Chapter 1 - Introduction

The Graphics Magician Picture Painter is a set of graphics editors and machine
language routines that help you easily put professional. state~-of-the-art graphics in your
own programs. included are routines that help you draw and recreate very compact,
muiticolored pictures (great for use in adventure games and educational software}, and
easily mix text with graphics on the screen. The Graphics Maglctan Picture Painter can
be used just for drawing and saving pictures, or it can be used as a programmers’ tool.
The graphics routines included in this package are being used in dozen of commercially

- marketed software packages, produced by many of the most well-known publishers
in the industry. And with The Graphics Magician available on several leading micro-
computers, designers will find that most of the graphics work done on one machine can
be easily transferred 1o severai others, saving long hours of duplicated work, and insome
cases making software portable in ways never before possible.

Aiso available from Penguin Software is The Graphics Magiclan Animator; a set of
programs that will help you easily create arcade-fast animation that can be controlled
from your own programs. It includes a shape editor for designing fast “pre-shifted” ana
player-missite shapes, a path editor for defining paths, an animation editor that lets you
choreograph your animation, and all the routines necessary to give you full control over
every shape from your own programs.

When learning to use The Graphics Magiclan Picture Painter, start simply. First of atl
sit down with your manual AND your computer. This is computer software, not a book
You'll learn it best by using it while reading about it. Since The Graphics Magician has
many features, it is tempting to want to understand them all immediately To start, just try
some scribbling with lines and fills. Test the “redraw” command to sea how your picture
is recreated. Then experiment with the different options, one by one

Input Devices
The Graphics Magician Plcture Painter requires use ot ajoystick for input while drawing
pictures. As other input devices are supported, we will note so with inserts.

Backup Coples

The Graphics Magiclan is provided on a copyable disk, and all the routines are
accessible by your own programs We strongly recommend that the first thing you do is
make a backup copy or two and store the original in a safe place.

A registration number is written on your Graphics Magiclan disk and stamped on the
inside cover of your manual. If you call with questions regarding use ot this product
please be prepared to provide this number. Also remember to send 1n your registration
card so that we may notify you of any new versions or updates.

Licensing

Any of the routines enclosed may be freely used in your own programs. if the routines
or facsimiles appear in another product for sale, there is no fee, but we do require that a
license be obtained from Penguin Software stating that you have permission te use the
copyrighted routines. Note that The Graphics Magician is available for several different
microcomputers. in writing the different versions, the routines were made as compatible
as possible, so much of the work you do on one computer can be easily transferred to
another, if you desire Some of the basic transfer routines are included in this package
Also, please consider Penguin Software as a possible publisher for your works.

-5

Getting Started

“Boot" your Graphlcs Magician disk (put it in the disk drive, and turn on the drive and
the computer}. When the menu screen is displayed, choose the DOS option by pressing
“D”. When the DOS menu is dispiayed, you'll be ready to make your backup copies of the
master Graphlcs Magicien disk. Have a blank disk or two ready, and remove The
Graphics Magician master from the drive. Insert a blank disk, and choose “format disk”
by pressing the letter in front of the option. You will be asked “which drive to format?”
Respond 1, then press "Y" to verify (because anything on the disk in drive 1 will be
destroyed).

After you have formatted one or two disks, choose the “copy disk” option. You wili be
asked for the location of your source and destination disks (from andto) It you have only
one disk drive, type “1,1" (omit the quotes). With more than one drive, you can copy from
drive 1 to drive 2 by typing “1,2". Now put the master into the disk drive, and follow the
prompts for inserting your source disk (master) and destination disk (copy) After
swapping several times, you will have a duplicate of The Graphics Magiclan master and
can store the original safely away.

Now format one or two more disks to be used as data disks. The Graphics Magician
disk is close to full, so the pictures you create should be stored on a separate data disk
Create these by using the format disk option. Be sure to start with a blank disk, or one
with nothing important on it, as it wiil be erased.

When done copying and formatting, put a copy of the master disk in the drive and
press "B” to get back to The Graphics Magiclan.

You will be presented with a list of choices in parentheses. This is the “menu’” screen
When done using any of the modules listed in the choices, you will always bereturned to
this page. Note that throughout this manual, for ease ot reading and understanding.
single key choices will be listed with their meanings. Most of the choices in The Graphics
Magiclan require only a single keypress, but expressing them in the form “(P)icture
editor” instead of “P” helps one foliow the meanings of each a little more easity

The Graphics Magiclan Picture Painter comes ready to use on an Atari with one disk
drive and at least 48K of RAM. If you have one drive, you will have to switch disks when
you read and save yaur picture files to your data disk. and again each time you are done
with a module and wish to return to the menu screen. If you have more than one disk
drive, you can set the The Graphlcs Magicilan so that it automatically uses drive 2 for the
data disk. To set this, choose "(M)odify data disk” from the menu. At the bottom of the
menu screen the program will list where it expects the master and data disks

Now you're ready to go. Remember, don’t try too much too fast. Try simple pictures,
then experiment with the options, one at a time

Chapter 2 - Drawing Pictures

The picture drawing system is designed to let you create screen pictures that take a
minimal amount of storage space. |t uses Atari graphics mode "E", which displays 160
dots across the screen, and 192 dots down. Each dot can be one of four base colors, and
each of the base colors can be selected by you to be one of 128 available colors
Furthermore, you can change the base colors so thatthey are different in each of up to 96
horizontal zones across the screen. (Each pair of horizontal lines onthescreen canusea
different set of base colors.) Thus, for example. you can have the top of your screen
display the colors violet, orange, red, and yellow: the middle display blue, green, white.
and maroon; and the bottom display black, brown, dark green, and turquoise. Of course
any color combination is possible, with up to 96 of these horizontal zones. Besides the
four base colors per zone, 71 colors have been made by putting together various dot
patterns of the four base colors. Thus, instead of only four base colors in each zone, there
are actually 71 blended colors.

Pictures always take 8K, approximately 8000 bytes, of display space in your computer
However there are ways that allow you to take considerably less storage on disk. About
11 standard 8K pictures can fit on one side of a floppy disk. With The Grephlics Magician
Picture Palnter, you can easily fit fitty to well over a hundred pictures on asingleside ota
disk.

Standard BK pictures are stored as the values in the 8192 bytes that make up the
graphics screen With The Graphics Magician, instead of storing the results of your
drawing as a screen image, the moves that you make in creating your drawing are stored
The moves for most drawings can be in hundreds of bytes instead of thousands. We cali
these “sequential pictures”, since the sequence is remembered instead of the actual
picture.

The effect this has is that the computer "remembers’ what you do as you draw. Later,
when you want to view that picture again, the computer simply reconstructs your moves.
very quickty. f you've played any graphic adventure games, you probably will recognize
what this looks like; the picture redraws very rapidly before your eyes. What you see
recreated are the moves that the artist made while drawing the picture the first time. Most
adventure games use this technique (many of them done with The Graphics Magician).
since they demand that large numbers of pictures fit on a disk. There are also many
seducational products that use The Graphics Magiclan this way, since they also require 4
large number of graphic images.

There are four types of "moves” that you, the artist, can make. You may draw aline. fili
an enclosed area with color, plot a computer “brush”, or type a letter over your picture. In
addition, you may choose from a palette of 71 color mixes, change the base colors in any
zone of your picture, and select one of eight different brushes, ranging from a smali.
precision size to a large, airbrush effect.

Using the Picture Editor

From the menu, select “(P)icture editor".

Now you'll see a black screen, with a few text lines on the bottom, as in figure 2.1. 1f you
move your joystick you'll see a small cursor in the shape of a crosshair move around the
picture. This is what you controi for drawing your picture.

‘H FOR HELP BYTES USED = 00003
MODE LINE X=000 Y=000 FC=05 LC=3
000

Figure 2.1 - Picture Editor Command Lines

Line Mode

When you first start, you are in fine mode. Pressing the RETURN key will put a ‘start
line” command at the current location of your moving cursor. This s the starting point of
the next line you draw. Pressing the joystick button draws aline from the start pointto the
movable cursor (ending point). The ending point also becomes the new starting point
Move your cursor around and try the etfects of the RETURN key and joystick button

How Long Is Your Picture?

When playing with line mode, note that three things happen on the bottom of the
screen. The x.y position listed in middie of the second text line keeps changing as vou
maove the cursor, and each time you press a button, the bottorn line tells you what you just
did ("Start Line at—", or "Draw Line to —). and the byte count at the right side of the first
text line tells you how many bytes you've used for your picture. Each "start line" or ‘draw
lineg" command takes 3 bytes Every picture has a starting length ot 3 bytes

Deleting Steps

The first nice thing to learn is that pressing the DELETE key (in the upper right corner
of the keyboard, you‘don't have to use the SHIFT key), will delete the tast step f you
make a mistake, it's easy to back up as many steps as you want and try again. Note that
each time you delete a step, you see how the redraw option works The program
remembers what you've done to that point and recreates everything except the step you
deleted.

Fine Cursor Control

“(Z)yero" toggles the joystick input so the cursor moves more slowly, allowing you to
zero in on a specific point more easily. Pressing "(Z)ero” again puts you back into normal
mode.

Selection Page

Okay, now for some fun, Press the SPACE BAR. A graphic screen appears that shows
your choices for modes across the top (line, fill, or brushes) and pictures of the eight
brushes, two squares of four colors each on the left that show the current line and base
colors, and a palette showing the 71 possible fill and brush colors. Two small boxes on
the bottom say "range” and “normal”. Your joystick controls a cursor that moves around
the screen.

-8

An “X" near the top should mark the line option, meaning that you are in line mode.
Moving your cursor to the fill option or one of the eight brushes and pressing the button
on the joystick will select that option and put you in a different mode.

A second “X" marks color 3 on the line color box on the left. This means that all your
lines will be drawn in base color 3, which now is orange (the base color boxes are
numbered as shown in figure 2.2). You can put your cursor on any of the four colors, and
pressing the joystick button will select that for line color on new lines. Other line colors
can be selected by changing any of the four base colors.

Figure 2.2 Base Color Numbering

The third “X" marks color 5 on the palette, dark blue. (The palette is numbered from left
to right, starting with 0.) That is the current color used for filling and for brushes. Moving
your cursor to any other color and pressing the joystick button selects that color tor
future fills and brushes.

Select fill mode and a fili color other than black, then press the SPACE BAR. The
SPACE BAR switches between the drawing screen and the selection screen. Whtle
viewing the selection screen, you may change any of the options that you want, or you
may just check the options and colors and press SPACE BAR again to get back to the
drawing screen.

Flll Mode

When in fill mode, you can fill any enclosed area of base color 0 with the current fiil
color by positioning your cursor inside the area you want to fill and pressing the joystick
button. Base color 0 is black when you start, but it can be changed. The area should be
all base color 0, with borders in lines of any other color or the edge of the screen

The fill routine is designed to be as fast as possible, so that pictures that are
reconstructed in a finished program will appear very quickly. Most irregular areas wili
require two or three fill commands to fill the entire area, since with speed comes some
compromise with completeness of fill. The fitl routine used works the following way
1} Scan directly up from the selected point unti! a border is found.

2) Move down one hne filling to the left and right borders.

3) Average the left and right borders to find the midpoint, and move down one line from
there.

4) Check to see if the point moved down to is a border. {f not, go back to step 2.
The basic thing to remember is step 1. It means that the best place to position your cursor
is anywhere directly below the uppermost point in the area to fill. Using this one trick will
minimize the number of fill commands necessary for filling any area.

-9-

Brushes

From the selection page, choose any of the eight brushes by pointingtoit and pressing
the joystick button. Go back to the drawing page and you'll see that your cursoris now in
the shape of the brush that you selected. Each time you press the joystick button, the
brush will be plotted with the color you selected.

The brushes give you a very large amount of controlf over detail, shading, and effects
that cannot be achieved with “line and fill" coloring-book graphics. You will probably
want to start most pictures by laying down a background with lines, then adding most of
the colors with fills, and finally adding the detail touches with brushes.

There is no “brush up/brush down" selection that lets you cover a wide area. Eachtime
you press the button the brush plots just once. If you want to move across an area, you
have to keep pressing and releasing the button. While strange-seeming at first,
remembar that the computer is remembering your moves. If the brush were constantly
down, it would have to remember each and every point that you move over, wasting a lot
of memory very quickly.

Other Quick and Easy Options,

Including Saving your Picture
While drawing, you have these other following choices available at all times. The letter
commands are listed if you press “(H)elp”.

The ESC key switches between graphics and text display (the normal mode, with the
command lines at the bottom of the screen), and full-screen graphics mode. It has no
effect on the picture itself, since the graphics area under the text is always available

Sometimes, with certain base color combinations, your command lines will not be easy
to read. By pressing “X", you can turn off the interrupt routines that give all the extra
colors, which wili change all your picture colors, but make the command lines iegible
Pressing any other key will bring you back to the color mode.

"{R)edraw" will reconstruct the picture as it would be seen from a program. This 1s handy
if you are trying for some animation (explained iater), and most people admit that it s tun
just to see what you have drawn redone at blinding speed by the computer

“(S)ave” allows you to save your picture in the special compact format created by The
Graphics Magician. To view this picture later, you will have to load 1t back into the picture
editor, or follow the instructions for using the PICDRAW routine in chapter 4

The “(8)ave” command only saves the displayed portion of the picture, which should be
remembered when in edit mode, described below. This allows a way to extract parts of
pictures, if desired.

"
“(Control-S)ave” (holding down the CONTROL key while pressing 'S') saves a standard
screen image of the picture displayed on the screen. This saves the full BK screen area.
and may be useful if you want to use the picture but not the PICDRAW routine

Note that there is NO way to edit a picture previously saved in 8K format with this picture
editor. Pictures created with other graphics editors cannot be converted to the special
compact format of The Graphics Magiclan. Since it is the moves that are saved, the
pictures must be created with The Graphics Magician Picture Painter to have this
compact format.

-10-

"(Control-C)lear” lets you clear the current picture and start over. Before clearing, the
program will ask you to verify that you really want to clear the old picture. Press “(Y)es" if
you do.

“(Q)uit” lets you return to The Graphics Magiclan menu. You are asked to verify that you
really want to quit, in case you haven't saved the picture you are working on.

Changing Base Colors
Suppose you don't like our choices of black, green, biue, and orange for the base
colors, or that you want to use different base colors for part of your picture. Go to the

-selection screen, and move your cursor to one of the boxes marked “bases”. Press and

hold down the joystick button, and move the joystick . The base color in
the square that you chose will keep changing until you center the joystick or release the
button. Note that the entire palette will change because of the different base color. You
may change each of the base colors until you have the combination you want.

You're not donel Once you have the combination desired, move your cursor to the box
marked “range” at the bottorn, and press the joystick button. A third graphics page will be
shown that gives the 192 horizontal lines on the screen and the four base colors chosen
for each, which now should be the original black, green, blue, and orange. Suppose you
want your new colors on the top half of the screen. Move your cursor to the top, press the
button, then move to the middie of the screen (around 90), and press the button again.
Presto! The top of the screen contains the new base colors. Press the SPACE BAR to go
back to your palette screen, and once again to go to the drawing screen. The top half of
any drawing you have will now be in the new base colors; the bottom wiil be in the
original base colors.

Anytime you press SPACE to go to the palette screen, your cursor position will
determine the base colors shown for the palette. The colors used at the cursor will be
those shown on the palette. Note also that some combinations of base colors will make
the command lines and the wording on the palette difficuit to read.

it's suggested that you choose your base colors for the ranges of your picture before
drawing the picture. You dom't have to, and you can achieve some interesting effects by
waiting until after all the drawing commands, but by choosing base colors early, you will
always know the boundaries for various colors, and the full effects of each fill command

If, while changing base colors on the palette, you decide you want to start fresh with
the original base colors we gave you, move your cursor to the “normal” box and press the
joystick button. This does not atfect the picture, it only resets the base colors on the
palette.

Adding Text

You can add text to your picture at any time by positioning your cursor where you want
the text to start and pressing "(T)ext". Whatever you type now will be overlaid onto your
picture at that point. Note that color greatly atfects clarity, and that the best results are
with white text on a black background.

The text mode takes control of the cursor. if you want to leave text mode to delete a
character or to make other changes, press ESC. Reaching the end of aline will also take
you out of text mode.

You may reenter text mode at the last text cursor position by pressing “(Control-T)ext”
white in normal drawing mode. Pressing “(T)ext" by itself always puts you in text mode at
the position of the joystick cursor.

-11-

Loading Previously Saved Pictures
You may load in a picture that you had previously saved and add to it or edit it if you
like. Press “(L)oad”, and you will be asked if it's okay to clear the existing picture from

memory. After pressing “(Y)es”, type the name of the saved picture, and it will be loaded
and redrawn.

Edit Mode

Since the picture editor saves pictures as a set of moves, it is possible to go back and
edit those moves, much like a computer program itself. Edit mode allows you to single-
step forward and backward through a set of picture commands, displaying what the
picture looks like at each point, and allowing you to delete or add moves at any time. !f
you decide later that you don't like a color, find where you set that color and set a
different one. If a house needs a few extra lines betore the color is filled in, backstep to
before the color was added and put in the lines. Easy!

Pressing “(E)dit” while in normal drawing mode will clear the screen to black and
position you in your “picture program” at the first move. Each time you press the right
arrow (you may press the key with the right arrow without using CONTROL), the next
move in sequence will be displayed in words at the bottom ot the screen and performed
to the picture. Pressing the back arrow (again, CONTRQOL is not necessary) will back up
one step. Your entire picture is stil stored inn memory. and pressing “(R)edraw’ will bring
it all back, but the edit mode allows you to add to or delete things that you did early in
drawing your picture and see, step-by-step, how it was constructed

In edit mode, all drawing commands remain usable, and anything you draw while in
edit mode will be inserted into your picture. You can also use the DELETE key just as
before to remove commands. Saving while in edit mode only saves what is visible on the
screen. To be sure that you have the entire picture, just press “(R)edraw”

It is also possible to “back into” edit mode from the end of a picture by using the back
arrow. Stepping forward through a picture is faster, but if you have a long picture and
want to 2dit one of the last moves, this makes it easier.

“(R)yedraw" will always let you out of edit mode by redrawing the entire picture s1ored
in memory. You will also get out of edit mode if you single-step through the entire picture
and reach the end.

“(8)ave”, when used in edit mode, will only save the part ot the picture that is displayed
This is a convenient way to save only the tirst half of a picture, for instance. If you wantto
save the whole picture, you should use “(R)edraw" to get out of edit mode

-12-

Chapter 3 - Tricks with Pictures

Objects

One of the features of many programs that require compact pictures is the ability to
move objects from picture to picture, or to draw a picture with an object sometimes
appearing, sometimes not. The obvious exampie is an adventure game, where some-
" thing will appear in a picture, you take it with you, and thus it should no longer appear in
the picture. We'll call this type of thing an “object”.

Objects with The Graphics Magiclan are actually the same as pictures. You create
them in generally the same way as you would any other picture. However, in your own
program, when you use the picture-reconstructing “PICORAW" routine, you tell it to
draw that “picture” as an overiay. The picture thus becomes an object in the picture
previously displayed.

Since objects are usually drawn over other pictures, you should be carefu! about what
types of commands and colors you use. Remember that the object will always have the
same base colors as the picture, or if you change the base colors in the object, the
picture's base colors will also change.

With objects you should also be carefu! about when you use afilcommand, if it is used
at all. Since the fill command requires a base color 0 background, you must be sure this
color is in place before you can fill. When you cannot be sure that the background picture
will provide a base color O fill area, if you use a fill command you should first “black out”
the area with one of the larger brushes.

For detail, most objects are done primarily with brushes and some careful use of lines
Some prefer to set down a black (base color 0) background with brushes first, no matter
what, so that all the drawing commands can be used freely. it's usually a matter of styie

Creating your Object over a Background

To make it easier to choose colors and see how your object will look, you can draw i
directly over a background picture. You may load a background by pressing “(B)ack-
ground” while using the picture editor. it you load a background, you may draw your
object directly on top of it. The background does not become part of your object, nor
does it atfect it in any way. Each time the screen is cleared, the background is displayed
in place of the black screen that normally is shown.

If you loaded a background and then want to ciear it, press "(Control-B)ackground”
This will return you to the normal black background.

A

Animation with Pictures

One of the effects discovered atter the original Graphics Magician was completed was
that of animation created with the picture editor. Suppose you draw an entire picture, and
in the picture is @ man. Your commands in creating that picture are saved, so each time
you view the picture, you'll see it redrawn. Now, suppose that once the picture is

-13-

complete, you draw more right on top of what you finished. For example, draw the man's
ayes closed, then go back and draw them open again. When you press “(R)edraw”, you'll
see the man being drawn to completion, then his eyes will blink! You can extend it out
further and keep drawing over and over the original picture and make all kinds of things
in the room “animate”.

This effect can be accomplished by drawing continuously on top of a picture, or it can
be done by drawing a sequence of objects over your picture. The latter method has the
advantage of allowing more control in timing, even tying it to user responses in your
program. To do it with objects, you might load in the background of the man, then draw
one object of his Closed eyes, and another of his eyes open again. Or you might make
one object his closed eyes quickly overlaid by his open eyes, since it's an immediate
progression. In your program you'd draw the background picture, then whenever you
wanted his eyes to blink, you would draw your blinking eye object(s). You could have it
controlled by time, or have it happen every time someone touched akey. The flexibitity is
yours!

-14-

Chapter 4 - Using Pictures
in your Programs

When you created your pictures in the picture editor, what was saved was your moves
in drawing the picture. To display it, you need some way totell the computer to recreate
" those moves. The machine language routine called PICDRAW does just that.

Put the PICDRAW routine on your disk

First, you must move the PICDRAW routine from The Graphics Magiclan disk to your
program and data disk. To do so, go to DOS and use the option “0 - duplicate file”. To use
PICDRAW with BASIC or any other cartridge, you must use the version “PICDRAWL" If
you will be using PICDRAW with machine language and no cariridge, you may use
"PICDRAWH", which gives you more room. (The “H" and "“L" stand for “tigh™ and "low’
referring to their positioning in memory.)

Using PICDRAW

The following examples use PICDRAWL from BASIC. If you are using machine
language, the calls will be summarized later, but the logic described here remains the
same.

After PICDRAWL is moved to the same disk as your picture files, you can write a short
BASIC program to display the pictures. We will start by giving you a few short
subroutines that wili allow you to access our machine language routines from BASIC
These subroutines should be added to each program that used PICDRAWL. The
tocllowing examples can be found on your disk under the file name PICTURE.BAS

Listing 1 is a quick routine that will initialize a few variables all the other routines will be
using. Since we have to use machine language calis, the array CALL$ will contain the
instructions that will execute each call. The instructions remain basically the same For
each routine, we'll just change the address of the subroutine by changing CALL$(3) and
CALLS$(4).

This initialize subroutine wiII also load an Atari DOS file by calling the Atari DOS loader

routine. We'll use this t ICDR
L e / ¢ [

5998 REM Initialize and Load ICD

6000 DIM FNAMES$(15),CALL$(5)

8010 FNAMES$="D:PICDRAWL.SYS" : FNAME$(15)=CHR$(155)

6020 CALL$(1)=CHR$(104) . CALL$(2)=CHR$(32) : CALL $(5)=CHR$(96)

6025 REM PLA, JSR —--', RTS

6030 ADDR=ADR(FNAME$) : ADDRH=INT(ADDR/256) - ADDRL =ADDR-ADDRH 256
POKE 852, ADDRL : POKE 853, ADDRH

6040 CALLS(3)=CHR$(169) : CALL$(4)=CHR$(21)

6050 X=USR(ADR(CALLS$)) : RETURN

Listing 1
-15-

In listing 1, line 8010 sets the name of the file we will load, line 6020 puts our machine
language instructions into the variable CALLS, line 6030 pokes the address of the file
name into DOS, line 6040 puts the DOS loader address into CALLS$, and line 6050 calis
the loader routine.

Listing 2 is a subroutine at line 6100 that will load a " SPC" sequential picture file from
the disk into the computer. Sequential picture files are loaded with a special loader in the
PICDRAW routine that lets you load the file anywhere in memory. Before calling the
subroutine in fisting 2, you should put the file name to load in FNAMES. Line 6100 of the
subroutine finds the address of the file name, line 6110 pokes that address into to
PICDRAW loader routine, line 6120 tells PICDRAW where to load the file, and line 6130
calls the loader.

6093 REM Call Picture Loader for File FNAME$S

6100 ADDR=ADDR(FNAMES$) : ADDRH=INT(ADDR/256) : ADDRL=ADDR-ADDRH 256

6109 REM Save address of file name in PICDRAW address buffer

6110 POKE 29452 ADDRL : POKE 29453 ADDRH

6119 REM Set picture to load at $5000 hex, or 20480

6120 POKE 29454,0 : POKE 29455,80

6130 CALL$(3)=CHR$(PEEK(29442)) : CALL$(4)=CHR$(PEEK(29443)) : X=USR(ADR
(CALLS)) . RETURN

Listing 2

Listing 3 is & subroutine that we will locate at line 6200 in BASIC. it calls the PICDRAW
routine that sets the graphics display area to mode E and connects an “interrupt driver”
that allows you to use different coiors in horizontal zones across the screen.

6199 REM Set Graphics Display
6200 CALL$(3)=CHR$V(PEEK(29440)) - CALL$(4)=CHR$(PEEK(29441)) : X=USR(ADR
(CALLS)) : RETURN

Listing 3

Listing 4 is a subroutine that will clear the graphics screen and set the initial values for
the PICDRAW routine.

6299 REM Clear Screen
6300 CALL$(3)=CHRS$(PEEK(29446)) : CALL$(4)=CHR$(PEEK(29447)) - X=USR(ADR
(CALLS)) : RETURN

Listing 4

Listing S is a subroutine we will put at line 6400 that draws the picture. Thisisthe call to
the actual picture drawing routine.

6399 REM PICDRAW
6400 CALL$(3)=CHR$(PEEK (29444)) : CALL$(4)=CHR$(PEE¥(29445)) : X=USR(ADR
(CALLS)) : RETURN

Listing 5
-16-

Listing 6 is the rest of our program. It initializes and loads the PICDRAW routine (line
10, lets you enter the name of a picture file (lines 20 and 30), then loads the file (line 40),
sets the graphics mode (line 50}, clears the screen (line 60), and draws the picture (line
70).

10 GOSUB 6000

20 DIM INAMES$(8) - ? "FILE > " INPUT INAMES

30 FNAMES$="D:" : FNAMES$(3)-INAMES - FNAME$(LEN(FNAMES$)+1)="SPC"
FNAMES(LEN(FNAMES$)+1)=CHR$(155)

39 REM Load picture into memory

40 GOSUB 6100

49 REM Set graphics display

50 GOSUB 6200

59 REM Clear graphics screen

60 GOSUB 6300

69 REM Call PICDRAW

70 GOSUB 6400

79 REM Wait for BREAK key

80 GOTO 80

Listing 6

Listings 1-6 make up the program PICTURE BAS on your Graphics Magiclan disk
After you've drawn and saved a picture using the picture ednor and moved the
PICDRAWL routine to your data disk, you can turn otf your computer, putinyour BASIC
cartridge, and boot on a standard DOS disk (not the Graphics Magician disk) When the
screen says READY, put in your Graphics Magiclan disk and type LOAD “D:PICTURE
BAS" and press Return. When the disk stops, put your data disk in and type SAVE
"D:PICTURE.BAS" and Return; now the program is on your own disk Then type RUN
and Return. The program will ask for your picture name, then toad and display it Press
BREAK to get out ot the program, {then reboot by turming the computer oft and on!

Loading PICDRAWL into your Program - Important Note
Since the PICDRAWL. loader that we use in listing 1 uses DOS, DOS must be on your
disk or must have been loaded from another disk before you can load like this

Using PICDRAW with Disk Access

Sequence is important, especially with the subroutine at 6200 that sets the graphics
display and the interrupt drivers. You cannot use the disk drive whitethe interrupt drivers
are connected. Once the graphics interrupt routines are in use, If you wish to access 'he
disk again you must use:

POKE 54286,0

‘

This will disconnect the interrupt routines, and it will have an eftect on the colors
displayed for your picture. Atter you are done with the disk access, you can reconnect
the interrupt drivers with

POKE 54286, 192

which will restore the interrupt routines and the graphics.
-17-

Redrawing a Picture without Reloading

Before being calted, the PICDRAW routine must have the starting address of your
sequential picture so that it can be reconstructed from the beginning. In our example, we
poke in the starting address before we load the picture, in line 6120. This is necessary so
that the routine knows where to load the picture, but is is also remembered later when
calling the actual drawing routine. It is possible to have more than one sequential picture
loaded into memory at any time, and to redraw whichever you want without loading from
disk. To do so, though, you must use the same poke listed in line 6120 before redrawing

The way the vaiues to poke are computed is as follows: it the address of the start ofthe
picture (where it was, or should be, loaded) is stored in variable ADDR,

POKE 29454, ADDR-INT(ADDR/256)" 256
POKE 29455, INT(ADDR/256)

Putting an Object over a Picture

Suppose you created a picture and an object to be drawn over it. To do this from a
program, you would follow the steps in the first example (listings 1-6), then disable the
interrupt (POKE 54286,0), call the picture loader for your object picture (set FNAMES$ to
the name of the object, and call the subroutine at 6100), then skip the step that clears the
screen. instead, reenable the interrupt (POKE 54286,192), and call the redraw subroutine
{at 6400). tnstead of clearing the original picture, the object will just be drawn over it in
the location in which the object was originally drawn.

Listing 7 can be used as a continuation of listings 1-6, and shows an example of
drawing an object over a picture. This example uses an object named "WEREWOLF"

80 POKE 54286.0

90 FNAME$="D:WEREWOLF SPC" : FNAME$(15)=155
100 GOSUB 6100

110 POKE 54286, 192

120 GOSUB 6400

130 GOTO 130

Listing 7

-18-

Chapter 5 - Advanced use of PICDRAW

Loading Groups of Pictures into ‘One File

You can put several pictures in one long file, so that you only load one time, but can
display several different pictures without going back to disk. To do so, you have to first
understand the difference between the DOS loader and the PICDRAW foader. The DOS
loader always loads a file to a specific, pre-determined location in memory. The
PICDRAW loader will load a picture from disk to the address you specify just before
loading.

To create a file with many pictures, you must first use the PICORAW loader to load
each file into memory, one right after another. The DOS loader can't do this, since each
file would be loaded wherever it was originally saved from, and hence each would
overwrite the last.

First, find the length of each picture you plan to use. This can be done by noting the
"BYTES USED"” in the picture editor for that picture. Suppose the results were as in figure
5.1.

Flgure 5.1 - Sample Picture Lengths

Name Length Load At
House.SPC 1254 16384
Tree.SPC 879 17638
Moose.SPC 2318 18517

You next need to choose a starting location for your group of pictures. For example.
we'll start at location 16384 ($4000). Now, load each of your pictures seguentially in
memory. To do this you must use the PICDRAW loader in listing 2 of the previous
chapter. For the first, you would loagd HOUSE . SPC at 16384,

For the second, add the length of “House" to 16384 to find the next available space
16384 +1254=17638, so we.load the second picture, in this example, at 17638 This would
be TREE.SPC. '

Remember the location at which you load each picture, since that's the address you
must poke into locations 29454 and 28455 before redrawing the picture

The third file, MOOSE.SPC. is loaded at 17638 + 879=18517.

Now, compute the ending address by adding the fength of the tast picture (18517 «
2318=20835), and save the entire file by going to DOS and using option "K - BINARY
SAVE". Give the new file name, the starting address (16384 in this exampie) and the
ending address (20835 in the example). Do not give run or init addresses You now have a
DOS format file with all the pictures you chose.

Using a Group of Sequential Pictures

To use this set of pictyres in a program, you will use aprogram similar to that in listings
1-6. The difference is that you wiil not use the loader from PICDRAW (line 40 will not be a
GOSUB 6100). Instead, repeat the DOS loader subroutine at line 6000, with your
“pictures” file name substituted for “PICDRAWL.SYS" in line 6010. All eise would be
identical in the loader routine.

Then, before line 70, where you call the PICDRAW routine, you must poke the starting
address of the picture you want into locations 29454 and 28455 (as described in the
previous chapter). To draw a new picture, just loop back to 60 and call the clear routine,
do the pokes for the new picture, and call PICORAW again.

-18-

Chapter 5 - Advanced use of PICDRAW

Loading Groups of Pictures into One Flle

You can put several pictures in one long file, so that you only load one time, but can
display several different pictures without going back to disk. To do so, you have to first
understand the difference between the DOS loader and the PICDRAW loader. The DOS
loader always ioads a file to a specific, pre-determined location in memory. The
PICDRAW loader will ioad a picture from disk to the address you specify just before
loading.

To create a file with many pictures, you must first use the PICDRAW loader to load
each file into memory, one right after another. The DOS loader can't do this, since each
file would be loaded wherever it was originally saved from, and hence each would
overwrite the last.

First, find the length of each picture you pian to use. This can be done by noting the
"BYTES USED” in the picture editor for that picture. Supposethe results were as in figure
5.1.

Figure 5.1 - Sample Picture Lengths

Name Length Load At
House.SPC 1254 16384
Tree.SPC 879 17638
Moose.SPC 2318 18517

You next need to choose a starting location for your group of pictures, For example,
we'll start at location 16384 ($4000). Now, load each of your pictures sequentialty in
memory. To do this you must use the PICDRAW loader in listing 2 of the previous
chapter. For the first, you would load HOUSE.SPC at 16384.

For the second, add the length of “House” to 16384 to tind the next avaiiable space
16384 +1254=17638, so we load the second picture, in this example, at 17638. This would
be TREE.SPC.

Remember the location at which you load each picture, since that's the address you
must poke into iocations 29454 and 29455 before redrawing the picture.

The third file, MOOSE.SPC, is loaded at 17638 +879=18517.

Now, compute the ending address by adding the length of the last picture (18517 ¢
2318=20835), and save the entire file by going to DOS and using option "K - BINARY
SAVE". Give the new file name, the starting address (16384 in this example) and the
ending address (20835 in the exampie). Do not giverun or init addresses You now have a
DOS format file with all the pictures you chose.

Using a Group of Sequentlal Pictures

To use this set of pictures in a program, you will use a program simiiar to that in listings
1-6. The difference js that you will not use the loader from PICDRAW (line 40 will not be @
GOSUB 6100). Instead, repeat the DOS loader subroutine at line 6000, with your
“pictures” file name substituted for “PICDRAWL.SYS" in line 6010. All else would be
identical in the loader routine.

Then, before line 70, where you cali the PICDRAW routine, you must poke the starting
address of the picture you want into locations 29454 and 28455 (as described in the
previous chapter). To draw a new picture, just loop back to 60 and call the clear routine
do the pokes for the new picture, and call PICDRAW again.

-19-

Memory Usage and Difterent Versions of PICDRAW
PICDRAWL

PICDRAWL is the version of PICDRAW 10 use with a cartridge installed, such as
BASIC. It requires at least a 40K system. The PICDRAW and display list/interrupt routines
reside at $7300-$7FFF (29440-32767). The graphics memory is located from $8010 to
$9EOF (32784-40463). The cartridge is at $A000, so $9E10-$9FFF is free.

Your picture buffer (where the picture commands get loaded) may be placed
anywhere there is room, but the usual place is directly below the PICDRAWH routine (we
used a bit of overkill in our example by putting the bufter at $5000, giving over 8K of room,
over four times what will usually be needed). To find the highest iocation you may use for
the buffer, find the length of your longesi picture (from the picture editor) and subtract it
from 29440 ($7300), the starting location of PICDRAWL. Sometimes it is useful to
actually use two picture butters. You may want one for “room”, or background, pictures,
and another separate buffer for objects.

The following addresses are special locations in PICDRAW. Most have already been
described in use by the program example in listings 1-6. All addresses are in low/high
format, as described in the pokes for starting location in the previous chapter

Hex Address Decimal Use

$7300-7301 29440-29441 Contains address of routine that sets graphics mode £
and sets the interrupt drivers

$7302-7303 29442-29443 Contains the address of the PICDRAW loader program
$7304-7305 29444-29445 Contains the address of the redraw routine

$7306-7307 29446-29447 Contains the address of routine that ciears the graphics
screen and resets all the PICDRAW default variables

$7308-7309 29448-29449 Contains the starting address of the color table
used by the interrupt routine.

$730A-730B 29450-28451 This contains the address of the graphics memory

$730C-730D 29452-29453 This is where you store the address of the name of the
file that the PICDRAW Jjoader will load

$730E-730F 29454-29455 This is where you store the address at which the file
should be loaded by the PICODRAW loader. and where
the PICDRAW routine will draw from

$7010 29456 Contains the status of the last load or draw. 0 1f it
worked, nonzero if an error.

Figure 5.2 - PICORAWL Memory Map

PICDRAWH

PICDRAWH is the version to use on a 48K system with no cartridge instalted ltresides
$2000 bytes higher, as are the graphics page and butfers. You should add $2000 to each
PICDRAWL address to use PICDRAWH.

Changing Graphics Memory

The graphics memory is automatically put at $8010 by PICDRAWL. You may, if you
have reason, put it at $6010 by changing the pointer at $730A. PICDRAWH puts the
graphics memory at $A010, with optional graphics memory at $6010 and $8010.

-21-

Chapter 6 - Transferring and Interpreting

Pictures can be transferred to and from the Atari and other types of computers. With
this version of The Graphics Maglclan is a routine that will accept and interpret picture
files transferred from an Apple computer. It requires a special routine on the Apple that
will send the files, and a cable that connects the Appie joystick port to an Atari joystick
port.

Pressing “(T)ransfer” from the main menu will switch to the transfer program. When
you are ready 1o receive, press “(R)eceive”, then give the name for the transferred file it
will be given a suffix of " PTX", for picture transfer/exchange format. After you press
Return, the Atari will wait for the file to be sent, then save it to disk.

Go back to the main menu and select “(lynterpret”. The interpret program will let you
take a binary {SPC) file and change it into a text (.PTX) file, orchangea .PTXtiletoa SPC
binary file. You want to do the latter, so press “(T)ext to binary"”. You will be asked for the
name of the input file and for a name to give the output .SPC file. Then you'll be asked for
X and Y multiplication factors. Coordinates are not the same on each computer. Apple
uses a 280 by 192 dot graphics screen. On the Atari, we're using a 160 by 192 dot screen
Apple coordinates are muitiplied by 100 when they are sent out. To interpret them in the
same proportions, the Atari must divide the X by 175 and the Y by 100. You shouid enter
these values. The tile will then be transferred to Atari .SPC format.

You can now go to the picture editor and see the results of your transfer. Chances are
that you will want to make color changes, expecially those that make use of the extra
colors available on the Atari by using color zones. You may do this by just single-
stepping through the picture and adding and deleting commands as needed

Picture Listings

Pressing "(L)ist picture” from the interpret program lets you list the commands used
to create your picture. Normally, this will be of little use, but it may at sometime be ot
interest to see your picture “program” histed.

-22-

Chapter 7 - Advanced Programming:
The Interrupt Routines

If you want to add an interrupt routine of your own from machine language, and you
want the color interrupt routine to keep functioning, you must put the following
commands into your interrupt routine

PHA ;push accumulator at start of interrupt
STX COLORX ;save x register

LDX VCOUNT ;get vertical line counter

LDA COLORB,X ;these two statement only waste time
BNE * + 2 they can be replaced

LDA COLORO0-15X .get playfieid color 0

STA COLPFO

LDA COLORB-15X get background color

STA COLBAK

LDA COLOR1-15,X ;get playfield color 1

STA COLPF1

LDA COLOR2-15X get ptayfield color 2

STA COLPF2

LDX COLORX

PLA

RTI

COLORKX is any location set aside by you for saving the x-register contents.

VCOUNT is the vertical line counter, location $D40B
COLBAK is the background color register, location $D01A
COLPFQO is the playfield O color register, location $D016
COLPF1 is the playfield 1 color register, location $0017
COLPF2 is the playfield 2 color register, location $D018

The color table starts at the location stored in $7308-7309. COLORB takes the first
96 bytes, COLORO takes the next 96 bytes, COLOR? takes the next 96 bytes, and
COLOR?2 takes the last 96 bytes.

The *-15" is used because VCOUNT has a value of 15 on the first visible tine of the
screen, corresponding to what we want to be Q.

Please aiso note that if you are making your own display list, the address of the
graphics screen is $8010 or $A010, depending on the version of PICDRAW chosen.
The display list used in Graphics Magicisn follows:

-23-

HIRAM $8000 ;or $A000

BLANKS = $70 ; 8 blank screen lines

BLANK7 = $60 ;7 blank screen lines

BLANKt? = $80 ;1 blank screen line + interrupt

EINT = $8E ;modse E interrupt

E = $OE ;mode E

RELOAD = $4E ;reload memory scan points + mode E
JMPWT = $41 ;wait for vertical blank and JMP

DSPL .BYTE BLANKS,BLANKS BLANK7,BLANK1
.BYTE RELOAD
WORD HIRAM + $10
.BYTE EINT,E
(add the above line 49 more times here, for 50 total)
.BYTE EINT,RELOAD
WORD HIRAM + $1000
.BYTE EINT,E
(add the above line 43 more times herg, for 44 total)
.BYTE EJMPWT
WORD DSPL

Note that every other line is interrupted, which allows us to change the screen col-
or on every other line. Similar design must be used if you create your own dispiay
list.

Interrupts must be stopped by storing a $40 in NMIEN ($D40E) before any /0 1s

done, since /O is also done during interrupts. Resume the interrupts by storing a
$CO in NMIEN.

-24-

