

Your Atari

Comes Alive

By
Richard Leinecker and
David Burd

Table of Contents

Chapter 1 3
Electronics Review

Chapter 2 19
Software Techniques and Comments

Chapter 3 28
Display Memeory and Display Lists

Chapter 4 31
Display Lists and Vertical Blank Interrupts

Chapter 5 36
Overlays
Chapter 6 39

The Joystick Ports

Chapter 7 45
Switches
Chapter 8 47

Event Detectors

Chapter 9 55
Motion Sensors

Chapter 10 62
Light Pen
Chapter 11 67

Using Analog Input

Chapter 12 70
Sound & Wave Generators 1

Chapter 13 75
Tone Decoder

Chapter 14 78
Data Selector

Chapter 15 81
Encoders

Chapter 16 86
Decoders

Chapter 17 88

Device Control

Chapter 18 96
Display Lighting

Chapter 19 98
Serial Data Transfer

Chapter 20 104
Networking
Appendix A 109

Parts Suppliers & PC Board Services

Appendix B 112
Programs

Glossary 114

Other Alpha Systems Products

TURBOCHARGE your BASIC programs with BASIC Turbocharger. Includes
over 160 written & tested machine language routines, ready to use.
Book & disk set . $24.95 - Extra Source codes . $10.00

Back up your cartridges with the IMPERSONATOR cartridge back up
system . . . $29.95

Learn about protection techniques with this highly acclaimed 2 book &
2 disk set. Tells all the secrets of software protection.

Atari Software Protection Techniques and Advanced Atari Protection
Techniques and both disks . . . $39.95

Scan & Analyze any program with Scanalyzer. Make any program a binary
load file & find hidden directories . . . $29.95

Make unprotected back-ups of hundreds of programs with Chipmunk . . .
$34.95

Save a bundle with our special Hack Pack. Get Scanalyzer,
Impersonator, Chipmunk, Atari Software Protection Techniques,
Advanced Protection Technigues, Disk Pack 1000 (including all disks &
hardware) . . . $99.95

Digitize your picture with COMPUTERYES, and print it on a 6' poster

with Magniprint II+, or put it on a Print Shop card with Graphics
Transformer.

ComputerEyes & Magniprint II+ . . . $119.95
Magniprint II+ only . . $24.95 Graphics Transformer . . $22.95

Digitize any sound & play it back in your program, or turn your Atari
into a synthesizer. Parrot II . . . $59.95
Parrot Demo disk $5.00 Extra sounds disk $4.95

Call or write for our complete catalog of 8-bit and ST software

Alpha Systems 1012 Skyland Dr. Macedonia, OH 44056
(216) 374-7469

Pretface

The purpose of this book is to enhance the understanding
of Atari home computers by providing instructions for
hardware projects which illustrate general concepts and give
examples of the related programming techniques. While these
projects are simple enough for the novice to understand, they
can easily be elaborated upon to create much more complex
devices.

We are planning other publications as well in the future
edition of this book. Your feedback is actively encouraged in
order to fulfill your needs and reflect your ideas. The best
way to reach us is to call our BBS numbers listed below:

The Burdsnest BBS
205-233-2873

While reasonable care has been exercised with regard to
the accuracy of this book, the authors assume no
responsibility for errors, omissions, or suitability for any
applications. Neither do we assume any liability for any
damage resulting from the use of this book.

Chapter 1
Electronics Review

Introduction

This section may contain a lot of information you already
know. Advanced users can use this section for reference and
review. Beginners will probably want to read it carefully
before starting on the projects.

Before you begin a finished product, it's a good idea to
assemble the project on a solderless breadboard to iron out
any bugs, or make any necessary modifications. It's a
relatively quick and easy method of putting together
projects, and you can use the same parts for your permanent
project.

About Boards

To use a solderless breadboard, simply insert the
components into the holes, which have underlying conductor
strips. Perforated breadboards are good for the final version
of your creations. The components can be soldered or wire
wrapped. i

A breadboard with about 90 - 100 terminal points will be
big enough for most projects in this book. If you need more
space for a large project, such as the phone answering
circuit, just put two together. You can use a jumper wire
kit, or just strip the ends of your wires.

Before you begin construction on your final version,
sketch the layout and pencil in the planned component

locations. This way you can plan a neat, compact board. If

3

you plan to solder the components, make sure you have sockets
for the ICs and transistors.

Soldering

When you solder, make sure all surfaces are clean. Do not
use wire with an oxidized metal end. If you do, you must
strip the end. Use small rosin core solder, and a soldering
iron between 15 and 35 watts. When soldering semi-conductors
(diodes, LEDs, transistors, etc.) make sure all leads have a
heat sink attached before soldering, and limit heating time
to 10 seconds or less.

If you want to use an etched PC board, you can get the
necessary parts from the suppliers listed in Appendix A, or
from Radio Shack. For a really professional job, you can
design the artwork, and have one of the companies in Appendix
A make the PC board for you.

Resistors

Resistors limit the amount of current in a circuit
branch. You can wuse 0Ohm's law to calculate the correct
resistance needed for the job:

E=I x R I=E/R R=E/1I

E is the voltage (in volts), I is the current (in amps), and
R is the resistance (in ohms).

For example, suppose a component requires 5 volts, draws
2 amps of current, and the power source is 12 volts. You can
find the correct resistor using Ohms Law R=E/I, where R =7
volts/2 amps. In this case, R=3.5 ohms.

Most circuits in this book need resistors with a 1/4 watt
rating. If vyou think the resistor will be exposed to more

wattage, you can calculate the wattage using one of these
formulas:

P=Ex I P=I2 xR P=E2/R

To calculate the voltage drop for a device such as an
LED, use the formula:

R = (Vs-vd)/Id

Here Vs is the voltage source, Vd is the correct device
voltage, Id is the current the device draws, and R is the
necessary resistance.

Most resistors are color coded as follows:

VIR
_ /7 I—
£ £ 3

Color 1st digit 2nd digit multiplier

Black 0 0 1
Brown 1 1 10
Red 2 2 100
Orange 3 3 1,000
Yellow 4 4 10,000
Green 5 5 100,000
Blue 6 6 1,000,000
Violet 7 7 10,000,000
Gray 8 8 100,000,000
White 9 9 none

A fourth band may or may not be present. If not, the
tolerance is +20%. A silver band indicates a tolerance of
+10%, and a gold band indicates a +5% tolerance.

"K" means thousand, so a 5K resistor is really 5,000
ohms. Meg means 1,000,000 when used with resistors, so a 2
megaohm resistor has a resistance of 2,000,000 ohms.

When resistors are used in a series, as below, simply add
their values to find the total resistance.

R1i + RZ + R3I
RL + R2 + R3 = Total Resistance

When resistors are used in parallel, as below, you can

find the total resistance with the formula 1/R1 + 1/R2 + 1/R3
= 1/Rtotal AAA

Wiy
Ri

A b b
oY

RZ

W
ey

Voltage Dividers R3

In this book, voltage dividers are used mainly for paddle
inputs. A voltage divider works as follows:

" Vee
R1 R2
*VOUt‘ _____ x Vee
R1+R2
R2
= Ground
Capacitors

Capacitors are wused in this book either to pass AC
signals and block the DC current, to regulate voltage
fluctuations, or to perform a timing function.

When you pass an AC signal and block the DC current, you
must make sure the AC signal is not attenuated. You can do
this by calculating the capacitance value. The capacitance
value is based on the lowest frequency you need to pass. You
can find this value with the following formula, where C is
the capacitance in farads, and f is the freqguency in cycles
per second.

C=1/2 x 3.14 x f x 1,000

If the capacitor will be used to filter power
fluctuations, just use the same formula to calculate the
capacitance value. For half-wave recitifiers, the frequency
is 60, for full wave, 120.

Capacitors don't charge and discharge immediately. To
find out about how much time it will take, use the following
formula. The resistance value is in ohms, the capacitance
value is in farads, and the time is in seconds.

Time = Resistance x Capacitance

In our schematics, if a capacitor has a polarity marking
such as +-1f-, then it is an electrolytic capacitor, and care
must be taken to observe the polarity when constructing the
circuit. Both the polarity and value are usually written on
the case, along with a maximum voltage. Do not exceed the
maximum value, or you will damage the capacitor.

The other capacitors we use are disk capacitors and the
values marked on them can be interpreted as follows:

XX X

VAN

Ist digit 2nd digit multiplier

Read the first and second digits as they appear. To get
the value in picofarads, simply move the decimal point to the

7

right the number of places indicated by the multiplier. A
picofarad is a millionth of a millionth of a farad. To
convert from picofarads to microfarads, move the decimal six
places to the left. For most of these applications, you can
be as far off as 20% and still be OK.

To find the total capacitance value of capacitors in a
series, add their values together.

el] el =
l 2 =
Cl+C2+C3=Ctotal ci C2 C3

To find the total value for capacitors in parallel, use
this formula: —

c1
1/C1 + 1/C2 + 1/C3 = 1/Ctotal

C

‘T

Diodes

Diodes let a current flow in only one direction. We used
two kinds of diodes in this book; recitifier diodes and light
emitting diodes (LEDs).

Recitifier diodes will have a dark band at one end. This
is the cathode lead, and should be connected to the negative
node in the current. This is called forward biasing. LEDs
have a shorter lead, which is the cathode, and a longer one,
which is the anode. Connect the shorter lead to negative, and
the longer lead to positive.

LEDs usually require about 2 volts and draw about .02

amps. Don't exceed these limits, or you may damage the LEDs.
If your power source is greater than 2 volts, use Ohm's Law

8

to find the correct resistor to lower the voltage.

For example, if your source is 5 volts, first find the
voltage drop you need: 5 (source voltage) - 2 (needed
voltage) = 3 (needed voltage drop). The LED will draw about
.02 amps, so your formula will be:

R=E/I, or R=3/.02, so R=1500 ohms

Infrared LEDs are biased the same way. Check the
manufacturers current specifications to find the right
resistor. You can test infrared LEDs with this setup.

DHMS

+ | lop 3
802

Transistors

A single, general purpose transistor is very flexible. It
takes up less space than an IC, and may be more practical
when only one gate is needed.

Bipolar transistors (NPN or PNP) usually have 3 leads:
the emitter (E), the base (B), and the collector (C). The
diagram below shows the transistor from the bottom, with the
leads pointing up. Transistors in a plastic package have one
flat side to help you identify the leads. Those in a metal

e h 5 s
case have a small tab c B E

FET (or JEET) transistors don't have a standard format.
‘Their leads are source (S), gate (G), and drain (D), as
shown.

G

S D

Transistor switches are small and compact. Even if you
combine several switches, they are still smaller than many
ICs. A transistor switch is either ON or OFF. They are biased
so only two regions of the load line, cutoff and saturation,
are used. Below are schematics for two simple NPN transistor
switches. One is inverting, the other is non-inverting.

1ok} °° s

3

L_. 1K

IN auny IN our
K = 18K
Inverting Non-Inverting

You may want to use an FET switch instead. The input
resistance is greater, and it won't load down previous stages
as much. This is the schematic for an FET switch.

— vce
$
€10K
L
+— our
IN
180K $
‘D

You can build an RS flip-flop with two NPN transistors.
It can be used to set and reset the output of a device. The

10

schematic looks like this.

VCC

1:1i3K
1K 1K

Py Py
yve ey

18K

PPV

ﬂF

Bipolar transistors can be used as voltage regulators.
Use the formula below to bias the base for the necessary
voltage.

(R1/(Rl + R2)) x Vec - .7 volts = Regulated Voltage
The schematic below shows a circuit that uses an NPN

transistor to provide a regulated voltage output of 4.3
volts.

Voltage Regulator ICs

Fixed voltage regulators are ideal for adjusting a power
supply to provide additionsl voltage, and for your own power
supplies. Below is a diagram of a 7805 regulator, but it also
applies to 7812 and 7815 regulators. A 7812 gives a regulated

11

output of 12 volts, a 7815 gives 15 volts.

1 - Input |
2 - Ground —] C)
3 - Output —]

If you prefer a variable voltage power supply, you can
use the power supply described in the Testing section of this
chapter.

Integrated circuits are complete circuits in themselves,
and all operating requirements must be observed. A notch or
circle is near pin one. When the IC is right side up, pin 1
is at the lower left, as shown below. There will be a dot or
other marking by pin 1.

[]
R e A AR

Sometimes the date of manufacture is printed on the IC
along with the part number. It's best to keep all ICs
separate and labeled. When building an IC project (except on
a solderless breadboard), always use a socket. Sockets with
qld leads are easier to solder, but tin leads are fine, too.
Always connect unused pins to ground.

Three kinds of ICs are used in this book; TTL, CMOS, and
linear. TTL means Transistor-Transistor Logic. In some
places, we used LS versions of TTL ICs. LS means low power
schottky, and refers to the way the chip was made. CMOS means

12

Complimentary Metal Oxide Semi-Conductor. Linear means the IC
has output that's proportional to the input. Some linear ICs
can be used non-linearly.

L.

2.

TTL ICs have some operating requirements. They are:

Vcc must not exceed 5.25 volts.

Input signals must not fall below ground.

Unused inputs usually assume the high state. If you want
it to be high, connect it to Vcc.

If an input should be in the low state, connect it to
ground.

Connect unused inputs to Vec, to prevent unnecessarily
high current use.

Avoid excessively long connecting wires.

One TTL output will drive up to 10 TTL gates, or 20 LS

gates. One LS output will drive up to 5 TTL gates, or 10 LS
gtes.

1.

If your circuit doesn't work right, check these things:
All pins go somewhere.
All IC p&ns are in the socket.

All operating requirements are met.

. All connections have been made.

Vee is no more than 5.25 and no less than 4.75 volts.

13

CMOS ICs use less current than TTLs, and operate on a 3 -
5 volt range. They also have some operating requirements.
They are:

1. The input to any pin should never exceed the Vcc (except
for 4049 and 4050 ICs).

2. All unused inputs must be connected to the Vcc or ground.
3. Do not connect a signal when Vcc is off.

4. Avoid static at all costs. These chips are very sensitive,
and easily destroyed. Always follow these precautions:
A) Always store them in a conductive container.
B) Never set them on a non-conductive surface.
C) Make sure you have no static buildup when you touch
them.

5. When they are interfaced with TTL, make sure the Vcc is
at least 5 volts.
Logic Gates and Truth Tables
If you want to design your own logic gate for input to or
output from the computer, you can use the following basic

logic gates and their truth tables. L means low, and
corresponds to a binary 0. H means high, or a binmary 1.

14

AND GATE NAND GATE

auT ouT

R GATE NOR GATE

aut ouT

15

EXCLUSIVE OR GATE

ouT

Voltage Comparators

Voltage Comparators (specifically the LM339, which we
used frequently) compare a reference voltage with another
voltage. Usually the reference voltage is set up with fixed
resistors, but it's also possible for it to float. The basic
configurations are below.

A non-inverting comparators output will be low if the
input voltage (pins 5, 7, 9, or 11) falls below the reference
voltage (pins 4, 6, 8, or 10). With an inverting comparator,
the output will be low when the input voltage exceeds the
reference voltage.

ouT
ouT ouT A A
IN REF REF IN IN REF

16

For TTL compatible output, connect a 10K resistor from
the output to +5 volts.

Testing

When you've assembled your preliminmary circuit, it's time
to test it. If it doesn't work quite right, review the
previous sections in this chapter.

Two pieces of test equipment you will need are a
multimeter and a logic probe. The multimeter should have
voltage ranges of 0 - 5 volts, 0 - 25 wvolts, and O - 125
volts. It should have current ranges of O - 100 mA and O -
500 mA. A current range of up to one amp is sometimes
helpful, but not necessary. You should be able to measure
resistances from O - 6 megaohms, and have an accuracy within
5%. The logic probe you choose should be able to handle both
TTL and CMOS levels, indicate pulses, and protect against
reversed polarity.

Ohe more piece of equipment that will make your testing
egasier is a power supply. A combination 5 volt/12 volt supply
is fire for the projects in this book, but a variable range
power supply will give you more flexibility. Your power
supply should be able to handle at least one amp. If you
prefer to build your own, we've provided the schematic for a
variable power supply. If you like, vyou could put two
separate packages together for two separate voltage levels.

17

Sk

DN

as
Trans-
former

: T
+—

. ..o:-. Sl

CL1C2C3
1000MFD

28 volt output

+1 |2
o

AMF 1

*-—

Lm317_Case

Vout

SK
POTENTIO

METER

$
{300

L-I-
-
1MF

18

Chapter 2
Software Techniques &
Comments

The first section of this chapter is a brief review of
binary and hexidecimal numbers. The remaining sections
explain the programming techniques used in the programs we've

provided, along with some tips to help you write your own
programs and machine language subroutines.

Binary and Hexidecimal Numbers

A computer is really a complex set of switches, or bits.
Each bit can be either On or Off. Computers use a number
system called binary, or base 2, to perform calculations.
Binary has two digits, 0 and 1. If a switch, or bit, is Off,
the computer assigns that bit a value of 0. If it's on, then
the computer assigns it a value of 1. As you can see, binary
is a perfect number system for the computer to use.

In binary, the number O is simply 0. The number 1 is
simply 1. But how do you represent a '2' in binary, when the
binary system doesn't have a digit for 2? Think of our normal
base 10 decimal system, with the digits 0, 1, 2, 3, 4, 5, 6,
7, 8, and 9. How do you represent 9+1, when there is no digit
for that number? In decimal, 9+1 is represented with a '0' in
the ones place, and a 1 in the tens place (10). A 2 in binary
is represented in the same way. We put a O in the ones place,
and a 1 in the next place up. In decimal, it is the tens
place, but in binmary, it's the twos place. So 2 in binary is
10. Notice the pattern as the numbers increase in the chart
of Decimal/Binary Numbers.

19

Decimal/Binary Numbers

Decimal Binary
B 0
1 1

2 10

3 11

4 100

L 101

6 110

7 111

8 1000

9 1001

10 1010
11 1011
12 1100
13 1101
14 1110
15 1111
16 10000

To convert a binmary number to decimal, simply multiply
each digit oy its place value, then add all the values up.
For example, let's convert the binary number 1010. The place
values and digits are:

Place Value 8 4 2 1
times Binary Number 1 0 1

Equals 8+0+2+0=10

Below is a chart of Place Values. The binary digits are
represented by xs.

Place Value 128 64 32 16 8 4 2 1

Binary Digits x x x x x x x X

Computers also use the hexidecimal number system, or base

lé. This number system has 16 digits. The next chart shows
some smaller binary, hexidecimal, and decimal numbers.

Binary/Decimal/Hexidecimal Numbers

Binary Decimal Hexidecimal
0 0 0
1 1 1
10 2 2
11 3 3
100 4 4
101 5 5
110 6 6
il 7 7
1000 8 8
1001 9 9
1010 10 A
1011 11 B
1100 12 C
1101 13 D
1110 14 E
1111 15 F
10000 16 10
10001 17 11

If you can convert binary numbers to decimal numbers, you
can convert hexidecimal numbers to decimal numbers. Convert
them the same way, multiplying each digit by its place value,
then adding them up. Use the place value chart below, and
remember the decimal values for the alphabetic digits, boxed
in on the chart above.

21

Place Value 19456 256 16 1

Hexidecimal

Digits X X X X
Example:
Hex number 10C 1 0 ¢C
times the value x256 x 16 x1
Equals 256 + 0 + 12 = 268

Memory locations

The contents of certain memory locations are used to
control your devices and signal the computer. The BASIC
command PEEK enables you to 1look at the contents of a
particular memory location. POKE enables you to put any value
you want in a location. Below is a list of some important
memory locations.

Memory Locations

18, 19,
and 20 The Internal Real Time Clock

82 Controls the left margin

83 Controls the right margin
195 The error number that occurred last. When you set up

a TRAP in your BASIC program, you can look here to
find the exact error.

203-206 A series of 4 free bytes. We often wuse them for
short machine language routines.

546-547 Immediate VBI vector

548-549 Deferred VBI vector

22

564 Light Pen Horizontal value

565 Light Pen Vertical value

624-631 Paddle registers. XL and XE computers use only the
first 4 locations.

632-635 Stick shadow registers. XLs and XEs use the first
four only.

644-647 Trigger registers. XLs and XEs use only the first
two.

710 Screen color in Graphics O
741, 742 Pointer to the top of free memory

752 Cursor inhibit flag. Zero turns the cursor on, 1
turns it off

764 The value of the last key pressed. 255 means all
keypresses have been processed.

1536 to

1791 Page six. The 0S doesn't use it. This is a good
place for ML routines or data.

54016 and
54018 Used to configure the joystick ports. These
locations are explained in Chapter 6.

For more information about memory locations, refer to
Mapping the Atari from COMPUTE! Publications.

Graphics Modes

In most of our demonstration programs, we used graphics
mode O for text and 7 for pictorial displays. The chart below

shows the various graphics modes, available colors, and
resolutions.

Mode Columns Rows # of Colors
0 40 24 1

1 20 24 5

2 20 12 5

3 40 24 4

4 80 48 2

5 80 48 4

6 160 96 4

7 160 96 4

8 360 192 1

The USR function
Calling a Machine Language Routine from BASIC

The USR function is a command that calls a machine
language (ML) subroutine from BASIC. BASIC is a slow
language, but easy to program. Machine language is fast, but
harder to program. You can get the speed of machine language
by using ML subroutines for complex calculations where speed
is crucial. To write your own ML routine, first write the
source code. You can use any language you have a compiler
for, such as PASCAL or ACTION. Then assemble your code. An
assembler puts the routine into binary file form. Save each

routine you write, in case you need it again for another
program.

If you don't have the time to write, assemble, and debug
your own routines, you can use pre-written routines.

24

Professionally written routines are fast, efficient, compact,
and best of all, bug free. BASIC Turbocharger, from Alpha
Systems, is a good source of routines. It contains over 120
written, tested, and debugged routines. All you have to do is
ENTER them into your BASIC program.

There's three ways to call an ML subroutine from a BASIC
program. You can load the routine into a specific spot in
memory, and call it by using that address. Or, you can put
the routine into a string, and call it with the address of
the string. Lastly, you can put the code into a string, and
put the string right inside your program.

If you decide to call the routine from a specific
address, the first step is to load the routine into the
proper place in memory. Page six (locations 1536 - 1791) is a
convenient spot. There's two easy ways to load your routine

in. The first way is to renmame the rtoutine AUTORUN.SYS. The
second is to use data statements, and POKE the routine into

place. When you're ready to use the routine, you can call it
with the statement X=USR(location). X is a dummy variable,
it's simply a place holder. Location is the starting address
of the routine.

When an ML routine is put into a string variable, each
consecutive byte of the routines' code is assigned to a
consecutive byte of the string variable. When you're ready to
use the routine, you can call it with the command
X=USR(ADDR(A$)). Once again, X is a dummy variable. A$ is the
string variable that contains the routine.

A machine language routine can also be put inside the USR
command itself. When you need to use the routine, simply type
X=USR(ADDR(Routine)). The routine is entered in control
characters.)

You can also pass values to and from your routine. These
values are called arguments. The routime may need them for
reference, or it can perform calculations with them. To pass

25

values, put their variable names in the USR statement, for
example X=USR(location, VALUEl, VALUEZ, ...).

If you decide to write your own routines, you'll need to
understand how the computer passes these values. When a BASIC
program calls an ML routine, the computer puts the important
addresses and values in a place called the stack. The first
two bytes it puts in the stack are the address of the current
program, so the computer will know where to go when it's
finished the routine.

Then it puts the arguments, if any, on the stack. The
values are always 2 bytes long, with the most significant
byte first, followed by the least significant byte. The last
thing on the stack is a single byte, which contains the
number of arguments passed. If you didn't pass any arguments,
the byte will be a O.

When the computer is finished, the result

OF VALUES| is literally a stack of numbers. The number

VALUE #3 of arguments is on top, followed by the

VALUE #2 arguments themselves, in descending order,

VALUE #1 with the address to return to on the bottom.

ADRESS To get to any particular number in the stack,
you must first pull off everything on top of
it

When you pull a value off the stack, it comes off most
significant byte, followed by least significant byte. If you
didn't pass any values, don't forget to pull off the single
byte on top, which indicates the number of arguments. If you

don't, the computer will interpret that byte as part of the
address it's supposed to return to.

If you want to learn more about machine language
routines, refer to one of the many excellent books available

on the topic. BASIC Turbocharger, from Alpha Systems, is a

good one. It contains over 120 pre-written routines you can
study as examples, or modify and experiment with.

26

The program USRMAKER, on the disk, will take a binary
load file and put it into USR format. To use this program,
first write and assemble your routine. Then run USRMAKER. The
computer will ask you to enter the drive number and the
filename of your routine. USRMAKER will load in your binary
file, and ask what form you want the data to be put in. The
three choices are 1) Address of a string of characters, 2)
Data statements, and 3) String variable. If your routine
contains a 155, you must use data statements. Once you enter
the number you want, USRMAKER will put the Troutine into the
specified format, enter the lines in memory in BASIC, then
delete itself. You can wuse the subroutine in any program you
like. You may have to change the line numbers and list the
lines to disk, so they can be entered into your program.

27

Chapter 3
Display Memory &
Display Lists

The visual display you see on your Atari screen is
controlled by the ANTIC chip. The Display List 1is the data
the ANTIC chip uses to set up the screen. When the ANTIC chip
updates the screen, it stops the 6502 processor, gets the
display list data, then restarts the 6502. The higher the
graphics mode, the longer it takes the ANTIC chip to update
the screen. To get maximum speed for heavy duty number
crunching, you can turn off the ANTIC chip and the screen
display by using location 559 ($22F). This way, the 6502 can
work uninterrupted.

The display list is a set of numbers that designate the
graphics for each line on the screen. Each graphics mode has
its own display list number.

When you begin experimenting with display lists, the
first thing you must do is find the starting address of the
display list. The address and the length of the list are
different for each graphics mode. You can find the current
address in locations 560 and 561. Next is a sample display
list.

28

CODE Represents Comments

11.2 Blank Line These lines

112 Blank Line prevent

112 Blank Line overscan

66 64+2 64 - next 2 bytes

are adr of screen
memory, 2 is
graphics mode

XXXX LSB/MSB adr
XXXX of screen
memory

rext 23 lines

2 23 lines of
gr mode 2
65 64+1 64 - next 2 bytes

are adr of next DL
1 - wait for VBI

XXXX LSB/MSB adr
XXXX of screen
memory

When you write your own ML routines that wuse a graphics
mode other than 0O, you have to modify the pointers to the
display list (the pointers are 560 and 56l1). We change
graphics modes in machine language by copying the display
list from BASIC after issuing the GRAPHICS command, and then
poking the values into memory.

An essential part of the screen display is display
memory. As you can see from the sample display list, the
fifth and sixth bytes of the display list are the pointers to
display memory. These two bytes are in LSB/MSB form.

29

Basically, display memory is just a list of numbers that tell
the ANTIC chip what to display on the screen. In most
instances, display memory for graphics mode O begins at
40000. The following BASIC commands will put the address of
display memory into the variable DISPLAY.

DL=PEEK (560)+PEEK(561)*256
DISPLAY=PEEK (DL+4)+PEEK (DL+5)*256

These lines can be entered in direct mode in BASIC. The
variable DISPLAY will have the beginning address of display
memory. Display memory starts with the upper-left corner of
the screen. The lower-right corner of the screen is the last
byte of display memory. Each position on the screen has a
corresponding location in display memory. In graphics mode O,
the end of display memory would be at 40960 (assuming the
beginning is at 40000). You can put characters directly on
the screen by poking display memory with the internal value
of the character. The internal value is not ASCII or ATASCII,
but the actual value of the character the computer uses.
"Mapping the Atari" by Compute! Books has a complete list of
the ASCII, ATASCII, and internal values of each character.

Now, let's look at how the 6502, ANTIC, and C/GTIA chips
all work together. First, the ANTIC chip interrupts the 6502
to get information from the display list and display memory.
Then the 6502 goes back to work. ANTIC checks the graphics
mode and sends that information, as well as the actual data
to be displayed, to the C/GTIA chip. The C/GTIA chip then
converts the information from the ANTIC chip into signals
that your TV/Monitor can display. The whole process repeats
every 1/60th of a second.

The program called DDISPLAY, on the disk, will show you
some information about the display list currently in memory.
There's a short BASIC routine described at the end of Chapter
5, Overlays, that will convert ATASCII values into internal
values for you.

30

Chapter 4
Display List &
Vertical Blank Interrupts

One small problem with programming in BASIC is that a
status or operation is only executed when that commmand is
encountered in a program line. When something needs constant
attention, there is no real way to do it in BASIC, because
the language is so slow. You can solve this problem by using
a DLI (display 1list interrupt) or a VBI (vertical blank
interrupt).

Display List Interrupts

As you remember, the display list is composed of a series
of numbers that tell the ANTIC chip what should be displayed
on each line. The monitor draws the pictures on the screen
with an electron gun, inside the monitor. The gun draws the
picture, one line at a time, starting in the upper left hand
corner of the screen. When it reaches the far right edge of a
line, it pauses to stay in sync, then returns to the left
side of the screen.

The time between the moment the electron gun finishes one
line and begins the next is when a DLI routine is executed. A
OLI routine is run every 1/60th of a second, every time the
screen is updated. The DOLI is 1limited to about 36 machine
cycles, so only short routines should be put here.

The whole OLI process begins when the ANTIC chip finds a
byte in the display list which has the seventh bit set to l.
When the ANTIC chip reaches the end of that display line, it
checks location 54286 ($D40E). If bit 7 of location 54286 is
also a 1, the DLI routine is run. If bit 7 of location 54286

31

is a 0, then the ANTIC chip simply continues with screen
update.

To perform a DLI, the computer looks at the pointer in
locations 512 and 513 ($200;$201), in LSB/MSB format. Then it
Jjumps to that address, and performs the DLI routine. When
it's finished, it goes back to the main program.

Your DLI routine must save all the 6502 registers before
it does anything. You can do this by using this routine:

PHA ¥ Push the accumulator
TXA * X register to the accumulator
PHA * Push the accumulator

(X register value)
TYA * Y register to the accumulator
PHA Push the accumulator

(Y register value)

%*

Now all the registers are saved, and you can begin your
routine. If you don't wuse the registers in your routine, you
don't need to save them to the stack.

Your DLI can check or change almost anything. DLIs are
often used to change the graphics that are displayed on the
screen. When your routine is finished, you must restore

everything to it's original state. You can use this routine
to do it.

PLA * Get the Y register value

TAY * Put it into the Y register

PLA * Get the X register value

TAX * Put it into the X register

PLA * Get the original contents of
the accumulator

Your DLI must end with an RTI, which returns control to

32

the main program.

To set up your OLI, first load it into memory, then set
locations 512 and 513 ($200,%201) to point to the address of
your routine. Next you must choose the display 1list byte to
alter. You can use any byte except the pointers to screen
memory. Remember, your DLI will execute after the electron
gun has finished drawing the line with the altered byte. To
set up this byte, which is called a flag, just change the
seventh bit to 1. You can do this by adding 128 to the value
of the byte. To start the DLI, store a 192 in location 54286.
If location 54286 is not set, then the ANTIC chip will think
the flag was not a flag at all, just another pizce of screen
data. If you've written your DLI routine correctly,
everything will function normally with your routinme running.

VERTICAL BLANK INTERRUPTS

The vertical blank interrupt is executed in the time it
takes the electron gun to go from the bottom-right corner
back up to the upper-left cormer. It's still executed once
every 1/60th of a second, every time the screen is redrawn.
The VBI offers more time for a routine to run than a DLI.

There's two kinds of VBIs. One type of VBI, an immediate
VBI, allows vyour routine to be about 2,000 machine cycles,
the other kind, a deferred VBI, allows about 20,000. An
immediate VBI runs from start to finish during the time it
takes the electron gun to travel back to it's beginning
position. This allows screen parameters to be changed, and
show up as a whole new screen. A deferred VBI starts at the
same time, but after about 2,000 machine cycles the screen
redraw begins, even though your routine is still running. If
you plan to use the VBI to update something on the screen,
you should use an immediate VBI.

When you sét up a VBI,the first thing to do is choose

33

which type you want. If 2,000 cycles is enough time, then an
immediate VBI is fine. Remember that longer routines steal
more processing time from your main program. If speed is
crucial, keep your VBIs short.

Oce you have decided which type you want and what it
will do, you have to write vyour routine. Then you have to
load it into memory. You can put it anywhere in free memory,
page six (1536;$600) is always a @good place. If it's an
immediate VBI, set the two locations 546 and 547 ($222 and
$223) to point to your routine in MSB/LSB format. If your VBI
routine is a deferred VBI, set the locations 548 and 549
($224 and $225) to point to your routine, also in MSB/LSB
format.

You must end your routine with a JMP. For an immediate
VBI, IMP $E45F, for a deferred VBI, IMP $E462. If you want to
increase the speed of your immediate VBI by jumping over the
0S VBI, end it with a JMP $E462 instead.

When you are setting the pointers of the VBI to your
routine, there is a very small chance that the interrupt will
occur in between loading both pointer bytes. If that
happened, the vector would not send the routine to the
correct address, but instead send it somewhere into memory,
and anything could happen. Fortunately, the Atari 0S has a
way to prevent this from occuring. The routine located at
$E45C will store the pointers to your routine safely. To use
this routine, load the X register with the high byte of the
address of your routine, and load the Y register with the low
byte. Then load the accumulator with a 6 for an immediate
WBI, or a 7 for a deferred VBI. Now do a JSR $E45C. The
pointers will be put in safely. This is a sample routine.

LDY #L.SB * Load the least significant byte of the VBI

address

LDX #MSB * Load the most significant byte of the VBI
address.

LDA #6 * 6 is immediate, 7 is deferred

(or 7)
MP $E45C * You'll be returned here after the pointer
routine is done.

10 FOR X=1 to 11

20 READ A

30 POKE 1536,A:REM Put this short routine wherever you have
room, or put it in a string

40 NEXT X

50 X=USR(1536)

60 REM The VBI pointers are installed

100 DATA 104,160,LSB,162,MSB,169,MODE, 32,92,228,96

Note that you must put your MSB/LSB pointers and the mode
(6 or 7) in the DATA statement.

35

Chapter 5
Overlays

The overlay is a very useful tool, because it provides a
space on the screen for displaying information, and it stays
in the same place, regardless of how much the rest of the
screen scrolls. It's great for displaying the status of
registers, variables, or locations while you're programming.

As you remember, the display list is a list of bytes that
indicate what to display on the screen. The 66 in the sample
display list in the pevious chapter ment the next two bytes
of the display 1list was the LSB/MSB address of display
memory, and also to display a graphics mode O line. :

An overlay is created by changing the address of certain
parts of display memory. More than one place in memory can be
used for display memory. Only the screen memory stored in
locations 40000 and above are updated from the keyboard. You
can create an overlay by placing a 66 in the display list
where you want the overlay to be, and making the next two
bytes the LSB/MSB address of the display memory for your
overlay. If you put the display memory for your overlay lower
than location 4000, your overlays display memory will not be
affected by the keyboard. We usually put overlays at the top
of the screen.

There's three overlay programs on the accompanying disk.
OVRLAY1 and OVRLAY2 create overlays that monitor the joystick
ports. OVERMAKE allows you to create your own custom
overlays.

To run OVRLAY1l or OVRLAY2, rename the program AUTORUN.SYS
and reboot the computer. OVRLAY1l displays four pieces of

36

information. In the upper left hand corner of the screen, it
shows the status of port 1 in binary form. If an individual
bit is connected to ground, or receiving a TTL level low, a 1
will be displayed. If the bit is not connected to ground, or
if it isreceivinga TTL level high, a 0 is displayed. Beneath
this number is its decimal value. In the upper right hand
corner is the status of the trigger bit of port 1. Below that
is the status of Paddle 0, labeled ENTER. If Paddle O is
connected to ground, it will say ON. Otherwise, it will say
OFF. To turn the overlay off, press START. To turn it back on

again, press OPTION. All the overlay values are automatically
updated with a VBI.

OVRLAY2 is designed to work with the data selector
hardware described in this book. It displays the same
information as OVRLAY1l, plus some additional information for
the data selector.

The program called OVERMAKE will make .a custom overlay
for you. When you run the program, it asks how many lines you
want for the overlay, and if you want a line to separate the
overlay from the rest of the screen. Then it asks where in
memory you want to put your overlay data. Page six is fine,
but only 6 text 1lines, or 5 text lines and the separating
line, will fit. If you place it towards the top of BASIC,
MEMTOP will automatically be adjusted. Then the program will
ask for a string to be displayed on the overlay. If you don't
want anything, just hit RETURN. If you do type in a string,
the maximum number of characters is 40 per line.

Now OVERMAKE will create a BASIC routine that will
generate your overlay, then delete itself. Type RUN, and your
overlay will appear. You can change the line numbers of the
overlay routine, LIST it to disk, and ENTER it into your own
BASIC programs.

When you've set up your custom overlay, you may want to
run the program DDISPLAY. It will give you all the pertinent
information about your display list.

37

Your custom overlay uses information in internal values.
These values are not the same as the ATASCII values usually
used in BASIC programming. The following routine will change
ATASCII values into internal values, to use with your custom
overlay.

10 REM X is the ATASCII value .

REM Y is the internal value

Z=0:1IF X>128 THEN X=X-128:7=128

IF X<32 THEN Y=X+64+Z:GOT0 70

IF X<96 THEN Y=X-32+Z:G0OTO 70

Y=X+Z

REM Now do the next character, or insert this one into
memory

358388688

38

Chapter 6
The Joystick Ports

The older Atari 800 computers have four joystick ports
across the front of the machine. Atari XL and XE computers
have two joystick ports on the right side of the machinre.
When you program in BASIC, the ports are numbered beginning
with 0. For an 800, you have ports 1, 2, 3, and 4, called
ports 0, 1, 2, and 3 in BASIC. for an XL or XE, ports 1 and 2
are called 0 and 1 in BASIC.

The command X=STICK(0O) will give you the value of
Jjoystick port 1. Below is a chart showing which number to use
in BASIC to get the values from a port, and the registers for
each port. You can read the hardware registers by PEEKing
into that location. Note there are two paddle inputs for each

port.

BASIC NUMBER

STICK (#) 0 1 2 3
STRIG(#) 0 1 2 3
PADDLE (#) 0,1 2,3 4,5 6,7

HARDWARE REGISTERS

Stick 632 633 634 635
Trigger 644 645 646 647
Paddles 270 272 274 276

271, 273 215 277

39

The Pins

Each joystick port has 9 pins. Below is a diagram of the
pins' arrangement, and a chart showing the function of each
pin.

e

e

3
|

\IU\UIJ-\\.JNl—‘|

Function
Data Bit O
Data Bit 1

Data Bit 2
Data Bit 3
Paddle A
Trigger
5 volts
(safe to draw
300 ma)
Ground
9 Paddle B

@

Pins 1-4 are held to 5 volts by a 10K internal resistor,
and are TTL compatible. Normally, these pins are set as 'read
only'. You can also set them as I/0 or write only.

Pins 5 and 9 are connected to separate internal analog to
digital converters. These pins can read voltages from O to 5
volts, and all values in between.

Pin 6 corresponds to the trigger button.

Pin 7 is a 5 volt source. We used it to power several
devices in this book. If you choose to wuse this as a power
source, always draw less than 300 milliamps. This is a safe
current level to draw, but avoid any greater drains.

Pin 8 is ground. It must be connected to the ground of
every device you plug into the port.

40

The Port

The connector that plugs into the joystick port is called
a DB-9 female socket. The port 1is called a DB-9 plug. When
you order the part to plug into the port, make sure you order
a DB-9 Female Socket.

khen you solder the DB-9 socket, keep track of the pins.
It's easy to make the connections exactly backwards, since
you'll be looking at the wrong side. The chart below will
help you avoid confusion.

Pins on Computer 9 Pin Socket
The port on the Front - Plugs Back - Connect
computer into the computer wires here

The plastic hoods on the DB-9 female socket may prevent
the connector from plugging all the way in. The hoods are
there to protect the soldered connections. If the socket
won't fit all the way into the port, snip off the top and
sottom plastic pieces which extend beyond the metal part of
the DB-9. Install the screws that hold the hood together (but
not the two that fit in the snipped off part). Then superglue
the hood together, and hold it while it sets.

When you build your projects, NEVER connect pin 7 (5
volts) directly to pin 8 (ground). This will draw more
current than vyour system is capable of delivering, and may
burn out your PIA chip. In some projects, we used resistors

41

in between these two pins. This is acceptable, as long as the
current is less than 300 milliamps. It 1is safe to draw
anything under 300 milliamps.

Reading the pins

There's several ways to read the data from the joystick
ports. You can also send data to your devices, through the
Jjoystick ports. To read pins 1-4 in BASIC, you can use the
command X=STICK(#). The value you get will be between O and
15. When pins 1-4 are all high, or at 5 volts, the value will
be 15. If they are all low, or connected to ground, the value
will be 0. If pins 1-4 are in different states, the value
will be somewhere between O and 15. You'll need to check each
bit of the register to determime the state of each pin.

When you PEEK in location 54016, you'll get a binary
number which is a combination of pins 1-4 in ports O and 1.
Oh older 800s, location 54017 will give you the combined

values of pins 1-4 in ports 2 and 3. This 8 bit number has
one bit for each pin, as shown in the chart. The place values
are used to set the pins as write only, described in the next
section.

Place
Value

A
2
[os]
—
+

=
2
|—
\Jm\nbur\)b—-o|-
@

&
=
cr
IN

b\ﬂl\)""b\.ﬂl\)"’l'

128

When the pins are in their normal, read only state, you
can look in the hardware register and see a value of O or 1

42

for each pin. If the pin is connected to ground, or receiving
a TTL low signal, it will have a value of 0. If it is not
connected to ground, or if it is receiving a TTL high signal,
it will have a value of 1. If the pins are set as 1I/0, they
will be at a level approaching O for a TTL low signal, and at
a level approaching 5 volts for a TTL high signal.

You can read the paddle pins 5 and 9 with the BASIC
command X=PADDLE(#), or by PEEKing the hardware register. The
values from these pins will be between O and 228, depending
upon the voltage. There is a bug in the operating system that
prevents the entire range of possible values (0-255) from
gppearing. There's more about the paddle pins in the Analog
to Digital chapter in this book.

The BASIC command STRIG(#) will give you the value of pin
6, the trigger pin. If pin 6 is low, or connected to ground,
the value will be 0. If it's high, or not connected to
ground, it will have a value of 1.

Writing to the ports

Before you send data to your devices through the joystick
ports, you must first set up the ports for output. You can
write to pins 1-4 in any combination. Bits 1-4 of ports 1 and
2 are combined into a single 8 bit number. If you are using
an older 800, pins 1-4 of ports 3 and 4 are also combined
into a single number.

To configure the ports for output, first POKE 54018,56.
Then decide which pins you'll be writing to. Now look at the
chart in the previous section, and determine which bits
you'll need, and the place values for those bits. Then add up
the values. Now you have a total value.

For example, let's say you want to write to port 1, pins

43

1, 2, and 4, and port 2, pin 2. These are bit numbers 1, 2,
4, and 6. The place values for these bits are 1, 2, 8, and
32. Now add them up; 1+2+8+32=43. Your total value is 43. You
could put it in a variable called BITS.

Now POKE vyour total value into 54016. In the example
above, you'd POKE 54016,BITS. Then POKE 54018, 60. Those pins
in the joystick ports are now ready to receive data, and send
it along to your devices.

44

Chapter 7
Switches

Switches are the first devices we'll cover. Switches are
fairly simple, but extremely useful. These switches will give
you a chance to become familiar with the Process of building
and programming devices. Many of the techniques used to build
the switches are also wused for the more complex projects in
this book. Some of those projects use the switches described
here, so if you build them first, you'll have a head start on
some of the other devices.

First, we'll start with a brief review of the joystick
ports, and then we'll explain how these switches work. Next
is a parts 1list, and the assembly instructions for the
switches. The last thing in this chapter is a discussion of
the software, which lets vyou use these simple switches in
many different ways.

Pins 1-4 of the joystick ports each have a corresponding
data bit. The data bits for pins 1-4 of joystick ports 1 and
2 are combined into a single 8 bit number stored in location
54016. When any of these pins are low, or approaching ground,
the pin will return a bit value of 0. If the pin is high, or
approaching 5 volts, the bit value will be 1.

Inside the computer, pins 1-4 of each port are connected
to 5 volts through a 10K resistor, When nothing is plugged
into the joystick ports, the resistors hold the bits values
to high. But, when the pins are connected to ground, the
internal resistors have no effect on the values.

By connecting a switch between pins 1-4 and ground, you
can control the state of the pins and their corresponding bit
values. When the switch between a pin and ground is closed,

45

making a connection to ground, the bit value for that pin
will be 0. When the switch is open, and the connection is
broken, the value will be 1.

Parts List

1 to 4 DB-9 Female Sockets (Hoods Optional)

1 to 4 Momentary, Normally Open, Pushbutton switches
Hookup wire - 26 gauge solid wire or telephone wire
Project Box (optional - for a finished look)

One of the switch programs described in this chapter will
work with only one switch, connected to pin 1. The other two

prgggams require at least two switches, connected to pins 1
an

To assemble this project, connect each switch to pins 1-4
and ground. Connect switch 1 to pin 1, switch 2 to pin 2,
etc. Remember, do not make a direct connection between pin 7
(5 volts) and pin 8 (ground). If you become confused about
which pin is which when you solder your DB-9, refer to the
diagram in Chapter 6, The Joystick Ports.

The Software

The switch hardware 1is very simple, but the software
makes it extremely flexible. There's three programs on the
disk that work with the switches, SWITCH, STOPWTCH, and
LOGIC.

The first program, SWITCH, lets you use your switch as a
momentary switch or a toggle switch. When you first run the
program, it begins in Momentary Mode. The values of the bits
for pins 1-4 of joystick port 1 will be on the screen. If a
switch is closed, making a connection to ground, the
corresponding bit value on the screen will be 0. Otherwise,
it will be a 1.

46

Chapter 8
Event Detectors

Event detectors signal the computer that something has
happened. In a way, they give the computer a very rudimentary
sense of 'sight' and 'touch'. We'll discuss different kinds
of switch detectors, white light and infrared sensors, and
touch switches. The last thing we'll cover in this chapter is
the program called DETECT, which monitors these devices. The
applications for these detectors is unlimited, so let your
imagination go.

Switch Detectors

Switch detectors are the simplest kind of event
detectors. The switches are placed between a pin and ground.
When the status of the switch changes, the bit values for the

pins will change, and the computer will realize that
something has happened.

The first kind of switch detector you might want to build
is @ door alarm. You can monitor up to 10 switches at once; 8
from pins 1-4 in ports 1 and 2, and one from each trigger pin
in each port. With a data decoder, discussed in a later
chapter, you could monitor wup to 255 different alarm
switches.

To build vyour alarm, vyou'll need door alarm switches,
hookup wire, and one or two DB-9 sockets. Hook up the alarm
switches to the doors and windows you want to monitor.
Connect the switches between the pins and ground, the same
way you built the switches in the previous chapter. When the
switches are closed, the alarm is set. When a switch is

47

opened, and the connection to ground is broken, the alarm is
triggered.

You could also use micro switches as alarms. Very little
movement is required to open and close these switches, so
they can be used 1in places where a normal door alarm switch
is impractical.

You can use the program DETECT, discussed at the end of
this chapter, or a variation to control your alarm system.
You can combine your alarm system with some of the other
projects in this book to create a complete custom security
system. For example, the computer could turn on the lights if
it senses motion in a specific area, or sound an alarm if a
door or window is opened. You might want to program in

telays, so you can enter and leave without triggering the
alarm.

Visible Light Detectors

There's several kinds of visible light detectors, but
they all operate on . the same general principles. A narrow
beam of light is aimed at a light sensor. The sensor is
connected to the computer through the joystick ports. When
the light beam 1is broken, the computer can 'see' it by the
change in the bit values from the ports.

BASIC PHOTOTRANSISTOR DETECTOR

This light detector is made from a single
phototransistor. An 0P802 works fine, but you can use any low
current phototransistor with a low saturation resistance.

Parts

1 DB-9 Female socket

1 0P802 or other phototransistor
Connecting wire

Light Source

An 0OP802 has three leads. When vyou look at it from the
bottom, you'll see the three protruding leads, and a metal
tab. The lead closest to the tab is the emitter, and it is
connected to ground. The one farthest from the tab is the
collector, and it's connected to the pin in the joystick
port. The middle lead isn't used, and can be snipped off.

Solder the wires to the 0P802's leads, then connect them
to the appropriate pins in the socket. Set the 0P802 up on
one side of the area you'll be monitoring. Set your light
source up across from it, and aim the beam directly at the
phototransistor.

PIN 1-4,6

_— op8ez
LIGHT PIN
RAYS = 8

When the phototransistor is saturated with light, it has
a very low resistance, and the computer will think the
Joystick pin is connected to ground. When the light beam is
broken, the phototransistor will have a very high resistance,
and the computer will think the connection to ground is
broken.

If there is too much ambient light, or light coming from
other sources and not ment for the detector, the

phototransistor may not be able to tell when the light beam

49

is broken. The next two detectors solve that problem.

BASIC PHOTOCELL DETECTOR

The Basic Photocell Detector works a little differently
than the phototransistor detector. The photocell produces a
DC voltage when light touches it. This voltage 1is fed into
pins 5 or 9. The A/D converters inside the computer will
produce a value from 0-228, corresponding to the level of
light touching the photocell.

If you constantly average these values, you can produce a
reference level voltage. This lets the computer 'adjust' the
detector to work in different lighting conditions. Of course,
the hardware itself is not adjusted in any way. The software
compares the information from the photocell to the reference
voltage. The reference voltage will change as the ambient
light in the environment changes.

To build the Photocell Detector, you'll need a photocell,
wire, DB-9 Female connector, and, of course, a light source.

PIN 5
oR 9

PHOTO- E
CELL EE

LIGHT
RAYS

ENHANCED DETECTOR

The Photocell Detector is more flexible than the Basic
Phototransistor Detector, but ambient light may still prevent
it from working properly. The Enhanced Detector solves the
problem by using two separate phototransistors. One sensor

sets up a reference voltage based on the ambient light. The
other sensor is the actual detector. When the beam of light

touching this phototransistor is broken, the detector
software is triggered. This detector is very sensitive, it
takes only a slight variation in the 1light level on the
second detector to alert the computer.

LM339 comparator

0P802s or other phototransistors
DB-9 connector

1K resistors

wire

N = N =

Build the detector as shown in the diagram. Set your
light source up across the room from the detector, and aim
the beam at the detector sensor.

+5
PIN 7 PINS 1-4

PETECTOR
LIGHT
1K 1
AMBIENT 3 121
LIGHT A
R 1806 4
1K 5
LM3I3Z9
LPIN
8

Infrared Detector

Both the Basic Phototransistor Detector and the Enhanced
betector work well with infrared LEDs. Choose an infrared LED
with a high output. Radio Shack carries one that emits about
1.5 milliwatts (catalog # 276-143(TIL906-1)).

You can increase the range of your detector with a 6 watt
infrared LED. The angle of radiation, the angle at which the
beam is emitted, is important. Too high an angle can prevent
the detector from working properly. 20 to 30 degrees is best.
Avoid those with an angle over 50.

Connect your infrared LEDs with a 1/2 watt 330 ohm

voltage dropping resistor. Use the circuit described in
Chapter 1 to test your LEDs.

Touch Switches

Touch switches are event detectors that are triggered by
the touch of a finger. Touch Switch #1 is activated by
touching two wires at once with the same finger. You may want
to use an etched metal plate ‘instead of two touch wires.
Touch Switch #2 works when a single wire 1is touched. It's
recommended for indoor use only.

52

TOUCH SWITCH #1

4011 CMOS

BD-9 connector

100K resistor

22M resistor

wire

Optional etched metal plate

— = =

PIN 7
+5

14 13 12 11 18 9 8
4011
1z T 4 5 & 7
b
y
322M PINS 1-4 = PIN
OR 6 a
188K

TOUCH MWIRES

TOUCH SWITCH #2

Parts

555

100K resistor

DB-9 connector

capacitors - .1, .05, & 4.7
wire ‘

W o =

53

+5
108K
o W
8 7 6 S l
, 85 +]a.7
555 T T
.1
- 1 2 I 4
i |
PINS
T?&%’é 1-4 OR &

The Software

The program called DETECT on the disk will monitor all
these detectors for you. It displays the status of all eight
Jjoystick bits, (pins 1-4 from ports 1 & 2), both trigger
bits, and all four paddle registers. The Photocell Detector
uses the paddle pins, all the other detectors use the
joystick data bits (pins 1-4) and the trigger bits (pin 6).

This program is a good starting point for your custom
security system software, or anything else you want to use
these devices for.

54

Chapter 9
Motion Sensors

The devices in this chapter are advanced variations of
the light sensors described in the previous chapter. They
will enable you to determine the speed and acceleration of a
moving object.

First, we'll quickly review some basic physics and
mathematic principles about motion, speed, and acceleration.
Then we'll describe how to build a simple motion and
acceleration sensor, and discuss the programs that work with
it. We'll also describe a setup that will monitor the motion
of a pendulum, and discuss a pendulum motion program, which
will provide you with some interesting data about the
pendulum's motion.

About Speed and Acceleration

Speed is a number that describes how fast an object is
moving. Technically, speed has no direction. Velocity is
speed with direction. To keep things simple, we use only
average speed.

To find the average speed of an object, take the distance
the object traveled, and divide it by the length of time it
took the object to travel that distance. This is the formula
Speed=Distance/Time.

For example, let's say the total distance is 5 miles, and
the time is 5 minutes. To compute the average speed, you
would wuse the calculation Speed=5 miles/5 Minutes. This
divides out to 1 mile/l minute (or 60 mph).

55

You are probably familiar with speed measured in miles
per hour. Most physicists and other scientists measure speed
in meters per second. Since space is a vital consideration in
these projects, we measured speed in centimeters per second
(a centimeter is 1/100th of a meter). The basic formula
remains the same, no matter what units you use to measure
time and distance.

Acceleration is a change in velocity or speed. Average
acceleration is the difference between one speed and another

speed, divided by the time it took to change speeds. The
formula is Acceleration=(Speed2-Speedl)/Time.

For example, let's take a car traveling at 40 meters per
second (Speedl=40 mps). The —car speeds up to 60 mps
(Speed2=60 mps). It took the car 40 seconds to go from speedl
to speed2 (time=40 seconds). To calculate this acceleration,
the formula looks like this: (60 mps - 40 mps)/40 seconds, or
20 mps/40 seconds. When it's divided out, we get 1 meter per
second/2 seconds.

Because the unit <f time, in this case seconds, appears
twice in the formula, physicists square the units to get them
out of the way. In this case, the seconds are squared. So the
car's acceleration is 1/2 meter per second 2,

THE MOTION DETECTOR

When you set up your motion detector, you'll know the
distance between each individual sensor. You need only two
sensors to determine speed. When an object passes the first
sensor, the computer begins keeping time. When the second
detector is triggered, the computer stops. Now you have the
time, and you already knew the distance, so the average speed
is easy to find.

We used four detectors and a slightly simplified version
of the acceleration formula to compute average acceleration.

We found two accrelerations, added them, then divided by 2.

56

When an object passes detector #1, the timer begins. The
speed between detector #1 and #2 is speedl. The speed between
#2 and #3 is speed2. If you subtract speedl from speed2, you
gt accelerationl (Speed2-Speedl=Accelerationl). The speed
between #3 and #4 is speed3. If you subtract speed2 from
speed3, you get Acceleration2 (Speed3-Speed2=Acceleration2).
To find the average acceleration, simply add both
accelerations, and divide by 2 (Accelerationl + Acceleration2
/ 2 = Average Acceleration). So, our formula looks like this:
((Speed2-Speedl) + (Speed3-Speed2)) / 2 = Average
Acceleration.

For example, let's say Speedl=l, speed2=2, and speed3=3.
Qur computations would look 1like this: Accelerationl=(2-1),
or 1. Acceleration2=(3-2), or 1s So
(Accelerationl+Acceleration2)/2 is really (1+1)/2, or 2/2, so
the Average Acceleration is 1. If we used the speeds alone to
calculate the average acceleration, it would look like
((2-1)+(3-2))/2, or (1+1)/2, or 2/2, or 1.

Because the acceleration formula we used is somewhat
simplified, the acceleration program we've provided will
produce correct results only if acceleration is constant. If
the acceleration changes while it is being measured, the
calculations will be off.

Parts

DB-9 Female Socket

Low Current Phototransistors (0P802)
Flashlights

6 volt krypton bulbs

6 volt lantern battery

3ft baseboard moulding

Hookup Wire

LB N R S

57

The theory behind the device is relatively simple, and
construction is not difficult. There are four
phototransistors in a row, and across from each is a light
source. When a light source strikes a phototransistor, the
computer will think the corresponding pin is connected to
ground, so the bit for that pin will have a value of 0. When
the light beam is broken, the bit value changes, and the
computer begins keeping time.

For our light source, we took four flashlights, and
replaced the bulbs with krypton bulbs. Then we wired them to
a single lantern battery. This gave us brighter light beams,

and the lantern battery lasted longer than the normal 'D’
cell flashlight batteries. You could also use four AC powered
light sources, if that is more convenient for you.

Begin building the project by mounting all four
phototransistors in a row, all equally spaced. We used
plastic moulding from a lumber store, drilled four holes just
big enough for the phototransistors to fit snugly, and then
superglued them in place. Below is a diagram:

Phototransistors

————— _To
Computer
/4ig t rjls

GO

L]

We used the same system to set up the light sources.
After we replaced the bulbs and wired them to the lantern
battery, we mounted them in a piece of baseboard moulding. We

P

attery

58

drilled holes and glued the lights in place, as shown in the
diagram below.

NOTE: When you mount the phototransistors and the lights make
sure that the distance between the center of each
phototransistor is exactly the same. Make sure that the
distance between the center of each light is exactly the same
as the distance between the center of each phototransistor.

Now you must wire the phototransistors to the computer.
Each onme will trigger a separate pin. Set it up so that bit
four (pin four) will be the first to be tripped, followed by
bit three, bit two, and finally, bit one. In other words,
cetector 1 will correspond to pin 4, detector 2 to pin 3,
cetector 3 to pin 2, and detector 4 to pin 1. Below is a
diagram of the connections.

=izt

Now you're ready to set everything up. Set up the lights
on one side of the object's path, and the sensors on the
other side. Make sure the lights and sensors are lined up
perfectly.

= NW &~

Load in the program you want to use. We've provided two.
All you have to do now is turn on the lights, and begin
measuring the motion of your objects.

The Software

The program SPEED will calculate the average speed of an
object for you. You need to enter the distance between the
phototransistors, in centimeters. The computer will do the
rest for you.

59

The program SPDACCEL will calculate the average speed and
average acceleration of an object for you. You need to enter
the distance between the phototransistors, in centimeters.
The computer will do the rest. This program uses the
simplified method of determining average acceleration, as we
described earlier. It is accurate only if the object has a
constant acceleration.

Pendulum Motion

You can use the motion detectors to perform physics
experiments with a pendulum. A simple pendulum is an object
suspended on a string. The mass of the object, called a bob,
must be substantially greater than the mass of the string.

When you pull the bob to one side and release it, the
pendulum will swing back and forth, gradually coming to a
stop. The path the pendulum follows as it swings from one
side all the way to the other side and back again is called a
cycle. A period is the amount of time it takes the pendulum
to complete a cycle. The frequency is the number of cycles
per second.

The period and frequency depend upon the length of the
string, the mass of the bob, and the force of gravity. The
theory and mathematics are too complicated to cover here. If
you are interested in learning more about pendulum motion,

any good physics book can provide you with a detailed
explanation.

The pendulum project we built used a single
phototransistor, a 1light source, a DB-9, wire, and, of
course, a pendulum.

We wired the phototransistor to pin 1 and pin 8 (ground)
in port 1. We set up the detector and the pendulum as shown
in the diagram below.

60

&— String

A

Beb
Detector Light
The program called PENDULUM will calculate some
statistics about the pendulum's motion. It will ask you to
enter the length of the string. Then it uses information from
the phototransistor to give vyou the freguency, period, and
bob mass.

61

Chapter 10
Light Pen

A light pen is a fairly simple device. Once you
understand how it works, you can use it for almost anything.
We'll start off this chapter with a brief review of how your
monitor works. Then we'll discuss how the light pen works,

and show you how to build your own. Finally, we'll talk about
the light pen software we've provided on the disk.

About your monitor and light pen

Your TV or monitor screen is really a big vacuum tube,
shaped somewhat like a pyramid with rounded corners. The
large, flat end is the part you see as the screen. Inside the
tube, located towards the small end, is a cathode 'electron
qun'. This is why monitors used to be called Cathode Ray
Tubes (CRT). The popular term now is Video Display Terminal
(VDT), but it's still the same thing.

The electron gun shoots a beam of electrons at the
screen. These electrons produce the image that you see. The
picture is drawn in tiny dot-like wunits called pixels. The
brightness and color of each pixel 1is determined by the
Display Memory (see Chapter 3 for a review of Display
Memory).

The electron gun draws the picture one line at a time,
from left to right. Each linme is called a scan linme. The gun
begins in the upper left hand corner, and moves down the
screen line by line. When the electron stream passes accrossa
pixel, the pixel is 'fired' and begins to glow.

As you remember from the discussion of DLI and VBI
routines, the gun pauses at the end of each line to stay in

62

sync, then returns to the left side of the screen. Your DLI
routines run during this pause. When the gun reaches the
lower right hand corner, it pauses, then returns to the upper
left cormer to begin drawing the screen again. This pause is
called the vertical blank, and this is when your VBI routines
are performed. It takes only 1/60th of a second for the gun
to draw an entire screen, from start to finish.

When you place the light pen against the screen, the pen
waits for a pixel underneath it to be fired. When the pixel
is fired, a phototransistor inside the pen 'sees' it. The pen
signals the computer that it has 'seen' the pixel fire. The

computer's operating system automatically figures out the
pen's location on the screen.

LIGHT PEN

The light pen uses a voltage comparator, a voltage
divider, and a phototransistor. The phototransistor is
connected to the voltage divider. The phototransistor's
resistance varies, depending upon the amount of light shining
on the phototransistor. When the phototransistor is exposed
to more light than normal (such as when a pixel beneath it
fires), the resistance decreases. As the resistance falls,
the voltage out of the divider rises.

The output from the divider is fed to an LM339 voltage
comparator. If the voltage from the divider is below the
reference level, nothing happens. But, when the voltage rises
above the reference level, the comparator's output goes low.

When the comparator's output goes low, the value of the
bit corresponding to pin 6 (the trigger pin) changes. This
tells the computer that the pen has 'seen' a pixel fire.

The software takes over from here. The computer's

operating system has special routines that determine the
horizontal and vertical coordinmates of the light pen. The
program for your light pen can read these coordinates, and

63

perform whatever activity is associated with that location on
the screen. In our sample program, screen locations are used
to turn sound channels on or off, or change the pitch of the
sound from a particular channel.

In a nutshell, the whole process works like this: 1) A
pixel below the light pen fires. 2) The phototransistor is
flooded with 1light, and it's resistance falls. 3) When the
resistance falls, the voltage out of the divider rises. 4)
When the voltage from the divider rises above the reference
voltage, the voltage comparator's output goes low. 5) The low
output tells the computer that the light pen has 'seen' the
pixel fire. 6) The computer's 0S figures out where the light
pen is positioned on the screen. 7) Your program gets the
location, and does whatever. In our sample program, it could
turn a sound on or off, or change the pitch.

Parts

DB-9 Female Socket (Hood Optional)

Phototransistor (0OP802)

LM339 Quad Comparator

1.2K Resistor

12K Resistor

33K Resistor

0ld Pen case or similar cylinder to contain your pen
Wire

e e o T Sy

64

Once you've constructed the circuit, you'll probably want

to put it in some sort of a case. We used the case from an
old pen, but any cylinder or rectangular case will work.

You can adjust the sensitivity of your light pen by
altering the reference voltage. Increasing the 1.2K resistor
will increase the reference voltage, and decrease the
sensitivfty. It will take a brighter pixel to trigger the
pen. Decreasing the 1.2K resistor will decrease the reference
voltage, and increase the sensitivity. A dimer pixel will
trigger the pen.

The Software

As we mentioned earlier, the computer's operating system
finds the light pen's position for you. It uses locations 564
(horizontal value) and 565 (vertical value) to determine the
position of the pen on the screen. The software we've
provided isn't sensitive enough to let you draw accurately
with the light pen, but with some experimentation (and these
locations) you can easily write more sophisticated software
for your pen.

The program called LGHTMUSC on your disk works with the
light pen. It displays four vertical bars, corresponding to
the four sound channels. Above each bar is a switch. You can
turn the sound channels on and off by placing the light pen

65

turn the sound channels on and off by placing the light pen
over the switches. Move the pen up and down the bar to change

the pitch of the sound. You can have all four channels on at
once.

When you're ready to leave the program, hold the pen up
to any bar or switch, and press BREAK.

kWhen you write your own light pen programs, you might
want to keep the backround dark, and important places on the
screen bright. If you use switches or boxes, leave some space
in between each one, and don't make them too small. This will
make your software easier to use.

Chapter 11
Using Analog Input

Most of the devices in this book so far have used digital
data. Digital data 1is data that has distinct values. Analog
data can be any number over a continuous range of values. For
example, let's say you have data that can have a value from
1-5. If your data was in digital form, it could have one of
five possible values, 1, 2, 3, 4, or 5. A string of data
might look like this: 1, 4, 2, 5, 3, 3, 2, 5, 1, 4. If the
data was in analog form, it could have any value between 1 &
5, including fractions. An analog string might look like
thisy 1, 3.7, 4, 2.1, 4.9, 3, 2.9, 2.1, 4.7, 1, 4.

How does this apply to the data from the joystick ports?
Llet's look at the data bits for joystick pins 1l-4. These pins
and their data bits can be either high (approaching 5 volts),
which is 1, or low (approaching O volts), which is 0. This
kind of data (it can be only O or 1) is digital. By combining
the bits from all four pins (creating a nibble, or half a
byte), the data could have any whole number value between O
(0000 in binmary) and 15 (1111 in binary).

Analog data doesn't have distinct values. The paddle pins
5 & 9 are analog pins. The voltage can be approaching O
volts, approaching 5 volts, or anything in between, such as 2
1/2 volts. Pins 1-4 wouldn't recognize or understand a
voltage of 2 1/2, but the paddles pins can. Not only do they
understand this voltage, but they can assign it a value
between 0-256. The voltage that comes into the paddle pins is
analog data. It can have any value, including fractions,
between 0 & 5 volts. When this data is assigned a value
between 0 & 256, it becomes digital data. It can have any
whole number value between 0 (00000000 in bimary) and 256
(11111111 in binmary). Now the data is in a form the computer
can use. The pins use their own A/D converters to transform
the analog data into digital data.

67

Because of a bug in the Atari computer's operating
system, the paddle pins can't use values from 229-256
(11100101-11111111 in binary). You can overcome this by using
the external fix described in this chapter.

A paddle controller is just a potentiometer. When you
turn the paddle knob, the resistance inside the paddle is
changed. When the resistance changes, the voltage changes.
The A/D converter inside the pins transforms the analog
voltage level into digital data the computer can understand.

POTENTIOMETER

This is the schematic for a potentiometer, or a paddle
controller. You may want to experiment with it to become
familiar with analog data and A/D conversion before you try
the harder A/D projects.

PINS

The program POTMETER will show you the digital data
coming from the paddle pins. The BASIC program below will
show you the incoming analog values.

10 X=PADDLE (O)
20 POSITION 20,11
30 PRINT X;" "

40 GOTO 10

68

PADDLE PIN FIX

This fix will let vyou use values from 229 (11100101), or
about 1.5 volts (the actual voltage will depend on your
computer) and 256 (11111111), or O volts.

Use general PNP transistors, such as 2N3906. You can use
anything for the analog input, we used the potentiometer as
an example.

PINS 75 8

b

ANALOG INPUT

69

Chapter 12
Sound & Wave Generators

The world of sound is both complex and fascinating. We'll
begin this chapter with a brief review of sound, then show
you how to build some simple sound synthesizers for your
Atari.

A Little About Sound

The sounds you hear in the world around you are really
vibrations in the air. Your ear senses these vibrations and
sends them to your brain. Your brain recognizes the pattern
of the vibrations, so you can understand a friends words (if
he's speaking a language you know!) or enjoy a piece of
music.

A picture of these vibrations is a sound wave. Each sound
has it's own pattern, or wave shape. Sounds are made up of
many different tonmes, undertones, overtones, reverberations,
envelopes, and frequencies. The more complex the sound, the
richer the sound quality. A piano or violin note, for
example, is very complex.

Very simple sounds have very simple sound waves and
easily identifiable sound wave shapes, such as sine waves or
triangle waves. These sounds aren't as pleasant to hear, but
they are easy to generate, manipulate, and study. They can
also be combined to create richer, fuller sounds.

Technically, frequency is a measurement of a sound, based
on the wave shape. Sounds with higher frequencies usually
have a higher pitch, sounds with lower frequencies usually
have a lower pitch. For the projects in this book, you can
think of frequency as pitch.

Sound, sound waves, and sound manipulation are far too

70

complex to cover in detail here. Any good physics book will
explain the basic physical properties of sound and sounds
waves. "Introduction to Electro-acoustic Music", by Barry
Schrader, contains a very thorough discussion of sound, the
different components of sounds waves, and how they are used
in electronic music. There's also several magazines, such as
Electronic Musician, devoted to the topics of electronic,
digital, and computer controlled sound and music.

Sound and Your Atari

Atari computers have a powerful sound chip. The computer
can't hear sounds or see sound waves, so it treats sounds as
strings of data. The data is digital, which means that each
piece of data can be any whole number in a certain range of
numbers (usually 0-15 or 0-256). Every sound your Atari
stores, creates, or produces is a digital sound, because it
is generated with digital data.

In this chapter we'll build a Tone Generator and a
waveform Generator. The Tone Generator is really a simple
oscillator. It creates a very simple sound wave, and the
computer generates the sound of that wave.

71

TONE GENERATOR

Parts

1 DB-9 Female socket

1 555 Timer

4066 Quad Bilateral Switches

10 10K Resistors
10 4.7K Resistors

1 .1 Microfarad Disk Capacitor

1K Resistor

PORT &1

i1z
— 4

348

1K

P WY

b b o

1413 121

23 45 67

St i |

Piin 7

— 1=

PORT 882 12348

p
It
i

72

& OHM
SPFEAKER

4066 guad bilateral switches change the frequency.
wasn't room for a

can

BBEEE G

883

100
110

ESC

The 555 timer produces the frequency (or sound wave). The

use the BASIC program below.

OPEN #2,4,0,"K"
POKE 54018,56
POKE 54016,255
POKE 54018,50
GET #2,X

POKE 54016,255-X
IF X<>27, THEN 50
POKE 54018,56
POKE 54016,0
POKE 54018,60
END

Press the keyboard keys to change the frequency
to end the program.

13

There

demonstration program on the disk, but you

. Press

WAVEFORM GENERATOR

This circuit creates a more complex sound wave for you.

PORT #81

__’rj’ j =

,
p

-

p

&3

>

B

>

E

3

:r—‘ *
p |
4

s
X

-

y b
&3
.
&

1413121118 9 8
4066
1234567
=t)

PIN 7 11— _—n

12348

8 0OHM
PORT #n2 SPEAKER
The waveform generator produces a voltage level. The
values that correspond to the voltage levels are poked to the
Joystick register. The waveforms are produced by varying the
voltage.

The program called WAVEFORM will create a waveform for
you. It takes a number from 0-256. The waveform generator
will generate the frequency that corresponds to that number.
The larger numbers produce larger voltages, smaller numbers
produce smaller voltages. Listen to the differences in the
sounds created by large and small numbers. Type 1in the

numbers you want to hear. Alternate between different voltage
levels, and listen to the the changes in the sound.

74

Chapter 13
Tone Decoder

Two of the devices in this chapter are tone decoders. The
first decoder 1is able to recognize preset frequencies. The
other is a frequency to voltage generator. It transforms
sound waves into voltage levels, which the paddle pin can
transform into digital data. You can use these devices by
pluging in a microphone and whistling. If your microphone
doesn't give enough gain, use the simple amplifier described
in this chapter. We've also included a frequency generator to
use with either of these tone decoders.

TONE DECODER

Parts

1 567 Tone Decoder IC
1 10K Resistor

1 .1 Capacitor

1 1 Capacitor

1 2.2 Capacitor

FREQUENCY
INPUT

PINS 1 7 8

75

The IC output goes to pin 1 in the joystick port. When
the IC "hears" a frequecy it recognizes, its output goes low.
This tells the computer that the IC "heard" a tone, and it
should take appropriate action.

FREQUENCY TO VOLTAGE CONVERTER

This tone decoder is a little more sohpisticated. It uses
a frequency to voltage converter. The frequency it "hears" is
converted to a corresponding voltage level. The voltage level
is sent to the paddle pin. The paddle pin converts the
voltage level into a corresponding binary number. Then the
computer can perform whatever task is associated with that
number .

4 FREQUENCY
468K * yupuT
10K
9 18K
WAt 3
8 7 6 5| 368K
LM3I31
1 2 I 4
! 1
12K¢ -1
1 T .01
5K4:
— At v

76

AMPLIF IER

If your microphone doesn't have enough gain to work well
with these decoders, you can use this amplifier instead.

FREQUENCY
ouTPUT

-}
[4,} wl——l"-—

LM3I86

N
W
=3

1L
],

T =
FREQUENCY
INPUT

FREQUENCY GENERATOR

The tone decoders in this book are fairly picky about
what frequencies they will recognize or reject. This
frequency generator produces exact frequencies, making it
easier for the tone decoders to spot a match (very helpful
for poor whistlers). You don't need to keep the generator
right next to your computer. You can put it wherever you

like, such as 1in another room, as long as the tone decoder
can hear the tones.

PIN 7
+35

L

8 7 ©6

5955
I 4
| |

i
4
l L +
e

-
s

LY}

8 OHM
SPEAKER

Chapter 14
Data Selector

A data selector is a device which lets you plug two other
devices into a single joystick port. The data selector has
two ports, just like your joystick ports. You can plug two
different devices into it, then plug the data selector into
the computer. The data selector sends data from one device at
a time to the computer, and tells the computer which data set
it's sending.

Our system uses an external clock to tell which data set
is in use. You could use software to switch the data sets.

Parts

DB-9 female socket

4011 Quad NAND Gate

4066 Quad Bilateral Switches

14 Pin Dip sockets

.047 microfarad electrolytic capacitor
100K resistor

1M resistor

DB-9 male plugs

N = = = W N+~

78

1413121189 8 . PIN ©

34567

@ 1234 e |

e ————— | g L — A

o 3
4

Data

The data selector is plugged into port 1. The port uses
an external clock, connected to pin 6 (the trigger pin) to
switch from one set to another. When the clock is high, the
trigger pin is high. When the trigger pin is high, the
computer is receiving the first data set. Wwhen the clock is
low, the trigger pin is low, and the compuer is receiving the
second data set.

The Software

The program called OVERLAY2Z rteads the data from the
selector. It shows both sets of data, and the toggle state.
If the toggle state is Yes, then the selector is toggling
between both sets of data. If it says No, then the data
selector isn't switching. Instead, it's reading only one set
of data.

To run the program, rename it AUTORUN.SYS, and reboot the
computer. It creates an overlay at the top of the screen. You
can write your own BASIC program to use the data selector,
and still see the data on the overlay. The overlay data is
updated with a VBI.

Turn the overlay off by pressing SELECT. To turn it back
on, press START.

You could write your own software that would
automatically switch between data sets, or let you switch
them from the keyboard. To do this, use one of the bits from
the joystick port as a control bit. If you don't want the

79

external clock, you could use that pin.

Chapter 15
Encoders

One problem with sending data to the computer through the
Joystick ports is the limited number of pins. Even if you use
both port 1 and 2, you can quickly run out of pins.

One solution is to use each pin for more than one
detector, but then you can't identify which device was
triggered. The way to solve this problem is to build an
encoder. With an encoder, you can plug in 16 detectors, and
still see which device was tripped. In this chapter, we'll
show you’ a simple diode encoder, two IC encoders, and a
keypad, as well as a program to control these encoders.

DIODE ENCODER

The first encoder, a diode encoder, is simple, and it has
some limitations. It's not priority encoded. This means if
more than one detector is tripped, the reading will not be
accurate.

Parts

1 DB-9 Female Socket (Hood Optional)
31 Small Signal Diodes (1N914)
Hookup Wire

The diodes have two different ends; one is the cathode
and one is the anode. The cathode has a dark band around it.
The schematic of a diode looks like this:

Cathode P Anode

81

"

Notice that the cathode end is the end with the vertical
line, which corresponds to the band on the actual diode. In
the schematic, the anode end is the one with the small
triangle. Make sure the cathode always goes to ground, and
the anode always goes to the data pin.

This encoder will encode up to 10 data lines. Each device
uses one data line, so you can connect up to 10 devices with
this encoder. Each device triggers a different pattern of
pins. The different pin patterns will produce a different
four bit number for each device. The setup looks like this:

2 3 4 5 7 8 9 10

6 ml FLH 'I
S=¥elurQiiel,

4

!

—.
it

-

Although this encoder will work, it does have a serious
drawback. It must be reset each time a device is triggered.
If two devices are triggered at once, the binary number that
represents the devices will be wrong.

82

Pin 8

Pin
Pin
Pin

Pin

PRIORITY ENCODER

This encoder, unlike the diode encoder, will always give
you accurate data. No matter how many devices are triggered,
it will always tell you which one was triggered first.

Parts

1 DB-9 Female Socket (Hood Optional)

1 10 to 4 priority encoder - we used a 74LS147
10 10K Resistors
Hookup wire

PIN 7

[=]

i6151413 1211109

74L5147
12345678

________ﬁ. -%?

PINS

SN

i8K 1
K 186 ¢ 4

L b 4
-
N
g b 4
A
VY
hdhd
-~
W
& e
w

16 TO 4 LINE ENCODER

A 10 to 4 line encoder may not provide enough lines for
your needs. If so, you can use this 16 to 4 line encoder. It
uses a 74C922 16 to 4 line encoder. This IC has more external
data lines than the 74LS147 that we wused 1in the Priority
Encoder. It also has a pin which can detect keypresses when

83

it's used with a keypad.

PINY

— B
2
3
I L— 3
15 17 16 15 1413 12 11 16
Y4C222
1 Z X 4 ii 5{ 7 8 9
I E: 1
56 .85 =
[~ =
Yi¥2 YI Y4 K4 H3 HZ X1

KEYPAD

The 16 to 4 line encoder lets you plug a keypad into the
Joystick port. You can purchase a keypad from a parts
supplier, or you can build your own with single pole,
momentary, normally open, push button switches. Below is a
diagram of the setup.

84

3

KEY 7
PATTERN 1
o

The Software

The program for these encoders is called (what else?)
ENCODE. It displays the data from port 1. The default mode
(the mode it's in when you first load it) works with the
Diode and the Priority Encoders. Press START to wuse it with
the 16 to 4 Line Encoder. Press OPTION to return to the
original mode.

85

Chapter 16
Decoders

As we've seen, one problem with using the joystick ports
to communicate with other devices is that we can quickly run
out of pins and ports. Decoders allow you to control up to 16
devices from one joystick port. First we'll describe a 4 to
16 Line Decoder, then a T Flip-flop.

Build these circuits on solderless breadboard, and use
LEDs to test them. The program DECODE on the disk will work
with this decoder, with or without the flip-flop, and
Jjoystick port 1. You could change it to use both ports.

4 TO 16 LINE DECODER

This decoder wuses a 74LS154 4 to 16 1line decoder. One
drawback with this decoder is that it lets you control only
one device at a time.

7123 4

2423 222120191817 16151413
74154
12T 456 78 9210112

12345678 9%10111213141516

86

Pins 1-11 and 13-17 are used for the output. Connect them
to your devices. Pin 12 is ground. Pins 20-23 are connected
to pins 1-4 in your joystick port, and they carry data from
the port to the 74LS154. Pin 24 is +5 volts. Finally, pins 18
& 19 must be held low for the decoder to work properly.

T FLIP-FLOP

The T Flip-flop output will toggle back and forth between
low and high. It begins with a low input and a low output.
Wwhen the input goes high, then low again, the output toggles
to high. If the input goes high, then low again, the output
will toggle back to low. The IC we used is a 74L5276
quadruple JK flip-flop, set up in T flip-flop format.

TOGGLED
DATA

+5 8123

I ——

l.. Y ot w— |
. -

20191817 16151413 12 1

74L5276

123456 78918
R - I =

» —= =

—

pEcopEp 91 23
pATA

-

87

Chapter 17
Device Control

The individual bits inside your computer can be either O
or 1. You could call these states on and off. If you set up
your joystick ports for output, you can turn your devices on
and off by changing the bits in the joystick ports. You may
want to review Chapter 6, The Joysticks, before you begin
this chapter. We'll be covering LEDs, Reed Realys, Transistor
drivers, Opto Triacs, Solid State drivers, and applications.

LEDs

We briefly covered LEDs in the Electronics Review. LEDs

are particularly useful when you are writing data to the

Joystick ports, because they let you see the state of the
pins.

TTL ICs can't provide enough current to drive LEDs, but
can make them glow dimly. To get as much brightness as
possible, connect the LED's cathode to the IC's output and
the anode to a positive voltage, through a voltage dropping
resistor. This way, when the IC's output goes low, the LED's
cathode is connected to ground, and the LED will glow.

The IC output can sink enough current, even though it
cannot source enough. The 10 - 30 milliamps (depending on the
LEDs) will go to ground through the IC's output. Just don't
connect the anode directly to the voltage without a resistor,
or the LED will burn out. Use Ohms Law (discussed in the
electronics review) to calculate the correct current. A 1K
resistor will almost always work well.

You could use an external power supply, but it's probably
easier to use the 5 volts from the joystick port. If you
decide to use an external power supply, make sure everything

88

is connected ‘to a common ground.

The LED will 1light up when the ICs output goes low. If
you use an inverter, the IC's output will go low when the
joystick bits are high. So, to turn on an LED, set the
corresponding data bit high.

LED Control
2 DB-9 Female sockets
2 7404 inverters

8 LEDs
1 1K resistor (or other resistor)
wire
PORT RB1
PI:‘B? PINS
f—2
4
—H1 i4 14 7
z L 13 wy AZ
—1X £ 12 B 12
4 211 2 11 1
S 18— 16 3
®—|:‘ 6 9 3
7 8 7 b
= lporT B2
PINS

This particular setup uses 8 LEDs from 2 inverters,
controlled by joystick ports 1 & 2. Each IC has 6 gates, so
two are needed. The power is pin 7, the ground is pin 8.

This is a fairly simple design, but 1it's possible to
build elaborate, intricate LED displays using these
techniques. You could use the pins (l-4 in ports 1 & 2) as
eight independent channels. This method is wused in the
Christmas light display described later in this book. You
could even synchronize the display with music from the sound
chip.

89

REED RELAYS

A 5 volt reed relay is extremely flexible. It will
handle anywhere from O to 120 volts. At 120 volts, it can
carry 1 amp. This lets you power a surprising number of
different kinds of devices.

As an example, let's find the biggest light bulb a 5 volt
relay will power. We'll wuse the formula P=ExI. As you
remember from the Electronics Review, E is the voltage in
volts, I is the current in amps. Our formula looks like this:
P=120 volts x 1 amp. So the relay can power up to a 120 watt
light bulb.

The relay has three leads. The two leads directly across
from each other are for the primary coil, and should be
connected to the IC's output. Connect the third lead to 5
volts, without a resistor.

When the IC's output goes low, one side of the relay's
primary goes to ground. This opens the relay's secondary.

Remember, the IC's output must be low to enable the relay.
The easiest thing to do is use an inverter. Otherwise, keep

that fact in mind when you write your software.

1 DB-9 Female Socket
1 7404 Inverter

1 5 volt Reed Relay
wire

N

e |[]

1—-4 |

70%L

- B

90

You can power up to 4 or 5 relays with the computer's
intermal power source. If you need more relays, use an
external power supply.

If you need more power, you can use a 5 volt miniature PC
relay. Radio shack carries a 5 volt mini relay that draws 72
milliamps for the primary coil, the secondaries can handle 3
amps at 120 volts. You will need an external power supply for
these realys.

If you still need more power, you can use a bigger relay.
These higher amp relays usually require 12 volts. You'll need
to use a transistor driver and an externmal power source. Or,
you could use a reed relay to control the higher amp relay.

TRANSISTOR DRIVERS

A transistor driver will power devices which require
higher voltage than a TTL IC can provide. A TIP102 provides a
high current, according to tine manufacturer's specifications
it can provide up to 8 amps. It comes in a T0-220 case, and
can be from 5 to 15 volts, depending on your device. If you
plan on a high current, use a heat sink to prevent damage.

CONTROL 1K vat
BIT TIP182Z OR"gTHER
ouT N
2. 2K

9.1

Almost any NPN transistor will work in this circuit. Just
make sure you won't need more current than it can handle. A
good medium current transistor is the TIP31A. It handles up
to 1 amp, and comes in a T0-220 case, so a heat sink can be
attached.

A transistor driver can be used to control a stepper
motor. Most stepper motors have four stator coils. The motor
moves when the stator coils are pulsed. The combination of
pulsing stators determines the speed and direction of the
motion.

OPTO TRIACS

An opto triac will drive a low current, 120 volt device.
Other opto isolators will also work in this circuit.

LOAD VOLTAGE

6 4

5C511C3
1 2

+5

CONTROL
BIT

92

An opto triac can also control a relay, as in this

cirouit.
+5 6
CONTROL—{2
BIT 4 _]-

™

SCS11C3

+5

SOLID STATE DRIVERS

Some ICs can driver higher current, higher voltage
devices. Here are three examples of these drivers. In the
first, we used a dual peripheral driver, a 75446, to drive a
single device.

+5 IN LOAD

95

This circuit uses the same chip to drive 2 separate

devices.

+5 IN LOAD1

T
8 7 65

SN75446
i I 4

LOAD 2

MF

This circuit uses a DHOOl7. At 50 volts, it provides more
current than the previous circuits.

CONTROL
vS BT tme_ VOLTAGE

16 2 8 7
DH8®1?7

1 2 I 4 5

94

APPLICATIONS

You could use these drivers to control your household
devices with your computer. Choose which circuits you need,
depending on what devices you want to control. The data
selector and the decoder will let you add more devices. You
can use any program on the disk that writes to the joystick
ports to test your hardware. When you've designed and built
your system, you'll probably want to write your own custom
control software.

95

Chapter 18
Display Lighting

The display lighting circuit was designed for a christmas
light display, but you could use it for a store sign or other
lighting display.

The hardware is simple, but tedious, to build. There's a
lot of connections to make, but if you are patient and
careful when you make them it will reward you with a
delightful display.

We recommend you use a perforated breadboard for the
circuit. Use sockets for all the ICs, and the relays, too, if
you like. |

The entire circuit wuses eight channels. There are three
main components for each channel. The first component is an
inverting buffer. This buffer protects the computer from any
possible damage. The second component is a 5 volt reed
relay. This relay enables the high current relay, which turns
the lights on and off. The large relay we used handles 3
amps, and powers up to 360 watts of 1lights. Use a higher amp
relay for more lights.

The external power supply powers the lights. It should be
12 volts, with a current capability of about 1 amp. We used a
5 volt regulator, so we could have both 5 and 12 volts.

Below is the diagram for one channel of the circuit.
You'll need eight of these, onme for each channel.

b= Co
70v7L
TOTUTOT

14 =

The Software

The software that controls the light display is called
LIGHTS. When you run the program, the screen display will
show you when the channels are on. This screen display slows
the program down. You can run your light pattern faster by
turning off the screen. Press SELECT to turn it off, and
START to turn it back on.

The patterns are in the data statements starting at line
1000. You can change the patterns by changing the data
statements.

Each signal in the pattern consists of three pieces of
data. The first byte is the sum of all the bits (lights) to
be turned on. The second byte is the length of time the
lights will be on, in fourths of a second. The third byte is
either 0 or 1. If it's 0, then the pattern is complete. If
it's 1, then the pattern isn't finished yet.

The number of times a pattern is repeated is at line
10000. You can change the number of repetitions by changing
this line.

97

Chapter 19
Serial Data Transfer

Computers communicate in two ways, with serial data
transfer and parallel data transfer. In serial data transfer,
the data bits are sent one at a time. In parallel data
transfer, several bits are sent at once. Naturally, parallel

transfer is much faster, but serial transfer has some
advantages, too.

Serial data transfer requires far fewer lines and
connections. The serial transfer methods we wuse in this
chapter need only two lines, one for the clock, the other for

data. Most modems use serial data transfer.
There's two kinds of serial data transfer, synchronous

and asynchronous. Timing is very important in both kinds of
transfer. In Asynchronous transmission, the data is sent one
character at a time. Each character consists of a set number
of bits, plus two extra control bits. The length of time
between each bit is Iidentical, although the time between
characters may vary. Both the sending and receiving computers
keep track of time with their own clocks.

For example, ‘let's say that one computer has three
characters to send to another computer. When it sends the
first character, it will send the bits one at a time, with an
equal amount of time between each bit. It may take a longer
pause before it begins to send the second character, but when
it does, the amount of time between each bit will be exactly
the same as it ws before. It may decide to send the third
character right away, out once again, the amount of time
between each bit will be the same.

The two extra control bits are first bit of every
character, called a start bit, and the 1last bit of every
character, called a stop bit. The start and stop bits

98

identify the beginning and end of every character (or byte)
of data. These control bits keep both computers in sync.

In synchronous communication the message is sent as a
continuous string of characters. Each character is a set
numberof bits. The first set of data is a series of control
codes. These codes synchronize the receiver's clock and the
senders clock, so both computers are exactly together in
time. Or, they could share a single clock, called a "common
clock". The receiving computer can tell when a character
starts and stops by the timing.

Synchronous transmission is faster than asynchronous
transmission. An extra block of data is sent at the beginning
of a synchronous message, but the message itself usually has
fewer bits than an asynchronous message. A synchronous
message doesn't need the extra control bits for every
character. Since there's fewer bits, it's faster to send.

Synchronous circuits are also easier to build, because
they do not require a separate clock in the receiver or
decoder.

In the circuits here, we used a 75LS164 shift register to
decode the data.

Shift registers are really quite simple. A shift register
has eight registers, or boxes. Each piece of data is one byte
(eight bits) long. The data is sent with the least
significant bit first, the most significant bit last.

The clock tells the shift register to get a data bit. The
shift register looks into the data line, and takes the bit.
It puts the bit into the first register, or box (see
diagram).

The clock signals the shift register ageain. The register
takes the first bit out of the first box, and puts it into
the second box. Then it goes to the data line, takes the next
bit, and puts it into the first box (see diagram).

When the third bit is ready, the register mcves the first
two bits over, then puts bit #3 in the first box. When all
eight bits have been sent, all eight boxes will be full (see
diagram).

When the first bit of the next byte is sent, the register

99

must move everything over so it can go in the first box. This
time, however, all eight boxes are full. It will take the
very first bit we sent, dump it out of the box, an throw it

away. Now the register moves everything over, and puts the
rew bit in the first box.

1

211
31211

4 13 (2|1

18 |7 (65]4]12]2] Last bit (1) lost

100

SHIFT REGISTER

Parts
1 74LS1l64 Shift Register
8 LEDs
8 1K Resistors
1 DB-9 female socket
1K
— s
—a 1K
1413121118 9 & AAA
' K
74164 Ay
123456 r é}f
T | ALK
LK
LK
_.=-.’ S S
11
1238

This register uses pins one and two in joystick port 1 to
send the data. Pin one 1is used as a clock, and pin two
carries the data.

One LED 1is attached to each of the 1IC's parallel data
output pins. They will show you the data in each of the eight
boxes. Attach the cathode end of the LEDs to the gate of the
IC. The LED will light up when the output of the gate is low.
The software inverts the data before it's sent, so a lit LED
can be interpreted as a 1.

The register will take a new data bit whenever the clock
pin goes low, then high.

101

SHIFT REGISTER WITH INFARED
This circuit works like the shift register above, except
that it can transfer data over infared beams.

| .
19131211186 9
- 1K
74164 AAA
1 2345 6 Asa
- | 1

l
vyvwY

=1
=y
8 Foriv

.|||r

=

14
74132
L 23 5 6 7

Al A
b 4 4

+5 L
oOP8O2S @J @

108 X b}

~

10606

102

The Software

The programs SHIFT8 and SHIFT16 work with the first shift
register. They read the data, invert it, and send it through
pin 2 to to the shift register. They wuse pin 1 as a clock.

SHIFT8 will send any number from 0-255. SHIFT16 will send any

number from 0-65535. The program INFARED works with the
Infared Shift Register.

103

Chapter 20
Networking

A network is a system of computers that are connected
together. They can communicate and share data with each

other. Every network is set up differently. Our network uses
parallel data transfer.

As you remember from Chapter 19, computers can transmit
data in two ways, serial or parallel. In serial
communication, the data is sent one bit at a time. In
parallel communication, several bits are sent at once. In our
retwork, we send four data bits at a time (onme half a byte,
or a nibble).

In our network, the computers wuse two pins to send
control codes to each other. The process of exchanging
control codes and other information about the data is called
"handshaking". Every network uses it's own kind of handshake,
called the Network Protocol or the Communication Protocol, or
just the Protocol.

Our protocol works like this. Pins 5 & 6 of one computer
are connected to pins 6 & 5 of the other computer. Each
computer sends it's handshake through pin 6, and gets a
handshake through pin 5. Both computers send through 6, and
receive through 5. This is why pin 6 of one computer is
connected to pin 5 of the other. You could think of it as two
telephones. You talk into the mouthpiece (bit 6) on your
phone. Your friend hears vyou on the earpiece (bit 5) of his
phone. He talks to you through his mouthpiece (bit 6), and
you hear him in your earpiece (bit 5).

The protocol begins with bit 6, (pin 6, the trigger pin),
low. Remember, pin 6 of one computer is connected to pin 5 of
the other. Since both bit és are low, both bit 5s are low,

104

too. This means that neither computer has any data to send.

Now, let's say computer #l1 has data to send. It sends the
data down the data line, and it sets bit 6 high. When it sets
bit 6 high, computer #2, sees it's own bit 5 go high. This
tells computer #2 that data is coming.

Computer #2 goes to the data line and takes the four bits
of data. Then it "tells" computer #1 that it has the data, by
setting it's own bit 6 high.

When computer #2 sets bit 6 high, computer #l's bit 5
goes high. Computer #1 knows that computer #2 has gotten the
first nibble, so computer #l sends the second nibble, and
sets it's bit 6 low.

Computer #2 sees it's bit 5 change from high to low. It
knows that the second nibble is in the data line, so it goes
and gets it. Then computer #2 sets it's bit 6 low.

When computer #1 sees it's own bit 5 go from high to low,
it knows that computer #2 has received the data. Computer #l
has no more data, so we're back to the beginning. If one of
the computers needs to send data, it will set bit 6 to high,
and the process will begin again.

You may be wondering why we sent only four bits, or 1/2
byte, at a time, when the joystick port has 9 pins. Pins 1-4
are used for data. These are the four bits. Pins 5 & 6 are
used for handshaking, or the protocol. Pin 8 is the ground.
That leaves pins 7 & 9. The most data that could be sent at
once is six bits. It would still take two passes tosend a
whole byte. So, we decided to save pins 7 & 9 to use in
protocol for networks with more that 2 computers.

The diagram below is an example of the protocol our
retwork uses.

105

Computer #1
Has data to send

sets bit #6 high

Sends data

Sees bit #5 go high
Sets bit #6 low

Sends data

Sees bit #5 go low

Below is the wiring diagram.

1 2 3 4 5 6
1 2 3 4 5 6

106

Computer {#2

Sees

bit #5 go high

Gets

data

Sets

bit # 6 high

Sees

bit #5 go Iow

Sees

bit #5 go Iow

Gets

data

Sets

bit #6 low

The Software

The network program on the disk is called TALK. The
source code is called TALK.SRC. TALK lets both computers in
your network communicate with each other. It also recognizes
special commands that can be sent from one computer to the
other.

TALK consists of two parts, a machine language subroutine
that sends and receives the data, and a BASIC program that
process the data. The subroutine and the BASIC program use
their own sort of protocol to communicate.

When the subroutine gets a byte of data, it stores the
data in location 1789. Then it sets location 204 to 1.

When location 204 is 1, the BASIC program realizes data
is waiting in location 1789. It goes to 1789 and removes the
data. Then it sets location 204 back to 0. When location 204
is 0, the subroutine knows it's OK to put more data into
location 1789. i

The subroutine also looks for the special character \
called a backslash. This character is used to signal that a
control code is coming. When it sees this character, it
checks the next two bytes. If a control code is coming, the
second byte will be the name of the function, and the third
byte will be a carriage return. If the first byte is a
backslash, but the third byte is NOT a carriage return, the
backslash and second byte are treated as normal data. If the
third byte is a carriage return, then 1it's treated as a
special control code.

When the subroutine spots a special control code, it sets
location 205 to 1, and puts the name of the control code in
location 1790. When the BASIC program sees location 205 turn
to 1, it knows a control code has been sent. Then it looks in
location 1790 to find the control code. Lastly, the BASIC
program sets location 205 back to 0, so the subroutine will
know that the BASIC program has the control code.

Now the BASIC program must decide what the control code
is, and what it must do. It takes the ATASCII value of the

107

control code, and multiplys it by 100. Then it takes the
result, and goes to the line number that - equals the result.
The instructions for that function begin at that line number.

We built four special functions into the BASIC program,
but you could add many, many more. Just pick a control
character for your function. Then multiply the character's
ATASCII value by 100. Use that number as the first line
number of your subroutine. Below is a list of the built in
functions.

You make a four computer network, using a fifth computer
and pins 7 & 9 to control it.

kWhen you run the program, do not press START until both
computers say to do so.

108

Appendix A
Parts Suppliers &
PC Board Services

PARTS SUPPLIERS

Acive Electronics
PO Box 9100
Wwestborough, MA 01581

All Electronics Corp
905 S Vermont Ave

PO Box 20406

Los Angeles, CA 90006

B & C Computer Visions
3283 Kifer Rd

Santa Clara, CA 95051
(408) 749-1003

Best Electronics

2021 The Alameda, Suite 290
San Jose, CA 95126

(408) 243-6950

Copper Electronics
4200 Produce Rd
Louisville, KY 40218

109

DIGI-Key
Highway 32 South
Thief River Falls, MN 56701

Heathkit
Dept 021-892
Benton Harbor, MI 49022

Hitachi Amarica Ltd
2210 0'Toole Ave
San Jose, CA 95131

Jmeco Electronics
1355 Shoreway Rd
Belmont, CA 94002

DR Microdevices
1224 S Bascom Ave
San Jose, CA 95128

Mark V Electronics
248 East Main St Suite 100
Alhambra, CA 91801

Mouser Electronics
2401 Hwy 287 North
Mansfield, TX 76063

RF Electronics
1056 N State College Blvd Dept R

Anahiem, CA 92806

110

PC BOARD SERVICES

Kit Circuits
Box 235
Clawson, MI 48017

Express Circuits
314 Cothren St PO Box 58
Wilkesboto, NC 28697

TeB.R.C L.
Box 47148
Chicago, IL 60647

111

Appendix B
Programs

DECODE - Works with the decoder circuits

DETECT - Displays the bit values for the joystick pins, for
use with event detectors

DLDISPLAY - Provides information about the display list
ENCODE - Works with the encoder circuits

FREQUNCY - Works with the tone deocders to identify sound
frequencies

INFRARED - Transmits data serially with infared signals
LGHTMUSC - uses the light pen to play tones

LIGHTS - runs a light display

LOGIC - Logic gate and truth table demonstration

OVERLY1l - overlay program that displays the status of the
Joystick ports

OVERLY2 - same as above, for use with the data selector
OVERMAKE - creates custom overlay routines

PENDULUM - works with a light detector to provide information
about a pendulum

POTMETER - works with the potentiometer

112

SHIFT8 - transmits an 8-bit number serially

SHIFT16 - transmits a 16-bit number serially

SPDACCEL - calculates the speed and acceleration of an object
SPEED - calculates the speed of an object

STOPWTCH - a simple timer program

SWITCH - works with switches

TALK - network software

USRMAKER - creates Machine lanuguage subroutines

WAVEFORM - wused with tone generators to create sound wave
forms

OVERLY1.SRC - Source code for OVERLYL
OVERLY2.SRC - Source code for OVERLY2
SHIFT.SRC - Source code for bith SHIFT programs

SH8.SRC - Source code for SHIFT8 display

SH16.SRC - Source code for SHIFT1é display

TALK.SRC - Source code for TALK

113

devices. The devices send coded information to the decoder,
which translates the information and tells the computer which
device is signaling.

Detector - A device which senses that an event has occurred,
and signals the computer.

Digital Data - Data which can have any distinct value over a
range of distinct values. It cannot have a value outside the
range of possible values, and it cannot have a value that is
inside the range, but is not one of the possible values.

Diodes - A semi-conductor that allows current to flow in one
direction only.In this book, we used recitifier diodes, and
LEDs.

Display List - A list of data which tells the ANTIC chip what
to display on the monitor screen.

Display List Interrupt - A machine language routine that runs
when the end of a certain screen line 1is displayed, and
before the next 1line begins. DLIs run every 1/60th of a
second.

Display Memory - The location in memory of the display list.

Encoder - An interface between a computer and several other

cevices. It receives information from the computer, puts it
into a code, and transmits it to the other devices. Only the

device that can receive that code can act upon the
information.

Envelope - Part of a sound wave which defines its overall
shape.

Frequency - A measure, usually how often something happens in
a given period of time. In this book we used it to measure
pendulum motion and sound. In pendulum motion, it is the
number of cycles per second. In sound, it is a measure of the

115

Glossary

Acceleration - A change in speed, usually an increase.
Amplifier - Raises the volume of a sound, makes it louder.

Analog Data - Data that can have any value (including
fractions) over a continuous range of values.

Asynchronous - A form of serial data transfer in which each
character has a start and stop bit, and the timing between
characters is variable.

Binary numbers - Numbers in the base two system, consiéting
of 0's and 1's.

Bob - Part of a pendulum, suspended from a string.

Capacitance - The ability to store an electrical charge. Used
here as the measure of a capacitors ability to hold a charge.

Capacitors - An element, usually consisting of two metal
plates separated by a dielectric, used to temporarily store

an electric charge.

Comparator - In this book, an element which compares one
voltage, called a reference voltage, to an incoming voltage.

CRT - Cathode Ray Tube, a normal TV or monitor.
Cycle - In this book, a measurement of a pendulums motion.

Data Selector - A device which allows you to plug two devices
into a single joystick port.

Decoder - An interface between a computer and several other

114

sound wave. For the sound projects in this book, frequency
means pitch.

Hexidecimal numbers - Base 16 numbers, using the digits 0, 1,
2y 3y 4y By 65 Ty 8y 9y Ay By Ty D; Ey & Fo

Infrared - Light waves that cannot be seen with the human
eye, with waves longer than those of visible light, but
shorter than microwaves.

IC - Integrated Circuit, a small piece of material that
contains a complete electronic circuit.

LED - Light Emitting Diode, a semi-conductor diode that gives
of f light when voltage is applied.

Logic Gates - Gates which compare two separate inputs, and
close or open depending upon the inputs and the comparison
criteria.

Mass - The amount of matter in a body. Mass is different
from, but proportional to, weight.

Networking - The process of connecting two or more computers
together so that they can work as a team or separately, they

can communicate and share the same data.

thm's Law - E=IxR, where E is the voltage in volts, I is the
current in amps, and R is the resistance in ohms. This useful
law and formula allows you to calculate the third variable,
based on the other two.

Overlays - A small area or window on the screen, separate
from the rest of the screen.

Overtones - Components of a sound wave whose wavelength is
significantly shorter than the length of the main sound wave.

Parallel Data Transfer - The process of transferring data

116 -

between a computer and another computer or device, sending
several bits simultaneously, over several separate wires.

Pendulum - A body suspended on a string from a fixed point
that swings freely under the influence of gravity.

Photocell - An electronic device whose voltage output varies
according to the amount of light rays touching the surface.

Phototransistor - A semi-conductor that performs the same

functions as an electron tube, but smaller, and activated by
light.

Pitch - The degree of highness or lowness of a sound.

Pixel - A small dot-like unit fixed in place on the monitor
screen. It glows when touched by electrons.

Protocol - A standard procedure, the process two computers
must follow to communicate or exchange data.

Recitifier - A semi-conductor junction which converts
alternating current (AC) to to direct current (DC) by
allowing more current to flow in one direction than the
other. A Halfwave Recitifier transmits only one polarity of
the alternating current, producing a pulsating direct
current. Two halfwave recitifiers combined create a full wave
recitifier, giving a continuous pulse which may be smoothed
by a filter.

Relays - Electronic devices which channel current.

Resistors - Electronic device which resists the passing of a
current.

Reverbrations - Component of a sound wave, the repeat
vibrations and echoes of the sound, which can be heard at the
same time as the original sound.

117

Serial Data Transfer - The process o transmitting data
between computers and other devices one bit at a time.

Soldering - Applying a molton metal alloy to a joint to
cement it.

Sound Waves - The patterns of vibrations made by sounds.

Speed - How fast an object is moving, measured in units of
distance per units of time.

Transistors - Electronic devices which perform the same
functions as electron tubes, but are much smaller.

Truth Tables - Tables which show the results of the
comparison of two input states. The result depends upon both

input states, and the criteria used for comparison.

Uhdertones - Components of a sound waves whose wavelenghts
are significantly longer than the main wave length.

USR Function - A BASIC command which allows vyou to call a
machine language subroutine from a BASIC program.

VDT - Video Display Terminal, and ordinary monitor.

Voltage - Electromotive force, measured in volts.

118

€ € ¢ ¢

¢

€

LIMITED WARRANTY

Alpha Systems warrants the original purchaser of this computer software product
that the recording medium on which the software programs are recorded will be free
from defects in materials and workmanship for ninety days from the date of
purchase. Defective media returned by the purchaser during that ninety day period
will be replaced without charge, provided that the returned media have not been
subjected to misuse, damage, or excessive wear.

Following the initial ninety day warranty period, defective media will be
replaced for a replacement fee of $6.50.

Defective media should be returned to:

ALPHA SYSTEMS
1012 SKYLAND DRIVE
MACEDONIA, OH. 44056

in protective packaging accompanied by: (1) a brief statement describing the defect;
(2) a $6.50 check or money order (if beyond the ninety day warranty period); (3)
your return address; (4) the problem disk.

What is Not Covered by this Warranty

This warranty does not apply to the software programs themselves. the programs are
provided "as is". :

This warranty is in lieu of all other warranties, whether oral or written, express or
implied. Any implied warranties, including imputed warranties of merchantability and
fitness for a particular purpose, are limited in duration to ninety days from the date
of purchase. Alpha Systems shall not be liable for incidental or consequential damage
for breach of any express or implied warranty.

The provisions of the foregoing warranty are subject to the laws of the state in
which the disk is purchased. Such laws -may broaden the warranty protection
available to the purchaser of the disk.

Tell Us What You Think

We at Alpha Systems are sincerely interested in bringing you the best possible
products at the lowest possible prices. Please write us if you experience any
difficulties with our products, or have any comments or ideas for improvements. We
will do our best to make our products better meet your needs. When you write,
please enclose the following: 1) Your name, address, and phone number. 2) Your
comments, or a description of your problem. 3) A description of your system. &) If
you are reporting a problem, plecase also include a description of what you were
doing when the problem occurred, any printouts or other output showing the problem
if possible, and any suggestions you may have regarding the cause and solution.

..................‘......¥

Your Atari

Comes Alive

DIGITIZE YOUR WORLD

Now for the first time ever you can connect
your 8-bit Atari to a wide range of external
interfaces, devices, and sensors. This
"How-To" book and disk package has everthing
you need to build and use a wide variety of

unique devices. It details the construction,
use, and programming of

Light Pens Light and Motor Controls
Alarm Systems Light and Motion Sensors
Networks Data Encoders and Decoders
Infrared Sensors Tone Decoders

The commercial versions of some of these

devices sell for hundreds of dollars, but this
book will show you how to build your own for a
fraction of the cost.

Your Atari Comes Alive provides a thorough

overview of electronics, as well as detailed
schematics and instructions. It covers the
programming techniques used to control the
devices, gives building, testing, and
proramming tips, and offers suggestions for
additional appliicatitens), systems, and

software. The disk contains over 18 1listable,
ready to run BASIC and Assembly language
programs, to communicate with your devices.

Create your own exciting devices
and save money!!

	Cover

	Contents

	Preface

	Electronics Review

	Software Techniques & Comments

	Display Memory and Display Lists

	Display List & Vertical Blank Interrupts

	Overlays

	The Joystick Ports

	Switches

	Event Detectors

	Motion Sensors

	Light Pen

	Using Analog Input

	Sound and Wave Generators

	Tone Decoder

	Data Selector

	Encoders

	Decoders

	Device Control

	Display Lighting

	Serial Data Transfer

	Networking
	Appendix A: Parts Suppliers & PC Board Services

	Appendix B: Programs
	Glossary

