S I/0 SUBSYSTEM

This section discusses the I/0 subsystem of the Operating System. The
I/0 subsystem comprises & collection of routines that allow you

to access peripheral and local devices at three different levels. The
CI0 (Central I/0 Utility), provides the highest level, device
independent access to devices. The second level allows communication
with the device handlers. The lowest level is the SIO (Berial I/0 bus
Utility? routine. Any lower level access to a device involves the
direct reading and writing of the hardware registers associated with
the device.

The data byte is the basic unit of input/output. A data byte can
contain either "binarg§" (non text) information, or encoded text
information. The text encoding scheme supported by the 05 is called
ATASCII, derived from the words "ATARI ASCII. " Most ATASCII codes are
the same as ASCII, with the primary deviations being the control
codes. Appendix D shows the ATASCII character set. and Appendices E,
F, and & show device-specific implementations for the display.
keyboard, and printer.

The wstructure of the I/0 subsystem is shown on the fonllowing page.

OPERATING SYSTEM CD16555 -- Section S
34

i wuser H

+ { program i-- s E=F
} + + |
i F—— e e e e + i i
I 1 TJTOCB's {s##tsssss| |
S+ + H i

++ + o e e + i

| HRaesident | H CIO } e e + i
| Hamdler ! P Utility | ' BCB {3 A |
| Vector Table| T —— + + + %

o e s e e + H * !
] H * i
| d———— e + e + B e et + H
It ZIOCB ! | Device | iBisk Filel = i
e e i Table | +-—~—~—1 Managey |--——- + 1
| * s e s s e st e e + A G ———— + i
] L i i | 4§
+——+ ——t —— + i m——— -

! i { ; -
e + e + e e + Fe——————— +
i Printer { | Cassette! H i "l i | Keyboard! | Disk i
i Handler { | Handler ! { Handler | | Handler { | Handler !
e + + + oo me e e I + A ——— +

! H i H

+ +— + e —~———

q

S S + 1

H BCH HE T 2R T

e — + |

+ +
i SI0 !
| Utility ¢
Frm——————— +
Where: ———- chows a control path. #3##% shows the data structure

required for a path.

Mote the following:

o
)
Q

Figure

The Keyboard/Display/Screen Editor Handlers don’t use SIO.

The Diskette handler cannot be called directly from CIO.

The DCB is shown twice in the diagram.

5-1

I/0 Subsystem Structure Flow Diagram

OPERATING SYSTEM CO16555 —- Section 5

a5

CENTRAL. I/0 UTILITY

The Centvral I/0 Utility provides you with a single interface in which
to access all of the system peripheral devices in a device—independent
manner. The minimum unit of data transfer is the data byte. The CIO
also supports multiple byte transfers, All I/0 operations are
performed on a "return—-to-user—when—complete" basis; there is no way
to initiate concurrent “overlapped"” I/0 processes.

1/0 is organized by "files, " where a file is a sequential
collection of data bytes. A £ile can or may not contain textual
data and it can or may not be organized by "records, " where a
record is a contiguous group of bytes terminated by an EDL (End of
Line) character. Some files are synonymous with a device (as with
the printer and the Screen Editor), while ofther devices can contain
multiple files, each with a unique name {(as with the disk drive).

CID allows you to access up to eight independent device/files
at one time, because there are eight I/0 Control Blocks (IOCB’s) in
the system. Each of the IOCB‘s can be assigned to conirol any
device/file because there are no preferred assignments, except that

IOCE #0 is assigned to the Screen Editor a¢ power—up and
system reset.

To access a peripheral, you first set wp an IDCB for the OPEN
command, that supplies the system name for the device to bhe
accessed (e.g. K:, for the keyboard, P:, for the printer, D:ETARS
fur a diskette file named ‘STARS’. etc). You then call the CIl0,
telling it €0 examine the IOCB to find the OPEN information. CIO
attempts to find the specified device/file and returns a status
byte indicating the success of the search. If the specified
device/file can be #found by CIO, then CIOD stores control

information in the IOCB. The IOCB is now used for as long as that
file is apen.

Once a #ile is open, it can then be accessed using data-read or
data-write types of commands; in general, reading can proceed until
there is no more data to read (End aof File) and writing can proceed
yntil there is no more medium to staore data on (End of Medium},
although neither reading noyr writing need proceed ¢to that point.
The reading and writing of data generally occurs into and aut of
user—supplied data buffers (although a special case allowing single
byte transfers wsing the 4502 A register is provided}.

When there ara no more accesses to be performed on an open
device/file, you perform the close operation. This
accomplishes two functions:

o It terminates and makes permanent an output file (essential
for diskette and cassatte).

o It releases that I0CB to be used for another I/0 operation.

OPERATING SYSTEM C0O165553 -~— Section S
36

Cl0 Design Philosaphy

The CI0 utility was designed specifically to meet the following
design criteria.

o The transfer of data is device independent.

o Byte—-at-a-time, multiple byte and record-aligned accesses are
supported.

0 Multiple device/files can be accessed concurrently.
o Ervor handling is largely device independent.

o] New device handlers can be added without altering the system
ROM,

Device Independence

CIQ provides device independence by having a single entry point for

all devices (and for all operations) and by having a
devicg-independent calling sequence. fince a device/file is opened,
data trvansfers occur with no regard to the actual device involved.

Uniform rules for handling byte— and record-oriented data transfers

allow the actual device storage block sizes to be transparent ¢o you.

Data Access Methods

The CIOD supports two file access methods: byte-aligned and
Tecord—aligned.

Byte—-aligned accesses allow you to treat &he device/file as a
sequential byte stream: any number of bytes can be read or written
and the following operation will continue where the prior one left
aff. Records are of no consequence in this mode, and reads or
writes can encompass multiple records if desired.

Record-aligned accesses allow you to deal with the data stream

at a higher level, that of the data record or “line of text. ® Each
and every write operation creates a single recoerd (by definition).
Each read operation assures that the following read operation

will start at the begimnning of a reconrd. Record-aligned accesses
cannot deal with portions of more than one record at a time,
Record—aligned accesses are useful only with text data or with
binary data guaranteed not to contain the EOL character ($9B} as
data.

Note that any file can be accessed uysing the byte-aligned access
method. regardless of how the file was created. But not all files
tan be svccessfully read using record—-aligned accesses; the file

OPERATING SYSTEM CO1A455% —— Section 5

37

must contain EQOL characters at the end of each record and at no
other place.

Multiple Device/File Concurrency

Up to eight device/files can be accessed concurrently wsing CIQ,
each operating independently of the others.

Unified Error Handling

All error detection and recovery oaccurs within the CID subsystem.
The status information that reaches you is in the form of a
status byte for each device/file. Error codes are device
independent as much as possible (see Appendix B).

Device Expansion

Devices are known by single character names such as K or P, and a
number of device handlers are part of the resident system ROM.
However, additional device handlers can be added %o the system
using the RAM-resident device table; this is normally done at

power—up time as wifth the diskette boot process, but can be done at
any point in time.

CI0 Calling Mechanism

The input/output control bloeck (IOCB) is the primary parameter
passing structure between you and CIO. There are eight IOCB‘s
in the system, arranged linearly in RAM as shown below:

T + low address {C3401

o v e e + high address

Figure 5-2 CI0O Calling Mechanism

OPERATING SYSTEM CO146555 —— Section 5
38

One I0CB is required for each open device/file. Any IOCB can be used
to control any device/file, although IOCB ¢ is normally assigned to
the Screen Edifor (E:). You perform a typical 1/0 operation by:

o Inserfing appropriate parameters into an IOCEB of ygour choosing
o Putting the IOCB number %times 1é into the &502 X register
o Performing a JGR fo the CID entry point CIOV [E45&].

CIO returns fo you when the operation is complate or if an
errar was encountersd. The aperation status is in the IUOCB used. as
well as in the &502 Y register. The 46502 condition codes will also
reflect the value in the Y register. In some cases a data byte will
be in the 4502 A register. The X register will remain unchanged for
all operations and conditions. An example is shown below:

IOCBZX = %20 i INDEX FOR IOCB #2,
£EDX #IOCB2X
JER ciov
CPY #0O i {aptional)
BMI ERROR

This sector describes each IOCE byte, with its file name and
address. Each IDCB is 16 bytes long. Some bytes can be altered by

you and some are reserved for use by CIO and/or the device
handiers.

Handler ID —— ICHID {03403

The handler ID is an index into the system device table (see
Section ?) and is not user~alterable. This byte is set by CIOD as
the result of an OPEN command and is left unchanged until the
devica/file is closed, at that time CID will set the byte to $FF.

Device Number —— ICDNDO [03411]

The device number is provided by CIO as the result of an OPEN
command and is not user—alterable. This byte is used ¢o

distinguish between multiple devices of the same type: such as
Di: and D3:.

OPERATING SYSTEM CD146555 -~ Section 5
39

Command Byte —— ICCMD {03421

You set the command byte. It specifies the command to be
performed by the CID. This byte is not altered by CIO

Status —~— ICS5TA [03431

The CIO conveys operation status to you with the command

status byte as a result of each and every CIO call. Each and
every CID ¢all updates the command status byte. The most
significant (sign) bit is a one for ervor conditions and zero for
nan—-error conditions, and the remaining bits represent an error
number. Sea Appendix B for a list of status codes.

Buffer Address ~— ICBAL E£03441 and ICBAH [0345]

You set this 2-byte pointer; it is not altered by CIO. The

pointer contains the address of the beginning (low address) of a
buffer that:

o Containg data for read and write operations

o Contains the device/filename specification for the OPEN
command,

You can al§er the pointer at any time.

PUT Address —- ICPTL [0346]1 and ICPTH [03471

The CIO sets this 2-byte pointer at OPEN time o the handler’s
PUT CHARACTER entry point (- 1), The poinfter was provided to
accommodate the people writing the ATARI BASIC cartridge. and has
no legitimate use in the gsystem. This variable is set te point to

CIO’s "JOCB not OPEN" routine on CLOSE, Power—up and
[SYSTEM. RESET 1.

Buffer Length/Byte Count —- ICBLL [03483 and ICBLH [034%1]

Yeu set this 2-byte count €o indicate the size of the data

buffer pointed to by ICBAL and ICBAH for read and write
operations. I§ is not required for OPEN. After each read or write
operation, CIO will set this parameter to the number of bytes
actually transferred into or ou§ of the data buffer. For
record-aligned access, the record length can well be less than
the buffer length. Also an end of file condition or an error can
cayse the byte count to be less than the buffer length.

Auxiliary Information —- ICAX1 [034A] and ICAX2 [034B1l

OPERATING SYSTEM €016535 —— Section 5
40

You set these 2~bytes. They contain information that is
vsed by the OPEN command process and/or is device-dependent.

For OPEN, two bits of ICAX1 are always used to specify the OPEN
direction as shown below, where R is set £o 1 far input (read)
enable and W is set ¢to 1 for output (write) enable.

e e e e e e s s e et e e

ICAX1 is not altered by CID. You should not alter ICAXI
once the device/file is open.

The remaining bits of ICAX1 and all of ICAX2 contain only
device~dependent data and are eiplained later in this section,

Remaining Bytes (ICAX3-ICAX&)

The handler reserves the four vemeining bytes for processing the
I/0 command feor CID. There is no fixed use for these bytes. They
are not user—alterable except as specified by the particular
device descriptions. These bytes will be referred to as JCAX3,
ICAX4:, ICAXS and ICAX&, although there are no sguates for those
names in the 0S5 esquate file.

CI0D Functions

The CIO supports records and blocks and the handlers support
single bytes. All of the system handlers support one or more
of the eight basic functions sub ject to restrictions based
vpon the direction of data transfer {(e.g. one cannot read data
fraom the printer). The basic functions are; DPEN. CLOSE, GET
CHARACTERS., PUT CHARACTERS: GET RECORD., PUT RECORD. GET STATUS,
and SPECIAL.

OPEN —— Assign Device/Filename to IOCB and Ready for Access

A devicesfile must be opened before it can be acecessed. This
process links a specific JOCB to the appropriate device
handler, initislizes the device/file, initializes all CID
control wvariables, and passes device—specific ceptions to the
device handler.

OPERATING SYSTEM CO1&555 —— Bection 5
41

You set up the following IOCB parameters prior to calling CIO for an
OPEN operation:

COMMAND BYTE = %03

BUFFER ADDRESS = pointer to a device/Filename specification.
AUX1 = OPEN direction bits, plus device—dependent information.
AUX2 = device—dependent information.

After an OPEN operation, CIO will have altered the following I10CB
parameters:

HANDLER ID = index to the system device table; this is
used only by CIC and must not be altered.

DEVICE NUMBER = device number takenm #rom the device/filename
specification and must not be altered.

STATUS = result of OPEN operation; see Appendix B for a list
of the possible status codes. In general, a negative status
will indicate a failure to open properly.

PUT ADDRESS = poinfter to the PUT CHARACTERS routine for the
device handler just opened.

It is recommended that this pointer not be used.

CLOSE ~~ Terminate Access to Device/File and Release IOCB.

You lissue a CLOSE command after you are through accessing a
given device/file. The CLOSE process completes any pending data
writes, goes to the device handler for any device—specific
actions, and then releases the IOCB.

You set the following IOCB parameter prior to calling
CIO:

COMMAND BYTE = %0C

The CIO alters the following IOCB parameters as a result of the
CLOSE aperation:

HANDLER ID = $FF
STATUS = Result of CLOSE gperation.

PUT ADDRESS = pointer to “IOCB not OPEN" routine.

OPERATING SYSTEM C016555 —- Section 5
42

GET CHARACTERS -— Read n Characters (Byte—-Aligned Access)

The specified number of characters are read from the device/file
to the user—supplied buffer. EOL characters have no termination
features when using this function; there can be no EOQOL, or many
EOL’s, in the buffer affer operation completion. There is a
special casa provided that passes a single byte of data in the
6302 A register when the buffer length is set to zero.

You set the following IOCE parameters prior to calling CID:
COMMAND BYTE = $07
BUFFER ADDRESS = pointer to data buffer.

BUFFER LENGTH = number of bytes to read; if this is zero,
the data will be returned in the 6302 A register only.

The CIO alters the following IOCE parameters as a result of the
CET CHARACTERS aperation:

ETATUS = raesult of GET CHARACTERS operation.

BYTE COUNT/BUFFER LENGTH = number of bytes read to the
buffer. The BYTE COUNT will always equal the BUFFER LENGTH
except when an error or an end-of~file condition occurs.

PUT CHARACTERS —~— Write n Characters (Byte—-Aligned Access)

The specified number of characters are written from the user—-suypplied
buffer to the davices/file. EOL characters have no buffer

terminating properties, although they have their standard meaning

to the devicae/file receiving them; no EDL‘s are generated by CIO.
There is a special case that allows a single character to be

passed to CIO in the 4502 A register if the buffer length is
zern.

You set the following IOCB parameters prieor to initiating the PUT
CHARACTERS operation:

COMMAND BYTE = 3$0B
BUFFER ADDRESS = pointer to data buffer.
BUFFER LENGTH = number of bytes of data in buffer.

The CIQ alters the following IOCB parameter as a result of the
PUT CHARACTERS operation:

STATUS = result of PUT CHARACTERS operation.

OPERATING SYSTEM C016555 ——~ Section 5
43

GET RECORD —~- Read Up To n Characters (Record-Aligned Access)

Characters are read from the device/file to the user—supplied
buffer until either the buffer is full or an EOL character is
read and put into the buffer. IFf the buffer fills before an EOL
is read, then the CIO continues reading characters from the
device/file until an EOL is read,, and sets the status to

indicate that a truncated record was read. Mo EDL will be put at
the end of the buffer.

You set the following IOCB parameters prior to calling CIO:
COMMAND BYTE = %05
BUFFER ADDRESS = pointer toc data buffer.

BUFFER {ENGTH = maximum number of bytes to read (including
the EOL. character).

The CI0 alters the following IOCB parameters as a result of the
GET RECORD scperation:

8TATUS = result of GET RECORD operation.

BYTE COUNT/BUFFER LENGTH = number of bytes resad to data
buffer; fthis can be less than the maximum buffer length.

PUT RECORD ~~ Write Up To n Characters (Recaord-Aligned Access}

Characters are written from the user—-supplied buffer to the
davice/fila until either the buffer is empty or an EOL character
is written., I+ the buffer is emptied without writing an EOL

character to the device/file, then CIO will send an EUL after £he
last user—supplied character.

You set the fellowing IOCB parameters prior te calling CIO:
COMMAND BYTE = %09

BUFFER ADDRESS = pointer to data buffer.
BUFFER LENGTH = maximum number of bytes in buffer.

The CIO alters the following IDCB parameter as a result of the
PUT RECORD operation:

STATUS = result of PUT RECORD operation.

OPERATING SYS8TEM C016355 ~- Section O
44

GET STATUS -~ Return Device-Dependent Status Bytes

The device controller is sent a STATUS command, and the

controller returns four bytes of status information that are
stored in DVSTAT [OZ2EAJ.

You set the following IOCEB parameters priar to calling CIO:
COMMAND BYTE = 40D

BUFFER ADDRESS = pointer to a device/filename specification
if the IOCB is not already OPEN; see the discussion of the
implied OPEN opétion below.

After a GET STATUS operation. CIO will have alterad the foliowing
parameters:

STATUS = result of GET STATUS operation; see Appendix B for
a list of the possible status codes.

BVSTAT = the four-byte response from the device controller.

SPECIAL ~— Special Function

Any command byte value greater than $0D is treated by CID as a
special case. Since CIO does not know what the function is. CIO

transfers control to the device handler for complate processing
of the operation.

The user sets the following IOCB parameters priov to
calling CID:

COMMAND BYTE > %0D
BUFFER ADDRESS = pointer to a device/filename specification
if the IOCB is not already openi see the discussion of the

implied OPEN option below.

Dther IDCB bytes can be set up, depending upon the specific
SPECIAL command being performed. ;

After a SPECIAL operation, CID will have altered the following
paramefers:

STATUS = result of SPECIAL aperation: see Appendix B for a
list of the possible status codes.

Other bytes can be alftered, depending upon the specific
SPECIAL. command,

OPERATING SYSTEM CO146555 —— Section 5
45

Implied OPEN Option

The GET STATUS and SPECIAL commands are treated specially by CIO;
they can use an already open IOCE %o initiate the process or they
can use an unopened IDCB. If the I0CB is unopened, then the
buffer address must contain a pointer to a device/filename
specification, just as for the OPEN command; CIO will then open

that IOCB, perform the specified command and then close the IOCHB
again.

Device/Filename Specification

As part of the OPEN command, the JOCB buffer address parameter
points to a device/filename specification, that is a string of
ATASCII characters in the following format:

“specification> .= {deviceXi<number>l: [{filenamel1<enll>
Ldevice> ::= CIDIEIKIPIRIS

<number> ::= 1121314!51461718

<filename> has device~dependent characteristics.

<eoll ;:= %913

The following devices are supported at this writing:

L

C Cassette drive

Di through DB = Floppy diskette drives #
E = Screen Editor

K = Keyboard

P = 40-cclumn printer

P2 = 80-column printer *

R1 through R4 = RE5-232-C interfaces *

S = Screen display

Devices flagged by asterisks (#} are supported by nonresident
handlers.

If <number> is not specified, it is assumed to be 1.

The following examples show valid device/filename specifications:

C: Cassetfe
B2: BBATY File "BDAT" on disk drive #2
D: HOL.D File "HOLD®" on disk drive #1
K: Keyboard

OPERATING SYSTEM CO146555 —— Section S
46

1/0 Example

The example provided in this section illustrates a simple example of

an I/0 operation using the CIO routine.

drive

hey ma e W

This code segment illustrates the simple example of reading
text lines (records}) from a diskette file named TESTER on disk

#1. All symbols used are equated within the program

although many of the symbols are in the 08 eguate file.

i The program performs the following steps:

1.

Opens the +file

‘D1. TESTER’ wsing IDCB #3.

i 2. Reads records until an epror or EOF is reached.

i 3. Closes the file.

i I/0 EGQUATES

EOL= 9B i END OF LINE CHARACTER.
I0CB3= 330 i I0CB #3 OFFSET (FROM IOCBE #0).
ICHID= #0340 i (HANDLER ID -- SET BY CIO}.
ICDND= ICHID+1 i (DEVICE # —-- SET BY CIf).
ICCOM= ICDNO+1 i COMMAND BYTE.

ICSTA= ICCOM+i i BTATUE BYTE -- SET BY CIO.
ICBAL= ICSTA+1 i BUFFER ADDRESS (LOW).
ICBAH= ICBAL+1 i BUFFER ADDRESS (HIGH).
ICPTL= ICBAH+1

ICPTH= JCPTL+1

ICBLL= ICPTH+1 i BUFFER LENGTH (LOW).
ICBLH= ICBLL+1 i BUFFER LENGTH (HIGH).
ICAX1= ICBLH+1 i AUX 1.

ICAX2= [ICAX1+1 i AUX 2.

OPEN= $03 i OPEN COMMAND.

GETREC= %05 i GET RECORD COMMAND.

CLOSE= 40C i CLOSE COMMAND.

OREAD= %04 i OPEN DIRECTION = READ.
DWRIT= %08 i DPEN DIRECTION = WRITE.
EQF= $88 i END OF FILE STATUS VALUE.
CIav= $E454 i CIO ENTRY VECTOR ADDRESS.

i FIRET INITIALIZE THE IOCB FOR FILE "OPEN".

LDX #I0CB3 i SETUP TO ACCESS IOCB #3.

OPERATING SYSTEM CO0146535 —- Section S

a7

LA #OPEN i SETUP OPEN COMMAND.

STA ICCOM, X

LDaA #NAME i SETUP BUFFER POINTER TO . ..
E5TA ICBAL.: X i ... POINTY T8 FILENAME.

LDA #NAME /256

ETA ICBAH, X

LDA #OREAD i SETUP FOR OPEN READ.

ETA ICAX1, X

1.DA #0 i CLEAR AUX 2.

STA icaxa: X

“OPEN" THE FILE.

JSR cioy i PERFORM “OPEN" OPERATION.
BPL TP1G i BTATUS WAS POSITIVE —— OK.
JMP ERROR i NO —— "OPEN" PROBLEM.

i SETUP TO READ A RECUORD.

TRIO L.DA #GETREC i SETUP "GET RECORDY COMMAND.
STA ICCOM, X
LDaA #BUFF i SETUP DATA BUFFER POINTER.
8TA ICBAL., X
LDA #BUFF /256
&8TaA ICBAH, X

i READ RECARDS.

i

Looe L.DA #BUFESZ i BETUP MAX RECORD SIZE ...
STA ICBLL, X i ... PRIOR TO EVERY READ.
LDA #¥BUFFSL/256
STA ICBLH, X
JER cIov i READ A RECORD.
BMI TP20 i MAY BE END OF FILE.

i A RECORD IS NOW IN THE DATA BUFFER "BUFF". IT IS TERMINATED BY

OPERATING SYSTEM CO16555 —— Section 3
48

i AN EOL CHARACTER. AND THE RECORD LENGTH IS IN “ICBLL" and "ICBLH".
i THIS EXAMPLE WILL DD NOTHING WITH THE RECORD JUST READ.

JMP

L.AoP i READ NEXT RECORD.

i NEGATIVE STATUS ON READ —- CHECK FOR END OF FILE.

TP20

i

CPY
BNE

LDA
874

JER

JMP

#EOF i END OF FILE STATUS?
ERROR i NO -— ERROR.

#CLOSE i YES -- CLOSE FILE.
1CCOM, X |

CIOV i CLOSE THE FILE.

* i ##% END OF PROGRAM 3%

i DATA REGION OF EXAMPLE PROGRAM

i

NAME . BYTE
BUFFSZI= 8O
BUFF= 4
LT

. END

#+BUFFSZ

"DI: TESTER", £0L

i 80 CHARACTER RECORD MAX
(INCLUDES EOL).

i READ BUFFER.

Figure 5-3 An I/D Exadpia

DPERATING SYSTEM C016555 ~—- Section 5

42

Device-Specific Information

This section provides device—specific information regarding the
device handlers that interface to CIO.

Heyboard Handler (K:)}

The keyboard device is a read only device with a handlar that
supports the following CIO functions:

OPEN

CLOSE

GET CHARACTERS

GET RECORD

GET STATUS (null funcEion)

The Keyboard Handler can produce the following error statuses:

$80 -~ [BREAKI key abort.
%88 -- end-of—-file (produced by pressing LCTRLI 3).

The Keyboard Handler is one of the resident handlers. It has a
set of device vectors starting at location E420.

The keyboard can produce any of the 256 codes in the ATASCII
tharacter set (see Appendix F). Note that a few of the keybopard

keys do not generate data at the Keyboard Handler level. These
keys are described helow:

€/iN3 — The ATARI key toggles a flag that enables/disables the
inversion of bit 7 of each data character vread. The
Screen Editor editing keys are exempted from such
inversion, howevear,

CAPE — The [CAPS/LOWR] key provides three functions:
{SHIFTILCAPS/LOWR] —— Alpha caps lock,.

ECNTRLIL{CAPS/LDWRI —— Alpha LCTRL] lock.
ECAPS/LOWR 3 - Alpha wnlack.

OPERATING SYSTEM C0O16555 ~— Section 5
50

The system powers up and will system reset to the alpha
caps lock opfion.

Seme key combinations are ignored by the handler. such as

CCTRLI 4 through £CTRLI 9. [CTRL] O, [CTRLI i, [CTRLY /, and

all kxey combinations in that the [SHIFT] and [CTRLY keys are
depressed simultaneously.

The ECTRLY 3 key generates an EODL character and returns EOF status.

The EBREAK} key generates an EOL character and returns BREAK status.

CIO Function Descriptions

The device-specific characteristics of the standard CID functions
{described earlier in this section) are detailed below:

OPEN

The device name is K, and the handler ignores any device number
and filename specification, if included.

There are no device-dependent option bifs in AUX1 or AUXZ.

CLOosE

No special handler actions.

GET CHARACTERS and GET RECORD

The handler returns the ATASCII key codes to CIO as they are
entered. with no facility for editing.

GET STATUS

The handler does nothing but set the status to %01.

Theory of Operation

Pressing a keyboard key generates an IRQ interrupt and vertors to
the Keyboard Handler ‘s interrupt service routine (see Section &),
The key code for the key pressed is then read and stored in data
base variable CH [O2FC]. This occurs whether or not there is an
active read request to the Keyboard Handler, and effects a ane-byte

FIFG for keyboard entry. See Appendix L (EB) for a discussion of
the auto repeat feature. 1

DPERATING SYSTEM CO14555 —— Section 5
31

The Keyboard Handler monitors the CH variable for not containing
the value %FF (empty state} whenever there is an active read
request for the handler. When CH shows nonempty, the handler
takes the key code from CH and sets CH to $FF again. The key code
byte obtained from CH is not an ATASC]I]I code and hag the
following form:

7 0
Lt LT e R A e
ICIST key code |
Lt B Rt e e Bt

Wherse: C
g

1 if the L[CTRL] %ey is pressed.
1 if the ESHIFT] key is pressed.

The remaining six bits are the hardware key code.

The key cods obtained is then converted ¢to ATASCII using the
first of the following rules that applies:

Ignare the code if the C and 5§ bits are both set.

I+ the C bit is set, process the key as a [CTRL] code.

If the S bit is set, process the key as a [BHIFT1 code.

I£ LCTRL] lock is in effect, process alpha characters as CTRL
codes, all others as lowsrcase.

IF LSHIFT3 lock is in effect, process alpha characters as SHIFT
codes, all others as lowercase.

4. Else, process as lowercase character.

nalt Gl

g

Then: If the resultant code is not a Screen Editor.cantrol caode,
and if the video inverss flag is set, then set bit 7 of the
ATASCII code (will cause inverse video when displayed).

OPERATING SYSTEM CO16555 -- Section 5
22

Key
Code

00
g1
o2
03
04
05
0é
07
o8
o9
0A
0B
0¢
oD
QE
OF
10
i1
iz
13
14
15
14
i7
18
i9
14
iB
1iC
in
1E
iF

£CTRL] 3 returns EOF status.

KEY CODE TD ATASCII CONVERSION TABLE

Key
Cap

L
J

<CH |l BT
m
-;1

Lwr.
Case

&c
bA
38

&8
28
24
&F

76
79
B
&%
2D
3D
74

63

&2
78
7h
34

33
36
iB8
35
32
3t

LBMIFT]

4C
4A
3A
4B
5C
SE
4F
50
55
9B
49
S5F
7C
56
43

iy

42
=8
oA
24

23
24
iB
29
22
21

LCTRL]

GC
0A
7B

OB
1E

iF
OF

10
15
B
09
1€
in
16

03

Key
Code

20
21
22
23
24
25
24
27
28
29
24
=8
2C
2D
2E
2F
30
31
32
33
34
35
34
37
38
32
3A
38
ac
3D
3E
3F

Key
Cap

1

SPACE
N

b s B Ny 4
-~

ﬂ@z—i;{m
7]

ACKS

BT ANL O

oo
>
|
n

Lwr.
Case

2C
20
2ZE
&E
&b
2F

72
&s
79
7F
74
77
71
39
30
37
7E
38
clo
3E
6b
&8
&4

———

&7
73
61

A complement of this table (ATASCII to keystroke)
appendix F.

Figure 5-4

Keycode to ATASCII Conversion Table

SHIFT

58
20
5D
4E
ap
3F
52
45
59
IF
54
57
51
28
29
27
9C
40
7D
ID
46
48
a4

a7
53
41

OPERATIMG SYSTEM CO14555 —— Section 5

CTRL

is given in

53

Display Handler (S:)

The display device is a read/write device with a handler
that supports the following CIO functions:

OPEN

CLOSE)

GET CHARACTERS

GET RECORD

PUT CHARACTERS

PUT RECDORD

GET STATUS (null +function}
DRAW

FI{L

The Display Handler can produce the following error statuses:

%84 —— Invalid special command.

$8D —- Cursor gut—of-range.

%91 ~- Screen mode » 11.

$93 ~~ Not enough memory for screen mode selected.

The Display Handler is one of the resident handlers, and
therefore has a set of devite vectors starting at location E410.

Screen Modes

You can aperate the display screen in any of 20

configurations {(modes 1 through 8, with or without split
screen; plus mode O, and modes % through 11 without split
screen}., Mode O is the text displaying mode. Modes 1 through
i1 are all graphics modes {although modes 2 and 3 do display a
subset of the ATASCII character set). Modes 9 through it
Tequire a GTIA chip to be installed in place of the standard
CTIA chip.

TEXT MGDE O

In text mode & the screen is comprised of 24 lines of 40
tharacters per line. Program alterabhle left and right margins

limit the display area. They default fto 2 and 39 {(of a possible O

ang 39).

OPERATING SYSTEM CO16555 —— Section 5
54

A program-controllable cursor shows the destination of the next
character to be output onto the screen. The cursor is visible as
the invevrse video representation of the current character at the
destination position.

The text screen data is internally organized as variable length
logical lines. The internal representation is 24 lines when the
screen is cleared. Fach EQL marks the end of a legical line as
text is sent to the screen. If moare than 3 physical lines of text
are sent, a Jlogical line will be fermed every 3 physical lines.
The number of physical lines used to comprise a logical line (1
to 3) is always the minimum required to hold the data for that
logical line,

The text screen "scrolls" upward whenever a text line at the
bottom row of the screen extends past the right margin: or a text
iine at the bottom vow is terminated by an EOL. Scrolling removes
the entire logical line that starts at the top of the screen, and
then moves all subsequent lines upward to fill in the void. The

cursor also moves vpward, if the logical line deleted exceeds one
physical line.

All data going to or coming from the text screen is represented
in 8-bit ATASCII code as shown in Appendix E,

TEXT MODES 1 AND 2

In text modes i1 and 2 the screen comprises either 24 lines of 20
characters (mode 1}, or 12 lines of 20 characters (mode 2). The
left and right margins are of no consequence in these medes and
there is no visible cursor. There are no lagical lines associated
with the data and in all regards these modes are treated as
graphics modes by the handlar.

Data going to or coming from the screen is in the form shown
below:

7 0

+=F ot —g e}
i C i D :
e R L L Nt e

Where:C is the color/character—sat select field

OPERATING SYSTEM C01655% ~- Section 5
83

C Color Colar Character Charactey

Value (default! Register Set Sat

{see CHBAS=%EQ CHBAS=%E2

Appendix

H)

0 green {PF1) Pl =i fHEART] {ARRDOWI]
1 gold {PFG} = fHEART] £ARROW]
2 gold {PF0) & = [DIAMONDIETRIANGLE]
3 green {PF1) GlE=agh | fDIAMONDIETRIANGLE]
4 read {(PF3} D= T THEART] fARROW1
9 blue (PF2) d —E {HEART] fARROW I
& blue (PF2} @ - EDTAMONDIETRIANGLE]
7 read {PF3) e - ERIAMONDICTRIANGLE]

D is a 5-bit truncated ATASCII code that selects the specific
tharacter within the set selected by the C field. See Appendix E
for the graphics representations of the characters.

Data base variable CHBAS [02F4] allows for the selection of
either of fwo data sets. The default value of $EC provides the
capital letters, numbers and punctuation characters: the

alternate value of $E2 provides lowercase letters and the special
character graphics set.

Figure 5-5 Text Modes 1 and 2 Data Form

GRAPHICS MODES (Modes 3 Through 11)

The screen has varying physical characteristics for each of the
graphics modes as shown in Appendix H Depending upon the mode, =
1 to 16 color selection is available for sach pixel and the

screen size varies from 20 by 12 (lowest resolution} to 320 by
192 (highest resolution) pixels.

There is no visible cursor for the graphics mode output.

Data going to or coming from the graphics screen is represented

as 1 to B-bit codes as shown in Appendix H and in the GET/PUT
diagrams following.

SPLIT-SCREEN CONFIGCURATIONS

in split—screen configurations, the bottom of the screen is
raserved for four lines of mode O text. The text vegion is
controlled by the Screen Editor, and the graphics region is
controlled by the Display handler. Two cursors are maintained in

this configuration so that the screen segments can be managed
independently,

OPERATING SYSTEM C016555 —- Section 5
24

To operafe in split-screen mode, the Screen Editor must first be
opened and then the Display Handler must be opened using a
separate [OCD (with the split—screen option bit set in AUX1),

CID Function Descriptions

The device-specific characteristics of the standard CIO functions
(described earlier in this section) are detailed below:

OPEN

The device name is S, and the handler ignores any device number am
filename specification, if included.

The handler supports the following aptions:

Where: € = i indicates to inhibi{ screen clear an OPEN.
= 1 indicates to set up a split—screen configuration (for
modes 1 through 8 only)l.
R and W are the direction bits {(read and writs},

7 G
B O R L et Lo Tt
AUX2 i i mode
bbb p e —

Where: mode is the screen mode (0 through 11},

NMofe: If the screen mode selected is O, then the AUXI C and
8 pptions are assumsd to be 0.

You share memory utilization with the Display Handler
information. Sharing is necessary because the Display Handler
dynamically allocates high address memary for use in generating
the screen display, and because different amounts of memory are
nesded for the different screen modes. Prior to initiating an
OPEN command the variable APPMHI [OOOE] should contain the
highest address of RAM you need. The Screen handler

will open the screen only if no RAM is needed at or below that
address,.

Upoan return freom a scerean OPEN, the variable MEMTOP [OZ2ES] will
contain the address of the last free byte at the end of RAM
memory priar te the screen—-required memory.

OPERATING SYSTEM CO14550 —— Section D
=

As a resulf of every OPEN command. the following screen variables
are altered:

The text cursor is enabled (CRSINH = 0). The tabs are set to
the defauvlt settings (2 and 39). The color registers are setf
to the default values (shown in Appendix H}.
Tabs are set at positions 7,15.23, 31,39,
47, 55,63, 71,79, 87,95, 103, 111, 119.

CLOSE

No special handler actions.

GET CHARACTERS and GET RECORD

Returns data in the following screen mode dependent forms, where
each byte contains the data for one cursor position {pixel); there
is no facility for having the handler return packed graphics data.

7 0O
B RS T S T R Sy
H ATASCTI ! Mode O
e e e i it e e
s s ST TP MY S SR ST
i C i b H Modes 1,2 -~ C = colar/data
T s ot o VY G ST set.

B = truncated ATASCII.

+ +
i Iero i1 D¢ Modes 3,3, 7 —— D color,
+ +

tolor.

B
H IETO P Modes 4, 4,8 —— D
e

-+

D : Modes 9,10,11 -~ D = data.
-+

Figure 35-& Graphics Mode 3~11 GET Data Form

The cursor moves to the next position as each data byte is
returned. For mode O, the cursor will stay within the specified
margins; for all other modes. the cursor ignores the margins.

OPERATING SYSTEM CO14555 —- Section B
o8

PUT CHARACTERS and PUT RECORD

The handler accepts display data in the Follomihg screen mode
dependent forms; there is no facility for the handler to receive
graphics data in packed form.

7 0O
B s St YT SRS S

{ ATABCII : Mode O
o e e e e e e e e
B ot S ST L GRS RS

i Cc D ' Modas 1,2 —— C = color/data
F—Fd—tdmh e =t set,

B = truncated ATASBCII.

e oo s e s e s s e

H 7 I & I Modes 3,5, 7 -- I} = color.
F—F—F e —
= e e e i e e e e

! ? D Modes 4, 64,8 —— D = color.
B sl T S ST U ST l
R S o R B e

H iy : D H Mades 9, 10,11 — D = data.
D s ot SN S ST R W

Figure 5-7 Graphics Mode 3~11 PUT Data Faorm

NOTE: For all modes: if the output data byte equals %98 (EOL}, that
byte will be treated as an EOL character; and if the output

data byte equals $7D (CLEAR) that byte will be treated as a
screen—clear charvactey,

The cursor moves to the next cursor position as each data byte is
written. For mode O/ the cursor will stay within the specified
margins; for all other modes, fthe cursor ignores the margins.

While ocutputting, the Display Handler monitors the keyboard %o
detect the pressing of the [CTRL] 1 key combination. When this
eccurs, the handler loops internally until that key combination
is pressed again: This effects a stop/start function that
freezes the screen didplay. Note that there is no ATASCII cade
associated with either the [CTRL] 1 key combination or the
start/stop function. The stop/start function can be contreolled
only from the keyboard (or by altering database variable CH as
discussed in Appendix L, E4).

OPERATING SYSTEM C014559 —— Section 9

GET STATUS

Mo handler acftion except to set the status to 201.

DRAW

This specrial command draws a simulated "straight" line fram the
cturrent cursor position to the location specified in ROWCRS
£00541 and COLCRS [0O055%]. The color of the line is taken from the
last tharacter processed by the Display Handler or Screen Editor.
To force the color, store the desired value in ATACHR [Q2FBl1. At
the completion of the command, €the cursor will be at the location
specified by ROWCRS and COLCRS.

The wvalue for the command hyte for DRAW is #1ii.

FILL

This special command #ills an area of the screen defined by two
lines with a specified color. The command is set wp the same as
in DRAW, but as sach poinft of the line is drawn, the routine

scans to the right performing the procedure shown below {(in
PASCAL notation):

WHILE PIXEL FROW,COL] = O DO
BEGIN
PIXEL CROW,COLT := FILDAT;
COL := COL + 1,

IF COL > Screen right edge THEN COL := O
END;
An example of a FILL operation is shown belouw:
+ 1
“+
i e e e +
+ - — -+
4 + —ee — +
+
+ 2

Where: ‘—’' represents the £ill operation,
‘+7 are the line points, with ‘47 #or the endpoints.

—= seat cursor and pleot point,
-- set cursor and DRAW line.
set cursor and plot peint
~— gat £ill data valve, set cursor, and FILL.

£ L3 BRI =
|
i

OPERATING SYSTEM CO1&555 —- Section 5
&0

FILDAT £02FD] contains the fill data. and ROWCRS and COLCRS
contain the cursor coordinates of the line endpoint. The value
in ATACHR [O2FB] will be used to draw the line; ATACHR always
contains the last data read or written, so if the steps above
are followed exactly, ATACHR will not have to be modified.

The value for the command byte for FILL is $i2.

User—Alterable Data Base Variables

Certain functions of the Display Handler require you to

examine and/or alter variables in the OS5 database. The following
describes some of the more commonly used handler variables. (see
Appendix L, Bi-55, for additional descriptions).

Cursor Position

Two variables maintain the cursor position for the graphics
screen or mode O fext screen. ROWCRS [00541 maintains the display
row number; and COLCRE [00535) maintains the display column
number. Both numbers range from © to the maximum number of
rows/coalumns, - 1. The cursor can be set outside of the defined
text margins with no ill effect. You can read and write this
Tegion. The home posiftion (0.0) for both text and graphics is the
upper laft corner of the screen.

ROWCRS is & single byte. COLCRS is maintained at 2-bytes, with
the least significant byte being at the lower address.

When you alter these variables: the screen representation
of the cursor will not move until the next I1/0 operation
involving the display is perfarmed.

Inhibit/Enable Visible Cursor Display

You can inhibit¢ the display of the text cursor on the screen
by setting the variable CRSINH [(02FC] to any nonzero wvalue.
Subsequent I/0 will not generate a visible cursor.

You can enable the display of the text cursor by setting
CRSINH to zero. Subsequent I/0 will then generate a visible
cursar.

Text Margins
The text screen has user-alterable left and right margins. The 08
sets these margins to 2 and 39 The wvariable LMARGN [00521
defines the left margin, and the wvariable RMARGM [00531 defines

the right margin. The leftmost margin wvalue is O and the

OPERATING SYBTEM C014585 —— Section S

a1

rightmost margin value is 39,

The margin values inclusively define the useabls portion of the
screen for all gperations in that you do not explicitly

alter the cursoy location variables as described prior to this
paragraph.

Conlor Control

The 0S5 updates hardware tolor registers using data from the 0S5
data base as part of normal Stage 2 VBLANK processing {(see Ssction
&). Shown below are the data base variable names:, the hardware
register names:. and the function of each register. See Appendix H
for the mode dependent uses for the registers.

Data Base Hardware Function

COLORQ COLPFO PFO — Playfield O

COLORI1 COLPF1 PF1 — Playfield 1.

COLOR2 COLPF2 PF2 — Playfield 2.

COLOR3 COLPF3 PF3 —— Playfield 3.

COLOR4 COLBK BAK —— Playfield background.
PCOLRO COLPMO PMO -— Player/miszsile O.
PCOLR1 COLPMI PMI —-— Player/missile 1.
PCOLRZ2 COLPM2 PM2 — Player/missile 2.
PCOLR3 COLPM3 PM3 —— Player/missile 3

Theory of Dperation

The Display Handler automatically sets up all memory resources
required to create and maintain the screen display at OPEN time
The screen generation hardware requires that two distinct data
areas exist for graphics modes: 1} a display list and 2) a
screen data region. A third data area must exist for text modes.
This date area defines the screen representation for each of the
text characters. Consult the ATARI Home Computer

Hardware Manuval for a complete understanding of the material that
is to follow,

OPERATING SYSTEM COD16555 — Section 3
&

e The simplified block diagram below shows the relationships
between the memory and hardware registers used to set up a screen
display (without player/missile graphics) by the 0S5 Note that
the hardware registers allow for many other possibilities.

DATA BASE HARDWARE
VARIABLE REGISTER
(tipdated every
VBLANK)
i MEMTOP i
+ L
i |
Fa— o —
I S— o e o i i i e e e +
g }
+ =t + - + e + |
t Display | { &SDLBTL | i DLISTL | ¢
! List P+ e >+ =k
= = ! SDSTH | i BLISTH ¢
H (- { H !
e i e e e + e e i i i +
| i
I i o ——— e +
i Screen Data {<-- SAVMSC i
=t F--} s -+
i Graphics S |
I and/or } 4 +
| Text |
End of RAM memory
I B + m———————— + 1
- ! CHBAS=EQ {——=2i CHBASE +————=— +
I + + BTy +
o O P ——— +
t Specials and! EQOO
{ Numbers !
+ +
i Capital i EI10D
! Letters H
{ Special i E200
{ Graphics H
i Lowercase i E3CC
i Lettersy H

OPERATING SYSTEM CO16555 —— Section S
&3

—— e e e + et e e +
i COLDR O { COLPFO |
= =——21 COLPF1 H
i COLOR 1 | i COLPF2 |
i COLOR 2 i i COLPF3 |
i COLOR 3 i COL.BK !
i COLOR 4 | + — }
e e +

Figure 5-8 Screen Display Block Diagram

The following relationships are present in the preceding diagram:

i.

&4

Data base variables SDLSTL/SDLSTH contain the address of
the current display list. This address is stored in the

hardware display list address registers DLISTL and DLISTH
as part of the VBLANK process.

The display list itself defines the characteristics of the
screen to be displayed and points €o the memory containing
the data to be displayed.

Data base wvariable CHBAS contains the MSE of the base address

of the character representations for the character data (text
modes onlyl.

The defavult value for this variable is $EQ. This variable
declares that the character representations start at mesmory
address EQOQ (the character set provided by the 05 in ROM).
Each character is defined as an B8XB bit matrix, requiring o
bytes per character. 1024 bytes are required to define the
largest set, since a tharacter ctode contains up to 7
significant bits (set of 128 characters). The 05 ROM contains
the default set in the region from EQOO to EIFF.

All character codes are converted by the handier from ATASCII
to an internal code {(and vice versa), as shown helow:

ATASCII INTERNAL
CODE CODE
00-1F 40~SF
20-3F 00-1F
40-5F 20-3F
&0-7F &0-7F
80~-9F CO-DF
AC~BF 80-9F
CO-DF AC-BF
EO-FF EO-FF

OPERATING SYSTEM CD14555 —— Bection &

The character set in ROM is ordered by internal code order. Three
considerations differentiate the internal code from the external
{ATASCII} code:

ATASCEII codes for all but the special graphics characters were to
be similar to ASCII. The alphabetic, numeric. and punctuation
ctharacter codes are identical to ASCII.

In text modes I and 2 it was desired that one character subset
include capital letters. numbers, and punctuation and the ather
character subse$ include lowercase letters and special graphics
characters.

The codes for the capital and lowercase letters weve to be
identical in text modes 1 and &

Database variables COLORO through COLOR4 contain the current
color register assignments. Hardware color registers receive
these values as part of the stage 1 VBLANK precess., thus
providing synchronized color changes (see Appendix H).

Database variable SAVMSC points to the lowest memovry address of
the screen data region. It corresponds to the data displayed at
the upper left corner of the display.

When the Display Handler receives an open command, it #first
determines the screen mode from the OPEN IOCB. Then it allocates
memory from the end of RAM downward (as specified by data base
variable RAMTOP}, +first for the screen data and then for the
display list. The screen data vregion is cleared and the display
list is created if sufficient memory is available. Tha display
list address is stored to the database.

OPERATING SYSTEM (014555 —— Section 3

&%

Screen Editor (E:)

The Screen Editor is a read/write handler that uses the Keyboard
Handler and %the Display HMandlier to provide "line-at—a-time" input
with interactive editing functions, as well as formatted ocutput.

The Screen Editor supports the following CID functions

OPEN

CLOSE

GET CHARACTERS

GET RECORD

PUT CHARACTERS

PUT RECORD

GET STATUS (null funcgion?

See Keyboard Handler and Display Handler Sections for a
discussion of Screen Editor error statuses.

The Screen Editor is one of the resident handlers, and

therefore has a set of device vectors starting at location
E40Q.

The Screen Editor is a program that reads key data from the
Keyboard Handler and sends each character to the Display Handler
for immediate display. The Screen Editor also accepts data from
you to send to the Display Handler: and reads data from the
Display Handler (no€¢ the Keyboard Handler) for you. In fact.

the Keyboard Handler., Display Handler, and the Screen Editor are
all contained in one monolithic hunk of code.

Most of the behaviors already defined for the Keyboard Handler
and the Display Handler apply as well to the Screen Editor: The
discussions in this Section will be limited to deviations from
those behaviors, or to additional features that are part of the
Screen Editor only. The Screen Editor deals only with text data
(screen mode O). This Section also explains the splif—-screen
configuration feature.

The Screen Editor uses the Display Handler fo vead data from
graphics and text screens on demand. You use the Screen i
Editor to determine when the program will read Screen data, and
where upon the screen the data will be read from. Yau

first locates the cursor on the screen to determine the screen
area to be read; you then press the [RETURNI key fto determine
when the program will begin to read the data indicated.

OPERATING SYSTEM CDis655% — Section 3
&6

When the [RETURN] key is pressed, the entire logical line within
that the cursor resides is then made available f{o the calling
program: Trailing blanks in 8 logical line are never returned as
data, however. After aill of the data in the line has been sent to
the caller (this can entail multiple READ CHARACTERS functions if
desired}, an EOL character is returned and the cursor is
positioned to the beginning of the logical line following the one
Just read.

CI0 Function Descriptions

The device-specific characteristics of the standard CID
functions are detailed below:

OPEN

The device name is E, and the Screen Editaor ignores any
device number and filename specification, if included.

The Screen Editar supports the following aption:

—

= +
AUX1 i iWIRD F
-t +

Where: R and W are the direction bits (read and write).
F = 1 indicates that a "forced read® is desired (see GET
CHARACTER and CET RECORD for morse information}.

CLOSE

No special handler actions,

GET CHARACTER and GET RECORD

Normally the Screen Editor will return data only when you prass the
ERETURNI key at the keyboard. However. the “forced read" OPEN option
allows you to read text data without intervention. When you command a
READ operation: the Screen Editor will return data from the start of
the logical line in which the text cursor is located, and then

meve the cursor £o the beginning of the following logical line. A

read of the last logical line on the serveen will cause the screen
data fo scroll.

A special case occurs when characters are output without a
terminating EOL, and then additional characters are appended to

OPERATING SYSTEM C016555 —— Section 5
&7

that logical line from the keyboard. When the [RETURNI key is
pressed, only the keyboard entered characters are sent to the
caller, unless the cursor has been moved out of and then back

into the logical line: in that case all of the logical line will
be sent.

PUT CHARACTER and PUT RECORD

The Handler accepts ATASCII characters as one chavracter per byfte.
Sixteen of the 25& ATASCII characters are control codes; the EOL
rode has universal meaning:. but most of the other contrel codes
have special meaning only to a display or print device. The
Screen Editor processing of the ATASCII control codes is
explained below:

CLEAR (4%7D) —-— The Screen Editor clears the current display of
all data and ¢he curgor ig placed at the home position {(upper
left corner of the screen!).

CURSOR UP ($iC) -— The cursor moves up by one physical line. The

cursor will wrap from the top line of the display to the bottom
line.

CURSOR DOWN {$#1D} —— The cursor moves down by one physical line.

The cursor will wrap from the bottom line of the display to the
taep line.

CURSDOR LEFT ($1E} —— The cursor moves left by one column. The
cursor will wrap from the left margin of a line to the right
margin of the same line.

CURSOR RIGHT ($1iF) ~— The cursor moves right by one column. The
cursor will wrap from the right margin of a line to the left
margin of t(he same line.

BACKSPACE ($7E} —— The cursor moves left by one cﬁlumn {but never
past the beginning of a logical line), and the character at that
new positipn is changed to a blank ($20).

OPERATING SYSTEM C0O16555 —— Section 5
&8

SET TAB ($9F) ~— The Screen Editor establishes a tab point at the
logical line poasition at that the cursor is residing. The logical
line tab poesition is not synonymous with the physical line column
posiftion since the logical line can be up to 3 physical lines in
length. For example, tabs can be set at the iSth. 30th, 45th,

6H0th and 75th character positions of a logical line as shouwn
below: '

0 2 g i 29 3% Screen ctolumn #.
——f —————— O + + R L/R = margins.

7 [e e e T e e e T A logical line.

%2 T T— ——— e e T- x = inaccesible
X¥ : S R columns.

Note the effect of the left margin in defining the limits of the
lsgical line. :

The Handler default tab settings are shown below:

0 2 @ 1% 29 3% Screen column #.
=m{l, + A= -+ ~—-—R /R = margins.
XxT~ T T———wmm Tre———m | Rttty T A lagical line.
Xx T T O N E 1 patato- 10 T % = inaccesible
e T T T- T mmmm e T columns.
CLEAR TAB ($9E) —~ The Screen Editor clears the current cursor

position within the logical line from being a tab point. There is
no "eclear all fab points™ facility provided bq‘the_Handler.

TAB ($7F} —— The cuvsor moves to the next tab point in the
current logical line, or to the beginning of the next line if no
tab point is found. This function will noft increase the logical
line length to accommodate a tab point outside the current length

{e.g. the logical line length is 38 characters and there is a tab
point at position 50} .

INSERT LINE ($9D) —— All physical lines at and helow the physical
line in that the cursor resides, are moved down by one physical
line. The last logital lime on the display can be truncated as a
result. The blank physical line at the insert point becomes the
heginning of a new logical line. A logical line can be split into
two logical lines by this process, the last half of the original
logical line being concatenated with the blank physical line
formed at the insert point.

OPERATING SYSTEM CO16585 ~- Section 5

(34

DELETE LINE ($9C} ——- The logical line in that the cursor resides
iz deleted and all data below that line is moved upward to fill

the void. Empty logical lines are created at the bottom of the
display.

INGERT CHARACTER (%FF) —- All physical characters at and behind
the cursor position on a logical line are moved one position to
the right. The character at €the cursor position is st to blank.
The last character of the logical line will be lost when the

logical line is #ull and a character is inserted. The number of

physical lines comprising a logical line can inerease as 3 result
of this function.

DELETE CHARACTER ($FE} —- The character on which the cursor
resides is removed, and the remainder of the logical line to the
right of the deleted character is moved to the left by one
pesition. The number of physical lines composing a logical line
can detrease as a rasult of this function.

ESCAPE ($1B}) —— The next non-EOL character following this code is
displayed as data, even if it would normally be treated as a
control code. The sequence L[ESCITESCI will cayse the second LESCI
character to be displayed.

BELL ($FD) -- An audible tone is generated: the display is not
modified.
END OF LINE ($%B) ~— In addition to its record termination

function, the EOL causes the cursor te advance to the beginning
of the next logical line. When the cursor reaches the bottom line
of the screen. the receipt of an EOL will cause the screen data
to scroll vpward by ane logical line.

GET STATUS

The Handler takes no action other €han to set the status to $01.

User—Alterable Data Base Variables

Also see the Display Handler data base vaviable discussion.

OPERATING SYSBTEM CO146555 —— Section 5
70

Cursor Position

When in a split—-screen configuration, ROWCRE and COLCRS are associated
with the graphics portion of the display and two other variables,
TXTROW £02%01 and TXTCOL [02%1i]: are associated with the text window.
TXTROW is & single byte, and TXTCOL is 2-bytes with the least
significant byte being at the lower address. Note that the most
significant byte of TXTCDL should always be zero.

The haome position (0,0) for the text window is the upper left corner
of the window.

Enable/inhibit of Coantrol Codes in Text

Mormally all text mode control codes are operated upon as received,
but sometimes it is desirable to have the control codes displagyed as
if they were data characters. This is done by setting the variable
DSPFLG EO2FE] €0 any noniero value before outputting the data
containing control codes. Setting DSPFLE to zero resfores normal
processing of fext caonfrol codes.

OPERATING SYSTEM CD1s6550 ~- Gection S

71

Cassette Handlar (C:}

The Cassettes device is a read or write device with a Handler
that supports the following CIO functions:

DPEN
CLOSE

GET CHARACTERS

GET RECORD

PUT CHARACTERS

PUT RECORD

GET STATUS (null funcéion)

The Cassette Handler can produce the Foiloming error statuses:

$80 —-
$84 —-
$88 —
$8A-90

EBREAK] key abort.

Invalid AUX1 byte on OPEN.
end—of-+file.

—= BI0 error sst (see Appendix C}.

The Cassette Handler is one of the resident handlers, and therefore
has a set of device vectors starting at location E440.

CI0 Function Descriptions

The device—

specific characteristics of the standard CID functions are

detailed balouw:

OPEN

The device

name is €, and the Handler ignores any device number and

filename specification, if included.

The Handler supports the following option:

72

OPERATING SYSTEM CO16555 —- Section 5

7 o

e e e e o i o e e —
AUX2 iIc! H
T S B e e

Where: C = 1 indicates that the cassette is fto be read/written without

stop/start between records {(continuous mode).

flpening the cassette for input genevates a single audible tone, as a
prompt for you %o verify that the cassette player is set up

for reading (power on; Serial Bus cable connected; tape cved to start
of file; and PLAY button depressed}. When the cassette is ready,

you can press any keyboard key (except [BREAKI) to initiate tape
reading.

Opening the cassette for output generates two closely spaced audible
tones, as a prompt for you te verify that the cassette player

is set up for writing (as above: plus RECORD button depressed}. When
the cassette is veady, you can press any keyboard key (except

[BREAKI) to begin tape writing. There is no way for the computer to
verify that the RECORD or PLAY button is depressed. It is possible for
the file not to be written. with no immediate indication of this fact.

There is a potential problem with the cassette in that when the
cassette is openad for writing, the motor keeps running until the
first record (128 data bytes) is written. If 128 data bytes are
written or the cassette is closed within about 30 seconds of the OPEN,
and no other serial bus I/0 is performed, then there is no problem.
However, if those conditions are not met, some noise will be written
to the tape prior to the first record and an error will occur when
that tape file is read later. If lengthy delays are anticipated
befween the time the cassette file is npened and the time that the
first cassette record (128 data bytes) is written, then a dummy record
should be written as part of the file; typically 128 bytes of some
infnocuous data would be writtem, such as all zevos: all %FFs, or all
blanks (%20).

The system sometimes emits whistling noises after cassette I/0 has
otcurred. The sound can be eliminated by storing $03 to SKCTL LD20F1,
thus bring POKEY out of the two—tone (FSK) mode.
CLOSE
The CLOSE of a tape read stops the cassette motor.
The CLOSE of a tape write does the following:
Writes any remaining user data in the buffer to tape.

Writes an end-of-file record.
Stops the cassette motor.

OPERATING SYSTEM CO016555 —— Section O
73

GET CHARACTERS and GET RECORD
The Handler returns data in the following format:
7 0
Rt e e e S
{ data byte H
B e e e S
PUT CHARACTERS and PUT RECORD

The Handler accepts data in the following format:

7 0
e e e N ot
H data byte {
b — e —

The Handler attaches no significance to the data bytes
writfen, a value of $9B (EOL) causes no special action.

GET STATUS

The Handler does no more than set the status ton 306i.

Theary of Opevation

The Cassette Handler writes and reads all data in fixed-length records
of the format shown below:

e o e b —
i01 10Ot 0 11 Speed measuvement bytes.
e e e aat
101 031 01 014

St S L L o o e

i control byte |

i e ek Tt T T e

H 128 i

= data =

H bytes H

e R T e e TC Tt

H checksum H (Managed by 510, not the
F—F—F =t Handler.)

Figure 5-9 Cassette Handler Record Format

OPERATING SYSTEM CO16555 —- Section 5
74

The control byte contains one of three valuss:
0 $FC indicates the record is a full data recard (128 bytes).

o %FA indicates the record is a partially full data record; you
supplied fewer than 128 bytes to the record. This case can
occur only in the record prior to the end-of-file. The number
of vser-supplied data bytes in the record is contained in the
byte prior to the checksum.

o S$FE indicates the vrecord is an End—of file record; the data
portion is all zeroes feor an end—of—+file record.

The SI0 routine generates and checks the checksum. It is part of the

tepe record, but it is not contained in the Handler ‘s record buffer
CASBUF L[O3FD1. : -

The processing of the speed-measurement bytes during cassette reading
is discussed in Appendix L, DB1-D7.

File Structure

The Cassette Handler writes a file to the cassatte device with a file
structure that is totally imposed by the Handler (soft format) A file
consists of the following three elements:

0 A 20-sscond leader o0f mark tone.
0 Ang number of data—-record frames.

0 An end-of-file frame.

The casseftte~data record frames are formatted as shown bslow:

frame = pre-vecord write tone (PRWT},
+ data reacord,
+ post record gap (PRG}

The nondata portions of a frame have characteristics that are
dependent upon the write OPEN mode, i.e. continuous or
start/stop.

Stop/start PRWT = 3 seconds of mark tone.
Continvous PRWT = .25 secend of mark tone.

Stop/start PRG = yp to 1 second of unknown tones.
Continuwous PRE = from O to n seconds of gnknown tones, whers
n is dependent upon your program timing.

The intér—record gap (IRG) betmeen.ang twe records consists of

the PRG of the first record followed by the PRWT of the second
Tecord. i .

OPERATING SYSTEM CO146555 —— Section 5
79

Printer Handler (P:}

The Printer device is a write—only device with a Handler that
supports the following CID functions:

OPEN
CLOSE
PUT CHARACTERS
PUT RECORE
GET STATUS
The Printer Handler can produce the following errer statuses:

$8A-F0 —~— SI10 error set (see Appendix C).

The Printer Handler is one of the resident handlers. and
therefore has a set of device vectors starting at location E430.

CID Function Pescriptions

The device-specific characteristics of the standard CIO functions
are detailed below:

OPEN

The device name is P. The Handler ignares any device number and
filename specification, if included.

CLOGE

The Handler writes any data remaining in its buffer to the
printer device, with trailing blanks to £ill out the line.

PUT CHARACTERS and PUT RECORD

The Handler accepts print data in the following format:

7 Q
B L ot ot T S e S
H ATASCII i
B et T A s

The only ATABCII control code of any significance to the Handler
is the EOL character. The printer device ignores bi€t 7 of every
data byte and prints a sub set of the remaining 128 codes. (see
Appendix G for the printer character set),

The Handler supports the following print option:

OPERATING SYSTEM C014555 —— Section $
75

7 G

LDl Dol s e e e L

AUX2 i print mode H
Lt e O Ol e e L

Where: $4E (N) selects normal printing (40 characters per line).
$33 (8) selects sideways printing (29 characters per line).
$37 (W) selects wide printing {(not supparted by printer

device}.

Any other value (including G0} is treated as a normal (N)
print select, without producing an error status.

GET STATUS

The Handler obtains a 4-byte status from the printer
controller and puts it in system location DVSTAT [OZEAJ. The
format of the status bytes is shown below:

B ot St 1t Mo

i command stat. | DVETAT + ©
N R e T R e 8

I AUX2 of prev. | + 1
L U SRR W S G ey

i timeaout i + 2
S T TR SR SRR A S

H (unusead!} ; < E)
e e s e e e e e o

The command status contains the following status bits and
conditian indications:

bit O: an invalid command frame was received.
bit 1: an invalid data frame was received.
bit 7: an intelligent controller (normally = 0).

The next byte contains the AUX2 value #rom the previous operation.

The timeout byte contains a controller provided maximum timeout
value {(in seconds}.

Theory of Operatian

The ATARI B20LTM] 40-Column Printer is & line-at-a—time printer rather
than a character—at—a-time printer, so your data must be buffered by
the Handler and sent to the device in records corresponding to one
print line (40 characters for normal, 29 characters for sideways).

OPERATING GYSETEM CO145%% ~— Section S
77

The printer device does nat attach any significance to the EOL
character, so the Handler does the appropriate blamk fill
whenever it sees an EOL.

Disk File Manager (D:)

The OS supports four unigque File Management Subsystems at the
time of this writing. VYersion IA is the original version.

Version IB is a slightly modified version of IA and ig the one
described in this document. Most of this discussion applies as
well to Version II, that handles a double—-densify diskette (720
25&6-byte sectors) in addition to the single—densify diskette (720
128-byte sectors). Version III has all new file/directory/map
structures and can possibly contain changes to your interface

as well.

The File Management Subsystem includes a disk—bootable
(RAM-resident? Disk File Manager (DFM) that maintains a
collaction of named files on diskettes. Up to 4 disk drives

(D1: through B4:.} cam be accessed, and up te &4 files per
diskette can be acrcessed. The system diskettes supplied by ATARI
allow a single disk drive (D1) and up to 3 OPEN files. but

you can altar these numbers as descrihed lafer in

this sectian.

The Disk File Manager supports the following CIO functions:

OPEN FILE

OPEN DIRECTORY
CLOSE

GET CHARACTERS
GET RECORD

PUT CHARACTERS
PUT RECORD

GET STATUS

NOTE
POINT
LOCK
UNLGCHK
DELETE
RENAME
FORMAT

OPERATING SYSTEM CO16555 ~- Section D
78

The Disk File Manager can produce the fellowing error statuses:

$03 ~— Last data from file (EDF on next read).
$82 —— end—of-+file.

$84-20 —— SJI0 error set (see Appendix C}.

$AC — Drive number specification error.

$AL —— No sector buffer available (too many open files).
$A2 — Digk full,

$A3 —~ Fatal 1/4 errvor in directory or bitmap.
$A%2 —— Internal file # mismatch {(structural problem}.

$A5 ~— File name specification error.
$446 —— Point information in error.
$A7 —— File locked to this cperation.
$A8 —— Special command invalid.

$A%7 —— Directory full (&4 files).

$4A —— File not found.
$AB ~- Point invalid (file not OPENed for update).

CI0 Function Descriptiens

The device-specific characteristics of the standard CID functions
are detailed below:

OPEN FILE

The device name is D. Up te four disk drives can be accessed (DI
through D4}, The disk filename can be from 1 to 8 characters in
length with an optional 1- to 3-character extension.

The OPEN FILE command supports the following options:

7 0

B T L T 3

AUX1 i iWiR! 1Al
s et

Where: W and R are the direction bits.
WR = 00 is invalid
01 indicates OPEN for read only,
10 indicatss OPEN for write only.
i1 indicates OPEN for read/write (update).

A = 1 indicates appended output when W = 1.

You may use these following valid AUX!I optians:

OPERATING SYSTEM CD16555 —— Section 5

OPEN Input (AUXI = $04)
The indicated File
are used to search
an error status is

is opened for
for the first
returned: and

OPEN Output (AUX1 = $08)

The indicated file is opened for
byte of the file, if the file is

characters are wsed to search for the first match,

already exists,
the named file as a new file,
it will be created.

It

input. Any wild-card characters
match. If the file is not found.
no file will be opened.

output starting with the first
not locked. Any wiid-card
I# the file

the existing file will be deletad bafore opening

the file does not already exist,

A file opened for output will not appear in the directory until

it has been closed. If an output

file is not properly closed,

some or all of the sectors that were acquired for it can be lost

uyntil the disk is reformatted.

A file that is opened for oufput
for any other access,

DPEN Append (AUX1 = %09}

The indicated file is opened for

can not be opened concurrently

output starting with the byte

after the last byte of the existing file (that must already

exist),

if the file is not locksad.

adny wild—-card characters are

used to search for the #irst match.

I#+ a file apened for append is not properly closed.

data will be lost.

the appended

The existing file will remain unmodified and

some or all of the sectors that were acquired for the appended
portion can be lost until the diskette is reformatted.

OPEN Update (AUX1 = %0}
The indicated ¥file
update provided it
used to search for

intermixed as desired.

I+ a file opened for update is not properly closed.

worth of information can be lost
update can not be extended.

and POINY operations are all valid.

{that must already exist} will be opened for
is not locked.
the first match.

Any wild-card characters are
and can be

4 sector’s
to the #ile. A file opened for

OPERATING SYSTEM CO146555 — Section I

80

Device/Filename Specitication

The Handler expects to find a device/filgname specification of
the following form:

BE<number>]: <filename><EQL>

where:
‘numberl 1= 1121314
<filename’ = E<primary>Il. f{extension>IJ<terminator>

<primary> .= an uppercase alpha character followed by O to 7
alphanumeric characters. I$¢ the primary name is
less than 8 characters, it will be padded with

blanks:i if it is greater than 8 characters, the
extra characters will be ignored.

<extension> = Zero to 3 alphanumeric chavacters. If the
e¢xtension name is missing or less than 3
characters, it will be padded with blanks; if
it is greater than 3 characters:, the extra
characters will be ignored.

<terminatar> ::= <EOL>!<blank>

Figure 5-10 Davice/Filename Syntax

The following are all valid device/filenames for the diskette:

Di: GAME. ERC

D: MaNUALSL
D:. WHY
D3: FILE.

D4: BRIDBGE. 002

Filename Wildcarding

The filename specification can be further generalized to include.
the use af the “wild-card"” characters # and 7* These wildcard
characters allow portions of the primary and/or exftension to be
abbreviated as follows:

The 7 eharacter in the specification allows any f£ilename
character at that position to produce a “"match. * For example, WH?

will match files named WHO., WHY. WH4, etc.. bBut not a file named
WHAT,

OPERATING SYBTEM CD16553 ~- Section 5

81

The * characfer causes the remainder of the primary or extension
field in that it is used to be effectively padded with 7
characters. For gxample, WH# will match WHO, WHEN, WHATEVER, etc.

Some valid uses of wild-card specifications are shown below:

#, SRC Files having an extension a# SRC.

BASIC. # Files named BASIC with any sxtansion.

#, # All files.

Mt P Files beginning with H and having a O or 1

character extension.

If wildcarding is used with an DPEN FILE command. the first file
found (if any} that meets the specification will be the one {(and
only one) cocpened.

OPEN DIRECTORY

The OPEN DIRECTORY command allows you read directory

information for the selected filename(s}:, using normal GET
CHARACTERS or GET RECORD commands. The information read will be
formatted as ATASCII records:, suitable for printing, as shoun
below. Wildcarding can be used to obtain information for multiple
files or the entire diskette.

The OPEN DIRECTORY command uses the same CID parameters as a standard
OPEN FILE command:

COMMAND BYTE = $03
BUFFER ADDRESS = pointer to devicae/filename specification.
AUX1 = 04

After the directory is opened:, a record will be returned to the
taller for each ¥file that matches the OPEN specification. The
racord, that contains only ATASCII characters, is formatted as
shown below:

i
1 23454667B201 23483678
e v e e o e o s i e e e o e
vimary name | ext ibicountief
o o o e rm i o i i e e o e erm e o e

+ T+

OPERATING SYSTEM C0O14555 —-— Bection o
82

Where: s = # or ¢ /, with # indicating file locked.
b = blank.
primary name = left—justitied name with blank £ill.
ext = left~justified extension with blank #ill.
b = blank.

count = number of sectors comprising the file.
e = EOL (9B},

After the last filename match record is returned:, an additional
record is returnad. This record indicates the number of unused

sectors available on the diskette. The farmat far this record is shown
below:

i
123458345789 0C1i234%5 6 7
o T T P St St T SPUSE S T S -t
icount! F R E E SECTOR S|9c
B ol s Lot T ST ISR G ST Sr RT W T ST e 4

Where: caunt = the number of unused sectors on the diskette.
e = EOL (398},

The EOF statuses (%303 and $88) are returnsd as in a normal data
file when the last directory record is read.

The opening of another diskette file while the divectory read is

open will cause subsequent directory reads to malfunction, so
care must be taken to avoid this situation.

CLOSE

Upon closing a file read, the Handler releases all internal
resources being used to support that file,

Upon closing a file write, the Handler:

0 wrifes any residual data from its file buffer for that file
to the diskette.

¢ updates the'directarg and allocation map for the associated
diskette.

0 releases all internal resources being utilized to support
that file

GET CHARACTERS and GET RECORD

Characters are read from the diskette and passed to CIO as a raw
data stream. Mone of the ATASCII control characters have any

special significance. A status of $88 is returned if an attempt
is made to read past the last byte of a filse.

OPERATING SYSTEM CDi6555 ~— Section S
83

PUT CHARACTERS and PUT RECORD

Characters are ocbtained from CID and written to the diskette as a raw

data stream. None of the ATASCII control characters have any special
significance.

GET STATUS

The indicated file is checked and one of the following status
byte values is returned in ICSTA and register VY:

$01 —— File found and unlocked.
$A7 ~— Filg locked.
$AA —~ File not found.

Special CIO Functions

The DFM supports a number of SPECIAL commands, that are device
specific. These are explained in the paragraphs that follow:

NOTE (COMMAND BYTE = 325)

This command returns to the caller the exact diskette location of

the next byte to be read or written, in the variables shown
balaow:

ICAX3 = LSB of the diskette sector number.
ICAX4 = MSB of the diskette sector number.
ICAXDS =

relative sector displacement o byte (0-124).

POINT (COMMAND BYTE = $24)

This command allows you to specify the exact diskette location of
the next byte to be read or written. In order to use this commmand,
the file must have been opened with the "update" cption.

ICAX3 = LSB of the diskette sector number.
ICAX4 = MSB of the diskette sector number.
ICAXS =

relative sector displacement to byte (0-124}).

OPERATING SYSTEM C016555 ~~ Section 5
84

LOCHK

This command alleocws you to prevent write access to any

number of named files. lLocked files can nat be deletad, renamed,
nor opened for ocutput unless they are first wnlocked., Locking a
file that is already locked is a valid operation. The Handler
expacts a device/filename specification: then all occurrences of
the filename specified will be locked, using the wild-card rules.

You set up these following TOCB parameters prior to
talling CIO:

COMMAND BYTE = %23
BUFFER ADDRESS = pgointer to device/filename specification.

After a LOCK operation, the following IOCE parameter will have
been altered:

STATUS = resuylt of LLOCK operation; see Appendix B for a lis¢
of possible status codes.

UNLOCHK

This command allows you to remove the lock status af any

number of named files. Unlecking a file that is not locked is a
valid operation. The Handler expects a devices+ilename
specification; then all occurrences of the filename specified
will be unlocked, using the wild-card rules.

You set up these following IOCE parameters prior to
calling CIO:

COMMAND BYTE = 324
BUFFER ADDRESS = pointer to device/filename specification.

After an UNLOCK operation, the following IOCE parameter will have been
altered:

STATUS = rasult of UNLOCK eoperation: see Appendix B for a
list of possible status codes.

DELETE

This command allows you to delete any number of unlocked

named files from the directory of the selected diskeftte and to
deallorate the diskette space used by the files involved. The
Handler expects a device/filename specification; then all
occurences of the filename specified will be deleted, using the
wild-card rules. '

OPERATING SYSTEM C0O16555 —— Section & ;
8

You set up these following IOCB parameters prior fo
calling CIG:

COMMAND BYTE = $21
BUFFER ADDRESS = pointer to device/filename specification.

After a DELETE operation, the following I1OCB parameter will have
been altered:

STATUS = vesult of DELETE operation: see Appendix B for a list of
possible status codes,

RENAME

This command allows you to change the filenames of any
number of unlocked files on a single diskette. The Handler
expects to find a device/filename specification that follows:

“<device spec>:<filename spec> <{Ffilename specrLEDOL>

All coccurrences of the first filename will be replaced with the
second filename: using the wild-card rules. No protection is
provided against forming duplicate names. Once formed, duplicate
names cannot be separately renamed ar deleted: however, an OPEN
FILE command will always select the first file found that matches
the filename specification, sp that file will always be
accessible. The RENAME command does not alter the content of the
files involved, merely the name in the directory.

Examples of some valid RENAME name specifications are shown
belaw:

D1:#. 8SRC, #. TXT
D: TEMP, FDATA
D2: F#, F+. OLD

You set up these following IOCB paramsters prier to
calling CID:

COMMAND BYTE = %20
BUFFER ADDRESS = pointer to devices/filename specification.

After a RENAME operation. the following IOCE parametesr will have
heen alterad:

STATUS = result of RENAME operation; ses Appendix B for a
list of possible status codes.

OPERATING SYSTEM CO16555 —— Gection 5
84

FORMAT

Soft-sector diskettes must be formatted before they can store
data. The FORMAT command allews gou to physically format a
diskette. The physical formatting process writes a new copy of
every sector on the gsoft-sectored diskette, with the data portion
of each sector containing all zeros. The FORMAT process creates
an "empty" non system diskette. UWhen the formatfing process is
complete, the FMS creates an initial Volume Table of Contents
(VTOC? and an initial File Directory. The boot sector (#1i}) is
permangntly redserved as part of ¢this process.

You set up these following IOCB parameters prior to
calling CI0:

COMMAND BYTE = $FE
BUFFER ADDRESS = pointer to device specification.

After a FORMAT operation, ¢the fellowing IOCE parameter will have
been altered:

STATUS = result of FORMAT operationi see Appendix B far a
list of possible status codes.

To create a system diskette, a copy of the boot file must then be
written fto sectors #Z-n. This is accomplished by writing the file
named DOS. 8YS. This is a name that is recognized bq the FME sven
though it is not in the directory initially.

Theory of fperation

The resident OS5 initiates the disk-boot process (see Section 10).
The 0S reads diskette sector #1 to memory and then transfers
control to the "boot continuation address® {(boot address + &).
The boot-continuation program contained in sector #1 then
continuves to laad fhe remainder of the File Management Subsystem
to memory using additional information contained in sector #i.
The File Management Subsystem loaded, will contain a Disk File
Manager .and opftionally, a Disk Utilities (DOS) package.

When the boot process is complete, the Disk File Manager will
allocate additional RAM for the creation of sector buffers.

Sector buffers are allocated based upon information in the boot
record as shown below:

Byte 9 = maximum number of open files; one buffer per (the
maximum value is 8).

Byte 10 = drive select bits: one buffer per (1-4 only).

OPERATING SYSTEM C0146555 —— Section 5

a7

The Disk File Manager will then insert the name D and the Handler
vector table address in the device table.

NOTE: There is a discrepancy between the Disk File Manager’s
numbering of diskette sectors (0-719) and the disk controller‘s
numbering of disketfe sectors (1-720)}; as a result, only sectors
i- 717 are used by the Disk File Manager.

The Disk File Manager uaés the Disk Handler to perform-all
diskette reads and writes; the DFM’'s function is to support and

maintain the directory/files/bitmap structures as described in the
following pages:

5 OPERATING SYSTEM C016555 —— Section 5
8

FMS Diskette Utilization

The map below shows the diskette sector vtilization for a

standard 720 sector diskette.

BOOT recerd

FMS BOOT
file
DOs. SYS

miae

User
File
Area

VTOC{nota 2)

File
Directory

User
File
ATea

N B A R e Tl Tk daik IR S

ynused

+
|
i
1

§ co foon ffomdonm | ve oo oam [oom g oma || a= o b

Sector
Sector
Sectar
Sectar
Sector
Bector
Sector

Sector

Sector

Sector

n+i

359

3460

341

368

719

720

Figure 5-11 File Management BSubsystem Diskette

Map

—

+- Note 1

==F

{$1567)
{($1468)
($16F)

($170)

{$2CF)

($2D0}

Sector Utilization

NOTE 1 — I+ the diskette is not a system diskette, then your

File Area starts at sector 2 and no space is reserved for the FMS
BOOT £ile. However, "DOS* (DOS. 8YS and DUP.SYS) may still be
written to a diskette that has already used sectors "2-N. "

NOTE 2 —— VTOC stands for VYolume Table of Contents.

DPERATING SYSTEM CO16555 —-— Bection 5

89

FME Boot Record Format

The FMS BOOT record (sector #1) is a special case of diskette—booted

software (gsee Section 10). The format for the FMS BOOT record is

shown below:

——+
boot flag = O |

TRECTR SR P

————

#*

sggtars = 1 !

-+
boat address H
»

JMP = $4B

boot Tead
continuvation
addross

max files = 3

drive bits = 1

alioc divc = 0O

boot image end

address + 1

boaot flag <> O

1

sector count

DOS. 8YS
starting
secftor number

A e —

e

Ih o e oo o em em em b b om oo o oy ey or e

code for sscond

-+
i
1

-+
i
[4
3
[
1
+
[
T

+
i

LS
]
L

+
[}
1

- -
]
1

-+
i
L]

+
]
3

+
]
]

+
]
]

+
]
i

-+
]
1

-+
1
)

phase of boot |

Figure 5—12 File Management Subsystem

0

Byte O

1

2

4

&

9 HNote
1¢ Note
i1 Nate
iI4 Note
1% Note

FMS
configuration
data

Boot Record Format

OPERATING SYSTEM CO16535 ~— Section 5

P

NOTE 1

NOTE 2

NOTE 3

NOTE 4

NOTE S

Byfte 7 specifies the maximum number of concurrently open
files to be supported. This value can range from I to 8.

Byte 10 specifies the specific disk drive numbers to be
supported using a bit encoding scheme as shown below;

76543210
R e e o

.*.
i 141312111 where a 1 indicates a selected drive.
F = o e e

Byte 11 specifies the buffer allocation dirvection, this
byte should squal O.

Byte 14 must be nonzero for the second phase of the boot
process to initiate. This €lag indicates that the file
DOS. SYS has been written to the diskette.

This byte is assigned as being the sector count for the
DOS. 8Y8 file. It is actually an wnused byte.

OPERATING SYSTEM C016553 ~— Section 5

1

Bocot Process Memory Map

The diagram below shows how the ‘boot sector (part of file
DOS. 8YS} and following sectors are loaded 4o memory as part of
the hoot pracess.

+ - + Memory address Q700
i data #rom boot ! H

= sector read by = i

i resident 0OS i 077C
+ — +

| data from rest | Q77D
i of DOS. 8YS | i

| read by the | |

= pragram in the = '

! boot sector. ! '

L5 1 i

+ = e e end of boot

Figure 5-13 File Management Subsystem Boot Process Memory Map

OPERATING SYSTEM CO14555 ~— Section 5
92

Volume Table of Contents

The format for the FMS volume table of contents (VTOC, sector
360} is shown in the diagram below:

i directory type | Byte O Note i
e +

! maximum {lo) ! i Nofte 2
+ sector # +

i = Q2C5 (hi) |

o em +

{ number of (lo) ! 3 Note 3
+ gsactars +

{ available (hi) !

e s +

Fom—— +

i : i0

= voluyme bit map =

1 1

+ —_— +

L H

F— +

Figure 5-14 File Management Subsystem Volume Table of Contents

The valume bit map organization location follows:

7 0

B s s S st ot S

i 112345 &6 71 Byte 10 of VTOC
e S e sl

g8 9 | i ii

? ? 99

B e

Figure 5-13 File Management Subsystem Volume Bit Map

At each map hit position, a
is in vse and a 1 indicates

NOTE i1 - The dirvectory type
NOTE 2 - The maximum sector

incorrectly sat to
number is actuslly

QG indicates the corresponding sector
that the sector is available.

byte must equal O
numbar is not used hecause it is

709 decimal. The true maximum sector
719 for the DFM.

OPERATING SYSTEM CO14535 —— Section O

3

NOTE 3 — The number of sectors available is initially set to 709
after a diskette is freshly formatted; this number is
ad justed as files are created and deleted to show the
number of sectors available. The sectors that are
initially reserved are 1 and 3&0-368.

File PDirectory Format

The FMS reserves eight sectors (341-3468) for a file directory.
Each sector containing directory informaftion for up to eight
files, thus providing for a maximum of &4 files for any volume.
The format of a single 16—-byte file entry is shown below:

+ - +

H flag byte H Byte O
o - +*

! sector {la} | i
+ count +

H {hi)

e +

! starting (lo} | 3
+ sector +

f number thi) |
e +*

H (1) ¢ 5
+ +

H 2y |

+ +

H {3 1

+ +

H file {4) i

+ +

H name (S5 |

+ +

H primary (&) |

+ +

H (7 |

+ +

i (8) |
e +

H file (1) | i3
+ +

H name (2) |

+ +

H extension (3) |

> - e

Figure 5—1& File Directory Format

Where the flag byte has the following bits .assigned:

OPERATING SYSTEM CD16555 —— Section 5
94

bit 7 = 1 if the file has been deleted.
bit & = 1 if the file is in use.

hit 5 = 1 if the file is locked.

bit 0 = 1 i# OPEN output.

The flag byte can take on the following values:

$00 = entry not yet used (no file).

$40 = entry in vuse (normal CLOSEd file).
$41 = entry in vuse (OPEN output file).

$60 = entry in use {locked file:.

$8C = entry available (prior file deleted).

Bector count is the number of sectors comprising the file.

FMS File Sector Format

The format of a sector in your data file is shown below:

7 o

F—F b —+

! data S

H H

I e e S e e s

t file & thi | +1295
F—b bbb — +
iforward pointer! +126
e e e g

ISt byte count | +1i27
R e

Figure 5-17 File Management Subsystem File Secter Format

The FMS uses the file # to verify #file integrity. The +ile #

is & redundant piece of information. The file number field
contains the value of the directory position of that file. If a
mismatch occurs between the file‘s directory position, and the
file number as contained in each sector. then the DFM will
generate the error %$A4.

The forward pointer field contains the 10-bit wvalue for the
diskette sector number of the next zector of the file. The
pointer equals zero for the last sector of a file.

The § bit indicates whether or not the sector is a "short sector"
(a sector containing fewer than 125 data bytes). 8 is equal to
1 when the sectoer is shart.

OPERATING SYSTEM CO1653%5 —— Section 9
23

The byte—count field contains the number of data bytes in the
sector,

Non-CIO0 1/0

Some portions of the I/0 subsystem are accessed independently of

the Central I/0 Utility (CI0); ¢this section discusses those
areas.

Resident Device Handler Vectars

All of the OS ROM rvasident device handlers can be accessed via
sets of vectors that are part of the 0S ROM. These vectors
increase the speed of I1/0 operations that wtilize fized device
assignments, such as outpuft to the Display Handler. For each

reésident Handler there is a set of vectors ardered as shown
below:

+ o

+- OPEN -+ +0
e +

+- CLOSE = +2
e e e e e e e e +

+- GET BYTE -+ +4
o -+

+- PUT BYTE -+ +4
+ +

+~ GET BTATUS -+ +8
+ s)

+- BPECIAL -+ +10
e o e e e i e +

e JMP = +12
+- INIT -t

+ et

+— SPARE ~h

+- BYTE rh

+ —— — +

Figure 5-18 Resident Device Handler Vectors

See Section 9 for a detailed description of the data interface
for each of these Handler entry points.

Each of the vectors contains the address (lo,hi) of the Handler
entry point minus 1. A technique similar to the one shown below
is required to access the desired vroutines:

ODPERATING SYSTEM (016555 —-- Section S5
L7

VTBASE=%E4DC i BASE OF VECTOR TABLE.

LDX #xx i OFFSET TO DESIRED ROUTINE.
LbDaA data
JER GOVEC i SEND PATA TGO ROUTINE.
LDX #yy i OFFSET TO DIFFERENT ROUTINE.
JER GOVEC i GET DAYA FROM ROUTINE.
STA data
GOVEC TAY i SAVE REGISTER A.
LA VTBASE+1, X i ADDRESS MEB TO STACK.
PHA
LDA VTIBASE, X i ADDRESS L5B TO STACK.
PHA
TYA i RESTORE REGISTER A.
RTS i JUMP TO ROUTINE.

The JMP INIT slet in each set of vectors jumps to the Handler
initialization entry (not minus 1},

The base address of fthe vector set for each of the resident
handlers is shown below:

Screen Editor (E;:) E400,
Display Handler (S:) E410.
Keybaoard Handler {(K:? E420.
Printer Handler (P:} £430.
Cassette Handler ({:3 E440.

The resident diskette Handler is not CIO-compatible, so its
interface does naot use a vectar set.

Resident Diskette Handler

The resident Diskette Handler (not to be ronfused with the Disk
File Manager) is responsible for all physical accesses to the
disketfte. The unit of data transfer for this Handler is a single
diskette sector containing 128 data bytes.

Communication between you and the Diskette Handler is

effected using the system’s Device Control Block (DCB), ¢that is
also used for Handler/SIO communication (see Section 9?). The DCB
is 12 bytes long. Some bytes are user-alterable and some are for
use by the Diskeftte Handler and/or the Serial I/0 Utility (S10).
You supply the required DCB parameters and then do 3 JER

DSKINYV [E4531].

OPERATING SYSTEM 016555 ~- Section 5
97

Each of the DCB bytes will now be described, and the
system—equate file name for each will be given.
SERIAL. BUS ID -- DDEVIC {03001

The Diskette Handler sets up this byte to contain the Serial Bus ID
for the drive to be accessed. It is not user-—-alterable.

DEVICE NUMBER —— DUNIT [03013]

You set up this byte to tontain the disk drive number to be
accessed (1 - 43,

COMMAND BYTE —— DCOMND [0302]

You set up this byte to contain the disk device command to

be performed.

STATUS BYTE —- DSTATS [03031

This byte conftains the status of the command upon return to the
caller. See Appendix C for a list of the possible status codes.
BUFFER ADDRESS —— DBUFLDO (03041 and DBUFHI [0303]

This 2-byte pointer contains the address of the source or
destination of the diskette sector data. You need not supply

an address for the disk status command. The Disk Handler will
abtain the status and insert the address of the sftatus buffer
inte this field.

DISK TIMEOUT VALUE -- DTIMLO L[C3041

The Handler supplies this timeocwt value (in whole seconds) for
vse by SIO.

BYTE COUNT —— DBYTLO [03081 and DBYTHI [030%1

This 2-byte counter indicates the number of bytes transferred to
or f#rom the disk as a result of the most recent command, and 1is
set up by the Handler.

SECTOR NUMBER —-— DAUX1 LQ30A]1 and DAUXZ2 L[03CB1]

This 2-byte number specifies the diskette sector number (1 ~ 720)
to read or write. DAUX1 contains the least significant byte., and

OPERATING SYSTEM CO14555 —— Bection 5
78

DAUX2 contains the most significant byte.

Diskette Handler Commands
Thers are five commands supported by the Diskette Handler:
GET SECTOR (PUT SECTOR ——### not supported by current handler ##3)
PUT SECTOR WITH VERIFY

STATUS REQUEST
FORMAT DISBK

GET SECTOR (Command byte = %52}

The Handler reads the specified sector to your buffer and returns the
operation status. You set the following DCB parameters prior to
calling the Diskette Handler:

COMMAND BYTE = #352.

DEVICE NUMBER = disk drive number (1-4).

BUFFER ADDRESS = pointer to your 128-byte buffer.

SECTOR NUMBER = gector number to read.

Upon return from the sector, several of the other DCB parameters
will have been altered. The STATUS BYTE will be the only
parameter of interest to you, however.

PUT SECTOR {(Command byte = $50)

##% Not supported by curvent Handler %
(But can be accessed through SI0 directly. }

The Handler writes the specified sector from your buffer and returns
the operation status. You set the following DCB parameters prior to
talling the Diskette Handler:

COMMAND BYTE = %50.

DEVICE NUMBER = disk drive number (i-4}.

BUFFER ADDRESS = pointer to your 128 byte bhuffer.

SECTOR NUMBER = sector number to write.

Upon veturn from the operation: several of the other DCB parameters
will have been altered. The STATUS BYTE will be the only one of
interest you. however.

OPERATING SYSTEM CD14555 —— Section 5
99

PUT SECTOR WITH VERIFY (Command Byte = $57)

The Handler writes ¢the specified sector from your buffer

and returns the operation status. This command differs from PUT
SECTOR in that the diskette conéroller reads the sector data after
writing to verify the write operation. Aside from the COMMAND
BYTE value. the calling sequence is identical to PUT SECTOR.

STATUS REQUEST (Command byte = $353)

The Handler obtains a 4-byte status from the diskette controller and
puts it in system location DVSTAT [O2EA]. The operation status
format is shown below:

7 0O
LS T S ot T e Tt
i command stat. ! DVSTAT + ¢
F—F—F = =
! hardware stat. § + 1
B o S QA B &

H timeout H + 2
B e A e 4
H {unused) H + 3
=t =t ==

Figure 5-1%9. DVSTAT 40-Byte Operation Status Format

The command status contains the following status bits:

Bit O = 1 indicates an invalid command frame was received.
Bit 1 =1 indicates an invalid data frame was received.
Bit 2 = 1 indicates that a PUT operation was unsuccessful.
Bit 3 = i indicates that the diskette is write protacted.
Bit 4 = 1 indicates active/standby.

The hardware status byte contains the status register of the
INS1771-1 Floppy Diskette Contreller chip used in the diskette
controller. See the documentation for that chip te obtain
information relating to the meaning of each bit in the byte.

The timeout byte containg a controller—provided maximum timeout
value (in seconds) to be used by the Handler.

You set the following DCB parameters prior to calling
the Diskette Handler:

COMMAND BEYTE = $53.
DEVICE MUMBER = disk drive number (1-4).

Upon return from the operation, saveral of the other DCB parameters
will have heen altered. The STATUS BYTE will be the only one of

OPERATING SYSTEM CO148555 —— Section 3
100

interest to you, however,

FORMAT DISK (Command Byte = $21)

The Handler commands the diskette controller to format the entire
diskette and then to verify it. All bad sector numbers {(up to a
maximum of 63! are returned and put in the supplied buffer,
followed by two bytes of all 1‘s ($FFFF). You set up the
following DCB parameters prior to calling the Diskette Handler:

COMMAND BYTE = #$21.
DEVICE MNUMBER = disk drive number (1-4}.
BUFFER ADDRESS = pointer to your 12B-byte buffer.
Upon return, you might be interested in the following DCB parameters:

STATUS BYTE = status of eoperation.

BYTE COUNT = number of bytes of bad sector infarmation in
your buffer, not including the SFFFF terminator. If there
are¢ no bad sectors, the count will equal zero.

Serial Bus I/0

Input/Qutput to devices other than the keybpard, the screen, and
the ATARI Computer controller port devicaes, must utilize the
Berial I/0 bus. This bus contains data: tontrol, and clock lines
to be used to allow the computer to communicate with external
devices on this “"daisychained" bus. Every device on the bus has
a8 unique identifier and will respond only when directly
addressed.

The resident system provides a Serial I/0 Utility (810), that
provides a standardized high—level program interface to the bus.
EI0 is utilized by the resident Diskette, Printer, and Cassette
handlers, and is intended fto be used by nanresident handlers {(see
Section 9}, or by applications, as well. For a detailed
description of the program/SI0 interface and for a detailed bus
specification refer to Section 9.

OPERATING SYSTEM CO14555 -- Section 5
101

