CREATIVE

Edited by David Small, Sandy Smalland George Blank

The Creative
Atari

aviest) ol

A

e mim =SSN s e s - =y =

LR 1IN -"ERIHN-"=11=Frn

1 -] e e 3 e b, el

el =l o o de N

e " -

The Creative
Atari

Edited by: David Small, Sandy Small, and
George Blank

Creative Computing Press
Morris Plains, New Jersey

David Small, Sandy Small, and George Blank are frequent con-
tributors to Creative Computing magazine.

Unless otherwise noted, all work contained in this volume is that of
the editors. Special thanks to John Anderson for technical
assistance.

Copyright © 1983 by Creative Computing Press.

Cover illustration: Copyright © Mike Carroll, Creative Associates, Newhall, California.

All rights reserved. No portion of this book may be reproduced — mechanically, electronically, or by any other
means, including photocopying — without written permission of the publisher.

Library of Congress Number: 82-71997
ISBN 0-916688-34-8

Printed in the United States of America.

10 9 8 7 6 5 4 3 2 1

Creative Computing Press
39 E. Hanover Ave.
Morris Plains, NJ 07950

Preface

If you ownan Atari computer, you should already be familiar with Creative Computing magazine.
If you are not, than you have missed out on some of the best material ever published regarding the
Atari 400, 800, and new 1200 XL computers. Our commitment to the Atari machine has been a
steady one, and includes information you won’t find in any owner’s manual or technical reference
sheets. The Atari tutorial and programming techniques offered in the pages of Creative over the
past three years have been consistently presented in a way you can understand and build upon and
much of this material is still available through no other source.

But fear not, newcomers to the fold, because this book is for you. It contains all the material you
have missed, and more. And all of it concerns the Atari personal computer and only the Atari.
Which, you will probably agree, is by far the best microcomputer in its class.

If you are not sure you agree, then you really need this book. It shows you in simple terms how
to get the most from your machine in the realms of graphics, sound, memory, animation, disk
storage, and a dozen other topics. We don’t assume you are anything more than an enthusiastic
beginner, and step-by-step examples are a hallmark of ours. We know that learning by doing is the
best way to learn.

If you are already an old fan of Creative Computing, this book is still for you. In addition to
giving you a single reference for all Atari material we’ve yet published, it includes new material,
published now for the first time.

You won’t find a single theme here, with all the articles winding neatly around it. What you will
find is an Atari almanac, a meaty compendium, full of valuable, “hands-on” projects to keep you
and your Atari busy for months and months to come.

In addition, you will find in-depth tutorials, product reviews, philosophical ramblings, insider’s
gossip, and insights into the impressive powers, as well as occasional weaknesses (and how to get
around them) of the Atari machine.

Of course, for up to the minute Atari developments, tune in to Creative Computing every month!

John Anderson
Associate Editor
Creative Computing

Contents

PIETaTE w1s come o w9 w00 oo s missims sipbe oo st
The Atari MAchineg ;s sssmenesnsws soensene s

Part 1. Atari Graphics Tutorial

How A TV WOTLKS .. v v vewowevasssnsamsssssssse
Character GENeration «. . wwevssoswwss issssesss
Dot ‘Graphies Line . s« s sussanas se v sy ssssss
ANTIC and. CTIA: Jbw i snid sstsid oo wssbig s o o
More Memory Secrets.ocvviininininn..
Examining the Display LiSt .. vcsusssnssassass
Modifying Display Memory...................
Display List OPCOIES: o v uvew s wnws osssnvnm wsm o
Notes & DISCUSSION. sw w5 w5 50w 8 616w w8 5 8 925 55 555
Basic and COlOT s .cu.a swmis & s s 5665 5 55 5 st sal s
Display List Interruptsccovvenenna....
Player-Missile GTaAPHICS: « v pwws s s o s s
Character Sets « s e e wmsmomwvans ves s s @ o e s s

Part I1. Graphics Tips

Design Philosophy and GTIA Demos
Graphics Seven PIus sswsssswsasessssmss osmoms
Player-Missile Design Aid
Animath. ... o i

Greater Graphics Control.:ceveesisenscsenas o 71
The Atari Graphics Composer................. 73
Artifacting With Graphics 7-Plus 74

Part III. Hardware and Software

Bits 86 BYECS. ¢ avi s s woisvsist 50 s 580 06 5 81
Physical Types of MemMOry .. e anevemomsessoss 83
Atari Music COmpoSerovvvenernennennnn. 85
COTAPUSEIVE 5101 0 1o 18 50 3015 0 558 iy 0 86
Build Your Own Light Pen 89
AtaT! SUSHEEE ¢.a aritos s saise fos S ekasimusss oo 93
BABICT A T s 6 et s st s o i s s e s 95
MonKkey W reHCH:.c 556w s wansm wussis o b 505 o 97
SUANE ATTAYS w505 556 @i o iens sins s e e 98
Talk is Getting Cheaper ... ou i sssvsss ses 99
Axlot RAMIDISK ¢ 5o o s siem s © sgssis s m s s ss o 103
JOTITICKS cicvow 4w 5a w5 aevms 4 F v 0Es o505 & 55 354 105
New RAMS for Old ..cuvvvimomicssoimasn s 109
K=IDIDIS - vi6 .00 15 s s im0 16 @ 111
Keyboard for the Atari 400 112
The Mosaic 64K RAM Card 114
AL T200) 150000508 a0l 68 s 5t 850 st iy 158 116
Letter Quality Alternative.................... 117
Atari Word Processorsoviiininin.. 119

VISICAIC v v w s i s msE B e m s e S s 5 5 123
Atari Resourcesooviiiiiiiiiii... 125
Quiestions & ANSWETS e :msmmemsnsimsmmsns s 126
Atar] Languages ;s sswwsmsn nsmsionsoomeinsms 129
Getting Along Without TAB 132
Telecommunications & Memory Locations. 133
The: Upstart ARLL 5 ss s w0 mew s wm s s os e v e 135
Self Modifying Programs 138
SUPEE LEXE MOAEL . v oo 0o a5 2500 35 o bas s 141
Neater Numerical Tables 147
Interfacing Your Ataricocivunnn.. 149
Atari Strings and Text Handling.............. 152
An Atari Library of Sound 153
Original Adventure in 32K 156
From Burn-Out to Born Again 163
Speedread +.u cunsssmrmenvenennene s e me s 165
Easterni Frofit soeos s mus srow s s o ones 0 b o5 166
Missile Command & Asteroids 168
Stat RATACTS: v rntion st i s aore B s e o # o0 3 5006 170
Basketball « v uwmsessmeersssnesesvomisssnises 171
Warlocks Revenge & Kayos.................. 171
Gamma Hoekey s :5 ssassvissasswnevsvsesnss 172
The Wizard and the Princess 173
Graphics Adventures on the Atari 175
Cypher Bowl & Krazy Antics .cv.nvsvsmesssns 178
Not Just Fun in Games. ss s« e s s e s o @s s 180

Deluxe Invaders & K-razy Shootout 183

Dog Daze & Caverns of Mars................ 184
Canyon Climber..........c.oovviuiniunnnan.. 186
Clowns & Balloons ...s:ssemimimaimswasmssus 186
POON ainci 7608 5.5 8 50550 5550 5 65 5h 55 5 50508l B 3 6 Bosces 5 0 mrieinim 187
INAUBNTIS 5 s 0.0 5 animms o s 6 b s a6 5w i Een oo wis 188
SHATNS 5505 50 5 55058508 8 5% 8508 B85 3656 4855 B3804 189
MINET 204FET . i o4 5000 wis wmiome o mio wie e o mrm 0w mse 189

Part IV. Disk Drive Tutorial

ALAET DIOB. o ovoe e e vvimmieiwsivinme oo ms monmms s 193
Atari Diskfile Tutorial — Part I............... 196
Atari Diskfile Tutorial — Part I 198
Atari Diskfile Tutorial — Part IIT 200
Using Disks With Atari Basic 204

Part V. User Programs

IVLAZEIMEABERE oo s o0 o oiis cncostonin oot m i ki o o 209
Monster Combat i, 215
SCUITY wswmsbssss 5a s emas5ee s 5066 § @59 8050 F 963 225
COIISION o5 dwisne astelmibo Moo it 228
AL DefeniSe . s inosm souywsswsmsnsenswesssssss 230

s L hd

n o=l ol

[——— e KT

y Im_¢F |

Fld—lﬁ'—“I—F*rF..#—i
- 14 - ;e - EENI
iy

Lk F el & ekl | & S
s abifh sl Rdy B

11 - 11 "t AR

. ik gd *

[[- E
-1 [. . L

i I T
-III 1 111 I.H‘.'Il"‘

piiel sk Py T dvail
1 — #’#

: mil m - Tt P

Y w7 = a2 _Rl gl

1 B o ool A

B = - w1

#‘nﬂhﬁﬂ T
[|||--'i-l--ﬁ'“

111 1 L L Lam W
[[. T jrit

1 1 1 "y -ﬂ-'"-"

1 1 1 B H‘I-;-l

1 11 Jarl = e

-
8 o e
. - - £
- = - =ML = e
- = - = -

I = == . n 4 - " e
¥k okl - - w7 o

- - Eogm

== g == =
n i -t =T
- =S - = T A
- e a = Xgp ™
m e =5ly —oorfF - O
- I —r =N -

- = F-= a-- . = =L
= =gy o Lia 4 ra=

- N N — s =

ekl =

- = - ="

L N i R e

S - " Ak

- == = o= LN B an 2T EHamao=
[T = _—

. ==, = -r --
R e T

- - = =L . -

o wr

41 Il 4

The Atari Machine

Ted Nelson

I first saw Atari’s Mean Machine at an education-
and-computers conference last September. A lot of
pompous Educators had come to receive the word
from some Foundation People about the blessings
that small computers and videodisk were about to
bring to them. I was there with Stuart Greene, an
associate and filmmaker who also has a sense of what
computer graphics ought to do.

Well, there was a keynote address from the highest
Foundation Person, and good things were said; and
then a wonderful thing happened.

Up got Ludwig Braun with his fierce mustache and
apologetic manner, Lud Braun who has tried
indefatigably for so long to arouse the educational
establishment to the educational potential of simula-
tion and little computers; up got he, at an Advent
screen, and said he had a new machine to show us.

He turned on the Atari.

Here is what we experienced.

We are on a spaceship, cruising at near-light speeds.
Stars are on the screen, but they part before us, moving
smoothly out from a common center as we cleave the
void. A low rumble—ship’s noise or remanant Big
Bang—accompanies our movement.

The pilot turns. The stars still move apart for us,
but now the center of diverging motion has moved to
another part of the screen. Stars pass each other—they
must be the near ones—and we see that the display
really shows us moving through stars in three
dimensions.

PLANETS shoot by.

Enough of the slow stuff. Let’s take this baby out
for a spin.

Acceleration! The rumble rises in pitch and volume.
The stars really start to fly apart. HYPERWARP
ENGAGED, flashes a warning on the screen. Faster
and faster shoot the stars, as from a Fourth-of-July
sparkler, AND NOW THE SCREEN IS RED IN
SUDDEN SILENCE, ANDIT FLASHES“HYPER-
WARP™!

And out again! Thereis roaring anew, and new stars
split to let us pass, but we are slowing down now. The
rumble lowers. We have gone halfway across the
universe.

Stuart and 1 were shouting and cheering and
clapping. 1 think I may have been on my feet with
excitement. The Educators turned to stare at us.
“What does this have to do with Education?” asked
their faces. Guys, if youdon’t know, we can’t tell you.

I’'ve been in computer graphics for twenty years, and
I lay awake night after night trying to understand how
that Atari machine did what it did.

As | have always known the field, there are basically
two kinds of computer graphics machines. The bit-
map machines, the video type, have a fixed number of
dot positions, and if you want to “move” a shape, you
have to keep erasing it at one spot and re-writing it at
the next. (The Apple computer’s hi-res is of this type.)
Either the movement is cyclically jerky, as your move-
ment subroutine reaches different picture elements, or
you have to prepare a “next frame” in a different area
of core, which may be slow, and flip the new image to

the screen when it’s all ready. (The Apple allows this.)

Problems arise when a moving figure crosses a still
figure; restoring the background after a moving shape
has passed is a real problem. Preparing an unseen
Next Frame that restores the background is again the
solution, but that takes still more time.

Then there’s the other kind of graphics machine,
the Super kind—the “calligraphic” display—where
points and lines are individually placed on a rasterless
screen. Special hardware steps through a display list in
core, putting each part of the picture where the
program says. Each time the screen is refreshed, the
points and lines can be moved individually as your
program changes the screen positions specified by the
display list. (Examples are the Picture System from
Evans and Sutherland for $100K, or in the $15K ball-
park, Imlac’s PDS-4 and DEC’s VT-11.)

But this, rhis new machine, was something else.

In a package under one thousand dollars, and using
a conventional raster screen—a TV—the Atari com-
puter was doing smooth motion in all directions at
once, seemingly in 3D.

This had to mean, I reasoned, that there was some
sort of a DMA readout from core (as in the calli-
graphic machines), in order to match the raster-timing
demands of the TV screen. But then there would have
to be some sort of address translator, allowing the
element itself to remain on a display list in core, where
its screen address could be changed between frames.

But then there would also have to be some list,
corresponding to the picture arrangement on the
screen, of where everything was in core.

It just didn’t make sense.

Well, I know how it works now, dear reader, and 1
wish I could tell you. But, unfortunately, Creative
Computing, as a software producer, has signed a non-
disclosure agreement with Atari, so that anything I've
learned through these channels I can’t published. But
aha, if I can find it out through other channels, says
Dave Ahlin his Solomonic wisdom, then I can publish
it. So I will be spying assiduously, dear reader, to find
out what I already know so I can tell you about it. Ah,
modern life.

The Atari machine is the most extraordinary
computer graphics box ever made, and Star Raidersis
its virtuoso demonstration game. Be not misled by the
solidity of the Star Raiders capsule you must push into
place; it is not hardware. It is a program.

Yes, friends, all the effects 1 have described—and
many more indeed—can be programmed on the Atari.

There is just one problem.

They won’t tell you how.

That’s right. You can buy an Atari computer and
they won’t give you instructions on how to work it.
Everything is under wraps. Oh, of course you can
program the 6502 chip, that’s in there, same as in the
Apple. But that other stuff, those mysterious peek-
and-poke locations that move the stars, and whatever
else they do do, are a deep dark secret.

Now, I'm pretty sure that if you wanted to bring a
case before the Federal Trade Commission, there’s
some statute saying you’re entitled to get operating

Ted Nelson, 8631 Fairhaven, Apt. 109-13, San Antonio, Texas 78229.

The Atari Machine

instructions for whatever you buy. So if you want to
make a federal case out of it, you can probably get the
inside data in about three years for a quarter of a
million dollars in legal costs. However, there’s a faster
way.

Wait.

The hacker’s race is on. Who can figure it out first?

Even if nobody violates Atari’s elaborate security,
I'll wager that most or all of the secrets of the Atari
machine will be out by the end of 1980—probably
including secrets that the Atari people didn’t know
existed. Because there is nothing like a real challenge
to delight a computer hacker, and this is a real
challenge.

Now, there are all kinds of signs in the wind. For
instance, one California company, advertising in these
very pages, says they have a book on the Secrets of the
Atari. Not to mention a disassembler that will ferret
out even the deepest secrets of Star Raiders.

[called them about the book and they said well, it
wasn’t quite ready yet, and when I asked for galleys
they alluded to how it wasn’t quite written yet, but I'm
sure it will be a very good book when it comes out, and
that they won’t be the only sources for the information.
Because if there’s one thing that makes the world go
round it’s gossip, especially juicy true gossip, like how
to control horizontal scroll or interrupt on raster-line
count (just to take fictitious examples).

An interesting question is why Atari is bothering to
hide the information at all, and from whom. Is the
information being hidden from the purchaser of the
Atari computer? That would hardly seem proper, let
alone sane. From rival hardware manufacturers?
Fiddle de dee. The last thing any hardware rival would
do would be to sink hundreds of grand in copying the
Atari special chips. Anyone who has the temerity to
design a computer always thinks he can do it better
anyway. (One conceivable possibility is that Third-
World Manufacturers might try to build imitation
Ataris—as has been done for the TRS-80, but not the
Apple. It seems a lot of effort for a far-fetched threat—
especially considering the system price, which is an
extraordinary value; it’s hard to see how Taiwan or the
Philippines could compete with it in price for several
years. Perhaps the Atarifolksare just that sure of their
own infallibility that they worry about others horning
in on a multi-million-unit market.)

Another interpretation is that the Atari people are
trying to hobble potential software rivals. If nobody
else knows how to get the hotshot effects, then the
Atari guys have an advantage with their software,
right? Again a strange notion. Since Atari makes the
machines, why do they mind? (Anyway, Atari is being
cooperative with independent software vendors,
provided they don’t tell how it works. So the whole
thing is very mysterious.)

What It Can Do

The only way to explain fully what the Atari will do
is to reveal its internal hardware structure. As
explained above, that cannot happen here yet. How-
ever, there is a very simple way for you to study

the capabilities of the Atari machine: that is to go to
your local video-game arcade and play the Atari
arcade games. Everything they do, the Ataricomputer
will do. (I know of only one exception: the “Lunar
Lander” Atari game, which uses vector graphics and is
therefore incompatible.) Two very good examples for
study, if you can find them, are “Basketball” and
“Star Raiders.”

(I regret that Sky Raiders is a shoot-em-up game,
or, indeed, that our society has such a high regard
for games where you get high scores for murdering lots
of imaginary adversaries. It could be argued that
Vietnam, the Body-Count War, was born in the
arcades of yesterday, and that Star Trek games are
setting us up for World War Three—but that’s a dif-
ferent article. Anyway, consider that the effects you
are seeing can be put to peaceful uses, like the teaching
of physics and watching the flowers grow.)

Here are some things you should look at.

The way that the whole screen can be filled with
shaded graphics, that is, pictures made out of colors
or grey levels. (Colors are not much used in Atari
arcade games, with some exceptions like the multi-car
Speedway game. But the colors are just fine on the
Atari computer.)

The way that pictures of small objects can move
across this overall picture without disturbing it.
(Examples: basketball players in the Basketball game;
automobiles in the speedway game; the hook and
ladder truck in the Fire Truck game, which can
actually be driven across people’s lawns and drive-
ways, and through their houses, with very satisfying
sound effects.)

Of all the Atari arcade games, the most portentous,
in my opinion, is Star Raiders. This is a bombardier
game in which you get points for destroying cities,
factories and power lines. (Again, ignore the shoot-
em-up aspect.) What you see is a continuing panorama
unrolling below your bombsight: the aerial view of the
countryside. The video monitor is mounted vertically,
and the aerial view descends down the screen—
sideways on the video.

In other words, what you are seeing is horizontal
scroll of detailed graphics relative to the monitor.

Another feature that merits your close attention is
the interaction between moving objects and the back-
ground. In the basketball game, for instance, not only
do the two players move around in front of a full back-
ground picture; they also block one another: either the
black player is in front of the white player, or vice
versa. You may have an interesting time thinking
about what hardware this implies.

Moving objects may also interact with the back-
ground picture. For instance, in the “Star Raiders”
game, a bomb which is on target creates an explosion
on the ground. This implies interesting interaction
between the data about moving objects and the data
about the background.

Well, Space Troopers, that’s it for now. The Atariis
like the human body — a terrific machine, but (a) they
won’t give you access to the documentation, and (b) I'd
sure like to meet the guy that designed it. O

Part 1
Atari Graphics Tutorial

"t A B e == == =

.

How a TV Works

In order to understand how the Atari does its work,
we need to know how a TV set works. (If you already
know all about raster scan and similar concepts, you
can probably skip this part.) Go turn on a TV and
look at the screen very closely. You will see a number
of thin horizontal lines very closely packed together.
Any picture on the TV is made up of these lines.

Inside a TV picture tube, painted on the inside of
the front surface, is a substance called phosphor.
Phosphor has an interesting property: when an
electron hits it, the place where the electron im-
pacted glows briefly. (A good analogy is this: A
meteorite hitting the atmosphere glows briefly also;
an electron alone, like a meteor without an atmo-
sphere, doesn’t glow.)

Inside the picture tube there is a device for firing
electrons at the phosphor. This device is called an
electron gun and sends a continual beam of electrons
in a very accurate path (see Figure 1). When the
electron gun fires, an electron leaves it, travels to the
phosphor, and the phosphor glows briefly where it
hits. Since the gun fires a steady stream of electrons,
the place the gun is aimed at glows continually while
the gun is firing. The picture on your TV is composed
solely of these glowing dots.

At this point, we have an electron gun firing onto
the phosphor of the screen. The TV picture shows one
brightly glowing dot in the middle of the otherwise
dark screen. If you will enter and RUN program
number 1, you will get a good idea of what this looks
like.

In order to draw anything on the screen bigger than
a small dot, other areas of the screen must also be
energized by the beam. This is done with charged
“deflection plates”, which bend the beam of electrons,
causing the glowing dot’s position to move on the
screen. When the dot is moved from one point to
another, a line appears; this is because the beam of
electrons lights the dots in between the starting and
ending points on the way. These individually lit dots
appear to be a solid line because they are packed so
closely together. Enter and RUN program number 2
to get a line drawn on the screen. If you have a very
sharp picture, you wjll be able to see the individual
dots.

However, if we trace the line just once, it will stop
glowing quickly because if there aren’t any electrons
hitting the phosphor, it stops giving off light. In order
to display a line that does not fade, the electron beam
must hit the glowing dots 30 or more times a second.
At that speed, or faster, the phosphor doesn’t have
time to fade out before the beam energizes again. If
the line isn’t retraced, or “refreshed”, 30 or more times
per second, it will visibly begin to flicker.

Any steady image you see on the TV is being con-
tinuously refreshed. The most common refresh rate is
60 times per second. If this refreshing process stops,
the TV screen will quickly go blank. Television
stations send information continuously to the TV,
even when the screen is “frozen” (during a test pattern,

for instance). An Atari continually sends signals that
mean “READY™ to the TV, over and over, 60 times
per second when the TV displays “READY™ right
after you switch it on.

Glowing
Phosphor
Dot

Electron
Gun

Electron Beam -+

Figure 1.

18 GRAFHICS S+16

18 GRAFHICS 2+1e 28 SETCOLOR 2,8.8
29 SETCOLGR Z2.8.4 39 SETCOLOR 1.8,14
39 SETCOLOR 1.8.14 48 COLOR 1

48 COLOR 1 54 FLOT 1,96

S5 PLOT 168, 52 68 DRANTO 319,536
B LUTO &8 78 GOTO 78

Program 1. Program 2.

The electron beam is moved in a standard pattern
by the deflection plates. The beam starts at the top left
of the screen. It scans horizontally across the top right
of the screen, and shifts down one line. It then scans
from left to right again. The beam does not scan from
right to left. It moves back to the left hand side before
scanning again and does not just scan backwards.
Then the beam traces the next line down, and con-
tinues until it reaches the end of the screen. This
scanning process is called “raster scan”, and the lines
themselves are called “scan lines” (Figure 2).

When the beam is being traced in this fixed path,
the electron gun’s intensity is being varied. When
many electrons hit the phosphor, it glows brightly,
and when fewer electrons hit, the image is not as
bright. By varying the intensity of the beam we can get
shades of grey on the TV image.

In summary, the phosphor is painted on the inside
of the picture tube. Electrons fired from an electron
base regulate how much the phosphor glows, allow-
ing control of brightness levels. The TV traces a beam
as a vertical stack of horizontal lines, moving from left

How A TV Works

to right. The beam is then turned off momentarily to
retrace to the left edge of the screen. When the beam
reaches the bottom of the screen, the beam is turned
off again and the electron gun starts over at the top.

Raster Scan
__,_.--—"’"’_'_‘_'__ __"‘a___‘
_________________ =
E-smaae - .
_________________ =3
= :
—— = — = = — = = — — = — = = = = = it
== — = — = — = = — = = — = — — —]|
—————— — == — === = = = = = |
—————— — = = — — = = — — — — — |
= — — = = — = = = == = = = = = = 2]
- ——— — —— = = == = = == — = it |
_________________ g
SEeeeees - Eeew :
————— — — = = = — = = = = — = — =1}
e e e S e af
—————— = — - — - — = — — = — — - !
s s s e e e -
\ - - - - —-——-—————— 3 /
S N e

Figure 2.

Just for fun, assume thata TV screen is two feet wide
and that there’s 192 scan lines. Actually there are
more than 192, but we will assume 192 because that is
all that the Atari will allow us to use. On every refresh
the electron beam traces (2 feet) x (192 scan lines), or
384 feet. Since there are 60 refreshes per second, that’s
23,040 feet per second, or roughly four miles. There
are 3600 seconds per hour, so a TV beam traces at
14,400 miles per hour. This is a pretty conservative
estimate, too.

What about color? How does that work? Color is
very similar to black and white in operation. Instead
of a phosphor that only produces shades of grey, the
screen is split up into many small dots. Inside each dot
is a place that when hit with a beam of electrons will
glow one of several colors (Figure 3). The gun is
aimed very precisely at these sub-dots, so that when
it’s signaled, for example, to show a blue dot at a
particular time in the refresh, it hits the blue “sub-
point” that causes that dot to glow blue. There are a
finite number of dots on the screen, because each color
must be represented, packed tightly, next to each
other. Each dot is in a fixed position. The Atari knows
the position of all the color dots, and draws graphics
or characters using them.

All a TV transmitter does is synchronize with the
TV and then send it a continuing stream of color and
brightness, or luminance information. The TV
handles scanning back and forth and putting the
information coming to it on screen at the right color/
luminance. (Color and luminance information will be

referred to as color/lum from now on.) The TV station
doesn’t specify to the TV just where a given color/lum
dot should be displayed; rather, it sends that informa-
tion at the time when the TV scan will have reached the
proper point. The Atari works in the same manner.

An Atari needing to plot a dot at a particular point
can not directly tell the TV to “put it here™, and give
it X and Y coordinates. Instead, it has to wait until
the electron beam has reached those coordinates in its
top to bottom scan, then send the TV color and
luminance information for that dot. Incidentally, the
Atari must immediately send information for the next
dot over as well, and if the one dot is meant to stand
out (as in our example) the next dot over must be dark,
as set by its color and luminance information.
Remember that the Atari must do all this for every lit
dot on the screen sixty times per second to keep a
steady TV picture.

Since the Atari conforms to TV standards, it must
display everything with horizontal lines composed of
individual dots. This includes lines and characters: all
must be composed of dots having a certain color and
certain intensity. In the next section we will examine
how the Atari produces characters.

Color T% Dot Matrix

AR

ok)

Sub-dot T B
S
N

Figure 3.

Character Generation

When you turn on your Atari, the word READY
appears. We know that the letters of READY have to
be made out of dots with color and luminance.

Figure 4 shows an R with a grid on top of it.
Wherever in that grid the R crosses a square, the
square is filled up. Thus we get a rough “R” from the
shape of the squares. These squares can be thought of
as dots. If we send the TV this pattern, line by line, by
having it turn on the filled-in dots and leave the others
off, an “R” will appear on the screen. Since we’ve
broken the “R™ up into eight horizontal segments, the
“R™ on the TV screen will be eight scan lines high.

“READY” is just a bit more difficult. We must first
send the top “slice” of “R™, then the top slice of “E”,
then “A”, “D”, “Y”, then finish out the scan line, then
produce the next slice of the “R”, and so forth. After
eight scan lines are done, we will have our “READY”
on the TV screen. We have no choice about what order
the lines are plotted in (left to right, top to bottom.)

We candisplay any character we want, or any shape,
through these methods. For example, if we wanted to
display a triangle, we’d split it up into horizontal
segments and send its parts as dots (Figure 5).

R represented in dot matrix

Figure 4.

Switch on your Atari and examine the READY
characters. You’ll be able to see the scan lines and
individual dots if the picture is sharp and clear.

The Atari must refresh the TV screen 60 times each
second, or the dots will stop glowing and fade away. In
order to regenerate the screen, the Atari must have a
copy of the information on the screen internally to
send 60 times per second. The Atari saves a copy of
the current TV image in memory.

Let’s find out how this can be done. The Atari is
trying to represent the letter “R”in memory. It thinks
of an “R™ asa group of eight horizontal slices of eight
on/off dots. Now this corresponds nicely to our
concept of bits. An unlit dot can be represented by a

Triangle as character

Figure 5.

0 bit, and a lit dot is represented by a | bit. Since
there are eight bits in each slice, there is one byte
(8 bits) per slice. (Do you believe in coincidences?)
So let’s go back to our figure of the “R”broken up into
slices and represent it as bits/bytes instead (Figure 6).

It takes 8 bytes, each composed of 8 bits, to store the
shape of the “R™in the Atari’s memory. When refresh
time comes.around, the Atari takes the first byte,
sends it to the display as a blank dot foreach 0 bit, and
a lit dot for each 1 bit. After completing the rest of the
scan line, it uses the second byte, and so forth, of the
“R™ After 8 scan lines are done, and 8 bytes, it is
finished with the “R”. The “EADY” characters are
also stored in memory as shapes, represented by 8
bytes each.

R as dot-matrix and bit patterns

B11114888

B1e081898

Bl1E8E188

g1111089

Al1e10Epd

@1eg1 999

1069108

JognagugugcpL)

Figure 6.

Character Generation

If the Atari used this approach, we would need 8
bytes for each character on the screen. There are 40
characters per line, and 24 lines, totaling 960 char-
acters, with 8 bytes per character. That is 7,680 bytes.

In order to clear up any confusion, we will use an
analogy. Imagine a chessboard with 40 squares across
and 24 down. On each square we put one letter. This
is the Atari’s “display memory”, where we save a copy
of what’s on the display screen for refresh purposes.
When the Atari needs to do a refresh each sixtieth of a
second, it starts at the upper left hand corner of the
chessboard, and finds an “R” stored there. It sends
that to the display, along with the “EADY” in the
squares next to it. In order to save the shape of each
character in the square, we need 8 bytes per character
(Figure 7). Consider the chessboard as stored in

memory a row at a time, in one long line, near the end
of RAM.

Atari Scrsen, upper left hand corner shown
;04000400
00404000 s
00040000
:00040000 (Screen
500040000 continues
:00040000 35 more)
500040000
(Screen
continues
23 more)
i bytes per
4 R N
/
Vi M\
character
(Each "1" is represented by a lit dot, each "g@"
by an unlit dot.)

Figure 7.

This approach to display memory is called “bit
mapping”. The name refers to the fact that every bit in
display memory corresponds to one unique dot on the
screen. (The bit is “mapped” onto the screen). It gives
you the capability of controlling every display dot by
modifying the memory. (How many dots? Since there
are 40 characters across, and 8 dots per character,
there are 320 dots across one scan line of the screen.
There are 24 rows, 8 scan lines vertically each, for a
total of 192 scan lines.) There is just one problem with
this approach, and that’s the amount of memory re-
quired to do things this way.

Memory is a scarce commodity on any computer.
At the retail price, 16,000 bytes will cost you $99.
Dedicating nearly 8,000 bytes to display memory is
not very good if it can be avoided. That would be one
sixth of the total memory even if you have spent the
money to get the full 48K. That memory is needed for
other purposes, such as storing your Basic programs.

Remember in our chessboard (memory), we are
saving the shape of every letter. There’s going to be a
lot of redundancy. There is a number of “space”
characters on the screen most of the time, each of them

occupying 8 bytes. What we could do is define the
shape of each character once, then in our display
memory, tell the Atari where to look for the shapes
of each character. The shapes of these characters do
not change, so we can store them in the ROM operat-
ing system cartridge and not use the limited RAM.

Our “chessboard” used to have 8 bytes per square,
saving the shape of a character. Instead of 8 bytes,
let’s use one. A byte can store a number from 0 to 255.
For each possible character the Atari can generate, we
will assign a unique number. Atari does it this way:
A'is 33, Bis 34,and so on. (For READY: 50, 37, 33, 36,
57). Other characters, such as commas or asterisks,
have their own numbers. We save those numbers in
the chessboard.

The operating system ROM cartridge has a com-
plete table of character shapes, 8 bytes per character.
Given a character number stored in display memory,
the Atari can determine the character’s shape. From
that shape the letter is displayed.

Our 40 X 24 chessboard now has numbers in it. In
the upper left hand corner the first five numbers are:
50, 37, 33, 36, 57 (Figure 8). The Atari knows these
numbers to be READY, because the display list in-
struction identifies this as a character mode while the
shape-table identifies which characters and then
generates the display. Let’s calculate the RAM
memory we are using with this technique: one byte per
character, with 960 characters (40 X 24), means 960
bytes used. This is one eighth of what we used before
with the “bit mapping” approach. Because of this
efficiency, this is the approach the Atari uses. The
first 40 bytes of display memory represent the char-
acters on the first row of the display screen, the next
40 bytes the second row, and so on. Spaces are char-
acters by themselves represented in display memory by
a 0 byte.

Upper left hand corner of Atari Screen

54 |37|33[36(57|89| 69| 07| 88| (blarks)
09 (09| 99| @9| 69| 88| 8a| 87| 88| (blarks)
8% |@8| 0| 90| 0| 86| 08| 68| 88| (blarks)

Prttt

Each character now occupies one byte.

Figure 8.

Let’s go through the process of displaying
“READY”. The Atari determines that it is time for a
screen refresh. It starts with the uppermost scan line
on the screen. In that line it starts with the left char-
acter’s top slice. It looks to the display memory chess-
board, and finds a 50 there. It looks up the 50 in its
collection of character shapes, and finds the shape
“R™. It outputs to the display the top slice of the “R”,
composed of eight on-off dots from the top byte of
“R™. The display gets this information, composed of a
group of color and luminance information, and it dis-
plays the first eight dots. The Atari sees the 37, looks
it up (“E”), sends the top slice of it, and so on. It
finishes the other characters, “ADY” on the first scan
line, then goes on and finishes that scan line by dis-
playing the spaces. For the second scan line on the
screen, it uses the second slice of the “R”, then the
“EADY?”, and so on. After eight scan lines, it is
finished with the first row of characters. It repeats this
process 24 times, for there are 24 rows on the screen.
This entire process is completed 60 times every second
(Figure 9).

Display Memcry translated to characters

59 [37]33][36][57[e0[ee [as [s8] (blanks)

& "R"

ke T

> Q"

A B B

+ "Y

t———————% " (blank) " —&

Figure 9.

Dot Graphics Lines

Remember our discussion of bit-mapped memory?
That is how lines are produced on the Atari. We have
one bit foreach dot on the screen, and if that bit is “set”
(1), the Atari switches on the corresponding dot on the
TV. This uses a great deal of memory. The inside back
cover of the Atari Basic Manual has a chart of the
amount of RAM required for each graphics mode.
Graphics 8 requires 7900 bytes. This compares with
the value we calculated of 7,680 bytes. (The difference
is due to various tables and other information the
Atari must keep track of in this mode.) Also examine
the number of displayable dots in X and Y directions.
There are 320 horizontal dots and 192 scan lines.
That’s 40 characters X 8 dots per character (320),
and 24 lines X 8 scan lines (192). You now should have
a good idea of what happens inside the machine. Just
eliminate the character squares on the chessboard,
using the bytes per square technique, and you will have
320 X 192 dots, each one represented by one bit inside
the Atari. The first scan line (320 dots) thus occupies
40 bytes (40 X 8 bits is 320 bits), the next scan line the
next 40 bytes and so forth.

How does the Atari display a line? It turns on the
dots on the screen that the line “passes over”. It does
this by turning on the bits in memory and letting the
video refresh circuits use that memory to refresh the
screen. Run program 3, and you will be able to see the
individual dots light up and watch the line shift over
discrete horizontal increments to draw a diagonal.

17

The Atari uses display memory in one of two
fundamentally different ways; “character addressing”
(reserving one byte per character where the number in
that byte is a unqiue character number) or “bit
mapping” (reserving one memory bit for each screen
dot).

A

g.4
1

3B SETCOLOR 1.8,
4 COLOR 1

58 FLOT 1,1

Bl DRAWMTO 319,14
3 DRAKMTD 1,131
i DREANTO 1.1
S8 GOTC 56

Program 3.

Another computer, the Apple, has “Lo-Res”
graphics (which are character addressed) and “Hi-
Res” graphics, which are bit-mapped. There is no
middle ground, just one or the other. Many people,
familiar with the Apple, ask about the Atari’s
“Hi-Res” graphics. They are thinking in Apple terms,
and these just do not apply as well to the Atari. The
answer to the above question is “which Hi-Res mode
are you referring to?”

Dot Graphics Lines

There are 14 different display operation modes in
the Atari. Some are character addressed, some are
bit-mapped, and some are in between. Let’s restrict
ourselves for now to the Basic graphics modes, which
you are probably familiar with. We will return to the
modes the Basic manual does not tell you about. All
these different modes give you a great deal of flexibility
and ease in doing complex graphics.

The character modes, 0, 1, and 2, are pretty easy to
understand. Mode 0 we have been looking at. Mode 1
is just mode O characters stretched out to twice their
width. Mode 2 is mode 0 characters stretched to twice
their height and width. Since both | and 2 involve
characters twice the width of graphics 0 characters,
8 X 2 = 16 dots wide, it will not surprise you to learn
you can only fit half as many on one line (20). Modes
3-0 are graphics modes, and do not involve characters.
In order to learn about them we will have to define a
word, the “pixel”.

A “pixel” is a group of screen dots that the Atari
treats as one. They will all be the same color and will all
be represented by just one memory location. If the
single bit in memory that represents this group of dots
is on, then the whole group is lit, and vice versa. Now,
the size of a pixel is not fixed. Different graphics
modes have different pixel sizes. A pixel can be as
small as one dot oras large as 64 dots. Graphics 8 gives
us the highest amount of control over the screen with
one dot per pixel, allowing us to program every dot in-
dividually. In Graphics 3 each pixel is 8 rows of 8 dots.
The size of the pixel determines the amount of graphics
detail possible. Imagine a pixel to be a square of paper
of varying size. A graphics 8 pixel would be the size of
one TV dot. A graphics 3 pixel could be a quarter of an
inch on a side. Everything going on the screen must
be plotted using those squares. If you’re using the
larger squares, you are not going to be able to geta lot
of detail. The smaller the square, the finer the detail
you can draw with.

Fewer of the larger pixels can be fit on the TV at the
same time, so it is reasonable to assume they will use
less memory. If you will examine the graphics modes
table on the back of the Atari manual, you will see this
is the case. With finer detail and smaller pixels, more
memory is used.

If you were drawing ten line bar graphs on the
screen, you would not need fine detail. The pixels can
be huge and it will not make any difference. If you are
drawing a finely detailed picture, you will need small
pixels and “high resolution™, or fine control. In the
first case, you can use a coarse detail graphics mode
and not waste memory. Since the Atari has several
modes, you can select the mode you need for the
application and not be forced to use the highest
resolution for all graphics.

The Atari manual states that only one graphics
mode can be used at a time, with the option of
putting a graphics 0 text window at the bottom of the
screen. If you tried to mix them, and displayed data
meant for graphics 0 in graphics 8, the character in the
upper left hand corner, from READY, would be “R”.

In graphics mode 0, the “R™is represented by a 50, so
the first byte of display memory would have that data
in it. A 50 is a bit pattern of 0011 0010. If we switched
to graphics 8, that would be the bit pattern we would
have on the top scan line (blank, blank, dot, dot,
blank, blank, dot, blank.) The other data in display
memory would also be sent to the screen as random
data. All data in display memory must be consistent
with the graphics mode it was written in.

The Atari manual attempted to simplify matters for
users and prevent them from having a lot of problems
by announcing that graphics modes cannot be mixed.
This is not so, but in mixing modes you have to know
a lot about the machine and how televisions really
work, and most people do not have that knowledge.
The really fancy graphics capabilities, such as mixing
modes, were left to Atari’s own top programmers.
That is what we are going to explore next.

We will set up a sample problem and solve it using
mixed graphics modes. The problemis to draw a graph
on the screen, titled with big letters, subtitled in small
letters, with a finely detailed graphics plot and labels
on the lower axis. You could do this all in the highest
resolution mode, but you would be a lot older by the
time you were finished. You would have to compose
all the lettering out of individual dots, and that would
take quite some time. Atari has taken a lot of the work
out of this process and saved the programmer a lot
of time.

The Dark Secrets of ANTIC and CTIA

Let’s quickly review some of the TV concepts. There
are 192 horizontal scan lines on the TV. Each scan line
is composed of 320 dots. The lines are traced
horizontally, left to right, one at a time. The top lineis
traced first, the bottom line last. This entire process
happens 60 times per second.

The information sent to the TV isstored in the Atari
memory in one of two ways, either by character
addressing (where we define a letter by assigning a
number to it, and use a shape table to plot it) or bit-
mapping (where a bit in memory directly represents a
pixel, or group of dots.) If we bit-map memory we
must not display the bit-mapped data in character
fashion, and vice versa, otherwise we will get random
litter on the TV.

The main processor of the Atariiscalled a 6502. The
6502 moves data in and out of memory, and performs
instructions at the rate of 1.7 million persecond. (This
does not mean that 1.7 Basic instructions are executed
each second. In order to interpret and act on just one
Basic instruction, many 6502 instructions must be
executed.) Refreshing the TV screen is a job that taxes
even this sort of speed. There are 320 dots on 192 scan
lines, individually refreshed 60 times a second; 320 X
192 X 60 is 3.7 million dots each second. We want the
6502 to be doing things like running Basic programs,
not worrying about the TV screen. So the people who
designed the Atari gave the 6502 some help, in the
form of a very fast, dumb slave computer called the
ANTIC. ANTIC lives to do display work only, and,
like the 6502, is a microprocessor.

Any computer has memory and a processor. The
processor gets its data and instructions from memory,
does its processing, and places data back into memory.
The Atari has so many demands put on it by its
graphics abilities that it comes equipped with two
processors. The 6502 handles all the usual computer
processing; executing Basic programs, writing data to
disk, and so forth. The 6502 gives ANTIC a program,
and places data in display memory. But once that’s
finished, the ANTIC gets the display from memory to
the TV all by itself.

ANTIC feeds a chip called CTIA. CTIA is the color
television interface which generates the output signal
for the TV. It is not a processor, but a smart custom
chip only found in the Atari. ANTIC gives the CTIA
the data it needs to generate the 3.7 million dots every
second. CTIA has to keep up with that rate, and has
to be fed with data at that rate. ANTIC is in charge of
memory control.

The 6502 and ANTIC share memory, and the com-
puter is designed to keep them from trying to use the
same memory at the same time. So while a refresh is
going on, and ANTIC is frantically pulling data from
memory and feeding CTIA, it turns off the 6502.
When ANTIC is finished, it turns the 6502 back on.
This process is called “direct memory access”, or
DMA, because the 6502, which normally manages
memory, has nothing to do with it. If ANTIC’s DM A
is turned off, the video display would be lost im-

mediately, because it would not have any data to re-
fresh the display.

There are many books on 6502 machine language.
It takes a while to learn machine language, and a lot of
practice to become good at it. However, there are no
books on ANTIC’s machine language. Remember,
ANTIC is a processor and hasa program, written in its
machine language. It isn’t 6502 language, because
ANTIC is tailored to display work. It is a display
oriented language.

There are many ways you can use ANTIC’s pro-
gram. One of them is mixing graphics modes on the
screen.

ANTIC’s program is called a “display list”. This
display list is located in memory, just as the 6502’s
programs are. ANTIC generates displays by executing
these display list instructions. A display list instruction
is either one or three bytes long.

ANTIC single byte instructions generate displays
and manage a “display block” A display block is a
group of adjacent horizontal scan lines (a group of
scan lines all together, with no spacing between them)
which are all in the same graphics mode. They are the
height of one data element in display memory.

A graphics 0 display is one row of characters. Since
characters are 8 scan lines high, the display block
height is 8 scan lines. A graphics 2display block, where
characters are 16 scan lines tall, is also 16 scan lines
high. A graphics 3 display block, where pixels are 8
scan lines high is 8 scan lines, and a graphics 8 display
block is 1 scan line high. Each data element in display
memory produces some kind of graphic image on the
screen, and the height of that image is the block
height.

A display block is only one row of characters or one
row of pixelsin a graphics mode. There are 24 display
blocks being shown on the screen in Graphics 0. Think
of them as long, thin horizontal bars extending the full
width of the screen. They are stacked on top of one
another.

In graphics 8, there are 192 display blocks, all
stacked on top of each other. This is because graphics
8 display blocks are only one scan line high. Display
blocks do not have a fixed height. The height depends
on the graphics mode one is in.

Let’s look at a table of the various graphics modes
from Basic and how high each mode’s display block is.

Basic Graphics Mode Size of Display Block # Vertically Stackable

8 v lines/char

8 v lines/char

16 v lines/char

8 v lines/point

4 v lines/point
-same-

2 v lines/point
-same-

1 v line/point

24 vertically stacked
24 vertically stacked
12 vertically stacked
24 vertically stacked
48 vertically stacked

96 vertically stacked

XAV B LNN—-O

192 vertically stacked

The Dark Secrets of ANTIC and CTIA

Inside a display block, the graphics mode cannot
change. This means if something on the screen is in a
given display mode, everything next to itis also in that
same mode. Although the mode cannot change inside
a display block, the blocks above and below that dis-
play block can be in different modes. This means we
can mix modes on the screen by stacking the different
display blocks that we want. This only allows us to
mix modes in horizontal layers, not in vertical stripes.

Remember the graph we wanted to create? First, we
would stack a graphics 2 display block (the title) on top
of two graphics 0display blocks (the subtitle) on top of
a bunch of graphics 8 display blocks, on top of the
graph itself (see Figure 10.) It saves a lot of time to mix
graphics modes and not have to go through all the
work of plotting your characters in high resolution
dots.

Let’s follow ANTIC through the display refresh
process. We will use our earlier example, the word
READY on the screen in graphics 0, in the upper left
hand corner.

Sample Atari Display (Mixed Modes)

gr

md

b And here is the Mode # subtitle

8 which is two lines high.

@

B .
% N
=

~

g 18 28 39 49 58 68 78 88 3 188
a Here is line 2 of the labelling.

8 Here is line 3 of the labelling.

i} Here is line 4 of the labelling.

8 Here is line 5 of the labelling.

Figure 10.

ANTIC has an instruction in its display list which
keeps it waiting until the time rolls around for a new
screen refresh (every sixtieth of a second). Once this
occurs, ANTIC starts work. It needs to know what to
put on the very first scan line. It looks to the display
list for instructions. In our example, a graphics 0 dis-
play block is first. Mode 0 has 40 characters perdisplay
block, and it takes 8 scan lines to plot the block.
ANTIC turns off the 6502 and grabs 40 bytes from the
start of display memory, which are the numeric
representations of “READY” and 35 spaces. ANTIC
knows that since this is a character mode, these 40
bytes actually represent shapes stored in a shape table,

20

so it goes to the shape table and finds all of their
shapes. Over the next eight scan lines, ANTIC plots
the READY as we learned in the previous chapter. It
consults the display list again for what to do with the
next display block, then grabs another 40 bytes from
display memory using the Graphics 0 display block,
right below the first 40, and plots another line of
graphics 0 characters, and continues. After 24 display
blocks, the display list tells ANTIC to stop and wait
for the next refresh. The 6502 is turned back onagain.
In graphics 0, the 6502 is turned off about 309 of the
time. In graphics 8, it is turned off about 609% of the
time. One way to speed up calculations on the Atari is
to turn off the display completely.

If we were in graphics 8, ANTIC would have to
look to the display list 192 times, and find a graphics 8
instruction that same number of times. Now if the dis-
play list tells ANTIC to first plot a mode 2 row of
characters, then two mode 0 rows, then a bunch of
graphics 8 blocks, it will do that. This is how we mix
graphics modes.

Clearly, you have to map out your displays in ad-
vance and also map out your display memory. Since
display memory is used by ANTIC as a result of
plotting display blocks of data, the memory must have
the exact amount of data needed stacked in the same
way as the display blocks.

Go to the sample graph. A line of graphics 2 char-
acters takes up 20 bytes of memory. That is because
only 20 characters (double wide) fit on one line in
graphics 2. Since this is the first display block, these
bytes must be at the start of display memory, where
ANTIC will start looking for data for that mode 2 line.
ANTIC plots them, and while doing so, moves
forward 20 bytes in memory. Next it needs 40 bytes for
data for the first of two graphics 0 display blocks.
That 40 bytes must immediately follow the 20 bytes of
mode 2 data in memory, because that is where ANTIC
will be looking for them. Next, another mode 0 line
(40 more bytes), then a mode 8 line. The mode 8 line
uses 40 bytes per display block (320 points, with 8
points stored per byte, is 40 bytes), bit mapped rather
than character addressed. The data following the
second mode 0 line must be bit mapped format, ready
for graphics 0 display.

ANTIC has no idea where you want bit mapped or
character addressed data to start and end other than
where it is in display memory when ANTIC needs
more data. You control that through the display list.
If you store 41 bytes of data for a mode 0 line, it will
not wrap around. ANTIC will just use that extra byte
as the first data byte for the next display block and
could interpret it in either graphics or character mode,
depending on the display list.

Just for practice, and as an example, let’s lay out a
sample display list and display memory, which follows
from the display list’s needs, for our graph.

We design our displays around the 192 available
scan lines. We will mix graphics modes, but must

make the total number of scan lines used come out to
exactly 192.
Here is how we allocate the 192 scan lines:

16 X 1 = 16 lines in graphics 2 for our title.
8 X 2 = 16 lines in graphics 0 for our subtitle.

120 X 1 = 120 lines in graphics 8 for the actual graph.
5 X 8 = 40 lines in graphics 0 for the labels.

This gives us a total of 192 scan lines.

There is no great penalty if we do not come out
exactly at 192 scan lines. If we have a few less, the dis-
play just will not reach to the bottom of the screen. If
we have a few more, we will get some bizarre displays
(you may want to try this out later on). Going past
192 can result in weird things happening, as ANTIC
will keep sending information after it reaches the end
of the screen.

We have allocated 192 scan lines in 120 display
blocks. Next we will allocate display memory. This is
done by adding up the individual display block re-
quirements.

20 bytes X 1 line = 20 bytes for the first block in
graphics 2.

40 bytes X 2 lines = 80 bytes for the next two blocks in
graphics 0.

40 bytes X 120 lines = 4800 bytes for the next 120
blocks in graphics 8.

40 bytes X 5 lines = 200 bytes for the last five blocks in
graphics 0.

This gives us a total of 5100 bytes for display
memory.

To get our graph on the screen, we set up display
memory with the needed data, character addressed for
modes 0 and 2 and bit mapped for the mode 8 blocks,
then set up the display list with its 120 display block
instructions, and finally tell ANTIC to get going. It
will, and the display will pop up on the TV. A quick
review of the paper and pencil process:

1. Design your display as display blocks.

2. Map out the display list from those blocks.

3. Map out display memory from the display list.

It is much easier to plot a title in large letters using
graphics mode 2, where you just have to put the right
20 bytes of data into display memory and put in a
mode 2 display list instruction, than to construct the
letters out of individual high-resolution dots. The
Atari will do all the constructing for you, and save
you a lot of time. Since programmer time is becoming
the most expensive factor in owing a computer, this
sort of time saving is very important.

We are going to need some tables on how many
bytes the various graphics modes consume. We will
also have to look at how color is stored in the Atari so
you will know how display memory is actually
formatted, while also understanding the idea of bit
mapped memory. We will then start examining and
modifying display lists to get some nice effects. If you
can, have an Atari available to try out the examples.

More Memory Secrets

Remember when we calculated the memory require-
ments of the various modes? The Atari manual chart
gives numbers a little larger than the ones we cal-
culated. For example, in graphics 0, we need only
960 bytes to store the character numbers (40 X 24
characters = 960), yet the manual said 993 bytes. The
remaining bytes are the display list memory area. Let’s
recalculate the graphics 0 display memory and display
list requirements.

A graphics 0 display list, as we will shortly see in real
life, looks like this:

3 bytes which instruct ANTIC to leave the top of the
screen blank.

3 bytes which instruct ANTIC where to find display
memory.

24 bytes which instruct ANTIC that there are 24
graphics 0 display blocks.

3 bytes which instruct ANTIC to wait for the next
refresh to begin, then go to the top of the display list
and start all over again.

This totals 33 bytes.

Add these 33 bytes to the 960 bytes of the graphics 0
display memory, and you will have 993 bytes, which is

21

what the Basic manual says. You can carry out this
same calculation for other graphics modes.

Depending on the graphics mode, we have a variable
number of colors available to color a given character
or dot on the screen.

There are 16 colors available, numbered 0-15. There
are also 8 different luminances available, numbered
0-15. Each consecutive pair of luminance values, 0 and
1, 2 and 3, and so on generate the same luminance, so
there are only 8, not 16 luminances. All this color and
luminance information takes 4 bits to save color in-
formation and 4 bits to save luminance information.
This totals 8 bits, or one byte, to save the color and
luminance for one point.

A competitive computer to the Ataristores one byte
of color and luminance information for each dot in
memory. We would use 320 x 192 bytes, or 61,440
bytes. Since 65,535 bytes is all of memory, we would
be using nearly all of it for display! So we need to come
up with a better approach.

The Atari has five “color registers” instead. These
color registers are 8 bits long, and save color informa-
tion in the first four bits, with luminance information

More Memory Secrets

in the last four. In memory when we want to specify a
color, we instead specify the number of a color register
that contains the color we want to have the data dis-
played in.

When CTIA, busily plotting data from ANTIC,
looks to a graphics point and sees “01” as its color, it
does not plot the point in color 1, but looks to color
register 1, gets whatever color is stored in there, and
plots the point in that color. A lot of memory is saved
this way.

Graphics 0 and 8 do not have color information
saved in their memory data. That is why it is easy to
calculate their memory needs. Modes | and 2 actually
use the top 2 bits of each character number to save a
color register number. The graphics modes other than
8 work in one of two ways. They reserve either one or
two bits per pixel, and use those | or 2 to “point to”
color registers.

With 1 bit, we can specify 2 colors (0 or 1).

With 2 bits, we can specify 4 colors (00, 01, 10, 11).

Hence, if we use a 2-bit mode, we can specify a pixel
to be in one of four colors, and if we use a 1 bit mode,
we can specify one of two colors. In your Basic
manual’s graphics section, it mentions that modes 3, 5
and 7 are “four color modes”, and modes 4 and 6 are
“two color modes”. You have just learned why. Modes
4 and 6 use less memory than their 4 color counterparts
at the same resolution, for they use only 1 bit per pixel,
not 2.

A typical graphics 7 (2 bits — four color) display
block is 2 scan lines high and has 160 points across
(2 dots per pixel horizontally and 2 scan lines per pixel
vertically). Since there are 160 points, and 2 bits per
point to save color information, that is 320 bits, or 40
bytes of information per block. The information is
stored 4 pixels per byte, all packed in together. If we
had a graphics 7 display block at the top of the screen,
the first byte would contain the data for the first four
points. The first point on the screen would have its
color data in the first two bits of the first byte (bits 8
and 7), the second point in bits 6 and 5, and so on. If
there is 00 specified as the color information, the point
is not plotted. Rather, background color and
luminance are used in plotting that pixel.

Below is a handy table of the various graphics
modes, how they are mapped in memory, and the
memory requirements.

If we store 8 points per byte, we are only using | bit
to determine color. If we store 4 points per byte, we
are using 2 bits and have a 4 color mode.

We add 9 to each display list length to handle the
overhead instructions in the display list (see the
previous example). These instructions are the same in
each display list, hence the constant length.

The total RAM requirements will match the back of
your Basic manual. The only difference will be in
graphics 8, which has bytes that are unaccounted for;
these are extra display list instructions made neces-
sary by the length of display memory.

Graphics X Y Lines/ # Bits/ Pts/
Mode Pts Pts DB Point Byte
0 40 24 8 8 1
1 20 24 8 (8) 1
2 20 12 16 (8) 1
3 40 24 8 2 4
4 80 48 4 1 8
5 80 48 4 2 4
6 160 96 2 1 8
7 160 96 2 2 4
8 320 192 1 1 8

DMem D List RAMreqd RAM /1
Length Length (DM+DL) Disp Bl
960 + 24 (+9) = 993 40
480 + 24 (+9) = 513 20
240 + 12 (+9) = 261 20
240 + 24 (+9) = 273 10
480 + 48 (+9) = 537 10
960 + 48 (+9) = 1017 20
1920 + 96 (+9) = 2025 20
3840 + 96 (+9) = 3945 40
7680 + 192 (+9) = 7891 40

22

Examining the Display List

The display list is written in ANTIC machine
language and is a program. Do not expect the opera-
tion codes, stored in the bytes of the DL, to match
what you think they should be. For example, a “0” is
not a graphics 0 instruction.

ANTIC instructions come in one or three byte
sizes. The three byte instructions are really one byte
instructions with 2 extra bytes of data. These 2 bytes of
data specify a memory location and are examined
together as one 16-bitaddress. The address can specify
any location in memory. Since ANTIC needs to be
able to go anywhere in memory, these are the in-
structions that enable it to do so.

One instruction is the number “2”. It is a one byte
instruction that tells ANTIC to generate a graphics 0
display block, and we will be seeing a lot of them. Let’s
go ahead and display the display list in your machine
on the printer, or on the screen if you do not have a
printer. (If you do not have a printer, change every
LPRINT in the program to PRINT.) Enter and run
program 4.

Your printout will look like Figure 11. If you have
48K of RAM memory in your Atari, it should be
identical. Let’s examine the program and see how it
works.

Line 10 examines two locations in memory through
the PEEK statement. You may want to go back and
reread the chapter on memory concepts if you are
getting lost. The locations are at addresses 560 and
561, and together they specify the start of the display
list. They form a 16 bit address, so line 10 takes both 8
bit values and multiplies one by 256 in order to make
the number a 16 bit value for us to use. This value is
the memory address of the beginning of the display list.

Line 10 assigns START to the address in memory
where the display list begins. The program prints the
address in line 20 and a title in line 30. Lines 40, 50, and
60, display the next 50 bytes’ memory location, value,
and 16 bit interpretation of that value, since some of
these bytes will be parts of 16 bit addresses. Examining
our output, we see that the byte at address 39968 con-
tains a value of 112. The next byte is also 112, and so
forth.

We have marked the two 16 bit addresses in the dis-
play list. Other than that, you can ignore the 16 bit
column, as does ANTIC. Only in 3 byte instructions
does it take the last two bytes and combine them to
form a 16 bit address. Remember our display list is
only 33 bytes long in graphics 0. We have printed out
50 locations. Let’s start at the top of the display and
work down, seeing what ANTIC does with each
instruction. You could think of this as a program with

the memory locations as line numbers. Should your
Atari have less memory than mine, the memory
locations will be lower, but that is no problem. Every-
thing done here can be applied to a lower memory
Atari as well.

The first three bytes contain the value 112. Instruc-
tion 112 calls for a display block 8 scan lines high with
no characters. This tells ANTIC to take a break, do

23

nothing with display memory, and generate 24 back-
ground color scan lines (8 scan lines for each value of
112). Many televisions “overscan”, and if we do not
leave a border around the display area some of that

5 GRAPHICS 8

6 PRINT "READY"

18 START=PEEK(741)+2564PEEK(742

20 LPRINT "START OF DL=";START

25 LPRINT "ADDR (1 BYTE) (2 BYTE)"
38 FOR ADDR=START TO START+S8

49 LPRINT ADDR.PEEKCADDR), PEEK(RDOR 4256
KPEEK(ADOR+1)

68 NEXT ADOR

Program 4.

START OF DL=39967 START OF DL=39967

Pﬂ_)fg (1 BYTE> (2 BYTE) ADOR (1 BYTE> (2 BYTE)
39367 %] 26672 39967 [’} 28672
39968 112 28784 39968 112 28784
39969 112 28784 39969 112 28784
39978 112 17088 39979 12 17088
39971 o 16450 39971 66 16450
39972 64 48000 39972 64 _%_”M
39973 156 668 39973 156,

39974 7 514 39974 2 514
399?5_ 2 514 39975 2 514
39376 2 514 39976 2 514
39977 2 514 39977 2 514
39976 2 514 39978 2 514
39979 2 514 39979 2 514
39980 2 514 39984 2 514
33981 2 514 39981 2 514
39982 2 514 39982 2 514
33983 2 514 39983 2 514
39984 2 514 39984 2 514
39985 2 514 39985 2 514
39986 2 514 9986 2 514
39987 2 514 39987 2 514
39988 2 514 39988 2 514
39989 2 514 39982 2 514
39999 2 514 39998 2 514
39991 2 514 39991 2 514
39992 2 514 39992 2 514
39993 2 514 39993 2 514
39994 2 514 39994 2 514
39995 2 514 39995 2 514
399396 2 16642 39996 2 16642
39997 (] 8257 39997 B 8257 _ﬁ‘
39998 R 39968 39998 k7 ;@ vB
39999 156 156 39999 156 1
4060089] [} 40000 %] %]
40001 8 12800 46001 8 12800
40802 58 R 13618 480082 58 R B2
42003 53U 11829 40063 01 8485
48004 46 N 4% 49004 33A 9249
48005) ? 40005 360 14628
48006 8 8 40086 57 57
40007 %] [} 40007 %] %]
40088 %] 8 480088 %] [’]
46089 8 8 40089 %] 8
40810 %] 8 40010 %] [’}
48811 %] 8 40011 %] [’}
480812 8 8 40012 2] [’}
40913 0 8 40012 0]
48014) 8 40014 %] [’}
40815 e 8 40015 *] [’}
48016 2 9 40016 @ 8
46017 [’} 8 40017 8 [’}

Figure 11.

area could be lost off the screen. The 112 instructions
do not look to display memory. The next 3 bytes are
all one instruction. They tell ANTIC where display
memory is, and tell it where to get data if it is needed.
The next 24 instructions (all with the value “2”) are
graphics 0 display instructions. They instruct ANTIC
to generate 24 graphics 0 display blocks, using data
from the display memory. The last instruction in the
display list is executed over and over, in a loop. This
particular instruction tells ANTIC to wait until the
beginning of the next screen refresh, then go to the

Examining the Display List

address given in the next two bytes. The 16 bit transla-
tion of those two bytes is 39968. If you look at the top
of the display list printout, you will see that this is the
start of the display list.

The fourth display list instruction told ANTIC
where to look for the display memory. The 16 bit value
is 40,000. That is the beginning of display memory.

Bytes 40000 and 40001 are 0’s. A 0 in character mode
is a space. There are two leading blanks for the left
margin. The next 3 bytes contain data. They are the
letters “R™, “U”, “N”, displayed on the screen and in

memory when this program was executed. If you were
to PEEK farther into display memory, you would find
that the first 40 bytes reflect the first line displayed in
graphics 0, the next 40 represent the next line, and so
on. The other listing reflects what a READY would
look like in display memory.

If you have less memory, for example a 32K
machine, the addresses are going to be different. Your
printout will tell you where the display list and
memory are located. Everything is identical, except
that it is located in a different part of memory.

Modifying Display

It is possible to modify display memory directly by
POKEing a new value in. If we do so, ANTIC will
interpret the new value as data and start displaying it
on the screen. Choose a display location two display
blocks down (two rows) and in the middle of the
screen. Since each display block is 40 bytes long, that
will be the start of the display memory + 100. Type:

POKE 40100,46 (RETURN)

*Note: If you do not have 48K of memory in your
Atari, do not use this. Instead find the beginning of the
display memory by dumping the display list and look-
ing for the 16 bit address in that listing. It will be the
5th and 6th bytes of the display list, and will be an
address immediately following the end of the display
list. For example: if the 16 bit conversion says 17,250,
then add 100 to that to get 17,350, and type POKE
17350,46 (RETURN).

An “N” will have magically appeared two rows
down in the center of the screen. (A 46 is the code for
an N). We have just directly modified display memory.

Move around in memory a bit from the start of dis-
play memory to the end, and try POKEing in the 46 in
other locations. You will get N’s appearing all over.
Try POKEing in other numbers than 46, and you will
get other characters appearing on the screen. Do be
careful to stay inside of the display memory area. If
you go past display memory into the display list, un-
predictable things will happen.

Try a FOR-NEXT loop from 0 to 255 and POKE
the value into a display memory location. You will
see all the possible letters alternating in one location.
You could also use a series of memory locations with
a FOR-NEXT loop to fill them with data. Here are
two examples.

MEMLOC=XXXXX (fill in where you want data
modified.)

FOR CHAR=0 TO 255

POKE MEMLOC,CHAR

NEXT CHAR

Memory

24

Fill a whole selection of display memory full of N’s.
MEMSTARTHXXXXX
MEMEND=MEMSTART+100

FOR LOC=MEMSTART TO MEMEND

POKE LOC,46

NEXT LOC

You can do similar things by POKEing into display
memory in other graphics modes.

We will pick one of the 24 graphics 0 blocks, and
change it to a graphics 8 block by POKEing into the
display list. ANTIC will display the contents of those
40 memory locations as graphics 8 dots on one scan
line (the size of graphics 8 blocks). The whole dis-
played area will shorten by 7lines because the graphics
8 block is 7 lines shorter than a graphics 0 block. The
letters on that line will be replaced by a graphics 8 line
with dots on it, with the character data represented
as dots. Above and below the graphics 8 line, there will
be the usual character data. Since both graphics 0 and
8 use 40 bytes per display memory block, we do not
have to worry about the start of other lines being in the
wrong place.

Pick a byte in the middle of the graphics 0 instruc-
tions in the display list. We picked 39984 (see Figure
11). It can be any of the “2” graphics instructions, but if
you pick one in the middle, it will show up better. Now
the code for a graphics 8 display block is 15, so to
modify that byte to a 15, we:

POKE 39984,15 (RETURN)

A middle line of characters is gone and there is a
very small line of dots where they used to be; that’s our
graphics 8 display block. (If you had a blank screen in
graphics 0 when you POKEd in the 15, you will not see
any dots. That is because graphics 0 with a blank
screen is display memory filled with 0’s, and graphics
0 displays 0’s as blanks.)

When you LIST a program on the screen, you will
see the “black hole” effect. A line of characters will
scroll up normally, hit the character line that is now a

graphics 8 line, and disappear. It will be a group of
dots. As the display scrolls up one more line, it will
reappear out of that group of dots and something else
will take its place. The dot pattern will shift also as the
data on that line shifts. (Screen scrolling is ac-
complished through rewriting display memory). This
is completely consistent and normal. Display memory
has not changed, only the way ANTIC interprets that
memory. If we wanted to restore the display block to
graphics 0, we would type:

POKE 39984,2 (RETURN)
to put the graphics 0 code back in.

RESET will completely rewrite the display list and
clear out display memory. It is a good way to restore
your display if you make a lot of mistakes.

If you change all the graphics 0 opcodes to graphics
8, your complete screen size will be 24 scan lines, or
just the top one eighth of the screen, and if you LIST a
program, you will get a wildly shifting dot pattern
where the characters used to be. You can use a FOR
NEXT loop to modify all of the display list opcodes
from 2s to 8s, and then back, for a yo-yo effect.

If graphics 0 is opcode 2, and graphics 8 is opcode
15, what are 3,4,5...147 The Atari has 14 graphics
modes, not the 9 that the Basic manual describes. A
complete listing of graphics opcodes follows. It gives
the display list opcodes, the Basic graphics number,
whether it is a character or graphic mode, how high a
display block it is in, the number of colors allowed,
and the X and Y dimensions of the screen.

Some of these modes are just variations on other
graphics modes. POKE them into the display list to
try them out. One mode has 10 scan lines for letters,
instead of 8. This one is for use with letters you would
like to appear above or below the regular 8 scan lines,
for things like exponents or subscripts.

Instead of having ANTIC show the display memory,
let’s have it show another part of memory. If we alter
the address where ANTIC is told display memory’s
location, it will put whatever (probably garbage) it
finds on the new location on the screen. We will
choose an area of memory that is constantly changing
all the time. This will make for an interesting and
rapidly changing display. Type NEW for a new pro-
gram, then:

1 POKE 39972,1: POKE 39973,0
RUN (RETURN)

The reason I do these POKEs with a program is the
instant either POKE is executed, the screen display
will become illegible. What you will have is a rapidly
flickering display reflecting low memory, where a lot
of work is done. If you add:

2 FOR N=1 to 65000

3 NEXT N
and run it, you will watch the computer’s memory as
Basic executes from a neat ringside seat. For those of
you with a display list in a different place, just change
the appropriate locations. You should have no trouble
figuring out which they should be, if you have followed
the examples to this point.

25

If you would like to see ANTIC become misaligned
with where the lines ought to start and end, try insert-
ing a mode 2 line in the middle of the display list. Since
mode 2 uses only 20 bytes per line, the remaining 20
will be picked up by the next graphics 0 line, and
cause problems. Try it and watch the result.

Here are a few hints on making your own display
lists and custom displays.

Start with a Basic display list longer than or equal to
the length of the one you intend to have. It is very
easy to shorten a display list. Just move the last in-
struction up a few bytes. Your display memory will be
allocated by Basic this way, and you will avoid
problems.

Do not try to POKE too much data. POKE is pretty
slow. Until you learn machine language it is best to
use PRINT or other Basic commands as much as
possible.

If we were actually going to generate the graph in
the example, we would start with a graphics 8 display
list, move the jump instruction at the end up so we
have the right number of display blocks, modify the
block appropriately, then use POKEs for the titles and
labels. The regular graphics 8 PLOT and DRAWTO
commands would work fine for actually drawing the
graph, if we modify the display slightly.

With our graphics 2 instruction at the start of the
display list, we have misaligned memory with ANTIC.
So move the display memory pointer back 20 bytes,
and all will be well once again.

Your best bet at this point is to experiment with
your own custom display lists and memory setups. The
experience will be most helpful in later sections.

We will continue with further adventures in the
display list. Next we will describe all the ANTIC
opcodes (we have listed only the graphics related ones
so far), have some discussions on how to use them,
and find out some more of the tricks the display list
can accomplish for us. This will help you design and
implement displays faster and more effectively.

We will also discuss display list interrupts. Some
spectacular display generation programs are included
in this section.

Antic Code Basic Gr. Mode Char/Graphics DB Lines Colors X Y
0 Char 8 2 40 24

2

3 none Char 10 2 40 odd
4 none Char 8 4 40 24
) none Char 16 4 40 12
6 1 Char 8 5 40 12
o 2 Char 16 5 20 12
8 3 Graphic 8 4 40 24
9 4 Graphic 4 2 80 48
10) Graphic 4 4 80 48
1 6 Graphic 2 2 160 96
12 none Graphic 1 2 160 192
13 7 Graphic 2 4 160 96
14 none Graphic I 4 160 192
15 8 Graphic 1 1 320 192

Display List Opcodes

There are three main groups of display list opcodes.
There are also some modifiers which may be added to
the basic opcodes, much like a sharp or flat may be
added to a musical note. Just as certain notes may not
have a sharp or flat added, certain display list opcodes
may not have certain modifiers.

Here are the groups:

1. Blanking opcodes.

When ANTIC encounters one of these, it generates
a certain number of blank scan lines, in the color and
luminance of the background or border. It does not
look to display memory or do anything else, it just
generates blank scan lines. From 1 to 8 blank scan lines
can be generated by these opcodes. The blank lines,
like any display block, extend fully across the screen
horizontally.

Modifiers: Only a display list interrupt modifier
may be added to blanking opcodes.

2. Character/Graphics opcodes.

When ANTIC encounters one of these, it fetches
bytes from display memory, determines the graphics
mode, and puts a display on the screen. A complete
list of these opcodes is available in the previous
chapter.

Modifiers: Horizontal scroll, vertical scroll, load
memory scan and a display list interrupt modifiers
may be added to these opcodes.

3. Two special codes.

JMPisa JUMP for ANTIC. It tells ANTIC to con-
tinue looking for instructions at a different address.
It is equivalent to a GOTO in the display list. It is
followed by the 16 bit address of the next opcode.

JVB (Jump and wait for Vertical Blank) tells
ANTIC to jump to the start of the display list, and wait
for a new screen refresh to begin. It is followed by the
16 bit address of a display list to execute when the next
screen refresh begins. You’ve seen this before, at the
end of the graphics 0 display list.

Modifiers: Only a display list interrupt may be
added to a jump opcode.

4. Special instructions.

JMP 01 hex (I decimal)

JVB 41 hex (65 decimal)
Modifiers:

To add a modifier to a given opcode, just add the
value given for that modifier to the base opcode, then
use the total as the opcode.

1. Horizontal Scrolling.

This capability added to an instruction means that
the display block may be horizontally scrolled. Add
10 hex or 16 decimal.

2. Vertical Scrolling.

This capability allows smooth vertical scrolling.
Add 20 hex or 32 decimal.
3. Load Memory Scan.

(A 3 byte instruction is implied if you use this
modifier.) This tells ANTIC where to find display
memory, and resets ANTIC’s pointer to the location,

26

losing the current display memory pointer location.
Add 40 hex or 64 decimal to the opcode.

4. Display List Interrupt.

The execution of this instruction causes ANTIC to
force the 6502 to generate an interrupt. The interrupt
service routine will be at the address pointed to by
memory locations 200, 201 hex (512, 513 decimal).

Blank Lines
Number of blank scan lines Hex opcode Decimal opcode
1 00
2 10 16
B 20 32
4 30 48
S 40 64
6 50 80
7 60 96
8 70 112

Character / Graphics Modes

Basic Graphics Mode Vertical Horizontal Colors Graphics/ Hex Decimal
(if any) Size Size Character

0 8 8 2) c 02 2
10 8 (2) (@ 03 4
— 8 8 4 (& 04 4
- 16 8 4 € 05 S
1 8 16 5 (& 06 6
2 16 16 5 C 07 7
3 8 8 4 G 08 8
4 4 4 2 G 09 9
) 4 4 4 G 0A 10
6 2 2 2 G 0B 11
= 1 2 2 G 0C 12
i 2 2 4 G oD 13
s 1 2 4 G OE 14
8 1 1 2 G OF 15

Special Instructions
IMP 01 hex (01 D)
JVB 41 hex (65D)

We have covered “playfield graphics™ (or graphics
generated by the display list), ANTIC, and CTIA
hardware in some depth. You now know how to
generate some amazing graphics.

There is much information to present here. We will
give lots of examples and ideas for their use to help
you understand. The ANTIC opcodes allow you to
mix graphics modes, to program display memory for
mixed modes, and to format display memory.

In the next section, we will cover display list in-
terrupts and color handling in detail as a method for
achieving 128 colors on the screen at the same time.
The actual goal (the 128 shades of color) is not nearly

as important as the method beind it, but without the
end point to work towards, the information presented
is not useful or functional. By the end of the section,
you will be able to generate the 128 color display and
you will also have a good idea of how the Atari handles
color.

After we cover display list interrupts, we will
examine Player-Missile graphics. This is a
separate graphics generation system that is in-
dependent of display lists and other special graphics
features of the Atari. Player-Missile graphics allow
high speed animation.

Notes & Discussion

1. Horizontal and vertical scrolling are good additions
to graphics capabilities. They make displays easier
and provide some effects that would be almost im-
possible to generate otherwise.

Scrolling is causing the display to appear to “roll
by™, so that when an object on the display comes into
view, it moves across the screen and disappears on the
other end. (The Atari coin-op games where you fly
over enemy terrain, bombing targets that roll by
underneath you, is an example of scrolling. These
games could be implemented on the 400/800 using
scrolling techniques.)

In order to have a display scroll, we must first send
it to the screen in unmoved format, then move it, then
send it again. This will cause the display to shift once.
Repeatedly doing this causes a scrolling effect. All our
displays, generated by ANTIC and CTIA, are stored
in memory and sent to the display sixty times a second.
So what we have to do is change display memory in
such a way that it will cause the display on the screen to
scroll.

If the display memory is changed so that all in-
formation in it is copied 40 bytes up, in graphics 0,
then on the next refresh the former top line will be re-
placed by the information from the line below it.
(Lines are 40 bytes long, remember.) You have seen
this effect when the Atari scrolls something up off the
screen, as happens during a long listing. If we were to
move the data in the display memory up just one byte,
the screen would scroll to the left, for the contents of
the second byte would now be displayed in the first
byte’s screen position, and so on down the screen.
See Figure 12.

This is a good way to doscrolling if you are working
in assembly language. The amount of data that must
be moved, however, (960 bytes in graphics 0) is so
large that it becomes impossible for Basic todo the job

27

Before Memory Reuwrite

el

Start KX READY

R =

E | Display

| A | Memory

[D|

L

After Memory Reuwrite

Start EADY

1&g

€ >
|A| Display
| D | Memory

Figure 12.

quickly enough. There is a way, however, to do scroll-
ing from Basic without moving a large block of
memory. Instead of having ANTIC look at the same
place in memory for display memory data and moving
that data around, let’s just change where ANTIC looks
and leave memory alone (see Figure 13). The Atari
does hot have a fixed unchangeable location in
memory for display memory, unlike other machines.
We can change where ANTIC looks for data with
two POKE:s.

For example, if we were to tell ANTIC that screen
memory started one byte down from where it really
did, ANTIC would skip the first real byte of screen
memory, and the screen would seem to scroll to the
left. ANTIC would not know the difference, yet the
screen would have horizontally scrolled. If we were to
tell ANTIC the screen memory starts 40 bytes down
from where it really does, the screen will scroll up.

Notes & Discussion

Before Memory Reurite
Start _ /[ReroY

[R]
(A | Display

m Memory
Y

After Memory Reuwrite

Start =~ = EADY
[R] Pointer
‘] Display
[D | Memory
Y
Figure 13.

You can obtain some good demonstrations this way.
Try program 5 to scroll the screen horizontally,
program 6 to scroll it vertically, and program 7 to
scroll it both ways. All these programs do is change
the pointer ANTIC uses to find display memory. They
are a good deal of fun to leave running in a computer
store somewhere.

All this gives us is coarse horizontal/ vertical scroll-
ing. When we rewrite display memory, we shift
characters 8 dots or 8 scan lines (in graphics 0). This is
a long way to shift things on the screen, and we do not
get smooth motion. The Atari computer has the
ability to smooth out this scrolling process. You can
shift the display the number of “fine” dots or lines you
need to span the distance between coarse movements
smoothly, a dot or a line at a time. You cannot scroll
more than the distance between one coarse scroll using
the fine scroll machinery. Compare it to the fine tuning
on a television set; you cannot change channels with
the control, but you can smooth out the gaps between
channels. Fine scrolling is limited to 0-7 dots/lines in
graphics 0 or 0-16 dots/lines in graphics 2.

On the Atari scrolling is only a positive value. You
cannot scroll something down using the scrolling
hardware; you must start with it scrolled fully up and
then scroll it “less upwards” to achieve a downward
effect. How much you wish to display scrolled is
written into a certain memory location.

In order to make a smoothly scrolling vertical dis-
play, we would need to select our “coarse” vertical
position with the display memory and ANTIC pointer,
then select how many “fine” scan lines to scroll up
from that position using the scroll register. Presum-
ably we would increment the scroll register slowly
from 0 to 7, moving the display up. When we reached
7, we would rewrite display memory or change

28

20 START=FEEK(S60)+2546XFEEK(561)

30 REM ANTIC DISFLAY MEMORY FOINTER
40 REM IS AT START+4 AND START+5S

50 REM

100 X=PEEK(START+4)+256XFEEK(START+S)
110 PRINT "START OF DISP MEMORY="}X
200 FOR Y=X TO X+80

205 PRINT "FPOINTER="}Y

210 REM SFLIT Y UF INTO TWO BYTES

220 YHI=INT(Y/256)

230 YLO=Y-(YHIX256)

2%0 POKE START+4,YLO!FOKE START+5,YHI
250 FOR DELAY=1 TO 20:NEXT DELAY

260 REM

270 NEXT Y

Program 5.

20 START=FEEK(560)+256XFLEK(561)

30 REM ANTIC DISFLAY MEMORY FOINTER
40 REM IS AT START+4 AND START+S

S0 REM

100 X=FEEK(START+4) +256XFEEK (START+5)
110 FRINT "START OF DISF MEMORY='"}X
130 REM

140 REM SCROLL UF

200 FOR Y=X TO X+(40x20) STEF 40
210 GOSUE 1000

2460 REM

270 NEXT Y

500 REM SCROLL DOWN

510 FOR Y=X+(40x20) TO X STEF -40
520 GOSUE 1000

530 NEXT Y

5350 REM

600 REM SCROLL LEFT

610 FOR Y=X TO X+40

620 GOSUE 1000

630 NEXT Y

640 REM SCROLL RIGHT

650 FOR Y=X+40 TO X STEF -1

660 GOSUE 1000

670 NEXT Y

680 GOTOD 140

990 REM CALCULATE HI, LOW EYTES
1000 YHI=INT(Y/256)

1010 YLO=Y-(YHIX256)

1030 FOKE START+4,YLO!FOKE START+5,YHI
1040 RETURN

Program 6.

20 START=FEEK(S560)+256XFEEK(561)

30 REM ANTIC DISFLAY MEMORY FOINTER
40 REM IS AT START+4 AND START+S

S50 REM

100 X=FEEK(START+4)+256XFEEK(START+S)
110 FRINT "START OF DISF MEMORY='"};X
130 REM

140 REM SCROLL. UF

200 FOR Y=X TO X+(40%x20) STEF 40
210 GOSUE 1000

260 REM

270 NEXT Y

S00 REM SCROLL. DOWN

S10 FOR Y=X+(40%x20) TO X STEF -40
S20 GOSUE 1000

530 NEXT Y

S40 GOTO 140

S50 REM

290 REM CALCULATE HI, LOW EYTES
1000 YHI=INT(Y/256)

1010 YLO=Y-(YHIX256)

1030 FOKE START+4,YLO!FOKE START+S5,YHI
1040 RETURN

Program 7.

ANTIC’s pointer to get the eighth and final line. Then
we would start over, incrementing our vertical scroll
from 0 to 7, and continue until we were done. A down-
ward scroll is not very different. Just move the scroll
register from 7 to 0 and then rewrite memory.

The display list entry for a given display block must
be modified to allow scrolling. If you write something
to the scroll register, but do not change the display list,
nothing happens.

Some details on how fine scrolling
is implemented.

ANTIC normally displays a fixed number of scan
lines per display block. For example, in graphics 0, it
displays 8 scan lines. When we vertically scroll,
ANTIC does not do this anymore. When ANTIC en-
counters the beginning of a “scrolled zone”, a group of
display list opcodes with vertical scroll modifiers, it
treats the beginning and the end of the scrolled zone
differently than it normally would to achieve the
scrolling effect.

When ANTIC finds the first scroll marked display
block, it does not display the normal number of scan
lines for that block. It only displays the bottom “slices”
of that display block, the exact number is determined
by what is in the scroll register you have written to.
Because the top display block is shortened, the display
below that point moves up. For example, if there is a
4 in the scroll register, only scan lines 4,5,6 and 7 of the
display block are shown, which are the lower slices of
a character.

The display blocks in the middle of the scrolled zone
(the ones with their vertical scroll modifiers set) are
displayed normally, although their position is shifted
up as a result of the first one having a short display
block. When ANTIC reaches the end of the scrolled
zone, it displays only the top few lines of the display
block. If the scroll register had a 4 init, ANTIC would
only display lines 0, 1, 2, and 3; the top half of the
characters. This is necessary to make the total number
of scan lines in the scrolled area be the same. If the
total should change, the display below the scrolled
area would shift up and down with the scrolling, and it
would not be limited to the zone indicated by the dis-
play list. Since the top and bottom blocks of the scroll
area always have a total displayed amount of one dis-
play block, we get a fixed size scrolled zone, even
though the displayed data varies. Also note that you
“lose” one display block height, because the total of
the two outer display blocks is now one display block
height.

This is a strange way of doing things, but very
effective. If you run program 8, you will see vertical
scrolling in action. This program writes two separate
vertical scrolled zones into the display list, then scrolls
them using the register. When you run the program,
you will note the size of the display shrinks by two dis-
play blocks. These are the “lost” scrolled display

29

O VSCROLL=54277

10 START=FEEK(560)+256XFEEK(561)
20 REM xxx FUT SOME DATA ONSCREEN.
30 GRAFHICS 0

3% FOR T=1 TO 24

36 FRINT "THIS IS LINE #"37T

37 NEXT T

40 REM xxx ALTER DISFLAY LIST TO V
45 REM xxx IN TWO AREAS. 2 + 32 = 34
60 FOR Y=START+10 TO START+13

70 FOKE Y,34

80 NEXT Y

81 FOR Y=8START+17 TO START+20

82 FOKE Y,34

83 NEXT Y

84 REM xxx SCROLL UF

90 FOR Y=0 TO 7

100 FOKE VSCROLL,Y

108 GOSUR 200

110 NEXT Y

115 REM xxx SCROLL DOWN

120 FOR Y=7 TO 0 STEF -1

130 FOKE VSCROLL,Y

135 GOSUE 200

140 NEXT Y

150 GOTO 90

160 REM xxx SHORT DELAY LOOF

200 FOR T=1 TO S0INEXT T

210 RETURN

Program 8.

blocks. Note how the scrolled letters seem to disappear
behind the fixed letters. They are not really dis-
appearing, they are just not being plotted. (Figure 14).

Scroll Registers

Name Address
Hex Decimal
Vertical Scroll D405 57239
Horizontal Scroll D404 57238

Screlling Up Vertically

(normal)
(normal) LINE
(scroll) LINE
(scroll) LINE
(scroll) LINE
(normal) LINE
(normal)

Screll Register = g

All of LINE 3 is displayed

None of LINE 6 is displayed

0NV AWM -

(normal) LINE
(normal) LINE

PENTRVIE I i
(scroll) LINE
(scroll) LINE

(= mena 1 1Y L TAE
(normal) LINE

(normal) LINE

Scroll Register = 3
Part of LINE 3 is displayed

Part of LINE 6 is displayed

O MM U A LN

(normal)
(mormal) LINE
(scroll) LINE
(scroll) LINE
(scroll) LINE
{normal) LINE
(normal)

Screll Register = 7

None of LINE 3 is displayed

All of LINE 6 is displayed

DNV AN~

Figure 14.

Notes & Discussion

2. Load Memory Scan (LMS)

This introduction is nice to know about when you
are starting out and is essential later on when you start
creating complex displays.

When ANTIC first learns where display memory is,
it takes the 16 bit memory address and stores it in an
internal (ANTIC) register. When it would like some
data from display memory, perhaps 40 bytes of
character data for a line of graphics mode 0, ANTIC
looks to this register to find out the current line of dis-
play memory. ANTIC fetches the byte at that location.
It then increments this register by one each time it
gets a byte to point at a new byte.

It is tricky, because this internal register is really
only 12 bits long. The other 4 bits are latches which
cannot count. That means that as ANTIC goes along,
if it should hit a 4K boundary in absolute memory (a
1000 hex address point),it will start all over again at
the beginning of the previous 4K section of memory.
This problem causes extreme frustration, even at
Atari. It is quite difficult to diagnose as it resembles
other problems. It is also very commonplace. Do not
let your display memory cross a 4K boundary without
resetting the display memory register with the load
memory scan (LMS) opcode modifier. Place the 16 bit
value of the next display memory in the two following
bytes, low byte first, then high byte. You have seen this
instruction before. It is the 66 at the beginning of the
graphics 0 display list we printed. The 66 is a 2 opcode
(a graphics 0 instruction), with a 64, the LMS
modifier, added to it. If you actually counted the 2’s
in the previous example, you would find only 23 2’s;
the 24th display block is taken care of by the “hidden”
2 in the 66 instruction.

This instruction also accounts for some of the
graphics 8 display list instructions. Graphics 8 uses
7680 bytes of display memory. That is more than 4K

(4096 bytes). The graphics 8 display list must have two
or more LMS instructions to reset the memory address
register inside ANTIC.

The display list itself cannot cross a K boundary
for similar reasons. ANTIC’s pointer to display
memory is 16 bits long, but the top 6 bits are latches
only; they cannot count. You must use the JMP
ANTIC instruction to pass a |K boundary in the
display list. If you start getting bizarre display list
results, check this. Follow the JMP instruction with
the 16 bit address to continue executing the display list.

3. Display List Interrupts

Setting this bit in an ANTIC opcode (modifiers are
nothing but top bits set in the opcodes) will cause the
following actions:

I. A “memory” location on the ANTIC chip is
checked. If the top bit is not set, the interrupt bit is
ignored.

2. If it is set, ANTIC completes the display block
where it found the interrupt, up until the beginning of
the last line of the block.

3. The 6502 receives a “non-maskable interrupt”
(very high priority) and is sent to the memory location
whose address is written into 200 and 201 hex
(512,513 decimal). At the memory location whose
address you POKEd into 200, 201 Hex you should
have an interrupt service routine which eventually
returns the 6502 to what it was doing.

Display list interrupts are incredibly powerful tools
to use in your display’s construction. If we needed to
get a large number of colors on the screen at the same
time, we could use a display list interrupt to specify a
color change to occur between two display blocks.
When plotting the screen, every sixtieth of a second,
the Atari would change a color register (and a plotted
color) in mid-refresh. Using this capability requires
knowledge of a 6502 assembler language.

Basic and Color

(Background for Display List Interrupts)

The Atari was designed to be able to create a wide
variety of TV displays. The designers knew that many
new applications would be thought of long after the
hardware was produced, and thus made everything as
open ended and flexible as possible.

Let’s discuss how the Atari handles color, under-
stand why there is a five color limit, and then get
around this limit by using some of the flexibility de-
signed into this machine. One demonstration program

included in the next section will show 128 shades of

color on the same screen. We will give you the tools
needed to generate your own custom displays with as

many colors as you like, and also provide a demonstra-
tion program called “Sunset”,a multicolor display that
will help to slow sales of Apples at your local com-
puter shop.

Why five colors? When the designers of the Atari
worked out the details of its color handling, they
decided on a techngiue which would give the user as
much flexibility as possible, rather than locking him
into just one methdod. They had the example of the
Apple, and how it handled colors, to examine and
improve upon. They decided the Apple approach was
not flexible enough, and came up with their own.

Inside the Atari is stored a copy of what iscurrently

going on the TV screen. This is called “display
memory”. For a given point on the screen, or a group
of points, some way of determining the color to be
used when plotting must be stored in this memory. In
the Apple the color of the point(s) is stored directly. In
the Atari, the color information is stored in a “color
register”. When in display memory, the color of a
point is specified, and a color register number is
stored rather than the actual color code.

To plot a red point, one tells the display memory
that this point will be plotted in the color and bright-
ness stored in color register |, then one puts color red
at some brightness into that color register (see
Figure 15).

Display Memory of
first five dots:

Use Color | Use Color
Register Register

Use Color
Register

Use Coler Use Color

Register

Register —f
1 2 1 4 3
ANTIC Antic fetches display data and feeds

1t te the CTIA chip.

CTIA

l——td Color Reg. 3

{ Color Reg. 4 J
CTIA plots the
points using the
colors in the
color registers.

Figure 15.

There are five available color registers, numbered 0
through 4. Color register 4 is also known as the
“background color register”. It specifies the color and
intensity for any place on the screen where nothing
else is written. (In graphics modes 3 to 7, this means
the color of the area between any plotted pixels. In
mode 0, it means the area around the character display
field, the border area, not the color behind char-
acters.)

This approach may seem more complex than neces-
sary, but it has advantages. It saves memory, as only
two bits at most are required to specify the color of a
pixel in the display memory. It adds flexibility. All
we have to do to change the color of every point on
the screen using the same color register is modify that
register, which can be done with one POKE statement.
To turn the entire screen red, then black, (“RED
ALERT”), we merely need to POKE statements. In a
machine without the Atari’s sophistication, massive
and slow rewrites of display memory would be re-
quired.

Color registers are one byte long. The upper four
bits determine the color (0-15), the lower four specify
the brightness. Only the top three of the four bright-

31

ness bits are used, so there are eight levels of bright-
ness, and 16 colors, or 128 total shades of color. Note
that in this register, values 0-15 are color #0 in different
intensities, 16-31 are color 1, and so on. If we just
count this register upwards, we will pass through all
16 colors, each increasing in intensity to the highest
level before moving on to the next color. If you will
run program 9, you will see the screen counted
through all the different shades. The table below lists
the different colors.

28 REM ALL POSSIBLE COLORS.

25 POKE 789, 14:REM SHADON REGISTER
38 FOR C=8 TO 255 STEP 2

48 FOKE 718.C:REM SHADOW REGISTER
58 FRINT “COLOR REGISTER=";C

68 FOR DELAY=1 TO 108:NEXT DELAY
78 MEXT C

Program 9.

Value Color

Grey

Gold or Light Orange
Orange
Red-Orange
Pink

Blue
Purple-Blue
Blue

Blue

Light Blue

10 Turquoise

11 Green-Blue

12 Green

13 Yellow-Green
14 Orange-Green
15 Light Orange

LCXXIDDDNHA LN —O

Color Register Values (as
stored in upper 4 bits of color
register).

How Basic Handles Colors

Up in high memory there is some memory which is
not read-write, regular old RAM. When one writes or
reads from these locations, one is communicating with
other chips in the Atari which help support the 6502
(Figure 16). One chip, called CTIA, handles colors
and graphics generation. There are five locations
(“hardware color register addresses™), which are the
five color registers. Now CTIA looks at these registers
to find out the color needed whenever it plots a given
character or point. During the refresh process of up-
dating the screen, it looks at the registers many times,
fetching the colors for displayed data.

Basic & Color

8888

sgan
122 Thard 16K
Hemor:,
Board

ROBH
122 Thard 16K
Memory
Board

DOS tables, 0S

Display Memeory.

tables.
First 16K This sectien
HMemory, 6502 area. >f memory is
Board always RAM
Basic storage; moves (read-write)
into’ free memory as
4898 program grows. If the user hasn't
installed a secornd
Second 1&6K Free Memory. 16K board, 4888 -
Memorty) #0889 do not ew
Board Display List. and the DL-DM move

Upwards.

This area is RAM or
right side cartridge,
1f installed.

This are 1s RAM or
left side cartridge,
1f installed (like

If the user has a

third 16K kcard, the
Atari will use 1t as
RAM (moving dewn DL
DM wunless a cart-

ridge 1s plugged 1n.
If =0, the memcry 15

Copy BASIC or ASSEMBLER) . then FOM (read only)
CeeB-DAge are unused,

Dgag CTIA CHIP These addresses ar=

D2aga POKEY CHIP not memory but

D3ap PIA CHIP other Atari chips.

D4gp ANTIC CHIP

Eggg 3 Operating System This 1s all ROIT

FFFF ROM cartridge. (read-orlsg .

Atari Memory Layout and Support Chips.

Figure 16.

The operating system also maintains five “shadow
registers”. These are normal RAM memory locations.
At the beginning of each screen refresh, these five color
shadow registers are copied into the corresponding
five hardware locations. Basic deals with these
shadow registers.

One reason for maintaining these shadows is that
the CTIA color register locations are “write only”. One
cannot read out of those locations where the color
was just written in. They are not memory locations;
they are chips, which we write to by POKEing sim-
ulated memory locations. If we wanted to read a color
register and we did not have it stored somewhere (in a
shadow register), we could not. Being able to read
registers is handy, for example, in rotating a color
from one register to the next; you use the shadow
registers for this.

Basic’s SETCOLOR (color reg #), (col #), (lum #)
takes: (16 X color #) + lum and POKEs that value into
the shadow register. One sixtieth of a second later, at
the beginning of a screen refresh, the operating system
copies this value into the CTIA hardware color
registers and that chip then begins using it to plot data
on the screen. A direct POKE to the operating system
shadow locations is equivalent to a setcolor. For
example: SETCOLOR 2,4,10 is the same as POKE
710,(4*16)+10.

The designers of Basic also had to come up with
some way for the user to specify what color a given
point or character should be. For this they have the
COLOR (#) statement. It specifies which color register
to use when plotting data, and remains in effect until
the next COLOR statement.

The argument, or number, is not a color register
number. The designers of Basic tried to keep the user
away from bits and bytes discussions. The COLOR
argument at first appears random.

32

The argument of the COLOR statement is the data
that is written into display memory to specify colors.
The Atari has 2 and 4 color graphics modes, using |
or 2 bits to specify color register. For example,
COLOR 0is usually background because a 00 written
into display memory plots nothing, therefore forcing
the background color to appear there.

Note: SETCOLOR (n), color, lum always sets color
register n. The color register number given is
equivalent to the SETCOLOR register number.

In character modes (0,1,2) more than | or 2 bits are
written into display memory. The COLOR argument
is actually the character byte written in memory.

Now you understand the five color limit, for there
are only five color registers.

More than Five?

A refresh on the TV screen occurs sixty times per
second. The electron beam starts at the upper left
hand corner, goes all the way right for one scan line,
then does the next line down left to right, and so on.
CTIA is responsible for feeding data to the TV in
synchronization with this scan. For every dot plotted
up on the screen, CTIA looks again to its hardware
color registers to find the color.

Now while a screen refresh is very fast to us, it is not
especially fast compared to the speed of the 6502 pro-
cessor. We must not think of a screen refresh being an
instantaneous event, we must think in terms of how
long the 6502 sees it taking, which is roughly an Ice
Age or so.

If we could change a color register that CTIA was
using halfway through a screen refresh, the screen
below that point would reflect CTIA using the new
colors. For example, if we were in graphics 7 and
modified the background hardware register halfway
though a refresh from green to blue, the screen will
shift from green to blue in the middle of the TV frame
for all those background points (see Figure 17).

Hardware Registers (CTIA) O-S. Locations (Shadows)
D016 (53270) 2C4 (708) PFO
D017 (53271) 2C5 (709) PFI
DOI8 (53272) 206 (710) PF2
DOI9 (53273) 2C7 (711) PF3
DOIA (53274) 208 (712) PF4(BACK)

Color Registers.

If we were to put Basic to work changing the color
register as fast as it could (i.e. FOR R=0to 255: POKE
53274,R: NEXT R) we would find that Basic would
not be able to get more than one change in each frame.
This is because Basic is so slow in execution, and this
is why only five colors can be shown at one time if we
use Basic. The five colors do not include players and
missiles, which can have independent colors.

Basic needs high speed help to assist in getting a
demanding job done. We have to use machine
language.

Machine Language

Machine language, the human equivalent of which
is called assembly language, is an art few people
really love. The Atari will execute machine language
instructions in times measured in the millionths of a
second. Machine code is hard to understand, a pain to
debug, and generally has other annoying character-
istics, which is why “high level” languages such as
Basic were developed in the first place.

We will provide an assembly routine that is easy to
load and use from Basic. The routine will handle the
demands of the 6502 so you do not have to worry
about them. By setting up various tables, again from
Basic, ina fairly easy way, you can have as many colors
on the screen as you like, all without worrying about
assembly, execution speeds, timing, and so on.

Graphics Mode Color Register COLOR(x)
Character Modes
0 0 - Unused Not used in
1 - Character lum only graphics sense.
2 - Char backgnd color/lum
3 - Unused
4 - Border col/lum COLOR # Values.
1,2 0 - 3: Character Not used in
4 - backgnd/border graphics sense.
Graphics Modes
4.6: One Bit 0: Point color/lum COLOR 1
1. 2. 3: Unused
4: Backgnd COLOR O
3.5.7: Two Bit 0: Point color/lum COLOR |
1: Point color/lum COLOR 2

Notes:

SETCOLOR (n). color. lum always sets color register n.
Hence. the color register number given is equvalent to the
SETCOLOR register number.

In chapter modes (0.1.2) more than 1 or 2 bits are written
into display memory. Hence the COLOR argument is actually
the character byte written in memory.

Figure 17.

Display List Interrupts

The Atari computers really have two processors.
One is called ANTIC and the other is the regular 6502.
ANTIC has its own special language and is devoted to
display work. ANTIC works with “display blocks™.
A display block is a group of horizontal scan lines, all
in the same display mode. Think of it as a long thin
horizontal bar, 8 scan lines high in graphics 0, 16 scan
lines in graphics 2, and 1 scan line in graphics 8. The
height is determined by the size of plotted data in the
particular mode. Atari displays are composed of
stacked display blocks. There are 24 stacked blocks in
graphics 0, which means 24 lines of text, and 96
stacked blocks in graphics 7.

Previous sections have shown how to modify the
program ANTIC uses, called a “display list”, to
achieve mixed graphics modes and other effects, such
as scrolling. There is one change to the display list we
have not yet covered, because of its complexity and
the requirement of using assembly language. The
remaining topic is the display list interrupt. In
assembly language, a display list interrupt is given the
label DLI.

A display list interrupt is established by setting the
top bit of a display list instruction. (To Basic pro-
grammers, this means to add 128 to the instruction.)
For example, a graphics 0 instruction with a DLI
added is (2 + 128), or 130. Any display list instruction
can have an interrupt added.

ANTIC finds the top bit of the instruction set (128
added). It goes ahead and completes the current in-

[O%]
W

struction or display block until the last scan line. At
the beginning of the last scan line, ANTIC turns and
tells the 6502 to process the request immediately.

The 6502 looks at locations 512 and 513 in memory.
In these it finds 16 bits of address (stored in low byte,
high byte format, for you advanced coders). The 6502
jumps to that address. A POKEtoan ANTIC location
is required to enable this sort of interrupt before the
6502 will be bothered.

At the location whose address we put in 512 and
513 we must have an assembly language routine
waiting to “service the interrupt”™, or make the 6502
do whatever it is we want the computer to do. At the
end of this routine, we send the 6502 back to its
original task with an RTI (return from interrupt) in-
struction (see Figure 18).

This is probably a new concept to Basic pro-
grammers. The best Basic analogy is the TR AP state-
ment. TRAP specifies a line number to go to if there is
an error, just as 512 and 513 specify where to go if
there is an interrupt. Presumably, at that line number
you have written a routine to handle errors. This is the
equivalent of the interrupt service routine. You never
know where an error might happen when you are
executing your Basic code, just as you never know
when an interrupt will occur.

The development of an assembly language routine
that will be as flexible and easy to use as possible,
yet run on any memory size Atari, is quite a task.

Display List Interrupts

Memorsy,
Address Part 1 of 3. ANTIC and
512,513] the 6582 are both normally
_JB}E processing away. The 6582
is evecuting Basic at the
moment and ANTIC is midway
through the display list, 1n
[B] Data the middle of a screen refresh.
15088 |a
s Instr.
i
39288 [D| Instr v
L
D ANTIC discovers a display list
32768 |M] interrupt in its current

instruction. It completes that
display block until the
last scan line.

HMemory

Address Party @ off &y
512,513
4’Ea¥x\"Hmm, 12685, " 1. ANTIC interrupts the 8582
12808 || \\\\\ 2. The 6582 looks to 512,513
|2 8 find a location.
B
15884 |a 3. 1t begins executing at that
5| Instr.&Data location.
1 (tap,
1< | tap)
(w
30889 D] ANTIC ———s{CTIA & TV
15
i e
32768 M|
Memors,
Address Part 3 of 3.
512,51
For= The 6502 completes i1ts
routine up at 12808 and
12888 returns to executing Basic.
5] Data ANTIC, satisfied, gets off
15688 |a < B 6502 the 6582's case.
s Instr
1
l< |
3goea D) ANTIC TV
1
o
32768 |M]

Figure 18. Display List Interrupt Processing.

Details, Details

The assembly routines must be able to fit anywhere
in memory, since the memory size on different com-
puters varies, as does program size. We’ve placed the
entire routine into a string (PR$), and we will let the
Atari decide where to put it.

A string is a collection of characters, frequently
letters, numbers, and punctuation. Inside the machine

34

PR$ Storage firea

Basic Sees: The 6582 sees:

12
97
23
34
PR$ (1) 2 PHA instruction
PRS$ (2) 138 TXA instruction
PR$ (3) 72 PHA instruction
PR$ (4) 152 TYA instruction
PR% (5) 72 PHA instruction
PR$ () 172 and =o forth
23

o
o

2

(_

—
SSR RN

(¥
n

o |-

n

Ll Kl LA K=
wrn

™|~

Figure 19. Storing an assembly program as a string.

all those characters are stored as bytes of memory, one
per character. An assembly routine is also a collection
of bytes. Since the Atari stores a string as a group of
bytes, one at a time, in memory, we could make the
string’s characters (bytes) be the same as our assembly
routine, and store the program in the string (see
Figure 19).

The Basic sub-routine to be provided reads the
bytes of the assembly program into the string, one at
a time. The CHRS$ function takes the contents of the
argument and directly stores it into the string, which
is just what we want since we do not care about the
actual characters. After the routine sets up the string,
it links our table of colors to the program, enables dis-
play list interrupts, and returns.

The method for specifying colors is to build a table
of them, five at a time (for the 5 color registers). Each
time there is a display list interrupt, starting at the
top of the table, the next five colors are copied into the
hardware registers by the service program (in PR$).
The idea is that the first display list interrupt causes
the first five bytes of the table to be copied into the
hardware registers, causing the colors of CTIA to
change at that point. The next display list interrupt
causes the second group of five color bytes to be copied
into the hardware registers, again changing the colors,
further down the screen. By setting interrupts and
modifying the display list from Basic, you can change
colors any time you like from one display block to the
next. This lets you get as many colors on the screen
as you want, oriented towards display blocks (see
Figure 20).

COL$ Storage
[S¢] CTIA
CoL® (1) 119 registers
CoLS (2) 38 T e
coLs(3) [126] 2] 5
COLS (4) 211 1
COLS (5) | 2
coLs(s) | 38| L—————4> 3
coLs (7 [112 4
coLs (8 | 134
coLs(9) [169
coLs (1m) [34 T~
CoLs (11) B
COL®(12) | 259]
236

At the start of the refresh, the 6562 is interrupted.
The routine, realizing it's the start of a refresh, starts
at the top of the COL% table and copies five colors
to the CTIA registers, where they are used for plotting.

Figure 20. COL $ Multiple Color Interrupt Handling.

How shall we set up the table? Let’s use another
string, COL$. The first five bytes (characters) of the
string will correspond to the first display list interrupt
colors, the next five bytes for the next five, and so on.
Since the routine can handle a maximum of 255 bytes,
this means we have a total of 255/5=51 interrupts,
which is plenty.

The next problem is how the assembly routine
determines when we are at the top of the screen, in
order to know when to start over at the top of the table
in the string. This is done by setting an interrupt at the
very first display list instruction on the screen, which
is a 112 (8 black scan lines). There is a hardware
register called VCOUNT which tells us which scan line
we are on, from the top of the screen. We read it, and
if it corresponds to the blanking line at screen top, we
know to start at the beginning of the table again. The
routine requires this interrupt to be set. If it is not,
random colors will be generated at the 6502 sails past
the end of COLS$, using any data in memory to deter-
mine color and luminance.

The Basic subroutine is called after you set up
COLS, which is the table of colors. It requires that the
location of COLS$ be fixed in memory before it tells the
assembly program the location of the color table.
After the subroutine is executed control returns to the
Basic program that called it (see Program listing 10).

Place your interrupts where you need a color
register change, make sure you have the colors ready
in the table (COLS), and the assembly routine will do
the rest. The moment the display list is modified, the
process of copying the new color codes into the hard-
ware registers begins and the colors will change on the
screen.

Basic keeps “operating system shadow registers”
of the colors in the five hardware registers. When we
do a SETCOLOR, we change these operating system
registers. At the start of each TV refresh, sixty times a
second, these shadow registers are copied by the
operating system into the hardware registers. Here

39

the colors stay, unchanged, for CTIA to use, unless
something like our special assembly language routine
changes them.

The routine requires the “blank 8 lines™ instruction
executed at the top of the frame to have an interrupt.
ANTIC creates that display block, generating blank
lines, and on the last scan line of the block interrupts
the 6502. The 6502 looks at COLS$, pulls out five bytes
from the beginning of the table (since this is the top of
the screen), and copies those bytes as color numbers
into the hardware registers. At that point the colors

10000 REM KKK KKK KKK K KK MK K K K X HOK M XK
10010 REM
10020 REM x DLI DRIVER / DAVE SMALL
10030 REM x YOU MUST DIM AND FILL
10040 REM x COL$ FRIOR TO GOSUE HERE
10050 REM
10060 DIM FR$(S0)
10080 REM
10090 REM X READ FROGRAM INTQ FR%
10100 REM
10110 READ X
10120 IF X=295 THEN 10300
10130 PR$(LENC(FR$)+1)=CHRS$ (X)
10140 GOTO 10110
10150 REM
101460 REM X FROGRAM AS EYTES
10170 REM
10180 DATA 72,138,72,1852,72
10190 DATA 162,0,173,11,212,201,07,240,3
10200 DATA 174,01,02
10210 DATA 1460,0
10220 DATA 189,03,04
10230 DATA 153,22,208
10240 DATA 232,200,192,%9,208,244
10250 DATA 142,05,06
10260 DATA 104,168,104,170,104,64
10270 DATA 00,01,02,03,04,05
10280 DATA 255
10290 REM
: REM X% LINK COL$ TO FR$

DR(FR$)
HI=INT(F/256)
10340 PLO=(F-FHIX256)
10350 RE
10360 C=ADRCCOL%)

10370 CHI=INT(C/256)

10380 CLO=(C~CHIXZ56)

10390 REM

10400 REM x FOKE IN COL$ ADDRESS
10410 REM

10420 FR
10430
10440
10450
10460 RE

10470 FXHI=INT({F+41)/256)
10480 FXLO=(F+41) - (FXHIX2Z56)

L0490 FRS (L6, 16)=UHRS (FXL0O) IREM XLO
10500 $C17,17 $(FXHI) IREM XHI
10510 (33,33 R CF SREM XL.O
10520 (34, 34)=CHR$ (FXHI) {REM XHI
10530

10540
10850
105460 FOKE S12,FLO

10570 FOKE S13,FHI

10580 REM

10G90 REM x ENAELE INTERRUFTS (ANTIC)
10600
10610
10620
L0630
L0640
L0&G0 TURN

LOGEG0 FEM KKK K KKK K KK K KX K K XK K KK K

REM % FOKE IN INTERRUFT ADDRESS

L G4286, 128+64

X ALL SET! RETURN.

Program 10.

Display List Interrupts

PHA 48H 720
TXA 8AH 1380
PHA 48H 720
TYA 98H 1520
PHA 48H 72D
LDX #8 A2H 1620
B6H @0
LDA4 $D46B ADH 173D
8BH 11D
D4H 2120
CHP #7 CSH 281D
8H D
BER SKIP FeH 2460
83H
LDX $8162 AEH 174D
81H 1D
62H 2D
SKIP LDY #8 ABH 168D
B8eH @0
LOOP LDA $8384,% BDH 189D
83H 3
B84H 4D
STA $DB16.,Y 99H 153D
16H 22D
DeH 208D
IN¥ ESH 2320
INY C8H 2860
CPY #5 CeH 192D
@+ 30
BNE LOOF DeH 2880
F4H 244D
STX $6856¢& 8EH 142D
85H 3D
86H 6D
PLA 68H 184D
TAY ABH 168D
PLA 68H 184D
;Exq @ i% Program 10A. Assembler
RTI 4 64D routine for display list
(SCR{: 8eH o0 interrupts from
Eg&%) gg: ég Program 10.
(SCR4 > 8H D
(SCRS > B4 4D
(SCR6 8H 30
(END FFH 2530

generated by CTIA change to the new values just
entered.

These color values will stay on the screen until the
next refresh unless we place another display list
interrupt somewhere, and have five more colors ready
in COLS. If we do, at the end of the display block in
which the interrupt is set the color register will again
change. At each refresh (every sixtieth of a second) the
operating system shadow registers will once again be
copied into the hardware registers, just to be replaced
by our colors again, and this cycle will continue as long
as the DLI instructions are in the display list.

We have to determine where on the screen we want a
color change, what color registers to change, (the color
registers are used differently in various graphics
Modes), and then insert in the right values to make a
multi-colored screen.

Our example is in graphics 0, the character mode. It
will plot the top section of the screen in one color, the
bottom in another.

Graphics 0 uses the five color registers as follows.
Color registers 0 and 3 are unused. Register 1 deter-
mines the luminance of the characters, with same color
as register 2. Register 2 contains the color and

36

luminance of the background, and register 4 contains
the color and luminance of the border.

We need two groups of five colors stored in COLS.
The first group will cover the colors from the first dis-
play list interrupt, at the top of the screen, to the
second interrupt midway down the screen. The second
will cover from midscreen to the bottom.

COLS is set up with the following colors:

Color Register

Number Function

0 Unused.

1 Luminance of charac-
ters. Color is same as
reg 2.

2 Color and lum of
backgnd behind
characters. Not border.

3 Unused.

4 Border color and lum.

Group 1

Col reg 0, unused COLS(1)=CHRS$(0)

Luminance of characters = 10 COLS$(2)=CHRS$(10)

Backgnd color-lum of green,
which is color #12, intensity 6.

COLS(3)=CHRS$(12*16)+6

Col reg 3, unused COLS$(4)=CHRS$(0)

Border Color reg, orange at 6
Orange = color 2.

COLS$(5)=CHRS(2*16)+6

Group 2

Col reg 0, unused COLS(6)=CHRS(0)

Colreg 1, lum = 10 COLS(7)=CHRS(10)

Col reg 2, red at 6 COLS$(8)=CHRS((3*16)+6)

Col reg 3, unused COLS$(9)=CHRS$(0)

Col reg 4, border, blue at 6 COLS$(10)=CHRS((7*16)+6)

Our colors are now set up. We call the routine with
GOSUB 10000. 1t returns control to Basic. We must
now set our interrupts in the display list.

A graphics 0 display list is shown on the next page to
help us visualize what we will be modifying.

We POKE (112 + 128) into START + 0, to set our
first interrupt (as soon as that POKE is executed, the
Atari’s colors will all change to the values in the first

START=PEEK(560)+256*PEEK(561)

START +07 0112 (blank 8 lines) interrupt here required

*1 112
200 112
+3 66 (2, a graphics O instruction. + 64=Ims)

+4 data byte
+5 data byte

46 2 graphics 0 instructions
+9 2
+29 2 last graphics 0 instruction

(halt until next refresh).

Sample Graphics Display List
five bytes, and another interrupt midway down the
graphics 0 instruction at START + 6 + 15: POKE
2+ 128).

On the screen will be the colors specified, changing
at the interrupt points to the new colors in COLS.

Push BREAK to halt the program. The screen stays
changed! Thisis because the program and color strings
are still in the same locations and no one told ANTIC
to stop the interrupts. However, as soon as the strings
get shifted or destroyed, perhaps during editing, the
computer will not have an interrupt service routine
anymore, and it will quietly die. (Use RESET to avoid
this.) The way to exit the multicolor mode is to remove
the interrupts from the display list.

For the next demonstration we will escalate things
and put 16 colors on the screen at once in graphics 0.
We will make each of the first 16 graphics 0 display
blocks a different color.

We will need 16 interrupts; the one at the top of the

110 REM x 146 COLORS AT THE SAME
TIME .

120 DIM COL$C(255)

130 REM x INITIALIZE COL$ IN GROUFS

140 N=4

150 FOR C=1 TO 80 STEF S

160 COL$CCY=CHR$C0) IREM UNUSED

170 COL$CC+1)=CHR$C0)IREM LUM

180 COL$(C+2)=CHRE(N) {REM COLOR

190 COLS(C+3)=CHRS(0)

200 COLS(C+4)=CHR$(2) tREM GREY
EORDER

205 N=N+16

210 NEXT C

220 REM

230 REM X NOW CALL DLTI HANDLER

240 REM

250 GOSUE 10000

260 REM

270 REM x NOW DO DL WORK

280 START=FEEK(G60)+2546XFEEK(561)

290 FOKE START, 112

29% FOKE START+3,:

300 REM

E4+128

310 REM % NOW FOHE IN 14 MORE
(GR70)
REM

ART+d TO START+HO+14

FROGRAM TS NOW RUNNING .

\::J l.]

F

)

Program 11.

37

screen (112), the one at the first true graphics 0 in-
struction, which is the 66 (66=64+2 — the 64 tells
ANTIC that a display memory address follows, while
the 2 is the graphics 2 instruction), and 14 more in the
graphics 0 (2) instructions.

COLS will have a length of 80 bytes, 16 interrupts
multiplied by 5 colors or 80 long.

Instead of 80 sets of basic instructions, (COLS$=
CHRS...) we will use a short loop. Remember that
adding 16 changes to the next color (see Program 11).

N=6 (grey color, 6 intensity)

FOR C=1to 75 STEP 5

COLS$(C)=CHRS$(0) (colreg 0..unused)
COLS$(C+1)=CHRS(0) (character illumination)
COLS$(C+2)=CHRE(N) (color, shifts 16 each loop)
COL(C+3)=CHRS$(0) (unused)
COL(C+4)=CHRS$(2) (black border)

N=N+16 (bump up one color)

NEXT C

This loads COL$ with our desired 15 color changes,
with only the background color changing between
each one, at the same lum.

We call the assembly routine, then set our interrupts
with another loop:

POKE START, 112+128 (8 blank lines, then interrupt)

POKE START+3,2+64+128 (load memory scan,
graphics 0, and interrupt)

FOR D=START+6 to START+6+13 (14 total)

POKE D,2+128

NEXT D

This produces 16 colors on the screen at once. You
will want to play with this routine and try different
luminances for characters and background, and even
the border.

One variation on this is to shift the characters
through the string in a circular fashion once you have
the interrupt enabled. The effect on the screen is
rotating colors, with the shades of color slowly shifting
up. This can be done by changing COLS, 5 bytes at a
time.

(This is program 11 with a rotate).

COLI1$=COL$(76,80) get last five characters
COL1$(6)=COLS$(1,75) append first 75
COL$=COLI1S$ and shift it into col$

The rotating effect is quite spectacular and we will
be using it again.

If you were mixing graphics modes you could just
add an interrupt and more colors to shift displayed
colors between modes. This can be quite helpful in
drawing attention to a certain display. Flashing the
display can be accomplished by just rewriting one
byte in COLS$ to 0, then back. This will change a color
register on the screen immediately. All you have to
do to modify the colors on the screen is modify the
string.

A total of 128 shades of colors on the same screen is
the limit of the Atari. The first time we saw this, the

Display List Interrupts

110 DIM COL$(2535)

120 REM x DRAW FIGURE
125 GRAFHICS 7+16

126 FOR R=0 TO 4

127 SETCOLOR R,0,Rx2
128 NEXT R

129 COLOR 1

130 Cl=1

140 FOR X=1 TO 120
150 COLOR CL

160 CL=CL+1

170 FOR Y=1 TO 9%
180 FLOT X,Y

1920 DRAWTO X+40,Y
200 NEXT Y

210 NEXT X

230 REM x LOAD COLORS

240 CL=0

250 FOR T=1 TO 33x%5 STEF 9

260 COL$S(TY=CHR$(CL) IREM COL REG 0
270 COLS(T+1L)=CHR$ (CL.+64) IREM COLREG
280 COLSCT+2)= CHR$(FL*]78) REM COLREG 2
290 COLE(T+3)=
300 COLSCT+4)= (HR%(PIOIQ"'hFM COLREG 4
310 Cl=(L+2

320 NEXT T

330 REM x CAlLl DRIVER

340 GOSUE 10000

STEF 40

350 REM X =T INTERRUFPTS
360 START=PEEK(S60)+256XFEEK(561)
370 FOKE START,112+128

380 FOR D=START+7 TO START+7+96 STEFR 3
390 FORE D, 13+1283REM GR.7
400 NEXT D

410 GOTO 410

Program 12.

programmer dedicated the 6502 processor to updating
color registers. It did nothing else. Here is dur version
that will run along with Basic.

Since we can only have 51 interrupts, we cannot do
it the easiest way, where we shift into graphics 8 and
use 128 interrupts (there are 192 scan lines in graphics
8). We use multiple color registers on the screen, side
by side, and shift them four at a time, in graphics 7.

Graphics 7 uses four of the five color registers: 0,
1, 2, and 4 (background).

We generate the four blocks, each using one color
register, by a simple nested loop and draw. (See pro-
gram 12).

Graphics 7 has 96 display blocks, so let’s set a dis-
play list interrupt every third block, for 32 total, plus
one at the top of the page for 33. We will load each

‘,.-""_FF— _

— e
In order to get 128 -7 =
colors onscreen i B
with only 32 total olpr igodon VHITBLSE L ol on
p 7 Reg. g, Regz. Reg.
interrupts, we need o ol o7 4
to change 4 colors
per interrupt (i.e.,
32 x4=128). We
must also display 4
colors per line,
which calls for a - S
four color mode: el e

il s
TR

graphics 3, 5, or 7.
Here'’s a diagram of how the screen is set up in terms of
blocks of area of a given color register; this is done with
Basic fill routine, but the X10 fill would work equally well.

38

color register with a shade of color different from its
neighbors just by counting up the 128 possible shades,
and offsetting. (See program 12 listing, COLS$ initial-
ization). Remember, a change of 2 is required to change
one shade of color. We poke in the DLI’s as usual, this
time using 13+128 (13 is for graphics 7) for 32 of them
and the usual one at the top, 112+128.

There you have 128 shades of colorat once. Let’s try
to rotate them.

All we need to do to rotate these colors upward is
shift them by five. The value in color register four will
be shifted into register 3, and as such become invisible
until it is shifted into 2. A better routine could bypass
the “hole™ in the colors.

COLI1$=COL$(6)
COLI13(161)=COLS$(1,5)
COL$=COLI

This is program 12 with a rotate.

When doing string manipulations, use a scratch
string and only copy it into COL$ when you’re finished
fiddling with it. This helps prevent the Atari from
moving the string without warning with a changed
length and also prevents weird screen flickering that
would occur if COLS should temporarily be too short
to provide enough data.

Sunset

Let me now present the Sunset program which takes
such a terrible toll on prospective Apple buyers.

It is based on a program which appeared in Creative
Computing which had spirals, one inside the other.
Colors were shifted between them (each spiral was in
a different color register, and they were in graphics 7).
The idea behind this routine is to use the shifting intro-
duced in the previous program on the spiral routine.
The initialization is a bit tricky. Each color register is
started up a bit offset from the others, so that each will
have a considerably different color than the others,
and the background is left completely off until halfway
down the screen. The colors are shifted with the top
half of the string shifted up and the bottom half shifted
down, an effect very much like a sunset over water. |
have added a few random stars in the background on
the upper half to twinkle as the color registers change.
(See Program 13 on the following page).

The Atari variable table can get full of holes, if you
do lots of editing, and the Atari has strange ways of
cleaning up unused strings. If you start getting un-
expected problems, try listing the program to storage
then entering it back in with LIST and ENTER. This
will clean up the variable table.

That wraps up display list interrupt concepts. You
can use DLI’s for other things, if you know assembly
language, like switching character sets in the middle of
the page.

Now that we have covered playfield graphics pretty
well, let’s look at redefining character sets.

110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370

N 380 REM Xx 640 FOR I=0 TO S%360 STEF 75
REM xxx 390 TOF1$=TOF$(L,120) 650 K=XO+RRXCOS L) $V=YI+RRSIN{I)
REM xxx DAVE SHMALL 400 TOP$=TOF$(121,125) 660 DRAWTO X, Y
REM xxx 410 TOF$(6)=TOF1$ 670
DIM TOF1$(128),E0T14(128) 420 TOF$(5,5)=CHRS (ROT) 480
DIM TOF$(128),E0TH(128) 426 IF ROT=255 THEN TOFS$(5,5)=CHR$C0) 690
DIM COL$(255) 430 REM - 700 =1 TO 50
FEM KKK K K XK K XK K K XK XK XK K K XK K XK K XK XK K 440 BEOTL1$=E0TSCL,5) 710
REM x INITIALIZE SCREEN FOR DISF 450 pOT$=BE0T$(6) 720 RND (0)%159)+1
GOSUE 550 i 460 EOT$(121)=E0T1% 730 INT CRND C0)X47)+1
REM x INITIALIZE COL % 470 REM 740 FLOT X8,Y8
GOSUE: 790 480 COL$(1,125)=E0T4 750 Z8=28+13IF Z28=4 THEN Z8=1
REM x INITIALIZE ASSEMELY 490 COL$(126)=TOF$ 7606 NEXT LOOF
GOSUE: 10000 §00 NEXT ROT 770 RETURN
REM xxxxxxxxxxxxx*xxxxxxxxx 910 GOTO 340 TE0 FEM KKK XK K K K K XK K K K K XK K K K K K K KX KK X
REM f DI§PL“Y LIS1~" G330 REM 3OKK KKK KKK KK K K K K K XK XK K XK K XK X X 790 REM x%x INIT
ST=FEEK(560)+256XFEER(G61) 540 REM FROM CREATIVE COMFUTING.. 00 FOR T=1 TO 2 =
FOKE ST,112+1281REM TOF INT(135) 550 GRAFHICS 23:DEG $SETCOLOR 810 ¢
FOKE ST+3,13+64+128{REM LMS,DLI 2,4,103DIM C(3) G20
FUR Y=6 TO 6498 STEF ZIREM HI SR8 .0 coreon om Galisil 830
PQKE S§T+Y,13+128 570 ¢ SULUR 1:0:& G40
ol 580 COLOR 2,0,2 850
FEM KKK KK K K K K K K K K 3K KK K K KK K K K 560 R 0'&0L0ﬁ'1:6m1 860
REM ROTATE COL$ IN HALVES Zuo x0a/§:YUm%7 v
a1 e OTER 7 2
T RS 610 FOR K=0 TO 33C(K)=K+1XZINEXT K 880
EOT$=COLS (1,125 620 FOR K=1 TO 3 890
¥ b 630 X=X0+RXCOS(360)3Y=Y0IFLOT X,Y 200 i

TOF$=COL$(126,250)

Program 13.

SL0 KRETURN

Player-Missile Graphics

Introduction

Until now we have spent our time learning “play-
field” graphics. Playfield graphics are graphics in-
volving the display list and display memory. On most
computers, having those two software controllable
lists would mean you would have enough power to
create almost any image you would ever want to.
Remember that Atari is a leader in coin-operated
arcade games, and most of the graphics-oriented
games that people pump so many quarters into involve
a lot of animation.

Animation is not an easy task on a display. One
must cope with many problems to get a good anima-
tion effect. Animation involves moving objects across
the display, which involves constant display memory
rewrites. That by itself is not too difficult. Doing so
many rewrites does tend to tie up the 6502 processor,
so it is hard to get other things done at the same time.
If you are animating an object in the midst of a fixed
playfield image, such as a pong ball in the pong court,
you have to handle such problems as how to handle an
overlap between the pong ball and the playfield image.

For this, Atari added a second completely in-
dependent graphics system to the computer. This
second system can be used simultaneously with the
normal playfield graphics. The new graphic system is
called “Player-Missile graphics”.

39

The Atari 400/800 design was for a “video game —
home computer” (to quote the hardware manual).
and Atari after all is a leader in the coin-op video game
field. They make the tremendously successful
“Asteroids” and “Battlezone™ games. In fact, the latest
Atari home video system, the System X, is basically an
Atari 400 under a fancy cover.

This second graphics system is intended for high
speed animation and makes implementing such
animation much easier.

Player-Missile Concepts

A TV picture is built up out of horizontal scan lines
sent from a source synchronized with the TV’s scan-
ning. In our case, the source is the Atari, busily sending
data to the TV as color/luminance information and
generally trying to keep up with the tremendous
amount of work to be done. ANTIC was designed to
help the main 6502 processor of the Atari in generating
displays. We have covered ANTIC in previous
sections .

The second video chip is called CTIA. CTIA is the
chip that handles assigning color and various other
tasks. ANTIC is more concerned with getting data
from memory in time and feeding it to CTIA. The
Atari is straining to keep up with the TV. CTIA
seemed to have some time left over in this process.

Player-Missile Graphics

Atari engineers decided to give CTIA something else
to do.

CTIA already keeps track of where it is horizontally
on each scan line. So Ataridecided to have CTIA keep
track of a memory location at the same time. In this
location is a number that corresponds to a horizontal
position on the TV screen. Atari calls the memory
location where horizontal position information is
stored a “horizontal position register”.

If CTIA, while busily scanning across the screen,
finds that its horizontal position at the moment equals
the horizontal position in this register, it will look to
another register (memory location), and grab a byte
of data from it. The second register is the Graphics
Data Register. CTIA takes the first bit of data in this
register, puts it on the screenasadotifitisa I, or skips
it if it’s a 0. For the next dot over, it does the same
thing. CTIA works its way left to right on the screen,
following the TV sweep, plotting 8 bits of data from
the graphics data register. It plots the 8th bit first (the

most significant or left hand bit). It puts these 8 dots of

data on the screen at a color and luminance specified
by yet another register, the “color/luminance
register”, which has the same format as a playfield
graphics color register.

Let’s say we have 150 stored in the horizontal
position register, a color of bright greenat 10 intensity
stored in the color/luminance register, and a bit pat-
tern of 11001011 stored in the graphics data register.
When CTIA, buzzing across the screen at high speed,
finds its current position is 150, it will plot dot dot
(skip) dot (skip) dot dot from its current position,
working to the right. The dots will be bright green. It
will finish out the rest of the scan line normally. Next
line down, it will also find the 150 midway across the
screen, and copy the graphics data register once

Horizontal Position The Player

Register : 158 ™~

11881811
Graphics Data

Figure 21.

40

again onto the line. This process will happen every
time it comes to 150 horizontally (see Figure 21).

The final display will be a vertical green stripe at
horizontal position 150, exactly matching the bit pat-
tern in the graphics data register. Let’s go ahead and
run a program to do just this, so you can see what it
looks like. Enter and run program 4.

5 REM xxxx DEFINES

10 HFOS0=53248

20 BITS0=53261

30 COLO=704

40 SIZE0=53256

100 REM *xxx FROGRAM 1

110 REM xxxx GENERATE A FIXED FLAYER
120 REM

130 REM xxxx SET HORIZ FOSITION

140 FOKE HFOS0,120

150 REM XxxX SET COLOR

160 FOKE COLO,202tREM E.GRN,INTEN=10
170 REM xxxx SET DATA

180 FOKE EITS0,218!REM 1011 0101

190 REM xxxXx SET SIZE

200 FOKE SIZED,0

Program 14.

Let’s modify the program to learn about the
registers it uses. Let’s change the color/luminance,
the graphics data, and the horizontal position
registers. The effect will be, respectively, changing
the color of the stripe, the bit pattern of the stripe, and
the stripe’s horizontal position. Run programs 15, 16,
and 17 to see these effects.

5 REM xxxxX DEFINES

10 HFOS0=53248

20 BITS0=53261

30 COLO0=704

40 SIZE0=53256

100 REM xxxx FROGRAM 4

110 REM xxxx SHIFT FLAYER COLORS
120 REM

130 REM xxxx SET HORIZ FOSITION

140 FOKE HFOS0,1%50

170 REM xxxx SET DATA

180 FOKE EITS0,2033REM 1100 1011
190 REM xxxx SET SIZE

200 FOKE SIZEO0,0

300 REM xxxx SHIFT FLAYER COLOR

310 FOR FCOL=0 TO 255 STEF 2

320 FOKE COLO,FCOL

330 NEXT FCOL

340 GOTO 310

Program 15.

5 REM xxxx DEFINES

10 HFOS0=53248

20 BITS0=53261

30 COLo0=704

40 SIZE0=53256

100 REM xxxx FROGRAM 2

110 REM xxxx ROTATE A FLAYER

120 REM

130 FOKE HFOS0,150¢REM HORIZ FOS
150 REM xxxx SET COLOR

160 FOKE COLO,Z202:REM E GRN, INTEN=10
190 REM xxxx SET SIZE

200 FOKE SIZEO0,0

300 REM xxxx MODIFY EIT FATTERN
310 FOR T=0 TO 2855

320 FOKE EITS0,T

325 FOR DELAY=1 TO 100$NEXT DELAY
330 NEXT T

340 GOTO 310

Program 16.

5 REM xxxXx DEFINES

10 HFOS0=53248

20 BITS0=53261

30 COLO0=704

40 SIZE0=53256

100 REM xxxx FROGRAM 2

110 REM xxxx ROTATE A FLAYER

120 REM

150 REM xxxx SET COLOR

160 FOKE COLO,2023REM E GRN,
INTEN=10

170 REM xxxx SET DATA

180 FOKE BITS0,203!REM 1100 1011

190 REM xxxx SET S$IZE

200 FOKE SIZEO0,0

300 REM xxxx ROTATE RIGHT

310 T=40 T0O 200

320 L HFOS0, T

330 NEXT T

340 GOTO 310

Program 17.

There is also a “size” register. The size register tells
CTIA how big to make the dots when it plots them on
the screen, in horizontal terms. It can make them
normal size, twice normal, or four times normal. All it
does is plot the same dot one, two or four times before
moving on to the next one. The stripe will grow to the
right, with the left position remaining constant (this is
because the left border is still at position 150, where
CTIA starts the display). Run program 18 to see this
particular effect. A 0 in this register means x1, a |
means x2, and a 3 means x4.

5 REM xxxx DEFINES

10 HFDS0=53248

20 BITS0=53261

30 COLO0=704

40 SIZE0=53256

100 REM xXxxX FROGRAM 9

110 REM xxxx MODIFY FLAYER SIZE
120 REM

130 REM xxxx SET HORIZ FOSITION
140 FOKE HFOS0,120

150 REM xxxx SET COLOR

160 FOKE COLO0,202¢REM E GRN,INTEN=10
170 REM xxxx SET DATA

180 FOKE BITS0,203!REM 1100 1011
300 REM xxxx SHIFT FLAYER SIZE
310 FOKE SIZEO,O0

315 FRINT "SIZE NORMAL"

320 GOSUE 1000

330 FOKE SIZEO,1

335 FRINT "SIZE X 2"

340 GOSUE 1000

350 FOKE $IZE0,3

355 FRINT "SIZE X 4"

360 GOSUE 1000

370 GOTO 310

1000 FOR Z=1 TO 10003NEXT ZIRETURN

Program 18.

The stripe is known as a “player”. An object only 2
bits wide, but otherwise the same as a “player,” is a
“missile”. Hence, the name “player-missile”.

What good is a green stripe in the middle of the TV
that does not even shut off when we press BREAK to
quit running the program? We do not have to leave
data in the graphics data register on all the time. Let’s
say we leave it all 0’s for awhile, starting from the top
of the screen. CTIA will plot only the usual playfield

41

stuff and no player dots. But if we should suddenly put
a 11111111 into that register, it will plot that in scan
lines from there on. We can turn it off by putting the
0 back in that register, and we have a square sitting in
the middle of the screen. It will really be a stripe, witha
lit square in the middle of it, but to us, it willappear to
be just a square (see Figure 22).

The Square Player Graphics Data

Juyspagagngagngc)

11111111

PPPPBBEE

HL B

Figure 22.

We could make the shape something other than a
square by putting different data in the graphics con-
trol register. We could construct a space ship out of
“slices™ of bits, then feed them in one at a time, one
slice per scan line. This way a player could be a space-
ship on the screen, which is how Star Raiders works.
We could move it horizontally by changing the
horizontal position register, or vertically by changing
where we start putting data in. And we will have this
object on our TV screen. There are 4 available players
and 4 missiles, all independent. A list of the control
memory locations is shown on the next page.

This table lists a number of CTIA addresses, which
can also be found in later discussions of the various
hardware tables. Logically, since CTIA controls
players, they should be CTIA addresses.

Missiles have the same colors as their players do.
Missiles can be grouped together to form a fifth 8 bit
player; four missiles 2 bits wide, positioned together,
equal one player 8 bits wide. All missiles have the
same data, which is usually 2 bits anyway.

Some of the above demo programs will now become
clear. We set player 0’s horizontal position to 150 by
putting that value into the approximate register with
a POKE statement. The color/luminance is bright
green, intensity ten, and the graphics data informa-
tion is CB hex or 203 decimal. We do not write the
color/luminance information to the location listed
above.

Remember back when we were doing display list in-
terrupts and we talked about operating system

Player-Missile Graphics

0.S. Location

handle input and output.

device.

Abbreviations CTL = Control

Object Horizontal Graphics
Number Position Register Data Register
Player 0 D000-(53248) DO0O0D-(53261)
Player 1 ~ D001-(53249) DOOE-(53262)
Player 2 D002-(53250) DOOF-(53263)
Player 3 DO003-(53251) D010-(53264)
Missile 0 D004-(53252) DO11-(53265)
Missile 1~ D005-(53253) same

Missile 2 D006-(53254) same

Missile 3 D007-(53255) same

Hardware Register

—ANTIC—
22F H (559D) D400 H (DMA CTL)*** 26F
2F3 H (755D) D401 H (CHA CTL) 2C0
230 H (560D) D402 H (Dlist L) 2C1
231 H (561D) D403 H (Dlist H) 2€2
2F4 H (756D) D405 H (CH BASE) 2C3
2C4
2C5
2C6
0@y
2C8

DList = Display List

0.S. Shadow Registers**

Color/Lum 0.S.* Size

Register Shadow Register

DO012-(53266) 704 D008-(53256)

DO013-(53267) 705 D009-(53257)

DO014-(53268) 706 DO00A-(53258)

D015-(53269) 707 DO00B-(53259)

same as PO DO00C-(53260)

same as P1 same

same as P2 same

same as P3 same
—CTIA—

H (623D) DO01B (PRIOR)

H (704D) DO012 (Player 0 Color)

H (705D) D013 (Player 1 Color)

H (706D) D014 (Player 2 Color)

H (707D) D015 (Player 3 Color)

H (708D) D016 (PlayField 0 Color)

H (709D) D017 (PlayField 1 Color)

H (710D) D018 (PlayField 2 Color)

H (711D) D019 (PlayField 3 Color)

H (712D) DO1A (PlayField 4 Backgnd Color)

Refer also to Atari columns listing hardware register addresses.
* 0.S. or Operating System— A control progam that allows the computer to react with other programs, and
** Shadow Register—An area in memory that stores information to be transferred to a hardware control
*#% DMA or Direct Memory Access— Allowing information in memory to be transferred from one location or
device to another without using the main microprocessor. The Atari uses the Antic microprocessor to transfer

information from memory to the television screen.

H = High Byte L = Low Byte

Player-Missile Controls

shadow addresses? These are addresses the operating
system maintains in RAM that are copied into the
actual hardware addresses with each screen refresh.
We found that the five playfield (not player) operating
system shadow registers were copied into the hard-
ware registers on CTIA, and ourdisplay list interrupts
over-wrote that data a few scan lines down. The same
thing applies to player-missile colors. If they are put
directly into the hardware registers, the change will
last just as long as the next refresh; less than a sixtieth
of a second. You will see a very brief flash of color. If
you would like permanent colors for your players, use
the shadow registers.

You can also use a display list interrupt routine to
change a player’s color halfway through a refresh. The

42

Atari people “shadowed™ a good number of registers

just for the ease of having the machine restore them

to the original value at the beginning of the refresh.
These shadow registers include the DM A controls, the
pointers to where the display list is.

The information given so far is helpful. You can get
some really neat color effects running players back and
forth. Try program 19 for this effect and feel free to
modify it in all sorts of ways. Note the effect when two
player stripes run over one another, or when a player
runs over a playfield object, such as a letter or a
graphics mode dot.

This is known as a “collision”™. When two players or
missiles or playfield objects have two “on™ bits tying
to get through CTIA at once, we have a priority con-

flict that needs to be resolved. CTIA must decide
whether to let the player or the letter “shine through™
when a letter is plotted beneath a player. The Atari
actually has incredible flexibility, and gives you many
different ways to set up priorities between players,
missiles,and the playfield objects. The Atarialso writes
data to a “collision register” to let you know that a
collision occurred. You can let the Atari’s hardware
worry about whether there’s been a collision between
your spaceship and a photon torpedo (your player and
your missile). You no longer have to scan tables of X
and Y co-ordinates in your program to see if they have
collided. Instead, just look at the collision register
every now and then.

20 REM DEMONSTRATES FRIORIT
30 FOKE 623,21REM F0 HIGHEST
40 h EM FOKE A 2 TO HAVE FLAYERS

LOWER FRIORITY THAN

GREY-L1.0

/(]7, 196 1REM COLOR F3

230
240
250
260
270
280
290
300 M
210 GOTO /(JU

Program 19.

Take for example the popular game Asteroids. On
the Apple a horrendousamount of time is spent check-
ing to see if a spaceship has collided with a rock, ora
missile has collided with arock, ora player, or another
ship. That is what slows the Apple game down so
much; all that checking in the software takes a long
time. In the Atari you do not need to. Just update the
positions of the players and missiles, and check the
collision registers. It will tell you all you need to
know. In Star Raiders, missiles fired at the enemy are
just players with high speed changes in the player data
register. The enemy ships are other players, and
collisions between them and missile players are
checked in the hardware. That is why they run so fast.

You must select which priority scheme you would
like to use with a POKE. There is a hardware location,

which is located on the CTIA chip, but use the shadow
register at 623 decimal instead.

Select either 8,4,2 or 1 to POKE. Adding those
numbers gives wild results consisting of black regions
where they overlap. (See the table below which cycles
through all the different priority schemes.)

Add 10H to the number you POKE in (16 D) to let
all missiles become the color of playfield 3. This way
you can position them all together to be one object of
the same color. Playfield 3 is not used frequently in
playfield graphics, and this is why. The color is then
made available for a fifth player, such as the ball in
Atari Basketball.

Add 20H (32 Decimal) to have a different color (a
logical OR) occur during overlap or collision.

“Play” refers to player. “P-F” refers to a playfield or
display list generated, color register.

Use this priority chart after you have laid out your
priorities and decided which object should be in front
of another.

Location DO1B (53275) contains the priority data. Use OS
632D as this address is shadowed.

Select either 8, 4, 2, or 1 to POKE with. Adding them gives
odd results consisting of black overlapping regions. (Experi-

ment!)

8 4 2 1
P-FO P-FO Play 0 Play 0 Highest Priority
P-F 1 P-F1 Play 1 Play 1
Play 0 P-F2 P-FO Play 2
Play 1 P-F 3&5 P-F1 Play 3
Play 2 Play 0 P-F2 P-FO
Play 3 Play 1 P-F 3&5 P-F1
P-F2 Play 2 Play 2 P-F2
P-F 3&5 Play 3 Play 3 P-F 3&5

BACKGND BACKGND BACKGND BACKGND Lowest Priority

Add 10H (16 D) to let all missiles become the color of play-
field 3. Thus you can position all the misssiles for a fifth
player object. Add 20H (32D) to have a different color (a
logical OR) occur during an overlap.

“Play™ refers to a Player. "P-F" refers to a playfield, or
display list generated, object. (Remember the four available
color registers?)

Use this priority chart aftr you have decided who should
have priority over whom. to select the scheme that you wish.

Player-Missile DM A

So far we have vertical stripes on the screen and
some interesting color effects. If Basic was not fast
enough to switch color registers in the middle of a
screen refresh in the display list interrupts chapter, it is
unlikely it can suddenly start doing it now. So we are
stuck with assembly language and tying up the 6502
turning the graphics data on and off.

You need a thorough understanding of how players
are generated to use really creative graphics. The
people at Atari thought of the problems they would
have with tying up the 6502. Remember that we did
not want to tie the 6502 up doing display work.
ANTIC was created to handle the tremendous
memory access needs back then. The designers of the
Atari used ANTIC to help with players and missiles as
well.

Remember “DMA™ That is where ANTIC took
over memory in order to satisfy the needs of CTIA in

Player-Missile Graphics

doing a screen refresh. You will recall ANTIC even
elbows the 6502 out of memory to get to memory
more quickly. This DMA is going on all the time
whenever there is a screen refresh. Now there is a
memory location we can write to, DMA CONTROL
(DMACTL) which controls this DMA process.

Let’s say we told the ANTIC chip to completely
quit using DMA. The screen would go blank. ANTIC
would no longer be forcefeeding CTIA and there
would be no data to plot. But the 6502 would no
longer be getting shut off by ANTIC, and would not
lose so much time just sitting around waiting for
ANTIC to finish up. It could continue running your
Basic programs, at considerably higher speed, about
30-509% faster, depending on how much graphics data
would otherwise be written. This is something to keep
in mind if you ever have some serious amount of pro-
cessing to do in slow Basic and would like some free
processing time. If you were to set up a short, custom
display list and memory, or just a few lines, ending
with an instruction to wait for the next refresh, that
would also help free up the 6502. The less data ANTIC
must fetch from display memory, the more time is
available for the 6502. You could have a display list as
short as one graphics instruction.

Now most articles on player-missile graphics do not
cover the basics, like POK Eing the hardware registers
directly. They rely strictly on Player-Missile DM A. It
loses a lot of the concepts involved and takes away
some of the other possibilities in players. Who needs
P-M DMA to set up two stripes at either ends of the
screen as paddles for a “Pong” game?

Let’s set up a table in memory. It will be 256 bytes
long. Each byte in memory will correspond directly to
one horizontal scan line on the TV. (You will note that
a player extends all the way off the screen, past where

ANTIC and CTIA are generating playfield.) Now if

“

we tell them, by enabling two “switches™ (actually
POKEs to DMA controls) we will no longer have to
transfer data directly into the CTIA graphics register.
CTIA will get the graphics data byte that corresponds
to the particular scan line number from ANTIC.
ANTIC will look at the table, decide what scan line
we are currently on, and pass the byte on the table
whose number matches the scan line number to CTIA.
CTIA will use that byte to plot the player or missile on
the screen. Once you set up the 256 byte table and
switch ANTIC on, the 6502 is once again freed up to
do something else. The Player-Missile Direct Memory
Access (P-M DMA) is then completely automatic
(Figure 23).

Using this method, an object is defined by a few “1™
bits in this table which corresponds directly to the
vertical stripe on the screen. If we turn on some bits,
they will show up at the next refresh. If we move them
upward in the byte table, the plotted object will move
up. We control the horizontal position using the
horizontal position register, the color using the color
register, and control the size using the size register.

44

Player Missle DMA Memory Mapped to TV Screen
GaFgssE Plajee
i 1
Player-
| Missle (afefagagogogagu
DMA DRBEHHH
Memory SRR RBRRE
RSB ERD!
1111111
g gagagugagags
~— | g
1 1
e lwdﬁ
Figure 23.

Now there are a lot of things you must do to
initialize this DMA process. You have to reserve a
location in memory for the 256 byte tables. You have
to POKE into various DMA control locations, set
colors, and so on. Rather than trying to list them one
by one, let’s just take a working example and go over
it to show how it works.

Let’s look at Program 20 for a fine example of DM A
use for P-M graphics.

Line 30 contains a POKE to an operating system
location which instructs the system to work with a
normal size playfield; i.e. 40 characters across. The
location is a shadow register for a hardware register on
ANTIC named DMACTL. There are two electrical
switches that need to be turned on to allow P-M DMA
to begin, and this is one of them. This one controls
all of DM A, not just Player-Missile. The other switch
is called GRACTL.

10 DIM A$CL0) ,E$CLD0)
20 GRAFHICS 8

& *OKE P62
83248,120
704,88
EICLDG) -8

X206+1024
Y=+ 120 TO J+137
EAD Z
130 FOKE Y.Z
140 NEXT Y
150 FOR X=48 TO 2215G08UE 5003

NEXT X

1460
320
500
510 RETURN

H00 DATA 40,860,860,60,60,80

610 DATA 255,255,255, 3 B5E. 255

H20 DATA 60,60,60,60,60,460

Program 20).

Line 401sa POKE to the horizontal position register
for Player 0, putting the player at 120. Line 50 is a
POKE Player 0's shadow color register for a pink
color. We need 256 bytes for our DMA table for
Player 0. We must run all the players and missiles with
DMA, so we need considerably more than 256 bytes.
The total comes out to 2048 bytes for our “bitmaps”
of the players.

We need to find a place in free memory to put this
2048 bytes. Remember when we were using alternate
character sets that required 1024 bytes? We modified
the top of the memory pointer, located in location 106,
and moved it back to make sure we had an area of
memory the Atari would not use. We will do the same
thing here, moving the pointer back 8*256 or 2048
bytes back.

We then POKE the memory page number (address/
256) into a location called PMBASE. This tells
ANTIC where to start fetching data for CTIA.

We POKE a location called GRACTL, for
GRAphics ConTroL register. GRACTL is the second
of two switches that has to be turned on to enable
P-M graphics. We POKE a 3 into there to tell ANTIC
and CTIA to start using P-M DMA. We POKE player
0’s size register at 53256 with a 3 to make our player 4
times normal size.

Our Player is now being plotted on the screen.
Whatever junk is in memory at this point is now busily
being pulled out of memory by ANTIC and fed to
CTIA. The area of memory we are using is empty.
The Graphics instruction at the beginning of the pro-
gram, before we moved the memory pointer back,
cleared it out for us. We should put some sort of bit
pattern into memory to create a display. The program
does that next.

Line 280 sets J equal to I (which is the start of the
P-M table) * 256 (because that value was in 256 byte
pages.) J points to the beginning of the P-M table in
memory. We add 1024 to it, the Player 0 data is 1024
bytes from the beginning of the table, with the other
players and missiles around it. The table looks like
the example shown to the right.

There is also a P-M DMA mode where only 1024
bytes are used, 128 per player. In this mode each byte
represents not one but two scan lines. This is known as
a “double line resolution” in the manuals. Just adjust
the addresses above for half as much data.

J now equals the beginning of the Player 0 bit map
data. The FOR loop in the program runs from J+120
to J+137, for 18 lines in the middle of the screen.
Data is read in and copied into those bytes. This
data is in the form of a “Cross”, where the 60’s on top
and bottom are: 00111100and the 255 sare: [1111111.
This data will be sent to the screen in the form of dots
for 1 bits and blanks for 0 bits, so at this point we have
a cross on the screen, still in pink. We have a loop
which pokes the horizontal position register from 48
to 221, and starts over at 48 again.This will move our
player stripe, with the cross in the middle of it, across
the screen (see Figure 24).

45

There should not be a lot of mystery left in players
and missiles now. ANTIC is just POKEing our CTIA
graphics data registers for us. This helps free up the
6502. We move the player horizontally with a POKE,
vertically by copying bits in this table up and down,
and select color and size with POKEs. We will learn
how to read collisions later.

PMBASE * 256 = start of this area

BASE ADDRESS
+ 0
-- wasted space.
+ 767
+ 768

- Missile Data. Missile data is
packed side by side, 4 missiles
of 2 bits per byte.

M3 : M2: M1 : MO

+ 1023

+ 1024
- Player 0 bitmap. Top byte is top
line of TV (above viewing area).

1279

1280
-- Player | bitmap.
1535

1536
-- Player 2 bitmap.
1761

+ o+ |+ o+ |+

+

1792
-- Player 3 bitmap.
+ 2047

Player-Missle Memory Map Example

Player-
Missle
DMA
Memory

Figure 24.

The Beginner’s Guide to Character Sets

An important part of the design of the Atari com-
puters was to obtain varied and interesting graphics
displays. Atari designed into their machine as much
software-controlled hardware flexibility as possible.
In this way they hoped to achieve widely varied effects
without changing the basic hardware.

We have covered a variety of playfield (i.e. display
list generated) graphics and gotten familiar with

player-missile graphics. Now we will cover another of

the many playfield features, the ability to redefine a
character set.

A character set is the table of shapes the Atari uses
to define each character. This character set, or shape
table is what makes an “A” character look different
froma “B” on the screen. With the Atari, these shapes
may be altered at will.

With most computers, you cannot change the char-
acters the designers give you. The shapes are stored
in ROM and cannot be modified except by creating a
new ROM, a task beyond most of us. This places a
limitation on those machines, for reprogramming
character shapes is a powerful tool for certain
applications.

If we are writing a program to teach the Russian
language, we would naturally like to be able to write
words in that language. But Russian has characters
not found in English. With most machines, you are
stuck at this point. Unless you use slow and clumsy
high resolution graphics to draw characters, you can-
not use the Russian characters.

On the Atari, it is easy to design your own char-
acters. You can use new letters for the Russian lesson,
and save yourself a lot of time and effort.

If you need some small figures on a character screen,
but do not want to worry about mixing graphics
modes, a character set might solve your problem. You
can control dots the size of an individual graphics 8
pixel with custom characters, for that is the size dot
characters are built from. You can even mix those
special symbols in with your other text. For math-
ematicians needing special characters such as summa-
tion and integral characters, this could be a real help.

As soon as you begin to consider characters as
graphics 8 figures drawn at high speed on the screen,
more and more interesting possibilities will occur to
you for the use of reprogrammed characters. We will
review a bit about character shapes and generation,
then learn how to modify them.

Character Shapes

The Atari plots letters and graphics on the screen
using individual TV dots. It uses 320 horizontal dots
and 192 scan lines for this purpose. Characters are
8 X 8 groups of dots, that is 320/8 or 40 characters
across and 192/8 or 24 rows. There is no space on the
screen between characters. Such space is provided for
within the character shapes. This makes possible con-
tinuous script letters, which “flow” from one to the
next with no interruption. It also enables screen

46

graphics using characters that have no “breaks™ in
them.

Character shapes are stored as an 8§ X 8 group of
bits. A lit dot is represented by a 1" bit, an unlit dot by
a “0” bit (Figure 25). Since each horizontal “slice” of
the character is 8 bits, the Atari’s designers put each
slice into one byte, for a total of eight bytes per char-
acter. There are 128 different possible characters, and
they are stored all grouped together, so the complete
“character set” is 128 X 8 or 1024 bytes long.
(Figures 26 and 27).

Every time a character is displayed, the Atari con-
sults this table.

Byte #* 1 2 808808888
Byte # 2 21111888
Byte # 3 1181188
Byte #* 4 4110801808 -
Byte #* 5 11891908 -
Byte #* 6 11011088
Byte * 7 1111808
Byte # 8 998000888
8 bytes in memory
per character.

Figure 25.

Character Set

Each character is stored as an § byte shape
table of dot patterns.

There are 128 characters per character set,
or 128 x 8 = 1824 bytes total.

- X|u|1|m‘ﬂlm|olm|mlml §
o
<

Each character has a fixed position in the
character set.

Figure 26.

Character Set
Memory

Each character shape is 8 bytes long.
i ANTIC finds the start of the character set,
takes the character number, and multiplies
that by 8 to find the position of the start

of any character's position.

(Actually, the beginning of character set memory
has other characters in it than letters; these are

used for clarity) .

Figure 27.

When ANTIC finds a display list entry to generate
characters (modes 0, 1 and 2 to Basic users), it looks to
the current location in display memory, kept in an in-
ternal ANTIC register. Let’s assume graphics 0. One
graphics 0 instruction means 40 characters are plotted
in one row for one display block. In a character mode,
one byte of display memory represents one character,
so ANTIC fetches 40 bytes. Each character has a

unique number, 0-127, and ANTIC uses that number
to look up the character’s shape in the character set.

First, ANTIC must find the character set. That is
casy. The character set is sent to ANTIC every sixtieth
of a second by the operating system as part of the
screen refresh process. It is controlled by location
2F4 Hex or 756 decimal. This location we will call
CHBAS, for “CHaracter set BASe”. The number in
this byte, when multiplied by 256, specifies the start
of the character set in memory. In the Atari, like all
6502 processor machines, memory is divided up into
“pages™. Each page is 256 bytes long, exactly cor-
responding to 8 bits of address. In a 16 bit address, the
upper eight bits specify which page number, and the
lower 8 bits specify which byte within the page. Be-
cause the character set always starts on an even page
mark, we only need to tell ANTIC where to find the
character set’s first page. Next, we must find the group
of 8 bytes within the character set that represent the
shape for an individual character.

The character number in display memory, known
as the “internal character set number” (this is not
ATASCII!) is multiplied by 8. This is then added to
the CHBAS*256 number to give ANTIC the starting
address in memory of the particular character’s shape
table. When displaying the character, ANTIC takes
the first byte of the shape table, displays it as 8 on or
off dots according to the bits in the shape table, then
moves down one byte in the shape table for the next
line. After eight passes, it has moved down 8 scan lines
and read 8 bytes and is finished with the character
(Figure 28).

Character Set
Memory,

;

sassaxas
e
R
e I
ST I I Y
Qe —an
aaananas
R

ANTIC pulls the data from the shape table
in order to plot a given character.

It plots one line at a time out of the
character set table, from top to bottom.

Figure 26.

If we tell ANTIC the shape table began somewhere
else in memory, it would look to the new location and
start using whatever data was there to display char-
acters. You will recall that earlier we told ANTIC that
display memory was located in low memory, to watch
it display pages 0 and | of memory, an area where
there is all sorts of activity going on, as characters.
This is the same idea. If the new area of memory hap-
pens to be a table of character shapes, redefined to
what we want them to be, ANTIC will use them with-
out complaint.

47

We cannot change the existing character set. It is
stored in ROM (read-only-memory) and cannot be
modified. So what we need to do is copy that ROM
character set into RAM (Read-Write-Memory),
where we can modify it, and then tell ANTIC to start
looking to RAM for the character set. All we do (to
change where ANTIC looks) is POKE a new page
number in memory into location 756. A sixtieth of a
second later, the operating system will give ANTIC
that new value as part of the screen refresh, and it
will start using it.

Our demonstration programs will demonstrate this
process and show us how characters are stored.

Program 21 begins at the start of the unmodifiable
character set the Atari normally uses, the ROM
character set. It fetches 8 bytes per character, breaks
each byte up into individual bits, and displays them
as “0™s and “I™s. The program goes through the
entire character set this way, displaying what the
characters look like in binary patterns. See the listing
for an example. You can see how ANTIC uses the “1”
bits to plot lit dots and thus characters.

8@ DIM BIN®(8)

S0 REM 0.3. SHADOW FOR CHBAS=2F4 HEX
120 CH=Z%256+15%16+4

130 CHBAS=FEEK(CH)%256

200 REM

210 FOR CHNUM=@ TO'127

211 PRINT CHNUM,CHR#(CHNUM)}

212 GOSUB‘220

213 PRINT

214 NEXT CHNUM

215 REM FIDDLE CHR® VALUE TO ROM VAL
zz? IF CHNUM<¢32 THEN CH=CHNUM+64

IF CHNUM<¢9&6 THEN IF CHNUM>31 THEN CH=CHNUM-32
IF CHNUM>3S5 THEN CH=CHNUM

REM FULL & BYTES, TRANSLATE,PRINT
CLOC=CHBAS+(8%CH)

FOR B=0Q TO 7

BYTE=FEEK(CLOC+R)

GOSUB 509

PRINT B+1;"% ";BIN®

NEXT B

RETURN

REM DECIMAL TO BINARY

BINB=" *

DIV=128

BYTE1=BYTE

FOR T=1 TO 8

BIiT=INT(BYTE1/DIV)

IF 2IT=1 THEN BIN&(T,T)="1"

IF 2IT=1 THEN BYTE1=BYTE1-DIV
DIV=INT(DIV/2)

NEXT T

RETURN

Program 21.

You are going to soon notice that characters are not
stored in ATASCII order. They are in the order of the
internal character set, which is a different thing. You
can find a listing of the internal order on page 55 of
your Basic manual.

Program 22 dumps the specified character to the
printer; just type in the letter whose bit pattern you
would like to be displayed. It is converted into an
ATASCII number, then into the internal character set
number, then displayed. This program is handy in

Character Sets

showing how to convert from ATASCII to internal
format. To find the right bytes in the character set, the
internal number is just multiplied by 8 and added to
the number that represents the start of the character
set, which you will recall is just how ANTIC does it.

80 DIM BIN$(&)

90 REM 0.S. SHADOW FOR CHBAS=2F4 HEX

100 CH=2%256+15%16+4

130 CHBAS=PEEK(CH)%256

2@ PRINT "ENTER CHARACTER NUMBER"®

21 INPUT CHNUM

211 PRINT CHNUM,CHR$(CHNUM)

212 GOSUB 220

213 PRINT

214 GOTO 2ee

Z15 REM FIDDLE CHR$ VALUE TO ROM VAL

222 IF CHNUM<32 THEN CH=CHNUM+64

230 IF CHNUM¢36 THEN IF CHNUM>31 THEN CH=CHNUM-32

24@ IF CHNUM>35 THEN CH=CHNUM

250 REM PULL 8 BYTE3, TRANSLATE,PRINT

260 CLOC=CHBAS+(8%CH)

2709 FOR B=© TO 7

280 BYTE=PEEK(CLOC+B)

230 GOSUB 500

302 PRINT B+1;"% "“;BINS

310 NEXT B

329 RETURNM

500 REM DECIMAL TO BINARY

S5 BIN&=" "

519 DIV=128

515 BYTE1=BYTE

S5z2e FOR T=1 TO 8

BIT=INTCBYTE1/DIV)

IF Z1T=1 THEN BIN®(T,T)="1"

» IF 21T=1 THEN BYTE1=BYTE1-DIV
DIV=INT(DIV/2)

NEXT T

RETURN

Program 22.

The character set we are currently looking at is in
ROM, as previously mentioned. Let’s learn how to
move it to RAM to allow us to modify it. This will
consist of three steps:

l. Finding a place to put it. We need 1024 free
contiguous bytes of RAM.

2. Copying the ROM character set to RAM.

3. Changing the “pointer” ANTIC uses to find the
character set from its old ROM location to the new
RAM location.

Step | is tricky. To properly understand how to do
this, we must delve into some Atari memory secrets.

When the Atari is first turned on, a check is made to
determine where RAM ends. This can be anywhere
from 8K to 48K from the beginning of memory; it de-
pends on how many memory boards you have in-
stalled. In location 106 decimal (6A hex) is stored the
page number of the first byte of non-existent memory.
In other words, 256*PEEK(106) is the address of the
first byte of nonexistent memory.

Now the Atari uses the very top of RAM memory,
wherever that might be, for the display memory and
display list storage. Right below that is free RAM, and
below that is Basic storage. (Basic and the graphics
modes “grow” towards each other into free RAM
when they use more memory). So whenever a graphics
command is executed, and the Atari needs to setup a

48

new display memory-display list, it checks location
106 to see where RAM ends. It then backs up the re-
quired number of locations and puts the display
memory in (Figure 29). Think of memory location 106
as the Atari’s “fence”, used to find the end of memory.

Address Usage

peog
Operating System

Basic Program Storage
Grows Downwards into Free Memory

Free Memory
(Size varies)

Display List
229 +
P27

Display Memory
Grow Upwards 1into Free Memory

PEEK (1#6) +[1EMTOP

// (Cartridge,etc, or end of RAM)

Hence, PEEK (186) marks the last address of usakle
memory to the Atari. The display memory is put
immediately above it.

Figure 29.

Now let’s assume we POKE 106,PEEK(106)—4).
This will move back the end of memory fence by 4
pages. Each page, you will recall, is 256 bytes, so that is
4 times 256 or 1024 bytes moved back. We then
execute a graphics command, so the Atari will move
the display memory list out of that 1024 byte area,
behind our fence (Figure 30). In this way we reserve
1024 bytes for memory starting on a page border.

(free)

(display
(free) area)

186 "ferce"

{memory now

(display open for
area) user's 1824 bytes
needs)

196 "fence"

When the 186 "fence" is moved upwards, and a
graphics command re-executed, memory below it
is left open for user's applications (character
sets, player-missile graphics, and so forth).

Figure 30.

There are several advantages to getting 1024 bytes
this way. It does not matter what size memory
machine you have, as long as the minimum 1024 bytes
are available. It does not matter how long your Basic
program is or what graphics mode you are in. You can
see it is quite a handy general purpose thing to have.

This is also the preferred technique to use when
reserving memory for the Player-Missile bitmap area.
8 pages are required for a 2048 byte bitmap (single
line resolution) or 4 for 1024 bytes (double line
resolution). You will see this byte 106 modification in
most articles on Player-Missile graphics.

We now know the beginning of the RAM area, and
where the ROM character set starts (EO00 Hex or
57344 Decimal). Let’s copy the ROM character set to
RAM (Program 23). This program moves the 106
pointer back 4 pages and copies the character set over.
It takes a while; around ten seconds is needed to copy
1024 bytes. Basic just is not very fast at copying data.

6@ REM COFIES CHARSET TO RaAM
10@ MEMTOP=FEEK(106)

110 GRTOFP=MEMTOF-4

120 POKE 1@6,GRTOP

130 REM RESET

149 GRAPHICS ©

141 LIST

16@ CHROM=PEEK(756)%256

17@ CHRAM=GRTOP¥256

180 PRINT "COPYING."

5@ FOR N=@ TO 123

S12 FOKE CHRAM+N,FEEK(CHROM+N)
520 NEXT N

FRINT "COFRIED."

REM NOW MODIFY POINTER
POKE 75&,GRTOP

Program 23.

o
o))
(SN S

Finally, the CHBAS pointer is changed to reflect
the page of the beginning of our new RAM area.
ANTIC is now using the RAM character set
(Figure 31).

Program 23 is not going to show you much, for
ANTIC will still be displaying characters as usual. So
let’s watch the copy process in action. This time we will
move the character set pointer first, then do the copy.
Your screen will suddenly start displaying whatever
junk is in memory at the start of the copy as the pointer
is changed, then more and more letters will appear as
Basic gets more and more character shapes copied into
the RAM table. At the end of the copy, the screen will
once again appear normal (Program 24).

Program 25 presents an interesting variation. It
copies characters from ROM and RAM upside down.
It does this by copying the eighth byte of every char-
acter into the first byte of that character’s new bit-
map, the seventh to the second, and so forth. The
result is that the new RAM bitmap is an inverted
image of the ROM bitmap. This is a lot of fun. The
characters will still be on the screen, and you can
even edit them. They will just be upside down.

Program 26 shows another useful variation. It makes
every character’s last byte be a 255, or solid I’s. This
puts a solid line at the base of the characters, and there
is thus a line at the bottom of each of the 24 character
rows. If you have been wondering how to underline a
particularly important concept on the Atari screen,
you have just found out how.

49

Basic
The ROM character set 1s copied
Free to RAM, ther the CHBAS pointer
RAM ANTIC uses is changed to tell
ANTIC to use the RAM characters.
Display
Memory
PEEK (185) 2
§HSET CHBAS POINTER (new)
MEMTOP =
ROM CHBAS POINTER (old)
C-Set
Figure 31.

1HIS ©N YlBadl INAZHML3d SI33N

Sample of inverted characters. Editing and
all cursor functions can be performed with the
Atari in this mode.

Figure 32.

Program 27 illustrates another handy character set
feature. We can POKE different values into the
CHBAS pointer and thus switch between multiple
character sets immediately. In program 27 we have two
character sets, one normal, one flipped upside down.
The program switches between them rapidly for an
effect that is hard on the eyes. Assembly language pro-
grammers take note: with a display list interrupt, you
can change character sets midway down the screen.
The possibilities with that are amazing. Just POKE
a new value into the ANTIC hardware address for
CHBAS.

Now let’s assume we have decided to modifya ROM
character set to accustom one of our needs. Let’s work
it out by hand the first time. Incidentally, an editor
based on this hand working out is not too difficult to
write, and there are many out on the market. None
however, have the storage scheme that we will be
discussing shortly.

62 REM COPIES CHARSET TO RAM
100 MEMTOP=PEEK(1@6)

110 GRTOP=MEMTOP-4

12@ POKE 10@6,GRTOP

130 REM'RESET

142 GRAPHICS @

141 LIST

160 CHROM=PEEK(756)%256

7@ CHRAM=GRTOP¥256

172 REM NOW MODIFY FOINTER
173 FOKE 756,GRTOF

180 PRINT "COFYING."

Se@ FOR N=@ TO 1023

512 FOKE CHRAM+N,FEEK(CHROM+N)
520 NEXT N

53@ FRINT "COPIED."

Program 24.

Character Sets

50 REM COPY CHARSET UPSIDE DOWN
100 MEMTOP=PEEK(106)

112 GRTOP=MEMTOP-4

115 CLOC=GRTOP

120 FOKE 1@6,GRTOP

130 REM RESET GR.® DM/DL AREA
14@ GRAPHICS 0

141 LIST

15@ CH=7586

160 CHROM=PEEK(CH)¥%256

170 CHRAM=GRTOP¥258

175 PRINT “CHRAM=";CHRAM;"
180 PRINT "COPYING."

190 REM COPY ROM TO RAM
300 POKE CH,CLOC

S0 FOR N=@ TO 1023

510 FOKE CHRAM+N,FEEK(CHROM+N)

5z2¢ NEXT N

530 PRINT "COPIED."

552 REM NOW COFY UPSIDE DOWN

€602 FOR CHNUM=@ TO 127

612 FOR BYTE=2 TO 7

615 Z=FEEK(CHROM+(CHNUM¥8)+BYTE)

622 POKE (CHNUM#¥2)+(CHRAM)+(7-BYTE),Z
£3@ NEXT BYTE

635 NEXT CHNUM

€42 PRINT "RECOFPIED."

Program 25.

CHROM="; CHROM

100 MEMTOP=PEEK(106)

110 GRTOP=MEMTOP-4

115 CLOC=GRTOP

1Z@ FOKE 106,GRTOF

130 REM RESET GR.@ DM/DL AREA
142 GRAPHICS ©

141 LIST

150 CH=756

160 CHROM=FEEK(CH)¥256

172 CHRAM=GRTOP¥%256

175 FRINT "CHRAM=";CHRAM;"
180 POKE CH,GRTOP

60@ FOR CHNUM=@ TO 127

612 FOR BYTE=@ TO 7

€15 Z=FEEK(CHROM+(CHNUM%8 »+BYTE)
616 IF 3YTE=7 THEN LET Z=255

€Z@ POKE (CHNUM¥8& Y+ CHRAMI+(BYTE),Z
63@ NEXT BYTE

635 NEXT CHNUM

642 FRINT "RECOFIED."

Program 26.

CHROM=" ;CHROM

First, let’s design the character we want asan 8 X 8
dot matrix

oorrrroo
01000010
10100101
10000001
10100101
10011001
01000010
0o0rrtrroo0

This is, of course, the character from the “Have a
Nice Day!™ button.

Let’s determine the bit patterns. You can do this by
either converting each nibble (4 bits) to hex and then
going to decimal, or for those of you without binary
experience, just add the number shown on the top of
the column to the total for that line whenever the dot it
represents is on. Forexample, in the diagram, 16 and 8
are “on”, so add 16 + 8 = 24,

50

45 REM THEN FLIPS BACK AND FORTH
100 MEMTOP=PEEK(106)

11@¢ GRTOP=MEMTOP-4

115 CLOC=GRTOP

120 FPOKE 1@6,GRTOP

130 REM RESET GR.® DM/DL AREA
142 GRAPHICS @

LIST

CH=756
CHROM=PEEK(CH)%¥256
CHRAM=GRTOP¥256
PRINT "CHRAM=";CHRAM; "
PRINT “COPYING."
REM COPY ROM TO RAM
FOKE CH,CLOC

FOR N=@ TC 123
FOKE CHRAM+N,PEEK(CHROM+N)
NEXT N

PRINT “COPIED."

REM NOW COFY UPSIDE DOWN

FOR CHNUM=2 TO 127

FCR BYTE=@ TO 7

Z=FEEK(CHROM+(CHNUM#8)+BYTE)
FOKE (CHNUM¥8)+(CHRAM)Y+(7-BYTE),Z
NEXT BYTE

NEXT CHNUM

FRINT “RECOFIED."

REM FLIP

FOKE CH,Z2Z24:REM NORMAL ROM
POKE CH,CLOC

GOTD 710

Program 27.

CHROM=" ; CHROM

At the end of this process, you will have 8 bytes of
data which represent the bitmap for that character.
Next, let’s figure out which character we are going to
replace with our SMILE character. How about the
space character? There are plenty of those on the
screen. The space character is the first one in the
ROM-RAM character set, character number 0, in
internal code. So what we do is POKE these 8 bytes
into the location where the space character’s bitmap
is located, replacing them with the SMILE character.
See program 28, which is just our routine to copy the
character set from ROM to RAM with the added
POKEs (the numbers are in the DATA statement).

If we wanted to replace another character, we would
multiply its character number by 8, add that number
to the address of the start of the character set, and
start POKEing there. That is why “LOC=(CHBAS
+ (8+0))” was used. Replace the 0 with whatever
number you wish.

At this point your Atari will be smiling proudly at
you from everyplace a space used to be. Take a minute
to enjoy the happiness of your success.

Storing & Retrieving Your
Character Set

You do not have to re-POKE your character set
each time you want to use it. After all, the POKE
method of copying the 1024 bytes from ROM to RAM
is one of the greatest sleep inducers known. Let’s solve
all these problems with some custom routines for
character set work. They all work off of string manipu-

lations, which are among the most powerful and
usable on the Atari. The reason for their power is their
speed in an otherwise slow Basic; the string manipu-
lation routines are just high speed assembly language
copy routines. Let’s subvert them to our purposes, and
have assembly speed without all the hassles.

Each string is stored in memory as a continuous
group of bytes. A string has a DIMensioned length, a
“currently in use” length, and a location in memory.
Let's assume they both have length 1024. And let’s
assume that the storage location where the Atari
thinks RAMS is in memory just happens to be our
RAM character set area. Let’s further assume that
ROMS is in the ROM character set area (or so the
Atari thinks). What will happen when we then execute
RAMS$=ROMS?

The Basic string manipulation routines will copy
1024 bytes (dimensioned length) from ROMS to
RAMS, and thus copy the ROM charset to the RAM
charset at extremely high speed!

You can modify the RAM character set any way
you wish. Bear in mind you can do this with either a
POKE or a string operator; when you modify the
string, you are modifying the RAM character set.
(You cannot modify ROMS.) Let’s write RAMS out to
disk. The Atari will store your character set out on
disk as a string. Let’s read it back in at some later
date, still using all string manipulation operators,
and store it back into the character set area. You will
have just stored and recovered your character set. No
hassles with bits and bytes, just a PRINT to disk and
an INPUT later on.

The power of the copy capability is also usable in
player-missile graphics. You can assign a string to the
player bitmap area, and then move the player up and
down at high speed using a $=$ operation. This is a
nice fast way to move a player vertically, which before
required either assembly language or slow POKE
copies. And strings may be used for data storage. The
display list interrupt routine listed earlier used a string
to store data bytes for color registers, and another
string to hold the assembly program used for the
interrupt handling.

Let’s learn how to change where the Atari thinks a
string is located in memory. Then we will get to the
actual subroutines you can use.

The Atari keeps two tables in memory for Basic
(among others) that deal with string variables. One is
called the variable table, the other the array table.
There are 128 possible variable names on the Atari,
numbered 0-127, and the variable table has an 8
byte entry for each name in use. All the entries are
packed together. For strings this entry has dimen-
sioned and in-use length, and where in the array table
the string is stored. The array table is the other table.
In it the string’s actual data is kept. So, what we have
to do is alter the dimensioned and in-use length as
shown in the variable table, both to 1024, then modify
where the Atari thinks the variable is stored in the

i

array table. The only tricky part to this is that the
address of where the string is actually stored is relative
to the array table; in other words, a “0” for this value
does not mean the string starts at location 0, it starts
at the beginning of the array table.

You can find the beginning of the variable table by:
VT=PEEK(134)+256*PEEK(135)

The beginning of the array table is found by:
AT=PEEK(140)+256*peek(141)

We will examine the actual layout of the variable
table entries assuming that RAMS$ and ROMS are the
first two variables in the variable table. In reality
to do this they must be the first variables types
in a NEW program or ENTERed from a pro-
gram LISTed to disk. (A SAVE-LOAD will not work,
it stores the variable table along with the program.)
So if you're starting out with a new program, just
have the DIM line (10 DIM RAMS(1),ROMS$(1) as
the first line of your program after typing NEW; if
you are adding these to an existing program, make
sure that the first line and LIST it to disk and ENTER
back to rewrite the tables.

The variable table entry is created for any variable
referenced by your program. This includes variables
you used once and then deleted; they are still there
taking up space. You can run out of space in the
variable table when it gets too full of these non-
existent variables. LIST, then ENTER from disk
forces a new variable table to be built.

Here’s the variable table with explanations.

Location Value Meaning
VT+0 129 “This is a string”
VT+1 0 “This is variable #0"

VT+2, VT+3] 16 bits. Location from
the start of AT.
DIMensioned length.

In-use length

VT+4, VT+5 27
VT+6, VT+7 2

This is the entry for RAMS, the first string in the
table. The entry for ROMS$ immediately follows.

This subroutine should now become clear. It
modifies the address and length of RAMS to that of
the character set. It not only copies ROM$ to RAMS,
it also modifies the variable table data for ROMS. (All
the modifying, by the way, is quite speedy, so the
RAMS$=ROMS still executes much faster than the
previous POKE copy). (See Program 29).

Character Sets

€0 REM COPIES CHARSET TO RAM
79 REM POKES POINTER B/4 COPY

REM
FEM

FROGRAM TO COPY ROM TO RAM
USING STRING MANIFULATORS

80 REM ADDS SMILE

100
110
120
130
142
141
145
Se
160
17@
180
500
S1e
S5zZo
530
540
550
1000
1210
1020
1e3e
1040
1050
1e60
1070
1280
1089
1ese
i100
111@
1120

MEMTOF=PEEK(106)
GRTOP=MEMTOP-4

POKE 1@6,GRTOP

REM RESET

GRAFHICS ©

LIST

CHROM=FEEK(756)¥256

REM NOW MODIFY POINTER
POKE 756,GRTOP
CHRAM=GRTOP %256

PRINT “COPYING."

FOR N=@ TO 1023

FPOKE CHRAM+N,FPEEK(CHROM+N)
NEXT N

PRINT "COPIED."
REM ABCDEFGHIJKLMNOPQRSTUVWXYZ
REM 1235678301 "#$%& ' @(X)—=+%
REM SMILE BUTTON LAYQUT:
REM @@000020 @2 Q0

REM 01100110 66 102

REM 01100110 66 102

REM 000000200 2¢ 0eQ

REM 21200010 42 66

REM 20111120 3C 6@

REM ©2011@20 18 24

REM 9290000000 02 Q0

REM

DATA 00,102,10Z,002,66,60,24,00
FOR ADDR=CHRAM TO CHRAM+7
READ DAT:POKE ADDR,DAT
NEXT ADDR

Program 28.

REM

REM NOTE MOST CALCULATIONS ARE NOT
REM HARDCODED TO ALLOK OTHER USE

1@ DIM RAM®(1),ROME(1):REM VT ENTRY 1
S50 REM GET ARRAY,VARIABLE,DL,DM LOC
105 AT=FEEK(140)+Z56%FEEK(141)

110 VT=FEEK(134)+2S6%PEEK(135)

120 FOKE 166,FEEK(1068)-15:REM 4K MOVE
125 GRAFHICS @:REM RESET OUT OF TOF AREA
13@ RAMLOC=FEEK: 106 %258

152 REM CALCULATE OFF3ET FROM AT

160 OFFRAM=RAMLOC-AT

170 OFFROM=(14%4036)-AT

2z2? REM CALCULATE LO,HI BYTES

225 LEN3=1225:REM C-SET LENGTH

232 LENHI=INT(LENS/Z56)

240 LEMLO=INTC(LENS-(LEMHI%256))

245 REM

25@ OFFRAMH=INT(OFFRAM/Z25E)

zZE® OFFRAML=INTC OFFRAM-L ZSE¥0FFRAMH))
e

28

@ N U

» OFFROMH=INTI OFFROM/Z255)

@ OFFROML=INT{ OFFROM-{ Z56%¥0FFROMH))
O REM REMWRITE RaAM# DATA'IN VT

FEM VT+@2 = 123

REM VT4+1 = 2 (VAR #27

FOKE VT+2,0FFRAML:REM OFFSET
POKE VT+3,0FFRAMH: REM OFFSET
FOKE VT+4,LENLD:REM DIM LENGTH
POKE VT+5,LENHI:REM DIM LENGTH
FOKE YT+6,LENLO:REM USED LENGTH
©® POKE VT+7,LENHI:REM USED LENGTH
2 REM REHRITE ROM% DATA IN VT

9 REM VT+8 = 123

2 REM VT+3 = 1 (VAR #2)

@ FOKE VT+10,0FFROML:REM OFFSET

@ POKE VT+11,O0FFRCMH: REM OFFSET

SQ FOKE VT+12,LENLO:REHM DIM LENGTH
4586 FOKE VT+13,LENHI:REHM DIM LEMGTH
470 FOKE VT+14,LENLO:REM USED LEMGTH
480 POKE VT+15,LENHI
S52@ RErl RESTORE
S1@ POKE 756,FPEEK
515 REM Notl DO COPY.,
S20 RAMEBE=ROM#

Program 29.

52

Part 11
Graphics Tips

D = mEaEm o = S et e he Rr E—— - 2 = e - S demes = ea] ==

AmE = N . e 2 m m = == oEm CRCIRET - - =l

Pl === ey

.
s el

N

Design Philosophy and GTIA Demos

This last year marks a period of
incredible growth for the Atari computer.
The Atari Program Exchange got going
and is now shipping a large volume of
Atari software. This exchange provides
low-cost but relatively high quality software
written by outside users.

Last year at this time there was no
Jawbreakers, Asteroids, or Missile Com-
mand; now these programs are being
surpassed (Have you seen Mouskattack
yet? The cover art alone is worth the
purchase price.)

Last year we had the Basic and Assembler
cartridges, neither of which was designed
for speed or for large programs. Now we
have Microsoft Basic, the awesome new
Editor/Macro Assembler, Pilot, Forth, Lisp,
and according to a letter I just received,
Algol.

The tools to develop high quality software

are now available; and it is a safe bet that
more good software will be appearing on

the market.

Outside manufacturers are also producing
a wide variety of hardware for the Atari.
There are several modems available, one
of which I will review shortly (the direct-
connect Microconnection).

There is also a good deal of hobbyist-
oriented equipment, such as EPROM
burners, I/0 port connectors, and whatnot,
and a light pen is now available from non-
Atari sources.

Percom Corp. in Texas is now marketing
an entire line of Atari-compatible single,
double and quad density disk drives, and
other companies have introduced Win-
chester drives. Atari has even published a
list of outside vendors of software and
hardware for their machine.

And did I mention the news that Atari
has surpassed Apple in sales? And rumors
of new Atari machines are currently flying
(something may be announced in June, I
am told). This machine is here to stay, and
will continue to grow for quite some time.

What Is an Atari?

If you own an Atari, you may be curious
to learn what you have bought. I searched
long and hard for a definition of what
Atari has produced; “home computer” is
too vague. After all, it does have a specific
and limited place in the market. For example
Ataridropped the 815 double density dual
disk drive when it did not conform to their
definition of a “home computer.”

The definition I finally found, isa “home
computing appliance.” Chew on those words
for a while; they contain the essence of
the design and marketing strategy of the
Atari. This is a second-generation consumer-
oriented machine, carefully designed and

oriented towards the home market from
the ground up.

Atari is not in the business market. They
have no intention of competing with Tandy,
Apple,and IBM, who are currently beating
their respective heads together trying to
capture that field. Atari stands with Texas
Instruments in the home computer market-
place with a strategy of aiming at the home
user.

Products designed for home use—
principally games, home finance, and
education/development—are released and
pushed hard. Pilot offers a good example
of the educational potential of this machine,
and the games available for the Atari are
becoming the standard for the home
computer industry.

Bear in mind also that this is a consumer
machine. It is not designed for a hardware
or computer professional. It is designed
for an average person who wants a “home
computing appliance.”

It is not as hardware oriented as the
Apple. Itdoesn’t have a collection of open
“slots™ on the various busses available.
What housewife seeking help with her
checkbook honestly cares whether or not
she can access the interrupt request line
with a plug-in card?

The layout is for a consumer. The
machine is attractively styled, and goof-
proof. Memory and the Operating System
are packaged in cartridges located under
the front cover, and joysticks plug in easily
under the front keyboard.

Many of the programs available can be
used by a consumer with little knowledge
of computers; they plug in on ROM car-
tridges (most four-year old kids I know

LOGO

1 TRAP 80

2 DIM A$(30),SINE(450)

3 GOSUB 30000
4 DEG
10 GRAPHICS 10

can master this trick), and the system Reset
key is protected against accidental press,
and so on.

I remember being told that “The Atari
isn’t a serious machine because it doesn't
offer PASCAL.” I have heard this sort of
complaint many times, always directed at
something the Atari lacked, be it Cobol,
Fortran-1933, or whatever. The people who
voice these objections (in most cases,
computing professionals) don’t understand
that the Atari home computer is Atari’s
very serious attempt to make a computer
that a home user can get along with—not
necessarily a programmer, just a home
user. It may not have the current languages
that are in vogue today (and possibly gone
tomorrow). But this is by design and not
by default.

So, while the Atari may not at first
glance look like a powerful computing
machine, with lots of lights, integrated
circuits, and cables all over the place, it is.
It has just been designed for a home
computer user according to Atari’sidea of
who the home computer user is.

Oh, and yes, Pascal is now available for
the Atari.

GTIA Demonstration Programs

Asof January 1982, Atari began shipping
all Atari 800 units with GTIA graphics
chips. The GTIA chip replaces the CTIA
graphics chip and allows three more
graphics modes. Don't worry, the operating
system ROM and the Basic cartridge were
written with GTIA in mind. GTIA is a
superset of the CTIA functions.

Several short demonstration programs
for the GTIA exist. I don’t know where

15 FOR I=1 TO 8:READ A:POKE 704+1,I%16+6:NEXT I

20 COLR=1:Y=1
30 FOR X=10 TO 63
49 COLOR COLR

S50 PLOT X,141-Y:DRAWTO X,191-Y
52 PLOT 79-X,141-Y:DRAWTO 79-X,191-Y

5S4 FOR Q=36 TO 43

S5 PLOT Q,191-Y:DRAWTO Q,141-Y

56 NEXT Q
60 Y=Y¥1.Z3

65 COLR=COLR+1:IF COLR>8 THEN COLR=1

70 NEXT X
80 X=USR(ADR(AS$))

90 FOR J=1 TO 12:NEXT J

100 GO TO 80

1000 DATA 2,4,6,8,6,4,2,2
3000@ REM %% SET UP ASSY PROGRAM

30010 RESTORE 31000
30020 FOR 2Z=1 TO 27

30030 READ X:A$(Z)=CHRS$(X)

30040 NEXT 2Z
30050 RESTORE
30060 RETURN

55

GTIA Demos

they were written, but I would assume MELONS
somewhere at Atari by someone with a 2 DIM A$(30),SINEC450)

preliminary GTIA chip. 2 SSZUB 30000

Below are several listings of sample GTIA 9 For 1=0 T0 90:7 1:A=SINCI):SINECI)=A:SINEC180~1)=A:SINEC180+])=—A:
programs. Users with CTIA graphics chips SINEC360-1)=-A:SINE(360+1)=A:NEXT I
can try these programs, but don’t expect 1@ GRAPHICS 10 =
spectacular results. Users with GTIA chips }i 55?255 ;§°§ M SRR SRR s &
will be in for a pleasant surprise, indeed. 20 0=t
Feel free, as always, to modify them, ;3 ?ngANG_wO e
and if you come up .W}th a rea'lly neat o «_2p%3INEC ANG+90)+2§T e
effect, I'd appreciate a listing or a disk/tape 50 Y=A¥SINE(ANG)
(I'll return your disk/tape, of course.) The 55 z=X:IF P=2 THEN Z=79-X

s €0 COLOR @
ad
dress appears at the beginning of the G e eABTED THEN DLER=EBLDE

column. ' 70 PLOT OLDX,96+0LDY

By the way, if the author of these 75 DRAWTO Z,96+Y
programs would care to step forward, I 77 OLDX=Z:OLDY=Y
will certainly give him credit. I would like o

y g . ap NEXT ANG
to know who wrote them. 95 Q@=Q+1:IF Q>7 THEN Q=1
100 A=A-1
Be sure to include the following two 110 IF A>-30 THEN 30

. 200 FOR ANG=0 TO 180 STEP 1@
lines at the end of LOGO, HYPNO, 76 SOLOR b

ESCAPE, MELONS, SAS, and 220 x=4x%SINECANG+90)+25
WHIRL. 225 2=X:1F P=2 THEN Z=79-X
31000 DATA 104, 162, 0, 172, 193, 230 Y=32%SINECANG)

240 PLOT Z,96+Y

9. 188, 194, 2, 157, 193,02, 232, 224,8, oo tnewic o aet

144, 245, 140, 200 260 NEXT ANG
31010 DATA 2, 96, 65, 65, 65, 65, 300 FOR I=1 TO 25
65. 65 310 X=RND(0)%6+23
’ O 315 Zz=X:1F P=2 THEN Z=79-X

320 Y=RND(®@)%50+71

330 COLOR @

34@ PLOT Z,Y

350 NEXT 1

400 NEXT P

909 REM X=USR(ADR(A¥))

319 FOR J=1 TO 10Q:NEXT J

920 GO TO 900

1200 DATA 226,228,230,232,230,228,226,79
30200 REM %¥¥ SET UP AS3Y PROGRAM

30010 RESTORE 31000

30020 FOR Z=1 TO 27

30030 READ X:A#%: Z)=CHR#(X)

32040 NEXT Z

30050 RESTORE

30069 RETURN

HYPNO

2 DIM A$(30)

3 GOSUB 30000
1@ GRAPHICS 10

15 FOR I=1 TO 8:POKE 704+1,(I-1)%32+22:NEXT I ESCAPE
20 Q=1 2 DIM AS(30)
30 FOR Y=0 TO 191 3 GOSUB 36000
40 COLOR Q 10 GRAPHICS 10
50 PLOT @,Y 1S FOR 1=1 TO 8:READ A:POKE 704+1,A+224:NEXT I
60 DRAWTO 79,191-Y 17 =1
76 Q=0+0.416666666: IF @>8 THEN Q=1 20 FOR 1=0 TO 38
75 REM FOR T=1 TO 1@@:NEXT T 4% COLOR @
80 NEXT Y 42 X=1
120 Q=1 45 Y=1%2
130 FOR X=79 TO @ STEP -1 S2 PLOT X,Y
140 COLOR Q 60 DRAWTO 79-X,Y:PLOT X,Y+1:DRAWTO 79-X,Y+1
150 PLOT X,0 62 DRAWTO 79-X,190-Y
160 DRAWTO 79-X,191 G4 DRAWTO'X,190-Y:PLOT 79-X,190-Y+1:DRAHTO X,190-Y+1
170 Q=Q+1:1F Q>8 THEN Q=1 66 DRAWTO X,Y
180 NEXT X 76 Q=0+1:1F Q>8 THEN 0=1
190 REM COLOR ©:PLOT @,2:DRAWTO 79,191:PLOT 79,0: 80 NEXT I
DRAWTO 0,191 120 X=USRC ADRC A$))
200 X=USR(ADR(A%)) 110 FOR J=1 TO 24:NEXT J
210 FOR J=1 TO 4:NEXT J 120 GO TO 100
220 GO TO 200 1600 DATA 2,4,6,8,6,4,2,2
30000 REM % SET UP ASSY PROGRAM 26660 REM #x% SET UP ASSY PROGRAM
30010 RESTORE 31000 3 RESTORE 31000

30020 FOR 2Z=1 TO 27 20 FOR Z=1 TD 27

30030 READ X:A$(Z)=CHR$(X) 2030 READ X:A$(Z)I=CHR¥ X)
30040 NEXT Z Ge042 NEXT Z

30050 RESTORE ? RESTORE

30060 RETURN RETURN

SAS

2 DIM A$(30),SINE(450)

3 GOSUB 30000

4 DEG

& 7 "STAND BY"

9 FOR 1= TO 90:? I1:A=SINCI):SINECI)=A:SINE(180-1)=A:
SINE(1+18@)=-A:SINE(360-1)=-A:SINEi 1+360)=A: NEXT I

12 GRAPHICS 10

15 RESTORE :FOR I=1 TO 3:READ A:POKE 704+ ,A+224:NEXT I

19 C=1

20 FOR ANG=Q TO 359

30 X=40+32%SINE(ANG+90)

40 Y=96+82%SINE(ANG) WHIRL

5@ COLOR INTC(C) 2 DIM A$(30),SINE(450)

60 FLOT 65,36 3 GOSUB 30000

7@ DRAWTO X,Y 4 DEG

75 PLOT 65,95 & ? "STAND BY"

77 DRAWTO X,7v-1 9 FOR I=0 TO 90:? I:A=SINCI):SINECI)=A:SINE(180-1)=A:

7& FLOT 65,34 SINEC I+180)=-A:SINE(360-1)=-A:SINE(I+360)=A:NEXT I

79 DRAWTO X,Y-2 10 GRAPHICS 10

&0 Q=USR(ADR(A$)) 15 RESTORE :FOR I=1 TO 8:READ A:POKE 70@4+1,A+224:NEXT I
25 C=C+2.5:1F C»>=3 THEN C=1 17 GOSUB 2000

3¢ NEXT ANG 20 FOR ANG=0 TO 359 STEP 2

320 Q=USR(ADR(A%)) 25 Q=8

310 FOR I=1 TO 14:NEXT I 30 X=ZO%SINE(ANG+90)+40

S22 GO TO 300 40 Y=20¥SINE(ANG)+96

% DATA Z2,4,6,8,6,4,2,2 2 COLOR @:PLOT X,Y:IF ANG(180 THEN 90

REM #%¥ SET UP ASSTY PROGRAM 43 AS=0
RE2TORE 310Q0Q 45 FOR W=1 TO 45
FOR Z=1 T9 27 5@ LOCATE X,Y+W,QW: IF QW=0 THEN AS=1
READ ¥X:A%(Z)=CHR#(X) 55 IF AS=1 THEN 80
NEZT Z 57 COLOR @
RESTORE 60 PLOT X,Y+H
RETURN 706 Q=0-1:1F Q<1 THEN Q=3
80 NEXT W

9@ NEXT ANG

95 2=20:U=Z20

175 Q2=Q+1:IF Q,8 THEN Q=1
900 X=USR(ADR(A%$))

910 FOR I=1 TO 3:NEXT I
8920 GO TO 9@

1209 DATA 2,4,6,8,6,4,2,2

BRASS 2000 REM THIS IS THE HEART OF DIZZY
1@ GRAPHICS 9 2020 Q=1

15 SETCOLOR 4,15,0 2030 FOR Y=@ TO 191

20 FOR Y=S55 TO @ STEP‘-10 2040 COLOR Q

30 FOR X=0 TO 24 2050 PLOT @,Y

49 C=X:I1F X>11 THEN C=24-X 2060 DRAWTO 739,191-Y

45 C=C+3 2070 G=0+0.416666666:1F Q>8 THEN Q=1
S0 Z=Y4(X) 2080 NEXT Y

55 D=INT(SQR(144-(X-12)%(X~12)))/2 2130 FOR X=79 TO @ STEP -1

57 COLOR 15-C 214@ COLOR Q

58 PLOT Z,Y+7-D 2150 FLOT X,0

Zi DRAMTO Z,Y+7+D 216@ DRAWTO 79-X,191

7o COLOR C 2170 Q=Q+1:IF @>8 THEN Q=1
L2 DRAWTO Z,180-Y+D 2180 NEXT X
NEXT X Z22@ RETURN
NEXT ¥ 20000 REM ¥¥¥ SET UP AS3Y PROGRAM
a0 TO zZ00 30019 RESTORE 31000
32220 FOR Z=1 TO 27
32230 READ X:A#{ Z)=CHR#(X)
30040 NEXT Z
32Q50 RESTORE
30260 RETURN

RAINBOW

100 REM GTIA TEST

115 GRAPHICS 10:FOR Z=794 TO 712:READ R:POKE Z,R:NEXT Z

116 DATA 0,26,42,58,74,50,106,122,138,154

130 FOR X=1 TO 3:COLOR X:POKE 785,X

140 PLOT X¥4+5,0:DRANTO X¥4+5,159:PLOT X¥4+1,153:POSITION X¥4+1,0:XI0 18,%6,0,0,
e w

150 NEXT X

270 FOR X=8 TO 15:COLOR 16-X:POKE 765,16-X

@ PLOT X%4+5,2:DRAWTO X%4+45,159:PLOT X¥4+1,159:POSITION X%4+1,0:XI0 18,46,Q,0,

52 NEXT ¥
2@ COLOR
2 FOF X

2:PLOT £5,153:DRAWNTO 2,153
1 TO 3:Z=PEEK(724+4X):Z=Z+16:1F 2Z>255 THEN Z=26
Q4+X,Z:NEXT X:FOR Y=1 TO S5:NEXT Y:GOTO 400

57

GT

IA Demos

ROLL

S DEG

10 GRAPHICS 10

15 FOR 1=0 TO 7:POKE 705+1,128+2:NEXT I

17 POKE 705,136

20 FOR ANG=180 TO 360+130 STEP &

30 X=8+8%COS(ANG)

40 Y=16+8%SINCANG)

50 COLOR (ANG-180)/45+1:PLOT X,Y

60 DRAHTO X,50+Y

7@ COLOR 0:PLOT X,Y

96 NEXT ANG

120 FOR ANG=180 TO 360+180 STEP 6 RING

130 X=26+8%COS(ANG) 100 REM GTIA TEST

140 Y=16+8%SINCANG) 110 DIM C(22,2)

150 COLOR S9—-(ANG—180)/45:PLOT X,Y 115 GRAPHICS 10:FOR Z=704 TO 712:READ R:POKE Z,R:NEXT Z
160 DRAWTO X,50+Y 116 DATA 0,26,42,58,74,90,106,122,138,154

170 COLOR @:PLOT X,Y 118 LIM=22:T2=3.14159%2/L1H

190 NEXT ANG 120 GOSUB 2500:FOR V=1 TO LIM:T=T+T2:GOSUB 2500:NEXT V
220 FOR ANG=180 TO 360+180 STEP 6 200 GOTO 1000

230 X=44+8%COSCANG) 400 FOR X=1 TO 8:Z=PEEK(704+X):2=Z+16:1F Z>255 THEN Z=26

Y=15+3%¥SINCANG)
COLOR (ANG-180)/45+1:PLOT X,Y 1000

4zZ0

DRAHTO X,50+Y 1010
COLOR @:PLOT X,Y 1020
NEXT ANG 1110
FOR ANG=180 TO 360+180 STEP & 1120
X=62+8%COS(ANG) 1210
Y=16+8%SINCANG) 1220
COLOR 9-(ANG-180)/45:PLOT X,Y 1310
DRAHTO X,50+Y 1320
COLOR @:PLOT X,Y 1400
NEXT ANG 1410
GO TO S00 1520
FOR ANG=180 TO 360+18@ STEP &

X=50+8%COSC ANG) 2000
Y=16+8%SINCANG) 2500
COLOR (ANG-180)/45+1:PLOT X,Y 3000

DRAWTO X,50+Y
COLDR ©:PLOT X
NEXT ANG
A=FEEK(705)

Y

FOR I=7@5 T0 711
FOKE I,PEEK.I+1)
NEXT 1

FOKE 712,A

GO TO 500

BALL
100 REM GTIA TEST
115 DIM C(8):GRAPHICS 12:FOR Z=704 TO 712:READ R:R=R%16+8:C(Z-704)=R:POKE Z,R:NE

XT 2

1186
118

DATA

POKE 7@4+X,Z:NEXT X:POKE 77,0:GOTO 400

REM

FOR R=1 TO 8:T6=R

GOSUB 1520:NEXT R

FOR R=9 TO 15:T6=16-R

GOSUB 1520:NEXT R

FOR R=16 TO 23:T6=R-15

GOSUB 1520:NEXT R

FOR R=24 TO 30:T6=31-R

GOSUB 1520:NEXT R

IF T3=1 THEN GOTO 400

T3=1:GOTO 1010

COLOR T6:V=0:GOSUB 2000:PLOT X,Y:FOR V=1 TO LIM:T=T+T2:
GOSUB 2000:GOSUB 3020:DRAWTD X,Y:NEXT V:RETURN

X=(30-R)I¥CiV,1)440: Y=(60-RI%C(V,2)+80: RETURN
C(V,1)=SINi T):C(V,2)=COS(T):RETURN

IF T3=1 THEN IF (R=1 AND V3>11) OR R>1 THEN POSITION
X,Y:POKE 765,T6:XI0 18, #6,@,0,"S:" :

3219 RETURN

-.5,1,3,4,5,7,9,12,13

LIM=22:T2=3.14159%2/LIM:COL=3:E1=1:DIM D(LIM,2)

120 GOSUB 1500:FOR V=1 TO LIM:T=T+T2:GOSUB 1500@:NEXT V

409 GOTO 1000

490 REG=70S

500 FOR X=1 TO 8:POKE REG,C(X):REG=REG+1:IF REG>712 THEN REG=705
510 NEXT X:REG=REG+1:IF REG>712 THEN REG=70S5

520 POKE 77,0:G0TO 500

1000 REM

1005 FOR E=1 TO 10Q:EZ2=INT(E/2-0.5)

121@ FOR R=E1 TO E1+E2:CR=8-COL:IF CR=0© THEN CR=8

19015 V=2:COLOR CR:GOSUB 2000:PLOT X,Y

1020 FOR V=1 TO LIM:T=T+T2:G0SUB 2000:DRAWTO X,T:1F V>=LIM/Z2 THEN COLOR COL
19025 NEXT V:NEXT R:COL=COL+1:IF COL=3 THEN COL=1

1030 E1=E1+INT(E/2+0.5):NEXT E

12@@e GOTO 4380

1500 D(V,1)=SIN(T):D(V,2)=COS(T):RETURN

2000 X=(32-R)¥0.6%D(V,1)+40:Y=60%D(V,2)+80:RETURN

58

Graphics Seven Plus

First came the TRS-80, Model I. It
provided character-oriented graphics.

Next came the Apple. It provided both
character and line graphics (one or the
other).

Now we have the Atari. It provides 14
graphics modes, some character-oriented,
some line-oriented.

“Fourteen modes?” you say. “The Basic
manual lists nine.” Well, that’s because
Basic only allows you to access nine directly.
However, there are others lurking within
the machine waiting for a programmer to
find them. All are variations on the available
modes, some quite useful. One is so useful
that this article will be devoted to discussing
its use.

All character-line graphics on the Atari
(“playfield graphics”) are generated by the
close co-operation of two chips, Antic and
CTIA. Antic fetches data for 3.7 million
points per second (320 per line x 192 lines
x 60 per second) and feeds it to CTIA
which generates the TV picture from that
data. To determine what sort of image
should be generated (character, line, pixel
size, etc.), Antic looks to his program, the
display list. This program coexists in memory
with all the usual Basic and 6502 programs.
Anyway, his program, composed of indi-
vidual instruction codes, tells him what
sort of image to generate.

There are 14 image-generating codes in
Antic’s program. Now when Basic was
designed, for some reason it was decided
to allow access to only nine of these codes,
rather than the full 14. And in particular,
the highest resolution four-color mode was
left out. This is “graphics 7+" (also known
as “graphics seven-and-a-half.”)

We got a great deal of mail from people
asking how to use this graphics mode when
we documented its existence back in the
July 1981 Creative. (If you wish to see a
tutorial on the Atari for the Basic pro-
grammer, go back to the June issue and
read the “Outpost” columns to date. Sadly,
we can’t explain how Antic and such work
in each article because the explanation is
so long, but we can refer you to previous
issues to get a background.)

It takes a bit of work and a fair grasp of
what goes on inside the Atari, but the
results are well worth it: in the highest
four-color mode, we can get double the
resolution of graphics 7 using graphics
T+,

Graphics 7, you will recall, gives us 96
vertical x 160 horizontal pixels in four
colors. Graphics 8 gives us 192 vertical x
320 horizontal, but only in one color.
Graphics 7+ gives us 192 vertical x 160
horizontal in four colors.

This is an extremely useful mode.
Graphics 8 has several disadvantages; single

dots sometimes become red or blue when
white was intended because of “artifacting,”
and candy-stripes tend to appear on all
near-vertical lines. Graphics 7 has pixels
the size of 2 x 2 graphics 8 dots, and is too
“chunky” for really accurate graphics.
Graphics 7+, with double the vertical
resolution, brings us close to the limits of
most monitors in terms of color resolution,
with 2 x 1 graphics 8 dots. No artifacting,
no funny stripes, just nice colors in truly
high resolution.

I should also mention that the graphics
7+ resolution is equal to the resolution of
a player or missile at size x1.

Here at Houston Instruments, where 1
work, we have a project going to interface
a plotter, capable of eight colors, to a
digitizer. The image to be plotted must be
displayed on the TV. Graphics 7 resolution
is unacceptable; the individual pixel is too
large for a quality display. But graphics
7+ provides twice the resolution while
retaining the four colors of data. (Now,
you'd like to know how I plan to get eight
colors, right? I must confess to having a
few sneaky ideas how to do so, and 1
promise to document the method should I
succeed.) However, for now, four colors
at 160 x 192 will do nicely.

A Look at Graphics 7 and 8

Graphics 7+ is midway between 7 and
8,solet’slook at 7and 8 to help understand
how to generate 7+.

Graphics 7 is a “four color” mode. This
means that for every point on screen, two
bits of information are saved in memory.
Depending on which of the four numbers
possible is saved in those two bits, one of
four color registers is selected to display
color. (Actual color information is not saved
in the display memory; rather, a color

Program 1.

10 REM FROGRAM 1 -— DAVE SMALL

20 REM PROGRAM TO GENERATE GR.7

30 REM SAMFLE DISFLAY

40 REM

50 REM BK EASIC VERSION

60 REM

70 GRAFHICS 7

80 COLOR 1

90 FLOT 1,1

100 DRAWTOD 159,1

110 COLOR 2

120 DRAKWTO 159,80

130 COLOR 3

140 DRAWTO 1,1

141 FOR Z=1 TO 20

142 COLOR (INT(RND(0)X3)+1)

143 FLOT (INT(RND(0)X159)),
(INTC(RNDC0)X80))

144 NEXT Z

150 FRINT "NOTE EACH GRAFHICS
7 FIXEL"

160 FRINT "USES TWO SCAN LINES,"

170 GOTO 170

59

register number is saved, with the actual
color being stored in the register.) Hence,
one byte (eight bits) in graphics 7 display
memory, looks like this:

WW XX VY ZZ
where w, x, y, and z are the information

for a given point on screen.

Program 2.

10 REM FROGRAM 2 -- DAVE SMALL

20 REM FROGRAM TO GENERATE GR.8

30 REM SAMFLE DISFLAY

40 REM

50 REM 8K BASIC VERSION

60 REM

70 GRAFHICS 8

7% SETCOLOR 2,0,0

80 COLOR 1

?0 FLOT 1,1

100 DRAWTO 159,1

120 DRAWTO 159,80

140 DRAWTO 1,1

141 FOR Z=1 TO 20

142 COLOR (INT(RND(0)x%x3)+1)

143 PLOT (INT(RND(0)X159)),
(INT(RNDC0)XB0))

144 NEXT Z

150 FRINT "NOTE EACH GRAFHICS
8 FIXEL"

160 FRINT "USES ONE SCAN LINE."

170 GOTO 170

Program 3.

10 REM FROGRAM 3
20 REM
30 REM EONVERT GR.Z TO GR.7+
40 REM DAVE SMALL
50 REM 8K BASIC VERSION
460 REM
70 REM CREATE IMAGE
530 REM XKKXOKKKKKKKK KKK KK KKK KKK KKK
540 REM %X FROM
CREATIVE COMFUTING. .
545 REM %X GENERATES MULTICOLOR
SFIRAL
550 GRAFHICS 7:iDEG $(DIM C(3)
555 FRINT "CREATING IMAGE."
590 R=20:COLOR 1:C=1
600 X0=79:Y0=47
610 FOR K=0 TO 33C(K)=K+1X2iNEXT K
620 FOR K=1 TO 3
630 X=X0+RXCOS(360):Y=YDIFLOT X,Y
640 FOR I=0 TO 5%340 STEF 75
650 X=X0+RXCOS(I):Y=YO+RXSIN(I)
660 DRAWTO X,Y
665 C=C+1!IF C»3 THEN C=1
667 COLOR C
670 NEXT ItR=R+12
680 NEXT K
4690 Z8=1
700 FRINT "MODIFYING DL."
1000 REM GR.7 TO GR.7+
1010 START=FEEK(S560)+2546XFEEK(S61)
1020 FOKE START+3,14+64!{REM LMS
1030 FOR Z=START+6 TO START+6+96
1040 IF FEEK(Z)=13 THEN FOKE Z,14
1050 NEXT Z
1059 REM REMOVE THIS STOF
FOR LOOF..
1060 STOF
1100 REM GR.7+ TO GR.7
1110 FOR Z=8TART+6+96 TO START+é
STEF -1
1140 IF FPEEK(Z)=14 THEN FOKE Z,13
1150 NEXT Z
1155 POKE START+3,13+64!REM LMS
1160 GOTO 1020

Graphics Seven Plus

The memory is mapped starting from
the upper lefthand corner of the screen,
from the beginning of display memory,
across the screen, down one line, and so
on. Hence, since we have 96 x 160, or
15,360 points, and four points stored per
byte, we use 3840 bytes of data.

When Antic generates graphics 7 he
does two scan lines of the same data. Hence,
each Antic instruction generates two scan
lines, and 96 of these instructions generate
192 lines—the height of the screen.

In graphics 8, we only save one bit of
information per point. That bit is used to
determine at what intensity a point is plotted,
and where the background color and
intensity and foreground intensity are stored
in color registers. Since only one bit is
saved per point, a graphics 8 display memory
byte looks like this:

abcdefgh
where each letter represents one point.
There are 320 x 192 points, 8 to a byte,
which comes out to 7680 bytes of data.

Each graphics 8 Antic instruction gen-
erates one scan line, so there are 192 of
them to a full screen.

Now graphics 7+ has the same vertical
resolution as graphics 8—one line per Antic
instruction. It also has the same horizontal
resolution as graphics 7 (160), and the four
colors. Do you begin to see why itissuch a
useful mode?

Note that different information must be
written into display memory to draw a line
in a different mode. In particular, in graphics
7 or 7+ two bits must be written for each
pixel, whereas in graphics 8 one bit must
be written. This will be very important
shortly. An operating system routine, stored
in the ROM plug-in cartridge, handles all
of the bit-shifting and masking to write the
required bits into memory, based on what
graphics mode it thinks it is in.

Time for some sample programs: The
first generates a simple graphics 7 display.
The next generates a simple graphics 8
display. This is to allow you to compare
the resolutions. See Programs 1 and 2.

Next, we will take a graphics 7 display
and convert it to graphics 7+.

What will happen? Well, first, since we
have 96 instructions in graphics 7, each
generating two scan lines, we get a total of
192 scan lines. If each of those 96 instruc-
tions generates only one scan line, as in
graphics 7+, the screen will only be half
filled (only the top 96 scan lines). The
same display that graphics 7 had in it will
be retained, it will just shrink vertically.

So for our third program, let’s take a
graphics 7 display, and convert it to graphics
7+. You'll see the effect of doubling your
vertical resolution, and won’t believe how
fine a line can be drawn in four colors. All

we'll do is take the 96 bytes of Antic’s
program, when he’s in graphics 7, and
convert them from an Antic code 13
(graphics 7) to a 14 (graphics 7+). See
Program 3.

Pretty neat, right? Nice resolution. Now
if we could only get the whole screen in
that resolution.

Well, we can. We could go the tough
way, where we allocate memory, build
192 graphics 7 (14) instructions, set memory
pointers to display memory, ad infinitum.
Were we working in assembly language,
we would have to do it that way. But
there’s an easier way: take an existing display
list and convert it. That way Basic has
already allocated memory space and so
forth, and we don’t need to worry about
fooling it into leaving memory alone.

We can take a graphics 8 display list,
already 192 instructions long, and convert
the 15’s (Antic code for graphics 8) to 14’s.
That part is easy, just a FOR-NEXT loop
to convert every 15 to a 14. The only
slightly tricky part is catching the LMS
instructions (64 + 150r 79), changing them
to 78, and leaving the display memory
data bytes alone. (See August 1981 for a
discussion of LMS). This way, the right
amount of screen memory is already
reserved for us, the display list is set up,
pointers and all, and we've saved a great
deal of work.

Next, since graphics 8 uses a different
bit pattern to display material, we’ll have
to fool the operating system into thinking
we're really in graphics 7 so it uses the
graphics 7 bit/shift routines. This is a matter
of one POKE to the low memory location
where the operating system looks each
time it does a line draw to determine what
graphics mode it is in. The location contains
the graphics number currently in effect.
We will, thus, POKE a 7 in there; it should
currently contain an 8 from when graphics
8 was set up.

Well, here we go. (See Program 4.) We
set up graphics 8, change the display list to
graphics 7+, and do a three-color draw at
the top of the screen. No problem, works
fine. But when we try to draw anywhere in
the lower half of the screen, we get an
ERROR #141—-cursor out of range.

Many, many people have tried the above
routine to get into graphics 7+. All of
them have run into this problem. You see,
the operating system, while drawing a line,
constantly checks to see if the line is going
off of the visible area. Should it do so, an
ERROR 144 is returned and the line drawing
process stops. The OS thinks we’re in
graphics 7 (96 x 160), so when we try to
draw below line 96, it thinks it is at the
bottom of the screen and terminates the
draw. In computerese this is known as

60

Program 4.

10 REM FROGRAM 4
20 REM
30 REM CONVERT GR.8 TO GR.7+
40 REM DAVE SMALL
50 REM 8K EBASIC VERSION
60 REM
65 DIM C(3)
70 REM DISFLAY LIST MODS
80 GRAFHICS 8
90 FRINT "CONVERTING DL
FROM 8 TO 7+."
100 START=FEEK(560)+256XFEEK(S61)
110 POKE START+3,14+64
120 FOR Z=START+é TO START+6+192+6
130 IF FEEK(Z)=15 THEN FOKE Z,14
140 IF FEEK(Z)=15+64 THEN FOKE Z,
14+64:Z=Z+2{REM
(SKIF LMS DATA EYTES)
150 NEXT Z
200 REM
210 REM LET 0S THINK WERE IN GR.7..
220 FOKE 87,7
390 FRINT "CREATING UFFER
HALF IMAGE"
400 YADD=1
410 GOSUE S00
420 FRINT "CREATING LOWER
HALF IMAGE"
425 YADD=30
430 GOSUE S00
440 STOF
500 REM
530 REM KKKKKK KKK KKK K KKK K K X KKK KK
540 REM xx FROM CREATIVE COMFUTING..
545 REM xxX GENERATES
MULTICOLOR SFIRAL
550 DEG
590 R=10:COLOR 1:iC=1
600 X0=79iY0=47
610 FOR K=0 TO 3IC(K)=K+1x2INEXT K
620 FOR K=1 TO 3
530 X=X0+RXCOS(360):Y=Y0:FLOT
X Y+YADD
640 FOR I=0 TO S5x360 STEF 75
650 X=X0+RXCOS(I):Y=YO+RXSIN(I)
660 DRAWTO X,Y+YADD
665 C=C+1:1IF C>3 THEN C=1
667 COLOR C
4670 NEXT Ii{R=R+12
680 NEXT K
690 z8=1
700 RETURN

“bounds checking”—and anyone who has
watched football knows what “out of
bounds” means. (See, these computer snob
words really do have humble beginnings).

What Do We Do?

We can’t POKE an 8 into the OS location,
because then the draw routine will use the
wrong bit shifting routine and we'll get all
sorts of crazy bit patterns and colors. (Feel
free to try it—there are many interesting
effects obtainable this way. Just delete the
POKE 87,7 in Program 3.) And we can't
get by with a POKE 7...because then the
OS thinks we’re going out of bounds.
Because both bounds checks and draw
routine selection are based on the same
location, we're stuck. (The memory location
is called DINDEX and is located at 57 hex
or 87 decimal).

The problem resides in the extreme care

taken to avoid out-of-bounds conditions.
If we could draw out of bounds, and have
the Atari blindly do the draw instead of
telling us we were wrong, then graphics
7+ would work. Even though the operating
system might conclude that we were out
of our minds and drawing off the bottom
edge of the screen, it would continue to
draw in the right places for our graphics
7+ to work. (Screen memory, by the way,
is 3780 bytes in graphics 7 and 7680 in
graphics 7+. Graphics 7+ and graphics 8
use the same memory size.)

Well, the OS routine is in ROM and
cannot be modified, short of pulling the
chips out and putting new onesin. As [am
no hardware expert this solution isn’t
acceptable. Besides, if I did, my programs
would run only on my machine. However,
it did bring to mind an analogy which
solved the problem. Character sets are
stored in ROM, also, and are unmodifiable,
unless they are copied into RAM first. So
why not copy the OS draw routine into
RAM, zap the bounds check, and use it
for graphics 7+?

Tomake a long story even longer, that’s
what I did. The rest of the article describes
this process. The first time through, I did
it all in Basic, but that was too slow, so 1
recoded the slow parts in 6502 assembler.
Those routines I used in the graphics 7+
driver. (They should be usable in any
graphics mode; they justignore all bounds
checks. However, the Atari caution extends
beyond overprotecting the user; a line drawn
out of bounds could go sailing straight
through memory reserved for other things,
and crash the Atari. Just be careful; don’t
try to draw from 1,1 to 3000,6700.)

The final result is three assembly routines.
They are fast and efficient and both fit
into page 6 in memory (600-700 hex), 256
bytes set off by Atari for a user’s own
purposes and left untouched by Atari
routines. The first modifies the graphics 8
display list to a graphics 7+. The second
copies the OS draw routine into free RAM
for modification. I use Basic for the small
amount of POKEing that must be done in
the OS routine to make it work properly in
its new memory location (it involves relocat-
ing a few addresses) and to DRAW a line
using the OS routine (it just takes arguments
from the Basic USR call and feeds them to
the draw routine).

To use graphics 7+, one does a graphics
8 call, calls the first USR routine to set up
the 7+ display list, calls the second routine
to fetch the draw routine in RAM and
modify it, and then all is ready. Line draws
are made in one of two forms:

X=USR(third routine,X coordinate, Y
coordinate, color #) or X=USR (third, X1,
Y1,X2,Y2,COLOR)

Program 5.

0 0250 x= $0680

02FE 1390 ATACHR = $2FE COLOR DATA
05A 1340 OLDROW = $5A FROM Y

06FD 4CFC7C 1790 JME $7CFC 0.5...MUST MOD
10

20 3 FROGRAM 5 LISTING..

22 1400 ICCOMZ = $22 CIO DRAW FLAG
30 3

40 } THREE ASSEMELY ROUTINES FOR

50 3 FAGE 6%

54 1370 ROWCRS = $54 TO Y

55 1360 COLCRSL= $55 TO X LO

56 1350 COLCRSH= $56 TO X HI

57 1380 DINDEX = $57 CURR GR, MODE
60 B55C 1500 STA OLDCOLH

48D 8D9706 0330 STA FETCHH (FETCH STHT)
69E DO0OS 0520 ENE NOTLS

70 3 1.CONVERTS DL FROM GR.8 - GR7.5.

80 3 2.COFIER FROM 0S ROM TO RAM.

90 3 3.GR7.+ DRAWTO., FULL SCREEN

0100 3 GR.7+ DRAW ROUTINE,

0110 3

0120 } COFYRIGHT 1981 EY DAVID M. SMALL

0130 3

D140 §—mmmm oo o

0150 ; ROUTINE 1%

0160 ; ASSEMELY ROUTINE TO CONVERT

0170 3 A GR.8 DISFLAY LIST TO A GR 7.+

0180 ; DISFLAY LIST.

0190 ; CONVERTS ALL 15‘S TO 14‘S

0200 ; CONVERTS ALL (64+15) TO (64+14)

0210 ; (EUT WILL SKIF LMS DATA EYTES)

0220

0230 § FLACED IN FAGE 6.

0240

0270 3

0310 }

0350

0370 3

0380 ; LOOF 202 TIMES. CHANGE 15 TO

0390 ; 15, 79 TO 78, SKIF LMS DATA.

0400 ;

0440

0450 ; IF GR.2 ENCOUNTERED, QUIT -~

0460 ; HAS A TEXT WINDOW.

0470

0500

0550

0590 3

0660 3

0680 68 0260 FLA SATISFY EASIC
0681 AD3002 0280 LDA 560

0684 8D9606 0290 STA FETCHL (FETCH STMT)
0687 BDAC06 0300 STA STOREL (STORE STMT)
0690

0693 A200 0360 LDX #0 INIT X
0695 ED3412 0430 LOOF LDA $1234,X GET DL EYTE
0696 0410 FETCHL = ®x+1

0697 0420 FETCHH = x+2

0698 C942 0480 CMF #66

0720 3

0740 }

0750 3 Far

0760 ROUTINE 2t

0770

0780 ; COFIES 0.S. ROM TO RAM (DRAW

0790 ; ROUTINES) TO ALLOW EOUNDS

0800 ; CHECK REMOVAL.

0810 ;

0820 ; COFIES $FCFC TO $FE44

0830 } TO $7CFC TO $7E44

0840

0850 3 (THIS 1o QUITE EASY TO CHANGE

0860 ; TO CUSTOMIZE FOR YOUR ATARI;

0870 ; ON A 40K-48K MACHINE THIS

0880 ; IS RIGHT EELOW THE DL/DM.)

0890

0900 ; (65092-64764= 328

0910 ; 328 - 256 = 72)

0920 ;

0930 3-- $FCFC TO $FDFE ($FF EYTES)

1010 3

1020 j-- $FDFC TO $FE44

1100 3

61

Graphics Seven Plus

The first performs a DRAWTO from
the old cursor location to the specified X
and Y coordinates. The second performs
a line draw between the specified points
(equivalent to PLOT X1,Y1, : DRAWTO
X2,Y2). Both routines perform the draw
in the specified color, not the color of the
current COLOR statement.

Alas, the OS draw routine is too long to
fit into the small page 6. So it must be
stored elsewhere in RAM. Finding a free

Program 5, continued

space in RAM isn’t too hard. However,
finding a space that is free on everyone's
Atari is pretty hard. Memory sizes range
from 8K to 48K (40K with Basic cartridge).
I decided to tailor the routine for my 40K
system and let users do relocation as
necessary for their own systems. Nowadays
there is so much player-missile memory
being reserved, charset arrays, and so forth
that a general solution is very difficult.

For Advanced Programmers
The following is a bit technical but is
intended for assembly programmers. The

OS routines start at SFCFC and end at
$FE44 (inclusive). They are copied to
$7CFC through $7E44. Several IMPs inside
are relocated back to the RAM routine,
making this a non-relocatable routine. (The
fact that I am copying it down an even
$8000 makes it quite easy to relocate.) It
should be simple to do this for other size
memories; the calculations are self-docu-
menting in the OS and assembly listings.
Just make sure the JMPs are changed to
JMP to the point in RAM where the
corresponding statement to the ROM
statement is. Note that $7E44 is just below

e O i e the DL/DM in a 40K or 48K (same thing
1120 ; ROUTINE 3% ; : B " ,
1130 with a Basic cartridge) machine. Hence it
1140 3 THIS ROUTINE IS CALLED FROM is in a relatively “safe” area
1150 § EASIC TO FERFORM A DRAWTO
1160 3 FUNCTION IN GR 7.5. THERE ARE
1170 ; TWO FOSSIELE CALLS? Program 7.
1180 3
1190 § D=USR(X1,Y1,X2,Y2,COLOR) 10 REM FROGRAM -- ASSEMELY VERSION
1200 3 D=USR(X2,Y2,COLOR) 15 REM REQUIRES AUTORUN.SYS OR LOAD
1210 20 REM
1220 § FIRST WILL DRAW A LINE EETWEEN 40 REM DAVE SMALL
1230 3 THE SFECIFIED COORDINATES IN 50 REM BK EASIC VERSION
1240 3 SPECIFIEDCOLOR. SECOND WILL 55 REM
1250 § "DRAWTO" FROM OLD LOCATION TO 56 IF FEEK(1536+128)<3>104 THEN FRINT "ASSEMELY
1260 3 SPECIFIED COORDINATES. NOT LOADED.."$STOP
1270 3 40 REM DEFINES
1280 § THIS ROUTINE REQUIRES THE 0.S. 61 CONVERT=6X256+8%16$REM $0680
1290 ; DRAW ROUTINE EE COFIED INTO 62 COPY=6X256+11%16+10REM $06EA
1300 § RAM AND MODIFIED. SEE ARTICLE. 43 DRAW=6X256+13%16+6REM $06D6
1310 3 65 DIM C(3)
1410 § FULL OFF AND STORE ARGS 67 REM
1480 70 REM DISFLAY LIST MODS
1560 3 80 GRAFHICS 8
1610 3 90 X=USR(CONVERT)
1650 3 97 REM
1690 3 200 REM
1700 ; SETUF IS DONE. OTHER MISC3 210 REM LET 0S8 THINK WE’RE IN GR.7..
1710 3 220 FOKE 87,7
1760 3 230 REM
1770 ; CALL DRAW RAM ROUTINE 300 FRINT "FERFORMING 0S COFY."
1780 3 310 X=USR(COFY)
1800 END 320 REM RELOCATION
6000 68 1510 FLA GET FROM X LO 321 POKE (7X4096+13X256+9%X16+8), (7X16+14) IREM FD98,
060000 BSSE 1520 STA OLDCOLL FE TO 7E
322 FOKE (7X4096+14X256+2%16+6), (7%16+14) $REM FE26,
Program 6. FE T8 7E
& 4 323 FOKE (7X4096+14X256+4%X16+1), (7X16+13) tREM FE41,
FD TO 7D
2000 REM LOADER 324 REM NOF OUT EDUNDS CHECKS
9010 Z=6x256+8%16 325 L=7%4096+13%X256+15%16+6
7020 READ Z1 326 FOR Z=L TO L+2
9030 IF Zi=-1 THEN RETURN 327 FOKE Z,2341REM NOF
9040 FOKE Z,Z1 328 NEXT Z
9060 GOTO 9020 ; S T
10000 DATA 104,173,48,2,141,150,6,141,172,6,173,49,2, gzg ;EﬁNT CREATING. FULLSCEREEN THAGE
141,151 530 REM XOKKOKKKKK KKK KKK KKK KK KKK KKK
10010 DATA 6,141,173,6,162,0,189,52,18,201,66,240,29, 540 REM *X FROM CREATIVE COMPUTING..
201,15 545 REM ®x GENERATES MULTICOLOR SFIRAL
10020 DATA 208,5,169,14,76,171,6,201,79,208,2,169,78, 550 DEG
157,52 590 R=20:COLOR 1:C=1
10030 DATA 18,232,201,79,208,2,232,232,224,203,144,220, 600 X0=791Y0=85
96,162,0 610 FOR K=0 TO 3:C(K)=K+1X2INEXT K
10040 DATA 104,189,252,252,157,252,124,232,224,0,208, 620 FOR K=1 T0 3
245,162,0,189 630 X=X0+RXCOS(360) I Y=Y0+RASIN(360)
10050 DATA 252,253,157,252,125,232,224,75,208,245,96, 233 §5g52i3R$§’§;;2§';;g;°§§" SR
104,201,3,240 650 X=X0+RXCOS(I)$Y=Y0+RXSIN(I)
10060 DATA 15,201,5,240,1,96,104,133,92,104,133,91, 662 Z=USK(DRAN, X»Y,C) IREM (DRAKTO)
104,104,133 665 C=C+1:IF C»3 THEN C=1
10070 DATA 90,104,133,86,104,133,85,104,104,133,84, 670 NEXT ISR=R+20
104,104,141,251 680 NEXT K
10080 DATA 2,169,17,133,34,76,252,124 690 78=1
11000 DATA -1 700 STOF

The bounds check is a simple JSR. This
is changed to NOP (no-operation) with
three NOP codes.

Programs 5, 6, 7, and 8 are listings of
four assembly/Basic routines. (The Atari
OS listing is copyrighted and doesn’t appear
here, but you can easily look up the
addresses specified to find where 1 am
copying from yourself.)

Program 5is the page 6 assembly listing.
Program 6 is the assembly program con-
verted to DATA statements. This program
is appended to your code to load the
assembly routine. Program 7 is the “Sunset”
multiple color spiral run in graphics 7+,
using an already loaded assembly routine,
and provides an example of using graphics
7+ when the routines are loaded. Finally,

Program 8.

10 REM FROGRAM 8 -- DEMOS LOAD THRU
15 REM DATA STATEMENTS.

20 REM

40 REM DAVE SMALL

90 REM BK EASIC VERSION

54 GOSUE 2000

595 REM

56 IF FEEK(1536+128)<x104 THEN FRINT

“ASSEMELY NOT LOADED,.":STOF

60 REM DEFINES

61 CONVERT=6%256+8%16REM $0680

62 COFY=6X256+11%x16+10REM $06EA

63 DRAN=6X256+13%16+6REM $06D6

65 DIM C(3)

67 REM

70 REM DISFLAY LIST MODS

80 GRAFHICS 8+16

95 X=USK(CONVERT)

96 GOTO 200

97 REM

200 REM

210 REM LET 0S THINK WE’RE IN
178

220 FOKE 87,7

230 REM

300 REM

310 X=USR(COFY)

320 REM RELOCATION

321 FOKE (7X4096+13%256+9%16+8),
(7%16+14) tREM FD98, FE TO 7E

Program 8 is an example of using the DATA
statements of Program 6 to load and draw
a pretty figure using graphics 7+.

Feel free to delete the REM statements;
I document the code heavily in order to
make it easy to understand, but the docu-
mentation isn’t needed in the final copy. (I
also break up all hex opcodes for clarity;
these could be calculated to save the
machine the work each runthrough.)

On using AUTORUN.SYS: This is a
handy way for disk users to load these
routines. Boot up DOS (2.0S), and run
Program 6. Next, go to DOS. Do the binary
save (K), from $600 to $6FF:

K

AUTORUN.SYS,600,6FF (return)
and thereafter when you boot up with that

322 FOKE (7%4096+14%256+2%x16+6),
(7%x16+14)IREM FE26, FE TO 7E

323 FOKE (7X4096+14%x256+4%16+1),
(7%16+13) tREM FE41, FD TO 7D

324 REM NOF OUT EOUNDS CHECKS

25 L=7X40946+13%256+15%X16+6

326 FOR Z=L TO L+2

327 FOKE Z,234i{REM NOF

328 NEXT Z

350 REM

390 REM

400 SETCOLOR 0,2,4¢REM RED

410 SETCOLOR 1,7,4iREM ELUE

420 SETCOLOR 2,13,4!REM GREEN

500 DEG

505 X2=5IN(0)x70+70:Y2=C0S(0)
*x80+80

507 Z=USR(DRAW,X2,Y2,X2,Y2,0)
tREM FLOT

508 C=1

510 FOR X=0 TO 360 STEF 4

520 X1=SIN(XX1.,5)%x70+70

530 Y1=COS(Xx2)x80+80

931 X2=SIN(X+120)%40+60

532 Y2=CO0S(X-40)x50+60

540 Z=USR(DRAW,X1,Y1,X2,Y2,C)

945 C=C+1!IF C=4 THEN C=1

550 NEXT X

560 GOTO 560

2000 REM LOADER

9010 Z=6x%X256+8x%16

?020 READ Z1

disk, the graphics 7+, routines will be
loaded automatically.

Generally DOS and Basic will leave these
routines alone once loaded unless you re-
boot the system or have a particularly
nasty crash. Hence, even users without
disks may not have to reload the data each
program run.

Conclusion

Well, there you have it, graphics 7+. 1
hope to see more and more use of it!
These routines can easily be copied into a
AUTORUN.SYS file and automatically
loaded along with Basic, or POKEd into
memory when needed. Enjoy the world of
double resolution graphics 7. O

2030 IF Z1=-1 THEN RETURN

2040 FOKE Z,Z1

2050 Z=Z+1

2060 GOTO 9020

9999 REM DATA FOR GR 7+ DRIVER

10000 DATA 104,173,48,2,141,150,6,
141,172,6,173,49,2,141,151

10010 DATA 6,141,173,6,162,0,189,
52,18,201,66,240,29,201,15

10020 DATA 208,5,169,14,76,171,6,
201,79,208,2,169,78,157,52

10030 DATA 18,232,201,79,208,2,

232,232,224,203,144,220,96,

162,0

DATA 104,189,252,252,157,

252,124,232,224,0,208, 245,

162,0,189

10050 DATA 252,283,157,252,125,

232,224,75,208,245,96,104,

201,3,240

LDATA 15,201,5,240,1,96,104,

133,92,104,133,91,104,

104,133

10070 DATA 90,104,133,86,104,133,
85,104,104,133,84,104,104,
141 1251

10080 DATA 2,169,17,133,34,76,

252,124

DATA -1

10040

10060

11000

63

Player-Missile Design Aid

Tom Gurak

Player/Missile Design Aid (PMDA) is a
program which aids you in designing your
own player/missile graphics. Player/missile
graphics are a powerful tool provided by
Atari for designing games. However, design-
ing and encoding each player/missile
character can be a time-consuming process.
Further, using the normal method of
designing these players on graph paper,
the designer is never sure exactly how the
player/missile graphic will look when
displayed on the screen.

Player/Missile Design Aid was written
to facilitate this process and allow the
designer to see the player/missile graphic
he is designing while he is working on it.

Whenever PMDA is awaiting your direc-
tion, it shows a blinking cursor on the
screen. To move the cursor, simply push
the joystick in the direction you wish to
move the cursor. The cursor will continue
to move in that direction until you release
the joystick or push it in a different direc-
tion.

To start, LOAD the PMDA program
and type RUN. PMDA will then display a
title screen and begin setting up. Once set-
up is complete, PMDA displays a screen
containing an 8 x 24 bit map which will be
used to design your player graphic.

Note that a bit which is off (0) is displayed
as a plus sign (+) and a bit which is on (1)
is displayed as a solid white block. To the
immediate left of the bit map is a column
of line numbers and to the right is the
decimal POKE value for each line. Initially,
this latter field is all zeroes. As bits are
turned on, however, this will change to
correspond to the new value of the line
(byte).

On the right side of the screen is a list of
commands, a status line, and a prompt
line which indicates the action to be
taken.

Some explanation of the status line is in
order. The first item is the current player/
missile mode (M=nn). The two digits are
the actual decimal value which is POKEd
at SDMCTL (559) to produce the desired
mode. M=46 indicates that you are in
double-line mode (the default); M=62
indicates that you are in single-line mode.

The second item is the player size or
width (W=n). The digit following is the
desired value to be POKEd in the player
size register (in this case, SIZEPO (53256)).
W=0 indicates single width (the default);
W=1 indicates double width; and W=3
indicates quadruple width. The lastitem is
the color/luminance for the player/missile
graphic (COLOR=). The digits following
are the actual decimal POKE value in the

Tom Gurak, 24 North St., W. Albany, NY 12205.

player/missile color register (in this case,
PCOLRC (704)).

I would like to point out that I am not
attempting to explain player/missile
graphics as there has been much information
published already on this subject. I am
merely attempting to present enough
information to enable you to understand
the operation of the Player/Missile Design
Aid.

Finally, we are ready to begin designing
our player/missile graphic. Using the
joystick, position the blinking cursor to
the bit position in the map which is to be
changed. Pushing the fire button on the
joystick will cause the bit to be flipped
from off to on, or vice-versa. As bits are
turned on, the actual player/missile graphic
will begin to take shape in the area between
the bit map display and the command list.

It is also possible to “draw” a line in any
direction. To accomplish this, position the
cursor to the desired starting position of
the line, press and hold the fire button,
and push the joystick in the desired direc-
tion. Remember that if you pass over a bit
position which is already on, it will be
turned off.

To use the commands (each of which is
described later), position the cursor to the
first character of the desired command
and press the fire button. The command
list may be reached by moving the cursor
to the left or right until it leaves the bit
map display. To return the cursor to the
bit map, simply move the joystick left or
right.

When the player/missile graphic is
completed and all options (mode, width,
and color) are set correctly, you can either
write down the status line settings and the
decimal values for each line (byte) of the
player/missile graphic or you can use the
Save Data command to save this data.
The data saved takes the form of a Basic
language DATA statement which may be
added to your own player/missile graphic
program by using the Atari ENTER com-
mand. This eliminates the need for a run-
time subroutine to load the data. The format
of the DATA statement is explained later.

Commands

Shift All } : Shifts all 24 lines of the
graphic up one line and leaves a blank (0)
line at line 23.

Shift All | : Shifts all 24 lines of the
graphic down one line and leaves a blank
(0) line at line O.

Shift All =: Shifts all 24 lines of the
graphic right one bit position and leaves a
blank (0) column of bit positions at the
extreme left.

Shift All=—: Shifts all 24 lines of the
graphic left one bit position and leaves a

64

blank (0) column of bit positions at the
extreme right.

Shift Line } : Shifts all lines from the
line you indicate to line 23 up one line and
leaves a blank line (0) at line 23. Select the
first line to be shifted by positioning the
cursor on the desired line and pressing the
fire button when prompted by the pro-
gram.

COHMANDS *

w
e
T3 mhhhhhhn
~

3
Tr

TAAAAASA
rorrTreass

11
11
11
11
in
in
in
in
11
in
o

i
i
i
i
i
i
i
a
a
a

olunr

ange Hode

hange Hidth
e P H

TUTDOOTDTUN BB BN
OT T eI TTTTTT

Load Data
M=46 H=0 COLOR=1580
Push FIRE to Change

(-]
i
2
3
4
s
6
7
8
9
1
1.
1:
1
1
1
1
1
1
1
2
2
2
2

¥
d
B
6
?
8
9
(]
1
2
3

EER s s

Tank.

Shift Line § : Shifts all lines from the
line you indicate to line 23 down one line
and leaves a blank (0) line at the line
selected. Line selection is the same as
described for Shift Line 4 above.

Shift Line —: The single line which you
select is shifted right one bit position and a
0 bit is ieft at the extreme left of the line.
Line selection is the same as for Shift Line

Shift Line <—: The single line which you
select is shifted left one bit position and a
0 bit is left at the extreme right of the line.
Line selection is the same as for Shift Line

Blank All: All bit positions are set to 0.
Before proceeding, you will be asked to
confirm your request by pressing the fire
button. If you do not want the command
to proceed, push the joystick in any direc-
tion.

Blank Line: The single line which you
select will have all its bit positions set to 0.
Line selection is as described for Shift
Line } .

Blank Column: The bit position which
you select will be set to 0 in all lines. Select
the bit position by moving the cursor to
the desired position and pressing the fire
button when prompted by the program.

Change Mode: This changes the mode
from double-line (M=46) to single-line
(M=62) and vice-versa.

Change Width: This changes the player/
missile graphic width from single (W=0)
to double (W=1); double to quadruple
(W=3); or quadruple to single.

POKE P/M: This allows the user to
enter a previously-defined character when
only the POKE values are known. Use the

keyboard to enter the value for each line
when prompted by the program. The Return
key must be pressed after each value. Enter
three nines (999) followed by Return to
indicate that you are done.

Set Color: This sets the color of the
player/missile graphic only. Using the key-
board, enter the Atari color value (0-15)
followed by Return, then enter the lumi-
nance value (0-14, even numbers only)
also followed by Return. These values will
be converted to the corresponding color
register value and POKEd into PCOLRO
to change the color of the player/missile
graphic displayed.

POKE Color: This sets the color of the
player/missile graphic only. Using the
keyboard, enter the decimal value to be
POKEd into the player/missile color
register.

Save Data: This saves the player/missile
data as a Basic language DATA statement.
The format on this statement is described
later. Prior to beginning the operation,
you are asked to confirm your intent by
pushing the fire button. To cancel the
operation, push the joystick in any direction.
The data saved include the mode, width,
and color settings followed by the POKE
values for each line from O to the last non-
zero line.

Load Data: This loads previously-saved
player/missile data. Before beginning the
operation, you are asked to confirm your
intent by pressing the fire button. To cancel
the operation, push the joystick in any
direction. Upon confirmation, a Blank All
operation will be performed. The player/
missile graphic will be loaded and displayed
with the same mode, width, and color as
were in effect when it was saved.

Messages

Color?: Use the keyboard to enter the
Atari color value and press the Return
key.

Enter POKE Values: Use the keyboard
to enter the POKE values for a play/
missile graphic. Press Return after each
one and use 999 followed by Return to
indicate you are finished.

Luminance?: Use the keyboard to enter
the Atari luminance value and press
Return.

No P/M Data to Save: The Save Data
command was selected but there are no
non-zero bits in the bit map. No action is
required.

POKE Color?: Use the keyboard to enter
the POKE value for the player/missile color
register and press the Return key.

Pos Cursor for Blank: Position the cursor
to the line/column to be blanked and press
the fire button to complete the Blank
command.

Pos Cursor for Shift: Position the cursor
to the appropriate line for the Shift operation
and press the fire button to complete the
Shift command.

Processing...: A long-running command
is executing. No action is required.

Push FIRE to Change: The cursor is
located within the bit map and pressing
the fire button will cause the bit at the
cursor position to be flipped.

Push FIRE to Confirm: A Blank All,
Save Data, or Load Data command has
been selected and pressing the fire button
will cause the command to continue. The
command may be cancelled by pushing
the joystick in any direction.

Push FIRE to Select: The cursor is located
within the command list and pressing the
fire button will cause the command at
which the cursor is positioned to be exe-
cuted.

Ready Tape Recorder: Insert a cassette
tape, press Play or Record and Play depend-
ing on the operation selected, and press
the console Return key.

Save Data Format

The Save Data command produces a
Basic language DATA statement which
has the following format:

Lineno DATA mode, width, color, data0,
datal,...datan,-1

Linenois the line number. The first save
will create a statement with a line number
of 32000. For each subsequent save, the
line number is incremented by 10.

DATA is written as shown to identify
the Basic language statement type.

Mode is the POKE value for the player/
missile mode (double-line or single-line).

Width is the POKE value for the player/
missile size register.

Color is the POKE value for the player/
missile color register.

Data0 is the POKE value needed to
create line 0 of the player/missile graphic.

Datal is the POKE value needed to
create line 1 of the player/missile graphic.

Datan is the POKE value needed to
create line n of the player/missile graphic.
The last line saved is the last non-zero line
found in the bit map. Leading zero lines
and any zero lines within the body of the
player/missile graphic will be saved.

-1 is written as shown to indicate the
end of the player/missile data. O

5 TRAM=FEEEX 185 3-5:FOKE 186, TRAM
18 uMHIL 2+15:SETCOLOR 4.3,4:7 #

¢ #5i" PLAYER-MISSILE":
E'B ‘? #;" DESIGH AID":7 #5:7 #6:7 #5
it =BY-":T #E5:T 65 TOM GUR

%0 FIESESTR
&8 FOR Y=FIE
NEXT

93 FOKE FHADR. TRAM:FIE
166 OIM B#C1 3, 19015, 54CE
(s_:niss—'w" 1= Truerse §

EHES1E
E TO FHEH_,E-*. 65 :FORE ¥, KB:

=FIBARSE+3 4

=4
W THCT :P$="FPush FIR

u

128 DIN F#(13 0, b'Sl 1
E to ":G$="Fos Cursor for
149 FUR H“RU T0 i "“-IKIU NE’\T I -

158 POKE SDHCTL.MS:FOKE FCOLRE.K12: PO
GRACTL. 2:FOKE HFOSFaE, 112

178 GOSUE 185

298 FOKE ATRACT.KB:LOCATE K+KS.Y.0C:H=12
8:CC=0C+H

218 FOSITION W4K5,¥: 7 CHR$CCC b tHe=
CCHH:FOR W=K8 TO ‘HERT W:P=STICK
T=STRIGCKE

215 IF F=K15 AND T THEN 218
228 FOSITION 533,57 CHRHCOC

:IF T THE

F
C=fSCCBE » THEN FH=FH+iH: G
259 FH=FH-Ni
268 Wy=Y:G0OSUB 388
279 IF F<3K1S THEM 288
288 P=STICK(KS}:IF NOT STRIGCKE: THEM 2
78
388 RC=KB:YC=KB:IF F>K& AND P<E1Z THEM X
C=-K1:GOTU 328
3218 IF Fi4 AND F<
229 IF P=£ OR F=K
GOTO 335
338 IF F=KS OR F=2 OF F=K13 THEN Y(=Ki
335 K=KZ2Z AND RC AND YC THEM YC=Kb
348 R=R+RC: Y=V+10
343 IF CSW THEM GOTO CRT
345 IF %K€ AND X>=KB THEM 365
358 2 THEN 358
335 UR #=K23 THEN X=K@:Y=K@:G0SU
B 1188: L.OTU 285
397 IF NOT STRIGCK®) THEM 357
368 ¥=KzZz:Y=K2:GUSUB 1158:G0TD 268
365 IF 1 K23 THEN Y=KB:GOTD 268
378 IF Y<KB THEM Y=KZz3
375 GOTO 268
388 IF HOT STRIGCE
385 IF Y<KZ THEM
339 IF YK
335 GOTO
408 A= ON A GOTO 418,429, 438, 448, 455
, 468, 478, 488, 430, 559, 510, 2388, 2280, 1564,
9y, 1688, 1708, 1399
418 GISUB 1200 Y5=KE:YE=KZ3:vI=t1:G0TO ¥
515]
420 GOSUB 1288 : 4
7B
439 GOSUE 1268:
RI=-K1:GOTO 758
448 GOSUE 1208:%735=
»I1=K1:GOTO 798
4589 YI=K1:GOSUE 588:Y5=YE-K1:

(55]

5 THEM ®C=K1
by OF F=14 THEN YC=-Ki:

4 THEH 35a
GOTD 295

9 YE=H
YE=KE3:G0TO

(Y I=-K1:G05UB 589:G0T0 7a@

=kl :X1=-K1:GOSUE 589: vS=YE: G
488 XS=K@: RE=K7:RI=K1:GOSUE 388:vS=YE:G0
499 GOSUB 2585:G05UB 1209 GOSUE 1668 : LOT
599:GOTD 658

518 K=K@:''=Kg: T$=C$(K1, K5 :GOSUE 1168:CS

Player-Missile Design Aid

N=K1:CRT=313:G0TD 205

515 Y=K@:IF HOT T THEN 535
529 IF x:k7 THEM X=K@&:GOTO 208
‘25 IF 5<K@ THEM k=K7

7 GOTO 289
538 GOSUE 1289 : NM=INTCKE A+l 50 FOR
WY=KB TO K23:LOCATE H+K5,NY.0C: IF OC=AS

C(B$» THEM 558
548 A=PHEASE+W' : PH=FEEKCA) FH=FI-WH: GOSU

E 508
550 FOSITION X+KS,Mi':T B :NEXT NY
70 C3h=ke: IF #=KZz THEH GOSUE 115@:GOTO

575 GOSUE 1189:G0TD 289
580 T$=5$(K1,K5):GOTO 688
559 T$=CH(K1,K5)

680 X=KA:Y=K9:POSITION K13,K23:7 0§ T4,
GOSUB 1388 CSH=K1:CRT=616-G0TO 268

619 ®=KB:IF T THEM 365
€20 YE=1':GUSUB “ETURN
E:FOR W=

Ko TO E?:T BF

£59 FOSITION K3
SHEAT B £

G G

T 578
789 FOR Wi=YS YE-71 STEF YI:FOE
T K7 :LOCATE WS, WYY T 00 FOSITION Hx
+K5, Wi+ T: ¥ CHE
7ig FUDITILlh
W AEPHEASE Y FH=:-Et
AT WY

726 GOTD 654
798 FOR WY=Ys

TEF #I
768 LOCATE
+AL WY T CH

HR$ruunJ KEXT b

v 7 Edi:A=FHE
THEM FHEIMTCRY

& THEH FM=FM-EZ55

1578

O 1, 00:F B M

9 HERT W
=0 FLHE H;F‘H:F'EES'ITI

FETURH

Qg GOSUE 32 1483:1F F
KB)

*IU F

Eo14a0:
THER

Up—girtom" ; : 5§ H‘I j "E

Esc Esc Down—‘

1840 FOSITION ¢

Risht—frron";

Esc Esc Esc Left—fArrow";

1958 POSITION K27.6:7 S4,L%;"Esc Esc Esc
it 2T KTY SEiLE "Esc

c Esc Esc
¥ S

Esz Esc Diowri—i
1868 FOSITION K
€ Fl:’i'f'—HHnuJ i FD TUIN
c Esc Esc Left ;
13 FOSITION K37 "Charse Mode;
1875 FOSITION KZ7 ~14- ¥ "Chanse Widbh"i:F
OSITION K27,K15:% "Foke P
1988 POSITION ; s Coloe"s o FDE1
TION K27, 17+

“"Esc Esc Es
EENERE FHI T

—

1535 Fﬂ‘:ITIUH

SUB Z259: GOS HB :Jd

1835 IF I‘QH THEN FETI I

Sl
1168 FLL-TTIUH K13

1179 SOUHD K5,
575 FLbITIUH

e 42

o GOSUE 13

K H 7
14109 GET #1,4:IF W=15S TH
1428 IF W=126 THEM F=INTY
eft-drrow Srace Esc Left-
19

1438 IF W>47 AMD W<SE THEM F=
3:7 CHRFCH; :GOTO 1418

1448 7 "Esc Ct1-Clear"; :GOTO 1418

1425 L',LUZ-E #1:POKE CRSINM.EL:7 " " :RETL

: “E
w“, GOTO 14

EE1EH W45

EN

1585 FOSITION K “Er'ut.er* Foke Ualu
es " :FOR Wy=Kd TO
1518 FOSITION K13, MY : GO
THEMH 1554

1528 IF F < F
1538 Fr=F: GOSU

1568 FOSITIOH K13.k
57

B 196858 IF F=335

e

HEW 1514

ST HERT WY GOTO

dJ:,LUuE #1:0070 578
175 POSITION K154k

dwr " :RETURN
UH FHT #I 44

B9 : WO=F11: G
LR, Fi: GO

1228 FOR M
THEH FOF
1538 P=Fi1:G0SUE 21k
| ¥l L:LITU
:FDF: kb

HEST Wi f=FHERSE+RT - GOSUE 29

66

{7 "l

G GOTO

E

K15,21:F "

35 FOSITION
THEH FOF 13
254 FETURN

Animath

Jerry Wright and Lloyd Ollman,

Jr.

The graphics potential of the Atari
personal computer is a powerful educa-
tional tool. It can be used to transform
the chores of learning into the fun of
learning.

A growing number of companies now
produce educational software for the
Atari computer, but the quality of this
software varies widely. A good children’s
educational program draws children to
play with it, and allows learning to happen
along with the fun.

When you think back to your school
days (assuming you're not still there), what
did you find to be the worst part of the
learning process? For us it was drill and
practice. Here’s a children’s educational
program that makes addition practice
enjoyable using an interesting type of ani-
mation.

The program is called Animath, for
animated math program, and it uses a
modified character set to create a saunter-
ing gorilla. Player/missile graphics are
also used to spice up the game.

There are several commercial programs
which can be used to create modified
character sets. Perhaps the best-known
of these is Fontedit, from Iridis #2. We
used a program similar to this to write a
“gorilla” font to disk. The original version
of this program called the font from disk
and loaded it into memory. The Atari
character set is a part of ROM, so the
font must be moved to RAM, where it
can be modified by the appropriate
POKE:s into memory.

We knew that many Atari owners uti-
lize cassette storage, so we wrote a little
utility to save the font as data statements
at the end of the program. There are 24
modified characters, represented as 24
data statements. Because the characters
are set up in 8 x 8 blocks, each of the
eight numbers in the individual data
statements is one 8-bit word, or byte.

After the gorilla is POKEd into RAM,
he can be animated by the POSITION
command. By changing the positions of
his arms and legs, we simulate motion,
and the gorilla is able to run down the
screen to the first problem.

Thanks to Basic A+ from Optimized
Systems Software, we were able to get an
accurate list of variables. The first list we
generated contained several variables we
couldn’t find. After listing the program to
disk and entering it back in the computer,
we came up with an accurate variable
table, without all the variables that had
been eliminated in earlier incarnations of
the program. It’s always wise to LIST,

Jerry Wright, 18812 116 Ave., SE, Renton,
WA 98055.

O REM XXANIMATH BY LLOYD OLLMANN AND JERRY WRIGHT (C)
1981 BY LJ SOFTWARE

2 DIM NUSCE) , TN (3) , BNS () . A% (1) s NU$=" ":P=4:POKE 764,255

I O=FEEK (106) : 0=0-5: FOKE 106&,0:0=0+1:(=0%2586

4 SOUND ©,8,8,4:G0SUE 6100

5 START=57344: FOR NOW=0 TO 102%: CH=PEEK (START+NOW) : POKE
O+NOW, CH: NEXT NOW

6 FOR NOW=264 TO 46%:READ CH:POKE Q+NOW,CH:NEXT NOW

8 I=PEEEK (106)-8:FPOKE S4279.1

11 GRAFHICS 17:FOKE 7%56,0/286:SETCOLOR 4,1,2

12 T=20:SETCOLOR 2,0,0
15 POKE 53248,95:POKE 53249,127:POKE 704,117:POKE 705,117:

FPOKE S3261,255:POKE 53

2

2, 2099: FPOEE 53256, 3:POKE 53257,3
39 L=—1:X=1:WAL=500

40 POSITION X+1,2:7? #63;"[AR]";:FOSITION X+1,

#5; "[CD1";:POSITION X+1,4:7? #63"[EF1";

S5 TNS (2, 2)=5TR$ (INT (RND (1) %10))

PENS (2, 2) =8TR$ (INT(RND (1) ¥10)) s L=L+1: [F L=FR THEN GOTQO 7000
S6 POSTITION 2,087 #$&zWg "/ "gly

S7 TN$(1,1)=8TR$ (INT{RND(1) %10))

SEN$ (1, 1) =8TR$ (INT(RND (1) %10))

S8 TN=VAL (TN$) : BEN=VAL (EN%)

60 POSITION X+1,20:7 #63TN$;:POSITION X,21:7

#6; "+":BNS; : POSITION X,22:7? #63"__. "3

70 FOSITION X,

by " " GOSUER WAL

100 SOUND ©,8,8,4

120 IF RND(1) >0.95 THEN FOR D=10 TO 5 STEP —1:S0UND
1,D, 10, INT{(RND (1) ¥10) : NEXT D:S0OUND 1,0,0,0

140 GOSUR 600

180 IF RND(1) x0.95 THEN FOR D=10 TO 5 STEP —1:S0UND
1.D,10,8:NEXT D:SOUND 1,0,0,0

184 GOSUE &00

185 IF RND(1) x0.9% THEN FOR D=

TO @ STEP -1

1,100,8,D:FOR E=1 70 2¢

NEXT

TENEXT DaSOUND 1.,¢
195 GOSUR &00

200 GOTO 120

SO0 FOR A=2 TO 17

S01 GOSUER 2000

SEE NEXT A

S40 RETURN

600 TRAF B40: K=FEEK (7&4)

67

Animath

THEN N=1:GOTO 70¢
then ENTER programs when they are "

finished, to clear the Atari variable table
of all but the variables actually being
used.

THEN N=Z2:B0TO 700

620 [F E=26 THEN N=I:60T0Q 700

625 IF k=24 THEN N=4:G0OTO 700

Variable Table
. . .) = =229 =53 B i O
NU$—String holding answer input by R S SRS S
player . &35 THEN N=6:GOTO 700
TN$—String holding randomly generated
top number 540 IF E=51 THEN N=7:60TO 700
]sN$—Strmgbholdmg randomly generated 545 IF K=5% THEN N=8:E0TQ 700
ottom number
A$—String to hold player input to ques- 650 IF k=48 THEN N=9:60TO 700
tions
. - s &55 IF K=50 THEN N=0:GOTO 700
P—Horizontal position of individual num- - : 3
ber input by player as an answer 660 IF k=12 THEN AMT=VAL (NU$):GOTO 800
START—Begmr}mg location of character - I ——
set in the operating system
NOW —Variable loop pointing to next 690 RETURN
character in the character set Sl e o s ol ot o 6070 670
FO0 PPl < - T &7¢
CH—ATASCII number of character set = °

Q—Location of RAMTOP (PEEK (106)) 701 NU$ (F,F) =8TR$ (N) : FOKE 764, 255
I—Location of PLAYER/MISSILE Base

Address 705 FOSITION X,23:7? #&;NU$: RETURN

T—Variable for top end of volume in 800 J=TN+EN

motion sounds

L—Number of problems completed g10 NUs=" "y P=4:FOKE 764,255: POSITION X;23:7 #63NUS
X—Honzon}al position variable) 820 FOSITION X+1,2:7 #63" "3:POSITION X+1,3:7 #é;"
WAL —Gorilla movement subroutine

PR —Number of problems chosen "3rPOSITION X+1,4:7 #63" ";

W —Number of problems successfully i) e "
completed 830 POSITION X+1,8:7 #6;" ";:FOSITION X,8+1:7 #b3
TN—Actual top number of problem "irPOSITION X,8+2:7 #63" ";

BN— Actual bottom number of problem
D—Decreasing pitch used in booming
sound B40 POKE 764, 255: X=8: WAL=900: GOSUE 1010:60T0 4000
E—Timing loop variable

A —Vertical position of gorilla or erase

835 IF AMT=J THEN WAL=500:W=W+1:G0TO 1000

Q00 T=30:FOR A=2 TO 17:G0OSUE ZI000:NEXT A:T=20:RETURN

pattern 1000 IF X=8 THEN S000
K—ATA i -
ATASCII number input from key 1005 X=1:T=10:A=17:FOR C=1 TO 20:B0SUE 2000:NEXT
board
N—Actual number input from keyboard C:T=20:FOR B=1 TO 200:NEXT E:GOSUE 1010:G0T0 S5

AMT — Answer: total of answer numbers

. 010 FOR A=) 23:F0OS O.A:? #o5"
in the ones, tens, and hundreds columns bagg Fdly gty 1o FEmi TR Syt S5

J—Sum of top number (TN) and bottom "3 sMEXT A:RETURN

number (BN)

C—Number of times gorilla goes through 2000 FOSTTION XL, A-1a® H#ag® 3

movement routine . 2005 POSITION X+1,A:? #&6;"INOI";:POSITION X+1,A+1:7
B—Volume of motion sound routine

ending in variable T, also wait routine #6;"[PRI" ;s FOSITION X+1,A+2:? #4;"[RS1";

F—Flag set to 0: input character set. Flag
set to 1: jump directly to main body of
program 2007 POSITION X+1,A:? #&;"[TUI";:POSITION X+1,A+1:7
WT — Wait routine

20046 FOR B=1 TO T:S0OUND F,200,8,H:NEXT R

#63 "LYVI"3 s FOSITION X+1,A+2:7 #6:"LWX1";

The Program . 2008 FOR BE=1 TO T:SOUND 3,200,8,EH:NEXT H
Lines 0 through 4 introduce our
authors, and set up our new character 2009 FOSITION X+1,A:? #&;"[AE1";:POSITION X+1,8+1:7

set. Line 2 DIMensions the various strings
we will need, and makes sure that the
string to hold the answer is empty. Ty 0,0, 0z RETURN

In line 3 we find the top of our available
memory by PEEKing RAMTOP, which is
location (106) in memory. Then we fool F001 POSITION X+1,A:7 #6:"NO";:FOSITION X+1,A+1:7 #6; "FO";
the operating system into believing that

#H;UICDI" ;s FOSITION X+1,A+2:7 #&63"LEF1";: SOUND

ZO00G FPOSITION X+1,A-1:7 #&63" "3

F002 FOR E=1 TO T:S0OUND Z,170,8,B:NEXT R

68

the available memory is five pages smaller
than it actually is, so we won’t accidentally
load our program on top of the changes
we are going to make.

We then get an even number above
our new RAMTOP (by adding 1) and
multiply this number by 256. This new
value of Q gives us the starting location
of our new character set.

We use the number 256 because the
Atari 6502 microprocessor divides mem-
ory into 256-byte “pages,” and we must
start the new character set at the begin-
ning of an even page mark.

Line 4 begins the river sound and jumps
to the introduction and instructions.

The subroutine at 6100 prints out the
name of the program, and the authors.
Then there is a pause at line 6120, so the
title can be read, followed by a jump to
the section asking for the number of
problems desired —line 6000.

If this is the first time the program has
been run, the F flag is set at 0 and a
message asks the player to wait while the
character set is set up. The program then
returns to line 5.

The Atari character set can’t actually
be changed, because it is permanently
embedded in ROM starting at address
57344. So we must move it into RAM. We
do this in line 3 by PEEKing the character
set and then POKEing it into the space
we have set aside above RAMTOP.

Line 6 reads the DATA defining the
new characters and POKE:s it into our
new locations. In line 11 we POKE the
location of our new character set into
location (756), just above RAMTOP in
the Character Base Register.

There is a stream in our graphics jungle.
In line 8 we create this by turning on two
Players and setting their location just
below RAMTOP then POKEing this into
the Player/Missile Base address 52479.

Jumping to line 15, the horizontal
position of Player 0 is POKEd into 53248,
Player 1 into 53249. POKEs (704) and
(705) set the color, POKEs (53261) and
(53262) set up the shape and POKEs
(53256) and (53257) set up Player size.

We keep track of the number of times
the Gorilla finds a problem with the
variable L, and use the variable X as the
X coordinate of our gorilla’s location.
Atari Basic accepts names as well as line
numbers in GOTOs and GOSUBs, so we
give the movement subroutine a name,
WAL.

Line 40 sets the starting location of the
animal by using a position statement in
X/Y coordinate form. Line 55 then ran-
domly selects a top number which is
placed in TN$ and a bottom number,
placed in BNS$.

Z004 FOR B=1 TO T:80UND Z=,170,8,B:NEXT E
ZO0S FPOSITION X+1,A:7 #6:"AR";::FOSITION X+1,A+1:7

#4653 "CD" 5 : SOUND Z,0,0, 0sRETURN

4000 T=10:FOR A=17 TO 2 STEF -1:G08UR

SET IO

A+ HbHy " "I iNEXT A T=20:60T0 25

SO00 GOSUE 1010: T=20: X=1:(50T0 355

HO00 P "IHOW MANY PROBLEMS WOULD YOU LIEE";:INPUT FR
6005 IF F=1 THEN 11

6010 2 "XJUST A MINUTE, WHILE I LET THE GORILLA

OUT OF HIS CAGE.":RETURN

6100 GRAPHICS 1:SETCOLOR 2,0,0:POSITION &,4:7

#6; "Lanimathl":POKE 752,1:7 "
6110 7 " LLOYD OLLMANN AND JERRY WRIGHT":7? "
DESIGN MIKE FOTTER":FOKE 7352,1

SH120 FOR WT=1 TO 1000:NEXT WT:7? "X}":GOSUR &S0O00: RETURN

7000 GRAFHICS O:POKE 704,0:FOKE 705,0:POKE 710,0

7010 ? "THIS TIME YOU GOT "zWs" OUT OF ";L:? "RIGHT.":7?

"DO YOU WANT TO TRY AGAINT (Y/N)": INFUT A%
7020 IF A%< F"Y"™ THEN END

7030 W=0:L=0:F=1:60T0 &000

10000 DATA 0,0,0,0,1,3,6,52

10010 DATA 0,0,0,0,128,192,96,44

10020 DATA 124,254,255, 239, 239,

, 231,199
10030 DATA 62,127,255,247,247,251,251,227
10040 DATA 71,83, 115,6,6,4,2,14

10050 DATA 2246,202,206,96,96, 32,648,112
10060 DATA 255,255, 255, 255, 255, 255, 255, 255
10070 DATA 15,15,15,15,15,15,15,15

10080 DATA 240,240, 240,240,240, 240, 240, 240
10090 DATA 1,1,1,1,1,1,1,1

10100 DATA 128,128,128, 128, 128, 128, 128, 128

10110 DATA 3,7

10120 DATA 192,192,192,192,192, 192,192,192
10130 DATA 0,0,0,0,1,3,4,4

10140 DATA 0,0,0,0,128,198,110,43

10150 DATA 28, 126,255,239, 239,255,59, 3

10160 DATA 63,127,255, 227.227,227, 231,238

10170 DATA 199,239, 126,460,24,0,0,0
10180 DATA 224,224,112,48,48,60,60,0
101920 DATA ©0,0,0,0,1,99,118,252

10200 DATA 0,0,0,0,128,192,96,32

69

I POSITION X+1,A:7 #63"TU";:FPOSITION X+1,A+1:7 #é3;"YV";

A MATH PROGRAM BY"

CHARACTER

Animath

Line 56 places the number of problems
successfully answered next to the number
of problems tried, and line 57 gets more
numbers for the number strings. Line 58
gets the value of the strings and places
them into variables TN and BN.

Line 60 places the numbers in their
proper positions at the bottom of the
screen.

In line 60 we jump to the gorilla anima-
tion section. This time WAL=500 so in
line 500 we find the vertical positions for
the gorilla in a FOR/NEXT loop and jump
to the actual movement subroutine at line
2000.

Lines 2000 through 2009 draw the
gorilla and move his arms and legs, while
making the movement sound. Then the
subroutine jumps back to line 501 where
it gets a new position from the variable A
in the FOR/NEXT loop. It then goes back
to the movement routine until it reaches
vertical position 17 on the screen. Next
we jump back to line 100 for a sound
routine and then jump to line 600.

This is the keyboard routine—where
we PEEK location (764) to find the inter-
nal code of the last key pressed. The
computer runs through a series of IF/
THEN statements to determine which key
has been pressed by the player, and
compares it to a list of valid inputs. The
first number input goes into the ones
column, the second into the tens column,
the third into the hundreds column, and
the fourth into the thousands column.

This is done by setting up a number
holding string (NUS$). The position of the
number in the string is determined by line
700, which starts with P=4, so the first

number is placed in the fourth position of
NUS, the second number in the third
position and so on. Line 705 prints the
NUS$ on the screen and then the Atari
loops around to line 120 and back through
the keyboard routine until Return is
pressed at line 660.

Line 670 allows you to recover if a
mistake is made. All you have to do is
press Delete/Backspace or the Space Bar,
the NUS$ is cleared, and you start back at
the ones column. You then repeat the
procedure until you have what you feel is
the correct answer.

Pressing Return takes you out of the
loop at line 660 where this time the value
of the numbers in NUS is transferred to
the variable AMT. We then jump to 800
to find out if the answer is correct.

Line 810 clears NU$ and resets location
(764) by POKFEing in 255.

Lines 820 and 830 blank out the
standing gorilla, then 835 determines if
the answer is right. If it is, the gorilla
walking routine (WAL) jumps back to
line 500, adds 1 to the amount answered
correctly, and jumps to line 1000.

If AMT doesn’t equal J, then the gorilla
movement subroutine is set to 900, the
horizontal position (X) is moved over 8
places, and the gorilla runs through the
subroutine at line 400 which forces him
into the river. A reverse FOR/NEXT loop
carries him downstream in subroutine
3000. Then the program jumps back to
line 55 where the new value of X swims
him upstream with the subroutine at line
900, and gives him a new addition pro-
blem to answer.

If the question was answered correctly,

the program jumps to the subroutine at
2000 through 2009, where the gorilla
jumps up and down with joy. The routine
then sets the sound volume variable T to
20 and the horizontal position variable X
to 1 and then jumps back to the main
program loop at line 55.

When the number of problems chosen
(PR) equals the number actually done
(L), the program goes to line 7000 where
it displays a score and offers a chance to
play again:

We hope this program and accompa-
nying explanation have given you an idea
of some of the things that can be achieved
with the Atari Personal Computer. We
enjoy this system thoroughly, and hope
that many more people will soon see the
Atari as a computer with truly incredible
possibilities.

Instructions

After the program is loaded and the
player has chosen the number of pro-
blems, the gorilla will come on the screen
and run down to the first problem. The
answer should be typed in with the first
number in the ones column, the second
in the tens column, and the third in the
hundreds.

If you make a mistake, just press the
space bar. When you have the correct
answer, press the return key. The gorilla
will tell you if you are right.

In the listing that follows, several char-
acters are in square brackets. These
should be typed in as inverse characters.
The Epson MX-80 prints a “J " instead of
a clear sign, so when you see that symbol
type Escape, then Control and Clear
together. O

70

Greater Graphics Control

Marni Tapscott

The Atari has nine graphics modes.
Modes | through 8 have a split screen,
however, the split screen may be overridden
by adding 16 to the mode number. Modes
1 and 2 are text modes with five colors.
Characters in graphics mode | are twice
as high and twice as wide as those in
mode 0. Characters in mode 2 are twice
as high and twice as wide as those in
mode 0.

If you have ever tried to use the Atari
graphics characters in mode 1 or 2 only
to be dismayed by a screen full of hearts,
or have had difficulty using all five colors
available in those modes, read on. Solutions
to some of the problems encountered in
both areas will be discussed.

The character set in graphics mode 0
has 128 characters, upper and lower case
letters, punctuation, numbers and Atari
graphics characters. However. in graphics
modes 1 and 2, only 64 characters are
available at a time. There are three choices:
numbers, upper case letters and punctu-
ation including a blank space; the Atari
graphics characters and lower case letters
with no blank space: or your own character
set.

Creating Blank Spaces

Frequently, you will want to use blank
spaces as well as the graphics characters.
There are two ways of creating blank
spaces. One is to give up one of the five
colors available; simply make color register
0 the same color as the background and
proceed to plot other characters using
only color registers 1, 2 and 3. This is the
straightforward solution. The short program
in Listing [illustrates this alternative.

The second method of creating blank
spaces requires more work; one character
must be redefined. Novice programmers
may be put off by the imposing sound of
“redefining a character set,” but I have
discovered that it is not difficult and that
it can open the door to greater graphics
control and creativity.

It is important to point out that one or
several characters can be redefined without
redefining the whole character set. There
are four basic steps.

First, we must allocate space in RAM
for the character set and protect it from
Basic. The top of RAM is the end of the
section of memory accessible to the user.
The physical top of RAM is stored in a
location called RAMTOP. The area above
the value stored in RAMTOP is Read
Only Memory or ROM which contains
permanent storage of programs and data
that may never be changed. The operating

Marni Taspscott, 297 Missouri St., San
Francisco, CA 94107.

system, for example, is stored here.

If we store a lower value in RAMTOP,
we effectively reserve a section of RAM.
The operating system will be fooled into
thinking less RAM memory is available,
and we can keep our new character set
from being changed or erased by storing
it in this area.

When I refer to “up™ in memory, I am
referring to those memory locations with
higher numbers; “down” refers to memory
locations with lower numbers. The diagram
in Figure 1 may help.

Step one: Reserve memory for the new
character set. Graphics modes 1 and 2
require 512 bytes or two pages for
redefining a character set. In mode 0, we
need 1024 bytes or four pages to redefine
the 128 characters available. We PEEK
at what is stored in RAMTOP (location
106), subtract the appropriate number of
pages (each page=256 bytes) from that
value and POKE it back into 106.

Step two: Move the present character
set from ROM into the reserved section
of memory. This is easily accomplished
with a FOR/NEXT loop PEEKing the
character set in the ROM location and
POKEing it into the new location. The
character set containing upper case letters,
numbers and punctuation is located at
57344 in ROM and the alternate set
containing the graphics characters is
located at 57856 in ROM.

Step three: Inform the operating system
where the new character set is located
with a POKE 756, X where X equals the
address of the new character set. Every
time a graphics statement or reset is
executed, the value in location 756 is reset
to 224, the starting page address of the
old character set in ROM, so it is best to
include this POKE statement after any
graphics mode statement.

Step four: Redefining the characters.
The definition of a character uses 8 bytes
in memory. Eight 0’s must be poked into
memory to take the place of an existing
character. Since the heart is the first
character in this set, I found it easiest to
replace. The first 8 bytes or locations 0
through 7 in the section of memory we
have set aside contains the heart. If we
POKE O0’s into these locations we will
finally have a blank space. Incidentally,
the reason the screen fills with hearts in

Listing 1.

End of
Memory
ROM
oSS PHO oG —
New character
set stored here
[0000000000004— New top of RAM
after 2 pages
have been
subtracted from
RAMTOP
RAM
0
Beginning
of Memory
Figure 1.

110 GRAPHICS 1:FOKE 756,226

120 ? "THIS IS WHAT HAFFENS WHEN 756 IS POKED WITH 226 IN GR. 1"

130 FOR WALT=1 TO Z000:NEXT WAIT

140 SETCOLOR 0,0,0:REM SET COLOR REGISTER 0 TO SAME COLOR AS BACKGROUND
150 ? "THIS IS WHAT HAFFENS WHEN A COLOR REGISTER IS MADE SAME COLOR AS

EACKGROUND . "
160 FOR WAIT=1 TO 20003INEXT WAIT

71

Charts provided courtesy Atari Inc. ©1980.

Greater Graphics Control

modes 1 and 2 when you are trying touse stored in the same relative position as the These four steps eliminate the heart

the graphics characters is that the heartis blank space in the other character set. and define a blank space. Now we are
o ready to assign colors and positions to

Listing 2. characters.

100 REM CHARACTER REDEFINITION ioni iti

110 REM STEF ONE: SET ASIDE MEMORY FOR CHARACTER SET Assigning Color and Position

120 FOKE 106,FEEK(106)-2 .There are two me[hOdS; we may use

130 GRAFHICS 2+16:REM GR.STMT.HERE PREVENTS OVERLAF OF DISPLAY LIST either the POSITION and PRINT #6

& CHARACTER SET statements or the COLOR and PLOT

140 REM STEF TWO MOVE: CHARACTER SET INTO NEW LOCATION statements. Color manipulation is less

150 A=PEEK(106)x256 obvious when using POSITION and PRINT

160 FOR B=0 TO S1i 26

170 POKE A+E,PEEK(57856+E) statements.

180 NEXT E The ATASCII number that corresponds

190 REM STEP THREE: POKE NEW ADDRESS OF CHARACTER SET

to both the character and the color desired
200 POKE 756,FEEK(106)

210 REM STEP FOUR: CHANGE HEART TO BLANK SPACE must be obtained through some experi-
220 FOR €=0 TO 7 mentation.

230 FOKE A+C,0 Since the other method employs charts
=30 NEXT" G already available in the Atari Basic Refer-
250 REM . . X
310 REM SET UF COLOR REGISTERS ence Manual, this method will be described
330 SETCOLOR 0,13,8:REM GREEN in greater detail. For convenience the charts
g:g gg;gngﬁ‘ ;,:66535'1"!?32“”01 from pages 55 and 56 in the Atari Basic
5 LOR 2,10,8¢RE SE i

360 SETCOLOR 3.2,BiREN GOLD Mar.lual have been reprodu'ged here.

365 SETCOLOR 4,12,4!REM EACKGROUND COLOR TO GREEN First, the four colors desired are estab-
370 REM lished in the color registers using SET-
390 COLOR 60:PLOT 5,5!REM GREEN ARROMW 5 ET

400 COLOR 2B:PLOT 6,5iREM PINK ARROW COIB?T} statements. S COINOR Of‘.1‘8
410 COLOR 188:PLOT 7,5!REM TURQUOISE ARROMW establishes gold in register 0. Next, find
420 COLOR 156:FLOT 8,5!REM GOLD ARROW the character you wish to use in the chart

450 GOTO 450 :REM KEEPS DISPLAY ON SCREEN in Figure 2. Make note of both the number

next to the character and the column in

Figure 2. which it is located. Looking at the second
chart in Figure 3, add or subtract the
Column 1 Column 2 Column 3 Column 4 number listed here according to the color
4 CHR| # CHR| # CHR| # CHR | # CHR| » CHR | # CHR| # CHR desired. The “columns” on the first chart
0 Space| 160 |32 @ |4 r |64 u B0 B o @ |z p correspond to the “conversions™ on the
. = , second chart.
1 5 17 1 33 A 49 Q 65 81 a 97 o 113 q
2 T T O N s Gl v [na o For example, I want a gold up arrow to
3« w3 |3 ¢ |st0s |er 83 9w ¢ s s appear at Row 5, COlumH 5. The up arrow
o) x ‘ is 92 in Column 3 in Figure 2. Looking at
2 36 | 52 58 84 100 e : ;
S BN N x Figure 3, we subtract 32 from 92 since
] @ 8 ¥ B8 U W 5 [o e Jur gold is in color register 0. The statement
6 e (2 6 [ss ¢ s v |70 O | T TR RTINS below accomplishes our goal:
T 23 @ 34 G {5} w 71 87 ﬂ 103 g 119 w COLOR 60:PLOT 575

Listing 2 is a short program which
illustrates both the redefinition of the heart
; character to a zero and the use of SET-
" COLOR, COLOR and PLOT statements
- B 7 LI n for full use of all five colors. (The fifth
; = color is the background color.) One word
2 L N of caution regarding running the program:
a3 e om fizs I always press the system reset button before

4
[

104 h 120 ¥
89 D 105 i 121
90 u 106 | 122

- S P re-running because t.he system continues
to subtract pages in memory until it
interferes with the display memory.

GEIEELONESO=0EsS
F]

Figure 3 Suggestions for further experimentation
are:
Table 9.7—CHARACTER/COLOR ASSIGNMENT ® Redgfme more characters for greater
Conversion 1 | Conversion 2 | Conversion 3 | Conversion -4 graphlc's VarletY'
; e Combine two or four or more characters
MODE 0 “SETCOLOR 2 7+ 32 & .32 Z- 32 NONEL
for a larger, more complex shape.
POKE 756,224 POKE 756,226 A .
e Animate shapes through color rotation.
832 7482 732 742 5 s
S : Animate shapes through redefinition of
OR SETCCLOR 1 NONL 7 b 764 NONE a figure (an_imal, person) in several positions
MODE 2 SETCOLOR 2 24160 2+ 160 796 796G and rotation Of pOSi[iOl’lS.
SETCOLOR 3 2+ 128 &= 192 Z 64 2128

The Atari Graphics Composer

David Lubar

Everyone who has come within thirty
feet of an Atari knows that the machine is
capable of great graphics. Everyone who
has come closer than that knows how
tough it is to get those great graphics. By
producing the Atari Graphics Composer.
Versa Computing has taken care of the
hard work, leaving the user free for
creativity and experimentation. This set
of utilities performs five main functions;
hi-res drawing, medium-res drawing. text
writing, geometric figure creation. and
player creation. The combination is pow-
erful enough to allow a wide range of
graphics.

The high-res mode allows drawing with
paddles or joystick on a four-color screen
with a resolution of 320 by 160. There is
one background color. which can be
changed at any time. and three foreground
colors. While the luminance of the fore-
ground colors can be changed. the color
value is predetermined by the background.
In this mode. the user can either draw
freestyle. or draw lines between any two
points. Other options include fill and brush
routines. There are two types of brushes;
normal brushes fill an area with a solid
pattern. the air brush puts a pattern of
dots over an area. Combining these. one

SOFTWARE PROFILE
Name: Atari Graphics Composer
Type: Graphics utility
System: Atari 400 or 800, 32K RAM,

Basic Cartridge, paddles or
joystick.
Format: Disk or Tape
Language: Basic and Machine
Language
Summary: Versatile system for
graphic creation
Price: $39.95 on disk or tape
Manufacturer:
Versa Computing, Inc.

3541 Old Conejo Rd. Suite 104
Newbury Park, CA 91320

can color in a picture, then add shading.
The fill routine, written in Basic, is not
fast, but it is very thorough. filling in most
irregular patterns without missing any
spots.

Another nice feature is the accelerating
crosshair. When the joystick is moved to
a new position. the crosshair moves slowly
at first, then speeds up. This allows for
fine control over a small area and less
waiting time when crossing the screen.

David Lubar is a former associate editor for
Creative Computing magazine.

While the quality of any graphics done in
this mode depends, obviously, on the user’s
artistic ability, the capability is there to
produce detailed pictures.

The medium-res mode provides a screen
with 160 by 80 resolution. with one back-
ground and three foreground colors. These
colors can be changed at any time. (For
those unfamiliar with the Atari. a change
in color actually changes a color register.
thus not only do future lines appear in
that new color, but lines drawn previously
with that color also change to the new
color.) As with the hi-res mode. medium-
res also provides a fill routine and a
selection of brushes.

MICROSTOPED PLAYERS
A L] A o B A

PLAYERS
‘e A

Player creation is now a simple and
dynamic process.

The text mode places characters from
any of four fonts on the hi-res screen. In
the disk version of this package. users
can switch between any of the modes
using hi-res without losing the picture on
the screen. Thus a scene can be drawn
using the drawing mode. then labeled in
the text mode. Along with upper and lower
case, all special Atari symbols are sup-
ported. Also. the program will accept any

user-generated fonts. though the docu-
mentation doesn’t cover the process of
font creation.

To write on the screen. the user first
positions the cursor at the desired starting
point. using joystick or paddles. then types
T for text. From that point until the
escape key is pressed. all typed characters
will be displayed on the screen. Editing
keys such as delete still perform their
usual function. If the user has switched to
lower case. the program won't recognize
any commands. but it will prompt the
user to press the SHIFT and ALL CAPS
keys.

The geo-maker mode allows the creation
of a variety of geometric figures. from
circles and arcs to triangles and parallelo-
grams. Figures are defined by specifying
points. A circle. for example. is defined
by its center and any edge point. Triangles
and parallelograms require three points.
The circle and arc take the longest creation
time. while other figures appear rapidly.
The geo-maker includes a routine for Moire
patterns. The user specifies the step value
and. if desired. a window area. then uses

..,-:-""'"'i

e

Figures and Moiré pattern made with the
geo-maker.

. N | ATARI FONT
b Cowmputer Font
k Stylish Font
\ h\: Hoeen ZokEu
DEPRESS 'T' 10 WRITE TEXT

GUHHQNDS ““E:Twn}s}_;'E'mijlﬁl/JRIlFJn

Cube was done using the draw-to and fill routines of the hi-res mode.
Lettering was added in the text mode.

73

Atari Graphics Composer

the joystick or paddles to fill an area with
the pattern.

One of the most attractive features of
the Atari is the ability to use players in
animation. These shapes are usually coded
by hand. The Graphics Composer has
automated the process. Player creation is
potentially the most valuable utility on
the disk. It presents the user with a grid
for designing players. Each large dot turned

on in the grid is also displayed in true size
on the screen. Once a player is created. it
can be saved. and the decimal values
representing the player can be displayed.
allowing the user to put that player in his
own programs.

Beyond explaining all the functions of
the programs. the documentation also
describes how to use the picture loading
routine in other programs. thus making

pictures created on this system retrievable
by other software.

Anyone doing. or planning to do. graph-
ics work on the Atari should seriously
consider the Atari Graphics Composer.

O

Artifacting With Graphics 7-Plus

The technique of artifacting to pro-
duce special color effects is often
mentioned but seldom explained. One
reason for the brevity in instructions is
that even though it is possible to
achieve high resolution, multiple
color, and graphics displays with
artifacts, Basic and the Operating
System (OS) do not support artifact-
ing in a user-friendly manner. This
discussion will present an introduction
to television color artifacts similar to
that seen in many other places, then
proceed to describe a method and
program listings to more easily use
artifacts in Atari Basic. Because the
resolution of the resultant display is
half way between GR. 7 and GR. 8itis
often referred to (affectionately) as
“Graphics 7-Plus” or GR. 7+. It is in
fact Antic mode 14 and may be seen
in its more refined and domesticated
incarnations in several high-resolution
games (particularly those with the
weird colors.)

Making Artifacts with Graphics 8
Television color artifacts are pro-
duced when a color cell on the screen
containing a red, a blue, and a green
dot is hit by an electron beam smaller
than the cell. If the beam were as big
as the cell all three color dots would
glow producing a spot on the screen in

Harry G. Arnold, 109 Newhaven Road, Oak
Ridge, TN 37830.

one of Atari’s 128 (or is it now 256?)
colors. When for some reason the
beam only hits half of a color cell,
one of two colors shows up, depending
on which half of the cell was hit. These
two colors will usually be some shade
of yellow/green and some shade of
blue/purple (with red/brown pos-
sible) depending on which background
color was specified. One reason that
only half of a color cell may be hit is
that the horizontal resolution of GR. 8
is equal to half of a color cell. You
probably have seen this effect show
up as multi-colored lines when draw-
ing in GR. 8. If you were to observe
the GR. 8 colors closely you would
find that all of the odd-numbered
horizontal pixels are one color while
all the even-numbered ones are a
second color. These two colors are the
artifact colors. Two lines plotted and
drawn side-by-side (vertically) will
produce a third color, usually white.
Listing 1 demonstrates artifacting by
this technique.

In Listing 1, Line 520 draws vertical
lines only on odd-numbered pixels and

Listing 1. Artifact Colors using GR. 8.

500 GR. &: SE. 2,0,0: COLOR 1

510 FOR I= O TO 20 STEP 2

520 PLOT 41# I, 50: DR. 41+I,100
530 PLOT 80+ I, 50: DR. 80+I,100
54,0 PLOT 120 + I, 50: DR. 1204I,100
550 PLOT 121 + I, 50: DR. 121+I,100
560 NEXT I

74

Harry G. Arnold

Line 530 only on even-numbered ones,
while Lines 540 and 550 draw two lines
together to produce the three artifact
colors (on a fourth background color.)
To experiment with the variations in
color, change the SE. 2,0,0 in Line 500
to different values. Table 1 lists some
approximate colors that are possible.
If your computer was built before 1982
and does not have the GTIA upgrade
the colors will be different (probably
reversed).

So, there it is. Four colors in GR. 8,
right? Well, not quite. Since we only
plotted every other pixel or used two
together to produce the colors each
vertical line is twice as wide as the
normal GR. 8 line. Thus the horizontal
resolution was cut in half to 160 pixels
— the same as GR. 7. The vertical
resolution did not change, however,
and remained at 192 pixels — the same
as GR. 8. Hence the nickname GR. 7+.
The colors are also in between those
of GR. 7 and GR. 8, for even though
there are four colors as in GR. 7, they
are all controlled by one register as in
GR. 8. Still it is a multiple color, high
resolution graphics mode and we just
accessed it with Basic. It is a different
graphics mode than any we could
normally access.

Drawing and Filling in
Graphics 7-Plus

The above method is somewhat
cumbersome when many different

shapes and even simple diagonal or
horizontal lines are to be drawn. So,
let’s experiment with ways to use the
OS DRAW and FILL routines in
GR. 7-Plus even though they were not
made for it.

One way to use the DRAW and
FILL routines is to use GR. 7to create
the screen display, then switch to
GR. 8 to display it. When GR. 7
creates data for a colored pixel on the
screen it uses two bits of display
memory for each pixel. In Figure I the
options available with four pairs of
these bits are shown (0 means “off™, 1
means “on”). Two bits together that
are both “off” produce the back-
ground color, while any one or both
bits of a pair that are “on” will pro-
duce color from one of the three color
registers in GR. 7. When the GR. 7
display list fetches 40 bytes for display,
with 8 bits per byte, it gets 320 bits. But
since each pixel in GR. 7 requires two
bits, GR. 7 only produces 160 pixels
per line from the 320 bits per line in
memory — but each pixel can be one
of four different colors.

Figure 1. Bit pairsin GR. 7 to produce
colored pixels.

0[010[1]1[011[11

Back-
ground

Color

3

Color
2

Color
1

When GR. 8§ creates the display data
it only stores one bit per pixel. When
the GR. 8 display list gets 40 bytes of
data it will produce the full 320 pixels
per line with that data. Thus, with only
one bit per pixel to work with, no color
information can be included. A pixelis
either on or off because a bit is either
on or off. Thus, GR. 8 would interpret
the data represented by Figure 1 one
bit at a time and simply display a light
or a dark pixel according to the status
of each bit. But notice in Figure | that
each pair of GR. 7 bits corresponds
to either an even- oran odd-numbered
pixel in GR. 8. Therefore GR. 8 would
interpret the GR. 7 display data as
artifact colors, just as it did the lines
drawn on odd or even pixels in Listing
1. Each GR. 7 Color command cor-
responds to one of the GR. 8 artifact
colors.

Let’s draw a display with GR. 7 then
change to GR. 8 without erasing the
display. To do this we will simply add
32 to the Graphics mode number

Listing 2. Drawing 3 Colors with GR. 7 for GR. 8 Display.

500 GR. 8:GR. 7:REM GR. 8 Just clears out old garbage first
510 COLOR 1:PLOT 50,60:DR. 50,30

520 DR. 25,30:COLR= 1:POS. 25,60:GOSUB 580

530 COLOR 2:COLR= 2:PLOT 100,60

540 DR. 100,30:DR. 70,30
550 POS. 70,60:GOSUB 580

560 COLOR 3:COLR=3:PIOT 150,60
570 DR. 150,30:DR. 125,30:P0OS. 125,60:GOSUB 580:GOTO 590
580 POKE 765,COLR:XIO 18,#6,0,0,"S:": RETURN

590 END

(e.g. GR. 8 + 32). Listing 2 will draw
and fill three colors in GR. 7 (then we
will add a line to change to GR. 8).
Now, after examining the display, add
the following line and run again.

590 GR. €+32:SE. 2,0,0

Nobody is going to claim that thisis
of much use as it looks, but we have in
fact used the DRAW and FILL
routines to create four colors in GR. 7
that were interpreted as four artifact
colors in GR. 8. If we could just clean
up the trash and center the display we
could draw the bottom half of a GR. 8
screen using the GR. 7 display memory
and Basic Graphics statements.

Now, let’s do it the other way
around. The display data are sent to
the screen by a special microprocessor
called Antic. It knows where to find
data, how much to send, and in which
graphics mode because of the display
list whose address is stored in memory
at locations 560 and 561. The OS on
the other hand puts the display data in
memory. It knows where to put it
because the screen memory address is
stored in locations 88 and §9. It knows
which graphics mode because the
mode number is stored in memory at
location 87. 1f we use the GR. 8 com-
mand to set up a Graphics 8 display
list, Antic will fetch each line of
memory and display itas GR. 8 data—
each pixel either on or off, no color.
If we POKE 87,7 the OS will put the
display data into memory as GR. 7
data with the appropriate color bits
set. This sounds exactly like the
situation we encountered when ex-
plaining Figure 1, doesn’t it? Add
Listing 3 to Listing 2 to see this effect.

The end result is the same as before
with one important exception; the

Listing 3.
Adding GR. 7 Data to Listing 2.

590 IF J>» O THEN END
600 GR. 8432

610 POKE 87,7

620 SE. 2,0,0:COLOR 1
630 J=1:GOTO 510

75

display started at the upper left hand
corner of the screen this time, and was
therefore more controllable. Since the
GR. 8 display list only generates one
line of TV scan per pixel and GR. 7
data were created assuming there
would be a GR. 7 display list to
generate 2 lines per pixel, there were
only enough data to fill the upper half
of the screen. However, the bottom
half was still filled with the data we
generated before. Even though the
bottom half still needs fixing, let’s just
observe this important point for the
time being: it is possible to fill a
Graphics 8 screen (i.e. use a GR. 8
display list) with Graphics 7 display
data.

A More Useful DRAW for
Graphics 7-Plus

Let’s examine what happens when
we run Listings 2 and 3. Graphics 8
requires 7680 bytes of display data.
Graphics 7 only requires half that
amount or 3840 bytes because its dis-
play list is supposed to tell Antic to
generate twice as many display lines on
the screen as Graphics 8 does. By
setting up a Graphics 8 display using
the GR. 8 command, 7680 bytes of
memory are reserved for the display
data. However, when we draw the dis-
play using the Poke to location 87, we
are generating Graphics 7 display data
in memory, so only 3840 bytes are
stored in memory. The result is that
the display only fills the upper half of
the screen. How can we fill the re-
maining 3840 bytes? We did it earlier
using the Graphics 7 to draw then
switching to Graphics 8 without
erasing the memory. Let’s find a better
way.

When we first set up a Graphics 8
display the OS reserves 7680 bytes of
display memory. It also puts the
location of the upper left screen corner
data in memory locations 88 and 89
and in the display list. The OS then
proceeds to consult locations 88 and 89
whenever it stores display data in
memory, while Antic consults the dis-
play list when it retrieves data to dis-

Artifacting

play on the screen. Under standard
conditions these two sets of screen
data addresses are the same. However,
if we were to set up a Graphics 8 dis-
play, then change memory locations 88
and 89 to show the address of the upper
left corner of the screen to be 3840
bytes lower than the Graphics 8 screen
corner, it should be possible to draw
on the bottom half of the Graphics 8
screen since Antic still finds the corner
of a display twice as big. Since the
Graphics 8 display is twice as big as
the Graphics 7 as far as memory is
concerned, the effect of moving the
display pointer for the Draw and Fill
commands is to cause draw and fill to
occur on the bottom half of the
screen. To draw on the top half of the
screen again, we simply Poke the
original values back into locations 88
and 89.

Now, let’s see if we can put it all
together and draw a complete
Graphics 8 screen with Graphics 7
data. We will set up a Graphics 8 dis-
play list with the GR. 8 command
which will reserve 7680 bytes for dis-
play memory. Then we will tell the OS
to put Graphics 7 data into that
memory with a POKE 87,7 just as in
listing 3. We will then proceed todraw
the upper half of the screen display
using Graphics 7 BASIC statements,
then we will add 3840 bytes to the
location of the upper left corner of
the screen data and Poke this into
locations 88 and 89. After that, the OS
will think that the middle of the screen

Listing 4. Drawing on Both Halves of

a Graphics 7-Plus Screen.

10 DIM D88(1),De9(1)

20 ATOP=0:BOTTOM=1:GOTO 500

500 GR. 8+16:POKE 87,7

510 D88(ATOP)=PEEK(88) :D89(ATOP)=PEEK(89)

520 BOTCORNER=D88(ATOP) + 256%DE89(ATOP) +
3840

530 D89(BOTTOM) = INT(BOTCORNER/256)

540 D88(BOTTOM) = BOTCORNER -
256+D89(BOTTOM)

550 DRAW = 300:APLOT = 300 :FILL= 400

560 SE. 2,0,0

570

580

590

is the upper corner and will do any
further drawing on the bottom half.
Since the Graphics 8 display list was
unchanged, Antic fetches display data
from the original left corner all the
time even though we change the
locations for putting data into
memory. Listing 4 is an example of
this procedure. (Type NEW just to
ensure that previous listings are
erased.)

Now continue the listing with these
lines to draw on the screen.
600 COLOR 1:PLOT 0,0:Dk. 79,95
610 COLOR 2:PLOT 159,0:DR. 79,95
620 COLOR 3:PLOT 79,0:DR. 79,95
630 POKE eg,DE€(BOTTOM) :POKE &9,
D89(BOTTOM)

610 COLOR 1:PLOT 79,0:DR. 159,95
650 COLOR 2:PLOT 0,95:DR. 79,0
660 COLOR 3:PLOT 79,0:DR. 79,95
9999 GOTO 9999

Now, the only problem we have left
is where to make the line segments
coincide. (Notice that all PLOT,
DRAW, and POSITION commands
will be limited to the Graphics 7 cursor
range of 0-159 horizontal by 0-95
vertical.) However, curved lines and
diagonal lines that are off-center
sound like the kind of dirty drudgery
work a computer was made for. When
it comes to matching the upper and
lower half of the screen, why don’t we
just let the computerdo our bookkeep-
ing? Listing 5 (lines 200-350) will
accomplish this bookkeeping (it also
contains a repeat of Listing 4 for
reference: lines 500-560). Do not run it
yet, because some minor adjustments
obviously must be made to draw and
plot with it. To make these adjust-
ments, add the following lines:
600 DEG:COLR =1
610 FOR I=0 TO 360 STEP 5
620 X=I/3:Y=€0%SIN(I)+95
630 GOSUB DRAYW
640 NEXT I
650 REM Just in case the old listing

wasn't erased first
660

Now it is possible to draw lines all
over the screen in a transparent
manner with only minor adjustments
to the normal PLOT and DRAW pro-
cedures. Instead of typing:

COLOR 1:X= 1:Y= 2:DRAWTO X,Y
We type (as a numbered line):
COLR= 1:X=1:Y= 2:GOSUB DRAW

Notice that it is not necessary to use
APLOT on the very first point to be
plotted. However, any time we wish to

Brief explanation of Listing 4.

skip to a new location to continue
drawing we simply type (again only as
a numbered line):

X=1:Y=1:GOSUB APLOT

(APLOT and COLR are used because
COLOR and PLOT are “reserved”
words in Basic and will result in error
messages.)
Let’s try our original crossed lines
with this new listing. Replace lines
600-640 as follows:
600 COLR=1:X= 0:Y= 0:GOSUB DRAY
610 X=159:Y=190:GOSUB DRAW
620 X=159:Y= 0:B0bR =2:GOSUB APLOT
630 X=0:Y=190:GOSUB DRAW
640 COLR=3:X=79:Y= 0:GOSUB APLOT
650 X=79:Y =190:GOSUB DRAW

9999 GOTO 9999

A detailed explanation of Lines
200-350 is a bit involved. Suffice it to
say that any time a DRAW command
crosses to a different half of the screen
(upper or lower) the crossover point
must be computed and the line must
be drawn to the crossover point in the
current screen half. Then the other half
of the screen must be Poked into loca-
tions 88 and 89 after which the cross-
over point is PLOTted on the new half
and the DRAW proceeds to its
original destination. At no time is the
value of Y for the PLOT and DRAW
commands allowed to exceed 95.5,
even though the computer operator is
allowed to let Y range up to 191.

Just to check everything out, try
adding these lines to the previous
listing.

600 GOTO 1000

1000 DEG:J= 1

1010 COLR=J

1020 FOR K= 0 TO 315 STEP L5
1030 FOR I=0 TO 950 STEP 10
1040 Y= I*SIN(I-K)/13+ 95

1050 X= I*COS(I-K)/234+ 75

1060 IF 1=0 THEN GOSUB APLOT:NEXT I
1070 GOSUB DRAW

1080 NEXT I

1090 J=J+ 1:IF J>» 3 THEN J=1
1100 COIR=J

1110 NEXT X

9999 GOTO 9999

Line 500 Sets up the Graphics 7-Plus display

Line 510 Finds the upper left screen corner used by the 0S

Line 520 Converts the two bytes into a decimal value then
adds 3840 to find the lower half's upper corner

Lines 530-540 Convert the decimal value for the lower half
into a low byte and a high byte

Lines 570-590 Just in case you did not type NEW

Lines 600-620 Draw on the upper half (Cursor range--159X95)

Line 630 Pokes the lower half into 0S memory

Lines 640 to 660 draw the lower half (Cursor range--159X95)

Line 9999 is necessary because we used the whole screen option

in line 500

76

FILLING in Graphics 7-Plus

“So, what good are lines?” you ask,
“l want color-filled areas.” As you
might expect the previously explained
techniques can be extended to provide
a semi-transparent FILL command.
Notice the weasel-word qualifier on
“transparent.” As you are probably
aware, FILL (i.e. X10 18,#6,0,0,“S:™)
only works according to rules estab-
lished on some level of thought other
than our own. When we try to make it
behave predictably under ordinary
circumstances we can expect some dif-
ficulty, let alone when trying to draw
on two different screens (or halves of
screens) at once. So, with that caveat
let us proceed.

Listing 6 shows lines to add to listing
5 in order to make FILL cross screen
halves in Graphics 7-Plus. Again a
detailed explanation would expend a
lot of words just to say that we must
compute the crossover points in
between the two halves of the screen,
fill to them, Poke the other half of the
screen into memory at locations 88
and 89, then fill on the remaining half.
Most of the tests are simply to keep
the cursor within range under a variety
of combinations of possibilities.

In this case, we gained some con-
venience, however, which will help
make up for the FILL glitches that
crop up fromtimeto time. POSITION
and the POKE to 765 are now auto-
matic and XI1O has been replaced.

To use the FILL command you
must first draw the right and upper
sides using the GOSUB DRAW and
GOSUB APLOT method as before.
Then, instead of typing

POS. 0,159:POKE 765,1:XI0 1€,#6,0,0,"S:"
we simply type (as a numbered line)
X=0:Y=159:GOSUB FILL

The color will be the last value as-
signed to COLR and the X and Y
values must be the lower left corner
of the area to be filled. Add these lines
to the previous listing to observe the
fill in operation.

600 SE. 2,0,0:COLR =1

610 X=159:Y=190:GOSUB APLOT

620 X =159:Y= 0:GOSUB DRAW

630 X= 0:Y =0::GOSUB DRAW

640 X=158:Y=190:GOSUB FILL

650 X=0:Y =190:COLR = 2:GOSUB APLOT

660 X= 78:Y= 95:GOSUB DRAW

670 X=0:Y=1:GOSUB DRAW:X= O:Y= 190:
GOSUB FILL

680 COLR= 3:X = 158:Y=190:GOSUB APLOT

690 X= 79:Y= 96:GOSUB DRAW

700 X= 0:Y= 190:GOSUB FILL

710 GOTO 710

Listing 5: Plot and Draw Subroutines for Graphics 7- Plus.

10 DIM D88(1),D89(1),@X(1),XFLAG(1):XF
LAG(0)=0:XFLAG(1)=0

198 GOTO So0

199 REM #*#%*DRAW SUBROUT INE#*##%

200 COLOR COLR:@X3=X:@Y3=Y:Y=INT (RY3+0
-3)

205 IF Y>95.5 THEN GN=1:IF QY1<95.5 TH
EN @N=0:60TO 225

210 IF Y<95.5 THEN @N=0:1IF RY1>95.5 TH
EN G@N=1:G0TO 225

215 DRAWTO X, Y—-96%QN:@X1=X:QY1=Y

220 RETURN

225 @X2=X:Qy2=Y

230 GOSUB 265: X=INT (X+0.5) :60SUB 280
235 DRAWTO X, Y-96%#AN:QGN=1-GN

240 POKE 88,D88(QAN) : POKE 8%9,D89 (QN)
245 GOSUB 265: X=INT(X+0.5)

250 PLOT X, 95-95%QGN

255 DRAWTO @X2,QY2-96+#QN

260 QX1=0X2:QY1=QY2: X=2X3:Y=RY3: RETURN

265 Y=95+AN: X=((Y-QY1) * (@X2-A@X1) / (QY2-
@Y1))+aX1

270 IF ABS(RY2-QY1)=1 THEN X=(@X2+Q@X1)
/2

275 RETURN

280 IF XFLAG(G@M)=0 THEN XFLAG(GM)=1:0X
(@M) =X:QM=1-@M: XFLAG (M) =0

285 RETURN

299 REM *##*APLOT SUBROUT INE#% %

300 COLOR COLR:@X3=X:@QY3=Y:Y=INT (QY3+0
«3)

310 IF Y>95.5 THEN GN=1:GOTO 330

320 @N=0

330 POKE 88,D88(QN) : POKE 89,D8%9 (AN)
340 PLOT X,Y-QN#94:QX1=X:QY1=Y:DRAW=20
0: X=QRX3:Y=aY3

350 RETURN

499 REM #*%%%¥SET UP GR.7+ SUBROUTINE***
S00 GRAPHICS 8+16:POKE 87,7

510 D88 (0)=PEEK (88) : DB? (0) =PEEK (8%9)
520 DISP2=D88 (0)+256%D89 (0) +3840

S30 D89 (1)=INT(DISP2/256)

540 D88(1)=DISP2-256*D89 (1)

S50 DRAW=300:APLOT=300:FILL=400

560 SETCOLOR 2,0,0:COLOR 1:COLR=1

The background color can be pro-
duced in the same manner as the other
three colors. It is important that the
only COLOR specifications be made
with the COLR= statement from this
point on in using the listings.

To experiment with how the dif-
ferent colors look when plotted on one
another, remove Line 710 and (if you
left lines 1000-9999 in from the pre-
vious listings) observe how the spiral
behaves as it crosses the different fill
areas. Also, change Line 1010 (1010
COLR=0).

Five Colors?
Yes, you saw it, too, a fifth color

Table 1. Some Artifact Colors.

(counting background) appeared when
colors 1 and 2 were plotted close
together. Anytime Color 2 is drawn to
the immediate right of Color 1, a fifth
color will appear unless the line drawn
is horizontal. Such knowledge could
be used to add another color in limited
amounts, or it could be just another
bug to look for, depending on your
project.

So there you have it; Graphics
7-Plus in Basic. The program listing to
set it up is but 48 short lines of Basic,
and the method for using it is similar
to the use of PLOT and DRAWTO in
any other Basic program. A bonus is
that FILL worksina more transparent

Setcolor Color 1 Color 2
2,0,0 Yellow Green Blue
2,1,0 Yellow Green Purple
2,2,0 Yellow Brown Purple
2,3,0 Orange Yellow Blue Purple
2,4,0 Orange Yellow Blue
2,5,0 Yellow Orange Blue
2,6,0 Yellow Green Blue
2,7,0 Yellow Green Light Blue
2.8,0 Light Green Light Blue
29,0 Medium Green Light Blue
2,10,0 Green Blue
2,11,0 Green Blue
2,12,0 Bright Green Blue
2,13,0 Light Blue Blue
2,14,0 Yellow Green Blue Purple
2,15,0 Orange Green Purple

Color 3 Background
White Black

Light Yellow Brown Green
Light Yellow Sienna

Light Pink Red Orange
Pink Red

Pink Purple ;
Pink Blue Purple
White Dark Blue
White Medium Blue
White Blue Black
Lime Dark Grey
Lime Grey Green
Lime Black Green
Light Green Black Green

Light Yellow
Light Orange

Yellow Brown
Orange

77

Artifacting

manner even though the usual FILL
idiosyncracies are a little more annoy-
ing with artifact colors.

This is but one more example of how
the built-in flexibility of the Atari
makes it possible to extend the ap-
plication into areas beyond the limits
of the original software design. If play-
ing with thisintroduction to artifacting
with Graphics 7-Plus has been en-
lightening, perhaps you may be able to
use it. If the inherent bugs are too
frustrating then you might try some
language other than Basic that does
not rely so heavily on the existing
OS DRAW and FILL routines. Either
way, happy artifacting.

Listing 6: Lines to Add to Listing 5 for FILL Subroutine.

399 REM *##%FILL SUBROUT INE#%#%

400 POKE 765,COLR:@X3=X:QY3=Y:Y=INT (QY
3+0.5)

405 IF Y>95.5 THEN @N=1:IF QY1<95.5 TH
EN GN=0:GOTO 435

410 IF Y<95.5 THEN @N=0:IF QY1>95.5 TH
EN GN=1:GOTO 435

415 POSITION X,Y-96%QN:XI0 18,#6,0,0,"
S:":@X1=X:@Y1=Y

420 IF FLAB THEN FLAG=0:RETURN

425 XFLAG (0)=0: XFLAG (1) =0: X=QX3: Y=QY3
430 RETURN

435 @X2=X:Q@Y2=Y:B0SUB 265:FLAG=1:G0OSUB
415

440 GN=1-0N:X=INT (X+0.5)

445 POKE 88,D88(GN) :POKE 89,D89 (GN)
450 GOSUB 265:X=INT (X+0.5)

455 Y=QY2:GOSUB 280

460 X=QX2:IF XFLAG(1-GM)=0 THEN QX (1-Q
M)=((95-QY1) % (X—@X1) / (Y-QY1)) +Q@X1: XFLA
G(1-aM) =1

465 PLOT @X(BM),95-95%AN: DRAWTD QX (1-@
M), 95-95%aN

470 GOTO 415

78

Part 111
Hardware and Software

i nnt
SN ToR Hitm Sinehes

 HN gt | B A bbb | pEEEy .= 2= ==

o= = 11)

[
NI B LR LEER Ll g o g, o L —_— P

O P IO P WTE PR o sednab gl JEEILET TN S

Bits and Bytes

Question: How do you put four elephants in a
Volkswagen?

Answer: Two in the front and two in the back.

It is a sad fact of life that every device yet made by
mankind is subject to limits. We know that a Volks-
wagen is not designed to transport elephants. The
Atari computer is a device with a lot of ability and
thousands of potential applications, many of them
probably beyond the expectations of the designers,
but it does have limits.

The most fundamental limitation of the Atari as a
general purpose computer concerns its memory
constraints. In order to fit a great many capabilities
in a small device at a reasonable price; decisions,
compromises, and tradeoffs had to be made. This is
especially true of the graphics capabilities of the Atari.
Great flexibility, even at the cost of complexity, was
one of the design objectives of the computer.

If you design a device so that a user has few options,
it should be reasonably simple to operate. When you
turn on a light at home, all you have to do is throw a
switch, and perhaps occasionally change a light bulb.
You do not have to be aware of hundreds of miles of
light poles and wire cables, of transformer substations,
and perhaps a complex nuclear power plant that make
it possible for you to have light when you throw
the switch.

The Atari is capable of operating on this level. You
open the door on the top, plug in a Missile Command
cartridge, plug a joystick into the front, press the
Start button, and you are ready to defend your cities
against nuclear attack. You need to know absolutely
nothing about programming.

But the Atari also allows you to create your own
programs, and every trick that is used in Star Raiders
and Eastern Front is available to you as well. There is
no way to give you so many options and so much
power and keep the process as simple as throwing a
switch.

It would be possible to simplify the process more
than the Atari does by converting every instruction
into plain English. Perhaps you could have a computer
that could interpret a series of instructions like this:
e draw a man with blue eyes and blond hair
e make him a little taller
e give him a white shirt with a red and gold striped tie
e make the gold stripes thinner

This kind of graphics, while possible, would require
a vast amount of development expense and lots of
memory, and would lead to its own restrictions. In
order to fit many capabilities into a small amount of
memory, the Atari had to omit features that would
make the graphics easier to use and understand.
Instead,the programmer (that means you!), must gain
a basic understanding of how the computer works.

The most basic element of information in any
computer can be thought of as a two position switch.
You can picture it as a light bulb that is either on or
off, asa box that isempty or full, asan electrical circuit
that is charged or not charged, or in any of several

81

other ways. But the important thing is that there are
only two possibilities. This fundamental unit of
memory is called a bit. There are many bits of memory
in your Atari.

(The 16K memory cartridge that came with your
computer has 131,072 bits of memory. You can add
two more such cartridges to an Atari 800, for a total
of 393,216 bits. The operating system cartridge con-
tains 81,920 more bits of memory, and your Basic
cartridge another 65,536.)

Since any bit in memory can function as a two way
switch, with possibilities as dramatic as turning the
screen on or off, the computer can be very complex. In
fact, a single bit in a fixed location can turn the screen
display of players on or off. Much of the process of
learning how to do fancy graphics on the Atari is
learning how to find these special locations in memory
and set the “switches” the way you want them.

In most of the memory locations in your Atari
computer, a bit of memory is actually a tiny electrical
circuit. This circuit is either charged with a voltage, or
has no charge. As an easy way of referring to the state
of one of these circuits, we use the numbers Oand 1. Ifa
bit of memory has a charge, it represents a “1” bit.
If there is no charge, it represents a “0” bit. If you
were to hook up a tiny light bulb to a single memory
cell (one bit), it would actually glow when the bit
represented a “1” and not glow when the bit wasa “0”.
Many older computers had lights on the front to do
just this; and the user could see what was in each
memory location.

A group of 8 bits of computer memory organized
into one unit is called a byre. The 8 bits of memory
usually are in different locations in memory, but the
computer is designed to treat them all as a single unit.
The bits are organized so that position is significant.
Each byte has a bit pattern that is a series of eight ones
or zeroes representing the value of each bit.

A bit has two possible electrical states, on or off.
How many does a byte have? There are 256 possible
combinations of ones and zeroes in the eight bits that
make up a byte. Justasa bit can represent either 0 or 1,
a byte can represent a number from 0 to 255. (That is
256 numbers. Programmers start counting at zero.)

That may seem strange. Imagine a blackboard that
was only wide enough for one digit to be written upon
it. How many different numbers could it hold? The
answer is 10, ranging from 0 to 9. If it had room for
two digits, the possibilities would range from 0 to 99,
giving 100 different possibilities. Since there are ten
different possibilities for each digit, there are 10 times
10, or 100 different possibilities for 2 digits, 10 times
10 times 10 or 1000 different possibilities for 3 digits,
and so on for numbers with more digits.

Since there are only two possibilities for a bit, there
are only 2 times 2, or 4 possibilities for 2 bits. This
means that the eight bitsin a byte can represent 2 times
2 times 2 times 2 times 2 times 2 times 2 times 2, or 256
different numbers.

Bits and Bytes

There are thousands of different bytes in the
memory of your Atari. Each of them is organized and
assigned a number, which is called its address. Each
byte has eight bits assigned to it, and every bit is a
completely separate electrical circuit, or memory cell.
You might wish to think of the memory of your
computer as a very long street, with houses on only
one side of the street, each house numbered in order,
0, 1,2, 3,4, etc. Each of these houses (a byte) has eight
rooms (eight bits). In every room, the lights are either
turned off or turned on (0 or 1).

You can locate any byte in memory to examine it
by its number. The possible range of numbers with the
current operating system is from 0 to 65,535. There is
at least one device, the Axlon Ramdisk, that expands
the Atari’s memory to 262,144 bytes. These numbers
may seem strange at first. Why not a “round” number
like 100,000? The answer is that with two possibilities
for each bit, the possible addresses must be a power
of two.

How large a number can be represented by a certain
number of bits? Here is a table for 0 to 18 bits. If you
would like to check it out, just write down every
possible combination and count them. For example,
with three bits you could have 000, 001, 010, 011, 100,
101, 110, or 111; eight different possibilities.

Bits Combinations

0. iiiinnnnn 0

I sviamamnsim simazs 2

| F 4

B sreraisammiiasoae 8

Y 55 m5000 mem e 16

S 32

T 64

T orewiia i 359 2 128

8 e v ws s sims 256 (one byte)

D wimwiwms e e 512
10,000 oins, 1024 (also known as “1K”)
LT 5s55 6 0ms sans 2048 (2K)
1251w e TR 4096 (4K)
b 8192 (8K)
18 ;i vsmna s v mag 16384 (16K)
I8 a5 w0 e 5 mn 32768 (32K)
16 .o 65536 (Atari memory size — 2 bytes)
LTt s Bt 131072 (128K -— Note this is NOT “I131K")
I8 55 56 50w e 5 256144 (The Atari can be expanded to this)

Because the processor in the Atari uses 16 bits to
address memory, it can address 65,536 memory
locations, numbered in order from 0 to 65,535.

How Your Atari Works

The “brain” of your Atari computer is a micro-
processor, an integrated circuit. This processor is
called a #6502, and its major function is to com-
municate with the memory in your computer. It
receives instructions from memory and reads and
writes instructions from and to memory and other
devices (such as the cassette recorder, joysticks, the

82

disk drive, and the screen) that appear to the pro-
cessor (as if the other devices were also memory).

The 6502 starts at a location in memory and in-
terprets the content of that first location as a com-
mand. From then on, the instructions tell it what todo
with the other locations in memory and where to look
next. The processor can only do this with the main
memory, so every program must be in the random
access memory at the time it is executed, or run.

Since we are limited to 65,536 locations in memory,
and have to do everything in those locations, we must
discover a way to store characters, displays, Basic
variables and anything else as bytes of data.

Here are some ways information is stored:

Character strings. Each character (a letter, number,
symbol, punctuation mark or space) is stored by
representing that character as a number and storing
the number into a byte. Since there are 256 different
possible patterns in a byte, the Atari has 256 different
characters. Each character is represented as a unique
byte, and the computer looks up the number onatable
in the operating system to determine what pattern to
display on the screen.

Basic variables. Atari Basic is not limited to
numbers between 0 and 65536, although it is limited to
line numbers between 0 and 32767. This is because
line numbers are stored in one bit less than two bytes,
while Basic variables are stored as a group of 6 bytes.
Basic encodes numbers in a way that makes them easy
to work with, not in the manner we have been dis-
cussing.

Basic programs are stored in coded bytes, not as
text. Each possible Basic statement type is given a
unique number, and that number is stored as a single
byte instead of as the letters that you typed into the
computer. Whenever you list a program, those codes
are translated back into letters that you can read. The
details of this coding will be explained later in this
book.

An important point to remember is that the 6502
processor sees data as bits and bytes. We think of data
as characters, variables, or language keywords.
Sections of memory are dedicated to different func-
tions. For example, the operating system ROM holds
6502 machine language instructions, data for the
display of characters on the screen, and text messages.

Physical Types of Memory

Computer memory is physically located on in-
tegrated circuits. While auxiliary “mass storage” is
available on floppy diskettes or cassette tape, in-
formation must be loaded into the integrated circuit
chips before the processor can work with it. It is
important to know and understand the types of
memory in order to take advantage of the special
features of the Atari.

The best known type of integrated circuit is RAM,
or “Random Access Memory.” Random access means
that any byte in that memory can be selected and
accessed at any time. This is unlike a cassette tape,
where you have to read through the tape from the
beginning until you come to the information you
want. However, Random Access Memory is not the
best way to describe this memory, as other types of
memory, including ROM, can also be accessed the
same way. A better description is “Read-Write
Memory,” for the distinguishing feature of RAM is
that information can be written to and read from the
chip electronically in a few microseconds. The in-
formation can be and usually is changed frequently,
often many times within the space of a single second.

The principal disadvantage of RAM is that in-
formation is stored only as long as electric power is
continuously available to the chip. If the electric power
is interrupted for even a fraction of a second, the
information will be lost. The Atari power supply is
designed to smooth out some minor power fluctua-
tions, but it is still possible and even common for
information to be lost due to momentary loss of power
or voltage fluctuations. The chips were designed to
store a lot of information in a small area. This re-
quired very low currents and close tolerances, which
made the chips very sensitive.

But if RAM can only store information as long as
power is available, how do we “wake up” the Atari
computers? How can we store the information that the
computer needs to get going, even when the power is
turned off? We cannot read a program from disk or
cassette. The computer needs a program to do that.
Not too long ago, the operators of small computers
had to physically load a bootstrap program into the
computer by setting switches for each bit. (“Let’s see
now, up for 1 and down for 0, so 0010 0111 is down,
down, up, down, down, up, up, up. Now we throw the
switch to load that byte and go to the next address...”)
After a program of 60 or 70 bytes was loaded, that
program could be run to load a longer monitor pro-
gram from paper tape. If one bit was wrong, after
throwing 500 switches, the program crashed and the
operator had to start over. Fortunately, the Atari uses
a better way.

Our second type of chip is called a “ROM™, for
“Read Only Memory”. ROM is not affected when the
power is turned off. The data in ROM is permanently
burnt into the chip. (There are certain types of ROM
which can be erased for special applications.) You
cannot write anything to ROM because the hardware
will reject it. Since ROM is always readable, it can be

83

used to provide an initial program for the micro-
processor to run. The operating system, the com-
puter’s main program, is stored in ROM. Remember
ROM is used for programs that never need to be
changed and those programs that can survive a power
loss.

The Basic and Star Raiders cartridges contain pro-
grams written in machine language. Since the cartridge
can survive a power loss when unplugged, it must be
ROM. If you open up the cartridge, you will find two
ROM chips. Atari cartridges have programs stored
in ROM.

The ROM operating system is located inside the
board that is plugged into the top of the Atari. This is
a program the Atari uses to start up aftera power loss.
RAM cartridges with 8K or 16K of memory provide
the read-write memory of the Atari.

An 8K RAM memory board has 8,192 bytes avail-
ableanda 16K RAM board has 16.384 bytes available.
The Atari can handle three 16K boards or 48K of
read-write memory. There is 64K of total memory
in the machine. The last 16K is split up into several
other uses. One use is in the Operating System,ROM.

Think of the memory as a long thin line of bytes,
each numbered individually. If we have a 16K board
plugged into the Atari, and we write to any location
from 0 to 16,383, we’ll physically write something into
the chips on that board. If we have a second 16K
board, that will be the bytes from 16,384 to 32,767.
A third board handles the next 16,384 bytes of
memory. The last 16K of memory, (the total memory
is in four 16K parts) from byte number 49,152 to
number 65,535, is split up into other functions that do
not require read-write memory. If you read location
60,000, you’ll be reading from the Operating System
ROM board. You cannot write to this.

Certain tools are provided in Atari Basic that are
useful in gaining a better understanding of the
memory. One of the tools is a function called FRE.

FRE is a way to determine “the number of remain-
ing free bytes in RAM.” When we type in a Basic
program, we start to use RAM to store it. The storage
in RAM is limited, so for every line typed in, there is
less free RAM left. RAM has many purposes. Part of
the operating system is stored there. Any tables that
have to be saved must be stored in RAM since you
cannot write to a location in ROM. Basic programs
that you type in are stored in the remaining free RAM.
FRE tells us how much RAM is left unassigned and is
usable for the storage of Basic programs.

With only one 16K board in the Atari, we have only
16K of read-write memory. There will be considerably
less space for storing Basic code. If we write to a byte
that is not physically located on the memory board,
our data will disappear and be lost. Extra memory is
very handy, and this is why people are willing to spend
extra money for it.

Two other Basic statements that will be valuable to
us are PEEK and POKE. Peek gets a byte directly
from a memory location that you specify, and puts it

Physical Types of Memory

into a variable you designate. The number that will be
shown will be the contents of that byte, a number from
0 to 255. POKE takes the number you give and puts it
directly into the memory location that you indicate.
The number that you poke should not be greater than
255 (a larger number will not work).

This is the format of PEEK: Variable=PEEK
(address).

For example: to set variable A to the value of the
contents of memory location 40,000, use:

A=PEEK (40000)

Let’s say we wanted to dump a large section of
memory to the printer. Here’s a short programto do it.

100 START=40000

110 SEND=50000

200 FOR LOCATION=START TO SEND

210 LPRINT LOCATION, PEEK(LOCATION)

220 NEXT LOCATION

230 END

It’s harmless to PEEK anywhere in memory. It will
teach you a great deal about the machine. You can
look at a Basic program in memory and find out
exactly what it looks like to the computer as bytes.

POKE puts something into memory. Be cautious
because if you randomly poke into memory you’ll
eventually rewrite a byte that the Atari needs to keep
functioning. The result will be that the computer will
“crash.” You must then either press RESET or turn
the power off and on again.

Type NEW to clear out any Basic program in
memory, then type PRINT PEEK(8000). This will
show you what memory location 8000 currently
contains.

Type POKE 8000,100 to change the memory
contents to 100. Now a PEEK at 8000 will return the
number 100.

Many things can be done in the Atari with PEEKs

and POKEs. Since everything the Atari does is based
in memory, and PEEK and POKE are the only direct
Basic memory modification statements, we’ll be seeing
a lot of them.

Let’s review what we have covered so far. The Atari
has up to 64K of memory, meaning there is around
64,000 individually numbered bytes. Each byte is
composed of 8 bits. Bits can be either on or off, 1 or 0.
A byte stores numbers through representing them with
patterns inits internal bits. Since there are 256 possible
combinations in § bits, a byte can store numbers from
0 to 255.

The microprocessor the Atari uses has 16 bits
assigned to memory. The range of numbers 16 bits
can represent is from 0 to 65,535. Because of this, the
highest memory location the Atari can look at is also
65,535.

Memory is composed of RAM or ROM. The lower
40,000 or so locations of memory are RAM, depend-
ing on how much RAM memory you have installed. If
you have installed just one 16K board, then the lower
16K of the 48K RAM area will be actual memory and
the other 32K will be unusable. The upper 16K of
memory is assigned to various purposes. Some of it is
ROM, some is for other purposes.

Basic has several statements that allow us to directly
work with memory. PEEK allows us to directly
examine any byte. POKE allows us to directly modify
a byte. FRE tells us how much free RAM we have
available for storage purposes.

This should give you a pretty good overview of
memory. We'll be dealing with memory throughout
the book in more specific ways; for example, how is a
string stored in memory? Let’s move on now to the
graphics section. In it we're going to deal mostly with
memory and how to use it to generate graphics images.

84

Atari Music Composer

Karl Zinn & David Zinn

We've been using the Atari Music Com-
poser in home education and some school
situations. We would like to share our
initial experience and preliminary ideas
here. and suggest other things that could
be done.

The manual for the Music Composer
suggests it can be used to develop skills in
listening. perception, music notation,
composing (melodies, harmony and coun-
terpoint). musical relationships, and building
musical structures from simple parts. We
found we could do all these things and
more. always in a pleasant and rewarding
educational environment. Nearly all of our
trials were in a home setting; but some
were in a summer class for 8 to 14 year-
olds interested in using computers.

For those who know other music boards
for small computers (ALF. MicroMusic.
MicroTech. Symtek). this one is comparable
with five important differences.

1) Nothing extra is needed. The circuitry
is built into the Atari and the audio is
amplified by the TV set (or monitor) which
is used as the display device for the
computer. You can also take the audio
out of a 5-pin jack on the side of the Atari
800 to feed any other amplifier.

2) Most people will use it as given. Since
the Composer software is in ROM it can't
be changed. Programs can be written in
Basic either to generate data files that can
be read by the Composer. or to play the
Composer’s data files with other tonal char-
acteristics.

3) Use is very straightforward, with most
of the options so obvious that a manual is
not needed. The user works through menu
pages linked in a hierarchical structure,
with clear mnemonics and using normal
keys forinsert. delete and cursor control.

4) The system protects rather well against
common user errors. New users, without
previous experience with computers, get
melodies to play back about as they intended
them. and are not likely to lose them acci-
dentally.

5) The user has little or no control over
tone quality. attack and decay. crescendo.
and the like.

The basic building block is a musical
phrase; up to ten can be stored in memory.
Phrases are arranged in up to four voices.
with dynamics. repetition and transposition
specified in a list of statements which looks
like a computer program. Indeed. the

Karl Zinn, University of Michigan, Center for
Research on Learning & Teaching, Ann Arbor,
MI 48104.

David Zinn, Greenhills School, Ann Arbor,
MI 48104.

composition activity can be used to develop
programming concepts such as sequencing
and iteration. Building a melody and
counterpoint from phrases is good practice
in music education as well.

Phrases. voices or an entire composition
can be saved on tape or disk. and retrieved
later, perhaps with new arrangements. We
much prefer disk because it is faster. but
the cassette was adequate when we put
only one data file on the beginning of a
tape. (You will have discovered this problem
with positioning the tape when reading a
file from the middle of a tape if you use
cassette on the Atari. We have heard that
this software problem in cassette control
will be fixed by Atariin a future release of
the operating system.)

We already said we hardly needed the
manual. This should be true for almost
any experienced computer user, and per-
haps many novices. We find a five-minute

SOFTWARE PROFILE
Name: Atari Music Composer
Type: Music
System: Atari 400 or 800, 8K
Format: Cartridge

Summary: Very well done at a simple
price.
Price: $59.95

Manufacturer:
Atari, Inc.
1272 Borregas Ave.
Sunnyvale, CA 94086

demo to be enough to get anyone started;
a few things may not be obvious. such as
“FN" as the abbreviation for “File Name”
in a prompt, and the prefix “D:" needed to
specify that the file is to be retrieved from
(or saved on) disk instead of cassette. But
the manual is well-organized with clear
descriptions and photos of the screen in
various states. We recommend it to those
who would rather learn systematically than
by exploration. One part provides an overall
description with things to do; another
provides the file structure for those who
wish to do things with Basic as well; it
includes programs for listing files. composing
music. and arranging harmony. A last part
summarizes each of the commands.

We have many stories to tell about our
use of the Music Composer. and plan to
do so in a later article after we have
experience with a greater variety of users
and in other educational settings. Perhaps
youcan get an idea from these brief notes:

85

Piano music entered into the Atari was
played and displayed by the computerina
regular way which made obvious some
syncopation which had been hard for the
student to catch and perform otherwise.
Some band music was entered so that the
cornet player could practice (at- home)
with the other parts played by the Atari. A
band part in the Atari was used as a model
(and a metronome) for repeated practice
of a difficult sequence, gradually coming
up to the required speed. Music heard
only on the air was entered and reviewed
(and played for fun), exercising notation,
interval recognition, note duration, time
signature, key signature and other music
components. The pleasure of this activity
for kids contrasts with the reluctant response
of some students to “dictation” exercises.

Music already stored in the Atari was
modified in various ways (e.g., tempo and
counterpoint) to change the style. Musical
rounds and fugues were explored, pushing
the complexity until the sounds were no
longer pleasing to the arranger or composer.
Timbre (tone quality) was explored by
writing parts in unison and then transposing
them to various partials (harmonics) one
octave away, an octave and a fifth, two
octaves, etc. Original compositions were
developed by entering familiar melodies
in up to ten phrases and rearranging them
in interesting ways (such as those compo-
sitions of P.D.Q. Bach as discovered by
Professor Peter Schickele!)

What we missed most while using the
Atari Music Composer is a display of all
four voices at once (as on a regular musical
score or piano music). Sometimes it is
difficult to find the part you wish to modify,
since you can look at only one phrase ata
time, and one measure in that phrase.
Getting everything on the screen at once
is a lot to ask of an 8K ROM application
cartridge operating with an 8K RAM (yes,
all these cartridges work on the 8K Atari
400 as well as our 48K 800) and displayed
on an ordinary TV. If it weren’t for the
lack of resolution in TV rasters Atari might
have avoided the problem of where to put
the note stems by displaying each voice on
a separate staff. Having a printout of the
score would be really nice, and get around
the TV display limitations.

At times we could enter music as chords
instead of notes in separate voices. A good
composer aid offer many options for entry
of music. But being limited to one. entry in
phrases and voices is the right one for this
beginner’s composer. Other advanced aids
are also missing: tone quality. envelope
(attack and decay). inversion, and other
operations on musical patterns. We suspect
that some of these can be done from Basic.

Although itis nice to be able to get all of

Atari Music Composer

the disk operating system from the Music
Composer, working through it all to get a
listing of what files are on the disk is a
nuisance. One should be able to display
the music files on the screen directly, and
select one without the computer first erasing
all the names. (It takes “D, <RETURN> .
A.<RETURN> RETURN" to get the
directory on the screen. To get back requires
a <RETURN >which erases the screen
and then a “B.<RETURN> " to get back
into the Music Composer. The new DOS
2.0S for the Atari simplifies this slightly

(fewer returns are required) but one is still
limited to what was designed into the
Composer ROM.

In summary, although we could ask for
more, what is provided was done very well
for home education and recreational
activities at a simple level. Clearly some
people thought carefully about what should
go into the Music Composer to make it
helpful in music education. We hope others
who find themselves in the position of
advising computer companies will also help
make the entertainment products better

for education.

The Music Composer is available for
$59.95 from Atari Inc.. 1272 Borregas Ave..
Sunnyvale. CA 94086. O

Hooking Up With CompuServe

Using Atari’s Telelink Cartridge to Access
CompuServe

Joining a club? Learn the ropes before-
hand and it goes a great deal smoother. If
you visit someone who has a computer.
play a few games under your friend’s
supervision, and learn such simple tricks
as the location of the ON/OFF switch and
the use of the RETURN key, you are far
ahead of the person who wins a computer
as a doorprize at a convention, then takes
it home and tries to use it with only the
manual as a guide.

For the personal computer owner who
has never used a large computer or a
terminal before, seeking to connect to a
timesharing service may seem to be an
overwhelming task. All of a sudden you
have to cope with learning how to use a
new program, an RS-232 interface. a
modem, and a telephone in cooperation
with your computer. It can be quite frus-
trating, for if you overlook one switch
setting or miss plugging in a single cable.
the system won't work, and you might not
be able to tell whether you made a mistake
or whether one of the pieces of equipment
is defective.

Failure-prone equipment in this type of
situation is a disaster. For example. the
Radio Shack TRS-80 Model I RS-232 board

is notoriously hard to use, primarily because
Tandy used a cheap connector to attach
it. Some owners actually disconnect the
board. clean the contacts. and reinstall it
every time they use it. A new user with a
bad connection might become so frustrated
as to give up all hope of timesharing.

With the Atari Telelink cartridge. it took
me several hours of work. accompanied
by much frustration. to successfully hook
up to CompuServe. I never did discover
what I was doing wrong at first. but have
come to the conclusion that the real problem
was probably in our company telephone
switchboard. not in the Atari equipment.

[hope that by a detailed sharing of the
process that led to successful connection
for me. I can make the same operation
smoother for those of you who are con-
sidering timesharing.

Equipment Required

The equipment I used was an Atari 800
Computer (the Atari 400 should work just
as well), the Atari 850 Interface Module,
the Atari 830 Acoustic Modem, the Atari
Telelink I program cartridge. a telephone,
and a Texas Instruments 99/4 Color
Monitor. The only difference in my unsuc-
cessful attempts was that I used a Leedex
Video 100 black and white monitor instead

86

of the color monitor. The difference was
significant. not for the color. but because

<

ADDITIONALRS232C
COMPATIBLE PORTS

SYSTEM DIAGRAM

the T1 monitor has a speaker. and you
need the speaker to hear whether the
cartridge loads properly. An ordinary
television set should work as well, but I do
not recommend any monitor or TV set
without a working speaker. I did not have
a printer. but it would have helped signif-
icantly.

The Atari Telelink I (The 1 probably
implies that a II is coming!) program
cartridge is a typical Atari cartridge. You
load it by simply plugging it into the slot
on the computer. a task that my six-year
old son has mastered with the Star Raiders
and Basketball cartridges. The Telelink I
cartridge comes with a six-page foldout

CARTRIDGE !

! CARTRIDGE
=

ATARI400™
Inserting the TELELINK cartridge

ATARI800™

instruction brochure. a registration card.
an application for an account with Compu-
Serve. an instruction card for hooking up
to CompuServe Information Service. and
a sealed envelope containing a CompuServe
user identification number and a secret
password allowing you one hour of free
access to the network.

The Atari 850 Interface includes a 102-
page instruction manual that also covers
the Atari 830 Modem. However. who is
willing to read 102 pages of heavily technical
material just to learn how to use an add on
device on a computer system? Fortunately,
you can use the manual strictly for reference.
finding what you want in the table of con-
tents.

Before you can use Telelink I to connect
to CompuServe. you must have a local
access telephone number. The card telling
you how to access the timesharing service
gives you Atari’s toll free customer service
number and tells you to call them for the
access number closest to you. The customer
service toll free number is very busy. and
it took me about 20 calls over two days to
get through. Once I did get connected. the
representative gave me the names of cities
in my area code with access numbers. and
the telephone numbers.

Setting Up Your System

I will assume that you already know
how to connect your Atari computer to a
monitor or TV set. and only discuss the
rest of the system. If you have a disk drive.
disconnect it. as the cartridge is not set up
to work with the disk operating system.
and the two conflict.

If you place the Atari 850 Interface on
the table in front of you so that the label
faces you. you will see the following:
Plug the power supply into the connector
on the left and connect it to a wall outlet.
Connect the I/0 cable from the computer
to the leftmost one of the two I/0O con-
nectors. If you have the printer that uses
the I/0 connectors. connect the printer to

the right front connector. If you have the
Atari 825 printer. there is a connector for
this on the right end of the interface
module.

On the back of the interface module are

four identical serial connectors. labeled
fromone to four. Plug the small connector
on the cable that comes with the Atari 830
modem into connector one on the interface.
directly behind the power connector. Your
interface is now connected.

The connectors and switches on the
Atari 830 modem are all on the same end.
as follows:

onnect the other end of the modem cable
from the expansion interface to the large
connector on the modem. Then plug the
power supply for the modem into the
connector on the modem and into a wall
outlet. If the power LED in the center of
the modem should come on. set the originate
answer switch to OFF.

Bring your telephone over to the com-
puter. Place the handset so that the cord
hangs over the end of the modem that

ON

Power Input
Connector

OFF/ON
SWITCH

Twol/O
Connectors

contains the connectors and switches. This
is also plainly marked on the label in the
top center of the modem. Your system is
now connected and ready to go.

Making the Connection

Plug in your cartridge. and close the
cartridge door. Turn on the television set
or monitor. Then set the left switch on the
modem to O (for originate) and the right
switch to F (for full duplex). Both switches
should be all the way to the left. The
power LED on the modem should glow
red. Next turn on the Atari 850 interface
module using the switch on the front. The
power LED next to this switch should come
on.

After the rest of these connections are
made. turn on the computer. If you turn
on the computer before the interface. or
have the disk drive connected. the program
to operate the interface will not load
properly. You should now hear a series of
beeps from the television speaker to indicate
that the program is loading. After the
program has initialized. the words Telelink
I will appear on the screen.

Now. dial the telephone access number
for CompuServe that you obtained from
Atari Customer Service. Unless the number
is busy. it should ring a couple of times.

87

Power
Connector

1/0 Connector

0 A F_ 0

(@)

OFF, TST
\

Originate/Answer
Switch

Full/Half
Duplex Switch

then answer with a steady tone. When you
get the tone. place the telephone handset
in the cradle on top of the modem. Even
before you finish placing the handset in
the cradle. the two computers should
recognize each other and the READY LED
on the modem should come on.

Type CONTROL C on your keyboard.
The TV screen should go blank. then
CompuServe will print the message:

USER ID:

Respond by typing in the identification
number in the envelope that came with
your Telelink cartridge. Now CompuServe
will print another prompt on your screen:

PASSWORD:

Type in your password. exactly as it is
given in the envelope. The letters will not
appear on the screen. so that you can keep
your password secret if someone is watching.
If you get it wrong. the computer will
prompt you to try again.

CompuServe will now take a few seconds
tolog you in. It will recognize you as a new
user and print a greeting message. plus
give you instructions on using the system.
It would be very helpful to have a printer
turned on at this time to save the instructions
for future reference. You will also be given
an opportunity to open an account. either
under Master Card or Visa or to be billed
monthly, once your free hour is up.

Most of the time using the CompuServe
network is as easy as reading the message
onyour screen. typing a number or a letter.
and pressing RETURN. A few commands
require you to type three or four letters.
but these are explained.

My first time on the network. I read
through the instructions for the various
services. logged into the Atari Newsletter
and sent a message to customer service.
read several current stories from the New
York Times. and looked through the other
services. Then I typed EXIT and Compu-

CompuServe

Serve logged me off the system and told
me that I had been connected for 29
minutes.

There are literally hundreds of other
computer services that you can connect
to with Telelink or similar systems from
other manufacturers. There are other
timesharing services, including The Source
and universities such as the Dartmouth
Time Sharing Service. There are many
free message services all over the country.
While some of them emphasize a particular
computer system, most welcome all comers.
You may want to try some of the services
listed in the table. After you dial the number
and get the tone, place your handset in the
cradle and press RETURN a couple of
times. The various systems should take
you from that point. Please note that some
of these numbers may be out of date when
this article appears. Once you log onto
several of them, you can usually find out
about many more. Some of these numbers
are only in operation after normal business
hours for timesharing, as they are owned
by businesses that use the lines during the
day.

The Telelink Program

As timesharing programs go, Telelink I
is very limited, but it is also one of the
easiest such programs to use. It is per-
manently set up for 300 baud (a rather
slow rate of communication, especially
when you are paying the phone bill).
transmits even parity with one stop bit
while receiving even parity or no parity.
does not allow you to write files to disk.,
and has a fixed character set. If you try to
access a computer system that does not
accept any of these limitations. you will
not be able to communicate. Actually.
most timesharing systems are either set up
this way or allow the user to specify his
own configuration.

Telelink stores print characters in a
buffer, so that you do not always have to
wait for the printer to read the screen.
You can turn the printer on and off from
the program. It can communicate either
Full Duplex (both computers sending
messages at the same time) or Half Duplex
(the two computers must take turns.)

General Use
CBBS

(Community Bulletin

Board Service)

User Groups

Forum 80 (TRS-80)

COMM 80 (OCTUG —TRS 80)

ABBS (Apple)

PET BBS
NORTHSTAR

Interest Groups
Genealogy
Amateur Radio
Commodities
Avionics

Computer Stores
Program Store

Pasadena CA
Akron OH
Cambridge MA

Chicago

Ft. Worth
CA

Seattle

New York

Y psilanti MI
Atlanta

Fairfax VA
Washington DC
Kansas City
Olathe KS

Washington DC
Seattle WA

(213) 795-3788
(216) 745-7855
(617) 864-3819

(312) 269-8083
(817) 923-0009
(714) 526-3687
(206) 244-5438
(212) 448-6576
(313) 484-0732
(404) 939-1520

(703) 978-75611
(703) 281-2125
(816) 931-3135
(913) 782-5115

(202) 337-4694

Peripheral People

For more information about the two most popular commercial timesharing networks.
use these numbers. Thev are not numbers for computer access.

CompuServe
The Source

Columbus OH
McLean VA

(206) 723-DATA

(614) 457-8600
(703) 821-6660)

Control characters that can be sent by
Telelink I include TAB, ESCAPE.
CONTROL A through CONTROL Z
(including Linefeed, Bell, XON, and XOFF).
RETURN, BACKSPACE. and RUB
OUT.

The Atari 850 Interface

The 850 Interface module allows you to
add four RS-232 serial ports and a parallel
printer port to your Atari 800 or 400
computer. This allows you to connect
printers. modems. and other standard
peripherals to your computer. Although
you would probably have to write the
software yourself, you should be able to
use it to connect lab equipment, a graphics
tablet, a plotter, or other special purpose
devices.

Atari does not currently offer any printer
cables for use with the 850 Modem. except

the one that comes with the 825 Printer. If
you do not want to buy a $995 printer to
get a $30 cable. you may be forced to
create your own. To do that. you will need
the part numbers and manufacturers of
the appropriate connectors. The 25-pin
parallel port uses an AMP connector. part
number AMP 205-208-1. The 15-pin parallel
ports use either AMP or Cannon con-
nectors, part number AMP 205-206-1 or
Cannon DB-15-P. The RS-232 serial ports
use either the AMP 17-20096-1 or the
Cannon DB 9-P connectors.

The Atari 830 Modem

This modem is a standard acoustic
modem, very similar to the Novation CAT.
By buying it from Atari, you get the Atari
name on the label. and a cable that you
know will connect to your interface, and
Atari service. 0

88

Build Your Own Light Pen

John Anderson

In this article, we’ll take stock of a
promising, yet somehow neglected
input device for the Atari computer:
the light pen. We will look at the cap-
abilities of such a device, and review a
pen available for the Atari as well as
other machines. We shall go onto out-
line steps involved in the construction
of an inexpensive but fully functional
pen, using readily available parts.

If light pens don’t sound to you like a
topic that should necessarily elicit
heated controversy or a complex and
somewhat absurd tale, you are justified,
but incorrect. Remember, you own an
Atari, so anything is possible. Read on.

In the atmosphere of inspiration that
couched the design of the Atari 400/800
computer, foresighted engineers built a
great many capabilities directly into the
hardware of the machine. Among these
was the capability to support a light pen
without the need for any additional
controller boards. Even today, not too
many other machines can make this
claim. A light pen can be quite simply
plugged into controller port 0, as if it
were a paddle or joystick. It can be read
straightforwardly with the statements
PEEK(564) and PEEK(565). And that is
all there is to it. That is, from an en-
gineering point of view, you understand.

Those with machines of recent ac-
quisition may not be aware that at one
time Atari itself slated a light pen for
production. It was to cost less than $100.
In the second quarter of 1981, a prod-
ucts brochure that showed the device in
use was released. It was a stubby, fat
hunk of plastic with a tip switch on it.
And what pretty multicolor pictures it
supposedly drew.

Mail-order houses, as they are wont to
do, accepted back orders on the Atari
pen for some time. Though the decision
to kill it was made over a year ago, the
product was listed in a few retail rosters
until only a few months ago.

At some point during its short
development, a decision was made to
pull the pen. The reasons for this remain
somewhat vague. Some have suggested
that the tip switch was flaky, making the
device unreliable.

Another explanation I have heard
from more than one reliable source goes
like this: The Atari is designed as the
machine for everybody, including novices
and kids. Marketing was skitterish about
the idea of a tiny kid fooling around a
TV tube with a big pointy stick. One
false move and gazonga: Mommy finds

John Anderson is an associate editor for
Creative Computing magazine.

Billy on the living room floor, a victim
of implosion! “Think of the lawsuits,”
said the legal department. “Pull the
pen,” said marketing.

Stop laughing. This may or may not
have been the last straw concerning the
Atari light pen. Whether it was or not,
the pen was pulled from production very
swiftly, and it is unlikely the decision
will ever be reversed. A few did manage
to get off the assembly line, however,
and the few people who own them quite
properly regard them as collector’s
items.

Hobbyists like myself, who have read
about the capabilities of light pens and
know also of the built-in pen capabilities
of Atari machines, awaited the appear-
ance of Atari-compatible light pens from
other sources. Surprisingly, at least to
me, no cheap pen has become available
in the ensuing time. It is too bad, really.
The peripherals can do a lot to make a
microcomputer friendlier.

Just how can they do this? Kind of
you to ask. First, let’s find out what they
do.

Light On The Subject

A light pen, when touched to or
aimed closely at a connected monitor or
TV screen, will allow the computer to
determine where on that screen the pen
is aimed. The driver program may sub-
sequently take that information and do
various things with it, but the job of the
pen itself is quite simply to make a time
measurement, which will be translated
into x and y coordinates representative
of a position on the CRT.

The capability may seem remarkable,

and it is, though.a simple explanation of
how it works may dispel some of the
awe. You may be aware that a TV or
raster monitor typically refreshes at a
rate of 60 frames per second. That is to
say the electron gun or guns draw 60
pictures on the screen in one second. But
it is impossible to draw an entire picture
at once. Rather, the picture is drawn by
the scan line, starting in the upper left-
hand corner, moving to the right. When
a line is completed, work begins on the
next line. The Atari standard is 192 scan
lines per frame. (An excellent explanation
of this mechanism was provided by Da-
vid Small in the June and July 1981 is-
sues of Creative.)

Now let’s imagine we have a special
kind of transistor: one that is sensitive to
light. We have hooked this transistor to
our Atari, and aimed it at a point on the
screen. By noting when a scan goes by
and measuring the interval between scan
lines or entire screen refreshes, we can
get a good idea where the phototransis-
tor is pointed on the video screen. The
pen then allows us, through software, to
generate x and y vectors corresponding
to a point on the screen, which we may
then use to draw pictures, make a choice
from a menu of alternatives, or answer
questions put to us by a program. Figure
1 is a simplified diagram of the process.

As opposed to input via the keyboard
or even a paddle or joystick, a light pen
can be a dramatically friendly periph-
eral. Imagine needing merely to point
the device at your choice on the screen,
in order to make that choice. Or to draw
a picture on your CRT as straight-
forwardly as you might use a crayon on
a piece of paper. These are the kinds of

A? e ATar sevos A DisPlar
To A CRT 1N 4 HANNER
ANALOGoUE To WRITIAG,
THE ScaA MoVES FiRom
LEFT To 2IGHT | wWiTiA
192 LINES To A "PAGE"

B® A PHoTOTRANSISTOR o
C

- cr=T

el 1)

MEASURE TIME FROM
BEGINNING OF SCAN LINE
TO POINT OF PEN (B TO C)
FOR HORIZONTAL POSITION

[MEASURE TIME FROM
BEGINNING OF REFRESH

‘TO CURRENT SCAN (A TO B)
|FOR VERTICAL POSITION

Figure 1.
89

Light Pen

possibilities a light pen affords.

By the way, you would have to work
extremely hard to push a light pen
through a CRT. It just isn’t something
you could do without extreme effort,
assuming you could do it at all.

Mightier Than The Sword

Soon after the Atari pen bit the dust, a
third-party pen for the Atari appeared
from Symtec Corporation. This pen is
about the most professional you can find

Symtec Light Pen.

for any machine. It is, in fact, an adapta-
tion of the same model used in pro-
fessional mini and mainframe
operations. Its barrel is of heavy, ex-
truded aluminum, with a coiled tele-
phone handset wire leading to an
Amphenol connector. It includes a sen-
sitivity trimmer adjustment. Everything
about the Symtec pen is top of the line,
including the $150 price tag.

Figure 2 provides an example of the
drawing capabilities of the Symtec pen.
The software driver I used to create the
caricature (portrait) of our fearless lead-

Figure 2.

10 GRAPHICS 7+16

20 SETCOLOR 4,0,14:COLOR 3

30 X=PEEK(564)

40 IF X<70 THEN X=X+230

50 Y=PEEK(565)

60 IF Y<17 OR Y>112 THEN 50

70 X=X-75:Y=Y-14

80 IF X<0 OR X>159 THEN 30

90 TRAP 30:IF STICK(0)=15 THEN
PLOT X, Y

100 GOTO 30

Figure 3.

er, Mr. Ahl, appears as Figure 3. In ten
lines, the code evidences how elementary
a driver can be. This is an obvious bene-
fit of the fact that so much of the work is
already done in hardware.

If you wish to endow your Atari with
professional light pen capability, the
Symtec pen is literally without rival on
the market. The pen is also available for
the Apple, IBM PC, and VIC-20 ma-
chines. For more information, contact
Symtec, 15933 West 8 Mile, Detroit, MI
48235. (313) 272-2952.

Penlight Light Pen

Of course, many Atari hobbyists will
be unable to budget that kind of money
for a light pen purchase. I believe the
market exists for an inexpensive pen, but
no company has yet stepped forward
with such a product. Other inexpensive
pens, for machines such as the Apple
and TRS-80, can be modified for use
with the Atari. I reasoned, however, that
it wouldn’t entail very much more work

Home Brew Light Pen.

to start from scratch. It would also be
much cheaper.

The result: for a couple of hours work
and about $10 worth of hardware, you
can put a homemade Atari light pen to
work with your system. While it will
have neither the accuracy nor the feel of
the Symtec pen, it will be perfectly
serviceable for many applications, and
loads of fun to play with. It is also easy
to make. So let’s make one!

First, you’ve got to stock some parts.
Get down to the nearest Radio Shack,
and pick up the following: one photo-
transistor, model number 276-130, 89
cents: Y/, watt 100K ohm resistor, model
number 271-045, 19 cents for two: pen-
light, model number 61-2626, $1.99.

You will also need a few other pieces
of paraphernalia. These include: DE-9
connector plug for the controller port on
the Atari, and five-conductor shielded
cable (you cannot use an existing Atari
joystick, as it lacks necessary pin-outs); a
couple of feet of insulated bell or
stranded wire; and the plastic top to a
Bic pen. You may also want a grommet

90

or strain relief for the pen top.

For tools, you’ll need this array: low
wattage soldering iron and solder; wire
cutters (needlenose pliers are handy
too); X-acto or razor knife; scissors or
reamer; small flat blade and Philips
screwdrivers; long stick pin or safety
pin; and insulating electrical tape.

Got these things together? Let’s get
going. First, unscrew the cap on the pen-
light, and disassemble the light bulb and
bayonet assembly from the white plastic
pen tip. Next, gently press the switch
assembly down through the barrel of the
pen with the Philips screwdriver. We
don’t want a penlight anymore, and we
need all the real estate inside it in order
to convert.

The cable we connect will feed
through the hole where the on/off
switch used to reside. You will pop the
switch out through the open side of the
barrel, along with two springs and a
black plastic retaining collar. When
these things have been pushed out, the
barrel will be empty, and that’s the way
we want it.

Using a closed pair of scissors or a
reamer, enlarge the switch hole on the
metal barrel top until! it accommodates
the wire, grommet, or strain relief on the
connector wire you have chosen. When
this is accomplished, push the pen barrel
onto the wire (it would be embarrassing
to construct the entire pen, then discover
you left the barrel aside, and have to dis-
assemble all your work to fit it on).

Take the phototransistor, and hold it
so that the bottom is facing you. Turn it

ps
6Q2§9

>

4O LsTSNY ®

1. EMITTER
2. BASE (NOT USED)
3. COLLECTOR

PHOTOTRANSISTOR
EMITTER

2
/ z COLLECTOR
PLAIN LEAD i\

RESISTOR PLAIN LEAD

Figure 4.

SOLDERING
\ IRON
~

PIN,
PLASTIC TIP HEATED BY IRON,~y
WILL PUT HOLE
\ IN GROOVE
L CcUT GROOVE
ALL AROUND
AT THIS POINT
Figure 5. Figure 6.

until it is oriented along the lines of the
diagram presented as Figure 4. This will
indicate the positions of collector, base,
and emitter leads of the component. You
can clip the base lead short, as we will
not be making use of it.

Solder directly to the collector lead
one 100K resistor, along with a plain
lead about four or five inches long, as in-
dicated in Figure 4. Solder another lead
of about the same length to the emitter
lead, also as indicated. Don’t use a high
wattage iron or apply heat for too long,
as you run the risk of blowing the
transistor.

Using the X-acto knife, cut all the
way around the plastic tip of the pen
light, at a distance of about Y/ of an inch
up from the threaded side, as indicated
in Figure 5. Run the blade around the
plastic tip repeatedly, until a rudi-
mentary trench begins to appear. Once it
does, use the flat blade screwdriver to
widen and deepen the groove. This
groove will hold the touch ring, which
we shall use as the switch on our pen, in
place.

Next, using the stick pin or an open
safety pin, you will put a hole in the
groove. Place the end of the pin in the
groove, then put the tip of the soldering
iron on the pin. Grasp the pin with the
pliers or far enough back to avoid burn-
ing yourself. The plastic will melt only
around the pin, and you’ll have a clean
hole through the pen cap. Work the hole
out to about the diameter of a pencil
lead. The touch ring wire will have to fit

out and back into the pen through this
hole. Figure 6 will help you gain a clear
idea of what you’re trying to do.

Figure 7 indicates the manner of
construction of the touch ring. Strip a
five inch or so length of wire entirely. If
it is stranded as opposed to solid wire,
make sure that you have twisted it to-
gether thoroughly, or it will unravel
while you are threading it into the pen
tip. The wire will loop all the way
around the pen tip, into the groove hole,
and should be tightly twisted to itself on
the inside.

We are now ready to wire up the pen.
Figure 8 provides a wiring diagram for
connection to controller port 0. We shall
be using the analog reading of Paddle (0)
to tell us whether the touch ring is open
or closed. The ground, pin 8, and the
Paddle (0) hot lead, pin 9, form the
touch ring circuit. As it turns out, this is

an extremely convenient manner in
which to activate and deactivate the pen.
The resistor is connected between the
collector and +5 volts, which is pin 7.
The collector is also connected directly
to pin 6, which is the hot pen lead. The
emitter attaches to ground, which as
stated, is pin 8 on the controller plug.

After the connectors have been sol-
dered together with their respective
leads, a test of the pen is in order, to
make sure everything will be working
when it is assembled. Plug the pen in,
boot Atari Basic, and type the following:

10 SETCOLOR 2,0, 14:SETCOLOR

1,0,0:7?

PEEK (564), PEEK (565),

PADDLE (0): GOTO 10

Upon running the program, hold the
phototransistor up to different points on
the screen, and ascertain that you are
getting different readings for each po-

“LASSO” TIP WITH
BARE WIRE

PUSH WIRE
4" ENDS THROUGH

PULL TIGHT,
BRAID WIRE TOGETHER

Figure 7.
91

Light Pen

sition. Don’t worry yet whether the
readings are perfectly reasonable. Just
make sure they change when the pen po-
sition changes. If they don’t, you prob-
ably made a wiring mistake somewhere.

When you touch the leads coming
from pins 8 and 9 together, the last value
printed in the program loop should
move well down from its default, 228. If
you are getting different PEEK values
and paddle values, all is well, and you
are in the home stretch.

Using the insulating tape, wrap up the
pen wiring assembly so that nothing will
short out when it is squeezed into the
penbarrel. There is plenty of room in the
pen for the assembly, so you shouldn’t
have to force anything.

Next solder two four- or five-inch in-
sulated leads to connectors 8 and 9,
which will detect our touch ring. One of
these leads will connect directly to the
tail of the touch ring, and the other will
ground to the exterior barrel of the pen.
This is easily effected by wrapping a gen-
erous length of stripped lead through the
square hole in the plastic tip, as in-
dicated in Figure 9. Then, when the
plastic tip is screwed on, a good ground
connection will be made via friction fit.

It is imperative that the connection to
the touch ring itself be well insulated—
your electrical tape will come in handy
again here. Make sure no bare wire is
left to accidentally short the switch.
That way it will only close when your
finger shorts it.

We’re almost done. Bet you have been
wondering what our Bic pen top is for.
Well, now we need it. Cut off the tip and
the bottom with the X-acto knife, as
shown in Figure 10, so just about a half
inch from near the top is left. This

remaining collar will act as a guide for
the phototransistor in the pen tip. Press
it into the plastic tip, tapered side first,
as shown.

After making a final inspection to en-
sure all bare wire has been insulated,
push the wiring assembly into the barrel
of the pen, leaving just the phototransis-
tor peeking out about a half inch, and of
course the switch leads and tip. Care-
fully screw on the tip, making sure that

TRAIL BARE WIRE
OUT SQUARE HOLE

Figure 9.

the phototransistor is seated well in the
pen collar, and that a satisfactory
ground connection is being made be-
tween the lead looped outside the plastic
cap and the barrel of the pen. And that’s
1t.

CUT HERE TO MAKE
RETAINING COLLAR

BIC PEN CAP

Figure 10.

There are some hardware 800 models
which cause the light pen to be read
from port 4 on the 400. If you have a
400, plug the pen into port 4 and sub-
stitute PADDLE (6) for all references
to PADDLE 0)inthe demo programs.

40 IF PADDLE(0)=228 THEN 40
50 X=PEEK(564):IF X<50 THEN
60 Y=PEEK(565)

70 X=(X-95):Y=(Y-14)

90 IF PADDLE(0)<228 THEN 90
100 ? :? :? "TOUCH THIS BAR
? "BELOW THIS BAR TO ERASE."

Y=PEEK(565)
X=(X-95):Y=(Y-14)

IF Y>96 THEN 10

IF Y>83 AND Y<96 THEN 300

IF PADDLE(0)<228 THEN 160
GOTO 120

Y=0:SETCOLOR 4,0,0:2 :?
IF PADDLE(0)=228 THEN 310

10 GRAPHICS 7:SETCOLOR 1,0,0:SETCOLOR 2,12,14:SETCOLOR 4,0,14:COLOR 1
20 POKE 752,1:2? "TO DRAW, TOUCH THE PEN TO THE SCREEN,"
30 ? “THEN TOUCH AND RELEASE THE RING."

X=X+230

80 TRAP 50:IF PADDLE(0)<228 THEN PLOT X,Y
TO REVERSE COLOR,
X=PEEK(564):IF X<50 THEN X=X+230

150 TRAP 120:IF PADDLE(0)<228 THEN DRAWTO X,Y

:? "TOUCH THE RING TO CONTINUE..."

AND"

320 X=51:Y=0:SETCOLOR 4,0,15:G0T0 20
Figure 11.
a = =
1 .) 4 - 10 GR APHICS 0:SETCOLOR 2,0,0:SETCOLOR 4,0,0
(=] (] (=] (=] 20 ? :? :? 'Question
30 2 .2 "How nany zweckas does it take to fil11"
40 ? "a quackenbush?"
o (] (=] o 50 ? :'?:]:?
60 ? "[JONE"
9 8 7 6 70 2
80 ? “[JTWELVE"
90 ?
NOTE: THIS IS THE PLUG. 100 ? "[CJHUNDREDS AND HUNDREDS"
110 ?
THE JACK WIRES UP IN 120 ? "[CJWHO CARES ABOUT QUACKENBUSHES?"
MIRROR IMAGE. 130 Y=PEEK(565)
6 - (PENHOT) - DIRECTLY TO 140 POSITION 2,22:IF Y>60 AND Y<64 AND PADDLE(0)<228 THEN ? "You must
COLLECTOR have a tiny quackenbush! *
7 - (+5v) - TO RESISTOR AND 150 POSITION 2,22:IF Y>66 AND Y<70 AND PADDLE(0)<228 THEN ? "No, but
TOUCH RING there are in a dozen. 2
160 POSITION 2,22:1F Y>76 AND Y<80 AND PADDLE(C)<228 THEN ? "You bet
8 - (GROUND) - TO EMITTER it does, buddy
- (PADDLE O HOT) - TO PEN 170 POSITION 2,22:1F Y>82 AND Y<86 AND PADDLE(0)<228 THEN ? "That's
BODY the wrong attitude to have."
180 GOTO 130
Figure 8. Figure 12.

92

Conduct another test, identical to the
earlier one. If results are unsatisfactory,
you’ll have to undo things and find out
where you went wrong. If you are hav-
ing trouble activating the touch ring, try
wetting your finger before you dismantle
anything. Because we are reading the
resistance between the ring and the bar-
rel of the pen, a dry finger can some-
times be the culprit.

You should now have a relatively neat
looking as well as functional light pen,
that passes the one-line software test
with flying colors. The time has come to
begin refining that software
dramatically.

I will provide two starting points. Fig-
ure 11 is a drawing program, which will
give you an idea of how good (or bad)
the pen is at locating itself. I built three
pens, and the calibration seemed pretty

consistent among them. Of course your
monitor will have much to do with pen
calibration.

The first place to look is line 70. Val-
ues in this line should be altered until
the plot occurs right underneath the pen
tip. If the left side of the screen reads
okay but the right half is out, you may
have to fiddle with the value in line 50.
Don’t get nervous. For most folks, the
values shown in the program will be
pretty close to perfect.

You will quickly see that the pen is
much more accurate at vertical measure-
ment than at horizontal. This is prob-
ably its biggest shortcoming, though it
has others. For one, the screen must be
extremely bright to get a good reading.
For this reason I have included an op-
tion to reverse color, which is chosen by
pointing the pen to the text window and

touching the ring. To erase, move the
pen below the bottom edge of the text
window.

Figure 12 is a simple menu selection
program to give you an idea of the
convenience of a light pen for varied
information input. The pen you have
built is more than accurate enough to
support a function such as this. The
squares in the listing are obtained by
pressing the Atari key, followed by a
space.

Needless to say, these examples are
presented just to get you started. Your
imagination can take it from here. So
there you have it. You need never be sty-
mied again when people ask you about
the light pen capabilities of the Atari
machine. In fact, they may be sorry they
asked! O

Atari Silencer

It is commonly known that, in ad-
dition to the capability of driving
sound through a television or monitor
speaker, the ATARI has an onboard
speaker, similar to the Apple II. This
speaker can and does serve in a
number of capacities, not the least of
which is to sound a prompt or signal
tone, to flag a specific mode or
indicator.

Users of the 410 program recorder
are familiar with the record and play
tones sounded as an indicator before
data input or output to tape. All users
should be familiar with the chirp of
keyboard feedback. This feature lends
a surer “feel” to the keyboard than
that found with other computers.

These features are, essentially, well-
designed and helpful. However, I've
discovered that there are times I wish 1
could fit a silencer onto my ATARI
800 Late night editing sessions or
programming when my roommate is
trying to catch forty winks have
caused friction. Certain programs I
use very frequently, like the ATAR/
Word Processor, seem to exploit the
feature to a point beyond distraction.
These features are helpful in a noisy
office environment, but seem a bit
heavy-handed in a quiet work area at
home, the most common environment
for the ATARL. I nearly discontinued

John Anderson is an associate editor for
Creative Computing magazine.

exploration of a hi-res adventure
because the program continually
prompted for pressing RETURN with
a long, shrill “blat” — shades of
operant conditioning! Isit too much to
ask to be able to turn the thing on and

John Anderson

off at will?

What could be simpler than the in-
stallation of a single pole, single
throw switch to cut out the speaker
when desirable? A “take-aparter”since
earliest childhood, 1 had already

Figure 1

10 in.

Socket Switch

Figure 2 Press here

ey
4

_—

éContacts

Original connector

To speaker
PTRLLLTY

93

Illustrations courtesy of Softside magazine.

Atari Silencer

Figure 4

Bottom Panel

Speaker leads
— v

%, VI ¢

e

1
|

Socket B.

To Switch

Socket A.

= (chl>
=\,

Computer chassis

Switch will be placed here\

Speaker

o

snooped around a bit inside the
ATARI, and knew how easy it really
would be. But, I still had a problem.
The mere thought of snipping wires or
drilling holes in my pristine machine
made the hairs on the back of my neck
stand on end. Also, though my war-
ranty had long since expired, I wasn’t
happy with the idea of doing anything
that couldnt be undone. Service
people can be put off quickly when
they see user modifications. I deter-
mined, rather wistfully, that I could
live with the buzzers.

Then, while staring at all the little
packages hanging on the wall of a
nearby Radio Shack, I made a
fascinating discovery I saw a
product called “two prong connec-
tors,” catalog number 274-342 —$2.49
for a package of six. I noticed that the
fit would be quite close to the con-
nector used on the ATARI speaker. |
then noticed “SPST micro miniature
toggle switch,” catalog number
275-624 — $1.59. Smaller than the
smallest switch Radio Shack had
stocked previously — it occurred to
me that it would fit between the vent
slots on the bottom of the ATARI. 1
suddenly envisioned a switch mod-
ification that was totally, and easily,
reversible.

The modification was a complete
success. Now that 1 can toggle the
speaker off, I realize it’s something I
should have done long ago. In case 1
need to bring the computer in for
service, the modification can be
slipped out in under five minutes.

The Project

If you wish to modify your ATARI,
you will need, in addition to the
products listed above, about two feet
of bell or other light wire, a flat blade

and Phillips screwdriver, soldering
iron and solder, and a bit of tape.

Snip the wire into two ten inch
lengths. Then, take one of the wires
and snip it into two five inch lengths.
Strip a quarter inch of insulation off
the ends of all the leads. Twist the
shorter wires onto the longer wire in
the manner indicated in Figure 1. This
will make the modification easier to
slip in and out later. Next, solder two
connectors and the switch to the wires
as indicated in the diagram. Unscrew
all collars around the neck of the
switch. Notice you are using only the
socket connectors, not the plug con-
nectors. Leftovers can be saved for
another project.

Now you are ready to begin the
operation. Flip your ATARI over
onto something soft, like a pillow.
Unscrew the five screws that hold the
bottom panel, and lift it toward you.
Notice that the controller ports must
be cleared in order to remove the
panel. Can you believe how small that
speaker is? You now know another
reason why you’re lucky to own an
ATARI. You don’t depend on that
little thing for all your sound effects.
To disconnect the speaker, pull gently
on the connector. Once the speaker is
disconnected, remove it from the
machine.

Orient the connector so that it
matches the view in Figure 2. Using a
screwdriver or toothpick, press down
on the silver tongue on the top of the
plastic connector, as you gently pull
the wire from the side. Don’t force
anything! When you’ve pressed the
tongue down far enough, the contact
will slide right out. Pull both contacts
out of the plastic container.

Next, take the bottom panel you
removed earlier and hold it so that the

94

vents are at the bottom, as shown in
Figure 3. You will mount the switch
in the left-hand vent, where there is
room to spare, and nothing nearby
that might get shorted out. Insert a flat
blade screwdriver between the two
vent slots where the switch will be
mounted. (It’s a good idea to stay over
to the left — this will make the switch
easier to reach.) Gently twist the
screwdriver to spread the slot, then
press the neck of the switch through.
The plastic will have to bend a bit to
accommodate the switch. Put on a
washer, then screw on the lock nut to
fasten the switch in place.

The final installation will be
facilitated by repositioning the back
panel so that the computer looks like
an open valise. This way, the wire
between switch and speaker will not be
stretched. First, press the speaker
contacts into the middle connector, as
indicated in Figure 4. The speaker can
now be repositioned in its place.
Gently connect the far socket to the
speaker leads from which youremoved
the original connector. Spreading
them a bit may insure a tight fit.
Finally, tuck the wire away under the
keyboard post and away from boards
and the speaker itself. There’s enough
room on that side of the computer to
insure that the modification will not
interfere with any other hardware.

You may wish to tape the original
connector to the wire itself. Then,
should you wish to remove the mod-
ification, the original connector will
be right where you left it.

Screw the back panel on, plug things
back in, and run a test. You can easily
use the keyboard REPEAT function
in memo pad mode to do this.

Listen. You can almost hear a pin
drop!

A New Basic For the Atari — Basic A+

Mike Dunn

Atari Basic was originally written by Optimized
Systems Software, at the time a division of Shepard-
son Microsystems. There have been two patterns of
Basic in microcomputers originating from Hewlett-
Packard and Digital Equipment Corp. Bucking the
trend toward the DEC orientated Microsoft dialect,
Atari Basic was patterned after the Hewlett-Packard
model, as were NorthStar and Cromemco Basics.
Contained in an 8K ROM cartridge, the Atarinow has
some new Basic’s available. One is Microsoft Basic
and the other is an extension of the original by
Opimized Systems Software, now an independent
company. This article is about OSS’s new Basic A+
and Disk operating system, OS/ A+, both written by
the same individuals who wrote the original Atari
Basic.

The new Basic adds 5K of new features to the
original Basic, with a total of 43 new statements and
functions. Basic A+ is a structured Basic and has
many user-oriented features that make your Atari
easier to use. The statements IF.. THAN..ENDIF and
WHILE..ENDWHILE help you write programs in a
structured style, and the listings produced will
automatically be displayed with the proper indents.
Nested loops are easily followed. Lower case and in-
verse characters can be used for commands, but LIST
in upper case.

For business use an extensive PRINT USING
capability as well as a TAB functions are included.
There are commands for developing fixed length
records for random access files, and an INPUT*..”
statement that allows you to specify the prompt dis-
played; it is also self-trapping so it will automatically
reprompt if the input given is in error. Other im-
provements include the ability to use subscript with
INPUT and READ statements, and added string
handling functions such as string concatenation using
“”and new commands such as FIND that search for
a particular substring. Aiding in program develop-
ment are TRACE functions, SET and SYS commands
that allow easy changing of default values instead of
POKEs, meaningful error messages instead of num-
bers, and the ability to call up the disk directory
easily in Basic, “IF ERR” instructions can be used to
test errors and direct the program flow. You can
DELete any lines between two numbers and easily
move back and forth between Basic and Assembly
Language with several special commands. Two-byte
words are directly accessible with DPEEK and
DPOKE functions. All the variables used in the pro-
gram can be instantly listed, and all the usual Disk
commands are directly available.

The most exciting feature is the extensive set of
Player-Missile Graphic commands that make using
these special functions as easy to use as PLOT and
DRAWTO with regular graphics. The Atari comes
with 9 graphics modes, with various amounts of
resolution and numbers of colors available. In-

dependent of this system called the playfield, is a
system of Graphics called Player-Missile Graphics,
that allow incredible feats such as overlays with user
defined priorities, machine speed graphics, collision
registers, shape tables. These special effects that can
be seen in Atari games such as Star Raiders. With
Atari Basic, using PEEKs and POKEs and machine
language subroutines, these special hardware registers
can be accessed, but with Basic A+, simple Basic
commands allow you to use this system with ease.
There are 14 of these commands available for use, as
well as new integrated joystick commands that
simplify Joystick use. These joystick commands also
make the movements “silky” in feel and much
smoother than found in even the ROM Atari Games.

Program number [listed in this article is similar to
the one by Chris Crawford of Atari, Inc., published in
January 81 “Compute” magazine. In that article, Chris
explained how to use Player — Missile Graphics by
defining a space ship and moving it around the screen
with a joystick. The shape table made first by a binary
image, is then converted to Hex and then to decimal.
The Shooting of missiles is also demonstrated in this
article. Some important features illustrated in the pro-
gram listed here include the format that the listing is
printed in, as this is the way the program actually
appears on the screen. The commands that begin
“PM...” are some of the special Player-Missile graphic
commands of Basic A+. Line 100 begins the WHILE...
ENDWHILE loop and will execute as longas WHILE
is non-zero. Also note the simple commands to use
the joystick. Line 110 moves the spaceship around the
screen. The second program draws the same space-
ship, then shoots missiles. The BUMP command on
line 260 access the collision registers, as many lines
between IF...ENDIF as you wish.

Basic A+ comes on adisk, and can be easily changed
by a FIXER program if “bugs” are discovered. In the
future, many other useful items are planned to further
enhance Basic A+. An APPLE versionisalso planned,
compatible with the Atari version, so programs from
one will work on the other (except, of course, hard-
ware dependent features such as Player- Missile
Graphics).

A new disk operating system called OS/ A+ has been
also released as an independent but integrated part of
the package. It includes an Assembler, as well as
many utilities in a command oriented format rather
than the menu driven format of the Atari DOS.
BATCH processing data via EXECUTE files makes
the Disk system more powerful than ever before, as it
allows the user to string together a series of programs,
and a STARTUP. EXC command allows you to
specify any file to be run on booting the disk. OS/ A+
is compatible with the Atari DOS 1l and the Basic
cartridge.

Basic A+ costs $80.00 and OS/ A+ is also $80.00
while the set is $150.00. Either works independently

Mike Dunn, Atari Computer Enthusiasts Newsletter, 3662 Vine Maple Drive, Eugene, Oregon 97405.

95

Basic A +

of the other, but the set is an ideal combination. The
advantages are many; the disadvantages include the
inability to use Atari LOAD (tokenized) files without
first LISTing them, and the inability to share your
masterpieces with other Atari owners unless they have
this Basic. Software developers can get a “runtime”
master Basic A+ to include with their programs for a

one-time license fee, regardless of the number of

copies they sell. Of course, the main competitor to this
Listing 1.

package will be Atari’s Microsoft Basic. The ad-
vantages of Microsoft are well known, including the
huge amount of published software available, but
Microsoft does not have the powerful structured com-
mands available in A+. It does also include a set of
player-missile graphics commands. For me, the ease of
use of Player-Missile graphics, and the ability to easily
interface machine language programs with Basic
justify the expense of O.S.S.’s products.

5 GRAPHICS 0

10 SETCOLOR 2,0,0iV=43{H=40

20 PMGRAPHICS 2

30 WIDTH=1

20 PMCLR O

&0 PMCOLOR 0,13,8

70 PO=FMADRI(0)

75 FOR ADDR=PO+V TO PO+V+4}
REM DRAW PLAYER

23 READ DATAIPOKE ADDR,;DATA
27 NEXT ADDR

20 REM MOTION ROUTINE

100 WHILE 1'REM FOREVER

110 VS=VSTICK(OYHS=HSTICK(0)

120 H=H+HS5!V=V-VSIPMMOVE 0,H;VS
120 ENDWHILE

200 DATA 153,189,255,189,153

Listing 2.

100 GRAPHICS 4{PMGRAPHICS

ZIPMCLR 0PMCLR 4
110 V=48IH=601SET 7,1
120 COLOR PLOT 70,10{DRAWTO 70,14
130 SETCOLOR 0,4,12{PMCOLOR 0,13,2
160 PO=PMADRI(0)
170 FOR ADDR=P0+V TO P0O+V+4
120 READ DATAIPOKE ADDR,DATA
190 MNEXT ADDR
200 REM MOVEMENT LOOF
Z10 WHILE 11V5=VSTICK(0XHS=HSTICK(0)
220 H=H+HS§!V=V-VS5IPMMOVE 0,H;VS
220 IF NOT STRIG(OYREM SHOOT IT
240 MISSILE 0,V+2,11JUNK=BUMP(0,0)

230 FOR MH=H TO z55/PMMOVE 4,MH
2E0 IF BUMP(4,3)REM HIT IT!

270 FOR VOL=15 TO 0 STEP -0.5
220 S0OUND 0,22,0,VOL

235 NEXT VOL

290 MH=2Z34{PMMQOVE 4,MH

299 JUNK=BUMP(0,0)

2300 ENDIF

210 NEXT MHIPMCLR 4

320 ENDIF

330 ENDWHILE
400 REM NEVER GET HERE
410 DATA 153,189,255,189,153

96

Monkey Wrench

Prehensile Programming

John Anderson

Basic programmers, whether profes-
sionals or struggling novices, stand to
benefit from any help they can get. Atari
Basic is a relatively friendly language in
which to work, thanks to extensive syn-
tax checking and a versatile editor. It is
an excellent system for learning—yet it
has some drawbacks.

Monkey Wrench attempts to correct
some of these, and does a very good job
of it. It provides nine new Basic com-
mands, as well as a machine language
monitor with 15 commands. It also bears
the real distinction of being the first (and
currently only) ROM board for the right
hand slot of the Atari 800.

SOFTWARE PROFILE

Name: Monkey Wrench
Type: Basic Utilities Package
System: Atari 800 8K
Format: ROM “Firmware”
Language: Machine

Summary: Provides several helpful
additions to Atari Basic

Price: $49.95

Manufacturer:
Eastern House Software
3239 Linda Dr.
Winston-Salem, NC 27106

Installation

I cannot in good conscience call
Monkey Wrench a ROM cartridge, as it
has no case to speak of. The only disad-
vantage of this is the possibility of install-
ing it backwards in the computer—a
potentially devastating disadvantage.
Atari cartridges will not install any way
but correctly. Further, the board must be
installed with the chips facing away from
the keyboard—perhaps counterintuitive
to the notions of many users. Needless to
say, care should be taken on this point.

My machine has been around for
nearly two years without ever having any-
thing stuck in the right-hand slot. Hence,
when I first plugged in Monkey Wrench,
I got some rather glitchy results, ranging
from a blank yellow screen (you may be
familiar with that one, it’s an operating
system bug), to some spectacular elec-
tronic “rain” blowing across the screen.

The manual suggests cleaning the con-
tacts with alcohol. I used a little contact
cleaning spray and plugged the board in
and out several times. When [looked at

John Anderson is an associate editor for
Creative Computing magazine.

the board contacts, they were filthy. I
cleaned them with a pencil eraser,
plugged the board back in, and got the
title display. I then experimented for over
an hour without any problems. It is also
mentioned in the manual that the 850
interface must be off before booting
Basic with Monkey Wrench.

Operation

Monkey Wrench is “transparent”; that
is to say, after the title display indicates
that it is functioning, it will not evidence
itself again until called. The sole excep-
tion to this surfaces when the user tries to
move the cursor with “control arrow”
keys. The cursor movement arrows are
now accessed without the need to press
control, while the plus, minus, equal, and
asterisk keys are accessed by pressing
control.

This option takes a bit of getting used
to, but is a much more convenient key-
board configuration for Basic editing.
Nine times out of ten, you'll want to use
those keys for cursor movement. If this
function is for some reason undesirable,
you can toggle it off with a simple “>E”
command, reverting to normal keyboard
operation.

It’s Got Your Number

Ready for an editing session in Basic?
Well get set for it, because you won't
have to worry much about numbering,
renumbering, or deleting blocks of line
numbers any more. Automatic line num-
bering is easy; simply enter “>a”, fol-
lowed by your choice of starting line
number and the increment value you
want. When you press return, those line
numbers will be displayed automatically.

This may seem to some to be a minor
convenience. All I can say is once you get
used to it, you'll never want to be without
1t.

The same goes for block deletion,
accessed by “>d” followed by the first
and last line numbers in the range to be
deleted. Certainly you could sit and
patiently delete each line of the block. In
a substantial modification, however, this
would become tedious very quickly, and
the real benefit of this feature would be
seen.

Most powerful and beneficial of the
numbering commands is renumber,“ >R”
followed by the starting line value and
the increment value you select. Monkey
Wrench will renumber your Basic pro-
gram in whatever configuration you wish,
changing not only line numbers but all
references to line numbers occurring
within the program.

I experimented with renumbering
three of my own Basic programs (of some

9

complexity), and it works perfectly each
time. It should be noted however, that I
do not use “names” to call subroutines, a
friendly and helpful capacity of Atari
Basic, i.e., “GOSUB MAINLOOP.” As
Monkey Wrench is unable to distinguish
between “name” constants and any
others in a program, this will cause prob-
lems in renumbering. This is true of any
renumbering routine, and may be reason
enough to steer away from “naming,” at
least when confronted with a choice
between quick and painless renumbering
and named subroutines.

Because the renumber command uses
screen memory as a buffer, there is a
limit to the length of a program that can
be renumbered. By changing the graphics
mode, the total length can be brought to
about 1000 lines of code —probably more
than you'll need for any single program
file.

Some More Than Marginal Additions

By pressing “>M?”, screen margins can
be reconfigured without the need for
cryptic POKEs. Since the Atari screen
defaults to 38 characters, many program-
mers (especially those with video moni-
tors) will want to move the margins out to
a full 40 characters.

For those who wish to commune with
the Atari CPU, the command “>#" will
convert decimal values to hexadecimal,
while “>$” will convert hex values to
decimal. For beginning machine language
programmers (of which category I am a
lifetime member) these utilities are indis-
pensable.

Typing “>T” followed by hex values
will perform a memory test. Don’t be
shocked if you discover some bad bits of
RAM in your Atari. I did, in two
machines. The only disadvantage to this
function is that testing is very lengthy,
and looks just like a system lock-up unless
bad bits are turning up.

Monitor Does Not Support Disk

In addition to these commands, a small
machine language monitor is provided.
Memory location contents can be dis-
played between any two addresses, and
be toggled to display the ATASCII equiv-
alents of these contents, as well as dis-
assembled. The 6502 register contents
can be displayed, memory and registers
altered, and searches conducted within
code for ASCII strings or hex characters.

Memory can be saved and loaded, but
very unfortunately, only to cassette.
Thus, this monitor will be of only limited
utility to all but the most single minded
hackers. The monitor is handy for devel-
oping short machine language subrou-
tines within Basic programs, and while it

Monkey Wrench

will run without Basic, it will probably
not be of much use in this mode.

The utilities offered by Monkey
Wrench are easier to use than disk-based
utility programs. They never have to be
loaded, and are not co-resident with the
program you are working on, at least as
far as the screen editor is concerned. All

commands are available at the touch of a
button or two, and with the exception of
the RAM test, are uniformly quick to
execute. This “transparent” quality will
be most appreciated by the intermediate
programmer, at whom the package is
best aimed.

You will note that I hedged a bit about

what Monkey Wrench does in and to
RAM. The fact is that it does eat up some
memory, including part of page six,
which could cause some rare problems.
Remember also that each cartridge eats
up 8K when plugged in: Basic and
Monkey Wrench will bring free memory
on a 48K machine down to about 30K.]

String Arrays in

Atari Basic differs from most other
micro-Basic dialects in its handling of
strings. Atari Basic allows strings of
any length (limited only by the hard-
ware resource of memory). At the
same time an expression like A$(X,Y)
in Atari Basic is a substring reference,
standing for that piece of A$ begin-
ning at the Xth character position of
A$ and running through the Yth
position. In many other Basics
A$(X,Y) is a string array reference,
implying the existence of an array of
many strings and referring to the par-
ticular string at row X, column Y in
the A$ array of many strings.

It is inevitable that those used to
reading and programming other
Basic’s will perceive this difference as
a shortcoming of Atari Basic. In fact
this is not necessarily a shortcoming
at all, but rather a reasonable design
decision in implementing a Basic. If
the use of substring operations will be
more common than the use of string
arrays and thisisa reasonable assump-
tion for micro-computer applications,
then one can eliminate slow and
clumsy special function calls such as
MIDS$(), LEFT$(), RIGHTS$()
in favor of compact, direct substring
references like A$(). Properly done,
this results in a Basic which is faster
in executing more common opera-
tions. For the occasional application
where a string array is needed, it is
possible to build your own string
arrays in Atari Basic by setting up a
single “large” string, and then defin-
ing a calculation to convert a row-and-
column reference into the correct
substring reference for the “piece” of
the “large” string corresponding to the
row-and-column reference which was
made. If you stop and think about it,

David E. Carew, Interactive Management
Systems Corp., 3700 Galley Rd., Colorado
Springs, CO 80909.

Atari Basic

there are no “rows and columns” in
a computer’s memory. Those Basic’s
which provide arrays do so by simu-
lating rows and columns out of a
straight list of memory addresses, or
positions in memory. We can easily
duplicate this behavior by simulating
“rows and columns” out of a straight
list of character positions in a single,
large string. This article is to show
exactly how this can be done.
Suppose we wish to have a string
array 4 rows by 3 columns, with each
string in the array having a maximum
length of 20 characters. We start by
setting these quantities up in variables:
100 ROWMX = 4: COLMX = 3:
LNGMX =20

Given these quantities, we know how
long to make our “array” string:

150 TTS1Z = ROWMX * COLMX
* LNGMX

200 DIM ARRS$(TTS1Z)

We could perform the reference
conversion calculations each time a
reference is made in the program, but
since each repeat of a particular refer-
ence would imply a repeat of exactly
the same calculation, it is more effi-
cient as well as more convenient to
perform the conversion calculations
once and store the results in such a
way that they are easily accessed as
needed. One table (numeric array) for
the beginning substring positons and
one for ending substring positions
allows for convenient addressing; and
this is illustrated below:

206 REM BG IS BEGIN SUBSTR
TABLE, EN IS END SUBSTR

210 DIM BG(ROWMX,COLMX)
220 DIM EN(ROWMX, COLMX)

230 REM INITIALIZE “STRS
ARRAY” CONTROL TABLES

240 FOR RW=] TO RDWMX :
FOR CL=1 TO COLMX

98

David E. Carew

250 BG(RW,CL)=COLMX *
LNGMX * (RW-1)+(LNGMX*
(CL-1)+1)

260 EN(RW,CL)= BG(RW,CL)-1
+ LNGMX

270 NEXT CL: NEXT RW

The only step remaining would be to
initialize ARRS to all blanks (or some
other appropriate filler).

Having made these extra arrange-
ments to start with, then every occur-
rance of another Basic’s ARR$(X,Y)
expression might be replaced with an
Atari Basic equivalent:

ARAS$(BG(X,Y),EN(X,Y))

This solves the address conversion
part of the problem. A detail or two
may remain. In most string-array
Basic dialects, ARR$(3,4) may have
a length of zero, or any other length
up to some maximum. In Atari
Basic, using string-array simulation,
ARRS$(3,4),EN(3,4)) has a length of
LNGMX exactly, no more and no less.
The consequences of this detail depend
on the application. For instance, a
string-array Basic may test for an
empty array cell using a LEN func-
tion, like this:

6000 If LEN(A$(3,4))= 0 THEN.. ..

The equivalent array-simulation
code might involve a string of length
LNGMX initialized to all blanks.
Then an empty cell is not LEN equal
zero, but rather equal to the “always
empty” string, e.g.:

6000 IF A$(BG(E,Y),EN(X.Y)) =

NULS THEN . . .

Also, placing a string shorter than
LNGMX into a simulated array may
require taking its length into account.

7000 ARRS$(GB(X,Y),BG(X.,Y)

-I+LEN(NEWS$))=NEW$§
The above code places a short (i.e.,

LEN(NEWS) =LNGMX) NEWS into
the X,Y cell of ARRS, beginningat the

first character position of the cell and
taking as many positions in the cell as
required by the length of NEWS$. This
statement is obviously longer, less
intuitively clear and certainly some-
what slower executing than the non-
Atari Basic equivalent:

7000 ARRS$(X,Y) = NEWS

“However, the simulation still pro-
vides a single statement, directly sub-

stitutable for the non-Atari equiva-
lent, if for example you are covering
a listing from some other Basic. I have
found that other details I have encoun-
tered are similarly susceptible to fairly
happy solutions.

The next time you have an applica-
tion which cries out for string arrays
(or a possible conversion of a listing
which already uses string arrays) you
might consider the approach sug-

gested here. Once you have mastered
string array simulations for the rela-
tively rare situations where you
actually need them, then Atari Basic’s
compensating payoff of quicker,
cleaner substring manipulation seems
all the sweeter.

Talk is Getting Cheaper

Giving your computer the power of
speech is no mere frill or gimmick. The
potential of such capability, for the han-
dicapped as well as microcomputer users
at large, is dramatic.

For as long as microcomputers have
been around, the cost of such potential
has remained a prohibitive factor. But
that is changing fast.

Following is a look at three speech
synthesis packages for the Atari com-
puter. These packages represent the
range of possible configurations: the first
is an independently powered piece of
hardware, which can hook up to any
microcomputer using a serial or parallel
port; the second consists of an Atari
specific external module, driven by soft-
ware; the third works entirely in software,
using the synthesizer chip already in the
Atari.

The Echo GP

I have had an opportunity to experi-
ment with the Echo Speech Synthesizer,
from the Street Electronics Corporation,
for quite a while now. It is a sophisticated
unit, while at the same time fun to use.

It is based on the Texas Instruments
TMS 5200 speech processor chip. This is
in contrast with its nearest competitor,
the Votrax Type 'n Talk, which uses the
Votrax chip.

The unit makes use of its own 6502
microprocessor, and interfaces as if it
were a printer. It is available in RS-232
serial or Centronics parallel versions. This
means that the 850 interface is needed to
drive the Echo from an Atari computer.
We received the serial version, and con-
trolled it through the 850 using Atari
Basic.

John Anderson is the associate editor of
Creative Computing magazine.

Upon power-up, the Echo unit responds
with the phrase “Echo ready,” to let you
know all is well. One of the first points
the user will notice is that the Echo is
capable of intoning a sentence. Rather
than speaking in monotone, the pitch of
the voice is dynamic. This makes for a
more intelligible and less grating speech
quality.

You can use the internal speaker of the
unit or route the sound to an external
speaker. I found it convenient (as did

John Anderson

those around me) to use an earphone
when involved in speech editing sessions.

Textalker

Textalker is the ROM based program
Echo uses to convert English into speech.
Echo can translate English text into
phonemes directly, with an impressively
low error rate. It can be disorienting, but
even when Echo mispronounces a word
or syllable, the listener can usually make
sense of the sentence from its context.

l Do Re Mi Fa So La Ti Do

QOctave | - 12 15 18 20 23 26 29 31

Octave 2 - 31 34 37 39 44 48 51 53
Octave 3 - 53 56 58 61 63

Figure 1. A rough pitch table to give the synthesizer a singing voice. Flats and
sharps can also be supported, but I have not taken the time to locate them.

30 DIM I¢C100?
40 READ I%

50 IF X="STOF"
40 FRINT #1,I¢
90 GOTD 40

1000 DATA a4 12F
1010 DATA SOME
1020 DATA 331F
1030 DATA WHERE
1040 DATA 29F
1050 DATA OAY
10460 DATA 3 23F
1070 DATA ER
1080 DATAH 1 26F

THEN STOF

10 REM ECHO SINGS ITS HEART OUT _
20 REM ASSUMES SERIXAL FORT IS OFEN AND CONFIGURED

1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200

DATA THE
DATA 2 29F
DATA RAIN
DATA 4 31F
DATA EOW
DATA A 12F
DATA SKIES
DATA 1V 26F
DATA ARE
DATA 3 23F
DATA ELUE
DATA STOF

Figure 2. With a singing synthesizer your micro won't be in Kansas anymore. The
character “ 7 " is what control-e looks like on the screen.

99

Talk is Getting Cheaper

This is not to say that Echo has the
diction of Henry Higgins. In fact, it takes
a bit of time to become accustomed to
the unique “accent” of the unit. As is the
case with some foreign speakers, accus-
tomed listeners will typically understand
words that first-time listeners will miss.
Echo has trouble with the “g” sound in
words like “go,” and “1” sounds give it
problems as well.

In this respect, the monotone of the
Type 'n Talk wins out. (A thorough
review of the Votrax unit appears in the
September 1981 issue of Creative
Computing.) Though it also has its share
of vocal peculiarities, it does, on the
whole, enunciate more clearly than the
Echo. And yet, for extended periods, I
would much rather listen to the Echo.
The monotone of the Votrax unit gets me
down after a while—too “computerish.”
It was an unfortunate design decision.
The Votrax chip itself, as we shall soon
see, does allow for software pitch control
which results in much more natural
sounding speech.

The features of Echo are accessed
through control characters. For instance,
pressing CONTROL-E will enable the
Textalker command set. Following this
character with a number from 1 to 63 will
determine pitch, which can be toggled
from f (for flat, meaning unintoned), to p
(for pitched, meaning intoned). In what I
think is a first for microcomputers, I
found that the Echo could be program-
med to “sing” through careful use of these
commands. In fact, the unit provides for
about three octaves. Not a bad range! A
pitch table and sample program appear
below.
be controlled by text punctuation. A
comma will create a pause, a period will
cause a drop in pitch at the end of a
sentence, and a question mark will result
in a rise in pitch.

Textalker can also be commanded to
pronounce each punctuation mark it
encounters. Similarly, the user may
choose to have all upper case letters pro-
nounced as letters (use this mode to get
IBM to sound right), or to have all words
spelled out letter by letter.

The rate of speech may also be com-
pressed resulting in twice the text in the
same amount of time. Remarkably, this
function sometimes increases rather than
decreases the intelligibility of certain
sentences.

According to the documention, the
Textalker component of the Echo Speech
Synthesizer “contains close to 400 rules
which allow it to correctly pronounce
over 96% of the thousand most commonly
used words in English.”

I was pleasantly surprised at how well
Echo did with unaltered text. Having
worked with phonemically-based sythe-
sizers in college, I realized this was quite
a feat. Of course there are some words
Echo has trouble with. Fortunately, an
appendix, which outlines the kinds of fixes
to apply to these words, is provided. They
are as simple as the addition of a space,
such as “cre ate” for the word “create,”
or the spelling of the word “question” as
“kwestchun.”

Phoneme Generator

In addition to the Textalker module,
speech can be programmed at the pho-
nemic level, using the Speakeasy
Phoneme Generator, also resident in
firmware. This mode is selectable by the
character CONTROL-V, and provides for
much more detailed control. Stress,
pause, pitch, volume, and rate controls
can be embedded directly into the text
strings.

This approach requires the use of a
phoneme code, detailed in the documen-
tation. It bears little resemblance to any
phonetic alphabet I have come into con-
tact with, but the 48 sounds it provides
are more than enough to do the job.

Male DB-9 - Male DB-25
(toserial - (to Echo GP)
port #1)

Pin 1 No connection
Pin 2 No connection
Pin 3 Connects to pin 3
Pin 4 Connects to pin 2
Pin 5 Connects to pin 7
Pin 6 Connects to pin 20
Pin 7 Connects to pin 5
Pin 8 Connects to pin 4
Pin 9 No connection

Figure 3. Wiring a cable for connection
to the Atari 850.

Unfortunately, the effort it takes to
achieve satisfactory results using this
approach is somewhat unreasonable,
especially in contrast to the serviceable
job Textalker does. However budding
linguists should take note. The phonemic
approach offers great experimentation
potential. I did manage to get the Echo
speaking a little German.

The Echo Speech Synthesizer lists for
$300, which is admittedly a bit stiff. Still,
it is comparable to the price of the Type
‘n Talk. And if you want your micro to
sing Thomas Dolby tunes, the Echo is the
only choice.

Hooking Up

In March of this year Creative ran a
review of the Echo Speech Synthesizer
board for the Apple II. At that time,
Textalker and Speakeasy were in the
development stage. The Speech Synthe-
sizer offers much greater flexibility and
power, as well as the capability for con-
nection to any personal computer.

However this does not automatically
imply easy connection. Even with our
experienced people here at the magazine,
it took us a while to make the Echo
conversant with the Atari.

The documentation that arrived with
our Echo was preliminary. All the infor-
mation we needed was there; I do hope
that the final documentation will be an
improvement, though.

The real fault lies with the 850 interface
module documentation: it provides begin-
ners with quite a run for their money.
Here is a way to succeed.

The first thing to do is wire an interface
cable, by connecting a DB-9 male to DB-
25 male connector. The pinouts given in
Figure 3 work with serial port number 1
on the 850.

Next you need to configure the Echo
and port number one so that communi-
cation may be established. I used a data
transfer rate of 1200 baud. This entails
setting the DIP switches on the bottom of

10 OFEN #1,12,0," "RLt"

20 XI0

30 DIM T$CL100)

40 I$="A15F HI THERE,
WHEN YOU ARE.,,

60 FRINT #1,I%

70 INFUT 1%

80 FRINT #1,I1%

0 GOTD 70

36, kL, 10,8, "RLI"

THIS
OUER,"

IS ECHO G READY

'ZZI s

Figure 4. It is this simple to configure serial port number one and input text for

“ ””

synthesis. Again the

1" character signifies control-e. Don't forget to boot the

device handler prior to running the program.

100

the Echo so that positions 1 and 2 are on,
while position 3 remains off. Position 4
also remains in the off position to enable
“handshaking,” as we say in the trade.

The serial port is configured through
software. Figure 4 shows an example of
this configuration, as well as a short
program allowing for straightforward
experimentation with the unit.

Make sure the 850 device handler is
booted whenever using the serial port.
This occurs as an autorun.sys file on the
Atari DOS disk. Make sure it is resident
on any program disk for use with the unit.
Power up the 850, then boot a disk with
the handler file. You will then be set to
go.

For more information concerning the
Echo, contact Street Electronics, 1140
Mark Ave., Carpinteria, CA 93013.

The Alien Group Voice Box

The Echo has everything it needs to
effect speech synthesis onboard. Like a
printer, it awaits a stream of characters;

it would just as soon pronounce text files
from bulletin board services, Compu-
serve, or the Source. The Atari, thus, is
free to do whatever processing you have
in mind, while the Echo works
independently.

This is a fine capability, but also an
added expense. The Voice Box from
Alien Group takes some of the internal,
ROM based capabilities of the Echo, and
efficiently uses Atari RAM for their
storage. The Voice Box uses a Votrax
SC-01 chip, and connects directly to the
Atari input/output jacks. It will neces-
sarily be the final connection in the I/0
daisy chain, as it offers no jack of its own.

The external module is no bigger than
a transistor radio, and draws power direct-
ly from the Atari. It lists for $170, in-
cluding driver software, which is available
in cassette or disk versions.

The Voice Box is manipulated from
Atari Basic, and does not offer an RS-232
handler program. Using patches from
Basic, however, it can be controlled from

The Apple II has no special advan-
tage over the Atari when it comes to
speech synthesis. The Echo, Votrax,
and many other voice systems work
equally well for both computers.

The history of software-only synthe-
sizers for the Apple dates back to 1979
when Softape published a program
called Apple Talker. That program has
been discontinued, but Muse publishes
The Voice, an inexpensive program
that serves the same purpose. Sirius
Software, the renowned game pub-
lisher, produces Audex, a general pur-
pose audio program that can be used
to approximate speech. For the most
part, these programs deliver results
that are interesting, but only sporadi-
cally intelligible.

Hardware voice products for the
Apple also abound. Voice input can
be recognized by peripherals from
Scott Instruments, among others.
Mountain Computer carries a remark-
able input-ouput device that turns an
Apple into a digital audio recorder.

At $130 for the Apple version, SAM
is the first product to combine unlim-
ited vocabulary, impeccable intelligi-
bility, and reasonable price.

The SAM package includes a little
bit of hardware and a little bit of soft-
ware. The hardware is a board con-
taining a digital-to-analog converter, a

SAM Speaks Apple Il

tiny amplifier, and an even tinier vol-
ume control. The software includes all
the programs described in the main
part of this article.

SAM sends output to an 8-ohm
speaker. You can use the speaker
inside your Apple or, for better results,
attach a slightly larger one. Installing
SAM is no more complicated than
hooking an Apple to a TV set.

SAM uses the simplest possible
interface to a sound system. In
exchange for the simplicity of the
hardware, the developers had to write
large and complex programs. The pro-
gram that produces speech based on
phonetic codes occupies 9K of RAM.
Another program that translates
English text into phonetic codes
requires an additional 6K. These pro-
grams live in an area usually reserved
for Applesoft string variables. The
English translator also overlaps the
memory associated with the second
graphics image (Hi-Res page 2) of the
Apple.

Because of these requirements,
SAM can not cooperate with most
other programs. You can not add
speech capability to your word pro-
cessor or terminal program, for
example. Pascal, Logo, Graforth, and
most other languages can not use
SAM.—MC

101

a machine language program.

Your machine must have at least 16K
to run the Voice Box. If you have 32K or
more, you can run two additional pro-
grams included with the package: the
Random Sentence Generator and the
Talking Face. More about these later.

When the driver program is run, the
box responds with the phrase “Please
teach me to speak,” or if a dictionary is
loaded, the words “Yes, Mahster,” to let
you know everything is working.

While calling on its own phonetic input
code, as does the Echo, the system also
uses a unique approach to convert char-
acter strings into speech sounds. English
text and phonetic code may be freely
intermixed, rather than requiring separate
modes, as is without exception the case
with every other text-to-speech system I
have seen.

Dictionaries

The key to working with the Voice Box
is the creation of your own dictionaries.
These are the “word equations” specified
to translate words into phonemes. For
example, by typing “spek=speak,” you
will ensure that each time the word
“speak” is encountered, it will be pro-
nounced correctly. Dictionaries are saved
and re-alled, as independent files, to
cassette or disk. In addition to those you
create, three pre-written dictionaries are
supplied with the driver software.

Dictionaries eat up computer memory
quite quickly —each word equation takes
up ten bytes. In order to store phonemes
more effeciently, word fragments can be
stored. You can define fragments to be
recognized only at the beginning or the
end of a word, or at every occurrence.

Because dictionary size is limited, the
dictionary approach itself is necessarily
limited. Even with 48K, no dictionary is
going to produce impressively accurate
text-to-speech capability. In this respect,
the Echo has a much more sophisticated
algorithm. This is the main trade-off
between the two systems.

In fact, if you have more than 32K, you
must change the dimensions of a string
statement in the Voice Box driver pro-
gram in order to store larger dictionaries.
The documentation clearly states how to
do this.

Other Features

Similar to the Type 'n Talk, the Voice
Box sports a potentiometer knob on the
front of the case, that can be used to vary
the speed and pitch of the speech. The
Voice Box unit allows for pitch control
through software, too. Control is
restricted to four registers, utilizing the

Talk is Getting Cheaper

.

Figure 5.
f PHONETIC ALPHABET
FOR S.A.M.
The example words have the sound of the phoneme, not necessarily the same letters.
i N
VOWELS VOICED CONSONANTS
Y feet R red
IH pin L allow
EH beg w away
AE Sam WH whale
AA pot Y you
AH budget M Sam
AO talk N man
OH cone NX song
UH book B bad
UXx loot D dog
ER bird G again
AX gallon J judge
I1X digit r4 z00
ZH pleasure
Vv seven
DIPHTHONGS DH then
EY m_ade
AY high UNVOICED CONSONANTS
oYy boy
AW how S Sam
ow slow SH fish
uw crew F fish
_ i TH thin
P poke
T talk
K cake
CH speech
The following symbols are used internally /H ahead
by some of S.A.M.s rules. butthey are also o
available to the user.
YX diphthong ending
WX diphthong ending SPECIAL PHONEMES
RX R after a vowel
LX L after a vowel UL settle (= AXL)
/X H before a non-front UM astronomy (= AXM)
vowel or consonant UN function (= AXN)
DX “flap” as in pity Q kitt=en (glottal stop)
N s

K Note: The symbol for the "H" sound is /H. A glottal stop is a forced stoppage of sound. /

Figure 6.

0 GRAPHICS O
10 REM —--DEMQO--
Z0 DIM SAM$(ZS5)ISAM=2172

25 %=0
40 SPEED=2208¢PITCH=220%
45 X=X+5{IF X>45 THEN X=0

70 A=USR(SAM)
20 GOTO 45

50 POKE SPEED, XIPOKE PITCH,100
L0 SAM$="ULEHKTRAAANIXK /HULUWASIXNEYS5HUNG,"

20 SETCOLOR Z,0,00SETCCLOR 1,0,0iSETCOLOR 4,0,0iSETCOLOR 2,0,0

102

slash and the backslash characters to
move between them. This negates the
musical capabilities of the unit, but is a
step ahead of the monotone of the Type
‘n Talk.

Because so much of the Voice Box is
RAM resident, you must decide how
much of the memory of the Atari to allot
to dictionary space, in addition to your
own Basic programs, and the Voice Box
driver. The disk version includes a pared-
down driver program for incorporation
into other programs. The documentation
also gives hints for memory conservation.

In the 32K version, several other fea-
tures appear. The first is the Random
Sentence Generator. The Voice Box will
compose random but grammatically cor-
rect sentences from its stored word lists.
These can be modified with word lists of
your own creation. I obtained some rather
strange results in my attempts at this.
While many were semantically bizarre, 1
must_admit the sentences were gram-
matically unassailable. Be prepared for a
few shocks when you try this.

There is also a mode called The Talk-
ing Face. This displays an animated face,
with impressive lip synch simulated as
words are articulated by the Box. I am
sure this feature would be a big hit with
the kids.

The documentation accompanying the
system is a bit uneven in places, but
manages to cover all the features of the
Voice Box in a scant nine pages. The
phoneme list is quite complete. The
documentation also goes as far as to
suggest to assembly language program-
mers a means of updating data to the box
while running machine language ani-
mation routines.

While the Voice Box is not really in the
same league as the Echo, it offers many
of the same features for much less money.
For more information contact the Alien
Group, 27 West 23rd St., New York, NY
10010.

The Software Automatic Mouth

In the September 1982 issue of
Creative,] mentioned that the Atari was
capable of speech synthesis using only its
internal hardware. The game Tumblebugs
taught the Atari its first words: “We
gotcha!” This came as a happy revelation
to many.

Well with Software Automatic Mouth,
SAM for short, Mark Barton has brought
this possibility to fruition. He has created
a disk-based, unlimited speech synthesis
program, requiring no external hardware.
And the speech quality of SAM competes
favorably with the best systems available
for microcomputers.

SAM uses the Atari sound chip, Pokey,
to generate speech. Even with my unbrid-
led faith in the capabilities of the Atari, I
was quite surprised at how well it does
the job. Pokey is at least as intelligible as
its two competitors, the TI and Votrax
chips.

SAM is the only package around that
dares to include lengthy prepared speech
demonstration programs to show off its
articulative powers. My colleagues agreed
that no break-in period was necessary in
order to understand SAM.

The documentation supplied is equally
impressive. It not only makes operation
of the program very simple, but provides
background information concerning lin-
guistics and speech synthesis. It helps to
make the program into an excellent tu-
torial on the subject.

I did encounter one snag, if only in my
eagerness to get rolling with the package.
You must copy all the Basic programs
from the master disk to a new diskette.
The autoboot assembly language program
that constitutes SAM runs from the mas-
ter, but support programs must be loaded
from the new disk. The reason is that the
support programs require a mem.sav file.
The write-protected master disk will, of
course, return an error if a mem.sav
attempts to write to it. The documen-
tation clearly states that you must use an
un-write-protected new disk with a
mem.sav file on it. In my excitement to
get going, I did not heed these instruc-
tions, and ended up wasting some time.

Support programs included with the
package are: Reciter, which is an English
text-to-speech translation program; Sayit,
the short Basic program which makes
experimentation simple; Demo and
speeches, two files that impressively

demonstrate the powers of SAM; and
Guessnum, a spoken version of a number-
guessing game.

An RS-232 handler program is also
provided, allowing SAM to act as Echo
does to read telecommunications text.

It is extremely simple to work with
SAM from Basic. All that is needed is to
define SAMS as it appears in Basic, and
then invoke either SAM or Reciter
through a USR call. You can also effect
machine language patches from Basic.

Speech Quality

The really remarkable thing about
SAM is its (his?) intonation—SAM can
be extremely expressive. Control of stress
placement is easy. The phonetic code is a
bit strange, but very nicely laid out in the
documentation (see Figure 5). A ref-
erence card is also provided.

Similar to the Echo, punctuation is
“understood.” A hyphen is read as a short
pause, and is handy for delineating clause
boundaries. A comma inserts a pause
equivalent to two hyphens. A question
mark also inserts a pause, as well as
making the pitch rise at the end of a
sentence. Likewise a period makes the
pitch fall.

SAM is capable of speaking only 2.5
seconds without a break. If a string
exceeds that length, a short break will
automatically be inserted. If you don’t
like the placement of automatic breaks,
you can stipulate their positions with
hyphens. The breaks are so short as to be
hardly noticeable, and cause few
problems.

SAM can be controlled more creatively
and flexibly than Echo or Voice Box. The
pitch and speed of SAM speech can be
altered through with POKE statements. I

got some wild results playing with these.
A sample program, Figure 6, shows how
speed effects can be achieved.

The timbre of speech can be varied to
make SAM sound quite human—or like a
droid from Star Wars.

An 18-page English-to-phonetic code
dictionary appears in the documentation
to help in speech programming. In
addition, SAM flags phoneme input
errors. When a bad phoneme occurs in
the immediate execution mode, an error
is flagged in the same way as syntax errors
in Basic. By PEEKing decimal address
8211, you can trace these problems when
they occur in the deferred mode.

At the incredible price of $60, there
must be a catch, right? Well there is, sort
of. Because SAM uses the Atari to do all
its work, DMA is shut down during artic-
ulation. This means the screen goes blank
wuring speech—no animation, no text,
nothing. The documentation tells you
how to re-enable DMA during speech,
but warns that this distorts SAM s speech
rather badly. However, this blanking takes
place only during articulation. As soon as
a string is finished, DMA returns and all
is normal.

I cannot overstate how impressed I am
with the Software Automatic Mouth. Itis
a remarkable feat of software savvy, and
probably one of the best buys available
for the Atari computer. Its higher-priced
competitors have their advantages, but
would do well to strive for the same strong
documentation this package has. If you
wish to give your Atari the power of
speech, have a disk drive, and are on a
limited budget, look at this program. For
more information, contact Don’t Ask
Software, 2265 Westwood Blvd. Suite B-
150, Los Angeles, CA 90064. O

Axlon RAMDisk

128K Memory System for Atari

A while ago a group of employees left
Atari and formed Axlon Co. to manu-
facture add-on products for the Atari com-
puter. They produce a 32K RAMCram
card, and a 256K RAM system, complete
with expansion interface.

So when ads began to appear for their
RAMDisk, I was intrigued. I couldn’t
resist calling them for more details.

They turned out to be most friendly and
mailed me a loaner RAMDisk for evalu-
ation. This review is based on my use of the
product for a month.

The RAMDisk arrivesina 9’ x 11’ x 17’

blue box which contains a manual, a
diskette, and a memory cartridge. The
manual is housed in an attractive notebook
with the diskette in a side pocket.

The memory board looks like an Atari
16K cartridge except that it has no top or
sides. (It does have front and back covers,
though.) This is probably to help the
RAMDisk get rid of heat.

The manual is well written, and very,
very clear. I decided to trust it immedi-
ately, and began following the setup direc-
tions.

103

Getting Started

First, one boots up the system with a
normal Atari 2.0S DOS disk. The Axlon
disk is fast formatted and uses Atari di-
rectory formats and such, but does not
contain DOS.SYS or DUP.SYS, so you
can’t boot up with it. Next, I ran a Basic
program called CREATE to create a boot
disk (a disk used whenever the system is
powered up or re-booted). Following the
instructions, I put in the Axlon disk, then a

Axlon RAM Disk

blank disk, and created a boot disk. No
problem—uvery easy to do.

Next, I turned the computer off, re-
moved my middle 16K board, and put in
the RAMDisk. Two memory boards are
required, for some reason, on either side of
the RAMDisk. Perhaps they keep it from
getting the electrical equivalent of lonely.

Then, I booted up using the new boot
disk. A most foreboding message flashed
onscreen for about five seconds, just long
enough for a speed reader to comprehend
it. It pointed out that the Axlon MMS
(Memory Management System) was an
end-user initiated change to Atari DOS
and that Axlon doesn’t condone making
copies and distributing them.

Here is my first complaint with the
MMS, Axlon’s DOS 2.0S: you have to sit
through this silly legal message every time
you boot up with the MMS disk. The first
time, it’s fun, and even witty. The second
time, half witty, and after that, not funny
at all. I was ready to disassemble the boot
file and ‘‘short out’’ the message after a
month of seeing it.

Once you’re through the message, you
get to Basic or whatever you’re running.
The RAMDisk hardware operates just like
anormal 16K cartridge unless you specifi-
cally tell it not to. There’s just about the
same amount of free memory as before. So
I typed DOS.

Next surprise. No click, whirr of the
disk. The DOS menu popped up right
away, just like the old DOS 1, but appar-
ently without the memory sacrifice, ac-
cording to FRE(0). And my, how the DOS
menu has changed.

The Menu

First, the top line is not Atari 2.0S
anymore. It is the Axlon RAMDisk MMS
System V1.0. Most of the options look the
same, but two are disabled: writing DOS
files and creating MEM.SAV.

Second complaint. I don’t care about
MEM.SAV; I never use it. But I want to be
able to write the DOS files after formatting
a disk. The DOS and DUP files are on
nearly every disk I have, making for few
bootup problems. But Axlon doesn’t want
complaints about folks copying DOS, so
they disabled it. Aside from these two
changes the menu is a duplicate of the
Atari 2.0S menu.

How do you use the RAMDisk? The
RAMDisk contains 128K bytes of
memory. A diskette contains around 90K.
So the Axlon MMS makes ‘‘disk #4”’ the
RAMDisk memory area. You literally use
the 90K of the memory board as disk
number 4.

You can copy to it, open files on it, close
them, NOTE/POINT them, and so forth.

You can copy an entire disk to RAM. You
can run directories, lock files—everything
you can do to a normal disk—to the
RAMDisk (disk 4). In short, the RAMDisk
replaces disk 4.

Here’s an example. Let’s say I have one
disk drive and I need to duplicate a disk. I
load the Axlon MMS, go to DOS, and J
(duplicate disk) from 1to 4. This copies the
whole diskette into RAM. Next, I put in
my destination disk, and copy from 4 to 1.
All done. (No more swapping diskettes
back and forth.) This is very nice and very
easy. It is also fast. I could load 220-sector
binary files in less than a second from the
RAMDisk. This compares to more than 30
seconds for a disk drive.

Software houses should take note here.
The RAMDisk is a very good thing for
you. Let’s say you need to make 100 copies
of a given diskette. Without the
RAMDisk, you can either use two drives—
one to read the master and one to write the
destination disk (wearing the master and
its drive out)—or use one drive and swap
disks like mad. With the RAMDisk, you
copy the master into RAM, then proceed
to make your copies from RAM. This
product would well pay for itself in saved
time and disk drive wear—heavy use is
hard on Atari drives. (By the way, I found
that DOS and DUP did copy if I used the
DUP DISK option; you just can’t create
them originally).

From Basic Assembler, and so forth, the
RAMDisk is just disk 4. SAVE or LOAD;
the operations run very fast. Anyone with
a program that is running slowly due to
disk I/0 should look into the RAMDisk.
A speedup factor of 20 would be easily
achieved, and that’s conservative. In ad-
dition, you needn’t put up with disk errors
and the like.

How It Works

By now you’re probably curious how
this thing works, so here’s what I found (in
the manual, all clearly laid out). In the
Atari, the address space from 4000 to
7FFF is normally the second 16K board in-
stalled in the machine. The RAMDisk
allows 4000-7FFF to be any of eight indi-
vidual 16K boards, one at a time. Due to
many arcane hardware considerations you
can’t access all 128K at once, only a 16K
chunk of it. But which 16K is instantly se-
lectable. This is called ‘‘bank selection.”’

For example, Axlon apparently puts
their MMS DOS Menu on one of the 16K
banks. Then, to switch to DOS, they just
select that particular 16K, and run (that’s
why DOS comes up so fast). But also note
that DOS does not take up normal 16K
programming space this way; the contents
of the 16K you were working in before you

104

typed DOS are on another of the 16K
boards, ready for use as soon as it is rese-
lected. (The MMS handles the swapping
back and forth to use the 90K disk area).

If you’re confused, just imagine you
have a pile of eight 16K memory boards
and you could plug or unplug them at will
into the middle slot. This is how the Axlon
board works.

Physically it uses Motorola 64K x 1
chips. The raw cost of the chips on the
board I calculated to be around $250, so
the price of the board is quite reasonable.
The construction of the board is very high
quality.

Uses

Extremely high speed animation is pos-
sible using bank selection. You don’t have
to use the Axlon board as a RAMDisk.
You can select which 16K you want di-
rectly. So several images (display lists and
memories) can be stored, and switching be-
tween them determines which image is
being displayed. Some impressive effects
could be obtained (only) this way. Alas, I
didn’t have time to do much of this.

One thing I did use the system for was
holding temporary files during develop-
mental work. By having the RAMDisk
hold various versions of a Basic program I
was developing (with SAVE), I greatly
speeded up the development time.
However, there is a problem with this:
turning the Atari off causes the contents of
the board to be lost. And I have locked up
the Atari past RESET working many,
many times.

The diskette that comes with the
RAMDisk also has several options to
check the board out and fiddle with
MEM.SAV. It even has a complete copy of
the manual (over 300 sectors) as files.

Disadvantages

And now I come to the parts I don’t like
about the RAMDisk.

I have already mentioned a few points,
but my main problem with this unit is that
it is a limited function device. It is like a
plotter; some people can use it, others
can’t. Software houses and people with
heavily disk-bound programs could make
great use of this product. People who need
incredible animation memory also could.
But I can’t for the life of me think of an-
other use for it. It was a nice convenience
when copying disks, but it just wasn’t that
great a help. It would take a volume oper-
ation for it to make a difference. For your
average Atari user, another disk unit,
which costs the same (or even a bit less) is
probably a better buy. You can just do
more with it.

Technical Aides

The bank selection is done in the C000
area, currently unused by Atari. My Atari
sources tell me this will change in a year or
so, as the operating system acquires more
capabilities. The Axlon people will have to
modify their board at that time.

Sector copying programs do not work
with this board.

Microsoft Basic has real problems with
this board. I tried the whole month to get
them to work together and couldn’t. As
the new Basic is just plain wonderful and
everyone will be buying it, the Axlon

people had better get some new software
out fast.

The board throws only minimal RF in-
terference, and if you run your Atari
without the top cover on for heat dissi-
pation, you will notice minor wavy lines on
your TV.

Axlon plans a RAMDisk for Apple 11
and Apple II Plus computers in the near
future.

Conclusion
This is a solidly built, well documented
product. It has several very useful applica-

tions. People who can use it in those appli-
cations will be most pleased with it. But
those who want high speed disk 1/0 or
temporary storage will not find it of much
use. It certainly expands the capabilities of
the Atari, but you may not need your capa-
bilities expanded in that direction. Con-
sider it as you would a piece of other
special purpose peripheral equipment,
such as a digitizer or modem. Will you use
it? If so, it is a good product.

RAMDisk, Axlon Co., 170 N. Wolfe
Rd., Sunnyvale, CA 94086. $699. O

Joytricks

Ever stare at the controller jacks in the
front of your Atari computer and imagine
all sorts of exotic hardware to connect up
to it? I have, and while my work on a fully
articulated robot arm is progressing quite
slowly, there are a few modification
projects I've undertaken that require little
time, cost very few dollars, and provide
nice results.

End Discrimination Against Lefties

As a left-handed gamesman, I've long
suspected that my scores have been held
down by the fact that joysticks are
designed for righties. It's a very simple
matter to turn a standard issue Atari
joystick (fire button top left) into a lefty
stick (fire button top right).

When you disassemble the joystick, be
careful not to lose any of the screws or
the little spring that sits in the trigger
button. Hold the circuit board so it
resembles the configuration in Figure 1.
Note: newer Atari joysticks have all the
connectors on one side of the PC board

John Anderson is an associate editor for
Creative Computing magazine.

while older ones have three connectors
on each side.

The leads must be removed from the
board (grasp the collars; do not pull on
the wires themselves) and reattached as
shown. That’s all there is to it—except to
prominently label your new lefty joystick
so that it does not drive some poor righty
mad. The stick is now “referenced” with
the trigger to the upper right.

A Pushbutton Peripheral For Under $8

I've been thinking about a homebrew
controller jack peripheral for quite some
time now, but the genesis of this idea
really belongs to Rick Rowland. Though
the controller is at its best when playing a
limited number of games, you can do
quite a bit with it. If you have a joystick
that has seen better days and is ready for
retirement, you can reincarnate it as a
pushbutton peripheral.

The idea is simple: create a panel of
pushbuttons to control all joystick func-
tions. The Asteroids you'll find in arcades,
as well as Space Invaders, Galaxian, and
other games, use button rather than
joystick input. You can open up this realm

105

John Anderson

at home with a few parts readily available
at Radio Shack, and the cord from an old
stick (you may try finding a DE-9 plug at
an electronics store, and making a cord
yourself).

You need only a few short snips of
wire, some switches, and a box to mount
it all in. I used three packages of push
button switches (Radio Shack catalog
#275-609). These are momentary contact
switches, packed two to a package. I
mounted five of them in a deluxe project
case (Radio Shack #270-222). The total
cost of these items was under $8.00, and
created a new and enjoyable input
device.

Probably the toughest thing about the
whole project is putting the mounting
holes into the project case. If you don’t
have access to a drill with a suitably sized
bit or hole cutter, you can do what I did:
use your soldering iron to start the hole,
and then ream it to size using the blade of
a scissors. The two tricks to this technique
are to work slowly, constantly checking
the diameter of the hole against the switch
collar, and not burning and/or cutting
yourself. It can be done, and that’s an

Joytricks

Figure 1.

ORG BRN
ORANGE BROWN — ORANGE [R5 O O R BLUE —
WHITE R WHT R BLUE — BROWN 8% WHT BLU B GREEN —
GREEN m GRN BLKm‘ BLACK — WHITE m GRN BLK m BLACK —
ORIGINAL WIRING T = Trigger “LEFTY" MODIFICATION

L = Left

R = Right

D = Down

U=1Up

Figure 1A. New Style Joystick.

BROWN BLUE

WHITE BROWN

BLACK BLACK

BLUE GREEN

GREEN WHITE

ORANGE ORANGE
ORIGINAL WIRING “LEFTY” MODIFICATION

106

Figure 2.

.
O,
ONOMC

o

o

a b [
@

(e]

_J

“Arcade” Style

advantage of a plastic project case
(another is its low price).

Refer to Figure 2 for possible button
configurations. The first is the “classic”
Asteroids format. If you're building a
peripheral just to play Asteroids, this is
the way to go. The second is what we
might call a “clock-directional” format,
which in the long run proves to be a more
versatile set-up. I made up one of each,
and prefer the clock-directional arrange-
ment for a variety of games.

You will need a groove in the box
portion of the case to allow the cord to
pass through. You may again use the
soldering iron to do this, making the
groove only wide enough to push the
retaining collar in. This way it won’t be
easy to yank the wire out by its roots.

In order to wire up the new peripheral,

Figure 3. Flip-Side Wiring Diagram.

“Clock-Directional” Style

T = Trigger

L = Left

R = Right

D = Down (Hyperspace)
U = Up (Thrust)

refer to Figure 3. As far as I know, this
color scheme is standard. In order to
attach connectors to the pushbuttons,
you'll want to press each connector lightly
between the jaws of a pliers. If you are
careful about this, you will create a good
connection without losing the ability to
remove the cable later. Those of you who
wish to make your own cord will
have to find a DE-9 connector, (which
may not be easy), and wire it as shown in
Figure 4.

Necessarily, diagonal motion is tough
with this configuration, as it requires two
buttons to be pressed simultaneously. As
a result, games in which the player moves
in one dimension are especially suited for
pushbutton input (Asteroids is a notable
exception). If you feel really brave, try it
with a maze game, like Jawbreaker.

Double Your Fire Power

If you construct a pushbutton peri-
pheral with the parts I've listed above,
you will have an extra button left over. It
is a relatively simple matter to attach this
button to the handle of an existing joy-
stick, thereby adding a second trigger in a
very handy place. It’s nice to be able to
fire with the same hand that steers, and
because the conventional trigger remains
enabled, you can easily squeeze off more
shots this way.

Use a blade of your trusty (and by this
time, quite dull) scissors to press a hole
through the top of the stick. Next, dis-
assemble the stick, following the instruc-
tions given above for the “lefty” modifi-
cation. Remove the white plastic stem
from inside the handle. Using a saw or
serrated kitchen knife, cut off about a

“Arcade” Style

“Clock-Directional” Style

107

Joytricks

@ TRIGGER - ORANGE

1) UP- WHITE

Figure 4. Atari Controller Jack Pin

Configuration and Color Code.
2) DOWN - BLUE

3) LEFT - GREEN

This is the jack — the plug wires up
“mirror-image”

@ RIGHT - BROWN =% 5 5
| |

%éééé
1

half an inch from the top of the stem.
This will provide the needed room for the
switch.

Unscrew all collars and retainers from
the neck of the button. Solder two 12-
inch lengths of wire to the switch con-

@ COMMON - BLACK

tacts, braiding these leads together. Pass
them through the hole you made on top
of the stick, and through the white plastic
stem. Then screw the pushbutton directly
into the top of the joystick handle. The
other ends of the leads attach as shown in

Figure 5. Reassemble the stick, remaining
mindful of that little spring that sits on
the original trigger button. You will
effectively have doubled your firing abil-
ity. Remember, however, some games do
not allow for excessively rapid fire play.

If you like the idea of a pushbutton
controller, but lack the time, talent, or
inclination to construct one, you may
want to purchase one of the ready-
made controllers described below.

Starplex Controller

The Starplex controller from Star-
plex Electronics, offers an authentic
“Asteroids-style” button configuration,
as well as the fastest set of pushbuttons
I have ever seen. In addition, an
optional AA battery powers a “rapid-
fire” mode, automatically repeating
fire faster than you can do it by hand.

Because the pushbutton array is
large and has a light touch, the con-
troller takes a bit of getting used to.
Eventually, however, I found that the
lightning fast direction changes pos-
sible with Starplex resulted in higher
scores.

It should be mentioned that because
many games do not allow a new shot

Atari Game Controllers

to be fired until an old one leaves the
screen, the “rapid-fire” option will not
always work optimally. Still, you can
fire continuously merely by holding
the button down, rather than having
to re-press the trigger for each shot (or
battery of shots). Over the long haul
this reduces fatigue, and the incidence
of “joystick elbow.”

The unit lists for $29.95, which is a
bargain for the most authentic game
of Asteroids this side of the coin-op. It
improved my score on several other
games as well.

Starplex Electronics, Inc., E23301,
Liberty Lake, WA 99019. (509) 924-
3654.

KY Enterprises

The controller offered by KY Enter-
prises uses a directional-style configu-
ration, less suitable for Asteroids but
more versatile overall. For those unfa-
miliar with the arcade configuration,

it is much easier to master this logical
layout.

The unit exhibits extra sturdy con-
struction—as if its makers knew it
would have to withstand a few bounces
off the floor. It is very large, and can
be cradled or used on a tabletop by
even the tiniest kids. The buttons
themselves sit in raised collars, and,
though not as fast as the buttons or
the Starplex unit, appear to be the
“regulation” coin-op standard. They
are large and easy to control.

The KY Enterprises controller is
priced at $26.95, and is available in
left- or right-handed models. They also
manufacture controllers for the
handicapped.

KY Enterprises, 3039 East Second
St., Long Beach, CA 90803.

Accu-Play

A third pushbutton controller, the
Accu-Play Control Board, we did not
have an opportunity to test. It sells for
$29.95 from Accu-Tech Products,
10572 Swinden Ct., Cincinnati, OH
45241.

108

— ORANGE [O

BLACK —

Figure 5. Second Trigger Wiring.

ORANGE —

Figure 5A. New Style Stick.

New RAMS for Old

The procedure outlined below
enables adventuresome Atari users to
upgrade 8K memory boards to 16K.
While savings of up to $100 per board
are possible, users should be aware
that this modification voids the warranty
on the memory boards.

If you have an Atari 800 with two 8K
memory boards and don’t want to upgrade
memory by throwing away two expensive
modules, you can now upgrade them to
two 16Ks for a fraction of the cost of new
16K boards. This upgrade can be done by
almost anyone, and does not require
extensive hardware knowledge. All it takes
is a bit of soldering. The theory is as
follows:

The 4116 dynamic memory is a very
popular memory chip used by, among
others, Apple, TRS-80, and Atari. This
chip is inexpensive and readily available.
Itis arranged as a 16K x 1 in a sixteen pin
DIP and comes in many different speeds.

Steve Olsson, 3392 Clipper Dr., Chino, CA
91710.

The 4116 memory also has a half brother,
the 4108. The 4108 is very similar to the
4116, except it is arranged as an 8K x 1.
In reality, the 4108 chip is a 4116. Besides
the label, there is only one real difference:
the 4108 is a 4116 that has a problem.
When the chips are manufactured, bad
ones are thrown into the reject pile and
good ones are shipped. From the reject
pile some chips are again sorted and
shipped. Chips with the upper half bad
and lower half good are sold as 4108-A,
and those with the upper half good are
sold as 4108-B.

Atari now buys a 4108 chip and accesses
only the good half of it on the 8K memory
board. If Atari were to install completely
good 4116 memory chips and access the
entire chip, a 16K memory board would
result.

The point is, instead of throwing away
the 8K module (which is nearly identical
to the 16K module), why not replace the
8K memory chips with 16K memory chips?
Several jumper options must be changed,
and the 8K memory must be removed
from its sockets and replaced with 4116s.

109

Steve Olsson

The whole process is extremely easy and
should take about 30 minutes.

In order to begin the procedure, the
first thing to do is order eight 4116 RAMS
per board being upgraded from a local
supply house. (Care must be taken to
choose a reputable supplier. The parts
should be guaranteed 100% operational).
The cost of the chips ranges from $30 to
$60. The chips must to have a maximum
access time of 200 nS in order to work in
the Atari.

Once the 4116s are in hand, open the
top of the Atari and remove an 8K memory
module. Remove the two screws that hold
the memory module together. Pop off the
metal cover and snap open the module
along the edge connector. The circuit
board now lifts out of the module.

Six jumpers on the front (component
side) of the board labeled A,B,C,D,E,F
are now exposed. They are actually
resistors of very low value but function as
jumpers only.

The edge connector is labeled 1-22 on
the front and A-Z on the back. (Notice
omitted letters G, O, Q, I due to similarities

New RAMS

in shape.) The letters connected together
by small pieces of etch are: U-T, S-R, and
N-P. Also notice the etch from W to Z501
pin 15. All of these small etches must be
completely removed with a razor blade
or X-acto knife.

Atari was nice enough to add solder
holes to all of the connections which must
now be soldered. Connectors to be soldered
together with small pieces of wire are:
7501 pin 15-U, T-S, P-R, and M-N.

On the front side of the board, jumper
Program 1.

10 GRAPHICS 8

20 SETCOLOR 2,0,0
30 COLOR 1

40 FOR Y=0 TO 159
50 PLOT 0,Y

60 DRAW TO 319,Y
70 NEXT Y

C must be installed and all other jumpers
removed. On the back of the board a
very small solder connection must be made
to the connector H as far away from the
edge as possible. This wire must be added
to hook that signal to jumper D on the
side next to the letter (as shown in Figure
4). Make this connection from the back
of the board even though the letter is on
the front of the board.

The next step is to remove the 8 DIPs
labeled C503, C505, C507, C509, C511,
C513, C515, and C517 from their sockets
and replace them with the 4116s. Replace
the board in the module, screw it back
together, and the modification is
finished!

In order to test the memory, use the

Photo 1. The open 8K module.

Photo 2. The component side of the
memory board.

Photo 3. Close up of the jumpers A-F.

Photo 4. Correctly installed 16K jumpers
on back of board.

Photo 5. The etch side of the completed mod.

Photo 3.

following procedures: Insert only the
module under test into the Atari then use
the ?FRE(0) command to see if the Atari
recognizes an increase in memory. If
everything looks OK at this point, use
graphics 8 mode. Type SETCOLOR 2, 0,
0, which makes the background black. If
no spots appear, make the screen white
by using Program 1. If, after running this
program, there are no holes in the screen
pattern, assume the last 8K of memory
has no solid errors.

Program 2.

2 X1=14%256
4 X2=65%256
6 X=14
10 POKE 106, X:GRAPHICS 0
20 FOR %X=X1 TO X2
30 POKE X,255
40 NEXT X
45 FOR X=Xl to X2
50 IF PEEK (X)<>255 THEN PRINT

"ERR-" ;X
60 POKE X,0
70 NEXT X

80 FOR X=X1 TO X2

90 IF PEEK (X)<>0 THEN PRINT
"ERR-"; X

100 NEXT X

After this test run Program 2 to check
more of the memory. This program checks
each memory location (without interfering
with Basic) and reports failures to the
screen. A few failures could mean there
are some bad chips; many failures probably
mean the module was wired wrong or the
chips are very bad. The failure will probably
have to be determined from the failure
report generated by Program 2, which
reports the address of failure. PEEK and

Photo 4.

110

POKE must be used to determine which
bit is bad. Program 2 cannot check the
first SK of memory in the module, but if
the program runs without strange things
happening it is probably all right.

If a memory board is known to be good,
place it in slot 1 in memory. If the total
memory is now 24K, change lines in Pro-
gram 2 to:

2 X1 = 32*256
4 X2 = 96*256
6X =32

If the total memory is 32K, change
lines in Program 2 to:

2 X1 = 64*256
4 X2 =128*256
6 X =64

The program can now be run. This will
completely test the new memory module,
and will take about 10-14 minutes to run.
If you had only one 8K module that is
now a sixteen, you will have to hope the
first SK of memory is good until you get
more. The first 5K is impossible to test
with only one module.

If your computer passes all these tests,
the memory in your Atari has just been
doubled. If you have any trouble that is
not understandable and have rechecked
the procedure to verify that it was done
right, you probably have bad RAMs.

This simple procedure will, I hope, save
many people lots of money, allowing them
to operate with a disk drive and have
plenty of memory left for the other
programs. O

Photo 5.

K-DOS — An Alternative to Atari DOS

Sheldon Leemon

K-DOS from K-Byte is an alternative to
the Atari Disk Operating System, DOS II.
The file management system of K-DOS is
compatible with Atari DOS, but offers a
greater level of control over peripheral
devices and memory. Although it offers
many features which will be appreciated
by every Atari user, K-DOS will be of
most use to the serious programmer.

Since the benefits to be gained by using
K-DOS are the result of certain trade-
offs, the potential buyer should think hard
about how much a more convenient disk
operating system is really worth.

Chief among these trade-offs is the
amount of memory that K-DOS leaves
available to the user. K-DOS is memory
resident, so most of its features are
immediately accessible, but it also takes
up a great deal of space. With a Basic
cartridge inserted, the amount of free
memory available in a 40K system is
25,228 bytes. This is almost 7K less than
the 32,274 bytes available with Atari DOS,
or the 31,758 bytes available with
OS/A+.

Besides reducing the amount of mem-
ory available for programming, the large
size of K-DOS puts the start of low
memory above $3000. (An optional pro-
gram included with the package lets you
remove the plain English error messages,
which saves enough bytes to bring the
end of K-DOS just below $3000). Machine
language programs which are assembled
to run just above the end of Atari DOS,
may conflict with K-DOS, and may not
run under it.

If you have memory to spare, however,
K-DOS offers many attractive features. It
is, for example, a pleasure to use: all DOS
functions are accessible from Basic, Pilot,
the Assembler cartridge, or whatever
program environment you happen to be
in.

Since K-DOS is command driven, you
need not call up a menu to execute a
DOS function. You simply precede the
command by a comma (or some other
character which you can define as signifi-
cant to DOS), and the DOS function is
executed without changing program
environments.

The syntax required for command lines
is flexible, so commas can be replaced by
spaces, lower case is acceptable, and the
DOS environment automatically resets
the inverse character shift. Device
defaults are supplied whenever possible,
and short abbreviations are allowed, so a
minimum of keystrokes is required to
perform any function. Error messages

Sheldon Leemon, 14400 Elm St., Oak Park,
MI 48237.

appear in plain English, rather than a
frustrating number code.

Unlike OS/A+, which puts you back
in the operating system every time you
hit System Reset, K-DOS will only bypass
Basic if you hit the Start key along with
System Reset. And unlike Atari DOS, the
device handler for the 850 interface unit
boots automatically if it is turned on.
There is no need for a separate
AUTORUN.SYS file.

The reason that K-DOS can let you use
DOS command lines from Basic is that it
re-routes all input to the line editor
(although it gives you a command, KILL,
which will take its “hooks” out of the
handler table if desired).

This greater level of control over the
system is characteristic of K-DOS. For
example, the 6502 BREAK instruction is
vectored to get you back to DOS any
time the instruction is encountered, rather
than having the system hang up. You may
get a little better idea of what this means
if you slip in the Basic cartridge and type
INPUT (RETURN).

With Atari DOS II, the system locks
up, and the only way to recover is to turn
the computer off and reboot. With K-
DOS, a BRK message appears, and you
enter DOS. You should even be able to
recover from the dreaded “editing lock-
up,” which occurs when Basic moves a
block of exactly 256 bytes (Y ou must still
know enough about how Basic works to
reset the statement pointers, however, as
that particular bug tampers with your
program code before it crashes the
system).

Another aspect of the system control
offered by K-DOS is that it allows you to
stop disk I/0 just by hitting the BREAK
key, without destroying your data. It also
tries very hard to read and write marginal

SOFTWARE PROFILE

Name: K-Dos

Type: Operating system

System: Atari 400/800, 48K
preferable

Format: Disk

Language: Machine

Summary: Versatile, but memory-
hungry alternative to
Atari DOS

Price: $89.95

Manufacturer:
K-Byte
P.O. Box 456
1705 Austin
Troy, MI 48099

111

sectors before bombing out, which is
important, given the notorious speed
fluctuation of older Atari disk drives.

K-DOS puts some nice touches on some
of the original DOS functions. For exam-
ple, INIT combines formatting and
writing DOS files to the new disk in one
operation, although these functions are
still available separately. The duplicate
disk function offers the option of a
straight sector copy for boot-disks that do
not have file information on them, and
also allows the faster write without verify
and continuous retrying of bad sectors.

There is a separate APPEND com-
mand, which allows you to enter data at
the end of a file directly from the key-
board. The append function uses any
space available in the last sector, rather
than starting a new sector as Atari DOS
does. The binary load command prints to
the screen the location in memory into
which the file is being loaded, if you so
desire, which is much more convenient
than reading the headers and calculating
the addresses by yourself.

But K-DOS doesn’t take up all that
memory for the sake of a few slight
modifications. It also contains a complete
machine language monitor which allows
you to examine memory in hexadecimal
and ASCII formats, alter memory by
typing in either hex or ASCII values, and
examine and alter the contents of the
registers. K-DOS gives you two ways to
execute a machine language program. GO
runs the program after closing all devices,
and does not preserve the registers.
PROCEED continues a program after a
breakpoint has been reached, without
changing the contents of the registers or
the status of any device, making it a very
handy debugging tool.

Similarly, the command XIT allows you
to get back to a Basic program that calls
DOS, and continues to run that program
from the point at which DOS was called.

A null device handler has been added,
so that you can test I/O operations
quickly by directing them to N:. LOMEM
lets you examine and alter the bottom of
memory available to a cartridge. This
allows you to reserve space for machine
language programs, or just to reduce the
amount of memory available to see if a
Basic program will run on the minimum
16K system. UDC allows you to add your
own user-defined commands to the
system.

In addition, K-DOS offers many com-
mands which allow you to access certain
routines used internally by DOS, just by
giving a one-word command. For
example, COLD and WARM provide an
easy way to coldstart or warmstart a

K-DOS

cartridge. RESET reboots the 850 handler
when you have expanded the drive buffers
—or just forgotten to turn it on when you
booted up.

TEXT corresponds to a GRAPHICS 0
call in Basic, and opens the screen device,
which is handy for moving the display list
when you want to load a program into
high memory. CLOSE closes all files,
turns off the sound, resets VBLANK
vectors, and turns off Player-Missile
graphics. ER followed by a number will
print the English error message for that
error number, which is very handy when
you want to interpret I/O errors that are
generated by Basic.

None of these functions is earth-
shaking, and all can be accomplished in
other ways with a little effort, but the
author’s attitude was that as long as the
routines for doing them were already in
DOS, it made sense to allow them to be
accessed easily.

Unfortunately, the lack of depth in the
documentation runs somewhat counter
to this intention of allowing the program-
mer easy access. The glossy K-DOS Hand-
book is nicely bound, comes with a pocket
summary card, is clearly written, gives
examples of the proper syntax for each
command, and covers most of the com-

mands very well.

However, it treats some of the more
esoteric commands in a cursory manner.
Take, for example, the explanation of the
UNLOAD command: “Tries to erase area
where cartridge is; unloads any RAM
based cartridge and resets LOMEM back
to end of DOS.” The beginner will no
doubt read this sentence, re-read it once
to verify that all of the words are in
English, and then press on, no better or
worse for the experience.

The experienced user, on the other
hand, might gather from this explanation
that it is possible to load a program into
RAM, and fool the system into thinking
that the program is cartridge-based, allow-
ing an easy transition back and forth
between that program environment and
DOS. The inference would then be that
the UNLOAD command erases this pro-
gram, and lets the system know that no
cartridge is present. But how do you set
up this “RAM based cartridge” in the first
place? No clue is given, leaving the
experienced user perhaps more frustrated
than the beginner.

Another example of a similar sort is the
system equate files that are supposed to
give the user access to system routines,
such as the one to type text messages

from a buffer. There are no detailed
examples of how to use them, however,
and the internal commenting is too scanty
to allow most users to benefit from them.
Features like these could be real selling
points to the ambitious programmer if
they were treated less superficially in the
documentation.

My impression of K-DOS is that aside
from these omissions in the documen-
tation, it is a convenient tool for the user
who is serious about programming.

As one who uses his computer mostly
for programming, I have found K-DOS
especially helpful in developing software
that combines Basic with machine lan-
guage subroutines. But I think that K-
DOS will be of much less interest to the
casual programmer who may have less
than 40K of memory.

While such a user might appreciate
some of the features, he would probably
never take advantage of the machine
language monitor, the null device, or
many of the other goodies which make K-
DOS so big—and so expensive. If you fall
into that category, you might be better
off spending the money on something that
will let you gobble dots, eradicate insects,
or save the universe. O

Standard Keyboard for the Atari 400 Robert Noskowicz

While shopping for a home computer,
I did quite a bit of research, eventually
narrowing my decision to a choice be-
tween the Atari 400 and 800. With a little

Robert Noskowicz, 44 York St., Old Bridge, NJ
08857.

more investigation I found that the only
differences between the two are the three
most obvious: 1) easy access to additional
memory, 2) the two ROM slots and 3) the
keyboard. The processors—operating
systems and ROM—are exactly alike.
Since Atari still has not used the second

ROM slot, and the 400 can be fairly easily
upgraded to 48K, the only appreciable
difference is the keyboard. The 400 has a
flat membrane keyboard compared to the
standard typewriter keyboard on the 800.
1 didn’t feel at that point that the differ-
ences warranted the approximate $400

@H System |
RESET

(9)HOPTION

@JSELECT

Figure 1. Ribbon cable on original keyboard is numbered 1-22. Keyboard is viewed from the back in above diagram.

112

|

Photo 1.

additional cost for the 800, so I purchased
the 400.

After 6 months of use, I was extremely
happy with my computer except for the
keyboard. I found that the flat keyboard
impairs the ability to enter data quickly
as well as causing discomfort when enter-
ing a substantial amount of information
into the system. I went from “I'll get used
to it” to “It’s not all that bad” to total
exasperation.

What I will explain here is what I did to
cure my problem: I added a standard
keyboard to my machine.

First I opened my computer to deter-
mine how the keyboard was interfaced. I
had the Atari Technical User’s Notes but
they did not contain any schematics for
the keyboard. After calling several home
computer stores to see if they had any
information on changing keyboards, with
no luck, I called Atari’s toll free number
in California. If you have ever called

N
Photo 2.

Atari, you already know that (like most
computer manufacturers) they do not like
you to make changes in their hardware
and provide very little technical help.

I realized that I would have to do
everything myself. The one thing I did
know was that the decoding of the key-
board is done in the processor. The
keyboard, in the case of the Atari, is just
a bunch of momentary ON switches, 61
to be exact. I sat down with my ohm
meter, went from point to point, and drew
the keyboard layout (Figure 1).

The next step was to purchase the
necessary parts. The keyboard that I
bought from a firm in California has 62
keys and costs $35. It is called a bare
keyboard because it is not mounted on a
PC board. Initially I intended to mount
the keyboard on the computer but my
wife suggested that I use a cable and
keep it separate.

This was an excellent idea since I keep

the computer on a Parsons table in front
of my TV and sitting on the couch slouch-
ing over it can be a real pain in the neck,
literally. Now I can keep the keyboard on
my lap which I find extremely com-
fortable.

If you decide to go this route, you will
need about seven feet of ribbon cable
which costs approximately 60 cents per
foot. I used 25-conductor cable because I
wanted to have a connector between the
computer and the new keyboard so that |
would be able to disconnect it. Otherwise
it would only require 22-conductor.

The connector is a 25-pin RS-232 type
made for ribbon cable. It costs about $14
per set. If you want a case for the key-
board, you can purchase one for about
$56. If you are like me and wish to save
some money, go to your local hardware
store and buy a small Permanex tool box
which costs about $6 and cut it to shape.

Some of the keys on the new keyboard

113

Keyboard for the Atari 400

are in different locations. You can leave
them as is or move them about, providing
you follow the wiring layout in Figure 1.

One thing I had to do on the new
keyboard was to keep the Cap/Lock key
from locking, since on the Atari the Cap
Key does not lock.

The first step was to wire up the new
keyboard (Photos 1 and 2). Since I had

one extra key, I used two keys in series
for system reset. This prevents me from
accidentally resetting my computer.
Next I soldered the new ribbon cable
to the back of the Atari keyboard where
the original cable is soldered, leaving the
original in place (Photo 3). You will notice
that I routed the cable to one side and
mounted the male connector into the side

of the casing. I then assembled the com-
puter and tested the Atari keyboard to
make sure that nothing shorted. So far,
everything tested OK. I then plugged my
new keyboard in and tested it. It worked
fine.

The keys on the new keyboard are
parallel to the Atari, so either keyboard
can be used. O

The Mosaic 64K RAM Card

Atari Supercharge

I found the prospect of dismantling
my Atari 800 to install the Mosaic
Select (64 K memory board) a bit
frightening since 1 had never been
inside a computer before. As it turned
out, however, 1 shouldn’t have
worried. The computer won’t fallapart
just by breathing on it, and it is not
really any more delicate than a stereo
or calculator.

My new memory board was actually
designed for the Atari 400, but had
been especially modified (components
added) to work in the 800. Even
though the installation manual was
written for the 400, it was clear and
complete enough to be of great help
in modifying the 800. (By the time
you read this, Mosaic should have the
memory board for the 800 available
and you won’t have to translate in-
structions from the 400 manual.)

Once the computer is disassembled,
only two modifications need to be
made:

First, a two-wire cable needs to be
soldered to the main board. It may be
best to use a pencil-type solderingiron
with a very small tip. If you have not
soldered a printed circuit board
before, this is the one step you may
want someone else to do.

The second modification requires
relocating one of the computer chips
from the main board to the new
memory board and installing a pre-
assembled flat ribbon jumper cable
from the socket on the main board to
the memory board.

LeRoy J. Baxter, 15601 S.E. Oatfield Rd.,
Milwaukee, OR 97222.

The rest of the job is just a matter
of reassembling the computer in
reverse order from its disassembly —
a task that can be done in one evening
and, with a little practice, could
probably be done in less than a half
an hour.

Mosaic uses only the best com-
ponents and gives an amazing four
year guarantee that is not limited by a
lot of hedges and/or disclaimers.

Just Another Memory Board?

The Mosaic 64K Select is memory
expansion with a difference. The
diagram in Figure | tells the story.

First, Select expands the RAM of
your Atari 400 to the design maximum
of 48K and then goes on to give you 4K
more RAM located in the unused
ROM area. Further, this 4K of addi-
tional RAM is really 16K — it is
addressable as four software-select-
able banks of 4K each. The Atari 800
can support three of these boards,
giving you 32 banks of 4K each for an
astounding 192K of RAM.

Further, Mosaic has taken great
pains to make their 64K memory
board totally compatible with all
existing software. The 4K banks are
placed in the unused area between the
Basic cartridge and the Operating
System ROM — an area presently
untouched by Basic, the Operating
System, DOS, or any software. The
method chosen for Bank Switching
also precludes any software incompat-
ability as Bank Switching is ac-
complished by writing (ie. POKE) to
ROM. Since the ROM areas are cast

114

LeRoy J. Baxter

in stone (silicon), as it were, nothing
is actually written — it is the act of
writing that is important. The specific
address that you try to write to
determines the Bank that will be
selected (see Listing 1).

Note that while the Mosaic 64K
Select is totally software compatible, it
is not compatible with certain hard-
ware modifications such as the 80-
column board.

With the Basic cartridge removed,
machine-language programs such as
the Atari Word Processor or Visicalc
see 52K of continuous RAM — a big
boost in available RAM.

With the Basic cartridge installed
(or Microsoft loaded), the normal

OPERATING
SYSTEM
ROM

HARDWARE 1/0

4 4K RAM 5P
bank 1
BASIC Cart.

or

RAM
52K
RAM

48K RAM

Continuous

Figure 1.

40K maximum RAM is available,
along with the four 4K banks that
Basic can’t see (at least not without
help).

What good is “invisible” memory?
One of the big problems with using
machine-language routines with Basic
has been finding a safe place to put
them. Until now, page 6 (memory
starting at 1536) has been a popular
place. Too popular in fact, and a
dangerous place since under certain
conditions, cassette input will use the
bottom half of page 6 as a buffer. Any
machine-language routine stored there
will be lost. This can be especially
damaging if the routine is a Vertical
Blank routine.

In contrast, machine-language
routines or data stored in the Select
Banked Memory areas are 1009 safe.
An entirely new program may be
loaded without affecting anything
stored there. In addition, a lot more
room is available — a whopping 4096
bytes instead of just 256 bytes for
page 6.

If you have a Mosaic Select, try this:
10 POKE 65472+0,0:REM SELECT BANK 0

20 DIM A$(19):A$="this is a LOAD test"
30 FOR X=1 TO 19:POKE 49152+X,ASC(A$(X,X)):NEXT X

then type:

RUN

NEW

LOAD “D:filename” (load any pro-
gram) or load a program from
cassette

finally (in Direct Mode):

FOR X=1 TO 19:? CHR$(PEEK(49152)+X; :NEXT X

Pressing System Reset does not
affect the stored data. Only turning off
the computer or overwrit'ng the data
will destroy it.

Player/Missiles and Character Sets

With normal memory management,
finding a suitable place for Player/
Missile data and/or redefined Char-
acter Sets can be a problem. Care must
be used to position PMBASE and/or
CHBAS on the appropriate 1K or 2K
boundary. If the memory area is
reserved by moving RAMTOP, then
care must also be used to prevent the
Display Memory from crossing a 4K
boundary. The pitfalls are many and
often large blocks of memory end up
unused.

Other Applications

The Mosaic Select is in keeping with
the open-ended, nature of the Atari

itself. Many additional applications
come to mind:

1) Relocate the String-Array space
to the banked memory area. This
could be useful for chained Adventure
programs or for Financial/ Budget ap-
plications that do different things with
the same data. The String-Array data
would be instantly available to each
program as soon as it was loaded and
run.

2) Different sets of data could be
loaded into each of the four banks,
letting one program act like four. Each
set of data would be instantly available
with a single POKE.

3) The possibility exists that rela-
tively short Basic programs (less than

Listing 1.

5 REM "YOUR NAME IN LIGHTS"
6 REM IF TOO MUCH FLICKER,
10 POKE 106,207 :REM RAISE RAMTOP
20 BNKBAS=65472 :BANK=0:BANKSELECT=2000
30 POKE BNKBAS+1,BANK:GRAPHICS 5+16

(c)

1982 by LeRoy J.
ADJUST TV BRIGHTNESS AND CONTRAST

4K each) could be stored in each bank,
allowing four totally independent (and
one Master) programs to be in
memory at once and available with
just a few POKEs.

4) Machine-language programming
Utilities, DOS Utilities, and/or
Wedges could be stored in these banks.
These utility programs would be easily
accessed but would not be affected by
LOADs, SAVEs, or RUNs. Nor
would they ever conflict with the Basic
program area or the Display List/
Display Memory. Different utilities
could be stored in each bank and
accessed when needed.

5) For Assembly-language pro-
grammers using the Atari Assembler-

Baxter

35 REM GET START ADDR OF GR.5 DISPLAY LIST

40 AL=PEEK(560) :AH=PEEK (561) : AD=AL+256 *AH

50 POKE BNKBAS+2,BANK:GRAPHICS 5+16

60 POKE BNKBAS+3,BANK:GRAPHICS 2+16:B=PEEK(560)+256*PEEK(561)
70 POSITION 8,5:? #6; "your":POSITION 8,6:? #6; "name"
75 REM MOVE GR.2 DISPLAY LIST TO START AT SAME LOCATION AS GR.5 LIST

80 FOR X=0 TO 18:POKE AD+X,PEEK(B+X)

90 IF PEEK(B+X)=65 THEN POKE AD+X+1,AL:POKE AD+X+2,AH:X=18

100 NEXT X

110 POKE BNKBAS+0,BANK:GRAPHICS 5+16:POKE 710,154

115 REM NOW DRAW TO GR.5 SCREENS - 1/3 OF DATA TO EACH BANK

120 FOR X=0 TO 15:READ A:POKE 1750+X,A:NEXT X

130 FOR X=0 TO 10:READ A:POKE 1710+X,A:NEXT X

140 FOR X=0 TO 2:POKE BNKBAS+X,X:COLOR X+1:PLOT X*2,19:DRAWTO X*2,28
150 PLOT 79-X*2,19:DRAWTO 79-X*2,28:NEXT X

160 FOR Z=0 TO 2:COLOR Z+1:BANK=2

170 FOR X=39 TO Z STEP -1:GOSUB BANKSELECT:PLOT 39-X,18-Z:PLOT 40+X,18-2:PLOT 39

-X,29+Z:PLOT 40+X,29+Z:NEXT X

180 READ A:FOR X=1 TO A:GOSUB BANKSELECT:PLOT 39-Z,18-X-Z:PLOT 40+Z,18-X-Z:PLOT

39-2,29+X+Z:PLOT 40+Z,29+X+Z:NEXT X

190 FOR X=1 TO 4:GOSUB BANKSELECT:PLOT 39-X-Z,18-A-Z:PLOT 40+X+Z,18-A-Z:PLOT 39-

X-2,29+A+Z:PLOT 40+X+Z,29+A+Z:NEXT X

200 READ A:FOR B=1 TO A:READ X,Y:GOSUB BANKSELECT
210 PLOT 39-X,18-Y:PLOT 40+X,18-Y:PLOT 39-X,29+Y:PLOT 40+X,29+Y:NEXT B

220 NEXT 2

230 FOR X=0 TO 2:POKE BNKBAS+X,X:POKE 49152,3:NEXT X:REM SHADOW REG. FOR BANK #

240 X=USR(1710):REM START BANK FLIPPING

250 FOR X=0 TO 2:POKE 1700,X:FOR T=1 TO 20:NEXT T:NEXT X:GOTO 250

280 REM PAGE FLIP ROUTINE

290 DATA 174,0,192,224,3,240,3,174,164,6,157,192,255,76,95,228

300 REM SET VBLANK ROUTINE

310 DATA 104,162,6,160,214,169,6,32,92,228,96

320 REM SCREEN DATA

340 paTA 10,24,5,11,6,11,7,12,8,12,9,13,10,14,10,15,9,16,8,17,7,17,6,17,5,17,4,1

7,3,16

350 DATA 2,16,1,15,1,14,2,13,3,13,4,13,5,14,6,14,6,15,5,15

360 parA 6,37,6,8,7,8,8,9,9,9,10,10,11,1

i16:5194517520517 21,17

1,12,12,13,13,14,14,15,15,16,15,17,16,18

370 DATA 22,16,23,16,24,15,25,14,25,13,24,12,23,12,22,11,21,11,20,10,19,10,18,10

517,11 ,16,12,17,13

380 DATA 18,14,19,14,20,15,21,14,20,13,20,14
390 para 2,54,7,5,8,5,9,5,10,5,11,6,12,6,13,6,14,6,15,6,16,7,17,7,18,7,19,7,20,8

»21,8,22,8,23,8

400 DATA 24,9,25,9,26,9,27,9,28,9,29,10,30,10,31,10,32,10,33,9,34,9,35,8,36,8,37

37,37,6

410 DATA 36,5,35,5,34,5,33,4,32,4,31,4,30,4,29,4,28,5,27,5,26,5,25,6,26,7,27,7,2

8,7,29,7
420 paTA 30,8,31,8,32,7,32,6,31,6,31,7

2000 POKE BNKBAS+BANK,BANK:BANK=BANK+ (BANK{3)-3* (BANK=2) : RETURN

115

Mosaic 64K Ram Card

Editor, machine-language routines
could be written and assembled in the
memory area where they will reside —
a lot easier than writing relocatable
code.

6) The fact that each bank is selected
by a single POKE allows variousforms
of “Page Flipping.” The program in
Listing | demonstrates how this can be
done. A separate display is placed into
each bank and then the banks are
flipped using a short machine-
language Vertical Blank routine. This
kind of page flipping allows color
blending and the mixing of text and
graphics.

Note that with 4K in each bank,
Graphics 6 is the highest resolution
mode that can be used. A Graphics 7
Display Memory can fit into 4K, but
not both the Display List and the
Display Memory.

Also note that if overlaying different
graphics modes, either the Display
Lists must start at exactly the same
memory location, or the Display Lists
must be chained.

As with the Atari itself, the list of
applications goes on, limited only by
the programmer’s ability and imagina-
tion.

The Future

The first practical applications will
probably be Programming Utilities
and Wedges that can be relocated to
lower memory areas if Select has not
been installed. The 64K board will
mean that more of these utilities can
be in memory and available to the pro-
grammer at any one time with less
interference with the main program.

The second most practical applica-
tion might be for Player/ Missiles and

Character Set data. By simply writing
to a location in this area and then
reading that same location, the
existence of 64K can be determined.

POKE 49152,3:1F PEEK(49152)=3
THEN PMBAS=49152/256: etc.

Assembly-language programs can
check against RAMTOP. IfRAMTOP
is greater than 192, then 64K is in-
stalled.

I am sure that the future will see
commercial programs written that will
test for the existence of 64K RAM and
will load in more data for bigger and
better programs if it is installed.

The Mosaic 64K RAM Select
appears to be an innovation whose
time has come.

New Member of the Family

Atari 1200

Well you may or may not have heard
the news, but the Atari 1200 has
arrived. Here is a first look at the
1200XL, and the new wave of periph-
erals and software designed to work
with it.

The Atari 1200XL was unveiled on
the east coast at a press conference at
the Plaza Hotel in New York City. At
least a dozen working units were on
display there for us microcomputer
types to play with, and that’s exactly
what we did, (at great length). The
unit should become generallyavailable
by the middle of 1983.

With 64K RAM standard, the
1200XL also offers twelve user pro-
grammable function keys, inter-
national character set, and built-in
diagnostics. Designed to be entirely
compatible with the models 400 and
800, owners of the Atari 1200 need not,
therefore, have to wait for software to
be developed to run on their machines.
Although no true innovations are
present in the 1200, competitive
pricing will doubtless make it a major
contender in the home microcomputer
market this year. No price was an-

John Anderson is an associate editor for
Creative Computing magazine.

The Atari XL.

nounced at the conference, but the
word was that the list price would be
well under $1000.

Other features of the unit are the
following: keyboard disable function;
auto screen shut-off when untended;
help key; LED power, keyboard lock,
and character set indicators; and one
touch cursor movement.

The ROM cartridge slot and con-
troller jacks have been moved to the
side of the machine, and number
exactly half that of the Atari 800; one
cartridge slot and two controller jacks.
The determination was made that this
was quite enough, and that an extra
slot or controller jacks would have
only added expense to the machine.
There has been no scrimping on the

116

John Anderson

keyboard, however. It is of the highest
quality.

New Peripherals, Too

Three new peripherals were an-
nounced along with the 1200XL. The
1010 program recorder will allow in-
expensive storage and retrieval of data
using audio cassettes. The unit features
data and audio channels, as did its
predecessor, the model 410. It will list
for $99.95.

The model 1025 80-column printer
will list for $549. It is a customized
Okidata Microline 80, and will run in
serial at a claimed speed of 40 cps. The
dot matrix print is clear and crisp,
though not of letter quality.

On the left-hand side of the machineis
a single cartridge slot and two
controller jacks.

The unique 40-column color
printer/plotter, dubbed the model
1020, will offer text and graphics in
four colors ata list price of $299. It will
be capable of changing the size and
style of its character sets, and 16 colors
of pen will be available.

The only disk drives I saw in all my
snooping about were the old model
810 clunkers, which are compatible
with the 1200, but certainly look out
of place next to them. I expect we will
be seeing a new drive from Atari within
the next half year — conceivably a
3%4” model, as compact as the new
1010 program recorder.

New Software Announced

Along with the new hardware, a
number of new software packages
were announced. Defender and
Galaxian were on hand and running
at the Plaza, and should be available
now. Both looked to be very high
quality clones of their arcade name-
sakes. 1 was especially impressed with
Defender; as was the case with Pac-
Man, the Atari computer version
makes the VCS version look embar-
rassingly primitive.

E.T. Phone Home will evoke the
film £.T. with hi-res graphics and fine-
scrolling across four screen widths.
You are Elliott, helping little E.T.
place that long distance call.

Four otherarcade game adaptations
have been announced by Atari as well.
Dig Dug is a popular coin-op maze
game, a bit like Pac-Man actually dig-
ging his path as he goes.

Qix is a unique and engaging video
game. The object is to surround Qix
with boxes of color. The game tran-
scends the “twitch” aspect with
strategy and a lack of patterned play.

Donkey Kong and Donkey Kong
Junior have also been licensed to
Atari, and will become available for
the 400/800/1200 soon. These ex-

The Atari 1020 is a 40 column, four
color printer and plotter. At a list price
of 8299, it offers much versatility.

tremely popular coin-op titles will be
available within a couple of months.

Family Finances has been designed
to keep detailed records of family in-
come and expenses as well as establish
a budget. It is available on diskettes
only.

Timewise turns the Atari into an
electronic calendar, offering basic time
management programs for the home,
office, or school. While keeping track
of appointments, holidays, and other
special dates, the program will also
print out schedules and calendars.

Atari Writer is a ROM-based word
processor that runs in [6K. It can save
files to disk or cassette.

Atari Music [is the first in a series
of Music Learning Software. It teaches
fundamentals of music theory, in-
cluding note reading, steps, major
scales, and major keys. The four les-
sons of the program use tutorials,
exploratory modes, drills, tests, and
built-in video games to reinforce con-
cepts.

Juggle's Rainbow is the first in a
series of Early Learning products
designed to teach pre-reading skills to
children of three to six years. Using
graphics and sound, Juggle's Rainbow
teaches children the concepts of above,
below, right and left. Line and circle

The Atari 1025 80—('olumn"pl'imer is
the equivalent to the Okidata Micro-
line 80.

games help children learn to dis-
tinguish between the “tricky” letters,
b,d,p, and q.

Juggle’s House uses the same tech-
niques as Juggle's Rainbow to teach
the concepts of upper/lower and
inside/outside.

Atari continues to evidence a
sensitivity to and understanding of the
consumer microcomputer market.
There is utterly no doubt that Atari
will remain a leading contender in
graphics and sound machines for some
time to come.

For more information, contact
Atari Incorporated, 1264 Borregas
Avenue, P.O. Box 427, Sunnyvale,
CA 94086.

b

he Atari 1010 program recorder
handles a digital and audio track.

A Letter Quality Alternative

For Atari Users

You want letter quality capabilities
on your Atari system, but Atari makes
only dot matrix printers. So you
decide to wait until they produce a

Nancy Blumenstalk Mingus, 15 E. Genesse St.,
Wellsville, NY 14895.

letter quality printer instead of fight-
ing with interfacing to non-Atari
printers, right? Well, you don’t really
have to wait. By using the Atari 850
interface module you can use any
parallel printer or RS232 serial printer
on the market.

117

Nancy Blumenstalk Mingus

But, be forewarned. Interfacing
other products to the Atari is not as
easy as Atari would lead you to
believe. I found this out the hard way.
Although Atari does give you all the
information necessary to utilize the
interface module properly, you must

A Letter Quality Alternative

glean the facts out of three different
manuals, and that takes a consider-
able amount of time. This article will
explain some of the problems encoun-
tered in interfacing an Anderson
Jacobson 832 (RS232) to the Atari,
and give some solutions that should
apply to many other RS232 printers
as well.

One of the hardest problems in
using an RS232 printer on the Atari
is getting a connector cable between
the printer and the interface module.
Although the literature on the 850
says it is standard RS232, it only has
9-pin connectors. Most printers use a
25-pin connector. So you need a cable
to convert the proper signals coming
from the 25-pin connector into signals
recognized by the 9-pin connector.
Now I’'m no electronics expert so I
wouldn’t even attempt to create my
own cable. Since I use port one on the
850 to connect a modem, I wanted
port two to be my printer port. With
the wiring diagram for port two and
the wiring diagram for the Anderson
Jacobson printer in hand, I located a
good electrician and he kindly wired
everything correctly for me. If you
don’t know anyone in your area who
does this kind of work, your local
Atari dealer should be able to help
you.

Once everything is connected prop-
erly, there are a few other things you
need to remember when using the
printer. The most important of these
concerns the disk drive. If you plan
on using a disk drive with your inter-
face module and printer you must
have DOS II as your disk operating
system. There is a special file in DOS 11
called AUTORUN.SYS which auto-
matically runs when you turn on the
computer. This affects the power up
sequence you use. You must turn on
the printer, then the disk drive, then
the interface module and finally the
computer. Also, be sure you have the
BASIC ROM PAC in place.

Most of the above procedure is
explained in the 850 manual, but they
make no mention of the AUTORUN.-
SYS file. The problem we kept
encountering was error number 130
when we tried to open the printer port.
This message indicates that the inter-
face module can find no such device.
What had happened was that the Sys-
tem diskette we had created from the
Master diskette had not copied the
AUTORUN.SYS file. Once we copied
the file on to the System diskette, we
could then open the printer port.

Trying to print or list on the

Pin 1 Data Terminal Ready (DTR, Ready Out)
Pin 3 Send Data (Out)
Pin 4 Receive Data (In
Pin 5 Signal Ground

Pin 6 - Data Set Ready (DSR, Ready In)

Pin functions of Serial Port Nos. 2 and 3 in 850TM
Interface Module (9-pin female connector

printer is now a fairly simple matter. If
you want to print to it you do the
following:

OPEN #2,8,0,“R2:”
where:

OPEN signifies initialization of a

device or file.

#2 indicates the channel num-
ber being used. It can be
any number one through
eight.

8 means opening the channel
for output only, which is
all that is required for a
printer.

0 this argument is not used,
so will always be zero.

refers to the port being
used. The two signifies port
two.

“R2:”

Then any subsequent printing state-
ment would take the following form:

PRINT #2;“Anything”,variable
where:

PRINT is the standard BASIC
PRINT command.

#2 is the channel previously
defined in an OPEN.

Last, to close the device or file, you
would enter:

CLOSE #2
where:

CLOSE means you are terminating
the use of a channel.

#2 is the channel being closed.

Again, this is explained fairly well in
the interface module manual. The
LIST command however, is somewhat
confusing. To LIST to the printer,
instead of LIST#2 as you might
expect, you must type:

LIST “R2”
where:
LIST functions the same as

usual.

is the port number you are
listing through.

Now that you know how to connect
your printer, list a program and print
lines to the printer you’re almost
ready to start. There’s one last prob-
lem left to deal with. The default con-
figurations of the RS232 ports as
shown in the 850 manual need one
modification, because the ports do
not send a line feed when they send a

113 R2”

Atari to Anderson Jacobson Wiring Chart

Pin No. on

AJ Connector Signal Name

Pin No. on
Atari Connector

Signal Name

Signal Ground
Output

Input

DTR

DSR

momo

5 Signal Ground
4 Receive
3 Send

1 DTR

6 DSR

118

carriage return. That is, when the print
head returns to the left margin of the
paper, the paper does not roll up one
line. So all those lines you know how
to print, print right on top of each
other. This produces an interesting
effect, yet it is impossible to read. To
change this, you must reconfigure this
one aspect of the printer port you are
working with. Again, I use port num-
ber 2 and the command I use is:

X10 38.,#2,64,0,“R2:”

where:

XI10 is a special command used
to configure various aspects
of a port.

38 is the particular XIO com-
mand type.

#2 is the channel number being
used.

64 is a decimal code meaning
turn on line feed.

0 as in the OPEN command,

this argument will stay zero.

“R2” is the printer port.

Before you can do a list you must
enter this command, and to be safe,
you should include it in any program
you write where you plan to print
more than one line on the printer.

And now you should be in fairly
good shape to start using that nice
letter quality printer.

Good luck.

The Atari Word Processors

Word processing may not be the appli-
cation of choice for the Atari 800 Home
Computer, but there are many times when
an Atari user would like to set words on
paper in a tidy fashion.

This goal is attainable using any of the
five programs described here.,Unfortunately
none of them offers all the features of the
best of the word processors available for
the Apple or the TRS-80.

Let’s have a look at what is available,
and perhaps you will discover the one that
is best for you.

An Unfriendly Keyboard

The looks of the Atari 800 are deceptive.
Superficially, the keyboard resembles that
of the IBM Selectric, but the right shift
key is onesilly little centimeter to the right
of where an experienced typist expects to
find it.

The quotation mark, used constantly in
Basic programs, is over the 2 rather than
next to the return key. The clear screen
key is where the underline should be and
is too close to the end parenthesis “)” for
comfort.

Corrections are made with a full-screen
editor using the cursor almost as if it were
a correcting pencil. But the cursor control
keys on the Atari are all in shift mode; you
must depress the control key each time
you use the cursor.

On the other hand, the Atari does offer
upper/lower case capability without hard-
ware assists, and, unlike the Apple, the
shift key is fully functional as delivered.

Like the Apple, the Atari 800 offers
only a 40-column display. Unlike the Apple,

Philip Good, Information Research, 10367
Paw Paw Lake Dr., Mattawan, MI 49071.

no one has yet marketed an 80-column
adapter. And none of the three Atari full-
screen word processors makes use of the
Atari high-resolution graphics to generate
a 60+ column character set.

Bare-Bones Word Processors

For less than $20, either of two bare-
bones word processors will allow you to
use the Atari to create and edit messages
for an electronic bulletin board, display
them on the monitor or TV screen, store
and retrieve text and programs, and produce
a hard copy.

With Letter Writer, $19 from CE Soft-
ware, you use the insert key to insert text,
and the delete key to delete text errors.
The program provides only two editing
features of its own to let you indent
paragraphs and skip lines.

The Letter Writer printer formatter allows
you to set the line length (though not the
left margin), insert new pages as required,
and right justify your text. The program
will operate with any parallel connected
printer. I used Letter Writer, a $30 interface
cable from Mactronics Inc., and a C. Itoh
printer to prepare some reports recently.

But Letter Writer is still not a best buy.
That honor goes to Bob's Mini Word
Processor, which costs just $15 from Santa
Cruz Educational Software.

The Mini-Processor allows you to create
files, save or load them, modify them, and
create hard copy. While editing, you have
full control over the tab, delete, back space,
clear, insert, and cursor control keys. But
you can also advance through the text a
page at a time or move with a single
command to the beginning or end of the
text. You may interchange “pages” of text,
though you cannot cut and paste any section
smaller than a page.

119

Phillip Good

The Mini-Processor works with serial
but not parallel printers, using an Atari
850 interface.

Inadequate Documentation

Ideally, any software package should
include four types of documentation:
e Tutorials to get you started; the more
examples and the more demonstration files,
the better.
e A quick-reference manual including a
detachable command reference card to
keep near the keyboard.
e A comprehensive reference manual.
e Application notes for programmers.

Figure 1.

Method One: Menus

A block of text can be deleted using the
menu tree.
1. Repeat steps 1-4 under “Delete Next
Character”.
2. Recall the page that contains the text to
be deleted.
3. Type E in response to the next menu
prompt.
4. Press return.
5. Type T in response to the next menu
prompt.
6. Press return.
7. Type S in response to the next question.
8. Press return.
9. Position cursor at the beginning of the
block to be deleted.
10. Type G and press return. A right
parenthesis in inverse video will appear in
column one and a blank line will be
inserted.
11. Position cursor after the last line of
text to be deleted.
12. Type D in response to the next ques-
tion.

Atari Word Processors

Atari’s Word Processor has all four, but
the tutorials and reference manual are
completely incomprehensible. The com-
bined manuals are more cumbersome (and
bulky) than any of the more than sixty
manuals I recently reviewed. Figure 1 shows
instructions for deleting a block of text
from pages 31-32 of the Atari manual.

See, it’s as easy as a,b,c,d,e,f,g,h,i,jk,l
Don’t ask how to move a block of text;
that takes 28 steps (Method 1). Whoever
wrote this Atari manual (I think it was a
committee) also wrote the mainframe
manuals that drove us to using personal
computers in the first place.

All three word processors— Atari’s, Letter
Perfect, and Text Wizard—do provide
detachable quick-reference cards. Text
Wizard has only one example, which you
must type in yourself, and no demonstration
files. The Text Wizard tutorials also serve
as the comprehensive reference section—or
is it vice versa? My manual was missing a
page —the page that told how to save the
file I had just created.

Letter Perfect has no demonstration files
and only one example —a form letter. You
must buy a second LIK product for another
$150 to make use of the example.

Text-Editors

The Atari Word Processor has the best
text-editor of the three full-screen word
processors, if you can figure out how to
use it. You can display text on the screen
as it will appear in print. You can work
with files much, much larger than memory.
And you will automatically save what you
have edited as you move from page to
page. (Unfortunately, you will destroy the
old text as you do so; back-up is not
automatic.)

Text Wizard is the only one of the three
which lets you edit programs as well as
text, enter insert mode for the rapid insertion
of many paragraphs of text, and move or
copy entire blocks of text simply and
rapidly.

Letter Perfect is the only one of the
three to provide a block delete safeguard,
and to let the user set tabs with a cursor.

There is an extensive list of simple editing
functions that can’t be done with any of
the three including:

e Print one file while editing another.

e Display a second file.

e Automatically back-up on file-save.

e Insert key phrases with a single key-
stroke.

e Use wild cards in a search and replace
command.

Printer-Formatters
You will probably have to settle for less
than letter quality with an Atari. None of

Table 1. Atari Text Editor.

Overall
years on market
back-up
uses Hi-Res graphics
menu driven
can display multiple files
displays text on screen
as it will appear in print
can print one file while
editing another
handles files larger than memory
can edit programs as well as text
control characters can be customized

Documentation

getting started

tutorials

examples

help menus

reference material
separate reference card

File Control

continuous back-up

save file and continue editing
automatic back-up on file save
file protect safeguard

insert a second file with one command
insert a portion of a second file
display a second file

display file directory

kill file (and create space)

can prepare files for transmission

Scrolling (or cursor movement)
by word

by line

by sentence

by screen

to beginning or end of workspace
to beginning or end of document
horizontal scroll

Delete

by word

by line

by sentence

delete recover

by screen

by block

block delete safeguard
continuous delete

Insert

keyphrases

typeover (fast)

insert mode (for many words)
push ahead (for one or two letters)
split and glue a line at a time
intermediate buffer

block whole sections

delete and restore

Atari
$150

1/2
no
no
yes

yes

no
yes
no
no

slow
hopeless

yes
cumbersome
cumbersome
yes

by page
yes

no

yes

yes

no

no

no

no

no

no
yes
no

yes
yes
yes
yes

yes
yes
no
yes
yes
yes
no
no

no

yes

no

yes

no

yes
complex
yes

Letter
Perfect
$140

1/2
$20 by mail
no
yes
no

no

no
no
no
no

slow
no
none
no
yes
yes

no
yes
no
yes
yes
no
no
yes
yes
no

no
yes
no
no
yes
no
no

no
yes
no
no
no
yes
yes
yes

no
yes
no
yes
no
yes
no copy
yes

Text
Wizard
$99

1/2
$5 by mail
no
no
no

no

no
no
yes
no

easy
no
one
no
good
yes

no
yes
no
no
yes
no
no
yes
yes
yes

no
yes
no
yes
yes
no
no

no
yes
no
no
no
yes
no
no

no
yes
yes
yes
no
no
yes
no

The tables shown are reproduced from “Choosing a Word Processor,” by Phillip
Good. Copies of this book may be obtained from Information Research, 10367 Paw

Paw Lake Drive, Mattawan,
handling.

120

1 49071. Cost is $14.95 plus $2.00 for shipping and

the full-screen Atari word processors
reviewed here supports the special features
of a Qume or a Diablo. Atari owners must
content themselves with one of two dot
matrix printers—the Atari 825 (the Cen-
tronics 737 in disguise) or an Epson MX-
80. The Epson is by far the better buy,
even thouglhi it will not support underlining,
superscripts, or subscripts.

You can’t alter the number of lines per
inch with any of the three full-screen word
processors. You are limited to a one-line
heading. You can’t use soft or phantom
hyphens; that means you will need to spend
time printing and reformatting until you
get it right. You will spend less time with
the Atari word processor perhaps, because
it lets you view your material on the screen
just as it will appear on the printer. But the
screen display is so inefficient and time-
consuming, you may find it faster to use
the print and guess method of Text Wizard
or Letter Perfect.

None of the three lets you interrupt and
resume printing, whether to answer the
telephone or to pause for text entry from
the keyboard. None of the three has mail-
merge capability. You can get mail-merge
capability for Letter Perfect by purchasing
LJK’s Data Manager. A mail merge option
for Text Wizard is in the works.

A Lost Cause?

I don’t think the Atari is a lost cause.
With very little programming effort, one
can correct its keyboard deficiencies. The
cursor control keys can be reprogrammed
for lower case use. This has already been
done by Eastern House Software in their
Atari Monkey Wrench. The Atari high
resolution graphics can be used to create
a 60+ column display without hardware
assists. Both of the bare-bones word pro-
cessors already support letter quality
printers; there is no reason the more
expensive full-screen word processors
cannot provide the same support. O

Vendor’s List
Bare-Bones

Bob’s Mini-Word ($15), Santa Cruz
Educational Software, 155425 Jigger Dr.,
Soquel, CA 95073. (408)476-4901.

Letter Writer ($20), CE Software, 238
Exchange St., Chicopee, MA 01013.
(413)592-4761.

Full-Screen

Letter Perfect ($140), LIK Enterprises,
P.O. Box 10827, St. Louis, MO 63129.

Text Wizard ($99), DataSoft Inc., 19519
Business Center Dr., Northridge, CA 91324.
(800)423-5916.

Word Processor ($150), Atari Inc., 1265
Borregas, Sunnyvale, CA 94086. (800)538-
8543.

Table 1. continued

Atari Letter Text
Search WP Perfect Wizard
find phrase anywhere in document yes o *
find with user option to replace yes yes yes
find and replace n times no no no
find and replace all in document yes no no
find and replace all in memory yes no no
use wild cards no no no
ignore upper/lower case in matching no no no
Screen Format
format entire text yes no no
format different parts differently no no no
set line length yes no no
set tabs with cursor no yes no
set tabs by command yes no no
* Not applicable.
Table 2. Atari Text Formatter.
Atari Letter Text
WwpP Perfect Wizard
Overall
display on screen as it will print yes no no
print one file while editing another no no no
mail-merge or file-merge no extra $ extra $
letter quality printers supported no no no
Layout
set from a menu yes no no
menu may be skipped yes
under user control while printing no no no
characters per inch yes yes yes
lines per inch no no no
width limitation 80 80 80
Page Control
one line heading yes yes yes
multi-line heading no no no
heading and footing no yes yes
page numbering yes yes yes
odd/even page distinction yes no no
conditional new page yes no no
Text Control
justify yes yes yes
center yes yes yes
phantom hyphen no no no
conditional formats no no no
multiple columns yes no yes
reverse line feed no no no
Printer Control
underline yes yes yes
bold face yes yes yes
vary bold face intensity no no no
super- and sub-script yes yes yes
change ribbon colors no no no
kerning no no yes
change control characters no no no
proportional spacing yes yes yes
Output Control
interrupt/resume no no no
pause for text entry from keyboard no no no
pause for variable entry no no no
start/stop at designated page/record yes yes yes
print multiple documents no no yes
print multiple copies no yes no

121

Atari Text Editor Program

Elwood J. C. Kureth

I’d be willing to bet that a fair num-
ber of people who own a computer
and a line printer do not own a type-
writer. Of those individuals who don’t
own one, it would probably be safe to
assume that its absence could be
attributed to the fact that (a) the need
for a typewriter has never arisen, or (b)
they don’t need (or use) a typewriter
often enough to warrant purchasing
their own.

If you already own a typewriter
(as Ido) in addition to your computer
and its related items, and you already
type with confidence, then perhaps
this program will be of little use. How-
ever, if you’re like me, you usually end
up making a few mistakes, which
means erasing or starting all over
again.

This program was written for an
Atari 800 with an Epson MX80F/T
printer. It’s not a word processing
program by any means; in fact, it’s
very limited in its application. What it
allows you to do however, is put text
on the screen, edit it, and send it to a
printer in two different print modes.

RUN it and you will be asked to set
the right margin (up to 80 columns).
Hit a RETURN to enter the number.
You will then have to determine if you
want emphasized print. This type of
print is much bolder than normal print
and approaches letter quality. Simply
type “Y” or “N” (no RETURN is
necessary because the keyboard
“reads” your input). Next, you will be
prompted for single or double space.
After your selection, you will face a
blank screen. The first key you hit will
display the cursor, and away you go.

Four spaces from the end of each
line a warning buzzer will sound, just
like the bell on a typewriter. The
cursor will not advance once you have
reached the right margin; it will, how-
ever, backspace or RETURN. So
there’s no need to worry about over-
running your margin.

NOTE: A HEART (CHR$(0)) will
appear each time a RETURN is hit.
The heart will help you keep track of
your lines on a 40 column screen.

Let’s say you have a 37 or less char-
acter line on the screen (79 or less
character line for an 80 column
screen), and you want to change a
character. If the cursor has already
advanced down one physical line (due
to a RETURN or end-of screen
return) you will be unable to correctly

Elwood J.C. Kureth, HHD, 14th Maintenance
Bn., APO New York 09169.

edit the line the cursor just left. If you
wish to make a change to a line of text,
it must be done while the cursor is on
that line.

You may move the cursor back-
wards by using either the DELETE/
BACK S key or the CTRL«-~keys.
Using the DELETE/BACK S key will
delete the character the cursor covers.
Let’s say you have the word
“MICROOCOMPUTERS”, and you
wish to delete the second “O” from
that word. This action could be ac-
complished one of two ways. The
DELETE/BACK S key could be usrd
until the cursor is over the second
“0”, thereby deleting it, as well as all
the characters that had followed it.
Now it would be necessary to retype
the rest of the word.

The alternate method would be to
use the CTRILZ——keys, moving the
cursor backwards to the immediate
right of the second “O” (cursor would
be covering the “C”). At this point you
would hit the DELETE/BACK S key,
which would move the cursor over the
“O” (deleting it), followed im-
mediately by the CTRL-->keys to the
point where you’'d left off. The cursor
will automatically stop at that point

if you hold the keys down.

CAUTION: With the exception of

the abovementioned example, any-
time you move the cursor backwards,
your first action when moving it
forward again must be to type at least
one character, as opposed to im-
mediately using the CTRL-—>*keys to
start moving the cursor forward. If,
in the example used above, you over-
shoot the “O” and the cursor winds
up over the “M”, instead of using the
CTRI=—*keys to move the cursor, you
would first type the letter “M”, then
CTRI==*(or type) to the right of the
“0O”, then DELETE/BACK S overthe
“0O”, then (whew!!) CTRI=—*to the
point at which you started backwards.

The last line of text must be followed
by a RETURN. Then, it’s simply a
matter of hittinga CTRL P, and your
text is transfered from screen to paper.
More copies? Just hit a CTRL P.

If you desire to type new material,
you must first clear the memory by
hitting the ESC key. If thisis not done,
two things can happen when you print
out the new text. First, the previous
material will be printed out before the
new text. Secondly, if you hit a
SYSTEM RESET, run the program,
type new material, and edit that new
material, you could get a rather con-
fusing text. Always hit the ESC key

first after you’re through printing

your material.

1 REM ATARI VERSION--BY ELWOOD J.C. KURETH,JR.

S OFEN #1,4,0,"K":0FEN #7,8,0, "P":GRAFHICS O

10 POKE 752, 1:M=0:COUNT=0:BUZZ=0:7 #7:iCHR$ (27) i CHR%$ (&4)

15 ? CHR$(125):POSITION 5,5:7 "SET RIGHT MARGIN (UF TO 80)"i:INPUT MARGIN:IF MAR
GIN>BO THEN GOTO 195

20 FOSITION 2,5:7 "DO YOU WANT EMPHASIZED PRINT(Y OR N)":GET #1,LTTR:IF LTTR

AN
22
23
24
25
26
28
30
35

37

D LTTR<»78 THEN GOTO 20
? CHR%$ (125):POSITION S,5:

<{ >89

7 "SINGLE OR DOUBLE SPACE(S OR D)"

GET #1,SFACE: IF SFACE<»B3 AND SFACE< »6B THEN GOTO 22

? CHR$ (125); : POKE 752,0
GET #1,IT

IF IT=156 OR IT=157 OR IT=254 OR IT=255 OR IT=125 THEN GOTO
THEN GOTO S00:REM BACKSFACE
IT<>155 THEN GOTO 25

IF IT=126 OR IT=30
IF BUZZ=MARGIN AND
IF IT=16 THEN GOTO
IF IT=31 THEN GOTO

600IREM FRINT

25

900:REM ADVANCE CURSOR

38 IF IT=27 THEN GOTO 2000:REM CLEAR MEMORY

40 COUNT=COUNT+1:BUZZ=BUZZ+1:IF BUZZ=MARGIN-4 THEN 7 "3}"%

41 IF IT=155 THEN ? CHR$(0);::GOTO 1000:REM RETURN

42 M=M+1

45 POKE 6000+M, IT:7 CHR$(PEEK (6000+M))::G0OTO 25

S00 IF IT=126 THEN POKE &000+M,0

510 7 CHR$(IT)::GET #1,IT

515 IF IT=126 OR IT=30 THEN M=M-1:BUZZ=BUZZ-1:60TO S00

520 IF IT=155 THEN GOTO 1000

SZ0 GOTO 45

600 FOR X=1 TO COUNT:IF LTTR=8%9 THEN 7 #73CHR%$ (27):iCHR$(&69) 3

620 7 #7iCHR$ (FEEE (6000+X)) 3 :NEXT X:GOTO 25

00 M=M+1:BUZZ=BUZZ+1

905 GET #1,IT

907 IF M:COUNT AND IT=Z1 THEN GOTO 905

Q08 IF IT=31 THEN ? CHR$(IT)::GOTO 200

210 IF IT=155 THEN GOTO 1000

220 BOTO 45

1000 COUNT=COUNT-+1:FPOKE &000+COUNT, 155:7 CHR% (FEEK (6000+COUNT)) &
1010 IF SPACE=68 THEN COUNT=COUNT+1:FOEE &00O+COUNT, 155:7 CHR$ (PEEK (6000+COUNT))
1020 M=COUNT:BUZZ=0:G0TO 25

2000 POKE 752,1:7 "}":POSITION 7,5:7 "#%¥%* FLEASE WAIT **x*"
2010 FOR FILL=1 TO COUNT:POKE 6&000+FILL,O:NEXT FILL:? CHR%$(125):60TO 10

122

VisiCalc:Reason Enough for Owning a Computer

Doug Green

Ideally your computer should be
able to act like a cross between an
electronic piece of paper and a pocket
calculator. That seems to be just what
the people at Personal Software, Inc.
had in mind when they developed
VisiCalc. VisiCalc is not merely a piece
of interactive software, but in some
respects is more like a separate pro-
gramming language. It is extremely
powerful, and handles many varied
jobs with aplomb. When used properly
it can save a great deal of time that
would ordinarily be spent program-
ming or using several pieces of soft-
ware. VisiCalc cannot do some of the
things that high level languages can
do, but what it can do, it does very well
indeed.

It takes much less time to learn
virtually everything there is to know
about the VisiCalc system than it takes
for any other programming language
you can think of. In my case it took
about seven days averaging about one
and one-half hours a day to become
conversant with all that VisiCalc has to
offer. This is in sharp contrast to the
various high level programming lan-
guages that demand much more of the
learner in exchange for their greater
flexibility.

Not only does it take only a short
period of time to understand the entire
VisiCalc system, but it takes almost no
time to begin getting results from this
remarkable piece of software. This is
an opinion that | share with everyone
that | have demonstrated this system
to, as well as several people in the
computer business who already use
VisiCalc or supply it to other users.

A Window Into The
Computer’'s Memory

After you load in the VisiCalc disk
you will have the basic electronic sheet
of paper on your screen. As you can
see from Photo 1, it has 20 rows and
four columns. Each location in this
grid is identified by the number of the
row and the letter-code at the top of the
column, for example, A1. The cursorin
VisiCalc is much wider than the usual
single-character cursor; it takes up the
entire entry thatitoccupieson the grid.

Any entry on the sheet can either
be a number, a word, or a function of
the contents of other locations. This is
one of the reasons that VisiCalc is so
powerful. Whenever a location is
changed by the user, all of the loca-
tions that depend on it are auto-
matically recalculated. It is this aspect
of VisiCalc that is so striking and so
useful.

Let us say you have told the
VisiCalc sheet to derive column C in
some way from columns A and B. Then
if, for some reason, you change any of
the values in columns A or B, new
results in column C will be displayed
automatically. This is like using FOR

. . NEXT commands in immediate
mode without ever having the contents
of your memory leave the screen.

Although what you see is limited
by the number of spaces that can be
displayed on your screen at once, the
electronic sheet is actually much
larger. There are 254 rows and 63
columns where information can be
stored, and the amountyou canstore is
limited more by the size of your com-
puter's memory than it is by the
VisiCalc sheet.

Keeping track of the remaining
memory is very simple since it is con-
stantly displayed in the upper right
hand corner of the screen.

You may only see 20 rows of data
at one time, but the number of columns
can be varied by changing the width of
the columns. You can also store more
information in one of the grid loca-
tions than it appears able to hold. The
system will remember exactly what
was entered regardless of how narrow
you choose to make the visible col-
umns. The screen will display as many
characters as you allow for, beginning
from the left of your input.

In addition to the grid, there is
space at the top of the screen where
other important information is dis-
played.

The white bar displays the con-
tents of the location where the cursar
is currently residing. This can eitherbe
a value (v) or a label (I). These terms
are analogous to numeric and alpha-
numeric variables that one deals with
when using Basic; except just a value
can be an expression referring other
locations in the table.

Two Independently
Scrollable Windows

If you are not satisfied with the
information that you can see on the
screen at one time, you can split the
screen in either the horizontal or
vertical direction and look at whatever
portion of the sheet you like in either
window. A common use of this feature
is to display the upper left corner of
your sheet in the left window while the
lower right portion of your work is dis-
played in the right window. That way
you can change your initial entries and
watch your totals change at the same
time. Photo 2 shows an example of how

Photo 1.

this might be puttouse while analyzing
the family budget for the upcoming
year. Instead of wondering idly what
would happen to your savings for the
year if the electric bill goes up five
dollars a month, you can find out just
by typing over the information that you
would like to see changed. As you
might guess, this will change the entire
row that lies beyond the changed data,
along with all of the column totals that
depend on these figures.

S2
25
22
€2
32

74
22
z2
$2
23
€2
€2
&3
€

Photo 2.

The Replication Feature

Another impressive feature of this
system is the ability to replicate similar
functionsdownarow, acrossacolumn,
or in both directions at once. For
example, if you wish to have VisiCalc
derive values for column C by sub-
tracting those in column B from the
corresponding values in column A, all
you need do is type in the directions
for the first location in column C along
with directions for replication. This will
cause column C to be completed in an
instant.

If you are trying to complete a
table of entries that depends on the
values stored in the top row and the
left hand column, all you need do is
supply the directions for the entry
located at row two, column two along
with the replication commands and
the screen will fill before your eyes,
much faster than most users could

Doug Green, Cortland Jr.-Sr. High School, Valley View Drive, Cortland, NY 13045.

123

VisiCalc

type in the specific formulas to per-
form such a task.

Cursor Control

The — and — keys are used to
move the cursor from side to side and
up and down, while the space bar is
used to change the direction of cursor
movement from horizontal to vertical
and back. For rapid movementyoucan
hold down the repeat key. Thereisalso
a GOTO command that allows you to
move the cursor to any location on the
sheet with just a few keystrokes.

The little dash in the upper right
hand corner of the sheet tells you
which way the cursor is currently pre-
pared to move. The letter next to this
dash, either a C or an R, lets you know
the current direction that the recal-
culation will occur in. You can instruct
VisiCalc to recalculate down the
columns (C) or across the rows (R).
This will depend on how you have set
up the entries in your table.

The ESC key is used to recover
from simple typing mistakes. If you
press it often enough it will erase all
that you have typed insince you last hit
the return key. As you enter data for a
given location it appears on the so-
called prompt line, the line between the
white box at the top of the sheet and
the grid. When you close an entry by
hitting return, or moving the cursor to
another-ocation on the page, the con-
tents of the prompt line are calculated
(if necessary) and placed in the loca-
tion on the grid that you have justdealt
with.

More Functions And Commands
There are a number of other func-
tions that are available to VisiCalc
users. These are all listed in Table 1,
but a few deserve special mention. The
sum function is especially useful to
anyone dealing with columns of num-
bers that must be added. (Think of all
the time operators of small businesses
can save by not having to bang num-
ber after number into a calculator.
With VisiCalc they only need to be
written once.) You can also ask for the
average of a range of values along with
other common functions used in bus-
iness, science, and mathematics.

The list of commands is also im-
pressive. With a few key strokes you
can blank out any location, add or
delete a row or column, move a row or
column to a new location on the page,
orrepeat a number or letter across any
location in the grid. This last com-
mand is especially useful for drawing

VisiCalc Functions

Calculates the sum of the values in a list
Calculates the minimum value in a list

Calculates the maximum value in a list

Results in the number of non-blank entries in a list

Calculates the average of the non-blank valuesin alist.
The maximum number of values in the list is 255.

Calculates the net present value of the cash flows in a
list, discounted at the rate specified. The first entry in
the list is the cash flow at the end of the first period, the
second entry is the cash flow at the end of the second

Used with a list of items that are ranked in ascending
order. This function returns the value from the list that
is less than or equal to the value referenced in the

Returns the value of 3.1415926536
Returns the absolute value of the value given
Returns the integer portion of the value given

Calculates the appropriate function. The trigono-
metric calculations are done in radians

Results of a calculation are not available. This makes
all expressions using the value display as NA.

Results in an “Error” value that makes all expressions
using the value display as ERROR.

This means that there is not enough room to display
the calculated value in the room available. Making the
columns wider will often allow the value to be dis-

VisiCalc will automatically shift to scientific notation if

SUM
MIN
MAX
COUNT
AVE
NPV
period, etc.
LOOKUP
command given.
Pi
ABS
INT
EXP SQRT
LN LOG10
SIN ASIN
COS ACOS
TAN ATAN
NA
ERROR
>S>>>
played.
Scientific
Notation

necessary in order to display a value in the space
alotted.

Table 1.

lines across the page like those in
Photo 1. There are a number of com-
mands that can change the format of a
given location or the entire window
that the cursor is located in. The
choices for these formatcommandsin-
clude: general, integer, dollars and
cents, left- or right-justified columns,
and graphing. This final command can
be used to construct simple bar-
graphs for information displayed in a
range of entries selected by the user.
This is shown in Photo 3.

Other commands couple or un-
couple the movements of pairs of
windows, fix the titles on the screen

124

3t
3
3z
i1z
31
3 &
1t
31
3z
LR
3
3
3t
3t
3t
L &1

Photo 3.

as the cursor moves down or to the
right, and replicate formatting acrossa
whole column orrow, orthe entire con-
tents of the current window. These
commands require between two and
five keystrokes each depending on
what is being accomplished. (The
Clear command requires three key-
strokes, a fact that saved me from
clearing the VisiCalc sheet at a time
when | was really trying to do some-
thing else.)

VisiCalc manages its own storage
in its own format. It provides storage
commands allowing you to save files
on disks or cassette tapes, load files
from a disk or a cassette, delete a file
from a disk, or initialize a blank disk so
that it will be ready to receive VisiCalc
files for storage. It is easy to ask for a
list of the file names on a given disk.
You can also print the contents of your
sheet on a disk as a “text file.” This
file can be read by other programs in
Basic, for example, and the informa-
tion can be further processed in this
manner. (This feature permits you to
perform whatever other functions you
may feel are missing.)

Similar commands will result in
the printing of your electronic sheet
by your printer. The output will be what
is actually on the sheet, as opposed to
what appears in the window, so be sure
to pay attention to the line width of
your printer. In any case you can
specify the portion of the page that will
be printed with the issuance of the
proper print command.

Stay Tuned

Your purchase of the VisiCalc
package includes an instruction book
that contains an introduction and four
lessons. As | read through the book
and carried out the examples | found
the text to be easy to understand. The
explanations were certainly cleaner
and better than those | have seen in
most systems programing manuals.
Along with the book, which is in a
handsome 10 x 7', inch three-ring
binder, you receive the VisiCalc ref-
erence card. This contains a summary
of all of the VisiCalc commands and
functions and is extremely useful for
users who are new to the system. It
would also be invaluable to infrequent
users. When you send in your warranty
card you will receive the first copy of
the VisiCalc Newsletter free. Original
owners are also protected from any de-
fect in the disk for 90 days, and re-
placement thereafter for $15.00.

The people at Personal Software,
Inc. are planning toimprove the system
and offer the updated versions to
original owners at a reduced price.
They also encourage users to sug-
gest changes and additions to improve
the system. As a VisiCalc user | would
suggest that they add some of the more
commonly used statistical functions to
those listed onTable 1. The ones that |
would suggest would be: standard
deviation, one or more correlation co-
efficients, and perhaps the ability todo
a t-test and a least-squares linear re-

gression; but new functions, must use
up too much memory.

Machines And Memory Requirements

Although the version | used was
designed for an Apple system, it will
soon be available for other makes of
small computers including Pet and
Atari. It is only available on disk and
requires a minimum of 32K of RAM.
Additional memory will allow for the
storage of a much larger electronic
sheet but all of the systems’ features
are available for users of 32K systems.

The version that | used (version
35) requires 23K for the resident pro-
gram. This means that for a 32K sys-
tem there remains only 9K for storage
of the electronic sheet. This still allows
for a reasonable amount of storage,
but for most business applications it
would be agood ideato have 48K avail-
able.

Worth The Money?

If you are in business, the chances
are that the cost of a VisiCalc disk will
be one business expense you will
gladly bear. The current suggested
retail price is $150.00. This may be a
bit steep for someone who only needs
to do his check book and the family
budget, but for almost anyone in bus-
iness, education, or any science-
related field it is not only worth the
initial expense, but reason enough to
purchase a small computer system in
the first place. m|

Atari Resources

Where do you get more help and
information about your Atari? Obvi-
ously, Creative Computing is one
source, and there are several others.
If you are a beginner, the Atari Basic
self-teaching guide that came with
your computer will get you started.
When you send in your warranty
card, you will recieve the Atari
400/800 Basic Reference Manual,
which is much better, and actually
answers most of your questions. |
had three questions when | first
started programming the Atari:

1. How do you concatenate strings?

2. How do you array strings?

3. How do you obtain keyboard input
without stopping the program?

Atari had given me the name of
someone in the plant to call for
questions, so | called and left my
questions. Within hours they called
back with the answer; “We don’t
know.” The next day my preliminary
reference manual arrived, and it had
answers to all three questions! The
answers were not easy to find, but

125

they were there.

1. To concatenate a string variable,
follow these steps:

a. Dimension the recieving
string large enough to hold
the combination.

b. Determine the length of the
original string with the LEN
function.

c. Assign the string to be
combined to the next loca-
tion in the receiving string.

Atari Resources

Here is a program to do it:
10 DIM AS(10):DIM BS(5)
20 A$="THIS"

30 B$="+THAT"
40 AS(LEN(AS$)+1)=BS
50 PRINT AS

2. String arrays are difficult in Atari
Basic. Essentially, you have to
dimension a very large string,
store all other string data as
substrings, and do your own
bookkeeping to keep track of
where each item is. The Alpa-
numeric Sort routine in Appendix
A of the Reference manual uses
this method. One advantage of
Atari Basic is that there is no ar-
bitrary limit to the size of a
string, as there is in Microsoft
Basic, so there is a lot of
flexibility.

3. To strobe the keyboard, PEEK lo-
cation 764 in memory to deter-

mine when a key is pressed. To
obtain a single character from

the keyboard, OPEN the key-
board as an input device and use
the GET command:

10 X=PEEK(764):IF X<255 THEN PRINT X

20 GOTO 10

10 OPEN #1, 4, 0, "K:"

20 GET #1, A

30 PRINT CHRS(A)

Other sources of information include
Compute! magazine which divides its
attention between the Pet, the Atari, and
the Apple. The cost is $20.00 a year for 12
issues. For a subscription, write:
Compute!, P.O. Box 5406, Greensboro,
NC 27408.

Two magazines published soley for
Atari owners are A.N.A.L.O.G. (6 issues,
$12.00 a year) and ANTIC (6 issues,
$15.00 a year). Write to A.N.A.L.O.G. at

P.O. Box 615, Holmes, PA 19043 and to
ANTIC at 297 Missouri Street, San
Francisco, CA 94107.

| have since received the regular
Basic Reference Manual, and it is
even better than the preliminary one.
One nice new feature is an excellent
memory map. Some information is
still not released, but | get the
impression that this is because Atari
is reluctant to release it in its
prelimiaary form, not because they
are trying to hide something. | know
that they have been particularly
helpful to friends of mine who have
signed non-disclosure forms.

Tutorial Series
One excellent source of informa-
tion is Iridis. Iridis was first adver-

tised as a magazine, but now
describes itself as “a series of
tutorials about the Atari Personal

Computer.” It is sold, not by sub-
scription, but by individual issues.

Iridis | contains four programs
with explanatory articles, three col-
umns, and an explanation of their
format for printing control charac-
ters. You can purchase it either with
the programs on cassette ($9.95) or
on disk ($12.95).

The four programs include
“Clock,” a high resolution wall clock
with moving hands, ticking and
chimes; “Zap,” where a joystick-con-
trolled snake moves around the
screen eating bits of food and
growing; “Logo,” which displays the
Iridis logo in dozens of different
shades, with instantaneous changes
from one color to another; and
“Polygons,” which constructs geo-
metric patterns.

Each program is listed, and a
“behind the scenes” article following

each listing explains the program in
detail. These listings are very well
done, and contain fascinating
glimpses into programming tech-
niques. For example, you can test to
see if the START button is pressed
by checking to see if memory
location 53279 contains anything
otherthan 7.

The three columns are “Novice
Notes,” with programming tips for
the beginner, ‘“Hacker’s Delight,”
which goes into detail about how the
machine works, and “Oddments,”
which contains features too short to
deserve an article, but too significant
to be ignored.

Iridis | comes in manual format, 6
inches by 9 1/2 inches, and contains
32 pages. The print is quite small,
and appears to be typeset with a
smal!lcomputer'word processor and
printer. Except for a chart on the last
page showing the Atari control
characters, there are no illustrations.

You may order Iridis from The
Code Works, Box 550, Goleta, CA
93017

Itty Bits

As a closing feature, here is a
calculator program | use frequently
to balance my checkbook, do my
taxes, and for any other adding
machine functions. Although it is
very short, it is one of my favorite
programs. To clear the memory,
enter the present value of the
accumulator (B) as a negative
number.

10 INPUT A : B=B+A : PRINT B : GOTOl0

Questions and Answers

The following are answers to some
of the mail we have received of late.

Q. PEEK(741)+256*PEEK (742) (from
July ’81) is not a good way to find the
display list. PEEK(560) is. Why didn’t
you?

A:Knowledge about the Atariis a rapidly
unfolding thing. We pass on what we know

when we know it. And remember, we write
columns about four months before you
read them. Since we are experimenting
with the Atari all the time, and learning
more, sometimes we discover a better way
of doing things about which we have already
written. No matter; we try to give the best
of what we know at the time.

126

Q: In the DLI article (December 1981)
youdon’t use memory page 6. Why? If you
did, you could fix the location of the
program and avoid the relocation code.

A: First, we left the page alone so the
user could use it along with the DLI routine.
Remember, the DLI routine will coexist
and coexecute along with many assembly

routines asitis an interrupt handler. Hence,
itis potentially more useful located outside
of page 6.

Second, it gives us a chance to explain
all about string handling and the general
principles behind regarding a string as just
a collection of bytes in memory, useful in
other ways besides merely holding char-
acters. These are tutorials, remember, and
often the stated goal is far less important
than the getting there. The principles behind
the demonstration will be far more useful,
in many ways, than will be the demontra-
tion.

Q: In the July article you show a mixed
mode display, which I can’t produce. Could
you send me the code for this? (Multiply
this by 80 letters or so.)

We omitted the code because I was
addressing the principle of stacking display
blocks, and the code is somewhat confusing.
It tends to raise more questions that it
answers, but I have included it here for
the curious. See Listing 1.

Basically we are modifying a graphics 8
display list to:

GR.2

GR.2

GR.0

Gr.8 x lots

We are not duplicating the July display
exactly, but you can with the principles in
the code.

We use two GR.2 lines to make the
memory requirements come out to 40 bytes,
to keep “in sync™ with graphics 8. We then
put data into the first 120 bytes of DM for
character output.

Character data is translated from
ATASCII to INTERNAL format for dis-
play; they are not the same. A machine
language routine here would be quite nice;
there is probably one in the operating system
that could be used. The INTERNAL codes
are then POKEd into memory.

Because we now generate 16+16+8+189
scan lines, instead of 192, we have a total
of 229 generated lines. This will probably
cause your TV to “roll.” So we chop out
the lower 40 graphics 8 instructions by
moving the JVB instruction up. I copy the
data bytes first, then the JVB byte, to
prevent the JVB taking off into random
memory.

Or so we thought. (And so we told you.)
JVBis the jump and wait for vertical blank;
it makes the display list into a GOTO
loop, so we said. Except that just by accident
we found out that where it jumps to doesn’t
matter. That’s right: the data bytes following
the JVB are irrelevant. Why? Because at
the start of every screen refresh, the
operating system copies the display list
location shadows (560, 561) into Antic and
re-sets him to the start of the DL. So all is
well even if Antic, at the end of the DL,
jumps off to kingdom come.

Except: during disk accesses, where
apparently the Vblank routine copy is
nulled. Then the screen will go wild. (See
what I mean about “rapidly changing
knowledge™?)

Along these lines, a fun display is to set
up two display lists and two display mem-
ories, and have Antic execute them
alternately. (Use a DLI in the first 112

instruction to swap display memories.)
You'll get two displays superimposed on
each other. For example, we had a graphics
0 display of Basic code imposed on the
graphics 8 display it produces. Nice, and
nifty for an editor or such. However, it
does tend to flicker.

Q: Speaking of flickers, your DLI routine
has an annoying flicker in midscreen—a
border between two colors that jumps back
and forth. Why?

A: You're right. Next question?

Seriously, the reason for this is that the
6502 just doesn’t have enough time to copy
all the data into the CTIA color registers
before the TV scan line begins. In fact, it
can’t even start until midway through the
last scan line of the display block with the
interrupt flagged. The TV refresh process
outruns this rather generalized routine.
You'll have to learn assembly language to
deal with this properly; use WSYNC, then
rapidly store up to three colors after the
WSYNC using STX, STY, and STA. You'll
still be offscreen. For those of you I've
lost, the timing of a DLI routine is a very
touchy thing; if you don’t know machine
language and how the Atari relates to the
TV, forget it.

This routine will also crash in graphics 8
as it will not complete between interrupts
if you have interrupts on two consecutive
scan lines. If you want that, learn assembly
language, then write your own driver.

On Memory Boards
Q: My Atari dies after being on for a
while. Or, my Atari freaks out unexpectedly.

Listing 1.

10 REM GRAPH PROGRAM 342 DM=PEEK(ST+4)+Z256%FEEK(ST+5) 670 NEXT T

20 REM LAYOUT: 41@ REM POKE INTO MEMORT 675 REM PLOT A SAMPLE GRAPH

30 REM 420 FOR T=1 TO 20 676 SETCOLOR 2,8,0

49 REM 1 LINE GR.2 20 BYTES 16 430 POKE DM+(T-1),ASCCAK(T,T)) 680 XMIN=2

5@ REM 1 LINE GR.2 40 32 440 NEXT T £90 YMIN=S

6@ REM 1 LINE GR.O a0 40 450 A%=" MODE 2 SECOND LINE * 700 XMAX=313

70 REM 120 LINE GR.8 80+(4500) 160 460 REM 12345673301234587890 710 YMAX=159

8@ REM 1 LINE GR.® +40 168 470 REM TRANSLATE A% TO INTERNAL 7Z® COLOR 1

30 REM 1 LINE GR.® +40 178 CSET 725 PLOT 1,70:DRAUTO 312,70:PLOT 1,70
1¢@ REM 1 LINE GR.O +40 184 480 GOSUR 500@ 726 XSAY=1:YSAV=70

11@ REM 1 LINE GR.®@ +40 132 4&% REM POKE INTO MEMORY 73@ FOR X=5 TO 315 STEP 5

200 REM SET MODE 430 FOR T=1 TO ZzZ@ 740 Y=INT(RND(@)¥%70Q)+40Q

210 GRAPHICS'R+16:REM FAKE LAST FOUR 4233 POKE DM+Z224(T-1),A3CCAKCT,T)) 75@ DRAWTO X,Y

220 REM DISPLAY LIST 436 NEXT T 752 PLOT XSAV+1,YSAV:DRAWTO X+1,Y
230 ST=PEEK(S560)+256%PEEK(561) 4397 GOTO £500 753 PLOT XSAV+2,YSAV:DRAWTO X+2,Y
240 REM ST+©,ST+1,ST+2=112..LEAVE BE S0 REM SUBROUTINE TO XLATE ASC TO 755 ASAV=X:YSAV=Y

242 REM S5T+3=73. CHANGE 70 7+64. 513 REM INTERNAL CSET 760 NEXT X

243 POKE ST+3,7+64 520 FOR Z=1 TO LENCA®H) 77@ REM PUT IN 4 TEXT LINES AT BASE/
245 REM ST+4,+5=DaTa. LEAVE BE. 530 IF A$(Z,Z)=" THEN a#(Zz,Z)= 780 REM AFTER 15@ (GR.8) INSTRUCTIONS
246 REM ST+6,ST+7=15. MOD TO 7,2. CHR%(@) 790 GOTO 7390

247 REM (MODE 2, THEN MODE @). S40 IF ASCCAHCZ,Z))¢ >0 THEN A% 10020 FOR Y=3T+15@ TO ST+21@

248 POKE 5T+6,7 (Z,2)=CHRS(ASC(AS(Z2,Z2))-32) 101@ IF PEEK(Y)=65 THEN 1100

243 POKE S5T+7.,2 550 NEXT Z 1020 NEXT Y

Z50 REM DM + © - DM + 23 = MODE 2 L1 SE® RETURN 1830 PRINT "PLATO OFF."

255 GOSUE 1000 £0® REM DO MODE © LINE WEXT. 1@4@ STOF

2EQ DIM ABCEQ) 42 BYTES 1122 BI=FEEK(Y+1)?

zZe1 SETCOLOR 4,83,2 i Af=" A TEXT MODE @ SUBTITLE" 1110 BZ=FEEK(Y+2)

270 A%=" MODE 2 BIG TITLE g cZ2? REM XLATE 1120 POKE ST+162,B2

Z8¢ REM 123456729012345:87390 £330 GOSUB So00 1130 FOKE ST+161,B1

Z90 REM TRANSLATE A% TO INTERNAL CSET G40 REM FOKE INTO MEMORY 1140 FPOKE ST+160,€65

300 GOSUB 509 £50 FOR T=1 TO LENCA%) 1150 RETURN

33 REM FIND DISFLAY MEMORY CED POKE DM+40+(T—-1),ASC(AKCT,T))

127

Questions and Answers

Or, my Basic programs scrozzle themselves.
Or....

A:1.If you squeeze the last few bytes of
available memory, Basic seems to screw
up. Something in the upper memory man-
agement routines fails during tight squeezes,
and there isn't much you can do about it.

2. The Atari memory boards may be
giving you trouble. Here’s Small’'s Memory
Board Fix (which works amazingly often
on bizarre Atari problems):

The Atari memory boards get hot, really
hot, in their enclosed metal cans in the
enclosed metal cage. This heat can mess
things up, particularly in the connectors.
The metal is necessary to avoid spraying
radio frequency interference all over, but
it does cause problems. So every month or
so we pull all the boards out of the Atari
and re-seat them. This re-establishes the
socket connection. Cleaning the ends of
the connector (a pencil eraser works
wonders) and coating them with Lubriplate,
then re-seating them is also a good idea—
helps prevent corrosion.

If this fixes it, fine. If not, go the drastic
route (as we had to on one very touchy
800):

1. Remove the lid. Bypass the interlock
with a taped in Q-Tip.

2. Remove the memory board lids (pull
the two Phillips head screws). Re-install
the boards.

This will really help to keep things cool.
Of course, you may not be able to watch
TV nearby (nor will your neighbors) but it
will prevent overheating.

Now that you have the lid open, some of -

you are doubtless going to get the clever
idea of copying ROM cartridges onto disk.
After all, you can boot up, then plug them
in with DOS running. Then, a simple binary
save, right?

Wrong.

Atari has some nasty, nasty surprises
awaiting you if you try this. First, plugging
the cartridges in sends a nice hefty spike
into the memory lines, straight into sensitive
Antic, CTIA, and the 6502B. Do you really
want your Atari in the repair shop? All it
takes to destroy these chipsis a little static
electricity in the wrong place, and your
body is probably full of it in the winter.

Second, the Atari people have some
special checks to prevent this. For example,
disk I/0 doesn’t work the way you might
expect from cartridges. Ever had your
directory mysteriously disappear? This
should be food for thought.

On Piracy

Speaking of piracy in general. I have
found copies of my software (what goes
into these articles) floating around all over
the place. This is really embarassing when

the disk that was pirated is a development
disk and you've saved all sorts of junk on
1t.

But second, when you think about it,
the prices you pay for software nowadays
in many cases are pretty low anyway (when
was the last time you could go on a date
for $20), so why not give the author his
royalties, and get the documentation as
well?

I wish that people didn’t consider pro-
tection schemes a Scott Adams adventure
#30 to be broken. If you think about it, the
hours you spend breaking the scheme are
equal in dollars to what you would pay for
the software in many cases. (And if you're
thinking about selling copies, don’t; all the
software companies I've talked to are
currently prosecuting people caught doing
this.)

Q: I have 32K. Should I get 48K?

A: Maybe. If you use no cartridges, the
Atari can use up to 48K RAM. If you use
one cartridge, you are reduced to 40K
available; if you use two, 32K. Eventually,
as more RAM-only programs become
available, 48K will be more and more handy.
For example, Microsoft Basic, which we
are currently testing, requires 48K but has
no cartridges (disk based). We're in a
transition period, in other words, and it
may be to your advantage to wait a bit;
hardware prices are dropping quickly, as
usual.

On Disks

Q: During a disk access, my disk stops
for a while for no reason and then restarts.
Why?

A: A bug in the O.S. program. No, the
disk isn’t stopping to cool off (like an 820
printer) or anything. This is fixed in the
new revision cartridges, which are slowly
becoming available.

Q: What are DOS 2.5, 2.7, 2.8, 28, 2.0S,
2.0D?

A:DOS 2.0S is the final, “cast in concrete”
version of DOS 2. The others are develop-
mental versions. They are pre-release
copies. There are lots of 2S disks lying
around; these have a bug in the interrupt
subsystem, so best get rid of them. Also, if
you boot up under 2S, you can’t “DOS” to
a 2.0 version of DOS. They’re incompatible.
So your best bet is to change your disks
over to 2.0S and use it.

DOS 2.0D is for the double density 815
drive, which has been cancelled, delayed,
sent back, or whatever (depending on who
you talk to).

Q: What is a “fast formatted disk?”

A: Inside the 810 disk drive there is a
microprocessor. When the Atari wants a
given disk sector (128 bytes), it asks that
microprocessor for it. The micro then spins

128

the disk and moves the head to get that
sector. If you have a disk with a more
efficient layout, you can go between sectors
(without a complete spin between them,
for instance). A “fast formatted disk™ has
this improved layout, and, thus, when you
access it, disk 1/0 is around 20% faster.

Disks that you format with your 810 will
not have this improved layout, because it
lays them out the old, slow way. A new
ROM, called the “C” ROM, can be installed
into your disk drive to make it format
disks the fast way.

Who knows when it will be available?
The rumour mill says that 1) all disk drives
going to Europe have it; 2) all disks to the
East Coast have it; 3) all disks shipped
after September 1981 will have it, etc.
Probably by the time this is printed some
policy will have been established.

For those of you who can’t wait, the
Chicago area user’s group has constructed
their own version of the format ROM,
which requires a few wiring changes to the
disk and programming a new EPROM (not
your beginner-level stuff). The Chicago
ROM is 10% faster than the Atari ROM,
which is definitely interesting. The ROMs
work quite well; I've seen them tested.
However, since the Chicago folks developed
them I'll let them document it and take
the credit. Incidentally, modifying a drive
this way (of course) violates the warran-
ties.

On GTIA

Q: What'’s the GTIA chip and how do I
get one?

A: The CTIA chip actually generates
color for your TV. A new chip, GTIA,
replaces CTIA and allows graphics modes
9, 10, and 11 out of Basic. (The operating
system was written with GTIA in mind,
and so was Basic, by the way.) It is an
upgrade to the CTIA chip. The rumour
mill again says it is available everywhere
except where the rumour originates. We
have one as the result of extreme kindness
on the part of Atari, and are testing it. The
added modes are:

Graphics 9: Allows 16 intensities (select
by COLOR #) of pixels to be displayed in
the background color. Great for grey-scale
shading.

Graphics 10: Allows eight different kinds
of pixels to be displayed in any of the
standard colors. Uses the four P-M registers
and four playfield registers to set colors.

Graphics 11: Allows 16 different colors
for pixels, all in the same intensity.

The pixel size is four bits long, and one
scan line high. This is 80 x 192 resolution,
an interesting twist on the general rule
that vertical resolution is less than hori-
zontal.

There will be a more complete article
on the GTIA chip when it is more widely
available. (The problem is, most people at
Atari don't have them either, and are trying
just as hard to get one. Who do you think
will get priority?)

On Languages

Q: Forth?

A: Forth is a dynamite programming
language available for the Atari. Its speed
is somewhere between Basic and assembly
language. but much closer to assembly
language. Best of all, it’s a reasonably high
level language (very stack oriented, as a
matter of fact). I'm trying to learn it now.

Versions are available from many sources.
Atari lists Forth in their APEX exchange,
but will not release it yet. Beware of other
versions which may use undocumented
entry points in the operating system, and
which will quit working when the new
cartridges are generally available.

There has been a lot of good software
written in Forth. I have a synthesizer
program, lent to me by Ed Rotberg of
Atari, which plays the best music I ever
heard from an Atari (and has different
instrument sounds, too; drums, guitar, hand
clapping, etc.). The Atari demo with the
“Disco Dirge” is written in Forth to give
you an idea of its execution speed and

flexibility.

Q: Microsoft Basic.

A: You will be hearing a great deal
about this from us. We are currently working
with Microsoft Basic and it is a fantastic
product, indeed. It is much faster than the
Atari 8K cartridge Basic and has many,
many more functions. It really turns the
Atari into a serious business computer, for
example. Look at the description of Micro-
soft Basic in any Apple, TRS-80 or PET
book and you will get an idea what is
available. Add to that many special Atari
functions, and soon you will be writing
only in Microsoft. O

Atari Languages

Opening the mailbox has become a bit
like Christmas, with users sending in their
latest code and accomplishments, plus new
product announcements. Here'’s some of
the best we have seen.

Drew Holcomb sends a very nice
graphics demonstration (Listing 1) which
is worth the five minutes it takes to type
in.

Thomas Marshall (those of you on the
CERL PLATO network system know him
as marshall/phystemp) sends in the fine
program in Listing 2 which uses the DLI
routine from the December column. It
puts a 128-color menu onscreen, then allows
the user to move a cursor around the
colors. When the user settles on a color
and presses the button, the decimal value
of the color (for use in SETCOLOR)
appears in players on the top and bottom
of the screen. There are some very nice
techniques being used here; the program
deserves a good look. Thanks Tom.

Dennis Baer (868 Main St., Farmingdale,
NY 11735) has Algol for the Atari. Ac-
cording to his letter, it supports all I/O
and graphics also. He also has a word
processor for the Atari written in Algol.
Since there are quite a few folks familiar
with Algol, you might want to get in touch.
He mentioned he is interested in beta-
testing his product.

The Young People’s LOGO Association
wants to hear from people interested in
Atari Pilot. Contact them at 1208 Hillsdale
Dr., Richardson, TX 75081. They have a

very good newsletter and a great deal of
interest in the Logo language.

Atari in Europe

Finally, Nigel Haslock in Switzerland
wrote to give me details of the European
Ataris. Software houses may be quite
interested in this information. He writes:

eEuropean Ataris run 12% slower if tied
to VBLANK.

eAtari has kept the one CPU clock/color
clock; hence, the 6502 is a 3 MHz model
(not 2 MHZ as in the United States), and
is clocked at 2.217 MHz or about 25%
faster.

eAll European models have GTIA
chips—hence the GTIA shortage here.

eThe E000 and FOOO ROMS are different
(hence many software problems).

eCassette handling is different and pos-
sibly incompatible.

Listing 1.
MHEE L S

I have also received a great deal of
mail concerning piracy and disk copy
protection, which Nigel mentions. He tells
of not being able to fix US-version Atari
programs to work on the European Ataris
because of the copy-locks placed on them.
He has a good point.

There is a European market looking
for software. Besides the obvious language
problems, software houses have another
worry —will their software work as it is
with a PAL TV?

Atari has provided a hardware location
to determine if a given machine is PAL
(European) or NTSC (North American);
it looks as if it’s time to start writing
software to check it.

Atari Basic

For those of you with new Ataris, here
is a short and highly opinionated discussion
of the various languages available for your

S REM WHEELES WITHIN WHEELS EY D. HOLCOME

10 GRAFHICS Z31Y=INT(RND(0)X16) {FOR

X=708 TO 711:IFOKE X,YX16+12!NEXT XI!COLOR 1:D

EG
20 FOR X=1 TO RKNDC0)X4+2iA=INT(RNDC(0)%5)%x1000+2000:FOKE 77,0
30 E=CINTORNDC(0)XLL)XINT(RND(0)%5)A2-79)XINTC((RND(0)%X2)~-1)/(A/1500)+79

35 C=CINT(RNDC(0)X4)XINT(RND(0)X5)A2-47) XINT ((RND(0)*2)-1)/(A/1500)+47

40 D=0{E=INT(RND(0)%3)~11IF E=0 THEN 40
Y=0 TO A STEF 15!F=F+E!IF F<1 THEN F=3

S0 FOR
460 IF Fix3 THEN F=1

70 COLOR FiD=D+0,08:DRAWNTO E+DXCOS(Y),C+DXSINCY)

80 NEXT YINEXT X
90 FOR Z=0 TO 9
100
110
120
130

FOR
FOR Y=0 TO

X=0 TO 1500/C

129

A=RND(0)%16E=RND(0)%x9+41C=RND(0)%30+10

21SETCOLOR Y,A,EIFOR F=0 TO CINEXT F
SETCOLOR Y, 0,0 NEXT YINEXT XINEXT ZIiGOTO 10

Atari Languages

use. It may serve to clear up some of the
confusion you may have over which
language is best for you to buy and use.
Doubtless, there will be those who will
disagree with me; feel free to write and
let me know if you do.

Atari Basic, in the 8K cartridge is the
original language for this system, developed
in a great hurry for the unveiling of the
new Atari machines back in 1978. Like
most things done in haste, it lacks
something. In this case, speed and the
fixing of obvious bugs were neglected to
the point where the whole product was
compromised.

All arithmetic done in this Basic is done
in 6-byte BCD. While this gives great
accuracy, it also slows execution to a
crawl. Atari 8K Basic is the slowest Basic
I have ever used. To be sure, all computers
have a tradeoff between memory use and
speed, but this is a little ridiculous.

Add to this the many known bugs that
will crash the machine, the slowness and
occasional inaccuracy of the floating point
operations, and numerous other flaws, and
it just isn’t much of a language. It could
have been done better.

Unfortunately, so much of the available
software uses the Basic, and even the
bugs (remember the old saw about “docu-
mented bugs” becoming features in the
next version), that Atari can’t fix it. We're
stuck with it. Too bad.

For speed reasons, it is just about
impossible to write professional software
in Atari Basic; any assembly program runs
so much faster than the Basic that there is
no comparison. Games written in Basic
are easily identifiable by their slow speed.

In all fairness, the Atari Basic cartridge
was meant for small Basic programs, not
the huge amounts of code it is sometimes
asked to execute, so it must be forgiven.
The overall design structure is just wrong
for fast program execution.

In conclusion, I wish it were better, but
we are stuck with it. Great things have
been done with the computer in spite of
the Basic, and many Atari users have
been forced to 6502 Assembler because
of it.

Speaking of which...

Atari 8K Editor/Assembler

The 8K Editor/Assembler is a close
relative of the Basic cartridge. It is abso-
lutely unacceptable for major software
development. I can remember delays of
up to an hour assembling large programs,
and I have heard many other horror stories.
This cartridge is also 8K and has bugs.

For instance, any CPY instruction hangs
the TRACE function. This cartridge has
inspired many software houses to come

Listing 2.

Lol)

19000
19001
19002
19003
19004
19005
19006
19007
19008
19009
19010
19011
192020
19021
19022
19023
19024
19025
19030
19031
19032
20000
20010
20020
20021
20022
20030
20040
20041
20042
20043
20044
20045
20046
20047
20050
20051
20052
20053
20069
20070
20071
20080
20090

L} S 3
REM The following subroutime can
REM be added to proaram S of
REM ATARI OUTFOST in the December
REM issue of Creative Computing.
REM It addes wtility to displavging
REM the 128 colors available to
REM the Atari. Eg plugaing a
REM joystick in port 1, the sub-
REM routine will give ygou the
REM specific number omne needs to
REM poke in the color registers.
REM
REM
REM
REM
REM
REM
REM
REM In
REM
REM
X=1051Y=8
A=FEEK(106)-241FOKE S4279,A!FMEASE=256XA
FOKE 559,446tREM DOUELE LINE RES.
FOKE 623,4!REM FLAYFIELD OVER FLAYER FRIORITY
FOKE 277 y3tREM TURN ON FM GR.
FOR FMEASE+384 TO FMEASE+1024:FOKE III,0:NEXT III!REM CLEAR F-M GR....
FOKE 53248,XI{REM FL 0 FOSITION
FORKE 53249,X+16IREM FL 1 FOSITION
FOKE S53250,X+32{REM FL 2 FOSITION
FOKE S93251,X-321REM FL 3 FOSITION
FOKE 53252,X+481REM MI 0 FOSITION

1

2

FOKE
FOKE
FOKE
FOKE
FOKE

708, XXX
709, XXX
710, XXX
711,XXX
712, XXX

COLOR
COL.OR
COL.OR
COLOR
COLOR

PWN~O

program 5, besure to add

410 GOTO 20000

FOKE 53283,X+56REM ML FOSITION

FOKE 53254 ,X+641REM MI FOSITION

FOKE S328%5,X+721REM MI 3 FOSITION

FOKE 704,53IREM FL 0 COLOR ORANGE

FOKE 705,65 1REM FL 1 COLOR RED

FOKE 706,145 IREM FL 2 COLOR ELUE

FOKE 707,27 3REM FL. 3 COLOR YELLOW

REM FLAYER SIZE! 0=NORMAL,1=DOUELE,3,DAUADRUFLE

FOKE 53256,11FOKE §3257,11F0KE 53258,1:FOKE 53259,3

FOKE 53260,2551REM SAME CONVENTION EUT 2 EITS FOR EACH MISSILE SIZE
REM xxx FRINTS MISSILE NOS. XXXXX

CHR=171TI=0FOR IIT=FMEASE+512+Y TO FMEASE+519+Y!FOKE III,FEEK(S57344+CHRx8

+I1) $TI=TI+1INEXT III

20091

CHR=181TI=0:FOR III=FMEASE+640+Y TO FMEASE+647+Y!FOKE III,FEEK(57344+CHRx8

+LI) $TI=TI+13INEXT IIX

20092

CHR=241TI=0{FOR III=FMEASE+748+Y TO FMEASE+775+Y!FOKE IIIL,FEEK(S57344+CHRx8

+II) $IT=TIL+1$¢NEXT III

20093
20094
20095
20096
20099
20100
20105
20110
20120
20140
20150
20170
20180
20190
20200
20220
20230
20235

20240

20241

20250

20300

20260
20300

I=TI+1INEXT

20310

I=II+1

20320

I=TI+1 INEXT

20500
20890
20900
209
20910
20920
20930
20940
20950

FOR N=FMEASE+512 TO FMEASE+1024 STEF 128

FOR M=16 TO 0 STEF -1

FOKE N-M, 255 INEXT MINEXT N

X0=12G I XN=1251Y0=93 1 YN=93 1 COLR=2551Y=81G0TO 20170
REM xxxxx JOYSTICK ROUTINE XXXXXX
MOVE=8TLCK(0){IF STRIG(0)=0 THEN 20230
IF MOVE-I=7 AND MOVE 11 AND MOVE+:=13 AND MOVE+<:=14 THEN 20100

IF MOVE=14 THEN YN=Y0-3:!COLR=COLR-2:IF YN<0 THEN YN=93:!COLR=COLR+é64

3 THEN YN=YO+3:COLR=COLR+2:IF YN:94 THEN YN=0!COLR=COLR-64

IF MOVE=11 THEN XN=X0-40:COLR=COLR-&43TF XN<0 THEN XN=125i{COLR=COLR+256

IF MOVE=7 THEN XN=X0+40:COLR=COLR+&41IF XNr141 THEN XN=5!COLR=COLR-256
LOCATE X0+10,Y0,COtCN=C0O-23IF CN=0 THEN CN=CO+2

COLOR COMFLOT XO,YOIDRAWTO XO0+5,YD!FLOT X0,YO+1iDRAWTO X0+5,Y0+1

COLOR CNIFLOT XN, YNIDRAWTO XN+5, YNIFLOT XN, YN+1iIDRANTO XN+5,YN+1
XO=XN1YD:=YN

GOTO 20100

FOR N=0 TO 3:FOKE 704+N,COLRINEXT N

REM DISASEMELE COLR FOR FM FRINT

9?9 THEN CHRO=14+INT(COLR/100)CHR1=14+INT ((COLR-(CHR0-14)%100)/10)
99 THEN CHRZ=14+COLR-(CHR0O~16)%100-(CHR1-146)%10:G0OTO 20300

9 THEN CHRO=16!1CHR1=16+INT(COLR/10):CHR2=16+COLR-(CHR1-14)%10:G0TO

CHRO=16$CHR1=16CHR2=16+COLR
IT=0:FOR III=FMEASE+TL2+Y TO FMEASE+519+YIFOKE III,FEEK(S57344+CHROX8+IL) I

I=0:FOR III=FMEASE+640+Y TO FMEASE+647+YIFOKE IXI,FEEK(57344+CHR1X8+TI)3 1L

I

L0 0
20100

GOTO

If youw change araphics modes
from here, suaaest you

FOR N: T 7

FOKE S3248+N,0

NEXT N

to remove
araphics

130

the plaver—missile
from the scree

out with their own assemblers, some of
which are very good. The Atari cartridge
has a handy debugger, but as an assembler,
(how do I put this tactfully?) it is useful
only for assembling small subroutines for
Basic.

One good thing about the Basic and
Assembler/Editor cartridges is that there
are now books designed to help the
beginner get going with both of them.
This is a good way to learn about the
Atari and to get started but don’t limit
yourself to these products once you are
past the beginning stage. Another advan-
tage is that they are cartridges, so you
don’t have to buy a disk drive or more
memory in order to run them, as is the
case with most other languages.

The above products are supported by a
company called Optimized Systems
Software, located in Cupertino, CA. OSS
also markets a 16K disk-based Basic known
as Basic A+ and an assembler in their
operating system called EASMD. Lo and
behold, Basic A+ and EASMD are so
close to the original cartridge code that
they even have the same bugs.

The Basic is just as slow, but it does
have new commands for handling players
and missiles and disk 1/0. It is a big step
up from the original Basic, but still needs
work. I would like to see integer variables
and something to speed up the exe-
cution?

Microsoft Basic

Atari Microsoft Basic is the Basic that
Atari should have released initially. It is a
19K disk-based Basic. Add to that about
8K of DOS which must also be booted
with it, and the result is 21K of user memory
available for the programmer on a 48K
system or only 13K on a 40K system.

That could be hard to live with. For
instance, if you go into graphics 8, you
have only 13K left on the 48K system,
and only 5K on the 40K system. Still,
Microsoft Basic is a very powerful and
convenient language to use, and I have
found few bugs in it. But don’t get it
unless you have 40 or 48K.

Microsoft Basic has integer variables
which are very fast, PRINT USING for
business applications, and 4- or 8-byte
accuracy (whichever you select), which
speeds everything up. It is very much like
TRS-80 Basic or Applesoft. Best of all, it
has several nice features for player missile
graphics, character set redefinition, and
other Atari-specific capabilities.

I like it, and try to use it whenever I
have to do anything serious in Basic. While
the bootup process takes a while, the
time saved in program development is
worth it. Any professional developer should

seriously consider Microsoft Basic.

A 16K single cartridge (yes, you can
put 16K on a single cartridge, check the
hardware manual for details) version of
Microsoft Basic is planned, but some
features, such as renumber or PRINT
USING, may still have to boot in from
disk. More on this later; things haven’t
settled down yet.

Microsoft has extremely good documen-
tation which looks even better when
compared to the original Basic document.
It was this documentation that was re-
sponsible for the delay in delivering the
product; the disks have been ready to
ship for some time but the manuals weren’t.
Considerable time and effort have gone
into them, and it shows. Good job.

Atari Macro Assembler/Editor

The Atari Macro Assembler/Editor is
a very, very powerful disk-based assembler,
which is a joy to work with. Light years
beyond the original cartridge, it is extremely
fast; it will completely assemble 100 pages
of code in six minutes. It features support
for independent files with Include, macros,
systext files, and raw speed. I have dis-
covered a few trivial bugs in it, but this is
one product I can rave about without
reservation. I have worked with it for
more than four months and like it better
each time I use it.

If you have any serious assembly lan-
guage programming to do, get the Macro
Assembler/Editor.

The Editor is also quite nice, and is
being sold through APEX. It is a powerful
and reasonably fast editor for developing
text with no line numbers. This allows
easy input of data, since you need not
bother to strip off extraneous line numbers.
Pascal, the assembler, and future goodies
rely on the editor to generate source text.

Atari Pascal

Atari Pascal is brand new, and not
reviewed yet. It is not a UCSD Pascal,
but those of you who like Pascal might
want to look it over and send me
comments.

Atari Pilot

The Atari version of Pilot is a pretty
clean implementation of the famous edu-
cational language. I have not done much
with it but the feedback I have gotten is
all good. The documentation in particular
is extremely well done.

Forth

To understand “Why Forth?” you must
look at some basic programming philoso-
phy. Many languages are unsuitable for
serious software development work. For

131

most high speed games, for example, even
Microsoft Basic isn’'t fast enough. For
business applications Pilot is out, and so
on.
Well, Forth is difficult to describe, but
let me try: it is a stack-oriented language
which you define yourself. You start with
a basic set of commands (input, output,
arithmetic), and define your own com-
mands (called words) from there. The
language executes extremely quickly,
compared to everything except assembler,
and once you get into it, is much easier to
write and debug, which drastically cuts
development time.

Assembly language provides the ultimate
in speed and machine control, but is not
much fun to work with. Even with the
very good macro assembler, debugging
assembly code (especially without very
good debug tools) is a frustrating, time
consuming process. Forth helps the user
get away from that.

The Atari is a very good machine for
Forth. There are so many unique hardware
features that a generic language such as
Basic isn’t good at handling them all, but
Forth is.

You can define language commands to
deal with players and missiles, character
sets, vertical blank interrupts, and whatnot.
Each user’s Forth thus ends up growing
along with him.

Sandy and I had been thinking of going
to Forth, but it seemed like too much
effort to get started. There were even
two Atari Forths on the market: QS Forth
and Pink Noise Forth. Yet I had a difficult
time following QS Forth, even with its
reasonably good instructions, and it seemed
more a generic Forth implementation than
an Atari-specific Forth. So we waited.

Two things changed our minds: 1) The
book Starting Forth by Leo Brodie, from
Prentice-Hall, which is simply superb and
easy to read (complete with really, really
good illustrations), and 2) VALForth, a
new Forth based on figForth, which is
currently being sold by APEX.

VALForth has commands designed
especially to take advantage of the features
of the Atari. It also includes a character
set editor, easy player graphics, a very
nice screen editor, and several other useful
features. We were shown a preliminary
version, and after reading the Starting
Forth book, could dive in immediately
and do things.

The transition is reasonably painless,
and the power of the language unfolds
around the user; I'm very happy to be
working in it and we plan to write our
next game in VALForth. The stack orien-
tation is easy to get used to, especially if
you just consider the stack data as part of

Atari Languages

the instruction set format.

The development speed of Forth has
not been overlooked by Atari. Atari’s Coin-
Op group has a semi-legendary “Coin-Op
Forth” which is supposed to be quite
something to use. The Atari demo disk
with the “Disco Dirge” background music

is all “coin-op Forth.” Rumor also has it
that many of the new Coin-Op games are
written in Forth (Battlezone, for one).
This wouldn’t surprise me; it’s a powerful
language.

As a point of philosophy, we feel that
as Atari programmers we began in Basic,

moved to 6502 Assembly for speed, and
now, after experiencing assembly debug-
ging, are moving to Forth to reduce the
amount of time we must spend on
programming. We have great hopes for
VALForth and what we have seen already
is very worthwhile.

Getting Along Without TAB —
An Atari Translation

The lack of a TAB command in Atari
Basic is a source of irritation to many
Atari users. The most common problem
occurs when outputting formatted text;
cumbersome programming is necessary
to accomplish what is relatively simple in
other Basic dialects.

Listing 1.

40 E1=20

S50 E2=E1+10

60 T=24

80 REM

90 CET C¢

100 IF Cs$=" " THEN S=S+1!IF S=2
THEN 90

S=0

IF C#$=<>"1" AND Cé<:"2"
ON VAL (C$)GOSUE 220,230
IF (E1=T) OR (B2=T) THEN 400
FRINT TAE(EL) ;D$;TAE(T) 3"+"}TAR
(E2) ;D%

A=INTC(RND (1) %5) +1

ON A GOSUE 200,210,210,210,200
ON E GOSUE 250,240

M=M+11GOTO 80

E:=1 tRETURN

=2 $RETURN

T=T-11RETURN

T=T+1IRETURN

GOSUE 350IRETURN
Y=INT(RND(1)%3)+1

IF X=Y THEN 250

X=Y

IF X=1 THEN D$="/"

IF X=2 THEN D$="I"

IF X=3 THEN D#$='"\"

GOSUE 350

RETURN

El=E1+X-2

IF El1<1 THEN El1=1

E2=E1+10

IF EBE2:39 THEN E1=29:GOTO 370
RETURN

FRINT TAE(T) "X CRAGH! ' !
FRINT “YOU SCORED "iM3
M:=0

FOR I=1 TO S00INEXT I
GOTO 40

101
120
130
140
150

THEN 140

160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
350
360
370
380
390
400
410
420
430
460

Fred Pinho, 676 Rollingwood Way, Valley
Cottage, NY 10989.

" FOINTS,"

It can also be a problem in other areas
such as games where a given character
must be printed at varying locations on a
line. To illustrate this, the car race pro-
gram shown in Listing 1 was translated
into Atari Basic. This program originally
appeared in the November 1980 Creative
Computing as a translation from DEC
PDP/11 to PET Basic. The game depends
on the printing of the walls of the road
and of the car under control of the TAB
command.

The Atari does have a keyboard-con-
trolled tab function which can be used in
the programming mode by printing it in
properly configured strings. However,
running the game in that manner would
be difficult. Fortunately there is another
way.

The Atari does not print at the key-
board-set tabs unless specifically request-
ed to do so by an imbedded tab request
within the string to be printed. Rather it
prints at standard “print positions” posi-
tions 0, 11, 21, 31 on a 38-character line).

Listing 2.

1 REM ATARI TRANSLATION EY FRED FINHO
LUEBAR AND R. FORSEN

2 REM FROM FET TRANSLATION EY D.
3 9 uan

S DIM D$C(1),A%(3)

10 FOKE 752,1

Fred Pinho

Separating the desired strings by a
comma causes each string to be printed
starting at a standard position. The width
between each print position is controlled
by memory location 201. Don'’t be fooled
by its name in the Atari reference manual.
Although it is called the “Print Tab
Width,” it really controls the width of the
print positions (sneaky).

The Atari translation is shown in Listing
2. The parameters to be used in control-
ling the width of the print positions are in
line 40: B1 (left side of the road), B2
(right side of the road) and T (the car).
The actual printing is controlled by lines
150-153. Here location 201 is POKEd with
the width for the left side of the road.
Then printing a blank followed by a
comma spaces the invisible cursor to the
second print position (controlled by B1).
D$, which forms the sides of the road, is
then printed.

Since the cursor has now moved down
to the start of the next line, location 84
(current cursor row) is decremented by 1

20 S=01M=0

40 EL1=201B2=E1+4+71T=24

45 7 ¥ INDIANAFOLIS SFEED TRIALS"
so 7" SFEED DEMONS WANTED"

60 ? "

70 IF A$<H"Y'" AND A$<
80 ?

"YES'" THEN END
$? 1? "FRESS N TO GO LEFT,M TO GO RIGHT,"

ARE YOU WILLING TO GIVE IT A TRY";:!INFUT A%

81 ? "AND SFACE TO GO STRAIGHT"!FOR F=1 TO Z000:INEXT F

g5 2 nun
90 IF FEEK(764)=255 THEN S$=8+1!IF §<2
100 S=0

120

129 I=FEEK(764)-32

130 ON I GOSUE 235,235,220,220,230
140 IF E1:x=T OR E2<=T THEN 400

150 FOKE 201,E2:7 " ",D%$

132

THEN 20

IF FEEK(764)<+33 AND FEEK(764)<x35 AND FEEK(764)<»37 THEN 140

to cause a return to the original line. The
procedure is now repeated with the width
set for the car (line 152). Here a graphics
heart is used for the car. It doesn’t show
on the listing so type control-comma
between the second pair of quotes in line
152. The procedure is repeated once more
for the right side of the road.

The keys N, M and space were used to
move the car. Rather than “opening” the
keyboard and using a GET command,
memory location 764 (last keyboard key
pressed) was used. If you PEEK this
location, you'll find an entirely different
character set code is used instead of the
one detailed in the Atari manual. This
code is read and converted for use in
lines 120-129. Finally, line 140 checks
whether the car has collided with the side
of the road. If so, it branches to the end-
of-race routine.

Once I had the program working prop-
erly, like most programmers, I could not
resist the urge to improve and upgrade it.
What better way than to make use of the
built-in sound and color capabilities of
the Atari. The sound of a race car was
easy (line 154) since a distortion level of 2
in the SOUND statement gives a very
realistic sound.

For the inevitable crash (Mario
Andretti I'm not), I turned to the January
1981 issue of Creative Computing for a
“percussive sound generator.” Modifying
the explosion routine slightly worked well
(lines 403-408).

152 J=FEEK(84) {FOKE 84,J-1:FOKE 201,T:? " ",n»
153 J=FEEK(84)!FOKE 84,J-1:FOKE 201,E1:? " ",D$%

154 SOUND 0,70,2,7

160 A=INT(SXRND(1))+1
170 GOSUE 250

1920 M=M+1:1G0OTO 90

220 T=T-1IRETURN

230 T=T+1IRETURN

235 T=TIRETURN

250 X=INT(3XRND(1))+1
280 IF X=1 THEN D$="/"
290 IF X=2 THEN D$="|"
300 IF X=3 THEN D#$="\"
350 El1=E1+X-2

360 IF E1<1 THEN E1=1
361 IF E1:x26 THEN E1=26
370 EZ=E1+7

390 RETURN

400 FOKE 201,T:? "',"x"3? "CRASH!!!'"{SOUND 0,0,0,0
401 FOR K=1 TO 10:FOR I=1 TO 10:SETCOLOR 2,I,14iNEXT IINEXT K

402 SETCOLOR 2,9,4

403 NTE=200:GOSUE 405:S0UND 1,0,0,0¢50UND 2,0,0,0

404 GOTO 410

405 SOUND 2,75,8,151ICR=0.,79+7/100:V1=152

2=15tV3=15

406 SOUND 0,NTE,B8,V1:SOUND 1,NTE+20,8,V2:50UND 2,NTE+50,4,V3
407 V1=VIxICRIV2=V2x(ICR+0.,05) 1V3=VU3X(ICR+0.,08):IF V3x1 THEN 406

408 SOUND 0,0,0,03RETURN
410 ? "YOU SCORED "3M3" FOINTS."

411 IF M<=20 THEN ? "TRY AGAIN WITH A SLOWER CAR"
412 IF M>20 AND M«<S50 THEN ? "YOU’RE GETTING EBETTER.KEEF FRACTICING!"
413 IF M»=50 AND M<80 THEN ? "YOU’RE A HOT ROD!"

414 IF M>=80 THEN ? "WOW!!'!
420 FOR I=1 TO 700:NEXT I:FOKE 764,
430 ? "x":{GOTO 20

For the visual portion of the explosion,
a simple rapid rotation of the screen
colors was effective (lines 401-402). Note
that the SETCOLOR had to be reset in
line 402 to return the screen to the
original color.

Finally I added a crude scoring system
(lines 410-414) and a method of playing

LET’S GO TO THE DRAG STRIF!!"

repetitively under player control. In line
420, location 764 had to be POKE with
255 otherwise the last direction key
pressed, prior to a crash, would be printed
after line 60 was executed.

If you get too good for the program,
reduce B2 in line 40. Happy racing! [

Telecommunications and Memory Locations

It has been nearly
three years now since I first unboxed my
Atari 800, and I can report that it has
performed unfailingly over all that time
and heavy use. I'm not saying I have never
had a system crash or lock-up, but the
computer has never required any service
beyond cleaning the board contacts once
in a while (I can handle that).

The machine was and remains an engi-
neering triumph, which is still ahead of its
time in terms of capability and cost, as
well as reliability.

John Anderson is an associate editor for
Creative Computing magazine.

Atari owners have had to be a tough-
skinned breed now and then over the
past three years, but that has changed.
The “big three” are under the gun. Atari
owners, now numbering over 300,000,
know they made the right decision.

I am a member of this group, and a
satisfying facet the hobby offers to me is
the use of my machine to communicate
with others who feel the same way I do
about it: that the Atari is the best machine
of its class, and that learning its secrets is
an extremely pleasurable pastime.

Last May we instituted a call for review-
ers, and many Atari owners responded.
One thing that impressed all of us here at

133

John Anderson

the magazine was our query concerning
modems. Of the respondents who did not
already use their microcomputers for
telecommunication, nearly everyone re-
sponded that he had a modem on his
“wish list,” and that it wouldn’t be long
before he was hooked up. We have also
had a very favorable response to the
possibility of making Creative Computing
downloads available over networks such
as Compuserve and The Source. We are
looking into this possibility.

The Modem Mystique
A great deal of potential presents itself.
The possibilities of travel reservations,

Telecommunications and Memory Locations

ticket purchases, shop at home services,
a broad range of databases at your finger
tips, are very exciting. Telecommunica-
tions herald a truly practical role for the
microcomputer in the home.

I do not believe, however, that any of
these practical notions constitutes the real
basis for the “modem mystique.” The
thing that excites most people about
microcomputer telecommunication is the
opportunity to express themselves in a
new medium, to tell others how they feel.
They are less interested in using a modem
to pay their bills than to state their
opinions, to have their voices heard, and
to respond to the voices of others.

The bulletin board service is growing
in popularity. This is a phone line tied to
a computer, running a program that
accepts and displays information sent
from other computers. The concept of
the bulletin board is powerful and exten-
sible. It creates a new kind of forum—a
medium of communication—through
which ideas can be expressed, shot down,
modified, and spread. The importance of
this kind of interaction, and its potential,
is now being discovered. I think it may be
a while before it emerges as a medium of
major influence, but it is going to happen;
it’s happening now.

I maintain contact with about five Atari
bulletin boards regularly. I enjoy leaving
messages as well as reading what others
have to say. I check the download files to
see if there is any software worth trying
out. I find out what other Atari owners
are thinking about, as well as expressing
my own thoughts. I may even start a “real-
time” conversation with someone at the
other end.

You may be a new user with questions
concerning hardware. You may be an
assembly language programmer wishing
to share the results of a routine you have
developed. Or, you may simply wish to
voice your opinions concerning Tron or
E.T. or to boast of your latest score at
Zaxxon. The bulletin board is a worth-
while place to do it. Your thoughts join
other thoughts, in what amounts to a
marketplace of ideas—ideas that are
shared.

Communication via computer may
seem at first to be rather impersonal, but
this is not the case. Through what other
medium might you become involved in a
lengthy philosophical chat with a sysop
(system operator) hundreds of miles dis-
tant and at three in the morning? It is
almost like being able to call your own
user’s group meeting whenever the mood
strikes you—and then adjourn it without
muss or fuss. It is at once personal and
yet distant: and therein lies its unique

value.
So get that Atari of yours talking to
other Ataris, the way you've planned.

The Forth Wave

A very hot topic on nearly every board
I have logged onto lately is the Forth
language. This language offers hope to
folks frustrated by the slowness of Basic,
limitations of Pilot, bugs in APX Pascal,
and obscurity of assembler. Although it
has its own unique little quirks, Forth
seems to be a natural for the Atari
machine.

There are many implementations of the
language available for the Atari, but the
definitive version now seems to be Val-
forth, from Valpar International, 3801 E.
34th Street, Tucson, AZ 85713. We have
received four packages from them, each

of which shows a high level of profession-
alism and promise.

Valforth is a debugged and improved
version of APX Forth, and is available
with a powerful screen editor and utility
package; a player missile graphics pack-
age, character and sound editor; and a
display list formatter. We were able to
create very smooth multicolored player/
missile animation as well as modified
display lists with very little fuss. The speed
of movement is not as fast or as smooth
as machine code, but is many times faster
than Basic, and quite acceptable—so are
the ease with which these packages can
be used, and their reasonable cost. I hope
to present a thorough evaluation of all
the Valpar packages in the near future.

Despite whatever you may hear to the
contrary, you need not renounce your

R=Ringback
Type Name
AMIS —
AMIS APOGEE
AMIS —
AMIS ARCADE
AMIS
AMIS GRASS
AMIS MACE
AMIS MLBBS
AMIS SB-12
AMIS SPACE
AMIS TEAM
ARMU ARMUDIC
ARMU FLEGLG
ARMU GREKLCOM
ARMU PACE
ATBBS —
TARI-BOARD —
TARI-BOARD —
CBBS CP/M
RBBS CP/M
RBBS CP/M

1

L=Limited service

Other Atari Bulletin Boards

Location Phone
Atlanta, GA 404-252-9438
Miami, FL 305-238-1231-RL

Baton Rouge, LA 504-273-3116

Detroit, MI
Chicago, IL

313-978-8087-R
312-789-3610

Grand Rapids, M1 616-241-1971

Detroit, MI 313-868-2064
Madison, WI 608-251-8538
Boston, MA 617-876-4885-1.
Seattle, WA 206-226-1117
San Jose, CA 408-942-6975-L
Washington, DC 202-276-8342
New York, NY 212-598-0719-L

Oklahoma City, 0K 405-722-5056

Pittsburgh, PA 412-655-3046
Honolulu, H1 808-833-2616
Denver, CO 303-221-1779
Atlanta, GA 404-252-9438
Detroit, M1 313-759-6569-R
Allentown, PA 215-398-3937
Chicago, IL 312-789-0499

The “type™ of bulletin board indicates what program is run on the host
computer. Each program has its own strong and weak points; ergo each
has its own adherents and detractors. It’s all part of the fun.

AMIS stands for “Atari Message and Information Service.” ARMUDIC
began as a mnemonic for the phone number of the original service.

“Ringback™ means to let the phone ring once, hang up, count to five, and
redial. This allows a single line to serve as a voice and modem connection.

“Limited service” means the board is up only part-time, as opposed to
24 hours a day. If you can connect once, the hours will be listed for you.

These numbers were compiled by the MACE BBS, which is one of the
most popular Atari boards in the country. Our thanks to the Michigan Atari
Computer Enthusiasts for this list. Give them a call!

134

worldly ways to grasp Forth. Nor does
mastery of Reverse Polish Notation cause
hair loss or halting speech. Sure, the
language has its peculiarities, but that’s
the challenge, right? Anyway, whenever
you hit a real snag, you can ask for help
on a bulletin board service! There’s noth-
ing like access to someone who knows
the answers when you're trying to learn
something.

Another byproduct of accessing user’s
group bulletin boards is the spreading of
rumors. One such rumor I discovered on
the MACE BBS has lamentably been
confirmed: John Harris, brilliant young
author of Jawbreaker and Mouskattack,
had the only extant source code for his
latest work, Frogger, stolen during a
charity benefit. It is hard to understand
what the thief had in mind—if we assume
the thief had anything resembling a rea-
soning mind. What could he have hoped
to gain by stealing the source code of an
unfinished program? This will certainly
forestall the release of Frogger for some
months, and is sure to have put a real
crimp into John’s summer, if not his year.
Upon capture, the thief should be forced

to play Crystalware adventures to their
solution or the thief’s collapse, whichever
comes first. (Are you taking any bets?)

Poking Around

I have yet to see a definitive list of
memory locations for the Atari in any
manual, periodical or book. We are com-
piling a list currently, and it will appear
soon in the pages of Creative Computing.
In the meantime, here is a very brief
collection of some of the most interesting
locations, and what values to POKE them
with (all values in decimal):

65 - if = 0, I/0 data transfer tones from
TV or monitor will be disabled. Load will
take place in silence. Nice with titles or
especially music, to suppress “noise.” If
location 65 ¢ >0, I/O will be audible.

77 - if = 0, attract mode will be sup-
pressed. It is surprising to me how many
programs are missing this simple POKE
in any loop of less than nine minutes
duration. Although designed to prevent
“burn-in” on an unattended machine, this
mode drives me nuts. If location 77 =
128, attract mode is enabled without nine-
minute clock countdown.

752 - if = 0, makes the cursor “invis-
ible.” I say invisible rather than disabled
because the cursor still functions as if it
were visible. Nice in title cards and text
programs to clean up screen “look.” If
location 752 € > 0, cursor will be visible.

82 - if = 0, enables 40-column screen
width. The Atari defaults to a 38-
character screen width, which was a good
thing for me when I used a regular color
television with the computer. “Overscan,”
as it is called, cut off the left-hand side of
the screen. When I upgraded to a color
monitor (much to my wife’s relief), I
noticed two unused columns on the left
side of the screen. A simple POKE brings
them into play. If location 82 = any
number from 0 to 39, that number
becomes the left-hand column. The
default value is two.

83 - Same as above but for right-hand
margin. Default is 39. Less call for this
one, but nice to know, anyhow. Right?

Third party game software for the Atari
400/800 computers continues to pour in
to the magazine. Let’s take a look at justa
part of the cream of the latest crop:

The Upstart Atari

June 4, 1981, The New York Times ran
a relatively enlightened feature on the
microcomputer and its future in the
home. One of the ‘‘experts’’ cited in the
feature stated the following: ‘‘there is
almost no sense at all in buying a com-
puter other than a PET, Radio Shack, or
Apple.”” A bit further down the page, in
a separate but allied article, the quote
appeared again, this second time with-
out the word ‘‘almost.”” The article

John Anderson is an associate editor for
Creative Computing magazine.

referred to these companies as ‘‘the big
three.””’

At the time, I was glad to see that the
Times had discovered microcomputers,
but was chagrined by what I saw as
expert narrowmindedness. Still, it came
as no surprise to me. [had acquired quite
a stiff upper lip by that time. You see, I
am an Atari owner.

I remember when I first began shop-
ping seriously for a micro, right about
the time the first Ataris were shipped. I
had a great deal of trouble getting anyone
to talk about the machine. Sales staff
seemed so resentful in one computer

135

John Anderson

store, I wondered aloud why they even
carried the thing. A salesperson
exclaimed to me, through a sneer, that he
did not expect it would be carried for
long.

Even as recently as a year and a half
ago, finding an article concerning the
Atari in a computer magazine was a tri-
umph. The machines remained a mys-
tery, even to those who owned them.
Documentation and software were scant.
I was told by more than one learned
microguru that I had made an expensive
error. They predicted nothing but early
death.

The Upstart Atari

This was not to be. Despite the bad
press and initial lack of documentation
and software, the Atari was gradually
discovered to be a superior machine: a
‘“‘next-generation’’ micro, with ROM
cartridge capability, a replaceable oper-
ating system, sophisticated color graph-
ics capability, and four-channel sound.

Despite initial snobbery and snub-
bery, buyers began to opt for a good
machine at a good price. By Christmas
1981, the Atari was being sold faster than
it could be manufactured.

How did the competition respond to
the introduction of the Atari? With the
introduction of Atari lookalikes. Study-
ing these, I realized Atari must have
done something right, to have nearly
everybody else shouting ‘‘me too!”’
within a year or so.

The Atari has been called a game
machine, and games have certainly sold
their share of units. Ted Nelson took a
look at Star Raiders on a video projec-
tion system and proclaimed that the
Atari Personal Computer was the ‘‘most
extraordinary (microcomputer) graphics
box ever made.’”” Yet in addition, the
Atari could do anything the *‘big three”’
could do, and then some. Many prospec-

tive purchasers found in the Atari a dou-
ble bonus: a chance to have a ‘‘serious’
microcomputer, while owning the great-
est game machine around.

And, it was friendly. It is easier to do
things right on the Atari, and more
importantly, harder to do things wrong.
The jargon terms machines like this
“‘user-friendly.”” Never before had a
computer been introduced that was so
easy to use. Until the Atari came along,
you couldn’texpect to take a micro out of
its box, plug it in, and have it work.

In the operating system of the
machine is a powerful, built-in screen
editor, which makes the mechanics of
programming much less formidable on
the Atari than on other machines. [know
for a fact that this, combined with the
syntax-checking function of Atari Basic,
allowed me to learn Basic programming
at a much faster pace than would have
been possible with any other microcom-
puter. These features simply allow the
user to recover more gracefully from his
own errors, thus vastly increasing the
utility of the machine as a learning tool.

Then there is the cost. I literally *‘paid
the price’’ to be the first on the block
with an Atari 800. Now, because of the

popularity of the machine, prices have
dropped dramatically. A bit of careful
shopping can result in a basic unit for
under $700. For this price, you receive
an 800 with 16K of RAM and Atari
Basic. The model 400 is down to about
$250.

The computers have a built-in RF
modulator, and so can be hooked directly
to a home TV. A basic unit isn’t worth
much without cassette or disk storage
devices, which constitute an additional
expense, however the Atari disk drive
has also been heavily discounted, and
can be found for under $450. A 48K
disk-based system can be put together
for under $1400, and that is a good bar-
gain at today’s (and tomorrow’s) prices.

As for the capabilities of such a sys-
tem, let me first insert here a warning to
those who may be unfamiliar with the
moiling and sweaty world of micro-
chauvinism. I feel strongly, as do other
Atari owners, that a major part of what a
microcomputer must handle superla-
tively is color graphics and sound. I take
this to be a self-evident, foregone and
unimpeachable tenet, and will make no
effort to argue for or defend myself upon
that point. If you do not concur, read on

o i

10010 GT=
10020 FOF
10030
10040
10050
10040
10070
10080 * "o B
10090 FOR N=0

10110 NEXT N

10130 FOR N=776 T
10140 ? 7 "CHARAC

10100 FOKE CRAM+N,F

10120 FOR N=244 TO 47 11REAL

10150 DATA 32,148,134,
£,128,128,136,148,0
10140 DATA 140,136,134, 18
28,168,128,128,128,10
10170 DATA 148,1026,128,188,136,1836,148,0,136,136,136,168,136,136,136,0,168,3%,32
»32,32,32,1468,0

10180 DATA 8,8,8,8,136,134,1468,0,136,136,136,1460,136,136,136,0,128,128,128,128,1
28,128,168,0

10190 DATA 136,1468,148,126,136,186,1346,0,1346,156,1468,168,1468,168,136,0,1468,136,1
36,136,136,136,168,0

10200 DATA 160,136,136,1460,128,128,128,0,148,136,136,136,136,136,168,10,160,136,
136,160,136,136,134,0

10210 DATA 168,136,128,148,8,1836,168,0,1468,82,32,32,32,32,32,0,136,136,186,136,1
36,136,168,0
10220 DATA 136,136,136,136,13
6,32,32,136,1346,0

10230 DATA 136,136,136,32,32,32,32,0,1468,8,8,32,128,128,1468,0

10240 DATA 16,84,68,68,84,468,68,0,80,68,68,80,468,68,80,0,84,468,64,54,64,68,84,0
10250 DATA 80,68,68,68,68,468,80,0,84,64,64,84,64,64,84,0,84,6464,64,84,64,64,64,0
102460 DATA 84,68,64,6%9,68,68,84,0,68,68,68,84,68,68,68,0,84,146,16,16,16,16,84,0
10270 DATA 4,4,4,4,68,68,84,0,468,588,68,80,468,68,68,0,564,564,64,64,64,64,84,10
10280 DATA 68,84,84,68,68,68,68,0,48,468,84,84,84,84,68,0,84,468,68,68,68,68,84,0
10290 DATA 80,68,68,80,464,64,64,0,84,68,68,68,468,68,84,5,80,68,68,80,68,68,68,0
10300 DATA 84,68,64,684,4,68,84,0,84,146,16,146,16,16,16,0,68,68,68,68,68,68,84,0
10310 DATA 68,68,48,68,68,68,16,0,68,68,68,468,84,84,68,0,68,468,68,16,16,68,68,10
10320 DATA 68,68,68,16,146,146,16,0,84,4,4,146,64,64,84,0

LEEH, L3640, 140,136,158868,160,136,136,1460,0,168,136,12

1o 136, 136, 160,0,168,128,128,1468,1268,128,168,0,168,128,1

by l36,32,0,136,136,136,136,168,168,136,0,136,136,13

Figure 1.
136

only at your own risk.

The 6502 microprocessor chip is the
central processing unit of all current
Atari machines, as it is for two of the
“‘big three’” machines. However in the
Atari, the 6502 chip is backed up by
three others, and therein lies a big differ-
ence.

One of these chips, called Antic, is
itself a microprocessor. It is capable of
an exotic potential known as ‘‘direct
memory access,”’ or DMA. Antic works
in tandem with another chip, the GTIA
or CTIA, to handle the video display,
thus taking the weight of keeping the
video screen ‘‘lit up’’ from the 6502.
The CPU can go on to other important
jobs.

I could attempt to outline each of the
capabilities of these chips: 256 colors,
up to 16 shades of a single color, 320 x
192 pixel resolution, player-missile
graphics, modifiable display lists and
character sets. However there really are
only two ways to experience their power:
watch an Atari graphics demo, or play a
quality Atari game. The new GTIA chip,
which replaces the CTIA, extends this
power yet further.

Still another chip, called Pokey, gen-
erates, among other things, four channel
sound. This sound can range from pure
tone to many levels of distortion, allow-
ing for music as well as sophisticated and
complex sound effects generation.
Sound is routed through the TV speaker,
and so volume control is as simple as the
flick of a knob. Sound can be routed just
as simply to your stereo. Nearly all
music composition and game playing in
my home takes place through head-
phones.

The Atari is not without its problems.
Much of the software written for it
doesn’t come close to truly utilizing its
capabilities. It seems as if many pro-
grammers are having trouble realizing
what power the Atari puts in their hands,
and how best to use it. Dual density
drives, 80-column capability, and truly
professional word processing packages
are only just now making an appearance.

But relief is in sight. It was a trickle at
first, but third party software began to
pour in. The trickle became a gush, and
the gush became a torrent. Third party
hardware followed soon after. The in-
dustry, realizing its initial underestima-
tion of the machine, is compensating.

A variety of talented minds are work-
ing with the Atari, investing it with a
variety of new capabilities. The machine
offers one of the most exciting forefronts
in the microcomputer industry today.

Incidentally, the big three will shortly

have to move over. I predict by the end of
this year Atari will be the number one
microcomputer in its class, both in
monthly sales and total units.

Multicolor Characters

Figure 1 is a short program with a very
neat result: a multicolor character set in
graphics 0. The idea goes back quite a
ways: I remember first having seen it in
3-D Supergraphics, from Paul Lutus. A
recent example appears in the assembly
language tutorial Page Six, from Syn-
apse Software, which uses quite a well
done font.

The technique involved in creating
multicolor characters is called artifact-
ing. This is the same phenomenon that
sometimes causes ugly glitches in graph-
ics 8 displays. By skipping adjacent pix-
els, red or blue characters can be formed,
and artifacting can be used construc-
tively.

The approach has its limitations.
Because the default character size on the
Atari is 8 x 8, skipping adjacent pixels
results in a character three pixels wide. It
is hard to create a font three pixels wide
and at the same time keep N’s and M’s
from looking alike, or support lower
case.

In order to compensate, I made the
font one scan line taller than the default
value, and stuck to upper case. Still, I
think you will agree the results are
remarkable considering the constraints
of the approach, and well worth taking
the time to type.

Lines 10000 through 10020 define the
point in memory at which we will start
our redesigned character set. Lines
10030 and 10040 clear the screen, color-
ing it black, so that the artifacted charac-
ter set will be clear. I suggest the altered
set always be used on a black back-
ground.

Lines 10050 and 10060 set up the vari-
ables we will use to load the original
character set into RAM, and later for
overwriting the redefined characters.
Line 10070 sets the character set pointer
to the beginning of the RAM set. Line
10080 is placed there so you can watch
the transformation take place; you can
pull this line if you so desire.

Lines 10090 through 10110 load the
entire original ROM character set into

RAM. Then line 10120 replaces the
upper case A through Z with values
occurring up ahead as data statements.
Likewise line 10130 replaces lower case
a through z with newly defined character
values.

The new upper case and lower case
fonts are the same, with the exception of
a one clock horizontal shift. This means
that the upper case A through Z will be
one color, and the lower a through z
another. Because of differences in the
way artifacting is handled by the GTIA
as opposed to the CTIA, a GTIA
machine will have, as a result of running
this program, a blue upper case and red
lower case, while a CTIA machine will
have a red upper case and blue lower
case. Not to mention what happens when
printing inverse characters. Try it! All
other characters, as well as numbers,
will remain as default.

You might now incorporate this as a
subroutine in other Basic programs
(remember to stick a RETURN in there
somewhere, and keep the program from
hitting line 10000 other than through that
initial GOSUB).

Sheldon Leemon, on whose program,
Instedit, 1 designed the font, reminded
me that the display list could be modified
to display the fonts in any color. I may
take up this challenge in a subsequent
Outpost. For now, [will leave it to you.
List the program in the modified set; you
will see that it can even function as a
programming tool.

Poking Around

As a result of my comments about
memory locations in the November col-
umn, I got a slightly indignant letter
from Becky Johnson, at Educational
Software (formally Santa Cruz Educa-
tional Software). She reminded me that
their publication Master Memory Map
had sold more than 10,000 copies at
$6.95. Well I admit I hadn’t seen the
publication at the time, and though it is
still not a truly definitive list, it has got to
be the closest yet. If you wish more
information, you can contact them at
4564 Cherryvale Ave., Soquel, CA
95073. (408) 476-4901 .

In the meantime, here are some more
interesting locations to keep you busy:

Disabling the break key. POKE 16,64

10 7 "FLASHING TEXT"IREM
20 FOKE 70T%5,1

30 FOR N=1 TO 100IMEXT N
40 FOKE 7559,2

S50 FOR N=1 TO 100:MEXT N
&0 GOTO 20

FRECEDING TEXT TN INVERSE

Figure 2.
137

The Upstart Atari

and POKE 53774 ,64 to disable the break
key. Very handy to keep users from inter-
rupting or getting into a program.

Disabling DMA. PEEK (559), then
POKE 559,0. This will shut down
Antic, allowing the 6502 to speed execu-
tion dramatically. POKE 559 with value
initially PEEKed to re-enable screen dis-
play. Also handy as a “‘curtain,’” in con-
cealing the screen during display ini-
tialization or other potentially distract-
ing moment. This is as opposed, for
example, to resetting graphics mode and
setting color registers to black.

Putting a text window into graphics 0.
POKE 703,4. This will force all normal
text into a text window as in graphics

modes. Printing to the upper part of the
screen must be accomplished with
PRINT #6 statements. Could be handy
in writing text adventures (maybe even
with the multicolor font). To return to
default, POKE 703,24.

Flashing characters. Set up a loop
wherein the value of location 755 varies
from the normal, 2, to 1. Figure 2 is an
approach to flashing characters.

It is a nice attention getter in pro-
grams. We will also look at more sophis-
ticated means of obtaining flashing
characters in an upcoming column.

Checking for keypresses. POKE
764,255, then PEEK(764) for internal
keycode. Handy to check for any or a

specific keypress. Can also be used to
“‘press a key’’ through software: for
example, POKE 764,12 will RETURN
automatically.

To enable cassette recorder. POKE
54018,52 to turn cassette play on, POKE
54018,60 to turn it off. Recorder must,
of course, be set with cassette in place
and play key pressed. Use to sync
recorded sound with programs..[]

Self-Modifying Programs

Original Atari Basic has its strong
and weak points, as do all computer
languages. Because Atari Basic is a
somewhat renegade dialect, however
(as opposed to the orthodoxy of
Microsoft Basic), it is subject to
especially intense scrutiny. Those who
dislike it tend to detest it; even those
who like it tend toward ambivalence.
C’est la langue.

There is at least one good reason
why Atari Basic is a “splinter
language.” It was designed in tandem
with and in order to squeeze the most
from the Atari operating system. And
as such, it is capable of some exotic
tricks—that much is undeniable.

One of these tricks is the ability to

John Anderson is an associate editor for
Creative Computing magazine.

write-code that in turn rewrites itself.
Imagine the possibilities.

The Atari has a very open-minded
operating system. It will allow the
screen editor to operate from sources
other than a human at the keyboard.
The editor will go so far as to accept
data pushed to the screen from Atari
Basic, and Atari Basic can then
execute commands directly from the
screen editor.

Figure 1 is a short example of how
this feature can work. First we clear
the screen, and position the cursor.
Then we straightforwardly print code
lines to the screen. These lines will act
as if the Atari has automatically
pushed the RETURN key over them,
thus incorporating them into the pro-
gram (and eliminating any previous
lines with the same line numbers).
Notice the inclusion of a CONTinue

138

John Anderson

command. You must print this com-
mand at the bottom of any list of
modifications or the program will
terminate before modification takes
place. The program run must actually
stop, accept the new data, and start
itself again.

The trickiest facet of the technique
is placement of the cursor. If you
position it incorrectly, you can lose
modifications, or get locked into a
loop. A bit of experimentation will
lead to successful results.

Only now is the potential of this
capability being fully explored. Two
new programs from Artworx Software
make use of the technique: Drawpic
saves four color user drawings in
graphics modes 3 through 7, by saving
modified strings; Player| Missile
Editor does the same for player/
missile shape tables. You can get more

information concerning these pro-
grams from Artworx, 150 North Main
Street, Fairport, NY 14450.

A hint on how you might simply
utilize the technique in your own pro-
grams is shown in Figure 2. Here the
user is asked to input data, which is
then incorporated into the modified
program. This program can then be

saved, thus saving the input in-
formation.
I've used the simplest possible

approach in this example, saving up
to one hundred phone numbers as
REM statements. You might wish to
improve radically on this approach.

Another use of the technique would
be to delete lines when they are no
longer needed. Line numbers devoted
to user input of variables, for example,
could be deleted after the variable table
has been constructed. This would help
conserve memory.

Countless other applications await
your entry into Atari behavior mod-
ification. The limits are set by your
imagination only.

Souping Your Machine

Although the Atari does most things
well, you can now customize it to do
things better. The idea may seem to
you akin to putting slicks ona BMW,
but let me tell you about a few prod-
ucts we've tested that can make your
machine faster and more versatile.

The Fastchip, from Newell Indus-
tries, replaces the floating point chip
on the operating system board. Float-
ing point routines, which involve
mathematical operations with real
numbers as well as integers, run
extremely slowly on a standard Atari.
Newell Industries claims that execu-
tion of these routines is boosted to
three times the original rate.

I played Hail To the Chief twice on
the same machine, once with the
original chip, and once with Fast-
chip. Calculations within the program
involve lengthy breaks in the action.
Fastchip cut the waiting at least in half,
from a maximum of [l seconds to a
maximum of about 5 seconds. It may
not sound like much of a difference,
but when you’re waiting it is.

If you are into floating point
routines and don’t have a lot of time,
Fastchip will help. It lists for $39.95,
and installation in an Atari 800 takes
less than five minutes. For more
information, contact Newell Indus-
tries, 3340 Nottingham Lane, Plano,

TX 75074.))
You should resist with all your

strength the temptation to confuse

MENT I8

105

ULhTID

IN LINES
DON/T FOR
COMMAND AF

UNS REMALN
JCLAL, AND MUST NOT
ITION CURSOR AT TOF
DON’T FUT ADDITIONAL COMMANDS ON THIS LINE

M FOKES HALT FROGRAM, ENARLE EDITOR, ACCEFT COMMANDS,

LINE CHANGES!

ACCEFTAELE "
SENUM

OF SCREEN

Figure 1.

Fastchip with Fast Chip, the disk
drive upgrade chip from Binary
Corporation. This product will
interest Atari owners with original
810 disk drives, as it provides a disk
format 309% faster than the original.
The company claims that the custom
chip is 10% faster than even the new
Atari upgrade chip.

It took about a half an hour for me
to perform the upgrade, and was a bit
more involved than I had initially
anticipated. Still, the instructions are
clear, and the process is broken into
logical steps.

Binary Fast Chip without a doubt
provides a faster format for your disks.
I found that it cut about twenty
seconds off the load time of a 12K file.
But the disks are also rather sensitive
—cases arose wherein Fast Chip-

Figure 2.

formatted disks took much /onger to
read or write. This was without excep-
tion true with disks for use with
Valforth. 1t might therefore be
advisable to wait until you have two
drives, then install a Fast Chip in one.
You can then choose the format to
match the application.

The product lists for $39.95. For
more information, contact Binary
Corporation, 3237 Woodward Ave.,
Berkley, M1 48072.

Perhaps you’ve wondered if ROM
cartridges could be copied to disk.
Well they can now, with the Block
from Protronics. The Block allows
you to transfer from a ROM to a
binary disk file. Up to ten ROM
cartridges can be saved to a single disk.
I was unable to find anything that the
Block couldn’t copy.

110 REM A PRACTICAL DE
120 DIM A$CL0) ,NGC20)

ONSTRATION

KK KKK KKK KK K K K KKK HOKON KKK
130

230

240 INFUT

ﬁ$ TRAF

130 GRAFHICS 0
LA TR OIOK K OK KKK KOK KK CKOKOKHOK XK
150 7 "x X"
140 2 " TELEFHONE DIRECTORY x"
170 % "X X"
180 @ "x (L) XST x"
190 7 "% (ﬁ)[ﬂ) x!
2‘;00 'E) le([)K”
210 9 "« (5)AVE x"
00 D vx x"
il
I
260 X 300
280 360
270 N SAVE
280
290 %
_)

MUU K

U }U ITIUN d,i
H MY, N$ 3" “'th" “VUNT“
TION &,U [ﬂh, LHTOF

: 008
PN oNT
390 F TION 2,0:FOKE 842,
400 FOKE 842,12:60T0 130

IUN PPN

1L386TOF

"DIDIRECTORY" IREM CAS

TCEAVE"

U VINFUT A$LGOTO 130

VP LINFUT N
U LINFUT P ETRAF 310

LETE F CINFUT NSTRAF 360

139

Self-Modifying Programs

Potential pirates should take note:
the Block itself is a ROM cartridge,
and no cartridge file will run unless
the Block is installed.

The Block lists for $99.95. For more
information, contact Protronics,
17537 Chatsworth, Granada Hills, CA
91344.

The Library Grows

I remember, in the dim recesses of
my mind, a time when information
about the Atari was an extremely rare
commodity. This was in ancient times,
of course: maybe a yearand a half ago.
Now it seems a new book about the
Atari arrives here every week. These
are six of the best:

Atari Games and Recreations, by
Herb Kohl, Ted Kahn, Len Lindsay,
and Pat Cleland, Reston Publishing,
Reston, VA 22090. Excellent starter
for novices and kids, with an emphasis
on fun programs the user can type in,
play, and understand. Includes some
nifty appendices.

Atari Sound and Graphics, by Herb
Moore, Judy Lower, and Bob
Albrecht, John Wiley and Sons, 605
Third Avenue, New York, NY 10158.
The authors pace the text so that new
concepts are introduced at a rate that
can be absorbed. Sound and graphics
are a motivating force with kids, but
many hobbyists will want this one too.

The Atari Assembler, by Don
Inman and Kurt Inman, Reston Pub-
lishing, Reston, VA 22090. Best
beginners machine language book
available for Atari owners. Assumes
you have Basic and an editor/assem-
bler. Assembly language is tough stuff,
but authors manage to keep things
fresh with humor and good examples.

Games for the Atari, by S. Roberts,
W. Hofacker, 53 Redrock Lane,
Pomona, CA 91766. Includes good
examples of player/ missile movement
from Basic, priority detection, and
patching from Basic to machine
language subroutines. Includes ten
games to be typed in, unfortunately
without much explanation.

Picture This, by David D. Thorn-
burg, Addison-Wesley, Reading, MA
01867. A kid’s introduction to graphics
through Atari Pilot. Excellent as a
supplement to “Student Pilot,” the
reference guide supplied with the Pilot
cartridge.

Your Atari Computer, by Lon
Poole, Martin McNiff, and Steven
Cook, Osborne McGraw-Hill, 630
Bancroft Way, Berkeley, CA 94710. It
may have taken two and a half years,
but there is finally a manual available

which thoroughly documents the rudi-
ments, as well asa number of advanced

topics, concerning Atari personal
computers.
Following a remarkably steady

pace, the book progresses through
beginning operation, getting started in
Basic programming, and includes
comprehensive chapters on the pro-
gram recorder, disk drive, and
printers.

The main body of the book deals
with advanced Basic programming,
and stands to serve the proficient Basic
programmer as well as the novice.

Next the book focuses on the
goodies. Graphics and sound are given
aclear and thorough treatment — with
a chapter devoted to advanced
graphics techniques. Character set
animation, display lists and player-
missile graphics are explained simply
and thoroughly, with examples help-
ing to illuminate the way. Those of
you (like myself) who need every last
thing spelled out for you, are bound to
benefit from this approach.

Later chapters examine sound
routines and summarize Basic com-
mands.

The book concludes with nine
appendices, each of value to the Atari
programmer. Finally we can turn to a
single resource for an annotated list of
error codes and their meanings, status
and keyboard codes, memory usage
charts, and a listing of important
memory locations.

Your Atari Computer should be
packed with each and every unit Atari
ships, alongside or in lieu of current
documentation. No Atari owner
should be without it.

Scuttlebytes

In the November issue, we gave a
phone number for a Sunnyvale bul-
letin board system called TEAM
Atari. Begun by an Atari employee,
the board is unfortunately no longer in
service. Apparently some Atari execs
felt it was inappropriate, which is too
bad.

You might try Bay Area Atari at
(408) 244-6229. Sorry if we caused any
inconvenience, but it is tough to
compile a BBS list that remains totally
accurate for any length of time.

A question many people are asking
concerns the new Atari 5200 video
system: is it or isn’t it a 400 without
a keyboard? The answer: well, yes and
no. It does have 6502, Antic, GTIA,
and Pokey chips. It does run nearly
identical ROM software. However,

140

for reasons somewhat difficult to
fathom, the 5200 has had enough
changes made to ensure incompat-
ibility with Atari computers. The most
dramatic evidence of this is a rede-
signed game controller, which uses an
analog input, in addition to a tele-
phone-style keypad.

The advantages to a handheld key-
pad are obvious: the advantages of an
analog joystick perhaps less so. A
potentiometer-controlled stick allows
for better control in games such as
Missile Command, but a digital stick
is faster in quick-turning games like
Pac-Man. The 5200 controller ports
are necessarily redesigned, as are the
cartridges themselves. Whether this
incompatibility is utterly surmountible
remains to be seen, but it certainly
would be a formidable task.

Another topic we hear a lot about is
the “next generation™ Atari. Have you
heard about the Atari 6007 We have,
although we haven’t been able to con-
firm anything. It will be a single board
computer, totally compatible with the
400 and 800. It will have RS-232 cap-
ability built-in, and a full-stroke key-
board. It will come with 48K standard,
and sport programmable function
keys. We have even heard about an
Atari /000, with a built-in dual density
drive, and CP/M capability!

Super Text Mode

John Anderson

After a program is written and de-
bugged, it should be cleaned and pol-
ished. When you think of all the work
you did to get it working, the least you
can do is mount it well—and that entails
making it look and run right.

The first display a program generates
is supremely important, as it sets the
tone for all that is to follow. If you have
been wanting a professional quality title
card to distinguish your programs, here
is a routine that will fill the bill. It can be
tailored to display your message in a
large, custom font, and then to cycle
through a veritable rainbow of color.
From there, another message can flash
into the text window. After the title card
has cycled fully, the rest of your pro-
gram will execute.

Programs that plot and fill character
sets into a non-text mode (in this case
graphics 7) have appeared in Byte, and
Compute! over the past two years. The
routine that follows has some new fea-
tures, and allows you to create your
own, customized displays with a mini-
mum of fuss.

If you are short on memory for a spe-
cific application, or don’t have a disk
drive, you might not want to commit
many lines of Basic to the likes of this
routine. However if you have a disk, the
program can run as a separate file,
invoking your main program file as its fi-
nal act. It takes about 50 sectors on disk,
and is well worth every bit of that space.

The routine appears in Listing 1. I
have left the code relatively free of REM
statements to conserve memory. If typed
in exactly as shown, the program will
display the letters A through U on the
screen, cycle through the rainbow and
text window displays, and then start all
over. In order to display letters V
through Z, change line 120 to RESTORE
862. This will at least give you a view of
all the letters in the font, so you can en-
sure that the program has been entered
correctly. The only reason the alphabet
has been split in this manner is because
the screen is capable of displaying only
three rows of seven characters at one
time.

The program breaks down as follows:

Line 10 initializes, while POKE state-
ments suppress the cursor and move the
margins out to 40 columns. It also in-
vokes two subroutines: the first reads
machine language data into a string
which will then execute the rainbow seg-
ment from a USR call in line 30. The sec-
ond subroutine reads data which define

John Anderson is an associate editor for
Creative Computing magazine.

the placement and choice of characters.

Lines 50 through 70 constitute the
secondary message, which will appear in
the text window. There is no reason why
this font, which is in graphics 0, could
not be modified, perhaps along the lines
of the program that appeared in the
Upstart Atari article (see pages 135-
138).

Line 80 creates a pregnant pause, then
starts the whole procedure over again.
Before it does so, however, it POKES the
attract mode into operation. You may or
may not like the effect this creates, but
the command shows that color back-
ground capability is there. This is also
the line from which the rest of another
program would take off.

Lines 130 through 230 are really the
heart of the program, and exemplify a
powerful and efficient manner of reading
plotting (as well as other) information
from an upcoming series of DATA state-
ments. This handsome approach has ap-
peared in Compute!, though I have
improved upon it here.

Briefly, the following happens when
reading DATA statements: if preceded by
a P, upcoming data pertains to plotting.
Read the numbers, PLOT and DRAWTO
as necessary.

If preceded by an R, the following
data will indicate where the plot should
begin (always at the 0,0 point of any let-
ter). These numbers always occur at the
outset of a letter plot, and must be
manipulated by the user in order to en-
sure correct placement. The font is
“proportionally spaced”; for example,
an I is narrower than an M, and care
must be taken to lay out words so that
spacing between letters is pleasing.
Shades of art direction! The first number
is the vertical coordinate, the second the
horizontal. And remember, the Atari
does not use the Cartesian coordinate
system, but rather places 0,0 at the
upper left-hand corner.

If preceded by an S, the data pertain
to sound statements. Thus the user can
create a tone for each letter, building
into and moving between chords, if so
desired, by cycling voices. The first
number indicates which voice to use, the
second what pitch. I worked exclusively
with pure tone (10). By altering the
distortion value in line 160, you can
experiment with sound effects.

The next data identifier may seem a
bit mysterious, as it is not used in the
demonstration version of the program. It
is a dummy identifier, placed there only
for possible use as a time delay. As cer-
tain letters require fewer steps to draw
than others (I as opposed to S, for exam-

141

ple, they will plot much more quickly.
By padding the DATA statements for the
letter I with D’s, you would be able to
even out its plot time, to create a truly
professional-looking display.

If preceded by a letter F, the numbers
indicate a following fill statement. These
ensure that the insides of each character
will be delineated from the outside, so
that the rainbow can then well up from
within. And if the word END is en-
countered, the job of this section of code
is terminated.

What follows are the somewhat
lengthy DATA statements themselves.
“Why the jump from line number 230 to
6507 the more observant Atarians out
there may ask. “Well, for a good rea-
son,” I respond. The line numbers that
initiate each letter correspond exactly to
their ATASCI code times 10.

An observant but somewhat slower
subgroup might ask as a follow-up, ‘“‘so
what?” Well I'm glad you asked that
question. In a subsequent version of this
program, (which I haven't yet written
because I am hoping one of you will do
it for me), the user will be able to input
an entire message into a character string,
and through the use of techniques out-
lined in Self-Modifying Programs
(pages 138-140), the program will then
modify itself into the specific message,
deleting all extraneous material.

A hint at a possible approach: 1) find
out what letter the user wants, 2) LIST
CHRS (user’s letter) *10+2, give it a new
line number (how about that gap be-
tween lines 230 and 650), then re-enter
the line. Do this for +4, +6, and +8,
and you will have the entire letter re-
entered. Preset R (origin) and S (sound)
values that the user can fiddle with later.
There will be plenty of time for that,
what with the time saved not having to
edit the whole thing by hand. Then have
the program automatically delete lines
650 through 904 completely. Voila, a
custom title card, in minimal memory!
Disk Utilities

Want to learn more about how your
disk drives work? Need a way to retrieve
data from crashed disks? Want to look
at and alter disk information sector by
sector? Interested in backing up your
disks? If your answer to any of these
questions is yes, you are a candidate for
a disk utility package.

Every time I have been about ready to
write something on disk utilities, an-
other package makes makes its appear-
ance. The latest I have had a chance to
become acquainted with is Diskey from
Adventure International. This packs the
most features I have yet seen in a disk

Super Text Mode

utility, and is accompanied by a rare bo-
nus: sparkling, well-written documenta-
tion by the software author himself. The
tutorial value of the manual alone makes
the package worthwhile.

But just wait until you see the soft-
ware. Disk maps are presented simulta-
neously in hexadecimal and ASCII
format. The software allows for
sector-by-sector data examination and
alteration. It provides tools by which to
salvage damaged disks. It provides func-
tions to compare, copy, reformat,
search, create disk files from tape
autoboot files, erase (write zeros), dis-
able verify, calibrate drive speed, and
manipulate disk directories as well as
DOS files.

Another unique function of Diskey is
its ability to flag “dead” disk sectors.
This is a capability previously unavail-
able in any disk utility I have seen.
Though the potential for misuse is there,
author Sparky Starks stops short of
spelling out a means to write bad sec-
tors. He states strongly in the manual
foreword his equation of software pirates
with common thieves.

As a learning tool, Diskey is super-
lative. The documentation and software
work in tandem to provide the most
solid disk tutorial you can find any-
where. And, hard as it may seem to
imagine, even the driest stuff is pre-
sented in a fresh, almost breezy manner.

Diskey is more than a professional
utility: it is obviously a labor of love.
There are many more features in the
software than would have been nec-
essary to create a salable package. For
over 50 reasons (the product has over 50
separate commands), Diskey very
quickly attained a pre-eminent position
in my utilities box. How about an assem-
bly language tutorial, Mr. Starks?

Obviously, you must have a disk drive
to run the package; in addition, you
must have at least 32K and Atari Basic.
The system is optimally configured,
however, with a 48K system, two drives,
and an 80-column printer like the Atari
825.

The package lists for $49.95. For
more information, contact Adventure
International, Box 3435, Longwood FI.,
32750. (305) 830-8194.

Poking Around

This part of the column was initiated
as an attempt to respond to the many
questions we have received at the maga-
zine concerning Atari memory map
locations, and ways of “tweaking” them.

I have at least three letters from Atari
Basic hobbyists, all asking the same

Listing 1.

i CLR :POKE 75Z,1:DIM D503 ,CHELTTYTI
ME=L0:POKE &2, 0:605UB 1009:G05UE LOoD
z0 B$(15 153 =CHRSE (Z2)

In X= UER'[QDR(C‘ﬁ).TIHE)

4g gRﬁP“IE: 7HIZLPOKE ?52,LI5ETCOLGR 2
y BF

50 '?- BB s ot e st i)) o s ot S i S e e s S) S (R S o B o S o S

o v e e B 1]

60 7 Y-—0UTPOST ATARI--—CREATIVE COMPL
TIRG——""

FEH T 1 o e o i o e e

S 1|

(8;3'[‘:;0]“}611:1- TO 2500 :NEXT L:POKE 77 ,2%54:
99 REM BRAMCH HERIE 79 REST OF CODE

108 GRAPHICS 2I:5ETCOLOR &,8,8:5ETCOLO
R 1,0,14:5ETCOLOR 2,0,0:5ETCOLOR 4,0,0

1Lg COLOR Z2:FCOOLOR=L

1z0 RESTORE 658

130 READ D5iIF ASCIDSY <64 THEWN 2240

149 IF PS="'P" THEN RE&D ROM, COLUHN:GOS
UE ZZI0:PLOT COILUMNW, ROK:GOTO 130

150 IF DBHE="RY THEW READ RORIGIW,CCRIGIL
M:LOTO 130

168 IF DF='*5" THEMW READ VOICE,PITCH:SD
UKD WOQICE,PITCH, LD, 65 G0RTO L3

170 IF DE=‘rp" THEW L3ib

1850 IF DI="EWD" THEN RETURM

190 IF DHCP"F'" THEW GOTO 136

200 READ ROW, COLLEMN : GOSUE ZIGiPOSTITION
COLUMH, RO POKE 76%, FCOLDR

2r0 HIG iﬂ,ﬂﬁpﬁ,ﬁ,"ﬁ'"'PLMF COLUHN, RO
P0TE L36

Z20 ROH=VAL (D5 'RE4D COLLUMN:GOSUB Z23a:

CRAKWTD COLIMH,ROK: GOTO 1349

230 ROH=ROHE+*ROREGIN: COLUMN=COLLMH+CDRT
GIH:RETURMN

BSB RER M e e e e o o e et e s

652. D‘lﬂ‘n‘nl R,B;Q,-ﬁ;.ﬂipl

654 bATH P,2,7,2,13,4,16,6,13,8,
19, 25,13 ,F,19%,13,P,6,2,F,6,11,F,
»3,83,F,L3,L3,12,7

55% DATH 8,7,7,8,6,9,P,19,03,1L9,7,25,7

’ZEFM.'..pr&'-I-rFV'lE',Zpra; 4q|F,2F?' zjrlj-gjﬂplﬂl
3!‘?.l‘ﬂl?|F?lallﬁ'p?

t.ﬁ

1 ,2 3
Tal2,F

»

6’60| REH llB‘lli-—_._.__._._._.-_._...._.__..._....__.—.._.—..___.__
6562 DATH R,@,22,5,41,7

664 n‘ﬂl-ﬂ'ﬂi p'}_ ,1,(2,1.‘.3’4’1.6,16',1.8):8 L?'Ilg'
12,402,117, 43,15,35,47,.17, lQNZINI? 23,47
,25 LS 2%, L

666 DOTA P,6,7,F,6,1L,F,&,43,F,18,LL,1L
G,7:,6,7,P,15,7,F,1%5,11,F, 13 13 F.2a,1%L
p-znl ? .’.G'p?ppgz.s’-lyl" jl-!-.

6?0 REH Ilcllll—_—_._.._......————._..._..__._.—.—_.._——.—
G'?z D“T‘U R}B' 4'4| .592;' 1..“-

E:?d- DﬂlTﬂ pyzp ? p2;13 }|4'j LE)IB"LB"IB pji.g p;B'pl.L
3pF,6,81,F,6,7,8,7,49,7,21,92,F,12,19,%
1,19,23,16,25,13F

676 ﬁATN P,2L,%,F,21,1%,F,19,4£3,19,19,
P,2%,43,2%5,7,F,23,4,F,24,2,F,19.L,F,§,
1;|Fp&p2;F|d‘p4pF]2]?

question: how can Basic programs be
made unlistable? First of all, let me go
on record as one of the category of folks
who believe in keeping things listable
wherever and whenever it is feasible to
do so. The problem of code theft is not
nearly as acute in Basic as it is in ma-
chine language, nor is that diehard pi-
rate going to be deterred by the mere
fact that a program is unlistable in its
usual environment. My feeling is, in the
spirit of enlightenment, if other people
stand to learn something from a bit of
my code, more power to them.

That disclaimer having been duly
filed, let’s look at the only tried, true,
and simple method I have seen to help
protect your precious Basic files from
prying eyes.

Most approaches I have seen to
rendering Basic programs unlistable are
unsatisfactory. In my Upstart Atari
article, I noted the memory locations
you can alter to disable the BREAK key
(see Poking Around, pp. 137-138). (A
quick aside—a couple of folks wrote in
telling me they experienced problems
disabling BREAK. The POKE com-
mands must be reasserted often. For
instance, POKE again after every
graphics mode command. If you put
enough sets of them in your program
or stick them in the right places in the
main loops, you will effectively disable
the key.)

I have not found a way to disable the
RESET key, but with the command POKE
580,1 you can make the key into a
“true” reset: that is, pressing the key will
initiate a cold start, as if the system has
been powered down and up again. This
will flush any resident program from
memory. To return to the normal RESET
mode, POKE 581, 1.

The trouble with merely disabling
these keys is that the program can still
be listed before it is ever run. Still an-
other approach I have seen converts pro-
gram listings into control characters or
variables into carriage returns. Likewise,
the fixes do not become operative until
the programs are run. If the user asks for
a LIST directly after loading, a full listing
will be obtained.

How then, to protect a program be-
fore it can be listed? The answer lies in
the creation of a “RUN only” file. This
type of file can not be LoADed or EN-
TERed, nor can it ever be LisTed. It exe-
cutes perfectly in every other respect,
but can only be invoked with the com-
mand RUN“D:FILENAME”, (or RUN
C:” if you are using a cassette-based
system). In order to create such a file,
append the following line:

GED REM M ——— e e e e e

552 DATH R,9, 56 S, T.13

654 DOTH P, I; ..2 1.3,.4,1.6,.6- LS,.&FI_‘B‘,.I.?,
14, 21,1‘9' 23.-1?,125 15,25, .IL,P' 6, 7 pF, B, AL
F,8,13,F,1&,413%.,F, .ZﬂpJL.l. Zz0, 6-,

656 DﬁuTﬁl P, 25 .!L. F,yEZ,1

6-9“ EEH IIIE'"————-_.-...—|—-——-—-—-———-—-—-—--.—-—-———._

5'?4' “AT“ p 2.1,1.& .L‘B JIB‘ 1.‘9 jla' 7 11. 7 J.L.LF.IL
5,16,1%,46,7,1%, ?’,1‘5‘ 19' 25, 1.‘5,.2‘-«). a2

» 4
7-0 B REP W e o o i e i e e

792 BPATA R,9,1468,5,1,18

?04 ﬂ'lﬂ‘nﬁ P|z'1p2 .L? B‘ .L'B,.B- ? .ﬂ.l.,v,.ﬂ.l. .L
5,16,1%,16,7,2%, ? 25 l F,f

?‘la REH HIIGIII ————————————————————————————————— —

742 DATA R,8,132,5,2,Z3 .

?14 n‘ﬁTﬂ p 2 ?)l '].3,.4-,.l.ﬁ;.ﬁulﬂﬁ.ﬁﬁl?’yﬁhl.
3 F 6 -n..LpF Ey? B' p.ﬂ.ﬁ'p?,i"l.,?,P,.l?,l?‘pﬁ
) L?ﬂ23 16, x5, LS

?16 BATH P, i&,19%,14,19,44,44,F, 15,41.,F
18, LT, Fﬁlﬁ L3yF Zi.L11,21,%

’13 DﬁTﬂ P, 25 io,Eﬁ 7 s F 23 4,F,2L,Z,F,
¥, 1,F,8,1,F, 6 Z, F.d 4,F 2,7

?2“ REH DIIHNI—»———mu . o — . T W, S| o o S e | o s — s

?22 paTE R, Z5,9,5,3,28
724 DATA P,2,13,2,19,25,19,25,L3%,F,16,
13, P2, ?,..LL ?,F,.LlL,lE.F,E.IE,P.IE- 13 1
6‘,!;25 11125 l,Fuzl.L,i,?‘
730 o T

732 DATA R,25,28,%,8,3L
734 DATH P,2,1,.2,7,25,7,25.4,F, 2,1
748 REW wgh-l-lol il it

742 CATH R,25,44,5,1,38

744 DATH P,Z,17,2,19,26,19,21,18,23,16
y25,43,25,7,P,2,43,F,18,43,F, 10,42 ,F,2

1,9,19,7,F

74E DATA 19,4,F,20,1,F,22,2,F,23,4,F,2
n

?rg REH MU P o e o o e ot i e e e e e

?52 CPaTd R,25,566,5,2,42

7454 DavTa P,2,L,2,7,4L,7,P, 19,199,413 ,14,
S,.ﬂ.'?',i,ﬂﬂ‘,.ﬁ.lE,F,ﬁ 12,F,11:,7,P,.02,1%,2
5.49,25,43,F,1%,13,F,16,7,25,7

FED REM P8 oo e o o s o e e e Dt s

76Z DATA R,25,88,5,3,47
764 DATA P,2,1,2,7,19,7,1%,19,25,19,25
770 REH "M e

772 DATH R,Z25,114%8,5,0,57

774 DOTH P,2,1,2,7,5,19,2,13,2,1%,25,1
9,25, 4k3,F,10,13,13,46,F, 10,7,25,7,25,4
PPy 20l ,2,7,6,10,F,4,11,F,3,L2,F,Z,4F
TEBE BER DB o oo ot o o o o e it s s s s e et s s s

?32 ﬂ'ﬁTﬂ R.,.i’.s, 132 » 5',.'-,63‘
TE4 DATH P,.ZI,.L,Z,?'.B,..IE.Z
2,255,133, F,1%,13,F,13,7,25%5,

143

1)] !l-,-- 122531
TaF: 29, L,F:2

Super Text Mode

1, 2,7,9,13,F, 2,13 i A
799 REH “0“——‘-~-——-—-——---'—'

?'32 BﬁTﬁ R,.ﬁﬂ.ﬂ,.ﬁuz,?ﬁ

794 O&4TH P,2,.7,2,1%,4,16,6,18,3,1%,1%,
19,211,158, QE,IG.IS,LE,P,a,?,ﬁ,ﬁﬂﬁyﬁ,ll,
F,%,13,F,1%,13,F,2%,£1,24,9,1%,7,8,7
796 DhTH P,25,13,25,7,F,23,4,F,21,2,F,
19,4L,F,8,1,F,6,2,F,4,4,F,2,7

3@9 REM Mpil=smmramprtam e aims s S o e
8&2 pATH R,59,F2,5,3,86

804 OOTE P,2,0,2,403,4,16,6, ﬂ& G, L9, L3p

13,15,18,17,16, l?,LE P.6,3,F, 11 e
L2 ,F, 3 13 F,13, L3,L3p?

8ﬂ6 bh‘[ﬁ 8',1?‘ 7‘ 8 9E|| P‘p.t.g'ﬂl-i;-].,?.?,.'zs-,?
29, p 2, 4

510 12 N N —

817 DaTH R,59,44,%,8, 96

514 DATA P,2,7,2,15,4,16,6,18,5,1%,1%,
19,21,18,25, 16 ,P 5,7, 6,9, F.16,44,F,8,13
JFil9,83,F, 24,14,2L,9,19,7,58,7

816 DATA_P,23,18,27, 15,29,16,F,25,13,F

pZS,?,F.23,4.F ZL JF, 19, 4,F,8,1,F,6,2
;F.}I4’4]F jl?’

520 REH RI--——m e m e o
322 Dﬁ'rﬁ m p |. 66 |.‘5 F I-ﬂ .LBE

324 DATA P.Z,L,2,13,4,16,6,15,8,19, 10,
LﬁpLZNLF,Ii,iﬁ:léylapi?,i? 75,19, 25, L3

826 baTH P, %,7,F,5,1L1,.F,&,13,F,18,4L,F
'.I..gp?yﬁl:p?‘

628 DaTH P,25,4F,F,22,13,F,19,42,F,.18,
L8725, 7,25, 0,F,2,1

83.'0 REHM B0 e e e e e e e

$IZ% DaTe R,59,886,5,2,1L1%

$34 DATER #,2, ?,5,13 4,16,6,18,85,19,8,1
E.F,ﬁpll,ﬁ,ﬂp& F.le,9, 10,13 l2n16 14 1
&,16,19
G35 AT 19,19,21,18,2%,16,25,43,25,7,
zélg »19,%,F,19,14,F,47,43,F,15,11,F,

Fp

533 DATS P,2%5,43,F,.25,7.F,23,4,F,21,2,
F,19,4,F, 1?,1p17.?yP,L5 9,.F,1i4,7,.F, 12,
4, F,LB,2.F,8 F,5y2,F 4 4ﬂF,2

840 REM MT'——cmie —————— -

842 mﬁ‘rﬁ Rf;s:ﬂp l.ug;s, 3| .lza'
44 DATA P,Z,L,2,12,8,19,8,13,25,13,25
p?pr8|?|;8‘,-Lpr2;.1.

SEQ REM Lo e oo i e i i o i

-

q

S5 DATA R,59,1T2.5%, 0,][415

854 DATA P',.Z .I:.3,.2 .L‘B 13,13,24,18,23,1L6
125 13- 2-&;

& 565 DﬁTl& P,2,L%,2,43,19,L3,F, 24,111,211,
?'1.‘?,?]2‘1(:?‘]\2’-ﬂ.pp|»:2'5’?'F‘,sz:x':d'xFIﬁ2141|2pr
1?;.!‘;,-F,-2,ul

3584 DaAaTA P,.28,L3F,F,2,13

459 DATA END

SED REP PO i i e o it o e e e

362 DATA R,3IH,25,5,0,L53
86’4 DlﬁTlﬁ. P‘ngl; 2.,: ?Ip .Ld‘,.?‘,. J—ﬁ Hl ‘3‘;! 1..6 » l.ﬂ.. .ld-,

144

POKE PEEK (138)+256+PEEK
(139)+2,0:SAVE* ‘D:FILE-
NAME '’ :NEW

It does not matter if the line is at any
time executed by the main program; the
code therefore remains unaffected in any
way. It is imperative, however, that the
line be the chronologically last line of
code. When you are ready to protect a
program (that is, do not intend to alter it
any further), type this line with a higher
line number than any other in the pro-
gram, choose a filename, than GOTO the
line. Listing 2 is a working example.

That is all there is to the technique:
“RUN only” files can be simply gen-
erated to disk or tape. Attempts to do
anything other than RUN will result in a
nasty case of system lock-up. And yes,
even autorun files can be protected in
this manner.

Scuttlebytes

Well, we have finally managed to con-
firm the existence of the Arari 600, and
have heard that at least two Atari plants
are currently tooling up to produce
them. The 600, as its model number im-
plies, will fill the gap between the Atari
400 and 800., It was rumored that the
machine would be unveiled at the Win-
ter CES in Las Vegas. It will sport 48K
standard, and a full-stroke keyboard.
Owners of 400s and 800s need harbor no
fears of obsolescence: the 600 will be
completely compatible with its
predecessors.

Many Atari types are awaiting with
curiosity the final verdict on the Com-
modore 64, which features graphics,
sound, and gaming capilities very much
akin to those of Atari computers. Atari
has, in the meantime, added to its busy
legal docket a suit against Commodore,
concerning the design implementation of
Commodore joysticks, which are for use
with the VIC-20 and all latest generation
machines. It seems the sticks are not
only Atari-compatible, but nearly identi-
cal in many respects.

Atari, which patented its stick when
the VCS was first introduced in 1977
and improved the design several times
since, claims patent infringement. The
Atari joystick connector has set an infor-
mal design standard in the industry. The
Colecovision videogame uses an Atari-
compatible format, and it was rumored
that the new microcomputer, to be re-
leased by Apple this year will also make
use of Atari-compatible digital sticks.
But compatibility and patent infringe-
ment are two separate concepts.
Joysticks

While we’re on the topic of joysticks,
let me tell you about two hot sticks

we’ve been playtesting. The first is the
Pointmaster joystick. This stick has an
extra long handle with built-in grip and
handle-mounted trigger button, making
it perfect for “flyer” games like Star
Raiders and Protector II. The stick is
very much like the one in the stand-up
arcade version of Zaxxon, and once you
play a few games of Raiders with it, you
won’t want to use anything else. Con-
versely, the stick is cumbersome in maze
games like Jawbreaker or MBAFAS
(“move back and forth and shoot™)
games like Threshold. Still, at $17.95, it
offers a real boost to your “flyer” game
collection.

For more information, contact
Discwasher, 1407 North Providence
Road, Columbia, MO, 65201. (314) 449-
0941.

The other sticks we looked at, called
Game Mate 2, are pretty nearly regula-
tion Atari sticks, with one big difference:
they are wireless, and work by remote
control. My main fear was that there
would be a time lag between the move-
ment of my hand and what I saw on the
screen. I experienced no such
sensation—the sticks seemed as fast as
any I had ever tried. My only reserva-
tion is their size. They are quite bulky,
and take a while to get used to.

With the VCS, the console power sup-
ply plugs into the Game Mate receiver
unit, and then into the VCS console. For
the 400 and 800 computers, however, an
additional 9-volt power supply is a nec-
essary purchase. Each stick also takes a
9-volt transistor battery. The units op-
erate at distances of up to 20"

Complete with receiver and two
sticks, Game Mate 2 lists for $99.95, but
I have already seen this price substan-
tially discounted. If the luxury of wire-
less sticks is appealing to you, this
product will assuredly not disappoint.

For more information, contact Cynex
Manufacturing Corporation, 28 Sager
Pl., Hillside, NJ, 07205. (201) 399-3334.

Games

Smoothly we seque from sticks to the
games played with them. We have con-
firmed 400/800 versions of Galaxian
and Defender in ROM form from Atari.
Both games are spin-offs from the new
5200 model videogame. The 5200 may
yet prove to be a boon to owners of Atari
computer systems, if it spurs game
development common to all machines.
Galaxian has already been demonstrat-
ed, and is a solid implementation. One
can only hope that Defender will be up
to snuff.

Datasoft also has an ambitious project

1§,2;i?}-31-’l? L?I .1.5,..?.5,-].1 F 25 9,|F .L?]ll
z

866 DATA P,L16,9,F, 16,48 ,F,L(4,13,F,2,L13
FTD REM TVHIR = m i i o i e i e i e

872 DATA R,IG,47,5, 1,172

374 DOTH P,Z2,4,2,7,149,7,16,18,4%,13,7,
#352 A9, 25,19,2%,13,F,22,16,25,7,25,1,
8"5'5' CATH P L6, L0, F, 12,7, P, Z2,13,F, 19,13

BEO REM MR m — i i e e e e e e

832 DATA R,IF,6H,5%,F,421

834 [?ﬂﬂrﬁl p 2.1,.4.,.«;'? 19’ 'Z .13’1-; lgpa .‘.Q
SAT A5, LF, 1'3‘ 25,49, Iﬁ Jl.-a,.F 1&,19,25,7,

2-&.1,.[’ L#, 1, F,]L-?) I 3,.1 F.2Z2,d

BiF6 D‘ﬂlTﬁ P‘, .ﬂ.ﬁ,.LlBl F.2,13

814’0 RE‘H llliﬁfil‘—__._.--—--——4——.—--.“_._.,.__,—v-—----v.__..-_.,._.._

8?2 DATH R,IS, 28 .5.,3,Z0%5
834 DATH P, 2, 1,.2,,?' . 18,2, 1
y BT, 15, L6, 1.3 :2’5 1%, 251 T,F.1

IF 8, .IL,F,E

B'Eib: CaTA P‘, 18, L0, F, 2,13

JRG REM 0T i e

902 DATA R,IS,LELT, 5,080,255

9204 BATH P,Z2,0,2,19,8,L9,12,18,12,49,2
5,.1.'9‘,.25,l,:F,L?,.l.,F,ﬁ,.19;3 .I.;F;.Lpl

18899 DATH EMD

18La RESTORE 1ad48

1820 FOR I=L TO ZZ:READ C:
JINEXKT I

183Q RETURMK

1940 DaATH 104, 104,104 ,72,L62,57,1690,0,
173,0,219 ,40L,20,141,22,Z03,141,1L0,242
,A306,298, 242,202,208, 237,104

Lﬂsﬂl n'ﬁTﬂ 56 & 2'33:pr 10‘8 It 228";3.6'

]

3,2, . Gy
B, 7, 3 »

1
5

CECXI=CHRE (G

Listing 2.

L 7 “"THES PROGRAM IS WHLISTHBLE'
Z¢ ¢ “EVEN THOMIGH THE RESET AlWDY™
ig' : MBREMM HEYS REMAIN ENABLEDR.™

[
S0 ¢ "UTRY ITH
60 FOR X=L TO 1900:HEXT X
70 GRAPHICS 8:GaT0 1@
$0 REM REMEMBER TG “G0To (ELELE"
20 REM TO SAVE THE UMLISTABLE FILES
10806 POKE PEEK (LIE) #256XPEEK (1T +2Z, D
VSEVE "D OUTROST " : NEK

its drawing boards right now:

graphics 5. Did I make a mistake. Miner

Zaxxon for the Atari. We can’t wait.

I must admit it: when I first heard
that Big Five Software was releasing a
game for Atari, I sort of chuckled.
Somehow I assumed that because Miner
2049er was from one of the best TRS-80
game houses, it would probably run in

145

2049%er, in ROM cartridge format, is
bound to be one of the runaway hits of
the year. With superlative graphics, hu-
mor, and 10 completely different screens
to master, the game leaves Coleco-
vision’s Donkey Kong pale by
comparison. O

The Challenge is Met

In my “Super Text Mode” article, 1
posed a challenge to all Atari hackers
for vast improvements upon my
program. The first response I received
was from Mike Portuesi, a sixteen-
year-old Atari devotee from Mount
Clemens, Michigan.

Mike succeeded in the task with
satisfyingly little code. His version
of the program accepts a user message
as a string, modifies itself to include
only the letters needed for that specific
message, then deletes all extraneous
lines. The user needs only to reposi-
tion those letters on the screen, which
is a very simple process. Tinkering
with sound values and plotting speed
will result in a polished title card.
Creating multiple cards is made
dramatically less time-consuming.

The additions appear below (these
lines must be added to the program
appearing on pages 142-145).

For a bit of background and a walk
through the modifications, I now turn
things over to Mr. Portuesi:

Operation of the program is simple.
Simply RUN it, and the program will
ask you to input your message. Use no
blanks, please. There is a 21 character
limit, because I figure that 21 char-
acters are the most you can fit on the
screen at once (3 x 7), but if you’re
using lots of skinny letters (like “I”),
simply change the DIM statement at
line 5. When it finishes running, you
are left with a customized program.

The main challenge I faced in the

Listing 3.
5 DIM STRIN 521) £120
2000 2 CHRS$ 5 UPLEA
)"

modification was renumbering the
data statements to fill the gap between
line numbers 230 and 650. I couldn’t
live with repositioning the cursor and
printing new line numbers. 1 would
have gone insane trying to come up
with a routine to account for missing
lines and different line lengths. My
program uses a different method, as
follows:

1. Get message
2. For each character of string:
a. list to screen all associated data
lines
b. Use forced-read mode to input
lines into AS$, BS$, C$, and D$
c. Modify strings to set new line
numbers
d. Print strings on screen
e. Force-read them into the
existent program
. Delete lines 650 to 904
. Delete lines 5 and 859, then
RESTORE data pointer to line 232
5. Delete modification routine itself.

AW

The forced-read mode is used not
only to modify the program, but also
to enter program lines into a string.

Here is a line by line explanation of
the added lines:

5 — DIM strings, GOTO 2000

2000-2010 — Get message from user

2020 — Loop for each character in the
string

2040-2050 — List all lines relating to
a specific letter

) B$() élZO& D$(120):GOTO 2000
EE ING": 2 " (LESS THAN 21 CHARACTERS,

ST

622

2010 INPUT STRINGS:LINENO=232
2020 FOR I=1 TO LEN(STRINGS)
2030 ? CHR$(125):POSITION 2,2
2040 FOR J=ASC(STRINGS(I,I))#10+2 TO ASC(STRINGS(I,I))*10+8 STEP 2
2050 LIST J:PRINT "":NEXT J:POSITION 2,3

2060 POKE 842,13: INPUT A$,B$,C$,D$:POKE 842,12

2060 — Enter these lines into A$, BS,
C$, and DS, with forced read mode
(using INPUT, not STOPping the
program)

2070-2100 — Modify A$, B$, C$, DS,
so as to give them new line numbers

2110-2120 — Put these lines back out
on the screen

2150-2190 — Delete lines 650 through
904, twenty lines at a time

2220 — Delete lines 5 and 859, change
line 120 to RESTORE pointer

2240 — Delete first half of modifca-
tion routine

2250-2260 — Delete rest of modifica-
tion routine, stop program for user

3000-3030 — Modification subroutine
A really big problem 1 had in

development of the program is the

infamous keyboard lock-up that
occurs with repeated and heavy edit-

ing. This, coupled with the fact that I

have only a cassette recorder, led to

heartaches and frustration. 1 wish
somebody would do something about
that. For all the user-friendliness of

Atari Basic, that bug almost makes me

want to take the Basic cartridge, squirt

it down with lighter fluid, and take a

match to it.

One quick word of warning: remem-
ber to SAVE Mike’s additions to the
program before ever RUNning the
modified program! As soon as it runs,
it deletes the powerful parts of itself.
Skip any testing until you put a file on
disk. Otherwise, you too may look for
the lighter fluid.

PLEAS

2070 A$(1,3)=STRS$(LINENO): LINENO=LINENO+2

2080
2090
2100
2110
2120
2130
2140
2150
2160
2170
2180
2190
2200
2210
2220
2230
2240
2250

B$(1,3)=STR$(LINENO): LINENO=LINENO+2

C$(1,3)=STR$(LINENO): LINENO=LINENO+2

D$(1,3)=STR$(LINENO): LINENO=LINENO+2

? CHR$(125):POSITION 2,2

? A$:? BS$:?7 C$:2 DS

GOSUB 3000

NEXT I

PNTR=1:? CHR$(125):POSITION 2,2

FOR I=650 TO 904 STEP 2

71

PNTR=PNTR+1:IF PNTR=20 THEN PNTR=1:GOSUB 3000:? CHR$(125):POSITION 2,2
NEXT I

GOSUB 3000

? CHR$(125):POSITION 2,2

? 5:7 "120 RES, 232":? B859:G0SUB 3000

? CHR$(125):POSITION 2,2

FOR I=2000 TO 2180 STEP 10:? I:NEXT I:GOSUB 3000

? CHR$(125):POSITION 2,2:FOR I=2190 TO 2260 STEP 10:? I:NEXT I

2260 FOR I=3000 TO 3030 STEP 10:? I:NEXT I.? "POKE 842,12:?CHR$(125)":G0OTO 3000
3000 ? "CONT":POSITION 0,0

3010 POKE 842,13:STOP

3020 POKE 842,12

3030 RETURN

146

Converting Applesoft Basic to Atari Basic
Neater Numerical Tables

Paul N. Havey

In Neaten Up Those Messy Numer-
ical Tables by Donald J. Taylor
(Creative ~ Computing, December,
1981), the author designed a short
program, written in Applesoft, which
enables the user to print numbers in a
neat exponential form. While the pro-
gram may be an answer to the dreams
of many an Apple owner, it is of little
use to still-dreaming Atari owners.

Conversion from Applesoft to
Commodore or TRS-80 Basic is more
direct than conversion to Atari Basic.
This is because Atari Basic does not

Paul N. Havey, P.O. Box 5148, Santa Monica,
CA 90405.

Program 1.

10 REM SCIENTIFIC NOTATION FORMAT
20 REM CONSTANT SIGNIFICANT DIGITS
30 REM TRUNCATOR/ROUNDER

40 REM REVISED FOR ATARI BASIC

45 REM BY PAUL HAVEY 01 DEC 82

50 REM INPUT: TWO VARIABLES

60 REM 1. X=NUMBER TO FORMAT
70 REM 2. D=SIGNIFICANT DIGITS
75 REM D-1 FOR ROUNDING

80 REM OUTPUT: ONE VARIABLE

90 REM 1. X$=FORMATTED NUMBER

100 DIM X$(20),BUF$(20),E$(3),BUFI$(10),85(1)

110 S$=" ":IF SGN(X)=-1 THEN S$=" "

120 BUF=ABS(X):BUF$=STR$(BUF) :L=LEN(BUFS$)

130 IF L>4 THEN IF BUF$(L-3,L-3)="E" THEN E$=BUF$(L-2):

BUF$(L-3)="0000":GOTO 230
140 IF BUF=0 THEN X$=" 0":GOTO 300
150 IF BUF<1 THEN 210
160 BUFI$=STRS$(INT(BUF))

170 E$="+0":E$(3,3)=STR$(LEN(BUFI$)-1)

180 IF BUF<10 THEN 230

190 BUF$(2,2)=".":BUF$(3,LEN(BUFI$)+1)=BUFI$(2)

200 GOTO 230

210 IF BUF$(3,3)="0" THEN E$="-02":BUF=BUF*100:

BUF$=STR$ (BUF) : GOTO 230

220 E$="-01":BUF=BUF*10:BUF$=STR$ (BUF)

230 BUFS$(LEN(BUF$)+1)="00000000"
240 BUF$=BUF$(1,D+1):BUF$(2,2)="."

290 X$=S$:X$(2)=BUF$:X$(LEN(X$)+1)="E" :X$(LEN(X$)+1)=E$

300 RETURN

support string arrays like the others.
However, with the unlimited string
length capability of Atari Basic,
program conversions are possible for
Atari owners and, in some cases,
simplified.

Included here is a translation from
Applesoft Basic to Atari Basic of
Taylor’s exponential program. Also
included is a listing of the original
program for comparison. Both pro-
grams convert a number to a string
which is then disassembled. The num-
ber is then reassembled by con-
catenation into a thousand string
mantissa and exponential for the
scientific notation format. Zeros and
signs are inserted where needed. See
Table | for asample of printed output.

The variable names and time re-

Program 2.
250 REM ROUNDING ROUTINE

quirements for the Atari Basic version
are only slightly different from the
original Applesoft Basic version.
Table 2 contains a list of variable
names for the Atari Basic version and
Table 3 contains the time and memory
requirements for both versions.

The handling of string variables is
one of the fundamental differences
between Applesoft and Atari Basics.
In Microsoft Basic (and in Applesoft)
extraction or splitting a string into
pieces is done by the functions MIDS$,
RIGHTS, and LEFTS$. In Atari Basic,
strings are split by using a subscript or
set of subscripts. For example,
AS$(6, 12) means that the substring
starts at the sixth character and ends
with the twelfth. If one number is with-
in the subscript then the subscript

260 BUF$(2)=BUF$(3):BUF=(VAL(BUF$)+5) : BUF$=STRS (BUF) :

IF LEN(BUF$)=D THEN 280

270 L=ABS(VAL(E$)+1):E$(2)=STRS$(L):IF L<10

THEN E$(3)=E$(2):E$(2,2)="0"

280 X$=BUF$(2):BUF$(2,2)=".":BUF$(3)=X$(1,D-2)

Table 1. Sample Data Columns.

Column A Column B
-4E-04 -4.00E-04
-1.10679718E-03 -1.11E-03
-0.02 -2.00E-02
-0.158113883 -1.58E-01
0 0
1.58113883 1.58E+00
10 1.00E+01
47.43416949 4.74E+01
200 2.00E+02
790.569415 7.91E+02
40000 4.00E+04
1739252.71 1.74E+06
2.68793601E+09 2.69E+09
9E+09 9.00E+09
A = As the Apple and Atari print.

B = As converted by this program
(rounded off to three significant digits).

147

Neater Numerical Tables

begins with that character and ends
with the last character in the string.

Table 4 contains a list of Atari to
Microsoft translations. The LEN(AS$)
function is the same in both types of
Basic.

Atari Basic uses the LEN(AS) func-
tions to concatinate two substrings. In
Microsoft Basic, concatination is done
with a plus sign. Table 4 shows an
example of each.

Microsoft Basic uses subscripts as

an indication of a string array. Atari
Basic, while not supporting string
arrays, can simulate string arrays by
using subscripts. In Atari Basic,
simulated arrays that have all the
same length are the most useful.

Program 3. Table 2. Atari version of the variable list.
100 REM SCIENTIFIC NOTATION FORMATTER
102 REM CONSTANT SIGNIFICANT FIGURES Name Description
104 REM TRUNCATOR/ROUNDER S$ Sign of original number
(+ or-)
. LOR
paber b d O ES Exponent part of number (E)
108 REM JUNE 1, 1982 BUF$ Mantisa part of number
110 REM INPUTS REQUIRED=X AND D BUFI$ Integer mantisa part of
number
112 REM X=INPUT # BUF Original unformatted,
114 REM D=f# DIGITS FOR TRUNCATION unsigned number
116 REM D-1=## DIGITS FOR ROUNDING L. Length of mantisa part of
number
118 REM X$=0UTPUT X$ Final version of number
120 REM for. printing .
X Original unformatted, signed
122 S$=" ":IF SGN(X)=-1 THEN S$='"- rinEnbEs
124 X=ABS(X):X$=STR$(X) : P=LEN(X$) The original number “X” is disassembled
into the strings “$$”, “E$”, and “BUF$”.
12 4 ,P-3,1)="E" THEN P$=MID$(XS$,P-2 ¢ ’ ’]
6 IF P>4 THEN IF MID$(X$,P-3,1) 3 g 1 After processing, the number is
:X$=LEFTS$ (X$,P-4) :X$=LEFT(X$,1)+"."+MID$(X$,3) :GOTO 140 reassembled as the string “X$”.
128 IF X=0 THEN X$=" 0":P$=" ":GOTO 164
130 IF X<l THEN GOTO 136 Table 3. Atari Time and Memory Requirements.
132 XI$=STRS(INT(X)) . 5 . 5
Duration with rounding in
134 X$=LEFT$(XI$,1)+"."+MID$(XI$,2)+MIDS$(X$,LEN(XI$)+2) silliseconds: 170
:P$="+0"+STR$ (LEN(XI$)-1) :GOTO 140 Duration without rounding in
136 2.1 0="00 "-02":X$=MIDS(XS$,3,1)+"." mishgas; g
AP RG]~ TREN Jp="<U0 RIS 2, 1335 Memory used in bytes: 1400
MID$(X$,4):GOTO 140
138 P$="-01":X$=MIDS(X$,2,1)+"."+MIDS(XS,3))
Table 4. String Operation Comparisons.
140 X$=X$+'"00000000"
142 X$=LEFT$(X$,D+1) Item# MICROSOFT ATARI
102, BImugetin "L Ey 1 MIDS(AS$, X,Y) AS(X,Y)
165 RETURN 2 LEFTS$ (AS,X) AS(1,X)
Program 4. 3 RIGHTS (A$,X) AS(LEN(AS)-X)
144 REM ROUNDING ROUTINE : LINES 144-160 4 A$=A$+B$ AS(LEN(AS$)+1)=8$
146 X$=LEFT$(X$,1)+MIDS$(X$,3) 5 C$=A$+BS C$=A$:CS(LEN(CS)+1)=B$
148 X=VAL(X$)+5:X$=STRS$(X) 6 AS(1)="AAA" AS(1,3)=""AAA"
150 IF LEN(X$)=D THEN GOTO 160 7 A$(2)="BBB" A$(4,6)="BBB"
152 P=VAL(RIGHT$(PS$,3))+1 8 A$(3)="ccc" A$(7,9)="ccc"
13%: IF SoNePI=L THEN £030 150 Table 4 contains the most common string operations
156 P$="-"+RIGHTS(("0"+STRS$(ABS(P))),2):GOTO 160 for both Basics. Items 1, 2, and 3 perform substring
o e - extraction. Items 4 and 5 concatenate two strings. [tems
158 P$="+"+RIGHTI(("0"+STRG(ABS(P))), 6 to 8 giveexamples of string array notation.
160 X$=LEFT$(XS$,1)+"."+MIDS(X$,2,D-2)

148

Interfacing Your Atari

Marshall S. Dubin

Looking for some “off the beaten
path” type of excitement? Tired of
blasting aliens, running through
mazes, or balancing your checkbook?
Are you the adventuresome type?
Well, this could be the project for you!
With a few parts and a little time in the
workshop, you can have your Atari
lighting lights, dialing phones, reading
and regulating thermostats, and
generally communicating with the out-
side world.

Through the front controller ports
of the Atari computer, there are avail-
able for your use 16 programmable
input/output pins, 8 analog to digital
inputs, and 4 input only pins. These
controller ports can be used with inter-
face circuitry to monitor “real world”
devices such as thermostats or light
sensors, or to activate relays, motors,
and lights.

We'll discuss various ways of using
the front controller parts to com-
municate with the outside world. For
the braver of you, we will be building
an 1/0 interface, so that you may
sense signals, and/or turn on small
relays. This will plug into the front
port of your computer and allow you
to connect various real world devices.
(VIC owners should note that the joy-
stick ports on your machine are
identical to the Atari ports. With the
exception of any software drivers, the
electrical connections should be the
same.)

Please note that this kind of inter-
facing may void your warranty. If you
are not sure, then check with your
dealer or factory representative. Also
note, that accidents DO happen. It is
possible (although unlikely if you are
careful) to do some drastic damage to
your computer. If you are not sure
how to do something then DON'T DO
IT. Also keep in mind that although
the power required for digital work is
usually between 5 and [2 volts, a
relatively safe level, the primaries of
these power supplies are usually 110
volts. Follow these few common sense
rules:

1. Be careful. Always keep high
voltage well away from your work
area.

2. Be neat. Lots of wires scattered
around tend to short something out.

3. Never do any wiring or soldering
with the power turned on.

4. Use a low heat (25 watt) solder-
ing iron. Do not use a soldering gun.
Now let’s do some interfacing!

Marshall S. Dubin, 2639 Hempstead, Auburn
Heights, Michigan 48057.

Figure 1. Front panel pin diagram.

1-4, PIA Analog 1 .

Trigger Analog 2 Gapm)

+5 volts system ground
(Vee)

The Basics

As you can see from the pin diagram
in Figure 1, each joystick port has
several potential input sources avail-
able. For example, two of the pins are
intended for use with the paddle con-
trollers. These are called the Analog
pins. They take an analog source such
as a variable resistance and convert it
into a digital signal. This is in essence
how the paddles function. They pro-
vide a resistance via a potentiometer
within the paddle unit, between the
analog input pins and +5 volts DC.
The computer interprets the variable
voltage as a digital number between 0
and 228. This is called “on board”
analog to digital conversion. Units
performing a similar function may be
purchased at a hefty price, but Atari
owners have the use of 8 of these units
built right in!

For now, let’s concentrate on pins
1-4 on the joystick ports. These are the
pins of the Peripheral Interface
Adapter chip, more commonly
referred to as the PIA. Basically the
PIA provides a means of connecting
your computer to peripherals. The
PIA chip can be programmed for
either input or output. There are two
PIA ports of eight bits each available
for your use. Joystick ports | and 2
compose PIA port A, while joystick
ports 3 and 4 compose PIA port B.
Each port is one byte (8 bits) and may
be used together or individually to
provide input and output functions.
Some of these functions may be used
to drive a printer or other accessory,
or even a series of power relays which
can control alarms, lights, appliances,
motors or other device.

The snag involved in controlling
larger interface devices is basically a
problem of taking a small amount of
power and amplifying it. The ports on
your computer are not made to power
anything more than another chip. The
manual recommends a maximum of 1
TTL load (about | chip) at 50 ma rops.
To be of any real use, we must be able
to power at least 12 to 24 volts. This
higher voltage can drive a wide variety
of relays and interfaces.

149

There are several ways to ac-
complish this task. The most common
arrangement is the transistor driver. In
this arrangement the computer pro-
vides a very small voltage which turns
on the transistors which in turn switch
the load. A second way is through the
use of opto-isolators. The computer
provides 5 volts which switches the
LED (light emitting diode) of the
isolator. When the diode is lit, this
triggers a photo sensitive transistor
which is connected to a larger load or
a relay.

A third way, and the one we shall
use, is to employ an integrated circuit
interface chip. The chip we will be
using is the SN7407 made by Texas
Instruments. The 7407 allows a switch-
ing of up to 30 volts from the 5 volt
TTL level of the Atari, with enough
current to handle a small relay. Using
this one chip, we can drive up to six
relays from the Atari front ports.

The SN7407, as shown in Figure 2,
is an open collector device. To use it
properly you must connecta 2.2K ohm
resistor from each output to +5 volts.
This is called a “pull up” resistor.
When an output of the 7407 is “on” it is
actually open — so the resistor sup-
plies power to the device you are
driving. You can drive up to 30 volts at
the outputs (but you may have to
tamper with the value of the resistor
somewhat). When an output is “off™, it
is shorted to ground, and your device
sees 0 volts (ground actually). The
resistor limits this current to a fairly
low value so you don’t blow the power
supply or worse, the chip! Now this is
the sequence of events:

Atari: HIGH (logic 1)
7407: OFF —device is OFF.

Atari: LOW (logic 0)
7407: ON —device is ON.

Since the resistor can’t supply much
current, the resistor/7407 combina-
tion is seen as the “ground side™ of the
circuit. That is, to drive a relay, we
connect power to one side of the relay,
and the other side to the output of the
7407. Then when we turn the relay on,

Interfacing Your Atari

Current will flow through the relay,
and then through the 7407 to ground.

You can easily drive LED’s this way
too (such as for test lights), as well as
a variety of small relays or solid state
switches. Just make sure you SINK the
current — that is, one end of your
driven device goes to +5 (through a
resistor!) and the other end to the
7407. Sending a “0” (logic level low) to
the PIA turns the device ON, and a
‘1” (logic level high) turns it OFF. If
you want to do it the other way
around, use the inverting 7406 chip,
which will turn your device ON with a
high logic level and OFF with a low
level. Recognize that the default state
of the PIA when the computer is
powered up is all bits high. If you are
using an inverting 7406, your devices
would come alive when you powered
on the Atari. This is why 1 prefer to
use the 7407, since I can power up and
then have my software drive the
devices by writing a 0 to the bit I want
to power a device from.

Speaking of bits, a few words are in
order about the structure of the ports
before you run off to warm up your
soldering irons. The PIA as I men-
tioned earlier consists of two ports,
port A and port B (or PORTA and
PORTB for all you memonic freaks).
These are controlled through the use
of the control registers for each port,
PACTL and PBCTL. You may have
heard of the PACTL because that’s the
one you POKE to turn on the cassette
player. The addresses are as follows:

PORTA 54016/$D300 —
port A address

PORTB 54017/$D301 —
port B address

PACTL 54018/$D302 —
port A control

PBCLT 54019/$D303 —
port B control

Figure 3. Logic Probe Schematic.

Figure 2. SN 7407 diagram.
(+5)
|4 13 1211 109

ST
D D1

23 45 6 7(gnd)

On power up, the ports are ini-
tialized to $FFFF or all bits high. To
use a port for input, just pull the bit of
your choice low by connecting it to
ground. To use the port for output, it
first must be formatted for output.
The procedure is not complex:

I. POKE the control register
(PACTL or PBCTL) with 56/$38 hex.

2. Now poke the port (PORTA or
PORTB) with 255/$FF hex. This
specifies the port will be used for
output.

3. Poke PACTL or PBCTL with
60/$3C hex.

4. Now just poke the port (PORTA
or PORTB) with your data.

Essentially you have a total of 16
bits to play with. Just remember that
two joystick ports make up one PIA
port. Stick 0 and | are the A side
and stick 2 and 3 are side B. Each joy-
stick port is 4 bits or | nibble. Each
side of the PIA is 8 bits or | byte. When
programming for output, you must
remember that a specific BIT isdriving
a device. Therefore one joystick port
can drive 4 devices (1 for each bit). An
entire PIA side will handle 8 devices
and if you use both A and B sides you
can trigger 16 individual devices at
once or in any combination. You must
POKE into that port a decimal num-
ber whose BINARY representation
will switch on a certain bit or series of
bits. For example, if | POKE a 255

into port A, all bits would be on. If |
POKE a 12 into port A, bits 3 and 4
only would be on, since the binary of
121is 1100 The individual joystick ports
may be read using the shadow registers
as follows:

Jack 1 (STICK 0) 632/$278 hex
Jack 2 (STICK 1) 633/$279 hex
Jack 3 (STICK 2) 634/$27A hex
Jack 4 (STICK 3) 635/$27B hex

Each port will return a number
between 0 and 15. Youalso can use the
BASIC keywords STICK to access
these ports eg. X=STICK(0), etc.

The Hardware Part

Generally, all of the circuits we will
describe can be breadboarded in any
way convenient for you. For those of
you just starting out, and who want to
do some experimenting, 1 recom-
mend the following workbench sup-
plies:

— a solderless breadboard or wire-
wrapping set-up for prototyping your
circuitry. (Such as those made by
Vector, Tandy, etc.)

— a variety of IC and transistor
sockets

— an anti-static mat or spray

In addition, for this project, you will
need at least one DE9S connector to
match the front joystick port, and
some multi-conductor wire.

Now let’s get started by building
another useful tool for you to use: a
logic probe. Figure three shows the
construction diagram of a two-
transistor logic probe. You can “steal”
the necessary 5 volts from the com-
puter on board power supply. When

Pin Function
gate | in
gate 1 out

L.E.D. 150
+5 volts DC & 6 } AR
27K
probe tip < A
R
N2 7
ground or equivalent

gate 2 in
gate 2 out
gate 3 in
gate 3 out
ground
gate 6 out
gate 6 in
gate 5 out
Il gate Sin
12 gate 4 out
12 gate 4 in
14 +5 volts DC (VCC)

SOOI WP WN—

150

18 REM % PROGRAM TO FORMAT PI& PORTS 286 IF I0%(1,1)="0" THEN F=255:G0T0 340

Z8 REM 278 GOTO 258

38 GRAFPHICS @:FOSITION 14,2 30@ PRINT

48 DIM 10%(18) ,DATAS(3) 218 REM

S8 PRINT "FIA PORT DEMO" 326 REM CONFIGURE THE FORT

&8 REM 238 REM

78 REM FORT ADDRESS 34@ POKE PCTL,Sé&

86 REM 358 POKE FORT,F

78 FPORTA=S546 14 :PORTE=S54617 248 POKE PCTL,é0@

168 REM 370 PRINT :PRINT

118 REM ¥ ROUTINE TO CONFIGURE PORT 388 REM

128 REM 398 REM ENTER YOUR DATA

136 TRAF 13B:PRINT :PRINT "Configure which port (1-4) "; 488 REM

146 INPUT PORT:IF PORT<! OR PORT>4 THEN 138 41@ IF 10%(1,1="1I" THEN PRINT "“PORT IS FORMATTED
1586 REM FOR INPUT" : PRINT :GOTO 13@

1é6@ REM SELECT PORT CONTROL REGISTER 428 FRINT "NOW ENTER YOUR DATA"

178 REM ADDRESS (PACTL,PBCTL> 438 PRINT "(ENTER A RETURN TO DO ANOTHER PORT)"

188 REM 44@ INFUT DATA%:IF DATA$="" THEN PRINT CHR$(125) :GOTO 138
1?8 IF PORT<3 THEN PCTL=S54618:FORT=FORTA 458 TRAFP 538

z2@@ IF PORT>Z THEN PCTL=S4@1%:FORT=PORTE 448 REM

218 PRINT :PRINT 4768 REM FOKE DATA TO PORT/VERIFY IT

228 REM 488 REM

Z3@ REM SELECT INFPUT OR QUTFUT 478 POKE PORT ,VAL(DATA%)

248 REM 588 PRINT "VERIFY " ;FEEK{PORT»

258 FRINT "Input or Cutput "; S1a GOTO 44a@

248 TRAP 2506:INPUT 10% SZa END

27@ IF 10%(C1,1>)="1" THEN F=@:G0TO 244 538 TRAP 4@@@@:FPRINT "INFUT ERROR, RE-ENTER ";:GOTO 44@

the LED is on this indicates a logic | or
high condition. No LED indicates a
0 or low. (Actually that is not exactly
true. This logic probe cannot detect
the actual “0” state. There are more
sophisticated probes able to dif-
ferentiate high, low, and high im-
pedance logic states but what do
you want for less than a buck?)

One potential way to mount the
probe is to build the unit on a small
(1” by 2”) perfboard, and thenslide the
completed assembly into a large cigar
tube. A small probe tip could then be
soldered to the front of the cigar tube,
and wires for the required 5 volts and

Figure 4. 7407 Interface (1 gate).

ground could come out the back end.
These would terminate in small
alligator clips.

A Useful Interface Board

Figure four is a schematic diagram
of an output interface board which is
connected to the front ports of the
computer.

The heart of the circuit is the 7407
chip. As you can see, the input
channels of the 7407 are connected to
the front port by way of the 2.2K pull-
up resistor. Even though the port ini-
tializes to FFFF (or all ones), this
maintains a high state until we do
otherwise.

Relay contacts (to switched circuit)

L

» To +5 volts DC

22K

To computer front
port (pins 1-4)

S'nlla“ (External 5VDC
in?y > ground supply)

7407 (1 gate)

‘i

To computer ground pin (pin 8)

To use additional gates, connect them as shown. You only need to connect
ground (pin 7-7407) and +5 (pin 14-7407) once to power all gates.

151

The output of the 7407 provides the
ground side of a relay circuit. The relay
coil is connected to the 5 volt supply
(NOT the one on the computer port!).
When the 7407 is activated by having
one of the front port pins pulled low, it
provides the relay coil with a path to
ground, and the coil energizes. The
relay controlled by the coil can be used
to switch on just about anything, in-
cluding other relays to drive larger
loads.

During construction be careful that
all the pins of the 7407 and the
components are wired correctly. Do
not forget the pull-up resistors or the
small capacitors. These help prevent
power supply interference. If you wish,
you can substitute small LED’s or
5 volt pilot lamps for the relays. This
will allow you to see the ports in
action.

Be sure to use an external power
supply or 5 volt source. The ground of
your source should be connected to
the ground pin on the computer. You
will not need the 5 volt pin. Incidently,
you can use the external supply to
power your logic probe, and still read
the computer logic signals at the ports.

Now For a Little Software

The program listing will provide
you with a demonstration on how the
ports are programmed. The program
first allows you to select a port, and
program it for either input or output.
Then you can write data to the port
and the computer will peek the port
and verify the data you wrote. You can
also do this by using the logic probe.
You will get a logic 1 for every active
bit in the port.

Atari Strings and Text Handling

Apples, Oranges, TRS-80s and the Atari

The Atari, unlike the Pet, TRS-80,
Apple, and Heathkit computers, does not
have a Basic by Microsoft. This is a mixed
blessing, or mixed curse, as you choose to
look at it. The graphics and music handling
abilities of Atari Basic are a true joy, while
the string handling is difficult. Since most
programs published in computer maga-
zines like this one are not in Atari Basic,an
understanding of the differences is helpful
if you wish to convert the programs for
your own use. Here are some of the
differences between the Atari and the
TRS-80, the most common Microsoft
Basic computer.

String Handling

In Atari Basic DIM A$(50) means
reserve 50 bytes of memory for a single
variable named A$. You cannot store a
single letter in a string variable unless you
dimension it first. One advantage of this is
that you can control the length of a string
just by the DIM statement, something you
cannot do in Microsoft Basic. For
example, if you put:

10 DIM ANSWERS$(1)

Then the computer will store only the first
letter in the string even if it receives a whole
sentence as a reply. This makes it easy to
test an answer:

20 PRINT*ANSWER”;:INPUT
ANSWERS:IF ANSWERS$=“N"
THENS0

In the TRS-80, memory for all string
variables is reserved by a single CLEAR
statement, with a default value of 50 bytes
reserved automatically even without a
CLEAR statement. In the TRS-80, DIM
A$(50) means create an array of 51 string
variables from A$(0) through A$(50).

In the TRS-80, the maximum length
of a string ranges from 241 to 256 bytes,
depending on circumstances. The Atari is
limited only by memory available. This
means that the Atari can make up for the
lack of string arrays through a process of
storing substrings in a very long string.
One advantage of the Atari is that string
sorting is potentially faster, as the TRS-80
has to pause and reorganize its string
space.

Related to the string length is the
restriction of a TRS-80 program line to 241
to 255 characters, while the Atari observes
a different approach and limits you to 120
characters. Since some TRS-80 program-
mers like to put a whole subroutine in a
single line, you would have to do a bit of
reshuffling to translate their programs to
an Atari. The lack of an ELSE command

further restricts this approachin the Atari.

Sound
Neither the Atari nor the TRS-80

have a built-in speaker, as does the Apple
11. The Atari sends sound effects througha
television set speaker. If you are using a
monitor that does not have a speaker, you
do not have sound. Common practice with
the TRS-80 is to connect an amplifier to
the cassette output port.

The real difference in sound is that the
Atari has a built-in sound capability
allowing four completely separate voices at
the same time with over 20,000 sound
options, including a wide range of musical
notes for each voice, while TRS-80 Basic
can only alternate voltages at the cassette
output port with OUT statements or
machine language subroutines. Harmony
is very difficult with the TRS-80, but easy
in the Atari.

Graphics

It is not really fair tocompare TRS-80
graphics to the Atari, as the TRS-80 is
strictly medium resolution black and white
while the Atari has high resolution color.
To fairly represent Microsoft Basic, the
Apple should be included in the discussion.
One advantage the TRS-80 does enjoy is
easy mixing of text and graphics on the
screen, which is more difficult with the
Apple and the Atari. Also, the TRS-80 has
a built-in video memory that does not
require user memory, while the Apple and
Atari require user memory and, in high
resolution, lots of it.

The Atari has 16 different graphics
modes, and some of the graphics in the
Atari ROM cartridges, including the
motion through space in Star Raiders and
the ability of the basketball players to
overlay each other in Basketball, promise
more graphics power than any other
popular home computer. Right now, a side-
by-side comparison of Apple and Atari
graphics seems a standoff because the
Atari graphics are not yet documented and
explained, but if this kind of graphics
ability becomes accessible to the end user,
the Atari will be the obvious choice.

A common problem in high resolu-
tion graphics is that it requires a lot of
memory to store a detailed image. The
normal sacrifice limits the number of
colors available in hi-res so you need less
memory to store color information. The
Atari limits you to two colors in high
resoiution, while the Apple gives you four.
However, the Atari allows you to choose
your color and tint and even allows you to
change the color of an image on the screen
instantly by changing a color register that
tells the computer what color to make the
image. The Apple cannot match this
ability.

152

My personal favorite among the
graphics commands of the Atari is the
DRAWTO statement, which draws a line
from the last plotted point on the screen to
any other point. More or less the same
ability is present in the HLIN and VLIN
commands in the Apple, though not as
easily, nor as fast. In the TRS-80, it is
necessary to write a subroutine-to plot each
point individually.

Text Handling

Text handling in the Atari is not as
convenient as the Microsoft Basics. The
TRS-80 is particularly good at text
formatting and printing. Microsoft Basic
allows you to include text in an INPUT
statement, like this:

10 INPUT“What is your answer”;A$
Atari Basic requires a separate print
statement:

10 PRINT“What is your answer”;:

INPUT AS$
The TRS-80 allows you to print directly at
any point on the screen with PRINT @:

10 PRINT @ 572,“X MARKS THE

SPOT”

The Atari requires you to position the
cursor first, then print your message:

10 POSITION 8, 12:PRINT

“X MARKS THE SPOT”

Still another difference in text
handling is the power of Microsoft Basic’s
PRINT USING command, allowing you
to specify automatic print formatting with
a fixed number of decimal points, floating
dollar signs, fixed spacing, and other con-
veniences. These things have to be done by
manipulating a string in Atari Basic.

I have begun to experiment with a
whole new approach to text in the Atari
that may be even more convenient. The
Atari allows you to treat the keyboard, the
video memory, and any other I/ O device as
a file. I suspect that once I get used to this, I
will not really mind giving up PRINT
USING.

There is a more definite limitation to
the Atari in one of the key text handling
areas, and that is in word processing. Forty
columns per line is simply not as con-
venient as the longer lines on some other
computers. The problems here are color
and expense. It is much easier and cheaper
to give text processing ability and sharp
resolution to a computer which does not
use a video modulator and does not use
color. The Heathkit H-89 with 24 lines of
80 characters has much sharper letters than
the Atari, yet the Atari limits you to a mere
38 to 40 characters. A lot of this problem
could be overcome by designing the Atari
to be used only with a high quality color
monitor, but that would price it right out
of the consumer market. My own solution

is to use a different computer for word
processing, including the writing of these
columns.

Jumps and Subroutines

One of the areas in which Atari Basic
enjoys an advantage over Microsoft Basic
is in the ability to transfer control to
another line through a variable. This hasa
lot of potential. Look at these compari-
sons:

Atari TRS-80
10 GOSUB TIMEOUT 10 GOSUB 500
20 GOSUB BASKET 20 GOSUB 600

10 RATING=
880 + 4 * BASKET
20 GOTO RATING

10 RA=INT(BA/S)

20 ON RA GOTO 900,
920, 940

The above example illustrates another
difference. In Atari Basic, a variable name
may be up to 120 characters long, while the
TRS-80 allows only 6 and tests only the

first two. In the Atari, VALUEIl and
VALUE?2 are different variables. In the
TRS-80, they are the same.

However, the advantage here is not
altogether to the Atari. Radio Shack’s
Level II Basic allows an ELSE statement,
while the Atari does not.

Atari TRS-80

10 IF A=5 THEN 50 10 IF A=5 THEN 50
20 GOTO 100 ELSE 100
Input/Output

A major strength of Atari Basic over
Microsoft Basic is in its generalized output
routines. This is due to a feature known to
mainframe programmers as device orien-
tation. In Atari Basic, PRINT is a
generalized output command. While the
default device is the video screen, the
computer doesn’t really care whether it is
printing to a line printer, a modem, a

cassette tape, a disk file, or the screen. You
can even use a variable to shift from one to
another in your program, virtually at will.
The general format of an OPEN statement
hints at the power here:

10 OPEN (Reference number), (in-
put/output/both), extra printer code),
device type), device number): (file name).
(extension)

Disk file opening might look like this:

100PEN#2,8,0,“D3:LESSON.BAS”

Chapter 5 in the Atari reference
manual gives a more detailed explanation.

What do all these differences mean?
My answer is: “Not a whole lot!” Nearly
anything that can be done in one Basic can
be done in any other Basic, even a limited
one like IBM Basic. It just takes extra
effort, a little understanding of what the
other program is trying to accomplish, and
a little creative ingenuity.

An Atari Library of Sound

Of the recognized human senses, it may
easily be argued that the most important
are those of sight and hearing. The movie
industry was quick to realize the importance
of adding sound to their visual productions.
First there was simple background music,
and later, when it became technically
possible, sound was synchronized to the
action. Few people today would pay to see
a silent movie except under special
circumstances.

Yet when most of us think of computers,
we usually visualize someone sitting at a
video console, typing, and staring silently
into the screen. Hollywood generally adds
some “bleeps” and “bloops”, supposedly
electronic, to the background. Real data
processing centers are usually quite noisy
with machinery running and several printers
banging away. These are all artificial sounds,
however, far removed from what all of us
experience in daily life.

Personal computing, of course, need not
follow the same path. If it is technically
feasible, why not add the dimension of
sound to the already accepted versatility
of a good color graphics system? Why not,
indeed! Manufacturers of small computers
are responding in varying degrees to this

Richard M. Kruse, Xentrix Engineering, Box
8253, Wichita, KS 67220.

challenge. It is now up to programmers to
use this new capability effectively.

One of the outstanding features of the
Atari 400/800 personal computers is the
built-in sound generation system. There is
no need to jury-rig an external amplifier
and speaker and then operate it with
“PEEK s” and "POKESs". Atari’s sophisticat-
ed sound channels are manipulated through
special Basic commands, and the RF output
carries the sound information properly
formatted to be reproduced through the
speaker of a standard television receiver.
The television's sound system does not
have to be of especially high quality to
adequately handle the range of frequencies
produced (although it certainly doesn’t
hurt). An added bonus of this system is
that sound and video are presented side-
by-side. Most people will probably find
this preferable to listening to a disembodied
sound source physically separated from
the visual presentation.

The Ataris give you not just a single
sound generator, but four identical
“channels” which may be used separately
or in any combination. Each channel has
individually controllable pitch and volume,
along with a third parameter which Atari
calls “tone.” The Basic statement which
activates one of the sound channels has
the following form:

153

Richard M. Kruse

100 SOUND P1, P2, P3, P4

Parameters P1 through P4 are integer
values. P1 specifies which channel is to be
activated, identified as zero through three.
P2 may be any value from 0 to 255, and
sets the relative pitch or frequency of the
sound. In the pure tone mode, the pitch
range is about two and one-half octaves,
and by using a look-up table of conversion
factors between musical notes and
pitch values, playing a melody on the Atari
becomes almost trivial. Playing four-part
harmony can be done with some additional
programming effort.

One of sixteen different volume levels
(including off) is selected by the value of
P4.

The tone parameter, P3, is a corker.
There are eight possible values, two of

which result in relatively pure musical tones.
The remaining six, however, are not really
“tones” at all, but special effects settings
which produce strange and wonderful
sounds that will be variously perceived as
trucks, helicopters, heavy machinery, and
warp drives. These effects, like the pure
tones, may be varied in pitch and volume.
And always, two or more sound channels
may be active simultaneously. As you can
see, the number of possible sounds and
effects is staggering. Normal sounds can
be imitated and new ones created, limited

An Atari Library of Sound

only by the imagination of the programm-
er.
To stimulate those imaginations, and to

show the methods used to put these effects
to work, one dozen varied and useful sound
effects are presented here. Each effect is
programmed as a subroutine which will
run for a certain length of time and then
terminate. Each subroutine makes use of
one or more sound registers, and many of
them accept one or more input parameters
which modify the effect and/or its running
time. A brief explanation is presented for
each, so that you will be able to change
the effects as desired.

1. Percussive Sound Generator-(See list-
ing 1)

This is a “building block™ subroutine
which imitates the sound of struck or
plucked musical instruments or, with
different parameters, explosions or gun-
shots.

The percussive effect is achieved by
executing a loop which initially sets a high
volume level, then repeatedly reduces that
level by a given percentage until it falls
below a present minimum. The volume
reduction factor is stored as the variable
ICR, and itis easy to see that changing the
value of ICR will change the rate of decay
of the sound. Since ICR is calculated from
the input parameter DUR, the decay rate
can be modified at will each time the
subroutine is called. The value 10 in
statement 10020 is the tone parameter,
and results in a pure tone output, so that
this subroutine will imitate a chime or
bell. Statement 10010 adds a brief burst of
white noise at the start of the loop. (It is
turned off at step 10025.) This enhances
the initial “strike” effect and is heard in
the sounds of many musical instruments.
Statement 10040 turns the sound off
altogether prior to returning to the calling
program. While this percussive sound
routine will run by itself, it can also be
used in the generation of more complex
sounds, as will be demonstrated.

2. Doorbell-(See listing 2)

...Now, who could that be?...

The familiar “Dinnng, donnng” of the
doorbell is created by two sequential calls
to a modified percussive routine. Two
different pitches and two moderately long
decays are used. What could be simpler?

3. Ringing Telephone-(See listing 3)

...Mildred, would you get that?...

The telephone bell is actually just repeat-
ed invocations of the percussive sound,
using a high pitch and a short decay. Notice
that the two sound registers are set at
slightly different pitches. This creates the
strident nature of this effect. The final

percussive call uses a longer decay time,
resulting in a fairly natural “lingering” sound.
The apparently meaningless statement at
line 10045 simply wastes some time between
“rings.” You will see this same type of
delay in some of the other routines.

4. Alarm Bell-(Seeing listing 4)

...Attention all hands! Secure for
hyperwarp...

This is another application of the per-
cussive effect, and is almost identical to
the telephone bell. The main differences
are that this effect uses a lower pitch and a
slower repetition rate. One subtle modifica-
tion to the percussion routine in both of
these effects is the use of a larger value in
testing for the end of the decay (notice the
variable LM). This is another way to modify
the decay time and may be preferable for
fast action.

5. Explosion-(Seeing listing 5)

..Hah! Got the little # @ * % !...

The explosion effect is also based on
the percussive generator, using “white”
(actually “pink™) noise instead of a musical
tone. For more volume we use three sound
registers simultaneously, and to heighten
the realism each is given a slightly different
pitch. Finally, we use three different rates
of decay, the slowest for the lowest pitch.
This gives the “rolling™ effect of a really
“big bang.” Entering this subroutine with
DUR set to zero will give a pretty fair
imitation of a gunshot, since it's basically
the same kind of sound.

6. Siren #1-(See listing 6)

...1s he after me?...

This routine produces the rising and
falling wail characteristic of electro-
mechanicalfire and police sirens. The inner
loop in this subroutine (steps 10020 to
10035) generates either an increasing or
decreasing pitch of constant amplitude.
Each execution of the outer loop (steps
10015 to 10045) reverses the start, stop,
and increment values. The delay is used
again at step 10030 to waste a little time so
that each execution of the loop takes about
a second.

7. Siren #2-(See listing 7)
...Quickly, Henri! The Gendarmes...

This alternate siren effect, which I tend
to think of as “European,” is becoming
more common in this country as well, as
police and fire departments switch to purely
electronic noisemakers. It is one of the
simplest effects to create, requiring only
alternating high and low pitches at constant
volume. The wait loop is used again, at
step 10025.
8. Ticking Clock-(See listing 8)

...You have ten seconds to guess the
correct answer...

The ticking of a clock (or bomb, heaven

154

forbid) can be nicely simulated by repeated
short bursts of white noise. Tone value
eight, at a high pitch, serves this purpose.
To get a tick-tock effect, two alternating
values are used for the pitch parameter.

9. Klaxon-(See listing 9)
..RED ALERT! RED ALERT! Enemy
sighted at...

Here, sound registers zero and one
operate at slightly different pitches to
generate a loud and strident blast, with
sound register two filling in a buzzing effect.
To add to the realism, one sound register
is used at the beginning and end to build
up to and decay from the main tone.

10. Whistle and Bomb-(See listing 10)

...Hit the deck!...

For this effect, the percussive explosion
of example five is preceded by a convincing
anticipatory whistle. Steps 10010 through
10030 create the whistle, which decreases

in pitch while increasing in volume.

11. Steam Whistle-(See listing 11)
...Allaboarrrrrd! Next Stop Pottsville...

A small amount of white noise from
sound register zero in step 10025 adds a
realistic hiss to this whistle variation. Asin
the Klaxon effect, there is a brief build-up
preceding the main sound, and a decay at
the end.

12. Sawing Wood-(See listing 12)

...And now for something completely
different...

This final effect, unrelated to the others,
is an example of picking a sound at random
and trying to imitate it on the Atari. For
sawing wood, you need a buzzing sound...
Subroutine 10065. You need to make it
rise and fall in pitch as the blade
moves...subroutine 10030. For better
realism, you need two different pitches as
the blade is pushed forward on the cutting
stroke and then returned... statements 10015
and 10020.

[t is hoped that these relatively simple
examples will provide the motivation for
Atari owners to get the most out of one of
the built-in features of their computers.
Other possible effects might include animal
imitations, automobile sounds, factory
noises, and on and on...the list of possibilities
is truly unbounded.

If you have been programming without
sound, you will be amazed at the improve-
ment to be gained by its use in games and
audio-visual presentations. Once you grow
accustomed to this added dimension, it is
certain that you will no longer be satisfied
with a dull, mute computer.

The secret to success of the small personal
computer lies in your creativity and imagina-
tion. Put them to work with Atari sound
and see what develops. You can't go
wrong!

LISTING l: PERCUSSIVE SOUNL GENERATOR LISTING 61 AMERICAN SIREN
18000 REM PERCUSSIVE SOUND GEW

1e00e REM SIREN |

REM ENTER W/2 PARAMETERS £ _
:gggﬁ REM NTE=PITCH, @-255 1eeee REM ONE ENTRY PARAMETER
g o o i e EE ATy Tl 10004 REM LUR= APPROX SECGNLS RUN
e oL B b 12010 LO=50t HI=35: STP=-1
16015 VOL=15: ICR=@.79+DUR/50 onls il e
001> 4 i J oot oy 1802¢ FOF NTE=LG TG HI STEP STP
laded SINE Lt) 10025 SOUND @,NTE, 10,14
|zage g el 10230 FGR WT=1 TG 22: NEXT WT
12235 IF VGL>1 THEN leg2e iggig gifzoNTio HI: HI=XX: STP=-ST

SOUNT: @: RETUE P oRSHSE HLRARE =l
10040 OUNL @,0,0,¢: RETUERN 18245 NEXT TIo

10e5¢ SOUNL @,8,0,¢: RETURN

LISTING 2: LGGRBELL
. LISTING 7: EURGPEAN SIREN

160e0 REM DUUREBELL

logee2 REM NO ENTRY PARAMETERS ioeeo REM SIREN 2

16€10 NTE=105: CUR=7.5: GGSUB 12225 100¢2 RE# ONE ENTRY PARAMETER
18015 NTE=132: DUR=8,5: GGSUEB 1€€E£S 10204 REM LUR=APPRUOX SECONDS RUN
18220 SJUND @,0,8,8: RETURN 1eeg1a LO=57: HI=45: NT=HI

18@25 YQL=15: ICR=@.79+LUR/50 18015 FGR TIM=Q TGO LUERx2

18230 SOUND @,NTE, 18,VOL 1e020 SOUND 0@,NT, 18,14

18835 VOL=VGL*ICR 19225 FOR WI=1 TGO 18€: NEXT WT
10040 IF VOL>1 THEN 126380 10030 NT=L0: LO=HI: HI=nT

18045 RETURN 18035 NEXT TIM

legae SGUNL @,¢,@,0: FETURN

LIiSTING 3: TELEPHOUNE BELL
LISTING 8t TICKING CLGCK

10000 REM TELEPHONE BELL \epag BEvt TEEHING CLOGR
180€2 REM UNS-EN;RYGEARAMETER [GES HEWM THS ENTEY DrERMETERS
18004 REg ™ erAIgsu 10e04 REM SIZ=1(FST) TGO 1B(SLW)
10010 Fo.ex§f B - 18006 REM DUR=APPROX SECGNLDS AT SIZ S
:gg;a ig;T.xi LH=23 GO 10210 TIC=SIZ+5: TOC=S1Z+10
! Ok
ki Phefisits LO=ILi EEGUS. MDUGS :ggéz g;UNEI;:;Ig?ST?S' GGSUB 12235
1og-s SOUND SxGeRaiy BODRD: Lalalle P 1ee2s SOUND €,T0C,8,12: GGSUB 12035
= 1003¢ »
10640 IF TMS<! THEN RETURW et zgﬁngéTé,gf;UPN
18045 FOR WT=1 TG 3081 WEXT VT 1e04¢ FOR WT=1 TO SIZ*34: WEXT WT
iy St’?sleﬁlﬂ 10045 RETURW
=
10060 SOUND @,4€,12,VL LEETEAG 54 HLARG
10065 SOUND 1,42,18,VL <
10870 VL=VL*IR 10000 REM KLAXON
12875 IF VL>LM THEN 10068 19002 REM GNE ENTRY PARAMETER
10080 RETURN 188¢4 REM DUR= APPROX SECGNLS RUN
10010 FOR TIM=1 TG LUR
10615 FGR NT=1 TG 1€
LISTING 4: ALARM BELL 10020 SGUND @, 100-NT, 10,10
10025 NEXT NT
12000 REM ALARM EELL s SOURD By Sis | B 1
18022 REM GNE ENTRY PARAMETER 10635 SOUND 1,95,10,12
10004 REM LDUR=APPRGX SECOWLS KUN looas B sl
12010 FGR TMS=1 TG DURx12 :
18615 VL=15: 1R=@e5: LM=3: GOSUB 10040 1p4as FOR WI=| TC 2@0: NEXT WT
18620 NEXT TMS 18850 SOUND 1,056,€1 SCUND 2,2,2,0
10025 UL=10: IR=@.95: LM=lt GGSUE 10040 :gg:; g;ﬁNgTzlggrwi -
| : SOUR 0,050 ’ 21
:gggg :ggggNﬂ'@-Q-@ SOUND 1,0,0, 10065 NEXT NTt SGUNL £,0,8,¢
R 10070 FOR WT=1 T3 18@: NEXT WT
16040 SOUND @553 18,VLt SOUND 1,68, 10,VL
| g S 12075 NEXT TIM: RETURN
18050 IF VL>LM THEN 1084¢ '
10060 RETURN LISTING 103 WHISTLE ANLD EBUME
186000 REM WHISTLE & BOMB
LISTING 5t EXPLGSION 18002 REM ONE ENTRY PARAMETER
10004 REM DUR=LNGTH OF EFFECT
10208 REM EXPLGSION 10010 Vi=4: FGR NT=30 TG 75
10802 REM ONE ENTRY PARAMETER 18015 SOUND 8,NT,18,V!
10804 REM LCUR=LNGTH OF EFFECT, ©-10 10020 SOUND 1,NT+3,10,VI1%0.7
10010 NTE=2@: GGSUB 10025 18825 FOR WT=]1 TO DUR%3: NEXT WT
10015 SOUND 1,0,0,8: SGUND 2,0,0,0 10030 Vi=Ulx1,83: NEXT NT
12020 RETURN 18035 SOUND 2,35,8,12
10825 SGUND 2, 7558, 15 1604¢€ Vl=15: V2=]5: V3=15
10230 ICR=8.79+DUR/ 100 10045 NT=DUR+5: ICR=@.79+DUR/120
10¢35 V1=15: V2=15: U3=15 10050 SOUND B,NT,8,V!1
leg4e SGUND @sNTE,8,V1 10255 SOUND 1,NT+28,8,V2
10045 SOUND 1,NTE+28,8,V2 126268 SOUND 2,NT+50,8,V3
10658 SOUNC 2,NTE+58,8,V3 10065 Vi=V1xICR
180655 V1=V 1%iCR 10670 V2=U2x(ICR+Ce05)
10060 V2=V2% (1 CR+8e 85) 18675 V3=U3%(ICR+0,08)
10065 V3=U3% (1CE+0.08) 18280 IF U3>1 THEN 10058
18870 IF V3>1 THEN 12640 10285 SOUND €,@,0,8t SOUND 1,8,0,¢
12275 SGUNL €,€,2,@t RETURN 1009¢ SOUNC 2,8,€,0: RETURN

155

An Atari Library of Sound

LISTING 11: STEAM WHISTLE LISTING

12000

10606 REM STEAM WHISTLE ggee

10062 REM ONE ENTRY PARAMETER (8064

10684 REM REM DUR=APPROX SECGNDS RUN iggig

10016 FOR VL=2 TG 14 i

10015 SOUND 1,56,10,VL: SOUND 2,66, 10,VL e s

10020 NEXT VL idadn

18025 SOUND 1,55,10, 141 SOUNL ©,5,8,3 i

10630 FOR WT=1 TO DUR%4@@: NEXT WT i 4

10035 SQUNEG 0,08,0,0 o

10040 FOR VL=14 TQ | STEP =2 i

10045 SOUND 1,55, 1C,VLt SGUND 2,67, 13,VL iy

10850 NEXT VL ik

12255 FOR WT=1 TG 251 NEXT WT

12060 SOUND 1,8,08,8: SOUND 2,0,0,@ :gggg RETURN

10065 RETURW i
12875

12t SAVING WGGL

REM SAWING WOOD

REM ONE ENTRY PARAMETER
REM DUR=APPRUX SECONLDS RUN
FOR TMS=1 TO LDUR

ST=6: VL=12: GOUSUE 10038
VL=8: GGSUE 10030
NEXT TMS: RETURN

FOR NT=ST+5 TGO ST STEP -1
GGSUB 18@65: NEXT NT

FOR NT=ST TU ST+5

GOSUB 12065t NEXT NT

SOUND @,8,0,03 SOUND 1,0,0,0
FOR WT=] TO 25: NEXT WT

SOUND @,NT,2,VL
SOUND 1,NT,8,VL%8.7
WT=(WT/5)%5: RETURN

Ram Cram Techniques for Atari
Original Adventure in 32K

A few months ago something new was
added to my family. A 10-lb, 16" by 12"
by 4" Atari 800 computer. Not only that.
this new computer had no disk. That’s
right. no disk. Only a cassette recorder to
save and load programs and 32K (32.768)
bytes of RAM. After having spent 17
years of my life talking to big computers
with million of bytes of memory and
unlimited disk space (well. almost unlimi-
ted). I was understandably a little nervous
about the usefulness of such a small
computer.

About this same time. I had just finished
several weeks of lunch hours (half hours
if my boss is reading this) doing some
fantastic arm chair spelunking. Yes. I had
become hooked on exploring that colossal

Robert A. Howell, 20 Richman Road, Hudson,
NH 03051.

underground cave where magic is said to
work and others had found fortunes in
treasure and gold!

My large. friendly computer at work
had been my eyes and hands guiding me
past giant snake and dragon through scores
of rooms deep underground. I even tricked
a troll. I was able to retrieve 15 magnificent
treasures bringing them to the surface to
be mine forever! Once in that cave it
wouldn’t let me give up. as I soon discov-
ered. until finally. finally. many lost lunch
hours (half hours if my boss is still reading
this) later. every corner and dead end
had been explored, a map of the cave was
in hand and I had solved the original
“Adventure.”

Then a thought came to mind. I promptly
dismissed it as absurd. But the thought
kept haunting me until it became a chal-
lenge. Could this tiny little 32K computer

156

Robert A. Howell

with no disk which I now owned —could
it possibly handle “Adventure™? Would
the original Crowther and Woods Adven-
ture program fit into 32.768 bytes of
memory? I had seen several versions of
this program advertised which required
at least one disk drive and 32K or more of
memory. but none for my little one. Was
my little computer really equal to the
task, or was I just fooling myself?

The challenge lay before me: get
“Adventure” running in Basic on an Atari
800 computer with no disk and only 32K
bytes of memory. Little did I realize what
I was getting myself into when I accepted
this challenge. A challenge that would
certainly tell me if this new little addition
to the family was really a giant in dis-
guise!

Have you ever spent your whole summer
beside the swimming pool out back. with

the tops of your hands. shoulders and
knees burning up from the sun. never
once getting your swimming suit wet? No?
Well then. you have never spent the
summer trying to cram “Adventure—
messages and all—into 32K of RAM. I
did. And to spare you the gruesome details.
suffice it to say that I accepted the
challenge and won! Just as it was time to
close down the pool for the winter. “Adven-
ture” was running on my big computer
(never again to be called “little™).

The messages and vocabulary were not
as extensive as in the original. but they
were there. along with the rooms in various
colors (except the “all alike™ maze where
passages and dead ends were all black).
Almost everything from the original
“Adventure” was included.

Now I know what you just said. You
said. “How did he do it?" Well if you
didn’t say that then you should have.
because that's the purpose of this article.
As a result of my programming effort. as
well as missing out on a whole season of
swimming. I learned many techniques for
efficient use of memory in Atari Basic. I
am going to pass these along so that you
will never need to worry about the swim-
ming season passing you by.

Although my examples and techniques
refer to Apple Basic and “Adventure”
type programs in particular. most of them
can be applied to any computer and to
programming in general. Why purchase
48K of memory and two disk drives. when
in many instances 32K or less of memory
is all you really need. Why bemoan the
fact that the latest “GLOP" game from
the pages of this magazine requires 10K
of RAM and your computer only has 8K.
Apply a couple of the techniques that I
am about to describe and you can probably
get the program into 7K or less without
losing a single feature!

REMarks

Although I realize that adequate docu-
mentation is often lacking in many pro-
grams today. when memory is at a pre-
mium. REMark statements must be sacri-
ficed. A remark N characters long including
imbedded blanks) occupies N+3 bytes if
on the same line as another statement
and N+6 bytes on a line by itself. Thus.
REM's interspersed throughout a large
program can waste a significant amount
of memory.

An alternative which I use successfully.
is to keep the remarks separately on paper.
refering to the line numbers in the program.
As the program is developed and changed.
these remarks are also updated. Then.
when the program is finished. a good set

of documentation is already available. Also.
by maintaining an up-to-date set of remarks.
I found I was able to debug the program
much more quickly. I estimate I saved
about 1000 bytes of memory by eliminating
the REMark statements from my “Adven-
ture.”

Line Numbers

When a new line (with a new line
number) is added to a program. 6 bytes of
memory are required by the new line.
When that same Basic statement is added
to an already existing line. only 3 additional
bytes are required. Therefore. 3 bytes of
memory are saved each time a new state-
ment is added to a line which already
exists. (Multiple statements per line are.
of course. separated by colons.) To illus-
trate the savings that can result. in my
version of “Adventure” there are about
720 individual Basic statements (not includ-
ing DATA statements) but only 325 line
numbers. This saves (720-325)*3 or 1185
bytes of memory.

Having written programs for many years
using one statement per line. I was a little
apprehensive about how difficult multiple
statements per line would make program
legibility and debugging. However. I found
[had no trouble whatsoever reading the
program and working with it. even though
the Basic statements were packed very
tightly.

Putting more than one statement on a
line can cause problems if one is not
careful. especially in a Basic that contains
no ELSE capability. Consider the following
example:

100 SUM=0

110 FOR I=1TO 10

120 IF A(I) >0 THEN SUM=SUM+A
(1)

130 NEXT I
140 PRINT SUM

One would be tempted to rewrite this
sequence all on one line (with one line
number) as follows:

100 SUM=0: FOR I=1 To 10: IF
A(I)>0 THEN SUM=SUM+A(]):
NEXT I: PRINT SUM

However. this puts the NEXT and PRINT
statements under the control of the IF.
causing them to be executed only when
the IF is true. This will produce incorrect
results. The proper way to consolidate
these statements is:

100 SUM=0: FOR I=1 TO 10: IF
A(l)>0 THEN SUM=SUM++A(I)
130 NEXT I: PRINT SUM

157

Statements after an IF should be placed
at the front of the following statement. or
on a line by themselves if the following
statement has a branch to it from elsewhere
in the program. Of course if the statements
after the IF clause are to be executed
only when the IF condition is true. then
they must be left on the same line as the
IF statement.

Here is another example which sets X
to 10 or 20 depending on the value of L:

100 IF L=R THEN 400
200 X=10

300 GOTO 1000

400 X=20

500 GOTO 1000

This section of the program can be neatly
condensed into two lines as follows (elim-
inating one GOTO and saving 27 bytes):

100 X=10: IF L=R THEN X=20
200 GOTO 1000

Again. the GOTO 1000 must be placed
on a separate line so it does not fall under
the control of the IF statement.

It may not be obvious what will happen

when some statements in Atari Basic are
imbedded in the middle of a multi-
statement line. Figure 1 lists these state-
ments with an explanation of what happens
to statements which follow each of them
on the same line.
Make a similar table for your Basic by
trying out each statement in a small test
program. Then keep this table handy for
reference when you are optimizing a large
program.

Another way to eliminate line numbers
is by inserting a NOT in front of an IF
condition. For example:

100 IF A=1 AND B> 5 THEN 130
110 B=B-1

120 GOTO 1000

130 PRINT

may be rewritten on two lines (saving 11
bytes) as follows:

100 IF NOT(A=1 AND B>5) THEN
B=B-1: GOTO 1000
130 PRINT

Here is a different example that may occur
in a program:

90 ON X GOTO 100.200.300.400
100 T=0: GOTO 1000

These two lines may be condensed onto
one line:

90 ON X-1 GOTO 200.300.400: T=0:
GOTO 1000

eliminating line 100 and saving three
bytes.

Adventure in 32K

There are many other ways that multiple
statements may be squeezed onto one
line in order to save memory. A program
that does not already do this can probably
be reduced to 75% or 50% of its original
line numbers. Keep in mind however. that
a branch to a statement from elsewhere
in the program requires that statement to
be at the beginning of a line. Also. in
Atari Basic this technique is limited by
the length of a logical line which is equal
to a maximum of three physical lines or
120 characters. Greater savings can be
obtained using Basics which allow more
characters per logical line.

Don’t Use Constants!

One of the biggest memory wasters in
Atari Basic is the use of constants. Each
occurrence of a numeric constant or a
line number in a Basic statement is replaced
by one byte pointing to the memory
location where the value of that constant
is stored. This value in memory is stored
in internal binary form and occupies an
additional 6 bytes regardless of the size of
the constant. Therefore. each use of a
numeric constant or line number in a
statement requires 7 bytes of memory.
This method of storing numeric constants
is what would be expected. Now for the
bad news. Since Basic is an interpreter
(that is. every statement is kept in memory
in almost its original form and decoded
cach time the statement is executed). when
it encounters a constant in a new statement
being entered in. it has no way of knowing
il that constant was used before. Therefore.
it just goes ahead and converts into internal
binary form and stores it in memory again
using another 7 bytes.

Now. suppose a large program uses the
constant 0 (zero) 50 times. Then that one
constant occupies 7 times 50 or 350 bytes
ol memory! Likewise. suppose line number
100 is referenced in GOTO and IF.. THEN
statements 50 times throughout a program.
That one line number also occupies 350
bytes of memory. So we have 700 bytes of
memory being used to store the two values
0 and 100. Wouldn't it be nice if each new
use of the same constant or line number
would point to the memory locations where
that value was stored the first time?

Fortunately. there is a way to make
that happen: by the use of variables in
place of numeric constants and line num-
bers. The first time a variable is used in a
statement four things happen:

1. The variable name is placed in a
table in memory called the VNT (Variable
Name Table).

2. Six bytes of memory are allocated to
store the value of the variable.

3. Two additional bytes are stored in
the VNT which peint to the value of the
variable in memory.

4. One byte is placed in the Basic state-
ment in place of the variable name. This
byte points to the VNT.

Thus N+6+2+1 or N+9 bytes of mem-
ory are used to store the first occurrence
of a variable name (where N is the number
of characters in the name of the variable).
Now the memory-saving aspect of this
method comes into play with the second.
third. etc. time the variable name is used.
Each subsequent use causes only 1 addi-
tional byte of memory to be allocated:
the byte in the Basic statement that points
to the VNT. Unlike when a constant is
used. the 6 bytes of memory to store the
value is not allocated over and over
again.

To use this method of replacing constants
with variables. one other item must be
considered. The variable being used must
be initialized with the value of the constant
it represents. The most efficient way to
do this is with READ and DATA state-
ments at the beginning of the program. In
an initialization section. values are read
in for all the variables which are being
used to replace numeric constants and
line numbers.

A good rule of thumb to use in deciding
whether or not to replace a particular
numeric constant or line number with a
variable is the following: If the same

numeric constant or line number is used
four or more times in a program. memory
will be saved by converting it to a variable.
If used three or fewer times. leave it in its
original form.

Of course. the more characters there
are in the variable name and in the
constant, the more memory will be used
in the VNT (to store the variable name)
and in the READ/DATA statements.
However. the break between three and
four occurrences seems to work in most
cases.

Now you are probably saying to yourself.
“How can I possibly make any sense out
of my program if I convert all the constants
and line numbers to variable names?” And
I agree. If you can’t distinguish between
the constants and actual variables. then
reading the program listing becomes
difficult.

Therefore. decide on a pattern for
variable names which will be used to
represent numeric constants and line
numbers in the program and stick to this
pattern. An example of what I use is found
in Figure 2.

Then for real variables which do actually
vary. I use the names J through Y and
names that contain all letters (such as
AA. AB. QX. ZZ. etc.). This way I can
always distinguish constants from variables.
If the program uses negative and decimal
constants, then establish a pattern for them
also.

Statement

Statements following on same line

DATA

DIM

END

FOR
GOSUB
GOTO

IF ... THEN

LIST
NEXT
ON aexp GOTO lineno-list

ON aexp GOSUB lineno-list

POP
REM

RETURN
RUN
STOP
TRAP

Figure 1.

Never executed

Always executed

Never executed

Always executed

Executed upon RETURN

Never executed

Executed on condition true

Never executed on condition false

Always executed

Executed when FOR loop is finished
Executed if aexp is less than 1 or greater than
the number of line numbers in the lineno-list
Executed if aexp is less than 1 or greater than
the number of line numbers in the lineno-list.
otherwise executed upon return from the
subroutine

Always executed

Never executed —treated as part of the
REMark

Never executed

Never executed

Never executed

Always executed

158

Figure 3 is example of a program segment
before and after the constant-to-variable
surgery has taken place.

Note. when a statement number on an
IF...THEN is changed to a variable, a
GOTO must be inserted (see line 60 in
Figure 3). Other than this one exception,
any place a numeric constant or line
number can be used in an Atari Basic
statement. a variable can be substituted.

Constants Variable Names
0 Z
1t09 Atol
10 to 19 AOQto A9
20 to 29 BO to B9
90 t0 99 10 to 19
100 to 109 A00 to A09
etc. etc.
Figure 2.

Also note line 40; even the dimensions in
an array can be made variables. thus saving
the memory that would be used to store
the constant dimensions.

Is it really worth the trouble to convert
most of the constants and line numbers in
a program into variables? In my “Adven-
ture” program. I changed 58 constants
and line numbers to variables and saved
over 3500 bytes! This represents 12% of
the free memory on a 32K Atari system,
so the effort certainly paid off. The
maximum number of variable names
allowed in a single program in Atari Basic
is 128. This is as big as the VNT can get.

Therefore. start with the numeric con-
stants and line numbers that are used
most often since these will result in the

greatest savings. Also. instead of converting
constants which are not used very often.
consider that GOTO 9 can be changed to
GOTO D+E. This will save changing the

constant 9 into a variable if D and E are
already defined to be 4 and 5 respectively.
The constant 9 requires 7 bytes whereas
D+E requires only 3. a saving of 4 bytes
of memory. Use this technique of com-
bining variables to replace constants that
occur three or fewer times in a program.

As can be seen. substitution of variables
for oft-used numeric constants and line
numbers can result in a substantial increase
in memory available in a program.

Numeric Arrays
How much memory will the following
statement use:

10 DIM A(100). B(100). C(100). D(100).

E(100)

If your answer is 500 bytes. you are not
even close. The above dimension statement
will require over 3000 bytes of memory.
Yes. 3000! Why? As we discussed earlier.
numbers in Atari Basic are kept in memory
in internal binary form occupying 6 bytes
each. Therefore. each of the above arrays
uses 100 times 7 bytes of memory apiece.
and 5 of them will take 100 times 6 times
5 or 3000 bytes. When the memory space
is tight. there are two rules to observe in
using numeric arrays: 1. Keep their dimen-
sions as small as possible. 2. Eliminate
them whenever possible.

There are several ways to eliminate
numeric arrays. I will mention two of
them: Convert them to strings. and store
numeric data in DATA statements and
access it with READ statements each time
the data is required.

In Atari Basic. strings must be dimen-
sioned. In the statement:

10 DIM R$(100). R(100)

R as we now know occupies 600 bytes.
but RS occupies only 100 because it is a
string 100 characters long. Now suppose
in an “Adventure” program there are 100
rooms and the program keeps track of
which rooms have been visited and which
have not. Each element of R(100) would
represent a room. R would be initialized
to all zeros and when a room was entered.

Before

40 DIM COUNT (100)
50 FOR J=1TO 100
60 IF INT(RND(0)*10)+1>6 THEN 90

70 GOSUB 250
80 COUNT(J)=COUNT(J)+1
90 NEXT]

After

10 READ A.A0.A00.B50.F.10.Z

20 DATA 1.10.100.250.6.90.0

40 DIM COUNT (A00)

50 FOR J=A TO A00

60 IF INT(RND(Z)*A0)+A> F THEN
GOTO 10

70 GOSUB B50

80 COUNT(J)=COUNT()+A

90 NEXT J

Figure 3.

159

the corresponding element of R would be
set to 1. Since each element of R hclds
only a 0 or 1. this same function can be
accomplished with string R$(100) using
approximately one-sixth the memory. First
RS would be initialized to all "N" characters
(representing “No. the room has not been
entered”) as follows:

100 FOR I=1 TO 100: RS(I.)="N":
NEXT I

(Note in Atari Basic. RS(i.j) represents
the substring from RS starting with char-
acter i and ending with character j.
Therefore. RS(i.i) represents the ith char-
acter of string RS.) Then when room
number I is entered, R$(1,I) would be set
to “Y” (indicating “Yes, the room has
been entered”). At the end of the game,
the number of rooms visited would be
counted as follows:

1000 SUM=0: FOR I=1 TO 100: IF
R$(L.I)="Y" THEN SUM=SUM+1
1010 NEXT I

Of course. if a numeric array is needed
to store many different values. this method
will not work. However. for storing just a
few different values. try using a string
instead of a numeric array and substitute
different characters for the various values
in order to save on memory.

Now suppose a program uses numeric
data that never changes. The room move
table in “Adventure” is a good example
of this. My “Adventure™ has 126 rooms
and there are 10 possible directions to
take out of each room (N=1. NE=2. E=3.
.. NW=8, UP=9. DOWN=10). If an array
were used to hold this data. it would contain
126 times 10 or 1260 elements. At 6 bytes
for each element. this table would occupy
7560 bytes or almost one-fourth of my
32K memory. The data in this array would
be room numbers to move into from each
room. So for example. to move West
(direction 7) from room 29. the contents
of array element (29.7) would be the room
number to move into going in that direc-
tion. Zero of course would mean no path
that way.

This data never changes. Therefore it
can be put into DATA statements. one
DATA statement per room. 10 numbers
(corresponding to the 10 directions) per
DATA statement. Suppose the DATA
statement for room number 1 is on line
10001. room 2 on line 10002. etc. Also
suppose variable DR contains the direction
in which the adventurer wishes to go and
RC the number of the room he is currently
in. Here is how the program would locate
the room number to move into:

100 RESTORE 10000+RC: FOR J=1
TO DR: READ RN: NEXT J

Adventure in 32K

The RESTORE locates the DATA state-
ment for room RC. the FOR loop reads

until the room number corresponding to
direction DR is read at the end of the
loop. RN contains the desired room
number. Using this technique. I saved
about 3650 bytes of memory on the room
move table in my “Adventure™ program.

To go even one step further. I put the
data for rooms 1. 2 and 3 all on DATA
statement 10003: rooms 4. 5 and 6 on
DATA statement 10006 and so forth. thus
eliminating two thirds of the DATA
statements and saving another 600 bytes.
The RESTORE statement will still work
in Atari Basic because a RESTORE to
line 10001 (for room 1) will actually start
reading at line 10003 if lines 10001 and
10002 do not exist. Of course. the FOR
loop had to be modifed to read the correct
set of 10 room numbers as now there
were 30 room numbers per DATA line.
With this modification. the room move
table has now been reduced from 7560 to
about 3300 bytes for a 56% reduction in
memory used.

Furthermore. upon examining the room
move table data. I found that it contained
many zeros. This occurs because there
are exits from most rooms in only a few
of the 10 directions. Therefore. I replaced
n consecutive zeros in the DATA state-
metns with the number -n. For example.
if one of the DATA statements contained
8 zeros in a row. these zeros were elimi-
nated and a single -8 put in their place.
This was done in all DATA statements
where 2 or more zeros occurred together.
The read routine was then modified to
expand negative numbers back to the
original number of zeros as the data was
read. This modification further reduced
the room table from 3300 bytes to 2236
bytes now occupying 70% less space than
if a 126 by 10 numeric array had been
used. Thus. over 5300 bytes of memory
were saved with several very simple
modifications to the room move table part
of the program.

Since numeric data items require 6 bytes
each when stored in numeric variables or
arrays. if the data does not change during
program execution. keep it stored in DATA
statements and READ it when it is needed.
Pack it on the DATA statements as tight
as you can. Otherwise use string arrays if
possible. The fewer numeric arrays a
program uses. the more memory will be
available to it.

Strings

Although strings require less memory
than numeric arrays. still try to keep their
length to a minimum. Don't set up A$(100)

when the maximum length AS will ever
be is 50 characters. Also. eliminate string
variables when possible. If three strings
are defined in a program and one of the
strings could do the functions of all three.
eliminate two of them.

“Adventure” type programs always have
a vocabulary of words which they recognize
(NORTH. TAKE. DRAGON. INVEN-
TORY. DIAMONDS. etc.). Cut these
words down to their first five characters
(NORTH. TAKE. DRAGO. INVEN.
DIAMO. etc.) Although some games use
the first four or three characters. five is
about the minimum length which can be
used and still make the words unique.
When the player's input is received. each
word of it is truncated to five characters
before a search is done against the vocab-
ulary in the program.

As discussed previously with numeric
data. place the vocabulary in DATA
statements and READ it when it is required.
In Atari Basic. strings are placed in DATA
statements without quotes and are
separated by commas. Since Atari Basic
does not have string arrays (e.g. AS(100)
does not mean 100 strings. but defines a
string to be a maximum of 100 characters
long). to store the words otherwise. they
would need to be packed into a string.
Since the words are variable in length
(INVEN is five characters long but TAKE
is four. OIL. three. etc.). this would require
extra program statements and overhead.
With the vocabulary on DATA statements.
it may be searched by READing it from
beginning to end with a special character
(*. S. etc.) marking the end of the table.

This will take a considerable amount
of time. especially for words at the end of
the table. Therefore. a more efficient way
is to place all words beginning with the
same letter in a separate DATA statement.
Then a RESTORE is used. keyed off the
first character of the word being searched
for. to locate the DATA statement con-
taining all words starting with this letter.

As can be seen. putting both numeric
and string data into DATA statements
can be a very effective way to reduce the
amount of memory required by a program.
Before numeric arrays and strings are set
up. consider the use of the READ/DATA
statement technique. It may make the
difference in being able to get a program
into memory.

Eliminate Unneeded Statements

When you need to alternate a program
variable between 0 and 1. how do you do
it? Before reading on. take a piece of
paper and write the Basic statements to
set B equal to 0 if its value is 1 and vice

160

versa (keeping in mind that Atari Basic
does not have an ELSE capability). Now
look at your programming. Is this the way
you did it?

10 IF B=0 THEN B=1: GOTO 30
20B=0

Or how about this way?

10 ON B+1 GOTO 20: B=0: GOTO 30
20B=1

Or better yet?

10 ONB+1 GOTO 20: B=-1
20 B=B+1

Each of these methods is good and will
accomplish the task. but they all use two
lines. Is there a way (without using ELSE)
to write this code on one line? Yes there
is. A little creative programming reveals
the following method:

10 B=ABS(B-1)

The first three examples require 52. 60
and 53 bytes respectively: the last example
only 20 bytes. The point here is. eliminate
unneeded statements wherever possible
to save on memory.

I found in my “Adventure™ program
that the statement:

Z=B: GOTO 90

occurred 16 times. So I did the obvious:
kept the first occurrence of this statement
and replaced the other 15 with a branch
to the first one. Now I know I have just
caused a program abort to occur in the
mind of every structured programmer in
the audience. Please note. I am not against
structured programming.

In fact. I encourage it along with good
program documentation wherever possible.
However. the preceding example saved
90 bytes of memory. By doing this same
thing with several other statements that
occurred multiple times in the program. |
was able to save another several hundred
bytes. So use of this technique really paid
off.

Untokenize The Program

When Atari Basic places a statement
into memory. it uses a “tokenized™ form.
That is. each Basic keyword. each
arithmetic operator and each relational
operator are replaced by a unique [-byte
code called a token. At the same time (as
previously discussed). constants are placed
in memory in internal form and variable
names are placed in the VNT (Variable
Name Table). This is the way Basic
interpreters work. Thus. they automatically
provide some efficiency in their use of
memory.

Now. after a new program is entered

into memory. typically a debugging phase
begins. The program is run and rerun
(and rerun and rerun and rerun....) many
times to find and correct as many logic
errors as possible. In this phase. statements
are added. changed. deleted. rewritten.
ete. If the program is large. debugging
may take many days or weeks. During
this time a number of variable names which
were once used in the program will
probably be completely eliminated. Or a
typing error may have caused the variable
TB. for example. to be entered when T
was supposed to be used. Later on. this
error is discovered and TB is replaced by
T in the statement. thus completely elimi-
nating the variable TB from the program.

Sounds logical so far. doesn't it. However.
something else occurs that is not immedi-
ately obvious. When TB is replaced by T.
Basic. being an interpreter. does not know
that the variable TB has been completely
eliminated from the program. Basic has
no way of knowing that TB is now used in
any other statement. Therefore. TB still
occupies 4 bytes in the VNT and 6 addi-
tional bytes of memory are still reserved
to hold the value of TB. Ten bytes of
memory are being used by TB. Multiply
this by another 10 or 15 variables that
may have been used in the program but
have since been eliminated. and we find &
hundred or more bytes of memory being
wasted.

“Well.” you respond. “when I CSAVE
the program onto tape and then CLOAD
it back into memory. doesn't the VNT
and related memory get cleaned up?”

The answer to this question is "No.”
because a CSAVE causes the tokenized
version of the program to be written onto
tape and along with the tokenized program.
the VNT and associated memory are also
written. One of the reasons CSAVE works
this way is because the tokenized version
takes much less time and tape to write
out. Now when a CLOAD is done. the old
VNT still containing the unused variable
names and their associated memory is
read back in unchanged.

How do you eliminate the unused vari-
ables from the VNT and free up their
memory bytes? Simple. The program must
be written out in its untokenized form.
This is the form that is seen on the screen
when the program is listed with the LIST
command. In Atari Basic. this is done
exactly like a CSAVE except the command
LIST"C™ is used. LIST"C™ causes the
program to be LISTed to cassette tape.
The tape will be written with the untoken-
ized version of the program only and not
include the VNT nor any other values
from memory.

Note. this process will take two to three

times as long as CSAVE and require at
least twice as much tape. The tape should
then be rewound. NEW typed to clear
memory (this is important to erase the
old program and VNT). and the untoken-
ized version read back in with the command
ENTER"C™ (which works just like
CLOAD). The untokenized statements will
be read in one by one. retokenized and a
new VNT constructed. Since the old
variable names are no longer in this set of
Basic statements on tape. they will not be
entered into the new VNT.

When | had finished debugging my
“Adventure” program. | untokenized and
retokenized it and gained 150 bytes of
memory. This allowed me to add a few
more vocabulary words that I had pre-
viously eliminated for lack of space. Note
also that a program should be untokenized
and retokenized whenever an ERROR 4
occurs. Error number 4 means the VNT
is completely full with 128 variable names.
Of course. if the program actually has 128
legitimate different variable names. then
this method will not work and some of
the variable names must be eliminated or
combined into an array (which takes up
only one slot in the VNT).

Use of POP Statements

When 1 finally had the “Adventure™”
program finished. there were 450 bytes of
memory available after loading and 50
bytes free after execution began. I felt
the program was now bug-free and ready
for the final test: my 10-year old son.
David. But a strange thing began to happen.
After David played for one or two hours.
ERROR 2 would occur and the program
would abort. Error number 2 means out
of memory. This error would occur
randomly after about an hour of play
without restarting the game. and always
at a different spot. How could this be? I
had very carefully calculated that there
should be at least 50 spare bytes of memory.
[was puzzled. It took me a while to figure
out what the problem was. but I finally
found it.

When a GOSUB is executed. Atari Basic
puts the return address into a push-down.
pop-up stack in memory. Then when the
RETURN statement is executed. the top
address is popped off of the stack and the
computer returns control to the program
at this address. Thus the stack is constantly
expanding and contracting in memory as
GOSUB's and RETURN's are executed.
Now suppose a subroutine branches else-
where in the program. never executing a
RETURN statement. The return address
remains on the stack forever. This is exactly
what was happening in my program. Every

161

once in a while the program would exit
from a subroutine without executing a
RETURN. Each time this happened. 4
bytes of memory remained on the stack.
never to be released. and the stack
gradually expanded until it had eaten up
the 50 bytes of available memory.

There are two ways to eliminate this
problem. The most obvious is to exit from
every subroutine via a RETURN statement.
However. it is not always possible nor
desirable to do this. Therefore. before
branching out of a subroutine where the
RETURN will never be executed. a POP
statement should be inserted. This causes
the stack to be popped up one time. and
the return address removed. just as if the
RETURN statement had been executed.
The format of this statement is:

100 POP
In my program. I put several POP state-
ments just before the INPUT statement.
The program continually returns here to
get the player's next response. Thus. I
made sure at this point that the stack was
completely empty. Executing a POP when
the stack is empty acts like a do-nothing
statement and does not cause an abort.
This small modification solved the
problem.

One note of caution when using POP
statements in Atari Basic: FOR loops are
also placed on the stack. Therefore. if a
program is in the middle of a FOR loop
when a POP is executed. the FOR infor-
mation may be removed from the stack.
This will cause the program to abort with
error number 13 (NEXT encountered with
no matching FOR) when the corresponding
NEXT statement is executed. The way to
avoid this is to make sure POP statements
are not placed within FOR loops. or to
make sure that you know exactly what
order FOR and GOSUB information was
placed on the stack so it may be correctly
popped off. Note also that branching out
of a FOR loop without completely finishing
the loop does not cause the stack to grow
and waste memory like GOSUB's do. so
one only needs to be concerned about
this problem when branching out of
subroutines without executing a
RETURN.

Message Text

Approximately one half of the memory
in my “Adventure” program is text consist-
ing of room descriptions and messages.
Since the original *Adventure™ text is too
large to fit. it had to be cut down. There
are several way to do this.

One way is to eliminate completely a
number of the least used. least important

Adventure in 32K

messages. Another way is to delete some
of the descriptive adjectives and/or change
the wording so that the message is smaller
but still retains its original meaning.
Abbreviating. using contractions and
substituting smaller words all help con-
siderably. Here is an example:

Original message: “You are in a complex
junction. A low hands and knees passage
from the north joins a higher crawl from
the east to make a walking passage going
west. There is also a large room above.
The air is damp here.”

Abbreviated message: “You're in a
complex junction. A low N pass joins a
higher crawl from the E making a walking
passage W. There's a large room above.
The air is damp.™ Counting spaces. the
message has been reduced by 28% from
204 to 147 characters.

Half of the room descriptions (63) begin
with the 11 characters *You are in” (includ-
ing the space following the word in). 1
eliminated these words from the front of
those 63 messages and modified the print
message subroutine to print them if the
first character of the message to be printed
was not a capital letter. This resulted in
another 600-byte savings.

Message text is stored in DATA state-
ments. Message number 1 at line 15010.
message 2 at line 15020. etc. The start of
a message is located with a RESTORE
15000+N*10 where N is the message
number. Many of the messages extend
onto multiple DATA statements.

A special character which is not used
anywhere else in the message text was
placed at the end of every message. This
character is detected by the print message
subroutine telling it when the end of the
message has been reached. Adding this
single character per message was the
simplest way to allow the program to
determine the end of a message when the
messages were variable in length. This
method also uses the least amount of
memory.

With a little creative rewriting. the
original “Adventure” message text was
cut approximately in half so that it fit into
14K to 15K of memory. but still retained
its original meaning. The attractiveness
of the game was not lost. and all of the
excitement of the original “Adventure”
was still there even though the messages
were now in an abbreviated form.

Miscellaneous

Here are a few other hints for optimal
memory use:

1. Do not use long variable names (Atari
Basic allows up to 120 character names.
all characters significant). Each character

in a variable name occupies | byte of
memory in the variable name table.

2. Replace IF X <> 0 with 1F X (which
is equivalent and saves 3 to 9 bytes
depending on whether the 0 is a constant
or a variable).

3. Use GOSUB’s to eliminate multiple
occurrences of identical program state-
ments.

4. Use as few variable names as possible
by making them do double and triple duty.
Rahter than use I. J. K. L. M and N as
FOR loop variables. or Z0 through Z9.
see if you can get along with using just I
and J or Z1 and Z2. The same applies to
scratch variables and other variables in
the program.

5. Remove unnecessary parentheses and
rely on operator precedence wherever
possible (except. due to a known bug in
Atari Basic. always enclose NOT and its
associated variable in parentheses—(NOT
B) instead of NOT B).

6. Spaces may be used anywhere for
program readability (except of course in
strings). Spaces are not stored in memory
when a program statement is tokenized.

7. A new line always requires 6 bytes
of overhead regardless of the size of the
line number used.

8. Change IF NOT (A=B and C=D
and E=F...)
toIFA<>BORC<>DORE<> F...
Change IF NOT (A=B or C=D or
E=F...)
to IF A<>B AND C<>D AND
E <> E...

Memory will be saved in both cases.

9. Use of the LET keyword does not
cause extra memory to be allocated. It
may be included or omitted as desired.

10. The RUN command clears all simple
numeric variables to zero and sets all strings
to empty (length zero) so don't waste
memory clearing them. However, numeric
arrays are not cleared! If they must be
initialized to zero. use a FOR loop (all on
one line. of course).

11. Many of the Atari Basic keywords
can be abbreviated. Abbreviations have
no effect on memory utilization.

One last question lingers which must
be answered: After optimization for
efficient memory use with these methods.
how slowly does the program actually run?
When I had finished the “Adventure"”
program. I did find the response to the
player’s input to be too slow. It was in the
five to ten second range. However. upon
investigation I discovered that the program
was taking five seconds searching the
vocabulary list. The further down the list
it had to search. the longer it took.

Memory Saving-Techniques

Here is a summary of the memory-
saving techniques discussed in the
accompanying article:

1. Eliminate REMarks.

2. Pack multiple statements per line
to eliminate numbers.

3. Replace constants and line numbers
with variables.

4. Reduce the dimensions of and/or
eliminate numeric arrays (convert to
strings or use DATA statements).

5. Keep strings small and put them
on DATA statements.

6. Eliminate all unnecessary state-
ments. especially multiple copies of
the same statement.

7. Untokenize and retokenize.

8. Keep the FOR/GOSUB stack from
eating up memory.

9. Reduce the size of message text.

10. Use short variable names.

11. Replace IF X <> 0 with IF X.

12. Use subroutines to eliminate
duplicate statements.

14. Eliminate unnecessary paren-
theses.

15. Rewrite to eliminate NOT.

16. Don't initialize to zero excep-

tion—numeric arrays).

Therefore. 1 did sacrifice some memory
by placing words that start with the same
letter together on separate DATA state-
ments. Then I changed the search routine
to do a RESTORE to the proper DATA
statement keying off of the first letter of
the word that was being searched for.
This reduced the search from a maximum
of 150 words to 20 or less. Also. I placed
the most often used words at the beginning
of each DATA statement. Thus the
vocabulary is not packed as tightly onto
DATA statements as it could be. However.
with this one small change. response time
is now in the one to two second range for
most responses. with a maximum of five
seconds for the GET/TAKE verb which
has the largest number of program state-
ments associated with it. It appears that.
on the Atari 800. chaining constants to
variables. reading from DATA statements.
jumping all over the place with GOTO's
and GOSUB's etc. doesn't cost the program
too much in time. This. of course. may
not be the case for a program that uses
some of the fancy Atari sound and graphics
capabilities. However. for “Adventure”
in graphics mode 0 (full screen text). the
speed is adequate. even when a Basic
program is highly optimized for memory
usage.

162

From Burn-Out to Born Again

Witold Urbanowicz

"Twas the week before Christmas
and all through the house...You get
the picture. I had just come in from
walking the dog. It was late and, more
important, the house was quiet. The
rest of the family was tucked away for
the night. So was the Atari 800.

There it sat neatly stacked on the
living room shelf. Next to the cassette
player lay operating manuals along
with little boxes labelled Bio- Rhythms
and Star Raiders.

Vacationing friends had kindly con-
sented —after a few subtle hints from
my nine-year old son—to leave their
personal computer in our care. So for
the past week, our living room had
been an extraterrestrial battle-zone.
The walls echoed with the sounds of
hyper-space thrusters, photon-lasers
and thermonuclear explosions. My
wife and 1 kept our distance. She
could not stand the noise and the
violence. For me, there were other
reasons.

I had spent the better part of my
early adult life programming, ana-
lyzing, and trouble-shooting com-
mercial computer systems. As Ilooked
at the compact console sitting there on
the shelf, my mind went back about
ten years.

I could still remember being ushered
through a door into a room about the
size of a basketball court. It was like
walking into the future. Inside this air
conditioned, climate controlled world
sat the company’s four computer sys-
tems, along with their respective disk
drives, tape drives, printers, and
various other peripherals.

I was led past rows of lights flash-
ing on main frame panels. Long lines
of tape drives danced back and forth.
Disk packs whirled secretively inside
their stacked enclosures. Printers
spewed out reports by the truckload.
Adrenalin began racing through my
own system at a speed, I was certain,
approaching that of the computers
themselves.

Each of the four computer systems
had a nickname. “Poppa Bear 1” and
“Poppa Bear I1” were twin systems
with individual core capacities in the
megabyte range. These were used to
run the major financial systems of the
corporation. “Momma Bear”, weigh-
ing in at 512K, was devoted to tele-
processing. It communicated with
computers across the country. “Baby
Bear”, a little 48K three-partition

Witold Urbanowicz, 135 Eastern Parkway,
Brooklyn, NY 12238.

machine was used nights for the
smaller systems, but during the day
was dedicated to the programming
and systems people for compilations
and testing. “Baby Bear” was to be my
own personal computer for the next
few years.

As the years passed, the software
became more complex, requiring more
and more core as well as faster and
faster processing speeds. My skills and
responsibilities were naturally up-
graded to keep up with the larger and
more complex applications. As dead-
lines became more critical and the
problems more intricate, the pace
became absolutely frantic. Murphy’s
Law reigned supreme.

L

“Baby Bear” became a dim memory
and my family life was in danger of
becoming the same. By now it had
become a frequent occurrence for me
to work months on end at all hours in
order to bring a project in on time. For
the most part, the results of this
effort—the hotrom line— were meant
for someone I would never meet in a
city I would never see.

Several times after the project had
been completed, I asked whether it was
serving the intended users well, only
to discover that the project had been
scrapped or that the reports were
piling up somewhere in a storeroom in
unopened boxes.

About the third or fourth time this
happened, 1 was sitting in the com-
puter room at five in the morning. 1
had gone about 72 hours without
sleep. It had been months since I had
seen the kids. I felt as gray and flat as
the tile floor beneath my feet. It was
then that I decided to leave the field.

When I left, I never wanted to see
another computerin my life. Any thrill
or satisfaction 1 may have felt in the
early part of my career had not just
disappeared. It had been slowly
ground out of me.

All these thoughts and images ran
through my mind in a matter of nano-

163

seconds that evening as I stared at the
Atari on the shelf. It seemed to be
waiting for me. I wondered if I had put
enough distance between myself and
the past. After all I had been out of
the business for several years. How
could it hurt to sit down for a few
minutes to see what the little fellow
could do?

In less time than you can say Begin-
ners All Purpose Symbolic Instruction
Code, I had the Atari off the shelf and
ready to go. Although I had never
programmed in Basic before, there
was enough of a iogical similarity to
other high level languages that with a
little prompting from the Basic manual
I was off and running.

Over the next few evenings, I rein-
troduced myself to the world of IFs,
THENs, GOTOs, strings, subscripts
and various other programming con-
cepts. The feeling was definitely odd.
It was like meeting old friends I had
not seen in years. They had not
changed one bit—for better or for
worse. Some, like the nested IFs, still
caused me no small amount of trouble
whenever 1 took them for granted.
Others, as in the case of the GOTO,
were still as straightforward as ever.

Then suddenly, about two nights
before Christmas as I worked my way
through Sound and Graphics, it hit
me. Without even realizing it, I was
having fun. It was like the old days
when I had worked with “Baby Bear”
at my first job. But there was a
significant difference. The room I sat
in was my own. The light by which 1
worked was soft. The colors and
fabrics in the room were part of a
human environment. I did not have to
fight anyone to get computer time. I
was a person enjoying a personal
experience.

Now it was time to put together
what 1 had learned the past few
evenings. What better way was there
than to write a program. The question
was, what to write? The answer came
quickly. With Christmas not two days
away, what better project could there
be than to create a present for the
children—a small electronic game
they could play.

After a bit of thought, I set down
some basic specifications. The pro-
gram would have to be relatively
straightforward and short. 1 didn’t
have that much time. Plus I was still
quite rusty. However, I wanted some-
thing that would pose an appropriate
challenge to my skills. Finally it also
had to be something the children

Burn-Out to Born Again

would find entertaining as well as
challenging.

I finally decided on an electronic
version of the old Shell Game. Work-
ing into the early hours of the morning,
I was able to finish the initial logic for
the game, leaving the testing for the
following night.

And so the proverbial Night Before
Christmas found St. Nick at his Atari
testing a last minute present for the
big day. Time flew, and soon the
morning light seeped into the living
room to announce the arrival of the
children as they made their way to the
tree and the presents which lay
beneath. They were somewhat sur-
prised to find me up at that hour.

“What are you doing?” they asked.

“You’ll see,” I managed to reply.

Paper ripped and the camera
clicked. In less than an hour the booty
lay displayed. My daughter modeled
her clothes while my son booped and
beeped his way to electronic heaven
with his new hand-held game.

Several hours later, my daughter
remembered seeing me when she had
first awakened. Leading the kids to the
living room, I told them to turn on the
computer. This they did and sat down
to play. I watched as their faces lit up
while trying to follow the shells being
moved around on the screen. I fol-
lowed the squeals of delight when they
guessed which shell the pea was under
and groaned along with them when
their guesses were wrong. Finally my
daughter turned to me.

“Daddy, you did this?” she asked.

I nodded.

“Really?” my son added.

All 1 could do was beam.

Seeing the “bottom line” in my
children’s faces, I forgot about the
hours of frustration the night before
while debugging the program. The
thrill and satisfaction I had felt years
ago when 1 first worked with “Baby
Bear” had returned. Unfortunately, so
did the neighbors.

I was actually sad to see the Atari
go. Still, 1 had been given a second
chance to look into the future and
found once more that it was good. [J

Listing 1.

S DIM ASCL)
7 DIM E®(1)

10 1003 MVA=11MVUZ2=21MUB=3 MV 4=4
20 GIFH=0F1l=11F2=131F3=4

30 Xiﬂ 103X15= IX20=201F061

40 LANXTMOU=600 §RNDMO

] FFTY 40IFIFTY
60 Y=103Z=YiGV2=2
80 X40=401X60=601X80=80

85

6

ZERO=0:MV10:=10
GRAFHICS 3
COLOR 2
SETCOLOR 4,9,2
GOTO 300

FOR M=MVA TO MUVE
COLOR 2

PLOT X,

FLOT W,Z

FOR §=8VUA TO SUEINEXT §
COLOR 4

PLOT X,Y

FLOT W,Z
X=X+XVIY=Y+YY

W W+ WY 3§ Z:=Z 47V
NEXT M

S COLOR 2

FLOT X,Y

FLOT W,Z

RETURN

REM x X X MAINLINE % x X
GRAFHICS 7

S COLOR 1

SETCOLOR 4,9,2

) FLOT 61,39 1DRAWTO 62,39

FLOT 61,38iDRAWTD 62,38
Y=32

RNDH=ZERO

FOR M=MVUA TO MU4

COLOR 2

FLOT X40,YIDRAWTO X40+3,Y
FLOT X&60,YIDRARTO X60+3,Y
FLOT X80,YIDRAWTO XB0+3,Y
Y=Y+1

NEXT M

FRINT "READY?"

INFUT A%

IF A$="Y" THEN 465
Fl=41F2=11F3=4

FOR M=MVUA TO MU4

COLOR 2

FLOT X40,YIDRAWTO X40+3,Y
FLOT X&0,YIDRANTO X60+3,Y
FLOT X80,YIDRAWTO X80+3,Y

5 FOR §=8VA TO FIFTYINEXT §

COLOR 4

FLOT X40,Y-4iDRAWHTO X40+3,Y-4
FLOT X&60,Y-42DRAUTO X60+3,Y-4
FLOT X80, Y-41DRAWTO XB0+3,Y~4
Y=Y+F0OS1

NEXT M

GRAFHICS 3

COLOR 2

SETCOLOR 4,9,%

Y=X108Z=Y

FLOT X10,Y

FLOT X1S5,Y

FLOT X20,Y

0 THEN &G0

MHEN 620

FlUT YA,Y DRAWTO WA, Y

FLOT XE,YIDRAWTO WE,Y

FLOT XC,YIDRAWTO WC,Y
Y=Y-FOS1

NEXT M

(NT "FICK A SHELL - A,E,C"

INFUT A%
Y=36527=Y
TIF A$="A" THEN 700

IF &
IF A

EYOTHEN 710
CYOTHEN 720

164

WMD) YL +E00

AXD0IXC=Y+Y

698 GOTD 685

700 C=F1iX=X40iW=X+3

708 GOTO 725

710 C=P23X=X601W=X+3

715 GOTO 725

720 C=P31X=X80tW=X+3

725 FOR M=MUA TO MVUZ

730 COLOR 2

732 FLOT X,YIDRAWTO W,Z

734 FOR 8=8VA TO FRTYINEXT
736 COLOR 4

738 FLOT X,Y+4:i1DRAWTO W,Z+4
740 COLOR C

744 FLOT X+1,Y+4I1DRAWTO X+2Z
746 Y=Y-FOS1:1Z=Y

748 NEXT M

750 FOR M=MVUA TO MVUZ2

752 COLOR 2

754 FLOT X, YIDRAWTOD W,Z

7%6 FOR $=8VA TO FRTYINEXT
757 COLOR 4

758 FLOT X, Y+4IDRARTO W, Z+4
760 Y=Y-FOS11Z=Y

762 NEXT M

775 IF C=F0S1 THEN 790

780 FRINT “FICK ANOTHER"
785 GOTO 487

790 FRINT "GOOD EYES '™

792 FRINT "READY FOR A CHAL
793 FRINT "ENTER 1 OR & OR
794 INFUT CH:CH=MVZXCH

79% GOTO 300

800 X XlO W=XZ0 1 MV=MV10

151 MU=HUS
2iF2=FH

813 FH=FL1IFl=
818 GOTO SETUR

820 X= Xi TW=X20 3 MV=MYE
=F3{F3=FH

O YV=PF0OS1
0317ZV=NEG1

915
920
925
930 MY
935

94
S45

P50

MOVE
13YV=ZERD

v
MOVE
03YV=NEGL

]

y L4

S

LENGE
10 OR

Hu
20"

Speedread +

Reading Matters

Bud Stolker

Rising above the glut of “me-too” game
programs for the Atari home computers
announced at the West Coast Computer
Faire last spring is a self-improvement
program called SpeedRead+. It is a ser-
ious attempt to help users boost their
reading speed and comprehension by
using well designed eye training
exercises.

The principle behind SpeedRead+ is a
simple one. If you can train yourself to
concentrate on reading text efficiently,
you will save time, understand more of
what you read, and feel less tired at the
end of a long reading session.

To help users achieve these goals, the
publisher, Optimized Systems Software,
provides a machine language program
that flashes words and phrases on the TV
screen at speeds from five to five
thousand words per minute. Three lit-
erary classics are included as text files
with the program: Washington Irving’s
“Rip Van Winkle” and “Legend of Sleepy
Hollow,” and Bret Harte's “Outcasts of
Poker Flat.”

Easy to Use

Each eye training exercise is accompa-
nied by tips on how to use it to best
advantage. Once an exercise is selected,
the user can control both the display
speed and the width of the text window
by using either the keyboard or the Atari
joystick —a nice touch. An option menu
and display of the current reading rate
are always just a keystroke away.

SpeedRead+ starts by loading the text
of your choice into memory, auto-
matically using all the space available. It
counts every word of text, so that you
can start a session by specifying the very
spot at which you left off last time.

The words flash by on the screen,
centered under a stationary dot that gives
the eyes an anchor in the vast expanse of
the video display. The idea is to hold
your eyes steady, letting you absorb the
information without backtracking or
“tuning out.” As you feel more confident
with the exercise, you can select wider
phrase modes (up to 38 characters, nearly
the width of the Atari display) to broaden
peripheral vision, or you can increase the
display speed —or both.

Several Ways to Train the Eyes

From here the alternatives vary,
depending on individual needs. A “double
phrase mode” displays text alternately on
the left and right sides of the screen. This
exercise trains your eyes to jump to a
predetermined point and instantly recog-

Bud Stolker,
101 S. Whiting St.,

Landmark Towers, Apt.
Alexandria, VA 22304.

1506,

nize the phrases. It also develops the
timing and rhythm necessary to read
printed text efficiently.

A “random phrase mode” displays text
anywhere on the screen, although the user
can select the approximate distance from
the central stationary dot. The purpose

SOFTWARE PROFILE
Name: SpeedRead+
Type: Self-improvement program
System: 16K Atari 400 or 800,

16K Apple 11

Format: Disk
Language: Machine
Summary: Useful tool for developing

good reading habits and
increasing comprehension

Price: $59.95
Manufacturer:
Optimized Systems Software, Inc.

10379 Lansdale Ave.
Cupertino, CA 95014

of this mode is to expand peripheral vi-
sion, an essential element in speed read-
ing. I found that it took some practice to
keep my eyes glued to the dot and still
comprehend the text flashing on the screen.

The “column phrase mode” most close-
ly approximates the kind of reading we
all do once we tear ourselves away from
the computer. This exercise trains the
eyes to travel from top to bottom of a
column of text, stopping only once per
line and focusing at the center of each
line.

The program displays each column for
a predetermined number of seconds, then
replaces it with more text. By pulling
forward or backward on the joystick, I
was able to synchronize the speed so that
the text changed just as my eyes hit the
bottom line of the column.

Method Used In World War 11
SpeedRead+ is an updated version of
the old tachistoscope, a mechanical de-
vice that presents visual material for brief
periods of time. During World War II,
naval aircraft spotters were trained to
differentiate friend from foe based on
images flashed by tachistoscopes equip-
ped with mechanical shutters. The tech-
nique was highly successful. But when
they used the machine for character and
word recognition, researchers found that
average reading rate gains were unim-
pressive (though some people achieved
spectacular gains). To this day the ef-
fectiveness of the tachistoscope is an item

165

of controversy. Because SpeedRead+ is
essentially a computerized tachistoscope,
it must be evaluated with caution.

Shortcomings

The program makes no attempt to
break the text into meaningful phrases; it
simply calculates how many words it can
display at a time and considers that a
phrase. This hinders its ability to boost
true phrase recognition and overall com-
prehension.

While it would have been possible to
mark appropriate phrases in the text (by
setting the high-order bit of the first char-
acter as a flag, for example), this would
have entailed a great deal of work, would
have raised the cost of the software con-
siderably, and would not have solved the
problem of marking user-supplied text.

There are other problems, too. For one
thing, the three texts are supplied entirely
in upper case. When was the last time
you read a book printed in all capital
letters? Author Zeissman claims that it is
easier to recognize words when they are
capitalized. I was taught just the opposite
in college design classes. He may be right
in the case of the Atari, however. Its
lower-case character set is so—well, so
whimsical—that it could interfere with
rapid comprehension.

R,

OUTCASTS PART 5

REGDING SPEED CWPMD @ 55
LASH RATE: i
CURRENT WORD NUMBER: 243

[FJONTINUE READING
[MESTART THE PROGRAM

Intermediate SpeedRead~+ menu.

Why Bret Harte?

The choice of texts puzzles me as well.
While Bret Harte and Washington Irving
are colorful authors, they hardly typify
the standard fare of today’s readers. Their
styles and vocabularies are somewhat
dated, and they appeal, I suspect, to a
limited audience. I would have preferred
to see the SpeedRead+ manual included
on disk so that I could have absorbed it
for practice.

Once you have read Harte and Irving a
few times, of course, you know every
twist in the plots, and I found a tendency
to let my mind wander when I should
have been concentrating. The author has
thoughtfully provided an explanation of

Speedread +

how to create new text files using any
Atari-compatible text editor (or the
Assembler cartridge). A good way to ac-
quire lots of text is to pull it in over the
phone lines from a remote system like the
Source or Compuserve.

Classroom Use Encouraged

Along with SpeedRead+ and the text
files, OSS includes the framework for an
examination program that lets teachers

prepare computerized multiple choice
" tests. The exam system, which includes
automatic score keeping, is designed to
check students’ comprehension levels.
Each exam may have up to 255 questions.

The sample test is sketchy indeed, and
I couldn’t help wishing it had been based
on “Outcasts of Poker Flat,” a relatively
unknown work to many students (and to
me). It is probably asking too much of a
teacher to make up a computerized exam
for each text covered in class, but a school
system with several Ataris might use the
comprehension exams to advantage.

I suspect SpeedRead~+ will find its way
into more homes than classrooms, since
it is best used on a regular basis in a quiet
place, rather than for a week or two at a
time at school.

I found SpeedRead+ a practical and
useful tool. The morning paper has always
been my nemesis; a careful reading takes
as much as an hour a day. By using Speed-
Read+ as an exerciser, I have raised my

PAUSE/CONTINUE
(Red Button) — ()

FAST

WIDE «+—— () —— NARROW

SLOW

Keyboard commands can be initiated from Atari joystick controller.

comprehension level (though without,
alas, cutting my reading time). The im-
provement may be due to the constant
reminders in the manual to concentrate
while reading, rather than to any improve-
ment in eye movement or phrase recog-
nition. At any rate (pun intended), I am
enjoying my reading more now, and I am
convinced that SpeedRead+ has contri-
buted to my pleasure.

Good Manual and User Support
Optimized Systems Software provides
an excellent 25-page manual that explains
the theory behind each exercise, outlines
sample exercise sessions, and gives simple
start-up instructions for first-timers too
impatient to read the whole manual. The
two disks come with a strongly worded

licensing agreement.

OSS has an excellent reputation for
support of its Atari operating system and
Basic upgrades, and can be expected to
stand behind this product. They do
promise telephone support, though I was
unable to find any significant bugs.

There is a hint also of future updates at
reduced rates (or no charge) to licensed
users. OSS released the Appie disk version
of SpeedRead+ in May, and they hope to
have disk versions available soon for the
TRS-80 and IBM PC.

This program is a welcome reminder
that home computers can be much more
than game machines. I would like to see
more personal development tools of this
caliber. SpeedRead+ has much to recom-
mend it, and I do so without hesitation.[]

Eastern Front

The Atari Goes to War

Why would a multimillionaire ex-movie
star seek a job as President of the United
States with a salary of a mere $200,000 a
year, or the head of a major corporation
join the Cabinet with a salary even lower?
The answer is that of all the success drives
that captivate the human imagination, the
strongest is the lust for power. Power is
far headier than sex, wealth, or fame, and
may make the others easier to obtain.

No exercise of power can compare with
the job of a commanding general in time
of war, marshaling millions of soldiers
and the industrial resources of many nations
in an all-out drive tor supremacy on a
battlefield that covers a continent. One

of the largest such campaigns in human
history was Operation Barbarossa, the
German invasion of Russia that began in
the summer of 1941. During the course of
this four year campaign, nearly 20 million
human lives were lost. Eastern Front, one
of the best microcomputer war games
ever produced, allows the player to take
on the role of the commander of the
German army, and try to do better than
the German forces actually did.

In the past, among war games, board
games have had a major advantage over
computer games. War gamers like to oper-
ate on a theatre level, with an overview
of dozens or even hundreds of units scat-

166

tered over a wide area. Until now the
limitations of computer displays have made
it difficult to get a satisfying situation
map.

Special Features

In Eastern Front, Chris Crawford has
produced the first really satisfactory solu-
tion to the display problem by using the
fast fine-scrolling ability of the Atari com-
puter to produce a magnificent map of
Eastern Russia that occupies ten display
screens.

Nearly every aspect of the game is a
technical masterpiece. Eighteen colors are

0
[=l|o]|a]|a}{o]

Figure 1. The opening display of Eastern Front shows the
Baltic Sea, with two Finnish Infantry Units (German Allies) in
Finland and three Russian infantry units. This black and
white picture does not distinguish between the units, but the
Russians are red and the Axis are white. The city in the top
center of the screen, directly below a Russian unit, is Lenin-

grad.

used on the screen at a time. Player missile
graphics are used to move a cursor over
the map to give instructions without dis-
turbing the map underneath. Several dif-
ferent redefined character sets permit the
natural mixing of a colorful and detailed
terrain with a text display. Display list
interrupts are used to set the weather
conditions, with ice gradually taking over
the rivers in winter and receding in the
spring, and making the player deal with
mud and snow at different times in different

areas. o o
The program uses intricate artificial

intelligence routines and multiprocessing
to control the Russians and their allies.
This means that the longer the German
player takes to form his strategy, the better
the Russian strategy will be. The Russian
side can analyze its position, recognize
danger and opportunity, avoid traffic jams,
recognize the effects of terrain, and plan
accordingly.

The human engineering of the game is
also a major accomplishment, with all
information entered by the player using
only the joystick, trigger button, start
button, and space bar. This eliminates
the drudgery of most war gaming. The
multiprocessing even allows the German
player to move the cursor around and
view different sections of the map while
the battles are taking place. Of course,
since all battles and movement are real
time, it is impossible to see everything
that is happening. Excellent sound effects
do indicate the extent of the overall

1Rl o] L]

PLEASE EKWTER

YOUR ORDERS MOk

Figure 2. German and Russian units face each other in Central
Poland. This display shows mountains, rivers, forests, marshes,
and the city of Kiev, along with Russian and German Infantry
and Armor units. The cursor is over a Russian Unit. Pressing
the button would cause the unit to disappear, identigying the
terrain underneath, and also display information on the unit;

in this case, the 4th Russian Tank Army, a weak unit with a
muster level of 79 and a current strength of 77.

action.

The computer adds a great deal to
wargaming, particularly by providing a
dynamic environment in place of the static
nature of board games. Each turn, repre-
senting one week of actual time, is broken
down into 32 time periods in which units
move and fight. Thus a player might pro-
gram a particular unit to attack an adjacent
enemy unit and move toward a city. During
the course of a single turn, that unit might
destroy the first enemy unit, move forward
to engage a unit behind it, force the second
enemy to retreat, turn toward the city,
and engage in battle a third enemy unit
that has come up from the reserves during
the turn. Terrain affects both movement
and combat, with rivers, forests, marshes,
mountians, and cities to complicate
strategy.

Playing the Game

At the beginning of the game the Ger-
man commander has the advantages of
concentrated force, short supply lines and
superior mobility. However, the Russians
have overwhelming numbers, vast territory,
and the Russian winter on their side. The
object of the game for the German com-
mander is to push as large a force as
possible as far East as possible and maintain
them. Extra points are awarded for cap-
turing key Russian cities. The Russians
are trying to move their forces West, which
also affects the German player’s score.
The score, which is calculated from week
to week, can range from 0 to 255 points.

167

It is fairly easy to get a high score by early
fall, but nearly impossible to hold that
advantage over the winter.

During the war, large concentrations
of German troops were bogged down in
the Pripet marshes between Minsk and
Kiev, allowing the Russians to concentrate
their forces. This is a recipe for disaster
in the game, as it was also a German
disaster in real life. My own best strategies
have involved splitting up my forces to
prevent the Russians from concentrating
theirs, and avoiding combat with superior
mobility unless I had overwhelming super-
iority. Another possibility might be to crash
through the Pripet marshes and break
into open territory beyond, splitting forces
at that time. Uncertain winter supply lines
require that the German player draw back
during that season.

Regardless of my strategy, my success
rate in my first ten games was abysmal.
The game ends automatically after the
week of March 29, 1942, and in nine of
my games my score was 0 on that date. In
the one game where I held a score to the
end, I seized the city of Leningrad (worth
10 points) and defended it to practically
my last man. My total score was 10
points.

After many hours of play, I found only
a few real weaknesses. Giving all those
instructions with the joystick can give you
a sore palm and wrist. The lack of a clear-
cut set of victory conditions is frustrating,
as is the overwhelming advantage of the
Russians. I would also like an option to

Eastern Front

be able to see the whole theatre at once,
however limited the detail might be at
that time. The designer mentions in the
instructions that test players became frus-
trated with random logistics problems and
traffic jams, but I tend to think these are
realistically handled.

Recommendation

I have no hesitation in calling this one
of the very best war games available for a
personal computer. It is also a virtuoso
demonstration of the awesome built-in
capabilities of the Atari computer. This
game literally could not be done on any
other computer in as satisfactory an exe-
cution. By all means, if you are at all
interested in strategy games, buy it.

If you are a serious war gamer, buy it
even if you have to buy a computer in
order to run it. Eastern Front comes on
disk, requiring 32K of RAM, for $29.95.
It is also available on cassette, requiring
16K of RAM, for $26.95. The cassette
version can be downloaded from Micro-
Net at a price of $23.25. O

FINLAND Lake Ladny\

4
.’.’Mw‘ . .

Oneiglr - Ruer

A,,‘ A A AA A A
N\[\A A

ab W K AA

Phonl

of Volga River
Stelingrad

i Rostor

13 Droropelroitk

Keatn Jar
Kuben Ry
.'n‘f n Kiger

Coucasos Mouchurs

A’*“)\A Ara AN AA
A A,
AN AR AR YA,

Figure 3. The instruction book contains a map of the whole area covered by the game.
Only one tenth of this area is displayed on the screen at one time.

The State of the Art

Missile Command and Asteroids

The Atari personal computer has been
around for a couple of years now. and
some good software is finally being written
for it. For some time. the only software
available was (usually) either written in
Basic and/or translated from some other
machine, usually the Apple. None of these
programs really took advantage of the
capabilities of the Atari.

Now there are quite a few programs
available which use the features of the
Atari, not just the subset of them required

to translate a program from another

machine. They use high speed. quality
graphics and sound. and were written
specifically for the Atari.

This review will cover two of what we
consider “State of the Art™ game software
for the Atari.

They are from Atari Inc.. and are clones

of the Atari arcade games Asteroids and
Missile Command. Not surprisingly. they
bear the same names.

Both are on ROM cartridges which plug
into the lefthand slot. Both cost $39.95.
and require 16K RAM (no disk needed)
and joystick(s).

Missile Command

This is a popular arcade game in which
an evil foreign power launches a missile
attack against the area you defend. You
command anti-ballistic missiles, which you
shoot to intercept the incoming missiles.
satellites. planes and smart bombs.

In the arcade version. a “trackball™ is
used to move the cursor for aiming. It
allows very high speed movement. and
very sensitive positioning. (For example.
hitting a “smart missile™ exactly on its

168

Missile Command.

position is required to destroy it; otherwise
the missile dodges). Since no “trackball”
exists for the personal computer. a joystick
is used.

Sound effects include an “air raid siren.”
various explosions. and so forth. They
are quite familiar to anyone who has played

the arcade game. and make good use of
the Atari's capabilities.

Visual effects are also rather well done.
There are no longer three missile bases
controlled by three buttons. as there are
in the arcade version. Instead. there is
one. with “underground reloading™ which
enables it to be destroyed. yet pop up
with new missiles a bit later. There are
three missile bases in one. all controlled
by the joystick button.

The enemy starts with single missiles.
moving slowly. then escalates to MIRV's
(missiles which break into multiple missiles).
satellites and planes (both of which drop
missiles), and finally smart bombs which
dodge explosions on the way down. Every-
thing begins to move faster. the bombs
get more dense, and so forth, until you
are finally overwhelmed. As in the arcade
version a bonus city is awarded for every
10,000 points.

There are several variations of missile
command. An attack consisting solely of
smart bombs can be ordered up. if desired.
to allow practice with them (a very useful
option). There is also a two-player version,
and an option to “freeze” the game if you
want to get another beer.

Rating

I rated this game the better of the two.
It is excellently done with one exception.
and that’s the joystick handler. I found it
very difficult to position the cursor pre-
cisely.

The problem is twofold. First, the cursor
moves up/down/right/left at the same
speed, but moves diagonally as a double
increment of up-right, down-left, etc. This
makes the diagonal move functionally faster
than the others, which makes linear motion
darn near impossible. I found myself firing
multiple missiles near the same point, and
constantly missing. The fine control of
the arcade version was missing.

I'm not sure how this could be changed.
Perhaps the diagonals could be slowed
down a bit and some sort of fine position
enabled, with coarse movement occurring
a bit later on the same joystick press.

I found the home game just as challeng-
ing as the arcade version; my top score
seems to be limited by not being able to
position the cursor with enough accuracy.
(Particularly ~ important with smart
bombs.)

Despite my reservations, this is a good
game. It's not a replacement for Star
Raiders, butitis well done and fun to play.
Nor does it get boring after a few turns. I
recommend it.

Asteroids

As an addict of the arcade version of
Asteroids, I really looked forward to this
game. | had begun to design an Asteroids
game tor the Atari (laid out the player
shapes and so forth, and had the basic
algorithms worked out), but when I heard
Atari was releasing a version, | gave up.

I'm not sure I should have.

Asteroids, as you probably know. is a
game which places you in a ship in an
asteroid field. You shoot at the asteroids.
which break into smaller asteroids. and
try to avoid collisions. Occasionally an
enemy ship enters the field and fires at
you.

This version of Asteroids is apparently
written in graphics mode 7 (Basic) or Antic
mode 13. This means it has a “"chunky”
feeling to its graphics. If you have ever
played TRS-80 asteroids you know what
I'm talking about.

This is particularly surprising when mode
14 is available (graphics 7 1/2) with much
better four-color resolution. Indeed. I had
planned to use this mode for my version
and include three different colors of

Asteroids.

asteroids. Even graphics 8 (Antic 15) would
be a possibility if multicolor asteroids were
not required.

Anyway. I find the low resolution look
of the asteroids quite annoying. Also
irritating is the very large distance between
“turn points™ on the ship: in other words.
a minimum turn is a large distance.

The missiles are limited to four and
probably not done with P-M graphics. as
there is an option for up to four players at
once. Ah. well.

The joystick is used as follows: right
and left are rotate. forward is thrust, back
is hyper/flip. your 180 degrees/shields.
The shields are not “timed™ as in Deluxe
Asteroids, by the way. making for a rather
predictable game.

169

Rating
Alas. this one is not as good as Missile
Command. I liked it. but not enough. and

it could have been done better. Possibly
the video game version and this version
were made as similar as possible to cut
development costs. I can understand the
problems, having worked this out myself
(for example. how to rotate a rocket in
only 8 bits; it looks pretty weird in some
angles), but still. much better resolution
could have been achieved.

The multi-player option is a lot of fun,
and my wife and I spend much time
shooting at each other.

One thing you will notice, again. on
most Atari games is that they are not
CPU bound. On a version written for
another machine, there is a very noticeable
slowing of the game when there are many
asteroids present. This is the result of all
the table updating, checking for collisions,
and so forth. The Atari version runs at a
constant speed, and is fast.

Summary: I play Missile Command much
more than Asteroids.

Conclusion

Allin all, these were fun games to play.
Asteroids will entertain those of you not
spoiled by the arcade version, which I
admittedly am. It is a good sign that these
games exist, as it means that more good
software for the Atari is becoming avail-
able. O

Star Raiders and the Atari SOUND Command

Star Raiders

That is the excuse you give the
Internal Revenue Service, your ac-
countant, and your husband. Truth-
fully, the reason you bought your
Atari was to play Star Raiders (T™M),
the most addictive computer game
yet devaloped.

The game comes as a ROM
cartridge with a lavishly illustrated
twelve page instruction manual at a
cost of $59.95. In addition, you need
to purchase a joystick, costing
$19.95 for two. The joysticks are not
sturdy, and get heavy use, so you
can use the spare.

Study of the instruction manual
takes about 45 minutes and is
essential to adequately understand
the game. However, if you have
someone available who already
knows Star Raiders, it can be learned
in 5 minutes by demonstration, if the
demonstrator will then give up the
machine. That brings you to the
point of understanding. To truly
master the game 'might take years.

Your mission is to defend your
star bases from the Zylon fighters.
You do this by locating the enemy on
the Galactic Chart, turning on your
defense shields, hyperwarping
through space to the enemies’ sec-
tor, and engaging them in combat
until the best man, woman, or Zylon
wins.

You are rated upon your perfor-
mance based upon the level of play
you have chosen, the number of
enemy destroyed, the length of time
it took you, the number of your
starbases that have been destroyed,
and the amount of energy you used.
Final ratings range from Garbage
Scow Captain, class five to Star
Commander, class one, with 60
different possible ratings. There are
four levels of play, from novice to
commander.

The graphics and the sound
effects are brilliant. Stars whiz past
you, your engines whoosh and your
torpedoes explode, your klaxon
sounds a red alert, and the enemy
fighters speed past you, coming
from all angles and all sides, firing
their exploding torpedoes. Enemy
fighters explode in clouds of blue
particles, while the sky flashes red
whenever you sustain a hit.

The instrumentation of your ship
is also impressive. In addition to
your Galactic Chart, which is up-
dated by sub-space radio, your color

coded instruments tell you the range
to the enemy being tracked on the x,
y, and z axis, your velocity, shield
status, energy level, the condition of
your photon torpedoes, engines,
computer, long range scan, and your
sub space radio. Your target aquisi-
tion computer helps you to steer
while hyperwarping through space,
as well as indicating the relative
position and range to enemy fight-
ers. In addition, upon your request it
will shift automatically from forward
to aft views from your ship as enemy
fighters pass by on attack runs. The
joystick allows you to climb, dive,
veer right and left, and to combine
vertical and horizontal movement,
while twenty more keys on the
keyboard control speed and function
selection.

Star Raiders requires a color
monitor or television, as much of the
information is color coded and does
not show up in black and white. |
cannot pin down any definite bugs,
although it is often hard to orbit a
star base, and | did have a system
lockup once in the middle of a game
that required me to turn the power off
and on again and restart the game.

This game goes beyond the
quality of the games you see in video
arcades. The sound effects, color,
and action are just as good, the
physical environment is a bit less
impressive, but the real change is the
strategy. Since an arcade game must
produce $10 an hour in revenue,
those games have to be active and
short. Grand strategy is not possible.
A home computer does not suffer
from the same constraint, so the
game can actually be better, and Star
Raiders is better. The true video
arcade addict can justify the pur-
chase of an Atari 400 in a few months
of unspent quarters.

If you have an Atari, buy this
game! If you don’t have an Atari, sell
your car (you’ll never leave home
again anyway), put your children up
for adoption so they won’t take over
the computer, and buy one. Then
play Star Raiders until the last
stardaie fades into the collapse of
the universe.

Atari Sound

As a programming feature this
month, I’'d like to discuss the Atari
SOUND command. The format for
the sound command is as follows:

SOUND (Voice) , (Pitch) , (Distor-
tion), (Volume)

170

You can have up to four voices, or
notes, that can be played at the same
time, numbered from 0 to 3. Each
voice is totally independent of the
others.

Pitch can range from 0 to 255,
with high C at 29 and low C at 243.
Distortion (timbre) can take any even
number from 0 to 14. The value 10
gives a pure tone, while other values

are used for sound effects Volume
SR

~ NEWY!
3-D GRAPHICS

PACKAGE FOR

ﬁTﬁRI 800

ONLY ‘1‘3 -

Photo 1

can range from 1, which is hard to
hear, to a loud 15. If you are using
three or four voices, you should limit
the total volume to 32 or less to avoid
distortion. To turn the sound off, use
the command END or set the volume
for that voice to 0.

This program will demonstrate
the range of sound available, display-
ing the value on the screen so that
you can note sound effects you
would like to use. Really good sound
effects will mix several voices.

10 FORA = 0TO 14 STEP 2

20 FORB = 0TO 255

30 SOUNDO,B,A,8

40 PRINT“SOUNDO, “;B;", “;A;", 8"

50 FORC = 1TO 250 : NEXT G

60 NEXTB

70 NEXT A

| like SOUND 0, 6, 0, 8 : SOUND 1,
21,0,8 : SOUND 2, 27,0, 8 : SOUND
3, 40, 0, 8 for an explosion, SOUND
0, 17, 8, 8 for a Phaser, SOUND 0, 30,
8, 14 for a gun shot, SOCUND 0, 70, 2,
8 for a truck motor, SOUND 0, 145, 2,
(1 to 12 to 1) for an airplane motor,
and SOUND 0, 12, 4, 10 for a machine
gun, but | am sure you will have your
own choices.

Basketball

One of the first Atari games is still one
of the best. In Atari Basketball, you use the
joystock controller to move around the
court, dribble, shoot, pass, block shots,
and steal the ball. The exceptional graphics
and animation of this game make it a
favorite demonstrator at computer stores,
so many of you have already seen it.

How well does it play? The answer is
that it is relatively easy to beat, but not easy
to trounce. The computer is set up to play
better when it is behind than it does when it
is ahead, so it offers a good challenge until

you get really good. However, once you
can consistently trounce the computer,
you’ve only begun the real fun!

The best feature of Basketball is that it
allows one to four people to play at the
same time. There are five options:

1. One player against the computer

2. Two players against the computer

3. Two players against one player and
the computer

4. Two players against two players
(no computer player)

5. One player against one player (no
computer player).

After all, if you let your best friend
play Star Raiders, it may be weeks before
you get a chance at the computer again!
With Basketball, you can both play at the
same time. Teams of two are even more
fun. This is one of the best computer games
available for more than one player.

Basketball requires one joystick
controller for each person playing and is
available for $39.95.

Warlock’s Revenge and Kayos
Dungeons and Asteroids

Warlock’s Revenge

Warlock's Revenge is an Atari transla-
tion of an Apple game, Oldorf’s Revenge.
It is another graphics adventure and
seems well done. I didn’t encounter any
bugs in my playing of it, and I had a good
time, although I have to admit I'm begin-
ning to burn out on generic adventure
games.

After a certain point, you see, I get
tired of trying to figure out which imple-
ment | must use to get past a certain
point. The game becomes boring, and
settles into mere combination testing.
While Warlock's Revenge suffers from
this malady to some extent, it isn’t nearly
as bad as some I have seen. It wins points
for this; there’s nothing worse than an
unplayable, un-figure-outable adventure.

In this game, you are leading a party
into a dungeon. You can be any of several
different types of character (cleric, magi-

SOFTWARE PROFILE
Name: Warlock’s Revenge

Type: Adventure with Hi-Res screens
System: Atari 400/800

Format: Cassette or disk

Language: Basic and machine
Summary: A good adventure game
Price: $34.95

Manufacturer:
Synergistic Software
5221 120th Ave. SE
Bellevue, WA 98006

cian, and so on), each of which has special
skills. These skills are needed to get past
a certain point in the dungeon and to
continue the adventure. Be prepared for
a great deal of testing of combinations, or
perhaps a short session of dumping the
game database to the printer. Hint: the
game is all hardcoded, with all pictures,
etc., coded into the program.

The pictures are all done in graphics 8,
the highest resolution mode the Atari has.
They seem to have had a good amount of
work put into them, and the only detrac-
tion is that in graphics 8 the Atari doesn’t
put out a solid line, it tends to candy-
stripe and change colors. This is called
artifacting and can be of use to a pro-
grammer who understands it; the folks
who did Warlock didn’t, I'm afraid, so
you would do well to turn off the color on
your TV.

The game itself is a fairly standard
adventure, with pictures at each stop and
two-word commands. It runs fast enough
and is fun to play. I recommend it and
had a good time playing it, even if (I must
confess) I have yet to completely finish it.
This one will take you more than a couple
hours to do.

In summary, while it may be “just
another adventure,” the game is a lot of
fun and good to play. Don't let the fact
that there is good competition for it worry
you; just because there are several good
games like it available, doesn’t mean this
one isn't worth getting. There aren’t yet
enough adventures on the market to
swamp it completely, so if you're into
such things, or if you would just like to
give one a try, this is a good choice.

171

Every reviewer has to fight a tendency
to be sarcastic when he discovers a game
that just doesn’t make it. The urge to
make cutting comments can be over-
powering. In this case I was going to
award the Cray-1 Speed In Arcade Games
Trophy for this game. But that isn’t how I
view the purpose of a review. I prefer to
try to make constructive comments on
games that aren’t quite right in the hope
that the author(s) will consider my opin-
ions and suggestions and, perhaps,
improve the game.

Kayos

So we come to Kayos. You've guessed
it—it doesn’t make it. It is very well done
technically. It runs faster than most, and
obviously a great deal of work went into
it. I have no complaint with it technically.
However, its human interface isn’t very
good. It is simply too fast for people.

SOFTWARE PROFILE
Name: Kayos
Type: Arcade
System: Atari 400/800
Format: Cassette or disk
Language: Machine

Summary: Good if you have
superhuman reflexes

Price: $34.95
Manufacturer:
Computer Magic Ltd.
P.O. Box 2634
Huntington Station, NY 11746

Kayos

Robots with emitter-coupled-logic reflex-
es might enjoy it, however.

When you boot it up, you see a field of
asteroids crossing space from left to
right—a complex animation task for sure;
someone worked very hard on it.

At blinding speed a series of blurry
objects comes out of the top of the screen
and dives upon your emplacement; I
could never identify what they were, they
went so fast. My average playing time
was around a minute or two, and I just
couldn’t see spending too much time on
the game.

Galaxians, and arcade games like it,
are a challenge because they are not too
fast. Much fiendish design effort went
into making them just fast enough to be
an agonizing challenge and not simply
impossible. Kayos lacks this human engi-
neering quality. It is a game sadly in need
of a few strategically placed delay loops.

Look for a reissue soon, I hope. This
could be a fun game if it were slowed to a
playable speed. O

Gamma Hockey

Getting Iced

SOFTWARE PROFILE

Name: Hockey

Type: Two player sports
action game
System: Atari 400/800 16K

Format: Disk

Language: Machine
Summary: Achieves its goal
Price: $29.95
Manufacturer:

Gamma Software
P.O. Box 25625
Los Angeles, CA 90025

Hockey, by Gamma Software, is almost
fast, never furious, and generally fun.
That’s what we—Witold, Norman, Roman
and Jason—discovered one Stanley Cup
weekend.

We loaded the game (which, by the
way, requires 16K), powered up, and the
screen beckoned with a menu of
options—nine in all. (Game durations are
three, five or eight minutes and two, three
or four people can funnel their hostile
energy into knocking a puck across the
ice.)

Norman Schreiber and Witold Urbanowitz,
135 Eastern Parkway, Brooklyn, NY 11238.

Norman Schreiber and Witold Urbanowitz

Each game begins with the last tones of
the “Star Spangled Banner,” followed
immediately by the roar of the crowd. It’s
four on four as one goalie and three free-
skating forwards go against each other.

Using joysticks the human opponents
manage the teams. With the three-player
option two (one controlling the goalie)
gang up on the third. Four-player play
brings both goalies under joystick control.
A scoreboard and clock sit at the top of
the screen.

We first selected a two-player, three-
minute game. The puck was dropped and
the two center forwards, under joystick
control, went into action. Each goalie’s
movement in front of the net correspond-
ed with up and down movements of the
joystick. The other four forwards moved
as “smart” players.

The action was intense. The hockey
puck slid and caromed across the hori-
zontal ice, and the players scrambled to
dominate the puck. Joystick control
remained with the original two until the
puck struck another player’s stick. And
voila, the joystick managed that player.
When the puck was free, the joysticks
controlled the original center forwards.
This created opportunities for some fancy
passing, a neat way to outsmart the
opponent or even oneself.

Inevitably, the action brought the play-
ers, in one Gamma glut, directly in front
of a net. A shot was taken. The goalie
edged sidewards and successfully
blocked. Another head-on shot brought

172

another block. The next try started from
the corner and homed in at a sharp angle.
It whizzed past the goalie and the crowd
roared. Players reassembled at center-ice
for a new face-off. And so on.

At game’s end, the score was tied, so
we were thrown into sudden death over-

time and given an additional three min-
utes. Unfortunately neither glorious team
could score. There was no additional
overtime, so we settled for a tie and
celebrated with a rematch.

Gamma Hockey arouses competition.
The four of us scarcely kept our tails
upon our seats as we played the game at
various angles of leanforwardness. The
value of the three- and four-player options
was that we adults could also get into the
game, rather than just hover. Actually,
the four-hand participation did make the
game that much more exciting. It is
unfortunate, however, that no solitaire

option exists. One would like to get one’s
chops together in the quiet of one’s own
fantasies.

The two teams are blue and green;
except on a black-and-white monitor in
which case they are grey and grey. You
can tell who is on first by the direction in
which the hockey stick points. The
thoughtful designer(s) made joystick-
controlled players flash when the puck
was free. However, the “smart” players
tend to flicker as they move. Consequent-
ly, there was a certain amount of con-
fusion at certain points.

Perhaps the most intriguing, at least to
reviewers, aspect of Gamma Hockey is
the slow rate at which the players move
speedily. Said nine-year-old Roman,
“Can’t you make them go faster?”

Said 35-year-old Witold, “It might have
something to do with the horizontal
movement of the game in what is basically

a vertically-structured medium.”

Norman, -41-years-old, observed that
there was no way for players on one team
to maim, destroy or righteously punish
players on the other team. (This happens
to be his favorite feature in the Activision
VCS cartridge.) And 14-year-old Jason
kept on scoring goals.

Something should be said for and
against the sound. It keeps the game going
and provides some pleasant texture for
the ongoing battle. However, after playing
12 games, one gets to feel a bit unpatriotic
at wishing the familiar notes of the
national anthem would speed up radically
(pardon the expression). Perhaps if there
were a Kate Smith voice chip things
would be different. Perhaps not.

The crowd noise, though useful, sounds
suspiciously like our television sets at four
in the morning when there’s nothing to
pick up but noise, and made us wish for a

Dolby override.

We also should note that during one of
our many games, four players suddenly
disappeared. They could not be found.
They certainly weren't in the penalty box.
They just as mysteriously reappeared in a
few seconds. We tried to render the
hockey players invisible again; and failed.
We haven't the foggiest notion why this
happened. Not even Witold has a theory.
Final note: The documentation is clear,
concise, easy-to-read, and offers some
useful tips.

Postscript: We had to go through all
the options. After all, we decided, we
really had to explore the game. We owed
that much to our readers. We would have
ended the tests sooner, but regardless of
which time option we played, the final
buzzer always went off too soon. O

The Wizard, the Princess, and the Atari

A copy of The Wizard and the Princess
for the Atari recently appeared in my
mailbox. This happened around Christmas
time, and the family was visiting. So I
decided to show them the game, and soon
the whole Small clan became involved in
playing and trying to beat it.

It took us roughly four solid days to do
50.

The Wizard and the Princess comes
attractively packaged with the disk ade-
quately protected against any but the worst
of Post Office Bend-a-Disk equipment.
The directions are on the printed folder
surrounding the disk and are clear enough.
So, you boot the disk without a cartridge,
for the game is written entirely in 6502
machine code.

This is its first plus mark. One of the

SOF TWARE PROF ILE
Name: The Wizard and the Princess
Type: Adventure game with pictures
System: Atari 800 version
Requires 40K RAM memory
Format: Disk, double sided

Summary: Very good adventure game
with graphics
Price: $29.95

Manufacturer:
On-Line Systems
36575 Mudge Rd.
Coarsegold, CA 93614

173

least endearing features of some programs
is Atari Basic, one of the slowest executing
languages ever developed. The Wizard
and the Princess runs very quickly and
with minimal delay.

Next, you boot the system, and wait for
the driver routine to load and for the disk
protection scheme to determine that you
haven’t copied the disk from someone
else. Then, you are told to flip the disk
and insert the reverse side.

Backup

The data tables, hi-res screens, and all
are on the flip side of the disk. The flip
side isn’t copy protected, and given the
amount of time the disk head spends
beating on it, it has a good chance of
failing, so it should be backed up.

The Wizard and the Princess

The folks at On-Line have thought of
this, and they provide a backup routine.
If you boot up off of the back side, you
are automatically taken to a backup
routine, which will format a new disk and
copy itself—very nicely done, very con-
venient, and very thoughtful.

The disk spends most of its time on the
flip side, and is in almost constant use
while the game is being played. This is
the only slow feature of the game. Atari
disks are 1/20th as fast as Apple disks
(serial vs. parallel) and it shows, even
though attempts have obviously been made
to minimize the problem. For example,
the W&P disk is fast-formatted to allow
faster disk access.

Snakes Alive

As we began the game, we wandered
out of Selenia northwards in pursuit of
the wizard, and immediately ran into a
rattlesnake which wouldn’t let us by.

Being an old adventurer, I knew I needed
something to get by him, but nothing I
had on me worked, so I set off south in
search of the proper object. Aha, a rock.

I picked up the rock, and died, for the
first of many times, after being bitten by
the scorpion hiding behind it.

Many hours later the family figured out
how to get by the rattlesnake; it is one of
the most difficult parts of the game.
Fortunately, the authors had included a
hint card, labeled “How To Get By The
Rattlesnake,” which helped considerably.
(Naturally, we didn't read it until we were
so frustrated we were ready to burn the
disk.)

With the aid of a good deal of mapping,
we proceeded on our way, picking up
everything imaginable.

A hint to players of this game is to
LOOK at everything you pick up; some
of the most subtle hints are there. We
hate to give away any of them, but do be
sure to LOOK at everything; we wouldn’t

have gotten stuck in a few places if we
had done so.

On the way north, we had to cross a
bridge, fend off another snake, outsneak
a gnome, figure out several magic words,
learn how to operate a rowboat (and how
to plug the hole in it), find an island, and
do many other wonderful things.

In terms of difficulty I would rate The
Wizard and the Princess right up there
with some of Scott Adams’s efforts, and
the high-res screens add a new dimension
that is a great deal of fun (even when
everything is green and blue). As I said, it
took our family four days, and that’s only
because there were many people adding
new ideas all the time; one person might
need weeks to finish this adventure.

Finally, after much mapmaking, meeting
of old peasant women, buying peddlers’
wares, and dying, we made it to the castle,
confronted the wizard, and rescued the
princess, bringing her safely back to
Selenia.

I was very surprised when the hi-res
screens of The Wizard and The Princess
turned out to consist of shades of four-
hours-of-turbulence-in-a-DC-10 Green,
Mental Hospital Blue, and you've-just-
crashed-the-Atari black. Those were the
only colors, although some of them were
shaded by interspersing dots with other
colors. This was very disappointing. How
could it be?

This color business annoyed me a great
deal. I have put 128 colors of all sorts of
neat red, green, blue, and orange shades
onscreen, making full use of the abilities
of the Atari, and the authors appeared
not even to have tried to take advantage
of these same abilities.

The reasons behind the displayed colors
are rather complex and worth pursuing,
for other games will suffer from the same
malady: it is the effect of a new graphics
chip on what is known as “artifacting.”

In graphics 8, a single dot by itself will
appear to be either blue, red, or white,
depending on where it is written and its
proximity to other dots. (And here you
thought graphics 8 was a single color mode,
like the book said).

This happens because of “artifacting,”
which I understand to be the Atari running
the TV out of resolution and ending up
with a color other than what is normally
output. With careful use of graphics 8,
one can get four colors in this hi-res
mode.

The authors of The Wizard and the
Princess originally wrote it for the Apple,
which has a 280 x 192 screen. So the
tables for the hi-res drawings were scaled
appropriately. The two highesi-resolution
modes of the Atari are graphics 7 plus,
with 160 x 192, and graphics 8, with 320 x
192. In graphics 7 plus, various colors can
be plugged into the color registers; in
graphics 8 the colors result from artifacting.

The person who translated this program
from the Apple to the Atari had the choice
of scaling down all the tables to 160 x 192
and using graphics 7 plus, or using graphics
8 with artifacting and the table data un-
changed. He chose the second approach,
so the colors are the result of artifacting.

Other manufacturers use this approach,
as well. For example, Jawbreakers uses
artifacting to color the playing field. The
problem comes when artifacting is used
with the GTIA chip, a new graphics chip
recently released by Atari. The GTIA
chip replaces the CTIA chip; both are
the essential color television driver circuits
for the Atari.

The GTIA has more graphics modes,
and in my experience, gives a sharper
display, than the CTIA. As of January
1981, Atari has shipped all Atari 800s
with the GTIA chip.

There is just one drawback: the GTIA
artifacts differently from the CTIA chip,
and The Wizard and the Princess was
written for the CTIA chip. Sandy and 1

Chameleon Chips: CTIA and GTIA

had a GTIA chip in our Atari, so instead
of the colors the author used, we got the
particularly grim shades of green and
blue.

I called On-Line and mentioned the
problem. A fix was already in the works
for GTIA machines. In the new version
(which 1 haven’t seen) a box is drawn
onscreen and the player is asked if it is
green or orange. Depending on which
chip is installed, it will be one of those
colors. The program then generates the
correct colors from the color tables based
on that information.

I mention all this about the GTIA chip
because there may still be some of the
older Wizard and the Princess disks being
sold. If you have a new Atari, you will get
a GTIA chip and the same terrible colors
with an old version of the game. However,
the people at On-Line are friendly and
willing to swap disks if you have a GTIA
chip, and don’t want to see green.

Atari is making the GTIA chip available
to CTIA machine owners. The upgrade
will be performed at Atari service centers,
or you may choose to buy the chip outright
to do the installation yourself. Atari owners
choosing this option should be aware that
removing the bottom cover may void all
warranties. To obtain the address and
phone number of your nearest Atari service
center, you can call Atari at (800)538-
8547 (outside California) or (800)672-1430
(in California).— DS

174

We are still waiting for our half of the
King's land, though.

Features

The hi-res pictures are good, often with
good detail on them; the ideas are original,
and require some thinking, which is also
good; and the implementation is generally
good, even if it is bit disk-dependent. There
is something to be said for the idea that
text-only games force you to use your
imagination more than the versions with
pictures; we enjoy them both.

There is a very nice “save game” feature
which allows you to save the game at any
point. You put in a blank disk, and type a
letter, A-L, which labels the saved version.
At any point thereafter, you can RESTORE
GAME to any of the saved versions.

The ability to save multiple versions on
one disk is very nice (Scott Adams take
note) and we used it a great deal. You
can even initialize a new disk from inside
the game—a very professional touch.

One Big Complaint

Now for the complaints. I have one
major complaint about the game, and it is
a very subtle annoyance. Like most minor
irritants, however, it builds up over time
until it gets to the point where you can’t
stand it anymore.

Unlike a really gross deficiency in the
game, such as an execution error or
problem of that sort, this one takes a
while to get on your nerves, but its effect
is devastating.

The game has a four-line window at the
bottom of the screen, in which all displayed
text is shown. Often the text won’t fit into
four lines, so the authors have the machine
pause in the middle and wait for a Return

keypress. After that keypress, the output
continues. If you press any other key but
Return, you get a beep. This is a particularly
awful sound, which makes you suspect
that the POKEY sound chip is being
flogged.

The beep is to let you know that what
you are typing—typically the next com-
mand—isn’t being accepted by the ma-

il

i

T

chine. It lets you know that the machine
wants a Return before you can go on. No
other key will satisfy it.

It is particularly irritating when the ouput
from the machine finishes midway through
the four-line text window. You assume it
has said whatever it had to say (“The
peasant woman warns you of a giant in
the mountains”). So you would begin to
enter a new line, and are rewarded with
this awful beeee —eee —eeep.

You must then patiently hit Return and
start all over.

“Frustrating” isn’t the word. “Annoying”
isn't, either. After the eightieth time it
happened, I gave up and stomped off. My
sister Diane, who is the epitome of patience
and calmness, took over. She lasted until

the hundredth beep at which point we
had to restrain her from throwing the
Atari into the TV.

Our nerves grew jangled. Our parents
left for a nice, long, soothing walk away
from the noise. Sandy and I started snarling
unprintable things at each other. The dog
began to howl after each beep.

Finally, I couldn’t handle it anymore.
So I went to my tool kit, almost picked up
a hammer, but decided that there was a
better way. I got a screwdriver, removed
the bottom cover, and disconnected the
speaker.

Once the speaker was disconnected
(Remove the five lower screws on the
Atari, pull the speaker plug off the jack,
and reassemble), things improved. The
whole mood of the family changed. Our
parents returned. I gradually regained my
sanity. Diane became calm, cool and
collected once again. The dog even shut
up. And we realized just how much the
sound had annoyed us.

After this change, we settled down and
really got to work. We enjoyed it im-
mensely. The family’s computer experience
rated from very high to none, and all
enjoyed the game equally. (In fact, those
with the least experience often supplied
the ideas to get around obstacles.) And
after four days, we finally won.

We recommend it to Atari owners who
want to try their hands at a little classic
adventuring. We also recommend a phillips
head screwdriver, to disconnect the speak-
er, if the beep feature hasn’t been
changed.

But all in all, it was a lot of fun to play,
and well worth the price. Of the adventures
available today, it is unique and very
interesting—a real challenge. O

Graphics Adventures on the Atari

Adventure games, an established and
popular genre among microcomputer
enthusiasts, are generally divided into two
categories: text adventures and graphics
adventures. This dichotomy seems clear
enough: a text adventure uses words alone,
similar to books or radio plays. to create
a picture in the mind. A graphic adventure,
in contrast, draws these pictures for the

John Anderson is an associate editor for
Creative Computing magazine.

eye. Each category claims its own adher-
ents.

Text adventure aficionados assert that
only verbal descriptions can provide a
satisfactorily rich level of story telling, as
they leave most of the visualization to
imagination. For these people, a good
adventure is like a good book —a reading
experience.

Graphic adventure chauvinists point out
correctly that text adventures employ a
very static screen display. This is wasteful,

175

John Anderson

they argue, in light of the capabilities of
microcomputers. Graphics potential (and
sound potential, for that matter), should
not be left unexploited by the adventure
program. Each faction has a well-taken
point.

The fact is, however, that the division
between text adventures and graphic
adventures is not nearly as sharp as this,
and some of the most interesting develop-
ments in microgames are taking place
between the two poles. All graphics

Graphics Adventures

adventures employ text to one degree or
another—either to augment the graphic
display or as the basis for graphic aug-
mentation. Let's examine these approaches
more closely.

One method of constructing graphic
adventures might be called the illustrated
text adventure. This employs all the normal
conventions of a text adventure, including
text command input, though the text may
be less descriptive and more to the point.
In addition to this, the player is provided
with an illustration of his or her current
position via a high resolution picture. These
are stored on disk and are called out as
necessary by the main, text-oriented pro-
gram.

The simile is close to the idea of a
comic book. Each piece of the story has
its own “frame" of picture and text. The
point of view is that of the central charac-
ter—the player sees the locations as if he
were there.

Another approach results in the mapped
adventure, wherein the player or players
appear as symbols on a map. This map
depicts the details of the location, indicating
the type and placement of terrain, walls,
objects, and enemies, among other things.
Player movement is input through keyboard
or joystick. As a character reaches the
border of a screen map in any direction,
either the screen begins to scroll in that
direction, or a new location map is drawn.
This creates a more omniscient perspective,
with the player looking down on his
character’s movement from above.

Typically this type of adventure does
not allow text input, but limits the player
to a certain number of possible contin-
gencies in a menu or command format.
The comparison between text adventures
and mapped adventures is close to that of
a fill-in-the-blank vs. a multiple-choice
test.

Text adventure enthusiasts feel the menu
format is restrictive—one can only choose
to move or stand still, flee or fight, take
or drop, and so on. The mapped adventure
began as an outgrowth of a certain fantasy
role-playing game whose name we are
not permitted to print. One obvious
advantage of this format is the capability
for multicharacter play.

Until quite recently, the preference
boiled down to a choice between the
classic-style text adventure game and the
fantasy role-playing adventure. However.
hybrids are now being developed that now
provide both types of enjoyment.

Truly hybrid adventure games of the
future will offer the best aspects of all
approaches to computer gaming. Textual
description will provide detailed back-
ground and help set the mood. Maps will

be available to indicate position (except
in areas still unexplored). Computer graph-
ics and sound will be called on where
appropriate to animate action sequences.
Arcade-style challenges will become part
of the stories, calling for feats of coordi-
nation before the plot advances. And it
won't be too long before the videodisc
becomes a necessary peripheral for state-
of-the-art adventuring.

This is still a ways off in the future.
That is quite enough background. however.
to examine the spectrum of graphic ad-
venture software currently available for
the Atari.

Mission: Asteroid

In the arcade game Asteroids, you use
hand-eye coordination to zap as many
asteroids as possible in the few minutes
you are allotted. In Mission: Asteroid,
your job is to destroy just one asteroid,
and you have several hours in which to
do it. The game allows you to input two-
word commands, and displays a high
resolution picture for every location, with
a four-line text window at the bottom of
the screen. Pressing return without entering
text will kill the picture momentarily. giving
you a chance to recall the last 24 lines of
the text that have scrolled by. Tap return
again and the picture will reappear.

The plot line of Mission: Asteroid is
pretty easy to follow; it was designed as
an introduction to a series of “Hi-Res
Adventures™ of much greater complexity.
That is not to say that the game is easy to
solve —it’s not.

Briefly described, you are an astronaut,
who is sent into deep space to destroy an
asteroid headed toward earth. You have
only a limited amount of time before the

SOFTWARE PROFILE

Name: Mission: Asteroid (Hi-Res
Adventure #0)

Type: Space Adventure

System: 40K Atari 400/800

Format: Disk

Language: Machine

Summary: Introduction to a series
of graphic adventures

Price: $24.95

Manufacturer:
On-Line Systems
36574 Mudge Ranch Road
Coarsegold. CA 93614

176

asteroid collides with earth and the game
is over.

It is interesting to gauge the reactions
of text adventure buffs to the over 100
pictures on the disk. Some enjoy them
thoroughly, others use them as mnemonic
devices, which eliminate the necessity to
map the adventure on paper. Still others
find the pictures a questionable, if not
downright distracting, addition. The pic-
tures are well-done—obviously a lot of
time was spent executing them. They are
pretty, but they do not achieve even the
quality of a well-drawn comic book. This
leaves me a little dissatisfied. I think it is
fair to ask of any graphic adventure game:
How well would the adventure stand on
its own, if we were to delete all the pic-
tures?

NT
YOU ARE ON THE AIRFIELD. YOU SEE A
ROCKET IN THE DISTAMNCE.
Y=? ENTER COHMAHD?H

Mission: Asteroid.

In the case of Mission: Asteroid, the
plot line is kept intentionally simple, as it
is intended to be an introduction to a
series of graphic adventures, and it is an
enjoyable program. As such, it would not
be really entertaining without the pictures.
The graphics serve to enhance the overall
effect, but are unable to enrich the story
significantly. In the intricate and involving
stories of other adventures in the series,
they stand a better chance of achieving
this goal. I am certainly among those who
feel illustrations can improve text adven-
tures.

Apparently so is Scott Adams, who is
in the process of re-releasing all twelve of
his now-classic adventures as illustrated
text adventures.

Ali Baba

Ali Baba and the Forty Thieves attempts
to move beyond the illustrated text ad-
venture. It was designed for the Atari, in
contrast to Mission: Asteroid, which is an
Apple translation. The game makes use
of some of the special features of the
Atari, such as multi-channel sound. It is
an example of a mapped adventure,
wherein players are depicted on a multi-
colored map. As the players move to new

SOFTWARE PROFILE

Name: Ali Baba and the Forty Thieves

Type: Mapped-style graphic
adventure

System: 32K Atari 400/800

Format: Disk

Language: Machine

Summary: A fantasy role-playing

adventure with some
new ideas

Price: $32.95
Manufacturer:
Quality Software
6660 Reseda. Suite 105
Reseda. CA 91335

locations, new areas of the map are dis-
played.

When you first sit down with Ali Baba,
you may not get up for several hours. The
game shows strong potential when you
see it for the first time. It allows for a
total of 17 characters to participate si-
multaneously in a search to rescue a
kidnapped princess.

This adventure leans heavily in the
direction of a fantasy role-playing game,
assigning weights to the attributes of each
character.

From my experience, this makes for a
much more lively game when friends are
sitting in. Instead of everyone in the room
discussing what the sole character in a
text adventure should do, everyone can
be his own character, interacting within
the adventure as well as with each other.
The discussion takes on new depth as
individuals decide what course to take
for themselves.

In Ali Baba you can choose to become
one of the set of humans, elves. halflings
or dwarves that are profiled in the extensive
documentation that accompanies the game.
Each of these sets of beings is represented
by a different symbol on the screen. Using
the keyboard or joysticks to input move-
ment, players can explore the caverns.
palaces. passages. and treasure rooms of
the game —and happen upon the dangerous
inhabitants therein.

The game is immediately addictive, and
is really tough. The first thing the novice
should do is turn the “monster recurrence”
level down to zero. This will keep him
from becoming utterly bogged down in
fending off attackers.

You'll spend hours wandering around,
acquiring treasures, buying weapons and
armor, fighting enemies and thieves, and

searching for the princess. Characters can
be reincarnated if they are snuffed out,
and reinforcements can be called in when
the going gets really heavy.

As in other role-playing games, each
character has unique attributes. Elves are
fast and hard to hit; dwarves are slow and
clumsy but when they connect they pack
a heavy blow. This richness of character
is the strong point of the game.

The adventure has some other interesting
features. It can be configured to play
through nested menus, controlled com-
pletely by one or more joysticks, eliminating
keyboard entry completely. Characters
can be retired as well as reincarnated,
and in fact Ali himself can be retired if no
one wishes to take his role. Characters
other than players wander through the
game, and will sometimes attack each
other, allowing players to make a fast
getaway. The map graphics, Arabic-style
typeface, music, and sound effects are
quite good.

The problem with Ali Baba is the way
it ends. After much exploration and
fighting, you will discover the princess,
and fight valiantly to return her to the
king. When you manage to do so, the
king thanks you. gives you some gold,
and invites you to go back to amass more
treasure. And that's it. It's a rather sudden
let down. and it leaves players without
the feeling they have mastered a difficult
puzzle.

8T) R OBSIC M

e 3 LA

Ali Baba.

The documentation states that Ali Baba,
himself a relatively weak. slow, and un-
skilled character in the adventure, can
reach and rescue the princess unaided,
and without once raising his sword to
fight. As it still seems impossible to me
after several hours of trying. this poses
the challenge of a real puzzle. Realizing
how much more fun it is to play this type
of game with other people, I think it's a
shame that the challenge evaporates so
quickly in the multiplayer game.

Still. fans of role-playing games may
really enjoy Ali Baba. It employs some
nice concepts in its execution. For those

177

protracted sessions, multiple games can
be saved to disk.

Action Quest

Purist adventurers who feel arcade games
are beneath them may wince at the
inclusion of Action Quest in an article on
adventure games. It is, in fact, a rather
radical departure from the format of
traditional adventure games. Action Quest,
despite the uninspired title, deftly exhibits
some of the qualities of the mapped
adventure: it draws a map of current
location, provides a running status report,
and aliows character movement to be input
by joystick. Pull on the stick, and your
character scrolls smoothly across the
screen. Head for a portal, and a map of
your new room location appears on the
screen. But the game transcends the typical
adventure from here on in.

SOFTWARE PROFILE

Name: Action Quest

Type: Arcade/Adventure

System: 16K Atari 400/800

Format: Cassette/disk

Language: Machine

Summary: Unique attempt to merge
two types of games

Price: $29.95

Manufacturer:
JV Software
3090 Mark Avenue
Santa Clara, CA 95051

Action Quest is a one player arcade-
style game within an adventure format—
and it is addictive, well-paced, and fun.

The game is divided into five levels of
six rooms each. If you complete all the
required actions of each room. including
gathering treasures, completing obstacle
courses and traversing mazes, you may
advance to the next, more advanced level
of play.

You encounter numerous monsters,
dodge bullets, run through rooms with
walls closing in on two sides, and happen
upon mystifying puzzles that must be
solved. You carry a gun which you aim
with the stick (this takes time to master),
and while without it you wouldn't last too
long, I still would not call this a “shoot-
‘em-up” type game. You have ten lives,
which is not as generous as it sounds,
considering the rate at which you expend
them.

Graphics Adventures

Each room has a name, which gives a
clue concerning what you need to do to
get through it. The only problem is that
by the time you have read the name for
the first time, you may already have been
skewered by some bizarre creature.

You play against the clock as well as
attempting to get through as many levels
of the game as you can. This ensures you
may still enjoy the game even after you
have completed the adventure. I do not
wish to instill the idea, however, that you
will get all the way through Action Quest
in any short amount of time. Mastery
requires the acquisition of some formidable
skills. At the end of the game your score
is tallied, and you are assigned a rating on
the basis of time used, lives expended,

Action Quest.
and treasures amassed.
Perhaps it is a stretch to label Action
Quest as an adventure game, but it is an
exciting move in the right direction. The

game is strong in one of the fundamental
aspects of computer gaming: building
toward a goal.

Though the sound is somewhat unso-
phisticated, the graphic animation is well-
executed. Your character is an undulating
ghost, and as remaining in one room for
too long can be fatal, it begins to fade
slowly when you enter a room. If the
ghost disappears completely, it costs you
a life. Sometimes you must shuttle between
rooms quickly to avoid “suffocating™ in
this manner.

The author of Action Quest has indicated
that a sequel with greater challenges, as
well as more sophisticated graphics is in
the works. I, for one, am looking forward

to it. O

Cypher Bowl and Krazy Antics
Gridiron Action and Antics Wayne Hixson and Sheldon Leemon

Cypher Bowl

“OK, Hixson. Zorn’s hurt and out for
the rest of the game. You’re our man—
now go out there and get 7!”

“Coach, you can count on me...
Guys, its a 32 Up and Out. Largent, I'll
be looking for you at the five. Break!”

A wild fantasy from the deranged
mind of a short, slow, and (slightly)
overweight sports nut? Not entirely —
not with my Atari 800 and Cypher
Bowl, an excellent two-player football
game program by Bill Depew. Now we
would-be jocks can step into the elec-
tronic shoes of a Jim Zorn, a Walter
Payton, or a Jack Lambert to live our
fondest fantasies in perfect safety. No
injuries, unless you count acute “con-
troller thumb,” a malady now surpassing
tennis elbow in popularity.

Cypher Bowl is attractively packaged
in a sturdy, colorfully illustrated box.
Both cassette and diskette versions are
included (they are the same). The docu-
mentation is very good. The user manual
explains the game clearly and gives good
tips on playing techniques. Two play-
cards are included, laminated in plastic
to withstand a lot of handling. Each
playcard includes the offensive and

Wayne E. Hixson, 115 NW 39th Street, Seattle,
WA 98107.

Sheldon Leemon, 14400 Elm St., Oak Park,
MI 48237.

defensive formations and plays. Sketches
of each play show the patterns that the
receivers, blockers, and defenders will
run.

Once you have read the instructions
and studied the plays, the game can
begin. The program is self-booting and
no cartridge is needed. The opening dis-
play is of the title, manufacturer,
copyright notice, and a portion of the
field. The crowd roars, and you re ready
to go! Pressing any key turns on the
standard display.

In the center of the screen are the field
and the two five-man teams. You have
a blimp’s-eye view of the field, which
runs vertically on the screen. The view

SOFTWARE PROFILE

Name: Cypher Bowl
Type: Football Simulation
System: Atari 400 or 800, 16K
Format: Disk or Cassette
Language: Machine language
Summary: Excellent combination

of strategy and action
Price: $49.95
Manufacturer:

Artsci, Inc.

10432 Burbank Blvd.
N. Hollywood, CA 91601

178

is always centered on the ball. About
30 yards of the field are visible. The
score, quarter, and time remaining are
displayed on the top of the screen. On
the bottom are the down, yards to go,
and the time-outs remaining.

The game is played in four simulated
8-minute quarters. There is no kick-off.
The blue team starts with the ball on
their 20-yard line, with the white team
defending the top of the screen. Each
player begins by selecting one of four
formations from the playcards. On
offense, you can spread your receivers,
or play them in tight. The defense can
put everyone up front, or drop up to
three players back to play pass defense.
After both have chosen, the teams move
into position.

The players scrutinize each other’s
calls, then pick one of four possible
plays allowed for the particular forma-
tion. Offensive possibilities range from
quick openers to the bomb. The defense
can opt for a strong pass, strong run, or
balanced defense. What you choose
depends on the formation your opponent
unveils. For example, if you call a
defense strong against the run and the
offense deploys in a spread formation,
you can still make the best of it by call-
ing a zone defense to protect against the
probable pass. However, your chances
are poorer than if you had elected a
strong pass defense formation to begin
with.

This method of play calling is well
thought out and superior to the other
games I have played. Both players have
options after they see the other’s call,
instead of the defense only.

Another nice touch is the way Cypher
Bowl handles the 30-second clock.
There is no delay of game penalty, but
the clock is automatically stopped after
30 seconds until the play commences.
The Cypher Bowl clock also stops
between quarters, for the two-minute
warning, for time-outs called by the
players, and on incomplete passes and
out of bounds plays.

After selection is complete, play is
initiated as the offensive player moves
the joystick. Instantly, the scoreboard
information disappears and your view of
the field increases to fifty yards. This is
especially nice on pass plays, as the
receivers would soon run out of view
otherwise. During play, the offensive
player controls the quarterback or the
receiver, whichever has the ball.

As the manual points out, it is easier
if you visualize yourself as controlling
the ball, with the player coming along
for the ride. On defense, you control the
middle linebacker. The remaining eight
players are controlled by the computer,
following the patterns shown on the
playcard.

Think about that for a moment. A
total of ten players, moving in individual
patterns. How? Aren’t there only four
players in Atari Player/Missile graphics?
Yes, but Cypher Bowl shows just what
a good programmer can do with this
system. In order to get more than four
players, single players are moved to dif-
ferent screen locations between TV
frames, every 1/60 second. The images
alternate so fast that the eye can’t dis-
cern the change, except for some minor
flickering.

As a result of the individual control
of each player, blocking, passing, and
pass coverage patterns are exceptionally
realistic. If you make the right call,
your left end will take the right line-
backer out of the play and leave a hole
a truck could drive through. However,
if your opponent outguesses you and
fills that area, you will be lucky to get
back to the line of scrimmage.

Cypher Bowl excels in its simulation
of the passing game. This was also the
hardest part of the game to learn. Not
only do you have control of passing
direction, you must also control distance.
In the other games I have played, a
thrown ball will travel indefinitely, until
it hits a receiver or defender, or goes
out of bounds. Any eligible receiver

(offense or defense) in the path of the
ball will catch it, whether 6 or 60 yards
from the quarterback.

Cypher Bowl adds a third dimension
—height of the ball above the ground.
Now you can throw the ball over the
head of the defender. Of course, this
also enables you to overthrow your
own man, which I have been able to do
very consistently. A pass is launched by
pressing the joystick button and pushing
the stick toward the target. The distance
is determined by how long you hold the
button down.

The height of the ball cannot be shown
on the screen, so sound is used. A rising
tone indicates a rising ball, and vice-
versa. Once thrown, you can control the
direction of flight with the joystick to
“fine tune” it to the receiver. I think that
this is one weak point of the program.
The ball is too controllable. You can
start it toward one sideline and then
steer it clear across the field, or even
reverse it back toward the quarterback.
The magnitude of control should be
reduced to a little nudging.

Another superior feature of Cypher
Bowl is the option to throw to either of
two receivers on most plays. You also
have some control of the receivers on
pass plays. Once the ball starts its
downward flight, pressing the joystick
button causes the receivers to break off
their patterns and move back toward the
ball.

As you can imagine, orchestrating all
this activity in the period of about two
seconds requires a lot of practice, but
what a feeling when you float the ball
over an onrushing linebacker to the tight
end cutting back in front of the safety.
A caution—there is only a five to seven
yard window in which the receiver can
catch the ball. If you overthrow, the
defender is likely to get it.

You might think all this control would
make an accomplished player unstop-
pable. Not so! This game provides a
few tricks for the defense as well. If your
defensive linemen get within a few yards
of the quarterback before he throws, the
ball will be batted down. Once the ball is
in the air, you can make your defensive
backs cut toward it by pressing the joy-
stick button. All in all, the offensive/
defensive balance is good.

The kicking game is good. The ball is
kicked by pressing the button. Instead of
going a random distance, the longer you
wait before you press the button, the
farther the ball will go. A split second
too long, though, and it will be blocked.
There is no difference between a field
goal and a punt. If the ball goes between

179

the uprights, it’s worth 3 points.

I have played Cypher Bowl for over
30 hours now, and the more I play, the
more I like it. The realism is a step above
the other games I have played. The
graphics, in spite of the lack of detail, are
quite good. Player/Missile graphics,
fine scrolling, and mixed modes are used
very effectively. The animation is both
smooth and fast.

The playability is good, and it’s not
an easy game to master. I'm still below
50% in the passing game, but I'm getting
better. I think it is this continuing chal-
lenge in any game that keeps you playing
it, along with the fun.

In summary, this is a worthwhile
game. If you’re a “‘stats junkie,” it
probably won’t be your cup of tea, but
if you like a sports game that makes you
think and participate, I believe you’ll
love this one.

Now, guys, how about a solitaire
version? I have a hard time finding
opponents during my normal game-
playing hours. —WH

Krazy Antiks

Don’t be confused by the pun. The
Antic that everyone associates with
Atari computers is the support chip that
makes possible the superb graphics
needed for all of those neat arcade-type
games. The Antiks in the title of this
product refers to the insect you need in
order to have a picnic. When the two get
together, you wind up with a neat
arcade-type game with great graphics,
and everyone has a picnic.

Krazy Antiks is the fourth game car-
tridge released for the Atari 400/800
computers, and it bucks the trend of
“me-too” arcade-style games. Lately it
seems that everyone is trying to cash in
on the arcade craze by serving the
warmed-over remains to computer
owners. Even K-Byte’s earlier ventures
into game programming tended to follow
the heavily beaten path. But Antiks has
just enough of a twist to be considered a
new idea in a market saturated with
retreads.

Krazy Antiks

I must concede that the locale of the
action is nothing novel —the ant hill in
question strongly resembles the type of
maze used in any number of games
spawned by that prolific procreator,
Pac-Man. But the scenario is a fresh one.

You play the role of the White Ant,
and your purpose is one familiar to
students of biology —to perpetuate the
species. You start the game with about
30 eggs, which represent your capacity
to reproduce, at the bottom of the screen.

Arrayed against you are several
adversaries. First, one ant each of the
four basic ant types —yellow, blue, green,
and red —circulate around the maze,
trying to devour you. Another natural
enemy is the dreaded anteater, who
strolls into the picture every so often
and sticks his tongue into the anthill,
sucking up friend and foe, ant and egg
alike. Finally, periodically a rain shower
turns the lower part of the anthill into a
disaster area, minus the federal aid.

With the odds against her, the lone
ant has little chance for survival. For-
tunately, if she can find a safe place in

the maze in which to lay an egg where it
will not be eaten by another ant, after
she is gone, the egg will hatch, and
another white ant will take her place.
Moreover, she has a weapon she can use.

The other ants are busy laying eggs
also, and when she eats one of theirs,
she begins to glow, letting you know
that the next egg she lays will be deadly
to the other ants, if laid directly in their
path. At each level, play continues until
the white ant is killed, without leaving
any eggs in the maze, or until all four of
the other ants have been killed without
surviving offspring.

If the latter occurs, the game proceeds
to the next level, and four new enemy
ants come marching in to the tune of
“When Johnny comes Marching Home”
(which some like to think of as “The
Ants Go Marching Two by Two”).

Each maze has 99 levels of difficulty.
If that fails to provide enough variation,
there are six different maze configur-
ations to try out.

Krazy Antiks rates a high score for
playability. Even an experienced player

SOFTWARE PROFILE
Name: K-razy Antiks
Type: Arcade
System: Atari 400/800 16K
Format: ROM cartridge
Language: Machine
Summary: Puts ants in your pants
Price: $39.95
Manufacturer:

CBS Software
Columbia Group, CBS Inc.
Hagerstown, MD 21740

can get caught early on by a freak acci-
dent, which inevitably leads to “‘just one
more” game. There is a pause option,
for those disturbed by the inconsiderate
intrusions of friends and family. Unfor-
tunately, there is no multi-player option.
But if you don’t mind going it alone,
you’ll bless the day when ant met Antic.

—SL

Not Just Fun in

Of all microcomputer inamorati, Atari
owners probably take game programs most
seriously. They are jaded; it’s tough
impressing the crowd for whom Star
Raiders is invariably among the first
programs ever booted. They expect more.
Their machines, after all, were designed
by games experts and exhibit advanced
gaming capabilities. These capabilities are
only now being fully explored, and are
evolving, by leaps and bounds, into an art
form.

Games offer an interactive and involving
means by which to demonstrate strides in
color graphics and sound synthesis. In
the process, they afford a great deal of
creative freedom to the programmer, not
to mention hours of fun for the player.
Still, a majority of Atari owners do not
consider games mere [rivolity. A swiftly
growing market attests to this.

This has led to at least two identifiable
results: an explosion of third-party software,
some showing real promise, and translations
of first-rate Apple programs for the Atari.
We shall examine several of these here.

John Anderson is an associate editor for
Creative Computing magazine.

Games

Protector

I should provide a little background
concerning this program, as it has an
interesting past. Toward the end of last
year, I reviewed a version of Protector
written by Mike Potter and released by
Crystal Software. The review, which
appeared in another magazine, took the

-

SOFTWARE PROFILE

Name: Protector

Type: Arcade Game

System: Atari 400/800 32K

Format: Cassette or Disk

Language: Machine

Summary: Compelling and Addictive
Price: $29.95

Manufacturer:
Synapse Software
820 Coventry Rd.
Kensington. CA 94707

180

John Anderson

program to task for a number of flaws,
“quirky bugs,” and disappointing features.
This was unfortunately true of the Crystal-
ware version, and ruined an otherwise
promising game. It was mysterious to me
why an inspired program employing so-
phisticated techniques should be released
in such a state.

The reason surfaced early this year,
with the release of Protector from Synapse
Software, Mr. Potter's new employer. It
seems that when Mr. Potter left, his old
company decided to market his as-yet-
unfinished program. The Synapse version,
I'm happy to report. not only corrects all
the faults of the earlier version, but includes
several new features, and to top it off.
costs less than its predecessor. Needless
to say, steer for Synapse Protector and
away from any other.

The game is one of the most polished
efforts I have seen from a third party
source. It is exceptionally dramatic in its
graphics and sound effects, and the ani-
mation is mirror smooth.

A great deal goes on in Protector, and
mastery of the game requires a substantial
amount of time. The game is roughly

modeled after the arcade game Defender.
As the pilot of your rocket fighter, you
encounter pulse-trackers, meteoroids, laser
traps, a volcano, an evil alien ship, and 18
people in desperate need of your help.
You must maneuver your ship so as to
airlift these people from their beleaguered
city to the City of New Hope, and from
there to safety in an underground for-
tress.

You must act before they are heartlessly
dropped into the volcano by the tractor
beam of the alien ship, and before the
volcano erupts and destroys the City of
New Hope. You must also watch the fuel
tank —and sometimes face the decision
to refuel or to save some lives at the cost
of your own. You can not always do both.

By far the best thing about the game is
the horizontally scrolling terrain graphics.
The overall goal is to create a “micro-
world”—a fantasyland one screen high by
four or five screens long. Fine scrolling
and player/missile techniques are employed
to very pleasing effect. For demonstration
purposes alone, this program is worthwhile.

Protector.

Sound effects add much to the illusion,
and the title music is quite good.

The feeling of flight is accentuated as
you dive to the rescue. Time ticks off as
the indestructible alien saucer beams the
victims up. Pulse trackers nudge danger-
ously close. Careful when you return fire:
their favorite trick is to get you to hit
innocent bystanders.

If you get all the remaining people to
the City of New Hope, you can then move
them through the laser field toward your
goal. You must then watch for laser bases
and meteoroids. When fuel runs low you
must return to base to refuel. Docking
can be a tricky and sometimes fatal task.

The game is paced into six levels of
difficulty. graduated to present more
aggressive aliens and more complex ar-
chitecture through which to navigate. The
merest graze of scenery, pulse-tracker,
meteoroid, laser fire, or tractor beam,
and you go down in a dizzying spin. An
ambulance shoots out immediately to drag
you away —what'’s left of you, that is. Better

luck with your next ship.

I have very few reservations concerning
Protector. As soon as a level loses its
challenge. you may advance to the chal-
lenge of a new level. The highest level is
very tough indeed. You may get a little
tired of hitting things after a while, but
after all. that's your own fault, right? Next
time, be more careful.

Chicken

Mr. Potter has also created a children’s
game which will keep many adults busy
after the kids have been tucked in. Chicken
may be played with a joystick, but the
responsiveness of a paddle is recommended
to really rack up a score. Conceptually
close to the arcade game Avalanche, the
object is as follows: you, as chicken, must
catch in your cart all the eggs dropped by
a fox scampering across the top of the
screen.

If you miss an egg, it hits the ground
and cracks, and a peeping chick appears.
As a chicken, you must fight back the
instinctual urge to sit on the eggs you
drop—an understandable but annoying
habit. The trigger allows you a fluttering
leap over the chicks in your quest to
catch more eggs.

This may sound somewhat bizarre, and
in fact it is. But it is also guaranteed to

—
SOFTWARE PROFILE

Name: Chicken

Type: Arcade Game
System: Atari 400/800 16K
Format: Cassette or Disk
Language: Machine

Summary: Silly, but fun—kids will
love it

Price: $29.95
Manufacturer:
Synapse Software
820 Coventry Rd.
Kensington, CA 94707

bring a smile to your face as well as to the
kids' faces. As rounds progress, the action
becomes more and more [renetic, with
laughter as result. A recent competition
among adults playtesting caused a bout
of hysteria. It felt very good.

If you do plop down on a chick, a huffy
farmer strides across the screen and gives
you the boot. The addiction level is high,
and the game is refreshingly violence-free.

181

By the time you have caught 40 or 50
eggs, your reasoning powers are on the
wane. Ever hear the term “twitch game?”
This game may be its namesake.

There is a dumb problem with Chicken,
but it is worth mentioning. In an effort to
make the game playable with stick or
paddle, only one controller port is used.

EGiS COlG
SCORE:- 0661

Chicken.

This means you must pass one paddle
between players. This is by no means a
major complaint, it just makes the game a
bit less than it might be. The graphics and
sound in Chicken, like those of Protector,
are superlative, complete with barnyard
music, the plop of dropped eggs, the
peeping of chicks, and the fluttering of
wings in a futile stab at flight. I've had an
opportunity to learn about Mr. Potter’s
latest work, now in progress. I've promised
not to spill a word, but I will tell you it
sounds incredible.

Threshold

If T can get my wife to stop playing
Chicken, I'm likely to take another shot
at Threshold, which probably stacks up
as the best “Galaxian-style™” invaders game
to date for the Atari. Atari owners will
happily note that Threshold has been
translated from the Apple, and that On-
Line Systems is in the process of translating
many of its popular Apple programs for
the Atari. Also, new translations of best-
selling Apple games are now available:
Apple Panic, Raster Blaster, and Crossfire,
to name a few. The translations of these
games are at least as good, if not better,
than their original versions. Threshold uses
player/missile graphics, and Raster Blaster
makes use of multi-channel sound.

Threshold is in the venerable tradition
of laser-fire space wars (kill, kill, kill!)
and it is superb. The alien waves in this
game are ever-changing and wonderfully
despicable. Your ships are armed with
lasers and hyperwarp drivers that can
temporarily slow down time, giving you a
better chance to target the enemy. Your
arsenal has limitations, however. The lasers

Not Just Fun in Games

can overheat and will shut themselves
down until sufficiently cooled. You may
invoke hyperwarp only once per ship, and
each ship has a limited fuel supply. As for
maneuverability, have you ever had the
misfortune to be driving a power-steered
vehicle that stalls while you're driving?
That's the way the stick feels in
Threshold.

HOT FUEL
SCORE
001400

Threshold.

The line between utter frustration and
total addiction is a thin one, and this
game rides it well. The game is hard to
play but you can improve a little with
every game. Aliens swoop down at your
ship from the top of the screen, and each
wave has its own character, its own “look.”
Some fly in jittery formation, others billow
like a flag in the breeze. Your natural
inclination to gape at them will prove
fatal unless curbed. Discipline is called
for in order to concentrate not on their
grotesque beauty, but rather on their ability
to destroy.

SOFTWARE PROFILE

Name: Threshold

Type: Arcade Game

System: Atari 400/800 40K

Format: Disk

Language: Machine

Summary: Best alien shoot-out
to date

Price: $39.95

Manufacturer:
On-Line Systems
36575 Mudge Ranch Road
Coarsegold, CA 93614

If you manage to survive a number of
successive waves, you dock with the mother
ship, which is rendered with the humor of
a Saul Steinberg cartoon. Here you are
refueled while a new set of nefarious alien
waves are read from the disk. I have
managed to live through two sets so far,

and have yet to reach “the last wave.”
The documentation promises that when
you get there, you'll know it.

You can choose to play with or without
a moving star background (which makes
it much harder to see enemy fire). You
can also choose a horrific advanced lev-
el.

Threshold will obsess you for some time.
Because the aliens change throughout the
game, you're primed to withstand at least
“one more wave this time.” Though my
wife abhors “shoot-'em-ups,” even she spent
a while with this one. After quite some
time, 1 still have no reservations about
Threshold.

Mouskattack

Mouskattack is a maze game that has a
personality all its own. It moves beyond
John Harris's earlier creation, Jaw Breaker,
which set a standard for quality in Atari
game animation. If maze games appeal to
you, so will Mouskattack.

«
PLAYER 1: 6880948

Mouskattack.

The game has several unique facets.
Rather than “eating™ as you traverse the
maze, you are a plumber, laying pipe as
you go. You are zealously pursued by a
group of multi-colored rodents whose goal
is to snuff you out. They have you on the
run, so even after you have traversed the
entire maze, some of the pipes may need
to be reworked. Your only assistance in
the completion of this task consists of a
couple of traps, which don’t hold rats for
too long, and a couple of cats, who are
too scared to do much more than dis-
courage them a bit.

Mouskattack is tough. 1 don’t care how
experienced you are at any other kind of
maze game—this one will pose a challenge.
In fact, familiarity with other maze games
may actually be a handicap! Mouskattack
requires an entirely fresh approach.

The ultimately disappointing thing about
many maze games is that the player can
master rote winning patterns. Because the
“enemy” follows the same patterns every
game, routes can be learned which will

182

work each and every time to avoid con-
frontation. In Jaw Breaker, Harris foiled
the possibility of rote patterns by making
the “enemy” much less predictable. In
Mouskattack, he provides a new element—
strategic opportunity.

SOFTWARE PROFILE

Name: Mouskattack

Type: Arcade

System: Atari 400/800 32K

Format: Disk

Language: Machine

Summary: Another maze game. but
can make your nose twitch

Price: $39.95

Manufacturer:
On-Line Systems
36575 Mudge Ranch Road
Coarsegold, CA 93614

Traps and cats can be picked up and
moved in the course of your travels through
the maze. This capability allows experi-
mentation leading to strategic configura-
tions. This is much more engaging than
beating Pac Man with maps. The option
makes you feel that more is involved than
just conditioning and reflex action (though
those qualities will certainly help your
score).

The animation is very well executed,
though lacking the inspiration and sparkle
of Jaw Breaker. There are some flourishes,
however. When you are “tagged” by a rat
you drop down the screen like a leaf in a
fall breeze. Every so often a “super rat”
appears (easy to spot—watch for the “S”on
its chest). Super rats will eat your cats
right out from under you, so you must act
fast when you spot one. The music in
Mouskattack is quite well done, but begins
to seem a little long after 10 or 20 airings.
It is compulsory, and so loses its appeal in
short order.

Still, Mouskattack has a lot of staying
power as a maze game. In addition to
offering strategic potential, it offers a
simultaneous two player game, wherein
you play against rodent and opponent at
the same time. Squeaking good fun! [

Deluxe Invaders and K-razy Shootout

Blast From the Past

John Anderson

Deluxe Invaders

Your story may well be the same. Space
Invaders, the first “cult” arcade game,
hooked you—you, who vehemently swore
your quarters would never be in short
supply. It was the drum beat that did it:
the quickening pulse that glazed over your
eyes and tightened every muscle in your
arms as you furiously raced to kill the last
row of flapping insects.

Those were the days. I remember when
Invaders first became available on cas-
sette for the Atari computer. Finally,
something had arrived to knock Star
Raiders off the tube for a while. Invaders
was well-animated, colorful, addicting,
hilarious. But it was disappointing in its
distance from the coin-op arcade game.
Gone were the barriers that afforded
temporary shelter from the falling “worm
rays”; missing was the pace and feel of
the game that was its inspiration.

Well it's been a while in coming —quite
a while, actually—but the real thing is
finally here. The nostalgia warms my
heart. Deluxe Invaders faithfully captures
the look, spirit, and play of arcade Space
Invaders. And it doesn’t stop there.

SOFTWARE PROFILE
Name: Deluxe Invaders
Type: Arcade game
System: Atari 400/800 16K
Format: Disk, ROM cartridge
Language: Machine
Summary: Finally a “genuine”

Invaders implementation

Price: $34.95 disk, $40.95 ROM

Manufacturer:
Roklan Corporation
10600 Higgins Rd.
Rosemont, IL 60018

Deluxe Invaders retains the color,
sound, and polish of the earlier Atari
computer game, while remaining true to
many of the features of the deluxe arcade
game version. The barriers are back, as
are the spinning “worm rays.” Back also
is the hypertensive pacing, and if you
were into the game “back when,” this
game will go “click” when you start with
it. Set aside some time.

There are nine levels of difficulty,
including some where an insect results
merely in its splitting into two baby

John Anderson is an associate editor for
Creative Computing magazine.

insects. Other levels include mother ships
that deposit new aliens on the board in
play. Even the alien shapes are truer to
the original game, as is the difficulty.
The difficulty levels are not too well
documented, and only experimentation
will flesh them out completely. The pro-
gram does allow for a two player game,
along the same lines as the coin-op.

Deluxe Invaders.

“What,” you say? “Another Invaders
game?” You're tired of Invaders games? I
said the same thing when I first saw this
package. I was wrong.

Roklan has some exciting plans for the
Atari computer, including Gorf and
Wizard of Wor. They are also planning a
track-ball peripheral. If these products
are up to the standard of Deluxe Invaders,
we're in for a real treat.

K-razy Shootout

It's sometimes fun to trace the lineage
of a game like K-razy Shootout. First
there was Star Wars, with its stirring laser
battles in the corridors of the Death Star.
Audiences bobbed, weaved, and ducked
in their seats as Luke, Han, and the
Princess blasted their way through count-
less evil storm troopers.

Next there was the coin-op game
Berzerk, pitting the arcader against evil
"droids closing in for the kill. The exciting
“laser shoot’em-up” mood was evoked
pretty accurately, constituting the appeal
of the game. What’s more, the game
spoke, goading you, mocking you, teasing
more quarters out of you.

Among a bevy of “laser motif” games
for many systems, K-razy Shootout brings
nearly all the excitement of the arcade
game to the Atari computer. The only
element that’s missing is the speech. This
is not to say that the Atari couldn’t do it;
it’s simply not implemented here.

K-razy Shootout also bears the distinc-
tion of being the first ROM cartridge-
based game from a third-party source.
This necessarily adds to the cost of the
package; but if you saw, enjoyed, and

183

fondly recall the film Star Wars, you won’t
want to do without this program for long.

Your character runs through maze-like
chambers, as 'droids close in from all
directions. Using the joystick, you aim
your laser, drawing a bead on them before
they do the same to you. If you manage
to clear a sector, you advance to the
next. The action becomes increasingly
furious, and you soon find yourself shoot-
ing from the hip, moving from sheer
instinct, and totally addicted.

Scoring is dependent on several factors,
including time, ammunition used, and
‘droids’ manner of demise: through hostile
fire, collision, or shooting each other. In
addition, you collect an extra player for
every 10,000 points.

The only way you’ll see sector four or
beyond is through strategy. You’'ll dis-
cover that it’s possible to get 'droids to
collide or shoot each other—finding good

SOFTWARE PROFILE

Name: K-razy Shootout
Type: Arcade game
System: Atari 400/800 8K
Format: ROM cartridge
Language: Machine

1

Summary: Addictive “shoot-em-up’
game with classic roots

Price: $49.95

Manufacturer:
K-Byte
1705 Austin
Troy, MI 48099

cover is also imperative. Don’t collide
with a wall, though. That’s as fatal as
being hit by enemy fire.

The graphics, sound, and smooth ani-
mation in K-razy Shootout far outweigh
its few negative points. The ranking
system is screwy: you can progress from
“Goon Class 1” to a higher score, which
then is ranked back at “Goon Class 4.”

K-razy Shootout.

Deluxe Invaders and K-razy Shootout

This frustrated our playtesters. The game
can be paused, but only by pressing
Control-1, as if you were in Atari Basic. A

much more friendly option is using the
space bar to pause, a function now stand-
ard on many games.

Still, K-razy Shootout is lots of fun, and
has a great deal of staying power. If only
it could talk. O

Dog Daze and Caverns of Mars

Dog Daze

We had just finished a picnic lunch of
barbecued spareribs. I was walking the
dog and as usual, when we passed a fire
hydrant, he insisted upon investigating it,
dragging me along on the end of the leash.
David quickly grabbed a chewed bone,
threw it, and hit the fire hydrant. “It’s
mine,” he shouted gleefully.

David and I are not insane, just cur-
rently addicted to an APEX (Atari Pro-
gram Exchange) game called Dog Daze.

SOFTWARE PROFILE

Name: Dog Daze
Type: Game
System: 32K Atari, disk drive,
2 joysticks or 8K Atari,
cassette drive, 2 joysticks
Format: Disk or cassette tape
Language: 6502 Assembly
Summary: Excellent game, lots of
fun; highly recommended.
Price: $17.95

Manufacturer:
The Atari Program Exchange
P.O. Box 427
155 Moffatt Park Dr., B-1
Sunnyvale, CA 94086

Now, I readily agree that the game con-
cept which uses two dogs, fire hydrants,
bones, and an occasional automobile
doesn’t sound as thrilling as being invaded
by aliens. Furthermore, I will concede
that the graphics are not as fancy as the
ones in Centipede or PacMan. Then, you
ask, just what is so good about Dog Daze?
Why should I buy it? That’s very simple
to answer. The game is fun to play.

Dog Daze opens with the melody of
“How Much Is That Doggy in the
Window,” then plots a play area and two
dogs, each a different color. Along the
top of the play area is a row of sixteen fire
hydrants, eight of one color, and eight of
the other. These fire hydrants keep
score.

The object of Dog Daze is to get all the
fire hydrants at the top of the play area
your dog’s color.

You maneuver your dog with the joy-
stick, causing him to run vertically, hori-
zontally, or diagonally across the play-
field. Neutral fire hydrants (colored blue)
appear on the playfield in random loca-
tions, and your dog must run to “claim”
it. When the hydrant is claimed, it turns
to the color of the dog that claims it.

You can claim a neutral hydrant one of
two ways. One way is to run and touch
each of the hydrants as they appear,
thereby changing them to your color. The
other strategy is to throw your bone at it
by pressing the joystick button. If you hit
it, you claim the hydrant, and get your
bone back automatically. If you miss, you
must retrieve your bone before vou can
throw it again.

184

In the meantime, your opponent is
trying to do the exact same thing, making
for a furious competition to be the first to
claim the neutral hydrant.

There are several hazards to be avoid-
ed. If you pass too close to your oppo-
nent’s hydrant, like all dogs, you must
stop to sniff for a few seconds. While you
are sniffing, your oponent’s dog may be
claiming all the neutral hydrants in sight.

An even more serious hazard is the car
that periodically swerves across the play-
field. It sounds a warning honk, but if you
are in the path or stuck to a hydrant in its
path, you may be hit and lose the game.

Scores are calculated based on two
events: each time you claim a hydrant,
one-half of one of the hydrants on top of
the play area changes to your color and
each time you run into the other dog’s
hydrant, one-half of one of your hydrants
changes to his color.

The only options allowed in Dog Daze
are to limit the length of the game, which
is default sixteen minutes, and to handicap
yourself by starting with fewer than eight

fire hydrants of your color. This allows a
skilled player to play with someone who
is less skilled.

Sound is used quite imaginatively. A
variety of bleeps, bonks, and various
degrading noises (when you make mis-
takes) are generated. The dogs are ani-
mated quite nicely; the running motions
are done very well. The author obviously
took great care in designing his player
tables.

Dog Daze is also one of the few two
player games which allows both competi-
tors to play at the same time. Most games
use an “I go first, you go second”
approach.

In summary, Dog Daze is an excellent
game. It combines the capabilities of the
Atari and an unusual game concept to
achieve a truly enjoyable game.

Caverns of Mars

The Caverns of Mars arrived recently.
I had heard rumors about this new Atari
game, so | immediately sat down to play
it and see what all the fuss was about.

Four minutes later, I was hooked.

Four hours later, my wife dragged me
away.

The plot is as follows (some of it is
somewhat cliche, as it follows the lead of
many, many other games.): First, there’s
the Sole Defender syndrome common to
many games, where you alone are respon-
sible for saving the Moon Base (Invaders)
or six cities (Missile Command) or eight-
een little people (Defender) or whatever.
In this case, you are responsible for
destroying a Martian base. In order to do
O, you must penetrate a series of caverns
to the lowest level, where an explodable
device sits; arm it and start the countdown
(by touching it); then escape before it
goes off.

Should you succeed the first time, you
must go through the same thing a second
time, but with added obstacles, twistier
corridors, and the like.

The game starts with you at the top of

the cavern. It begins slowly scrolling up,
so you move downward. By moving the
joystick right-left you can maneuver from
side to side (from a central position), and
by moving it back and forth, you can
increase or decrease your rate of
descent.

SOFTWARE PROFILE

Name: Caverns of Mars
Type: Game

System: 24K Atari w/ Disk Drive
or 16K w/ tape, 1 joystick

Format: Disk or Tape
Language: 6502 Assembly
Summary: Excellently done game.
Price: $24.95
Manufacturer:

Atari, Inc.

1265 Borregas Ave.
Sunnyvale, CA 94086

If you pull the stick so that your ship
moves upward on the screen, your ship
matches the vertical speed of the caverns
scrolling up past you. So your position
relative to those caverns doesn’t change;
you have no vertical speed. But this can
only last until your ship hits the top of the
screen, at which point your relative veloc-
ity returns to normal. Similarly, if you
move your ship downward, your velocity
relative to the cavern walls is double that
of no-motion.

This concept is what makes th
Caverns so interesting, and difficult. If
you don’t move vertically, your rate of
descent is constant and there are many
places you must stop moving vertically to
avoid running into the cavern walls (such
as horizontal passages).

While you are descending through
scenic Mars, you must destroy various
installations. By pressing the joystick
button, you launch two missiles down-
ward from each side of your ship. If you
hit a fuel canister (imaginatively labelled
“FUEL”) your fuel supply increases by 5
(of 100). If you hit other installations, you
just plain destroy them. The idea is to
wreak as much havoc as possible on the
way down.

You can see only a limited section of
the caverns. So you never know what’s
going to come next. You maneuver
through a passageway twisting back and
forth, and suddenly the screen is filled

185

with Martian ships you must avoid, and
try to blow up. But you must not collide
with the ships or the wall.

If your first descent is successful you
begin again. This time there are floating
space mines, and force doors that open
and close, and things begin to shoot back
at you. Completely horizontal passages
appear, requiring you to be ready for
them and use nearly the full vertical
screen’s worth of maneuvering to get
through. It gets harder and harder until
you are destroyed, or somehow succeed
in navigating all five caverns.

Technically, the game is excellently
implemented. It's apparently done with
remapped character graphics, letting the
characters serve as the walls, ships, and
so forth. Vertical scrolling is done
smoothly and without flicker. The player
tables for the ship are well laid out, and
the missiles operate correctly. Sound is
used well, with the usual explosions,
rumbles, firing noises, and whatnot.

The Caverns of Mars has that indefin-
able “something” that makes it arcade-
quality. Here’s my best definition: When
you lose in an arcade-quality game, you
know why, and know how you could have
done better, if you were just a little faster

Programming Precocity

Greg Christensen, author of
Caverns of Mars, can’t understand
what all of the fuss is about. It certain-
ly can’t be the fact that he wrote an
arcade action game for the Atari, or
even the fact that it was good enough
to win an “Atari Star” award. Perhaps
it has more to do with the fact that he
did so in less than two months, and
despite the limitations of the Atari
Assembler/Editor cartridge.

More likely it has something to do
with the fact that he was 17 years old
when he wrote it, after having a com-
puter in the house for less than a year.

In addition, Caverns of Mars is the
first program to make the transition
from a package in APX, the Atari Pro-
gram Exchange, to a part of Atari’s
main product line. Atari liked the
game a lot, and invided Christensen to
collaborate on the creation of a ROM
cartridge version.

Young Mr. Christensen declined
the offer. He has wisely decided to
pursue an uninterrupted college edu-
cation. Doubtless he has felt some
pressure to surpass his feat, but has
not succumbed. One cannot help but
feel, however, that we may hear from
him again.—JJ/A

Caverns of Mars

or if you hadn’t have made that one
mistake. Instead of the machine causing
your destruction, it’s your mistake that
causes it. So, of course, you want to go

back and try it again, and again, and get it
right, until your fingers get cramps from
holding the joystick, or until you're totally
frustrated.

I recommend this game to anyone who
likes fast-paced arcade games in the style
of Asteroids or Missile Command and
who is looking for a new challenge. [J

Canyon Climber

Datasoft was among the first com-
mercial third-party sources of Atari soft-
ware, and the quality of their product line
has remained consistently high. Canyon
Climber, by Tim Ferris, sets a new stan-
dard for Datasoft, as well as one that
challenges comparison.

Beginning with strains of Bach, Canyon
Climber sets its own tense, yet humor-
filled pace. The musical opening is
superb; it is hard to tell whether you are
listening to your computer or a cut from
the album “Switched-On Bach.” How
Ferris manages the tone sustain is a
mystery to me.

Suddenly the music vanishes, and your
lone figure is left, clinging to a narrow
canyon trail while dozens of surly, half-
crazed billygoats seek to topple him from
the precipice.

You are without weapons in your
attempt to scale the many paths and
ladders. Your only edge is a near ballet-
like ability to leap into the air. If you time
your leaps just right, you can hurdle goats
on the fly. Your timing is crucial, of
course; beginners will almost certainly
earn a lot of horns in the keester.

The first task is to place explosive
charges across a set of bridges spanning
the canyon. Dodging oncoming goats
from all sides, your fearless climber scales
the sheer cliffs. And, upon reaching the
detonator, you blow the bridges. This will
hold the billygoats for a while.

However your problems are just begin-
ning. The screen changes, and you find

yourself at the foot of another set of
cliffs.

Billygoats were child’s play. Here you
meet a very sedate group of Indians: they
neither move nor make a sound. They
simply and continuously shoot arrows at
your face. Hope you've been practicing
your pirouettes.

At a couple of these cliffs you will find
a shield, which may help fend off a few
arrows. Be careful though, because your
shield may disappear at any time. Carry-
ing it also makes ladder climbing tougher,
as you cannot climb a ladder while carry-
ing a shield.

If you are lucky enough to make it past
the Indians, you are greeted by a final set
of cliffs. You can see the top now. In the
sky above, great birds hinder your prog-

SOFTWARE PROFILE

Name: Canyon Climber
Type: Arcade game
System: Atari 400/800 16K
Format: Cassette/disk
Language: Machine

Summary: You'll want to gorge
yourself

Price: $29.95

Manufacturer:
Datasoft Inc.
19519 Business Center Dr.
Northridge, CA 91324

ress by dropping, well, bricks in your
path. The trail itself becomes quite tricky,
as the way is broken by deep fissures.
One misstep and you'll be goat feed by
the time you hit bottom.

Finally you reach the top, just long
enough for a breath of blue sky and a bit
of Bach before the head billygoat butts
you right back down to where you started.
This time the going will be even tougher.

Canyon Climber achieves a cartoon-
like atmosphere in the rendering of its
various screens, to very pleasing effect.
Your figure has blond hair, and wears a
blue shirt with jeans. It actually seems to
throw a shadow on the canyon wall, as
well. The animation is smooth and the
colors superlative.

You will spend a while with Canyon
Climber. It took me a couple of days just
to reach the top on a regular basis. Now I
have begun to work on my score.

Clowns and Balloons

Several epochs ago, when I was a lowly
undergraduate, arcade games were just
beginning to use video screens. I remem-
ber an early one called Circus, and that it
sat between Tank and Pong in the student
union. Ah, those were the days.

“Oh, no,” was my first thought when I
loaded Clowns and Balloons, also from
Datasoft. An exhumation of Circus:

where is author Frank Cohen’s respect
for the moribund?

This report was exaggerated; I was
dead wrong. This may very well be the
most addictive game I have seen since
Threshold.

In Clowns and Balloons, you manipu-
late a trampoline, shooting your player
ever higher, as you try to break as many

186

PLAYER | ;
bS50 =%

balloons as you can in your trajectory
across the screen. The concept is simple,
but play is not. You must anticipate where
to move that trampoline at all times.
Otherwise, in the flick of an eye, your
player will land in a headfirst heap on the
floor.

Stone Age devotees of the black and
white coin-op Circus will especially ap-
preciate the sophistication of Clowns and
Balloons. The trampoline is carried by
two silver-haired clowns, whose outsized
shoes scamper wildly as they run from
side to side. The balloons spin and shim-
mer as they glide across the screen, and
they do so in vibrant colors.

The music, as in Canyon Climber, is

SOFTWARE PROFILE

Name: Clowns and Balloons
Type: Arcade game

System: Atari 400/800 16K
Format: Cassette/disk
Language: Machine

Summary: Balloonatic adventure
Price: $29.95

Manufacturer:
Datasoft Inc.
19529 Business Center Dr.
Northridge, CA 91324

superb. Even after I landed on my head, I
found myself humming along with it.
Again, all factors work together to form
an “atmosphere” about the game. It is as
if it were a cartoon rather than a com-
puter representation. It works very
nicely.

It was easy enough for me to predict
that my bevy of kid playsters would go
nuts for Clowns and Balloons. They liked
it nearly as much as I do. Fortunately,
they belong to someone else, so I can
play to my heart’s content after they have
gone home to eat dinner. Three levels of
difficulty keep the action at a “breakneck”
pace. O

Pool 1.5

My initial reaction to the idea of pool
on a computer was that it would be
awfully hard to do well. Pool, I thought,
would be too much of a physical game to
run on a micro. IDSI has proven me
wrong with the release of Pool 1.5 for the
Atari.

The first nice feature that Pool 1.5
provides was revealed to me when I left
my Basic cartridge in the computer and
tried to load the program. A message
appeared on the screen saying REMOVE
CARTRIDGE. That was a refreshing
change from BOOT ERROR. After
removing Basic, the program loaded
quickly.

The first screen shows the pool table
and a prompt for the number of players
(1-4). There is also a Demo mode which
demonstrates the action of the balls
during play. The computer does not play
pool with people, but all of the four games
can be played alone.

The players then enter their names,
and decide which game is to be played.
The game keeps track of whose turn it is
by name and, in 8-Ball, will tell you who
has solids and who has stripes. You can
choose from Straight Pool, 8-Ball, Rota-
tion or 9-Ball. The rules of each game are
kept simple to allow for individual varia-
tions in play.

The only difference I found in the rules
was in 9-Ball. The program returns the 9
ball to the table when it is sunk out of
turn. When I play Uncle John in southern
Maryland, the rule is that sinking the 9
ball using a proper combination is the
end of the game. I have lost many quarters
to Uncle John because of that rule, so I

remember it well. The play of the other
three games is pretty much the way I was
taught.

The game is played with either the
keyboard or the paddle controllers. The
cue ball appears as a white ball on a red
surface with a dotted line extending from
it to a “‘ghost” ball which represents the
point of impact for the cue. Rotating the
paddle moves the ghost ball and provides
coarse aiming at 128 different locations
around the cue. Pressing the A key at this
point allows fine aiming at a resolution of
32 positions to either side of the selected
coarse position.

Aiming is only one of three parameters
to be chosen, however. Pressing the space
bar will bring you to the speed selection,
where a 1 is a light tap and an 8 is an
extremely hard shot. Pressing the space
bar again switches down to the english
selection. Using the paddle, you choose

SOFTWARE PROFILE
Name: Pool 1.5
Type: Billiard simulation
System: Atari 48K
Format: Disk
Language: Machine
Summary: Excellent high resolution,
real time simulation
Price: $34.95
Manufacturer:

IDSI
P.O. Box 1658

Las Cruces, NM 88004

187

JOHNNY BOY

{ESC=MENU/GAME)

H
: CENTER

from top, bottom, center, left or right and
combinations thereof. Pressing the paddle
fire button shoots the ball. This can be
done at any time, with the speed and
english defaulting to your last selections.

When the shot is off, the realism begins.
The balls make a pleasant clicking sound
as they hit each other, and a sunk ball
makes kind of a gulping noise, as if it had
been eaten. The physics of collision have
been reproduced very well, and shots
must be aimed and hit properly. In the
case of a scratch, the cue is returned for
positioning. The program questions the
user if any balls sunk during the scratch
are to be returned, allowing for individual
tailoring of the rules.

There are several key-selected features
in Pool 1.5. A favorite of mine is the
Repeat Shot. Pressing the R key will
restore the table to its last condition and
allow you to change the angle or speed or
english and try again. In several games
with one of my cats, I've found this
feature great for cheating. He doesn’t
know the difference.

The balls appear either as stripes and

Pool 1.5

solids, or with their numbers showing.
The C (color) key allows the user to
choose between these two options. The
ESC key toggles between the game table
and the menu/scoreboard. The scores for
all players are kept here, and is updated
each game so that a tournament of many
games is possible. Other user-controlled
functions include setting the table friction

and the motion or speed at which the
balls interact.

The keyboard commands are a little
tough to master, and setting up a shot can
require quite a few keystrokes. It takes
several trips between the paddles and the
keyboard before you can shoot. Although
the high resolution part of the hi-res

graphics is excellent, I find the uniform
background and table color of red to be
unattractive. Perhaps a later release of
Pool 1.5 will include a set-up feature to
permit trick shots. But overall, the repro-
duction of the game of pool is accurate
and fun. It is a relaxing and enjoyable
game.

Nautilus

Mike Potter has done it again—this
time in the guise of Captain Nemo. So
much goes on in Nautilus it’s hard to
know just where to begin.

If you are familiar with Protector you
will be reminded of it when playing
Nautilus. Many facets of game play are
similar, including a scrolling “microworld”
several screens wide, and cities of steel
and glass. Potter has developed an imag-
inative, storytelling style, and it is gaining
in scope.

There are two independently scrolling
screens in Nautilus. The top screen maps
the progress of Colossus, the destroyer
that constantly ferries repair teams across
the microworld sea. It is armed with depth
charges and heat seeking missiles, and
can move at high speed. Among other
dangers, the captain of the Colossus must
remain wary of helicopter air attack.

The bottom screen maps the position
of Nautilus, the malicious, energy-starved
submarine. The Nautilus is armed with
unlimited torpedoes, which are very
handy —for the sea is filled with dangers.
Besides the depth charges and smart
missiles dispatched from Colossus, the
deep is populated by limpet lurkers,
dastardly and unrelenting smart mines.
They lock on the course of the Nautilus,
and maintain pursuit. It takes up to five
direct torpedo hits to put one out of com-
mision.

The goal of play for the commander of
the Nautilus is to destroy underwater
cities. In the cores of these cities reside
the proto-pods which must be captured
to replenish the voracious batteries of the
sub.

Meanwhile, upstairs, the Colossus trans-
ports underwater repair crews to the
rescue. On its way, it positions itself over
the Nautilus, and unleashes a deadly mix
of missiles and depth charges. It continues
then to the western shore to drop off its
crew. The crew will work its way east-
ward, repairing destroyed cities as it does.

SOFTWARE PROFILE
Name: Nautilus

Type: Arcade/strategy wargame
System: Atari 400/800 32K
Format: Cassette/disk
Language: Machine

Summary: Unique and engrossing
action game
Price: $29.95
Manufacturer:
Synapse Software
820 Coventry Rd.
Kensington, CA 94707

If the Nautilus remains in proximity to a
city under repair, it will be destroyed. It
therefore becomes a priority to keep the
Colossus from ever reaching the western
shore.

The captain orders Nautilus to the
surface, and steers it into shallows where
there are no smart mines. Here it lies in
ambush, in hopes of damaging Colossus
enough to force it back to the eastern
port.

The dual screen approach is unique,
and allows the positions of both ships to
be depicted simultaneously, even though
they may be as many as five screens
removed from one another. Sonar aboard
each ship indicates the relative position
of the other. When their screen locations
coincide, the command console flashes
red.

The ships can repair themselves as
many times as necessary, but repairs cost
precious time. The Nautilus must be
careful not to so much as graze any solid
surface —she goes down if she does. This
makes navigation of the many underwater
caverns a tricky business.

Nautilus can be played by two players,
one at the helm of the Colossus, the other
of Nautilus, or as a solitaire game, with
the computer controlling the destroyer.

188

Length of the game is selectable from
three to nine minutes. There are nine
skill levels, as well as the option to
energize energy core transformers, gates
throughout the sea, making the game
extremely hazardous. This mode is not
for beginners.There is a handicapping
option as well.

Nautilus is a tour de force. The opening
music is excellent, and hints at a context
for the game—the tune is “Volga
Boatmen.”

The really appealing thing about the
game, as in its predecessor Protector, is
the creation of a microworld; in this case
an undersea world, full of secret grottos
and hidden dangers. The fine-scrolling
graphics capabilities of the Atari are used
to their fullest potential. Nautilus is
another must from Synapse Software.

I do have a complaint, and though it is
a small one, it is persistent. Allow me to
appeal not only to Mr. Potter, but to all
game designers with this plea: please
include a pause feature in your games!
Do it with the space bar, the escape key,
CONTROL-1, SELECT; I don’t care how,
but please do it. It should be noted that
the lack of such a feature becomes evi-
dent not only when the phone rings, but
when it comes time for us to take pictures
of a program for inclusion in a review
such as this one.

Pause or no pause, Nautilus is addictive
and a lot of fun. I recommend it very
highly.

Shamus

In the August 1982 issue, I wrote about
the burgeoning “arcade adventure” for-
mat for Atari games. I spoke specifically
about Action Quest, a brutally tough but
very compelling hybrid adventure, calling
for hand-eye dexterity as well as adven-
ture skills.

Shamus, also from Synapse Software,
takes another stride in the development
of the arcade adventure. Make sure you
have no pressing appointments before
becoming involved in a round of Shamus.
Once you get going, you won't want to
stop for a while.

The humorous feeling surrounding the
game provides much of its appeal. Author
William Mataga first sets the mood, with
a grand rendition of the theme from the
old Alfred Hitchcock show. The player is
then thrust into a complex maze of 32

SOFTWARE PROFILE
Name: Shamus

Type: Arcade adventure
System: Atari 400/800 16K
Format: Cassette/disk
Language: Machine

Summary: Another stride in “arcade
adventuring”

Price: $29.95

Manufacturer:
Synapse Software
820 Coventry Rd.
Kensington, CA 94707

rooms, containing some very diabolical
nemeses. As Shamus, the player must
penetrate four levels of 32 rooms each, to
finally destroy the Shadow in the heart of
his lair.

Don’t hold your breath waiting for the
completion of this goal. It is bound to
take you at least a month. You see,
populating each room are the Shadow’s
henchmen: Whirling Drones, Robo-
Droids, and Snap Jumpers. The sole
pleasure in their lives is to keep you from
getting near their leader. And they do a
job of it. You are armed with Ion Shivs,
and as your opponents are always pre-
pared to fight to the death, the action is
necessarily violent.

For those of you who have always
wanted to wear a fedora as a character in
an Atari game, this is your chance. The
rakish lid is your most dashing feature.
I'm not sure, but I think my hat has been
shot through by more than one Robo-
Droid blast. Take that, sweetheart...

Once in a while during your search you
will encounter a pulsating question mark,
the function of which is similar to
“Chance” in Monopoly. By touching the
punctuation mark you invite extra points
and extra lives orill fortune. I have found
it hard to resist them in the long run.

To advance to a higher level, you must
obtain the correct keys and unlock the
correct portals. This calls not only for
keen aim of your weapon, but knowledge
of the labyrinthian layout of each maze.
Secret passages abound, and it is quite
easy to get lost. The bottom of the screen

T i i & ®4

8 LEVEL :BLACK

reads out a corresponding number for
each room, and this is the only hint you
get. I always seem to disorient myself
right after unlocking a portal.

Your natural tendency is to shower
attackers with ion fire. After a few games,
however, you discover that fewer but
better aimed shots will nearly always be a
superior strategy. Keep cool, and if you
find any bubbling flasks lying around,
drain them: they will give you new life.

You will notice a couple of familiar
tunes recurring throughout the game: one
is from the old“Dragnet” series, and the
other, if I remember correctly, is from
“Get Smart.”

Shamus is a very addictive detective
game. It will remain in the front of your
game software collection for some time, |
guarantee it. Arcade adventuring is an
emergent and promising gaming category,
and this program underscores that fact.

Miner 2049’er

Atari Strikes Gold

Big Five, one of the leading software
producers for the TRS-80, has in-
troduced its first Atari 400/800 arcade
game, Miner 2049’er. When I heard that
the folks at Big Five were attempting to
write an Atari program, I was a bit skep-
tical. After all, these guys know the
TRS-80, not the Atari. After playing
Miner 2049’er, 1 realized that my worry

Owen Linzmayer is a frequent contributor to
Creative Computing magazine.

was for naught—~Miner 2049’er promises
to be one of the most popular Atari pro-
grams in any software library.

Miner 2049’er is written entirely in
machine language by the president of
Big Five, Bill Hogue. The whole pro-
gram is crammed into a huge 16K ROM
cartridge.

When you first see Miner, you can’t
help making comparisons between it and
Donkey Kong. Miner 2049%er is similar
to Nintendo’s coin-op game in that they

189

Owen Linzmayer

Miner 2049’er

are both multi-level games in which the
player jumps and scuttles about on a
building framework. From there on,
Miner proves to be much more than a
variation of Donkey Kong.

Whether you are playing a one- or
two-player game, your character,
Bounty Bob, is controlled using one
standard Atari joystick plugged into jack
1. To move Bob left, right, up, or down,
simply point the joystick in the appro-
priate direction. To jump straight up,
press the red fire button. If you want to
jump from one place to another, you
must be moving in the direction you
want to jump when you press the button.

Whereas Donkey Kong has only four
screens, Miner has a stupefying ten sepa-
rate boards, each with a different sce-
nario. In general, the object is to control
Bounty Bob and ““claim” all of the mine
stations. Whenever you walk along sec-
tions of framework in the mine, the
pieces under your feet will turn solid in
color. To claim a station and advance to
the next one, you must fill in every sec-
tion of framework.

Bounty Bob can die in a number of
ways, the most common of which is to
run into a mutant organism. These crea-
tures roam the mines in hopes of making
your visit a short one. Falling too great a
distance will also prove lethal, as will
miscalculating a jump.

In addition to the deadly mutant crea-
tures, every mine station has specific
hazards that you must avoid (such as
pulverizers, explosives, and slides). Scat-
tered throughout the mine are various
articles that have been lost by previous
expeditions. To grab these objects, sim-
ply touch them. Points are awarded, and

for a short time the mutants will turn
green. While green, a mutant dies if you
touch it.

As if dealing with all of these dangers
is not enough, poor Bounty Bob must
also race against time. Located at the
top center of the screen is the “Miner
Timer.” If this timer reaches zero, Bob
dies. Should you complete the station be-
fore time runs out, you are awarded the
number of points remaining on the
timer.

The limited sound effects are probably
the weakest part of Miner. That is not to
say that the audio is poor; it is just not
up to the current standards for the
Atari. Let’s give a novice Atari pro-
grammer a little time to learn some of
the better tricks for producing exhilarat-
ing sound effects. ‘

The graphics in the game of Miner are
detailed and very colorful. To guard
against repetition, the color of the
framework changes from station to sta-
tion as well as from game to game. One

SOFTWARE PROFILE

Name: Miner 2049’er

Type: Arcade

System: Atari 400/800 16K

Format: ROM cartridge

Language: Assembly

Summary: Excellent multi-level game
Price: $49.95

Manufacturer:
Big Five Software
P.O. Box 9078-185
Van Nuys, CA 91409

of the most dazzling visual effects I have
seen on the Atari is the animation of
Bounty Bob dematerializing as he
teleports from platform to platform us-
ing the elevators. Miner does not push
the Atari to its full graphics potential,
but it more than makes up for that in its
limitless playability.

As mentioned earlier, Miner 2049’er
has ten independent mining stations
(game boards). The first three sections
are fairly easy to complete with practice,
but the game gets much more difficult
after that. Luckily, Bill sent me a copy
of Miner that allowed me to ‘‘skip” to
any station I wanted. If I hadn’t received
this special version of the program, I
doubt that I would ever have seen what
lies beyond the fifth station.

If you are skillful enough to accu-
mulate a high score, you can add your
name to the high score table. Unfortu-
nately, the scores disappear when you
pull the cartridge from the slot.

A multitude of stations and ever-
increasing difficulty make Miner a game
that is virtually impossible to master.
Miner 2049%er is a great game—no doubt
about it. After reviewing Bill Hogue’s
first Atari program, I can’t wait to see
what he comes up with next.

In late October, plans were being
finalized with a variety of other manu-
facturers to produce versions of Miner
2049’er for all of the most popular home
computers and video game systems.
Look for adaptations of Miner for the
following: Apple II, TI 99/4, IBM-PC,
TRS-80, VIC-20, ColecoVision, Atari
VCS and Atari 5200. O

190

Part 1V
Disk Drive Tutorial

Atari DOS

A disk is a very complex piece of
hardware. It is a mass storage device; cne
disk contains about twice the data that fit
into the Atari’s read-write-memecry at cne
time. In addition, varicus functions must
be supported; these include storage of
disk files, random access of data, fermatting
and copying. All of these are contrelled
by the Disk Operating System; they are
the “support” routines specific tc the disk
drive and are needed only to run it.

The Atari has a very scphisticated
operating system, easily the best in the
micrecomputer market for the price. It is
called the OS (not DOS—that is for the
disk alone) and is physically located in
the OS 10K ROM cartridge of the 800
and internal to the 400.

The Atari OS is very flexible and can
de many unique things because it is “device
independent.” This means that any input/-
cutput device-tc-device communications
are dene not to a specific device, but toc a
“unit number.” Whatever device is assigned
to that unit number receives the instructicns
from the operating system.

For example, let’s say that we have
output going to unit number 2. An example
might be a checkbeok balance. Now if
that unit number is assigned to device
“TV screen,” the output goes tc the screen.
If the unit number is assigned to the printer,
the cutput geoes tc the printer. The cutput
goes to the device to which the unit number
is assigned.

This concept of device independent
input/cutput is very consistent with the
rest of the design philesephy of the Atari.
For example, cclors are not assigned
directly; rather, a given screen image is
drawn in a color register number. Whatever
celer is in that color register is then cutput
to the screen.

The ability to reassign devices is ex-
tremely useful. Unfortunately, the workings
of CIO (the Central Input/Output system)
are a bit beyond the scepe of this article.

Shert detour (I warned you): Here’s
one bit of infermaticn for advanced users
that is werth its weight in gold. In crder
te direct all cutput geing te the TV screen
to the printer, use:

C346 < AG.EE from the assembler/editor
cartridge debugger.

Screen output can be restored with:
C346< A3,F6.

Let me cite an example. I was debugging
a game that filled the screen with a graphics
display. If output appeared on the screen,
it would disturb that display—a rather
commen preblem. By using the above
medification, I got the debugging/trace
cutput to appear on the printer instead,
leaving the TV image “intact.”

Back to Atari DOS. The DOS is a set of
assembly language routines dedicated to
running the disk drive. They load from
disk any time the Atari is turned on with
a disk turned on and connected. They
are physically lccated in a file named
DOS.SYS on the diskette.

Loading DOS

These routines are absolutely necessary
to run the disk drive. If the file named
DOS.SYS dees not exist, is fouled up, or
otherwise cannct be used, then the disk
drive can’t be used either. The Atari
discovers on power-up whether a disk is
present and attempts to lcad DOS.SYS
from the plugged-in drive.

If the disk is blank, or anything else is
wrong, the message BOOT ERROR ap-
pears, and the drive makes an awful
“s-nn-aaa-rrr-kk” sound. Don’t worry; the
snark is the sound of the disk completely
resetting its internal functions, the equiv-
alent of “if at first you don’t succeed...”

Okay, what happens after the DOS file
loads? The Atari takes the disk routines
and integrates them into its regular oper-
ating system. The routines to handle
specific devices (such as the screen editor,
cassette, or printer) now have the ability
to handle the disk. (The DOS will go
away whenever the Atari is turned off or
crashed, incidentally.)

Regrettably, these routines occupy
roughly 9000 bytes of memory, sc you
lose 9K for other uses. You need DOS to
access the disk, so if you plan tc use the
disk at any time during the current power-
on session, you must load DOS.SYS. This
is something every Atari disk user has
done—just turned the machine on, without
disk, then tried to access the disk. When I
did this last I typed a program in for half
an hour, and typed SAVE—nope, couldn’t
do it.

(If you should get stuck this way, save
the program to the cassette recorder, power
up with DOS, and reload it from the
cassette. The cassette handler is always
in memory.)

Now for a little more relevant history.
Atari has had several DOSes. The “first”
DOS was dated 9/24/79, the date that
shows up when DOS is typed. In this
version, called DOS 1, the utility functions
were integrated along with the regular
operating system functions. When a user
typed DOS, the utility functions were
immediately run from memory, and the
DOS menu popped up onscreen.

Well, this wasn't a winner, because these
menu functions occupied about 3000 bytes
of memory and were only needed when a
specific disk utility function was required.
DOS 1 also had other problems and bugs,

193

so Atari came out with DOS 2.

In DOS 2 the utility functions occupied
a separate file called DUP.SYS. When
the user typed DOS, the utility routines
were loaded from DUP.SYS off of the
disk. They weren’t in memory all the
time.

There are some minor compatibility
problems between DOS 1 and 2. Binary
files won't work between them, as DOS 2
has a different “header” format, and
copying is a problem.

Fortunately, most of the DOS 1 disks
have disappeared, leaving users with an
improved operating system which has
eliminated many of the bugs. Alas, while
Atari was working on the bugs, they
“released” several preliminary DOS 2
versions, called DOS 2.4, 2.5, 2.8, and
2.5, all of which have bugs in them. Don’t
use them.

DOS 2.0S is the most bug-free version.
(Should you find an older version of DOS,
just re-write the DOS files after powering
up from a 2.0S disk.)

One minor problem with the new DOS
concerned where to load the DUP.SYS
menu package in memory. The way it
was set up, a user who went to DOS
wiped out the lower 6K of memory,
including any programs (such as Basic)
stored there. The result? If you had a
Basic program, went to DOS, and returned
to the cartridge, your Basic program would
be gone.

The solution Atari provided was MEM.-
SAV. MEM.SAYV is a special file created
from the DOS menu. When you type DOS
and a file named MEM.SAYV exists, then
the lower 6K of memory is moved to this
file before the utility package (DUP.SYS)
is read in. Hence, a copy of the lower
6000 bytes exists on disk. When DOS is
left, the MEM.SAYV file is read in, restoring
memory to what it was. The process can
be summed up as follows:

1. User enters a program into memory.
including the 3000 bytes “shared™ with
DOS.

2. User types DOS.

3. Lower 6000 bytes of memory are
copied to MEM.SAYV on the disk.

4. The utility package (DUP.SYS) is
read into the lower 6000 bytes, destroying
the program data there.

5. User exits DOS.

6. MEM.SAYV is read back in, restoring
the lower 6000 bytes, and the user can
pick up where he left off.

The process of reading and writing to
disk is quite slow, as are all operations
with the Atari drives. For this reason I
rarely use MEM.SAV; I just save whatever

Atari DOS

I'm doing to disk first, go to DOS, then
recover it from disk later.

Another Sidetrack

Speaking of disk speed, new drives from
other manufacturers are becoming avail-
able for the Atari. As a general rule, if the
drive uses the serial I/O cable to attach
to the Atari, it will run as slowly as the
Atari disk; this cable is the bottleneck.

When the Atari writes something to
disk, it normally re-reads the data written
to disk immediately and compares what it
finds there with what should have been
written. This is a safety feature in case
the disk doesn’t write correctly. Alas, this
slows down the disk drive to one write
operation every 1/5 second, a very, very,
slow speed. If you wish to cancel this
read-after-write process, do this:

1. Power up with DOS 2 into Basic.

2. Type POKE 1913.,80

3. Go to DOS and select H: Write DOS
files.

The data at location 1913 determines
what sort of write the disk drive does:
read-after-write (87), or write alone (80).
Next time you write to disk, you will notice
an immediate increase in the write speed.

In all fairness, I have never once gotten
the error message that means the read-
after-write failed. Some of my associates
have, but only on defective disk drives
that gave numerous other errors. In my
opinion, the write with no verify is the
way to go, as disk operations are quite
reliable. The time spent waiting for the
Atari to verify data just isn’t worth it.

The DOS Menu

Okay, so we have gone to DOS and are
now in the DOS menu. Let’s look it over.

The top line identifies the DOS and
DOS 2.0S. The S means “single density”
and refers to the amount of data written
on a particular disk. Atari was going to
offer a disk drive called the 815, which
was a “double-density dual disk drive.”
For various depressing reasons the 815
was cancelled, so the double-density
operating system, called DOS 2.0D, was
never released.

Next, there’s the copyright line. Then,
the menu options begin. Let’s take them
in order.

A. Disk Directory: Data on Atari DOS
disks is organized into individual files.
These files have names of eight characters
with an optional three-character extender;
e.g. FILE.ABC, PROGRAM.BAS, and so
on. Note that I said Atari DOS; there are
other disk operating systems available
which do not use Atari DOS. For instance,
Forth doesn’t generally use the Atari DOS
atall, and an attempt to read the directory

on a Forth disk is usually futile.

The directory is a list of the files, by
name, which exist on the disk. Option
“A” is used to read this list.

When you press A, the Atari asks,
SEARCH SPEC, LIST FILE?

This means you can enter one of two
items. The first is a “search specification.”
You can search for all files, in which case
a list of everything on disk is produced,
or for a specific group of files. This specific
search is accomplished with “wild cards.”
A wild card is a special character which
Atari DOS accepts as “any character.”
The character “?” is used for a wild card
for an individual character, and “*” is
used to indicate any characters from that
position on. For instance, a search spec
of ** will find all files on the disk.
* BAS will find all files with the extension
.BAS. JONES *.* will find any files whose
first five characters are JONES. ?77XYZ?
will find AAXYZJ, ZZXYZD, and
A1XYZR.

The second spec tells where to write
the directory listing. Leaving it blank means
write it to the TV screen, also known as
“Device E:” (where the E stands for Editor).
Here we get into the I/0 system, which
we have discussed previously. Devices on
the Atari are identified by a letter and a
colon. Here is a list of some of them:

K: Keyboard. Input only.

E: Screen Editor(TV). Input-Output.

S: Screen output. Output only.

C: Cassette unit. I/0.

P: Printer. Output only.

Dn:name.ext Disk drive #n, file name
“name.ext.”

The directory option asks where you
want to write the listing. You can select
any of these devices for output but the
keyboard (K:).

You could use P: (printer), D:filename
(some disk file), and so on. Note the power
of the I/O system: you can write the listing
anywhere, including devices or file names.
For example, writing a listing to a printer
is handy for a reference. Writing it to disk
might be nice for a directory program.
Writing it to the TV is good for quick
lookups. This is a powerful unit.

The directory will then proceed. Physi-
cally the directory is located in the middle
of the disk. This is because the Atari
spends so much time looking at the
directory that it was felt that the middle
would be a good place; it is equidistant
from everywhere else, saving lookup
time.

B. Run Cartridge. This option transfers
control to the plugged-in cartridge. If you
don’t have one, the Atari will figure it out
and let you know it knows. This is how
you get back to Basic, the ASM/EDIT

194

cartridge, and others from DOS. Languages
which are “disk based” (such as Microsoft
Basic) do not use this option. There are
different ways of getting to and from DOS
using non-cartridge-based languages.

C. Copy file. This option allows you to
copy from any device or disk file to any
other device or disk file. It is extremely
powerful.

For instance, if we copy from E:D:TEST
whatever we then type on the screen will
be sent to the disk file TEST. (Exit using
the Break key.) Bang, an instant crude
word processor! We can copy directly
from the screen to the printer (E:P:),
from the keyboard to the screen, etc. We
can display a file on disk by using D:file-
name.ext,E:. (This includes Basic files.
although they are stored in a crunched
format and will look strange when listed.)

Finally, we can copy from disk to disk
using this option: D:FROM,D:TO will copy
all data in the disk file FROM to the file
TO. Also, we can copy from disk to disk:
D1:FROM,D2:TO will copy from FROM
on disk #1 to TO on disk #2. The Atari
can support up to four disk drives, D1-
D4. The drive is identified by the two
switches in the back of the disk unit; they
can be set in four positions, and the position
in which they are set determines the drive
number of the disk.

Another short detour: If you can’t get
your system to “wake up,” check these
switches. The Atari will be looking for
the disk #1 to get DOS.SYS from, and if
no disk currently online has its switches
set to 1, the Atari won’t find it. This leads
to all sorts of strange things. So especially
if you have a multi-disk system, check
this if you get weird errors.

You cannot use the Copy option on a
single disk system to transfer files between
separate diskettes. Use the 0 option to do
this. 0 reads the entire file into memory
then prompts you to change diskettes.
Then, it writes the file out to disk.

COPY uses as much memory as possible
as an intermediate storage place. If you
copy a disk file to the screen, you will
note that the entire file is read off disk
before it begins copying to the screen.
This is the nature of Atari I/O. You will
also see that when copying to the printer.
you must terminate the input operation
before the output begins.

This causes a problem when MEM.SAV
is used. When MEM.SAYV is active, the
Atari assumes that all memory outside
the 6K bytes copied on disk is inviolate.
On a copy, it will ask you whether to use
the rest of memory to speed things up.

If you don’t you will have a very slow
copy, as only a small intermediate area in
memory can be used. This also keeps

memory intact for you to return to after
you're done with DOS. Should you elect
to allow Copy to use the rest of memory,
MEM.SAV is invalidated and you lose
whatever is on disk. The choice is yours.
(The Atari will warn you that a “Yes” to
its prompt will invalidate MEM.SAV.)

Warning: Files with “.SYS™ as the
extension will not copy using the wildcard
options. While this doesn’t really matter
with DOS or DUP.SYS, as they may be
written with the H option, it is critical
with AUTORUN.SYS files. Be sure to
force a copy of the AUTORUN.SYS file
if you copy a disk this way.

D. Delete File. This is an option to
allow you to delete a file from disk. If you
use a wildcard. you can get rid of a whole
group of files. For example, to delete every
file with an extension .ASM. use: *.ASM
at the prompt.

Delete will ask you if you wish to delete
each individual file by printing the file
name, then asking DELETE? Y/N. If you
don’t want it to verify that you want the
file deleted. add a /N at the end of the file
specification. For instance, to delete all
files with SAM as the first three characters
and not get a prompt, use SAM**/N.
The DOS will then delete everything it
finds with those specifications without
asking again if you really want to do it.

Delete *.*/N will erase an entire disk.

E. Rename file. This option allows you
to rename a disk file. You enter the first
file name, then the second. HERMAN,
FRED will rename HERMAN to FRED
on disk. Wild cards can also be used, but
be careful.

This option also allows you to create
two files with the same name —a significant
problem. If you try to access the file by
its name, the first occurrence will get
priority. and you will have lost the second
file for all practical purposes. But delete
or rename will get both occurrences of
the file. alas. What to do?

Try this. Turn up the TV sound. Rename
the file something else. and listen. Imme-
diately after hearing the first clunk of a
disk write (not a beep. that's a disk read).
pop the drive door open. This will prevent
the Atari from renaming the second file,
which would be the second clunk. Do this
at your own risk—you could also trash
the directory and lose the disk if your
timing is wrong.

An alternative is to use a Disk Fixer
program, such as the one available from
APX, to alter the directory.

F. Lock file. A file that is locked may
not be altered or deleted. This is a safety
feature; I lock the editor and assembler
files on my disks that have them. This
prevents something like a wildcard delete

from destroying them or something in
DOS from accidentally modifying or
destroying them.

G. Unlock file. The reverse of F.

H. Write DOS files. This option writes
DOS.SYS and DUP.SYS on the current
disk. (You are asked which drive number
to write the files to.) Remember, you must
have the DOS files on a disk to be able to
power up using that disk, for the disk
operating system must load at that time.

I generally use this option after modify-
ing DOS (let’s say with the “fast write”
POKE) or after formatting a disk. By the
way, old DOS files on the disk will be
deleted. And in answer to a question I
received, the DOS files do not need to be
any place in particular on the disk. They
can be put in any time.

I. Format disk. This option takes a new
or used disk and completely blanks it out,
putting “formatting information” onto the
disk. It also sets up a blank directory and
other information needed by the Atari to
access the disk. And here we go on a
short detour:

Fast Format Chips

A disk is laid out with the sectors in
which data is saved in a particular order.
As the disk spins at 290 rpm these sectors
are accessed one by one. Now, depending
on how the sectors are laid out, the Atari
can access them more quickly. Atari has
two popular sector layouts—the B and C
layouts. The B layout is the original and
is quite slow; there is a discernible pause
between disk reads (beep —pause —beep—
pause—beep, where each beep is one
read.)

The C format is about 20% quicker
than the B format, because the disk is laid
out more efficiently. Disks that come from
Atari use the C layout.

When you format a disk, the way your
disk was set up at the factory determines
whether it uses the B or C layout. Most
drives today have the B layout, but all
new drives shipped from Atari have the C
layout. Thus, disks formatted on new
drives (using the C layout) will do every-
thing 20% more quickly than disks for-
matted on B drives.

By the way, if you reformat a disk, the
new format will be the one laid out by
your disk drive, so don’t reformat Atari-
formatted disks. Instead, if you want to
delete old infomation from them, use
Delete *.*.

A group of users in Chicago modified
the B layout to what is called the Chicago
layout. This layout is 30% quicker than
the B format and indeed is 10% quicker
than Atari's own C layout. However, a
price is paid: the disks become rather
sensitive.

195

Atari disk drives have difficulty main-
taining a given rpm, which causes several
problems, including lots of read-write
errors. If you install the Chicago format,
and your disk spins at more than 288 rpm,
it will skip sectors, doing a complete spin
between reads. This is quite slow and has
a distinctive “Beepbeepbeep (pause) beep-
beepbeep (pause)” sound. If you get this,
check your disk.

One other thing about the Chicago
chips is that they may be illegal. Atari
copyrighted the B format in the ROMs
used in the drive. It would annoy them
considerably if users didn’t buy the new C
chips, complete with installation charge,
but used the Chicago chips instead.

The legal question about copying the
chips, then modifying them, is not one I
would care to test. Yet many users have
installed Chicago chips in their drives,
and some groups even hold swap parties
where hardware experts install Chicago
chips into other people’s drives. Someone
with pretty good hardware knowledge and
an EPROM copier is needed even to
make the Chicago chips from the avail-
able instructions (which have shown up
in many newsletters), so this choice may
not even be available to you.

Yet another consideration is that the
difference between the B and C chips
available from Atari does not consist
solely of the formatting change. The chips
are much different, and supposedly other
improvements have been incorporated
into the C revision. You may be missing
out on these improvements if you install a
Chicago chip.

Another goodie installed by Atari on
later drives is a piece of hardware called
a “data separator.” The story is this: Atari
uses a floppy disk controller chip from
Western Digital called the 1771. The 1771
is a fine chip, but has a weakness in
clarifying data read from the disk, a
process called data separation. Even the
manufacturer’s own literature tells the
user not to rely on the internal data
separation of the chip.

So what did Atari do? They didn’t use
an external separator. Result: bad disk
reliability and lots of errors. Soon the
more sophisticated users of Atari drives
figured out the problem and began instal-
ling TRS-80 data separators in their Atari
drives.

It seems that the makers of the TRS-80
had done the same thing (not used an
external separator) and that TRS-80 disks
had very poor reliability as a result. So
outside companies began supplying data
separators for the TRS-80. Since this
machine also used the 1771 controller,

Atari DOS

the data separators for the TRS-80 fit the
Atari.

I installed one some time ago and have
been very pleased with the increase in
reliability. The cost is $29.95 from one
source, Percom, which now supplies kits
for the Atari.

You need a soldering iron for two very
minor solder touchups and a phillips head
screwdriver to remove the cover of the
machine. While the modification will
violate the Atari warranty, it is worth it.

I recommend it to anyone who doesn’t
have the Atari data separator, which is
everyone with a drive made before
January 1, 1982. Percom can be reached
at (214) 340-7081. You should call for
new pricing and availability information.

Depending on your local dealer, parts
availability, and other factors, you may
be eligible for a deal whereby you send
your drive in for installation of a C
formatting chip and an Atari data separa-
tor and a general check-up. The Atari
separator seems to be pretty good, so you
may want to look into this option to
upgrade your drive.

A late breaking rumor is that Atari has
released yet another add-on board to help
control the drive. I don’t know whether
this is true, but it sounds likely; drive rpm
has caused many headaches.

DOS Menu Again

J. Duplicate Disk. (I know, you thought
I'd never get back to the DOS menu.
Right?) This option allows you to dupli-
cate an Atari disk completely. What it
does is read each sector from 1 to 720.

The user can either duplicate from
drive to drive or with one drive by swap-
ping disks. Use “1,1” at the prompt to
duplicate a disk with one drive, and

differing numbers to duplicate between
drives.

Duplicate Disk is more or less identical
to a copy using *.*. However, the disk
duplication is complete, so errors in the
disk will also be duplicated. Should you
get an ERROR 14 or 164 on the disk,
Duplicate Disk may not work, and you
should copy individual files from disk to
disk to recover what can be recovered. A
discussion of sector chaining and what
causes an Error 164 is beyond the scope
of this article, but can be found in the
April and May 1982 issues.

K. Binary Save. This is an option for
the advanced user which saves a given
area of memory to disk as a binary file. It
is an assembly language entity used by
the machine. Since this is a beginner’s
guide, and hexadecimal input is required,
I'll leave it at that. See the DOS 2 manual
for a lengthy, painful disussion of what
happens.

L. Binary Load. This is an option to
load a binary file from disk into memory
and to execute it directly. Beginners may
use it, although they may not understand
what is going on. The Macro-Assembler/
Editor is only accessible by loading it
from a binary file, for instance. And
Microsoft Basic is just another binary load
file. (Think of a cartridge as a binary load
frozen into the cartridge which appears
in memory when you plug the cartridge
in, and a disk load as data that appears in
memory loaded from disk. This will give
you an idea as to how the two relate.)
And no, you can’t copy a cartridge using
the Binary Save option—Atari DOS
checks for this to prevent people pirating
the cartridges.

M. Run at address. Again, this is an
advanced-user-only option. It enables

DOS to jump directly into a program
loaded in memory. It is handy for ad-
vanced users who want to run programs
without a cartridge, but not so helpful for
beginners. Again, knowledge of hexadeci-
mal is required.

N. Create MEM.SAV. This is used to
create the initial MEM.SAV file. To
eliminate it, use the Delete option. You
cannot create MEM.SAYV any other way,
although a disk that is Duplicated will
have the MEM.SAV on the new copy if
the FROM disk had it.

0. Duplicate file. This is used to copy a
file from one disk to another without using
two drives. Wildcards can be used to copy
an entire disk.

Disk drives are relatively high-speed
mass storage devices. Alas, the 5 1/4”
mechanisms represent a tradeoff between
reliability and cost. The 8" drives, which
are more reliable, also cost much, much
more. Atari probably couldn’t market an
8" drive for less than $900; so they went
with the 5 1/4” mechanism and enabled
many more to have disk drives. It was a
good tradeoff.

Unfortunately, the way in which Atari
designed their drives is developing into a
controversy. The number one topic of
conversation in many user’s groups seems
to be peeves about Atari disk drives. The
drives are neither reliable nor fast—even
compared to the rest of the industry.
Apple disk drives, for example, run up to
20 times faster.

Something will undoubtedly be done;
Atari has not been deaf to the complaints.
For the moment, they have issued several
patches to the drives—data separators,
rpm fixes—but they may not be able to
correct what might be simply a bad
design.

See you next time! O

Atari Diskfile Tutorial — Part I

Many new computer owners are anx-
ious to learn how to write their own useful
programs. After reading the literature
packed with the machine, the new owner

Jerry White, 18 Hickory Lane, Levittown, NY
11756.

is often overwhelmed. Realizing that one
does not learn any programming language
overnight, a seemingly endless period of
trial and error usually follows. The
“hacker” is often seen burning the mid-
night oil and arguing with a defenseless
TV or monitor.

196

Jerry White

If he perseveres long enough, reason-
ably simple programs are written. The
new programmer is now ready for bigger
and better things.

Assuming he has a disk drive, our
“hacker” gains experience with DOS and
the loading and saving of programs. Now

he is ready to write a database program. O REM FILES (c) 1981 by Jerry White
The datafile may consist of a simple list é :E: ATARI DISKFILE TUTORIAL DEMO
of record albums for a start, to be fol- o0 piM DRIVES (3),FILES (12),DRIVEFILES (15) ,RECORDS (10) , ANSWERS (1)
lowed by the inevitable Personal Finance 110 pIM SECTOR(20),BYTE(20) ,DIRECTORY# (20) 1REM DIMENSION STRINGS AND ARRAYS
Syt 1 o, 4638k tiis pomt to yoile iéé ZE:PHICS 0:POKE 82,21POKE 83,391REM CLEAR SCREEN AND SET MARGING
. . . H 4 2, 21 4 s 271
programming career, or think you might {35 2oue"507 5,REM BET PRINT TAB WIDTH TO 5 SPACES
be in the near future, read on. 140 7 :? "TYPE OPTION NUMBER THEN PRESS RETURN"
Start with something very simple. Don't 150 ? 1?7 ," (1) CREATE A DISK FILE"i1REM GOTO 1000
. fi : L 160 ? 17 ,"(2) READ A DISK FILE":REM GOTO 2000
iy o wrie tlﬁat Inad afl' pactape);flt 170 7 17 ,"(3) ADD TO A DISK FILE":REM BOTO 3000
There is much to learn first about file 1g0 % ;% ,v(4) UPDATE A DIBK FILE":REM BOTOD 4000
structure and 1/0. I/O stands for Input/ 190 ? 1? ,"(S) DISPLAY DISK DIRECTORY"1REM GOTO 5000
Output. Input is data being read by a 200 ? 3? ,"(&) END PROGRAM"1REM GOTO 9140
Battni s At i mred B 210 ? 17 ,"YOUR CHOICE"y3GOSUB 7000
program. Lutp : g Y 220 TRAP B0001LINE=1201HIBHNUMBER=&: NUMBER=VAL (ANSWERS)
a program. A file consists of one or more 230 IF NUMBER<1 OR NUMBER>&6 THEN BOTO BOOO
records, and a record is an item within a g;g g:MNU”BER BOTO 1000,2000, 3000, 4000,5000,7140
file. Records may be broken down further 550" 1\eas 1001 608U 71001 TRAP 91001 BRAPHICS 0
into fields. We will be using simple rec- 1010 cLOSE #1:10PEN #1,8,0,DRIVEFILES
ords containing a single 20-character field 1020 ? 1? "CREATING "yDRIVEFILE®17? 1RECORD$="1234567890"
as our record, and create a sample 10- 1030 FOR DEMO=1 TO 10
Oudd © f'l, p 1040 ? #1jRECORD%
record datalile. . 1050 ? "WRITING RECORD NUMBER "jDEMO
To understand data processing tech- 1060 NEXT DEMO
niques, it is often easier to grasp reality :8;3 'f? "; ::égugfﬁg"‘? gﬁ:‘ssgté‘CREATED"
than it is to learn by reading. L have found | g4 CL":SE a1 !
that doing is the best way to learn, and 1100 GOTO 6100

that Atari Basic can be easy to understand 1110 REM
s teis epolainediin Baelish. 2000 LINE=61001GOSUB 71001 TRAP 910031 BRAPHICE 0
Lse. %a' i i " { 2010 CLOSE #110PEN #2,4,0,DRIVEFILE®1RECNUM=O1L INE=6100
tari asic allows variable names O 2020 INPUT *2,RECDRD‘
any length, plus REM or remark state- 2030 RECNUM=RECNUM+1
ments. Remarks or comments within a 2040 ? "RECORD NUMBER "jRECNUMj

) : : ! 20%0 ? ,RECORDS
program help identify routines and 7,00 soto 2020

explain exactly what the program is 2070 ReM

doing. 000 LINE=30001B08UB 71001 TRAP 91001 BRAPHICS ©
; . 3010 CLOSE #310PEN #3,9,0,DRIVEFILES

Meaningful variable names also make 30°0 Goaciica 017 57 | "ADD RECORD(S) ROUTINE:"
program reading much easier. For exam- 3030 7 17 ,"ENTER 10 CHARACER RECORD"
ple, the sample Diskfile program uses the =~ 3040 ? 1? ,"OR JUST PREBS RETURN TO EXIT"1? 1G08SUB 6000
variable RECNUM to store the current 3050 RECLEN=LEN(RECORD$)1IF RECLEN=0 THEN 3200

L of 4s. RECNUM i bbrevi 3060 IF RECLEN=10 THEN 3090
total of records. Is an abbrevl- 3070 FOR BLANK=RECLEN+1 TO 103 RECORDS (LEN (RECORD$)+1)=" ";NEXT BLANK
ation I used to mean record number. SO0 3090 PRINT #3; RECORD$
why didn’t 1 use the variable RECORD- ~ 3100 ? 1? “PRESS START TO ENTER ANOTHER RECORD"
. 3110 ? 1?7 "PRESS OPTION FOR OTHER OPTIONS..."j

NUMBER you ask? RECNUM is a com- 3154 1r pEgk(53279)=6 THEN 3020
promise between that 12-letter name and 3130 IF PEEK(S3279)=3 THEN 3200
the other extreme which could have been 3140 GOTO 3120
R 3200 ? 1? 17 ,"ADDING RECORD(S) TO DISK"i1CLOSE #3:1GOTO 120

; . : 3210 REM

The RECNUM variable is used often. 4000 LINE=41001B0SUB 71001 TRAP 91001 GRAPHICS 0
The tradeoff is readability against the 4010 CLOSE #410PEN #4,12,0,DRIVEFILE®:1LINE=4100

) ; 4020 ? 1? ,,"CREATING INDEX"iRECNUM=O
1 L
PHOEISIEES keystrokes and somet me? 4030 NOTE #4,SECTOR,BYTE
program efficiency. If R is used instead o 4040 RECNUM=RECNUM+1
RECORDNUMBER, and that variable is = 4050 SECTOR(RECNUM)=SECTOR:BYTE (RECNUM)=BYTE
used ten times, using R saves 110 key- :g‘;g ;NP‘.{;E;%:EEDSEE;;R- :195520'399;425'3”‘-‘”!RECURD‘
. . 3 - ! " - !
strokes. In a tutorial program such as this 4080 » 16OTO 4030
one, RECNUM is the acceptable 4100 RECNUM=RECNUM-1
compromise. 4110 ? 1? "PRESS START TO UPDATE A RECORD"
N s 4120 7 1? "PRESBS OPTION FOR OTHER OPTIONS"j

The Diskfile tutorial program demon 4130 IF PEEK(S3270) w4 THEN 23200
strates many of the common functions 4140 IF PEEK(53279)=3 THEN CLOSE #4:GOTO 120
required in a simple database type pro- 4150 60TO 4130
gram. By using the program and studying 4209 SRAPHICS, o1 REn Ranoal accese SEcomp LepaTe souTINg
the program code, you will learn how 4220 7 17 "ENTER RECORD NUMBER TO BE UPDATED")
datafiles may be handled in Atari Basic. 4230 TRAP 42201 INPUT UPDATE:TRAF 40000
Once you have entered the program and ~ 4240 UPDATE=INT (UPDATE) 1 IF UPDATE<1 OR UPDATE>RECNUM THEN 4230

: 4250 POINT #4,SECTOR(UPDATE),BYTE (UPDATE)

corrected any typing errors, run through 4240 INPUT #4,RECORD$:7? 17 RECORDS
each of the options beginning with num- 4270 ? :? "ENTER NEW RECORD #")UPDATEjs INPUT RECORD$
ber one. 4280 RECLEN=LEN (RECORDS$)1IF RECLEN=10 THEN 4300

It is important to understand the termi- 4270 FOR BLANK=RECLEN+1 TO_101RECORD® (LEN (RECORD®) +1)=" "1NEXT BLANK

! 4300 POINT #4,BECTOR(UPDATE) , BYTE (UPDATE)

nology used here. CREATE means just 4310 PRINT #4;RECORD$:1? 17 ,"RECORD HAS BEEN UPDATED"
that. In this case it means create from 4320 BOTO 4110

197

Diskfile Tutorial — Part I

scratch. Note that the create routine
actually begins at line 1000 and that line
1010 contains an OPEN command. The
number 8 in that command means write
only. If a file is opened using this variable,
and a file with the exact same name is
found on your diskette, the old file will be
deleted automatically.

Using option two, a file is read from
disk and displayed on the screen. This
does not in any way alter the disk file.

Option three is used to ADD data to an
existing disk file only. The term APPEND
is often used in this case. In plain English,
the term APPEND means, “add to the
end of this file.”

Option four is used to UPDATE the
records of an existing file. This means
you will alter, correct, or change a record.
This procedure is a bit more complicated
than the others since we do not know in
advance which record the user may
choose to update. The technique used in
this demo program is known as Random
Access Updating. An index consisting of
SECTOR and BYTE locations is created
and stored in an array. This gives us the
exact spot at which each record begins.

Since we are using fixed length records
of 20 characters each, we can read a
specific record into a string, change it in
the string, then rewrite the string onto the
disk. This becomes a real time saver when
many records must be updated in a large
disk file.

Option five is used to READ and dis-
play a specific file called the
DIRECTORY FILE. This DOS-generated
file contains the table of contents of your
diskette. This file is also known as the
VTOC or Volume Table Of Contents.

4330 REM
S000 BRAPHICE (O1POKE 201,117 ? ,"

DISK DIRECTORY"1? 31TRAP 9100

5010 CLOSE #S5:0PEN #5,6,0,"DiX.%"3sREM OPEN DISK DIRECTORY FOR ALL ENTRIES

5020 LINE=&4100

S030 INPUT #5,DIRECTORY®
5040 ? ,DIRECTORY#

5050 GOTO 5030

5060 REM

6000 RECORD%=""yPOKE 744,2551REM RECORD STRING AND LAST KEY PREGSED=NULL

6010 INPUT RECORD3RETURN
6020 REM

6100 FOR FILE=1 TO 5)CLOSE WFILEsNEXT FILE:REM CLOSE ALL FILES

6110 POKE 201,517 7?

. "PRESS RETURN FOR OFTIONS"j

6120 GOSUB 7000:GOTO 1201REM PAUSE TO READ SCREEN THEN GO TO OPTIONS

6130 REM

7000 ANSWERS=""3POKE 764, 2551 INPUT ANSWER#1RETURN 1REM 1 CHARACTER INPUT

7010 REM

7100 GRAPHICE O3REM DRIVE NUMBER AND FILENAME INPUT ROUTINE
7110 ? 2? "TYPE DISK DRIVE NUMBER (1-4)"j31HIGHNUMBER=4)GOSUB 7000
7120 LINE=71101TRAP 80001 NUMBER=VAL (ANSWER®) 1 TRAP 9100

7130 IF NUMBER<1 OR NUMEER>4 THEN 8000

7140 DRIVE#$="D"3DRIVES® (LEN (DRIVE#) +1)=ANBWER®%

7150 DRIVE# (LEN(DRIVE®)+1)="yg"

7200 ? 1? "TYPE FILE NAME"3 31 INPUT FILE®:IF LEN(FILE®)=0 THEN 7200

7210 DRIVEFILE$=DRIVE$

7220 DRIVEFILE® (LEN(DRIVEFILE®)+1)=FILE#%:RETURN

7230 REM

8000 ? 1? "PLEASE TYPE A NUMBER FROM 1 THRU "yHIBHNUMBER:REM ERROR ROUTINE

8010 GOSUB 9000:1GOTO LINE:REM GO BACK
F000 ? CHR% (253)1REM RING ERROR BELL

TO LINE NUMBER (LINE)

9010 FOR COUNT=1 TO 3I00:NEXT COUNT:RETURN

2020 REM

9100 IF PEEK(195)=136 THEN BGOTO LINE1REM ERROR WAS END OF FILE

9110 REM DISPLAY ERROR NUMBER AND LINE AT WHICH ERROR OCCURRED THEN END
@120 7 37 " ERROR "jPEEK(195)3" AT LINE "jPEEK(186)+PEEK(187) %256

9130 LIBT PEEK(186)+PEEK (187) %2561 G08SUB 9000

9140 TRAP 40000:END 1REM ELIMINATE ANY PREVIOUSLY SET TRAP AND END PROGRAM

For display only, this routine does the
same thing as DOS option A.

Although some error trapping has been
built in, many possible error conditions
are not corrected or fully explained by
this program. Error trapping and human
engineering account for a great deal of
planning and program code. This is not a
cop out on my part. I plan to cover this
subject in a future article. The point here

is to provide an example of diskfile
handling. Accounting for all possible
errors could easily double the size of the
program.

That’s about it for now. I suggest you
use my program as is, then experiment by
making minor changes and noting the
results. When you'’re ready to write your
own diskfile handling program, feel free
to use these routines. O

Atari Diskfile Tutorial — Part 11

For those of you who have read and
been entertained by the discussion of the
Atari disk in the Basic Reference Manual,
this article will let you in on what is really
going on. It is a ground level look at how
the disk works and what the Atari does
with it.

The information is quite useful and lets
you access the disk more efficiently in
many applications, as well as understand
how Basic and DOS work with the disk at
the lowest level.

This article, believe it or not, presented
its authors with a real moral dilemma.

198

Why? The information presented here can
be used to copy disks that without this
information are uncopyable. (Mind you,
this information is also freely available in
the Atari O.S. manual, if you can understand
it.)

There is a horrendous software piracy

problem in this country. Consider the effect
on the record industry if every time a
person bought a cassette tape, he made
ten cassette copies of it and gave them to
his friends. This is exactly what is happening
in the computer industry. (Indeed, the
record companies have come out strongly
against the sales of blank tapes recently
and will no longer support ads for those
products, for just this reason).

Immediately after a new program appears
on the market, it is copied. The copier
then distributes copies to friends, trades
them for copies of other programs, and so
on. And the writer of the software receives
no royalties from the copies of his program.

There are ways of making disks uncopy-
able. This seems like an ideal solution
until you realize that a diskette can be
destroyed. A phone can ring near it and
erase it; a cat can use it for a scratching
post (our cat, Atari, tried this trick once),
and so on.

If a user is depending on the disk, and it
quits working, then he is in trouble. For
this reason the practice of “backing up,”
or making multiple copies of a disk, was
started. Too many users had lost their
only copies of badly needed material.

It’s a good idea; I keep a minimum of
two copies of everything on disk, so if I
lose one, I still have what I need. And it
has paid off; many times I have had to go
to the backup copy when the original died
for some reason. I don’t know why, but I
seem to lose an amazing number of disk
files—error 144, error 164, and so on.

And if a manufacturer has made his disk
uncopyable, you can’t back it up. If the
disk becomes unusable, you're out of luck.

The software industry has been debating
this problem for ages. The Apple, in
particular, has been the subject of con-
troversy, with some manufacturers selling
programs written for the express purpose
of copying “copy-protected” disks. In their
literature they describe how backup copies
are necessary, and thereby justify the
purchase and use of their programs. But
they know, and everyone else knows, that
these programs are used to rip off an
enormous amount of copy-protected soft-
ware.

Copy Programs

One program in particular, Locksmith,
gave me a good laugh. Locksmith is an
Apple program written specifically to copy
disks that are copy-protected, and has
sections to handle all of the latest protection
techniques. It has caused a great deal of
controversy.

In the Locksmith manual, the writers
explain the need for backup copies, how
disks can be erased, and so on, and condemn

manufacturers for copy-protecting disks
for this reason. Then, after going to great
lengths to point out that Locksmith is for
users to make backup copies of programs,
the manual points out that Locksmith cannot
make copies of itself.

In other words, they know what’s going
on—who’s kidding whom? They even
maintain a database on The Source which
tells how to copy many of the copy-
protected Apple programs using Locksmith.

Justice has been served, and there are
now many, many bootleg copies of Lock-
smith floating around. As Scott Adams
might say, “Yoho, and Jolly Roger.”

Well, Atari users are in the same boat;
things just haven’t escalated quite that
far...yet. The Atari disk is a different animal
from the Apple disk. An Apple copy
program, for instance, is an incredibly
complex machine language construction,
as the Apple CPU controls the disk directly.

The Atari is different; a copy program
is very simple. And some companies are
using the fact that most people don’t know
how easy it is to copy an Atari disk to sell
copy programs for fairly outrageous
amounts. After all, to a user experienced
with Apples, the price seems fair.

Frankly, they are a complete ripoff for
the price. I do not feel that forty-odd dol-
lars—the cost of a typical Atari disk-cloner
program—is a fair price for twenty-odd
lines of Basic code.

So much for the copy program makers.
Now how about the poor software manu-
facturer? What do they do, now that I've
revealed How To Rip Off Atari Disks?
Send me letter bombs?

For the manufacturer’s sake, I'll present
a few of the latest techniques in copy
protection—which the information pre-
sented here will now allow someone to
copy. And there is no escalation possible;
i.e., you won'’t be able to figure out a way
to copy disks protected with this scheme.
There is no way, using Atari hardware, to
write a program to copy these disks— period.
In this way, the word on how to make
uncopyable disks will be spread, as will
the word on how overpriced (for what
they are) the Atari disk copy programs
are.

Yes, there are some old copy protection
schemes, which we’ll discuss, that this
information will allow someone to get
around. These schemes don’t work against
the average pirate’s copy programs and
have not for some time; the disk information
discussed here is old news to your average
copy enthusiast.

I seriously doubt that anyone will be
hurt by this information; if you are going
to copy protect a disk, then you might as
well use the techniques I will present which

199

make it truly uncopyable, rather than the
older ones which the copy programs can
duplicate with no difficulty.

Enough philosophy. Let’s learn about
the disk.

The Disk

Take a disk and look at it. Inside that
envelope (sleeve) there is a circular piece
of very thin plastic. On that plastic is the
same material of which cassette tapes are
made: various magnetic substances.

There are 40 “tracks” on the disk. Think
of the circular grooves in a record and
you'll get the idea of what a track is. There
are 40 concentric circles on the disk and
each of these tracks is divided into 18
“sectors.” The division is done by pie-slicing
the track into 18 contiguous segments. So
we have 40 tracks with 18 sectors per
track, or 720 sectors.

Atari disks are set up to hold 128 bytes
of data (a byte, for you beginners, is one
character) per sector. In other words, there
are 720 x 128 bytes of data on an Atari
disk, or 92,160 bytes.

To access a given sector of 128 bytes,
that sector must be in the visible portion
of the disk (the window cut into the disk
sleeve), and the read-write head must move
in or out until it’s on the right track number.
It then reads the sector by examining
magnetic fields written to the disk surface.

Please Note that the actual recording
surface is the back, not the front, side of
the disk. Most people set disks down with
the label up, which means the surface that
the data is recorded on is being rubbed in
the dust and dirt below. Also be very careful
not to touch the backside of the disk in the
exposed portion.

The Atari talks to the disk over the
“serial I/0 bus cable.” This is the cable
you daisy chain from device to device.
Now here’s the secret of the Atari disk:
The disk drive is intelligent. It contains a
6507 microprocessor, a little brother to
the 6502 in the Atari itself, that is still
capable of quite a lot. It also contains 256
bytes of RAM (read-write memory), and
2048 bytes of ROM (read-only-memory).
In short, the disk drive has a complete
computer of its own. (For you hardware
buffs, there are 128 on the PIA-like chip).
How is this different, and why is this good?

On the Apple, the disk drive is “dumb.”
The main computer must tell the disk head
to move to here, the disk to spin to there,
and tell the head what information to write.
This neatly ties the computer up while the
disk is running.

Apple has a standard scheme for storing
data, a “standard format,” and if you use
the Apple routines to read/write data, you'll
stay in that format. Alas, that format allows

Diskfile Tutorial — Part 11

your disk to be copyable, so people have
modified the Apple disk routines to make
custom weird formats, that cannot be read
by copy programs. (And then other folks
have written programs, such as Locksmith,
to read “uncopyable disks” and then other
weirder formats were developed, etc. It’s
a little like the arms race.)

On the Atari, the two computers work
with each other. There are a net total of
five, count them, five commands that pass
between them. Since the 6507 in the disk
drive is helping do the work, the Atari’s
main processor doesn’t have to fiddle around
with controlling the disk, and thus can be
doing something else at the same time the
disk is running. There are no other com-
mands and the disk drive 6507 will ignore
any but the five we’ll discuss.

Best of all, since the Atari disk controller
is “off limits” and may not be programmed,
asits program is in read-only memory inside
the disk and is not modifiable, you cannot
develop strange disk formats. There is one,
and only one, Atari disk format. Hence
we'll never get into one of these Apple
disk escalations, for we cannot control the
disk that exactly. Believe me, after viewing
the present Apple disk copy mess, we're
not missing much.

An ordinary Atari user accesses the disk
through what is known as the File Manage-
ment System or FMS. The user never sees
the lowest level of disk commands (the
five mentioned) because FMS handles all
that for him. Included in FMS is the ability
to split the disk sectors, each 128 bytes
long, into files, access the files through the

operating system, get disk directories of
file names, NOTE, POINT, and so on.
FMS works in turn through the Five
Commands (perhaps a movie should be
made by that title?) with the disk drive
6507 to get your disk processing done.

FMS on disk is called DOS.SYS.

What are the Five Commands?

1. Get Status. This returns the status of
the disk and in particular of the IN 1771
floppy disk controller chip inside the disk.
“What?,” you say. Me too. I don’t use, and
have never used, Get Status. One day I
may find out what it’s for.

2. Format Disk. This command instructs
the disk drive 6507 to lay out the tracks
and sectors on the disk, and to “clean off”
old data. Think of it as the 6507 laying
down record grooves that it can follow
later. What actually occurs is that the 6507
writes data across the disk, reads it and
makes sure it has stayed the same (this
verifies that the disk surface is good), and
then writes the sector numbers onto the
various sectors of the disk. This information
it used later to find a given sector.

3. Get Sector. This command instructs
the 6507 to get the entire 128 bytes of a
sector and ship them to the Atari through
the serial I/0 bus cable. The Atari issues
the Get Sector command and tells the
6507 what sector number, from 1-720, to
fetch. The 6507 then gets busy, spins the
disk and positions the read/write head,
reads the data, and returns it to the Atari.

4. Put Sector. This command instructs
the 6507 to take the 128 bytes about to be
shipped down from the Atari and put them

onto the sector number specified. The 128
bytes are then sent, and the 6507 positions
the disk, etc., and writes the data onto it.
You probably do not use this command,
you use its relative, which is:

5. Put Sector With Verify. Remember,
disks are not all that reliable. So when we
put a sector onto the disk with this com-
mand, it is first written, then immediately
re-read and compared with the original
128 bytes. If they match, fine; all is well. If
not, then they didn’t record correctly, and
an ERROR message results. (In truth, I
have never seen this particular ERROR
message.)

The Atari’s designers decided to add a
little audio to this whole process, so
whenever a Get Sector occurs (like during
a program LOAD), a pleasant “beep” is
heard on the TV’s audio channel. Whenever
a Put sector occurs (during a SAVE, for
instance), a not-so-pleasant “clunk” is heard.
You’'ll note that the Put commands always
seem to take twice as long as the Get
commands; this is because the disk is
physically putting, then reading, the infor-
mation onto the disk for a verify. Hence, it
takes twice as long.

In the net time I've worked with the
Atari, I've used Put Sector with no verify
once, when I was running OSS’s operating
system. They apparently use this command,
and it sounds a great deal different than
the standard slow “clunk..clunk..” of the
Atari save.

Now everything that happens to the Atari
disk occurs through these commands.

Atari Diskfile Tutorial — Part 111

Disk 1/0 is a very slow process for the
Atari. The disk must be physically spun,
which takes a while, and data must be
shipped back and forth, which is even
slower. The idea behind Atari’s DOS is to
minimize disk I/0. So we come to the
concept of a “buffer.”

In Atari’'s DOS, whenever you read or
write to a file, you are reading/writing into
a 128-byte reserved area in memory called
a buffer. You are not writing to the disk at
all. The Atari keeps the contents of one of
the sectors of the disk in that buffer. So if
you read/write to that buffer, the operation

200

occurs at very high speed, which is what
we want. For instance:

10 OPEN #1,4,0, “D1:FILE”

20 FOR A=1 TO 10000

30 GET #1,A

40 NEXT A
merely reads, byte by byte, 10000 bytes

from disk. But if you run this program, you
will note that the disk isn’t being accessed
continually; only every once in a while
will you hear a beep to indicate another
read. What happens is that the Atari opens
the file and pulls the first sector full of
data into the memory buffer. When you
do the first 125 GETs, the bytes are pulled
out of that memory buffer. Then you try
toread another byte, but the Atari doesn’t
have that one in memory yet. So it requests
the disk to send it the next 128 bytes, fills
the buffer with those 128 bytes, and starts
reading at the beginning of the buffer again.

(If you are wondering why I said the
125th byte, it is because the Atari DOS
reserves three bytes per sector for its own
uses, which we will talk about later.)

Similarly, when you PUT # to a disk
file, the Atari lets you PUT 125 bytes to
the buffer, then dumpsit to the disk, moves
in another 125, and so on.

The result of all this confusion is that
the Atari doesn’t have to go to disk for
every individual byte; rather, it stays in
memory for a large number of “disk”
accesses, and things run much faster.

When the Atariis LOADing or SAVEing
a program, again it uses these buffers. The
process is invisible to you, but you can
hear the beep as each individual sector in
the program is LOADed, or a clunk as a
sector is SAVEd. Remember, the Atari
can only talk to the disk in terms of complete
128-byte sectors.

Understanding the buffer is important
in solving some of the mysterious problems
that can occur while using the disk. For
instance; let’s say you write something out
to the buffer, and then your program bombs.
You examine the disk file, and find the
data never reached the disk. This is because
the buffer was never written to disk. If you
didn’t know about the buffer, you'd be
wondering why the disk didn’t record what
you wrote to it.

The CLOSE Statement

The CLOSE statement is provided for
this case. It makes sure that everything in
the buffer gets to the disk. It also updates
the directory, where all file names are
listed.

The DOS program handling all this keeps
a table of free sectors on the disk, by the
way, and when the buffer fills up and a
place is needed to store the 128 bytes, a
sector number is taken from that table.
When a file is deleted, its sectors are
returned to that table. (The XXX FREE
SECTORS message at the end of the DOS
directory is determined by this).

So much for Basic I/0. Everything done
with Basic /0 is a version of the above;
everything goes through the 128-byte buffer.

Table 1.

0300 DDEVIC —Serial Bus ID. Not used by user.

0301 DUNIT —Disk number. 1-4.

0302 DCOMND —Command Byte. This is:
$21 Format Disk
$50 Put Sector, without verify
$52 Get Sector
$53 Get Status
$57 Put Sector, with verify

0303 DSTATS —Disk Status. This is returned to you after the operation is
done.

0304,0305 DBUFLO,HI. Buffer Address. This is a 16-bit address in
memory that is the starting address of where to get or put 128
bytes.

0306 DTIMLO Disk Timeout Value. Leave it alone.

0308,0309 DBYTLO,HI Set by handler. Leave it alone.

030A,030B DAUX1,DAUX2 Sector Number. Which disk sector, 1-720,
to read/write.

Program 1.

5 REM SAMPLE PROGRAM TO DO DIRECT

& REM DISK 1/0. DAVID SHMaLL,12/21/81
7 REM

12 DCB=768:REM START OF DISK DC3

ZQ POKE DCB+1,1:REM DISK 1

22 POKE DCEB+2,82:REM #52 = GET SECTOR
25 REM ¥%% GET 128 BYTE OFEN BUFFER
4@ DIM 2UFFER®(128)

45 DIM CALL®C1@)

S0 FOR %=1 70O 12&:BUFFER®(X)="
€2 ADDR=ADR(BUFFER$)

70 ADDRHI=INTC(ADDR/256)

&0 ADDRLO=ADDR-¢ ADDRHI¥Z25&)

22 FPOKE DCE+4,ADDRLO:REHM BUFFER ADR LOW
120 FOKE DCR+5,ADDRHI:REM BUFFER ADR HI
112 REM x¥¥ SECTOR NUMBER X¥#

12@ PRINT "INPUT SECTOR NUMBER™

120 INPUT SECTOR

140 SECTORHI=INT(3SECTOR/256)

15@ SECTORLO=SECTOR-(SECTORHI%256)

1£¢ FOKE DCB+1@,3ECTORLD

17@ FOKE DCEB+11,3ECTORHI

20¢ REM %#%% BUILD SHORT ASSY PROGRAM

21@ REM x%*¥ OF PLA, JMP DSKINV.

Z3@ CALL#(1)=CHR%(104):REM FLA

240 CALL#(2)=CHR#%(32):RENM JSR

250 CaLL%C 3)=CHR#(83):REM #$53

2RO CALL#C(4)=CHR#(228):REM #E4

27¢ CALLS(S)I=CHR®(3€):REM RT3

120 ¥=U3F(ADRCCALLE D)

D3TATS=PEEK:{ DCRB+3)

© FRINT “DISK STATUS=";D3TATS;" (1=0K)"
INT "DATA:"

NT BUFFER®R

M #xx CLEAN OUT BUFFER®

» FOR x=1 TO 1Z23:BUFFERF(X ="
GOTO 11@

G000 END

"INEXT X

"INEXT X

How about DOS?

When you issue the COPY disk command
from DOS, each sector of the file is sent to
memory. In other words, DOS copies the
contents of that file into memory, 128 bytes
at a time. It then takes the file in memory

201

and writes it out to disk, from memory,
again in 128 byte chunks.

When you issue a Duplicate Disk com-
mand, DOS reads in every sector on the
disk that is marked as “used” and stores it
in memory. The unused sectors are ignored

Diskfile Tutorial — Part III

Table 2.

Byte 1: Flag byte.

bytes.

they are blanks.

Bit 7 = 1 if this file has been deleted
Bit 6 = 1 if this file is in use

Bit 5 = 1 if this file is locked

Bit 0 = 1 if this file is OPEN.

Bytes 2,3. Sector Count; the number of
sectors in the file, stored low, then high

Bytes 4,5. Starting Sector. Where the file
begins (what sector number).

Bytes 6-16. File name; Last three bytes are
the extension if you add one, otherwise

Table 3.

Byte 1 .. Data
Byte 125 ..

Byte 126

Byte 127

Byte 128

File Number (6 bits) and high two bits of
“forward pointer”

Forward Pointer

Short Sector count .. indicates this sector
not completely full.

to save time. DOS then writes those used
sectors out to the new disk, in the same
position it found them on the old one, and
doesn’t worry about the empty sectors.
Since there are 92,000 bytes on a disk, and
only 48K maximum of memory, it may
have to do this in smaller pieces—let’s say
32K at a time. You then must physically
change the disk several times on a single-
drive system. If you are using a multiple
disk system, you will see it do the copy in
multiple stages.

Note: If you are copying disks for
backups, remove any cartridge; each
cartridge selects 8K of RAM and makes
for more disk swaps.

In order to know what sectors are used,
and what files are on the disk, some tables
must be kept on that disk. The DOS reserves
certain sectors on the disk for these tables.
One is known as the VTOC (Volume Table
of Contents) and is sector number 360. In
it is a table of all 720 sectors on disk,
stored as bit-map; i.e., one bit per sector.

The disk directory is stored in sectors 361-
368; this is the actual list of the file names
and the sectors they occupy. To find a file,
DOS must use this directory.

By the way, these reserved sectors explain
why only 707 sectors are available on a
“clean” disk; the rest are used for the
directory tables, etc. You will also hear,
during the disk formatting process, right
near the end, the clunks as DOS writes out
a fresh directory to the disk, after the disk
6507 has finished formatting it.

Remember, DOS at the lowest level,
past all of the directory opens, XI1O’s, and
so forth, is only doing get sectors/put sectors.
Let’s learn about those calls.

Get Sector/Put Sector Calls

All get sector/put sector calls rely on a
table called the Device Control Block.
Data is put into this table, and a jump is
made into the operating system, which in
turn uses that table. Table 1 is the disk
table, starting at $300 (or 768 decimal).

202

One POKE:s values into this table, and
then does a JSR to DSKINV (SE453).
DSKINYV then does the requested operation
and returns to you. Program 1 is a sample
program that does the needed POKEs and
requests from you a sector number (1-720)
to read.

This program POKEs the DCB para-
meters, reserves 128 bytes in memory as a
string for the buffer area, requests the
sector number, then runs a very short
assembly program which does a PLA,
needed by Basic, then jumps off to DSKINV.
DSKINV then does the operation, and
returns to Basic.

There the status code placed in the table
by DSKINV is printed, and the buffer area,
as a string, is also printed. Sure, it will be,
strange, but you can examine individual
bytes easily. If you read one of the directory
sectors (try 361) you will see the directory
entries.

If an 87 instead of an 82 were POKEd
into DCOMND, then a Put Sector would
occur ($57=Put Sector, $52=Get Sector).
Then the contents of that buffer would be
written to disk.

The status code will be a 1 if all goes
well. If there is a problem, you may find a
144 as the error code. This Device Not
Done Error occurs if the disk is bad, the
disk is write protected, etc.

We have just done disk access the same
way DOS does it, at the sector level. Note
we have not done an OPEN or an XIO; we
have directly accessed the disk. This can
be handy if you have a need for a disk
allocation scheme free of DOS; I use it to
store directly fixed-length records. It is
fast and efficient, and removes the DOS
overhead.

Also, it enables you to access the directory
and modify it as necessary; this allows
you, for instance, to un-delete files.

Because we are not using DOS, but are
still accessing the disk, we are not dependent
on the DOS directory or “In-Use-Table.”
We can read or write any sector on the
disk, regardless of what DOS thinks that
sector is for. You may want to take note:
This is how to write a “boot record,” a
special disk record that enables your disk
to boot by itself, as so many games do.
The boot record is record 1; see the
hardware manual for further details.

Now that you can access the directory
data directly, you can see all the data
stored rather than just what OPENing “* *"
returns. A directory entry is 16 bytes long
for each file. There are eight entries per
sector in the directory, and eight directory
sectors, hence 64 files maximum. See Table
2.

As an example of how the directory is
used, if a file is LOCKed from DOS, all

that occurs is that its flag byte has bit 5 set
to 1.

When you delete a file, all that occurs is
that the delete flag on the file is set. Then,
next time DOS needs a place to put a new
file entry, it knows it can overwrite the
current entry.

Reading the Data into a File

In order to read the data in this file, one
goes to the Starting Sector number found
in the directory. Each sector contains
information as shown in Table 3.

The “forward pointer” is where the next
sector of the file can be found. It is a
sector number from 1 to 720. When that
next sector is read in, it in turn tells where
the next sector can be found, and so on.
This is called a “linked list” or chained
sector scheme. This way, files don’t have
to be in any particular order on the disk
(e.g., running continuously from sector 30
to 40). The sectors can jump around all
over the disk, yet to DOS they are still
linked together.

The file number is the file number in the
directory. It is set to the same number as
the entry number in the directory for all
sectors. This is a safety measure. Let’s say
we are reading directory entry 6, and are
going along, sector by sector. In the file
number position in a given sector, we
suddenly find a 13 (or whatever) instead of
the 6 that should be there.

We know that the data for this sector
has gotten scrambled, and the sector chain
terminates there. This is an ERROR 164,
which I am sure you have seen before; it is
a warning that the data in this sector are
likely to be bad. The sector link is also
likely to be bad, so DOS normally stops an
ERROR 164.

Reading in sectors one at a time, by
getting the next sector number, reading,
and so on, is called “sector tracing.” Atari
DOS does it every time it reads in a file.
Atari also sells a “disk fix” program through
their program exchange which uses the
above information; you now know enough
to use it. For instance, the forward “link”
of a given section may be modified if desired.

We can do the same sector tracing out
of Basic. We will find a given directory
entry, read it in starting at the sector number
given by the directory and proceed through
each sector, with each new sector number
obtained from the data in the previous
one, until we have read in the number of
sectors specified in the directory. Should
anything be wrong (file number, etc.) w
will know the file has gone bad.

Program 2 illustrates first how to read in
the directory and interpret it, and second
how to follow a sector chain for a given
file. It reads in the directory, lists it to the

screen, and asks which file to trace; if A is
entered, all files will be traced (this takes a
while). It will then trace the file through,
stopping at any “broken links” or bad file
numbers. It is an excellent way to check a
disk which has some files going bad, and
find out which ones are still readable and
which aren’t. After each check the program
produces a directory listing showing which
files are good, bad, or still unknown.

The techniques used within the program
will probably prove more useful than the
program; however, remember that this is
an example. It can serve as the basis for

custom disk inspect/modify routines if you
wish to write them. Also, the program is
written in MicroSoft Basic but translating
it to the old Basic should be no problem at
all. I highly recommend MicroSoft Basic
in terms of speed and features as compared
to the old Basic; an in-depth review of the
Atari version of MicroSoft Basic will appear
in an upcoming issue.

Sadly, the software pirate community
also found out about direct disk 1/0, literally
years ago. Back then manufacturers were
copy protecting disks by fouling up the
directory and sector maps so that DOS

Program 2.

)

REM
GOTO Zz96

LT =

=3

AFHICS D
Ci.EAR
Yy PRINT

» PRINT

> INFUT DF#
' IF DFf=""
» DFROM=VALCDFS)
* DTO=DFROM

* CALL=RE4E2
* REM MOTE:

REM 213K CHECKER - DAVE SHMalLL

1 SUBROUTINES PLACED

FOR SPEED. NO COMMENTING.,

O:FOKE DCB+11,%HI
0 i GRAFHICS @2
TS=FEEK! D'E*gl

K CHECKER.
ECTOR
IN TRE DI
FRODUCES LISTING

TRACE OF ALL

AZEUMES 48K, MICROSOFT.

GET DIiSK NUMBER,HWELCOME.---

"HELCOME TO SMALL’S DISK CHECKER."

"IMNFUT DRIVE HUMBER™:

THEN DFROM=1:
IDSKINY ADDRESS

MICROSOFT Cal CAalLL
REM DEKINVE DIRECTLY,

IN FRONT

TORY.
HITH OK/

GOTO 440

MO PLA

Diskfile Tutorial — Part III

couldn’t perform the copy. With the advent
of direct disk 1/0, all these schemes were
bypassed with what is known as a “sector
copier.”

As a side note, a sector copier is some-
times advertised as a “nibble copier” or
“byte copier.” This is an Apple term, and
refers to individual bytes being read off
the disk. It is completely inaccurate when
applied to the Atari; all Atari disk I/O isin
128-byte blocks.

A sector copier, as you have guessed,
just issues a read of all the possible sectors,
then writes them.

Sector Copying

The program is simple to write now that
you understand about sector I/0 and how
to call up DSKINV. It is just a matter of
reading in 720 sectors and writing out 720
sectors. As I said, about 20 lines of Basic
code are required. And now you understand
why, as I mentioned last month, selling
such a program, at the prices currently
being charged, is such a ripoff.

But...how can a disk be protected against
this sort of thing? Fortunately, there is a
good way. Several software manufacturers
hit on the same idea at the same time: bad
sectoring. Let’s assume we have a special
disk, with some sectors on it that have
never been formatted, as with the FORMAT
DISK command. Most of them are OK;
just a few are bad, as if there were holes in
the disk. Now when the disk is told to read
these sectors, it can’t find them, for they

were never formatted. So it returns an
ERROR 144, instead of a normal return
(1). Then, in the software on the disk, that
sector is called, and if an ERROR 144
doesn’t result, the program quits.

Let’s say the program is then copied to
another disk by an average sector copier.
The “bad” spots on the disks will not copy;
they will return ERROR 144, but on the
destination disk, there will still be formatting
information on those sectors. This is because
the average Atari user cannot create a
disk with bad spots in it; the FORMAT
command is handled completely inside the
disk by the disk 6507 microprocessor. The
program will find that where it expected a
bad sector, it now finds a good sector.
Hence the program knows it is not residing
on the original disk, and can quit.

The only way to defeat this scheme is to
disassemble code and remove the sector
check, and even if the author is slightly
clever, it will take so long to find the sector
checking routine that the program will be
outdated by the time it is finally made
copyable. Besides, consider what a person’s
time is worth compared to the cost of a
program; if it takes two weeks to break a
copy protection scheme, isn't it a better
idea just to buy the program?

This bad-sectoring scheme works quite
well in preventing a sector copier from
being useful. Sure, a copy of the disk may
be made, but without the bad spots on the
disk, it will never run. And your average
user cannot create these bad spots, for

only access to the disk controller program
allows that, and only very advanced users
can accomplish this.

Atari currently uses this bad sector
scheme in several of their disk-based
programs. Jawbreakers uses the same
scheme (hence the disk retry, or “snaaark,”
sound when you first boot it up). The
Wizard and The Princess use it also. In
other words, the move is toward this sort
of protection.

Software manufacturers can probably
figure out a way to write some bad sectors
onto a disk. For instance, what popular
personal computer gives you complete
control over the disk read/write process?
There are other ways, too.

Another manufacturer doesn’t bother
copy protecting his disks at all. However,
a small module must be plugged into the
front joystick port before the program will
run. The module probably contains some
sort of ROM-type circuit which is then
read by the program through the PIA chip
(joystick ports).

Well, we have covered a great deal,
from piracy philosophy to sector chaining
in these two columns. I hope you have
enjoyed it and have learned something
about the Atari disk, and how it really
works. I also hope I have described some
effective protection schemes for software
manufacturers.

Direct disk 1/0 is a very powerful tool
for Atari users; use it to make your
programs faster and more efficient. (]

Using Disks With Atari Basic

This article will help you write programs
that use data files that are saved on disk.
We hope you will use this information as a
beginning point for experimentation. We
believe that the only way to really learn
programming is to try things and make

David Johnson and Embee Humphrey, Atari,
Inc., 1272 Borregas Ave., Sunnyvale, CA 94086.

Dave Johnson and Embee Humphrey

mistakes in the process. We have included
answers to what we have found to be the
most common questions.

These are the Atari disk input/output
commands:

OPEN #reference number, open code,
0, filespec: The first parameter, #reference
number, is a number between 1 and 7 that
is used to refer to that file throughout a

204

program. It must be preceded by the “#”
symbol. The second parameter, open code,
is a number that tells the computer if you
want to read, write, etc. See Table 1.
The third parameter is reserved for special
control codes that will not affect you in
disk operations. Always use a 0 for this
third parameter. The last parameter,
filespec, is the device and file name. Filespec

can be a string variable, or the device and
filename enclosed in quotes. Example: You
may declare A$= “D:FILENAME” and
use A$ in the OPEN statement, or you
may just use “D:FILENAME? itself.

CLOSE #reference number: This tells
the computer that #reference number is
no longer being used. (Note—if you are
writing data, and fail to close a file, any
data in the buffer will not be saved on
disk.)

PRINT #reference number;| What you
want printed]: This is used the same way
as a regular Basic PRINT statement. The
#reference number tells the computer to
PRINT to the file you have opened using
that reference number.

INPUT #reference number; [Input list]:
This works like a regular Basic INPUT
statement. The #reference number tells
the computer to look for input from the
file opened using that reference number.

NOTE #reference number, variable for
SECTOR location, variable for BYTE
location.

POINT #reference number, SECTOR
variable, BYTE variable: NOTE and POINT
are explained later.

OPENing a file tells the computer that
you are going to use a particular file in a
particular way, and that you will refer to
that file in your program using a particular
reference number. (Atari Basic manuals
call this reference number an IOC3 number,
for Input/Output Control Block.)

INPUT and PRINT

INPUTing and PRINTing with the disk
is the same as inputting from the keyboard
and printing to the screen. The #reference
number tells the computer that you are
using the disk instead. (You must have
OPENed a disk file with that number).

The easiest way to experiment with this
is in DIRECT mode, typing in statements
without line numbers. Now try a few
things:

OPEN #1,8,0,“D1:TEST.DAT”: This
opens afile, TEST.DAT, for write only. It
will be referred to later as #1.

Figure 1.

12345.6, you put the CHARACTERS
“12345.6” on the disk, not a binary repre-
sentation.

Now type:

INPUT #2,S%

PRINT S$
and the screen displays: 12345.6

Reading the number into a string gets
the string representation of the number
that was on the disk. Reading the number
into a number variable would also have
worked. If the binary representation of
the number was put on the disk, you would
not have been able to read it into a string

DIM S$(20)

INPUT #1,S$
INPUT #1,S$
INPUT #1,S%

PRINT S$

OPEN #1,4,0,“"D:TEST.DAT”

Read the first line.

The second.

The third.

INPUT #1,S$ And the APPENDED line to verify this.

PRINT #1;“THIS IS A STRING™”: This
writes this message to the file.

PRINT #1; 12345.6: This writes the
number 12345.6 into the file.

PRINT #1;“THIS IS ANOTHER
STRING™;12345.6: This writes both the
string and the number to the file with the
same statement.

Table 1.
Open Code Function
Input. (Read from the file only).
8 Output. (Write to the file only). NOTE - this erases any data in this
file. To OPEN a file to add data, use 9 for APPEND.
12, Both input and output. (Read and write).
9 Append - add to end of file. (Write, beginning at end of file).

For example, if you want to read from
file TEST.DAT, and you decide to refer
to that file as number 4, you would use the
following open statement example. (The
number doesn’t matter as long as whenever
you want a certain file, you refer to it with
the same number.)

An example of OPEN: OPEN #4,4.,0,
“D:TEST.DAT™”. This means OPEN a file,
read data from the file, the file will be on
device “D;” (disk), whose name is TEST.
DAT, and remember that this file will be
referred to as #4 for future 1I/O opera-
tions.

To read from the file you would say:
INPUT #4; expressions....

And finally, when you are done with the
file: CLOSE #4.

CLOSE #1: This closes the file.

To see what is on the disk: OPEN #2,4,0,
“D:TEST.DAT™.

We used #2 here to demonstrate again
that the number itself does not matter.
What matters is that the same number be
used for all references to that file after the
OPEN.

Since you will be reading strings, you
need to DIM a string to read into: DIM
S$(30)

Now, to read it, type: INPUT #2,S$.
Then type: PRINT S$, and the screen
displays: THIS IS A STRING, which is
what you put on the disk.

Now, a surprise! We told you that
PRINTing to disk was the same as printing
to the screen. When you type PRINT #4;

205

and see it. This is important to remember,
because putting the number 10 on the disk
takes two bytes of disk space, while putting
the number 123 on the disk takes three
bytes. This will be important in the dis-
cussion of random access.

Remember: the number of digits is equal
to the number of bytes the number will
take up on the disk.

The next example shows another way
that similarity between screen and disk
output may surprise you. From the above
example the file is still open:

Type:

INPUT #2;S$

PRINT S$
and the screen displays: THIS IS A STRING
12345.6

It read into the one string both the string
and the number that you had put on the
disk. When you put this data into your file
using PRINT#1;“THIS IS A STRING™;12
345.6, it went onto the disk exactly as it
would have appeared on the screen. When
reading it, the computer had no way of
knowing where the string stopped and the
number started on the disk.

You could not have said INPUT #2;S$,
NUM because inputting S$ would have
taken you past the number so, if you are
going to read data back as different lines,
put it on the disk as different lines.

APPEND

Now you can experiment with APPEND.
You already have a file, TEST.DAT, on
the disk. If you want to add data to this file
you must use APPEND, because opening

Using Disks With Atari Basic

the file to write again (with an 8) will erase
what you have already put into it.

In OPEN #5,9,0,“"D:TEST.DAT™, the 9
means APPEND.

Now, try this. Type:

PRINT #5;“THIS IS ADDED”

CLOSE #5
To see what happened, type the lines in
Figure 1. The screen displays: THIS IS
ADDED

Trying to type INPUT #1,S$ one more
time would cause an ERROR 136, which
means END OF FILE.

CLOSE #1

NOTE and POINT

NOTE #reference number, sector vari-
able, byte variable: This takes NOTE of
where the disk read/write head is physically
positioned. The #reference number is the
IOCB number. If you want to mark where
you are in a file opened as #1, you say

Figure 2.

the second item in the file, which is:
12345.67.

To point back to the beginning:

POINT #1,X,Y

INPUT #1,S$

PRINT S$
and the screen will again display: THIS IS
A STRING, which is the first record in the
file!

Random Access

NOTE and POINT are useful for random
access. If you keep track of where you put
data, using NOTEs, you can later get at
the data, using a POINT, without reading
everything in front of it.

Briefly, suppose you have a mailing list.
Each time you save a record, you NOTE
where it is physically written, and save
those sector and byte numbers in arrays—
SECTOR(record number),BY TE(record
number). Then you save those arrays in

DIM S$(20)

NOTE #1,X,Y
INPUT #1,S%
PRINT S$

OPEN #1,4,0,“D:TEST.DAT”
take note of where file starts.

The screen displays: THIS IS A STRING

NOTE #1,variablel,variable2. Variablel
saves the sector and variable2 saves the
byte.

POINT #reference number, sector vari-
able, byte variable: This physically POINTs
the disk head to the sector and byte. If
that sector and byte are not located within
the file opened with that #reference
number, you get an error message.

Figure 4.

Figure 3.

X=SECTOR (indexed by record num-
ber). (To read the 23rd record you would
use X=SECTOR(23).)

Y=BYTE (indexed by record number)

POINT #reference number,X,Y
and you are ready to read that record.

Be careful. If you want to modify a
record and write it back into the file in the
same place, you must not change the length
of that record. If it is changed, it could
overlap into the next record, overwriting
the data there. Remember that numbers
use as many bytes as there are digits.

Before you modify records, you must
format numbers into strings with leading
blanks or zeroes that are always the same
length. The subroutine in Figure 3 accom-
plishes this. Before calling, put the number
you want formatted into the variable
DSKNUM. The number will be formatted
into a string of length 10 with leading zeroes
and placed in string variable DSKS$.

Traps

Atari Basic hasa TRAP command. The
format for the TRAP command is: TRAP
line number.

To TRAP to a line number means to go
to thatline number if an error occurs. This
can be useful for disk operations. For
example, if you want to go to a certain line
number when you reach an END OF FILE,

STRING

INTO STRING
1030 RETURN

1000 L = LEN (STR$ (DSKNUM)) : REM GET THE LENGTH
1010 DSK$ (1,10-L) = “0000000000” :REM PUT ZEROES IN FRONT OF

1020 DSK$ (11-L) = STRS$ (DSKNUM) : REM PUT NUMBER RIGHT JUSTIFIED

10 DIM S$(20)

20 OPEN #1,4,0,“D:TEST.DAT#:REM OPEN THE FILE

30 TRAP 70:REM ON END OF FILE ERROR, GOTO 70

40 INPUT #1,S$:REM READ FROM THE FILE

50 PRINT S$:REM PRINT TO THE SCREEN

60 GOTO 40:REM KEEP DOING THIS

70 CLOSE #1:REM END OF FILE REACHED, CLOSE FILE

NOTE and POINT are useful for reposi-
tioning the read/write head to the beginning
of a file. For example, if you want to read
the first string in your TEST.DAT file
twice before proceeding, you would type
the lines in Figure 2.

The screen displays: THISIS A STRING
If you read again, you will be reading

another file on the disk.

To look up records, you would first
read the array data file to put the information
back into the arrays. You would then look
up the individual records by POINTing
directly at them. (SECTOR and BYTE
are the variable names we have assigned
to our arrays.)

206

you can take advantage of the ERROR
136 that happens when you try to read
past the end. See Figure 4.

Part V
User Programs

T

Mazemaster: Maze Making and Running

Fred Brunyate

Shortly after buying an Atari 800 computer, I
bought Basic Computer Games by David H. Ahl
(published by Creative Computing Press). After
taking care of a few essentials like Life and
Hammurabi, 1 decided to adapt the Amazin’ program
so that I could use the joysticks to run the maze.

My first study of the program failed to provide any
clear idea of the program’ logic. The listing lacks
even the most rudimentary documentation.
Frustrated, I entered the program line for line, chang-
ing only the graphics characters. It really did work.
Even working, however, the “why™ of the program’s
complicated tree structure and repeated code re-
mained obscure. The project went to the back burner.

Inspiration arrived while 1 was trying to fall asleep
one night. Start with a maze with no paths, all single
cells. From the selected starting cell, perform a
random walk through the cells, marking each cell you
move into and removing the intervening wall. Do not
move into a marked cell or off the edge. If you cannot
move, select any marked cell and resume the random
walk. Continue until all cells are marked. Select any
cell as the finish point, and you are done.

As 1 began laying out my own maze building pro-
gram, two features of Atari Basic helped the whole
routine fall into place. First, Atari Basic arrays have
a zero rowand a zero column. By adding an extra row
and column and setting the elements of all four non-
zero, all of the explicit boundary checking disappears,
without having to remember any co-ordinate mod-
ifiers. Second, Atari Basic allows variable names to
be the object of GOSUB statements. The starting line
numbers of the move subroutines for all legal moves
can be stored in an array. Then, with N a random
number, ON N GOSUB JUMP(1),JUMP(2),
JUMP(3), makes a classic random walk.

The printing routine works the same as the book
version. With the top and left boundaries assumed, it
needs information on only two of the four sides:
neither, right only, bottom only, or both sides open.
These new sides then become the top or left sides of
other cells.

The maze running routine used another Atari
feature. Neither of the arrays is used to check for legal
moves. With the LOCATE statement, the maze dis-
played on the screen (or, more accurately, the display
list of the screen) can be examined directly to detect
walls and openings.

Now for the gory details. The main program (lines
1-999) begins with all the things that need to be done
only once: DIMensioning arrays, setting the
boundaries non-zero, adjusting the margins, setting
constants and subroutine names. Three subroutine
calls do all the real work. Finally, print the results
and repeat on request. Nothing fancy so far.

Fred Brunyate, 6076 Marsh Rd., Apt. E-2,
Haslett, M1 48840.

209

The MAZEPRINTER routine (lines 1000-1999)
uses the SETCOLOR statement to display the maze at
the same color and intensity as the background. It is
all there, you just cannot see it until the second SET-
COLOR statement causes the completed maze to
appear suddenly. In earlier versions of this program,
you could solve most of the maze before the last line
was printed and the timer started. Each cell of the
maze is two print positions on a side. The routine
prints spaces or graphics characters according to the
information stored in array V by the MAZE-
BUILDER routine. Refer to the program comments
for a step-by-step description.

The MAZEBUILDER routine (lines 2000-2999)
uses the array W to simulate the cells of the maze. It
marks a cell by setting the corresponding element of
W non-zero, and removes a wall by changing the
corresponding element of array V. After selecting a
starting cell in the first row and initializing the cell
counter, it checks for a zero neighbor cell in all four
directions. For each zero cell found, the appropriate
subroutine line number is added to the list kept in the
array JUMP. There will be a maximum of three
entries; the fourth direction leads to the previous cell.
A subroutine is randomly selected from the list if it
contains more than one cell. That subroutine is
executed to move into the new cell, mark it non-zero,
and change V to remove the intervening wall. This
continues until no zero neighbors are found.

When the random walk is blocked (no zero
neighbors), the routine examines cells at random
until a non-zero cell is found and resumes the random
walk from this point. This assures us that the new
path segment will be connected to the original path.
Since the routine will not move into a non-zero cell,
each path segment is connected at only one end, and
There is exactly one path between any two cells.

The routine halts when 95 percent of the total cells
have been added to the path. This leaves some cells
unconnected, but saves time by not trying to find
those last few cells. The maze exit is a randomly
selected non-zero cell in the last row. Actually, any
two non-zero cells could be selected as the start and
finish.

The MAZERUNNER routine (lines 3000-3999)
handles the joystick input, checks for legal moves,
displays the trial, and times the run. When decoding
the joystick input, 1 find it easier to work with the
complement of the value returned, i.e. “D=15-
STICK(0)”. The x directionis +1 if GT 7,0if D LT 3,
otherwise —1. The y directionis +1 if D MOD 2=0, 0 if
D MOD 4=0, otherwise —-1. The routine uses an in-
verse video asterisk as a CURSOR with the joystick,
and a SPOT, a normal asterisk, is left behind.

If the character, determined by the LOCATE state-
ment, at the new position plus the joystick input, is
nota BLANK ora SPOT, the routine ignores the joy-
stick input. You can not move through walls. Other-
wise, it plots the CURSOR at the new position and a

Mazemaster

SPOT at the old position. It continues monitoring
the joystick until the CURSOR co-ordinates match
the finish conditions. The real-time clock is read im-
mediately before and immediately after running the
maze and the total time is computed. The three bytes
are read as quickly as possible to minimize the chance
of an error caused by one of the bytes rolling over to
zero.

The subroutines at lines 4000-4999 do the moving
from cell to cell and take out the walls during the
random walk. To move right (XPLUSI) or down

(YPLUSI), first change V to open the wall, then
change the co-ordinates. To move up (YMINUSI) or
left (XMINUSI), first change the co-ordinates, then
change V.

While this program is an enjoyable game as it is, it is
also a starting point for other programs. The random
walk technique is easily expandable to three dimen-
sions (or four, if you can name them). A light pen
would be ideal for running the maze. The start and
finish points can be moved. And a little imagination
will turn the cells into rooms in a dungeon or castle.

Variables
HIGH, WIDE
V(WIDE, HIGH)

W(WIDE+1,HIGH+1)
C

JUMP(3)

Y$(1)

CURSOR, SPOT, BLANK

FIRSTTIME, LASTTIME
TIME
TRIES, TOTALTIME

X,Y

STARTX, STARTY
BOTTOM

Description
The maze size, in cells. 17 X 10 fills the screen nicely.
This array indicates which walls have been removed. The
top and left side of each cell is assumed. The bottom and
right sides are indicated as follows:
O0—neither side open
|—bottom only open

2—right side only open
3—both sides open

This array is used to build the maze. Zero elements are
available. The outside rowsand columnsare set non-zero.

The number of cells attached to the path.

This array contains the list of subroutine line numbers
(XMINUSI, YMINUSI, XPLUSI, YPLUSI) from
which to select the next move of the random walk.

The user response, “Y’ or ‘N,

Characters used by MAZERUNNER to check for and
plot the trial.

The clock readings before and after the run.
The time of the run, in seconds.

The number of mazes run and the total time used. Used
to figure the average time.

The current cell during MAZEBUILDER and MAZE-
PRINTER. The current screen position during MAZE-
RUNNER.

The screen co-ordinates of the beginning of the maze.

The screen row of the last line of the maze.

210

10
1%
20
30
40
G0
100

1095
106
110
120
130
140
150
140
170
190
200
210
220
230
240
250
260
270
280
300
310
320
330
340
350
360
490
G000
505
B10
al1%
H20
S30
539
540
G590
700
710
720
730
740
800
810
820
830
840

REM MAZE MASTER

FEM

REM FRED ERUNYATE

REM HASLETT, MICHIGAN
REM 1981

FEM

REM FOKE NEW MARGING, SET SUBROUTINE LOCATIONS,
TOTALS, AND CONSTANTS

WIDE:=17

HIGH=10

RDIM VWIDE ; HIGH) s WOWIDE+L , HIGH+1)
DIM Y1), JUMFCE)

FOKE 82,1

FOKE 83,38

MAZEFRINTER=1000

MAZERUNNER=3000

MAZEBEUXLDER=2000

XMINUS1=4200

YMINUS1=4300

XFLUS1L=4400

YFRLUSL=4500

TRIES=0

TOTAHLTIME=0

BFOT=AGCC"X")

CURSOR=AGC (X") IREM THIS IS INVERSE VIDEQ
ELANK=AGC " ")

EOTTOM=2XHIGH+1

REM SET BOUNDARIES NON-ZERO

FOR X=1 T0O WIDE

WCL, 00 =1 WL, HIGH+1) =1

NEXT X

FOR X=1 TO HIGH

WD Ty =1 SWORWIDE+L , T =1

NEXT X

FREM

REM CLEAR THE ARRAYS AND SET EBOUNDARIES
GRAFHICS 0

FRINT SFRINT "XI/M THINKING UF A GOOD ONE."
FRINT SFRINT " RONT GO AWAY .. "
FOR T=1 TO WIDE

FOR J=1 TO HIGH

WX, J)=08V (T, J=0

NEXT JINEXT I

REM

FEM

GOSUE MAZEEBULLDER

GOSUE MAZEFRINTER

GOSUE MAZERUNNER

FE M

REM DISFLAY RESULTS

TRIES=TRIES+1
TOTALTIME=TOTALTIME+TIME
AVTIME=TNT (TOTAL TIME/TRIES®L00)Y /100
FOSTTION 1.BOTTOM+1

211

Mazemaster

850 FRINT "TRY #"3TRIES:" TIME WAS! "3ITIME;" SECONDS."
860 FRINT " AVERAGE TIMES "3AVTIME
870 REM
P00 REM ASK USER VITAL QUESTIONS
L0 FRINT ™ REFEAT THIS MAZE (Y OR N)>"j
P20 INFUT Y4
30 TF Y$="Y" THEN 720
940 FRINT " ANOTHER MAZE (Y OR N)"%
U0 INFUT Y4
P60 IF Y$="Y" THEN GOTO S00
Q70 END
P90 REM
1000 REM MAZEFRINTER
1010 REM
1020 REM VALUES IN “V/ DETERMINE THE
1030 REM RIGHT AND BOTTOM WALLS OF
1040 REM EACH CELLS
1050 REM U(I,d)ﬂﬂz NO OFENINGS
1051 REM V(X,Jd=13 EBEOTTOM OFEN
1053 REM V(I d)—?? RIGHT OFEN
1054 REM V(I,J)=3; EOTH OFEN
1055 REM
1060 REM FOKE TURNS OFF THE CURSOR
1061 REM SETCOLOR HIDES MAZE UNTIL
1062 REM FRINTING I8 DONE.,
1080 GRAFHITS 0
1020 FOKE 752,1
1091 SETCOLOR 1,9,4
109% REM PRINT THE TOF LINE
1100 FOR X=1 TO WIDE
1120 FRINT ""3iREM CTRL-%,CTRL~R
LS50 NEXT X
11&0 FRINT ""3IREM CTRL-$
1165 REM FRINT THE LEFTMOST WALL, THEN
1166 REM A CELL AND WALL OR OFENING.
1170 FOR Y=1 TO HIGH
1180 FRINT """} 3IREM SHIFT-=
1190 FOR X=1 TO WIDE
1200 XF VIX,Y):x1 THEN 1230
1210 PRINT " ["3iREM SFPACE, SHIFT-=
1220 GOTOD 1240
1230 FRINT " "3IREM SFACE,SFACE
1240 NEXT X
1350 FRINT
12558 REM PRINT THE LEFTMOST INTERSECTION
1256 REM THEN A WALL OR OFENING AND ANOTHER INTERSECTION.
1257 FPRINT ""3iREM CTRL-S
1260 FOR X=1 TO WIDE
1270 TF VX, Y)=0 THEN 1310
1280 TF VIX,Y)=2 THEN 1310
1290 PRINT “ "33REM SPACE,;CTRL-
1300 GOTD 1320
1310 FRINT ""3IREM CTRL-R,CTRL-S
1320 NEXT X

212

1330
1340
1344
1345
13%0
1360
2000
2010
2020
2030
2040
2050
2060
2070
2080
2090
2100
2110
2120
2130
2140
2150
2160
2170
2180
2190

2300
2310
2330
2340
2350
2360
2370
2380
2390
2400
2420
2440
2450
2460
24710
2500
2510

2540

FRINT

NEXT Y

REM DISFLAY THE COMFLETED MAZE
SETCOLOR 1,12,10

RETURN

REM

REM SUERT NAME$: MAKEEBEUILDER

REM

REM FERFORMS A RANDOM WALK THROUGH
REM UNMARKED CELLS, KNOCKING DOWN
REM WALLS AS IT GOES, FRINTING
REM INFORMATION XS STORED FOR LATER.
REM

REM FICK A STARTING FOINT

X=TNT (RND CO)YXWIDE) +1

STARTX=2%XX

STARTY=1

==l

WX, 1)=C

Y

REM LIST DIRECTIONS AVAYXLAELE

J=0

IF WX~-1,Y)<=0 THEN 2190

ETNE]

JUMF G =XMINUSL

IF WOX+1,Y)<=0 THEN 2220

MEWE)

JUMF G =XPLUS L

IF WX, Y-1)<x0 THEN 2250

JEJ+L

JUMF () =YMINUSL

TF WX, Y+1)<=0 THEN 2280

JEJ+l

JUMF CU) =YFRLUS T

REM IF BOXED IN

TF J=0 THEN 2420

REM SELECT ONE DIRECTION

IF J=1 THEN GOSUE JUMFCLYIGOTO 2350
ON INTIRNDCOIxJY+1 GOSUE JUMF CL) , JUMF(2) , JUMF(3)
REM MARK NEW CELL USED

C=0+1

WX, Y)=C

GOTO 2150

REM TF BOXED IN, START A NEW FATH
REM FROM ANY EXISTING FATH. STORF
REM IF 954 COMPLETE

IF Cx0. 2% (HIGHXWIDE+L) THEN 23540
X=TINT CRND CO) XWIDE) +1
Y=INTCRND (0 Y XHIGH) +1

IF WX, Yy==0 THEN 21350

GOTO 2440

REM OFEN THE BOTTOM OF A MARKED
REM CELL IN THE LAST ROW.

X=TNT CRND (O)Y XWIDE)Y +1

I

213

Mazemaster

29590 TF WX HIGHY=0 THEN 2540

2960 VX HIGH) =V (X, HIGH) +1

2570 RETURN

3000 REM MAZERUNNER

3005 REM

3010 REM MOVES THE CURSOR ACCORDING
3020 REM TO THE JOYSTICK, CHECKS FOR
3030 REM DONE AND TIMES THE RUN,
3040 REM

3050 REM FUT THE CURSOR AT THE START
3060 X=8TARTXIY=STARTY

3070 COLOR CURSORIFLOT STARTX,STARTY
307% REM READ THE CLOCK

3080 A=PFEEK(18)

3090 B=FEEK(1?9)

3100 C=FEEK(Z20)

3120 FIRSTTIME=(AX256X256+EX256+0) /760
3125 REM READ THE JOYSTICK

3130 D=15-8TICKC0)

3140 IF D=0 THEN 3130

3150 Xl=-1

3160 IF D=3 THEN X1=0

3170 IF D7 THEN Xi=1

3180 Yl=-1

3190 IF D=INTID/2)X2 THEN Yi=l

3200 IF D=INTI(D/4)%4 THEN Y1=0

3230 REM CHECK FOR WALLS THERE

3240 REM IGNORE JOYSTICK INFUT IF 80
3250 LOCATE X+X1,Y+Yl,CHAR

3260 IF CHAR-FBELANK AND CHAR==SFOT THEN 3130
3295 REM LEAVE A SFOT, MOVE THE CURSOR
3300 COLOR SPOTIFLOT X,Y

3305 X=X+X13Y=Y+Yl

3310 COLOR CURSORIFLOT X,Y

3315 REM REFEAT IF STILL INSIDE

3320 IF YLBROTTOM THEN 3130

332% REM READ THE CLOCK AGAIN

3330 A=FEEK(18)

3340 B=PEEK(1?)

3350 C=FEEK(20)

3360 LASTTIME=(AX2GAXZHH+EXZE64+0) /60
3370 TIME=INT((LASTTIME~FIRSTTIME)X100)/100
3430 RETURN

4200 REM SUBRT NAMES XMINUS1

4205 REM MOVE LEFT, OFEN NEW CELL’S
4206 REM RIGHT WALL

4210 X=X-1

4220 VX, Y)=U(X,Y)+2

4230 RETURN

4240 REM

4300 REM SUERT NAME: YMINUSL

4305 REM MOVE UF, OFEN NEW CELL‘S
4306 REM BOTTOM WALL

4310 Y=Y-1

214

4320 VX, Y)=U(X,Y)+1

4330 RETURN

4340 REM

4400 REM SUBRT XFLUSIL
4410

4420 REM MOVE RIGHT
4430 VX, Y)I=U(X,Y)+2
4440 X=X+1

4450 RETURN

44560 REM

500 REM SUBRT NAMES
510 REM OFEN THIS
4520 REM MOVE DOWN
4530 VX, YI=U X, Y+l
4540 Y=Y+l

4550 RETURN

REM OFEN THIS CELL’S RIGHT WALL,

YFLUST
CELL’S

EOTTOM WALL,

Monster Combat

This monstrous program offers
hours of fun. Think carefully
before accepting its offer.

Monster Combat is a game in which
you go wandering through a forest trying
to win as much treasure as you can from
various monsters without getting yourself
killed in the process. It was written in Basic
for a KIM microprocessor and for display
on a high speed video board, but can easily
be converted to almost any other Basic or
video board. It requires at least 16K of
RAM to be run, which is the main reason
there are no spaces between commands on
the program listing.

Lee Chapel, 2349 Wigging, Springfield, Ill.
62704.

Shelia Spencer, Rt. 8, Orchard Hills, 4225
Beulah Cove, Claremore, OK 74017.

Lee Chapel

Translated for the Atari by Shelia Spencer

Play

When you play the game you will be
randomly placed in a forest ten by ten
squares in size. Only one of these squares,
the one you are in, is displayed, thus
allowing you to see only a small part of the
forest at a time. The sector you are in is
again divided into ten by ten squares. Each
of these, too, isdivided up to ten by ten; but
these hundred smallest squares you see.
Each of these little squares is shown by a
single claracter. It covers an area of forest
ten by ten yards, making the fuller square
that is displayed a hundred by a hundred
yards and the entire forest a thousand by a
thousand yards. T’s are trees, ‘-’s are paths,
I's are walls, 's are inns, and M’s are
enchanted castles. The ‘0’ is you.

Also displayed with the portion of
forest you are in is your combat strength,
treasure total, and the various magic spells
you have. Your combat strength is used to
fight the various monsters you meet, each
monster having a combat strength of his
own; these range from five (for a goblin) to

215

a hundred (for a basilisk). Your combat
strength is also used in movement, the
amount used depending upon how far you
go, how much treasure you're lugging
around, and the type of terrain you end up
on after you move.

At the inns you are allowed to regain
the strength you began with and all the
magic you had at the start. Don’t worry
when you find yourself displayed in the
square below the inn when you stop there;
that is the way the program is set up. Of
course, the innkeeper takes some of your
treasure for providing you with his
services. However, sometimes he has
information which he passes on to you at
no additional cost — like where the forest
edge is, or where an enchanted castle might
be found.

There may be up to fifteen enchanted
castles in the forest. These usually contain
items of great value to treasure hunters, as
you will see. (However, they tend to vanish
if you make the wrong move, such as
falling into a pit when you land on the
castle square.)

Monster Combat

The following is a description of
each monster, giving its combat
strength and telling sometbing about
the tales and myths surrounding it.

Goblin (5) — A mischievous little sprite
only about a yard in height. Rather
ugly, uses coarse and uncouth lan-
guage, is generally evil and malicious;
all in all, a rather unpleasant little
fellow. Even though they’re little they
can be very vicious, and more than one
warrior has been killed underestimating
them.

Minotaur (10) — From Greek mythol-
ogy, a monster with the head of a bull
and the body of a man. Minos, king of
Crete, received a bull from Poseidon,
god of the sea, which he refused to
sacrifice to the god. Poseidon inspired
an unnatural love for the bull in
Pasiphae, Minos’ wife, and the mino-
taur resulted from the union. Minos
enclosed the creature in a labyrinth
constructed in the city of Knossos, and
fed it seven young men and women
(whom Athens had to pay as tribute to
Crete) every few years. The original
minotaur was eventually slain by the
Athenian hero Theseus.

Cyclops (20) — Also from Greek
mythology, a member of a race of one-
eyed giants. According to Homer, the
cyclopses were shepherds living on an
island in the western area. The best
known of these was Polyphemus who
had his eye poked out by the hero,
Odysseus. According to Hesiod, the
cyclopses were three of the children of
Uranus and Gaea. They forged the
thunderbolt for Zeus, king of the gods,
and became the assistants of Hephaes-
tus, god of the forge.

Zombie (30) — From legends in the
West Indies, a corpse which has been

Cast of Characters

reanimated. A rather unpleasant
person to meet, he generally smells of
rot and decay. He often has rotting
pieces of himself falling off his body, yet
never seems to fallapart completely. He
is difficult to kill, since he is already
dead. A person has to chop him into
tiny pieces and then get away before the
monster can pull himself back together.

Giant (40) — Appears in the mythology
of almost all nations, huge beings of
terrible aspect. In the Greek myths the
giants are said to live in volcanic regions
where they were banished after an
unsuccessful war against the gods.
Some giants are peaceful, but others,
like the ones in the forest, would think
nothing of having you or anyone else
for a snack.

Harpy (50) — From Greek mythology,
disgusting women with the wings and
lower body of a bird, generally a bird of
prey. They stole and befouled the food
of blind Phineus as punishment from
the gods. Phineus nearly died before
Jason and the Argonauts arrived while
sailing in search of the Golden Fleece.
Two of the Argonauts, Zetes and
Calais, drove the harpies away and were
then told by one of the gods that the
harpies would bother Phineus no more.
The harpies continued their disgusting
practices elsewhere.

Griffin (60) — From Eastern mythol-
ogy, a creature usually represented as
having the head, beak, and wings of an
eagle, and the body and legs of a lion. It
builds its nest of gold, making it very
tempting to hunters and forcing the
griffin to keep vigilant guard. It
instinctively knows where buried
treasure is hidden and does its best to
keep any plunderers at a distance.

Chimera (70) — From Greek mythol-
ogy, a monster with the foreparts of a
lion, the rearparts of a goat with a goat’s
head in the middle of its back, and with
a serpent for a tail. The original chimera
was slain by Bellerophon, who was
riding on Pegasus, the winged horse.
Ironically, Pegasus was a distant
relative of the chimera.

Dragon (80) — Found in many of the
world’s mythologies, a reptilic monster
resembling a giant lizard and usually
represented as having wings, huge
claws, and a fiery breath. In some places
the dragon is considered to be a
peaceful creature, notably in Japan and
China, where it is regarded as a symbol
of good fortune. However, the dragons
in the forest are of the other sort; they
will kill and eat you if you let them, and
they take very unkindly to anyone
trying to steal their treasure.

Wyvern (90) — A distant relative of the
dragon, this is a fabulous two-legged
creature, with wings and the head of a
dragon on a basilisk’s body. Although
he cannot kill you with one glance like
the basilisk, he is still a very unpleasant
creature to meet.

Basilisk (100) — The worst of all eleven
monsters, his deadly glare kills anyone
who gazes upon his face. From Greek
mythology, the basilisk was called the
king of serpents, being endowed with a
scaly crest upon his head like a crown.
This monster was supposedly produced
from the egg of a cock hatched under
toads or serpents. The weasel, the only
animal which can withstand the basi-
lisk’s glare, often fought it to the death.
Humans must use a mirror if they wish
to be assured of victory over a basilisk,
for the mirror will reflect the creature’s
gaze back upon it and kill it. This
monster is not to be confused with the
basilisk of South America, a harmless
lizard with the ability to run across
water.

Most of the time you will not be
visiting inns and castles. You will be
hacking your way through thick under-
brush or trotting along forest paths in
search of treasure. And you will find it,
usually guarded by some sort of monster.
Upon encountering one or more of these
creatures you are given a choice of fighting
them, running away, bribing them, or
casting a spell on them.

To fight you must hit a ‘I’; then, when
it asks you to, you enter however much of
your combat strength you wish to use

against the monster. If you choose to use
strength equal to the monster’s strength
you then have a fifty-fifty chance of
winning. The more strength you use the
greater the odds are of winning, the less
you use the smaller your odds of winning.
Also affecting what you use to fight the
monster is your treasure total. The more
treasure you have the more strength you
must use.

The first and third parts of the sample
run give examples of fighting a monster or
monsters. In the first case there are three

216

cyclopses. Cyclopses have a combat
strength of 20 which means that three of
them have a total strength of 60. I used 121
of my combat strength to fight them, over
twice the cyclopses’ strength, which gave
me over a 95% chance of winning. And, as
can be seen in the example, I did beat him.

In the third part of the sample run I
am fighting 19 goblins. Since goblins have
a combat strength of 5, 19 have a combined
strength of 95. I used only 60 combat
points that time, giving me around a 30%
chance of winning. And, as can be seen in

the example, I did get myself killed.

If you do not wish to fight the monster
you can always run. However, the higher
the strength of the monster the less likely
you will get away and the more likely that
you will be forced to fight. Whether or not
you do get away is based upon a random

number and the strength of the monster. If
you do get away you are randomly placed
in an adjacent square and get to find out
what is there. Once in a while, when you
attempt to run, the monster catches you
and kills you.

If you don’t care to run or fight you
can try to bribe the monster. Few people
like to do this since it means handing over
some of your hard-earned treasure.
Whether your bribe is accepted or not
depends upon how much treasure the
monster is guarding, his strength, and a
random number. The greater the value of
the treasure the monster has, the more
you’ll have to pay him if you don’t care to
fight. Usually if the monster doesn’t care
for your bribe you have to fight him.
Sometimes, though, he just kills you
anyway.

Finally, if youdon’t care for any of the
previous choices, you may cast a spell.
There are three types of spells: sleep,
charms, and invisibility. Sleep spells tend

to be the least effective and invisibility the
most effective, with charms somewhere in
the middle. Spells, no matter what kind
they are, don’t always work too well,
sometimes not working at all, thus causing
you to have to fight the monster.

In addition to the various monsters,
there are other things you will occasionally
run into; some are good and some bad, as
you will see when you run the program.
Everything is determined randomly and
thus you can go back to a spot you were
previously at and find something different
there.

You have thirty days to hunt for
treasure in the forest. Each little square
you move through takes a tenth of a day to
cross, meaning it takes an entire day to
cross the entire displayed square. To move
you enter the direction you wish to go (N
meaning North, which is upwards, S
meaning South, E meaning East, which is
to the right, and W meaning West). Then
you enter the distance, each little square
being one. For example, in the first part of
the sample run I enter S (south) for the
direction and then 3 for the distance. This
places me on top of the arrow, which is an
inn, and thus I am shown in the square
below the inn when the next map of the
area is drawn. In moving from the inn I
again go south, this time a distance of 7,

Menu from Monster Disk

GRAFHICS 0
SETCOLOR 2,0,10%8
39{FOKE 752,1
';) lll

2
6 GOTO 9
8

XXKDIRECTORY XXX $7?

FOR I=1 TO 1000:NEXT TIRETURN

? DIM X$(40),L.$C20),A%C40),F$(500),N$(2),E04$(40)

10 REM "DI1IMENU"

11 OFEN #1,6,0,"Dix,x"

12 BO$="

22 L$="

27 RETURN

30 INFUT #1,A%

40 IF A$(h'2)~ Gl
45 GOSUE 20

S0 7 LEIN$")Y M3
60 INFUT #1, ﬁ$

70 IF A$(L,L) o

which causes me to end up in the next large
square.

When you leave the forest, intention-
ally or accidentally, you can obtain a
listing of the number of monsters you've
killed, bribed and run from, plus the
amount of treasure you have won so far. If
you decide not to return to the forest or
your thirty days are up, you are offered
several choices: you may go to a new forest
with the same strength and magic (the
treasure total going back to zero); you may
go to a new forest with new strength and
magic; or you can stop playing the game. If
you should wish to use the strength and
magic left over from the game you just
played, you can obtain a listing of these at
the very end of the game and then write
them down or store them however you
wish. Then, the next time you play the
game, you just answer the initial question
asking if you wish to use an old combat
strength and magic with a ‘Y’ and then
enter the various things you are asked for.

This game was very popular at my
dorm at the University of Wisconsin in
Madison. The record treasure total so far,
as of this writing, is 7562, set by me. Most
of the time the scores run between a
thousand and two thousand, with many
lower and a few higher. If you get above
two thousand you're doing well.

SETCOLOR 1,0,2:8ETCOLOR 4,0,10:FOKE 82,2:FOKE 83,

"IGOTO 30
20 N=N+1iX$=A%(3,10)IX$(9,9)=","iX$(10,12)=A%(11,13)

"ILBCLENC(LSI+1)=X$FS(LEN(F$)+1)=X$
24 L$(14,14)="("IFOR I=2 TO LEN(L$)IIF L$(L,I)="
25 NEXT IiN$=8TR$(N)IIF N<10 THEN N$(Z

THEN GOTO 20

THEN GOTO 90

217

" THEN L$CI,T)=","

2 2)=N$ (L, 1) IN$(1,1)="0"

Monster Combat

7% GOSUE 20

B0 P L2, 14 NGy ¢

8% GO TO 30

90 P ot om LA

120 FOKE 7%2,0

130 FOSITION 1,2237 " SELECTION"$:TRAF 1303INFUT X317 ““i3TRAF 40000
131 IF XEINTOX) THEN 130

13% TF X=1 THEN X$=F&(1,12):60T0 145

140 X$b=F$((X~1IXK1241, (X~1)X12+12) i TRAF 40000

141 IF X$Cll,11)=" " THEN X$=X$(1,8)

145 TF X$(1,3)="DOS" THEN DOS

1%0 A$x"01:":a$(LEN(A$)+1)mX$

155 FOKE 75%2,38F0SITION 1,223FRINT “ LOADING “iX$}

160 TRAF 200 {RUN A%$:TRAF 40000

200 FOSITION 1,223FRINT " CANNOT RUN "3iX4$3:GOSUE 8!TRAF 40000:G0T0O 130

Monster

0 GRAFHICS ZIFOKE 732, 1iFO0SITION 6,417 #63"MONSTER" IFOSITION 6,687 £63"COMEBAT"?
" By lLee Chapel"

1 ? "Translated for ATARI by Sheilas Spencer"iGOSUEB °/000 GRAFHICS 0:GOSUE 26000
3 FOKE 559,0300=0Q1=1302=210Q03=31Q4=4Q5=51Q6=6Q7=708=81Q9=92!Q10=10:Q11=11:Q12
=123Q100=1003Q1L0000=10000¢N=Q0

4 +UPL 752,Q01LiDIM ACQLO,QL10),EB(QLI0,Q10),M(QLL) ,M$ABY ,NQALL) , TH(H50),Z(Q1LL) ,MAS(2
0),X$(Q3),CLE),DLS) ,F(QLL)

3 FOR E=Q1 TO 010:FOR F=QR1L TO QLO0SACE,F)=03B(E,F)=0INEXT FINEXT E

3 GOSUE 26000

® RESTORE (FOR I=Q1 TO QLLIREAD QiMC(ID)=QINEXT IIFOR I=Q1 T0O QL1IREAD ZIF(I)=ZINE
XT TiV=INT(RND(QL)XQ3)

15 C=INT(RND(RLIX1501+500) $S=INT(RND(Q1)XQ6) iR=INT(RND(QL)XQ4) iMAs(QL)=" Sleep

Spell"iMAS(QRZ2)=" Charm"

17 MA$(A3)="TInvisibility Spell"iFOKE 5%59,34:7 "Want the strength and maqgic from

another game'") IINFUT X4

18 IF X$(Q1,Q1)="Y" THEN 14630

20 D=CIVI=VIGL=6IR1=RI? "Just a8 moment..."tFOR Q=1 TO 7S0INEXT QIFOKE $59,Q0

25 FOR I=Q1 TO QL0:FOR J=Q1 TO QL0:T=INT(RND(QL)%XQ10)IIF T<Q1 OR CS=15 THEN T=Q
0

26 H=INT (RND(QL)XQ2) iW=INT(RND(QL)XQ10)

30 F=INT(RNDQDXS1)IACT,) =QL0000XT+Q100%xF+Q10xW+H

37 IF T=Q1 THEN CS=CS+Q1iC(CHE)=TID(CE)=J

40 NEXT JINEXT I3T=Q0:SETCOLOR Q2,13,Q6!8ETCOLOR Q4,13,Q6:SETCOLOR Q1,13,13

45 X1=INT(RND(QL)XQB)+QZYL=INT(RND(QL)XA8)+QZ2 i X=INT(RND(Q1)IXQ10)+Q1Y=INT(RND(Q
1)xQ10)+Q1

9% IF X1<Q1 OR X1:xQ10 OR Y1<£Q1l OR Yl'GlU THEN 1000

96 FOR I=Q1 TO QLO0{FOR J=Q1L TO QL0IE(L,J)=Q0INEXT JINEXT LiCA=INT(A(X1,Y1)/Q1000
0)

7 F=INTOAXL,Y1)-(RL0000%CA))/Q100)

60 W=INT({(ACX1,YL)-(QL0000XCA)~(QLO0XF))/Q10) IH=A(X1,Y1)~QL10000%XCA-Q100XF~Q10XW:
I=Q03J=0Q0

67 IF CA=Q1 THEN I=INT(RND(QRL)XQL0+Q1) IJ=INT{(RND(QLIYXQL0+Q1)IE(L,J)=Q7

70 IF CA=Q1 AND I=X AND Y=J THEN BE(I,J)=Q0:G0T0 47

218

78 TF H=Q1 THEN I=INT(RND(QLYXQL0+Q1)1J=INT(RND(QL)XQ9+Q1)
B IF H=Q1 AND E(I,J)<=Q0 THEN 7%

B7 IF H=Q1 THEN E(I,J)=0Q3

R0 E(X,Y)=Q5IIF W=Q0 THEN 1195

% FOR I=Q1 TO W

100 J=INT(RND(QL)IXQL10)+Q1LIK=INT(RND(QL)XQ10+Q1)

105 IF BC(J,KY<Cx=Q0 THEN 100

110 BCJyKY=RZINEXT I

115 IF F=Q0 THEN 140

120 FOR I=Q1 TO F

125 J=INT(RND(QL)XQL0)+Q1LIK=INT(RND(QL)XQ10)+Q1

130 IF EBEdGJ,K)<=Q0 THEN 1295

135 BE(J,K)=Q1INEXT I

140 GOSUE 2Z6000:FOKE 3$59,34:F0R I=Q1 TO QRI0{FOR J=Q1 TO QL03:FOSITION I,J
145 IF EC(J,T)=Q0 THEN ? "'}

150 IF E(J,T)=Q1 THEN ? " "}

155 IF E(J,X)=Q2 THEN s

160 IF B(J,I)=Q3 THEN ? ""}

169 IF BEd(J,T)=Q5 THEN ? "0"}

167 IF E(J,I)=Q7 THEN ? "M"}

170 NEXT JIFOSITION Q12,Q0:IF I=Q2 THEN ? "Combat Strenath="3jC
180 FOSITION Q12,Q1:IF X=Q3 THEN "Treasure total="3;TL
185 FOSITION Q12,Q2!TF I=Q4 THEN "Magici"

1920 FOSITION Q12,Q3:IF I=Q5 THEN "Sleep—-"15

195 FPOSITION Q12,Q4:IF I=Q6 THEN "Charms—~"3R
200 POSITION Q12,Q531IF I=Q7 THEN "Invisibilityg-"3V
203 PFOSITION Q12,Q61IF I=Q9 THEN ? "DAY "“:DA
205 FOSITION Q12,Q7:IF I=Q1 OR I=Q8 OR I=Q10 THEN ?
210 NEXT I:? (IF T=Q1 THEN 604
213 IF T=Q2 THEN 5195
215 YT=INTORND(RLYXQES) $TF I=Q2 THEN GOSUE 320003:F0OSITION Q0,Q12
220 IF I=Q1 AND T=xQ9 THEN FOSITION Q0,14:7 "Nothimg there.":i60T0O 51%
223 IF I=Q1 AND T=Q9 THEN &13
225 T=INT(RND(Q1)X146+Q1) P IF I=Q12 THEN 840
23% IF I=13 THEN 870
237 IF I=14 THEN 900
240 IF I=14 THEN J=Q1L00:G0OTO 270
Z4% J=INTRND (QIDYXQL00/MOD) Y INL=JIIF J=Q0 THEN J=Q1§iN1l=J
254 GOSUE LO00DO0D
2959 IF d"ﬂl THEN FOSITION Q2,19:7 “"A "iM$3" is quarding"
260 TF Jo=Q1 THEN FOSITION QZ,19527 Ji" "iM$i"s are quarding"
265 M=M(I)Xd L= INT(hND(ul)x14+Gl)
270 IF I=Q1l1 AND J=Q100 THEN 219
271 TF T<Q1Z AND J=Q100 THEN 219
272 TF I=Q1l1 THEN 975
273 IF IxQ12 THEN ? "mothing."iF=Q0:G0T0 277
275 GOSUER 10025387 THiF=F(I)
277 TF M$(1l,3)="Eas" AND M1l=Q7 THEN 83%
279 IF J=Q100 THEN ? "You et the treasure free!"i1GOTO 500
280 TRAF 280:7 "Do you wish to (L) Ffiaht, (Z2d)run,"i? "(3)bribhe, or (4cast a8 spel
1" 3P INFUT KITRAF 40000
285 IF K<1 OR K=4 THEN 280
290 ON K GOTD 299,3%0,43%,670
295 TRAF 295317 "How many combat points"; tINFUT KITRAF 40000
300 IF Kx=C THEN ? "You only have "3iCi" combat points."iGOTO 295
304 GOSUE 140003 I=INT(RND(QLYXL1001){L=Q23C=C~KIK=K-0,01%TL:FOR H=1000 TO Q0 STEF
=50
315 IF LxM==K AND Hx=X THEN 490
320 L=L-0+L1INEXT H
325 GOSUE 30000:CGOSUE 1300087 "The "iIM$i"s killed gou,!
219

~J

ey D g

Monster Combat

330
334G
346
350
360
370
375
380
389
390
3995
396
397
400
405
410
1.5
I}L.\J
430
435
440
445
455
460
470
47%
480
485
490
49%
500
G901
S02
503
504
S0s
510
S8
G515
FUT
517
520
\JL .I.

23

525

530
935
540
S95
990

5585

560
961
563
565
570
573
975
580
584

? "You lose everything.":?

? "Want to play sqgain"} IINFUT X$3IIF X$(Q1,Q1)="Y" THEN

END

I=INT(RND(Q1)XQ12) :TF I=Q11 THEN 323

FOR H=Q0 TO QL0:IF HXQ1L0==M AND H<=I THEN 3735
NEXT HiGOTO 480

A=X1E=YIK=Q0iT=Q0C=C~INT ((RND(QL)X21)+1, 0E-03XTL)~-QS
X=A+INT(RND(Q1)%Q3) :Y=E+INT (RND(Q1)%XQ3)

IF X=A AND Y=BE THEN 380

DA=DA+0.1ITF X>Q10 THEN X=Q1iX1=X1+Q1IK=0Q1

IF Y>Q10 THEN Y=Q1:Y1l=Y1l+Q1IK=Q1

IF AXQ10 THEN A=Q1

IF BE>Q10 THEN E=Q1

IF X<Q1 THEN X=Q10:X1=X1-QliK=Q1

IF Y<QL THEN Y=QL0:Y1l=Y1l-QLIK=Q1

IF B(X,Y)=Q1 AND K=Q0 THEN 380

RUN

ECAyE)=INT(RND (QL)XQ3)+QLIB(X,Y)=R5IIF I<x*Qll THEN Z=Z+Q1

IF K=Q1 THEN 9595
GOTO 2195

TRAF 435:7? "How much will gouw pag" 3 tINFUT KITRAF 40000

IF KeTL THEN ? "You only have "iTLIGOTO 435

T=INT(RND(QLIX22) tL=Q0 ¢ TF I=21 OR (I*1% AND K<Q2Z) THEN 325

JEFHMX0 . 1)IXRNLITF KEQ2Z THEN 47%
FOR H=Q0 TO 2Z0:IF Ko=JxL. AND I==H THEN 47%
L=l+0, LINEXT HIGOTD 489
? "Your bribe was not accepted."
P O"You must fight."IGO0TO 299
F0 8 TL=TL-KIBE=E+QLIT=Q0:? "Your bribe was accepted."iC
N=N+N1

s0TD 5095

FOR 0=15 TO Q0 STEF ~-0.2:S0UND Q0,0,Q2,0INEXT 017? "You bheat the "jMs

TF N=QLl2 THEN I=INT(RND(QL)XQ7)IIF I=Q3 THEN 940
IF J=QL00 THEN I=XNT(RND(QLIXQ5) {IF I=Q3 THEN 965
TL=TLAF

IF T$(1l,:%9)="a swo'" THEN 770

IF T=Q% AND T=xQ9 THEN TL=TL-FIGOTO 985

? "You now have "iTLi" treasure points."

IF T$(R1,Q%5)="a8 tre" THEN 800

IF T=Q%9 THEN GOSUE 30100

TRAF S151F0OSITION QZ,221F0KE 752,137 "Which direction
X$ I TRAF 40000

IF X$="1" THEN T=Q2:C05UE 26000:GOTO 140

TRAF 5203:T=Q0:7 "What distance" ;1 INFUT KITRAF 40000
GOTO 1100

Al=X13FE1l=Y1{A=XIE=Y {C=0C-INT (7, SxXKXRND(Q1)?

IF X$(Q1,QL)="W" THEN Y=Y-K

IF X$(Q1,Gi)ﬂ“E“ THEN Y=Y+K

IF X$(Q1,31)="8" THEN X=X+K

TF X$(Q1,Q1)="N" THEN X=X-K

IF X=Q10 THEN X=X-Q1l0:X1=X1+Q1L{IF X:>Q1l0 THEN %5493
IF X=Q1 THEN X=X+Q10:X1=X1-Q11IF X<Q1l THEN %50

IF Y=Q10 THEN Y=Y-Q1l0:Y1l=YL+QLlIIF Y>Q1l0 THEN 53535
IF Y<Q1 THEN Y=Y+Q10:3Y1l=Y1-QLIIF Y<Q1 THEN 9560

IF EB(X,Y)=Q1 THEN C=C-Q%

IF B(X,Y)=QR0 THEN C=C-Q10

(Fress

1 for map)";iIN

IF C==0Q0 THEN GOSUE 30000:7? “"You died from lack of strength.":GOTO 330

IF X1<x=Al OR Y1<:=El THEN 99
IF EB(X,Y)=Q7 THEN T=Q9

IF E(X,Y)=Q2 THEN 590

IF E(X,Y)>=Q3 THEN 4600

IF A<Q0 THEN A=ABS(A)

220

585 FHA,EY=INT(RND(RL)XA3) IEB(X,Y)=QR5:G0TD 140

590 GOSUE 2900037 "You tried to o through a8 wall."

595 C=C-INT(RND(QL)XTLXS ., 0E~03)-25 i X=A1Y=EI1G0TO 3515

600 Y=Y+QLIC=DIE(A,E)=INT(RND{(QLIXA3IIB(X,Y)I)=Q5:T=Q13iV=V1

603 R=R138=5131G0TO 140

4604 GOSUE 310004FOSITION QZ,Q12:7 "You stopped a3t an innm angd regsined your st
rengthn."

610 I=INT(RND(RL)XTLX0,23):1IF I<Q% AND TL>QR5 THEN I=Q3

615 IF I<Q% AND TL<=Q% THEN I=Q0

620 7 "You paid "$I3" treassure points to stay there."{TL=TL-I{? "You now have
"ITL 3" treasure points."

630 IT=INT(RND(QLIXQ3){IF I=Q2 THEN 51%

633 IF I=Q1 THEN GOSUE 1300:G0TO 51%

635 T=INT(RND(Q1)XQ4+Q1>:7? "The innkeeper told 4ou that the forestedae is less t

" e

han H

645 ON I GOTO 650,4655,660,665

650 7 YIxQ1003" ygards to"i? "the west"iGOTO 5195

655 7?7 (Q11-X1)%xQ100:" yards to"i? "the east"i1GOTO 515

660 7 X1xQ1003" yards to"i? "the north":iGOTO 5195

665 ? (QA11-X1))xXQ1003" yards to"i? "the souwth":i1GOTO 319

670 IF T=QRS THEN ? "You can’t use maqic to qget magic,":1GOTO 280
671 IF S+VU+R=Q0 THEN ? "You have no maqic"iGOTO 280

673 ? "What type of spell-"i17 "“(1)Sleep,(2)Charm, or (3)Invisibilitbty"s
675 TRAF 6733INFUT KIIF K<1 OR K3 THEN &470:TRAF 40000

680 ON K GOTO 68%,720,745

485 IF S=0Q0 THEN ? "You have no Sleep Spells."iGOTO 480

690 IF M$="Zombie" THEN ? "You can’t put the "iM$3" to sleep."i15=5-Q1:1GOTO 480
695 GOSUE 120003 1=INT(RND(Q1)XQ10):18=5~-Q1

700 IF I+<Q3 THEN ? “"Your spell was unsuccessfull."iGOTO 480

705 IF I<Q8 THEN ? "You ot the treasure."iNZ=NZ2+N1:GOTO 500

710 ? "The "iM$:" woke too soon."

713 F=INT(RND(QL)YXF)ITL=TL+F

715 ? "You ot awayg with "3F3" treasure points" INZ2=NZ2+N1IGOTO 519
720 TF R=Q0 THEN ? "You have no charms.":160T0O 480

725 GOSUE 120008 T=XNT(RND(QL)XQ10) iR=R~-Q1

730 IF M<60 AND IxGé THEN ? "It didn’t work."3$GOTO 480

733 IF M»50 AND I<Q2 THEN ? "It didn’t work.":GOTO 480

73% IF I=Q3 THEN ? "It wore off too soon"iGOTO 713

740 I=Q3:GOTO 705

745 IF VU=Q0 THEN ? "You have none.":iGOTO 480

750 GOSUE 120003 I=INT(RND(Q1)%Q10):1V=V-Q1

755 IF M>50 AND I=Q8 THEN ? "The "iM$;" smelled gou.":GOTO 713

760 IF M<60 AND I=Q0 THEN ? "It wore off too soon.":1GOTO 713

765 GOTO 740

770 I=INT(RND(Q1)>XQ2)+Q1:0N I GOTO 780,790

780 C=Q2xC:FOSITION Q2,Q4:7? "You won an enchanted sword.,"

781 ? “Your combat strenqgth is doubled amd is rmow "3C1"."IGOTO 505
790 FOSITION Q2,Q4:? "You won an ordinary sword, Your combatstrength remains at
"ICIGOTO 5035

800 J=INT{RND(QLIXRQL0) $T=INT(RNDC(QL»%XQ10?

805 IF J=0Q7 AND M1<=Q7 THEN M1=Q7:G0OTQ 820

810 IF X=Q1 THEN 830

815 GOTO %13

g20 ? "There was 38 mMmirrvror in the chest. It will protect vyou against any Easili
skagou meet."IMLI=QR71G0TO 515
830 GOSUE 110007 “"The tressure chest was a8 tvrap., You were killed whern youw op

ened it."i1GOTO 330

835 ? "Your mirvor killed the Basilislk!"iN=N+JIM=Q0{GOTO S00

840 GOSUE 13500037 "A giasnt bhat qgrabbed vou and carried you to 3 mew spot."
845 A=X1E=YiT=Q0:iDA=DA+0.1

221

Monster Combat

850 X=INT{RND(RLYXQL0+QL) {Y=INT(RND(QILIYXQ10+Q1) IIF B(X,Y)=R1 THEN 850

899 IF A<Q0 THEN A=AEBS(A)

860 BECALE)=INT(RND (QL)XQA3)+QLIB(X, Y =Q51G07T0 215

870 GOSUE 146000357 "You fell imto & pit."tI=INT(RND(QL)®21+1.0E-03XTI.) {C=C~-1

87% IF C==Q0 THEN ? "You died trging to get ouwt,."i1GOTO 330

880 ? "You used "I combat points to climb oubt."iX=Q11:1G60T0O 3795

Q00 J=QOIFOR I=Q1 TO Q113iJ=J+NCI)INEXT IIITF J<Q11 THEN 215

10 GOSUE 1700087 "A qgiant eaqle carrvied you to safety."I1GOSUE 270008 T=Q0:GOTO 1
003

940 T=INT(RND(QLIXQLLY+QLiM=M(I)IN=T3I? A "IM$" heard the noise of battle a
nd came wandevring by."

247 ITF I=Q11l AND M1=Q7 THEN 83%

G0 TRAF 250:7 "Do ygouw wish to"i1? "(D)fight, (2)rumsor(3)cast a spell"INFUT KITR
AF 40000

985 IF K<l OR Kx3 THEN 950

260 ON K GOTO 295,350,670

265 T=INTIRND(RQLXQLL)+QLIM=M(I)I? "A "iM$3" came wandering hy."31G0TO 947

97% IF I<x14 THEN 273

P80 I=INTCRND(QL)XQ3+QL) IT=T+QG1? " a “"IMAS (I IF=INT(RND(QL)XQ11)YIGOTO 277

285 I=INT(RND(QL1l)XQ10)

286 TF I=Q% THEN ? "You were umnahle to master the spell.”

287 IF I=Q% THEN GOTO %1%

288 IF T=Q6 THEN S$=5+Q1:161=51+Q1

289 IF T=Q7 THEN R=R+Q1:{R1=R1+Q1

90 IF T=0Q8 THEN VU=VU+Q1:iV1i=V1+Q1

995 P "You won the spell.":iT=Q0:{IF S1/Q5%+R1/Q3+V1/Q2:06 THEN GOSUR 14665

997 GOTO %1%

1000 REM

1003 GOSUE 26000:GOSUE 2800037 "You survived the forest!'"iGOSUE 27000

1004 GOTO 1030

1030 % 7?7 "TREASURE TOTAL~-"3TL:? "MONSTERS KILLED-"3N:{? "MONSTERS ENCHANTED-'"}NZ
1035 IF TL1<=Q0 THEN GOSUE 16%0

1040 ? "Congratulsations "33ITF TL1<=Q0 AND TL1:TL THEN ? "anywayg'!'"i?

1043 ? (Xg=""

104% IF DA=30 THEN ? "Do gou wish to return to the forest"$3INFUT X$

1050 5=513V=V1IR=R1IC=DITF Xb=="Y" THEN 14600

1053 GOSUE 2&4000:GOTO 45

1100 DA=DA+K/Q10:IF DA<30 THEN 523

1110 ? "Your time is wup. 30 days have passed"iGOSUE 27000:G0TO 910

1300 IF CS=0Q0 THEN RETURN

1301 I=INT(RND(QLYXCS+QLYI? "The innkeeper told of a2 leqgend of a castle "}
1303 IF CCIDY=X1 AND D(ID)=Y1l THEN ? "very close bg."IRETURN

1304 J=X1-C(IYil=Y1-DCI)

1305 TIF ABRSCD=ARS(J)Y THEN ? "directly to the ":1G60TO 1307

1306 ? "somewhere to the "

1307 IF J=0 THEN ? "morth's

1310 IF J=0 THEN ? "south"s

1315 IF I<0 THEN ? "east."

1320 IF I=0 THEN ? "west."

1325 7 {RETURN

1600 GOSUEB 27000:7? "Want to qo to a3 new forest with the same strength and maqi
c" 3 PINFUT X%

1605 TF X$(Q1,Q1)="Y" THEN 142%

1615 ? "Do youw wish to ao to a8 new forest withnew strenath and maqgic" i INFUT X$@
IF X$(Q1,Q1)="Y" THEN RUN

14618 7 "Do youw plan to use this sasme strength and magic aqain some other time"}!
INFUT X4

1619 TF X$(Q1,Q1L)="Y" THEN GOSUE 1700

1621 7 ¢? "Once again, your tressure total was "7 TLI"."$IF TL:>T1 THEN Ti=TL
1623 IF T1<:=Q0 THEN ? "The larqgest treasure total vou qot with this strenqgth

222

angd maqQic was"i? T1i".
1624 % "“"You killed "IN}'" monsters."i? "You successfully worked magic on"$? N2Zi"
monsters." tEND

1625 E=Q01Z=Q0iNDA=Q0:FOR I=Q1 T0 QLLINCI=Q0INEXT X3:IF Q1<TL THEN Til=T

1627 TL=Q0:GOTO 20

1630 ? "COMEAT STRENGTH";!INPUT C3IF C«500 OR C»2000 THEN 1630

1640 ? "SLEEF SFELLS"{$INPUT S:7? "CHARMS"3:INPUT R:? "INVISIEILTITY"S: 4o u
FREVIOUS LARGEST TOTAL": AR

L1545 INFUT (136070 2Z0
LSS0 IF T1<TL THEN 2 "You won more treassure this time thanm bhefore."
1693 IF T1x=TL THEN ? "You didrn’t et ss much tressure this time.,"

1660 RETURN

16465 72 "Your masqic total is rather large."i? "Do you wish to convert it to comba

L8P "points" i INFUT X¢

1470 TF X$(Q1,Q1)="N" THEN RETURN

1678 $1=81-Q9 I1R1=R1-Q3¢V1=V1-Q2:IF S1<=Q0 THEN $1=Q1

1680 IF R1<=Q0 THEN R1=Q1

14685 IF V1<=Q0 THEN V1=Q1

1690 $=851iR=R1{V=U1iC=C+QL100:D=D+QL00:? "Your comhat stremngth is permanently i

nereased by 100."IRETURN

1700 ? "COMEAT STRENGTH-"3iD3:7? "SLEEF SFELLS-"$81:7 "CHARMS-"jR13$7? "INVISIEILITY-
"iV1i? TRETURN

2000 DATA 5,10,10,25,20,5%0,30,100,40,50,%0,200,60,%50,70,30,80,7%,90,100,100,%50

2000 END

10000 I=INT{(RND(QL)XQ1L1)+Q1

10002 IF I=Q1 THEN M$="Goblirn"

10004 IF I=Q2 THEN M$="Minotaur"

10006 IF X=Q3 THEN M$="Cugclops"

10008 IF X=Q4 THEN M$="Zombie'"

10010 IF I=Q% THEN M$="GCiant"

10012 IF I=Q6 THEN M$="Harpy"

10014 IF I=Q7 THEN M$="Griffin"

100146 IF I=Q8 THEN M$="Chimera"

10018 IF X=Q9 THEN M$="Dragon"

10020 IF I=Q10 THEN M$="Wyvern"

10022 YF I=Q11 THEN M$="Easilisk"

10024 RETURN

1002% T=INT(RNDC(QOIXQL1)+Q1

10030 IF I=Q1 THEN T$="10 silver spoons (10 pts)"

10032 IF I=Q2 THEN T$="3 sword which might bhe enchanted (2% pts)"

10034 IF I=Q3 THEN T$="50 silver coins (350 pts)"

10036 IF I=Q4 THEN T%$="100 qold pieces (100 pts)"

10038 IF I=Q% THEN T$="an emerald bracelet (50 pts)"

10040 IF I=Q&6 THEN T$="a treasure chest (200 pts)"

10042 IF I=Q7 THEN T$="& pearl necklace (50 pts)"

10044 IF I=Q8 THEN T$="a jeweled sword (30 pts)"

10046 IF I=Q9 THEN T$="a jar of rubies (79 pts)"

10048 IF I=Q10 THEN T$="3 bhox of jewels (100 pts)"

10050 IF I=Q11 THEN T%="a qold qoblet (50 pts)"

10055 RETURN

11000 V=1SiFOR 0=Q10 TO QL00:S0UND QL1,0,Q0,VISETCOLOR Q2,0,ViV=0,992XVINEXT OIFOR
Z=Q0 TO Q10INEXT Z

11005 SOUND Q1,Q0,Q0,Q0:SETCOLOR R2Z,Q9,Q1:G085UE Z&6000IRETURN

12000 GOSUE 26000 FOSITION 12,1Z2iSETCOLOR Q1,Q5,Q1:7 "MAGIC EBEING USED..."$:S50UND
Q1,Q0,Q0,Q3:1S0UND Q0,49,Q10,05

12001 SETCOLOR Q2Z,Q1,14:8ETCOLOR Q4,Q1,14:FOR O=1 TO 79INEXT 0:SOUND QO0,Q0,Q30,R0
tSOUND Q0,25,Q10, Gq

12005 SETCOLOR Q2,Q04,14:5ETCOLOR Q4,04,14:F0R 0=Q1 TO S0INEXT 0

12006 SOUND QO0,Q0,Q0,Q0

12010 SOUND 0Q0,24,Q10,Q5IGETCOLOR R2,Q5,Q1L03SETCOLLOR Q4,05%,Q10¢FOR 0=QR1 T0O 50:NE

223

Monster Combat

XT O0:S50UND QO0,Q0,Q0,Q0

12011 SOUND Q1L,Q0,Q0,Q0

1201% GOSUE 260003 RETURN

13000 SETCOLOR QZ,Q0,Q0:8ETCOLOR Q4,Q0,Q0 5 RESTORE 1301S1F0OR Z=Q1 TO 13IREAD NTE?:

READ DUR

13005 SOUND QO0,NTE,QL0,Q53F0R Q=Q1 TO DURINEXT QiS0OUND Q0,QR0,Q0,Q0

13010 IF NTE=Q0 AND DUR=Q0 THEN SOUND Q0,Q0,Q00,Q0

13011 NEXT Z

13015 DATA 136:8,136,3,102,40,136,9,102,3,85,36,136,8,102,3,85,20,136,8,102,3,85
3 20,136,8,102,3,85,96,0,0

13020 GOSUE Z26000:SETCOLOR Q2Z,Q9,Q1IRETURN

14000 FOR 0=15% TO Q0 STEF -ZIi1S0UND Q0,Q10,Q0,0:NEXT 0:SOUND Q0,Q0,Q0,0Q0

14005 GOSUE 26000 RETURN

15000 FOR 0=25% TO Q0 STEF ~3:iS0UND Q0,0,0,0INEXT D:GOSUE 26000 5RETURN

16000 FOR 0=Q0 TO 25% STEF Q7:50UND Q0,0,Q2,08NEXT 0:1GOSUE 26000 IRETURN

17000 FOR 0=1%5 TO Q0 STEF —0.,25:50UND Q0,50,Q10,0INEXT 0:GOSUE 246000 tRETURN
192000 FOR O0=Q0 TO 1% STEF 0.5:50UND QO0,0,0,0iNEXT O

192010 FOR 0=15 TO 0 STEF ~0,.53:50UND 0,0,0,0INEXT 0:GOSUE 260003RETURN

21000 FOR O=Q0 TO Q8IFOR T=Q1 TO QABLSOUND RO,Q10,0,0:50UND Q1,T,T,TINEXT TINEXT
0:SO0UND Q0,Q0,0Q0,0Q0

21005 SOUND Q1,Q0,Q0,Q0:G08UE 260003 RETURN

22000 FOR 0=159 TO Q0 STEF -2:80UND Q0,Q10,08,0iNEXT 0:SOUND Q0,R0,Q0,R0:GO0SUE 26
000 :RETURN

23000 FOR O0=Q0 TO 15:S0UND Q0,Q10,0,0¢NEXT 0:GCOSUE 246000 3RETURN

24000 FOR O=Q0 TO 255 STEF QBISOUND Q0,0,R2,0INEXT 0:GOSUE 260003RETURN

25000 SETCOLOR 2,%5,8:8ETCOLOR 4,5,83F0R 0=89 TO 24 STEF ~10:S0UND 0,0,10,8:S0UND
1,0"[091098

25001 SOUND 2,0420,10,8:50UND 3,0+30,10,8iNEXT 0:FOR VOL=1% TO 0 STEF —-13:S0UND 0
s 0,10,V0LIS0UND 1,0+10,10,V0L

25002 SOUND 2,0+20,10,VOLIS0UND 3,0+30,10,VOLINEXT VOLIGOSUE 27100 :RETURN

26000 ? "IHMISETCOLOR QZ2,13,Q61SETCOLOR Q4,13,Q6t5ETCOLOR Q1,13,133F0KE 752,1IRET

URN

27000 FOR Z=Q1 TO Z00INEXT ZIRETURN

27100 GRAFHICS 3+16:COLOR SIFLOT QLO,QLIDRAWTO Q1Z,Q1IDRAWTO Q12,Q2iDRARTO 13,02
IDRAWTO 14,Q02:DRAKRTO 14,QL3IDRANTO 16, QLIDRAWTO L16,Q5IDRAWTO 18,Q5IDRARTO 18,03

27110 DRAWTO 23,Q3:DRAWTO 23, Q5IDRANTO 25,Q5iDRANTO ZH5,QLIDRANTO 27,Q1iDRAWTO 27
yRZIDRAWTO Z9,Q21DRAWTO 292, QLIDRAWTO 31,Q1IDRAWTO 31,20DRAWTO Q10,20

27120 DRAWTO QL0,Q13FLOT 18,121DRAWTO 18, 15 iDRAWTO 12,14iDRAWTO 20,13 :DRAWTO 21,

13IDRARNTO 2Z2,14:DRAKRTO 23, 15IDRANTO 23,19

27130 GOSUE Z70003RETURN

28000 SETCOLOR QZ2,Q9,Q1:SETCOLOR Q4,Q9,Q1

28010 SOUND QR0,81,Q10,Q10:C08UE 28L00:S0UND Q1,64,Q10,Q103G05UE 281003S0UND Q2,5

3,Q10,Q10:GOSUE 281005S0UND Q3,40,Q10,R10

28020 FOR TIME=Q1 TO 100:NEXT TIMEIFOR ZZ=Q0 TO Q3:1S50UND ZZ,QR0,Q0,Q0 !NEXT ZZIRET

URN

28100 FOR TIME=Q1 TO Q10:iNEXT TIME{RETURN

29000 FOR 0=15 T0O Q0 STEF -1:S50UND QO0,Q10,Q8,0iNEXT 0:{SOUND QR0,R0,QR0,Q0:GO0SUE 26

000 3RETURN

30000 FOR O=1% TO Q0 STEF ~0.,2:80UND Q0,0,Q8,0INEXT OICOSUE 26000 RETURN

30100 GOSUE 27000:GOSUE 260005 T=Q0

30103 ? "You made it to the enchanted castle" tI=INT(RND(QL1)X21))XQ100:J=INT(RND(Q

LIXAP)IAXL,YL)=A(X1,Y1)~-QL0000

30110 GOSUE 230007 "You found "jI3" treasure points there"!TL=TL+IIIF J<=Q7 OR

M1=Q7 THEN 30125

30120 ? "You also found a8 mirror which will kill any EBasilisks you meet"iMLl=Q

7

30125 J=INT(RND(QL)XZ20)311IF J=Q2 THEN C=Q2xC

30130 IF J=Q2 THEN 7? "You also found an enchanted sword which doubles your stren

ath."

30140 FOR I=Q1 TO CS-QL:XIF C(I»==X1 THEN NEXT I:iGOTO 301495

224

30141
30144
3014%

FOR J=Q1 TO
NEXT I
CS=08-Q131IF
30150 RETURN
31000 FOR O=Q1 TO
XT FINEXT 0:SOUND
31001 RETURN
32000 I=INT(RND(Q1)x%Q11+Q1)

32001 ON I GOTO 32010,32020,3201%5,32030,32040,32050,32060,32070,32080,32090,3209

CS~-QLICCN=CCJI+QLIID D =D (J+Q1) INEXT

CS=Q0 THEN ? "You found the last castle!"
QI IFOR F=1%9 TO Q0 STEF
Q0,Q0,Q0,Q0

~33:50UND Q0,15,Q2,FISOUND Q0,20,Q2,FINE

)
32010 FOSITION 0,12:7 "You stepped into a3 time warp and lost"i? "7 days"iDA=DA+Q
7 {RETURN

32015 I=INT(RND(QL)XQ10+Q1) :J=DAIDA=DA-TIIF DA<0,1 THEN DA=0,1:I=J-DA

32017 FOSITION 0,12:7 "You stepped into a time warp and qQained":? X" davgs"IRETU
RN

32020 XIF Cx=D THEN RETURN

32023 GOSUE 192000:7? "You met anm elf who Qave you a8 magqic
strength back"iC=DIRETURN

32030 IF V+R+S5=V1+R1+51 THEN RETURN

32033 GOSUE 12000:7? "You ran into a8 wizard who Qave you 3
all your magic,"iV=V1IiR=R1{5=61

32035 RETURN

32040 IF TL+Q2 THEN RETURN

32043 GOSUE 21000:7? "You fell into some quicksand.

" ITL=INT(TL/Q2) IRETURN
32050 GOSUE 22000:? "You ran
rength" iC=INT(C/Q2) IRETURN
32060 I=INT(RND(QL)X50+QL)IFOSITION Q1,Q12:7
around”" $ TL=TL+IIRETURN

drink that gave ygour

potion that restored

You lost half of your treasur

into some thick underbrush and uwused wp half gour st

"You found "3XI3" coins lying on the

32070 IF M1<=Q7 THEN RETURN

32073 GOSUE 23000:7? "You tripped over some roots and broke gour mirror"iMi=Q0%{RE
TURN

32080 FOSITION Q2,Q12:7 "A hermit told gou that there are "3CS83" castles left
"IRETURN

32090 IF V+S+R=0 THEN RETURN

32091 GOSUE 24000:7? "You wandered into an ares where magic doesn’t work."iV=Q0:5
=Q0IR=Q0IRETURN

32095 IF CS=0Q0 THEN RETURN

32096 FOSITION QZ,Q12:7 "You met a hunter
e "$3I=INT(RND(RILIXCS)Y+Q1:GOSUE 1303
32097 RETURN

who told vyou of the legend of a castl

Scurry

In Scurry you are presented with a
series of tasks to be accomplished
within a limited amount of time, with
obstacles to be avoided. The tasks con-
sist of X shaped targets that appear on
the screen for a brief period of time.
You must use the joystick to move the

cursor over the target before it dis-
appears. The obstables are blocks on
the screen.

You receive 10 points for each target
you reach, and lose 2 points for each
obstable you hit. Your cursor is con-
tinuously moving, so the game is not

David Bohlke

easy. As your score increases, the
cursor moves faster and more
obstacles appear.

Scurry was written to demonstrate
several of the special abilities of the
Atari computer, including the use of
joysticks and Player-Missile graphics.

David Bohlke, Lynn Drive, Coggon, IA 52218.

225

Scurry

The main feature of this demon-
stration game is the machine language
routine stored in Y$ in line numbers 90
to 97. Objects in P/ M graphics can be
moved horizontally on the screen
with animation speed by using the
appropriate POKE addresses. How-
ever, there is no such provision for the
up and down movement of the graphic
images to any vertical location. It is
necessary to reposition the entire
image, one byte at a time, in the P/ M
graphics list. If you do this using Basic
POKE:s the speed of the graphics will
be unacceptably slow.

One way to speed up this vertical
movement is to reposition the image
using a machine language routine.
The following code will accomplish
this task:

162,20 LDX, 20
20 is the number of bytes to

be moved. ‘

LDA, Source address

This will be the location of
your P/M image. In this
case, the cursor image is
permanently stored at the
top of the Player 0 display
list. Since the first twenty
bytes of the list aren’t shown
on the screen, this seemed
like a convenient location.

STA, DESTINATION
address

This will be the vertical loca-
tion in the Player O list (and
the screen) that the image
will be displayed.

DEX
decrement counter

BNE, LOOP

Move another byte, for a
count of twenty in this
example.

104 PLA

96 RTS

Line number 95 of the listing sets
UY as the machine language addresses
for the USR function. In line number
97, the source address for the image
(POKE m+5, MB+1) is set at the be-
ginning of the Player O list. The
decimal 250 effectively moves this
address six bytes below the Player O
image. Since a total of 20 bytes are
moved, these extra blank bytes before
and after the image will erase the
previously set image if the vertical
change is restricted to plus or minus
five bytes. Hence, it is not necessary at

LOOP
189,0,0

157,0,0

202

208,247

each move to clear the entire Player O
list.

The POKE M+8, MB+2 instruction
in line 97 will place the MSB destina-
tion byte in the routine. Since PY =
M+7,the LSB byte can be set each time
you want to move the image. Now, the
only commands needed for vertical
movement are POKE PY,SV: Z=USR
(UY) where SV is the vertical
placement in the Player O list.

If you have several images to move,
it will be necessary to POKE changes
for both the source and destination
addresses in the routine. Or, perhaps it
would be better to set up a different
machine language routine for each
image. Although this machine code
may not be appropriate every time you
need to use Player/Missile graphics;
hopefully you will find some benefit
from the description.

Scurry was not designed as a game
to give you ‘endless’ pleasure until
4 a.m. each morning — even though it
is fun for a change of pace from time to
time. But it will be worthwhile if it
helps you to piece together some of the
concepts in Player/Missile graphics.

Line description

5-97 initialization

10 Y$(15) holds the machine
language routine
D(15) holds directions for
STICK commands

11-13 colors

20 MB is 12 pages down from
the top of memory
PB is the beginning of
Player/ Missile graphics list

25 reset color attract mode,
turn off cursor

30-40 initialize P/M graphics

50-52 put cursor image at bottom
of Player O area in P/M
graphics list

Scurry

9 REM SCURRY by

54-56
90-97

100-270

100

110

120-122
150
160-162

200-270

300-500

300

310

320

330-390

400

410

420-430
440
460
480

490
492

700-790
800-820

David Eohlke

size and color of Player O

put machine language rou-
tine into Y$

pre-game initialization

P stores points accumulated
PK is the increment of 100
counter

SH,SV are the cursor hori-
zontal and vertical positions

prints
position target

directions for STICK func-
tion

T is time, D is direction
X,Y are speed increments
for the cursor

main game loop

check for collision of cursor
and graphics blocs

if collision, then decrement
points, pick new RND direc-
tion, print score

decrease time

check STICK for cursor
direction

adjust P/ M cursor’s vertical
position

plot P/M cursor’s
zontal position

hori-

check for hit on target
increment points for hit
plot new target

check if point increment is
over 100 multiple

increase speed

reset time, increment multi-
ple of 100 counter

set new target

prompt for next game

L0 DIM Y$(15),D015)

11 GRAFHICS 3

12 SETCOLOR 2,14,2:SETCOLOR 4,14,2

13 SETCOLOR 0,8,;63SETCOLOR 1,11,8

20 ME=FEEK(106)-121F0KE S4279,MEBIFE=2546XME
25 FOKE 77,038F0KE 752,11

26 FPORE 656, LIFOKE 657, 16 1FRINT " SCURRY

226

30
34
40
50
51
54
56
90
91
92
e
96
97
100
110
120
1'7")
150
160
162
200
210
270
299
300
310

320
330
340
350
360
362
370
372
380
382
390
400
405
410
420
430
440
450
4460

HZ

464
480
440
492
500

FOKE 559,46 REM DOUEBLE LINE GR.
FOKE S3277,3(REM ENAEBLE GRAFHICS
FOKE 623,8IREM FLYR FRIORITY
FOR I=FE+3500 TO FE+800IFOKE T, 0INEXT I!{REM ZERO GR. AREA
RESTORE SZIFOR I=PE+512 TO PE+SL6IREAD AIFOKE T,AINEXT I
REM FUT FLO AT EBOTTOM OF FLO AREA
DATA 14,17,21,17,14
FOKE 3256, 01REM STZE OF FLO
FOKE 704, 0fREM COLOR OF FLO
M=ADR(Y$) IRESTORE 9ZiFOR I=1 TO 13!READ AIFOKE M+YX,AINEXT I
RE M MﬁCHINF LANG e ROUTINE
DATA 162,20,189,250,0,157,0,0,202,208,247,104,96
UYmM+13REM FOKE FY,8V1Z=U8RUY)
REM SOURCE,DESTINATION OF ROUTINE
FOKE M+5, ME+LIFOKE M+8,ME+2IFY=M+7
Fa0 8 FH=0
GH=12518V=6460
FOKE 656,3F0KE 657, 1 IFRINT "SCORE ";
FOKE 656, 3{FOKE 657 ,303FRINT "TIME"}
GOSUE 700

RESTORE 162:FOR I=% TO 15IREAD AID(I=AINEXT I
DATA 2,1,2,0,3,4,4,0,3,1,0

T=500

D=INTC(RNDCO)x4)+1

X=33Y=3

REM MAIN FLAY LOOF

C=PEEK (3292 IFOKE $53278,0

IF C=2 0OR C=1 THEN F=F-2{50UND 0,50%C,10,14:D=INT(RNDC0)%X4)+1:FOKE
657 37 SFRINT F3™ "3

T=T=131FOKE 656,3iFOKE 657,35:FRINT INT(T)$" "3iIF T«<1 THEN 800
S=5TICK (D) IIF S=1% THEN 350

R=D(5)

GOTO DXLO+350

GU=GV-YITF SVC10 THEN SV=103D=3

GOTO 400

SH=GH+XITF SHx200 THEN SH=200:D=4

GOTO 400

SV=8V+Y I TF SV:90 THEN SV=903D=1

GOTO 400

SH=SH-XTIF SH<G0 THEN SH=503D=2

FOKE FY,5ViZ=U8RUY)

SOUND 0,0,0,0

FOKE 53248, 5H

C=PEEKE32460)

IF C<=2 THEN 300

F=F+10iFOKE 6%56,3F0OKE 657 ,7 iFRINT 3" "3
SOUND 1,222,6,12:850UND 2,100,2,14

GOSUE 700

FOKE 93278,10

SOUND 1,0,;0,0:850UND 2,0,0,0

IF INTC(F/100)<FK THEN 300

XaX+0 G0 Ys=Y+0 53TF YaE THEN Y=51X=H
T=5008FK=FK+1

GOTO 300

227

Scurry

700 TH=RND(0)I)x140+55IREM TARGET HORIZ

704 REM MOVE OLD TGT. OFF OF SCREEN

705 FOKE 93249,10

710 FOR T=TVU+640+FE TO TU+FE+EGSIFOKE T, 0 INEXT
720 CL=XNTRNDCOI X1y x1L&+8FORE 705, CLIREM COLOR
730 FOKE 53257, 03REM STZE OF FLI

750 TU=RNDCOIXZ0+20¢REM TARGET VERT.

760 RESTORE 762I1F0OR I=TU+640+FE T

761 REM PUT TARGET INTO FL1 AREA

762 DATA 65,34,28,28,38,34,65

770 FOEE 53249, THIREM PLOT NEW TGET.

781 C=INTORNDCOIX2)+LiTF F>200 AND RHDCD)YC0.8
787 COLOR CIFLOT RHDCODIXIY,RNDCDYXLY

790 RETURN

BOO FRINT IFRINT "Frese START for next game PV
810 IF FEEK{(S3279)=46 THEMN 11

820 SOUND U,RNDCOXZ00,1L0,2:G0T0 810

TIREM

TU+PE+&A6IREAD ATFOKE

CLEAR
1.

OLD FL1
OF

L,ATNEXT I

THEN 790

Collision

Now is the time for iron nerves and
instant reflexes. Your nimble sports
car will soon by flying down the dread-
ful ribbon pavement known as the
“Serpent of Oblivion.” There’s no
chance of turning around or slowing
down — you must forge ahead until
the inevitable collision. But you will
succeed if you can survive longer and
score more points than any of your
opponents.

To begin your challenge of the
Serpent, plug a joystick into Slot #1.
One to four players can compete in
each game. Every player will have
three turns to navigate the swooning
roadway. Before play starts, you must
also select a skill sevel (1-5). This will
determine the width of the track.

During play, your car will be at the
top of the screen. The curving road will
move from the bottom of the screen to
the top. To avoid a collision, you must
maneuver your car to remain on the
roadway while also avoiding any
obstructions on the road. Steering
your car is a matter of pushing the joy-
stick to the left or right. The ‘wheel’

David Bohlke, Lynn Drive, Coggon, 1A 52218.

is very sensitive, so it may take some
practice to get the feel of the car. The
longer you push the stick (left or right)
the faster your car will veer in that
direction.

Scoring is determined by the skill
level selected and the length of time
you survive before the certain col-
lision. At the end of each player’s turn,
a score card showing each drivers’
score for every turn will be displayed.
The higher your score, the better your
driving ability on the Serpent. At this
time, the player who is to drive next
will be prompted to press the fire
button which will initiate your turn.

The program listing for collision
should be fairly easy to decipher. Lines
5-30 are the initialization. N$ will hold
the players’ names, S(4,3) contains

David Bohlke

each player’s score for each round, and
R$(20) holds the graphics string for
the roadway. Lines 50-172 are the
prompts for the beginning of the game
options.

The main game loop is in lines 180-
410. Your car is displayed using
Player/Missile graphics. The car
position is printed in line 370; and a
collision is checked for in line 380. Line
320 prints the road obstacles and
adjusts a counter to increase their
frequency as your turn progresses.

In the subroutine at 500-550, the
sounds and colors are changed after a
collision. The subroutine at 600-699
displays the score card. Lines 900-960
set up the Player/ Missile graphics and
the routine at 970 formats the string
to print the roadway.

David Bohllke

3360, Jy=0ENEXT

o3

Collision
5 OREM COLLISION Dy
10 GRAFHICS 0IFOKE 752,1
L85 DIM BHCAEY NS CIZ) N ,5(4,3) , R (20D
18 FOR I=0 TO 4:FO0R J=0 TO
NEXT X
20 SETCOLOR 2,13,438ETCOLOR

228

4,4,2

TARGET

A0 H=1Z0:GOSUE 90058L.D=1

A0 FRINT "ZU2F0OSTITION 13,33FRINT " COLLISTON v

30 FOSTTION 3,61FRINT "How many plavers (1-4) "33

INFUT NFIIF NF<1L OR NF:4 THEN 4 0

9% FOR T=1 T0O NFIFRINT $FRINT “"ENTER name of plager # "3I3v "

G0 INFUT BESINCID) =LENCES)+NCI-1) INSI(NCL-1)+1 ,NCID)) =FS INEXT I

100 PRINT "Z2"iFOSTITION 13,33FRINT v COLLISION v

110 FOSITION 2,103FRINT "FUSH STICK to emter SKILL LEVEL,"S$FRINT
"then press the FIRE buttom + + "

120 FOSITION Z,163FRINT " 1 is easiest, I is hardest 2V

150 FOSITION ?u, SGIFRINT LD

152 FOR I=1 TO S0INEXT I

15% IF STRIGC0)Y=0 THEN 172

160 IF STICK0)Y=1%9 THEN 1350

169 LD=LD+1iIF LD=6 THEN LD=1

170 GOTO 150

172 L=13~-LDIGOSUE 9270

174 FRINT SFRINT $FRINT N$(L,N(1))3" —=—=— press FIRE for sour turmn 23

17% FOR I=1 TO 333INEXT I

176 IF STRIG(0)=1 THEN 176

180 FOR RD=1 TO 33IFOR Fl=1 T0O NF

190 Cl=15IFRINT "¢

200 A=12FR=0.51 [“U Fra=0 § K=0

210 FOKE 77,0:8=0

220 FOKE S3278,0

250 FOR I=0 TO Z3:FO0SITION 12,I:FRINT R$INEXT I

300 FOSITITION AZ3IFRINT R%

305 SOUND 0,100-ABS(EYXL0,4,ABS(8)X2+2

310 A=a+EITF AXZZ2 OR A<l OR RNDCOX=0,01 THEN E=-(

20 C=C+1:TF C=C1 THEN FOSITION ﬁ*hND(U)x(lm?)+3,RE:F
WA C=0 PPl DXZ2ELF O INT (F/Z100) =K THEN K=K+l 3i0L=C1L-

340 P=P+LFOSTTION L, 03FPRINT F3

350 IF STICKAD)Y<8 THEN $=5+1:60T0 370

360 IF STICKC0Y<12 THEN $=8-1

370 H=H+SI1FOKE $3248,H

A0 IF PEEHA(S3252)<=0 THEN GOSUE J00:GOTO 400

390 GOTO 300

400 SPL,RDY=FIGOSUE 400

40% NEXT Pl

410 NEXT RD

420 END

500 SOUND 0,0,0,0

S510 FOR I=1 TO S:SETCOLOR 4,RNDCOIXLE,
RNDCOYXLSIGETCOLOR Z,RNDCOIYXLE,RNDCDIX1S

520 FOR J=1 TO SIS0UND 0,RNDCOIX30,4,8IG0UND LiRNDCOIXIX10,8,8INEXT J

S22 NEXT TIiS0UND 0,0,0,0:80UND 1,0,0,0

940 H=1203iF0KE 53248,H

HH0 RETURRN

H00 FRINT "2"IFOSTITION 3, 13FPRINT " COLLISYON ¢

4605 SETCOLOR 2,1,238ETCOLOR 4,11,4

410 FOSYTION 3,41FRINT "Rowunds One Two Three TOTAL"Y

420 FOR X=1 TO NFIFOSTITION 1,IX4+33FRINT NS (NCL-1)+1,NCIY)

4622 FOR J=0 TO 32IF0STTION JyIx4+5iFRINT " "3 INEXT JINEXT X

RINT

229

Collision

430
635

4640

FOR I=1 TO NFIT=0

T3 INEXT JINEXT I
480 F=PL+1iIF F>NF THEN
4690
Fress FIRE
IF

for your
692
4693
695
497
4698

4699
200
210
P20
930
940
P50
260
970
7L
974

RETURN

FOSITION 1,233FRINT
IF
FUN
ME=FEEK(106) -8 FOKE
FOKE 559,46 tFOKE
FOKE 53248,H:FOKE
DATA 51,63:30,12,
RETURN

F'\ng;zll 11}

[v
wal L}.

FOR X=FE+512 TO FE+640:1FOKE T,0INEXT X
704, 122F0KE 53256, 0
FOR I=FE+3530 TO FE+536IREAD AIFOKE X,AINEXT I
12,463,551

FOR XI=1 TO LIRS CLENC(R$)+1)="
Ré CLEN(R$)Y+1)=""IRETURN

FOR J=1 TO RDST=T+8(1,J)
FOSITION JX7+35,Ix4+3FRINT SC(L,J) 3 FPOSTTION 34, XX44+3FRINT

F=131TF RD=3 THEN &6%97

FOSITION 1,23iFPRINT N$N(P-1)+L1,N(F)) 3" ——m

turn PV

STRIGC0)=1 THEN 490
SETCOLOR 2,13,4:8ETCOLOR 4,4,2

"Fress FIRE for

STRIG(0)=1 THEN 6497

54279, ME § FE=256KME
7743

INEXT X

next qQame

PPV

Air Defense

There’s a spy in the sky! How long
are you going to allow this super-
snooper to fly in your airspace? Sure,
they can hide behind the clouds or
swoop below your mountain range,
but you should be able to stop them
with your deadly sonic cannon. Be
warned — these sleuths are infinitely
persistant and you can’t possibly get
them all. But, with an accurate eye,
you should be able to maintain your
gunners rank.

To begin play, plug a joystick into
Slot #1. At the start, you’ll also be able
to select the speed of the spy craft. This
is on a scale of one to five, with one
being the slowest. It will take a little
practice before you can advance to
the faster games.

David Bohlke, Lynn Drive, Coggon, IA 52218.

During the game, the spy planes will
move horizontally across the screen.
Use your joystick to position your
cannonand fire at the snooper. Besides
leading the plane according to its
speed, you’ll also have to adjust the
height of burst for your sonic cannon.
The current altitude setting (1-9) will
be displayed on the screen. To move
the cannon horizontally, push the stick
to the left or right. Adjusting the
altitude is accomplished by pushing
the stick up or down. When you’re set
to shoot, press the fire button.

It will take a few practice rounds
for you to get a feel for the various
altitudes and speeds. You can use the
clouds and mountain landscape as a
gauge for altitude. Usually, only one
specific altitude setting will ac-
complish a hit on the plane. Faster

230

David Bohlke

and/or higher planes will require a
little more lead horizontally and the
aircrafts are most vulnerable on their
lower tail sections.

Scoring is done in a progressive
manner. You begin with fifteen rounds
for the sonic blaster and for every in-
crement of 500 points that you ac-
cumulate yourammunitionsupply will
be replenished to 15. The game will
continue as long as you have ammuni-
tion remaining. For each hit, you can
score from 40 to 80 points, depending
on the altitude of the plane. This score
and your total score will be displayed
on the lower left of the screen. Points
will be deducted from your score
everytime you miss (minus 20) and
when a plane escapes off the edge of
the screen (minus 50). If you can con-
sistantly score over 2000 points, then

you should select a faster speed for a
higher skill level.

Air Defense illustrates an extensive
use of Player/Missile graphics. The
planes (left and right) are PLO and are
formatted in lines 700 to 750. The PL1
mode is used both for the cannon
smoke (800-808) and for the sonic blast
(860-870). Your cannon is PL2 and is
set in lines 820-828. PL3 represents the
fireball when you score a hit. This
routine at 830-850 increases in size as

Air Defense

3 REM AIR DEFENSE

4 REM by David EBEonhlke,
5 GRAFHICS SiFOKE 752,1
10
11
12
20
22
30
32
34
40
42
4%
464
20
92

SETCOLOR 2,12,4IREM
SETCOLOR 0,0,10:REM
A=FEEK(106)~-12{FOKE
DIM ACL1S),H(LS)

FOKE 559,46 iREM DEL
FOKE
FOKE
FOKE
FOKE
FOKE
FOKE

G94279, AIFMEASE

the fireball expands. The terrain and
clouds are set under Graphics 5 in lines
880-899.

The basic game initialization is in
lines 3-140. Line 92 has DATA state-
ments used in reading the STICK com-
mands for the horizontal and altitude
increments. The main game loop is in
lines 150 to 490. Lines 150-195 set the
plane and adjust the prints; and lines
200-220 check for the plane being off
the screen. All of the 300’s read and

Cogaon, IA

SETCOLOR 4,9,4!REM SKY

EARTH
CL.OUDS

256XA

LINE GR

93277 s 3IREM ENAEBLE GR.
623,8IREM FIELD FRIORITY
3256, 0IREM SIZE FLO
G3257,11REM SIZE FL.1
93258, 0REM SIZE FLZ
706,2REM COLOR FL2
RESTORE 92iFOR I=1 TO 15:(READ A,HIA(I)=AIH(I)=HINEXT I
DATA 0,0’0,090’0’0’0’“1919191'0,190'0,“19”1919

*1909*190’0’“1,091909090

interpret the STICK commands. The
400’s control the gun firing and check
for a hit on the plane. Line 460 checks
the proximity blast and may be
adjusted for easier accuracy. When
there is a hit, the program branches to
line 500 and then returns to the main
game loop. Finally, lines 900-970 print
the score and test for the end of the
game.

94 FS5=1iHF=FS+3{FLN=0IRD=15{RC=0{FF=20

100 GOSUE 880:GOSUE 890

105 FRINT ," AIR DEFENSE "IFRINT

106 FRINT " SELECT SPFEED, then press 8TART "IiFS=1
107 FOKE 6%56,2tFO0KE 657,37 FRINT FG3

108 IF FEEK(53279)=6 THEN 113

110 IF FEEK(S3279)=5% THEN FS=FS5+131IF F&:>5 THEN F&=1
111 FOR J=1 TO S0INEXT J

112 SOUND 0,200%RNDC0),10,2:G0TO 107

113 G=FSIFS=FS%X0.,5+0.5HF=FG+337? 7 7 7

114 SOUND 0,0,0,0

115 GOSUE 800:GOSUE 820

120 GH=125IF0KE 53250,GHIGA=5

130 FOKE 656,2iFOKE 657 ,2IFRINT "Game "3G3

150 GOSUE 700:AK=10-INT((FA-12)/35)

170 FOR I=FMEASE+640 TO FMEASE+768IF0OKE X,0:iNEXT I
175 FOKE 77,0:FOKE 53259,0

180 I=INT(FT/500):IF I>RC THEN RC=I!RD=1S5IFF=FF+35
185 FOKE 6%56,2iFOKE 657,30iFRINT "Rnds "3RD3" "3
1920 IF RD<1 THEN 9350

195 PLN=FLN+1:GOSUE 200

200 PH=FH+DRXFS

210 IF DR=1 AND FHXFE THEN FT=FT-503RD=RD-1:GOT0O 1350
212 IF DR=-1 AND PFH<FE THEN FT=FT-30:RD=RD-1:GOTO 1350

231

Air Defense

220 FOKE 53248,FH
250 IF FEEK(S53279)=6 THEN RUN
300 S=5TICKCD)
302 SOUND 3,30,8,INT(FA/Z0)+]
305 GH=GH+H(SYXHFITIF GH<S0 THEN GH=%50
306 IF GH:200 THEN GH=200
310 GA=GA+A(S)ITF GAXY THEN GA=9
312 IF GA<1 THEN GA=1
320 FOKE 53250,GH
349 X=INT({GH-50)/42.5)
350 FOKE 656,31F0KE 657,17 tFRINT "ALT "“iGA}
360 SOUND 3,30,4,INT(FA/20)+2
400 IF STRIGC0)=0 THEN 200
405 GOSUE 801 IRD=RD-1
406 FOKE 656,2iF0KE 6597 ,30FRINT "Rnds “jRD" '3
420 FOR X=1 TO AKIPH=FH+DRXFS
421 FOKE $3249,GH-8+RND(0) X9
422 FOR J=1 TO 15INEXT J
424 SOUND 2,60,4,15
426 FOKE $53248,FHINEXT I
427 SOUND 2,0,0,0
429 FOKE 705,34
430 FOR I=FMBEASE+640+CH TO FMEASE+&645+CHIFOKE L, 0INEXT I
450 GOSUER 860:FOKE 53249,GH-4
455 FOR X=1 TO 30:S0UND 2,I+20,4,14150UND
3,60,8,14INEXT TIS0UND 2,0,0,03i850UND 3,0,0,0
460 TF ABS(AE-FAYL3 AND ABS(GH-FH)<S THEN FT=FT+100-FAIGOTO 500
470 FT=PT-FFIGOSUE 200
480 FOR I=FMEASE+640+AE TO FMEASE+647+ABIFOKE T, 0iNEXT I
482 FOKE 53249,20
485 XF RD<1 THEN 950
490 GOTO 200
500 FOKE 93249,20:G05UE 200
505 SOUND 3,0,0,0
910 GOSUE 83131FOKE 53248,20
940 FOR I=FMEASE+8%96 TO FMEASE+10Z24:FO0KE T,0iNEXT I
950 FOKE 53251,20
960 GOTO 150
700 FOR I=FMEASE+3512 TO FMEASE+640:FOKE T,03INEXT X
702 FA=INT(RND(O)IX40)+20CL=INT(RND(0)X146)X146+2
710 IF RNDC0)><0.,5 THEN 720
712 PH=3S!FE=213{DR=1{RESTORE 718
717 GOTO 730
718 DATA 56,156,206,255,14,28,5%56
720 PH=213I1FE=33!DR=~1IRESTORE 728
728 DATA 28,57,115,255,112,56,28
730 FOR I=FMEASE+512+FA TO FMEASE+S18+FAIREAD AIFOKE I,AINEXT I
732 FOKE U3256,0iREM SIZE FLO
734 FOKE 704,CLIREM COLOR FLO
750 RETURN
800 FOR I=FMBASE+640 TO FMEASE+768IFOKE I,0iNEXT I
801 RESTORE 808!CH=94iFOKE 703,12
802 FOR I=FMEASE+640+CH TO FMEASE+645+CHIREAD AIFOKE T,AINEXT I
805 RETURN
232

g08
820
821
822
825
828
830
831
832

834
840
845

844
847

848
849

850
860
861
862
866
870
880
882
884
886
887
888
890
891
892
893
894
895
896
897
898
899
200
P05
210
220
250

DATA 24,36,90,165,195,60

FOR I=FMEASE+768 TO FMEBEASE+8946!FOKE T,0INEXT I

RESTORE 828:FL=100

FOR I=FMEASE+768+FL TO FMEASE+772+FLIREAD AIFOKE I,AINEXT I

RETURN

DATA 24,24,24,24,24,24,60,60,90,90,219,255
FOR I=FMEASE+8%96 TO FMEASE+1024:F0KE I,0INEXT I

RESTORE 840

FOR I=FMEASE+896+FA TO FMEASE+906+FAIREAD AIFOKE I,

AINEXT TIFOKE 707,66

FOKE 53259,0F0KE 3251 ,FH

DATA 74,149,72,34,14%5,40,66,169,468,
FOR I=1 TO 10:SOUND 0,RNDC0)YX30+30,
SOUND 1,RNDCOIX50+150,4,43INEXT X
FOKE G3259,131F0KE 707,68

146
4,42

FOR I=1 TO 10:80UND 0,RNDC0YX30+30,4,8:S0UND

1,RNDCOIX50+1506,4,8INEXT I
FOKE 53251 ,FH-91FOKE %53259,31F0KE 7

07,72

FOR I=1 TO 10:S0UND 0,RNDC0)IX30+30,4,14350UND

1,RNDCOIX50+150,4, 14INEXT I
SOUND 0,0,0,0350UND 1,0,0,0:RETURN

FOR I=FMEASE+640+AE TO FMEASE+647+ABIFOKE I, 0iNEXT X

RESTORE 8661AE=(10-GAYXS+15

FOR I=FMEASE+640+AE TO FMEASE+647+ABIREAD AIFOKE I,AINEXT I

DATA 129,66,20,43,212,40,66,129
RETURN

COLOR 3i1D=351E=1

FOR I=0 TO 79:FLOT I,DIDRAWTO 1,40
IF RNDC(0)<0.2 THEN E=-E

D=D+ETF D>40 THEN D=40

IF D<20 THEN D=20

NEXT T:RETURN

COLOR 13X=10+RND(0)IX20:X1=XY=RND(0)X20:Z=Y{GOSUE 893
X=453+RND (0)XZ203Y=RND(0)X20:X1=XIIF ABS(Y-Z)<8 THEN 891

GOSUE 893 :RETURN
D=8+RND (0)x8
FOR I=1 TO D

L=RNDC0)X4X-13R=RNDC0)X4:TF XxD/2 THEN L=-L/23R=-R/2

X=X+ i X1=X1+RITF X<0 THEN X=0

IF X179 THEN X1=79

FLOT X, YIDRAWTO X1,Y:Y=Y+1INEXT I
RETURN

IF FT<0 THEN FT=0

FOKE 6%56,3iFOKE 657,2iFRINT "Score
FOKE 6%56,31FOKE 657 ,30iFRINT "Flane
RETURN

FOKE 656, 0iF0KE 657, 2i1FRINT "FRESS

9% FOKE $53248,20

955
@60
70

IF FEEK(33279)=6 THEN RUN
SOUND O0,RNDC0I%250,10,2:G0T0O 940

(1] ; FIT; "
"IFLNG

START

+
b4

FOR NEXT GAME

:?o?“ ;

233

o '"'Fﬁﬁ!'“'..h FFNEE. | LTI
s ..l_-" 1|..- '-Ihle .I [I
" -—- ---'—I—-.— L et I EICRCE R TR y 11

: i | H;IH-"I o "'Hq:"fir:}!-':w-
B 19PNl

Sl
T A1 PRI mw—rﬂ-lrm oy .H SELL *l-"l-' EE

ummmﬁfﬁ-a,ﬂ
i a.'m.*# '

o H':f%%ﬁ..m:ﬂ“
_ nmumm-w ;EHT"E‘H ur

i =t
D o 8 “Jigachiri ¥ Fu &

sfry e
s yw
atE Rt =Tl BTN, -
E o A
. PRS- W e
AT a° =8 ﬂ;;' :'
- ‘l"
- A iien A v F:
l'i"-:ﬂ I-:h? 'LE &
: T nl! e, oL
Hﬂllm‘ﬂuﬁ #“t ol e,
IH ¢ ok
o ML P
- BT el ST I"EH- e Send llml-l' e, EY -
== _ Cal bl = ‘:.‘finll;fl'l.l.-'ihl &,
- 1 [
. & mnﬂl'“‘fall' o} : : 4 m
3™ = s mﬂ'mqlﬂl‘mllﬁ |= .ﬂb:ili ﬁ
Loyt~ wam [=tk Al |ﬂ=ﬂm
i
3T e w 'H'!n'l'! mPll, N I'ﬂl'[lli,l'lili IHH.I T ‘AN Al
ﬁﬁ BRI E
A% 'm# R
A [- =i o H.-n:-:-h—_- i 1
- = - Feimmmim el LR E Cd S Cd RS R | i a 11
N -

Appendix

——— - AL B -l el -

—_——

- = s m=—u = as mn al S—— =1

= mma o-lEE "mm RS, | LT - " S e s S S—

= 1 =% " T

B mg—— = =

cde = mem

=

.o wks =

Atari Memory Addresses

Decimal

2,3

6

8
16,11
12,13
14,15
16

17
18-20
49-52
64

65

74

75

80

82

83

84
85-86
90
91-92
93

96
97-98
106

Decimal

128-9
128-9
130-1
132=3
134-5
136=7
138-9
140-1
142-3
144-5
186-7
195

291

212-3
212-8
224-9
242

243-4
251

252-3

Hexadecimal
0002 - 0003
006

2008

POAA - 00OOB
ApAC - 9AAD
900E - Q0QF
010

2011 ¢
9012 - 0014
031 - 0P34
0040

pa41

AO4A

gp4aB

2050

2052

PB53

P54

@p55 - P@56
AAS5A

P@5B - PASC
265D

060

P06l - 0062
pR6A
Hexadecimal
P83 - 9081
A08a3 - gA81
pp82 - @(83
P984 - BQ85
2086 - 0087
P88 - PP89
@P8A - 08B
AA8C - @P8D
PO8E - QO8F
2090 - 0091
POBA - Q0ABB
faC3

2@co

pPD4 - @@D5
PPD4 - PO@DA
POEA - QOES
DAF2

PPF3 - QOF4
@OFB

AQFC - QOFD

Label

CASINI
TRAMSZ
WARMST
DOSVEC
DOSINI
APPMHI
POKMSK
BRKKEY
RTCLOK

Floppy

Comment

cassette boot completed vector

End of RAM test temporary storage
Warm start flag (-1 = true)

no cartridge control vector (start)
disk boot completed vector

Highest location used by Basic
ANTIC interrupt register storage
Break key flag (-1 = false)

TV Frame counter

disk serial bus device addresses

printer serial bus device address

SOUNDR
CKEY
ATRACT

Sound I/0 flag (@=quiet)
Cassette boot request flag
Attract mode flag (>128 = attract)

modem serial bus device address

LMARGN
RMARGN
ROWCRS
COLCRS
OLDROW
OLDCOL
OLDCHR
NEWROW
NEWCOL
RAMTOP

Label

BASIC area
LOMEM

Left screen margin (default = 2)
Right screen margin (default = 37)
Current cursor row (9-39)

Current cursor column (@8-23)
Previous cursor row (@-39)
Previous cursor column (0-23)

Data under cursor

Cursor row to which DRAWTO goes
Cursor column to which DRAWTO goes
Top of memory (Page number)

Comment

Basic low memory pointer

OUTBUFF Syntax output buffer

VNTP
VNTD
VNTP
STMTAB
STMCUR
STARD
RUNSTK
MEMTOP
STOPLN
ERRSAV
PTABW
FRO
FRO
FR1
CIX
INBUFF
RADFLG
FLPTR

Variable name table address

End of variable name table
Variable values table

Statement table

Immediate statement

String array table

Run time stack
Basic top of memory pointer
Line number for TRAP or STOP

Error number

Print tab width (default = 10)
Value returned to Basic from USR
6 byte floating point handler
6 byte floating point handler
index offset used with INBUFF (@0F3)
pointer to ASCII text buffer
Radian/degree flag (@ RAD - 6 DEG)
pointer to a floating point number

237

Decimal Hexadecimal Labhel Comment
(Mostly Vectors and Shadow Registers)

256-511 1003 - P1FF STACK 6502 stack area

512-3 2200 - G201 VDSLST RTI vector (E7B3 = ignore interrupt)
514-5 g2p2 - 4203 VPRCED Serial I/O interrupt proceed vector
516-7 a204 - 9205 VINTER Serial I/0 interrupt vector

518-9 9206 - 9207 VBREAK 6502 Break instruction vector
520-1 208 - 09209 VKEYBD Key pressed interrupt vector

522-3 @20A - £20B VSERIN Serial bus input ready vector
524-5 g20C - 220D VSEROR Serial bus output ready vector
526-7 A20E - D20F VSEROC Serial hus output complete vector
528-9 n21p - 9211 VTIMR]1 POKEY timer f#1 vector

530-1 p212 - 9213 VTIMR2 POKEY timer #2 vector

532-3 9214 - @215 VTIMR4 timer vector

534-5 g216 - @217 VIMIRQ immediate IRQ global RAM vector
536-7 218 - 9219 CDTMV]1 SIO timeout timer

538-9 @21A - @21B CDTMV2 timer #2

540-1 P21C - @#21D CDTMV3 timer #3

542-3 $21E - @21F CDTMV4 timer #4

544-5 9220 - 9221 CDTMVS timer #5

546-7 9222 - 9223 VVBLK]1 vertical blank RAM vector

548-9 g224 - @225 VVBLKD vertical blank deferred vector
550-1 p226 - 0227 CDTMAl vector for CDTMV1 at 0218

552-3 0228 - 0229 CDTMA2 vector for CDTMV2 at @21A

554 B22A CDTMF3 flag for CDTMV3 at @21C

556 g22C CDTMF4 flag for CDTMV4 at Q21%

558 B22E CDTMF5 flag for CDTMVS5 at 0220

559 P22F SDMCTL data from ANTIC DMACTL (D4g3)

564 3230 SDLSTL data from ANTIC DLISTL (D432)

561 7231 SDLSTH data from ANTIC DLISTH (D4@3)

564 p234 LPENH 1light pen data from PENH (D46C)
565 9235 LPENV light pen data from PENV (D4@D)
576 p249¢ DFLAGS disk boot file flag

580 9244 COLDST cold start flag

Decimal Hexadecimal Label Comment

623 B26F GPRIOR data from CTIA PRIOR (D@#1B)

624 3270 PADDL®O Pot @ data from POT@O (D230)

625 9271 PADDL]1 Pot 1 data from POT1 (D2#1)

626 0272 PADDL2 Pot 2 data from POT2 (D202)

627 8273 PADDL3 Pot 3 data from POT3 (D2#3)

628 9274 PADDL4 Pot 4 data from POT4 (D2@4)

629 #3275 PADDLS5 Pot 5 data from POTS (D2#@5)

630 P276 PADDL6 Pot 6 data from POT6 (D206)

631 @277 PADDL7 Pot 7 data from POT7 (D2@7)

632 9278 STICKP joystick @ data (PORTA D3@0)

633 #3279 STICK1 joystick 1 data (PORTA D320)

634 @27A STICK2 joystick 2 data (PORTB D301)

635 #27B STICK3 joystick 3 data (PORTB D3d¢1)

644 p284 STRIGO joystick trigger data (TRIG@ DO01)
645 2285 STRIG1 joystick trigger data (TRIG1l NGY2)
646 2286 STRIG2 joystick trigger data (TRIG2 DO@3)

238

647
656
657-8
704
705
706
707
708
709
710
712
713
736-7
741
743
152
755
756
763
764
765
766
767

Decimal

768
759
770
771
772
773
774
776
7717
778
779
794
832
833
834
835
836
837
838
839
840
841
842
843

0287
P290
P291 - 9292
02CQ
p2C1
2C2
p2C3
p2Cc4
p2C5
n2C6
g2C7
?2C8
02E0 - 02E1
@2ES5
P2E7
B2F)
A2F3
P2F4
A2FB
p2FC
A2FD
@2FE
A2FF

390 -

STRIG3
TXTROW
TXTCOL
PCOLR®
PCOLR1
PCOLR2
PCOLR3
COLOR®
COLOR1
COLOR2
COLOR3
COLOR4
RUNAD
MEMTOP
MEMLO
CRSINH
CHACT
CHBAS
ATACHR
CH
FILDAT
DSPFLG
SSFLAG

joystick trigger data (TRIG3 DM@4)
text window cursor row

text window cursor column

data from CTIA COLPMA (DO12)

data from CTIA COLPM1 (D013)

data from CTIA COLPM2 (D@14)

data from CTIA COLPM3 (D@15)

data from CTIA COLPF@ (D016)

data from CTIA COLPF1 (D@17)

data from CTIA COLPF2 (D@18)

data from CTIA COLPF3 (DA19)

data from CTIA COLBK (D@1lA)
execution address after LOAD

Top of free RAM (before screen)
Start of free RAM (after BOOT area)
Cursor inhibit flag

Character data (from CHACTL D441)
Character base address (CHBASE D4@9)
Atari Character and color for line
Character read from POKEY

Color for XIO 18 fill

Display flag

Start/stop flag (Break)

@30B Device Control Block for Disk I/O

(set up and JMP to DSKINV (E453))

Hexadecimal

p300
g301
#7302
P393
P304
93025
P306
7308
P399
d30A
230B
@31A
B340
p341
g342
0343
p344
p345
0346
0347
2348
2349
A34A
#34B

Label

DDEVIC
DUNIT
DCOMD
DSTATS
DBUFLO
DBUFHI
DTIMLO
DBYTLO
DBYTHI
DAUX1
DAUX2
HATABS
ICHID
ICDN@
ICCOM
ICSTA
ICBAL
ICBAH
ICPTL
ICPTH
ICRLL
ICBLH
ICAX1
ICAX1

Comment

Serial bus ID for disk drive

Disk drive number (1-4)

Disk command

Disk status byte

Disk buffer address (low byte)
Disk buffer address (high byte)
Disk timeout value (seconds)

Disk I/0 Byte counter (low byte)
Disk I/0 Byte counter (high byte)
Disk sector number (low byte)

Disk sector number (high byte)
Device handler table

Input control handler identification
Input control device number

Input control command byte

Input control status byte

Input control buffer address (low)
Input control buffer address (high)
Input control pointer (low)

Input control pointer (high)

Input control buffer length (low)
Input control buffer length high
Input control auxiliary 1

Input control auxiliary 2

239

1408~ #5800 - P5xx LBUFF floating point result buffer
1536-1791 600 - BG6FF reserved for cartridge when cartridge used

@708 - 12FF File Management System RAM
1792 700 BOOT flag (DOS only)
1799 2707 FILES number of files to be open at once
1800 g708 DRIVES each bit represents an active drive
18p92-3 g70a - 070B SASA disk buffer address

1380 - 267F Disk Operating System RAM
4889 1319 LOAD DOS load file routine

2680 - 2A7F Disk Input/Output buffers
40956 9FFC Cartridge B test (@ = cartridge)
40958 9FFE Cartridge B initialization vector
49148 BFFC Cartridge A test (@ = cartridge)
49159 BFFE Cartridge A initialization vector

CTIA Chip (DO@AO - D@ALF)
WRITE CTIA addresses
53248 DOGA HPOSP@® Horizontal position of player 0
53249 DAP1 HPOSP1 Horizontal position of player 1
53250 nDAA2 HPOSP2 Horizontal position of player 2
53251 nNea3 HPOSP3 Horizontal position of player 3
53252 DOg4 HPOSM@ Horizontal position of missile 9
53253 DAB5 HPOSM1 Horizontal position of missile 1
53254 DAA6 HPOSM2 Horizontal position of missile 2
53255 DO@7 HPOSM3 Horizontal position of missile 3
53256 D28 SIZEP@® Size of player 0
53257 D@G9 SIZEP1 Size of player 1
53258 DOOA SIZEP2 Size of player 2
53259 DOOB SIZEP3 Size of player 3
53260 DAGC SIZEM Size of all missiles
53251 D@@D GRAFP@ Graphics for player @
53262 DOAE GRAFP1l Graphics for player 1
53263 DAGF GRAFP2 Graphics for player 2
53264 DAL1@ GRAFP3 Graphics for player 3
53265 D@11 GRAFM Graphics for missiles
53266 DP12 COLPM@ Color of player and missile 0
53267 DP13 COLPM1 Color of player and missile 1
53268 D@14 COLPM2 Color of player and missile 2
53269 D@15 COLPM3 Color of player and missile 3
53279 DO16 COLPI'} Color of playfield @
53271 DAL17 COLPF1 Color of playfield 1
53272 DA18 COLPF2 Color of playfield 2
53273 D19 COLPF3 Color of playfield 3
53274 DO1A COLBK Color or luminance of bhackground
53275 D@1B PRIOR Priority select
53276 D@1C VDELAY Vertical delay
53277 DAL1D GRACTL Graphics control
53278 D@1E HITCLR Clear collision flag
53279 D@1F CONSOL Clear console switches
READ CTIA addresses

53248 DAAY M@PF Missile @ to playfield collision
53249 NEA1 M1PF Missile 1 to playfield collision
53250 D@A2 M2PF Missile 2 to playfield collision

240

53251
53252
53253
53254
53255
53256
53257
53258
53259
53260
53261
53262
53263
53264
53265
53266
53267

53760
537561
53762
53763
53764
53765
53766
53767
53768
53769
53770
53771
537712
53773
53774

537690
53761
53762
53763
53764
53765
53766
53767
53768
53769
53772
53773
53774

54016
54017
54018

noa3
DAG4
D@M5
DOG6
DO@7
D328
D@A9
D@AA
DOJB
DO@cC
DAAD
DOGE
DOGF
DA1A
D@11
D012
D13

D20@
D271
D2a2
D2@3
D204
D235
D206
D2a7
D20A8
D209
D20A
D20B
D29D
D20E
D20F

D209
D201
D292
D283
D204
D2¢5
D206
D2¢7
D2¢8
D209
D2@D
D20E
D2¢F

M3PF
POPF
P1PF
P2PF
P3PF
M@PL
M1PL
M2P1
M3PL
P@PL
P1PL
P2P1
P3P1
TRIGH
TRIG1
TRIG2
TRIG3

Missile 3 to playfield collision
Player @ to playfield collision
Player 1 to playfield collision
Player 2 to playfield collision
Player 3 to playfield collision
Missile @ to player collision
Missile 1 to player collision
Missile 2 to player collision
Missile 3 to player collision
Player @ to player collision
Player 1 to player collision
Player 2 to player collision
Player 3 to player collision
Read trigger button 0

Read trigger button 1

Read trigger button 2

Read trigger button 3

POKEY Chip (D208 - D20F)
WRITE POKEY addresses

READ POKEY

AUDF1
AUDC1
AUDF?2
AUDC?2
AUDF3
AUDC3
AUDF4
AUDCA4
AUDCTL
STIMER
SKRES
POTGO
SEROUT
IRQEN
SKCTL
address
POT®
POT1
POT?2
POT3
POTA4
POTS
POT6
POT7
ALLPOT
RANDOM
SERIN
IRQST
SKSTAT

PIA Chip (D30@¢ - D30F)
PORTA Jack @ & 1

PORTB Jack 2 & 3
PACTL Port A control

D303
D301
D3@2

241

Audio channel 1 frequency
Audio channel 1 control
Audio channel 2 frequency
Audio channel 2 control
Audio channel 3 frequency
Audio channel 3 control
Audio channel 4 frequency
Audio channel 4 control

Audio control

Start timers

Reset status (SKSTAT)

Start potentiometer scan sequence
Serial port output register

IRQ interrupt enable

Serial port 4 key control

es

Read potentiometer
Read potentiometer
Read potentiometer
Read potentiometer
Read potentiometer
Read potentiometer
Read potentiometer
Read potentiometer
Read 8 line pot. port state
Random number generator

Serial port input register

IRQ interrupt status register
Serial port 4 key status register

NoubwNhHER

54019

54272
54273
54274
54275
54276
54277
54279
54281
54282
54286
54287

54283
54284
54285
54287

55526
55722
55762
58876
58878
55904
55910
56027
56104
56640
56713
56717
56728
56732
56743
56747
56758
56768
56776
56781
56785

69184
69186
69188
691940
69192
69194

D303

PBCTL Port B control

ANTIC Chip (D400 - DA40F)
WRITE ANTIC addresses

D400
D491
D402
D4p3
D4g4
D405
D4p7
D4g9
D40A
D4QE
D4QF

D4AB
D4¢C
D40@D
DA4QF

DMACTL Direct memory acess control register
CHACTL Character control register

DLISTL Display list pointer (low byte)
DLISTH Display list pointer (high byte)
HSCROLL Horizontal scroll register

VSCROLL Vertical scroll register

PMBASE Player-missile base address register
CHBASE Character base address register
WSYNC Wait for horizontal blank sync.
NMIEN Non maskable interupt enable

NMIRES Reset NMI status

READ ANTIC Addresses

VCOUNT Vertical line counter

PENH Horizontal light pen register

PENV Vertical light pen register

NMIST Non maskable interupt status register

Floating point routines
(use FR# (#0D4) FR1 (OOQEQ)
and @¢@0D4 - Q@FF, A57E - @5FF)

E400

DBE6
DOAA
DI9D2
DA44
DA46
DAG6 @
DA66
DADB
DB28
DD4g
DD89
DD8D
DD98
DDOC
DDA7
DDAB
DDB6
DDC@
DDCS8
DECD
DED1

FASC floating point to ASCII conversion
IFP integer to floating point conversion
FPI floating point to integer conversion
ZFRO zero FRA (AQD4)

ZFR1 zero FR1 (QOE®)

FSUB floating point subtraction

FADD floating point addition

FMULT floating point multiplication

FDIV floating point division

PLYEVL floating point polynomial evaluation
FLDOR load floating point number to FR#
FLD@P pointer to floating point number
FLD1IR load floating point number to FR1
FLD1P pointer to floating point number
FSTPR store floating point number from FR@
FSTPP pointer to floating point number
FMOVE move number from FRf to FR1

EXP floating point exponentiation (e)
EXP1l# floating point exponentiation (10)
LOG floating point natural logarithm

LOGl® floating point logarithm to base 10

Screen editor handler base address

E400
E402
E404
£406
E408
E40A

OPEN

CLOSE

GET

PUT

STATUS

JMP Power on

242

69200
69202
69204
69206
69208
69210

69216
69218
69229
69222
69224
69226

69248
69259
69252
69254
69256
69258

69264
69266
69268
69270
69272
69274

69280
69283
69286
69289
69292
69295
69298
69301
69304
69307
69310
69313
69316
69319
69322

£E410

E420

E430

E440

E450

Display handler base address

E410
E412
E414
E416
E418
E41A

OPEN

CLOSE

GET

PUT

STATUS

JMP Power on

Keyboard handler base address

E410
E412
E414
E416
E418
E41A

OPEN

CLOSE

GET

PUT

STATUS

JMP Power on

Printer handler base address

E430
E432
E434
E436
E438
E43A

OPEN

CLOSE

GET

PUT

STATUS

JMP Power on

Cassette handler base address

E440
E442
E444
E446
E448
E44A

OPEN

CLOSE

GET

PUT

STATUS

JMP Power on

Disk handler vector addresses

E450
E453
E456
E459
E45C
E45F
E462
E465
E468
E46B
E46E
£471
E474
E477
E47A

JMP Disk initialization
DSKINV JMP Disk interface
JMP CIO

JMP SIO

JMP SETVBL

JMP SYSVBL

JMP XITCBL

JMP SIOINT

JMP SENDER

INTINT

CIOINT

Blackbhoard vector

Warm start vector (RESET)
Cold start vector (Power on)
Read cassette block

243

L B N

L R

PR IR S

Miu s 14 fim s
- mg T Iﬂ.q.-n

Ilr;'
paay Enk
lulﬁ.
dal™
T .Ill
= pdeed
ahFikbhs shad 190 bl &
i ::
)N -y
i 1A
¥-n iy
L nipg
. mpT % |
N e Fr sapy pinitrel JEOF - "
ey ey ¥
iy R b
Ty ey
T4 k!
e A= a
- “Hq. . Lra
s =k T T T - ipany
Wl ol
=] g
Ly B
B # 3
¥ - =
= Treed T =
SVEELier s TEE= Wty -3
tick Yy ~r 0 "0 o el Ll
r=atTathd acE 1 A iy ~ind
o 141
o N
--:le':#.' g
- SE L
.?4 E 28
N B . i iy
SEAE WL,]-.’ll
TRk ~=ajpl
: STiRE e ®
B -y -, e,) b ' ek,
AN —uiwms d-aEt Ul A% =
i MY adaLay d5k= hiad ' &R
Bpgl'd a2 Fagmg hpaA 'yl
. .

'F".-"l

TR

ot

e
pfr4:
[

$15.95

THE GCREATIVE

Edited by David Small, Sandy Small and George Blank

Here's an invaluable reference guide for the non-expert Atari user who has only a limited
knowledge of Basic and simple programming. ‘

Containing up-dated and revised articles, reviews, and tutorials which previously
appeared in Creative Computing magazine (along with some new material), The Creative Atari
includes the following chapters:

® A “how-to” on Atari graphics

® Hardware and software reviews

m Adiscussion on the Atari disk drive
m Ready-to-run program listings

There’s also an appendix with useful programming information.

And lots MORE!

ISBN 0-916688-34-8

	Cover

	Preface

	Contents

	The Atari Machine
	Part I: Atari Graphics Tutorial

	How a TV Works

	Character Generation

	Dot Graphics Lines

	Dark Secrets of ANTIC and CTIA

	More Memory Secrets

	Examining the Display List

	Modifying Display Memory
	Display List Opcodes

	Notes and Discussion

	BASIC and Color

	Display List Interrupts

	Player Missle Graphics

	Beginners Guide to Character Sets

	Part II: Graphics Tips

	Design Philosophy and GTIA Demos

	Graphic Seven Plus

	Player-Missle Design Aid

	Animath

	Greater Graphics Control

	Atari Graphics Composer
	Artifacting with Graphics 7-Plus

	Part II: Hardware and Software

	Bits and Bytes

	Physical Types of Memory

	Atari Music Composer

	Hooking up with CompuServe

	Build your own Light Pen

	Atari Silencer

	A New BASIC for Atari - BASIC A+

	Monkey Wrench Prehensile Programming

	String Arrays in Atari BASIC

	Talk is Getting Cheaper

	Axlon RAMDisk - 128K Memory System for Atari

	Joytricks

	New RAMS for Old

	K-DOS - An Alternative to Atari DOS

	Standard Keyboard for the Atari 400

	The Mosaix 64K RAM Card Atari Supercharge

	Atari 1200

	A Letter Quality Alternative for Atari Users

	The Atari Word Processors

	Atari Text Editor Program

	VisiCalc

	Atari Resources

	Questions and Answers

	Atari Languages

	Getting along without TAB - AN Atari Translation

	Telecomunications and Memory Locations

	The Upstart Atari

	Self-Modifying Programs

	Super Text Mode

	Neater Numerical Tables

	Interfacing Your Atari

	Atari Strings and Text Handling

	An Atari Library of Sound

	RAM Cram Techniques for Atari

	From Burn-Out to Born Again

	Speadread+

	Eastern Front

	Missle Command and Asteroids

	Star Raiders and the SOUND Command
	Basketball

	Warlock's Revenge and Kayos

	Gamma Hockey

	The Wizard, the Princess, and the Atari

	Chameleon CHips: CTIA and GTIA

	Graphics Adventures on the Atari

	Mission: Asteroid

	Ali Baba

	Action Quest

	Cypher Bowl and Krazy Antics

	Protector

	Chicken

	Threshold

	Mouskattack

	Deluxe Invaders

	K-razy Shootout

	Dog Daze and Caverns of Mars

	Canyon CLimber

	Clowns and Balloons

	Pool 1.5

	Nautilus

	Shamus

	Miner 2049'er

	Part IV: Disk Drive Tutorial

	Atari DOS

	Atari Diskfile Tutorial - Part I

	Atari Diskfile Tutorial - Part II

	Atari Diskfile Tutorial - Part III

	Using Disks with Atari BASIC

	User Programs

	Mazemaster: Maze Making and Runing

	Moster Combat

	Scurry

	Collision

	Air Defense

	Appendix

	Atari Memory Addresses

