& INTERRUPT PROCESSING

Section & describes system actions for the various interrupt
cavsing events, defines the many RAM vectors and provides
recommended procedures for dealing with intervupts.

The 6502 microcomputer processes three general interrupt types:
chip~reset, nonmaskable interrupts (NMI) and maskable interrupts
(IRG}). The IRG interrupt type can be enabled and disabled using
tha 6502 CL.I and SEI instructions. The NMI type cannot be
disabled at the processor level; but the NMI interrupts other
than L[SYSTEM. RESET] key tan be disabled at the ANTIC chip.

The system events that can cause interrupts are listed below:
chip~reset — power-up

NMI ~ Display list interrupt (unused by 0OS)
vertical-blank (S0/6C H2z)
ESYSTEM. RESET] key

IRG — Serial bus output ready
Serial bus ovtput complete
Serial bus input ready
Serial bus proceed line (unused by system?
SBarial bus interrupt line (unused by system)
POKEY timers 1. 2 and 4
Keyboard key
[LBREAK] key
&£502 BRK instruction {(unused by 0S)

Figure b6—-1 List of System—Interrupt Events

OPERATING SYSTEM CO1&6555 —— Section &
102

The chip~reset interrupt is vectored via location FFFC to E477,
where a JMP vectar to the power—up routine is located. All NMI
interrupts are vectored via location FFFA to the NMI interrupt
service routine at E7B4, and all IRG interrupts are vectored
via location FFFE to the IRG interrupt service routine at E&F3;
at that point the cause of the inferrupt must be determined by
a series of tests. For some of the events there are built in
monitor actions and for cther events the correspoending
interrupts are disabled or ignored. The system provides RAM
vectors so that¢ you can infercept interrupts when

necessary.

CHIP-RESET

The OS5 generates chip-resef in responses to a power—up condition.
The system is completely initialized (see Section 7).

NONMASKABLE INTERRUPTS

When an NMI interrupt occurs, control is fransferred through

the ROM vector divectly to the system NMI inferrupt service
routine, A cavse far the interrupt is determined by s2xamining
hardware register NMIST [R40OF]. The MMI makes a jump %through the
glaobal RAM vector VDSLST [0200] if a display list interrupt is
pending. The 08 does not use display list interrupts, so VDRSLST
is initialized to point to an RT] instruction. and you must not
thange i{ before VDS ST generates a display interrupt.

If the interrupt is not a display—list interrupt, then a test is
made to see if it is a {SYSTEM RESET] key interrupft. If so, then a
Jump is made to the system reset initialization routine (see Section
7 for details of system reset initialization},

I# the interrupt is neither a display list¢ interrupt nar a
LSYSTEM. RESET] key interrupt; then it is assumed to be a

veartical-blank (VBLANK) infterrupt, and the fallowing actions
OECUT:

Registers A.X and Y are pushed to the stack.
The interrupt request is cleared (NMIRES L[D40F1).

A jump is made through the "immediate® vertical-blank global
RAM vector WVWBLKI (02221 that normally points to the Stage i
VBLANK processor,

The following actions occur assuming that you have not changed VVBLKI.

OPERATING SYSTEM CO16555% —— Section &
103

The stage ! VBLANK processor is executed.

The OS5 tests to see if a critical code section has been
intervupted., If ¢o; then all registers are restored, angd an
RTI ingtruction returns from the interrupt to the gritical
section. A critical section is determined by examining %$he
CRITIC flag [0Q42]1, and the processor I bit. If either are
set, €then the interrupted section is assumed to be critical.

I+ the interrupt was not from a critical ssction, then the
stage 2 VBLANK processor is executed.

The 0OS then Jumps through the "deferred" vertical-blank
global RAM vaector VYBLKD £02241. that normally points to the
VBLANK exit rovtine.

The following actions occur assuming that you have not changed VYVBLKD,

o The 565502 A/ X and Y registers are rvestored.

o An RTI instruction is_executed.

NOTE: You can alter the deferred and immediate

VBLANK RAM vectors, buf still enable normal system pracesses; orT
restore original vecters without having te save them. The
instruction at E45F is a JMP to the stage 1 VBLANK processor; the
address at [E440,2]1 is the value normally found in WWBLKI. The
instruction at E462 is a JMP to the VBLANK exit routine; the
address at [E463.21 is the value normally found in VBLKD. These
ROM wvectors to stage 1 VBLANK protessor and to the VBLANK exit
routine will accomplish your goal.

NOTE: Every VBLANK interrupt jumps through vector VVBLKI. Only

VBLANK interrupts from noncritical code sections jump through
vector VVBLKD.

Stage 1 VBLANK Process

The following stage I VBLANK processing is performed at every
VBLANK interrupt:

The stage 1 VBLANK process increments the 3-byte frame
counter RTCLOK E£0012-0Ci4]; RTCLOK+0O is the MSB and RTCLOK+2
is the LSB. This counter wraps to zero when it overflows
(every 77 hours or so), and continues counting.

The Afttract mode variables are processed (sees Appendix L.
B10-12}, '

The stage I VBLANK process decrements the System Timey 1
CDTMVL [0218,21 if it is nonzero;, if the timer goes from

OPERATING SYSTEM C016555 —— Section &
104

nonzeros to zere then an indirect JER is performed via CDTMAL
£02245, 21.

Stage 2 VBLANK Process

The stage 2 VBLANK processing performs the following for those
VBLANK interrupts that do not interrupt critical sections:

The stage 2 VBLAMK preocess clears the &502 precessor I bit.
This enables the IRG interrupts.

The stage 2 YBLANK process updates various hardware
registers with data from the OS data base. as shown below:

Bata Base Hardware Reason for Update
Item Register

SDLETH f02311 DLISTH C[D4G31 Display list start
SDLSTL £02307 DLISTL (R402]

SDMCTL [022F1 DMACTL C[D40C1]

CHRAS L02F41 CHBASE [D40%)]

CHACT L[02F31 CHACTL. £D4011]

GPRIOR L026F] PRIOR ([DOiB1]

COLORO L[02C41] COLPFO {DO1&] Attract mode.
COLORT [O2C5] COLPF1 [DQ171]

COLOR2 EO2C61] COLPF2 L[DC1B]

COLERE LG2C71 COLPF3 LDOi9]

COLOR4 L[02C81] COLBK [DGCiAIl

PCOLRO L02C01 COLPMO LDCiZ21

PCOLRI fG2C11 coLPMl (RO131

PCOLRZ £02C21 COLPMZ2 LDCi4]

PCOLR3 f02C33 COLPM3 [DC161

Canstant = 8 CONSOL LDOIF] Console speaker aoféf.

The stage 2 VBLANK process decrements the System Timer 2
CDTMV2 LO2iA,2] if it is nonzevo; if the timer goes from
nonzero te zero, then an indirect JSR is performed
through CDTMAZ (0228, 21.

The stage 2 VBLAMK process decrements System Timers 3, 4 and
S i$# they are nonzeroc: the corresponding flags are set to
zers for each timer that changes from nonzera to zero.

UPERATING SYSTEM CO16555 ~— Section &

105

104

Timer Timer Value Timer Flag

3 CDTMVE L[021C¢. 21 CDTMF3 f022A,11
4 ChTMVE L[O21E, 21 CDTMF4 £022C, 11
= CDTMVS L0220, 21 CDTMFS (022E.12

A character is read from the POKEY keyboard register and
stored in CH [02FC], if auto rTepeat is active.

The stage 2 VBLANK process decrements the keyboard debounce
counter if it is not equal to zero, and if no key is
pressed.

Thae stage 2 VYBLANK process precesses the keyboard auto
repeat (see Appendix L, EB).

The stage 2 VBLANK process reads game controller data from
the hardware to the RAM data base, as shown below:

Hardware Data Base Function
Register Item
PORTA L£D30031 STICKO [0278] Joysticks and

STICKL [027%9]
PTRIGO [027C3 Paddle Controllers
PTRIGI [627D1
PTRIG2 LG27E]
PTRIG3 [G27F3
PORTE ED3011] STICK2 LG27A3
STICK3 LO27B3
PTRIGA L[02803]
PTRIGS L0Q281]
PTRIGSE [£0282)]
PTRIG7 [02831

POT ¢ L[D2001 PADDLO [0270] Paddle Controllers
POT 1 E£D201] PADDL.Y [O2713
POT 2 (D202] PADDL2 (0272}
POT 3 L[B2031 PARDL3 (02731
POT 4 [D2041 PADRLA {02743
POT S ED2051 PADDLS [0275]
POT & L[D20613 PADDLE 02761
POT 7 {D2071 PADDL7 E£02771
TRIGO [DOOL] STRIGO [O=284] Joystick triggers.
TRIGT [DOO2] STRIG1 [0=2851
TRIGZ (DOG3] STRIGZ L[02841
TRIG3 ([DGC4] STRIG3 £02871

OPERATING SYSTEM CD1&60355 —— Section &

MASKABLE INTERRUPTS

An IRG interrupt causes control to be transferred through the
immediate IRG global RAM vector VIMIRG [02i61. Ordinarily this

vector points to the system IRG Handler. The Handler performs
these following actions:

The IRG Handler determines a ctause for the interrupt by

examining the IRQST £D20EY regisfter and the PJA sfatus

regisfters PACTL [D3023 and PBCTL L[D303]. The interrupt status bit
is cleared when it is found. One inferrupt event is cleared and
processed for each interrupt—-service entry. If multiple IRGs are
pending, then a separate interrupt will be generated for each
pending IRG, until all are serviced.

The system IRG interrupt service routine deals with each of the
possible IRG cauvsing events, in the following ways:

a The &502 A register is pushed te the stack.

0 If the interrupt is due to serial I/0 bus output ready.
then clear the interrupt and jump through global RAM
vector VSEROR L[020C1.

o If the interrupt is due fto gerial 1/0 bus input ready.
then clear the infterrupt and jump through global RAM
vector VBERIN C[O20A].

o If the interrupt is due te serial I/0 bus output
complete, then clear the interrupt and jump through
global RAM vector VSEROC L[O20E].

o If the interrupt is due to POKEY timer #1. then clear the
interrupt and jump through global RAM vector VTIMR! [0210].

o If the inferrupt is due toc POKEY timer #2, then clear the
interrupt and jump through global RAM vector VTIMR2 L[0212].

o I# the intarrupt is due to POKEY fimer #4, then clear the
interrupt. The service routineg contains a bug, and falls
into the faollowing test.

o If pressing a keyboard key caused the interrupt (other
than [BREAK], [STARTJI, C[OPTION], or L{SELECTI}; then clear the
interrupt and jump through global RAM vector VKEYHBD £02081].

s} If pressing the [BREAKI key caused the interrupt; then
clear the interrupt. Set the BREAK flag BRKKEY [00111 to
zero, proceed to clear the following:

Start/stop flag SSFLAG L[Q2FF]

Cursor inhibit flag CRSINH [0O2FO01]
Attract mode #lag ATRACT [004D1

OPERATING SYSTEM C0146555 —- Secticn &

107

Return from the interrupt after restoring the 6502 A
register from the stack.

o If the interrupt is due to the serial I/0 bus proceed line;

then clear the intervupt, and Jump through global RAM vector
VPRCED [020213.

v} If the interrupt is due to the serial I/0 bus intervupt
line, then clear the intervrupt and jump through global RAM
vector VINTER [0204],

o If the interrupt is due ¢o a &502 BRK instruction, then jump
through gleobal RAM vector VBREAK L[02061].

0 If none of the above, restore the &502 A register and refurn
from the interrupt (RTI}.

INTERRUPT INITIALIZATION

The interrupt subsystem completely reinitializes itself whenever
the system is powered up or the [SYSTEM RESETI key is pressed.
The 05 clears the hardware registers, and sets the interrupt
global RAM wvectors to the following configurations:

Vector Type Function
VDSLST £0200] NMI RTI —-- ignore interrupt.
WWBLKI L[02221] " System stage 1 VBLANK,
CDTHMAL L[0226] " 510 timesut timevr.
CbTMAZ2 (02281 M No system function.
VVBLKD L0224] « System return from interrupt.
VIMIRG L[O216] IRG System IRQ processor.
VSERDR [020C13 it SI0.
VBERIN [0Q20A1 = SI0.
VSERDC [C20E1 4 510.
VTYIMRI £02101] “ PLA, RTI —— ignore interrupt.
VTIMRZ £0212] i PLA, RTI —- ignore interrupt
VTIMR4 £02141 # ##¥# doesn’t matter #3iu
VKEYBE £0208] r System keyboard

inferrupt handler.
VPRCED £02021] o PLA'RTI —— ignore interrupt.
VINTER £02041 - PLA, RTI -~ ignere interrupt.
VBREAK L[02061] BRK PLA, RTI —— ignore interrupt,

Figure &-2 Interrupt RAM Vector Initialization

OPERATING SYSTEM CD14555 -- Saction &
108

System initialization sets the interrupt enable status
as follows:

NMI VBLANK enabled, display list disabled.

IRG CBREAK] key and data key interrupts enabled, all others
disabled.

SYSTEM TIMERS

The 0S5 contains five general purpose software timers, plus an
O0S—supported frame counter. The timers are 2 bytes in length
{le.hi) and the frame counter RTCLOK L0012 is three bytes in
length (hi.mid,10). The timers count downward from any
nonzero value to zero. Upon reaching zera, they either clear
an associated flag:, or JSR through a RAM wvector., The frame
counter counts upward, wrapping to zero when it overflows.

The following table shows the timers and the frame counter
tharacteristics:

Timer MName Flag/Vector Usa

CDTMVL £02183 CDTMAL [022&61 2-byte vector —-— SI0 timeout.
CDTMVZ [021A] CDTMAZ L[O02283 2-byte vector
CDTMV3 [021C] CDTMF3 [022A]1 1-byte flag
CDTMV4 [O21E] CDTMF4 [022C1 1-byte flag
CDTMVS (02201 CDTMFS [O22E31 1-byte flag
& RTCLOK L[O012] 3—-byte frame counter.

* These two timers are maintained as part of every VBLANK
interrupt (stage 1 process). The other timers are sub ject to
the critical section test (stage-2 process), that can defer
their updating to a later VBLANK interrupt

USAGE NOTES

This subsection describes the techniques you need to know in

order to utilize interrupts in conjunction with the operating
system,

DPERATING SYSTEM CD1455% —— Section &
109

POKEY Interrupt Mask

ANTIC (display—list and vertical—blank} and PlA {(intevrrupt and
proceed lines) interrupts can be masked directly (see the
Hardware Manual}. However:. eight bifts of a single byte IRGEN
£D20E] mask the POKEY interrupts (LBREAK] key, data key.

serial input ready, serial output ready, serial output done
and timers 1,2 and 4).

IRGEN is a write—only register. Thus: we must maintain a
current value of that register in RAM in order ¢o update
individual mask bits selectively, while not changing other bits.
The name of fthe variable used is POMMSK {00103, and it is used
as shown in the examples below:

i EXAMPLE OF INTERRUPT ENAEBLE

SEIT i TO AVOID CONFLICT WITH IRG ...
i.DA POKMSK ; ... PROCESSOR WHICH ALTERS VAR.
ORA #$xx i ENABLE BIT(S).

STA POKMSHK

8TA IRGEN i TD HARDWARE REG T0O.

CLI

i EXAMPLE OF INTERRUPT DISABLE

SEI i TO aVOID CONFLICT WITH IRG ...
LA POMMSK ; ... PROCESSOR WHICH ALTERS VAR,
AND #EFF-xx ; DISBABLE BIT(S).

STA POKMSK

STA IRGEN i TO HARDWARE REGISTER TOO.

CLI

Figure &6—3 POKEY Infterrupt Mask Example

Note that the 05 IRG service routine uses and alters POKUMEK, so
alterations to the wariable must be done with interrupts
inhibited. I1f done at the inferrupt level there is no prcblem, as
the I bit is already set; if done at a background level then the
SEI and CLI instructions showld be used as shown in the examples.

Setting Intervupt and Timer Vactors

Because vertical-blank interrupts are generally kept enabled so that
the frame counter RTCLOK is maintained accurately, there is a
problem with setting the VBLANK vectors (VWBLKI and VVBLKD} ar

the timer wvalues (CDTMV1 through CDTMVE} directiy. A VBLANK
interrupt could occur when only one byte of the two—-byte value had
been updated, leading to undesired consequences. For this reason,

OPERATING SYSTEM CD1&45535% —— Section &
110

the SETVBV

LE43F] routine is provided to perform the desired

updats in safe manner. The ctalling sequence is shown below:

>
it

X
Y

nu

JER

The
The

update item indicator

1 - 5 for fimers 1 -~ 5,

& for immediate VBLANK vector YWBLKI.
7 for deferred VBLANK vector WWBLKD.
MSE of value to store,

LSB of value to store.

SETVBY

A X and Y registers can be altered.
display list interrupt will always be disabled on

return, even if enabled upon entry.

it is possible to fully process a vertical-blank interrupt
during a call to this routine.

When working with the System Timers.

2 and the flags for ¢timers 3.4 and 5 should be set while the

associated

timer is equal to zero, then the timer should be set

to its (nonzero) valuye.

Stack Content at Interrupt Vector Points

The following table shows the stack content at every one of the

RAM interrupt vector points:

DPERATING SYSTEM CO16555 -- Section &

the wvectors fovr timers 1 and

111

RAM STACK CONTENT

INTERRUPT VECTOR DESCRIPTION 08 RETURN CONTROL

VDELST £02001 Display list return, P

VVBLKI EG2221 # VBLANK immediate return, P, & X, Y

CDTMAT LCO2241 System Timer 1 return, P, A, X. Y, rveturn
CDTMAZ [G22813 System Timer 2 return, P, A, X. Y. rveturn
VVBLKD {02243 » VBLANK defer. return, P, A X. Y

VIMIRG £02146]1 =+ IRG immediate return, P, A

VSEROR [020C]1 = Serial ocut Teady return, P, A

VBERIN [O20A3 « Serial in ready return, P, A

VSEROC [QO20E] = Serial nuf tompare return, P, A

VTIMRL [Q21iG1 POKEY timer 1 return: P, A

VTIMR2 CL0O2121] POKEY timer 2 return, P, A

VTIMR4 [02141] POKEY timer 4 return, P:. A

VKEYBD L[0O20B81 # Kegbpard data return, P, A

YPRSED L2021 Serijial procesd return, P, A

VINTER L[020473 Serial interrupt return, P, A

VBREAK {02061 BRK instruction return. P, A

Figure 6-4 Interrupt and Timer Vector RAM Stack Content Table

¥ The 058 initializes thease entries at power—up. Improperly
changing these vectors will alter system performance.

Miscellaneosus Considerations

The following paragraphs list a set of miscellaneous
considerations for the writer of an interrupt service routine.

Restrictions on Clearing of "I Bit

Display list:. immediate vertical-blank and Sysfem Timer #1
routines showld not clear the 46502 I bit. If the NMI leading fto
one of these routines occturred while an IRQ was being processed.
then clearing the I bit will cause the IRG to re-interrupt with
an snknown result,

The 05 VBLANK processor carefully checks this condiftion after the
stage 1 process and before the stage 2 process.

Interrupt Process Time Restrictions

You should not write an interrupt routine that exceeds 400 msec.
when added to the stage i VBLANK, if the serial I/0 is being
uvsed. The SID sets the CRITIC flag while serial buws I/0 is in
PTrOgTess.

OPERATING SYSTEM C016553 —— Section &
112

Interrupt Delay Due to "WAIT FOR SYNC*"

Whenever a key is rvead from the keyboard, the Keybocard Handlenr
sets WSYNC [D4CA] repeatedly while generating the audible click
on the console speaker. A problem occurs when interrupts are
generated during the wait—for-sync period: the processing of such
interrupts will be delayed by one horizontal scan line. This
condition cannot be prevented. You can work around the condition
by examining the line count VCOUNT {D40OB]1 and delaying interrupt
processing by one line when no WEYNC delay has occurred.

FLOWCHARTS

The #ollowing pages contain process flowcharts showing the main
events that occur inm the NMI and IRG interrupt processes.

|Fia INTERRUPT PROCESS

B
‘ VMG ——T
——f |
el gt}
[PUSH REG A
TO STACK

—

‘\/;m.-.:_ S
£l s
iy =

__--
BERIAL
'-':-:.-:_I.h.r r..'V""
o .
e —

R] - — - __.-" "xl
‘__.--""- POREY. e ¥ CLEAR - T bt ' EEN I|
e TIMEnE __.-} "; ErATH ' 4 I. .
i = ! = F ., __.-'"'

= g =

____.--.-::“':-\.-.__ﬁ . o | . % ll--__. \\ll

3 : ™ | —adl

{"'\-\._ TiREN 34 __:-::"" ETATUS L Y HE # ""|I e /J
'\'-_.\.-. --__- L————— iy I ..II'-. \LH.. N

o ———

.--"'-'---'.'-::r.r:ﬁ e | ALEAE | 2 I-'""- '\
e TiMEM ey A i | VTR b (001 1L
e . -". ‘h
e [_,:'". i __ul"l
~#-— — &

'£h g N l-l,--'-'__-\.
-"---:-:'\n'lll.'ln‘-;}-ﬂ"'\-\."' | CLEAR | e \"'_ { kR 1-|
B e T [l MRERED J_,.-"i"'. HAMDLER |

B == LR e

Y — ==

-'--_ = N
f |
[
R

OPERATING SYSTEM C016555 ~- Section &6

113

it4

T CLEAR STATUS,

- | r"lf
S iy SET BREAK FLG || wiil i um
\\\\E“"— CLEAR SIS '-.\\

Y CLEAR '/r
epants” e T T TR TERCE
WGEEF

— [N
CLERH
ETATHS bt

(D)
WAREAR HI_ EEIT

PULL REG A
FROM STACK

o

OPERATING SYSTEM CO1465%5 —~— Section &

NMI INTERRUPT PROCESS

VERTILAL
BLANE

aaah le wmm el e

OPERATING SYSTEM C014555 -~ Secfion &

115

7 SYSTEM INITIALIZATION

Section 7 discusses the details of the power—up and
system reset processes. The power—up process will be gxplained
first, and then the system reset process will be explained in
terms of its differences from the poWer—uyp pracess.

Both power-up (also called coldstart} ang pressing [S8YSTEM. RESET]
(warmstart! will cause system initialization: In addition, thera
are vectors for these processes at E474 (system reset) and E477
(power—up} so that they can be user—initiated.

The power-up initialization process is a superset of the

system reset initialization process. Power—-up inifializes both
the OS5 and user RAM regions, whereas system reset initializes
only the 0OS RAM region. In both cases, the OS calls the outer
level software initialization entry points allow the application
to initialize its own variables.

Pressing the [SYSTEM RESET] key produces an NMI interrupt. It
does not perform a 6502 chip-vreset. If the processor is locked

up, the [SYSTEM. RESET1 key cannot be sufficient to unlock it: and the
system must have power cycled %o clear the problem.

POWER-UP INITIALIZATION (COLDSTART) PROCEDURE

The OS5 performs the following functions in the aorder shown, as
part of the power-up initialization process:

1. The following &502 processor states are set:

a IRQ interrupts are disabled using the SEI instruction.
o The decimal flag is cleared using the CLD instruction.
2 The stack pointer is set to $FF.

2. The 0S8 sets the warmstart flag WARMST L[0008B1 to O (false)

OPERATING SYSTEM C014555 —— Section 7
i1s

10,

i1,

The OS fests to see if 8 diagnostic cartridge is in the A slot:
Cartridge address BFFC = Q07
The memory at BFFC is not RAM?

Bit 7 of the byte at BFFD = 17

If all of the above tests are true, then control is passed to

the diagnostic cartridge via the vector at BFFE. No return is
expected.

The 08 deftermines the lowest memory address containing
non—-RAM, by testing the first byte of every 4K “block” to see
if the content can be complemented. If it can he complemented,
then the original value is restored and testing continues. I#
it can‘t be complemented; then the content is assumed to be
the first non—RAM address in the system. The MSB of the
address is stored temporarily in TRAMSZ [000A].

Zero is stored to all of the hardware register addresses shown
below (most of that aren‘t decoded by the hardware):

DOOG through DOFF
D206 through DIFF
D300 through D3FF
DA0C €hrough DAFF

The 05 clears RAM from location 0008, to the address
determined in step 4, above.

The default value for the "noncartridge” control vector
DOSVEC L[OOQA] is set to point to the blackboard routine. At
the end of initialization, control is passed through this
vector if a cartridge does not take control.

The coldstart flag COLDST [O244) is set to —i (local use).

The screen margins are set: left margin = 2, right margin =
39, for a 38 character physical line. The maximum line size of
40 characters can be obtained by setting the margins to O and
39. The 05 insets the left margin because the tuo leftmost
columns of the video picture on many television sets are not
entirely visible on the screen.

The interrupt RAM vectors VDSLST L[O200] through VVBLKD (02241
are initialized. See Section & for the initialization valuves.

Portions of the 0S5 RAM are set to their required nonzero values

as shown beldow:

OPERATING SYSTEM C01&655% ~- Section 7
117

12.

13.

igq.

15,

14.

17.

iig

The [BREAKI key flag BRKKEY (00111 = =1 (false).

The top of memory pointer MEMTOP [Q2ES5] = the lowest
non—RAM address (from step 4); MEMTOP will be altered
later when the Screen Editor is opened in step 15.

The bottom of memory pointer MEMLO [Q2E7]1 = 0700; MEMLO
can be changed later if there is either a diskette— or
cassette—boot operation.

The following resident routines are called for initialization:

Sersen Editor

Display Handler

Keyboard Handler

Printer Handler

Cassette Handler

Central I/0 Manitor (CID}
SBarial I/0 Monitor (8IO)
Interrupt processor

The [START} key is checked, and if pressed, the cassette—boot
request flag CKEY {004A] is set.

65302 IRG interrupts are enabled using the CLI instruction.

The device table HATABS [031AJ is initialized to point to the

resident handlers. See Section 9 for information relating to
the Device Handler table. S’

The cartridge slot addresses for cartridges B and A are
examined to determine if cartridges are inserted, if RAM does
not extend into the cartridge address space.

If the content of location 9FFC is zaro, then a JSR is
executed through the wvector at FFFE., thus initializing
cartridge “B". The cartridge is expected to return.

If the content of location BFFC is zero. then a JSR is
executed through fthe vector at BFFE, thus initializing
cartridge "A". The cartridge is expected to return.

I0OCH #0 is set vp for an OPEN of the Screen Editor (E) and

the DPEN is performed. The Screen Editor will use the highest
portion of RAM for the screen and will adjust MEMTOP
accordingly. If this operation should fail: the entire
inifialization process is repeated.

A delay is effected to assure that a VBLANK interrupt has

occurred. This is done so that the screen will be sstablished
before continuing.

If the cassette-boot request flag is set (see step 11 above),
then & cassette-boot operation is attempted. See Section 10 -

OPERATING SYSTEM C014555 —-- Section 7

18.

19.

20.

for details of the cassette-boot cperation.

If any of the thres conditions stated below exists, an
attempt is made to boot from the disk.

There are no cartridges in the siofs.
Cartridge B is inserted and bit O of 9FFD is 1.
Cartridge A is inserted and bit O of BFFD is 1.

See Section 10 for details of the diskette-boot operation.

The coldstart flag COLDSYT is reset to indicate that the
ctoldstart process went to completion.

The initialization process is now complete, and the

controlling application is now determined via the remaining
steps.

If there is an A cartridge inserted and bit-2 of BFFD is 1,
then a JMP is executed through the vector at BFFA.

Or, if there is @ B cartridge inserted and bit-2 of 9FFD is
1, then a JMP is executed through the vector at 9FFA.

Or. a jump is executed through the vector DOSVEC that can
point to the blackboard routine (default case): cassette

booted software or diskette booted software. DOSVEC can be
altered by the booted soffware as explained in Section 10,

SYSTEM RESET INITIALIZATION (WARMSTART) FROCEDURE

The functions listed below are performed, in the order shown, as

part of the system reset initializafion process:

A.

B
¢
D.
E
F

Same as powsr—up step 1.

The warmstart flag WARMST [00081 is set to -1 (frue).
Same as power-up steps 3 through O

0S RAM is zeroed from locations O200-03FF and 0010-007F.

Same as power—up steps ? through 16.

If a cassette-boot was successfully completed during the
power—uyp initialization, then a JSR is executed through the

vertor CASINI [00021. See Section 10 for details of the

cassette-boot process,

OPERATING SYSTEM C014355 —— Saction 7

119

G. Bame as power-up step 18, except instead of booting the
diskette software, a JSR is executed thraough the vector DOSINI
[GOOCT if the diskette-boot was successfully completed during the

Power—uyp initialization. See Bection 10 for details of the
diskette—baot process.

H. Same as power-up steps 19 and 20.

Note that the initialization procedures and main entries for all
software entifies are executed at every system reset as well as
at power up (see steps 14, 17, 18, 20, £ and G). If the
user—supplied initialization/startup code must behave differently
in response ¢o0 system reset than it does to power—up., then the
warmstart flag WARMST [000B1 should be interrogated; WARMST = O
means power—up entry: else system reset entry.

DOPERATING SYSTEM C014555 —— Section 7
120

8 FLOATING POINT ARITHMETIC PACKAGE

This section describes the BCD floating point (FP) package that
is resident in €the OS5 ROM in both the models 400 and B800.

The flpating peoint package maintains numbers internally as &6-byte
guantities: a S-—byte (10 BCD digit) mantissa with a i—byte
exponent. BCD internal representation was chosen so that decimal
division would not lead to the rounding errors typically found in
binary representation implementations.

The package provides the following operations:

ABCII to FP conversion.

FP to ASCII conversion.

Integer to FP conversion,

FP to integer conversion.

FP add, subtract:, multiply,and divide.

FP logavithm, exponentiation, and poelynomial evaluation,
FP zero. load, store, and move.

A floating point operation is performed by calling one of the
provided routines (pach at a fixed address in ROM) after having
set one or more floating pouint pseudo registers in RAM. The
result of the desired gperation will also involve flecating poing
pseudp registers. The primary pseudo registsrs are described
below and their addresses given within the square brackets:

OPERATING SYSTEM C01455% ——~ Bection B
121

FRG C0O0D43 &=byte internal form of FP number.

4

FR1 LO0CEOQ] &-byte internal form of FP number.
FLPTR [OOFC] = 2Z-byte pointer (le,hi} to a FP.
number.
INBUFF [OOF31 = 2~byte pointer (lo,hi) to an ASCII text
buffer.
CIX [O0OF21 = l-byte index, wused as offset to buffer

pointed to by INBUFF.
LBUFF £OS80]1 = result buffer far the FASC routine.

FUNCTIONS/CALL ING SEGUENCES
Descriptions of these floating point routines assume that
a pseudo Tegister is noft altered by a given routine., The

numbers in square brackets Cxxxx] are the ROM addrasses of the
rovtines.

ASCII to Floating Peint Conversion (AFP}

Function: This routine takes an ASCII string as input and
produces a floating point number in internal form,

Calling segquence:
INBUFF = pointer to buffer containing the ASCII

representation of the number.
CIX = the buffer offset to the first byte of the ASCII

number.
JER AFP £D8003
BCS first byte of ASCII number is invalid
FRO floating point number.

CIX the buffer offset to the first byte after the ASCII

number.

Algorithm: The routine takes bytes from the buffer until it
encounters a byte that cannct be part aof the number. The bhytes
scanned to that point are then converted to a floating point
number. If the first byte encountered is invalid, the carry bit
is set as g flag.

Floating Point te ASCII Conversion (FASC)

Function: This routine converts a floating point number from
internal form to its ASCII representation.

OPERATING SYSTEM CO1lse558 —-- Section B
122

Calling sequence:
FRG = flogating point number.
JSR FASC [DBEA]
INBUFF = pointer to the first byte of the ASCII number.
The last byte of the ASCII representation has the most
significant bit (gsign bit) set; no EOL follows.
Adlgarithm: The routine converts the number from its internal

floating point representation to a printable form (ATASCII). The

pointer INBUFF will point to part of LBUFF, where the result is
stored.

Integer to Floating Point Conversion (IFP}

Funetion: This routine converts a Z2-byte unsigned integer (O to
65535 to flpating point internal representation.

Calling sequence:
FRC = integer (FRO+0 = LSB:, FRO+1 = MSB}.

JER IFP LD?4AA]

FRO floating point representation of intager.

Floating Point to Integer Conversion (FPI}

Function: This routine converts a pesitive floating point number
from its internal representation to the nearest 2-hyte integer.

Calling sequence:
FRO = floating peoint number.

SR FPI [DYDR2]
BCS FP number is negative ar >= 65535. 5

FRO = 2-byte integer (FRO+0 = LSB, FRO+1 = MESB).

Algorithm: The routine performs true rounding. net truncation.
during the conversion process.

OPERATING SYSTEM CQ14355 —- Section 8
123

Floating Point Addition (FADD)

Function: This routine adds two floating point numbers and checks
the result for out—aof-range.

Calling sequence:

FRO = floating poaint number.
FR1 = flivating point number.
JER FADD EDAAA]

BCS cut-of-range rasuvit.

FRO = result of FRO + FRI,
FR1 is altered.
Floating Point Subtraction (FBUB)

Function: This voutine subtracts two floating point numbers and
cthecks the reswulf for out—-of-range.

Calling seguance:

FRO = flgating point minuend.
FR1 = floating point subtrahend.
SR FSUEB L[DaA&O]

BCS out—of—-range vesult.

FRO = result af FRO — FR1.
FR1 is altered.

Floating Point Multiplication (FMUL)

Funection: This routine multiplies two floating point numbers and
checks the resuvlt for out—of-range.

Calling sequence:

FRG = floating point multiplier.
FR1 = floating point multiplicand.
JER FMUL LDADBI

BCS aut-of-range resuylt.

FRO = result of FRO 2 FRI1.
FR1 is altered,

OPERATING SYSTEM COLI&555 —— Section 8
124

Floating Peoint Division (FDIWV)

Function: This routine divides two floating point numbers and
checks for division by zero and for result out-of-range.

Calling sequence:

FRG = floating point dividend.

FR1 = floating point divisor.

JER FDIV LDE2B1

BLS gut-of-range result ar divisor is zervro,.

FRC = result of FRQ / FR1.
FR1 is altered.

Floating Point Logarithms (LDG and LOGLO)

Function: These routines take the natural or base 10 logarithms
of a floating point number.

Calling segquencs:

FRC = floafting point number.

JSR LOG £DECD] for natural logarithm
or

JER LOGIO LDEDI] for base 10 logarithm

BCS negative number or pverflow,

FRO = floating point logarithm.
FR1 is altared,

Algorithm: Both logarithms are first computed as base 10
logarithms wsing a 10 term polynomial approximation; ¢the natural
logarithm is computed by dividing the base 10 result by the
constant LOGI0{(e).

The logarithm of a number 2 is computed as follows:

F # (10 ## Y) = Z where 1 <= F € 10 {(normalization).
L = LOGLO(F) by 10 term polynomial approximation.
LOGIOC(Z) = Y + L. LOG(ZY = LOGIO(Z) / LOGiO(a}.

NOTE: This voutine does not return an error if the number input
is zero; the LOGIO result in this case is approximately -129. 5,
which is not useful.

OPERATING SYSTEM C014655%5 ~—- Section B
125

Floating Point Exponentiation (EXP and EXP10)
Function: This routine exponentiates.

Calling sequence:

FRO = floating point exponent (Z).

JEBR EXP [DDBCO] for e ## [

ar
JSR EXF10 EDDRCCI for 10 ## 7
BCS aoverflow.

FRO = flgating point result.
FR1 is alterad.

Algorithm: Both exponentials are computed internally as base 10,
with the base 2 exponential using the identity:
e #¥% X = 10 #% (X ¥ LOGIO(e)).

The base 10 exponential is evaluated in two parts using the identity:

10 ## X = 10 #% (I + F} = (10 #% I) # (10 #% F} —-— where I is the
integer portion of X and ¥ is the fraction.

The term 10 #% F is evaluated using a polynomial approximation,

and 10 ## I is a straightforward modification tc the floating
point exponent.

Floating Point Polynomial Evaluation (PLYEVL)

Function: This routine performs an n degree polynomial
evaluation,

Calling segquence:

X, ¥ = pointer (X = LSB) to list of FP coefficients (A(i))
ordered from high order to low order (six bytes per
cagefficient).

A = numbeyr of coefficients in list.
FRO = floating point independent wvariable (Z3}.

JSR PLYEVL L[DDAG]

BCS overflow or other ervor.

FRO = result of Afni#Zu##n + A{n—1)sZs#n~1 ... + A(l)#Z +
ACOS.

FR1 is altered.

Algorithm: The polynomial P(Z) = SUM(i=0 to n} (A(i}#ZIx#i) is
computed using the standard method shown below:

P(Z) = (... (A(n)#Z + Aln~-1)}%Z + ... + A(1)3}%Z + A(O)

OPERATING SYSTEM CO16555 —-— Section 8
124

Clear FRO (ZIFRO)

Function: This routine sets the contents aof pseudo register FRO
to all zeros.

Calling seguence:
JSR IZFRO £DA441

FRO = zero.

Clear Page Zero Floating Point Number (ZIF1)

Function: This routine sets the contents of a zero—page floating
point number fto all zeroes.

Calling sequence:
X = Zearo—-page address of FP number to clear.
JSR IF1 [DA4&]

lere—page FP number(X} = zero.

l.oad Floating Point Number to FRO (FLDOR and FLDOP)

Funttion: These routines load pseudo register FRO with tie
floating point number specified by the calling sequence.

Calling sequences:
.Y = pointer (X = LSB) fo FF number.

JER FLDOR [BDB%]

FLPTR = pointer to FP numbery,

+JSR FLDOP EDDBD]

FRO = floating point number (in either case)
FLPTR = gointer to FP number (in either case}.

OPERATING SYSTEM C0146555 -~ Section 8
127

Loagd Fleoating Point Number to FRI (FLDIR and FLDIP}

Function: These routines load pseudo register FR1I with the
floating point number specified by the calling segquence.

Calling sequences:

As in prior description, except the result goes to FRI
instead of FRO. FLDIR CDD%81 and FLD1P [DDRCI.

Stare Floating Point Number From FRO {(FSTOR and FSTOP)

Function: Thasse roytines store the contents of pseudos register
FRO fto the address specified by the calling seguence:

Calling sequence:

As in prior descriptions, except the floating point noumber
is stored from FRO rather than loaded to FRCO. FSTOR EDDA7VI]
and FSTOP L[DDARBI].

Move Floating Point Number From FRO to FR1 (FMOVE}

Function: This routine moves the floating peoint number in FRO to
pseudo register FR1.

Calling segquence:
JER FMOVE LDDB61

FRI = FRO (FRO remains unchanged).

RESOURCE UTILIZATIODN

The floating point package uses the following RAM locations in
the course of performing the functions described in this section:

0004 through QOGFF
OS7E thraugh OSFF

All of these locations are available for program coding
i# your program does not call the floating point package.

OPERATING SYSTEM CO146555 —— Section 8
i28

IMPLEMENTATION DETAILS

Floating point numbers are maintained internally as &-byte
quantities, with 5 bytes (10 BCD digits) of mantissa and 1 byte
of exponent. The mantissa is always normalized such that the
most significant byte is nonzero (note "byte® and not "BCD
digi€t").

The most significant bit of the expanent byte provides the sign
for the mantissa; O for positive and 1 for negative. The
remaining 7 bits of the exponent byte provide the exponent in
excess &4 notation. The resulting number represents powers of 100
decimal {not powars of 10). This storage format allows the
mantissa €o hold 10 BCD digits when the value of the exponent is
a4n even power of 10, and 9 BCD digits when the wvalue of the
exponent is an odd power of 10.

The implied decimal point is always to the immediate vight of the
first byte. An exponent less than &4 indicates & number less than
i. An exponent equal ¢o or greater than &4 represents a number
equal to or greater than 1.

Zero is represented by a zero mantissa and a zero exponent. To
test for a result from any of the standard routines; test either
the exponent or the first mantissa byte for zervro.

The absolute value of floating point numbers must be greater than
10%%-98, and less than 10#%+98, or be equal to zero. There is
perfect symmetry between positive and negative numbers with the
exception that negative zero is never generated.

The precision of all computations is maintained at 9 or 10
decimal digits, but accuracy is somewhat less for those functions
invalving polynemial approximations ({logarithm and
exponentiation). Also, the problems inherent in aill fleating
point systems are present here; #for example: subtracting two very
nearly equal numbers, adding numbers of disparate magnitude:, or
successions of any operation, will all resylt in a loss of
significant digits. An analysis of the data Tange and the order
of evaluation of expressions may be required for some types of
applications.

The examples helow compare floating poinft numbers with their
internal representations, as an aid to understanding storage
format. All numbers prior to this point have been expressed in
decimal notation, but these sxamples will use hexadecimal
notation. Note that &4 decimal (the excess number of the
exponent) is 40 when expressed in hexadecimal:

Number: +0.02 = 2 % 10#%-2 = 2 #% 100##—1
Btored: 3F 02 0C 00 00 OC (FP expongnt = 40 - 1)

Number: -0.02 = -2 % 10%#%-2 = -2 % 100%#—1
Stored: BF 02 0OQC 00 00 00 (FP exponent = BO + 40 - 1)

OFERATING SYSTEM C014555 -~ Section 8
129

Number: +37.0 = 3.7 = 10%s#1 = 37 % 100%#%0
Stored: 40 37 00 Q0 00 Q0 (FP exponent = 40 + 0}

Number: -4, &0312486 # 10#%ii = ~46.03... % 100#%5
Stored: €5 44 03 01 24 86 (FP exponent = 80 + 40 + 5}

NMumber: Q.0
Stored: OO 0O 0D QO 00 OO (special case)

OPERATING SYBTEM C01655% —— Section B
130

2 ADDING NEW DEVICE HANDLERS/PERIPHERALS

This section describes the interface requirements for a
nonresident Device Handler that is to be accessed via the Central
I/0 utility (CIO). The Serial bus I/0 utility (SIO) interface is
defined for those handlers fthat utilize the Serial I/0 bus.

The I/0 subsystem is organized with three levels of software
between you and your hardware: The CIO. the individual device
handlers, and the SIO.

The CIO performs the following functions:

Legical device name to Device Handler mapping {(on OPEN}.
I/0 Control Block (INCB) maintenance.

Logical record handling.

User buffer handling.

The device handlers are below CI0. They perform the
following functions:

Device initialization on power-up and system reset.
Device—dependent support of OPEN and CLOSE commands.
Byte—-at—-a—-time data input and output.
Device-dependent special oaperations.
Device—-dependent command support.

Device data buffer management.

The SI0 is at the bottom level (for Serial I/0 bus peripheral
handlers}). It performs the following functions:

Caoantrol of all Serial bus I/0, conforming to the bus
protocol.

Bus operaftion retries on errvors.
Return of unified error statuses on evrror conditions.

OPERATING SYSTEM C01655% -- Section 9
131

A separate control structure is used for communication at each
interface, as follows:

tUser/CI0 i1/8 Control Block (IOCB)
CIO/Handley Zero—-page IOCB (ZIOCB}
Handler /510 Device Contral Block (DCB?

OPERATING SYSTEM CO1&4355 ~- Bection %
132

B +
! user H
¢ program {———=—— +
o et i e e +
+ + H
i IOCE s asasaesday!
o e + H ¢
e + '
i CIO i e e + H
i utility | H BCE § 333098 §
e —————— + s e et e e e + ¥ i
: #
; *# 4
e + o —— e + e e e + i
i Z1gCB i i Device | iDisk File! # :
Frm e + i Table | +meww] Manager {-———- +
3* Fm i + H tEES eSS + | 3
| i | i
e } Ep. e e —_——— ;
H i i i t
+—— + + —— o I e + + }
i Printer | | Cassette! - i | Keyboard! | Disk :
! Handler | i Handler | t Handler | i Handler | i Handler |
s e e + Fremm—— + e + Am——— + o+ —+
i : : H
e e +om o e — - +
|
T i — + |
H DCB {sratst s |
e + {
e e e e +
{ SI0 {
¢ UBility !
Where: —~—— shows a control path,

shows the data structure regquired for a path.

Note the following:

1. The Keyboard/Display/Screen Editor handlers don‘t use
cIo.

2. The Diskette Handler cannot be called directly from CIO.
3. The DCB is shown twice in the diagram.

Figure 9-1 1/0 Subsystem Flow Diagram

CPERATING SYSTEM CO16555 —— Section 9
133

DEVICE TABLE

The device table is a RAM-resident table that confains the
single~character device name {e.g. K, D, C, estc). and the

handler address for egach of the handlers known te CIO. The

table is initialized to ctontain entries for the following

resident handlers: Kegboard (K). Display (5}, Becreen Editor

(£), Cassette (C}, and Printer (P} at power—-up and system reset. To
install a new handler, some procedure must insert a device table entry
atter the table is initialized.

The table +ormat is shown below:

B L L

HATARS L[O3ial

4+~ one entry

—+

I e -

$ oo -+

Figure 9-2 Device Table Format

This 3B—byte table will hold a maximum of 12 entries, with the
last 2 bytes being zero. CI0 scans the table from the end fo
the beginning {(high to low address); so the entry nearest the
end of the table will take precedence in case of mulfiple
cecurrences of a device name. .

The davice name for each entry is a single ATASCII character, and
the handler address points to the handler‘s vector table, that
will be described in the following section.

CIO/HANDLER INTERFACE

This section describes the interface between the Central I/0
utility and the individual device handlers that are represented
in the Device Table (as described in the preceding section).

OPERATING SYSTEM CO1469555 —— Section ¥
134

Calling Mechanism

Each handler has a vertor tahle as shown below:

S +
+ OPEN vector + {low address}

+ +

+ CLOSE wecftor +

e - +

+ GETBYTE wvecftor +

o e i i i e e +

+ PUTBYTE vector +

e e e e e i e e +

+ GETSTAT vector +

e e e e +

+ SPECIAL vector +

e +

+ JMP init code +

+ + (high address}
o - +

Figure 9-3 Handler Vector Table

The device table entry for the handler points to the first
byte of the vector tabla.

The first six entries in the table are vectors (lo.hi) that
confain the address ~ 1 of the handler voutine that handles
the indicated function. The seventh entry is a &502 JMP
instruction to the handler initialization routine. CIO uses
only the addresses contained in this table for handler entry.
Each user/CI0O command translates to one or more calls to one
of the handler antries defined in the vector table,.

The vector table provides the handlier addresses for certain
fixed functions to be performed to CIO. In addition, operation
parameters also must be passed for most functions. Parameter
passing is accomplished using the 63502 A, X, and Y registers
and an IOCB in page O named ZIOCB [Q0203. In geneval, register
A is used to pass data. register X contains the index to the
originating IOCB, and register Y is used to pass status
information to CIO. The zero—page IOCE, is a copy of the
originating I0OCE; but in the course of processing some
ctommands, CI0O can alter the buffer address and buffer langth
parameters in ZIOCB. but not in the originating IOCB (see
Section 5 for information relating to the originating IOCH).

Gee Appendix B for the standard status byte values to be
returned to CID in register Y.

OPERATING SYSTEM CD14533 —— GBection 9
135

The following sections describe the CID/handler interface for
each of the vectors in the handler vector table.

Handler Iniftialization

NOTE: This entry doesn‘t appear to have any function for
nonresident handlers due to a bug in the current OS5 -~ the
device table is cleared in response to system reset as
well as power-up. This prevents this entry point from ever
being called. The rest of this section discusses the
intended use of this entry point. Conformation would be in
order to allow compatibility with possible corrected
versions of the 08 in the fufure,

The entry was to have been called on all occurrences of
power—up and system reset; the handler is to perform
initialization of ifs hardware and RAM data using a routine
that assures proper processing of all CIO commands that follow.

functions Supported

This section describes the functions associated with the first
six vectors from the handler vector tahle. This section also
presents a brief, device-independent description of the

CI0/handler interface and recommended actions for each function
vector.

OPEN

This entry is called in response to an OPEN command to CIO. The
handler is expected to validate the OPEN parameters and perform
any required device initialiZation associated with a device OPENM.

At handler entry, the following paramsters can be of interest:

X

index to originating IDCB.
Y

%92 (status = function not implemented by handler).

4

ICDNDZ {00211 = device number (1-4, for multiple device
handlers). :
ICBALZ/ICBAHZ [0024/0025]

address af devicesfilename
specification,

ICAX1Z/1CAX2Z [O0O2A/002R1] device—specific information.

It

£

The handler attempts to perform the indicated DPEN and
indicates the status of the operation by the value of the Y
register. The responsibility for checking for multiple OPENs to

OPERATING SYSTEM C0O1455% —— Secfion 9
1346

the same device or file. where it is illegal: lies with the
handlar.

CLOSE

This wvector table entry is called in response to a CLOSE command
to CID. The handler is expected to release any held resources
that relate specifically to that devices/filename, and for output
files £o:

i1} send any data remaining in handler buffers to the device,
2} mark the end of file

3) update any associated directories, allocation maps, etc.

At handler entry. the following parameters can be of interest:

X
Y

index €0 ovriginmating IOCB.
$72 (status = function not implemented by handler).

ICDNDZ 00213 = device number (1-4, for multiple device
handlers).
ICAX1Z/ICAX2Z {002A/002B] = device-spacific information.

The handler attempts te perform the indicated CLOSE and

indicates the status of the operation by the value of the ¥
register.

CIO releases the assoriated IOCB after the handler reaturns,
regardless of the operation status wvalue.

GETBYTE

This vectar table entry is called in response to a GET
CHARACTERS or GET RECORD command to CIO. The handler is

expected to return a single byte in the A ragister, or refurn an
arror status in the Y register.

At handler entry, the following parameters can be of interest:

X = index to originating IOCE.
Y = 492 (status = function not implemented by handler).

ICDNOZ (00211 = deviece number (i-4, for multiple device handlers),
ICAXIZ/71ICAX2Z LO02A/002B] = device—specific information.

The handler will obtain a data byte dirvectly from the device or from a
handler-maintained buffer and return tao CID with the byte in the
A register and the operation status in the Y register.

OPERATING SYBTEM CO14555 —— Section 9
137

Handlers that do not have short timeouts associated with the
reading of data {(such as the Keyboard and Cassette Handlers},
must monitor the [BREAK] key flag BRKKEY {00111 and return with a
status of %80 when a [BREAK] condition occurs. See Appendix L.

£S; and Section 12 for a discussion of .LBREAKI key meonitoring.

CIO checks for reads from device/files that have not been apened

or have been opened for output only: the handler will not be called in
those cases,

PUTBYTE

This entry is called in response to a PUT CHARACTERS or PUT
RECORD command to CID. The handler is expected to accept a single

byte in the A register or return an error status in the Y
register.

At handler entry., the following parameters can be of interest:

X = index €0 originating I0CB.
Y = $92 (status = function not implemented by handler).
A = data bytse.

ICDNOZ Q0211 = device number (1-4, for multiple device
handlers).
ICAX1Z/ICAX2Z [CO2A/002B] = device—specific information.

The handler sends the data byte directly to the device, or to a
handler—maintained buffer, and returns to CID with the aeperation
status in fthe Y register. If a handler-maintained buyffer fills,

the handler will send the buffered data to the device before
returning to CIC.

CIO checks for WRITEs to devices/files that have not been opened.

oT have been opened for input only. The handler will not be called in
those cases.

Mow that the normal operation of PUTBYTE has been defined, a
special case must be added. Any handler that will operate within
the environment of the ATARI 8K BASIC languvage interpreter has a
different set of rules. Because BASIC can call the handler
PUTBYTE entry divrectly. without going through CIf. the ZeTo—page
I0CE (ZIDCB! can or may nof have a relation to the PUTBYTE call.
Therefore, the handler must use the outer level IOCB to obtain
any information that would normally be obtained from ZIODCB. Note
also that the OPEN protection normally provided by CIO is

bypassed (i.e. PUTBYTE to a non-OPEN device/file and PUTBYTE to a
read—-only OPEN}.

OPERATING SYSTEM CO146555 —~~ Section 9
138

GETSTAT

This entry is called in respanse to a GET STATUS command teo CIO.
The handlar is expected to return four buytes of status to memory
or return an error status in the Y register.

At handler entry. the following parameters can be of interest:

X = index to originating IOCB. Y = $92 (status = function not
implemented by handler).

ICDNDZ [00213 = device number (1-4, for multiple device handlers},

ICBALZ/ICBAHZ L[Q024/0025]) = address of
device/filename specification.

ICAX1Z/ICAX2Z

[(oo2a/0028]1 = device-spacific information.

The handler gets device status information from the device
contraller and puts the status bytes in DVSTAT L£OZEA] through
DVSTAT+3, and finally returns to CI0 with the operation status
in register Y.

The I0CB nesd not be opened nor closed in order for you

to request CID ¢o perform a GET STATUS operationi the handler
must check where there are restrictions. See Section 5 for a
discussion of the CID actions involved with a GET STATUS
cperation using both open and closed IOCB‘s: and note the impact
of this operation on the use of the buffer address parameter.

SPECIAL

This handler entry is wsed to support all functions not handled
by the other entry points, such as diskette file RENAME, display
DRAW, etc. Specifically, if the IOCB command byte value is
greater than $0D:. then CIO will use the SPECIAL entry peint. The
handler must interrogate the command byte to determine if the
requested operation is supported.

At handler entry. the following parameters can be of interest:

X = index to originating IOCH.

Y = 92 (status = function not implemented by handler}.
ICDNDZ {Q02P11 = device number (1-4, for mulfiple device

handlers).

ICCOMZ £0022]1 = command bute,

ICBALZ/ICBALH [0024/00251 buffer address.
ICBLLZ/ICBLHZ L[O028/002%1 buffer length.

ICAX1IZ/ICAX2Z L002A/0C02B1 device—-specific information.

OPERATING SYSTEM CD146555 —— Section 9

139

The handler will perform the indicated operation., if possible,
and return to CIO with the operation status in regisfer Y.

The I0CB need not be opened nor closed in order for you

to request CID to perform a SPECIAL operation; the handler
must check where there are restrictions. GSee Bection S5 for a
discussion of the CID actions invalved with a SPECTAL
operation using baoth open and closed INCB‘s, and note the
impact of this on the use of the buffer address parameter.

Error Handling

Error handling has been simplified somewhat by having CIOD handle
ocuter level ervors and having SIO handle Serial bus eTrors,

leaving the handler to process the remaining errors, These
errors include:

out-of~range parameters.
LBREAK] key abort.
Invalid command.

Read after end of file.

The current handlers respond to errors using the following
guidelines:

They keep the recovery simple (and therefgre predictable and
regeatable).

They Do not interact dirvectly with you for recovery
instructions.

They lose as little data as possible.

They make all attempts to maintain the integrity of file
oriented device storage —— this involves ths initial design
of the structural elements as well as error racavery
techniques.

Resource Allacation

Nonresident handlers needing code and/or data space in RAM should
use the techniques listed below, %to assure nonconflict with other
parts of the 08, including other nonresident handlers.

OPERATING SYSTEM C0146555 —— Section 9
140

Zero—Page RAM

Zero—page RAM has no spare bytes, and aven if there were, there
is no allocation scheme to support multiple program assignment of
the spares. Therefore, the nonresident handler must save and
restore the bytes of zero-page RAM it is going $o use. The bytes

to use must be chosen carefully, according to the following
criteria;

The bytes cannot be accessed by an interrupt routine.
The bytas cannot be accessed by any noninterrupt code
between the time the handler modifies the bytes and then

restores the original values,

A simple save/restore technique would utilize the stack in a
manner similar to that shown below:

LDA COLCRS i (for axample)

PHA i SAVE ON STACK.
LPA COLCRS+1

PHA

LDaA HPOINT i HANDLER'S POINTER.

STA COLCRS
LDA HPOINT+1
STA COLCRS+1

XXX (COLCRS), Y i DL} YOUR POINTER THING.
Pt A i RESTORE OLD DATA.

85TA COLCRS+1

PLA

STA COLCRS

Note that the Display Handlar or Screen Editor should no¢ be
called before restoring the original value of COLCRS, becausse
COLCRS is a variable used by those routines.

Nonzero—-Page RAM

There is no allocation scheme to support the assignment ot
fixed regions of nonzevo—-page RAM to any specific process, so the
handler has three choices:

1. Make a dynamic allocation at initialization time by
altering MEMLO [ORE7I.

2. Inciude the variables with the handler for RAM-resident
handlers. This still invoives altering MEMLO at the fime
the handler is hooted.

3. If the handley replaces one of the resident handlers (by
removing the resident handler’s entry in fhe device
table), then the new handler can use any RAM that the

CPERATING SYSTEM CD14555 —— Section 9

141

formerly resident handler would have used.

Etack Space

in most cases, there are no restrictions on the use of the stack
by @ handler. However, if the handler plans to push more than a
touple dozen bytes to the stacki then it should do a stack

everflow test¢, and always leave stack space for intervupt
processing.

HANDLER/SID INTERFACE

This section describes the interface between serial bus device
handlers and the serial bus I/0 wtility (SID}. SIO complately
handles all bus transactions following the device—independent bus
profocol. SID is responsible for the following functions:

Bus data format and timing from computer end.
Error detection, retries and statusss.

Bus timeout.

Transfer of data between the bus and the caller’s buftfer.

Calling Mechanism

SI0 has 4 single entry point SIOV [E4591 for all operations. The
device control block (DCB} [O300] contains all pavameters passed
to SI0. The DCB contains the following bytes:

DEVICE BUS ID —- DDEVIC [03001

The bus ID of the device is set by the handler prior to calling
810 (see Appendix IJ.

DEVICE UNIT # ~-— DUMIT [03011

This byte indicates that of n units of a given device type to
access; and is set by the handler prior to calling SIO. This
value usvually comes from ICDNOZ. SID accesses the bus device
whose address is equal to the value of DDEVIC plus DUNIT minus 1
(the lowest unit number is normally egqual to 1},

DEVICE COMMAND —- DCOMND {03021

The handler sets this byte prior %o talling SI0. ¢ will be sent
to the bus device as part of the command frame. Ses dppendix 1
for device command byte values.

OPERATING SYBTEM CO14555 —— Section @
142

DEVICE STATUS —— DSTATS [03031

This hyte is hidirvrecftional. The handler will use DSETATE to
indicate to SI10 what to do affer the command frame is sent and
acknowledged. SI0 will use it to indicate to the handler the
status of the requested operation.

Prior to an SI0 call:

7 O
B o oo
iWiR! unused i
B s, e wm ST e

Where: W.:R = Q.0 indicates no data transfer is associated with €he
cperation.

is invalid.

After an SI0 eall:

7 0
e O e s s T2 3

i status code i

B s St ot T 3
See Appendix C for the possible SIO operation status codes.
HANDLER BUFFER ADDRESS ~— DBUFLO/DBUFHI [0304/03051

The handler sets this 2-byte pointer. It indicates the source
or destination buffer for device data or status information.

DEVICE TIMEQUT —— DTIMLO [0304]

The handlar sets this byte. It specifies the device timeout ftime
in units of 44/60 of a second. For sxample:. a count of &
specities a timeout of 4.4 seconds.

BUFFER LENGTH/BYTE COUNT —— DBYTLD/DBYTHI {0308/030%1

The handler sets this 2-byte count for the current

operation: and indicates the number of data bytes to be
transferred into or out of the buffer, This parameter is not
required it the STATUS bByte W and R hits are bofh zero. These
values indicate that no data transfer is to take place.

WARNING: There is a bug in SI0 that causes incorrect

actions when the last byte of a buffer is in a memory
address ending in $FF, such as 13FF, 42FF, etc.

OPERATING SYSTEM C016555 —— Section 9

1 indicates a data frame is expected from the device.
O indicates a data frame is o be sent to the device.
i

143

AUXILIARY INFORMATION —- DAUX1/DAUX2 L[O30A/030B}

The handler sets these Z-bytes. The SI0 includes them in the bus
command frame; they have device—specific meanings.

Functions Supported

SI0 does not examine the COMMAND byte it sends to the device,
because all bus transactions are expected to conform to a
vniversal protocol. The protocol includes three forms., stated
below (as zeen from the computer):

Send command frame.
Send command frame and send data frame.
Send command frame and receive d3ta frame.

The values of the W and R bits in the status byte select the
command form. '

Error Handling

518 handles most of the serial bus errors for the handlay,
as indicated below:

Bus timeout —— SIO provides a uniform command frame and data
frame ACK byte timeout of 1/40 of a second — O / + 1/40.

The handler specifies the maximum COMPLETE byte timeout
value in DBTIMLO.

Bus errors —-— SI0 detects and raeports UART overrun and
framing ervors. The sensing of these errors in any received

byte will cause the entire associated frame to be considered
bad.

Data frame checksum ervor —— SI0 validates the checksum on
all received data frames and generates a checksum for all
transmitted frames.

Invalid response #rom device —— In addition to the error
tonditions stated above., SI0 chacks that the ACK and
COMPLETE responses are proper (ACK = $41 and COMPLETE =
$43). ACK stands for acknowledge.

Bus operation retries —— SI0 will attempt one complete tommand
retry if the first attempt is not error f£ree, where a complete
command try consists of up to 14 attempts to send (and

acknowledge) a command frame, followed by a single attempt to

OPERATING SYSTEM CO16555 —— Section 9
144

receive the COMPLETE code and possibly a data frame.
NDTE: There is a bug in the retry logic for data writes,
such that if the command frvame is acknowledged by the
controller, but the data frame is not scknowledged. then SIO
will retry indefinitely.

Unified error status codes —— 8I0 provides device-independent error
codes (see Appendix C}.

SERIAL I/0 BUS CHARACTERISTICS AND PROTOCOL

This section describes;

90 The electrical characteristics of the ATARI 4GG
and ATARI 800 Home Computers serial bus
o The use of the bus te send bytes of data,
0 The organization of the bytes as “frames" (recordsi,
o The overall command sequences that vtilize frames

and response bytes to provide computer/peripheral communication.

Hardware/Electrical Characteristics

The ATARI 400 and the ATARI 800 Home Computers

communicate with peripheral devices over a 19,200 baud
asynchronous sevial port. The serial port consists of a serial
DATA OUT (transmission) line, a serial DATA IN (receiver} line
and other miscellanegus contrel lines.

Data is ¢transmitted and received as B bits of serial data (L.SB
sant first) precsded by 2 logic zero start bit and succeeded
by a logic one stop bhit. The serial DATA DUT is transmitted as
positive logic (+4v = one/true/high, Ov = zero/false/low’. The
serial DATA DUT line always assumes its new state when the
sarial CLOCK OUT line goes high; CLOCK OUT then goes low in
the center of the BATA GUT bit time.

An end view of the Serial bhus connector af the computer or
peripheral is shown below (the cable connectors would of
courszs be a mirror image}:

OPERATING SYSTEM CO14355 ~— Bection 9
145

where: compufter CLOCK IN.
computer CLOCK DUT.
computer DATA IN.
GND.

computer DATA OUT.
GND.

COMMAND-.

MOTOR CONTROL.
PROCEED-.
+3v/READY.
computer AUDIO IN.
+12v.

INTERRUPT-,

Lo~ E PR~

BHwH®hnns a0 b A

Figure 9-4 Serial Bus Connector Pin Descriptions
CLOCK IN is not used by the present 0S and peripherals. This
line can be used in future synchronous communhications schemes.

CLOCK OUT is the serial bus clock. CLOCK OUT goes high at the

start of each DATA OUT bit and Teturnz to low in the middle of
each bit.

DATA IN is the serial bus data line to the computer.
Pin 4 GND is the signal/shield ground line.

DATA OUT is the serial bus data line #from the computar,
Pin & GND is the signal/shield ground line.

COMMAND~ is normally high and goes low when a command frame is
being sent #from the computer.

MOTOR CONTROL is the cassette motor control line (high=on,
low= of€).

PROCEED—~ is not used by the present 0S and peripherals; this line
is pulled high.

+3v/READY indicates that the computer is turned on and vready. This
line tan also be used as a +5 volt supply of SO0ma current rating
for ATARI peripherals only.

AUDIO IN accepts an audio signal from the cassette.

OPERATING SYSTEM CO1465%5 ~— Section 9
144

+12V is a +12 veolt supply of unknown current rating for ATARI
peripherals only.

INTERRUPT— is not used by the present OS and peripherals; this
line is pulled high.

There ar2 no pin reassignments made in the Serial bus cable,

50 pin 3, the computer ‘s DATA IN line, is the peripheral’s
data gutput line:; and similarly for pin 5.

Serial Port FElectrical Specifications

Peripheral input:

ViH = 2. Ov min.

Vil = 0. 4y max.

I1H = 20ua. max. 8 ViIH = 2. 0Ov
Tii. = Swa. max. @ VIL = . 4v

Peripheral output (open collector bipolars;

VOL = Q. 4v max. @ 1.6 ma.
VOH = 4 35v min. with external i0OKohm pull-up,

Vcec /READY input:
ViH 2.0v min. @ I1H = 1ma. max.

ViL 0. 4v max.
Input goes to logic zero when open.

Bus Commands

The bus protocol specifies that all commands must originate from the
computer. and that periphervals will present data on the bus only when
commanded to. Every bus operation will go fo completion before
another bus operation is initiated (no overlap). An error detected at
any point in the command sequence will abort the entire sequence.
A bus operation consists of the following elements:

Command frame from the computer.

Acknowledgement (ACK) from the peripheral.

Optional data frame to or from the computer.

Operation complete (COMPLETE) from the peripheral.

OPERATING SYSTEM CO16555 ~~ Section %
147

Command Frame

The serial bus protocol provides for three types of commands: 1} data
send, 2) data receive and 3) immediate (no data —— command onlyjl.
There is & common element in all three types, a command frame
consisting of five bytes of information sent from the computer

while the COMMAND- line is held low. The format of the command
frame is

shown belaw:

e e e +
i device ID :
Fom e R +
i command H
o —_ —+
i auxiliary #1 :
b e e o b e i e e e e +
i auxiliary #2 {
e e e +
H checksum H
+ A e e e +

Figure 9-5 Serial Bus Command Frame Format

The device ID specifies that of the serial bus devices is being
addressed (see Appendix I for a list of device IDs).

The command byte contains a device-dependent command (see
Appendix I for a list of device commands}.

The auxiliary bytes contain more device-dependent infarmation.

The checksum byte contains the arithmetic sum of the first four
bytes (with the carry added back after every addition}.

Command Frame Acknowledge

The peripheral being addressed would ﬁovmallg respond to a
command. frame by sending an ACK byte ($41) to the computer;: if

there is a problem with the command frame, the peripheral should
not respond. : i

Data Frame

OPERATING SYSTEM (016555 —- Seaction 9
148

Following f£he command frames (and ACK} can be an opftional data
frame that is formatted as shown below:

o it i e et e e +
1 i
L] !
) |
1 ¥
H data |
{ bytes H
1 i
1 L1
B +
: checksum :
$ +

This data frame can eriginate at the camputer or at the device
controcller, depending upon the command. Current device
controllars expect fixed—-length data framey as does the computer,
where the data frame length is a fixed function of the device
type and command.

The checksum value in the data frame is the arithmetic sum of all
of the frame data preceding the checksum, with the carry from
each addition being added back (the same as for the command
frame;.

In the case of the computer sending a data frame to a peripheral,
the peripheral is expected to send an ACK if the data frame is
acceptabla, and send a NAK ($4E), or do nothing if the data frame
is unacceptable. See the first flowchart in Section 2.

Operation Complete

& peripheral is also sxpected to send an speration—COMPLETE byte
($43) at the time the commanded cperation is complete. The
location of this byte in the command sequence for each command
type iz shown in the ¢timing diagrams in Section . IFf %the
ocperation cannot go €o normal: error—Ffree completion, the
peripheral should respond with an ERROR byte (#$43) instead of
COMPLETE.

OPERATING SYSTEM C016555 -~ Section %
149

Bus Timing

This section provides timing diagrams for the three types of

command sequences: data

DATA SEND sequence:

send, data receive, and immediate.

—_— +
COMMAND- ! H
F——— +
s -+ Fmmm f f—
DATA OUT i emnd | i data !
————+frame +—————- //——+ frame H—————————m—m—
+—+ +— +
DATA IN Vo HE o
+ +—= —+ F——f = =
ACHK ACK CMPL
i oIS ! Ll B :
t0 t1 t2 £3 ta £5
DATA RECEIVE sequence:
s s o e e v o i iy e i e e ——— P
COMMAND~ H }
o ————— *
i s e +
DATA OUT t cond |
T NS R T e
P s i S R
DATA IN o R data H
-+ Fw—=//=—+ +—+ frame o
ACK CMPL
H HE B !
t0 t1 &2 £3

OPERATING SYSTEM CO146555% —— Section 9

150

IMMEDIATE sequence:
s . P > s e e s e e e e e e s e s e
COMMAND - i i
e +
e s ot e +
DATA BUT i cand |
et frame + = e
e +—+
DATA IN HE P
~~~~~~~~~~~~ + o+ // S
ACK CHMPL
HH R A |
to t1 €2 t5
Figure 9-46 Serial Bys Timing Diagram

The tomputer generates a delay (t0) betwesn the lowering of COMMAND-

and the transmission of

computer t0 (min) =
computer t0O (max) =
peripheral t0 (min)
peripheral t0 (max3

the first byte of the command Fframe.

750 microsec.
1400 microsec.

27
?7?

-
]

The computer generates a delay (t1) between the transmission of
the last bit of the command frame and the raising of the COMMAND-

line.

computer £t1 (min) =
computer £1 (max) =
peripheval €1 (min}
pevripheral t1 (max}

&50 microsec.
250 microsec.

2?7
>7

-—

The peripheral generates a delay (t2) between the raising of
COMMAND- and the transmission of the ACK byte by the peripheral.

computer €2 (min) =
computer t2 (max) =
peripheral t2 (min}
peripheral t2 (max}

OPERATING

O microsac.
16 msec.

>?
27

SYSTEM C{1i4£555 —— Section 9
151



The computer generates a delay (£3) between the receipt of the
last bit of the ACK byte and the transmission af the first bit of
the data frame by the computer.

1000 microsec.
1800 microsec,

computer £3 (min)
computer t3 (mau}

H

7
7

peripheral £3 (min}
peripheral €3 (max}

[}

The peripheral generates a delay (t4) between the transmission of
the last bit of the data frame and the receipt of the first bit
of the ACK byte by the computer.

computer t4 (min) = BS0 microsec,
computer t4 (max} = 16 msec.

peripheral £4 {(min) = 2?7
peripheral €4 {(max) = 2?7

The Peripheral generates a delay (t5) between £the the receipt of
the last bit of the ACK byte and the first bit of the COMPLETE
byte by the computer.

290 microsec.
255 sec. (handler—dependent}

computer €5 (min)
compubter £S5 (max}

i

peripheral t3 (min} 7
peripheral £5 (max) N/A

HANDLER ENVIRONMENT

Nenresident handlers can be installed in at least three different
Manners:

i. As booted software from diskette or cassette.

2. Resident in a cartridge (A or Bl

3. Downloaded from a serial bus device.
This section will discuss the basitc mechanisms for handler
installation for these environments. In ardar to fully utilize the

information in this section, you must have read and understood the
+ollowing sections:

Program environments . . . . . . . . . . Bection 3
RAM region . . . . . . . . . . . . . . . Section 4
Memory dynamics. . Saection 4
System initialization. Section 7
Adding new device handlers/peripherals . Saction 9
Program enviranment and initialization . Section 10

DPERATING SYSTEM CD14555 —— Section 9
152



Bootable Handler

The diskette— or cassette—~booted software will insert the
handlar’s vector table pointer and name to the device table
whenever the booted soffware s initialization entry point is
entered (on power—up and system reset). Remember that both

power—~up and system reset clear the device table of all but the
resident handler entries.

Cartridge Resident Handler

The cartridge software will insert the handler ‘s vector table
pointer and name to the device table whenaver the cartridge’s
initialization entry point is entered {(on power—up and

system reset}. Remembear that both power—yp and system reset
cloar the device table of all but the resident handler entries;
therefore the device table must be reestablished by the
handler—initialization procedure upon every entry.

FLOWCHARTS

The following pages contain process Flowéharts showing the SJIO
and peripheral actions for the Serial bus command forms.

DPERATING SYSTEM CDi4355 -- Section 9

153



PERIPHERAL’S COMMAND FRAME PROCESSING

i o)

SWAIT PO
FHGEH 0 L

THARETION
OO LR T

¥

BET NEET 4 TRECHIT
Y TES QN
THE NUE

i

WAIT FOR
COMMAND-
70 GO HIGH

WAL

T ki TEMD. AR —
YALD

AUE OATE

BEMD A AITHE

OPERATING SYSTEM CO16555 —— Section 9
154



DATA FRAME TO PERIPHERAL

QLT M TS TIREDHIT
IR B

- ]
W LES L e L

a St | K
T

] YES

HEKL: MK

ETTTANFT 1O
PEF Ofs

e A TED
=R ATiim

e

,{: I:H'FM':ID’H

HWENED ERR —
=

OPERATING SYSTEM C016555 —— Section 9
155



DATA FRAME TO COMPUTER

C)
ATTEMPT 10 ‘
PERFCGREE

IRIEIR TN
OFERATION

: EFERATIN "“H..__I__ Kl L,
::_:_ HES e SEHDERR
\ﬁ?ﬁ/

LT 4 1]

COMPLTTE

'

REKT- DT
FARE

IMMEDIATE

SEMD ERR

GEWD
EORPLETE

OPERATING SYSTEM CO16555 —= Section 9
156



