"THE BEST OF

PLUS SIX BONUS GAMES

Tired of Ty D7
d

The BASIC programs in this book @‘ 9
are available on cassette, tape ®
and disk.

* All ten games are yours for only $20.00
* Utilities and the other BASIC programs
are just $15.00

See order form on the other side

IF YOU OWN AN ATARI®
... YOU SHOULD BE
READING

Antic

The ATARI® Resource Magazine
SAMPLE ISSUE (mailed 1st class) $3.00

Save Your Valuable Time . .. PLUS
Up to 33% off the Newstand Price

SUBSCRIBE! Subscription order form on the other side

PLEASE SEND ME:

[] 10 games from the Best of Antic $20
[] Utilities and other BASIC programs $15
Shipping/Handling $1.50

6 % California Sales tax

Please Print

Name

TOTAL

or charge my VISA [] MasterCard[]

Company Name

Acct. #

Address

Print name

City

I enclose payment of $

GG GRS G D G G D — — — S — — — — — — — " —— — — — — — —— — ——

YES! | want AI\

Please send me the following:

Signature Expires

State __ Zip

by check or money order

Fold, then send this order to

THE BEST OF ANTIC

524 Second St.
San Francisco, CA 94107

fic

The ATARI Rresource

[J 1 YEAR FOR $24.00 SAVE 20% Cﬁg‘;\a?AfgrggoxggO
[J 2 YEARS FOR $44.00 SAVE 27% 2 years for $56.00
[0 3 YEARS FOR $60.00 SAVE 33% 3years for $78.00
Please print. If information below is incomplete, magazine delivery cannot be guaranteed.
Name or charge my VISA [MasterCard [
Company Name Acct. #
Address Print name
City State Zip Signature __ Expires
| enclose payment of $ by check or money order,

| own an ATARI A[1800, B[1400, C[12600, D[15200, P(11200XL, Q[1600XL,
R[J800XL, S[11400XL, T[11450XL, with cassette drivel], disk drivel[],
printer[], modem[], interfacel], memory

To subscribe by phone, call toll free -
FOR CREDIT CARD ONLY A“t 1c
(800) 227-1617 Ext. 133 (outside California)

(800) 772-3545 Ext. 133 (inside California) 524 Second St.

Please allow eight weeks for magazine delivery San Francisco, CA 94107

LI S || ST [WP .

THE BEST OF

Antic

The ATARI Resource

VOLUME ONE

AN ANTHOLOGY

Antic Publishing, Inc. 1983

This anthology was compiled by James Capparell,
edited by Robert DeWitt,

and designed and produced by Kim Gale,

with special thanks to the ANTIC Magazine staff.
Cover Illustration: Bud Thon

Inside Illustrations: John Musgrove

Copyright © 1983 by ANTIC Publishing Inc.
All rights reserved. No part of this book may be

reproduced in any form except for
individual entertainment or usage.

ANTIC Publishing Inc.

524 Second St.
San Francisco, CA 94107

ISBN: 0-914375-00-8
Printed in the USA

iii

TABLE OF CONTENTS

What’s in a name? vi
Introduction Robert DeWitt 1
Listing Conventions 4
STARTING LINE 6
Help for the New User ~ James Capparell 7
Screen Editing Robert DeWitt 10
Oh, Those Bugs David Plotkin 13
A Sound Introduction James Capparell 16
TYPO Bill Wilkinson 20
EDUCATION 24
Spin Colors With Spider ~ John &Mary Harrison 25
Zahrcon Linda Schreiber 29
Tuning Your Atari Linda Schreiber 37
Candle, Candle, Burning Bright ~ Linda Schreiber 42
SOUND AND MUSIC 48
Some Sound Advice David Plotkin 49
Audio While You CLOAD John Victor 51
Music With BASIC Jerry White 55
Ultra Sound Thomas Krischan 60
‘Tari Talkers Ken Harms 63
COMMUNICATIONS 68
Modems Jon Loveless 69
Communications Software Jon Loveless Fi)
Dialing for Data Robert DeWitt 80
PRONTO Deborah Burns 87
GAMES 90
Chicken Stan Ockers 91
Attack onthe Death Star David Plotkin 101
Speed Demon John Magdziarz 111
Bats Stan Ockers 117

iv

TABLE OF CONTENTS

BONUS GAMES

Tie Fighter Jimmy and Tommy Sa

Tin Pan Alley Cats Rick Bloom and Rob Glassman

Drop John Zakour

Fallout Scott McKissock

Skull Chase Dave Miller

Crystal Caves Thomas Edwards
FEATURES

Translate Jerry White

Display Lists Simplified Allan Moose and Marian Lorenz

Tiny Text Jim Carr

Christmas Mailing Lister Bill Lukeroth
SYSTEMS GUIDE

MemoryMap James Capparell

Scrolling James Capparell

ANTIC Disassembler James Capparell

Interrupts James Capparell
ASSEMBLY LANGUAGE

Move It Jerry White

Bubble Sort Adrian Dery
PILOT YOUR ATARI

Pilot Your Atari Ken Harms

Large Text Ken Harms

Colors for Your Pilot Ken Harms

The Musical Pilot ~ Ken Harms

Holiday Trees Ken Harms
FORTH FACTORY

Turtle Graphics Gordon Smith

124
124
131
141
145
150
155
160
161
165
173
181
196
197
212
217
224
230
23l
235
244
245
247
250
254
263
272
273

WHAT'S IN A NAME

What’s In A Name

Antic

any new readers are curious about our name, ANTIC. They
Mwonder what it has to do with computing, and especially with the

ATARI. ANTIC is the name of one of the LSI chips designed by
ATARI exclusively for its computers. ANTIC is an acronym formed from the
words “Alpha-Numeric Television Interface Circuit.” This chip controls the
video display you see on your TV screen or monitor. ANTIC is a true micro-
processor and has its own instruction set. By handling the screen display it
relieves the Central Processing Unit—the 6502 chip—of about one-third of
the load it would otherwise carry.

There are three other chips in the ATARI you often hear about. The GTIA
(CTIA in machines manufactured before January, 1981)is the General Televi-
sion Interface Adaptor; it enables Player/Missile graphics and Graphics
Modes 0 through 11. The POKEY chip means “pots and keys.” It monitors
input from the keyboard and controls audio functions. The PIA chip is the
controller for joystick ports and peripherals.

Atari

tari, the name of the company that makes our favorite computer, was
Achosen by the founder of that company, Nolan Bushnell. It is now

the second best-recognized product name in the world (next to
“Coke”). Atari is a Japanese word, taken from the ancient game of GO.
“Atari” has the approximate meaning of “check ” in chess—the player who
declares “atari”is reminding the opponent that territorial loss is imminent if
an effective countermove is not made immediately.

Another Japanese word is sometimes heard in Atari circles. The three-
legged Atari logo A is called the “fuji,” and the key on the keyboard that
bears the symbol is called the “fuji key.” This is because the symbol looks like
Mount Fuji, but the design is not a letter in the Japanese alphabet, nor is there
a letter or ideogram called fuji. On the ATARI 400 and 800 computers, the fuji

key switches the video display from regular to inverse.

vi

INTRODUCTION

Introduction

by Robert DeWitt
Managing Editor, ANTIC Publishing Inc.

his book is for people who own or have access to ATARI computers. It

excerpts the best material from the first six issues of ANTIC

magazine, and adds some extra articles, games and other programs
ATARI owners may need and enjoy. We offer it primarily because our supply
of back issues for Volume One of ANTIC is nearly exhausted. ANTIC—The
ATARI Resource has become the largest monthly magazine exclusively serving
the Atari community, and new readers constantly inquire about our early
material. We hope this fills the bill.

Ifyou, like us, own an ATARI, your computer is probably the first one you
have ever owned. Many of us have used a computer in our office or classroom,
and we may have taken courses in computing. Some of us may have studied
programming—perhaps BASIC or COBOL. A few of us may have tinkered
with electronics or even studied computer science, but most of us are rather
new at all this.

Whatever our situations, computing sooner or later presents us with new
terms, concepts, and ways of approaching and solving problems that baffle us.
We struggle to understand, and gradually (or suddenly) the new ideas come
clear. One of the qualities of computing is that it is supremely logical. If your
computer or program doesn'’t work, some specific thing (or things) is wrong.
Computers are built around the notion of error{ree operation precisely to
make it easier to find and fix problems. This frustrates new users because
mistakes are common when you are learning. You don'’t yet have the exper-
ience of successful, pleasant use of the computer to encourage you, and you
haven'’t yet absorbed the many pieces of information that will eventually lead
you to quick solutions. You will probably conclude occasionally that your
computer is broken (it seldom is) or that there is a program logic error. The
solution is often simpler.

Our writers and editors have gone through your agonies. At various times
we have connected our equipment incorrectly, scrambled procedures,
misinterpreted instructions, overlooked the obvious, “lost” data and pro-

1

INTRODUCTION

grams, ruined diskettes, and made errors in programming. We have typed in a
listing for hours only to find that the program doesn’t work. Occasionally we
have thrown up our hands in disgust. We know what you are going through.

We have also returned with a calmer mind, sought help, reread the in-
structions, persisted, and eventually enjoyed the personal satisfaction and
some of the accomplishments that home computing brings.

Our primary purpose at ANTIC is to help you enjoy ATARI computing
too. ANTIC magazine began as a labor of love, and although it has grown in-
to a successful publishing business, it is still based on our personal interest in
ATARI computers. Our first issue was dated April, 1982, and appeared just in
time for that year’s West Coast Computer Faire in San Francisco. That issue
contained 40 pages and presented eight articles and a few other items. We
printed about 12,000 copies (all we could afford) and stored them in our
publisher’s apartment. We sold 400 copies at the Faire, and hawked a few
thousand more to computer stores. We offered the rest as back issues while
they lasted, but the issue was sold out before the year was over.

ANTIC was published bimonthly for the first year, so there are six issues
in Volume One. Issues number one through five are also now sold out. The
last issue in the volume, February-March 1983, had 112 pages, 17 articles, and
various other content. By then our circulation was about 60,000. With that
issue we began monthly publication, and as of this writing have passed the
milestone of 100,000 copies sold per issue.

Many ANTIC readers have requested back issues “to complete their set”
or to get some specific article. It is gratifying to know our early efforts are in de-
mand. We have gone back over Volume One and extracted the material we
considered of greatest interest and continuing value. We have added some
new material, useful especially to those who want to program. We have also
added several games previously unpublished.

In spite of its growth in size and quality, in many ways ANTIC number six
still resembles number one. Every issue featured at least one type-in game,
placed conveniently at the centerfold. The first was Chicken, by Stan Ockers,
a fine game then and now. In this book we repeat Chicken and several other
games from ANTIC Volume One.

We also reprint TYPO, our checksum program by Bill Wilkinson, the
buddah of BASIC. TYPO, which means Type Your Program Once, gives you
a way to locate your entry errors in the BASIC listings that appear in ANTIC
(and this book), and to verify your listings when correct. We still use TYPO in

2

INTRODUCTION

every issue of ANTIC and it alone will repay the price of this book in the time
it will save you.

The Memory Map is another valuable resource. When you turn your
ATARI on, the Operating System establishes values in memory that guide
and direct hundreds of functions for your computer. The map tells you where
these are, what they do, and how they work. This information has been gain-
ed by digging it out of the technical documentation for the ATARI 400 and
800 computers. Although it is not comprehensive, we believe it will be helpful.
You should note it may not be valid in all respects for the new XL line,

Most of the programs we reprint will be in BASIC, a few in assembly
language. The programs have been chosen for amusement and usefulness. We
have reviewed them carefully to make sure they work. Each program has been
RUN on our machines (400, 800, 600XL, and 1200XL). We have tried to keep
RAM requirements within 16K. If more, we note it. Our computers were used
to generate the listings, so they should work as published. Technical problems
that appeared in the magazine version have been corrected here. Any new
problems should be reported in writing, attention Technical Assistant, to the
address below. If you want a personal response, include a self-addressed
stamped envelope. We know from experience that most problems are due to
entry errors, so use T YPO and review your work carefully before writing.

The listings in this book have been produced to show you exactly the
same ATARI characters you will see on your video screen in the same place
you will see them. In other words, the listing emulates the screen. This will
help you type correctly and proof your work. The keystrokes needed to pro-
duce some of these characters may not be known to you. The Table of Listing
Conventions that follows provides a chart of these obscure characters and
tells you how to enter them.

If you would prefer not to type in these programs, you can obtain them on
disk or cassette by using the form inthe front of the book, or by sending your
check, money order or credit card authorization to: ANTIC Anthology, 524
Second St. San Francisco, CA 94107

LISTING CONVENTIONS

Listing Conventions

Table Information

Our custom font listings represent each ATASCII character as it appears on
the video screen. You generate some characters by a single keystroke, for ex-
ample, the regular alphabet. Others require a combination or sequence of
keystrokes. In this table, ESC means press and release the escape key before
pressing another key. CTRL or SHIFT means press and hold the control or
shift key while simultaneously pressing the following key.

The Atari logo key (K) “toggles” inverse video aplhanumeric and punc-
tuation characters. Press the key once to turn it on; press again to turn it off.
On the 1200XL there is no logo key; inverse video is controlled by a key on the
function row. Decimal values are given for reference, and correspond to the

CHRS values often used in BASIC listings.

LISTING CONVENTIONS

NORMAL VIDEO INVERSE VIDEO
FOR TYPE DECIMAL FOR TYPE DECIMAL
THIS THIS VALUE THIS THIS VALUE
™ CTRL , 0 o ACTRL , 128
® CTRL A 1 ACTRL A 129
o CTRL B 2] ACTRL B 130
@ CTRL C 3 ACTRL C 131
6 CTRL D 4 ACTRL D 132
Al CTRL E 5 L ACTRL E 133
CTRL F 6 B ACTRL F 134
CTRL G 7] ACTRL G 135
@ CTRL H 8 2 ACTRL H 136
@ CTRL 1 9 5] ACTRL I 137
B CTRL J 10 N NCTRL J 138
D CTRL K 11 o ACTRL K 139
m CTRL L 12 @ NCTRL L 140
= CTRL M 13 =] ANCTRL M 141
= CTRL N 14 - ACTRL N 142
5 CTRL O 15] ACTRL O 143
£ CTRL P 16 = NCTRL P 144
® CTRL Q 17 K ACTRL Q 145
=) CTRL R 18 = ACTRL R 146
& CTRL S 19 ACTRL S 147
® CTRL T 20 o NCTRL T 148
= CTRL U 21 = ACTRL U 149
0 CTRL V 2 m ACTRL V 150
= CTRL W 53 ACTRL W 151
= CTRL X 24 =] NCTRL X 152
m CTRL Y 25 a NCTRL Y 153
® CTRL Z 26 B NCTRL Z 154
o) ESC ESC 27 ESC
] ESC CTRL - 28 SHIFT
o ESC CTRL = 29 DELETE 156
= ESC CTRL + 30 ESC
& ESC CTRL * 31 SI'-iNIggRT 157
® CTRL . 96
® CTRL ; 123 ESC
I SHIFT = 124 CTRL
" ot TAB 158
SHIFT ESC
CLEAR 125 SHIFT
@ ESC DELETE 126 TAB 159
(4] NCTRL 251
7] ASHIFT = 252
R ESC CTRL 2 253
a ESC
CTRL
DELETE 254
v BSC
CTRL
INSERT 255

5

Starting ILine

Help for the New User

s a regular feature in ANTIC we try to provide useful, jargon-ree in-
formation for the new user. As time goes by there will be many more
of you opening a silver box to the world of ATARI. We would like to

relieve you of any unnecessary anxiety and help you verify that your equip-
ment is operating correctly.

Can I hurt my machine?

No, there is nothing that you can do from your keyboard in normal
operation that will harm your ATARI. Feel free to press any key in any order.
Experiment, try it, learn by example and by trial and error. One note of warn-
ing, always save a copy of your program on cassette or disk prior to experimen-
ting. This way you'll have a copy to reload should the experiment fail, or
someone kicks the plug out of the socket. Keep food and drink away from your
equipment, and disks and tapes away from magnetic fields and dust or ash.

What does 32K mean?

In computing circles, terms like 16K or 32K are frequently heard.
Numbers with the suffix K are used to refer to the amount of memory
available in your machine. Kis a metric abbreviation and refers to the number
1000. The computer world adopted K to mean 1024, the value of two to the
tenth power. So, 32K RAM would mean that 32,768 bytes of memory are
available. Most ATARIs come factory equipped with 16K RAM. Both the
ATARI 400 and 800 can be expanded to 48K RAM, or 49,152 characters of in-

formation. Consult your local dealer about memory expansion products.

How can I be sure that all my memory is there?

To verify that your installed memory is being recognized, type the com-

mand PRINT FRE(0), and press [RETURN].
James Capparell is the publisher and founder of ANTIC — The ATARI Resource.

STARTING LINE

With the BASIC cartridge installed you should read:
13326 (if 16K)
29710 (if 32K)
37902 (if 48K)

How many characters will fit on the screen?

A maximum of 40 text characters per line, by 24 lines, can be displayed on
your TV screen by the ATARI. In normal operation only 38 characters are
allowed because of the two-character margin. This can be changed by typing
the command POKE 82,0 (press [RETURN]). This effectively moves the left
margin two characters left, giving you the maximum of 40 characters. Press

[SYSTEM RESET] to restore margins.

How long a line will BASIC accept?

BASIC can receive up to 120 characters per command line (three full
40-character lines). This is also called a “logical line.” The normal margin
reduces this to 114 characters. A warning buzzer sounds seven characters from
the end. If you type more than the maximum, the excess characters are
ignored.

Is there an easier or faster method
of entering BASIC?

Yes, use abbreviations wherever possible (look at Appendix A of your
BASIC Reference Manual). Using abbreviations will save typing time. For
example use N. instead of NEXT or C. instead of COLOR. The BASIC car-
tridge will expand these abbreviations for you automatically. It is also legal to
eliminate spaces wherever possible, once again BASIC will insert spaces for
you. For example, 110REM is okay.

What color should my screen be when
I turn on my ATARI?

Your screen should be blue when first turned on. This is one of 128 color
possibilities available. There are 16 colors and eight hues on every 400/800.
Look at page 50 of the BASIC Reference Manual for the color-range descrip-
tion.

8

HELP FOR THE NEW USER

What is Memo Pad Mode?

The ATARI will respond with this statement whenever you turn power
on without either a language cartridge installed or the disk-system DOS in-
stalled. You can display characters on the screen with Memo Pad Mode, but
that’s about all.

What does screen editing mean?

This refers to the ability to insert and delete characters on the screen by
moving the cursor around and by using several other keys. Press [CTRL] (the
control key) and the up/down or left/right arrows simultaneously to see this
effect. Errors can be corrected and lines inserted without the necessity of
retyping entire lines. Look at Chapter Three of the BASIC Reference
Manual for more edit features, and see the Screen Editing article in this book
for an exercise.

Why does my screen change colors when
I leave it for a while?

This is called attract mode. If there has been no input from your
keyboard in the previous nine minutes, the colors begin to change on your
television. This occurs to protect the color phosphors of your picture tube.
Just press any key and the colors will return to normal for at least nine
minutes more.

How can I be sure my equipment
is operating properly?

Modern electronic equipment is extremely reliable. In almost all cases
your computer either will fail in the first 50 hours of use, or continue
operating for the next five years. Whenever you power-on your computer
with the BASIC cartridge installed, the friendly message READY should ap-
pear in the upper-left corner of the screen. Almost always computer failure
will be total. It will either run properly or it won’t run at all. If you should
develop trouble, read the instructions and recheck your power and connec-
tors. Begin to eliminate probable causes one by one. Be methodical! If your
cassette doesn’t work, try it on your friend’s computer. Try to isolate the pro-

9

STARTING LINE

blem. You can save yourself unneeded trips to the repair center by thinking
through the problem, trying and retrying. These techniques work for profes-
sionals and they'll work for you.

by James Capparell

Screen Editing

s an ATARI owner, you will benefit from having its built-in “screen

editor,” one of the best available in the micro market. What’s a screen

editor? It’s the built-in program that allows you to change words and
letters after they have been keyed onto your display screen.

As you begin to program with your ATARI, you will come to appreciate
this powerful tool. At first, though, it may seem strange to you, and you will
make mistakes until you learn how it works.

The most important thing to do, in this or any other computer function,
is to read the instructions. These are in your Operators Manual, and in the
BASIC Reference Manual, under “Screen Editing” and “Editing.” Read these,
do the exercises, and experiment. Be bold. You cannot damage your computer
by making keyboard errors.

Ground Zero

Connect your computer as instructed, insert the BASIC cartridge, and
power-up. On a color television you will see a blue screen with black borders,
the word READY, and the white cursor beneath the “R”. Remember, this is
not an exercise in BASIC, but in screen editing. The BASIC program used is
just an example.

This blue screen is BASIC Graphics Mode 0, designed to display text.

This mode divides the screen into 40 character positions across the screen and

Robert DeWitt is a jowrnalist from San Francisco who began writing about computers in 1980 based
on studies at Control Data Institute. He bought an ATARI as an apparent “‘best-buy’’ tool for his writing,
and gravitated to the fledgling ANTIC through the local user group. He gradually assumed more of the
editorial functions of the magazine, becoming Managing Editor in November, 1982.

10

SCREEN EDITING

24 lines down, i.e., a 40x24 grid yielding 960 character positions. Each posi-
tion on the screen is the size of the cursor, and can be identified by its column
and row number, beginning with 0,0 in the upper left corner and ending with
40,24 at the lower right. The first number, 40, indicates the column and the
second number, 24, is the line number.

The content of each of the 960 positions is controlled by the Editor pro-
gram, built into the ATARI Operating System. It takes one byte of memory to
code the contents of each position. For the ATARI computers, this code is call-
ed the ATASCII code. You will find it in Appendix C of your Atari BASIC
Reference Manual.

The important thing to know is that you can determine and change the
content of these screen positions by using your keyboard. Editing deals mostly
with changing and erasing the display.

You should now be running Atari BASIC and have the READY prompt
on the screen. Type in the following program, beginning at “I0REM. . .” and
be sure to include the misspelling of “capabilities.” [RET] means press Return
key. Begin!

10 REM * SCREEN EDITOR EXAMPLE #* [RET]

20 PRINT “THIS IS AN EXAMPLE OF ATARI

SCREEN EDITING CAPABILTIES” [RET]

RUN

Notice that as you typed line 20, the line “broke” between ATARI and
SCREEN. This is an example of the “logical line” continuing over two
“physical” lines. This phenomenon is called “wraparound.” A logical line can
be as long as three physical screen lines. The computer will “beep” when you
are close to the logical line limit.

After the run, you should see on the screen:

THIS IS AN EXAMPLE OF SCREEN EDI
TING CAPABILTIES

READY

Now we will edit this material. Generally speaking, we edit by moving the
cursor to the character position we wish to change and then changing the
character. The cursor rests at the left margin below the R in READY. Find the
Delete Back Space key (upper right corner), which we will represent as [DEL],
and press it. The cursor does not move.

How can we move the cursor? Find the [CTRL] key. Press it down and

11

STARTING LINE

hold it there. Find the “up” arrow key and press it three times. Release the
[CTRL]. The cursor will move up three lines and be superimposed over the T
in TING. Notice that the T appears dark blue within the field of the cursor.
This condition is called “inverse video.”

Press the space bar four times. The cursor moves across the letters of
TING, erasing them as it passes.

To the right of the cursor is the word CAPABILTIES. Next, correct the
spelling. Press and hold [CTRL], and press the right-pointing arrow key until
the cursor is superimposed on the T. We want to insert the letter I. Holding the
[CTRL], press the Insert key (top row, third from right).

Voila! A space opens between the L and the T. Release [CTRL] and type
in the letter I. The cursor now rests over the letter T. To exit from the word
without changing it further, press and hold [CTRL], and press the left-
pointing arrow until you have backed out of the word. Release [CTRL].

Up and Owver

Here is a surprise for you. Press [DEL] six times. This will be enough to
make the cursor back up to the line above. This is due to wraparound. It
would not be possible between logical lines without using the [CTRL].

We can now repair the damage done to the word EDITING by typing it
again. When the cursor again rests between EDITING and CAPABILITIES,
press and hold the [CTRL], press the down-arrow key three times, release
[CTRL] and finally, press [RETURN].

Let’s see if we have corrected the misspelling. Type LIST and press [RET].
This command rewrites the corrected program. You should have lines 10 and
20 come up, and the error is still there! That’s because the correction was made
to the “run,” and not the program. This time we will fix it for good. Press and
hold [CTRL]. Press the up arrow three times till the cursor is over the S in
SCREEN. Press the right-pointing arrow key till the cursor is over the T in
CAPABILITIES. Still holding [CTRL], press the Insert key. Pop! Release
[CTRL), then [RET]. Type RUN and press [RET]. A new line should appear
on the screen. Read your correction. WHAT! The error is still there?

That’s right. This is the trickiest part of screen editing in BASIC.
Remember, changes to the screen do not necessarily change the stored pro-
gram. Changes within lines (deferred mode) are made permanent by pressing
the return key [RET] before you leave the logical numbered line on which the
change was made.

12

OH, THOSE BUGS

Let’sdo it right this time. Hold [CTRL]. Move the cursor up until it is over
the S in SCREEN. Hold the [CTRL] and press the right-arrow until the cur-
sor is over our “I” (yes, it’s still there is screen memory, but not in program
memory). Release [CTRL]. This time, press [RET]. The cursor jumps down to
the beginning of the next line, above the READY. Type RUN and [RET].

Aha! This time the change has been made in the program. Failure to use
the screen editor correctly can cause you no end of grief. The main thing to
remember is that all corrections to program (numbered lines) must be con-
firmed by pressing [RETURN] before moving the cursor from the corrected

line.
by Robert DeWitt

Oh, Those Bugs

fter the publication of “Chicken” and “Attack on the Death Star” in

ANTIC we received many calls from puzzled readers who were

unable to make the programs run. Since both listings were correct,
we know many of you need help finding errors. This article will give some
elementary guidance in debugging BASIC programs. Also see and use TYPO,
in this book, to help you find entry errors.

The most important advice we can give is: never attempt to RUN a pro-
gram prior to saving a copy on disk or tape. Should your newly typed program
contain a fatal error it may possibly cause the computer to fail to respond to
the keyboard. This forces you to turn the power off and then on again in order
to reset, erasing computer memory and your program.

We assume you've corrected your normal typing errors, those which
generate an error message when you press [RETURN] after a line. The re-
maining errors are more subtle and are not reported until the computer tries
to execute the program.

Such things as NEXT with no FOR, or a RETURN with no GOSUB, are
generally the result of a missing line. Tracing back through the program to the
line where the command should be is fairly straightforward. More difficult are
the errors which are not actually in the line the computer indicates. You have

13

STARTING LINE

to know where else to look for the error. Most notorious of these are errors
which result from mistyping a DATA statement.

Most errors in typed computer programs stem from DATA
statements. There are logical reasons for this. Human beings are not very
good at duplicating long strings of numbers or letters separated by commas.
Numbers get transposed or dropped, commas get left out, or periods are
substituted for them. Secondly, the computer does not check DATA state-
ments during input. You can put anything in a DATA statement and the com-
puter won't protest — until you try to RUN the program.

A surprising variety of errors can be traced to DATA statements. There is,
of course, “Out of Data” (Error 6), but often the following errors are due to
DATA errors:

1. Value Error (outside a specified range; Error 3)
2. String length error (Error 5)

3. Number greater than 32767 (Error 7)

4. Input statement error (Error 8)

5. Cursor out of range (Error 141)

It is true that these error messages can also be caused by other mistakes
besides DATA statements. Out of Data and Cursor Out of Range can be caus-
ed by an error in the parameters of a FOR-NEXT loop. Often there will be a
series of FOR-NEXT loops in a program, and an error in typing the
parameters of one FOR-NEXT loop won'’t be detected until one of the follow-
ing loops is executed. A String Length error may be the result of mistyping the
DIM statement. In general, this is not detected until you try to define or use a
portion of the string past the dimensioned length.

Knowing that such a wide range of errors can indicate a mistyped DATA
statement is half the battle. Finding out which DATA statement can be dif-
ficult because the computer reports the error as occurring in the line contain-
ing the READ statement. Thus, if line 10 says (in part), “READ X, Y: PLOT
X, Y” followed by lines of DATA statements, any data error will be reported as
occuring in line 10, even though line 10 is typed in perfectly! The problem of
finding the erroneous DATA statement is somewhat simplified if each READ
statement is followed by its DATA statements.

There are other ways to isolate the problems. One way is to check the line
where the error is reported and ask the computer to print the value of the
READ variable. Often the READ statement is executed in a FOR-NEXT
loop, and you can ask the computer to print the value of the loop variable. For
example, let’s look at the following BASIC program:

14

OH, THOSE BUGS

10 DIM A$ (10)

20 FOR N=1to 10: READ Q: A% (N,N)=Q: NEXT N

30 DATA O, 1,2,3,4,5,6,7,8,9

40 FORM=1TO 5:READ X, Y, Z: PLOT X, Y:
POKE 256 +M, Z: NEXT M

50 DATA 10, 20, 24, 30, 40, 24, 50, 60, 24, 70, 80, 24,
90, 100, 25

Suppose you accidentally typed A$(5) instead of A$ (10) in line 10. You'll
get the error message “ERROR 5 on Line 20”. This is an example of a
“misleading” error message. Next, suppose you made “8, 9” into “8.9” in line
30, by substituting a period for a comma. You'll get the message “ERROR 6 on
line 40”. Line 40?7 What’s going on here? When line 20 is trying to READ Q 10
times (N =1 to 10), it runs out of data on line 30 because 8.9 is one data item,
while 8, 9is two. The computer gets the first data item on line 50. When line 40
executes, it starts reading at the second data item on line 50 and, consequent-
ly, runs out of data.

The first thing to do is type (in direct mode) PRINT M. The computer
responds with 5. You can tell that line 40 did not finish executing, because if it
had, the computer would respond with 6 — one more than the loop limits.
Counting off the data items in line 50 reveals that the last values of X, Y, and Z
should be 90, 100, and 25 respectively. Typing in PRINT X, Y, Z causes the
computer to respond with 100, 25, and 90. Everything is off by one data item,
but line 50 is typed in perfectly. Now go back to the READ statement executed
on line 20 and type in PRINT Q. The computer responds with the last value of
Q, which is 10. That’s right, so you look at line 30 to find your error.

Leaving out commas is an easy way to get Cursor Out of Range, Value
Error, and Input Statement Error. Leaving out the comma between 10 and 20
on line 50 would cause the computer to try to plot 1020, 24 — a non-existent
position off the screen. Leaving out the comma between 24 and 30 would
cause the computer to try to POKE the number 2430 into memory. Since 255
is the largest number a memory location can contain, this will also generate an
error.

Finally, make sure that after you have made corrections and deletions to
your program that you press [System Reset]. Sometimes errors cause critical
memory locations to change in such a way that even error-free programs can-
not run. Prior to every test run, press [System Reset]. Of course once your pro-
gram runs correctly this is not necessary.

by David Plotkin

15

STARTING LINE

\
\
(N

A Sound Introduction

any new users have not realized the tremendous potential for
Mmusic and sound hidden in their ATARI computers. After all, a

computer that can produce phaser noise or let you hear Indianapolis
cars racing down the straight-away, by altering a few simple commands,
should be capable of more.

The following applies to both the 400 and 800 and is completely memory
independent.

Sound on the ATARI is really made possible by the same technology that
brought you hand-held calculators. I'm talking about the integrated circuit. In
this case a special integrated circuit was designed and named POKEY (Pots
and Keys). Every ATARI built has this special chip and therefore can play
music and generate interesting sounds.

You might think of POKEY as a barber shop quartet, since there are four
voices available. Each voice can be turned up loud, or so low it can barely be
heard. Each barber (voice) can “sing,” or sound, 255 different notes or pitches.
Some of these are so similar your ear can’t distinguish the differences. Among
them are several that correspond to the musical scale (see Table 1). Each voice
can be made to sound a pure tone — as if you were to whistle the note — or
distort the tone. Distortion is one way of taking a familiar note and making it
sound like a growl, hiss or rumble.

TABLE 1
E 193 C 121 Middle C
F 182 D 108
G 162 E 9%
A 144 F 91
B 128

Let’s put this in the context of the standard ATARI BASIC statements.

SOUND A,B,C,D is the general command format to generate sound,
where:

A =Voice, one of the four barbers. A can equal any value from zero to
three.

16

A SOUND INTRODUCTION

B =Pitch or note. This can equal any number from one to 255. The higher
the value the lower the note.

C =Distortion. Any even number from zero to 14. Ten gives the purest
tone with least distortion.

D =Volume. Any number from one to 15 is legal. A zero turns sound off.

That seems pretty easy, and so it is. Try this. SOUND 0,121,10,8
[RETURN]. This will cause the first barber (his number is zero) to sing middle
C with as little distortion as possible. Now vary the volume; try a four and
then a 14. Eight is a good volume value when more than one barber is singing.
Experiment with distortion; change the 10 to a four, then a 14. Restore the
sound statement as it is above. Now, add a second barber.

SOUND 1,72,10,8 This voice sings the note A above C.

SOUND 2,45,10,8 This voice sings the note E

SOUND 3,193,10,8 This sings E below middle C.

Turn off each barber’s voice by making the corresponding volume zero.

To turn off all voices, type END.

The legal abbreviation for the SOUND command is SO.; try it and save
typing.

The following sounds should be experimented with. They are presented
to get the wheels turning. I'm sure you can all do much better.

Our first sound is an explosion. Change the value of DUR in line 30. Experi-
ment with volume changes in line 90.

(,;ﬂ REM EXPLOSION

2@ REM DUR=LENGTH OF EFFECT,1-18
30 DUR=6

49 PITCH=20@:G0SUB 8@

5¢ SOUND 1,0,0,0:SO0UND 2,0,6,0
68 GOTO 36

78 REM *** SUBROUTINE ***

8¢ SOUND 2,75,8,15

99 ICR=@.79+DUR/1440

168 V1=15:V3=15:REM VOLUME

116 SOUND @,PITCH,8,V1
klZﬂ SOUND 2,PITCH+20,8,V2

17

STARTING LINE

SOUND 2,PITCH+58,8,V3
Vi=V1*ICR
V2=V2*(ICR+@.0@5)
V3=V3*(ICR+@.08)

IF V3>1 THEN 118
SOUND ¢,0,8,8:RETURN

o~NNO G W
|EmEmEmEmwm

1
1
1
1
1
1

Sound number two is a familiar siren. Change the DUR value in line 30. Try

varying the step size in line 60.

(’;B REM SIREN

20 REM DUR-TIME IN SECONDS
39 DUR-18

49 LO=50:HI=35:8TP=—1

50 FOR TIME=1 TO DUR

68 FOR PITCH=LO TO HI STEP STP
70 SOUND @,PITCH,16,14

80 FOR WAIT=1 TO 15:NEXT WAIT
99 NEXT PITCH

188 XX=L0:LO=HI:HI=XX:STP=—§TP
118 NEXT TIME

\\Jza SOUND @,0,0,8:60T0 36

~

g

Sound number three is a European variation of the siren. Run it, you'll hear
the difference. Experiment with the LO and HI values in line 40.

{ 10 REM EUROPEAN SIREN

20 REM DUR~SECONDS RUN

30 DUR=5

49 LO=57:HI=45:PITCH=HI

5 FOR TIME=@# TO DUR*2

68 SOUND O,PITCH,10,14

78 FOR WAIT=1 TO 18@:NEXT WAIT
80 PITCH=LO:LO=HI:HI=PITCH

98 NEXT TIME

160 SOUND ¢,0,0,0:6G0T0 340

\

B

J

Sound four is the whistle and explosion of a falling bomb. Try to determine
what makes the whistle sound and what part of the program makes the explo-

sion sound.

18

A SOUND INTRODUCTION

(w REM WHISTLE & BOMB
28 REM DUR=LENGTH OF EFF
38 DUR=5

49 V1-4:FOR PITCH=38 TO
56 SOUND @,PITCH,18,V1
66 SOUND 1,PITCH+3,18,V1

89 V1=V1*1.83:NEXT PITCH
94 SOUND 2,35,8,12
188 V1=15:V2=15:V3=15

SOUND O#,PITCH,8,V1
SOUND 1,PITCH+20,8,V
SOUND 2,PITCH+54,8,V
Vi=V1*ICRH
V2=V2*(ICR+@.05)
V3=V3*(ICR+@.08)

IF V3>1 THEN 124
SOUND #,0,0,0:S0UND
SOUND 2,6,0,0:60T0 3

O N WM —
[~ -—-8--0- -0 -0 -~

PN =
= W
==

ECT
75

*0.1

78 FOR WAIT=1 TO DUR*3:NEXT WAIT

PITCH=DUR+5:ICR=@.79+DUR/108

2
3

1,8,0,0
)

*\\

4

Sawing wood is sound five. Try changing the pitch and volume. Also

eliminate the wait in line 180.

/,;B REM SAWING WO0OD

36 REM DUR-=SECONDS RUN
49 DUR=8

5¢ FOR TIME=1 TO DUR
68 ST=6:VL=12:G0SUB 940
78 ST=8:VL=8:G0SUB 940
8@ NEXT TIME:RETURN

w
=

GOSUB 16@:NEXT PITCH
FOR PITCH=ST TO ST+5
GOSUB 17@:NEXT PITCH
SOUND #,0,0,0:S0UND

GOTO 44

SOUND O,PITCH,2,VL
SOUND 1,PITCH,8,VL*@
WAIT=(WAIT/5)*5:RETU

O~ EWMN —m
L -B--B- RN -0 -0 -0 -}

— v o — — — —

FOR PITCH=ST+5 TO ST STEP -1

1,8,0,0

FOR WAIT=1 TO 25:NEXT WAIT

=1
RN

N

v

STARTING LINE

There are many opportunities for the experimenter to use the sound com-
mand. Perhaps a program using the joystick to vary pitch or distortion would
make your experimentation easier. Random notes and harmonies can be very
interesting. Look up and use the RANDOM command in your BASIC
Reference Manual. If you should write something interesting, let us know.
ANTIC is always looking for new, interesting and helpful material.

by Jim Capparell

TYPO

Type Your Program Once

YPO is designed to help you find typing errors made when entering
BASIC programs published in ANTIC. When used properly, TYPO

will produce a table of values which can be used to pinpoint where an
error was made. ANTIC will publish a table with every BASIC listing, and
the user may compare the two tables to ensure they are identical. If they are
not, then the user presumably made a “typo” which needs to be corrected.

How To Use TYPO

1. Enter program listing Exactly as shown.

2. LIST this program to disk (LIST “D:TYPO.LIS”) or cassette (via LIST
“C:”). When using a cassette, use an entire blank cassette for just this
program.

3. Type NEW to clear memory.

Type in a program from this book, or ANTIC magazine.

LIST this program to the disk (LIST “D:NAME”) or cassette (LIST “C:).

Type NEW and reenter the program (ENTER “D: NAME” or ENTER

“C)

Bill Wilkinson is the president and founder of Optimized Systems Software, Inc., of Cupertino,

California. He helped design the original Atari BASIC and has developed several other computer

languages including Basic A+ and the new language, Action.Bill’s work has been published in a

number of publications including ANTIC. His checksum program, TYPO, is continuously used in
ANTIC to help ATARI users verify their BASIC programs after typing them in.

S b

20

TYPO

6. Append the TYPO program onto the end of the program from the disk
(ENTER “D:TYPO.LIS”) or cassette (ENTER “C”).

7. Type GOTO 32000 and a checksum table will be printed on your screen.
Compare this table with the one published; if they agree you are finished
and the program should run.

8. Note the value of the “variable checksum” printed on the screen, and
keep it handy.

9. If the table does not agree with the published table, examine the lines
which have codes and/or lengths which disagree. Correct any errors.

10. If and only if the variable checksum you noted agrees with that printed
with the program, go to step 7 above and try again.

11. If the variable checksums do NOT agree, you MUST go to step 5 above
and perform the listing and reentering ritual! You may skip step 6,
however, since presumably you have the combined programs now
LISTed together.

Follow these instructions exactly!

What TYPO Is Telling You
THIS PROGRAM IS FUSSY! It cares about every little period, comma, and

even spaces. It also cares about the order in which you typed in program lines!
The order in which the variable names are stored depends upon the order the
lines were typed. Should this order be altered the values of the tokens and the
subsequent checksums will be altered.

The “variable checksum” is used to correct for some of this by producing
an (almost) unique checksum which depends on the order in which the
variables are stored. If your checksum doesn’t agree, you have either entered
lines in the wrong order or misspelled a variable name. In either case, you
must correct your error(s) and then go through the LIST/NEW/ENTER
sequence to assure that the variables are put back in order.

The length shown is the number of bytes encountered by TYPO within
the line number range shown. The two-letter code is essentially a checksum of
“length” bytes within that same range. If the length is correct and the
checksum is off, you have made a spelling or punctuation error. Watch out:
since all keywords and operators (including two-character operators such as
“=") are tokenized as one byte, the length might stay the same even though
you type SET COLOR for CLR. Note!! You may use abbreviations for
keywords as long as the LISTed result conforms to the published listing.

21

STARTING LINE

If the length bytes disagree, you have added or deleted characters. If
nothing obvious shows, pay special attention to characters in quoted strings
and/or REMark statements. It is easy to omit a space or punctuation in a
REMark, thinking that “REMarks don’t matter”; but to TYPO they do.

This is a small but sophisticated program,use it and typing errors will be

reduced.

by Bill Wilkinson

NOTE: TYPO asks for output file. Respond with S for television or

P for printer.

(;;bﬂﬂ REM Type Your Program Once —— ";5\

YPO"

321008 CLR :DIM Q$(20):QF=7:CLOSE #QF:?
“Eile for output ' ;

32119 INPUT Q$:O0PEN #QF,12,08,08:0REM=4
32138 QCNT=1:FOR QADDR-=PEEK(138)+256*P
EEK(131) T0 PEEK(132)+256*PEEK(133)-1
32149 QSUM=QSUM+PEEK(QADDR)*QCNT:QCNT=
QCNT+1:NEXT QADDR

32150 ? #QF;Variable checksum = " ;QSU
M:?2 #0QF

32160 QADDR=PEEK(136)+256*PEEK(137):2?
#OFk Line num range Code Length

32178 QLINE=PEEK(QADDR)+256*PEEK(QADDR

+1)

32180 IF QLINE>=32080@ THEN END

32108 QLEN=@:QSUM=QLEN:QCNT=QLEN:? #QF
o e L0LINE, "=

32200 IF NOT (QCNT<12 AND QLEN<508 AN
D QLINE<328@f) THEN 32279

32228 QLEN=QLEN+PEEK(QADDR+2):QCNT=QCN

T+1

32238 IF PEEK(QADDR+4)=8 AND QREM THEN
QADDR=QADDR+PEEK(QADDR+2):G60T0 32268
32249 FOR QADDR=QADDR TO QADDR+PEEK(QA
DDR+2)-1

32258 QSUM=QSUM+PEEK(QADDR):NEXT QADDR

32260 0$=STR$(QLINE):QLINE=PEEK(QADDR)

+256*PEEK(QADDR+1):60T0 32204

\ifz7u OSUM=OSUM—676*INT(QSUM/676):OC[L)

22

TYPO

ﬂINT(OSUM/ZB)
32280 ? #QF:Q08,CHRS$(65+QCNT); ;CHRS$(65+0Q
SUM—-26*QCNT) ;" "3 QLEN

32290 GOTO 32188

TYPO TABLE '

Variable checksum = 50796
Line num range Code Length
j2pee - 3224049 PT 518
32229 - 32294 woQ 318

\d o

This TYPO Table is the result of using TYPO to check itself. To do this you must
change lines 32180 and 32200 first. In those lines change 32000 to 32500. Then type
GOTO 32000 or RUN. Either of these commands will initiate TYPO, ask you to
designate your output file (S for screen, P for printer), and then produce a table for
itself. This, your first TYPO Table, should match the one above. If it does not, ex-
amine your program for typing errors and repeat the process until you get it right.

23

Spin Colors With The Spider

ince our new ATARI 800 has the GTIA chip, we have been experimen-
Sting with it. Spider is a little BASIC program that lets you doodle
colors with your joystick.

Mode 11 is our choice for this program because it gives 16 different colors
in a high-resolution mode (80 pixels horizontally by 192 vertically). When you
run the program, a white “spider” appears. The fire button changes the
spider’s color. As you move the joystick the spider leaves a trail of its color.
When the spider is white it can be positioned without leaving a line (it actually
draws in background color).

To start a new design, press [RESET] and type RUN.

by John and Mary Harrison

John and Mary Harrison are parents, teachers, and ATARI hobbyists. Mary teaches math and com-
puter science at the high school level. John holds an M.S. degree in computer science and develops educa-
tional software. They live in Newport News, VA, and are Contributing Editors to ANTIC's Education
Department.

(]B REM #*xxsxsxnxsesx SPYDER »%*wxwxw»xx \

20 REM BY JOHN AND MARY HARRISON
49 REM FOR ANTIC JUNE 1982
6¢ DIM SPIDERS(1),SSPIDERS(8),ERASES (1

('R RIS ET ASIDE MEMORY FOR PLAYER
LN (BAND SET GRAPHICS MODE.

99 MEMTOP-PEEK(186)-16

108 POKE 186,MEMTOP

IRE'BN NS MMCLEAR MEMORY FOR PLAYER

\120 POKE 88,0:FOR I-8 TO 4:POKE BQ.MEMJ

25

EDUCATION

130
140
150
160
178
1840
194

200
2180
220
2340
249
250
260

279
289
299
g
3g

3240
334
3440
3ag
364
3748
384
3949
400
419
429
439
449
4540
4640
479
4840
499

Kj?ﬂ

(:bp+a+1:? CHRS (125):NEXT I 7

+918+YSPIDER

GRAPHICS 7+16
MEMTOP-MEMTOP+8

iRA/MS TART OF PLAYER MEMORY

POKE 54279,MEMTOP

N/ MDECIMAL ADDRESS OF PLAYER MEMO

PMBASE-256+MEMTOP

(R4S INGLE LINE PLAYER DOUBLE WIDT

POKE 559,46:P0OKE 53256, 1

iR/ B ENABLE PM GRAPHICS

POKE 53277,3

REM
XSPIDER=119

YSPIDER-48

(N4 BCLEAR STRING FOR VERITCAL MOVE

ERASES-""

REM

POKE 53248,XSPIDER

REM

FOR I-=PMBASE+511+YSPIDER TO PMBASE

READ DAT

POKE I,DAT

NEXT I

DATA 36,36,90,60,60,90,36,36
(F'WADDRESS OF ARRAY AND VARIABLE
(JA'MTABLES. THIS SECTION OF CODE
(RABALLOWS YOU TO USE 128 BYTES
(R'BFOR SPIDERS WITHOUT RESERVING
(NA'BWTHAT MUCH MEMORY IN THE DIM.
ATAB—PEEK(140)+256+PEEK(141)
VIAB-PEEK(134)+256+PEEK(135)
OFFSET-256+«MEMTOP 512 ATAB
M3-INT(OFFSET/256)

M2-0FFSET 256+M3

POKE VTAB+2,M2:POKE VTAB+3,M3
POKE VTAB-4,128:POKE VTAB+5,0
POKE VTAB+6,128:POKE VTAB+7,8

26

N/ MSET UP SHADOW FOR SPIDER
SSPIDERS(1,8)-SPIDER (YSPIDEH.YSti/

SPIN COLORS

/k;ER+7) <\\
RN M INITIALIZE COLOR AND LINE CO-
ORDINATES.

520 REM
530 C-@:XLINE-79:YLINE-35

549 SETCOLOR 4,0,0:PO0KE 704,8

542 SETCOLOR @,3,8:SETCOLOR 1,6,8
544 SETCOLOR 2,9,8
550 GOSUB 8849

560 COLOR C

570 PLOT XLINE,YLINE
580 REM
598 IF STRIG(M)=1 THEN 66890
680 C=C+1 ~

618 IF C>3 THEN C-8

620 COLOR C:POKE 7064,C0+48+8
630 FOR DEL-1 TO 28:MNEXT DEL
(BN MREAD JOYSTICK AND SET PLAYER
650 REM LIS NS W A
668 ST-STICK(#@)
670 IF ST-15 THEN 599

680 IF ST-6 OR ST-10 OR ST-14 THEN YSP
IDER-YSPIDER-1:YLINE-YLINE-1

699 IF ST>4 AND ST<8 THEN XSPIDER-=-XSPI
DER+T¥XLINE-XLINE+1

788 IF ST=5 OR ST-13 OR ST-9 THEN YSPI
DER=YSPIDER+1:YLINE=YLINE+1

718 IF ST>8 AND ST<12 THEN XSPIDER-XSP
IDER-1:XLINE=XLINE-1

728 REM ME@Eﬂ@!ﬂlﬂﬂﬁﬂﬂﬂlﬂﬂlﬂ!ﬂﬂﬂﬂ

738 SPIDERS(YSPIDER,YSPIDER+7)-SSPIDER
$

749 SPIDERS(YSPIDER-8,YSPIDER-1)-ERASE
$

750 SPIDERS(YSPIDER+8,YSPIDER+15)-ERAS
ES

760 REM
778 IF XSPIDER<41 THEN XSPIDER-41:XLIN
E=XLINE+1

780 IF XSPIDER>199 THEN XSPIDER-199:XL
INE=XLINE-1

798 IF YSPIDER<14 THEN YSPIDER-14:YLIN
E=YLINE+1

\jﬁﬂ IF YSPIDER>1088 THEN YSPIDEHzIGB:ib)

27

EDUCATION

814
829
830
844g
850
860
8740
88g
894

=YLINE-1 i\\

:DRAWTO 159,08:DRAWTO @,0:RETURN

TYPO TABLE

Variable checksum = 726158

iNA/BMHORIZONTAL MOTION OF PLAYER
POKE 53248,XSPIDER

REM

DRAWTO XLINE,YLINE

GOTO 594

A3/ MMROUTINE TO DRAW FRAME. THIS
A2/ MMSHOWS LIMITS OF SCREEN.

COLOR 1

PLOT O,0:DRAWTO @,95:DRAWTO 159,95

Line num range Code Length

10 - 1449 Ds§ 373~
154 - 2640 AV 318 »
274 - 389 WM 258 °
3og - 5040 NU 395 -
5140 - 6040 UB 325 *
614 - 1240 IR 458
7380 - 849 KV 361 *
8540 - 8949 Jb 184 ¢

4

28

ZAHRCON

Zahrcon

ahrcon is a modification of the familiar game of Hang-Man. This arti-

cle shows you how to write it in BASIC with your ATARI computer.

The game of Hang-Man has been written for every computer on the
market today, but as an educational game it has a major flaw. It rewards the
player (child) for failing to guess the word. The kids like to see the little “man”
get “hung,” especially when the computer enhances this outcome with a
special graphics display and noises.

When developing educational games for children, we should save the
positive reinforcement for correct behavior. There should not be a reward for
wrong answers, especially when deliberate. Zahrcon attempts to improve on
Hang-Man by rewarding the player for guessing correctly the letters compris-
ing the secret word generated by the computer. Each proper letter helps build
an animated “creature,” accompanied by special graphics and sound.

Since Zahrcon is designed for children, some as young as five or six, the
letters displayed on the screen should be large and clear. Only one word needs
to be displayed at any time, so Graphics Mode 2 is a good choice. Upper case
letters with numbers and symbols will be better than lower case, and we will
need to redefine some of the symbols into graphics characters that will build
the creature.

To redefine a character set, we must decide which characters will not be
needed in the program. We must also create our new characters to replace the
old ones. Each letter, character, or symbol that is on the screen is made up of
eight bytes. Since each byte is eight bits, a character occupies an 8 x8 matrix. If
abitis “on” (set to “1”), the corresponding pixel will be lit on the screen. Next,
we must calculate the place in the character set where we will be putting our
new characters. Figure 1 illustrates how the character set is placed in ROM.

To change the character set, we must first move the character set from

Linda Schreiber, from Garden City, Michigan, is President and co-owner of T.H.E.S.LS., a com-
pany specializing in educational software for microcomputers including the ATARI. Her programs have

appeared in many publications, and she has written two books about ATARI programming, both
available from TAB Books.

29

EDUCATION

ROM into RAM, then replace the old characters with the new ones. In this
program, we will replace the character set from the quotation mark to the
period. To calculate the RAM location of the first character that will be
changed, we multiply its position in the character set by eight. The space,
which occupies the first eight bytes, is counted as the zero position. The ex-
clamation point is the first position, etc. The quotation marks begin with the
sixteenth byte of the character set. This is where our new characters will
begin. Figure 2 shows the old character set and the new character set that will
replace it.

Once we have redefined our characters, we can begin our program. Our
menu will offer two choices: to play the game or to end it. By moving the
joystick forward and backward, we can move the arrow up or down on the
screen. Press the red button on the joystick when the choice has been made.

While the player is deciding whether or not to play, our creature displays
some life. The winking and blinking is obtained by changing the character
that is used for the creature’s eyes. The character that replaces the apostrophe
is used for both eyes, the quotation mark has been replaced with the left eye,
the slash is now the right eye, and the asterisk is for no eyes. If the red button
has not been pressed after a given amount of time, the program will choose
one of the three options and PRINT it in the location of both eyes. After
another set amount of time, both eyes will appear again on the screen. This
same principle is used at the end of the game when the child wins. Even
though it doesn’t seem like much, this kind of enhancement can make the
difference between a mediocre program and a good one.

The game essentially plays like Hang-Man. The player is rewarded with
another part of the creature whenever a letter is guessed that belongs in the
secret word. If the child solves the word within a certain number of tries, the
creature winks and blinks, and there is a graphics and sound reward.

FIGURE 1
POSITION IN
CHARACTER DECIMAL CODE CHARACTER SET
[SPACE] 20 0
! 21 1
* 22 2
23 3
$ 24 4
% 25 5

30

ZAHRCON

64

[ctrl] A 1

[ctr]] B 2 65
[ctrl] C 3 66
a 97 97
b 98 98
c 99 99

The placement of the characters in the character set does not follow their

decimal or ATASCII codes.

FIGURE 2

OLD CHARACTER NEW CHARACTER
” left eye
antennae
left top ear
left bottom ear
left top head
both eyes
right top head
left bottom head
no eyes
right bottom head
; neck also part of leg
— right top ear
right bottom ear
i/ right eye

+ ¥ ——~ @ RPH%

The character set on the left will be replaced with the character on the right.

by Linda M. Schreiber

]ﬂ REM **** %% x x ZAHRCON *** %% % %x

28 REM BY L.M. SCHREIBER FOR ANTIC MAY

1982

49 DIM WORDS (
1

#),YWORDS (10
50 GRAPHICS C

10) yA(26)
8:REM GRAPHI 2

)
S WITH NO

31

EDUCATION

ﬂsxr WINDOW \

68 TOP=PEEK(186):REM FIND OUT HOW MUCH
MEMORY IS AVAILABLE

78 CHBASE=TOP-4:REM PLACE CHARACTER SE
T 1824 BYTES BELOW TOP OF MEMORY

80 OLDCH=57344:NWCH=CHBASE+*256:REM ST
ARTING BYTES OF OLD CHARACTER SET AND
NEW CHARACTER SET

99 FOR X=@ TO 511:REM MOVE THE NUMBERS
, SYMBOLS AND UPPER CASE LETTERS

188 C=PEEK(OLDCH+X):REM GET A BYTE OF
THE CHARACTER SET FROM ROM

118 POKE NWCH+X,C:REM RELOCATE IT IN R
AM

129 NEXT X

138 NWCH=NWCH+16:REM DO NOT REPLACE TH
E SPACE OR THE EXCLAMATION POINT

149 FOR X=NWCH TO NWCH+111:REM BYTES I
N THE CHARACTER SET TO BE REPLCED

158 READ C:REM READ THE NEW BYTE FROM
THE DATA BASE

168 POKE X,C:REM REPLACE THE OLD BYTE

WITH THE NEW ONE

178 NEXT X

188 DATA 255,255,255,255,255,255,63,63
181 DATA 129,66,66,36,36,36,24,24

182 DATA 128,224,120,62,31,31,15,15
183 DATA 15,31,63,127,255,0,0,40

184 DATA 63,63,127,127,255,255,255,255
185 DATA 255,255,255,255,255,255,60,60
186 DATA 252,252,254,254,255,255,255,2
55

187 DATA 255,255,255,255,127,127,63,63
188 DATA -255,255,255,255,255,255,255,2
55

189 DATA 255,255,255,255,254,254,252,2

52 '

199 DATA 255,126,60,24,24,608,126,255
191 DATA 1,7,30,124,248,248,240,2440

192 DATA 2440,248,252,254,255,0,0,40

193 DATA 255,255,255,255,255,255,252,2

52
\iﬁﬂ POKE 756,CHBASE:REM CHANGE TO THE J

32

ZAHRCON

NEW CHARACTER SET \

218 POKE 77,0:? #6;"MN":POSITION 4,3:7

#6:"#

229 POSITION 2,4:? #6:"$&" (- PLAYRS
230 POSITION 2,5:2 #6;"%)*+."

249 POSITION 4,6:? #6;","

250 POSITION 3,7:? #6;"&* ("

260 POSITION 2,8:? #6:"& , { e n dg
278 POSITION 2,0:7 @6, »* [~

288 POSITION 6,1:? #6;"ZAHRCON" :P=4:P1
-4:C-@:G0SUB 998

299 POSITION 18,P:? #6;” “:POSITION 18

,P1:? #6;">":REM ERASE THE LAST ARROW
AND POSITION THE NEW ONE

390 C=C+1:IF C<75-THEN $=39:G0T0 330
319 IF C=75 THEN $=42:X=INT(RND(®)*3):
IF X=1 THEN $=34

320 IF X=2 THEN $=47

330 POSITION 4,4:2 #6;CHR$(S):IF C>108
THEN C=¢0

349 IF STRIG(®)=8 THEN 398:REM CHOICE
HAS BEEN MADE

350 IF STICK(®)=15 THEN 3@8:REM CHECK
FOR MOVEMENT ON JOYSTICK

360 POKE 77,8:IF STICK(@)=14 THEN P=P1
:P1=P1-4:IF P1<4 THEN P1=4:REM CHECK F
OR TOP OF MENU

370 IF STICK(®)=13 THEN P=P1:P1=P1+4:1
F P1>8 THEN P1=8:REM CHECK FOR BOTTOM
0F MENU

380 GOSUB 99@:GOTO 299

399 POKE 77,8:IF P1=8 THEN FE=FRE(S):E
ND

499 ? #6;"FH :FOR X=2 TO 1@:POSITION 1,
X:? #6;CHR$(63+X):NEXT X:REM PRINT LET
TERS ON THE RIGHT

419 FOR X=2 TO 1@:POSITION 2,X:? #6;CH
RS (72+X):NEXT X

429 FOR X=2 TO 9:POSITION 3,X:? #6;CHR
$(81+X):NEXT X

439 X=INT(RND(@)*15):RESTORE 10008+X
449 READ WORDS

\ifa L=LEN(WORDS):P=18-L/2:REM PUSITI?E)

33

EDUCATION

(’;0 CENTER THE QUESTION MARKS

460 FOR X=P T0 P+L-1:POSTTION X,11:2 #
6:;"?":NEXT X:REM QUESTION MARKS FOR TH
E LETTERS

479 FOR X=1 TO0 26:A(X)=@8:NEXT X:YWORDS

(1)=" " :YWORD$ (18)=" " :YWORDS$ (2)-YWORD
$:X=1:P1=2:LT1=@:LT2=0
480 LT=0

499 S=(X-1)*9+95+P1:POSITION X,P1:? #6
;CHR$(S):GOSUB 994

500 IF STICK(P)=14 THEN POSITION X,P1:

? #6:CHRS$(S-32+A(S—96)):P1=P1-1:1F P1-
1 THEN P1=108:X=X-1

519 IF X=8 THEN X=3:P1=9

528 IF STICK(@)=13 THEN POSITION X,P1:
? #6;CHRS$(S-32+A(8-96)):P1=P1+1:IF P1=
11 THEN P1=2:X=X+1:IF X=4 THEN X=1

5380 IF P1=1@ AND X=3 THEN P1=2:X=1

535 IF STICK(B)=13 OR STICK(®)=-14 THEN
POKE 77,80

549 IF STRIG(B)=@ THEN 560

550 GOTO 494

560 POKE 77,8:IF A(S-96)=128 THEN 486
570 A(S-96)=128:REM KEEP LETTER BLUE
ON SCREEN

580 S=8S—-32:REM GET TRUE CHARACTER VALU
E

596 FOR C=1 TO LEN(WORDS$):IF ASC(WORDS
(C,C))=S THEN POSITION P+C-1,11:2 #6:C

HR$ (S):YWORDS$ (C,C)=CHRS$(S):LT=1

6608 NEXT C

618 IF LT=1 THEN 6346

620 GOTO 744

630 SN=5@:LT1=LT1+1: GDTO 630+LT1*IB
640 PGSITION 5572 #6" :POSITION 5,8
AR :GOTO 884

550 PUSITIUN T o7 6 =POSTITION 77,8
:? #6;7*:6G0T0 8840

66@ POSITION 9,7:? #6;"(":POSITION 9,8
:? #6;7,":G0T0 8889

670 POSITION 6,6:? #6;"&*(":60T0 8849
680 POSITION 7,5:? #6;",”:G0T0 8849

34

&f?ﬂ POSITION 6,4:? #ﬁ:”)*+”:PUSITIUN4j/

ZAHRCON

([,3:? #6;"&*(":G0TO 884 <‘\
760 POSITION 5,3:? #6;"$":POSITION 5,4

:? #6;"%" :GOTO 8840

719 POSITION 9,3:? #6;"-":POSITION 9,4
:? #6;".":G0TO0 8849
7209 POSITION 7,3:? #6;"'":G0TO0 884

730 POSITION 7,2:? #6;"#" :POSITION X,P
1:7 #6;CHRS$(S+128):G0TO0 884

740 SN=9@:LT2=LT2+1:G0T0 74@8+LT2*18
750 POSITION 14,7:? #6;"F”:POSITION 14
,8:? #6;"] :60T0 889

760 POSITION 16,7:? #6; | :POSITION 16
,8:2 #6; [:60T0 888

770 POSITION 18,7:? #6;"[}":POSITION 18
,8:7 #6;"]|":60T0 889

788 POSITION 15,6:? #6;" " :GOTO 886
798 POSITION 16,5:? #6;"W' :G0TO0 884
800 POSITION 15,4:? #6;" ":POSITION

15,3:7 #6; 1 6070 889

816 POSITION 14,3:? #6; [:POSITION 14
,4:2 #6;"f:60T0 889

829 POSITION 18,3:? #6; [:POSITION 18
,4:? #6;" :60T0 888

839 POSITION 16,3:? #6; " :60T0 888
849 POSITION 16,2:? #6; B :POSITION X,
P1:? #6;CHR$(S+128)

850 POSITION P,11:? #6;WORDS:SOUND @,2
#0,10,10:60SUB 99@:SOUND ¢,0,0,0

869 IF STRIG(B)=¢ THEN GOSUB 99¢:POSIT
ION §,0:60T0 218

870 GOTO 869

880 FOR SS=16_TO @ STEP —2:SOUND ,SN,
18,8S:NEXT S8,

898 IF YWORDS(1,L)<>WORDS THEN 48§

9f@ IF LT1<10@, THEN 630:REM FINISH BODY
919 POSITION 6,1:? #6;" " :G0SUB
99P:POSITION 6,1:? #6:"HURRAY!!":X=IN

T(RND(1)*3)+1:0N X GOTO 928,930,940

92§ S=42:G0T0 950

938 $=47:G0T0 954

949 $=34

950 IF STRIG(B)=f THEN GOSUB 99@:GO0TO

ks 5

. 35

EDUCATION

(;;ﬂ POSITION 7,3:? #6;CHRS(S):REM PH£;\
T AN EYE

979 GOSUB 999

98¢ POSITION 7,3:? #6;" " :G0SUB 996¢:G0
T0O 914

998 FOR TIME=1 TO 5@:NEXT TIME:RETURN
1080 DATA COULD

1881 DATA COUPLE

1082 DATA KENNEL

1083 DATA KINDS

1684 DATA CROCODILE

1065 DATA FRECKLES

1006 DATA BACKWARDS

1007 DATA PACKAGE

10088 DATA NICKEL

1089 DATA MECHANIC

1618 DATA LEPRECHAUN

DATA ORCHESTRA

DATA SKUNK

DATA TRAGIC

DATA ANTIQUE

TYPO TABLE

Variable checksum = 438736

— b b o—

=|Emm=
- Ny —

1
1
1
1

Line num range Code Length
10 - 1046 NJ 505
118 - 184 RE 432
185 =228 GQe 481
2340 - 3140 ZJ* 523
3240 - 448 11 588
410 - 4994 UQe 556
500 - 5680 LFe 508
574 - 660 X1a® 521
670 - 7448 FDe 506
750 =820 GMe 572
8380 - 918 MJ 571

929 - 1083 BU 386
k 1904 - 1814 DMe 158 "

36

TUNING YOUR ATARI

Tuning Your ATARI

| 4 [Yhere’s something about music that fascinates kids. Give them a small
piano, drums, harmonica, and they will sit for hours creating their
own melodies. A few years ago there was a toy piano on the market
that contained a tape recorder. This was a big hit with my daughter. Now, she
could not only make her own music, but listen to it afterward.

Tuning Your ATARI uses this idea. It is a musical game for children.
Type it in and run it, and you will see a simple menu. Choice #3 demonstrates
the program. Choice #1 allows you to compose a tune, and Choice #2 will play
it back. The tones appear to be made by little figures jumping on a bellows.

Above each figure is the letter name of the tone which that bellows will
produce. To operate the bellows, press [1], then press any key from [1] to [8].
Key [1] corresponds to the low C; Key [8] to high C. When a number is
pressed, the character will jump down on the bellows, flapping his arms as the
bellows is compressed. Once the tone is played, he bounces back up to his
original position. The program can hold up to 100 notes. If your melody is less
than 100 notes, press the [ESC] key and the menu will reappear on the screen.
Press [2] to hear your melody.

Young children will enjoy this program just to see the characters jump up
and down while they are playing the tunes. Slightly older children will enjoy
listening to the tunes that they have created. The letters above the characters
do not attract attention, but are a subtle reminder of the names of the notes.
After a while, children will begin to associate the letters with the tones of the
character. Don’t be surprised if you, hear your child singing
“A-G-F-G-A-A-Al” o e ;

Once again, in this program, we will move the character set out of ROM
and into RAM so that we can change some of the characters. In line 70, P1$
should equal h, reverse quotation marks, control D, reverse space, control
comma, reverse 1, reverse M, reverse control Q. The characters from K to R
are all in reverse. The last character in the string is control period. This string
is the machine language subroutine that moves the characters.

37

EDUCATION

Variables Used in This Program

P1$ = machine language subroutine.

M$ = string holds the melody played.

A = location of the new character set. This value is POKEd in-
to 756 to change to the new character set.

TONE = line number that starts the tone for the key pressed.

WAIT = line number for the timing routine.

Q = no function.

CHBS first decimal location of the new character set.

X = no function — used in FOR ... NEXT loops.

@ used in READ for new character set, used for value of key
pressed, and for position of character.

K = counter for the note being entered or played.

T value of the tone to be played.

TL value used in timing loop.

ROUTINE = the line number that the program goes to when entering

the melody, or playing one back.
by Linda M. Schreiber

*

* ¥ %

(:; REM ***xxxxx TUNING YOUR ATARI "::\

20 REM BY L.M.SCHREIBER FOR ANTIC AUGU

ST 1982

49 DIM P1$(24),M$(1086)

50 GRAPHICS 18:POKE 711,PEEK(7108):POKE
718,164

60 A=-PEEK(186)-8:POKE 204 ,A:POKE 206, 2

24 :REM STORE THE BEGINNING OF NEW & 0L

D CHARACTER =)

78 P1$=" BRI T ANEEI® " : TONE=43 0

:WAIT=500:REM MACHINE LANGUAGE SUBROUT

INE MOVES THE CHARACTER SET

80 Q-USR(ADR(P1$)):CHBS=A*256:POKE 756
,A:REM INSTALL NEW CHARACTER SET

99 FOR X=-CHBS+8 TO CHBS+71:READ C:POKE
X,C:NEXT X:REM CHANGE THE CHARACTERS

knnm | To §

3

E
8

TUNING YOUR ATARI

(:;ﬂ DATA 8,254.124,254.124.254,124.25:\
,108,0,254,254,124,254,124,254,40,168,

#,254,254,254,124,254

119 DATA 186,40,108,0,254,254,254,254,

56,108,56,16,254,56,40,1068,0,56,1088,56

,146,124,56,48

128 DATA 9,0,56,1068,56,16,254,56,0,0,8

,56,108,56,16,124

139 OPEN #2,4,0,"K:”:REM OPEN THE KEYB

OARD FOR READ

140 POSITION 2,9:2 #6:41 di- b ol) F L]

":POSITION 2,8:? #6:"% % % % % % % %" :

REM THE | AND % ARE THE NEW CHARACTERS

150 POSITION 2,6:? #6;"¢ d o f g a b ¢

“:REM PLACE THE TONE NAMES

160 POKE 7106,100:REM RESTORE THE MENU

178 POSITION 2,0:? #6;: [XTI
mu
189 POSITION 2,2:? #6:"FN [EENEETT

196 POSITION 2,4:? #6:"EN NEEIIENT

208 K=@:GET #2,C:POKE 718,08:REM GET TH
E KEY PRESSED-REMOVE THE MENU

218 IF €C>127 THEN C=C-128:POKE 694,0:R
EM INVERSE FLAG IS ON RESET IT TO NORM
AL «
228 IF C<49 OR C>52 THEN POKE 764,255:
GOTO 2@@:REM NOT A NUMBER FROM 1 TO 4
238 C=C-48:REM GET THEN NUMBER

249 ON C GOTO 256,540,520,5680

250 MS$-"":REM REMOVE CONTENTS OF THE S
TRING

260 ROUTINE=26@:K=K+1:IF K=181 THEN 16
@:REM ONLY ACCEPT 188 NOTES

280 GET #2,C:IF C=~27 THEN 160:REM GET
THE KEY PRESSED-RETURN TO MENU ON ESCA
PE KEY

299 IF C>127 THEN C-C-128:POKE 694,0:R
EM INVERSE FLAG IS ON RESET IT TO NORM
AL

38 IF C<49 OR C>56 THEN POKE 764,255:
\EPTO 2@p@:REM NOT A NUMBER FROM 1 TO g/)

39

EDUCATION

318 C-C—-48:M$(K,K)=STRS$(C):REM GET T;;\

N NUMBER-PUT IT IN THE STRING

328 C~C*2:REM OFFSET IT FOR THE PROPER
POSITION

339 ON C/2 GOSUB 350¢,360,370,380,3940,4
gp,410,4289

3408 GOTO ROUTINE

350 T=121:G0T0 TONE:REM 'C°

360 T=1P8:G0T0 TONE: HEM "D

370 T=96:G0T0 TONE:REM '

380 T=91:G0T0 TONE:REM °

390 T=81:G0T0 TONE:REM

400 T=72:G0T0 TONE:REM

419 T=64:G0T0 TONE:REM

429 T-606:REM 'C’

425 REM LINES 430-450 MAKE THE CHARACT
ER APPEAR TO PUSH DOWN ON THE BELLOW A

ND MAKE THE TONE

43¢ TL=-10:POSITION C,8:? #6;CHR$(134):
POSITION C,9:? #6;CHRS(136):SO0UND @, T
19,6:6G0SUB WAIT

449 POSITION C,8:? #6:CHRS$(135):POSITI
ON C,9:? #6;CHR$(131):SO0UND @,T7,10,8:6
O0SUB WAIT

450 POSITION C,8:? #6;CHRS$(136):POSITI
ON C,9:? #6; BHH (132):GOSUB WAIT

464 SOUHD g,7,18,18

479 POSITION C 8:? #6;CHRS$(135):POSITI
ON C,9:? #5:BHH$(13I):SOUND §,7,16,8:6
0SUB WAIT

475 REM LINES 470-496 RETURN THE CHARA

CTER AND BELLOW TO THE CORRECT POSITIO

N

489 POSITION C,8:? #6;CHR$(134):POSITI

ON C,9:? #6;CHR$(162):SOUND 0,T7,108,6:6

O0SUB WAIT

499 POSITION C,8:? #6;"%" :POSITION C,9
:? #6;" 1" :SOUND @,6,0,0:RETURN

500 FOR X=1 TO TL:NEXT X:RETURN :REM T
IMING LOOP

510 REM PLAY A SAMPLE TUNE

520 M$-"11556654433221"

\E?ﬂ REM ROUTINE TO PLAY BACK THE MELQE)

E»omm

40

TUNING YOUR ATARI

ﬁzurenen

550 GOTO 1640
568 END

Line num
10 =
100 7=
160 &
2540 &
3440 =
450 =

k 518 7

range
94
158
249
33p
449
580
560

225282
Code

AR
SI
ZA
uo
GF
RF
RN

549 ROUTINE=54@:K=K+1:IF K<=LEN(MS)
EN C=VAL(M$(K,K)):GO0TO 32@:REM KEEP PL
AYING UNTIL THE END OF THE STRING

. TYPO TABLE

Variable checksum =
Length

524
504
517
571
511
519
211

B

TH

vy

41

EDUCATION

Candle, Candle,
Burning Bright

ost computers owned by schools are used in the math department,
a recent survey showed. Computer science ranked second. The
prime use for computers in any school is drill and practice.

In drill and practice, the computer gives the student questions. If the ques-
tions are answered correctly, the student is rewarded. If the answer is wrong,
the correct answer appears on the screen. Some educators frown on this, call-
ing it “electronic flash cards.” Others praise such programs, stating that they
aid the teacher by reinforcing facts that children need to know.

Another type of educational software is the tutorial, where the computer
“teaches” a particular lesson. Some tutorial programs make the computer an
electronic page-turner; others allow the students to learn at their own pace,
test the students, then review material or present new material based on the
results of the test.

Some programs are advertised as educational games. They present learn-
ing as a fun experience. Some vendors will advertise a game as educational if
any single thing is learned. Arcade games are even called educational because
they teach “hand-eye coordination.” Maybe they do, but does this mean that
they are truly educational games?

There is another educational category — simulation. This is one area
where computers could be used to better advantage. There are very few good
simulation programs available.

This program simulates a science experiment. A candle is drawn on the
screen, and a jar is hovering above it. The program is very simple. To light the
candle, press [SELECT]. To lower or raise the jar, press [START]. The candle
cannot be lit if the jar has been lowered, but the jar can be lowered or raised
whether or not the candle is lit. The white dots that move around on the
screen represent the oxygen in the air.

This is a fairly standard experiment, and with a program like this, young
children can learn about their environment safely. To light the candle, press

42

CANDLE, CANDLE, BURNING BRIGHT

[SELECT] and hold it down until the flame appears above the candle. The
oxygen dots will move around on the screen. The flame on the candle will
flicker because of the air movement.

Hold down the [SELECT] button until the jar starts to move. Once the
jar is over the candle, the oxygen will begin to disappear. The oxygen still
moves in the jar and the flame will flicker. When all the oxygen is used up, the
flame will go out.

Hold down the [START] button until the jar starts to move up again.
Notice that the oxygen dots will appear around the candle. If the jar is raised
just before all the oxygen is used up, more oxygen dots will gather around the
candle, and the flame will not go out.

This program uses the Player/Missile graphics for the jar, candle and the
flame. Lines 50 and 60 contain the machine language to move the player (jar)
up and down. Be sure that these lines are typed in exactly, or the program will
not work correctly.

Variables Used in This Program

UP$ = machine language subroutine to move player up.
DOWN$ = machine language subroutine to move player down.
A = free memory less 8K.

PMBASE = beginning of the memory for players and missiles.
CANDLE = memory location of where the candle will be drawn.
FLAME = memory location of where the flame will be drawn.
JAR = memory location of where the jar will be drawn.

C = column where oxygen will be plotted.

R = row where oxygen will be plotted.

OS(50,2) = column and row of oxygen on screen.

0J(10,2) = column and row of oxygen under jar.

FL = state of flame (1 =flame lit, 0 =flame out).

JuU = state of jar (I =jar down, 0 =jar up).

OX = amount of oxygen visible.

F = which of the three flames to draw.

B = data being read.

X,QM = dummy variables.

by Linda M. Schreiber

43

EDUCATION

/T; REM **+ BURNING CANDLE SIMULATION‘\\

* % %

20 REM BY LINDA M. SCHREIBER FOR ANTIC
DEC. 1982

3¢ DIM 0S(5@8,2),0J(106,2),UPS$(13),D0WNS
(13)

49 A=PEEK(186)-32:REM SET ASIDE 2K FOR
PLAYER/MISSILE GRAPHICS - GRAPHICS 7
NEEDS 4K
50 UPS="hBuRIrETEe"

68 DOWNS="h 4

78 GRAPHICS 7:REM HIGH RESOLUTION WITH
TEXT WINDOW

80 POKE 54279,A:PMBASE=A*256:REM TELL
ANTIC WHERE P/M GRAPHICS BEGIN

99 POKE 559,62:POKE 53277,3:REM ENABLE
P/M GRAPHICS FOR SINGLE LINE RESOLUTI
ON

160 POKE 7064,104:REM COLOR OF FLAME
118 POKE 7085,2080:REM COLOR OF CANDLE
120 POKE 7086,1208:REM COLOR OF JAR

130 POKE 708,154:REM COLOR OF OXYGEN
149 POKE 709,8:REM COLOR OF DISH

150 FOR X=PMBASE+1624 TO PMBASE+2@43:°P
OKE X,@:NEXT X:REM CLEAR MEMORY FOR GR
APHICS

168 COLOR 2:PLOT 160,75:DRAWTO 118,780:
DRAWTO 40,70:POSITION 56,75

178 POKE 765,2:XI0 18,%#6,0,0,"S:"

189 CANDLE=PMBASE+1426:REM LOCATION OF
CANDLE IN P/M MEMORY

199 RESTORE 516:FOR X=@ TO 25:READ B:P

OKE CANDLE+X,B:NEXT X:REM READ IN THE

DATA FOR CANDLE

200 POKE 53249,120:REM PUT CANDLE ON S

CREEN

219 FLAME=PMBASE+1157:REM LOCATION OF
FLAME IN P/M MEMORY

220 JAR=-PMBASE+16@6:POKE 286, INT(PMBAS
E+1536)/256:P0OKE 205, (PMBASE+1536)—INT
((PMBASE+1536)/256)*256:REM JAR IN P/M

230 POKE JAR,255:FOR X=1 TO 5@:POKE JA

\ETX,IZQ:NEXT X:REM DRAW THE JAR A,)

44

CANDLE, CANDLE, BURNING BRIGHT

/;;B POKE 53258,3:POKE 53258,107:REM P0)

T THE JAR ON THE SCREEN

250 COLOR 1:FOR X=1 TO 5@:REM PUT 0XYG
EN ON SCREEN

268 C~INT(RND(1)*168):REM COLUMN OF 0X

YGEN

279 R=INT(RND(1)+8@):REM ROW OF OXYGE

N

280 IF C>60 AND C<98 THEN IF R>43 THEN
279:REM DON'T PLACE IT IN THE JAR

298 IF C>48 AND C<118 THEN IF R>69 THE
N 279:REM OR ON SAUCER

388 0S(X,1)-C:08(X,2)=R:REM PLACE THE
OXYGEN LOCATION IN THE ARRAY

318 PLOT C,R:NEXT X:REM DO IT 56 TIMES
320 FOR X=1 TO 1B:REM OXYGEN IN JAR
339 C~INT(RND(1)*23)+63:R=INT(RND(1)*
23)+46:REM AREA OF JAR

348 0J(X,1)=C:0J(X,2)=R:REM PLACE IN J
AR ARRAY

356 PLOT C,R:NEXT X:0X=1@:REM DO IT 10
TIMES

360 POKE 752,1:? ~PRESS NN 70 MOVE
JAR":? :? "PRESS TO LIGHT CANDL
E*;:REM INSTRUCTIONS

370 IF PEEK(53279)=7 THEN 40@:REM NO K
EY PRESSED - MOVE OXYGEN & FLAME IF LI

T

380 POKE 77,8:I1F PEEK(53279)=5 AND FL-
@ AND JU-8 THEN 41@:REM TURN OFF ATTRA
CT — LIGHT FLAME?

399 IF PEEK(53279)=6 THEN GOSUB 43@:IF
JU-8 THEN COLOR 1:FOR X=1 TO 16:PLOT
0J(X,1),0J(X,2):NEXT X

498 IF FL-§ THEN GOSUB 54@:GO0TO 37@:RE

M FLAME NOT LIT

418 FL=1:POKE 53248,128:60SUB 520:REM

ANIMATE FLAME ON SCREEN

428 GOTO 370

436 IF JU=0 THEN FOR Q=1 TO 51:M=USR(A
DR(DOWNS)):NEXT Q:JU=1:RETURN :REM MOV

E JAR DOWN
\ifn FOR Q=1 TO 51:M=USH(ADH(UPS)):NEXTJ

45

EDUCATION

KO:JUGB:DX-IE:HETUHN :REM MOVE JAR UP\

508 REM DATA FOR CANDLE

518 DATA 8,8,12,28,28,30,62,62,126,126
,126,126,126,126,126,126,126,126,126,1
26,126,126,126,126,126,126

528 F=INT(RND(1)*3)+1:REM PICK ONE OF

THREE FLAME POSITIONS

5309 RESTORE 530+F:FOR X=§ TO 9:READ B:
POKE FLAME+X,B:NEXT X:REM READ IN THE
DATA FOR FLAME

531 DATA 16,8,12,28,62,62,28,24,8,4
532 DATA 8,4,6,12,60,60,28,48,16,8

533 DATA 32,16,24,56,30,308,12,12,4,2
539 REM DECREASE THE OXYGEN IF FLAME I

S ON AND JAR IS DOWN. FLAME GOES O0UT W
HEN THERE IS NO OXYGEN

549 IF JU=1 AND FL=1 THEN COLOR 4:PLOT
0J(0X,1),0J(0X,2):0X=0X—-1:IF 0X=8 THE
N FL=@:POKE 53248 ,0:RETURN

550 IF OX=§ THEN 580:REM NO OXYGEN IN
JAR

560 FOR X=1 TO OX STEP 2:R=INT(RND(1)*
23)+63:C=INT(RND(1)*23)+46:COLOR 4:PLO

T 0J(X,1),0d(X,2):0J(X,1)=R:0J(X,2)=C
579 COLOR 1:PLOT R,C:NEXT X

580 FOR X=1 TO 58 STEP 5:COLOR 4:PLOT
0S(X,1),0S(X,2):C=INT(RND(1)*168):REM

GET A NEW COLUMN

599 R=INT(RND(1)*88):IF C>6@ AND C<94

THEN IF R>43 THEN 59@:REM IN THE JAR!
600 IF C>48 AND C<11¢ THEN IF R>69 THE

N 5900:REM ON THE SAUCER!!

618 0S(X,1)=C:0S8(X,2)=R:COLOR 1:PLOT C
LR:NEXT X:RETURN

TYPO TABLE

Variable checksum = 367255

Line num range Code Length
10 =g MN 529
1180 - 208 10 543

>y

46

CANDLE, CANDLE, BURNING BRIGHT

2149 - 284 PO 522
294 - 31740 Mw 571
3880 - 449 XH 587
500 - 5448 ON 587
558 - 6146 A 552

47

o

LC

Sound and Mus

Some Sound Advice

modify tone, distortion, and volume for each of four voices has been
put to good use elsewhere in this book. One of the problems with the
SOUND statement is that using it extensively slows down program execu-
tion. While this is true of BASIC statements in general, with the SOUND
statement there is an easy alternative — SOUND registers. SOUND registers
are memory locations which control properties (tone, distortion and volume)

of the ATARI’s sound.

T he SOUND statement in Atari BASIC is very powerful. Its ability to

Memory Location Function

53760 Tone of Voice 1 (SOUND 0)
53761 Distortion and Volume of Voice 1
53762 Tone of Voice 2 (SOUND 1)
53763 Distortion and Volume of Voice 2
53764 Tone of Voice 3 (SOUND 2)
53765 Distortion and Volume of Voice 3
53766 Tone of Voice 4 (SOUND 3)
53767 Distortion and Volume of Voice 4
53768 Tone “clock” control

The even-numbered memory locations (53760, 62, 64, 66) control the
TONE, i.e., which note the ATARI will play. This is identical to the second
number in a SOUND statement. For example, to get the same tone as
SOUND 0, 100, 10, 8 you would POKE 53760, 100. This specifies Voice 0,
note 100. But what about distortion and volume? The odd-numbered
memory locations (53761, 63, 65, 67) take care of these two characteristics for
each voice via the following relation:

16*DISTORTION +VOLUME
where DISTORTION is the third number in the SOUND statement (10 in
our example) and VOLUME is the fourth number (8 in our example).

The equivalent POKE in our example is 16* (10)+8=
168, and you would specify POKE 53761, 168. Try it. Type in: POKE 53760,
100:POKE 53761, 168 [RET]. The other pairs of registers work the same way.

49

SOUND & MUSIC

You can turn off the note by specifying zero in either TONE or
DISTORTION-and-VOLUME registers.

Memory location 53768 is an interesting one. The ATARI maintains two
internal “clocks” which it uses to measure the frequency of the sound wave it
generates. The two clocks run at different speeds. Switching clocks changes
the frequency (and thus the tone) of the sound. Bit 1 of memory location
53768 controls which “clock” the ATARI uses to produce its sound. Normally
bit 1 is off, and the ATARI’s sounds correspond to the tables in the reference
manual. Turning bit 1 on (POKE 53768, 1) selects the slower clock, and alters
the tone produced. Toggling bit 1 off and on will switch all four voices up and
down for a pretty good “alarm” effect. Try this loop:

FOR N =0 TO 255:POKE 53768, N: NEXT N
This turns bit 1 off and on very nicely without having to worry about setting
and resetting the bit. The reason this works is that the values jump back and
forth from odd to even, turning bit 1 on and off.

How much faster is POKE than SOUND? Well, let’s try an example. The
following program downloads the ROM character set into RAM so it can be
modified. With no sound (leave out the SOUND statements in line 30), this
process takes 15.7 seconds. There are much faster ways to do this, but you can
use this method until you feel confident. Fifteen seconds is a long time to sit
looking at a computer doing nothing visible. Most people start getting
nervous and wondering if “Lockup” has struck again. Let’s add some sound to
assure the user that something is happening.

10 POKE 106,PEEK(106)-4:POKE 53761,168:POKE
53763,168:GRAPHICS 0

20 CHBASE =PEEK(106):OLDCH =57344:NWCH =
CHBASE#256

30 FOR X=0TO 1024:C=PEEK (OLDCH +X):POKE
NWCH +X,C:SOUND 0,C,10,4:SOUND 1,X,10,4

40 NEXT X

Downloading the character set now takes some 25 seconds. If we try the
following instead, substituting POKEs, the character set loads in about 20
seconds.

10 POKE 106,PEEK(106)-4:POKE 53761,168:POKE
53763,168:GRAPHICS 0
20 CHBASE =PEEK(106):OLDCH =57344:NWCH =

50

AUDIO WHILE YOU CLOAD

CHBASE%*256
30 FOR X =0 to 1024:C =PEEK(OLDCH +X):POKE
NWCH +X,C:POKE 53760,C:POKE 53762,140
40 NEXT X

Note that X, which varies from 0 to 1024, can be used as an input to the
SOUND statement — each time it rolls over a multiple of 255, it starts over at
0 (thus 256is 0, as is 513 and 769). This is not true of the POKE statement, so a
constant was used. Doing a calculation to keep everything in range (such as
POKE 53762, X/4) slows things down still further (about 28 seconds), and
isn’t a good idea.

Finally, various sources give the equations that relate tone to the internal
clocks and note frequency. While these equations are beyond the scope of this
article, they can be useful to those composing music on their computer.

by Dave Plotkin

Audio While You CLOAD

“Your mission, Jim, if you choose to accept it. . ."”

T here is no question that the microcomputer community dislikes com-

puter cassettes — and with good reason. In the early days of com-
puting when hobbyists had no other storage medium, hours of frus-
tration were spent trying to save or load programs from cassettes. When disk
storage became available, many hobbyists gladly junked their cassettes. Some
manufacturers have quietly stopped supporting their cassette systems.
Unfortunately, this has prejudiced software developers against the use of
the Atari cassette system. However, I consider this component one of Atari’s
strongest points. The Atari system, unlike most others, uses a cassette player
made specifically to run on the ATARL

John Victor is the president of Program Design, Inc., a software company in Greenwich, Connec-
ticut, specializing in games and educational software. Several of their cassette-based products use a voice
track on the cassette to enhance the program during loading or play of the game.

51

SOUND & MUSIC

The advantage is this: the Atari cassette is recorded in stereo. The digital
information for programs is stored on the right track. Sound recorded on the
left track is played back through the user’s TV set. The existence of the left-
side sound track means that recorded voice or music can be played at any time
while the computer is on — either during the running of a program or during
the loading of a program.

One technique that we use at PD1 is to put voice instructions on the left
sound track to play while a cassette is loading. This means that we do not have
to put all instructions for using the program in the program itself, reducing the
memory requirements. At least half of the Atari market consists of 16K
ATARI 400 computers. By keeping memory requirements within 16K (and
providing programs in cassette format) a software publisher will reach a
greater percentage of the Atari market.

The existence of a voice track gives the program user something to do in
the time it takes to load the program. This can set the mood for the game itself.
In MOONBASE 10 we use the voice to give the player a “recorded message”
from Earthbase control as to the nature of the mission (just as in “Mission Im-
possible”). Most of the four and a half minutes it takes to load the program is
spent doing something related to playing the game.

To create and use the voice track during the cassette load, several things
have to be done. First, the sound that the computer makes during a cassette
load has to be turned off. This is done with a POKE 65,0. This can be put in a
loader program placed first on the cassette. This loader program will contain a
visual display, the POKE 65,0, and a CRUN routine that will automatically
load and run the main program.

The following is the CRUN routine. POKE 764,32 will automatically pro-

@ REM ROUTINE TO CRUN NEXT PHDGRAQ\\
2 DIM AS(28)

5 POKE 65,0

@ POKE 764,32

g FOR LOOP-1 TD 19
2 READ X:AS$(LOOP,LOOP)-CHRS(X)

4 NEXT LOOP

B X-USR(ADR(AS))

g DATA 162,253,154,169,183,72,169,8
2,169,4,32,182,187,169,255,76,4,187

AUDIO WHILE YOU CLOAD

duce a carriage return so that the next program will begin loading. The ASCII
values in the REM statement are those for the machine language CRUN
routine found in the USR routine. (USR routines are used to run machine
language from BASIC.)

After the first program is loaded and run, instructions will be put on the
screen and the next program load started. Any recorded sound in the left
channel will now be heard clearly in the TV set. Positioning of the recording
tape is important.

Atari programs have a two-second string of zeros recorded at the end of
each cassette program. The programs stop loading two seconds before the
recorded program ends. This means that the recorded voice or music can
begin just before the first program ends, but must end two seconds before the
main program’s record track. Otherwise the computer is going to turn off the
voice track before it finishes.

The Atari 410 Program Recorder can play back voice and music but can-
not be used to record it. This must be done on a stereo tape deck or a reel-to-
reel recorder. For the sake of quality, master tapes from which cassettes are
going to be manufactured should be made on reel-to-reel recorders only!
Cassette recorders do not produce good enough sound to be copied. There is
just too much speed variation and lack of separation between the two stereo
tracks on cassette masters. If the user only wants a few copies, then a stereo
tape deck is okay, but this is not acceptable for commercial software pro-
ducers.

The first step in making the master tape is to record the programs. The
ATARI computer makes no provision to connect the ATARI to a stereo
recorder, so the programmer will have to rig up something. This is not very
difficult. The “data out” and the “ground” pins in the peripheral connector
are the ones that send the program signal to the recorder.

These can be connected to the recorder with a cable that has alligator
clips on one side and an RCA connector on the other. A local Radio Shack or
audio dealer may have this, or an audio technician can make one. The
alligator clips are then connected to the ATARI pins 5 and 6, and the RCA is
plugged into the right recording jack of the stereo unit. It’s not a bad idea to
put tape over the alligator clips to keep them from touching the wrong
points.

Before recording, start the computer outputting and set the VU meter
on the recorder at between 7 and 5. Also note the reading on the tape
counter.

53

SOUND & MUSIC

SERIAL 1/0O PORT CONNECTOR
2 4 5 8 10 12

1 35 7 & 11 13

1. Clock In 8. Motor Control
2. Clock Out

3. Data In to Computer 9. Proceed

4. Ground 10. + 5/ Ready
5. Data Out of Computer 11. Audio In

6. Ground 12. +12

7. Command 13. Interrupt

Record the loader program. The computer will lay down 18 seconds of
pilot tone before the program is recorded. However, after the program is
loaded, the computer will continue to output pilot tone. Listen to the com-
puter for an indication of when the program stops, and immediately shut off
the recorder. Next, record the main program. Using the tape counter, keep
track of where on the tape the second program is.

The voice (or music) can now be recorded. To record voice, connect a
microphone to the left-side “mic” jack. The recorder must be one that will
not erase the right track while the left one is being recorded. This can be
determined quite simply — there must be a separate record button for each
track.

Using the tape counter as a guide, rewind the tape. Then begin recording
voice instructions and/or music on the left track. This must be finished two
seconds before reaching the end of the recorded program (because that is
where the computer is going to stop when the program is loading).

It will also help to have an appropriate graphic on the screen while the
main program is being loaded. If directions are being given, the directions
might also appear on the screen at the same time.

This technique can enhance a program and make it more interesting. It

also adds a “professional” touch to cassettes.
by John Victor

54

MUSIC WITH BASIC

Music with BASIC

Two songs and a tutorial for would-be composers.

his tutorial and example program demonstrates one of the many ways

of playing music using Atari BASIC. Those of you with no knowledge

of music may simply type in the program and follow the instructions
on the screen. If you have some knowledge of music, and you'd like further
information on how this program works, read on.

The program begins with a GOTQO 310. This bypasses the main program
loop, subroutines, and song DATA, and brings us to our setup and screen
display. Here we specify GRAPHICS 0, set the background color at random,
turn off the cursor, set the left margin at 5, set the print tab width at 7, and
NP =0. The numeric variable NP will be used to count the Notes Played.
Lines 320-360 display our program description, author name, and user
options. POKE 764,255 tells the computer to ignore the last key pressed.

The routine beginning at line 370 and ending at line 390 waits for the
user to press a normal video 1, 2, or 3. Nothing will happen until one of these
keys is pressed. The checking is done by PEEKing at location 764 until it con-
tains a 31, 30, or 26. These are the internal keycodes for 1, 2, and 3. By check-
ing the last key pressed, we eliminate the need to press the [RETURN] key.

Once we have a valid key, we position the cursor at the appropriate
option number on the screen, and print that number using inverse video.
The numeric variable PLAY is used to store the number of notes we are
about to play.

If option 1 was selected, we do not have to use a RESTORE command
since the DATA for this song preceeds any other DATA.. If either of the other
options has been chosen, we use the RESTORE command to point to the
line number where the appropriate DATA begins.

Jerry White lives in Levittown, New York, and is a prolific writer of BASIC and assembly language
programs for the ATARI. He has many commercial products on the market, including Poker SAM and
Chatterbee, from Don’t Ask Software, that use the intriguing voice-synthesis-on-a-disk known as Soft-
ware Automatic Mouth (or S.A.M. for short).

55

SOUND & MUSIC

If the number 3 key was pressed, we also must set a flag to indicate a spe-
cial condition. Since this program reruns itself when a song is over, we set the
variable EXIT =1 in line 390 before GOTO 40 instruction.

Look at line 40. In English, it says that if the number of Notes Played is
equal to the number of notes we wanted to PLAY, then go to line 420. Line
420 begins with “IF EXIT” This is the same as saying “IF EXIT <> 0”. So IF
EXIT =0, the program falls through to line 430 where we have a RUN com-
mand. If EXIT< >0 then we reset the left margin, turn the cursor back on,
tell the user that BASIC has control, and END the program.

Now that we know how the program starts and how it ends, let’s see
what happens in between. Let’s assume you have chosen option number 3.
As you pressed the number 3 key, an ASCII 26 was automatically stored in
location 764. At line 390 we hit a true condition and highlight the number 3
on the screen, set PLAY =10, RESTORE 290, set EXIT =1, and GOTO 40.

The routine from line 40 through 170 is called the main program loop.
We haven't played any notes yet so NP =0 and we fall through to line 50.
Here we read two bytes of DATA. This will result in the variable PITCH
being set to 91 and DUR being set to 12. Remember, we are reading the
DATA that begins in line 290. Also in line 50 we add 1 to NP.

In line 60, we see if PITCH =0, and if it is, we GOTO our REST routine
which begins at line 90. PITCH =91 so we GOTO our SOUND routine at
line 130.

We will POKE the value of DUR into a countdown timer at RAM loca-
tion 540. Countdown timers count backwards at the rate of 60 per second
until zero is reached. In other words, when we POKE 540,DUR, since
DUR =12, exactly 12/60 of a second later, the countdown timer will reach
zero. In that same line we calculate the pitches we will use in SOUND
registers 1 and 2, and store the value of PITCH +1 in P1 and PITCH-1 in P2.

At line 140 we turn the tables and set DUR =PEEK(540), and check to
see if it is equal to zero. At this point it isn’t zero yet, so we continue on to
line 150 and see if DUR > 6. Six will be our maximum volume of each of
three SOUND commands. In any case, we continue on to execute three
SOUND commands, then go back to line 140 and check the value in our
countdown timer again. We stay in this loop until we find that our count-
down timer has reached zero.

When PEEK(540)=0, we GOTO line 170 where all sounds are turned

off, and we can finally go back to where this whole thing started, line 40.

56

MUSIC WITH BASIC

Remember line 407 That’s the main program loop. We have played one
note and have nine to go. But what if the PITCH is a 0? When we want no
sound for a period of time (a REST), we enter a zero as the pitch, and use the
routine beginning at line 90 to rest for the period of time specified by DUR.
By the way, 60ths of a second are also known as “jiffies.”

By using DUR as the volume value in the SOUND commands, we get a
slight decay or decreasing volume at the end of each note. By using two addi-
tional SOUND channels, and setting their frequency levels slightly higher
and lower than the desired pitch, we achieve a richer, fuller sound.

This program demonstrates only one method of playing music on your
computer. BASIC can be used to play true four-part harmony and even dis-
play the lyrics of your songs on the screen at the same time. This is demon-
strated by Swifty Software’s Singalong Sound & Music Tutorial package.

Atari’s Music Composer provides another way to play music and dis-
plays musical notes on your screen. Unfortunately, you can’t put the Music
Composer Cartridge and BASIC in at the same time. But I found a way
around that problem too.

P.D.I's Music Box will convert your Music Composer files and play
them for you using vertical blank assembler subroutine. This is done while the
BASIC cartridge is installed. The best part is that once the music begins,
BASIC is at your disposal. You can even write a BASIC program while the
music continues to play.

The possibilities provided by your computer’s audio channels are almost
limitless. Take advantage of this and let us know what you come up with.

by Jerry White
19 REM ATARI BASIC MUSIC by Jerry Wh;:\
e 5/4/82
29 GOTO 3148

38 REM MAIN PROGRAM LOOP

48 IF NP=PLAY THEN 4280

50 READ PITCH,DUR:NP=NP+1

68 IF PITCH=8 THEN 94

78 GOTOD 139

89 REM REST TIME DELAY SUBROUTINE
99 POKE 548,DUR

\i?ﬂ IF PEEK(548)<>0 THEN 109

SOUND & MUSIC

GOTO 44 ﬁ\\
REM PLAY NOTE SUBROUTINE

POKE 548,DUR:P1=PITCH+1:P2=PITCH-1
DUR-PEEK(540):IF DUR-@ THEN 1740
150 IF DUR>6 THEN DUR=6

160 SOUND @,PITCH,18,DUR:SOUND
,DUR:SOUND 2,P2,10,DUR:GOTO 149
179 SOUND 9,0,0,P:SOUND 1,8,08,0:S0UND
2,0,0,0:60T0 449

184 REM DATA FOR POP GOES THE WEASEL

&
120

130
144

1PN 8

194 DATA 121,6,91

15,:67:71:2,:65 68516 ,7:2.,6 .19]
208 DATA 121,6,91
81,6,72,18,0,6,91
219 DATA 121,6,91

228 DATA 53,12,8,12,81

»6,0,6,91
,6,8,6
w0 0691
,6,0,6

»6,8,6,01
165072,6,08:6,72,6:91,
.12, 0,6,68,6.72,;

,6,81,6,0,6,

,6,81,6,8,6,

.6.8].
6,0,18

6!“'6'

18,0,6,91,12
239 REM DATA FOR TEN LITTLE INDIANS

249 DATA 121,18,121,6,121,6,121,18,121
,6,121,6,96,18,81,6,81,6,96,6,96,6,121
, 18
250 DATA 148,18,108,6,108 08 18,188
,6,108,6,128,18,108,6,108 28,6,128
6,162;18
268 DATA 121.6,121.6,121,6,121,6,121:1
8,121,6,121,6,96,18,81,6,81,6,96,6,96,
6,121,318

27@ DATA 168,18,108,6,
6,162,18,121,48

280 REM DATA FOR EXIT ROUTINE

290 DATA 91,12,0,6,121,6,128,6,121,6
#8,24,121,24,0,24,96,24,91,24

380 REM SETUP/DISPLAY/OPTIONS

310 GRAPHICS @:SETCOLOR 2,RND(@)*16,8:

148,6,162,6,162,

POKE 752,1: PﬂKE 82,5:POKE 261,7:NP=8

328 ? :? :? ,"ATARI BASIC MUSIC“

330 ? :? . by Jerry White” 2

349 ? :? "Type 1 for POP GOES THE WEAS

EL

358 ? :? "Type 2 for TEN LITTLE INDIAN

su 3
\ifﬂ ? :?2 "Type 3 for PROGRAM EXIT" :{E/

58

MUSIC WITH BASIC

g-7 =
270

72 7
438 RUN

Variabl
Line
10
134
224
324
429

29@:EXIT=1
400 GOTO 3749
418 REM EXIT/RERUN
429 IF EXIT THEN POKE 82 2:POKE 752,0:

(1:;7764,255

370 IF PEEK(764)=31 THEN POSITION 1
:? 1" ;:POKE 764,255:PLAY=43:G0T0 4
1
4

“BASIC"

129

checksum =
range

JT

214
3146
4189
4340

380 IF PEEK(764)=3@ THEN POSITION
2" ;:PLAY=44:RESTORE 248:G0TO
399 IF PEEK(764)=26 THEN POSITION 14,1

“3";:POKE 764,255:PLAY=10:RESTORE
:GOTO 49

IS”;:END

TYPO TABLE

1531640
Code
215
NW
GO
oy
RE

\

Length

521
602
509

=

59

SOUND & MUSIC

Ultra Sound

magine sitting in your easy chair in front of the color television set with a

stereo speaker to your right and left. The Star Raiders cartridge is in the

computer. After selecting your destination you press [H]. A slight rumble
emanates from the speakers as the engines engage. From the forward view, you
see the stars moving faster and faster towards you as the sound increases to a
roar. You explode into hyperwarp and the sound from the speakers rattles
your chair, RED ALERT!

You reach for the joystick to direct your photons but it’s too late! You
receive a direct hit from Zylon fire. The room echos from the impact, the
vibration causes little nick-nacks to fall from the cabinet shelves. DAMAGE
CONTROL! You can hear the cries of your injured crew reverberating
through your star cruiser. No, it’s your neighbors yelling for you to turn down
your stereo. What excitement! Maybe next time you should use the head sets.

You can make a simple, inexpensive cable that will channel audio from
your ATARI 800 to your stereo speakers. This article will show you how.

The cable will attach to most stereo systems or radios. Unfortunately, the
other end will only attach to an ATARI 800 computer, where the monitor jack
is external. The ATARI 400 would require disassembly, interior soldering and
case modifications. There are three components that you need to buy. We
have listed these items, their approximate cost, a possible distributor, and
comments in Table 1.

Table 1. List of Components

Item Distributor Price Comments
5-Pin Audio/Video Plug Radio Shack (#274-003) $1.49 Shielded
APX (#90002;$2.49)
RCA Type Phone Plug Radio Shack (#274-339) $1.39 Shielded
10 Ft. PVC Insulated Cable Ask Local Electrician $4.61 0.25" O.D., shielded

2AWG 10-12 conductor

Total $7.49

60

ULTRA SOUND

The 5-pin Audio/Video Plug is sometimes called a 5-Pin DIN plug. The
outer jacket can be made of plastic ($1.49) or metal ($2.49). It contains five
small pins mounted through an insulator panel and arranged in a 180-degree
arc. There is a small notch at the top for alignment purposes (Figure 1.)

Figure 1.
5-Pin Audio/Video plug configuration
(outer facing side)

NOtCh ‘\
1 ‘+ +} 3
& +
+
2 \

Ground - Audio
Output

One side of the insulator panel usually has small numbers printed on the
board. These numbers correspond with the numbers in Figure 1. For our pur-
poses, it is important to know that the ATARI 800 uses pin 3 as the audio out-
put and pin 2 as the ground. The RCA-type phono plug has an outer jacket of
metal. The inner workings contain one large pin held in place by insulation.
These units are usually sold in pairs since the typical use is for a two channel
stereo input. The large pin is the audio input and the outer jacket is the
ground.

PVC insulated cable is sometimes called telephone cable. There are hun-
dreds of different types of cables to choose from. We recommend a tinned cop-
per, PVC insulated, conductor cable with 22-24 AWG stranded drain wire.
Wire gauges much larger than 22 (i.e. 18, 16, 14 . . .) are very stiff and difficult
to work with. Stranded wire should be color coded. The cable should be
jacketed in a chrome PVC with an outer dimension (O.D.) of 0.25 inches to
ensure a snug fit with our plugs. If you choose a smaller cable (e.g. speaker wire),
you run the risk of pulling the wires out of the plugs or crimping the cable
when you move the computer. If you have your computer in an area of severe
electrical interference, we suggest that you purchase a cable with aluminum-

61

SOUND & MUSIC

polyester shielding. The minimum length for your cable should be 10 feet to
allow for some flexibility in where you can place your components.

Next, gather the necessary tools for soldering. You will need a pencil-tip
soldering iron with a heating element of 25 to 35 watts. The best solder for this
application is an alloy of 40 percent tin and 60 percent lead with a resin flux
core. This is sometimes referred to as television or electrical repair solder. In
addition, you will need a razor, a needle-nose pliers, a wire cutter, a clampable
heat sink and a clean, well-lighted work area. Remove the outer jacket from
each plug and slide the jackets onto opposite ends of the cable. With a razor,
carefully strip away %" of the PVC cable cover from each of the cable ends. If
your cable contains more than two color-coded wires, snip off the extra ones
to make them flush with the PVC cable cover. Compare the ends of the cable
side-by-side to make certain that the color codes are an exact match. Strip
away %" of the color-coded PVC from each wire (Figure 2). You are now ready
to solder.

Figure 2. Cable Assembly.
Outer jacket of plug
’ [Outer jacket of cable

\ \ \— Exposed wire

Color-coded jacket of wire

Hold the inner workings of the plugs with a pliers and attach the heat
sinks to the appropriate areas. Solder ground to ground and audio to audio. If
the insulators begin to melt, discontinue soldering and attempt to re-
straighten the pins. Once soldered, reassemble the plugs. Firmly insert the
5-pin plug into the ATARI 800 monitor jack and the RCA-type phone plug in-
to the accessory or tape (in) jack on the back of your stereo. Boot something
musical onto your 800, turn down the volume on your TV and switch your
stereo to accessory or tape. If you have a stereo/mono switch, place the switch
in mono position. Otherwise, the sound will only come through one speaker.
Very slowly, turn up the volume. You should hear perfectly clean music. If you

62

"TARI TALKERS

hear a hum, you have a poor connection. Check that your solder has not
bridged across the insulator.

For the adventurous experimenter, you could also build a frequency
separator making this a pseudostereo rather than a monotone cable. Use a
high/low frequency shunt and patch the high frequency to one channel and
the low frequency to the other. I'll leave the design up to your imagination. In
addition, the strength of the audio signal could be monitored and used to con-
trol some other devices. For example, you could place a fan on the top of your
television and an inclinator platform beneath your chair. As you enter hyper-
warp, the fan would blow faster and faster, and you would gently sink back in-
to your seat. The seat would jolt whenever you were hit by enemy fire and it
would pulse during engine damage. An affixed joystick on the arm of your
chair would allow you to bank to the right or left, climb or dive, by shifting
your weight. The ultimate in home aviation simulators!

by Thomas Krischan

"Tari Talkers

Voice Synthesizers for the ATARI 400 & 800

and a vision of deep space, scattered with stars, flashed on the view-

screen. My superior’s deep voice washed through the room, “Wel-

come aboard, Commander. Your mission” When he finished, I typed [G]

for the Galaxy Map. Lt. Longri’s tenor explained that a Zylon full battle patrol

had entered sector A4. That fit my strategy! [punched the controls, and the

ship leaped into hyperspace. Upon reentry, Captain Sumtra’s dusky voice
warned, “Zylon sector, sir.” I punched for shields. “Shields,” she replied.

The screen became a blur of ships, photon torpedoes, explosions. Lt.

C onfidently, I slipped into the Commander’s chair. I pushed [START]

63

SOUND & MUSIC

Longri calmly tracked our kills, while Captain Sumtra repeated every order
smoothly. Suddenly, Damage Control’s clipped, high-pitched voice screamed
through the flight deck, “Shields lost!!” A Zylon fired at us. I punched
hyperspace. The screen disolved in a flash of white. Against a dark screen, the
Federation’s emblem appeared, the commander spoke quietly, “Posthumous
...rank awarded. . . Garbage Scow Captain.”

Now, two machines make it easy to add woices to your Atari programs.
The Type’n Talk (TNT) from Votrax and Echo-GP from Street Electronic syn-
thesize, or create speech, from written English almost as easily as characters are
printed on your screen.

Applications far beyond obvious game enhancements abound. Imagine
pronouncing dictionaries or spelling programs more flexible than Speak-N-
Spell. Either system could be set up easily to speak for a speech-impaired per-
son, or to voice, letter-for-letter, or word-for-word, all data entered by, or sent
to a blind operator. my most successful program, so far, displays a four-color
chart and explains it orally, with no text distracting from the visual. At least
half the fun is watching a new user’s face as the computer says, “Hello Mary!”

Both TNT and Echo are efficient, small, speak an unlimited vocabulary
(anything you can print), take almost no memory, and cost less than $500.
Both speak with a distinct “computer voice” which the uninitiated can
understand, with some concentration, but which quickly becomes “natural.”
It’s a bit like getting used to that uncle with the funny accent.

Both units require an Atari 850 Interface and a cable. The cables are
available from the manufacturers for an extra $30, or can be made as follows.
Order the 9-pin DB connector from Apex (APX-90006 $5.50), and a 25-pin
DB male connector from Radio Shack ($3.50) or any electronics house. Buy a
few feet of any 6-conductor (or more) conductor cable (Beldon #9421 is often
used). Connect these according to the chart (Fig. 1), and you've saved $20.
The TNT requires an 8-ohm speaker ($5-$10) and a mini-phone jack. The
Echo has a built-in speaker but you can add and external speaker for fidelity
and volume. With an external speaker, the Echo puts out considerably more
sound than the TNT.

Getting started is simple. Set the switch to 300 baud, plug the cable into

serial port 1 or 2 of the 850, boot the system, and type the following statement
[The “n”s represent the IOCB (see BASIC manual p. 26); the “x”s are the port
number, 1 or 2]:

OPEN #n,8,0,“Rx”: XIO34,#n,48,0,“Rx": XIO36,#n,12,0,Rx"

64

"TARI TALKERS

After that, merely issue PRINT #n commands to make the units speak
what you wish. A program to input a string from the keyboard and speak it
takes no more than three lines. Both units include clear, usable manuals with
lots of examples.

Although the units are similar, there are clear differences. The most
important criterion to me was intelligibility. No speech synthesis device is
worthwhile if you can’t understand it. A frequent user will get accustomed to
either of these. To check for immediate clarity, I took both units to the
Lawrence Livermore Lab Science Fair and asked visitors to listen to a list of
20 words, spelled as recommended by both companies, spoken alternatively
on one, then the other, unit. Since I have used the Votrax for six months and
find it quite clear, I expected it to win this test. However, nearly all people
listening to the two for the first time found the Echo clearly superior. The

Echo seemed to excel with words beginning with “hard sounds” such
a5 T, B, B.

Intelligibility aside, I examined reactions to the Echo’s many unique
features. Both units sound like computers, not people. But as one girl said, the
Echo sounds like a “he,” the TNT like an “it.” The Echo software-switchable
pitches (at normal speed) were a popular feature. The lower voices were easier
for most people to understand and several suggested creating dialogues
between different personalities, each with a different voice.

The Echo’s “inflection” feature raises the tone of the last syllable before a
question mark and lowers it before a period. Although only about half of the
new listeners could describe this effect, it may have contributed to the Echo’s
superior intelligibility.

Spoken punctuation is another Echo plus. Normally, it speaks the
punctuation commonly spoken ($, # =). But, at the drop of a software
instruction, most punctuation (comma, period, semi-colon, parenthesis, etc.)
or all (including spaces, returns, etc.) are spoken. This could be a real boon to
the sight-impaired. Both units will spell capitalized acronyms. The Echo,
however, has a letter mode which will spell out all words—very useful for a
spelling program or a blind operator faced with an unintelligible word.

Both systems allow the user to create phoneme strings. This results in
phrases with exceptional clarity. Frankly, since I get acceptable results with
English, phoneme coding words seem like too much work. For instance,

“catalogue” is coded “KA3DIL*1G”! If you decide to phoneme code, a TNT

65

SOUND & MUSIC

software option will send you a phoneme string as it translates from the
English. You then polish it up for final phoneme codes.

The TNT’s enclosure has some problems. The on/off switch is on the
back panel, and worse, the unit has no “on” light. Many'’s the time the kids
have left the TNT on all night! Echo has a light, and the switch is right up
front.

So there’s the balance. Both do a good job.

Intelligibility, features and price make the Echo distinctly superior.

by Ken Harms

ECHO-GP (Serial) TYPE 'N TALK
Street Electronics Corp. Votrax
1140 Mark Ave. 500 Stephenson Highway
Carpinteria, CA 93013 Troy, MI 48084
(805) 684-4593 800-521-1350
List Price—$199.95 List Price—$249 +speaker
Figure 1
WIRING CHART
Atari 25 Pin DB Male
9 pin DB
Male TNT ECHO

1 —— i

2 20/8 20/8

3 3 3

4 2 2

5 7 F

6 20/8 20/8

7 4 5

8 5 4

9 _ —

Editor’s Note:

Since this article was written, Votrax has released another voice synthesizer,
the Personal Speech System. The new product lists for $395 and offers several
improvements over Votrax’s early Type 'n Talk. Personal Speech System has

66

"TARI TALKERS

a 16K algorithm (versus 4K algorithm in TNT) which leads to 95 percent ac-
curacy in pronunciation. It can produce music and sound effects and it has a
real-time clock. In addition, the speech rate amplitude and inflection are
user-programmable. And this time, the speaker is inside the unit.

67

Communications

Modems

id you ever think about what a computer really is? Take the ATARI
for example. With 48K bytes of memory it can store about the same
amount of text as a 15-page document. A diskette can store about 40
more pages. You can think of your display screen as a “window” through
which you can see this information, about one-quarter page at a time.
What's the point? Well, the time is here when, for the price of a cheap suit,
you can give your computer access to millions of pages of memory, instead of
just 40 or so.
We are talking about the modem. Let’s de-mystify the modem, explore
what it is, what it does, and then look at a few modems available for the

ATARL

Terminology

Here are some terms you will find in the world of modem:s:
® MODEM — The word derives from “modulate-demodulate.” A modem is
a hardware device that translates an incoming sound signal (frequency) into a
binary code that your computer will understand (computers do not under-
stand sounds). The modem also works the other way around. It will translate
an outgoing, computer-generated binary code into frequencies that can be
transmitted over circuits used by the telephone company.
® BAUD — This term describes the rate at which data is transmitted. The
telephone company has established 300 baud as a standard rate of data trans-
mission for phone lines.

This equals 30 characters per second or approximately 350 words per
minute. This is about as fast as most people can read. There is also a 1200 baud

Jon Loweless is a resident of the San Francisco Bay Area, and a Vice President of Marketing for
Synapse Software. An ATARI hobbyist from the outset, he has a special interest in hardware and
peripherals, especially printers and modems. He was one of the early editors of ANTIC, and a co-founder
of ABACUS, but the demands of Synapse’s growth have limited his recent contributions to ANTIC.

69

COMMUNICATION

standard rate available on the phone system at a premium price. Watch for
this price to fall over the next few years.

® ACOUSTIC-COUPLED — This describes the type of modem that trans-
mits and receives directly through the standard telephone receiver. This kind
of modem has two foam “cups” into which the earpiece and the mouthpiece of
the receiver are placed. The cups channel the sound, audible as a high-pitched
whine, to and from the phone system, and muffle extraneous noise.

® DIRECT-CONNECT — This is the newer breed of modem. It can connect
directly to your telephone wall jack or plug into your telephone with a “Y”
adapter. Outside sound interference and clumsy manipulation of the receiver
are eliminated.

® ANSWER-ORIGINATE — These terms describe which modem is calling
and which modem is answering. There must be a modem on each end, but
they do not have to be the same brand. Either modem can do either job, but
not at the same time.

Modems

By now, you may be interested in buying a modem, and wondering what
features are important. Here are some things you should be aware of.
Acoustically-coupled modems, the “ear-muff” type, were the first on the
market and are still the cheapest. They have definite drawbacks. Stray
sounds in the vicinity of the modem can and do leak past the muffs and can
affect data transmission. Also, using the acoustical modem is awkward, since
the correct end of the phone receiver must be inserted in the correct end of
the modem. This sounds minor, but the error is easily and frequently made.
Still, acoustic modems do work, are inexpensive and may meet your needs.
Prices for direct-connect modems seem to be dropping, and the higher
degree of reliabiltiy for them makes it difficult to recommend anything else.
If you think you would be even a semi-serious “on-liner,” you should think
in terms of a direct-connect, plug-in modem. Your data will be cleaner,
and the benefits of uploading and downloading data over networks, with
the new information utilities, or with other individuals, will repay the extra
investment.
Some modems have status indicators. When the modem is in use it is often
important to know what the status of your connection is. Is the modem
“ready?” With a direct-connect modem, is the simulated “receiver” on the

70

MODEMS

hook or off the hook? Has there been an accidental disconnect? Is the other
end answering? The more information provided by the modem’s status indi-
cators, the better.

Some modems have autodial /autoanswer. You can dial a phone number
from your ATARI keyboard! Admittedly, this is a luxury, but if you use a
modem a lot, it is a nice feature to have. Autodial allows you to store
telephone numbers in your software program, and have the modem do your
dialing for you. This eliminates the need for a telephone near the computer,
provided you have a phone cable long enough to reach your telephone jack.

Autoanswer is only needed for such serious data communications as
operating a bulletin board service, or otherwise responding to the incoming
call of another computer. Think of the possibilities, though! You can call your
own computer from any remote terminal, or even from a phone booth with
one of the miniature modem-terminals recently announced.

Other features to look for include:
® compatibility with the Bell 103 Standard;

e full-duplex and half-duplex (in case you only want to send or receive);
® 300 baud rate, 1200 baud optional;

RS-232 plug compatibility for Atari 850 interface connection;

® proper connecting cables!

Cables

A word about cables is in order. Modems must be connected to your other
equipment, and to the telephone line. You would think that an expensive
item like a modem would come with the appropriate cables. Not always so,
and the price difference between a more expensive unit with cables and a less
expensive one without may be misleading (some cables cost $50!). Also, some
modems are designed to hook up more simply, eliminating some cable
requirements. Before you buy, determine your complete system requirement,
and compare the price for all pieces. You will want to include software costs, too.

All modems, once the proper connections have been made, will perform
their primary function of data communications, so the bottom line in any
decision should be: quality, price, and extra features. You will probably find
your use of a modem will be greater than you now expect, so be open to the
more capable units.

Any modem can work with the ATAR], if properly connected, but some

71

COMMUNICATION

have been built specifically with the ATARI in mind. We will discuss the prin-
cipal ones here.

Atari 830 Modem ($199.95)

The Atari Modem, sold by Atari, is a “Novation ‘CAT’” modem in Atari
dress. It is a standard acoustically-coupled modem with only very basic
features. It is fine for a beginning user, or someone with limited needs. Since it
is marketed as an Atari product, it comes with all required cables. It also
needs the Atari 850 Interface, which some modems do not, so if you don’t
have the Interface you should seriously consider the Microconnection
modem (see below), or others that bypass the Interface.

The Atari 830 is a plug-in-and-go product with good documentation.
You will need software with this, as with all modems, and might well consider
Atari’s TeleLink cartridge ($30) for a nice, modular system. Caution! Tele-
Link is a very limited program, and will not allow copying to disk. It will drive
the Atari printer, but printing “on-line” is expensive. The major drawbacks
with the Atari 830 are that it is acoustic, and has limited features.

An alternative buy would be the “Novation ‘CAT’” if you can
find cables. Two other “Novation” modems are compatible with the ATARIL
One is the D-CAT, a basic direct-connect model, and the AUTO-CAT,
that has the autodial feature mentioned earlier. Although not described in
depth here, they are both good products that should be considered as in the
running.

Microconnection-A ($199 to $328)

This direct-connect modem is made by the Microperipheral Corp. and comes
in four versions all designed for the ATARI. This selection is very attractive to
the prospective buyer.

For example, there is a bus-decoding version ($249) that allows connec-
tion without using the Atari 850 Interface. This modem can be used with as
small a system as the Atari 400 and the 410 Program recorder. This model has
a DB-25 socket that allows connection of the Atari printer, again without
Interface. This makes the Microconnection a good candidate for a small basic
system. For $30 more this model comes with autodial.

There is a plain version ($199) that does require the Interface, and for an
additional $40 you can get the autodial and autoanswer features.

72

MODEMS

Caution! Microconnection’s autodial uses pulse dialing (not touch tone)
which cannot be used with the MCI or SPRINT long distance phone services,
but you can manually dial SPRINT or MCI with this modem. If you are a
heavy user of these long distance services this could be an important limitation.

Microperipheral has done a commendable job of supporting the ATARI,
and their own software enhances the capability of their modem dramatically.
The top of the line software, called TSMART ($79.95) incorporates autodial
as well as message preparation and storage features that reduce expensive “on-
line” connection time. You will appreciate this after you see your first phone
bill after buying a modem.

The Microconnection is relatively simple to connect and use. It comes
with extensive, if dense, documentation which includes a listing of free
bulletin board services, by area code (a nice touch!). Microperipheral Corp.
maintains a user service accessible through CompuServe, over which you can
get updates of their software. Now that’s service!

Smartmodem ($279)

This is a direct-connect modem by Hayes Microcomputer, Inc. Although it
does not come as a model specifically for the ATARI, you can purchase a
cable to connect it to the Atari 850 Interface (required). The fact that this
modem does not come with a cable is a serious drawback in a product that
costs so much. This is not a criticism of Hayes alone, as you will discover
when you buy your first non-Atari printer, or other peripheral device.

Assuming you buy the “Hayes Stack,” as it is also known, and are able to
get or make a cable, you will have the most flexible modem in the price range.
This is truly a “smart” modem. The heart of the device is a 280 micro-
processor with a 2K byte control program built in. The only switch is an
ON/OFF toggle! Everything else is program controlled, or preset by you,
utilizing the configuration panel under the front cover.

Here are some of the features of the Smartmodem:
® either touch-tone or pulse dialing at any time;
® audio monitor allows you to hear what your phone line is doing (a real help
when the receiving party is busy);
® storage of the last number dialed;
® automatic redial (helpful for disconnects, busy signals, etc.);
® seven LED status indicators on the front panel (impresses visitors);

73

COMMUNICATION

® complex dialing sequencing (e.g., dial number, wait for tone, send ID, dial
another number, as required for MCI and SPRINT);

® programmable in any computer language and compatible with most data
communication software.

The list goes on, but the point is made. The Hayes Smartmodem is very
versatile, but suffers due to a lack of direct applicability to the ATARI. With
the appropriate cable (I made my own) and almost any good terminal soft-
ware, this modem is the most flexible.

There are other usable modems around, though not specifically for
the ATARI. They will work fine with the proper cable, and some of the
good software.

If you are not in the market for a modem now, [guarantee that you will be
some day. It might be a good idea to wait, if you have no immediate urge to
link up with the rest of the tribe. Prices keep coming down, and good gear
gains reputation as satisfied users swap notes.

Keep your eyes open for new, low cost entrants to this field. For example,
I noticed (but have not used) the Signalman MK-1 from Anchor Automation
at an unbelievable price of $99, including RS-232 connector cable. This
direct-connect modem could be the forerunner of a price revolution.

Meanwhile, the modems we have discussed are definitely state-of-the-art
products and can be expected to provide good service for a long while.

by Jon Loweless

ATARI BULLETIN BOARDS

State Name Phone Number Type
CA LAACE 213-988-8373 AMIS
CA GFX 408-253-5216 AMIS
CA IBBS 408-298-6930 AMIS
CA ABACUS 415-587-8062 AMIS
CA ACCESS 916-363-3304 AMIS
DC WASHINGTON 202-276-8342 ARMU
GA RODR. 404-252-9438 ATAB
IL WIZ-BANG 312-925-2929 AMIS
MA MACRO EXCH. 617-667-7388 AMIS
MI M.A.CE. W. 313-274-3940 AMIS
MI M.A.C.E. 313-544-0885 AMIS
MI AR.C.AD.E. 313-978-8087 AMIS
MI C.H.A.OS. 517-373-6788 ?

MI G.R.ASS. 616-241-1971 AMIS
MO A.UR.A. 314-928-0598 AMIS

COMMUNICATIONS SOFTWARE

NY SPIDER WEB 212-241-8965 AMIS
OH FLAG CITY 419-423-0206 AMIS
OR A.CE. 503-343-4352 ARMU
TX ARMADILLO 512-837-2003 AMIS
X ACUGD 817-498-1751 ARMU

These Bulletin Board numbers were verified as correct and available as of October, 1983

Communications Software

fter you purchase a modem and install it, you will soon be aware that

there is one more important purchase you need to make—software.

Without a good flexible program your modem will be useless. In this
article we will introduce you to six different programs designed to be used with
modems. These programs vary in ease of use and capability. We will show you
the trade-offs and introduce some new vocabulary which will make our discus-
sion more understandable.

Download—this refers to the physical reception of data. It can be in the
form of a complete program that you are receiving from another computer or
simply data that you are saving from CompuServe, or The SOURCE. The
key word is “save.” So, download means to receive and save data or programs.

Upload—this is just the opposite of download. Upload refers to the act of
sending a specific program or text to another computer via the trusty old
modem.

Host Computer—this is the computer that your ATARI will talk to,
assuming that you make the call. If you use the “auto-answer” capability of
your modem, your computer becomes the host.

Translation—refers to the degree of character code incompatibility the
specific software will compensate for. This inconsistency is often a problem
with those characters where no real standard has been acknowledged, like
special control characters. Translation also refers to a program’s ability to con-
vert from one character encoding scheme to another. ASCII to EBCDIC for
example.

Terminal emulator—refers to a program’s capacity to make your
ATARI respond as if it were some other type of terminal. VT 100 or ADM-3A

75

COMMUNICATION

come to mind as widely used terminals. This is usually accomplished by
redefining key and control code functions.

Buffer—is often used to refer to a reserved portion of computer memory.
This reserved area is used by terminal software to store programs which have
been downloaded. These programs can be saved to disk later off-line. Pro-
grams which force you to save to disk on-line cost more for connect time
because the disk is slower.

There are many other terms you will come across, but these few will give
you a start. Now, let’s see what you need in the way of software. It depends
largely on your application. If you only want to “look” at the data available
from some other computer system, your needs are simple. If you want to save
the data, your needs are more complicated, and if you want to send and
receive programs, communicate with a computer at your office, or perform
other such sophisticated operations, you need a fancier program vyet.

You will find a need for several different types of programs as you proceed,
so let’s sort out a few programs to see what they do, and then refer to the table
on page 78 for a quick reference comparison.

TeleLink

This program is available on cartridge from Atari. It is an excellent begin-
ning for the new modem user and it comes with a free subscription to Com-
puServe. This alone makes it worth the money. TeleLink’s beauty is its
simplicity. Plug it into the left slot of your ATARI and “log-on” as they say. The
major drawbacks are its inability to save incoming data to disk or cassette or to
upload and download programs. TeleLink can save data to your printer, but
this can be costly in terms of connection costs. This is not a bad way to intro-
duce yourself to telecomputing, but you’ll end up wanting more features.

DataLink

Swifty Software’s program is probably the best all-around choice you can
make as either a new or intermediate user of the modem. It is simple and
friendly, yet very powerful. It will fulfill most of your needs including
uploading/downloading, text capture, save to disk or printer, and screen
review of data in memory. It allows you to prepare text before you make the
phone connection, and save text after you hang up, both important features

76

COMMUNICATIONS SOFTWARE

when concerned about your phone costs. Above all else, DataLink is very
easy to use. Documentation is pretty scant (six pages), which can be a handi-
cap to the uninitiated, but is also a reflection of how easy this program is to use.

Download

This software by Computer Age is a great program, but has received little
promotion or publicity for some reason. It is written in BASIC and machine
language (where needed for speed) and offers a benefit in that it can be
modified by the user. I particularly like this feature with the Hayes Smart-
modem since it allows you to add a phone number menu and make full use of
the power of auto-dial. In addition, it has two menus, one for parameters and
another for memory management. The [OPTION] button accesses the main
menu and that allows you to go to memory management as one of the options.
It is not as easy to use as Datalink, but is more flexible.

Binary Computer Software presents this recent addition to the
communications market. It is possibly the most complex modem program
available for the ATARI. As with any powerful program, this one requires
study and practice to use effectively. The documentation is well done and is
readily understood by the first time user. There are many system configura-
tions possible using T.H.E. With all the bulletin boards being made available,
each with different requirements, this flexibility is T.H.E.’s most important
feature. This is the only package that will translate ASCII to EBCDIC. This

feature would only be needed when communicating with an IBM system.

Chameleon

From APX (Atari Program Exchange) comes a powerful machine-
language program that lets you tailor your ATARI to a wide variety of
configurations that will satisfy almost any host computer requirement. The
documentation is good, but the program must be used extensively in order to
feel comfortable with the many commands and options. One of the unique
features is the 80-column screen emulator. Using the ATARI scrolling
capability you can make it think it is an 80-column computer rather than 40.]
have found little practical use for this feature yet, but it sure looks nice. I

77

COMMUNICATION

NAME TELNK DATLK DWNLD CHAMN TSMRT T.H.E.
MANUFACTURER (1) 2) (3) “) (5) (6)
MEDIA (c =cass/d =disk) cartg d c/d c/d c/d c/d
LEVEL OF FLEXIBILITY low mod mod high high high
DOCUMENTATION good fair fair excl excl good
MEMORY REQUIREMENT cartg 24K 24K 24K 24K 24K
FEATURES
TRANSMISSION
.upload programs no yes yes yes yes yes
.download programs no yes yes yes yes yes
.download text yes yes yes yes yes yes
-full duplex yes yes yes yes yes yes
.half duplex yes yes yes yes yes yes
.terminal type 1 1)] 4 (7 ()
.BAUD rates 300 300 300 (8) (9) (10)
.translation choice yes yes yes yes yes yes
SEND DATA
.off-line prepare no yes yes yes yes yes
.store ID codes no no no yes yes yes
.preload programs no yes yes yes yes yes
RECEIVE DATA
.on-line save yes yes yes yes yes yes
. .to printer yes yes yes yes yes yes
..to disk no yes yes yes yes yes
. .to cassette no no yes yes yes yes
.off-line save no yes yes no yes yes
. .to printer no yes yes no yes yes
..to disk no yes yes no yes yes
. .to cassette no no yes no yes yes
-parity options no no yes yes yes yes
.memory toggle no no yes no yes yes
.memory management no yes yes yes yes yes
MISCELLANEOUS
.user modified no no yes (11) yes no
.phone # storage no no no no yes no
format screen mrgns no no 40/80 mrgns mrgns
.redefine keys no no Imtd yes yes yes
(1) TELELINK (4) CHAMELEON
ATARI, Inc. APX (Atari Program Exchange)
1272 Borregas Ave. P.O. Box 427
Sunnyvale, CA 94086 155 Moffett Park Drive
$29.95 Sunnyvale, CA 94086
$17.95
(2) DATALINK
Swifty Software
64 Broadhollow Road (5) T-SMART

Melville, NY 11747
$39.95

(3) DOWNLOADER
Computer Age
Silver Spring, MD
$24.95

Microperipheral Inc.

2643A-151st Pl. N.E.
Redmond, WA 98052
$79.95

78

COMMUNICATIONS SOFTWARE

(6) T.H.E. (9) Choice of 300 or 600 BAUD.
BiNARY Computers
3237 Woodward Ave. (10) Zero to 9600 BAUD.
Berkley, MI 48072
$49.95 (11) Source code is provided for the adventurous
assembly language programmer, but is
(7) Terminal type may be defined largely sparsely commented.
through flexible parameter definition, if not
by name.

(8) Widest choice from 48 to 9600 BAUD.

wouldn’t recommend this program to beginning users of modem software
unless they are ready to roll up their sleeves and work with it. For the more
sophisticated user this is a powerful tool. One caveat with this program is that
it transfers files more slowly because it writes to disk rather than saving to a
memory buffer.

T-Smart

Microperipheral Corporation offers a powerful and flexible program
written expressly for their Microconnection modem. Its power rests partly in
the fact that it was written with a particular modem in mind, and partly in the
fact that it is reasonably simple to use for all the flexibility it has. It is
completely menu driven, but a nice feature is the option to override the menu
as you become familiar with the commands. It incorporates real autodial so
that you can include your own list of phone numbers right in the program.
Much of the program is written in BASIC allowing you to tailor it to your own
needs. Finally, as with the Microconnection itself, it is well supported through
a simple contact on CompuServe. [understand this even includes updates as
they become available.

Take Your Pick

So you now have a bird’s eye view of six pieces of software for your new
modem. If you are like most users, you will find your needs satisfied by a
simple program, occasionally needing more power or flexibility. For example,
[still use TeleLink because of its simplicity. I check the electronic mail service

(EMAIL) of CompuServe with TeleLink and nothing could be easier. I use

Datalink often because it is simple yet quite powerful. T.H.E. is a newcomer

79

COMMUNICATION

and yet [already am finding some of its features and power attractive. Finally,
if l owned a Microconnection, I would certainly use T-SMART because of the
powerful design interaction between software and hardware, a well-planned
pair.

For a first purchase I would be hard pressed not to recommend the
Datalink program because of its nice blend of power and simplicity. It will
satisfy the majority of your needs, and will allow access to most common
services such as CompuServe, The SOURCE, and nearly all of the bulletin
boards available. The greater parameter flexibility of some of the other
programs is necessary for sophisticated communications between your
ATARI and non-ATARI equipment, especially if you plan to do a fair amount
of program exchange.

Our goal has been to shed light on the sometimes confusing topic of data
communications. We would suggest that whatever hardware and software
you decide to purchase, it be checked for compatibility. A good package will
make your introduction to telecommunications easy and enjoyable. It really
is a thrill when you successfully transfer your first program to a friend across
town.

by Jon Loweless

Dialing For Data

lectronic information utilities are making a big splash on the American

scene as more and more people buy computers. Most computers,

including the ATARIs, can “communicate” with each other using

these utilities. Communication between computers has brought about an en-
tirely new kind of business.

What’s an information utility? Essentially, it is an electronic network that

This information updated as of August, 1983.

Robert DeWitt is managing editor of ANTIC Magazine

80

DIALING FOR DATA

sells computerized information and services to connected customers, just like
the water utility sells water. At present this is done over telephone circuits,
and soon it will also be done by TV cable.

Two such utilities are prominent now; CompuServe and The SOURCE.
The American Telephone Company (Ma Bell) is expected to enter this field
soon, and will certainly be a strong contender. There are other services
around that connect computers but they are usually smaller, more specific,
and more expensive. DIALOG, a scientific data-base, is an example.

General

CompuServe dates back to 1969 as a data-base service company for other big
companies and government. It is owned by H&R Block, and is located in Col-
umbus, Ohio. It uses DEC-10 mainframe computers and has about 63,000
subscribers. CompuServe publishes a monthly newsletter “Update,” and a
monthly magazine “Today.” These are free to subscribers.

The SOURCE began in 1979 specifically as a consumer-oriented informa-
tion utility, although it does serve businesses too. It was bought by Reader’s
Digest in 1980, and is located in McLean, Virgina. It uses six PRIME-750
mainframe computers and has 38,000 subscribers. The SOURCE publishes a
bimonthly magazine “Sourceworld” that is free to subscribers.

Both utilities transmit at 300 baud or 1200 baud, and charge more for the
higher rate. Since 300 baud is about 300 words per minute, it a comfortable
rate for a human operator. This article refers to 300 baud service only.

Time Awailability

Both utilities are available full time, but at higher cost during business hours
(see below). The SOURCE officially closes daily from 4 A.M. to 6 A.M. EST
for system work. This is 1 A.M. to 3 A.M. PST (western nightowls take note).

CompuServe claims to be up “99.4%” of the time. Both begin their even-
ing rates at 6 P.M. (local time,), but The SOURCE initiates a still lower rate at
midnight.

Access

To get connected with either of these utilities, the user calls a telephone
number, gives an [.D. number and password, and is “logged on.” Herein lies a

81

COMMUNICATION

significant difference. The user calls the telephone number at his own ex-
pense. If the closest access number is long distance, the user pays the charge.
The SOURCEE is clearly superior here, providing a local (no charge) number
in about 350 major areas, including Alaska, Hawaii, Puerto Rico, and
Canada.

CompuServe provides free local numbers in 200 cities, and a TYMNET
or TeleNet number in about 200 more cities, for which the user pays an addi-
tional $2.00 per hour. City size is no guarantee of having a local CompuServe
number.

Cost

The SOURCE has a $100 registration fee that dissuades many people. Com-
puServe charges $20 for a “dumb” hookup, $30 for a “smart” one that includes
software, or $40 for a smart one including five on-line hours. Most ATARI
owners will want the dumb package and get their software elsewhere.

All time charges are figured to the nearest minute, local time. Regular
time on The SOURCE is from 6 P.M. to 7 A.M. and all day on weekends and
holidays. This is billed at $7.75 per hour. CompuServe charges $5.00 per hour
from 6 P.M. to 5 A.M. weekdays and all day on weekends and holidays.

Rates during business hours for The SOURCE are $18 per hour, and for
CompuServe $22.50 per hour. Anyone interested in CompuServe should add
any long distance or TYMNET charges that could affect comparison.

The SOURCE has a few services that cost more, for the time they are
used; commodity prices and stock analysis, Compu-U-Store ordering, and
journal abstracts. These are designated as SOURCE*PLUS and cost $15 per
hour in regular time, or $10 per hour after midnight. CompuServe has a few
surcharges in the stock market service, and charges a flat fee for Comp-U-
Store. CompuServe also adds $2.00 to your monthly bill if you do not use
MasterCharge or VISA for payments.

News

Both utilities have news services. CompuServe is more extensive, offering
Associated Press, Canadian Press, and two complete American newspapers

(the Washington Post, and The St. Louis Post-Dispatch). The SOURCE offers

82

DIALING FOR DATA

United Press International and selected N.Y. Times stories and features. In-
dexing by key word and key-word search of news is available with The
SOURCEE, but not with CompuServe.

Another difference is that CompuServe purges its news daily and has no
historical news files. The SOURCE purges weekly (Friday A.M.
maintenance) so it has a whole week’s news available on Thursday night. This
could be an important difference for researchers or people with special news
interests.

Shopping

Both utilities offer shopping by Comp-U-Store. This allows on-line review of
about 30,000 items, plus electronic ordering for delivery to the home. The
SOURCE offers “ordering” mode at SOURCE*PLUS rates, and Com-
puServe charges an extra membership fee of $18 per year to order. “Browsing”
can be done on either utility at regular rates. Comp-U-Store itself is offered
directly at $25 a year plus 25 cents per minute, so getting it as a part of a
broader utility service does represent a value.

The SOURCE offers a BARTER program for worldwide exchange of
goods and services, and both utilities have bulletin boards in which users may
advertise. CompuServe includes classified advertising from the newspapers it
carries, but this is an expensive way to read classified ads.

On-Line Conwversation

The most popular feature of either of these utilities is the on-line communica-
tion between and among users. CompuServe’s version is called “CB
Simulator,” and it’s a conversational free-for-all, with participants identified
by fictitious “handles.” The samples I've seen were bawdy and inane. If one
perseveres, it is possible to find a party with mutual interests, and arrange a
private talk. Groups can even conference on-line, and the exchange can be en-
crypted if all users have an encryption password.

The SOURCE offers CHAT, limited to two users who must be on-line
and agree to the exchange, which is private. If you don’t know anyone to chat
with, you can query any user whose [.D. number shows up on the “online
directory.”

83

COMMUNICATION

EMail

EMail is sure to become a new English word. It means electronic mail, and we
will all be using it soon. Even now, users of these utilities enjoy the advantage
of instantaneous message exchange, which can be printed or copied with the
right equipment and software.

With either utility, messages can be EMailed to any other user of that ser-
vice. The user’s I.D. is his address, and the message will wait for him until it is
picked up.

The SOURCE allows for an unlimited number of letters to collect until
read. With CompuServe, your mailbox is “full” with 10 letters, and no more
can be received until the mailbox is relieved of at least one letter.

The SOURCE has an extra EMail feature called Voicegram. It allows the
member to call into the tollfree Customer Service number and dictate an
EMail letter to any user for a $1.25 extra fee.

CompuServe allows its members to use its text editor program, FILGE, on
EMail.

Customer Service

Both utilities maintain tollfree Customer Service numbers available 24 hours
a day, and both were helpful and courteous when called. Both answer
automatically, and put you on hold “airline fashion” if necessary. Waiting time
was three minutes, at most.

The numbers are: The SOURCE (800) 336-3366; CompuServe (800)
848-8199.

Stock Market Information

Both utilities provide stock market quotations, news, and analyses.

CompuServe calls its service MicroQuote, and charges five cents per
quote. There is a $1 minimum fee each time that data-base is used.

The SOURCE calls its stock quotation service UNISTOX, and offers it at
no extra charge. Both services cover about 30,000 issues on the major ex-
changes. The SOURCE also covers trading in about 20 commodities. These
quotations are charged at SOURCE*PLUS rates.

84

DIALING FOR DATA

Bulletin Boards

Users can post their own notices on the bulletin boards of their respective
utilities.

The SOURCE calls theirs POST. It is categorized by subject or interest.
For example, there is an ATARI section in POST where I found about twelve
notices.

The CompuServe board is called BULLET. There are three separate sec-
tions: Sale, Wanted, and Notices. Each section has a few hundred postings at a
time. Each is key-worded and numbered. To find ATARI notices you must
scan all three lists.

Programming Aids

Each of these utilities provides services for computer programmers. You can,
in fact, program on-line and store data files with the utility.

CompuServe supports BASIC, Fortran, AOL, Pascal, BLISS 10,
MACRO, SNOBOL and AID. They call this part of the the service the “pro-
grammers’ area,’and it is available at the regular rates. Each user of this area
gets 128K bytes of free memory, if it is accessed at least monthly.

The SOURCE supports BASIC, COBOL, Fortran, RPG II, and
assembly. It sells storage in blocks of 2,048 bytes. One to ten blocks cost fifty
cents per month per block.

Both utilities allow word processing and text editing on-line. Com-
puServe calls their editor “FILGE.” If you have only a terminal, these services
make sense. If you have a computer, it is more economical to do these things
off-line.

Games

Believe it or not, game playing on-line is a very popular part of these services,
perhaps reflecting the high percentage of juvenile users. Each utility has its
own main adventure game, and other games.

CompuServe is probably more game oriented than The SOURCE. It has
“Adventure (in Colossal Cave)” and two other adventure-type games, in-
cluding “Scott Adams Adventure.” It has DecWars, and SpaceWars and

85

COMMUNICATION

MegaWars which are interactive with other users, and it sponsors periodic
game contests among its subscribers.

The SOURCE'’s primary adventure game is Blackdragon, though it also
has a selection. The SOURCE has more games than CompuServe, but
generally they seem more trivial.

Special Interests

Each of these utilities has a vast number of special interest topics, and the
variety increases all the time. It will be important to focus on your own two or
three high priorities and compare specifically how these are handled by each
service. CompuServe publishes a one-sheet Subject Index that you can review
at any Radio Shack, and has an insert called Highlights in its magazine. The
SOURCE has a pamphlet “SOURCE DIGEST” available at all Com-
puterland stores.

Briefly, here are some special interest topics they provide about equally:
e film reviews
airline schedules
travel services
electronic checkbook
personal advisor
legislation status
sports information

Here are some specialties of The SOURCE:

customized research (Information on Demand) extra fee

Mobil Restaurant Guide

some accredited college courses

user publishing (royalty to user for material accessed by others)
employment service (wanted and offered)

personal appointment calendar

Here are some of the specialties of CompuServe:

SOFTEX programs for sale and on-line delivery (downloading)
Printer Art Gallery (downloading) extra fee

® Future File, by Nathan Muller

® Better Homes & Gardens food, decor

® World Book Encyclopedia

86

PRONTO, BANK ON YOUR ATARI

® limited home banking

® feedback to CompuServe (no charge)
® various contests

® general aviation information

Atari Support

CompuServe is going after the Atari market, and vice versa. Atari advertises
on the back cover of each issue of CompuServe’s magazine. There is also an
official Atari department in CompuServe where users can “Talk to Atari.”
The SOURCE, on the other hand, has no official Atari involvement at
this time. But it does have an Atari section on the bulletin board.
There is no clear best choice for everyone but there could easily be a
“wrong” choice for anyone. We hope this analysis will help you get with the

one you need.
by Robert DeWitt

PRONTO

Bank On Your Atari

ever leaving home. A pilot electronic banking program called PRONTO

was started last year by The Chemical Bank of New York for some of

its customers who owned ATARIs, and is now being licensed to many more

banks across the country. Crocker National Bank in San Francisco, Worthen

Bank in Little Rock, and Florida National Bank in Jacksonville are just a few

of the other financial institutions that have opted to use PRONTO for a test
run in 1983.

The model program began in New York and served 200 customers of

Chemical Bank who were willing to participate in this experiment. PRONTO

is the latest among other electronic services offered by the bank that have

Soon you may be able to use the ATARI to do your banking without

87

COMMUNICATION

included a corporate cash-management system and computer-automated
tellers.

To begin using PRONTO, a customer needs to have an ATARI computer,
a standard telephone line and a modem. Each home computer system serves
as a “terminal” for the main program that runs on Tandem Computers at
Chemical Bank headquarters. The user connects with the main system by
dialing a local network number via phone and modem to begin transactions
on a home video screen.

When the first test run began last November, PRONTO customers had to
use an acousticcoupled modem to transmit and receive data. This type of
modem has two foam “cups” into which the earpiece and mouthpiece of a
standard telephone are placed. Customers used the ATARI 830 (acoustic-
coupled) Modem along with the ATARI 850 Interface device and a special
cartridge to activate the program. The long-awaited 835 (direct-connect)
Modem for the ATARI was not available at the time, but should be soon.

Direct-connect modems are more advanced and much easier to use, and
will eventually replace all acousticcoupled types. The ATARI 830 Modem
connects directly with a telephone wall-jack or plugs into the telephone with
a “Y” adapter. Most software communications systems that use a modem also
require extra software such as TeleLink. The PRONTO system includes a
communications-software cartridge, similar to TeleLink, that is supplied to
the user at no extra cost.

The PRONTO software is a complete financial management system that
allows you to get instant information about your bank account. It also pro-
vides screens with forms for household budgets. You may register checks, pay
bills, send electronic mail to other PRONTO users and keep accurate tax
records that include principal and interest categories. The budget screens
allow you to list up to 50 items and five different personal budgets per house-
hold. Each family member can have a secret access code to insure privacy.
You may monitor all your account activities and get an “electronic state-
ment” along with your usual monthly printed statement.

Most people who were asked to participate in this project responded
enthusiastically. In San Francisco, Crocker Bank announced to its employees
and the general public that it was looking for participants to begin the
PRONTO pilot in early 1983. The fifty openings for test users at Crocker
were filled immediately. A total of 200 customers and employees are expected
to be using the PRONTO pilot in San Francisco by July. Many users of the

88

DIALING FOR DATA

Crocker system will have the option of using other hardware, such as the
IBM PC or the Apple II.

The banks have not yet determined how much to charge for PRONTO,
but when Chemical Bank queried its pilot customers, most agreed that they
would be willing to pay about $10 a month for this service. If you feel that
you may be interested in this type of service, ask your own bank. Who
knows? It may be offering electronic banking like PRONTO in the very near
future. by Deborah Burns

89

Games
In The Public Domain

Chicken— A Great Game

hy did the chicken cross the road? To provide a premise for a com-

puter game. Actually, our chicken is trying to score points by get-

ting safely across this busy highway. Each time he succeeds adds
to his score, but the cars go faster and faster. If he gets hit, the SPCA sends an
ambulance and the cops slow the traffic down for a while.

This clever game can be yours for the copying, courtesy of Stan Ockers,
who wrote it in BASIC and assembly language, and Mike Dunn, editor of
A.C.E. Newsletter (Eugene, Oregon), who printed it first and gave us permis-
sion to pass it on to you.

System Requirements 16K RAM, joystick by Stan Ockers
Stan Ockers, from Lockport, Illinois, has brightened the world of ATARI enthusiasts with his selfless
support of user groups and contributions to “‘the public domain,” that large and growing body of programs
appearing in newsletters and in ANTIC for which no commercial software rights are claimed. Chicken,
ANTIC's first public domain game, is representative of the high quality of Stan’s programming.

Chicken will not work with the 1200XL computer.

(4 REM +**++ CHICKEN *»*=*x*«

5 REM BY STAN OCKERS REVISED BY GUY HU
RT

9 C1-4:02-0:C3-0:SCOREONE=500:RN3=36:R
N4=21:W=7:U=11:BSW=0:GOSUB 15@@¢

18 OPEN #1,4,8,"K:":DIM L$(28),88(248),
C$(20),28(5):28(1)="/":28(2)="@":28(3)
=0 Z$(4)="8" :28(5)=" "

11 OPEN #2,4,8,"D:HI2.DAT” :INPUT #2,HI

GH:CLOSE #2 ;

[RS MDEAR OWMER:IF YOU OWN A DISK
BN NS MCREATE A FILE CALLED HI2.DAT
(O I BMAND STORE A ZERO IN IT

RN EE MELSE MAKE STMTS 11.725&742
(NN HS BMREM s UNTIL YOU OWN A DISK
19 POSITION @,16:? #6;"INITIALIZING...
"i02=4

\Zﬂ iR MPAGE 6 ROUTINES AND DATA j

91

GAMES

/:; FOR I=1536 TO 1587:READ A:POKE I.;T\

NEXT I
41 RE

42 DIM VBS(210):FOR I=1 TO 21@:READ A:
VBS(I)=CHRS(A):NEXT I

43 REW

45 DIM LD$S(73):FOR I=1 TO 73:READ A:LD
$(I)=CHRS$(A):NEXT I

LB Ed MINSERT ADR. OF ROUT. IN PAGE 6
48 A=ADR(VBS):B=INT(A/256):POKE 1548,8B
:POKE 1538,A-256*B

50 DATA 1¢44,160,52,162,6,169,7,76,92,2
28,104,160,98,162,228,169,7,76,92,228
52 DATA 1206,120,120,120,308,57,81,185,1
5,15,15,15,0,90,0,0,52,53,54,55,2,2,3,4
o e B IORRT S 8T T e B

CE A ML INESG-CHANGE 24TO056TOSKIP ORTH

R A ML INESG6 CHANGE 28 TO 34 FOR CONT
. MOVEM.

56 DATA 72,138,72,152,72,162,0,189,124
,2,29,44,6,160,15,24,176,32,201,15,248
,28,2081,14,208,2,160,13,201,13

57 DATA 208,2,160,14,201,11,208,2,1640,
7,2061,7,2088,2,160,11,192,15,240,6,61,4
8,6,157,28,6,152,61,44,6,157,44,6

58 DATA 232,224,4,144,195

68 DATA 162,0,189,32,6,133,203,189,36,
6,133,204,189,40,6,133,209,198,209,16,
71,232,224,4

65 DATA 144,232,176,91,189,28,6,133,240
7

79 DATA 70,2087,176,26,188,24,6,192,1,2
49,19,208,1,280,177

75 DATA 2@3,240,6,136,145,203,200,2408,
245,136,145,203,222,24,6,70,207,176,29
,188,24,6,200,192,254,176,21

80 DATA 177,203,208,247,136,177,203,24
g,6,200,145,203,136,208,245,208,145,2¢0
3,254,24,6,70,207,176,3,222,289

85 DATA 6,70,267,176,3,254,20,6,189,2¢
,6,167,0,208

\3? DATA 24.144.154,162,4,189.11.208,%:/

92

CHICKEN

(;:5.169,9.157.39,6.2ﬂ2,208,243.194.16;\
,184,1768,104,76,98,228

168 DATA 234,234,234,104,1064,1084,176,1
89,32,6,133,186,189,36,6,133,187,184,1
33, 213,184,133, 212

118 DATA 189,24,6,133,195,169,0,168,19
2,255,176,35,196,195,240,5,145,186,2048
,208,243,162,0,161,212,248,11

128 DATA 145,186,2368,212,206,192,255,1
76,11,208,241,169,0,145,186,20@,192,25
5,144,249,96,234,234

ETRTIAC 7 colon DaTh |

168 FOR I-1 TO 2@8:READ A:C$(I)=CHRS(A)
NEXT I

170 DATA 24,60,218,68,90,186,70,1508,54
,232,74,168,88,154,21,252,280,76,228,2
8

(RN Nd MMDEFINE PM AREA-SINGLE LINE RES
200 A-PEEK(106)—-16:POKE 54279,A:PM=256
*A

205 REM

218 FOR I=4 TO 7:POKE 1568+I,A+I:NEXT
I

212 FOR I=-=1568 TO 1571:POKE I,@:NEXT I
218 REM

228 FOR I=-PM TO PM+121:READ A:POKE I,A
:NEXT I

239 DATA 16,56,16,56,40,16,16,16,146,2
54,254,124,56,56,40,40,40,40,408,108,4
232 DATA 126,195,219,219,91,219,219,21
9,219,91,219,219,195,126,80

234 DATA 126,195,214,219,218,219,219,2
19,219,218,219,219,195,126, 4

236 DATA 33,34,150,84,57,30,60,123,159
,308,52,86,151,36,194,193,4

238 DATA 16,56,16,56,40,16,16,56,124,2
54,186,56,56,40,40,40,44,32,96,80

248 DATA 16,56,16,56,40,16,16,146,214,
124,56,56,40,40,408,104,8,12,4

242 DATA 126,255,173,173,239,199,199,1
99,199,239,173,173,255,126,8

270 REM
\EFB RESTORE 282:FOR I-1556 TO 1563:REA

93

GAMES

f D A:POKE I,A:NEXT I ‘\\

282 DATA 120,120,120,1206,30,57,81,105
288 REM

298 DIF=3:BONUS=30@:POKE 704,40:CP=0:F
OR I=1 TO 3:POKE 7@4+I,ASC(C$(CP+I)):N
EXT I:CP=3:BP0S=1

295 REM

309 GRAPHICS 17:FOR I=1 TO 2@:L$(I)="—

“NEXT I
305 FOR I=2 TO 20 STEP 2:8$(I)="-":8$(
I-1)=" " :NEXT I

310 POSITION B,2:? #6;L$:POSITION 0,11

:? #6;L$:POSITION #,13:? #6;L$:POSITIO

N 0,22:?2 #6:L$

312 POSITION #,5:? #6;8S$:POSITION ¢,8:

? #6;8$:POSITION @,16:? #6:S$:POSITION

#,19:? #6;S$:POKE 716,980

340 REM

350 SCORE=5@0:POSITION @,1:? #6;"score
time” :POSITION @,23:?2 #6;"di

f high";

360 POSITION @,0:? #6;SCORE:POSITION 1

5,22:? #6;HIGH:POKE 19,0:POKE 20,40

365 REM

378 POKE 559,62:POKE 53277,3:11=68:12=

88:FL=I1 !

375 REN

380 LD=ADR(LDS):A=USR(LD,@,PM+RNS5):A=U

SR(LD,1,PM+21):A=USR(LD,2,PM+21):A=USR

(LD,3,PM+21)

385 A=USR(1536):REM

390 POKE 53257,1:POKE 53258,1:POKE 532

59,1:POKE 623,1

391 IF BPOS=18 THEN POKE 53257,3:POKE

53258,3:POKE 53259,3

393 REM

395 POKE 1576,2:FOR I=1577 TO 1579:P0K

E I,RND(@)*DIF+1:NEXT I

398 POSITION 1,22:? #6;DIF

INTB YA BIF CARS OFF-SCREEN.CHANGE LANE
S|
\410 IF PEEK(1557)<15 AND PEEK(1551)=5y

94

CHICKEN

(’}HEN POKE 1561,193:A=USR(LD,1,PM+RN3)

<POKE 1585,7:G0SUB 106@88:POKE 785,C

429 IF PEEK(1557)>2408 AND PEEK(1561)=1
93 THEN POKE 1561,57:A=USR(LD,1,PM+RN4
):POKE 1585,11:G0SUB 16@@:POKE 705,C
430 IF PEEK(1558)<15 AND PEEK(1562)=81
THEN POKE 1562,169:A=USR(LD,2,PM+RN3)
:POKE 1586 ,W:G0SUB 10@86:POKE 706,C

449 IF PEEK(1558)>248 AND PEEK(1562)=1
69 THEN POKE 1562,81:A=USR(LD,2,PM+RN4
) :POKE 1586,U:G0SUB 168@:POKE 786,C
450 IF PEEK(1559)<15 AND PEEK(1563)=140
5 THEN POKE 1563,145:A=USR(LD,3,PM+RN3
):POKE 1587,7:G0SUB 1@@0:POKE 767,C
469 IF PEEK(1559)>24@ AND PEEK(1563)=1
45 THEN POKE 1563,185:A=USR(LD,3,PM+RN

4):POKE 1587,11:6G0SUB 1@@@:POKE 707,C
455 REM

479 TIME=15-PEEK(19):POSITION 16,0:? #
6;TIME;” ":IF TIME<=8 THEN 91§

471 GOSUB 12440

472 REM

473 SOUND 9,0,0,80

475 IF RND(@)>0.5 THEN SOUND 1,0,0,0
480 IF RND(P)<@.@5*RN2 THEN SOUND 1,7,
12,18

484 REM

485 P=PEEK(1564):IF P>15 OR P<35 THEN
500

49¢ IF P=15 THEN A=USR(LD,@,PM+RN5):GO

T0 5040

492 IF FL=I1 THEN FL=-I2:SOUND @,16*RN,

6,8:G0T0 496

494 IF FL=I2 THEN FL=I1:SOUND @,22*RN,

6,8

495 REM

496 A=USR(LD,@,PM+FL+RNS)

5¢8 IF PEEK(1568)>2308 THEN 8140

561 RN=INT(RND(B)*15+1):IF BPOS<>4 AND
BP0S<>19 THEN RN=1

505 REM

519 IF PEEK(53268)=8 THEN 41§

\ 19 fem -

95

GAMES

(;;n A=USR(LD,®,PM+51+RN5):FOR J=1 Tnﬂz\
:SOUND @,RND(@)*255,8,8:SO0UND 1,RND (@
)*255,8,8

525 POKE 704 ,PEEK(7084)+8:FOR I=1 TO 340
:NEXT I:NEXT J:SOUND 06,0,0,0:SOUND 1,0
,0,0:POKE 764,48

527 REM
530 SCORE-SCORE—-1:POSITION @,08:? #6;S8C

ORE;” " :IF SCORE<=§ THEN 782
LEER RS MMOVE UP. RELOAD BIRD-RESET COL
L

535 POKE 1560 ,PEEK(15608)—-24:A=USR(LD,®
,PM+RNS):IF DIF>@ THEN DIF=DIF-1

558 IF DIF=¢ THEN GOTO 7480

599 POKE 53278,0:G0T0 395

708 REM

782 POSITION 3,2:? #6;"CHICKEN'S DEAD!

784 REM
C=1

705

786 IF PEEK(1576+C)=@ THEN C=C+1:G0T0O
106

787 IF C>3 THEN C=1

713 POKE 1576+C,1:POKE 156@+C,PEEK (156
#):POKE 1556+C,22@:A=USR(LD,C,PM+187)
715 FOR J=1 TO 6:FOR P=6@ TO 40 STEP -
2:SO0UND @,P,108,8:FOR I=-1 TO 6:NEXT I
716 NEXT P:FOR P=40¢ TO 66 STEP 2:SOUND
#,P,108,8:FO0R I=1 TO 6:NEXT I:NEXT P:N
EXT J:SOUND @,0,6,0

AEILIWN Ev Hich scone

720 A=USR(1546):IF SCORE<=HIGH THEN 73

8

721 HIGH=SCORE:FOR Q=1 TO 7:POSITION 1
1,23:? #6;HIGH;" 2=POSTTION 18,222 #
6;"high”:SOUND §,40,16,15

722 FOR Q2=1 TO 5@:NEXT Q2

723 POSITION 11,23:? #6;:"high":POSITIO

N 15,22:? #6;HIGH;”-":SOUND 0,56,18,15
:FOR 02=1 TO0 5@8:NEXT Q2

724 NEXT Q:SOUND 6,08,0,0

725 TRAP 130@0@:0PEN #2,8,0,”"D:HI2.DAT’

\:FINT #2 HIGH:CLOSE #2 4;)

96

CHICKEN

(730 POSITION 2,6:? #6;"press FIRE bu;?\
on

":POSITION 4,7:? #6;"to play again"
732 FOR I=-53248 TO 53251:POKE I,@:NEXT
I.:SO0UND @,0,0,0:SOUND 1,0,0,80
735 REM
749 IF STRIG(@)=1 THEN 748
741 C1=4:C02=0:C03=0:SCOREONE=5060:BSW=4
742 OPEN #2,4,08,”D:HI2.DAT”:INPUT #2,H
IGH:CLOSE #2
745 REM
7506 POKE 53278,0:POKE 53277,8:A=USR(15
46):G0TO 288
809 REM
819 POKE 156@,30:A=USR(LD,B,PM+RNS):PO
KE 1576,40
815 REM
828 FOR I=1 TO 5:FOR J=18 TO 5 STEP -1
:SOUND @,J,14,8:S0UND 1,J,2,8:NEXT J:8S
OUND 0,0,0,0:S0UND 1,0,0,80
825 A=USR(LD,@,PM+68+RN5):FOR J=1 TO R
ND(@)*3@:NEXT J:A=USR(LD,#,PM+88+RN5)
830 SCORE=SCORE+DIF*2:POSITION 0,0:? #
65 SICORE:; ¢ “NEXT]
831 IF SCORE>=~SCOREONE THEN 833
832 GOTO 849
833 FOR I=1 TO 3:POSITION @,0:? #6;"wo
w!”:GO0SUB 835:POSITION @,0:? #6;SCORE:
GOSUB 835:NEXT I
834 SCOREONE-SCOREONE+5060:G0T0 840
835 FOR Q=20 TO 1 STEP —-4:SOUND 1,0*5,
18,15:NEXT Q:SOUND 1,0,0,0:RETURN
848 IF DIF<9 THEN DIF=DIF+1:IF DIF=9 T
HEN C1=4:C2=10:C3=0
841 IF DIF<>9 THEN C1=-4:C2=-0:C3=-0
842 REM
843 IF SCORE<BONUS THEN 8580
844 SOUND 0,25,10,10:BONUS=BONUS+30@:P
=PEEK(19):IF P<11 THEN POKE 19,08:G0T0O
848
846 POKE 19,P-14
848 POSITION BPOS,12:? #6;"*":BP0S=BPO
$+1:BSW=BSW+1:IF BP0S>19 THEN BPOS-@
849 IF BPOS<>@ THEN W=7:U=11 41/

97

GAMES B

(;;ﬂ IF BPOS=7 THEN RN2=17:G0TO0 399 <‘\
8

51 IF BP0OS<>7 THEN RN2=1
852 IF BPOS=13 THEN RN3=108T7:RN4=107:G60
TO 394
853 IF BPOS<>13 THEN RN3=36:RN4=21
854 IF BPOS=@ THEN W=11:U=7
855 IF BPOS=16 THEN RN3-@:RN4=0:RN5=21
:60TO0 3940
856 IF BPOS<>16 THEN RN3-36:RN4=21:RN5

857 IF BPOS=19 THEN RN2=18:RN3=107:RN4
858 IF BP0OS<>19 THEN RN2=1:RN3=36:RN4=

859 IF BPOS=1 AND BSW>@ THEN GOSUB 149
#:G0T0 9gp@

869 GOTO 3940

999 REM

919 POSITION 5,2:? #6;"TIME'S UPI"

928 GOTO 7249

999 REM

19886 IF BPOS=10 OR BPOS=19 THEN CP=CP-
1

18065 CP=CP+1:IF CP=28 THEN CP=1

1618 POKE 77,8:C=ASC(C$(CP)):RETURN
12806 IF TIME-10 THEN SETCOLOR 4,12,2:F
OR K=1 TO 10:SOUND 3,K,16,108:NEXT K:S0
UND 3,0,0,0

1218 IF TIME<>1@8 THEN SETCOLOR C1,C2,C
3

1220 RETURN

1380 GRAPHICS @:SOUND 1,55,18,15:?2 DI

SK PROBLEM. HIGH SCORE WAS NOT SAVE
D...":FOR I=-1 TO 56@:NEXT I

1318 SOUND ¢6,08,0,06:? "TYPE RUN TO PLAY
AGAIN"

1328 TRAP 1368

1468 FOR I-=1 TO 255:SOUND @,I1I,12,12:SE

TCOLOR 4,I,10:NEXT I

1418 FOR BPO=1 TO 5:FOR BPOT=6 TO 19:8

OUND @,BPOT*BPO,10,12

1428 POSITION BPOT,12:? #6;2Z$(BP0):NEX

\;[BPOT:NEXT BPO 4//

98 -

CHICKEN

(1425 SOUND @,0,8,0 <‘\

1426 POSITION @,12:? #6;:"&"

1427 POSITION 9,13:? #6;L8$

1428 BSW=4

1430 RETURN

9@@@ FOR I-1 TO 15@:NEXT I:POKE 19,99:
GOTO 4749

15008 GRAPHICS 17:POSITION 0,08:? #6;"[d
(R LRGN : POSITION 6,1:? #6; " [k
NARRANS : POSITION 6,2

15010 ?2 #6; " [GESEIMEREAERI : POSITION 6,
KA L RRMBUTTON TO PLAYQ
15028 IF PEEK(53279)=3 THEN 150580
15030 IF STRIG(@)=08 THEN 160040

15648 GOTO 150240

15058 GRAPHICS 17:POSITION @,8:? #6;"Y
OUR OBJECTIVE??":POSITION @,1:? #6;"SI
MPLE. JUST GET THE"

15055 POSITION @,2:? #6;"chicken SAFEL
Y*:POSITION @,3:? #6;"ACROSS THE ROAD"
15060 POSITION #,4:? #6;"without GETTI
NG HIT":POSITION @,5:? #6;"BY i
15879 POSITION @,7:? #6;"YOU MUST LEAR

N THE":POSITION #,8:? #6;" NHEESNIERER]

HI.

15080 POSITION @,18:? #6;" EREEEXESAEINE
TURHHEHRRHRL | 0,

Wl : POSITION 0,12

15098 ? #6;" " FKREEREEEREN] : POSITION 0,

13:? #6;"EEKELCEENREREE] . ?

151008 POSITION @#,15:? #6;"PLEASE PRESS
OPTION."

15168 IF PEEK(53279)=3 THEN 16608

15178 GOTO 151640

16008 GRAPHICS 17:POSITION 6,6:? #6;"C

[iffxeN":POSITION 8,7

161066 FOR I-1 TO 4:SOUND @#,16,6,8:FOR
J=1 TO0 2@:NEXT J:SOUND §,22,6,8:F0R J=
1 TO 26:NEXT J

16150 NEXT I:SOUND 0,0,08,0

16208 ? #6;"AANEEN I EE :POSITION 4,8:
? #6 ;AN EE R : POSITION 3.9:02=BA/)

\162(!5 TR0 S OB UGGED
99

GAMES

(T;Zlﬂ ? #6;"REVISED BY":FOR I=1 TO 2;?}
:NEXT I:POSITION 4,10:? #6 ;" [SIUNSE - EE
b :MK=580

16228 FOR I=1 TO 25@:NEXT I

16238 FOR I-1 TO 5:FOR J=16 TO0O 5 STEP
-1:SO0UND @,J,14,8:S0UND 1,J,2,8:NEXT J
:SOUND @,0,0,0:SO0UND 1,0,0,80

16240 FOR K=1 TO0O MK:NEXT K:MK=MK-10:NE
XalEn T

162508 RETURN

TYPO TABLE

Variable checksum = 1076383

Line num range Code Length
4 =l HB 523
15 = NJ 532
52 - 65 JK 534
70 =20 vy 598
1280 — 238 1] 561
232 == 2:88 KD 509
294 =452 KH 5440
349 ~=380 uc 504
385 - 4248 JU 583
430 - 465 JI 509
479 - 494 vVu 502
495 = 52% ON 518
5217 e 0 AW 447
713 =721 AD 507
22 — 133 KR 502
7440 - 828 NR 552
825 - 8448 151 512
841 - 854 1J 530
855 - 10885 Z0 458
16180 = 14140 KZ 5317
14240 - 15049 VF 495
15858 - 150888 LH 521
15898 - 16208 GN 529
k 16285 - 16250 RH 374)

100

ATTACK ON THE DEATH STAR

Attack on the Death Star

n order to protect your home base from the dreaded Death Star, you are
Ilaunched in your X-wing fighter to attack the enemy. As the simulation

begins, you are flying “down the trench,” the walls of the trench whip-
ing past. The object: destroy the five radiation vents leading to the Death
Star’s main reactor. If you succeed, the reactor will overheat and self-destruct,
destroying the Death Star.

To hit the radiation vents, line up your cursor aiming system, using a
joystick in Port One, and fire, using the red button. The vents are green oval
openings in the bottom of the trench. The Death Star has a full complement
of Tie fighters for its defense. The fighters attack one by one, firing furiously. If
you are hit too many times, your fighter will explode and crash. To combat the
Tie fighters, you'll have to wait till the Tie fighter is in the center of the screen
before you can hit it.

This game has been improved since it first appeared in ANTIC. It now

has a scoring line and two new “endings.”
by David Plotkin

System Requirements: 32K RAM, joystick

David Plotkin is a Chemical Engineer with Standard Oil of California, and a game programmer by
avocation. His Attack on the Death Star has been improved since publication, and the new version
is printed here in the book. Dave programs mostly in BASIC, but with some assembly language routines,
and his games have appeared in several publications, including ANTIC.

5 REM #2xxxsxanww DEATHSTAR **swwnwxxn \

8 REM BY DAVE PLOTKIN REVISED BY D. PL
OTKIN 1983

18 GOSUB 1500:SCORE-@:SD-12P0@:B-B:HISC
ORE-@:F-1:F1-1:60SUB 844

99 COL-PEEK(788):POKE 788, PEEK(789):P0
KE 789,PEEK(710):POKE 718,C0L

198 ST-PEEK(632):IF ((NUMH=RT AND ST-1
3) OR (NUMH=RT+4 AND ST-=14)) THEN ST=1
5:60T0 1380

QB NUML-NUML+28~+(ST-14)-20+(8T=13) :Ny

101

GAMES

(;;=NUMH+(NUML>Z55)—(NUML<ﬂ):NUML=HUM[:\

256+ (NUML<#B)-256+ (NUML>255)

128 POKE DL4,NUML:POKE DL5,NUMH:NN=2=(

ST=13)—2(ST=14) :N=N+NN:Y3-Y3+NN

130 YTEMP-Y:IF SIZEL-06 THEN GOTO 175
149 IF SIZEL>1 THEN SIZEL-SIZEL-1:Y=74
»(SIZEL=2)+56+~(SIZEL=1):SH=68+«(SIZEL=2
)+76=(SIZEL=1):G0T0 1880

150 IF ABS(Y-Y2-7)<5 AND ABS(X-X2)<4 T
HEN SOUND 1,406,8,8:POKE 656,0:PO0KE 657
,1:SCORE-SCORE+10:? SCORE:SIZEC-=1.9
168 IF ABS(Y3-Y)<3 AND SIZEH<>@ THEN P

OKE 767,82:SO0UND 2,1006,8,10:B=B+1:POKE
656,0:POKE 657,15:? B:FOR W=1 TO 1648:

NEXT W:IF B=5 THEN 768

170 SH=84:SO0UND 2,0,0,0:SIZEL=@:Y=55
175 IF STRIG(@)=@ THEN SIZEL=-3:Y-88:80
UND 2,10,8,8:SH=60

188 IF (SIZEC=@ AND INT((38-5-B)+~RND(M
))=08) THEN SIZEC-2:Y2-28:X2-128

198 IF SIZEC-0 THEN GOTO 288

200 IF SIZEC-2 THEN GOTO 218

282 SIZEC-SIZEC-@.1:Y2-Y2-2:X2=-X2+5:P0

KE 53250,X2:F=F+1:IF F>4 THEN F=1

205 SH2=27+(F=1)+188+(F=2)+200+(F=3)+2
12~(F=4):SO0UND 1,X2-120,106,108:1IF SIZEC

<> AND SIZEC<>1.8 THEN GOTO 249

207 SH2-BLANK:SOUND 1,0,0,0:G0T0 244
210 XX=RND(@):Y2=Y2+2+(Y2<78)*(ST=13)-

2+ (ST=14)«(Y2>20)+8+ (XX>0.8)=(Y2<78)-4
*(XX<@.12)+(Y2>240)

228 FF-FF+2+(X2<112)-2+(X2>130):X2-X2+

FF:POKE 53258,X2:SH2-28+~(Y2<65 AND Y2>

43) 140+ (Y2<=43)

225 IF (SIZEC=1.8 OR SIZEC=08) THEN SH2

=BLANK:SOUND 1,40~ (SIZEC=1.8),8,8+~ (812
EC=1.8)

23@ IF (SM=@ AND INT(RND(@)~(16-2+B))=
@) THEN Y1=Y2:X1=X2-4:POKE 53249,X1:SM

=1:S0UND 3,1506,8,6

240 IF SM-8 THEN GOTO 284

250 Y1=Y1+2+(8T=13)#(Y1<78)-2+(ST=14):

\ir=SM+ﬂ.25-Lv <,)

102

ATTACK ON THE DEATH STAR

T ——

1200

/;;5 SH1=BLANK=(SM=4)+128+(SM<4 AND s;:\
~3)+148~(SM<3 AND SM>=2)+168+(SM<2)

260 IF SM-4 THEN SOUND 3,0,8,8:IF (Y1>
49-5+(LV=1) AND Y1<6@+5+(LV=1)) THEN §
OUND 3,109,8,8:SETCOLOR 4,5,12:SD=SD—1
ga~LV:FOR Q=1 TO 50:NEXT 0

265 IF SM-4 THEN SM—@:POKE 656,0:POKE

65705802 8D ":SETCOLOR 4,0,0:SO0UND 3
,0,0,0

270 IF SD<P THEN SD-@:POKE 656,0:POKE
BIHITBE: 2 NS) “:G0TO0 600

280 F1-F1+1:IF F1-4 THEN F1-1

282 SH4-224+(F1=1)+232~(F1=2)+248+(F1=
3)

285 IF SIZEH-@ THEN GOTO 324

298 IF SIZEH<1 THEN SIZEH-SIZEH+@.85:8
OUND @,20~SIZEH,10,6:G0T0 4480

360 IF SIZEH-1 THEN Y3-34+N:SH3=372:81I
ZEH-2:S0UND 0,10,8,3:X4-X4+4~LV:FOR Q=
@ TO 3:POKE 53252+0,X4-4+-0:NEXT 0

3@#5 IF Y3>85 THEN SH3-BLANK:SIZEH-8:G0
TO 400+200+(X4>-132)

310 Y3-Y3+3:8H3-92+(Y3I-N>=75)+104+(Y3-
N>46 AND Y3-N<75)+116+(Y3-N<=46) /

103

GAMES

(328 IF PEEK(19)>-18 THEN POKE 19.u:sf;\
EH=8.1:POKE 707,196

498 IF YTEMP<>Y THEN D-USR(ADR(ES),P@+

YTEMP,PB+BLANK):D~USR(ADR(ES),PB+Y,PB+

SH)

419 D-USR(ADR(E$)+50-25+(SIZEC<1.8),P2

+Y2,PB+SH2):D-USR(ADR(ES)+50,P1+Y1,PB+

SH1)

429 D-USR(ADR(E$)+25,P3+Y3,PB+SH3):D=U

SR(ADR(ES),P4,PB+SH4):G0TO 9

609 D-USR(ADR(ES),P@+~YTEMP,PB+BLANK):D

~USR(ADR(ES$)+58,P2+Y2,PB+BLANK)

682 D-USR(ADR(E$)+5@,P1+Y1,PB+BLANK):D

~USR(ADR(ES$)+25,P3+Y3,PB-+BLANK)

685 IF SD>8 THEN GOTO 616

619 FOR W=1 TO 50:POKE 788, RND(8)=~255;

POKE 769,RND(B)»255:POKE 718,RAND(8) =25

5

615 SOUND INT(RND(@)~4),RND(M)=255,8,8

:NEXT W

616 NUML-PEEK(DL4):NUMH=PEEK(DLS)

620 IF NUMH-RT>-=4 THEN GOTO 635

625 NUML-NUML-28:NUMH-NUMH+ (NUML>255) :

NUML-NUML-256+ (NUML>255)

639 POKE DL4,NUML:POKE DL5,NUMH:GOTO 6

24

635 FOR W=128 TO 1 STEP —1:SOUND §#,180

L8, W/10:NEXT W

649 SOUND B,8,8,0:SOUND 1,0,0,0:SO0UND

2,0,0,0:S0UND 3,0,0,0

645 POKE 788,232:POKE 789,250:POKE 718

,132:POKE 712,8:POKE 784,90

658 FOR XNEW=X4 TO 132:FOR Q-8 TO 3:PO

KE 53252+0,XNEW-4+Q:NEXT Q:NEXT XNEW

655 FOR C-18 TO 106 STEP 18:FOR Y-3¢ T

0 13 STEP -1:D-USR(ADR(ES),PB+Y,PB+13)

:SOUND 1,Y,6,8:NEXT Y

657 POKE PA4+INT(RND(B)+8),PEEK(53778)

668 SOUND @,128-C,8,8:POKE 711,C:FOR W

~1 TO 75:NEXT W:NEXT C:SOUND 1,0,6,8

665 D-USR(ADR(ES),PB+13,PB+BLANK)

678 POKE 623,1:SETCOLOR 4,8,14:SO0UND §

&;}4n.a.s:run N-14 TO @ STEP -1:SOUND B

104

ATTACK ON THE DEATH STAR

(T;dﬂ—ﬂtlﬂ.B.G:SETGOLOH 4,0,N

673 FOR NN=1 TO 3@:NEXT NN:XN=XN+8:POK
E 53252,132+XN:POKE 53255, 120-XN:NEXT
N:XN=§

677 FOR N-14 TO @ STEP —1:SOUND 9,148
N~18,8,8:SETCOLOR 4,0,N: FOR NN=1 TO 38
:NEXT NN:XN=XN+8

6880 POKE 53253,128+XN:POKE 53254,124-X
N:NEXT N:XN=@:FOR W=1 TO 5008:NEXT W:PO
KE 53277,0:GRAPHICS 17

683 SOUND ¢,0,0,8:POSITION 1,8:? #6:;"T
HE DEATH STAR HAS” :? #6;"DESTROYED YOU
R HOME" :? #6;"BASE.YOU lost!ill]]"

684 IF SCORE>HISCORE THEN HISCORE=SCOR
E

685 ? #6:? #6:;* FINAL SCORE " :SCORE:?
Bt ﬂﬁlﬂlﬁ ? #6:0 . T0 PLAY &G
AIN":?7 #6:" PRESS BUTTON"

686 7 #6; HIGH scnns " ;HISCORE

687 IF STBIG(G)zl THEN GOTO 687

690 B-@:SCORE=0:SD=12@80:F=1:F1=1:G0SUB
836:G0T0 94

708 D-USR(ADR(ES),PA+YTEMP,PB+BLANK):D

~USR(ADR(ES$)+58,P2+Y2,PB+BLANK)

781 D-USR(ADR(ES$)+58,P1+Y1,PB+BLANK):D

~USR(ADR(ES$)+25,P3+Y3,PB+BLANK)

763 SOUND 1,06,0,0:SO0UND 2,0,0,08:S0UND
3,0,0,89

705 NUML-PEEK(DL4) :NUMH=PEEK(DLS5):FOR

W=1 TO0 198:IND=4f~(W/2=INT(W/2))-408~(W

/2<>INT (W/2))

718 NUML=NUML+IND:NUMH=NUMH+(NUML>255)

~(NUML<@) : NUML=NUML-256+~ (NUML>255)+256
~(NUML<8)

715 SOUND ¢,W~20,8,8:P0OKE DL4,NUML:POK
E DL5,NUMH

728 FOR M=1 TO 1@@:NEXT M:NEXT W:D=USR

(ADH(ES).PB+394.PB+BLANK):PUKE 53277.,8
:BYT=7:LIN=23

725 D$(1)="FEERVVEVIE | PEEEVCETvFEe kI
S - i mumv?%dmumkllyEEEmUAy@EmEEWE@

umE‘t:id]mE@Wﬂ??)

105

GAMES

En U A y O k [y P [e | fﬂ‘iﬂil?]kﬂﬂ@lil@lila
B eE | P

727 D$(161)=-"E":POKE DL4,8:POKE DL5,AT

+1:STRT=256* (RT+1)+18*28+6:D-USR(PICT
STRT,ADR(DS),BYT,LIN,20)

728 FOR N=1 TO 150:NEXT N

739 FOR NN=1 TO 2@B:SOUND @,NN,8,14:50

UND 1,NN+18,8,14:POKE 712, 14-NN/15:NEX

T NN:FOR NN=1 TO 36:COL-PEEK(788)

732 POKE 788,PEEK(709):POKE 789,PEEK(T
1) :POKE 718,C0L:SOUND B,NN*6,8,14:80

UND 1,NN*5,8,14

735 FOR MM=-1 TO 15:NEXT MM:NEXT NN:POK
E 712,8:FOR Q-8 TO 2:FOR N-14 TO @ STE
P —1:POKE 788+Q,N:SOUND B,148-18*N,8,1

4

749 SOUND 1,152-18*N,8,14:FOR NN=1 TO
3B:NEXT NN:NEXT N:FOR NN=1 TO 58:NEXT
NN:NEXT Q

745 FOR N=14 TO @ STEP -1:SOUND B,148,
8,N:SOUND 1,152,8,N:FOR NN=1 TO 30:NEX

T NN:NEXT N

775 GRAPHICS 17:POSITION 3,3:? #6:"CON

GRATULATIONS [IXEETL] :? #6: Y
0U HAVE DESTROYED":? #6;" THE"
780 ? #6:" death star”:GOTO 684

809 DIM DS$S(650),ES(8@):FOR A=1 TO 75:R

EAD T:ES(A,A)=CHRS(I):NEXT A

884 DATA 104,104,133,204,1084,133,2483,1

#4,133,207,104,133,206,160,0,177,2086,1

45,203,209,192,8,208,2417,96

885 DATA 104,1064,133,204,1064,133,203,1

#4,133,207,104,133,206,160,8,177,2486, 1

45,203,2098,192,12,208,247,96

886 DATA 104,164,133,204,1084,133,203,1

#4,133,207,104,133,206,160,0,177,206,1

45,203,209,192,20,208,247,96

810 A-PEEK(106)-2f:POKE 54279,A:PB=256

*A:FOR A=PB TO PB+247:READ I:POKE A,I:

NEXT A

815 DATA 0,0,80
,183,129,129

2

-== o
-_—=

2

-== o
-_= -

5

==

=

» ’ ’
» » ’
’ ’ ’

106

ATTACK ON THE DEATH STAR

,8,8,08,08,36,60,36,0, h

6 DATA ¢,0,0,90
g,0,0,9,0,0,0,24,24,60,60,60,126,255,2
19,0,24,24,24,60,126,90,8
820 DATA 0,0,16,16,56,40,0,0,8,0,16,16
,124,16,16,0,0,0,0,0,0,24,60,126,265,1
26,60,24,0,0,0,0,0,24,60,126,60,24,0,40
821 DATA ¢0,0,0,0,0,24,60,24,0,0,0,0,80,
#,24,60,36,126,189,904,90,165,255,165,9
#,90,189,102,60,24,0,80

825 DATA 0,8,0,24,36,608,60,90,90,36,36
,36,90,90,60,36,24,0,0,0,0,0,0,0,0,0,80
,24,36,24,24,24,36,24,0,0,0,0,0,0
826 DATA 16,32,96,184,42,60,8,16,8,8
,0,0,62,8,20,20,8,62,0,0,0,0,0,8,4,6
9,84,60,16,8,08,0,0,8

827 DATA 69,24,255,219,255,153,24,68,6
g,24,255,109,255,153,24,68,68,24,255,1
82,255,153,24,680

833 POKE 53256, 1: PDKE 53257,3:POKE 532
58,1:POKE 53259,1:POKE 53260,85

335 FOR A=PB+384 TO PB+1824:POKE A, B:N
EXT A:RT=PEEK(186)-8

836 POKE 623,17:X=121:X1=X:X2=X:POKE 5
3248,X:POKE 532508,X:POKE 53251,X

849 POKE 88,0:FOR N=§ TO 8:POKE 89,RT+
N:? “E":NEXT N:POKE 106,RT:GRAPHICS 5:
POKE 559,80

850 PICT=ADRA (" hheWNhEs{3neall]nExTn nExilh hjlh hENg

$UA1M Kdo®Pwi%K[IP- K=Ef LE%ME0-MELNJP [T
")

865 POKE 704,98:POKE 7085,36:POKE 706,5

@:POKE 7087,196:P0OKE 708,232:POKE 769,2

50:POKE 710,132:POKE 711,24
879 DS (1))=Y XTI IIIY:

] -G L/ U U U U U U U UJ=U U U U U U U U IO
FEFROECFEFE bbb b

871 08 (81) - KN SRR v vy

Gy fily UUUUUUUUUVUUUUU UMY UUUUYY U UDED

DO oo
872 (D$(161)=" mimiumn)

107

GAMES

(/v vvve RN v v RN
UUUVMUUUUUU

873 0D

U

TR RR ht N AN

UUUUUU

nuaum VuuuU VuuUU
upu Ul HuuuU
_uui uuuuuy"

ctz:xxx:l!ﬂﬂﬂﬂﬂﬂﬂ“ﬁﬁf::::iiii

875

uuuuuuuuuu_
muuvvuuuvuu e

876 DS (481)="}

) POKE 88,0:POKE 89,RT+1:FOR N=1 TO
49 coLon RND(B)*3+1:PLOT AND(8)*79,RN
D(B)*47:NEXT N
885 DL=PEEK(568)+256*PEEK(561):0L4=DL
+4:DL5=DL+5:NUML=@:NUMH=RT+4:POKE 88,N
UML:POKE 89,NUMH
898 STRT=(RT+4)*256+9*2@:A=USR(PICT,S
TRT,ADR(DS),20,31,20):POKE DL4,NUML:PO
KE DL5,NUMH:A=DL
90@ DLIC=ADR (" HEnp/s=[FEmighe) : HI-IN
T(DLIC/256):L0=DLIC-HI*256:POKE 512,L0
:POKE 513,HI
919 LBASE=DL-2:POKE LBASE+40@+6,PEEK (LB
ASE+49+6)+128:POKE 54286,192
92@ IF PEEK(A)<>66 THEN A=A+1:G0T0 924
936 POKE A,71:POKE A+3,6:POKE A+4,6:P0
KE A+5,65:POKE A+6,PEEK(A+7):POKE A+7,
PEEK(A+8)

949 POKE 656,0:POKE 657,28:PRINT L
E SHIELDS PORTSY

958 POKE 656,0:POKE 657,1:PRINT SCORE;
POKE 656,8:POKE 657,8:PRINT SD:POKE 65
6,8:POKE 657,15:PRINT B

955 X4=6B:FOR N=¢ TO 3:POKE 53252+N, X4
~8*N:NEXT N:D=USR(ADR(ES),PB+384+18,P

108

ATTACK ON THE DEATH STAR

/?;zz()

96@ POKE 53277,3:POKE 559,46:Y=56:D-US
R(ADR(ES),PB+512+Y,PB+84)

989 STZEC=@:SM=@:SIZEL=-@:N=0:Y3=38:812Z
EH=@:FF=1:LV=1:POKE 656,1:POKE 657,0:P
RINT "BEGINNER"

999 IF PEEK(53279)=3 THEN LV=1:POKE 65
6,1:POKE 657,8:PRINT "BEGINNER"

1800 "IF PEEK(53279)=5 THEN LV=2:POKE 6
56,1:POKE 657,8:PRINT "EXPERT o
1918 IF PEEK(53279)-6 THEN GOTO 1630
1020 GOTO 994

1930 POKE 656,1:POKE 657,8:PRINT ~
1649 SOUND §,18,8,3:PP=PB+512:P1=PB+64
@:P2=PB+768:P3=PB+896:P4=PB+394:BLANK=
524

1858 SH=84:SH1=BLANK:SH2=BLANK:SH3=BLA
NK:RETURN

1568 GRAPHICS 2+16:POSITION 3,4:PRINT
#6;"DOWN THE TRENCH"

1519 POSITION O,5:PRINT #6; attack on
the death” :POSITION 7,6:PRINT #6;"star
“POSITION 2,7:PRINT #6;"BY DAVID PLOT
KIN"

1529 POSITION @,8:PRINT #6:"“
“:POSITION 1,9:PRINT #0:"plo
8 wa

as t 28 SEC.”

1530 SOUND 2,55,12,8:FOR WW=1 TO0 5
1540 FOR W=18 TO 198 STEP 2:SOUND 0,W,
19,8:SO0UND 1,116-W,108,8:POKE 708,W:NEX

T W:NEXT WW

1550 SOUND 2,08,0,0:SOUND 1,0,8,0:SO0UND
g,0,0,0

1560 FOR W=18 TO 255:POKE 718,W:SOUND
§,W,10,6:NEXT W:SOUND 9,0,08,0:RETURN

TYPO TABLE

Variahle checksum = 23940918

Line num range Code Length
5 =120 PO 532
134 mullB GA 554

175 =207 YP 542,
\ 2140 = 234 WT 503!

109

GAMES

2449 265 YD 548 ¢
278 305 DT 506 *
310 6140 RS 603 -
615 645 IM 504-
650 670 KG 543
673 684 AW 509
685 705 PQ 608
718 7 247 Vo 557¢
128 149 ME 569 »
745 805 Vo 562
806 821 0P 594
825 836 JL 528 ¢
8449 811 ww 525
8712 8117 LT 574
880 9140 PV 5240
9249 960 JH 541
9840 18440 uz 938
1850 1540 NV 524
15580 1560 VM 209
¢

110

SPEED DEMON

Speed Demon

A slick way to circumwvent
Player/Missile programming.

One. You are given a high-performance stock car which leaks oil every

now and then. At the start your car is warming up at the gate, waiting
for the count-down. In the test window you see a prompt for the skill level you
wish. There are two levels: pressing [1] starts you at the beginner’s level; press-
ing [2] starts you at the pro level, in which your car has a severe oil leak. Once
the count reaches zero, “Yer Off!” Your objective is to circle the entire course
three times in as little time as possible.

Avoid hitting the bales of hay that line the course, and the oil slicks, left
behind by your car. These cause your car to spin out. You can only resume
driving when your car has regained traction.

To start the game, press [START] and get ready to burn rubber!!

Speed Demon! is a one-player car-racing game using a joystick in Port

by John Magdziary
System Requirements: 16K RAM, joystick

ﬁﬂ REM =#*x+«+«x«x» SPEED DEMON ttttttw.\

99 REM BY JOHN MAGDZIARZ 1982

160 GRAPHICS 1+16

118 POSITION 7,8:? #6;"ANTIC”

128 POSITION 6,18:? #6; presents”

130 POSITION 4,12:? #6; speed demon!"

149 FOR LOOP=1 TO 1@@@:NEXT LOOP

158 POSITION 3,16:? #6; please wait..." :FO0
R T=1 TO0 6@P:NEXT T

164 GOTO 184

176 FOR LOOP-=1 TO 1@:NEXT LOOP:RETURN
\l}ﬂ GRAPHICS @:POKE 559,08:REM SHUT OFF

111

GAMES

(SCHEEN TEMPORARILY \

198 OPEN #1,4,8,"K:":REM OPEN KEYBOARD
FOR DIRECT

200 A-PEEK(106):POKE 186,A-5

219 CP-PEEK(186)+1:POKE 756, CP

228 CHAR-CP=256

230 FOR M=¢ TO 1023

249 POKE CHAR+M,PEEK (57344 M):REM COPY
CHAR SET FROM ROM TO RAM

250 NEXT M

260 FOR NC-1 TO 9:READ OLD

279 DIF-(OLD+4+64)+«8

280 FOR M=@ TO 7:READ LINE:REM POKE DA
TA FOR ALTERED CHARACTERS SET

299 POKE CHAR+DIF+M,LINE:NEXT M

300 NEXT NC:REM DATA FOR NEW CHARACTER
S

319 DATA 1,136,136,255,255,255,255, 136
136

320 DATA 2,60,60,196,190,60,60,190,198
338 DATA 3,34,34,101,101,1901,191,34,34
349 DATA 4,190,190,60,60,190,190,68,68
358 DATA 9,0,0,20,20,20,20,0,0

360 DATA 10,264,284,51,51,204,2084,51,5
1

379 DATA 11,255,85,255,178,60,20,608,0
380 DATA 12,0,60,20,68,170,255,85,255
399 DATA 13,8,42,168,42,176,170,168,40
499 GRAPHICS @:POKE 756,CP:POKE 559,40
419 DL-PEEK(560)+PEEK(561)+256:REM ALT
ER DISPLAY LIST

429 POKE DL+3,68

439 FOR I-6 TO 23:POKE DL+I,4:NEXT I
449 POKE DL+28,4

458 FOR I-@ TO 4:READ COL:REM SET SCRE
EN COLORS, REGISTERS f-4

468 POKE 7@8+I,COL:NEXT I

478 DATA 26,0,198,72,5

489 ? "FE:DIM HOR$(40),VERTS(30):DIM C
R1$(4)

499 POKE 559,0:? "K' :RESTORE 5508:81-7
509 FOR I2-1 TO 39:HORS(I2,I2)-CHRS$ (13

Q:NEXT 12 J

112

SPEED DEMON

N A Y

AR
0 e

Y

(;;ﬂ FOR I-1 TO 3¢ STEP 3:VERTS$(I,I)=CH
R$(13):VERTS$(I+1,I+1)=CHR$(29):VERTS$ (I
+2,1+2)-CHRS$(30) :NEXT I

520 POKE 82,40

538 REM DRAW PLAYFIELD

549 FOR LOOP-1 TO 8:READ I,J,K,L:POSIT
ION I,J:? HORS(K,L): NEXT Loor

550 DATA #,0,1,39, 28 3, 1,953,6,1,28,2%8
e T F I 5 i b e s e e 1 pdra T
L

560 FOR LOOP-1 TO 27:READ I,J,K,L:POSI
TION I,J:? VERTS(K,L):NEXT LOOP

578 REM DATA FOR PLAYFIELD

580 DATA @, B LI s S e R R e i i
S U g i b B

15 9 S DRI

590 DATA 1535 3L A0S ST SRISSEIR S 255231 e i 10502
95 iAo A s R B
Gﬂﬂ DATA S G s e Mt e e [R I B PAR
36,13,1,6,38,1,1,380
610 DATA S JG T B e 20 B [e D Bl [y e B s
01, 120004 SRk, il de vl ed

628 DIATEAN 65 AT 231N sl s 228] RIS 2

Kl»9.1.12.22.13.1.6 I L/j
639 POSITION 3,19:? | DRIVER TIMEIL

113

GAMES

Pt D
648 POSITION o 200 3 :
1:

)

650 POSITION 3,21:? “|PLAYER #1] ¢ |

e

669 POSITION 3,22:7 "

670 POSITION 24,19:? CHRS(124) CHRS$ (29
):CHRS (30):CHRS$ (124):CHRS(29);:CHRS (38)
CHRS$(124);CHRS(29):CHRS(3M):CHRS(124)
sau POSITION 26,28:? CHRS(14);:" SPEED

;CHRS (14)

69ﬂ POSITION 26,21:? CHR$(2):” DEMON
:CHRS$ (22)

786 POSITION 24,15:2? CHRS(15):POSITION
24,18:27 CHRS$(16)

718 FOR I-1 TO 4:CR1S(I,I)-CHR$(I+132)
NEXT T:LAP1=—1:0K=B:AG-0:TIME1=8:LP=1
720 POSITION 23,16:2 CRI$(1,1):X1-23:Y
~16

738 POKE 559,34:POKE 752,1:POKE 53279,
g

749 SOUND @,170,4,4

750 POSITION 26,19:? “WHAT LEVEL?";:GE
T #1,LEV

760 IF LEV-49 THEN SC-45:G0TO 790

770 SC-18

786 IF LEV<>1 AND LEV<>50 THEN 758

799 POSITION 26,19:?

809 REM

810 GOSUB 1288

820 FOR G-5 TO 1 STEP -1:POSITION 23,2
1:7 G:SOUND 9,48,10,4:FO0R T=1 TO 180:N
EXT T:SOUND 0,0,0, n GOSUB 178:NEXT G
839 POSITION 23,21:? -

849 SOUND #,85,6,5

850 POKE 26,8:POKE 19,0:REM RESET REAL
TIME CLOCK

869 REM START OF GAME ROUTINE

870 POSITION 15,21:? PEEK(19):IF PEEK(
19)>98 THEN 488

880 IF PEEK(53279)-6 THEN 400

899 IF OK1-1 THEN 878

999 IF AG-1 THEN 1240

\\ijﬂ S-STICK(M@):IF §-15 OR S=14 OR S=E//

114

SPEED DEMON

(;; $=5 OR §=9 THEN S$=8§1 <‘\

928 S$1-=8§

938 REM READ STICK

949 ON S-4 GOTO 966,970,980,0,990,1040
,1010,0,1030,1049

9508 GOTO 914

960 GOTO 879

979 GOTO 874

980 XI1L=X1+1:Y1L=Y1:P1=1:G0TO0 18768

994 GOTO 874

1600 GOTO 874

1810 X1L=X1-1:Y1L=Y1:P1=3:IF (X1=24 OR
X1=25) AND (Y1=16 OR Y1=17) THEN 8748

1620 GOTO 1674

1638 X1L=X1:Y1L=Y1+1:P1=4:G0T0 1856

1048 XIL=X1:Y1L=Y1=1:P1=2

1658 IF (S=14 OR $=13) AND (X1=24) AND
(Y1=16 OR Y=17) THEN S=7:G0TO 944

1668 REM CHECK COLLISIONS

1676 LOCATE X1L,YTL,Z1:POSITION X1L,Y1

L:PUT #6,71:LX=X1:LY=Y]

1080 IF Z1=17 THEN POSITION X1,Y1:?
AXe =Xy =YL L

596 IF Z1<>32 THEN 11798

1806 REM MOVE CAR

118 POSITION X1,Y1:?2 " " :POSITION XI1L

,Y1L:?2 CR1$(P1,P1):IF P1<>LP THEN GOSU

B 1350

1128 LO=P1: X=X Yl =Y1 L

1138 LF X1=24 AND (Y1=16 OR Y1=17) THE

N LAP1=LAP1+1:SOUND 2,50,12,108:G0SUB 1

70:POSITION 20,21:2 LAPI

1149 SOUND 2,0,0,0

1156 IF LAP1=3 THEN POSITION X1,Y1:? ~

:SOUND @,P,0,0:6G0SUB 1294:G0TO0 644

1
1
1

1160 GOSUB 123@:G0TO0 874

1178 K=INT(RND(@)*3+1)

1180 FOR I-14 TO @ STEP -2:SOUND 1,109
,B8,1:G0SUB 17@:NEXT I

1198 FOR G=1 TO K:FOR I=1 TO 4:POSITIO
N X1,Y1:? CR1$(I,I):AG=1:G0TO0 878

1200 NEXT I:NEXT G:AG=@:POSITION X1,Y1

\7 CRIS(P1,P1)

115

GAMES

(:;1B GOTO 914 <‘\

1229 REM OIL SLICK PLACEMENT ROUTINE
1238 I-INT(RND(@)*SC+1)

1249 IF I=7 THEN GOSUB 1264

1250 RETURN

1268 LOCATE LX,LY,Z:IF Z=32 THEN POSIT
TON LX,LY:? CHRS$(17):RETURN

1278 POSITION LX,LY:PUT #6,Z:RETURN
1280 RETURN

1298 POSITION 26,268:? "GAME OVER!" :POS
ITION 25,21:2 © 3

1388 POKE 53279,40

1318 S2=PEEK(53279):IF §2<>6 THEN 13148
1329 GOTO 4948

13308 RETURN

1349 REM CAR TURNING SOUND

1350 SOUND 2,5,0,8:SO0UND 3,2,10,8:FO0R
X=1 TO 1@:NEXT X:SOUND 2,0,0,08:S0UND 3
,8,0,8

1368 RETURN

TYPO TABLE

Varfable checksum = 1865147

Line num range Code Length
80 - 194 QP 480«
200 - 318 JG 394
320 - 43¢0 XV 436¢
449 - 5540 0y 568¢
560 - 6640 B X 514¢
6740 - 138 PS 543e
149 - 8540 AF 516
860 - 9748 NF 493
984 - 1999 X2 4620
11080 - 1194 0A 524°
1200 - 1318 FT 353
13240 - 13680

GX ¢inl® 444//

116

BATS

Bats

The objects of Bats is to fly your bat through a cavern while avoiding

the walls and eating insects. You score points for every insect eaten.
Pressing the fire button causes your bat to fly higher, releasing it
causes the bat to fall. Your bat always flies steadily forward. You start over
after you either score 300 points or you lose your bats. You lose all points if
you hit a stalactite. There are poison bugs, the color of your bat. Eat one of
these and your bat dies, you lose all points, and 100 penalty points are
deducted.
The cavern narrows as the game progresses. You get a bonus bat for every
1000 points, with four bonus bats maximum. The game ends when all bats are
dead. by Stan Ockers

System requirements: 16 RAM, joystick

(]ﬂ REM ***x*xxx BATS %% % %% %% xx \

28 REM BY STAN OCKERS 3-82
30 DIM ZZ$(32):FOR I~1 TO 32:READ A:2Z
$(I)-CHRS(A):NEXT I:GOSUB 1248:CLR
49 DATA 104,104,133,204,104,133,263,18
4,133,206,104,133,205,162,4,160,90
50 DATA 177,283,145,205,136,208,249,23
9,204,230,206,202,208,248,96
60 TRAP 6@:? "# PLAYERS " ::POKE 764,25
5:INPUT NP
78 REM ** PM GRAPHICS *=*
80 DIM DS(1),FS((INT(ADR(DS)/1824)+1)x
1824-ADR(DS)—1),PM$(384),M$(128),P$(12
8),MMS$ (8)
99 RESTORE 10@:FOR I=1 TO 8:READ A:MMS$
(I)=CHRS(A):NEXT I

168 DATA 3,3,12,12,48,48,192,19
\l}u PMS=CHRS (@) :PMS(384)=CHRS (@

2
) :

.PMw

117

GAMES

ﬁ-PMS:M$=PMS:P$=M$ \

129 REM ** MISSILE COLORS =**

138 POKE 764,14:POKE 7085,39:PO0KE 766,5

4:.POKE 787,78

149 REM *=* VBI ROUT. TO MOVE MISSILES
* X

158 FOR I-=1536 TO 1566:READ A:POKE I,A
:NEXT I

168 DATA 1084,160,14,162,6,169,7,76,92,
228,90,1206,150,180,162,3,222,10,6,189,
19,6,157,4,2088,202,16,244,76,98,228
170 REM ** BAT IMAGES **

180 DIM BATDNS$(5):BATDNS=PS$:FOR I=2 TO
4:READ A:BATDNS(I,I)=CHRS(A):NEXT I
199 DATA 24,165,66

2909 DIM BATUPS(5):BATUPS=PS:FOR I=2 TO
4:READ A:BATUPS(I,I)=CHRS(A):NEXT I
218 DATA 66,165,24

22p POKE 54279,ADR(PMS$)/256:POKE 559,4
6:POKE 53277,3:POKE 623,4:A=USR(1536)
239 REM ** STALACTITES AND STALAGMITE
s * X

240 DIM CS$(42),U$(42) :C8=""*x*x***§opx*=*xx
ol e | e R B T e B B B B o 1 A B 1
:C$(I+14)=CHR$(ASC(CS$(I))-32)

250 US(I+14)=CHRS(ASC(US(I))-32):C$(I+
28)=CHRS$(ASC(C$(I))+128):US$(I1+28)=CHRS
(ASC(U$(I))+128):NEXT I

26@ DIM P(NP),SCORE(NP),TOTAL(NP),BN(N
P),BONUS (NP)

278 W=7:P=f:POKE 82,0

288 FOR I=1 TO NP:SCORE(I)=8:TOTAL(I)=
@:BN(I)=3:BONUS(I)=1000:NEXT I:NXTCV=3
ge*NP

298 REM ** CHANGE WIDTH OF CAVERN **
308 IF W>3 THEN W=W-1

319 GOSUB 6640

320 P=P+1:IF P>NP THEN P=1

338 IF BN(P)=08 THEN 324

340 M$S=PMS:FOR I=0 TO 3:MS(YST+5*W+W*
(3-1))=MM$(2*I+1,2*I+2):NEXT I

350 REM =** MAIN LOOP **

\jﬁﬂ POKE 656,1:POKE 657,22:? " PHIIA:/

118

(ﬁ;yslick" i\\

3780 IF STICK(#)<>13 THEN 378

380 REM ** SCORECARD **

390 ? CHRS$(125):G0SUB 108@:POKE 656,0:
POKE 657,26:? "PLAYER #" ;P

489 POKE 656,1:POKE 657,24:? "Round
Total”;:GOSUB 11098

419 POKE 53248,30:YPOS=YST+2@8:POKE 532
78,0:7T=0:DI8=12

429 FOR XP0S=47 TO 2@@:POKE 53248, XP0S
:IF STRIG(@)=@ THEN YPOS=YPOS-1:P§$(YPO
S)=BATUPS

439 IF STRIG(@A)=1 THEN YPOS=YPOS+1:P$(
YPOS)=BATDNS

449 IF PEEK(53256)>8 THEN POKE 1546,0:
TOTAL(P)=TOTAL(P)-10808:G0T0 576

450 IF PEEK(53257)>8 THEN POKE 1547,8:
GOSUB 1138

46@ IF PEEK(53258)>0 THEN POKE 1548,0:
GOSUB 1134

478 IF PEEK(53259)>8 THEN POKE 1549,0:
GOSUB 1138

488 IF PEEK(53252)>08 THEN 5780

498 NEXT XPOS:P$=PM$
\jﬁﬂ IF SCORE(P)<30@ THEN 4190 <1)

119

GAMES

(;}n TOTAL(P)-TDTAL(P)+SGUHE(P):SCOHE{:\
)=8:GOSUB 1118

529 IF TOTAL(P)>BONUS(P) AND BN(P)<4 T

HEN BONUS(P)=BONUS(P)+18@8:BN(P)=BN(P)

+1:60SUB 1680:DIS=10:T=30:G0SUB 796

539 FOR I=1 TO 3@:GOSUB 1126:FO0R J=1 T

0 36:NEXT J:GOSUB 1180:NEXT I

549 IF P=NP THEN 300

550 GOTO 320

568 REM ** LOSE A BAT **

579 DIS=18:T=9:GOSUB 794

580 YPOS=YPOS+1:P$(YPOS)=BATDNS:POKE 5

3278,8:SO0UND 1,YPOS,108,18:IF PEEK(5325

2)=8 THEN 588

599 GOSUB 8@@:P$~PM$:SCORE(P)=B:BN(P)=

BN(P)-1:60SUB 1@8@:IF BN(P)=@ THEN POK

E 656,0:POKE 657,6:? * "“:G0SUB 834@
668 GOSUB 109@:FOR I=1 TO NP:IF BN(I)>
@ THEN 53¢

619 NEXT I:GOSUB 1158:GRAPHICS 17:POSI

TION 5,2:? #6;"[JfmE OvEE]" : FOR I-1 TO N

P:POSITION 3,2+2%I:? #6;"[Jlayer #";1I;

628 7 #6:" = ";TOTAL(I):NEXT I:POSITIO

N 3,232 #6:"PRESS ANY KEY”:

638 FOR I=-1 TO 3@@:NEXT I:GOSUB 82@:IF
FL=8 THEN 639

640 GOTO 270

650 REM ** DRAW CAVERN =+

660 GOSUB 115@:GRAPHICS 2:G0SUB 117@:P

OKE 77,8

678 DL-INT(RND(B)*(8-W))+1:YST=8*(DL+

1)

689 FOR X=8 TO 19:GOSUB 776:Y=@:FOR I-

R+7-DL TO R+6:POSITION X,Y:? #6:C8(I,T

J Y=Y+ 1 NEXT ‘1

698 FOR I=1 TO W:POSITION X,Y:? #6;"
:Y=Y+1:NEXT I

780 IF DL+W>=1¢ THEN Y=Y-1:POSITION X,

Yoo g6 e 0070 728

710 GOSUB 770:FOR I=R TO R+9-DL-W:POSI

TION X,Y:? #6;U$(I,1):Y=Y+1:NEXT I

720 IF DL<=1 THEN DL=-2:G0TO 750

730 IF DL>=18-W THEN DL-9-W:GOTO 7504//

120

BATS

(;;a DL=DL+INT(RND(B)*3)-1 ﬁ‘\
750 NEXT X
768 RETURN
778 R=INT(RND(B)*6)*7+1:RETURN
780 REM ** SOUND SUBR'S =**
799 FOR I=15 TO @ STEP —1:SOUND @,I,DI
S,I:FOR J=1 TO T:NEXT J:NEXT I:RETURN
809 FOR I-16 TO 2 STEP —2:SOUND #,RND(

#)*255,8,I:SO0UND 1,RND(M)*255,8,1:
J=1 T0 3@:NEXT J:NEXT I
819 SOUND 9,0,0,8:S0UND 1,0,0,0:RE

829 RESTORE 105@:L8=308:LL=5:G0SUB
RETURN

830 RESTORE 10@@:LS=-2@:LL=10

849 FL-0

850 READ I,J:IF I=3 THEN RETURN
860 IF I-@ THEN 896

870 IF PEEK(53775)<255 THEN FL=1:R
N

88@¢ SOUND @,I,10,10:SO0UND 1,I-2,140
898 FOR I=1 TO J:FOR K=1 TO LS:NEX
NEXT I:SOUND @,0,0,0:S0UND 1,0,0,80
998 FOR I-1 TO LL:NEXT I:GOTO 854
91¢ RESTORE 1414:LS=12:LL=12:G0SUB
929 IF FL=1 THEN RETURN

930 RESTORE 1@3@:GOSUB 844

949 IF FL=1 THEN RETURN

950 RESTORE 1010:G0SUB 849

968 IF FL=1 THEN RETURN

979 RESTORE 1@40:GOSUB 844

988 IF FL=1 THEN RETURN

99@ FOR I=1 TO 3@@:NEXT I:GOTO 914
10008 DATA 243,4,243,4,243,1,243,4,
4,217,1,217,4,243,1,243,4,255,1,24
, 3

g1 DATA 243,1
,204,1,162,1,0
UL A I e b
g2@ DATA 243,
5 e
g3
, 3

— v — — — - D

s 72
o
182
1k 74
BIASTISRIGIZT 1 2
@ DATA 136,1,1
)

(E

FOR
TURN
8440:

ETUR

, 6
T oK

8440

204,
3,6,

/

121

GAMES

1048 DATA 162.1,204,1,162,1,121.1,24;7\

4,3,3

1950 DATA 81,4,85,2,1082,1,168,1,121,6,

188,1,182,1,81,2,81,2,858,2,102,1,1088,1

p121,8

1860 DATA 168,2,91,2,102,2,188,2, 121 1

o 128G RTE ST 2 10001 SR, 1551020 28, 215 2 8 A 1

2 =4y k20080, 35 3

1878 REM ** SUBR. TO INDICATE BATS LE

FT *=*

1080 POKE 656,08:POKE 657,6:2 - iy

:POKE 657,6:FOR I-1 TO BN(P):? "+ ;::N

EXT I:RETURN

18949 PDKE 656,1:POKE 657,5:? SCORE(P);

2 :RETURN

llﬂﬂ PUKE 656,1:POKE 657,12:2 TOTAL(P)
HETUHN

lllﬂ POKE 656/, 1:P0OKE 657,5:2 *

RETURN

1128 POKE 656,1:POKE 657,12:?

:RETURN

1130 GOSUB 79@:POKE 53278,0:SCORE(P)=S$

CORE(P)+25:G0T0 109¢

1149 REM ** SUBR. TO REMOVE PM GR. **

1150 POKE 53277,08:PO0KE 54272,0:FO0R I=5

3261 TO 53264:POKE I,@:NEXT I:RETURN

1160 REM ** SUBR. TO INSERT PM GR. **

1178 POKE 53277,3:POKE 559,46:START=(P

EEK(186)+1):POKE 756,START

1188 REM ** ALTER DISPLAY LIST **

1199 A=PEEK(560)+256*PEEK(561)

1200 IF PEEK(A)<>66 THEN A=A+1:G0TO0 12

g

1218 POKE A,70:POKE A+3,6:POKE A+4,6:P

OKE A+5,6

1228 RETURN

1238 REM ** CHANGE CHARACTER SET =*=*

1249 POKE 106,PEEK(166)-5:GRAPHICS @:8S

TART=(PEEK(186)+1)*256:P0OKE 756,START

/256 :POKE 752,1

12509 20 INTTTALTZING: | . “

1260 A=USR(ADR(ZZ$),57344,START):RESTO

Qz 1209 | iy

122

BATS

1279 READ X:IF X=—-1 THEN RESTORE :HE;;\

12808 FOR Y=¢ TO 7:READ Z:POKE X+Y+STAR

T,Z:NEXT Y:GOTO 12749

1298 DATA 32,255,255,127,127,126,62,62

, 60

1308 DATA 404,60,28,28,24,8,8,8,8
1319 DATA 48,255,127,126,60,56,24,8,38
1329 DATA 56,8,24,28,124,124,254,254,2

55

1330 DATA 64,60,126,126,126,126,126,12

7,255

1348 DATA 72,16,16,16,16,16,24,60,680
1350 DATA 86,255,255,255,255,255,255,2

59,259

1360 DATA 88,0,24,24,165,165,66,66,0

1378 DATA -1

TYPO TABLE

Variable checksum = 1034821
Code

Line num range

14 - 10880
119 - 208
2149 - 284
294 - 400
410 - 504
5148 - 5940
600 - 689
690 - 8040
819 - 919
924 - 1039
1049 —
1124 =120
1224 - 13380
- 1378

DF
EF
0X
ué
BE
KF
LG
FH
TW
YJ
HK
Mz
GD
EY

Length

522
518
551
918
502
550
582
606
514
444
509
5240
463
112

123

BONUS GAMES

Tie-Fighter

ie-Fighter is a game for the ATARI 400 or 800 computer requiring
Atari BASIC 16K for cassette or 24K for disk system. The object of

the game is to destroy the Tie-Fighters before they destroy you and
your Rebel Base. You have a pilot’s perspective into space, with cross-hairs in
the middle of the screen. An enemy Tie-Fighter appears and approaches. By
moving the joystick you can maneuver to bring the enemy into your sights.
Push the button to fire at him. If you don't hit the Tie-Fighter directly it may
take several shots to bring him down. If he manages to escape your pursuit (go
off the screen) he will join other successful fighters attacking your base. If 10
Tie-Fighters get past you, your base is destroyed.

This game has four levels of difficulty, but as you get better the game speed
will continue to increase even beyond level four. You start out the game with
40 units of energy. Each time you fire, the energy will go down one unit. When
the energy runs out or when 10 Tie-Fighters have escaped, the game will be
over. For every 10 points (or hits), your energy will be refueled to 40 units again
and all misses will be cleared. There is a time limit for you to destroy the Tie-
Fighters. When the timer runs out, the Tie-Fighter on the screen will be
cleared and it counts as if you had let the Tie-Fighter escape. Pushing the space
bar while you are playing will freeze the game. Pushing the space bar again will
enable you to continue where you left off.

Notice the smooth animation of the Tie-Fighter. This is due to the fast
string-handling ability of Atari BASIC. The PM$ is defined to be the
Player/Missile Base. When a player needs to be moved, all the program has to
do is to assign the player’s data(PO$) to the PM$.

Variables:

A — check collision flag.

C — sound counter.

E — the units of energy.

H — horizontal movement flag.

HARDERS — level of difficulty.

124

TIE FIGHTER

MI — misses (Tie-Fighters escaped).
PO — location of player within Player/Missile Base.
PO$ — Player @ data.
PM$ — Player/Missile Base.
R — random number.
S — STICK (@)
SC — score or hits.
T — units of time.
V — vertical movement flag.
X — horizontal coordinate of Player @.
Y — vertical coordinate of Player @.
by Jimmy and Tommy Sa

System Requirements: 16K RAM, joystick

(10 REM ***TTE_FIGHEER""" \

20 REM BY JIMMY AND TOMMY SA

30 GOSUB 1P49:GOSUB 25@:GOSUB 469:GOTO

118

48 REM

50 SOUND B,1,4,6:FOR I=-1 T0 4 STEP 3:C

OLOR I:PLOT @,89:DRAWTO 75,37:PLOT 159

,89:DRAWTO 75,37:NEXT I:E=E-1

60 POKE 53278,15:POKE 53249,

70 IF A>8 THEN SOUND ¢,0,0,0:G0SUB 544

80 IF E=@ THEN POP :POKE 53248,0:G0T0

99

99 ? KR MISSES ;' B
i e ML ' [t ime|

a7

190 REM

118 POKE 77,0:POKE 53248 ,X:PMS(PB+Y,P@
+Y+7)=P@$:SOUND @,100,24,4*(S<>15);:P0¢
KE 7089,1108-(R<@.1)*1190

128 SOUND 1,206,8,1:C=C+1:T=T-1:R=RND (@
) :Y=Y+V:X=X+H*HARDERS:S=STICK(#)

139 IF T<1 THEN GOSUB 7508:G0T0 118

149 IF C>6-—HARDERS THEN SOUND 1,230,140

Ka:c-n J

125

BONUS GAMES

arr: [t i me AR R

16 IF X>264 OR X<47 OR Y>90 O0R Y<14 T
HEN GOSUB 7580

178 IF STRIG(@)=@ THEN POKE 53249,1
A=PEEK(53260):G0SUB 50:SOUND 9,0,4,
188 V=—(S=13 OR S$=5)+(S=14 OR $=14)
19 H=-(S=7 OR $=6)+(8S=9 OR S§=11)

209 IF V=8 THEN V=—(R>0.98)+(R<@.97)
219 IF H=0 THEN H=—(R>0.98)+(R<@.97)
22P IF PEEK(764)<>255 THEN GOSUB 8140
236 GOTO 11¢

248 REM

250 GRAPHICS 7:POKE 752,1:POKE 82,0
268 POKE 7@8,106:SETCOLOR 2,6,0:COLOR
1

278 A=PEEK(560)+PEEK(561)*256+4

2809 IF PEEK(A)<>66 THEN A=A+1:G0TO0 28¢
299 POKE A,708:POKE A+3,6:POKE A+4,6:P0
KE A+5.,6

300 RESTORE

318 FOR I=1 TO 28:READ A,R:PLOT A,R:RE
AD A,R:DRAWTO A,R:NEXT I

328 DATA 75,8,75,33.175,42,15,76,78.42,
83,42,83,42,83,40,83,38,139,38,67,42,6
17,40,67,38,19,38,67,36,67,33,67,33

339 DATA 72,33,78,33,83,33,83,33,83,36
,67,42,72,42,113,34,113,42,1085,41,105,
35,97,36,97,40,906,39,90,37,59,37

349 DATA 59,39,52,406,52,36,44,35,44,41
,35,42,35,34,71,48,79,48,717,53,73,53,1
1,,98,79,58,73,63,77.63

350 DATA 77,14,73,14,71,18,79,18,73,23
w17,23,11,28,79,28,72.28

360 COLOR 2:FOR A=1 TO 1@:PLOT RND(@)*
159, RND (@) *89:NEXT A

378 COLOR 1:FOR A=1 TO 2@:PLOT RND(H)*
159,RND(@)*89:NEXT A

3880 RETURN

399 REM
400 DIM PMS(2048) ,PAS(7):X=70:Y=28

418 A=ADR(PMS$)

429 PMBASE=INT(A/1824)*1624

\:FB IF PMBASE<A THEN PMBASE=PMBASE+1?E)

19:
g

126

TIE FIGHTER

G)

449 S=PMBASE-A
459 POKE 559,46:POKE 54279 ,PMBASE/256:
POKE 784,102:POKE 53277,3

460 PMS=CHRS (P):PM$(2048)=CHRS (B):PMS$ (
2)=PM$

478 RESTORE 494

489 FOR I-1 TO 7:READ A:P@S$(I,I)=CHRS
A):NEXT I

49 DATA #,153,189,255,189,153,8

508 P@=S+512:PMS(PO+Y,PP+Y+7)=P@$:POKE
53248,X:PMS(P@+183,PA+183)=CHRS(28)
519 GOSUB 660

5208 RETURN

530 REM

549 SOUND 1,8,8,80

556 FOR I-1 TO 3@:POKE 7@4,RND(§)*208+
14:NEXT I

568 FOR I-~1 TO 3@:POKE 704,RND(8)*2088+
14:PMS (PB+Y+I/3,PA+Y+I/3)=CHR$ (RND(H)*
20)

579 SOUND @,2@6+1,8,16-I/2:SOUND 1,9*I
,16,16-1/2:S0UND 2,200+1,8,15:NEXT I
QSG SOUND @,0,0,08:SOUND 1,0,0,0:S0UND

L 4

127

BONUS GAMES

ﬁu.o,n x

590 PM$S(P@+Y,PA+Y+12)~" V@@
REM 12 HEART-CHARACTERS

680 SC=SC+1

610 IF SC/18<>INT(SC/18) OR SC=@ THEN

620 HARDERS=HARDERS+1:E=40:MI=0

638 FOR I-1 TO 6@:POKE 53279,RND(@)*2:

NEXT I

649 X-=INT(RND(@)*10@+70):Y=20:PM$(PO+Y

»PB+Y+7)=P@AS:POKE 704,102:POKE 53248,

LR A BMWARNING ROUTINE

660 ? "N RED LYSFRL"

678 FOR R=1 TO 2:FOR I=1 TO 2:SOUND @,

116*I,108,8:FOR A=1 TO0 2@:NEXT A:SETCOL

OR 4,4,6

688 FOR A=1 TO I*28:NEXT A:NEXT I

690 SOUND R,0,0,08:FOR A=1 TO 5@8:NEXT A

:NEXT R

768 T-10@+HARDERS*1@8+1@8@* (HARDERS=1):V

=1:SETCOLOR 4,0,0:S0UND ¢#,0,0,0

718 ? " EETIER] MEUSRES: ;1w By
T i oEn

MM ?

728 FOR I=-1 TO 1@@:NEXT I
730 SOUND 1,24,8,1:P0OKE 53248,X:RETURN

IR IR BESCAPE ROUTINE

750 SOUND #,0,08,0:SOUND 1,0,0,0:MI-MI+
1

7680 PMS(PA+Y,PA+Y+12)="[FryVVvVVe"
REM 12 HEART-CHARACTER :

778 FOR I=1 TO 18:POKE 53279,RND(0)*1:
NEXT I

788 IF MI-18 THEN POKE 53248,0:PO0P :GO
T0O 929

799 GOSUB 64@:SOUND 1,208,8,1:RETURN
866 REM

819 SOUND 9,0,0,0:SOUND 1,0,0,8:P0KE 7
64,255

828 IF PEEK(764)=255 THEN 828

830 SOUND 1,26,8,1:POKE 764,255: RETURN

_

128

TIE FIGHTER

(?;ﬂ (NA/MGAME OVER ROUTINE

850 SOUND 0,0,0,0:P0KE 53248, 08:POKE 53
Z 180515

ELT s S A score 2 ;S8C:?

Gl I A v r e s st riggeriatofplayMagain![EE
POP

880 POKE 77,128:X=USR(ADR(RAINBOWS),1)
890 IF STRIG(@)=1 THEN 888

948 RUN

CRN'B NS BREBEL BASE DESTROYED

929 ? "H rebe | IEEEKM! 8 under [
930 COLOR 4:FOR I=@§ TO 86:PLOT @,I:DRA
WTO 159,1:POKE 712, (RND(B)<@.5)*50:80
UND #,1%*6,8,4:NEXT I

94p SOUND @¢,06,0,8:FOR I=1 TO 3

95¢ FOR A=@ TO 3@0:SOUND @9,A*8,8,28-A/
2+1:SOUND 1,A*8,16,208-A/2+1:POKE 712,R
ND(@)*255:NEXT A

96@ NEXT I:SETCOLOR 4,0,8

979 GRAPHICS 17:POKE 87,08:POKE 82,2
988 ? :? " HIKEIEREERE

:? 72 v ENREERENENENL c GOTO 850
999 SOUND 1,0,0,0:SOUND 6,0,0,80

@ FOR I=1 TO 2@6@:NEXT I

g GOTO 924

ST nouTine -

@ GRAPHICS 17:DIM RAINBOWS(32)

@ HARDERS=1:E=40:8SC=@0:MI=F:V=1:H=1
@ RESTORE 1084

@ EOR I=1 TO 32:READ A:RAINBOWS(I,I
HR$(A):NEXT I

80 QATA 164,104,104,72,162,57,160,40,
3,0,210,101,20,141,25,208,141,18,212
9@ DATA 136,2¢@8,242,202,208,237,104,
233,1,208,228,96

g POSTTLON "2,3: 2 #6
@ POSITION 2,15:? #6;"
AT R s ¢ |ect for
)
]

(AT RN s tart to playQ
SOUND #,254,10,108:8S0UND 1.255.1f;/

129

BONUS GAMES

a N
1150 POSITION 4,18:? #6: <{N-(FIIEN-

1160 POSITION 11,3:? #6;HARDERS:A=PEEK
(53279)

1178 IF A=6 THEN T=1@B+HARDERS*16+100*
(HARDERS=1):SOUND @,8,8,8:SO0UND 1,0,0,
g:RETURN

1188 IF A=5 THEN HARDERS-HARDERS+1:IF
HARDERS>4 THEN HARDERS=1

11989 A-USR(ADR(RAINBOWS),1)

1208 GOTO 1168

1219 DATA 262,189,1,6,157,2,6

1229 DATA 224,0,208,245,173,61,6

1236 DATA 141,1,6,162,0,189,18,6,157,9
,6,232,224,7,288,245,173,62,6,141,16,6
,169,0

1248 DATA 141,60,6,238,60,6,104,176,190
4,76,98,228

TYPO TABLE

Variable checksum = 30668088 .

Line num range Code Length
10 - 94 EP 500

180 - 178 DY 547
1840 - 294 CH 527»
igp - 360 EL 500 -
378 - 489 HR 436
499 - 5748 BE 52~
5840 - 6780 YO 607«
6840 - 168 TL 5289
174 - 87140 G2Z 9515¢
884 - 9640 KO 530¢
9740 - 108848 01 530
18940 = Ta MM 513

1180 - 1249 00 265
. e

130

TIN PAN ALLEY CATS

Tin Pan Alley Cats

fter you've worked hard all day and programmed all night, the last
Athing you need is to have your few hours of sleep disturbed by alley

cats howling on your back fence. There are three of the buggers—a
green one, a white one and a pink one. Every now and then one jumps up
where you can hit it with a tin can, if you’re quick enough.

That’s the scenario for Tin Pan Alley Cats, a one-player game requiring
joystick and 16K RAM. You start out with 25 tin cans that you can kick
toward the fence by pressing the fire button. But first you must move horizon-
tally along the fence to lineup under the cats as they appear and disappear at
random. The pink cat is the fastest, and hitting it scores the most points. The
green cat is slowest, and hitting it yields the least. The cats will appear 35 times
during a game, and the pace quickens as you use up your cans. When you hit a
cat you will see it and hear it, and points will be added to your score.

If you score 2,000 points, you get five extra cans, and the cats appear five
extra times. The bonus is repeated if you reach 3,000 and 4,000 points. The
high score of your session is saved after each round. The difficulty of the game
can be adjusted by changing the value of TUF in lines 280-310.

Thanks go to Stan Ockers for his ideas on vertical blank interrupts
(ANTIC, June 1982). We modified the VBI into a fast joystick routine.

We also thank Jerry White for his ideas on sounds and the ATARI

(ANTIC, October 1982). by Rick Bloom and Rob Glassman

System Requirements: 16K RAM, joystick

18 REM ®=»s+xxs« "TIN PAN ALLEY CATS **

29 REM BY RICK BLOOM AND ROB GLASSMAN
1983
a8 ? "E":POKE 752,1

131

BONUS GAMES

(’}B

(1)

120

158

155
160

174
1840
2540
198
200
205
214
224
230
249
245
2540
260
2749
289
290
300

1180 VTAB=PEEK(134)+256*PEEK(135):ATAB
=PEEK (14§

130 FOR A 6 TO 1582:READ ML:POK
ML:NEXT A

148 DATA 104,168, ﬂ 62, 01851647 B20:2 5
22807952 0 202], 49, 13,128,2,240

1,246,13,298
144,
76,98,228

L ready IR

+0,08,8:FOR W=1 TO 1@P:NEXT W:RETURN

318 READ X,Y,Z:IF X=0 THEN 349
320 IF Y=§ THEN SOUND 1,0,6,0
339 GOTO 384
348 IF Y-8 THEN SOUND 1,0,0,0
358 POKE 546,12
360 IF PEEK(548)<>@ THEN 360
378 GOTO 3640
380 POKE 540,12
\i?ﬂ Z=PEEK(540):1IF Z-0 THEN 414 4//

DIM POAS(1),P18(1),P28(1),P38(1), M‘\

§)+256*PEEK(141)
(N{'W" ' VBI JOYSTICK ROUTINE

ok ¥

DATA 18,230,209,166,209,142,3,208,
9,176,7,198,209,166,209,142,3,208,

GOSUB 87@:G0SUB 964
GRAPHICS 17:POSITION 4,18:? #6; [

FOR X=1 TO 6@@:NEXT X
BONUS=@:HSCOR=@:X=USR(1536):60T0 1

(NS MCAT HIT SOUND

FOR X=40 TO 2@ STEP -5

FOR J=7084 TO 7@6:POKE J,X:NEXT J
SOUND 1,X,12,18

FOR Z=1 TO0 1@:NEXT Z

NEXT X

FOR Y=15 TO 55 STEP §

FOR J=7@84 TO0 7@6:POKE J,Y:NEXT J
SOUND 1,Y,12,198

FOR A=1 TO 8:NEXT A
NEXT Y

SOUND 1.0,0,0:RETURN
(R """ "SONG ROUTINE
TERIRX HEN SOUND 9,0,0,0:SO0UND 1

132

TIN PAN ALLEY CATS

(:;ﬂ SOUND #,X,18,12:SO0UND I.Y.lﬂ.B:G;:\
0 396

419 SOUND 9,0,0,0:G6G0T0 309

428 DATA 81,162,6,0,162,3,85,162,6,40,1
6:2 135559 6 20176 SR 1H 0 ed el 202 1 Tt a0 2 T
3,1948,162,6,0,162,3,1082,162,6,0,162,3
430 D ATA 962 17512000052 87008, 108,516 2° 6.5
,162,3,108,162,3,1082;,162,6,0,162,3,96,
2078002 1T 53 0, 2000 b 2 e8

449 DATA 85,173,36,0,0,9,0,173,3,81,17
3.6,0,217,3,80,;113,6,08,173,3,96,217,6,
8,217,3, 102,217,650, 173,38 108 1.7 3.6
450 DATA 9,173,3,102,173,6,6,173,3,96,
217,12, 85073535 188551 7:35 650051 78 7318851
73,3, 102,173,6,0,173,3,96,217,6

468 DATA @,217,3,85,217,6,0,217,3,81,1

612 20— 1:=480
470 REM
489 Z-USR(MOVE,M+YM3+DYM3,DM3,LM3,63):
Z=USR(MOVE ,M+YM3+LM3+DYM3,B,-DYM3,63)
499 YM3=YM3+DYM3:XM3=XM3+DXM3:DXM3=0:0D
YM3=0:RETURN

AU " THE MAIN LOOP!!} ***
Qa REM J

133

BONUS GAMES

(;;ﬂ YM3=93:XM3=06:POKE 53278,1:PO0KE 5;;\
51,PEEK(269):POKE 53255,0: TIME=@:SETCO

LOR 4,8,INT(CNS/5)

530 REM

549 A=-(3*RND(@))+1:0N A GOTO 550,568,

570

558 TIME=1:X=(15@0*RND(@))+45:POKE 5324

8,X:G0TO0 584

560 TIME=2:X=(15@0*RND(@))+45:POKE 5324

9,X:G0T0 5840

570 TIME=3:X=(150*RND(@))+45:POKE 5325

g,X

580 N=INT((26+RND(@))+20):FOR X=1 TO 2

5:SO0UND 3,N,10,8:NEXT X:SOUND 3,6,08,40

598 TUF=25:IF CNS<=2@ THEN TUF=TUF-2

6608 IF CNS<=15 THEN TUF=TUF-4

618 IF CNS<=18 THEN TUF=TUF-6

628 IF CNS<=5 THEN TUF=TUF-8

638 GOSUB 7540

640 POKE 53248,0:PO0KE 53249,0:POKE 532

50,8

6506 POKE 7084,72:POKE 7085,14:P0OKE 706,1

84

66# FOR X=1 TO 15@:NEXT X:GOSUB 1478:1

F CNS=0 THEN 1146

670 KIT=KIT—-1:IF KIT=0 THEN 11440

688 POKE 77,8:G0T0 514
RN M"" COLLISION ROUTINE **°

698 REM
700 GOSUB 2@@:D3$=DP2$:P3S(YP3,YP3+LP3
~1)=D3$:M$=" " :M$(128)=M$:M$(2)=M$

718 ON TIME GOTO 720,730,748
729 SCOR=SCOR+2@@:RETURN
739 SCOR=SCOR+1@@:RETURN

749 SCOR=SCOR+5@:RETURN

115 1cn REREICETONER

758 FOR Z=1 TO0 TUF:RB=PEEK(2689)+14

7680 IF STRIG(P)=@ THEN D3$=D@3$:P3S(YP
3,YP3+LP3-1)=D3$:SOUND 4,606,12,12:M$(Y
M3,YM3+LM3-1)=DM33$:G0TO 828

778 D3$=-DP28$:P3S(YP3,YP3+LP3-1)=D3$

780 ON TIME GOTO 790,800,816
\1?0 FOR X=1 TO 5:NEXT X:NEXT Z:HETUH?//

134

TIN PAN ALLEY CATS

(;;B FOR X=1 TO 1@:NEXT X:NEXT Z:RETUR;\
819 FOR X=1 TO0 2@:NEXT X:NEXT Z:RETURN

829 MMR=1:CNS=CNS—-1:SOUND 0,0,0,80

825 IF RB>=2108 OR RB<=4@ THEN RETURN
830 POKE 53255,RB:DYM3--6:G0SUB 478:1F
PEEK(53259)<>@ THEN POKE 53255,@:60T0
699

849 MMR=MMR+1:IF MMR=2@ THEN 7780

850 GOTO_83
860 REM
878 GRAPHICS 2+16:POSITIO g T

IN CAN *:POSITION 8,8:? #6;"
by BLOOM"

889 POSITION 2,9:? #6:" [rob FEEER

man

899 C1-8:02=-166:C3-86:C4=52:C5=@:CNT=1
9¢@ POKE 7@88,C1:POKE 769,C2:POKE 7148,C
3:POKE 711,C4:POKE 712,C5

919 CNT=CNT+1:IF CNT=1@ THEN 930

929 TEMP=C1:C1=C2:C2=C3:C3=C4:C4=TEMP:
FOR X=1 TO 1@@:NEXT X:GO0TO 9080

9309 RESTORE 42@:GOSUB 3040

949 RETURN

RN - TITLE SEREEN 42
968 GRAPHICS 18:POSITION 8,1:7? #6;"E

...":POSITION 1,3:? #6;"GREENSLEE
VES":POSITION 8,4:? #6;" ... NS
97@ POKE 788,72:POKE 7@9,198:POKE 718,
120:POKE 711,12:POKE 712,8

98¢ POSITION 1,5:? #6;"FRISKY WHITE":P
0SITION 8,6:? #6:" . . [MEECER" :POSITI
ON 1,7:2 #6:"PINK PANTHER"

999 POSITION 7,8:? #6:” .. A TEEIER
1900 RESTORE 42@:GOSUB 314

1616 POSITION B,16:7 #6:"AND X AS. ..

CAN CAN |

1828 RESTORE 42@:GO0SUB 31@:RETURN
WEYBLIN ©° DISPLAY LisT '*°

1848 GRAPHICS 21

1658 ST=PEEK(568)+PEEK(561)*256+4:P0K
E ST-1,78:POKE ST+48,65:POKE ST+49, PEE

135

BONUS GAMES

K(568):POKE ST+58,PEEK(561)
1960 NON-PEEK(559):POKE 559,0:CNS=25
1679 POKE 87,1:POSITION 6,0:? #6:" XN
B::scoR

1975 IF SCOR>-2@@@ AND BONUS=¢ THEN GO
SUB 2600

1976 IF SCOR>=3@@@ AND BONUS=1 THEN GO
SuB 21440

1977 IF SCOR>=4@@@ AND BONUS=2 THEN GO
SUB 22040

1086 IF CNS<1 THEN POSITION 13,0:7 #6
"R 9 : CNS:RETURN

POSITION 13,0:7 #6; [EE:" :CNS:RE

POKE 53277, 8:POKE 559, 2

GRAPHICS 2+16:POSITION 6,2:? #6;"
XXX DNNI :POSITION 2,4:? #6;"FINAL SCO
RE " ;SCOR .
1148 NU=SCOR

11580 IF NU>HSCOR THEN HSCOR=-NU:FOR X=-1
TO 5:POSITION B,6:? #6;:”new high scor
“;HSCOR:FOR W=1 TO 58:NEXT W:60T0 11

A | ikt il e
P QNS — 3 - ~ 1
W == -k TR D WO
moEmmaES

8

70

1168 GOTO 1195

11790 POSITION @,6:? #6;"NEW HIGH SCORE

“;HSCOR:FOR W=1 TO 5@:SOUND 2,W,18,18
:NEXT W

1186 POSITION 6,6:7 #6: [NNEDIFIIRTIN
“:HSCOR:FBH W=1 T0 SB:NEXT W:POSITION
,6:7 #6: . HSCOR
1199 FOR W=1 TO 5@:SOUND 2, 51 -W,16,10:

NEXT W:NEXT X:SOUND 2,6,0, B GOTO 1208
1195 POSITION 2,6:? #6 ;" [FENSALEN" :

HSCOR

1200 POSITION 1,8:? #6;"press trigger
for”

1285 POSITION 4,108:? #6;"another game"
1219 IF STRIG(@)=# THEN SCOR=@:BONUS-0
:G0SUB 10640:POKE 53277,3:G0T0 1864

1220 GOTO 1218
Qzaa JA'W° " COUNTDOWN! **° J

136

TIN PAN ALLEY CATS

(7;40 GRAPHICS 18:POSITION 18,6:7 #5:‘?\
RETURN

1249 REM
1258 GRAPH 21

1268 PMBASE=PEEK(106)-12:POKE 54279,PM
BASE:PMBASE=PMBASE*256

1278 N-3:G0SUB 1248

1288 POKE 623,17:POKE 7084,72:POKE 705,
14:POKE 7086,184:POKE 707,138:POKE 5325
6,1:POKE 53257,1

1299 POKE 53258,1:POKE 53259,1:POKE 53
260,64:POKE 53248,08:POKE 53249,0:P0KE

53250,0:POKE 209,128:POKE 53251,40

1300 FENCE=40:8IZE=17

1316 DIM D@AS(SIZE)

1320 RESTORE 133@:FOR I=1 TO SIZE:READ
BYTE:D@$(I,I)=CHRS(BYTE):NEXT I

1330 DATA 248,248,32,248,32,216,80,126
e O 1S P D e el 8 i I

1349 DIM D1S(SIZE)

1350 RESTORE 136@:FOR I=1 TO SIZE:READ
BYTE:D1$(I,I)=CHRS(BYTE):NEXT I

1368 DATA 248,248,32,248,32,216,80,112
,248,249,115,118,124,120,80,80,8¢

1370 DIM D2$S(SIZE)

1388 RESTORE 139@:FOR I=1 TO SIZE:READ
BYTE:D2$(I,I)=CHRS(BYTE):NEXT I

13908 DATA 62,62,8,62,8,54,20,28,28,62,
62,28,28,180,84,20,54

1498 YP3=101:LP3=16

1418 N=2:G0SUB 12449

1420 DIM D3S(LP3)

1430 RESTORE 144@:FOR I=1 TO LP3:READ

BYTE:D3$(I,I)=CHRS(BYTE):NEXT I

1440 DATA 254,130,170,130,186,198,56,5
6,254,186,186,186,186,40,40,108

1450 YM3=93:LM3-4:REM VERTICAL POSITIO
N AND LENGTH OF MISSILE3

1464 DIM DM3S(LM3)

1470 RESTORE 148@:FOR I=1 TO LM3:READ

BYTE:DM3S$(I,I)=CHRS$(BYTE):NEXT I:DM3=A

Cn(nmas)
1480 DATA 192,192,192,102 /

137

BONUS GAMES

1498 OFFSET=PMBASE+512-ATAB)
1508 FOR I=@ TO 4

1518 V3=INT(OFFSET/256):V2=0FFSET-256*

V3

1528 POKE VTAB+2,V2:POKE VTAB+3,V3
1539 POKE VTAB+4,128:POKE VTAB+5,0
1548 POKE VTAB+6,128:POKE VTAB+7,0
1550 VTAB=VTAB+8:0FFSET=0FFSET+128
1568 IF I-3 THEN OFFSET=PMBASE+384—ATA

B

1578 NEXT I

1580 P@S (FENCE,FENCE+SIZE-1)=Dg$

1598 P1$ (FENCE,FENCE+SIZE-1)=D1$

1608 P2$ (FENCE,FENCE+SIZE-1)=D2$

1618 P3$(YP3,YP3+LP3-1)=D3$

1620 M$(YM3,YM3+LM3—-1)=DM3$

1638 FOR I=1 TO LM3:X=YM3+I-1:M$(X,X)-

CHRS (ASC(MS$(X,X))+ASC(DM3$(I,I))):NEXT
I

1640 DIM BS$(17):FOR I=1 TO 17:B$(I,I)=
CHR$ (@) : NEXT I:B=ADR(BS)

1658 N=1:G0SUB 1244

1659 REM
1660 DIM MOVES (38):MOVE=ADR(MOVES) :M=A
DR(M$)-1

16790 RESTORE 16940

1680 FOR I=1 TO 37:READ BYTE:MOVES$(I,I
)=CHR$ (BYTE) : NEXT I

1690 DATA 104,104,133,204,104,133,2083,
104,133,206,104,133,205,104,104,133,24
7,104,1064,133,268

17060 DATA 160,0,177,2083,37,208,113,205
,145,203,200,196,207,208,243,96

1719 GOSUB 1044

1720 DIM D@1$(16),D828(16),003$(16)
1738 DA1$=-D3$

1740 RESTORE 178¢@

1758 FOR I=1 TO 16:READ BYTE:D@2$(I,1I)
=CHRS(BYTE) : NEXT I

1768 FOR I=1 TO 16:READ BYTE:D@3$(I,1I)
=CHRS$(BYTE) :NEXT I

1770 D3$-D@F2$:P3$(YP3,YP3+LP3—-1)=D3§
\1780 DATA 254.136.170,13ﬁ.186,198.562i)

138

~ TINPAN ALLEY CATS

f/;.254,186.186,186.40.40,40.198 <\\

1798 DATA 254,130,170,130,186,198,56,5
6,254,57,57,63,63,32,32,224

DITMECN - s1 UP scheEn
1818 POKE 7,5:CO0LOR 3:FOR X=19 TO0 29:

PLOT @,X:DRAWTO 79,X:NEXT X

1828 COLOR 1:PLOT 14,2:DRAWTO 12,2:PL0O
T 9,3:DRAWTO 13,3:PLOT 8,4:DRAWTO 14,4
:PLOT 8,5:DRAWTO 14,5:PLOT 9,6

1838 DRAWTO 13,6:PLOT 1@,7:DRAWTO 12,7
1849 COLOR 2:FOR X=5 TO 75 STEP 5:PLOT
X, 1T9:DRAWTO X,29:NEXT X:SETCOLOR 4,4,

4:8COR=PF:KIT=35

1850 POKE 711,86:PO0KE 53277,3:POKE 249
,120:POKE 559,46:G0T0 514

20P@ CNS=CNS+5:KIT=KIT+5:BONUS=1

2895 FOR X=1 TO 5:SOUND @,508,18,108:FO0R
Y=1 TO 1B:NEXT Y:SOUND 9,08,6,0:NEXT X
2019 FOR Z=1 TO 2@:NEXT Z:RETURN

2100 CNS=CNS+5:KIT=KIT+5:BONUS=2

2185 FOR X=1 TO 5:SOUND @,508,108,108:FO0R
Y=1 T0 1@:NEXT Y:SOUND @,0,08,08:NEXT X
2119 FOR Z=1 TO 2@:NEXT Z:RETURN

2200 CNS=CNS+5:KIT=KIT+5:BONUS=3

22#5 FOR X=1 TO 5:SOUND 0,50,10,10:F0R
Y=1 TO0 1@:NEXT Y:SOUND #,0,08,0:NEXT X
2210 FOR Z=1 TO 2@:NEXT Z:RETURN

) TYPO TABLE

Variahle checksum = 253154460

Line num range Code Length
10 - 155 RT 507
160 - 25§ I0 381
2640 =378 VH 416
380 - 4540 YZ 594
460 - 5580 MN 5280
564 - 6580 ou 510
664 - 758 0A 397
760 - 8548 EJ 507
864 - 9640 KJ 641
\\» 974 - 1850 vy 552 A/)

139

BONUS GAMES

&

~NO | Moo N
NNNM™—I~NIDN —N
DD DLW < M D O N
EQOFEF>>DooD
S A> << OHE TN

I_noooooooEomD=
OO MM N ™
—r NMID WM~ —N
= = 0N N

S0 --B--8_-5--R_-N_5_3-
OTTD OO N DD
| NN =T IDWO M~ O ™
v g g g - g = O\

4

140

DROP

Drop

Catch the falling faces

ou can never beat this game, just get better and better. It starts slowly
as faces appear at the top of the playfield and fall towards the bottom.

You move a dish laterally with the joystick to catch the faces before
they reach the bottom. If you miss one, that ends your turn.

With every successful catch your score increases, and after a while bonus
points accrue. However, the speed of the game increases too, and it is unlikely
you will ever exceed 1000. A little “falling” sound accompanies the action.

by John Zakour

System Requirements: 16K RAM, joystick

’] REM * * * % % % % % DHOP * %k ok ok ok ok k ok : \

2 REM BY JOHN ZAKOUR
5 GOTO 14¢
18 IF X=2 THEN X=3:RETURN
280 IF X=15 THEN X=14:RETURN
39 RETURN
188 DIM SA(15)
165 GOSUB 19@P:C=1:HI=@
118 FOR N=1 TO 15:SA(X)=B:NEXT N:SA(7)
=1:8A(11)=-1
115 GRAPHICS 1+16:SETCOLOR 4,4,0
116 POSITION 2,5:PRINT #6;"d":POSITION
2,7:PRINT #6;"[§* :POSITION 2,9:PRINT #
o= POSITION 2, V1:PRINT ¢[)
7 POKE 756,64
g Y=19:X=10:DL=1
1 FOR PY=2 TO 18
2 POSITION 4,PY:PRINT #6:"&":POSITIy

141

BONUS GAMES

(1717,PY:PHINT #6;"E~ <‘\

123 NEXT PY

124 DLA=140

125 DY=1:DX=INT(12*RND(1)+5)

127 DX2=INT(12*RND(1)+5):DY2=1

130 DX3=INT(9*RND(1)+5):DY3=1

160 POSITION X,Y:PRINT #6:" #$% "

209 S=SA(PEEK(632))

219 IF S<>@ THEN X=X+S:GOSUB 1@8:POSITI
ON X,Y:PRINT #6;" #$% "

229 POSITION DX,DY:PRINT #6:”"”

238 DL=DL+1

235 IF DL<DLA THEN 244

236 IF C=1 THEN POKE 756,64:C=2:60T0 2
49

238 POKE 756,68:C=1

249 DL=1:POSITION DX,DY:PRINT #6;" ":D
Y=DY+1:POSITION DX,DY:PRINT #6:”“”:POK
E 53762,DY+10:POKE 53763,163

245 IF DY>9 THEN POSITION DX2,DY2:PRIN

T #6;" " :DY2=DY2+1:POSITION DX2,DY2:PR
TINGE 46 e
247 IF DY>15 THEN POSITION DX3,DY3:PRI
NT #6;" ":DY3=DY3+1:POSITION DX3,DY3:P
RINT #6;"1"

25@ IF DY<>19 THEN 2440

255 IF DX=X+1 OR DX=X+2 OR DX=X+3 THEN
260

257 GOTO 266

260 SC=SC+INT(11-DLA):DLA=DLA-0.35:P0S

ITION 1,1:PRINT #6;SC:DX=DX2:DY=DY2:DX

2=DX3:DY2=DY3:GO0TO 1340

265 DX=DX2:DY=DY2:G0TO 1340

266 GOSUB 2@d¢

267 SOUND ¢,164,10,8:F0R S=1 TO 15@:NE

XT S:SOUND @,0,0,0:FO0R S=1 TO 5:NEXT §
:SOUND @,164,10,8:F0R S=1 TO 15@:NEXT

S

268 SOUND @,0,0,8:FOR S=1 TO 5:NEXT S:
SOUND 0,217,108,108:FOR S=1 TO 30@:NEXT
S:SOUND 0,0,0,8

6 ’

270 POSITION 6,8:PRINT #6; [EEE over":
Qauun 1,8,8,0:POKE 77,0

142

DROP

275 IF SC>HI THEN HI=SC \
277 POSITION 5,0:PRINT #6; "INt ton”

:POSITION 6,12:PRINT #6;"HIGH ":HI
279 IF STRIG(8)<>8 THEN 270
280 SC-P:GRAPHICS 1+16:SETCOLOR 4,4,8:
GOTO 124
499 GOTO 204
1960 GRAPHICS 2+16:POSITION 6,8:PRINT
#6:"PLEASE":POSITION 7,9:PRINT #6:" [
=,
!nez POSITION 2,2:PRINT #6:"catch the
falling”:POSITION 4,4:PRINT #6;: [EXIR!
P
1685 FOR I-96 TO0 724
1610 POKE 16384+I,PEEK(57344+1)
1920 POKE 1740@8+1,PEEK(57344+1)
19308 NEXT I
1168 FOR I-16392 TO 16439
1118 READ D
1128 POKE I,D
1138 NEXT I
1149 FOR I=17416 TO 17463
1150 READ D
1168 POKE I,D
Qna NEXT I j

143

BONUS GAMES

(:;89 DATA 126.129,155,129.165.189,1247\

126

1182 DATA 24,24,24,24,24,24,24,24
1184 DATA ¢9,0,0, 63,64,64,63,31

1186 DATA @,0,0,255,40, ﬂ 255,259

1188 DATA 0,0,0,252,2,2,252,248

1189 DATA 0,6,8, ﬂ 24,24,24,24

1190 DATA 0,0,25 153 255,189,129,2%5
1192 DATA B,ﬂ.ﬂ,ﬂ 24,24,24,24

1194 DATA 9,0,0, 63,64,64,63,31

1196 DATA ¢,0,0,255,0,0,255,255

1198 DATA 0,6,0,252,2,2,252,248

1199 DATA 24,24,24,24,0,0,0,80

1208 POKE 756,64

1205 SOUND @,31,108,8:FO0R §=1 TO0 5@:NEX
T S:SOUND 6,0,0,0

1218 RETURN

2009 FOR LD-1 TO 15:SO0UND 2,75,8,14:80

UND 3,76,8,14:POKE 712,PEEK(53778)

2010 POSITION X,Y:PRINT #6; EFER" :FOR §

=1 TO 18:NEXT S:POSITION 4,Y:PRINT #6;

"# $ %"

2020 NEXT LD

2025 SOUND 9,9,8,8:SO0UND 1,0,0,0:SOUND
2,0,0,0:SO0UND 3,0,8,8:SETCOLOR 4,4,0

2030 RETURN

3008 REM THANKS:PAM C,JB,JBJ,ED,DAVID,

LARRY,& COREY

TYPO TABLE

Variable checksum = 286608

Line num range Code Length
1 — Iw 468
128 = 224 NP 419
2340 - 268 0X 559
265 =2 1] ™ 565
279 = 1128 RD 428
1138 - 1198 IK 258
1192 - 2825 RP 627

20340 - 3004 HA 54

144

FALLOUT

Fallout

A cycle of birth, labor, and goodbye
You are the man, the only player in this electrolife drama. You have

three “lives” to live, and watch out, they go rather quickly! Once play

begins you will find yourself confronted by a curtain of falling objects
— babies (pink), diamonds (blue), and monsters (green). Your first task is to
survive by intercepting babies (each confers an additional life), and then to
catch the diamonds (they are worth points). Touching a monster takes one life
away, and if you have no more, that’s the end of the game.

In the first wave the diamonds are worth one point each. In the second
wave they are worth two points. This progresses up through 10 points at Level
10, after which they stay the same. The action, however, continues to change.
The directions, angles and speed of the falling items changes randomly, usual-
ly for the worse.

Your score at the end of each wave is augmented by multiplying the
number of the level by the number of lives you have left at the time.

by Scott McKissock

System Requirements: 16K RAM, joystick

ﬁHEM wxxnnwwnsr FALLOUT #*%wwnwnnx \

2 REM BY SCOTT MCKISSOCK
19 GOTO 4890

49 REM MAIN LOOP

50 D-2@+DR:DR=-DR:NS=INT(RND(@)~16)+SN
:FOR SC=1 TO NS:FOR T=1 TO FN:NEXT T
62 S=STICK(M):M=(8=7)+8-(S=11)+8:IF M-
§ THEN 65

63 X-X+M:POKE 53248,X:SOUND @,255,18,8
'IF PEEK(53252) THEN COL-PEEK(53252):

0TO0 100
Qﬁ LB=LB-D:IF LB<® THEN LB-LB+256:HB=H

6
145

BONUS GAMES

(;11:P0KE 559,0:POKE DL,LB:POKE DL+1.;;\
:POKE 559,46

70 SOUND #,0,8,0:POKE DL,LB:IF HB-P106

~1 THEN POKE 559,8:POKE DL+1,HB-1:POKE
DL,248:POKE 559,46:G0T0 308

71 IF PEEK(53252) THEN COL-PEEK(53252)
:G0TO0 108

72 OK=@:S=STICK(B):M=(S=7)=8-(S=11)+8:

X=X+M:IF M=@ THEN 77

74 IF X>-200 THEN X-56

75 IF X<-48 THEN X-=192

76 POKE 53248,X

77 IF PEEK(53252) THEN COL-PEEK(53252)
:G0TO0 100

88 NEXT SC:G0TO0 5

160 SOUND #,99,1,14:IF O0K=1 THEN FOR T

-1 TO 3@:NEXT T:POKE 53278,8:NEXT SC:G
0TO 50

119 OK-1:POKE 53278,8:REM CLEAR COLISI
ON REGISTER

115 GOTO 120+ (20+COL):REM COL-VALUE IN
COLISION REGISTER #

149 FOR T-15 TO ¢ STEP -@.75:POKE 712,

T«16:SOUND §,T+16,18,16-T:NEXT T:SOUND
g,0,0,8

145 LIVES-LIVES+1-(LIVES=6):POKE (P16

~4)*256+19+LIVES, 1

150 NEXT SC:G0TO 58

1680 FOR T-255 TO 5 STEP —5:POKE 784,T:

SOUND 8,T,2,15:NEXT T:SOUND @,8,8,0:P0

KE 704,24

165 LIVES-LIVES-1:POKE (P1§6-4)«256+11

+LIVES, @

170 IF LIVES=0 THEN 254

175 NEXT SC:GOTO 58

189 GOTO 168

209 FOR T--125 TO 125 STEP 16:POKE 7160
,ABS(T):SOUND @,ABS(T),18,15:NEXT T:S0

UND #,0,8,0:POKE 716,148

205 AD=AD+1-(AD=18):SCORE-SCORE+AD:POS

ITION 7,8:? #6;SCORE

218 POKE 53248,X:NEXT SC:GO0TO0 58

\ifu GOTO 14 441/

146

FALLOUT

(’540 GOTO 168

250 POKE 87,1:POKE 89,P186-1:POSITION

18479 55"
255 POSITION 16,10:2 #6;" [PRESS S

257 POKE 559,@:POKE DL+1,P186-2:POKE D
L,248:POKE 559,46:REM DISPLAY ~GAME OV
ER"

268 POKE DL+26,P186-5:FOR T-255 TO 252
STEP —1:POKE DL+25,T:FOR Y-1 TO 28:NE
XT Y:NEXT T:REM SCROLL SCORE

280 IF PEEK(53279)<>6 THEN 288:REM CHE
CK FOR START

285 SCORE-@:LIVES-3:LV-@:POKE DL+25,0:
POKE DL+26,P1@6-4:REM LINE UP SCORE
299 POKE 88,0:POKE 89,P106-4:POSITION
B,8:? #6:" POEXNE] " :SCORE;" I
GOTO 345

308 FOR T-1 TO 5@@:NEXT T:POKE 77,9
305 LV-LV+1:FN=6@- (4~LV)~(LV=1)=60:DR=
1-(LV=1):SN=INT(12-LV+B.5):IF SN<@ THE
N SN-#@

365 IF LV=1 THEN 385:REM NO BONUS IF G

AME JUST STARTED
\370 FOR BNS-1 TO LIVES:SOUND @,180-BNS

147

BONUS GAMES

(TQ.ln,Ia:scnnE=scun£+Lv—1;rosITIou 7:;\

:? #6;SCORE:SOUND 1,98-BNS«5,18,180

375 FOR DLY=1 TO 5@:NEXT DLY:SOUND 8,4
,8,8:SO0UND 1,0,0,8

388 FOR DLY=1 TO 5@:NEXT DLY:NEXT BNS
385 LB-216:HB-P1@6+15:POKE 559, 8:POKE
DL,LB:POKE DL+1,HB:POKE 559,46

398 POKE 87,1:POKE 559, 8:POKE 89,P166-
1:POSITION 14,7:2 #6:"[EXEN] ":LV:" BN

“:AD-B:POKE 559,46
395 POSITION 14,10:7 #6: [0 [(NINEE [0
*:POKE 88,8:POKE 89,P196-4:0K-1:60

TO 50

488 GRAPHICS 17:POSITION 6,8:? #6:" Faf]
LoffT"

418 POSITION 4,12:7 #6;" NESE [IEEl"
428 POSITION 4,14:? #6: [NILIIHN"
438 FOR R-1 TO 168

458 Z-PEEK(711):POKE 711,PEEK(789):POK
E 769,PEEK(708):POKE 708,Z:REM ROTATE
COLORS

468 N-PEEK(537708):FOR T4 TO 10:SO0UND
@,N,T,15:NEXT T:NEXT R:SOUND #,0,8,0:R
EM RANDOM TONE

568 POKE 559,8:P166-PEEK(166)-16:FO0R T
-(P1@6-2)+256 TO (P186+16)+256:POKE T,
@:NEXT T:REM CLEAR MEMORY

505 POKE 186,P186:REM MOVE RAMTOP DOWN
16 PAGES

518 CHSET-(PEEK(186)-8)+«256:FO0R I-0 TO
512:POKE CHSET+I,PEEK(57344+1):NEXT I
:REM MOVE CHARACHTER SET INTO RAM

525 CSETP-CHSET/256:READ CHTR:IF CHTR-

-1 THEN GOTO 740

536 FOR I-CHTR=8 TO CHTR~8+7:READ A:PO
KE CHSET+I,A:NEXT I:GOTO 525:REM DRAW
CHARACHTER SHAPES

686 DATA 1,12,12,8,15,28,44,18,9

619 DATA 2,14,21,31,17,14,18,27,90

628 DATA 3,14,17,17,18,10,4,4,0,-1

699 REM PUT SHAPES IN MEMORY

768 FOR I-(P1B6+16)+256 TO (P1@6+256)-

\:f“ STEP —3:D-RND(@):IF D<@.9 THEN Nﬁi/

148

FALLOUT

(EVI:GUTU 8gp <‘\

19 IF D>@.99 THEN POKE I,1:BB=BB+1:NE
XT I:G0TO 8@9@
715 IF D>@.96 THEN POKE I,131:NEXT I:G
0TO0 8904
720 POKE I,66:NEXT I
799 REM SET UP P/M GRAPHICS
888 PBP-P1@6-16:POKE 54279,PBP:PMBASE-
PBP+~256:X-120:Y-92
818 POKE 53277,3:POKE 704,216
82@¢ FOR I-PMBASE+512+Y TO PMBASE+526+Y
:READ A:POKE I,A:NEXT I:POKE 53248,X
870 DATA 24,24,24,0,60,90,90,90,24,214,
36,36,36,36,1082
899 REM PUT IN DISPLAY LIST
999 GRAPHICS 17:POKE 559,46:P0KE 756,C
HSET/256:DL-PEEK(568)+256+«PEEK(561)+4:
POKE DL+24,78:POKE DL+25,0
919 POKE DL+26,P186-4:POKE DL+27,65:LB
=PEEK(DL) :HB-PEEK(DL+1):POKE 88,0:POKE
89,P106-4
929 POKE 88,0:POKE 89,P106-4:G0T0 285

TYPO TABLE

Variabhle checksum = 7239686

Line num range Code Length
1 - 18 JK 588
71 - 1448 NY 622
145 - 205 sC 526
218 - 285 CJ 558
290 - 315 KS 586
3840 - 4248 J0 513
439 - 52% FE 543
5340 - 840 LA 506
814 - 92¢ LW 464

149

BONUS GAMES

Skull Chase

Watch out for the trees.

his game exploits the techniques of table lookup to get speed out of
BASIC. As the player, you control the race car with a joystick

plugged into Port 1. You are supposed to chase the skull, which moves
randomly around the playfield to the extent permitted by the walls. When
you catch the skull, action is frozen for an instant while you are credited with
points, and a tree is planted somewhere in the playfield. Then you begin to
chase the skull anew.

Obviously, that would be too easy. Now you must avoid the tree, or trees,
while chasing the skull. There are two kinds of trees, pine and oak. If you
touch a pine tree, you lose points; but if you hit an oak tree, you lose your car
and the game is over for that round. Your score—and the high score for this
session —will be displayed, and you will be prompted to play again if you wish.

by Dave Miller
System Requirements: 16K RAM, joystick

r 10 REM *=+s2x+x2x+ SKULL CHASE **Q*ttt*\

20 REM BY DAVE MILLER APRIL 1983
186 GRAPHICS 17:DIM TITLES(12):TITLES-
suunl BH@SE :POSITION 4,8:FOR X-1 T

0

151 ? #6; TITLES(X,X):;:SOUND @,28-(X=*1.
5),8,14:FOR W=1 T0 25@:NEXT W:NEXT X:S§
OUND ¢,0,0,0

119 DIM CHR(15),DX(15),DY(15):SCORE=4:
HISCORE-@:XTRA-@

12

g DX(14)=0: DX(I3)=B:DX(9)=—I:DX(IB)=
~1:DX(11)=—1:DX(5)=1:DX(6)=1:DX(7)=1
138 DY (11)-8: nv(7)=a DY(6)=-1:DY(18)=—
1:DY(14)=-1:DY(5)=1:DY(9)=1:DY(13)=1
149 CHR(14)=92:CHR(13)=93:CHR(11)=094:C
HR(7)=-95:CHR(18)=81:CHR(6)=69:CHR(9)=9

f: CHH(S)—57 SKULL-147-64:G0SUB 6180

\50 ? #6; :POKE 708,196:POKE 769, Zy

150 N

SKULL CHASE

-y -y -y
e e B W o W By

hAbdbd kb d
A
atatalalalal

5

(:hKE 719,52:P0OKE 711,38 <‘\
168 POKE 756,CHSET/256:SCREEN=PEEK(88)
+256+«PEEK(89):G0SUB 668
178 PX=10:PY=11:POKE SCREEN+PX+2@=+PY,C
HR(14):DX-1:DY-1
188 BX=INT(16~RND(1)+3):BY=INT(2@~RND
1)+3)
190 REM =*==xx=»x MAIN LOOP #xxxxxxnnn
280 ST-STICK(@):IF ST=15 THEN SOUND 2,
g,0,0:G0T0 318
218 SOUND 2,964,6,2
228 TX-PX+DX(ST):TY-PY+DY(ST)
230 CPOS-=SCREEN+TX+2@-TY
249 IF PEEK(CPOS)=SKULL THEN 4298
2580 IF PEEK(CPOS)=9 THEN 494
268 IF PEEK(CPOS)=18 THEN SCORE=SCORE-
XTRA:FOR W=1 TO 2@:SOUND 3,100,10,14:°P
OKE 712,58 :NEXT W
278 SOUND 3,08,0,0:PO0KE 712,40
289 IF PEEK(CPOS) THEN 318
290 CHR=CHR(ST)
3g@ POKE SCREEN+PX+20+~PY,@:POKE CPOS,C
HR:PX=TX:PY=TY
319 TEMPBX=BX+DX:TEMPBY=BY-+DY
\EFB SPOS-SCREEN+TEMPBX-+2@~TEMPBY 4/)

151

BONUS GAMES

/;;B IF NOT PEEK(SPOS) THEN 384 <\\

349 SOUND 2,106,108,14:S0UND 2,0,0,0

350 IF RND(1)>6.5 THEN DX=-DX:GO0TO 2040

368 IF RND(1)>8.5 THEN DY=-DY:GOTO 246
378 DX=-DX:DY=-DY:GOTO 2489

380 POKE SCREEN+BX+2@=«BY,@:POKE SPO0S,S
KULL

398 BX=TEMPBX:BY=TEMPBY

498 GOTO 2449

410 REM *»sxsxxx SUCCESS *r%nwnann

429 SCORE=SCORE-+50+XTRA:XTRA=XTRA+25:°P
OKE 77,40

438 FOR T-408 TO0 19 STEP -18:SOUND 2,7,
19,12:SO0UND 2,0,8,0:FOR I-1 TO 15:NEXT
I:NEXT T

449 A-PEEK(7@9):FOR I-255 TO0 @ STEP -5
:POKE 709,I:NEXT I:POKE 789,A

458 S—INT(RND(B)~2)+90

460 R-SCREEN+INT(4808+RND(M)):IF PEEK(R
) OR PEEK(R)=SKULL THEN GOTO 464

478 POKE R,S:POKE SCREEN+BX+26+«BY, f:PO
KE SCREEN+PX+2@8«PY,@8:G60T0 1790

480 REM 2xswsnwesr FAILURE »*wwwwwwn

498 SOUND 2,0,0,0

508 FOR I-18@ TO 2608 STEP 2

519 POKE SCREEN+PX+28+«PY,INT(RND(H)~4)

+76:POKE 709,PEEK(53774)

920 SOUND @,I,6,15-INT((I-108)/7)

538 NEXT I

548 POKE SCREEN+PX+28+PY, @

558 FOR I-=150 T0 1 STEP —-1:POKE 711,1:

POKE 709,I+16:POKE 768,I+32:POKE 718,1

+64:SOUND @,1+50,10,8:NEXT I

568 SOUND @8,0,0,0:1IF SCORE>-HISCORE TH

EN HISCORE=SCORE

578 GRAPHICS 1+16:POSITION 8,5:? #6;"y

our SCORE WAS " ;SCORE:POSITION 9,8:? #6
s SCORE IS ";HISCORE

588 POSITION 5,190:7 #6; [EEEEEEEE :1F
STRIG(@)=1 THEN 588

598 SCORE-@:G0TO0 156

608 REM =++»» READ DATA FOR CHSET w»wxww

\f}ﬂ CHSET-(PEEK(1086)-8)~256 <4/

152

SKULL CHASE

(26

630
649

T J
650
655
660
6740
6880
690
764
718
728
730
749
750
760
170
7840
799
8ad
B1@
82p
83@d
849
850
860
879
88p
890
904
914
924
934
9449
950
219
964
9

368

RESTORE 85@8:IF PEEK(CHSET+9-8)=5;\\

THEN RETURN

READ A:A-A-64:IF A<@ THEN RETURN
FOR J=@ TO 7:READ B:POKE CHSET+A=8

+J,B:POKE 708+3~RND(@),PEEK(53770):NEX

GOTO 6340

REM swxxsxx CREATE BRICK WALL~wwss
WALL-210:BWALL-188

FOR W-8 TO 5:P-INT(RND(B)~478)
FOR I-8 TO 4

POKE SCREEN+P+I,BWALL

NEXT I:NEXT W

FOR W-8 TO 5:P-INT(RND(B)+478)
FOR I-@ TO 4

POKE SCREEN+P+I«20,BWALL

NEXT I:NEXT W

REM ~wxwssxs CREATE BORDER sswwawns
FOR I-¢ TO 19

POKE SCREEN+I,WALL

POKE SCREEN+468+I,WALL

NEXT I

FOR I-@ TO 23

POKE SCREEN+I=20,WALL

POKE SCREEN+19+I+28,WALL

NEXT I:RETURN

REM swxxs DATA FOR CHSET saswnwnusn
DATA 67,24,28,48,258,223,77,24,12
DATA 69,12,24,77,223,258,48,28,24
DATA 73,56,254,127,62,8,8,8,255

DATA 74,8,28,62,127,62,8,8;,8

DATA 75,0,32,0,16,8,16,4,0

DATA 76,0,64,0,16,68,16,4,40

DATA 77.3.64.15.2.9.128 32 2

DATA 78,128,8,1,0,06,08,0,64

DATA 79 8,0,0,0,0,0,0,90

DATA ,48, 24 178,251,95,12,56,24
DATA 82 219,153,24,231,231,24,153

DATA 83,189,126,96,126,60,36,90,12

DATA 96,24,56,12,95,251,178,24,48
DATA 92,102,126,102,24,24,219, 255,

153

BONUS GAMES

162
164
15
161
» 24
192
1317
183

Var

&

@ DATA 94,15,239,226,94,94,226,239,

@ DATA 95,240,247,71,122,122,71,2417

@ DATA 124,255,145,145,255,255,137,

,255

DATA -1

|

Line num
10 -
1340 -
170 =
2849 -
400 -
500 -
586 -
690 -
814 -
934 -

range
129
160
278
390
499
574
684
8@@
924
1030

= 1142917
Code
RP
RA
WH
BT
JT
T0
ou
EN
VR
RH

r 195
99¢ DATA 93,195,255,219,24,24,162,126,

TYPO TABLE

iable checksum

Length
528
532
544
362
524
500
489
246
331
365

~

154

CRYSTAL CAVES

Crystal Caves

Making the most of a tight situation

avigate your ship through treacherous caves in an attempt to get
Nenough energy pellets to escape the cave you are in. The next cave is

harder to escape from. Crystal Caves calls for both fast reflexes and
strategy!

When you begin the game you will hear a beep. Your ship will appear in
the center of the top part of your screen. You move right and left using the
joystick. The fire button relocates you randomly at the top of the screen. If
your ship touches any of the crystal walls, it will be destroyed. You only get
one life.

If you absorb enough of the diamond-shaped energy pellets (by running
into them), you will be transported out of the cave you are in. In the new cave
will start fresh, but you will have to get more energy pellets to escape. Your
score is based on how many caves you have gone through, and also how many
extra energy pellets you have absorbed.

When your ship has been destroyed, the game will end and your score will
be displayed. The game can be paused at any time by pressing [CTRL]and [1],
and you can continue by pressing those keys again.

A good strategy for this game is to go into the largest “corridor” you can
when faced with a choice of directions. You should use little jerks on the
joystick when in cramped quarters. The fire button on your joystick should be
used only if imminent death is certain.

by Thomas Edwards

System Requirements: 16K RAM, joystick

5 HEM * %k Kk k ok ok k %k canTAl cAvEs * k K %k ok %k k Xk
16 REM BY THOMAS EDWARDS

20 REM REVISION JUNE 14 1983

48 PRINT "N" :PR=8:ESCAPE=5:C1=0

9@ GOSUB 38@:DIM C$(4),D$(37):G0T0 329

155

BONUS GAMES

rﬁﬂ BS(].I)-CHHS(33):C$(2.2)=CHH$(34);E\
$(3,3)=-" ~

79 SC=PEEK(88)+256*PEEK(89)

89 RA-53774

99 PROBI-150:PROB2=15¢

180 REM

119 REM MAIN GAME BLOCK

B2t gy PRTNT C]
E :c1+1

130 HW=-¢

149 P=SC+2@:D$=""

150 D$(1,1)=C8$(1,1):FOR I=2 TO 36:D$(I
,I)=" " :NEXT I:D$(37,37)=-C8(2,2)

160 FOR I-1 TO 3@:PRINT DS$:NEXT I

170 PRINT D$:IF PEEK(P)=8 THEN GOTO 22
g

188 IF PEEK(P)=96 THEN PR=PR+1:SOUND @
,30,12,14:60T0 246

199 POKE P,3:G0T0 286

280 SOUND B,0,0,8:1F PR<ESCAPE THEN GO
TO 178

210 POKE P,3:FOR I=-255 TO @ STEP —1:80
UND 1,I,10,18:NEXT I:SOUND 1,0,8,8:ESC
APE=ESCAPE+1:C1=C1+1:PR=@:G070 68

229 POKE P,3:S=PEEK(632):P=P+(8=7)—(S-
11):SOUND 1, (P-SC)*4.35+78,2,2:1F PEEK
(644)=0 THEN GOTO 758

230 IF PEEK(RA)>PROB1 THEN GOTO 268
249 IF PEEK(RA)<PROB2 THEN 178

258 T=PEEK(RA)/7.5+2:W=INT (PEEK(RA)/86
)+1:D$(T,T)=C$(W,W):GOTO 178

260 POKE SC+86@+PEEK(RA)/6,96:G0T0 240
270 REM GAME OVER

280 FOR I=1 TO 12:FOR J=CA TO CA+7:POK
E J,PEEK(RA):POKE 718,PEEK(RA):SOUND 1
JPEEK(RA),8,10:NEXT J:NEXT I

299 POKE 710,8:SO0UND 1,8,08,0

300 SOUND @,9,0,0:RESTORE :CA=CA-24:F0
R I=1 T0 16:? :NEXT I:GOSUB 520

310 PRINT “CAVES FINISHED:":C1:? “EXTR
A ENERGY PELLETS:" ;PR

320 7 7 :7
\Eflu *:PR=0:ESCAPE=5:C1=0

156

CRYSTAL CAVES

378
389
390
T
419
429
438
449
458
469
479
488
499
500
518
520
530
79

il PRESS OPTION FOR INSTHUETId;\

P
E '

349 IF PEEK(53279)=3 THEN GOSUB 780:G0
T0 320

350 IF PEEK(53279)<>6 THEN 349

368 FOR I9=7@ TO @ STEP —-3:SOUND 6,15,

12,19/5:NEXT I9:G0TO0 60

REM REDEFINE CHARACTERS
X1=PEEK(186)

X2=X1-4

POKE 166,X2

POKE 789,13

GRAPHICS @

POKE 718,0:POKE 752,1
CR=PEEK(756)*256

POKE 756,X2

CA=X2*256

GOSUB 628

FOR N=W TO 1823+W STEP 8
POKE CA+N,PEEK(CR+N)
NEXT N

W=W+1:IF W<8 THEN 488
FOR I=1 TO 3:CA=CA+8
DATA 170,176,170,1708,178,178,170,1

Vig

157

BONUS GAMES

(510

550
560
5780
5840
590
600
610
620
630
6449
650

660
6740
680
6940
784
719
729
738
749
150
760

D(1)):G0TO0 178

778 REM INSTRUCTIONS

7808 ?

RN CRYSTAL CAVES

LR A You have hbeen cursed to

falliyee

818 ? "through the Crystal Caves for t
he "

828 ? "rest of your natural life. The

8309 ? "deeper you go in a cave, the mo
FipAEs

84@ ? “treacherous the cave becomes. I
f you"

850 ? "get enough energy pellets, you

can

868 ? "start fresh on a new cave.

\vur’“ OWJ

DATA 85,85,85,85,85,85,85,85 ‘\\
DATA 176,178,255,102,60,24,24,24
FOR ADDR=CA TO CA+7

READ DAT:POKE ADDR,DAT

NEXT ADDR

NEXT I

RETURN

REM TITLE

2 w2 7

y it 1 = s

2o FOERE B O FE O
? BOER O @ O 0P
guit = i
9.9

e -
P I N)= N
P EOFENATE
vty ey O

7 "
RETURN
REM HYPERWARP ROUTINE

IF HW>C1+1 THEN GOTO 230
HW=HW+1:POKE P,B:P=SC+3+INT(35*RN

By Thomas Edwards”

158

CRYSTAL CAVES

Vo

der

88@ ?
cikii o
89g@ ?
Clatlsg
9gg ?

91@ ?
928 ?

5

130
2240
318
434
550
670
799

\\» 910

“sach succesive cave hecomes h;:\
“to escape from. Use the joysti
“move. The fire button will relo
“you randomly at the top of the

“screen. Good luck."”
e e Lt :ﬂETUHN

TYPO TABLE

Variable checksum = 4408382
Line

num rangse Code Length
=128 1 426
- 218 YJ 536
- 368 $S 572
- 429 0A 442
- 5498 UR ige
- 6680 KV 237
- 788 0y 306
- 904 AK 5017

- 924 Pz 44 <J/

159

[Reatures

A ¥opr ¥

EYES

IXIIT

LIPS |

2 12T

. 1NOSES

Translate

T hose of you who use your ATARI computers for business applications

someday might wish to print checks. It seems like a simple task to

write a program that prints the date, amount, and payee, in specific
locations on a check form. But who wants to enter the English translation of
an amount like ONE THOUSAND FOUR HUNDRED SEVENTY EIGHT
DOLLARS AND TWENTY THREE CENTS? If you've got to do that much
typing, you might as well write your check by hand.

Your computer should be able to perform this task. Unfortunately, the
translation of dollars and cents into English isn’t as easy as just printing a
number. I spent quite a while using the trial-and-error system to provide you
with this program. I'm sure there must be a more efficient algorithm than the
one [came up with, but this one does the job.

What I did was to store the English versions of the required numbers in
the string N$, and the starting and ending locations of each number in the
two dimensional array, N. You enter the number in the normal numeric for-
mat, and the program does the required translation. The translation sub-
routine begins at line 130 and ends at line 320. B$ is a string of 80 blanks, EA$
holds the translated English amount, and AMOUNTS stores the numeric
amount you enter through the keyboard.

The program will tell you what it wants and includes error-handling
routines. The [BREAK]key and [SYSTEM RESET]have been left operational.

I haven’t gone so far as to actually print your check, but I have taken care
of the trickly part. Add your own inputs for date and payee, position your
data according to the layout of your check form, and put your ATARIto work.
When you actually print checks, please remember that Jerry starts with a “].”

by Jerry White

168 REM TRANSLATE 5/28/82 BY JERRY WHI
TE for ANTIC Magazine

119 DIM BS(8P),NS(152),EAS$(80),AMOUNTS
(£1.0) , Ni(27,21

120 EAS$=" " :EAS(8@)=" ":EAS$(2)=EA$:B$=-

161

FEATURES

(:;S:GDTO 330
1380 EA$S-BS:EAS=-" ":SW=@:FOR ME~=1 TO LA
149 IF AMOUNTS (ME,ME)="." THEN EAS(LEN

(EA$)+1)="AND " :? "AND " :GOTO 288

158 IF SW=1 THEN SW-@:G0TO 2849

168 IF AMOUNTS (ME,ME)="," THEN SW=2:G0
TO 278

170 TRAP 28@:SW=@:N=VAL(AMOUNTS$ (ME, ME)
):J1=N(N,1):J2=N(N,2):TRAP 400080

18@ IF N-§ THEN SW=2:G0TO 289

194 IF LA-ME OR ME-LA-3 OR ME=LA-5 OR
ME=LA-6 OR ME-=LA-7 THEN 244

208 IF LA=8 AND ME=1 THEN 244

210 IF AMOUNTS (ME,ME)<>"1" THEN 2380
220 SW=1:N=VAL(AMOUNTS (ME,ME+1)):J1=N(
N,1):J2=N(N,2):G6G0T0 2448

239 N=N+18:J1=N(N,1):J2=N(N,2)

249 EAS(LEN(EA$)+1)=N$(J1,4d2):? N$(J1,
J2);

258 IF ME=LA-5 AND N<>@ THEN EAS(LEN(E
A$)+1)=" HUNDRED":? " HUNDRED";

260 IF SW<>2 THEN EAS(LEN(EA$)+1)="

9 i,

270 IF SW=2 THEN EAS(LEN(EAS)+1)="THOU
SAND " :SW=@:? "THOUSAND

2808 NEXT ME

299 IF AMOUNTS(LA-1,LA)="@@" THEN EAS$(
LEN(ERS)+1)="NO *:2 “NO *:

388 IF AMOUNTS (LA—1,LA)="81" THEN EAS$(
LEN(EA$)+1)="CENT"*:? "GENT":GOTO 328
319 EAS(LEN(EAS$)+1)="CENTS":? "CENTS"
320 LEA=-LEN(EAS):? :? EAS(2,LER):? #2;
EAS(2,LEA):? #2:RETURN

330 NS="ONETWOTHREEFOURFIVESIXSEVENEIG
HTNINETENELEVENTWELVETHIRTEENFOURTEENF
IFTEENSIXTEENSEVENTEEN"

349 NS(LEN(N$)+1)="EIGHTEENNINETEENTWE
NTYTHIRTYFORTYFIFTYSIXTYSEVENTYEIGHTYN
ENETY"

350 DATA: 1:3,4,6,7,11,12,;15;16,19,20, 2
2,23,217,28,32,33,36,37,39,40,45,46,51,
52,59,604,67,68,74,75,81,82,940

L\iéﬂ DATA 91,98,99,106,187,112,113,118, /

162

TRANSLATE: DOLLARS TO SENSE

/739.123.124.128,129.133.134.14ﬂ.141,;:\
6,147,152

370 GRAPHICS @:POKE 82,2:POKE 83,39:P0
KE 718,1608:POKE 752,1

3gg ? :? This program translates n
umeric”

398 ? :? "dollar and cent amounts into
English.

4@ ? :? "Input must be numeric so do

not enter”

419 ? :? "dollar signs. Always includ
¢ decimal"”

429 ? :? "point between dollars and ce

nitis, ramid

439 ? :? "a comma between the thousand
and the"”

449 ? :? "hundred columns when the amo

uintt: s

450 ? :? "greater than 999.99."

460 FOR J=1 TO 27:READ J1,J2:N(J,1)=J1
:N(J,2)=d2:NEXT J

LT AL AT A Make sure your printer is
ready,tu:? 22 cthiens press SEART."

489 IF PEEK(53279)<>6 THEN 488

499 TRAP 56@:CLOSE #2:0PEN #2,8,8,"P:"
:TRAP 40900:POKE 752,0:? CHRS$(125)

568 ? :? "Enter numeric amount or just
pireisis 20 ol S REEUR N ke y st it

519 INPUT AMOUNTS:LA=LEN(AMOUNTS):IF L

A=f THEN 5748

520 TRAP 55@8:IF LA<4 OR LA>9 OR AMOUNT

$(LA-2,LA-2)<>"." THEN 554

524 IF LA<7 THEN 5380

525 IF LA>6 AND AMOUNTS(LA-6,LA-6)<>",

" THEN ? CHRS$(253):? A , MUST SEPERAT
E THOUSANDS, HUNDREDS” :GOTO 504

536 TRAP 40@@@:? CHR$(125):? :? "CONVE

RTING $";AMOUNTS:?
549 GOSUB 13@:G0TO
558 ? CHRS$(253):?
TO 5086

568 ? CHRS(253):7?
EN PRESS START”:GO

:? #2:"8" ;AMOUNTS
500
,"INVALID AMOUNT" :GO

READY PRINTER TH

TO 4849 AA//

163

FEATURES

.

Variahle

Line num
100 =
2080 =
318 =
38g =
494 =
560 =

199
3ge
378
480
550
574

Code

MD
QF
Z0
QE
CT
KF

’ 578 GRAPHICS @#:? :? "BASIC":? "I§"
D

Length
547
545
562
529
545
101

TYPO TABLE !

checksum = 217201
range

D

164

DISPLAY LISTS SIMPLIFIED

Display Lists Simplified

n important step in understanding your ATARIs graphics
capabilities is to create your own custom display lists. This article will
show you step-by-step how to mix text and graphics on your TV
screen. Our method uses BASIC commands to modify Graphics Modes 0
through 8. BASIC sacrifices some of the ATARIs flexibility; however, these
techniques will help you eventually create display lists in assembly language.

The graphics capabilities of the ATARI are controlled by a
microprocessor chip called ANTIC (Alpha-Numeric Television Interface Cir-
cuit). Any display list is a program for ANTIC.

There is a display list program provided automatically by each BASIC
Graphics command, or you can define your own. The display list specifies
where screen data is located, what display modes to use, and any special
display options ANTIC is to implement. Since the display list describes the
screen from top to bottom, any mix of graphics or text modes can be displayed
on the screen.

To understand displays, you need to know a bit about television. In a TV,
a beam of electrons is shot at the screen. The beam starts at the top left-hand
corner and moves across the screen. When it reaches the right-hand side, the
beam is turned off, returned to the left, and moved down slightly. It is then
turned on again, and the process is repeated 262 times to form a completed
screen image.

When the beam reaches the bottom right-hand corner of the screen, it is
turned off and returned to the top left-hand corner to start over. These
horizontal sweeps are called scan lines and are the basis of the display. The
scan-ine pattern actually starts above and ends below the physical boun-
daries of the TV screen. To assure that information is not displayed where you

Allan Moose is an associate professor (math/physics) at Southampton College, NY. Marian Lorenz
is a special education teacher for handicapped children in Central Islip, NY. They have been frequent
contributors to ANTIC.

165

FEATURES

can't see it, the ATARI display usually is restricted to 192 scan lines, position-
ed in the middle of the screen.

There are several other concepts you will need. These are:

ANTIC MODE NUMBER: ANTIC identifies modes with a set of
numbers different from those used by BASIC. The ANTIC mode numbers
corresponding to each BASIC Graphics Mode, 0 through 8, are listed in Table
2.

MODE LINE: A mode line is a grouping of scan lines into a fundamental
unit for each Graphics Mode. For example, Graphics 8 uses one scan line per
mode line; for Graphics O there are eight scan lines per mode line. Screen
displays are made up of 192 scan lines grouped into mode lines (see Table 2).

LOAD MEMORY SCAN (LMS): The LMS number is the sum of the AN-
TIC mode number for the first mode line, plus 64. The LMS number has two
functions. First, it tells ANTIC what mode will be used for the first mode line
of the screen display. Second, LMS instructs ANTIC to take information
from the screen memory area of RAM and display it. The next two bytes in
the display list following the LMS number give ANTIC the starting address of
the screen memory.

DISPLAY LIST POINTER: This is a variable that establishes the memory
address for the first line of the display list. This address is found by the BASIC
command: PEEK (560)+PEEK(561)*256.

JUMP WHILE VERTICAL BLANK (JVB): This signals ANTIC that
the end of the display list has been reached and it must loop back to the begin-
ning. The jump is located immediately following the last mode line of your
display list and is indicated by the decimal number 65. The low byte of the
return address is given by PEEK (560). The high byte of the return address is
given by PEEK(561).

RAM REQUIREMENTS: The Graphics Modes differ in the number of

bytes that must be set aside in memory for screen data (see Table 1).

RAM BYTES PER MODE LINE: Just as the Graphics Modes differ in
their total RAM needs, they differ in the number of bytes required per mode
line (see Table 2). This information is important for synchronizing the

Operating System (OS) and ANTIC.

166

DISPLAY LISTS SIMPLIFIED

Developing a
Custom Display List

Step 1

Make a rough sketch of what you want to appear on the screen. Our example
appears as Figure 1.

ATARI

ki

IS FUN

Step 2

Select the Graphics Modes you want to use and the number of lines for
each mode. Two requirements must be met. First, the total number of scan
lines in all the mode lines should not exceed 192. If it does, the screen image
may roll. However, the total can be less than 192 with no adverse effect. Se-
cond, when you insert new mode lines into an existing display list, the total
number of bytes required for the inserted lines must be a whole multiple of the
bytes required per mode line in the existing display list. To understand this
more fully, refer to Figure 2. Diagrams such as this are invaluable in planning a
display list.

Figure 2
s/ i

RAM Bytes/Mode CRAPHICS MODES Scanlines

2%x20=40 02 i) 2x16=32
40%128=5120 GRAPHICS MODE 8 128 %1 =128

(128 lines)
4x10=40 GRAPI-(QCI:HSEI:)IODE ! 4x8=32

TOTAL 192

167

FEATURES

Our example will modify a Graphics 8 display list. Each line of Graphics 8
requires 40 bytes of RAM. Therefore, at the top we must insert at least two
lines of Mode 2 (two lines X 20 bytes) to match the 40 bytes per line of Mode 8.
At the bottom we will insert four lines of Mode 1, each requiring 10 bytes, for a
total of 40 bytes.

Matching up the byte requirements between inserted lines and existing lines
insures that the text and graphics will appear where we want them.

Step 3
After choosing the modes you want, determine from Table 1 which of

them requires the most RAM. Use this mode as your base (existing) mode, on-
to which you make changes that create your custom display list. This insures
that the OS has set aside sufficient memory to hold your screen data. We have
chosen Modes 2, 8 and 1. Mode 8 requires the most RAM, so it will be our
base mode, called in line 30, but first we'll write a line to clear the screen and
turn off the cursor:

20 ? CHR$(125):POKE 752,1
Next we call the display list to be modified. Adding 16 to GR. 8 eliminates the
GR. 0 window that is a normal part of GR. 8.

30 GRAPHICS 8+16
We recommend that you enter the program as we go along. It will help you
understand the process.

Step 4
PEEK the display list pointer and assign it to a variable such as “DL”.
40 DL =PEEK(560)+PEEK(561) * 256 +4

The number 4 is added to the display list pointer for insurance. Recall that the
TV generates scan lines that do not appear on the screen. To allow for this,
BASIC Graphics Modes generate 24 blank scan lines at the start of the display
list. Adding 4 to the display list pointer will make sure that we don’t inadver-
tantly remove any of these lines.

Step 5
POKE the LMS instruction into DL minus 1. The value 71 derives from
ANTIC mode number 7, plus 64. This instruction will establish the first mode
line of the display list. If your first mode line belongs to your base mode, skip
this step:
50 POKE DL—1,71

168

DISPLAY LISTS SIMPLIFIED

Step 6

Every mode line in your diagram requires a statement in your display list.
Write these in the same order as they appear on the screen, and POKE the
ANTIC mode numbers as appropriate. This is the second line of our Graphics
Mode 2.

60 POKE DL +2,7

From the diagram we can see that the next 128 lines are Graphics 8. Since this
is our base mode, these lines already exist in the display list. The next mode
lines to insert are the four Graphics 1 lines at the bottom.

70 POKE DL +132,6 90 POKE DL +134,6
80 POKE DL +133,6 100 POKE DL +135,6
Table 1
GRAPHICS MODE RAM REQUIREMENTS
MODE BYTES MODE BYTES
o I T 8138 4416\ wvu v ommminsnses vurnssms 696
B sowmnnisens sasnseanns s BlIZ 4.vssnesssmmasvonssssnasssns 694
P16 s S e s Bamgs St 4200 FHLE 5650w 40 wmm i aewm oo woy s 432
W e srommiln «ePhds ¢ ¥,9650 % LG AL B e e ol 4 2l0imn 1 @ v s 434
o R A LIBA ZHUG wwiy comwas v o smns s ahsnim g 420
0 e s i o9 & it SRt § QU4 s ommisswnne s vmmane vomoe vmms 424
SHLB s e s s s vmagy s L0761 M6 s samamn e mms s &t oon i 672
T LUFE s wsmmore s msnimis pmsins o s lams s man s 674
O & 5 s 5 ¢ e S S 992
Table 2

BASIC MODE ANTIC PE LMS #OF MODE SCAN LINES/ RAM BYTES/
NUMBER NUMBER BYTE LINES MODE LINE MODE LINE
..... O ssupigen & wews TOXE 50u@80sams 2% svmesims Bunsninisa s
..... I ssmasia B text T0wens 29 ciorpres Bamvwomnmo D wnms
..... D oo st 0w s EBRE e Yol simoasinss, - L0 By S LD e e o o B34 i
..... 3 einenie 8o, DtapRiEs. o T2 cwene 2F cinsnams Bovinewias W
..... 4 9 ...graphics..73..... 48 4.........10....
..... 5 wweismsm 1O s ooraphies s Posin: 48 vwmiwens Fiwoninigy 20 wous
..... 6 s wvaimie Ll weographies: s Pssens 0 wimimsen Semiwomine 0 mias
..... T owwnionnn I3 a; PBPRIEE o TT s we TO nwsmornn Lo mn s s B0 oo
..... 8 s 15 oosptaphics. . 79 v .ne 192 o iviiinn Liviviwenn 40 oa.

FEATURES

Step 7
End the display list with a JVB, followed by the low byte and high byte of

the return address:

110 POKE DL +136,65

120 POKE DL +137,PEEK(560)

130 POKE DL +138,PEEK(561)

140 GOTO 140
Now RUN the program. You will see the top section (GR.2) black, the bottom
section (GR.1) black, and the middle section (GR.8) blue. To make the middle
section black, change line 30 to:

30 GRAPHICS 8+16:SETCOLOR 2,0,0

Table 3 shows the relevant portions of our display list and demonstrates
another important point. Line 30 of our program has stored the LMS instruc-
tion in address 32825. Line 40 stores the value 7 in address 32828 to give us
the second mode line of Graphics 2. Instructions for the Graphics 1 lines and
JVB are stored in addresses 32958 through 32962.

Look at addresses 32921 through 32923. Note that here in the middle of
the display list is another LMS instruction followed by a screen memory ad-
dress! The reason is that ANTIC cannot address a block of memory longer
than 4K bytes. Since Graphics 8 requires 8K bytes, the screen memory must
be broken up into two blocks. ANTIC is sent to the first block of screen
memory by the first LMS instruction in address 32825, and is sent to the se-
cond block of screen memory by the second LMS instruction in address
32921. “Jumping the 4K boundary ” occurs only for Graphics 8.

You must be careful of two things when you modify a Graphics 8 display
list. First, don’t clobber the second LMS instruction and the two following
bytes by putting mode lines in their place. Second, you must calculate an off-
set if you change modes after the boundary jump. We did this in line 70, by
adding two lines to the display list (DL +132 vs. DL +130).

At this point the actual display is written into screen memory. The next
task will be to print “ATARI” in the Graphics 2 section. Line 10 established
GR.8 and instructed the OS that data in screen memory is to be interpreted as
graphics, not text. Consequently if we simply enter PRINT #6: “ATARI”, the
OS will not carry out the command. The OS must be told how to interpret
the data it finds in screen memory by POKEing the appropriate Graphics
Mode number into memory address 87.

140 POKE 87,2

170

DISPLAY LISTS SIMPLIFIED

150 POSITION 8,0:PRINT #6; “ATARI”
The OS positions text or graphics on the screen by counting bytes from the
start of the screen memory associated with the Graphics Mode value stored in
location 87. Thus, it is possible for total screen memory to be considerably
longer than the memory for the mode the OS is using. This disparity can cause
“cursor out of range” error messages and trouble positioning material on the
screen.

The cure for both problems is fairly simple. Before creating a display on
the screen, change the start of the screen memory to coincide with the start of
the mode section where you want the display to appear. For the Graphics
Mode 8 section this will eliminate the trial-and-error method of placement.
For the Graphics Mode 1 section this will prevent a “cursor out of range”
message.

To write our display we start with:

160 POKE 87,8

to tell the OS what mode we're in. Then locate the current top of the screen
address with:
170 TPSCRN =PEEK (88) +PEEK (89)*256

Next, offset the variable TPSCRN by the number of bytes in the Mode 2 lines
+ 1 (four Mode 2 lines X ten bytes per line = 40 bytes):
180 TPSCRN =TPSCRN +41

Finally, POKE this memory location back into 88 (low byte) and 89 (high
byte):

190 POKE 88, TPSCRN-(INT(TPSCRN/256)*256)

200 POKE 89,INT(TPSCRN/256)

This procedure sets up the Graphics 8 section of our display so that the top
left-hand corner corresponds to position 0,0. You can appreciate how much
simpler it will be to place your display components.
210 COLOR I:FOR 1=1TO 40 STEP 5
220 PLOT 60+1,40+1:DRAWTO100+1,40 +1:
DRAWTO 100+1,80+1:DRAWTO 60 +1,80 +1:
DRAWTO 60+1,40+1
230 NEXT I

Finally, print “IS FUN” in the Mode 1 section at the bottom of the screen.
240 POKE 87,1
250 TPSCRN =TPSCRN +5121

171

FEATURES

Line 250 offsets TPSCRN to the beginning of the Mode 1 section. 5121 is ob-
tained from (128 lines of Gr. 8) * (40 bytes per line) = (5120 bytes)+1.

260 POKE 88, TPSCRN-(INT(TPSCRN/256) * 256)

270 POKE 89,INT(TPSCRN/256)

280 POSITION 6,2:7#6; “IS FUN”

290 GOTO 290

Table 3

ADDRESS OUR LABEL VALUE MEANS

32822
23
24
25
26
27
28
32829

32921
22
23
32924

32957
32958
59
60
61
62
63
32964

DL-4
DL-3
DL-2
DL-1
DL
DL+1
DL+2
DL+3

DL +95
DL +96
DL+97
DL +98

DL +131
DL+132
DL +133
DL +134
DL +135
DL +136
DL +137
DL +138

112
112
112
7l
80
129
7
15

9

144
15

128

Blank scan lines
provide for “overscan’’

LMS — 64+7 sets ANTIC mode 7
and one line of same

gives address of start of screen
memory

lo-byte +hi-byte*256 =33104

sets ANTIC 7 for second mode line
(equiv. of GR.2)

reverts to

ANTIC mode 15 LMS and address for
for 128 4K boundary jump,
mode lines includes one line of
(equivalent mode 15

of GR.8)

sets ANTIC mode 6
for four lines

(equivalent of GR.1)

JVB to address given by next two
bytes
lo-byte of return address
128%256=32768, hi-byte of return
address

+54

32822 =return address

172

TINY TEXT

Tiny Text

iny Text is a small but clever cassette-based text editor written by
Stan Ockers, originally in the A.C.E. Newsletter (3662 Vine Maple
Dr., Eugene, OR 97405). Tiny Text was never intended to be an all-
purpose word-processor, even though it does provide several of the important
features found in larger programs. Tiny Text was written to facilitate submis-
sion of “machine readable” copy to the Eugene A.C.E. Newsletter. The real
advantage of this program is that it is small, inexpensive, and very easy to use.
The program that follows is a slightly-enhanced version that includes:

® support for Atari 820 Printer.
separate Print and Display modes.
forms control for Print mode.
top-of-page command for Print mode.
save text on Cassette or Disk.

error trap control.

adapts to different RAM sizes.

Cassette tapes recorded by the original Tiny Text can still be used with this
p y g y

modified version. Finally, this version corrects a couple of minor formatting

bugs and is about ten percent “tinier” than the original.

Using the Program

The [OPTION] key selects one of five options: LOAD, EDIT, PRINT,
SAVE, and DISPLAY. The following paragraphs describe each of these
options.

The LOAD option reloads text that was previously saved on cassette or
disk. When LOAD is selected, you will be asked to enter the “file spec” of the
text you want to load. If the text is on cassette, simply type a C. The computer
will “beep” once to remind you to set up the recorder to play. Then press

Jim Carr has a B.S. in physics from Oregon State University, and is employed in the field of
computer-controlled processing.

173

FEATURES

[RETURN] to begin loading the text. If the text is on disk, type the complete
file name of the text file, for example, “D1I: TTHELP. TXT"

The EDIT option lets you enter text or change text previously entered.
When the Edit mode is requested, a blank area (text-entry window) appears
in the center of the screen. Up to three lines of text can be typed into the
window. Pressing [RETURN] causes text in the window to be added to pre-
viously entered text. You can use the standard screen-editing functions to
edit text in the window. All trailing blanks in the window will be deleted, so
it is good to end each entry at the end of a word and start each new entry
with a space.

Such functions as tabulating and indentation are controlled by special
formatting symbols. These symbols always cause the current line to end
before the requested formatting function is executed:

CTRLE — End the current line and start a new line with no inden-
tation.

CTRL I — Indent the next line.

CTRL S — Space before starting the next line.

CTRL T — Tab a specified number of spaces before the next line.
CTRL C — Center the next line.

CTRL P — Page. Advance the paper in the printer to the top of the
next page before printing the next line.

When in the Edit mode, pressing the [SELECT] key will cause the line of
text below the window to be moved up into the window. The normal screen-
editing functions can then be used to fix the text in the window. Use the
joystick to scroll the desired line to the position below the text window. Press-
ing [SELECT] twice (without making any changes) simply causes the text
line to move up into the window and then back. To DELETE a line of text,
move it below the text window and press [RETURN]. Press the joystick
trigger to jump to the end of the text.

The PRINT option prints the formatted text on the printer. Before print-
ing begins you may change the default settings for line length, tab stop, etc.
Use the screen-edit functions to make any desired change, then press

[RETURN]. The items that may be changed are:

Line — Line length (maximum number of characters per line).
Indent — The number of spaces to be indented (left margin).

Tab Stop — The number of spaces for the tab stop.

Paper Size — The total number of lines that can be printed on a fully-

174

TINY TEXT

covered page. For example, an 11-inch form with six lines per inch has 66 lines.

Forms Feed — The number of blank lines printed to separate the bot-
tom of one page from the top of the next. For example, if three blank lines are
required at the top and bottom of each page, then Forms Feed is set to six.

Save option lets you save text on either cassette or disk. The SAVE
selection will ask for the “file name” to be used. If using a cassette, simply type
C. The computer will beep twice for you to set up to record. After that, press
[RETURN] to begin saving text. To save text on disk, enter the complete file
name to be used. For example “D:TTHELP.TXT".

The DISPLAY option displays the text on the screen. It provides the
same format-change options as the print option. Display is relatively slow.
The program jumps to menu immediately after the last line.

Programming Notes

The default settings for the format control functions are defined at line 120.

If you make any changes to this program, you first make a change to line
14 which automatically expands the main data storage array T$ to use all
available memory. Try changing “SIZ=FRE(0)-50" to “SIZ=FRE(0)- 500"
When you have finished making your changes you can restore the statement
to its original form.

If a system error occurs, it is trapped and printed out by the program.
You are then prompted to press [RETURN] to make the program continue at
the option selection menu. This will generally allow you to recover from

errors without loss of data. .
by Jim Carr

System Requirements: 16K RAM,

/1 REM ««vs TINY TEXT oes \
2

REM

3 REM Stan Ockers Sept—81

4 REM ACE Noewsletter Nov-81

5 REM

6 REM Mod by Jim Carr #1-0CT-82

7 REM

12 DIM SP$(40):FOR I-1 TO 4@8:SP$(I,I)-
s NEXTE T

14 DIM S$(45),1$(120) ,A$(128):SIZ=-FRE(

g)-50:DIM T$(SIZ):FOR I-1 TO 45:HEADA)

kssupcuns(n:nm I

175

FEATURES

{ 20 DATA 154,154,]33,254,104,133,2ﬂ3,;;\

4,133,206,104,133,205,104,1084,168,162,

#,161,203,145,243,198,203,165

30 DATA 263,201,255,2088,2,198,204,165,

2@03,197,2085,208,236,165,204,197,206,20

8,230,96

49 FOR I=1536 TO 1643 :READ A:POKE I,A:

NEXT I

50 DATA 104,104,133,204,104,133,263,180

4,133,206,104,133,205,162,0,169,2408,32

,93,6,169,40,32,91,6

6@ DATA 165,207,208,8,169,160,32,91,6,

24,144,10,169,40,32,53,6,169,120,32,91

,6,169,240,32,53,6,96

79 DATA 133,208,161,203,201,96,176,11,

281.,32,176,5,24,1085,64,208,2,233,32,12

9,20#5,236,203,208,2

80 DATA 230,204,230,205,208,2,236,206,

198,2p48,208,221,96,133,208,169,0,129,2

#5,230,2085,208,2

9@ DATA 230,206,198,208,2A8,244,96

119 P-241:POKE 207,0:POKE 82,0:0PEN #2

v, B B TS ()= :T$(488)=".":T8(2)-

TS

129 SCR-PEEK(88)+256+«PEEK(89)+1208:LL-3

5:LM=1:IND=5:TAB=1@:PS=66:FF=6:G0T0 54

g

298 ? "INSERT TEXT OR ... PRESS SELEC

R0 EDIT

309 POSITION B,8:? SIZ-LEN(TS$);:" FREE
":8§=STICK(@):IF S=15 THEN 3380

365 IF S=14 AND P<LEN(T$)-320 THEN P-P

+40

310 IF §=13 AND P>280@ THEN P-P-49

315 IF S-11 AND P<LEN(T$)-288 THEN P—P

+1

320 IF S=7 AND P>241 THEN P-P-1

330 A-USR(1536,ADR(TS$)+P-241,SCR)

335 K=0

349 POKE 53279,8:PK=PEEK(53279):IF PK=

5 THEN GOSUB 908

350 IF PK-3 THEN 5440
\zﬁﬂ IF PEEK(764)<255 THEN 4660 A/)

176

TINY TEXT

(;;5 K-=K+1:IF K<18 THEN 3448

370 IF STRIG(M@)-@ THEN P-LEN(TS$)-240:P
OKE 207,80
380 GOTO 34640
498 POSITION @,10:INPUT #2;I8:PK=PEEK|(
207):IF PK-8 THEN AS$S-""
495 LI=-LEN(IS$):LT=LEN(TS$):IF LI-@ THEN
460
407 IF LI+LT>SIZ THEN POSITION @,1:?

OUT OF SPACE “:G0TO 308
419 IF PK=1 THEN A$-TS$(P,P+30):IF T$(P
+38,P+30)~" ¢ THEN IS EET 1) Y astte

1

4209 LA-LEN(AS):AD=ADR(TS$):IF LI>LA THE
N A-USR(ADR(SS$),AD+LT-1,AD+P-2,LI-LA)
430 T$S(P,P+LI-1)=1I$§

449 IF LA>LI THEN TS$(P+LI)=T$(P+LA)
450 P=-P+LI:TS$(LT+LI-LA+1)="":POKE 2607,
g:G0TO 3049

460 IF PEEK(2@87)=1 THEN 478

465 IF P<LEN(T$)-279 THEN T$(P)=T$(P+4
g)

479 POKE 764,255:G0T0 30440

500 TRAP 950 :ST-PEEK(56@)+PEEK(561)+25

6+4:POKE ST-1,70:POKE ST+2,7:POKE ST+3
,112:POKE ST+4,6:POKE ST+5,6

501 POKE ST+24,65

519 POKE ST+25,PEEK(5608):POKE ST+26,PE
EK(561)

515 OP=0P+1:IF OP=6 THEN OP=1

528 ? CHRS$(125):POSITION 2@,08:IF OP=1

THEN ? “LOAD”

522 IF OP=2 THEN ? "EDIT"

534 IF OP=3 THEN ? "PRINT"

536 IF OP=4 THEN ? " SAVE"

538 IF OP=-5 THEN ? "DISPLAY"

549 POSITION @,1:? "PRESS START TO BEG
IN"

558 FOR D=1 TO 3@:NEXT D

555 POKE 53279,8:IF PEEK(53279)=3 THEN
515

557 IF PEEK(53279)<>6 THEN 555

\jﬁﬂ POKE 764,255 : POSTTION 20, 12 Cﬂﬂfl)

177

| 670 GOTO 6240

FEATURES

(1;5):POSITION g,1:0N OP GOTO 2000.2957\
990,1500,59¢0

590 FOR I-1 TO 6:? CHRS$(127);CHRS$(158)
:NEXT I1:2 :FOR I-1 TO 6:2 " ;CHRS$(15
Q) e NEXT S

594 POSITION @,1:? “SET FORMAT CONTROL
S*:POSITION @,6:? “LINE LEFT IN- TAB
PAGE FORM"

595 ? "SIZE MARG DENT STOP SIZE FEED":

2 CHRS (127):LL:,” :;CHRS(127):LM;"," :CH
R$(127);IND;",” ;CHRS$(127);
596.2 TAB:: ," " ;CHR$(127);PS ;" ,":CHRS$ (12

7):FF:POSITION 4,8

604 INPUT LL,LM,IND,TAB,PS,FF:P-240:P-
249:G0TO0 7140

619 P-24¢

718 LINE-@:GRAPHICS @:POSITION 6,3:FL-
g
715 RL=LL:TP-P:B=ASC(TS(TP,TP))
720 RL-LL-IND~(B-9)-TAB=+(B=-280)

~725 IF B-19 AND 0P-3 AND LINE<=(PS-FF)
THEN LPRINT ~ " :LINE-LINE+1
726 IF B=19 AND O0P=5 THEN ?

— 1727 IF B-16 AND O0P-3 THEN FOR I-1 TO P

S—-LINE:LPRINT " " :NEXT I:LINE-=

728 I1F B-—16 AND QP-5 THEN 2 :?2 :2 :LIN
E-#

735 C-0:K-9

748 K-K+1:TP=TP+1:IF K=RL+1 THEN 765
745 IF TP>LEN(T$)-241 THEN FL-1:G0TO0 8
19

758 A-ASC(TS(TP,TP)):IF A<32 THEN C-9:
GOTO 784

756 1F A-32 THEN C-C+1

768 GOTO 744

765 IF C=8 THEN A$S=T$(P+1,TP-1):TP=TP-
1:60T0 818

767 IF T$(TP,TP)=" " THEN AS$S=-TS$(P+1,TP
-1):60T0 8180

768 IF T$(TP-1,TP-1)=" " THEN C=C-1
7780 K-1

\;175 TP=TP-1:IF T$(TP,TP)<>" * THEN ij/

178

TINY TEXT

Q50 CLOSEH

/:}:0070 715)

780 IF TP-P+1 THEN P-TP:GOTO 715

785 AS$="":I=P+1

790 AS(LEN(AS$)+1)=T$(I,I):IF T$(I,I)<>
“ v THEN 8@5 |

795 IF C>1 THEN A-INT(K/C+RND(8)):IF A
>0 THEN FOR J-1 TO A:AS(LEN(A$)+1)-" "
:NEXT J:K-K-A

899 C-C-1
82 IF C-1 AND K>@ THEN FOR J-1 TO K:A
S(LEN(AS$)+1)=" ":NEXT J

805 I-I+1:IF I<TP THEN 798

818 IF FL THEN A$=T$(P+1,TP-1)

815 IF OP-3 THEN LINE=LINE+1:IF LINE>(
PS-FF) THEN LINE=1:FOR I=1 TO FF:LPRIN
Tl MNEXT 1

828 SPLM-(B-9)«IND+(B-28)~TAB+(B=3)=(
LL-LEN(AS$))/2:IF SP>40 THEN SP-49

838 IF OP-3 THEN LPRINT SP$(1,SP);:AS
849 IF OP=5 THEN ? SP$(1,SP);AS

850 IF FL THEN 5088

868 P-TP:GOTO 715

9@ PK-PEEK(287):IF PK=1 THEN POKE 287
,0:G0TO 930

918 IF PK—§ AND P<LEN(T$)-279 THEN POK
E 207,1

930 A-USR(1536,ADR(TS$)+P-241,SCR):FOR
D-1 TO 5@:NEXT D:RETURN
o95# ? "ERROR " ;PEEK(195);” AT ";256+«PE
*EK(187)+PEEK(186):? “PRESS RETURN TO ¢
ONTINUE”:INPUT I$:GOTO 504

15068 ? ~ ENTER FILE NAME":INPUT IS$:0PE
N #3,8,8,I$:N-INT(LEN(TS$)/128):2 #3;:N:
IF N-8 THEN ST-0:G0T0 1524

1519 FOR I—1 TO N:ST—=128+I:? #3:T$(ST-
127,8T) :NEXT 1

1520 2 #3:T$(ST+1,LEN(TS)):CLOSE #3:60
TO 500

2088 ? * ENTER FILE NAME”:INPUT I$:OPE
N #3,4,0,I$:INPUT #3,N:IF N=§ THEN BEG
-~ 1276070 2828

20109 GRAPHICS B:FOR I-1 TO N:BEG=128+I

\;}27:INPUT #3,A$:? A$;:T$(BEG)=AS:NE{L)

179

FEATURES

1 \
2p2@ INPUT #3,A$:T$(BEG+128)-A$:CLOSE
#3:POKE 1536,1084:G0T0 500

TYPO TABLE ‘

Variable checksum = 636317

Line num range Code Length
1 - 49 RL 509
50 - 114 ON 536
120 - 349 ow 525
3580 - 429 My 501
439 - 528 wu 536
522 - 594 CP 569
595 - 121 UF 505
128 - 115 NA 495,
180 - 8249 WM 515
8340 - 15148 0J 556°

\ 1528 - 2929 cJ 318 /

180

CHRISTMAS MAILING LISTER

\
\

Christmas Mailing Lister

xchanging Christmas cards helps make this the holidays special, but

digging through old slips of paper to find your addresses can take the

fun out of it. Hand addressing all those outgoing envelopes is no thrill
either. This year let your ATARI start handling this chore.

Christmas Mailing Lister is a cassette-based program that stores up to
140 addresses. You can create, change, or delete addresses at any time. You
can print individual addresses, selected categories, or the whole file, sorted
alphabetically by name or city. The printout can be done on labels, if you have
the proper supplies and equipment, or in the form of an address book.

The unique feature that makes this nice for a Christmas list is that names
are stored beginning with the letter entered in inverse video, rather than the
first letter of the name field. This way your labels can read “John and Mary
Smith,” or “The John Smith Family,” instead of “Smith, John and Sue,” or
“Smith Family, The John.” Just type the capital “S” in inverse video. Un-
fortunately, this sort only works when running the whole list. An individual
search for the Smith entry would still require hunting for “John and Mary
Smith.” “Smith” alone would not be enough.

You can also define up to six different categories for selected sub-sorts.
Each name must belong to one category only, although this assignment may
be changed at will. One possible use for the categories is to keep track of card
exchange. For example, the categories could be defined as follows:

1. sent us a card in 1981
. sent us a card in 1982
. sent us a card in 1983
. sent us a card in 1984
. sent us a card in 1985
6. did not send card

This should keep you organized for a few years, by which time you'll pro-

bably have a disk drive and a store-bought program.

(SN SIS

Bill Lukeroth is a heavy equipment claims adjuster, freelance writer and self-avowed “ATARI hacker.”

181

FEATURES

This program requires a printer, a 410 Program Recorder, and at least 32K
of RAM. The first step is to type the program into the computer. [recommend
that you CSAVE to your permanent cassette and a backup before attempting
to RUN the program. Note that “Merry Christmas!” in line 250 must be in
upper-case inverse video.

When you RUN the program, first you'll see the title page, which changes
to a menu after 20 seconds. You can shorten the wait by pressing [START].
The first four items on the menu require insertion of a data cassette, so the first
time through you must select item #5 (“create a completely new address list”).
Then you will define your six categories, each using 25 characters or less. You
can bypass the category feature by pressing [RETURN] each time.

The next screen asks for a name, address, etc. Each of the first three fields
can hold 28 characters. You can put in a nine-digit ZIP code (or shorter) and
an area code with your phone numbers. Sorry, no numerical sorting with this
program.

Enter a few addresses, then return to the main menu to experiment with
the print, change and delete options. When you understand these, continue
to enter addresses until you exhaust your list, or your computer’s memory.
Then return to the menu and select item #7 (“end”). You will be prompted to
insert a blank cassette so you can record all your data onto tape. Do not use
your program cassette for this. Also make a backup tape at this time, it’s a lot
of work to retype data! Now you can try the other program features without
fear.

Tips and Hints

Every printer is different. The Atari 822, or other thermal printer (such as
the Alphacom), does not have ready-made label paper. You can still cut and
paste your labels though.

The Atari 825 Printer, and certain other 80-column printers (such as the
Epson), can use fan-fold labels with adhesive backs. Typically these labels are
spaced at one-inch (six lines) intervals. You may have to adjust lines 7220 and
7230 of the program to accomodate your labels. LE is the variable that deter-
mines the number of blank lines between labels. If you change the value of LE
in 7220, you must change 7230 so that LE equals one less than it does in 7220.

7720 LE=2
7230 IF Q2%$“Y” THEN ? #2;B4$;NAMES$(105,119),
NAME$(120,120):LE=1

182

CHRISTMAS MAILING LISTER

The Atari 820 Printer does not work well with fan-fold labels because
these are too thick. Try Dennison’s “filefolder labels,” product number
36-471, which come in rolls of 250 labels.

When you are sorting the whole file, the screen should change color each
time a sorting loop is completed. This reassures you that the sort is taking
place.

Abort and return features include these: the [BREAK] key is disabled to
prevent accidental crashes; YES or NO prompts require “Y,” anything else
returns to main menu; [OPTION] aborts to main menu, even while printing,
except at a prompt. [OPTION] plus [RETURN] escapes a prompt. Atari
screen editing is always available, but can destroy a screen if misused.

Load the data tape according to screen instructions and standard pro-
cedures. If there is a tape error, you must “end.” The tape can take five to 10
minutes to load. A tone alerts you when it is finished.

Searching for a single entry requires you to enter the name line, exactly as
entered, far enough to make the search unique. Remember, the inverse video
character does not function in search mode. If you have “John and Mary
Smith” and “John and Milly Doe” in your file, you will have to specify the
search at least through the second letter of the woman’s name to call the cor-
rect record.

If one of us has goofed terribly, the anguished program will go out in a
blaze of glory, which should include the offending line number. Note this
carefully and study the fault. To witness the death scene, type GOTO 9200
instead of RUN. Caution: this will erase any addresses not on tape.

May you have many pleasant holiday seasons.

by Bill Lukeroth

(:; REM ** CHRISTMAS MAILING LIST ** ‘\\

29 REM BY BILL LUKEROTH

198 REM REVISION @.3 ,WRITTEN 16/07/82
150 REM

160 REM MEMORY USED:32K

180 REM DESCRIPTION:mailing list,print
s labels or address bhooks

190 DIM BK$(28):FOR L=1 TO 28:BKS$(L,L)
="_":NEXT L:MSL=15400@:REM allows for 1
49 names

\f?ﬂ DIM MAINS(MSL),NAMES(IIE),TEMPS(IJ/

183

FEATURES

ﬂ).SEAHCHNAME$(28),SEAHCHCITYs(ZB).F;;\

M$(28),ADDS(28),CITYS(28)

210 DIM ZIPS(18),PHONES(14),028(1),CAT

$(1),C8(108),CAT18(25),CAT2$(25),CAT3S(
25),CATA4S$(25),CAT58(25),CAT6S(25)

220 DIM CIVS(1),CIV2$(1),NAME2S$(110),8

4$(6),BS(1):B4$~-" Sl =ro

230 FLAG1=@:C$="CATAGORY #" :FLAG3=0:FL

AG6-§:S-§

249 00PS=-9P@@:MENU=-30@@:TRAP OOPS:DISBA

K-9680: REBRK=9650

250 GRAPHICS 2+16:SETCOLOR 2,3,8:SETCO
LOR 4,14,0:SETCOLOR 0,3,0:? #6:? #6;"
MERRYMCHRISTMAS ! SRR

268 7 #6;" MAILING LIST":? #6:? #6:
2 762 HE

28¢ FOR TITLE-1 TO 3@:IF PEEK(53279)=6
THEN POP :GOTO 3@@:REM check start b
utton

285 FOR LB=1 TO 1@@:NEXT LA:IF S=@ THE

N $-8:G0T0 288

287 S=9

288 SETCOLOR 2,3,8

298 NEXT TITLE

308 CLOSE #1:CLOSE #2:GRAPHICS @

318'2 :72 "CHOOSE ONE:":?

32¢ ? |].SEARCH FOR A LISTING(IN ORD

ER TO PRINT A MAILING LABEL,OR C
HANGE" ;

a3 7 - OR DELETE A LISTING)."
349 ? * FHA.ADD A LISTING."

354 ? * [EKJ.PRINT A COMPLETE 'ADDRESS B
00K' ."

ieeg ? - E.PHIHT MAILING LABELS FOR EV
ERYONE ON THE LIST."

3702 E.CHEATE A COMPLETELY NEW ADD
RESS LIST(A NEW DATA BASE)."
380 ? © [.CREATE A BACK-UP TAPE."

394 ? * [.END."

480 7. :7 "TYPE 1.,2;8.,4,6,6 00 7°:6808UB
DISBRK

418 INPUT Q1:GRAPHICS @:IF Q1<1 OR Q1>

\1»THEN ? "ANSWER MUST BE BETWEEN 1 AND

184

CHRISTMAS MAILING LISTER

(7.":? :GOTO 314 ‘\\

429 GOSUB DISBRK:ON Q1 GOTO 43¢,438,43
#,430,11008,2620,20040

430 FLAG6=FLAGO6+1:IF FLAG6>1 THEN 546

449 ? "INSERT THE DATA CASSETTE,REWIND
TO START,PRESS 'PLAY' AND HIT 'RET
URN" "

445 OPEN #1,4,08,"C:":REM get data from
cassette file

450 FOR L=1 TO 128:GET #1,DUMMY:NEXT L
:REM this loop does nothing but is regq
uired by Atari BASIC

460 INPUT #1;CAT1$:INPUT #1;CAT2$:INPU

T #1;CAT3$:INPUT #1;CATA4S:INPUT #1;CAT

5$:INPUT #1;CAT6S

478 INPUT #1;TEMPS:IF TEMP$-CHRS$(253)

THEN 4980

480 MAINS (LEN(MAINS)+1)=TEMPS:TEMPS=""
:GOTO 4749

499 SOUND @,60,10,14:FO0R L=1 TO0 258:NE

XT L:SOUND @,0,0,0:? :?2 "TURN RECORDER
OFF, THEN PRESS 'START® TO CONTINUE.

495 IF PEEK(53279)<>6 THEN 495

497 CLOSE #1:GRAPHICS @:G0SUB DISBRK
504 ON Q1 GOTO 52@,12106,1400,1874

528 ? "WHAT NAME ARE YOU LOOKING FOR?"
538 INPUT TEMP$:MARK=28:GOSUB 8500

540 SEARCHNAMES-TEMPS:TEMPS=""

550 ? "“WHAT CITY?(OPTIONAL.IF NOT NEED
EDPETYPE N)

560 INPUT TEMPS:MARK=28:GO0SUB 8504

570 SEARCHCITYS=TEMPS:TEMPS~""

575 NL=1

580 FOR L2=NL TO LEN(MAIN$)-189 STEP 1
10

585 GOSUB 78@@:IF FLAGA=1 THEN POP :G0
TO 30460

599 NAMES-MAINS$(L2,L2+1P9):FLAG2=0

595 REM Iline 66@ compares name$ and se
arch$ character by character

660 FOR L3=1 TO LEN(SEARCHNAMES):CIVS$=-

wmss(La.Ls):c1vzs-s5AncHNAMES(L3.L3u

185

FEATURES

(,;N-ASG(CIVS):XS-ASC(BIVZS) ﬁ‘\

685 IF XN<>XS AND XN<>XS$+128 THEN FLAG
2=1

618 NEXT L3:IF FLAG2=1 THEN 639

628 NL=L2+11@:POP :GOTO 68f:REM names
match

638 NEXT L2

648 ? "NO RECORD FOUND.ARE YOU SURE TH
AT

650 ? SEARCHNAMES:? ~IS THE CORRECT SP
ELLING?” :GOTO 314

680 IF SEARCHCITYS$="N" THEN 7580

69¢ CITYS~NAMES (57,84):FLAG3=§

708 FOR L4=1 TO LEN(SEARCHCITYS)

705 GOSUB 78@0:IF FLAGA4=1 THEN 300

718 IF SEARCHCITYS$(L4,L4)<>CITYS$S (L4, L4
) THEN FLAG3=1

728 NEXT LA:IF FLAG3=@ THEN 758

7397 “ROUND (ONE IN:":? CETY$:? VSTILL
SEARCHING FOR THE RIGHT ONE.":? :G0TO
584

758 FIRMS=NAMES (1,28):ADDS=NAMES$ (29,56
):CITYS=NAMES (57,84):ZIP$=NAMES (85,94)
:PHONES=NAMES (95,188)

755 CATS=NAMES (189,118)

770 GRAPHICS @:SETCOLOR 2,5,2:G0SUB DI
SBRK:? BS;FIRMS:? BS;ADDS:? BS:CITYS$:?
BS:ZIP$S:? BS;PHONES:? BS$;CATS

788 POSITION 2,8:? “DO YOU WANT TO0:":?

[].PRINT A LABEL":? ~ B.DELETE THIS

LISTING”:? ~ FJ.CHANGE THIS LISTING"
799 ? * [J.RETURN TO MENU"

808 ? “CHOOSE 1,2,3 OR 4";:INPUT Q2

818 IF Q2<1 OR Q2>4 THEN 789

828 ON Q2 GOTO 84¢,000,950,300

835 REM label printing routine

849 GOSUB 7004

850 OPEN #2,8,0,"P:":LABEL=-

860 GOSUB 7284

879 GOTO 360

895 REM file deletion routine

948 ? :? "ARE YOU SURE THAT YOU WANT T

\£>DELETE THIS(ENTER Y OR N)"::INPUT Q)

186

'CHRISTMAS MAILING LISTER

@

1148
GORY
1158

— et —
O P e g g
mmOooo~N
i-~T -~ -1~ -1

1205

ENTE

\ifﬂﬁ

924

930 GOSUB 75440

949 GOTO 3040

950 RESTORE :NAMES$="":? "IF LINE IS 0.
K. PRESS RETURN.IF NOT MAKE CHANGES
AND THEN PRESS RETURN"

960 ? "~ (HERE ARE YOUR CATAGORIES:)":G0O
SUB 6298

979 POSITION 2,48

989 FOR L7=1 TO 6:INPUT TEMPS

999 GOSUB 78@@:IF FLAG4A=1 THEN 778
1060 READ CR,MARK

1918 IF LEN(TEMPS$)>MARK THEN ? CHRS$(25
3):RESTORE :POP :GOTO 779

1640 IF LEN(TEMPS$)<MARK THEN TEMPS$ (LEN
(TEMPS$)+1)=" ":GO0TO0 104449

1645 GOSUB 85440

1850 NAMES (LEN(NAMES$)+1)=TEMPS$

19608 NEXT L7

1979 MAINS(NL-118,NL-1)=NAMES$:GOTO 308
19906 REM new data base creation routin
e

1168 SETCOLOR 2,6,6:? "THIS IS GOING T
0 ERASE ANY ADDRESSES NOW IN MEMORY.I
SESRH AT "0cr K0 2

1118 ? " (ENTER Y OR N)”;:INPUT Q2%

1128 IF Q28<>"Y" THEN 3440

1130 GOSUB DISBRK:MAINS$="":?2 “YOU'RE G

OING TO HAVE TO FURNISH THE NAMES FO

R 6 CATAGORIES.IF YOU DON'T"

"IF THEY ARE 0.K. ENTER "Y' ,IF NOT

IF Q28<>"Y" THEN 7880 ‘\\

?2 "WANT TO0O NAME A PARTICULAR CATA
JUST PRESS ' RETURN' "

2 2008 ges SN PSS CIATE LS

2 C$:"2"::INPUT CAT2S

2 C$:"3”;:INPUT CAT3S

?2 C$:"4"; :INPUT CATA4S

?2 C$:che - ENPUT CATSHS

?2 C$:;"6";:INPUT CATG6S

2 :? "DOUBLE CHECK THE CATAGORIES

R "N'.”::INPUT Q2§
IF 028<>"Y" THEN GRAPHICS @:? y

187

FEATURES

(T8 TRY IT ABAIN:":GOT0 1138 <‘\

1209 REM add a file routine
1218 GRAPHICS @:SETCOLOR 2,6,2:FLAG1=1
:FLAGG=1:NAMES="":RESTORE :GOSUB DISBR
K

1220 IF LEN(MAINS)=-MSL THEN ? "ALL FIL
ES FULL” :GO0TO 319

1236 ? "YOU MAY NOW ADD UP TO " ; (MSL-L
EN(MAINS))/118:" ADDRESSES"

,10):

1245 ? :? :? :GOSUB 62¢4@

1250 OPEN #1,4,8,"K:"

1268 FOR L9=1 TO 6

1265 GOSUB 78@@:IF FLAGA=1 THEN RESTOR
E :GOTO 3480

1279 READ CR,MARK:POSITION CR,L9:? "l
i *REM move cursor to correct position
12808 GOSUB 50080

1299 NAMES (LEN(NAMES$)+1)=TEMPS

13008 NEXT L9

1385 CLOSE #1

1319 MAINS(LEN(MAINS)+1)=NAMES:? :?2 "W
ANT TO ADD ANOTHER(ENTER Y OR N)”;:INP
Ut Q28

1328 RESTORE :IF Q2$="Y" THEN 12148
1330 GOTO 3490

1390 REM address book routine

1469 SETCOLOR 2,13,2:? "DO YOU WANT TH
E BOOK SORTED ALPHA- BETICALLY BY:"
1418 ? "n.LAST NAME" : ? "E.CITY“:? "OR"
:? "F. UNSORTED"

142087025 (ENTER 1,20k 3) " 5 TNPUT 06
1425 GOSUB 78@A:IF FLAG4=1 THEN 308
1438 GRAPHICS P:SETCOLOR 2,13,2:G60SUB
DISBRK:? DO YOU WANT:":GOSUB 6268:G0S
UB 62140

11436" RRAPHIGCS Besps nig eopit PLEA
SE STAND BY":GOSUB DISBRK

1440 FLAGS=1:STR=1:8TR2=1:ENND=28:0N (

\SGOTD 1460,1450, 1880 J

188

CHRISTMAS MAILING LISTER

1450 STR=57:8TR2~-57:ENND=84:REM city;\\
1468 FOR L15=LEN(MAINS)-219 TO 1 STEP

1465 SETCOLOR 2,L15/118,L16

1478 IF FLAGS=@ THEN POP :GOTO 18680
1488 FLAGS=0

1498 FOR L16=1 TO0 L15 STEP 118

1500 NAMES=MAINS(L16,L16+109):NAME28=M

AINS(L16+110,L16+219):IF Q5=2 THEN 151

g

1503 FOR L21=1 TO 28:CIV$=NAMES(L21,L2
1):IF ASC(CIV$)>159 THEN STR=L21

1564 NEXT L21

1505 FOR L22=1 TO 28:CIV$=NAME2$(L22,L

22):IF ASC(CIVS$)>159 THEN STR2=L22
1566 NEXT L22

1518 IF NAMES (STR,ENND)<=NAME2$(STR2,E

NND) THEN 15349

1520 MAINS(L16,L16+109)=NAME2S:MAINS (L
16+118,L16+219)=NAMES: FLAGS=1

1538 NEXT L16

1548 NEXT L15

1550 REM sorting complsated

1800 GRAPHICS @:03=1:028="Y":PAGE=-1:F

LAG4=@:0PEN #2,8,0,”"P:":GOSUB 52808:G0S

UB 6544

1818 2 :? DO YOU WANT ANOTHER COPY?":
IF FLAGA=1 THEN 368

1828 ? " (ENTER Y OR N)";:INPUT Q28§
1830 IF Q2$="Y" THEN 18090

1849 GOTO 304

18608 REM mass mailing routine

1878 SETCOLOR 2,4,4:? D0 YOU WANT MAI
LING LABELS FOR:"

1880 GOSUB 62@@:GOSUB 6214

1898 GOSUB 74680

1900 PAGE-=—-100@:0PEN #2,8,08,"P:":G0SUB
6508

1919 GOTO 3889

2000 SETCOLOR 2,13,4:TEMPS$="":1IF FLAGI

=@ THEN 4999

2918 ? "SINCE YOU HAVE CHANGED SOME FI
KifS(OH CREATED NEW ONES)YOU MUST NOW J

189

FEATURES

(;;VE THE DATA ON TAPE."

220 ? "INSERT THE CASSETTE,REWIN
D TO START,PRESS 'PLAY' AND 'RECOR
D' AND HIT “RETURN" .7

2625 ? "MAKE SURE THAT YOU USE THE DAT
A TAPE, NOT THE PROGRAM TAPE.” :GOSUB &
500

2939 OPEN #1,8,8,"C:"

20440 FOR L=1 TO 128:PUT #1,0:NEXT L
2858 ? #1:CAT18:? #1;CAT28:? #1;CAT3S:
? #1;CATAS:? #1;CAT58:? #1;CAT6S

2855 IF INT(LEN(MAINS)/11@)<>LEN(MAINS
)/118 THEN MAINS=MAINS(1,LEN(MAINS)-1)
:GOTO 2455

2860 FOR L12=1 TO LEN(MAINS)-189 STEP
114

2078 TEMPS-MAINS(L12,L12+189):IF TEMPS
(1,1)="@" THEN 2875

2873 ? #1;TEMPS

2875 NEXT L12

2088 ? #1;CHR$(253):CLOSE #1

2094 ? :? DO YOU WANT TO MAKE A/ANOTH
ER BACK-UP TAPE(ENTER Y OR N)";:INPUT
029

21608 IF Q2$="Y" THEN 20290

2118 IF Q1=6 THEN 3049

4999 GRAPHICS @:? :? "PROGRAM TERMINAT
ED." :END

5000 TEMPS="":LNL=1

5818 GET #1,KEY:IF KEY=155 THEN 5688:R
EM check return button

5028 IF KEY=126 AND LNL>1 THEN LNL=LNL
~1:TEMP$ (LNL,LNL)="":? CHR$(KEY)::REM
backspace

5030 IF KEY>06 AND KEY<123 THEN KEY=KE
Y-32:REM convert lower case to upper
9@408 IF KEY<32 OR KEY>223 THEN 5@818:RE
M mask out bad input

5050 IF KEY>122 AND KEY<16@ THEN 56818:
REM ditto

506@ TEMPS(LNL,LNL)=CHRS$(KEY):? CHR$ (K
EY):;:LNL=LNL+1:IF LNL>MARK THEN 50880

\jﬁ7ﬂ GOTO 59149 /

190

CHRISTMAS MAILING LISTER

f?}aa IF LEN(TEMPS)<MARK THEN TEMPS(Lg;\
(TEMPS$)+1)=" " :G0TO 5080

5098 RETURN

52088 ? #2;" CATAGORY INDEX

(R 2

D27 w2 RTINS 2 22 e CAT 28
#2003 v GATAS 22 2 v 4 SR AT A7 s 7-tth

.";CATS5S$:? #2;"6." ;CATHS

5228 FOR L18=1 TO 2@:? #2:NEXT L18:FOR
Lia=1 T0 48:2 #2: = NEXT L19:F0R L2

#=1 TO0 5:? #2:NEXT L249

52308 RETURN

9500 POKE 53775,35:POKE 53768,40:P0OKE

53764,0:POKE 53766,0:P0OKE 53773,225

5519 RETURN :REM per Atari this routin

e is necessary to help prevent tape er

rors

66@8 FOR L1@=1 TO CR:? CHR$(31);:NEXT

L1#:REM move cursor to right

6618 RETURN

6206 ? “g.":CAT18:? "H.";CAT2$:? "H.";

CAT3$:? “f}.";CAT4S:? "H.";CAT5$:? "[J."
;CATES

6285 RETURN

6219 ? ”E.ALL OF THE ABOVE.":? " (ENTER
1,2,3,4,5,6 OR 7)";:INPUT Q4

6220 RETURN

6508 LABEL=@:REM printing control rout
ine

6518 FOR L11=1 TO LEN(MAINS)-189 STEP

1140

6515 GOSUB 78@@:IF FLAG4=1 THEN POP :R

ETURN

6528 NAMES-MAINS(L11,L11+189)

6525 IF NAMES$(1,1)="@' THEN 65648

65308 IF Q4=7 THEN 65540

65409 IF VAL(NAMES$ (109,109))<>04 THEN 6

560

6550 PAGE=PAGE+1:IF PAGE=7 THEN PAGE=@

2FOR. L14=1"T0 4@:2 #2-=—=tANEXTL14:F0

R L¥5=1 TO 5:? #2:NEXT L15

6553 FOR L19=1 TO LEN(NAMES):CIVS$=NAME

\i}LlQ,LIQ):Ivc-Asc(CIVS):IF IVC>159 ti/

191

FEATURES

(?h NAMES (L19,L19)=CHRS$(IVC-128) <‘\

6554 NEXT L19:REM this changes inverse
characters bhack to normal,so we can p
rint them

6555 GOSUB 72440

6568 NEXT L11

6578 CLOSE #2:RETURN

7068 2?2 :? D0 YOU WANT THE PHONE NUMBE

R ON THE LABEL(ENTER Y OR N)";:INPUT
02§

7818 ? "HOW MANY COPIES";:INPUT Q3
7828 RETURN

7288 FOR L5=1 TO0 Q3

7285 GOSUB 78@B:IF FLAG4=1 THEN POP :R
ETURN

7218 ? #2;BA4S ;NAMES (1,28):? #2;B4$;NAM
E$(29,56):? #2;BAS;NAMES (57,84):? #2;8

48 ;NAMES (85,94)

7220 LE=4

72308 IF Q2$="Y" THEN ? #2;B4$;NAMES$ (95
,108) ,NAMES (169,189):LE=3

7235 IF Q1=-3 THEN LE=3

7248 FOR L6=1 TO LE:? #2:NEXT L6

72508 NEXT LS5:RETURN

7560 FLAGT1=1:MAINS(L2,L2)="@ :REM deles
e tiicke

7518 RETURN

78808 FLAG4=0:IF PEEK(53279)=3 THEN FLA

G4=1:REM check option button

7818 RETURN

8495 REM routine to convert lower case
letters to upper case

8500 FOR L1=1 TO LEN(TEMPS$):T1=ASC(TEM

P$S(L1,L1)):IF T1>06 THEN TEMP$(L1,L1)=

CHR$ (T1-32):NEXT L1

85085 IF LEN(TEMPS$)>MARK THEN TEMPS=TEM

P$(1,MARK)

8518 RETURN

99@@ REM error trapping routine

9410 ERR= PEEK(I 5):REM error # stored

in location 195

9¢20 ERRLN=PEEK(187)*256+PEEK(186):V

'
\;:B:HEM error line # stored at these lo)

192

CHRISTMAS MAILING LISTER

/:;lions.low byte first ﬂ\\

9439 SETCOLOR 2,3,4:? CHR$(253):TRAP 0
OPS:REM turn screen pink,sound buzzer,
reset trap

9948 IF ERR>8 AND ERR<138 THEN 92440
9450 IF ERR=141 THEN 92490

9@6@ IF ERR<>3 AND ERR<>8 THEN 96840
94708 ? "INPUT ERROR.EITHER THE VALUE W

AS OUTSIDE THE EXPECTED RANGE OR
Your

9975 ? "INPUT A LETTER WHERE A NUMBER
WAS CALLED FOR.":? :GOTO ERRLN-1§@

9@98# IF ERR<>138 THEN 9118

9@90@ ? "PRINTER OR TAPE ERROR.MAKE SUR
E THAT THE DEVICE IS TURNED ON AND AL
LS GIAIBLE ™

9188 ? "CONNECTIONS SECURE,AND THEN CH
00SE:":G0TO 91348

9118 IF ERR<148 OR ERR>143 THEN 9248
912@ ? "TAPE ERROR.REWIND AND THEN CHO
OSE:"

9130 ? QHJ.RETURN TO MAIN MENU"

9149 ? 4. END"

91he 72 2 “(ENTER 1S0R" 2" T RAR DIOPS T
NPUT ERRQ:REM reset trap before return
ing to main program

91608 ON ERRQ GOTO 9174,9194

9179 FLAG6=P:CLOSE #1:CLOSE #2:CLOSE #
3:6G0T0 MENU

9190 GRAPHICS @:END

92@@ GRAPHICS @:SETCOLOR 2,3,08:POKE 75
2,1:FO0R XX=1 TO 5:REM turn screen red,
TG IR o IR A BT O S

92194 POSITION 14,18:? "FATAL ERROR" :SO
UND @,47,10,10:REM make warbler sound
9229 FOR YY=1 TO 25:NEXT YY

9239 POSITION 14,10:? ~NEYEELLL :so
UND @,64,10,190

9249 FOR YY=1 TO 25:NEXT YY

925@ NEXT XX

9260 ? :? "FATAL ERROR “:ERR;” AT LINE
"ERRLN:? "DEBUG AND RESTART":? :LIi:)

ERRLN:END

193

FEATURES

(;;BB REM routine to disable hreak ke;‘\

9618 BB=PEEK(16):IF BB>127 THEN BB=BB-

128:POKE 16,BB:POKE 53774,B8B

962@ RETURN

19660 REM supplies data for line 12740

16019 DATA 6,28,8,28,9,28,10,10,9,14,1

g,2

Variable checksum = 6450064
Line num range Code Length
10 =20 EA 561
2340 =287 GY 502
288 - 394 ™ 465
404 - 4648 0D 551
478 - 578 PJ 514
575 - 6580 BV 439
680 - 788 MM 584
790 - 924 Z0 359
934 - 18580 NL 373
1060 - 1188 LK 452
1194 - 1243 LL 524
1245 - 13348 co 335
1394 - 14640 CM 520
1465 - 15348 KU 381
1548 - 19@¢40 0B 444
19149 - 20859 HM 506
2055 - 5018 CJ 459
5020 - 52140 EW 5117
52240 - 6500 PM 520
6510 - 65178 BG 489
10880 - 1504 DK 486
7519 - 90438 X0 519
9449 - 913¢ vy 505
91448 - 9238 DwW 503

\\» 9249 - 186180 Ww 282

Save the Pieces

Whenever you spend time and effort entering program code, word-processing text, or
other voluminous data into your computer, be sure to save your work periodically to
disk or tape. You should do this as often as every fifteen minutes or so. You won’t
regret it.

This protects you against loss of the major portion of your work if you lose power
or suffer computer lockup. These conditions do occur, and usually at the very worst
times.

Good intentions don’t count here. You have to do it in order to benefit. A cheap
kitchen timer or photo lab timer should be part of your computing paraphenalia. Just
start it ticking when you start typing. You'll be surprised how soon it rings.

As you save, alternate the file names so you don’t write over your last material.
For example, call your first saved piece DOCI, the second save DOC2, the third
DOCI again, etc. This makes sure you always have protection against a “bad” save.

Cassettes for the Atari are notorious for loading problems. When backing up a
program on cassette it is wise to save twice on each side (four times in all). Be sure to
record the footage counter reading for each save so that you can find the starting
places of the various saves.

195

Systems Guide

pISPLAY

NEWCOL
DOSINI
BooT
. Somp)
e
)

3 N POKMSK

)
ﬁ)
SERIAL PORT /7

Al

g—— N
=5 b

N\

Memory Map

hat follows in this section is a list of important locations in the
silicon memory of your ATARI 400 or 800. This sequential list of
memory locations is called a memory map. The memory inside any
ATARI is divided into sections called pages. Each page contains 256 bytes
(locations). In a 64K machine there are 256 pages of memory. Memory is fur-
ther divided into RAM and ROM locations. The ROM cannot be changed
by the program. It is created at the factory and contains those values and pro-
grams always available on any ATARI. The RAM memory addressess 0 - 1012
can be, and are altered by running programs. It is these low memory addresses
that are described here. To adequately identify these RAM locations, our for-
mat gives the decimal value of the location, the equivalent hexadecimal (base
16) value, the number of contiguous locations serving the specified function,
the name used in the Operating System listing published by Atari, and a
description of the function. For example:
783 $30F 1 CASFLG Cassette mode indicator.
This means that location 783 (30F in hexidecimal) uses one byte for the func-
tion called CASFLG, and is the cassette mode indicator.
NOTE: Hexidecimal numbers are preceeded by a dollar sign ($). This nota-
tion is arbitary but is the consensus method of indicating base 16 numbers.
The low memory locations that follow are used by the Operating System for
housekeeping functions. Information such as location of Player/Missile data,
screen colors, timer values, interrupt vectors, display list pointers and almost
any other important information needed by the system to operate is stored
here.
Figure 1 shows the gross memory map. This should give you some idea of
where BASIC resides in memory, what part of memory is used and unused, etc.

James Capparell, a native of Rochester, New York, and graduate of the University of Rochester, is
the founder and publisher of ANTIC—The ATARI Resource. His interest in ATARI computers began
while working as a programmer at NASA’s Ames Research Center in Mountain View, California. He
also did programming for Ford Aerospace in Palo Alto. He originally obtained an ATARI to augment his
NASA projects, but soon became involved with it as a hobbyist and as founder of ABACUS, the Atari
Bay Area Computer Users” Societ.

197

SYSTEMS GUIDE

Not all of the 65,536 possible memory locations are described, nor need to
be. Most of memory is left “free” for the user. If you have 16K memory, your
ATARI has RAM locations 0 through 16,383 available. Then accessible
memory jumps to the locations reserved for cartridges, such as BASIC, from
40960 through 49151, and then to high memory where the Operating
System’s ROM locations are found (See Figure 1).

Many low memory RAM locations are initialized by the Operating System
in ROM when the computer is turned on. These values govern execution of
user programs and are important for programmers to know. Additional infor-
mation about memory is found in De Re Atari, the Atari Technical User Notes,
(available from Atari Program Exchange), and in Mapping the ATARI, from
COMPUTE! Books.

FIGURE 1
Address in
With no DOS Hexidecimal With DOS 2.0S
Operating System RAM 0000 Operating System RAM
1000
2000 ﬂs 2.0S
3000
4000
Free 5000 Free
9000
A000
BASIC or other B000 BASIC or other
8K cartridge C000 8K cartridge
unallocated D000 unallocated
hardware 1/O E000 hardware 1/0
Operating System | F000 Operating System
ROM FEEF ROM

198

MEMORY MAP

1802 LINZBS
2 822 CASINI

4 %42 RAMLO
6 $6 1 TRAMSZ
7 87 1 TSTDAT
8 88 1 WARMST
989 1 BOOT

10 $A 2 DOSVEC
12 $C 2 DOSINI

14 $E 2 APPMHI

16 $10 1 POKMSK

17 $11 1 BRKKEY

18 $12 3 RTCLOK

21 $152 BUFADR

23 %17 11CCOMT

Page Zero
May be used to store VBLANK timer.
If cassette booted successfully during powerup then
JSR thru here.
Ram pointer for memory test used on powerup.
Temporary register for RAM size.
RAM test data register.
Warmstart flag set equal to 1 when S/RESET
pushed. When set equal to O then powerup retry.
Boot flag success indicator. When equal to 1 then
successful disk boot. When equal to 2 then successful
cassette boot.
Disk software start vector.
Used to store address of initialization of application
upon DOS boot. JSR indirect thru here to initialize
application.
Contains highest address of RAM needed by user.
Screen handler opens S: only if no RAM needed
below this address.
IRQ service uses and alters POKMSK. These are
POKEY interrupts. Shadow for IRQEN[$D20E].
bit 7=1 Break key interrupt enable.
bit 6=1 Other key interrupt enable.
bit 5=1 Serial input data ready interrupt enable.
bit 4 =1 Serial output data needed interrupt enable.
bit 3=1 Serial out finished interrupt enable.
bit 2=1 Timer 4 interrupt enable.
bit 1=1 Timer 1 interrupt enable.
This is initalized to 1 by OS (1 =no break key
pressed). Monitored by keyboard, also screen editor.
Break during I/O returns status of $80. This is set to
0 when break key is pressed.
Updated every Vblank interrupt (1/60 Sec.) Called
frame counter, initialized to 0 and overflows to 0.
The least significant byte of counter is $12 and it uses
16 msec units.
Indirect buffer address register. Used as a temporary
Page Zero pointer to current disk buffer.
Command for CIO vector. Used to find correct vec-
tor to the handler routine.

199

SYSTEMS GUIDE

24 $18 2 DSKFMS
26 $1A 2 DSKUTL

28 $1C 1 PTIMOT
29 $1D 1 PBPNT

30 $1E 1 PBUFSZ

31 $1F 1 PTEMP
32 $201ZI0CB

33 $21 1 ICDNOZ
34 $221I/CCOMZ
35 $23 1 ICSTAZ
36 $24 2 ICBALZ
38 $26 2 ICPTLZ
40 $28 2 ICBLIZ

42 $2A 2 ICAZIZ
43 $2B 1 ICAX2Z

44 $2C 2 ICSPRZ
46 $2E 1 ICSPRZ
47 $2F 1 CIOCHR
48 $30 1 STATUS
49 $31 1 CHKSUM
50 $32 2 BUFRLO

52 $34 2 BFENLO
54 $36 1 CRETRY
55 3837 1 DRETRY
56 $38 1 BUFRFL
57 $39 1 RECVDN
58 $3A 1 XMTDON

Disk file manager pointer. Used as vector to FMS.
Disk utilities pointer. Points to a buffer for utilities
package.

Printer timeout every printer status request. Typical
timeout for the 825 is 5 seconds. Initialized to 30 sec.
Print buffer pointer, index into printer buffer ranges
from 0 to value of PBUFSZ.

Print buffer size of printer record for current mode.
normal =40 bytes

double width =20 bytes

sideways =29 bytes (Atari 820 printer)

status =4

Printer handler uses this temp register to save value
of character to output to printer.

Handler index number into the device name table
for currently opened file. Set to 255 if no file opened.
Device # (DRIVE #). Initialized to 1.

Command code.

Status of last [OCB action.

Buffer address for data transfer.

Put byte routine (address -1) set by OS.

Buffer length byte count used by PUT and GET
commands.

Auxiliary information first byte used in OPEN to
specify type of file access.

Auxiliary information second byte. CIO working
variables.

Spare bytes local CIO use.

IOCB Number multiplied by 16.

Character byte for current operation.

Internal status storage.

Single byte sum with carry to least significant bit.
Pointer to data buffer transmitted during 1/O
operation.

Next byte past end of data buffer.

Number of command frame retries. Default is 13.
Number of device retries. Default is one.

Buffer full flag. (255 indicates full).

Receive done flag. (255 indicates done).
Transmission done flag. (255 indicates done).

200

MEMORY MAP

59 $3B 1 CHKSNT
60 $3C 1 NOCKSM

61 $3D 1 BPTR

62 $3E 1 FTYPE

63 $3F 1 FEOF

64 340 1 FREQ

65 $41 1 SOUNDR
66 $42 1 CRITIC

67 $43 7 FMSZPO
74 $4A 1 CKEY

75 $4B 1 CASSBT

76 $4C 1 DSTAT
77 $4D 1 ATRACT

78 $4E 1 DRKMSK
79 $4F 1 COLRSH

80 $50 1 TEMP

81 $51 1 HOLD1

Checksum sent flag. (255 indicates done).

No checksum follows data flag. Zero indicates
checksum follows transmission.

Cassette record data index into data portion of
record being read or written. Values range 0 to
current value BLIMI [$28A]. When BPTR =BLIM
then buffer CASBOFF [$3FD] is empty if reading or
full if writing.

Interecord gap type. Copy of ICAX2Z from open
command. (0 indicates continuous gaps; non-zero
indicates normal gaps.)

Cassette end of file flag used by cassette handler to
indicate end of file.

Beep count. Retain and count number of beeps
requested of beep routine by cassette handler during
open processing; one beep for play, two for record.
Noisy I/O flag, when 1/O is done buzzer sounds.
POKE 0 and it won'’t buzz.

Defines critical section (if non-zero) checked on NMI
process after stage 1 processed.

Disk file manager zero page.

Cassette boot request flag on powerup (coldstart).
Start key checked, if pressed then CKEY is set.
Cassette boot flag.

Display status used by display handler.

Attract flag set to O by IRQ whenever a key is
pressed. Incremented every 4 seconds by stage 1
Vblank. When value is < 127 then value is set to
$FE until attract mode is terminated.

Dark attract mask =$FE when attract mode inactive.
Attract color shifter XOR’d with playfield colors. At
stage 2 Vblank color registers are XOR'd with
COLRSH and DRKMSK then sent to hardware
color registers. When attract inactive COLRSH =0
and DRKMSK =$F6 reducing luminance 50% and
COLRSH=RTCLOCK +1 affecting color change
every 256/60=4.1 sec.

Used by display handler in moving data to and from
screen.

Same as [$50]. When BASIC in use these 2 locations

201

SYSTEMS GUIDE

82 $52 1 LMARGN
83 $53 1 RMARGN

84 $54 1 ROWCRS

85 $552 COLCRS

87 $57 1 DINDEX

88 $58 2 SAVMSC

90 $5A 1 OLDROW

91 $6B 2 OLDCOL

93 $5D 1 OLDCHR

94 $5E 2 OLDADR

96 $60 1 NEWROW

97 $61 2 NEWCOL

99 $63 1 LOGCOL

100 $64 2 ADRESS

102 $66 2 MLTTMP

704 368 2 SAVADR
106 $6A 1 RAMTOP

called LOMEM and point to 256 byte buffer at end
of OS. RAM used to tokenize one line of BASIC.
Column of left margin of text screen, initialized to 2.
Column of right margin of text screen initialized to
39. Margins are user alterable. Ignored in every mode
but 0.

Display row number used in graphics screen and
mode 0. Range 0 - 191. This location and COLCRS
define the cursor location for the next data element
to be read/written to main screen segment.

Display column number used in graphics and mode
0 (lobyte). Range 0 - 319 (hibyte). Home position is
0,0 for both graphics and text.

Display mode current screen mode obtained from
low order 4 bits of most recent open AUXI byte.
Lowest address of display memory this location
corresponds to the upper left corner of screen.
These next 3 locations are updated from ROWCRS
and COLCRS before every operation. This location
is used by DRAWTO and XIO to determine starting
row.

These variables used only in draw and fill
commands.

Retains value of character under visible text cursor.
Used to restore character after cursor moves.
Retains memory address of current visible text cursor
location. Used in conjunction with OLDCHR to
restore character value after cursor moves.

Indicates row location that the DRAWTO and XIO
fill routine will use.

Indicates column DRAWTO and XIO will go.
Points at cursor position in logical line. A logical line
can contain up to 3 physical lines. This variable is
used by display handler and ranges from 0 to 119.
Temporary storage holds contents of SAVMSC
[$58].

OPNTMP first byte used in open as temporary
storage.

Temporary storage.

RAM size defined by power on logic. This value is

202

MEMORY MAP

107 $6B 1 BUFCNT
108 $6C 2 BUFSTR
110 $6E 1 BITMSK
111 $6F 1 SHFAMT
112 $70 2 ROWAC
114 $72 2 COLAC
116 $74 2 ENDPT

118 $76 1 DELTAR
119 $77 2 DELTAC
121 $79 1 ROWINC
122 $7A 1 COLINC
123 $7B 1 SWPFLG

124 $7C 1 HOLDCH

125 $7D 1 INSDAT
126 $7E 2 COUNTR

128 $80 2 LOMEM

130 $82 2 VNTP

132 $84 2 VNTD

134 $86 2 VVTP

136 $88 2 STMTAB

138 $8A 2 STMCUR

given in pages (page = 256 bytes of memory).

Screen editor current logical line size.

Editor low byte.

Used in bit mapping routines by OS display handler.
Pixel justification.

Control for row and column point plotting.
Controls column point plotting.

Contains larger of DELTAR and DELTAC used in
conjunction with ROWAC/COLAC to control
plotting of line points.

Contains absolute value of NEWROW minus
ROWCRS.

Contains absolute value NEWCOL minus
COLCRS. These values and ROWINC and
COLINC define slope of line to be drawn.

Row increment +1 or —1.

Column increment +1 or —1.

Split screen cursor control.

Character moved here before control and shift logic
processed.

Temporary storage used by display handler.

Initially contains larger of DELTAR and DELTAC
which is number of iterations to generate a line. This
value decremented after every point is plotted.
When =0 then line is finished.

This points to a 256 byte buffer used to tokenize one
line of BASIC. This buffer is located at the end of
the O.S.RAM.

Points to list of all variable names used in a program.
Each name is stored in the order entered. Maximum
of 128 names.

Points to end of variable name table. Points to a zero
byte when all 128 names not used.

Points to variable value table. Eight bytes allocated
for each variable in name table.

Points to statement table which contains the
tokenized BASIC statements. Also the immediate
mode lines.

The BASIC interpreter uses this pointer to access
the tokens within a line of the statement table.

203

SYSTEMS GUIDE

140 $8C 2 STARP

142 $8E 2 RUNSTK

144 $90 2 MEMTOP

Points to the block containing all the string and
array data. Memory is reserved and enlarged
whenever a dimension statement is encountered.
Strings are stored one byte (ATASCII) per character.
Arrays are stored as six byte BCD (Binary Coded
Decimal) per element.

Points to the software run time stack. The stack
maintains GOSUB and FOR/NEXT entries. The
POP statement affects this stack.

Points to the end of the user program. The FRE
function returns the value calculated by subtracting
the contents of this location from the contents of
HIMEM at $2E5 and $2E6. Don't confuse this
MEMTOP with the O.S. variable of the same name
at $2E5.

The remainder of Page Zero is used by BASIC cartridge, floating point
routines and assembler cartridges.
Page One is the stack area and is not available for use by programmers.

512 $200 2 VDSLST

514 $202 2 VPRCED

516 $204 2 VINTER

518 $206 2 VBREAK

520 $208 2 VKEYBD

522 $20A 2 VSERIN

524 $20C 2 VSEROR

526 $20E 2 VSEROC

528 3210 2 VTIMR1

Page Two
Initialized to [$E7B3] if NMI interrupt occurred and
it was caused by a DLI then JMP thru here. Since
the OS does not use DLIs this is initialized to point
to an RTL
Initialized to [$E7B2] if IRQ interrupt occurred due
to serial I/O bus proceed line then JMP thru here.
Initialized to [$E7B2] if IRQ interrupt due to serial
I/O bus interrupt then JMP thru here.
Initialized to [$E7B2] if IRQ interrupt due to 6502
BRK instruction execution then JMP thru here.
Initialized to [$FFBE] if IRQ interrupt due to
keypress then JMP thru here to keyboard handler.
Initialized to [$EB11] if IRQ interrupt due to I/O bus
input ready then JMP thru here.
Initialized to [JEA90] if IRQ interrupt due to 1/0O
bus output ready then]MP thru here.
Initialized to [JEADI1] if IRQ interrupt due to I/O
bus output complete then JMP thru here.
POKEY timer 1 interrupt vector.

204

MEMORY MAP

530 $212 2 VTIMR2
532 $214 2 VTIMR4
534 $216 2 VIMIRQ

536 $218 2 CDTMV1

538 $21A 2 CDTMV2

540 $21C 2 CDTMV3

542 $21E 2 CDTMV4

544 $220 2 DCTMV5

546 $222 2 VVBLKI

548 $224 2 VVBLKD
550 $226 2 CDTMA1

552 $228 2 CDTMA2

554 $22A 1 CDTMF3

555 $22B 1 SRTIMR

556 $22C 1 CDTMF4

557 $22D 1 INTEMP
558 $22E 1 CDTMF5
559 $22F 1 SMDCTL

POKEY timer 2 interrupt vector.
POKEY timer 4 interrupt vector.
Initialized to [$E6F6] if IRQ interrupt occurs then
JMP thru here to determine cause.
SIO timeout decremented at every VBLANK stage 1
when this location counts down to 0 then JSR thru
CDTMALI [$226].
Timer decremented at almost every VBLANK
subject to critical section test (stage 2 process).
Timer decremented at almost every VBLANK
subject to critical section test (stage 2 process).
Timer same as 2 & 3.
Timer same as 2,3 & 4. 3,4,5 set flags
CDTMF3=$22A CDTMF4=$22C and
CDTMV5=%$22E when they equal zero.
Initialized to [$E701] stage 1 vertical blank vector
NMI interrupt.
Initialized to [$E93E] system return from interrupt.
SIO timeout vector. When CDTMV 1 [$218] times
out it vectors through here.
NO SYSTEM FUNCTION. Available to user enter
address of routine to be executed at timer count
down to 0.
Byte flag set when CDTMV3 [$21C,21D] counts
down to 0.
Software repeat timer, controlled by IRQ device
routine, establishes initial %2 second delay before key
will repeat. Stage 2 Vblank establishes 1/10 second
repeat rate. Decrements timer, implements auto
repeat logic.
Byte flag set when CDTMV4 [$21E] counts down to
0.
Used by SETVBL routine.
Byte flag set when CDTMV5 [$220] counts to O.
Shadow for DMACTL [$D400] default value $22.
bit 5=1 enable Display List instruction fetch DMA.
bit 4=1 enable 1 line P/M resolution.

=0 enable 2 line P/M resolution.
bit 3=1 enable Player DMA.
bit 2=1 enable Missile DMA.

205

SYSTEMS GUIDE

560 $230 2 SDLSTL

562 $232 1 SSKCTL

563 $233 1 SPARE
564 $234 1 LPENH

565 $235 1 LPENV

566 $236 4 SPARE
570 $23A 1 CDEVIC
571 $23B 1 CCOMND
572 $23C 1 CAUXI
573 $23D 1 CAUX2

574 $23E 1 TEMP

575 $23F 1 ERRFLG
576 $240 1 DFLAGS
577 $241 1 DBSECT

578 $242 2 BOOTAD
580 $244 1 COLDST

5817 $245 1 SPARE

bit 1,0=0 0 no Playfield DMA.
=0 1 narrow Playfield DMA 128 color clocks.
=1 0 standard Playfield DMA 160 clocks.
=1 1 wide Playfield DMA 192 clocks.
Shadow for DLISTL [$D402]. This location
initialized to Start of Display List.
Shadow for SKCTL [$D20F].
bit 7=1 force break serial output to 0.
bit 6,4 =serial port mode control.
bit 3=1 serial output transmitted as 2-tone instead of
logic true/false.
bit 2=1 pot counter completes within 2 scan lines
instead of 1 frame time.
bit 1=1 enable keyboard scanning circuit.
NO OPERATING SYSTEM FUNCTION.
Light pen horizontal value shadow for [$D40C].
Value range 0-227 wrap to 0 at right edge of standard
width screen.
Light pen verticl value shadow for [$D40D]. Value
same as VCOUNT 2 line resoluton. Both pen values
modified if any joystick trigger lines pulled low.
NO OPERATING SYSTEM FUNCTION.
SIO bus I.D. number.
SIO bus command code.
SIO auxiliary byte loaded from location 778.
SIO command auxiliary byte loaded from location
779.
Receives one-byte responses from serial bus con-
trollers.
SIO error flag. Indicates any device error except
timeout errors.
Disk flags from sector 1, contains value of first byte
of boot file.
Number of disk boot sectors.
Address where disk boot loader will be put.
Coldstart flag when = 1 then powerup in progress.
When = 0 then S/RESET in progress. If set = 1
during normal program execution then S/RESET
will act like powerup giving some protection.

NO OPERATING SYSTEM FUNCTION.

206

MEMORY MAP

582 $246 1 DSKTIM
583 $247 40 LINBUF

623 $26F 1 GPRIOR
624 $270 8 PADDLO-
PADDL7

632 $278 4 STICKO-
STICK3

636 $27C 8 PTRIGO-
PTRIG7
644 $284 4 STRIGO
648 $288 1 CSTAT
649 $289 1 WMODE

650 $28A 1 BLIM

651 $28B 4 SPARE

656 $290 1 TXTROW

657 $291 2 TXTCOL

659 $293 1 TINDEX

660 $294 2 TXTMSC

662 $296 6 TXTOLD

668 $29C 1 TMPXI
669 $29D 1 HOLD3

670 $29E 1 SUBTMP
671 $29F 1 HOLD2
672 $2A0 1 DMASK

Disk timeout register.

Forty byte character line buffer used to temporarily
buffer one physical line of text when screen editor is
moving screen data.

Global priority shadow for PRIOR [$D01B] controls
priority of player /missile/playfield.

These locations store values returned when paddles
are used. Values are between 0 and 228.

These locations store values returned when a joystick
is used. There are 9 possible values. These locations
are shadows (duplicates) of ROM locations 53760-
537617.

These locations store values of trigger on paddles.

Joystick trigger O - 3.

Cassette status register.

Used by cassette handler as read/write mode flag.
Zero = read; $80 = write.

Cassette record data size count of number of data
bytes being read. Range 1-128 depends on record
control byte.

NO OPERATING SYSTEM FUNCTION. Use of
these bytes in your program may conflict with later
OS upgrades.

Text window row cursor range 0-3. Specifies where
next read/write will occur.

Text window column cursor range 0-39 used in split
screen. These two variables give cursor position.
Split screen text window graphics mode. Index
always = 0. When SWPFLG [$7B]=0. This is split
screen equivalent of DINDEX.

Split screen text window version SAVMSC [$58].
Old row and old column for text and then some split
screen cursor data.

Temporary storage.

Used by the display handler to hold scroll loop
counter.

Temporary storage. Unknown function.
Temporary storage. Unknown function.

Pixel location mask.

207

SYSTEMS GUIDE

673 $2A1 1 TMPLBT
674 $2A2 1 ESCFLG

675 $2A3 15 TABMAP

690 $2B2 4 LOGMAP

694 $2B6 1 INVFLG

695 $2B7 1 FILFLG

696 $2B8 1 TMPROW
697 $2B9 2 TMPCOL
699 $2BB 1 SCRFLG

700 $2BC 1 HOLD4

701 $2BD 1 HOLDS
702 $2BE 1 SHFLOK

703 $2BF 1 BOTSCR

704 $2C0 4 PCOLRO -
PCOLR3
PCOLRO
PCOLR1
PCOLR2
PCOLR3

708 $2C4 5 COLORO -
COLOR4
COLORO

Temporary storage for bit map.

Used by screen editor. Flag set to $80 when

ESC[$1B] character detected. Reset to 0 following

output of next character. Causes character following

ESC to be displayed, only exception is EOL [$9B].

Indicates where tab stops are set. There are 120

possible tab stops in one logical line.

Logical line bitmap. When a bit is set then a logical

line starts at the corresponding physical row number.

All bits set to 1 when text screen is opened or

cleared.

Inverse video flag toggled by ATARI logo key sets bit
=1

Indicates to display handler whether current

operation is Fill (not 0) or Draw (0)

Temporary storage used by ROWCRS [$54].

Temporary storage used by COLCRS [$55].

Scroll flag set to number of physical lines minus 1

that were deleted from top of screen. Since logical

lines range from 1 - 3 physical lines then this variable

ranges from O - 2.

Used to save and restore value in ATACHR[$2FB]

during fill process when ATACHR is temporarily set

to value in FILDAT[$2FD].

Similiar function to HOLDA4.

Shift/control lock flag initialized to $40 at powerup

$00 =normal mode lower case alpha $61-$7A

$40 =caps lock upper case $41-$5A

$80 =control lock $01-$1A

Bottom of screen. If = 4, then mixed graphics mode.

If = 24 then normal text mode.

Player color registers and shadows
= COLPMO[$DO012]
= COLPM1[$D013]
= COLPM2[$D014]
= COLPM3[$D015]

Playfield color registers and shadows.

= COLPF0[$D106]

208

MEMORY MAD

COLOR1
COLOR2
COLOR3
COLOR4
713 $2C9 23 SPARE
736 $2E0 2 GLBABS
738 $2E1 2 SPARE
740 $2E4 1 RAMSIZ

741 $2E5 2 MEMTOP

743 $2E7 2 MEMLO

745 $2E9 1 SPARE
746 $2EA 4 DVSTAT

750 $2EE 2 CBAUDL
752 $2F0 1 CRSINH
753 $2F1 1 KEYDEL

754 $2F2 1 CH1

755 $2F3 1 CHACT

bit2 =1
bit1 =2
bito = 1

= COLPF1[$D017]
= COLPF2[$D018]
= COLPF3[$D019]
= COLBK[$D01A]

*3k

Contains entry address of code for auto-boot/run.
Kok

Size in pages (page = 256 bytes) of available RAM
permanently retains RAM top address contained in
TRAMSZ[$6]. With BASIC and 48K installed this

equals $160=40960 bytes.

Top of available user memory RAMSIZ less display
list and display memory (first nonuseable program
address). This value established by powerup logic
and reset. Re-established when screen display is
opened.

Bottom of available user memory established at
powerup and reset, not altered after that.

sk

Device status buffer Get status command puts
information in these bytes.

Cassette baud rate low byte.

Cursor inhibit flag. When equal to O then cursor
turned on. If not equal 0 then no visible cursor.
Key delay set to 3 whenever key code accepted.
Decremented every 1/60 sec by stage 2 VBLANK
process until it reaches 0.

Prior key code read and accepted. Current key
pressed compared with contents of CH1 if same then
debounce time checked if OK then accepted. If
current key not the same as CHI then accepted.
When code is accepted then stored in CH[$2FC].
Shadow for CHACTL[$D401] character control
register.

Causes current character line to invert, sampled at
every char. line.

In 40 char. mode if bit 7 of current char. code = 1
then char. is blue on white.

In 40 char. mode if bit 7 of current char. code = 1
then char. will be blank. Blinking char. produced by

209

SYSTEMS GUIDE

756 $2F4 1 CHBAS

757 $2F5 5 SPARE
762 $2FA 1 CHAR

763 $2FB 1 ATACHR

764 $2FC 1 CH

765 $2FD 1 FILDAT
766 $2FE 1 DSPFLG

767 $2FF 1 SSFLAG

setting bit 7 of char. and periodically changing bit O
here.

Vector to page address of character set initialized to
$EO (upper case and punctuation). The character set
in ROM is located at $E000-$E3FF, shadow for
CHBASE[$D409].

koK

Contains internal code corresponding to what is in
ATACHR[$2FB]. This will be converted to ATASCII
code.

ATASCII value for most recent character read or
written or value of the graphics point. This value
also determines color of line in draw and fill
commands.

Holds keyboard code for a character (not ATASCII).
Keyboard handler gets all data from here when it
gets a character it writes $FF here to indicate code
read. This location loaded when a key is pressed
causing an [RQ) interrupt which vectors at $208.
This interrupt service routine loads the code into
$2FC for processing at VBLANK stage 2.

Color to be used by XIO FILL Command.

Display flag will allow control codes other than EOL
[$98B] to be displayed if flag not equal to 0. If flag =
0 then control codes processed normally.

Start/stop flag toggled by control-1 keys cleared by
break key, reset key, or powerup

Page Three

DCB DEVICE CONTROL BLOCK

Used for handler /SIO communication and between user and disk handler.

768 $300 1 DDEVIC
769 $301 1 DUNIT
770 $302 1 DCOMND
771 $303 1 DSTATS
772 $304 2 DBUFLO

774 $306 1 DTIMLO

775 $307 1 DUNUSE

Pheripheral unit bus I.D. number.

Unit number.

Bus command.

Command type status return.

Data buffer pointer. Set by handler to indicate source
or destination data buffer.

Device timeout in 64/80 second units. Set by
handler.

Unused in DCB.

210

MEMORY MAP

776 $308 2 DBYTLO
778 $30A 1 DAUX1

779 $30B 1 DAUX2
780 $30C 2 TIMER1
782 $30E 1 ADDCOR
783 $30F 1 CASFLG
784 $310 2 TIMER2

786 $312 2 TEMP1
788 $314 1 TEMP2
789 $315 1 TEMP3
790 $316 1 SAVIO
791 8317 1 TIMFLG
792 $318 1 STACKP
793 $319 1 TSTAT
794 $31A 38 HTABS
I0CB

Number of bytes to be transferred into or out of data
buffer. Not required if no data transfer.

Command auxiliary byte 1. Device specific
information set by handler.

Command auxiliary byte 2.

Initial timer value.

Used for interpolation adjustment of baud rate.
Cassette mode when set.

Final timer value used with TIMERI to compute
interval for baud rate.

Temporary storage.
ok

ke

Save serial data port.

Time out flag for baud rate correction.
SIO stack pointer save cell.
Temporary status holder.

Start of handler address table.

START OF 170 CONTROL BLOCKS

Used to communicate information between user program and CIO.

832 $340 1 ICHID

833 $341 1 ICDNO
834 $342 1 ICCOM
835 $343 1 ICSTA

836 $344 2 ICBAL
838 $346 2 ICPTL

840 $348 2 ICBLL
842 $34A 1 ICAX1
843 $34B 1 ICAX2
844 $34C 3 ICSPR
860 $350 16 IOCB # 1
876 $360 16 IOCB # 2
892 $370 16 IOCB # 3
908 $380 16 |IOCB # 4
924 $390 16 IOCB # 5
940 $3A0 16 IOCB # 6
956 $3B0 16 |IOCB # 7
972 $3C0 40 PRNBUF
1012 $3E8 21 SPARE

Space reserved for 8 IOCBs.

Handler index number ($FF = IOCB unused).
Device number (drive number).

Command code.

Status of last IOCB action.

Buffer address.

Put byte routine address minus 1.

Buffer length.

Auxiliary information first byte.

Auxiliary information second byte.
*** Spare bytes ***

Printer buffer.
*%% Spare bytes ***

211

SYSTEMS GUIDE

Scrolling

he strongest features of the ATARI relative to game programming are
the 12 Graphics Modes (high resolution 320 x 192); two direct

memory access (DMA) video channels (sort of a simplified multipro-
cessing system); display-list controlled, memory-mapped graphics; redefinable
character sets; hooks for vertical blank interrupts and scan line interrupts;
and, of course, four channels of sound.

The ATARI maps its memory to video via an LSI chip called ANTIC.
This chip is a dedicated processor with its own instruction set. These instruc-
tions make up what is called a display list. The display list controls the
Graphics Mode which will be displayed on the screen. Recall that there are 12
modes, each specifying memory use, resolution and color. The display list tells
ANTIC what part of the 6502 memory space to display, what mode to display,
whether an interrupt should be generated, and whether horizontal and/or
vertical scrolling should be enabled. It is this last feature which will be
demonstrated here.

There are two methods which can be used to scroll the image. The first is
direct and easy to comprehend. The display list has, as part of its instructions,
a feature called Load Memory Scan (LMS). This operator is three bytes long.
The last two bytes are the address (lo-byte/hi-byte, 6502 style) of the start of
display memory. As a result, the entire address space is available for display
under program control. This gives the observer a “window” into memory.
Scrolling windows are created by simply changing the two address bytes of the
LMS. In other words, it is not data being moved through memory, but a win-
dow moving across the data residing in memory which causes the image to
scroll.

Listing 1 should give a good idea of “coarse” vertical scrolling. I call it
coarse because the image moves a full character width at a time. Lines 170 and
180 are really doing all the dirty work. The new display address is being insert-
ed into the display list at this point after appropriate incrementing or

“Sowlling,” by James Caparell, is reprinted with permission from MICRO Magazine, Lssue No. 42, P.O. Box 6502,
Ambherst, NH 0303l.

212

SCROLLING

decrementing of the address bytes. I've chosen to vertically scroll the entire
image but it is an easy matter to set up a scrolling window within a
background display. In fact, Listing 2 does just that, only in the horizontal
direction.

['ve also mixed two modes on the screen. The only complication here is
the need to have more than one LMS instruction. The second LMS restores
the pointer to memory prior to the horizontal intrusion. There is nothing to
stop you from placing an LMS instruction on every mode line; each could be
scrolling in independent directions.

Listing 3 is meant to demonstrate the second scrolling method, smooth or
fine scrolling. This is accomplished with the help of hardware scrolling
registers, one for horizontal and another for vertical direction. When the ap-
propriate bits are set in a display list instruction, the values in each of these
registers control the number of scan lines vertically or color clocks horizontal-
ly that each line will be displaced. The limitation here is the amount of fine
scrolling allowed. A line can be moved eight full color-clocks horizontally and
16 scan lines vertically. When this amount is scrolled, the LMS address bytes
must be incremented or decremented and the whole process must be started
again. in this way smooth scrolling can be maintained.

by James Capparell

/T; REM COARSE VERTICAL SCROLLING DEMJ‘\
15 REM PRESS UP/DOWN ARROWS TO MOVE DI

SPLAY THRU MEMORY

280 DLIST-PEEK(568)+PEEK(561)+256:REM G

ET START OF DISPLAY LIST

30 LMSL-DLIST+4:REM POINTER TO DISPLAY
MEMORY

49 LMSH-DLIST+5

50 DISPLAYL-@:REM INITIALIZE ADDRESS 0

F DISPLAY MEMORY

55 REM READ KEYBOARD

680 IF PEEK(764)-255 THEN GOTO 68:REM W

AIT FOR KEY

78 IF PEEK(764)-14 THEN POKE 764,255:G

0TO 116:REM UP ARROW /

80 IF PEEK(764)-15 THEN POKE 764,255:6

0TO 146:REM DOWN ARROW ?

\J7 6070 60 A/)

213

SYSTEMS GUIDE

186 REM MOVE DISPLAY WINDOW INTO LOWEF\
MEMORY

119 DISPLAYL-DISPLAYL-44

128 IF DISPLAYL>-@ THEN GOTO 178:REM C
AN'T DISPLAY NEGATIVE MEMORY

122 DISPLAYH-DISPLAYH-1:DISPLAYL-@

124 IF DISPLAYH<@ THEN DISPLAYH-0

126 GOTO 1780

130 REM MOVE DISPLAY WINDOW INTO HIGHE
R MEMORY

149 DISPLAYL-DISPLAYL+49

158 IF DISPLAYL>240 THEN DISPLAYH=DISP
LAYH+1:DISPLAYL-8

168 REM CHANGE DISPLAY MEMORY POINTER
178 POKE LMSL,DISPLAYL:REM PUT NEW DIP
LAY ADDR IN DISPLAY LIST

188 POKE LMSH,DISPLAYH

2@ GOTO G6@:REM GO WAIT FOR KEYBOARD E

NTRY)

(Th REM COARSE HORIZONTAL SCROLLING nﬁ;\
0

2@ REM USE LEFT AND RIGHT POINTING ARR
OWS TO CONTROL SCROLL DIRECTION

25 LIST

30 DLST-PEEK(561)+«256+PEEK(560)

35 DMEM-PEEK(DLST+4)+PEEK(DLST+5)=256
4p SKIPH-INT((DMEM+286)/256):SKIPL=DME
M+280-SKIPH~256

45 POKE DLST+15,66:POKE DLST+16,SKIPL:
POKE DLST+17,SKIPH

50 ADDRL-DLST+13:ADDRH-DLST+14:VALL=0:
VALH=-3

55 POKE DLST+12,71:POKE ADDRL,VALL:POK
E ADDRH,VALH

60 IF PEEK(764)-255 THEN GOTO 6@8:REM S
CAN KE

\if IF PEEK(764)-7 THEN POKE 764.255:i2}

214

SCROLLING

(?} 160:REM RIGHT ARROW ? <‘\
7 0

@ IF PEEK(764)=6 THEN POKE 764,255:6G
TO 140:REM LEFT ARROW ?

84 GOTO 5@:REM ONLY ARROWS ARE LEGAL R
ESPONSE
99 REM SCROLL RIGHT
106 VALL-PEEK(DLST+13)+1:REM MOVE DISP
LAY TO LEFT
118 IF VALL>255 THEN VALL-@:VALH=VALH+

GOTO 55

20
38 REM SCROLL LEFT

49 VALL-PEEK(DLST+13)-1:REM MOVE DISP
AY TO RIGHT

5@ IF VALL<® THEN VALL=P:VALH=-VALH-1
68 IF VALH<@ THEN VALH-0

78 GOTO 55

1

1

1

1

L

1

1

1
& i)/

(1}78EM FINE SCROLLING HORIZONTALLY AND
VERICALLY

28 DLST-PEEK(568)+256+PEEK(561)

25 DMEM=PEEK(DLIST+4)+PEEK(DLST+5)~256

39 SKIPH-INT((DMEM+280)/256):SKIPL=DME

M+288-SKIPH~256

35 VALL=P:VALH-2

49 POKE DLST+12,119:POKE DLST+13,VALL:

POKE DLST+14,VALH

45 POKE DLST+15,66:POKE DLST+16,SKIPL:

POKE DLST+17,SKIPH

50 IF PEEK(764)-255 THEN GOTO 58:REM S

CAN KEYBOARD

55 IF PEEK(764)-14 THEN POKE 764,255:G

0TO 206:REM UP ARROW ?

60 IF PEEK(764)-15 THEN POKE 764,255:6

0TO 256:REM DOWN ARROW ?

65 IF PEEK(764)=6 THEN GOTO 3@@:REM LE

FT ARROW ? -/

215

SYSTEMS GUIDE

(;; IF PEEK(764)=7 THEN GOTO 35@:REM ;:\
GHT ARROW ?

75 GOTO 5@:REM IGNORE OTHER RESPONSES
280 Y-Y+1:IF Y<16 THEN GOTO 5040

‘218 Y-8

215 VALL-VALL+49

220 IF VALL>24@ THEN VALL-@:VALH=-VALH+

1

230 GOTO 459

250 Y=-Y-1

255 IF Y>-1 THEN GOTO 5@4

260 Y=15

265 VALL-VALL-49

280 GOTO 445

3pP X-X-1:IF X>-1 THEN GOTO 585

3@5 X=15

318 VALL-PEEK(DLST+13)+2

325 GOTO 445

350 X=X+1:IF X<16 THEN GOTO 585

355 X-0

360 VALL-PEEK(DLST+13)-2

449 IF VALL<@ THEN VALL-@:VALH=VALH-1
445 IF VALH<@ THEN VALH-@

4509 POKE DLST+12,119:POKE DLST+13,VALL
:POKE DLST+14,VALH

508 POKE 54277,Y:REM VERTICAL SCROLL R
EGISTER

585 POKE 54276,X:REM HORIZONTAL SCROLL
REGISTER

519 GOTO 59

< 4

216

 ANTIC DISASSEMBLER

ANTIC Disassembler and
Raster Scan Graphics

LSI chip called ANTIC. ANTIC, a dumb microprocessor, functions

as a graphics controller. Its principal duties are to specify the location
in memory to be displayed, the mode of display (12 Graphics Modes with dif-
fering resolutions to choose from), horizontal/vertical scroll enable and
display list instuction interrupt enable.

Included here is an ANTIC disassembler. This program requires you to
enter a BASIC Graphics Mode numbered @-11, and will then locate the
associated display list and decode the instructions. Note that this program
prints the ANTIC display modes numbered 2 - 15. Use the program and the
ANTIC/BASIC correspondences will become apparent. (See Listing 1.) Also
described are basic raster scan graphics (ATARI style), and then a quick lesson
in the use of display list interrupts.

The normal NTSC raster television is made up of 625 interlaced scan
lines. These scan lines are the horizontal lines appearing in the picture tube
phosphor when energized by the electron beam as it sweeps left to right, top to
bottom, across your screen. Interlacing occurs in normal television to
eliminate flicker. It simply means that all even scan line rows are “painted” in
one frame, and all odd lines in the next. The frame refresh rate is 60 Hz.

Each ATARI frame image contains 262 scan lines with no interlacing.
Every frame is the duplicate of the prior one unless there is program interven-
tion. The image is repainted 60 times per second, and the electron beam is
turned off at the end of every scan line. At that time it is returned to the left
edge of the screen to start the next line trace. This is called horizontal blank
time.

The beam is also turned off after every frame so that it may return to the

Recall that the display list is the set of instructions used to control an

“ANTIC Dissassembler,” by James Caparell, is reprinted with permission from MICRO Magazine, Issue No. 43, P.O.
Box 6502, Amherst, NH 03031.

217

SYSTEMS GUIDE

top left corner of the screen. This is called vertical blank time. These two time
periods are very important to the would-be animator. It is crucial to under-
stand how much time is available and how to enter code so that it will be ex-
ecuted at the appropriate moment.

The 6502 microchip in the ATARI cycles at 1.79 megahertz, almost twice
as fast as the normal 6502. This cycle rate was chosen so that two color-clock
widths on a scan line equal one machine cycle. There are 228 color<locks on
every scan line, and the maximum displayable width of any scan line is 176
color-clocks, called “wide playfield” in the ATARI literature. The maximum
resolution is %2 color-clock, and therefore ATARI can display up to 352 picture
elements (pixels) horizontally. The maximum vertical resolution, in scan line
units is 240. Effectively, ATARI has a high-resolution mode of 352 x 240.

It’s important to realize that there are physical limitations to this size dis-
play. Depending on your televisions’s adjustment, some of the displayed image
may appear on the curved edge of the picture tube. This overlap is called
overscan. While overscan is not important in normal television viewing, it is
crucial if what your word processor is printing you can'’t see.

Atari, in its Operating System (OS), used a more conservative screen size
of 320 (160 clocks) horizontally by 192 scan lines vertically. This width screen
is called “normal playfield” in the documentation. In this way Atari defeated
normal overscan and assured us of seeing an entire image. There is a narrow
playfield width as well, 256 pixels (128 clocks wide). These dimensions and
timing are important since what is not used at display time is left over and
available at interrupt time. (See Table 1 for timing.)

It is relatively simple to change between screen widths. Location $22F
controls playfield width. Called SDMCTL in the documentation, it is ini-
tialized to 34. Writing a 35 will change the screen dimension to wide, and writ-
ing 33 will reduce the screen to narrow. SDMCTL is the OS shadow for a
hardware register in the ANTIC chip at $D400, called DMACTL.

Since many of these hardware locations are write only, the OS keeps
copies, called shadows, in RAM. Shadow registers update the associated hard-
ware at vertical-blank-interrupt time. Remember to use the shadows to effect a
permanent change to the entire frame. The exception occurs when using a
display list interrupt. These interrupts can occur, under programmer control,
on any scan line of every frame. To effect an immediate change at scan line in-
terrupt, you must write directly to the hardware register.

To use the display list interrupt (DLI), a number of things must be accom-

218

ANTIC DISASSEMBLER

plished. First, write the DLI service routine. The important thing to
remember here is to save and restore any registers needed by the routine.
Then find a free place in memory for this routine. (As you know, ATARI has
reserved Page Six, decimal 1536-1791, just for users.) Next, update the vector at
$200 and $201 to point to start of the routine. Now change the appropriate
display list instruction to cause an interrupt (accomplished by turning on bit 7
of the instruction). Finally, enable DLIs by setting bit 7 of hardware register
$D40E, called NMIEN (Non-Maskable Interrupt Enable). See Listing 2 for a
simple example.

Also remember to set the interrupt in the mode line prior to the location
where you would have the changes occur. Then write to a location call
WSYNC $D40A. This will cause any changes to be delayed to the start of the
next scan line and, therefore, allow a smoothly synchronized transition.

DLIs can be used for everything from putting many colors on the screen,
to changing among a number of character sets, to moving Player/Missiles
around. To get the most from your ATARI, experiment with this concept.

by James Capparell

Table 1: Timing

1.79 MHZ machine cycle

262 scan lines per frame

228 color clocks per scan line

60 frames per second refresh rate

1.79/60 = 29868 machine cycles per frame
29868/262 = 114 machine cycles per scan line
228/114 = 2 color clocks per machine cycle

Vertical Blank Time

262 scan Ines - 192 displayed scan line = 70
70 x 114 cycles/line = 7980 cycles available*

Horizontal Blank Time

Wide Playfield

228 clocks - 192 clocks = 36 clocks

36/2 = 18 machine cycles

Normal Playfield

228 clocks - 160 machine cycles = 68 clocks

68/2 = 34 machine cycles

Narrow Playfield

228 clocks - 128 clocks = 100 clocks

100/2 = 50 machine cycles

*All graphics are cycle-stealing direct Memory Access (DMA). Depending
on graphics mode and memory refresh, this value will be less.

219

SYSTEMS GUIDE

r 18 REM =*** PROG1 **x ﬂ\\

29 REM MEMORY AND DISPLAY LIST VARIES

WITH GRAPHICS MODE

38 REM DUMP AND DISASSEMBLE DISPLAY LI
ST

49 REM

168 ? INPUT GRAPHICS MODE " ;:INPUT M
O0DE

118 LST=PEEK(56@)+PEEK(561)*256:REM FI
ND START OF DISPLAY LIST

120 MEMRY=PEEK(LST+4)+PEEK(LST+5)*256:
REM FIND START OF DISPLAY MEM.

130 RAMTOP=PEEK(186)*256: REM NUMBER OF
PAGES IN MEM DEFINED AT POWER ON

140 REM LIST
150 LPRINT " 0S GRAPHICS MODE " ;MODE
160 LPRINT * RAM AVAILABLE AT POWER ON
" RAMTOP

178 LPRINT " START OF DISPLAY LIST ;L
ST

188 LPRINT " START OF DISPLAY MEMORY "
sMEMRY

19¢ REM DUMP DISPLAY LIST WITH DISASSE

MBLY OF INSTRUCTIONS

195 LMS=64:INT=128:HSCR=16:VSCRAL=32:JV
B=65:JMP=1

2@ FOR I=LST TO MEMARY-1

285 LPRINT 1;" “SPEEKIT):

218 INST=PEEK(I):REM DISPLAY LIST VALU
E

215 IF INST>=128 THEN GOSUB 11@@:G60T0O

409

220 GOSUB 1149

490 NEXT I

419 STOP

1168 INST=INST-INT:REM GET RID OF INTE
RRUPT BIT

1185 LPRINT " INSTRUCTION INTERRUPT EN
ABLE "~

1149 GOSUB 2P@@:REM FIND JUMPS AND BLA

NKS

1150 IF INST=@ THEN RETURN

\\llﬁﬂ GOSUB 14p@:REM GO FIND LMS AJ/

220

ANTIC DISASSEMBLER

(7}79 GOSUB 15@@:REM GO FIND VSCROL ﬂ\\
1189 GOSUB 160@:REM GO FIND HORIZONTAL
SCROLL

1199 GOSUB 170@:REM TRANSLATE ANTIC MO

DE TO 0S GRAPHICS MODE

1209 RETURN

1499 IF INST<66 THEN RETURN :REM NO LM

S

1405 LPRINT " LOAD MEM SCAN FROM " ;PEE

K(I+1)+PEEK(I+2)*256

1418 INST=INST-LMS:REM GET RID OF LMS

BIT

1428 I-I+2:REM INCREMENT LOOP AROUND A

DDRESS BYTES

1438 RETURN

1508 IF INST<34 THEN RETURN :REM NO VS

CROL ENABLE

1518 INST-INST-VSCRL:REM GET RID OF VS

CROLLL BIT

1528 LPRINT "VERTICAL SCROLL ENABLED"

1538 RETURN

1688 IF INST<18 THEN RETURN :REM NO HS

CROLL ENABLE

1618 INST=INST-HSCRL:REM GET RID OF HO

RIZONTAL SCROLL BIT

1620 LPRINT " HORIZONTAL SCROLL ENABL

ED *

1638 RETURN

1788 LPRINT ~ ANTIC DISPLAY MODE ";INS

T

17506 RETURN

2808 IF INST-8 OR INST=16 OR INST=32 0

R INST=48 OR INST=64 OR INST=88 OR INS

T-96 OR INST=112 THEN GOSUB 2108

2018 IF INST=1 THEN GOSUB 2208

2828 IF INST=65 THEN GOSUB 23¢@

2638 RETURN

2198 LPRINT ~ BLANK " ;INT(INST/16)+1;"
LINES

2119 INST=B:RETURN

2120 REM

2208 LPRINT * JUMP INSTRUCTION TO " ;PE

\f}(1+l)+—PEEK(I+2)*256 /

221

SYSTEMS GUIDE

(;;lﬂ I-I+2:REM INCREMENT AROUND ADDH;;\

S BYTES

2215 INST=INST-JMP:RETURN

2228 REM

2308 LPRINT ~ JUMP & WAIT FOR VERTICAL
BLANK TO " :PEEK(I+1)+PEEK(I+2)*256
2319 I=I+2:REM INCREMENT AROUND ADDRES

S BYTES

2315 INST=INST-JVB:RETURN

' TYPO TABLE

Variable checksum = 351876

Line num range Code Length
10 - 01 468
188 - 1165 PT 372
1149 - 14348 su 397

2019 MI 393

2315 IP 376 /

1580
20249

(T} REM *** PROGRAM 2 *=*x ﬂ\\

2@ REM THIS WILL CREATE A DISPLAY LIST
WITH DLI ENABLED

38 REM THE SCREEN WIDTH IS NARROWED AT
DLI TIME AS WELL

49 REM

45 GRAPHICS @:SETCOLOR 4,4,9:REM SET B
ORDER COLOR

50 DLST=PEEK(56@)+PEEK(561)*256:REM FI

ND START OF DISPLAY LIST

69 POKE DLST+14,PEEK(DLST+14)+128:REM

TURN ON INTERRUPT BIT 7

79 FOR L=¢ TO0 29:REM POKE DLI SERVICE
ROUTINE INTO PAGE 6

80 READ INSTRCT:POKE 1536+L,INSTRCT

9@ NEXT L

160 DATA 72,138,72,169,40,162,48,141,1
\ff2]2,141,23.208

222

ANTIC DISASSEMBLER

130
149
150
152
154
156
158
166
162

164
166
168
178

172
174
176
178
180
182

-

LIST
REM
REM
REM
REM
REM
REM
REM

SYNCH

REM
REM
REM
REM

WIDTH

REM
REM
REM
REM
REM
REM

Variable

Line
10
128
168

ﬁlu DATA 142,24,288,169,33,141,8,212,1
62,140,142,26,208,104,178,104,64

128 POKE 512,8:POKE 513,6:REM POINT TO
DLT INTERRUPT SERVICE ROUTINE

POKE 54286,192:REM ENABLE DMI

* %k %

PHA
TXA
PHA
LDA
LDX
STA

STA
STX
LDA
STA

LDX
STX
PLA
TAX
PLA
RTI

: TYPO TABLE

checksum = 89622

num

DLI SERVICE ROUTINE =**=
SAVE REGISTERS

#$28 CHARACTER LUMINENCE
#$30 BACKGROUND COLOR
$D4PA WAIT FOR HORIZONTAL

$D@17 PLAYFIELD 1

$D@18 PLAYFIELD 2

#21 NARROW PLAYFIELD
$D4040 DMACTL ENABLE NAROW

#$8C BORDER COLOR

$DO01A COLBK
RESTORE REGISTERS

RETURN FROM INTERRUPT

range Code Length
118 TN 531
166 OH 3517

182 Lo 198 Yy

223

SYSTEMS GUIDE

Interrupts

n important feature to understand is the vertical blank (Vblank) in-

terrupt. I will give you a working definition of what an interrupt is,

then discuss how Vblank fits into the overall interrupt structure,
what is accomplished in this time period, and how programmers may access
this interrupt for their own use. I will also provide a simple program to illus-
trate the use of Vblank vectors and how to insert code at VVBLKD.

Recall from my discussion of raster scan graphics, that the term vertical
blank is given to that time period when the electron beam is turned off and
returned to the upper-left corner of the video screen, ready to start tracing a
new frame. The number of machine cycles available at Vblank is some frac-
tion of 29868 machine cycles that are needed to trace one entire television
frame. In the normal Graphics Mode O (text screen), approximately 7980 ma-
chine cycles are left over at Vblank to be shared by the Operating System
Vblank interrupt service routine (ISR) and any programmer supplied code.
The term interrupt applies to any signal, originating from hardware or soft-
ware, which serves to suspend normal mainline program flow.

When an interrupting event occurs, the program counter (PC) and
processor status registers are automatically saved on the system stack. The
processor then executes special code referred to as an interrupt service routine
(ISR). The address of the ISR is found in a memory location reserved for this
purpose, called an interrupt vector. When the ISR is finished, the values of the
PC and status registers are retrieved from the stack and processing of the sus-
pended program is resumed as if nothing had intervened. This all happens at
machine speed—in hundreds of microseconds.

The vertical blank interrupt is an essential part of the ATARI Operating
System and appears as a non-maskable interrupt (NMI) to the system. The
NMIis one one of three possible interrupts that the ATARI can process. These
three—chip reset, NMI, and IRQ—are analyzed further by interrupt service
software. Whenever an NMI or an IRQ signal occurs, the appropriate service

“Interrupts,” by James Caparell, is reprinted with permission from MICRO Magazine, Issue No. 43, P.O. Box 6502,
Ambherst, NH 03031.

224

INTERRUPTS

routine is executed. These service routines interrogate a status register to iso-
late the interrupting source. See Table 1 for a breakdown of vectors and con-
tents for each type of interrupt.

It’s apparent from Table 1 that all NMI interrupts are vectored through
location $FFFA to the NMI interrupt service routine starting at address
$E7B4. Since there are three possible causes of an NMI, the ISR must deter-
mine the source of the interrupt by interrogating an NMI status register at ad-
dress $D40F. This location, called NMIST in the documentation, has bit 7 set
when a DLI occurs, bit 6 set when [SYSTEM RESET] has been pressed. If
neither a DLI nor a [SYSTEM RESET] caused the NMI, then a Vblank inter-
rupt is assumed by the ISR and the processor jumps to the address contained
in the vector at $0222. There are actually two vectors used by Vblank through
which a programmer may introduce additional or replacement code. One vec-
tor, referred to as vertical blank immediate vector VVBLKI, is at address
$0222. This vector normally contains the address $E7D1, the start of the

Table 1.
INTERRUPT VECTOR ISR LOCATION
CHIP RESET FFFC E477
NMI FFFA E784
Display list Jump through 0200
Vertical Blank 0222 and 0224
S/Reset key E474
IRQ FFEE E6F3
Serial bus output ready jump through 020C
Serial bus output complete 020A
Serial bus input ready 020E
*Serial bus proceed line 0202
*Serial bus interrupt line 0204
*Pokey timer | 0210
*Pokey timer 2 0212
*Pokey timer 4(Bug in O.S. timer 4) 0214
Keyboard key scan 0208
Break key m
#6502 break instruction 0206

* These vectors are unused by the O.S. and are initialized to point to an RTI instruction.

225

SYSTEMS GUIDE

system Stage 1 Vblank ISR. Should it be necessary to either replace system
functions or simply perform operations prior to the system code, then you
would use this vector. The other vector location, called vertical blank deferred
VVBLKD, is at address $0224. This vector normally contains the address
$E93E, which is the start of code for the system return from interrupt. The
contents of $0224 would be changed to point to new code when your opera-
tion was needed after system housekeeeping was accomplished.

The Vblank process is actually divided into two stages. Whenever a
Vblank NMI occurs, the following events always happen:

1. Processor registers A, X, and Y are pushed on stack.

2. Interrupt request is cleared by writing zero to
$DA40F.

3. Jump through VVBLKI normally pointing to
Stage 1 Vblank.

When Stage 1 processing is executed, it increments the three-byte counter
called RTCLOK at addresses $12, $13, and $14. Location at $12 is the most
significant byte. This counter wraps to zero after approximately 77 hours and
then continues counting. The attract mode is also processed at Stage 1; that is
the process which causes the colors on your screen to start shifting if no key
has been pressed on the keyboard in the previous nine minutes.

Additionally, system timer one at locations $218 and $219 is decremented
if it is non-zero. When the counter goes to zero, an indirect JSR is performed
via a vector at addresses $226 and $227. Note that an indirect JSR is performed
by copying the address from the vector to the stack and executing an RTS in-
struction.

At this point a test is made to determine if a time-critical section of code
was interrupted. If either the I bit in the processor status register or the critical
flag at address $42 are set, then the interrupted code is assumed to be time-
critical. When this occurs, the registers are restored and an RT] instruction is
executed.

The critical flag can be set by a Serial /O in progress. If no time con-
straints are present, then Stage 2 processing is begun. It is in this section of
code that IRQ interrupts are enabled, keyboard auto-repeat logic is processed,
keyboard debounce is performed, and system timers, 2, 3, 4, and 5 are pro-
cessed. In addition, the color data for playfield and Player/Missiles are up-
dated. This color data and other RAM locations, called shadow registers, are

226

INTERRUPTS

copied into their associated hardware locations. Stage 2 also reads the game
controller data from jacks 1, 2, 3, and 4 into RAM memory.

To insert code either at VVBLKI or VVBLKD, the address where the
new code resides must be placed into the appropriate vector. A system routine
insures that both bytes of the vector will be updated while Vblank is enabled.
A vertical blank can be processed during a call to this routine. The routine is
called SETVBYV in the documentation and the calling sequence is:

Register A (update indicator)
= 1-5 then update timers 1-5
= 6 for immediate Vblank vector VVBLKI
= 7 for deferred Vblank vector VVBLKD
Register X most significant byte of vector address (hi-byte)
Register Y = least-significant byte of vector address (lo-byte)
JSR SETVBV Jump to subroutine
The A, X, and Y registers may be altered.
The display list interrupt will always be enabled on return.

A knowledge of processing interrupts and inserting code at
interrupt vectors is essential to get the most from the ATARI
With this example you should have enough information to ex-
periment with the Vblank vectors. Interrupt-driven sound con-
trol, page flipping, animation techniques, greater color control,
and many other procedures are possible.

James Capparell

/;>: ** PROGRAM EXAMPLE 1 =*=*
29 :PROGRAM SETS UP A VVBLKD ISRH
38 ;
49 : SET UP NEW VECTOR WITH A BASIC US
R CALL A=USR(1536)
50 ; NEED TO DO THIS WHENEVER SYSTEM I

S RESET

68 *- $6080 PUT IN PAGE 6 DECIMAL
1536

78 PLA NULL VALUE FROM BASIC

88 LDA #7 INDICATOR FOR VVBLKD

9 LDX #86 HIGH BYTE FOR VEGTUﬂ//

227

SYSTEMS GUIDE

(:hﬂﬂ

MAL 1568.

EXIT

@

L

DDR

#1108 JSR S$EASC
#1208 ARTS

g13g ; *»

STES TIME.

p18g =*= $649
g19¢ LDX @
g2ge LDY @
#218 LOOP1 INX
g228 CPX $624
g23@ BEQ LOOP2
p24g CLC

g25@8 BCC LOOPI
g26@ LOOP2 INY
g278 CPY $624
288 BEQ EXIT
p29g CLC

g3@ge BCC LOOPI
318 EXIT

JMP $E93E TAKE NORMAL VBLANK

g1pg8 LDY #$49 LOW BYTE FOR VEBTDHﬂ:\

SET UP DEFER
RETURN TO BASIC

L * %

@140 ; ROUTINE AT DECIMAL 1668 IS D
GNED TO WASTE TIME.
g15@8 ; PUT A NUMBER FROM 1 - 5 IN D

#1684 ; USE POKE 1568,N
178 ; THIS IS THE ISR WHICH SIMPLY WA

INIT COUNTERS

INCR COUNT
DELAY VALUE

FORCE BRANCH
DELAY VALUE

DONE ?
NO-FORCE BRANCH

ESI
ECI

L

228

Handling Media

Diskettes and cassettes with computer data on them are easily damaged, especially
diskettes. Never touch the surface of the magnetic medium with your fingers. Oil from
your skin will interfere with the readability of data underneath.

Protect tapes and disks from magnetic sources such as televisions, telephones and
magnetized tools. Prolonged exposure to sunlight and heat can be damaging too, so
store media safely away when not in use.

Dust and ash from cigarettes can accumulate on exposed disks, so always keep
disks in their envelopes when not in use. Vertical storage in protective boxes helps.
Liquid spilled on disks or tapes is almost always fatal. It is best not to eat or drink in
your computing area.

Disks must be perfectly flat and free to move in their protective sheaths. Never
bend or fold a diskette, nor write on it with a pen or pencil that requires pressure. Do
not use paperclips on disks as these may crimp the sheath. Accidental creasing or
crushing of disks in briefcases is a common tragedy.

Atari Support

Atari is the only microcomputer company with an extensive program of help for the
owners of its products. There are more the 1700 authorized service centers in the
United States, plus others abroad, where you can seek help. Just look in the yellow
pages under “Computers - Service and Repair.”

Also, Atari maintains a staff of trained Agents and Product Specialists available
at toll-free phone lines to answer questions from customers. These numbers are:
800-538-8543 (continental U.S., except California) and 800-672-1404 (California
only.)

Users groups, that is, local or regional clubs of Atari owners, are located in may
populated areas and are especially helpful to beginners. Atari has an office from which
a list of these groups can be obtained. Call 408-743-4196 for user group information
only, or write User Group Support, Atari, Inc., 1399 Moffet Park Drive, Sunnyvale,
CA 94086.

229

Assembly Language

Mouwe-It

ove-lt provides the ATARI programmer with the ability to move
Mone byte of data into a range of memory locations. This assembly

language routine is position independent. It is loaded into a string
from data statements 250 and 260. The routine is useful for clearing sections of
screen memory, Player/Missile memory, erasing a player, and clearing
memory used in page flipping.

The parameters which control this routine are passed in a USR state-
ment. The start location and byte total to be moved are passed. There are no
limitations on the total bytes which can be moved.

Interesting sounds are also generated by the BASIC routine. The
soundless version moves bytes at the rate of almost a quarter of a million per
second (256 x 960).

by Jerry White

(:; ; This is a position independent ;:\

broutine

28 ; found in DATA statements line num
bered 250 and 2680

3@ ; Calling Sequence from BASIC is:
49 : A = USR(ADR($STR),Start Addr,Coun
t)

50 ;

60 *= §66P ;can go anywhere

78 PLA ;ignore argument ¢
ount

84 PLA ;save lo—byte of d
est addr

9g STA $CC

g1od PLA ;save hi—hyte of dast
addr

g11g STA $CB
1

24 PLA ;save total to be

231

ASSEMBLY LANGUAGE

e

g13p
g14g
#1589
#1689
to move
g17@
g18g

PLA

#1996 MOV
g2@e
X
g21@
haracter
g22¢
I@-hyte
#2380
ount
g2440
p25@
haracter
p264@
nt to move
42749
haracter
#2808 EXIT
ast addr
#2940
g3ge
g3ig

o

to be moved

to move

STA SCE ;. *
;:8ave tota

STA $CD

LDX - $SCE

LDY #49

LDA %0

STA ($CB),Y

DEY ;

BNE MOV ;

INC $CC

DEX

BMI EXLT

BNE MOV

LDY $CD

BNE MOV

DEC S$CC

LDY #4@

STA ($CB),Y

RTS

.END

| to be moved

*

count of bytes
index

character

ini
ini
move data
decrement inde
go move next ¢
addr

incr dest

decr lo—byte ¢

go move next ¢

hi—byte of cou
go move next ¢
decr lo—-byte d

to BASI

J

return

LA A MMOVETIT UTILITY/DEMO BY J
ERRY WHITE 3/31/82 ANTIC MAGAZINE
INCREDIBLE SUBROUTINE
2@ FOR M=9 TO 255:1Z

15 REM QLLERES

(19,

19)=CHR$ (M) :Z~

USR(ADR(ZS),SM,968):NEXT M:RETURN

232

MOVE-IT

(g} REM M SCHEEN MEMURY C SPEAKER <‘\
35 GRAPHICS @:
E-7h2,1:8= PEEK(569)+PEEK(55|)*256+4 8
M-PEEK(S)+PEEK(S+1)‘255 C=53279
45 REM PAS JASSEMBLER ROUTINE STRING (PO
SIT]UN 19 _ TCHARACTER TO MOVE)

Bz USRCADR(Z$).START ADR.HOW MAN

ng FOR X=1 TO 42:READ IT:Z$(X,X)=CHRS (
IT):NEXT X POKE 82,08:? "E';:POKE 83,39
:SOUND 0,0,0,0

65 Z$(19,19)=CHRS$ (1 Z):Z=USR(ADR(ZS),S
M,960):POKE 710,113:POSITION 39,0:? CH
RS(168):;

75 7 This AL demonstrates an as
ssombileirs MOVE routine called
from BASIC. 4
8igi=7 Possible uses would be to m
ove e blanks or special ¢ch
aracters to an
L & area of screen memory, or to
LR T e R R A RAM used for player
missiles or I
9.2 v page flipping etc.
g6 7 SELECT OPTION NUMBER:
HEE AT (1) FAST WITH SOUND
":G0SUB 234
L A (2) VERY FAST WITH SOUND
":G0SUB 23@:?7 " (3) THAT
S INCREDIBLE (SILENT) ":G0SUB 236

118 POKE 764,255:CLOSE #1:0PEN #1,4,8,
SRt GET #1 K CLOSE #1

BEREIN CCEPT ONLY A 1 2 08 3

120 IF K<49 OR K>51 THEN FOR ME=15 TO
@ STEP —-@.5:SOUND @,102,12,ME:NEXT ME:
GOTO 110

ELRLIN: L0VE S0UND ROUTINES)

135 FOR J=1 TO 7:POKE 71@,J*16:FOR X=
2 TO @ STEP —-1:FOR ME=14 TO0O @ STEP -2:
SOUND @,X+J,2,ME:NEXT ME:NEXT J

LCE RN MEXECUTE SELECTED MOVEIT HOUTii/

233

ASSEMBLY LANGUAGE

(T;ﬂ IF K=51 THEN GOSUB 2@:G0TO0 175 <‘\
1

55 IF K=5@8 THEN GOSUB 198:G0TO0 175
160 GOSUB 21@8:G0TO0 175

170 REW
175 FOR ME=15 T0 @ STEP —-@.2:SOUND 6,40
,2,ME: NEXT ME:RUN

IRE AL MVERY FAST SUBROUTINE WITH SOUN

199 FOR M=¢ TO 255:28(19,19)=CHRS(M):P
OKE 53761,168:POKE 53763,168:P0OKE 5376
#,255-M:POKE 53768,13:PO0KE 712,M

195 POKE 53762,M:POKE 53762,M/8:POKE 5
3768,2:Z=USR(ADR(Z$),SM,960):POKE 5376
1,08:POKE 53763 ,08:NEXT M:RETURN

205 REM
218 FOR M=255 TO @ STEP -1:72$(19,19)
HR$ (M):POKE 53768,M: FOR V=175 TO 168
TEP =1+ POKES 537615V

215 POKE 53768,V-160:NEXT V:POKE 712,M
:Z=USR(ADR(ZS$),SM,968) :NEXT M:RETURN
225 REM

230 FOR JW=8 TO 8:POKE 755,1:PO0KE C,d:
POKE C,8:NEXT JW:FOR JW=0 TO 8:POKE 75
5,2:NEXT JW:RETURN

YL MOATA T0O CREATE Z$§ ASSEMBLER SU
BROUTINE

250 DATA 184,164,133,204,104,133,203,1
p4,133,206,104,133,205,166,206,168,0,1
69,0,145,203,136

260 DATA 208,251,230,204,202,48,6,208,
244,164,205,208,240,198,204,160,0,145,
293,96

TYPO TABLE

Variable checksum = 1396486

=0
S

Line num range Code Length
5 - 60 CB 588
65 - 95 AQ 537
100 - 145 JJ 522
150 - 285 GJ 516
210 - 26§ ur 534

- 4

234

BUBBLE SORT

Bubble Sort

’. [Yhis is a handy Sort Utility intended to be called from BASIC and
allows you to sort almost anything that can fit in your computer’s
memory. The flexibility of the sort should cover many applications.

Records may be any size up to 256 bytes. The sort fields may be any size up to

the length of the record. You can sort on as many different fields as you need,

and each field can be independently sorted in ascending or descending
sequence.

The sorting technique is the traditional Bubble Sort which works by look-
ing through a file of records in memory, and comparing the sort field of each
record to the one following it. If any two adjacent records are not in sequence,
the sort will exchange the positions of those two records. The sort continues to
scan the file until there are no more records to exchange. In this way, records
with the higher sort fields get pushed towards the end of the file, and records
with the lower sort fields get pushed towards the beginning of the file. All of
this takes place in memory so that it appears that the records bubble into
place.

The sort only requires 182 bytes and the machine language is relocatable,
therefore you can load and execute this sort anywhere in memory. Although
you can put the sort in any program you like, your file size is going to be
limited by available memory. For large files, it is best to write a small BASIC
program that contains only this sort, a string large enough to hold your file,
and whatever BASIC statements it takes to load a file, call the sort and write
out the new sequenced file.

Although the sort works very fast, its speed can be improved by about 30
percent by turning ANTIC off. Just before calling the sort, save the value at
PEEK(559) then POKE in a zero. All this does is shut down the screen display,
but in so doing, it makes about 30 percent more CPU cycles available to the
sort. After the sort, POKE the saved value back into 559 and the screen
display will turn back on.

All sort parameters are passed to the sort in the BASIC USR call in the
following sequence: 1. Address of the string containing the file; 2. Length of
the records; 3. Number of records to be sorted. The next parameters specify

235

ASSEMBLY LANGUAGE

the fields to be sorted by: 4.1. Position of the first byte of the field;
4.2. Length of the field; 4.3. ‘0’ for ascending sequence, or ‘1’ for descending
sequence. Sort fields are specified in Major to Minor order. That is, if you
want to sort on state, and zip code within state, then state is the Major order
and should be the first set of sort field parameters. The only limitation on the
number of sort fields is the number of parameters that fit in the BASIC state-
ment calling the sort.

The program in Listing 2 loads the machine language code for the sort in
Lines 1 to 9. The rest of the program demonstrates one of many techniques
that can be used to read an unsequenced file, sort and rewrite a sequenced
file. Type and run the program and at the prompt, enter the first and last
names of about nine friends. The first names will be sorted ascending, the
last names will be sorted descending and then displayed on the screen.

by Adrian Dery

(;fHEM wwwxnwww SORT UTILITY DEMUNSTH;:\
ION *#owwwnnn

1 DATA 216,104,56,233,3,133,217,104,13
3,204,104,133,203,104,133,215,1084,133,
214,104,133,210,104,133,2089,162,4

2 DATA 104,104,157,0,1,232,228,217,208
,246,56,165,209,233,2,133,2049,165,214,
233,0,133,210,48,108,165,2609,133,211

J DATA 165,210,133,212,165,204,133,206
,133,2088,165,203,133,205,24,101,214,13
3,20#7,165,208,1081,215,133,208,1680

4 DATA @,185,0,1,1968,2,1,134,218,1960,1
,1,200,200,200,132,216,168,136,177,205
,209,207,240,12,165,218,208,4,144

5 DATA 16,176,46,144,44,176,10,2008,2082
,208,234,164,216,196,217,208,210,198,2

11,169,255,197,211,208,6,166,212,2448
6 DATA 11,198,212,165,208,133,206,165,
207,24,144,172,165,213,240,4,134,213,2
#8,148,96,134,213,160,0,177,205,174@
7 DATA 177,207,145,205,138,145,207,2040
,196,214,208,241,248,203
8 DIM SORTS$(182):FOR I=1 TO 182

T$(I,I

k:iHEAD A:SOR ,I)=CHRS$ (A) :NEXT I 4/}

236

BUBBLE SORT

205
2140
215
2290
225
3gg
305
3p
315

329
325
330
335
3490
345

&

BT aS SRR 10

TYPO TABLE

Variable checksum = 178377

REM - obia mel L B
REM INPUT A FILE TO BE SORTED <‘\
DIM FILE$(278),NAMES(15)

FILE$S-" ~:FILE$(270@)=FILES
FILE$(2)-FILES

GRAPHICS @

2 "ENTER THE NAMES OF 9 FRIENDS"
FOR I-8 TO 8:LE=I~38+1

2 I+1;" FIRST NAME " ;:INPUT NAMES
FILES(LE,LE+14)=NAMES

2 I+1;" LAST NAME " ;:INPUT NAMES
FILES(LE+15,LE+29)=~NAMES

NEXT I

RENM - 2ol nGy e el e
REM PRINT UNSORTED FILE

GRAPHICS @:? "UNSORTED NAME LIST"
FOR I-9 TO 8:LE=I~3@+1

? FILE$(LE,LE+29)

NEXT I

BEM ——imsem et ot n] ke e S
REM SORT AND PRINT THE FILE
ANTIC-PEEK(559):POKE 559,80
X-USR(ADR(SORTS),ADR(FILES),30,9,1

POKE 559,ANTIC

? :? "SORTED NAME LIST"
FOR I-0 TO 8:LE-I+30@+1
? FILES(LE,LE+29)

NEXT I

END

Line num range Code Length
g - 5 OH 596
6 - 135 GC 463
144 - 3080 ug 331
305 - 345 IC 269 <4/

237

ASSEMBLY LANGUAGE

fiaﬂﬂ ;UTILITY SORT — CALLED FROM BAS;;\

g1e5 ;
#1108 ;ENTRY PARAMETERS:
115
#1280 1. FILE ADDRESS
#125 2. RECORD LENGTH <=256 BYTES
#1308 ; 3. NUMBER OF RECORDS TO SORT
#g135 ; 4. ANY NUMBER OF FIELDS TO SOR
T IN
#1498 ; MAJOR TO MINOR ORDER
#g145 ; 4.1 FIELD POSITION
g15@ ; 4.2 FIELD LENGTH
#155 ; 4.3 @-ASCENDING 1=DESCEND
ING
#1668 ;
g165 ORG $0600
#178 FILE = 203 ;FILE START A
DDRESS
175 PNTRI1 = 285 ;POINTERS TO
TWO
#1886 PNTR2 = 2017 :ADJACENT REC
ORDS .
185 RECNBR = 209 ;NUMBER OF RE
CORDS
p19@ SCOUNT = 211 ;RECORD COUNT
ER
#195 BUBLE = Pal e :0UT OF SEQUE
NCE
#2099 RECSIZ - 214 ;SIZE OF RECO
RD
#205 FLDNDX = 216 ;SORT FIELD C
OUNTER
#2108 FLDCNT = 217 ;NUMBER OF SO
RT FIELDS
215 SORTAD = 218 ;ASCENDING/DE
SCENDING
p228 STACK = 256 ;:SAVE SORT FI
ELDS HERE
g225 ;
#2300 DETERMINE HOW MANY FIELDS TO SOR
T
#235 CLD

\Ef4ﬂ PLA ;ALL BUT TH

238

BUBBLE SORT

wau

(?»FIHST
p245s SEC

;THREE PARA
METERS
g2540 SBC #3 ;ARE FIELDS
TO
#255 STA FLDCNT ;SORT
g26@ ;
#265 ;PICK UP SORT PARAMETERS :
g217@ PLA ;FILE START
#4275 STA FILE+1 ;ADDRESS
g28p PLA :
#285 STA FILE :
#2940 PLA ;RECORD LEN
GTH
#g295 STA RECSIZ+1
g3gp PLA
#30@5 STA RECSIZ :
p31@ PLA ;NUMBER OF
RECORDS
g315 STA RECNBR+1
#3240 PLA
#325 STA RECNBR
#3308 ;
@335 ;PICK UP FIELDS TO SORT
p34p LDX #8
@345 PICKFIELDS
#3540 PLA :GET ALL TH
E SORT
#355 PLA :FIELD PARA
METERS FOR
p360 STA STACK, X ;POSITION,
LENGTH
#365 INX :AND DIRECT
IO0N.
#3780 CPX FLDCNT ;ANY MORE
#375 BNE PICKFIELDS ;G0 GET THE
M
g38p ;
@385 ;SET UP NUMBER OF RECORDS TO SORT
g39@ SEC
#395 LDA RECNBR :MUST BE AT
LEAST
SBC

\

#e ; TWO nEﬁUEﬂ)

239

ASSEMBLY LANGUAGE

(s 10

\£F65

~

;SORT

CELSE GET D

;RESET NUMB

;RECORDS TO

;SET UP POI
;FOR THE FI

;AND
;SECOND REC

;PUT PNTR2
iAHEAD

; OF

;PNTR1

i BY

; ONE

;RECORD .

;RESET STAC

s FIELD POSI

;SORT DIREC

g4ad5 STA RECNBRA
ga19 LDA RECNBR+1
#415 SBC #0

g4a20 STA RECNBR+1
paz2s BMI ENDSORT
uT

g4a30 ;

§435 ;MAIN LINE SORT LOOP
gaag ;

#445 SORT LDA RECNBR
ER OF

g4590 STA SCOUNT
SORT

#4555 LDA RECNBR+1
#4640 STA SCOUNT+1
#465 LDA FILE+1
NTERS

#4180 STA PNTR1+1
RST

] STA PNTR2+1
g480 LDA FILE
ORDS .

g485 BUMPRECORD

ga9g STA PNTR1
#495 CLC

#5040 ADC RECSIZ
g5@5 STA PNTR2
#5180 LDA PNTR2+1
#4515 ADC RECSIZ+1
g528@ STA PNTR2+1
p525 ;

#5390 ;SEQUENCE CHECK RECORDS

#535 ;

#5449 LDY ##@

K INDEX

#545 NEXTFIELD

#5580 LDA STACK,Y

TION.

#555 LDX STACK+2,Y

TION

#5640 STX SORTAD

LDX STACK+1,Y

sSAVE IT.
s FIELD LE!E)

240

BUBBLE SORT

a

p57@ INY
575 INY
584 INY
f585%5 STY
)

#5940 TAY
TION TO Y

595 DEY
IVE T0 ZERD
p6@@ SEQCHECK
A605 LDA
JACENT

g61p CMP
615 BEQ
LOOKING

624 LDA
IRECTION

g625 BNE
ENDING

p63g@

635 SORT IN
p640

g645 BCC
T RECORD

g6580 BCS
ITIONS

#6555

660 SORT IN
#6635

#6708 DSNDG BCC
ITIONS

675 BCS
T RECORD

g68e ;

#685 SEQNDX INY
LENGTH OF

g690 DEX
TELD AND

#695 BNE

NCE CHECKING.

g7o@
KiFLDS

LDY

FLDNDX

;BUMP
;STACK
INDEX

;AND SAVE I

;FIELD POSI
sMAKE RELAT

(PNTR1),Y ;COMPARE AD

(PNTR2),
SEQNDX

SORTAD

DSNDG

ASCENDIN
BUMPINDE

SWAP

DESCENDI
SWAP

BUMPINDE

SEQCHECK

FLDNDX

Y RECORDS
;= KEEP ON
;GET SORT D
;60 TO DESC

G SEQUENCE

X ;< BUMP NEX

;> SWAP POS

NG SEQUENCE
;< SWAP POS
X :> BUMP NEX

;CHECK THE
;THE SORT F
;KEEP SEQUE

;ANY MORE F

4

241

ASSEMBLY LANGUAGE

#7085 CPY FLDCNT ;TO SORT i\\
g714@ BNE NEXTFIELD ;YES, GO TO
Lk

#g715

g724 ;INDEX THROUGH THE SORT FILE
g725 ;
#7309 BUMPINDEX

g735% DEC SCOUNT ;COUNT DOWN
RECORDS

g4 LDA #2565 ;AND CHECK

FOR

#7745 CMP SCOUNT ;END OF FIL
E.

#7158 BNE NOTEOF

#755% LDX SCOUNT+1

#7648 BEQ CKSWAP

#7765 DEC SCOUNT+1 ;

@770 NOTEOF LDA PNTRZ2+1 ;BUMP PNTR2
AND

g715% STA PNTR1+1 ;PNTRT TO T
HE

#7889 LDA PNTR2 ;NEXT RECOR
DS .

#785% CLC

#7980 BCC BUMPRECORD

4795

pagg ;AT END OF FILE SEE IF A SWAP WAS

gapEs

#8189 CKSWAP LDA BUBLE :IF NO RECO
RDS SWAPPED

#8815 BEQ ENDSORT ;THEN IS EN
D OF SORT,

#8249 STX BUBLE iELSE SEQUE
NCE CHECK

p825 BNE SORT :THE FILE A
GAIN.

#8308 ENDSORT

g835 RTS ;BACK TO BA
SIC

g848 ;

g845 ;SWAP RECORDS IF OUT OF SEOUENC%/J

\3}59

242

BUBBLE SORT

(;£55 SWAP

pe6e
865
g878@
NE
#8175
THE
g8gp
0F Two
#1885
UENCE
g89gd
ECORDS
#8895
pope
g9g5
NG FOR
go1e

#9135
T RECORD
g924

&

OF SEQUENCE

SWAPLOP

OF RECORD.

STX
LDY
LDA
TAX
LDA
STA
TXA
STA
INY
CPY
BNE
BEQ

.END

BUBLE
#0

(PNTR1),Y

(PNTRZ),Y

(PNTR1),Y

(PNTR2),Y
RECSIZ
SWAPLOP

BUMPINDEX

;KEEP LOOPI

;G0 GET NEX

;STILL OU;\\

;THIS ROUTI
;EXCHANGES
;POSITIONS
;0UT OF SEQ

;ADJACENT R

;THE LENGTH

. 4

243

Pilot Youwr At

Pilot Your Atari

ILOT is not just another computer language designed to meet some of

the needs of new programmers, educators, and children. PILOT grew

out of work by John Starkweather at the University of California at
San Francisco back in 1972. He wanted a language that would make it easy to
write tutorial programs for students, programs capable of recognizing
responses other than the typical “1, 2, 3” choices prevalent in many current
teaching programs. With PILOT, it is as easy to ask, “Who was the first presi-
dent of the United States?” and record and score answers such as “President
Washington,” “I believe it was G. Washington,” “George Washington,”
“GEORGE WASHINGTON],” “Washington.” PILOT needs only three
statements to accomplish this type of user interaction.

Dean Brown at Stanford Research Institute proved that teachers could
understand PILOT, and students loved it. Since PILOT is word-oriented, as
contrasted to BASIC’s number orientation, it naturally fits the “riddle” and
“tell-a-story” type of program which youngsters like. At the same time,
Seymour Papert at MIT developed a new way to conceptualize and teach
geometry and shapes. This development was called “turtle graphics” and
proved ideal for use on home computers. Atari wisely included a turtle
graphics command language with the PILOT module.

The old “Cartesian coordinate” system required commands like this:

Start at position X=20and Y =10. Draw a line to X=40 and Y =10; draw

aline to X=40and Y =30; draw a line to X=20and Y =30; finally, draw a

line to X=20 and Y =10.

Can you guess what figure this is? How big is it? Using turtle graphics the same
picture can be drawn like this:

Ken Harms is a resident of the San Francisco Bay Area, and is Vice President of Administration for
the California division of the American Cancer Society. He is especially interested in PILOT and Logo,
and in computing as a tool to enhance the education of his two daughters. He is one of the earliest and most
dedicated of Atari PILOT programmers whose articles in ANTIC regularly expand the usefulness of that
language.

245

PILOT YOUR ATARI

Do this 4 times: draw a line 20 spaces long, turn Right 90 degrees.

The box shape is more apparent and the commands are more readily
understood. A small collection of 14 and 15 commands represent the core of
PILOT. All are only one or two characters long and easily remembered—a “J”
is the “jump to” command. Anyone who is not a good typist will appreciate
the wisdom of short commands. Short, easy to remember commands and tur-
tle graphics combined with Atari’s wonderful screen editor will make almost
anyone’s introduction to computing more pleasurable and rewarding. Finally,
PILOT programs become naturally organized around modules. This en-
courages a well-structured programming style.

PILOT is available in two packages; one is just the language cartridge and
users’ guide (about $90), the other is a well-documented, comprehensive
package that I recommend (about $130). This package includes:

PILOT CARTRIDGE—(love those cartridges; little fingers can’t destroy
them).

STUDENT PILOT—a cleverly illustrated learner’s manual for the new
programmer.

PILOT PRIMER —an instruction manual for the experienced program-
mer.

DEMONSTRATION TAPES—two cassettes showing language, color,
graphics, and sound.

POCKET CHART —presents all commands in an easy-to-use format.

[like Atari’s version of PILOT. There are still a few rough spots: not all
syntax errors are caught, the manuals do not include indices, several com-
mands are not explained in the manual, and a few typographical errors re-
main to confuse you. In spite of these few “start-up” problems, Atari PILOT
meets its “primary design goals”: it is “consistent and easy to learn . . .it allows
reasonable access to the Atari system capabilities, but not at the user’s
expense.”

We intend to help you get the most from PILOT. Watch for programming
tips, warnings, and more help. by Ken Harms

246

LARGE TEXT

Large Text

his series of articles will show you how to do what Atari left out of the

PILOT manuals—fancy tricks such as large letters and changing col-

ors, useful features like breaking strings into words, and using the
mysterious commands in the demonstration programs.

When you run your PILOT program, three sets of instructions work
together to give you the result you need. The Operating System in the
400/800 provides the instructions for reading the keyboard, and for writing
characters to the TV screen and [/O devices, such as disk drives and printers.
Additionally, the PILOT cartridge contains the translation system which ac-
tually interprets your PILOT program for the Atari hardware. These two
systems working together allow the ATARI to perform the instructions you
provide with the third type of instructions, the PILOT application program.

PILOT programs operate on data stored in the computer’s memory or
RAM (random access memory). PILOT stores each variable, constant, or in-
struction as a value in a unique location or address. These are like P.O. boxes.
You can put messages into them and read data from them. Some addresses are
used by the Operating System to hold information such as the color used on
the screen and what size text characters to print, large or small. PILOT lets
you change the contents of these addresses to give greater graphics control.

The Operating System supports fourteen different ways to display data on
the screen. Those of you familiar with BASIC know eight of these modes.
PILOT normally uses only two modes, Graphics 0, and Graphics 7; the first is
a text mode, the second is a graphics mode. But you can turn on at least two of
the extra modes to display large letters as eyecatching program titles.

To enable large text, we need to change values in two special addresses,
1373 and 1374, by using a special form of the Compute command:

C:@B1373=16

C:@Bl1374=1

This command might read as: “Compute the ‘byte’ at address 1373 equals
16”. “Byte,” in this context, means a value in memory. The first command puts
a 16 in address 1373 to tell the ATARI that you want a graphic screen with

’ 247

PILOT YOUR ATARI

regular letters at the bottom. The value 1 at address 1374 tells the ATARI that
you want it to print medium-large letters. These Mode 1 letters are so large
that only 20 fit on a line. Listing 1, lines 20 and 30, demonstrates these com-
mands.

The next command you'll need is WRITE. It tells the ATARI to write data
to a specific “device.” These devices are identified by letters such as “D” for
disk, “P” for printer, “C” for cassette and “S” for screen. Line 40 tells the
ATARI to write anything you want. So, with those three simple commands,
you have a dramatic opening for a program.

Change the contents of location 1374 to determine the size and number of
characters per line.

1374=0 regular letters, 40 per line

1374=1 20 rows of medium letters,

20 characters per line
1374=2 10 rows of large letters
20 characters per line

The *TEST 2 module demonstrates Mode 2 large letters. In both modes,
try using upper, lower and inverse characters. You'll find that each printsin a
different color for interesting effects.

Address 1373 is the “sub-mode” address.

1373 =0 a full screen (no “text window”)

1373 =16 split screen (text “text window”)

1373Z2=32 full screen opens without erasing prior data

Listing 2 uses the 32 sub-mode to erase the text window. If you’re in sub-
mode O or 32, any text (even the READY at the end of a program) clears the
screen; use a PA: command to keep the screen up. To change any mode or sub-
mode, you must CLOSE:S between modes and issue both 1373 and 1374 com-
mands in the next mode. After entering a new mode, always issue a WRITE
command before a type command (T:).

Next time, we'll look at changing colors and breaking strings into letters

or words. by Ken W. Harms

19 *TEST1 [MEDIUM LETTERS MODE 1
28 C:@B1373=16 [SPLIT SCREEN

38 C:@B1374=1 [SET MODE 1

49 WRITE:S, MODE 1 LETTERS

50 PA:249 [PAUSE TO WATCH SCREEN

248

LARGE TEXT

(;h CLOSE:S [REQUIRED TO CHANGE MODES<‘\
70 J:*TEST2

88 *TEST2 [LARGE LETTERS MODE 2
99 C:@B1373=16 [SPLIT SCREEN

108 C:@B1374=2 [SET MODE 2

118 WRITE:S, THIS IS MODE 2

120 T« ”I“YPED TEXT APPEARS BELOW SCRE
EN

138 PA:2490

149 CLOSE:S

150 J:*TESTH

160 *TESTH

170 C:@B1373=4

180 C:@B1374=9

199 WRITE:S, THIS IS WRITE IN MODE @
208 PA:108

(’*

4

249

PILOT YOUR ATARI

Colors For Your Pilot

how you can rapidly change these colors in your displays. To display
dataon the TV screen, PILOT first gets data (character or graphics in-
formation) from your program and then looks at special memory locations to
determine the color to use. You can use a maximum of four colors at one time
on your screen. Each color is selected by the PEN: (color) instruction. This
instruction calls these locations by the names “Red,” “Blue,” “Yellow,” and
“Erase.” Once PILOT knows what name (location) a line belongs to, it uses the
color value found there for all lines drawn by that PEN:(color) instruction.
When PILOT looks at the “Blue” location it will find a color value there.
This value will cause the ATARI to draw blue lines when you first turn it on.
Fortunately, you can put any color value into these locations. So, even though
PILOT calls these locations by color names (for convenience) any color may
be found there. You can change these colors using a special form of the C:om-
pute command. Turn your machine on and type this in direct mode:
C:@B710=86
C:@B712=5%16+6
The first instruction might be spoken “Compute byte 710 equals 86.” In
this case, the 710 is the special address PILOT calls its “Blue” location. The 86
is a color value for a red color. In effect we put “red paint into a can labeled
blue.”
In the second instruction, the 712 is PILOT’s “Erase” register. The “5”is a
hue (color) number and the “6” is a luminance number (more on them later).
In the graphics mode, PILOT uses four locations, or registers. Their
names, addresses and uses are listed in Table 1.

T his time I will show you how to use all 128 colors of the ATARI and

You change the color of any register (paint can) by placing a different color
value in any of the addresses. Color values are made up of two numbers, a
“hue number” and a “luminance” or brightness number. Table 2 gives these
values and what they usually look like on my TV.

250

COLORS FOR YOUR PILOT

TABLE 1
Name Register Value Used for Address
Red 0 70 Graphics 708
Yellow 1 26 Graphics 709
Blue 2 148 Text Window & Graphics 710
None 3 148 Not Used 711
Erase 4 0 Background & Border 712
TABLE 2
Hue Luminance
O0=gray O0—lowest possible luminance (black)
1 =green brown 2—
2 =yellow/orange 4—
3 =orange 6—
4 =red/orange 8—
5=pink 10—
6 =Dbluish purple 12—
7=purple l4—maximum luminance (white)
8=blue

9=bright blue
10 =turquoise
11 =greenish blue
12 =green
13 =vyellowish green
14 =orangish green
15=light orange

The color value needed in each register is calculated as follows:
Hue number *16 +luminance number.

A color value for the red we used above is 86 or “16%5+6.” Changing a
register can be done at any time in your program.

The listing draws two horses in different color registers and then changes
the colors rapidly to illustrate the power of this technique.

Let me leave you with an experiment: Use Mode 1 or Mode 2 letters (see
previous article) and determine which color registers are used for upper-case
and lower-ase letters.

251

PILOT YOUR ATARI

You may be interested in a new learning club for PILOT/
Logo users. It has a good newsletter, simple programs and an educational
orientation. It is free to people under 18. Write to:

Young People’s Logo Association
1208 Hillsdale Drive
Richardson, Texas 75081

by Ken Harms

(:;

29

100
1140

3gg

R:HOUSES

| e Draws hou

four

ses and shifts
color registars

1§ s ANTIC Issue 3

*COLOR
GR:CLEAR

GR:GOTO -20,180

U:*HOUSE
GR:GOTO 2p,190
U:*HOUSE
U:*REGISTERS®
PA:2440
U:*REGISTER1
PA:240
U:*REGISTER2
PA:248
U:*REGISTER4
E:

*HOUSE

GR:PEN YELLOW

GR:TURNTO®

GR: TURN135;DRAW 14

GR:TURN 45;PEN BLUE;DRAW 15
GR:TURN 9@;DRAW §
GR:TURN 9@;FILL 8
GR:TURN —-90:DRAW 14

GR:TURN -90;PEN RED;FILL 8
GR:TURN 90@;PEN BLUE:DRAW 5§
GR:TURN 9@;FILL 14
GR:TURN 45;PEN YELLOW;FILL

\

[REG 2

[REG @

14 [REG

iy

252

COLORS FOR YOUR PILOT

(310

32@
330
349
35g
3640
370
389
394
400
419
429
4349
449
450
4640
479
4849
499
500
5189
524
530
549
550
560
578
580
590
600
618
624
634
640
650
668
679

&

.)

*REGISTERG®

C:#A=192 [HUE 12 LUM @
*INCREMENT®
C:@B788=#A

T:7088 = #A

PA:38

C:#A=#A+2
J(#A<202):*INCREMENTS
B

*REGISTERT1

C:#A=224 [HUE 14 LUM @
*INCREMENT 1
C:@B70689=%#A

T:789 = #A

PA:340

C:#A=#A+2
J(#A<228):*INCREMENTI1
B

*REGISTER2

C:#A=88 [HUE 5 LUM @
*INCREMENT2
C:@B7108=#A

T:718 = #A

PA:38

C:#A=#A+2
J(#A<88):*INCREMENT?2
Et:

*REGISTERA4

C:#A=144 [HUE 9 LUM @
*INCREMENT4
C:@B712=#A

T2 = #A

PA:380

C:#A=#A+2
J(#A<152):*INCREMENT4

°

253

PILOT YOUR ATARI

The Musical Pilot

his article will open the door to string parsing, a powerful way to
l analyze PILOT strings. Along the way, we'll read and write on the
disk (or cassette), do some Boolean algebra, change data types and

reveal a beautiful PILOT bug. And, oh yes, we'll play four-voice music.

As always, we'll be way “beyond the book.” Since it will be getting pretty
deep, I'll give page references to Atari’s PILOT Primer.

A string is a combination of letters, numbers, symbols, words, etc.,
“strung together.” In PILOT, a “string variable” is made by giving it a name
(always beginning with “$”) in an A:ccept or C:ompute instruction (pp.
69-76). The book tells how to concatenate (“grow”) strings. We'll discuss how
to parse (“cut”) strings so you can analyze each part of a string. This could be
useful for analyzing sentences, riddles, or in this case, for storing data for a
program’s use (PILOT lacks a “Data” statement).

String parsing relies on the Match String command which produces
three pre-named variables, $Left, $Match, and $Right (pp. 41-44, 81-82).
Parsing programs work as follows (refer to the Pilot Player listing):

1. Place the string into the “accept buffer” (line 1270).

2. Match on the “separator.” In this case, [used the blank as a separator.

In line 1280, we skip over the initial blank, which the A:ccept instruction

inserts in each string, and M:atch on the second blank. (Note the right

arrow in the instruction which doesn'’t print in front of the “__").

3. Check for the end of string (the JN: in line 1290).

4. Store the remainder of the string (found in $Right) in a safe place

(line 1300).

5. Use $LEFT as the parsed word, letter, etc. (lines 1310-1370).

6. Jump back to step 1.

Although this may seem complicated, it’s conceptually as easy as BASIC.

To play a C,D,E,F chord for a sixteenth, the Pilot Composer produces a
string looking like this: “ 13 56 16 ! ” The first four values are the usual notes
(pp. 106-107) for each of the ATARI’s four voices. The “16” is the inverse
duration of the note (1/16 of a note). The “!”is a “terminator” to tell us that
we're out of notes. Our problem: parse it and play it. The *Loop2 routine

254

THE MUSICAL PILOT

(lines 1250-1390) cuts the string and sets up variables for each voice and for
the PAUSE command. After each Match String, the variables look this way
(the underlines represent blanks):

$PLAYVALUES SLEFT

PASS BEFORE MATCH $LEFT $MATCH $RIGHT USED FOR

0 __1_3 5 6_16_ NULL NULL NULL

1 1.3 5 6 16 1 ____ _ 3.5 6_16_ #A

2 3 5. 6 6. 3 __ 5 _6_16_ #B

3 5 6 16 =0 e B 16 #C

4 _6_16__ B TR S #D

5 16 e . __ #L

6 @ — G e e e NO MATCH

Simply put, each value marches to the left into the $LEFT bucket and
then gets used. Notice that the “no match” in pass six did not change any of
the special string variables.

The PILOT Composer parses strings in a similar fashion but on each let-
ter. In this case, the match parsing instruction (line 1200) skips two spaces
(the leading blank and the first letter) and M:atches on the next character to
put all remaining characters in MATCH (the comma does that). Once the
string is split, a simple $LEFT inspection finds the character and then
restores the balance of the string. The *TRANSLATE module (lines
1400-1690) performs a similar M:atch to find good notes and durations in
$GOODNOTES and $SGOODDURATION, and then to translate them in-
to note and duration values. The translation lookup in NOTEABLE is “fail
safe” — it first M:atches on the note followed by “/” and then M:atches on
the subsequent “.” This forces the value (a 5, say) into $LEFT. This was re-
quired, since at M:atch for 1 or 8 without the “.” would have found the value
of notes C and G. Of course, I could have designed the string in reverse order
— that’s an improvement for you to make.

Let’s digress to the music before going on with the programming. The
PILOT Music “System” now has two simple programs. PILOT Composer ac-
cepts four-note chords composed of the eight basic notes (no sharps or flats),
followed by a duration (a whole note, half note, etc.). It checks these data,
catches most errors, and rings a “bell” when it’s ready for another chord. It
won't find short chords, so make sure you enter four notes and a duration, or
change the *TRANSLATE module between lines 1670 and 1680. Chords
are written to the disk or cassette every 10 chords. This is required since the
maximum length of an accept buffer is 254 characters.

255

PILOT YOUR ATARI

The PILOT Player asks for a tempo (how fast to play) and a file of music.
It then opens that file and plays the notes stored there.

Back to the PILOT Composer program. Under PILOT (p.73), strings are
concatenated by naming two strings in a C:ompute (or A:ccept) instruction
(e.g.:C:$ONE =$ONESTWO). If, however, one of the strings is “undefined,’
because it has never been used before, it has the value of a text literal rather
than the value of a string. In the example, if $TWO had the value JOHN but
$ONE was undefined, the new value of S§ONE would be $ONEJOHN — hard-
ly what we wanted! avoid this by initializing strings used in this way (see lines
130 and 140).

PILOT input and output (I/O) is handled with READ:, WRITE: and
CLOSE: instructions. Each instruction requires a “device name” (a “C:” for
cassette or a “D:” for disk) and, for disk, a file name. These are separated from
following data by a comma. The data can be text literals, numeric or string
variables. In a single file, READ: must be separated from WRITE: by a

CLOSE:. You can try this in immediate mode or in a program:

DISK CASSETTE

WRITE:D:TEST,ABCD WRITE:C,ABCD
CLOSE:D:TEST CLOSEL:
READ:D:TEST,$STRING READ:C:,$STRING
T:$STRING T:$STRING

We'll have more on [/O in a future article to discuss a hidden glitch. For now,
just do as line 430 does and put all device specifications in a single string.

Keeping a clean screen in a program often requires erasing a line on the
screen. It’s not so simple in PILOT since the “blank line” string automatically
defaults to one character. Lines 750 and 1230 show an easy way; just print a
series of blanks followed by a non-printing character such as an arrow. Line
750, for instance, prints the #A followed by a blank and a left arrow. When
the line is printed, the right-most character is blanked out, and the left arrow
holds the space, but doesn’t show. You can type an arrow by keying [ESC]
then holding down the [CTRL] key while typing the desired arrow key.
Repeat all three strokes for each arrow.

Although the Primer tells us that variables come in two flavors — strings
(pp. 69-81) and numerics (pp. 85-92), we never find out how to change one
into the other. It’s simple but tricky. String variables can be made from
numeric variables by C:omputing or A:ccepting them:

256

THE MUSICAL PILOT

C:$3ONE =#A
A:$ONE =#A

Astring variablecan be turned into a numeric variable ONLY by A:cceptingit:
A:#A =30ONE

After this instruction, #A will have the numeric value from $ONE; non-
numeric data will be disregarded (see the Player program, lines 1310-1350).

Line 1140 in the Player program presents a powerful way to combine
“relational operators” to make “conditional statements” (pp. 89-90). Linking
conditions with “+” signs creates “logical ors.” For instance, line 1140 would
be read, “if #T =256 OR if #T =128 OR if #T =64 then J:ump” In other
words, if #T equaled any one of the three numbers, the program would find a
“crue” and J:ump. Neat! But, you can’t do it the other way, with a JN:
instruction to execute on a ‘false,” because the “N” looks at the
M:atch register, not at the conditionals.

You can get “logical ands” by multiplying the conditionals:

TH#T =100) * (#U =200) * (#V =50):ALL THREE

This statement would be read: “if #T =100 AND if #U =200 AND if #V =50
then T:ype ALL THREE
At last, the BUG. (A friend says that micros are too small to have bugs.
She claims that they have fleas!) Right there on page 31 the Primer tells us
that the computer “ignores” remarks. Although that may be accurate in the
linguistic sense, it’s not so in the operative sense. In line 1150 in the Com-
poser program the remark set off by a “[” MUST be typed without spaces. It
seems that the [turns any intervening spaces into significant space and,
therefore, part of the accept buffer. Ditto for other commands. I don’t know
if it’s a bug or a flea — [know it’s a bear to figure out! (Atari’s internal
manuals even have it wrong!) Be safe, don’t use brackets when in doubt.
by Ken Harms

58 R: PILOT COMPOSER

60 R: ANTIC, VoL 1., NO. &
78 R: K. W. HARMS

80 R:

168 R: INIT

257

PILOT YOUR ATARI

118 *INIT ‘\\

128 C:#A=0

130 C:$SNOTEVALUES=

140 C:$PLAYVALUES=

158 C:$END=!

168 C:$GOODNOTES=C D E F G A B 4@

179 C:$GOODDURATION=1 2 4 8 S @

180 C:$SNOTETABLE=C. 1/ D. 3/ E. 5/ F.

G/ GRS B/ A ST 1/ B | 120/ S (s 0/ R [/ s 7
2/ A &7 B 8/ §. 16/

3gg R: FLLE

318 *FILE

324

339 ENTER DEVICE TO SAVE MUSIC ON
340 D=DISK, C=CASSETTE

350 $D

370 M: C

3840 :$FILESPEC=C:

39@ JY:*FILEDONE [IF CASS JUMP OUT
449 M: D

418 TY.:ENTER FILE NAME

429 AY:S$FILE [GET FILE NAME

430 CY:$FILESPEC=$D:$FILE

44 TN:I DON'T KNOW THAT DEVICE

450 JN:*FILE

460 *FILEDONE

R:
T
o
A:
368 R:NEXT, CHECK TO SEE IF CASSETTE
M .
cY

470 T:®W [ESC-CTRL-CLEAR .. CLEARS SCRE
EN
500 R: INSTRUCTIONS
510 *INSTRUCTIONS
520 R:
530 T:
540 T:NOTES ARE: C D E F G A B
858 T AND @ FOR OFF
568 T:
5708 T:DURATIONS ARE:
580 T: 1=WHOLE 2=HALF
5904 T: 4=QUARTER 8=EIGHTH
6008 T: S=SIXTEENTH @=NONE
618 T
620 T:ENTER & TO QUIT

i

\fﬁﬂ

258

THE MUSICAL PILOT

ﬁﬂﬂ H:ﬁ‘ ENTER \

718 *ENTER

128 R

730 C:gA=#A+1

748 P0S:1,12

750 T:ENTER 4 NOTES + DURATION FOR CHO
RD #A EI[SPACE, ESC-CTRL-LEFT
768 P0S:17,15

778 A:$SNOTES

788 M: &

798 JY:*ENDER

880 EY:

818 U:*CHECKNOTES

829 S0:28 [BEEP ON COMPLETION
838 PA:7

849 SO0:40

850 WRITE(#A=10):$FILESPEC,SPLAYVALUES
860 C(#A=18):%A=8

878 J:*ENTER

904 R: ENDER

910 *ENDER

924 R:

930 C:$PLAYVALUES=$PLAYVALUES!
949 WRITE:S$FILESPEC,S$SPLAYVALUES
958 CLOSE:S$SFILESPEC

960 T:

978 T: SAVED IN FILE SFILESPEC
9809 T:

994 T: SESSION ENDED

1600 E

11480 R: CHECKNOTES

1118 *CHECKNOTES

1128 R:

1138 A:=$NOTES [MOVE $N. TO ACCEPT
1148 MS:, [MATCH ON 1ST BLANK
1150 A:=$RIGHT!/[ADD/,MOVE TO ACCEPT
1168 C:#C=40 [SETS NOTE COUNTER TO @
11780 C:$SNOTEVALUES=

11808 C:xG=0

1199 *LOOP

1248 MS B3, [SKIPS 2 SPACES

12108 CN(#G=0):$PLAYVALUES=$PLAYVALUESS
NOTEVALUES

259

PILOT YOUR ATARI

fq;za POSN(#G=8):2,22
1230 TN(#6=0):
0 [ESC—CTRAL-UP
1249 EN:
1250 MS:SRIGHT[MATCH W/0 1ST L
12608 C:$SAVE=SMATCH [SAVE ALL

1298 R:SLEFT HAS THE LETTER WE

1300 C:SNOTE=SLEFT

1318 U:*TRANSLATE

1329 A:=$SAVE [PUT ALL IN BUF
1330 J:*LOOP

1480 R: TRANSLATE

1410 *TRANSLATE

1429 R:

1430 C:#C=#C+1

1440 E(#C=T7):

1450 A(#C<5):=SGOODNOTES

1460 A(#C=5):~$SGOODDURATION
1470 M:SNOTE

1488 POSN:2,22

14909 TN:ERROR IN THIS VALUE: §
1508 R:SET G FLAG FOR BAD NOTE
1518 CN:#G=1

1528 EN:

1538 A(#C=6):=$SNOTE

1548 M(#C=6): !

1558 EY(#C=6):

POSN (#C=6):2,22
TN (#C=6):T00 MANY VALUES:
1580 CN(#C=6):#G=1

1599 EN(#C=6):

1609 POS(#C>6):2,22

1618 T(#C>6):T00 MANY VALUES:
1628 C(#C>6):#6-1

1630 E(#0>6):

1640 A:=$NOTETABLE

1658 MS:SNOTE.

1668 A:=SRIGHT

1670 MS:/

1680 C:SNOTEVALUES=$NOTEVALUES

\lfgﬂ E:

—
o on
~
==

ETTER

1278 A:=SLEFT [SL. HAS BLANK+LETTER
1280 MS:BE_ [SKIP BLANK & LETTER

FER

NOTE

SNOTE

SNOTE

SLEFT

N

260

THE MUSICAL PILOT

88 R:
3g0
dig
324
330
3440
3540
360
374
3sg
394
494
414
4249
4349
449
4540
4649
4749
EN

1609
1619
10249
1038
1049
1054
10680
1878
1089

“w
=

1
1
1
1
1
1
1
1
1
1

— o — — o —

OCONTPRWMN =
-B--B--B- -5 -5 -5 -5 -1 -9 -1

ey

-

aon

608 R:
78 R:

PILOT PLAYER ﬁ‘\

ANTIC, VOL. 1, NO. 4
K. W. HARMS
At FILE
*EILE
A
ENTER DEVICE TO PLAY MUSIC FROM

T:
T:D=DISK, C=CASSETTE

A:$D

R:NEXT, CHECK TO SEE IF CASSETTE
M: C

CY:$SFILESPEC=C:

JY:*FILEDONE |[IF CASS JUMP OUT
M: D

TY:ENTER FILE NAME

AY:S$FILE [GET FILE NAME
CY:$SFILESPEC=$D:$FILE

TN:I DON'T KNOW THAT DEVICE
JN:*FILE

*FILEDONE

T:m [ESC—~CTRL-CLEAR .. CLEARS SCRE

R: TEMPO & PLAY

R:

R: TEMPO

*TEMPO

T:M [ESC-CTRL-CLEAR CLEARS SCREEN
P0S:9,5

T:PLEASE ENTER A TEMPO

i

11 256 = Adagio

174 128 = Andante

T 64 = Allegro
POS:11.141

*RESTART

A:uT
J(#T=256)+(#T=128)+(#T=64):*READ
T:PLEASE ENTER NUMBER AGAIN

J:*RESTART
R: READ
*READ

i T 4

261

PILOT YOUR ATARI

1219 READ:SFILESPEC,$PLAYVALUES
1226 R:THIS DEMOS WORD PARSING
1238 *LOOP1

1240 C:#N=0

1250 *L0OP2

12608 C:a#N=#N+1

1270 A:=$PLAYVALUES

1280 MS:B_

12908 JN:*READ

1300 C:$SPLAYVALUES=$RIGHT
1310 A(#N=1) :#A=$SLEFT
1320 A(#N=2):#B=$LEFT
1338 A(#N=3):#C=SLEFT
1340 A(#N=4):#D=SLEFT
1350 A(#N=5):#L=SLEFT
1360 A:=S$LEFT

13760 M: |

13808 EY:

1390 J(#N<5):*L00P2

1400 SO:#A#B#CHD

1418 PA:#T/#L

1429 J:*LOOP1

N

(/:ZBE T PLAYING FILE SFILESPEC i\\

262

HOLIDAY TREES

Holiday Trees

dd to your holiday pleasure by decking out these cybernetic trees
Ausing this PILOT program. It comes complete with colored lights, a

scrolling message, and “Jingle Bells” in one-part harmony. To do this
we will use some innovative techniques that will expand your understanding
of PILOT programming.

Let’s wander through the listing. After the title lines, we find a J:ump
command at line 50. As you'll see, we U:se *PARSE, * COLORS, and
*LLOQP over and over as the program operates. Each time PILOT hits a
U:se or J:ump command, it goes to the first instruction (in this case, line 1)
and reads every line until it finds the required module name. Putting often-
used modules near the front of the listing makes the program run faster.
PILOT is fast. Even putting the modules at the end of the 225 lines of this
program did not noticeably slow down the song, but this programming con-
cept makes it run even faster.

Now J:ump to % DRAWTREES (lines 1000-1540). This module uses a
mirror-image concept to draw two trees for nearly the price of one. Notice
that the first tree is drawn at X=-40, Y =32 (lines 1050-1070) and the second
at X=40, Y =32 (lines 1080 and 1090). This means that the Y positions in
both trees are the same while the X positions differ by only the sign. As a
result, we can draw in the same location in both trees by using positive and
negative values of the same number for the X position.

We use this concept to draw the stars and balls with a single position and
*MIRRORSTAR and *MIRRORBALL modules (lines 2100-2160 and
2400-2460). The C:ompute instruction in line 2140 changes the sign of #X by
multiplying it by -1. Simple and neat!

Back to the *TREE module. PILOT graphics uses only four colors.
Although it calls these RED, BLUE, YELLOW and ERASE, PILOT really
looks at a memory location each time it draws in a PEN color to see what col-
or should be used. Normally, of course, it finds a number in BLUE which
means blue. In line 1650, we force a different number into location 708 to tell

PILOT that we want it to draw in green whenever it hits a BLUE command.
Line 1760 sets the RED pen to brown. Location 709 controls YELLOW and

263

PILOT YOUR ATARI

711 the ERASE commands. You might want to experiment to see how these
“registers” work.

After we finish drawing and decorating the trees, we end up at line 1530,
which C:omputes a string into the SMESSAGE variable. I had to double-
space the message because the A:ccept command, used later in the *PARSE
module, automatically inserts blanks at the start and end of each string. At
present, there doesn’t seem to be a good way around this restriction, but we
end up with a nice message anyway. Although the printer doesn’t show it, an
Escape character is placed between each word to preserve word spacing. This
is necessary because A:ccept also condenses all multiple spaces to single
spaces. The Escape character will not print the message: you enter it by press-
ing the [ESC] key twice.

You'll probably want to enter your own message. Just type [space] [ESC]
[space] between each word and two [ESCJs at the end. Also, keep the
message less than 255 letters long.

When finished drawing the trees, we J:ump to *MAINLOOP (lines
600-699). This module is the workhorse, it plays the song, calls for the
message and color changes. It’s rather long but really simple to type in. All
the * LLOOP commands are on multiples of three — just type it once and use
ATARI’s wonderful screen editor to change the line number. Ditto for the
SO:ound and PA:use commands.

*MAINLINE does one other important thing. Since the program
doesn'’t use any keystrokes, the ATARI would soon begin changing screen
colors. The C:ompute in line 688 puts a 0 in location 77 to tell the computer
that a key has been pressed even when none was. This delays the “attract”
mode each time through the loop.

The next module, * LLOOP, simply calls ¥*PARSE and * COLORS. The
*PARSE module breaks strings into individual characters (“parsing”). As
you type it, remember the two right arrows in line 150 and 37 in line 180.
The arrows tell the MS: command to skip a character for each arrow before
looking for a M:atch.

After skipping 37 characters in line 180, the MS:$RIGHT in line 190
forces the first 37 letters into the $LEFT string which we T:ype in line 210.
That’s the billboard section of the message. By repeatedly stripping off the
first character and adding it to the end of the message, we make the words
march across the text window at the bottom of the graphic screen. Oh yes,
C:@B656? That’s a memory location which tells PILOT to T:ype the message

264

HOLIDAY TREES

on the second line of the text window. Without that, each message would
T:ype on a different line and would scroll off the top. (Just for fun, the lines
are numbered O through 3.)

Although *PARSE is busy, * COLORS (lines 300-400) is a speedy devil
too. By C:omputing different values for location 709, * COLORS changes
the color in the YELLOW pen. This flashes red, blue, brown, and yellow in
the stars and balls.

To close, let me an:wer two questions. How do I get PILOT to number
the modules in different series? Simple. As I build a program, each module is
stored in a different disk file. After all modules are debugged, each is LOAD-
ed into memory and RENumbered in a number series which doesn’t overlap
with any other module. It’s then SAVEd, memory NEWed and the next
module loaded. After all are RENumbered, all are LOADed into a complete
program and SAVEd in a different file.

Last, how do I get those big letters in the R:emarks? Just enter a control
N (a bar symbol) right after the colon.

Best wishes for a happy holiday season watching your cybernetic trees!

by Ken Harms

{1 R:EEMQ& \

19 R:&RCHRISTMAS TREES

20 R:

38 R: ANTIC, VOLUME 1, NO. 5
44 R:

50 J:*DRAWTREES

‘= PARSE

PARSE

:=$SMESSAGE

Bl ERl

MS:$SRIGHT

170 A:SMESSAGE=SMATCHSLEFT

I O I i i i i i i i i) i) i
3 i i

185 R: LINE 188 IS 37 RIGHT ARROWS AD

\COMMA

108 R
118 R
128 R
138 *
148 A
150 M
164

265

PILOT YOUR ATARI

(s
200

2190
2249
3gg
31g
329
339
349
350
360
379
3sg
390
400
500
510
524
a3g
a4
550
560
574
600
601
602
603
604
605
686
607
608
609
610
611
612
613
614
615
616
617
618

\\EIQ

MS:SRIGH
:@B656~
:$LEFT

? ol GO

= Do m o~

*COLORS

C:#B=#B+
C(#B=1):
C(#B=2):
C(#B=3):
C(#B=4):
C(#B=4):

T
1

LORS

1
@B789-146
@B7089-66
@B7A9=26
@B7@9-18
#B=0

E:
R:
R:& LLoOP
R:

*LLOOP
U:*COLORS
U:*PARSE

S0:4¢

Ece
R:
R:&E
R:
*MAINLOOP

U:*PARSE

R: 1ST PARSE TO0O GET TEXT
R: NOTE NUMBER SEQUENCE
$0:22

PA:16

U:*LLOOP

§0:22

PA:16

U:*LLOOP

§0:22

PA: 32

U:*LLOOP

$§0:22

PA:16

U:*LLOOP

$0:22

MAINLOOP

266

HOLIDAY TREES

646
647
648
649
650
651
652
653
654
655
656
657
658
659
6680
661

\\?62

PA:16
U:*LLOOP
§0:22
PA:32
U:*LLOOP
Si0R:i22
PA:16
U:*LLOOP
S0::2:5
PA:16
U:*LLOOP
$0:18
PA:24
U:*=LLOOP
s0:29
PA:8
U:*LLOOP
$0:22
PA:48
U:*LLOOP
S0:4
PA:16
U:*LLOOP
S0:23
PR:16
U:*LLOOP
Si0%:52:3
PA:16
U:*LLOOP
S0:23
PA:214
U:*LLOOP
$0:23
PA:8
U:*LLOOP
$0:23
PA:16
U:*LLOOP
S0:22
PA:16
U:*LLOOP
$0:22
PA:16

>

267

PILOT YOUR ATARI

(663 U:*LLOOP

664 S0:22

665 PA:8

666 U:*LLOOP
667 S0:22

668 PA:8

669 U:*LLOOP
678 S0:25

671 PA:16

672 U:*LLOOP
673 S0:25

674 PA:16

675 U:*LLOOP
676 S0:23

677 PA:16

678 U:*LLOOP
679 S0:20

688 PA:16

681 U:*LLOOP
682 S0:18

683 PA:48

684 U:*LLOOP
685 S0:0

686 S0:0

687 PA:64

688 C:@B77=0
689 J:*MAINLOOP
1000 R:

18168 R:& DRAWTREES
1028 R:
*DRAWTREES
GR:CLEAR
(@ X=—48
(#Y=-28
:*TREE
(#X=40
:*TREE

tHX=—40
(#Y=32
:*STAR
t#X=40
:*STAR

ek ek ek ke @M TEEEmEE =
T RaWN MO NDNJ &~
L-B--R--B--B--R- -5 -0 0B B9 1
[N N — N N — N]

[—l—l—l—‘_l_l—l—l—l—l—l—l—l

NOW PUT SOME STARS ON THEM

2

N
o))
0¢]

HOLIDAY TREES

o

160
AR E
170
184
190
200

PO S —y

R:

W

C

C

U

]
1218 C
1224 U
1238 U
1249 C
1250 C
12608 U
1278 U
12808 C
1298 U
1308 U
1318 C
1328 C:
13398 U
1348 U
1358 C
1368 U
1378 U
1388 R
1398 C
1488 C
1416 U
1426 U
1438 C
14498 C
1458 U
1468 U
1478 C
1488 C
1498 U
1580 U
1l e s

0K THAT DID THE TOPS, NOW F;;\

MORE

¢ X=—48
(#Y=16
:*STAR
:*MIRRORSTAR
CH#X=—-32
:*STAR
:*MIRRORSTAR
t#X=—-56
#Y=0

‘*STAR
:*MIRRORSTAR
(@ X=—-24
:*STAR
:*MIRRORSTAR
t#X=-65

gy~-2

:*STAR
:*MIRRORSTAR
cH#X=—-13
:*STAR
:*MIRRORSTAR

HOW BOUT A

cH#HX=—43
(#Y=8

s*BALL
:*MIRRORBALL
c#X=-50
(#Y=—18
:*BALL
:*MIRRORBALL
c#X=-33
#Y=-12
:*BALL
:*MIRRORBALL
TREES DRAWN, SET UP TYPING, CO
LOUR AND MUSIC LOOP

1520 R:SPACE BETWEEN EACH CHARACTER, H
IT SPACE,ESC,ESC,SPACE BETWEEN EACH WO
RD AND SPACE,ESC,ESC,SPACE,ESC,ESC AT

E
\lfSﬂ C:$SMESSAGE=H A V EE AE H A PP /

FEW BALLS?

269

PILOT YOUR ATARI

(;>E [JEE] CO 5] T Wi R R A 3
1549 J:*MAINLOOP

16060 R: :

1610 R:& TREE

1620 R:

1638 *TREE

GREEN

1650 C:@B718=(12*16)+6
1668 GR:PEN BLUE

1678 GR:GOTO #X+28,#Y+5
1688 GR:TURNTO @

1690 GR:TURN -26

1700 GR:DRAW 63

1719 GR:TURN 232

17209 GR:DRAW 2

1730 GR:FILL 61

1749 R: DRAW THE TRUNK
1750 R: NEXT LINE SETS
OWN

1760 C:@B7@8=(14*16)+(4)
1770 GR:PEN RED

17808 GR:GOTO0 #X+4,#Y
1798 GR:TURNTO @

1800 GR:DRAW 4

1810 GR:PEN ERASE

18208 GR:GOTO #X—-4,#Y-1
1830 GR:PEN RED

18409 GR:FILL 5

1850 E:

1908 R:

1918 R: STAR

1928 R:

1938 *STAR

1949 GR:PEN YELLOW

1950 GR:GOTO #X,#Y

1960 GR:TURNTO @

1970 GR:DRAW 4

1980 GR:TURN 188

1998 GR:DRAW 2

20008 GR:TURN 94

2010 GR:DRAW 2

\i??ﬂ GR:TURN 189

1640 R: NEXT LINE SETS "BLUE"

“RED"

“\

PEN TO

PEN TO BR

2.0

HOLIDAY TREES

(2030

20489
2104
21148
2120
21349
21440
21540
21640
22049
2218
22249
22380
22449
22540
2260
22740
22849
22980
23040
23149
2329
2339

23440

23540
2490
2419
2429
24340
24449
24589
24640

=

AW 2;

GR:DRAW 4 ﬁ\\
Ex:

R:

R:& MIRRORSTAR
R

*MIRRORSTAR
C:#X=(#X*-1)+1
U:*STAR

Be:

R:

R:&= BALL

R:

*BALL

GR:PEN YELLOW

GR:GOTO #X,#Y

GR:TURNTO @

C:#A=0

*STARTBALL

C:#A=8#A+1

GR:4(DRAW #A;TURN9G)
J(#A<3):*STARTBALL

GR: TURNTO 27@d;PEN BLUE;DRAW 1
GR:1(TURN 90;PEN YELLOW;DRAW 2;PE

N BLUE:DRAW 2)

GR:3(TURN 90;:DRAW 1;PEN YELLOW;DR
PEN BLUE:DRAW 2)

Es:

R:

R:& MIRRORBALL
R:

*MIRRORBALL

C:#X=(#X*-1)+1
U:*BALL
E:

271

Forth Factory

Turtle Graphics

This chapter first appeared in ANTIC as two articles implementing a

turtle graphics system in Forth.
Let me make two quick points about Forth:
® Doing this project in any other computer language would have been so
involved that I would never have done it, and so lengthy that this
magazine would never have published it.
® Doing it in Forth was so easy it took me considerably longer to write the
English for this article than the Forth code!

Those of you who have Pink Noise Studios’ pns-Forth (I use version 1.4)
can edit the screens accompanying these articles “as is” and start turtle-ing. If
you have another implementation of Forth for the ATARI, some revisions are
inevitable. [have used words like PLOT and DRAWTO that pns-Forth pro-
vides for making graphics calls to the ATARI’s Operating System. Your
system may already have similar words. Later, I'll discuss the functions of any
non-fig-Forth words that I've used.

Turtle Graphics Versus Coordinate Graphics

“Turtle graphics” is a simple but powerful approach to creating graphic
designs with a computer. It was originally developed in the 1960’s at MIT —
primarily by computer scientist, child psychologist and educator, Seymour Papert
— as part of the Logo system.

Let me give you a very simple example of how it works. Suppose we want to
draw a square on the screen, 10 units on a side. The sequence of commands

10 DRAW 10 DRAW
90 TURN 90 DRAW
10 DRAW 10 DRAW
90 TURN 90 TURN

Gordon Smith is a graduate student in physiology at Stanford University. He
is interested in graphics and music, as well as Forth programming.

273

FORTH FACTORY

or, in a shorter form,

4 (10 DRAW 90 TURN)
requests an imaginary “turtle” on the screen to crawl 10 units forward, draw a line
as it goes, turn 90 degrees clockwise, and repeat four times. The turtle will leave
behind a square.

By typing

DEFINE SQUARE AS 4 (10 MOVE 90 TURN) END
we can add the new command SQUARE to our turtle’s graphics repertoire.
Then typing the single command

SQUARE
will have the same effect as our previous sequence of commands. For example,
to draw a square tilted by thirty degrees, we need only to type

30 TURN

SQUARE.

The conventional approach to graphics, in which one must specify fixed
screen coordinates and the endpoints of each line, is much more complicated.

The principle advantage of turtle graphics is that it describes shapes in an
intrinsic way, without referring to where they are or how they’re oriented.
The numbers used in turtle graphics represent easily visualized things, like
lengths of lines or angles.

A further important aspect of a turtle graphics system is the nature of the
programming it encourages: structured, modular, and hierarchical. The
DEFINE. .. AS. . .END construct shown above is the key to this. Basic sub-
designs can be made into new turtle commands which are then as much a part
of the turtle’s language as the predefined system commands. These higher-
level commands can then be used to define still higher ones, and so on.

For example, a simple picture of a house like that in Figure 1 could be
drawn with along sequence of DRAWSs and TURNS (along with another com-
mand for the turtle to move without drawing). But the structure of the design
cries out for the programmer to instead first enrich the turtle’s vocabulary by
defining commands such as, perhaps, RECTANGLE, WINDOW, DOOR,
FRONT and ROOF, before using these higher-level commands to define one
called HOUSE.

The Forth Advantage

Forth is so ideally suited to turtle graphics that, in a sense, implementing it is a
trivial exercise.

274

TURTLE GRAPHICS

The most complicated aspect of turtle graphics is the problem of providing a
programming environment in which turtle commands can be executed. Such a
capability is already intrinsic to Forth, while it is quite foreign to conventional
languages like BASIC.

The point here is that the turtle’s language can be just an extension of the
Forth language — turtle commands are simply Forth words. There is no need to
write an extensible command language processor. That’s what a Forth system
already is!

What the Screens Contain

The ten screens of Forth listed in this article lay the necessary founda-
tions for us to build a turtle graphics system. The words here are not specifi-
cally turtle-oriented. Rather, they extend Forth’s capabilities in directions
particularly useful to the application.

Screens 1, 2, and 3 add some trigonometric capability to Forth. If the
turtle is to move 10 units forward at 30 degrees from the vertical, we need to
compute how far up and how far over she goes. For this we use a lookup-
table approach. Scaling the values by 10,000 enables us to store them as
single-precision integers. The words SIN* and COS* are the result of this.

For example,

10 30 SIN*
leaves 5, or 10 times the sine of 30 degrees, on the stack; and this is how far
over the turtle would move.

Screen 4a makes available a defining word, VALUE, for a new data type.
An alternative to CONSTANT and VARIABLE, VALUE words tend to
make Forth code more readable. They are best explained by the following
example:

VALUE A VALUE B VALUE C

ok

2TOA 3TOB

ok

A.B.

2 3ok

AB+TOCC.

5 ok
VALUE words return their value when executed, except when they are
preceded by TO, in which case they store the top of the stack into

275

FORTH FACTORY

themselves. (This idea has been discussed in the “Forth Dimensions”
newsletter of the Forth Interest Group.)

In screen 4a the words TO and VALUE are defined in assembly
language, rather than Forth, so that they will execute as fast as CON-
STANTs and VARIABLE:. If you don’t have an assembler, use the alternate
Forth code on screen 4b.

Screens 5 through 8, culminating in the word CLIP, implement a line-
clipping algorithm. We want the turtle to be able to cross the edge of the
screen, so that if we execute SQUARE when she is near the top we'll get
something like Figure 2. But the Operating System will refuse to draw a line
whose endpoints aren’t both within the screen boundaries. Therefore, we
must be able to calculate the endpoints of the portion of the line which lies
on the screen. If we give CLIP the coordinates of two points, it first deter-
mines whether any part of the line between them lies within a “clipping rec-
tangle” whose extent we can specify by setting the values of LEFT, RIGHT,
TOP, and BOTTOM. (Note that these words are in the vocabulary CLIP-
PING.)If so, it returns the coordinates of the endpoints of the portion within
the clipping rectangle, and a true flag. If not, it returns only a false flag.

For example, suppose we set the clipping rectangle to be the size of the
Graphics Mode-7 screen with

CLIPPING

0 TO LEFT

159 TO RIGHT

0 TO TOP

79 TO BOTTOM

Then

3030 50 50 CLIP
leaves 30 30 50 50 1 on the stack because the line between (30,30) and (50,50) is
completely within the clipping rectangle. But

80 100 20040 CLIP
leaves 122 79 159 61 1 because only the portion between (122,79) and (159,61)
of the specified line lies inside the clipping rectangle. And

200 200 300 300 CLIP
leaves O because no part of the line lies inside. The Cohen-Sutherland
algorithm that CLIP uses is described in detail in Chapter 5, “Clipping and
Windowing,” of Newman and Sproull’s Principles of Interactive Computer
Graphics.

276

TURTLE GRAPHICS

The last screen, number 9, defines the word GRAPHICS for opening the
screen in the graphics mode specified by the top of the stack, and LINE, which
takes the coordinates of two endpoints and draws the clipped part of it on the
screen.

If you want to see the clipping in action, before the rest of the code is
given, try the following: Define the words BORDER, RANDOM__LINE,
and RANDOM__ LINES as

: BORDER

CLIPPING

1 COLOR

LEFT BOTTOM PLOT

LEFT TOP DRAWTO

RIGHT TOP DRAWTO

RIGHT BOTTOM DRAWTO
LEFT BOTTOM DRAWTO ;

: RANDOM__LINE
4 0 DO CRANDOM LOOP LINE

: RANDOM__LINES
0 DO RANDOM__LINE LOOP ;

and then type
CLIPPING
20 TO LEFT
140 TO RIGHT
20TO TOP
60 TO BOTTOM
7 GRAPHICS
BORDER
100 RANDOM__LINES

The Inhabitants and Language of Turtleland
Four independent turtles live in Turtleland. Multiple turtles open up

interesting possibilities, like having turtles chase each other. With four
turtles, each can draw in a different color (there are only four colors
possible at one time). If you want a different number, you can change the value
of the constant #TURTLES on screen 2 before loading. One turtle at a time

277

FORTH FACTORY

can be designated the “active turtle” with the SET ACTIVE command. She s
the one who will respond when we type a command like “10 DRAW.”

Each turtle carries a pen. The active turtle’s pen can be lowered with the
PENDOWN command, leaving a trail when she moves, or raised with the
PENUP command. The more general SET PEN command can be used to do
either.

The SET INK command fills the active turtle’s pen with various colors of
ink, depending on the graphics mode used. (Modes 3 through 8 can be selec-
ted with the SET MODE command.) In all modes, ink of type 0 is erasing
ink. It is black, the same color as the background, except in Mode 8 when it
is light blue. The command, ERASING, is the same as 0 SET INK. Both
choose erasing ink. In Modes 3, 5, and 7, there is also ink of type 1 (gold), type
2 (light green), and type 3 (dark blue). In Modes 4, 6, and 8, types 2 and 3 are
not available. The number of ink types is determined by the color video
capabilities of the CTIA or GTIA chip. The colors are established by the
Operating System when it opens the screen. You can use pns-Forth SET-
COLOR word to change them.

Each turtle has a position and a heading. The heading is the number of
degrees clockwise from the vertical that she is facing. The active turtle’s head-
ing can be changed directly to any value with SET HEADING, also known
as TURNTO, or it can be changed incrementally by the commands RIGHT
(or TURN) and LEFT.

The system keeps track of each turtle’s position with X and Y coordi-
nates. These are not the same as the screen column and row numbers. The
SET MODE command arranges these coordinates so that the turtle’s home
at X=0and Y =0 is the center of the screen, and so that there are one hun-
dred X or Y units per pixel. This means that if a turtle is at X=1000 and Y =
500 she will appear ten pixels to the right and five pixels up from the center.
You can arrange the coordinates differently if you wish.

The active turtle’s coordinates can be individually or jointly set with the
commands SET X, SET Y, or SET POSITION (also known as GOTO).
They cause the turtle to leave a track only if her pen is down. MOVETO can
be used to temporarily raise the pen, or DRAWTO to lower it, before chang-
ing position. The pen is restored to its original state after the change.

The most interesting way to move the active turtle is with FORWARD,
BACKWARD, DRAW, and MOVE commands. These move her a specified
number of steps in whatever direction she is currently heading. FORWARD

278

" TURTLE GRAPHICS

and BACKWARD draw a line only if the pen is down; DRAW always draws;
MOVE never does. Each step normally moves the turtle one pixel, a distance
of 100 units in XY coordinates, unless you use the SET SIZE command to
alter the step size. By changing the step size you can use the same word to
draw the same shape in different sizes.

A turtle’s heading and her XY coordinates are always integers. The max-
imum range for X and Y is from -32768 to 32767. If you drive a turtle beyond
this range you may see unwanted tracks as she “jumps” to the other edge of
Turtleland.

Usually you can'’t see all of Turtleland on the screen. For example: in
Mode 7 the screen displays only the part of Turtleland from X=15900 to
X=15800 and from Y=-7900 to Y=7800. You can select your own
“window” into Turtleland with SET WINDOW command. Any tracks
beyond the edges of the window won'’t be visible. Changing the window will
affect the number of X or Y units per pixel. An alternate way to set the win-
dow (and the step size) is with the PER-PIXEL command.

The reason that the system defaults to 100 units per pixel is to let the tur-
tle sit “between” pixels. If we used a coordinate system as coarse as the screen
pixels, then every time we moved a turtle at some angle, her new position
would get “rounded” to the nearest pixel. We wouldn’t be able to do a series
of moves without errors accumulating. Using 100 XY units per pixel gives us
increased precision.

The SET MODE command establishes the whole screen as the “view-
port.” This means that the view of Turtleland visible through the window
will be projected onto all of the screen. You can select any rectangular piece
of the screen to be the viewport with the SET VIEWPORT command. When
you experiment with this, use the FRAME or NEW commands to draw a
frame around the new viewport so you can see where it is.

So far, four commands — MODE, SIZE, WINDOW, and VIEWPORT
—relate to Turtleland as a whole, and seven of them — ACTIVE, PEN, INK,
HEADING, X, Y, and POSITION — relate to the turtles. It is also possible
for you to determine the current value of any of these parameters, by leaving
out the word SET or by changing it to SHOW. For example, the command X
by itself (i.e., not preceded by SET) leaves the active turtle’s current X co-
ordinate on the stack, where it can be used by any word for any purpose. So,

the command SHOW X will display some message like “Turtle #1 is at
X =300."

279

FORTH FACTORY

The system also has miscellaneous commands like CLEAR for clearing
the screen, FRAME for drawing a frame around your picture, and HOME,
START, and NEW for starting over. The command BYE leaves Turtleland
and returns to pns-Forth.

Of course, all the usual Forth words are still available while you’re in
Turtleland, in case you need to do arithmetic, comparisons, branching, loop-
ing, or whatever. You can use the more compact loop syntax (...)and (. ..
+) in place of the structures 0 DO ... LOOP and 0 DO ... +LOOP.

The important command DEFINE . .. AS ... END allows you to add
new words to the turtle’s vocabulary. This makes it very easy to change any
of my command names that you don't like.

As an interesting example, you might want to

DEFINE HILDA

AS 1 SET ACTIVE END
DEFINE GILDA

AS 2 SET ACTIVE END
DEFINE MATILDA

AS 3 SET ACTIVE END

so that you can talk to a turtle simply by invoking her name.

Using The System

To start turtle-ing, just use the SET MODE command. If you want to have
Turtleland displayed in Graphics Mode 7, for example, type 7 SET MODE.
After this you can immediately move the turtles around with 10 DRAW, 45
TURN, etc. SET MODE initializes the system as follows:

o All four turtles are home at X=0 and Y =0, with heading 0 degrees.

® They all have their pens down.

® Their pens are filled with various ink types as described under the
START command in the glossary.

e Turtle #1 is active.

® The window is such that X=0, Y =0 is in the center of the screen and
there are 100 X or Y units per pixel.

® The viewport is the whole screen.

After you get acquainted with the various commands, you'll want to
start extending the system by defining your own. Here is an example of a
new command:

280

TURTLE GRAPHICS

VALUE STEPS
VALUE INCREMENT
VALUE ANGLE

DEFINE POLYSPI AS
TO ANGLE
TO INCREMENT
0 TO STEPS
BEGIN
STEPS INCREMENT +TO STEPS
STEPS FORWARD
ANGLE TURN

AGAIN

END

POLYSPI can make all sorts of interesting polygonal spirals. It expects to
find two numbers on the stack. It stores the top one in ANGLE; this will be
how many degrees the turtle will turn between each move. The one below
gets stored in INCREMENT; this will be how many more steps the turtle will
take each time compared to the previous time. Next STEPS is initialized to O
and we enter a Forth BEGIN . . . AGAIN loop. The words between BEGIN
and AGAIN will be executed indefinitely. (You must press a yellow console
button to stop POLYSPIL.) Each time through the loop, STEPS is incre-
mented by INCREMENT, and the turtle takes the number of steps in STEPS
and turns the number of degrees in ANGLE. Thus POLYSPI is just an auto-
mated sequence of FORWARDs and TURNS. For example, 2 90 POLYSPI is

really the same as

2 FORWARD 90 TURN
4 FORWARD 90 TURN
6 FORWARD 90 TURN

and so on.

The three VALUE words POLYSPI uses make it easy to see what’s going
on. However, another definition of POLYSPI is possible which uses no vari-
ables at all:

DEFINE POLYSPI AS
0

BEGIN

3 PICK +

281

FORTH FACTORY

DUP FORWARD
OVER TURN
AGAIN
END

This version keeps everything on the stack, using the Forth words PICK,
DUP, and OVER for stack manipulation. You can make a variety of patterns
with this one command by changing its two parameters.

Pressing a yellow console button will break out of an indefinite loop of
turtle moves. In fact, every time a turtle changes position, the system checks
the console buttons and returns to command level if one is depressed. This
makes it easy to regain control.

As mentioned earlier, ten of the words used in my screens are pns-Forth
words which won’t be available (at least not with the same meanings) in
other Forth systems. Two of these, 1- and TABLE, are common Forth exten-
sions whose high-level definitions are

o
and

: TABLE BUILDS DOES OVER

+ + @3

The others are highly system-specific. Four of them — SETUP S,
CLOSE S, SPLIT-SCREEN, and GR. — were used in the word GRAPHICS.
Their definitions are quite complex, as these words are part of pns-Forth’s in-
terface to the CIO routines in the Operating System. Their joint effect in the
word GRAPHICS, however, is quite simple. Any Forth system sold for the
ATARI will probably have words for opening the screen for graphics. Simply
use whatever your system provides to define your own GRAPHICS, which
takes one number from the stack and opens the screen in that mode, with a
text window at the bottom.

The last four words specific to pns-Forth are CL#, COLOR, PLOT, and
DRAWTO. These are used by LINE, FRAME, and POSITION. The first
two are simple to define; just use

0 VARIABLE CL#

and

: COLOR DUP CL# ! PAD C!;

CL# is a variable which is used to keep track of the color data used to
plot a pixel. COLOR takes a number from the stack and stores it both in

282

TURTLE GRAPHICS

CL# and at PAD, for later use by PLOT and DRAWTO. The definitions of
PLOT and DRAWTOQO are complicated because these words result in calls to
CIO. Again, however, their functions are simple and your system probably
provides similar words. Define a PLOT which takes a column and a row
number from the stack, moves the screen cursor to that position, and plots a
pixel there using whatever byte is at PAD as the color data. Similarly, define
a DRAWTO which takes a column and a row number from the stack, and
draws a line from the current position of the screen cursor to this specified
position, using the byte at PAD as color data.

[believe that all the other words I've used in this system are either stan-
dard fig-Forth words or new words that I've defined.

Glossary of Turtle Commands

MODE Commands

SET MODE [mode -~] Opens the screen in the Graphics Mode
specified by mode , which should be 3-8. Sets up a default viewport, win-
dow, and step size by executing WHOLE-SCREEN SET VIEWPORT and
100 PER-PIXEL. Draws a frame around the viewport with ink of type 1. Initial-
izes the turtles by executing START.

MODE [-- mode]Leavesthe number of the current Graphics Mode on
the stack.

SHOW MODE [---] Displays a message indicating the current Graphics
Mode.

ACTIVE Commands
SET ACTIVE [turtle# --]Makes the turtle whose number is turtle#

the active turtle. Future commands will be directed to her.

ACTIVE [- turtle#] Leaves the number of the active turtle on the
stack.

SHOW ACTIVE [--]Displays a message indicating the currently active

turtle.

283

FORTH FACTORY

PEN Commands

SET PEN [state -] Lowers the active turtle’s pen if state is nonzero
and raises it if state is zero.

PEN [-- state]Leaves 1on thestackifthe active turtle’s pen is down and
0 if it is up.

SHOW PEN [---]Displays a message indicating whether the active turtle’s
pen is up or down.

INK Commands

SET INK [ink#] Fills the active turtle’s pen with ink of type ink# .
Type 0ink is erasing ink. Types 1, 2, and 3 are colored. Types 2 and 3 are not
available in modes 4, 6, or 8.

INK [-~ ink#]Leaves on the stack the type of ink in the active turtle’s
pen.

SHOW INK [--]Displays a message indicating the type of ink in the ac-

tive turtle’s pen.

HEADING Commands
SET HEADING [degrees --] Makes the active turtle head in the direc-

tion specified by degrees . Directions are measured clockwise from the ver-
tical.

HEADING

[- degrees] Leaves the active turtle’s heading on the stack.

SHOW HEADING [---]Displays a message indicating the active turtle’s
heading.

X Commands

SET X [x --]Changes the active turtle’s X coordinate to x . Draws a line
if her pen is down.

X [x]Leaves the active turtle’s X coordinate on the stack.

SHOW X [--]Displays a message indicating the active turtle’s X coordinate.

284

TURTLE GRAPHICS

Y Commands

Similar to X Commands.

POSITION Commands
SET POSITION [x y --]Changes the active turtle’s coordinates to

X= x and Y=y . Draws a line if her pen is down.

POSITION [~ x vy]Leavestheactive turtle’s X and Y coordinates on
the stack.

SHOW POSITION [--]Displays a message indicating the active turtle’s

X and Y coordinates.

SIZE Commands

SET SIZE [distance steps --- | Sets the step size so that the number of
steps given by steps will cover a distance in XY coordinates given by
distance .

SIZE [--- distance steps]Leavesthe current size parameters on the stack.

SHOW SIZE [-] Displays a message indicating the current step size.

WINDOW Commands
SET WINDOW [xmin xmax ymin ymax --]Setsthe window to

be the region from X= xmin to X= xmax and from Y= ymin to
Y= ymax .

WINDOW [-- xmin xmax ymin ymax]Leavesthecurrentwin-
dow parameters on the stack.

SHOW WINDOW [---] Displays a message indicating the current win-
dow.

VIEWPORT Commands
SET VIEWPORT [left right top bottom --]Setsthe viewport

to extend from screen column left toscreen column right and from screen
row top toscreen row bottom .

285

FORTH FACTORY

WHOLE-SCREEN SET VIEWPORT [---]Sets the viewport to extend
from column 1 to the next to the last column and from row 1 to the next to the
last row.

VIEWPORT [-- left right top bottom]Leavesthe current view-

port parameters on the stack.

SHOW VIEWPORT [-] Displays a message indicating the current

viewport.

Other Commands

CLEAR [---]Clears the graphics screen without affecting the turtles.

FRAME [ink# --]Draw aframe around the viewport, using ink of type
ink# .

HOME [--] Moves the active turtle to X=0 and Y =0 with heading 0,

without drawing a line, and then lowers her pen.

START [--]HOME:s all the turtles first. Then fills their pens with ink. (In
Mode 3, 5, or 7, the Nth turtle’s pen is filled with ink of type N. In Mode 2, 4, or
6, turtle 0’s pen is filled with type 0 ink while the pens of turtles 1, 2, and 3 are
filled with type 1 ink, the only colored ink available in these modes.) Finally,
makes turtle 1 the active turtle.

NEW [--]Clears the screen, draws a frame with type | ink, and initializes
the turtles by executing START.

PER-PIXEL [distance ---]Setsthe window so that the point X=0, Y =0is
the center of the viewport, and so that the distance in XY coordinates given
by distance will be the size of one pixel. Also, sets the step size so that each
step is distance units long.

FORWARD [steps --]Moves the active turtle forward the number of
steps specified by steps . The movement is in the direction she is currently
heading if steps is positive and in the opposite direction if steps is
negative. The turtle’s heading is unaffected. A line is drawn if her pen is down.

BACKWARD [steps ---]Like FORWARD except in the opposite direc-
tion.

DRAW [steps --]Lowers the active turtle’s pen so that a line will defi-
nitely be drawn as she moves forward the number of steps given by steps .
Then her pen is returned to its previous state.

286

TURTLE GRAPHICS

MOVE [steps --- | Raises the active turtle’s pen so that a line will
definitely not be drawn as she moves forward the number of steps given by
steps . Then her pen is returned to its previous state.

RIGHT [degrees --] Turns the active turtle the specified number of
degrees, to the right if degrees is positive and to the left if negative.

LEFT [degrees --]Like RIGHT except in the opposite direction.
TURN [degrees -] The same as RIGHT.
GOTO [x y --]Thesame as SET POSITION.

DRAWTO [x vy --]Lowersthe active turtle’s pen so that a line will
definitely be drawn as she moves to X= x and Y= y . Then her pen is
returned to its previous state.

MOVETO [x vy --]Raises the active turtle’s pen so that a line will
definitely not be drawn as she movesto X= x and Y= y . Then her pen
is returned to its previous state.

TURNTO [degrees -] The same as SET HEADING.

PENDOWN [--- | Lowers the active turtle’s pen: This is the same as 1
SET PENSTATE.

PENUP [---] Raises the active turtle’s pen. This is the same as 0 SET
PENSTATE.

PENDOWN? [- flag]Leavesa 1 on the stack if the active turtle’s
‘pen is down and a O if it is up. This is the same as PEN.

PENUP? [-- flag]Leavesa | on the stack if the active turtle’s pen is
up and a 0 if it is down. This is the opposite of PEN.

ERASING [---] Fills the active turtle’s pen with type 0 ink (the erasing
type). This is the same as 0 SET INK.

(...) [#loops -]Executes the words between the left parenthesis and
the right parenthesis the number of times given by #loops .

DEFINE . .. AS...END Defines the word between DEFINE and AS to
be a new turtle command which will execute the words between AS and

END.

BYE [---] Leaves Turtleland and returns to pns-Forth.
by Gordon Smith

287

FORTH FACTORY

(«

Turtle Graphlcs I, s
DECIMAL
TABLE SINES
poee , @175 , @349 , @523
@872 , 1445 , 1219 , 1392
1736 , 1968 , 2879 , 22540
2588 , 2756 , 2924 , 3694
3a29 , 3584 , 3746 , 3907
4226 , 4384 , 45408 , 4695
5048 , 5158 , 5299 , 5446
5736 , 5878 , 60618 , 6157
6428 , 6561 , 6691 , 6824
I S o TR i I B 1 B Ty
7668 , 7771 , 7888 , 7986
8192 , 8299 , 8387 , 8484
8668 , 8746 , 8829 , 8914
9463 , 9135 , 9245 , 9272
9397 , 9455 , 9511 , 9563
9659 , 9743 , 9744 , 9781
9848 , 9877 , 9983 , 9925
9962 , 9976 , 9986 , 9994
19008 , ——>
(Turtle Graphics I,
)
: (SIN) (- IR = e
pup 94 > IF
180 SWAP - THEN
SINES
SIN {SEnE1 =i | 2080
(Returns 100088 times
(of nl1 degreas.)
364 MOD
DUP @< IF
360 + THEN
DUP 188 > IF
188 — (SIN) MINUS ELSE
(SIN) THEN
CO0S (i nEli =i 2)
(Returns 10@@0 times t
(of n1 degrees.)
360 MOD 94 + SIN
e

\1»32 Ut e Gintaipihiiccis: I 18

D

creen 1

g698
1564
2419
3256
4067
48438
5592
6293
6947
1547
8g94
8572
8988
9336
9613
9816
9945
9998

’
’
’
’
’
’
»
’
y
’
’
’
’
’
’
’
’
’

screen 2

he sine

)

he cosine

)

creen 3

o

288

TURTLE GRAPHICS

)
(/j SIN* (SA IS s

(Returns nl1 times
(n2 degreess.)
SIN 190488 */

COS* (il N2l ==
(Returns nl1 times
(n2 degrees.)

C0S 140088 */
ey
(33 Turtle Graphics

)
§ VARIABLE TO-FLAG
CODE TO (=i
et L
NEXT JMP,
VALUE

TO-FLAG

2 # LDY, W
W)Y LDA,
g # LDA,
BOT LDA,
BOT 1+ LDA,

INY,

==
(34 Turtle Graphics
@ VARIABLE TO-FLAG
st
1 TO-FLAG !
VALUE
<BUILDS @ ,
DOES> TO-FLAG @ IF
@ TO-FLAG !
| ELSE
@ THEN
==
(Turtle Graphics
VOCABULARY CLIPPING
CLIPPING DEFINITIONS

Kl}LUE LEFT

)
TO-FLAG STA,
END-CODE

)Y LDA,
PUSH JMP,
TO-FLAG
2 # LDY,
INY,
POP JMP,

VALUE TOP

\

n3)

the sine of)

n3d)

the cosine of)

I, screen 4a

@ CONSTANT
;CODE
g= IF,
PHA,
ELSE,
STA,
STA,
STA,
THEN,
END-CODE

LDA,

W)Y
W)Y

I, screan 4b)

I, screen 5)

IMMEDIATE

289

FORTH FACTORY

/;;LUE RIGHT VALUE BOTTOM
2 BASE |
CODE {ep ==L
g

OVER TOP < IF
1088 + SWAP DROP ELSE
SWAP BOTTOM > IF
#1848 + THEN
THEN
. OVER LEFT < IF
g@@1 + SWAP DROP ELSE
SWAP RIGHT > IF
#d1@8 + THEN
THEN
= >
(Turtle Graphics I, screen 6
VALUE X1
VALUE Y1
VALUE C1
VALUE X2
VALUE Y2
VALUE C2
VALUE C
CLIP_X tnl ——— 2)
Yi -
X2 X1
Yz Yi -
27 X & -
GLIP_Y ol ——— 2)
X1 - i
Y2 Y1 —
Xz Xl -
s N
=
(37 Turtlie Graphics I, screoon 7
2 BASE |
WHERE? (s —pi)
C APP1 AND IF
LEFT LEFT CLIP_Y ELSE
C @@1@ AND IF
RIGHT RIGHT CLIP_Y ELSE
C #1886 AND IF
\\» BOTTOM CLIP_X BOTTOM ELSE

290

TURTLE GRAPHICS

(C 1008 AND IF)

TOP CLIP_X TOP THEN

THEN
THEN
THEN ;
DECIMAL
: WHERE! (p) .
C C1 = IF

TO Y1 T0 X1 X1 Y! CODE 70 C1 ELSE
TO Y2 TO X2 X2 Y2 CODE TO €62 THEN

==

(38 Turtle Graphics I, scroen 8)
FORTH DEFINITIONS
¢ CLIP (Gipl p2 == pl p2 bt
(or)
R s)
CLIPPING

TO Y2 10 X2 X2 Y2 CODE TO0 C2
=Y T0 X1 X1 Y1 CODE TO0 C1
BEGIN
C1 C2 OR WHILE
C1 C2 AND IF
g ;8 THEN
Cl IE
C:1 10 C ELSE
C2 TO C THEN
WHERE? HERE! REPEAT
‘ X1 Y1 X2 Y2 | .

——>
(39 Turtle Graphics I, screen 9)
GRAPHICS (3=t

(Clears the screen and sets it up)

(for graphics modea n with 4 text)

(window.)

>R SETUP § CLOSE §
SPLIT-SCREEN 8> Bh. :

LINE (p1 p2 ==)

(Displays whatever piece of the)

(Fine ftrom pl tao p2 Is within)

(the clipping window.)

291

FORTH FACTORY

(CL# @ COLOR \

CLIP IF
PLOT DRAWTO THEN
B
(Turtle Graphics II, screen 1
)
DECIMAL
VALUES
<BUILDS @ DO
@ , LOOP
DOES> OVER + +
TO-FLAG @ IF
@ TO-FLAG ! | ELSE
@ THEN
VALUE PREFIX
S SET) 2 TO PREFIX
SHOW-- (===) & T0 PREFIX

ROOT: (=)
<BUILDS SMUDGE |
DOES> PREFIX + @ EXECUTE
@ TO PREFIX
=
(Turtle Graphics II, screen 2

)
4 CONSTANT #TURTLES
VALUE WHICH
(The number of the active turtle)

ACTIVE! (L mi=—=") TO WHICH

.WHICH ()

: Turtle #' WHICH

ACTIVE? (B ==t

.WHICH . is active " CR ;
ROOT: ACTIVE WHICH ACTIVE! ACTIVE?
e
(Turtle Graphics II, screen 3

)

MODE@ (ic===) 87 Ce

MODE? (=)

“ This is graphics mode

MODE@ . CR

TABLE MAX_COL# (A = 2)

30 = 10] 00 39 10 R 0 /

292

TURTLE GRAPHICS

f 115:9. ., 1519 = 319 ‘\\

TABLE MAX_ROW# (nl ——— n2)
B, 10N e, g gl g g
70, 70 e
WHOLE-SCREEN (——— nl n2 n3 n4)

1 MODEe MAX_COL# 1-
1 MODEe MAX_ROW# 1-
b
(44 Turtle Graphics II, screen 4
)

VIEWPORT@ (U=l 23t)
CLIPPING LEFT RIGHT TOP BOTTOM ;
VIEWPORT? (" ===)a . CLIPPING
“ The viewport is from column *
LEFT: e e ton 2GR L eia | umin
RIGHT . . and from row " TOP .
: to row ” BOTTOM . CR
VALUE XMIN VALUE YMIN
VALUE XMAX VALUE YMAX
WINDOWe (===inl n2 n3 nd)

XMIN XMAX YMIN YMAX
WINDOW? (=)
The window is from X=" XMIN

to X=":XMAX . CR . and :from Y=
YMIN . ato: Y="-YMAX ..CRH
—=>
(Turtle Graphics II, screen §
)
VALUE @COL VALUE @ROW
ORIGIN! Elirz= CLIPPING
XMIN MINUS RIGHT LEFT -
XMAX XMIN - */ LEFT + TOD @COL
YMAX MINUS TOP BOTTOM -
YMAX YMIN - =*/ TOP + TO @GROW
VIEWPORT! (ngflom2endind =)
CLIPPING

MODEe@ MAX_ROW# MIN TO BOTTOM
g MAX TO TOP

MODEe@ MAX_COL# MIN TO RIGHT
g MAX TO LEFT

ORIGIN!

&wmnum (wlm2ag wa 22y J

FORTH FACTORY

("TU YMAX TO YMIN TO0 XMAX TO XMIN‘\\

ORIGIN!

D
(Turtle Graphics II, screen 6

)
ROOT: VIEWPORT

VIEWPORT@ VIEWPORT! VIEWPORT?
ROOT: WINDOW

WINDOWe WINDOW! WINDOW?

LEFT- (-—— n

CLIPPING LEFT 1— § MAX

TOP- (——— n)

CLIPPING TOP 1- § MAX ;

RIGHT+ (---'K) CLIPPING

RIGHT 1+ MODEe@ MAX_COL# MIN

BOTTOM: | -~ &) CLIPPING

BOTTOM 1+ MODE@ MAX_ROW# MIN

FRAME (n ———) COLOR
LEFT- TOP- PLOT
RIGHT+ TOP- DRAWTO

RIGHT+ BOTTOM+ DRAWTO
LEFT- BOTTOM+ DRAWTO

CERET— I "TOP- DRAWTO
==
(Turtle Graphics II, screen 7
)
#TUHTLES VALUES PEN()
PEN@ (=== 1EIFaigs) WHICH PEN()
PENDOWN? (=== tlag) PENe :
PENUP? (he=== illnag) PENe 0=
PENI (BTt g
f= @= WHICH TO PEN() ;
PENDOWN () 1 PEN!
PENUP (= s=m=r) g PENI
PEN? (i) .WHICH
has her pen ©* PENe@ IF
down " ELSE
S oup ¢ THEN
CR
ROOT: PEN PENe PEN! PEN?
G

(Turtle Graphics II, screen 8
i U

294

TURTLE GRAPHICS

(

(

(’}URTLES VALUES INK() <‘\

——>

)
#TUHTLES VALUES HEADING()

ROOT: HEADING
HEADINGe HEADING! HEADING?
TURN (0 -—)

HEADINGe + HEADING! :
RIGHT = (n --—) TURN ;

: LEFT (n -=-) MINUS TURN

bl

)
#TURTLES VALUES X ()
#TURTLES VALUES Y()

INKe ===) WHICH INK() :
INK!) WHICH TO0 INK<()
ERASING (=== 3) g INKI!

INK? (=)

.WHICH .v {is wusing ink # INKe . GCR

00T: INK INKe INK! INK?

Turtle Graphles II, screen 9

HEADING@ ==—uin

WHICH HEADING ()

HEADING? (=) .WHICH
." has heading " HEADINGe . CR
HEADING'® (tn —— |

36@ MOD WHICH TO HEADING()
TURNTO (e) HEADING!

Turtle Graphics II, screen 140

Xe@ (== WHICH X ()

Yo i ==rn) WHICH Y ()

X? L =)

.WHICH . [s at X=" Xo& . CR

Y? L=)

WHICH .” iIs at Y=-' Yo . CR :
POSITION@ === nl n2z) Xe Ye
POSITION? ===) .WHICH

iscat.X=" X@ . .° and Y= Yo . CBR

e

295

FORTH FACTORY

7 ™
: X—>C0L G nl === n2) CLIPPING

RIGHT LEFT - XMAX XMIN - */ @COL + ;
Y-=ROW (a1l ——— n2) CLIPPING
TOP BOTTOM — YMAX YMIN - */ BROW +

SCALE { al n2:-~= 13 nd)

SWAP X->COL SWAP Y->ROW

?CONSOLE { = ftbane)

53279 C@ 7 = NOT ;

POSITION! (0l n2 ———

?CONSOLE IF
SP1 CR .” ok QUIT THEN
PENe@ IF
INKe@ COLOR
OVER OVER SCALE POSITIONe SCALE
LINE THEN
WHICH TO Y() WHICH TO X()
=
(Turtle Graphics II, screen 12

)

: GOTO (il n2 ——) POSITION!
ROOT: POSITION

POSITION@ POSITION! POSITION?

X1 (o=) Ne POSTTTONI -
¥ (n ~——) Xe SWAP POSITION!
ROOT: X Xe X! X? ;

ROOT: Y Yo Y! Y?
: MOVETO tnl n2i=——

PENe ROT ROT PENUP POSITION! PEN!

DRAWTO (-0l 12 ==

PEN@ ROT ROT PENDOWN POSITION! PEN!

T Em

(Turtle Graphics II, screen 13
)

VALUE SIZE_N VALUE SIZE_D

: SIZEe (@ == n-|ani2as)
SIZE_N SIZE.D ;
SIZE* (il - 12.) SIZE@ */
SIZE! (enl ong ———)

TO SIZE_D TO0 SIZE_N

\:>SIZE? (-——) : </)

296

TURTLE GRAPHICS

(SIZE_D DUP . 1= LF <‘\

step-is ¢ ELSE
easilceipsiia e =t T HIEIN
" a distance of = SIZE_N.. CR
ROOT: SIZE SIZE@ SIZE! SIZE?
e
(Turtle Graphics II, screen 14
)
VECTOR (SN N e 2
DUP HEADINGe SIN* X@ +
SWAP HEADINGe CO0S* Ye@ +
FORWARD (RuSpEt=
SIZE* VECTOR POSITION!

BACKWARD (m ———) MINUS FORWARD

MOVE (R = Vi)

PENe SWAP PENUP FORWARD PEN!

DRAW (ERnas===it)

PEN@ SWAP PENDOWN FORWARD PEN!
=
(Turtle Graphics II, screen 15

)

PER=PIXEL (=)

CLIPPING >R
RIGHTYT LEET — 2/
DUP MINUS R * SWAP 1+ R *
BOTTOM TOP - 2 /
DUP MINUS R * SWAP 1+ R *
SET WINDOW R> 1 SET SIZE
(Make SURE you typed the >R and R>)
(in this correctly.)
: SCREEN-DEFAULTS (==
WHOLE-SCREEN SET VIEWPORT
188 PER-PIXEL
TABLE GR.BYTES (Lemlsi==t 02)
969 , 490 , 2960 , 2086 , 448 ,
8pg@ , 1668 , 32090 , 6400 ,

CLEAR (=)
88 @ MODEe@ GR.BYTES ERASE
==
(Turtle Graphics II, screen 16

)

\:HOME | (-—-))

297

FORTH FACTORY

’ # @ MOVETO @ TURNTO PENDOWN : ‘\\

START (--- |
“*TURTLES @ DO
I SET ACTIVE HOME
MODE@ 2 MOD IF
I ELSE I @= @- THEN
SET INK LOOP
1 SET ACTIVE
MODE! (n —-——)
GRAPHICS SCREEN-DEFAULTS
1 FRAME START ;
ROOT: MODE MODE@ MODE! MODE? ;

: NEW (i==="0c CIEERR = 1" FRAME = S TART
BYE L ===) @ GRARHICS
g 718 Gt 68 712 C!
e
(Turtle Graphics II, screen 17
)
DEFINE [COMPILE] : ; IMMEDIATE
: AS ; IMMEDIATE
: END [COMPILE] : ; IMMEDIATE
i\ (“ignores rest of Il'lne)
INe@ C/7L / 1+ G/L * IN | ; IMMEDIATE

L

COMPILE # [COMPILE] DO ; IMMEDIATE
) [COMPILE] LOOP ; IMMEDIATE

+) [COMPILE] +LOOP ; IMMEDIATE

& .

298

=

WHY BUY THIS BOOK?

If'you have an ATARI computer, you need two main things:
INFORMATION about using it, and PROGRAMS to learn fron

That’s what ANTIC maga

ams

ATARI is a regis{é&%;ademark of Atari, Inc. ISBN 0-914375-00-8

	Cover

	Contents

	What's in a Name

	Introduction

	Listing Conventions

	Starting Line

	Help for the New User

	Screen Editing

	Oh, Those Bugs
	A Sound Introduction

	Typo

	Education

	Spin Colors with the Spider

	Zachron

	Tuning your Atari

	Candle, Candle, Burning Bright

	Sound and Music
	Some Sound Advice

	Audio while you CLOAD

	Muisc with BASIC

	Ultra Sound

	Tari Talkers

	Communications

	Modems

	Communications Software

	Dialing for Data

	Pronto

	Games in the Public Domain

	Chicken

	Attack on the Death Star

	Speed Demon

	Bats

	Bonus Games

	Tie Fighter

	Tin Pan Alley Cats

	Drop

	Fallout

	Skull Chase

	Crystal Caves

	Features

	Translate

	Display Lists Simplified

	Tiny Text

	Christmas Mailing Lister

	Save the Pieces

	Systems Guide

	Memory Map

	Scrolling

	ANTIC Disassembler and Raster Scan Graphics

	Interrupts

	Haldnling Media and Atari Support

	Assembly Language

	Move-It

	Bubble Sort

	Pilot Your Atari

	Pilot Your Atari

	Large Text

	Colors for your Pilot

	The Musical Pilot

	Holiday Trees

	Forth Factory

	Turtle Graphics

	Glossary of Turtle Commands

