User’'s Handbook to the

ATARI:z:
COMPUTERS

Jeffrey R. Weber
Stephen J. Szczecinski

WEBER
SYSTEMS
INCORPORATED

USER'S HANDBOOK
TO THE
ATARI 400/800° COMPUTERS

by:
Jeffrey R. Weber
Stephen J. Szczecinski

Weber Systems, Inc.
Cleveland, Ohio

Published by:

Weber Systems, Inc.
8437 Mayfield Road
Cleveland, Ohio 44026

For information on translations and book distributors outside of
the United States, please contact WSI at the above address.

User’s Handbook To The Atari 400/800® Computers
First Edition

Copyright© 1983 by Weber Systems, Inc.. All rights reserved.
Printed in the United States of America. No part of this
publication may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, electronic, mechanical,
photocopy, recording, or otherwise without the prior written
permission of the publisher.

Library of Congress Catalog Card Number 82-051088
ISBN 0-938862-15-4

Typesetting: Chelley Hoffman
Production & Design: Beth Cammarn

CONTENTS

1. INTRODUCTION TO THE ATARI COMPUTERS 7.
AND PERIPHERALS

Atari 400 and 800 7. Atari 800 Specifications 9.
Atari 400 Specifications 10. Atari Keyboard 11.
Atari Video Display 11. Plug-In Cartridge
Hatches 13. Computer Memory 13. Atari 410
Program Recorder 14. Atari 810 Disk Drive 15.
Atari Printers 16. Atari 850 Interface Module 16.
Game Controls 17. Software 17. Operating
Systems 17. Languages 18. Applications
Programs 18.

2. INSTALLATION AND OPERATION OF ATARI 19.
COMPUTERS

Introduction 19. Installing the Atari 400 21.
Installing the Atari 410 Recorder 21. Installing
the Atari 810 Disk Drive 21. Installing the Atari
820 Printer 23. Installing the Atari 822 Printer 24.
Installing the Atari 825 Printer 24. Installing a
ROM Cartridge 25. Power On 26. Keyboard 30.
System Reset Key 31. Select Key 31. Option Key
31. Start Key 31. Return Key 32. Break Key 32.
Shift Key 32. CtrlKey 33. Caps/Lowr Key 33. J\
Key 34. Arrow Keys 34. Back S Key 35. Clear
Key 35. Insert & Delete Keys 35. Tab Key 35. ESC
Key 36. Auto Repeat36. Display Line Length 36.

3. INTRODUCTION TO ATARI BASIC

Immediate & Program Modes 37. Line Numbers
38. NEW 40. END 40. Program Execution 40.
Program Lines & Display Lines 41. Multiple
Statement Program Lines 41. Abbreviating
Keywords 42. Listing a Program 42. Error
Messages 43. BASIC Data Types 44. Floating
Point Numbers 44. Scientific Notation 45. Tables
& Arrays 49. Expressions & Operators 51.
Compound Expressions & Order of Evaluation
52. Arithmetic Operations 53. Relational
Operators 55. Logical Operators 56. Atari
BASIC Statements 59. Remark Statements 59.
Assignment Statements 60. DATA, READ 60.
Outputting DATA 62. INPUT Statements
64. Loops 66. Nested Loops 67. Conditional
Statements 68. Branching Statements 68. ON,
GOTO 70. Subroutines & GOSUB Statements
70. ON, GOSUB 72. Break Key & CONT 72.
System Reset Key 72. STOP 73. END 73. Atari
BASIC Functions 74.

4. ADVANCED ATARI BASIC

Atari ASCII 75. String Handling 76. Substrings
76. String Concatenation 77. CHR$ & ASC
Functions 78. Escape Sequences in Strings
79. Graphics Characters in Strings 80. Variable
Storage 82. PEEK & POKE 83. Screen Output
Programming 84. Using the Carriage Return in
Cursor Positioning 84. TAB 85. Moving the
Cursor With Escape Sequences 86. Home
Cursor 87. POSITION 87. Changing the Display
Screen Margins 88. Screen Input Programming
88. Prompt Messages 88. Input Response
Checks 89.

5. ATARI BASIC REFERENCE GUIDE

ABS 92. ADR 92. AND 92. ASC 94. ATN
94. BYE 95. CLOAD 95. CHR$ 96. CLOG 96.
CLOSE 97. CLR 97. COLOR 98. COM 102.

37.

75.

91.

CONT 103. COS 104. CSAVE 104. DATA 105.
DEG 106. DIM 107. DOS 110. DRAWTO 112.
END 114. ENTER 114. EXP 115. FOR 116. FRE
118. GET 119. GOSUB 123. GOTO 125.
GRAPHICS 126. IF 126. INPUT 129. INT 132.
LEN 133. LET 133. LIST 134. LOAD 136. LOCATE
137. LOG 139. LPRINT 139. NEW 140. NEXT
141. NOT 142. NOTE 143. ON 144. OPEN 145.
OR 153. PADDLE 154. PEEK 155. PLOT 156.
POINT 157. POKE 158. POP 159. POSITION
160. PRINT 161. PTRIG 166. PUT 166. RAD 169.
READ 170. REM 171. RESTORE 171. RETURN
172. RND 172. RUN 173. SAVE 174. SETCOLOR
175. SGN 175. SIN 175. SOUND 176. SQR 177.
STATUS 177. STICK 178. STRIG 179. STOP 180.
STR$ 181. TRAP 181. USR 182. VAL 183. XIO
184.

6. ATARI 410 PROGRAM RECORDER 189.

Introduction 189. Data Files 189. Program Files
190. Saving Programs 190. Program Recording
Formats 191. Loading a Program 192. RUN C:
195. Reading and Writing Data 197. Opening
Data Files 198. Closing Data Files 200. Writing to
a Data File 200. Reading From Data Files 202.

7. ATARI 810 DISK DRIVE 205.

Types of Disks 205. Hard Disks 205. Winchester
Disk Drives 206. Floppy Diskettes 207. Tracks &
Sectors 208. Hard & Soft Sectors 209. Single &
Double Sided Diskettes 211. Diskette Density
211. Write Protection 212. Disk Files
213. Filename Match Characters 213. Atari DOS
215. Disk Buffer 217. Booting DOS 217. DOS
Menu 218. Disk Directory 220. Run Cartridge
222. Copy File 223. Delete File 227. Rename
File 228. Lock File 230. Unlock File 231. Write
DOS File 231. Format Diskette 232. Duplicate
Disk 233. Binary Save 234. Binary Load 236. Run
At Address 237. Create MEM.SAV 238.
Duplicate File 239. Saving BASIC Programs 240.

Loading a Program 242. Chaining Programs
243. Opening aDisk File 244. Closing a Data File
246. Writing to a Data File 247. Reading From a
Data File 248. NOTE and POINT 250.

8. ATARI PRINTERS

LIST P: 253. LPRINT 254. PRINT# & PUT 255.
Printer Buffer 255. Printer Character Sets
255. Atari 825 Control Characters 256. Line Feed
258. Reverse Line Feed 258. Hald-Line Feed &
Reverse Half-Line Feed 259. Carriage Return
259. Underlining 259. Standard, Condensed, &
Proportionally Spaced Character Sets 260.
Backspace & 1-6 Dot Spaces 260.

9. ATARI GRAPHICS & SOUND

GRAPHICS 263. GRAPHICS 0 263. Color
Registers & SETCOLOR 265. GRAPHICS 1 & 2
267. COLOR 272. PLOT 277. DRAWTO 278.
GRAPHICS 3 thru 8 278. POSITION 281.
LOCATE 282. PUT 283. XIO 283. Atari Sound
285.

APPENDIX A. Atari Error Messages

APPENDIX B. Atari BASIC Reserved Words

APPENDIX C. Atari ASCII Code Set

APPENDIX D. Atari 400/800 Memory Map

APPENDIX E. Atari PEEK & POKE Locations

Index

253.

263.

287.
294.
295.
301.
306.
315.

CHAPTER 1.
INTRODUCATION TO THE ATARI
COMPUTER AND PERIPHERALS

Introduction

In this book, we will describe the Atari home computers as well
as the peripherals that can be attached to them such as disk
drives, cassette recorders, and printers.

In the first chapter of this book, we will discuss the features of the
Atari 400 and 800 computers, the 410 Program Recorder, the 810
disk drive, game controls, and the various Atari printers. In the
second chapter, we will discuss the installation and operation of
the Atari 400 or 800 and its various peripherals.

In the third and fourth chapters, we will discuss programming
the Atari in Atari’s version of the BASIC programming language.
The fifth chapter contains a reference guide to the various Atari
BASIC commands, statements, and functions.

In Chapters 6, 7, and 8, we will discuss the Atari Cassette
Recorder, Atari Disk Drive, and Atari printers in greater detail. In
Chapter 9, we will discuss the usage of graphics and sound on the
Atari 400 and 800.

Atari 400 and 800

There are two Atari computer models; the Atari 400 and the Atari
800 (pictured in Illustration 1-1).

The Atari 400 and 800 are very similar. Both models function the
same and follow the same set of instructions. The difference
between the Atari 400 and 800 lies in the fact that the 800 has
features that the 400 does not.

For instance, the Atari 800’s memory can be expanded, while the

8 User’s Handbook to the Atari 400/800 Computers

memory of the Atari 400 is more or less fixed. Also, with the Atari
800, a video monitor can be used for video output as well as a
regular television set. With the Atari 400, only a regular television
set can be used for video output. A video monitor offers a more
detailed picture than a regular television set. Also, the Atari 800
has a typewriter style keyboard while the Atari 400 has a flat panel
with the keys outlined on it. Finally, the Atari 800 allows two
accessory cartridges to be plugged in, while the Atari 400 allows
only one.

However, the Atari 400 does have one major advantage--it costs
less than the Atari 800.

From hereon, we will refer to both the Atari 400 and 800
collectively as the Atari, unless a distincion between the two is
necessary. Whenever we refer to one model, the reader can
assume that the concept applies to the other model as well,
unless we specify otherwise.

llustration 1-1. Atari 800 Computer

Introduction to the Atari Computers and Peripherals 9

Atari 800 Specifications

The Atari 800 consists of a group of components which include
the following:

Computer Console

TV Switch Box

AC Power Adapter

Atari 800 Operator’s Manual
Atari BASIC Manual

Atari BASIC Language

Atari Educational System

The Atari 800 Console contains the central processing unit or
CPU, the operating system in ROM, 8K or 16K of RAM, and two
expansion slots for additional RAM. The Atari 800 console also
contains the keyboard, 2 cartridge slots, controller jacks, and a
serial 1/0 port.

The TV switch box allows aregular TV set to be used as the Atari’s
video display. The AC power adapter converts regular AC
current to a low voltage that can be used by your Atari. The AC
power adapter can be plugged into any normal household
outlet.

The Atari Educational System and Atari BASIC language are
contained in two cartridges. Operator’s instructions are
included with each of these.

The Atari 410 program recorder allows the use of programs
which have been stored on cassette tape. The Atari 410 also
allows the user to save his programs from RAM onto cassette
tape for later use.

The Atari 800’s software is known as the operating system and is
contained on a 10K ROM cartridge. The operating system
controls the entire flow of information within the computer.

As shown in Illustration 1-2, the side panel of the Atari 800
contains several switches and jacks. The monitor jack can be
used to connect a video display monitor or a video tape

10 User’s Handbook to the Atari 400/800 Computers

lllustration 1-2. Atari 800 Side Panel

recorder to your Atari 800.

The Atari 410 Program Recorder, Atari 810 disk drive, and Atari
820 printer are all installed by plugging into the peripheral jack.
More than one device can be connected through the peripheral
jack via a daisy chain configuration, where all devices to be used
are connected together. This is explained in more detail in
Chapter 2.

The 2-3 channel switch should be set to the same channel as the
television set being used for video output. Use channel 2 or 3,
whichever has the poorer reception.

The Atari 800 contains four controller jacks located in the front of

the console beneath the keyboard. These can be used for
connecting game controllers or a light pen.

Atari 400 Specifications

Your Atari 400 includes the Atari 400 console, as well as a TV
switch box, operator’s manual, and an AC Power Adapter.

Introduction to the Atari Computers and Peripherals 11

The Atari 400 console contains the CPU, operating system in
ROM , 8K or 16K of RAM, one cartridge slot, controller jacks, and
one I/0O connector.

The TV switch box allows a regular TV set to be used for video
output for the Atari 400. The AC power adapter converts
household current to a low voltage that can be used by the Atari.

Atari Keyboard

The Atari keyboard allows the user to interact with the
computer. The instructions entered at the keyboard are
transfered to the computer. The keys on both the Atari 400 and
800 are arranged in the same order as on a regular typewriter.
However, the Atari keyboard contains several special keys not
found on a standard typewriter keyboard. These keys will be
discussed in Chapter 2.

As mentioned in the previous section, the Atari 800’s keyboard
features a typewriter style keyboard with raised keys. The Atari
400 keys are identified on a flat panel on the front of the unit.

Atari Video Display

Generally, a home color television set is used as the video display
screen for the Atari. A black and white television set can also be
used, in which case, the different colors will appear as various
shades of gray.

The Atari 800 allows the use of a video monitor as well as a
television set as its video display unit. A video monitor (either
color or black & white) tends to cause images to be displayed in
greater detail than a television set.

A television set is connected to the Atari computer with a switch
box that is itself connected to the television’s antenna terminal.
This is shown in lIllustration 1-3. The switch box has two
positions. One position allows the set to be used with the Atari,
while the other allows the set to function as a televison.

If a video display monitor is being connected to the Atari 800, a

12 User’s Handbook to the Atari 400/800 Computers

switch box is not necessary. This connection can be
accomplished by attaching the 5-pin plug into the socket on the
side of the Atari 800. This is shown in lllustration 1-4.

Regardless of whether a television set or a monitor is being
connected to the Atari, several different modes of display are
available. One of these is the monochromatic text mode. This
mode is used to display one color plus white (ex. black and
white, blue and white, etc.). In the monochromatic text mode,
the screen is divided into 24 lines of 40 characters each. Two
other modes are available for displaying text in up to four
different colors. Other modes are available for displaying
graphics. These will be discussed in detail in Chapter 9.

Illustration 1-3. Atari/Television Set Hook-Up

Introduction to the Atari Computers and Peripherals 13

llustration 1-4. Atari 800/Video Display Monitor Hook-Up

Plug-In Cartridge Hatches

Both the Atari 400 and 800 have a hatch on the top of the unit
which can be opened for the purpose of inserting a plug-in
cartridge (see lllustration 1-1). These cartridges contain ROM
memory (discussed later) on which programs are stored. These
programs may be games, applications programs, or even a BASIC
language interpreter.

The Atari 400 allows the insertion of a single cartridge while the
800 allows two cartridges to be inserted.

Computer Memory
Computer memory is measured in units known as bytes. A byte

is used to store a single character in the computer’s memory.
Bytes are represented in units of measurement known as

14 User’s Handbook to the Atari 400/800 Computers

kilobytes or K. 1K is the equivalent of 1024 bytes. Your Atari may
contain from 18 to 60K of memory (or 18,432 to 61,440 bytes).

Computer memory can be one of two different types; ROM or
RAM. ROM stands for read-only memory. ROM will hold the
data stored in it permanently. If the power to the Atariis shut off,
the information stored in ROM will remain there. ROM contains
the programs that are used to operate the Atari, and allow it to
interact with the user.

RAM stands for random-access memory*. The data stored in
RAM can be changed. Applications programs are often
transferred from diskettes or cassette to RAM. Any data stored in
RAM is lost when the Atari’s power is turned off.

The Atari 400 includes 16K of RAM. Generally, it is not advisable
to attempt to expand the RAM capacity of an Atari 400.

The Atari 800 allows RAM to be expanded from 16K to as much as
48K. RAM is expanded on the Atari 800 by inserting additional
RAM plug-in modules underneath the unit’s top cover.
Expanding the Atari’'s RAM is explained in more detail in
Chapter 2.

Atari 410 Program Recorder

Cassette tape can be used to store programs in RAM and then
transfer these programs back into RAM at some later date. The
Atari 410 Program Recorder (as shown in lllustration 1-5) is
designed for use with the Atari computer. Approximately 50K or
51,200 bytes of data can be stored on a 30 minute cassette.

*Random access memory is a somewhat misleading term to
describe, RAM, as most memory (including ROM), is randomly
accessed.

Introduction to the Atari Computers and Peripherals 15

lllustration 1-5. Atari 410 Program Recorder

Atari 810 Disk Drive

A disk drive is a much more efficient device for storing data than
a cassette recorder. A disk drive allows greater storage capacity,
quicker access to data, as well as fewer errors in data transfers.

The Atari 810 disk drive (as shown in Illustration 1-6) is designed
to be used with Atari computers. The Atari 810 uses single-sided
single density diskettes.

Diskettes which are designed to be written on only one side are
known as single sided (SS) diskettes. Diskettes designed to be
written on both sides are known as double sided (DS) diskettes.

Density refers to a diskette’s recording format, which in turn
affects its capacity. Single-sided single density diskettes (as used
with the Atari 810) have a capacity of approximately 94K.

16 User’s Handbook to the Atari 400/800 Computers

Ilustration 1-6. Atari 810 Disk Drive

The Atari 810 disk drive can only be used with the Atari 800
computer with a minimum of 16K of RAM.

Atari Printers

Atari produces three different printers; the 820 Printer, 822
Thermal Printer, and 825 Wide Carriage Printer.

The 820 and 822 Printers are connected to the Atari computer via
the 1/0 Data Channel. The 825 Printer is connected to the Atari
computer with the 850 Interface Module. The 850 Interface
Module can be used to connect printers other than the 825 to the
Atari.

Atari 850 Interface Module

The Atari 850 Interface Module allows communications between

Introduction to the Atari Computers and Peripherals 17

the Atari computer and RS-232-C peripherals. We already
discussed the fact that the Atari 825 printer should be connected
via the Atari 850 Interface Module.

Another Atari peripheral that must be connected via the Atari
850 Interface Module is the Atari 830 Modem. The Atari 830
Modem allows your Atari to communicate with another terminal
also equipped with a modem over telephone lines.

The Atari 850 Interface Module is connected to the Atari
console. In turn, the peripherals are connected to the 850
Interface Module. The 850 Interface Module has 4 serial ports
and 1 parallel port, known as the printer port. The 850 Interface
Module has its own memory and processor and is programmed
from the Atari computer.

Game Controls

Three types of game control devices can be used with the Atari;
joysticks, paddles, and keyboard controllers.

Software

Software can be described as the instructions or programs that
cause the computer to operate. Several different classifications
of software exist for the performance of different functions.
These can be classified as operating systems, languages, and
applications programs.

Operating Systems

An operating system can be defined as a group of programs
which manage the overall operation of the computer. The
operating system performs system operations such as the
loading and unloading of data from cassette or diskette into
RAM and the display of operator keyboard entries on the video
screen.

18 User’s Handbook to the Atari 400/800 Computers

The Atari’s operating system is stored permanently in ROM. The
operating system is contained in a plug-in module in the Atari
800.

Languages

Programs are generally written in a high-level language that is
different from the instructions the computer uses. A program
known as an interpreter must be used to translate the high-level
language into a form that the computer can comprehend.

BASIC is the high-level language generally used with the Atari.
The Atari BASIC interpreter is contained on a ROM cartridge
which can be plugged in under the hatch of either the Atari 400
or 800.

Applications Programs

Applications programs are those written to accomplish a specific
task. Examples of applications programs are games, word
processing programs, financial forecasting programs, and
accounting programs. Generally, applications programs are
stored on cassette or diskette and are transferred into RAM,
where the program is available to the computer.

Applications programs for the Atari can also be stored in a
permanent form on a ROM cartridge. This ROM cartridge can
be plugged in underneath the hatch on the Atari. Examples of
ROM plug-in cartridges are shown in lIllustration 2-4.

CHAPTER 2.
INSTALLATION AND OPERATION OF
ATARI COMPUTERS

Introduction

If you are a first-time computer user, your Atari may seem a little
confusing at first. However, using a computer is really very
simple. In this chapter, we hope to show you exactly how simple
your Atari is by showing you step-by-step how to install and
operate it.

Installing the Atari 800

First of all, when you unpack your Atari 800, save the carton and
packing material. These should be used if the Atari is to be
moved or stored.

The Atari 800 is easy to install. First of all, install either a video
monitor via the monitor jack on the side of the console ora TV
set using the TV switch box.

The TV switch box has been designed so that it can be
permanently installed on your TV set, as it allows regular TV
reception as well as video output for the Atari. The TV switch box
has an adhesive backing that can be used to attach it to the back
of your TV set.

The TV switch box contains a switch marked Computer/TV.
When this switch is at the Computer position, the TV set receives
its signals from the Atari 800. When the switch is set to the TV
position, the TV set receives its signals from your television
antenna.

To install the TV switch box, first of all, disconnect your television
antenna from the VHF terminals at the back of your TV set. The
antenna should be either of the following:

20 User’s Handbook to the Atari 400/800 Computers

® 75 OHM with screw-on connector
@ 300 OHM with two flat leads

Attach either the 75 OHM or 300 OHM connector to the
matching connector on the side of the TV switch box.

Next, attach the 300 OHM connector (with the two flat leads)
leading from the bottom of the TV switch box and labeled TV, to
the VHF terminals on your TV set.

If your television antennais a 300 OHM model, the TV switch box
installation is finished. If your antenna is a 75 OHM model, you
must convert your television to accept a 300 OHM signal from
the TV switch box.

Refer to Illustration 2-1. If the antenna box contains a switch as
shown in the top drawing, just push the switch to the 300 OHM
position. If the antenna box resembles that shown in the middle
drawing, loosen the screws holding the U-shaped slider, and
move it to the 300 OHM position. If the antenna box resembles
the last drawing, screw the round wire into the connector as
pictured.

Illustration 2-1. Television Set Conversion to 300 OHM

eo [[

If your TV set resembles this
drawing, push the switch to the
300 SL position.

drawing, loosen the screws and
move the slider to the 300 SL
ﬁ_— position.

If your TV set resembles this
drawing, screw the rounded

Eg w wire into the connector.

0]
- If your TV set resembles this
O

Installation and Operation of Atari Computers 21

Once the TV switch box has been connected, plug the AC power
adapter into any ordinary 115V household outlet. Plug the end of
the AC power adapter into the power jack on the side of the
Atari console. Then, follow the power-on procedures as
described later in this chapter.

Installing The Atari 400

The installation procedures for the Atari 400 are virtually
identical to those for the Atari 800. Follow the steps just outlined
for Atari 800 installation if you are installing an Atari 400.

Installing The Atari 410 Program Recorder

The Atari 410 Program Recorder is packaged with a power card
and a peripheral data card, which is permanently attached to the
recorder.

Use caution when using the Atari 410. Do not use the Atari 410
outdoors. Also, do not allow liquids to be spilled on the Atari 410,
or allow it to be dropped in water.

The first step in installing the Atari 410 is to plug the data card
(which is permanently attached to the 410) to the peripheral jack
on the side of the Atari’s console. Next, plug the recorder’s
power card into the AC jack on theside of the recorder, and plug
it into a household outlet.

Installing The Atari 810 Disk Drive
The Atari 810 will include the following:

810 Disk Drive

Data Cord (round card with
identical end plugs)

AC Power Adapter

Owner’s Manual

DOS Diskette

22 User’s Handbook to the Atari 400/800 Computers

Save the 810’s carton and packing material, should the unit need
to be moved or stored.

Before installing the Atari 810 disk drive, be certain that the
power switches on both the Atari 810 and the computer are off.

The first step in installing the Atari 810 is to plug one end of the
AC power adapter into a household outlet, and the other to the
Atari 810 console. This is shown in Illustration 2-2.

Ilustration 2-2. Installing the Atari 810

Installation and Operation of Atari Computers 23

Next, plug one end of the data cord to the peripheral plug on the
Atari console, and the other to one of the I/O connectors on the
rear of the Atari 810. This is shown in Illustration 2-2. Additional
peripherals can be connected via the unused 1/0O connector.

If just one disk drive is being installed, the device code switch in
the back of the Atari 810 should be set to 1. If 2, 3, or 4 drives are
to be installed, the swtiches should be set as indicated on the
drive code diagram on the back of the Atari 810. This is shown in
Illustration 2-5. Use a pen or screwdriver to move the switches to
the appropriate setting. Be certain that the power to the Atari 800
and 810 is off when setting the drive code switch.

Installing the Atari 820 Printer
The Atari 820 Printer includes the following items:

Printer

Roll of Paper

Paper Mandrell
Ribbon

Data Cord

User’s Manual
Attached Power Card

Never operate a printer without the ribbon and paper installed.
Doing so may cause damage to the printing head solenoids. The
instructions for loading the ribbon and the paper in the Atari 820
are given in the operator’s manual.

Once the Atari 820 has been loaded with paper and aribbon has
been installed, plug the power cord attached to the unit into a
household outlet.

Next, plug one end of the data cord into the port labeled
‘peripheral’ on the Atari computer console. If another
peripheral such as the Atari 810 Disk Drive has already been
installed via the peripheral port, the Atari 820 can be connected
via the /O CONNECTOR port on the Atari 810 disk drive. Plug
the other end of the data cord into either of the 1/0
CONNECTOR ports on the printer.

24 User’s Handbook to the Atari 400/800 Computers

The printer is now installed. Turn the printer’s power switch on
and press the paper advance button once. The printer is now
ready for paper to be loaded.

Installing the Atari 822 Printer

The installation procedure for the Atari 822 printer is essentially
the same as for the Atari 820 printer.

Installing the Atari 825 Printer

The Atari 850 Interface Module is required to install the Atari 825
printer to either the Atari 400 or 800. The Interface Module
converts serial data from the computer into parallel data used by
the Atari 825.

The installation procedure for the Atari 825 is depicted in
[llustration 2-3. A few words of caution are in order before
beginning installation. First of all, the Atari 825 should be
installed at a distance of at least 2 feet from your television set.
Secondly, be certain that all of the power switches on both the
Atari 825 and Atari 400 or 800 are turned off prior to installation.
Finally, note that the Atari 825 is delivered with a ribbon
installed. During installation, try to keep the Atari 825 level.
Otherwise, the ribbon may fall out of its tray.

Illustration 2-3. Installing the Atari 825 Printer

O ________ ATARI 850

ol Interface Module
Caution: Be certain to install the
Atari 825 at a distance of at least 2
feet from the TV set or monitor.

- i

ATARI 400 or 800 &= & 7

ATARI 825 Printer

Installation and Operation of Atari Computers 25

Once these precautions have been taken, use an Atari 170 Data
Cord to connect the Atari 400 or 800 to the 850 Interface Module.
Connect an AC adapter to the Power In jack on the 850 Interface
Module. Connect the other end to a regular household AC
outlet.

Connect the 3 prong power cord on the Atari 825 printer to an
outlet. The Edge-on connector of the Atari printer cable should
be connected to the printed circuit card connector on the back
of the printer. The side of the connector marked ‘This side up’
should be facing up when the connection is made. Do not
attempt to force this connector, as this could damage the cable
connector. Connect the other end of the printer cable to the
parallel bit printer interface connection on the 850 Interface
Modules.

The 850 Interface Module must be turned on before the Atari 825
can be used. Programming procedures for the Atari 825 will be
covered in Chapter 8.

Installing a ROM Cartridge

As discussed in Chapter 1, the ROM cartridges are installed
under the hatch cover on the top of the Atari. The Atari 400 has
one socket, while the Atari 800 has two.

Generally, cartridges are installed in the left slot. Wheninserting
a cartridge, hold it so that its label is facing towards you. Plug the
cartridge into the socket and press it all the way into the socket.
Finally, close the hatch. This is shown in Illustration 2-4.

When the Atariis operated without a cartridge installed, it will be
operating in the memo pad mode. In this mode, all the Atari can
do is display what has been entered at the keyboard. Obviously,
the memo pad mode is not very useful.

In our discussions in this book, we will assume that the BASIC
Computing Language ROM cartridge is installed.

26 User's Handbook to the Atari 400/800 Computers

lllustration 2-4. Installing a ROM Cartridge

Turning on the Power

Once your Atari system has been properly installed, you may
turn on its power. Use the following procedure in turning on the
various components of your Atari system.

1. Turn on the television or monitor. If you are using a
television set, be certain both the setand the Atariareboth
turned to the same channel. The switch connected to the
television set should be placed on computer.

2. If you are using the Atari 810 disk drive, turn on drive1and
insert a diskette with the Atari disk operating system (DOS)
on it. Close the drive door once the diskette has been
inserted.

3. If a serial device that has been connected to the 850
Interface Module is to be used, turn on the 850. Otherwise,
leave it turned off.

Installation and Operation of Atari Computers 27

4. Turn on the Atari 400 or 800 console unit.

5. Turn on the printer when you wish to use it. Remember, if
you are using the 825 printer, the 850 Interface module
must also be turned on.

Unless the preceding power-on procedure is followed, the Atari
may not be able to interact with some of the system components.

Step 1. Turning on the Television

First of all, turn on the television set or monitor, whichever your
system is using. If you are using a monitor, you can skip the
remainder of Step 1 and proceed to Step 2.

If you are using a television set, first of all be certain that the
switch that is connected to your television’s antenna terminal is
set to computer. Tune in your set to channel 2 or 3, whichever is
weaker in your area.

The Atari computer must be set to broadcast on the same
channel that the television is tuned to. This isaccomplished with
the switch on the side of the Atari (see lllustration 1-2). Set this
switch so that it corresponds to the television channel used (2 or
3).

Step 2. Turning on the Disk Drive

If your system does not include a disk drive or if the disk drive
will not be used, you need not turn it on and can skip to Step 3.

If the disk drive is to be used, turn on drive 1. When turned on
the drive will emit whirring and clicking sounds for a few
seconds, and the lights on its front panel will light. The sounds
will soon stop, and all lamps except for the power lamp will go
off.

If your Atari system contains more than 1 drive, only drive 1
needs to be turned on at this point. By examining the access hole
in the back of the 810 drive (see Illustration 2-5), the user can
determine which is drive 1.

28 User’s Handbook to the Atari 400/800 Computers

The access hole will contain one or two switch levers. The
position of these levers determines the drive number. Drive 1’s
levers are both positioned to the left. Only the black lever in
front may be visible, at it may be hiding the white lever which is
situated behind it.

lllustration 2-5. Determining the Disk Drive Number

Once you have determined which drive is drive 1, insert either
the ‘Disk File Manager Master Copy’, a ‘Disk File Manager II
Master Copy’, or a copy of one of these in that drive. The label
side of the diskette should be facing up. Slide the diskette all the
way in and close the door behind it.

Step 3. Turning on the 850 Interface Module

The 850 Interface Module only needs to be turned on if adevice
is attached to it. If not, you can leave it off.

Step 4. Turning on the Atari 400/800
You now are ready to turn on the heart of your Atari system--the

Atari 400 or 800 computer. First of all, be certain that the correct
ROM cartridge has been installed, and that all system

Installation and Operation of Atari Computers 29

components have been properly connected.

Now, locate the power-on switch on the side of the console as
shown in Illustration 1-2. Turn the switch to the on position, and

turn up the volume on your television set a little.

The power lamp on the keyboard should come on. Also, your
television set will begin making noises, and a blue field with a
black border will be displayed. If the disk drive ison, it will begin
to whirl.

Finally, the message, READY, will be displayed in white letters on
the screen, and the disk drive will stop whirling.

If the READY message is not displayed within 3 seconds, a
problem exists somewhere in the system. Be certain the
components of your system are properly connected, and that
the proper ROM cartridge is in place. Repeat the start-up
procedure. If the Atari still does not start, call your dealer for
assistance.

If the following message appears on the display:
BOOT ERROR

the problem probably lies with the disk drive. Be certain that a
DOS diskette has been installed label side up, and that the disk
drive door is closed.

Step 5. Turn on the Printer

Once Steps 1 through 4 have been accomplished, the printer
may be turned on as desired. Of course, printing operations can
not be undertaken unless the printer is on. Remember, the 825
printer requires that the 850 Interface module be on.

The Ready Message
Once the Ready message appears on the display, the Atari

computer is ready to accept commands entered by the user via
the keyboard. Just beneath the READY message, a white square

30 User’s Handbook to the Atari 400/800 Computers

known as the cursor will be displayed. The cursor indicates the
position where the next character typed in will appear on the
display.

Atari Keyboard

As mentioned in Chapter 1, the Atari 400 and 800 keyboards are
virtually identical, except that the Atari 800 keyboard contains a
typewriter style keyboard with raised keys while the Atari 400
keyboard is depicted on a flat panel. The keyboard layout of the
Atari keyboard is shown in Illustration 2-6.

The Atari keyboard contains many of the same keys arranged in
the same order as a regular typewriter keyboard. The Atari
keyboard also contains several additional keys not found on a
typewriter keyboard. Two of these, ESC and CTRL, are
located on the left side of the keyboard. Three other keys,
BREAK, CAPS/LOWR, and /\, are located on the right side of the
keyboard. Also, to the far right of the keyboard are four yellow
special function keys. Finally, some of the standard typewriter
keys contain special words or special symbols.

lllustration 2-6. Atari Keyboard

e e e EREa e i e R R

ATARI -

Installation and Operation of Atari Computers 31

In the next 17 sections, we will discuss the usage of all of the keys
on the Atari keyboard. We recommend that you experiment
with these keys as you read these sections. Do not worry about
damaging the computer. Any error situation caused by keyboard
entries can be corrected by merely turning the Atari off and then
on again.

System Reset Key

tach of the four keys located to the right of the keyboard allows
the user to select a different starting position within a cartridge.

The System Reset key is located at the top of the yellow function
keypad at the far right of the keyboard. When the System Reset
key is pressed, all computer operations stop, and control is
restarted from the beginning of a cartridge.

Be careful not to press System Reset accidentally. Doing so can
cause the loss of data--especially if the disk drive isin use when
System Reset is pressed.

Select Key

Pressing the select key allows the user to view the initial screen at
the start of the next game or program. In other words, the initial
screen is ‘selected’.

Option Key

The option key is pressed to record the user’s choice of one of a
number of options within an application program or game.
Start Key

The Select and Option keys are generally used to display ascreen

and record the user’s choice. The nextstep is for the user to press
the start key. This begins the action selected.

32 User's Handbook to the Atari 400/800 Computers

Return Key

As characters are entered via the keyboard, these characters are
displayed on the video screen and also saved in memory.
However, these characters are not actually interpreted by the
computer until the Return key has been pressed. The Return key
tells the Atari that the line into which characters are being typed
has been finished.

When Return is pressed, the Atari will review the line just
entered for errors. If any errors are found, an error message will
be displayed.

Break Key

The Break key will stop any action being undertaken by the
computer. For example, if you press Break while entering a
BASIC command line, the computer will ignore all data entered
on the current line.

Pressing Break may or may not affect a program depending upon
how that program is written. Some programs are written so that
pressing Break has no effect, while other programs may stop if
Break is pressed. Generally, if a program is interrupted by
pressing Break, it can be continued by typing in the BASIC
command CONT and then pressing Return. However, the
display screen will most likely be erased if Break is pressed
during program execution.

Shift Key

Upon start-up, the keys for the letters (A-Z) always produce
upper case letters on the Atari, regardless of whether the Shift
key is depressed or released. However, the position of the Shift
key does have an effect on many of the other keys on the Atari
keyboard.

The keys affected by the position of the Shift key include two
characters. The bottom character is output when the Shift is off
(Unshift), and the top character is output when the Shift is on
(Shift).

Installation and Operation of Atari Computers 33

In this book, we will denote a key produced in the Shift mode by
using the word Shift followed by the symbol or name of the
character produced in Unshift. For instance, Shift 9 would
denote the symbol (. The characters produced in the Shift mode
are listed in Appendix C.

Ctrl Key

Ctrlis an abbreviation for the word ‘control’. We will use Ctrl and
Control interchangeably in this text.

The Control key is used in combination with another key much
as the Shift key is. The Control key must be held down at the
same time as the other key.

The use of the Control key with another key will be symbolized
by prefixing the name of that key with Ctrl-. For example, Ctr|-C
designates pressing the Control and C keys simultaneously.

Like the shift key, the Control key gives the key it is used with a
different interpretation. Control is used with the letter keys to
output the graphics characters. Control is used with many of the
other keys to instruct the computer to undertake a particular
function. For example, Ctrl-+ results in the cursor being moved
one space to the right. The various control key functions are
listed in Appendix C.

Caps/Lowr Key

As mentioned earlier, upon start-up, the keys for the letters (A-
Z) always produce upper case or capital letters, regardless of
whether the Shift key is depressed or released. The Caps/Lowr
key allows both capital and lower case letters to be output.

To output both capitals and lower case letters, press the
Caps/Lowr key. When the Shift key is released, lower case letters
will be output. When the Shift key is depressed, upper case
letters will be output.

By pressing the Shift key and the Caps key simultaneously, the
Atari will again output upper case letters.

34 User’s Handbook to the Atari 400/800 Computers

The keyboard can be placed in the graphics character mode by
pressing the Control and Caps/Lowr keys together. The graphics
characters are pictured in Appendix C.

A Key

The A key is used to switch the keyboard between the normal
and the reverse video modes. In the reverse video mode,
characters are displayed in blue on a white background.

Arrow Keys
The arrows keys will be referred to as follows in this text.

Up Arrow —Ctrl -
Down Arrow—Ctrl =
Left Arrow — Ctrl +
Right Arrow — Ctrl*

As you can see, the arrow keys are actually Control key
combinations.

The arrow keys are generally used to move the cursor on the
screen, so that keyboard entries can be corrected where
necessary.

The Right and Left Arrow keys move the cursor to the right or left
by one position along the same display line. These do not erase
the characters that they pass over from the display. When the
Right Arrow key is pressed with the cursor at the far right edge of
a display line, the cursor will move to the left edge of the same
line. When the left Arrow key is pressed with the cursor at the far
left side of the display, the cursor will move to the far right side.

The Up and Down Arrow keys move the cursor up or down by
one line. If the cursor is at the top of the screen, Up Arrow places
the cursor at the bottom of the screen. If the cursor is at the
bottom line of the screen, Down Arrow places it at the screen’s
top.

Installation and Operation of Atari Computers 35

Back S Key

The Back S key moves the cursor one position to the left each
time it is pressed. The character beneath the cursor is erased
when Back S is pressed.

When the cursor is at the left edge of the screen and Back S is
pressed, the cursor will not move.

Clear Key

Either the Shift< or Ctrl< key combination can be used to clear
the display screen and move the cursor to the home position.
The home position is the upper left-hand corner of the screen.

Insert and Delete Keys

Characters can be inserted or deleted by using the Control or
Shift keys in combination with the >/Insert and Back S/Delete
keys. Ctrl> results in a blank space being inserted to the right of
the cursor. Ctrl Back S results in the character to the immediate
right of the cursor being deleted. The cursor does not move
when either Ctrl> or Ctrl Back S are pressed.

Shift> results in a blank line being inserted above the line that
the cursor currently isin. The remainder of the display below the
line the cursor is in moves down by one line.

Shift Back S causes the line that the cursor is currently in to be
erased from the screen. The lines beneath that line are shifted
upward in the display by one position.

Tab Key

When the Tab key is pressed, the cursor will move forward to the
next tab position on the screen. Standard tab positions occur
after every eight positions. The left margin on the Atari is
indented two columns from the screen’s edge. Because of this,
the first tab stop occurs at the sixth position from the left margin.

Additional tab positions can be set by pressing Shift Tab at the

36 User’s Handbook to the Atari 400/800 Computers

position desired. Pressing Ctrl Tab clears the tab stop at the
cursor’s current position.

ESC Key

ESC is an abbreviation for Escape, a term originally used with
teletypes. The ESC key allows a key sequence to be entered in a
program, without that sequence being executed as a function.
ESC is always pressed and released prior to the entry of the key
sequence whose effect is to be negated. This entry of ESC
followed by the key sequence is known as an escape sequence.

For example, the following escape sequence,
ESC Ctrl<

would cause the display not to be cleared when Ctrl< s
entered.

Other Atari Keys

The remaining Atari keys are used like those on a standard
typewriter.

Auto Repeat

Atari’s auto repeat feature functions with every key except Shift,
Break, and System Reset. Auto repeat means that when a key is
continously pressed, that character will be repeated. For
example, if the A key is pressed, a single A will be displayed on
the screen. After a few seconds, the A will be repeated on the
display as long as the A key is depressed.

Display Line Length
The Atari’s display width is 40 characters. As mentioned earlier,

the leftmost 2 characters comprise the left margin. Therefore,
only 38 character positions are usable per display line.

CHAPTER 3.
INTRODUCTION TO ATARI BASIC

Introduction

BASIC is probably the most widely used language in
microcomputers, with the Atari being no exception. Atari BASIC
is available in the ROM cartridge labeled "BASIC Computing
Language”.

To use Atari BASIC, you must have the Atari BASIC ROM
cartridge. Also, you must have followed the correct start-up
procedure as outlined in Chapter 2. The READY message will be
displayed on the video screen when the Atari is ready to accept
BASIC commands.

Immediate & Program Modes

The immediate modeisalso known as the direct or the calculator
mode. In the immediate mode, any BASIC command entry
results in the instructions being executed without delay. For
example, if the following immediate mode line was entered,

PRINT ”Jim Smith”
the following would be displayed on the video screen.
Jim Smith
In the program or indirect mode, the computer accepts
program lines into memory, where they are stored for later

execution. This stored program is executed when the
appropriate command (generally RUN) is entered.

38 User’s Handbook to the Atari 400/800 Computers

Illustration 3-1 contains an example of the entry of a program in
the program mode and its execution.

lllustration 3-1. Program Mode Entry & Execution

/READY \
NEW
READY
10 PRINT “Jim Smith”
20 PRINT ”1220 Euclid Ave”
30 PRINT “Cleveland, OH 44122"
40 END
RUN
Jim Smith
1220 Euclid Ave
Cleveland, OH 44122

> W

Line Numbers

In the program mode, program lines must begin with a line
number. A line number is a one through five digit number
entered at the beginning of a program line. The line number at
the beginning of a program lineis the only difference between it
and an immediate mode line.

Introduction to Atari BASIC 39

No two line numbers can be the same. If the same line numberis
used more than once in a program, the line most recently
entered will replace the original. Line numbers canrange from 0
to 32767.

The execution sequence of a BASIC program is determined by
the value of its line number. The lowest line numbers will be
executed first, followed by program lines with higher line
numbers. Even if program lines are not arranged in sequential
order, the Atari interpreter will place the lines in the correct
order.

Adding program lines to a program stored in the Atari’s RAM is
very easy. Just type in the line number followed by the program
line. The line will be inserted in the program in the position
indicated by its line number. For example, by adding the
following line,

35 PRINT "216-777-5579"

to the program in lllustration 3-1, the phone number for Jim
Smith will be displayed on the line following his city, state, and

zip.

Program lines can be deleted by typing the line number to be
deleted followed by Return. For example, the following entry,

30 @
would result in line 30 being deleted.
Program lines can be changed by merely retyping the new line.
The existing line in the Atari’'s memory will be replaced with the
new line. For example, the following entry,

10 PRINT "Thomas Hill”

would result in “Thomas Hill” being output rather than ”Jim
Smith” in the program in Illustration 3-1.

Program lines also can be changed by displaying them on the

40 User’s Handbook to the Atari 400/800 Computers

screen with the LIST statement. Once that line has been listed to
the screen, it can be edited using the cursor control keys as
described in Chapter 2.

Once the desired changes have been made, these must be made
permanent. This is accomplished by pressing the Return key
while the cursor is within that line. Unless the Return key is
pressed somewhere within the line being edited, any changes
made effect only the video display. The cursor can be positioned
anywhere within the program line when Return is pressed.

NEW Command

You may have noticed the execution of the NEW command in
Illustration 3-1. The NEW command is used to erase an old
program from memory before a new one is typed in.

The Atari can only store one program in RAM at any one time. If
you attempt to enter a new program while another program is
already stored in RAM, the new program will be merged with the
existing program.

END Statement

Notice the last line in the program in Illustration 3-1. That line
consists only of the line number plus the BASIC reserved word
END.

The END statement identifies the end of a program, and instructs
Atari BASIC to return to the immediate mode. Obviously, the
END statement should be the last line in your program.

Actually, Atari BASIC does not require an END statement. When
the program’s final statement is executed, it will end. However, it
is good programming practice to end a BASIC program with the
END statement.

Executing a Program

A program is executed in the program mode by entering the
RUN command. This is shown in Illustration 3-1. Every time RUN

Introduction to Atari BASIC 41

is executed, the program is re-executed. As previously
discussed, in the immediate mode, each program line is
executed when the Return key is pressed.

Program Lines & Display Lines

A display line can be defined as one row on the video display. A
program line is regarded by the BASIC interpreter as one line,
regardless of the number of display lines it occupies on the
screen. The end of a program line is signaled when the Return
key is pressed.

Program lines generally are limited to 114 characters. If you are
entering a lengthy program line, the Atari will beep when the
107th character has been input. This is intended as a warning to
the operator that he isapproaching the limit of the program line.

Multiple Statement Program Lines

A statement can be defined as an instruction to the computer.
The terms statement and command are often used interchange-
ably. Most programs consist of a large number of statements. The
following are examples of statements.

PRINT “Tim Gregory”
070 DIM A(15)
100 C = 2*B

Every statement in Atari BASIC must contain at least one key or
reserved word. A keyword identifies the calculation, decision,
input, or output function to be performed. The keywords are
described individually in Chapter 5and are listed in alphabetical
order in Appendix B.

In addition to keywords, numeric constants, string constants,
variables, and special symbols may appear in a BASIC statement.
These are known as the statement parameters.

Atari BASIC allows the user to place more than one statement on
a single program line. Multiple statements must be separated
with a colon (:). The following is an example of a multiple

42 User’s Handbook to the Atari 400/800 Computers

statement program line.
100 A =B * 7:PRINT A:PRINT B
Abbreviating Keywords

Many of the Atari BASIC keywords can be abbreviated. For
example, the keyword PRINT can be abbreviated with the
symbol “?”. Generally however, keywords are abbreviated with a
single letter or several letters followed by a period. Forexample,
the keyword GOTO can be abbreviated as follows.

G.

The various abbreviations for the keywords are contained in
Appendix B.

Listing a Program

As mentioned earlier, the LIST command can be used to display
program lines currently stored in RAM. Remember, if the NEW
command is issued or if the Atari is turned off, the program in
RAM will have been erased, and can no longer be displayed by
LIST.

LIST is used with the following configuration,
LIST (line 1, line 2)*

where line 71 is the line number of the first line to be listed, and
line 2 is the line number of the last line to be listed.

LIST can be used without any parameters to list the entire
program. LIST can also be used with a single line number to list
just that program line.

*|n this chapter, a standard format will be used to describe BASIC
keyword configurations. The keyword will be displayed in our
regular type style in upper case. Parameters will be displayed in
our italic type style in lower case. Optional parameters will be
enclosed in parentheses.

Introduction to Atari BASIC 43

Error Messages

When the Atari encounters a statement with an error, an error
message will be displayed. The error message consists of the
following.

ERROR- message

message can be the statement causing the error oradiagnostic
error message number. These error numbers are
listed in Appendix A.

BASIC Data Types

Data can be classified under two major categories: text and
numeric. Text data consists of characters. These characters are
generally used within strings.

Examples of numeric data include:

Integers
Floating Point Numbers
Scientific Notation

Each of these data types will be discussed in the following
sections.

Strings

A string consists of one or more characters enclosed within
double quotation marks. The following are examples of strings:

"F. Scott Fitzgerald”
"149 Lexington Ave”
‘ "New York, NY 10017”
"212-349-9879"

Notice that a string can contain both letters, numbers, and
symbols. Any string containing numbers can not be used in a
mathematical operation, unless it is first converted into numeric
data. String to numeric data conversion is covered in Chapter 4.

44 User's Handbook to the Atari 400/800 Computers

Numeric Data

Atari BASIC stores all numbers in memory in floating decimal
point form. With floating decimal point numbers, a decimal
point is always assumed. Any number of digits can be placed on
either side of this decimal point. Even with numbers with no
decimal position, a decimal point always is assumed following
the number’s last digit.

Commas may not be included within numeric data. Forexample,
109000 would be a valid number in Atari BASIC, while 109,000
would be invalid.

Integer

An integer is a number without a decimal position. Integers can
either be positive or negative. The following are examples of
integers:

-1134
0
1
4
17945
+32

Negative integers are preceded with the (-) sign. Positive
integers can be preceded with the (+) sign, although integers
without a (+) sign are assumed to be positive.

In Atari BASIC, integers are processed exactly as are any other
floating point numbers. Atari BASIC does not process integers as
a separate form of numeric data.

Floating Point Numbers
Floating point numbers include both integers, as well as decimal

functions and numbers with decimal positions. The following
are examples of floating point numbers.

Introduction to Atari BASIC 45

-.0789
5
7739
0
+.000001
67.98

Again, negative floating point numbers should be preceded with
the minus sign (-). Positive floating numbers can optionally be
preceded with the plus sign (+), however, a floating point
number is assumed positive if it doesn’t have a sign.

Scientific Notation

Atari BASIC uses scientific notation to express either extremely
large or extremely small numbers. A number in scientific
notation takes the following format:

x Eyy

Where;

I+

is an optional plus or minus sign.

x can either be an integer or a floating point number. This
position of the number is known as the coefficient or
mantissa.

E stands for exponent

yy is a one or two digit exponent. The exponent gives the
number of places that the decimal point must be moved to
give its true location. The decimal point is moved to the
right with positive exponents. The decimal point is moved
to the left with negative exponents.

The following examples specify a number in both standard
floating point and scientific notation:

1000000 —=1 E6
.00000T—=1 E-6
57500000 —*5.75 E+07
-.00000479—4.79 E-06

46 User's Handbook to the Atari 400/800 Computers

Any numbers containing more than 10digits will be expressed in
scientific notation. Also, any decimal number which contains
more than two digits to the right of the decimal point will be
expressed in scientific notation.

Atari BASIC can only handle floating point numbers expressed in
scientific notation in the range between -9.99999999 E+97 and -
9.99999999 E+97. Any decimal numbers that are closer to zero
than +9.99999999 E-98 or -9.99999999 E-98 will be converted to 0.

Rounding

In Atari BASIC, floating point numbers can have at most 9
significant digits. Any digits beyond 9 are replaced with zeros,
beginning with the least significant digit.

The following examples give the values used by Atari BASIC for
floating point numbers containing more than 9 digits.

17898743214798 —1.78987432 E+13
-879836341832—8.79836341 E+11
7005.32144587931—>7005.32144

Fractional numbers in the range between 1 and -1 also may
contain a maximum of nine digits. However, with numbers in
this range, the nine significant digitsare counted beginning with
the first non-zero digit to the right of the decimal point.

The following examples give the values used by Atari BASIC for
floating point numbers in the range between 1 and -1 which
contain more than 9 digits.

.87547983621— 0.874579836

.12789478987432187— 0.127894789

-.478947821765789—>-0.478947821
.000000001407936579463— 1.40793657 E-09

Introduction to Atari BASIC 47

BASIC Variables

So far, we have only discussed data constants. A constant can be
defined as a fixed value. The following are examples of string and
numeric constants.

"Jack Novet”
N375/l

27.59

0

100000

A name can be used to express data as well as a constant.
Variables are used to express data as a name.

A variable can be defined as a quantity that can assume any one
of a group of values. Variables are represented by variable
names. These consist of a letter followed optionally by additional
letters and/or numbers. The value assumed by a variable is
subject to change, depending upon the program statement
being executed. For example, in the following,

100 LET A=5.0
200 LETB=7.0
300 LETA=A+B

the variable A is initially assigned a value of 5.0and Bis assigned a
value of 7.0. In line 300, the variable A is assigned a new value
equal to the sum of variables A and B, which is 12.0. The previous
value of A is erased.

Note the use of the LET statementin the preceding example. The
LET statement is used to assign a value to a variable. Whenever a
LET statement is used in a program, the value of the variable on
the left side of the equation is to be replaced with the value
appearing on the right.

The reserved word, LET need not actually be included in a LET
statement. Both of the following statements have the same

48 User’s Handbook to the Atari 400/800 Computers

meaning.

100 LET A =5
200 A=5

BASIC Variable Names
Atari Basic allows any group of up to 114 characters to be used as
a variable name--as long as the first character of the group is a
capital letter of the alphabet, and as long as the variable name
does not duplicate a reserved word (see Appendix B). Examples
of reserved words are:

LET, GOTO, IF, READ, DATA

The following are examples of valid BASIC variable names,

A JOHN
B23456 N4N
TOTAL.DATA B%
A2 N

while the following are invalid variable names:

2BB7 END
1A FOR
PRINT COS

All of the preceding examples of valid variable names should be
used to represent numeric data. Variable names can also be used
to represent string data. These are known as string variables.
String variable names consist of a valid variable name followed
by the dollar sign ($). The following are examples of valid string
variable names.

A$
B1P$
A7$

Introduction to Atari BASIC 49

Before a string variable can be used in a program, it must first be
dimensioned with the DIM statement. If a string variable is not
dimensioned before it is used in a program, the error 9 will occur.

A string variable is dimensioned by giving its name and its
maximum size after the reserved word DIM. The maximum size
must be enclosed in parentheses. The following DIM statement,

100 DIM A$(5)

dimensions a five character string. More than one string variable
can be dimensioned in a single DIM statement. For example, the
following DIM statement,

100 DIM A$(10), B$(5), C$(7)
would dimension 3 string variables.
Tables & Arrays

Earlier in this chapter, we introduced the concept of variables. A
variable is designed to hold a single data item--either string or
numeric. However, some programs require that hundreds or
even thousands of variable names be used.

Obviously, the use of thousands of individual variable names
could prove extremely cumbersome. To overcome this
problem, BASIC allows the use of subscripted variables.
Subscripted variables are identified with a subscript, a number
appearing within parentheses immediately after the variable
name. An example of a group of subscripted variables is given
below:

A(0), A1), A(2), A3), A(4),..., A(100)

Note that each subscripted variable is a unique variable. In other
words, A(0) differs from A(1), A(2), A(3), A(4), etc.

Subscripted variables should be visualized as an array (or table).
In our previous example, the data contained in the array defined
by A would consist of one row with 101 columns in it. Such an
array is a single-dimension array.

50 User’s Handbook to the Atari 400/800 Computers

An array can also consist of two dimensions. Such an array is
known as a two-dimensional array (or table). An example of an
array of 4 rows and 3 columns is shown in lllustration 3-2.

A two-dimensional array contains two subscripts. The first
subscript contains the row location, while the second subscript
contains the column location. The subscripted variable A(1,0)
identifies the darkened area in the array shown in Illustration 3-
2:

lllustration 3-2. Two-Dimensional Array

Columns
0 1 2
0
d |
Rows
2
3

In the Atari BASIC, arrays can be used to represent numeric data.
String arrays cannot be used in Atari BASIC.

Before any array variable can be used in a program, the size of
that array must have been defined so that BASIC can reserve a
memory area for it. This is also accomplished with the DIM
statement. A single dimension numeric array with 11 variables
could be defined with the following DIM statement:

DIM A(10)

Remember that array subscripts begin with 0. Therefore, the
numeric array A which was dimensioned in the preceding
statement, would have space reserved for the 11 array elements,
not 10.

Introduction to Atari BASIC 51

More than one array can be defined with a single DIM
statement. This is shown in the example below:

100 DIM Z(5,2), B(100), C(2,3)

A DIM statement must appear in a program before the array
variable it is dimensioning appears. If an array variable is used in
a program before it is dimensioned, error 9 will occur.

Expressions and Operators

The values of variables and constants are combined to form a
new value through the use of expressions. The following are
examples of expressions.

4+ 7
A% + B$
3h2
14 < 21
X AND Y

Atari BASIC includes several types of expressions including
arithmetic, relational, and Boolean. In our previous examples,
the first three examples are arithmetic expressions, while the
fourth and fifth are examples of relational and Boolean
expressions respectively. Each of these types of expressions will
be discussed in detail in the following sections.

The sign or phrase describing the operation to be undertaken is
known as the operator. The operators in our previous example
were as follows:

A D>+ +

AND

The constants or variables which are affected by the operator are
known as operands.

52 User’s Handbook to the Atari 400/800 Computers

Compound Expressions and Order of Evaluation

All of our preceding examples were simple expressions. A simple
expression is one which contains just one operator and one or
two operands. Simple expressions can be combined to form
compound expressions. The following are examples of
compound expressions.

(A+B)*7-4
(A + B) AND (C +D)
IFA=1ANDB=1THEN C =1

With compound expressions, it is necessary that the computer
knows which operation should be undertaken first. Atari BASIC
follows a standard order or evaluation within compound
expressions. This order is outlined in Table 3-1.

Note that parentheses have the highest precedence level. In
other words, any expression enclosed within parentheses will be
evaluated first. If more than one set of parentheses appearsin an
expression, these will be evaluated from left to right.

One pair of parentheses can be used to enclose an operator
enclosed within anotherset. Insuch aninstance, Atari BASIC will
evaluate the expression within the innermost set of parentheses
first, followed by the next innermost set, etc.

When expressions have the same order of evaluation, they will
be evaluated in order from left to right within the compound
expression.

Introduction to Atari BASIC 53

Table 3-1. Order of Evaluation

I Operator Description
Parentheses () Used to alter order
of evaluation.
" Exponentiation
- Unary Minus
Arithmetic * Multiplication
Operators / Division
+ Addition
- Subtraction
= Equal To
<> Not Equal To
Relational < Less Than
Operators > Greater Than
<= Less Than or Equal To
>= Greater Than or Equal To
Boolean NOT Logical Complement
Operators AND Logical AND
OR Logical OR

Arithmetic Operations

The symbols used for addition, subtraction, multiplication,
division, and exponentiation are known as arithmetic operators
in BASIC. The symbols + and - are used for addition and
subtraction respectively. The asterik (*) is used to indicate
multiplication, while the slash (/) is used to indicate division.

When a + or - sign precedes a number, the symbol is used to
specify that number’s sign. When + or - is used to change a

54 User’s Handbook to the Atari 400/800 Computers

number’s sign, that usage is known as a unary operation. Unary
operators can be used to change the sign of a numeric constant
or variable as shown below:

100 LET A =-A

When unary operators are used in the manner shown above, the
unary operation is regarded as an arithmetic operation.

The term arithmetic expression is used to describe the use of an

arithmetic operator with numeric constants and/or variables.

The following are examples of arithmetic expressions.
X+Y+70

100/A + B
3000 * 10 + 1

Exponentiation is the process of raising a number to a specified
power. For example, in the following,

AS
the numeric variable A would be evaluated as:
AXAXAXAXA
In BASIC, exponentiation is indicated with the caret symbol, * .

Exponentiation can be used in an arithmetic expression as shown
below:

8*347 82

The preceding expression would evaluate to 73.

Introduction to Atari BASIC 55

Relational Operators

The following relational operators are used in Atari BASIC.

—— less than
— less than or equal to
———— greater than

—— > greater than orequal to
—— equal to

||VV{|\/\

<> ——— not equal

A relational operation evaluates to either true or false. For
example, if the constant 1.0 was compared to the constant 2.0 to
see whether they were equal, the expression would evaluate to
false. In Atari BASIC, a value of 1 represents a condition of true,
while a value of 0 represents false.

The only values returned by a comparison in BASIC are 1 (true)
or 0 (false). These values can be used as any other integer would
be used. The following results are generated by the following
relational expressions.

5>7 —0 (false)

3=3—1 (true)

2<>2— 0 (false)
(2=2)*4—4
(1>7)+7 —7

The first three examples are easy enough to understand. In the
fourth example, the relational expression (2=2) is evaluated first
as true or 1. This result is then multiplied by 4 with a product of 4
as the result. In the fifth example, the relational expression (1 >
7) evaluates as false or 0. This result is added to 7, with the result
being 7.

Relational operations using numeric operations are fairly
straightforward. However, relational operations using string
values may prove confusing to the first-time computer user.

56 User’s Handbook to the Atari 400/800 Computers

Strings are compared by taking the ASCIl value for each
character in the string one at a time and comparing the codes.

If the strings are of the same length, then the string containing
the first character with a lower code number is the lesser. If the
length of the strings are unequal, then the shorter string is the
lesser. Blank spaces are counted and have an ASCII value of 32.

The following comparisons between strings would all evaluate as
true.

"ABC"="ABC"

“"ABC "> "ABC”

"aAA” >"AAA"

"Alfred” < "Zachary”

A$ < Z$ where A$ = "Alfred” and Z$ =
"Zachary”

Note that all string constants must be enclosed in quotation
marks when used as constants.

Logical Operators

Logical or Boolean operations are generally used in Atari BASIC
to compare the outcomes of two relational operations. Logical
operations themselves return a true or false value which will be
used to determine program flow.

The logical operators are NOT (logical complement), AND
(conjunction), and OR (disjunction). These are best explained
with a simple analogy. Suppose that Steve and Sherry were
shopping in the produce department of their grocery store. If
they decided to collectively purchase an item if either of them
individually wanted that item, they would be acting under the
OR logical operator.

Now, suppose that Steve and Sherry decided that they would
only purchase an item if they both wanted that item. They would
then be acting under the AND logical operation.

Now, suppose that Sherry was angry with Steve. If Sherry

Introduction to Atari BASIC 57

decided not to purchase the items that Steve wanted, she would
be acting under the NOT logical operation. The NOT, AND, and
OR logical operators are summarized in Illustration 3-3.

A logical operator evaluates an input of one or more operands
with true or false values. The logical operator evaluates these
true or false values and returns a value of true or false itself. An
operand of a logical operator is evaluated as true if it has a non-
zero value. (Remember, relational operators return a value of 1
foratrue value.). An operand of alogical operatorisevaluated as
false if it is equal to zero.

The result of a logical operation is also a number, which if non-
zero is considered true, and false if it is zero.

The following are examples of the use of logical operators in
combination with relational operators in decision making.

IF X >10 ORY < 0 THEN 900
IFA > 0AND B > 0 THEN 200 ELSE GOTO 300
B =-T1:PRINT NOT B

In the first example, the result of the logical operation will be
true if variable X has a value greater than 10 or if variable Y has a
value less than 0. Otherwise, it will be false. If the result of the
logical operation is true, the program will branch to line 900.
Otherwise, it will continue to the next statement.

In the second example, the result of the logical operation will be
true only if the value of both variables A and B are greater than
zero. If the result of the logical operation is true, program
control will branch to line 200. Otherwise, program control will
branch to line 300.

In the third example, B is set to a value of -1 (true). The value of
NOT B is then printed. This will be 0 or false.

Illustration 3-3 contains tables that may prove of help when
evaluating program statements using logical operators in
combination with relational operators.

58 User's Handbook to the Atari 400/800 Computers

lllustration 3-3. Logical Operators

NOT Operation

T F A Operand

F i NOT A

AND Operation

T T F l F A Operand
T F T | F B Operand

T b F k A AND B

OR Operator

T| T F F A Operand

T F T F B Operand

1 T T F A OR B

Introduction to Atari BASIC 59

Atari BASIC Statements

In the next several sections, we will discuss many of the more
commonly used statements in Atari BASIC. These include the
following:

Remark Statements
Assignment Statements
Output Statements
Input Statements
Loops

Conditional Statements
Branching Statements
Subroutines

STOP, END Statements
Atari BASIC Functions

Remark Statements

Remark statements are used to include a programmer’s
comments within a program. It is good programming practice to
include numerous Remark statements in your programs. Not
only do Remark statements make your programs easier for
others to understand, they also help you remember your
program’s logic.

Remark statements consist of a line number, the reserved word
REM, and the programmer’s comment. An example of aRemark
statement is given below.

100 REM Initialize | to 0

Remark statements are ignored by the Atari BASIC interpreter,
but are included in program listings.

60 User’s Handbook to the Atari 400/800 Computers

In multiple line statements, the REM statement must be the final
statement. The Atari BASIC interpreter ignores all text following
the keyword REM.

REM can be abbreviated as R. or with the period (.).
Assignment Statements

Assignment statements were discussed briefly earlier in this
chapter. Assignment statements are used to assign values to
variables. The following are examples of assignment statements.

100 LET A =7

200 B =42

300 NAME$ = “Phil”
400 X=1:Y=2:Z=

Notice that the keyword LET is optional. Generally, LET is
assumed. Both string and numeric variables can be assigned
values with an assignment statement. Also, multiple assignment
statements can be included in a single line, as long as each of the
individual statements is separated by a colon.

DATA, READ Assignment Statements

Assigning values to a large number of variables with individual
assignment statements could prove very cumbersome. The
DATA, READ statements can be used to assign values to a large
number of variables. The following is an example of a DATA,
READ statement.

100 DATA 100, 500, 1000, “Jack”
200 READ A, B, C, D$

The DATA statement creates a list of constant values known as a
DATA list.The items in the DATA list are assigned sequentially to
the variables in the READ statement. A DATA list is depicted in
Illustration 3-4.

Introduction to Atari BASIC 61

lustration 3-4. DATA List

100 DATA 100, 200, 300, 400, 500

400 DATA Monday, Tuesday, Wednesday,
Thursday, Friday

500 READ A, B, C, D, E et DATA List
600 RESTORE \A i 100
700 READ F, G, H, I, | =
: B G 200
Cc H 300
D | 400

900 READ A$, B$, C$, D$, E$

E J 500
500,700—
A$%$ | Monday

400,600—= DATA list pointer
position after the execution of lines
400 and 600.

B$ | Tuesday

C$ | Wednesday
500,700—=DATA list pointer

position after the execution of lines

500 and 700. D$ | Thursday
900—>DATA list pointer position E$ Friday
after execution of line 900. 900 _

DATA statements may contain numeric or string values. These
values must be separated or delimited with commas. DATA
statements may appear at any point in the program. No other
statements can appear in the same program line with a DATA
statement.

The DATA list uses a pointer to indicate which value within the
list is to be assigned to the next variable in a READ statement.
Before the first READ statement is encountered, the DATA list

62 User's Handbook to the Atari 400/800 Computers

pointer will point at the first value in the DATA list. As values
from the DATA list are assigned to variables in the READ
statement, the pointer will move sequentially to each successive
item in the DATA list.

The values from the DATA list must match the type of variable to
which they are assigned in the READ statement. In other words, a
string value can not be assigned to a numeric or vice versa.

The RESTORE statement is used to reset the DATA list. In
Illustration 3-4, note the use of the RESTORE statement. After
DATA list values have been read into A, B, C,D,and Ein line 500,
a RESTORE statement is executed. This causes the DATA list
pointer to be reset to the beginning of the DATA list.

Outputting Data
In some of our preceding examples, we touched upon the use of
the PRINT statement to display data. The PRINT statement can be
used to display both numeric and string data.
The following program statement,

100 PRINT “Vendor List”
would display the following at the current cursor position.

Vendor List

The first item in a PRINT statement is displayed at the cursor’s
current location.

Several strings can be displayed on the same line with a single
PRINT statement by separating the string constants or variables
in the PRINT statement with commas. The following statements,

050 DIM A$(10)
100 LET A$ = "John”
200 PRINT A$, "Bill”, "Peter”

Introduction to Atari BASIC 63

would result in the display shown below:
John Bill Peter

Atari BASIC divides the spacing on a line into a series of print
zones. Each print zone contains 10 spaces. When a comma
appears in a PRINT statement, the computer is instructed to
begin printing the next parameter in the PRINT statement at the
beginning of the next print zone. In our example above, John
would begin in column 1 (print zone 1); Bill in column 11 (print
zone 2); and Peter in column 21 (print zone 3).

A semicolon can also be used to separate the items in a PRINT
statement. A semicolon causes the next item in the PRINT
statement to be displayed immediately after the preceding item.
Unlike the use of the commas in a PRINT statement, when
semicolons are used to separate items, no blank spaces appear
between the items when they are displayed.

When a PRINT statement has finished execution, the cursor
moves to the left margin of the following line. This is known as a
carriage return/line feed.

If acomma or semicolon occurs at the end of a PRINT statement,
the carriage return/line feed will be suppressed. If a comma is
placed at the end of the PRINT statement, the next PRINT
statement will begin output at the next print zone after the last
item is displayed. If a semicolon is placed at the end of the PRINT
statement, the next PRINT statement will begin output
immediately following the last item displayed.

In this section, we have only discussed sending output to the
video display. Output can also be sent to the printer. This is
accomplished by using the LPRINT statement in place of PRINT.
The LPRINT statement is used exactly as the PRINT statement in
Atari BASIC.

However, the LPRINT statement does have some variations
when it is used with the Atari 825 Printer. These variations occur
when a comma orsemicolon is used to end the PRINT statement.
If an LPRINT statement is used to print more than 40 characters,

64 User's Handbook to the Atari 400/800 Computers

any subsequent LPRINT statements will be started on a new line
on the Atari 825.

However, if an LPRINT statement prints 38 characters or less and
ends with a comma, output from any subsequent LPRINT
statement will be begun on the same line at print position 41.
Printing also begins at this position, if LPRINT is used to print 40
characters or less and ends with a semicolon.

INPUT Statements

Data can be input into the computer while a program is being
executed. This is accomplished with the INPUT statement. For
example, when the following statement is executed,

100 INPUT A

the computer will display a question mark and wait for the
operator to enter a response. That entry will be assigned to the
variable A. The entry must be ended by pressing the Enter key.
Program execution will then resume.

The values of several numericvariables can be input with asingle
INPUT statement as shown in the example below.

200 INPUT X, Y, Z

When the preceding INPUT statement is executed, the INPUT
prompt (2) will be displayed. The operator should then enter the
data items for X, Y, and Z. Each input should be separated by a
comma. The Return key should be pressed after all input entries
have been made. An example of a valid entry for the preceding
INPUT statement is given below.

100, 200, 300 &

The INPUT statement in Atari BASIC functions somewhat
differently with string inputs than with numeric inputs.

First of all, the string variable used with INPUT must have been
dimensioned earlier in the program.

Introduction to Atari BASIC 65

Secondly, the number of characters entered in response to tfie
INPUT prompt cannot exceed the number of characters that the
string variable specified in INPUT was dimensioned for. For
example, in the following,

100 DIM A$(5)
200 INPUT A$

the string variable A$ is only dimensioned for 5 charactersin line
100. If the operator attempts to enter a string greater than 5
characters in response to the INPUT prompt in line 200, Atari
BASIC will ignore any additional characters.

Finally, if string variables are included as one of a number of
variables in an INPUT statement, the value for each string
variable must be entered on a separate line. In the following
INPUT statement,

500 INPUT A, B, C$, D$

the operator might respond to the INPUT prompt as follows:

100, 200, JOHN #
MARY @

The reason for the entry of string data on separate lines is that
Atari BASIC allows a comma to be input as part of a string.
Therefore, the comma cannot be used as a delimiter. You can
test this by entering the following,

SMITH, JOHN #
for one of the string variables in our preceding example.

It is good programming practice to include a prompt message in
conjunction with an INPUT statement to let the operator know
what data the computer is expecting. This is accomplished by
preceding the INPUT statement with a PRINT statement. If the
PRINT statement is ended with a semicolon, the prompt message
will be displayed on the same line with the INPUT prompt.

66 User’s Handbook to the Atari 400/800 Computers

100 PRINT "ENTER YOUR AGE”";
200 INPUT AGE

In the preceding example, the prompt, "ENTER YOUR AGE”, will
appear on the same line as the INPUT prompt.

Loops

Suppose that you needed to compute the squares of the integers
from 1 to 20. One way of doing this is by calculating the square
for each individual integer as shown below.

100 A=1"2
200 PRINT A
300B=2%2
400 PRINT B
500 C =3%2
600 PRINT C

However, this method is very cumbersome. This problem
could be solved much more efficiently through the use of a
FOR, NEXT loop as shown below.

100 FOR A=1TO 20
200 X = A2

300 PRINT X

400 NEXT A

500 END

The sequence of statements from 100 to 400 is known as a loop.
When the computer encounters the FOR statement in line 100,
the variable A is set to 1. X is then calculated and displayed in
lines 200 and 300.

The NEXT statement in line 400 will request the next value for A.
Execution returns to line 100 where the value of A isincremented
by 1 (to 2) and then compared to the value appearing after TO.
Since the value of A is less than that value, the loop will be
executed again with the value of A set at 2.

Introduction to Atari BASIC 67

The loop will continue to be executed until A attains a value
greater than 20. When this occurs, the statement following the
NEXT statement will be executed.

In our preceding example, A is known as an index variable. If the
optional keyword STEP is not included with the FOR statement,
the index variable will be incremented by 1 every time the NEXT
statement is executed.

STEP can be included at the end of a FOR statement to change
the value by which the index variable is incremented. The
integer appearing after STEP is the new increment. For example,
if our preceding example were changed as follows,

100 FOR A =1TO 20 STEP 2
200 X = A2

300 PRINT X

400 NEXT A

500 END

the index variable A would be incremented by 2 every time the
NEXT statement was executed.

Nested Loops

One loop can be placed inside of another loop. The innermost
loop is known as a nested loop. The following program contains
a nested loop.

100 P = 1000

200 FOR Y =1TO 10
300 FOR Q=1 TO 4
400 P=P+P *.02
500 NEXT Q

600 NEXT Y

650 PRINT P

700 END

Our preceding example is used to calculate the value of 1000
after 10 years with an interest rate of 8% compounded quarterly.

One error that you should take care to avoid when using nested

68 User’s Handbook to the Atari 400/800 Computers

loops is to end an outer loop before aninner loop is ended. Also,
be certain that that every NEXT statement has a matching FOR
statement. If the Atari BASIC interpreter cannot match every
NEXT statement with a preceding FOR statement, an error will
result.

Conditional Statements

One of the most important features of a computer is its ability to
make a decision. BASIC uses the IF, THEN, ELSE statement to take
advantage of the computer’s decision making ability. The IF,
THEN, ELSE statement takes the following form:

IF expression THEN statement ELSE statement

The IF statement sets up a question or a condition. If the answer
to that question is true, the statement following THEN is
executed. If the answer is false, the statement following ELSE will
be executed.

In the following example, if X is equal to 0, then Y will be setto 1.
If X is not equal to 0, Y will be set to 0.

100 IFX=0THENY =TELSEY =0

The IF, THEN, ELSE statement may be shortened to just IF, THEN
as shown below.

050 Y=0
100 IF X=1TTHENY =1

In this example, if X is equal to 1, the statement following THEN
will be executed. If X is not equal to 1, program execution will
continue with the next program statement (in our example--line
200).

Branching Statements
Branching statements change the execution pattern of programs

from their usual line by line execution in ascending line number
order. A branching statement allows program control to be

Introduction to Atari BASIC 69

altered to any line number desired. The most commonly used
branching statements in BASIC are GOTO and GOSUB.

GOTO takes the following format:
GOTO line number
For example, the following program statement:

500 GOTO 999

999 END
would branch program control at line 500 to line 999.

Branching statements are often used in conjunction with
conditional statements. In such a situation, the normal execution
of the program is altered depending upon the outcome of the
condition set up in the IF statement. This is shown in the
following example.

050 DIM A$(99)

100 PRINT “ENTER THE AMOUNT”

150 INPUT A

200 IF A =0 THEN GOTO 900

900 PRINT “ARE YOU FINISHED (Y/N)”: INPUT A$
910 IF A$ = ”"N” THEN 100

999 END

In our preceding example, if the value input for A has a zero
value, then the program will branch to line 900 where the
operator will be prompted whether he has finished entering
data. In line 910, the program will set up a condition where if the
input was ‘N’, the program will branch to line 100. If the entry was
not equal to ‘N’, the program will continue to line 999.

70 User’s Handbook to the Atari 400/800 Computers

Note in line 910 that a GOTO statement is not used to precede
the line number being branched to. When a line number is
indicated following a THEN or ELSE statement, the computer
does not require the presence of GOTO, which is assumed.

ON, GOTO Statement

The ON, GOTO statement is a combination of a conditional
statement and a branching statement. The use of the ON, GOTO
statement is illustrated in the following program.

100 INPUT A

200 ON A GOTO 250,260
210 GOTO 999

250 PRINT A: GOTO 100
260 PRINT AA2:GOTO 100
999 END

If the variable or expression following ON evaluates to 1,
program control branches to the first line number specified after
GOTO; if 2, to the second; if 3, to the third, etc.

If the variable or expression evaluates to a number greater than
the number of line numbers following GOTO, program control
will branch to the statement immediately following the ON,
GOTO statement. This is also the case if the variable or
expression following ON evaluates to zero.

Subroutines & GOSUB Statements

Many times you will find that the same set of program
instructions are used more than once in a program. Re-entering
these instructions throughout the program can be very time
consuming. By using subroutines, these additional entries will be
unnecessary.

A subroutine can be defined as a program which appears within
another larger program. The subroutine may be executed as
many times as desired.

Introduction to Atari BASIC 71

The execution of subroutines is controlled by the GOSUB and
RETURN statements. The format for the GOSUB statement is as
follows.

GOSUB line number

The computer will begin execution of the subroutine beginning
at the line number indicated. Statements will continue to be
executed in order, until a RETURN statement is encountered.
Upon execution of the RETURN statement, the computer will
branch out of the subroutine back to the first line following the
original GOSUB statement. This is illustrated in the following
example.

llustration 3-5. BASIC Program With a Subroutine

050 DIM ER$(50), B$(50)

100 PRINT “ENTER CHECK AMOUNT”

200 INPUT A

300 GOSUB 900

400 PRINT “ENTER PAYEE'S NAME”

500 INPUT B$

600 PRINT B$, A

700 GOTO 100

900 REM ERROR SUBROUTINE

910 ER$ = “NOT ALLOWED”

920 IF A < 0 THEN GOTO 100
Subroutine < 930 IF A>1000 THEN PRINT ER$

940 IF A =0 THEN 999

950 RETURN

999 END

Subroutines can help the programmer organize his program
more efficiently. Subroutines also can make writing a program
easier. By dividing a lengthy program into a number of smaller
subroutines, the complexity of the program will be reduced.
Individual subroutines are smaller and therefore more easily
written. Subroutines are also more easily debugged than a
longer program.

72 User’s Handbook to the Atari 400/800 Computers

ON, GOSUB Statement

The ON, GOSUB statement is very similar in nature to the ON,
GOTO statement. The following statement is an example of an
ON, GOSUB statement.

100 ON X GOSUB 1000, 2000, 3000

If the value of X is 1, the subroutine at line 1000 is executed. If X is
2, the subroutine at line 2000 is executed. If X is 3, the subroutine
at line 3000 is executed. If X evaluates to 0 or to a number greater
than 3, the statement immediately following the ON, GOSUB
statement will be executed.

If ON, GOSUB causes a branch to asubroutine, program control
will revert to the line immediately following the ON, GOSUB
statement, once the subroutine has been executed.

Break Key and CONT

Generally, Atari BASIC programs can be stopped by pressing the
Break key. When the Break key is used to stop program
execution, a message similar to the following will be displayed.

STOPPED AT LINE XXX

In actual practice, the XXX will be replaced by the line number
where program execution stopped.

Once program execution has been stopped by pressing the
Break key, the computer will return to the immediate mode. If
you wish program execution to resume, enter the CONT
command at the keyboard. Program control will resume with the
line following the one where the program break occurred.

System Reset Key
Program execution can also be stopped at any time by pressing

the System Reset key. However, System Reset functions
somewhat differently than Break.

Introduction to Atari BASIC 73

When System Reset is pressed, the program will stop executing,
the display screen will be erased, and the ATARI will return to
the immediate mode. You may be able to resume program
execution by entering CONT. However, this is not assured. With
complex programs, chances are slim that program execution can
be resumed once System Reset has been pressed.

STOP STATEMENT

The STOP statement functions in much the same manner as
pressing the Break key. The following isan example of a program
line containing a STOP statement.

500 STOP

When the statement is executed, program execution will be
halted, and the following message will be displayed.

STOPPED AT LINE 500

The program will return to the immediate mode, where
execution can be resumed by entering CONT.

END Statement

The END statement also causes program execution to halt. An
example of an END statement is given below.

999 END

When an END statement is executed, program execution will
halt, the message READY will be displayed on the screen, and the
computer will return to the immediate mode.

Execution can be resumed with the line following the END
statement by entering CONT.

Unlike the STOP statement, the END statement closes any open
input/output channels, sets the screen to graphics mode 0, and
turns off all sound voices.

74 User's Handbook to the Atari 400/800 Computers

When the Atari runs out of BASIC program statements, an END
statement is automatically executed.

Atari BASIC Functions

Functions are used in Atari BASIC to perform predefined
calculations or operations on their arguments. All functions use
the following format.

function (argument)

function is the keyword for the function. argument is a variable,
constant, or expression which is to be used in the operation
defined by the function.

The following statement is an example of the use of the SQR
function.

100 A = SQR(49)

In this example, A would evaluate at7. SQR is the keyword which
describes the square root function. The square root of 49 is, of
course, equal to 7.

Functions can be used with arithmetic, relational, and Boolean
expressions, as shown in the following statement.

100 X =100 - 7 * SQR(49)

In an expression containing functions as well as arithmetic,
relational, and/or Boolean operators, the function’s value is
calculated first. In our preceding example, the square root of 49
would be calculated, that value would be multiplied by 7, and
the product subtracted from 100.

The various Atari BASIC functions are described in Chapter 5.

CHAPTER 4.
ADVANCED ATARI BASIC

Introduction

In this chapter, we will expand on the concepts of BASIC
programming that were introduced in Chapter 3. The following
topics will be covered.

String Handling

Variable Storage

PEEK

POKE

Screen Output Programming
Input Programming
Prompt Messages

INPUT Response Checks
CHR$

ASC

TAB

Atari ASCII

The Atari can not store characters; it can only store numbers.
Before characters can be stored, they must be converted to
numbers. Computers use special numeric codes to store
characters. Most microcomputers use a code known as ASCII
(American Standard Code for Information Interchange).

The Atari uses a special version of ASCIl known as Atari ASCII.
When we refer to ASCII in this book, we will be referring to Atari
ASCII. The Atari ASCII code set is outlined in Appendix C.

76 User's Handbook to the Atari 400/800 Computers

String Handling

As a programmer, you will encounter a number of situations
where you may need to work with string data. For example, you
might want to combine several strings, compare two strings,
separate portions of a string, or even convert string data to its
numeric equivalent. Atari BASIC allows for all of these.

Substrings

Atari BASIC allows the programmer to extract a portion of a
string, known as a substring. However, Atari BASIC accomplishes
this extraction in a manner which is very different from other
versions of BASIC, which use MID$, RIGHT$, and LEFT$ to
accomplish this task.

Atari BASIC uses the following configuration to extract a
substring.

NAME$ (first, last)

Where NAME$ is the name of the string from which the substring
is to be extracted, first is the position of the first character from
NAMES$ to be included in the substring, and last is the position of
the last character from NAME$ to be included in the substring.

For example, if X$ consisted of the following,
“"JOHN JOHNSON"

the substring defined by X$ (1,4) would consist of “JOHN", and
X$ (6,12) would consist of “JOHNSON". Notice that the blank
space in X$ is counted as one character position.

The first and last character position in a substring specification
can be specified with a variable or an expression as well as a
constant. Also, the last character position need not be specified.
If it is not, the entire right hand portion of the string will be
returned beginning with the specified first character.

Substrings can be used to replace characters in larger strings. In

Advanced Atari BASIC 77

the following program, a substring is used to change X$ from
"JOHN JOHNSON" to "JOHN JACKSON".

100 DIM X$(15)

200 X$ = “JOHN JOHNSON”
300 X$(6,12) = “JACKSON”
400 PRINT X$

500 END

RUN

JOHN JACKSON

If an error occurs with a substring specification, error number 5
will be displayed.

String Concatenation

The process of joining together one or more strings is known as
concatenation. The LEN function is used in conjunction with
substrings in concatenation. The LEN function is used to return
the length of its string argument. LEN uses the following
configuration.

LEN (string)

The following program illustrates string concatenation in Atari
BASIC.

100 DIM X$(15), Y$ (15)
150 X$="":Y§=""

200 X$ = "JOHN"

300 Y$ = “JOHNSON”
400 X$(LEN(X$) + 1) = Y$
500 PRINT X$

600 END

RUN

JOHNJOHNSON

The actual concatenation takes place in line 400. Here, Y$ is
added onto the end of X$ to form a new X$. Notice that 1 was
added to the result of LEN(X$). This causes Y$ to be added
beginning at the first blank space following the end of the
original X$.

78 User’s Handbook to the Atari 400/800 Computers

If line 200 was revised as follows,

200 X$="JOHN "
the following could be output:

JOHN JOHNSON

The addition of a blank space in X$ results in one additional
blank space being output.

CHR$ & ASC Functions

As mentioned earlier, characters are represented with the Atari
as ASCII codes. Atari BASIC’s CHR$ function can be used to
translate an ASCII code toits equivalent character. The following
short program illustrates the use of the CHR$ function.

100 PRINT CHR$ (54)
200 PRINT CHR$ (55)
300 END

RUN

6

7

The CHR$ function is often used to represent characters in a
statement, when that character can not be represented in its text
form. For example, in the following program,

100 PRINT CHR$(34); "JOHN JOHNSON"; CHR$(34)
200 END

RUN

“JOHN JOHNSON”

quotation marks are specified in the PRINT statement using their
ASCII code and the CHR$ function.

The ASC function returns the ASCII code equivalent for its string
argument. If this string is longer than one character, the ASC
function returns the ASCII code for just the first character in the
string.

Advanced Atari BASIC 79

The following program illustrates the use of the ASC function:

050 DIM A$(20)

100 A$ = “JOHN JOHNSON"
200 PRINT ASC(A$)

300 END

RUN

74

Escape Sequences in Strings

Generally, the cursor movement characters may not be included
within a string. They may, however, be included if they are
preceded by the operator pressing the Escape key.

When the Escape key prefixes a cursor movement key, the
combination is known as an escape sequence.

The following program will illustrate the use of an escape
sequence.

100 PRINT “"JOHN«—N—JOHNSON"
200 END

RUN

JOHN JOHNSON

In our example, the symbol «—denotes pressing ESC followed by
CTRL-+. The symbol — denotes pressing ESC followed by
CTRL-*.

In our previous example, the cursor movement itself was
accomplished by using an escape sequence. Each cursor
movement is also associated with a character asshown in Table 4-
1. By pressing the Escape key twice before the cursor movement
key sequence, this character will be output. This is shown in the
following program.

100 PRINT ” EgtEgfEet 7~
200 END
RUN

R

80 User’s Handbook to the Atari 400/800 Computers

In this example, f¢ represents pressing the Escape key twice, and
t represents pressing Escape Ctrl--.

The various escape sequences are given in Table 4-1.

Table 4-1. Escape Sequences

ASCII Echoed

Keyboard Entry Code | Character | String Character
ESC/ESC 27 Escape Code
ESC/CTRL-- 28 £3] Cursor Up
ESC/CTRL-= 29 2] Cursor Down
ESC/CTRL-* 30 =] Cursor Right
ESC/CTRL-+ 31 « Cursor Left
ESC/CTRL-< 125 [Clear Screen
ESC/SHIFT-< 125 3] Clear Screen
ESC/BACK S 126 Cursor left, replace with

blank space
ESC/TAB 127 3] Cursor right to next

tab stop
ESC/SHIFT-BACK S | 156 1] Delete Line
ESC/SHIFT-> 157 (4] Insert Line
ESC/CTRL-TAB 158 | Clear Tab Stop
ESC/SHIFT-TAB 159 =) Set Tab Stop
ESC/CTRL-2 253 Sound Built-in Speaker
ESC/CTRL-BACK S | 254 (<] Delete Character
ESC/CTRL-> 255 D] Insert Character

Graphics Characters in Strings

The Atari has 29 graphic characters. These are output by using
the Control key in combination with another key. Table 4-2
contains a list of the graphics characters.

The graphics characters can be included in a string with a PRINT
statement to output graphics to the screen. For example, the
following program,

Advanced Atari BASIC 81

Table 4-2. Atari Graphics Characters

Decimal ASClI Decimal ASCII
Code Character | Keystrokes Code Character | Keystrokes

0 CTRL-, 15 m] |cmwreo
1 [B] |crriA 16 [m] | cTRLP
2 [|cmres 17 [|cmrRiQ
3 M] |cmric 18 [=] | cmrir
4 W] |cmweo 19 [#] | crRLs
5] |cmee 20 [®] | crriT
6 # | crrur 21 [mm] | CTRL-U
7 M | cwric 2] | crrev
8 [| crrRin 23 [w] | CTRLW
9 [| cTRre 24 [=] | cTrix
10 [| cred 2] | crriy
1 [| crrix 2 (™ | cmriz
12 ®] | crmret 9% CTRL-.
13 =] | cmrim 123 [#] | crres
14 [=] [cCTRLN

100 DIM A$(20)

200 A$ = "1-- @ --1"*
300 PRINT A$:PRINT A$:PRINT A$
400 END

would result in a display similar to that shown in Illustration 4-1
when it is run.

* @ --is generated by pressing Ctrl-,

82 User’s Handbook to the Atari 400/800 Computers

lllustration 4-1. Graphics Example Program Ouput

- 5

1-- @ -1
1-- @ -1
1-- @ -1

2/

Variable Storage

Atari BASIC keeps a list of the variable names used in a program
in its variable name table. A maximum of 128 variable names can
be stored in the variable name table. Therefore, an Atari BASIC
program is effectively limited to a maximum of 128 variables.
These include numeric, string, and array variables. An array
variable name counts as only 1 name in the variable name table,
regardless of the number of elements within that array.

Every time a new variable is entered in the immediate mode, that
name is added to the variable name table. In the program mode,
variables are added to the variable name table as they are
encountered in the program.

Advanced Atari BASIC 83

Variable names are stored in the variable name table until a NEW
command is issued. NEW causes the entire variable name table
to be cleared.

When a program is saved on cassette with the CSAVE statement,
the variable name table is saved on tape along with the program
itself. If the program is later loaded back into memory with the
CLOAD statement, the variable name table saved on tape will be
read into memory and will take the place of the existing variable
name table.

PEEK & POKE

The PEEK and POKE statements allow direct access to the Atari’s
RAM. The Atari can include as many as 65,536 individual
addressable RAM memory locations. Each location is assigned a
number sequentially as its address, from 0 to 65,536.

Every memory location can store a number in the range 0
through 255. As mentioned earlier, all data to be stored in
memory must be converted to a number in this range. The Atari
uses various coding strategies for converting BASIC keywords,
text data, numeric data, graphics displays, and machine language
into a form that can be stored in memory. The Atari knows how
to translate the contents in memory (numbers ranging from 0 to
255) by the context in which that data is used.

The PEEK function allows the user to examine the value stored in
the memory location named as its argument. For example, in the
following statement,

100 N = PEEK(1000)

the value stored at memory location 1000 will be assigned to the
variable N.

The POKE statement is used to place a value in a specified
memory location. POKE uses the following configuration,

84 User’s Handbook to the Atari 400/800 Computers

POKE address, value

where the value specified is placed in the location given in
address. value and address can either be constants or variables.
For example, in the following statement,

100 POKE 2000, X

the value stored in variable X will be POKE’d into memory
location 2000.

The POKE statement cannot be used to change ROM.ROM is by
definition read-only memory, and cannot be altered with the
POKE statement.

Screen Output Programming

The PRINT statement is used to display data on the screen. PRINT
statement output begins at the cursor’s location. Therefore,
cursor positioning is the primary factor in sending output to the
screen.

As characters are output to the screen, the cursor position is
affected. Generally, the cursor moves one column to the right
after it has displayed a character. However, if a PRINT statement
ends with a carriage return, the cursor will move to the
beginning of the next display line. Also, escape sequences can
be used to move the cursor in adirection other than towards the
right hand side of the screen. Finally, the POSITION statement
can be used to move the cursor to any point on the screen. We
will cover each of these methods of cursor positioning as well as
other concepts of screen output programming in the next few
sections.

Using the Carriage Return in Cursor Positioning

The carriage return is generated by pressing the Atari’s Return
key. The Return key generates the ASCIlI end-of-line (EOL)
character. This character causes the cursor to advance to the
beginning of the next display line. The EOL character can also be
generated by using the CHR$ function with 155 (the ASCII code

Advanced Atari BASIC 85

for EOL).
Tab Function

Tabbing on the Atari is very similar to tabbing on a normal
typewriter. Tabs are preset along the entire length of a logical
line. The first tab position is the left margin (column 2), followed
by columns 7, 15, 23, and every eighth column to the end of the
logical line.

Tabs work much like commas do when they are used as
formatting characters in PRINT statements. However, tabs and
commas function completely separately. The column positions
set up by commas have no effect on the tab positions, and vice
versa.

In the immediate mode, the tab key is used to move the cursor to
the next tab position. When the tab key is pressed, the cursor will
move to the next tab position without any of the characters it
passes over being erased. If the tab key is pressed with the cursor
at the last tab stop, the cursor will move to the start of the next
logical line.

In the program mode, the cursor is tabbed by using the ASCII
code for tab, 127. This can either be accomplished by using the
CHR$ function or by using ESC/TAB within a string.

In addition to the pre-defined tab stops already mentioned,
more tab stops can be set in any column desired. In the
immediate mode, a tab stop can be set by moving to the desired
column and pressing the SHIFT-TAB keys.

Tab stops can also be set with the PRINT statement. The PRINT
statement must display a string which causes the cursor to move
to the desired position. The tab set character, CHR$(159) or
ESC/SHIFT-TAB, must then occur in the string. For example, in
the following statement,

100 PRINT "JOHN"; CHR$(159)

a tab stop is set in the fourth column.

86 User’'s Handbook to the Atari 400/800 Computers

A tab stop can be cleared in the immediate mode by moving the
cursor to the position desired and then pressing CTRL-TAB. In
the program mode, a tab stop can be cleared by moving to the
desired column and displaying ASCII 158. This code can be be
displayed either with the CHR$ function or with ESC/CTRL-TAB.

One final point to keep in mind about tab stops is that whenever
a character is output in the space immediately preceding a tab
stop, that tab stop no longer has any effect.

Moving the Cursor with Escape Sequences

As mentioned earlier in this chapter, the cursor can be moved by
using the escape sequences for cursor control key sequence
within a PRINT statement string. For example, in the following
statement,

100 PRINT ” — — JOHN JOHNSON"
the symbol — represents pressing the following key sequence:
ESC/CTRL-*

This key sequence causes the cursor to move one position to the
left each time it is pressed.

Cursor control escape sequences can also be included in a
PRINT statement string by using the ASCIl code for that
sequence with the ASC$ function. For example, in the following
statements,

100 DIM A$(10)
200 A$ = CHR$(29)
300 PRINT A$:PRINT A$:PRINT A$

the string variable A$ is set to the ASCII code for cursor down. In
line 300, the three PRINT statements cause the cursor to be
moved down 3 lines.

These cursor control sequences do not erase any of the
characters that they pass over.

Advanced Atari BASIC 87

Home Cursor

The home position can be defined as the upper left-hand corner
of the video display. The home cursor control sequence moves
the cursor to the position and erases all existing data on the
screen as well.

Home cursor is frequently used to position the cursor and erase
the screen in Atari BASIC. Home cursor can either be
accomplished by using the ASCII code for home cursor, 125,
with the CHR$ function, or by using either of the following
escape sequences:

ESC/CTRL-<
ESC/SHIFT-<

with the PRINT statements.

POSITION Statement

The POSITION statement can be used to place the cursor at any
location on the screen. The POSITION statement is used with the
following configuration,

POSITION column, row

where column is the number of the column to be moved to, and
row is the number of the row to be moved to.

In actuality, the POSITION statement does not cause the cursor
to be moved. POSITION merely changes the valuesin the Atari’s
memory where the cursor location is stored. When data is
subsequently displayed on the screen, that data will be displayed
at these new display coordinates.

The display row number is stored in memory address 84, and the
column number is displayed in address 85. The contents of these
locations can be examined with the PEEK function. For example,
the following statements,

PEEK (84)
PEEK (85)

88 User's Handbook to the Atari 400/800 Computers

will return the row and column numbers respectively.

When PRINT is used to output data to the screen, the previous
cursor position is stored in memory. Memory address 90
contains the last row number, and memory address 91 contains
the last column number. Again, the PEEK function can be used to
examine the contents of these memory addresses.

Remember, rows are numbered from 0 to 23, and columns are
numbered from 0 to 39.

Changing the Display Screen Margins

The standard left margin on the display screen is column 2. The
standard right margin is column 39. The Atari uses memory
address 82 to store the column number of the left margin, and
location 83 to store the column number of the right margin.

The POKE statement can be used to change either the left or
right margins. The following statements would reset the left
margin to column 5, and the right margin to column 30.

POKE 82, 5
POKE 83, 30

Screen Input Programming

Input programming is a vital part of BASIC programming. Nearly
every BASIC program requires some form of operator input. In
the following few sections, we will discuss programming
practices that are designed to make operator input efficient and
as error-free as possible.

Prompt Messages

One programming principle that should nearly always be
followed in input programming is to include a prompt message
with the INPUT statement. An example is given below.

100 PRINT “ENTER YOUR AGE”;
200 INPUT AGE

Advanced Atari BASIC 89

In general, it is advisable to keep prompt messages as brief as
possible--as long as the message is clear to the user. Avoid
prompt messages which are overly wordy.

When long prompt messages are being used, it is a good practice
to place the prompt message on one line, and the input response
on the next line. For example, the following statement,

100 PRINT "ENTER OPERATION CODE (1 = ADD; 2 = DEL)”
200 INPUT X

would result in the following display:

ENTER OPERATION CODE (1= ADD; 2 = DEL) \
?

N\ /

Input Response Checks

A well-designed program should check the user’s response to an
Input statement to be certain that no obvious input errors have
been made. If such an error was made, the program should
detect the error and force the user to re-enter the data.

Examples of input errors that can occur are numeric entries that
are outside of the allowed range, string entries that are longer
than allowed for by the Input statement’s variable, and an input

90 User’s Handbook to the Atari 400/800 Computers

response other than that prompted for.

The very nature of the Input statement prevents certain errors
from occurring as these are detected by the BASIC interpreter.
For example, if a numeric entry is made when a string variable is
specified with the Input statement, an error will occur. Likewise,
if a string entry is made when a numeric variable is specified with
the Input statement, an error will occur.

However, many Input entry errors will not be detected by the
BASIC interpreter. Serious errors can occur when the wrong
data is entered in response to an Input statement. It is a good
programming practice to check the operator’s response to an
Input statement. This can either be accomplished with one or
more IF-THEN statements, or with ON-GOTO or ON-GOSUB
statements.

For example, in the following program, the operator’s input is
checked with two IF-THEN statements. If the response is neither
of the following,

Y,N,y,n

the program will branch back to line 1200 for a new entry.

1000 DIM A$(20)

1100 PRINT

1200 PRINT "Enter Your Response (Y/N)”
1300 INPUT A$

1400 A% = A$(1,1)

1500 IF A$ ="Y” OR A% ="y” THEN 1800
1600 IF A$ = "N" OR A$ ="n" THEN 9999
1700 GOTO 1300

1800 REM Subroutine For 'Yes’ Response
1900 PRINT "YES”

9999 END

CHAPTER 5.
ATARI BASIC REFERENCE GUIDE

This chapter provides descriptions and examples of the correct
syntax for Atari BASIC.

Each of the reserved words are listed in alphabetical order, along
with an appropriate abbreviation, if applicable.

The following notation will be used to describe the
configuration of each of the commands, statements, or
functions.

. Capitalized words are keywords.

. Items enclosed in brackets [] are optional.

1

2

3. Ellipsis (...) represents repetition.

4. Punctuation (except brackets) must be included as shown.
5

. The following symbols will be used:

LN Line number
EX Algebraic or logical expression (i.e. X>5,3+X,
X =7
X, Y, Z Numeric variable name
X$, Y$, Z$ String variable name
a, b, ¢ Any number or numeric expression
a$, by, b String value

92 User’s Handbook to the Atari 400/800 Computers

ABS

The ABS function returns the absolute value of its argument.
Configuration
X = ABS(a)
Example
PRINT ABS(-81)
81

ADR

The ADR function returns the memory address of the argument.
The argument must be a string variable or a string constant.

In BASIC, a machine language program can be put in a string
variable. However, the operating system moves variables around
to efficiently use memory. As aresult, to call amachine language
routine, the ADR function is used to locate the string.

Configuration

X = ADR(a$)
Example
X = ADR(B$)

AND

AND is used between two expressions, and returns the value 1if
they are both true, and 0 if either one is false.

CONFIGURATION
EX AND EX

Atari BASIC Reference Guide 93

The conditions of true and false are represented in the computer
by the logical values 1 and 0. As a result, the logical operators
(AND, OR, and NOT) generate only the values Tand 0. The AND
operation can be explained by the following truth table.

EX1 EX2 RESULT

OO = =
o R >
OO O =

AND is generally used in an IF/THEN statement with relational
expressions. For example:

10 X =10

20 Y =30

30 IF X =10 AND Y>100 THEN END

40 PRINT "CONDITIONS WERE NOT MET”
RUN

CONDITIONS WERE NOT MET

In this example, AND is used in an IF/THEN statement which
ends the program if both conditions are true. The first expression
of the AND statement is X =10. This is true because X is assigned
the value 10 in line 10. The second expression, Y>100, is false
because Yisassigned the value 30in line 20. Asaresult, EX1is true
and EX2 is false. This corresponds to the truth table where EX1=1
and EX2=0. The result from the table is 0 (false), so the condition
of the IF/THEN statement is false, and the next line is executed.

The AND operator can also be used with algebraic expressions
like5*Y,3+X,X”2, etc. However, these must also be converted
to logical 0 or 1. The computer does this by assigning the logical
value 0 to any expression that equals 0. Any expression thatdoes
not equal 0 is assigned the logical value 1. For example, the
logical value of 5 * 0 is 0. The logical values of 3+1,2”2, 3 and
COS (45) are all 1.

94 User’s Handbook to the Atari 400/800 Computers

Example

10 X =3

20 IF X*2 AND 3 - X THEN END
30 PRINT "X IS EITHER 3 OR 0”
RUN

X IS EITHER 3 OR 0

This example uses AND in an IF/THEN statement that ends the
program if X squared and 3 - X both are not equal to zero. Since X
is assigned the value 3, the first part of the AND statement equals
3 squared. This is a logical 1 because 3 squared is non-zero.
However, the second expression, 3 - X, is equal to zero, which is
the logical 0. Since EX1=1and EX2=0, the AND statement is false,
and the next statement is executed (line 30).

ASC

The ASC function returns the ASCII code for the first character of
a string. The argument of ASC can be a string variable or
constant.

CONFIGURATION
X = ASC(a$)

EXAMPLE

10 DIM B$(10)

20 B$ = "ZEBRA"
30 PRINT ASC(B$)
RUN

90

ATN

The ATN function returns the arctangent of the argument. The
result will be in radians unless degrees are specified.

Atari BASIC Reference Guide 95

CONFIGURATION
X = ATN(a)

EXAMPLE

PRINT ATN(.576)
0.5225854816

BYE

BYE switches the system to the Memo Pad mode. The system has
no computing ability, and only the keyboard and display are
functional. The operator can experiment with the keyboard
without affecting the system. The system will return to BASIC
when the SYSTEM RESET key is pressed.

The operations of the computer and other devices (disk drive,
modem, etc.) are not at all affected by the Memo Pad. For
example, if a program is in memory, and a disk and modem are
being used, a BYE command will switch to Memo Pad. However,
SYSTEM RESET will restore the computer to BASIC, and all other
devices will still be ready to operate. The program in memory
will be unchanged.

CONFIGURATION
BYE

EXAMPLE
BYE

CLOAD (CLOA.)

The CLOAD command is used to load a previously recorded
program into the computer’s memory. The program must have
been stored on a cassette with a CSAVE or SAVE command.

At the sound of the tone, press PLAY on the program recorder,

96 User's Handbook to the Atari 400/800 Computers

then press RETURN on the keyboard. The tape must be correctly
positioned before CLOAD is executed.

The CLOAD command clears the memory before the program is
loaded from the tape.

CONFIGURATION
CLOAD

EXAMPLE
CLOAD

CHR$

The CHRS$ function returns the character with the ASCII code
specified by the argument. Although argumentvalues can range
from 0 to 65535, the ASCII code corresponds to the numbers
from 0 to 255.

CONFIGURATION

X$= CHR$(a)

EXAMPLE

PRINT CHR$(65)
A

CLOG

The CLOG function returns the base 10 logarithm of the
argument.
CONFIGURATION
X = CLOG(a)

EXAMPLE

PRINT CLOG(4)
0.6020599914

Atari BASIC Reference Guide 97

CLOSE (CL.)

The CLOSE statement closes a channel that has been opened for
input, output, or both. However, closing a channel that has not
been opened will not cause an error.

The argument of a CLOSE statement must be the same as in the
corresponding OPEN statement. A channel that has been
opened for the use of a particular I/0O device must be closed
before it is used for another device.

CONFIGURATION

CLOSE #a

EXAMPLE
CLOSE #3

CLR

The CLR command clears the values of the variables in the
memory. However, the variable name table remains unchanged.
As a result, the CLR command does not reduce the number of
variable names. After using CLR, all strings, arrays, and matrices
must be dimensioned again.

CONFIGURATION
CLR

EXAMPLE
CLR

98 User’s Handbook to the Atari 400/800 Computers

COLOR (C.)

In graphics modes 0 through 2, the COLOR statement is used to
choose the character that will be placed on the screen with a
PLOT statement.

CONFIGURATION
COLOR a

In all graphics modes, the argument of the COLOR statement
must be positive, and if it is not an integer, it will be rounded off.

In mode 0, the text is printed in the same color as the
background. Only the luminance of the color can be chosen. For
example, if the background is chosen to be green, the text must
be green, but it can be any brightness. The COLOR statement
indicates the character that is to be printed with the next PLOT
statement. In graphics mode 0, the COLOR statement has no
effect on the color of the character. Table 9-7 lists the characters
that correspond to the COLOR statement in graphics mode 0.

EXAMPLE

10 GRAPHICS 0

20 FORI1=1TO5

30 READ X

40 COLOR X

50 PLOT 10 + 1, 10

60 NEXT I

70 DATA 65, 84, 65, 82, 73

In the previous example, the word ATARI is printed at the center
of the display. Each data item is read individually at line 30, and
becomes the argument of the COLOR statement in line 40. The
loop is repeated 5 times, and each time the COLOR statement
has a different value as its argument. It can be seen from Table 9-
7 that in graphics mode 0, COLOR 65 indicates the character A.

After the COLOR 65 statement has been executed, any PLOT or

Atari BASIC Reference Guide 99

DRAWTO statement will be executed with the character A until
another COLOR statement has been executed.

EXAMPLE

10 GRAPHICS 0
20 COLOR 65

30 PLOT 0,0

40 DRAWTO 10,10

The preceding program would print the character A in the upper
left-hand corner of the screen because of the PLOT 0,0
statement. The DRAWTO 10,10 would cause a diagonal line
consisting of the character A to appear on the display. A
character would appear at the positions (0,0), (1,1), (2,2)...(10,10).

The display looks like white characters on a blue background.
Actually, the "white” is very bright blue. The intensity of the
characters can be chosen with a SETCOLOR statement.

The COLOR statement has a different function in graphics
modes 1 and 2. Modes 1 and 2 have fewer characters available
than Mode 0, but each character can be printed in 4 colors.

The difference between modes 1 and 2 is the size of the
character. The charactersin mode 2 are twice the height of mode
1, but are the same width.

Table 9-4 lists the values of the COLOR statement arguments for
each character in 4 colors. The columns of the table correspond
to the 4 color registers. The standard character set will be used
unless the alternate character set is specified with the statement
POKE 756, 226. To return to standard characters, POKE 756, 224.

100 User’s Handbook to the Atari 400/800 Computers

EXAMPLE

10 GRAPHICS 1

20 FORI=1TO5

30 READ X

40 COLOR X

50 PLOT6+1,0

60 NEXT I

70 DATA 65, 116, 193, 114, 73

The previous example displays the word ATARI at the top of the
display in three colors. The data is read at line 30 and becomes
the argument of the COLOR statement at line 40.

The COLOR statement chooses the character and the color
register to be used in the display. From Table 9-4, COLOR 65
indicates the character A in color register 0. COLOR 116
indicates the character T in color register 1.

The color registers are assigned specific information about the
color to be used. Color registers can be changed with a
SETCOLOR statement, but if no SETCOLOR statement is
executed, a standard set of default colors are used. The default
colors for graphics mode 1 and 2 are as follows:

COLOR REGISTER DEFAULT COLOR

0 ORANGE
1 GREEN

2 BLUE

3 RED

4 BLACK

Color register 0-3 can be chosen for any character, but color
register 4 is used for the background and border.

In the previous example, the first character displayed wasan A in
color register 0. Since no SETCOLOR was executed, the A will be
orange. The T will be green because COLOR 116 is in color
register 1.

Atari BASIC Reference Guide 101

If the same program was executed in the alternate character set,
by executing POKE 756, 226 after the GRAPHICS statement, the
word ATARI would appear in lower case letters. Also, in the
alternate character set, a "heart” character will appear in every
blank space. This occurs because the standard character set puts
a space (COLOR 32) in areas where no character has been
assigned. When the conversion to the alternate character set
occurs, COLOR 32 is interpreted as a “heart” in color register 0
(Table 9-4). As a result, an orange “heart” will appear in every
space except where the word ATARI appears.

In graphics modes 3 through 7, the COLOR statement is used to
choose the color register that will be used to plot points and
draw lines.

Graphics modes 3 through 7 are different from modes 0 through
2 because modes 0, 1 and 2 are used to place characters on the
screen. Graphics modes 3 through 7 are used to place picture
elements (pixels) on the screen. A pixel is a rectangle that is
referred to by its coordinates (column and row) on the display. In
modes 3 through 7, the COLOR statement actually chooses a
color register, not a character.

EXAMPLE

10 GRAPHICS 3
20 FORT=0TO 3
30 COLORT

40 PLOT T,0

50 NEXT T

The previous example displays the 4 colors of graphics mode 3.
Line 40 plots a pixel at column T, row 0. The color of the pixel is
determined by the last COLOR statement. The first time through
the program, T is set equal to 0 at line 20. Line 30 indicates that
color Tisused. Since no SETCOLOR statement was executed, the
default colors are used.

102 User’s Handbook to the Atari 400/800 Computers

GRAPHICS MODES 3, 5, and 7
COLOR NUMBER DEFAULT COLOR

0 ORANGE
1 GREEN

2 BLUE

3 BLACK

As aresult, when T=0, the coloris orange. The PLOT statement at
line 50 colors the pixel at column 0, row 0 orange. The next pixel,
at column 1, row 0 is colored green. The pixel at column 2,row 0
is blue and the next one is black.

In graphics modes 4 and 6, the COLOR statement is used in the
same fashion as in graphics modes 3, 5, and 7. However, modes 4
and 6 have only two colors, and the default colors are as follows.

GRAPHICS MODES 4 and 6
COLOR NUMBER DEFAULT COLOR
0 BLACK
1 ORANGE

Graphics mode 8 has only one color, with two brightness levels.
As a result, the COLOR statement is used to select the brightness
of a pixel. In other words, COLOR 1 causes the next plotted pixel
to be visible. COLOR 0 causes the next plotted pixel to be the
same as the background.

In graphics mode 8, the pixels are very small,and the graphics are
slow. It sometimes is useful to draw an entire area, then "erase”
what is not wanted. This is often faster than drawing only whatis
wanted. This can be done by drawing an area using COLOR 1,
then "erasing” by using COLOR 0.

COM

COM is used interchangeably with DIM in dimensioning strings,
arrays, and matrices.

Atari BASIC Reference Guide 103

CONFIGURATION

X(a[b])| Y(c[d,])
COM X$(a) [Y(c) }

EXAMPLE
COM B$(50), A(10,10)

CONT (CON.)

The CONT command causes a program which had been stopped
to continue execution at the next numbered line. A program will
be stopped because of an error, SYSTEM RESET, BREAK, END, or
STOP.

In any situation, the use of CONT will cause the rest of the
current line of code to be ignored. As a result, executing BREAK
and CONT during a program may cause serious problems. When
a program is stopped using BREAK, there is no way to be sure the
program will resume where it was stopped. Important steps may
be interrupted or skipped, and loops may be improperly exited.

A program can be continued after an error, but the entire line of
the error will be skipped.

A program can be continued after a SYSTEM RESET, but this will

generally have negative results. All 1/0 channels will be closed,

the computer will return to the immediate mode, the screen will

be cleared, graphics mode 0 will resume, etc.
CONFIGURATION

CONT

EXAMPLE
CONT

104 User’s Handbook to the Atari 400/800 Computers

COS

The COS function returns the cosine of its argument. The
argument will be assumed in radians unless a DEG statement
precedes the COS statement.

CONFIGURATION
X = COS(a)

EXAMPLE

10 DEG
20 X = COS(180)
30 PRINT X
RUN

-1

CSAVE (CS.)

The CSAVE command is used to copy the program in the
computer’s memory on cassette tape. Only CLOAD can be used
to read a program that was stored using CSAVE.

When the tape is properly positioned, enter CSAVE. The tone
will sound twice as a signal to press the cassette recorder’s PLAY
and RECORD keys, followed by pressing RETURN on the Atari
keyboard.

If channel 7 is open for another device, an error will occur, but
the channel will be closed. A repeat of CSAVE will then be
successful.

CONFIGURATION

CSAVE

EXAMPLE
CSAVE

Atari BASIC Reference Guide 105

DATA (D.)

The DATA statement supplies a list of information that is used in
a program through READ statements. A DATA statement can
include numeric values, string values, or both. String variables
must have been dimensioned before being read.

Data items are separated by commas. Therefore, string values
that contain commas will be read as separate data items. For
example, DATA DOE, JOHN is a DATA statement with two data
items. However, DATA DOE. JOHN has only one item.

CONFIGURATION
al.b
DATA a$|;b$j|m

Data must be read into the correct type of variable. A string
variable can accept data in any form.

EXAMPLE

10 DIM A$(20)

20 FOR1=1TO5

30 READ A$:? A%

40 NEXT |

50 DATA TOM C., 25,,3 + 4 * %,247
RUN

TOM C.

25

3+%4*%
247

The preceding example shows correct data for a string variable.
Notice the blank line in the output that corresponds to the two
commas in a row. Thisis read as a string value with no characters
and length equal to zero.

If only 4 data items had been supplied with this program, the
message: ERROR-6 AT LINE 30 would have been displayed to

106 User’s Handbook to the Atari 400/800 Computers

notify the user that not enough data was supplied.

Numeric variables can only accept numbers as input. Standard
notation and scientific notation are both acceptable. For
example, 3.14159266, 2.85E-10, .0001, 35 and -45 are all
acceptable data items. Expressions will not be evaluated. They
will cause an Input Statement Error (#8). Numeric data must not
include commas.

EXAMPLE

10 DIM A$(10)

20 FORI=0TO 4

30 READ A$, A

40 PRINT A$, A

50 NEXT |

60 DATA PENCILS, 20,PENS,25 RULERS,40,ERASERS,50,
PAPER,200,GLUE,5

The preceding example shows a correct sequence for reading
string and numeric data into correct variables. However, the
READ statement is only called 5 times, and there are 6 sets of
data. This will not cause an error, but the last set of data (GLUE,5)
will never be read.

DATA statements can appear anywhere in a program, even after
an END statement, However, any statement that follows a DATA
statement on the same line will not be executed.

Data can only be read once unless a RESTORE statement is
executed. The correct use of RESTORE is also explained in this
chapter.

DEG (DE.)

The DEG statement causes the trigonometric functions to be
performed in degrees instead of radians. The functions will be
performed in radians until degrees are specified. Also, radians
will be used after a SYSTEM RESET, NEW, or RUN command.

Atari BASIC Reference Guide 107

CONFIGURATION
DEG
EXAMPLE

10 DEG

20 PRINT SIN(90)
RUN

1

The example shows that the sine of 90° is 1. If the DEG statement
was not present, the result would be 0.8939970243.

DIM (D1.)

The DIM statement is used to set aside memory space for strings
and 1 or 2 dimensional arrays. Two dimensional arrays, or
matrices, can be used to make tables of values.

CONFIGURATION

X(a[,b]) [.Y(c[.d])
DIM " “x4(a) [Ymc)]

A DIM statement can include any combination of numeric and
string variable dimension statements. For example, DIM
A(10,10), B(9), A$(90), B$(90) dimensions all four variables in one
statement.

A string variable can contain only one string. The dimension of a
string variable indicates the maximum number of characters that
the string variable can contain.

108 User’s Handbook to the Atari 400/800 Computers

EXAMPLE

10 DIM A$(10)

20 READ A$

30 PRINT A$

40 DATA INDEPENDENCE DAY
RUN

INDEPENDEN

The preceding example shows that the string variable A$ is
dimensioned to 10 characters at line 10. However, during the
program, A$ is assigned a 16 character string with the READ
statement at line 20. Since room for only 10 characters was set
aside in memory, only the first 10 characters of the DATA item
are assigned to A$. The PRINT statement in line 30 displays the
contents of A$. It can be seen from the output that A$ only has 10
characters.

The DIM statement must be executed before an INPUT or READ
occurs. If the DIM statement of the previous example was
deleted, the following message would occur.

ERROR-9 AT LINE 20

If a variable is dimensioned twice in the same program (without
CLR), ERROR-9 occurs.

The maximum size of string variables depends on the amount of
available memory at the time of the DIM statement.

Dimensioning numeric variables determines the number of
elements that the variable can contain, not the length. A
subscript is the number that follows a variable name (in
parentheses) and indicates which element of that variable is
considered. The following example shows how to assign 4 values
to a subscripted variable.

Atari BASIC Reference Guide 109

EXAMPLE

10 DIM X(3)
20 FOR1=0TO 3
30 READ X:X(I) =X

40 PRINT X(I),

50 NEXT I

60 DATA 12, 14,13, 15

RUN

12 14 13 15

Notice that 4 values can be assigned to a variable that has a
dimension of 3. This is possible because each array’s initial
element has a subscript of 0. The array can be represented as a
table of values as shown in the following illustration.

0 1 2 3

X | 12 14 13 15

The number in the DIM statementindicates the largest subscript
that can be used.

It should be noted from the example (line 30) that subscripted
variables cannot be used in a READ statement. As a result, a
separate statement is needed to assign the subscripted variable.
The assignment statement can be on the same line (as shown
here) or on a separate line.

Numeric variables can also be used with two subscripts. This
results in a two dimensional array, or matrix. For example, if X is
dimensioned in the statement DIM X(3,2) the following table
would result.

w N = O

110 User’s Handbook to the Atari 400/800 Computers

DOS (DO.)

CONFIGURATION
DOS

EXAMPLE
DOS

The DOS command is used to display the DOS utilities Menu.
DOS must be present if the DOS command is to be used. If DOS
is not present, the system will be putinto the Memo Pad mode.
To return to BASIC from Memo Pad, press SYSTEM RESET.

When the DOS command is executed, all I/O channels will be
closed except channel 0. The display is cleared and the sound
voices are shut off. Also, the color registers resume their default
values.

The Disk Operating System Menu is a list of 15 disk functions.
There are two versions of the Disk Operating System, version 1.0
and version 2.0S. The DOS command has a different effect in
each of the two versions.

In version 1.0, the DOS Menu appears on the display as soon as
DOS is executed.

f DISK OPERATING SYSTEM 9/24/79)
COPYRIGHT 1979 ATARI

A. DISK DIRECTORY I. FORMAT DISK
B. RUN CARTRIDGE]. DUPLICATE DISK

C. COPY FILE K. BINARY SAVE

D. DELETE FILE(S) L. BINARY LOAD

E. RENAME FILE M. RUN AT ADDRESS
F. LOCK FILE N. DEFINE DEVICE

G. UNLOCK FILE O. DUPLICATE FILE

__H. WRITE DOS FILE)

Atari BASIC Reference Guide 111

A program that is in memory will not be affected by a DOS
statement in version 1.0. However, disk operations] or O will
erase the contents of the memory. Forexample, if aprogramisin
memory, and a DOS command is executed, followed by
DUPLICATE DISK or DUPLICATE FILE, the program will be gone
when the system returns to BASIC.

(DISK OPERATING SYSTEM II VERSION 2.05)
COPYRIGHT 1980 ATARI

A. DISK DIRECTORY |. FORMAT DISK

B. RUN CARTRIDGE J. DUPLICATE DISK

C. COPY FILE K. BINARY SAVE

D. DELETE FILE(S) L. BINARY LOAD

E. RENAME FILE M. RUN AT ADDRESS

F. LOCK FILE N. CREATE MEM.SAV

G. UNLOCK FILE O. DUPLICATE FILE
\H' WRITE DOS FILES)

In DOS 2.0, DOS consists of 2 files, DOS.SYS and DUP.SYS.
DUP.SYS must be present on the diskette in drive 1 or the Atari
will return to BASIC. DUP.SYS was a portion of memory where
BASIC programs normally reside. In order to save any BASIC
program residing in this area of memory, the Atari will save that
program onto the MEM.SAV file on drive 1--if that file exists.

Once these operations have been completed, the DOS utilities
menu will appear. You can return to BASIC by choosing menu
item B or by pressing the System Reset key.

112 User’s Handbook to the Atari 400/800 Computers

DRAWTO (DR.)

The DRAWTO statement is used in the graphics modes to draw a
line. The arguments of the DRAWTO statement indicate the
column and row where that line ends.

CONFIGURATION
DRAWTO a,b

Both arguments of a DRAWTO statement must be positive, and if
they are not integers, they will be rounded off. The arguments
must also lie within the range of the display. For example,
GRAPHICS 3 has 40 columns and 20 rows. DRAWTO 40,20 would
result in ERROR-141. Since the columns are numbered 0 to 39
and the rows are numbered 0 to 19, DRAWTO 40, 20 contains
arguments which lie outside the range of display.

A DRAWTO statement must occur after a PLOT statement. PLOT
determines the starting point of the line, and DRAWTO
determines the end point. A DRAWTO statement can follow
another DRAWTO statement, if the first DRAWTO is preceded
by a PLOT statement.

EXAMPLE

10 GRAPHICS 3
20 COLOR 1

30 PLOT 5,5

40 DRAWTO 10,5
50 DRAWTO 10,10
60 DRAWTO 5,10
70 DRAWTO 5,5

A DRAWTO statement that follows another DRAWTO statement
will use the end of the last line to start the new line. The previous
example began by plotting a point at line 30, then proceeded to

Atari BASIC Reference Guide 113

draw the 4 sides of a square in Lines 40, 50, 60, and 70.

The DRAWTO statement can also be used in graphics modes0, 1,
and 2. However, the PLOT statement in the text modes (0, 1 and
2) places a character on the display. The COLOR statement
determines the character that is printed (Tables9-7 and 9-4). Asa
result, the DRAWTO statement in the text mode createsa line of
characters.

EXAMPLE

10 GRAPHICS 2
20 COLOR 65
30 PLOT 0,0

40 DRAWTO 9,9

The previous example specifies graphics mode 2 in line 10. Line
20 indicates the character that appears on the display (Table 9-4).
The PLOT statement in line 30 places an orange, uppercase A at
column 0, row 0. The DRAWTO statement makes a diagonal
line, consisting of the character A. The characters appear at the
positions (0,0), (1,1),(2,2),...(9,9).

The line drawn with a DRAWTO statement is either composed of
picture elements or characters. When a diagonal line is drawn
using PLOT and DRAWTO, the line appears in steps. This occurs
because the line is drawn with characters or picture elements
that are relatively large.

A “line” drawn with PLOT and DRAWTO.

114 User's Handbook to the Atari 400/800 Computers

END

An END statement ends the execution of the program. An END is
not necessary at the end of a program because execution stops
automatically after the last line of code. However, it is good
programming technique to end BASIC programs with an END
statement.

CONFIGURATION
END

When an END statement is executed, all 1/O channels will be
closed except 0, the display will be set to graphics mode 0, and all
sound will be turned off.

EXAMPLE
10 INPUT X
20 IF X<=10 THEN END
30 PRINT ”“X IS LARGER THAN 10”
40 GOTO 10
The previous example will end only if a value of X is entered

which is less than or equal to 10.

ENTER

ENTER is used to recover programs that have been saved on a
cassette or disk. ENTER can only be used to load programs that
were saved with the LIST statement.

CONFIGURATION
ENTER device|[:filespec]

When an ENTER statement is executed, the computer’s memory
is not erased. As a result, the new program being loaded will be
put into memory together with any existing program lines. For

Atari BASIC Reference Guide 115

example, if the program in memory contained line numbers 10,
20, 30..., and the program being loaded (using ENTER) contained
line numbers 5, 15, 25, 35,..., the resulting program in RAM
would include the line numbers from each of the two programs.

ENTER does not alter the program in memory unless the
program being entered has the same line numbers as the
program being loaded. For example, if the program in memory
contains line numbers 10, 20, 30, 40, 50, and 60 and the program
being entered contains 10, 20, 30, 45, 55, 70, 80, and 100, the new
program in memory will contain all of the newly entered
program, but only lines 40, 50, and 60 of the original program.
The original lines 10, 20, and 30 in RAM will be replaced with
lines 10, 20, and 30 being loaded from cassette or disk. Lines 40,
50, and 60 of the original program remain unchanged.

ENTER is the only Atari BASIC statement that can recover a
program without clearing the memory first.

When ENTER is used with the program recorder, the tape must
be in the correct position prior to execution. When the ENTER
statement is executed, the tone will sound once to remind the
operator to press PLAY on the recorder. The recorder will be
activated after the RETURN key on the keyboard has been
pressed.

When ENTER is used with a disk, the DOS must have been
booted first. If more than one disk is being used, the number of
the disk must be specified.

EXAMPLES

ENTER “C”
ENTER “"D2:JONES”

EXP

The EXP function returns the exponential of the argument. The
exponential is the value of €(2.71828179...) raised to the power of
the argument.

116 User’s Handbook to the Atari 400/800 Computers

CONFIGURATION
X = EXP(a)

EXAMPLE

PRINT EXP(5)
148.413155

FOR (F.)

A FOR statement is used with a NEXT statement to form a
repetitive loop within a program.

CONFIGURATION
FOR A =a TO b [STEP]

Every FOR statement must have a corresponding NEXT
statement.

EXAMPLE

10 FORI1=1TO5
20 PRINT I;

30 NEXT I

RUN

12345

In the previous example, the FOR/NEXT loop is repeated five
times. Line 20 is the only statementinside the loop, however, any
number of program lines can be placed within a loop.

In line 10, | is assigned the value 1. | is referred to as a counter.
The value of | is incremented where a NEXT | statement is
executed. Here, the program returns to the FOR statement,
where | isincremented by one. This loop is repeated until I isset
equal to 5. When the counter (1) has been set equal to the value
(5), the loop has been executed, the program will proceed with
the statement following NEXT I.

Atari BASIC Reference Guide 117

A FOR/NEXT loop can use a STEP statement to increment the
counter by a value other than 1.

EXAMPLE

10 FOR] =1TO 2 STEP .5
20 PRINT J,

30 NEXT)

RUN

1 1.5 2

The preceding example contains a FOR/NEXT loop which
increments the value of) by .5 each time the loop is executed.

A FOR/NEXT loop can also be used to decrease the value of the
counter. This can be accomplished by using the optional STEP
statement within the FOR statement. If the STEP statement has a
negative argument, the counter is decreased each time the loop
is executed. The following example illustrates a FOR/NEXT loop
where the counter is decremented rather than incremented.

EXAMPLE

10 FOR K=10TO 5 STEP -2
20 PRINT K,

30 NEXT K

RUN

10 8 6

This loop begins at line 10 by assigning the counter (K) the value
10. At line 20 the value of K is printed. When line 30 is
encountered, execution continues at line 10, because the NEXT
statement returns the program to the preceding FOR statement.
The value of the counter is changed by the argument of STEP.
Since the STEP value is -2, the counter is decreased by 2. The
value of the counter is changed to 8. At line 20, the new value of
K is printed. Line 30 is executed again, so the program returns to
the FOR statement at line 10. The counter is again decremented
by 2. The new value of K is 6. At line 20, this K value is printed.

When line 30 is executed again, the program does not return to

118 User’s Handbook to the Atari 400/800 Computers

line 10. The current value of the counter is 6, and if the counter
was to be decremented again,the counter would be 4. However,
4 is less than the final value which is specified in the FOR
statement (the argument of TO). As a result, the loop does not
continue after K=6 because another decrement would make the
counter less than the final value (5).

If the counter of a loop is being incremented, the loop will be
executed until the counter would exceed the final value if it
were incremented again. For example: FOR] =1 TO 4 STEP 2
would be executed with J equal to 1Tand 3. The counter (J) would
exceed the final value (4) if it were incremented again.

A FOR/NEXT loop should be executed as if it were a single
statement. An attempt to branch into a FOR/NEXT loop will
cause an error.

EXAMPLE

10 GOTO 30

20 FOR1=1TO 10

30 PRINT I

40 NEXT I

RUN

ERROR- 13 AT LINE 40

In general, branching out of a FOR/NEXT loop will not cause an
error. However, exiting aloop before it has completed should be
avoided.

FRE

The FRE function returns the number of bytes of memory
available. The FRE function requires an argument, but that
argument has no effect on the value returned.
CONFIGURATION
X = FRE (a)

EXAMPLE
PRINT FRE(0)

Atari BASIC Reference Guide 119

GET (GE.)

The GET function reads 1 byte from a channel that has been
opened for input. GET is used with the keyboard, display,
Program Recorder, or disk.

CONFIGURATION
GET #a, X

The first argument of a GET statement indicates the I/0O channel
that will be used. If the first argument is not an integer, it is
rounded off. The second argument names the variable that will
be assigned the value read from the channel. This value will be
an integer between 0 and 255.

For example, if data is being accepted from the Program
Recorder, the GET statement must be preceded by an OPEN
statement. The OPEN statement must include the number of the
170 channel, the device name, and an input operation code.
Numbers that are not integers are rounded off.

EXAMPLE

10 OPEN #3, 4,0, "C”
20 FOR J =1TO 100
30 GET #3, X

40 PRINT CHR$(X)
50 NEXT]

60 CLOSE #3

The previous example shows the correct format for using a GET
statement. Line 10 opens the I/0O channel and specifies channel
#3 for input with the Program Recorder. The channel number
can be any number from 1 through 7, but the channel must not
be open for another device. The second argument of the OPEN
statement (4) indicates that the device will be used for input.

Line 20 is the first line of a FOR/NEXT loop. The loop ends with
the NEXT statement at line 50. The initial value of the counter (J)

120 User’s Handbook to the Atari 400/800 Computers

is 1, and the final value is 100. The counter is incremented by 1
each time the loop is executed, so the loop will be executed 100
times. Lines 30 and 40 both appear inside the loop (between FOR
and NEXT). As a result, lines 30 and 40 are repeated 100 times.
Each time line 30 is executed, an integer between 0 and 255 is
assigned to the variable X. Line 40 prints the character that has
the ASCII code specified by X. Line 60 closes the I/O channel.

GET is used with the disk in the same fashion as itis used with the
Program Recorder. However the OPEN statement must include a
file specification. The first argument of the OPEN statement is a
channel number. Any channel from 1to 7 can be used if it is not
already open. The second argument is the operation being
performed. GET can be used with the disk if the OPEN statement
has a second argument of 4 (input) or 12 (input and output). For
example, OPEN #2, 12, 0,"D:BUDGET” is a correct OPEN
statement for using GET with a disk. GET assigns the next byte
read from the disk to the variable specified in the GET statement.

The GET statement can also be used with the keyboard. An OPEN
statement must be executed before the GET statement is
encountered. The first argument of the OPEN statement is the
number of a channel that is not already OPEN. The channel
number must be a number from 1to 7. The second argument of
the OPEN statement must be 4 (input). The third argument is
generally 0. The device code "K” is the fourth argument.

With the keyboard, a GET statement causes the program to wait
for one keystroke. When a key (or combination of keys) is
pressed, the ASCIlI code of the character is assigned to the
variable in the GET statement.

EXAMPLE

10 OPEN #2, 4, 0, "K”
20 GET #2, X

30 PRINT X

40 CLOSE #2

RUN

(PRESS ”S")

83

Atari BASIC Reference Guide 121

The previous example consists of a program that uses the GET
statement with the keyboard. Line 10 opens channel #2 for the
keyboard input. In line 20, the GET statement assigns the ASCII
code of a character to the variable X. Line 30 displays the ASCII
code on the screen. When the program is executed, line 10
opens the [/O channel, but the program waits at line 20. When
the next keystroke occurs, the program continues. In this
example, the keystroke is the Skey. The ASCIl code of Sis 83,50 X
is assigned the value 83. Line 30 causes 83 to be printed on the
display, and line 40 closes the 1/0O channel.

The GET statement can also be used with the display. An OPEN
statement must precede the GET statement. The OPEN
statement specifies an 1/0O channel that is not currently open.
The channel number must be from 1to 7. The second argument
must be 4 (input) or 12 (input and output), and the device must
be ”S”. With the display, the position of the cursor determines
the character or picture element to which the GET statement
applies. The GET statement retrieves the COLOR information at
that point.

In graphics modes 0, 1,and 2, the COLOR information indicates
a character (and color register). Tables 9-4 and 9-7 list the
COLOR values for graphics modes 0, 1, and 2. In graphics modes
3through 8, the GET statement indicates the color of the picture
element where the cursor is located. The value that a GET
statement retrieves is assigned to the variable in the GET
statement. The cursor advances to the next position after a GET
statement has been executed. An attempt to execute a GET
statement when the cursor is at the last column of the last row
results in an error.

EXAMPLE

10 OPEN #3,4,0, "S”
20 GRAPHICS 2

30 COLOR 65

40 PLOT 0,0

50 POSITION 0,0

60 GET #3, X

70 PRINT X

80 CLOSE #3

122 User’s Handbook to the Atari 400/800 Computers

The previous example consists of a program that uses GET with
the display. Line 10 opens 1/0 channel #3 for input from the
display (device ”S”). Line 20 specifies graphics mode 2. Line 30
indicates the character and color that is displayed. Table 9-4 lists
the COLOR codes for graphics mode 2. COLOR 65 indicates an
upper case A in color register 0. Since SETCOLOR is not used in
this program, the character is orange, the default color. The
PLOT statement at line 40 places the character at the upper left
corner of the display. Line 50 moves the cursor to the same
position as the character (0,0). The GET statement at line 60
assigns the COLOR information to the variable X. The channel
number in the GET statement must be the same as the channel
number in the OPEN statement. Line 70 displays the COLOR
information (65) on the display, and line 80 closes the 1/0
channel.

GET can also be used with the screen editor (device “E”). The
OPEN statement must include an unused 1/0 channel number.
Also, the OPEN statement must have operation code 4 (input) or
12 (input and output). Since the screen editor uses the keyboard
for input, the GET statement has nearly the same function with
devices "K” and "E”. The GET statement assigns the ASCII code of
a keystroke to the variable specified in the statement. The
program waits for input from the keyboard before it continues.
However, when a GET statement is executed, the character from
the keyboard must be followed by RETURN.

EXAMPLE

10 OPEN #3, 4,0, "E”

20 GET #3, X

30 PRINT X

40 CLOSE #3

RUN

(Press "S” followed by RETURN)
83

In the previous example, line 10 opens channel #3 forinput from
the screen editor. When the screen editor is accessed, the screen
is cleared. The program will wait at line 20 for input from the
keyboard. If more than one character is entered, an error results.

Atari BASIC Reference Guide 123

The GET statement only accepts one character, followed by
RETURN. If only one character is entered, the GET statement
assigns the ASCII code of that character to the variable X. Line 30
displays the value of X which is 83, since the ASCII code of S is 83.
Line 40 closes the 1/0 channel.

GOSUB (GOS.)

GOSUB branches program control to the subroutine beginning
at the line number specified by its argument.

CONFIGURATION
GOSUB LN

Subroutines can be called from any part of a program. A RETURN
statement, at the end of a subroutine, causes the program to
resume execution with the statement directly after the GOSUB
statement.

Subroutines are convenient to use when the same set of
operations need to be repeated at different parts of a program.

EXAMPLE

10 FORJ=0TO 2
20 GOSUB 100

30 NEXT)

40] =5

50 GOSUB 100

60 END

100 PRINT J;

110 RETURN

RUN

0125

The previous example illustrates a subroutine that is called 4
times, from 2 different parts of the program. In this example,
only one statement is included in the subroutine. However,
many statements can be included in a subroutine.

124 User’s Handbook to the Atari 400/800 Computers

Line 10 begins a FOR/NEXT loop. The counter ()) is set equal to 0
the first time through the loop. Line 20 calls the subroutine at line
100. As a result, line 100 is executed next. The subroutine prints
the value of] and proceeds to line 110. At line 110, the program is
returned to the point where the subroutine was called (line 20).

The statement at line 30 is then executed. The NEXT statement
causes the loop to beincremented and repeated. The counter (J)
is set equal to 1, and the subroutine is called again from line 20.
At line 100, the value of] is printed. Line 110 returns the program
to line 20.

These steps are also repeated for | = 2. When the loop has been
executed 3 times, the program will proceed to line 40.] is
assigned the value 5, and the subroutine is called again atline 50.
The subroutine prints the value of). The program then returns to
line 60 where it ends.

GOSUB can also be used with ON to branch a program to one of
several subroutines.

CONFIGURATION
ON EX GOSUB LN [,LN] [,LN]...
The expression after the ON statement indicates which line
number the program proceeds to. This is called the control
expression. The control is evaluated and rounded off. If the
value is negative or greater than 255, an error occurs. If the value
of the control is 1, the program continues at the first ine number

after GOSUB. If the control is equal to 2, the program continues
at the second line number after GOSUB, etc.

If the value of the control is 0 or greater than the number of line
numbers, the line after the ON/GOSUB statement is executed.

EXAMPLE
ON X GOSUB 100, 200, 300, 400

This statement executes the subroutine at line 100if X=1.1f X =2,

Atari BASIC Reference Guide 125

the subroutine at line 200 is executed. If X =3, the subroutine at
line 300 is executed. If X = 4, the subroutine at line 400 is
executed. If X=0 or X is greater than 4, the next line is executed.

GOTO

The GOTO statement causes the program to proceed at the
indicated line number.

CONFIGURATION
GOTO LN

EXAMPLE

10 X=X+1

20 IF X *2>50 THEN END
30 PRINT X;

40 GOTO 10

RUN

1234567

The previous example demonstrates the use of GOTO. Line 10
increases the value of X by 1. Line 20 ends the program when X
squared is greater than 50. When line 40 is executed, the
program returns to line 10. This program repeats lines 10 through
40 until the program is ended or branched out of the loop. The
program ends when X =8 because 8 squared is greater than 50.

GOTO is also used with an ON statement to branch a program to
one of several lines.

CONFIGURATION
ON EX GOTO LN [LN] [,LN]...

The expression after the ON statement indicates which line
number the program proceeds to. This is called the control
expression. The control is evaluated and rounded off. If the
value is negative or greater than 255, an error occurs. If the value
of the control is 1, the program continues at the first line number

126 User’s Handbook to the Atari 400/800 Computers

after GOTO. If the value is 2, the program continues at the
second line number after GOTO, etc.

EXAMPLE

10 FORI=1TO 3

20 ON I GOTO 40, 50, 60
40 PRINT "1 =1":GOTO 70
50 PRINT “1 =2":GOTO 70
60 PRINT "I =3"

70 NEXT I

GRAPHICS

GRAPHICS sets one of the graphics modes.

CONFIGURATION
GRAPHIC a
The GRAPHICS statement generally clears the screen display

upon execution. By adding 32 to the GRAPHICS statement
argument, this feature is suppressed.

In graphics modes 1through 8,afour line text window appearsin
the bottom of the display. By adding 16 to the GRAPHICS
statement argument, the text window will be suppressed.

EXAMPLE
GRAPHICS 49

The preceding GRAPHICS statement sets graphics mode 1 with
the screen clearing and text window features suppressed.

IF

The IF statement is used with a THEN statement to branch a
program if a particular condition is true.

CONFIGURATION

IF EX THEN statfrr\lnent [:statement]...

Atari BASIC Reference Guide 127

The expression (EX) that follows IF can be logical or algebraic.
Any algebraic expression that does not equal zero is considered
true. The logical operators (AND, NOT and OR) can be used in
the IF expression.

EXAMPLE

10 X=15

20 Y =30

30 IF X=>10 AND Y>20 THEN 50

40 PRINT "CONDITIONS NOT MET”:END
50 PRINT "CONDITIONS HAVE BEEN MET”
RUN

CONDITIONS HAVE BEEN MET

The previous example shows two logical expressions and a
logical operator in the IF/THEN statement (line 30). The AND will
only be true when both conditions have been met. Since X =15
(line 10) and Y =30 (line 20), both of the conditions of line 30 are
true. As a result, the program branches to line 50. At line 50, the
message CONDITIONS HAVE BEEN MET is printed.

An END statement is used in line 40 to prevent both messages
from being printed when the IF statement is false.

An IF/THEN statement can also be followed by statements
instead of a line number.

EXAMPLE
10 Y=5
20 X=10
30 IF X<100 THEN PRINT X:PRINT Y
RUN
10
5

The previous example shows that statements can follow a THEN
statement, separated by colons. If the condition is true, the
statements are executed. If the condition is false, the program
will continue at the next line, and the statements after the THEN
statement are ignored. Since X =10 (line 20), the condition at line

128 User’s Handbook to the Atari 400/800 Computers

30 (X<<100) is true. As a result, the statements after THEN are
executed, and the values of X and Y are printed.

The following example illustrates the use of algebraic
expressions. An algebraic expression is true when it does not
equal zero.

EXAMPLE

10 FOR 1 =-2TO 2

20 IF NOT | THEN END
30 PRINT |

40 NEXT |

RUN

2

1

The previous example contains a program that ends when a
condition is true. The condition is NOT I. NOT I is true when | is
false, and I is false when I is set equal to zero. When | has any
value other than zero, it is true.

Line 10 begins a FOR/NEXT loop. The first time the loop is
executed, | is set equal to -2. Line 20 is an IF/THEN statement
with the condition NOT |. When | is set equal to -2, it is
considered true because it is not equal to zero. Since | is true,
NOT I is false.

The condition at line 20 is false, so the program does not end.
Line 30 is executed next, so the value of | is printed. Line 40
returns the program to line 10, where the counter (l) is
incremented by 1. | is set equal to -1, so | is still true. Since | is
true, NOT | is false. The condition of line 20 fails, so the value of |
is printed.

When the loop is executed the third time, | is set equal to zero. |
is false, so NOT lis true. Since NOT l is true, the program is ended
at line 20.

Atari BASIC Reference Guide 129

INPUT (I.)

The INPUT statement causes data to be assigned to variables.

CONFIGURATION

INPUT [#a,] xé D;{I

The INPUT statement is generally used with the keyboard,
editor, disk, or Program Recorder. The INPUT statement
requires an 1/0O channel number as well as a previous OPEN
statement if any device other than the editor is used.

The correct format for numeric data is standard notation or
scientific notation. Spaces can appear before or after a numeric
value, but spaces within a numericvalue cause an error. Numeric
data can be entered on the same line, separated by commas.

EXAMPLES

54, 4E5, -10
-3.45E-10
0,1,1,5,3,10

Expressions cannot be used as numeric data with INPUT. Any
format other than standard floating point decimal or scientific
notation causes an error.

Each line of numeric data must be followed by an end-of-line
character (RETURN).

String data must also be followed by an end-of-line character.
Only one string data item can occur on a line. Also, a string data
can be read only into dimensioned string variables. If the length
of a data item is more than the dimensioned length of the
variable, the excess characters are eliminated, but no error
occurs. Any character can be a part of a string data item for
INPUT (including commas and special graphics characters).

130 User’s Handbook to the Atari 400/800 Computers

When INPUT is used with the screen editor, no OPEN statement
is necessary. The program waits for input from the keyboard
when an INPUT statement is executed. A question mark (?)
appears on the screen to remind the operator to enter data.

EXAMPLE

10 DIM X$(10)

20 INPUT X, X$

30 PRINT X$, X

RUN

? 45, JONES, BILL
JONES, BILL 45

In the previous example, line 10 dimensions the string variable
for 10 characters. Line 20 is an INPUT statement that requests a
numeric value to assign to X, and a string value to assign to X$.
When the program is executed, the INPUT statement causes the
program to wait at line 20 for input.

Since no 170 channel is specified, the input is accepted from the
keyboard, and the prompt (?) is displayed. The user responds
with two data items. The value 45 is entered for a value of X. The
string value JONES, BILL is entered for a value of X$. These two
data items could be entered on separate lines. Notice that the
comma in the string value does not separate data items.

When each variable in the INPUT statement is assigned a value,
the program executes the NEXT statement (line 30). Atline 30 the
values of X$ and X are displayed on the screen.

The INPUT statement can also be used with the Program
Recorder to recover data. When the Program Recorder is used,
an OPEN statement must be executed before an INPUT
statement is encountered. The OPEN statement must include an
170 channel number, the operation code for input (4), and the
device code ("C"). The third argument of the OPEN statement is
a special function code, and must be zero. If any of the
arguments of an OPEN statement are not integers, they are
rounded off.

Atari BASIC Reference Guide 131

The INPUT statement recovers data that was stored with the
PRINT statement.

EXAMPLE

10 DIM A$(100)

20 OPEN #1, 4,0, "C”
30 INPUT #1, A$

40 PRINT A$

50 CLOSE #1

The previous example contains a program that reads and displays
one string value. Line 10 dimensions the variable A$. Line 20
opens /O channel #1 for input from the Program Recorder.
When line 20 is executed, the tone sounds to remind the
operator to find the correct position on the tape, press PLAY on
the Program Recorder then press RETURN on the keyboard.

When line 30 is executed, one string value is read from the
cassette and assigned to the variable A$. Line 40 causes the value
of A$ to be displayed on the screen. Line 50 closes the 1/0
channel.

Before an INPUT statement can be used with the Program
Recorder, the data must have been put on the cassette with a
PRINT statement.

The INPUT statement can also be used to recover data that was
saved on adisk. The INPUT statement has the same configuration
with the disk and cassette. The INPUT statement must include an
170 channel number and variable names.

The OPEN statement for the 1/O channel must include the
channel number and the operation code 4 (input) or 12 (input
and output). The third argument of the OPEN statement is zero,
and fourth argument is the device and filename.

132 User’s Handbook to the Atari 400/800 Computers

EXAMPLES

OPEN #2, 4,0, "D2:BUDGET.BAS”
OPEN #3, 12, 0, "D:NAMES”

If only one disk is in use, the device name is simple “"D:". If 2 or
more disks are being used, the number of the disk must be
specified.

The INPUT statement can also be used with the keyboard. The
OPEN statement must include an 1/O channel number,
operation code 4, special operation code 0, and the device "K".

EXAMPLE

10 DIM Y$(10)

20 OPEN #2, 4,0, "K”
30 INPUT #2, X, Y$
40 PRINT X, Y$

50 CLOSE #2

The previous example contains a program that uses the
keyboard for input. Line 10 dimensions the variable Y$. Line 20
opens I/0 channel #2 for input from the keyboard. When line 30
is executed, the program waits for input. However, no prompt
symbol appears, and the data is not displayed when itis entered.

The first variable in the INPUT statement s X. Since X isa numeric
variable, a numeric data item must be entered first. The second
variable in the INPUT statement is Y$. Since Y$ is a string variable,
a string data item must be entered next. Acomma can be used to
separate the data items, or each data item can be followed by
RETURN.

Line 40 displays the values of the two variables,and line 50 closes
the 1/0O channel.

INT

The INT function returns the largest integer that is less than or
equal to the argument.

Atari BASIC Reference Guide 133

CONFIGURATION
X =INT (a)

EXAMPLES

PRINT INT (13.9)
13
PRINT INT (-4.7)
-5

LEN

The LEN function returns the number of characters in a string
value or variable, including spaces and punctuation.

CONFIGURATION
X = LEN (string)

EXAMPLE

10 DIM A$(20)

20 A$ = "JONES, BILL”

30 PRINT LEN(A$)

40 PRINT LEN(”BILL JONES”)
RUN

10

10

Line 10 dimensions the variable A$,and line 20 assigns A$ a string
value. Line 30 displays the number of characters in the variable
A$. Line 40 displays the number of characters in the string "BILL
JONES”.

LET (LE.)

The LET statement is optional. It is used to assign a value to a
variable.

134 User’s Handbook to the Atari 400/800 Computers

CONFIGURATION

X _a
(LET] X$ a$

EXAMPLES

LET X =250
X=Y+25

LIST (L.)

The LIST statementis used to display or record information in the
computer’s memory.

CONFIGURATION
LIST [device:filespec,][LN][,LN]

The LIST statement can be used to save a program, or part of a
program, on a disk or cassette. The ENTER statement is the only
Atari BASIC statement that can recover a program saved with
LIST. The optional line numbers (LN) indicate the section of the
program that is to be saved. If no line numbers are specified, the
entire program will be saved. If only one line number is specifed,
only that line of the program is saved. If two line numbers are
specified, those two lines are saved along with all the code
between those line numbers. If either or both of the specified
line numbers do notappear, the section of the program between
those line numbers is saved.

A program is saved on a cassette tape with the statement LIST
“C”". Before saving the program, the tape must be properly
positioned. When a LIST "C” statement is executed, the tone
sounds twice to remind the operator to press PLAY and RECORD
on the Program Recorder, followed by RETURN on the
keyboard.

DOS must be booted before a LIST statement can be used with a
disk. A program is saved on a disk with a statement of the form
LIST "device:filespec” followed by the appropriate line numbers
(if any).

Atari BASIC Reference Guide 135

EXAMPLE

10 DIM A$(10)

20 FOR A =1TO 100

30 PRINT A$, AA2

40 IF AA2>500 THEN END
50 NEXT A

LIST "D:PROGR.BAS”, 5, 45

In the previous example, the LIST statement saves lines 10
through 40 on the disk. The line numbers that are specified (5
and 45) do notexistin the program, so the section of the program
with line numbers between those values is saved.

The device code "D: can be used only if one disk isin use. If more
than one disk is available, the number of the disk must also be
specified.

The LIST statement can also be used to display a program on the
monitor. The LIST command displays the entire program on the
screen unless the LIST statement is followed by line numbers.

If one line number follows the LIST statement, the line of the
program with that line number is displayed. If the program does
not have a line with the line number specified in the LIST
statement, the LIST statement has no results.

EXAMPLE

LIST 20

20 FOR A=1TO 100

READY
If two line numbers are specified, those two lines are displayed
along with all the code between those line numbers. If either or
both of the specified line numbers do not appear in the
program, the section of the program between those line

numbers is displayed.

The LIST statement can also be used with a printer. The statement

136 User’s Handbook to the Atari 400/800 Computers

LIST “P:” causes the program in the computer’s memory to be
listed on the printer. The interface module and the printer must
both be turned on. Also, the printer must be online.

The computer’s character set is slightly different from the
printer’s, so certain characters appear differently when printed.
Also, the printer interprets some of the control characters as
commands. As a result, when control characters are printed, the
printer may have an unusual response. To avoid this problem, do
not use control characters within quotation marks. Instead, use
the CHR$ function to generate special characters.

EXAMPLE

PRINT "=" (escape, control - *)
PRINT CHR$(31) (preferred)

The computer can only accommodate