" LECTURE NOTES

INTRODUCTION

A. Welcome

B. Names

C. Schedule

D. Handouts

E. Why develop software for the Atari?
1. better machine; you can do more.
2. ultimately a bigger market (consumers)
3. better support

il. PCS SYSTEM OVERVIEW

A. A very people-oriented computer
B. Hardware
1. 6502 (1.79 MHz)
2. RAM (192K possible)
3. ROM (10K 0S, 8K or 16K cartridge)
4, VIA
5. POKEY sound, controller ports, serial bus
6. ANTIC display microprocessor
7. CTIA television output
C. Large memory map:

OS RAM FMS DUP <~=---user area—----> cartridge hardware firmware

e

e | I I I] I
1.5K 5K 7K up to 32K 8K 6K 10K

D. Strengths and weaknesses
1. GRAPHICS!
2. sound
3, controllers
4. 1,79 MHz 6502 . R
5. operating system (screen editing) - - sron
6. BASIC variable names, indirection, syntax error:handling:-

7. BASIC strings

8. slow disk = w ' “

9, |ittle page zero or absolute RAM available

10. maximum of flve color registers in plain BASIC
11, difficult to add hardware o

/m

<

ANTIC AND THE DISPLAY LIST

Background: how a TV works; definitions of terms

display system used by other personal computers

5'
6.

microprocessor-->RAM=->hardware-->screen

the 'hardware' part is the limiting factor

PET, TRS-80: fixed RAM, single mode (text). simple hardware
Apple: two RAM sizes, 3 fundamental modes, better hardware

Atar! display system
functional differences
a. 14 fundamental display modes
b. modes changeable on screen
c. screen RAM anywhere
ANTIC, a video microprocessor
ANTIC's instruction set
a. display instructions (graphics, text, or blank)
b. JMP and JVB
c. special options (scroll, DLI, and LMS)
the display |ist (ANTIC'S program)
a. synchronized to television cycle
screen memory
ANTIC writes only to CTIA

A sample display |ist (all values In hex)

70
70
70
42
Lo
HI
XX
XX
XX
XX
XX
XX
XX
XX
XX
41
Lo
Hi

Skip 8 lines
skip 8 lines
skip 8 lines

'mode 0' line with Load Memory Scan
address of screen memory

address of screen memory

here follow mode bytes

must total 192 horizontal scan iines

Jump and wait for vertical blank...
...to beginning of display list
high byte of address of display list

Using display lists

1.

& WN

make a paper image
mode |ine setup
scan |ine count
arranging screen memory
a. mixed mode screen memory discontinuities
b. maintaining integer multiples
c. brute force: calculating addresses
d. setting up independent windows

F. Uses of display list manipulations

. vertical spacing

. mixed modes (note problems abovel)
access to new modes

screen sequencing

dynamic display lists

U W -
.

v, INDIRECTION: COLOR REGISTERS AND CHARACTER SETS
A. Indirection Is harder to understand but more powerful

B. Color register indirection
1. One number in a color reglister controls the color of many pixels
. less RAM consumption
more colors to choose from
color cycling (animation)
logically keying colors to situations
display list interrupt capabllity

I WN

Character set indirection
1. Direct: character code glves character in ROM
2. Indirect: character code gives character in any specified table
3. Procedure
a. define characters on graph paper
b. encode into bytes
c. stuff into RAM
d. POKE CHBAS with address of charset
e. must start on 1K boundary (1/2K for GR. 1 & 2 sets)
f. 8 bytes per character
4, Capabilities
a. multiple character sets (fonts)
b. graphics character sets; maps; mixed text and graphics
c. 4 color character sets
d. vertical reflect
e. time changes of character sets
f. human slow: change of scenery
g. human fast: animation
h. machine fast: DLI's
5. Overall assessment

PLAYER-MISSILE GRAPHICS

AI

B'

E.

The problem: Animation

The traditional solution: playfield animation

1.
2.
3.

5.

move bytes through RAM to move screen Image
address calculations; very slow

resultant | imitations:

a. pure horizontal motion

b. pure vertical motion

c. few objects moving

d. slow motion

Essence of problem: 2d image, 1d RAM

Atari solution: player-missiie graphics
Fundamental Idea: 1d Image, 1d RAM

map table of bytes directly from RAM onto screen
image is a vertical column 8 bits wide

vertical motion with 1d move routine

horizontal motion by horizontal position register

Embel | Ishments

1.

4 players, each with 1ts own color register
Controllable player widths

3. Two vertical resolutions possible

4., missiles (two bits wide)

5. Image priorities

How to do it

1. Set aside player-missile RAM area (1K or 2K)
2. set player colors

3. set player widths and positions

4, draw in players

5. enable through PMBASE and DMACTL

6. see demo program HOBBY!

Capabilities

1. Animated objects

2, Additional color

3. Special offline characters

4. cursors

5. additional resolution by priority control

Vi. DISPLAY LIST INTERRUPTS
A. A very powerful capabillty

B. Fundamental ideas
1. Screen drawing Is time sequenced
2. By cutting into draw at appropriate time, Image can be changed
3. change Iimage by changing ANTIC registers
4. Timing provided by the DLI

ow a working DLI happens

ANTIC encounters display |ist instruction with interrupt bit set
ANTIC checks NMIEN for enabling bit

If DLI is enabled, ANTIC Interrupts 6502

6502 vectors through $0200, $0201 +o your DLI service routine
When done, 6502 resumes work.

Process repeats at same point on screen each 1/60th second.

OV b WN - I
.

L . . L)

[w]
.
g
£

to set up a DLI

Write and place DLI| service routine (page six?)

Set DLI bit In appropriate display list Instruction
Set DL! vector In $0200, $0201

Enable DLI with $CO into $D4OE

Sample program: HOBBY2

U WA —
¢ o o

&

nslderations
colors Into ANTIC, not shadow. Attract
Execution time
things happening halfway across |ine; (WSYNC); keyboard IRQ
Multiple DLI's: separation probiem, slow response
Using VCOUNT

apabllities

Multiple playfleld colors

Multiple color, width, position, and priority players
Multiple character sets; Rosetta Stone

vertical screen architecture

-n
L]
HUWN -0 Ut WN) —

Vil.

A.

SCROLLING

Coarse scrolling
1. method 1: move data through playfield with move routine.
2. method 2: move playfleld over data with LMS byte changes.
a. serlal scroll with single LMS instruction
b. pure vertical scroli with single LMS instruction
c. pure horizontal scroll with multipie LMS Instructions
d. mixing horizontal scroll with vertical scroll

Fine scrolling
1. scrolls entire pixel line
2. either horizontal or vertical or both
3. line by line control
4, DLI| capability
How to do It
1. set scroll bit in display |1st instruction
2. store HSCROLL and VSCROLL values
3. edge buffering
4. coupling with coarse scrolling
5. sample program: SCRL19.ASM
Applications
1. Large images with screen window
a. maps
b. diagrams (schematics, blueprints)
c. large blocks of text
d. menus
e. screen rotations (well, almost)

SUOF3IONIISUT
apoR dey LaowaR

SuoT3Oonijsuy
9POK 1332BaARBY)

(°34q ¢ os7®)
jyuelg *3a19A I0F 3tea n dunp
(uof3ioniagysuf 921314Lq ¢) dumnp
B9UTT g ueid
§3UTT [NIyl g Jueld
§9UTT 7 AuBId
SUTT 1 ueid

6°11

S4d00d0 NOILOAYLSNI AVIdSId €°I1 2an8y1

(u22198 YIPFM paevpuels) STI9D TRIUOZFIOH JO I3aquny

|
(s2d£3 pyeT3Leld + punoaldiyoeg) SI0T0) JO iaqunpy T
1122 aad saufyl Al 3JOo aaquny T |

JdNiioJuf UOfjlonaiisuf A81dSTQ
(231£q ¢) uedos KLiowam PpvO']
8uylTT10a08 TBOTIASBA

S8uFTT0I0§ TRIUOZTIOH

[ZalaafaalaoTaalavidelasfacld9lac|dy|deldc|AT[40] (172°02€)
|adlad|dalEo|dg|dv|d6|ag|ds|d9jAc|Ay|dc|az|a1] 0] (1°%°091)
|adjadjaalaolaglaviaelaglasiagolaslavjaclaziarjaol (T%°091)
|odjoajoal|oo|ogjov]|oe6|08|0L]|09]og|ov]|oe|DZ|DT1]|D0] (1°C2°091)
jgalgdalealgo|ada|avidgelaglas|a9]ac|ay|dec|gz|dT1 | €0} (2°2°091)
jvalvalvalvolva|vv|ve|ve|VvLIve|vs|vy|ve|ve|VT|Vo]| (v°%°08)
|l6al63aj6ale6oledl6v|66|68|l6L|169165|6v|6€E]62]6T1/60] (v‘z‘08) .
|gd|sa|salsolsa|sv|s6l8slsL|89]ssisvisc|s8z|8T|80]| (8°%°0%) dVK
beajealealeolealeviceleslecicolesievicelteletleol (91°602)
19419219al90]9€|9v|96198192199|95I9%19€l9¢]|91190]| (8°¢°02)
lealsalsajsolsda|sviselssliselisoalsslsy]|selszistlsol (91°v‘o%)
|valvalyalyolvd|yvivelvslvLlvolvsivvivelveivilivol (gvo%) .
ledlealealeoledalev]eeleslecleolesievieclezictieol (o1‘z0oy) .
|zdlzalezalzoled|zvizelzeleLlizolesieviceleelzetizol (8°C“0O%) WYHD
[N T T A (R I 2 M) A R R R N & AL
I N (e A T T I € 7 e e O TR E E B I 40 _dRWl
/N [IR A I R N 107 & S N N I R I A YA 8
[T N A Y Y A A (N N A R A R T B L=€
[T T A (N Y (R 14X 7 AN N AN N N (R N KR & 2 .
v 0 tost I b 1 1 1 | ool T d1€
| S SR TO SO I P T O

XX XX XX XX XX XX]XX]XX [TdNY¥dINI ISNI
XX XX[XX| XX XX XX | XX]| XX NVOS WaW 41
XX XX XX | XX XX | XX [XX[XX] | TOUDSA
X7 TXX] 1xx| [xx| J1xx] [xx| [xx] [xx] | TO040SH

I.

II.

III.

PRIMARY

BASIC OUTLINE

CODING GOALS

A. Speeding Up BASIC

B. Saving Memory

C. BASIC Bugs

HOW ATARI BASIC WORKS

A. The Token File Structure

1.
T 2.
3.
4.
5.
6.

7'

Token Output Buffer
Variable Name Table
Variable Value Table
Tokenized Program
Immediate Mode Line -
String Array Area

Run Time Stack

8. LOAD and SAVE BASIC Files

1.

2.

Format Of SAVEd Disk File

How The Pointers Are Used

ADVANCED PROGRAMMING TECHNIQUES

A. Special Features Of BASIC And The 0S

8. Example Programs

1.
2.
3.
4.

5.

Initialize A String

belete Lines Of Code

Modify String/Array Pointers

Save And Retrieve BCD Numbers On Disk

Name Table Modifier

P - SINGLE L.INE OF TOKEN FROGRAM
/| TOKEN | ya .
A QUTFUT | // EVEZE VARIAELES ARE X,Y$,AND Z()
LAEEL. HEX | BUFFER | o e e e e e e
"""""""""" / / /l ""‘"‘"""“"‘"*/ / -
LOMEM 80,81 71 VARIABLE | / 8 EYTES PER ENTRY
7 | NAME Y 1] 213 415 617 81.
UNTF 82,83~ | TAELE | : S e fmmmm e |
,71-———-—-——_-/ SCALAR |00|VAR%| [& EYTE ECD CONSTANTI |
UNTD 84,85— | VARIAELE | | | o I |
_ | VALUE I ARRAY |40 |VAR#|CDISFLI)COIM 111CDIM 21|
VUTF 84,87~ | TABLE I (DIM) 141} | | I 1
‘ P ~ STRING |80|VAR#|CDISFLI|CLENGTI| CDIMI |
STMTAB 88,89— | TOKEN |~ (DIM) |81} I | | |
| FPROGRAM | S e e
STMCUR 8A,8B—~ __ | I
N ———— I SEE EELOW
STARF 8C,BD~_ | IMMED | e e e e e e
N | LINE I _— _
RUNSTK 8E,8F Y P ——— |/ ARRAY 6 EYTE ECD NUMEER FER ENTRY
\\ | STRING |
MEMTOP 90,91 | ARRAY | STRING 1 EYTE ATASCII FER ENTRY -
NN AREA | [
| sl — ——
— \\ | RUN TIME | COSUE 4 EYTES FER ENTRY
\: STACK | 0,LINE#[2E],SAVDEX-1
- - I\\ FOR/ 16 BYTES FER ENTRY
N NEXT LIMITC4-ECD1,STEFCL&~-ECD]
\ VaRE,LINE#[2E], SAVDEX—-1

EXAMPLE FROGRAM
10 REM TOKENS
20 FOR X=PEEK(130)+PEEK(131)x256 TO FEEK(140)+FEEK(141)%x236-1
30 FPRINT FEEK(X)33" "} INEXT X
EXAMPLE OUTPUT (FARTIALLY FORMATTED FOR READING)
RUN

(UNT)Y 216 (X
(UND) 0 (DUMMY)

(VIO 0 0 45 118 S1] 0 0

(STM) 10 0 12 12 0 84 79 73 69 78 83 155 (ATASCII)
) 20 0 79 795 8 128 45 70 S8 14 4SS 1 48 0 0 6 44 37
70 58 14 65 1 49 0 0 60 44 36 14 65 2 86 0
o 0 25 70 S8 14 65 1 44 0 0 0 44 37 70 S8
14 65 1 65 0 0 6 44 36 14 63 2 Bé 0 0 0

- 38 14 64 1 0 0 0 0 22 '

30 0 19 18 32 70 S8 128 44 21 15 i 32 21 20 19 ? 128

22

(IMM) 0 128 6 6 37 22

NOTE — BOXED CHARACTERS AFPFEAR AS INVERSE VIDEOQ ON THE SCREEN

13

2)

£.%
LER
L

o)
&)

7

75
L
—r

9

102

11

BASIC BUG LIST

A INFUT statemernt with mo variable is mot flagyged ss arm error,
FRINT A=NOT B crashes the suystem.

DIM L (13) is trested ss DIM L10)Y,

LOGEDY CLOGCD)Y L LOG(L Y, CLOG(L)Y give incorrect values.

FRINT -0 gives a8 meaningless nugger§

Lime editing lockwup and incorrect handling of 256 byte strings.
A mumeric array of 327646 by 327646 slements can be dimensioned.

=

A RESTORE command does mot generste an errov 1Z2 if bthe restored
line number does not exist.

Integer exponents of integer values do rnot give correct results,

A drnput from disk of 256 bDutes will overwrite the first 128
hutes of page six in KAM,

A FRINTed CTL R or CTL U is trested ss 38 semicolorn.

LNRY — s2thq vz &L Ypm VERSUAU T PUISN A ION : yasus
PP aps S 3B 55§ = P2t0n ymow = (90Ma) 09 pasvu asey
hosoy+ (821 >fer opep) T T - _
WHEY DY S %.Lw d‘—ﬂJ \) Mol Jsow
ARG ynnma |51 aned ~yay LT YR PY EL AT 5§ jowasy s (uMd) 24300 PacIysd
WG 10 400y] »wﬁno. L) DS N-Q D% ST'Q {ANMS BUep JrPW NG 07 1 0D
Tbo.uu.. opop (\1ns Dag DY lamd
((J.:Loﬂaq 2 S6bE I (¢) DL 0@6&%
WNSHYD worida iy (sapued vy 0y (IR -] zn L2585 = (F) V0L 230w
'] s¢Q 8
days oioa B Arols
) [T XX XX XX X x @]
L .
m. Mf . *6£L0v. .d*ﬁm
S =
V_ ¢ ihg zs
M:: .,0\ paoAa
/4\\.4 ._m\ a A - Q o o)
a v dog PN "I 32\ 2Ny TANRT /R /UM | Ty ona | M
J frod [wtSYD Yivg ‘ g ' oreq (O4pue) | AP | I aeyy | PNy iy
L_ A
~—~ - - - _ —
A R C
TUDWYRS N 12 . N
M 103 ' ;aEmew ' 1 e e .t.éfddm f;déaam \,d,o,oﬁ M %6_. DY PO

S$133IHS 00T ©¥L-TT
S433HS 001 TPL-TT
S133HS 0S tri-zt

avowy

©

OFERATING SYSTEM OUTILLINE

1) System Routines (No direct wser asccocess)
Monitor
Harmdles Fower-Up and RESET Button
BEoots inm application software
Has its own '‘'Memo Fadg"
23 System Tabhles (ROM and Ram?

System Utilitwy Vectors

Starting addresses of variouws 08 utilities

Sustem Datasbase

Fointers and variasbles used by the system

Hardware Snadow Registers
Allows updates to occur during VEBELANK

Character Seti
The 128 ATASCII characters

Variouws ROM Tables
Hevybhoard to ATASCII trznslation
Screen handler tables
Additional tables

-

3y User Csllaple System Utilities (Direct user

I/70 Subsystem
Central I/0 Utilitws (CIOD
Device Handlers N
Serial I/0 Handler (SI0)

Interrupt Harndlers
NMI
IRG

Flosting Foirnt Routines
Six byte BCD format used

Software Timer Routines
Bllow timing of 1760 secornd resolution

access)

HAG
R L

[ETMUR \
ey

VELTARS E-ﬁﬁ'—r \

€45 \
tp— |

viLToms
| 4

——to——

LARETE
€Ny
PRidTER
€ 43D e
/
CEMBOARD . -

—-ﬁ-— (2 Ce I/

ol A
o (!&,g . /
ATt

X i

nito
2

E
Al
€ A

CARETL yyn e
Ouifar \

i \
N
‘-'—33;—:—'
Py '
D i
LEVRLERY) '

WANDUR 642 e

' USER \
8007
.o \ AREa \
P N s
- 3FO \ T
sPees ¥ oo
P \
¥
ek Les \) &0 e
-H 380 USER
m.ﬂ_&. 350 \ RAm
1515_.1. 3%
Ixeetyn— | s
>0 s
fliﬂ__il..gga \—_h 430
LBEL 3% |
.&-‘.?;_l_ TND - O e
Lo T I
aoaRi; '
AIL
A, b ;":- ! B4
284 300 ——— A . 250 e
MV :
ReN ¢ 200
STar:
< “&—J’C 2¢? : f FON e
1 ?
Fiv : | strex
m.y;__F' % !
" €A L i':;. / = 1o _l..
’_"‘.A:‘_L 1 | Vs TRl
: KRRt i

5 ZERD

-
[}

BAM ¢ e __l_/

\— ——E——"V?'ﬁ —— \;'F?v
i

©3

§Ty - Frad

Llary

& .

e ek LT
I FLoaltnd

P 2 S

o= ‘ I I -~
L '
LEET i
CARTRIDGE gom—a—13ns BASIC
R i RCM
X RAN i
] H
o —— m———i— -
:
RIGHT)
RIS I tymy G RAM
OR, .
K Ram
y 7,3 ms y
%
%K'R”\ O3 —mee 2233 W RAM
3

KRN fooie—sonas CKRPM
4)
-1 l E
!
SK RARN gm._.._ amsn 2K RAM
i
——-—zow—v:——w-:
I 1
|
| |
L. SK[O5 jony—i— jane 3K/ERSK
\ RA, i RAM _I .
- DIO0 im0 l ay

\|

/—-—- COQO———T——
fLoGnng
/ ekt
pAVELS
I b
L3

AT B WTITED

ZREape
A wrrry

|
v
ae
O
Ll L

222013
staigust

—t— D l
LIS B

o ivierg
o— G033 fanctnn
! asq
! SYRITE
OtsaAteR

acts =
A0 -lm
.o ——;’ LeECUTE

RUSY
Aiﬁ e
%R maax
npss
ae3d 6?'?-" W
gt
—d— 483
SysTay
R 25-_;5 T
wen,
T " F exmmnrs
PERRARN,
| v Forrer
MO JilozL. |
, ’a_‘- AARAY - (TRiAD
V028 ~
UM
o= ¢
— ';eo—_;“.?ﬂ— =
SYNT
BUEFER
—— 7%
USER,
RAW
— %D
AT e
Qure
S7€ 4[
L_goy SYNIAX
STRX -
)
—l vos
—_ o
i
|
==
|

ARSuNGH
LRz

102

7
FP
wory
Arze

Mg

il

D e

. PRI

S TN §

Toyow

299D

|
| —
.,ao..uug.a ,w.:..._ L _ »

(-3
34~’

AN

R N RN S S AR EU R A SRR FA D R N
SREERRRN Ve ::ﬁ_.“rr:f RRERREN
o) _.,”.. v ._.“ ' e e e i [v f ‘ 4"_. .\u.. H '
' c mm.m..o T _..:-I«..w_.“..m_”_.__“_._w_.... e ,__.mm“.,r.,_..,_._u.“. \«A_! ‘c.::«_-,.m_w‘__._,
son) 393 e e T %) I T S “:fjf_m_,:.ti_:f;;.:
M R o ! ! : T : R O T S po
M¢_ _.Ll.ﬂwll_uﬁ.::ﬁ“f. :: i EEERRE Ij:_m___j_._..ﬂ__u:;__.
: SRS ST ' ! C b N | i Pl L R
o ..Mv” ‘ W - ___ m _.. i “ | “ i _ _._ i “ _ m _ F w_ | _ | * __ _ m “___“ M@O i “ mﬂcm _0“04..-.75
Cwawa g .._;..__T:m SRERNE m __m“m__w__roq.»mma.muomw.p*
_ Y 14 B IR R R R Loy gt : SN R T T I P
AR A R N R R R m__k___“;ni__m_n_:_f
a2s (" ._:;..,_“ A ___ I f"u:H_F. .
ol FERERRE R R F R AR N REREERR RN ENERS RN R RE F AR R R R
vawas e saune | Pz ael | ¥ TR TR R RN Ru e RUREE
did V10 .mf,“__“_"___. Ll admdi' ! N » _:;ﬂ_.; by
gd/ gl O ¢ _ame._ bl b a gy Iene MMMw_.. \ m.:___ﬁ:m“‘ ;“
RN i e w\» _ _ * Py i ! ey ! i : U.UNM.] _ i : oot " R | ' _ v
. Li S SITLEE TR R R KL eew m | AR ERERTFY SRR A A R
' - AP T B ; .) 0 vl Lo .,” H P [[! .
vwvali-|3 .X?m”_“Maﬁ&m_&”.ﬂ__;ﬁ%_mf__,fw_; 22“7.“ ;_m_._i__ by _.“m
RN RSN IERP- SO TR LN S S B A i1 AN I RSN IR A S N v Pl !
RS e ho"____:ﬁi.__,..._ * ﬁ:;:pf _.“ “; n_
: A b P b s ™ R AR AN ; “ d i
ORa I A e N st HUHIE! H
YO1235 M1 SALKE 9L __.mm m, o bl 391 . R Sl
1yi0d Qaemzod [4314 o P i . :) L $!
ALE!T)iSBaFS, A _ i . |
RN w i |
?

——

wtve 91
..m.uc...ohm _ _

..9-.0 o’e F'TPP

£
<
e

-35
——3
L " —

e o -
— .

¥0103S 1t $ILKS qd
Y3104 Quvr30d
gy [84 ol

|

DewmizhIlve, .

! o

o
(3
|
|
!

w—-
A

|
{1 | [Awwiad law
| ; i

——— g

——— .
P .

|

H

ﬁ_
=

{515

N

- u“—mm._
g

S, s_ _ - _ i __w. _
S 0 _ I !
. w_ | po123s _ ___. o o
3 IR R T I I AENRREE ©1 < Joroas awwss ama | LI
S S A R T A m Do, |] | ¢I®
viva' . i W : : .“ g0 * | P _ ! m o1 - .—:..3 cc...ouv....}.u“ !
. X s B 7Y Y] _. .
S R RN R as; As\d | | ; Ao e R e .,u
3 BN R ECN I N R S “_ﬁ“: m__e.: Yol»as
FU IR IV HU RARRRTRRRRL. Ca e
. .. t ' _ . o . 1 m m : w * ., ” m m . : ._ﬂﬂ.(_ m .q_w) m . _
J, 301235 R -2 L. I A «_;_:__"w“__.
o Fud AP T ;::;__.T.wf
. : . S P R N A R I
aYN120y¥1Ls and Imxn 0L S R I I
S SRS muﬁ“suc.mm,:m o osoq i L..:L.T__
. . | I A . T 1R A B AR AN O N AR
' — . : ' t . t. R . = ae - et e e - BN -—]

e i —m
H

‘ —__"“———o :

ATARI UTILITIES DISKETTE

This utilities diskette Is distributed to outside software developers to
facllitate thelr efforts. This software Is not in the public domain and is
not to be distributed. The utilities In this package are:

DOS SYS 039 DOS 2.0S

DUP SYS 042 DOS 2.0S

BUILD24 010 builds self-booting BASIC programs
DIV SRC 026 an Integer divide utility

BMUL SRC 020 a signed integer multiply routine

SMUL SRC 027 unsigned Integer multiply routine
CHRGEN 049 a simple character set editor

SOUND 095 a sound editor

XREF 052 cross-reference program for BASIC
MASHER 045 compresses BASIC programs

RENUM BAS 030 renumbers BASIC programs

FORMTR 004 formats LIST files from ASSEMBLER
M8TXT 005 BASIC mode 8 character print routine
BCDSAV 004 makes fixed-length number records
HOBBY1 008 simple player-missile graphics demo
HOBBY2 005 simple display |ist interrupt demo
SCRL19 ASM 104 full fine scrolling module

SCRL19 0BJ 011 ob ject code

FIX 0BJ 042 a disk sector utility

SCRLH DEM 004 simple horizontal scroll demo
MDIR 0BJ 002 glves disk directories from BASIC
HORSE20 BAS 047 a character set animation demo
AUTORUN SYS 001 the R: device handler

MDL102 BAS 005 multiple display list interrupt demo
DEMO3 BOK 005 player priority trick

DEMO4 BOK 004 player as special character demo
DLISTA DEM 005 alternating display list demo
SCRLF DEM 003 simple fine scrol!l demo

SCRLY DEM 004 simple vertical scroll demo

None of these programs are finished products; they all contain rough
spots. |f you make improvements please send a copy to our |ibrary.

CHARACTER EDITOR

This program Is a character editor that makes It easier to take
advantage of the redefinable character set capabllity of the Atarl. I+ gives
you the capabliity to edit, load, or save character sets.

The first menu option Is to create or edit a character set. |f you enter
this option without first loading a character set, It will default to a blank
character set. You edit characters with the joystick, selecting a pixel
position with the stick and the status of that pixel (on or off) with the
button. When you are done editing a character, you can allocate It to a
character position with a keystroke indication. Fear not, most operations are
prompted, so that you can pick your way through the program rather well. The
only blooper Is that the prompt for an 1/0 operation to the disk requires
that you give the D1: prefix.

This program is usable but not at all as practical as IRIDIS's FONTEDIT
program. | strongly urge you to buy and study the IRIDIS program if you want
to do any character set work. |f only it had a display Iist interrupt....

SOUND EDITOR

The sound editor helps you develop new sounds. |t is not appropriate for
developing tunes or jingles, or any long sound. It is designed for developing
short sounds (1 second long) such as clangs, croaks, rattles, and other such
nonsense. |t only edits two of the four sound channels.

The program needs very |ittle external documentation, as Its title page
describes the commands. The joystick response Is slow, but you can use the
'fast' command to speed it up and then use the normal speed to fine tune your
sound. You should read the hardware manual to get an idea of what the sound
registers do.

Don'+ overlook the possibilities this program opens up. | have heard
some very convincing sound effects created with It; it just takes a littie
Imagination.

CROSS REFERENCE UTILITY

This utllity provides a cross-reference of variables and constants in a
BASIC program. It requires at least 40K of RAM, a printer, and a disk. The
BASIC program to be cross-referenced should be on a diskette in SAVE format.
The program first gives a count of the total number of variables used. For
each variable, It lists all |ine numbers containing references to the
variable. It also gives a count of how many times each constant Is used. |f
an error occurs during printer output, you may recover by typing GOTO 3050.

RENUMBER

This program will renumber your BASIC program on disk. The target
program must be on the diskette In LIST format. The program prompts you for
the values it needs. The 'input device'! will normally be D:progname. The
'output device' will normally be D:newname. The 'starting number' Is the new
starting |ine number. 'From' and 'to' are the beginning and ending line
numbers of the section of code you want renumbered.

FORMATTER

This program will format the output of your Assembler/Editor cartridge
so that you can get a |Iist file that looks good out of your Atari 825
printer. Make the first Instruction of your assembly code a .OPT NOEJECT.
Then assemble the list file to the diskette. Then drop into BASIC and run
this program. Respond to the name prompt with D:progname. This program Is
designed for use with the Atari 825 printer, so good luck with anything else.

MAPSCROLL

Mapscroil Is a demonstration program module that shows one way to use
fine scrolling effectively. It creates a large map In BASIC's graphics 2 mode
using a redefined character set. The map Is 32x64 pixels In size, but only
10x20 pixels are displayed on the screen at any one time. The user can scroll
+he screen window across the map with the Joystick. The program was written
for easy Integration into other packages.

Scrolling Is achieved by coupling fine scrolling through the hardware
fine scrolling registers with character scrolling by modifying the LMS bytes
in the display list. The fine scrolling is straightforward; the character
scrolling Is somewhat more intricate. Each display byte In the display list
has its LMS bit set. The following two bytes give the address of the display
data. When the fine scrolling reglster overflows in the scrolling routine,
the routine adjusts the bytes In the LMS addresses to point to the next
character bytes. This adjustment is kept track of through a variable referred
to as the offset.

The other trick in the program is the redefinition of the character set
into a graphics character set. The technique is very powerful; very few of
the avallable characters In the character set are used and yet the resulting
map is very bellevable. The map could be made even more realistic by using
the other characters. By changing the character set at appropriate times the
program could produce a variety of effects.

The amount of system resource used is low. The module as written
occupies 4K of RAM. This includes the map, the display list, the
initialization routines, and the Interrupt service routine that reads the
joystick. Outside of this the program uses 4 bytes of page zero {(two of which
are available after initialization Is complete) and seven bytes of page six.
The interrupt service routine is very fast so it will not significantly slow
whatever main program you plug it Into. Space has been left inside the 4K
block for additions and modifications. The program is not fully relocatable
as there are four patches that must be made to relocate Iit; however, these
patches are well documented and easy to do.

The easlest way to see this program in action is to BINARY LOAD it from
DOS. The file name Is SCRL19.0BJ. Then call it from BASIC with A=USR(27648) .
Plug a Joystick Into port 1 and scroll. At present the program does not
interface well with BASIC; | have found that BASIC's cursor positioning getfs
lost. This reflects more on my laziness than on the program's tractability.

D. Yocum

4/9/80
CARE AND FEEDING OF "HASHER"

MASHER 'is a utility program wfiten in BASIC which compreses other
BASIC programs. Since it is intended for internal use only, there are
a few "features" which the user ;hould be aware of.

1) All files are in LIST format.

2) Do not use lines 0-9 in the source program. MASHER will use these lines
for it's own variable definitions.

3) Do not use the variables Q0 - Q999. MASHER uses these for constants.

4) Do not branch to REMark statements. Besides being bad pratice, MASHER -
has problems sometimes with this, .

5) There is presently a bug with DATA statements. They are pagked like any
other statement. You will need to unpack these after MASHihg. This bug
will be fixed (someday). ’

WHAT 1T DOES
MASHER will perform the following conversions on the source program)

1) Removes all REMarks

2) Converts frequently used constants to variables.
3) Packs smell lines together to form long lines.

NOTES

This program will usually save between 55 - 40%. Maximum compression occures

vhen short lines are used in the source program. You must know the number

of variables used in the source program. This can be obtained by running YﬂEﬁF

MMOVE -

This program uses a machine language routine to move Players and Missiles.
The routine is called by:

USR(ADR(MOVES$) , PMNUMB, XPGS, YPOS)
PMNUMB refers to the Player (0-3) or Missile (4-7) to move. The Missile
number is determined by PMNUMB-4. XPOS and YPOS are the X and Y coordinates

to place PM. A Relocator is used to make the PM Move routine wherever it
may be placed in RAM by BASIC, -

BINARY ROUTINE

This routine is included as’ part of the PMMOVE routine. BINARY loads or
saves a binary file from BASIC.

On entry CMD=7 means load a file
CMD=11 means save a file
STADR= the address to load or save a file from
BYTES= the number of bytes to save or load
I0CB= the IOCB to use
FILE$= file name to load

On exit ERROR=1 means successful load
ERROR<?1 means it's an error status

BMUL

This routine implements BOOTHS ALGORITHM for multiplication of SIGNED
binary numbers in TWO's-COMPLEMENT notation.

The MULTIPLIER is shifted to the right with the PRODUCT (as usual). Each
CHANGE of the MULTIPLIER bits from zero to one causes the MULTIPLICAND to
be subtracted from the PRODUCT. Each change from one to zero csuses it to
be added.

Like most signed arithmetic, it cannot be chained and is prone to overflow
problems when given -32768, but it is smaller than the absolute-kludge
wrapped around an unsigned mutiply, and not much slower (633-945 cycles).

Enter with A,Y
ACC

MULTIPLIER (A=MSB)
MULTIPL ICAND

16 * 16 SIGNED MULTIPLY

Exit with ACC,MQ = 32 BIT PRODUCT

ACC = MSW
MQ = LSW
ACC = 212
- MQ = $0CB
ENT = $0CD
SC = $0CF

*

$600

DIV

This routine is composed of two assembly subroutines: Unsigned Divide of
32/16 bits and Signed Divide of 16/16 bits.

Unsigned Divide:

Enter with A,Y = Divisor (A=MSB)

inwn

ACC,MQ = Dividend
Exit with ACC = Remainder
. M@ = Quotient

Signed Divide:

Enter with A,Y = Divisor (A=MSB)

ACC = Dividend
" Exit with ACC = Remainder
M@ = Quotient
SMUL -

This routine is composed of a 16 * 16 Unsigned Multiply and a 16 * 16
Signed Multiply.’

Unsigned Multiply:

Enter with A,Y = MULTIPLIER
ENT = MULTIPLICAND
ACC = ADDEND
(ACC,MQ) = ([A,YI*ENT)+ACC

(This way for chained operaton)
556-748 Cycles

Signed Multiply:

Enter with A,Y = MULTIPLIER (A=MSB)

ACC = MULTIPLICAND
Exit with ACC,MQ = PRODUCT
ACC = MSW

584-821 Cycles

MBTXT

MBTXT demonstrates how to mix text with graphics in BASIC mode 8. It
plots the characters bit by bit onto the mode 8 screen. The technique can be
adapted to any program using BASIC mode 8 displays.

BCDSAY

This program provides an alternative to the varlable length records
obtained when a program PRINTs values to the disk. Using the variable table
values, It stores BCD values of numbers to the disk In fixed length records.

HOBBY1

This is a simple player-missile graphics demo. It sets up a player and
then moves i+ around with the Joystick. Since this is a pure BASIC program,
the vertical motion of the player is too slow. An assembly language routine
Is necessary to get proper high-speed motion.

HOBBYZ

This is a simple display list interrupt demo program. The bottom half
of the screen changes from blue to pink.

BUILD24

This program creates an AUTORUN.SYS file that will start up your BASIC
programs. |t asks you for a BASIC command; the command you enter will be In
+he AUTORUN.SYS file and will be executed on powerup. Normally your command
will be of the form RUN"D:PROG.BAS". I+ must be less than 128 characters
long. Remember to put In the terminating double quotation mark (").

MDIR

This program is an object file that can be called from BASIC to put the
disk directory onto the screen. To use it, you must first load it Into RAM
with the BINARY LOAD command (L) in the DOS. Call 1t from BASIC with
A=USR(1536) .

AUTORUN.SYS

This program Is an RS-232 handler file. It allows you to use the R:
device. |t Is booted in automatically on powerup.

HORSEZ20.BAS

This Is the running horse demo. |+ demonstrates the power of character set
graphics and animation.

SCRLH.DEM

This Is a simple horizontal coarse scroll demo.

SCRLV.DEM

This is a simple vertical coarse scroll demo.

SCRLF .DEM

This is a simple fine scroll demo.

MDL102.BAS
This is a multiple display list interrupt demo. I+ puts gobs of color onto
the screen. Do not be alarmed if the screen goes black; it takes several
minutes to finish. Once it Is running observe how keypresses affect the

display. Also note the greatly reduced computation speed of BASIC. With so
many interrupts happening, the 6502 has little time for other activities.

DEMO3.BOK

This program demonstrates a technique for increasing the resolution of a
stationary player by hiding it behind a playfield cutout.

DEMO4 .BAS

This program shows how a player can be used as an extended character.

DLISTA.DEM

This program demonstrates the alternating display list technique.

