APPENDIX 2

RE-232-C PORT ERROR CONDITIONS, CAUSES AND CORRECTIONS

This section contains descriptions of the errors you might encounter
while wsing the B350 Interface Module. Many of these erreors also occur
with ofher ATARI peripherals; they are listed here so you can see what
they mean when using the Interface Module.

There are @ number of NEW errors which you can get from the Interface
Meodule which no octher peripheral produce. These new error codes are
underlined.

"ERROR" 1 -— Success. This is the status whieh svccessful completion
of an I/0 operation produces. BASIC does not report this to
you except by continuing in normal fashion.

ERRBR 128 ~-— Break abort. This means you pressed the BREAK key while
I/0 was proceeding.

ERROR 129 —-— IDCE already OFEN. Your choice of channel number (#n)
was that of a channel (I0CB) which was already OPEN. This
can happen if you restart s program in a manner other than
RUN (RUN closes files). Be careful net %o put your OPEN
statement inside a proagrammed loop. The second time OFEN is
encountered it will produce ERROR 1279,

ERROR 130 -~ Nonexistent device. You specified something other than
R:» Ri::+ R2:, R3:, or RA4: . Petrhaps you were trying to
access 3 file on disk whose name starts with “R" and forgot
the D: . THIE ERROR WILL QCCUR IF YOU ATTEMPT TO USE AN
RS—-232-C PORT AND THE RS232 HANDLER HAS NGT BEEN "BOOTED®
WHEN THE EYSTEM WAS TURNED ON. In that case. you should
save your program and start a new session, allowing the
RS-232~-C handler to boot, See the section on sutomatic
bontstrap.

ERROR 131 ~-— Write only. You tried to read (GET, INPUT) from a port
you OPENed as write only.

ERROQR 132 -- Invalid command, You specified something incorrectly in
an XI0 command to the Interface Module.

ERROR 133 —— Channel not OPEN. You neglected to OPEN the channel
(ICCRB) to the I/0 device you are trying to access

ERROR 133 -~ Read only. You tried to write (PUT, PRINT) to a pert you
opened for read access only. -

37

ERROR.

ERRCOR

ERROR

ERROR

38

138

139

1350

131

152

133

154

—— Device timeout. The Interface Module did mot respond to
a command. Check the cables. Make sure the Interface
Module is powered on.

—— NAK, The Interface Module refused to perform some
command. You may issue a STATUS request to find out what
was wrong. Most common causes are: attempts to perform S5-,
&—, or 7—-bit input at too high & Baud rate; avtomatic
readiness checking was enabled and the connected device was
net ready.

—— Port already OFEN. Youv attempted to OPEN an RS5-232-C
port but is was already BPEN through another channel
{IDCB). You can access an RS-232-C port through only one
channel at a time.

—— Concurtent mode I/0 not enabled. You attempted to start
concurrent mode I/0 (XIOD 40) but the port was not epened
with an odd number specified for Auxl (Auxl bit C not
saf).

—— Iliegal User—supplied Buffer. In the START CONCURRENT
MODE I/0 command with the wuser—supplied buffer., the
buffer address and/er the buffer length were
inconsistent.

—— Active Concurrent Mode I/0 Error. You attempted to
perform 1/0 to an RS—232-C port while Concurrent Mode I/0
was active to seme other RS-232-C poert. Only input,
output., CLOSE and STATUS commands to the active
concurrent mode port are allowed while concurrent mode
1/0 is active. This error message is not always produced
-— attempts to do disallowed I/0 while concurrent mode
170 is sctive may rtesult in the computer “"crashing".

~= Concurrent mode I/0 not active. Concurrent mode I/0
must be activated in order to perform input (GET. INPUT),

APPENDIX 3

PRINTER [ORT ERROR CONDITIONS, CAUSES AND CORRECTIONS

This section describes ertor conditicons which could cccur when using
the printer port. There are no new errTor codes asspciated with the

Interface Modula’s printer port: however, the meaning of some of the
erTors is slightly different between the Interface Module and other

ATARI printers. ' '

If an error occurs which is not listed here, ronsult the BASIC
reference manual. Errors are listed here only if they have some new
meaning when teported by the Interface Module

ERROR 128 —-- Timeowut. The Interface Fodule did not respond to a
request from the Compufter. Check the cables. Make sure the
Interfacre Module and attached printer are powered on. The

Interface Mpdule will NOT respond to printer control
commands from the computer if the FAULT wire te the printer
is low (caused by loose cabls or printer off).

ERROR 139 —- NAK. The Intetrface Module refused an illegal printer
command. Make sure that Auxl and Aux2 are specified as zero
(0) in gour OPEN command for the srinter. This error also
accurs when the printer appears active (FAULT line is high}
but the printer fails to respond to characters sent to it
within four seconds. Check the switches on the printer
{online®). If the printer is not performing within 4
seconds, change your PRINT statements to break douwn
transmissions into smaller chunks.

NOTE: Attempts to operate more than one printer at a time will result
in unpredictable operation. While one printer may “win" mest of the
time, errors are alwsays possible, and exactly which error occurs is a
matter of chance. If you have more than one ATARI printer attached to
your computer, turn on only one of them at a time.

39

APPERNDIX 4

MEANING OF (ERRGR) BITS IN LOCATION 746

TABLE I--Decima]l Representation of the Errer Bits in Location 746

Decimal Equivalent Error
128 Received data framing error
54 Received data byte overrun ervor
32 Received data parity errer
i& Received data buffer overflow erron
B illegal opticn combination attempted
4 External device not fully ready flag
2 Error en block data ftransfer out
1 Error on command to Interface Module

Below 2re the descripfions of these error status bits in location
746 after STATUS command.

RECEIVED DATA FRAMIMG ERROR (bit 7, decimal value 128) This error bit
indicates a framing error was encountered in the data coming from the
external RS-232-C—compatible device: the 10th bit of some character
was not a STOP bit (Fth. Bth or 7th in the cases of 7—r &—-, or S-hit
received sords). This error can be caused either by garbled data
(e.g.+ neisa on the phene lines) or by improper configuration to
Teceive the data (e.g.. wrong Baud rate). This condition is monitored
in one of two places: in the 400/B0O computer., or in the Interface
Module. The computer watches for thiszs error in the case of 8-bit data.
The Interface Module catches this ervor if you are receiving 7-. 6&—,
or S-bit data. In both rases, the error status is set at the time the
errona2ous character is received (not the time you tead it ouvut of the
holding buffer), In the B-bit dats case. where the computer monitors
the error, you may find out about the error any time after it occurs
by isswving STATUS while the concurrent mode input is active. The arrar
bit will be cleared when you issue the STATUS command. This error bit
will be cleared also when you CLOSE the concurrent mode channel. In
the 7-, 4~-, and 53-bif cases, the error is monitored by the Interface
Module and cannot be interrpgated while the concurrent mode input
operation is active. In this case, yow must CLOSE and re—OPEN the con-~
current mode channel and then issue STATUS to determine if the error
occurred. The error bit in the Interface Module is cleared by STATUS
when concyrrent mode I/0 is not arctive; it is alco cleared by most of
the configuring and control XID’s (but net all), and [it may bLe
clearedl by CLOSE when concurrent mode 1/0 is not active.

In general, the ervrror bits read from location 744 after 4 STATUS

request apply eonly to the most recent I/0 operation to the R5-232-C
port; that is, they are cleared as the I/0 cperation is started and

41

then set if the evror octurred. You can see that the previous eTrrer is
an exceptien to this rule. Other exceptions will be noted.

RECEIVED DATA BYTE OVERRUN ERRDR (bit &, decimal value &4} This

arror bit 15 maintained by the computer and indicates that the
computer got too busy to read all the data as it was arriving {due to
overly heavy interrupt lcading. or perhaps interrupts being masked off
totally). This error is flagged when the first character of data
following the error 15 reasd from the port and placed in the holding
buffer. The error should not occur at all under normal conditions.

RECEIVED DATA PARITY ERROR {(bit 5, decimal value 32) Thie error bit is
maintained by the computer and indicates that a received character had
the wrong parity. The bit will not be set i no parity checking has
been emabled. This error occurs during the translation from the ex-
ternal (received) form of fthe character to the internal (INPUT, GET)
form. The error flag bit is cleared by the STATUS command.

RECEIVED DATA BUFFER OVERFLOW ERROR (bit 4, decimal valus 18) This
error flag indicates that more data has arrived than can be held in
the input buffer—--data has not been read from the buffer (INPUT, GET}
soon enough. This error is maintained by the computer, and it occurs
when the overflowing character arrives from the RS-232-C compatible
device. The new character replaces the oldest cne in the buffer. This
errar bit is cleared by the STATUS command,

ILLEGAL OPTION COMBINATION ATTEMPTED (bit 3, decimal value B) This
error flag is kept in the Interface Module and may be read by STATUS
enly if concurrent mode I/0 is not active, It is set by an attempt to
start concurrent mode input with shert wsrds (7—, &=, or S5—hbit) with
the port open for both input and output (short words are allowed one
direction at a time only) or too high a Baud rate {(short words are
alligwed for input at a maximum Tate of 200 Baud). This error may be
checked immediately after the Interface Module produces & NAK for the
refused command. The bit is cleared by the STATUS reguest. Error bit
(command errsr, decimal value 1) will alwasys be set when this bit is
set.

EXTERNAL DEYICE NOT FULLY READY (bit 2, decimal valua 4) This bit is
kept in the Interface Module and may be read by ETATUS only when
concurrent mode [/0 is not active. It is set whenever a START
CONCURRENT MODE 1/0 or block output command is refused by the
interface Module because one or more of the external status lines
being monitored is not ON. Any of the external status lines not being
monitored (as set by the SET BAUD RATE command) is ignored, and if
none is being monitored this bit will not be set and the I/0 operation
will proceed normally. Read this flag bit with a STATUS request
immediately after the Interface Module refuses the cperation with NAK.
This flag is cleared by the STATUS command.

DATA BLOCK ERROR (bit 1, decimal value 2) This error bit is main-
tained in the Interface Module and may be read by STATUS immediately
after a command is refused by NAK. In a block ovtput, the data block
was unsuccessfully received from the computer by the Interface Module.

42

This error should not cccur in normal operation; it indicates problems
in communication between the computer and Interface Module.

COMMAND ERROR TO INTERFACE MODULE (bit O, decimal value 1) This evrror
bit is maintained in the Interface Module and may be read by STATUS
immediately after a command is refused by a NAK from the Interface
Moduie, This bit indicates that the Interface Module did not receognize
a command sent to it from the computer, or that the Interface Module
is not configured properly to perform the command (see ILLEGAL OPTION
COMBINATION ERROR).

During active concurrent mede I/0, the STATUS cemmand will return the
number of characters in the input buffer in locations 747 and 748, and
the number of characters in the output buffer in location 74%9. To find
the number o0f characters in the input buffer in BASIC:

LET BUFFERUSE = PEEK(747: + Z2D463#PREK(748B)

I# you want to find out only whether or not any characters are in the
input buffer, you do not need to multiply by 236:

IF PEEK(747)+PEEK(74B8)=0 THEN input buffer empty...
oT:
IF PEEK(747)+PEEK(748) <> O THEN input buffer nof empty...

If you are using the built-in buffer, or if your supplied buffer has
fewer than 254 bytes, then location 748 will always be zero and you
need to look only at location 747. The output buffer hplds only 32
characters; location 749 will never exceed 32.

When concurrent mode I/0 is not active, locaetion 747 will contain
information about the monitored readiness lines (DSR, CT8 and CRX) and
the data teceive line (RCV) of the specified port after a STATUS
request. Locations 748 and 74% will not contain anything useful after
a STATUS request when there is no active concurrent 1/0.

Location 747 will cgntain the sum of four numbers, shown in table II.
The current and past status of DSR, CTS, and CRX as well as the
current status of RCY are included.: The past status of DER., CTS and
CRX applies back to the time the Interface Module was booted., or to
the most Tecens STATUS command to the specified port which was made
while concurtent mode I/0 was not active (i.e.. the last time that
DSR, €TSS and CRX were supplied to a STATUS reguest). No other
operations affect the past status of these lines.

Portes 2 and 3 will always show CTS and CRX as being ON. Port 4
will sheow CTS: CRX, and DSR as being ON.

8 quick.wag to check whether or not a port is ready is this:

STATUS #n, XXX
IF PEEK(747) < 128 THEN no% ready

43

or to check if it has stayed ready sinte the last check:
IF PEEK({747}: = 192 THEN always ready
In other words, the DSR status bits are the most significant bits in
the sense byte. and you can check them this way without having to
worry about the states of the other bits in the byte.
TABLE II--SENSE VALUES ADDED INTO LDCATION 747

DATA SET READY (DSR:

192 Ready now (0N’: on since previous STATUS
128 Ready now (ON); net always on since last STATUS
&4 Not ready now (OFF); not always o#f since last STATUS
0 Not veady now (OFF);: always off since last STATUS
CLEAR TO SEND (CT31
48 Clear now (ON); on since previous STATUS
32 Ciear now (ON}); mnot always on zince last STATUS
16 Mot clear now (OFF); not always off since last STATUG
0 Not clear pow (OFF)i always off since last STATUS
CARRIER DETECT (CRX:
12 Carrier now {(ON}; on since previous STATUS
8 Carrier now (ONJ; not always on since last STATUS
4 No carrier now LOFF); not always off since last STATUS
0] No catrrier now (OFF); always off since last STATUS

DATA RECEIVE {(RCY) =
1 MARK {1) now
9] SPACE (0! now

Ng infermation is supplied abeout the past status of RCV,

44

TN

APPENDIX 5

EETTING THE BAUD, WCRD SIZE. STOP BITS, AND READY MONITORING

The CONFIGURE BAUD RATE command allows yow ta zet the Baud tate.
"word" sire. rntumber of stop bits fo transmit, and ensble cor disable
checking of DER, CTS and CRX. The command may be issued through an
open chamnnel to the RS-232-C port, or may be issued through a channel
which isn’t being uzed. If you have opensd 2 channel to the port you
are canfiguring, you must uwse that channel. You cannot configure any
port if a concurrent mode 170 operation 15 active,

The CONFIGURE BAUL RATE command looks like this in BABIC:

X10 3&, #channel, Auxl, Aux2, "Rn: ¥ }

The 3& makes this a CONFIGURE BAUD RATE command.

Channel iz the number of the channel that BASIC should use to execute
the command. The chann=zl should s2ither be open fto the port you are
configurTing, or should net be opan at all. No concurrent mode I/0
should be gctive when you issue this command.

Aduxl is 3 number or expression that specifies the Baud rate, “"word"

size, and npumber of stoen bits to send with each "word. " For each of
these. pick a number from tables I. 1I, and I1I, and then add the
numbers together to form Auxl. You may sdd them together yourseif or

you can leat BAZIC add them for you. For example: XID 36, #1, 128+0+10,
2. "R:" and XIO 34, 138, &, "R:" both specify the same thing.

Aux=2 is & number or expression that specifies whether or mot the
Interface Module =should check Data Set Ready {(DSR):, Clear fto Send
(CT8), and/or Carrier Detect {(CRX} when 3 block mode output eov START
CONCURRENT MODE I/0 operation is performed. If you ask to have the
interface Module check one or more of these, then the Interface Madule
will return eTror ztatus if the linel(s) checked 1s not ON. You may
TRAP the error and program BASIC to take the action you desirte. See
table IV for wvalues of AuxZ2.

The last X100 pasvameter, "Rn: ", specifies which sevial port of the
Interface Module you are configurinag. Fer n put 1, 2, 3, or 4, Just
35 you would in the DPEN command.

{text continues after tables...}

45

TABLE I: BAUD RATE SPECIFIERS TOD ADD TO AUX1

ADD BAUD RATE

300 bps (bits per secaond)
45.5 bps#

50 bps#

96. 875 bps#
75 bpsw#
110 bps
134, 5 bpsaxs
150 hps

300 bps

400 bps

10 1200 bps

11 1800 bps

12 2400 bps

13 4800 bps

14 2400 bps

i5 F500 bps

LVONCURb_LOUN-O

These Baud ra%es are useful for communications with Baudok
teletypes, for RTTY (radioteletype) applications. They
are more commonly referred to as &0, 67, and 75 words per minute.
This Baud rate is somestimes used for ASCII communications,
and may also be used for 5-bit Baudot RTTY. The latter is
commonly referred to as 100 wpm. _ :
##% This Baud rate is used hy IBM systems.

TABLE 11: WORD SIZE SPECIFIERS TDO ADD TO AUX1

ADD WORD SIZE
0 8 bits
ié 7 bits
32 & bits
45 o bits

See text for discussion of word sizes.

TABLE III: GPECIFIER FOR 2 STOP BITS TO ADD TO AUX1

ADD - STOP BITS SEMD WITH EACH WORD
0 1
128 2

TABLE I¥: AUX2 SPECIFICATION T0D MDONITOR DSR, CTS. CRX

45D T0 MONITOR

v None

1 g CRY
2 CTE

3 C7T8, CRX
4 DER

3 DSER, - CRE
& CBR, CTS

7 DER., CTS8, CRX

47

{ ..continuation of text}

Note that the default (pre—set) values of Auxl and Aux2 for all four
ports are zero, corresponding te 300 Baud, B-bit words. one stop bit
transmitted, and no checking of DER, CTS or CRX.

You should know the following things about this command:

The configured patameters will stay as you set them until you either
reset them or until you reboot the system (turn the pouwer off and back
onl. The SYSTEM RESET key will NOT reset any of these parameters.

You may configure each RE-232-C peort independently.

1 youw specify B-bit werds, there are no restrictions on operationn of
the port. Howewver, the following Testrictions apply to 7-, &—, and
S-bit werds: half-duplex operation only; some limitations on baud
rates. Specifically. all gutput baud rates are allowed in Block
Output mode. In Concurrent Mode, either in or owut, you are limited to
operation at 300 Baud and below. If youy specify 7-, &=, or S5-bif
words., there is no Testriction on the number of stop bits you may
specify. Note that most applications of these word sizes will
probably be to devices that require more thanm i stop bit--you should
specify two,

If you specify 77—, &—, ar 5-bit words, each word sent or Tecived will
be convertad from or +o an B8-bit byte within the computer by ignoring
the maost significant bhitisl. This will wvery likely interact with the

translation operation, and in particular there may be ne way you can
receive an EOL. If this is the case, you cannot use the BASIC INPUT
statement to Tead the part and you must retrieve characters one at a
time using GET. More detsils will be found in the section on
translation modes. (APPENDIX &) :

If you specify that you want the Interface Module fo check DSR, CTS
and/or GRX, it will check %Them whenever you try to start concurrent
mode I/0 and whenever you try to send a block of data in block output
mode. 1f any of the lines you asked %o be checked is not ready (OFF),
then the concurrent mode I/0 will not be started or the block of data
will not be zent. The Interfsce Module will them return anm error to
BASIC. and you may TRAP the error and take corrective acticon.
Following the TRAP, you may perform & STATUS request from the
Interface Module to find out what the problem was.

Note that CTX and CRX are not supported on ports 2, 3, and 4, and that
BER is not on peort 4. The Interface Module behaves as if they were
really there, however, and acts as if they were always Teady {(0ON).

You may loeck at the states of DSR, CTS and CRX at any time that
concurrent mode I/0Q is not active {if you have a channel open to the
port) by issuing a STATUS request for the port. Thus, enabling this
automatic checking of these lines is not the only option available to
you, and you may prefer checking them dirvectly with STATUS.

48

APPENDIX &

TRANSLATION AND PARITY HANDLING

The Interface Module handler can be configured to perform certain
types of code conversiocns (franslations) and do parity generating and
checking for you. These twp operations interact with each other. Fer
this reason, they will be described together in this section. The
various options you may select for each are even specified by
execuwting the same command——CONFIGURE TRANSLATION AND PARITY.

There are three factors you need to keep in mind when you are setting
up yowr code tranmslations. Translation, of ctpurse. 1s one of them
since it results in {possibly) changing cne code inte anmother. Parity
generation and checking alsc may rvesvult in changing one code into
another. The third factor you need to keep in mind is the the word
size ynu are transmitting/receiving. - Inside the computer, all words
are the same as bytes; that is, all words are B bitsz. If you are
sending/receiving /-, &—, or S~bit words: these shorter words have to
come from B-bit computer words by chopping out some bits, orv expanded
into 8-bit computer words by adding some bits, These operations
obviowsly ave the same as changing one code inte another.

Each of these three possible code changes takes place separataly from
the pnthers, one at a time. Fer output, tranmslation comes first,
followed by parity generation, and fimally trumncation (shortening by
leaving bits off). 0f couwrse, at each stage a change may not oCcur.
depending on wh=t selection of options you have configured and
depending on which ¢haracter (code) the computer is sending. For
example, if yow have cenfigured B~bit words. the trunction operation
dees nothing., For input, the order of code changing is expansion {(from
short words to 8-bif words)., followed by parity checking: and finally
translation.

At each of the ihrese stages, a code change may occur. I# a change
DOES eccur, then it is the CHANGED code which will be operated on in
the next stage. For example., {(in a particular configuration of
translation and parity options) if you output an ATASCII ECL, it would
first be translated fo an ASBCII CR and then parity would be generated
for the CR. This is becsuse the parity step operates on the tesult of
the translation step:. in this case the CR.

There is one other translation optien which is very specific, namely:
the cpition o have an ASCII LF {line feed) zent after each tranmsmitted
CR (Carrviage Return}. This code change occurs at the tramslation
step. Consequently, the generated LF will go thvough the parity and
truncation {(small word?! phases just like the CR.

TYPES OF CGDE TRANSLATION

You have three cpticns fto choose fram: no $ranslation at all, "“light"
translation. ar “"heavy" {ranslation. Whichever option you choose witll

49

apply both to incoming and outgoing characters. The "no translation”
option is Just what it says--mne change is made %o the characters,
whether being received or sent. This statement applies only to the
translation step:. of tourse--you tan still get changes from parity and
small words. The ne-translate option is useful if you are going to do
your own special proecessing on the characters you are sending and
receiving. This can be particularly useful in the small-word
situations, since many of tha cases where small words are used do not
(or cannot) involve ASCII. You may also want to use the
no—transliation option if the RS-232-C-compatible device you are
communicating with understands ATASCII.

No matter which translation option you choose, if you use a BASIC
INPUT statement to read data the data must have an ATASCII EDL (End of
Line} character at the end of each line. This vequirement applies
AFTER all translation. Thus, if you select the no~%translation optien,
your incoming data must either centain EDL’s or you should use GET
instead of INPUT. Remember., also, that using short wards and that
checking parity also affect data coming in, so you may still need to
use GET,

Heavy and light %ranslation are two ways ta convert betwesen ASCII and
ATASCII. In either translation mode, the ATASCII EOL (9B in
hexadecimal, 133 in decimal) is converted to and from the ASCII CR (0D
in hex, 13 in decimal), In the case of output, EOL is changed to CR;
if you also selected the Append LF option, EOL is changed to CR
followed by LF, that is, the translation function produces tuwo
characters ocut for one in. On input: a CR will be translated to EOL.
Both Heavy and Light translation modes assume ASCII in the outside
world and they assume ATASCII in the coemputer. ASCII is treated as a
7-=bit code; that is, the Bth (most significant) bit is always treated
as if it iz zero. On input, then, if you select Heavy or Light
transiation, the B%th bit of each werd is cleared to zero. On cutput,
the translation step will set this bit %o zero.

Light franslation performs the fewest changes between ASCII and
ATASCTI. The assumption is that you wish to work with ATASCII within
the computer but treat it as if if were really ASCII. Note, for
example, that the ATASCII graphics codes are the same (numerically,
and for the most part the way ysu type them, too) as the ASCII control
codes (1-26). Bo for input, the character has its high bit stripped
(set to zero!, and that’s all-—-except if the code is found to be a CR,
it is changed to an EOL. For output, if the character being sent is
EGL it is changed to CR; then, no matter what the character is, the

high bit is set to zesro, Light translation is the pre—set default
mode,

Heavy translation is a more thorough transliation mode. Here the
assumption is that if there is no direct correspondence between the
character in ASCII and ATASCII. then the code should not be
translated. So for input: after the high bit is cleared to zero. if
the character is CR it is changed to EOL; otherwise, the character is
checked to see if it is the same in ATASCII as in ASCII. If it is
not, it is translated to the WON‘T TRANSLATE character. Specifically,

50

if the code for the ASCII character is less than 32 decimal {i.e. s the
character is a control character) or greater than 124 decimal (7C hex)
it will be translated to the "won’t translate" character. Thus,
heavily translated ASCII corresponds to the printable characters from
blank through vertical bar. The "won’t translate character is
specified by you in the CONFIGURE TRANSLATION command. I+ you do not
specify it, the pre-set default value for 1% is zere (ATASCII graphic
heart).

On output, heavy translation converts EOL tc CR. and will output any
character whose ASCII meaning is the same as it is in ATASCII. That
ie, tharacters whose values range from 0-31 decimal (ABCII control
values) or whose values are above 124 decimal (7C hex) will not bhe
sent. Note that charscters whose high bit is one will be translated
to nothing, that is. characters which would show on the TY screen as
INVERSE VIDED WILLi. NOT BE SENT in heavy translatien mode. Note alsa
the difference between input and output in the heavy trans— latien
mode: vuntranslatable characters in the input are converted to the
vwon’t translate” value, where untranslatable output simply is not
sent out.

The (soptional’ sending of LF affer CR 13 produced in the translation
step. I1# you specify no translation, the option of adding LF to CR is
not available. 1f you specify light translation, LF will follow EDL
(which of course becomes CR). Metes that sending the 13 decimal code
(CR) by itself EOL will be turned intec a CR/LF peir (with the append
LF feature turned on). Each character in the CR/LF pair is
independently sent through the parity and word-shortening steps on its
way out. The pre-set default setting of the append LF feature is OFF,
that is, the default is £o NOT append the LF. '

PARITY

You may select input and output parity handling separately. Thus, you
may choose to send, for example, even parity while you ignore the
parity of what ycu are receiving. The parity is always the most
significant bit of e=ach 8-bit byte (bit number 7}, Thus: this parity
operaticn is not applicable if you are werking with 7-, &—. orT S5-bit
words.

In the default parity condition, the parity bit of neither input ner
eutput is altered. Note, however, that the parity bit of out— going
messsges may have been changed during the transiation step.

For output, you may select even parity, odd parity, set parity bit or
ne parity.

For input, your choices are "don‘t touch"., check even, check odd., and
idon’t check™ Each of these last three options will clear the top
bit to zeras, whether or not a parity check is made. If an input parity
ertor is found: the character will still be input as if it were all

21

right; the parity error flag will be furned an in the status bytes
(see STATUS REGUEST?.

SHORT-WORD CONVERSION

The third operation which affects your ceode translation is the
short~word conversion (if you are using B-bit words, this is a
"no-effect" operation). Short words sent cut are made from 8-bit
computer characters by omitting the most significant bits, That is. a
7-bit word is bits 0-4 pf the character, a é-bit word is bits O0-5, and
a five-bit word is bits 0-4. Thus the parityr, if generated, is lost.
ASCII is a 7-bit codei you can send ASCII in 7-bit form without parity
(this is not common practice, fthough——wsvually B bits are sent even if
the 8th bit is not used for parity). With &—-bit and 5-bit codes: you
will not be using ASCII, so you will have to concern yourself with the
codes you want %o be sending. With these word sizes, you should turn
transiation off so the translation performed by the Interface Module
handler will not affect the codes you are working with.

On input, small words are coenverted £o B-bit computer characters by
adding high-order bits. These added bits are always set €o 1. Thus,
if you are receiving 7-bit ASCII, the parity and translation steps
will be getting ASCII with the Bth bit set high. If yeu are receiving
4— or S3-bit codes, there is no way yow can receive the 13 decimal (0D
hex) code (ASCII CR)-—-after all, you cannot teceive ASBCII in & or O
bits anyway, This means that in BASIC you will have to use the GET
statement, ndt INPUT. OFf course, you will be doing youy own code

convarsion. so you should turn off the conversions of the Interface
Module handler.

The CONFIGURE TRANSLATIONM MODE command is specified in BASIC this way:

XI0 38, #channel, Auxl, Auxd, "Rn;?*

38 specifies the CONFIGURE TRANSLATION MODE command.

#Channel specifies the channel numoer (IOCE number from I to 7) you
wish to use to configure the translation mode. You may use an uynopen
¢hannel if you have no channel open to the port you are configuring:
gtherwise you must use the channel you have gpened to that port. You
cannot issue the CONFIGURE TRANSLATION MODE command if any coencurrent
mode I/0 is active.

Auxl specifies the translation mode, the input parity mode, the ouvtput
parity mode, and the Append LF option. You specify these options by
adding numbevrs taken from tables I, II, III and IV. You may add the
numbers yourself and put the sum in your program for Auxl, orT you may
let BASIC add them for you (e.g.. you can say either 2+8+32 or 42 to

52

mean even parify in, even parity out, and no-translation?, Do not add
in more than one value from each table.

Aux® is the numeric vepresentation of the "won’t translate" character
for heavy translation. Remember that the RASIC function ASC will give
you the numeric representation of a character. For example, 41 and
ASC("A") mean the same number. The number you specify should be from
O through 255.

"Rp; " specifies the port you are configuring. For n, you put 1, 2, 3
or 4. You may omit n, which will mean you are configuring port 1.

The defsult configuration is Auxl1=0 and AuxZ=0. If you execute the
CONFIGURE TRANSLATION MODE command for one of the RS8-232-C ports, that
configuration will remain in effect until you do another CONFIGURE
TRANSLATION MODE for that port. SYSTEM RESET will mot change %the
trapslation mode for any port. OFf course, you can configure each port
a different way. -

53

S4

TABLE I--TRANSLATION MODE OPTIONS ADDED TO AUX1

Add To Get

8] Light ATASCII/ASCII translation
16 Heavy ATASCII/ASCII translation
32 No translation

TABLE II--INPUT PARITY MODE OPTIONS ADDED TO AUX1

Add To get

0 lgnore and do not change parity bit

4 Check for odd parity, ciear parity bit

8 Check for even parity., clear parity bit
12 Do no%t check parity but clear parity bit

TABLE III--0OUTPUT PARITY MODE OPTIONS ADDED TO AUX1

add To get

O Do not ehange parity bit
1 Se% output parity odd

2 Set outpuf parity even

3 Set parity bit to 1

TABLE IV-——APPEND LINE FEED CPTIONS ARDED TO AUX1

Add To get
0 Do not append LF
&4 Append LF after CR (translated from EOL)

APPENDIX 7

CONTROLLING THE DUTGOINS LINES--DTR, RTS % XMT

There are up to three outgoing RS-232-C signals on each of the RS232
ports of the Interface Module: Data Terminal Ready (DTR), Request to
Send (RTS), and Data Transmit (XMT). Each of these lines can be
turned ON or OFF with the CONTROL command.

Fert 1 supports all fhree ocutputs. Ports 2 and 3 have DTR and XMT;
pert 4 has only XMT, You may use this command the same way with any
pert——it is not an error to try fto control a line that does not exict
Your sttempt will simply have no effect,

You may centrol any or all of these lines on a single RS-232-C
port with the CONTROL command (contrelling lines on other ports
requires one CONTROL command for each port). The CONTROL command may
be issved to a port which is not OPEN through an I1/0 channel by
specifying any unopen channel number in the CONTROL command, I+ the
pert has been opened through a channel, you must use that channel in
the CONTROL command. You may not issue a CONTROL command if any
concurrent mode I/0 is active

Controlling XMT line has very limited use and few users will be
concerned with it. In ifs normal state XMT is passive. If you change
XMT youw are likely to interfere with the normal trancmission of data.
In the serial communication world the only practical use of control of
the XMT line is to send a BREAK signal. The BREAK is simply a period
of holding the XMT line out of ifs normal resting state. Specifically.
the normal resting state is called MARK, which corresponds to the
binary "“1" state. A BREAK is a period of the state called SPACE,
which corresponds fo binary "QY. (Actually, since MARK and SPACE are
the only legal states of any RS-232-C signal, all data consists of
alternating MARKS and SPACES. What distinguishes BREAK from cother
uses of SPACE is that 3 BREAK is a SPACE which is a lot longer in
duration than the time that a transmitted word would be. This is so
becavse any transmitfed word ALWAYS has one or moras MARK bits in
it——in particuvlar, =zach word ends with one or more stop bits
Tepresented by MARK.) Thus to semnd a BREAK, first issue a CONTROL
command to set the XMT line to SAPCE (0), then a little while later
issue a control to set i¢ back to MARK (1).

The uses of the other lines will depend on your application. For some
guidelines, see APPENDIX 1,

The pre-set default state of the DTR and RTS lines is OFF. The pre-set
default state of the XMT line is MARK. Once you change any of them
with the CONTROL command, the new setting will remain until you either
turn the computer off or issue ancther CONTROL command to change
things. The SYSTEM RESET key has no effect on these lines.

35

The ferm of the-CDNTROL command in BASIC is: -

¥XIO 34, #channel, Avuxl, Aux2, "Rn:"

— o e T W el e e L = N e e Ry e e B e i i i e B o Lt T i il s Ml i

34 specifies the CONTROL command.

#channel specifies the IOCB or channel number (1-7) you wish to use
for the command. If no channel is open to the RS-232-C port, specify
an unused channel. If the port is apen through a channel, use that
channel.

Auxl is the sum of three numbers chosen from tables I, II, and 1II to
controsl DTR, RYTS., and XMT. Chouse only one number from each table.
You may add the numbers together yourself and put the resulting sum in
your program for Auxl, or you may put an expression for the sum and
let BASIC do the arithmetic for you.

Aux2 is not used by this command: the best value to specify is zero.
"Rp: ® specifies the RS-232-C port you are acting on. For n you put 1.

2, 3: eor 4. I+ you omit n, the Interface Module handler will assume
you mean port 1.

54

APPENDIX 8

STARTING CONCURRENT I/0 MODE

Use the command START CONCURRENT I/J (XIO 40) to start concurrent I/0

mode, This mode may be used for output and must be used for input or
full duplex. The port must be open before you canm start concurrtent
1/0. Once concurrent I/0 is in effect no other I/0 operaticons which

use the computer I/0 connector can be performed. I/D operation to
another serial port: for example:r can not be performed. I/D to the
keyboard, the screen: the Editor and the confroller jacks cam still be
performed,

The concurrent mode I/0 operation may be terminated by SYSTEM RESET.
BREAK, or by closing the port.

Operations which are allowed while concurrent mode I/0 is active are
input and output operations to the active port (GET, INPUT, PUT,
PRINT}, and STATUS commands to that poré.

There are two different forms of the START CONCURRENT MODE 1/0
command. The main gdifference between them is that one specifies the
vse of a small input buffer built into the Interface Meodule handlier
{(in the computer), and the octher allows you to give your oun buffer to
the handler so it can be any size you wish, (NOTE: in Assembluy
Language these ftwo options are really Just different forms of the same
command.) '

The form of the START CONCURRENT MODE I/0 command which allows you to
specify your own 1/0 buffer has two disadvantages: the command is
complicated to specify in this form: and the BASIC array you use as
the buffer may be moved by the BASIC interpreter. Once created, BABIC
arrays are NOT moved while a program is being run, buf arrays are
meved whenever you add or delete a BAZIC statement, even in immediate
mode. The handler for fthe Interface Module is told of the locationm of
the buffer only when you start the comecurrent I/0; thus. if you allow
BASIC to move the arrvay, data will be imnserted in unpredictable
locations, possibly destroying even the BASIC program itself. Ongoing
concurrent input couvld wind up in other arvrays or variables, or even
in your BASIC program! S0 REMEMBER: IF A PROGRAM IS USING CONCURRENT
MODE INPUT., aALWAYS MAKE SURE THE CONCURRENT MODE GOPERATION IS STOPPED
WHEN YOUR PRDGRAM STOPS. This will be done for you if you stop by
using BREAK key:. SYSTEM RESEY key: or end your program with END or
letting the program stop by "running off the end."

STOP does net terminate the concurrent input, and neither will it bde
stopped if an ERROR happens. IN THESE CASES, THE WAY TO STOP THE
CONCURRENT I/D IS TO PRESS THE BREAK KEY.

Nomne of these problems octur.if'qou use the buffer which is built inte
the Interface Module handler., since that buffer does not move! On the

9

other hand. that buffer is quite small (32 bytes) and this may not he
adequate for all programs

With a small input buffer you need to GET or INPUT the data from the
buffer before the buffer fills up with data that you have not yet

Tead, Of course, if in the lsng—-range average you read the data out
of the buffer more slowly than it is arriving, you will eventually
lose data anyway. If this is the case, you will either have to put up

with losing it (which is not all that bad in some cases), or you will
have to figure out a way to slow down the device that is sending the
data to you (such as setting a lower Baud rate). Even if your program
processes the data fast enough in the long vun, a small buffer puts
demands on your pragram to get data quickly and often. Here are some
things to consider.

The BASIC intervpreter is quite slow relative to incoming data, if you
want to deo some processing en each and every character that comes in.
In that case, 300 Baud would be fast. On the other hand, the system
is more than fast enough to read in a line of data (terminated by CR)
at 9600 Baud (P50 cpsi—-—~as long as there is enough time between Iines
for yeourT program to do its processing. It pays to read a whole line
of input at a time (use INPUT wherever possible instead of GET). and
it’s realily helpful if the inputting device will pause for you after
each line. Even if the inputting device will net pavse, Teading a
line at a ¢time may buy you the processing time you need. The best
thing to do is try it

NOTE: In order to perform line—oriented input using the BASIC INPUT
statement, the inpuft must either have an ATASCII EOQL at the end
of each input line, or must have an ASCII CR terminate each
line. In the latter case, you must canfigure the translation
mode of the Interface Module port to coenvert the CR intoc EOL.
This is discussed more fully in the section on configuring
transliation mode.

A large input buffer will be needed if you can read the data from the
buffer only in large, occasional bursts. For example. if you do not
know how long it will fake to process a line of input because some
lines require a lot of wotTk: you will want to sliow lines to “back up"
in the input buffer. This will work fine as long as you do not get
too many of these "slow"” lines at once. You will probably have to
determine the needed size of your input buffer by trial.

The number of characters that can come in every second depends on the
Baud rate-—the higher the Baud rate the faster characters can arrive.
Thirty characters may arrive each second at 300 Baud., 480 may arrive
in the same time at 4800 BRaud. Of course, if the sending device does
not run at the maximum possible speed—— if there are "gaps" between
characters anywhere——-then the speed of characters will net be 277,
Thus the Baud rate can control the MAXIMUM data transfer rate, but the
actual or EFFECTIVE data transfer rate may be smaller.

What things boil dewn to is that your program in BASIC must INPUT data
from the input buffer faster than the Interface Module puts them there

&0

from your RS-222-C compatible device; that is. your BASIC program must
read the data faster than your device’s effective data transmission

rate (an averaga}, You can control that rate by setting the Baud
rate. and possibly there are other ways to conirol the transfer rate
(that depends on the devirce itself). Be prepared to experiment to

find the best mode of operatien.

In BASIC., the START CONCURRENT MODE 1/0 operation which uses the
built—in input buffer looks like this:

| £i0 40, #channel, O, O, "Rn:*" |
I |
Specify the asppropriate open channel, and specify 1, 2 3, oar 4 for n

in "Rn:". If you leave n out {(i.e., "R:"}, then port 1 is assumed.

You MUST specify zero for both Auxl and Auxl, since this is fhe way
gou tzll the RS-232-C handler to use ifs own input buffer.

1f you opened the port for output only, then only goncurrent output is
enabled. 1f the port is open for input only, themn only concurtent
input is started. 1f the port was opened for both, tThen concurrent
mode input and output are started (full duplex) See the section about
the input and output commands for details on how these wvarious modes
operate.

In BASIC, the START CONCURRENT MODE I/0 operation in which you supply
the input buffer for the handler is specified by a series of POKEs
followed by ecslling the Central I/0 (CI1O) throwgh a USR function. The
POKEs specify the type of operation, and specify the buffer address
and length. You POKE these values into the I/0 Control Block (IOCB?
caTresponding to the channel you have opened for the RS5-232-C port
Here is an example progrTam:

10 DIM BUF${500), RSTART®(7)

20 LET RSTARTS = "hhh#lLVd" NOTE: a bar over a
chavracter here means
inversae video. }

30 LEY FILE = 2

40 OPEN #FILE, 13, 0, "R4: "

S0 LET I0CE = I&#FILE

&0 LET BUF = ADRI(BUF%)

65 LET BUFLEN

500

70 LET RSTART 4DR(RSTARTS)

80 POWKE B32+I0GCB+2, 40

61

90 PODKE 832+I0CB+4, bU#-(iNT(BUFI?Sé)*ESb)

100 POKE 832+IDCB+5: INT(BUF/254)

110 POKE B832+10CB+B, BUFLEN-(INT(BUFLEN/256)%256)
120 POKE 832+10CB+%, INT(BUFLEN/25&)

125 POKE B832+I0(B+10. 13

130 DUMMY = USR(RSTART. I0CE)

140 STARTSTATUS = PEEK(832+I0CB+3)

In this program: a full duplex file is opened through channel 2 teo
R8-~-232-C port number 4 {(the 13 in line 40 specifies full duplex).
Lines S0 through 70 set up some wvalues which are used by the START
CONCURRENY MGDE I/ operation. The buffer is setup in lines BO
thTrough 13C. Line 140 gets the status value returned by the I/0 call.
Each POKE statement puts some needed value intos the I/0 Control Bleck
(I0CB). The address %o poke is specified as the sum of the following:
the first address of the IOCB’s (B32), & value specifying which IOCBE.
and an “"offset" into the IOCB for the particular value you are
POKEing. The value specifying the IDCD is 16 times the channel numbar
throwgh which you have opened the RS-232-C port (in this case we set
the variable IOCB to 32 in line 50, since the channel is 2).

The values poked into the IOCB arve: 40 into affset 2; the buffer
location (address) into locations 4 and 5; the buffer length into
offsets B8 and 9 and 13 inte offset 10. Pay special attention to the
fact that the buffer address and the buffer length are both Z2-byte
values, requiring two POKEs to put them into the I0CB. Those
complex—looking expressions in lines 20 through 120 are simply
splitting the address and length intc their low-part and high-part so
each part can be POKEd individually.

tinme 130 calls the I/0 system throwgh a USR function. This USR
function has two arguments: the address of the function, and the I0CH
specifier {the same as was used in specifying the POKE locations}. The
address of this USR function was found in line 70, so you see that the
function is the character array called RSTART$. The function itself
is the odd-looking sequence of characters in line 20. Be sure to type
this character sequence carefully when before you call this USR
function——any mistakes and your program will probably produce an
unrecoverable failure,

Assembler note: This USR function is the following in Assembly
Language: PLA; PL&; PLA: TAX; JMP $E4354. The first four instructions

&2

get the IOCB number into the X~ register, and the return address is on
the stack: so the I/0 system is "called" by jumping to it!)

Line 140 gets the I/0 status after the USR I/0 call. You do not need
to get the status if you do not want to. To get status PEEK at offset
3 in the I0CH. 7The sfatus will be 1 if all went well. Other— wise,
the status is the same as the ervor number that BASIC prints after an
I/0 call fails. (Nete that the variable DUMMY in the program abave
does not get any meaningful value.)

Orce this START CONCURRENT MODE I/0 operation has been performed, the
concurvent I/0 is active. The operation may be either in-onrly, or it
may be fwll-duplex {(as specified in the QFPEN), If you are Tunning
full-duplex, the output buffer iec built into the Interface Module
handler. The input and output buffers are accessed through normal
input and output statements in BASIC: see tha section on input and
cutput statements. Once again, take note: BASIC MAY MOVE ARRAYS
ARDUND IF YOUR PROGRAM STOPS, IF THE CONCURRENT MODE INPUT CONTINUES
AFTER YDUR PROGRAM STOPS, THIS MAY RESULT IN OVERWRITING SOMETHING
DUTSIDE YOUR BUFFER ARRAY. IF YOU ARE NOT SURE WHETHER OR NOT THE
CONCURRENT I/0 HAS STOPPED, PRESS THE BREaAK KEY TO STOP IT.

NOTE: fthere is 8 256 byte area st address 1534 {decimal) which you
may wse as an input buffer oF anything else. Be sure that area
is only beoing used for the one thing you wish, No ATARI
software uses ithis areas except Jjust after you turn the machine
on:, but youw showld be careful of non—-aTARI software you use
with BASIC. 1536 splits nicely into low— and high-parts (so
does 2587, so you could Teplace lines 90 through 120 af the
above program;

%0 POKE B32+I0CB+4, 0

100 POKE B32+IJCE+5. &
110 POKE B32+I10CE+B. O
120 PORE 832+10CE+2, 1

If you use this area, you do not need to worTy about it when your
program stops since BASIC will not move it.

&3

