trademark of CDY Consulting
*#% trademark of ATARI, Inc.

0.1" INSULATION STRIPPED 7o
¥ = { sWITCH

T r«—o.‘i"——)'

= = G | REV
FORMED WIRE K= DIs.
| g g oMNi
—a T &—GND R,
OROM o &) gt
F |o /
3
o]
o
3 7 GND
o hY|\\V4
<—]-WAXED STRING
OMNIMON! N
by David Young
¥

OMMNIMON ! 2+ WeaRRAaMNT Y

The OMNIMON!* board is warrantied by CDY Consuiting against defects in

materials and manufacturing for a period of one(l) year from the date of

purchase, This does not apply to hardware that has been misused, abused,
modified (except for the optional switch addition if installed correctly),
unauthorized repair, installed incorrectly or damaged in shipment.

This warranty is Timited to repair or replacement of the OMNIMON!* board oniy.

1f you suspect a board to be defective, describe the problem and return

the board to the address below (not to the dealer you purchased it from’
with the original OMNIMON'!* ROM in the original packaging.

A registration card must be on file for warranty work to be performed.

<> I{ the board is found to be defective it will be repaired and returned
at no charge. Try the board BEFORE adding the optional switch.

<> 1f the board is found to be defective due to factors other than
defective materials or manufacturing the board will be repaired for a
fee of $15.88 ($23.88 if physically damaged beyond repair),

{> I+ the board is recieved in working condition the board will be
returned for a handling fee of $3.88. MaKe sure the board has been
instalied properly before returning. EVERY board is tested and
guaranteed working before leaving the factory.

¢> All the above prices include return C.0.D. UPS ground postage, subtract
$2.88 for pre-payment and add $2.88 for UPS blue label.

<> I+ in doubt, describe the problem and return the board and you will be
notified by return postcard if there are any charges.

The above pricing is in U. S. dollars on a U. S, bank. Canadian orders add

$5.88 and all other foreign orders add $15.88 for postage and handling.

Refer questions on OMNIMON!% to:
CDY Consulting, David Young <(214)235-2144
42%f Hanbee, Richardson, Texas 75688

For quickest repair send board with original OMNIMON!* ROM and packaging to:
The Peripheral Connection, Bill Williams (817)445-5944
2814 8. Cooper, Suite 254, Arlington, Texas 74815

* trademark of CDY Consulting

OMNIMON! INSTALLATION INSTRUCTIONS

*** OMNIMON! is a trademark of CDY Consulting.
*** ATARI and ATARI 400/800 are trademarks of ATARI, Inc.

CAUTION: Your ATARI 400/800 computer and the OMNIMON! board contain STATIC SENSITIVE electronic
components. Use a sheet of aluminum foil as your work surface. Make sure your computer is unplugged. Always
touch the aluminum foil with both hands before picking up electronic components. Read these instructions completely
before installing the OMNIMON! board.

ATARI 800 (see drawing on back):

1)
Remove the personality board from slot 1 of your 800. Remove the case from the board and lay the board on the
aluminum foil work area. The case is no longer needed. It is also recommended that you remove the case from the
RAM board in slot 2.

2)
Remove ROM “F’’ from the board by inserting a small flat bladed screwdriver between ROM “‘F’’ and the ATARI
socket. Pry ROM *F’’ out of the socket by prying first at the top of the chip and then at the bottom to slowly rock it
out of the socket. Place ROM ““F”’ on the aluminum foil work area.

3)
For this step the OMNIMON! board should be left on the styrofoam packing to be sure the pins on the bottom of
the OMNIMON! board are not bent. Insert ROM “F” into the ROM ““F’’ socket provided on the OMNIMON!
board. First align the pins on one side of the chip and then the other side until all pins are aligned to the center of
the socket holes. Press ROM ‘‘F”’ into the socket evenly until the chip is seated all the way into the socket. Make
sure all of the pins went in straight and none are bent.

4)
Next, connect the wire on the OMNIMON! board from the hole labeled ‘““H’’ to pin 20 of ROM “‘D’’. This may be
performed by using either method ‘‘a’’ or ‘‘b”’.
a)
Solder the loose end of the wire to pin 20 of ROM “‘D”’ on the back side of the ATARI board.
b)
First remove ROM “‘D’’ from its socket in the same manner as ROM *“F”’ in step 2 above. Insert the loose end
of the wire into the socket at pin 20 of ROM “D’’. If the wire feels snug then re-insert ROM “D”’ into the
ATARI socket in the same manner as ROM ““F’’ in step 3 above. Test the snugness of the wire. If it pulls out
easily, use method ‘‘a’’ above.
5)

Next, insert the OMNIMON! board into ROM “‘F”’ socket on the ATARI board. If the ROM “‘F*’ socket pins on
your ATARI board are sprung the OMNIMON! board may not fit snugly enough to stay in place under the normal
vibration of moving the computer around. In this case, use the enclosed waxed string to secure the OMNIMON!
board to the ATARI ROM “F’’ socket. Route the waxed string under the ATARI ROM “‘F’’ socket from top to
bottom. Tie the string around the board as shown in the drawing.

6)
Re-install the personality card into slot 1 of your 800.

7)
Power up the computer as you normally would. If the screen is blank or otherwise abnormal, re-check your installa-
tion. Especially check for bent or misaligned pins. All the OMNIMON! boards are tested before leaving the fac-
tory. If you suspect the fault is with the OMNIMON! board, please refer to the LIMITED WARRANTY section
of the OMNIMON! USER’S MANUAL.

ATARI 400 (see drawing on back):
Installing the OMNIMON! board into the ATARI 400 is the same as for the ATARI 800 except for the following

steps:

The extra socket is used as a spacer between the ROM “‘F”’ socket and the OMNIMON! board.
1)
Bend the OMNIMON! board at a 90 degree angle as shown in the SIDE VIEW. Remove the ATARI 400 mother
board. It is recommended that you have the help of someone with prior experience in disassembling the ATARI 400.
6)
Re-install the ATARI 400 mother board.

WAXED
STRING™

&

OMNIMON! INSTALLATION DRAWINGS
' ——fo \J 1} pin 20
146T BG4/ 1 16T S
i rom o § ROM ¢ :
R i vgr B § ROM
I A I B T R
u tNe) E g 1
E / gg 0 il E
0 H
?E SN -V S
279 / h O13 12
- =T eSS
IOy M eI CICI O L q \ U
OMNIMON ! © 2
by David Young K g
LU uoogUoooa M'G’

ATARI® 80O

:

|

— WAXED
STRING

ROM

\= =g =
00000000d00 Y
m

-
W

/

mgmpegaps =y =
O OoOUuooOonoDOg

LEFT

CARTRIDGE

id Young iY}in 20
1

= g—g =g~y

¥ ROM
Tm D 13T SIDE VEIW

s

SIDE
q VEwW

A\

24
nnnnnnnnnn_g g SLOT
OMNIMON I - ; &_

by Dav
== m=g=g=a=gepep=pnge

A\

T\

HARDWARE BY BILL WILLIAMS

AYY

ATARI® 400

* TRADEMARKS OF ATARI,INC.

LI 20N 20 BER I BN §

\4

