Draper Pascal

Version 2.1

Copyright 1988
- by Norm Draper

For the Atari 400, 800, XL, and XE series computers

This is the complete Draper Pascal manual. It is only provided to registered
users of Draper Pascal. No part of this manual may be reproduced without
the consent of the author, uniess done for backup purposes.

Draper Pascal 2.1 Table of Contents

Table of Contents

Note: An asterisk (*¥) following the page number indicates that the
jtem was either not present, or only briefly explained, in the
Starter” version of the Draper Pascal manual.

Introduction =----=-~==m-cmccmmc e m e m e - 4
What is Pascal? —-~-v-—-—=-o-cmmmrc e e m - 4
What 1is Draper Pascal? -~-------------=----womoommoo—— 4
About this manual ---=-------c--cmce e 4
What is Draper Pascal made of? --=-------cnem-coo——-- 4
About the DOS -~-------------mcm e e e 4
The ShareWare Concept =~-====----=--===---—----——---—--—- 5

Ramdisk support ---=--------c-e--m—cm e m e m e 6 *

Getting Started ----~----=--comec—eemccem——mm e m 8

The Main MenU —--—-—==c-—o- - e m e — - - 13
1 - Ryn PrQogram =—-—-——=--—--c e e e e o s w e m o —— - 13
2 - Disk Directory ----------------c-mromom e 13
3 - Com€11e Program =-----------c-mme——mm oo m—— 14
4 - Edjt a Program =---------=-------eemmmme e 14
9 - Ex1t to DOS ---------meme e e m e e 14
6 - List a file -~-==---momcccmmm e e 14
7 - Trace ONn === - == - o s o e e s eemm o mmmn e 14

The Editor ---=---=ecemr e e - 15
General Prompts =-------—=cc----mmm e - 15
The Commands --~~-—---~--e--smmmmmmm e m e e e e o 16

A - Add line(s) at end ----=-----~----c-c---cu-—---- 16
C - Change line(s) --===-=r-cemrocccmrcemm e m - 16
D - Delete line(s) --=-----=-----emmmmmmnenmnneme 18
E - Edit line(s) -~----==-=---mmemmme e 17
F - Filer meny -------------------oemmmmmmm e - 17

A - Append file ------=----cc-comocm e 17

D - Directory list ----=-------cmmmmmm e v e 17

L - Load file ----~-=-------mommm e 17

S - Save file -~==---cemcmccmmmer e e 17
I - Insert before line -----~---omm—emmmm e 17
L - List Tine(s) -=-----------mcoommm o mmm e e o 18
M - Me e ikt b 18
P - Print line(s) -----=~----=----cmommmommecemmem e 18
Q = QUit === =i 18
S - Scan line(s) 7-=------=-----m-----—-----——m - 18
X = Exit to Compiler ---=----=-commmmm oo 18

The Compiler ------=-----e-ccocmem e mmmmmmemm e 19

The Superyisor -————------memm e e e — - 22

Pascal Definitions ===--=-==--c-ecemcmcrmcm e cmem e 23
ABS == m oo mm s o e e e e 23 *
ADDR === === = e e e e e e 23 *

ND === m e m oo e e e 23 *
ARCTAN === o m o m o oo e e e e 23 *
ARRAY === === oo e o e o e 24 *
ASC === mmm e e o e 24 *
BEGIN === === mm o mmm oo oo oo 25 *
BLOAD =====-= === e m oo e e e 25 *
BOOLEAN === - e 26 *
CALL ——m = mm o o o e 27 *
CASE === === o mmm o o e e 27 *
CHAR === m === oo o e e m o e e e 28 *
CHR === === mmmm e m o o e e e e 28 *
CLOSE == - = m s m o s o e e 28 *
COLOR === mm mm mm o e e e e 29 *
CONCAT =— == mmmm i m o o o e e e e 29 *
CONST ===~ == oo mm e e o e mm e - 29 *
COPY == m = mm oo m e e 29 *

08 ——-—— = m e e 30 *
CVTREAL === mm oo e m o e e 30 *

G mmmmm e e — e 30 *
DELETE =-mmmmm oo oo o m o oo e e 31 *

IV = e m o e e e - *
DOS === = mm e mm e e e 32 *
DRAWTO === m = mm s s e o o o e e e e 32 *

Table of Contents

2.1

Draper Pascal

P

IZEEZT R ERE RS RS RIS RIS SRR SRS R L E SR SRR RS R R R SR AL E SRS ESELEREEEEELEEEZSE.

NOM <t <t <t NN O WD~ I~ 0000 0000 YT 1O O O O v NN (MM < <HN N NN O O O~ 000 00 0 NN OO QO === M (M) <t <t ¢
) N O N O I O MM NN OO Mt <t <t <t <t <ttt <t <ttt ot <t 3 <t <t < <t st < < inunnminn ninn nun Inwn Inn mn 1o

- P W — - . W S em o G M B R AR v - -
- A T ———— AR Wp W e A% M S W R e M M P w4 v o8 =
————n - A - " . — - ——— - R A e A Y A e - P m W e S wm e

—— — — ——— D ——— S W e N W e S M TS B em S W S A WP R AR M e e W e e we =
@ —— o ——— - s D e T . S —— i M S . S W AR e R S R M S em e e m s e
 — ———— D AR W . ———— - - - W W W G W em e e e W e =P e =
- e . m = —— - - - . P W e A - g W M S A e =

! '
1)
' \
! !
1 !
! '
1 '
|]
! !
! 1
! 1
1 !
1 '
! !
! |
! !
' !
1 '
! 1
| 1
!)
' 1
1 t
! 1
1 !
! '
i '
! 1
t !
! |
1 !
! !
1 1
! '
! '
1 !
t 1
! 1
! !
' !
| !
1 !
! !
| !
1 '
' 1

- e e A - - R e WS S S M R G S WM D WD e e WS M AR M e S mS R e e TR S s e e e
———— e . e D W . . Wp ww M M e S NS MR Y S M em - ws WP MR S M Mm AR - mA m W e e e

1
!
3
t
1
|
|
\
|
!
|
|
1
1
1
|
|
[}
|
t
1
|
L}
I
t
1
1
1
1
|
!
!
|
]
'
1
|
|
]
1
|
I
¢
1
1
1
|
|

D @ e . o — ————— A o > Y e -
LECTKEY —=—-======mmmmmm=mo— e moc—e e ———m— ===

SET_ m=mm=mm === mm o= m e m o mm e mmmm e ——— -

EPEAT ——-——=-===—m==mmmmm—mmmmm—m e m e emm e oo

STR = ——=m === m e e e mm—m—mm ===
STRIG ~—-==——m———mmmmmmmm e mmm e — -
STRING ~====—m === == m e e m—mm o

STATUS —==mmm == s = e mm o oo oo m e m—m—m e -

STICK

SQRT_~====mmmmmmmmmmm—mmm—m oo o e mm————m——-—= ==
STARTKEY ==mmmmm=m==mmmmm—mm e mm oo mm—m—m—o——mm - — oo

SQR - = === mmmm e o e e m———m—m oo

1
!
1
1
1
|
[}
!
1
1
1
1
'
1
)
1
1
1
[
1
1
]
|
l
1
[
[}
'
1
1
1
1
1
1
1
'
)
'
1
|
|
|
'
|
]
|
1
-
a
w
o

[
[
[
1
11
11
11
I
[
1
1t
11
[
[
[
[
[N
[}
11
()}
[}
[
(]
(S}
1t
v
1l
11
1
[
vl
[
t1
[
[
(B}
11
11
[
[
ti
11
11
11
1)
]
1 Z
-
(a]a]
< <L
L)
o

]
!
t
I
1
]
1
I
1
I
!
!
!
I
|
\
|
|
|
]
1
|
I
|
|
{
|
I
|
|
1
1
1
|
|
I
|
!
1
)
)
1
|
1
1
|
|
!
a
<
o

PTRIG === =mmmmmmmmmmm o e oo o o oo

PROGRAM —====mmm—mmmmm e e e e e cmmmm e mm e m o
PURGE

[
[B
t!
1t
11
11
[
[
[
t
1t
11
(]
11
11!
1
11
[
11
Vo
1
11
et
[
tt
[
11
11
[
Vo
1t
[
[|
tt
t
| I
11
11
[
(I}
[}
[]
[
[
(]
[
(I}
|
1]
xuv
o0
o0

1
P
1
11
1t
1
11
1
1)
t
Pt
1
1
1l
1
'
P
oy
[
]
'
1
t
(N
't
1
(]
11
1
11
[
]
1
]
]
11
11
[
1t
11
(1
e
11
11
bl
1t
I

[
=z

Q-

40

oo

|
[}
J
[}
1
1
1
I
|
|
)
1
1
1
1
1
!
!
1
|
I
!
I
!
!
1
1
1
1
I
t
'
[}
!
1
{
1
|
1
|
!
[}
1
|
t
i
'
h'4
w
wt
o

ORD ~—= === mm e o e o e — e — -
PADDLE ====mm=mm = mmm s oo o o o e e e e e -

OPTIONKEY ====—=———mmmm—mmmmm—m e m e e e e mm e e
) S e E EEEE L E P PP

OPEN =—===—m === e e e e e e m oo mm e
OPTIONS

1
L}
1
1
1
I
|
I
|
!
1
1
!
1
|
1
I
1
!
!
1
|
!
I
|
1
}
!
'
1
\
1
1
1
|
i
}
}
!
]
L}
|
|
1
I
]
|
[}
[a]
O
o]

NOT == === mm—mmmmm = m o m e o mm e e e e
NOTE ===———===mmm == mmmm e o m oo mmm———emm— oo

MOD == === =mm === === == o e e o —m—m o em oo

LPENH —====—— === === o e e o e oo e
MAXGRAPH ======mm = m e e e o o m oo

LOG ——=mm=mmmmmm = m o m e e m e m oo
LPENV

LOCK === === == mm == = e oo o e e mmmmmm——— ==

LN === m e e e e e
LOCATE ==-=m=mmmmmmmmm e e e e e e mmm——m oo

KEYPRESS ~-——-==mmmmmmmmmmmm oo e m oo -

|ORESULT ======m=m=—— == =m e s mmm e mmm—e—m oo oo
LENGTH

INTEGER —======== === e e e oo e e e e e

[F —m===mm=mmmmmmm—mm oo~ o= —m=—=———————me— e
[NSERT —=======m===m= === =mm—=————— ===

HIMEM ——— === mmmmm o s e m e o m e o oo e e e

GOTOXY == === = mmmm =~ m o m =

FILE =-mm=mmm=m—==== == - e mm——————m— =
GRAPHICS

FALSE —-=====m==mm== == eem oo m o ——m—— -

]
11
[
[
[]
1
V!
[
11
1
11
Vot
11
1
t
t
o
1t
1t
[
[
[
[
[
11
]
[
[
1
1t
[
[
i
[}
]
[
1
t
t
]
[}
[
1!
t
1
It
[}
1
1
(.
—n
XX
i

EOF ———— === === mmm = m e m o m——————— o=
EOLN -—-—==m=mmmmmmm e o m oo oo m e m e e mm—m o —— oo

END ~-=-=m=———mmmmmmmmmmmmmm e m oo mm e ——— - m -

DVSTAT —===— === === = mmm e e oo oo e e mm e mm e mmmm -

DUMPSTK
EXP10

FOR
FUNCTION
PROCEDURE
RECORD
SOUND

Draper Pascal 2.1 Table of Contents

TRACEQFF === - = — s m e m e e e e 55 *
TRACEON === === m oo o e e 55 *
TRUE === - s mm o m e e oo e e e 55 *
UNLOCK ~mrm==oce s e s m e e e m s e mm e e m e m oo 56 *
AL === - m e e e e 56 *
VAR <= = mm e 56 *
WA T = oo m s o s m o oo e e 57 *
L e e 57 *
I i e e b 57 *
WRITELN == o= oo o e o e e e e e e e 5g *
XCTL === === m e e e e e e e e 59 *
e 59 *
System Information ----------o---cmmmoemme e *
Internal Data Formats ---------=-----w-m-mccommena 61 *
Suppressing the Title Screen --------------coeoona——- 62 *
Trace Formgt e e e e e sty 2 *
Reseryed Word List ---=-----ecocmcemccmcmmm e — e e m e *
Operators —--—------ceem e e — e e —— e m e 64
Editor Command Summary -~-----=-------cceccocooononu- 65 *
Error M?ssages -- 66
Compiie Time Error Messages ~--=------—-=---=-=------- 66
Execution Time Error Messages ------<--—=-=—c--—-—a----- 67
Main Menu Program Source Listing --------=——~-=—--=---—--- 69 *
Editor Program Source Listing -----------~--c--c-co---- 72 *
Ramdisk Program Source Listings ----------=-->---c-u-—- 79 *
Sample Program Source Listings --------------—--c---w--- 81 *
Printer Usage -------~-----------------mmmmmmem e 83 *
Software License ---------------omoommcm e mm e 84 *

Draper Pascal 2.1 Introduction

Introduction

Draper Software welcomes you to the world of Pascal for the Atari
400/800, XL, and XE series Computer systems.

wWhat is Pascal?

Pascal _ is a bigh-leve] structured programming 1anguage developed
by Niklaus Wirth_in 1971. 1t is easy to understand and well suited
for program development and maintenance.

What is Draper Pascal?

Draper Pascal is not a '"standard" Pascal. 1t has a number of
commands which are exagtly like 180 and UCSD versions, some which
are §1m1lar, and many ‘'extensions! which bring out the true power
of the Atari1 computer in an easy to use manner. |t was des1gged to
reguire only one disk drijve for operation, but not be limited to
only one. At this time, it has been shown to work with all
hardware and software confijgurations where enough memory is
provided. This implementation also has a number of commands
are familiar to Atari BASIC users, such as POKE, PEEK, SETC
NOTE, POINT, etc..

which
OLOR,

About this manual

This manual is jntended to familiarize you with all the features
of Draper Pascal. It js not jntended to teach gou how to program
in Pascal. However, if you already know Atari BASIC, then you can
understand the Pascal statements more easily by referring to their
BASIC equivalents shown after the definition of each Pascal
reserved word. |t is recommended that you read this manual |
completely to be familiarized with its features and restrictions.

What is Draper Pascal made of?

This implementation of Pascal is made up of three main components.
They are_the Supervisor (sometimes referred to as runtime ,
routines), the Cqmp1}er, and the Editor, The Supervisor is a high
pertormance machine language program which simulates a 16-bit
pseudo computer. The Compiler translates Pascal source code_ into
pseudo-code instructions to be executed by the Supervisor. The
Editor is used to enter and modify Pascal source programs. It may
also be used to edit data files, or BASIC programs _which have been
L!1STed to a disk or tape. These components are explained in detail
within this manual.

For a description of the various files included on the supplied
diske%te, refer to the "System Information” section of this
manual.,

About the DOS

Drager Pascal can be used with most popular Disk Operating
Systems. It has been tested with Atari DOS 2.5, SpartaD0S 3.2d, .
and MYDOS. You should format a diskette with Dds on it to contain
the Draper Pascal system. Since the Draper Pascal] Supervisor is
named AUTORUN.SYS, it will execute immediately after the disk is
booted. For XL _ and XE computers, you do not need to hold d$wn the
Option key while booting unless you are using SpartaDOS. |f using
SpartaDOS, you may want to rename AUTORUN.SYS to PASCAL.COM and
create a STARTUP.BAT file containing the following two lines:

BASIC OFF
PASCAL

Draper Pascal 2.1 introduction

The Shareware Concept

Draper Pascal is distributed on a Shareware basis.

You may freely copy Draper Pascal for distribution under the
Shareware concept, without charge.

You may NOT chan%e any fee for the Draper Pascal program or
documentation without our written approval.

You ma¥.NOT distribute Draper Pascal or it's documentation in
connection with ANY commerc¢ial venture, product, publication or
gservice unless you read, sign, and send in the royalty-free
license included with this manual.

Draper Pascal 2.1 Ramdisk support

Ramdisk support

Draper Pasca1 supports the use of the "Ramd1sk caEab111ty
provided 5 using EOS that supports a ramd e Atari DOS 2.5
or SpartaP0sS 3.x w1 tari1 computer system having sufficient
memory to sup port the ramd1sk While using this feature, the
Editor takes less than two seconds to load and the Comp11er takes
less than three seconds.

Diskette preparation
for Ramdisk support

To utilize the ramdisk support, you must make sure the DOS on your
Draper Pascal diskette has everything in place to create the
ram sk. For example, with Atari DOS 2.5 make sure the disk also

n 1 AMDISK.COM. For SpartaD0$ 3.x ou will need RD.COM (or
s ZES C?Mz These programs a?e prov?ded with your Disk Operat1né
ystem

To activate the Ramdisk feature for Draper Pascal 2.1, use_your
version of DOS to rename the following three files. donsul your
DOS manual if you need instruction on how to do the rename.

Rename From this name: To this name:
RAMDISK1.DAT COPYFILE.OBJ
RAMDISK2.DAT CORPYLIST.TXT
RAMD I SK3.DAT RAMDISK.PCD

Using the Ramdisk feature

To use the Ramdisk feature, do the following:

1. Boot ¥our diskette and initialize the ramdisk. With Atari DOS
1s would be done automatically if RA MDIS .COM is present
on the diskette at boot time, With SpartaDOS 3. you must
execute RD.COM (or RD260.COM) specifying DS8: as he drive
number for the ramdisk. If you wish to use a dr1ve number other
than 8, you must first edit COPYLIST.TXT and chan the second
Tine to contajn the desired drive number. With SpartaDOS 3.%
ramdisk intialization could be done automat1ca11y by add1ng RD
D8: to the batch file STARTUP.BAT mentioned abov

2. Start Draper Pascal.

Enter '1', for Run Program o]]owed bE the name RAMDISK (since
RAMDISK.PED is to be executed). If rror 138 occurs, it
indicates that the ramdisk drive has not been prog

initialized, An Error 170 might occur if one e f11es being
copied to the ramdisk is not found. This cou]d happen if you

renamed AUTORUN.SYS to PASCAL .COM as mentioned About the
DoS", above. If this the case, ver1fy that e%?h f11e name
contained within COPYLIST TXT 1s spel correctly.

That's all there is to_it. Your default drive will be set to the
ramdisk drive number. This means that if you edit, run or compile
a program and don 't spec1fy a particular drive number (Dx: the
default will be assumed.

The RAMDISK program works as follows:

1. The source §input) disk drive number is read from file
COPYLIST.TX

2. The tar goutgut) disk drive (ramdisk) number is read from
file CO YLl

Draper Pascal 2.1 Ramdisk support

3. A check is made to see if the ramdisk already contains one of
the programs to be copied. If so, processing continues with
step 6, below.

4. A machine language fast file copying subroutine (COPYFILE.OQOBJ)
is loaded into memory.

5. Each remaining record of file COPYLIST.TXT is read and, the
corresponding file is copied from the source drive to the
target drive.

6. The default drive indicator is set to be the target drive

number.
The source cgode for thi rogram . (RAMDISK.PAS) and the file co
subroutine COEYFILE.Még)parg prigte ?th th% other source cogé
1istings 1in this manual.

Draper Pascal 2.1 Getting Started

Getting Started

This section is intended to show by example how to use the Draper
Pagcal systeg, You will edit, compile, and run a sample_program.
information displayed by the computer is shown in normal type
while responses to be entered by you are shown underlined with
dashes ?-—- . To begin with, make sure you have 48K RAM installed
nd no car§r1dge,1n place. Boot the disk now by placing it in disk
rive 1 and turning on the power to the_ Atari computer. After the
?UEGP¥A$OP has finished loading, you will see a screen that looks

ike is:

DRAPER PASCAL
VERSION 2.1

- Run Program

- Disk Directory
- Compile Program
Edit a Program
- Exit to DOS

- List a file

~N o O A W N
|

- Trace on

Copyright 1989
by Norm Draper

4 Select the Editor

DRAPER SOFTWARE
ED!ITOR

MXNOVIr—Tma >

-

3
A,C,D,E, M,P,Q,S,X,?->F Select Filer menu

»

nroxr

[|

Draper Pascal 2.1

Enter filename -> SAMPLE1

A,C,D,E,F,I,L,M,P,Q,S,X,?->L

Line from ->

Line to ->
1:PROGRAM KALEIDOSCOPE;
2:VAR !,J,K,W,X: INTEGER;
3:BEGIN
4: MAXGRAPHE193;
5: GRAPHICS(13);
6: X:=0;
7: REPEAT
8: FOR W:=3 TO 50 DO
9: BEGIN
10: FOR I:=1 TO 10 DO
11: BEGIN
12: FOR J:=0 TO 10 DO
13: BEGIN
14: Ke=i+J;
15: COLOR(J%3/(1+3)+1%¥W/12);
16: PLOT([+8,K);
17 PLOT(K+8.1733
18: PLOT(32-1, 4—K3;
19: PLOT(32-K,24-1):
20: PLOT(K+8,24-1);
21: PLOT(32-1,K);
22: PLOT(1+8,24°K);
23; PLOT(32-K, I)
24: END
25: END
26: END
27: UNTIL X=99 (* UNENDING LOOP *)
Z8:END.
A,C,D,E,F,1,L,M,P,Q,S,X,?~>1
Line => 15
15 (* MY FIRST EDIT *)

AJC)D)E)F) I ,L,M,P,Q,S,X,?->L

Line from ->

Getting Started

Load a file

Enter the name of the file
to be loaded. The name of
the last file edited
compiled, or run will be
filled in by the Editor.
You may have to overtype
it with the name shown.

List the file on the
screen

JESt press RETURN for t
ine m' ne o
This w11? 1ve a &1

the ent1re program
memory .

Let's insert a comment
before line

Enter the data tb be
inserted when prompted for

&Agﬁ é?omp eg ?S RETRE.

This will term1nate insert
mode.

List again to verify that
the change was made
correctly.

Draper Pascal 2.1

Line to ->

9]

OTH MouMHZ—2D

W<
mmo—iﬂwim . >

MO X IMP>10
WOM.- VP OHVO

—>» X

Oo -~
L AX

=3 TO 50 DO

M0 X~

s 90 o0 or 0s

+ M
wo
(NP2,
+—
* H
b N

/12);

e
s
o
=

100101 | 0000 #—
Ao —» R—v « WD
Ao — 1}
N ==K
e A

-e

N+ N+ RN+ +CTier
- NN s =R

— K P NN Ar™—

W= WAWWXR—
Nl | PR s —

L X=99 (* UNENDING LOOP *)
}F’I>L’M,P,Q,S,X,?‘>F

>
v NINRNNRNNNNNN A bbb bbb b b o
OWO~NOUHWN— O WO~ DUIRWRN - OW O~ ROU DR

“ te ve 00 00 s

0nror
| I I |
O
—_
3
[
03
—Hh-hchQ
4.0
—aaTy

S

Enter filename =-> SAMPLE1

A’CJLE’F)“LyMJ”Q,Sﬂ“?‘>X

Draper Software
Pascal Compiler
Version 2.1

Copyright 1989
by Korm Draper

Enter Filename:
SAMPLE1

Enter List OQutput Filespec

10

Getting Started

Let's save the program
back to disk drive 1
under the same name.

Now let's exit directly to
the Compiler.

Enter name of program t
be compiled. The name o
the last program edited
cqm?11ed, or run will b
filled in by the
Compiler.

[®]
f

’
e

Draper Pascal 2.1

Default is E:

0000 PROGRAM KALE|DOSCOPE;
0000 VAR 1,J,K,W,X: INTEGER;
0003 BEGIN
0003 MAXGRAPHE19;;
0017 GRAPHICS(19);
001B X:=0;
OCQ1E REPEAT
0022 FOR W:=3 TO 50 DO
002A BEGIN
0035 FOR 1:=1 TO 10 DO
883D BEGIN
48 FOR J:=0 TO 10 DO
004F BEGIN
0Q5A K:i=i+J;
0062 COoLQ ?J*3(1+3)+1*W/12);
008A PLOT(I+8,K);
0098 PLOT(K+8,1};
00A6 PLOT(32-1, 4—K3;
coBS8 PLOT(32-K,24-1);
G0CA PLOT(K+8,24~1)}
00DC PLOT(32-1,K);
OCEA PLOT(1+8,24-K);
Q0FC PLOT(32~-K, 1)
01CA END
010A END
610C END
011C UNTIL X=99 (* UNENDING LOOP *)
0142 END.
0147
ADDR NAME
0003 !
0004 J
0005 K
0006 W
go07 X, .
5 Compiler table entries used
*¥** Program Execution Completed ***
H1§hest Stack Address Used = _$AFF8
{START>Repeat, (SELECT>Menu,<ESC>Exit

DRAPER PASCAL
VERSION 2.1
- Run Program
- Disk Directory
- Compile Program
Edit a Program
- Exit to DOS
- List a file

- Trace on

~N O b WN =
|

Copyright 198$%
by %orm Draper

11

Getting Started

Just press RETURN at this
point to have the compile
list directed to the

screen.

the SELECT key at
Qint to take us to

Draper Pascal 2.1 Getting Started

Select "1' to run the
- program that was just
compile

—_

Enter name of program to be run

SAMPLE1 . The name ofttge last led,

------- rogram e 1 e
gr ?un w?] be f1?Tp in
by the main menu program.
Overtype the name if you
want to run a different
program.

At this point you should have a nice kaleidoscope pattern be1ni

displayed on zour te]ev1s1on screen. To stop it, press the BREAK

key. To repeat execution gress the START keg to return to the

wa1n menu, press the SELEC key. To exit to DOS, press the ESC
ey

Another program, SAMPLE2, is also ?rov1ded for you to practice

h. 1t will display Roman numera for powers of two between 1
and 4096. Compile it, turn on the_trace via the main menu, and run
it. After it 1is f1n1shed press CTRL-T to display the trace table,
and CTRL=S to digplay the stack_contents. When prompted for
‘Where? Filespec enter 'E: For a description of the stack
d1sp1a{ line, refer to the 'DUMPSTK' command in the 'Pascal
Definitions' section of the manual provided to registered users.

12

o~

Draper Pascal 2.1 Main Menu

Main Menu

The Main Menu is the initial program to be run by the Supervisor.
it is written in Pascal. The source code is provided for it and
you may cuetom1ze it as you see fit. The disk filename for the
source is 'INIT.PAS'. The pseudo code program that is_initjally
executed is ' INIiT.PCD’ it would be wise to copy "INIT.PCD' to
another name to ?e used in cas? your compile of the menu rogram
is not successfu Or, you could rename INIT.PAS to somet 8
else, like NEWINIT.PAS, and compile it to produce NEWINIT. PC
Then you can use the "run' option ment1oned below) to test your
modified program.

The Main Menu appears as follows:
DRAPER PASCAL
VERSION 2.1
- Run Program
- Disk Directory
- Compile Program
Edit a Program
- Exit to DOS
- List a file

~N B U W N
[}

- Trace on

Copnright 1989
orm Draper

Each of the menu options will now be explained:

1 - Run Program

Use this option to _execute a.?rogram that has prev1ousl% been
successfully compiled. You will see the following promp

Enter name of program to be run
The Main Menu program will fill in the name of the last program
edited, compiled, or run. If this is the one you want, all you

have to do 1is press RETURN. If it is not the one you want, just
overtype the name shown with the one you want.

2 - Disk Directory

This option will provide you with a list _of all, or se]ected
files on one of your disk drives. You will receive the prom
Filespeg?', ¥ Jjust press R%TU@N at th}s po1nt you w1?1 see
a }1st of all f1 es on the defau rive. you enter :

wi

i]1 see all files on dr1ve 2. To show only selected f11es uee
wildcards in_the normal manner. For examp1e enter NTT.*7 to
show onlz files named INIT w1th an suff1x rom dr1ve one At the
end of the list, you will rompted to press any eg

continue. After’ pressing any ey, the Main Menu will be

re- d1sp1ayed

13

Draper Pascal 2.1 Main Menu

3 - Compile Program

This option sends you directly to the Pascal compiler. You will be
prompted for the name of the program to be compiled, after the
Compiler is loaded. |f gou have already edited, compiled, or run a
grogram, the name will be shown and may be used by just pressing.
he RETURN key. For more information, refer to the section of this

manual on 'The Compiler

4 - Edit a Program

Control is transfered to the Draper Pascal Editor when this option
is chosen. For more information, refer to the section of this
manual on "The Editor".

5 - Exit to DOS

Pascal execution is terminated by this option. Control is passed
to the Disk Operating System.

6 - List a file

This convenience entry is provided to allow you to view, on the
screen, an¥ text file on disk or ta@e. You are prompted to enter
the name of the file to be listed. The file is assumed to reside
on the default drive if a colon (:) is not found within the name
you specify. At the end of the 1ist, you will be prompted to press
any key to continue. After pressing a key, the Main Menu will
appear again.

7 - Trace on (

The wraparound internal trace may be turned on (or off) with this
option. The trace is used only for debugging purposes and may be
viewed at program termination time by Rness1ng CTRL-T, Program
execution speed is slightl degraded while thé trace is active.
You will be prompted to enter £he number of trace entries to be
maintained bg the system. Each trace entry requires 10 bytes of
storage at the high end of memory. The trace may not be used .
during graphics displays because screen memory is also at the high
end of memory. To turn the trace off and remove the memory
allocation of the trace table, enter zero when prompted for the
number of entries to majntain. The trace format is described in
the "System Information” section of this manual.

14

Draper Pascal 2.1 The Editor

The Editor

e Editor is used to create, modify, and save Pascal source _
les. |t may alsgo be used to process other text type files, like
SIC programs which have been L|STed to disk or tape. !t is a
ne oriented editor. Combined with some type of formatting
ogram, it maz be used for word processing applications. The
entire source to be edited must be in memon{ at _one time. If your
Pascal program will not fit within the Timits of the Editor, then
yQu can use the INCLUDE feature of the Compiler to allow segments
of a program to be edited separatelK. Refer to the section on "The
ompiler” for mgre_information @¢n the INCLUDE feature. Source code
or the Editor 1s listed under "Editor Program Source Listing™ 1in
%h}? manual. Some key points to be noted about this editor are as
ollows:

1. Each line is referred to by line number, however o line
numgers are stored e?ther %nterna1$y or’on the d%sE or tape.

T —W-h—

h
i
A
i
r

2. Each_line ma{ contain up to_ 80 characters. This may be qhanged
by altering the constant called MAXLENGTH and re-compiling the
Editor. A source listing of the Editor is provided to
registered users.

3. A maximum of 250 lines of text may be edited at one time. This
may be changed by altering the constant called MAXLINES and
re-compiling the Editor. An increase in MAXLINES should
correspond with a decrease in MAXLENGTH, and vice versa. A
source listing of the Editor is provided to registered users.

4. When entering or editinE a line, the line must be terminated
by pressing the RETURN key.

5. As lines are inserted into, or deleted from, the source file,
the remaining lines are auéomat1ca11y renumbered.

A line of source may extend onto more than one screen line.

Due to operation of the Atari _operating system, a blank Tine
may not be d1rect1g entered. To enter a b ank‘11ne, ou must
first enter a non-blank character (1ike a period), then use

the Editor Change command to change the character to a space.

8. Input operations_(Append and Insert) are terminated b
enger1ng a null Tgnep?Just press1ng)the RETURN key?. y

9. The BREAK key is _disabled bz the Editor to prevent loss of
data. It is enabled again at termination of the Editor.

10. If you enter or change data then try to Quit or exit to the
Compijler without first saving the data onto disk, you will
recglve an option to either save the data or ignore it and
continue.

11. Cassette_tape files may be loaded, edited, and saved by the
Editor. The Compiler_ does not support tape input, though, You
would first have to load the file from tape, with the Editor,
then save it to disk.

EDITOR COMMANDS
General Prompts

The following prompts are general in nature and are common among
many of the editor commands to be described below.

15

Draper Pascal 2.1 ‘ The Editor

Line =>

You_are prompted to enter one line number, as opposed tc a range
of 1ine numbers. It is used by the INSERT Editor c¢ommand_and
refers to the line before which the inserted line(s) will be

placed.
Line from ->

This is the first prompt for a range of line numbers. Enter the
low numbeg of the range. If you just press RETURN, line number
1s assume

Line to ->

Enter the high line number in the range desijired. |f on]K one line

is to be acted upon, that number must be entered in bot

ﬁrompt and the one mentioned above If gou just press RETURN, the
ighest line number 1in the buffer wil e_assumed. |f the number

you enter is less than the 'Line from value, the 'Line from'

value will be used here,.

Enter filename ->

This _prompt_ is shown when loading, appendin and saving files

The last filename used is filled in after the arrow. {f this 1is
the file you wish to use now then all you heve to do 1is press
RETURN A full f11espec ma h entered is not required., If a
colon (:) is not found within t e f11ename spec1f1ed then the
default drive is assumed If the filename given does not contain a
period (.), then a suffix of .PAS is assumed.

The Commands

A - Add line(s) at end

This command is used to add lines after the last line currently
the buffer. |f the buffer is currently empty, then line 1 will be
assumed as the startin oint. In this manner, you can create a
new file if one has no een loaded. You can append as many lines
as you like. When you are finished enter1ng lines ?ust press
RETURN without entering any data on the line (nu11 ine)

Prompts used: None

C ~ Change line(s)

The Change command allows you to change one specified strin ﬁ
pattern _to another for the first occurance in each line within the
range of lines specified. After being prompted for the line number
range, you are asked for the data to 'Change from ->' and "Change
to . Enter any string of characters at each grompt imbedded
blanks are allowed. If you just press RETURN for Change to’
prompt, the first occurance of the 'Change from’' data within each
line will be delete) ., . ,
Prompts used: 'Line from’ 'lLine to', 'Change from', 'Change to

D - Delete line(s)

This command allows you to delete a line or a range of line r
the file in memor¥ he whole file in memory will be de]et d f
you just press RETURN when prompted for both 'Line from' L
to'. Be aware th at all lines following the range deleted w 1 b
renumbered to fi11 the gap just made. h esire to delete a

number of |ine ranges, delete those w1th t e highest numbers f1rst

and proceed toward the beginning of the file. That way, you won't

have to do a %IST after each range delete to find out what the new o
line numbers for the o]low1ng 1ines are. k

Prompts used: 'Line from' Line to e

es from
il
.

ine
e

16

Draper Pascal 2.1 The Editor

E - Edit line(s)

The Edit command is used to edit (or make jndividual changes to) .a
line or range of lines that already exist 1n memory. I|f a range
specified, the lines are presented to you one at a time. As each
11ne 1s Eresented you may use any of the normal Atari editing

{s e right and left cursor, insert, de]ete% to a]ter the

Just press RETURN when you are finished wi ﬁ each change. |f

KE¥URon ‘'t want to make a change to a line shown, Jjust press
Prompts used: ‘Line from', 'Line to'

F - Filer menu

The F11 b tem which hapdles communicatjon with an
? ??rag dev1ce %d?g or tapeg R ?eatures proqued are as
ollo

A - Append file

A file is read from disk or tape and added to the end of the
file currently in memory. The data in memory prior to the
append remains, unchanged. \

Prompts used: 'Enter ilename

D - Directory list

is command_is used to rov1de a directory list of the

ifferent files on a te. You are prompted for

ilespec?'. Enter the d1sk drive number and selection

1?er1a for the d1rectory list,., If_you just press RETURN you
see_a directory 11 of afll files on the default,dr1ve

o see all files on dr1ve two, enter 'D2:' or 'D2:*%.%', To see

oB}y*f;ASS with a suffix of PAS on drive one, enter

Prompts used: 'Filespec?'

L - Load file

This is the way to load a file into memory from disk or tape.
If any data was currently in memory, it is deleted and
replaced by the file read in.

Prompts used: 'Enter f11ename

S - Save file

Data is copied from memory to disk or taRe w1th this command.
The data currently in memory remains unchanged. You are
prompted for filename and may _use whatever name you wish. It
is not necessary to_save a file under the same name as was
used to load the file. You should save data to disk frequently
if you are making, extensive changes. That way you won't have
to re-do as much if something, K goes wrong.

Prompts used: Enter filename'

I = Insert before line

This command allows you to insert one or more 11nes at an point
wijthin the file in memory. The inserted data is p aced ore the
line number you specify. To term1nate insert mode, Jjust ress
RETURN without en er1ng ang data on the same line (null line).
Note that all lines affer he point of insertion will
automat1ca11y be renumbered

Prompts used: 'Line =>'

17

Draper Pascal 2.1 The Editor

L - List line(s)

One or more lines of data from memory are listed on the screen
with this command. During the 1list 6ou may stop the scrolling by
pressing either the space bar or RETURN. To resume scrolling,
press any other key other than ESC. The ESC key may be pressed to
Bremature]y terminate the ljsting. |,

Prompts used: 'Line from , 'Line to

M - Menu

The main Editor _menu is _presented in response to this command. A
guest1on mark ﬁ?) may also be used to display the main menu.
rompts used: None

P - Print line(s)

This command is used to create a list of data in memory on a,
printer attached to the Atari ﬁara1]e1 port (P:). Internal line
numbers are also directed to_the printer although they do not
actually exist within the file on djisk or tape.

Prompts used: 'Line from', 'Line to

Q - Quit

This command is used to exjt from the Editor when you are finished
editing your data. Control is given to the Main Menu program. If
you have’ changed the data 1in memorg'and have not saved it prior to
gquitting, you will be given the option of saving the data or
ignoring the changes and _exiting. If you are going to compile a
Pascal program immediately after quitting the Editor, you may use
the 'X' command described below.

Prompts used: None

S - Scan line(s)'

This command allows you to_djsp]az all lines within a specifijed
range which contain a specified character string. The character
string ma¥ contain an¥_characters, 1n¢]ud1ng imbedded blanks. To
temporarily stog the listing, press either the space bar or
RETURN. To abort the listing, press ESC. Press any other key to
continue as normal. v .

Prompts used: 'Line from', 'Line to', 'Scan for'

X - Exit to Compiler

This command_terminates the Editor and transfers control directly
to the Compiler., If the file in memory has been changed but not
saved ﬁr1oq to the Exit command, you will be prompted to either
save the file or ignore the changes and proceed to the Compiler.
Prompts used: None

18

Draper Pascal 2.1 The Compiler

The Compiler

The Compiler is used to translate words that we_humans understand
into "words" that the computer can understand. The computer words

are referred to.as gseudo-code, or g-code foer short. These
seudo-code instructions are understood and executed by the
upervisor.

This is a single pass goal oriented compiler. It expects the
proper syntax for a statement. (f correct syntax is not found, the
compilation stops, and an error number with associated text ‘
d$scr1gtxon is displayed. At this point, you are given the _option
of quitting or returning to the Editor to correct the problem and
do the compile again.

The C?mgiler itself is written in Draper Pascal and occupies about
28K © AM memory space.

The first prompt from the Compiler is 'Enter filenam
of the last prggram edited, run, or comg1led is fill

¢convenience. |t this 1s thé one you want, Jjust gre s RETURN.

is not the one you want, just overtype i€ with the name you
desire. The name_{ou provide will become the new default name for
the Editor, Compiler, and Main Menu 'Run’ option, No suffix is
allowed when spec1fy1n? filename., The Compiler will add the
standard '.PAS' to it for you. If the source does not reside on
the default disk drive, then you must prefix the filename with
‘'Dn:' where 'n' is the disk driye number where the source resides.
The default disk drive is normally disk drive number one, but is
changed to the Ramdisk drive number if you are taking advantage of
the Ramdisk feature of a Disk _Operating System that supports 1Jt.
Ramdisk initialization 1s explained in the manual provided to
registered users.

The next prompt is 'Enter List Output Filespec'. The default (if
ou just press RETURN) is the screen (E:). The 1ist output may go
o any normal output device, such as printer ?P:) or disk

(D:LISTNAME.PRN).

A number of additional points are mentioned below:
1. Comments are delimited by '(*' on the left end and '*)’' on the

right end. Any characters maK appear within comments. Comments
may appear anywhere within the program.

ilename:'. The name
ed in for ¥our
1 it

2. 'Include' files are supported. You may have procedures,
functions, or any part of a_program included in a compile,
even though it 1is not actual ¥ part of the file being
com€1]ed. it is a variation of a comment which allows you to
do this. The format is as follows:

(*¥$! XXXXXXXX *) or (*$! D7T:XXXXXXXX *)

The dollar sign and 'I'_must be right next to '(*' and must be
followed by one space. Then Kou may mention the 'D' for disk
and drive number (if other than the default drive is to be.
used). Follow it with a colon (:) and the filename. A suffix
of ".PAS_ will be automatica]ly,6added to the file name. Then
have at least one space and '*)°'. .

3. Pascal source files must reside on disk.

The output pseudo-code from the compile will be directed to,
the same disk drive that the Pascal source resides on. it will
be created with a filename suffix of ".PCD'., If you have
multiple disk drives and the _ source and pcode will not bhoth
fit on one disk, have a small file on the output disk with an
include' for the source which resides on the other disk.

5. The hexadecimal offset of the pseudo instructions generated is

19

Draper Pascal 2.1 The Compiler

10.

11.

12.

13,

14,

15.

16.

17.

given at _the left side of the output listing. This offset may
e useful for debugging purposes. |t may be referred_ to when
1ook1ng_at a program trace (see TRACEON in the Pascal
Definjtions section of the manual provided tg registered
users). It also may be referred to in case of an error message
or termination caused by pressing the BREAK key. The offset
shown Tay not always be accurate. |f not exact, the values are
very close.

The name and stack offset of each varijable defined is shown at
the end of the compile listing., The offset value is shown 1in
hexadecimal. Each stack entry is two bytes wide. The first
three stack entries are reserved for_system use. Therefore,
the offset of the first variable will be 0003, which is
actually six bytes into the stack. if a variable is defined
within a procedure or function, the offset shown 1is relative
the beginning of that procedure or function.

The program is ready to run immediately after the compile is
finished. No linking is required. (Some Pascal systems require
linking of output code after the compile and before
execution).

Nested procedures are supported. You may define one procedure
within another.

Recursive procedures are supported. A procedure may call
itself. |f variables are defined within the procedure, they
are cleared with each entry into the procedure and refreshed
upon exit from the recursive procedure call.

No forward references are allowed. A procedure may not be
referenced before it is defined. In most cases, nesting the
procedures will take care of this problem.

Double densit¥ disk drives _are supgorted for both source and
code files. The pcode will be written to the same drive that
he initial source is taken from.

Only 1integer type parameters may be passed to procedure? an
functions. QOther types of data may be passed by using globa
tyge,var1ab1es setup at the beginning of the program (not
within a procedure or funct1on?.

A function may only return an integer type value. Procedures
do not return values.

Hexadecimal constants and literals are prefixed by dollar
signs .

To write out an integer in hexadecjmal format, precede the
variable name with a percent sign (%

a
).
A total of 170 compiler table _entries may be used. One table
entry i1s used for each variable definition, procedure name,
function name, and parameter name used with procedures and
functions. Table entries for variables defined within
procedures are re-used following the 'END' for that procedure.
The number of table entries used within a compile is displayed
at the end of the output list from the Compiler.

The time needed to cqmﬁj1e a program can_be reduced b¥ turning
off the ANTIC chip within the computer. This turns off the
d1sg1ay to the screen ¥et gives a fairly significant increase
to the Atari's internal spéed. In_a normal Pascal program, you
¢an have POKE(559,0) to turn it _off and POKE(559,34) to turn
it back on. But a special compile time optjon is provided to

make use of this feature to sgeed up compiles. It is as
follows. Have a_statement E*z +*g to turn the ANTIC off {
(increase speed), and use (*3S-*) to turn the ANTIC on (resume .

20

Draper Pascal 2.1 The Compiler

normal speed). These options may appear anywhere within a)
grogram._The ANTIC is automatvca]ly turned back on at compile
ermination and at time of error (if any?.

21

Draper Pascal 2.1 The Supervisor

The Supervisor

The Supervisor is a high performance machine language program
which simulates a pseudo 16-bit stack oriented computer,
executes the pseudo code that is generated by the Compiler.

It is loaded_into memory by disk operating system at the hex
location $1D7C, which is just above DOS in memory. |t should work

with any DOS that allows a program to load at that address, such
as Atari DOS 2.1S, Atari DOS 2.5, or SpartaDOS version 2.x or
higher. A message will be displayed if the Supervisor cannot be
loaded at the proper location.

The_disk filename for the Supervisor's object code is

AUTORUN.SYS It may _be renamed to anything_ you desire, such as
"PASCAL .COM!', but will not Re automat1calla loaded when the disk
is booted if the name is other than "AUTORUN.SYS . To start the
Pascal system from the DOS menu, use the 'L', binary load, option
to load "AUTORUN.SYS' into memory. Execution will begin

automatically.

The Supervisor begins execution by 1oadin% and executing the
Pascal program 'INIT.PCD' from the default drive, which is always

disk drive 1 immediately after loading the Supervisor. 'INIT.PCD'
is the name of the main menu program. You may substitute any
compiled Pascal program of your own b namvng it "INIT.PCD'. In
this manner, you can have a true turnkey system where your program

begins execution after booting the disk.

After termination of each Pascal program, the Supervisor gives you

?.cho1ce of what to do next. You are prompted with the following
ine:

{START>Repeat, (SELECT>Menu,<ESC>Exit

|f you press the START key, your PascaéLErogram will execute_again

from the beginning. If you press the § CT key, control will be
transfered to the main menu program (INIT.PCD). If you press the
ESC key, you will exit to the DOS ut111t{hmenu. You also have two

other options at this point. TheK are bo used for _ debugging
purposes, If you press CTRL-S (the 'S' key while hold1ng own the
CTRL key), the stack values, at termijnation_time, will be
displayed. |f you press CTRL-T, the internal trace table, if
active, will be_displayed. With either of these two debuggin
options, you will be asked where the display should be sent

gy,the
prompt 'WHERE? (FILESPEC)'. To see it on the screen, enter : ',
a

It also may be sent to printer or disk by following normal
filespec naming conventijons. |f the display is sent to the screen,
Kou may stog the scrolling by use of the space bar. Press the ESC
ey if you have seen enough and wish to return_to the Supervisor
termj?a jon prompt. Any other key causes scrolling to continue as
normal.

22

Draper Pascal 2.1 Pascal Definitions

Pascal Definitions

ABS FUNCTION ABS(Number):!INTEGER;
This functjon returns the absolute value of 'Number'. [n
effect, all it does is return the value of 'Number' with a
positive sign. 'Number' may be any integer expression.

Example: PROGRAM ABS_DEMO;
VAR AJ,J:INTEGER;

BEGIN
Ji==7;
AJ := ABS(J); ,
WRITELN('ABS OF -7 IS ',Ad)

BASIC Equivalent: AJ = ABS(J)

ADDR FUNCTION ADDR(Var):INTEGER;

This function returns the 1nte?er absolute address of the
specified variable. The variable may be of any t{ﬁe. If it is
an element of an array, the address returned is at of the
particular element specified. For a description of the data
formats, see the item titled 'Internal Data Formats in the
System Information' section of this manual.

Example: PROGRAM ADDR_DEMO;
VAR A,B:INTEGER;

(B%; ,
ADORESS OF B IS ',A)

BASIC Equijvalent: A = ADR(JS$ (Applies only to string
variable in Atari BASIC))

AND
This_operator sets the resulting condition as true if both
the Ie%t and right factors arougd it are true, otherwise, the
condition is set to false. Parentheses should surround the
factors on each side.
Example: PROGRAM AND_DEMO;
VAR A:INTEGER;
BEGIN
IF éA)O) AND (A<7) THEN \
WRITELN('VALUE WITHIN RANGE')
END
BASIC Equivalent: Same as Pascal
ARCTAN FUNCTION ARCTAN(Var):REAL;
ARCTAN is a REAL built-in function that returns the value of
an angle whose tangent is equal to the value of the variable
spec¢ified. 'Var may _be either a REAL _variable or an INTEGER

variable, but the value returned is always REAL.

23

Draper Pascal 2.1

Example:

ALY

BASIC equivalent:

R2=ATN(R1
ARRAY ARRAY
AR

RAY E
ARRAY specifies that multi

Numper 1,

¥

)

Number 1] OF
Num

Pascal Definitions

beﬁ%? OF Type

le occurances of a variable are to

be _defined. Either one or two dimension arrays may be

defined. For single dimension arrays, 'Number2' and the c¢omma
that precedes it must be omitted. “Number1' and 'Number2' may
be either integer numbers or prev1ous1y defined integer
constants. They sgec1 y the number of elements to be
dimensioned. For 1mens1on arrays, ‘Number1’ represents
the number of rows, while 'Number2' represents the number of
columns within each row. Space is reserved for 'Number'+1

entries because_occurance numbers of zero through
is means that ARRAY[2] defines space for

are allocated. Thi
three entries, numbered 0
for twelve en£r1es, rows 0
through 3) in each row.
index for the element
parentheses
integer type variabl

PROGRAM ARRAY_DEM
CONST SI1ZE=4;
VAR ROW ,COL ;
ARRAY| 3
ARRAY[S12
ARRAY[2,3

e.

Examples:

15
2:
3:

END.

BASIC Equivalent: DIM A(3)

Whil
in the array,
must either be an

1y

through 3 with
e using an array,

0;

"Number'

2. ARRAY[2,3] defines space
olr columns

. note that the
which 1is specified within

integer number or an

and

¢

?T
OF lNTEGER,

OF STRING;
OF INTEGER;

DO

DO
=ROW+COL ;

No equivalent for BASIC string varijables.

ASC

specified character variabl

PROGRAM ASC_DEMO;
VAR |:INTEGER;
CH:CHAR;

BEGIN

Example:

FUNCTION ASC(Cvar):
This function returns the ASCI|

e.

24

INTEGER;

value (integer) of the

Draper Pascal 2.1 Pascal Definitions

CH:="A';
| := ASC(CH)
(NRITELN('THE 'ASCI I VALUE OF ',CH," IS ', 1)

BASIC Equivalent: ! = ASC(CH)

BEGIN
BEGIN marks the start of a block or com%ound statement within
a Pascal program. END marks the termination the block or
compound statement. Each statement between the BEGIN and the

END, except for the Tast one, should be followed by a
semicolon (;)

Example: PROGRAM BEGIN_DEMO;
BEGIN
WR |
WRI
WR)
END;
BASIC Equivalent: None

ELN('My name is Fred’);
ELN;
ELN

——

BLOAD PROCEDURE BLOAD{(Program);

This exclusive built-in procedure loads the specified program
(or data) from disk into memor¥ The pro ram o be loaded
should be in the standard DOS load forma generated by an
appropriate assembler or the binary save func 1on of DOS.
Program’' should be specified _in the normal ec format
including extension, if any. The object 1oaded w1 1 not
automatically begin execlUtion after completion of the load,
as some programs do. The machine language program will be
executed by use of the CALL built-in procedure. Refer to the
CALL description for further information. The IQRESULT value
should be checked after the BLOAD to verify that the program
did, in fact, exist on the disk.

Explanation for example:

The Pascal program below sends the ASC!| value of each of the
upper case letters to the 6502 assembler subroutine. The
subroutine changes the character to inverse and then changes
it into a_lower case character before return1ng control to
the Pascal program. The Pascal program then refrieves the
character from the subroutine, pr1nts it on the screen, and
repeats until the alphabet is complete.

Example: PROGRAM BLOAD_DEMO_1;

VAR | : INTEGERS
CH:CHAR;
S5 ous o
8%$¢8§ééi%ésT.oaJ'),
F |0RE§U2+ <> 0 THEN
WRITELNé'TEST JOBJ NOT ON DISK');
FOSEéiﬁAS ("AY) TO ASC('Z") DO
ANt 380041)
CH::PEEKS%éOO),
WR I TE (CH
END;
WRITELN

25

Draper Pascal 2.1 Pascal Definitions

END.

ssembler subroutine used in above demo

YTE O

1 Get character from Pascal
Make character inverse
Prepare for add instruction
Make character lower case

R1 Put back character for Pascal

RES Return to Pascal program

WO~ WN - #
O00000000#
9}
—
O
(@)

The capab111ty is also provided for .t m
reg1ster he Y register to_be initi e
machine 1anguage programs use,., The value the accumu]ator
should be stored into memory 1ocat1on 6 A6). The initial
values for X and Y registers g into at1ons 167 and
168 é$A7 and $A8) resRect1ve1y when control is returned to
the Pascal program, e end1ng values of the accumulator, X
register, and ¥ reg1ster ma e found in these same
locations. Using this techn1que the same demo program could
be made up as follows: .

Example: PROGRAM BLOAD_DEMO_2;
VAR ééINTEGER;

he accgu tor the X
it a??z g ?

lue for
166 _($
loc

CHAR;;
BEGIN
OPTION$60%,
BLOAD§ EST.08J");
OPTI1O SéT),
PR RECNT Tas %81 NoT ON DISK') ’
FOR I:=ASé(TA$; TO ASC('Z") DO ’
BEGIN
POKE gAB 1)
CALL 606%
CH:= EEKg As);
WRITE(CH
END;
WRITELN
END.
*%% 5502 Assembler subroutine used in above demo
10 *=$600
20 ORA #3$80 Make character inverse |
30 CLC Prepare for add instruction
40 ADC #32 Make character Jower case
50 RTS Return to Pascal program
60 END
BASIC Equ1va1ent None, however some BASIC programs POKE
machine anguaﬁe programs into memory after READiIng the ASCII
values for eac byte of the program as contained in DATA
statements.
BOOLEAN
BOOLEAN is a tyge code which _can represent one $f two states,
TRUE of FALSE he actual value is either zero for FALSE or
one for TRUE. A BOOLEAN variable can be used to save the
result of a condition.
Example: PROGRAM BOOLEAN_DEMO; (
VAR ANSWER:BOOLEAN; Some

26

Draper Pascal 2.1 Pascal Definitions

CALL

CASE

anan
X2
X rc
~Awnm
A~ M-
O~

O

) OR (X > 89)

BAS!IC Equivalent: None

PROCEDURE CALL(Address);

The CALL r%ﬁedure tranaf dgrgxecut18gress a machine 1anguage

program a ecif 1 ss A is any int e
express1on hich includes hex constants. It is_equ va ent to
the assemb er o eration JSR (jump to subrout1ne) The

subrout1ne sho d return control to the Pascal roaram by
using the %return from subroutine) operation
parameters are assed to the subroutine directly, so the 6502
stack will not be loaded with a number of parameters, as is
done by Atari BASIC. Th1s s1mg K means that the machine
language subroutine should no ave a PLA (pull accumulator)
instruction at its start as is customary with machine
language subroutines called from an Atari BASIC USR
1nstruct1on | f the subroutine does begin with PLA and _no
garame ers are e1nﬁ passed, you can just have the call refer
o the address of the byte after the PLA instruction.
However, the accumulator, the X register, and the Y register
may be 1n1t1a11zed before a call to the subroutine and
inspected after return1n$ from the subrout1ne Refer to the
explanation under BLOAD for more details

Example: Refer to BLOAD example

BASIC Equivalent: None, but quite similar to the USR
instruction, as mentioned above.

CASE exprl1 OF constl : stmtl;
const2 : stmt2

constn : stmtn
END;
CASE expr1 OF constl : stmtl;
const2 : stmt2

constn : stmtn
ELSE stmtx
END;

The CASE statement compares the result of an expression with
gevera] gogstants to determine the appropriate statement to
e execute

Example: PROGRAM CASE_DEMO;
VAR DAY: |INTEGER;

BEGIN _)
WRITE('Enter day number ');
EAD(DAY);

CASE DAY OF
1 : WRITELN('Monday'
2 WRITELN Tuesday H
3 WRITELN(!Wednesday)
4 WRITELN(' Thursda
5 WRITELN('Friday');

27

Draper Pascal 2.1 Pascal Definitions

g WRITELNEZSaturdg)
7 WRITELN("Sunday g
ELSE _
WRITELN(' "'Invalid day number')
END

BASiIC Equivalent: None

CHAR
This is a type code assigned to variables to be used in
character format. For the reading of character type .
variables, one character of data is transfered from the input
devige go the varijable. No . carriage return (RETURN) is
required to terminate the input.
Example: PROGRAM CHAR_DEMO;
VAR CH:CHAR;
BEGIN
READ(CH) ;
CASE CH OF , ,
JA! WR!TELNg'F1rst letter!);
B WRITELN('Last letter')
END
END.
BASIC Equivalent: None.
CHR FUNCT ! ON CHR(expr1):CHAR;
This fun¢tion changes an integer value into a character
format. 'expr1 ma% be any integer expression. If_the value
of exng is grealer than 255, then the ASCl| value of the
character value returned will be 'expri1' moduleo 256. CHR
must be used jf it is desired to write a character which is
not a normal letter or number, such as sendi ? control codes
to_a printer or _clearing the screen. The CHR? 25? in the
following example is the proper code for clearing the screen.
Examplie: PROGRAM CHR_DEMO;
VAR CH:CHAR;
| : INTEGER;
BEGIN
WRITE('Enter a number between 0 and 255 ');
READC(I);
CH:=CHR$I); ' _ o
WRITELN(CHR(125), 'Character equivalent is ',CH)
END. ,
BASIC Equivalent: CH=CHR$(!)
CLOSE PROCEDURE CLOSE(File);

This built-in ﬁrocedure closes a previously opened file.
File' may either be a variable of tyﬁe FILE, or an absolute
10CB number, such as #1. 1t _does not hurt to close a _file,
which 1s already closed. Multiple files may be specified if
separated by commas.

Example: Refer to examples for EOF and EOLN
BASIC Equivalent: CLOSE #2

28

Draper Pascal 2.1 Pascal Definitions

COLOR

PROCEDURE COLOR(Number);

This built-in procedure determines the data to be stored 1in
the display memory for all subsequent PLOT and DRAWTO
built-in procedures. !t's purpose_is identical to that of the
COLOR command in BASIC. Please refer to, K your Atari BASIC
manual for further information. "Number' may be any integer
expression.

Example: Refer to example for GRAPHICS
BASIC Equivalent: COLOR 2

CONCAT PROCEDURE CONCAT(Parml,Parm2,...):STRING;

This built-in functjon returns a string value equal to_the
goncatenation of all parameters specified in {he CONCAT
function. These parameters may be of type string constant,
string variable, or character variable.

Example: PROGRAM CONCAT_DEMO;
VAR PGMNAME:STRING;

BEGIN _
WRITE('Enter file name ');
READLNéPGMNAME%; , ,
PGMNAM := CONCAT(PGMNAME, ' .TXT');

END
BASIC Equivalent: PGMNAME$(LEN(PGMNAMES$+1))=".TXT'

CONST CONST namel=valuel; name2=value?2;

COPY

CONST 1is used to declare constants to be used within_a
program. The value of a constant cannot be changed, The
values maz be of type 1nte§er‘or real. String constants are
not permitted. The most efficient method for simulating
strijng constants is to declare space for them with the VAR
declarative, then read in the values from a dijsk file.
Hexadecimal integers may be defined by preceding the value

with a dollar sign ($%$).
Example: PROGRAM CONST_DEMO;

CONST NUMTIMES = 4; Pl = 3.1416;
ACCUM = $AS;
VAR 1:INTEGER;
RADIUS,ANSWER:REAL;
BEGIN
FOR |:=1 TO NUMTIMES DO
BEGIN _ .
WRITE('Enter radius ');
READERADIUS ;
ANSWER := Pl * (RADIUS * RADlUS);
ENgRITELN('C'lrcum erence is ',ANSWER)
END.

BAS!IC Equivalent: None

FUNCTION COPY(Source, !ndex,Length) : STRING;

This built-in function returns a string value composed of a
portion of the string named by 'Source’. The portion consists
of "Length' characters $tart1n$ at offset "Index' into
Source’. The first position of a string has the index value

29

Draper Pascal 2.1 Pascal Definitions

of 1. "|ndex' and 'Length' are integer expressions, while
Source' must be of type string. 'Length’ must not be
negat1ve and must have _a value_ in the range 1-255. The same
true for 'Index'. |f the, 6 value ¢f 'Index p]us, Length' is
greater than the]ength of Source,, then %engtb assumes

he value of the length of 'Source' minus ndex
Example: PROGRAM COPY_DEM
VAR FULL NAME,LAS+ NAME :STRING;
! : INTEGER;
BEGIN ‘)
FULL NAME := "SMITH, JOHN B ;
| :=—POS(',"',FULL_NAME);
LAST NAM = COPYTFULL_NAM$,1,I-1);
WRITELN(.The Jast _name o§ ,FULL_NAME,
END is ' ,LAST_NAME

BASIC Equivalent: A$=B%$(4,7)

CcOSs FUNCTION COS(Var):REAL;
COS is a built-1in funct1on'wh1ch returns the cosine of the
value of the variable 'Var Var' may be either an_ INTEGER
variable or a REAL variable. The value returned will always
be a REAL value.
Example: PROGRAM COS DEMO
VAR R1,R2:REAL;
BEGIN
WRITELN('Enter a real number');
READ(R1};
R2:=COS(R1); , .
WRITELN('The cosine of ',R1,' is ',R2)
BASIC equivalent: R2=COS(R1)
CVTREAL FUNCTION CVTREAL(1lvar):REAL
This built-in function can be used to copy the value of an
INTEGER variable into a REAL variable. Ivar' must be an
INTEGER type variable.
Example: PROGRAM CVTREAL_DEMO;
VAR |1 1:INTEGER;
R1: AL;
BEGIN . ,
WR!TELNS Enter an integer number');
READ(I11);
R7:=CVTREA (|1),)
WRITEL LN(R1 is now a real number')
END.
BASIC Equivalent: None
DEG PROCEDURE DEG;

DEG is used to specify that the output values from ARCTAN,
COS, and SIN are to be expressed in degrees, as opposed td

30

Draper Pascal 2.1

Pascal Definitions

radians. The system defaults_to radians unless DEG is

specified. Once specified, al] output is
is specified for radians, or the computer

in degrees until RAD
is turned off and

DELETE

D1V

back on.
Example: PROGRAM DEG_RAD_DEMO;
VAR : L;

R2:REAL ;
REPLY :CHAR:

BEGIN
WRITELN('Enter a D for output in de rees:g;
WRIT%LN ! or R for output in radians');
READ(REPLY)
CASE 'REPLY OF
D' : DEG;
'R': RAD
ELSE , L
ENVSRITELN(That was not one of the choices’)
WRITELN('Enter a real number');
READ(R1);
R2:=SIN(R1); | \ . .
WRITELN('The sine of ',R1,' is ',R2)
END.

BASIC Equivalent: DEG

PROCEDURE DELETE(Source,index,Size);

The DELETE built-in procedyre removes a specified number of
characters from a str1ng. Size characters are removed from
ar

the string, 'Source', s ting at offset 'index'.
Example: PROGRAM DELETE_DEMO;
VAR ALPHABET:STRING;
BEGIN
ALPHABET:="'ABCDEFG'
DELETEKALPHABET 3,2%;
WRTTELN(ALPHABET)
END.
The resulting value of ALPHABET will be 'ABEFG'.

BASIC Equivalent: None

This operator comﬁutes the quotient of the two factors
surrounding it. The factors maz be ejther of type REAL or

t¥pg-lNT§G R. DIV is equivalent to '/ 1in this implementation
of Pascal.

Example: PROG
VAR

w
m
—tma >

O~ —0
wZ V—2

. LA =N =
[IRINININ]]
TON—N

m
z

31

Draper Pascal 2.1 Pascal Definitions

BASIC Equivalent: R3=R1/R2

DOS PROCEDURE DOS;

This built-in procedure terminates execution of the Pascal

superv1sor and transfers control to the Atari Disk Operating

D gtﬁm. F?r more information on the use of DOS, refer to the
anua

Example: PROGRAM DOS_DEMO
BEGIN
DOS
END.

BASIC Equiva]ent: DOSs

DRAWTO PROCEDURE DRAWTO(X,Y);
The DRAWTO built-in procedure causes a graph1 line to be
drawn from the last coordinate refered £o in a PLOT or DRAWTO
built-in procedure. The c@lor of the line is determined by,
the most recent sett1ng of the COLOR procedure. 'X' and 'Y

may be any valid integer expressions.

Example: PROGRAM DRAWTO;
VAR X,Y:INTEGER;

BEGIN
COLOR% :
PLOTé 0,10); (
:=2 ’ X
=30;
DRAWTO(X,Y)
ND;

BASIC Equivalent: DRAWTO X,Y

DUMPSTK PROCEDURE DUMPSTK;

This exclusive built-in procedure dumps the values of the
Pascal stack to the output device of your choice. The output
is sent to |0CB #7, If it 1s alread ? then it will

used as 1s. If it is not op the Tol w1ng prompt will be
displayed on the screen: WHEﬁE° (FILESPEC) Enter with a,
normal device specification, such as E: Each stack entry is
two bytes wide. [t is displayed in the follow1ng format:

STACK ADDR=aaaa HEX=hhhh CHAR=cc

'aaa he absolute address of this stack ent shown 1in
hexagec1ma¥ ?ormat ¢ hhhd is the value of thi s%ack entry
shown 1in cc' is the same stack entry va]ue shown 1in
character format if the value is determined to be printable.

Refer to th ¥stem Information' section of this manual for
a descr1pt1on of internal variable formats.

Example: PROGRAM DUMPSTK_DEMO;

BEGIN
DUMPSTK
END.

BASIC Equivalent: None (k

32

Draper Pascal 2.1 Pascal Definitions

DVSTAT PROCEDURE DVSTAT(A,B,C,D);

END

EOF

Th }s exclusive built~-in procedure reads the device status
ormation as requested from the STATUS comm¢n¢ and stores
the values into variables 'A", "B’ C and . These
variables may have any names, but must be redef1ned as
intege var1ab1? The values stored into the named R1ab1es
are taken from locations 746 through 749, decima
operating system. The most common usage for DVSTAT wou]d be
in checking the status of RS232 ports. Consult your Atari 850
Interface Module Operator's Manual for the meanings
associated with these different status bytes.

Example: PROGRAM DVSTAT_DEMO;
VAR BYTE1,BYTEZ, BYTE3 BYTE4: INTEGER;

BEGIN
STATUS(#1);
DYSTAT(BYIET, BYTEZ BYTES BYTEA);
WRITELN 'Status values are ',
Yy 40
BYTE2,' ',
BYTE3 ’
BYTE4)
END.

BASIC Equivalent:

ol @Yurh J
TRINTNT
VDU
mmmm
mmmm
ARARARX
IOV
~ =l
PN
Wm0
AN ALS

END marks the termination of a block or compound statement
within a Pascal program. BEGIN marks the start of the block
or compound statement. Each statement between the BEGIN and
the END, e pt for the last one, should be followed by a
semicolon ? ? is also required as termination for a CASE
statement.

Example: Refer to example for BEGIN.
BASIC Equ1valent None

EOF(File);

This reserved word checks for end of file of an input device.
It returns a true value if the most recent read of the file
has detected an end of file mark._'File' may be e1ther a
var;ab e of type FILE, or an absolute lOCB number preceded by
a .

Example: OGRAM EOF_DEMO

R INPUT OUTPUT FILE;

PR
VA
DATA:S$TRING;

[os]
020060
mmm-

E

oc
-z
OHEZEDNVEWVZ

33

Draper Pascal 2.1 Pascal Definitions

EOLN

EXIT

EXP

EXP10

BASIC Equivalent: 100 TRAP 2000
2000 IF PEEK(195)=136 THEN

EOLN(File);

This reserved word checks for end of line of an input device
It returns a true valye if the most recent read of the file
has detected an end of_line condition ($98 character). 'File
may be either a variable of type FILE, or an absolute 10CB

number preceded by a

Example: PROGRAM EOLN_DEMO;
VAR DATA:CHAR;

BEGIN

PROCEDURE EXI1T;

This bujlt-in procedure causes immediate termination of the
currently executing Pascal program. Control is transfered to
the Pascal Supervisor. No files are ciosed.

Example: PROGRAM EXI|T_DEMO;

BASIC Equivalent: END

FUNCT!ON EXP(Var):REAL;

The fungtion EXP(Var) computes the value of e to the 'var'
power. 'Var' may be either an INTEGER variable or a REAL
variable. The value re?urned is a]waKs a REAL number. e is
the base of the natura] logarithm. The exponential function
EXP) and the natural logarithmic function (LN) are inverse
unctions.

Example: OGRAM EXP_DEMO;
R R1,R2: .

PR
VA REAL ;

o]

E

poleelo)]
(LRI}

nuo

IN
1:=3.
2:=EX
END.

BASIC equivalent: R2=EXP(R1)

tr1)

FUNCTION EXP10(Var):REAL;

34

Draper Pascal 2.1 Pascal Definitions

FALSE

FILE

FOR

The function EXP10(Var) computes the value of 10 to the 'var'

power. 'Var' may be either an INTEGER variable or a REAL

variable, The value returned is always a REAL _ number. The
exponential function (EXP10; and the decimal logarithmic
function ?LOGg are inverse functions.

Example: PROGRAM EXP10_DEMO;
VAR R1,R2:REAL;

BEGIN

R1:=3.0;
R2:=EXPI0(R1)
END.
BASIC equivalent: R2=10 °~ R1

FALSE is a_BOOLEAN constant representing the untrue state. It
is internally equal to an integer value of zero.

Example: Refer to the example under BOOLEAN
BASIC Equivalent: None

This is a type code used in a VAR declaration. Each file

defined is internally assigned_an 10CB number. These numbers
start at one, for the first file defined, and jncrement up to
a maximum value of seven. The FILE type variables may only be
used in input-output type commands such as OPEN, CLOSE, READ,

"READLN, WRITE, WRITELN, EOF, EOLN, RESET, and REWRITE.

Example: (Refer to example under EOF)
BASIC Equivalent: None

FOR var := exprl TO expr2 DO statement;
FOR var := expr1 DOWNTO expr2 DO statement;

The FOR statement is used to repeat execution of a statement
for a predefined number of times. 'var' and 'expri1' and
expr2 must be of the same type. The types allowed are
INTEGER and REAL. Execution is as follows:
1. ,var 1s set to 'expril’, \
2. 'var' is compared with ‘expr2’'. , .
If !var' is greater than or egqual to 'expr2’' (for TO)
or 'var' 1% ess tgan or equal to 'expr2' (for DOWNTO)
proceed to step 6.

3. !statement' is executed.
4. 'var’' is incremented by 1 Efor TO)
or decremented by 1 (for DOWNTO).
5. go to step
6. exit
Example: PROGRAM FOR TEST;
VAR | :INTEGER;
BEGIN
ENSOR l:=1 TO 5 DC WRITELN('TEST')

BASIC Equivalent: FOR =1 TO 5

35

Draper Pascal 2.1 Pascal Definitions

FUNCTION
A FUNCTION 1is a group of statements that has a name and

executes a certain task or algorithm. The identifier name for

the FUNCTION mag be used as a variable of type INTEGER.
Parameters may be passed to the FUNCTION. These parameters
must also be of type INTEGER. |In this implementation of
Pascal, FUNCTION may be abbreviated as FUNC.

Example: PROGRAM FUNCTION_TEST;
VAR A,B:INTEGER;

FUNCTION SQUARE(NUMBER);
BEGIN
NSQUARE::NUMBER*NUMBER
BEGIN (*MAIN*)
FOR A:=1 TO 5 DO
EGIN

B::SQUAR$§A); , ,
ENgRITELN(HE SQUARE OF JA, ' 1S ,B)

END.
BASIC Equivalent: None

GOTOXY PROCEDURE GOTOXY(X,Y);

This built-in procedure is_used to set the positijon of the
cursor. The next WRITE will have it's output begin at
x-coordinate ‘X' and y-coordinate 'Y'. The cursor will not
actually be moved until the next WRITE occurs. 'X' and 'Y’
can be any integer expressions.

Example: PROGRAM GOTOXY_TEST;

BEGIN
GOTOXY(12,12); .
EN\gRITEL ('MIDDLE OF SCREEN')

BASIC Equivalent: POSITION 12,12

GRAPHICS PROCEDURE GRAPHICS(NumbEr);

The GRAPHICS command is used to select one of the many
graphics modes available on the Atari computer. For a,
complete description of the command and the modes available,
please refer to your Atari BASIC manual., 'Number' may be any
integer expression. Note that before using the GRAPHICS
command, you should execute the MAXGRAPH command to reserve
screen memory for the mode desired. 1f you don't, the Pascal
stack may overlay part of the screen memory and the results
would be unpredictable.

Example: PROGRAM KALE|DQOSCOPE;
VAR | ,J,K,W: INTEGER;

BEGIN
MAXGRAPHE19§,
GRAPHICS(19);
X:=0;
REPEAT
FOR W:=3 TO 50 DO
BEG!

36

Draper Pascal 2.1 Pascal Definitions

HI1MEM

FOR 1:=1 TO 10 DO
BEGIN
FOR J —0 TO 10 DO
BEG
K |
COLOR
PLOT

o
—
O
-
W—WARWWAR ——r-\c_

END
END

END
UNTIL KEYPRESS
END.
BASIC Equivalent: GRAPHICS 8

PROCEDURE HIMEM(Value);

This built-in procedure is used to set the upper boundary of
memory to be used by the Pascal supervisor during execution.

'Value' may be any_ integer expressjion. HIMEM may be used to

protect a machine’ language subroutine in upper memory, or to
protect an area of memory where you may store data.

Example: PROGRAM HIMEM_DEMO;

BE
B IMEM $5F
BLOA T§ST 0BJ');
CALL

END.

BASIC Equivalent: POKES into locations 144 and 145 (decimal)

IF expr1l THEN stmtl;
IF expr1 THEN stmt] "ELSE stmt2;

The |IF statement evaluates expressions to see if th
true or false. 'expr1' is any kind of expression. |
expression is true, then stmt1 will be executed.
expression, is false, then 'stmt1' is not executed.

used then 'stmt2’' is executed when the expression i

Example: PROGRAM |F_DEMO;
VAR 1 :INTEGER;

BEGIN,
IF 125 THEN WRITEL E:F ')
. ELSE WRITELN('NOT FIVE')

BASIC Equivalent: IF =5 THEN ... (No ELSE)

ey ar
f the
1f th
If EL
s fal

nwno o

E is
f e.

INSERT PROCEDURE INSERT(Source,Destination, Index);

This built-in grocedure 1nserts a str1ng or §tr1ng literal,
into another string at_a specif osi 1o ource' may be
either a string variable a str1ng 1teral (w1th1n quotes),
or a character type variable. 'Destination’' must be a

37

Draper Pascal 2.1 Pascal Definitions

variable of type string. 'lndex' may be any integer
expression having a value in the range 1-255.

Example: PROGRAM [NSERT_DEMO;
VAR PGMNAME:STRING[201];

BEGIN_ ,
WRITE§ Enter filename ');
READL EPGMNAME);
|F POS ':' PGmNAME) = 0 THEN
INSERT('B1: PGMNAME, 1) ;
EN\gRiTELN(New filename 1s ' ,PGMNAME)

BASIC Equivalent: None

INTEGER
INTEGER is a type code assigned to integer variables,., Integer
variables contain values which are whole numbers 1n the range
-32768 to +32767
Example: Refer to ASC example

BASIC Equivalent: None

IORESULT FUNCT!ON IORESULT:INTEGER;

The IORESULT built-in function returns the value of the
return code from the most recent input-output gperation. It
is normally used after disk operations to verify that the
requested action successfully completed. If the value of |
IORESULT is zero, then the operation was successful. If it is
other than zero, some kind of error has occurred. End-of-file
and end-of-Tine are not considered errors and are handled by
the EOF and EOLN built-in functions. An integer variable may
be assigned the value of IORESULT if the value is to be
saved. Remember that WRITE and WRITELN cause input-output
oRerat1ons to occur and set the value_of IORESULT. Refer to
the BAS|C or ASSEMBLER manuals for a list of the error codes
and their meanings. The error numbers above 127 are the ones
you should be concerned with. The value of 137 (truncated
record maz pertain to some of the built-in string functions
and not actually be caused by an input-output reguest.

Example: Refer to BLOAD example

BASIC Equivalent: The TRAP instruction is used to provide a
1ine number to branch to on error conditions.

KEYPRESS FUNCTION KEYPRESS: INTEGER;
This built-in function returns a one (true value) if any key
on the keyboard has been pressed. Otherwise the value
returned is a zero (false value). It allows a program to
continue executing until interrupted by someone pressing a
key on the keyboard.
Example: Refer to example under GRAPHICS

BASIC Equivalent: |F PEEK(764)<>255 THEN
LENGTH FUNCTION LENGTH(svar):INTEGER;

The LENGTH built-in function returns the length of a string.
svar must be a string type variable.

38

Draper Pascal 2.1 Pascal Definitions

Example: PROGRAM LENGTH_DEMO;
VAR | : INTEGER;
S:STRING;
BEGIN,
S:="'ABCDEFG';
| £ =LENGTH(S) ; o
WRITELN('The length of ',s,' is ',1!)
END.
BASIC Equivalent: I=LEN(S$)
LN FUNCTION LN(vVar):REAL;
he N function re ns the natural logarit of the_value of
TVaer. fVart mey e%%ger be an INTEGER 8ar}aBTe or a REAL
variable, but must be positive and greater than zero. The
value returned will always be REAL.
Example: PROGRAM LN_DEMO;
VAR R1,R2:REAL;
BEGIN
R1:=3.0;
R2:=LN(R1)
END.
BASIC Equivalent: R2=LOG(R1)
LOCATE FUNCTION LOCATE(X,Y):INTEGER;
The LOCATE function positions the invisible graphics cursor
at the specified location in the graphics window and returns
a value equa]l to the data at that pixel. Graphics modes O
through 2 will return a value of 0-255. The 2-color graphics
modes will return a value of 0 or 1. The four c¢olor modes
will return a value_in the,ran%e 0-3. You should reposition
the cursor using GOTOXY prior to doing a WRITE after LOCATE.
Example: PROGRAM LOCATE_DEMO;
VAR [,X,Y:INTEGER;
BEGIN
MAXGRAPH(19);
GRAPHICS(19);
SETCOLOR(?2,8,10);
PLOT(8,12);
DRAWTO£12 12);
1 :=LOC TES10,12);
GRAPHICS(%;
WRITELN(The data was ',!)
END.
BASIC Equivalent: LOCATE 10,12,!
L. oCK PROCEDURE LOCK(Filename);

is used to lock a file on disk. After a file is locked,
s protected from being accidentally dezeted or renamed.
ename’ may either be a string literal (in quotes) or a
ng type variable.

39

Draper Pascal 2.1 Pascal Definitions

Example: G ?T LOCK_DEMO;

ENAMETSTRING;

NAME :
FIL
D

BASIC Equivalent: X10 35,#1,0,0,"D:TEST.TXT"

LOG FUNCTION LOG({Var):REAL;

G fun t on ret rns the decimal logarithm (to the base
¥0? o? he Sa ue o? U ¢ ar¢ ma egei er gn iNTEGER
varijab 1e or a REAL var1ab1e The value of "vVar' must be
positive. The value returned will always be REAL.
Example: PROGRAM LOG DEMO,

VAR R1,R2:REAL
BEGIN
R1:=3.0;
R2:=LOG(R1)
END.
BASIC Equivalent: R2=LOG(R1)/LOG(10)
LPENH, LPENV FUNCTION LPENH:INTEGER;
FUNCTI(ON LPENV:INTEGER;
These two functions are used for light pen support. LPENH
returns the horizontal (X-coordinate) of the light pens
positijon, while LPENV returns the vertical (Y-coordinate)
position.
Example: PROGRAM LPEN_DEMO;
VAR A,X,Y:INTEGER;
BEGIN
MAXGRAPHéSg,
GRAPHICS(8);
COLOR(1);
REPEAT
|F SELECTKEY THEN GRAPHICS(8);
WHILE STICK(0)=15 DO
BEGIN
X:+=LPENH;
Y:=LPENV;
PLOTéX oF
ENéF JORESULT<>0 THEN EXIT
UNTIL KEYPRESS

BASIC Equivalent: X=PEEK(564):Y=PEEK(565)

MAXGRAPH PROCEDURE MAXGRAPH(Mode) ;

The MAXGRAPH procedure is used to inform Pascal of the

max imum graphics mode to be used within the program. Internal
pointers are adjusted to allow for the required amount of
screen memory to be reserved. |f MAXGRAPH 15 not used, _you
may get undesirable results if the internal stack overlays
part of the screen memory. 'Mode' may be any valid graphics

40

Draper Pascal 2.1 Pascal Definitions

MOD

NOT

NOTE

mode, including those with 16 or 32 added to them. {f the
internal trace (see TRACEON) is active, it is forced off by
the MAXGRAPH command.

Example: Refer to example under LPENH

BASIC Equivalent: None

MOD .is an gperator used to compute the remainder after the
division of two integer factors, The left factor is divided
by the right factor with the value returned being the
remainder of the division.

Example: PROGRAM MOD_DEMOQ;
VAR | ,YEAR:TNTEGER;

BEGIN , ,
WRIT LN& ter year ');
READ(YEAR);
1:=YEAR MOD 4;

F AT aapyonr)
eapyear
ELSE Py
WRITELN('Not leapyear')
END.

BASIC Equivalent: None

This is an operator used to complement the factor which
follows if. 1t is most commonly used to determine when to
stop reading 1nput ?WHILE NOT EOF DO ...).

Example: Refer to example under EOF
BASIC Equivalent: NOT

PROCEDURE NOTE(locbno,Sector,Byte);

The NOTE procedure is used to retrieve and save the current
access location of a disk file. "locbno m§¥ be_any valid
IOCB number which refers to an open disk file, The [QOCB
number should be preceded by a #. 'Byte’ and 'Sector’' refer
to previously defined 1nteger type variables. NOTE and POINT
are used together to provide random access to disk files.

Example: PROGRAM NOTE_POINT_DEMO;
VAR SECTOR,BYTE,|,REPLY: INTEG
S_TABLE,B_TABLE:ARRAY[5]
DATA:STRING;

BEGIN
(* CREATE THE FILE *)

b

ER
OF INTEGER;

OPEN(#1,8,0, 'D:TEST.TXT');
i:=§ to’5°D
BEGIN , '
WRITELN('Enter record number ',1I);
READLNSDATA 3
NOTE(#1,SECTOR,BYTE);
S_TABLE Ig::SECTOR;
B_TABLE(!):=BYTE;
WRITELN(#1,DATA)

41

Draper Pascal 2.1 Pascal Definitions

oDbD

OPEN

END;
CLOSE(#1);

(* RANDOMLY ACCESS THE FILE *)
OPEN(#1 4,0, 'D:TEST.TXT");
FOR 1:=1 fo’'5 po

w
m
mo
m-—

——>—404mivz
>

ecord number ');

MOEXJDVONC
< 200MO <M=Z

- —4H0Zzm—4—m:>om

~ MM — Ory
rrZ~ux0 O+
>0 P Tuwuom
—HoOmMwW—Hr-rs
POPOrP»<L<ct

~
£

BASIC Equivalent: NOTE

FUNCTION 0ODD(1iexp);

The ODD function returns a true value, K if the value of the
specified integer expression is odd. 'iexp' may be any
integer type expression.

Example: PROGRAM ODD_DEMO;
VAR | :INTEGER;

BEGIN
g%f Enter an integer number ');

B e
WRITELN(' Odd)

ELSE
b WRITELN('Even')

—DED

|
RI
E
F

BASIC Equivalent: None

PROCEDURE OPEN(Fileno,Aux1,Aux2,Filename);;

The OPEN is used to connect a grogram to a device. Each
device or file must be opened before it may be accessed. The
RESET and REWRITE commands may alsc _be used to open files.
'Fileno é either be a variable of tyge FILE, ,or an
abso1ute B number greceded by a lename may be
ither a var1ab1e of type string, or a string literal (w1th1n
suotes) "Aux1’ specifijes the type of open to be performed.
1id values for "Aux1' are as follows:
: Input operat1on
6 Disk directory input operation
8 : Output gperation
9 : End of file append operation
12 ; Input and output operation
'Aux2' is a device dependant value but is normally zero.
Refer to the appropriate manuals for information on spec1f1c
control codes.

Example: Refer to the example for NOTE
BASIC Equivalent: OPEN #1,4,0,"D:TEST.TXT" <

42

Draper Pasca1v2.1 Pascal Definitions

OPTIONKEY

This special built-in function returns a true value if the
OPTION key on the Atari keyboard is being pressed at the time
the instruction is executed.

Example: PROGRAM OPT!IONKEY_DEMO;
VAR 1:INTEGER;

BEGIN , ,
WRITELN('Press BREAK key to stop');
REPEAT T '
IF OPTIONKEY THEN WRITELN 'Opt1on key' ;
[F SELECTKEY THEN WRITELN('Select ke H
|F STARTKEY THEN WRITELNé igart key'
UNTIL 1=99 (* UNENDING LOO
END.

BASIC Equivalent: |F PEEK(53279)=4 THEN ... :REM OPTION KEY
|F PEEK(53279)=2 THEN ... :REM SELECT KEY
|F PEEK(53279)=1 THEN ... :REM START KEY

OPTIONS OPTIONS(Opt1,0pt2,...,0ptn);

This special built-in procedure allows you to contrgl certain
eyents at program execution time. The optijons specified are
always integer numbers. They are defined in pairs so that one
number can set an option while the other number of the pair
can reset the same optjon. An option remains in effect until
reset by the other option in the pair, or the Pascal
Supervisor is reloaded. The 'S' on the end of the word
OPTIONS is required, even if only one option number is

specified. If an invalid_option number 1is given, it wil] be
ignored and execution will continue as normal. The available
options are shown below with defaults shown:
0 - TURN OFF ERROR DISPLAY . .
The d1s€1ay of ClO error messages is suppressed with
this option. Error conditions can be checked for by

looking at the value of IORESULT after each
input-output operation.

1 - TURN ON ERROR D|SPLAY (Default) .
This option allows CIO error messages to be displayed
when they occur.

2 -~ TURN OFF PROMPT DISPLAY
This o§t19n suppresses the
Completed’' message and the
Used' message.

3 - TURN ON PROMPT D|[SPLAY (Default) .
.This optijon allows the above mentioned messages to be
once again displayed at program termination.

4 - DISABLE BREAK KEY
This optign prevents the BREAK key on the Atari
keyboard from interrupting executijon of a program. In
e

printing of the 'Execution
Highest Stack Address

order to keep the BREAK key disabled, it may
necessary to have OPTIONS(4) specified after the
first WRITE or WRITELN that goes to the screen or any
OPEN, RESET, or REWRITE that addresses the screen (E:
or S:). It should also be reissued after the GRAPHICS

command.

- ENABLE BREAK KEY (Default) .
The BREAK key may once again be used to stop

43

Draper Pascal 2.1 Pascal Definitions

execution of a program after this option is put into
effect.

6 - ONLY POSITIVE INTEGERS (0 TO 655352
This option sets the range of integer values to be
from zero through 65535, Reads, writes, and compares
are affected by the setting of this opf1on.

7 - POSITIVE AND NEGAT!{VE INTEGERS (-32768 TO +32767)
This option sets the range of integer values to be
from -32768 through +32767. Reads, writes, and
compares are affected by the setting of this option.

Example: PROGRAM OPTION_DEMO
P VAR REPLY:CHART ’
BEGIN ' . '
WRITELN('Enter D to disable break key!);
WRIT%LN Enter E to enable break key”);
READ(REPLY);
CASE REPLY OF
‘D! OPTIONSE43;
E : OPTIONS(5S
END.

BASIC Equivalent: None

OR
This_operator sets the resulting condijtion as true jif either
the left or the right factors around it are true, otherwise,
the condition is set to false. Parentheses should surround
the factors on each side.
Example: PROGRAM OR_DEMO;
VAR A: INTEGER;
BEGIN
WRITE('Enter a number between 1 and 6');
READ&A%'
IF (A<1) OR (A>6) THEN ,
EﬁgéTELN(Value outside of range’)
WRITELN('Value okay')
END.
BASIC Equivalent: Same as Pascal
ORD FUNCTION ORD(Realvar): |NTEGER;

The ORD function,K is used to convert a real number intc _an
integer number. 'Realvar' must be a variable of tyge REAL .
Rounding, rather than truncation, is performed on the value.
Reger to the example for a method of obtaining a truncated
value.

Example: PROGRAM ORD_DEMO;
VAR ! : INTEGER;

R:REAL;
BEGIN
WRITE('Enter a real number ');
READéRz;
| :=ORD(R); ' o
WRITELN('The rounded integer value is ',1);

44

Draper Pascal 2.1 Pascal Definitions

IFRCYgRgAL(ORD(R)) > R THEN
ENgR[fELN('The truncated value is ',0RD(R))

BASIC Equivalent: |=INT(R)

PADDLE FUNCTION PADDLE(Number): INTEGER;

This function returns the status value of a particular gadd]e
controller. The controllers are numbered 0-7 from left to
r1ght. The value returned will be an integer number between 1
and 228. The value increases as the knob on the controller is
rotated counterclockwise. 'Number' may be_any integer
expression having a value in the range 0-7.

Example: PROGRAM PADDLE_DEMO;
VAR | ,dJ:INTEGER;

BEGIN
REPEAT
| =PADDLE(0) ; o
WRITELN('Value of ﬁaddle Ol is ',1)
ENgNTIL J=9 (* UNENDING LOO)

BASIC Equivalent: [|=PADDLE(Q)

PEEK FUNCTION PEEK(Address):INTEGER;

This function returns the contents of a_specific memory
address location. The value returned will be an integer in
the range 0-255. 'Address ma{ be any integer exgress1on,
including hexadecimal constants (preceded by a $).

Example: PROGRAM PEEK_DEMO;
VAR | ,REPLY:TNTEGER;

BEGIN
WRITE('Enter a memory address in decimal’');
READ(REPLY);
I:=PEEK§BEPLY)' . . ,
ENgRlTELN That’Jocation contains hex ',%!)
BASIC Equivalent: [=PEEK(REPLY)
PLOT PROCEDURE PLOT(X,Y);

PLOT 1is used to disp]az a point within one of the graphics
windows. The color of the point plotted is determined by the
hue and luminance in_the color register from the last COLOR
statement executed. The color of the plotted point is changed
by use of the SETCOLOR command. 'X' and 'Y may be any
integer expressions.

Example: Refer to example under. GRAPHICS
BASIC Equivalent: PLOT(X,Y)

POINT PROCEDURE POINT(locbno,Sector,Byte);
The POINT grocedune is used to position the disk file pointer
to the next location to be read or written. 1t is used in

¢onjunction with NOTE to provide random access capabilities.
locbno’ may be any valid 10CB number which refers to an open

45

Draper Pascal 2.1 Pascal Definitions

POKE

POS

PROCEDURE

di;k file. It must be preceded by a '#'. 'Sector' and 'Byte’
retfer to previously defined integer type variables. They
normally contain a value which was set by a NOTE command.

Example: Refer to example under NOTE
BASIC Equivalent: POINT #1,SECTOR,BYTE

PROCEDURE POKE(Address,Vvalue);

The R?KE procedure is used,to store a certain value into a

specitic memory_ location. 'Address ma{ be any integer

expressjon, including hexadecimal cons,ants'Sprecgded b¥ a
alue’ should be

P tharange 07288, ¥ 1EtTEoL oxRiRtEnan 2582 YhenER i
n e - 1 1 eater y e
sfored wil¥%be 2Va1uef MGD ' 258 an en the valu

Example: PROGRAM POKE_DEMO;
CONST LEFT_MARGIN = 82;

VAR | : INTEGER;

BEGIN _ '
WRITE('Enter new left margin value ');
READE %;

POKE(LEFT_MARGIN,)

END.

BASIC Equivalent: POKE 82,1

FUNCTION POS(Pattern,Source): INTEGER;

This function returns the position of the first occurence of
a given str1n? in another string. 'Pattern’ may be either
tring variables, character variables, or string]iterals
?w1t in quqtes?, or any mixture thereof. Source’ must be a
str1ng variable. A value of zero is returned if the pattern
is not found. You can easily check for the presence or
absence of a gattern by checking to see if the value returned
is zero or not.

Example: Refer to example under INSERT
BASIC Equivalent: None

URE Name;

URE NamelParml,Parm2,...,Parmn);
ed

o

A procedure is group of statements that executes a
specific task or rithm,. No value is associated with it,
as with a function. Parameters may be passed to the
procedure. All garametens must be of type integer. A
rocedure 1is activated just by specifying it's name. It must
e defined before it's name is mentioned. Variables may be
defined within procedures. 1f they are, they are local to
that procedure and'ma¥ be referenced only from within that
procedure. The variable names may be the same as variables
defined elsewhere within the prognam without interfering with
heir values. In this implementation of Pascal, you may use
PROC as an abbreviation for PROCEDURE.

Example: PROGRAM PROCEDURE_DEMO;
VAR NUMLINES: INTEGER;

(* WRITE VARIABLE NUMBER OF BLANK LINES %)

PROCEDURE LINES(NUMBER);
VAR | :INTEGER;

CED
CED
nam
alg

46

Draper Pascal 2.1 Pascal Definitions

BEGIN
FOR 1:=1 TO NUMBER DO WRITELN

END;

(* DISPLAY MENU LIST *)

PROCEDURE MENU;

BEGIN
(* THE 125 BELOW IS A CLEAR SCREEN CODE *)
WRITELNECHRUZS)x TITLE §

WRITELN('1 - Choice one
NgBITELN 2 - Choice two'
b

(* MAIN PROGRAM SECTION *)

umber of lines to blank ');

BASIC Equivalent: The object of a GOSUB

PROGRAM PROGRAM Name;
PROGRAM 1is used to g1ve a name to the Pascal program which
follows it. No code enerated from it. It's only purpose

is to provide documenta ion. 'Name' may be any string of
characters, of any length, which is terminated by a semicolon

Example: PROGRAM ANY_NAME_AT_ALL;
BEGIN o
gRITELN(This program has a name')
ND.
BASIC Equivalent: None

PTR!G FUNCTION PTRIG(Number): INTEGER;
This function is ysed to determine the_status of_the tr1gger
button on the designated paddle controller. A value ?
returned if the trigger is pressed, otherwise the va ue
returned is a

Example: PROGRAM PTRIG_DEMO;
WRITELN('Press paddle 0 trigger toc stop’
53(03:0] gg P")

BASIC Equivalent: I|F PTRIG(0)=0 THEN

PURGE PROCEDURE PURGE(Filespec);
This procedure is used to remove a file from a diskette.
Filespec may be either a string variable or a string

47

Draper Pascal 2.1 Pascal Definitions

RAD

litera] (within quotes), ilespec’' must indicate the device
and filename extension (1f present)

Example: PROGRAM PURGE_DEMO;
BEGIN
NBURGE('D:TEST.TXT')

BASIC Equivalent: X10 33,#1,0,0,"D:TEST.TXT"

RAD is used to indicate that the output from all)
tri gonometr1c comRuta ions that fg¢llow is to be sxpresse in
radians, her t egrees. Radilans are default unless
DEG is spec1f1ed You can switch back and forth between
degrees and radians as often as you like

Example: Refer to example under DEG
BASIC Equivalent: RAD

READ, READLN PROCEDURE READ(File,Vari,var2,...varn);

REAL

READ and READLN are used to supply data to a ﬁrogram from a
keyboard or any other input type device.
1mp1ementat1on of Pascal, READ and READLN are identical and
be used 1nterchangea5 ly. variables must be predefined to
d the data to be read These variables may be of type
c aracter, integer, real, or str1n§ or elements or an array
of one of these types. The t pe code of the variable
determines how it is read into the program. For character
type vgr1ab1es, one character of data i1s transfered from the
1hput device to the variable. No carriage return (RETURN)
required for character type variables. The carriage return 1s
required, however, for a other data types, since each may
be entered as a variable number of characters. 'File' is
optional, and if present, determines the device from which
the data’will be read, 'File' may be spec1f1ed as e1ther an
absolute 10CB number (preceded by a #), a var1ab e of type
FILE. If 'File' is not specijfied, then the Atar1 g board 1is
assumed to be the input device. Any number e var1a 1es may
be mentioned within a READ statement. 'Fil %
repeated and sets the device to be used as inpu for each
variable that folleows it until either another 'File' or the
right parenthesis Y 1s encountered.

Example: Refer to EOF and EOLN examples
BASIC Equivalent: INPUT #1;VARIABLE

The REAL type code is used to define variables which are
numeric but not integers (conta1n dec1ma1 ﬁ oints) or have
values outside the integer range (- t rough +32767 or c
through 65535‘ depending on the sett1ng of option)
Each real varlable defined occupijes three stack os1t1ons
Six bytes% The format used is identical to that used b .
ASIC and he Atari gerat1ng system. When a real variable is
set to a real constant value wi h1n a ?rogram, the constant
must start with an_integer, and be followed by a decimal
point, and optionally an exponent portion.

Example: PROGRAM REAL _DEMO;
VAR R:REA

48

Draper Pascal 2.1 Pascal Definitions

BASIC Equivalent: All numeric variables used by Atari BASIC
are considered REAL numbers.

RECORD

The RECORD type code is used to define a variable, or group
of variables, which _are to be read, written, or moved, as an
ent%tg in 1n€e?na1 fogmata The var1ab1esdw1ﬁh1g]the r¢$ogg
mus e unigue named a are e use X as .1]
were not paﬁ% o¥ a recorg. TEe ?erent f?e gs %1thin_th? y
record do not have to be all of e same t¥ﬁe. All variable
types, including arrays, are supgorted, wi the exception of
F[L? and RECORD. An é, must be present after the last
field of the record to indicate the end of the record.

b
£h

WRITE, rather than WRITELN, should be used when writing
records. |f WRITELN is used, an end of line character is
written following the record and special consjderation must
be given for it when reading the record back in.

Example: PROGRAM RECORD_DEMO;

VAR REC1:RECORD;
NAME : STRING[20];
GRADE:REAL;
ﬁGE:INTEGER;

@
m
mMo6

om-—
WIOEZ 20—
0 .

m

mnZz
s UMMM — -

muo
omr-
IVOHOm

m
MOXEEZVO——MUEDVEVEDELD ——

00M—-
———Z 0

EN
CLOS
D.

—~
p o]

EN
BASIC Egquivalent: None.

REPEAT REPEAT Stmt1; ... ;Stmtn UNTIL Condition;

REPEA;_is used . to loop througn a group of statements until a
specified condition occurs, e statements are executed at
least once, even if the UNTIL condition is initially false.

43

Draper Pascal 2.1 Pascal Definitions

The conditijon is tested after the group of statements is
executed. 'Condition’ may be any normal expression. To te
condition before executing a group of statements, use WHI

st a
LE.

Example: Refer to example under EOF
BASIC Equivalent: None

RESET PROCEDURE RESET(File,Filespec);
RESET is used to open a fjile which will be used in input
mode. The I10CB is first closed by RESET before the open takes
p;a?e. 'File' must refer to a variable of type FILE.
ilespec

> refers to the file specifications and may be
e1E?eE]a string literal (within quotes? or a string type
variable.

Example: Refer to example under EOF

BASIC Equivalent: CLOSE #1 ;
OPEN #1,4,0,"D:TEST.TXT"

REWRITE PROCEDURE REWRITE(File,Filespec);

REWRITE 1is used to open a_file which will be used in output
mode. The 10CB is first closed by REWRITE before the open
takes plage. 'File' must refer to a_variable of type FILE.

Filespec refers to the file specifications and may be
e1the£1a string literal (within quotes) or a string type
variaple.

Example: Refer to example under EOF

BASIC Equivalent: CLOSE #1
OPEN #1,8,0, "D:TEST.TXT"

RND FUNCT!ON RND(lexp): INTEGER;
The RND function is a random number generator. A random
jnteger number 1is returned between zero and the value of
lexp , inclusive. lexp may be any integer expression.
Example: PROGRAM RND_DEMO;
VAR |1, 12:INTEGER;
BEGIN
FOR _11:=1 TO 50 DO
BEGIN
I2:=RND$253;
WRITELN(!2
END
END.
BASIC Equivalent: 12=RND(Q)*25
SELECTKEY

This special built-in function returns a true value if the
SELECT key on the Atari keyboard is being pressed at the time

50

s
& ',

Draper Pascal 2.1 Pascal Definitions

the instruction is executed.
Example: Refer to example under OPT!ONKEY
BASIC Equivalent: |F PEEK(53279)=2 THEN

SETCOLOR PROCEDURE SETCOLOR(Register,Hue,Luminance);

SHL

SHR

comman

This built-in procedure is used to set the particular hue and
luminance to be assigned to a particular color register.
'R?g1ster' may be any integer expression which results in a
value 1n the range 0-4. "Hue may be any integer expression
which results in a value in the range 0-15. "Luminance may
be any integer expression which results in an even number 1in
the ragge 0-14. For further information_on the SETCOLOR

, refer to the Atari BASIC manual.

Example: PROGRAM SETCOLOR_DEMO;
BEGIN

DRAWT

DRAWT
BASIC Equivalent: Same as BASIC

Expr1l SHL. Expr?2

The SHL operator performs a bitwise shift of 'Expr1' to the
left b xpr2 bit positions. Each bit _position shifted is
equijvalent to 'Exgr1: multjplied by 2. The_value returned is
an integer and both 'Expr1’ and Exgrz refer to 1nteﬁer type
expressions, When multiplying an integer b{ a value which is
?*gower of two, the SHL is more efficient than the multiply

Example: PROGRAM SHL_DEMO;
VAR 1,J:INTEGER;

BEGIN
J:=2;
| :=J SHL 8;
WRITELN(' 2%256=",1)
END.

BASIC Equivalent: |=J*¥(some power of 2)

Expr1 SHR Expr2

The SHR operator performs a bitwise shift of 'Exprl’ to the
right by "Expr2 it positions. Each_bit position shifted is
equivalent to 'Exprl’ djvided by 2. The value returned 1s an
integer and both 'Expri1' and 'Expr2' refer to 1nteg¢r type
expressjons. When dividing an integer by a value which 1is a
powgr'? two, the SHR is more efficient than the divide ?DIV
or .

51

Draper Pascal 2.1 Pascal Definitions

SIN

SQR

Example: PROGRAM SHR_DEMO;
VAR 1,J:INTEGER;

BEGIN
J:=1024;
| :=J SHL 7;
WRITELN('1024/128=",1)
END.

BASIC Equivalent: |1=J/(some power of 2)

FUNCTION SIN(Var):REAL;

SIN js a function whi¢h returns the sine ¢f the value of
Var ®. may be eilther an INTEGER variable or a REAL
variable. The value returned is always REAL.

Example: Refer to the example under DEG
BASIC Equivalent: A=SIN(2)

PROCEDURE SOUND(Voice,Pitch,Distortion,Volume);

This buijlt-in procedure is used to support the sound
capabilities of the Atari computer. oice' refers to one of
the four sound registers and may be any integer expression
which results in a value 0-3. 'Pitch’' s used to set the
frequency of the sound. It mag be ang integer expression

ich results in a value 0-255. 'Distortion’ is used to set
the ﬁur1ty of the tone. It may be anK integer expression
which results in an even number in the range 0-14. A value of
10 ?reates a pure tone. 'Volume' determines how loud the tone

11 be played. 1t may be any 1nte$er expression which
results in a value 1-15. A value of 1 creates a barely
audible sound and a value of 15 creates a loud sound. A value
of 0 is used to_turn off the sound. For additional
information on SOUND, refer to the Atari BASIC manual.

Example: PROGRAM SOUND_DEMO;

VAR 1:INTEGER;
BEGIN
FOR 1:=28 TO 1271 DO
BEGIN

SOUND%O 1,10,10);
NWAIT(55 {* HOLD FOR 1/4 SECOND *)

ENSOUND(o,o,o,o) (* TURN OFF SOUND *)
BASIC Equivalent: SOUND (Same as BASIC)

FUNCTION SQR(Var):REAL;

The SQR function returns the square of the value of 'var'.
vVar may either be an_ INTEGER variable or a REAL variable.
The value returned will always be REAL.

OGRAM SQR_DEMO;
R : L;

Example:
R1,R2:REA

52

Draper Pascal 2.1 » Pascal Definitions

END.
BASIC Equivalent: R2=R1*R1

SQRT FUNCTION SQRT(Var):REAL;

The SQRT function returns the square root of the value of
Var' . 'Var' may _either be an [NTEGER variable or a REAL
variable. The value returned will always be REAL.

Example: PROGRAM SQRT_DEMO;
VAR R1,R2:REAL;

BEGIN

G
R 10.0
R2:=SQRT{R1)

END

BASIC Equivalent: R2=SQR(R1)

STARTKEY

This _special built-in function returns a true value if the
START key on the Atari keyboard is being pressed at the time
the instruction is executed.

Example: Refer tp example under OPTIONKEY
BASIC Equivalent: |F PEEK(5327%8)=1 THEN

STATUS PROCEDURE STATUS(lochno,ivar);

This built-in procedure is _ used to retrieve status
information from a particular device. 'locbno’ refers to
either an absolute 1Q0CB number_(preceded b{ a #), or a FILE
type variable. 'lvar' is an INTEGER variable which will
contain the return code of the STATUS command. The actual
status values returned from the device can be interrogated by
using DVSTAT.

Example: Refer to example under DVSTAT.
BASIC Equivalent: STATUS (Same as BASIC)

STICK FUNCTION STICK(Number): INTEGER;

This function returns the status value of a particular
joystick attached to the computer. 'Number’ refers to the
controllier jack that the joystick_ is plugged into. [t may be
an{ integer expression which results in a value of 0-3.

Vﬁ uesbr?turned for the various positions of the joystick are
shown below:

14
10 . 8
11- 15 - 7
3 | s
13
Example: PROGRAM JOYSTICK_DEMO;
VAR 1| :INTEGER;

BEGIN

53

Draper Pascal 2.1 Pascal Definitions

REPEAT
l:=STlCK(O%§ .,
WRITELN('Stick 0 1is , b))
UNTIL KEYPRESS
END.
BASIC Equivalent: |=STICK(0) (Same as BASIC)
STR FUNCTION STR{(Var):STRING;
Th1s built-in_functjon js used to convert a pumber into it's
st r1ng equivalent, 'Var' may ejther be an integer type
variable or a real type variable.
Example: PRO GRAM STR DEMO
VAR [INTEGER
R:REAL;
S:STRING;
BEGIN
|:=20;
S:=STR(1);
WRITELNSSj;
R:=3.1416;
S:=STR(R);
WRITELN(S)
END.
BASIC Equivalent: S=STR(1)
STRIG FUNCTION STRIG(Number): INTEGER;
This function is used to check on the status of the joystick
trigger button. A value of zero is returned if the button is
being pressed, at the time the instruction is executed. A
value of one is returned when the button is not pressed.
Number' refers to the controller jack that the Joyst1ck is
plugged_into. It may be any integer expression which results
in a value 0-3.
Example: PROGRAM STRIG_DEMO;
VAR | : INTEGER;
BEGIN
REPEAT . .
WRITELN?'Press button on joystick 0 to stop')
UNTIL STRIG(Q0)=0
END.
BASIC Equivalent: |F STRIG(0)=0 THEN
STRING

STRING is er code used to define var1ab1es which contai

a number of characters. A fixed amount of memor% 1s raserve

for each string, but the actual length of the string is

varija }e. Any ATASC!| codes may be cgntained within a string

var1a e. String var1ab1es may be defined with lengths of
-255 characters. The engt spec1f1cat1on is made by putting

the length w1th1n bracket 5 ter the word STRING. If no

length code is specified, a efau]t length of 80 characters

is assumed. The functions and groce ures used to manipulate

strings are CONCAT, COPY, DELETE, INSERT, LENGTH, and POS.

Example: CiOCEDURE STRING_DEMO;

R A:STRI
B: STR|NGt10],

54

Draper Pascal 2.1 Pascal Definitions

C:ARRAY[5] OF STRING[20];

BEGLN’A' . & ¢ . X
is a string o en 80

¥ 'B’ s a strlng of 1en§tn 10 *

¥ 'C'" i1s a six element S -5) string *

* array with each element having *

EN * a length of 20 *

BASIC Equivalent: DIM A$(80) No equivalent for string
arrays.

TRACEOFF PROCEDURE TRACEOFF;

This speg¢ial byilt-in procedyre is used _to turg off a pseudo
instruction code trace that 1s active 1f turnea on by
TRACEON. The wraEaround buffer used by the trace is not
released by TRACEOFF.

Example: Refer to example under TRACEON.
BASIC Equivalent: None

TRACEON PROCEDURE TRACEON;

TRUE

PROCEDURE TRACEON{'Number);

This special built-in procedure is used to turn on a pseudo
instruction trace, for debugging purposes. The trace table is
maintained in a memory buffer. "Number' is used to specify
the number of trace entries to maintain._ [t is a wraparound
the trace buffer where new entries overlay old entries if
the buffer is not large enough to contain all of the
instructions executed. Each trace entry is nine bytes long.
The trace entries may be d1sp1§§ed at program termination by
enter1n§ CTRL-T. Refer to the, K Superyisor’ section of this
manual for more informatjon. 'Number' may be any integer
expression. |If "Number' (and the parentheses) are not . .
specified, then the trace is re-activated using an existin
buffer from a previous TRACEON where 'Number' was specified.
|f_the value of 'Number' 1is zero, then the trace buffer is
released from memory and_the trace is turned off. Note that
the MAXGRAPH command will also turn off the trace and release
the memory used for the trace buffer.

OGRAM _TRACE_DEMO;

Example: PR
VAR NAME:STRING;

) '
S_your name ');

BASIC Equivalent: None

TRUE 1is_a BOOLEAN constant representing the true state. It is
internally equivalent to an integer constant of one.

Example: Refer to the example under BOOLEAN
BASIC Equivalent: None

55

Draper Pascal 2.1 , Pascal Definitions

UNLOCK PROCEDURE UNLOCK(Filespec);

VAL

VAR

This pro edYre is used to unjock a djsk file which _was .
revious|y locked. 'Filespec’ specifies the name of the file
o be unlocked. |t may be either a variable of type string or

a string literal (within quotes).

Example: PROGRAM UNLOCK_DEMO;
VARIABLE FILENAME:STRING;

BEGIN , ,
FILENAME:='D:TEST.TXT';
(UNLOCK (F i LENAME)

BASIC Equivalent: X10 36,%#1,0,0,"D:TEST.TXT"

FUNCTION VAL(Svar):INTEGER or REAL;

This function is used to return the value of a string .
variable which contains a number. 'Svar’ must be a string
t{pe variable, The number must start at the beg1nn1ng_of the
string variable. REAL values are returned to REAL variables,
and INTEGER values are returned to INTEGER variables.

PROGRAM VAL_DEMO;

VAR 1:INTEGER;
R:REAL;

:STRING;

Example:

w

m

710]
—nN—un=Z 0

BASIC Equivalent: [=VAL(S$)

VAR Namei,Name2,...,Namen : Tése;
VAR Namel,Name2,...,Namen : ARRAY[Number]
OF Type;

VAR is used to allocate variables to be used by a program.
Variables which are defined at the begjnning of a program,
before procedures and functions, are global and may be
referenced by any statement 1in the program. Variables which
are defined within procedures and functions are local |
variables and may on]¥ be referenced by _statements within
those procedures and functions. Valid "'Type' codes are FILE,
CHAR, INTEGER, REAL, BOOLEAN, RECQRD, and STRING. Refer to
the descriptions of the individual type codes for more
information about them. ARRAYs mag be specified for any type
other than FILE or RECORD. Refer to the description under
ARRAY for more information. The variable names may be any
words that begin with a letter and are not the same as Pascal
reserved words. The name may be of any length, but only the
first eight characters are significant and must be unique. A
sect1?n isting Pascal reserved words is included within this
manual. .

Example: Refer to the example under STRING.

BASIC Equivalent: None for files. DIM for strings and arrays. (\
None required for numbers. -

56

Draper Pascal 2.1 Pascal Definitions

WALT

WHILE

WRITE

PROCEDURE WA IT(Number);

This special built-in _procedure is used to suspend program
execution for a specified length of time. 'Number

number of sixtietns of a second for the program to wait. A
value of 60 is equal to 1 second. 'Number' may be any 1nteger
expression.

Example: Refer to example under SOUND
BASIC Equivalent: None

WHILE Condition DO Statement;

WHILE is used to repeat executjon of a statement until a
specified condition is false. 'Condjtion’ be any
express1on which results in a true (1) or fa se g]
condition. The conditjon is evaluated before the statement is
executed. If the condition is 1n1t1a11y false, 'Statement

will not be executed.

Example: PROGRAM WHILE_DEMO;
VAR INPUT:FILE;
DATA:STRING;

BEGI
RESET(INPUT :TEST.TXT');
WHéLE NOT EOF(INPUT) Do

READLN {NPUT,DATA);
WR I TEL DATA}
END
OSE

L INPUT)
ENSC

BASIC Equivalent: None

('D(D
m
X
pe)
3

)
WRITE Y
WRITE th:Numdec...);

The WRITE 1is used to move data from memory to an external
device, such as the television/monitor screen, disk drive,
cassette recorder, or modem, 'File' is optional and, if
present, determines the dev1ce to receive the data. If 'File’
is not present, then the screen is used. The variables may be
of any her than FILE. Expressions are permitted in the
{YE stageTent The end-of-1ine character {carriage return)
ow_ the data for WRITE (see WRITELN). nteger
numbers with values of zero through 255 may be sent to the
output device. For example, to send a form feed command to a

WRITE(F1il
Fil
Fil

nt (def1ned s f11e PRINTER), you can _use
RlTE?PRINTER CHR ;. Numbers by themselves will print_as
norma 1nteger cr rea values. To write out an integer value

in hexadec1ma1 format, precede the var1ab1e name or integer
value with_a percent s1gn (%). L1t?ra ?nstants may be used
in the WRITE statement also. teral must be enclosed
within a pa 1r of s1ng1e quote marks. it may be any character
other than a quote mark. To write a quote mark, K
WRIIE(CHR(9)), because 39 is the ASCII value of the quote
mark.

Write formatting is supported. Refer to the example under
WRITELN.

Example: Refer to example under PROCEDURE

57

Draper Pascal 2.1 Pascal Definitions

BASIC Equivalent: PRINT (followed by a semicolon)

WRITELN WRITELN Fj{ ,Expr1,Expr§ S
WRITELN(File Expri1ifldwdth. . };
WRITELN(F11le,Expr1:Fldwdth:Numdec...);

e
e
e
The WRITELN is identical to the WRITE except that an
end-of-1ine character is sent to the output device after the
variables (if present) have been written. If no expressions
are present then only the end-of-Tine character is written.

If al] parameters and the parenthesis are missing, then an
end-of-1]ine character is written to the screen.

d
epending on thé type ¢f data to be wr1gten. To cause
ormatting to happen, follow the expressjon with a colon (:)
and then an integer expression, 'Fldwdth'. If the colon is
not present, then the value of the expression will be written
with a field width equal to the number of character positions
that the data represents.

ﬁrite formatting is sup$orted. it is handled differently,
f

For integer values, 'Fldwdth' specifies The minimum field,

width. | Fldwdth® is greater than the number of digits_in

the integer value, the value is right gust1f1ed in a field

containing 'Fldwdth ositions. If_ 'Fldwdth' is less tha?_t?g
e fie

number of digits in the integer value, the width of th
is increased to contain the full integer value.

For character data, 'Fldwdth' specifies the absolute field
i The character will be right justified within the

E3
oQ

g data, 'Fldwdth' specifies the maximum field width.
h' is greater than the number of characters in the
ified in a field containing

is less than the _number of
he string value will be

Fldwdth characters will be

trin

1dwd

g the string is right jus

th' positions. |f "Fldwdt
n
ly

3t

acters in the string, the
Q%aged on the right and on
en.

r real data, 'Fldwdth' performs the same as with integer
ata, but 'Numdec' is germ1tted. If the_second colon (:) and
Numdec are both omitted, then the real value wil] be
rinted in scientific notation. When the second colon and
Numdec' are present, the real value is not printed in
scientific notation, and 'Numdec' specifjes the number of
decima] positions to be printed. Numdec' may be any integer
value from 0 through 254. (f_ 'Numdec' 1is greater than the
number of significant decimal positions in the value, then
2eros are added on the right until "Numdec' decimal positions
are taken. |f "Numdec is less than the number of significant
decimal positions in the value, then the value written is
truncated (not rounded) after 'Numdec' decimal positions.

in the example that follows, a blank is represented by a
lowercase letter

Example:
PROGRAM WRITELN_DEMO;
VAR | : INTEGER;
R:REAL;
C:CHAR;
:STRING[4];
BEGIN
}:=1234;
R:=1.234;

58

Draper Pascal 2.1 Pascal Definitions

EZXXIY EXEX EXEXEXTE EEEE 0O
AW0VVAO VVDWPYOD VVOVVVVO VVDDU

w

gives
gives
gives
gives

o ST NTN
W
s

PRy

WO N~d~d—a—gee

gives
gives
gives
gives
gives
gives
gives

[e]e]e]
[s]ele]
omm
O+ +
moo
+ 00
o

o

[X3e) N9 e AAS
oo

(0,19, Eoten Sty
[e]ele]

. . DOD. »
NRNOT =N TWWw
WWOT: WK —bph
BESTNERE N
Q0O —WOO W N
oon: hOO

YR TR TR N

gijves
gives
gjves
gives

e N/ Se 2s se ee a0y

e O A N S

A LALS
“e e

gives
gives
gives
gives
gives

e s/ se e

ZZZZZ ZZZZ ZZZZZZTZ ZZZZ ()=
[6, T3V Y7, P

mmmmm mmmm mmmmmmm mmmme > >
e e orerrerrr rerer
IOV AV YTV TV AT AT
NnOHLVLY OO0OO TVVVOVIOD

WM W W MWW NN W RN

E R R R E IR R R R R R N Y

el A A A SNCAALA S SN ACA LALLM AN NACA IS

OPrrr)» OPPPr 22000 a— ODa-aa

VNNV VTN VYT TN ST

S ACALALS
oMo e

m
z
)

XCTL

X110

BASIC Equivalent: PRINT (not followed by a semicolon)

PROCEDURE XCTL(Filespec);

This sgecia] built-in procedure is used to transfer control
to another Pascal,pro?ram. Filespec ma¥ be either a string
variable or a strin iteral (within quotes). It must
completely specify the P-code to be executed next. This means
that the " .PCD' extension must be present in the filename. If
data 1s to be passed from the current program to the next
gro ram, then it must first be stored somewhere (like disk)
he current gro ram and retrieved by the next program. If
the program to be transferred to is not on the diskette
currently in the drive specified, a message is given asking
you to insert the correct diskette.

Example: PROGRAM XCTL_DEMO;

BEGIN
NéCTL('D:NEXT.PCD')

BASIC Equivalent: RUN "D:NEXT"
PROCEDURE X!O(Number,File,Aux1,Aux2,Filespec);

X10 is used to gerform special 1nput/qutgut qqerat1ons. it
may be used with any _ device. One use is to fill an area on
the screen between plotted points and]ines with a specific
color. 'Number' is an integer number with a value in the
range 0-255. The number specified depends on the operation
requested and the device. 'Fijle may be ejther an absolute
|OCB number (preceded by a #) or a varjable of type FILE.
Aux1' and 'Aux2' are auxiliary control codes and are
dependant ,on the particular device_and ¢ommand number,
Filespec' supplies the file specification to the device
handler. (t may be either a string variable or a string

59

Draper Pasca] 2.1

0N —.

o
~hd
[ehn]
—p

z

(

w

£

T RECORD

GET CHARACTERS
PUT RECORD

PUT CHARACTERS
CLOSE

STATUS REQUEST
DRAW LINE

FILL

RENAME

ELETE

[0]e)
mu O

[STRTRTR YA YA VSR SRVIYT, ST, TIC S g
U1 00~I0) (NGIRIO0 ~J (W RI—

»
MmMZoCcro

Example: PROGRAM XIO_FILL_DEMO;

BASIC Equivalent: XI10 18,#6,0,0,"Ss:"

60

Pascal

Definitions

within quotes). The standard values for 'Number' are
s:

Draper Pascal 2.1 System Information

System Information

The Supervisor uses zero page locations $A0 - $BF. Locatijons $80 -
$9F are %va11ab1e for your use if desired, Various locations
between $D4 and %FD are used by the floating point routines. Page
Six (?600 - $6FF) is available for your use and not used by the
Pascal system.

The Supervisor is loaded into memor¥ b¥ DOS at the address $1D7C,
{f this memory location js not avajlable, then_an error message is
given, along with an explanation of the probable cause of the
problem, The_pse?do code program tgo be executed is loaded in
memory immediately after the end of the Supervisor. The pseudo
machine_stack extends from the end of the pseudo code program to
the MEMTOP position, just before screen memory.

Filename Descriptions

The files named below are included in this ARC file:

AUTORUN.SYS Supervisor object code

COMP ILER.PCD Comg1]er pcode

EDITOR.PCD Edjtor pcode

INIT.PCD Main Menu pcode

INIT.PAS Main Menu Pascal source .

EXPLNERR.PCD Error code explainor (used bé Compiler)

RSVDWRDS . TXT Reseryed word list (used by Compiler)

ERRORS.TXT Text for compile errors (used by
EXPLNERR,PCD) _

RAMD] SK1.DAT Ramdisk setup (See !'Ramdisk Support!

RAMD [SK2.DAT Ramdisk setup (See Ramdisk Support

RAMD I SK3.DAT Ramdisk setup (See "Ramdisk Support

NOTITLE.OBJ Used to suppress title _ ,
(See Suppress1n? the Title Screen”)

SAMPLE1.PAS Kaleidoscope sample program source

SAMPLEZ.PAS Roman numeral sample program source

PASCAL .DOC Introduction manual

Internal Data Formats

Variables are allocated on the stack. Variables of t%pe FILE
;e??rve no space on the stack. The others are allocated as
ollows:

VAR X:800LEAN 2 bytes

VAR X:INTEGER 2 bytes

VAR X:ARRAY[n] OF INTEGER 2 * (n + 1) bytes

VAR X:CHA 2 bytes

VAR X:ARRAY[n] OF CHAR 2 #°(n + 1) bytes

VAR X:REAL 6 bytes

VAR X:ARRAY[n] OF REAL 6 * Sn'+ 1) bytes

VAR X:STRIN?[] Explained below

VAR X:ARRAY n? OF STRING[a] Explained below

Strings and string arrays have exactly the same_ format jnternally.
The first two b¥tes hold the actual number of elements_in the
string arraz. IT 1t is not an array, this value is 1. The next two
bytes tell the maximum_length of a_string entry. This ends the
fixed part of string allocations. The remaining parts are repeated

for as many times as there are entries in the_array. Only one set
is present’ for non-array str1ng definitions. There is a one byte
long prefix which shows the actual length of that particular
string entrg. It is followed immediately by the data of the
string. If the maximum length of the string entries is an _even
number, then a_one byte filler byte is added to the end of each
string entry. This 1is required because the variables are stored on

61

Draper Pascal 2.1 System information

the stack and the stack width is two bytes. Non-array strin?s of

80 and 81 bytes long each, would each take up 86 bytes total. A

Ewg ?1ement string array of length 10 weould require 28 bytes
otal.

Records take up no extra displacement. They are used,at,comgi]e
time go specify the range of fields to be included within the
record,

Suppressing the Title Screen

{f. you desire not to haye the initjal title screen_displayed, the
following procedure will suppress it. Make the following
modifications, using DOS, to the desired diskette:

1. Unlock the file NOTITLE.OBJ. '

2. Use the DOS cop¥ function (C% to append the Superyisor
$AUTORUN.SYS) o the specia refix (NOTITLE.OBJ). Enter the
ollowing when prompted for the filenames to be copied:

AUTORUN, SYS,NOTITLE.OBJ/A .

The "/A' is required and instructs DOS to append the file.

3. Unlock AUTORUN.SYS. . .

4., Rename AUTORUN.SYS to something else (like AR.SYS).

5. Rename NOTITLE.OBJ to be AUTORUN.SYS.

Trace Format

A few lines of trace information would look like the following:
PC=0186 IN=20 04 00 00 SP=3DEOD SVv=0000
PC=018A [IN=02 88 13 SP=3DEO0 Sv=0020
PC=018D0 IN=10 0OC SP=3DE2 Sv=8813
PC=018F IN=680 Q7 00 SP=3DEQ SVv=0100
PC=0192 IN=10 00 SP=3DDE SvV=0020

The 'PC' stands for program counter. |t actually refers to the
offset of the instruction to be_executed. This corresponds to the
offset shown on the left side of the compile listing. The 'IN
stands for instructjon. The one to four bytes following it are the
actual hex values of the pseudo code to be executed next. 'SP
stands for stack pointer. |t is the actual address of the current
location on the stack. 'SvV' is stack value. The stack width is two
bytes, so two bytes are shown. The actual meanings of the_various
seudo 1nstruction codes are not included with this manual but may

ecome available in the future.

62

Draper Pascal

ABS
ADDR
AND
ARCTAN
ARRAY
ASC
BEGIN
BLOAD
BOOLEAN
CALL
CASE
CHAR
CHR
CLOSE
COLOR
CONCAT
CONST
COPY
Cos
CVTREAL

DEG
DELETE
Dlv

DO

DOS
DOWNTO
DRAWTO
DUMPSTK
DVSTAT
ELSE
END
EOF
EOLN
EXIT
EXP
EXP10
FALSE
FILE
FOR
FUNC

2.1

Reserved Word List

Reserved Word List

FUNCTION
GOTOXY
GRAPHICS
HIMEM
IF
INSERT
INTEGER
fORESULT
KEYPRESS
LENGTH
LN
LOCATE
LOCK
LOG
LPENH
LPENV
MAXGRAPH
MOD
NOT
NOTE

oDoD

OF

OPEN

OPT IONKEY
OPTIONS
OR

ORD
PADDLE
PEEK

PLOT
POINT
POKE

POS

PROC
PROCEDURE
PROGRAM
PTRI!G
PURQGE

" RAD

READ

63

READLN
REAL
RECORD
REPEAT
RESET
REWRITE
RND
SELECTKEY
SETCOLOR
SHL

SHR

SIN
SOUND
SQR

SQRT
STARTKEY
STATUS
STICK
STR
STRIG

STRING
THEN

TO
TRACEOFF
TRACEON
TRUE
UNLOCK
UNTIL
VAL

VAR
WAIT
WHILE
WRITE
WRITELN
XCTL
X1o

Draper Pascal

Operator

arithmetic:
+

*
Aogr Div

Relational:

2.1

Operators

g4

Operation

assignment

equality
1nequa11ty
less than
?reater than

ess than or equal to

Operators

greater than or equal to

Draper Pascal 2.1 Editor Command Summary

Editor Command Summary

A Add lines to en? ?f file in memory. Terminate add mode by
entering a nuil ine.

C Change string of characters in one or more lines.

D Delete one or more lines.

E Edit one or more lines. Make change directly on the line
presented.

F Filer commands

A Append disk file to end of file currently in memory.

D List disk directory on screen.

L Load_disk file intoc memery. Anything currently in memory

will be erased.
S Save file currently in memory onto disk.

! lInsert before line number _you specify. Terminate insert
mode by entering a null line.

List lines from memory on the screen.

Display Editor menu

Print one or more lines on printer (P:).

Quit Editor execution and return to Main Menu screen.
Scan one or more lines for character string you specify.

Exit directly to the Compiler.

v X »n 0 v X r

Display Editor menu.

65

B PP GWOWW LG OWEWWRINNINNRNNRNNN At st st 2 00 00 00000

N = OWOO I NHWN = OW NN WRN 2O W AN SO WR RN WN—

LTI Y

40 4e 20 50 20 40 00 00 90 o0

® s3 00 60 ss g0 00

Draper Pascal 2.1 Error Messages

Error Messages
Compile Time Error Messages

Compiler table overflow (max 170)
Number exgected
=' expecled
ldentifier expected, . .
Constant type identifier, number, or string constant expected
BEGIN' expected
Too many nesting levels
' expected
expected
expected .
Undeclared identifier
jnvalid ty%e of identifier
1= expected
END' expected | ,
3 JELSE’, or "END expected
THEN exgegted
e

e o e

egal factor or identifier type
NCLUDE file nesting too deep

‘#' expec
'D0' expected . L
‘#' or FILE type identifier expected
'[! expected
1], expected
expected
‘]

'OF' expected
Mismatched data types

'TO'! or 'DOWNTO' expected

UNTIL' expected
ge error

expected

expected L
eral too long or m1ss1ng end quote (')
D' but no RECORD starte
rrect number of parameters
GER type identifier expected

NG type identijfier expected
ype identifier expected
ype identifier expected
ype identifier expected
ype identifier expected
G constant expected .

0
W]
3

t
t
t

NINOBN—— - =
AM—~TMAZ 3 Mo —~

66

Draper Pascal 2.1 Error Messages

Execution Time Error Messages

INDEX TOO H{iGH

This message occurs if_an attempt is made to
store a string array element into an occurance
that is higher than defined for the variable.
For examg]e, if you tried to store the
twentieth entry of an array that was only
defined to hold ten occurances, you would get
the message. This message only agp11es to
stripng arrays since other array types are not
checked for valid occurance numbers.

UNABLE TO OPEN DEBUG 10CB (7)

This message is jissued if the list output
?ev1ce ou,specify in response to the_'WHERE?
FILESPEC)' prompt cannot be opened. The

grompt is issued only for the debug features
race and stack display.

C10 ERROR xxx FOR I|OCB # vy

AT OFFSET

Some kind of Input-Output operation was
performed which resulted in an abnormal return
code from the Atari operating system. Refer to
%our BASIC or DOS manual for the meaning of

he error number "xxx'. 'y' is the 10CB number
which the error occured on. Note that this.
message will not be printed if OPTIONS(0) is
in effect. [(n this case it is your
responsibility to_check the return code by
1nterrogat1ng IORESULT after each /0 type
instruction.

This message accompanies some other error
message and refers to the offset within the
pseudd code of the instruction that had the
error., Refer to the offset shown on your
compile listing to determine the Pascal
instruction that experienced the error.

STOPPED BY <BREAK> KEY

INSUFFICIENT MEMORY

This message indicates that execution of the
program was stopped because the BREAK key was
pressed. The offset of the instruction
executing is shown in the 'AT OFFSET' message.
Note that this message will not occur (and the
program will not stop after BREAK is pressed)
if OPTIONS(4) is in effect.

This message indicates ?hat an attempt was
made to increase the vajiue of the stack
pointer to a value which would overlay screen
memory or the trace buffer, if the trace was
agtive. It may also be caused by manipulation
of a record without sufficient room between
the top of the stack and the top of available

67

Draper Pascal

INVALID OPCODE

2.1 Error Messages

memory (MEMTOP) to temporarily hold it.

This message should not occur. It indicates
that a pseudo_instruction was encountered
which is invalid, If you.?et this message, it
means that your '.PCD" file has been corrupted
somehow or an XCTL was made to a file that was
not a pseudo code file. To correct, re-compile
the program in question. It may also occur if
you attempt to run a Draper Pascal program
which was compiled under a previous release of
this software.

68

s ™
p 5

Draper Pascal 2.1

Main Menu Program

Main Menu Program

* |NITIAL MENU PROGRAM *
* AS OF 09/08/89 *
$S+)
ROGRAM INIT;
CONST CLEA =125; CURSOR=752;
ON=0; OFF=1;
RAMTOP=$6A ;
LASTFILE=$1D82;
DEFAULT_DRV=$1D94;
VAR BASENAME STRIN 51]];
MNAME :STRING[3013
DATA STRING[1287;
,J: INTEGER;
REPLY,DRIVENQ:CHAR;
DRIVE!STRING[37;
PROCEDURE PRESSANY;
BEGIN
WRITELN; , ,
WRIT%é Press_any key to continue');
READ EFtv%—‘_;i“—JL—““‘—‘———‘“
END;
BEGIN (*MAIN*)
DRIVENO::PEEKEQEFAULT DRV); |,
DRIVE:=CONCAT('D',DRIVENO,)
GRAPHICS{0);
POKE (CURSOR, OFF) ;
WRITE(CHR(CLEAR)S;
GOTOXYﬁ%,)3 ,
WRITEL DRAPER PASCAL');
WRITELN; ,
WRITELN{ VERSION 2.1');
WRITELN; ,
WRITELN{ 1 - Run Program');
WRITELN; _ , ,
WRITELN{ 2 - Disk Directory');
WRITELN; _ ,
WRITELN(3 - Compile Program');
WRITELN; ,)
WRITELN(4 -~ Edit a Program');
WRITELN; , _ ,
WRITELN(5 - Exit to DOS');
WRITELN: , _
WRITELN(" 6 - List a file');
WRITELN; ,
WRITELNg 7 - Trace on');
GOTOXY(2,22);
WR I TELN(Copyright 1989’),
WRITE$ by Norm Draper’
GOTOX (2,18%;
REPEAT READ(REPLY) ,
UNTTL éREPLY) 07) AND (REPLY<'8');
CASE REPLY OF
17 : BEGIN (* Run Program %)
REPEAT '
WRITELN(Enter name of program to be run’');
WRITELN
POKE (GURSOR, ON
J:=ADDR6PGMNAM
FogoézzJ Topég ASTFILE+1));
+ K + ;
WRITE%((%
WRITELN(PGMNAME}
WRITE(CHR(28));
READLN& ASENAME
J:=ADD BASENAM
FOR :=0 TO 16 D

69

Main Menu Program

2.1

Draper Pascal

('Suffix noct required, ignored');

~~ ~~
~~ A mad
- +
+ —_
- en 1
~ —~D)
X w -~
W e~ MI
w~ < =~
ow Zuw
-X w3
—< w<g
+Z <Z
W ouwl
Jv ~)
—< Ir<
uLmMZ Fm

WA —- ol

oo —uw
ot m
el

N
O
(1]
. P
~]
- o -
[a] ~~ -
C -
o (o] Q
e M O Ne]
oo ~~ - o
~ zZr XN ~ W . 0
- o w + ~ - A [N 4 FE)
(a] ~ I~ - . - —~0O
o - < (a) - o - - o
o o] [O ~ = .— —
Zoam oo C| ~ ~q 0o % £ O ~ -0 -
L~~~ J * - <0 . o O * 1] Y-
Tr = [e) ~ [N - E ~— - -
= Y- > - <« - @ = - E O~ ~ —~y Z -
w3 | »* [a] o ~ea Z L O w o L * * O w—
O« L o} . ~AD ~Q - o E > L om> I~
ngZ o~ Q + *Z~ITZ uiz - o 0 — M Y- (7] o0 - -
~ZW C| Q - W~-uw b {11} -~ ¢ 0O @ 0 wo O 1.m)
wweyy w (1] IO < w o [a) . [a) [a e ox
g I £ « on Wk ~Z ~ oz~ > o) RN o o - 4 1<
<g4m < o - ~ > <wa -~ AOZwW - 0 C~F+ CH (o2 [} —~Z
Zo~ Z [A - — Ok b=~ (OX Xe— ~Z< o < Pz dr— W
w 4~ X) ~DO s il <~ W~NO L 0N~ VOO~ vTO~) o (D
nwug O o) MANZXY e~ N OO EAAZ Z Qs ~ZW PeadZW P - PY-en e
>0 0o Z ¢ xwey ~O wWZwd g <=z FWE~0XQOY ~~00QX N o~ ~UZ «
mn—2Z acen WIO < ~ Z0 Wk <ZC—J0 < 004004 TVOUOAC XO meZ W
~xQ -~-OF I- w~0 0 - 0OTICIC>AH*OZuwu wa O~ VNZ Uhr~ HZ WY J00 ZO0OU>
- DO ~ o=~ _Jl ~n~ 4—-00—0 ~JJOF =~ ZW ISAr e X T X a E R O N
sOEDIN Zr OI# O Z X ~#000QuW-—r OZH#OZDJOWO *aZw@ *>D # COX Zo -~
s b NGO P im0 O O O -~ iE s Ot I0EZ0 g Ao 0 ~uo O- 0O
AW NS WS WO EZ ~U - Q) O s e O v en [| 2 UM~ 0 W<~~~ ~ CI7 B O 17, R
CrNWEZRO~FZNITEZ—Ew 0N il- - - 4¢T0 Z~—> «TZOwzZ.l1 ZO0FZJ4 zZuw ZNAY -0 X -
XOvOOoxzzTOOoONACO—OoUN—0—00 =% DL M OZZ IR ZWO =X =X com X = | roe Y) came ZD) Zrr DY
Zn ZZ—2Z—-UN—K— AN OO~ZO0FEANWUNWUHZw —OwCSn 0Cx000nfldardOnrdoon® 101Z200nu
w —XkFwiQo =k Jdus~wusAL SOOIl CUEZ 00 XZWEZA XZWANZWur] _—OWv
w ¢oa - O—F J1ONUFEFOWUDCOLZAZZOF JWuwnnZ_1m wm wm wouw-aowa =z
— 0OO0O—0O— Ok~ OX—~<d¥X 0O — —Wad——onxowri —Y -y —
ZEQ -Joxwouw uw w ouwaoI e GO v xOa@uwow
22X- Oazxxo— —~ — O oo ax- - - - TOTXOA—
o~ ™ ~ To) (7]

70

Main Menu Program

2.1

Draper Pascal

")

c
i
o
+
=
r-
o
E
o]
e t on
~~ ~~
-) -
(&) (<] [}
O b O
o | 8 b 8
. 2 .
- c
— O —_
=z z
— [T —
- ~~ o] -
AP -~ # -
.- ~0 1 L. w
~ Oz > € 0 >
wl oku - 0 0 -
T e~ - [x©
< ~NO oo 3 (a’a]
Z v ~Z O~ ~Z
D Mgyl ot pd o = g~ —uw
O I < ZC <
a-uiiLuwn O~HO o O~
~{ JOF -~ Zuw ~J Zw
oQow—vr OXZ#xc QO
s~ s ik O<COWl —~O<
Xl Z U)- — iz

— ETO Zrd- o T ZUN e
R OZZIAIXZWO—DZ~ZWO
~RZ — Ao G0 2—-0Zn
L~ _1 W (D <C W) <O AL <~
VZOF WD Z _1nu-00Z1
OWL——mNEXOWE - X— LI}
Jo T S2ECO - OxwWa@O
ooxzx oo X axxkox
~ a)
- z
w

END.

71

Draper Pascal 2.1 Editor

Editor Program

Editor Program Source Listings

(* EDITOR.PAS *)

PROGRAM EDITOR;
* A part of Draper Pascal *
* By Norm Draper *
* As /26/86 *
XES
*$] D:EDITOR1.PAS *
x$| D:EDITOR2.PAS *
*$| D:EDITOR3.PAS *
*$| D:EDITORZ.PAS *
*$| D:EDITORS.PAS *
*$| D:EDITORG.PAS *
*$| D:EDITORT.PAS *
(* EDITOR1.PAS *)
CONST CLEAR=125;BELL=$FD;ESC=2T7;
UP=28;RIGHT=31;
MAXL INES=251;MAXLENGTH=80;
RAMTOP=$6A}
LMARGIN=82;
CURSOR_HOR12=$55;
DEFAULT_DRV=$1D94;
VAR CMD:CHAR;
| ,CHGSW,LMO,LM1 LASTLIN? L?W,HIGH,X,Y,SW:INTEGER;
FILENAME ,PGMNAME :STRING[367;
DRIVE:STRING[3];
DR|IVENO :CHAR;
DATA,DATA1,DATA2:STRING[MAXLENGTH];

’
A2:
INPUT OUTPUT:FILE;
T: ARRAY[MAXL!NES]

DURE MENU;

CHR(CLEAR));
?'()) fraper SOFTWARE ') ;
EDITOR');

g §nd)
before 11ne);
11ne(s)

Pr nt i1ne(s)).

Scan 1ne(s) ?
Exit to Compi

OF STRING[MAXLENGTH];

O
—— e L am

A~ A A A A=
mmmmmmmmmmmmmmmm

s lyv)
mX

e

ing (s
n
1in
ine(s
meny '

rrrrrrrererererrir—~
ZZZZZZZZZZZZZZZ
| S Y S T T T Y N I A |

XNOOUIr—-TMmoO>

r')
SHOWL | NE (NUMBER) ;

UMBER< 100 _THEN WRITE(QUTPUT," ');
UMBER<10 THEN WR[Tﬁg uTPuT,’ ")}

E(OUTPUT, NUMBER

DURE GETDATA(NUMBER);

L INE (NUMBER) 7
(LMARGIN,LM1};

mom

moz

zm
Q
C
X
m

:CZZ

mum
maoz
VNOOUE~—QOUEEEEEIZIFEIEEEITEIEENO

OX—0O- ATMM—0~ VOBV 020002020 0000 —

XQzZzm
mx

712

Program

Editor Program
truncated’);

.
?

' ,NUMBER, '

LASTLINE;

:=LASTLINE
)

(* EDITOR2.PAS *)

LL - STANDBY');

LOW;
->

H(T(1)) / (40-LM1) DO

VAL (DATA);

LOwW:

")

fGH: =VAL (DATA);
IGH: =
HEN HIGH

’
filename

LASTL INE;
é po

|

W <O —— X

ATA
TO

INC
LOW TO HIGH DO

Enter
(DATAY;

6D
POKE§Y+X PEEK(LASTFILE+X));

en b VA~
Z-EXXZF-O0
ACO0OW 4~ —
[a]y alalk iy

iy ~Q—-TWoO
E—~——3Xx—-——-00000LwL

DURE
DURE EDIT;
SW:=1;
TRANGE ;
TE('
ADDR
FOR X:=

Draper Pascal
E
T
N
!
WRITEL

',CHR(UP));

X))
54
EN
1+

Y+
TH

PEEK(
E)=0
% AME, 1
E)=0
2

o e Wy
O X — L L
~uUN+Zu<Z ~
wxE wuw ~Zur
g0 1 Juul v
<Z———>_1—<
Zul Lit-——un

73

Draper Pascal 2.1

(* EDITOR3.PAS *)

W
mx
DEMO
P»—2Zm

'Line => ');
%EOW ’)

OW<1 THEN LOW:=1

—OoOH

TO LASTLINE DO
LN(OUTPUT,T(1));
E§ULT;)

>0 THEN

l(JT,'E: '%;
* D|SABLE BREAK KEY *)

DURE CHECKUPD;
F_CHGSW=1 THEN
EGH

N
WRITELN('File changed but not saved'%; ,
WRITELN('Enter 1" to IGNORE and con 1nue'g;
' or "“S" to SAVE and continue');
C
¢

’

') OR (CMD='S"');
EN SAVé)

?EDURE KEYBOARD;
F SW=1 THEN
REPEA

wum

ND
RO
&

(* EDITOR4.PAS *)
PROCEDURE APPEND;
BEGIN

EG
REPEAT
INC_LASTL INE;

74

Editor Program

HR(BELL), "***Error ',Y,' while saving to disk');

Draper Pascal 2.1 Editor Program

GETDATA(LAST L
T(LASTLINE) =D
UNTIL DATA=
CHGSW:=1;
LASTLlNE =LASTLINE-1

END
EE CEDURE COMP ILE;

NE) ;
ATA

r o...");
REAK KEY *)
, 'COMPILER.PCD");

'l'IG)G)OD
wVH=Z
vl

CHGSW: =1;
LASTLINE =LASTLINE-(HIGH-LOW) -1

EN
PRoéEDURE DIRECTORY;
BEGIN

READLﬁ(
i F DATA- HEN

DATA: -CONCAT(
|F POSéT DATA

F11espec° '

S
Ty
L
A

pilile)
mmDo
o—x i'n>m-——

E
E
#
N
T
T
AD
L

E(

nOZr- Ap-
OY\

é
5
(
E
L
E
#

m
z
a0oCcC
“rz

(* EDITOR5.PAS *)

PROCEDURE INSRT;

BEGI
CHGSW =1;
GETONE;
GETDATA(LOW);'
WHILE DATA<> DO
BEGIN
FOR | :=LASTLINE DOWNTO LOW DO
BEGIN
Xi=1+1;
T(X):=T(1)
END;
INC_LASTLINE;
T(LTW) : =DATA;
LOW:=LOW+1;
GETDATA(LOW)
END
END;

75

Editor Program

2.1
LOW TO HIGH DO

CEDURE LIST;

N
TRANGE ;

E
OR I:

Draper Pascal

PRO
BEG
G
F

~~
O
L]
42
o
Q
C
]
<
»
-
w ~~
~ z -
oes * - >
—~ s | | &
- - v) e o]
> B %] E
[a) ~ o. < [0
< * . - €
wi w0 -
o > @ - C
>~ w e . .- -
oz V4 [o ~ ~ 0
<! —_ - ~ C X
o~ wI ¥ [a] Re) w -~ Q
N =z < w C z <
(=] ul 3 - -
b = ~ ~ o * o 0 Az - (7] .-
1 o - ~ [10] ~ ~ 4 O —uw~ [} ~
LR RS Z<g .o — w [a] wnwIJj [-
~ N o~ [o o O ~— il r Z4 L= o~ ~
- O— ~~ xwv - (] [ol ~ << wWwo -~ - W - - 1
r ITox = - Z W -~ - - 0 Z IC + ~t~-m
e O W eell] U2 >+ I - LT3 ¢ w - pm oo w - E
~~ T I oI ZU w>D o) wev - ~ D 0O s~ Z - o]
~SZ~Z | + = W D — e - - w —eeO— Z WL — w o .
N——— — - xx OFF+ I —+ L] -J wE~Ar —~ ZDJ-0 44 Z ~x 4
— 00O O+ .- FO oo ~mD -2 [— - ~ VI ~ —0 I~ — Ww
W -~-NT - ION = = 0naL<O0 O O D o Db w JZz>2HZZ wn--43 0O ()]
w < —~<ocOw@ =z oV sAr Z~ = Ul [I aw 2N bhrenQ -] a~+ ZUW [0)]
ZEZI DK~ — = ZZ Ouw ZZ e Z@G - LwWOZow -l A0 <+ C
— A JOCOL o I A~ = T -~ DN o ~ Zoxuv_an qZXrF- uUDOa IZ o
A O o ~O0D wudk-_1— O Ju ~O<d a4 O ~ouwuwaxr 1 30— o3 O— -~cC
TW-wWw O U)W -0 4 T A Z ~ e~ O0O BD—ax wa2-— o WO
OX—XX > - w gnuwZz——0oLOkFFx 12Z20— uwn w— o ZFHO0——2ZZ0q T Z—~Z Wz O-
T OxOOuL @ ZZFo—orewl Zweec—I ~ZZ e ZHWLw-.—o —ZWlh e] @YV Z—
uoTaoxX— O D C<O0-00T=Ex URD GSWDO(O o O<«dt-uvrx T w@-—o— o duww D <
Z 0O x—o—uw Z— - 00 —~wwwouw —_iul Z-n+- O ol
W W+~ m ERB W=z W—Z+~o0ox—— + wno— woz+--—
~Q—wwn Wi (o) owa. -~ QO —ouw ZI I ~Q ~l
o0o0g0on— w oxOn ox9ow o=z . JOOA0X OO
Zow = x<w Zx<w

wom w o>m wo.>m

76

Draper Pascal 2.1

READLN(DATAT);
WRITE (Change to ->");
READLN{DATA?2);
t=LENGTH DATA1?‘
FOR_[:=LOW 70 H1&H DO
BEGIN
DATA:=T(1);

PRTSW:=0;
ATA1,DATA3;
ATA1,DATA)<>0 THEN

-

W:
wW:=1;

TEEDATA X Y%;
RT(DATAZ,DATA,X);
=DATA

W=1 THEN

HOWL INE(1);
RITELNgéA%A);
EYBOAR

—4

,DATA)<>0 THEN

6*%&);

C1THEN

OMO~mM -

—HNDZZ Prer
I~
+

nHnxomr »-—
TO>»r —

(* EDITORT.PAS *)

FROTELNC " ;
g: gﬁ');

wnrox
(I I |
wnray
O T
<3V
oQo 0
hhct Q.
it)

—_F
00K -

wevwo . =

R ']

nrox»

- = a =
N A A
.o

- - - o

77

Editor

Program

Dr

aper Pascal 2.1 Editor

, END;

S':SAVE
SND
GIN (* MAIN *
DRIVENO:=PEEK(DEFAULT DRV), ,
DRIVE:=CONCAT{ 'D',DRIVENO,);

w.
REWRITE(éUTPUT E:');

MENU ;

OPTIONS(4); (* DISABLE BREAK KEY *)

LMO:=PEEK{LMARGIN);

LM1:=LMO0+4;

REPEAT |
WRITE('A,C,D,E,F,!|,L,M,P,Q,S,X,?=>");
READéCM é;

WRITELN(CMD);
CASE CMD OF
"A':APPEND;
'C! :CHANGE ;
'D':DLTE;
'E':EDIT;
'F':FILER;
.1, s INSRT;
'L':LIST;
Mo, "2 :MENU;
"P'IPRINT;
IQI ;
'S' SCAN;
X' :COMPILE
ELSE , _
N\gRITELN(CHR(BELL), Invalid command’)

UNTIL CMD="Q";
CHECKUPD ;
CLOSE(OUTPUT

OFTIONS(5); (% ENABLE BREAK KEY *)
PGMNAME : =CONCAT(DRIVE, ' INIT.PCD");
ENéCTL(PGMNAME)

78

Program

A

Draper Pascal 2.1 Ramdisk Programs

Ramdisk Programs
(* RAMDISK.PAS *)

PROGRAM RAMDISK;

E As of 09/26/86 *)
his program checks to see_ if the Ramdisk has alread
setup yet for Draper Pascal. If it has not been, the
required files are copied from drive one to the Ramdi
the default drive number is changed to the Ramdisk d
N
d

**;U

370

number
and contro]
The Ramdi
the fil
VAR CH:

is transferred to the Ramdisk copy of |
ive number 1s)determ1ned by the secon

* Qu Ramd1$k) drive *)

é* in ut dr1ve *)
I VEOUT co PlLéR PCD

QWO O0O0DWIOM
tOUVIUCMmMMoom

o MAA> > m—
Nn—iIlZ—1uv00ZZz0020

mo——0Crr—~ »a0

Ve T
*
n
o+
o
o
o+
S
o
o
LS
5
@
®
R
..
!
3
v
*
Nt

T: CONCAT(DRI EIN DATA%A)
’

rmrvvxrnmc

e to the Ramdisk drive *)

——es <

T:=CONC NIT PCD');
(* COPYFILE.MB5 *)

.TITLE "FILE COPY UTILITY PROGRAM"
BY NORM DRAPER

AS OF 08/04/86

.ORG $5000 ;09/04/86
SPACE $2 704/

oo e

COWVWR~NOP (WN—
—-a 000000000

’
; Operating System Equates =-=---=---m—ocmeeccmc———--
: SPACE 1

06 MEMLO .EQU $02E7 ,start of user memory

10 ICCOM .EQU $0342 ;Ci0O command

79

Ramdisk Programs

2.1

Draper Pascal

o o o
- [o
“ a. a. a.
o] O
L [s0] oo m
6] (&) O O =
[O oo O o
> - —— — a.
O [a)]
o - - - z
— w w w w
O n >0 (% p gy
.- w <<ws w go
X X o o X X 0o
<t NHA4Mm O 3 - LN — EYYS - LY (a]e]
<t<t<tddt 0 w4 O + ©w 0 Zm
OO0 0000 —0O ~+0 ~+ W A4 ~T =~ — ot A NI -~ oo
FHAHAHAHA O I IJCLL O JJIJTOE >0 JJTImn0OE > onn wa«g
T O FO QT THAAHARAA- A ~2002000 —2D02000—-<4<—0000—-00—-0X <WwOooO EExH o
Wi il * %00 ——0——# m —H-0NH————HH—-O0HO H OHK_IN w .. GDD
ooooo .+ In1n t o
nn ninn XA XL LAE> X CLLLIXICLED>T >>O>-F 0 ‘xZ orQZ
— n noeoe (ala] ool difalal Jal Jal gl lyalaldal Halal L AT Ly [Nal AL RITRIN owxrXoxzuw
AL AL—~NZ O ~N TTwWO = JJ00d0n 10 J0Jd0900n 0 10 110700 J10m0mMm @ s> IO « -«
LL A IXXK—> A00Z00Na4— o 0. > w b
OO MC<C<NOIWL JQOOWHHOWE <« o < =z >uwo
0000000 —-00WOooNWD Ixx O p'4 O <D2DZ
llllll ool ——00n.000 0 | O [a] nmow

0000000000000 000000000000000000000000000000COOO000000000000O0A000000
N FINWO I~ 0 NHO T NO N0 ~0DN O ™ NM T INOM 0 DO T NOITUNHO M0 O — NOFINO I~ 0 NO T NMTINW 00D O — N M <t IO~
e e T NNNNNNNNONNO OO MO MO OO O <t <t <t <t <t <t <t g < <t D NN N IN NN LD LD (O (O (OO (O (O OO I~~~ I~ P~~~
lelalelelololalalelolale/alelsle/elololalelelalelolelololololalelalalolalalalolololololalalalalalololalalalalalolololalalololaale o)

80

Draper Pascal 2.1

Sample Programs
(* SAMPLE1.PAS *)

PRCGRAM KALE IDOSCOPE;
VAR 1,J,K,W,X: INTEGER;

L X=99 (* UNENDING LOOP *)

(* SAMPLE2.PAS *)

PROGRAM ROMAN;

* ROMAN NUMERAL SAM
;H ADAPTED FROM PA
\' INTEGER,

X:=V: WRITE X," ')
X5=1800 DO ()

#E ('M'); X:=X-1000
500 THEN

E ('D'); X:=X-500

Nx>-100 DO

TE ('C'); X:=X-100
50 THEN °

E ('L'); X:=X-50

PLE PROGRAM
SCAL USE

M >
_<
—l

EMm:=o
o

—ZEM ZEM—M—X

=

x

N
| TE ('X'); X:=x-10
5 THEN

I_U:UOXOJDG)I_OJUG)XUDQFUDQXOWOf)Z* *

Im omm WIM OMmm OIMm wWwhm WITU

—ZEM ZEM—ZEM ZEM

x

81

Sample Programs

R *
R MANUZL AND REPORT BY JENSEN AND

Sample Programs

Draper Pascal 2.1

C

82

Draper Pascal 2.1 Printer Usage

Printer Usage
Printer usage with Draper Pascal

To print a Pascal _source program, you can load the program into

memory using the Editor, as normal. Then use the 'P° command to
rint on the printer, The source statements will be preceded by a
ine number and a colon.

There are_two ways to print data from your program onto the
rinter. The first is similar to the way it would be done in
ASIC. An example is:

PROGRAM PRINT_1;

VAR 1,J: INTEGER;

BEGIN
)

OPEN
{#2,1:10,9)

o7

#2.8,0,"

FOR ?::1 10’1

BEGI
J:
W

R
END;

CLOSE(#2)
END.
The above example prints a multiplication table on the_ printer.
The second way to print is by using a FILE type variable assigned
to a printer. An example providing the same results as above 1is:
PROGRAM PRINT_2;

VAR |,J: INTEGER;
PRINTER:FILE;

BEGIN

—HZ
ZO0

| %1
TEL

—nZ

G
Je
WR
END;
CLOSE(PRINTER)

END.

%10 .
TELN{PRINTER, 1:10,J)

83

Draper Pascal 2.1 Software License

Software License
Non-Exclusive, Royalty~-free
License to distribute the
Draper Pascal Supervisor
!|. Purpose

This royalty-free, non-exclusive license is provided to_allow
w1d?$pread use of software deve]oﬁed using Draper Pascal. It
?QE.1es only to the original purchaser of Draper Pascal
icensee’”),

1. The License

Subject to the conditions stated herein, Draper Software will
gnant'to the Licensee a royalty-free, non-exclusive license to
istribute the run-time system ("Supervisor™). Licensee_is only
authorized to distribute the Supervisor in object code form and
only in conjunction with _software developed by Licensee which
requires the Sugerv1sor for proper operation. Licensee shall not
use or purport to authorize any person to use any of the
cop{r1g ts, trademarks, service marks, or trade names of Draper
Software without prior written consent from Draper Software.

The Supervisor consists of the file named AUTORUN.SYS on the
sypplied diskette. It may be distributed under another name if
Licensee so desires.

The supplied Disk Operating System (DOS) is excluded and may not
be distributed by Licensse. .

l1l. The License Term

This license will run for a term of five (5% years from date of
ligense acceptance. Extensions beyond that term may be secured by
written permission from Draper Software.

IV. Acceptance

The term of this license will begin two weeks after Licensee has
signed and returned a copy of this license to Draper Software,
pcov1d1nﬁ that no reject notice was sent to you by Draper Software
within the two week period.

TR 1)

84

o
o .
;

Draper Pascal 2.1 ' Software License

V. Additonal Terms and Conditions

A.

Licensee understands and agrees that:

1. The Supervisor is distributed on an "as is" basis without
warranty of any kind from Draper Software.

2. The entire risk ,as to the performance and quality of the
- Supervisor is with the Licensee.

3. If the Supervisor, as incorporated inte Licensee's
roducts proves defective fol]ow1n8 it's purchase,
E}censee and not Draper Software, Draper Software's
1stributors, or retailers, assumes al] costs associated
with or resulting from use of Licensee’'s products
including all necessary repair or servicing.

4, Draper Software shall have no .liabijlity to Licensee or to
customers of Licensee for loss or damage, including
consequent1§1 gnd/or“1nc1denta1 damage, caused or al]leged
to be caused, directly or indirectly, by the Supervisor.
This includes, but is not limited to, any interruption in
service or loss.of business or anticipatory profits
resulting from the use or operation of the Supervisor.

Licensee shall indemnify: and hold Draper "Software harmless
from nz_c1a1m, loss, or]1ab111tK allegedly arising out of
or relating to the operation of the Supervisor as used by
Licensee or customers of Licensee pursuant to this license
agreement.

DT - EEW ¢

Licensee shall not suggest, imply or indicate in any manner
that any of Licensee's software products which incorporate
or use the licensed Supervisor are approved or endorsed by
Draper Software.

Licensee acknowledges that a failure tg conform to the
8rov1s1ons of Section V, Subsection C abovez will cause
raper Software irreparable harm and Draper Software’'s
remedies at law will be inadequate. Licensee acknowledges
and agrees that Draper Software shall have the right, in
addition to other remedies, to cbtain an immediate
1ngunct1on'en§o1n1ng any breach of Licensee’'s obligations
set forth in Section V.C above.

<

No waiver or modification of any provisions of this license
shall be effective unless in writijng and signed b{ the party
against whom such waiver or modification is sought to be,
enforced., No failure or delay by either party in exercising
any right, power or remedy under this license shall operate
as a waiver of any such right, power or remedy.

This Ticense shall bind and work to the benefit of the
successors and assigns ¢of the parties hereto, Licensee may
not assign r1ghts or delegate ob11gﬁt1ons which ‘arise ynder
his license To any third party without the express written
consent of Draper Software. Any such assignment or
de]e?at1on,,w1thout written consent of Draper Software,
shall be void.

The _validity, construction and performance of this license
shall be governed by the substantive law of the State of
Texas and of the United States of America excluding that
body of law related to choice of law. Any action or

85

Draper Pascal 2.1 Software License

proceed1n brought to enforce the terms of this license
shal rough in the County of Dallas, State of Texas, if
under state law.

H. In the event of anx legal proceed1ng between the parties
arising from this license, the prevailing ﬁarty shall be
entitled to recover, in addition to any other re11?f awarded
or granted, its reasonable costs and ekxpenses, including
attorneys fees, incurred in the proceeding.

Your Name

Company Name (if any)

Address

City, State, Zip _,

Telephone Number

Signature apnd Date

86

