

MASTER
MEMORY

MAP
FOR

THE ATARI

CRAIG PATCHETT

and
ROBIN SHERER

A Reston Computer Group Book
Reston Publishing Company Inc .

A Prentice-Hall Company
Reston, Virginia

Library of Congress Cataloging in Publication Data

Patchett, Craig.
Mas ter memory map for the Alari.

"A Reston Computer Group Book ."
1. Atari computer-Programming. 2. Memory maps

(Computer science) I. Sherer , Robin. II. Title.
QA76.8.A82P38 1984 001.64 ' 2 84-476
[SBN 0-8359-4242-2

3 Copyright 1984 by Educational Software, inc.

Atari is a registered trademark of Atari, Inc.
Master Memory Map, Prototype, Professor von Chip, and Nerdwell

are trademarks of Educational Software, inc.

Edited by Graham Patchett and Sylvia 1. Smith
Illustrated by Frank Hill

All rights reserved. No part of this book
may be reproduced, in any way or by any
means, without permission in writing from
the publisher.

10 9 8 7 6 5 4 3

Printed in the United States of America

2

CONTENTS

Preface
Glossary. 4
What is a Memory Location? . 13
Bits and Bytes IS
How to PEEK .. 18
How to POKE. .. 20
ROM and RAM. .. 21
Computer Mathematics. .. 22
Hexadecimal Numbers. 25
Decimal to Hex .. 27
Hex to Decimal . 29
How to Read the Memory Map. .. 31
Page Zero. 32
The Floating Point Package. .. 85
Page One . 89
Pages Two through Four .. 90
Input / Output Control Blocks (IOCBs) 172
Page Six 181
Page Seven, Eight, Nine. .. 183
Special Chips and ROM 193
Sound 212
Timers 213
The Operating System. .. 245
Floating Point Package 246
The Character Set .. 251
Vectors and Vector Tables 252
CIO Routines 258
Interrupt Handler Routines 260
System VBLANK Routines 261
SIO Routines 261
Disk Interface Routines . 264
Printer Handler Routines .. 264
Cassette Handler Routines. .. 265
Monitor Routines . 265
Display Handler Routines .. 267
Screen Editor Routines 267
Keyboard Handler Routines 268
More Display Handler Routines 269

Tables, Tables, and More Tables 270
One More Keyboard Routine . 270
That's All Folks 271

APPENDICES
Appendix One-Designing Your Own Character Sets 273
Appendix Two-Player/ Missile Graphics 281
Appendix Three-Designing Your Own Graphics Modes 299
Appendix Four-GTIA Graphics Modes Nine, Ten, and Eleven . 305
Appendix Five-The Different Versions of the OS 312
Appendix Six-Basic Bugs 314
Appendix Seven-Input/ Output. 316
Appendix Eight-IOCB Command Byte Values 320
Appendix Nine-Character Values 322
Appendix Ten- Stage Two VBLANK .. 329
Appendix Eleven-The Atari XL Computers. 331
Appendix Twelve-Display List Commands and Antic Modes . .. 346
Appendix Thirteen-Safe OS Vectors 352

INDEXES
Index by Name 353
Index by Function. 358

List of Figures, Tables and Examples

FIGURE 1.
FIGURE 2.
FIGURE 3.
FIGURE 4.
FIGURE 5.
FIGURE 6.
FIGURE 7.
FIGURE 8.
FIGURE 9.
FIGURE 10.
FIGURE 11.
FIGURE 12.
FIGURE 13.
FIGURE 14.
FIGURE 15.
FIGURE 16.
FIGURE 17.
FIGURE 18.
FIGURE 19 .
FIGURE 20.
FIGURE 21.
FIGURE 22.
FIGURE 23.
FIGURE 24.
FIGURE 25.
FIGURE 26.
FIGURE 27.
FIGURE 28.
FIGURE 29.
FIGURE 30.
FIGURE 31.
FIGURE 32.
FIGURE 33.
FIGURE 34.
FIGURE 35.
FIGURE 36.
FIGURE 37.
FIGURE 38.

Bit map. .. 22
Large memory map . 30
POKMSK chart 38
Status chart . 48
Number of bytes per row. 60
Screen memory requirements. 60
Screen requirements chart. 61
Location, 128-255 breakdown. 72
Vector list . 97

SDMCTL chart. .. 109
GPRIOR chart 122
GTIA chart 123
Joystick values in decimal. 127
Joystick values in binary .. 127
Joyst ick bit chart 128
PTRIG chart 130
DMASK bit chart. .. 136
Color value chart. .. 142
CHACT bit chart .. 154
CHBAS bit chart . 156
The number 4 156
DDEVIC chart 163
DcoMNDchart 164
DST A TS chart . 165
oi l functions chart 169
Addresses for handler address table. 170
1 CAX 1 bit meanings 173
DRVBYR bit chart . 185
RAMTOP chart 190
MOPF bit chart. .. 197
Changing player widths. 199,200
MOPl bit chart .. 20 1
GRAFPO bit chart. .. 202
GRAFM bit chart. .. 204
VDELA Y bit chart. .. 208
GRACTL bit chart. .. 209
GRACTLI Joystick bit chart 209
CON SOL bit chart 210

FIGURE 39.
FIGURE 40 .
FIGURE 41.
FIGURE 42.

AuDclbitchart 216
Polycounters bit chart. 219
Bit combinations for AUDC I 220
AUDCTL/ ALLPOT bit chart 223

FIGURE 43. Frequency vs . time 225
FIGURE 44. SKCTL (POKE) bit chart 229
FIGURE 45. SKSTAT (PEEK) bit chart 229
FIGURE 46. PORTA (paddles/ joystick) bit chart 231
FIGURE 47. PACTL (port b controller) bit chart 234
FIGURE 48. NMIEN bit chart 244
FIGURE 49. NMIST bit chart 245
FIGURE 50. Three notes 274
FIGURE 51. Single note 274
FIGURE 52. Note character bit chart 275
FIGURE 53. Player missile positioning 283
FIGURE 54. Storing Missiles 283
FIGURE 55A. Single-line resolution 285
FIGURE 55B. Double-line resolution 285
FIGURE 56A.
FIGURE 56B.
FIGURE 57.
FIGURE 58.
FIGURE 59.
FIGURE 59.
FIGURE 60.
FIGURE 61.
FIGURE 62.
FIGURE 63.
FIGURE 64.
FIGURE 65.

Choosing your PM shape
Mapping your PM

Designing PM graphics modes
Color register locations
I/O devices
I/ O control blocks
IOCB command value byte values
1200XL memory locations
1200XL keyboard layout
Display list command chart.
Display list command chart, hex version
Scan lines with lowercase letters

289
289
299
309
316
317
320
332
335
347
348
349

FIGURE 66. Character description via ANTIC 351
FIGURE 67. Vectors that don't change 352

Table I. Hex conversion chart 26
Table 2.
Example I. Decimal-to-hex example
Example 2. Hex-to-decimal example

157
28
29

PREFACE

WHAT HAVE I PURCHASED?

You are the proud owner of a detailed collection of the internal work­
ings of your Atari computer. By simply using the POKE and PEEK
commands from BASIC, which we will explain in a few pages, you
can change the numbers within many locations in memory. This book
is a "map" to find where you are in the Atari's huge address space
of 65536 memory locations. It is perfect for both beginners and ex­
perts. For the new computer owner, we start with simple explanations
of computer terminology. Next come many examples of the various
"tricks" we will show you . The more advanced programmer will find
that the book is absolutely necessary as a reference to the large num­
ber of things you can do with the Atari. Few people can memorize
over 1000 locations in a computer, and then recall what the individual
bits in each location do.

HOW TO USE THE MASTER MEMORY MAP

If you are a beginner, start with the glossary to become familiar with
some of the "computereze" necessary to understand the machine.
Next, study the first few sections to learn about the POKE and PEEK

commands and hexadecimal-to-decimal conversion. Now begin to read
through the book starting with memory location O. For many loca­
tions we offer a complete and lengthy explanation in an appendix, so
you'll want to make sure you also check out the appendices.

Don't be afraid to put a number into the computer's memory. All you
can hurt is your pride. The computer will just "go to sleep" if you
tell it to do something impossible. If that happens, then all you have
to do is turn it off and on again and continue to explore. We will pro­
vide you with examples to illustrate techniques and ideas. Try chang­
ing the numbers in each example to "see what happens if " You
learn best if you type in the examples yourself, but because there are
so many, and we KNOW how valuable your time is, we have one more
offer for you:

SEND US MONEY!

If you don't want to tire your fingers, send $9 .95 to cover the tra­
ditional postage, handling, and media costs to

EDUCATIONAL SOFTWARE, inc
4565 Cherryvale Ave.

Soquel, CA 95073

We will send you all of the programs in this book on your choice of
tape or disk.

2

A BONUS!

If you discover a new , unpublished use for a location in the computer,
send it to us. In return, we will send you a free program.

SOURCES

The following sources were instrumental in understanding the pur­
poses of some of the more esoteric locations:

De Re Atari - Atari, Inc., 1312 Crossman Ave., Sunnyvale, CA
94086

DOS Listing - Atari, Inc., 1312 Crossman Ave., Sunnyvale, CA
94086

Inside Atari DOS - Compute! Books

Hardware Manual - Atari Inc., 1312 Crossman Ave., Sunnyvale,
CA 94086

Mapping the Atari - Compute! Books

OS Listing - Atari Inc . , 1312 Crossman Ave., Sunnyvale, CA
94086

3

GLOSSARY

Here at Educational Software we get tired of computer terminology.
However, many of these words are becoming a part of our language.
As we explain the inner workings of the Atari, we will have to refer
to some of the following words. If your find some term we forgot to
mention here, it's probably because it is fully explained in the ap­
pendices or at the memory location it pertains to. You should also
read your BASIC manual in order to understand the terms that have
to do with the BASIC language.

6502: This is the heart of the computer, the chip that bosses every­
body around. Actually, a lot of people even refer to the 6502 as
being the computer, since it does have almost all of the brains.

Accumulator: This is a location that is used to temporarily store the
results of logic and arithmetic operations . The main accumulator
is inside the 6502 chip, but sometimes memory locations are also
used as an extra accumulator.

Address: The number assigned to an individual memory location.
Each byte in the Atari has its own unique address, much like a
house has a street address. The main use of this book is to provide
you a roadmap to each address so you don't get lost.

Algorithm: A general procedure, plan, or method that represents how
your program will be written.

ANTIC: This is a chip in the Atari computers that figures out what
the screen is supposed to look like.

ASCII: The American Standard Code for Information Interchange
(pronounced ASK - KEY). Everyone needs a standard or refer­
ence to refer to. This allows us all to speak to each other in the
same terms. Humans use dictionaries to speak the same words.
In the case of computers, ASCII allows one computer to under­
stand the letters and numbers created on another computer. Atari
computers do not follow a true ASCII, but have their own code
instead which we explain later.

4

Assembly language: This is a programming language, just like
BASIC, except it talks the computer's language instead of having
to go through a translator . See machine language as well.

ATASCII: ATAri Standard Code for Information Interchange. This
is the code the Atari uses to convert letters to numbers and vice
versa. See your BASIC manual to find out how it differs from
ASCII.

Baud: The rate of transmission of information conveyed between two
computers. You usually say "Baud Rate" meaning how fast the
two computers are talking to each other. This rate is determined
by the bits per second that are being transferred. You encounter
this term if you are using a modem, printer, disk drive, terminal
or other device that needs to talk to a computer to work. Typical
speeds of information transfer are 300, 1200, 2400, 9600, and
19200 bits per second.

Bit: The smallest piece of information the computer can handle. There
are eight bits in a byte. Each bit can either be "on" or "off."
See the section on Bits and Bytes for a complete description.
Sometimes in this book you'll see "-" for the value of a bit. This
just means that it doesn't matter if that particular bit is on or
off.

Bit mapping: This refers to the process of turning individual bits on
and off without changing the rest of the byte.

Boot: No, this isn't even close to what it sounds like. "Booting" a
program means loading it in when the computer is turned on .
For example, if you hold down the START button while turning
on the computer, the computer will beep. This means that it ex­
pects a boot cassette to be in the cassette player . When you turn
on the computer with the disk drive on, you will boot DOS. In
other words, any program that loads in without you having to
tell it to load is a boot program.

Boundary: As in "4K boundary." This is the end of a block of mem­
ory. For example, a lK boundary would be the end of 1024 byte
block.

5

Buffer: A storage place, usually temporary, where information can
come and go without disturbing things.

Bus: A bus is a system of electrical lines shared by all devices that are
connected to it. This is a convenient way for these devices to share
data . It works just like a party-line telephone. Different parts of
the computer talk to each other by getting on the bus and sending
messages.

Byte: Pronounced BITE. A collection of eight bits. Each memory ad­
dress consists of one byte. Since we know at this point bytes and
bits can be confusing, we provide a special section elsewhere in
the book, called BITS and BYTES, to explain it to you.

Checksum: A checksum is a special byte that the computer uses after
talking to something to make sure it understood what was said
correctly.

CIO: Central Input/Output. This is Atari's main 110 routine.

Coldstart: A routine the computer goes through after you turn it on
and before it lets you tell it what to do .

Color clock: A unit of measurement for the screen. A color clock is
the width of a pixel in graphics mode seven. That means that the
screen is 160 color clocks wide from border to border.

Controller jack: What you plug your joystick into.

CTIA: This chip takes care of translating the data coming from AN­
TIC into something the television set can understand.

Cursor: The position on the screen where the next character or pixel
will appear. In graphics mode zero, you can see the cursor; it's
the white box.

Data: Any kind of information that is needed by a program or by the
computer.

Default: When you first turn on the computer, each memory location
will contain a value. These initial values are called defaults,
meaning that this is what these locations will equal if you don't
change them.

6

Device: Anything that the computer has to talk to is called a device.
This includes the disk drive, printer, and even the keyboard and
television set.

Disable: To turn off. By disabling the BREAK key, for example, you
can prevent someone from accidentally stopping your program.

Display list: The program for ANTIC that describes what the screen
is to look like.

DLI: Display List Interrupt. See interrupt.

DMA: Direct Memory Access. The process of getting data from
memory to put on the screen.

DOS: Disk Operating System. A program that controls the use of the
disk drive . See OS as well.

DUP: Disk Utilities Package. This is a bunch of routines to do var­
ious things on the disk drive. The DOS menu is actually a list of
these routines.

Enable: To turn on. The opposite of disable .

File: A whole bunch of data stored on disk or cassette.

Flag: A signal that a certain condition has been met. In many BASIC
programs, variables are used as flags, as demonstrated in the fol­
lowing example:

10 IF A=B AND C=D THEN FLAG = 1

50 IF FLAG = 1 THEN 100

Floating point: A type of arithmetic where the decimal point can ap­
pear anywhere in the numbers (i.e., it can float around). An ex­
ample of such numbers would be 1.0, 23.97, and 1.45678E+04.
Floating point numbers take up much more memory than fixed
point (integer) numbers.

FMS: File Manager System. This is a group of routines, or handler,
to help the computer talk to the disk drive.

7

GTIA: A fancy version of CTIA.

Handler: A series of routines that tell the OS how to handle a par­
ticular device.

HBLANK: Horizontal BLANK. The television set draws the screen
one line at a time, from top to bottom and left to right. HBLANK
is the time during which it is moving from the end of one line to
the beginning of the next.

Hi-res: Pronounced "high rez." This is an abbreviation for "high
resolution," which refers to a graphics display with very small
dots.

Immediate mode: Using the computer without running a program.
For example, if you type in

PRINT 3+2

and then press RETURN, you will get a result of 5 on the screen
immediately.

Index: This is a variable used to keep track of where we are in a loop.
For example, in the following statement X would be an index:

FOR X= I TO 100

Internal: If something is internal, then that usually means it is built
into the computer.

Interrupt: An interrupt is something that interrupts whatever the
computer is doing and tells it to do something else before it con­
tinues. You should also see DU, IRQ, NMI, and VBLANK.

1/ 0: Input/ Output (I 10) is nothing more than a fancy way of refer­
ring to the computer talking to a device, or vice versa.

10CB: Input/Output Control Block. This is a place that you use to
talk to CIO. See the appendix on 110.

IRQ: Interrupt ReQuest. This is a kind of interrupt that you can tell
the computer to ignore (the 6502 can enable or disable it).

8

Jiffy: A jiffy is one sixtieth of a second, the time that it takes the
television set to completely draw the screen once. In European
(PAL) systems, a jiffy is one fiftieth of a second .

Jump: The same thing as GOTO. The expression "jump through lo­
cation" means that the computer will GOTO the address stored
in that location.

K: As in lK, BK, 16K, etc. lK is equal to 1024 bytes.

Logical line: A logical line is the space that a program line takes up .
It can be one, two, or three screen lines (try typing in a BASIC
line that is more than three screen lines).

Machine language: Machine language is a way of talking directly to
the 6502 chip. Other languages like BASIC have to be translated
into machine language before the 6502 can understand them. That
takes time, which is why machine language programs run so much
faster than BASIC ones. In case you're wondering what the dif­
ference is between machine language and assembly language, not
much. Machine language is just a bunch of numbers. Assembly
language gives these numbers names so that they make more
sense.

Masking: When you're bit mapping, you have to have a way of ig­
noring the bits you're not interested in. This process is called
masking, since you essentially place a mask over the bits you don't
want to look at.

Nibble: This is going to sound funny, but I swear it's the truth. A
nibble is half a byte, or four bits.

NMI: Non-Maskable Interrupt. Unlike IRQs, you can't tell the 6502
to ignore this kind of interrupt. DUs and VBLANK interrupts
are both NMls.

NTSC: A name for the television system that is used in North Amer­
ica. European television is slightly different and uses a system
called PAL.

Offset: If you have a whole bunch of bytes making up a table of
values or a buffer or something similar, then the offset is the

9

number of the byte in this bunch that you are currently interested
1TI.

os: Operating System. Its job is to make the computer run. You can
think of the OS as the coach directing the players in a game. We
can change some of the numbers in the operating system to make
the computer do what we want , instead of what it normally does .

Page: Computer memory in the Atari is divided into 256 sections,
called pages. Each page consists of 256 bytes. The pages are num­
bered zero through 255, and you can tell what page a particular
location is in by looking at the high byte of its address. For ex­
ample, location $09AB would be in page nine. See the section
called "Computer Mathematics" for an explanation of what a
"high byte" and "low byte" are, and also for an explanation of
"hexadecimal," which is what that funny number with a "$" in
front of it is.

PAL: The television system used in Europe. See NTSC as well.

Parallel: There are two ways that the computer can talk to something
else . One of these is called parallel 110, which simply means that
the data is sent out one byte at a time. See serial for the other.

PIA: This chip takes care of the controller jacks .

Pixel: A fancy word for a dot on the screen.

Playfield: Anything that appears on the screen other than a player or
missile (see the appendices for a description of players and mis­
siles) .

Pointer: A pointer does exactly what it sounds like: points some­
where . Usually this "somewhere" is the location of some infor­
mation that is needed . The pointer holds the address of this
location.

POKEY: t value you want them to have .

ROM: Read Only Memory . Computer memory that you can't change
with the POKE command or anything else (it's OK to PEEK them
though). ROM locations even remember their values after you

10

turn the computer off! BASIC and the Atari operating system
are stored in ROM.

Scan line: If you look really closely at the screen, you'll see that it's
made up of a whole bunch of tiny horizontal lines. These are
called scan lines and are the height of a graphics mode eight pixel.

Screen memory: A bunch of bytes somewhere in memory (usually at
the end) that ANTIC converts into a picture and sends to GTIA
or CTIA which puts it on the screen. In other words, this is where
the data that is to appear on the screen is stored. In case you
don't understand the difference between this and the display list,
the display list tells ANTIC how to interpret the screen memory
(i.e . where is it, does the data represent characters or pixels, how
big are they, etc.).

Sector: A group of 128 bytes on the disk. It may be difficult to do,
but try to imagine a disk being made up of 40 concentric rings.
Now imagine cutting the whole disk into 18 equal-size wedges.
Each of these wedges will have 40 pieces for a total of 720 pieces
altogether. Well, each of these pieces is a sector.

Serial: This is a method of I/O that sends data out one bit at a time
rather than one byte at a time. See parallel also.

Shadow register: A shadow register is a RAM location that acts like
a messenger for a chip location. Any changes to the shadow reg­
ister are sent to the chip, and vice versa. This is necessary because
a chip location can't be changed permanently, and so it relies on
its shadow register to get information from you.

SIO: Serial Input! Output. This refers to a routine in the OS that takes
care of serial II O. See serial.

Timeout: Sometimes a device needs a little time to think and breathe,
so it takes a timeout. If it takes too long a timeout, however, the
computer gets upset and refuses to talk to it anymore.

User: You, anybody, or anything that uses the computer. BASIC is
considered a user by the OS, and the OS is considered a user by
the 6502. Similarly, BASIC considers your program a user, and
your program considers anyone that runs it a user.

11

VBLANK: Vertical BLANK. We already saw that the television set
draws the screen over and over from top to bottom and left to
right (see HBLANK). VBLANK is the time during which the tele­
vision set is going from the bottom of the finished screen back
to the top to start drawing again.

Vector: This is another kind of pointer. It refers to the starting ad­
dress of a routine. The computer needs to know where to look
for things, and the vectors help it along the way. Usually a vector
references the starting address of a machine language subroutine.

Warmstart: A routine the computer goes through after you press
SYSTEM RESET and before it lets you tell it what to do.

12

WHAT IS A MEMORY LOCATION?

Good question! Your Atari has many "places" within it that can con­
tain numbers . These places we call memory cells, locations, or ad­
dresses. You may use any of these words to mean the same thing, but
"address" is the more formal term that you will hear computer pro­
grammers using. Since the computer can remember the numbers in
each of these places, it is common to call them the computer's MEM­
ORY. Memory is like many blank pages of paper. Each page can hold
only 256 numbers, and we can have up to 256 of these pages.

So where does this leave us? Well, 256 locations per page times 256
pages gives us 65536 locations total that CAN be in your computer.
Computers count in terms of something called a "K." For reasons
beyond my control, one K of memory is actually 1024 locations. Why?
I'll explain all in a few pages. For now divide 65536 by 1024 to get a
possible memory size for the Atari of 64K. OOPs! When you bought
your Atari , the salesperson probably told you it had only 16K or 48K.
Let's solve this very great mystery.

The Atari is capable of using 64K of memory. The factory gives you
16K ROM and 16K or 48K RAM when you buy the computer (we'll
explain ROM and RAM later), but there is a catch (of course). A lot

13

of the memory that comes with the Atari is already filled up with
numbers that tell the computer how to run. The blank area available
for you to use is a lot less than you're led to expect. If you want more
memory, you have to go down to your friendly dealer and buy it.
Memory additions come in 16K, 32K, and 48K plug-in "cartridges."
My grandmother once told me, "Do yourself a favor, buy the large
economy size, you'll need it." She was talking about soap, but her
wisdom applies to computers as well.

Now that you understand how much memory you have, let's talk
about it a little. Each memory address can hold numbers from 0 to
255. Computers start counting at 0 because "nothing" is a very valid
piece of information. I certainly worry when my wallet has "0" in it!
Let's learn how computers count.

14

BITS AND BYTES

A BYTE is really not complicated at all. It is simply a group of eight
BITs. When eight BITs are structured into a BYTE, then each of those
BITs has special significance. You look puzzled! What, you say, is a
BIT?

A BIT is the smallest piece of information that a computer can deal
with . To help understand how BITs are used by the computer, it may
help to imagine the microprocessor as a bus station. This bus station
is on a single-lane road. That means a bus can only travel in one di­
rection at a time as there is not enough room for two buses to pass
each other. Therefore, a bus may either be arriving at the station or
departing. The microprocessor, or bus station, can schedule its bus
with a signal light that says "1 am accepting arrivals" or "I am send­
ing departures".

In fact, in real computer hardware architecture, the wires that carry
information to and from a microprocessor are called the DATA BUS .
We don ' t need eight separate INPUT and eight separate OUTPUT
wires because, like the single lane road connected to the bus station,
the wires are bi-directional. In other words, information can either be
arriving (INPUT) or departing (OUTPUT), but not both. The micro­
processor also has a signal of its own that determines whether it will
receive (INPUT) or send (OUTPUT) information.

15

BYTE EXPRESS

Let's take a closer look at that bus. It is known as the BYTE express,
has eight seats, and always carries eight passengers. Those passengers
are little messengers known as BITs, and, as a group, they are known
as a BYTE. These messengers, or BITs, are rather moody. They are
either turned "ON" or they are turned "OFF." That is called BI­
NARY as they are BI-STATE signals, ON being a "1" state and OFF
being a "0" state. Their vocabulary is just as limited the only
thing they are willing to tell you is their mood. Now how do we get
any meaningful information out of a group of eight little messengers
standing in front of us, each screaming "ON" or "OFF" at one time?

Well, when the bus arrives, we could have the whole BYTE stand in
front of us and then count everyone who is turned' 'ON." That would
give us the capability of counting to eight. Seems pretty limited,
doesn't it? Hmmm, the group really needs a leader. That leader will
be the first BIT on the left. We'll call that BIT the Most Significant
Bit, or the MSB. The last BIT on the right will be the Least Significant
Bit, or LSB. Terrific! Now that we have a group leader and a group
follower, all the BITs should be given a rank.

Handing out ranks is serious business and much thought should be
given to it. We can start with the LSB and assign that BIT the rank
of" 1," since it is the Least Significant Bit. We can be easy on every­
one if we just double that rank for the next BIT in line. So, why not
just keep doubling the rank for the next BIT in line and so on until
we get to the MSB or Most Significant Bit. Now our BYTE looks
something like this:

16

What have we gained? More than meets the eye! When the BYTE gets
off the BYTE express and each BIT starts telling us what its current
mood is, we can make a different and more meaningful interpretation
out of the little guys. If everyone is turned "OFF" except the fourth
BIT from the right, for example, we can check the rank of that BIT
and find it is eight (8). Unknown to the BITs, they have brought us a
message and the message is "8".

Aha, what if we want the bits to get on the bus and carry a message
that says "9". This is a problem because there is no bit with a rank
(value) of 9. What to do? I guess the next best thing is to be very nice
to the bits that have values of one and eight and turn them both on.
When we look at the BYTE now we see 1 + 8 which gives us our 9.
Easy. Even my student Nerdwell can count that high. In fact, Nerd­
well can count to 255 because if you add up all the values of the bits,
you get 255:

1 + 2 + 4 + 8 + 16 + 32 + 64 + 128 = 255

17

HOW TO PEEK

In using this book, we are going to change the values that are stored
in many of the BYTEs that make up memory. To make the discussion
easier, we will usually talk about the bytes as locations or addresses.
These addresses are just like those on mailboxes on a long street. They
start at 0 at one end of the street and increase until they reach 65535
at the other end (64K ... remember). Yes, a computer's memory rep­
resents a long street. Let's look now at one such address. To see what
is inside the location, we will use a BASIC command called PEEK.
Prototype loves to peek at things .

To PEEK at memory location 764, type in this line:

10 PRINT PEEK (764):GOTO 10

Type "RUN", press the RETURN key, and watch the number 255
print over and over on your screen. Now press the space bar and you
should see 32 printing. What is happening? 764 is the location that
tells you what key is being pressed. 255 means no key and 32 means
the space bar. Now you can see how a program could know if you
have pressed a certain key. Try a program something like this:

18

\

10 .:\=PEEK (764)
20 IF A=32 THEN PRINT"YOU PRESSED THE SPACE BAR"
30 GOTO 10

Now you can see why it is important to read this book. It would be
very difficult to know which location to PEEK at without a map of
your computer's memory. It's a good thing that old Professor Von
Chip is such a good mapmaker.

19

HOW TO POKE

Now that we can look at memory locations, we also want to be able
to change what is inside them. Your wish is the professor's command.
Later in the map you will learn that a value of one in location 752
will cause the cursor to disappear (the cursor is the little white box on
the screen). This can come in handy when you have a whole bunch
of text on the screen and you don't want the cursor up there with it.
Since location 752 doesn't normally contain a value of one, we must
change it. The POKE command in BASIC will do this for us:

POKE 752, 1

Wow! That was easy. Now you know that POKEing and PEEKing
are what this book is all about. For the most part the book will just
tell you different numbers to POKE or PEEK.

20

ROM AND RAM

We encounter another small problem when we mess with memory.
Some memory addresses will allow us to read what is there, but will
NOT allow us to write to them. Memory that we can both read from
and write to is called RAM, which stands for Random Access Mem­
ory. This means that we can put numbers into these kinds of memory
locations as well as look at what they already contain. The other kind
of memory is called ROM, Read Only Memory. It is just what its
name implies - we can only read what number is inside a ROM lo­
cation not change it.

Now the next logical question is how do you know which is which?
We will simply tell you as we go through the locations.

21

COMPUTER MATHEMATICS

This section will open new vistas in your horizons. We are going to
learn how the computer deals with numbers larger than 255, and also
how to use the hexadecimal numbering system. Just think of it. Soon
you will be a computer brain just like Prototype.

You must always use decimal numbers with a POKE statement. This
means that sometimes you will have to convert between binary, hex­
adecimal and decimal. The "Bits and Bytes" section covered binary
numbers where we turn on and off individual bits. In that section you
saw that each memory location can only hold numbers up to 255. To
store a value larger than that, we just use two locations in a row.

As an example, look at memory locations 88 and 89 which are called
SA YMSC. These locations hold a number that tells where the top of
the screen is. Because the screen is usually somewhere near the end of
memory (it starts at location 40000 in a 48K Atari), at an address that
is way beyond the 255 limit for one memory location, the computer
needs two locations to store the address. Remember the ranking of
the bits where the MSB, or bit seven as we called it, was valued at
128? If we double that rank again , we get 256. Here is the trick to
computer math. Since there is no bit eight to give such a rank to, we
give the rank to the Entire next byte of 8 bits. Now we just see what
the total of this second byte is and multiply it by 256. Figure 1 is a
sample:

= ON or 1

TOP OF MEMORY

D =OFF or0

V ALUE 128 64 32 16 8 4 2

00000 ••• =7

0 •••• 0 D . = 121

BIT # 7 6 5 4 3 2 o

BOTTOM OF MEMORY
The computer "sees" 121 + 256 * 7 = 1913

FIGURE 1. Bit map

22

(High byte)
or MSB

(Low byte)
or LSB

When using two byte numbers, we call the first byte in memory the
LOW BYTE because it stores the LOWER VALUE. It can only count
from 0 to 255. The second number counts in multiples of 256 and is
called the HIGH BYTE.

Let's try to PEEK and POKE a two-byte number. Suppose you wanted
to fool the computer into thinking that the screen was in a different
place in memory. Such a trick can come in handy when you want to
have more than one screen at the same time. First let's look at memory
and see where the computer thinks the screen is now. Here's a pro­
gram to do this:

10 SCREEN = PEEK (88) + PEEK (89)*256
20 PRINT SCREEN

We know to look in locations 88 and 89 ROM the main part of this
book that lists each location in numerical order. This two-byte loca­
tion is called SA VMSC and points to where the computer thinks the
first byte of screen memory is.

When you run the preceding program, the address that gets printed
out will vary from 7232 to 40000, depending on how much memory
your computer has. What we're going to do is add 480 to this address
so that the computer will think that screen memory starts halfway
down the current screen. All this means is that no text will print in
the top half of the screen, and you'll be able to type below the bottom
of the screen (although you won't be able to see anything there).

Let's go ahead and replace the old value of SA VMSC with a new
number that is exactly 480 more than the old one . Add the following
lines to the preceding ones:

30 SCREEN = SCREEN + 480
40 SCRHI = INT (SCREEN 1256)

Line 40 finds out what number goes into the high byte of SA VMSC.
Remember that the high byte counts the number of pages, or multiples
of 256, and that's why we divide by 256.

50 SCRLO = SCREEN - SCRHI*256

Now we multiply the new high byte by 256 and subtract it from the
total to get the low byte.

23

Finally we place the new values in memory:

60 POKE 88,SCRLO:POKE 89,SCRHI

Let's take a look at what the values would be in each step of the
program, assuming you have a 16K Atari:

10 SCREEN = 64 + 60*256 = 15424
20 PRINT 15424
30 SCREEN = 15424 + 480 = 15904
40 SCRHI = INT(15904/256 = INT(62.125) = 62
50 SCRLO = 15904 - 62*256 = 15904 - 15872 = 32
60 POKE 88,32:POKE 89,62

The high byte can count from 0 to 255 just like the low byte. This
means the largest number we can have using a two-byte address is:

255 + (255*256) = 65535

If we count 0 as a number (since the computer does), that gives a total
of 65536, which brings us back again to 64K. We have now come full
circle in our discussion, so it is time to go on to something else to
challenge you.

24

HEXADECIMAL NUMBERS

Come back. You don't have to run away at the sound of those words.
Hex, as its friends call it, is not nearly as hard as everyone thinks it
is. As a matter of fact, it's really quite simple. But, just in case you
don't believe us, I provide both decimal and hexadecimal numbers
throughout the book. Now, though, we're going to learn about hex
together.

The main use for hex is in assembly language programming. We're
not going to worry about that now though, because it's not really
important. Instead, we're going to go back to grade school, where we
first learned all about the number system. As you'll recall, we use the
decimal number system, which means that everything is based on
powers of 10. For example, the number 452 is equal to 4* 100
+5*10+2*1, right? In other words, 4*10"2+5*10"1+2*10"0. Now
you're not going to believe this, but the only difference between dec­
imal and hex i~ that hex is based on powers of 16 instead of 10. For
example, 4~2 hex would equal 4*16"2+5*16"1+2*16"0 or
4*256+5*:6+2, in other words, 1106. Pretty simple, huh? Actually,
there's r ,Ie more thing that I should probably mention. The number
9 in r ,x is the same as 9 decimal, but 10 hex is 16 decimal (1*16"1).
So .ow do you write 10, II, 12, 13, 14, and 15 decimal in hex? Try
" B, C, D, E, and F! That's why hex numbers look so confusing.

So, for example, F in hex equals 15 decimal, IF equals 31 (16+ 15),
and so on. Qh, and by the way, binary is actually the same as hex
and decimal, except it counts in powers of 2!

Don't worry, I'm not going to leave you yet. A few more examples
should make you a little more comfortable about hex and how to use
it, but first a chart (Table 1) to help us out.

25

Table 1. Hex Conversion Chart

Column # 4th 3rd 2nd 1st HEX

4096 256 16
8192 512 32 2 2

12288 768 48 3 3
16384 1024 64 4 4
20480 1280 80 5 5
24576 1536 96 6 6
28672 1792 112 7 7
32768 2048 128 8 8
36864 2304 144 9 9
40960 2560 160 10 A
45056 2816 176 11 B

49152 3072 192 12 C

53248 3328 208 13 D

57344 3584 224 14 E
61440 3840 240 15 F

26

DECIMAL TO HEX

Let's take the number 9304. Look in the chart to find the largest num­
ber that is SMALLER than 9304. That would be 8192, which is the
second number in the fourth column. This means the hex humber will
have four digits because you found the decimal value 8192 in the
fourth column. Write down the "hex #" from the chart in the fourth
place:

2---

Now subtract 8192 from the original number of 9304 to leave a re­
mainder of 1112. Looking at the chart again we find the nearest
SMALLER number of 1024 in the third column . Put down the cor­
responding hex # and subtract 1 024 from 1112:

24--

Do the same for the new remainder of 88 to find the hex # digit for
the second and first place of the hex number. Don't forget to mark
hex numbers with a "$" as is standard with computer types like us.
Here is the complete example (Example 1):

27

Decimal-to-Hex

9304
-8192 (largest # less than 9304 on chart, 4th column) ___ _ 2

1112
-1024 3rd column _______________ _.. 4

88
80 2nd column ________________ • 5

8 1st column _______________ --. 8 = $2458

Example 1_ Decimal-to-hex example

If you find that you have numbers for only the first and third places,
this means to add a 0 as a placeholder. $040F would be an example_

28

HEX TO DECIMAL

Conversion in this direction is even easier. Just look up each hex num­
ber in the chart, find the corresponding decimal value, place them in
a column, and add them up to get a decimal total. Here is the man­
datory example (Example 2) you are no doubt expecting:

Hex-la-Decimal

4lh 3rd 2nd 1 sl

$ 4A3F = 4 A 3 F

I

I I ,--I ------

L----------------25::
L. - ----- -----------16384

TOTAL = 19007 (dec)

Example 2. Hex-to-decimal example

29

5

7
<1
."

6 553

56368
5 8310
573"1
5734

G
5

3

552.9
5 52 9
SLj7B"I
547 1:>

z
I ~H~

" \3
7

"-
I

54016
540 15
5 3 7 100
'5:; 75" 9
53£04
5350

S324
5324

"l 'l 1 5
-4q15

-409 60

ICAM5IZ(7
~;C\' (I
SAUNIS

40)
Obi
c

(98,1l9
SDL.S-rL
(5&0:5(01
t-4€M T O

(74 1.14 1.)

)-+

~J

.?
17'1::'

'791
153"
15"35

1\52
li S I

512

ATIlRJ MEMORV MAP~~
(NOT iO ScALE)

QSROM
CHARAC1'ER $1:1'

FL.OATrNG POINT PACKAGE
UNUSED
ANTIC.
PIA

POKEY ----. ~

UNUSED
GTIA/C-r/A
UNUSED

BASic CARTRIDGE
NOtH ING IF L-E'5S THAN <10KOIHERIVISC
RAMTOP POINTS TO 40960

SCREEN MEMORY FRe~ FREE PISPL.AY ""1ST RAM
UP , 0 YouR RAM
M E:MORY Up -rO YOUR

FREE
L-IM II MeMoRY I...lMIT

FREE RAM
RAM 13063

13062

DUP
Mf-""T~

(Ir~ / 'I5) BASIC PROGRAM AREA
75~8

IN(LUDESBuF',£RS.TABlE~ FPEe RAM 1S~7
7420
74tq ~,--

Dos "20"1'3
BASIC PRoG RWI< AREA '2D<17

U';Ef\ l306T AREA INCLUDES BUFl<R,TABI1I fie

FREE RP,M

FR~S. ~Af\1 INPUT L.INE BUFFER

SYNTAX SiACK
-- - - - ---

OS RAM -,,,
l'~ t--- _ _ _____ 6 5 02 SlACK
;~ f-- ___ ~'SK Zf3f<O PACiE' RA!v\ F R EE R AM
'~ _ ~~_ a s ..<- E Ra PAGE. RAM

BAS/el Mo DOsl BASIC W/DOS }No CART W/ DQS ~ NO CART/ NO DOS

FIGURE 2. Large memory map

30

?
512

"
>S6
'>5
"8
11.7

0-

HOW TO READ THE MEMORY MAP

BEGINNING USERS - Read the text that is printed in BOLD TYPE
only. What you are reading right now is in bold. These memory lo­
cations will be the easiest for you to use and usually don't involve
assembly language.

ADV ANCED USERS - Read everything! Many areas of memory are
not of any practical use, but you can learn alot about HOW a com­
puter works by reading the boring parts.

The book is formated like this:

LABEL
DECIMAL # HEXADECIMAL #
DESCRIPTION

HEXadecimal numbers are often preceded by a "$".

-v

OS RAM
6502 STACK

~9C ZE:I<O PACiE' K'AfvI T FREC-S RAM

OS ZC:RO PAGE. RAM

BASI~ODOS~ BASIC W/DOS }No CART W / DOS ~ND CART/NO OOS

31

PAGE ZERO

Locations 0 to 255 are called "Page Zero" (in the language of com­
puters, a "page" is 256 bytes). Since one byte can hold any number
in the range of 0 to 255, the computer only needs one byte to hold
the address of a page zero location. This saves time when you have
to load or store a value in machine language, so page zero is very
important to machine language programs that have to run as quickly
as possible. That's why the operating system uses the first 128 bytes.
The other 128, locations 128 through 255, can be used by BASIC and
you for superfast machine code.

Machine language programmers should note that locations 2 through
7 are not cleared by either a coldstart (turning the computer off and
then on again) or warmstart (pressing SYSTEM RESET) operation.

LINZBS
0,1 0000,0001

The great mystery location! Nobody seems to know exactly what this
location does. According to Atari's operating system listing, it is
"LINBUG RAM [and] will be replaced by [the] monitor RAM" (your
guess is as good as mine), and the only time it uses it is to define it.
It does seem to be used to store the VB LANK timer value though, so
it's probably not completely useless .

CASINI
2,3 0002,0003

This is used in "cassette initialization." As you probably already
know, if you hold down the START button while turning on the com­
puter, the computer will beep. If you then press RETURN, the com­
puter will expect a machine language tape to be in the cassette recorder
and will proceed to load it. This process is called "booting" a cassette.
The first six bytes stored on the machine language tape contain special
information about the tape. The first byte, actually, is ignored. The
second tells how many 128 byte "records" are on the tape (when you
load in the tape, each beep while loading represents a record). The
third and fourth give the starting address memory that the machine
code is to be stored at, called the "load" address. The fifth and sixth
give the "initialization" address (where to go to get the program set

32

0,1-7

up and ready to run). The initialization address , as you may have
guessed, gets stored here at CASINI. Once the whole program has
loaded, the computer jumps to the load address plus six (to skip over
these special bytes) where the program either tells it to load some more
or RTS (ReTurn from Subroutine). When the computer comes across
an RTS instruction, it looks in CASINI for the initialization address
and JSRs (Jump to SubRoutine) to that address . Finally (and you
thought cassette boots were easy), the computer JSRs to the address
in DOSVEC (10,11), which gets the program running (DOSVEC
should be set up by the program either in the initialization process or
as part of a multiple load) .

RAMLO
4,5 0004,0005

RAMLO has a bunch of uses, none of which will be useful to you.
First, the OS uses it as an index (like the variable in a FOR/NEXT
loop) while clearing out memory after you turn on the computer. It
also uses it as an index while testing memory to make sure everything
is A-OK. Finally, and you'll love this one, it's used to store the "disk
boot address," which is usually 1798 in case you care, for the boot
continuation routine (which is what happens when you want to load
into more than one part of memory). By the way, it's real buddy­
buddy with TRAMSZ and TSTDA T (the three work together in the
RAM test routine).

TRAMSZ
6 0006

Another location with a whole bunch of uses. As mentioned,
TRAMSZ helps out RAMLO in testing the RAM. Its value is then
transferred to RAMTOP (location 106). But, before any of that hap­
pens, it is used in testing whether or not a left cartridge is plugged in.
If there is a left cartridge (also known as cartridge A), then TRAMSZ
is set to one. If not, it's set to zero.

TSTDAT
7 0007

This one only has two functions. First, as you already know, it helps
out in the RAM test routine (see your OS listing if you're dying to
find out what the RAM test routine is). Secondly, like TRAMSIZ, it's

33

used initially in testing whether or not the right, or B, cartridge is
present.

Machine language programmers: Locations 8 through 15 are cleared
on coldstart only.

WARMST
8 0008

This is the warmstart flag, telling you whether you're in the middle
of a warmstart or a coldstart. If WARMST equals 0, then you're in
the middle of a coldstart. If it's anything else, then you're in the mid­
dle of a warmstart (pressing SYSTEM RESET will set W ARMST to
255). The main purpose of WARMST is to make sure that if someone
presses the SYSTEM RESET button before everything is initialized
properly, the computer wi ll know about it and start over instead of
messing everything up. Nice stuff to know, but generally useless. But
wait, you say, can't I trick the computer into rebooting by changing
the value of W ARMST to 0, that way preventing people from using
SYSTEM RESET to stop my BASIC program so they can LIST it?
No . Although you can change the value to 0, as soon as you press
SYSTEM RESET it will change back to 255. See location COLDST
(580) for a way that you can trick the computer . You might also look
at locations POKMSK (16) and STMCUR (138,139) for other ways
to protect your BASIC programs from other people's greedy eyes.

Incidentally, warmstart normally starts at location 58484.

BOOT?
9 0009

Booting, as you will recall, is the process of loading the program into
the computer 's memory. In our case the program is loaded from tape
or disk. Sometimes a boot is not successful. Maybe you put a rock
and roll tape into your Atari recorder by mistake, or you forget to
close the disk drive door. In any case, BOOT? is used to tell the op­
erating system whether or not the boot attempt was successful. If
BOOT? is equal to one, then there was a successful disk boot. A two
indicates a disk boot, and a three (a one plus the two) means both the
disk and tape booted. A zero means that everything bit the big one.

34

7-9

If a cassette boot attempt doesn't work, then the OS goes on as though
there were no attempt. If the disk boot attempt fails, and this has
happened to most of us, then a lovely "BOOT ERROR" message
appears on the screen and the OS gives it another try.

OK, now for some miscellaneous stuff. A cassette boot always comes
before a disk one. If there is a sucessful cassette boot, then every time
SYSTEM RESET is pressed the computer will go to the address stored
in CASINI .

What is an address stored in?

35

The address is a location where a routine you want to use is located
in memory. This address is usually called a VECTOR, because it points
to something. You can]SR in machine language or USR in BASIC
to get to the routine.

Back to CASINI. If the disk boots sucessfully, then the computer will
go to the address stored in DOSVEC (10,11). If BOOT? is set to 255
by you, then the computer will "lock up" if SYSTEM RESET is
pressed. This is a great way to keep people from looking at your pro­
grams. Incidentally, "lock up" means that the computer will not do
anything until you turn it off.

DOSVEC
10,11 OOOA,OOOB

This is another vector, used to tell the OS what to do when SYSTEM
RESET is pressed. It holds the cassette boot starting address, the
disk boot starting address , or the address of the "black-board mode"
routine (type 'BYE' from BASIC and press RETURN; that's the
blackboard mode and the routine for it starts at location 58481). It's
called DOSVEC, because if you're using DOS from BASIC, DOS­
VEC holds the address that BASIC jumps to when you call DOS (DOS
VECtor - get it?) . If you want to use this location from BASIC to
point to your own routine, then you'll have to make a small change
to DOS, since in this case SYSTEM RESET restores DOSVEC to its
original value. The change is easy to make, though. All you have to
do is POKE 5446 with the Least Significant Byte (LSB) of the address
of your routine, and 5447 with the Most Significant Byte (MSB) of
the address. The MSB is the first two digits of the hex address, the
LSB is the last two. You can compute MSB and LSB from a decimal
address with the following formulas: MSB = INT(address/256),
LSB = address-(256*MSB). Then call DOS and res ave it using the
WRITE DOS FILES option. This will give you a custom version of
DOS that will allow your routine to run every time SYSTEM RESET
is pressed or DOS is called.

Miscellaneous stuff again, DOSVEC is set to 6047, the address of a
routine to load in the DUP .SYS file, if DOS is used and it is not told
otherwise (i.e., no user boot programs). And, for you machine lan­
guage dabblers, if you create an AUTORUN.SYS file that doesn't end
with an RTS, make sure you set BOOT? to 1 and COLDST (580) to
o (so as not to confuse the computer) .

36

DOSINI
12,13 OOOC,OOOD

9-14,15

This one's easy. Essentially, it is the disk equivalent of CASINI. As
a matter of fact, the cassette initialization address is stored here before
the OS realizes it's doing a cassette boot and moves it to CASINI. If
there is no cassette or disk boot, DOSINI will read 0, O.

DOSINI can be very useful because it holds the address that the OS
jumps to when SYSTEM RESET is pressed. If you have a machine
language routine that you want to go to whenever SYSTEM RESET
is pressed, store its address here .

APPMHI
14,15 OOOE,OOOF

This location helps prevent your programs from accidentally being
written over by the OS. If you're using BASIC, it points to the end
of your BASIC program. The OS uses it to determine whether or not
there's room for the graphics mode you want to use. As you probably
know, the graphics mode stuff (screen memory and display list) is
stuck way up at the top of memory. When you tell the OS to set up
a graphics mode (with either a GRAPHICS or OPEN "S:" com­
mand), it tries to put the display list and screen memory right below
the top of memory. Unfortunately, sometimes there isn't enough
room, and they would extend down into your program, which you
obviously don't want to happen (unless it's a horrible program).
APPMHI to the rescue! Before it sets up the requested graphics mode,
the OS checks APPMHI to see if there's enough room. If there isn't,
it tells you so and sets up a GRAPHICS 0 screen instead, updating
MEMTOP (741,742) in the process. MEMTOP, in case you didn't
guess, holds the address of the last possible memory location you can
use for your program, i.e., the memory location right before the dis­
play list. On the other hand, if there is enough room, the desired mode
will be set up and MEMTOP updated accordingly.

Sometimes you may want to use the memory between the end of your
program and MEMTOP to store character sets, or player/missile in­
formation. That's fine, but make sure you change APPMHI so that
the OS knows that you're using that memory (in other words, set
APPMHI to point to the memory address after the last one you use).

37

Other locations that might be of interest here are CHBASE (54281),
PMBASE (54279) , and RAMTOP (106).

Machine language programmers: Locations 16 through 127 are cleared
on either coldstart or warms tart.

POKMSK
16 0010

POKMSK is used to turn various types of "interrupts" on or off. An
interrupt is exactly what it sounds like; the computer gets interrupted
from whatever it's doing and told to do something else (it then usually
returns to what it was doing before it was so rudely interrupted) .

For machine language programmers, POKMSK deals with POKEY
interrupts and is used and altered by the IRQ service. It 's also a shadow
register for IRQEN (53774) .

The following chart (Figure 3) shows exactly what part of POKMSK
deals with which interrupts. Change a specific bit to a one to turn on
that interrupt, zero to turn it off.

Before we decide whether or not any of this is useful, a few notes for
the diehards. The default value for POKMSK is 192; BREAK key and
"other key" interrupts enabled . When you enable a timer interrupt,

BIT

NO.

7

6

5

4

3

2

1

o

DECIMAL

VALUE

128

64

32
16

8

4

2

BREAK key

" Other key"

TYPE OF

INTERRUPT

Serial input data read y

Serial output data required

Serial out transmission finished

POKEY timer four ('B' and later OS ROMs

only)

POKEY timer two

POKEY timer one

FIGURE 3. Pokmsk chart

38

14,15-16

the associated AUDF register will be used as a timer and will generate
an interrupt request (IRQ) when it has counted down to zero. See
VTIMRl1214 (528 to 535) and the POKEY chip (53760 to 54015) for
more details.

For you beginners, as well as the pros, there is a handy-dandy use for
for POKMSK. If you haven't guessed already it allows you to disable
the BREAK key so that nobody can BREAK into your program and
steal your code. All you have to do is turn bit seven off. How do you
do that? Try the following subroutine:

1000 BK=PEEK(16):IF BK>128 THEN POKE 16,BK-128:POKE
53774,BK -128
10tO RETURN

Notice that we also change location 53774. As mentioned before,
POKMSK is a shadow register for 53774, and therefore both must be
changed. We also check first to make sure that bit seven is on. We
do this because, unfortunately, this routine has to be called more than
once. You see, the BREAK key is re-enabled by the first PRINT state­
ment that prints to the screen, by an OPEN "S:" or OPEN "E:"
statement, by the first PRINT statement after such an OPEN, by the
first PRINT statement after a GRAPHICS command, or by a SYS­
TEM RESET. Phew! To make sure you keep the BREAK key dis­
abled, you'll want to GOSUB to the preceding routine after each such
command.

39

More for the machine language programmer. If you have the newer
OS 'B' ROM, there is a vector for the BREAK key interrupt that
allows you to write your own routine for the BREAK key. It is called
BRKKEY, and can be found at locations 566 and 567.

BRKKEY
17 0011

OK, you've used POKMSK to zonk out the BREAK key. What hap­
pens if for some reason you need to know if somebody's pressing it?
BRKKEY tells you just that. If it's equal to zero then the BREAK
key is pressed (if it's not then it isn't!). If you're looking at BRKKEY
from BASIC, remember that you'll have to keep checking it over and
over again; BRKKEY tells if BREAK is pressed, not if it were.

Machine language programmers, this location along with POKMSK
lets you write your own BREAK key routines if you don't have the
'B' ROM, or if you want to make sure your software will work on
the old ROMs. If you do have the 'B' ROM (location 58383 will equal
zero if you do), you can use the vector mentioned under POKMSK.

A few boring bits of information. If the BREAK key is pressed during
an input/output (lIO) operation, BRKKEY will read 128, not O. The
keyboard, display, screen, and cassette handlers all check BRKKEY
to see if they should BREAK (why else?), as do lIO routines and scroll
and draw routines. Also look at locations STATUS (48) and DST AT
(76) for related stuff.

RTCLOK
18-20 0012-0014

This one's actually fun and interesting, and you may even have used
it already. It's a clock-the "internal realtime clock" (which just
means that it's inside the machine and actually keeps good time). It
doesn't count in seconds though, but rather "jiffies." A jiffy is a
sixtieth of a second, which happens, not by coincidence, to be the time
that it takes the television set to fill the screen. After the screen is
filled, a special interrupt occurs, called the Vertical BLANK
(VBLANK) interrupt. The OS gets a lot of things done during
VBLANK, one of which is updating RTCLOK. Every jiffy (during
VBLANK), location 20 gets increased by 1 until it equals 255. At that
point, since 255 is the largest number a memory location can hold, it
gets reset to 0 during the next VBLANK, and location 19 gets in-

40

16 - 18-20

creased by 1. You can probably guess what happens next. When lo­
cation 19 reaches 255, it gets set to 0 during the next VBLANK and
location 18 gets increased by 1. Finally, when location 18 reaches 255,
everything gets reset to 0 and the whole thing starts all over again.
So, to put things in a more understandable perspective, location 20
increases by 1 every sixtieth of a second, location 19 every 4.27 seconds
(256/ 60), and location 18 every 18.2 minutes (4.27 seconds*256).

The following routine will tell you the number of jiffies, seconds, and
minutes that the clock has been running, i.e., since you turned on the
computer or last POKEd 18 to 20 with zeros.

10 J = PEEK(20) + PEEK(19)*256 + PEEK(20)*256*256
20 S = J / 60
30 M = S/ 60
40 PRINT "RTCLOK reads ";J;" jiffies, or ";S;" seconds, or
";M;" minutes."

All three locations are set to zero when you turn on the computer or
press SYSTEM RESET. You can set them to whatever values you
want just by POKEing them. Possible uses for RTCLOK include tim­
ing things that need precise timing. You can even use it to keep track
of the time (what an absurd use for a clock).

41

BUFADR
21,22 0015,0016

This is a temporary register used to store the disk buffer address. It
exists so that the OS can use indirect addressing to access the disk
buffer. If this doesn't make sense, then BUFADR is not the place for
you.

ICCOMT
23 0017

Another hardcore location . ICCOMT holds the CIO (Central Input
Output) command and is used as an index into the command table to
find the offset for the correct vector to the desired handler routine .
Like I said, for hardcores only.

DSKFMS
24,25 0018,0019

This is used as a vector to the FMS (File Management System). It is
called JMPTBL by DOS (which doesn't know any better).

DSKUTL
26,27 OOIA,OOlB

Another location used by DOS . DOS calls it BUFADR, but we'll con­
tinue to call it DSKUTL so as not to get confused with the OS BU­
FA DR (21,22). DSKUTL points to a buffer that the disk utilities
package (DUP) uses when copying or duplicating a file . If the user
says it's OK to use the program area while copying or duplicating,
then DSKUTL gets the value in MEMLO (743,744) . If the user says
no way to the program area, then DSKUTL gets the address of DBUF,
a special 250-byte buffer at location 7668.

PTIMOT
28 OOIC

If you're not a big fan of machine language 110, then skip this one.
PTIMOT is the printer timeout value. It's set by your printer handler
software, and initialized by the OS to 30, which represents 32 seconds.
If you're good at math you'll realize that 60 would represent 64 sec­
onds. It's updated after each printer status request, getting the specific
timeout status from DVSTAT+2 (748).

42

21,22-31

A timeout is essentially what it sounds like . The printer (it could also
be a disk drive or similar device) says, "Hey, timeout," and takes
five. This has the noticeable effect of the printer just sitting there for
a brief period of time doing nothing. Then it decides to come back
and get to work again. What are you going to do, fire it? Anyway,
those of you with the original OS may be very familiar with this sit­
uation, since that version of the OS contained a bug causing un­
essary timeouts. You would be doing something like printing when all
of a sudden the computer would stop everything for up to five min­
utes. Version B did away with it.

PBPNT
29 001D

PBPNT is an index (pointer) into the print buffer. It tells the OS how
full or empty the buffer is, and can therefore have any value from
zero up to the size of the print buffer, PBUFSZ (30).

PBUFSZ
30 001E

PBUFSZ is the size of the print buffer, but not necessarily the size of
the print line . The normal buffer size is 40 bytes (which is obviously
not the normal line size for most printers). It is initialized to zero by
the OS (and not set until P: is opened), and set to four in the case of
a printer status request.

Characters get stored in the print buffer on their way to the printer.
The OS checks PBPNT (29) to see whether it's equal to the buffer
size (which would mean that the buffer is full) and, if it is, the buffer
gets sent to the printer. If the buffer gets an EOL (End Of Line) char­
acter, then the OS fills the rest of the buffer with spaces and sends it
to the printer.

PTEMP
31 OOIF

This is used by the printer handler to temporarily hold the character
being sent to the printer while it goes off and does some chores.

ZERO PAGE INPUT/OUTPUT CONTROL BLOCK (ZIOCB)

The 16 locations from 32 to 47 are used by CIO to make I/O as ef­
ficient as possible (remember the speed advantage of page zero). They

43

are set up the same way as the regular IOCBs (832 to 959) and essen­
tially act as a mirror for the IOCB that wants to be used. In other
words, when a CIO operation gets going, the information in the IOCB
that's involved is moved to here, where it is used by the CIO routines.
When the CIO is all done, then the updated information is moved
back to the IOCB. Remember, as complicated as this sounds, it's only
done for the sake of speed.

For more information on ZIOCB, CIO, and the rest of the I/O proc­
ess, see the appendix on I/O.

ICHIDZ
32 0020

This serves as an index into the handler address table for the file that's
currently open on this particular 10CB. If there is no such open file
(i.e., the 10CB is free), then ICHIDZ gets set to 255.

ICDNOZ
33 0021

The device or drive number. DOS uses it to tell the maximum number
of devices, and therefore calls it MAXDEV (I'll bet you can see a
connection there). It gets initialized to one.

ICCOMZ
34 0022

This is the command byte, which is set by the user, in the course of
setting up the regular IOCB, to tell CIO what kind of operation is to
be performed (GET, PUT, FORMAT, etc.). It also determines the
format of the rest of the IOCB (which will be different for different
commands).

ICSTAZ
35 0023

ICST AZ is the status of the last 10CB action taken. The device in
question tells CIO what happened, CIO tells the OS, and the OS sets
ICST AZ (a little chain of command here). Hopefully everything went
OK, but if it didn't, ICST AZ is the guy who'll know .

44

32-43

ICBALZ,ICBAHZ
36,37 0024,0025

Another buffer address, this one for data transfer. The OS also uses
the ICBAZ twins to get the device name from the user (in this case
ICBALZ / HZ holds the address of the location where the device name
has been stored).

I CPTLZ, I CPTHZ
38,39 0026,0027

Each device has its own routine to "put" a byte into the device. The
OS sets this location to hold the address (minus one) of the routine
for the device being used . When the file is CLOSEd (and on powerup),
it is set to the address of CIO's error routine for an illegal put (because
you can't put something into a device unless it's open) .

ICBLLZ,ICBLHZ
40,41 0028,0029

More buffer stuff. This time we have a counter that is initially set to
the maximum number of bytes to PUT or GET in an I/O operation.
It gets decremented every time a byte is put or gotten.

Machine language programmers can set this location to the size of the
memory block they want to transfer. By checking after each PUT /
GET to see if it's equal to zero, you'll be able to tell when the transfer
is done.

ICAXIZ
42 002A

This is the first byte in the OPEN command after the 10CB number.
It tells whether the user wants to READ, WRITE, or both.

ICAX2Z
43 002B

OK, the last location was the first byte after the 10CB number, so
guess which one this is? Hey, you're on the ball! ICAX2Z has no
specific function, it really depends on the device you're using . CIO

45

pretty much uses it as a working variable, although some serial port
functions also use it.

Locations 44 to 47 are also called ICSPRZ or ENTVEC and are spare
bytes for local CIO usage.

ICAX3Z,ICAX4Z
44,45 002C,002D

BASIC's NOTE and POINT commands use these locations to transfer
disk sector numbers .

ICAX5Z
46 002E

ICAX3Z/4Z give the sector, ICAX5Z gives the byte within the sector.
It is also used to store the IOCB number times 16 (since each IOCB
is 16 bytes long, this gives an index to the beginning of the IOCB) .
In this case, it is called ICIDNO.

ICAX6Z
47 002F

Sometimes this doesn't do anything. But sometimes (only sometimes)
it is called CIOCHR and used to temporarily store the byte that's
getting ready to be PUT somewhere (aren't computers wonderful?).

EXAMPLES OF USING IOCBs FROM BASIC

(lCAX1Z and ICAX2Z are referred to as AUX1 and AUX2 respec­
tively.

BASIC Command

OPEN #1,12,0, "E:"

Operating System IOCB Parame­
ters

IOCB = 1
Command = 3 (OPEN)
AUX1 = 12 (READ and
WRITE)

46

GET #1,X

Put #1,X

INPUT #1,A$

XIO 18,#6,12,0, "S:"

STATUS
48 0030

43-48

AUX2 = 0
Buffer Address = ADR("E:")

IOCB = I
Command = 7 (Get character)
Buffer length = 0
The gotten character is stored in
the accumulator.

IOCB = 1
Command = 11 (Put character)
Buffer length = 0
The character is output through
the accumulator.

IOCB = 1
Command = 5 (Getrecord)
Buffer length = Len (A$) - 1 (no
more than 255)
Buffer address = Input line
buffer

IOCB = 1
BASIC uses a special put byte
vector in the CB to talk directly
to the handler.

IOCB = 6
Command = 18 ("fill")
AUXI = 12
AUX2 = 0

A couple of uses for this guy. First, and probably most important
(after all, it got its name for this one), it is used to hold the status of
the SIO (Serial Input/Output) routine currently taking place. Figure
4 lists known values:

47

($01) Operation complete (no prob lems)

138 ($8A) Device timeout (no response)

139 ($88) Device NAK (no acknowledgement)

140 ($8C) Serial bus input framing error (your guess)

142 ($8E) Seria l bus data frame overrun error (worse and

worse)

143 ($8F) Serial bus data frame checksum error

144 ($90) Dev ice done error (it packed up shop)

FIGURE 4. Status chart

STATUS also uses TSTAT (793) as a temporary storage location. The
other use, you may recall, is as a storage register during SIO routines
for the BREAK abort, timeout, and error values.

CHKSUM
49 0031

SIO's data frame checksum. A (much) simplified explanation of
checksums is called for here. A checksum is essentially a sum of values
used to check that the values were received correctly. When data gets
sent somewhere, the computer adds all the values sent into one byte,
and then sends that byte as the checksum value. When data is being
received, the values are again added and the result compared to the
checksum. If the two aren't equal, that means that at least one of the
bytes received was incorrect, and the computer usually responds with
an error message. In case you're wondering how you can add a whole
bunch of bytes together and store the result in just one byte, you can't.
If the check sum exceeds 255, then the carry is just added onto it. For
example, in the world of checksums, 254+31=2,128+ 128= 1, and so
on.

A "checksum sent" flag is located at CHKSNT (59). CHKSUM relies
on BUFRFL (56) to tell when the checksum is to be sent or received.

BUFRLO,BUFRHI
50,51 0032,0033

Hey, it's another data buffer! This one is used to hold the stuff that
gets sent out or received during 110. Actually, BUFRLO/HI is a dy-

48

48-57

namic pointer into the buffer (which just means that it points to the
next byte to be senti received rather than always pointing to the be­
ginning of the buffer).

SIO and the DCB (Device Control Block) both use this pointer.

BFENLO,BFENHI
52,53 0034,0035

A pointer to the byte right after the end of the data buffer described
in the previous location . This helps SIO and the DCB determine when
the buffer is full.

CRETRY
54 0036

Sometimes you may get an error message trying to do stuff like read­
ing from or formatting the disk. Before you tell the user to go toss
the disk in the trash, however, you'll probably want to double-check
to make sure that there really is something wrong with the disk, and
it wasn't just a temporary boo-boo. CRETRY specifies how many
times to try again before giving up. It is initialized to 13.

DRETRY
55 0037

The same basic idea as CRETRY, but where CRETRY double-checks
that a specific command doesn't work, DRETRY double-checks to
make sure that the whole device doesn't work . It is initialized to one.

BUFRFL
56 0038

If BUFRFL equals 255, then the data buffer is full. If it doesn't, it
isn't.

RECVDN
57 0039

If RECVDN equals 255, then all the data that was supposed to be
received has been. If it doesn't, it hasn't.

49

XMTDON
58 003A

If XMTDON equals 255, then all the data that was meant to be sent
was. If it doesn't, it wasn't.

CHKSNT
59 003B

If CHKSNT equals 255 (you should know this already), then the
checksum was sent.

NOCKSM
60 003C

More checksum stuff. A zero here means that a checksum follows the
current transmission . No zero means no checksum.

BPTR
61 003D

By now you should be getting the idea that buffers are pretty popular
items around a computer. Here's another buffer to further enforce
that idea. This time we have one for cassette data. Like BUFRLO/HI,
BPTR is actually a pointer into the buffer (which is located at CAS­
BUF [1021 to 1151]), indicating how full or empty the buffer is. It
can be anything from zero to the value in BUM (650). If it's equal
to BUM, then the buffer is either empty or full (depending on whether
it was being read into or written out of, respectively). It is initialized
to 128.

FTYPE
62 003E

You load in a program from cassette and while it's loading, the com­
puter goes "beeeep (pause) beeeep (pause) etc.," right? Well, the pause
has a name. It's called an "inter-record gap." Can you say "inter­
record gap"? Sure, I knew you could. Anyway (so much for the comic
relief), FTYPE specifies the kind of gap to put on the tape. It equals
o for normal gaps (like in a CLOAD tape), 128 for continuous (long)
gaps (like in an ENTER "C:" tape).

50

58-66

FTYPE gets its value from ICAX2Z (43), which gets it from DAUX2
(779), which gets it from the user.

FEOF
63 003F

OK, we're still loading from cassette . How do we know when there's
no more to read? The last record (each beep when loading represents
a record) on a cassette file has a command byte of 254 and is called
the EOF (End Of File) record. FEOF is set to 255 when the EOF
record is reached, and 0 before that.

See CASBUF (l02l) for an explanation of the way cassette records
are structured.

FREQ
64 0040

Quite simply, the number of beeps that the Atari makes when you
OPEN the cassette handler: one beep for read, two for write (type
"CLOAD" and press RETURN for a demonstration).

SOUNDR
65 0041

SOUNDR is used to turn the beeping off (or back on) while the cas­
sette or disk program is loading. A zero here will stop the beeping,
anything else will get it going again. Also see location PACTL (54018).
The beeping is caused by the loading of data from the right channel.
Atari added this to the computer so that its educational tapes can talk
to you while loading programs. Ah hah! This must mean that the
left channel still can be heard even if you change the value in
location 65.

CRITIC
66 0042

CRITIC is used to tell the OS that the current I/O operation is time­
critical (disk or cassette operations, for example). This is important,
because in the case of time-critical I/O it is important that the com­
puter spend as little time in vertical blank as possible. When CRITIC

51

is a nonzero value, the OS knows not to execute the second stage of
the VB LANK process (CRITIC is checked at the end of stage 1). Since
there are some things happening during stage 2 that you may not want
to interrupt (check the OS listing if this is really of concern to you),
CRITIC should be used only when necessary. To experiment, poke a
2 into 66 and then press any letter. The repeat capability will not work
and CONTROL-2 will sound funny. You can't press any key twice in
a row.

The following seven bytes are called FMSZPG and serve as zero page
registers for the disk file manager system (FMS).

ZBUFP
67,68 0043,0044

When the FMS does disk 110, it needs to know the user filename so
it can OPEN the file. It expects to find it in a buffer pointed to by
ZBUFP.

ZDRVA
69,70 0045 ,0046

Zero page drive pointer. FMS also uses ZRDV A in its setup, free sec­
tor, and get sector routines. I know this sounds somewhat cryptic, but
it's that kind of location.

52

ZSBA
71,72 0047,0048

A pointer to the sector buffer.

ERRNO
73 0049

66-77

If things go wrong during disk 110, this is where you can find the
error number. FMS initializes it to 159.

CKEY
74 004A

If the START button is held down when the Atari is first turned on,
CKEY is set to one (zero otherwise). This indicates that a cassette file
is to be booted.

CASSBT
75 004B

If a cassette file is booted and the boot is successful, CASSBT gets
set to one. Zero means boot no goot. Also see BOOT? (9).

DSTAT
76 004C

A location of all trades, DST A T is used mainly by the display handler
to indicate display status and as a keyboard register. It is also used
to indicate a cursor out of range error, the BREAK abort status, and
too little memory for the desired screen mode.

ATRACT
77 004D

Try leaving the Atari on for about nine minutes without pressing any
keys (or save yourself some time by POKEing ATRACT with 128).
You've probably run across this effect before; it's called the "attract
mode" and, as you can see, causes the colors on the screen to change
every four seconds or so, at subdued brightnesses. Why, you may ask?
If you leave your computer alone for several hours with a picture on
the screen that doesn't change (like when you break for lunch and

53

forget to turn the TV off), it can "burn" the picture tube of your
television set and leave a permanent, although faint, image on the
screen. You obviously don't want this to happen, so Atari thought­
fully created this solution.

Whenever you press a key, IRQ (Interrupt ReQuest) sets ATRACT
to O. Otherwise, every four seconds YBLANK increments it by 1.
When it reaches 127 it gets set to 254 and the Atari enters the attract
mode. That's the way it stays until a key is pressed.

The attract mode only changes the four color registers COLPFO to
COLPF3 (53270 to 53273) and the background COLBAK (53274).
That means that you'll have to write your own attract routine for DU­
induced colors.

If you're using joysticks but not the keyboard, you' ll have to set
ATRACT to zero every few minutes within your program.

DRKMSK
78 004£

54

77-82

This is one of the two locations used to change the colors in the attract
mode (COLRSH is the other). DRKMSK makes sure that the colors
aren't too bright. It's normally set to 246 during the attract mode.

For the curious machine language programmers, DRKMSK is ANDed
with the original color to mask out part of the brightness nibble. This
is done during stage two VBLANK.

COLRSH
79 004F

The other location for changing colors, COLRSH actually does change
the colors. It contains the current value of RTCLOK + 1 (19).

Machine language programmers, COLRSH gets EORed with the color
registers (and background) before DRKMSK does its stuff.

Locations 80 to 122 are used by the screen editor and the display
handler.

TMPCHR
80 0050

Guess what "TEMP" stands for? That's right, this is a TEMPorary
(get it?) register used to move data to and from the screen. TEMP
gets used by the display handler, which also calls it TMPCHR.

HOLDI
81 0051

Another temporary register for the display handler, this time used to
hold the number of entries in the display list.

LMARGN
82 0052

Another tough name to figure out. If you're using graphics mode zero
(or have a text window in the mode you're using), LMARGN deter­
mines the left margin for text. It's initialized to 2, but you can set it
to whatever you want (up to 38). Try POKEing various values into
this location.

55

RMARGN
83 0053

The right margin (I'll bet that somehow you'd figured that out al­
ready). It's initialized to 38, and you can also set it to whatever you
want (try and set it higher than the left margin though, and less than
40, OK?).

A few words about margins. SYSTEM RESET will restore them to
their initial values. Text that is already on the screen will not be af­
fected when you change the margins. Finally, logical lines (the longest
a BASIC line can be) couldn't care less where you put the margins.
Three lines on the screen and that's it for your logical line, baby,
whether that means 120 characters or 3.

ROWCRS
84 0054

This tells you the row on the screen that the cursor is currently on. It
works in all the GRAPHICS modes and therefore has a range of 0 to
191 depending on the mode being used. Don't forget that a row is a
horizontal line, not a vertical one (you'd be surprised at some of the
people that forget). Rows are numbered from top to bottom, 0 being
the top.

COLCRS
85,86 0055,0056

The column that the cursor is on, ranging from 0 to 319. Location 86
can only get set to 1 in graphics mode 8 (where the column number
can exceed 255). Columns are numbered from left to right, 0 being
the leftmost column. Incidentally, ROWCRS and COLCRS define the
next cursor position to be read or written to, not the last one.

DINDEX
87 0057

This location tells the OS what graphics mode is currently being used
(so it knows how to respond to a PLOT or some other screen 1/0
command). When you OPEN the screen (which the GRAPHICS com­
mand takes care of for you), the value of the AUX1 byte is stored in
DINDEX. This means that DINDEX can have a meaningful value of
anything from 0 to 11, keeping in mind the GTIA modes are num­
bered 9 through 11.

56

vtRlicAL
lYJ AXIS

r'

r •
(0 ,0)

J(O~)
r-....

---. .-
(3",-0)

(3q) 23)
J

-
~

0
~

83-87

~

I

I-l0I2IZ0 r-JTAl.­
X A'><IS

Most of the time you'll just leave DINDEX alone, because BASIC
takes care of it for you. The times that it does come in handy, how­
ever, is when you want to use mixed mode display lists. See the ap­
pendix on designing custom display lists for more information on this.
It also comes in handy when you want to qse the so-called "GRA­
PHICS 7.5", which gives you twice the resolution of graphics mode
7 with the same number of colors (machine language programmers
also know this mode as ANTIC mode "E"). The problem with using
this mode is that it is, obviously, halfway between graphics modes 7
and 8. That means that the display list is structured the same as a
graphics mode 8 display list, but you have to PLOT to it like it was
graphics mode 7. So what, you say? Let's look at an example? The
following routine sets up what is called a GRAPHICS 7.5 screen by
changing a GRAPHICS 8 display list:

100 GRAPHICS 24
110 DLIST=PEEK(560)+PEEK(561)*256
120 POKE DLIST+3,78
130 FOR LINE=DLIST+6 TO DLIST+204
140 TVPE=PEEK(LINE)
150 IF TVPE=15 OR TVPE=79 THEN TVPE=TVPE-l
160 POKE LINE,TVPE
170 NEXT LINE
175 POKE 87,7
180 COLOR 3
190 PLOT O,O:DRAWTO 79,95
200 POKE 89,PEEK(89)+15
210 PLOT 80,0:DRAWTO 159,95
999 GOTD 999

57

A brief explanation of what's going on here. We first set up for a
graphics mode 8 screen with no text window. Then we find out where
the display list is (see SDLSTL [560,561]) and then change each of the
graphics mode 8 commands in it to graphics mode 7.5s. Then, since
we have no text window, we must go into a continuous loop or else
the screen will switch back to graphics mode 0 (take out line 1000 and
see for yourself). RUN the program and you will see the screen go
from blue to black as the display list changes. You now have a screen
that is 160 dots wide and 192 dots high. Try adding the following lines
to the preceding routine:

180 COLOR 3
190 PLOT O,O:DRA WTO 159,191

Now RUN the whole thing. Uh-oh! What happened? It's supposed
to draw a blue line from the top left corner of the screen all the way
down to the bottom right corner. Well, unfortunately the OS still
thinks that it's in graphics mode eight, and in graphics mode eight
things get plotted differently than we want here. Let's trick the OS
into thinking it's in graphics mode seven. That way it'll plot properly
(technically speaking, we want two bits to represent a pixel rather than
one). Add the following line:

175 POKE 87,7

RUN it again and whoops! ERROR 141?? That means that the cursor
went out of its allowed range. We forgot that graphics mode seven
only allows 96 rows. Change line 190 to the following:

190 PLOT O,O:DRA WTO 79,95

Now we're OK, but how do we draw in the lower half of the screen?
Unfortunately, the tables that tell the OS how many rows and columns
each mode has are in ROM, so we can't fool the OS into thinking
that there are more rows. The only way around this problem is to
treat a GRAPHICS 7.5 screen as being two separate screens, a top
and a bottom (machine language programmers can also write their
own plot and draw routines). You can use SAVMSC (88,89) to pick
the screen you want to use. Try the following program additions and
then look at SA VMSC to see what's going on:

200 POKE 89,PEEK(89)+ 15
210 PLOT 80,0:DRA WTO 159,95

58

87 - 88,89

l ~~---------------~

(This is a tedious process but it's the price you have to pay if you want
the benefits of GRAPHICS 7.5)

SAVMSC
88,89 0058,0059

This is the location of the place in memory where the data is kept that
goes onto the screen. Each number in memory represents one char­
acter on your TV or several pixels if in a graphics mode. The value
at memory location SA VMSC goes at the upper left-hand corner of
the screen. The next number in memory goes on character to the right
and so on until the whole row is filled (40 characters in mode 0). The
next memory location then goes left side, one row down.

When you do I/O to the screen, the OS uses this address to figure out
where to PLOT and PRINT. So, for example, the following line will
put the letter" A" in the upper left-hand corner of your graphics zero
(or one or two) screen.

SCRMEM = PEEK(88) + PEEK(89)*256:POKE SCRMEM,33

But wait, you say. CHR$(33) doesn't give us an "A"; what's going
on here? I'll tell you. The Atari stores the characters in memory in a
different order than the AT ASCII order (which is what CHR$ uses).
See CHRORG (57344) to find out how to convert from one to the
other. Anyway, the values in screen memory represent the internal
character order rather than the ATASCII one.

If you're not using a text mode, the values you poke to the screen
will, obviously, affect the pixels on the screen (the dots on the screen).
A pixel is represented by one, two , or four bits. See location DMASK

59

(672) to find out what bits in a byte affect which pixels in each mode
(that was easy for me to say). Then try POKEing around. You may
want to check CHRORG again; it has an example of using such
POKEs to get characters on the screen in graphics mode eight.

OK, so now you know how to change the first character on the screen.
What if you want to change the sixth character on the tenth row; how
do we know how to find it? Figure 5 shows how many bytes per row
are required for each graphics mode.

MODE 0 2 3 4 5 6 7 8 9-11

BYTES/ROW 40 20 20 10 10 20 20 40 40 40

FIGURE 5. Number of bytes per row

Now, if you want to change character X in row Y, just multiply Y by
the number of bytes per row for the mode you're using and add X
(don't forget that the first row and column are numbered zero, not
one). Add this value to the address in SAVMSC, and POKE away.
For example, let's put the letter "B" in the middle of a graphics zero
screen (row 11, column 19):

100 GRAPHICS 0
110 SCREEN=PEEK(88)+PEEK(89)*256
120 POS=II*40+19
130 POKE SCREEN+POS,34
o

We want to make sure that we don't try and change a byte that isn't
part of the screen, so let's add another line to our chart, this one
giving the number of rows in each mode. We'll also multiply the num­
ber of rows times and bytes per row to get the total number of bytes
taken up by the screen memory (Figure 6).

MODE

ROWS

BYTES

o 2 3 4 5 6 7 8

24 24 12 24 48 48 96 96 192

960 480 240 240 480 960 1920 3840 7680

FIGURE 6. Screen memory requirements

60

9-11

192

7680

88,89

Now these values, when added to the address in SA VMSC, will give
you the value of the first byte after the end of screen memory. What
they don't tell you is how much memory the whole graphics mode
takes up. Why not? Because they don't take into account the display
list (see SDLSTL [560,561]) and a few bytes that get trapped in the
middle of everything. So how do we get this total memory amount?
Well, it turns out that RAMTOP (106) points to the top of free mem­
ory, which coincides with the first byte after the end of screen mem­
ory. MEMTOP (741,742) points to the top of BASIC memory, which
coincides with the first byte before the display list. So, if we subtract
MEMTOP + 1 from RAMTOP *256 (RAMTOP is in terms of pages),
we'll get the total memory required. I'll save you the trouble and just
give you the values. Our final chart is Figure 7.

MODE 0 1 2 3 4 5 6 7 8 9- 11
BYTES/ROW 40 20 20 10 10 20 20 40 40 40

NO. OF ROWS 24 24 12 24 48 48 96 96 192 192
TOTAL SCREEN

BYTES 960 480 240 240 480 960 1920 3840 7680 7680
TOTAL MODE

BYTES

(NORMAL

SCREEN) 992 672 420 432 696 1176 2184 4200 8138 8138
(SPLIT SCREEN) 674 424 434 694 1174 2174 4190 8112

FIGURE 7. Screen requirements chart

You may have told yourself by now that you can change the values
in SA VMSC and thereby change where the screen is. And if you can
change where the screen is, you can keep more than one screen in
memory at the same time . Well, you're half right. You definitely can
have more than one screen in memory at the same time, but unfor­
tunately SA VMSC only tells the OS where to PRINT and PLOT (and
the like) to; it doesn't tell the computer what to display on the tele­
vision screen. Fortunately, there is another pair of locations that tell
what to display, and the word "display" should tip you off to where
they are; they 're in the display list (this is kind of like adult Sesame
Street, isn't it?). Specifically, they're the fifth and sixth bytes in a
normal (unaltered by you) display list. Try the following:

61

100 DLIST=PEEK(560)+PEEK(561)*256
110 LOW=PEEK(DLIST+4)
120 LOW=LOW+l
130 IF LOW=256 THEN LOW=O:POKE DLIST+5,PEEK(DLLST+5)+1
140 POKE DLIST+4,LOW
150 FOR DELAY=1 TO lO:NEXT DELAY
160 GOTO 120

This will move the starting address of the screen one byte forward at
a time, having the effect of swallowing up whatever was on the screen
when you ran it. Press SYSTEM RESET to stop it and get everything
back to normal.

A few things to note here. First, if you let this run for a while (get
rid of line 150 to make it happen faster), the screen will suddenly fill
up with a whole bunch of garbage. This "garbage" is actually your
BASIC cartridge! The starting screen address has been moved so far
forward that it has now entered the BASIC zone. You may have as­
tutely noted that the garbage didn't scroll onto screen smoothly, but
rather just sort of suddenly appeared. This is because the screen mem­
ory has committed a no-no. It has crossed a 4K boundary. What is a
4K boundary? It's the boundary between one group of 4096 bytes and
the next one. How do you tell where one is? Well, first of all the
address of a 4K boundary is a multiple of 4096. Better yet, if you're
working in hexadecimal, the leftmost digit in the four-digit hex num­
ber is the "4K digit" (this is not an official term). When it gets
changed, a 4K boundary has been crossed. OK? In any case, the whole
purpose of this explanation was simply to tell you that the screen
memory is not allowed to cross over a 4K boundary. The GRAPHICS
command usually takes care of this for you, but if you're setting up
more than one screen, you'll have to be careful.

Going way back to our program example, you should also note that
despite what's happening on the TV set, the OS still thinks that the
screen is where it was originally, since we haven't changed SAVMSC.
If you expect the OS to keep up with you, change SA VMSC as well
as the display list.

Finally (and you thought it would never end), before we move onward
and upward, a few bits of memory trivia. The address of the text
window memory can be found at TXTMSC (660,661). And, in case
you thought you weren't going to get a good multiple screen example,
you're right. Just kidding .

62

88,89

99 REM Get everything set up
100 GRAPHICS l:PRINT #6; "THIS IS SCREEN ONE"
110 DLIST1L=PEEK(560):DLIST1H=PEEK(561)
120 DLIST1=DLIST1L+DLIST1H*256
130 SCRMEM1L=PEEK(DLIST1+4):SCRMEM1H=PEEK(DLIST1+5)
140 POKE 106,DLIST1H-4
150 GRAPHICS 2:PRINT #6; "THIS IS SCREEN TWO"
160 DLIST2L=PEEK(560):DLIST2H=PEEK(561)
170 DLIST2=DLIST2L+DLIST2H*256
180 SCRMEM2L=PEEK(DLIST2+4):SCRMEM2H=PEEK(DLIST2+5)
189 REM Do the flipping
190 POKE 560,DLIST1L:POKE 561,DLIST1H
200 POKE 88,SCRMEM1L:POKE 89,SCRMEM1H
210 GOSU8 1000
220 POKE 560,DLIST2L:POKE 561,DLIST2H
230 POKE 88,SCRMEM2L:POKE 89,SCRMEM2H
240 GOSU8 1000
250 GOTO 190
999 REM Pause between screens
1000 FOR PAUSE=1 TO 200:NEXT PAUSE
1010 RETURN

Sorry, but no explanation for this one . You should be able to figure
it by yourself. I will, however, give you the following lines which you
may want to add to make the screen look a little less messy:

205 POKE 559,34
235 POKE 559,34
1005 POKE 559,0

63

OLDROW
90 005A

OLDROW is the last row the graphics cursor was on. It gets its value
from ROWCRS (84). DRAWTO and the FILL command (XIO 18)
use it to determine their starting row.

OLDCOL
91,92 005B,005C

The last column the graphics cursor was on . Guess where this one gets
its value from? You got it, COLCRS (85,86). It gets used the same
way as OLDROW does .

OLDCHR
93 005D

When you move the cursor all over the screen , isn't it nice how it
doesn't erase characters as it goes over them? Thank this guy for that;
OLDCHR holds the value of the character under the cursor so it can
be put back when the cursor moves on .

OLDADR
94,95 005E,005F

OLDCHR is great, but the OS has to know where to put it (no sug­
gestions, thank you) . OLDADR is the address in screen memory of
the current cursor location and is used to help restore the character
under the cursor .

NEWROW
96 0060

Out with the OLD and in with the NEW! This is the row that
DRA WTO and FILL will draw to or fill to . It is initialized to the value
in ROWCRS (84) .

NEWCOL
97,98 0061,0062

Same as the preceding except this is the column to draw or fill to and
is initialized to the value in COLCRS (85,86).

64

90-106

LOGCOL
99 0063

More cursor position stuff, this time for the benefit of the display
handler. LOGCOL tells the position of the cursor within the current
logical line. It is equal to the number of rows the logical line has filled
so far times 40, plus the current value of COLCRS. Since a logical
line can fill up to three rows, this gives LOGCOL a range of 0 to 119.

See BUFCNT (107) for the character length of the logical line.

ADRESS
100,101 0064 ,0065

A temporary storage location used by the display handler for so many
things that it made my mind spin and I forgot what they were.

MLTTMP
102,103 0066,0067

More temporary storage, with aliases OPNTMP and TOADR.

SAVADR
104,105 0068,0069

Also know as FRMADR. Also used for temporary storage. Also not
significant enough to explain (look at the OS listing if, for some rea­
son, you really care).

RAMTOP
106 006A

As you probably guessed, this points to the top of RAM. It gets its
value from TRAMSZ (6) during the powerup operation, as does
RAMSIZ (740). Big deal, right? Wrong.

If you're doing custom character sets, player/ missile graphics, or any­
thing else where you need a fairly large amount of memory that is
safe from BASIC and the OS, RAMTOP is going to save your tush.
You see, the OS doesn't care if RAMTOP isn't really the top of mem­
ory, so you can change its value and make the OS think that the top
of memory is lower than it really is. Then you can go ahead and use

65

the extra locations between RAMTOP and RAMSIZ for whatever you
want. It's done something like this:

1. Decide how many pages of memory you want to protect. Re­
member that a page is 256 bytes (RAMTOP is in terms of pages).

2. POKE RAMTOP with the value in RAMSIZ minus the number
of pages.

3. Do a GRAPHICS call. If you don't, your "protected" memory
will be in the middle of the screen memory. The GRAPHICS
call moves the screen below the new RAMTOP.

4. The locations from RAMTOP (time 256 remember) to RAMSIZ
(times 256, minus 1) are now your very own.

Easy, isn't it? Well, not quite. First of all, the first 800 bytes after
RAMTOP aren't really safe. The OS scrolls the text window as if it
were an entire GRAPHICS zero screen (this saves having to write a
special routine for the text window). This means that the OS tries to
scroll 20 rows (times 40 bytes per row) after RAMTOP. This is fine
normally, because there is no more RAM after RAMTOP that would
get messert up. Unfortunately, when you have moved RAMTOP, your
RAM is in jeopardy. The first 800 bytes of it, that is. The solution,
if you're using a graphics mode with a text window, is just to protect
four more pages than you need, and not use the first 1024 (to be safe)
after RAMTOP. If you're not using a text window, you still have to
protect an extra page, because the first 64 bytes aren't safe for other
reasons.

You also have to be careful that the new RAMTOP isn't less than
MEMTOP (741,742), since MEMTOP points to the top of your pro­
gram area.

66

106-107

Confused by "Sav ing Memory Areas?"

Lastly, because of the 4K boundary problem mentioned under
SA VMSC (88,89), you should move RAMTOP by at least 16 pages
(16*256=4K) if you're using graphics mode seven or higher.

You can also use MEMLO (743) to protect a different part of mem­
ory.

First of all, there is a very simple reason to "protect" an area of mem­
ory. If you POKE numbers into memory that currently has nothing
in it, then run your program, you may find your data changed when
you go to use it. The reason is that BASIC has to move things around
as it works. The only way to be sure you have a completely safe area
is to move the pointer (106) down so BASIC thinks the top of memory
is lower than it really is.

BUFCNT
107 006B

This keeps count of the number of characters currently in the logical
line.

67

BUFSTR
108,109 006C,006D

The starting address (in terms of row and column) of the current log­
ical line buffer. It is initialized to the values in ROWCRS and
COLCRS when the line is started.

BITMSK
110 006E

The display handler uses BITMSK to mask off bits during the bit­
mapping process. What? For those of you not into machine language,
a dot on the screen (in the graphics modes, not the text modes) is
represented in memory by two bits (one bit in graphics mode eight).
So, since two bits are only part of a byte, the OS has to have a way
of changing bits without changing the other parts of the byte. The
process it uses is called "masking," and uses the AND and ORA as­
sembly language commands to clear and set individual bits respec­
tively. See a book on assembly language for a more detailed
explanation of these two commands. Bit mapping, by the way, refers
to the whole process of manipulating the bits to come up with the
desired graphics.

SHFAMT
111 006F

Masking (explained in the previous location description) can be a pain
in the byte (sorry). The problem is not in the actual ANDing and
ORAing, but rather in getting the bits ready to be masked into the
byte, or dealing with them after they've been masked out. Think about
it for a second. In graphics mode eight, for example, each bit rep­
resents a dot on the screen (called a "pixel"). That means that once
you mask out the bit you're interested in, there are eight possible po­
sitions it could be in. You obviously don't want to have to write the
code to deal with eight different cases. Well, Atari didn't either, so
they came up with SHFAMT. SHFAMT is used to shift the bits to
the right, one bit at a time, until the bits you are interested in are all
the way over to the right (right justified). It's easier to deal with them
there. Once you're done having your way with them, SHFAMT helps
you get them back to their proper places.

OK, we've got a cute explanation, but what's really going on?
SHFAMT initially gets the value in DMASK (672), which is used to

68

108,109 -118

mask out the desired pixels. SHFAMT is then shifted to the right
(LSR) one bit. If a bit hasn't fallen out of the byte in the process (the
carry flag is clear), the masked-out bits are also shifted to the right
one bit and the whole thing is repeated. If a bit did fall out, then the
masked-out bits are right justified. To get the bits back to their proper
position, SHFAMT is restored to the value in DMASK and the same
thing happens except this time the masked-out bits are shifted to the
left (ASL) one bit at a time (SHF AMT is still shifted to the right
though). Then the bits are ready to be masked back into the display
byte.

This is a very important and powerful process to understand if you're
doing your own bit mapping. Check your OS listing and DMASK for
more details.

ROWAC
112,113 0070,0071

ROWAC, along with COLAC (next), are essentially graphic work­
spaces, used primarily in the "what point do we plot next?" process.
ROWAC, of course, is used in the row calculations.

COLAC
114,115 0072,0073

Used in column calculations for point plotting. See ROW AC.

ENDPT
116,117 0074,0075

ENDPT is initialized to either the value in DEL T AR (118) or the one
in DEL T AC (119,120), depending on which is larger (it gets the larger
of the two). It is then used to figure out when the final row or column
in the line we're drawing has been reached.

DELTAR
118 0076

DELTAR is the absolute value of the difference between OLD ROW
(90) and NEWROW (96). In other words, it's the number of rows
we're going to be drawing across.

69

DELTAC
119,120 0077,0078

The number of columns we're going to be drawing across. Determined
by subtracting OLDCOL (91,92) from NEW COL (97,98) and taking
the absolute value.

ROWINC
121 0079

When the OS computed DEL T AR above, it took the absolute value
of the result of NEWROW minus OLDROW. The sign of this result,
however, is also important to us because it tells the direction we'll be
drawing in. ROW INC is one if the sign was negative (we'll be drawing
up), and 255, (which a lso equals minus one in two's complement arith­
metic) if it was positive (we'll be drawing down).

COLINC
122 007A

If NEW COL minus OLDCOL is negative (we'll be drawing left),
COLINC is set to one. If it's positive (we ' ll be drawing right), COL­
INC is set to 255.

Note that together DEL TAR, DELTAC, ROWINC, and COLINC
define the slope of the line to be drawn .

SWPFLG
123 007B

If you're using a split screen mode, it's easier for the OS to print to
the text window if it has all the cursor information for it in locations
84 to 95. But it also has to remember the cursor information for the
main part of the screen, so what it does is swap the two. SWPFLG
equals zero if they haven't been swapped, 255 if they have.

The text window information is kept in locations 656 to 667.

HOLDCH
124 007C

70

119,120-126,127

A character that has been typed in from the keyboard goes here so
the OS can check out just what kind of character it really is (CTRL,
SHIFT, etc.).

INSDAT
125 007D

More display handler temporary storage. I'll even tell you what it's
used for; it holds the character under the cursor and is used for end
of line detection . Wasn't that exciting?

COUNTER
126,127 007E,007F

Well, here we are back at drawing a line. COUNTR tells how many
points have to be plotted before the line is finished. It starts off with
the same value as ENDPT (116,117). Then, every time a point is plot­
ted on the line, it gets decremented by one. When it gets all the way
down to zero, the line is finished and we can all go home.

The remaining zero page locations (128 to 255) are used by BASIC,
with some free for your use. The breakdown looks something like
Figure 8.

71

128-145 ($0080-$0091) BASIC program pOinters

146-202 ($0092-$00CA) Var ious BASIC locations

203-209 ($00CB-$0001) Free for your use

210-211 ($0002-$0003) Reserved for use by BASIC

212-255 ($0004-$00FF) Used for floating-point arithmetic

FIGURE 8. Locatio n 128-255 breakdown

If you're using a language other than BASIC, check its instruction
manual to find out which of these locations it uses.

If you are programming in machine language, and not using a car­
tridge, all 128 bytes here are probably free for your use. Check your
assembler's manual.

LOMEM
128,129 0080,0081

LOMEM points to the beginning of the RAM available for BASIC
programs (in other words the end of the OS RAM). It gets the same
value as MEMLO (743,744) initially, and every time the BASIC
"NEW" command is used. Although this implies that its value can
differ from that of MEMLO, this doesn't seem to be the case. The
only difference between LOMEM and MEMLO appears to be that
BASIC uses LOMEM while the OS uses MEMLO.

The first 256 bytes after LOMEM are used as a buffer by BASIC for
the tokenization process. Tokenization refers to the process of taking

72

126,127-130,131

your program and scrunching it up so it takes up as little space as
possible. Essentially, each command and variable is replaced with a
number (called a "token"). That way, it only takes one byte to store
a command, rather than one byte for each letter in the command (this
is an extremely simplified description; see De Re Atari for a complete
play-by-play). Note that the SAVE command saves the program in
tokenized form, while LIST saves it just the way you typed it in. That's
why a SAVEd program will be shorter than a LISTed one. Inciden­
tally, if you SAVE a program, the values in locations 128 to 141 are
saved along with the program.

BASIC also uses the buffer as a stack to evaluate expressions (8 + 2
is an expression), in which case it calls it ARGOPS. See RUNSTK
(142,143) for a description of stacks.

VNTP
130,131 0082,0083

This points to the table where the variable names are kept. The vari­
able names are stored in the order they were typed (which is not the
same as the order the program uses them) in AT ASCII. To mark the
end of a variable name (so you know when the next one starts), the
last character of each variable (a letter or digit for regular variables,
a "$" for string variables and a "(" for arrays) is stored in inverse
video (add 128 to the AT ASCII value of the character). Enough talk,
here's an example of how to print the variable list:

73

100 VNTP=PEEK(130)+PEEK(131)*256
110 VNTD=PEEK(132)+PEEK(133)*256
120 FOR LP=VNTP TO VNTD-1
130 CH=PEEK(LP)
140 IF CH)127 THEN PRINT CHRS(CH-128);" ";:GOTO 160
150 PRINT CHR$(CH);
160 NEXT LP

VNTD (next location), of course, holds the address of the end of the
variable name table (plus one).

There are a few other useful things you should know about the vari­
able name table. First of all, if you used any variables while you were
writing your program (including those used in the immediate mode)
but don't use them now that the program is done, they're still in the
table taking up space. In order to get rid of it, you must LIST your
program to disk or cassette, type NEW, and then ENTER the pro­
gram back in (this has the effect of typing in the final version of the
program from scratch).

Second, you can have up to 128 different variables in your program.
When BASIC tokenizes the program (see LOMEM), it replaces each
variable name with a number equal to the position of the variable in
the name table plus 128 (128 if it's the first variable in the table, 129
if it's the second, and so forth). This saves a lot of memory.

Third and last, there's a neat trick you can use to make your program
look like garbage when it's listed. All you have to do is change all
your variable names to a RETURN character. This will protect your
programs from being looked at by others. The following routine will
do it for you. You can't get things back to normal, so make sure you
have an original version of your program saved before you try this:

VNTD
132,133

30000 VNTP = PEEK(130) + PEEK(131)*256
30010 VNTD = PEEK(l32) + PEEK(l33)*256
30020 FOR LP = VNTP TO VNTD
30030 POKE LP,155
30040 NEXT LP

0084,0085

The address of the first byte after the end of the variable name table.

74

VVTP
134,135 0086,0087

C 130,131-134,135

Now we know where the variable names are stored and we're about
to find out where the variable values are stored. VVTP, you see, points
to the variable value table (we'll call it the VVT).

The Atari has three different kinds of variables. There are the scalars
(like X, HI, and FUNSTUFF), the arrays (like JULY (4) and SWEET
(16,2», and the strings (like MONEY$). Each of these has a different
representation in the VVT, but they all take up eight bytes per vari­
able. Let's take a look at how those bytes are used:

The first byte tells what kind of variable it is. Scalars get a 0, arrays
a 65, and strings a 129. Actually, if you forgot to DIMension the array
or scalar in the program (shame on you), you can knock one off the
preceding value given above.

The second byte tells what variable name we're talking about here.
It's the position of the variable in the variable name table (0 for the
first variable, 1 for the second, and so on up to a maximum of 127).

If we're dealing with a scalar, the remaining six bytes give its value
in Binary Coded Decimal (BCD). I suspect a quick explanation is nec­
essary here. BCD, as the name implies, is a way of storing a decimal
number in binary. Everything alright so far? Good. Atari doesn't seem
to follow the standard 6502 BCD format, so I'll give the Atari break­
down. The first byte is the exponent; 64 means 0, 63 means minus 2
(65 for plus 2, 66 for plus 4) and so forth. Add 128 if the value of
the variable is negative. The second byte gives the two decimal digits
to the left of the decimal point (in BCD, the upper nibble gives one
digit, the lower nibble gives a second). The last four bytes give the
eight digits to the right of the decimal point. If this makes no sense
to you, look up BCD in any introductory book on machine language
programming. It probably still won't make sense.

Back to the VVT. If the variable isn't a scalar (after the preceding
description, pray that it isn't), then the third and fourth bytes give an
offset into the string/ array area (see STARP [140,141]). This offset
points to the beginning of the data for that variable (relative to the
beginning of the string/array area, of course).

If it's an array we're dealing with, the fifth and sixth bytes give the
first dimension and the seventh and eighth give the second. No BCD

75

here, just plain old binary. In case you're wondering what I'm talking
about, a dimension is the number(s) plus one you use in BASIC's DIM
statement. For example, the first dimension in DIM A(5,7) is six, and
the second is eight. The reason that one is added is because A(O,O) is
a valid array element and, therefore, the array in our example is ac­
tually six elements by eight, not five by seven.

If it's not an array (and it wasn't a scalar), then it must be a string.
In that case the fifth and sixth bytes give its current length and the
seventh and eighth its DIMensioned length (up to 32767).

Note that the value of VVTP will change every time a new variable is
added.

STMTAB
136,137 0088,0089

The variable names and their values are all set, now where's the pro­
gram? STMTAB tells you just that. It holds the address of the state­
ment table, which is just a fancy name for your tokenized program
(plus the last line you typed in without a line number, called the "im­
mediate mode line").

The statement table contains each of the tokenized lines, one after the
other. As I mentioned earlier, you should see De Re Atari for a com­
plete description of the tokenization process (which takes place in a
buffer pointed to by LOMEM [128,129]). I will, however, fill you in
on a few useful tidbits of information.

The first two bytes of each tokenized line give you the line number
(in binary). The immediate mode line has a line number of 32768. The
third byte tells you the number of bytes from the beginning of this
line to the beginning of the next line. The fourth byte tells you the
number of bytes from the start of the line to the start of the next
statement (in case you use the ":" to put more than one statement
on a line), and that's all you'll get out of me.

Try the following to tell you how many lines you have in your pro­
gram:

30000 STMTAS=PEEK(136)+PEEK(137)*256
30010 LINES=O
30020 LINENO=PEEK(STMTAB)+PEEK(STMTAB+l)*256

76

134,135-138,139

30030 IF LINENO=30000 THEN PRINT "Your program has ";
LINES;" lines.":END

30040 LINES=LINES+l
30050 STMTAB=STMTAB+PEEK(STMTAB+2)
30060 GOTO 30020

STMCUR
138,139 008A,008B

STMCUR is a pointer into the statement, which BASIC relies on when
it needs to refer to particular tokens while processing a line in the
statement table. When a program isn't running, and BASIC is just
sitting around, it points to the beginning of the immediate mode line.

Try the following to create a program that can't be LOADed, only
RUN:

32767 POKE PEEK(138)+PEEK(139)*256+2,O:SAVE "D:RUNONLY":NEW

You can use any filename, of course (and can substitute "C:" for
"0:" if you're using cassette). Make sure this is the last statement in
your program. If you want, you can include the routine for changing
variable names (see VNTP [130,131]) right before this line to further
protect your program.

To use the routine, GOTO 32767. Then RUN "D:RUNONLY" or
RUN "C:RUNONLY" (substitute your filename for RUNONLY).

c

77

STARP
140,141 008C,008D

STARP holds the address of the string/ array area, which is where all
the string characters and array values are stored (see VVTP [134,135]
to find out how to determine where each variable is within this area).
It also points to the end of your BASIC program, which should hint
to you that its value will change as your program changes.

Array values are stored in six-byte BCD form (see VVTP [134,135)),
while strings use one byte per character. If you DIMension an array
such as A(x), where x is the number of elements in the array, then it
will take up x*6 bytes in the string/array area, regardless of how many
of the elements you use. The same goes for strings. If you DIMension
ANS$(y), then y bytes will always be reserved for it in the string*array
area, even if you never use it. For this reason, you should be careful
when DIMensioning variables and should also make sure that all un­
used variables are removed form the final version of your program
(see VNTP [130,131]).

A few bits of miscellanea. The beginning address in the string/array
area of the data for a string is the same as the address you get with
the ADR function. More importantly, there is a way you can save a
lot of memory using ST ARP. Here's the scoop.

78

140,141

A lot of times our programs have strings or arrays in them that always
get initialized to the same lengths and values. It may be a string that
holds a redefined character set or a machine language routine, for
example. Anyway, somewhere in your program you have an initiali­
zation routine and the data for the string or array, right? Well, you
just found out that the data is also stored in the string/array area.
That means that it's in memory twice (the other time is in the token­
ized program listing). That's very bad, and I'm going to show you
how to do something about it.

As mentioned, ST ARP also points to the end of your BASIC pro­
gram. What happens if we change ST ARP so that it points to the end
of the data for the strings/arrays in question? BASIC will think it's
part of the program, which means we can SAVE that part of the
string/array area with the program! And that means no more need
for initialization, so we can get rid of the initialization part of the
program. Here's an example of how to do it:

99 GOTO 200.:REM You should GOTO 100 the first time through
100 DIM TEST$(32)
110 TEST$="We'll save this with the program"
120 STARP=PEEK(140)+PEEK(141)*256
130 NWSTARP=STARP+32
140 HIGH=INT(NWSTARP/256):LOW=NWSTARP-256*HIGH
150 POKE 140,LOW:POKE 141,HIGH
160 SAVE "D:TEST"
170 STOP
200 STARP=PEEK(140)+PEEK(141)*256
210 NWSTARP=STARP-32
220 HIGH=INT(NWSTARP/256):LOW=NWSTARP-256*HIGH
230 POKE 140,LOW:POKE 141,HIGH
240 POKE 142,LOW:POKE 143,HIGH
250 POKE 144,LOW:POKE 145,HIGH
260 DIM TEST$(32)
270 TEST$(32,32)="m"
280 PRINT TEST$
290 STOP

You're probably wondering how to use this monstrosity, so I'll be a
nice guy and tell you. There are two basic parts to it. The first, lines
100 to 170, initialize the string, move ST ARP to the end of the string,
and save everything to disk (you can use C: as well). You could al­
ternately get rid of these lines right before you save the program, be­
cause they won't be necessary any more. The second part, from line
200 on, restores ST ARP and a few other locations that were affected,
redimensions the string, and sets the last character so that BASIC

79

knows how long the string is. Now we can print TEST$ and verify
that it was indeed saved with the program!

Ok, now how do you adapt this to your own program? First of all,
make sure the strings/arrays you want to save are the first variables
you use in the program (use VNTP to get rid of unused variables).
DIMension and initialize them (you can use a GOSUB to the initial­
ization; it doesn't have to be at the beginning of the program). Now
figure out how much memory they take up: one byte for each char­
acter, six for each array element. Add this to the current value in
ST ARP and store the new value back in ST ARP. STOP the program.
Get rid of the part of the program that did all of the preceding stuff
(including the part for initializing). Add lines 200 to 270 at the be­
ginning of the program (making the appropriate changes in lines 210,
260, and 270) and then save it to disk. That's it.

One last tidbit. There is a quick, easy, little known way of filling a
string variable with the same character. It works because of the way
BASIC is written. Try this:

RUNSTK
142,143

100 DIM FILL$(800)
110 FILL$(l)="F"
120 FILL$(800)="F"
130 FILL$(2)=FILL$
140 PRINT FILL$

008E,008F

This one is a pointer to the runtime stack. What is a "runtime stack"?
Let's start off with a quick explanation of a stack.

Every seen a stack of trays in a cafeteria? Customers take trays off
the top, cafeteria people put trays on the top, if you're not lucky
there'll be a mad rush of people and by the time you get to the stack
there are none left and the cafeteria people are nowhere to be seen.
Well, a computer stack is the same thing, except it uses memory lo­
cations instead of trays and there are no cafeteria people. A special
memory location is used to point to the current top of the stack.

Now you know what a stack is, so let's talk about the runtime stack.
Runtime just means that it's used while the program is running. When
you use a GOSUB or a FOR/NEXT loop, BASIC has to be able to

80

140,141-144,145

remember certain things, so it puts them on the stack until it needs
to refresh its memory. Now you need to know what exactly gets put
on the stack.

For each GOSUB encountered, four bytes are put on the stack (they
are taken off when BASIC RETURNs from the subroutine). The first
byte is a zero and tells BASIC that this is a GOSUB. The second and
third give the line number that the GOSUB was on, and the last one
is an offset into the line so that BASIC knows where to continue from
after the RETURN.

FOR/NEXT loops are a little more complicated; they require 16 bytes
to be put on the stack . The first 6 bytes give the number (in BCD)
that the counter in the loop can go up TO. The second 6 give the STEP
value (also in BCD). The thirteenth byte gives the variable number
plus 128 of the counter variable. The next two give the line number
that the FOR statement was on, and the last one gives the offset within
that line of the FOR. These values remain on the stack until the FORI
NEXT loop is complete.

There is one exception to the preceding two paragraphs. A BASIC
POP statement will take the top entry off the stack, be it a GOSUB
or a FOR / NEXT. You should make sure you POP the stack if you
have to leave a FOR / NEXT loop before it's finished or a GOSUB
before the RETURN.

Don't forget that the stack is constantly changing, so its size will vary.

Lastly, since the beginning of the runtime stack is also the end of the
stringl array area, BASIC also calls it ENDSTAR. OK?

MEMTOP
144,145 0090,0091

Two uses for this one. First, relevant to the last location, MEMTOP
is also called TOPSTK and points to the end of the runtime stack.
Since the runtime stack is the last section of memory used by your
BASIC program, MEMTOP is a pointer to the end of your BASIC
program (which makes sense, right?). The memory locations from the
address in MEMTOP plus one, all the way up to the display list (see
SDLSTL [560,561]), are free for your use (but don't forget that the
value in MEMTOP will change during program execution, since the
runtime stack will be growing and shrinking).

81

For those of you who are still alert, don't confuse this MEMTOP with
the MEMTOP at 741 and 742. This is the BASIC MEMTOP; the
other is the OS MEMTOP.

The BASIC cartridge uses locations 146 to 202 for various uses, not
all of which are worthwhile reporting on. With the following excep­
tions, of course.

FORLN
160,161 00AO,00A1

FORLN holds the line number of the current FOR statement encoun­
tered. For example,

LSTPNT
173,174

100 FOR X-1 TO 25
110 NEXT X
120 PRINT PEEK(1bO)+PEEK(161)*256

OOAD,OOAE

List pointer. Contains the location of the line being LISTed. When
you just type LIST, you find 32767 here.

DATLN
182 00B6

Points to the number of the item within the DATA statement. This
means we are currently reading the first number, the second, etc. Try
this program:

DATALN
183,184

10 FOR 1=1 TO 8
20 READ A
30 ? PEEK(l82)
40 NEXT I
50 DATA 1,2,3,4,5,6,7

00B7,00B8

82

146-186,187

DATALN holds the line number of the DATA statement that was last
READ. For example,

100 READ A
110 PRINT PEEK(183)+PEEK(184)*256
1000 DATA 10

You can use DAT ALN in an error-trapping routine to find out where
a READ error occurred.

STOPLN
186,187 00B9

STOPLN holds the line number that the program was on when the
program STOPped, the BREAK key was pressed, or an error was
TRAPped. It is also useful in error trapping routines. Now for our
example:

100 TRAP 30000
110 NEXT Y
30000 PRINT PEEK (186)+PEEK(187)+256

83

ERRSAV
195 OOC3

This location holds the number of the error that was TRAPped or
caused the program to stop. Try this:

10 TRAP 100
20 REM THE REST OF YOUR PROGRAM
•

•
100 ? "ERROR #"; PEEK(l95): LIST(PEEK(l86) + 256*PEEK(l87»

PTABW
201 00C9

When you print a whole bunch of items, and separate them by com­
mas in the PRINT statement (like PRINT A,B,C$), they get printed
on the screen with a bunch of spaces in between them, right? Well,
PT ABW tells how many spaces to separate them by. In technical
terms, that means it tells how many spaces there are between each tab
stop on the screen (see TABMAP [675 to 689] if you want to set tabs
for the TAB key). It can be set to any value from 3 to 255 but is
initialized to 10. Let's look at an example:

100 PRINT 1,2,3
110 POKE 201,5
120 PRINT 1,2,3

84

186,187 -210,211

SYSTEM RESET doesn't restore PTABW to its original value,
GRAPHICS doesn't, nothing does. This is a very durable location.

POKEing a zero here will cause the Atari to lock up shop when it
encounters a comma in a PRINT statement.

BININT
202 OOCA

If you put anything other than a zero here, then going into the im­
mediate mode (i.e. SYSTEM RESET, BREAK, or the program end­
ing) causes the program currently in memory to erase itself-yet
another fun way to prevent people from looking at your program (I
personally like this one; it's devious).

100 POKE 202,1
110 PRINT "Now try LISTing this program"

Noname
203-209 OOCB-OODI

These locations are free, free, free for your use if you're programming
in BASIC. If you're using a different language, check the accom­
panying documentation to find out which page zero locations it leaves
free.

Noname
210,211 00D2,00D3

These two locations are reserved for BASIC, which means they have
no specific use but you should stay away from them.

THE FLOATING POINT PACKAGE

The remaining page zero locations from 212 to 255 are used by the
OS's floating point package, a whole bunch of subroutines that BASIC
uses when doing math and that kind of stuff. The routines themselves
are stored in the OS ROM, so if you don't use them at all in your
program, these locations will be free. Don't count on it though, even
if you think you're not using the routines. They can sneak up on you
when you least expect it.

85

Floating point math uses six-byte BCD, which was explained briefly
under location VVTP (134,135). See the section in De Re Atari on the
floating point package for more information.

Unfortunately, the listing for the floating point package is mighty hard
to come by, so some 0 f these locatioris are going to have real short
explanations. My apologies to you, and my thanks to the as Manual
and Mapping the Atari for the information I couldn't find anywhere
else.

FRO
212-217 00D4-00D9

Floating point register zero. A floating point register is just a place
used to hold floating point numbers while operations are performed
on them (it may also hold a partial result of an operation). They are
all, including FRO of course, six bytes long since they must hold a six­
byte BCD representation of the number.

FRO is also used by the USR command. Remember that USR has the
format X = USR(address [,argumentj(, .. . J) where X can be any vari­
able and the arguments are optional. If you want your machine lan­
guage routine to give a value to X, you should store that value in the
first two bytes of FRO (212,213 - low byte and high byte respectively)
before your RTS statement. BASIC will automatically convert these
bytes into a floating point number and store it in X (or whatever vari­
able you used for the call). If you're not using BASIC, you can use
FRO yourself to convert binary values to floating point and vice versa .
Put the binary number in locations $D4 and $D5 and then]SR $D9AA
to convert to floating point (the result will be store in FRO). To con­
vert back,]SR $D902. Note that you can't use these routines from
BASIC since BASIC is constantly using FRO and will mess up your
values.

FRE
218-223 00D8-00DF

This isn't very well documented, but it appears to be an extra floating
point register.

FRI
224-229 00EO-00E5

86

210,211 - 242

Floating point register one. FRI has the same format as FRO and is
often used in conjunction with it, especially for two-number arith­
metic.

FR2
230-235 00E6-00EB

Floating point register two.

FRX
236 OOEC

A single-byte register used for single-byte calculations.

EEXP
237 OOED

The value of the exponent (E). I suspect this is the exponent of the
floating point number currently being processed, but this is only a
suspicion.

NSIGN
238 OOEE

The sign of the floating point number (same suspicion as above).

ESIGN
239 OOEF

The sign of the exponent in EEXP (237).

FCHRFL
240 OOFO

The first character flag. Your guess is as good as mine.

DIGRT
24l OOFl

The number of digits to the right of the decimal point (zero to eight).

CIX
242 OOF2

87

An offset into the text buffer pointed to by INBUFF.

INBUFF
243,244 00F3,00F4

Finally something that can be understood! There are times when
BASIC has to convert an AT ASCII representation of a number to the
corresponding floating point value (like when you type in X = 1000).
INBUFF points to a buffer used to hold the AT ASCII representation.
The result gets stored in FRO.

See LBUFF (1408 to 1535) for the buffer itself.

ZTEMPI
245,246 OOF5,00F6

A temporary register.

ZTEMP4
247,248 00F7,00F8

Another temporary register.

88

ZTEMP3
249,250 00F9,00FA

243,244 - 255,256 - 511

Still another temporary register (will it never end?).

RADFLG
251 OOFB

RADFLG determines whether the trigonometric functions (SIN, COS,
etc.) are performed in radians or degrees. If it's zero, then radians are
used. If it's six, then degrees are in fashion. SYSTEM RESET and
NEW both restore RADFLG to radians (zero) .

BASIC also calls this location DEGFLG.

FLPTR
252,253 OOFC,OOFD

FLPTR holds the address of the floating point number that the pack­
age is now operating on. FLPTR and FPTR2 (to follow) point to the
addresses where the results of the current operation will be stored .
The documentation is sketchy though, so I'm just making an educated
guess.

FPTR2
254,255 OOFE,OOFF

FPTR2 holds the address of the second floating point number that
the package is operating on.

PAGE ONE

Locations 256 to 511 are called page one and have a very important
use. They make up the stack for the OS, BASIC, and DOS (see
RUNSTK at locations 142 and 143 for an explanation of what a stack
is) . On powerup (and on SYSTEM RESET), the stack pointer is set
to 511. Each time a machine language JSR or PHA (PusH Accu­
mulator on stack) instruction is executed, data is put on the stack and
the pointer moved downward accordingly. When an RTS or PLA
(PuLl Accumulator from stack) is executed, the corresponding data
is pulled off the stack and the pointer moved back up. Since the stack
pointer (which is a special location built into the main part of the

89

computer) is just one byte, if you try and move it below location 256
it will wrap back around to location 511 and vice versa.

PAGES TWO THROUGH FOUR

Locations 512 to 1151, as you will see, are used by the OS as a work­
space. Some are used for variables, some for tables, some for vectors,
some for buffers, and some just for miscellaneous stuff. Now, a few
words on using these locations. Don't, unless the description says you
can! A lot of them are very important to the OS, and if you mess with
them they may cause the computer to crash, which you don't want to
happen. Keep in mind, though, that no matter what you do you can't
hurt the computer (unless you throw it at a wall in frustration). You'll
just hurt your program.

Also, be careful of locations that don't appear to be used. Atari has
warned that these locations may be used in future versions of the OS,
so stay away if you want to make sure your programs will work on
all machines.

Let's jump right into page two. The first 42 bytes are used for inter­
rupt vectors, so we'd better take a quick look at interrupts . As you
remember, we first saw interrupts at location POKMSK (16). If you
don't remember, go back and re-read that section. I'll wait for you
here.

I=?E· f2G"AD IHE
ABOVE 27.3
'f\M~S IHt:::N
(2~AD ABOLJT:

90

512,513

Back again? OK, so now we have the basic idea of what an interrupt
is. The type of interrupt we saw at POKMSK is called an Interrupt
ReQuest (IRQ). There's another kind of interrupt called a Non­
Maskable Interrupt (NMI) . What's the difference? Well, there's an
assembly language command called SEI (SEt Interrupt disable). It tells
the 6502 (the main chip) to ignore IRQ-type interrupts. Unfortu­
nately, it can't tell the 6502 to ignore the NMIs. They are taken care
of by another chip, called ANTIC, and so ANTIC is where you must
go if you want to ignore NMIs.

The NMls consist of the Vertical Blank Interrupt (VBI), the Display
List Interrupt (DLI), and the SYSTEM RESET interrupt. We'll be
seeing the interrupt vectors for both IRQs and NMls in the next few
locations, along with how to use them. An interrupt vector tells the
OS where to go when the corresponding interrupt occurs (assuming
it hasn't been disabled).

You might also want to look at IRQEN (53774), NMIEN (54286), and
NMIST (54287) for more information on interrupts.

VDSLST
512,513 0200,0201

This is the vector for the Display List Interrupt (DLI) which is an NMI
as we discussed in the last location. DLIs interrupt the screen drawing
process so you can do things like change the screen color halfway
down. They exist entirely for your benefit, the OS doesn't use them
at all.

To get a DLI going, there are a couple of things you have to do. First,
and most important, you have to decide what you want the interrupt
to do! Write the routine to do it, making sure it ends with an RTI
(ReTurn from Interrupt) instruction. Next, decide which row on the
screen you want it to occur at (it will actually occur at the end of this
row). Go into the display list and set the leftmost bit (bit seven) of
the instruction for that row. That tells the display list that there is to
be a DLI on this row. Now tell the OS where the DLI routine is by
setting VDSLST (low byte and high byte of the routine address). Fi­
nally, you have to enable the DLIs. Do this by setting NMIEN (54286)
to 192.

Here's a quick example from BASIC, simply reversing the play field
colors halfway down the screen:

91

100 GRAPHICS 0
110 DLIST=PEEK(560)+PEEK(561)*256
120 POKE DLIST+16,130
130 FOR MEM~1536 TO 1553
140 READ INSTR
150 POKE MEM,INSTR
160 NEXT MEM
170 POKE 512,0:POKE 513,6:POKE 54286,192
180 LIST
190 DATA 72,173,198,2,141,10,212,141,23,208
200 DATA 173,197,2,141,24,208,104,64

Make sure that the DATA is correct before you run the program. If
it isn't, the computer might lock up. Here's an assembly listing of
what those DATA statements represent:

0600 48 PHA
0601 ADC602 LDA COLOR2
0604 8DOAD4 STA WSYNC
0607 8D1700 STA COLPFl
060A ADCS02 LOA COLOR1
060D 801800 STA COLPF2
0610 68 PLA
0611 40 RTI

Now that you know the basics, let me tell you a few limitations. First
of all, there is very little time available during a OLI before the next
row starts to get drawn. Make your routine short. Second, because
an interrupt often occurs while something else is going on (like your
BASIC program running), you have to make sure that you restore the
accumulator and the X and Y registers if you use them. Do this by
pushing their values onto the stack before you use them, and then
pulling the values back off before you RTI. Finally, as should be pain­
fully obvious to you BASIC programmers by now, this is most def­
initely machine language country. It's not very difficult machine
language, but it is machine language.

-

92

512,513-516,517

A few notes now for the machine language programmers. Change the
hardware registers, not the shadow registers. The shadow registers are
used to update the hardware registers during VBLANK, so changing
them halfway down the screen won't have any effect until VBLANK
kicks in.

If you're going to have more than one DLI, then each DLI routine
will have to reload VDSLST to point to the next one. The last one
will have to point back to the first one. Make sure in this case that
you enable the DLIs during VBLANK, or else they may not execute
in the right order.

Use WSYNC (54282) if you're changing screen colors. When any value
is stored in WSYNC, the next command won't be executed until the
TV has finished drawing the current scan line. If you don't use it,
your colors will change in the middle of a line and will flicker back
and forth . Try it and see for yourself (get rid of "141,10,212" in line
190 and change "1553" in line 130 to "1550").

One other problem with DLis is that pressing a key on the keyboard
can cause DLI colors to "jump" down a scan line (try it) . The so­
lution? Well, the easiest is just not to use the keyboard. For more
complex ways around it, you should consult De Re Atari.

DLis are extremely powerful. They can be used to change colors, to
change character sets, even to change player / missile positions and the
fine scrolling registers, so be creative. Proper use of DLis can produce
a program that will do things you never thought the Atari was capable
of.

VPRCED
514,515 0202,0203

This one's an IRQ vector, for an interrupt called the "serial proceed
line interrupt," where the word "serial" indicates I/O to a peripheral
such as the disk drive. It is initialized to 59314, which just holds a
PLA and an RTI (i .e., the interrupt is not used).

VINTER
516,517 0204,0205

Another IRQ, this time for the "serial bus I/O interrupt." Initialized
to 59314 again because it isn't normally used. Both VINTER and

93

VPRCED's interrupts are processed by the PIA (Peripheral Interface
Adapter) chip.

VBREAK
518,519 0206,0207

IRQ again, for the machine language BRK command [which is not
the same as the BREAK key; see POKMSK (16) and BRKKEY (17)].
It's also initialized to 59314.

VKEYBD
520,521 0208,0209

From now on, if I don't tell you what kind of interrupt it is, it's an
IRQ, OK? There's a whole bunch of these suckers and only so many
ways to say "here's another IRQ."

So here's another IRQ. This one occurs whenever a key other than
BREAK is pressed (START, OPTION, and SELECT don't count be­
cause they're buttons, not keys). It's initialized to 65470 which is the
OS keyboard IRQ routine (it makes sure that only one character gets
printed when you press a key, and resets ATRACT [77]) . If you want
to put your own routine in, this is the place to do it. Keep in mind,
however, that your routine will be executed before the key code gets
converted to ATASCII (see the OS manual for a list of key codes).

The following three vectors are used to control communication be­
tween the serial bus and the serial bus devices (serial refers to the fact
that bits are sent or received one after the other in succession). A much
simplified expanation of this process follows. You should consult De
Re Atari if you need more details.

The data being sent or received is stored in a buffer. If we're doing
output, then a byte gets transferred from the buffer over to the serial
output register (an interrupt routine does this) . SIO takes it from there
and puts it in POKEY's serial output shift register. POKEY then picks
it up and sends it out one bit at a time. An interrupt is then generated
and the whole process starts over. This goes on until the checksum
byte has been sent, at which time a "transmit done" interrupt is gen­
erated and SIO hands control back to the main program, which has
been waiting patiently all this time.

The process is pretty much the same if we're receiving data, except in
reverse.

94

VSERIN
522,523 020A,020B

518,519-526,527

This is a good one. The "POKEY serial I/ 0 bus receive data ready"
interrupt vector. It means that this vector is used when the II 0 bus
indicates that it has received a byte that is now waiting in the serial
input register, ready to be moved to a buffer. The routine in the OS
to do this is at 60177, and that's what VSERIN is initialized to.

VSERIN is also called INTRVEC by DOS, which changes its value
to 6691, a routine in DOS that does pretty much the same thing as
the one in the OS, except in a different place .

VSEROR
524,525 020C,020D

The opposite of VSERIN, VSEROR is used when the I/O bus is ready
to send a byte. Its official name is the "POKEY serial I/O bus trans­
mit data ready" interrupt vector, which should make more sense this
time. It is initialized to 60048, the address of an OS routine that, log­
ically, moves the next byte in the buffer to the serial output register
(from whence it gets sent). DOS messes with this one too, changing
it to 669 I, the address of its routine to do the same thing.

VSEROC
526,527 020E,020F

Another long-winded name: the "POKEY serial I lObus transmit
complete" interrupt vector. Since I'm sure you're all becoming ex­
perts at interpreting these names, it should come as no surprise that
this vector is used when all the data has been sent. It is initialized to
60113, a routine that, when the checksum byte is sent (see CHKSUM
[49]), sets the "transmission" done flag at XMTDON (58) and dis­
ables this kind of interrupt.

The following three locations are the interrupt vectors for the POKEY
timers, all of which are initially unused and therefore set to the
PLA/RTI combination at location 59314. The timer interrupt occurs
when the associated timer counts down to zero.

For more information on the POKEY timers, see the section on timers
right before location 53760.

95

VTIMRI
528,529 0210,0211

Interrupt vector for POKEY timer one (see AUDF1 [53760,53761]).

VTIMR2
530,531 0212,0213

Interrupt vector for POKEY timer two (see AUDF2 [53762,53763]).

VTIMR4
532,533 0214,0215

Interrupt vector for POKEY timer four (see AUDF4 [53766,53767]) .
This vector only exists in the "B" version of the OS.

VIM IRQ
534,535 0216,0217

Every IRQ vectors through this location on its way to the individual
interrupt routines. It is initialized to 59126, the address of an OS rou­
tine that looks at IRQST (53774) to determine what kind of interrupt
occurred and then jumps through the appropriate vector.

Attention B OS owners!

Since a lot of addresses in the new "B" version of the OS got shifted
around, some of the initialization addresses given aren't the same in
that version (which is now in a majority of the Atari's out there). Here
are the changes (Figure 9).

Software timers

There are two types of timers in the Atari: software and hardware.
We've already come across the hardware timers (see VTIMRI-4
[528 - 533]) and we're about to learn everything we never wanted to
know about the software timers, which use locations 536 to 558. But
first, a few words from our author.

There are, of course, differences between software and hardware tim­
ers, and you'll probably want to know them before you go running
off into timer land. The biggest difference comes from the names.

96

VECTOR

VDSLST

VPRCED

VINTER

VBREAK

VKEYBD

VSERIN

VSEROR

VSEROC

VTIMR1-4

VIMIRQ

VVBLKI

VVBLKD

528,529-534,535

INITIAL VALUE

59280
59279
59279
59279

same as before

60175
same as before

60111
59279
59142
59310

59653

FIGURE 9. Vector list

Hardware timers are built into the POKEY chip, software timers are
a part of RAM . The big difference comes in the way they keep time.
You recall from location RTCLOK (18-20) that a jiffy is a sixtieth of
a second, the amount of time it takes the television set to fill the screen.
Well, the software timers count down by one every jiffy. The hard­
ware timers, on the other hand, count down by an amount less than
a jiffy, which you can specify (see locations 53760 through 53769).
So, if you want to time things that take longer than a jiffy, use the
software timers. Otherwise, go for the hardware .

97

CDTMVI
536,537 0218,0219

This is the first software timer (affectionately known as "system timer
one"). Every VBLANK, the value in CDTMVI gets decremented by
one. When it reaches zero, a flag gets set so the OS knows to JSR
through CDTMAI (550,551). An important thing to note here is that
the decrementing for this timer (and only this timer) is done during
state one VBLANK. This means that CDTMVI (along with RTCLOK
[18-20] and ATRACT [77]) is updated every VBLANK, no matter
what's going on elsewhere in the computer. The rest of the software
timers, on the other hand, are updated during stage two, which means
that during time-critical I/O (like disk and cassette I/O; see CRITIC
[66]), the other timers are not updated . Unfortunately, the OS knows
this too, so it uses CDTMVI for I/O routines. So, you see, we have
a catch-22 situation here. Oh well! If you're doing your own time­
critical routines though, you know which timer to use.

CDTMV2
538,539 021A,021 B

This is system timer two, of course. When it reaches zero, it JSR's
through CDTMA2 (552,553). And, unless you slept through the last
paragraph, you should already know that it will not be updated during
time-critical 1/ O.

CDTMV3
540,541 021C,021D

The third system timer, again hampered by time-critical I/O. This one
has problems of its own though. First of all, the cassette handler uses
it. Secondly instead of JSRing through a vector when it gets down to
zero, it just clears a flag at CDTMF3 (554). So don't use it during
cassette operations and don't expect it to go anywhere after it's done.

CDTMV4
542,543 021E,021F

Let's see. You've already fignred out that this is system timer four,
that it doesn't work during time-critical I/O, and you may have
guessed that it clears a flag at CDTMF4 (556) when it's done instead
of vectoring. What's left for me to say?

98

CDTMV5
544,545 0220,0221

536,537 -546,547

The last of the timers. This one is no different than the last one except
that the flag it clears is at CDTMF5 (558). But since you're getting to
know these things so well, I shouldn't have to tell you that.

VVBLKI
546,547 0222,0223

Since this is the vector for the VBLANK interrupt (VB!), I suppose
this is probably a good time to explain exactly what vertical blank is.
With all the previous mentions of jiffies in this book, you should know
by now that a jiffy is a sixtieth of a second. It is important because
that's the time it takes the television set to fill the whole screen with
a picture. Since the screen can't hold on to that picture for very long,
the TV keeps drawing the picture over and over again, even if it doesn't
change. It draws it one line at a time, from top to bottom. When it
gets to the bottom, it stops drawing and goes back to the top, where
it starts all over again. Now, the important part for us is when it stops
drawing. At that time it tells the computer, "Hey, I'm not drawing
to the screen anymore," thus generating a vertical blank interrupt.
You should be able to see where the name comes from now. Inciden­
tally, there is also a horizontal blank, which occurs while the TV has
finished drawing one line and is on its way to the beginning of the
next. Store any value in WSYMC (54282) and the computer won't do
anything until the next HBLANK occurs .

Back to VBLANK. There are a few reasons why the TV isn't drawing
to the screen. First of all, it gives us a way to time things, since
VBLANK occurs precisely every sixtieth of a second. Secondly, noth­
ing is being drawn to the screen during this time, so any graphics
changes made during VBLANK will result in smooth, instantaneous
changes on the screen. But, perhaps most importantly, VBI code runs
independently of mainline code. What does that mean? It means that
VBI code is essentially a separate program, running at the same time
as your regular program! I wrote one VBI program, for example, that
allowed the computer to play music at the same time I was typing in
programs. Chris Crawford, in his classic Eastern Front 1941 game,
used VBI to separate the thinking process of the game from the te­
dious stuff like graphics and user input. That allowed the computer
to think about its next move at the same time the player was thinking

99

about his or hers, thus simulating a true one-on-one situation. As you
can see, VBLANK is an extremely powerful tool.

Let's take a closer look at what normally goes on during VBl. First
of all, there are two stages. The first stage is always executed, while
the second gets ignored if the time-vertical 110 flag at CRITIC (66)
is set. The first is called "immediate" vertical blank, the second is
"deferred . "

VVBLKI is the vector for the immediate stage so the OS goes through
VVBLKI when the VB LANK interrupt first occurs. During this stage
the realtime clock (RTCLOK [18 - 20]), the attract mode (A TRACT
[77], DRKMSK [78], and COLRSH [79]), and system timer one
(CDTMVI [536, 537]) get updated, processed, and so forth. Then
CRITIC is checked. If it's set, indicating that the interrupt occurred
in the middle of a time-critical 110 operation, the OS returns from
the interrupt. If it's not, then it's OK to go on to stage two, so we
do. When the OS is done with stage two (see the appendices for a
complete list of what's done here), it vectors through VVBLKD
(548,549) to the user's deferred VBI routine, and then finally returns
from the interrupt when it's done there.

VVBLKI is initialized to point to SYSVBV (58463), which contains a
JMP instruction to the OS stage one code (located at 59345 in the old

100

546,547-548,549

OS, 593 IO in the new one). If you change VVBLKI to point to your
own routine, and you still want the OS code to be executed, you should
end your routine with a JMP SYSVBV statement.

Whew, what a lot of mumbo jumbo! If you managed to plod through
all of that, take a well-deserved rest. When you're done, we'll take a
look at how you can use vertical blank for your own routines.

VVBLKD
548,549 0224,0225

Don't worry, there's still more to come on VBls! This just seemed
like a good time to formally introduce VVBLKD, the vector for the
user's deferred VBl routine. The OS initializes VVBLKD to its "exit
vertical blank" routine (at 59710 in the old OS, 59653 in the new one) .
If you use VVBLKD to point to your own routine, make sure to end
that routine with a JMP XITVBL (XITVBL contains a JMP instruc­
tion to the exit vertical blank routine, which means you don't have to
worry about which OS is being used since XITVBL is at 58466 in

101

both). Note that you can also avoid the whole entire OS VBI code by
writing your own immediate VBLANK routine and ending it with a
JMP XITVBL instead of a JMP SYSVBV. Remember that none of
the timers or color registers or anything will be updated if you do this
(unless you update them in your routine).

By now you're probably either real excited over the prospect of using
VBls yourself, or you're asleep. If it's the latter, then you're not even
reading this because your eyes are closed, so I'm only going to deal
with those of you who are excited, OK? Let's look at how to write
our own VBLANK routines.

The first step is to decide whether you want your routine to be im­
mediate or deferred. Most of the time it doesn't matter. There are,
however, the following conditions which will require one over the
other.

1. If you want to change locations that the OS deferred routine also
changes (see Appendix Ten), you obviously want to do so after
the OS does. Use deferred.

2. The maximum amount of time you can spend in immediate VBI
is 2000 machine cycles (see a book on 6502 assembly language
for information on the number of machine cycles per instruc­
tion). If your routine is going to be long, you should therefore
put it in deferred VBI, which has 20,000 cycles available. If you
don't, things are going to look mighty funny on the screen. If
you do use deferred, do your graphics first, since some of those
20,000 cycles occur while the screen is being drawn.

3. If you need your routine to be executed every VBLANK, re­
gardless of whether time-critical 110 is occurring, use immedi­
ate. Be careful, however, that your routine will not cause
problems with the 110.

Now that you've decided what it should be (and you've presumably
written it and put it in memory somewhere), all you need to do is
change VVBLKI or VVBLKD to point to it. A simple task, right? Not
quite. What happens if a VBl occurs while you're changing the vec­
tor? Crash city!

To make sure this doesn't happen, you have to change the vectors
during VBLANK. But that itself presents a small problem. How do
we get into VBLANK to change the vectors if we have to change the

102

548,549

vectors to get to VBLANK (good old catch-22 again)? Luckily, Atari
has thoughtfully provided a VBI routine that makes the change for
you. It's called SETVBV and is at 58460. To use it , load the 6502 Y­
register (LDY) with the low byte of the address for your routine, and
load the X-register (LOX) with the high byte. Then load the accu­
mulator (LOA) with a six if you want immediate VBI, seven if you
want deferred, and JSR SETVBV. Now your VBI will be up and run­
ning.

Here's a simple example that uses location Chact (755) to make in­
verse text blink:

100 FOR MEM=1536 TO 1575
110 READ CODE
120 POKE MEM,CODE
130 NEXT MEM
140 X=U5R (1536)
150 DATA 104,169,0,141,29,2,160,16,162,6,169,6,141,29,2,32
160 DATA 92,228,96,173,28,2,208,13,169,30,141,28,2,173
170 DATA 243,2,73,2,141,243,2,76,95,228

Make sure that the DATA values are correct before you run the pro­
gram. If they aren't, the computer will probably crash and you'll lose
the program.

Here's the assembly language li sting of the machine code (which is
stored in the OAT A statements) :

103

0600 68 PLA
0601 A900 LDA #$00
0603 8D1D02 STA CDTMV3+1
0606 AOIO LDY #VBLANK&255
0608 A206 LDX #VBLANKI256
060A A906 LDA #$06
060C 8DID02 STA CDTMV3
060F 205CE4 JSR SETVBV
0612 60 RTS
0613 AD2C02 VBLANK LDA CDTMV3
0616 DOOD BNE VBLXIT
0618 A91E LDA #$IE
061A 8DlE02 STA CDTMV3
0610 AOF302 LOA CHACT
0620 4901 EOR #$02
0622 8DF302 STA CHACT
0625 4C5FE4 VBLXIT JMP SYSVBV

The "LOA #$IE" in the preceding listing is used to specify a half
second interval ($IE hex equals 30 decimal equals 30 jiffies equals half
a second) for use in blinking. Make it larger or smaller to make the
interval longer or shorter, respectively .

COTMAI
550,551 0226,0227

CDTMAI is the vector for system timer one (COTMVI [536,537]).
It's initialized to 60400, which is the address of a routine to set the
time out flag TIMFLG (791). This is because the OS uses COTMVI
for I/O routines, which is a very good reason why you probably should
use timer two instead.

The OS vectors through CDTMAI when COTMVI counts down to
zero . If you do use CDTMV 1, and are setting it for a value greater
than 255 (i.e . , setting both the low and the high byte), this presents a
potential problem. Since COTMVI is updated during VBLANK, and
there is a chance that a VBLANK might occur while you're setting
CDTMV 1, you should set the low byte first. You can also use the
SETVBV routine mentioned in the VBLANK description preceding.
Just LDY with the low byte, LDX with the high , LDA with the timer
number (1-5), and JSR SETVBV. This will assure that the timer gets
set during VBLANK.

104

548,549-555

Since the OS JSRs through this vector, you should end your routine
with an RTS instruction.

Incidentally, CDTMV 1 reaching zero generates an NMI, which then
does the vector.

CDTMA2
552,553 0228,0229

Same as CDTMA1, except this one is not used by the OS and is there­
fore initialized to zero . Oh, and of course CDTMV2 (538,539) reach­
ing zero causes the vector through here, not CDTMV 1. But then we
already knew that, didn't we?

CDTMF3
554 022A

Unlike system timers one and two, timers three through five merely
clear a flag when they count down to zero. This is the flag for
CDTMV3 (540,541) and is also used by DOS as a timeout flag, so
beware of possible conflicts if you use it.

As with the other two flags, you must set CDTMF3 when you set
CDTMV3. Any nonzero value is ok.

SRTIMR
555 022B

Well, here in the middle of all the timer stuff is a different kind of
timer. As everybody knows, if you hold down a key on the Atari, it
will start repeating, right? And something has to tell the OS how long
to wait before starting that repeat and before repeating it again, right?
And can you guess what location does that? Sure, I knew you could .
SRTIMR is set to 48 every time a key is pressed. Every stage two
VBLANK that the key is sti ll held down, SRTIMR gets decremented
by one. When it reaches zero, the repeat process starts. It gets set to
six, decremented again, the key repeats, it gets reset to six, and so
forth until the key is released. Unfortunately, there are no locations
that store the two delay times, so you can't speed up or slow down
the process just by changing a couple of locations. There is, however ,
another way to do it.

105

As you recall, the initial delay time of 48 is set whenever a key is
pressed . As you mayor may not recall, we came across a vector a few
locations ago (VKEYBD [520,521]) that pointed to the IRQ routine
for a key being pressed. It is in this routine that the delay is set. So,
in order to change the delay, you must essentially take the OS routine,
change the delay value, store your revised version in memory, and
update the vector. You'll find the OS routine at location $FFBE on
page 130 of the OS listing .

How about the other delay, the six jiffy one once the repeat is started?
If you were paying attention (and I know you were), you already know
that it gets set in stage two VBLANK. Can you guess what you're
going to have to do to be able to set it yourself? If you guessed "take
the OS stage two VBLANK interrupt routine and put it in my own
deferred VEl routine with the delay value changed," then give your­
self a pat on the back.

"But wait! The OS stage two VBI routine gets executed whether I have
my own deferred VBI routine or not," you say, taking me completely
by surprise. You're right though (or would have been if you had said
it). Your deferred routine, however, happens after the OSs, so you
can just repeat the part that sets the delay and, since you'll set it after
the OS does, yours will be the one that counts. The part you want is
at locations $E87C through $E897 on page 36 of the OS listing, and
locations $E8E8 through $E8EE on page 37 (these locations will be
different in the new OS, but that's irrelevant here). Be aware that the

106

555-559

OS will now be executing this routine twice, and will therefore be
decrementing by two every YBLANK. You should set SRTIMR to
double the delay you want, and also change your deferred routine so
that it resets SRTIMR if it's equal to zero or one. That makes sure
that the OS routine doesn't reset it before you get a chance to.

CDTMF4
556 022C

And now, back to our timers. This is the flag for CDTMY4 (542,543) .
See CDTMF3 for more information.

INTEMP
557 022D

INTEMP is used for temporary storage during the SETYBL routine.
As you recall, SETYBL is at the address stored in 58460. Heaven only
knows what INTEMP is doing here in the middle of the system timers.

CDTMF5
558 022E

This is the flag for CDTMY5 (558,559). See CDTMF4 for more in­
formation (ha ha).

SDMCTL
559 022F

This location is amazing. So many things can be done here that you'll
just flip! Maybe not. Anyway, SDMCTL controls something called

107

Direct Memory Access (DMA). Simply put, DMA is the process by
which ANTIC, the Atari graphics chip, gets the information from
memory it needs to fill in the screen (this means information for the
playfield and for player/ missile graphics). Now this process obviously
takes time and slows down the 6502 because of that. So what happens
if we turn DMA off? Things will run faster. Try it; POKE 559,0 to
turn DMA off. Uh-oh, what happened? The screen went blank. But
of course, with no DMA, ANTIC isn't getting the information for
the screen so there's no picture. What good does a computer do with­
out a picture? Well, sometimes you don't need one. For example, if
you're doing a lot of calculations, it's more important to get them
done quickly than to have an "I'M THINKING" message on the
screen, and turning off DMA will speed things up by as much as 30
percent! Of course, with a blank screen the user may think that the
computer just up and croaked on him, so be sure you give a warning
before the lights go off. SDMCTL is a shadow register for DMACTL
(54272).

By the way, in case you're still sitting there after the POKE 559,0 with
a lifeless computer, just press SYSTEM RESET or type in POKE
559,34. You can't see the POKE written on the screen, but it will still
work when you press return.

OK, so we can turn off the screen. Big deal, right? Right, but it's
what we can do when we turn the screen back on that counts.
SDMCTL let's you make the playfield (the blue screen you PLOT and
PRINT onto) wider, narrower, or nonexistent. It also lets you turn
players and missiles on and off, define how tall you want the players
to be, and, of course, turn ANTIC on and off.

Let's take a look at a breakdown of SDMCTL and see what does what
(Figure 10).

To get players and missiles going, see GRACTL [53277] as well.

So, to use SDMCTL, pick the options you want, add their values, and
POKE away. Note that ANTIC must be turned on if you want a dis­
play, and you can only have one type of playfield at a time. While
we're on the subject of playfields, you'll probably want to know ex­
actly what a "narrow" and "wide" playfield are. OK, here goes:

The width of the playfield is measured by something called a "color
clock." A color clock is twice as wide as a pixel in graphics mode

108

BIT(S)

0,1

2

3

4

5

6,7

559

PATTERN VALUE RESULT

------00 0 No playfie ld

------01 1 Narrow playfie ld

--- ---10 2 Regu lar playf ield

------11 3 W ide playfie ld

-----0-- 0 Missi les off

-----1-- 4 Missi les on

----0--- 0 Players off

----1--- 8 Players on

- - -0--- - 0 Double he igh t p layers

---1---- 16 Regu lar heig ht players

--0----- 0 ANTIC off

--1----- 32 ANTIC on

--- - ---- Not used

FIGURE 10. SDMCTL chart

eight. That means that a character in graphics mode zero is 4 color
clocks wide (we'll use graphics mode as an example since you can see
the playfield in this mode), and that in turn means that the regular
playfield is 160 color clocks wide (forty characters times 4 color clocks
per character). A narrow playfield is only 128 color clocks (32 char­
acters) wide, while a wide playfield has 192 color clocks (48 charac­
ters). The television set draws 228 color clocks total (including the
black border), but not all of these can be seen. As a matter of fact,
not all of the 192 in a wide playfield can be seen either, which makes
it good for horizontal scrolling.

109

Is having a wide or narrow playfield as easy as it sounds? Well, yes
and no. Getting it on the screen's easy (try POKE 559,35 right now),
using it properly isn't. Unfortunately, telling SDMCTL that you want
a different size playfield doesn't tell the OS that anything's different.
To see what I mean, try POKE 559,35 from graphics mode zero. Now
you have 48 characters per line, but the OS still thinks you have 40.
Try typing stuff in and you'll see the problem. There is no way around
this problem, which means that you have to set up the screen memory
yourself if you want to take advantage of this feature. Sorry.

Double-height players, in case you were wondering, have dots the
height of those in graphics mode seven, while regular-height players
are the height of graphics mode eight. Despite the way I named the
two, double-height players are given to you unless you specify oth­
erwise using SDMCTL.

SDLSTL
560,561 0230,0231

MEMQRY 559=0
l-OCAT'ON

Another important location. SDLSTL holds the address of the display
list. Let's talk display lists.

We already know about screen memory, the memory locations that
hold the information that is to be displayed on the screen (see
SA VMSC at 88,89). How does the computer know how to interpret
th is memory, though? As we learned in SDMCTL there is a special

11 0

559-560,561

chip called ANTIC that takes care of the graphics. ANTIC has a list
of commands that tells it how to display the screen memory. Oddly
enough, this list is called the "display list." Since the display list is
made up of commands, it's actually like a little program. And, since
the screen memory has to be redisplayed 60 times a second, this pro­
gram is a continuous loop, running over and over again. Why does
the screen memory have to be redisplayed? The TV set draws a picture
by making different parts of the screen glow at different brightnesses.
The screen, however, will only glow for a very short period of time.
Therefore, in order to get a picture to stay on the screen, the TV has
to draw it 60 times a second.

For now, let's pretend that a display list is written just like a BASIC
program, only with special commands. Let's look at what such a dis­
play list would look like:

100 DRAW 8 BLANK SCAN LINES
110 DRAW 8 BLANK SCAN LINES
120 DRAW 8 BLANK SCAN LINES
130 CHARACTER MODE 0 LINE. ..
140 ... WITH SCREEN MEMORY STARTING AT <address>
150 CHARACTER MODE 0 LINE
160 CHARACTER MODE 0 LINE

370 CHARACTER MODE 0 LINE
380 GOTO 100 AND WAIT FOR VBLANK

We start by telling ANTIC to leave the first 24 scan lines blank. Scan
lines are the height of a graphics mode eight line, start before the left
edge of the screen and go all the way past the right edge. If you look
closely at the screen you can even see them. We leave 24 lines blank
so that we can be sure that all of our picture will be on everyone's
screen. TV and monitor screens all act slightly differently, so the blank
lines will create a frame that can cover the edges of the screen. These
blank lines make up the top of the black border that you can see in
graphics mode zero.

Next we want to start our mode zero lines, so we have a mode zero
line command. ANTIC has to know where the screen memory is be­
fore it can start drawing, so we make the first mode zero command
a special one that tells ANTIC that the address of the screen memory

III

will come next. Then, after the screen memory address, we have 23
regular mode zero commands. Finally, we tell ANTIC to go back to
the beginning and start all over again after VBLANK. Remember that
VBLANK is the time during which the TV is getting ready to start
drawing the picture again. We want to make sure it's ready before
ANTIC starts again, we so tell ANTIC to wait until VBLANK is over.

Now that we have a basic understanding, let's look at the specifics.
First of all, ANTIC doesn't use line numbers. In a real display list,
the line numbers would be memory locations. Secondly, ANTIC has
abbreviations for all the commands. And thirdly, there is no thirdly.
Let's therefore look at the proper way to write the preceding display
list (we'll have it start at location 1000 [decimal], although it would
usually be much higher in memory):

1000 BLK 8
1001 BLK 8
1002 BLK 8
1003 CHR 2 LMS
1004 < screen memory low byte >
1005 < screen memory high byte>
1006 CHR 2
1007 CHR 2

1028 CHR 2
1029 JVB 1000

112

560,561

As you can see, this isn't that much different from our original. LMS,
by the way, stands for Load Memory Scan and tells ANTIC that the
next two bytes will be the address of the beginning of screen memory.
Now, the final step is to convert these commands into numbers that
we can POKE into memory. There is a unique number assigned to
each command, and the chart in Appendix Twelve gives you those
numbers. Before you look at that chart, however, let me explain the
other commands that you'll see there:

MAP is the same as CHR, except it's used to indicate a graphics mode
rather than a character (text) mode.

JMP is like JVB, except it doesn't tell ANTIC to wait for the end of
VBLANK. It's needed because of a quirk in ANTIC that says a dis­
play list can't cross a lK boundary. What's a lK boundary? It's a
memory location that's a multiple of 1024. With display lists created
by GRAPHICS commands, this is no problem. If you're designing
your own, however, and you have to cross such a boundary, JMP
over it. While we're on the topic of boundaries, you should also be
aware that screen memory is not allowed to cross a 4K boundary. If
it does, you have to have a second LMS instruction to get past the
boundary. Under normal circumstances, however, this only happens
in graphics modes 8 through 11, and the OS will take care of it for
you.

HSC, like LMS, is not really a command but rather a modification
to a command. It tells ANTIC that this mode line is to have the ca­
pability of fine horizontal scrolling (see HSCROL at 54276).

VSC, you guessed it, is another modification that specifies a fine ver­
tical scrolling capability. See VSCROL (54277).

DLI is the fourth modification, telling ANTIC that there is to be a
display list interrupt at the end of this mode line. Pay particular at­
tention to the "end." See VDSLST (512,513) for more details on
DLIs.

Now that you'll be able to understand the chart, why don't you go
take a quick peek at it.

Run the following program to take a look at the actual graphics mode
zero display list as it is stored in memory:

113

100 GRAPHICS 0
110 DLIST=PEEK(560)+PEEK(561)*256
120 PRINT PEEK(DLIST)
130 IF PEEK(DLIST)<>65 THEN DLIST=DLIST+l:GOTO 120
140 PRINT PEEK(DLIST+l)
150 PRINT PEEK(DLIST+2)
160 END

Use CTRL-l to pause the display list. Notice that the last two num­
bers PRINTed (the address for the JVB) are the same as the values
in 560 and 561. If you can't figure out why, drink a couple of cups
of coffee and read this whole description all over again. Here is a hint:
They tell the computer to go back and use the same display list all
over again. If you change the numbers here the computer will use
another display list at the new address, which means you could use
several display lists at once.

We've pretty much covered the standard GRAPHICS display lists,
but what about custom ones? It should have occurred to you by now
that you can write your own display lists, mixing different graphics
modes on the screen. Since this is true, and is such a popular thing
to do, there is a special appendix at the end of the book telling you
just how to do it. So please consult it if you want to write your own
display list.

A few (more) words before we move on. What can you use LMSs for
other than to tell ANTIC where the screen memory is? Nothing! You
can, however, tell ANTIC where the screen memory is more than once
in the same display list. Why would you want to do that? Well, you
have to if you're fine scrolling (see HSCROL and VSCROL). You
could also do it to repeat the same line over and over again without
wasting memory. LMSs are another powerful tool that have no stead­
fast rules about what to use them for; use your creativity. Here's an
example of repeating text. After the program has run, clear the screen
and try typing in a line of text.

100 GRAPHICS 0
110 DLIST=PEEK(561)*256+67:POKE 560,67
120 LOW=PEEK(88)
130 HIGH=PEEK(89)+2
136 POKE 89,HIGH
137 POKE DLIST,112
138 POKE DLIST+l,112
139 POKE DLIST+2,112
140 DLIST=DLIST+3

114

560,561-563

150 FOR ROW=O TO 23
160 POKE DLIST,66
170 POKE DLIST+l,LOW
180 POKE DLIST+2,HIGH
190 DLIST=DLIST+3
200 NEXT ROW
210 POKE DLIST,65
220 POKE DLIST+1,PEEK(560)
230 POKE DLIST+2,PEEK(561)

What's going on here? Essentially we're rewriting a graphics mode
zero display list so that all the lines have LMSs that point to the same
address. We also have to change SAVMSC (88,89) so that the OS
knows where our new screen memory is. Why isn't the new screen
memory in the same place as the old screen memory? Because our
new display list overflows into the old screen memory, that's why.

If you press SYSTEM RESET a normal graphics mode zero screen
will appear.

SSKCTL
562 0232

SSKTL is used to control the serial port, and is a shadow register for
SKCTL (53775). As your state of confusion should indicate to you,
it is not really a location for the inexperienced. Look at SKCTL if
you are interested, look at the OS manual if you're really interested.

No name
563 0233

~
~~~V 
F ---- ~ 

I 
I I 

I -' /-----' 
...---

115 



This location is currently unused. Atari reserves the right to use it in 
future versions of the OS, so don't count on it being safe to use. 

LPENH 
564 0234 

Ever hear of a light pen? The thing that looks like a pen and you can 
draw on the screen with it and so forth? Well, if you happen to be 
one of the lucky few who have one, this will tell you what horizontal 
position on the screen it's pointing to. Neat, huh? 

LPENH is a shadow register for PENH (54284). 

LPENV 
565 0235 

This is the vertical position of the light pen on the screen. It's a shadow 
register for PENV (54285). 

Since light pens defy all reason, a few words about them are probably 
in order here. Firstly, LPENH and LPENV are set when the light pen 
is pressed to the screen. LPENV gets the value of VCOUNT (54283) 
when the pen was pressed (VCOUNT gets incremented by one every 
two scan lines). LPENH, on the other hand, gets a value based on 
the number of color clocks that have been drawn so far (see SDLSTL 
for an explanation of a "color clock"). Now I'd be more than happy 
to give you the range of values that LPENH and LPENV will return 
as you move a light pen about the screen, but unfortunately the values 
depend on several things. Run the following program to see what the 
limits are for your computer. Also see STICKO-3 (632-635). 

100 GRAPHICS 0 
105 POKE 752,1 
110 POSITION 2,11 
120 PRINT "Light pen 
130 PRINT " 
140 POSITION 34,11 
150 PRINT PEEK(564);" 
160 POSITION 32,12 
170 PRINT PEEK(565);" 
180 GOTO 140 

horizontal position 
vertical position = " 

". , 

". , 

You should also note that light pens are not very precise; the values 
can vary slightly even if you hold it steadily at one point on the screen. 

116 



564-568,569 

If you're writing a program that uses the light pen, be sure to allow 
for a little variation in the values. This can be done by "sampling" 
values. Basically this means read 10 or so values every time you need 
one, throw out the highest and lowest, and average the rest to get a 
single value. 

BRKKEY 
566,567 0236,0237 

In the new "B" version of the OS, this is the vector for the BREAK 
key interrupt. It is initialized to 59220, which means you will find 84 
in location 566 and 231 in location 567. To disable the break key, 
POKE 143 into 566. 

See BRKKEY at location 17 if you want to write your own BREAK 
key routine and you have the old OS. Also see locations 512 through 
535 for more information on interrupt vectors. 

Noname 
568,569 0238,0239 

More "unused" bytes. See the warning at location 563 about such 
bytes. 

OK, we're going back to II 0 now. The next four bytes make up the 
"Command Frame Buffer" (CFB), a table that SIO uses when doing 
serial bus operations (remember that the serial bus is what informa­
tion travels back and forth on). It is not designed to be used by you, 

117 



so you should be reading out of curiosity rather than necessity. For 
more informatin on the CFB and the rest of the I/O system, make 
sure you read Appendix Seven. 

CDEVIC 
570 023A 

CDEVIC contains the device code. 

CCOMND 
571 023B 

CCOMND contains the command code . 

CAUXI 
572 023C 

CAUXI contains the command auxiliary byte one, which comes from 
DAUXI at location 778. 

CAUX2 
573 023D 

Finally, CAUX2 contains the command auxi liary byte two, which SIO 
gets from DAUX2 at location 779. 

TEMP 
574 023E 

SIO uses TEMP as a TEMPorary storage place (the people who name 
these things are so clever). 

ERRFLG 
575 023F 

If any error occurred during device I/ 0, with the exception of a 
timeout, ERRFLG is set to 255 . Otherwise, if everything is okey­
dokey, it is set to zero. 

Also see STATUS at location 48. 

DFLAGS 
576 0240 

li S 



570-580 

When a disk is booted (the computer is turned on with the disk drive 
on), the first disk "record" (a record is a segment of information that 
has been recorded on the disk) is read from sector one (a sector is a 
segment of the disk, shaped like a piece of pie) into memory. Some 
of the information from this record is used to continue the boot. The 
first byte in the record contains several useful flags . It gets stored in 
DFLAGS . 

DBSECT 
577 0241 

The second byte tells how many sectors are used in the boot file. It 
gets stored in DBSECT. 

BOOTAD 
578,579 0242,0243 

Finally, because we have to know where to put the file, the third 
and fourth bytes give the starting address. They get stored in 
BOOTAD . Once the OS knows BOOTAD, it moves the record it just 
read in over to the new address and starts loading in the rest of the 
file, putting each record after the previous one until the whole file is 
properly in memory . 

BOOT AD gets transferred to RAMLO (4,5) which, because it is in 
page zero, is used to move the file from the sector buffer to its place 
in memory. 

In most cases, the boot file is DOS, and BOOT AD will hold the ad­
dress 1792. 

COLDST 
580 0244 

COLDST is fun. The OS sets it to one during the powerup process 
and then sets it to zero when everything has been properly initialized. 
If somebody presses SYSTEM RESET, the OS looks at COLDST to 
see whether it was in the middle of powerup when SYSTEM RESET 
was pressed. If it was (COLDST equals one), then the turkey who did 
the pressing messed up the powerup and the OS has to start all over 
again. Otherwise, the OS just treats it like a normal RESET. 

Fun? That's your idea of fun? Hey, let me finish. The OS isn't too 
smart; COLDST is the only way it knows whether or not it's in the 

119 



middle of powerup when SYSTEM RESET is pressed. That means 
you can set COLDST to one in your program, and if SYSTEM RE­
SET gets pressed, the computer will act as if somebody just turned 
the computer on. Your whole program will be erased rather than bro­
ken into (usually SYSTEM RESET will cause the OS to jump to 
BASIC, where your program can be LISTed or SAVEd). 

Use COLDST along with POKMSK (16) and STMCUR (138,139) to 
totally protect your BASIC programs from being looked at or SAVEd 
(the disk or cassette they're on could still be copied though). Another 
good use for this trick is to POKE 580,1 and press SYSTEM RESET 
instead of using your ON-OFF switch when you want to load in an­
other program. It saves wear and tear on the computer. 

No name 
581 0245 

Yet another unused byte for which the warning at location 563 ap­
plies. 

DSKTIM 
582 0246 

The "disk timeout register." We last saw timeouts at location PTI­
MOT (28). Well, they're back, this time for the disk drive (PTIMOT 
was for the printer). DSKTIM holds the timeout value for the FOR­
MAT command. It is supposedly initialized to 160, but I have seen 
machines that initialize it to 120 and 224, which I suspect has some­
thing to do with different versions of the OS. Anyway, regardless of 
what it's initialized to, the value in DSKTIM is updated after every 
STATUS request with the value in DVSTAT+2 (748). 

You should look at DTIMLO (774) for lots more information on disk 
timeout, including the exact use for DSKTIM. 

LINBUF 
583-622 0247-026E 

Hey, remember buffers? This is a 40-byte-long buffer used by the 
screen editor. You see, the screen editor needs a place to temporarily 
store a line of text when it's moving stuff around on the screen. This 
is it. 

120 



580-623 

ADDRESS (100,101) is used as a temporary zero page pointer to LIN­
BUF during the moving process. 

GPRIOR 
623 026F 

GPRIOR is used to set priorities and to select GTIA modes. Whoa 
boy, what in tarnation are priorities? I'm so glad you asked! There 
is a complete example of all this player missile stuff on the disk or 
tape we offered with this book. It will not only show you what all of 
this is, but since we never protect our programs, you can change many 
of the locations that our program uses for practice. 

In the wonderful world of Atari graphics, there are two kinds of things 
that can appear on the screen. First of all, there is the playfield. The 
playfield is what you get by PRINTing, PLOTting, and DRA WTO­
ing. The playfield is made up of as many as five colors, which are 
specified by the color registers (as in SETCOLOR color register, color, 
brightness). Each of these colors represents a different part of the 
playfield. The one with the same color as color register zero is called 
playfield zero and so forth. The one with the background color (color 
register four) is called BAK. 

The second type of thing that can appear on the screen is player/ missile 
graphics. We'll be getting more into players and missiles in the 
CTIA/ GTIA chip at location 53248, but for now just be aware that 

121 



there are four players and four missiles that can appear on the screen 
at the same time as the playfield. 

So where is all of this getting us? Well, if you have player/ missile 
graphics on the screen , and you also have a playfield, which should 
be seen when the two are in the same place? In other words, which 
should have priority over the other? GPRIOR tells ANTIC (the chip 
that draws the picture) who has the highest priority (Le., who gets to 
be seen). Let's look at the chart in Figure 11. 

GPRIOR ····0001 ····0010 ····0100 ···1000 BIT PATTERN 

(0) (2) (4) (8) (VALUE) 

HIGHER PO PO PFO PFO 

PRIORITY P1 P1 PF1 PF1 

P2 PFO PF2 PO 

P3 PF1 PF3+P4 P1 

PFO PF2 PO P2 

PF1 PF3+ P4 P1 P3 

PF2 P2 P2 PF2 

LOWER PF3+P4 P3 P3 PF3+ P4 

PRIORITY BAK BAK BAK BAK 

FIGURE 11 . GPRIOR chart 

122 



623 

PF means PlayField, P means Player. Missiles have the same priority 
as the player with the same number. Keep in mind that something with 
a higher priority will appear to move in front of something with a 
lower priority. Similarly, of course, something with a lower priority 
will appear to move behind something with a higher priority. 

As you probably noticed, only the last four bits of GPRIOR are used 
to set the priority (make sure only one of those four bits is on). What 
about the other four? If you set bit four (---1---- [16]), then all the 
missiles will have the same color as playfield three. That lets you move 
the missiles together and use them as a fifth player (P4). If you set 
the bit five (--1----- [32]), then overlapping player zero and player one 
will produce a third color in the overlap area. This goes for player 
two and player three as well. For machine languagers, or just the cu­
rious, the third color is produced by ORing the colors of the two play­
ers together. 

As long as we're on the subject of overlap colors, if you do set more 
than one of the last four bits, then in a case where two overlapping 
objects have the same priority, the overlap area will be black. 

In graphics modes zero and eight, only the color of the text or pixels 
will be changed if a player or missile flies over them. The brightness 
will not change. 

So now we're left with the seventh and eighth bits. They don't have 
anything to do with priorities or player missile graphics. Instead they 
indicate whether or not a GTIA mode is being used, and if so, which 
one. They work as shown in Figure 12. 

00--------

01--------
10--------
11 - -------

(0) No GTIA mode 

(64) GRAPHICS 9 

(128) GRA PHICS 10 

(192) GRAPHICS 11 

FIGURE 12. GTIA chart 

You only need to set these bits if you're writing your own display list. 
Otherwise the OS will take care of them when you use BASIC to call 
"GR.9, 10, or II" 

123 



If you want more information on GTIA, what it is, whether you have 
it, and how to use it, consult Appendix Four in the back of this book. 

GPRIOR is a shadow register for PRIOR (53275). 

The next 24 locations (624 through 647) hold information about the 
joysticks, paddles, and light pens. 

PADDLO 
624 0270 

PADDLO holds the current value of paddle zero (the left paddle in 
the leftmost plug in the front of the computer). Paddles can have a 
value ranging from 0 to 228; the further you turn the paddle clock­
wise, the higher the value. 

Paddles are actually little more than a "potentiometer." Let's look 
at a potentiometer as though it were a bathroom faucet. The computer 
sends a value 255 worth of water into the faucet, but the amount that 
comes out depends on how far open the faucet is. If it's all the way 
open (the paddle is turned clockwise as far as it will go), then almost 
all of the water will flow through (228 worth). If it's all the way closed 
(the paddle is turned counterclockwise as far as it will go), then none 
of the value will flow through. And that's exactly how a potentiometer 
works, except the computer is sending electricity into it rather than 
water (paddles aren't water-proof). 

If you design a program that uses the paddles, be careful. Most of 
the time you won't want them to have a range of 0 to 228. For ex­
ample, if you're using the paddles to move a player, the player will 

124 



623-627 

probably move off the screen. So what can you do to get the range 
that you want? Let's suppose you want to go from LOW to HIGH. 
First, do the following: 

RANGE = HIGH-LOW + 1 
EACH=RANGE1228 

These two lines should come somewhere in your program before you 
start using the paddles. Then, every time you read the paddle, do the 
following: 

MYVAL = INT(OLDV AL*EACH + .5) + LOW 

where OLD V AL is the value of the paddle, and MYV AL is the cor­
responding number in the range you wanted. 

PADDLO is a shadow register for POTO at location 53760. Note that 
the value for the button (trigger) on the paddle can be found at 
PTRIGO (636). 

The following paddle locations work the same as paddle 0, but you 
change the number of the paddle (of course). Paddles 0 and 1 plug 
into the leftmost port (hole) numbered 1 on the front of the Atari 
computer. Likewise 6 and 7 plug into the rightmost port numbered 4 
on the computer. 

PADDLl 
625 0271 

The value for paddle one and a shadow register for POTI at 53761. 

PADDL2 
626 0272 

The value for paddle two and a shadow register for POT2 at 53762. 

PADDL3 
627 0273 

I'll leave this and the next four for you to figure out (hint: see the 
last three locations). 

125 



PADDL4 
628 0274 

PADDL5 
629 0275 

PADDL6 
630 0276 

PADDL7 
631 

STICKO 
632 

0277 

0278 

,HINT 
.... INT 

Let's see. P ADDLO was paddle zero, so I wonder what STICKO is? 
Could it possibly be joystick zero? Despite all the odds against it, it 
is. Joystick zero is the one plugged into the leftmost plug in the front 
of the computer. 

Unlike paddles values, joystick values don't appear at first (or second) 
to make much sense. Let's take a look at those values (Figure 13). 

126 



1~ 
, / 

10 6 ""/ -11--15-- 7-

/"" 1'9 5", 

13 
~ 

628-632 

FIGURE 13. Joystick values in decimal 

This figure represents the nine possible positions the joystick can be 
in, along with the value corresponding to each. If you move joystick 
zero up, for example, STICKO will have a value of 14. Now, unless 
you have some brilliant power of observation that I don't, these values 
don't seem to make any sense. I mean, does "14" mean " up" to you? 
Not to me. They must make some kind of sense to the computer, 
however, so let's take a look at them again (Figure 14), this time in 
binary (the way the computer sees them). 

t 
1110 

" ~ 1010 0110 ""/ --1011--1111--0111-

/"" 1001 0101 

I' '" 
1101 

~ 

FIGURE 14. Joystick values in binary 

It may not be immediately obvious, but now things make sense. No­
tice how the first bit (the digit on the right) of each value is only equal 
to zero when the joystick is up (straight up or diagonally up)? And 
the second bit is only zero when it's down, the third when it's left, 
and the fourth when it' s right. So we get Figure 15. 

And that's why the numbers don't make sense when you first look at 
them. 

127 



---0 means "up" 

---1 means "not up" 

--0- means " down" 

--1- means "not down" 

-0-- means" left" 

-1-- means "not left" 

0--- means " right" 

1--- means " not right" 

FIGURE 15. Joystick bit chart 

Here are a couple of machine language routines to help you make a 
little more sense out of the joystick values. One looks for vertical 
movement and will return a zero for up, one for center, and two for 
down. The other looks for horizontal movement and returns a zero 
for left, one for center, and two for right. As you'll see from the 
following example, these values can prove to be very practical: 

100 DIM STICKV$(19):DIM STICKH$(22) 
110 FOR CHAR=l TO 19 
120 READ CODE 
130 STICKV$(CHAR,CHAR)=CHR$(CODE) 
140 NEXT CHAR 
150 FOR CHAR=l TO 22 
160 READ CODE 
170 STICKH$(CHAR,CHAR)=CHR$(CODE) 
180 NEXT CHAR 
200 GRAPHICS O:POKE 752,1 
210 PRINT :PRINT "Machine language joystick example" 
220 POSITION 10,4:PRINT "VERTICAL VALUE:" 
230 POSITION 8,6:PRINT "HORIZONTAL VALUE:" 
240 VERT=USR(ADR(STICKV$) ,0)-1 
250 HORZ=USR (ADR (STICKH$) ,0)-1 
260 POSITION 26,4:PRINT VERT;" 
270 POSITION 26,6:PRINT HDRZ;" 
280 GOTO 240 
290 GOTO 250 
1000 DATA 104,104,133,213,104,170,189,120,2,41,3 
1010 DATA 201,2,240,1,74,133,212,96 
2000 DATA 104,104,133,213,104,170,189,120,2,74,74 
2010 DATA 73,2,201,3,208,2,169,2,133,212,96 

If you wanted to read joystick one instead of joystick zero, you'd use 
USR(ADR(STICKV$),l) and USR(ADR(STICKH$),l). 

128 



632-634 

Here's the assembly code that's stored in the DATA statements: 

68 STICKY PLA 
68 PLA 
85D5 STA $D5 
68 PLA 
AA TAX 
B07802 LOA STICKO,X 
2903 AND #$03 
C902 CMP #$02 
FOOl BEQ DONE 
4A LSR A 
85D4 DONE STA $D4 
60 RTS 
68 STICKH PLA 
68 PLA 
85D5 STA $D5 
68 PLA 
AA TAX 
B07802 LDA STICKO,X 
4A LSR A 
4A LSR A 
4902 EOR #$02 
C903 CMP #$03 
0002 BNE DONE 
A902 LDA #$02 
85D4 DONE STA $D4 
60 RTS 

STICKO is a shadow register for the last four bits (the leftmost four) 
of PORTA at location 54016. It is set to a value other than 15 when 
a light pen in the leftmost controller jack is pressed on the screen. 

STICK1 
633 0279 

Same as STICKO except it's a shadow register for the first four bits 
of PORTA rather than the last two. It's also, of course, the value for 
joystick one rather than joystick zero. 

STICK2 
634 027A 

129 



Same as STICK 1 except it's for joystick two, and it's also a shadow 
register for the last four bits of PORTB (54017). 

STICK3 
635 027B 

Joystick three (the rightmost one) value and a shadow register for the 
last four bits of PORTB. 

PTRIGO 
636 027C 

If you press the trigger on paddle zero, PTRIGO will have a value of 
zero. If you don't press it, PTRIGO will have a value of one. 

PTRIGO through PTRIG3 get their values from bits two, three, six, 
and seven of PORTA (54016), respectively. Because these are the same 
bits that tell whether joysticks one and two are moved to the right or 
left (see STICKO), you can use the trick in Figure 16. 

PTRIG(1) - PTRIG(O) = -1 if joystick zero is moved to the left 

= 0 if joystick zero is in the center 

= 1 if joystick zero is moved to the right 

FIGURE 16. PTRIG chart 

The same holds true for PTRIG(3)-PTRIG(2) and joystick one. You 
can use this trick to make horizontal movement easier to program. 
Just add the value of the PTRIG difference to your old horizontal 
position. This saves trying to figure out the joysticks. For the same 
ease in vertical movement, use the routine given for STICKO. 

PTRIG1 
637 027D 

Same as PTRIGO but for paddle one. 

PTRIG2 
638 027E 

Trigger value for paddle two. 

130 



PTRIG3 
639 027F 

Trigger value for paddle three. 

PTRIG4 
640 0280 

Trigger value for paddle four. 

634-643 

PTRIG4 through PTRIG7 get their values from bits two, three, six, 
and seven of PORTB (54017), respectively. The same trick for hori­
zontal movement that was described under PTRIGO can be applied 
to joystick two and joystick three using PTRIG4 through PTRIG7. 

PTRIG5 
641 0281 

Trigger value for paddle five. 

PTRIG6 
642 0282 

Trigger value for paddle six. 

PTRIG7 
643 0283 

131 



Guess. 

STRIGO 
644 0284 

Well, here we are again at another new, different, and challenging 
name for a location. For the next three as well, actually. All three 
STRIG locations hold the values for the joystick button, and work 
exactly the same way as PTRIG (zero means pressed). 

The STRIGS are shadow registers for the TRIGS (53264 to 53267). 

STRIGI 
645 0285 

STRIG2 
646 

STRIG3 

0286 

647 0287 

CSTAT 
648 0288 

132 



644-656 

CST AT is the cassette status register . 

WMODE 
649 0289 

This location tells the cassette handler whether the cassette is to be 
read from (0) or written to (128). 

BUM 
650 028A 

When the cassette handler reads in a record, the 132 bytes in that 
record are stored in CASBUF (1021) . BUM tells how many of those 
bytes are data that we want to give to the user. It is set according to 
one of the control bytes in the record, and since this probably doesn't 
make any sense to you, you should go read the description of CAS­
BUF if you want more information. 

Noname 
651-655 028B-028F 

More spare bytes that you shouldn't use because future versions of 
the OS might use them. Locations 651 and 652 are already used by 
version "B" as part of the interrupt handler routines. 

The display handler uses the next 48 locations. Note that not all lo­
cations are used in all graphics modes . 

In the case of a graphics mode with a text window, the display handler 
takes care of the screen, while the screen editor takes care of the text 
window. Two separate 10CBs are used for this purpose (see locations 
832 to 959), along with two separate cursors. 

You should look at SWPFLG (123) for additional information about 
locations 656 to 667. 

TXTROW 
656 0290 

The row that the text window cursor is currently in. Because there are 
only four rows in the text window, TXTROW ranges from zero to 
three. 

133 



TXTROW is the text window equivalent of ROWCRS at location 84. 

TXTCOL 
657,658 0291,0292 

The column that the text window cursor is currently in. There are 40 
columns in the text window, so TXTCOL can range from 0 to 39. 
"Ahah," you say. That means location 658 never gets used (since it's 
only needed when the column number is greater than 255). This is 
true under normal circumstances, but if you change the text window 
to be something other than graphics zero, you may need it. 

TINDEX 
659 0293 

While we're on the subject of changing the text window graphics 
mode, TINDEX tells the OS what graphics mode the text window is 
(also see DINDEX at location 87). If you decide you'd like a different 
text window, you'll have to change the display list as TlNDEX. Use 
the program for location SDLSTL (560,561) to look at the display list 
and see where the text window is. I won't go over it here because for 
most uses you'll probably just want to mix graphics modes. If that's 
not the case, however, it's easy to figure out how to make the nec­
essary changes. Just look for the CHR 2 commands at the end of the 
display list. See location 559 and the appendices for more informa­
tion. 

TXTMSC 
660,661 0294,0295 

The address of the upper left-hand corner of the text-window screen 
memory. See SA VMSC (88,89) for the address of regular screen mem­
ory. 

TXTOLD 
662-667 0296-029B 

Check Gut locations 90 through 95, OK? These six locations are the 
text-window equivalent, so I won't bother explaining them again. 

TMPXl 
668 029C 

134 



657-672 

This, along with the next three locations, is used for temporary stor­
age. They are used in one or more of the computer's routines as a 
place to store information during the routine. Once the routine is over, 
the values in them are no longer meaningful. 

TMPXI, in case it wasn't clear, is a temporary location. 

HOLD3 
669 029D 

A temporary location (the location isn't temporary, its use is). 

SUBTMP 
670 029E 

Another temporary location. 

HOLD2 
671 029F 

And yet another temporary location. 

DMASK 
672 02AO 

Way, way back at location SHFAMT (Ill), we had a little discussion 
about masking and making changes to individual pixels in the graphics 
modes. Remember? Well, go back and refresh your memory anyway. 

DMASK holds the mask for the pixel that we want to make changes 
to. Somewhere way up near the end of the OS ROM, there is a list 
of all the possible masks. The display handler decides which one is 
needed and loads it into DMASK. Here are all the different values 
DMASK can have, as well as the graphics modes they are used with 
(Figure 17). 

By way of explanation, the" 1 's" are used to look at individual bits 
and the "O's" to ignore them. 

Now why, you may ask, do we need more than one mask for most 
graphics modes? Graphics modes need anywhere from one to eight 
bits to represent a character or a pixel. Suppose a particular mode, 

135 



11111111 

11110000 
00001111 

11000000 
00110000 
00001100 
00000011 

10000000 
01000000 
00100000 
00010000 
00001000 
00000100 
00000010 
00000001 

for modes zero, one, and two. 

for modes nine, ten , and eleven. 

for modes three, five, and seven. 

for modes four, six , and eight. 

FIGURE 17. DMASK bit chart 

such as mode nine, needs four bits per pixel. That means that each 
byte holds two different pixels, right (since a byte is eight bits)? So 
we need two masks to be able to mask out either pixel. This may be 
a little confusing to you, but don't worry. Unless you're programming 
in machine language, it's something that is nice to know but that you'll 
never need. 

TMPLBT 
673 02AI 

More temporary storage space. 

ESCFLG 
674 02A2 

When the ESC key is pressed, ESCFLG is set to 128 and the next key 
pressed gets an ESC flag attached to it (for example, pressing ESC 
twice would cause the second ESC to print a special character on the 
screen). After the next key has been pressed ESCFLG is reset to O. 

ESCFLG is initialized to zero. 

136 



TAB MAP 
675-689 02A3-02Bl 

672 - 675-689 

TABMAP tells the OS what columns to move the cursor to when the 
TAB key is pressed. 

When the TAB key is pressed, the cursor is moved to the next column, 
after the one the cursor is on, that has a tabstop. What's a tabstop? 
It's nothing more than a flag saying, "Hey, TAB, stop here, OK?" 
TABMAP is where these tabstops, or flags, are kept. Since you can 
set a tabstop on anyone of the 120 columns in a logical line, TAB­
MAP is 15 bytes long. What? How do you get 120 from IS? Well, 
since the tabstop for each column is either turned on or turned off, 
we only need one bit for each column. Fifteen bytes times eight bits 
per byte equals 120. Oh! 

How do you set the tabstops? From BASIC, all you have to do is use 
the TAB-SET (SHIFT -TAB) and T AB-CLR (CTRL-TAB) keys. From 
within a program, however, you must change TABMAP yourself. To 
do this, start with 120 zeroes on a piece of paper. These represent the 
120 columns, numbered from 0 on the far left to 119 on the far right. 
Now change the zeroes to ones in the columns where you want your 
tabstops. So far so good. The next step is to break the 120 digits into 
groups of eight and convert them to decimal. See the section on bits 
and bytes for help in doing this. The last step, now that you have 15 
decimal numbers, is to POKE these numbers into TABMAP. You 
now have your own customized TAB settings. 

137 



What restores T ABMAP to its original values? Pressing SYSTEM 
RESET or using a GRAPHICS command (OPENing S: or E: as well). 
What are its original values? A value of one in every byte. That trans­
lates to tabstops at 7, 15, 23, 31, ... , 119. 

A few final words. T ABMAP works in graphics mode zero and in 
text windows only. Also, the left edge of the screen will always to be 
a tabstop, whether you set it to be or not. 

LOGMAP 
690-693 2B2-2B5 

When you're writing or editing your BASIC program, the screen ed­
itor needs to know where each logical line begins. Why? Just so that 
it can make sense out of what's on the screen. Remember, a program 
listing on the screen may make sense to you, but to the computer it's 
just a bunch of bytes in memory. With the help of LOGMAP, at least 
it knows what row on the screen a program line begins on. 

LOGMAP works in much the same way as the preceding TABMAP. 
There are 24 rows in a graphics zero screen, so there are 24 bits in 
LOG MAP . Actually, there are 32 bits (four bytes), but the last byte 
doesn't get used. The first byte handles rows 0 through 7, the second 
handles 8 through 15, and the third handles 16 through 23. If a logical 
line begins on a certain row, then the corresponding bit is set to one. 
If the row is part of a previous logical line, then the bit is set to zero. 

All the bits in LOG MAP are set to one when the computer is first 
turned on, SYSTEM RESET is pressed, a GRAPHICS command is 
used, the text screen is OPENed, or the text screen is cleared. This is 
because all the lines are blank, and therefore considered to be the start 
of a logical line. 

T ABMAP is updated when you first enter a logical line (with the RE­
TURN key), edit a line, delete a line, or insert a line. Under all these 
circumstances, the position of the logical lines on the screen will be 
altered, thus the need for updating. 

INVFLG 
694 02B6 

138 



675-689 - 695 

INVFLG works similiarly to ESCFLG except it keeps track of the 
inverse video key (the Atari logo key) instead of the ESC key. It is 
initialized to 0, which means that all the characters you type in will 
be normal. But when you press the inverse video key, INVFLG gets 
set to 128 and characters that you type in now will appear in inverse 
video (black on white instead of white on black). Pressing the inverse 
video key again will restore INVFLG to 0 and get things back to nor­
mal. 

You should be aware that changing INVFLG will only affect char­
acters that are typed in after you change it. That means that you can't 
use it like this: 

POKE 694,128:PRINT " INVERSE?" 

Machine language programmers might be interested to know that 
INVFLG is always XORed with the character value, regardless of 
INVFLG's value (this should tell you that the value for an inverse 
video character is just that for a regular character with bit seven set, 
Le., the regular value plus 128). This means that you can have fun 
with the keyboard by POKEing INVFLG with something other than 
o or 128. Try it, it's fun! 

FILFLG 
695 02B7 

If FILFLG is not equal to zero, then we're in the middle of a FILL. 

139 



TMPROW 
696 02B8 

A temporary storage place for the value in ROWCRS (84). 

TMPCOL 
697,698 02B9,02BA 

More temporary storage, this one for the value in COLCRS (85,86). 

SCRFLG 
699 02BB 

This one is somewhat complicated. First of all, it keeps track of how 
many physical lines (as compared to logical lines) have been scrolled 
off the top of the screen. If you keep pressing RETURN, it will even­
tually count up to 255 and then wrap back around to O. No problem 
so far. According to the OS listing, however, it is also used during 
the character insertion process (when you press SHIFT-INSERT). Ap­
parently, if you insert a character, SCRFLG gets set to O. If the in­
sertion caused the screen to scroll up, then the number of lines it 
scrolled (which depends on how long the logical line at the top of the 
screen was, so it could be from one to three) is stored in SCRFLG. 
The value in SCRFLG is then used to reposition the cursor, leaving 
SCRFLG with a final value of 255. 

HOLD4 
700 02BC 

HOLD4 is used to temporarily hold the value of AT ACHR (763) dur­
ing the FILL routine . 

HOLD5 
701 02BD 

An unidentified storage location. 

SHFLOK 
702 02BE 

When SHFLOK is set to 0, all text typed in will be in lower case. Set 
it to 64, and all text will be in upper case. Finally, 128 will give you 
all control and graphics characters. 

140 



696-703 

The following key combinations affect SHFLOK: 

CAPS/LOWR sets it to O. 
SHIFT-CAPS/ LOWR sets it to 64. 
CTRL-CAPS/ LOWR sets it to 128. 

In addition, POKE in 192 and only numbers and punctuation will be 
recognized if pressed. Finally 255 in this location will not allow any 
letters at all to be recognized. Remember that these two POKEs work 
on input from the keyborad only. You can still write letters to the 
screen or printer. This means their practical use is to prevent inputs 
you don't want. 

Note that SHFLOK does not indicate whether or not the SHIFT or 
CTRL keys are pressed. 

SHFLOK is initialized to 64. 

BOTSCR 
703 02BF 

BOTSCR tells how many lines of text are available for use by the 
screen editor. What does this mean? Well, it can use all 24 lines in 

rYou CAN YUT TEX] 
[ANYWHERE] 

141 



graphics mode zero, so BOTSCR would have a value of 24. In a mode 
with a text window, there are four lines in the text window that it can 
use, so BOTSCR would have a value of four. In all other modes there 
are none, so BOTSCR has a value of zero. What about graphics modes 
one and two? you say. In these modes the screen editor takes care of 
the text window, while the display handler takes care of the rest (at 
least in terms of PRINTing text, which is what we're really talking 
about here). 

Try the following program: 

100 GRAPHICS 0 
110 POKE 703,4 
120 FOR ROW=O TO 19 
130 POSITION 2,ROW 
140 PRINT *6;"Wt;! have to print *6 up here" 
150 NEXT ROW 
160 PRINT "But now we have a text window here'" 
170 PRINT 
180 GOTO 160 

COLOR 

The next nine locations, 704 through 712, are called "color registers." 
This is just a fancy way of saying that they tell ANTIC what colors 
to put on the screen. How do you convert a color into a number that 
you can store here? The Atari has a total of 16 colors that you can 
choose from, and each is assigned a number. The exact colors vary 
slightly from television set to television set, so it's difficult to describe 
them exactly . Bear that in mind when you consult the chart in Figure 
18. 

COLOR VALUE COLOR VALUE 
Black 0 Blue 8 
Rust 1 Deep blue 9 

Redd ish orange 2 Du ll blue 10 

Dark orange 3 Olive green 11 

Red 4 Green 12 

Purplish blue 5 Dark green 13 

Coba lt blue 6 Orangey green 14 

Ultramarine 7 Orange 15 

FIGURE 18. Co lor value chart 

142 



703-704 

OK, now somewhere in the back of your mind you're probably think­
ing "Wait a minute, aren't there supposed to be 256 possible colors 
on the Atari?" Yes and no. There are only 16 colors, but there are 
also 16 shades of each color, resulting in a total of 256 (16 times 16) 
possible "colors." That's not even true either. Even though you can 
specify a brightness value from 0 to 15, 0 and 1 will be the same 
brightness, as will 2 and 3 and so forth. That gives us a true total of 
128. 128 combinations of color and brightness, however, will be more 
than you need, or can use at one time. 

So now we have a color value and a brightness value. Since each color 
register is only one byte , we're obviously going to have to somehow 
combine these two values together. If you're familiar with hexadeci­
mal, you will probably know how already. Recall that in hexadecimal, 
each byte has two digits, each of which can have a value from 0 to F 
(15). All we do to combine our color and brightness is to have the 
first digit be the color, and the second the brightness. If you're using 
decimal, you want to multiply the color value by 16 and add the 
brightness . That's how you figure out the value to POKE into the 
appropriate color register (you can also use the SETCOLOR com­
mand for the playfield registers) . 

PCOLRO 
704 02CO 

This is the color register for player zero and missile zero. It is also 
used to hold the background color in GTIA mode 10. 

The SETCOLOR command will not work on this or any of the next 
three locations . 

PCOLRO is a shadow register for COLPMO at location 53266. 

143 



PCOLR! 
705 02C! 

The color register for player one and missile one. It is a shadow reg­
ister for COLPM! at location 53267. 

PCOLR2 
706 02C2 

The color register for player two and missile two. It is a shadow reg­
ister for COLPM2 at location 53268. 

PCOLR3 
707 02C3 

The last player I missile color register, this time for player three and 
missile three . It is a shadow register for COLPM3 at location 53269. 

COLORO 
708 02C4 

Lots of information for this guy. This is the color of play field zero. 
It is also called color register zero, is a shadow register for COLPFO 
at location 53270, specifies the color of uppercase letters in graphics 
modes one and two, and can be set by the BASIC SETCOLOR com­
mand (as can the next four locations) . Whew! 

COLOR! 
709 02C5 

144 



705-709 

This hold the color value for playfield one, is called color register one, 
is a shadow register for COLPF1 at location 53271, and specifies the 
color of lowercase letters in graphics modes one and two. 

COLOR1 is also used to specify the brightness of the characters in 
graphics mode zero, and of the pixels in graphics mode eight. As you 
know, you can only draw with one color in graphics mode eight, right? 
Well, not quite. Through a process called "artifacting," you can get 
up to four. 

'Iou SHOULD BE 
AR"""-I~ACi/N(S ~ 

Briefly, because the pixels are so small in graphics mode eight, a pixel 
in an odd-numbered column will have a different color than one in 
an even-numbered column. Don't ask why, just try the following pro­
gram: 

100 GRAPHICS 8 
110 COLOR 1 
120 FOR COL=10 TO 20 STEP 2 
130 PLOT COL,10 
140 DRAWTO COL,20 
150 NEXT COL 
160 FOR COL=31 TO 41 STEP 2 
170 PLOT COL,10 
180 DRAWTO COL,20 
190 NEXT COL 

Viola! Two new colors . But how do we get the regular white, and 
where does the fourth color come from? You know, you ask a lot of 
questions. If we plot an even-numbered column and then the follow­
ing odd-numbered column, we get white. If, on the other hand, we 

145 



plot an odd-numbered column and then the following even-numbered 
one, we get the fourth color. Make sure you understand the difference 
between the two. Add the following lines to the preceding program: 

200 FOR COL=50 TO 60 STEP 4 
210 PLOT COL,lO:DRAWTO COL,20 
220 PLOT COL+l,lO:DRAWTO COL+l,20 
230 NEXT COL 
240 FOR COL=71 TO 81 STEP 4 
250 PLOT COL,lO:DRAWTO COL,20 
260 PLOT COL+l,10:DRAWTO COL+l,20 
270 NEXT COL 

Doing things this way kind of restricts you in the way you plot and 
draw, but it does give you more colors. You should also note that the 
CTIA and GTIA chips switch the odd and even colors on the screen. 
This usually makes red on one computer look like green on another. 
Also, the colors you do get will depend on the values in COLORI and 
COLOR2 (following). 

COLOR2 
710 02C6 

This holds the color value for playfield two, is called color register 
two, is a shadow register for COLPF2 at location 53272, and specifies 
the color of inverse uppercase letters in graphics modes one and two. 

In graphics modes zero and eight, COLOR2 specifies the background 
color. 

COLOR3 
711 02C7 

OK, you should be getting the hang of this by now. This is the same 
as COLOR2, but with threes instead of twos. It's also the color of 
inverse lowercase letters in graphics modes one and two. 

COLOR4 
712 02C8 

Same as the preceding but for the background color. It is a shadow 
register for COLBK at location 53274. Don't forget that in GTIA 
modes, PCOLRO (704) is the background color, while COLOR4 is 
just a regular color register. 

146 



Noname 
713-735 02C9-02DF 

These 23 are currently unused. 

709-740 

The following four bytes, from 736 to 739, are used by DOS. That 
means that they are unused if you are not using DOS. 

RUNAD 
736,737 02EO,02E! 

When you load a binary load file from DOS, sometimes it will run 
automatically and sometimes it won't. What makes the difference? If 
the binary load file stores an address in RUNAD, then DOS will go 
(JSR) to that address after the file has been loaded. Otherwise, the 
DOS menu will stay on the screen. See your DOS manual for more 
information under the sections on binary loading and saving. 

INITAD 
738,739 02E2,02E3 

Whoops! I lied slightly in the last location. If a binary load file alters 
INITAD, then DOS immediately goes (JSR again) to the address in 
INIT AD before continuing to load the file. You can use this to do 
stuff like put a message or picture on the screen while the rest of the 
file is loading. Make sure that the routine whose address you're put­
ting in INIT AD ends with an RTS. Also, if you want DOS to return 
to the menu after executing the RUNAD routine, make sure it ends 
with an RTS instruction. 

So where was the lie? If you don't end the INIT AD routine with an 
RTS instruction, the RUNAD routine will never be executed (and you 
may run into problems with future disk 110). 

RAMSIZ 
740 02E4 

RAMSIZ has a similar function to RAMTOP (106), so go back and 
read up on RAMTOP. The main difference is that RAMSIZ doesn't 
cause the screen memory tG move when you change it and do a graph­
ics call. Experiment to see how it works. 

147 



MEMTOP 
741,742 02E5,02E6 

MEMTOP holds the address of the last free memory location. This 
does not mean the top of RAM. Why not? You're forgetting that the 
screen memory and display list are put at the end of RAM. MEMTOP 
is the last location that is unused, and is therefore the location right 
below the display list. Originally, however, before any graphics mode 
is set up, it does hold the same address as RAMSIZ. 

Anything that results in the display handler changing the screen mem­
ory and display list also results in MEMTOP getting changed. That 
means SYSTEM RESET, the GRAPHICS command, and OPENing 
the screen. 

For more information on MEMTOP's use (yes, I'm going to send you 
somewhere else again), see APPMHI at locations 14 and 15. 

MEMTOP is called HIMEM by BASIC, since BASIC has its own 
MEMTOP at locations 144 and 145. 

MEMLO 
743,744 02E7,02E8 

Since we have a pointer to the top of free memory, it only makes sense 
to have one to the bottom of free memory. MEMLO holds the address 
of the first byte in RAM that is available for your use. Notice that 
BASIC uses a different pointer for the first free byte, called LOMEM 
(128,129). Although some sources imply otherwise, MEMLO and LO­
MEM seem to always contain the same value, which is not touched 
by the OS after the powerup routine is done. 

The first free location in memory is usually at 1792. If you're using 
DOS, however, DOS needs some extra space for something called the 
"FMS buffers" (see SABYTE [1801], DRVBYT [1802], and the glos­
sary). This means that MEMLO will be greater when DOS is present 
(by 128 for each buffer). 

Let's talk about reserving memory for your own private use. We last 
discussed this at RAMTOP (106), where we saw how to reserve mem­
ory above screen memory. But, alas, this technique wasted up to 800 
bytes because of a problem with scrolling the screen. So now we come 
to the alternative of reserving memory at the other end of RAM, be-

148 



741,742-743,744 

low everything else. How do we do it? There are two possibilities. First 
of all, you could write an AUTORUN.SYS file that loads MEMLO 
with the values you want. De Re Atari has an excellent example of 
how to do this, but it's obviously a technique that requires a knowl­
edge of machine language. What if you're working in BASIC? Well, 
there's a problem. Remember that BASIC also keeps a pointer to the 
bottom of free memory. It's called LOMEM and I have mentioned 
it. If we change MEMLO, we also have to change LOMEM. We can 
do this by POKEing both MEMLO and LOMEM, but that confuses 
BASIC because it loses some important information that it had al­
ready stored in the memory area you just told it not to look at. That's 
a problem. What happens if you POKE MEMLO and then type NEW 
(NEW transfers the value of MEMLO into LOMEM and resets all the 
program pointers)? Nothing bad; in fact it does exactly what we 
wanted. But we still have a problem: this method only works when 
you make the changes yourself; it won't work from inside a program. 
As it turns out, and it makes sense if you think about it, there is 
nothing you can do from within a BASIC program to reserve memory 
using MEMLO (without destroying the program). This means that the 
MEMLO method of reserving memory is only useful if you're pro­
gramming in machine language (or if you first boot up an AUTO­
RUN .SYS file as described). Sorry folks. 

SYSTEM RESET will restore MEMLO to its original value. The pro­
gram in De Re Atari, as mentioned, uses the SYSTEM RESET vector 
to make sure that MEMLO does not get reset. 

Only NEW (or turning off the computer) will restore LOMEM. 

149 



Noname 
745 02E9 

Currently unused. This is, however, subject to change in future ver­
sions of the OS. 

DVSTAT 
746-749 02EA-02ED 

This one is for experts only, so don ' t expect it to sound pretty. When 
you send a GET STATUS command (83) to a device, these bytes are 
set according to the type of device and its status. They seem to be set 
only by the printer handler, the disk handler (not the disk file man­
ager), and the RS232 handler. 

Location 746 gives the command status. Because it is interpreted dif­
ferently for each device, you should consult either the OS manual or 
the 850 Interface manual for details (this isn't a cop-out on my part; 
the information in this byte is useful only to extremely competent ma­
chine language programmers). 

If the GET STATUS were to a printer, location 747 contains the 
AUX2 byte of the previous operation. If it were to a disk drive, lo­
cation 747 holds the value of the status byte of the disk controller 
chip (if you really need to know more details, find some documen­
tation on the INSl771-1 Floppy Disk Controller chip). Finally, if it 
were to the 850 Interface, location 747 could indicate one of two 
things. If concurrent mode 110 is not active, then it will hold infor­
mation regarding the monitored readiness lines (DSR, CTS, and CRX) 
and the data receive line (RCV) of the specified port. Please see your 
850 Interface manual for more details. 

If concurrent mode 110 were active, location 747, in conjunction with 
location 748, will hold the number of characters currently in the input 
buffer. 

For the printer and disk drive, a GET STATUS command will return 
the maximum timeout value for the device. This value is provided by 
the device controller and is initialized to 31. A value of 64 here rep­
resents one second. 

Location 749 is only used for the 850 Interface, and only if concurrent 
mode I/O were active at the time of the GET STATUS. In that case, 
it holds the number of characters currently in the output buffer. 

150 



745-752 

If you got this far and you're confused, don't worry. By the time you 
have a need to use DVST AT, it should be easier to understand. I've 
been programming the Atari for five years and have only recently 
found a need for it. 

CBAUDL, CBAUDH 
750,751 02EE,02EF 

The speed at which programs load in from cassette is called the "baud 
rate," and this is what is stored in CBAUDLIH . It's initialized to 
1484 by the OS, which represents 600 baud ("baud," by the way, 
stands for "bits per second"; don't ask how they got one from the 
other) . Unfortunately, sometimes the data on the cassette tape is stored 
a little slower or faster than 600 baud . This may be due to the speed 
of the cassette motor, the tape being stretched slightly, or other such 
minor details. In any case, at the beginning of each cassette record 
(remember that a record is just a bunch of bytes) are two bytes that 
have alternating zeroes and ones (01010101; 85). These bytes are used 
to set the baud rate exac tly, so speed variations can be compensated 
for. 

AUDF3 (53764) and AUDF4 (53766) are used to store the baud rate 
and do the actual timing. 

CRSINH 
752 02FO 

151 



This one should come as a reward to you for trudging through the 
sludge of the last few locations. CRSINH is used to make the cursor 
invisible (and visible again). This comes in handy when you've got a 
message or something on the screen and you don't want whoever's 
reading it to see the cursor. All you have to do is POKE CRSINH 
with something other than a zero. To make the cursor visible again, 
just POKE it with a zero. That's (almost) all there is to it. 

Hold it, what was the "almost" that was trying to hide in the paren­
theses back there? Well, there is one tiny thing I forgot to mention. 
The cursor won't disappear (or reappear) until you move it for the 
first time after you change CRSINH. All that means is you have to 
have a PRINT of some kind after the POKE. The easiest way around 
this is just to POKE CRSINH before you print anything on the screen. 
For example, 

100 POKE 752,1 
110 PRINT 

CRSINH is set to zero when you turn on the computer, and also when 
you press BREAK, press SYSTEM RESET, use a GRAPHICS com­
mand, or OPEN either "S:" or "E:". 

Also see CHACT at location 755 for another way to tell the cursor 
to get lost. 

Here is a way to place dots all over your screen so that you can check 
the convergence of the TV or monitor: 

10 POKE 71O,0:POKE 752, I :POKE 82,0 :FORI = 1 TO 
959:?".";:NEXT I 
20 GOTO 20 

KEY DEL 
753 02Fl 

A lot of you have probably heard the term "debounce" (no, it's not 
from a commercial for French shampoo). Some of you probably don't 
have the slightest idea what it means, so let's talk debounce for a bit. 

When you press a key, you're actually bringing two little bits of metal 
together. When the two touch, electricity flows through them and tells 
the computer that the key is pressed. Sometimes, when the two first 

152 



752-755 

hit each other , they bounce a little . This has the effect that they are 
touching, then they're not touching, and then they're touching again, 
which the computer would normally interpret as meaning the key was 
pressed twice. You only pressed it once, however , so somehow the 
computer has to be smart enough to realize this . The process it uses 
is called "debouncing" and it's fairly simple. If a bounce occurs, it 
happens real fast, too fast for you to have been able to hit the key 
twice. So , the OS waits a little while after you first press the key before 
looking to see if you pressed it again. That way, it doesn ' t see the 
bounce . KEY DEL tells it how long to wait. 

PRESS 
A 

BUTTON! 

KEYDEL is set to three whenever a key is pressed and then every stage 
two VBLANK it's decremented by one. Until it reaches zero, the OS 
will not let the same key be pressed again. Unless you can press a key 
faster than 20 times a second, this won't be a problem for you. 

CHI 
754 02F2 

CHI is the value of the last key pressed (not the current one) . When 
you press a key, the OS checks its value (stored in CH [764]) against 
CH 1. If they're the same, then KEYDEL is checked to make sure that 
the key has been debounced . If KEYDEL is equal to zero, or if the 
two values aren't the same, then the current key code is stored in CHI 
and the OS goes on to process that key. 

CHACT 
755 02F3 

153 



CHACT does some neat things to the characters on the screen. The 
bits are used as summarized in Figure 19. 

-------0 inverse character letters are visible 

-------1 

------0-

------1-

-----0--

inverse character letters are invisible 

inverse character backgrounds are visible 

inverse character backgrounds are invisible 

all characters are right'side up 

-----1-- all characters are upside down 

FIGURE 19. CHACT bit chart 

What does this mean? Try typing some inverse characters on the screen 
(use the Atari logo key). Now POKE 755,1. What happened? That's 
right, the letters disappear. Try POKE 755,2. This makes the back­
ground (the solid white part) disappear. Finally, try POKE 755,3 to 
make everything disappear (everything in the inverse characters, that 
is). That should give you a good idea of what the first two bits can 
do. By the way, since the cursor is essentially an inverse character, it 
will disappear as well when you make the inverse character back­
ground disappear. 

The last bit is pretty self-explanatory. Just try POKE 755,4 and see 
what happens. 

What can you use CHACT for? Reverse characters add emphasis to 
text, CHACT lets you add even more emphasis by making inverse 
characters blink. Try the following: 

100 GRAPHICS 0 
105 POKE 752,1 
110 PRINT : PRINT "Add t;UJ~ilJb'i to your- pr-ogr-aiTls" 
120 FOR BLINK=1 TO 10 
130 F'Of<E 755,') 
140 FOR DELAY=l TO 50 
150 NEXT DELAY 
160 POKE 755, 2 
170 FOR DELAY=1 TO 50 
180 t.,JE XT DELAY 
190 NEXT BLINK 
195 F'Of<E 752, (; 

154 



755-756 

Try substituting other values for the zero in line 130. Also see location 
VVBLKD at 548 and 549 for a machine language routine that uses 
CHACT to make inverse text blink while you're typing it. 

In case you hadn't figured it out already, CHACT is initialized to two. 

CHBAS 
756 02F4 

This is a biggie (have I ever lied?). CHBAS holds the address, in pages 
(so you multiply the number here by 256 to get the actual address), 
of the character set. What is a character set? A character set is a whole 
bunch of numbers that tell the computer how to draw the various 
characters on the screen. In other words, it tells the computer what 
the characters look like. How can numbers describe what a character 
looks like? First of all, you should go read the section near the be­
ginning of the book on bits and bytes. Then come back here. 

Back already? OK, what do bits and bytes have to do with character 
descriptions (why am I asking so many questions)? Well, a byte can 
be thought of as part of a picture. You know-with the bits being 
dots in the picture. You turn a bit on, and the corresponding dot in 
the picture gets turned on. You've already seen how this is used in the 
graphics modes. Well, the text modes also need to turn dots on and 
off, but they need to change a whole bunch at once for each character. 
So what the Atari does is store eight bytes for each character in this 
special thing called the character set. Each of these descriptions is 
given a number, and to set the right dots for a particular character, 

155 



the computer just has to say, "Hey, get me the description for char­
acter number whatever and put it on the screen," and the character 
will magically appear on the screen. 

Let's take a look at how those eight bytes make up a character (Figure 
20). 

# IN BIT 

MEMORY PATTERN 

0 00000000 

12 00001100 

28 00011100 

60 00111100 
108 01101100 
126 01111110 

12 00001100 

0 00000000 

FIGURE 20. CHBAS bit chart 

Now you can see how simple creating characters is. First draw the 
shape of an 8 X 8 pattern of O's and l's. Next add up the value of the 
ON, or 1, bits. Then POKE these numbers in the proper order into 
memory. Let's go over the details. 

Look at those bits again in terms of dots, with the zeroes meaning no 
dot, and the ones meaning dot (Figure 21). 

## 

### 

#### 

## ## 

###### 

## 

FIGURE 21. The number 4 

Ahah! The description we used was for the "4" character. You should 
now be able to see how the descriptions work. 

156 



756 

] 
1 

- - $Z 

How are the descriptions ordered within the character set? It's not the 
same order as AT ASCII (the order that CHR$ and ASC use). To 
convert from AT ASCII values, which you can find in your BASIC 
manual, to the character set order, use Table 2. 

TABLE 2 

TYPE OF CHARACTER ATASCII NO. CHAR. SET NO. 

uppercase, 32-95 0-63 
numbers, 

punct uat ion 

graphics, 0-31 64-95 
characters 

lowercase 96-127 96-127 

Now, to find the character description of a particular character, find 
the AT ASCII value (either with ASC or by looking it up in the chart 
in the BASIC manual), use the preceding chart to convert it to the 
character set value (more commonly called the "internal" value), 
multiply that by eight (because there are eight bytes for each char­
acter), and add it to PEEK(CHBAS)*256. The result is the address of 
the first byte of the character description you want. 

The character set that comes with the Atari is stored starting at lo­
cation 57344. You can double-check this by PEEKing CHBAS and 
seeing that it has a value of 224. There are a total of 128 possible 

157 



115 
-rIMe 

FO/< 
SOME 

CI-lARACifJ< 
BUlL-DING. 

characters (not counting inverse ones), so the character set takes up 
128*8 equals 1024 bytes. 

In graphics modes one and two, you probably know that you can't 
have upper- and lowercase letters on the screen at the same time. Why 
not? In these modes the characters can be one of four possible colors. 
In order to be able to pull this 0 ff, two of the bits in the character 
number have to be used to specify the color. This means that only six 
bits are left to specify the character. Six bits are enough to give you 
the numbers ° through 63. Zero through 63, if you consult the pre­
ceding character order chart, are the uppercase characters, numbers, 
and punctuation. So what if you want lowercase? The BASIC manual 
tells you to POKE 755 (CHBAS) with 226 instead of 224. What does 
this do? It moves the start of the character set forward by 512 (2*256) 
bytes. Now I know that right now you're thinking to yourself, "Gee, ° through 63 is a total of 64 characters, and 8 bytes for each character 
gives me, let me see, uh, 512 bytes!" Hey, you're terrific! What you 
just caught on to is that changing CHBAS like that simply lets you 
skip over to the lowercase and graphics characters, the other half of 
the character set. 

Unfortunately, this means that the heart character gets used as a space, 
so your screen is filled with hearts-romantic, but not what you want. 
You can get rid of them with SETCOLOR 0,0,0 or by redefining the 
heart character to a space. See Appendix One for information on how 
to do the latter. 

158 



756-763 

In graphics mode zero , there's not much more to tell. If an inverse 
video character is requested (see INVFLG [694]), then the eight bytes 
for that character are reversed (ones changed to zeroes and vice versa) 
before they are put on the screen. 

CHBAS is a shadow register for CHBASE at location 54281. For some 
reason you cannot set CHBAS to an odd number, or garbage will fill 
the screen. Finally, CHBAS can be set to point to your own character 
set. 

"Hold on there, just a second, wait a minute, timeout, take five, 
whoa! You mean I can design my own character set? And you took 
all this time before you told me, and now you're going to move on 
without telling me how to do it? What kind of author are you?" 

By the way, please see Appendix One for a complete example of de­
signing your own character set. 

Noname 
757-761 02F5-02F9 

More spare bytes. You know, I have to assume that you're going to 
come to these locations and forget all about that warning I gave you 
way back when. You remember, "Don't use spare bytes, they may be 
used in future versions of the OS." But if you did remember and are 
getting sick of me telling you every time we come across some spare 
bytes, then what can I say? It's a rough world out there . 

CHAR 
762 02FA 

This is the internal number (value) of the character that was read or 
written last by the display handler. A lot of the time the handler will 
move the cursor as the last step of an operation, so PEEKing here 
will often return a value of 128 or 0 (for a visible or invisible cursor 
respectively) . 

AT ACHR gives the AT ASCII value corresponding to the internal 
value in CHAR. 

ATACHR 
763 02FB 

159 



AT A CHR is used by the display handler, the screen editor, and the 
keyboard handler to hold the AT ASCII value of the character last 
read or written. If we're using a graphics mode rather than a text 
mode, then it's the value of the graphics byte rather than that of the 
character (for the display handler only). It's also used in converting 
A T ASCII to internal and vice versa, and FILL uses it to hold the color 
of the area being filled (in which case it gets its value from FILDA T 
[765]). 

CH 
764 02FC 

CH is the middle guy between the keyboard and the keyboard handler. 
When a key is pressed, a keyboard value (yes, yet another kind of 
character value) gets put into CH. The keyboard handler then picks 
it up, puts it into CHI (754), and puts a 255 into CH to indicate that 
it got the value OK. There are a few exceptions to this. First of all, 
if we're in the middle of debouncing (see KEYDEL [753], the key is 
ignored completely; it doesn't even make it to CH. If CTRL-l is 
pressed, then SSFLAG (767) is updated, but CH is not affected. Fi­
nally, CH also gets changed by the key repeat process mentioned un­
der SRTIMR at location 555. To repeat a key, the OS takes the value 
in KBCODE (53769) and stores it in CH. 

If you are GETting information from the keyboard, make sure you 
set CH to 255 before you do your GET. This will make sure that any 
previous key presses are ignored. For example, 

100 OPEN #1,4,0,"K:" 
110 POKE 764,255 
120 GET #l,A 
130 PRINT "You pressed key number ";PEEK(754) 
140 GOTO 110 

You can use this program to find out the values for the various keys, 
or you can look at the chart on page 50 of the OS manual. In either 
case, you should notice that the CTRL key adds 128 to a key value, 
and the SHIFT key adds 64. 

Here is my favorite trick for this location. Say you want your program 
to load in a tape program and then RUN it. It would seem that there 
is no way to do that because someone has to press the RETURN key 
after the program loads and you type RUN. NOT TRUE. Use location 
764 to hold the RETURN key like this: 

[60 



10 REM YOUR PROGRAM 
HERE 

• 

763-767 

2000 POKE 764,12:CLOAD:RUN 

FILDAT 
765 02FD 

Simply put, FILDAT is the data to FILL with in the XIO 18 com­
mand. 

DSPFLG 
766 02FE 

When DSPFLG is set to a nonzero value, then CTRL characters like 
CTRL-CLEAR, CTRL-DELETE, CTRL-arrow, and so forth will ap­
pear as a character on the screen rather than having some kind of 
effect on the screen (such as clearing it or moving the cursor). If it's 
equal to zero, then they have their normal effect. 

Note that to type a CTRL character so that it appears on the screen, 
you press ESC before you type that character. ESCFLG (674) is 
ORAed with DSPFLG before the character is processed. That means 
that the ESC key is not the only way to get CTRL characters to ap­
pear. That's good. Suppose, for example, that you want to print the 
arrow characters on the screen from BASIC. You can use the ESC 
key to type them into a string, but when you try to print that string 
to the screen, BASIC will move the cursor rather than print the ar­
rows. What you have to do is POKE 766,1 before you try and print 
the string. Be sure to change it back afterwards. 

SSFLAG 
767 02FF 

SSFLAG is used to pause a program or a LISTing. When it's set to 
0, everything works as usual. When set to 255, however, the pause is 
in effect and will stay that way until it's set back to 0 again. If the 
basic idea of this sounds like something you've run across before, 
that's because it is. The CTRL-l key, which you have probably used 
to pause your LISTings, changes SSFLAG. You can also change 

161 



SSFLAG yourself, but if you do it from within a BASIC program, 
keep in mind that the program is paused, so you won't be able to 
change it back unless somebody presses CTRL-1! Try this: 

100 POKE 202,1 
110 PRINT "Now try LISTing this program" 

SSFLAG has no effect on machine language routines, which is why 
you can't use CTRL-1 to pause some programs. 

PAGE THREE 

You probably aren't going to be too thrilled with page three. Why? 
It's all about I/O. That means that you may not understand a lot of 
it, because I/O can get real complicated real fast. Don't worry too 
much about it, though. BASIC has commands that take care of these 
locations for you, so you're only reading about these locations for 
enlightenment. If, on the other hand, you're programming in machine 
language ... 

Before you go any further, make sure you've read and at least vaguely 
understood the appendix on 110 . It 's not that long, or complicated , 
but it will give you a nice overview of what everything here is used 
for. 

The first part of page three, locations 768 through 831, is used for 
the " device handlers ." As the name implies , device handlers are used 
to handle 110 to the various devices. What devices can we have? The 
screen (S:), the screen editor (E:), the keyboard (K:), the cassette player 
(C:), the disk drive (D :), the printer (P:), and the RS-232 ports on the 
850 interface (R:); all of these handlers, which are just machine lan­
guage routines, are a part of the OS, with the exception of the RS-
232 handler. The RS-232 handler is stored inside the 850 interface, 
and gets transferred over to the Atari when you turn on the system. 

Locations 768 through 780 make up the Device Control Block (DCB; 
see the appendix on I/O for an explanation). To use the DCB you 
must set it with the appropriate values and then JSR DSKINV (58451) 
for disk 110, or JSR SIOV (58457) for other device 1/0. 

DDEVIC 
768 0300 

162 



767-769 

Three of the devices, S:; E:; and K:, are a part of the computer. The 
others are all outside the computer, and we therefore need to have 
some way of talking to them. The "serial bus" takes care of that (the 
cords you use to connect the devices together are the visible part of 
the serial bus) . But, since you can have more than one device hooked 
up to the serial bus, you need some way of telling the bus which device 
you want to talk to. Each device is therefore assigned a number (think 
of it as a phone number), and the handler gives DDEVIC the number 
of the device it wants to talk to. Do not change DDEVIC yourself. 

Here are the numbers for the various devices (Figure 22) . 

DUNIT 
769 

Disk Drive 49 ($31) 

Printer 1 64 ($40) 

Printer 2 79 ($4F) 

RS·232 Port 80 ($50) 

Cassette 96 ($60) 

FIGURE 22. DDEVIC chart 

0301 

We can have up to four disk drives and RS-232 ports. DUNIT holds 
the number of the disk drive, printer, or RS-232 port we want. 

163 



DUNIT gets added to DDEVIC, and the result stored in CDEVIC at 
location 570. CDEVIC is then used during the actual I/O. 

DCOMND 
770 0302 

Once it has got the number of the device we want to talk to, the han­
dler has to know what it should tell the device to do. For that we have 
another bunch of numbers, this time for the various commands (Fig­
ure 23) . 

Get Sector 82 ($52) 

Put Sector (with verify) 87 ($57) 

Put Sector (w/o verify) 80 ($50) 

Get Status 83 ($53) 

Format Disk 33 ($21) 

Download 32 ($20) 

Read Address 84 ($54) 

Read Spin 81 ($51) 

Motor On 85 ($55) 

Verify Sector 86 ($56) 

FIGURE 23. DCOMND chart 

This is one of those tables that gives you the confidence that you know 
what's going on, until you get about halfway down . The first five 
commands are probably the only ones you'll ever run into, so don't 
worry too much about it. 

DDEVIC gets transferred over to CDEVIC (570) for use by SIO . 

DSTATS 
771 0303 

Two uses for DSTATS. First of all, after an 110 operation is com­
plete, it holds the status of the operation. A zero means that every­
thing went OK. See the OS manual for the meaning of nonzero values. 

Before the I/O operation, DSTATS tells SIO how data is going to be 
transferred, using bits six and seven as in Figure 24. 

164 



769-776,777 

00------ ($00) means no data will be transferred in this operation . 

01------ ($40) means data is go ing to be read from the device. 

10------ ($80) means data is going to be written to the device. 

11------ ($00) is not a valid combination . 

FIGURE 24. DSTATS chart 

DBUFLO,DBUFHI 
772,773 0304 ,0305 

This is a pointer to the buffer that will be used to store the data that 
is to be sent or received during I/O(!). It's set by the handler to the 
system buffer at CASBUF (1021) unless you tell the handler differ­
ently. 

If a GET STATUS command is given, then DBUFLO I HI is set to 
point to DVSTAT (746). 

If you're communicating with SIO directly, you should make sure you 
set DBUFLO/HI yourself. 

DTIMLO 
774 0306 

DTIMLO is the timeout value for the device being used and is set by 
the handler. You will recall from our other run-ins with timeouts that 
a value of 60 here represents 64 seconds . 

DTIMLO is initialized to 31 . 

DUNUSE 
775 0307 

Another unused byte (warning, warning!) . 

DBYTLO,DBYTHI 
776,777 0308,0309 

This location specifies the number of data bytes that are to be read 
to, or written from, the buffer during 1/0. It is also used by the FOR­
MAT command to store the number of bad sectors. 

165 



The values in DBUFLO/HI and DBYTLO/HI are added together 
after the 1/0 is over, and the results stored in BFENLO/HI (52,53). 

Just in case you thought the OS was perfect, there's a bug that messes 
things up if the last byte in the buffer is in an address that ends in 
$FF (such as $41FF, $32FF, etc). Be careful about this. 

DAUX 1, DAUX2 
778,779 030A,030B 

These are used to provide information that is unique to the specific 
device (a sector number, for example). Their values are transferred to 
CAUXI and CAUX2 at locations 572 and 573 . 

The next 14 locations (780 to 793) have various SIO uses. 

TIMERI 
780,781 030C,030D 

TIMERI is the initial timer value for the baud rate. What does that 
mean? Back at CBAUDLIH (750,751) we discovered what a baud rate 
is and how the OS constantly adjusts it during 1/0 . We found out 
that an alternating bit pattern is read and timed in order to figure out 
the correct rate. TIMER I stores the time at the beginning of this pat­
tern, and TIMER2 below stores the time at the end of it. The differ­
ence in these times is then used to figure out the new baud rate. 

166 



776,777 -790 

The first byte of both TIMERI and TIMER2 is the value of VCOUNT 
(54283) at the time, and the second is the value of RTCLOK + 2 (20). 

ADDCOR 
782 030E 

ADDCOR is an "addition correction flag" used in the baud rate cal­
culations. Those quotation marks mean that you'll never need to know 
what it means . 

CASFLG 
783 030F 

Part of the SIO routine is not needed for cassette I/O, so CASFLG 
is used to warn SIO that cassette I/O is being done. A value of 0 
means regular SIO, 255 means cassette. 

TIMER2 
784,785 0310,0311 

This is the final timer value for baud rate. See TIMERI for a complete 
description. 

TEMPI 
786,787 0312,0313 

TEMP I is used as a temporary storage location for the difference in 
the TIMERI /2 values during the baud rate calculation. 

TEMP2 
788 0314 

Supposedly another temporary storage location of some sort, but ac­
cording to the OS listing it isn't used. 

TEMP3 
789 0315 

Another temporary storage location that is used, but for nothing par­
ticularly important. 

SAVIO 
790 0316 

167 



Back to setting the baud rate. Remember the alternating bit pattern 
(see TIMER 1 if not)? SA V lOis used to check the serial port SKST A T 
(53775) to see if the next bit has come in yet. That's all. 

TIMFLG 
791 0317 

168 



790 - 794-831 

This is a flag to indicate that the cassette player has timed out (taken 
a snooze). If it's equal to one, we're OK. If it's equal to zero, then 
we're in timeout territory. 

For the cassette player to timeout, a data byte must not be found 
within the given time period (which can vary). This usually indicates 
that the baud rate was wrong, assuming that you remembered to con­
nect the cassette player, plug it in, put in the program tape, and press 
"PLAY" ! 

STACKP 
792 0318 

Remember the stack at page one? When SIO first gets going, it stores 
the value of the stack pointer in ST ACKP. That way, if somebody 
presses BREAK before it's done, it can restore the stack pointer and 
return to where it was called from. 

TSTAT 
793 0319 

This is used to temporarily hold the value of STATUS (48) during 
1/0. 

HATABS 
794-831 031A-033F 

We now know a little about what handlers do, but where do we find 
them? Obviously HAT ABS is going to have something to do with it, 
but before I tell you what, let 's talk a little more about handlers. 

Each handler is made up of a bunch of routines that perform different 
I 10 functions. These functions are shown in Figure 25. 

OPEN device 

CLOSE device 

GET BYTE from device 

PUT BYTE to device 

GET STATUS of device 

SPECIAL 

INITIALIZE device 

FIGURE 25. 0/1 functions chart 

169 



Since SIO is going to need to know where each of these routines is, 
it's useful to keep the address of each routine in a table. We'll only 
need the initialization routine once, so we'll put a JMP instruction in 
the table right before the initialization address. Finally, we'll call this 
table the "handler entry point" table, which makes sense if you think 
about it. 

OK, so now we have a handler entry point table for each of our han­
dlers. Now we need a table of the addresses of these tables (aren't 
computers fun?). This is where HAT ABS comes in . Each entry in 
HAT ABS consists of the AT ASCII value of the one character device 
name ("C", "D", "K", etc.), followed by the address for the handler 
entry point table for that device. So, keep in mind that even though 
HAT ABS is called the "handler address table," it is actually the han­
dier entry point table address table! 

When you first turn on the computer, five entries are automatically 
set up in HATABS. They are for the printer, cassette player, screen 
editor, screen, and keyboard handlers, in that order. If a disk drive 
is hooked up and turned on, then the entry for the disk handler is 
added. Finally, if the 850 Interface is hooked up and on, the entry 
for the RS-232 handler is added after that for the disk. The addresses 
for the handler address table of each of these are shown in Figure 26. 

"P" 58416 
"G" 58432 
"E" 58368 
liS" 58384 
11 K" 58400 

liD" 1995 
" R" varies 

FIGURE 26. Addresses for handler address table 

The address for "R" varies depending on whether you have a disk 
drive hooked up and, if so, what kind of DOS you are using. PRINT 
PEEK(813) + 256*PEEK(814) will give you the address for your par­
ticular setup. 

You can use the preceding addresses to take a look at the handler entry 
point tables. The addresses in these tables are in the same order that 

170 



the routines were listed (OPEN, CLOSE, etc.). Don't forget that each 
address is two bytes long with the exception of the last one, which 
includes a JMP instruction (76). 

HA TABS is 38 bytes long, which means there is room for 12 3-byte 
entries (the last 2 bytes are set to zero and ignored). Even if you are 
using the disk and RS-232 handlers, that still leaves five entries free. 
These entries are initially set to zeros, but they're free for your use if 
you want to write your own handler. 

Since the task of writing your own handler is one that most people 
won't really get into, I'm not going to go into any more detail on it 
here. If you're interested , De Re Atari and the OS manual should 
provide all the information you need. 

One more thing you ' ll need to know. CIO searches for a handler ad­
dress from the end of the table up to the beginning. This means that 
if you write your own screen handler, for example, CIO will use it 
instead of the original one. 

171 



INPUT/OUTPUT CONTROL BLOCKS 
(IOCBs) 

Back at locations 32 through 47, we ran across something called the 
Zero-page Input/Output Control Block (ZIOCB). The ZIOCB gets 
its values from one of the eight Input/Output Control Blocks (lOCBs) 
located at locations 832 through 959. Basically, the IOCBs are nothing 
more than a bundle of information used to communicate between the 
user and the handlers. BASIC usually takes care of them for you in 
commands like OPEN, PLOT, LPRINT, and so on (all the BASIC 
1/0 commands). 

Each 10CB is 16 bytes long, and those bytes are named and used as 
follows: 

ICHm (one byte) This is an offset into HATABS (794 through 
831) that points to the name of the device that the 10CB is OPENed 
for. For example, try the following : 

100 IOCB1=848:HATABS=794 
110 OPEN *1;4,0,"K:" 
120 INDEX=PEEK(IOCB1) 
130 PRINT "You just OPENed device ";CHR$(PEEK(HATABS+INDEX»;":" 

ICHID is set by the OS . 

ICDNO (one byte) This is the device number. One for Dl, two 
for R2, etc. It is also set by the OS . 

ICCOM (one byte) This is the command that specifies what kind 
of I I 0 operation we are going to be doing. See the appendices for a 
list of possible commands. It is set by the user. 

ICSTA (one byte) This is the status of the last 110 operation. See 
the OS manual (pp . 165-166) for a li st of possiblf. values . 

ICBAL/ H (two bytes) This is either the address of the data buffer, 
or the address of the user's filename (depending on the command). 

ICPTL/ H (two bytes) This is the address minus one of the put­
one-byte routine for the device being used. If the 10CB isn't OPEN, 
then it points to CIO's error routine for an illegal put. 

172 



ICBLLlH (two bytes) This is the number of bytes that still have 
to be transferred. Note that under some circumstances not all bytes 
will be transferred . 

ICAXI (one byte) This is an auxiliary byte (and is also called 
AUXl), meaning that it helps out ICCOM in specifying what is to be 
done. It is usually used to modify the OPEN command, but you can 
use it for your own handlers. With the OPEN command, it is the first 
value after the IOCB number (#n is the IOCB number), with the bit 
meanings in Figure 27. 

-------1 

------1-

-----1--

----1---

--1-----

(1 ) 

(2) 

(4) 

(8) 

(32) 

append 

directory 

read 

write 

OPEN screen without erasing screen memory 

FIGURE 27. ICAXI bit meanings 

Some combinations are not allowed on some devices. For example, 
OPEN#I,12,O,"D:TEST" would open a disk file called TEST, and 
let you read and write to that file. This wouldn't work on a cassette 
file though. 

ICAX2 (one byte) This is the second auxiliary byte, and is also 
called AUX2. There is no common use for this or any of the other 
auxiliary bytes; their use depends on the handler. For example, if 
AUX2 is equal to 128, the cassette handler will put shorter gaps be­
tween the records on the tape when it writes data. 

ICAX3/4 (two bytes) These auxiliary bytes are used by BASIC's 
NOTE and POINT commands to keep track of the sector number. 
They are not also called AUX3 and AUX4. 

ICAXS (one byte) This is the fifth auxiliary byte and is also used 
by NOTE and POINT as the number of the byte within the sector. 

ICAX6 (one byte) OK, enough of the "this is" garbage. I won't 
even insult your intelligence by telling you it's the sixth auxiliary byte. 
It has no specific use. 

173 



You can use the IOCBs directly by POKEing the values you want into 
them and then doing a JSR SIOV (58454) . See SIOV for more details. 

Note that the descriptions for the ZIOCB (32-47) are worded differ­
ently from the preceding descriptions, so be sure to read them as well 
for a better understanding . 

IOCBO 
832-847 0340-034F 

This is, obviously, IOCB zero . If you're using the screen editor, then 
don't use IOCBO; that ' s what the screen editor uses. If you are using 
the screen editor though, you can do neat things by telling the IOCB 
to send the data somewhere else, like the printer. Try this if you have 
a printer: 

100 GRAPHICS 0 
110 PRINT "Now we're on the screen" 
120 POKE 838, 166:POKE 839,238 
130 PRINT "now we're on the printer" 
140 POKE 838, 163:POKE 839,246 
150 PRINT "Now we'rE! back on the screen" 

What we're doing here is changing ICPTLI H to point to the printer's 
put-one-byte routine rather than the screen editor's. Note that this 
doesn't turn your computer into a typewriter. The screen editor isn't 
responsible for putting characters you type on the screen; it only works 
for things the computer prints on the screen . 

174 



832-847 - 848-863 

Another neat thing you can do to the screen editor is give AUX 1 (842) 
a value of 13. This tells it to "append," which doesn't really make 
any sense. What it does, though, is act as though you were continually 
pressing the return key. This lets you write a program that will change 
itself. You simply print some program instructions on the screen, po­
sition the cursor on the line of the first instruction, and POKE 842 
with 13 to start the computer generating RETURNS, which reads in 
each line. When the computer POKE's 842 with a 12, the process stops 
and everything is back to normal. While you do this, the lines of code 
will appear on the screen, but you can make them invisible by setting 
the color of the letters to the color of the screen. Try this: 

10 " " ( CLR)":LIST 3 1) 
20 FOR 1=1 TO 1I)OO:NE XT 
30 " " NOW LINE 31) S~lYS SDt1ETHING ELSE" 
4 0 FOR 1=1 TO 1(1)1) :NE XT I 
50 ':', " ( CLR ) " 

60 F'OSITION 2,1 0 : ? " 30 " ";CHR:t ( 34);" NOW LINE 30 SAYS 

SOI"IETH I NG ELSE" 
70 POSITION 0,2 
80 POKE 842,13 
90 POS I T I ON 2 , 17 : " " C:OhIT" 
100 POSIT I ON O , 2 : STOP 
1 1 I) POK E 8 4 2, 1:: 
l. 20 -;0 " ( eL f'::> " : ':" "NOW L.ETS SE E WH{H LINE 30 SAYS " 
13(, " "THE PROGRAr1 r'IO[) I F I 1:::[, ITSELF; " 
14(; LI S T 3 0 

Keep in mind that if you try and delete the lines that change location 
842, you'll confuse the heck out of the computer and it will just keep 
on "pressing" RETURN forever! 

The screen editor, and therefore IOCB zero, is used in graphics mode 
zero and in other graphics modes that use text windows. Since IOCB 
zero is dedicated to the screen editor, however, you should stay away 
from it even if you're not using the text editor. 

IOCB zero is not closed by a NEW, RUN, or LOAD command. All 
the others are. 

IOCBI 
848-863 

IOCB one. 

0350-035F 

175 



IOCB2 
864-879 0360-036F 

IOCB two. 

IOCB3 
880-895 0370-037F 

IOCB three. 

IOCB4 
896-911 0380-038F 

IOCB four. 

IOCB5 
912-927 0390-039F 

IOCB five. 

IOCB6 
928-943 03AO-03AF 

176 



864-879 - 960-999 

IOCB six. If you're in a mode other than zero, then IOCB six is used 
for the screen (lOCB is used for the text window). 

IOCB7 
944-959 03BO-03BF 

IOCB seven is used by BASIC for I I 0 to the printer, disk drive, and 
cassette. That means that this is a pointer to the buffer that will be 
used to store the data that is to be sent or received during I/O (!). It's 
set by the handler to the system buffer at CASBUF (1021) unless you 
tell the handler differently. 

If a GET STATUS command is given, then DBUFLPO I HI is set to 
point to DVSTAT (746). 

If you're communicating with SIO directly, you should make sure you 
set DBUFLO /HI yourself. 

PRNBUF 
960-999 03CO-03E7 

This is the print buffer, 40 bytes long, used in sending data to a printer. 
See PBPNT (29; $001D) and PBUFSZ (30; $OOlE) for details on how 
this works. 

177 



Forty bytes, as you may be aware, is somewhat shorter than most 
printer lines (most have 80 character lines). The OS can usually handle 
this, but sometimes it runs into problems. Semi-colons and commas 
at the end of LPRINT statements especially tend to mess it up. Several 
sources briefly mention that the Atari can deal with an 80 column 
printer if you call it "P2". If this is true, then you would have to 
OPEN a special lOeB for it and therefore couldn't use LPRINT 
(you'd have to use PUT and the likes). You're probably better off 
just to put up with the Quirks. 

Noname 
1000-1020 03E8-03FC 

These bytes are marked as being spare, but again, be careful about 
using them. 

CASBUF 
1021-1151 03FD-047F 

This is the cassette buffer, which is where the cassette handler reads 
and writes data from and to. It's also used to hold the first disk record 
when a disk is booted (the OS doesn't know where to put the disk file 
in memory until it gets a chance to look at this record; see BOOTAD 
[578,579]). 

A cassette record is made up of 132 bytes. Only 128 of these are actual 
data; the other 4 help out the cassette handler. How? I'm glad you 
asked. The first 2 bytes, as we learned at CBAUDLIH (750,751), are 
used to help the handler figure out the correct baud rate. The third 
byte tells the handler how much data is in the file. It can have the 
following values: 

250 means that there are less than 128 bytes of meaningful data (there 
will still be 128 bytes, but some of them toward the end will be Os). 
The 128th data byte will give the actual number of meaningful bytes. 

252 means that all 128 bytes are important. 

254 means that this is the last record in the file and all 128 bytes will 
be equal to O. 

The next 128 bytes are the actual data . Notice that they will be stored 
in CASBUF starting at 1024 and ending at 1151. 

178 



960-999 - 1021-1151 

But wait, that was only 131 bytes and you said there were 132. Where 
does the 132nd go if we already filled the buffer? The last byte in a 
cassette record is the checksum, which is used to make sure that the 
rest of the data was read correctly. It gets stored at CHKSUM (49), 
and you should take a look at CHKSUM for a more detailed descrip­
tion of how a checksum works. 

Take a look at BPTR (61) and BUM (650) for more information on 
the way the buffer is used. 

17YI 
1536 
153 

,--r 

5 
140(0 
14 0 5 

1152. 

~ 

FREE Rf\M 
FRt:S{lAM INPUT LINE BUFFER 

SYNTAX S'TAC.K 
( - - --- 1 

-

Locations 1152 through 1791 are not used by the os. Most of them 
are, however, used by BASIC and/or the floating point package. Only 
the locations in page six (1536 to 1791) are not used by either. See 
page six for more information. 

179 



SYNSTK 
1152-1405 0480-0570 

This is BASIC's syntax stack. Unfortunately, since there doesn't seem 
to be any information on what it's for, I can't explain it to you (I 
never claimed to be perfect). I suspect, however, that it's used during 
the tokenization of the BASIC program, since BASIC has the runtime 
stack (see RUNSTK [142,143]) to use when the program is actually 
running. 

LBPRI 
1406 057E 

LBUFF prefix one. Again, no information on this one. 

LBPR2 
1407 057F 

LBUFF prefix two, also not explained anywhere. 

LBUFF 
1408-1535 0580-05FF 

Before I go on, a few words on locations like these. Atari was very 
nice in releasing the OS listing; a lot of other computer companies 
don't. Atari did not, however, because of legal restrictions, extend 
that niceness to BASIC and the floating point package. Therefore, 
locations that are used by these two are very difficult to explain. The 
useful locations have been documented, so they can be understood 
and used by yourself. Ones like these, however, are somewhat ob­
scure, so that you should never have to use them. In other words, 
don't feel that you're not getting something you'll need. 

Now that I've freed myself from the responsibility of properly ex­
plaining these locations, I'll actually give you some information on 
this one. This is a buffer used in converting floating point values to 
ATASCII values. It's pointed to by INBUFF at locations 243 and 244. 
Now INBUFF supposedly points to the buffer used to convert AT AS­
CII to floating point, so I suspect that LBUFF swings both ways. 

LBUFF is also referred to as the "input line buffer," which implies 
that this is where a BASIC line is stored when you first type it in . 

180 



1152-1405 - 1516-1535 

Location 1535 is the last byte in the buffer and so it is also called 
LBFEND. Notice that the next three locations are all within LBUFF. 

PLYARG 
1504-1509 05EO-05E5 

Polynomial arguments. Sure! 

FPSCR 
1510-1515 05E6-05EB 

This is like a work area for the floating point package, eh. 

FPSCR1 
1516-1535 05EC-05FF 

The same, only bigger. 

PAGE SIX 

Locations 1536 through 1791 are normally not used by the OS, BASIC, 
or the floating point package. That leaves them free for your use (page 
six is a good place to store a machine language routine). Now I did 
say that they are "normally" not used. That means that they're not 

181 



completely safe. If you try and INPUT more than 128 bytes during 
I/O, then the extra bytes are stored in page six. That means one of 
two things. Either don't INPUT more than 128 bytes at a time, or 
only use the second half of page six (locations 1664 through 1791). 
These locations are absolutely guaranteed not to be used by anything 
no matter what. 

Please notice that I only said the OS, BASIC, and the floating point 
package wouldn't use page six. If you are using another language, it 
might, so check the documentation that comes with it. 

-'1Q15 I 

-'10960 

'10) I?AMSIZ(7 
RIlMTC\'(IO 
5AU M$C 

oj 

)~ l13!1.S9 
SDI..STL. 
(SbO.S~I) 
MEM TOP 

(741,74'1) 
V' 

L 

BASIC CARTRIDGE 
NOTH ING IF L.ESS THAN 40KOIHERWIsE 
RAMTOP POINTS To 40960 

5CI<E:EN MEMORY 

PlSPL-AY '-1ST 

FReE 
FRSS. RAM 
RAM 13063 

13061-

Mf"MT~ 

(IYt:; ' 't'5) BASIC PRoGRAM AREA 
INCLUDe> &JFl'ER5TAB,ES 

7420 ETC . .. 
7«1 lq 

~ BASIC PI<!OGRAM AREA Dos 
17'12 

INC,UDE> BUfltR.TASIIS flc. 

182 

FRee. FREE RAM 
UP TO YoUR RAM 
MEOMORY up--rQ youR 

UMII MEOMORY 1...IMIT 

DUP 
75~8 

Ffi?~eRAM 1 5~7 

"204\3 
2D47 

USE:R l306T AREA 



PAGE SEVEN, EIGHT, NINE, ... 

If you're not using a disk drive, then location 1792 is the beginning 
of free memory. If you're using BASIC, "free memory" doesn't mean 
memory for you to use; it means memory for BASIC to use. There's 
a difference between the two, and you should go back to locations 
128 through 145 if you don't know what it is. 

If you are using a disk drive, then the locations from 1792 to the 
address stored in MEMLO (743,744) are used by DOS and the File 
Management System (FMS). The value of MEMLO will depend on 
the version of DOS that you're using, and also on a couple of other 
things that will be mentioned next. Use PRINT PEEK (743) 
+ PEEK(744)*256 to find out the value for your particular setup. 

This book is designed to teach you about your Atari and not about 
DOS, so I'm not going to go into any detail about how it works or 
what the memory locations are for. If you're interested in DOS, take 
a look at COMPUTE's book Inside Alari DOS. I will, however, men­
tion a few useful locations, and give you an idea of how DOS is ar­
ranged in memory. This information applies to DOS 2.0S only. 

FMS 

FMS, or the File Management System, takes up locations 1792 through 
5439. What's an FMS? The FMS is essentially the disk handler. OS 
does have a disk handler built in, but it doesn't work the same way 
as the other handlers (see the OS manual for more details) and under 
normal circumstances is only used to load in FMS. That means that 
the disk entry in HAT ABS (794 through 831) points to the handler 
information pertaining to FMS. 

Page seven (1792 to 2047) is also called the "user boot area" for some 
reason. "User boot area" implies that this area is free for loading 
boot files into, which is true. Everything after page seven is also free 
though, so technically it should also be considered as part of the user 
boot area. It's only a name though, so do with it what you will. 

There is a small bug in the FMS that can cause problems when a file 
has been OPENed for update (updating adds information to the end 
of a file rather than erasing it and starting over again). To get rid of 

183 



it, run the following program and then re-save DOS using menu se­
lection "U": 

SABYTE 
1801 

100 FOR LOC=2592 TO 2599 
110 READ DAT 
120 POKE LOC,OAT 
130 NEXT LOC 
140 POKE 2625,16 
150 POKE 2773,31 
160 DATA 130,19,73,12,240,36,106,234 

0709 

In case you didn't know already, DOS limits the number of files you 
can have OPEN at one time to three. Since you have a total of seven 
free IOCBs though, there is nothing wrong with having all seven open 
at one time (other than the fact that DOS tells you you can't). SA­
BYTE lets you change DOS's mind. If you POKE it with some num­
ber from one to seven, then that becomes the number of files you can 
have open at once. You do pay a price, however. For each file that 
you allow to be open (whether it actually is open or not), a 128-byte 
data buffer is reserved. So don't make SABYTE larger than you need. 

Oh, DOS will only remember this change as long as the computer is 
turned on. If you want a special version of DOS that always remem­
bers, change SABYTE and then re-save DOS using menu selection 
"U" . 

184 



DRVBYT 
1802 070A 

1801-1913 

DOS originally expects to see no more than two disk drives. This can 
also be changed using DRVBYT as in Figure 28. 

0000---1 
0000--1-
0000-1--
00001---

means that drive one is available. 

means that drive two is availab le. 

means that drive three is avai lable. 

means that drive four is avai lable . 

FIGURE 28. DRVBYT bit chart 

Notice that a value of three in DRVBYTE does not mean that DOS 
can handle three drives. The binary representation of three is 
00000011, which means that drives one and two are available. 

Each available drive also has a 128-byte buffer reserved for it, so don't 
waste memory by telling DOS you have more drives than you really 
do (if you only have one drive, you can save 128 bytes by setting 
DRVBYT to one). 

Once you've changed DRVBYT, you can make your change a per­
manent part of DOS by re-saving DOS using menu selection "H", 
just like you did for SABYTE. 

VERFLG 
1913 0779 

Actually, this location doesn't have a name so I made one up. In any 
case, this is the "write verify flag." What is "write verify"? When 
you save something to disk , DOS first writes the data onto the disk 
and then reads it back to verify that it was written correctly. This takes 
time, and the disk very seldom makes an error (very, very seldom). 
So, if you want to turn the verify off, POKE VERFLG with an 80. 
To turn it back on again, POKE VERFLG with an 87. 

I personally have never had a problem writing without verify. There 
is, however, a slight chance that the data will not be saved correctly, 
and if this happens, your program probably won't work. Therefore, 
you may want to have the verify on when you're saving important 
programs. 

185 



As in the last two locations, menu selection "H" will create a version 
of DOS that includes your change to VERFLG. 

DSKFLE 
3118 OC2E 

More than once I have ended up with two files on a disk with the 
same name. If you tell DOS to erase one of the files, both will be 
done. By changing the normal value here to a zero, DOS will only 
erase the first file. 

WLDCRD 
3783 OEC7 

Look at your DOS manual and find out what a wildcard is. The wild­
card that comes with DOS is the asterisk ("*"). If you want to change 
it to something else, this is where its AT ASCII value is stored. 

Again, re-save DOS if you want the change to be permanent. 

CHRLO, CHRHI 
3818,3822 OEEA,OEEE 

DOS only lets you use uppercase letters and numbers in your file­
names. This too can be changed. CHRLO and CHRHI define the 
range of AT ASCII characters that can appear in a filename. They are 
originally set to 65 ("A") and 91 ("["). CHRHI, as you can see, 
actually holds the AT ASCII value of the character after the last al­
lowable one. The number appear to be taken care of elsewhere and 
are automatically included in the list of allowable characters. 

A few warnings if you decide to change CHRLO and CHRHI. First 
of all, don't define a space or a period as an allowable character. If 
you do, you may not be able to load your file back in again. Also, if 
you include the asterisk as an allowable character, don't forget to 
change WLDCRD. 

To specify uppercase, lowercase, and numbers as allowable charac­
ters, set CRRLO to 48 and CHRHI to 123. No guarantees are made 
if you make CRRHI any larger than this. 

Don't forget to re-save DOS so it includes your changes. 

186 



Noname 
4148,4149 1034,1035 

1913-4226,4229 J 

Another problem with DOS is error message #164, which means your 
data is messed up on the disk. It's fine if you have really goofed up 
your file, but what if it has only a few problems. Perhaps a few num­
bers are unreadable. You would like to be able to load these in and 
fix them on the screen. NO WAY usually. Try POKEing 234 into 
location 4148 and 234 into 4149 also. These are NOP (no operation) 
instructions in machine language. Now you will never get error #164. 
For that reason I don't suggest using this permanently, but rather only 
when you need it. 

Noname 
4226 & 4229 1082, 1085 

Disk directory sector number. Here is a nice trick discovered by Gor­
don Banks, a dedicated AT ARI nut like those of us here. Did you 
ever want to have two disk directories? Of course not, but think about 
it for a moment. A second directory could be used to protect certain 
files on a disk from being there when others look at the disk. You 
might have a second set of programs become available to a program 
after a certain point in the game or drill was passed. 

What you do is treat these two locations as the low byte and high byte 
of the number of the sector that the directory should start on. Nor­
mally this is 361, which means 4226 holds 105 and 4229 holds 1 
(lOS + 1 *256 = 361). If you wanted to have your directory start at sec­
tor 700, POKE in 188 and 2. Now the only problem is how to get the 
directory to 700. Simply do the POKEs before you save the files to 
the disk. Then POKE the normal values back in before writing DOS 
to the disk. 

DOS 

Remember that FMS is just a handler, which means it can only do a 
limited number of things to the disk. DOS takes care of the more 
complicated tasks and tells FMS what is can do to help get these tasks 
done. A large part of DOS, called the Disk Utilities Package (DUP), 
stays out of memory until you call DOS. The rest can be found in 
locations 5440 through 6779. This part of DOS, called "mini-DOS," 
is mainly used to load in DUP from the disk and take care of the 
MEM. SAY file (see your DOS manual) if necessary. 

187 



DOSLO, DOSHI 
5446,5460 I546,I54A 

These two locations hold the address that BASIC will jump to when 
you call DOS. They initially hold the same value as DOSVEC (10,11). 

BUFFERS 

Following the resident part of DOS are the buffers. There are two 
drive buffers and three data buffers, unless you specify otherwise by 
changing SABYTE (1801) and/or DRVBYT (1802). The buffers start 
at 6780 ($1 A 7C) and, since each buffer takes up 128 bytes, and at 
7420 ($ICFC) unless you've made the changes described. This means 
that MEMLO (743,744) normally points to 7420 if you're using disk. 

DISK UTILITIES PACKAGE (DUP) 

You call DOS from BASIC and "whirrr ... beep ... beep ... " 
from the disk drive, right? So what's loading in? All the routines that 
are needed to perform the menu selections that appear on the screen. 
These routines, along with the menu itself and various buffers and 
the like, load into locations 7548 through 13061 ($ID7C through 
$3305). Look at the DOS listing if you need more information about 
the routines. By the way, if you go to BASIC from DUP and haven't 
loaded or created a BASIC program that is large enough to wipe out 
any of the DUP file, you can go to DUP by typing 

x = USR (8309) 

instead of typing DOS. This saves all the time of loading in DUP 
again. 

FREE RAM 

The memory area from the address pointed to by MEMLO (743,744) 
up to that pointed to by RAMTOP (106) is free RAM. That doesn't 
mean you didn't pay for it; it means that it is unused . If you are using 
BASIC, then your program uses the memory from the address pointed 
to by MEMLO up to the address pointed to by MEMTOP (144,145). 

As mentioned already, the value of MEMLO will depend on whether 
or not you are using disk (and the RS-232 handler, which takes up 

188 



5446,5460 

another 1728 bytes). The value in RAMTOP depends on how much 
total memory you have. The various values it can have are listed in 
Figure 29. Don't forget that the value in RAMTOP is the high byte 
of the address (the number of pages). 

189 



MEMORY RAMTOP BYTES 
8K 32 8192 

16K 64 16384 
24K 96 24576 
32K 128 32768 
40K 160 40960-
48K 192 49152-

FIGURE 29. RAMTOP chart 

*These values depend on whether or not any cartridges are in 
place. See the sections on cartridges. 

CARTRIDGE B (RIGHT CARTRIDGE) 

The cartridges are a strange breed. They contain their own 8K of 
ROM, yet they feel the need to shove 8K of RAM out of the way in 
order to run. The right cartridge gives notice to locations 32768 
through 40959 ($8000 through $9FFF). This means that if you have 
40K of RAM or more, you'll lose 8K of it . Note that since the 800 is 
the only Atari that has a right cartridge slot, few companies have car­
tridges for the right slot. 

If a right cartridge is present, TRAMSZ at location six gets set to one 
during powerup. 

CARTRIDGE A (LEFT CARTRIDGE) 

OK, all Atari computers have a left cartridge slot. Since it may be the 
only slot, it makes more sense to refer to it as cartridge A. 

190 



Cartridge A takes up memory locations 40960 through 49151 ($AOOO 
through $BFFF). This will only affect you if you have 48K of RAM, 
since these locations are the last 8K. 

The last six bytes in a cartridge provide the information that the OS 
needs in order to run the cartridge. Thus: 

49146,49147 ($BFF A, $BFFB) holds the starting (run) address of the 
cartridge. 

49148 ($BFFC) equals zero if a cartridge is plugged in, and doesn't if 
one isn't. 

49149 ($BFFD) tells the OS how to get the cartridge going. If bit zero 
is set, then the OS boots the disk before it runs the cartridge. If bit 
two is set, then the cartridge is initialized but not run (if it's not set 
then it gets run). 

49150,49151 ($BFFE,$BFFF) holds the initialization address of the 
cartridge. 

Note that these addresses are all for cartridge A. For cartridge B, just 
subtract 8192 from each address. 

If cartridge A is present, TSTDA T at location seven gets set to one 
during powerup. 

If you're using BASIC, then the BASIC cartridge is cartridge A. Be­
cause this book is designed to teach you about your Atari, and not 
about the languages that can be used with it, I'm not going to give 
you a detailed listing of all the locations in the BASIC cartridge. Don't 
feel as though you're missing out on something great, however; there's 
very little in there that would be useful to you. The OS listing does 
mention four routines, however, so I will mention those. 

SIN 
48551 BDA7 

This routine calculates the sine of the number in floating point register 
zero (FRO) . You should take a look at FRO (212 to 217) and RADFLG 
(251) if you're going to try to use it. It might also help to disassemble 
the code for the routine to get an idea of what's going on. 

191 



COS 
48561 BDB! 

This routine calculates the cosine of FRO. 

ATAN 
48759 BE77 

The arctangent of FRO. 

SQR 
48869 BEES 

And lastly, the square root of FRO. Note that the carry is significant 
in all of these operations, in that it will be set if an error occurs during 
the operation. 

192 



SPECIAL CHIPS AND ROM 

OK, we're now done with all the RAM locations. That leaves the ROM 
and the special chips, which covers the GTIA (or CTIA), POKEY, 
PIA, and ANTIC chips along with the OS ROM. We'll learn what 
each of the chips does as we come across it. 

ROM, of course, stands for Read Only Memory, which means that 
you can't store values in it. You can't store values in the chips, either, 
but as you read through the following locations you'll notice that I 
tell you to POKE to them. What's going on here? When you POKE 
a value in a chip location, the chip will see the value and act accord­
ingly, but won't store it anywhere. That means that if you POKE 
some location with a value and then PEEK that location, you won't 
necessarily get the value you POKEd. It's OK though, because the 
chip knows what you were trying to do and acts as though the value 
is in the location. Confused? Just remember that POKE works, but 
PEEK won't always. 

Because the value you POKE is different from the value you PEEK, 
a lot of the ROM locations have different meanings depending on 
whether you're PEEKing or POKEing. In such a case, I'll give you 
an explanation of each. 

Now that you think you understand, one more thing to try and trip 
you up. You can't POKE to the OS ROM at all. Well, you can if you 
want to, but nothing will happen. 

193 



Let's do a little memory mathematics. First of all, let's start with a 
48K Atari. It's actually a 64K Atari. Where's the other 16K? The OS 
ROM takes up 10K, so that leaves 6K unaccounted for. 1.25K is taken 
up by the chips mentioned, so we're down to 4.75K. Would you be­
lieve that 4.75K of memory is unused? Well, you should, because it 
is . Unfortunately, it's all in ROM and therefore you can't use it either. 
4K of it is right here, at locations 49152 through 53247 ($COOO through 
$CFFF). The other .75K, which, by the way, is equal to three pages 
since a page is .25K, is found amongst the chips at locations 53504 
through 53759 ($0100 through $DIFF) and 54784 through 55295 
($D600 through $D7FF). Anyway, that means we have 48K to pro­
gram with, right? Nope. The BASIC cartridge takes up 8K, as we saw, 
so we're down to 40K. We already saw that the first 1792 bytes (or 
1. 75K) are used by BASIC, the OS, and the floating point package, 
and then on top of that there's screen memory and the memory that 
the FMS and DOS use if you're using a disk drive. That leaves any­
where from about 37K down to 29K or less! Oh well, I guess even 
computers can lose their memories (OK, OK, I'm sorry). 

GTiA OR CTIA 

Time to answer a question that may have been nagging at a lot of 
you. What's the difference between GTIA and CTIA? And for that 
matter, what is a CTIA/ GTIA? Let's start with the second question 
first. Way back when the Atari computers were still being designed, 

194 



53248 

they had nicknames. The 400 was called Candy, and the 800 Colleen. 
So much for trivia. Both Colleen and Candy needed some way of 
talking to the television set, so a Television Interface Adapter chip 
was designed. That's where you get the name CTIA from (Col­
leen /Candy Television Interface Adapter). The CTIA chip gets in­
formation from ANTIC and uses it to tell the television set what to 
do. So much for that. 

When the CTIA was originally designed, it was supposed to support 
12 graphics modes (0 to 11). Unfortunately, the last 3 modes couldn't 
be implemented in time to make the production deadline. Rather than 
hold off releasing the computers, Atari decided to put them out with­
out those three modes and add the modes later. So that's why the 
early computers don't support modes 9, 10, and 11. After the first 
batch of CTIAs ran out, Atari starting putting in chips that had the 
extra 3 modes, for some reason calling them GTIAs, with the "G" 
standing for George. Maybe George was the guy who finally figured 
out how to get the last modes to work, I don't know. In any case, 
that's the difference between CTIA and GTIA. Oh, GTIA also cor­
rects another problem that CTIA had. It seems that yo u couldn't line 
up players and playfield exactly (they were off by half a color clock). 
To correct this problem, GTIA shifts the playfield by half a color 
clock. Unfortunately, this means that colors obtained by artifacting 
(see COLORl at location 709 [02C5]) will be the opposite of what 
they're supposed to be. If you're writing a program that uses arti­
facting, and you want to make sure that the colors come out right on 
both the CTIA and the GTIA, there is a program in Appendix Four 
that you can use to check which chip is present. Once you know that, 
you can shift everything over one column if necessary. 

The G/ CTIA takes up locations 53248 through 53505 ($DOOO through 
($DOFF). 

You're now about to enter player/ missile territory. That's right, 
G/ CTIA also takes care of player/ missile graphics. Since this is such 
a detailed and popular subject, there is a whole appendix in the back 
of the book devoted entirely to telling you how to program playerl 
missile graphics. Therefore, the descriptions here will be short and 
sweet. 

Please see the appendix if you don't know what's going on. 

HPOSPO (POKE) and MOPF (PEEK) 
53248 DOOO 

195 



65535 

5636 8 
583<07 
573"\"1 
573'13 
552.96 
S5z9~ 
~7B"\ 
~,,\7B3 

?;~ f~~ 
S40 16 
54015 
53760 
>;375'1 
53504 
;350~ 
5324" 
53247 

4Q1 5"-

- -
--- --
1---

\ 

QSROM 
CHARACTER $ET 

FL.OATING POINT PACKAGE 
UNUSED 
ANTIC 
PIA 

POKEY 
~ 

UNUSED 
GTIA/C'T/A 
UNUSED 

\ \ 

(POKE) HPOSPO specifies the horizontal location of player zero, 
and can range from 0 to 227. Note that some of these positions will 
be off the edge of the screen, so experiment to see what values can 
be seen on your screen. For most television sets, anything between 48 
and 208 will be visible. 

48 1 2. e ¢ Z 5 

( -1\ 
~ 

v 

"'" 
~ 

i'-..Bordcr 

Backgro und 

1;(, 6 

Because this location is in one of the chips, you will not be able to 
PEEK here to find out the current position of the player (see the fol-

196 



53248-53251 

lowing for what you get when you PEEK). That means that you should 
keep track of the position in a separate variable. 

(PEEK) MOPF is a collision register. Collision registers are used 
to tell who's collided with whom on the screen (in other words, who's 
sharing the same pixels with whom). They can be very useful in games 
and other applications. Note that the collision registers do not work 
properly in GTIA modes nine through eleven. You should also check 
HITCLR at location 53278. 

MOPF tells you what part of the playfield missile zero has collided 
with (the background is not considered part of the playfield here). Its 
bits have the meanings in Figure 30. 

-------1 

------1-

-----1--

----1---

(1 ) 

(2) 

(4) 

(8) 

means a collision with playfield zero. 

means a collision with playfield one. 

means a collision with playfield two. 

means a collision with playfield three . 

FIGURE 30. MOPF bit chart 

HPOSPI (POKE) and MIPF (PEEK) 
53249 0001 

(POKE) 

(PEEK) 
collisions. 

HOPSPI specifies the horizontal position of player one. 

MIPF is the collision register for missile one/ playfield 

HPOSP2 (POKE) and M2PF (PEEK) 
53250 0002 

(POKE) 

(PEEK) 
collisions. 

HOPSP2 specifies the horizontal position of player two. 

M2PF is the collision register for missile two / playfield 

HPOSP3 (POKE) and M3PF (PEEK) 
53251 0003 

(POKE) HOPSP3 specifies the horizontal position of player three. 

197 



(PEEK) 
collisions. 

M3PF is the collision register for missile three/ playfield 

HPOSMO (POKE) and POPF (PEEK) 
53252 0004 

(POKE) HPOSMO specifies the horizontal position of missile zero 
(missiles move just like players). 

(PEEK) POPF is the collision register for player zero/ playfield 
collisions. It works just like the missile/ playfield collision registers. 

HPOSMI (POKE) and PIPF (PEEK) 
53253 0005 

(POKE) 

(PEEK) 
Iisions. 

HPOSMI specifies the horizontal position of missile one. 

PIPF is the collision register for player one/ playfield col-

HPOSM2 (POKE) and P2PF (PEEK) 
53254 0006 

(POKE) 

(PEEK) 
Iisions. 

HPOSM2 specifies the horizontal position of missile two. 

P2PF is the collision register for player two / playfield col-

198 



53251-53256 

HPOSM3 (POKE) and P3PF (PEEK) 
53255 D007 

(POKE) 
three. 

HPOSM3 specifies the horizontal position of missile 

(PEEK) 
collisions. 

P3PF is the collision register for player three/ playfield 

SIZEPO (POKE) and MOPL (PEEK) 
53256 D008 

(POKE) You can set the size of each player (in terms of width) to 
one of three possibilities, each of which is twice as wide as the one 
before it. A value of zero or two in this or the next three locations 
specifies normal width, which is eight color clocks wide (the same 
width as a graphics mode two character). Similarly, a one specifies 
double width, and a three quadruple width. 

A player is normally eight bits wide. Changing the width does not 
affect this but rather shows each bit two or four times in a row (for 
example, Figure 31). 

Normal Width (zero) 

For Player 0: POKE 53256,0 

10011001 
10111101 
11111111 

10111101 
10011001 

# ## # 

# #### # 

######## 

# #### # 

# ## # 

FIGURE 31 (partial) . Changing player widths 

Two things to note here. First, the height of the player is not changed, 
and second, each player can be set separately. 

199 



Double Width (one) 

POKE 53256,1 

1100001111000011 
1100111111110011 
1111111111111111 
1100111111110011 
1100001111000011 

## #### ## 

## ######## ## 

################ 

## ######## ## 

## #### ## 

Quadruple Width (three) 

POKE 53256,3 

11110000000011111111000000001111 
11110000111111111111111100001111 
11111111111111111111111111111111 
11110000111111111111111100001111 
11110000000011111111000000001111 

#### 

#### 

######## 

################ 

#### 

#### 

################################ 

#### ################ #### 

#### ######## #### 

FIGURE 31 (continued) . Changing player widths 

200 



~ 53256-53260 

(PEEK) MOPL is the collision register for missile zero / player col-
lisions. Its bits have the meanings in Figure 32. 

-------1 (1) means a collision with player zero. 

------1- (2) means a collision with player one. 

-----1-- (4) means a collision with player two. 

----1--- (8) means a collision with player three. 

FIGURE 32. MOPL bit chart 

Because of the way player/ missile graphics is designed, there is no 
way to detect a collision between two missiles. 

SIZEPI (POKE) and MIPL (PEEK) 
53257 D009 

(POKE) 

(PEEK) 
Iisions. 

SIZEPI specifies the width of player one. 

MIPL is the collision register for missile one/ player col-

SIZEP2 (POKE) and M2PL (PEEK) 
53258 DOOA 

(POKE) 

(PEEK) 
lisions. 

SIZEP2 specifies the width of player two. 

M2PL is the collision register for missile two / player col-

SIZEP3 (POKE) and M3PL (PEEK) 
53259 DOOB 

(POKE) SIZEP3 specifies the width of player three. 

(PEEK) 
lisions. 

M3PL is the collision register for missile three/ player col-

SIZEM (POKE) and POPL (PEEK) 
53260 DOOC 

(POKE) The missiles only have one location that is used to specify 
their widths, and SIZEM is it. This is how the bits are used (Figure 
33). 

201 



------00 (0) 
or 

------10 (2) for normal width missile zero. 

------01 (1) for double width missile zero. 

------11 (3) for quadruple width missile zero . 

----00-- (0) 
or 

- - --10-- (8) for normal width missi le one. 

----01-- (4) for double width missile one. 

--- -11-- (12) for quadrup le width missile one. 

--00---- (0) 
or 

--10---- (32) for normal width missile two. 

- - 01---- (16) for double width missile two. 

--11---- (48) for quadruple width missile two. 

00------ (0) 
or 

10------ (128) for normal width missile three. 

01------ (64) for double width miss i le three. 

11------ (192) for quadruple width missile three. 

FIGURE 33. GRAFPO bit chart 

202 



53260-53263 

(PEEK) Now it's time for player-to-player collision registers. 
POPL has exactly the same meaning as MOPL, except it detects player 
zero/player collisions rather than missile zero/player collisions. Note 
that a player will never collide with itself. 

GRAFPO (POKE) and PIPL (PEEK) 
53261 DOOD 

(POKE) When G/ CTIA is drawing the screen, it relies on the five 
GRAF registers (this one and the four following) to tell it what the 
players and missiles will look like (GRAF stands for "GRAFics reg­
ister"). Every time G/ CTIA comes to a horizontal position on the 
screen where a player/ missile is supposed to be, it looks at the cor­
responding register to see what to put on the screen. Now it's probably 
occurred to you that the GRAF registers are only one byte long. That 
means that unless someone puts new values in them every time a new 
line on the screen gets drawn, all the players and missiles will just look 
like a bunch of vertical lines. So who's going to do the changing? If 
you're adventurous (and good with machine language), you can do it 
yourself, but there's a much easier way. If we tell GRACTL (53277) 
and DMACTL (54272) to turn on DMA (Direct Memory Access) for 
players and missiles, then ANTIC will very thoughtfully keep chang­
ing the GRAF registers for us. All we have to do is put a description 
in memory of how we want the players and missiles to look. See 
PMBASE (54279) for information on how to do that. 

If you want a quick way to create some kind of vertical border, use 
the GRAF registers without DMA. By POKEing a value of 255 into 
GRAFO, for example, you can get a vertical band the height of the 
screen. Note, however, that you have to turn off DMA for all players. 

(PEEK) 
Iisions. 

PIPL is the collision register for player one/player col-

GRAFPl (POKE) and P2PL (PEEK) 
53262 DOOE 

(POKE) GRAFPl is the graphics register for player one. 

(PEEK) 
Iisions. 

P2PL is the collision register for player two/player col-

GRAFP2 (POKE) and P3PL (PEEK) 
53263 DOOF 

203 



(POKE) GRAFP2 is the graphics register for player two. 

(PEEK) 
Iisions. 

P3PL is the collision register for player three/player col-

GRAFP3 (POKE) and TRIGO (PEEK) 
53264 0010 

(POKE) GRAFP3 is the graphics register for player three. 

(PEEK) Remember the STRIGs back at locations 644 through 
647? Well, they were the shadow registers for the TRIGs, which work 
the same way. A zero means the joystick button is pressed (joystick 
zero in this case), a one means it isn't. With the TRIGs, you can make 
it so that if a button is pressed, TRIG will stay set to zero until you 
reset it. See GRACTL (53277) to find out how. Otherwise, TRIG will 
return to one as soon as the button is released. 

For those of you who are hardware minded, the TRIGs read the value 
of pin six of the controller jacks. 

GRAFM (POKE) and TRIGl (PEEK) 
53265 0011 

(POKE) GRAFM is the graphics register for the missiles. Since 
missiles are only two bits wide, all four can fit into one register. The 
bits are assigned as in Figure 34. 

BIT 

USE 

7 

M3 

6 5 4 3 2 o 
M2 M1 MO 

FIGURE 34. GRAFM bit chart 

If all the missiles are in the same byte, how do you change one without 
affecting the others? It's not easy from BASIC. You have to somehow 
break the byte up into four parts, change the part you want, and then 
put it back together. See the appendix on player/missile graphics for 
a routine to help you do this. In machine language, all you have to 
do is use AND to look at the bits you want and to clear them, and 
ORA to reset them. Don't forget that you can't PEEK GRAFM, so 

204 



53263-53268 

you'll have to keep track of its value in a separate variable (which is 
taken care of for you if you're using OMA). Again, see the appendix 
for more of an explanation. 

(PEEK) TRIGI is the value of joystick button one. It has a shadow 
register STRIGI at location 285. 

COLPMO (POKE) and TRIG2 (PEEK) 
53266 0012 

(POKE) This specifies the color and brightness of player zero and 
missile zero. Sound familiar? That's because it has a shadow register 
called PCOLRO at location 704. Look there for more information. 

(PEEK) TRIG2 is the value of joystick button two. It has a shadow 
register STRIG2 at location 286. 

COLPMl (POKE) and TRIG3 (PEEK) 
53267 0013 

(POKE) COLPMl is the color and brightness of player one and 
missile one. It has a shadow register PCOLRI at location 705. 

(PEEK) TRIG3 is the value of joystick button three. It has a 
shadow register STRIG3 at location 287. 

COLPM2 (POKE) and PAL (PEEK) 
53268 0014 

(POKE) COLPM2 is the color and brightness of player two and 
missile two. It has a shadow register PCOLR2 at location 706. 

(PEEK) It would be too easy to make fun of this location, so I'll 
spare you. What a PAL, huh? There are three types of television stand­
ards around the world: PAL, NTSC, and SECAM (a television stand­
ard just specifies how the television should work). PAL is used in 
Europe, NTSC here in North America, and SECAM in France, Rus­
sia, and parts of Africa. Atari has two different versions of the com­
puter, one for PAL and one for NTSC (so we'll ignore SECAM). 
What's the difference? The PAL Ataris run about 25 percent faster 
than the NTSC Ataris. Also, PAL televisions have more scan lines 
than NTSC ones, which means that VBLANK occurs approximately 
every fiftieth of a second rather than every sixtieth. 

205 



"So what?" you're saying (I can hear you). Actually, unless you're 
programming for a PAL Atari, nothing I just said will be of any con­
cern to you. If you are programming for a PAL, however, you should 
be aware of the differences. 

I almost forgot. PAL (the memory location) is used to determine what 
kind of Atari you have. The bits have the following meaning: 

----000- (0) means that the computer is set up for PAL. 
----111- (14) means that it's set up for NTSC. 

Make sure you only check bits two, three, and four (Le., on an NTSC 
computer, PEEK(53268) won't necessarily give you 14; it might give 
you 15). 

COLPM3 (POKE only) 
53269 D015 

COLPM3 is the color and brightness of player three and missile three. 
It has a shadow register PCOLR3 at location 707. 

COLPFO (POKE only) 
53270 D016 

206 



53268-53276 

OK, we're out of the player/ missile color registers and into the play­
field color registers. See the shadows at locations 708 through 712 for 
more information. 

COLPFO is the color and brightness of playfield zero and has a shadow 
register COLORO at location 708. 

COLPF1 (POKE only) 
53271 D017 

COLPF1 is the color and brightness of playfield one and has a shadow 
register at location 709. 

COLPF2 (POKE only) 
53272 D018 

COLPF1 is the color and brightness of playfield two and has a shadow 
register at location 710. 

COLPF3 (POKE only) 
53273 D019 

COLPF1 is the color and brightness of playfield three and has a 
shadow register at location 711. 

COLBK (POKE only) 
53274 D01A 

COLPF1 is the color and brightness of the background and has a 
shadow register at location 712. 

PRIOR (POKE only) 
53275 DOlB 

PRIOR is used to select the priorities of the various objects on the 
screen. What? Check its shadow register GPRIOR at location 623 for 
an explanation. 

VDELA Y (POKE only) 
53276 D01C 

As you'll find out later, at location DMACTL (54272), you can choose 
one- or two-line resolution for your players and missiles. If you choose 

207 



two-line, however, you have to move things vertically two lines at a 
time rather than one. VOELAY can be used to move things down by 
one line. Its bits specify the object to be moved (Figure 35). 

-------1 

------1-

-----1--

----1---

---1----

--1-----

-1------

1-------

(1 ) 

(2) 

(4) 

(8) 

(16) 

(32) 

(64) 

(128) 

means move missile zero down one. 

means move missile one. 

means move missile two. 

means move missile three. 

means move player zero. 

means move player one. 

means move player two. 

means move player three. 

FIGURE 35. VDELAY bit chart 

To continuously move an object down, just repeat the following loop: 

1. Set the appropriate bit to one. 

2. Move the shape data forward one byte in memory and set the 
bit back to zero. 

3. Go to step 1. 

To continuously move it up: 

1. Move the data back one byte and set the appropriate bit to one. 

2. Set the bit back to zero . 

3. Go to step 1. 

GRACTL (POKE only) 
53277 0010 

When the computer is first turned on, it is not set up to accept 
player/ missile data from ANTIC (player/ missile DMA is turned off). 
Before you can get G / CTIA and ANTIC to talk to each other about 
players and missiles, you have to tell G/ CTIA to accept player/ missile 
data and ANTIC to send it. GRACTL is used to do the former 
(OMACTL [54272] is used for the latter). Here's the way the bits are 
used (Figure 36). 

208 



-------0 

-------1 

------0-

------1-

(0) 

(1 ) 

(0) 

(2) 

53276-53277 

tells G/CTIA not to accept missile data. 

tells it to accept missile data. 

tells it not to accept player data. 

tells it to accept player data. 

FIGURE 36. GRACTL bit chart 

What about turning players and missiles off? Can you just POKE 
GRACTL with a zero? Not always; POKEing GRACTL will stop new 
data from coming in but will not get rid of whatever's in the GRAF 
registers (see the preceding). That means you have to turn off 
GRACTL (and DMACTL) and then POKE all the GRAF registers 
with zeroes. If you're doing this from BASIC, you may want to POKE 
all the horizontal position registers with a zero first, thus moving 
everybody off the edge of the screen. That way, you won't have to 
look at any garbage that may appear in them before you get a chance 
to change the GRAFs. 

GRACTL is also used to make a slight change to the joystick and 
paddle buttons. Normally, these buttons will give a value of zero when 
they are pressed, and a value of one when they're not. Sometimes, 
however, they may get pressed and released before you get a chance 
to check them. GRACTL helps you solve this problem as in Figure 
37. 

-----1--

-----0--

(4) 

(0) 

will " latch the trigger inputs." 

will clear the trigger inputs. 

FIGURE 37. GRACTLIJoystick bit chart 

Whoa! Wanna translate that to English? Well, "trigger input" is just 
a fancy term for button value. "Latch" means that once you press a 
button, its value will stay zero until you c1earr the trigger inputs, even 
if the button is released before then. Ta da! 

Note that you cannot latch or clear individual button values. 

The joystick button values are stored in the preceding TRIG locations, 
and the paddle button values are in PORTA at location 540]6. 

209 



HITCLR (POKE only) 
53278 DOlE 

After you've looked at the collision registers and seen who has run 
into whom, it's a good idea to set them to zero. Why? If you don't, 
then the old collision values will still be there the next time you check, 
and you won't know whether anything new has happened or not. 
HITCLR to the rescue. POKE any value into HITCLR and all the 
collision registers will be cleared (set to zero). 

CONSOL 
53279 D01F 

(PEEK) We're going to do this one backwards (PEEK before 
POKE), and you'll see why in a second. PEEKing CON SOL will tell 
you which of the buttons on the keyboard (OPTION, SELECT, and 
START) are pressed. The bits are used as in Figure 38. 

-------0 

-------1 

------0-

------1-

-----0--

-----1--

(0) 

(1) 

(0) 

(2) 

(0) 

(4) 

means that START is pressed . 

means it isn 't. 

means that SELECT is pressed. 

means it isn't. 

means that OPTION is pressed. 

means it isn ' t. 

FIGURE 38. CON SOL bit chart 

210 



53278-53279 

(POKE) If you're looking at CONSOL from machine language, 
you have to first POKE it with an eight. This tells it to clear out the 
old values and bring in the new. Don't worry about it in BASIC. 

If you POKE CONSOL with a value less than eight, the speaker inside 
your Atari will make a clicking sound. If you keep POKEing it, you'll 
get a buzz. Try this: 

100 POKE 53279,0:GOTO 100 

Why do you have to keep POKEing the zero over and over? Because 
the OS automatically stores a value of eight in CON SOL every stage 
two VBLA NK, which turns off the speaker. 

You can make changes to the preceding line to get slightly different 
buzzes. For example, 

100 POKE 53279,0 
110 POKE 53279,8:POKE 53279,8 
120 GOTO 100 

That's all there is to the G/ CTIA chip. Even though it takes up an­
other 224 bytes (through location 53503), they are not used at the 
moment. Could that mean incredible additions in the future that will 
allow you to do three-dimensional movement with hundreds of dif­
ferent colors and incredibly realistic detail? Nah! 

POKEY 

POKEY handles a whole bunch of stuff, including sound, the paddles, 
the keyboard, IRQ interrupts, and serial 110, so let's get right into 
it. 

211 



SOUND 

BASIC, with its simple SOUND statements, doesn't even hint at the 
complex options available from your Atari for sound generation. 
That's a shame, since sound can be as important a part of your pro­
gram as graphics. If you're interested in learning more about how the 
sound capabilities of your computer work, everything you need to 
know appears next. If you really want to apply these capabilities to 
complicated sound effects , I urge you to get your hands on a copy of 
De Re Atari. It has the most in-depth look at sound and how to pro­
gram it that I've seen. 

I 

212 



53760 

TIMERS 

Hold on, what happened to sound? Don't worry, I haven't forgotten 
it; the system timers mentioned back at locations 528 through 533 
share a few of the sound locations so I thought we'd get them out of 
the way first. Because these timers are only going to be used by those 
of you programming in machine language, I'll just give you a checklist 
of what you need to do to use them. For more information, consult 
good old De Re Atari. 

I. Use AUDCTL to pick the particular clock frequency you want 
to use (the system timers count clock pulses). 

2. Depending on which timer you're using, use AUDCl, AUDC2, 
or AUDC4 to set the volume for the associated audio channel 
to zero. 

3. Similarly, set AUDFI, AUDF2, or AUDF4 to the number of 
pulses you want to count. 

4. Make sure your interrupt routine is set up and ready to go. 

5. Change VTIMRl, VTIMR2, or VTIMR4 (these start at location 
528) to point to your interrupt routine. Note that VTIMR4 will 
not work in the original version of the OS. 

6. Use IRQEN and POKMSK (53774 and 16) to enable the timer 
interrupts. 

7. Lastly, get the timers going by writing any value to STIMER 
(53769). 

You should be aware that DMA, DLIs, and vertical blank processing 
can affect the timers' performance, so don't rely on complete accu­
racy. 

AUDFI (POKE) and POTO (PEEK) 
53760 D200 

(POKE) The BASIC SOUND statement has the following format: 

SOUND VOICE, PITCH, DISTORTION, VOLUME 

VOICE is a value from zero to three. Think of the Atari as having 
four separate sound-effects performers inside, called voice zero, voice 

213 



one, voice two, and voice three. Actually, while BASIC numbers them 
zero through three, POKEY prefers the more normal one through 
four. We'll go with POKEY, which also calls them "audio channels" 
rather than voices. We'll go with it on that, too. 

AUDFI has nothing to do with audio channel numbers other than the 
fact that it specifies the pitch value for audio channel one, so we'll 
start discussing pitch. Pitch is another word for frequency, or note, 
or tone, whichever you prefer. We'll use frequency. Basically, fre­
quency describes how "high" or "low" a sound is (you may prefer 
the terms "treble" and "bass"). Before we look at how this got the 
name frequency, we need to understand what make a sound. 

Sound of any type is nothing more than air moving in "waves." 
What's an air wave (uh-oh, those two words together sound familiar)? 
It's essentially the same as an ocean wave in that it consists of a large 
movement of air followed by almost no movement. A whole bunch 
of waves one after the other make up a sound, and the length of the 
waves, or how far apart in time they are, determines the frequency of 
the sound. Do you see now why it's called frequency? Because the 
frequency of the sound depends on how frequent the waves are. 

How does the computer create sound waves? Actually, the speaker 
creates the waves; the computer just controls the speaker. A speaker 
makes waves by moving in and out at the desired frequency (each 
move in and out creates one wave). To make the speaker move in and 
out, the computer sends it a "pulse" of electricity. A pulse is just a 

214 



53760 

short burst, so this is equivalent to quickly flicking a switch to the 
speaker on and then off again. This moves the speaker out and then 
in, thereby creating the air movement we need. All this work just for 
one little air wave! 

Our next step is to look at where the pulses come from. The frequency 
of the pulses will determine the frequency of the sound, so it's safe 
to assume that the AUDF registers will have something to do with it. 
Try the following statements: 

SOUND 0,10,10,8 
SOUND 0,200,10,8 

Uh-oh, the higher frequency value gave us a lower frequency sound. 
What gives? It turns out that the AUDF registers are used to determine 
the frequency rather than used as the frequency. In technical terms, 
they specify "N" in divide-by-N circuits. What does that mean in 
nontechnical terms? The Atari computers have several "clocks" on 
board. These clocks don't tell the time, but rather send out a stream 
of pulses with a specific frequency. The clock that is usually used by 
the AUDF registers has a frequency of 64 MHz (Megahertz, meaning 
1,000 pulses per second). A divide-by-N circuit takes this stream as 
input, and for every N pulses coming in it sends one out, in this case 
to the speaker. For example, if N were equal to two, then one pulse 
would go out for every two coming in, resulting in an output fre­
quency of 32 KHz. If N were equal to 128, the output would have a 
frequency of .5 MHz, or 500 Hz (hertz, meaning one pulse per sec­
ond). Now you should be able to see where the "divide-by-N" name 
comes from. 

There is one important detail that I failed to mention. In the case of 
Atari sound, before the pulses from the divide-by-N circuits get to the 
speaker, they automatically go through a divide-by-two circuit, re­
gardless of what the value of N was. This means that our two ex­
amples would result in actual sound frequencies of 16 KHz and 250 
Hz. You should also note that POKEY adds one to the value you put 
in AUDF before it gives it to the divide-by-N circuit. That results in 
a possible frequency range of 125 Hz (64 KHz/256/2) to 32 KHz (64 
KHz/l/2). Most human ears can't hear sounds higher than 20 KHz, 
so there's more than enough in the high-frequency range. In the low 
range, you can hear down as far as 20 Hz, so you can see that the 
low end is lacking. We'll see ways a little later on that allow you to 
get around that. 

215 



(PEEK) POTO is the value of paddle zero. Since it has a shadow 
register P ADDLO back at location 624, you should go back there for 
a description. 

Machine language programmers should also consult ALLPOT at lo­
cation 53768 and POTGO at location 53771. 

AUDCl (POKE) and pon (PEEK) 
53761 D201 

(POKE) The four AUDC registers are used to specify the DIS­
TORTION and VOLUME parts of the SOUND statement (see 
AUDF1). Their official name is the "audio control registers." Bits 
zero through three are used for volume, and bits four through seven 
for distortion. Here's how the volume bits work (Figure 39). 

----0000 
----0001 

----1111 

(0) 

(1 ) 

(15) 

means no volume (no sound) 

means the lowest volume 

means the highest volume 

FIGURE 39. AUDC1 bit chart 

216 



53760-53761 

How does volume tie in to our discussion on sound waves? 
The higher the volume, the more electricity there is in each pulse to 
the speaker. The more eh-;ctricity there is in each pulse, the greater the 
distance the speaker moves in and out. The greater the distance the 
speaker moves, the larger the sound wave. Finally, the larger the wave, 
the louder the sound. (Note that "large" refers to height, not length.) 

Distortion, unfortunately, is not quite as easy to explain as volume. 
Let's start by explaining the easiest distortion bit, number four. When 
bit four is set to one (which adds 16 to the previous value), you control 
the speaker directly. In other words, AUDF is ignored, and the value 
in the volume bits sent directly to the speaker. Try the following: 

POKE 53761,24 

This sends a volume value of eight to the speaker, and you hear a 
"pop" as a result. Now try it again. Don't bother turning your vol­
ume up; there wasn't a pop this time. Why? As long as bit four is set, 
the volume will always be sent; the speaker will receive a constant 
stream of electricity rather than a pulse. This moves it out but not 
back in again. Turn the volume off to move it back in: 

POKE 53761,16 

217 



You should hear another pop as it moves back. That means that a 
pulse is actually two pops, but since they happen so close together, 
the result is one loud pop . Try this: 

POKE 53761,24:POKE 53761,16 

Now you hear the result of a complete pulse. In any case, this is how 
you can define your own pulses . BASIC is too slow to really do any­
thing with this technique (called "volume only" sound), but with ma­
chine language you define your own frequencies, wave shapes, and 
sound envelopes, creating anything from the sound of a piano to the 
sound of a human voice. If this sounds interesting, please see De Re 
Atari for more details on each of these topics. 

We're now left with the other three distortion bits. They involve some­
thing called "poly-counters." Without going into explicit detail, a 
poly-counter takes a stream of pulses and "randomly" removes some 
of them. This results in a frequency that, although close to the orig­
inal, is constantly changing by small amounts. This in turn results in 
a messy sound, often called "noise." 

The word "random" is used loosely in the preceding description, be­
cause the so-called random pattern will eventually repeat itself. I'm 
not going to explain why, because the inner-most workings of a poly­
counter are not important to us here. See De Re Atari if you're cu­
rious. For now, suffice it to say that there are three different types of 
poly-counters in the Atari; a 17-bit one, a 5-bit one, and a 4-bit one. 
The greater the number of bits the poly-counter uses, the longer it will 
take for the pattern to repeat. Let's jump a little ahead of ourselves 
by listening to the result of the 17-bit poly-counter: 

SOUND 0,100,8,8 

And now the 5-bit: 

SOUND 0,100,2,0 

And finally the 4-bit: 

SOUND 0,100,12,0 

218 



53761 

Notice how the 4- and 5-bit poly-counters create more of a repetitious 
sound, while the 17-bit sound is much more random (it seems to be 
just noise). 

By this time it should be apparent that the last three bits are used to 
select which poly-counters are applied to our unsuspecting frequency. 
Here are their exact uses (Figure 40). 

--0-----

--1-----

-0------

-1------

0-------

1-------

(0) 

(32) 

(0) 

(64) 

(0) 

(128) 

means that either the four bit or seventeen 

bit counter will be applied (depending on the 

value of bit six). 

means that neither will be applied regard­

less of what bit six is set to. 

means that the seventeen bit counter will 

be applied if bit five is not set. 

means that the four bit counter will be ap­

plied if bit five is not set. 

means that the five bit counter will be ap­

plied. 

means that the five bit counter will not be 

applied . 

FIGURE 40. Polycounters bit chart 

219 



You can see that the five-bit counter can be combined with either or 
neither of the other two. Also note that the divide-by-two circuit that 
was mentioned under AUDFI is applied after the poly-counters. In 
case all of this has you confused, here's all the possible bit combi­
nations and the corresponding order of things (Figure 41). 

000----- (0) 1. divide-by-N circuit 

2. five bit poly-counter 

3. seventeen bit poly-counter 

4. divide-by-two circuit 

0-1----- (32) 1. divide-by-N circuit 

2. five bit poly-counter 

3. divide-by-two ci rcuit 

010----- (64) 1. divide-by-N circu it 

2. five bit poly·counter 

3. four bit poly-counter 

4. divide-by-two counter 

100----- (128) 1. divide-by-N circu it 

2. seventeen bit poly-counter 

3. divide-by-two c ircuit 

1-1----- (160) 1. divide-by-N circuit 

2. divide-by-two circuit 

110----- (192) 1. d ivide-by-N c ircu it 

2. four bit po ly-counter 

3. divide-by-two circuit 

FIGURE 41. Bit combinations for AUDC1 

Remember to divide these values by 16 to get the DISTORTION value 
for BASICs SOUND command. 

After all of this, do you know what I'm going to tell you now? Don't 
worry about any of it. Everything I just told you is for the sole pur­
pose of letting you understand what's going on behind the sounds you 
are creating. As long as it sounds good, don't worry what poly­
counters are being used. It just doesn't matter. 

(PEEK) POT 1 is the value of paddle one. It has a shadow register 
PADDLl at location 625. 

220 



53761-53766 

AUDF2 (POKE) and POT2 (PEEK) 
53762 D202 

(POKE) AUDF2 specifies the frequency for audio channel two. 

(PEEK) POT2 is the value of paddle two. It has a shadow register 
PADDL2 at location 626. 

FREE GIVE AWAY! 

On the disk or tape that we offer with this book, you will find a nice 
menu of special sound effects to give you ideas using the sound reg­
isters. 

AUDC2 (POKE) and POT3 (PEEK) 
53763 D203 

(POKE) 
nel two. 

AUOC2 specifies distortion and volume for audio chan-

(PEEK) POT3 is the value of paddle three. It has a shadow reg-
ister PADDL3 at location 627. 

AUOF3 (POKE) and POT4 (PEEK) 
53764 0204 

(POKE) AUOF3 specifies the frequency for audio channel three. 

(PEEK) POT4 is the value of paddle four. It has a shadow register 
PAODL4 at location 628. 

AUDC3 (POKE) and POT5 (PEEK) 
53765 0205 

(POKE) 
nel three. 

AUDC3 specifies distortion and volume for audio chan-

(PEEK) POT5 is the value of paddle five. It has a shadow register 
P AOOL5 at location 629. 

AUOF4 (POKE) and POT6 (PEEK) 
53766 D206 

221 



(POKE) AUDF4 specifies the frequency for audio channel four. 

(PEEK) POT6 is the value of paddle six. It has a shadow register 
P ADDL6 at location 630. 

AUDC4 (POKE) and POT7 (PEEK) 
53767 D207 

(POKE) 
nel four. 

AUDC4 specifies distortion and volume for audio chan-

(PEEK) POT7 is the value of paddle seven. It has a shadow reg-
ister P ADDL3 at location 631. 

AUDCTL (POKE) and ALLPOT (PEEK) 
53768 D208 

(POKE) AUDCTL is the audio control register. This means that 
you can use it to make changes to the basic sound setup. So, without 
any further ado, let's take a look at how its bits are used (unless oth­
erwise noted, a bit set to zero simply cancels the effect of it being set 
to one) (Figure 42) . 

Some of these are probably giving you problems, so let's take a closer 
look. First of all, we just discussed poly-counters, so there should be 
no problem there. You should also understand the effect that using 
different types of clocks will have. The higher the frequency of the 
clock, the higher the frequency of the sound. For example, try the 
following statement: 

SOUND 0,100,10,8 

Now use bit zero of AUDCTL to change the main clock from 64 KHz 
to 15 KHz: 

222 



-------0 

-------1 

------1-

-----1--

----1---

---1----

--1-----

-1------

1-------

(1 ) 

(2) 

(4) 

(8) 

(16) 

(32) 

(64) 

(128) 

53766-53768 

means that the 64 KHz clock is the main 

source of pulses for all channe ls (unless 

otherwise specified). 

means that the 15 KHz clock is used in· 

stead . 

inserts a high·pass filter into channel two 

and clocks it with channel four. 

inserts a high-pass filter into channel one 

and clocks it with channel three. 

joins channel four to channel three ("N" be­

comes sixteen bits long). 

joins channel two to channe l one. 

means use the 1.79 MHz clock for channel 

three (MHz stands for Mega-Hertz, which is 

one million pulses per second). 

means use the 1.79 MHz clock for channel 

one. 

changes the seventeen bit poly-counter into 

a nine bit poly-counter. 

FIGURE 42. AUDCTLIALLPOT bit chart 

POKE 53768,1 

Notice how the sound got lower? Now change the clock for channel 
one to 1.79 MHz: 

223 



POKE 53768,64 

By using this ability to change the clocks, you can extend the range 
of frequencies that the Atari can produce. When you use the 1.79-
MHz clock, however, all the sound will be up in the high range, since 
even with AUDF set to 255, the resulting frequency will still be 3.5 
KHz. How do we get down into the lower frequencies? This is where 
being able to join two channels together comes in handy. By having 
sixteen bits available for "N" in our divide-by-N circuit rather than 
only eight, we can fully utilize the 1. 79-MHz clock. Now we can go 
all the way down to 14 Hz! Try the following program to get the idea. 
It joins channel two with channel one (channel two is the high byte, 
channel one the low), switches channel one's clock to 1.79 MHz, and 
then lets you use joystick zero to change the values of channel one 
(move the joystick up or down) and channel two (move the joystick 
left and right): 

100 SOUND O~O,O,O 
110 POKE 53768,80 
120 POKE 53761,160 
130 POKE 53763,168 
140 CH1=0:CH2=0 
150 POKE 53760,CHl 
160 POKE 53762,CH2 
170 SO=STICK (0) 

180 CH1=CH1-(SO=14)+(SO=13) 
190 CH1=CHl-CHl*(CHl=256)+256*(CHl=-1) 
200 CH2=CH2-(SO=7)+(SO=11) 
210 CH2=CH2-CH2*(CH2=256)+256*(CH2=-1) 
220 GOTO 150 

Note that line 120 sets channel one's volume to zero, since channel 
two is where the sound will come from. Line 130 sets channel two to 
distortion 10 (pure tone) and volume eight. 

The last thing we need to explain is probably what was confusing you 
most: high-pass filters. Actually, high-pass filters are a relatively sim­
ple concept. All they do is stop a frequency from getting through to 
the speaker unless it's higher than some other specified frequency. For 
example, let us suppose that we set bit two of AUDCTL. This, we are 
told, means that a high-pass filter will be inserted in channel one, and 
channel three will be used to clock it. In English, channel one will 
only be heard if its frequency is greater than that of channel three. 
Let's look at a picture of this (Figure 43). 

224 



1=== ===1 
1=== ==1 
1= = = = I 
1= = = = I 

e 1= = = I 
q 1= = I 

I = I 

I I 

time 

53768 

FIGURE 43. Frequency vs. time 

If the diagonal line represents the sound from channel three, then the 
shaded area above it represents the frequencies that channel one can 
play at any given time during that sound. Unfortunately, this isn't 
quite the way things actually work. 

On the Atari, a high-pass filter apparently works by looking at the 
pulses from each channel. If two pulses coincide, then the high-pass 
filter will only allow one through. I'm not exactly sure whether one 
is given priority over the other (it would make sense to give the pulse 
from the higher frequency priority), but the result is that channel one 
is not completely cut off when it should be, and is partially cut off 
when it shouldn't be. Try the following to see what I mean: 

100 SOUND 0,0,0,0 
110 POKE 53768,4 
120 POKE 53761,168 
130 POKE 53765,168 
140 POKE 53760,200 
150 POKE 53764,100 
160 GOTO 160 

What you're hearing is a bizarre combination of the pulses coming 
from channels one and three. According to the definition of a high­
pass filter, though, you shouldn't be hearing channel one at all, since 
its frequency is lower than that of channel three. Oh well, at least it 
allows for some neat sound effects. 

(PEEK) ALLPOT is used to determine whether or not the POT 
value for a particular paddle is valid (see the previous eight locations). 
If bit n of ALLPOT is set, then POTn contains a valid value for 

225 



paddle n. This should not concern you unless you're programming in 
machine language. 

STIMER (POKE) and KBCODE (PEEK) 
53769 D209 

(POKE) POKEing any value in STIMER will get the system timers 
(POKEY timers) going. See the TIMER section for more information. 

(PEEK) When a key is pressed, this location is the first to know 
about it. From here it goes into the shadow register CH at location 
764, which is where you should look for more details. 

SKRES (POKE) and RANDOM (PEEK) 
53770 D20A 

(POKE) POKEing any value here sets bits five through seven of 
the serial port status register SKST AT (53775) to zero. 

(PEEK) If you do any machine language programming, you've 
probably wondered at one time or another how to get random num­
bers. Wonder no more; RANDOM holds the highest 8 bits of the 17-
bit poly-counter mentioned under AUDCI. In other words, it will give 
you a "random" number between 0 and 255. The quotes come from 
the fact that the values in RANDOM will eventually start repeating 
themselves (i.e., you'll get the same series of numbers all over again). 
For all practical purposes, however, you can consider RANDOM to 
be random. 

POTGO (POKE only) 
53771 D20B 

POKEing any value here starts the POT scan sequence. The POT scan 
sequence is simply the routine that figures out what values should be 
in the POT registers. The stage two VBLANK routine automatically 
takes care of POTGO, and you should generally let it. If you decide 
for any reason to take on the paddles yourself, consult the OS manual 
and the hardware manual. It's not necessary for most people, so I 
won't discuss it any further here . 

Noname 
53772 D20C 

226 



53768-53774 

This location is not used . Don't forget that it's in the middle of a 
chip, so don't try to use it yourself. 

SEROUT (POKE) and SERIN (PEEK) 
53773 D20D 

(POKE) SEROUT is used when the serial port needs another byte 
to send . It's called the eight-bit parallel holding register, a long name 
that simply means that it holds the byte until the serial output shift 
register needs it. The serial output shift register then sends out the 
byte on bit at a time. 

SEROUT is usually written to in response to a "serial output data 
needed" interrupt, which is generated when the serial output shift reg­
ister needs another byte. See IRQEN. 

(PEEK) SERIN is also the parallel holding register, but is used 
when reading rather than writing. 

You usually read the parallel holding register when a "serial input 
data ready" interrupt occurs. This happens when all eight bits of the 
incoming byte have been received and transferred to the parallel hold­
ing register. See IRQEN. 

IRQEN (POKE) and IRQST (PEEK) 
53774 D20E 

(POKE) IRQEN is used to enable or disable IRQ interrupts. See 
its shadow register POKMSK at location 16 for a complete descrip-

227 



tion. For more information on interrupts in general, see the section 
right before location 512 . 

(PEEK) IRQST is the IRQ interrupt status register. Its bits cor­
respond to the same interrupts as those in IRQEN and are set to zero 
when the corresponding interrupt occurs. In order to reset it after an 
interrupt does occur, you must clear the interrupt bit in IRQEN (you 
can then reset it if you want the interrupt to be able to happen again). 

There are two IRQ interrupts that are enabled and have status reg­
isters elsewhere (in PIA). See PACTL and PBCTL at locations 54018 
and 54019. 

SKCTL (POKE) and SKST A T (PEEK) 
53775 D20F 

(POKE) At the shadow register for SKCTL (SSKCTL, 562), I 
shied away from giving a description. I won't do that here, but be 
forewarned that most of it will be for the expert. 

SKCTL controls the configuration of the serial port, determines the 
type of pot scan to be used, and enables the keyboard circuits. Its bits 
have the meanings in Figure 44 (unless noted otherwise, a bit set to 
zero has the opposite effect of when it's set to one). 

(PEEK) SKST A T is a status register for the serial port and the 
keyboard. Instead of trying to explain, let me just give you the bit 
meanings (bits are normally set and have the following meanings when 
they aren't). 

If any of the last three bits get cleared, they should be reset to one 
using SKRES at 53770. 

SKST AT is also helpful if you want to add a voice track to your pro­
gram. You probably already know that you can playa tape through 
the TV speaker while you are running a program (see PACTL at lo­
cation 54018 if not). Unfortunately, if you want what's playing on 
the tape to coincide with what's going on on the screen, it's difficult 
to get the timing right. You can, however, put a digital track along­
side the voice/music that will tell the computer when to do things. 
SKST AT is used in such cases to look at the digital track. Since this 
technique has limited applications, I won't go into it here. If you're 
interested, however, you should take a look at the section on cassette 

228 



-------1 

------1-

-----0--

-----1--

----0---

----1---

53774 - 53776-54015 

(1) enables the keyboard debounce circuit. 

(2) enables the keyboard debounce circuit. 

means that POKEY will take 228 scan lines (one frame) 

to determine the POT values . 

(4) means that POKEY will only take two scan lines to de· 

termine the POT values, but they won't be as accurate. 

means that serial output will be transmitted as a logic 

true/false signal. 

(8) means that serial output will be transmitted as a two­

tone signal (used for cassette data) . 

-001---- (16) 

• 
• 

-111---- (112) these three bits determine how to transmit and receive 

data (with respect to clock rates). See page 11 .27 of the 

Hardware Manual for a complete description. 

1------- (128) forces the serial output to zero (forces a break) . 

FIGURE 44. SKCTL (POKE) bit chart 

------- 1 this bit is not used (and is always set to one. 

------0- means that the serial input shift register is busy. 

-----0-- means that the last key pressed is still pressed. 

----0--- means that the shift key is pressed. 

---0---- means that you can ignore the shift register and read data 

straight from the serial input port. 

--0----- means that a keyboard over-run has occurred. To tell you the 

honest truth , I have no idea what that means. 

-0------ means that a serial data input over-run has occurred . Ditto. 

0------- means that a serial data input frame error has occurred. 

FIGURE 45. SKSTAT (PEEK) bit chart 

in De Re Atari. It has an excellent explanation, along with the pro­
grams needed to both read and write the digital track. 

Noname 
53776-54015 D210-D2FF 

229 



These locations are unused at this time, even though they are a part 
of POKEY. 

PIA (6520) 

PIA stands for Peripheral Interface Adapter and is also known as the 
6520 chip. It takes care of the four controller jacks (two on some Atari 
models), which are the places that you plug your joysticks into. These 
controller jacks, or Atari ports as we will call them, have capabilities 
far greater than the reading of joysticks, paddles, and light pens. They 
can handle simultaneous input and output, which makes them perfect 
for use as an alternative to the 850 expansion interface. Some com­
panies, in fact, already manufacture a cable that lets you run a printer 
from these ports instead of the 850. 

PORTA 
54016 0300 

PORTA has two functions actually, depending on whether bit two of 
P ACTL (following) is set. If it is set, then PORTA writes to or reads 
from the first two controller jacks. Depending on whether you're us­
ing joysticks or paddles, PORT A's bits will have the following mean­
ings in Figure 46. 

230 



L 53776-54015 - 54016 

JOYSTICKS 

-------0 means that joystick zero is moved up. 

------0- means that joystick zero is moved down. 

-----0-- means that joystick zero is moved left. 

----0--- means that joystick zero is moved right. 

---0---- means that joystick one is moved up. 

--0----- means that joystick one is moved down. 

-0------ means that joystick one is moved left. 

0------- means that joystick one is moved right. 

PADDLES 

-----0-- means that paddle zero's button is pressed. 

----0--- means that paddle ones ' button is pressed. 

-0------ means that paddle two's button is pressed. 

0------- means that paddle three 's button is pressed. 

FIGURE 46. PORTA (paddles/joystick) bit chart 

Substitute "is not" for "is" in the preceding descriptions if the bit is 
set to one. 

The shadow registers for PORT A in this sense are STICKO and 
STICKl (632 and 633), and PTRIGO through PTRIG3 (636 through 
639). 

If bit two of P ACTL is set, then PORT A writes to the direction con­
trol register. A direction control register, as the name implies, is used 

231 



to specify the direction that information (data) is traveling on the var­
ious port pins. What are port pins? Take a close look at the controller 
ports and you can see them. They are numbered one through five on 
the top row (left to right) and six through nine on the bottom. PORTA 
only deals with one through four; bits zero through three represent 
pins one through four on jack one, while bits four through seven rep­
resent pins one through four on jack two. When bit two of PACTL 
is set, a bit set to one in PORTA means that the corresponding pin 
will be used for output. Similarly, a bit set to zero means that pin will 
be used for input. 

You may be wondering what the other port pins are used for. Pin five 
is used for the right paddle value (POTl/3 / 517), pin six for the joy­
stick button (TRIGO/ l/2/3), pin seven supplies five volts to the pad­
dies (this pin isn't connected in the joysticks), pin eight is the ground 
(for both joystick and paddle), and pin nine is the left paddle value 
POTO/ 2/4/ 6). 

PORTB 
54017 D301 

PORTB is the same as PORTA, except it's used with controller jacks 
three and four rather than two and three. Also, its function is deter­
mined by PBCTL, not PACTL. 

232 



54016-54018 

The shadow registers for PORTB and STICK2 and STICK3 (634 and 
635), and PTRIG4 through PTRIG7 (640 through 643). 

PACTL 
54018 D302 

If you have a cassette player hooked up to your computer, try putting 
a music cassette in it, pressing PLA Y, and then entering the following 
statement: 

POKE 54018,52 

This turns on the cassette motor and lets you play music or voice 
through the TV speaker. To turn off the motor, use the following: 

POKE 54018,60 

Other uses of P ACTL, which is also called the "port B controller," 
are as in Figure 47. 

233 



-011--00 
-011--01 

-011 - 00-

-011-10-

-0110-0-

-0111-0-
1011--0-

(48) 
(49) 

(48) 

(52) 

(48) 

(56) 
(176) 

disables periphera l A interrupts. 

enables " peripheral proceed line avai lable" interrupts 

(IRQ, vectored thro ugh VINTER at locations 514 and 515). 
means that PORTA above will wr ite to the direct ion con­

tro l register. 

means that PORTA wi ll read and write to the first two 

contro ller jacks. 

turns the cassette motor on (also cal led periphera l mo­

tor) . 

turns the cassette motor off. 

means that a " periphera l proceed line available" inter­

rupt has occurred . You cannot write to this bit, but rather 

c lear it by PEEKing PORTA. 

FIGURE 47. PACTL (port B controller) bit chart 

A few words on the preceding values before we move on . PACTL is 
initialized to 60, which means that the cassette motor is turned off 
(bit three) and PORTA will read and write to the first two controller 
jacks (bit two). This piece of information should hopefully clear up 
a question you might have had concerning turning the cassette motor 
on and off. The reason the POKEs I gave you earlier are different 
than the bit values above is that bit two should be on in order for the 
joysticks and paddles to work properly. That's why we use 52 and 60 
in the POKEs instead of 48 and 56. 

PBCTL 
54019 D303 

This is the port B controller and has the same functions as P ACTL 
with the following differences: 

I. Bits zero and seven deal with the' 'peripheral interrupt line avail­
able" interrupts. 

2. Bit two deals with PORTB . 

3. Bit three no longer controls the cassette motor but is instead used 
for peripheral command identification . It is not clear anywhere 
as to exactly what this means (although most sources also label 
it as the "serial bus command line") . It is initialized to one. 

234 



54018 - 54020-54271 

POKEing 54019 with a 56 tells the computer to take the next POKE 
to 54017 as a data direction code. This is binary code with each bit 
corresponding to a pin on the jacks. If the corresponding bit is 1, the 
pin is defined as output, and if it is 0, then the pin is input. Once you 
have completed that section of code, you may POKE to 54017 what­
ever you may want to send out. If you POKE there and then PEEK 
the same location, you will get back the code you sent, as if it were 
a RAM location. This means that if you sent the low order four bits 
as output, and the upper four bits as input , you can send a code out, 
then read the input combined with the code you sent. This makes 
scanning the controllers simple to set up in your software. The value 
you read is what you sent plus 16 times the value that your device 
sends back. 

Here is an example setting up the B port as output: 

100 POKE 54019,56 
110 POKE 54017,255 
120 POKE 54019,60 

The 56 tells the AT ARI that the next POKE to 54017 will be a direc­
tion control code . It is in binary, so the 255 sets up all eight pins for 
output. The 60 is then sent out. 

Noname 
54020-54271 D304-D3FF 

Here we are at the end of the useful PIA locations, once again faced 
with lots of unused locations, as in all of these . 

ANTIC 

We found out previously that the G / CTIA chip converts information 
about the screen into a form that the television set can understand . It 
gets most of this information from ANTIC, which in turn gets it from 
you. 

ANTIC is like a computer within a computer. It has its own special 
program, called the display list, which in turn has its own special com­
mands. These commands tell ANTIC such things as how the screen 
is supposed to look and where to find the data that is to appear on 

235 



it. But we already know this from our discussion at SDLSTL 
(560,561). ANTIC also takes care of the Non-Maskable Interrupts 
(NMls), fine scrolling, and various pointers, all of which will affect 
the way the screen will appear. Let's take a look. 

DMACTL (POKE only) 
54272 D400 

DMACTL controls DMA (Direct Memory Access). Since there is a 
wonderful description of it at its shadow register, SDMCTL (559), I 
won't repeat myself here. There are, however, two more things to add. 
First of all, DMACTL must be used along with GRACTL (53277) 
when turning on players and missiles. Secondly, both DMACTL and 
GRACTL are initialized to 34. 

CHACTL (POKE only) 
54273 D401 

CHACTL makes various changes to the way inverse characters appear 
and also allows you to make all characters appear upside down (what 
fun!). See its shadow register CHACT at location 755 for a complete 
description. 

DLISTL, DLISTH (POKE only) 
54274,54275 D402,D403 

DLISTLIH specifies the address of the beginning of the display list. 
See its shadow register, SDLSTL, at locations 560 and 561. 

236 



54020-54271 - 54276 

HSCROL (POKE only) 
54276 D404 

Fine scrolling is by far one of the most impressive features the Atari 
has to offer. We've all been impressed by games that have smoothly 
scrolling playfields, and wondered, no doubt, how we could do it our­
selves. HSCROL and VSCROL are the way, but unfortunately, ma­
chine language is required to get the kind of effects you've seen. 
Although fine scrolling can be done from BASIC, it is not nearly as 
smooth as machine language and is darn near impossible when you're 
scrolling more than one or two lines. So, although I'll cover the basics 
here, if you really want to learn to do great fine scrolling from ma­
chine language, check out the excellent section on scrolling in De Re 
Atari. 

HSCROL allows you to fine scroll horizontally, one color clock at a 
time (a color clock is the size of a graphics mode seven pixel). It will 
affect every mode line that has bit four set in the corresponding dis­
play list instruction (see SDLSTL at locations 560 and 561). For ex­
ample, 

100 GRAPHICS 0 
110 DLIST=PEEK(560l+PEEK(561l+256 
120 POKE DLIST+7,18 
130 LIST 
140 FOR CoLCLK=O TO 15 
150 POKE 54276,CoLCLK 
160 FOR DELAY=l TO 50 
170 NEXT DELAY 
180 NEXT COLCLK 
190 GOTo 140 

As you can see, there are a few things acting screwy here. First of all, 
why are the lines below the one being scrolled messed up? ANTIC 
expects to see 48 bytes per horizontally scrolling line instead of the 
regular 40. In our example, that causes the lower lines to get shifted 
over. The solution, and the reason that fine scrolling from BASIC is 
so difficult, is to give each horizontally scrolling line an LMS instruc­
tion (again, see SDLSTL). This brings us to our second problem. Why 
aren't the characters in our example being scrolled all the way across 
the screen? HSCROL can only handle values between 0 and 15. If you 
want to scroll more than 15 color clocks, what you have to do is set 
HSCROL back to 0 and change the LMS addresses of the lines you're 

237 



scrolling. In graphics mode zero, for example, you would subtract 
four from each LMS address. Why four? Each character in graphics 
mode zero is 4 color clocks wide, so the equivalent of setting HSCROL 
to 16 would be moving the characters four to the right, which is the 
same as subtracting four from the LMS addresses. As I said before, 
this can get messy from BASIC. 

Let's look at a checklist of what you need to do to have fine horizontal 
scrolling: 

1. LMS addresses for all the lines you are going to scroll. 

2. Bit four set on all the display list instructions for the lines you 
are going to scroll. 

3. Screen memory set up properly to account for the longer lines. 

5CRO,-,-'N& IS L-'tiE 
HAVIMG A MOVING SIDEWAL.K 
GOfNG BY WITH iE><.-r 
AND GR'APfotlC5 Q~ IT. 

238 



54276-54277 

And to do the actual scrolling: 

1. Set HSCROL to ° (15 if you're scrolling from right to left). 

2. Add one to HSCROL (subtract 1). Remember that HSCROL is 
POKE only, so you'll have to keep track of its current value in 
a separate variable. 

3. If HSCROL equals 16 (minus 1), set it to ° (15) and subtract 
(add) 4 to each LMS address. If you're using graphics modes 
one or two, add or subtract 2 instead of 4, since each character 
in these modes is twice as wide as in graphics zero . 

4. Go to stop 1. 

When you change the LMS addresses, you should also check to make 
sure that you haven't scrolled too far to the left or right. 

VSCROL (POKE only) 
54277 D405 

VSCROL is like HSCROL, except it takes care of fine vertical scroll­
ing. Bit five in the display list instructions is responsible for turning 
the scrolling on or off for each line (one equals on), and the value 
you POKE into VSCROL is the number of scan lines you want to 
scroll the lines upwards. Try the following: 

100 GRAPHICS 0 
110 DLIST=PEEK(560)+PEEK(561)*256 
120 POKE DLIST+7,34 
130 LIST 
140 FOR SCNLIN=O TO 7 
150 POKE 54277,SCNLIN 
160 FOR DELAY=1 TO 50 
170 NEXT DELAY 
180 NEXT SCNLIN 
190 GOTO 140 

There are a few things to notice here. First of all, there's no problem 
with the lines below the one scrolling. Vertical scrolling does not ex­
pect extra bytes per line, so there is no need to worry about that. 
Secondly, try BREAKing the program and then POKE 54277,0. 

239 



Where's line 120? In fine vertical scrolling, the line after the last line 
to be scrolled acts as a "buffer." The buffer provides data to scroll 
into the last scrolling line. To see this, get rid of line 190 and RUN 
the program again. You should always make sure that there is one 
nonscrolling line to act as the buffer. 

Our final thing to notice here is that every now and then the sceen 
"jumps" a little while the program is running. This is because ANTIC 
does not like you changing VSCROL (or HSCROL) while it's trying 
to draw the screen. That means that you should take care of fine 
scrolling during VBLANK, which is another reason why machine lan­
guage is necessary. 

00 

One nice thing about vertical scrolling is that you only need to have 
an LMS instruction on the first line to be scrolled. For example, try 
the following: 

100 GRAPHICS 0 
110 DLIST=PEEK(560)+PEEK(561)*256 
120 POKE DLIST+3,98 
130 FOR INSTR=6 TO 27 
140 POKE DLIST+INSTR,34 
150 NEXT INSTR 
160 LIST 
170 LMSLO=PEEK(DLIST+4) 
180 LMSHI=PEEK(DLIST+5) 
190 FOR SCNLIN=O TO 7 
200 POKE 54277,SCNLIN 
210 FOR DELAY%l TO 50 
220 NEXT DELAY 
230 NEXT SCNLIN 
240 LMSLO=LMSLO+4D 

240 



54277-54279 

250 IF LMSLO>255 THEN LMSLO=LMSLO-256:LMSHI=LMSHI+i: 
POkE DLIST+5,LMSHI 

260 POkE DLIST+4,LMSLO 
270 GOTO 190 

This program makes all the mode lines (except the last) scrollable ver­
tically and then proceeds to scroll them. It does not check how far 
it's scrolled so far, so it will eventually start showing garbage on the 
screen. See SA VMSC at locations 88 and 89 for an explanation of 
why. Press SYSTEM RESET when you've had enough. 

One thing you'll also see when you run this program is the main prob­
lem with fine scrolling from BASIC: You can't change the LMS ad­
dress and VSCROL at exactly the same time, so the whole screen 
appears to "jump" down a line every so often. Although there is no 
way to get rid of this, you can use SOMCTL at location 559 to turn 
off the screen while you change the LMS. This generates a brief 
"flash" instead of the jump. See for yourself; add the following lines 
to the preceding program: 

205 POkE 559,34 
255 POKE 559,0 

This is about the best you can do from BASIC. 

In modes zero and one, where the characters are 8 scan lines high, 
VSCROL can vary from 0 to 7. In mode two, where the characters 
are 16 scan lines high, it can vary from 0 to 15. 

Noname 
54278 0406 

This location is not used. 

PMBASE (POKE only) 
54279 0407 

Back in G / CTIA, we were discussing player/ missile graphics. We dis­
covered that we could either keep supplying G/ CTIA with the 
player/ missile data ourselves, or have ANTIC do it for us. If ANTIC 
is doing it, them PMBASE is used to tell ANTIC where the data is 
stored. It is the high byte of the address, so the address itself is equal 

241 



to the value you POKE into PMBASE times 256. Because of some 
esoteric requirements of ANTIC, PMBASE must be on a 2K bound­
ary if you are using regular height players, and a lK boundary if you 
are using double height players. How can you tell? If the value you 
are going to POKE into PM BASE is a multiple of four, then it's a 
lK boundary. It has to be a multiple of eight to be a 2K boundary. 

For a detailed explanation of how to use PMBASE and other 
player/ missile graphics registers, see Appendix Two on-what else?­
player/ missile graphics. 

Noname 
54280 D408 

Another location that isn 't used . 

CHBASE (POKE only) 
54281 D409 

Another location with a shadow register that explains everything. See 
CHBAS at location 756 for a description of the character set address . 
Also see Appendix One on designing your own character sets. 

WSYNC (POKE only) 
54282 D40A 

Storing any value in WSYNC will cause the 6502 to stop everything 
until the end of the current scan line (HBLANK). This is very useful 
if you want to synchronize something with the screen display. For an 
example, and more information, see VDSLST at locations 512 and 
513. Note that VDSLST is not a shadow register for WSYNC. 

VCOUNT (PEEK only) 
54283 D40B 

VCOUNT keeps track of what scan line is currently being drawn. Ac­
tually, it increases by one every two scan lines, so multiply the value 
by two to get the true number. 

If you have more than one OLI, VCOUNT is a good way for your 
DLI routine to check which one is being processed. It can also be used 

242 



54279-54284 

to simulate DLIs. For example, you might write a loop that waits for 
VCOUNT to reach a certain value before going on. This allows you 
to spend more time in a certain routine than DLIs allow, but it also 
wastes a lot of time waiting. 

There are a total of 262 scan lines on a screen (312 in Europe), so 
VCOUNT can range from 0 to 130 (155 in Europe). 

PENH (PEEK only) 
54284 D40C 

This tells you the horizontal position of the light pen. See its shadow 
register, LPENH, at location 564 for more information. 

243 



PEN V (PEEK only) 
54285 D40D 

Same as the preceding, except it's the vertical position and you should 
see LPENV at location 565. 

NMIEN (POKE only) 
54286 D40E 

The last two bits of NMIEN are used to enable or disable the NMls. 
They are used as shown in Figure 48. 

--1-----

-1------

1-------

(32) 

(64) 

(128) 

enables the SYSTEM RESET interrupt. 

enables the vertical blank interrupt. 

enables the display list interrupt. 

FIGURE 48. NMIEN bit chart 

The OS initializes NMIEN to 64, thereby enabling vertical blank in­
terrupts. It also sets NMIEN to 64 during the SETVBV routine men­
tioned at VVBLKD (548,549). So what? If you are writing a program 
where you will be using your own VBLANK routine and display list 
interrupts, make sure that you enable the display list interrupts after 
you use SETVBV. There have been a couple of times when I couldn't 
figure out why my DLIs weren't working, only to discover that I had 
enabled them before I set up my VBLANK routine. 

A few of you out there may be thinking "What about SYSTEM RE­
SET, isn't that an NMI as well?" Yes it is, but the computer does not 
allow you to disable it. Pressing SYSTEM RESET will always cause 
a warmstart to occur . You can, however, store an address in DOSINI 
(12,13), since the OS jumps through DOSINI after it is done with the 
warmstart. Most machine language programmers have DOSINI point 
to their program's initialization routine. That way, the program will 
start over again if someone presses SYSTEM RESET (normally the 
OS would go to BASIC or reboot the system). 

NMIRES (POKE) and NMIST (PEEK) 
54287 D40F 

(POKE) POKEing any value here clears NMIST. 

244 



54285 - 54784-55295 

(PEEK) The last three bits of NMIST are used to identify what 
kind of interrupt has occurred (Figure 49). 

--1-----

-1------

1-------

(32) 

(64) 

(128) 

means that the SYSTEM RESET key has 

been pressed. 

means that a vertical blank interrupt has 

occurred. 

means that a display list interrupt has oc­

curred. 

FIGURE 49. NMIST bit chart 

Unfortunately, since the OS has already take care of NMIST and 
NMIRES by the time you can get to them, they don't really do you 
much good (you don't have to reset NMIST during your DLI routine). 

Noname 
54288-54783 D41O-D5FF 

These locations , the rest of ANTIC, are currently unused. 

Noname 
54784-55295 

So are these. 

D600-D7FF 

THE OPERATING SYSTEM 

Finally, way back at the end of memory, we come to the Operating 
System itself, stored in a 10K ROM cartridge (inside your computer). 
This OS ROM includes not only the program for the Operating Sys­
tem (yes, the OS is just another program), but also the floating point 
package, the data for the Atari character set, the device handlers, and 
various vectors. 

As I've mentioned throughout the book, there are two versions of the 
OS as of this writing. Version "8" includes some changes to get rid 
of a few of the bugs that appeared in version "A." These changes 
come mainly in SIO and the interrupt handler routines. The addresses 
I'll be giving below will be for version "A," since it is the best doc-

245 



umented. You should see Appendix Five on OS changes to determine 
which locations will not be the same in version "B." How do you 
know which version you have? If PEEK(S8383) equals zero then you 
have version "B." 

If you need more specific information on the locations and routines 
described next, I suggest you study the appropriate parts of the OS 
Listing. It is well commented and relatively easy to understand. 

All locations in the OS are PEEK only. 

FLOATING POINT PACKAGE 

Locations 55296 through 57343 hold the floating point package, a 
series of routines to do floating point math . For an explanation of 
how the Atari stores floating point numbers, see VVTP at locations 
134 and 135 . For information on the floating point registers, see lo­
cations 212 through 255. Finally, for information on the input and 
output buffers see INBUFF at 243 and 244, and LBUFF at 1408 
through 1535 . 

The following is a list of some of the more useful routines in the pack­
age. The trigonometric functions are in the BASIC cartridge starting 
at location 48551. 

Note that in routines that use the carry bit (as indicated), if the carry 
is set at the end of the routine, then an error occurred. If it 's clear, 
then everything is OK. 

AFP 
55296 0800 

This routine takes an AT ASCII representation of a number (i.e., 
"12345") and converts it to floating point (with carry). INBUFF 
points to the AT ASCII number, floating point register zero (FRO) 
will hold the result. 

You may be wondering why such a routine would be needed, and 
that's a very good thing to wonder. Suppose you had the following 
line in BASIC: 

250 X=3.14159*37.5 

246 



55296-55762 

When you type in such a line, BASIC sees the numbers as nothing 
more than a bunch of AT ASCII characters. Before it can do the math, 
it must convert those characters into numbers it can understand. That's 
what AFP is for. BASIC will use AFP on both numbers (moving one 
of them to FRl), do the multiplication, and then store the result in 
X. AFP is also needed for BASIC's STR$ function. 

FASC 
55526 D8E6 

FASC does just the opposite of AFP . It takes a floating point number 
from FRO and stores the ATASCII representation in LBUFF. This 
is necessary when a number needs to be printed on the screen, and 
also for BASIC's VAL function. 

IFP 
55722 D9AA 

IFP is used to convert integers to floating point. It expects to see the 
integer in the first two bytes of FRO (locations 212 and 213) and will 
store the result in FRO. 

FPI 
55762 D9D2 

This does the exact opposite of IFP (with carry). 

247 



ZFRO 
55876 DA44 

ZFRO sets all the bytes in FRO to zero. 

AFI 
55878 DA46 

Sets FRx to zero, where x is the value in the X register. 

FSUB 
55904 DA60 

FSUB subtracts FRI from FRO (with carry) and stores the result in 
FRO. 

FADD 
55910 DA66 

Adds FRI to FRO (with carry) and stores the result in FRO (notice that 
FADD is actually a part of FSUB). 

FMUL 
56027 DADB 

Multiplies FRO by FRI (with carry) and stores the result in FRO. 

FDIV 
56104 DB28 

Divides FRO by FR 1 (with carry) and stores the result in FRO. 

248 



PLYEVL 
56640 DD40 

55876-56717 

This one is a little complicated, so bear with me. PL YEVL evaluates 
a polynomial, such as 5*ZII4+10*ZII2+2*Z+1 (read "five Z to the 
fourth plus ten Z squared plus two Z plus one"). For the sake of this 
routine, we'll write such a polynomial as 

SUM (I = N to 0) (A(I)*ZII I) 

So in the preceding example, N=4, A(O)=I, A(l)=2, A(2)=1O, 
A(3)=0 (since there is no Z cubed), and A(4)=5. 

Why are we doing all of this? When you call PL YEVL, it expects you 
to provide the following information: 

Somewhere in memory: a list of the A( ) values, in floating point for­
mat (BCD), starting with A(O) . 

X register: low byte of the starting address of the preceding list. 

Y register: high byte of the starting address of the preceding list. 

Accumulator: N + 1 

FRO: Z 

PL YEVL will take all of this and use it to evaluate the polynomial 
(with carry). The result will be stored in FRO. 

FLDOR 
56713 DD89 

FLDOR will load FRO with the floating point number pointed to by 
the X and Y registers. X should hold the low byte of the address of 
this number, Y the high. 

FLDOP 
56717 DD8D 

FLDOP will load FRO with the floating point number pointed to by 
FLPTR (252) . 

249 



FLDlR 
56728 DD98 

FLDl R will load FRI with the floating point number pointed to by 
the X and Y registers. X should hold the low byte of the address of 
this number, Y the high. 

FLDIP 
56732 DD9C 

FLDIP will load FRI with the floating point number pointed to by 
FLPTR (252). 

FSTOR 
56743 DDA7 

FSTOR will store FRO in memory, starting at the address pointed to 
by the X and Y registers. X should hold the low byte of this address, 
Y the high. 

FSTOP 
56747 DDAB 

FSTOP will store FRO in memory, starting at the address pointed to 
by FLPTR (252) . 

FMOVE 
56758 DDB6 

FMOVE moves the floating point number in FRO to FRI. 

EXP 
56768 DDCO 

EXP raises "e" to the FRO power and stores the result in FRO 
(FRO = e"FRO). 

EXPIO 
56780 DDCC 

EXP 10, as you may have guessed, raises 10 to the FRO power and 
stores the result in FRO (FRO = IO"FRO) . Notice that it is actually part 
of the EXP routine. 

250 



LOG 
57037 DEeD 

56728-57041 

LOG figures out the natural logarithm (base e) of FRO and stores it 
back in FRO. 

LOGIO 
57041 DEDI 

LOG I 0 figures out the base 10 logarithm of FRO and stores it back 
in FRO. Notice that it is part of the LOG routine. 

THE CHARACTER SET 

The data for the regular Atari character set is stored in locations 57344 
through 58367. There are eight bytes for each character and 128 char­
acters in all (for a grand total of 1024 bytes). But wait a minute. 
Doesn't the Atari have 256 characters? Yes, but the information for 
the regular characters is all the Atari needs to know to print inverse 
characters, so that's why there are only 128 character descriptions. 

For lots of information on how the bytes are used to describe a char­
acter, and on the order of the characters within the character set, see 
CHBAS at location 756. For information on how to design your own 
character set, see the Appendix One, which is on that very topic. 

The following program will use the character descriptions to put text 
on the screen in graphics mode eight: 

100 GRAPHICS 8 
105 SCRMEM=PEEK(88)+PEEK(89)*256 
110 DIM TEXT$(120) 
120 PRINT "Start text in what column (0-39)"; 
130 INPUT COL 
140 PRINT "In what row (0-152) "; 
150 INPUT ROW 
160 PRINT "Type in the text you want to print:" 
170 INPUT TEXT$ 
180 CHSET=PEEK(756)*256 
190 FOR CHAR=l TO LEN(TEXT$) 
200 ATASC=ASC(TEXT$(CHAR,CHAR» 
210 NOINV=ATASC-128*(ATASC >127) 
220 INTRNL=NOINV-32*(NOINV<96)+96*(NOINV<32) 
230 FOR BYTE=CHSET+INTRNL*8 TO CHSET+INTRNL*8+7 
240 POKE SCRMEM+ROW*40+COL,ABS(255*(ATASC>127)-PEEK(BYTE» 

251 



250 ROW=ROW+l 
260 NEXT BYTE 
270 ROW=ROW-8 
280 COL=COL+1 
290 IF COL=40 THEN COL=O:ROW=ROW+8 
300 NEXT CHAR 
310 PRINT 
320 GOTO 120 

VECTORS AND VECTOR TABLES 

What are vector tables? You remember that a vector is a pair of mem­
ory locations that hold the address of a routine. A vector table is, 
quite simply, a table of vectors. Thus, locations 58368 through 58533 
hold the addresses of various routines, mostly having to do with I I 0 
or interrupts. 

EDITRV 
58368-58383 E400-E40F 

This is the vector table for the screen editor handler. For a description 
of its contents, along with the contents of the next four vector tables, 
see HATABS at locations 794 through 831 (where we called it a "han­
dIer address table"). 

SCRENV 
58384-58399 E410-E41F 

The vector table for the display handler. See the note at EDITRV. 

KEYBDV 
58400-58415 E420-E42F 

The vector table for the keyboard handler. See the note at ED ITR V. 

PRINTV 
58416-58431 E430-E43F 

The vector table for the printer handler. See the note at EDITRV. 

CASETV 
58432-58447 E440-E44F 

252 



I 58368-58383 - 48454-48456 

The vector table for the cassette handler. See the note at EDITRV. 

You will notice that the following 16 vectors are three bytes long rather 
than two. Why the extra byte? The first byte of each vector is a 6502 
JMP instruction, while the address is in the second two bytes. 

The purpose of these vectors may not be obvious to you (they weren't 
to me). Atari knew that it would probably need to make changes to 
the OS at some point. It also wanted to make sure that old programs 
would still be able to work with these newer versions of the OS, even 
though some of the addresses would be different. The solution was 
to use vectors. That way, even though the addresses in the vectors 
would change, the addresses of the vectors would remain the same, 
and programs using these addresses would still work. The reason that 
some programs don't work with version "B" of the OS is that these 
programs didn't use the vectors . 

DISKIV 
58448-58450 E450-E452 

DISKIV is the initialization vector for the disk handler. It points to 
location 60906. 

DISKINV 
58451-58453 E453-E455 

This is the entry vector for the disk handler. It points to location 60912. 

CIOV 
48454-48456 E456-E458 

CIOV is the entry vector for CIO (Central Input/Output). See Ap­
pendix Seven on II 0 for an explanation of what CIO does. 

You can use CIO yourself by first setting up an 10CB (see locations 
832 through 959), and then using the following routine: 

100 DIM ML$(7) 
110 GOSUB 10000 
120 CIO=USR(ADR(ML$),IOCB*16) 
130 END 
10000 FOR BYT=l TO 7 
10010 READ INSTR 
10020 ML$(BYT,BYT)=CHR$(INSTR) 

253 



10030 NEXT BYT 
10040 RETURN 
10050 DATA 104,104,104,170,32,86,228 

The data is for this machine language routine: 

68 PLA 
68 PLA 
68 PLA 
AA TAX 
2056E4 JSR $E456 

CIO expects the number of the 10CB you want to use, times 16, in 
the X register. That's why we have IOCB*16 in the preceding pro­
gram. You should substitute the 10CB number you are using for 
10CB. Remember to OPEN the 10CB first. 

CIOV points to 58564. 

SIOV 
58457-58469 E459-E45B 

This is the entry vector for SIO (Serial Input/Output). Again, check 
Appendix Seven on I/O for an explanation of SIO's function. 

SIOV points to 59737. 

SETVBV 
58460-58462 E45C-E45E 

SETVBV is the entry vector for a routine that serves two purposes. 
First of all, as we saw at VVBLKD (548,549), it will set up VVBLKI 
and VVBLKD for us . Second, as we saw at CDTMAI (550,551), it 
will also set up the vectors for the system timers. See VVBLKD and 
CDTMAI for more information . 

SETVBV points to 59666 in version "A" of the OS, 59629 in version 
"B." 

SYSVBV 
58463-58465 E45F-E461 

254 



I 48454-48456 - 58481-58483 I 

This is the entry vector for the stage one VBLANK routine. Unless 
you have your own routine, VVBLKI (546,547) normally points here. 
See VVBLKI and VVBLKD (548,549) for more information on 
VBLANK. 

SYSVBV points to 59345 in version "A" of the OS, 59310 in version 
"B. " 

XITVBV 
58466-58468 E462-E464 

XITVBV is the exit vector for the VBLANK routine. This is what 
VVBLKD points to unless you've changed it. 

Use XITVBV to return to where the computer left off from when the 
VBLANK interrupt occurred. It points to 59710 in version "A" of 
the OS, 59653 in version "B." 

The following four vectors are designed for use by the OS only. 

SIOINV 
58469-58471 E465-E467 

This is the initialization vector for SIO. 

SENDEV 
58472-58474 E468-E46A 

SENDEV is the vector for the "send-enable" routine. 

INTINV 
58475-58477 E46B-E46D 

This is the initialization vector for the interrupt handler routine. 

CIOINV 
58478-58480 E46E-E470 

CIOINV is the initialization vector for CIO. 

BLKBDV 
58481-58483 E471-E473 

255 



This is the entry vector for the blackboard mode, which is more com­
monly known as the "ATARI MEMO PAD" mode. Type "BYE" 
from BASIC, or turn on the computer with no cartridges or disk drives 
to see what I mean. This mode lets you type things on the screen 
without anybody caring what you type. In other words, you can press 
RETURN and nothing will happen. To get back to BASIC, press 
SYSTEM RESET (this won't erase your BASIC program). 

BLKBDV points to 61987. 

WARMSV 
58484-58486 E474-E476 

W ARMSV is the entry vector for the warmstart routine. The OS jumps 
through here when SYSTEM RESET is pressed. 

WARMSV points to 61723. 

In case these locations don't seen useful to you, try this: 

x = USR(58484) 

What you have just done is told the computer to go to 58484, which 
contains a machine language instruction to go to the address in the 

256 



I 58481-58483 - 58496-58533 I 

next two memory locations. Since this routine is for what's called 
warmstart, the computer will now act just like you pressed SYSTEM 
RESET. You use the other locations in this section just like this. TRY 
IT! 

COLOSV 
58487-58489 E477-E479 

This, appropriately, is the entry vector for the coldstart routine. 
Whereas going through W ARMSV only initializes the OS RAM, going 
through COLOSV initializes all RAM, meaning that any programs in 
memory will be erased. See COLOST at location 580 for a way to 
hook COL OS V up to SYSTEM RESET rather than W ARMSV. 

COLOSV points to 61733 
The following two vectors are designed for use by the OS only. 

RBLOKV 
58490-58492 E47A-E47C 

RBLOKV is the entry vector for the cassette "read-block" routine. 

CSOPIV 
58493-58495 E470-E47E 

This is the vector for the cassette "OPEN-for-input" routine. 

VCTABL 
58496-58533 E480-E4A5 

VCTABL is a table of the initial values for the OS RAM vectors. 

Now we're into the final part of the OS, which consists mostly of the 
various built-in handlers, interrupt routines, and so forth. What fol­
lows is a list of addresses for some of these routines, which can be 
useful to you in one of several ways. If you're a beginner, the list will 
provide you with an idea of exactly what the OS does. If you're a 
machine language programmer then, along with the OS listing, the list 
will help you find the various routines so that you can see exactly how 
things are done. By studying the routines, you can also pick up on 

257 



programming techniques (don't be afraid of the OS listing; it's really 
not that difficult to understand). Finally, if you really know what 
you're doing, you can rewrite the routines and put them in your own 
programs, customizing them to your own needs. 

Most of the routines will not work without some kind of previous 
setup, so make sure you check the OS listing before you attempt to 
use them. 

Please note that all the following addresses are for the original OS 
only. Some of them may be different in the newer versions. At the 
time of this writing, however, the OS listing is for the original version, 
and that is why these addresses are used. 

CIOINT 
58534 E4A6 

CIO ROUTINES 

CIO's initialization routine. 

CIO 
58564 E4C4 

The main CIO routine (includes the following routines). 

258 



58496-58533 - 58909 

CIOPEN 
58633 E509 

OPEN routine . 

CICLOS 
58675 E533 

CLOSE routine. 

CISTSP 
58702 E54E 

STATUS and special requests routine. 

CIREAD 
58729 E569 

GET routine (GET character and GET record). 

CIWRIT 
58825 E5C9 

PUT routine (PUT character and PUT record) . 

CIRTNI 
58907 E61B 

Return from CIO with the status in the Y register. 

CIRTN2 
58909 E61D 

Return from CIO with the status in ICST AZ (35) . 

259 



COME NT 
58941 E63D 

Compute the handler entry point using HAT ABS (794) and COMTAB 
(59081). 

GO HAND 
59017 E689 

Jump indirectly to the device handler. An indirect jump, in this case, 
means fooling the 6502 into thinking that the address you want to 
jump to is actually the one you want to RTS to. This involves playing 
with the stack and is a pretty neat trick you may want to look at. 

DEVSRC 
59038 E69E 

Find a particular device in the handler address table. 

COMTAB 
59081 E6C9 

This is a table of offsets into the handler entry point table for the 
desired device. It is used to find the correct vector for the given com­
mand. 

INTERRUPT HANDLER ROUTINES 

IHINIT 
59093 E6D5 

Initialize the interrupt handlers. 

PIRQ 
59123 E6F3 

Jump to the main IRQ handler routine through VIMIRQ (534,535). 
Unless you've changed it, VIMIRQ points to SYIRQ. 

SYIRQ 
59126 E6F6 

This is the system's IRQ handler routine. 

260 



58941-59917 

PNMI 
59316 E7B4 

This is the system's NMI handler routine. 

SYSTEM VBLANK ROUTINES 

SYSVBL 
59345 E7Dl 

This is the immediate vertical blank routine (stage one VBLANK). 

SYSVB3 
59400 E808 

This is the stage two VBLANK routine. 

SETVBL 
59666 E912 

This routine can be used to set up vectors for your own VBLANK 
routines, and also for the system timers. See SETVBV at 58460. 

XITVBL 
59710 E93E 

Exit from vertical blank. 

SIO ROUTINES 

SIOINT 
59716 E944 

SIO's initialization routine. 

SIO 
59737 E959 

The main SIO routine (includes the following routines). 

RETURN 
59917 EAOD 

261 



Return from SIO. 

WAIT 
59930 EAIA 

Wait for the device to finish what it has been told to do. 

SEND 
60011 EA6B 

Send a buffer of bytes to a device. 

ISRODN 
60048 EA90 

This is the "serial output data needed" interrupt routine. See SER­
OUT at location 53773. 

ISRTD 
60113 EADI 

This is the "transmission done interrupt " routine. See POKMSK at 
location 16. 

262 



RECEIV 
60130 EAE2 

59917-60882 

Receive a bunch of bytes from a device and store them in a buffer. 

ISRSIR 
60177 EBII 

This is the "serial input data needed" interrupt routine. See SERIN 
at location 53773. 

CASENT 
60292 EB84 

Read or write a record to cassette (SIO handles the cassette differently 
than other devices). 

BEGIN 
60692 ED 14 

Figure out the baud rate for the next record. See CBAUDLI H at lo­
cations 750 and 751. 

POKTAB 
60882 EDD2 

This is a table of values used in the preceding baud rate routine. 

263 



DINIT 
60906 

DISK INTERFACE ROUTINES 

EDEA 

The disk interface's initialization routilie. 

DSKIF 
60912 EDFO 

The main disk interface routine. 

PRINTER HANDLER ROUTINES 

264 



L 60906-61528 

PRNORG 
61048 EE78 

This is the beginning of the printer handler. See HAT ABS at location 
794 for a list of routines in this and any handler. 

CASSETTE HANDLER ROUTINES 

CASORG 
61249 EF4l 

This is the beginning of the cassette handler. See the note at PRNORG. 

BEEP 
61528 FOS8 

The cassette handler uses this routine to make the keyboard speaker 
"beep" when you type CLOAD or CSAVE . 

MONITOR ROUTINES 

-( 

RESET 
61723 F11B 

This is the start of the SYSTEM RESET routine. 

PWRUP 
61733 F12S 

The start of the coldstart routine. 

265 



I /r~--______ ------~ 

ZERORM 
61752 F138 

Clear all the RAM locations. 

ZOSRAM 
61792 F160 

Clear the OS RAM only (for warmstart). 

BLACKB 
61994 F22A 

The blackboard routine (MEMO PAD mode). 

SPECL 
62015 F23F 

Check to see how much RAM there is. 

HARD! 
62081 F281 

Initialize the hardware locations. 

OSRAM 
62100 F294 

Initialize the OS RAM locations. 

BOOT 
62159 F2CF 

266 



61723-63140 

Boot the disk if it's so desired (i.e., the disk drive is hooked up and 
turned on). 

CSBOOT 
62386 F3B2 

Boot the cassette if it's so desired (i.e., the START button was held 
down when the computer was turned on). 

DISPLAY HANDLER ROUTINES 

DOPEN 
62454 F3F6 

OPEN the display handler (set up a graphics mode). 

GETCR 
62867 F593 

GET a character from the screen. 

OUTCR 
62903 F5B7 

PUT a character on the screen. 

OUTPLT 
62944 F5EO 

PLOT a point on the screen . 

SCREEN EDITOR ROUTINES 

EGETCH 
63038 F63E 

INPUT a logical line from the keyboard and print it to the screen. 
Remember that a logical line ends either when you press return or fill 
three rows on the screen. 

EOUTCH 
63140 F6A4 

267 



PRINT a character on the screen, making sure that control characters 
are processed instead of just printed (i .e., a CTRL-arrow will move 
the cursor rather than printing an arrow). 

KEYBOARD HANDLER ROUTINES 

KGETC2 
63197 F6DD 

GET a character from the keyboard. 

ESCAPE 
63353 F779 

Process all the vaious control characters. 

BELL 
63754 F90A 

Ring the bell. 

268 



63140-64764 

MORE DISPLAY HANDLER ROUTINES 

CONVRT 
63815 F947 

Take the row number and column number that the cursor is on and 
figure out what memory location that corresponds to. 

INATAC 
64306 FB32 

Convert an internal character value to its AT ASCII value. 

CLRLIN 
64411 FB9B 

Clear the line that the cursor is currently on. 

SCROLL 
64428 FBAC 

Scroll the screen. 

DRAW 
64764 FCFC 

269 



Draw a line from OLD ROW ,OLDCOL to ROWCRS,COLCRS (lo­
cations 90 through 92 and 84 through 86). 

TABLES, TABLES, AND MORE TABLES 

Locations 65093 through 65469 are various tables for use with the 
display handler. Check the OS listing for more details and to find out 
which routines use them (use the cross-reference table at the end of 
the listing). 

PIRQQ 
65470 

ONE MORE KEYBOARD ROUTINE 

FFBE 

The "IRQ" in this location's name should tip you off to the fact that 
this is the interrupt routine for the keyboard. It debounces the keys, 
checks for CTRL-l (pause) and sets SSFLAG accordingly (767), stores 
the key value in CH (764) and CH 1 (754), and clears ATRACT (77). 

270 



THAT'S ALL FOLKS 

Yup, that brings us to the end of Atari memory. Thanks for bearing 
with me for all of this. You can now relax and take a well-deserved 
break before going on to the appendices. 

271 





APPENDIX ONE 

DESIGNING YOUR OWN CHARACTER SETS 

Make sure you have read the description of CHBAS at location 756, 
RAMTOP at location 106, and the section on the character set at 
location 57344 before you attempt to use this appendix. 

As you can imagine, being able to redefine the character set opens up 
a lot of graphics capabilities. You can create special graphics char­
acters, do simple animation, or just make the letters look nicer. It's 
not even that difficult to do, so let's get right into it. 

The first step is to decide what you want your new characters to look 
like. This is the step that's going to take the most time, since there is 
a total of 128 characters. Of course, you don't have to change them 
all, but if you do you will have to decide which of over 8,000 dots 
you want on, and which you want off. To help you out in this task, 
even if you're only changing a few, you may want to purchase a char­
acter editor. The one put out by Educational Software, Inc. is prob­
ably one of the best and even comes with a software tutorial on how 
to use custom character sets. In any case, for the sake of this expla­
nation we'll only change four characters (we'll also see how to use the 
Atari characters for the ones we don't change). Figure 50 is how we 
are going to want our first three characters to look . 

273 



#### #### #### 

##### ## ## 

###### ##### ## 

###### ###### ##### 

#### ###### ###### 

#### ###### 

#### 

FIGURE 50. Three notes 

These funny-looking things are going to create a bouncing musical 
note when we're done with them. Before we continue, however, you 
should notice that the largest one only uses seven bytes. Most Atari 
characters, in fact, only use six, and are only six bits wide. Why? 
When we print characters side by side, especially letters, most of the 
time we don't want them to touch . By leaving the first and last bytes 
and first and last bits blank, we make sure that they won't. If we have 
a situation where we need them to touch, then all the bits and bytes 
can be used. Another thing to notice is that everything is at least two 
bits wide. This is because of artifacting, which we ran into at COLOR 1 
(709). Since each pixel in a graphics mode zero character is the same 
size as a pixel in graphics mode eight, we run into artifacting problems 
here also. If lines are not at least two pixels wide, then the line will 
not be white. We'll see this with our fourth character (Figure 51). 

# # 

# 

# 

# # 

# # # 

# # # 

# 

FIGURE 51. Single note 

OK, so now we know what we want our characters to look like. The 
next step is to convert them into numbers the computer can under­
stand. This is another benefit of the character editor, since it will do 

274 



APPENDIX ONE 

the conversion automatically . If you're doing it by hand, just remem­
ber that each pixel represents a bit. Also, don ' t forget to include bytes 
with a value of zero . You have to end up with eight bytes for each 
character. With all this in mind, let's convert our four characters (Fig­
ure 52). 

#### 00001111 15 
##### 01111100 124 

###### 11111100 252 
###### 11111100 252 

#### 01111000 120 
00000000 0 
00000000 0 
00000000 0 

#### 00001111 15 
## 00001100 12 

##### 01111100 124 
###### 11111100 252 
###### 11111100 252 

#### 01111000 120 
00000000 0 
00000000 0 

#### 00001111 15 
## 00001100 12 
## 00001100 12 

##### 01111100 124 
###### 11111100 252 
###### 11111100 252 

#### 01111000 120 
00000000 0 

# # 00001010 10 
# 00001000 8 
# 00001000 8 

# # 00101000 40 
# # # 10101000 168 
# # # 10101000 168 

# 00100000 32 
00000000 0 

FIGURE 52. Note character bit chart 

275 



Now we're all set to put it somewhere. But where? The regular char­
acter set is in ROM, so we can't put it there. We have to protect a 
segment of RAM that we can use for the character set. The easiest 
way to do this is to use RAMTOP at location 106 and RAMSIZ at 
location 740. This is done by the following program lines: 

100 SETNEW=PEEK(740)-4 
110 POKE 106,SETNEW-4 
120 GRAPHICS 0 

The reason we use RAMSIZ is because if we didn't, and had 
NEWSET=PEEK(l06)-4 instead, we would change RAMTOP 
every time we ran the program (that's because RAMTOP doesn't get 
set back to its original value unless you press SYSTEM RESET). So 
if we ran the program four times, RAMTOP would be decreased by 
32 from its original value . If we ran it enough times, we would even­
tually get an out-of-memory error (try it), so we use RAMSIZ as well. 
Anyway, this gives us 2K of protected RAM to work with. Remember 
that under some circumstances the first lK isn't really safe, so we'll 
be using the second 1 K for our character set. 

Since we're only changing four characters, we'll want to use some of 
the regular character set, so let's move it from ROM to RAM: 

130 CHSET=57344 
140 FOR BYTE=O TO 1023 
150 POKE SETNEW*256+BYTE,PEEK(CHSET+BYTE) 
160 NEXT BYTE 

Wow, it takes a long time to move 1024 bytes, doesn't it? 
Let's do that again in machine language: 

10 DIM MM$(41) 
20 FOR CHAR=! TO 41 
30 READ CODE 
40 MM$(CHAR,CHAR)~CHR$(CODE) 
50 NEXT CHAR 
60 DATA 104,104,133,204,104,133,203,104,133,206,104 
70 DATA 133,205,104,170,160,255,138,208,2,104,168,177 
80 DATA 203,145,205,136,192,255,208,247,230,204,230 
90 DATA 206,202,224,255,208,233,96 
130 CHSET=57344 
140 X=USR(ADR(MM$) ,CHSET,SETNEW*256,1024) 
150 REM 
160 REM 

276 



APPENDIX ONE 

Before I give you the assembly language code for the machine lan­
guage routine stored in MM$, let me tell you a little bit about it. MM 
stands for "Move Memory," and I wrote the routine so you can use 
it for other things as well. Your USR statement should have the fol­
lowing format for MM$: 

x = USR(ADR(MM$), FROM, TO, NUMBER) 

FROM is the starting address you want to move from, TO is the start­
ing address you want to move to, and NUMBER is the number of 
bytes you want to move. Note that MM$ will not work properly if 
FROM + NUMBER is less than TO, or if TO + 256 is less than FROM. 

Here's what the routine looks like: 

68 PLA 
68 PLA 
85CC STA FROMHI 
68 PLA 
85CB STA FROMLO 
68 PLA 
85CE STA TOHI 
68 PLA 
85CD STA TOLO 
68 PLA 
AA TAX 
A0FF LOOPl LDY #255 
8A TXA 
D002 BNE LOOP2 
68 PLA 
A8 TAY 
BICB LOOP 2 LDA (FROMLO),Y 
9lCD ST A (TOLO), Y 
88 DEY 
COFF CPY #255 
DOF7 BNE LOOP2 
E6CC INC FROMHI 
E6CE INC TOHI 
CA DEX 
EOFF CPX #255 
DOE7 BNE LOOPI 
60 RTS 

277 



There, that's much better. Now the Atari character set is in the RAM 
area that we protected. You can verify this by changing CHBAS: 

POKE 756, NEWSET 

The next step is to decide which of the characters we want to change 
to our new characters. There' s no point in messing up any of the let­
ters here , so let's change CTRL-A through CTRL-D. These are nor­
mally Atari graphics characters and have AT ASCII values of 1 
through 4. You'll recall, however, that the character set has a different 
order than AT ASCII. Looking at Appendix Nine, we see that the 
characters we want have internal values of 65 through 68 . We're all 
set now to make the changes : 

170 SET=SETNEW*256 
180 FOR CHAR=65 TO 68 
190 FOR BYTE=O TO 7 
200 READ OAT 
210 POKE SET+CHAR*8+BYTE,DAT 
220 NEXT BYTE 
230 NEXT CHAR 

1000 DATA 15,124,252,252,120,0,0,0 
1010 DATA 15,12,124,252,252,120,0,0 
1020 DATA 15,12,12,124,252,252,120,0,0 
1030 DATA 10,8,8,40,168,168,32,0 

Our character set is now all ready to be used, so let's tell the computer 
where it is : 

240 POKE 756,SETNEW 

And let's use it : 

278 



APPENDIX ONE 

250 POKE 752,1 
260 POSITION 10,4 
270 PRINT CHR$(4) 
280 RESTORE 1100 
290 FOR LP=l TO 4 
300 READ CHAR 
310 POSITION 10,2 
320 PRINT CHR$(CHAR); 
330 FOR WAIT=1 TO 25 
340 NEXT WAIT 
350 NEXT LP 
360 GO TO 280 

1100 DATA 1,2,3,1 

Notice that all we have to do to animate the note is print the different 
versions one after another in the same place, with a small delay be­
tween them to slow things down. This technique is used by a lot of 
programs to do simple (and sometimes complex) animation. For ex­
ample, the aliens in Atari's Space Invaders program are created using 
a redefined character set. So don't feel you just have to use character 
sets for letters. By the way, the artifacted note is printed by itself so 
you can see what it looks like. It isn't supposed to be doing anything. 

Make the following changes to the preceding program if you want to 
try the character set in graphics modes one or two: 

120 GRAPHICS 1 
240 POKE 756,SETNEW+2 
270 PRINT #6;CHR$(4) 
320 PRINT #6;CHR$(CHAR) 

You can get rid of the hearts by redefining the heart character to a 
space. To find out why they're there and why we need NEWSET+2, 
see q·fBAS. Incidentally, I said at CHBAS in the same section that 
you can't have upper and lowercase letters at the same time in graphics 
modes one and two. I lied. All you have to do is redefine the character 
set so that the graphics characters become uppercase letters. You can 
even use MM$ to do this. The following statement will move the up­
percase letters into the graphics characters: 

x = USR(ADR(MM$),57377 ,NEWSET*256 + 65,26 

Now a CTRL-A will give you an uppercase" A". 

279 



A few final bits of information. If you're using graphics mode seven 
or eight, you may have to move RAMTOP by 16 pages instead of 8. 
This is because of a limitation of the system. I personally have never 
had any problems, but other people have . Just be aware of it. You 
should also be aware that a GRAPHICS command will restore 
CHBAS to its original value. Make sure you reset it after each 
GRAPHICS command if you want to keep using your character set. 
Also, SYSTEM RESET will reset CHBAS and RAMTOP, thereby 
destroying the character set completely. So stay away from SYSTEM 
RESET. 

280 



APPENDIX TWO 

PLAYER/MISSILE GRAPHICS 

When I first started programming microcomputers there was no such 
thing as player/ missile graphics. You had to do animation using 
PLOTs and DRA WTOs, or by pretending that" >! <" was the Star­
ship Enterprise. Even when I first started programming the Atari, 
some four years ago, player/missile graphics were just a rumor, even 
through the Atari was capable of doing them. That's right, Atari didn't 
tell anyone how to use player / missile graphics until months after the 
Atari was released, and even then you still had to do a lot of guessing. 
Anyway, so much for the old days. This appendix should contain all 
the information you need to be able to have all sorts of things flying 
around the screen with the greatest of ease. 

I'll assume here that you've already read up on the various player / 
missile locations in the G / CTIA chip, starting at location 53248, and 
on DMACTL and PM BASE in the ANTIC chip at 54272 and 54279. 
If you haven't then do so now. 

Let's start by looking at a player. 

00 

281 



WHAT IS A PLAYER? 

What is a player? Well, that is easy to answer if you are talking base­
ball, but a little harder to explain for a computer. We draw shapes 
on the screen by turning on and off bits in memory. The area of mem­
ory with these bits is called screen memory. Now the bad part of using 
this method to draw pictures on the screen comes when you want to 
animate little shapes ON TOP OF THE SCREEN PICTURE. Say you 
want to draw a little man and make him walk across a screen that you 
have carefully drawn a landscape on. As he walks, his pixels have to 
replace the ones of the landscape ONLY WHERE THE TWO 
SHAPES OVERLAP. Then, when he moves a little further across the 
screen, you have to replace the landscape because you want the man 
shape somewhere else. WOW. That is a lot of pixels to turn on and 
off. 

Players provide a better method. You simply store a shape (the little 
man) somewhere other than in screen memory and tell the Atari's 
special chips to put the shape on top or underneath the screen data. 
It will figure out things like overlapping pixels automatically. All you 
have to do is tell the computer the options you want. Here is an ex­
ample. 

A normal player is as tall as the screen and as wide as a graphics mode 
one character (eight bits = one memory location). It can be either 256 
bytes high, in which case each pixel in it is the height of a graphics 
mode eight row (one scan line), or it can be 128 bytes high, in which 
case each pixel is as high as a graphics mode seven row (two scan 
lines). Since the shape of a player is described in the same fashion as 
that of a character, you may wish to think of a player as an abnor­
mally high character. There are four players altogether and a fifth 
player that can be divided into four missiles (Figure 53). 

A missile is the exact same thing as a player, except it is only two bits 
wide . Since there are four missiles, and eight bits in a byte, all four 
missiles are stored in the same byte. Each byte is used as in Figure 54. 

So, for example, if you wanted both pixels of missile one to be on in 
a particular byte, and weren't using any of the other missiles, you 
would set that byte to 00001100, which corresponds to a value of 12. 
You can also turn on only one bit of a missile to have thin missiles. 

282 



Player "str ipe" 
8 bits wide. 
1 for each player. 

1 • l '1 

APPENDIX TWO 

Missile 0 

A Missile 1 

~~::::::~ 

Store O's in memory ---+-t~ 
except where you want 
a shape to appear 

I. ..I 
Missile "stripe" 8 bits wide (2 bits/missile). 

All four missiles or use all 4 as fifth player . 

FIGURE 53. Player missile positioning 

7 6 5 4 3 2 o 

M3 M2 M1 MO 

FIGURE 54. Storing missiles 

283 



PLAYER RESOLUTION AND WHERE TO STICK THEM 

So we have a total of four players, each I byte wide and either 128 
or 256 high, and four missiles, each 2 bits wide and either 128 or 256 
bytes high. That means we'll need either 5*128 = 640 or 5*256 = 
1280 bytes to store their descriptions. Before we look at where to find 
these bytes, let's look at how to choose whether we want the players 
and missiles to be 128 or 256 bytes high . The location that'll do the 
trick here is called SDMCTL (559). Setting bit four of SDMCTL 
chooses 256 byte player / missiles, while leaving it clear chooses 128 
byte ones. So much for that, let's get back to our memory problem. 
Before I tell you where to get the memory from, there are a few more 
things you need to know. First of all, ANTIC relies on PM BASE at 
location 54279 to tell it where the memory is. Now ANTIC and 
PMBASE have some quirks that limit where the memory can be. First 
of all, PMBASE gives the high byte of the address only, which means 
that it will represent a multiple of 256. Furthermore, ANTIC says that 
it has to be on a IK boundary for 128 byte player / missiles (PMBASE 
is a mUltiple of four), and on a 2K boundary for 256 byte 
player/missiles (PM BASE is a multiple of eight). And if that's not 
enough, ANTIC insists on there being extra bytes between PMBASE 
and the beginning of the player / missile data. Here's how ANTIC ex­
pects the data to be laid out (Figure 55a and 55b) . 

284 



PEEK (106) ~ 

Pmbase+204 

Pmbase+179 

Pmbase+153 

Pmbase+ 128 

Pmbase+102 

Pmbase+768 

Pm base 

8 

2 

6-

0 

4-

(POKE into-
54279) 

Peek (106) 

24---

6-

Pmbase+10 

Pmbase+89 

Pmbase+76 

Pmbase+64 

8 

0---

Pmbase+51 2----

Pmhase+38 4 

Pm base 
(Poke into-

54279) 

APPENDIX TWO 

SINGLE LINE RESOLUTION 

Top of Memory 

Screen Data Area 
Depends on Graph ics Mode 

UNUSED 

Player 3 

Playe r 2 

Player 1 

Player 0 

M3 I M2 I M1 I MO 

768 Unused 
Memory Locations 

The Rest of Memory 
and Your Program 

694 to 8112 Memory 
Locations 

} 

8 bits wide -
Each bit I ights up 
one TV pixel. 

} 
2 bits wide each 
M issi Ie or use 
all 4 as a Player 

FIGURE 55a. Single-line resolution 

DOUBLE LINE RESOLUTION 

Top of Memory 

Screen Data Area 
Depends on Graphics Mode 

Unused 

Player 3 

Player 2 

Player 1 

Player 0 

M3 I M2 I M1 I MO 

384 Unused 
Memory Locations 

The Rest of Memory 
and Your Program 

694 to 8112 Memory 
Locations 

} 

8 bits wide -
Each bit lights 
up two TV pixels. 

} ~ ~~~~e~:re u::
Ch 

all 4 as a Player. 

FIGURE 55b. Double-line resolution 

285 



Now I'm finally going to tell you where to get the free memory from. 
You might even have guessed already since we encountered the same 
need in Appendix One. That's right, we'll change RAMTOP at lo­
cation 106. I realize that I went through a lot of information just to 
tell you that, but I wanted to make sure you knew what we were going 
to have to do to RAMTOP, and why. At least we can start our ex­
ample now. We'll use 256 byte player/missiles, which means that we 
want to reserve eight pages using RAMTOP. You'll recall from the 
description of RAM TOP that we have to reserve an extra four pages 
for safety's sake, so we'll change RAMTOP by 12 altogether: 

100 PMBAS=PEEK(740)-8 
110 POKE 106,PMBAS-4 
120 GRAPHICS 19 

There are two things to watch out for here. If you're using graphics 
mode seven or eight, you should move RAMTOP by 16. The reason 
for this is given at RAMTOP . If you're using a redefined character 
set as well as player / missile graphics, you should do the following: 

PMBAS = PEEK(740) - 8 
CHBAS=PMBAS-4 
POKE 106,CHBAS-4 
GRAPHICS whatever 

This will make sure that PMBASE sits on a 2K boundary, and at the 
same time will take care of the graphics seven and eight problem. 

Before we tell ANTIC where we've decided to put the data, we should 
make sure that any old data is removed. If you don't, you will have 
pixels on the screen you didn't expect to see: 

130 PM=PMBAS*256 
140 FOR BYTE=PM+768 TO PM+2047 
150 POKE BYTE,O 
160 NEXT BYTE 

Too slow for you? Try this : 

286 



10 DIM CM$(36) 
20 FOR CHAR=l TO 36 
30 READ CODE 
40 CM$(CHAR,CHAR)=CHR$(CODE) 
50 NEXT CHAR 

APPENDIX TWO 

60 DATA 104,104,133,204,104,133,203,104,170,169,0,160 
70 DATA 255,224,0.208,4,104,168,169,0,145,203,136,192 
80 DATA 255,208,249,230,204,202,224,255,208,234,96 
140 X=USR(ADR(CM$),PM+768,1280) 
150 REM 
160 REM 

If you want to use CM$ for other things, it needs the following USR 
call: 

x = USR(ADR(CM$),START,NUMBER) 

START is the starting address of the memory you want to clear and 
NUMBER is the number of bytes to clear. 

For the experts in the crowd, here's the assembly code for the machine 
language routine in CM$: 

68 PLA 
85CC STA STARTHI 
68 PLA 
8FCB STA STARTLO 
68 PLA 
AA TAX 
A900 LDA #0 
A0FF LDY #255 
E000 LOOP1 CPX #0 
D004 BNE LOOP2 
68 PLA 
A8 TAY 
A900 LDA #0 
91CB LOOP2 STA (STARTLO),X 
88 DEY 
C0FF CPY #255 
D0F9 BNE LOOP2 
E6CC INC STARTHI 
CA DEX 

287 



E0FF 
D0EC 
6@ 

CPX 
BNE 
RTS 

#255 
LOOPl 

Let's complete the example we have started. We now tell ANTIC 
where the data will be: 

170 POKE 54279,PMBAS 

We also want to tell it to send the data to G / CTIA, and that we will 
be using 256 byte player/missiles. This is done with SDMCTL: 

180 POKE 559,62 

We should also let G / CTIA know that the data will be coming. 
GRACTL does this: 

190 POKE 53277,3 

All of this essentially serves to initialize player / missile graphics. Now 
we're ready to go ahead and use them . Let's start by choosing the 
shape of a player. We'll make it look like a spaceship (Figure 56a). 

Notice that we don't have to use all 256 bytes. As a matter of fact, 
hardly anybody ever does, and we'll see why in a little bit. First, let's 
translate our picture to bytes (Figure 56b). 

288 



# ## # 

# #### # 

######## 

# #### # 

# ## # 

APPENDIX TWO 

FIGURE 56a. Choosing your PM shape 

# ## # = 10011001 = 153 
# #### # = 10111101 = 189 
######## = 11111111 = 255 
# #### # = 10111101 = 189 
# ## # = 10011001 = 153 

FIGURE 56b. Mapping your PM 

We'll store these bytes in the middle of player zero : 

200 FOR BYTE=126 TO 130 
210 READ DAT 
220 POKE PM+1024+BYTE,DAT 
230 NEXT BYTE 

1000 DATA 153,189,255,189,153 

Can you see the player on the screen now? I can't either. Why not? 
We forgot to tell G /CTIA where we want it to appear on the screen. 
HPOSPO at location 53248 will take care of that: 

240 POKE 53248,128 

Now it should be in the middle of the screen. Where is it? It is there, 
actually, but it has the same color as the background, so we can't see 
it. Let's take care of that by giving it a different color using PCOLRO 
at location 704: 

250 POKE 704,8 

There now, that's much better. Now that we have a spaceship on the 
screen, though, what can we do with it? Well, the simplest thing to 
do would be to change its size using SIZEPO at location 53256. Try 
the following to see what I mean: 

289 



POKE 53256,1 
POKE 53256,3 
POKE 53256,0 

Well, that's nice, but not too exciting. Let's try moving it. We already 
know how to move it horizontally, so add the following to the pro­
gram: 

260 HPO=128 
270 5=5TICK(0):IF 5=9 OR 5=10 OR 5=11 THEN HPO=HPO-1 
280 IF 5=5 OR 5=6 OR 5=7 THEN HPO=HPO+1 
290 HPO=HPo-'256* (HPO=256) +256* (HPO=-l) 
300 POKE 53248,HPO 

What is going on here? First of all, we use HPO to remember what 
the horizontal position of the player is, since HPOSPO is POKE only. 
Then we look at joystick zero and move the player to the left or right 
if the joystick is moved to the left or right. Finally, we check HPO 
to make sure that it hasn't gone below ° or above 255. When you run 
this, you'll notice that you can move the player off the screen. A nice 
way to get rid of a player when you don't want it to be on the screen 
is to set its horizontal position to 0. 

That was pretty easy, and it looks pretty good . What about vertical 
movement though? You may have noticed that there are no vertical 

290 



APPENDIX TWO 

position registers. This means that you have to move each of the bytes 
in ~he player forward or backward in memory to move the player 
down and up, respectively. This can be a real pain and is also very 
slow. So slow, in fact, that I'm not even going to bother giving an 
example in BASIC. Instead, I'll give you two machine language rou­
tines, one for moving the player up, and one for moving it down. 
Here they are along with an example of how to use them (add the 
BASIC program lines to the preceding program): 

10 DIM CM$(36),PU$(43),PD$C26) 
90 G05UB 500 
260 HPO=128:VPO=128 
310 IF 5=6 OR 5=10 OR 5=14 THEN VPO=VPO-1:X=U5R(ADRCPU$), 

PM+1024,255) 
320 IF 5=5 OR 5=9 OR 5=13 THEN VPO~VPO+l:X=U5R(ADR(PD$), 

PM+I024,255) 
330 VPOzVPO-256*(VPO=256)+256*<VPO=-I) 
500 FOR CHAR~1 TO 43 
510 READ CODE 
520 PU$(CHAR,CHAR)zCHR$(CODE) 
530 NEXT CHAR 
540 FOR CHAR=1 TO 26 
550 READ CODE 
560 PD$(CHAR,CHAR)=CHR$(CODE) 
570 NEXT CHAR 
580 RETURN 
800 DATA 104,104,133,204,104,133,203,104,168,104 
810 DATA 170,177,203,72,138,72,160,1,177,203,136 
820 DATA 145,203,200,200,240,10,192,128,208,243 
830 DATA 104,72,201,127,208,237,104,168,104,145,203,96 
900 DATA 104,104,133,204,104,133,203,104,104,168 
910 DATA 177,203,72,136,177,203,200,145,203,136 
920 DATA 208,247,104,145,203,96 

Both PU$ (Player Up) and PD$ (Player Down) have the same USR 
format: 

x = USR(ADR(PU$ or PD$),ADDRESS,HEIGHT -1) 

ADDRESS is the starting address of the player you want to move and 
HEIGHT-I is 127 for 128 byte players, 255 for 256 byte players. 

Here's the assembly code: 

68 
68 
85CC 

PU PLA 
PLA 
STA 

291 

PLAYERHI 



68 PLA 
85CB STA PLAYERLO 
68 PLA 
A8 TAY 
68 PLA 
AA TAX 
BICB LDA (PLA YERLO), Y 
48 PHA 
8A TYA 
48 PHA 
A0(11 LDY #1 
BICB LOOP LDA (PLA YERLO),Y 
88 DEY 
91CB STA (PLA YERLO), Y 
C8 INY 
C8 INY 
F00A BEQ RETURN 
C080 CPY #128 
D0F3 BNE LOOP 
68 PLA 
48 PHA 
C97F CMP #127 
D0ED BNE LOOP 
68 RETURN PLA 
A8 TAY 
68 PLA 
91CB STA (PLA YERLO),Y 
60 RTS 

68 PO PLA 
85CC STA PLAYERHI 
68 PLA 
85CB STA PLAYERLO 
68 PLA 
68 PLA 
A8 TAY 
BICB LDA (PLAYERLO),Y 
48 PHA 
88 LOOP DEY 
BICB LDA (PLA YERLO), Y 
C8 INY 
91CB STA (PLA YERLO), Y 
88 DEY 

292 



APPENDIX TWO 

LOOP D0F7 
68 
91CB 
60 

BNE 
PLA 
STA 
RTS 

(PLA YERLO),Y 

Now we can move our player in any direction. By the way, if you're 
using 128 byte player / missi les and you want to move them vertically 
by one scan line instead of two, use VDELA Y at location 53276. 

Is there still more? You bet. Let's put some backgound on the screen: 

121 COLOR 1:PLOT 19,0:DRAWTO 19,23 
122 COLOR 2:PLOT 21,0:DRAWTO 21,23 
123 COLOR 3:PLOT 20,O:DRAWTO 20,23 

Nothing great so far, but wait until we fool around with GPRIOR at 
location 623. Try each of the following and see what happens (see 
GPRIOR for an explanation of why): 

195 POKE 623,4 
195 POKE 623,8 

You can also use GPRIOR to mix colors when two players overlap, 
and to make the four missiles into an extra player. See GPRIOR for 
more details. 

As long as we have background on the screen, let's take a look at the 
collision registers. POPF at location 53252 is used to tell whether 
player zero has collided with any part of the background, or playfield. 
See POPF and HITCLR (53278) and try the following: 

400 POKE 53278,0 
410 C=>PEEK(20) 
420 IF C+1=256 THEN C=-l 
430 IF PEEK(20)<C+1 THEN 430 
440 SOUND 0,PEEK(53252)*16+15,4,8 
450 GOTO 270 

Lines 410 and 420 are necessary to make sure that G / CTIA has enough 
time to check for collisions. Note that the collision registers can be 
used to detect a collision between any two objects on the screen. 

Well, we've just about covered everything now with one big exception: 
the missiles. Missiles are handled in much the same way as players, 
with several notable exceptions. First of all, they have the same color 

293 



as the corresponding player, so you would use PCOLRO to set the 
color for both player zero and missile zero. Secondly, there is only 
one size register for all four missiles, although you can set the size of 
each missile separately (see SIZEM at location 53260). But the most 
important difference, obviously, is in the way the missiles are stored 
in memory. Because all four are stored in the same bytes, it can be 
very difficult to move them vertically, since you must only move two 
bits for each, without disturbing the others. I'll come to your rescue 
again, however, and provide you with the machine language routines 
necessary to do just that: 

68 MU PLA 
68 PLA 
85CC STA PLAYERHI 
68 PLA 
85CB STA PLAYERLO 
68 PLA 
68 PLA 
85CD STA MASK 
68 PLA 
A8 TAY 
68 PLA 
AA TAX 
A5CD LDA MASK 
49FF EOR #255 
3lCB AND (PLAYERLO),Y 
48 PHA 
8A TXA 
48 PHA 
BlCB LOOP LDA (PLA YERLO),Y 
25CD AND MASK 
9lCB STA (PLA YERLO),Y 

294 



APPENDIX TWO 

C8 INY 
A5CD LDA MASK 
49FF EOR #255 
3lCB AND (PLA YERLO), Y 
88 DEY 
llCB ORA (PLAYERLO),Y 
9lCB STA (PLA YERLO), Y 
C8 INY 
F00A BEQ RETURN 
C080 CPY #128 
D0E7 BNE LOOP 
68 PLA 
48 PHA 
C97E CMP #127 
D0El BNE LOOP 
68 RETURN PLA 
A8 TAY 
A5CD LDA MASK 
3lCB AND (PLA YERLO), Y 
9lCB STA (PLA YERLO), Y 
68 PLA 
llCB ORA (PLA YERLO) , Y 
9lCB STA (PLA YERLO) , Y 
60 RTS 
68 MD PLA 
68 PLA 
85CC STA PLAYERHI 
68 PLA 
85CB STA PLAYERLO 
68 PLA 
68 PLA 
85CD STA MASK 
68 PLA 
68 PLA 
A8 TAY 
A5CD LDA MASK 
49FF EOR #255 
3lCB AND (PLA YERLO), Y 
48 PHA 
BICB LOOP LDA (PLA YERLO) , Y 
25CD AND MASK 
9lCD STA (PLA YERLO), Y 
88 DEY 

295 



A5CD LDA MASK 
49FF EOR #255 
3ICB AND (PLA YERLO), Y 
C8 INY 
IICB ORA (PLA YERLO), Y 
9ICB STA (PLA YERLO), Y 
88 DEY 
D0EB BNE LOOP 
A5CD LDA MASK 
3ICB AND (PLA YERLO),Y 
9ICB STA (PLA YERLO), Y 
68 PLA 
IICB ORA (PLA YERLO), Y 
9ICB STA (PLA YERLO), Y 
60 RTS 

These routines need the following USR call: 

x = USR(ADR(MU$ or MD$),ADDRESS,MASK,HEIGHT -1) 

ADDRESS AND HEIGHT - 1 are the same as they were for PU$ and 
PD$, MASK has one of the following values: 

252 if you're moving missile zero. 
243 if you're moving missile one. 
207 if you're moving missile two . 

63 if you're moving missile three. 

"Wait a minute, aren't you forgetting something? Where's the BASIC 
routine to set up MU$ and MD$?" Don't worry, it's on the way . 

If you make the following changes to the preceding player program, 
it will move missile zero instead of player zero. Note that even though 
I'm only putting one thing on the screen at a time here, there is no 
reason why all four players and missiles can't be used together. I'm 
just lazy: 

10 DIM CM$(36),MU$(69),MD$(54) 
200 FOR BYTE=127 TO 128 
220 POKE PM+768+BYTE,DAT 
240 POKE 53252,128 
300 POKE 53252.HPO 

296 



APPENDIX TWO 

MOVING­
MEMOI<IES 
CAN BE 

FUN. 

310 IF 5=6 OR 5=10 OR 5=14 THEN VPO=VPO-1zXzU5R(ADR(MU$), 
PM+768,252,255) 

320 IF 5=5 OR 5=9 OR 5=13 THEN VPO=VPO+1:X=U5R(ADR(MD$), 
PM+768,252,255) 

440 50UND 0,PEEK(53248)+16+15,4,8 
500 FOR CHAR=1 TO 69 
520 MU$(CHAR,CHAR)=CHR$(CODE) 
540 FOR CHAR=1 TO 54 
560 MD$(CHAR,CHAR)=CHR$(CODE) 
800 DATA 104,104,133,204,104,133,203,104,104,133 
810 DATA 205,104,168,104,170,165,205,73,255,49,203 
820 DATA 72,138,72,177,203,37,205,145,203,200,165 
830 DATA 205,73,255,49,203,136,17,203,145,203,200 
840 DATA 240,10,192,128,208,231,104,72,201,127 
850 DATA 208,225,104,168,165,205,49,203,145,203 
860 DATA 104,17,203,145,203,96 
900 DATA 104,104,133,204,104,133,203,104,104,133 
910 DATA 205,104,104,168,165,205,73,255,49,203,72 
920 DATA 177,203,37,205,145,203,136,165,205,73,255 
930 DATA 49,203,200,17,203,145,203,136,208,235,165 
940 DATA 205,49,203,145,203,104,17,203,145,203,96 
1000 DATA 255,255 

297 



These are only the fundamentals of using players and missiles. You 
will learn best by experimenting with what we have given you. See 
what happens if you change things. If you want a complete lesson on 
the subject, Educational Software offers a fun to use program called 
"Tricky Tutorial'" #5." Write us for a list of all the tutorials. 

298 



APPENDIX THREE 

DESIGNING YOUR OWN GRAPHICS MODES 

This appendix assumes that you have already read the description of 
SDLSTL at locations 560 and 561 and SA VMSC at locations 88 and 
89. 

Since designing a custom graphics mode is so simple, let's jump right 
into it. The first step is to decide what you want the new mode to look 
like. In other words, figure out how you want to mix the existing 
graphics modes. For our example, let's mix graphics modes zero, one, 
two, and seven. 

So far so good. Next comes the tricky part; we have to decide how 
many rows of each mode we want. Why is this tricky? Because we 
have to have 192 scan lines altogether (remember that a scan line is 
the height of a graphics mode eight line, or row). If we have less than 
192, then the display will be too short on the screen. Similarly, too 
many will make it too long. You can try it later and see for yourself. 
Anyway, we need to know how many scan lines high each graphics 
mode row is. Figure 57 tells us just that. 

MODE 0 

LINES 8 

1 

8 

2 
16 

3 
8 

4 

4 

5 

4 

6 

2 

7 

2 

FIGURE 57. Designing PM graphics modes 

8-11 

For our example, suppose that we definitely want one row of mode 
two, two of mode one, and three of mode zero. That gives us a total 

299 



of 16+2*8+3*8 = 56 scan lines, leaving 192-56 = 136 scan lines 
left over for mode seven . Since mode seven rows are two scan lines 
high, we can have 68 of them. Oh, I forgot to mention that we're 
going to want the mode two row on top, followed by half the mode 
seven rows, the mode one rows, the rest of the mode seven rows, and 
then the mode zero rows on the bottom. 

Now we're ready to make our display list. Since BASIC has a built­
in ability to set up a normal display list (and screen memory), let's 
not waste it. We'll have BASIC set up the mode that uses the most 
memory out of the ones we want to mix (that way, we know there 
will be enough screen memory for us) . In our case that's graphics 
mode seven, so we'll start with the following line: 

100 GRAPHICS 7+16 

We use 7 + 16 because we don't want a text window. Now we want 
to change the first row into graphics mode two . First we need to know 
where the display list is: 

110 DLIST=PEEK(560)+PEEK(561)*256 

We'll also turn off the screen so that funny things don't happen while 
we're changing things, and put an endless loop at the end so we won't 
go back to graphics mode zero when we're through: 

120 POKE 559,0 

999 GOTO 999 

You'll recall from SDLSTL that the first three bytes of a display list 
are used to keep the first 24 scan lines blank. That means that the 
fourth byte in the display list is the instruction for the first row. You 
may also recall that this instruction has an LMS modification to it, 
since ANTIC has to know where the screen memory is before it can 
start drawing the screen . So we look at the chart in Appendix Twelve 
and find that a mode two LMS instruction has a value of 71. So . 

130 POKE DLIST+3,71 

In case the DUST + 3 is confusing you, keep in mind that DUST is 
the first byte, not DUST + 1. 

300 



APPENDIX THREE 

Now we've got our mode two row. Next we want 34 mode seven rows. 
But wait a minute, we started with a graphics mode seven dispay list 
so that means that the mode seven rows are already set up for us. 
Great, let's go on to mode one. 

Our two mode one rows will be the thirty-sixth and thirty-seventh 
rows on the screen, right? That corresponds to the forty-first and 
forty-second bytes in the display list. Why? Don't forget that the first 
three bytes are the BLK instructions and then we have two more bytes 
for the LMS address. Looking at Appendix Twelve again, we see that 
a graphics mode one instruction has a value of six, so we add the 
following lines to our program: 

140 POKE DLIST+40,6 
150 POKE DLIST+41,6 

Now we want the rest of our mode seven rows, which again are al­
ready set up for us, in DLIST+42 through DLIST+75, so we skip 
over to mode zero. The seventy-second and seventy-third rows will be 
mode zero, so we'll change the seventy-seventh and seventy-eighth 
bytes: 

160 POKE DLIST+76,2 
170 POKE DLIST+77,2 

And now we're done, right? Not quite, we still have to put in the JVB 
instruction (see SDLSTL): 

180 POKE DLIST+78,65 
190 POKE DLIST+79,PEEK(560) 
200 POKE DLIST+80,PEEK(561) 

Now we're done, so let's turn the screen back on: 

210 POKE 559,34 

Uh-oh, we can see the graphics mode zero rows down at the bottom. 
That's easy enough to change: 

220 SETCOLOR 2,0,0 

Much better. Now comes the fun part-trying to put stuff on the 
screen. There are a lot of problems associated with this, so let's look 
at them one by one. 

301 



We'll start at the top, with our mode two row. What's the problem 
here? The OS thinks that it's in graphics mode seven, since we told 
it it was. That's easy to change, however, since DINOEX (87) can be 
changed to indicate the mode we want: 

230 POKE 87,2 

Now we can go ahead and PRINT to the row: 

240 POSITION 0,0 
250 PRINT *6;" graphics mode two" 

So far so good; let's go on to the first group of mode seven rows. 
Unfortunately, we can't just change OINOEX back and go ahead and 
PLOT and ORA WTO. Why not? Graphics mode seven uses 40 bytes 
per row while graphics mode two only uses 20 (see SA VMSC). This 
will cause things to be PLOTted in the wrong place . Try the following 
to see for yourself: 

260 POKE 87,7 
270 COLOR 1 
280 PLOT 0,1 

This causes a pixel to be plotted halfway across the screen instead of 
in the first column. Not to worry, however, there's an easy solution. 
We can change SA VMSC to point to the beginning of the mode seven 
area. By doing that, the upper left corner of the mode seven area will 
be treated as the beginning of the screen. The only hard thing about 
doing this is that we have to figure out the memory location of the 
beginning of the first mode seven row . How do we do that? Well, we 
know that OUST + 4 and OUST + 5 hold the LMS address, which is 
the address of the beginning of screen memory . We also know that 
there is a mode two row between the beginning of screen memory and 
the beginning of our mode seven rows. From the table at location 
SA VMSC, we know that a mode two row takes up 20 bytes, so that 
means the beginning of the mode seven rows is 20 bytes after the be­
ginning of screen memory. All of this together gives us: 

260 SCRMEM=PEEK(DLIST+4)+PEEK(DLIST+5)*256 
270 MEM7A=SCRMEM+20 
280 POKE 89,INT(MEM7A/256) 
290 POKE 88,MEM7A-PEEK(89)*256 

Now we can go ahead and PLOT and ORA WTO, remembering that 
there are only 34 mode seven rows before we hit the mode one rows . 
Oh, we also have to remember to change OINOEX : 

302 



300 POKE 87,7 
310 COLOR 1 
320 PLOT 0,0 

APPENDIX THREE 

330 DRAWTO 159,0:DRAWTO 0,33 
340 DRAW TO 159,33:DRAWTO 0,0 

For our mode one lines we'll follow the same procedure. There are 1 
mode two rows and 34 mode seven rows between the beginning of 
screen memory and the beginning of the mode one rows. That's a 
grand total of 20 + 34*40 = 1380 bytes: 

350 MEM1=SCRMEM+1380 
360 POKE 89,INT(MEM1/256) 
370 POKE 88,MEM1-PEEK(89)*256 

And now to PRINT: 

380 POKE 87,1 
390 POSITION 7,0 
400 PRINT #6; "here's" 
410 PRINT #6;" graphics mode one" 

And so it goes for the rest of the screen: 

420 MEM7B=SCRMEM+1420 
430 POKE 89,INT(MEM7B/256) 
440 POKE 88,MEM7B-PEEK(89)*256 
450 POKE 87,7 
460 PLOT 0,0 
470 DRAWTO 159,0:DRAWTO 0,33 
480 DRAW TO 159,33:DRAWTO 0,0 
490 MEMO=SCRMEM+2780 
500 POKE 89,INT(MEMO/256) 
510 POKE 88,MEMO-PEEK(89)*256 
520 POKE 87,0 
530 POKE 752,1 
540 POSITION 10,0 
550 PRINT #6; "And now, finally 
560 POSITION 9,1 
570 PRINT #6;" ••. GRAPHICS MODE ZERO" 

Everything here may seem a little overwhelming at first, but it really 
isn't. Type in the example and make sure you understand it. Make 
little changes and see what the effect is. In no time at all you'll be 
whipping up your own graphics modes at the drop of a hat. 

Now that you're cOl].fident that you know what's going on, I'll men­
tion the catch . Fortunately, the only time you'll run across it is if 
you're mixing graphics mode eight into your custom mode . You'll 

303 



recall that back at SDLSTL I mentioned that the graphics mode eight 
display list has to have an extra LMS instruction so it can cross a 4K 
boundary. Well, this means that you have to be careful when you start 
your custom mode with a mode eight display list. First of all, find out 
where the LMS is. Usually it's the hundredth byte (DUST + 99), but 
your program should check first to make sure. Once you know where 
it is, make sure you don't change the two bytes after it, since they are 
the LMS address. Next, don't forget about those two bytes when you 
change instructions that come after the LMS. For example, let's sup­
pose that the LMS is at DUST + 99 and you want to change the 
hundred-twenty-fifth row. Normally this would be DUST+ 129, but 
because of the LMS address it's now DUST + 131. The final thing to 
watch out for is changing SA VMSC for rows that come after the LMS. 
What you'll have to do is use the LMS address instead of SCRMEM, 
and figure out how many bytes past that your mode rows begin. As 
you can see, this can get to be a real pain in the you-know-what. 
Unfortunately, there seems to be no way around it. 

304 



APPENDIX FOUR 

GTIA GRAPHICS MODES NINE, TEN, AND ELEVEN 

First of all, I'm going to assume that you've already read the infor­
mation about GTIA at location GPRIOR (623) and at the GTIA chip 
(53248). If you haven't, then do so now. 

Do I have a GT/A? 

All of you should now know what a GTIA chip is, so let's try and 
figure out a way to tell if your Atari has one. Try the following: 

POKE 623,64 

If the screen goes black, then you have a GTIA. If it doesn't, well 
then you have a CTIA. Real simple test, right? But what happens if 
you're writing a program that has to know whether or not it's running 
on a GTIA. You can't use the preceding method unless your program 
asks the user whether the screen went black or not. This is not a good 
idea. Instead, the program needs a way of finding out what's there 

305 



itself. How? In graphics modes nine and eleven, the computer can't 
detect collisions between players / missiles and playfield. What we do 
then, is set up a collision and see whether or not it was detected. If 
it was, then we know that there is a CTIA chip, otherwise there is a 
GTIA. The following program will do the trick : 

100 GRAPHICS ~:POKE 710,0 
120 POKE 53248,45 
130 POKE 53261,255 
140 POKE 53278,0 
150 COLOR 1:PLOT 0,0 
160 TI=PEEK (20) 
170 IF TI=255 THEN TI=-l 
180 IF PEEK(20)<TI+1 THEN 180 
190 POKE 53248,0:COLID=PEEK(53252) 
200 GRAPHICS 0 
210 IF COLID=O THEN PRINT "GTIA": END 
220 PRINT "CTIA" 

So you can understand a little better what's going on here, let's sub­
stitute the location names for the addresses: 

100 GRAPHICS 9:POKE COLOR2,0 
120 POKE HPOSPO,45 
130 POKE GRAFPO,255 
140 POKE HITCLR,O 
150 COLOR I :PLOTO,O 
160 TI = PEEK(RTCLOK + 2) 
170 IF PEEK(RTCLOK+2)<TI+ 1 THEN 170 
180 POKE HPOSPO,O:COLID = PEEK(POPF) 
190 GRAPHICS 0 
200 IF COLID=O THEN PRINT "GTIA":END 
210 PRINT "CTIA":END 

What does GTIA have to offer me? 

OK, so now we know whether or not we have a GTIA. Assuming we 
do have one, what can we do with it? Well, GTIA gives us three extra 
graphics modes which we can use to get many more colors on the 
screen than usual. Graphics mode nine lets you put all 16 brightnesses 
of one color on the screen at the same time . Graphics mode ten lets 
you have 9 colors on the screen at the same time (you pick the bright­
ness for each). Finally, graphics mode eleven lets you put 16 colors 
at the same brightness on the screen at the same time . Now at this 

306 



APPENDIX FOUR 

point you may be wondering if there are any strings attached to these 
great new graphics capabilities. Yes! Each mode takes the same 
amount of memory as graphics mode eight (a little less than 8K), and 
each pixel is four times as wide as those in graphics mode eight. That 
means the screen is 80 pixels wide and 192 high. Why four times as 
wide? Each pixel in graphics mode eight is only one bit wide, since it 
can only be on or off. In these new modes, however, a pixel can have 
up to 16 different values depending on what color it is (in case you 
hadn't guessed, the value of a pixel determines what color it is). You 
need four bits to get 16 values, so each pixel has to be four bits wide. 
In graphics mode ten, even though there are only 9 colors, four bits 
are still needed since three bits would only give you eight values. In 
this mode, the extra seven values just pick the same colors as the first 
nine. By the way, if you try to use a GTIA program on a CTIA ma­
chine, it will run fine as long as it doesn't use the GTIA modes (with 
the exception of the artifacting problem). If it uses the GTIA modes, 
then it will still run, but the graphics will look funny. 

307 



How do I use these extra modes? 

All of these modes can be set up just the same as the other nine. For 
example, graphics nine, graphics ten, and graphics eleven all work 
from BASIC. Note that you can't have a text window in these modes. 
If you set up your own display list with machine language, you need 
to set GPR10R according to the mode you want to use . Also, if you 
are going to be using the OS PLOT and DRAW routines, make sure 
you set DINDEX to the correct mode number. Incidentally, as you 
probably guessed, all three modes have the same screen memory re­
quirements as graphics mode eight. 

Now that you've got the mode set up and ready to go, how do you 
use it? Each one is a little different in this respect, so let's look at 
each separately: 

Graphics Nine 

As mentioned before, graphics nine gives you one color with 16 
brightnesses. The background color register is used to tell GTIA what 
color you want to use. From BASIC, you just do the following: 

SETCOLOR 4,color,O 

Or this, which is more pertinent for machine language programmers: 

POKE 712,color*16 

To pick the brightness, use the COLOR command before you PLOT 
or DRA WTO. For example, 

COLOR brightness 

"Brightness" can be any value from 0 to 15, with 15 being the bright­
est. From machine language, store the brightness value directly into 
the pixel in screen memory. If you're using the PLOT and DRAW 
routines, store it in ATACHR (763). 

The following BASIC program will set up a graphics mode nine screen 
and put all 16 brightnesses on it: 

308 



APPENDIX FOUR 

100 GRAPHICS 9 
110 SET COLOR 4,6,0 
120 FOR C=O TO 15 
130 COLOR C 
140 FOR ROW=88 TO 103 
150 PLOT C*4+ROW-88,ROW 
160 ORAWTO C*4+ROW-85,ROW 
170 NEXT ROW 
180 NEXT C 
190 GOTO 190 

Line 190 is necessary because we don't have a text window on the 
screen. Take it out and see what happens. 

Graphics Ten 

Graphics mode ten only lets you have nine different colors at the same 
time, but you can have different color and brightness values for each. 
It uses the regular playfield color registers along with the player I missile 
color registers to specify these colors. Just POKE the color and bright­
ness values into these registers and you can then use the COLOR com­
mand to pick the one you want to use (or POKE the COLOR value 
directly into screen memory). Figure 58 shows you which COLOR 
value picks which register. 

COLOR REGISTER LOCATION 

0 PCOLRO 704 

1 PCOLR1 705 

2 PCOLR2 706 

3 PCOLR3 707 

4 COLORO 708 

5 COLOR1 709 

6 COLOR2 710 

7 COLOR3 711 

8 COLOR4 712 

FIGURE 58. Color register locations 

(PCOLRO no specifies the background color instead of COLORW4.) 
The following program is an example of using graphics mode ten: 

309 



100 GRAPHICS 10 
110 FOR LP=O TO 8 
120 POKE 704+LP,LP*16+LP*2+10 
130 NEXT LP 
150 FOR C=l TO 8 
155 COLOR C 
160 FOR ROW=C TO 71 STEP 8 
170 PLOT ROW,88 
180 DRAWTO ROW+6,103 
190 NEXT ROW 
200 NEXT C 
210 T=PEEK(712) 
220 FOR REG=712 TO 706 STEP -1 
230 POKE REG,PEEK(REG-l) 
240 NEXT REG 
250 POKE 705,T 
260 GO TO 210 

Graphics Eleven 

Graphics mode eleven is the same as graphics mode nine except that 
we have 16 colors with the same brightness instead of the other way 
around. To pick the brightness, use the following from BASIC: 

SETCOLOR 4,O,brightness 

Or this: 

POKE 712,brightness 

where brightness has an even value between ° and 14. To pick a color, 
use 

COLOR C 

where "C" has a value between ° and 15. Machine language pro­
grammers should just store the color value in either the pixel or in 
AT ACHR, as for the brightness value in graphics mode nine. 

310 



APPENDIX FOUR 

Try the following changes to the graphics mode nine program: 

100 GRAPHICS 11 
110 SETCOLDR 4,0,6 
120 FOR C=O TO 15 
130 COLOR C 
140 FOR ROWa 88 TO 103 
150 PLOT C*4+ROW-88,ROW 
160 DRAWTO C*4+ROW-85,ROW 
170 NEXT ROW 
180 NEXT C 
190 GO TO 190 

As you can see, modes nine and eleven really are almost the same. 

One final note: You can still use players and missiles in graphics modes 
nine and eleven for a grand total of 21 different colors on the screen 
at one time! You will not, however, be able to detect collisions be­
tween players / missiles and playfield. 

311 



APPEN DIX FIVE 

THE DIFFERENT VERSIONS OF THE OS 

As has been mentioned throughout the book, there are currently two 
versions of the OS (three, actually, if you count the 1200). The reason 
for this is the fact that the original version of the OS, which we'll call 
version" A," had some bugs, or problems that caused it not to work 
properly sometimes. Version "8" was developed to take care of these 
bugs, but in the process a lot of the routines got moved . As a result, 
some of the OS locations listed in this book will only be correct for 
the version "A" OS. This will only affect you, however, if you are 
using the OS incorrectly. What do I mean by incorrectly? When the 
Atari computers first came out, Atari warned that programmers 
should not rely on the OS locations staying the way they were . If you 
wanted to use the OS in your own programs, said Atari, make sure 
you only use locations that are safe, mainly the vectors. As a matter 
of fact, the whole purpose of OS vectors is to let you use routines 
that might shift around. Anyway, my point here is that you should 
not try and use an OS routine if it doesn't have a vector. If you do, 
then don't expect your program to run on every Atari . If you abso­
lutely must use a nonvectored OS routine, look it up in the OS listing 
and copy it into your program. The only problem with this method 
is that it may create legal problems if you decide to sell your program 
commercially. Check with Atari in such cases . 

312 



APPENDIX FIVE 

If you're stubborn, and insist on making "illegal entries" into the OS, 
here's a list of the locations that are already unsafe (i.e., they've been 
changed): 

58460 through 58466 ($E45C through $E462) 
59126 through 60905 ($E6F6 through $EDE9) 
62015 through 62158 ($F23F through $F2CE) 

This represents a little less than a fifth of the OS. You should be 
aware, however, that not all the locations in the given ranges have 
been changed, and some of the routines have just been moved. Since 
it is highly recommended that you not enter the OS illegally, however, 
I'm not going to go into any more depth . 

In case you were wondering about the bus that version "B" fixed, 
here's a list: 

1. Sometimes, during II 0 to the disk drive, the disk drive would 
"fall asleep" (timeout) for a few seconds. 

2. Sometimes the screen display would disappear. 

3. Sometimes you would get an incorrect "ERROR 138" message 
during lIO (ERROR 138 is a device timeout error). 

4. POKEY timer four did not work properly. 

5. Sending SIO a buffer address with a low byte of 255 ($FF) caused 
SIO to loop forever. 

6. There was no vector for the BREAK key. 

313 



APPEN DIX SIX 

BASIC BUGS 

That's right, even BASIC has problems. As of this writing, the BASIC 
cartridge suffers from the following ailments: 

1. If you use INPUT without a variable, BASIC won't give you 
an error message, but will instead lock up when it reaches the 
INPUT. 

2. Sometimes when you're making a lot of changes to a program 
(especially if you're deleting lines or pressing RETURN a lot), 
BASIC will suddenly stop talking to you and won't let you see 
your program again. 

3. BASIC has problems with strings that are DIMensioned to a 
multiple of 256 (regardless of whether you use all 256 characters 
or not). If you have to have a string that's a multiple of 256 
long, add one more when you DIMension it. 

4. If for some reason you need to use the statement "PRINT 
A = NOT B", don't; it will put the computer to sleep. 

5. The cassette handler doesn't always set itself up properly when 
you tell BASIC to CSA VE or SA VE "C:". To get around this, 
and thus make sure your program is saved properly, type 

314 



APPENDIX SIX 

"LPRINT" and press RETURN before you save the program 
(make sure you printer is off if you have one). This will give 
you an error message, which you can just ignore. 

6. Strange things can happen if you type a program line that's 
longer than three screen lines. 

7. A lot of the mathematics is slightly off. For example, five cubed 
W3) will equal 124.999998 instead of 125 . Some other func­
tions do this also . You may want to round up if you need the 
accuracy. 

8. A printed CTRL-R or CTRL-U is treated like a semi-colon . 

9. BASIC does not like variable names that begin with "NOT". 

10. LOCATE and GET don ' t initialize properly, which means that 
they may give you different results when you RUN your pro­
gram a second time . If you use these commands, trick BASIC 
into initializing them by using a command like A = STR$(O) be­
fore the LOCATE or GET (you can use any variable instead 
of the "A"). 

11. If you are going to be inputting more than 128 bytes at a time, 
then page six in memory will not be safe. 

Although rumors abound that Atari is going to release a new version 
of BASIC to correct these BUGS, they had not done so as of the end 
of 1983. If you have an XL computer with built-in BASIC, try these 
to see if they have been fixed. 

315 



APPENDIX SEVEN 

INPUT/OUTPUT 

Input/Output, or I/O as it is more commonly called, is an extremely 
important part of any computer. Without it, the various parts of the 
computer wouldn't be able to talk to each other. Such communication 
isn't limited to disk drives and printers, either. The keyboard, tele­
vision set, and screen editor must all be able to tell the computer what's 
going on, and all of this is I/O's responsibility. Unfortunately, be­
cause I/O has so much to do, it can be a little complicated . Luckily, 
complicated doesn't mean difficult in this case, so despite all the mem­
ory locations that deal with I/O, the basic concept is relatively simple. 

There are three main routines that take care of 110 for a given device 
("device" is just a fancy word for the keyboard, printer, or whatever 
it is we want to talk to). They are shown in Figure 59a. 

Central Input/Output Routine 

Device Handler 

Serial Input/Output Routine 

FIGURE 59a. 1/0 devices 

(C10) 

(S10) 

To help these three routines talk to each other (I told you this got 
complicated), there are also four "control blocks" (Figure 59b). 

316 



Input/Output Control Block 

Zero·page I/O Control Block 

Device Control Block 

Command Frame Buffer 

APPENDIX SEVEN 

(10CB) 

(Z10CB) 

(DCB) 

(CFB) 

FIGURE 5gb. I/O control blocks 

Now that we've got the names straight, let's look at what each does, 
where it can be found, and how everything is tied together. 

IOCB 

Actually, it should be 10CBs, since there are eight of them. The IOCBs 
are found starting at location 832. Each one is made up of 16 bytes 
that are used to describe what kind of I /O we want to do. Although 
we can have information in all eight 10CBs at once, we can still only 
do one I/O operation at a time. 10CBs usually get their information 
from the user. 

ZIOCB 

There is only one ZIOCB, starting at location 32. It is set up exactly 
like an 10CB, and as a matter of fact contains the information for 
the 10CB that is currently being used. Why is it necessary? Because 
page zero is faster than regular memory, and we want to do 110 as 
quickly as possible. Since only one 10CB can be used at anyone time, 
it would be a waste of precious page zero memory to put all eight 
10CBs in page zero. CIO transfers the information from the 10CB 
to the ZIOCB. 

cia 

The CIO routine can be found in the OS ROM, starting at location 
58534. CIO takes the information in the IOCB that is currently being 
used and stores it in the ZIOCB. It then uses that information along 
with HAT ABS (794) to figure out which device handler is needed and 
then passes control to the device handler. 

Device Handler 

Again, it should be device handlers, since there is one for each device. 
The device handlers can be anywhere in memory, with HAT ABS con-

317 



taining a list of where to find them. A device handler does one of two 
things. If the device in question is the keyboard, the screen, or the 
screen editor, then the device handler takes care of the I/O itself. If 
it's something like the disk drive or printer that's plugged into the 
computer, then the device handler sets up the DCB with the infor­
mation it needs. 

The exception to this is the disk interface routine, which is also known 
as the internal disk handler. If you're not using DOS, then you have 
to set up the DCB yourself in order to talk to the disk drive . If you 
are using DOS, then a regular disk handler has been loaded into the 
computer and you can communicate with the disk drive through the 
10CBS. 

DCB 

The DCB (there is only one) is found starting at location 768. It is 12 
bytes long and is sort of like the 10CBs in the respect that it holds 
information that describes what kind of 110 we want to do. This time, 
however, the information is for SIO instead of CIO. 

810 

The SIO routines, like the CIO ones, are in the OS ROM, starting at 
location 59716. SIO takes the information in the DCB and uses it to 
talk to devices that use serial II 0 (printer, disk drive, cassette player, 
etc.). It also sets up and uses the CFB. 

CFB 

Last of all, we have the CFB. Made up of four bytes starting at lo­
cation 570, it helps SIO talk to the devices. The CFB is the one part 
of the 110 system that you should not mess around with yourself. 

Let's summarize by looking at the flow of information. The user sets 
up an IOCB and calls CIO. CIO takes the information in the 10CB, 
transfers it to the ZIOCB, figures out what device handler is needed, 
and transfers control to that handler. From there, the handler takes 
care of internal devices, or sets up the DCB and calls SIO if we need 
to communicate with a serial (external) device. Finally, SIO takes the 
information in the DCB, sets up the CFB, and does the I/O. After 
the 110 has been completed , whether by the handler or SIO, control 

318 



APPENDIX SEVEN 

is transferred back to the user. As a programmer, you can skip any 
of these steps with the exception of SIO. You should not skip all the 
way to the CFB. 

BASIC programmers may want to look at the excellent article in issue 
13 of Analog Computing for ways to go straight to CIO. 

319 



APPENDIX EIGHT 

IOCB COMMAND BYTE VALUES 

The third byte in each IOCB is the command byte, called IOCMD. 
This is the byte that tells CIO what kind of I/O we want to do (see 
Appendix Seven if none of this makes sense) . It can have the values 
in Figure 60. 

VALUE MEANING BASIC equivalent 

3 OPEN channel OPEN #n 

5 GET record INPUT #n 

7 GET bytes GET #n 

9 PUT record none 

11 PUT bytes PUT #n 

12 CLOSE channel CLOSE #n 

13 GET status none 

FIGURE 60. IOCB command byte values 

In case you're wondering what happened to PRINT #n, BASIC uses 
a special vector to talk directly to the handler for this particular state­
ment. 

You should note that with the "GET bytes" and "PUT bytes" rou­
tines, BASIC only allows you to GET and PUT one byte at a time. 

320 



APPENDIX EIGHT 

If you access CIO directly, however, you can GET or PUT a whole 
buffer. With this in mind, you may ask what the difference is between 
GETting or PUTting a buffer and GETting of PUTting a record. If 
there are no carriage returns (End-Of-Lines or EOLs) in the buffer 
then there is no difference. A record, however, ends when either the 
end of the buffer is reached or an EOL encountered. 

CIO takes care of all of these commands. Some of the devices also 
have their own special commands, which the corresponding device 
handler takes care of. Here's a list of those commands, which you 
cah access using BASIC's XIO command : 

Display Handler 

17 DRAW line 
18 FILL 

Disk File Manager 

32 RENAME file 
33 DELETE file 
35 LOCK file 
36 UNLOCK file 
37 NOTE 
38 POINT 

254 FORMAT disk 

RS-232 Handler 

32 Force short block 
34 CONTROL DTR, RTS , XMT 
36 Configure baud rate 
38 Configure translation mode 
40 Start concurrent I/O mode 

For more information on any of these commands, you should see the 
OS manual or the 850 Interface manual. 

As mentioned in Appendix Seven, if you want to use the resident disk 
handler (i .e., you're not using DOS or FMS at all), you have to set 
up the DCB and then do a JSR DISKINV (58451). The DCB has dif­
ferent command values than the 10CB, of course, and a list can be 
found under DCOMND at location 770. 

321 



APPENDIX NINE 

CHARACTER VALUES 

Most of the characters with values between 128 and 255 are just the 
inverse characters of the ones with values between 0 and 127. In other 
words, add 128 to a character value and you get that character in 
inverse video, with the following exceptions: 

Character ATASCII 

RETURN 155 

SHIFT·DELETE 156 

SHIFT·INSERT 157 

GTRL·TAB 158 

SHIFT·TAB 159 

GTRL·2 253 

GTRL·DELETE 254 

GTRL·INSERT 255 

322 



APPENDIX NINE 

Screen 

Character Internal ATASCII Representation 

space 0 32 D 
! 1 33 [JJ 
" 2 34 ~ 
# 3 35 [II] 
$ 4 36 ~ 
% 5 37 ~ 
& 6 38 ~ 

7 39 ~ 
( 8 40 ~ 
) 9 41 [LJ 
* 10 42 ~ 
+ 11 43 [±J 
, 12 44 W 

- 13 45 EJ 
14 46 GJ 

/ 15 47 [Z] 
0 16 48 ~ 
1 17 49 ~ 
2 18 50 ~ 
3 19 51 ~ 
4 20 52 ~ 
5 21 53 ~ 
6 22 54 ~ 

323 



Screen 

Character Internal ATASCII Representation 

7 23 55 rn 
8 24 56 ~ 
9 25 57 ~ 

26 58 D 
, 27 59 CJ 
< 28 60 ~ 
== 29 61 EJ 
> 30 62 ~ 
? 31 63 LZJ 
@ 32 64 [@l 
A 33 65 IBJ 
B 34 66 ~ 
C 35 67 [Q 
D 36 68 ~ 
E 37 69 ~ 
F 38 70 [EJ 
G 39 71 ~ 
H 40 72 R 
I 41 73 m 
J 42 74 [;:[] 
K 43 75 IRl 
L 44 76 [bJ 
M 45 77 H 

324 



APPENDIX NINE 

Screen 

Character Internal ATASCII Representation 

I N I 46 78 rAl I 
0 47 79 [QJ 
P 48 80 [EJ 
Q 49 81 [QJ 
R 50 82 [HJ 
S 51 83 lSI 
T 52 84 IT] 
U 53 85 (g] 
V 54 86 ~ 
W 55 87 lEI] 
X 56 88 IE] 
y 57 89 ~ 
Z 58 90 ~ 
[ 59 91 [bJ 
\ 60 92 ~ 
1 61 93 crJ 
1\ 62 94 ffi 

- 63 95 lE 
CTRL-, 64 0 C 
CTRL-A 65 1 G 
CTRL-8 66 2 ~ 
CTRL-C 67 3 CI . 
CTRL-O 68 4 

325 



Screen 

Character Internal ATASCII Representation 

CTRL-E 69 5 1:1 
CTRL-F 70 6 ~ 
CTRL-G 71 7 ~ 
CTRL-H 72 8 ~ 
CTRL-I 73 9 IrJ 
CTRL-J 74 10 ~ 
CTRL-K 75 11 ~ 
CTRL-L 76 12 'I 
CTRL-M 77 13 til 
CTRL-N 78 14 ~ 
CTRL-O 79 15 ~ 
CTRL-P 80 16 C 
CTRL-Q 81 17 ~ 
CTRL-R 82 18 = CTRL-S 83 19 ~ 
CTRL-T 84 20 C 
CTRL-U 85 21 ~ 
CTRL-V 86 22 II 
CTRL-W 87 23 ~ 
CTRL-X 88 24 ~ 
CTRL-Y 89 25 [I 
CTRL-Z 90 26 g 

ESC 91 27 ~ 

326 



APPENDIX NINE 

Screen 

Character Internal ATASCII Representation 

UP ARROW 92 28 0 
DOWN ARROW 93 29 D 
LEFT ARROW 94 30 B RIGHT ARROW 95 31 

CRTL- . 96 96 0 
a 97 97 ~ 
b 98 98 [Q] 
c 99 99 /0/ 
d 100 100 [Q] 
e 101 101 ~ 
f 102 102 ffi 
9 103 103 [9J 
h 104 104 [5J 
i 105 105 rn 
j 106 106 [JJ 
k 107 107 [KJ 
I 108 108 rn 

m 109 109 [OJ 
n 110 110 [OJ 
0 111 111 [QJ 
P 112 112 [EJ 
q 113 113 [9] 
r 114 114 [D 

327 



Screen 

Character Internal ATASCII Representation 

s 115 115 ~ 
t 116 116 ffi 
u 117 117 g 
v 118 118 M 
w 119 119 ~ 
x 120 120 ~ 
Y 121 121 [gJ 
z 122 122 ~ 

CRTL- ; 123 123 D 
SHIFT-= 124 124 OJ 
CLEAR 125 125 [J 
DELETE 126 126 [] 

TAB 127 127 I] 

328 



APPENDIX TEN 

STAGE TWO VBLANK 

At location VVBLKI (546,547), we discussed the various stages of 
VBLANK and I promised a list of things that were done during stage 
two. This is that list. 

The following hardware registers are updated with the values in their 
shadow registers (listed in the order they are updated): 

Hardware 
LPENV 
LPENH 
SDLSTH 
SDLSTL 
SDMCTL 
GPRIOR 
PCOLRO-3 
COLORO-3 
COLOR4 
CHBAS 
CHACT 
TRIGO-3 
POTO-7 

Shadow 
PENV 
PENH 
DLISTH 
DLISTL 
DMACTL 
PRIOR 
COLPMO-3 (Colors are first adjusted for the 
COLPFO-3 attract mode.) 
COLBK 
CHBASE 
CHACTL 
STRIGO-3 
PADDLO-7 

329 



The following shadow registers are updated with the values in the cor­
responding hardware registers: 

Shadow 
STICKO,l 
STICK2,3 
PTRIGO-3 
PTRIG4-7 

Hardware 
PORTA 
PORTB 
PORTA 
PORTB 

In addition to all this, the following timers are decremented, and the 
appropriate actions taken if they reach zero: 

CDTMV2-5 
KEYDEL 
SRTIMR 

Note that the last two timers deal with the keyboard debounce and 
repeat, respectively, and are only decremented if necessary. CDTMVI 
is taken care of in stage one. 

Finally, the last thing stage two does is jump through VVBLKD 
(548,549) . 

330 



APPEN DIX ELEVEN 

THE ATARI XL COMPUTERS 

This book was finished just as the 600, 800, 1400 XL computers were 
about to be released . Atari has been late in releasing information about 
the new computers, but our secret "mole," DEEP CHIP, reports that 
the new computers use the same OS. Experiment to be sure and we 
will update this section in a future edition. We also have been told 
that customer service will provide a disk that can cause an XL com­
puter to act like a 400 / 800. Call them if you have trouble running 
older programs on your computer. 

You may already be aware that there is a big difference between the 
1200XL and the earlier Ataris. Not only are there more features, but 
a lot of the software written for the 400/800 won't run on the 1200XL. 
Why not? Well, a lot of changes were made to the operating system, 
and all the people who used parts of the OS other than the vectors 
found that their programs didn't work on the 1200XL. Even Atari 

331 



was guilty. So before we take a look at where the differences are, let 
me once again emphasize that you should never, never, never use any 
part of the OS other than the safe vectors (see Appendix Thirteen) . 
This means that you should stay away from the OS RAM locations, 
with the exception of locations that the average person may want to 
use. This means that locations like LMARGN (82) and CRSINH (752) 
are safe, but locations like PBUFSZ (30) and FREQ (64) are not. The 
BASIC manual has a partial list of "safe" locations, with the excep­
tion of NEWROW and NEWCOL (96 through 98). If in doubt about 
whether or not you can use a location, don't. If you absolutely have 
to, get hold of both types of computers and make sure it works on 
both. 

1200XL OS MEMORY MAP 

Before we get into the specific changes to the OS, the following will 
give you an idea of where things are in the 1200XL memory. It as­
sumes that DOS 2.0S is loaded, and that there is 48K memory. You 
should be able to make the appropriate changes for no DOS or less 
memory (Figure 61). 

0- 127 

128- 255 

256- 511 

512- 1535 

1536- 1791 

1792- 7419 

7420-40959 

40960-49151 

49152-52223 

52224-53247 

53248-53503 

53504-53759 

53760-54015 

54016-54271 

54272-54527 

54528-55295 

55296-57343 

57344-58367 

58368-65535 

0000-007F OS page zero RAM 

0080-00FF BASIC or user page zero RAM 

0100-01FF 6502 stack 

0200-05FF OS RAM 

0600-06FF Free RAM 

0700-1CFB DOS 

1CFC-9FFF BASIC or user RAM 

AOOO-BFFF Cartridge 

COOO-CBFF OS ROM 

CCOO-CFFF International character set ROM 

DOOO-DOFF GTIA 

D1 00-D1 FF Currently unused 

D200-D2FF POKEY 

D300-D3FF PIA 

D400-D4FF ANTIC 

D500-D7FF Currently unused 

D800-DFFF Floating point package 

EOOO-E3FF Regular character set 

E400-FFFF OS ROM 

FIGU RE 61 . 1200XL memory locations 

332 



APPEN DIX ELEVEN 

1200XL OS RAM DIFFERENCES 

This section will summarize the differences between the version "B" 
OS and the 1200XL OS . I apologize that the explanations are not 
more thorough; detailed information on the 1200XL was not easy to 
come across at the time of this writing. 

LINFLG 
o 0000 

Used while originally debugging the OS. 

NGFLAG 
1 0001 

A flag for the powerup self-test routine. When you first turn on the 
1200XL, it checks all its memory locations to make sure they're work­
ing correctly. 

ABUFPT 
28-31 001C-00IF 

333 



These locations are simply described as "reserved," but from the name 
I suspect they are some kind of buffer pointers. 

PTIMOT, which used to be at location 28, has been moved to 788. 

PBPNT has been moved to 734. 

PBUFSZ has been moved to 735 . 

PTEMP no longer exists. 

LTEMP 
54,55 0036,0037 

This, along with any other locations that have the word "loader" in 
their description, is used by the relocating loader that the 1200XL uses 
to upload device handlers through the serial 110 port. As this de­
scription implies, it's not really something you need worry about. 

CRETRY has been moved to 668. 

DRETRY has been moved to 701. 

ZCHAIN 
74,75 004A,004B 

A temporary handler loader location. 

CKEY has been moved to 1001 

CASSBT has been moved to 1002. 

FKDEF 
96,97 0060,0061 

There are four function keys on the 1200XL, labeled FI, F2, F3, and 
F4. FKDEF points to a table of values for the keys. When you press 
F2, for example, the second value in the table is used as the AT ASCII 
value for the key. There are eight bytes in the table all together, with 
the last four being for SHIFT-Fl, SHIFT-F2, SHIFT-F3, and SHIFT­
F4. You can, if you want, change FKDEF to point to your own table. 

NEW ROW has been moved to 757. 

334 



APPENDIX ELEVEN 

NEWCOL has been moved to 758. 

PALNTS 
98 0062 

If PALNTS equals zero, then this is an NTSC Atari. Otherwise it's a 
PAL. See PAL at location 53268 for an explanation of the two . 

NEWCOL + I has been moved to 759. 

KEYDEF 
121,122 0079,007A 

In the 1200XL, not only can you redefine the function keys, you can 
also define the whole keyboard with the help of KEYDEF. Well, al­
most the whole keyboard . KEYDEF is of no help if you want to re­
define the following : 

BREAK, SHIFT, CTRL, OPTION, SELECT, START, RESET, 
HELP, CTRL-l, CTRL-Fl, CTRL-F2, CTRL-F3, CTRL-F4. 

What KEYDEF does is point to a 192-byte table. This table contains 
the AT ASCII values to be assigned to the various keys . Here's how 
the bytes are used: 

0- 63 Key alone 
64-127 SHIFT plus key 

128-191 CTRL plus key 

And here's how the keys are ordered within each group of 64 bytes 
(Figure 62). 

0 1 2 3 4 5 6 7 

0 L J F1 F2 K + . 
8 0 P U RET I - = 

16 V HLP C F3 F4 B X Z 

24 4 3 6 ESC 5 2 1 

32 , SPC N M I INV 

40 R E Y TAB T W Q 

48 9 0 7 BS 8 < > 
56 F H D CAP G S A 

FIGURE 62. 1200XL keyboard layout 

335 



Suppose, for example, you pressed the "M" key . "M" is in the col­
umn marked "5" and the row marked "32", which means it is 
byte 37 (32+5) . SHIFT-M would be the 101st byte (37+64), and 
CTRL-M would be byte 165 (37 + 128). These are the three bytes you 
would use to store the AT ASCII values that you want assigned to 
those key combinations. 

Before you attempt to change the table , you may want to check the 
one currently being used to get an idea of which values are assigned 
to each key. This will help you with keys like CTRL-CAPS and so 
forth. Once you've set up all 192 bytes somewhere in memory, change 
KEYDEF to point to the table . 

ROWINC has been moved to location 760. 

COLINC has been moved to location 761. 

LCOUNT 
563 0233 

Another temporary loader variable. 

RELADR 
568,569 0238,0239 

A loader variable . 

RECLEN 
581 0245 

Another loader variable. 

Noname 
583-618 0247-026A 

336 



APPENDIX ELEVEN 

Reserved for undocumented uses. 

LINBUF no longer exists. 

CHSALT 
619 026B 

The 1200XL has two built-in character sets: the regular one and a new 
international one. CHSALT supposedly holds the address (in pages) 
of the one that is not being used at the moment. It does not, however, 
seem to have any function at all on the 1200XLs I've been using . 

You can use CTRL-F4 to switch between the two character sets. 

VSFLG 
620 026C 

This is a temporary fine-scroll location. 

KEYDIS 
621 026D 

If this location is set to 255, then the entire keyboard is disabled, with 
the exception of the following: 

CTRL-Fl, RESET, OPTION, SELECT, START 

CTRL-Fl will restore KEYDIS to zero, which will fe-enable the key­
board. POKEing KEYDIS with any value between 1 and 254 will dis-

337 



able CTRL-Fl as well. The only way to re-enable the keyboard in this 
case is to POKE KEY DIS with a 0 or press the RESET key. 

FINE 
622 026E 

If you ever wished that you could fine-scroll program listings, or any 
other output to a graphics mode zero screen, FINE is the location for 
you. Set it to any value other than zero before your GRAPHICS com­
mand, and then try listing a program or PRINTing a lot of stuff to 
the screen. To get back to regular scrolling, POKE it with a zero be­
fore a GRAPHICS command. 

HIBYTE 
648 0288 

A loader location . 

CST AT no longer exists. 

NEWADR 
654 028E 

Another loader location. 

CRETRY 
668 029C 

This was moved here from location 54. 
TMPXl no longer exists. 

DRETRY 
701 02BD 

This was moved here from location 55. HOLD5 no longer exists. 

RUNADR 
713,714 

Loader location. 

HIUSED 
715,716 

02C9,02CA 

02CB,02CC 

338 



Loader location. 

ZHIUSE 
717,718 

Loader location. 

GBYTEA 
719,720 

Loader location. 

LOADAD 
721,722 

02CD,02CE 

02CF,02DO 

02Dl,02D2 

Loader location . 

ZLOADA 
723,724 02D3,02D4 

Loader location. 

DSCTLN 
725,726 02D5 ,02D6 

APPENDIX ELEVEN 

339 



Finally, something other than a loader location! DSCTLN is used to 
specify the length of a disk sector. Powerup and RESET set it to 128, 
but you can set it to anything between 1 and 65536. 

ACMISR 
727,728 02D7,02D8 

Reserved for undocumented uses. 

KRPDEL 
729 02D9 

This one is actually useful. If you press a key and hold it down, after 
a short delay it will start repeating. KRPDEL specifies the delay. It's 
initialized to 48, which represents 48/60 = 0.8 seconds. You can 
change it to any value between 1 and 255, resulting in a delay between 
one-sixtieth of a second and 4.25 seconds. You can also set it to 0, 
which will disable the repeat function altogether. 

KEYREP 
730 02DA 

Once a key starts repeating, there is another delay between repeats. 
KEYREP specifies this delay. It's initialized to six, or one-tenth of a 
second, which means that you will get 10 characters a second once a 
key starts repeating. You can make this as fast as 60 characters a 
second (KEYREP = 1) or as slow as 1 character every 4.25 seconds 
(KEYREP =255). 

NOCLIK 
731 02DB 

If NOCLIK is set to 0, then the television speaker will make a "click­
ing" sound every time you press a key . Set it to 255 and it won't. 
CTRL-F3 will switch it back and forth between the two values. 

By the way, if you set NOCLIK to a value other than 0 or 255, the 
click will be turned off and CTRL-F3 will have no effect on it; it can 
only be turned back on by pressing RESET or POKEing NOCLIK 
with a 0. 

HELPFG 
732 02DC 

340 



APPENDIX ELEVEN 

HELPFG is used to tell whether or not the HELP key is pressed. It 
can have the following values: 

o means it's not pressed. 
17 means that HELP is pressed. 
81 means that SHIFT-HELP is pressed. 

145 means that CTRL-HELP is pressed. 

You should note that HELPFG will not change to zero when the 
HELP key is released. That means that you should POKE 732,0 be­
fore you try and read it. Otherwise you may get an old value. 

DMASAV 
733 02DD 

You can use CTRL-F2 to turn off DMA in order to speed up calcu­
lations. What happens is the OS stores a zero into SDMCTL at lo­
cation 559. When you press any other key, SDMCTL will be reset to 
whatever value it was before. The OS uses DMASAV to hold the value 
of SDMCTL so it knows what to reset it to. 

PBPNT 
734 02DE 

This was moved here from location 29. 

PBUFSZ 
735 02DF 

34 1 



This was moved here from location 30. 

HNDLOD 
745 02E9 

A handler loader flag . 

CHBAS 
756 02F4 

Don't worry, this is still the same as it was before. The reason I'm 
mentioning it here is because there is now a new character set built 
into the computer. If you POKE CHBAS with a value of 204, you'll 
get an international character set. This is the same as the regular char­
acter set, except that the graphics characters have been redefined and 
are now letters and characters that English doesn 't normally use. 

You can use CTRL-F4 to switch back and forth between the two built­
in character sets. If you have your own character set in memory, how­
ever, pressing CTRL-F4 the first time will switch you to the inter­
national character set, but pressing it again will give you the regular 
character set instead of yours. In other words, you can't use CTRL­
F4 to switch between the regular character set and your special char­
acter set. 

NEW ROW 
757 02F5 

This was moved here from location 96. 

NEW COL 
758,759 02F6,02F7 

This was moved here from locations 97 and 98. 

ROWINC 
760 02F8 

This was moved here from location 121. 

COLINC 
761 02F9 

342 



This was moved here from location 122. 

JMPERS 
782 030E 

APPENDIX ELEVEN 

JMPERS is used to tell how the system is configured. It is unclear at 
this time exactly what that means. 

PTIMOT 
788 0314 

This was moved here from location 28. 

TEMP2 was moved to location 787 . 

PUPBTl-PUPBT3 
829-831 033D-033F 

These are simply labeled as "power-up / reset." They seem to have 
some kind of effect on what happens if you press RESET, but I'm 
not sure what it is. 

SUPERF 
1000 03E8 

343 



Another mystery, this one is simply described as "screen editor." I 
assume it's used as some kind of variable by the screen editor. POKE­
ing values to it doesn't seem to have any effect, and it always reads 
zero. 

CKEY 
1001 03E9 

This was moved here from location 74. 

CASSBT 
1002 03EA 

This was moved here from location 75. 

CARTCK 
1003 03EB 

CARTCK is the checksum value for the cartridge. It is used to make 
sure the cartridge is being read correctly. 

ACMVAR 
1005-1016 03ED-OEF8 

Reserved for undocumented uses. 

MINTLK 
1017 

Also reserved. 

CINTLK 
1018 

03F9 

03FA 

Cartridge interlock. The 1200XL lets you unplug and plug in a car­
tridge without turning the computer off first. CINTLK tells the OS 
whether or not a cartridge is currently being plugged in or pulled out. 
If it's equal to one, then everything is OK. If not, it will reboot the 
system . That means that POKEing CINTLK with anything other than 
one will have the same effect as turning the computer off and then 
back on again. 

344 



CHUNK 
1019,1020 03FB,03FC 

APPEN DIX ELEVEN 

Handler chain. Sorry, but that's all I know about it. 

You should also be aware that PORTB in the PIA chip (54017) is no 
longer used for controller jacks three and four, since there are only 
two controller jacks on a 1200XL. Similarly, any locations dealing 
with joystick two, joystick three, paddle four, paddle five, paddle six, 
or paddle seven will no longer be of any use. 

EXTRA GRAPHICS MODES 

That's right, the 1200XL gives you four extra modes that the 400/800 
doesn't. Actually, that's not quite true. Back at SDLSTL we saw that 
there were five ANTIC graphics modes that BASIC didn't allow you 
to use unless you set up your own display list. All the 1200XL does 
is give the screen handler the capability to set up four of these modes 
for you. Graphics 12 will give you an ANTIC mode four display list, 
Graphics 13 ANTIC mode five, Graphics 14 ANTIC mode twelve, 
and GRAPHICS 15 ANTIC mode fourteen. For more information 
on each of these modes, see ApIJendix Twelve on ANTIC modes. 

345 



APPENDIX TWELVE 

DISPLAY LIST COMMANDS AND ANTIC MODES 

As we saw at SDLSTL (560), the display list is actually a little program 
for ANTIC, telling it what the screen is to look like . It has its own 
special commands, as summarized in Figure 63. To use this chart, 
decide which of the HSC, VSC, LMS, and DLI options you want (see 
SDLSTL for a description of each), find the column that has the cor­
responding boxes LABELED in at the top, and then follow it down 
to the instruction you want. 

Since this is a chart that assembly language programmers are going 
to use a lot, I'll also include a hexadecimal version (Figure 64). 

Let's take a look now at the various CHR and MAP modes: 

CUR 2 is GRAPHICS O. 

CUR 3 is the same as GRAPHICS 0 except that the characters are 
lO-scan-lines high instead of 8. This allows you to have lowercase des­
cenders, which means that the tails on "g", "j", "p" , "q", and "y" 

346 



~
 

.f:
o.

 
-J

 

o 
BL

K
 

BL
K

 
BL

K
 

BL
K

 
BL

K
 

BL
K

 
BL

K
 

BL
K

 
JM

P 
JV

B 
CH

R 

2 
16

 
3 

32
 

4 
48

 
5 

64
 

6 
80

 
7 

96
 

8 
11

2 

2 

CH
R 

3 

CH
R 

4 
CH

R 
5 

CH
R 

6 
CH

R 
7 

M
AP

 
8 

M
AP

 
9 

M
AP

 
10

 
M

AP
 

11
 

M
AP

 
12

 
M

AP
 

13
 

M
AP

 
14

 
M

AP
 

15
 

1 65
 2 3 4 5 6 7 8 9 10
 

11
 

12
 

13
 

14
 

15
 

H
SC

 

18
 

19
 

20
 

21
 

22
 

23
 

24
 

25
 

26
 

27
 

28
 

29
 

30
 

31
 

H
SC

 
V

SC
 

V
SC

 

34
 

35
 

36
 

37
 

38
 

39
 

40
 

41
 

42
 

43
 

44
 

45
 

46
 

47
 

50
 

51
 

52
 

53
 

54
 

55
 

56
 

57
 

58
 

59
 

60
 

61
 

62
 

63
 

H
SC

 
H

SC
 

V
SC

 
V

SC
 

LM
S 

LM
S 

LM
S 

LM
S 

66
 

67
 

68
 

69
 

70
 

71
 

72
 

73
 

74
 

75
 

76
 

77
 

78
 

79
 

82
 

83
 

84
 

85
 

86
 

87
 

88
 

89
 

90
 

91
 

92
 

93
 

94
 

95
 

98
 

99
 

10
0 

10
1 

10
2 

10
3 

10
4 

10
5 

10
6 

10
7 

10
8 

10
9 

11
0 

11
1 

11
4 

11
5 

11
6 

11
7 

11
8 

11
9 

12
0 

12
1 

12
2 

12
3 

12
4 

12
5 

12
6 

12
7 

DL
I 

12
8 

14
4 

16
0 

17
6 

19
2 

20
8 

22
4 

24
0 

12
9 

19
3 

13
0 

13
1 

13
2 

13
3 

13
4 

13
5 

13
6 

13
7 

13
8 

13
9 

14
0 

14
1 

14
2 

14
3 

H
SC

 

DL
I 

14
6 

14
7 

14
8 

14
9 

15
0 

15
1 

15
2 

15
3 

15
4 

15
5 

15
6 

15
7 

15
8 

15
9 

F
IG

U
R

E
 6

3.
 

D
is

p
la

y 
lis

t 
co

m
m

a
n

d
 c

h
a

rt
 

H
SC

 
V

SC
 

V
SC

 

DL
I 

16
2 

16
3 

16
4 

16
5 

16
6 

16
7 

16
8 

16
9 

17
0 

17
1 

17
2 

17
3 

17
4 

17
5 

DL
I 

17
8 

17
9 

18
0 

18
1 

18
2 

18
3 

18
4 

18
5 

18
6 

18
7 

18
8 

18
9 

19
0 

19
1 

H
SC

 
H

SC
 

V
SC

 
V

SC
 

LM
S 

LM
S 

LM
S 

LM
S 

DL
I 

19
4 

19
5 

19
6 

19
7 

19
8 

19
9 

20
0 

20
1 

20
2 

20
3 

20
4 

20
5 

20
6 

20
7 

DL
I 

DL
I 

21
0 

22
6 

21
1 

22
7 

21
2 

22
8 

21
3 

22
9 

21
4 

23
0 

21
5 

23
1 

21
6 

23
2 

21
7 

23
3 

21
8 

23
4 

21
9 

23
5 

22
0 

23
6 

22
1 

23
7 

22
2 

23
8 

22
3 

23
9 

DL
I 

24
2 

24
3 

24
4 

24
5 

24
6 

24
7 

24
8 

24
9 

25
0 

25
1 

25
2 

25
3 

25
4 

25
5 



w
 

.j
>

. 
0

0
 

B
L

K
 

B
L

K
 

2 

B
L

K
 

3 

B
L

K
 

4 
B

L
K

 
5 

B
L

K
 

6 
B

L
K

 
7 

B
L

K
 

8 

JM
P

 

~
V
B
 

C
H

R
 

2 

C
H

R
 

3 

00
 

10
 

20
 

30
 

40
 

50
 

60
 

70
 

01
 

41
 

02
 

03
 

C
H

R
 

4 
04

 

C
H

R
 

5 
05

 

C
H

R
 

6 
06

 

C
H

R
 

7
· 

07
 

M
A

P
 

8 
08

 

M
A

P
 

9 
09

 

M
A

P
 

A
 

O
A 

M
A

P
 

B
 

0
8

 

M
A

P
 

C
 

O
C

 

M
A

P
 

0 
0

0
 

M
A

P
 

E
 

O
E 

M
A

P
 

F
 

O
F 

H
S

C
 

H
S

C
 

12
 

13
 

14
 

15
 

16
 

1
7

 

18
 

19
 

1
A

 

1
8

 

1C
 

1
0

 

1
E

 

1
F

 

V
S

C
 

V
S

C
 

22
 

23
 

24
 

25
 

26
 

27
 

28
 

2
9

 

2
A

 

2
8

 

2C
 

2
0

 

2
E

 

2
F

 

32
 

33
 

3
4

 

35
 

3
6

 

37
 

38
 

3
9

 

3
A

 

3
8

 

3
C

 

3
D

 

3
E

 

3
F

 

H
S

C
 

H
S

C
 

V
S

C
 

V
S

C
 

L
M

S
 

L
M

S
 

L
M

S
 

L
M

S
 

42
 

43
 

44
 

45
 

46
 

47
 

48
 

49
 

4
A

 

4
8

 
4C

 

4
0

 

4
E

 

4
F

 

52
 

5
3

 

5
4

 

55
 

5
6

 

57
 

5
8

 

5
9

 

5
A

 

5
8

 

5
C

 

5
0

 

5
E

 

5
F

 

6
2

 

63
 

64
 

65
 

66
 

6
7

 

68
 

69
 

6
A

 

6
8

 
6C

 

6
0

 
6

E
 

6
F

 

72
 

73
 

74
 

75
 

76
 

77
 

78
 

79
 

7
A

 

7
8

 

7C
 

7
D

 

7
E

 

7
F

 

D
LI

 

80
 

90
 

AO
 

8
0

 

C
O

 

DO
 

EO
 

FO
 

81
 

C
1 82

 

8
3

 

84
 

85
 

86
 

87
 

88
 

89
 

8
A

 

8
8

 
8C

 
8

0
 

8E
 

8
F

 

H
S

C
 

H
S

C
 

H
S

C
 

H
S

C
 

V
S

C
 

V
S

C
 

V
S

C
 

V
S

C
 

L
M

S
 

L
M

S
 

L
M

S
 

L
M

S
 

D
LI

 
D

LI
 

D
LI

 
D

LI
 

D
LI

 
D

LI
 

D
LI

 

9
2

 

93
 

94
 

95
 

9
6

 

97
 

98
 

9
9

 

9
A

 

9
8

 
9

C
 

9
0

 
9

E
 

9
F

 

A
2

 

A
3

 

A
4 

A
5

 

A
6

 

A
7

 

A
8 

A
9

 

A
A

 

A
8

 

A
C

 

A
D

 

A
E 

A
F 

8
2

 

8
3

 

8
4

 
8

5
 

8
6

 
8

7
 

8
8

 

8
9

 
8

A
 

8
8

 
8

C
 

8
0

 

8E
 

8
F

 

C
2 

C
3

 

C
4 

C
5

 

C
6 

C
7 

C
8 

C
9

 

C
A

 

C
8

 
C

C
 

CO
 

C
E

 

C
F

 

0
2

 

0
3

 

0
4

 

0
5

 

0
6

 
0

7
 

0
8

 

0
9

 
O

A
 

0
8

 

D
C 

DO
 

D
E 

O
F 

E
2 

E
3 

E
4 

E
5 

E
6 

E
7 E8
 

E
9 EA

 
E

8 
E

C
 

ED
 

E
E

 

EF
 

F
2 

F
3 

F
4 

F
5 

F
6 

F
7

 

F
8 

F
9

 

FA
 

F
8

 

F
C

 

FO
 

FE
 

F
F

 

F
IG

U
R

E
 6

4.
 

D
is

p
la

y 
lis

t 
co

m
m

a
n

d
 c

h
a

rt
, 

h
e

x 
ve

rs
io

n
 



APPENDIX TWELVE 

can drop below the rest of the letters as they should. How do you use 
this mode? The first step is to redefine the character set. Actually, 
you only have to change the lowercase letters. What will happen is 
ANTIC will take the first two bytes of the character description and 
stick them on the end of the character. It will then make the first two 
scan lines of the character blank . For nonlowercase characters, it will 
leave the bytes in order and make the last two scan lines blank . Just 
in case that doesn't make any sense, let's look at it in pictures (Figure 
65) . 

In memory: 

00000000 00001100 
01100110 01111000 
01100110 00000000 
01100110 01100110 
00111100 01100110 
00011000 01100110 
00011000 01100110 

00011000 00111110 

On the screen: 

(0) 
(1 ) ## ## 

(2) ## ## 

(3) ## ## ## ## 

(4) #### ## ## 

(5) ## ## ## 

(6) ## ## ## 

(7) ## ##### 

(8) ## 

(9) #### 

FIGURE 65. Scan lines with lower-case letters 

You should note that because each character is now 10-scan-lines high, 
you can only have 19 rows on the screen (192/10). Make sure of this 
when you change the display list. 

349 



CUR 4 lets you have multi-colored characters. That's right, you can 
have as many as four different colors in the same character. Let's take 
a look at how this works. 

ANTIC mode four characters are the same size as graphics mode zero 
characters . The difference, however, is in the size of the pixels that 
make up the character. The pixels in both modes are one scan line 
high, but in ANTIC mode four they are as wide as graphics mode 
seven pixels (one color clock) rather than graphics mode eight. Why? 
In order to have four colors, a pixel must be represented by at least 
two bits. That means that the ANTIC mode four pixels have to be 
twice as wide as those in graphics mode zero, which use one-bit-per­
pixel. 

Because a character in ANTIC mode four is only four by eight pixels, 
they aren't of much use for letters and stuff. They are, however, great 
for graphics. Whatever you end up using them for, How ANTIC in­
terprets a character description byte in this mode is shown in Figure 
66. 

Now you may be wondering what happens if you try and print a char­
acter in inverse video (i.e., an ATASCII value greater than 127). Do 
all the colors reverse? No, only the pixels with a value of "11" will 
change; Instead of getting their color from COLOR2 they will get it 
from COLOR3. This means that you can have all five colors at the 
same time! 

To design a character set for this mode, just follow the instructions 
given for a regular character set, keeping the preceding changes in 
mind . 

350 



BITS 

USE 

PIXEL 

VALUE 

00 

01 

10 

11 

7 6 

PIXEL 1 

5 4 
PIXEL 2 

COLOR REGISTER 

COLOR4 (background) 

COLORO 

COLOR1 

COLOR2 

APPENDIX TWELVE 

3 2 

PIXEL 3 

1 0 

PIXEL 4 

FIGURE 66. Character description via ANTIC 

CRR 5 is the same as CHR 4 except the characters are now twice as 
high. Otherwise there's no difference. 

CRR 6 is GRAPHICS 1. 

CRR 7 is GRAPHICS 2. 

MAP 8 is GRAPHICS 3. 

MAP 9 is GRAPHICS 4. 

MAP 10 is GRAPHICS 5. 

MAP 11 is GRAPHICS 6. 

MAP 12 is the same as MAP 11 except the pixels are one scan line 
high instead of two. 

MAP 13 is GRAPHICS 7. 

MAP 14 is the same as MAP 13 except the pixels are one scan line 
high instead of two. See DINDEX at location 87 for an example of 
this mode. 

MAP 15 is GRAPHICS 8. 

351 



APPENDIX THIRTEEN 

SAFE OS VECTORS 

Figure 67 is a list of vectors that Atari says will remain the same no 
matter what changes the OS undergoes. If you want to make sure that 
your program will run on all the different kinds of Ataris, make sure 
you don't enter the OS through any other locations. 

NAME AD DR FUNCTION 

EDITRV 58368 Vector table for the screen editor. 

SCRENV 58384 Vector table for the display handler. 

KEYBDV 58400 Vector table for the keyboard handler. 

PRINTV 58416 Vector table for the printer handler. 

CASETV 58432 Vector table for the cassette handler. 

DSKINV 58451 Entry point for the resident disk handler. 

CIOV 58454 Entry point for CIO. 

SIOV 58457 Entry point for SIO. 

SETVBV 58460 Routine to set the system timers and VBLANK 

vectors. 

SYSVBV 58463 Entry point for stage one VBLANK. 

XITVBV 58466 Exit VBLANK routine. 

WARMSV 58484 Entry point for the warmstart routine. 

COLDSV 58487 Entry point for the co ldstart routine. 

FIGURE 67. Vectors that don 't change 

You may also use any of the routines in the floating point package. 

352 



INDEX BY NAME 

ADDCOR 782 CAUX2 573 

ADRESS 100,1 01 CBAUDH 751 

AFP 55296 CBAU DL 750 

AFI 55878 CCOMND 571 

ALLPOT 53768 CDEYIC 570 

ANTIC 54272-54303 CDTMA I 550,551 

APPMHI 14,1 5 CDTMA2 552,553 

ATA C HR 763 CDTMF3 554 

ATAN 48759 CDTMF4 556 

ATRACT 77 CDTMF5 558 

AUDCTL 53768 CDTMY I 536,537 

AUDCI 53761 CDTMY2 538,539 

AUD C2 53763 CDTMY3 540,54 1 

AUDC3 53765 CDTMY4 542,543 

AUDC4 53767 CDTMY5 544,545 

AUDFI 53760 C H 764 

AUDF2 53762 CHACT 755 

AUDFJ 53764 CHACTL 54273 

AUDF4 53766 C HAR 762 

BASIC 40960- 49151 CHAR SET 57344- 58367 

BEEP 61528 C HBAS 756 

BEGIN 60692 CHBASE 5428 1 

BELL 63754 CHKSNT 59 

BFENH I 53 CHKSUM 49 

BFENLO 52 CHRH I 3822 

BININT 202 CHRLO 3818 

BITMSK 110 CHI 754 

BLAC KB 61994 CICLOS 58675 

BLIM 650 CIO 58564 

BLKBl)v 5848 1- 58483 C IOINT 58534 

BOOT 621 59 C IO INY 58478-58480 

BOOT'? 9 C IOPEN 58633 

BOOTAD 578,579 C LOY 48454- 48456 

BOTSCR 703 CIR EAD 58729 

BPTR 61 C IRTNI 58907 

BRKKEY 17 CIRTN2 58909 

BRKKY 566,567 C ISTSP 58702 

BUFADR 21,22 C IWRIT 58825 

BUFCNT 107 C IX 242 

BUFRFL 56 CKEY 74 

BUFRH I 51 CLRLlN 644 11 

BUFRLO 50 COLAC 114,115 

BUFSTR 108 ,109 COLBK 53274 

CASBUF 1021 - 11 51 COLCRS 85,86 

CASENT 60292 COLDST 580 

CASETV 58432-58447 COLDSY 58487-58489 

CAS FLG 783 COLINC 122 

CASINI 2,3 COLORO-4 708- 712 

CASORG 61249 COLPFO-3 53270- 53273 

CASSBT 75 COLPMO-3 53266-53269 

CAUX I 572 COLRSH 79 

353 



COMENT 58941 DU NUS E 775 
COMTAH 5908 1 D0 P 7548- 1306 1 
CONSO L 53279 DVSTAT 746- 749 
CONVRT 638 15 EDITRV 5836~-58 383 

COS 4856 1 EEXP 237 
COUNTR 126, 127 EGETC H 63 140 
CRETRY 54 ENDPT 11 6, 11 7 
C RITI C 66 ENTVEC 44-47 
C RS INH 752 ERRFLG 575 
CS HOOT 62386 ERRNO 73 
CSO P IV 58493-58495 ERRSAV 195 
CSTAT 648 ESCAPE 63353 
CT IA 53248-53505 ESCfLG 674 
DATALN 183, 184 ES IGN 239 
DAUX I 778 EXP 56768 
DAUX2 779 EXPIO 56780 
DBSECT 577 fADD 559 10 
DHUFH I 773 FASC 5526 
DBUFLO 772 fC H RFL 240 
DHYTH I 777 fD IV 56 104 
DHYTLO 776 FEOF 63 
DC B 768-780 FILOAT 765 
OCOMND 770 FILFL G 695 
DDEV IC 768 FLOW 5671 7 
DEGfLG 25 1 FLOOR 567 13 
DE LTAC 119, 120 FLO I P 56732 
DELTAR 11 8 FLD IR 56728 
OEVSRC 59038 FLPTR 252 ,253 
DRAGS 576 fMOVE 56758 
DIGRT 24 1 fM S 1592-5439 
DINOEX 87 fMSZPG 67-73 
DINIT 60906 FMUL 56027 
DISK INV 4845 1- 48453 FORLN 160, 16 1 
DISKIV 58448-58450 fP I 55762 
DLI ST H 54275 FPSCR 15 10- 15 15 
DLI STL 54274 FPSCR I 1516- 1535 
DMACTL 54272 FPTR2 254,255 
DMASK 672 FRE 218- 223 
DOPE N 62454 FREQ 64 
DOS 5440-6779 FRX 236 
DOSH I 5450 fRO 212- 217 
DOSIN I 12,13 FR I 224- 229 
OOSLO 5446 FR2 230- 235 
OOSVEC 10, 11 FSTOP 56747 
DRAW 64764 FSTOR 56743 
DRETRY 55 FSUB 55904 
DRKMSK 78 FTYPE 62 
DRVBYT 1802 GETC H 62867 
DSKFM S 24 ,25 GO HAND 590 17 
DSK INV 5845 1 GPR IOR 623 
DSK IV 58448-58450 GRACTL 53277 
DSKTIM 582 GRAFM 53265 
DSKUTL 26,27 GRAFPO-3 5326 1- 53264 
DSK I F 609 12 GT IA 53248-53505 

DSPFLG 766 HAR DI 62081 

DSTAT 76 HATABS 794-83 1 

DSTATS 77 1 HI TCLR 53278 

DTiMLO 774 HOLOC H 124 

DUN IT 769 HOLD I 8 1 

354 



INDEX BY NAME 

HOLD2 671 LOGCOL 99 
HOLD3 669 LOGMAP 690-693 
HOLD4 700 LOGIO 5704 1 
HOLD5 70 1 LOMEM 128,129 
HPOSMO-3 53252-53255 LPENH 564 
HPOSPO-3 53248-5325 1 LPENV 565 
HSCROL 54276 MEMLO 743,744 
ICAB HZ 37 MEMTOP 144,145 
ICABLZ 36 MEMTOP 741,742 
ICAX IZ 42 MLTTMP 102 , 103 
ICAX2Z 43 MOPF-3PF 53248-53251 
ICAX3Z 44 MOPL-3PL 53256-53259 
ICAX4Z 45 NEWCOL 97,98 
ICAX5Z 46 NEWROW 96 
ICAX6Z 47 NM IEN 54286 
ICBLHZ 41 NM IRES 54287 
ICBLLZ 40 NMIST 54287 
ICCOMT 23 NOCKSM 60 
ICCOMZ 34 NSIGN 238 
ICDNOZ 33 OLDADR 94,95 
ICHIDZ 32 OLDCHR 93 
ICPTHZ 39 OLDCOL 91,92 
ICPTLZ 38 OLDROW 90 
ICSPRZ 44-47 OSRAM 62100 
ICSTAZ 35 OUTCH 62903 
IFP 55722 OUTPLT 62944 
IHI NIT 59093 PACTL 54018 
INATAC 64306 PADDLO-7 624-631 
INBUFF 243,244 PAL 53268 
INITAD 738,739 PBCTL 540 19 
INSDAT 125 PBPNT 29 
INTEMP 557 PBUFSZ 30 
INTINV 58475-58477 PCOLRO-3 704-707 
INVFLG 694 PENH 54284 
IOCBO 832-847 PEN V 54285 
IOCB I 848-863 PIA 540 16-5427 1 
IOCB2 864-879 PIRQ 59 123 
IOCB3 880-895 PIRQQ 65470 
IOCB4 896-9 11 PLYARG 1504- 1509 
IOCB5 9 12-927 PLYEVL 56640 
IOCB6 928-943 PM BASE 54279 
IOCB7 944-959 PNMI 593 16 
IRQEN 53774 POKEY 53760-540 15 
IRQST 53774 POKMSK 16 
ISRODN 60048 POKTAB 60882 
ISRSIR 60177 POPF- P3PF 53252-53255 
ISRTD 60113 POPL-P3PL 53260-53263 
KBCODE 53769 PORTA 540 16 
KEYBDV 58400- 58415 PORTB 540 17 
KEYDEL 753 POTGO 5377 1 
KGETC2 63 197 POTO-7 53760-53767 
LBFEND 1535 PR INTV 584 16-58431 
LBPR I 1406 PRIOR 53275 
LBPR2 1407 PRNBUF 960-999 
LBUFF 1408-1535 PRNORG 6 1048 
LlNBUF 583-622 PTABW 201 
LlNZBS 0,1 PTEMP 31 
LMARGN 82 PTIMOT 28 
LOG 57037 PTRIGO-7 636-643 

355 



PWRUP 61733 STMCUR 138,139 
POPF-3PF 53252-53255 STMTAB 136,137 
POPL-3PL 53260-53263 STOPLN 186,187 
RADFLG 251 STRIGO-3 644-647 
RAMLO 4,5 SUBTMP 670 
RAMSIZ 740 SWPFLG 123 
RAMTOP 106 SY IRQ 59 126 
RANDOM 53770 SYNSTK 1152-1405 
RBLOKV 58490-58492 SYSVB L 59345 
RECEIV 60130 SYSVBV 58463-58465 
RECVDN 57 SYSVB3 59400 
RESET 61723 TABMAP 675-689 
RETURN 59917 TEMP 80 
RMARGN 83 TEMP 574 
ROWAC 112,113 TEMPI 786,787 
ROWCRS 84 TEMP2 788 
ROWINC 121 TEMP3 789 
RTCLOK 18-20 TIMER I 780,781 
RUNAD 736,737 TlMER2 784,785 
RUNSTK 142,243 TlMFLG 791 
SA BYTE 1801 TlNDEX 659 
SAVADR 104,105 TMPCOL 697,698 
SAVIO 790 TMPLBT 673 
SAVMSC 88,89 TMPCHR 80 
SCRENV 58384-58399 TMPROW 696 
SCRFLG 699 TMPXI 668 
SCRO LL 64428 TRAMSZ 6 
SDLSTL 560,561 TRIGO- 3 53264-53267 
SDMCTL 559 TSTAT 793 
SEND 60011 TSTDAT 7 
SENDEV 58472- 58474 TXTCOL 657,658 
SER IN 53773 TXTMSC 660,661 
SEROUT 53773 TXTOLD 662-667 
SETVBL 59666 TXT ROW 656 
SETVBV 58460-58462 VBREAK 518,519 
SHFAMT III VCOUNT 54283 
SHFLOK 702 VCTABL 58496-58533 
SIN 48551 VDELAY 53276 
SIO 59737 VDSLST 512,513 
SIOINT 59716 VERFLG 1913 
SIOINV 58469- 58471 VIMIRQ 534,535 
SIOV 58457-58460 VINTER 516,517 
SIZEM 53260 VKEYBD 520,521 
SIZEPO-3 53256-53259 VNTD 132,133 
SKCT L 53775 VNTP 130,131 
SKRES 53770 VPRCED 514,515 
SKSTAT 53775 VSCROL 54277 

SOUNDR 65 VSERIN 522,523 

SPECL 62015 VSEROC 526,527 
SQR 48869 VSEROR 524,525 

SRTlMR 555 VTlMRI 528,529 
SSFLAG 767 VTlMR2 530,53 1 
SSKCTL 562 VtlMR4 532,533 
STACK 256-511 VVBLKD 548,549 
STACKP 792 VVBLKI 546,547 
STARP 140 , 141 VVTP 134,135 
STATUS 48 WAIT 59930 
ST ICKO-3 632-635 WARMST 

STIMER 53769 WARMSV 58484-58486 

356 



INDEX BY NAME 

WLDCRD 3783 ZERORM 61752 
WMODE 649 ZFRO 55876 
WSYNC 54282 ZlOCB 32-47 
X1TV BL 597 10 ZOSRAM 61792 
X1TVBV 58466-58468 ZSBA 71,72 
XMTDON 58 ZTEMP1 245,246 
Z BUFP 67,68 ZTEMP3 249,250 
ZDRVA 69 ,70 ZTEMP4 247,248 

357 



INDEX BY FUN CTION 

T his index on ly incl udes those locatio ns whi ch migh t 
be of in terest to you. It does nOl include temporary 
sto rage loca tions and so fo rt h. 

BASIC 
MATH ROUTI NES 

ATAN , 192 
COS, 192 
S IN, 19 1 
SQR, 192 

MEMOR Y 
LOMEM, 72 
MEMTOP , 81 

MISCELLANEOUS 
BIN INT, 85 
ERRSA V, 84 
PTABW, 84 
RUNSTK, 80, 88 

STATEMENTS 
DATAL N, 82 
FORLN , 82 
STMTAB, 76 
STMC UR , 77 

STOPLN, 83 
SYNSTK, 180 

VA RI ABLES 
STAR 1' , 78 
VNTD, 74 
VNTP, 73 
VVTP, 75 

BOOTING 
INITAD, 147 
RUNAD, 147 

CARTRIDGES 
RAMS IZ, 147 
TSTDAT, 33 

FLOATING POINT 
FLOATING POINT REG ISTERS 

FRE, 86 
FRX, 87 
FRO, 86 
FR I, 86 
FR2, 87 

MISCELLANEOUS 
C IX, 87 
I)EGFL G, 89 
DIGRT, 87 
EEXP, 87 
ES IGN, 87 

358 

FLPTR , 89 
FPTR2, 89 
INBUFF, 88 
NS IGN, 87 
RADFL G , 89 

IWM ROUTI NES 
AFP, 246 
AF I, 248 
EX P, 250 
EXPIO, 250 
FADD, 248 
FASC, 24 7 
FD IV, 248 
FLOOP, 249 
FLOOR, 249 
F LOIP, 250 
FLDI R, 250 
FMO VE, 250 
FMUL, 248 
FP I, 247 
r SUB, 248 
FSTOP, 250 
FSTOR, 250 
IFP, 247 
LOG, 25 1 
LOGIO, 251 
PL YEVEL, 249 
ZFRO, 248 

GRAPHICS 
n NE SCROLLING 

I-I SCRO L, 237 
V5CROL, 239 

PLA YE R/ MISSILE GRAPH ICS 
COLO!? 

COLPMO-COLPM3, 206- 207 
PCO LRO-I'CO LR3 , 143 - 144 

COL LISIONS 
I-I ITC LR , 210 
MOPF- M3PF, 195- 197 
MOPL- M3 PL, 199-20 1 
POI'F- 1'3PF, 198- 199 
POPL- P3PL, 20 1- 203 

CON T!?OL 
DMACTL, 236 
GRACTL, 208 



SDlvICTL, 107 
MO~'EMENT 

HPOSMO- HPOSM3 , 198- 199 
HPOSPO- H POSP3, 195 

VDELA Y, 207 
PRIORITY 

GPR IOR, 12 1 
PR IOR, 207 

SNAPE AND SIZE 
GRAFM, 204 

GRAFPO-GRAFP3 , 203 
PMBASE, 24 1 
S IZ EM , 20 1 
S IZE PO-S IZEP3 , 199-20 1 

PLA YFIELD GRAPHICS 
,-1 TTRA CT A'IODE 

ATRACT, 53 

COLRSH, 55 
DRKMSK, 54 

BI T ,HAPPING 
BITMSK, 68 
DMASK, 135 
SHFAMT, 68 

Cf-fARA CTERS 
ATACHR, 159 

C HACTL , 236 
C HAR, 159 

C HAR SET, 251 

C HBAS, 155 
C HBASE, 242 
DS PFLG, 161 
ESCF LG , 136 

COLORS 
COLBK, 207 

CO LORO-COLOR4, 144- 146 

CO LPFO-COLPF3 , 206, 207 
CURSOR 

COLCRS, 56 

C RS INH, 151 
OLDCOL, 64 
OLDROW, 64 

TM PCOL, 140 
TMI'ROW, 140 
TXTCOL, 134 
TXTROW, 133 

DISPLA Y LIST 
DLiSTL, D Li STH, 236 
SDLSTL, 11 0 

ORA W AND FILL 
CO LAC, 69 
CO LINe, 70 
COUNTR, 7 1 

DEL TAC, 70 
DELTAR, 69 
ENDPT, 69 
F ILDAT , 161 
F ILFLG. 139 
HOLD4. 140 
NEweOL, 64 

359 

INDEX BY FUNCTION 

NEWROW, 64 

ROWA C, 69 

ROW INC, 70 
GRAPf-fICS MODE 

D INDEX, 56 
LOGICAL LINES 

LOl;COL, 65 

LOGMAP, 138 
M A RGINS 

LMARGN , 55 
RMARGN, 56 

M ISCELLANEOUS 
VCOUNT, 242 

WSYN C, 242 
SCNI:.LN MI:.MORY 

SAV MSC, 59 
TXTMSC, 134 

TAB STOPS 
PTAI3W, 84 
TAI3MAP, 137 

Tl:.XT SClWLLlNG 
L1NBUF, 120 
SCRFLG, 140 

,TEXT WINDOW 
130TSC R, 141 
SWPFLG , 70 

T INDEX, 134 
TXTCOL, 134 

TXTMSC, 134 
TXTOLD, 134 
TXTROW , 133 

INPUTIOUTPUT 
CASSETTE 

BA UD IIATE 
A DDCOR, 167 

CBAUDL, C BAUDH, 15 1 
SA VIO, 167 

T IMER I, 166 
T1MER2, 167 
T1MFLG, 168 

IJUFFER 
BLlM , 133 
BI'TR, 50 

CAS BUF, 178 
M ISCELLANI:.DUS 

CASFLG, 167 
FEOF, 5 1 

CI O 

FREQ, 51 
FTYPE , 50 

NA N DLER TABLE 
HATABS, 169 

IOCB: See IIlso 
IOCBO, 174 
IOCBI, 175 
IOCB2, 176 
IOeB3, 176 
IOCB4, 176 
IOCB5, 176 



IOC B6, 176 
IOC B7, 177 
ICAX I, 173 
ICAX2, 173 
ICBAl, ICBA H, 172 
ICBll, ICBlH, 173 
ICCOM, 172 
IC DNO, 172 
IC HID, 172 
ICPTl, ICPTH, 172 
ICS PR, 172 
ICSTA Z, 172 

M ISCELLANEOUS 
DVSTAT, 150 
ICCOMT, 42 

Z /oCB 
ICAXI Z, 45 
ICAX2Z, 45 
ICBAlZ , IC BAHZ, 45 
ICBllZ, IC BlHZ, 45 
ICCOMZ, 44 
IC DNOZ, 44 
IC HID Z, 44 
ICPTl Z, ICPTHZ, 45 
ICS PR Z, 47 
ICSTA Z, 44 

DISK 
FMS, DOS, AND D UP 

CHRlO, C HRHI, 186 
DOSlO, DOSHI, 188 
DRVBYT, 185 
DSKFMS, 42 
DSKUTl, 42 
ERRNO, 53 
SA BYTE, 184 
VE RFlG , 185 
WlDC RD , 186 
Z BUFP , 52 
ZDRVA, 52 
ZS BA, 53 

HANDLER 
BUFADR , 42 
LJSKTlM , 120 

GAME CONTROLLERS 
JOYSTICKS 

PORTA, 230 
PORTB, 232 
STl CKO-STlC K3, 126- 130 
STRIGO-STRIG3, 132 
TRIGO- TRIG3, 204- 205 

LIGH T PEN 
lpENH, 116 
lpEN V, 11 6 
PEN H , 243 
PENY, 244 
STIC KO , 126 

PA DDLES 
AllpOT, 222 
PALJLJlO- pALJDL7, 124- 126 

360 

PORTA , 230 
PORTB, 232 
p OTGO, 226 
pOTo- pon, 213-221 
pTRIGO- pTRIG7, 130- 131 

KEYIIOARD 
KEY READING 

C H, 160 
C HI , 153 
KBCODE, 226 
KEYDEl, 152 

SPECIA L KE I'S 
BRKKEY, 40 
CONSOl, 210 
ESCFl G, 674 
HOlDC H , 70 
INVFlG, 138 
SHFlOK, 140 
SRTIMR, 105 
SS FlAG, 161 

PORT CONTROL 
PACTl, 233 
PBCT l , 234 

PRI NTER 
BUFFE R 

pBPNT, 43 

PBUFSZ, 43 
pRNBUF, 177 

M ISCELLANEOUS 
pTEMp, 43 
pTlMOT, 42 

SERIIIL PORT 
SERIN , 227 
SE ROUT, 227 
SKCTl , 228 
SKRE S, 226 

SIO 
BUFFER 

BFENlO, BFEN HI, 49 
l:lUFRFl, 49 
BUFRlO, BUFRH I, 48 

CFB 
CAUX I, 1\ 8 
CAUX2, 11 8 
CCOMNLJ, 118 
C LJEYI C, 11 8 

CONTlWL 
SS KCTl, 11 5 

Drt Til TRANSMISSION 
C HKSNT, 59 
C HKSU M, 48 
NOCKSM, 50 
RECYLJN, 49 
SOUNLJR, 51 
XMTLJON, 50 

DCB 
LJA UX I, 166 
LJAU X2, 166 
LJl:l UF LO, LJl:l UFHI, 165 



DBYTLO . DBYTH I, 

DCOMND, 164 
DDEVIC, 162 

DSTATS, 164 
DTIMLO, 165 
DUNIT, 163 

M ISCELLANEOUS 
CRETRY, 49 
DRETRY, 49 

ERRFLG, 118 

STACKP, 169 

STATUS, 47 

TIMEOUT 
CDTMAI, 104 
CDTMVI, 98 
T IMFLG, 168 

INTERRUPTS 
CONTROL 

CRITIC, 51 
IRQEN, 227 
IRQST, 227 

NMIEN, 244 

NMIST, 244 

NM IRES, 244 

POKMSK, 38 
IRQ VECTORS 

VBREAK, 94 
VIM IRQ, 96 
VINTER, 93 
VKEYBD, 94 

VPRCED, 93 
VSERIN, 95 
VSEROC, 95 
VSEROR, 95 

VTlMRI, 96 
VT IMR2, 96 
VT IMR4, 96 

NM I VECTORS 
VDSLST, 91 
VVBLKD, 101 
VVBLKI, 99 

ME MORY 
APPMHI, 37 
LOMEM, 72 

MEMLO, 148 
MEMTOP, 81 

RAMLO, 33 
RAMSIZ, 147 
RAMTOP , 65 
TRAMSZ, 33 

MISCELLANEOU S 
PAL, 205 
RANDOM, 226 

POWER ON 
BOOTAD, 119 
BOOT?, 34 
CAS INI, 32 

CASSBT, 53 

165 

361 

INDEX BY FU NCTION 

CKEY, 53 
DBSECT, 119 

DOS IN I, 37 
S OUND 

AUDCTL, 222 
AUDCI-AUDC4, 216-222 
AUDFI-AUDF4, 2 13, 22 1 

S YS TE M RES ET 

COLDST, 11 9 
DOSVEC, 36 

WARMST, 34 
TI MERS AN D C LOCKS 

POKEY TIMERS 
AUDCTL, 222 
AUDC I , 2 16 
AUDC2, 221 

AUDC4, 222 
AUDF I , 213 
AUDF2, 22 1 

AUDF4, 22 1 
IRQEN, 227 
POKMSK, 38 
STI MER, 226 

VTIMR I, 96 
VTlMR2, 96 
VTIMR4, 96 

SYSTEM CLOCK 
RTCLOK, 40 

SYSTEM TIMERS 
CDTMAI, CDTMA2, 104- 105 
CDTMF3-CDTMF5, 105-107 
CDTMVI-CDTMV5, 98-99 

VBLANK 
SETVBL, 261 

SYSVBL, 26 1 
SYSVBV, 254 
X ITVBV, 26 1 

VECTORS (MISC ELLANEOUS) 
BLKBDV, 255 

BRKKY, 117 
CASETV, 252 
COLDSV, 257 

CSOP IV, 257 

DSKINV, 253 
DSK IV, 253 

ED ITRV, 252 
INTlNV, 255 
KEYBDV, 252 
PR INTV, 252 
RBLOKV, 257 
SCRENV, 252 
SENDEV, 255 
SIO INV, 255 

S IOV, 254 
VCTABL, 257 
WARMSV, 256 







$15.95 

FOR BEGINNERS OR EXPERTS­
THIS BOOK IS FOR YOUI 

At last! An easy-to-read book that shows you the 
technical tricks to get the most out of your 
computer. 

The MASTER MEMORY MAP is a clearly written, 
friendly guide to the inner workings of the Atari® 
computer. 

Full of useful explanations and examples, this 
bOOK is a guided tour of all the memory locations­
places inside the computer that make it act in 
special ways. You'll learn lots of uses for the Atari®, 
including how to make music; even how to create 
the special characters used in games. 

If you're just beginning to program, we'll give you 
the information you need to write exciting pro­
grams-even add sound effects! If you've been 
programming for a while, the 
book will take you farther, 
allowing you to learn even more. 
Advanced programmers will use 
this book again and again as a 
powerful tool. 

Atari 1\ is a registered trademark of Atari, Inc. 

RESTON PUBLISHING COMPANY, INC. 
A Prentice-Hall Company 
Reston, Virginia 0-8359-4242-2 


	Cover

	Contents

	Preface

	Glossary

	What is a Memory Location?

	Bits and Bytes

	ROM and RAM

	Decimal to Hex

	Large Memory Map

	Page Zero

	Page One

	Pages Two Through Four 
	Page Five
	Page Six

	Page Seven, Eight, Nine....
	Special Chips and ROM

	The Operating System

	Appendix

	Designing Character Sets

	Player Missle Graphics

	Designing Graphics Modes

	GTI A Graphics Modes Nine, Ten, Eleven

	Different Versions of the OS

	BASIC Bugs

	Input/Output

	IOCB Command Byte Values

	Character Values

	Stage Two VBlank

	The XL Computers

	1200XL RAM Differences

	Display List Commands and ANTIC Modes

	Safe OS Vectors


	Index by Name

	Index by Function


