YOUR ATARI 8 BIT
COMES ALIVE!

DISK INCLUDED

Written by Richard Leinecker
Edited by David Leinecker

@ Computer Spectrum, Inc.

Your Atari
8 Bit
Comes Alive!

Written by
Richard C. Leinecker
Edited by

David B. Leinecker

Copyright 1987, by Computer Spectrum, Inc.
All rights reserved. No part of this book may
be reproduced or utilized in any form, or by
any means, electronic or mechanical,
including photocopying, recording, or by any
information storage or retrieval system,
without permission in writing from the
publisher. Inquiries should be addressed to:
Computer Spectrum, Inc., P.O. Box 162606,
Miami, Florida, 33116.

Your Atari 8-Bit Comes Alive

Introduction

The purpose of this book is to enhance the
understanding and enjoyment of the Atari 8
Bit computer. By building hardware projects,
the user develops a better understanding of
the machine in general, and at the same time,
learns some basic interfacing techniques.
These projects are geared towards educating
Atari owners and not necessarily for the
design engineer. As a result, many of the
circuits and programs are simple so that they
are easily understood. While the electronics
novice will benefit from the contents of this
book, the advanced readers will learn as well.
Every project can be directly applied and
used, but they can all be elaborated upon to
develop more complex applications.

We are planning updates and other
publications in the future. If you have an idea
that you would like us to consider, please let
us know.

While reasonable care has been exercised
with regard to the accuracy of this book, the
authors and publisher assume no responsibility
for errors, omissions, or suitability for any
applications. Neither do we assume any
liablity for any damage resulting from the use
of this book.

We ask for your feedback and offer our
support in your endeavors. If you have a
question or comment, please feel free to call
our BBS at 305-251-1925.

Your Atari 8-Bit Comes Alive

Acknowledgements:

The author, editor, and publishers wish to
thank Jack Durre’ for his invaluable support
and advice. We would also like to thank
Tammy Leinecker for many hours spent
proofreading and typing. A word of gratitude
is extended to the Dade Atari Users Group
(DAUG) for allowing these ideas to be
presented over the last several months.

Your Atari 8-Bit Comes Alive

Table of Contents

Introduction _ __ ... _.___. i
Acknowlegements _ _ _._. ii
Contents . _ __.._...__. iii
Building and Testing. . . _ . ___ _. 1
Numbers!. . _ _ .. __._.... 31
Programming Tips 37
The Joystick Ports.__. 68
Switches. __.______._._. 81
Event Detectors. . . _ .. _.__._. 91
Motion Experiments- - - _. 101
Encoders. . .. __.._________. 115
LightPen. __.._._._. 123
Device Control. ___..._. 131
Decoders.__.___._. 143
Serial Data;, 149

Your Atari 8-Bit Comes A live

Data Selector. ____ .. ____. 157
AnalogData .._.__._._________ 163
Synthesizer Add-Ons_._. 169
Tone Decoders_...._. 177
Networking . - . ..____.__ .. ___._ 182
Lighting Display. ______ . - . 191

Appendix A - PC Board Services . . 197
Appendix B - Parts Suppliers. . . _. 197

Appendix C - Included Programs. . . 199

iv

Building and Testing

1. Building and Testing

Your Atari 8-Bit Comes Alive

Building and Testing

For many people, this section contains
information they may already know. For
them, it can either be used as an electronics
review or as a reference section. For those
who have little or no background in these
subjects, it would be wise to spend some time
reading this section.

BUILDING and TESTING

The two most effective ways to build
- these projects are on solderless breadboards
and perforated breadboards. The use of
solderless breadboards is best when the
circuit is first constructed so that
modifications to the circuit and corrections
can be made easily. To use the solderless
breadboards, you simply insert components
into holes which have underlying conductor
strips. The components are easily inserted
and removed, so construction is quick and
easy. Perforated breadboards are very good
once a project is ready for a permanent
version. The components in the perforated
breadboards can either be soldered or
wire-wrapped. If you are especially bold,
you may try to etch your own printed circuit
board or have one of the many available
companies make it.

Solderless breadboards can be purchased
from almost any electronic parts supplier.
Radio Shack may be the most convenient

Your Atari 8-Bit Comes Alive

because there is no delay time in ordering.
The size of the breadboard needed depends
upon the number of components there needs
to be room for. But, in general, about
90- 100 terminal points will be adequate.
Some of the more complex projects such as
the phone answering circuit may require
more room. The best alternative in this case
is to use two boards of the same size. Since
they have the ability to interlock with each
other, you will have enough space. Jumper
wire kits can be purchased from some
suppliers. This is a convenient way of
obtaining the needed jumpers. If you don’t
want to buy the jumper kit, simply take
some time to strip wires at each of their
ends. Then, store these home-made leads in
one place. It is much better to have jumpers
prepared than to make them as you go.

To place parts on a solderless breadboard,
push each lead into a hole. Underneath every
five consecutive holes (depending on the
type), there will be an underlying conductor.
Be careful that you know how the
underlying conductors are lined up inside of
the solderless breadboard. On the following
page is an illustration of a small board with
part of it cut away exposing the underlying
conductors.

Building and Testing

Perforated breadboards can also be
purchased through any electronics parts
supplier. They are less expensive than the
solderless breadboards. Here, just as with
the solderless breadboard, a collection of
jumper wires is very helpful. If you plan to
solder the components, make sure that you
have sockets for the ICs and transistors used.

Before you begin the construction, it may
be helpful to sketch the layout and pencil in
the planned component locations. This will
make for a compact and neat board. Some
suppliers have push-in terminals that allow
for easier soldering. These push-in terminals
go into the breadboard and provide a
convenient solder point. If you choose to
wire-wrap the project, the same guidelines
will apply.

When you solder, there are several
suggestions that you should follow; make
sure that all surfaces are clean.

Your Atari 8-Bit Comes Alive

Do not use a wire with an oxidized metal
end. If it is oxidized, you must cut the
wire and restrip the end. Use small, rosin.
core solder. Heat the work (the
component), then apply the solder. If the
solder does not melt when applied to the
work, the work is not hot enough.

Soldering any electrical components
should be done with care. Besides making
the appearance more pleasant, circuit
branches may be more easily seen. Limit
soldering time whenever possible. For parts
which are easily damaged, you should use a
heat sink that clips on. This will help you
keep your components healthy. A
low-power soldering iron from 15 to 35
watts should be used.

If you decide you want to use an etched
PC board, you can get the necessary
chemicals, boards, and ruboffs (transfers)
from most parts suppliers. Radio Shack sells
copper-clad boards, dry transfers, etchant
resistant pens, and the etchant. From these
ingredients, an adequate board can be made.
If you want a professional job, you can
design the artwork, then send it off and
have the PC board made. Appendix A has
a listing of companies that offer this
service.

Building and Testing

Two pieces of test equipment you will
need are a multimeter and a logic probe.
The multimeter should have voltage
ranges of 0-5 volts, 0-25 volts, and 0- 125
volts. Two suggested current ranges are
0-100 mA and 0-500 mA. If you can spend
the extra money, a current range of up to
one amp is sometimes helpful. You should
be able to measure resistances from 0 to 6
megohms and have an accuracy to within
5%. The logic probe you choose should be
able to handle both TTL and CMOS
levels, indicate pulses, and protect against
reversed polarity.

One more piece of equipment that
makes things easier for the experimenter is
a power supply. A combination 5 volt/12
volt power supply is fine for the projects in
this book, but a variable range power
supply will give more flexiblity in later
endeavors. Your power supply should be
able to handle at least one amp. If you
prefer, you could construct your own. On
the next page is the schematic for a
variable power supply. You could put two
separate packages together for two
separate voltage levels.

Your Atari 8-Bit Comes Alive

Trans- s ol o]

formenr
- T
126 VAC +* :

y 1000 mfd
28 volt
output

VUout

LM317? Case

2 1.2-37 volt
+ Regulator

c e =

Tha
-3-"
“

300

Protentiometer

l.':

Building and Testing

RESISTORS

Resistors limit the amount of current
in a circuit branch. The voltage in the
branch is divided proportionally across all
resistors. Knowing this allows us to
calculate the voltage in every point
throughout. The basis for these calculations
is Ohm’s Law, which is E=IxR where E is
the voltage in volts, I is the current in amps,
and R is the resistance in ohms. For
different situations, any one of the three'
variables may be unknown which leads us to
two other useful forms of the equation: 1) I
=E/Rand2)R=E/ I.

Suppose that a certain component
requires 5 volts and draws 2 amps of current.
If the source voltage is 12 volts, you can
figure out the needed resistance to drop the
12 volts to 5 volts. The voltage drop is 7
volts (12 volts source - 5 volts device). The
appropriate resistor can be found by using
Ohm'’s Law in the form R=E/ I or 7 volts
/ 2 amps = 3.5 Ohms.

One important consideration when using
resistors is the power rating. Most circuits in
this book only need resistors with 1/4 watt
power rating. If you suspect that a
resistance may be subjected to too much
current, use one of the following formulas to
calculate the wattage to which the part will
be subjected.

Your Atari 8-Bit Comes Alive

P=ExI P=I)xR P=E¥R

—— 1S(L rd 3rd] [4th EEEE—

Most resistors are color coded according
to their value. Each of the first two bands

represent a digit according to the followin g
chart.

Color Digit

Black
Brown
Red
Orange
Yellow
Green
Blue
Violet
Gray
White

WoRoNAANPDWN O

10

Building and Testing _

The third digit represents the multiplier.
You multiply the first two digits by this
number to get the total resistance. The
following chart illustrates these values.

Color Multiplier
Black 1
Brown - 10
Red 100
Orange 1,000
Yellow 10,000
Green 100,000
Blue 1,000,000
Violet 10,000,000
Gray 100,000,000

"K" means 1,000 when it is used with
respect to resistance values. A 1.2K resistor
has a resistance of 1,200 ohms. Meg means
1,000,000 when used with resistance values.
A 2 megohm resistor has a resistance of
2,000,000 ohms.

If a fourth band is present, it indicates
the tolerance. A gold band means a tolerance
of +/-5%, a silver band means a tolerance of
+/-10%. If there is no fourth band, then a
tolerance of +/-20% can be assumed.

11

Your Atari 8-Bit Comes Alive

The total resistance of resistors in series,
as pictured below, can be found by simply
adding their values.

R, + Rz + R, = R,

When resistors are in parallel, as pictured
below, their total resistance can be found
using the following formula.

: i 1 1

R, R, R, R,

CAPACITANCE

In this book, capacitors are used to pass
an AC signal and block the DC current, to
filter out unwanted voltage fluctuations, and
to perform a timing function. Only two
different types are used; electrolytic and disk.

12

Building and Testing

When you need to pass an AC signal and
block the DC current, consideration must be
given to insure that the AC signal will not
be significantly attenuated. This can be
done by calculating a capacitance value
based on the lowest frequency you wish to
pass. The following formula, where C is
capacitance in farads and f is frequency in
cycles per second, will allow you to find this
capacitance value.

1
2x3.14 x fx 1,000

To filter out unwanted fluctuations such
as in a power supply, use the same formula
as above. For half-wave rectifiers, the
frequency will be 60. For full wave
rectifiers, the frequency will be 120.

Capacitors do not charge instantaneously
nor do they discharge instantaneously.
Often, it is important to get a close
approximation of this time period. Use the
following formula, with resistance values in
ohms and capacitance values in farads, to
find the time in seconds.

Time = Resistance x Capacitance

Your Atari 8-Bit Comes Alive

If the capacitor in the schematic has a
polarity marking such as-11- , it is an
electrolytic capacitor and care must be taken
to observe the polarity when constructing
the circuit. Both the polarity and the value
will usually be written on the case of an
electrolytic capacitor. A maximum voltage
will be written on the case. Do not exceed
this voltage as the capacitor will be damaged.

Less voltage than the maximum rating is
fine.

For the disk capacitors, the values have a
code which can be interpreted as follows.

X X X - 3 digit code
Ist 2nd multiplier

Read the first and second digits as they
appear. To get the value in picofarads,
simply move the decimal point to the right
the number of places indicated in the
multiplier. A picofarad is a millionth of a
millionth of a farad. To convert from
picofarads to microfarads, move the decimal
six places to the left. For most applications,
a 20% tolerance is fine. Many
substitutions will work as long as you stay
within these limits.

14

Building and Testing

The total capacitance of capacitors in
parallel is their sum.

1 1 : § 1

- * -— o+ -— =

c, c, c, c

—
c, ¢ ¢

The total capacitance of capacitors in
series can be found by the following formula.

¢, + ¢ + ¢ = ¢

—i—

c,

I
L

Ca
L

Ca

DIODES

Diodes permit current to flow in only one
direction. In this book, the two types of
diodes used are rectifier diodes and light
emitting diodes (LEDs).

15

Your Atari 8-Bit Comes Alive

. The diodes you use will have a black, or
dark, band at one end. This indicates the
cathode and should be connected to the
negative node in the circuit. This is called
forward biasing, and will allow current to
flow. The LEDs also have a means of
indicating which lead is the cathode and
which lead is the anode. The cathode lead
will be the shorter one, and the anode will be
the longer one. Connect the cathode to
negative and the anode to positive for
forward biasing.

The LEDs in general require a voltage of
about 2 volts and usually draw about 20 mA
of current (.02 amps). Exceeding these
ratings will probably damage the LED. If
your source voltage is greater than 2 volts,
use Ohm’s Law to select the correct resistor
to drop the voltage to safe levels. If your
source is 5 volts, the voltage drop needed is 3
volts. Since the LED will draw about 20 mA
of current, set up the formula R = E/I or, in
terms of the given values, R = 3/.02. Thus,
the needed resistance is 1500 Ohms.

The infrared LEDs will be biased in the
same way, but be certain to check the
manufacturer’s specifications as to the
current so that you can accurately calculate
the voltage-dropping resistor. Since infrared

LEDs cannot be seen, you can test their

16

Building and Testing

operation with a phototransitor in the
following configuration.

O A

Ohns 7

L
< AAAA— 48

TRANSISTORS

In the age of ICs, transistors still have a
place. A single, general purpose transistor
can be used for a wide variety of purposes.
This makes them very flexible. A single
transistor takes up less space than an IC and
may be more practical when only one gate is
needed.

Bipolar transistors (NPN or PNP) usually
have three leads. They are the emitter, the
base, and the collector leads. Following is an
illustration, looking at it from the bottom,
with leads pointing up. If it is a plastic
package, one side will be flat. This is how
you identify the positions. If it is a metal
package, the small tab on the case is the
reference used to identify the positions.

17

Your Atari 8-Bit Comes Alive

View of Bottom:

CBE
Plastic Case Metal Case

The schematic representation of NPN and
PNP transistors is as follows.

O ¢

NPN PNP

FET (or JFET) transistors have no
standard format for their leads. The three
leads will be the source (S), the gate (G),
and the drain (D). The schematic
representation is on the following page.

18

Building and Testing

G

e

S —D

Transistor switches are small and
compact. One configuration may take the
place of an entire IC. These switches can
also be combined for more complex uses and
still take up less space than many ICs. In
theory, the transistor is in one of two states,
on or off. This is done by biasing it such
that only two regions of the load line are
used; cutoff and saturation. Following are
the schematics for two simple NPN transistor
switches. One is inverting and one is
non-inverting.

Inverting
vecce

10K

In

19

Your Atari 8-Bit Comes Alive

Non-Inverting

Vee

Iin

An FET switch may be preferable
because the input resistance is far greater
and will not load down previous stages as

much. Below is the schematic of a simple
FET switch.

vece

10K

out
In

100K

_—
-

Using two NPN transistors, you can
construct an RS flip-flop. An RS flip- flop
can be used to "set and reset” the output of a
device. One of these (in IC form) is used in

the phone answering project. The schematic
is on the following page.

20

Building and Testing

Bipolar transistors can also be used for
voltage regulators. To bias the base for the
— necessary voltage use the formula.

R1
— R1+R2 X Vce-.7 volts=regulated voltage

21

Your Atari 8-Bit Comes Alive

Below is a circuit using an NPN
transistor which provides a regulated output
voltage of 4.3 volts.

4.7K

+<

VOLTAGE REGULATOR ICs

Fixed voltage regulators are ideal for
your own power supplies and for adjusting
your power supply to make additional
voltages available. Following is a diagram of
a 7805 regulator, but the same diagram
would apply to a 7812 or a 7815. The 7812
gives a regulated output of 12 volts. The
7815 gives a regulated output of 15 volts.

22

Building and Testing

1-Input]
2-Ground —— O
3-Output]

Earlier in this section, a power supply
using a variable voltage regulator was
shown. Refer to that diagram if you prefer
a variable voltage power supply.

ICs

Integrated circuits are used in the bulk of
the projects in this book. They are
self-contained circuits by themselves. All
operating requirements must be observed.

When the IC is right side up, pin 1 is at
the lower left as shown below and is

determined by the dot, indentation, or other
marking as shown.

/4

Pin 1

23

Your Atari 8-Bit Comes Alive

Sometimes, the date of manufacture is
printed on the IC in addition to the part
number. To complicate things, the part
number may look slightly different than
what you ordered. Before sorting your chips
becomes a problem, get in the habit of
keeping them in separately labeled locations
so that correct part numbers can be
identified.

When soldering an IC into a project,
you should use a socket to protect it. The
sockets with tin leads are fine but those with
the gold leads solder easier. Exercise care
when inserting them into the socket.
Sometimes the pins of the IC on one side
may have to have a slight pressure applied
so that they fit in the socket better.

The three types of ICs used in this book
are TTL, CMOS, and linear. TTL means
transistor-transistor logic. Sometimes LS
versions of TTL ICs are used. LS stands for
low power schottky and has to do with the
manufacturing process. CMOS stands for
complementary metal oxide semi-
conductor. Linear ICs have an output that
is proportional to the input. Some linear ICs
can be used in a non-linear fashion.

24

Building and Testing

The operating requirements for TTL ICs are:

[y
.

Vee must not exceed 5.25 volts.

2. Input signals must not fall

below ground.

3. Unused inputs usually assume

the high state, but if you intend
it to be high, connect it to Vcc,

4. If an input should be in the

low state, connect it to ground.

5. Connect unused inputs to Vec to
prevent unnecessarily high current
consumption.

6. Avoid excessively long connecting

wires.

One TTL output will drive as many as 10
TTL gates or as many as 20 LS gates. One
LS output will drive up to 5 TTL gates or as
many as 10 LS gates.

If your circuit is not operating properly,
check the following: 1) all pins go
somewhere, 2) all IC pins are in the
socket, 3) all operating requirements have
been met, 4) all connections have been
made, and 5) Vcc is not more than 5.25
volts nor less than 4.75 volts.

25

Your Atari 8-Bit Comes Alive

CMOS ICs use less current than TTL and
operate over a 3-15 volt range. The
operating requirements for these chips are:

L The input to any pin should not

exceed Vcc except in the case of
the 4049 and the 4050.

2. All unused inputs must go some-

where, either Vcc or ground.

3. Do not connect a signal when Vcc

is off.
4. Avoid static on the IC at all costs;
they are very sensitive and can be
easily destroyed.
a. Always store in a conductive
container.
b. Do not place on a non-
conductive surface.
¢. Make sure that you are
discharged of any static build-
up before handling.
5. When interfaced with TTL, make
sure Vcc is at least 5 volts.

You may want to design your own
external logic either going into the computer
or coming out. Following are the basic logic
gates and their truth tables.

26

Building and Testing

NAND Gate
A B Out
A_
Out L L H
B L H L
H L L
H H L
AND Gate
A B Out
A— L L L
)’Out L H L
B— H L L
H H H
OR Gate

Out

o
=
Sl
e m e | w
T T T

27

Your Atari 8-Bit Comes Alive

NOR Gate
AD A B Out
Out L L H
B L H L
H L L
H H L

EXCLUSIVE OR Gate
Out

A A
B L
H
H

In the diagrams, the L means low and
corresponds to the zeros in binary. The H
means high and corresponds to the ones in
binary.

jaoll qaife ol ol "
aplesfiesll o

Voltage comparators, specifically the
LM339, are used many times for the projects.
They compare a reference voltage to
another voltage. Usually the reference
voltage will be set up with fixed resistors,
but it is possible for the reference voltage to
float also. Below are the basic
configurations. The non-inverting
comparator’s output is low when the input
voltage (pins 5, 7, 9, or 11) falls below the

28

Building and Testing

falls below the reference voltage (pins 4, 6,
8, or 10). For an inverting comparator,
simply reverse the roles of reference and
input voltage. The reference voltage will be
on pins 4, 6, 8, or 10. The input voltage will
be on pins 5, 7, 9, or 11. When the input
voltage exceeds the reference voltage, the
output goes low.

out out

Input Reference Reference Input

Non-Inverting Inverting

For TTL compatable output, connect a
10K resistor from the output to +5 volts as
shown below.

out

+5
10K

Input Re ference

TTL Output
Non—-Inverting

29

Your Atari 8-Bit Comes Alive

30

Numbers!

2. Numbers!

31

Your Atari 8-Bit Comes Alive

32

Numbers!

A working knowledge of binary and
hexadecimal numbers is very important to
effectively understand the programming
aspects of the projects in this book.

The reason that computers need to use
binary numbers is that all of their internal
circuitry uses a system of transistors that
are either on or off. Their voltage levels in
the "on" state approach 5 volts (TTL), and
in the "off" state, approach ground, or 0
volts. The numeric system used to
represent these on and off states is the
binary system where an "on" is notated as a
1 and an "off" is notated as a 0. This is of
special interest when building hardware
projects. Hardware ports which are
parallel read and write data in binary. The
software values in the registers must
reflect the data. If each bit of the
interface is considered as a separate
device-related bit, the programmer must
consider this in the routine.

Binary numbers are in base 2 as opposed
to our normal base 10 decimal numbers.
When we count in base 10, we carry to the
next digit after reaching 9. In base 2, we
carry to the next digit after reaching 1. In
base 10, it.is helpful to think of the place
values in terms of 10 raised to the power of
the place. In base 2, this is also helpful

33

Your Atari 8-Bit Comes Alive

except that you will think of 2 raised to the
power of the binary place. Below is a chart
illustrating the binary values of each place
and its representation as 2 raised to a power
with respect to the place.

Binary Place Exponential Form Value

0 2° 1
1 2! 2
2 2? 4
3

8
; > 16
5 2° 32
6 2° 64
7 27 128

The above chart is sufficient for 8 bit
numbers, but for larger numbers than this,
simply continue the chart.

To ascertain the value of a given binary
number, sum up the values of the places
which have a 1. You must realize that the
computer counts places starting with the
Oth place. We would ordinarily think of
this as the Ist place but the computer sees
it as the Oth place. The next place
according to the computer is the Ist place,
what we would normally call the second
place. For an example of assessing the
value of a binary number, let us consider
1101. You see that going from the right to
the left you have the values of 1+ 4 + 8. 1
from the Oth place, no value from the 1st

34

Numbers!

place, 4 from the 2nd place, and 8 from the
3rd place. Summed up, this equals 13. The
decimal equivalent of 1101 is 13. An
example with a larger number is 11010011.
The values you must add to get the total
would be 1+ 2 + 16 + 64 + 128, this would
give you 211.

There are a number of bitwise logical
operations which you can perform on these
binary numbers from assembly language or
from the C compiler. All of these operations
are performed on a number, usually in a
variable or some specific memory location
or register. The program- mer then
specifies another number, the operand, with
which the operation is carried out.

The logical AND operation takes the
number in question and performs the
operation with respect to the operand. The
bits that remain are only those which both
the number and the operand had in common.
The other bits are lost, or as is commonly
said, they are "masked out."

The result of the logical OR operation is
that the bits that remain after the operation
is performed are those in the number or the
operand or both.

Another common operation is the ex-
clusive OR. This follows the logic of the
exclusive OR seen in the IC section of the
electronics review.

35

Your Atari 8-Bit Comes Alive

Most assemblers or compilers need
numbers in hexadecimal form. This is a
base- 16 system where the digits go as
follows:

0,,2,3,4,5,6,7,8,9,AB,C,.D.EF

The letter A represents a decimal value
of 10, B represents 11, C represents 12, D
represents 13, E represents 14, and F
represents 15.

For an example of assessing a hexa-
decimal number, let us consider 8C. The
value of the digit containing Cis 12. The
digit containing the 8 represents 8 x 16 or
128. Remember that since this is a base 16
numbering system, the second digit over
from the right is the 16s place. The third
digit over from the right is the 2565 place,
which comes from 16 to the second power.
Continuing to the left, for each additional
place from the right, you raise 16 to the
power of one more.

36

Programming Tips

3. Programming Tips

37

Your Atari 8-Bit Comes Alive

38

Programming Tips

This chapter will describe various
programming techniques that will be helpful
to anybody using the eight bit Atari
computers. Many of these techniques were
used in the demonstration programs, so
familiarity with them will enable better
understanding of the projects and this book
in general.

This chapter is organized in such a way
that it provides a quick reference section as
well as a comprehensive instructional
chapter. Specific memory locations are
discussed. These are helpful memory
locations, and their use can be seen
throughout the demonstration programs.
Next in the chapter is a brief discussion of
graphics modes. The graphics modes are used
in several places within the programs but
could be exploited more fully with some
creativity. Using machine language
subroutines is explained and made
manageable. This will be extremely useful
for you as you incorporate machine language
subroutines from your BASIC programs in
order to increase the speed of execution and
the efficiency. Display lists, display list
interrupts, and vertical blank interrupts are
then explained in detail. These will become
powerful tools once you have learned them
and are able to use them in your
programming. They are used throughout the
demonstration programs.

39

Your Atari 8-Bit Comes Alive

I. Useful Memory Locations

Part of your computer’s memory is
dedicated to the operating system. In this
part of memory, the system maintains itself
and all of its various functions. You can gain
access to these locations by using two simple
statements from BASIC; poke and peek.

To read a value in a memory location use
the peek command. The format of this
command is X=PEEK(LOCATION). This will
put the value of that memory location into
the variable named X. The location number
will range from 0 to 65535 which is all of
the memory on a 64K machine. The value
returned to the variable will be in the range
of 0 to 255. You might then ask how the
computer works with numbers larger than
255. The answer is that the computer
combines two or more locations to form
larger numbers. In most instances, the
operating system stores them in two
consecutive locations. Their order, oddly
enough, is the least significant byte followed
by the most significant byte. To evaluate
these two bytes, multiply the second byte
(most significant) of the two consecutive
bytes by 256. You then add the value of the
first (least significant) byte to obtain the
correct value represented by the two bytes.

An example of reading two consecutive
memory locations that form a larger number

40

Programming Tips

is found when finding the location of the
display list. The two memory locations that
hold this value are 560 and 561. To evaluate
the decimal value of these two locations, try
this routine: X=PEEK(560)+PEEK(561)*256.
This will assign the value, in a base ten
decimal number, of the display list location
to the variable X,

In order to put values into memory
location, you must use the poke command.
The format of this command is POKE
LOCATION,VALUE. The location can be
any number from 0 to 65535. The value that
you put into that location can be any number
from 0 to 255. Once again, for values past
255, two separate bytes must be used.

Before going on, try a simple experiment
to see how these work. In immediate mode
from your computer, type in PRINT
PEEK(710). A value of 148 should be printed
on the screen. This is the color of your
screen that the computer begins with by
default. To change your screen color, type
POKE 710,0. This will turn your screen to
black. Experiment with other values from 0
to 255 to see what colors you can produce on
the screen. Remember that you PEEKED a
value of 148 before you started. If you want

to return to the original color, you will have
to POKE 710,148.

41

Your Atari 8-Bit Comes Alive

Here is a list of the locations that we found
most useful:

Location(s) Usage

18,19,20 These three locations
comprise an internal realtime
clock. Location 20
increments every vertical
blank (1/60 of a second).
When location 20 reaches
255, it increments location
19 and recycles back to 0.
When location 19 reaches
255, it increments location 18
and then recycles back to 0.

65 Turns disk and cassette I/0
noise either on or off. Poke
with a O for silence during
these operations or any
non-zero value to make the
noise resume.

82 Controls the left margin. A
value of zero allows text to
be printed all the way on left
part of the screen. Any other
value will move the left
margin in by the number of
characters stored in location
82.

42

Programming Tips

83

195

203-206

546,547

548,549

564
565

624-631

Controls the right margin.
Initialized to a value of 39
when the system boots.

The error number that
occured last. This is useful
when you have an error trap
set up because when it is
implemented, your program
can find out the exact error
number.

Four free bytes unused by
the operating system. These
four locations were used
frequently as temporary
holding locations from the
machine language
subroutines.

Immediate vertical blank
vector.

Deferred vertical blank
vector.

Light pen horizontal value.
Light pen vertical value.

Paddle registers. There are
eight of these because the

43

Your Atari 8-Bit Comes Alive

632-63S

644-647

710

741,742

752

764

original 800s had four
joystick ports. The newer
800XLs have only two
joystick ports so only the
first four of these locations
are used.

Stick registers. All four are
used for the 800s while only

the first two are necessary
for the 800XLs.

Trigger registers. All four
are used for the 800s while

. only the first two are

necessary for the 800XLs.

Screen color for graphics 0
mode.

Pointer to the top of free
memory. Used in the
program called OVERMAKE
to make space for the
overlay in some cases.

Cursor inhibit flag. A zero
turns the cursor on while a
one turns it back off.

Internal hardware value for
the last key pressed. A

44

Programming Tips

value of 255 indicates that
all keypresses have been
processed. A value other
than 255 indicates

a keypress that requires
processing.

1536-1791 Page six. This a set of 256
bytes that can be used for
any machine language
routines or data storage by

the user. It is not used by
the OS.

54016,54018 Used together, these two
locations can be used to
configure the joystick ports
for either input or output.
There will be more about
that in the joystick port
chapter.

For a complete description of all

locations in the operating system, consult
"Mapping the Atari" by Compute! Books.

45

Your Atari 8-Bit Comes Alive

II. Graphics Modes

Most of the demonstration programs use
graphics 0, the mode that is best for text.
Others use graphics modes that are better
suited for visual displays. Below is a chart
of the resolutions possible with the first
nine graphics modes.

Mode Columns _Rows Colors available

0 40 24 11
20 24 52 20
12 53 40 24
44 80 48 25
80 48 46 160
96 47 160 96
48 360 192 1

III. Machine Language Routines from
BASIC

Atari BASIC has a command that calls
a machine language subroutine. The format
of the command varies depending upon
the format of the data that comprises the
subroutine. In general, though, the
syntax from BASIC is USR(ROUTINE).
When this command is used, control of the
program passes to a machine language
subroutine.

46

Programming Tips

We will deal with only two ways of

developing a subroutine although many more

exist. The first and easiest way is to
use one of the available assemblers. These
will convert the pneumonic codes into the
actual machine codes that the 6502
microprocessor understands. The second and
less convenient way to create these
subroutines is to hand code your
instructions using a chart. This takes a great
deal more time and there is a much greater
chance of including errors in your code.
In any case, you must have your set of
instructions in the form of actual
machine language instructions that the
processor can understand.

From the BASIC program, there are
three ways to call the subroutine. They are
carried out by using a specific memory
address, by using a string variable which
contains the code and then using that address
of the string, and finally by having the the
code contained inside a string within the
USR command itself.

In order to call a subroutine from a
specific memory location, you must first load
the code into the appropriate memory
locations. Page six (1536-1791) is a very
convenient place since it is out of the way of
the operating system and BASIC. You then
use the command X=USR(LOCATION). The
variable X is a dummy and no value is

47

Your Atari 8-Bit Comes Alive

assigned to it or taken from it. The value
contained in LOCATION is the starting
address of your routine.

In order to load a routine into
memory, there are two very convenient
options. You can rename the assembled file
to AUTORUN.SYS and it will load in at the
proper starting address. It is then ready for
your use whenever you call it from BASIC
using the USR command. Another good way
to load in routines is to use data statements
and simply POKE the data into the proper
locations. The routines can then be called
from your BASIC program using the USR
command.

If you prefer, your machine
language code can be put into a string
variable. Bach consecutive byte of the
code is assigned to each consecutive byte of
the string variable. The format of the
command from BASIC is then X=USR(
ADDR(AS$)). X is a dummy variable and
AS is the string variable that contains the
machine language code. Notice that the
starting address of A$ must be passed in the
command.

A slight variation of the previous
method is to insert the code into the actual
USR command itself. You do this by
typing in the characters that correspond to
the ATASCII values of the codes. A typical
usage of this format might be X=USR(

48

Programming Tips

ADDR("gql*%@1448(*(+_.aks")). The
characters look like total gibberish to us,
but when translated to numbers the 6502
will understand the codes (provided that your
original routine is correct).

With whatever form you decide to use
the USR command, you have at your
disposal, when using this command, another
very powerful option. From the BASIC
program, you can pass values to the
subroutine. These values might be anything
that is important to the routine or
something that the routine will perform an
operation on. To pass values, use

the following format:
X=USR(LOCATION,VALUE1,VALUE2,VAL
UE3,...). Theoretically, you can pass up to
255 values to your subroutine. It is
important to know how this information is
received by the subroutine in order to use it
correctly.

When a machine language subroutine
is called from BASIC, as it goes to that
routine, it puts values on the stack as it goes.
The first two bytes that are put onto the
stack are the address of the current BASIC
program command being executed. It does
this so that it knows where to go back to
when it encounters the RTS in the routine.
The next thing that is put onto the stack are
all of the arguments that are being
passed. These were designated as VALUE],

49

Your Atari 8-Bit Comes Alive

VALUE2, VALUES3,... in the above
paragraph. The value of these arguments is
put onto the stack with the most
significant byte first, followed by the least
significant byte. Even if the value passed is
less than or equal to 255, two bytes are
still passed. The last thing that is placed on
the stack is a single byte which contains the
number of arguments that are being passed
from BASIC. Even if no arguments are
passed, this byte is placed on the stack as a
zero.

As stated before, up to 255 arguments
can be passed. The problem will be that the
stack, which is 256 bytes, will overflow
and the address of the current BASIC
command will be lost, not to mention any
data overflow. When values are placed on
the stack, the most recent byte goes on top.
As more and more data is placed onto the
stack, the previously pushed data goes lower
and lower. To get any of the data from the
stack, you must first pull off data that is on
top. Make sure that when you write your
machine language code that you remember
this system.

Suppose that you call a machine language
routine that expects no arguments to be
passed from the BASIC program. If you do
not pull the byte from the stack that was
put there indicating the number of
arguments sent from BASIC (a zero in this

50

Programming Tips

case), the computer will mistakenly interpret
this as one of the bytes that represents the
address of the BASIC command which the
program must return to. To avoid this
problem, make sure that you pull this single
byte from the stack before you do an RTS to
get back to the BASIC program.

If you have passed one or more
arguments to the subroutine, you must pull
them off the stack in the order of the most
significant byte first, followed by the least
significant byte. This is because they were
placed on the stack in the order of least
significant byte first, followed by the most
significant byte. Don’t forget that the rule
when pushing to and pulling from the stack
is that the last byte on is the first byte off.

Included on the disk is a program called
USRMAKER. This program will take a
machine language routine from disk and
convert it to a format that is usable by your
BASIC program. To create the routines,
use one of the available assemblers. The
USRMAKER program will discard the first
six bytes of the file as these contain
information pertaining to the starting
address. The program will ask you what
format you want the data in. Any of the
previously discussed formats can be
chosen. If the data contains a 155
however, only the data statement option can
be used. This is because the ATASCII

51

Your Atari 8-Bit Comes Alive

character of 155 is a carriage return and
cannot be represented on the screen as a
character.

IV. Display Lists

If you have ever wondered about
where the screen display resided in memory,
this section will shed a great deal of light on
the subject. The entity that controls the
location of screen memory and the graphic
mode of each line is called the display list.
It is a list which describes to the computer
the type of screen display that is currently
being used.

The ANTIC chip controls the video
display that you see on the screen. This chip
is very valuable because it takes care of a
lot of the mundane details concerned with
taking screen memory and turning it into a
visual image on the screen. In this way, the
6502 microprocessor can do other important
things like computations for your program.

The display list is where the data which
specifies the way that the screen data is to be
displayed can be found.

The display list is a set of numbers
that designates graphics modes for each line
on the screen that is to be displayed. Each
graphics mode has its own specific number
that when placed in the display list will alert
the ANTIC chip as to the specific mode.

52

Programming Tips

These numbers do not correspond to the
graphics modes that are used in BASIC.

Following is a list of the ANTIC modes.

ANTIC BASIC Scan
Mode Mode Line Width

2 0 8

3 none 10

4 none 8

5 none 16

6 1 8

7 2 16

8 3 8

9 4 4

10 5 4

11 6 1

12 none 1

13 7 2

14 none 1

15 8 1

The above ANTIC modes are
important to know when you are designing
your own custom display list.

The first thing that you have to do
when experimenting with display lists is to
find the current list. Two locations in the
operating system will contain the location in
least significant/ most significant format.
These two locations are 560 and 561
respectively. To get the value, use the

53

Your Atari 8-Bit Comes Alive

formula X=PEEK(560)+PEEK(561)*256.
This address will vary from graphic mode to
graphic mode. The length of the display
list will also vary from mode to mode: the
higher the resolution, the longer the display
list. The longer display list is necessary
because there are more individual lines in
the higher resolution screens.

Now that you have found the display
list, you must know what is in it and what
these things all mean. In BASIC, the first
three bytes of the display list will be 112,
112, and 112. The purpose of these values is
to place three blank lines at the top of the
screen. If you look at your screen, you will
notice the black border at the top of the
screen. This prevents monitor (or TV)
overscan.

The next byte found in the BASIC
display list will be 66. There are actually
two different pieces of information found
in this number. First of all, bit 6 (index 0)
of the number which has the value of 64
when set, tells ANTIC that the next two
bytes of data in the list make up the address
of screen memory. This is the start of the
place where the actual screen memory data is
kept. Another part of this number is 2
which indicates the graphics mode 0 or the
ANTIC mode 2. Just remember that if bit 6
is set to one, the next two bytes will indicate
the address of screen memory.

54

Programming Tips

Now that we have explained the first
six bytes of the BASIC display list for
graphics zero, we see a succession of 23
twos. These 23 twos indicate 23 lines in
graphics 0 or ANTIC 2 mode. If there
are 24 lines in graphics 0 though, where is
the 24th line in the display list? It is
contained in the byte that had the value of
66. The value of 66 represented the graphics
mode of 0 or ANTIC mode of 2. Also, the
6th bit was set indicating that the next two
bytes would give the starting address of
screen memory.

The next byte to explain in the BASIC
display list has the value of 65. The 6th bit
(with a value of 64) is set to 1 and
indicates that a memory location pair will
follow. The value of one that is also present
tells ANTIC to wait for a vertical blank
before returning control to the 6502. What
memory location do the last two bytes
represent? They represent the starting
address of the display list.

You can now modify this BASIC
display list to do many other things. Mainly,
though, at this point you should try to
experiment with mixed graphics modes.
You can make some lines in one graphics
mode while others might be in a different
graphics mode.

Below is a brief explanation of how
the internal chips work together to

55

Your Atari 8-Bit Comes Alive

implement the screen display. The
ANTIC interrupts the 6502 to get the
information from the display list and display
memory. The 6502 then resumes its
operation. The ANTIC checks the graphics
mode for the display and then sends that
information as well as the actual screen
data to be displayed to the C/GTIA chip.
The C/GTIA then converts the information
that the ANTIC sent into signals that your
TV or monitor can display. The C/GTIA
is the actual interfacing chip between your
computer and the video device that is
attached. The entire process is done every
1/60th of a second which is so fast that our
€yes cannot see it happening.

Try running the demonstration program
DLDISPLAY. It will find the display list and
put the values on the screen.

V. Overlays

The overlay is a useful tool because it
provides a space on the screen for displaying
information which stays in the same place
regardless of how much the rest of the
screen scrolls. It is ideal for displaying the
status of registers, variables, or locations
while you are programming and need to
monitor the status of important things. As an
example of how this can be used, two
programs are included on the demonstration

56

Programming Tips

disk. These programs are called OVRLAY1
and OVRLAY2. To run either of these
programs, they must be renamed to
AUTORUN.SYS, and you must reboot.
The program OVERLAY1 displays four
different pieces of information. In the
upper left corner, it shows the status of
joystick one in binary form. If the individual
bit is connected to ground or if it is receiving
a TTL level low, then it will be a zero on
the display. If it is not connected to ground
or it is receiving a TTL level high, it will be
a one on the display. Directly below that is
the decimal value of this binary number. In
the upper right hand corner is the status of
the trigger button of joystick port 1. Below
that is something labeled "Enter." This
actually keeps track of the status of paddle
0. If paddle O is connected to ground, it will
say "ON." Otherwise, in the unaltered state,
it will read "OFF." The reason for this is
that in a project that comes later in the
book, the paddle 0 is used for an enter key.

If you want to turn the overlay off,
press the start button. This will give you
more space on the screen to do your
programming. To turn the overlay back on,
press the option button. The overlay values
are automatically updated using a vertical
blank interrupt. These will be discussed
later in this chapter.

The program OVRLAY2 returns more

57

Your Atari 8-Bit Comes Alive

information to the screen and is intended to
be used with the data selector hardware.
Either overlay will help you when you are
building your projects, because you can see
the status of the joystick port.

As described previously, the display
list tells the ANTIC chip where to find the
data for screen memory. This is not limited
to a single pointer. You could point to
several different places which might
contain screen memory. BASIC will update
the screen memory beginning at 40000
with the print statements and the scrolling
that you are accustomed to seeing. If you
place screen memory anywhere else, it will
not be disturbed by print statements and the
system’s scrolling. To create a pointer, you
must set bit 6 (value of 64) to 1 in the
display list. This will tell ANTIC that the
next two bytes point to screen memory.

There is a program included on the
demostration disk called OVERMAKE. It will
create an overlay according to how you
answer questions when prompted by the
program. When you run the program, it will
ask you how many lines you would like for
the overlay. It is creating an overlay in
graphics 0, so be aware of the fact that
these will be text lines. Next, you will be
asked if you want a line separating the
overlay from the rest of screen memory. If
you answer yes, a thin black line will

58

Programming Tips

separate the overlay from the rest of the
screen. This line is done in ANTIC mode 13
or graphics mode 7.

After you have specified the size of the
overlay, you will be asked where in RAM
you would like this separate screen
memory to reside. Page six (1536-1791) is
a good choice, but if the overlay is too big, it
will not fit. If you do not have enough
room in page 6, or you want to use page 6
for other purposes, try using the area
towards the top of free RAM. If you go too
high and there is not enough room, the
program will tell you that it is going to
adjust it down to a suitable location. The
memory locations in the operating system
that keep track of the top of free RAM are
then adjusted so that your BASIC program
does not overwrite into your overlay area.

The overlay program will then ask you
if you want to display a string in the
overlay area. If you do, type in what you
want to appear remembering that the
overlay will display 40 characters per line. If
you do not want to enter a string, just hit
return.

The program will then create the
BASIC lines necessary to enable the overlay.
After it does this, it will delete itself (the
overlay program). What you will be left
with is the BASIC program that you will
need to implement the overlay. Just type

59

Your Atari 8-Bit Comes Alive

RUN and watch it happen. This program
can then be incorporated into your other
BASIC programs if you want. You can do
this by renumbering the lines (if necessary)
and listing it to disk (LIST"D:PROGRAM").
You can then enter it into your BASIC
program (ENTER"D:PROGRAM").

After you have implemented a
custom overlay, you may want to run the
program DLDISPLAY. This will display all
of the pertinent information of your new
display list.

You should be aware that the
ATASCII values of each character are
different from the internal screen memory
values needed to display the same characters.

The following routine will adjust an
ATASCII value to the internal screen
memory value:

10 REM X is the ATASCII value in
question

20 REM Y is the adjusted screen value

30 Z=0:IF X>128 THEN X=X-128:Z=128

40 IF X<32 THEN Y=X+64+Z:GOTO 70

50 IF X<96 THEN Y=X-32+Z:GOTO 70

60 Y=X+Z

70 REM Now do the next character or
stop

80 REM and insert into screen memory.

60

Programming Tips

VI. Display List Interrupts

The display list can be exploited even
further than we have already done by
enabling horizontal blank interrupts. These
interrupts will happen when the raster
operation is undergoing a horizontal
synchronization. By using this technique,
operations can happen automatically
whenever you specify in the display list that
an interrupt is to occur.

As you remember, the display list is
composed of a series of numbers that tell the
ANTIC chip what graphic mode to display
on each line. For each graphic mode, there
are a certain number of bytes that make up
the display list. By inserting the proper
instructions in the list, a display list interrupt
can be created.

When a picture is drawn on the
screen, an electron beam starts in the upper
left corner and scans the entire screen down
to the bottom right a single scan line at a
time. Between the time the pixel on the far
right is fired and the beginning of the
next scan line is begun, there is a bit of time
during which other tasks can be
performed. It is in this time that the DLI
(display list interrupt) works when
enabled. That particular DLI will occur
every sixtieth of a second, every time that
command is encountered in the display list.

61

Your Atari 8-Bit Comes Alive

The time that the computer has for a DLI is
limited to about 35 machine cycles, so only
short routines are possible.

The DLI is fairly simple although you
must know machine language to write the
code that is to be performed. The DLI
routine is enabled when it finds that a byte
in the display list has the seventh bit set to
one. The ANTIC chip then holds the flag
that was set by the seventh bit until the end
of the graphic mode line. ANTIC then looks
at location 54286, and if bit 7 of this register
is set to one, the DLI is performed. If it is
not set to one, the DLI is ignored. To
perform the interrupt, the 6502 jumps to the
address which is pointed to by locations 512
and 513. These two locations make up the
pointer to the interrupt in least significant
byte/most significant byte format. After the
interrupt is finished, control returns to the
main program.

Your interrupt routine must save all of
the 6502 registers before it does anything.
You do this with the following:

PHA *Push the accommulator

TXA *X register to the accumulator

PHA *Push the accummulator (X register
value)

TYA *Y register to the accumulator

PHA *Push the accumulator (Y register
value)

62

Programming Tips

Now that all the registers are saved,
you can do whatever it is that you want
your interrupt routine to do. If you do
not intend to use any of the registers, you
do not have to save their contents to the
stack. This will save valuable processor
time. Finally, you must retrieve the register
contents from the stack. Try the following:

PLA *Get the Y register value into the
accumulator

TAY *Put it back in the Y register

PLA *Get the X register value into the
accumulator

TAX *Put it back into the X register

PLA *Get the original contents of the
accumulator

The interrupt must end with an RTI
command. This will send it back from the
interrupt to the main program. The DLI can
do about anything you have time for.
Usually, it is used to change screen colors on
the fly.

The procedure to enable the DLI is as
follows. First, put your routine in memory
where it can be vectored upon enabling of
the interrupt. Next, alter the locations 512
and 513 to point to your routine. These
are in least significant/most significant
format. Choose the display list byte to alter.
The only restriction is that it cannot be

63

Your Atari 8-Bit Comes Alive

one of the bytes that points to screen
memory locations. The byte you choose
will determine where on the screen the raster
will be when the interrupt is enabled. The
byte you choose must then have bit 7 set to
one. You can do this by adding 128 to the
value of that byte. Finally, set bit 7 of
location 54286 to one so that the processor
will execute the interrupt.

VI. Vertical Blank Interrupts

Vertical blank interrupts are executed
every sixtieth of a second. The difference
between the display list interrupt and the
vertical blank interrupt is the time during
the video process that each one happens. The
vertical blank interrupt (VBI) occurs
between the time that the electron beam
finishes an entire screen redraw and the start
of another screen redraw. There is much
more time during this period for these
interrupts, so they can be much more
complex and time consuming than the DLI.

There are two different types of VBIs
that you can use. The first is an immediate
VBI and happens before the OS update.
During this period, you can implement
routines that use up to 2,000 machine cycles.
The second type of VBI is a deferred VBI.
This happens after the system’s own update
has occurred. Your routine can be up to

64

Programming Tips

20,000 machine cycles. As you can see, using
these interrupts gives you a lot of time to
work with. The deferred VBI begins while
no screen drawing is occurring, but after
about 2,000 machine cycles, the screen
redraw begins. The deferred VBI can
continue, but any graphics that are done past
this point may look bad since the screen
redraw is taking place.

The first thing to do when setting up a
VBI is to decide which type you need to use.
If 2,000 machine cycles is enough, the
immediate VBI might be best. If you want to
overwrite one of the systems functions, such
as a BASIC command that you rename or
revector, then the deferred VBI is better
since this will happen after the system’s own
update has occurred. One consideration is
that both types of interrupts steal processor
time from the main program. If the speed of
execution of the main program is very
important, you might have to keep the
interrupt routine short. If the main routine’s
execution time is not critical, the interrupt
routine will not adversely affect it.

After deciding what type of interrupt to
use, decide what it must do and where in
memory you are going to put it. Once again,
page six (1536-1791) is a good choice since it
is out of the way of the OS and BASIC. You
can either load the routine as an
AUTORUN.SYS file or you can load it from

65

Your Atari 8-Bit Comes Alive

BASIC by poking it into memory.

If you are going to use an immediate
VBI, set the two locations 546 and 547 to
point to your routine. These two locations
are in most significant/least significant order,
but be careful because this is not the most
frequently used order. If your routine is to
be a deferred VBI, set the locations 548 and
549 to point to your routine. They also are in
most significant/least significant order. The
routine must terminate in one of the two
following ways. For immediate VBIs, end
with a JMP $E45F. For deferred VBIs, end
with JMP $E462. You can increase the speed
of your immediate VBI by jumping over the
system’s interrupt. To do this, end your
immediate routine with JMP $E462 instead
of JMP $E45F.

When you are setting the pointers of the
VBI to your routine, there is a small chance
that the interrupt will occur between the
loading of the two pointer bytes. If that had
happened, the vector would have sent the
routine to some unknown destination, and
who knows what would have happened.
Fortunately, the Atari OS has a method to
prevent this from happening. The routine
located at $E45C will store the pointers to
your routine safely. To use this routine, load
the X register with the high byte (MSB) of
the address of your routine, and load the Y
register with the low byte (LSB) of the

66

Programming Tips

address of your routine. Then, load the
accumulator with a 6 for an immediate VBI
or a 7 for a deferred VBI. At the end of this
short routine, do a JSR $E45C. When you do
this, the pointers will be put safely into the
correct locations, and your routine will begin
to operate within one sixtieth of a second.
Below is an example of the Assembly
code and a BASIC routine that performs this
function.
LDY #MSB *Load the least significant
byte of the VBI address
LDX #LSB *Load the most significant
byte of the VBI address
LDA #6 (or 7) *6 for immediate, 7 for
deferred
JMP $E45C *You will be returned here
after the pointer routine is
done

10 FOR X=1TO 11

20 READ A

30 POKE 1536,A:REM Put this short
routine wherever there
is room, or even put it in
a string!

40 NEXT X

50 X=USR(1536)

60 REM Now the VBI pointers have been

installed
100 DATA 104,160,MSB,162,LSB, 169,
MODE,32,92,228,96

67

Your Atari 8-Bit Comes Alive

Note that MSB means most significant byte
and LSB means least significant byte. These
are somectimes referred to as high byte and
low byte respectively. Note that in the
DATA statement, you will have to insert
your own pointers, and for the mode, you
will put either a 6 or a 7.

68

The Joystick Ports

The Joystick Ports

69

Your Atari 8-Bit Comes Alive

70

The Joystick Ports

Many people who build projects that
are to be plugged into the joystick port find
that they get hung up on correctly wiring
the device to the nine pin plug. In order to
avoid any confusion, this subject will be
covered thoroughly. The physical description
of the ports, the pin assignments, making
connectors, and data I/0O will be covered in
this chapter.

The older Atari 800s have four joystick
ports located in the front of the machine.
They are labeled from one to four with the
port number. The XLs and XEs have two
joystick ports located on the right side when
looking at the keyboard from the front of the
computer. They are labeled with their port;
number, either one or two.

When you program in BASIC, the ports
are numbered beginning with zero. To find
the value of joystick one, you use the
command X=STICK(0). Notice that the port
designation is zero for the port that is
physically labeled one. Any references made
to the joystick registers in publications also
refer to the first port as zero, the second
port as one, and so forth for the older 800s.

Figure 4.1 is a chart representing the
operating system registers and the BASIC
commands that correspond to the physically
labeled ports.

71

Your Atari 8-Bit Comes Alive

Physically labeled

800s
port #: 1 2 3 4
BASIC:
STICK(#) 0 1 2 3
STRIG(#) 0 1 2 3
PADDLE@#) 0,1 2,3 4,5 6,7

Note that there are two paddle inputs for
each port.

HARWARE REGISTERS:

Stick 632 633 634 635
Trigger 644 645 646 647
Paddles 270,271 272,273 274,275 276,277

Figure 4.1

The hardware registers can be read by
peeking that particular location.

Each port contains nine pins which all
have specific functions. The nine pins of
each port are configured in the same way.
Ilustration 4.2 is a view of the port as seen
when looking straight at the computer. The
chart following the illustration lists the
functional description of each pin.

72

The Joystick Ports

Figure 4.2

Pin Functions:
Pin# Function

Data Bit 0

Data Bit 1 Data bits are
Data Bit 2 zero indexed
Data Bit 3

Paddle A

Trigger

5 volts (Safe to draw 300 ma.)
Ground

Paddle B

O ROV B WN

Pins 1-4 are held to five volts by a 10K
internal resistor and are TTL compatable. If
they are set for I/0, they will either be at a
level approaching zero volts for a TTL low
signal or at a level approaching five volts for
a TTL high signal. These four pins can be set
either for reading or for writing data. With
the pins set for input only, which is the
systems default upon reset or coldstart, they

73

Your Atari 8-Bit Comes Alive

return either a one or a zero to the operating
system. If the pin is not connected to ground,
or it is reading a TTL high signal, a one can
be read. If it is connected to ground, or it is
receiving a TTL low signal, a zero can be
read.

The value returned by the BASIC
command STICK(#) or by peeking the
corresponding hardware register, will be a
value from 0-15. With pins 1-4 all high, or
at five volts, the value will be 15. With pins
1-4 all low, or at ground, the value will be 0.
For values between 0 and 15, with bits 1-4 in
differing states, you will need to check the
individual bits of the value read. Pin 1
corresponds to bit 0, pin 2 corresponds to bit
1, pin 3 corresponds to bit 2, and pin 4
corresponds to bit 3.

The STRIG(#) command will return
either a zero or a one depending upon the
state of pin 6. If pin 6 is high, or
unconnected, the value read will be a one. If
pin 6 is low, or at ground, the value read will
be a zero.

. Pins 5 and 9 are connected to two
separate internal analog to digital converters.
These pins are meant to read voltage levels
from zero to five volts and all values in
between. The value can be read from BASIC
using the command X=PADDLE(#) or by
reading the hardware register.

74

The Joystick Ports

Pin 7 of the port is a five volt source.
This can be used for a variety of things.
Some of the projects in this book are
powered using this source. You must be
careful, however, to draw less than 300
milliamps. This is a safe level of current to
draw, but avoid greater drains than this
level.

Pin 8 of the port is the ground
connection. It will be used for every project
you build. It must be connected to the
ground of your project.

When you make the connecting wires for
your joystick hardware projects, there are
some things that you should keep in mind.
The DB-9 connector that you need goes into
the computer and is technically called a DB-9
socket. This is because it accepts the 9
protruding pins of the port. The port is
technically called a DB-9 plug. When
ordering the piece that goes into the
computer, make sure that you order what is
called a DB-9 female socket.

Make sure that when you solder to the
DB-9 socket, you realize that you must keep
the proper perspective. Make sure that the
wires you solder will go to the correct pins of
the port. Many people make these
connections exactly opposite to what they
should because they look at the socket from
the wrong side when figuring out where to
make the connections. Figure 4.3 will show

75

Your Atari 8-Bit Comes Alive

the correct way to look at these sockets when
making the connections.

Pins Numbered

f 2 3 a4 s

e 7 8 9

Rear View

Figure 4.3

The plastic hoods that you get with the
DB-9 connectors will prevent full insertion
of the connector. These hoods are important
because they protect the soldered connections
and help keep them intact. The way to deal
with this problem is simple. Snip the top and

76

The Joystick Ports

bottom plastic piece that will extend beyond
the flat metal portion of the DB-9 connector.
You must then install the screws that hold
the hood together with the exception of the
two that are meant to protrude past the flat
metal portion of the DB-9 connector. In
order to hold the hood together, you must
use superglue and hold it while it sets. This
plug will then be perfectly adequate for your
use.

There are several ways to read data from
the joystick ports. To read the states of pins
1-4 from BASIC, you can use the command
X=STICK(#). The variable X will contain a
four bit binary number which corresponds to
the states of the joystick pins 1-4. The
decimal value that you will see when
printing this on the screen will be from 0- 15.
From BASIC, you can also peek the register
in the operating system. The value here will
also be a four bit number ranging from 0- 15.

To read the value of the trigger pin of
each port from BASIC, you can use the
command X=STRIG(#). The value returned
will be either a one or a zero depending
upon the state of pin 6 of the port. You can
also peek the corresponding location in the
operating system.

To read the value of the paddle pins of
each port from BASIC, you can use the
command X=PADDLE(#). The value
returned will be one from 0-228 depending

77

Your Atari 8-Bit Comes Alive

upon the voltage that is on that pin of the
port (voltage values range from 0-5 volts).
There is a bug in the operating system that
prevents the entire range of 0-255.
Therefore, the entire voltage range cannot be
measured. There will be more about this
problem in the analog data section. You can
also read the paddle values by peeking the
corresponding location in the operating
system.

Remember that Chart 4.1 has a list of the
operating system locations that correspond to
the different port pins.

One other option to read the ports is to
peek location 54016. This location contains a
combination of the pins 1-4 for the two
ports. For the older 800s, location 54017 has
the combination of the pins 1-4 for the
upper two ports. The lower four bits of the
value returned correspond to the four bits of
the lower joystick port of the pair. The
upper four bits of the value returned
correspond to the four bits of the upper
joystick of the pair.

To write data to the joystick ports, you
must first configure it for output. The pins
of each port that are used for output are pins
1-4. You can write to as many or as few of
these pins as you desire depending upon how
you configure the register. For the purposes
of this discussion, you must consider bits 1-4
of both ports (or both pairs of ports for the

78

The Joystick Ports

800s) as a single 8 bit number. The lower
four bits are in the lower port while the
upper four bits are in the upper port.

To configure the ports for output, begin
by poking 54018 with 56. Use the BASIC
command POKE 54018,56. You must then
figure out which bits you want to configure
for output. Whichever bits are intended for
Output must then be added up. For example,
you may want to write to bits 1,2,4, and 6.
Add up the bit values of 1+2+8+32 and get a
sum of 43. Put these in a variable named
BITS (any name is OK). By the way, these
bits will correspond to port 1 (pins 1,2,4) and
port 2 (pin 2). The next thing that must be
done is to poke this value into location
54016, as POKE 54016,BITS. Finally, you
poke 54018 with 60.

Now, to control these bits, simply put the
value of the bits that you want on into the
variable BITS and poke the location 54016
with this. Try typing POKE 54016,BITS.
You will have no effect on the bits that are
not configured for output.

A word of extreme caution at this time is
in order. Never connect pin 7 (5 volts)
directly to pin 8 (ground). This will draw
more current than the system is capable of
delivering and may burn out your PIA chip.
Some of the projects connect resistances
between these two pins which is acceptable.
As long as the current drawn is less than 300

79

Your Atari 8-Bit Comes Alive

milliamps, you are safe. If you have any
questions as to how to calculate the current,
see the electronics reference section.

80

Switch Projects

5. Switch Projects

81

Your Atari 8-Bit Comes Alive

82

Switch Projects

For the first set of projects, we will start
off slowly. These projects will help you to
become familiar with the joystick ports and
with making the DB-9 connectors.
Remember that even simple projects can
become useful tools with some creativity.

Parts List

1 - 9 Pin Female Socket (Hood Optional)

1 - Momentary, Normally Open, Push-

button Switch

Hookup wire - 26 gauge solid wire is best
for this project. Telephone
wire is also very good.

Project box to mount switch(es) on is
optional.

First, let’s review the concept of the four
data bits of each joystick port. These data
bits correspond to pins 1-4 of each port.
Together, two ports form an 8 bit number
which can be read from location 54016.
When these pins of the joystick port are in a
low state, or approaching ground, they will
return the value of zero. When they are in
the high state, or approaching 5 volts, they
will return the value of one. All of these
projects and demonstration programs will use
the joystick ports in the default setting; i.e.
configured for input only.

Internally, pins 1-4 of each port are
connected to 5 volts through a 10K resistor.

83

Your Atari 8-Bit Comes Alive

These resistors hold the hardware bits to
high when they are unconnected externally.
When the external pins are connected to
ground, the 10K resistors have no effect
upon the voltage levels read. This is because
the current drawn through the resistor is
insignificant and will not raise the pins’
voltage levels above ground when it is
connected externally to ground.

By connecting a switch between ground
and pins 1-4, you can change the state of
these pins and the values returned to the
operating system. When the switch is closed
and making a connection to ground, the
value returned in that bit will be a zero.
When the switch is open, making no
connection to ground, the value returned in
that bit will be a one.

For the first experiment, connect the
switches between pins 1-4 and ground of
joystick port one. Make sure that you wire
them correctly. Once again, make sure that
you do not make a direct connection between
pin 7 (five volts) and pin 8 (ground).

The demonstration program provided for
this experiment is called SWITCH. When you
first run the program, you will notice that
the state of the four data bits of joystick one
are displayed. When you close any of the
momentary switches to ground, the state
displayed will be a zero. Otherwise, you will
see’ a one as the state of the bit.

84

Switch Projects

Notice that at the top of the screen it
says in inverse video "Momentary Mode On
[OPTION]." This means that the switch
displays on the screen are responding only to
the actual state of the bits. When they are
connected, the state is displayed. If you want
to see a toggle mode, you can press
[START]. That line of video will then be in
inverse indicating the mode. When you press
one of the data bits, the state indicated on.
the screen will change. If it is on, it will
toggle to the off state. If it is off, it will
toggle to the on state. This is done with the
software. Thus the port state does not
actually toggle. To go back to the momentary
mode, press [OPTION].

Another use of this simple switch
experiment is to use it for a stopwatch.
There is a demonstration program included
called STOPWTCH. When you run the
program, you will see that it is waiting for
an event on bit one of the first joystick port.
To start the timer, connect this data bit to
ground and then release it. To stop the timer,
simply press the same button again. This
stops the timer and the elapsed time stays on
the screen. To clear the time, you must
connect data bit two of the port to ground.
Once this is done, it will wait for another
event on bit one. When that happens, it will
restart the timer.

85

Your Atari 8-Bit Comes Alive

The stopwatch program uses the real
time clock at locations 18, 19, and 20. It
zeroes all of these locations when the timer
starts and then continues reading them while
updating the time on the screen. The
combination of these locations are converted
to seconds.

In the motion experiment chapter, the
stopwatch program is modified somewhat to
find the speed of a moving object. If you
want to know about this modification, read
the relevant section of the motion chapter.

Two switches can be used for a
demonstration of logic gates. These logic
gates are used throughout the computer’s
circuitry to make decisions at the lowest
level. When programming, logical operators
are used to make decisions. The same
principles that are illustrated in these
hardware gates can be applied to the logical
operators that are used in software
programming.

There are many different types of logic
gates. There can be any number of inputs to
these gates. For clarity and in order to stay
within the scope of this book, we will only
cover gates with two inputs. In this category
there are five types that will be illustated.
They are the AND, NAND, OR, NOR, and
XOR (exclusive or) gates. A system of
notating all possible inputs and the resulting
output is used in electronics books. This

86

Switch Projects

notating system is called a logic chart, or
truth table. These are the same truth tables
that are used for programming operations
and for formal logical arguments. The gate
with its truth table will be presented now so
that you can understand their operation.

AND Gate: The AND gate’s output is low
until both inputs are high. When both inputs

are high, the output of the AND gate is
high.

AND Gate Truth Table

Inputs Output A" B
0 0 0 1
0 0 0 1
0 1 1 1

NAND Gate: This is the logical inverse of
the AND gate. The NAND gate’s output is
high until both inputs are high. When both
inputs are high, the output of the NAND
gate is low.

NAND Gate Truth Table

Inputs Output A B
0 0 1 1
0 1 0 1
1 1 1 0

87

Your Atari 8-Bit Comes Alive

OR Gate: The output of the OR gate is low
if no input is high. When either input is
high or both inputs are high, the output is
high. The XOR (exclusive or) gate has a
different result for both inputs high.

OR Truth Table

Inputs Output A B
0 0 0 1
0 1 0 1
1 1 1 1

NOR Gate: The NOR gate is the logical
inverse of the OR gate. The output of the
NOR gate is high if both inputs are low.
When either input is high or both inputs are
high, the output is low.

NOR Truth Table

Inputs Output A B
0 0 1 1
0 0 0 1
0 1 1 0

XOR Gate: The XOR (exclusive or) gate’s
output is low when either both inputs are
low or both inputs are high. When either
input is high but not both are high, the XOR
gate’s output is high.

88

Switch Projects

XOR Truth Table

Inputs Output A B
0 0 0 1
0 1 0 1
1 1 1 0

The demonstration program provided for
illustration of these gates is called LOGIC.
When you run it, you will see a truth table
to the right of the screen and the electronic
symbol for that gate to the left of the screen.
When the program first runs, the AND gate
is shown. You can change the gate by
pressing the key which corresponds to the
gate desired. These keys are listed at the top
of the screen.

To use the program, bits one and two of
joytick port one must be connected to a
switch. When the switch is closed, it must
connect the data bit to ground. This will alter
the state of the bit and the display. You can
use either momentary switches or toggle
switches.

Notice that the inputs of the gate
schematic reflect the state of the joystick
bits. If the bit is connected to ground, the
digit displayed will be a zero. If the bit is
not connected to ground, the digit displayed
will be a one. The output of the schematic
reflects the correct output for that particular

89

Your Atari 8-Bit Comes Alive

gate. Each different gate will have different
results for the various combinations of
inputs.

When you change gate displays, the truth
table changes to the correct output results.
The schematic representation will also
change according to the desired gate. Along
the left side of the truth table, a small circle
can be seen that indicates the current case.
This will depend upon the state of bits one
and two of the joystick port.

90

Event Detectors

6. Bvent Detectors

91

Your Atari 8-Bit Comes Alive

92

Event Detectors

Event Detectors

Event detectors allow the computer to
know when an event has occurred. The uses
of event detectors are endless. Their

application is only limited to your
imagination.

Switch Detectors

The most basic type of detector is made
from a simple switch. An event is detected
when the detector device connects any of the
joystick data pins to ground. Switches can
be placed between the pin and ground, and
when they are opened or closed, the
computer will be aware of their status.

The first type of switch you may
consider is the door alarm variety. They
come either normally open or normally
closed. The type of switch you choose will
depend on your application. An obvious use
of these door alarm switches is in an alarm
system. Using the joystick port, you could
have up to 10 of these monitored at once.
Eight would be between the joystick data
bits (pins 1-4 of each port), and two would
be between the trigger pins and ground.

In a later chapter, encoders will be
discussed. An encoder can monitor up to 255
different alarm switches. You could also use
one of the data selector projects and switch
back and forth checking different sets of
devices.

93

Your Atari 8-Bit Comes Alive

Another switch you might want to try is
a micro switch. Unlike the alarm switches,
these require very little movement to be
opened or closed. Once again, these could be
used as alarm switches, but their
application would be different. They could
be placed under objects that may be walked
on or placed next to objects that move.

Visible Light Detectors

Most people have walked into a store and
heard some sort of noise that alerts the store
attendant that a customer has entered. Most
of these detectors use a visible light beam
and a sensor. Three versions of this type of
system follow.

The light emitter for all three devices is
virtually the same. The requirements are a
narrow, focused light beam with a power
source, either AC or DC. Your choice of a
light source will largely be determined by
whatever is most convenient.

The first detector is made from a single
phototransistor. An OP802 works well, but
any low current phototransistor with a
relatively low saturation resistance is fine. If
you use an OP802, you will notice, looking at
it from the bottom, that there are three leads
‘and a protruding tab on the metal case. The
middle lead, the base of the phototransistor,
will not be used and can be cut off. The lead
closest to the tab on the case is the emitter

94

Event Detectors

and will be the one connected to ground. The
other lead, the one farthest from the tab, is
the collector and will be connected to the pin
of the joystick port.

Solder wires to the OP802’s leads. These
leads will go to the joystick port of the
computer; one to the data bit and the other
to ground. Install the OP802 on one side of
the area to be monitored, and place the light
source across from it. Aim the light beam at
the phototransistor. When the light beam is
aimed directly at the phototransistor, the
computer will think that the joystick pin is
connected to ground. This is because the
phototransistor will be saturated and will
exhibit a very low resistance. When the light
is taken away, the computer will think that it
is open to ground. This is because when the
phototransistor is exposed to very little light,
it has a high resistance.

Another effective visible light beam
detector is a photovoltaic cell. It will not
work in the same manner as the OP802. The
photocell produces a DC voltage when light
is applied. The joystick port data bits cannot
discriminate between different voltage levels
but only between the high and low states.
For this reason, the positive side of the
photocell must go to one of the analog to
digital converters. This can be fed from pins
five and nine of each port. The computer
will then read a value from 0-228. One

95

Your Atari 8-Bit Comes Alive

advantage of this detector over the previous
detector with the OP802 is its ability to
adapt to different levels of ambient light.
The device itself does not adjust, but in your
program you can constantly average the
values that are incoming. This can be used
as a reference level from which the
computer will base its decisions. Figure 6.1
shows the schematics of both versions.

Joystick Pins
1-4, or &

Light

Source oreez

I

Joystick Pin &
L 4

Figure 6.1a - Basic Phototransistor
Detector

Joystick Pains
s or @

Light

Photo- [E
Source

Cell [:
-

Jdosstxck Pin 8

I

Figure 6.1b - Basic Photocell Detector

96

Event Detectors

The ambient light in the surroundings
may affect the operation of either of the
previous circuits. One way to allow for this
factor is to set up a device that uses two
phototransistors. One phototransistor is the
detector, and the other sets up a reference
voltage based on the ambient light. The
reference voltage floats and is dependent
upon the ambient light. Both photo-
transistors are used as part of a voltage
divider. The one which produces the
reference voltage is only slightly different
from the one that acts as the detector. This is
because of an additional 100 ohms in the

Pins |¥ 2 2 4 s € 7

1-4 T
+5 o — Pin 8
Pan 7 . b
1K 8 1K
@
Detec tor Ambient
Light Light

Figure 6.2 - Enhanced Detector

97

Your Atari 8-Bit Comes Alive

divider. Because of the difference in
resistances and the resulting reference
voltage, it only takes a slight variation in the
detector light level for the comparator to go
low. This, of course, alerts the computer to
the event. Figure 6.2 is the schematic of this
circuit.

Infrared Light Detector

Both of the visible light detectors that
use phototransistors will work with an
infrared light source. Infrared LEDs are the
most convenient source to use and are readily
available from parts suppliers. When
selecting the type, try to choose one which
has a high output. Radio Shack sells a
version that emits about 1.5 milliwatts
[catalog number 276- 143 (TIL906- D]. If you
can get one which radiates about 6
milliwatts, your range will increase greatly.
The angle of radiation is also important. This
is the angle at which the infrared beam is
emitted. Try for about 20 to 30 degrees.
Avoid more than 50 degrees because the
energy will not be as concentrated at this
angle of radiation.

To drive the infrared LED, connect it to
a 5 volt source with a 1/2 watt, 330 ohm,
voltage-dropping resistor. Since it is
impossible to see when the LED is on, you
can use the circuit that is illustrated in the
electronics chapter in the diode area.

98

Event Detectors

Touch Switches

Two other circuits you might enjoy
working with are different types of touch
switches. The first one works when
something such as a finger bridges two
conductors. The second works by sensing a
very small AC signal.

Pin 7?7 €45)

111

14 13 12 11 106 9

—
——

a1 1

1 2 3 4 S €& 7

g Joystick Pins
Y i~4, or &
100K
—/\\/ 1 I

Touch Wires

Remember to connect Joustick
P1n 8 to ground.

Figure 6.3 - Touch Switch

Figure 6.3 is the schematic of a touch
switch that works when the touch wires are
bridged by skin resistance. An etched plate

may be more convenient to use than touch
wires.

99

Your Atari 8-Bit Comes Alive

Touch CEAEYS Ins
Hire 1-4, or &

Remember to connect Joystick
P1Nn 8 t0o sround.

Figure 6.4 - Touch Switch

Figure 6.4 is the schematic of a touch
switch that works when a single wire is
touched. This switch works best indoors due

to stray AC signals which might be present
outdoors.

The demonstration program provided is
called DETECT. It will show the status of all
eight joystick data bits, both trigger bits, and
all four paddle registers. The joystick data
bits and the trigger bits will be used for the
OP802 detectors and the switch type
detectors. The paddle pins will be used for
the photocell type detectors.

100

Motion Experiments

7. Motion Experiments

101

Your Atari 8-Bit Comes Alive

102

Motion Experiments

In every physics or physical science
course, the subjects of speed, velocity, and
acceleration are discussed. These topics are
very important as they discuss the natural
laws which keep the universe in motion. If
you learned about these topics in the
classroom or have read about them, this
experiment will provide a hands-on
experience of the subject that will reinforce
the learned concepts.

First, let us review the idea of speed. We
will be dealing with average speed in this
book. Speed is different from velocity in
that speed has no direction while velocity
does. Average speed is defined as the total
distance divided by the total time. If you go
a distance of 5 miles in a time of 5 minutes,
the speed is 1 mile per minute. In our more
normal units, this converts to 60 miles per
hour.

There is a set of standard units for
measurements used in the scientific
community. The name of this system is the
“International System of Units." This is
usually abbreviated as SI. The accepted unit
of speed in the SI system is meters per
second, or m/s. For this experiment we will
be using centimeters, as space is a
consideration. The accepted unit of speed
when using centimeters is centimeters per
second, or cm/s. To convert from m/s to
cm/s, multiply the value by 100. To convert

103

Your Atari 8-Bit Comes Alive

from cm/s to m/s, divide the value by 100.

The word average was used with the
word speed. The reason for this word usage
is that almost everything has a variation in
its speed, even though this might not appear
to be the case. For this reason, it is more
correct to talk about average speed. Suppose
a car begins a journey in Miami, Florida and
drives to Orlando, Florida. The distance is
approximately 240 miles. If the car took 6
hours to complete the trip, we could
calculate its speed at 40 miles per hour.
That does not take into account stops or
changes in speed along the way. Suppose
that our driver was observed going 60 miles
per hour near Ft. Lauderdale. How would
this be possible? The first two hours of the
trip, he went 60 miles per hour. The last
four hours of the trip, he was going 30 miles
per hour because his car was having
problems with its cooling system. This
example illustrates the reason for using the
word average in a discussion of speed. Since
we cannot measure the speed at every point
(an infinite number), we use the average
speed in our discussions.

Acceleration is a change in velocity or
speed. Here, we will use it as a change in
speed as we are not including direction in
our discussion. Here again, we must use the
word average in our discussion for the same
reasons stated previously. To calculate the

104

Motion Experiments

average acceleration of an object, divide the
change in velocity by the time it took to
make the change. Suppose a car is going 40
m/s and the driver decides to change speed.
He pushes the accelerator and arrives at a
new speed of 60 m/s. As he pushes down
the accelerator pedal, he notes the time as
10:44:10. At the very instant that the speed
of 60 m/s is reached, he notes that the time
is 10:44:50. The time it took to change to
the new speed was 40 seconds. The change
in speed was 20 m/s. Dividing 20 m/s by 40
seconds, you get a value of 1/2. You must
also divide the units. Doing this leads us to
the SI unit of acceleration, meters per second
squared, or m/s2. The car in this example
had an average acceleration of 1/2 m/s2.

The acceleration experiment in this
chapter calculates the average speed and
acceleration (if any) of an object traveling
between a set of light sources and a set of
detectors. With two detectors, an average
speed could be determined in the following
way. First, the distance between the two
detectors must be measured. Next, the
computer must wait for the first detector to
be set off. At this point, it must begin
counting the time. When the second detector
is set off, the timer is stopped. The speed
can be found by dividing the distance by the
time.

105

Your Atari 8-Bit Comes Alive

There is a program on the demonstration
disk called SPEED. It can be used to measure
average speed between two points. You will
be prompted for the distance that you will be
timing. After that, the computer will wait
for you to press a button which connects pin
1 of the joystick port to ground. The timer
will keep track of the elapsed time. When the
object reaches the ending point, press the
stop button which connects pin 2 of the
joystick port to ground. The time and speed
will be displayed on the screen.

Two detectors are adequate for
determining speed but not for determining
acceleration. Remember that acceleration is
the change in speed, so at least two separate
speeds must be determined. To do this, more
detectors have to be added. The experiment
in this chapter uses four detectors. Between
every two of the four detectors, a speed can
be determined. With four detectors, there
will be three separate speed values. Of
course, with no acceleration, these three
values will be the same. With three speeds,
two changes in speed can be calculated.
With these changes and a known time, two
separate acceleration values can be
calculated. The computer’s timer keeps track
of the time between detectors. The change
in speed between speed one and speed two is
divided by the time it took to make the
change (the time interval between detectors

106

Motion Experiments

two and three). The change in speed
between speed two and speed three is divided
by the time it took to make that change (the
time interval between detector three and
four). These two acceleration values can
then be averaged to get an average
acceleration value. These calculations are
based on a constant acceleration. A changing
acceleration will not give accurate results
with this system.

Parts List

4 - Flashlight Assemblies

4 - OP802 Phototransistors or
comparable equivalents

1 - Female 9 pin Joystick Socket

1- 6 volt Lantern Battery

4 - 6 volt Krypton Bulbs

Hookup wire, 3 feet baseboard moulding

The hardware is very simple to build and
has two main and separate components. The
first component is the set of light sources,
and the second one is the set of detectors.

The light sources can be anything that
you find convenient to use, but described
here is the system we used for our test
version. We first obtained four regular
flashlights, the type that run off of two "D"
batteries. We then removed the reflector
assemblies. The bulbs were replaced with
six volt krypton bulbs. Using six volt bulbs,

107

Your Atari 8-Bit Comes Alive

we were able to use lantern batteries which
are easy to obtain and last for a long time.

The krypton bulbs are 70% brighter than
ordinary bulbs, according to the
manufacturers. The brightness of these bulbs
allowed a greater distance between the light
sources and the detectors.

To mount the reflectors, we used a piece
of plastic baseboard moulding. Four holes,
each 1 1/2 inches in diameter, were cut.
These holes must be spaced at a uniform
distance when you put your project together.

The reflectors were then glued into place
aiming through the moulding. Wires were
soldered in parallel to the bulbs. The wires
then had an alligator clip attached to the end
for easy connection to the battery. Figure
7.1 illustrates the light source assembly.

OBONONO

Front view

2)

A W N

Rear Vaiew

Figure 7.1 - Light Source Assembly

108

Motion Experiments

The second component was the set of
four detectors. Each detector is simply a
phototransistor. When the phototransistor is
exposed to enough light, it conducts and acts
like a closed switch. When the
phototransistor is exposed to very little light,
it does not conduct and acts like an open
switch. The phototransistors can then be
connected between the joystick pins and
ground. When the phototransistor is exposed
to light and is conducting, the joystick pin is
connected to ground. The computer
interprets this as such. When the
phototransistor is not exposed to light and is
not conducting, the joystick pin is not
connected to ground and the computer can
make the associated interpretation.

The emitter of each phototransistor
should be connected to ground, pin 8 of the
joystick port. The collectors should be
connected to the data pins, pins 1-4 of
joystick port one. Figure 7.2 is a schematic
diagram of the circuit.

Joystick
Pins

“~Nwhe

N —

Four OPSO2g

Figure 7.2-. Detector Schematic

109

Your Atari 8-Bit Comes Alive

The physical configuration of the
detector assembly is similar to that of the
light source assembly. A piece of plastic
baseboard moulding can once again be used.
If you use OP802 phototransistors, 1/4 inch
holes should be drilled. If you are using
another type, make sure that they fit very
snuggly in place when inserted. The distance
between the detectors must be the same
exact distance that you left between the
centers of the light sources. They must also
be the same distance from the top and
bottom of the moulding as the centers of the
light sources were. Figure 7.3 is a diagram
of the detector assembly.

O O O O

Front vaiew

v e e I

Rear Vaew

Figure 7.3 - Detector Assembly

110

Motion Experiments

When the light source assembly is placed
across from the detectors, each light beam
should shine directly on the corresponding
detector. Figure 7.4 is a diagram of both
assemblies across from each other.

JAVAVAWA .
l Lights

111

Figure 7.4 - Alignment
(View from Above)

L

|petectors

hoed hed

The demonstration program provided
which calculates both speed and acceleration
is called SPDACCEL. After the title is
drawn on the screen, an alignment checking
routine is executed. It will display any
phototransistors that are out of alignment or
g0 to the main program if they are all in
alignment.

You must type in the distance between
each phototransistor in centimeters. After
this is done, the computer waits for the first
event detection. Once this happens, the real
time clock is zeroed and the time of each
phototransistor is recorded in sixtieths of a
second. These times are recorded by placing

111

Your A tari 8-Bit Comes Alive

the values from the real time clock, locations
19 and 20, into 1536 and 1537, 1538 and 1539,
1540 and 1541, and 1542 and 1543. Each pair
of times recorded can then be converted to
seconds by dividing by sixty. The first
location of each pair is taken from location
19 of the real time clock, and the second
location of each pair is taken from location
20 of the real time clock. Every time that
location 20 reaches 255, location 19 is
incremented. The time in seconds for both
locations can be calculated as follows:
TIME=(PEEK(1536)*256+PEEK(1537))/ 60.

The phototransistors are checked in
reverse order. The computer expects bit 4
first, followed by bits 3, 2, and 1, in that
order. It does this with the machine language
subroutine that is in the string variable BS.
Once all four detections are complete, the
computer calculates the speed and
acceleration and displays it on the screen.

Another very good experiment that the
computer can perform is one that involves a
simple pendulum. A pendulum of this type is
one that has an object at the end of a string.
The string is suspended from something that
allows freedom of movement. The mass of
the string must be much less than the mass
which is suspended from it so that the
string’s mass does not significantly affect the
experiment. Figure 7.5 is an illustration of
this type of pendulum.

112

Motion Experiments

L_

Figure 7.5 - Pendulum

When you pull the bob (the mass at the
end of the string) back and let it go, it will
swing back and forth for some time until it
comes to a stop. We speak of the time it
takes to swing from one extreme and back
again a cycle. The frequency of the
pendulum is the number of cycles per
second. The period is the time it takes to
complete a cycle.

Interestingly enough, the period and the
frequency do not depend upon the distance
you pull the bob back before you release it.
It depends upon the force of gravity and the
length of the string holding the bob. The
theory and math is far too complex to go

113

Your Atari 8-Bit Comes Alive

into in this book, but with some research
you could obtain the information if you were
so inclined.

Joystick

Pin 1
OPSOZi

Connect Ground
to Joustick Fin 8.

l

MES

Figure 7.6 - Pendulum Schematic

In order to do this experiment with the
computer, you must have one light source
and one phototransistor. Connect the
phototransistor between pin one and ground
of joystick port one. Aim the light source at
it and allow enough room between them for
the pendulum bob to swing.

The demonstration program provided is
called PENDULUM and will first ask for the
length of the string. It will then display the
frequency, period, and bob mass on the
screen. It continuously updates this
information.

114

Encoders

8. Encoders

115

Your Atari 8-Bit Comes A Iivi

116

Encoders

One of the problems with presenting
data to the joystick ports is the limited
number of joystick port pins. If you use each
pin for one of the detector projects, you will
soon run out of data bits. You could stretch
the use of the ports by using the trigger pins
for an additional two detectors, but this still
limits the number of external devices that
can be connected.

To overcome the difficulty of the limited
number of data bits available, the data that
is to be input can be encoded. By doing this,
the information is encoded from raw external
bits. Each corresponds to a certain device
number. The encoder then transforms the
information to a binary number which can
be interpreted by the computer as the port is
read.

There are many different types of
encoders which can encode different numbers
of input lines. The first encoder that will be
discussed is a simple diode encoder. After
that, two different IC encoders will be
described. A NAND gate encoder is included
because there are some applications where
this type might be desirable.

Figure 8.1 is the schematic of a diode
encoder. It will encode up to ten separate
~ lines into four bits of a binary number. The
four bits of the binary number are then
connected to the four data bit pins of the
joystick port. Pin eight of the port provides

117

Your Atari 8-Bit Comes Alive

ground for the circuit. When one of the ten
data lines is connected to ground, the
computer will see the resulting binary
number at the joystick port. Make sure that
the cathode of every diode goes to ground
and that the anode of every diode goes to a
data pin.

These inputs, when connec ted to sround,
are 1nterpreted as an event. dround must
be proviaded by Joystack pan 8.

4 S 6 ? 8 9 10

?ﬁz% Frphlc b

1
F

Joystick Pins

q
Figure 8.1 -Diode Encoder

One problem with the diode encoder is
that it is not prioritized. If more than one
external line is connected to ground, the
binary value will be incorrect as the bits of
two separate numbers will be present. The
are some IC encoders that are prioritized and
will prevent this from happening. The first

118

Encoders

external line to be connected to ground will
show up as the binary data, even if another
external line is connected to ground while
that external line is still connected.

Figure 8.2 illustrates the schematic of a
10 to 4 line encoder. A 7415147 IC was used.
Ten 10K resistors were used to hold the

inputs high until they were connected to
ground.

Pin 7

[=

1€ 15 14 13 12 1§ 10 9

?4LS 147

1t 2 3 4 5 66 7 8

i

Input
(congécfed
to ground) -

ikl

Figure 8.2 - 74LS147 Encoder

SN~
LR |

119

Your Atari 8-Bit Comes Alive

Often the 10 to 4 line encoder will not
be sufficient for your needs. Another
problem with the above IC is that there is
no signal that tells you when a key has been
pressed. This is a problem when external
data line zero is connected to ground. The
value of zero is returned to the computer,

but the computer does not see that a key has
been pressed.

+5 (Pan 7)

14 13 12 11 10 9 8

7404
1 28 3 4 5 ¢ =2
]
Pins
L [—— -
18 17 16 15 14 13 12 11 10
24C922
1 @8 3 4 5 € 72 8 9
it o
50 .05 -
Yt Y2 v3 vq X4 X3 X2 X1

Ground must be connected to pin 8.

Figure 8.4 - 74C922 Encoder

120

Encoders

To fix this problem, a different IC can
be used. This IC is a 74C922 16 to 4 line
encoder. It provides an additional number of
external data lines over the 74L.S147. It also
has a pin which indicates when a key has
been pressed. Figure 8.3 is the schematic of
this circuit.

A very practical application for these
encoders is in a keypad circuit. A keypad can
be purchased from any of the parts suppliers.
You could also use a set of single pole,
momentary, normally open, push button
switches. Figure 8.4 on the following page is
a diagram of a keypad which is encoded by a
74C922.

The demonstration software provided is
called ENCODE. When you run it, you will
see the data at joystick port one. Press start
if your circuit uses the 74C922 which signals
when an external line has been connected to
ground. If you have pressed [START] and
wish to return to the mode uséd for the
other encoders, press [OPTION].

121

Your Atari 8-Bit Comes Alive

+$ CPan)

14 13 12 11 16 9 @
2404
1t 2 3 4 5 ¢ 7
]
Pins
| —
| C=h1>
18 17 16 15 14 13 12 11 10
74Cc922
1 & 3 4 5 & 7 8 o
=‘r.===
so.es# "H
A 44
1A
.4
22 7;
3 2 1t e
Kew P?tterq 72 6 5 a
i1 1@ ® @

15 14 13 2

Figure 8.4 - Encoded Keypad

122

Light Pen

9. Light Pen

123

Your Atari 8-Bit Comes A live

124

Light Pen

This chapter describes the construction of
a light pen and related programming
techniques. The lightpen, when held up to
the screen, senses its relative screen position.
The computer can use this information to
perform tasks such as menu selection or
drawing. The demonstration software which
is included will not return values accurate
enough for drawing, but with the right
modifications, it will approach the necessary
accuracy.

Before discussing the light pen itself, the
operation of the monitor must be understood.
The monitor is often referred to as a cathode
ray tube, or CRT. The latest term which is
now being used is VDT, or video display
terminal. In general terms, it is a large
vacuum tube with an electron emitter at the
small end. This electron emitter is called the
cathode. It is frequently called an electron
gun. It shoots electrons at the large part of
the tube, or the screen, which the computer
user sees. This electron beam is what
produces images on the CRT screen.

The beam draws the screen in small units
called pixels. These must be directed so that
the correct image is visible on the screen at
the correct time. Direction is done in a very
- Systematic way. First, the beam, or raster, is
directed to the top left corner of the screen.
The raster proceeds horizontally across the
screen illuminating what is called a scan line.

125

Your Atari 8-Bit Comes Alive

The brightness and color of each pixel during
this process is determined by the value in
screen memory.

Once the raster has drawn a scan line, it
blanks for a short time while synchronizing
with the horizontal sync clock. It then
repeats the procedure for the next scan line
down. After this procedure has been
repeated enough times, the entire screen has
been drawn. This redrawing takes place
évery one- sixtieth of a second in NTSC and
évery one-fiftieth of a second for PAL
systems. The screen redraw does not take this
long however. There is a great deal of time
during vertical blanks where the electron
beam proceeds back to the starting position
and waits to begin again. The actual screen
update takes only 17,000 microseconds,

The light pen design in this book
operates using a voltage comparator. The
phototransistor inside of the pen is part of a
voltage divider as pictured in Figure 9.1.

To Comparator

Input
+5 —M
33K
oPge2

Figure 9.1 - Phototransistor in Voltage
Divider

126

Light Pen

Voltage is divided proportionally across
the two resistors according to Ohm’s Law.
The phototransistor’s resistance changes
according to the amount of light it is exposed
to. The greater the light on the
phototransistor, the less the resistance.

In the circuit branch of Figure 9.1, as the
phototransistor’s resistance decreases (with
more light), the voltage out of the divider is
raised. Conversely, when the
phototransistor’s resistance increases (with
less light), the voltage out of the divider is
lowered. The output of this voltage divider is
then fed to an LM339 voltage comparator.
The comparator checks to see if this voltage
is above the reference voltage, and if so, the
comparator’s output goes low. The firing of
the pixel directly below the pen within the
phototransistor is what causes the sequence
of events that makes the comparator’s output
low.

The reference voltage can be adjusted
for different sensitivities. Increasing the 1.2K
resistor increases the reference voltage and
decreases sensitivity. The reason that the
sensitivity is decreased is that it takes a
greater amount of light on the
phototransistor to make the voltage high
‘enough to exceed this reference voltage.
Decreasing the 1.2K resistor will decrease the
reference voltage. The amount of light
necessary for the voltage divider to trigger

127

Your Atari 8-Bit Comes Alive

the comparator will then be less. Figure 9.2

is the schematic for the comparator portion
of the circuit.

[~——Joystick Pins 136
1.2K _

i 13 12 11 109 s

LM339

1 2 3 4 8 6 7
]
+5 4

12K
rom Uoltage]
Divider

Figure 9.2 - Comparator

The output of the comparator must now
be presented to the computer. This is done
through the joystick port in the demo
program. Since the pixel fires for such a
short time, a fast sampling rate is needed.
Thus, a machine language subroutine is
essential. The operating system has a vertical
counter and a horizontal counter for the
purpose of a light pen. The schematic of the
entire circuit is seen in Figure 9.3.

128

Light Pen

Joustick Pins 186

14 12 12 11 10 9 @

LM339

t 2 3 4 5 6 <7

| N | ——
. AAAA—
12K
Pin 7 Ay
33K
orPge2

Ground must be connected to Pin 8,

Figure 9.3 - Entire Lightpen Circuit

The software, called LGHTMUSC, begins
by setting up a screen display of four vertical
bars. Each vertical bar corresponds to one of
the sound channels. Above the bars are
on/off switches.

When the light pen is placed on the
white square that turns the channel on, an
indicator will show the change in the status
of the sound channel. At first, no note will
be sounding. Once the channel is on, move
the light pen down to the vertical bar. You
will see a circle follow the position of the
light pen on the vertical bar. You will also

129

Your Atari 8-Bit Comes Alive

hear the pitch go higher and lower according
to the relative height of the light pen.

All four channels can be turned on at the
same time. If you choose, you can
temporarily turn any of the channels off.
Before you hit the break key to stop the
pProgram, you must have the pen up to the
screen. Otherwise, it will stay inside of the
subroutine waiting for a pixel to fire.

i30

Device Control

10. Device Control

131

Your Atari 8-Bit Comes Alive

132

Device Control

When writing data to the joystick ports,
the bits assume either a high or a low state.
These states can be used as on/off switches
to control external devices. In this chapter,
various types of circuits which turn devices
on and off are discussed.

If you need to review the procedure to
set the ports for output, consult the joystick
chapter. A complete description of how to

configure the data bits for output can be
seen there.

LEDs

The turning on and off of an LED has
already been mentioned in this text. This
procedure is easy to do and useful when
writing data to the ports since you can see
the state of the bits with the LEDs. TTL ICs
cannot provide enough current to drive the
LEDs, but they will illuminate very dimly if
you rely on the current from an IC’s output.
In order to get as much brightness as
possible, they are most effective when
connected with the cathode to the IC’s
output and with the anode to a positive
voltage through a voltage dropping resistor.
The effect is that when the IC’s output goes
low, the LEDs cathode is connected to
~ ground. The IC output can sink enough
current, even though it cannot source
enough. The 10-30 milliamps, depending on

133

Your Atari 8-Bit Comes Alive

the LED, will have no problem going to
ground through the IC output. The anode
should not be connected directly to +5 volts
as this will burn it out. Use Ohms’ Law for a
specific calculation of the correct resistor. A
IK resistor will almost always work well.

To power the interfacing logic, you can
use an external power supply, but it will
probably be easier to use the 5 volts from
the joystick port. If you use an external
power supply, make sure that everything has
a common ground.

Now, you can simply write data to the
port according to the procedure previously
outlined. The LED will light up when the
output of the IC goes low. To correctly
reflect the data, you should use an invertin g
buffer. This will make the IC’s output go
low when the data is high. The LED will
then light up when the data in that
particular bit is high.

Figure 10.1 (on the following page) is a
diagram of 8 LEDs run from the parallel port
using two 7404 inverters. The 5 volt power
comes from pin 7 of the joystick port while
the ground from the joystick port is pin 8.
Each 7404 has six gates, so two of the ICs
are necessary.

134

Device Control

Port 1 Pins FPort 2 Pins
12347 1223428
= |

14 13 12 11 190 9 o

7404
{1 2 3 4 8 ¢ <=

e

1 |
14 13 12 11 12 9 g

7404
{ 2 3 4a 5 ¢ <7

o, Ak

(+5)

Figure 10.1 - LED Control

If you were so inclined, you could devise
an intricate LED display. Using the joystick
port allows you to have eight different,
independent channels. Later on in this book,
this very technique is used for controlling a
Christmas light display. This LED display

could also be synchronized with music from
the sound chip.

135

Your Atari 8-Bit Comes Alive

Transistor Drivers

If you need to power a DC device which
requires a higher voltage and current than a
TTL IC can provide, you may consider
driving it with a transistor. A transistor that
will provide high current is a TIP102. It is a
power darlington in a TO-220 case, and
according to manufacturer’s specs, should be
able to provide up to 8 amps. If high current
is anticipated, use a heat sink to protect
against heat damage. An external power
supply is required. It can be from 5 to 15
volts depending on the device to be powered.
Figure 10.2 is the schematic for this device.

Control
Bit

Figure 10.2 - Transistor Driver

You can use almost any NPN transistor
in place of the TIP102, but check the data
sheet to see how much current they can
handle. A good medium- current alternative
is the TIP31A. It should be able to handle 1

136

Device Control

amp of current. It comes in a TO-220
package so that a heat sink can be attached.

You can use the transistor drivers to
control stepper motors. Most stepper motors
will have four stator coils. These must be
pulsed in order for the motor to move. The
combination of the stators that are pulsed
determines the direction and magnitude of
the motion.

Most stepper motors will have different
specifications, so you will have to check the

specific motor’s specifications that you plan
to use.

Relays

A 5 volt reed relay is very flexible
because it will handle any voltage from
0-120 volts. At 120 volts, it is capable of
carrying 1 amp of current. Using the 5 volt
reed relay, many 120 volt devices can be
safely powered. You can calculate the
wattage of a light bulb for an application of
120 volts that draws 1 amp. Using the
formula P =E x I or P = 120 volts x 1 amp,
you can see that even the small 5 volt reed
relay will handle up to a 120 watt light bulb.

With interfacing logic, the relay is best
controlled in the same manner in which the
LEDs were driven. When consulting the spec
sheet of the relay, you will notice that at one
end there are three leads. The two leads
across from each other are for the primary

137

Your Atari 8-Bit Comes Alive

coil. Each of these leads should be connected
to the output of the interfacing IC. The third
lead should be connected to 5 volts without a
dropping resistor. When the output of the IC
goes low, one side of the relay’s primary goes
to ground, and since the other lead is at +5
volts, the circuit is completed. The relay
secondary is now open and will conduct.
Remember that the output of the IC gate
must be low to enable the relay. Either use
an inverter or remember that a low output
turns it on when you write your software.
Figure 10.3 is a diagram of reed relays
controlled by an inverting buffer. It would
be wise to use an external power source, but
it is all right to use the computer’s internal
power supply for up to 4 or 5 reed relays.

14 13 12 11 10 9 @

7404
1 @ 3 4 5 6 7

IPr;nahy
' 1

L]
Joystick Pins 1-4 7 8

Figure 10.3 - Relay

138

Device Control

If the reed relay does not have the
current capabilites that you need, you can
use a 5 volt miniature PC relay. Radio Shack
markets a 5 volt mini relay that draws 72
milliamps for the primary coil. The
secondaries can then handle 3 amps at 120
volts AC. The above circuit which ran the
reed relays will also work for these relays.

You would need an external power
source though, because more than three or
four of these relays would overburden the
internal power supply’s capabilities.

You may find that even 3 amps at 120
volts is not enough. Relays that can handle
higher amperage usually need 12 volts and
more current than the logic gates can handle.
For these relays, you will need to use a
transistor driver. The drivers discussed
earlier which used the TIP102 or the TIP31A
would both be more than adequate. These
drivers would then provide the power for the
high current relays. Of course, this setup
would require an external 12 volt power
supply. One other alternative would be for
the reed relay to control the higher
amperage relay.

Opto Triacs

Opto Triacs, and many other types of
opto isolators, can be used to control external
devices. An opto triac will drive a low
current, 120 volt AC device. Figure 10.4 is a

139

Your Atari 8-Bit Comes Alive

schematic of such a configuration.

Load Vel tage
i 1

6 5 4

SCS11C3

1 2 3

+5 Control Bait

Figure 10.4 - Optotriac

An opto triac could also control one of
the relays in the previous section. Figure
10.5 is the schematic of a circuit in which an
opto triac controls a high current relay.

(o x|
—t+S
C —1

e 5 a | ™

SCS11C3
1 2 3

+S Control Bit

Figure 10.5 - Triac & Relay

Solid State IC Drivers

There are several ICs that will drive
higher current, higher voltage devices. The
chips illustrated require no external
components.

140

Device Control

Figure 10.6 is the schematic using a dual
peripheral driver, a 75446, to drive a single

device.
In ~Loa
+S
" °| r ..

8 7?7 6 5

EN75446

1 2 =2

] T

Figure 10.6 - Driver

The 75446 can also drive two separate
devices as in the schematic of Figure 10.7.

In ;Loadd
+5
+4e
8 7 € B
Load 2
SN75446
t{f 2 2 a
] =

Figure 10.7 - Dual Driver

The DHOO17 is a high voltage, high
current driver which is another alternative
to the above driver and, at 50 volts, can

141

Your Atari 8-Bit Comes Alive

handle a bit more current. The schematic for
using this IC is is seen in Figure 10.8.

gn] s
Voltage
out

19 8 7 ¢
DHO® 17

1 2 3 a4 s

L—J._J._L17

Figure 10.8 - DH0017 Driver

An application of the previous control
circuits is to have the computer control
various household devices at certain times.
While developing your hardware, you can
use one of the programs that write data to a
port. After the hardware is developed, you
will want to write software specifically for
that purpose.

142

Decoders

11. Decoders

143

Your Atari 8-Bit Comes A live
3 B T

144

~—

Decoders

One disadvantage of controlling external
devices from the joystick ports is that each
binary bit is a single control line going out.
Decoders will take 4 bit binary data from the
computer and affect 16 decoded bits one at a
time. This will expand your control of
external devices. One problem with using the
circuit illustrated is that the state of only one
control line at a time can be controlled.
There is a solution to this problem which
will be dealt with later in this chapter.

Joystick Pins
7

123 4
[

| s

24 23 22 21 20 19 18 17 16 15 14 13

74 184

1 2 2 4 8 6 7 8 9 1@ 11 12

Wiy

° 789 10 11 12 12 14 (S
Data Outputs

Figure 11.1 - Decoder

145

Your Atari 8-Bit Comes Alive

The first decoder configuration uses a
74LS154, a single 4 to 16 line decoder. This
chip can also be used as a demultiplexer, so
certain IC pins must be considered for use as
a decoder. Pins 1-17 contain the outgoing
data. Pins 20- 23 contain the incoming
binary data. Pin 24 is +5 volts and pin 12 is
ground. Pins 18 and 19 must be held low for
the decoder to work. These pins are used
differently if this IC is used as a
demultiplexer. Figure 11.1 is the schematic
for this circuit.

If you want to control the 16 outputs of
the 74LS154 and keep them either on or off,
independent of the other bits, you will need
additional logic. A good solution is to use T
flip- flops where the output of the flip- flop
is toggled back and forth between states. The
toggle is enabled in this configuration when
the data out of the decoder goes low. The
first low will set the output of the T flip- flop
low. After a high and then a low are given
as data, the flip-flop will toggle to high. The
IC used in the circuit is a quadruple JK
flip-flop set up in a T flip-flop format. Its
part number is 74LS276. Figure 11.2 is the
schematic for this circuit.

146

Decoders

Toggled
Data "] 1 2 3
45 [L
——
1 1) S .
20 19 18 17 168 18 14 12 12 11
74LS276
1 2 2 4 5 g 7 &8 9 10
P § P § p §) | 1) §) | = 3
l 1
[1
Decoded © {1 2 3

Data

Figure 11.2 - T Flip-flop

Before you use these decoders in more
complex circuits, you may want to build
them on a solderless breadboard and use
LEDs to see the state of the outputs. This is
highly recommended as debugging a smaller
circuit component is easier than debugging a
larger circuit. A program for use with the 4
to 16 decoder, with or without the T
flip-flop, is called DECODE. It runs from
joystick port one. Of course, you could use
both ports for a total of eight bits of decoded
logic.

147

Your Atari 8-Bit Comes Alive

148

Serial Data

12, Serial Data

149

Your Atari 8-Bit Comes Alive

150

Serial Data

Computers communicate using either
serial data transfer or parallel data transfer.
Parallel communication is faster than serial
communication because all of the bits can be
sent simultaneously. Serial data is sent one
bit at a time, so this would be obviously
slower. Serial transfer is used though, for
several practical reasons. The major reason
serial data is advantageous is that the
transfer medium requires far fewer
connections. For the type of data transfer
illustrated in this chapter, only two signals
must be presented to the serial data decoder.
These two lines are for the clock and for the
data.

The project in this chapter demonstrates
synchronous serial data. Some words of
explanation are in order for this topic. When
data is sent over the data line, a method for
synchronizing the decoding of each bit must
be implemented. The decoder needs to know
when to interpret the data signal as the next
bit and when to interpret the data signal as
still being the same bit. Synchronous serial
data is different from asynchronous serial
data in one major way. Asynchronous
decoders sample the data sixteen times for
every bit and a counter keeps track of when
a data bit begins and ends. Both the
transmitter’s and the receiver’s
synchronizing clocks must be very close to
the same speeds. This means that the rate of

151

Your Atari 8-Bit Comes Alive

data transfer is slower because the
asynchronous decoder samples sixteen times
every data bit and also has to read start and
stop bits.

Synchronous serial data decoders use a
common clock (common to transmitter and
receiver) to keep track of the data bits. This
makes for a faster rate of transfer because
there are no start and stop bits to contend
with. The synchronous circuit is simpler in
that the decoder does not require a separate
clock.

The particular shift register used in the
circuit to decode the serial data coming from
the computer is a 74LS164. Attached to the §
parallel data output pins of the IC are eight
LEDs. The LEDs will show the data reflected
in each of the eight data bits. Since the LEDs
are attached with the cathode to the gate of
the IC, the LED will light up when the
output of the IC’s gate is low. Because of
this fact, the software will invert the data
before sending it out. Data entered at the
keyboard will be inverted, then sent out over
the port. The lit LED can then be interpreted
as a one.

Eight data bits must be sent to the shift
register. The least significant bit will be sent
first. The most significant bit will be sent
last. As the clock goes from a low state to a
high state, the shift register looks for a data
bit. It then gathers whatever data is present

152

Serial Data

on the data line and places it in its first
holding latch. As it accepts the data into this
location, all of the other data bits in the shift
register are shifted over one place. Figure
12.1 illustrates this process.

Data Locations

e [t]2]z2]a]se]7T¢]

Data Locations
anaRnnnok

Last Bat
1% Lost

Figure 12.1 - Data Shifting

Every time that the clock goes high, a
data bit is pushed into one end of the shift
register. This is how eight bits of data are

received. Figure 12.2 illustrates a typical data
transfer.

hnannnnt

Figure 12.2 - Timing Diagram

153

1 o0ur Atart 8-Bit Comes Alive

Parts List

1- 7418164 Shift Register
8 - LEDs 8 1K Resistors
1- 9-Pin Connector

To get the serial data from the computer,
two bits of the joystick port are used. Bit one
of the port is used for the clock and bit two
of the port is used for the data. Figure 12.3
is the schematic diagram of the circuit.

1@ 13 12 11 106 9o c,

74 164
i 2 3 4 5 6 =
H Lg,l | H—

L

a

1

Jowstick Pins 2 ? 8
Figure 12.3 - Shift Register Schematic

The demonstration program called
SHIFT8 accepts an input from 0-255 and
then sends it out over the two bits of the
joystick port in a serial manner. Another
demonstration program called SHIFTI16

154

Serial Data

accepts a number from 0-65535, and then
sends it out over the two bits of the joystick

port in a serial manner also.

Another use for this project is to transfer
the data over infrared beams. Figure 12.4 is
the schematic for this circuit. Run the

program INFRARED to use this circuit.

1Kx8 LEDs=

= ==
14 12 12 11 10 9 =

74 164
1 2 3 4 8 6 7

) U v oS maaad.
External +3
Powenr Mpls : i S E %
1% needed. OPrso2s

wo 727

Infrared LEDSs

100

Joystick Pins 1 2 7

Figure 12.4 -Shift Register with
Infrared

155

Your Atari 8-Bit Comes Alive

i56

Data Selectors

13. Data Selectors

157

Your Atari 8-Bit Comes Alive

158

Data Selectors

There may be a time when your need for
more places to input data exceeds what is
available. Data selectors may be used to
accommodate you if this situation arises.

The principle of the data selector in this
chapter is simple. It acts as a set of switches
so that you can change from one set of
available data to another. There are two
methods of data selection possible. One is an
external clock that switches at regular
intervals and the other is controlled directly
by the computer. You can experiment with
the computer- controlled selector by using a
controlling bit to switch data banks. We will
only illustrate the use of a data selector
controlled by an external clock.

The circuit switches between two 4 bit
sets of data. These are presented to the
joystick port which uses an external clock to
perform the switching. The computer knows
which data set it is seeing because the
trigger sees the clock state. When the clock is
high, the trigger sees this and knows how to
interpret the data. When the clock is low, it
knows that the alternate set of data is being
seen. The schematic for this circuit is seen in
Figure 13.1.

159

Your Atari 8-Bit Comes Alive

Parts List

1 - 9-Pin Male Socket
1- 4011 Quad NAND Gate
2 - 4066 Quad Bilateral Switches
3 - 14-Pin Dip Sockets
1 - 0.47 microfarad electrolytic capacitor
1- 100K resistor
1 - IM resistor
2 - 9-Pin Female Plugs
Hookup Wire Breadboard or
circuit board Project box

100K 47m¢

+
Joustick '}
Pan 7¢+%) '"?

14 13 12 1f{ 109 @
4211
i 2 3 a4 5 6 2

'q:_*—?—
|Jossnck Pxngc-}-—

14 13 12 11 16 9 @
4066

av

. 11
1 11
e s

1
14 13 2 11 1 8
J 4066

]

Figure 13.1 - Data Selector

160

Data Selectors

When the device is plugged into joystick
port one, connect two joysticks (or any other
data altering devices) to see the data on both
data banks. You can then see the status of
both joysticks if you read the port. A
demonstration program is included called
OVERLY2. This program will show the
status of both sets of data. To use this
program, you must first rename it to
AUTORUN.SYS. After rebooting the
computer, the overlay will appear at the top
of the screen. You will see if the device is
toggling or not because it will say TOGGLEI
followed by a yes or a no on the overlay.

The overlay will work independant of
your BASIC programming. This is because it
is updated through a vertical blank interrupt.
You can turn the overlay off by pressing the
[SELECT] console key. To turn the overlay

back on again, press the [START] console
key.

161

Your Atari 8-Bit Comes Alive

162

Analog Data

14. Analog Data

163

Your Atari 8-Bit Comes Alive

164

Anal% Data

You may be wondering what the
difference between analog and digital data is.
Digital data is a set of ones and zeros, a set
of transistors in either a high or a low state.
The low state approaches zero volts, and the
high state approaches five volts. These ones
and zeros form the digits of a binary
number. A set of four of these digits
comprise a nibble, a set of eight of these
digits comprise a byte, and a set of sixteen of
these digits comprise a word.

An analog signal may be at zero or five
volts, but it may also be anywhere in
between those two voltage levels. Of course,
analog signals can be at any voltage level
above five volts, but for our discussion we
will limit ourselves to a range of zero to five
volts. The computer cannot interpret analog
voltage levels. For this reason, analog to
digital converters are used. The analog
voltage is converted to a digital number and
the microprocessor can then use it in the
way that the software calls for.

Every project to this point in this book
has been a digital project. The information
dealing with these projects spoke of bits that
were either on or off. Now, we need to open
the door to projects that use analog data.

Every joystick port has two pins devoted
to analog data. These pins might be better
known to you as the paddle input pins. Inside
the computer are built-in analog to digital

165

Your Atari 8-Bit Comes Alive

converters that interpret this data and
transform it into a digital form that the
computer can understand. The paddles that
can be connected to these pins are nothing
more than potentiometers. By turning the
paddle knob, the resistance is changed as well
as the resulting voltage. The internal analog
to digital converter then translates this
voltage into a digital number and allows the
microprocessor to use it accordingly.

For your first experiment, it would be a
good idea to connect a simple potentiometer
to the first paddle pin of joystick port one.
This will be pin five. You can then run a
demonstration program called POTMETER
and see how it can be interpreted. Figure
14.1 has a schematic of the potentiometer
that you will use. You can also try the
BASIC listing of Figure 14.2 to see the
values of the analog data being read.

Joystick One Pans 7 3

Figure 14.1 - Potentiometer

166

AnaﬂData

10 X=PADDLE(0)
20 POSITION 20,11
30 PRINT X;" "
40 GOTO 10

Figure 14.2 - BASIC Listing

There is a small problem with the Atari
operating system that prevents values of
229-255 from being returned. This also
prevents voltage values of 0- 1.5 volts (note
that this upper value of 1.5 volts is
approximate and depends upon your actual
computer) from being read. This can be a
problem when you need to read the lower
voltage levels. There is a way to fix this with
several external parts. Figure 14.3 (on the
following page) is the schematic of this fix.

167

Your Atari 8-Bit Comes Alive

Joytick Pins ? 5 8

Analog Input

Could be any analog i1nput, the
potentiometer 15 only an example.

Use general PNF transistors
such as 2N3I9RE6.

Figure 14.3 - Paddle "Fix"

168

Synthesizer Add-Ons

15. Synthesizer Add-Ons

169

Your Atari 8-Bit Comes Alive

170

Synthesizer Add-Ons

The eight bit Atari computers have a
sound chip that is adequate for most
applications. This chapter will provide ways
of adding more capabilities to the already
present sound chip. These additions can also
be enabled in a remote location. The remote
use of these new sound generators might be
your most useful application of these ideas.

The first project is a simple oscillator.
The IC used to produce the frequency is a
555 timer. Two 4066 quad bilateral switches
are used to change the frequency. Figure 15.1
is the schematic of the circuit.

Parts List

1- 9 Pin Male Socket

1- 555 Timer

2 - 4066 Quad Bilateral Switches
10 - 10K Resistors

10 - 4.7K Resistors

1- 0.1 microfarad disk capacitor
1 - IK Resistor

171

Your Atari 8-Bit Comes Alive

Joystick 1 Pins 1 T 3 4 8
|
I 1
14 13 12 11 10 9 @
4066
1 2 3 4 5 ¢ 7
L) . | I
L=
MAAA

VA
1K 1K | 1K iK 1K 11K 1K 1K

1 1 I
14 13 12 1t 10 % @
Joystich
Pan ? 4066
1 2 3 4 5 & 2

Joystick 2 Pins 1 2 4 8

8 7 3 s

555 8 Ohm
Speaker

-
w
a k.

Figure 15.1 - Tone Generator

172

Synthesizer Add-Ons

There is no demonstration software for
the previous circuit, but try the listing in
Figure 15.2. Any input of the keyboard will
alter the frequency that is being produced.
Press [ESCAPE] to end the program.

10 OPEN #2,4,0,"K"
20 POKE 54018,56

30 POKE 54016,255
40 POKE 54018,50

50 GET #2,X

60 POKE 54016,255-X
70 IF X<>27 THEN 50
80 POKE 54018,56

90 POKE 54016,0

100 POKE 54018,60
110 END

Figure 15.2 - BASIC Listing

The previous circuit can be set to a
frequency and then left alone. If you want to
generate your own waveforms, the following
circuit can be used but will have to be
continuously updated.

The way the waveform generator works
is that a voltage level is produced according
to values poked to the joystick register.
These values set the bits which then control
the 4066 quad bilateral switches. By
alternating the voltage levels at a very fast

173

Y our Atari 8-Bit Comes Alive

rate, almost any waveform can be created.
Figure 15.3 is the schematic for this circuit.

Joygstick { Pans 2 3 4 &
| | LY
i
L 1 1
14 i3 2 11 106 9 @
40&6
{f 2 3 4a 8 ¢ 2?2
L) B | i
L j -
1K 1K
I b
14 12 12 11 10 9 @
+S
Joystick 4066
Pin ? os
1 2 3 4a 8 ¢ 7
— L
—
Joystick 2 Pans 1 2 34 g 8 Ohm

Figure 15.3 - Waveform Generator

The demonstration program for the
waveform project is called WAVEFORM.
When you run the program, you type in the
values of the waveform that you want. You
will type in values from 0-255. The greater

174

Synthesizer Add-Ons

the value, the larger the voltage. The smaller
the value, the lower the voltage. To produce

a waveform, you must alternate between
different voltage levels.

175

Your Atari 8-Bit Comes Alive

176

Tone Decoders

16. Tone Decoders

177

Your Atari 8-Bit Comes Alive

178

Tone Decoders

This chapter will discuss two different
circuits that will recognize certain
frequencies or tones. The first one will
utilize preset channels which have outputs
that the computer will read. For this circuit,
it will be best to build the optional frequency
generator. The second design uses a
frequency-to-voltage converter. This is then
fed into the paddle input allowing the
computer to differentiate between the
incoming voltage levels.

For the first design, a 567 tone decoder IC
was used. This chip, set up in the
configuration we used, will respond to a
specific preset frequency. When the
frequency is detected, the output of the IC,
which goes to the joystick port data bit, goes
low. The band width of the frequency is very
narrow but can be adjusted somewhat with
the low-pa capacitor. This is described in the
schematic of Figure 16.1.

To input frequency to the 567, you may
want to amplify an audio signal. To do this,
try a simple microphone. If there is not
enough gain, try the schematic in Figure
16.2.

179

Your Atari 8-Bit Comes Alive

-1

10K
8 ¢ S
567
1. 2 3 aj
HE L | Frequency
2.2 1 Input

1 7 s
JoYystick Pins

567 Output goes 1ow uwith
correct frequency.

Figure 16.1 - Tone Decoder

Frequency
Input

Figure 16.2 - Amplifier

180

Tone Decoders

For either of the tone decoder circuits,
you can build a frequency generator. The
frequency generator can then be carried
remotely and pressed to sound desired audio
signals. These signals could then be
interpreted by the computer, and you could
have it perform a task of some sort. Figure
16.3 is the schematic for the frequency
generator circuit.

Speaker

Resistor "R varies
Varies the frequency

Figure 16.3 - Frequency Generator

The second main type of tone decoding in
this chapter is one which uses a
frequency-to-voltage converter. The voltage
is then fed into the paddle pin and the
computer makes the appropriate
interpretation. Figure 16.4 is the schematic
of this design.

181

Your Atari 8-Bit Comes Alive

10K

Frequenc
6-8!(3 Ilnpa'i' HI

10K
+9'—W,]
e 7 6 s ssK
LM33 1
1 2 3 a
12 .21
SK
t——4 1 e
—AAN

100K

Vol tage Out
Figure 16.4 - Tone Decoder

The demonstration software provided is a
program called FREQUNCY. It is meant to
be used with the frequency to voltage
converter. Run the program with the
hardware attached and then whistle into the
microphone or use the frequency
generator illustrated in Figure 16.3.

182

Networking

17. Networking

183

Your Atari 8-Bit Comes Alive

184

Networking

The project in this chapter is very easy
to build and has endless applications. The
construction only consists of a pair of cables.
The programming techniques are easy in
BASIC. The machine language subroutine

- takes care of the actual communication

protocol, so you do not have to worry about
that. The networking system could be used in
many commercial ventures where remote
data must be retrieved. A demonstration
bulletin board system could also be developed
so that modems were not necessary.

The medium for data transfer is joystick
ports one and two. Connected between the
two ports of each computer are seven small
wires. One problem with the joystick ports is
that there are only eight bits with which to
communicate. Considering that a byte is
eight bits, it seems that it is easy enough to
send the byte from one computer to another.
That is not the case since there are other
aspects of parallel data communication to
consider.

When computers communicate either
internally or externally, they do what is
called "handshaking." This handshaking
varies from one computer to another and
from one type of external device to another.
The main idea, though, is that certain bits
are used to indicate that data is ready to
send, that data is ready to receive, and many
other bits of information.

185

Your Atari 8-Bit Comes Alive

It seems that eight bit parallel
communication is possible. The reason that
this is apparent is because there are eight
data bits available. One thing to remember is
that we must be able to alert the other
computer that data is waiting. Without this
capability, the remote computer, where the
data is intended to go, will not know to get
the data at the ports.

Additionally, the receiving computer
must be able to signal that it has gotten the
data. The reason for the necessity of the data
received signal can be best illustrated with
an example. Suppose that the sending
computer presents data to its port with the
destination being the remote computer. How
long does it keep that data there in order to
insure that the receiveing computer has
gotten the data? If it has to wait for a time
period, then there is a potential waste of
time involved.

For the reason described, handshaking is
an essential part of parallel data
communications. That becomes a problem
with our Atari eight bit computer in that we
only have a total of eight bits to both write
the data and to do the handshaking. To solve
this problem, the data can be broken up into
nibbles which are four bits each. The nibbles
can be sent separately as part of a specific
communications protocol leaving four bits
available for handshaking. For our system,

186

Networking

we only used two handshaking bits. The
other two are in reserve for a multiple
computer networking system.

The communication protocol is as
follows. Bits five and six of one computer
feed bits six and five of the other computer
respectively. They are purposefully crossed.
Upon initialization of the program, bit six of
each computer goes low. In this state, the
remote computer knows that there is no data
waiting.

When one of the computers is ready to
send a byte, it sets bit six of its port to high.
At the same time, it puts the upper nibble of
the byte on the lower four bits of the
register. This high is then seen in bit five of
the receiving computer. When the receiving
computer sees this, it takes the data from the
lower four bits of the register. The receiving
computer then sets its own bit six to high so
that it can signal that it has received the first
nibble. When the sending computer sees that
its own bit five is high, it needs to send the
other nibble. Don’t forget that this is from
bit six of the other computer since the wires
are crossed. It puts the lower nibble in the
lower four bits of the register, and at the
same time sets its own bit six to low. When
the receiving computer sees its own bit five
go low, it knows that the other nibble is
waiting. It reads this from the lower four
bits and then processes it. Once it has done

187

Your Atari 8-Bit Comes Alive

this, it sets its own bit six low again. This
signals the sending computer that the
transfer of that byte is complete.

Figure 17.1 is a diagram of this
procedure.

Receive Send
Set Ports
for Output
PUll Byte
from stack
Set Bit ¢ High
ek s Add to Nibble
Ge 1 e [Check Bat &
Set Bat € H: Hold 1¢ low
Check Bat & e nibble '
Hold 1€ Low Bit & Low -
Get Nibble Check Bait &
Set Bat 6 Low Hold 1¢ High
RTS LReseQ Ports
RTS

Don’t forget that bits & and -3
have reversed comnections.

Figure 17.1 - Communication for
Networking System

One thing that the receiving computer
does while it is getting the data is to look for
a backslash character, followed by another
byte, and lastly followed by a carriage

188

Networking

return. This indicates that a special function
is to follow.

The machine language subroutine does
several things in order to communicate with
the BASIC program. When it receives a byte
of data, it puts it into location 1789. Location
204 is then set to one in order to signal the
BASIC program that a byte needs to be
processed. Once the BASIC program has
read the byte, it must set location 205 to
zero so that it will know not to read that
byte again.

The second thing that the subroutine
keeps track of is the special function prompt.
Anytime that the remote types a "/",
followed by another character, followed by a
carriage return, it indicates a special function
is to follow. The subroutine then sets location
205 to one. When this location is seen to be a
one, the BASIC program can execute a
special function. The character of the special
function is found in location 1790. When our
BASIC program sees the flag set, it first
resets location 205 to zero, and then does a
GOTO to the line number corresponding to
the ATASCII value of the special character
times 100.

Following is a chart of the special
function built into the BASIC program at
the present time, but many more could be
added.

189

Your Atari 8-Bi’t Comes Alive

Character Function

B Program the remote computer
in the BASIC immediate mode
or change a line of the BASIC
program.

Do a drive directory.

Extended BASIC functions. It
differs from the first BASIC
function in that it clears the
screen when done. The other

type could possibly crash.
R Read a file on disk.

tg O

Figure 17.2 is the wiring diagram for
the cable(s).

Computer One Jogstick Ports

Port One Bits Port Two Baits Ground
1 2 3 aq 5 6 Pin 8
2 3 4 5 6 Pan @

Computer Two Joystick Ports
Figure 17.2 - Wiring Diagrams

When you run the program called
TALK, make sure that you don’t hit
[START] until both computers say to do so.
The source code for this subroutine is on the
disk and is called TALK.SRC.

190

Networkin&

If you get ambitious, try multiple
computers. We gave a demo of this at a Dade
Atari Users Group meeting where we had
four computers networked. The hardware
used was a set of 4066 quad bilateral
switches. These switches were controlled by a
single computer using the two remaining bits
of the joystick port. The controlling logic
used was a 74LS 164 shift register. Make sure
that if you try doing this that only two
computers are linked at the same time.

191

Your Atari 8-Bit Comes Alive

192

Display Lighting

18. Display Lighting

193

Your Atari 8-Bit Comes Alive

194

Display Lighting

The project in this chapter has been
implemented by an acquaintance of ours who
uses it for a Christmas light display. Besides
that particular usage, one could set up a
restaurant sign or accent a store window
display. The circuit has eight independently
programmable lighting channels. These
channels can be turned on and off to produce
many different and unique patterns.

The hardware itself is simple to
understand but gets tedious when building.
The reason that it is so tedious to build is
that there are many connections to be made.
If you are careful and patient though, your
project will turn out well.

The best way to contruct this circuit is
on a perforated breadboard. For all of the
ICs, you should use sockets. The relays can
also be plugged into sockets if you wish. We
chose to solder them directly into the circuit.

For each channel, there are three
components outside of the computer. The
first is an inverting buffer. This prevents
any damage to the computer. The second
component is a 5 volt reed relay. This relay
is then used to enable the high current relay
which turns the lights on or off. The large
relay will handle three amps. If you need
more than that, use a relay with a higher
amperage rating. With the three amp
capability, you can power up to 360 watts of

195

lights.

An external power supply was used
because the computer itself cannot power the
16 relays that are being used. The external
power supply should be twelve volts with a
current capability of about 1 amp. We then
used a 5 volt regulator so that we could have
both 5 and 12 volts.

Since the circuit in its entirety is very
extensive, only a single channel is illustrated
in Figure 18.1. Duplicate this 8 times to
complete the project. Each channel will then
control a set of lights.

Joystick Pins t @
L

+8
—4 —

14 13 12 11 10 9

7404
1 2 3 4 8 ¢ 2

IPrxuami

Figure 18.1- Lighting Display Channel

196

Display Lighting

The demonstration program that is
included is called LIGHTS. When you run it
you will notice a screen display which
indicates the channel(s) that are on. This
screen display slows down the program. To
speed up the program, you can disable the
screen display by simply pressing [SELECT)].
Pressing [START] will enable it.

The patterns are read from the data
statements beginning at line 1000. To change
the patterns, change these data statements.
Each event is composed of three consecutive
data bytes. The first byte is the sum of all
bits which will be turned on. The second
byte is the duration of the event in fourths
of a second. The third byte is either a 1 or a
0. If it is a 1, there is more data to come in
the pattern. If it is a 0, the end of the
pattern has occurred.

The number of times that each pattern is
repeated can also be changed. The data at
line 10000 contains this information. Change
the data to alter the number of times that
each pattern is repeated.

197

Your Atari 8-Bit Comes Alive

198

Appendices

Appendix A:
PC Board Services

KIT CIRCUITS
Box 235
Clawson, MI 48017

EXPRESS CIRCUITS
314 Cothren Street
P.O. Box 58
Wilkesboto, NC 28697

T.O.R.C.C.C
Box 47148
Chicago, IL 60647

Appendix B:
Parts Sources

Active Electronics
P.O. Box 9100
Westborough, MA 01581

All Electronics Corp.
905 S. Vermont Avenue
P.O. Box 20406

Los Angeles, CA 90006

199

Your Atari 8-Bit Comes Alive

Bigfoot Systems
2708 East Lake Street
Minneapolis, MN

Copper Electronics
4200 Produce Road
Louisville, KY 40218

Diamondback Electronics
P.O. Box 12095, Dept. 102
Sarasota, FL 33578

DIGI-Key
Highway 32 South
Thief River Falls, MN 56701

Heathkit
Dept. 021-892
Benton Harbor, MI 49022

Hitachi America Ltd.
2210 O’Toole Avenue
San Jose, CA 95131

Jameco Electronics
1355 Shoreway Road
Belmont, CA 94002

JDR Microdevices

1224 S. Bascom Avenue
San Jose, CA 95128

200

Appendices

Mark V Electronics
248 East Main Street
Suite 100

Alhambra, CA 91801

Mouser Electronics
2401 HWY 287 North
Mansfield, TX 76063

R.F. Electronics

1056 N. State College Blvd.
Dept. R

Anaheim, CA 92806

Appendix C:
Programs

DECODE - Used to demonstrate the
decoder circuits.

DETECT - Used to show the state of
external detectors.

DLDISPLY - Shows display list information.

ENCODE - Used to show the state of
encoded external logic.

FREQUNCY - Decodes the frequency with
the external hardware.

201

Your Atari 8-Bit Comes Alive

INFRARED - Used with the infrared version
of the serial data project.

LGHTMUSC - Used to demonstrate the light
pen.

LIGHTS - Lighting display program.

LOGIC - Logic gate and truth table
demonstration.

OVERLY1 - Overlay showing port
information.

OVERLY2 - Overlay showing port
information.

OVERMAKE - Overlay maker utility.

PENDULUM - Calculates the length of the
pendulum string and the
period and frequency.

POTMETER - Demonstrates the use of a
potentiometer.

SHIFT8 - Sends an 8-bit number serially to
the shift register project.

SHIFT16 - Sends a 16 bit number serially to
the shift register project.

202

Appendices

SPDACCEL - Calculates the speed and

acceleration of a moving
object.

SPEED - Times and calcluates the speed of
a moving object.

STOPWTCH - Stopwatch demonstration.
SWITCH - Switch demonstration.
TALK - Networking program.

USRMAKER - Utility to adapt machine
language subroutines to
BASIC programs.

WAVEFORM - Used to create waveforms.

Source Codes:

OVERLY1LSRC - Source code for the first
overlay program.

OVERLY2.SRC - Source code for the second
overlay program.

SHIFT.SRC - Source code for the
communication routine for
both SHIFT programs.

203

Your Atari 8-Bit Comes Alive

SH8.SRC - Source code for the SHIFTS
display.

SH16.SRC - Source code for the SHIFTI16
display.

TALK.SRC - Source code for the

networking communication
routine,

204

Index

— Index
Acceleration 104- 105
Analog Data 165
Binary Numbers 33-35
Capacitance 12-15
Comparator 28-29, 128
Data Selector 159-161
Decoder 145
Detector 93
Digital Data 165
Diode Encoder 118-119
Diodes 15-17
Display List Interrupts 61- 64
Display Lists 52-56
Encoders 118- 120
Graphics Modes 46
Hexadecimal Numbers 36
Infrared Light Detector 98
Integrated Circuit Drivers 140-142
Integrated Circuit Encoders 119-122
Integrated Circuits 23-30
Joystick Ports 70-79

205

Your Atari 8-Bit Comes Alive —

LED Controller 133- 135

Light Pen 16-17 —
Logic Demonstration 86- 88

Logic Probe 7 -
Logic Tables 27-28

Machine Language Subroutines 46- 52 —
Memory Locations 40

Monitor Operation 125- 126 —
Motion Experiments 103- 113
Multimeter 7

Networking 184- 185
Numbers 33-36

Ohm’s Law 9

Opto Triacs 139- 140
Overlays 56- 60

Pendulum 113

Perforated Breadboards 3
Power 10

Power Supply 7-8

Raster 126

Relays 137- 138

Resistors 9

206

— Index

Soldering 5-6

— Solderless Breadboards 3-5

Speed 104

— Stopwatch 85

Test Equipment 7

Tone Decoder 180-181

Touch Switch 99- 100

- Transistors 17-22

Transistor Driver 136- 137

— Transistor Voltage Regulator 21-22
Vertical Blank Interrupts 64- 68

— Visible Light Detector 94-98
Voltage Regulator (IC) 22-23

— Voltage Regulator (transistor) 21-22
Waveform Generator 173- 175

207

“Your Atari 8 Bit Comes Alive!”

Eighteen chapters of exciting hardware projects to build for
your eight bit Atari. The novice to the electronics expert can
learn from and enjoy these projects as the instructions are
step-by-step. Background information in each chapter
allows the reader to fully understand the projects.

Demonstration Software Is Included!

A disk of working programs is inciuded in BASIC. The source
code for those programs that use machine language sub-
routines is also included.

The equipment needed is any 8 bit Atari computer, a disk
drive, and a monitor or a television.

Here is what is included in this comprehensive book:

® The introductory ELECTRONICS chapter goes into great
detail as a learning experience for the novice and as a
review for the electronics expert.

® The LIGHT PEN chapter shows how to build and use a light
pen.

* The NETWORKING chapter shows how to network two or
more Atari 8 Bit computers.

¢ The SWITCH chapter involves a demonstration of logic
gates and includes truth tables, electronics schematic
symbols, and interpretations of cases.

® The SERIAL DATA chapter demonstrates the use of serial
data and provides an excellent demonstration of its
implementation. This project can also be altered to
communicate over infrared light beams.

®* The FREQUENCY chapter gives several examples of
decoding frequencies which are in the ambient sur-
roundings.

®* The SYNTHESIZER ADD-ONS thapter illustrates several

devices that will extend the sound capabilities of your

computer. ;

The LIGHTING DISPLAY chapter shows how to control

display lights for setting up restaurant signs, store window

displays. or even Christmas light displays.

® Other chapters discuss event detectors, data encoders and
decoders, 120 volt circuit controllers, and much more.

Complete with disk of working programs!

IMPORTANT!
Computer Spectrum, Inc. was formed for the creation of unique quality products for
personal computers. Please fill out and return this card, so that we may keep you
informed of any updates or new products as they become available. This card will
also allow you to provide us with information on products that you would like to see
created by Computer Spectrum.

If you need additional space, please feel free to attach additional pages, or contact us
through our BBS, at (305) 251-1925. Thank you for purchasing this product, and for
your time in completing this questionnaire.We look forward to helping you.

YA

David B. Leinecker, V.P., Marketing
Computer Spectrum, Inc.

Place of Purchase
Name
Address
City
State Zip
Phone

Name
Address
City
State Zip Age
Phone Date

Product will be used on: computer system with _____ Kmemory.
Primary Use of Computer?

How do you rate this book? (Hi)10 9 8 7 6 5 4 3 2 1 (Lo) (Circle one)
Why?

How do you rate the demo programs?10 9 8 7 6 5 4 3 2 1 (Circic one)
Why?

What was your favorite project?

How did you find out about this product? () Magazine Ad () Magazine Review
() Saw in store () User Group/Club () Computer Spectrum BBS () Other BBS
() Friend () Other .

Please indicate any of the following magazines which you read regularly (at least 3
of the last 5 issues)?

() Antic () Analog () Compute! ()STart ()ST-Log () Computel's Atari ST

() Atari JOURNAL () Current Notes () Family Computing ()Byte ()PC World
() Other (please indicate)

What types of products for the personal computer would you like to see more of?

() Arcade Games () Educational Games () Hardware Project Books ()SAT Prep
() Others

If you checked Hard ware, what would you like to see?

Do you belong to a users group, and if so, who is your contact person? () Yes ()No
Name Address

City, State Zip Phone

Would you like to receive new product announcements? () Yes ()No

Important!!!

/ Please Fold on this line

From:
Place

Postage
Here

Computer Spectrum, Inc.
P. O. Box 162606
Miami, FL 33116

Attention: Customer Support

Please Staple Here

