-

-~

THE

MAC/65
TOOLKIT

An Essential Aid for ALL MAC/65
Programmers,

MAC/4% ToolKit version 1.80

A Refarence Manual For

The MAC/4% ToolKit Diskette

The programs and manual comprising the MAC/43 ToolKit
are Copyright (c} 1984 by

Optimized Systems Softwars, Inc.
Precision Software Tools
1221B Kentwood Avenus
San Jose, CA 9512%
(408)444-30%9

-

L | -
i All rights reserved. Reproduction or translation of any part of this work
beyond that permitted by sections 1907 and 108 of the United States

Copyright Act without the permission of the copyright owner is unlawful.

'

MAC/485 ToolKit

version .00

Table @f Contents
Introduction
Using The MAC/65 ToolKit
The MAC/65 TooiKit Abbreviations
Supporting Macros
The HAC/43 ToolKit Error Codes
KERNAL.N6S Hacron
PMGR.M45 Macros
Using The SCROLL.M&5 Library
SCROLL Memory Locations
SCROLL.M4&5 Macros

24
26

‘26

28

Note: The macro descriptions in the last three
sections are alphabetized for your conveni-
ence. Alsc, thera is a synopsis of the macros

4t the beginning of rach pertinent section.

Simiie

MAC/685 ToolKit ver1.08 Page 1

Introduction

The MAC/&5 ToolKit is an extensive collection of macros coupled with
precisely written run-time code which greatly facilitates machine language
programming on ths Atari computer using either the disk or cartridge
version of MAC/é3,

The KAC/45 ToolKit is parfect for both the beginning and the professional
machine language programmer, The beginner wiil find his/her transition to
machine language is greatly simplified by the ToolKit’s BASIC-like syntax.
The professional programmar will appreciate the time and money that the
ToolKit saves by providing debugged and precisely written code for most
common operations. Included on the ToolKit disketie are three librariss:

¥ERNEL.Ké3 - this 4ile provides: 2 byte operations, integer math,
1F...THEN, DO loops, ERROR handiing, 170 (including multiple byte and
binary load), graphics, sound and random number generation.

PHOR.M43 - a group of routines which set up player-missile graphics,
move playsrs, missiles, detect collisions, and much more,

SCROLL.M45 - routines which implement automatic screen fine scrolling
capabilities.

Using The KAC/é% ToolKit can cut your programming time in half,
Programs which previously would not have been attempted in machine
language are now done easily thanks to the ToolKit's 1/0 support and
graphics routines.

m : The MAC/63 ToolKit is designed for use with
MAC/63 on ATARI computers with 48K of RAM or more.

simply boot your DOS disk with the MAC/éS cartridge
inserted, and then put this disk in your drive. THIS DISKETTE DOES
NOT HAVE DOS ON IT AND WILL NOT BOOT DIRECTLY.

LUsing The MAC/ /47 ToolKit

The gensral procedurs for accessing the ToolKit routines is to use the
JNCLUDE directive to make the desired ToolKit commands available. After
the MAC/43 ToolKit libraries have been included, all that is required is &
macro call which, for the most part, uses syntax similar to that of the
tquivalent BASIC statements (eg. OPEN 6,8,8,"D:FILE). It is best to
include The ToolKit files you plan to use at the very beginning of your
source code as in the following example:

1000 JMP MYCODE
1010 +INCLUDE ND:KERNEL .M4S
1829 « INCLUDE #D:PHGR.H43

1838 MYCODE ;YOUR SOURCE CODE STARTS HERE

e

{
_i
i
!

Page 2 MAC/&65 ToolKit verie

>

Note: KERNEL.M65 is required to run either PMGR.M65 or SCROLL.M4S.
The HAC/4% Tool Kit uses the following general rules:

1. All macro calls preserve the value of the X and Y registers. The
value of the accumulator and status ragister are, in general, urcertain
uniess specifically noted in the manual,

2, All the ToolKit global labels begin with GQ; the exceptions are the
special labels used in SCROLL.M3S (Ses Using the SCROLL.M&5 Library)
and the loop counters 1,J, and K. You should not begin any labels in
your code with QQ to avoid potential conflicts.

3. Tha ToaiXit uses the following convention to simplify the passing
of numeric input. If a parameter evaluates to less than 256, immediate
mode Addreasing is assumed, otherwise direct memory mode is used.
Consy.2r the following examples:

POKE $.2888,5 POKE $2089,308

LDA #3 LDA 388 ~
STh $2000 STA $2080

ripand to

Because of these conventions, the programmer should be careful to
avoid the feilowing, which will produce undesireable results:

A) Calling ToolKit macros with page @ labels as parameters.
B} Referencing forward labels in macro calls,

Naturally, the TooiKit macros specifically designed for branching have
no problem with forward referencing of the branch point.

The MAC/45S ToolKit Abbreviations

¥ = & numeric parameter passed in a macro call, If v ¢ 254 immediate mode
addressing is assumed, otherwise direct mode addressing is used.

str - literal ASBCII data. For example: "THIS IS A 3TRING". Remember:
MAC/4% literals require double quotes as delimiters.

ade - used directly as a memory address. For example:

DPOKE adr,v

expands to
LDé By G
§Ta adr R
LDA &8

STA adr+l
if the value v is less than 258.

MAC/SEYS ToolKit veri.00 Page 3

- the numeric value of a label is used. For gxample:

VPOKE adr %
xpands to

LDA W{H

STA adr

LDA #>8

STA adr+]

Supporting Macrows

The follawing macros are used internal to the ToolKit's coding but are not
considered part of the ToolKit since they were not designed for your use.
{You may use them at your own risk if you read and understand their
opsrations.)

PHY - save Y register on stack
PHX - save X register on stack

PHR - save X and Y register on stack
,m PHY - pull ¥ register from stack
PHX - pull X register from stack
PLR ~ pull X and Y register from stack
PLDA - MAC/45 version of LDAP
PLDX - same as PLDA except load X register
BGET - load a literal string,
; CHAN - load X register for IOCB channel
‘ BLT - branch if less than
BGT - branch if greater than

Error Codes

The ToulKit routines generate a couple of their own error codes. Namely:

ERROR 175 ($AF) - detected by PRINUN; indicates integer magnitude is
too large to display in specified field width.

ERROR 176 {8B9) - detected by BLOAD; indicates ile is not in binary
format.

Please Notp: The commands which follow are presented in alphabetic order
by library. This was done to facilitate user referencing,

Page 4 MAC/E5 ToolKit ver i

KERNEL -M&D Macros

The routines in this file allow you to do many diverse operations, so we’ll
greup and synopsize of all of tham for your convenience:

COLOR v - To specify the color value to be used by PLOT,
DRAWTO vi,v2 - To draw a line.

FILL v - To 4ill & screen region.

GR v - Gimilar to the BABIC GRAPHICS command.

LOCATE vi,v2,v3 - Similar 1o BASIC's LOCATE.

PLOT vi,v2 - €imilar to BASIC's PLOT.

POS vi,wv2 ~ Simiiar to BASIC's POSITION.

SETCOLOR visv2,v3 - Similar to BASIC's SETCOLOR.
TXTPOS vi,v2 - To position the cursor in the text window.

integer Math
CALC v - To begin a math calculation.
DIV v - To do division.
INUS v - To do subtractian,
UL .w - To do multiplication.
PLUS v - To do addition
RND v - To generate a random number.
STCRE adr - To save the result of & math calculation,
DINC adr - Two byte increment.
DDEC adr - Two byte decrement.

BGET v,acr# - To get daza from an 10CB channel.
BLOAD =tr - Ta load a binary file,

BPUT v,adr,¥ - To put data to an IOCB channel,
CLOSE v = To cloas an I0CB channel.

CLS - To clear the screen,

CR [v} - To output a RETURN to an [OCB channel.
GET viadr - To get one byte from an 10CB channel,
ININUM v,adr - To get & record from an IOCEB channel.
IHFUT viads - To get a record from an 10CB channel.
OPEN vi,v2,v3,8ir - To open an IOCB channel,

PRINT viadr/str ~ To output records to an IOCE channel.
PRINUM vi,adryv2 - To print out an integer value.
PUT vi,v2 - To put one byte to an IOCB channel.

Program Cen
DO! vi,v2 - To begin a DO loop using the I caunter.
COJ vi,v2 - To begin & DO iocop using the J counter.
DOK viliv2 = To begin a DC loop using the K counter.
GOSUB adr ~ To preserve the X & Y registers when doing a JSR,
IFEG vi,v2,adr - Equality test.
IFGT vi,v2,adr - Greater than test.
IFLT vi,v2:adr - Less than test.

MAC/4% ToolKit ver 1.08 Page 5

IFNE vi,v2,8dr - Inequality test.
LOOF] - Denotes end of DOI loop.
LOOPJ - Denotes end of DOJ loop.
LOOPK - Denotes end of DOX loop.
TRAP adr - Similar to BASIC's TRAF.

BCLR adr,& - To zero a specific number of bytes in RAM.
BMOVE adri,adr2,# - To move & memory block,

DINC adr - To do a two~byie increment.

DPOKE adrwv ~ Do & two byte memory poke low byte first,
PGCLR v ~ To zero a memory page,

PGHOVE vi,v2 - To move 1 memory page.

POKE adr,v - Pokes one byte into RAM.

SOUND vi,v2,v3,v4 - Similar to BASIC’s SOUND.

STOP - Debugging aid to stop program execution.

VPOKE adr,# - Pokes the two byte numeric value of a label or
expression inta memory low byte first.

WAIT v - To perform a time delay.

] And now for the descriptions of the macros themselves. They have been
m alphatetized for your convenience.

BCLR adrsé
Purpose: To set a specific numbar of bytes in RAM to zero.

Params: adr - address of first byte to clear,
- number of consecutive bytes to clear,

Bxample: Clear 1088 bytes starting at location HERE:
1888 HERE umit1900

seed BCLR HERE, 1008

BOBT v.adr,#

Purpose: Gets a number of bytes from a device opened on a specified
channel and stores the bytes at the memory buffer specified.

Params: v - channel number to get bytes from
agdr - address of first byte of memory buffer
- number of bytes to get

| ' Example: Get 5000 bytes from channel 1 and store in BUFFER
1088 BUFFER »=x+3880

9088 BGET 1,BUFFER,5080

i
i
1

Page & MAC/4AY ToolKit ver 1.0

FPurpose: Loads a binary file into memory from the specified davice
using 10CB channel 5. Caution: BLOAD can cause a file to
load on top of your curcently executing program, usually
causing a system crash, unless you are careful about the
address ranges in use.

Params: st ~ device specification

Example: Load an object file into memory:
1009 BLOAD "DIFILE,.0BS"

BHOYE adriiadr2,b

Purpose: Moves & specified number of bytes from one memory location

to another. @,

Params: adri - address of first source byte.
adr2 - address of first destination byte.
= number cf bytes to move.

Bxample: Move 5004 bytes from FROM buffer to TO buffer.
1868 FROM w»=#+58080
1819 TO =%+ 5000

f800 BMOVE FROM,TO,5088

BPUT viadri#

Purpose: PUT a number of bytes from & specified buffer to a device
openad on a specified channe}

Params: v - channel nuimber to PUT bytes to.
adr - address of first byte of memory butfer.
- number of bytes to PUT

Example: PUT 5000 bytes 4rom BUFFER to channel i,
1698 BUFFER #=#45800

o080 BPUT 1 ,BUFFER,3808 ‘ s

MACr&s ToolKit ver .88 Page 7

CALCY

|
Purposs: Begin a math calculation by loading FR® f
(decimal location 212) with a two byte integer value, i

|
Params: v - value it <255 or memory to load FRe from, :

Example: This shows use of all math macros, RESULT
(25#30)/10+280-52:

1018 RESULT .WORD o

3000 ;SOLVE EQUATION & STORE AT RESULT
3810 25

caLC
3029 MUL 38 ;
3638 DIV 18 :
3040 PLUS 288 ¥
3856 MINUS 5S¢
3048 STORE RESULT i

CLOSE v j
Purpose: To close an 1OCH channei, i
Params: v - channel number to close,

Example: Close channel i:

1819 CLOSE |

CLE

Purpose: To clear the scregn.
Params: NONg

COLOR Y

Purpose: Specifies the color vaiue to be used by PLOT. This macro is
similar to the BASIC command COLOR.

Farams: v - Color register used by PLOT,

Example:
1a1e COLOR 1

Page 8 MAC/&6T ToolKit veri.08

CRIv)
Purpose: To output a RETURN to an 10CB channel.

Farams: (v] - optional channal number. 1f no channel is specified, a
RETURN is output to channel 8.

DDEC adr
Purpose: To decrement a two-byte value.

Params: adr - address of the two-5yte value to decrement,

DING gdr
Purpose: To increment a two~byte value,

Params: adr - address of the two-byte value to increment.

Purpose: Divides the two byte integer currently at FRE by the value
given. The quotient is a one byte integer left at FRE. FR#+1
will be set to @ and the remainder will be left at FR1 (3224
decimall.

Params: v - divisor

Example: See CALC example,

I vi,v

Purpose: Begins a loop using the two-byte memory location labeled I
is the counter. 1 will range from the first integer value given
to the Jast and will always use a step value of 1.

Params: vl - starting value of 1
vZ = value of | at which to terminate the loop.

Example: Emulate the BASIC command FOR I«5TART TO END STEP {:
1819 START LWORD @
1028 END JWORD 8

3638 DOI START ,END

MAC/6% ToolKit veri.0 Page ¢

Purpose: Begins a loop using the two-byts mamory location labeled J
as the counter. J will range from the first
integer value given to the last and will always use a step
value of 1.

Params: vi - starting valus of J
v2 = value of J at which to terminate the loop.

Example: Emulate the BASIC command FOR J=BTART TO END STEP 1:

1818 START .WORD 8
1028 END WORD 8

3030 DOJ START,END

DOE vi,v2

Purpose: Begins a loop using the two-byte memory location labelad K
as the counter. ¥ will range from the first integer value
given to the last and will always use a step value of 1,

Params: vi - starting valus of K
v2 - value of K at which to terminate the loop.

Example: Emulate the BASIC command FOR K=7 TO 25 ETHP {:
1018 DOK 7,25

DEOKR adryy

Purpose: Do a two byts memory poke, low byte first.

Pxrams: adr - memory address to poke low byte.
v = value if ¢ 236 or address of first byte of source memory
word,

Example: Move the display list pointer to page é:
10510 DISPL = S48
18029 FRe = 212
1830 DPOKE FR®,DISPL

Note: Also see VPOKE.

Page 19 MAC/4T ToolKit veri1.#

A viv

Purpose: Draw & line using the most recent COLOR from the current
scraen cursor position to the screen position specified. This
command is similar to the BASIC command DRAWTO.

Params: vi = horizontal coordinate.
vl = vertical coordinate.

Example:
1818 DRAWTO 13,335

EItL v
Purpose: Fill screen with specified color.
Params: v - color value

Example: Emulate BASIC FILL program from page 54 of the Atari
BASIC refarence manual:

ie19 GR 5+146

1820 COLOR 3
1638 PLOT 79,45
1840 DRAWTO 58,18
1858 DRAWTO 30,186
1840 PGS 18,45
1088 FILL 3

OET v,adr

Purpose: Gets one byte from device opened on specified channel and
store at memory location specified.

Params: v - chan number to get input byte from.
adr - memory address to store byte.

Example: Get { byte from channel 4§ and save byte at memory location
TEMP:
1818 GET 4,TEMP

’ r MAC/&5 ToolKit ver .88 Page 11
N

- GOSUE adr .
i Purpose: Praserves the Xt Y registers while calling a subroutine
; Pasrams: adr - address of subroutine.

&xampls: Call CIO:

1018 C10 = $E436
1829 80sU8 Clo

SRy

Purpose: Opens the screen with the specified graphics mode, This
macro is similar to the BASIC GRAPHICS command.

: Params: v - graphics mode (same as in BASIC).
Example:

} -~ 1810 BR 7

s LF8Q vivZuade

L

Purpose: Compares two two-byte integers and branches to address
piven if they are equal,

Parame: vi - ist integer
v2 - 2nd integer
adr - address to jump to

Example: Jump to QUIT i ANE=1608:

1818 T4 SWORD 1800
1020 ANS WORD @

3048 IFEG ANS,T1,QUIT
3018 §TOP
3028 QUIT

H
H
!
!
I
i
i

Page 12 MAC/8T ToolKit veri.

LEST vlsy2uadr

Purpose: Branches to address given if ist integer is greater than the
2nd integer.

Params: vi - ist integer
v2 = 2nd integer
adr -~ addrass to jump to

Example: Branch if COUNT>LIMIT:
1010 LIMIT = 25688
10280 TEMP .WORD @
1848 COUNT .WORD 8

3810 VPOKE TEMP,LIHIT

3028 IFGT COUNT,LIMIT, OQUIT
3830 sTOP

3040 QUIT

Note: Since LIMIT is not a memory address and is >254 we must first
poke its actual value into the memory address TEMP for [FGT to work
properly. If we did not do this: IFGT would compare COUNT to the
two-byte integer at memory location 230806,

IFLT vi,v2.adr

Purpose: Branch to address given if the I1st two-byte integer is less
than the 2nd two-byte integer

Params: vi - ist integer
v2 - 2nd integer
adr = branch address

Example: Branch to QUIT if COUNT(25:
1019 COUNT .UWORD @

1920 IFLT COUNT,25,001T
1838 BRK
1948 QUIT

IFNE vi,v3,adr

Purpose: Same as IFEQ except now branch if not equal.
Params: vl - {st integer

vZ - 2nd integer

adr - branch address

Example: See IFEQ example:

MAC/45 ToolKit ver (.48 Page 13

ININUN v.adr

Purpose: Gets a line from the device opened on the specified channet
then converts tha string to & two-byts integer and stores it
in the specified memory location low byte first,

Params: v ~ channel ¥ 1o get line from
adr - address to stors integer value at

Example: Get a number from the aditor and store in TENP:
iate TEMP WORD @

000 "ININUM o, TEMP

INPUT, viadr

Furpose: Gets a line from a device opened on the specified channel and
stores it in specified memory buffer

Params: v - channel # to get line from
adr - addrass to store line at

Example: Get record from editor and store in BUFFER:
1910 BUFFER w#=x+2%4

3810 INPUT 8,BUFFER

LOCATE vi:v2wv3

Purpose: Gets a byte from the specified screen location and
stores it in the specified memory location. This macro
is similar to the BASIC command LOCATE,

Params: vl - horizontal screen location
v2 = vertical screen location
v3 - zddress to store byte

Bxample: Getbyte at 5,5 and store in TEXP:
1010 TEeMpP .BYTE 8

3000 ""LocaTE 5,3,TE

Page 14 MAC/ES ToolKit veri.08

LOOPL
Purpose: Performs the same function as the BASIC command NEXT [
Params: NONE

Example: Determine the sum of the numbers { - 14 and stors at
RESULT:
1018 RESULT .WORD 8

3020 CALC B
3939 Dol 1,18
3040 PLUS I

2850 LOOPT

3048 STORE RESULT

LOOPJ

Purpose: Same as LOOPI, but for the J counter.
Params: NONE

Example: Ses LOOP!.

LOOPK
Purpose: Same as LOOFI, but for the K counter.
Params: NONE

Bxample: See LOOPI.

MINUS v

Purpose: Subtracts & two byte integer from the two byte integer
currently at FRO and leaves the result at FRO.

Params: v - value if <254 or memory location to find value
to subtract from FRO,

Example: Ses CALC sxampla.

MAC/6Y5 ToolKit veri.08 Paga 13

HULv

Purpose: Multiplies the one byte value given by the one byte value
Iocated at FRO. The result is a two byte integer left at FRe,

Params: v - value if {256 or memory location of multiplier.

Example: Sse CALC sxample.

QPEN viv2.v.str

Purpose: Opens a device on an IOCB channsl. This macro performs the
same function as the BASIC OPEN command.

Params: vi - 10CB channel to open
v2 = AUXY
v3 - AUX2
str - davice specification
Example: Cpen the RECORDER on channel 1 for short gap output:
1918) OPEN 1,8,128,°Cs"
EGCLR v
Purpose: Sets a specified page of RAN to zerc
Params: v - number of the page to clear,
Example: Clear page é:
1918 PGCLR &
EQMOVE yiv2
Purpose: Moves a page (256 bytes) of memory from one page to another

Params: vl - source page number,
v2 - destination page number.

Example: Moves the bytes of page 54 to page &:
1819 PGMOVE 54,4

Note: This routine works much faster than BMOVE.

Page {46

MAC/&43 ToolKit ver{.00

BLOT vivZ
Purpose:

Params:

Example:

BLUSwv

Purpose:

Params:

Example:

BOKE adr.v
Purpose:

Params:

Example:

BQS vi,v2

Purpose:

Params:

Plots a point on the screen at the specified location using
the color register specified in the most recent COLOR
commind.

vi = horizontal coordinate
v2 = vertical coordinate

119 PLOT 35,7

Performs & two byte integer addition of the value given with
the two byte integer value now at FRS. The resulting sum is
left at FRE.

v = value if {236 or memory location to find value to add to
FRO,

Ser CALC example.

Pokes one byte into RAN

adr - memory location to poke byte
v = value if <256 or memory location of source byte

Set the top of RAM at 32K boundary:

1919 RAMTOP = 184
1028 POKE RAMTOP,128

Positions the screen cursor. This macro is similar to the
BASIC POSITION command.

v{ = horizontal coordinate
v2 = vertical coordinate

Position cursor at x=3,y={0:
1818 POS 5,10

MAC/&ES ToolKit ver 1.9 Page 17

ERINT viadr/str

Purpose:

Params:

Print records output o a specified channel. The output
record can be optionally a literal string { "helle®) or from a
memory buffer. NOTE: PRINT always outputs an EOL (39B) at
the end of each record. If no BOL is detected in an output
string the length defaults to 255 bytes.

v ~ channel number to output record to
adr/str - address of memory buffer or a literal string

Print HELLO on the screen:

1919 ;USING LITERAL STRING
16290 PRINT &,°HELLO®

1010 jFROM MEMORY
18280 STR .BYTE "HELLD*,s%B

3818 PRINT §,STR

ERINUM viadriv2

Furpose:

Params:

Example:

BUT vi,v2
Purpose:

Params:

Example:

To print out an integer of a given length to a specified
channel.

¥i = the 1OCB channael

adr - the address of the integer
v2 - the width of the number in characters.

1888 PRINLYM 8,VALADR,S

Puts a { byte value to device opened on specified channel.

vi = channel number ta PUT byte to
vZ = value or mem address of byte to PUT

PUT byte from TEMP to device on channsl {:
1010 PUT 1,TENP

Page i8 MAC/&6%5 ToolKit ver1.00

Bibv

Purpose: Generate a random # less than the specified value (which
must be <254) and leave the random number in the
accumulator.

Params: v - Random number will be less than this value.
Bxample: Generair a die roll 1-6 and store in DIE:

1018 DIE .BYTE @

se00 RND &
019 cLc
2020 ADC M1
#0308 §TA DIE

SETCOLOR vi,v2,v3

Purpose: Sets the specified color register to the specified color hue
and luminance values. This macro is
similar to the BASIC command SETCOLOR.

Params: vi - color register
v2 = color hue
v3 = color luminance

Exampla: Set border color to white:
1618 SETCOLOR 4,8,14

SQUND viw2vd.vé

Purposs: Plays a sound of a specified pitch, distortion and volume
using the specified voice, This macro is similar to the BASIC
tammand SOUND.

Params: vl - voice (8-3)
v2 = pitch (8-255)
v3 - distortion (@=14)
vé - volume (8-15)

Example:
1e1é SOUND 2,2084,10,12

MAC/&3 ToolKit veri.td Page 19
STOP
Purpose: Dabugging aid: sounds a tone and then waits for the START
Key to be pressed before continuing execution.
Farams: NONE
Example:
1019 £TOP
STORE agr
Purpese: Gtores the two bytes starting at FR8(=2i2) toa spacified
address. This macro is usually used to store the result of a
math calculation since the math functions use FRS8,
Params: adr - address to store two bytes now at FRO & FRo+(.
Example: See CALC example.
JBAP adr
Purpose: Sets address to whith program execution will jump if an error
is detected (usually an I/0 errorl. It is is initialized to jump
to GRERR which is part of the ToolKit‘s object code. GAERR
will print the ERROR number on the screen and then do a
SYSTEM RESET.
Params: adr - address to jump to on error
Example: Break to monitor on an error:
1919 QUIT STOP
3018 TRAFP QUIT
IXTPGS vivg
Purpcae: Positions the cursor in the text window while in a split
screan mode.
Params: v{ - horizontal coordinate
v2 ~ vertical coordinate
Example:

te1e TXTPOS 25,2

Page 20

MAC/65 ToolKit veri.ng

VPOKE adr,#

Purposs:

Params:

Example:

WAITv

Purpose:

Params:

Example:

Poles the two byte numeric value of a label or expression
into memory low byte first.

adr - memory location to poke low byte.
- label whose value will be poked.

Poke the number 23844 into RAM location 346:
1019 UPOKE 549 ,27000

Performs a time delay. The time wait equals the value given
times 1/58th of a second.

v = number of jiffies (1 /é9th of a second) to wait.

Do nothing for 1 second:
1910 WAIT 48

~

MAC/&3 ToolKit ver 148 Page 21

PR el e N

)

EMGR.M$S Macros

i the routines in this file allow you to creats and move players and missiles
; using a vertical blank routine, as well as check for collisions. The
following is a synopsis of the macros:

: MMOVE vi,v2,v3 - Moves a missile

? MPFC vi,v2 ~ Missile to Playfield collision test

i MPLC vi,v2 - Missile to Player collision test

NSIZIE vi,v2,v3 -~ Set height & width of missile

PLPFC vi,v2 - Player to Playfield collision test

PLPLC vi,v2 - Player to Playsr collision test

PHMCOLR v{,v2,v3 - Sets player/missile color

PMGR v - sets up single line resolution player/missile graphics
PHMOVE v1,v2,v3 - Maves & playar

PSIIE v1,v2,v3 - Sets height and width of player

SETVEC adr ~ Changes the address the player/missle vertical blank
interrupt routine exits to.

SHAPE v,adr - Tells the player movement routine the address of the
first byte of player shape data

HNOVE vi,wv2,v3

Purpose: Moves missile to specified positon on screen
Params: vi - missile # (§-3)

v2 - horizontal coordinate

v3 ~ vertical coordinate

Exampla:

1810 HMOVE 0,125,125

MPFC visv2

Purpose: Checks if a collision has ocrurred between a specified missile
number and playfield number. The zero flag is set if NO
tollision has occurred.

Params: vi - missle number (3-3)
v2 ~ playfield number (8-3)

Example: Jump to KILL routine if collision occurs:
ié1e HPFC 2,1
1920 BNE KILL

Page 22 MAC/65 ToolKit ver it

HELC vi,v2

Purpose: Checks if a collision has occurred betwasn a specified missile
number and player number. The zero flag is set if NO
collision has occurred.

Params: v! ~ missle number (8-3}
v2 - player number (8-3)

Example: Jump to KILL routine if collision occurs:

1019 MPLC 2,1
182e BNE KILL

HE1IQ vivg,vd
Purpose: Set height & width of missile

Params: vi - missile number
v2 - missile width {{ssingie, 2=double, 4=quad)
v3d - missile height in screen lines

Bxample: Set missle 2 to normal width and 15 lines high:
1610 MSIZE 1,2,16

PLPFC vi.v2

Purpose: Checks if & collision has occurred between a specified player
number and playfield number, The 2ero flag is set if NO
collision has occurred.

Params: vi - player number (8-3}
v2 - playfield number (8-3)

Example: Jump to KILL routine if collision occurs:
1018 PLPFC 2,1
1028 BNE KILL

MAC/46S ToolKit ver1.68 Page 28

ELELC vi,wv2
Purpose: Checks if a collision has occurred betwean specified player
numbers. The zero flag is set if NO collision has accurred.
Params: vi - player number (8-3}
v2 = player npumber (8-3)
Example: Jump to KILL routine if collision occurs:
1010 PLPLC 2,1
1828 BNE KILL
EHCOLR vi,v2,v3
Purpose: Sets player/missiie color
Params: vi - player number (9-3)
v2 - color hue
v3 = color luminance
Bxample: Set player { to gray:
1613 PMCOLR 1,8,8
EMGR Y
Purpose: This macro sets up single line resolution player-missile
graphics at the specfied PYMBASE, It also installs the player
and missile movement routine to executs during the vertical
blank interrupt.
Params: v - RAM page to set as playsr-missile base
Example: Set PMBASE (4 pages below RAMTOP:

1010 RAMTOP = 194
1828 BASE .BYTE @

3019 8EC

3920 LDA RAMTCP
3930 SBC #é
3040 §TA BASE

Je5e PHGR BASE

Page 24

MAC/69 ToolKit ver 1.0

BMMOVE viv2ivg

Purpose

Params:

i Noves player to spacified position on scraen

v{ ~ player number (8-3)
v2 = horizontal coordinate
v3 - vertical coordinate

Example:

1919 PHIVE 8,125,125

ESLIR viy2vg

Purpose:

Params:

Example

Sets height and width of player

vi - player numbar
vZ = player width {t=single, 2adouble, 4=quad).
v3 = player height in screen lines

: Set player { to double width and 14 lines high:
1818 PSIZE 1,2,14

SETVEC adr

Purpose:

Params:

Exampls

Changes the address the player/missle vertical blank
interrupt routine exits to. At setup, the player/missle
verticel blank routine exits to the ROM routine XITVBV (exit
vartical blank interrupt) at SE442,

adr - address to axit to

: Install routine DONOTHING to execute during VBI:
1010 SETVEC DOMOTHING
7089 DMUTP.IEI:IB
9618 JMP XITVBV

MAC/&85 ToolKit ver .40 Page 25

EHAPR viagde

Purpose: Tells the player movement routine the address of the first
byte of player shape data

Params: v - player number (8-3)
adr - address of data

Bxample: Alternate shape of player i:
1920 LooP SHAPE 1,PICTUREL

1839 WAIT 15
1940 SHAPE | ,PICTUREZ
1838 WAIT 15

1040 JMP LOOP

Page 26 MAC/&65 ToolKit ver 48

Using the SCROLIL.M&S Library

The Scroll library controls fine scrolling and is a little more complicated
than the other libraries. In addition to macro calls for dimensioning a
scrolling display, the user controls the speed and direction of the scroll
by a direct mamory poke. The memory locations which & programmer may
wish to use are explained in this section. These locations are identified
by global labels which are NOT prefixed by QAQ,

You do not need to understand the details of fine scrolling as the routines
in SCROLL,M4&% manage this complex process for vou. Therfors, this
manual does not attempt to tutor you on this subject. The interested
reader is referred to Do Be Atari and to a series beginning in the October,
1983 issun of ANALOG magazine for more information on fine scrolling.

SCRQLL Memory Locations

The SCROLL.M4S macro SCRDIM installs a routine {o execute as a deferred
vertical blank interrupt routine. If you wish to have another routine
execute as part of the vertical blank interrupt protess, it must be
installed prior to using SCRDIM, SCRDIM saves the address located at the
deferred vertical blanK interrupt vector at location decimal 54¢ and jumps
to it when it has concluded its processing. After dimensioning your
display using SCRDIM, the only thing you must do to execute fine scrolling
is to POKE the proper location.

Birampters to the macro SCRDIN:

MODE - ANTIC mode (2-7) Note: SCRDIM always uses the split screen
mode.

XDIM - Enter the horizontal dimension in characters of your entire
display. It must ba < 254,

YDIK - Enter the vertical dimension in characters of your entire
display. It must be ¢ 254.

SCRBAS - the addrass of the first byte of display data. Some care
must be taken in choosing this valus since ANTIC will be confused if
any mode line jJumps over & 4K boundary. If your screen display is less
than or equal to 4K, placing the screen on a 4K boundary will eliminate
this problem. If your screen is greater than 4K; you must choose the
screen address so that one mode line ends and another begins precisely
on a 4K boundary.

SDISPL - the address at which you would like SCRDIM to write the
display list. Your only concern in choosing this value is that the
display list must not cross a 1K boundary. The maximum length display
list is for mode 2, 4, and & and is 72 bytes long.

MAC/85 ToolKit ver1.0¢ Page 27

Lecations set by the macro SCRDIN

XOLIN - Horizontal right limit of fins scrolling.
YOLIM - Vertical lower Mimit of fine scrolling.

XLOC - the location which contains the horizontal character coordinate
of the upper left corner of the display screen.

YLOC - the location which contains the vertical character coordinate of
the upper left corner of the display screen.

Locations not et by SCRDIN

SCROLL - the location which controls the direction of the fine scroll.
The number you POKE here is the same number the STICK(®) BASIC
function returns when the joystick is moved in that direction {{Ssno
scroll, 7=right to left, 11=left to right), Using this convention allows
you to easily control a fine scroll with a joystick.

VSPEED - the location which controls the vertical fine scrolling speed.
Do a POKE VEPEED,® for the fastest speed. Larger numbers will result
in incrementally siower speeds,

HEPEEBD - ths location which controls the horizontal fine scrolling
spesd as above.

The following is an sxample to do a continuous horizontal fine scroll at
maximum spesd:

1819 POKE HSPEED,®
1820 L1 POKE SCROLL,7
1838 LbA XLOC

184¢ CHP X8LIM

18358 BNE L1

1040 POKE XLOC,®
1879 JMP L1

These locations should NOT be modified by the programmer!

CERBAS - Address of first byte of current display
SHSROL - Horizontal fine scroll shadow register
SVEROL - Vartical fine scroll shadow register
LINES - Internal variable

JHPBYT - Internal variable

RVBIV - Address through which SCRDIM sxits
CWIDE - Character width in color clocks

CHIGH ~ Character height in screen lines

HLINES - Internal variable

Page 28

MAC/8T% ToolKit ver i

SRBYTW - Display screen width in bytes

SDIR - Scroll direction shadow

HCOUNT - Counter contralling horizontal speed

VCOUNT ~ Counter controlling vertical speed

OLDVBV - Holds the previous valus of the vertical blank interrupt

vactor,

SCROLL . MSS Macros

This file contains two macros to enable fine screen scrolling as follows:

SCRDIK v{,v2,v3,adri,adr2 - Sets #ine scrolling parameters.
SETXY vi,v2 - Sets up coarse boundaries for further fine scrolling,

SCRDIM viw2ivdiagedadr?

Purpose:

Params:

Example:

Sets dimension parameters for fine scrolling (ser Using the
ECROLL.MES Library).

vi = ANTIC mode (2-15)

v2 - horizontal dimesion of display (<254)
v3 - vartical dimension of display (<258)
adri - addrass whare display list is written
adr2 - address of ist byte of display data

Set up fine scrolling using ANTIC mode 7. Display size is

64x64, SCREEN is 8K bytes from RAMTOP, and display list is in page &:

SETXY vivd

Purpose:

Farams:

Example:

STOPECROLL

10 SCRDIM 7,64,64,9408 ,IRT-3214254

Does a coarse scroll. The specifisd x,v coordinates of the
entire display are placed at the upper left corner of the
screen. Note: When 3in the fine scrolling mode, ANTIC
retrieves more bytes per line than are displayed on the
screen. Therefore the left edge of the screen will be slightly
off the left of the visible screen.

vi - horizontal coordinate
v2 - vertical coordinate

Mova display setting left corner at x=5,y=8:
10 SETXY 3,8

Purpose: Turns off the fine scrolling vertical blank interrupt routine.

MAC/&% ToolKit verin ‘ Page 29

This macro should be called before exiting a program back to
DOS. The screen, howsver, is not returned to a standard
graphics mode, so the macro GR should also be used to change
screen modes before exiting the program,

Farams: NONE

Example:
10 STOPSCROLL

THE MAC/65 TOOLKIT

Lets You Write Code FASTI

The MAC/65 ToolKit glves you dozens of macros you
can use In your pragrams, allowing you to write
assembly code almost as easily as you write a

BASIC program.

Macros such as SETCOLOR, POKE, PLOT, GET, PUT,
and more are easy to use and understand. Complete
player/missile graphics support can simplify even a
difficult praject. And, fine scrolling s supported so
well it'’s almost automatic.

Why waste timel Write your program with The
MAC/65 ToolKit today and use it tomorrow|

Requires an Atarl Computer with 40KB
Memory, Disk Drive, and an MAC/65
SuperCartridge,

OSS PRECISION SOFTWARE TOOLS

FOR ATARI HOME COMPUTERS
BASEXL oo R, . R . . The most powerful Basic
THE BASIC XL TODLKIT ..,........ ProgrammingAids
IORRTIENNEE . B . . e Fastest structured language
THE ACTIONI TOOLKIT Programming Alds
I IR T , it e Fastest macro-assembler
THE MAC/S TOOLKIT | i vess Programming Alds
BN . . L LTS Asmall C language compller
i R T P Now with BUG/ 65
THEWRITER'STOOL il .. 0.0 ... Writing was never so patural

Optimized Systems Software, Inc.
== = — e ———
12218 Kentwood Avenue, San Joss, California 95129 (408) 446-3089

4B Cynizod Sysbeo S0lbewne, Ine

