

Tired of rl'~ . lq
The BASIC programs in this book q ~
are available on cassette, tape •
and disk.

* All ten games are yours for only $20.00 * Utilities and the other BASIC programs
are just $15.00

See order form on the other side

r---·
IF YOU OWN AN ATARI®

•• • YOU SHOULD BE
READING

tiC"
The ATARI® Resource Magazine

SAMPLE ISSUE (mailed 1 st class) $3.00

Save Your Valuable Time ••• PLUS
Up to 33% off the Newstand Price

SUBSCRIBEI Subscription order form on the other side

PLEASE SEND ME:
o 10 games from the Best of Antic
o Utilities and other BASIC programs

Shipping/ Handling

6 VI <170 Cali fo rnia Sales tax

Please Print TOTAL

$20 __ _
$15 __ _

$ 1.50

Name

Company Name

Address

or charge my VISA 0 MasterCard O
Acct. # ____________ _

Print name ___________ _

City ______ State_Zip ___ _ Signature _______ Expires __

I enclose payment of $, ____ by check or money order

Fold, then send this order to

THE BEST OF ANTIC
524 Second St.

San Francisco, CA 94107

--~

!~~~d!e ~~I~~g: ~!.!~-
D 1 YEAR FOR $24.00 SAVE 20% CANADA & MEXICO

1 year for$30.00
D 2 YEARS FOR $44.00 SAVE 27% 2 years for $56.00

D 3 YEARS FOR $60.00 SAVE 33% 3yearsfor$78.00

Please print. If information below is incomplete, magazine delivery cannot be guaranteed.

Name _ ______________ _ or charge my VISA 0 MasterCard 0

Company Name ___________ _ Acct. # _________ _ _ _

Address _ _ ____________ _ Print name _________ _

City _______ State _ _ Zip, ___ _ Signature Expires __

I enclose payment of $_ by check or money order,

I own an ATARI A 0 800, 8 0 400, C 0 2600, 0 0 5200, PO 1200XL, Q 0 600XL,
R0 800XL, S0 1400XL, T 0 1450XL, with cassette drive O , disk drive O ,
pri nter 0 , modem 0 , interface 0 , memory

To subscribe by phone, call toll free
FOR CREDIT CARD ONLY
(800) 227-1617 Ext. 133 (outside California)
(800) 772-3545 Ext. 133 (inside California)
Please allow eight weeks for magazine delivery

ArttiC'
524 Second St.
San Francisco, CA 94107

THE BEST OF

VOLUME ONE

AN ANTHOLOGY

Antic Publishing, Inc. 1983

This anthology was compiled by James CappareU,
edited by Robert DeWitt,

and designed and produced by Kim Gale,
with special thanks to the ANTIC Magazine staff.

Cover Illustration: Bud Thon
Inside Illustrations: John Musgrove

Copyright © 1983 by ANTIC Publishing Inc.
All rights reserved . No part of this book may be

reproduced in any form except for
individual entertainment or usage.

ANTIC Publishing Inc.
524 Second St.

San Francisco, CA 94107

ISBN: 0-914375-00-8

Printed in the USA

tIl

TABLE OF CONTENTS
What's in a name?
Introduction Robert De Witt

Listing Conventions
STARTING LINE

Help for the New User James Capparell

Screen Editing Robert DeWitt

Oh, Those Bugs David Plotkin

A Sound Introduction James Capparell

TYPO Bill Wilkinson

EDUCATION
Spin Colors With Spider John & Mary Harrison

Zahrcon Linda Schreiber

Tuning Your Atari Linda Schreiber

Candle, Candle, Burning Bright Linda Schreiber

SOUND AND MUSIC
Some Sound Advice David Plotkin

Audio While You CLOAD John Victor

Music With BASIC Jerry White

UltraSound Thomas Krischan

'Tari Talkers Ken Harms

COMMUNICATIONS
Modems Jon Loveless

Communications Software Jon Loveless

Dialing for Data Robert DeWitt

PRONTO Deborah Bums

GAMES
Chicken Stan Ockers

Attack on the Death Star David Plotkin

Speed Demon John Magdziarz

Bats Stan Ockers

IV

VI

1
4
6
7

10
13
16
20
24
25
29
37
42
48
49
51
55
60
63
68
69
75
80
87
90
91

101
111
117

TABLE OF CONTENTS

BONUS GAMES
Tie Fighter Jimm)' and Tomm)' Sa

Tin Pan Alley Cats Rick Bloom and Rob Glassman

Drop John Zako~(r

Fallout Scott McKissock

Skull Chase Dave Miller

Crystal Caves Thomas Edwards

FEATURES
Translate Jerry White

Display Lists Simplified Allan Moose and Marian Lorenz

Tiny Text Jim Carr

Christmas M ailing Lister Bill Lukeroth

SYSTEMS GUIDE
Memory Map James Capparell

Scrolling James Capparell

ANTIC Disassembler James Capparell

Interrupts James Capparell

ASSEMBLY LANGUAGE
Move It Jerry White

Bubble Sort Adrian Dery

PILOT YOUR ATARI
Pilot Your Atari Ken Harms

Large Text Ken Hanns

Colors for Your Pilot Ken Harms

The Musical Pilot Ken Harms

Holiday Trees Ken Harms

FORTH FACTORY
Turtle Graphics Gordon Smith

124
124
131
141
145
150
155
160
161
165
173
181
196
197
212
217
224
230
231
235
244
245
247
250
254
263
272
273

v

WHAT'S IN A NAME

What's In A Name
Antic

M
any new readers are curious about our name, ANTIC. They
wonder what it h as to do with computing, and especially with the
ATARl. ANTIC is the name of one of the LSI chips designed by

ATARI exclusively for its computers. ANTIC is an acronym formed from the
words "Alpha-Numeric Television Interface Circuit." This chip controls the
video display you see on your TV screen or monitor. ANTIC is a true micro­
processor and has its own instruction set. By handling the screen display it
relieves the Central Processing Unit-the 6502 chip-Df about one-third of
the load it would otherwise carry.

There are three other chips in the ATARI you often hear about . The GTIA
(eTIA in machines manufactured before january, 1981) is the General Televi­
sion Interface Adaptor; it enables Player / Missile graphics and Graphics
Modes 0 through 11. The POKEY chip means "pots and keys." It monitors
input from the keyboard and controls audio functions. The PIA chip is the
controller for joystick ports and peripherals.

Atari

A tari, the name of the company that makes our favorite computer, was
chosen by the founder of that company, Nolan Bushnell. It is now
the second best-recognized product name in the world (next to

"Coke"). Atari is a japanese word, taken from the ancient game of GO.
"Atari" has the approximate meaning of "check" in chess-the player who
declares "atari"is reminding the opponent that territorial loss is imminent if
an effective countermove is not made immediately.

Another japanese word is sometimes heard in Atari circles. The three­
legged Atari logo)1\. is called the "fuji," and the key on the keyboard that
bears the symbol is called the "fuji key." This is because the symbol looks like
Mount Fuji, but the design is not a letter in the japanese alphabet, nor is there
a letter or ideogram called fuji. On the ATARI400 and 800 computers, the fuji
key switches the video display from regular to inverse.

Vl

INTRODUCTION

Introduction
by Robert De Witt

Managing Editor, ANTIC Publishing Inc.

T his book is for people who own or have access to ATARI computers. It
excerpts the best material from the first six issues of ANTIC
magazine, and adds some extra articles, games and other programs

ATARI owners may need and enjoy. We offer it primarily because our supply
of back issues for Volume One of ANTIC is nearly exhausted. ANTIC-The
ATARI Resource has become the largest monthly magazine exclusively serving
the Atari community, and new readers constantly inquire about our early
material. We hope this fills the bill.

If you, like us, own an ATARI, your computer is probably the first one you
have ever owned. Many of us have used a computer in our office or classroom,
and we may have taken courses in computing. Some of us may have studied
programming-perhaps BASIC or COBOL. A few of us may have tinkered
with electronics or even studied computer science, but most of us are rather
new at all this.

Whatever our situations, computing sooner or later presents us with new
terms, concepts, and ways of approaching and solving problems that baffle us .
We struggle to understand, and gradually (or suddenly) the new ideas come
clear. One of the qualities of computing is that it is supremely logical. If your
computer or program doesn't work, some specific thing (or things) is wrong.
Computers are built around the notion of error-free operation precisely to
make it easier to find and fix problems. This frustrates new users because
mistakes are common when you are learning. You don't yet have the exper­
ience of successful, pleasant use of the computer to encourage you, and you
haven't yet absorbed the many pieces of information that will eventually lead
you to quick solutions. You will probably conclude occasionally that your
computer is broken (it seldom is) or that there is a program logic error. The
solution is often simpler.

Our writers and editors have gone through your agonies. At various times
we have connected our equipment incorrectly, scrambled procedures,
misinterpreted instructions, overlooked the obvious, "lost" data and pro-

1

INTRODUCTION
grams, ruined diskettes, and made errors in programming. We have typed in a
listing for hours only to find that the program doesn't work. Occasionally we
have thrown up our hands in disgust. We know what you are going through.

We have also returned with a calmer mind, sought help, reread the in­
structions, persisted, and eventually enjoyed the personal satisfaction and
some of the accomplishments that home computing brings.

Our primary purpose at ANTIC is to help you enjoy ATARI computing
too. ANTIC magazine began as a labor oflove, and although it has grown in­
to a successful publishing business, it is still based on our personal interest in
ATARI computers. Our first issue was dated April, 1982, and appeared just in
time for that year's West Coast Computer Faire in San Francisco. That issue
contained 40 pages and presented eight articles and a few other items. We
printed about 12,000 copies (all we could afford) and stored them in our
publisher's apartment. We sold 400 copies at the Faire, and hawked a few
thousand more to computer stores . We offered the rest as back issues while
they lasted, but the issue was sold out before the year was over.

ANTIC was published bimonthly for the first year, so there are six issues
in Volume One. Issues number one through five are also now sold out. The
last issue in the volume, February-March 1983, h ad 112 pages, 17 articles, and
various other content. By then our circulation was about 60,000. With that
issue we began monthly publication, and as of this writing have passed the
milestone of 100,000 copies sold per issue.

Many ANTIC readers have requested back issues "to complete their set"
or to get some specific article. It is gratifying to know our early efforts are in de­
mand. We have gone back over Volume One and extracted the material we
considered of greatest interest and continuing value. We have added some
new material, useful especially to those who want to program. We have also
added several games previously unpublished.

In spite ofits growth in size and quality, in many ways ANTIC number six
still resembles number one. Every issue featured at least one type-in game,
placed conveniently at the centerfold . The first was Chicken, by Stan Ockers,
a fine game then and now. In this book we repeat Chicken and several other
games from ANTIC Volume One.

We also reprint TYPO, our checksum program by Bill Wilkinson, the
buddah of BASIC. TYPO, which means Type Your Program Once, gives you
a way to locate your entry errors in the BASIC listings that appear in ANTIC
(and this book), and to verify your listings when correct. We st ill use TYPO in

2

INTRODUCTION
every issue of ANTIC and it alone will repay the price of this book in the time
it will save you.

The Memory Map is another valuable resource. When you turn your
ATARI on, the Operating System establishes values in memory that guide
and direct hundreds of functions for your computer. The map tells you where
these are, what they do, and how they work. This information has been gain­
ed by digging it out of the technical documentation for the ATARI 400 and
800 computers. Although it is not comprehensive, we believe it will be helpful.
You should note it may not be valid in all respects for the new XL line,

Most of the programs we reprint will be in BASIC, a few in assembly
language. The programs have been chosen for amusement and usefulness. We
have reviewed them carefully to make sure they work. Each program has been
RUN on our machines (400, 800, 600XL, and 1200XL).We have tried to keep

RAM requirements within 16K. If more, we note it. Our computers were used
to generate the listings, so they should work as published. Technical problems
that appeared in the magazine version have been corrected here. Any new
problems should be reported in writing, attention Technical Assistant, to the
address below. If you want a personal response, include a self-addressed
stamped envelope. We know from experience that most problems are due to
entry errors, so use TYPO and review your work carefully before writing.

The list ings in this book h ave been produced to show you exactly the
same ATARI characters you will see on your video screen in the same place
you will see them. In other words, the listing emulates the screen. This will
help you type correctly and proof your work. The keystrokes needed to pro­
duce some of these characters may not be known to you. The Table of Listing
Conventions that follows provides a chart of these obscure characters and
tells you how to enter them .

If you would prefer not to type in these programs, you can obtain them on
disk or cassette by using the form inthe front of the book, or by sending your
check , money order or credit card authorization to: ANTIC Anthology, 524
Second St. San Francisco, CA 94 107

3

LISTING CONVENTIONS

Listing Conventions
Table Information
Our custom font listings represent each ATASCII character as it appears on
the video screen. You generate some characters by a single keystroke, for ex­
ample, the regular alphabet . Others require a combination or sequence of
keystrokes. In this table, ESC means press and release the escape key before
pressing another key. CTRL or SHIFT means press and hold the control or
shift key while simultaneously pressing the following key.

The Atari logo key ()11.) "toggles" inverse video aplhanumeric and punc­
tuation characters. Press the key once to turn it on; press again to turn it off.
On the 1200XL there is no logo key; inverse video is controlled by a key on the
function row. Decimal values are given for reference, and correspond to the
CHR$ values often used in BASIC listings.

4

LISTING CONVENTIONS

NORMAL VIDEO INVERSE VIDEO

FOR TYPE DECIMAL FOR TYPE DECIMAL
THIS THIS VALUE THIS THIS VALUE

[!] CTRL , 0 C) I~CTRL , 128
[t] CTRL A 1 G Jl\.CTRL A 129
01 CTRL B 2 ~ A\.CTRL B 130
I!l CTRLC 3 g J"CTRL C 131
III CTRL D 4 H)I~CTRL D 132
Ii] CTRL E 5 1:11 A~ CTRL E 133
IZl CTRL F 6 II JkCTRL F 134
lSI CTRL G 7 III A,CTRL G 135
~ CTRL H 8 ~ A\.CTR L H 136
[j] CTRL I 9 II JI~ CTRL I 137
!j!J CTRL J 10 ~ J!\.CTRL J 138
~ CTRL K 11 I,l)\\. CTRL K 139
I!J CTRL L 12 II A\.CTR L L 140
~ CTRL M 13 iii JI\.CTRL M 141
[;) CTRL N 14 I!!I A,CTRL N 142
Ii] CTRLO 15 II)I\.CTRL 0 143
~ CTRL P 16 ~)\\.CTRL P 144
[!] CTRL Q 17 1:1)\\.CTRL Q 145
8 CTRL R 18 1:1)I~CTRL R 146
~ CTRL S 19 D)1\ CTRL S 147
JjJ CTRL T 20 0)\\.CTRL T 148
Ii] CTRL U 21 ~ A,CTRL U 149
[J CTRL V 22 [I)I\.CTRL V 150
~ CTRLW 23 C)I,CTRL W 151
~ CTRL X 24 g JI,CTRL X 152
II] CTRL Y 25 [J A, CTRL Y 153
~ CTRL Z 26 11:1)I\.CTRL Z 154
~ ESC ESC 27 C ESC
c::J ESC CTRL - 28 SHIFT
GJ ESC CTRL 29 DELETE 156
El ESC CTR L -'- 30 C ESC
[J ESC CTRL • 31 SHIFT
~ CTRL . 96 INSERT 157
~ CTRL ; 123 CI ESC
I SHIFT ~ 124 CTRL
~ ESC TAB 158

SHIFT ~ ESC

CLEAR 125 SHIFT
II] ESC DELETE 126 TAB 159
[t] ESC TAB 127 C A\. CTR L 224

~)kCTRL ; 251
0)\,SHIFT ~ 252
Ij;3 ESC CTRL 2 253
[] ESC

CTR L
DEL ETE 254

D ESC
CTRL

INSERT 255

5

§)rPmmwg JLRWcE
•

Help for the New User

As a regular feature in ANTIC we try to provide useful, jargon-free in­
formation for the new user. As time goes by there will be many more
of you opening a silver box to the world of ATARI. We would like to

relieve you of any unnecessary anxiety and help you verify that your equip­
ment is operating correctly.

Can I hurt my machine?
No, there is nothing that you can do from your keyboard in normal

operation that will harm your ATARI. Feel free to press any key in any order.
Experiment, try it, learn by example and by trial and error. One note of warn­
ing, always save a copy of your program on cassette or disk prior to experimen­
ting. This way you'll have a copy to reload should the experiment fail, or
someone kicks the plug out of the socket. Keep food and drink away from your
equipment, and disks and tapes away from magnetic fields and dust or ash.

What does 32K mean?
In computing circles, terms like 16K or 32K are frequently heard.

Numbers with the suffix K are used to refer to the amount of memory
available in your machine. K is a metric abbreviation and refers to the number
1000. The computer world adopted K to mean 1024, the value of two to the
tenth power. So, 32K RAM would mean that 32,768 bytes of memory are
available. Most ATARls come factory equipped with 16K RAM. Both the
ATARI 400 and 800 can be expanded to 48K RAM, or 49,152 characters of in­
formation . Consult your local dealer about memory expansion products.

How can I be sure that all my memory is there?
To verify that your installed memory is being recognized, type the com­

mand PRINT FRE(O), and press [RETURN].

James Capparell is (he publisher and founder of A NTIC - The ATARI Resource.

7

STARTING LINE
With the BASIC cartridge installed you should read:

13326 (if 16K)
29710 (if 32K)
37902 (if 48K)

How many characters will fit on the screen?
A maximum of 40 text characters per line, by 24 lines, can be displayed on

your TV screen by the ATARI. In normal operation only 38 characters are
allowed because of the two-character margin. This can be changed by typing
the command POKE 82,0 (press [RETURN]). This effectively moves the left
margin two characters left, giving you the maximum of 40 characters. Press
[SYSTEM RESET] to restore margins.

How long a line will BASIC accept?
BASIC can receive up to 120 characters per command line (three full

40-character lines). This is also called a "logical line." The normal margin
reduces this to 114 characters. A warning buzzer sounds seven characters from
the end. If you type more than the maximum, the excess characters are
ignored.

Is there an easier or faster method
of entering BASIC?

Yes, use abbreviations wherever possible Oook at Appendix A of your
BASIC Reference Manual). Using abbreviations will save typing time. For
example use N. instead of NEXT or C. instead of COLOR. The BASIC car­
tridge will expand these abbreviations for you automatically. It is also legal to
eliminate spaces wherever possible, once again BASIC will insert spaces for
you. For example, 1l0REM is okay.

What color should my screen be when
I turn on my ATARI?

Your screen should be blue when first turned on. This is one of 128 color
possibilities available. There are 16 colors and eight hues on every 400/ 800.
Look at page 50 of the BASIC Reference Manual for the color-range descrip­
tion.

8

HELP FOR THE NEW USER
What is Memo Pad Mode?

The ATARI will respond with this statement whenever you turn power
on without either a language cartridge installed or the disk-system DOS in­
stalled. You can display characters on the screen with Memo Pad Mode, but
that's about all.

What does screen editing mean?
This refers to the ability to insert and delete characters on the screen by

moving the cursor around and by using several other keys. Press [CTRL] (the
control key) and the up/ down or left / right arrows simultaneously to see this
effect . Errors can be corrected and lines inserted without the necessity of
retyping entire lines. Look at Chapter Three of the BASIC Reference
Manual for more edit features, and see the Screen Editing article in this book
for an exercise.

Why does my screen change colors when
I leave it for a while?

This is called attract mode. If there has been no input from your
keyboard in the previous nine minutes, the colors begin to change on your
television. This occurs to protect the color phosphors of your picture tube.
Just press any key and the colors will return to normal for at least nine
minutes more.

How can I be sure my equipment
is operating properly?

Modern electronic equipment is extremely reliable. In almost all cases
your computer either will fail in the first 50 hours of use, or continue
operating for the next five years. Whenever you power-on your computer
with the BASIC cartridge installed, the friendly message READY should ap­
pear in the upper-left corner of the screen. Almost always computer failure
will be total. It will either run properly or it won't run at all. If you should
develop trouble, read the instructions and recheck your power and connec­
tors. Begin to eliminate probable causes one by one. Be methodical! If your
cassette doesn't work, try it on your friend's computer. Try to isolate the pro-

9

STARTING LINE
blem. You can save yourself unneeded trips to the repair center by thinking
through the problem, trying and retrying. These techniques work for profes­
sionals and they1l work for you.

by James Capparell

Screen Editing

As an ATARI owner, you will benefit from having its built-in "screen
editor," one of the best available in the micro market. What's a screen
editor? It's the built-in program that allows you to change words and

letters after they have been keyed onto your display screen .
As you begin to program with your ATARI, you will come to appreciate

this powerful tool. At first, though, it may seem strange to you, and you will
make mistakes until you learn how it works.

The most important thing to do, in this or any other computer function,
is to read the instructions. These are in your Operators Manual, and in the
BASIC Reference Manual, under "Screen Editing" and "Editing." Read these,
do the exercises, and experiment. Be bold. You cannot damage your computer
by making keyboard errors.

Ground Zero
Connect your computer as instructed, insert the BASIC cartridge, and

power-up. On a colOr television you will see a blue screen with black borders,
the word READY, and the white cursor beneath the "R". Remember, this is
not an exercise in BASIC, but in screen editing. The BASIC program used is
just an example.

This blue screen is BASIC Graphics Mode 0, designed to display text .
This mode divides the screen into 40 character positions across the screen and

Robert DeWitt is a journalist from San Francisco who began writing about computers in 1980 based
on swdies at (Antrol Data lnstiwte. He bought an ATARI as an apparent "best-buy" tool for his writing,

and gravitated to the fledgling ANTIC through the local LlSer group . He gradually assumed more of the
editorial functions of the magazine, becoming Managing Editor in November, 1982.

10

SCREEN EDITING
24 lines down, i.e., a 40x24 grid yielding 960 ch aracter positions. Each posi­
tion on the screen is the size of the cursor, and can be identified by its column
and row number, beginning with 0,0 in the upper left corner and ending with
40,24 at the lower right. The first number, 40, indicates the column and the
second number, 24, is the line number.

The content of each of the 960 positions is controlled by the Editor pro­
gram, built into the ATARI Operating System. It takes one byte of memory to
code the contents of each position. For the ATARI computers, this code is call­
ed the ATASCII code. You will find it in Appendix C of your Atari BASIC
Reference Manual.

The important thing to know is that you can determine and change the
content of these screen positions by using your keyboard. Editing deals mostly
with changing and erasing the display.

You should now be running Atari BASIC and have the READY prompt
on the screen. T ype in the following program, beginning at" 10 REM ... " and
be sure to include the misspelling of "capabilities." [RET) means press Return
key. Begin!

10 REM * SCREEN EDITOR EXAMPLE * [RET)
20 PRINT "THIS IS AN EXAMPLE OF ATARI
SCREEN EDITING CAPABILTIES" [RET)
RUN

Notice that as you typed line 20, the line "broke" between ATARI and
SCREEN. This is an example of the "logical line" continuing over two
"physical" lines. This phenomenon is called "wraparound." A logical line can
be as long as three physical screen lines. The computer will "beep" when you
are close to the logical line limit.

After the run, you should see on the screen:

THIS IS AN EXAMPLE OF SCREEN EDI
TING CAPABIL TIES

READY

Now we wi ll edit this material. Generally speaking, we edit by moving the
cursor to the character position we wish to change and then changing the
character. The cursor rests at the left margin below the R in READY. Find the
Delete Back Space key (upper right corner), which we will represent as [DEL),
and press it. The cursor does not move.

How can we move the cursor? Find the [CTRL) key. Press it down and

11

STARTING LINE
hold it there. Find the "up" arrow key and press it three times. Release the
[CTRL). The cursor will move up three lines and be superimposed over the T
in TING. Notice that the T appears dark blue within the field of the cursor.
This condition is called "inverse video ."

Press the space bar four times. The cursor moves across the letters of
TING, erasing them as it passes.

To the right of the cursor is the word CAP ABIL TIES. Next, correct the
spelling. Press and hold [CTRL), and press the right-pointing arrow key until
the cursor is superimposed on the T. We want to insert the letter 1. Holding the
[CTRL), press the Insert key (top row, third from right).

Voila! A space opens between the L and the T. Release [CTRL) and type
in the letter 1. The cursor now rests over the letter T. To exit from the word
without changing it further, press and hold [CTRL), and press the left­
pointing arrow until you have backed out of the word. Release [CTRL).

Up and Over
Here is a surprise for you. Press [DEL) six times. This will be enough to

make the cursor back up to the line above. This is due to wraparound. It
would not be possible between logical lines without using the [CTRL).

We can now repair the damage done to the word EDITING by typing it
again. When the cursor again rests between EDITING and CAPABILITIES,
press and hold the [CTRL), press the down-arrow key three times, release
[CTRL) and finally, press [RETURN).

Let's see if we have corrected the misspelling. Type LIST and press [RET).
This command rewrites the corrected program. You should have lines 10 and
20 come up, and the error is still there! That's because the correction was made
to the "run," and not the program. This time we will fix it for good. Press and
hold [CTRL). Press the up arrow three times till the cursor is over the S in
SCREEN. Press the right-pointing arrow key till the cursor is over the T in
CAPABILITIES. Still holding [CTRL), press the Insert key. Pop! Release
[CTRL], then [RET]. Type RUN and press [RET]. A new line should appear
on the screen. Read your correction. WHAT! The error is still there?

That's right. This is the trickiest part of screen edit ing in BASIC.
Remember , changes to the screen do not necessar ily change the stored pro­
gram. Changes within lines (deferred mode) are made permanent by pressing
the return key [RET] before you leave the logical numbered line on which the
change was made.

12

OH, THOSE BUGS
Let's do it right this time. Hold [CTRL]. Move the cursor up until it is over

the S in SCREEN. Hold the [CTRL] and press the right-arrow until the cur­
sor is over our "I" (yes, it's still there is screen memory, but not in program
memory). Release [CTRL]. This time, press [RET]. The cursor jumps down to
the beginning of the next line, above the READY. T ype RUN and [RET].

Aha! This time the change has been made in the program. Failure to use
the screen editor correctly can cause you no end of grief. The main thing to
remember is that all corrections to program (numbered lines) must be con­
firmed by pressing [RETURN] before moving the cursor from the corrected
line.

by Robert DeWitt

Oh, Those Bugs

A ft er the publication of "Chicken" and "Attack on the Death Star" in
ANTIC we received many calls from puzzled readers who were
unable to m ake the programs run. Since both listings were correct,

we know many of you need help finding errors. This article will give some
elementary guidance in debugging BASIC programs. Also see and use TYPO,
in this book, to help you find entry errors.

The most important advice we can give is: never attempt to RUN a pro­
gram prior to saving a copy on disk or tape. Should your newly typed program
contain a fatal error it may possibly cause the computer to fail to respond to
the keyboard. This forces you to turn the power off and then on again in order
to reset, erasing computer memory and your program.

We assume you 've corrected your normal typing errors, those which
generate an error message when you press [RETURN] after a line. The re­
maining errors are more subtle and are not reported until the computer tries
to execute the program.

Such things as NEXT with no FOR, or a RETURN with no GOSUB, are
generall y the result of a missing line. Tracing back through the program to the
line where the command should be is fairly straightforward. More difficult are
the errors which are not actually in the line the computer indicates . You have

13

STARTING LINE
to know where else to look for the error. Most notorious of these are errors
which result from mistyping a DATA statement.

Most errors in typed computer programs stem from DATA
statements. There are logical reasons for this. Human beings are not very
good at duplicating long strings of numbers or letters separated by commas .
Numbers get transposed or dropped, commas get left out, or periods are
substituted for them. Secondly, the computer does not check DATA state­
ments during input . You can put anything in a DATA statement and the com­
puter won't protest - unt il you try to RUN the program.

A surprising variety of errors can be traced to DATA statements. There is,
of course, "Out of Data" (Error 6), but often the following errors are due to

DATA errors:
1. Value Error (outside a specified range ; Error 3)
2. String length error (Error 5)
3. Number greater th an 32767 (Error 7)
4. Input statement error (Error 8)
5. Cursor out of range (Error 141)

It is true that these error messages can also be caused by other mistakes
besides DATA statements. Out of Data and C ursor O ut of Range can be caus­
ed by an error in the parameters of a FOR-NEXT loop. Often there will be a
series of FOR-NEXT loops in a program, and an error in typing the
parameters of one FOR-NEXT loop won't be detected until one of the follow­
ing loops is executed . A String Length error may be the result of mistyping the
DIM statement . In general, this is not detected until you try to define or use a
portion of the string past the dimensioned length.

Knowing that such a wide range of errors can indicate a mistyped DATA
st atement is half the battle. Finding out which DATA statement can be dif­
fi cult because the computer reports the error as occurring in the line contain­
ing the READ statement . Thus, ifline 10 says (in part), "READ X, Y: PLOT
X, Y"followed by lines of DATA statements, any data error will be reported-as
occuring in line 10, even though line 10 is typed in perfectly! The problem of
finding the erroneous DATA statement is somewhat simplified if each READ
statement is followed by its DATA statements.

There are other ways to isolate the problems. One way is to check the line
where the error is reported and ask the computer to print the value of the
READ variable. Often the READ statement is executed in a FOR-NEXT
loop, and you can ask the computer to print the value of the loop variable. For
example, let's look at the following BASIC program:

14

OH, THOSE BUGS
10 DIM A$ (10)
20 FOR N = 1 to 10: READ Q: A$ (N ,N) =Q: NEXT N
30 DATA 0, 1, 2, 3,4,5,6,7,8, 9
40 FOR M=l TO 5: READ X, Y, Z: PLOT X, Y:

POKE 256+M, Z: NEXT M
50 DATA 10, 20, 24, 30, 40, 24, 50,60, 24, 70 , 80, 24,

90, 100, 25
Suppose you accidentally typed A$(5) instead of A$ (10) in line 10. You'll

get the error message "ERROR 5 on Line 20': This is an example of a
"misleading" error message. Next, suppose you made "8, 9" into "8.9" in line
30, by substituting a period for a comma. You 'll get the message "ERROR 6 on
line 40". Line 40? What's going on here? When line 20 is trying to READ Q 10
times (N = 1 to 10), it runs out of data on line 30 because 8.9 is one data item,
while 8, 9 is two . The computer gets the first data item on line 50. When line 40
executes, it starts reading at the second data item on line 50 and, consequent­
ly, runs out of data.

The fir st thing to do is type (i n direct mode) PRINT M. The computer
responds with 5. You can tell that line 40 did not finish executing, because ifit
h ad , the computer would respond with 6 - one more than the loop limits.
Counting off the data items in line 50 reveals that the last va lues of X, Y, and Z
should be 90, 100, and 25 respectively. Typing in PRINT X, Y, Z causes the
computer to respond with 100,25, and 90. Everything is offby one data item ,
but line 50 is typed in perfectly. Now go back to the READ statement executed
on line 20 and type in PRINT Q. The computer responds with the last value of
Q, which is 10. That's right, so you look at line 30 to find your error.

Leaving out comm as is an easy way to get Cursor Out of Range, Value
Error , and Input Statement Error. Leaving out the comma between 10 and 20
on line 50 would cause the computer to try to plot 1020, 24 - a non-existent
position off the screen. Leaving out the comm a between 24 and 30 would
cause the computer to try to POKE the number 2430 into memory. Since 255
is the largest number a memory location can co ntain, this will also generate an
error.

Finally, make sure that after you have made corrections and deletions to
your program that you press [System Reset}. Sometimes errors cause cr itical
memory locat ions to ch ange in such a way th at even error-free programs can­
not run. Prior to every test run, press [System Reset]. Of course once your pro­
gram runs correctly this is not necessary.

by David Plotkin

15

STARTING LINE

() \
A Sound Introduction

Many new users have not realized the tremendous potential for
music and sound hidden in their ATARI computers . After all, a
computer that can produce phaser noise or let you hear Indianapolis

cars racing down the straight-away, by altering a few simple commands,
should be capable of more.

The following applies to both the 400 and 800 and is completely memory
independent.

Sound on the ATARI is really made possible by the same technology that
brought you hand-held calculators. I'm talking about the integrated circuit. In
this case a special integrated circuit was designed and named POKEY (pots
and Keys). Every ATARI built has this special chip and therefore can play
music and generate interesting sounds .

You might think of POKEY as a barber shop quartet, since there are four
voices available. Each voice can be turned up loud, or so low it can barely be
heard. Each barber (voice) can "sing," or sound, 255 different notes or pitches.
Some of these are so similar your ear can't distinguish the differences. Among
them are several that correspond to the musical scale (see Table 1). Each voice
can be made to sound a pure tone - as if you were to whistle the note - or
distort the tone. Distortion is one way of taking a familiar note and making it
sound like a growl, hiss or rumble.

TABLE 1

E 193
F 182
G 162
A 144
B 128

C 121 Middle C
D 108
E 96
F 91

Let's put this in the context of the standard ATARI BASIC statements.
SOUND A,B,C,D is the general command format to generate sound,

where:
A = Voice, one of the four barbers . A can equal any value from zero to

three.

16

A SOUND INTRODUCTION
B =Pitch or note . This can equal any number from one to 255. The higher

the value the lower the note .
C =Distortion. Any even number from zero to 14. Ten gives the purest

tone with least distortion.
D = Volume. Any number from one to 15 is legal. A zero turns sound off.
That seems pretty easy, and so it is. Try this. SOUND 0,121,10,8

[RETURN]. This will cause the first barber (his number is zero) to sing middle
C with as little distortion as possible. Now vary the volume; try a four and
then a 14. Eight is a good volume value when more than one barber is singing.
Experiment with distortion; change the 10 to a four, then a 14. Restore the
sound statement as it is above. Now, add a second barber.

SOUND 1,72,10,8 This voice sings the note A above C.
SOUND 2,45,10,8 This voice sings the note F.
SOUND 3,193,10,8 This sings E below middle C.

Turn off each barber's voice by making the corresponding volume zero.
To turn off all voices, type END.
The legal abbreviation for the SOUND command is SO.; try it and save

typing.
The following sounds should be experimented with. They are presented

to get the wheels turning. I'm sure you can all do much better.

Our first sound is an explosion. Change the value ofDUR in line 30. Experi­
ment with volume changes in line 90.

10 REM EXPLOSION
20 REM OUR-LENGTH OF EFFECT.l-l0
30 DUR-6
40 PITCH-20:GOSUB 80
50 SOUND 1.0.0.0:S0UND 2.0.0.0
60 GOTO 30
70 REM *** SUBROUTINE ***
80 SOUND 2.75,8,15
90ICR-0.79+DUR/100
100 Vl-15:V3-15:REM VOLUME
110 SOUND 0,PITCH,8,Vl
120 SOUND 2,PITCH+20,8.V2

17

STARTING LINE

138 SOUND 2.PITCH+58 .8.V3
148 Vl-V1*ICR
15~ V2-V2*(ICR+9.85)
168 V3-V3*(ICR+9.88)
178 IF V3>1 THEN 118
188 SOUND 8.8.8.8:RETURN

Sound number two is a familiar siren. Change the OUR value in line 30. Try
varying the step size in line 60.

18 REM SIREN
28 REM OUR -TI ME IN SECONDS
38 DUR-lS
48 LO - 58:HI - 35:STP - -l
58 FOR TIME -l TO OUR
68 FOR PITCH - LO TO HI STEP STP
78 SOUND 8.PITCH.18.14
88 FOR WAIT-l TO 15:NEXT WAIT
98 NEXT PITCH
188 XX - LO:LO-HI:HI -XX:STP--STP
118 NEXT TIME
128 SOUND 8.8.8 .8 :GOTO 39

Sound number three is a European variation of the siren. Run it, you'll hear
the difference. Experiment with the LO and HI values in line 40.

18 REM EUROPEAN SIREN
28 REM OUR - SECONDS RUN
38 DUR-5
48 LO-57:HI - 45:PITCH-HI
59 FOR TIME - 8 TO DUR*2
68 SOUND 0.PITCH.18.14
78 FOR WAIT -l TO 188:NEXT WAIT
89 PITCH - LO:LO - HI:HI -PITCH
99 NEXT TIME
189 SOUND 8.9.9.9:GOTO 39

Sound four is the whistle and explosion of a falling bomb. Try to determine
what makes the whistle sound and what part of the program makes the explo­
sion sound.

18

A SOUND INTRODUCTION

19 REM WHIS TLE & BOMB
29 REM DUR=LENGTH OF EFFECT
3B DUR=5
49 Vl =4:FOR PITCH-39 TO 75
59 SOUND 9,PITCH,19,Vl
69 SOUND l,PITCH+3,19,Vl*9.7
79 FOR WAIT - l TO DUR*3:NEXT WAIT
89 Vl=Vl * l .93:NEXT PITCH
99 SOUND 2,35,8,12
199 Vl=15:V2 - 15:V3 - 15
119 PITCH-DUR+5:ICR - 9.79+DUR/199
129 SOUND 0,PITCH,8,Vl
130 SOUND 1 , PITCH+29,8,V2
140 SOUND 2 , PITCH+59,8,V3
150 Vl =Vl*ICR
160 V2 =V2*(ICR+9.05)
179 V3 =V3*(ICR+9.08)
189 IF V3>1 THEN 129
190 SOUND 0 , 9,9,0 : SOUND 1,1f,1f,1f
291f SOUND 2,1f,9,If:GOTO 31f

Sawing wood is sound fi ve. Try ch an ging the pitch and volume. A lso
eliminate the wait in line 180.

21f REM SAWING WOOD
31f REM OUR - SECONDS RUN
4B DUR-8
59 FOR TIME - l TO OUR
69 ST=6:VL=12:GOSUB 99
79 ST=8:VL=8 : GOSUB 91f
89 NEXT TIME:RETURN
90 FOR PITCH =ST+5 TO ST STEP -1
llf9 GOSUB 169:NEXT PITCH
119 FOR PITCH - ST TO ST+5
121f GOSUB 171f:NEXT PITCH
139 SOUND 1f,1f,1f,9:S0UND 1,9,1f,1f
149 FOR WAIT - l TO 25:NEXT WAIT
151f GOTO 41f
169 SOUND 0,PITCH,2,VL
171f SOUND 1,PITCH,8,VL*If.7
181f WAIT=(WAIT/5)*5:RETURN

19

STARTING LINE
There are many opportunities for the experimenter to use the sound com­
mand. Perhaps a program using the joystick to vary pitch or distortion would
make your experimentation easier. Random notes and harmonies can be very
interesting. Look up and use the RANDOM command in your BASIC
Reference Manual. If you should write something interesting, let us know.
ANTIC is always looking for new, interesting and helpful material.

by Jim Capparell

TYPO
Type Your Program Once

TYPO is designed to help you find typing errors made when entering
BASIC programs published in ANTIC. When used properly, TYPO
will produce a table of values which can be used to pinpoint where an

error was made. ANTIC will publish a table with every BASIC listing, and
the user may compare the two tables to ensure they are identical. If they are
not, then the user presumably made a "typo" which needs to be corrected.

How To Use TYPO
1. Enter program listing Exactly as shown.
2. LIST this program to disk (LIST "D:TYPO.LIS") or cassette (via LIST

"C:"). When using a cassette, use an entire blank cassette for just this
program.

3. Type NEW to clear memory.
4. Type in a program from this book, or ANTIC magazine.
5. LIST this program to the disk (LIST "D:NAME") or cassette (LIST "C:).

Type NEW and reenter the program (ENTER "D: NAME" or ENTER
"Ci").

Bill Wilkinson is the president and founder of Optimized Systems Software, Inc., of Cupertino,
California. He helped design the original Atari BASIC and has developed several other computer
languages including Basic A + and the new language , Action.Bill's work has been published in a
number of publications including ANTIC. His checksum program, TYPO, is continuously used in
ANTIC to help ATARI users verify their BASIC programs after typing them in.

20

TYPO
6. Append the TYPO program onto the end of the program from the disk

(ENTER "D:TYPO.LIS") or cassette (ENTER "C").
7 . Type GOTO 32000 and a checksum table will be printed on your screen.

Compare this table with the one published; if they agree you are finished
and the program should run.

8. Note the value of the "variable checksum" printed on the screen, and
keep it handy.

9. If the table does not agree with the published table, examine the lines
which have codes and / or lengths which disagree. Correct any errors.

10. If and only if the var iable checksum you noted agrees with that printed
with the program, go to step 7 above and try again.

11. If the variable checksums do NOT agree, you MUST go to step 5 above
and perform the listing and reentering ritual! You may skip step 6,
however, since presumably you have the combined programs now
LISTed together.
Follow these instructio ns exactly!

What TYPO Is Telling You
THIS PROGRAM IS FUSSY! It cares about every little period, comma, and
even spaces. It also cares about the order in which you typed in program lines!
The order in which the variable names are stored depends upon the order the
lines were typed. Should th is order be altered the values of the tokens and the
subsequent checksums will be altered.

The "variable checksum" is used to correct for some of this by producing
an (almost) unique checksum which depends on the order in which the
variables are stored. If your checksum doesn't agree, you have either entered
lines in the wrong order or misspelled a variable name. In either case, you
must correct your error(s) and then go through the LIST / NEW /ENTER
sequence to assure that the variables are put back in order.

The length shown is the number of bytes encountered by TYPO within
the line number range shown. The two-letter code is essentially a checksum of
"length" bytes with in that same range. If the length is correct and the
checksum is off, you have made a spelling or punctuation error. Watch out:
since all keywords and operators (including two-character operators such as
"=") are tokenized as one byte, the length might stay the same even though
you type SET COLOR for CLR. Note!! You may use abbreviations for
keywords as long as the LISTed result conforms to the published listing.

21

STARTING LINE
If the length bytes disagree, you have added or deleted characters. If

nothing obvious shows, pay special attention to characters in quoted strings
and / or REMark statements. It is easy to omit a space or punctuation in a
REMark, thinking that "REMarks don't matter"; but to TYPO they do.

This is a small but sophisticated program,use it and typing errors will be
reduced.

by Bill Wilkinson

NOTE: TYPO asks for output file. Respond with S for television or
P for printer.

32988 REM Type Your Program Once -- "T
YPO"
32199 CLR :DIM Q$(29) :QF=7:CLOSE #QF:?
"File for output ";

32119 INPUT Q$:OPEN #QF.12.9.Q$:QREM-9
32139 QCNT-1 :FOR QADDR-PEEK(139)+256 r p
EEK(131) TO PEEK(132)+256*PEEK(133)-1
32149 QSUM-QSUM+PEEK(QADDR)*QCNT:QCNT­
QCNT+1: NEXT QADDR
32159 ? #QF:"Variable checksum - ";QSU
M:? #QF
32169 QADDR-PEEK(136)+256*PEEK(137):?
#QF;" Line num range Code Length

32179 QLINE-PEEK(QADDR)+256*PEEK(QADDR
+ 1)
32189 IF QLINE>-32999 THEN END
32199 QLEN-9:QSUM-QLEN:QCNT-QLEN:? #QF
;" ";QLINE."- ";
32299 IF NOT (QCNT<12 AND QLEN<599 AN
o QLINE<32999) THEN 32279
32229 QLEN-QLEN+PEEK(QADDR+2) :QCNT-QCN
T+1
32239 IF PEEK(QADDR+4)-9 AND QREM THEN

QADDR-QADDR+PEEK(QADDR+2) :GOTO 32269
32249 FOR QADDR-QADDR TO QADDR+PEEK(QA
DDR+2)-1
32259 QSUM-QSUM+PEEK(QADDR) :NEXT QADDR
32269 Q$=STR$(QLINE) :QLINE=PEEK(QADDR)
+256*PEEK(QADDR+1) :GOTO 32299
32279 QSUM-QSUM-676*INT(QSUM/676) :QCNT

22

TYPO

- INT(QSUM/26)
32289 ? #QF:Q$,CHR$(65+QCNT) ;CHR$(65+Q
SUM-26*QCNT):" ":QlEN
32299 GOTO 32189

TYPO TABLE

Variable checksum -
line num range
32999 - 32299
32229 - 32299

59796
Code

PT
WQ

length
51 8
319

This TYPO Table is the result of using TYPO to check itself. To do this you must
change lines 32180 and 32200 fi rst . In those lines change 32000 to 32500. Then type
GOTO 32000 or RUN . Either of these commands will initiate TYPO, ask you to
designate your output file (S for screen , P for printer), and then produce a table for
itself. This, your first TYPO Table, should match the one above. If it does not, ex­
amine your program for typing errors and repeat the process until you get it right .

23

Spin Colors With The Spider

Since our new ATARI 800 has the G TIA chip, we h ave been experimen­
t ing with it. Spider is a li ttle BASIC program th at lets you doodle
colors with your joystick.

Mode 11 is our choice for this program because it gives 16 different colors
in a high -resolut ion mode (80 pixels horizon tally by 192 vertically). When you
run the program, a white "spider" appears. The fi re button ch anges the
spider 's color. As you move the joystick the spider leaves a trail of its color.
When the spider is white it can be positioned without leaving a line (it actually
draws in background color).

To start a new design , press [RESET] and type RU N .
by John and Mary Harrison

John and Mary Harrison are parents, teachers , and ATA RI hobbyists. Mary teaches math and com­
puter science a t the high school level. John holds an M.S. degree in compL£ter science and develops educa­
tional software. T hey live in Newport News , VA, and are Contributing Editors to ANTIC's Education
Department .

19 REM ••• * • •• * SPYDER ********
29 REM BY JOHN AND MARY HARRISON
49 REM FOR ANTIC JUNE 1982
69 DIM SPIDERS(l) ,SSPIDERS(8) ,ERASES(l
9)
79 REM
89 REM
99 MEMT
199 POKE 196,MEMTOP
119 REM CLEAR MEMORY FOR PLAYER
129 POKE 88,9:FOR I =9 TO 4:POKE 89,MEM

25

EDUCATION

TOP +8+1:? CHR$(125) :NEXT I
139 GRAPHICS 7+16
149 MEMTOP =MEMTOP +8
159 REM START OF PLAYER MEMORY
169 POKE &4279.MEMTOP
179 REM DECIMAL ADDRESS OF PLAYER MEMO
Ill]
189 PMBASE =256*MEMTOP
199 REM SINGLE LINE PLAYER DOUBLE WIDT
III
299 POKE ~59.46:POKE 53256.1
219 REM ENABLE PM GRAPHICS
229 POKE 53277.3
239 REM INITIAL PLAYER POSITION
249 XSPIDER =119
259 YSPIDER =48
269 REM CLEAR STRING FOR VERITCAL MOVE
BIi
279 ERASE$ =
289 REM POSITION PLAYER
299 POKE 53248.XSPIDER
399 REM DRAW PLAYER
319 FOR I =PMBASE +511 +YSPIDER TO PMBASE
+518 +YSPIDER
329 READ OAT
339 POKE I.DAT
349 NEXT I
359 DATA 36.36.~9.69.69.99.36.36

·369 REM
379 REM
389 REM
399 REM
499 REM

ADDRESS OF ARRAY AND VARIABLE
TABLES. THIS SECTION OF CODE
ALLOWS YOU TO USE 128 BYTES
FOR SPIDERS WITHOUT RESERVING
THAT MUCH MEMORY IN THE DIM.

419 ATAB =PEEK(149) +256*PEEK(141)
429 VTAB =PEEK(134) +256*PEEK(135)
439 OFFSET =256*MEMTOP +512 - ATAB
449 M3 =INT(OFFSET/256)
459 M2 =OFFSET - 256*M3
469 POKE VTAB +2.M2:POKE VTAB +3.M3
479 POKE VTAB +4.128:POKE VTAB +5.9
489 POKE VTAB +6.128:POKE VTAB +7.9
4 9 9 REM ",.,,"A,II:'I'I"'I'j_"'I"jl
599 SSPIDER (1.8) =SPIDERS(YSPIDER.YSPI

26

SPIN COLORS

DER +7)
519 REM
529 ~EM
539 C=9 : LINE =35
549 SETCOLOR 4.9.9:PDKE 794.8
542 SETCDLOR 9.3.8 : SETCOLOR 1.6.8
544 SETCOLOR 2.9.8
559 GOSU8 889
569 COLOR C
579 PLOT XLINE.YLINE
589 REM CHANGE COLOR ROUTINE
599 IF STRIG(9) =1 THEN 669
699 C=C+l
619 IF C>3 THEN C=O
629 COLOR C:POKE 794.C*48 +8
630 FOR DEL = 1 TO 20,: N E Xl DEL
649 REM I I
650 RtM I#!I~ :
660 st =S
670 IF ST =15 THEN 599
689 If ST =6 OR ST =19 OR ST =14 THEN YSP
IDER =YSPIDER - 1 :YLINE =YLINE - 1
599 I ~ ST >4 AND ST<8 THEN XSPIDER =XSPI
DER + 1 ~ XLINE = XLINE + l
790 IF ST =5 OR ST =13 OR ST =9 THEN YSPI
DER =YSPIDER +l : YLINE =YLINE +1
719 IF ST >8 AND ST<12 THEN XSPIDER =XSP
IDER - 1:XLINE =XLINE - l
72 9 REM lIVOt'.II"IO,II_" •• ';"'i'
739 SPIDER$(YSPIDER.YSPIDER +7) =SSPIDER
$
740 SPIDER$(YSPIDER - 8.YSPIDER - 1) =ERASE
$
750 SPIDE R$(YSPIDER +8.YSPIDER +15) =ERAS
E$
769 REM CHECK FOR CURSOR OUT OF RANGE
779 IF XSPIDER <41 THEN XSPIDER =41:XLIN
E=XLIN E+ l
780 IF XSPIDER >199 THEN XSPIDER =199:XL
INE =XLINE - l
790 IF YSPIDER <14 THEN YSPIDER =14:YLIN
E=YLINE +l
800 IF YSPIDER >108 THEN YSPIDER =108:Yl

27

EDUCATION

INE =YLINE - 1
819 REM HORIZONTAL MOTION OF PLAYER
820 POKE 53248.XSPI0ER
830 REM DRAW SPIDER TRAIL
840 ORAWTO XLINE.YLINE
850 GOTO 590
860 REM
870 REM
880 COLO
890 PLOT O.O:ORAWTO 0.95:0RAWTO 159.95
:ORAWTO 159.0:0RAWTO O.O:RETURN

TYPO TABLE

Variable checksum = 726158
Line num range Code L englh
19 - 140 OS 373 ..
1 50 - 260 AV 318 ~
270 - 380 WM 258 •
390 - 599 NU 395 '
519 - 600 UB 325 •
619 - 720 lR 458
730 - 840 KV 361 •
850 - 890 JD 1 84 •

28

ZAHRCON

Zahrcon

Z
ahrcon is a modification of the familiar game of Hang-Man. This art i­
cle shows you how to write it in BASIC with your ATARI computer.
The game of Hang-Man has been written for every computer on the

market today, but as an educational game it has a major fl aw. It rewards the
player (child) for failing to guess the word. The kids like to see the little "man"
get "hung," especially when the computer enhances this outcome with a
special graphics display and noises.

When developing educational games for children, we should save the
positive reinforcement for correct behavior. There should not be a reward for
wrong answers, especially when deliberate. Zahrcon attempts to improve on
Hang-Man by rewarding the player for guessing correctly the letters compris­
ing the secret word generated by the computer. Each proper letter helps build
an animated "creature," accompanied by special graphics and sound.

Since Zahrcon is designed for children, some as young as five or six, the
letters displayed on the screen should be large and clear. Only one word needs
to be displayed at any time, so Graphics Mode 2 is a good choice. Upper case
letters with numbers and symbols will be better than lower case, and we will
need to redefine some of the symbols into graphics characters that will build
the creature.

To redefine a character set, we must decide which characters will not be
needed in the program. We must also create our new characters to replace the
old ones. Each letter, character, or symbol that is on the screen is made up of
eight bytes. Since each byte is eight bits, a character occupies an 8 x8 matrix. If
a bit is "on" (set to" 1 "), the corresponding pixel will be lit on the screen. Next,
we must calculate the place in the character set where we will be putting our
new characters. Figure 1 illustrates how the character set is placed in ROM.

To change the character set, we must first move the character set from

Linda Schreiber, from Garden C it)" Michigan, is President and co-owner of T.HES.I.S., a com ­
pany specializing in educational software for microcomputers including the ATARI. Her jJrograms have
appeared in many pLtblications, and she has written two boob aboLtt ATARI programming, both
available from TAB Books.

29

EDUCATION
ROM into RAM, then replace the old characters with the new ones. In this
program, we will replace the character set from the quotation mark to the
period. To calculate the RAM location of the first character that will be
changed, we multiply its position in the character set by eight. The space,
which occupies the first eight bytes, is counted as the zero position. The ex­
clamation point is the first position, etc. The quotation marks begin with the
sixteenth byte of the character set. This is where our new characters will
begin. Figure 2 shows the old character set and the new character set that will
replace it.

Once we have redefined our characters, we can begin our program. Our
menu will offer two choices: to play the game or to end it. By moving the
joystick forward and backward, we can move the arrow up or down on the
screen. Press the red button on the joystick when the choice has been made.

While the player is deciding whether or not to play, our creature displays
some life. The winking and blinking is obtained by changing the character
that is used for the creature's eyes. The character that replaces the apostrophe
is used for both eyes, the quotation mark has been replaced with the left eye,
the slash is now the right eye, and the asterisk is for no eyes. If the red button
has not been pressed after a given amount of time, the program will choose
one of the three options and PRINT it in the location of both eyes. After
another set amount of time, both eyes will appear again on the screen. This
same principle is used at the end of the game when the child wins. Even
though it doesn't seem like much, this kind of enhancement can make the
difference between a mediocre program and a good one.

The game essentially plays like Hang-Man. The player is rewarded with
another part of the creature whenever a letter is guessed that belongs in the
secret word. If the child solves the word within a certain number of tries, the
creature winks and blinks, and there is a graphics and sound reward.

CHARACTER
[SPACE]

30

"

$
%

FIGURE 1

DECIMAL CODE
20
21
22
23
24
25

POSITION IN
CHARACTER SET

o
1
2
3
4
5

[ctrll A
[ctrll B
[ctrll C

a
b
c

1
2
3

97
98
99

ZAHRCON

64
65
66

97
98
99

The placement of the characters in the character set does not follow their
decimal or ATASCII codes.

OLD CHARACTER
"

$
%
&

*
+

/

FIGURE 2

NEW CHARACTER
left eye

antennae
left top ear

left bottom ear
left top head

both eyes
right top head

left bottom head
no eyes

right bottom head
neck also part of leg

right top ear
right bottom ear

right eye

The character set on the left will be replaced with the character on the right.

by Linda M. Schreiber

18 REM •••••••• ZAHRCON ••••••••
28 REM BY l.M. SCHREIBER FOR ANTIC

1982
48 DIM WDRD$(lB).YWDRD$(lB).A(26)
58 GRAPHICS 18:REM GRAPHICS 2 WITH NO

31

EDUCATION

TEXT WINDOW
69 TOP-PEEK(196) :REM FIND OUT HOW MUCH

MEMORY IS AVAILABLE
79 CHBA8E -TOP-4 :REM PLACE CHARACTER SE
T 1924 BYTES BELOW TOP OF MEMORY
89 OLOCH -57344:NWCH-CHBASE*256:REM 8T
ARTING BYTES OF OLD CHARACTER S·ET AND
NEW CHARACTER SET
99 FOR X-9 TO 511 :REM MOVE THE NUMBERS
• SYMBOLS AND UPPER CASE LETTERS
199 C-PEEK(OLDCH+X) :REM GET A BYTE OF
THE CHARACTER SET FROM ROM
119 POKE NWCH+X.C:REM RELOCATE IT IN R
AM
1 29 N EXT .X
139 NWCH-NWCH+16:REM DO NOT REPLACE TH
E SPACE OR THE EXCLAMATION POINT
149 FOR X-NWCH TO NWCH+l11 :REM BYTES I
N THE CHARACTER SET TO BE REPLCEO
159 READ C:REM READ THE NEW BYTE FROM
THE DATA BASE
169 POKE X.C:REM REPLACE THE OLD BYTE
WITH THE NEW ONE
179 NEXT X
189 DATA 255.255.255.255.255.255.63 .63
181 DATA 129.66.66.36 .36.36,24,24
182 DATA 128,224,129,62,31,31 ,15,15
183 DATA 15,31.63.127,255,9,9,9
184 DATA 63,63,127,127,255,255,255 ,255
185 DATA 255,255,255,255,255,255 ,69,69
186 DATA 252,252,254,254,255 ,255,255,2
55
187 DATA 255,255,255,255,127 ,127,63,63
188 DATA ' 255,255,255,255,255,255,255,2
55
189 DATA 255.255 ,255,255,254,254,252,2
52
199 DATA 255,126,69,24,24,69,126,255
191 DATA 1,7.39,124.248.248,249,249
192 DATA 249,248,252,254,255,9,9,9
193 DATA 255,255,255,255,255,255,252 , 2
52
299 POKE 756,CHBA8E:REM CHANGE TO THE

32

--

ZAHRCON

NEW CHARACTER SET
2 10 P 0 K E 71. 9 :? # 6 ; "~" : P 0 S IT ION 4. 3 : ?
#6 ; "#"
229 POSITIO 2 . 4:? #6 ; "$&' (- (1111"
239 POSITIO 2.5:? #6;"%)*+,"
249 POSITIO 4.6:? #6;
259 POSITIO 3 . 7 : ? #6;"&*("
2 6 9 P 0 SIT I 0 2 . 8 :? # 6 ; .. & . (III"
279 POSITIO 2.9:? #6;". * ."
289 POSITIO 6.1:? #6;"ZAHRCON":P-4:Pl
- 4:C-9 : GOSU 999
299 POSITIO 19.P:? #6;" ":POSITION 19
.Pl:? #6; " > :REM ERASE THE LAST ARROW
AND POSITIO THE NEW ONE
399 C-C+l:1 C<75 ~ THEN S- 39:GOTO 339
319 IF C-75 THEN S- 42:X - INT(RND(9)*3):
IF X=l THEN S- 34
329 IF X-2 THEN S- 47
339 POSITION 4.4:? #6;CHR$(S) :IF C>199

THEN C- 9
349 IF STRIG(9) - 9 THEN 399:REM CHOICE
HAS BEEN MADE
359 IF STICK(9) - 15 THEN 399:REM CHECK
FOR MOVEMENT ON JOYSTICK
369 POKE 77.9:IF STICK(9) - 14 THEN P- Pl
:Pl-Pl - 4:IF Pl<4 THEN Pl - 4:REM CHECK F '
OR TOP OF MENU
379 IF STICK(9) - 13 THEN P- Pl :Pl - Pl+4:1
F Pl>8 THEN Pl - 8:REM CHECK FOR BOTTOM
OF MENU
389 GOSUB 999:GOTO 299
399 POKE 77.9:IF Pl - 8 THEN FE-FRE(S):E
NO
49 9 ? # 6 ; "!!SI" : FOR X - 2 T 0 1 9 : P 0 SIT ION 1.
X:? #6;CHR$(63+X) :NEXT X:REM PRINT LET
TERS ON THE RIGHT
410 FOR X- 2 TO 19:POSITION 2.X:? #6;CH
RS(72+X):NEXT X
429 FOR X- 2 TO 9:POSITION 3.X:? #6;CHR
$(81+X) :NEXT X
439 X- INT(RND(9)*15) :RESTORE 1999+X
449 READ WORDS
459 L- LEN(WORD$) :P - 19-L/2:REM POSITION

33

EDUCATION

TO CENTER THE QUESTION MARKS
469 FOR X-P TO P+L-l:POSITION X.ll:7 #
6;"7":NEXT X:REM QUESTION MARKS FOR TH
E LETTERS
479 FOR X-l TO 26:A(X)-9:NEXT X:YWORO$
(1)-" ":YWORD$(19) - " ":YWORD$(2)-YWORD
$:X-l :Pl-2:LTl-9;LT2-9
489 LT-9
499 S-(X-l)*9+95+Pl:POSITION X.Pl:7 #6
;CHR$(S) :GOSUB 999
599 IF STICK(9)-14 THEN POSITION X.Pl:
7 #6;CHR$(S-32+A(S-96)) :Pl-Pl-l :IF Pl=
1 THEN Pl-19:X-X-1
519 IF X-9 THEN X- 3:Pl-9
529 IF STICK(9)-13 THEN POSITION X. P1:
? #6;CHR$(S-32+A(S-96)) :Pl - P1+1 :IF P1=
11 THEN Pl - 2:X-X+1 : IF X=4 THEN X- 1
539 IF Pl - 19 AND X- 3 THEN Pl-2:X - 1
535 IF STICK(9)-13 OR STICK(9)=14 THEN

POKE 17,9
549 IF STRIG(9)-9 THEN 569
559 GOTO 499
569 POKE 77,9:IF A(S-96) - 128 THEN 489
579 A(S-96)-128:REM KEEP LETTER BLUE
ON SCREEN
589 S-S-32:REM GET TRUE CHARACTER VALU
E
599 FOR C-1 TO LEN(WORD$) :IF ASC(WORD$
(C,C)) - S THEN POSITION P+C-1.11:7 #6;C
HR$(S) :YWORD$(C.C) - CHR$(S) :LT-1
699 NEXT C
619 IF LT-1 THEN 639
629 GOTO 749
639 SN-59:LT1-LT1+1:GOTO 639+LT1*19
649 PO SIT ION 5, 7 : 7 . # 6 ; .. & ,; : PO S IT ION 5. 8
:7 #6;",":GOTO 888 '
658 POSITION 7,7: 7 #6;".": POSITION 7.8
:? #6;"*":GOTO 889
669 POSITION 9,7:7 #6;"(":POSITION 9,8
: 7 # 6 ; .. • .. : 'G 0 T 0 8 8 9
679 POSITION 6.6:7 #6;"&*(":GOTO 889
689 POSITION 7.5:? #6; :GOTO 889
699 POSITION 6,4:7 #6;")*+":POSITION

34

ZAHRCON

,3:? #6;"& * (":GOTO 889
799 POSITION 5,3 : ? #6;"$" :POSITION 5,4
:? # 6 ; .. %" : GOT 0 889
719 POSITION 9,3:? #6;"-":POSITION 9,4
: ? #6; :GOTO 889
729 POSITION 7,3:? #6; .. · .. :GOTO 889
739 POSITION 7,2:? #6;"#":POSITION X,P
1:? #6;CHR$(S+128) :GOTO 889
749 SN - 99 : LT2 - LT2+1 :GOTO 749+LT2*19
7 5 9 P 0 SIT ION 1 4 , 7 :? # 6 ; .. m.. : P 0 S IT ION 1 4
, 8 : ? # 6 ; "I" : GOT 0 8 8 9
769 POSITION 16,7:? #6;"I" : POSITION 16
, 8 :? # 6 ; "I" : GOT 0 8 8 9
77 9 P 0 S IT ION 1 8 , 7 :? # 6 ; .. 0" : P 0 SIT ION 1 8
, 8 : ? # 6 ; "I" : GOT 0 8 8 9
789 POSITION 15,6 : ? #6;"£:' " : GOTO 889
790 POSITION 16,5:? #6;" ":GOTO 880
899 POSITION 15,4 : ? #6;" ":POSITION
15 , 3:? #6; :GOTO 889
8 1 9 P 0 SIT ION 1 4 , 3 : ? # 6 ; "0" : P 0 SIT ION 1 4
, 4 :? # 6 ; "I" : GOT 0 8 8 9
8 2 0 P 0 S I TI 0 N 1 8 , 3 : ? # 6 ; "I" : P 0 S IT ION 1 8
, 4 :? # 6 ; "I" : GOT 0 8 89
8 3 9 P 0 SIT ION 1 6 , 3 :? # 6 ; "I" : GOT 0 8 8 0
8 4 9 P 0 S IT ION 1 6 , 2 :? # 6 ; .. moo : P 0 SIT ION X,
Pl : ? #6 ; CHR$(S+128)
859 POSITION P,ll:? #6;WORD$:SOUND 9,2
OO,19,19 : GOSUB 999:S0UND 9,0,9,9
860 IF STRIG(~) - 9 THEN GOSUB 999 : POSIT
ION 9,9 : GOTO] 19
870 GOTO 869 • 880 FOR SS - 16 ~ TO 9 STEP -2:S0UND 9,SN,
1 0 , S S : NEXT S S.
899 IF YWORD$J l,L)<>WORD$ THEN 480
909 IF LTl<19. THEN 630:REM FINISH BODY
919 POSITION 6,1:? #6;" ":GOSUB

990:POSITION 6,1:? #6;"HURRAYII":X=IN
T (R N 0 (1) * 3) + 1.: 0 N X G 0 TO 920, 930 , 940
929 S= 42:GOTO ' 959
930 S-47:GOTO 959
949 S=34
950 IF STRIG(0) - 9 THEN GOSUB 999:GOTO
21 0

35

EDUCATION

969 POSITION 7,3:7 #6;CHR$(S) :REM PRIN
T AN EYE
979 GOSUB 999
989 POSITION 7,3:7 #6;"''':GOSUB 999:GO
TO 919
99 FOR TIME-l TO 59:NEXT TIME:RETURN
19 9 DATA COULD
19 1 DATA COUPLE
19 2 DATA KENNEL
19 3 DATA KINDS
19 4 DATA CROCODILE
19 5 DATA FRECKLES
19 6 DATA BACKWARDS
19 7 DATA PACKAGE
19 8 DATA NICKEL
19 9 DATA MECHANIC
19 9 DATA LEPRECHAUN
1911 DATA ORCHESTRA
1912 DATA SKUNK
1913 DATA TRAGIC
1914 DATA ANTIOUE

TYPO TABLE

Variable checksum - 438736
Lin e n u m ran g e Cod e
1 9 - 199 NJ
11 9 - 1 84 RE
1 85 - 229 GO '
239 - 319 ZJ ·
329 - 499 ZZ ·
419 - 499 UO ·
599 - 569 ZF ·
579 - 669 XL -
679 - 749 FO e
759 - 829 GM t
839 - 919 MJ
929 - 1993 BU
1994 - 1 91 4 OM ·

36

Length
595
432
481
523
588
556
598
527
596
572
571
396
1 59

TUNING YOUR ATARI

Tuning Your ATARI

T here's something about music that fascinates kids. Give them a small
piano, drums, harmonica, and they will sit for hours creating their
own melodies. A few years ago there was a toy piano on the market

that contained a tape recorder. This was a big hit with my daughter. Now, she
could not only make her own music, but listen to it afterward.

Tuning Your ATARI uses this idea. It is a musical game for children.
Type it in and run it, and you will see a simple menu. Choice #3 demonstrates
the program. Choice #1 allows you to compose a tune, and Choice #2 will play
it back. The tones appear to be made by little figures jumping on a bellows.

Above each figure is the letter name of the tone which that bellows will
produce. To operate the bellows, press [1], then press any key from [1 J to [8J.
Key [lJ corresponds to the low C; Key [8J to high C. When a number is
pressed, the character will jump down on the bellows, flapping his arms as the
bellows is compressed. Once the tone is played, he bounces back up to his
original position. The program can hold up to 100 notes. If your melody is less
than 100 notes, press the [ESCJ key and the menu will reappear on the screen.
Press [2 J to hear your melody.

Young children will enjoy this program just to see the characters jump up
and down while they are playing the tunes. Slightly older children will enjoy
listening to the tunes that they have created. The letters above the characters
do not attract attention, but are a subtle reminder of the names of the notes.
After a whi le, children will begin to associate the letters with the tones of the
character. Don't be surprised if you. I-}ear your child singing
"A-G-F-G .. A-A-A!" . ~

Once again, in this program, we will move the character set out of ROM
and into RAM so that we can ch ange some of the characters. In line 70, Pl$
should equal h, reverse quotation marks, control D, reverse space, control
comma, reverse 1, reverse M, reverse control Q. The characters from K to R
are all in reverse. The last character in the string is control period. This string
is the machine language subroutine that moves the characters.

37

EDUCATION

Variables Used in This Program
Pl$

M$

A

machine language subroutine.

string holds the melody played.

location of the new character set. This value is POKEd in­
to 756 to change to the new character set.

TONE

WAIT

Q
CHBS

X

line number that starts the tone for the key pressed.

line number for the timing routine.

no function.

first decimal location of the new character set.

no function - used in FOR ... NEXT loops .

C

K
T

used in READ for new character set, used for value of key
pressed, and for position of character.

counter for the note being entered or played.

value of the tone to be played.

TL
ROUTINE

value used in timing loop.

the line number that the program goes to when entering
the melody, or playing one back.

by Linda M. Schreiber

18 REM •••••••• TUNING YOUR ATARI ••••
• • • •
28 REM BY L.M.SCHREIBER FOR ANTIC AUGU
ST 1982
48 DIM Pl$(28).M$(188)
58 GRAPHICS 18:POKE 711,PEEK(718):POKE

718,188
68 A-PEEK(186)-8:POKE 284,A:POKE 286,2
24:REM STORE THE BEGINNING OF NEW & OL

~ B C ~ ~ : ~ ~ ! • ..r.~ii\;&II"""IJ" : TON E -4 3 B
:WAIT-5B8:REM MACHINE LANGUAGE SUBROUT
INE MOVES THE CHARACTER SET
88 Q-USR(ADR(P1$)) :CHBS-A·256:POKE 756
.A:REM INSTALL NEW CHARACTER SET
98 FOR X-CHBS+8 TO CHBS+71:READ C:POKE

X,C:NEXT X:REM CHANGE THE CHARACTERS
FROM I TO $

38

TUNING YOUR ATARI

199 DATA 9.254.124.254.124.254.124.254
.198.9.254.254.124.254.124.254.49 .198.
9.254.254.254.124.254
119 DATA 186.49.198.9.254.254.254.254.
56.198.56.16.254.56.49.198.9.56.198.56
.146.124.56.49
129 DATA 9.9.56.198.56.16.254.56.9.9.9
.56.198.56.16.124
139 OPEN #2.4.9."K:":REM OPEN THE KEYB
OARO FOR READ
149 POSITION 2.9:? #6;"1 1 1 1 1 1 1 1
" : P 0 SIT ION 2. 8 :? # 6 ; "Ufo Ufo % Ofo Ufo Ofo Ofo Ufo" :
REM THE 1 AND Ufo ARE THE NEW CHARACTERS
159 POSITION 2.6:? #6;"c d 8 f gab c
":REM PLACE THE TONE NAMES
169 POKE 719.199:REM RESTORE THE MENU
179 POSITION 2.9:? #6;
m"
189 POSITION 2.2:? #6:"fII g ..
199 POSITION 2.4:? #6;".

PLAY KEYBOAR

REPEAT MELOn

PLAY EXAMPLE

299 K-9:GET #2.C:POKE 719.9:REM GET TH
E KEY PRESSED-REMOVE THE MENU
219 IF C>127 THEN C-C-128:POKE 694.9:R
EM INVERSE FLAG IS ON RESET IT TO NORM
AL .,
229 IF C<49 OR C>52 THEN POKE 764.255:
GOTO 299:REM NOT A NUMBER FROM 1 TO 4
239 C-C-48:REM GET THEN NUMBER
249 ON C GOTO 259.549.529.569
2 5 9 M $ -" " : REM REM 0 V E CONTENTS 0 FT H E S
T R ING
269 ROUTINE-269:K-K+l:IF K-191 THEN 16
9:REM ONLY ACCEPT 198 NOTES
289 GET #2.C:IF C-27 THEN 168:REM GET
THE KEY PRESSED-RETURN TO MENU ON ESCA
P E KEY
299 IF C>127 THEN C-C-128:POKE 694.8:R
EM INVERSE FLAG IS ON RESET IT TO NORM
AL
399 IF C<49 OR C>56 THEN POKE 764.255:
GOTO 299:REM NOT A NUMBER FROM 1 TO 8

39

EDUCATION

318 C-C-48:M$(K.K)-STR$(C) :REM GET THE
N NUMBER-PUT IT IN THE STRING
328 C-C*2:REM OFFSET IT FOR THE PROPER

POSITION
338 ON C/2 GOSUB 358.368.378.388.398.4
88.418.428
348 GOTO ROUTINE
358 T-121:GOTO TONE:REM 'C'
368 T-188:GOTO TONE : REM '0'
378 T-96:GOTO TONE:REM 'E'
388 T-91 :GOTO TONE:REM 'F'
398 T- 81:GOTO TONE:REM 'G'
488 T-72:GOTO TONE:REM 'A'
418 T-64:GOTO TONE:REM 'B'
428 T-68:REM 'C'
425 REM LINES 438-458 MAKE THE CHARACT
ER APPEAR TO PUSH DOWN ON THE BELLOW A
NO MAKE THE TONE
438 TL-18:POSITION C,8:? #6;CHR$(134):
PO SIT ION C. 9 :? #6; C H R $ (1 38) : SOU N 0 8. T •
18,6:GOSUB WAIT
448 POSITION C.8:? #6;CHR$(135) :POSITI
ON C.9:? #6;CHR$(131):SOUND 8.T . 18.8:G
OSUB WAIT
458 POSITION C.8:? #6;CHR$(136) :POSITI
ON C.9:? #6;CHR$(132):GOSUB WAIT
468 SOUND 8.T.18.18
478 POSITION C.8:? #6;CHR$(135):POSITI
ON C.9:? #6;CHR$(131) :SOUND 8.T.18.8:G
OSUB WAIT
475 REM LINES 478-498 RETURN THE CHARA
CTER AND BELLOW TO THE CORRECT POSITIO
N
488 POSITION C.8:? #6;CHR$(134) :POSITI
ON C.9:? #6:CHR$(162) :SOUND 8.T.18.6:G
OSUB WAIT
498 PO S IT ION C. 8 :? # 6 : "%" : PO S I TI 0 N C. 9
:? #6;"''':SOUND 8.8.8.8:RETURN
588 FOR X-l TO TL:NEXT X:RETURN :REM T
IMING LOOP
518 REM PLAY A SAMPLE TUNE
528 M$-"11556654433221"
538 REM ROUTINE TO PLAY BACK THE MELOD

40

TUNING YOUR ATARI

Y ENTERED
549 ROUTINE - 549:K - K+1 :IF K<- LEN(MS) TH
EN C- VAL(MS(K.K)) :GOTO 329:REM KEEP PL
AYING UNTIL THE END OF THE STRING
559 GOTD 169
569 END

TYPO TABLE

Variable checksum - 225282
Lin e num ran g e Cod e Length
1 9 - 99 AA 524
199 - 1 59 S I 594
1 69 - 249 ZA 51 7
259 - 339 UO 571
349 - 449 G F 5 1 1
459 - 599 R F 51 9
519 - 569 RN 2 1 7

41

EDUCATION

Candle, Candle,
Burning Bright

M ost computers owned by schools are used in the math department,
a recent survey showed. Computer science ranked second. The
prime use for computers in any school is drill and practice.

In drill and practice , the computer gives the student questions. If the ques­
tions are answered correctly, the student is rewarded. If the answer is wrong,
the correct answer appears on the screen. Some educators frown on this, call­
ing it "electronic flash cards." Others praise such programs, stating that they
aid the teacher by reinforcing facts that children need to know.

Another type of educational software is the tutorial, where the computer
"teaches" a particular lesson . Some tutorial programs make the computer an
electronic page-turner; others allow the students to learn at their own pace,
test the students, then review material or present new m aterial based on the
results of the test.

Some programs are advertised as educational games. They present learn­
ing as a fun experience. Some vendors will advertise a game as educational if
any single thing is learned. Arcade games are even called educational because
they teach "hand-eye coordination." M aybe they do, but does th is mean that
they are truly educational games?

There is another educational category - simulation. This is one area
where computers could be used to better advantage. There are very few good
si mulation programs ava ilable.

This program simulates a science exper iment. A candle is drawn on the
screen, and a jar is hovering above it . The program is very simple. To light the
candle, press [SELECT]. To lower or raise the jar, press [START). The candle
cannot be lit if the jar has been lowered, but the jar can be lowered or raised
whether or not the candle is lit. The white dots th at move around on the
screen represent the oxygen in the air.

This is a fairly standard experiment, and with a program like this, young
children can learn about their environment safely. To light the candle, press

42

CANDLE, CANDLE, BURNING BRIGHT

[SELECT] and hold it down until the flame appears above the candle. The
oxygen dots will move around on the screen. The flame on the candle will
flicker because of the air movement.

Hold down the [SELECT] button until the jar starts to move. Once the
jar is over the candle, the oxygen will begin to disappear. The oxygen still
moves in the jar and the flame will flicker. When all the oxygen is used up, the
flame will go out.

Hold down the [START] button until the jar starts to move up again.
Notice that the oxygen dots will appear around the candle. If the jar is raised
just before all the oxygen is used up, more oxygen dots will gather around the
candle, and the flame will not go out.

This program uses the Player I Missile graphics for the jar, candle and the
flame. Lines 50 and 60 contain the machine language to move the player Gar)
up and down. Be sure that these lines are typed in exactly, or the program will
not work correctly.

UP$
DOWN$
A
PMBASE
CANDLE
FLAME
]AR
C
R
OS(50,2)
0](10,2)
FL
JU
OX
F
B
X,Q,M

Variables Used in This Program

machine language subroutine to move player up.
machine language subroutine to move player down.
free memory less SK.
beginning of the memory for players and missiles.
memory location of where the candle will be drawn.
memory location of where the fl ame will be drawn.
memory location of where the jar will be drawn.
column where oxygen will be plotted.
row where oxygen will be plotted.
column and row of oxygen on screen .
column and row of oxygen under jar.
state ot flame (1 =flame lit, 0 =flame out).
state of jar (1 =j ar down, 0 =jar up).
amount of oxygen visible.
which of the three fl ames to draw.
data being read.
dummy variables.

by Linda M. Schreiber

43

EDUCATION

18 REM *** BURNING CANDLE SIMULATION
• * *
28 REM BY LINDA M. SCHREIBER FOR ANTIC

DEC. 19B2
38 DIM OS(58.2).OJ(18.2) .UPS(13) .DOWNS
(1 3)
48 A-PEEK(186)-32:REM SET ASIDE 2K FOR

PLAYER/MISSILE GRAPHICS - GRAPHICS 7
NEEDS 4K
58 UPS-"hl'llaMiIID 68 DOWNS-"h ____

u

_~t1"

78 GRAPHICS 7:REM HIGH RESOLUTION WITH
TEXT WINDOW

88 POKE 54279.A:PMBASE-A*256:REM TELL
ANTIC WHERE P/M GRAPHICS BEGIN

98 POKE 559.62:POKE 53277.3:REM ENABLE
P/M GRAPHICS FOR SINGLE LINE RESOLUTI

ON
188 POKE 784.184:REM COLOR OF FLAME
118 POKE 785.288:REM COLOR OF CANDLE
128 POKE 786.128:REM COLOR OF JAR
138 POKE 788.154:REM COLOR OF OXYGEN
148 POKE 789.8:REM COLOR OF DISH
158 FOR X-PMBASE+1824 TO PMBASE+2843:P
OKE X.8:NEXT X:REM CLEAR MEMORY FOR GR
APHICS
168 COLOR 2:PLOT 188.75:DRAWTO 118.78:
DRAWTO 4B.78:POSITION 58.75
178 POKE 765.2:XIO 18.#6.8.8."S:"
lB8 CANDLE-PMBASE+1426:REM LOCATION OF

CANDLE IN P/M MEMORY
198 RESTORE 518:FOR X-8 TO 25:READ B:P
OKE CANDLE+X.B:NEXT X:REM READ IN THE
DATA FOR CANDLE
288 POKE 53249.128:REM PUT CANDLE ON S
CREEN
218 FLAME-PMBASE+1157:REM LOCATION OF
FLAME IN P/M ME~ORY
228 JAR-PMBASE+1686:POKE 286.INT(PMBAS
E+1536)/256:POKE 285. (PMBASE+1536)-INT
((PMBASE+1536)/256) *256:REM JAR IN P/M
238 POKE JAR.255:FOR X- l TO 58:POKE JA
R+X.129:NEXT X:REM DRAW THE JAR

44

CANDLE, CANDLE, BURNING BRIGHT

240 POKE 53258,3:POKE 53250,107:REM PU
T THE JAR ON THE SCREEN
250 COLOR 1 :FOR X-l TO 50:REM PUT OXYG
EN ON SCREEN
260 C- INT(RND(1)*160) :REM COLUMN OF OX
YGEN
270 R-INT(RND(1)*80) :REM ROW OF OXYGE
N
280 IF C>60 AND C<90 THEN IF R>43 THEN

270:REM DON'T PLACE IT IN THE JAR
290 IF C>40 AND C<110 THEN IF R>69 THE
N 270:REM OR ON SAUCER
300 OS(X,1) - C:OS(X,2)-R:REM PLACE THE
OXYGEN LOCATION IN THE ARRAY
310 PLOT C,R:NEXT X:REM DO IT 50 TIMES
329 FOR X-l TO 10:REM OXYGEN IN JAR
330 C- INT(RND(1) *23)+63: R-INT(RND(1) *
23)+46:REM AREA OF JAR
340 OJ(X , 1) - C:OJ(X,2)=R:REM PLACE IN J
AR ARRAY
359 PLOT C,R:NEXT X:OX-1B:REM DO IT 10

TIMES
3 6 0 P 0 K E 7 5 2 , 1 :? "P RES S ""';11 TOM 0 V E
JAR" :? :? "P RES S """,, T 0 LI G H T CAN 0 L
E":: REM INSTRUCTIONS
370 IF PEEK(53279)-7 THEN 499:REM NO K
EY PRESSED - MOVE OXYGEN & FLAME IF LI
T
380 POKE 77,0:IF PEEK(53279)-5 AND FL­
O AND JU - O THEN 410:REM TURN OFF ATTRA
CT - LIGHT FLAME?
390 IF PEEK(53279) - 6 THEN GOSUB 430:IF

JU-O THEN COLOR 1 :FOR X-l TO 19:PLOT
OJ(X,l) ,OJ(X,2) :NEXT X
409 IF FL=O THEN GOSUB 540:GOTO 370:RE
M flAME NOT LIT
410 FL-l :POKE 53248,129:GOSUB 520:REM
ANIMATE FLAME ON SCREEN
420 GOTO 379
430 IF JU-O THEN FOR 0-1 TO 51 :M=USR(A
DR (DOWN$)): NEXT 0: JU=l: RETURN: REM MOV
E JAR DOWN
448 FOR 0- 1 TO 51:M-USR(ADR(UP$)):NEXT

45

EDUCATION

Q:JU-0:OX-I0:RETURN :REM MOVE JAR UP
500 REM OATA FOR CANDLE
510 DATA 8,8,12,28,28,30,62,62,126,126
,126,126,126,126,126,126,126,126,126,1
26,126,126,126,126,126,126
520 F-INT(RND(1)*3)+1 :REM PICK ONE OF
THREE FLAME POSITIONS
530 RESTORE 530+F:FOR X-O TO 9:READ B:
POKE FLAME+X,B:NEXT X:REM READ IN THE
DATA FOR FLAME
531 DATA 16,8,12,28,62,62,28,24,8,4
532 DATA 8,4,6,12,60,60,28,48,16,8
533 DATA 32,16,24,56,30,39,12,12,4,2
539 REM DECREASE THE OXYGEN IF FLAME I
S ON AND JAR IS DOWN. FLAME GOES OUT W
HEN THERE IS NO OXYGEN
540 IF JU-l AND FL-l THEN COLOR 4:PLOT

OJ(OX,1),OJ(OX,2) :OX-OX-l :IF OX - O THE
N FL - O:POKE 53248,0:RETURN
550 IF OX-O THEN 580:REM NO OXYGEN IN
JAR
560 FOR X-l TO OX STEP 2:R-INT(RND(1)*
23)+63:C-INT(RND(1)*23)+46:COLOR 4:PLO
T OJ(X,l) ,OJ(X,2) :OJ(X, 1)- R:OJ(X,2) - C
570 COLOR l:PLOT R,C:NEXT X
580 FOR X-l TO 50 STEP 5:COLOR 4:PLOT
OS(X,1),OS(X,2):C - INT(RND(1)*160):REM
GET A NEW COLUMN
590 R-INT(RND(1)*80) :IF C>60 AND C<90
THEN IF R>43 THEN 590:REM IN THE JARI
600 IF C>40 AND C<110 THEN IF R>69 THE
N 590 : REM ON THE SAUCERI I
610 OS(X,1)-C:OS(X,2) - R:COLOR 1 :PLOT C
,R:NEXT X:RETURN

TYPO TABLE

Variable checksum - 3 6 7 2 5 5
Line num range Code
10 - 100
110 - 200

46

L englh
MN
IQ

529
543

CANDLE, CANDLE, BURNING BRIGHT

2111
2911
3811
51111
5511

- 2811
- 3711
- 4411
- 5411
- 6111

PO
MW
XH
ON
ZS

522
57 1
5117
587
552

47

Some Sound Advice

T he SOUND statement in Atari BASIC is very powerful. Its ability to
modify tone, distortion, and volume for each of four voices has been
put to good use elsewhere in this book. One of the problems with the

SOUND statement is that using it extensively slows down program execu­
tion. While this is true of BASIC statements in general, with the SOUND
statement there is an easy alternative - SOUND registers. SOUND registers
are memory locations which control properties (tone, distortion and volume)
of the ATARI's sound.

Memory Location
53760
53761
53762
53763
53764
53765
53766
53767
53768

Function
Tone of Voice 1 (SOUND 0)
Distortion and Volume of Voice 1
Tone of Voice 2 (SOUND 1)
Distortion and Volume of Voice 2
Tone of Voice 3 (SOUND 2)
Distortion and Volume of Voice 3
Tone of Voice 4 (SOUND 3)
Distortion and Volume of Voice 4
Tone "clock" control

The even-numbered memory locations (53760, 62, 64, 66) control the
TONE, i.e., which note the ATARI will play. This is identical to the second
number in a SOUND statement. For example, to get the same tone as
SOUND 0, 100, 10,8 you would POKE 53760, 100. This specifies Voice 0,
note 100. But what about distortion and volume? The odd-numbered
memory locations (53761, 63, 65, 67) take care of these two characteristics for
each voice via the following relation:

16*DISTOR TION + VOLUME
where DISTORTION is the third number in the SOUND statement (10 in
our example) and VOLUME is the fourth number (8 in our example).

The equivalent POKE in our example is 16* (10) +8 =

168, and you would specify POKE 53761, 168. Try it. Type in: POKE 53760,
100:POKE 53761, 168 [RET]. The other pairs of registers work the same way.

49

SOUND & MUSIC
You can turn off the note by specifying zero in either TONE or
DISTORTION·and·VOLUME registers.

Memory location 53768 is an interesting one. The ATARI maintains two
internal "clocks" which it uses to measure the frequency of the sound wave it
generates. The two clocks run at different speeds. Switching clocks changes
the frequency (and thus the tone) of the sound. Bit 1 of memory location
53768 controls which "clock" the ATARI uses to produce its sound. Normally
bit 1 is off, and the ATARI's sounds correspond to the tables in the reference
manual. Turning bit Ion (pOKE 53768, 1) selects the slower clock, and alters
the tone produced. Toggling bit 1 off and on will switch all four voices up and
down for a pretty good "alarm" effect. Try this loop:

FOR N =0 TO 255:POKE 53768, N: NEXT N
This turns bit 1 off and on very nicely without having to worry about setting
and resetting the bit. The reason this works is that the values jump back and
forth from odd to even, turning bit 1 on and off.

How much faster is POKE than SOUND? Well, let's try an example. The
following program downloads the ROM character set into RAM so it can be
modified. With no sound Geave out the SOUND statements in line 30), this
process takes 15.7 seconds. There are much faster ways to do this, but you can
use this method until you feel confident. Fifteen seconds is a long time to sit
looking at a computer doing nothing visible. Most people start getting
nervous and wondering if "Lockup" has struck again. Let's add some sound to
assure the user that something is happening.

10 POKE 106,PEEK(106)-4:POKE 53761,168:POKE
53763, 168:GRAPHICS 0

20 CHBASE =PEEK(106):OLDCH =57344:NWCH =
CHBASE*256

30 FOR X=O TO 1024:C =PEEK (OLDCH+X):POKE
NWCH+X,C:SOUND 0,C,10,4:S0UND I,X,10,4

40 NEXT X

Downloading the character set now takes some 25 seconds. If we try the
following instead , substituting POKEs, the character set loads in about 20
seconds.

10 POKE 106,PEEK(106)-4:POKE 53761,168:POKE
53763, 168:GRAPHICS 0

20 CHBASE =PEEK(106):OLDCH =57344:NWCH =

50

AUDIO WHILE YOU CLOAD
CHBASE*256

30 FOR X=O to 1024:C =PEEK(OLDCH+X):POKE
NWCH+X,C:POKE 53760,C:POKE 53762,140

40 NEXT X

Note that X, which varies from 0 to 1024, can be used as an input to the
SOUND statement - each time it rolls over a multiple of 255, it starts over at
o (thus 256 is 0, as is 513 and 769). This is not true of the POKE statement, so a
constant was used. Doing a calculation to keep everything in range (such as
POKE 53762, X/ 4) slows things down still further (about 28 seconds), and
isn't a good idea .

Finally, various sources give the equations that relate tone to the internal
clocks and note frequency. While these equations are beyond the scope of this
article , they can be useful to those composing music on their computer.

by Dave Plotkin

Audio While You CLOAD
"Your mission, Jim, if you choose to accept it . .. "

T here is no question that the microcomputer community dislikes com­
puter cassettes - and with good reason. In the early days of com­
puting when hobbyists had no other storage medium, hours of frus­

tration were spent trying to save or load programs from cassettes. When disk
storage became available , many hobbyists gladly junked their cassettes. Some
manufacturers h ave quietly stopped supporting their cassette systems.

Unfortunately, th is has prejudiced software developers against the use of
the Atari cassette system. However, I consider this component one of Atari's
strongest points. The Atari system, unlike most others, uses a cassette player
made specifically to run on the ATARI.

John Vieror is che presidenc of Program Design, Inc., a sofcware company in Greenwich, Connec­
cicut, specializing in games and educacional sofcware . Several of cheir cassecce-based produces use a voice
crack on che cassecce co enhance che /Jrogram during loading or play of che game.

51

SOUND & MUSIC

The advantage is this: the Atari cassette is recorded in stereo. The digital
information for programs is stored on the right track. Sound recorded on the
left track is played back through the user's TV set. The existence of the left­
side sound track means that recorded voice or music can be played at any time
while the computer is on - either during the running of a program or during
the loading of a program.

One technique that we use at PDI is to put voice instructions on the left
sound track to play while a cassette is loading. This means that we do not have
to put all instructions for using the program in the program itself, reducing the
memory requirements. At least half of the Atari market consists of 16K
ATARI 400 computers. By keeping memory requirements within 16K (and
providing programs in cassette format) a software publisher will reach a
greater percentage of the Atari market.

The existence of a voice track gives the program user something to do in
the time it takes to load the program. This can set the mood for the game itself.
In MOONBASE 10 we use the voice to give the player a "recorded message"
from Earthbase control as to the nature of the mission Gust as in "Mission Im­
possible"). Most of the foLir and a half minutes it takes to load the program is
spent doing something related to playing the game.

To create and use the voice track during the cassette load, several things
have to be done. First, the sound that the computer makes during a cassette
load has to be turned off. This is done with a POKE 65,0. This can be put in a
loader program placed first on the cassette. This loader program will contain a
visual display, the POKE 65,0, and a CRUN routine that wi ll automatically
load and run the main program.

The following is the CRUN routine. POKE 764,32 will automatica lly pro-

1800 REM ROUTINE TO CRUN NEXT PROGRAM
1882 DIM U(28)
1885 POKE 65,0
1910 POKE 764,32
1920 FOR lOOP=l TO 19
1822 READ X:A$(lOOP,lOOP) =CHR$ (X)
1824 NEXT LOOP
1839 X=USR(ADR(A$))
1948 DATA 162,253,154,169,183,72,169,8
4,72,169,4,32,182,187,169,255,76,4,187

52

AUDIO WHILE YOU CLOAD
duce a carriage return so that the next program will begin loading. The ASCII
values in the REM statement are those for the machine language CRUN
routine found in the USR routine. (USR routines are used to run machine
language from BASIC.)

After the first program is loaded and run, instructions will be put on the
screen and the next program load started. Any recorded sound in the left
channel will now be heard clearly in the TV set. Positioning of the recording
tape is important.

Atari programs h ave a two-second str ing of zeros recorded at the end of
each cassette program. The programs stop loading two seconds before the
recorded program ends. This means that the recorded voice or music can
begin just before the first program ends, but must end two seconds before the
main program's record track. Otherwise the computer is going to turn off the
voice track before it finishes.

The Atari 410 Program Recorder can play back voice and music but can ­
not be used to record it. This must be done on a stereo tape deck or a reel-to­
reel recorder. For the sake of quality, master tapes from which cassettes are
going to be manufactured should be made on reel-to-reel recorders only!
Cassette recorders do not produce good enough sound to be copied . There is
just too much speed var iat ion and lack of separation between the two stereo
tracks on cassette masters. If the user only wants a few copies, then a stereo
tape deck is okay, but this is not acceptable for commercial software pro­
ducers.

The first step in making the master tape is to record the programs. The
ATARI computer makes no provision to connect the ATARI to a stereo
recorder, so the programmer will have to rig up something. This is not very
difficult. The "data out" and the "ground" pins in the peripheral connector
are the o nes that send the program signal to the recorder.

These can be connected to the recorder with a cable that has alligator
clips on one side and an RCA connector on the other. A local Radio Shack or
audio dealer may have this, or an audio technician can make one. The
alligator clips are then connected to the ATARI pins 5 and 6, and the RCA is
plugged into the right recording jack of the stereo unit. It's not a bad idea to
put tape over the alligator clips to keep them from touching the wrong
points.

Before recording, start the computer outputting and set the VU meter
on the recorder at between 7 and 5. Also note the reading on the tape
counter.

53

SOUND & MUSIC

SERIAL 110 PORT CONNECTOR

2 4 6 8 10 12

• • • • • •
• • • • • • •

3 5 7 9 11 13

1. Clock In 8. Motor Control
2. Clock Out
3. Data In to Computer 9. Proceed
4. Ground 10. + 5 / Ready
5. Data Out of Computer 11. Audio In
6. Ground 12. + 12

7. Command 13. Interrupt

Record the loader program. The computer will lay down 18 seconds of
pilot tone before the program is recorded. However, after the program is
loaded, the computer will continue to output pilot tone. Listen to the com­
puter for an indication of when the program stops, and immediately shut off
the recorder. Next, record the main program. Using the tape counter, keep
track of where on the tape the second program is.

The voice (or music) can now be recorded. To record voice, connect a
microphone to the left-side "mic" jack. The recorder must be one that will
not erase the right track while the left one is being recorded. This can be
determined quite simply - there must be a separate record button for each
track.

Using the tape counter as a guide, rewind the tape. Then begin recording
voice instructions and / or music on the left track. This must be finished two
seconds before reaching the end of the recorded program (because that is
where the computer is going to stop when the program is loading).

It will also help to h ave an appropriate graphic on the screen while the
main program is being loaded. If directions are being given, the directions
might also appear on the screen at the same time.

This technique can enhance a program and make it more interesting. It
also adds a "professional" touch to cassettes .

by John Victor

54

MUSIC WITH BASIC

Music with BASIC
Two songs and a tutorial for would~be composers.

T his tutorial and example program demonstrates one of the many ways
of playing music using Atari BASIC. Those of you with no knowledge
of music may simply type in the program and follow the instructions

on the screen. If you have some knowledge of music, and you'd like further
information on how th is program works, read on .

The program begins with a GOTO 310. This bypasses the main program
loop, subroutines, and song DATA, and brings us to our setup and screen
display. Here we specify GRAPHICS 0, set the background color at random,
turn off the cursor, set the left margin at 5, set the print tab width at 7, and
NP =0. The numeric var iable NP will be used to count the Notes Played.
Lines 320-360 display our program description, author name, and user
options. POKE 764,255 tells the computer to ignore the last key pressed .

The routine beginning at line 370 and ending at line 390 waits for the
user to press a normal video 1,2, or 3. Nothing will h appen until one of these
keys is pressed. The checking is done by PEEKing at location 764 until it con­
tains a 31, 30, or 26. These are the internal keycodes for 1, 2, and 3. By check­
ing the last key pressed, we eliminate the need to press the [RETURN] key.

Once we have a valid key, we position the cursor at the appropriate
option number on the screen, and print that number using inverse video.
The numeric variable PLAY is used to store the number of notes we are
about to play.

If option 1 was selected, we do not h ave to use a RESTORE command
since the DATA for th is song preceeds any other DATA. If either of the other
options has been chosen, we use the RESTORE command to point to the
line number where the appropriate DATA begi ns.

Jerry White lives in Leviccown, New York, and is a prolific writer of BASIC and assembly language
programs for the ATARI. He has many commercial produces on the market, including Poker SAM and
Chatterbee, from Don 't Ask Software , thac use the intriguing vo ice-synthesis-on-a-clisk known as Soft­
ware Automatic Mouth (or S.A.M. for shore).

55

SOUND & MUSIC
If the number 3 key was pressed, we also must set a fl ag to indicate a spe­

cial condition. Since this program reruns itself when a song is over, we set the
variable EXIT = 1 in line 390 before GOTO 40 instruction.

Look at line 40. In English, it says that if the number of Notes Played is
equal to the number of notes we wanted to PLAY, then go to line 420. Line
420 begins with "IF EXIT." This is the same as saying "IF EXIT < > 0". So IF
EXIT =0, the program falls through to line 430 where we have a RUN com­
mand. If EXIT < > 0 then we reset the left margin, turn the cursor back on,
tell the user that BASIC h as control, and END the program.

Now that we know how the program starts and how it ends, let's see
what happens in between . Let's assume you have chosen option number 3.
As you pressed the number 3 key, an ASCII 26 was automatically stored in
location 764. At line 390 we hit a true condition and highlight the number 3
on the screen, set PLAY = 10, RESTORE 290, set EXIT = 1, and GOTO 40.

The routine from line 40 through 170 is called the main program loop.
We haven't played any notes yet so NP =0 and we fall through to line 50.
Here we read two bytes of DATA. This will result in the variable PITCH
being set to 91 and DUR being set to 12. Remember, we are reading the
DATA that begins in line 290. Also in line 50 we add 1 to NP.

In line 60 , we see if PITCH = 0, and if it is, we GOTO our REST routine
which begins at line 90. PITCH = 91 so we GOTO our SOUND routine at
line 130.

We will POKE the value of DUR into a countdown timer at RAM loca­
tion 540. Countdown timers count backwards at the rate of 60 per second
until zero is reached . In other words, when we POKE 540,DUR, since
DUR = 12, exactly 12160 of a second later, the countdown timer will reach
zero. In that same line we calculate the pitches we will use in SOUND
registers 1 and 2, and store the value of PITCH + 1 in PI and PITCH-l in P2.

At line 140 we turn the tables and set DUR =PEEK(540), and check to
see if it is equal to zero. At this point it isn 't zero yet, so we continue on to

line 150 and see if DUR > 6. Six wi ll be our maximum volume of each of
three SOUND commands. In any case , we continue on to execute three
SOUND commands, then go back to line 140 and check the value in our
countdown timer again. We stay in this loop until we find that our count­
down timer has reached zero.

When PEEK(540) =0, we GOTO line 170 where all sounds are turned
off, and we can finally go back to where this whole th ing started , line 40.

56

MUSIC WITH BASIC
Remember line 40? That 's the main program loop. We h ave played one

note and have nine to go. But what if the PITC H is a O? When we want no
sound for a per iod of time (a REST), we enter a zero as the pitch , and use the
routine beginning at line 90 to rest for the period of time specified by OUR.
By the way, 60ths of a second are also known as "jiffies ."

By using OUR as the volume value in the SO UND commands, we get a
slight decay or decreasing volume at the end of each note. By using two addi­
tional SOUND ch annels, and setting their frequency levels slightly higher
and lower th an the desired pitch , we achi eve a richer, fuller sound .

This program demonstrates only one method of play ing music on your
computer. BASIC can be used to play true four -part h armony and even dis­
play the lyrics of your songs on the screen at the same t ime. This is demon­
strated by Swifty Softw are's Singalong Sound & Music Tutorial package.

Atari 's Music Composer provides another way to play music and dis­
plays musical notes on your screen . Unfortunately, you can't put the Music
Composer C artridge and BASIC in at th e same time. But I found a way
around that problem too.

P.D.L's Music Box will convert your Music Composer fil es and play
them for you using vertical bl ank assembler subroutine. This is done while the
BASIC cartridge is inst alled. The best part is that once the music begins,
BASIC is at your disposal. You can even write a BASIC program while the
music continues to play.

The possibilities provided by your computer's audio ch annels are almost
limitless. Take advantage of this and let us know wh at you come up with.

by Jerry White

10 REM ATARI BASIC MUSIC by Jerry Whi t
e 5/4/82
20 GOTO 310
30 REM MAIN PROGRAM LOOP
40 IF NP - PLAY THEN 420
50 READ PITCH,DUR:NP - NP+l
60 IF PITCH - O THEN 90
70 GDTD 139
80 REM REST TIME DELAY SUBROUTINE
90 POKE 540,DUR
100 IF PEEK(540)<>0 THEN 100

57

SOUND & MUSIC

119 GOTO 4B
129 REM PLAY NOTE SUBROUTINE
139 POKE 548,DUR:P~ T PI1CH+l:P2-PITCH-l
149 DUR-PEEK(548) :IF DUR-8 THEN 179
159 IF DUR>6 THEN DUR-6
169 SOUND . 8,PITCH,18,DUR:SOUND l,P1,19
,DUR:SOUND 2,P2,18,DUR:GOTO 149
179 SOUND 8,8,8,8:S0UND 1.9,9,9:S0UND
2,9, .9:GOTO 4B
188 EM DATA FOR POP GOES THE WEASEL
199 ATA 121,6,91,6,9,6,91,6,81,6,9,6,
81,672,6,6iJ,6,72,6,91,6,II,6
21J1J AlA 121,6,91,6,9,6,91,6,81,6,8,6,
81,672,18,8,6,91,6,9,6
219 ATA 121,6,91,6,9,6,91,6,81,6,11,6,
81,672,6,69,6,72,6,91,6,9,18
229 ATA 53,12,9,12,81,12,9,6,68,6.72.
18.96.91.12
239 EM DATA FOR T~N LITTLE INDIANS
249 AlA 121.18,121.6,121,6,121,18,121
.6,1 1,6,96,18,81.6.81,6,96,6,96,6.121
, 1 8
259 DATA 198,18.198,6,198,6,198,18,198
• 6 , 198 , 6 , 1 28 , 1 8 , 1 98 • 6 , 1 98 • 6 , 1 28 , 6 , 128 ,
6,162;18
269 DATA 121,6,121,6,121,6,121.6,121,1
8.121.6,121 .,6.96.18.81.6,81,6,96.6,96.
6,121.18
279 DATA 198,18.198.6,198,6.162,6.162.
6,162,18,121,48 ,
289 REM DATA FOR EXIT ROUTINE
299 DATA 91,12,9.6,121,6.128,6,121,6,1
98.24.121,24.9.24,96,24.91,24
399 REM SETUP/DISPLAY/OPTIONS
319 GRAPHICS 9:SETCOLOR 2,RND(9)*16.9 :
POKE 752.1:POKE 82.5:POKE 291.7:NP-9
329? :? :? ,"ATARI IIASIC MUSIC"
339? :? ." by Jerry While":? :?
349 ? :? "Type 1 for POP GOES THE WEAS
EL"
359 ? :? "Type 2 for TEN LITTLE INDIAN
S"
366? :? "Type 3 for PROGRAM EXIT";:PO

58

MUSIC WITH BASIC

KE 764,255
379 IF PEEK(764)-31 THEN POSITION 19,8
:? "l";:POKE 764,255:PlAY-43:GOTO 49
389 IF PEEK(764)-39 tHEN POSITION 19,1
9:? "2";:PlAY-44:RESTORE 249:GOTO 49
3~9 IF PEEK~764)-26 THEN POSItION 19,1
2:? "3";: POKE . 764,255: PLAY-19: RESTORE
299:EXIT-1:GOTO 48
489 GOTO 378
419 REM EXIT/RERUN
428 IF EXIT THEN POKE 82,2:POKE 752,8:
? :? :? "BASIC":? "IS";:END
439 RUN

TYPO TABLE

Variable checksum - 153169
lin e num ran g e Cod e length
19 - 1 28 JT 275
1 38 - 219 NW 521
229 - 3 1 8 GO 682
328 - 419 OY 589
429 - 438 RE 76

59

SOUND & MUSIC

Ultra Sound

I magine sitting in your easy chair in front of the color television set with a
stereo speaker to your right and left . The Star Raiders cartridge is in the
computer. After selecting your destination you press [H] . A slight rumble

emanates from the speakers as the engines engage . From the forward view, you
see the stars moving faster and faster towards you as the sound increases to a
roar. You explode into hyperwarp and the sound from the speakers rattles
your chair. RED ALERT!

You reach for the joystick to direct your photons but it's too late! You
receive a direct hit from Zylon fire. The room echos from the impact, the
vibration causes little nick-nacks to fall from the cabinet shelves. DAMAGE
CONTROL! You can hear the cries of your injured crew reverberating
through your star cruiser. No, it's your neighbors yelling for you to turn down
your stereo. What excitement! Maybe next time you should use the head sets.

You can make a simple, inexpensive cable that will channel audio from
your ATAR1800 to your stereo speakers. This article will show you how.

The cable will attach to most stereo systems or radios . Unfortunately, the
other end will only attach to an ATAR1800computer, where the monitor jack
is external. The ATAR1400 would require disassembly, interior soldering and
case modifications. There are three components that you need to buy. We
have listed these items, their approximate cost, a possible distributor, and
comments in Table 1.

Table I. List of Components

Item Distributor Price Comments

5-Pin Audio/Video Plug . Radio Shack (#274-003) $1.49 Shielded
APX (#90002;$2,49)

RC A T ype Phone Plug Radio Shack (#274-339) $l.39 Sh ielded
10 Fe. PVC Insulated Cable Ask Local Electricia n $4.61 0.25" 0.0., shielded

2AWG 10-12 conductor

Total $7.49

60

ULTRA SOUND
The 5-pin Audio / Video Plug is sometimes called a 5-Pin DIN plug. The

outer jacket can be made of plastic ($1.49) or metal ($2.49). It contains five
small pins mounted through an insulator panel and arranged in a 180-degree
arc. There is a small notch at the top for alignment purposes (Figure 1.)

Figure 1.
5-Pin Audio / Video plug configuration

(outer facing side)

NOCCh

l

GWUndJ 2 Audio
Output

One side of the insulator panel usually has small numbers printed on the
board. These numbers correspond with the numbers in Figure 1. For our pur­
poses, it is important to know that the ATARI800 uses pin 3 as the audio out­
put and pin 2 as the ground. The RCA-type phono plug has an outer jacket of
metal. The inner workings contain one large pin held in place by insulation.
These units are usually sold in pairs since the typical use is for a two channel
stereo input. The large pin is the audio input and the outer jacket is the
ground.

PVC insulated cable is sometimes called telephone cable. There are hun­
dreds of different types of cables to choose from. We recommend a tinned cop­
per, PVC insulated, conductor cable with 22-24 AWG stranded drain wire.
Wire gauges much larger than 22 (i.e. 18, 16, 14 ...) are very stiff and difficult
to work with . Stranded wire should be color coded. The cable should be
jacketed in a chrome PVC with an outer dimension (0.0.) of 0.25 inches to
ensure a snug fit with our plugs. If you choose a smaller cable (e.g. speaker wire),
you run the risk of pulling the wires out of the plugs or crimping the cable
when you move the computer. If you have your computer in an area of severe
electrical interference, we suggest that you purchase a cable with aluminum-

61

SOUND & MUSIC
polyester shielding. The minimum length for your cable should be 10 feet to
allow for some flexibility in where you can place your components.

Next, gather the necessary tools for soldering. You will need a pencil-tip
soldering iron with a heating element of25 to 35 watts. The best solder for this
application is an alloy of 40 percent tin and 60 percent lead with a resin flux
core. This is sometimes referred to as television or electrical repair solder. In
addition, you will need a razor, a needle-nose pliers, a wire cutter, a clamp able
heat sink and a clean, well-lighted work area. Remove the outer jacket from
each plug and slide the jackets onto opposite ends of the cable. With a razor,
carefully strip away 3,4" of the PVC cable cover from each of the cable ends. If
your cable contains more than two color-coded wires, snip off the extra ones
to make them flush with the PVC cable cover. Compare the ends of the cable
side-by-side to make certain that the color codes are an exact match. Strip
away 111" of the color-coded PVC from each wire (Figure 2). You are now ready
to solder.

Figure 2. Cable Assembly.

I
~---- Outer jacket of plug r Outer jacket of cable

-----r-"'~~u ~'- Expo"d wi"

Color-coded jacket of wire

Hold the inner workings of the plugs with a pliers and attach the heat
sinks to the appropriate areas. Solder ground to ground and audio to audio. If
the insulators begin to melt, discontinue soldering and attempt to re­
straighten the pins. Once soldered, reassemble the plugs. Firmly insert the
5-pin plug into the ATARI800 monitor jack and the RCA-type phone plug in­
to the accessory or tape (in) jack on the back of your stereo. Boot something
musical onto your 800, turn down the volume on your TV and switch your
stereo to accessory or tape. If you have a stereo/mono switch, place the switch
in mono position . Otherwise, the sound will only come through one speaker.
Very slowly, turn up the volume. You should hear perfectly clean music. If you

62

'TARI TALKERS
hear a hum, you have a poor connection. Check that your solder has not
bridged across the insulator.

For the adventurous experimenter, you could also build a frequency
separator making this a pseudostereo rather than a monotone cable. Use a
high/low frequency shunt and patch the high frequency to one channel and
the low frequency to the other. I'll leave the design up to your imagination. In
addition, the strength of the audio signal could be monitored and used to con­
trol some other devices. For example, you could place a fan on the top of your
television and an inclinator platform beneath your chair. As you enter hyper­
warp, the fan would blow faster and faster, and you would gently sink back in­
to your seat. The seat would jolt whenever you were hit by enemy fire and it
would pulse during engine damage. An affixed joystick on the arm of your
chair would allow you to bank to the right or left, climb or dive, by shifting
your weight. The ultimate in home aviation simulators!

by Thomas Krischan

'Tari Talkers
Voice Synthesizers for the ATARI 400 & 800

Confidently, I slipped into the Commander's chair. I pushed [START]
and a vision of deep space, scattered with stars, flashed on the view­
screen. My superior's deep voice washed through the room, "Wel­

come aboard, Commander. Your mission " When he finished, 1 typed [G]
for the Galaxy Map. Lt. Longri's tenor explained that a Zylon full battle patrol
had entered sector A4. That fit my strategy! I punched the controls, and the
ship leaped into hyperspace. Upon reentry, Captain Sumtra's dusky voice
warned, "Zylon sector, sir." I punched for shields. "Shields," she replied.

The screen became a blur of ships, photon torpedoes, explosions. Lt.

63

SOUND & MUSIC
Longri calmly tracked our kills, while Captain Sumtra repeated every order
smoothly. Suddenly, Damage Control's clipped, high-pitched voice screamed
through the flight deck, "Shields lost !!" A Zylon fired at us. I punched
hyperspace. The screen disolved in a fl ash of white. Against a dark screen, the
Federation's emblem appeared, the commander spoke quietly, "Posthumous
... rank awarded ... Garbage Scow Captain."

Now, two machines make it easy to add voices to your Atari programs.
The T ype'n Talk ([NT) from Votrax and Echo-GPfrom Street Electroni~ syn­
thesize, or create speech, from written English almost as easily as characters are
printed on your screen.

Applications far beyond obvious game enhancements abound. Imagine
pronouncing dictionaries or spelling programs more flexible than Speak-N­
Spell. Either system could be set up easily to speak for a speech-impaired per­
son, or to voice, letter-for-letter, or word-far-word, all data entered by, or sent
to a blind operator. my most successful program, so far, displays a four-color
chart and explains it orally, with no text distracting from the visual. At least
half the fun is watching a new user's face as the computer says, "Hello Mary!"

Both TNT and Echo are efficient, small, speak an unlimited vocabulary
(anything you can print), take almost no memory, and cost less than $500.
Both speak with a distinct "computer voice" which the uninitiated can
understand, with some concentration, but which quickly becomes "natural."
It's a bit like getting used to that uncle with the funny accent .

Both units require an Atari 850 Interface and a cable. The cables are
available from the manufacturers for an extra $30, or can be made as follows.
Order the 9-pin DB connector from Apex (APX-90006 $5.50), and a 25-pin
DB male connector from Radio Shack ($3.50) or any electronics house . Buy a
few feet of any 6-conductor (or more) conductor cable (Beldon #9421 is often
used). Connect these according to the chart (Fig. 1), and you've saved $20.
The TNT requires an 8-ohm speaker ($5-$10) and a mini-phone jack. The
Echo has a built-in speaker but you can add and external speaker for fidelity
and volume. With an external speaker, the Echo puts out considerably more
sound than the TNT.

Getting started is simple. Set the switch to 300 baud, plug the cable into
serial port 1 or 2 of the 850, boot the system, and type the following statement
[The "n"s represent the IOCB (see BASIC manual p. 26); the "x"s are the port
number, 1 or 2]:

OPEN #n,8,0,"Rx": XI034,#n,48,0,"Rx": XI036,#n,12,0,"Rx"

64

'TARI TALKERS

After that, merely issue PRINT #n commands to make the units speak
what you wish. A program to input a string from the keyboard and speak it
takes no more than three lines. Both units include clear, usable manuals with
lots of examples .

Although the units are similar, there are clear differences. The most
important criterion to me was intelligibility. No speech synthesis device is
worthwhile if you can't understand it. A frequent user will get accustomed to
either of these. To check for immediate clarity, I took both units to the
Lawrence Livermore Lab Science Fair and asked visitors to listen to a list of
20 words, spelled as recommended by both companies, spoken alternatively
on one, then the other, unit. Since I have used the Votrax for six months and
find it quite clear, I expected it to win this test. However, nearly all people
listening to the two for the first time found the Echo clearly superior. The
Echo seemed to excel with words beginning with "hard sounds" such
as T, P, B.

Intelligibility aside, I examined reactions to the Echo's many unique
features. Both units sound like computers, not people. But as one girl said, the
Echo sounds like a "he," the T NT like an "it." The Echo software-switch able
pitches (at normal speed) were a popular feature. The lower voices were easier
for most people to understand and several suggested creating dialogues
between different personalities, each with a different voice.

The Echo's "inflection" feature raises the tone of the last syllable before a
question mark and lowers it before a period. Although only about half of the
new listeners could describe this effect, it may have contributed to the Echo's
superior intelligibility.

Spoken punctuation is another Echo plus. Normally, it speaks the
punctuation commonly spoken ($, #, =). But, at the drop of a software
instruction, most punctuation (comma, period, semi-colon, parenthesis, etc.)
or all (including spaces, returns, etc.) are spoken. This could be a real boon to
the sight-impaired. Both units will spell capitalized acronyms . The Echo,
however, has a letter mode which will spell out all words-very useful for a
spelling program or a b lind operator faced with an unintelligible word.

Both systems allow the user to create phoneme strings. This results in
phrases with exceptional clarity. Frankly, since I get acceptable results with
English, phoneme coding words seem like too much work. For instance,
"catalogue" is coded "KA3DIL * lG"! If you decide to phoneme code, a TNT

65

SOUND & MUSIC
software option will send you a phoneme string as it translates from the
English. You then polish it up for final phoneme codes.

The TNT's enclosure has some problems. The on/ off switch is on the
back panel, and worse, the unit has no "on" light . Many's the time the kids
have left the TNT on all night! Echo has a light, and the switch is right up
front.

So there's the balance. Both do a good job.
Intelligibility, features and price make the Echo distinctly superior.

ECHO·GP (Serial)
Street Electronics Corp.
1140 Mark Ave.
Carpinteria, CA 93013
(805) 684-4593
list Price-$199. 95

TYPE'N TALK
Votrax
500 Stephenson Highway
Troy, MI 48084
800-521-1350
list Price-$249 +speaker

Figure 1

WIRING CHART

Atari 25 Pin DB Male
9 pin DB

Male TNT ECHO

1
2 20/8 20/8
3 3 3
4 2 2
5 7 7
6 20/8 20/8
7 4 5
8 5 4
9

Editor's Note:

by Ken Harms

Since this article was written, Votrax has released another voice synthesizer,
the Personal Speech System. The new product lists for $395 and offers several
improvements over Votrax's early Type 'n Talk . Personal Speech System has

66

'TARI TALKERS

a 16K algorithm (versus 4K algorithm in TNT) which leads to 95 percent ac­
curacy in pronunciation . It can produce music and sound effects and it has a
real-time clock. In addition, the speech rate amplitude and inflection are
user-programmable. And this time, the speaker is inside the unit.

67

Modems

Did you ever think about what a computer really is? Take the ATARI
for example . With 48K bytes of memory it can store about the same
amount of text as a IS-page document. A diskette can store about 40

more pages. You can think of your display screen as a "window" through
which you can see this information, about one-quarter page at a time.

What's the point? Well , the time is here when, for the price of a cheap suit,
you can give your computer access to millions of pages of memory, instead of
just 40 or so .

We are talking about the modem. Let's de-mystify the modem, explore
wh at it is, what it does, and then look at a few modems available for the
ATARI.

Terminology
Here are some terms you will find in the world of modems:
• MODEM - The word derives from "modulate-demodulate ." A modem is
a h ardware device that translates an incoming sound signal (frequency) into a
binary code that your computer will understand (computers do not under­
stand sounds). The modem also works the other way around. It will translate
an outgoing, computer-generated binary code into frequencies that can be
transmitted over circuits used by the telephone company.
• BAUD - This term describes the rate at which data is transmitted. The
telephone company h as established 300 baud as a standard rate of data trans­
mission for phone lines .

This equals 30 ch aracters per second or approximately 3S0 words per
minute. This is about as fast as most people can read. There is also a 1200 baud

Jon Loveless is a resident of the San Francisco Bay Area, and a Vice President of Marketing for
Synapse Software. An ATARI hobbyist from the outset, he has a special interest in hardware and

peripherals, especially printers and modems. He was one of the early editors of A NTIC , anda co-founder
of ABACUS, but the demands of Synapse's growth have limited his recent contributions to A NTIC.

69

COMMUNICATION
standard rate available on the phone system at a premium price. Watch for
this price to fall over the next few years.
• ACOUSTIC-COUPLED - This describes the type of modem that trans­
mits and receives directly through the standard telephone receiver. This kind
of modem has two foam "cups" into which the earpiece and the mouthpiece of
the receiver are placed. The cups channel the sound, audible as a high-pitched
whine, to and from the phone system, and muffle extraneous noise.
• DIRECT -CONNECT - This is the newer breed of modem. It can connect
directly to your telephone wall jack or plug into your telephone with a "Y"
adapter. Outside sound interference and clumsy manipulation of the receiver
are eliminated.
• ANSWER-ORIGINATE - These terms describe which modem is calling
and which modem is answering. There must be a modem on each end, but
they do not have to be the same brand. Either modem can do either job, but
not at the same time.

Modems
By now, you may be interested in buying a modem, and wondering what
features are important . Here are some things you should be aware of.

Acoustically-coupled modems, the "ear-muff" type, were the first on the
market and are still the cheapest. They have definite drawbacks. Stray
sounds in the vicinity of the modem can and do leak past the muffs and can
affect data transmission . Also , using the acoustical modem is awkward , since
the correct end of the phone receiver must be inserted in the correct end of
the modem. This sounds minor, but the error is easily and frequently made.

Still, acoustic modems do work, are inexpensive and may meet your needs.
Prices for direct-connect modems seem to be dropping, and the higher

degree of reliabiltiy for them makes it difficult to recommend anything else .
If you think you would be even a semi-serious "on-liner," you should think
in terms of a direct-connect, plug-in modem. Your data will be cleaner,
and the benefits of uploading and downloading data over networks, with
the new information utilities, or with other individuals, will repay the extra
investment.

Some modems have status indicators. When the modem is in use it is often
important to know what the status of your connection is. Is the modem
"ready?" With a direct-connect modem, is the simulated "receiver" on the

70

MODEMS
hook or off the hook ? H as there been an accidental disconnect? Is the other
end answering? The more information provided by the modem's status indi­
cators, the better.

Some modems h ave autodial / autoanswer. You can dial a phone number
from your ATARI keyboard! Admittedly, this is a luxury, but if you use a
modem a lot, it is a nice feature to have. Autodial allows you to store
telephone numbers in your software program, and have the modem do your
dialing for you. This eliminates the need for a telephone near the computer,
provided you have a phone cable long enough to reach your telephone jack.

Autoanswer is only needed for such serious data communications as
operating a bulletin board service, or otherwise responding to the incoming
call of another computer. Think of the possibilities, though! You can call your
own computer from any remote terminal, or even from a phone booth with
one of the miniature modem-terminals recently announced.

Other features to look for include:
• compatibility with the Bell 103 Standard;
• full-duplex and half-duplex (in case you only want to send or receive);
• 300 baud rate, 1200 baud optional;
• RS-232 plug compatibility for Atari 850 interface connection;
• proper connecting cables!

Cables
A word about cables is in order. Modems must be connected to your other
equipment, and to the telephone line. You would think that an expensive
item like a modem would come with the appropriate cables. Not always so,
and the price difference between a more expensive unit with cables and a less
expensive one without may be misleading (some cables cost $50!). Also, some
modems are designed to hook up more simply, eliminating some cable
requirements. Before you buy, determine your complete system requirement,
and compare the price for all pieces. You will want to include software costs, too.

All modems, once the proper connections have been made, will perform
their primary function of data communications, so the bottom line in any
decision should be: quality, price, and extra features. You will probably find
your use of a modem will be greater than you now expect, so be open to the
more capable units.

Any modem can work with the ATARI, if properly connected, but some

71

COMMUNICATION
have been built specifically with the ATARI in mind. We will discuss the prin­
cipal ones here.

Atari 830 Modem ($199.95)
The Atari Modem, sold by Atari, is a "Novation 'CAT''' modem in Atari
dress. It is a standard acoustically-coupled modem with only very basic
features. It is fine for a beginning user, or someone with limited needs. Since it
is marketed as an Atari product, it comes with all required cables. It also
needs the Atari 850 Interface, which some modems do not, so if you don't
have the Interface you should seriously consider the Microconnection
modem (see below), or others that bypass the Interface .

The Atari 830 is a plug-in-and-go product with good documentation .
You will need software with this, as with all modems, and might well consider
Atari's TeleLink cartridge ($30) for a nice, modular system. Caution! Tele­
Link is a very limited program, and will not allow copying to disk. It will drive
the Atari printer, but printing "on-line" is expensive. The major drawbacks
with the Atari 830 are that it is acoustic, and has limited features .

An alternative buy would be the "Novation 'CAT''' if you can
find cables. Two other "Novation" modems are compatible with the ATARl.
One is the D-CAT, a basic direct-connect model, and the AUTO-CAT,
that has the autodial feature mentioned earlier. Although not described in
depth here, they are both good products that should be considered as in the
running.

Microconnection .. A ($199 to $328)
This direct-connect modem is made by the Microperipheral Corp. and comes
in four versions all designed for the ATARI. This selection is very attractive to
the prospective buyer.

For example, there is a bus-decoding version ($249) that allows connec­
tion without using the Atari 850 Interface . This modem can be used with as
small a system as the Atari 400 and the 410 Program recorder. This model has
a DB-25 socket that allows connection of the Atari printer, again without
Interface. This makes the Microconnection a good candidate for a small basic
system. For $30 more this model comes with autodial.

There is a plain version ($199) that does require the Interface, and for an
additional $40 you can get the autodial and auto answer features.

72

MODEMS
Caution! Microconnection's autodial uses pulse dialing (not touch tone)

which cannot be used with the MCI or SPRINT long distance phone services,
but you can manually dial SPRINT or MCI with this modem. If you are a
heavy user of these long distance services this could be an important limitation.

Microperipheral has done a commendable job of supporting the ATARI,
and their own software enhances the capability of their modem dramatically.
The top of the line software, called TSMART ($79.95) incorporates autodial
as well as message preparation and storage features that reduce expensive "on­
line" connection time. You will appreciate this after you see your first phone
bill after buying a modem.

The Microconnection is relatively simple to connect and use. It comes
with extensive, if dense, documentation which includes a listing of free
bulletin board services, by area code (a nice touch!). Microperipheral Corp.
maintains a user service accessible through CompuServe, over which you can
get updates of their software. Now that's service!

Smartmodem ($279)
This is a direct-connect modem by Hayes Microcomputer, Inc. Although it
does not come as a model specifically for the ATARI, you can purchase a
cable to connect it to the Atari 850 Interface (required). The fact that this
modem does not come with a cable is a serious drawback in a product that
costs so much. This is not a criticism of Hayes alone, as you will discover
when you buy your first non-Atari printer, or other peripheral device.

Assuming you buy the "Hayes Stack," as it is also known, and are able to
get or make a cable, you will have the most flexible modem in the price range.
This is truly a "smart" modem. The heart of the device is a 280 micro­
processor with a 2K byte control program built in. The only switch is an
ON / OFF toggle! Everything else is program controlled, or preset by you,
utilizing the configuration panel under the front cover.

Here are some of the features of the Smartmodem:
• either touch-tone or pulse dialing at any time;
• audio monitor allows you to hear what your phone line is doing (a real help
when the receiving party is busy);
• storage of the last number dialed;
• automatic redial (helpful for disconnects, busy signals, etc.);
• seven LED status indicators on the front panel (impresses visitors);

73

COMMUNICATION
• complex dialing sequencing (e.g., dial number, wait for tone, send 10, dial
another number, as required for Mel and SPRINT);
• programmable in any computer language and compatible with most data
communication software .

The list goes on, but the point is made. The Hayes Smartmodem is very
versatile, but suffers due to a lack of direct applicability to the ATARl. With
the appropriate cable (l made my own) and almost any good terminal soft­
ware, this modem is the most flexible.

There are other usable modems around, though not specifically for
the ATARl. They will work fine with the proper cable, and some of the
good software.

If you are not in the market for a modem now, I guarantee that you will be
some day. It might be a good idea to wait, if you h ave no immediate urge to
link up with the rest of the tribe. Prices keep coming down, and good gear
gains reputation as satisfied users swap notes.

Keep your eyes open for new, low cost entrants to this field. For example,
I noticed (but have not used) the Signalman MK-l from Anchor Automation
at an unbelievable price of $99, including RS-232 connector cable. This
direct-connect modem could be the forerunner of a price revolution.

Meanwhile, the modems we have discussed are definitely state-of-the-art
products and can be expected to provide good service for a long while.

by Jon Loveless

ATARI BULLETIN BOARDS
State Name Phone Number Type

CA LAACE 213-988-8373 AMIS
CA GFX 408-253-52 16 AMIS
CA IBBS 408-298-6930 AM IS
CA ABACUS 415-587-8062 AMIS
CA ACCESS 916-363-3304 AMIS
DC WASHINGTON 202-276-8342 ARMU
GA RODR. 404-252-9438 ATAB
IL WIZ-BANG 312-925-2929 AMIS
MA MACRO EXCH. 617-667-7388 AMIS
MI M.A.C.E. W. 313-274-3940 AMIS
MI M.A.C.E. 313-544-0885 AMIS
MI AR.C.A.D.E. 313-978-8087 AMIS
MI C.H.A.O.S. 517-373-6788
MI G.R.AS.s. 616-24 1-197 1 AMIS
MO AU.R.A 314-928-0598 AMIS

74

NY
OH
OR
TX
TX

COMMUNICATIONS SOFTWARE

SPIDER WEB
FLAG CITY
A.C.E.
ARMADILLO
ACUGD

212-241-8965
419-423-0206
503-343-4352
512-837-2003
817-498-1751

AMIS
AMIS
ARMU
AM IS
ARMU

These Bulletin Board numbers were verified as correct and available as of October, 1983

Communications Software

A fter you purchase a modem and install it, you will soon be aware that
there is one more important purchase you need to make-software.
Without a good flexible program your modem will be useless. In this

article we will introduce you to six different programs designed to be used with
modems. These programs vary in ease of use and capability. We will show you
the trade-offs and introduce some new vocabulary which will make our discus­
sion more understandable.

Download-this refers to the physical reception of data. It can be in the
form of a complete program that you are receiving from another computer or
simply data that you are saving from CompuServe, or The SOURCE. The
key word is "save." So, download means to receive and save data or programs.

Upload-this is just the opposite of download. Upload refers to the act of
sending a specific program or text to another computer via the trusty old
modem.

Host Computer-this is the computer that your ATARI will talk to,

assuming that you make the call. If you use the "auto-answer" capability of
your modem, your computer becomes the host.

Translation-refers to the degree of character code incompatibility the
specific software will compensate for. This inconsistency is often a problem
with those ch aracters where no real standard has been acknowledged, like
special control characters. Translation also refers to a program's ability to con­
vert from one character encoding scheme to another. ASCII to EBCDIC for
example.

Terminal emulator-refers to a program's capacity to make your
ATARI respond as if it were some other type of terminal. VT100 or ADM-3A

75

COMMUNICATION
come to mind as widely used terminals. This is usually accomplished by
redefining key and control code functions .

Buffer-is often used to refer to a reserved portion of computer memory.
This reserved area is used by terminal software to store programs which have
been downloaded. These programs can be saved to disk later off-line. Pro­
grams which force you to save to disk on-line cost more for connect time
because the disk is slower.

There are many other terms you will come across, but these few will give
you a start. Now, let's see what you need in the way of software . It depends
largely on your application. If you only want to "look" at the data available
from some other computer system, your needs are simple. If you want to save
the data, your needs are more complicated, and if you want to send and
receive programs, communicate with a computer at your office, or perform
other such sophisticated operations, you need a fancier program yet.

You will find a need for several different types of programs as you proceed,
so let's sort out a few programs to see what they do, and then refer to the table
on page 78 for a quick reference comparison.

TeleLink
This program is available on cartridge from Atari. It is an excellent begin­

ning for the new modem user and it comes with a free subscription to Com­
puServe. This alone makes it worth the money. TeleLink's beauty is its
simplicity. Plug it into the left slot of your ATARI and "log-on" as they say. The
major drawbacks are its inability to save incoming data to disk or cassette or to
upload and download programs. TeleLink can save data to your printer, but
this can be costly in terms of connection costs. This is not a bad way to intro­
duce yourself to telecomputing, but you'll end up wanting more features.

DataLink
Swifty Software's program is probably the best all-around choice you can

make as either a new or intermediate user of the modem. It is simple and
friendly, yet very powerful. It will fulfill most of your needs including
uploading/ downloading, text capture, save to disk or printer, and screen
review of data in memory. It allows you to prepare text before you make the
phone connection, and save text after you hang up, both important features

76

COMMUNICATIONS SOFTWARE

when concerned about your phone costs . Above all else, DataLink is very
easy to use. Documentation is pretty scant (six pages), which can be a handi­
cap to the uninitiated, but is also a refl ec tion of how easy this program is to use.

Download
This software by Computer Age is a great program, but h as received little

promotion or publicity for some reason. It is written in BASIC and machine
language (where needed for speed) and offers a benefit in that it can be
modified by the user. I particularly like this feature with the H ayes Smart­
modem since it allows you to add a phone number menu and make full use of
the power of auto-dial. In addition, it h as two menus, one for parameters and
another for memory management. The [OPTION] button accesses the main
menu and that allows you to go to memory management as one of the options.
It is not as easy to use as D ata link , but is more fl exible .

T.H.E.
Binary Computer Software presents this recent addition to the

communications market. It is possibly the most complex modem program
ava ilable for the ATARl. As with any powerful program, this one requires
study and practice to use effectively. The documentation is well done and is
readily understood by the first time user. There are many system configura­
tions possible using T .H.E. With all the bulletin boards being made available,
each with different requirements, this flexibility is T.H.E.'s most important
feature. This is the only package that will translate ASCII to EBCDIC. This
feature would only be needed when communicating with an IBM system.

Chameleon
From APX (Atari Program Exchange) comes a powerful machine­

language program that lets you tailor your ATARI to a wide variety of
configurations that wi ll satisfy almost any host computer requirement. The
documentation is good, but the program must be used extensively in order to
feel comfortable with the many commands and options. One of the unique
features is the SO-column screen emul ator. Using the ATARI scrolling
capability you can make it think it is an SO-column computer rather than 40.1
have found li ttle practical use for this feature yet, but it sure looks nice. I

77

COMMUNICATION
NAME TELNK DATLK DWNLD CHAMN TSMRT T.H.E.
MANUFACTURER (1) (2) (3) (4) (5) (6)

MEDIA (c =cass/d =disk) cmrg d c/ d c/ d c/ d c / d
LEVEL OF FLEXIBILITY low mod mod high high high
DOCUMENTATION good fair fai r excl excl good
MEMORY REQUIREMENT cnrrg 24K 24K 24K 24K 24K

FEATURES

TRANSMISSION
· upload programs no yes yes yes yes yes
· download programs no yes yes yes yes yes
.download text yes yes yes yes yes yes
.full duplex yes yes yes yes yes yes

· half duplex yes yes yes yes yes yes

· term inal type I I (7) 4 (7) (7)

.BAUD rates 300 300 300 (8) (9) (10)

.translation choice yes yes yes yes yes yes

SEND DATA
.off·line prepare no yes yes yes yes yes
.sto re ID codes no no no yes yes yes

· preload progrnms no yes yes yes yes yes

RECEIVE DATA
.on-Iine save yes yes yes yes yes yes

· .[0 printer yes yes yes yes yes yes

· .to disk no yes yes yes yes yes

· . to cassette no no yes yes yes yes

.off·lin e save no yes yes no yes yes

· ,ro printer no yes yes no yes yes

· .to disk no yes yes no yes yes

. to cassette no no yes no yes yes

· parity options no no yes yes yes yes

· memory toggle no no yes no yes yes

· memory m::m agcmcnt no yes yes yes yes yes

MISCELLANEOUS
· user modified no no yes (II) yes no

.pho ne # sto rnge no no no no yes no

· format screen mrgns no no 40/ 80 mrgns mrgns

· redefi no keys no no Im td yes yes yes

(I) TELELlNK (4) CHAMELEON
ATARI, Inc. APX (Atari Program Exchange)
1272 Borregas Ave . P.O. Box 427
Sunnyvale, CA 94086 155 Moffett Park Drive
$29.95 Sunnyvale, CA 94086

$17.95
(2) DATALlNK

Swifty Software
(5) T-SMART 64 Broadhollow Road

Melvi lle, NY 11747 Microperipheral Inc.

$39.95 2643A-151st PI. N.E .
Redmond, WA 98052

(3) DOWN LOADER $79.95

Computer Age
Sil ver Spring, MD
$24.95

78

COMMUNICATIONS SOFTWARE

(6) T.H.E.
BiNARY Computers
3237 Woodward Ave.
Berkley, MI 48072
$49.95

(7) Terminal type may be defi ned largely
through flexible parameter definition, if not
by name.

(8) Widest choice from 48 to 9600 BAUD.

(9) Choice of 300 or 600 BAUD.

(10) Zero to 9600 BAUD.

(11) Source code is provided for the adventurous
assembly language programmer, but is
sparsely commented.

wouldn't recommend this program to beginning users of modem software
unless they are ready to roll up their sleeves and work with it. For the more
sophisticated user this is a powerful tool. One caveat with this program is that
it transfers files more slowly because it writes to disk rather than saving to a
memory buffer.

To·Smart
Microperipheral Corporation offers a powerful and flexible program

written expressly for their Microconnection modem. Its power rests partly in
the fact that it was written with a particular modem in mind, and partly in the
fact that it is reasonably simple to use for all the flexibility it has. It is
completely menu driven, but a nice feature is the option to override the menu
as you become familiar with the commands. It incorporates real autodial so
that you can include your own list of phone numbers right in the program.
Much of the program is written in BASIC allowing you to tailor it to your own
needs. Finally, as with the Microconnection itself, it is well supported through
a simple contact on CompuServe. I understand this even includes updates as
they become available.

Take Your Pick
So you now have a bird's eye view of six pieces of software for your new
modem. If you are like most users, you will find your needs satisfied by a
simple program, occasionally needing more power or flexibility. For example,
I still use TeleLink because of its simplicity. I check the electronic mail service
(EMAIL) of CompuServe with TeleLink and nothing could be easier. I use
Datalink often because it is simple yet quite powerful. T.H.E. is a newcomer

79

COMMUNICATION

and yet I already am finding some of its features and power attractive. Finally,
if! owned a Microconnection, I would certainly use T-SMART because of the
powerful design interaction between software and hardware, a well-planned
pair.

For a first purchase I would be hard pressed not to recommend the
Datalink program because of its nice blend of power and simplicity. It will
satisfy the majority of your needs, and will allow access to most common
services such as CompuServe, The SOURCE, and nearly all of the bulletin
boards available. The greater parameter flexibility of some of the other
programs is necessary for sophisticated communications between your
ATARI and non-ATARI equipment, especially if you plan to do a fair amount
of program exchange.

Our goal has been to shed light on the sometimes confusing topic of data
communications. We would suggest that whatever hardware and software
you decide to purchase , it be checked for compatibility. A good package will
make your introduction to telecommunications easy and enjoyable. It really
is a thrill when you successfully transfer your first program to a friend across
town.

by Jon Loveless

Dialing For Data

E lectronic information utilities are making a big splash on the American
scene as more and more people buy computers. Most computers,
including the ATARIs, can "communicate" with each other using

these utilities. Communication between computers has brought about an en­
tirely new kind of business.

What's an information utility? Essentially, it is an electronic network that

This information updated as of August, 1983.

Robert DeWier is managing editor of ANTIC Magazine

80

DIALING FOR DATA

sells computerized information and services to connected customers, just like
the water utility sells water. At present this is done over telephone circuits,
and soon it will also be done by TV cable.

Two such utilities are prominent now; CompuServe and The SOURCE.
The American Telephone Company (Ma Bell) is expected to enter this field
soon, and will certainly be a strong contender. There are other services
around that connect computers but they are usually smaller, more specific,
and more expensive. DIALOG, a scientific data-base, is an example.

General
CompuServe dates back to 1969 as a data-base service company for other big
companies and government. It is owned by H&R Block, and is located in Col­
umbus, Ohio. It uses DEC-lO mainframe computers and has about 63,000
subscribers. CompuServe publishes a monthly newsletter "Update," and a
monthly magazine ''Today.'' These are free to subscribers.

The SOURCE began in 1979 specifically as a consumer-oriented informa­
tion utility, although it does serve businesses too. It was bought by Reader's
Digest in 1980, and is located in McLean, Virgina. It uses six PRIME-750
mainframe computers and has 38,000 subscribers. The SOURCE publishes a
bimonthly magazine "Sourceworld" that is free to subscribers.

Both utilities transmit at 300 baud or 1200 baud, and charge more for the
higher rate. Since 300 baud is about 300 words per minute, it a comfortable
rate for a human operator. This article refers to 300 baud service only.

Time Availability
Both utilities are available full time, but at higher cost during business hours
(see below). The SOURCE officially closes daily from 4 A.M. to 6 A.M. EST
for system work. This is 1 A.M. to 3 A.M. PST (western nightowls take note).

CompuServe claims to be up "99.4%" of the time. Both begin their even­
ing rates at 6 P.M . 00cal time,), but The SOURCE initiates a still lower rate at
midnight .

Access
To get connected with either of these utilities, the user calls a telephone
number, gives an 1.0. number and password, and is "logged on." Herein lies a

81

COMMUNICATION
significant difference. The user calls the telephone number at his own ex­
pense. If the closest access number is long distance, the user pays the charge.
The SOURCE is clearly superior here, providing a local (no charge) number
in about 350 major areas, including Alaska, Hawaii, Puerto Rico, and
Canada.

CompuServe provides free local numbers in 200 cities, and a TYMNET
or TeleNet number in about 200 more cities, for which the user pays an addi­
tional $2.00 per hour. City size is no guarantee of having a local CompuServe
number.

Cost
The SOURCE has a $100 registration fee that dissuades many people. Com­
puServe charges $20 for a "dumb" hookup, $30 for a "smart" one that includes
software, or $40 for a smart one including five on-line hours. Most ATARI
owners will want the dumb package and get their software elsewhere.

All time charges are figured to the nearest minute, local time. Regular
time on The SOURCE is from 6 P.M. to 7 A.M. and all day on weekends and
holidays. This is billed at $7.75 per hour. CompuServe charges $5.00 per hour
from 6 P.M. to 5 A.M. weekdays and all day on weekends and holidays.

Rates during business hours for The SOURCE are $18 per hour, and for
CompuServe $22.50 per hour. Anyone interested in CompuServe should add
any long distance or TYMNET charges that could affect comparison.

The SOURCE has a few services that cost more, for the time they are
used; commodity prices and stock analysis, Compu-U-Store ordering, and
journal abstracts. These are designated as SOURCE*PLUS and cost $15 per
hour in regular time, or $10 per hour after midnight. CompuServe has a few
surcharges in the stock market service, and charges a flat fee for Comp-U­
Store. CompuServe also aqds $2.00 to your monthly bill if you do not use
MasterCharge or VISA for payments.

News
Both utilities have news services. CompuServe is more extensive, offering
Associated Press, Canadian Press, and two complete American newspapers
(the Washington Post, and The St. Louis Post-Dispatch). The SOURCE offers

82

DIALING FOR DATA
United Press International and selected N.Y. Times stories and features. In­
dexingby key word and key-word search of news is available with The
SOURCE, but not with CompuServe.

Another difference is that CompuServe purges its news daily and has no
historical news files. The SOURCE purges weekly (Friday A.M.
maintenance) so it has a whole week's news available on Thursday night. This
could be an important difference for researchers or people with special news
interests.

Shopping
Both utilities offer shopping by Comp-U-Store. This allows on-line review of
about 30,000 items, plus electronic ordering for delivery to the home. The
SOURCE offers "ordering" mode at SOURCE*PLUS rates, and Com­
puServe charges an extra membership fee of$18 per year to order. "Browsing"
can be done on either utility at regular rates. Comp-U-Store itself is offered
directly at $25 a year plus 25 cents per minute, so getting it as a part of a
broader utility service does represent a value.

The SOURCE offers a BARTER program for worldwide exchange of
goods and services, and both utilities have bulletin boards in which users may
advertise. CompuServe includes classified advertising from the newspapers it
carries, but this is an expensive way to read classified ads.

On-Line Conversation
The most popular feature of either of these utilities is the on-line communica­
tion between and among users. CompuServe's version is called "CB
Simulator," and it's a conversational free-for-all, with participants identified
by fictitious "handles ." The samples I've seen were bawdy and inane. If one
perseveres, it is possible to find a party with mutual interests, and arrange a
private talk. Groups can even conference on-line, and the exchange can be en­
crypted if all users have an encryption password.

The SOURCE offers CHAT, limited to two users who must be on-line
and agree to the exchange, which is private. If you don't know anyone to chat
with, you can query any user whose 1.0. number shows up on the "online
directory."

83

COMMUNICATION

EMail
EMail is sure to become a new English word. It means electronic mail, and we
will all be using it soon. Even now, users of these utilities enjoy the advantage
of instantaneous message exchange, which can be printed or copied with the
right equipment and software.

With either utility, messages can be EMailed to any other user of that ser­
vice. The user's 1.0. is his address, and the message will wait for him until it is
picked up.

The SOURCE allows for an unlimited number of letters to collect until
read. With CompuServe, your mailbox is "full" with 10 letters, and no more
can be received until the mailbox is relieved of at least one letter.

The SOURCE has an extra EMail feature called Voicegram. It allows the
member to call into the tollfree Customer Service number and dictate an
EMail letter to any user for a $1.25 extra fee.

CompuServe allows its members to use its text editor program, FILGE, on
EMail.

Customer Service
Both utilities maintain tollfree Customer Service numbers available 24 hours
a day, and both were helpful and courteous when called. Both answer
automatically, and put you on hold "airline fashion" if necessary. Waiting time
was three minutes, at most.

The numbers are: The SOURCE (800) 336-3366; CompuServe (800)
848-8199.

Stock Market Information
Both utilities provide stock market quotations, news, and analyses.

CompuServe calls its service MicroQuote, and charges five cents per
quote. There is a $1 minimum fee each time that data-base is used.

The SOURCE calls its stock quotation service UNISTOX, and offers it at
no extra charge. Both services cover about 30,000 issues on the major ex­
changes. The SOURCE also covers trading in about 20 commodities. These
quotations are charged at SOURCE*PLUS rates.

84

DIALING FOR DATA
Bulletin Boards
Users can post their own notices on the bulletin boards of their respective
utilities.

The SOURCE calls theirs POST. It is categorized by subject or interest.
For example, there is an ATARI section in POST where I found about twelve
notices.

The CompuServe board is called BULLET. There are three separate sec­
tions: Sale, Wanted, and Notices. Each section has a few hundred postings at a
time. Each is key-worded and numbered. To find ATARI notices you must
scan all three lists.

Programming Aids
Each of these utilities provides services for computer programmers. You can,
in fact, program on-line and store data files with the utility.

CompuServe supports BASIC, Fortran, AOL, Pascal, BUSS 10,
MACRO, SNOBOL and AID. They call this part of the the service the "pro­
grammers' area,"and it is available at the regular rates. Each user of this area
gets 128K bytes of free memory, if it is accessed at least monthly.

The SOURCE supports BASIC, COBOL, Fortran, RPG II, and
assembly. It sells storage in blocks of 2,048 bytes. One to ten blocks cost fifty
cents per month per block.

Both utilities allow word processing and text editing on-line. Com­
puServe calls their editor "FILGE." If you have only a terminal, these services
make sense. If you have a computer, it is more economical to do these things
off-line.

Games
Believe it or not, game playing on-line is a very popular part of these services,
perhaps reflecting the high percentage of juvenile users. Each utility has its
own main adventure game, and other games.

CompuServe is probably more game oriented than The SOURCE. It has
"Adventure (in Colossal Cave)" and two other adventure-type games, in­
cluding "Scott Adams Adventure." It has DecWars, and SpaceWars and

85

COMMUNICATION
Mega Wars which are interactive with other users, and it sponsors periodic
game contests among its subscribers.

The SOURCE's primary adventure game is Blackdragon, though it also
has a selection. The SOURCE has more games than CompuServe, but
generally they seem more trivial.

Special Interests
Each of these utilities has a vast number of special interest topics, and the
variety increases all the time. It will be important to focus on your own two or
three high priorities and compare specifically how these are handled by each
service . CompuServe publishes a one-sheet Subject Index that you can review
at any Radio Shack, and has an insert called Highlights in its magazine. The
SOURCE has a pamphlet "SOURCE DIGEST" available at all Com­
puterland stores.

Briefly, here are some special interest topics they provide about equally:
• film reviews
• airline schedules
• travel services
• electronic checkbook
• personal advisor
• legislation status
• sports information

Here are some specialties of The SOURCE:
• customized research (Information on Demand) extra fee
• Mobil Restaurant Guide
• some accredited college courses
• user publishing (royalty to user for material accessed by others)
• employment service (wanted and offered)
• personal appointment calendar

Here are some of the specialties of CompuServe:
• SOFTEX programs for sale and on-line delivery (downloading)
• Printer Art Gallery (downloading) extra fee
• Future File, by Nathan Muller
• Better Homes & Gardens food, decor
• World Book Encyclopedia

86

PRONTO, BANK ON YOUR ATARI

• limited home banking
• feedback to CompuServe (no charge)
• various contests
• general aviation information

Atari Support
CompuServe is going after the Atari market, and vice versa. Atari advertises
on the back cover of each issue of CompuServe's magazine. There is also an
official Atari department in CompuServe where users can "Talk to Atari."

The SOURCE, on the other hand, has no official Atari involvement at
this time. But it does have an Atari section on the bulletin board.

There is no clear best choice for everyone but there could easily be a
"wrong" choice for anyone. We hope this analysis will help you get with the
one you need.

by Robert De Witt

PRONTO
Bank On Your Atari

S
oon you may be able to use the ATARI to do your banking without
ever leaving home. A pilot electronic banking program called PRONTO
was started last year by The Chemical Bank of New York for some of

its customers who owned ATARls, and is now being licensed to many more
banks across the country. Crocker National Bank in San Francisco, Worthen
Bank in Little Rock, and Florida National Bank in Jacksonville are just a few
of the other financial institutions that have opted to use PRONTO for a test
run in 1983.

The model program began in New York and served 200 customers of
Chemical Bank who were willing to participate in this experiment. PRONTO
is the latest among other electronic services offered by the bank that have

87

COMMUNICATION

included a corporate cash-management system and computer-automated
tellers.

To begin using PRONTO, a customer needs to have an ATARI computer,
a standard telephone line and a modem. Each home computer system serves
as a "terminal" for the main program that runs on Tandem Computers at
Chemical Bank headquarters. The user connects with the main system by
dialing a local network number via phone and modem to begin transactions
on a home video screen.

When the first test run began last November, PRONTO customers had to
use an acoustic-coupled modem to transmit and receive data. This type of
modem has two foam "cups" into which the earpiece and mouthpiece of a
standard telephone are placed. Customers used the ATARI 830 (acoustic­
coupled) Modem along with the ATARI 850 Interface device and a special
cartridge to activate the program. The long-awaited 835 (direct-connect)
Modem for the ATARI was not available at the time, but should be soon.

Direct-connect modems are more advanced and much easier to use, and
will eventually replace all acoustic-coupled types. The ATARI 830 Modem
connects directly with a telephone wall-jack or plugs into the telephone with
a "Y" adapter. Most software communications systems that use a modem also
require extra software such as TeleLink. The PRONTO system includes a
communications-software cartridge, similar to TeleLink, that is supplied to
the user at no extra cost.

The PRONTO software is a complete financial management system that
allows you to get instant information about your bank account. It also pro­
vides screens with forms for household budgets. You may register checks, pay
bills, send electronic mail to other PRONTO users and keep accurate tax
records that include principal and interest categories. The budget screens
allow you to list up to 50 items and five different personal budgets per house­
hold. Each family member can have a secret access code to insure privacy.
You may monitor all your account activit ies and get an "electronic state­
ment" along with your usual monthly printed statement .

Most people who were asked to participate in this project responded
enthusiastically. In San Francisco, Crocker Bank an nounced to its employees
and the general public that it was looking for participants to begin the
PRONTO pilot in early 1983. The fifty openings for test users at Crocker
were filled immediately. A total of 200 customers and employees are expected
to be using the PRONTO pilot in San Francisco by July. Many users of the

88

DIALING FOR DATA
Crocker system will have the option of using other hardware, such as the
IBM PC or the Apple II .

The banks have not yet determined how much to charge for PRONTO,
but when Chemical Bank queried its pilot customers, most agreed that they
would be willing to pay about $10 a month for this service. If you feel that
you may be interested in this type of service, ask your own bank. Who
knows? It may be offering electronic banking like PRONTO in the very near
future . by Deborah Burns

89

(Qcmmmce~
llw nee JPMwlliicc JD)(Q)11fJfJIa1iiw

,

Chicken- A Great Game

W hy did the chicken cross the road? To provide a premise for acom­
puter game. A ctually, our chicken is trying to score points by get­
ting safely across this busy highway. Each time he succeeds adds

to his score, but the cars go faster and faster. Ifhe gets hit, the SPCA sends an
ambulance and the cops slow the traffic down for a while.

This clever game can be yours for the copyi ng, courtesy of Stan O ckers,
who wrote it in BASIC and assembly language, and Mike Dunn, editor of
A.C.E. Newsletter (Eugene, Oregon), who printed it fi rst and gave us permis­
sion to pass it on to you.

System Requirements 16K RAM, jo)'stick by Stan Ockers

Stan Ockers, from Lockport, Illin ois, has brightened the world of ATARI enthusiasts with his selfless
SL!PPOrt of user groups and contributions to "the public domain," that large and growing bod)' of programs
appearing in newsletters and in ANTIC for which no commercial software rights are claimed. Chicken,
ANTIC's firs t public domain game, is representative of the high quality of Stan's programming.

Chick en will not work with the 1200XL computer.

4 REM •••• * CHICKEN •••••
5 REM BY STAN OCKERS REVISEO BY GUY HU
RT
9 Cl - 4:C2 - 9:C3-9:SCOREONE-599:RN3=36:R
N 4 - 21 : W- 7 : U - 11 : B S W- 9 : G OS U B 1 5999
19 OPEN #1.4.9."K:":OIM l$(29).S$(29).
C $ (29) . Z $ (5) : Z $ (1) -" /" : Z $ (2) ="@" : Z $ (3)
- "D/o" :Z$(4)-"$" :Z$(5) - " "
11 OPEN #2.4.8."O:HI2.DAT":INPUT #2.HI
GH:ClOSE #2
12 REM
13 REM
14 REM
15 REM
16 REM

DEAR OWMER : IF YOU OWN A DISK
CREATE A FILE CALLED HI2 . DAT
AND STDRE A ZERO IN IT
ELSE MAKE STMTS 11.725&742
REM ' s UNTIL YOU OWN A DISK

19 POSITION 9.16:? #6;"INITIAlIZING ...
" : Q 2- 9
29 REM PAGE 6 ROUTINES AND DATA

91

GAMES

49 FOR 1-1536 TO 1587:READ A:POKE I.A:
NEXT I
4 1 REM nl!'"",.:,,'I .• ,III ••
42 DIM VB (219):FOR 1-1 TO 219:READ A:
VB$(I)-CHR$(A):NEXT I
43 REM !!"t-'UI'j_jlll ••
45 DIM LD (73) :FOR 1-1 TO 73:READ A:LD
$(I)-CHR$:NEXT I
47 REM /
48 A-AD
:POKE 1538.A-256*B
59 DATA 194.169.52.162.6.169.7.76.92.2
28.194.169.98.162.228.169.7.76.92.228
52 DATA 129.129.129.129.39.57.81.195.1
5.15.15.15.8.8.0.8.52.53.54.55.2.2.3.4
.12.8.8.8.15.11.11.11
54 REM LINE56-CHANGE 24T056TOSKIP ORTH
I
55 REM ,'I'II*,II'I',_,:."-,-"'j-,,'11I Mlil"lnt
56 DATA 72.138.72.152.72.162.8.189.128
.2.29.44.6.168.15.24.176.32.281.15.248
• 2 8 • 29 1 • 1 4 . 2 0 8 . 2 • 1 6 0 . 1 3 • 28 1 . 1 3
57 DATA 208.2.160.14.201.11.208.2.169.
7 . 20 1 . 7 • 208 . 2 • 1 60 • 1 1 • 1 92 • 1 5 . 240 • 6 • 6 1 • 4
8 • 6 • 1 5 7 • 28 . 6 . 1 52 • 6 1 • 44 . 6 • 1 5 7 • 44 • 6
58 DATA 232.224.4.144,195
60 DATA 162.0.189,32.6.133.203,189,36,
6 . 1 33 , 2 04 . 1 89 . 40 • 6 . 1 33 , 2 09 . 1 98 , 209 , 1 6 ,
7.232.224,4
65 DATA 144.232,176,91.189,28.6,133,20
7
79 DATA 70,207,176,26,188,24.6,192,1,2
40.19,208,1.200,177
75 DATA 203,240,6,136.145,203,200,298,
245,136,145.283.222.24.6,78.287,176.29
,188.24.6,280,192,254,176,21
80 DATA 177,203.208,247.136.177,283,24
0,6.200,145,203,136.208.245,200.145.20
3.254,24.6,70.207,176.3,222.28
85 DATA 6.78,297,176.3,254.29,6.189,28
.6.157,9,208
90 DATA 24.144,154.162,4.189,11.288.24

92

CHICKEN

0.5.169.0.157.39.6.202.208.243.104.168
.104 .170 .184.76.98.228
100 DATA 234.234.234.184.104.104.170.1
89.32.6.133.186,189.36.6.133.187.104.1
33.213.104.133.212
110 DATA 189.24.6.133.195.169.0.168.19
2.255.176.35.196.195.240.5,145.186.200
• 2 88 , 243 • 1 6 2 • 0 . 1 6 1 • 2 1 2 . 24 0 . 1 1
120 DATA 145.186.230.212.200.192.255.1
76.11.208.241.169.0.145.186.200.192.25
5.144.249.96.234.234
150 REM CAR COLOR DATA
168 FOR 1-1 TO 20:READ A:CS(I)-CHRS(A)
:NEXT I
178 DATA 24.68.218.68,98,186.70.150,54
.232.74.168.88.154.21.252.200.76.228.2
8
190 REM DEFINE PM AREA - SINGLE LINE RES
288 A-PEEK(186)~16:POKE 54279.A:PM-256
*A
285 REM PLAY MISSILE POINTERS
218 FOR 1-4 TO 7:P~KE 1568+I.A+I:NEXT
I
212 FOR 1-1568 TO 1571:POKE I.8:NEXT I
218 REM
228 FOR I-PM TO PM+121:READ A:POKE I.A
:NEXT I
230 DATA 16.56.16.56.40.16.16.16.146.2
54.254.124.56.56.40,40.40.48.48.188.0
232 DATA 126.195.219.219.91.219.219.21
9.219.91.219.219.195.126.0
234 DATA 126.195.218.219.218.219.219.2
19.219.218.219.219.195.126.0
236 DATA 33.34,158.84.57.30.60,123.159
.30,52.86.151.36.194.193.0
238 DATA 16.56.16.56.48.16.16.56.124.2
54.186.56.56.40.48.40.44.32.96.0
240 DATA 16.56.16.56.40.16.16.146.214.
124.56.56,40.40.40.104.8.12.0
242 DATA 126.255.173.173.239.199.199.1
99.199.239.173.173.255.126.0
270 REM INIT HORIZ.& VERT . POSTN .
280 RESTORE 282:FOR 1-1556 TO 1563:REA

93

GAMES

D A:PDKE I.A:NEXT I
282 DATA 120.120.120.120.30.57.81.105
288 REM INIT. COLORS
290 DIF-3:BONUS-300:POKE 704.40:CP - 0:F
OR 1-1 TO 3:POKE 704+I.ASC(C$(CP+I)):N
EXT I:CP-3:BPOS - l
295 REM DRAW ROAD SET PRIORITY
300 GRAPHICS 17:FOR 1- 1 TO 20:L$(1) - "­
":NEXT I
305 FOR 1-2 TO 20 STEP 2:S$(I)-"-":S$(
1-1)-" ":NEXT I
310 POSITION 0.2:? #6;L$:POSITION 0.11
:? #6;L$:POSITION 0.13:? #6;L$: POSITIO
N 0.22:? #6;L$
312 POSITION 0.5:? #6;S$:POSITION 0.8:
? #6;S$:POSITION 0.16:? #6;S$:POSITION

0.19:? #6;S$:POKE 710.90
348 REM INIT & PRINT INFO-RESET TIMER
350 SCORE-50:POSITION 0.1:? #6;"score

timo":POSITION 0.23:? #6;"di
h i g h" ;

360 POSITION O.O:? #6;SCORE:POSITION 1
5.22:? #6;HIGH:POKE 19.0:POKE 20.0
365 REM INIT PM GR.-FLAGS
370 POKE 559.62:POKE 53277.3:11 - 68:12=
88:FL-Il •
375 REM _,,'11 LOAD PLAYERS-SETCOLORS-PLAYERS

380 LD-ADR(LD$) :A - USR(LD.0.PM+RN5) :A-U
SR(LD.l.PM+21) :A-USR(LD.2.PM+21) :A-USR
(LD.3.PM+21)
385 A-USR(1536):REM INSERT VBI RTNE.
390 POKE 53257.1 :POKE 53258.1:POKE 532
59.1:POKE 623.1
391 IF BPOS-18 THEN POKE 53257.3:POKE
53258.3:POKE 53259.3
393 REM INIT SPEEDS
395 POKE 1576.2:FOR 1-1577 TO 1579:POK
E I.RND(O)*DIF+l:NEXT I
398 POSITION 1.22:? #6;DIF
400 REM IF CARS OFF-SCREEN. CHANGE LANE
m
410 IF PEEK(1557)<15 AND PEEK(1561) - 57

94

CHICKEN

THEN POKE 1561.193:A- USR(LD.1.PM+RN3)
.: P 0 K E 1 5 8 5 . 7 : G 0 SUB 1 9 9 9 : P 0 K E 7 9 5 • C
429 IF PEEK(1557»249 AND PEEK(1561) - 1
93 THEN POKE 1561.57:A - USR(LD . 1.PM+RN4
) : POKE 1585.11 :GOSUB 1999:POKE 795.C
430 IF PEEK(1558)<15 AND PEEK(1562) - 81

THEN POKE 1562 . 169:A - USR(LD.2.PM+RN3)
:POKE 1586.W:GOSUB 100J:POKE 796.C
440 IF PEEK(1558»240 AND PEEK(1562)-1
69 THEN POKE 1562.81 :A-USR(LD.2.PM+RN4
) :POKE 1586.U:GOSUB 1000:POKE 796.C
450 IF PEEK(1559)<15 AND PEEK(1563)-10
5 THEN POKE 1563.145 : A- USR(LD.3.PM+RN3
) : POKE 1587.7:GOSUB 1909:POKE 707.C
469 IF PEEK(1559»249 AND PEEK(1563)-1
45 THEN POKE 1563.195:A- USR(LD.3.PM+RN
4) :POKE 1587.11 :GOSUB 1000:POKE 707.C
465 REM PRINT TIME-CHECK FOR TIMEUP
479 TIME - 15-PEEK(19) :POSITION 16.0:? #
6 : TIM E :" ": 1FT 1M E <- 9 THE N 91 9
471 GOSUB 1200
472 REM RESET SOUNO-HORN RTNE.
473 SOUND 9.0.0.0
475 IF RND(0»9 . 5 THEN SOUND 1 .0.9.0
489 IF RND(9)<0.05*RN2 THEN SOUND 1.7.
1 2 • 1 9
484 REM CHICKEN STOMP
485 P- PEEK(1564) :IF P>15 OR P<35 THEN
599
499 IF P- 15 THEN A- USR(LD.9.PM+RN5) :GO
TO 500
492 IF FL - I1 THEN FL - I2:S0UND 0.16*RN.
6.8:GOTO 496
494 IF FL - I2 THEN FL - I1 :SOUND 0.22*RN.
6.8
495 REM CHECK FOR REACHING BOTTOM
496 A- USR(LD.0.PM+FL+RN5)
500 IF PEEK(1560»230 THEN 810
5 9 1 R N - I NT (R N D (9) * 1 5 + 1) : I F B P 0 S <> 4 AND

BPOS<>19 THEN RN - 1
595 REM CHECK FOR COLLISION
519 IF PEEK(53260)-0 THEN 410
5 1 5 REM "1.""'

95

GAMES

520 A-USR(LD.0.PM+51+RN5) :FoR J- 1 TO 3
:SOUND 0.RND(0)*255.8.8 : S0UND 1 . RND(0
)*255.8.8
525 POKE 704.PEEK(704)+8:FOR 1- 1 TO 30
:NEXT I:NEXT J:SoUND O.O.O.O:SOUND 1.0
.O.O:POKE 704.40
527 REM DECREASE SCORE-CHECK FOR 0
530 SCoRE-SCoRE-1 :PoSITIoN 0.0:7 #6:SC
ORE:" ":IF SCORE<- O THEN 702
533 REM MOVE UP. REl~D BIRD-RESET COL
II
535 POKE 1560.PEEK(1560)-24:A - USR(LD . 0
.PM+RN5) :IF DIF>O THEN DIF - DIF-1
550 IF DIF-O THEN GOTO 700
590 POKE 53278.0:GoTO 395
7 0 0 REM """i'N
702 POSITION 3.2:? #6:"CHICKEN'S DEADI

7 0 4 REM U~II:II"'II"
705 C-1
706 IF PEEK(1576+C) - 0 THEN C- C+1:GOTo
706
707 IF C>3 THEN C- 1
713 POKE 1576+C.1:PoKE 1560+C . PEEK(156
O):POKE 1556+C.229:A - USR(lD.C.PM+107)
715 FOR J-1 TO 6:FOR P- 60 TO 40 STEP -
2:SoUND 9.P.10.8:FoR 1- 1 TO 6:NEXT I
716 NEXT P:FoR P-40 TO 60 STEP 2:SoUND

0.P.1O.8:FoR 1- 1 TO 6:NEXT I:NEXT P:N
EXT J:SOUND 0.8.8.8
718 REM NEW HIGH SCORE
728 A- USR(1546):IF SCORE<- HIGH TH EN 73
o
721 HIGH-SCORE:FOR Q- 1 TO 7:POSITIoN 1
1.23:7 #6:HIGH:" ":POSITION 15.22:? #
6: " high":SOUND 8.40.18.15
722 FOR Q2-1 TO 58:NEXT Q2
723 POSITION 11 . 23:7 #6:"hlgh":POS I TIO
N 15.22:? #6:HIGH:"-" : SOUND 8.50 . 10.15
:FOR Q2-1 TO 50:NEXT Q2
724 NEXT Q:SOUND 0.0.8.0
725 TRAP 1380:0PEN #2.8.0."D:HI2. DAT":
PRINT #2.HIGH:CLOSE #2

96

CHICKEN

7311 POSITION 2.6:? #6;"pross FIRE bull
on ":POSITION 4.7:? #6;"10 play again"
732 FOR 1-53248 TO 53251:POKE I.II:NEXT

I:SOUNO 1I.1I.1I.II:S0UND 1.11.11.11
735 REM WAIT FOR BUTTON
7411 IF STRIG(II)-l THEN 7411
741 Cl-4:C2-II:C3-II:SCOREONE-5119:BSW-1I
742 OPEN #2.4.9."D:HI2.DAT":INPUT #2.H
IGH:ClOSE #2
745 REM PM GRAPHICS OFF
7511 POKE 53278.9:POKE 53277.9:A-USR(15
46) :GOTO 289
899 REM BACK TO TOP-STOP BIRDMOVMNT .
8 1 II PO K E 1 56 9 • 39 : A - US R (l D • 9 • P M+ R N 5) : PO
KE 1576.9
815 REM SIGNAL AND INCREMENT SCORE
8211 FOR 1-1 TO 5:FOR J-19 TO 5 STEP -1
:SOUND 9.J.14.8:S0UND 1.J.2.8:NEXT J:S
OUND 9.1I.9.9:S0UND 1.9.9.9
825 A-USR(lD.9.PM+68+RN5) :FOR J-1 TO R
N D (9) • 3 9 : N EXT J: A - U S R (l D • 9 • P M+ 88 + R N 5)
839 SCORE-SCORE+DIF-2:POSITION 9.9:? #
6;SCORE;" ":NEXT I
831 IF SCORE>-SCOREONE THEN 833
832 GOTO 849
833 FOR 1-1 TO 3:POSITION 9.9:? #6;"wo
w,":GOSUB 835:POSITION 9.9:? #6;SCORE:
GOSUB 835:NEXT I
834 SCOREONE-SCOREONE+599:GOTO 849
835 FOR 0-29 TO 1 STEP -4:S0UND 1.0-5.
111.15:NEXT O:SOUND 1.9.9.II:RETURN
849 IF DIF<9 THEN DIF-DIF+1 :IF DIF-9 T
HEN Cl-4:C2-19:C3-9
841 IF DIF<>9 THEN Cl-4:C2-II:C3-9
842 REM
843 IF SCORE<BONUS THEN 859
844 SOUND 9.25.19.19:BONUS-BONUS+399:P
-PEEK(19) :IF P<11 THEN POKE 19.9:GOTO
848
846 POKE 19.P-19
848 POSITION BPOS.12:? #6; .. • .. :BPOS-BPO
S+l: BSW-BSW+1: IF BPOS>19 THEN BPOS-9
849 IF BPOS<>9 THEN W-7:U-l1

97

GAMES

858 IF BPOS-7 THEN RN2-17:GOTO 398
851 IF BPOS<>7 THEN RN2-1
852 IF BPOS-13 THEN RN3-187:RN4-187:GO
TO 398
853 IF BPOS<>13 THEN RN3-36:RN4-21
854 IF BPOS-8 THEN W-ll: U-7
855 IF BPOS-16 THEN RN3-8:RN4-8:RN5-21
:GOTO 398
856 IF BPOS<>16 THEN RN3-36:RN4=21 :RN5
-8
857 IF BPOS-19 THEN RN2-18:RN3=187:RN4
-8
858 IF BPOS<>19 THEN RN2-1 :RN3-36:RN4=
21
859 IF BPOS-l AND BSW>8 THEN GOSUB 148
8: GOTO 98es
869 GOTO 398
9BS REM TIME ' SUP RTNE .
918 POSITION 5,2:? #6;"TIME'S UP, ..
928 GOTO 728
998 REM CHANGE CAR COLOR RTNE.
1888 IF BPOS-18 OR BPOS-19 THEN CP-CP-
1
1885 CP-CP+l:IF CP-28 THEN CP-l
1818 POKE 77,8:C-ASC(C$(CP)):RETURN
1288 IF TIME-18 THEN SETCOLOR 4,12,2:F
OR K-l TO 18:S0UND 3,K,18,18:NEXT K:SO
UNO 3,8,8,8
1218 IF TIME<>18 THEN SETCOLOR Cl,C2,C
3
1228 RETURN
1388 GRAPHICS 8:S0UND 1,55,18,15:? "01
SK PROBLEM HIGH SCORE WAS NOT SAVE
D :FOR 1-1 TO 588:NEXT I
1318 SOUND 8,8,8,8:? "TYPE RUN TO PLAY

AGAIN"
1328 TRAP 13BS
1488 FOR 1-1 TO 255:S0UND 8,I,12,12:SE
TCOLOR 4,I,18:NEXT I
1418 FOR BPO-l TO 5:FOR BPOT-8 TO 19:5
OUND 8,BPOT*BPO,18,12
1428 POSITION BPOT,12:? #6;ZS(BPO) :NEX
T BPOT:NEXT BPO

98

CHICKEN

1425 SOUND 8,8,8,8
1426 POSITION 8 , 12:? #6:"&"
1427 POSITION 8,13:? #6;L$
1428 BSW- 8
1438 RETURN
9888 FOR 1- 1 TO 158:NEXT I:POKE 19,99 :
GOTO 478
15888 GRAPHICS 17:POSITION 8,8:? #6;iiB"

:POSITION 8,1:? #6;"':
1MIj!l!l!l1Jlilj~ - N 8,2

#6 ": POSITION 8,
3 : ? #6 ;"
15828 IF THEN 15858
15838 IF STRIG(8) - 8 THEN 16888
15848 GOTO 15828
15858 GRAPHICS 17:POSITION 8,8:? #6;"Y
OUR OBJECTIVE??": POSITION 8,1:? #6 ;"SI
MPLE. JUST GET THE"
15855 POSITION 8,2:? #6;"chicken SAFEL
Y":POSITION 8,3:? #6;"ACROSS THE ROAD"
15868 ·POSITION 8,4:? #6;"wilhoul GETTI
NG HIT":POSITION 8,5:? #6;"BY l1'li1."
15878 POSITION 8,7:? #6;"YOU MUST LEAR
N THE":POSITION 8,8:? #6;" SCORING SYST

WI· "
15888 POSITION 8,18:? #6;" all sorls of

':POSITION 8,11:? #6; surprises a
':POSITION 8,12

:POSITION 8, ? #6;"
13:? #6;"
15188 POS # ;"PLEASE PRESS

OPTION."
15168 IF PEEK(53279)-3 THEN 16888
15178 GOTO 15168
16888 GRAPHICS 17:POSITION 6,6:? #6;"C
III i mK eN" : P 0 S I TI 0 N 8, 7
16188 FOR 1- 1 TO 4:S0UNO 8,16,6,8:FOR
J-1 TO 28:NEXT J:SOUNO 8,22,6,8:FOR J=
1 TO 28:NEXT J
16158 NEXT I:SOUNO 8,8
1 6 2 88 ? # 6 ; " ---" : P 0 SIT ION 4, 8 :
? #6;" ION 8,9:Q2=8
16285

99

GAMES

162181 #6;"REVISED BY":FOR 1- 1
:NEXT I:POSITION 4.18:1 #6;"
II" :MK-58
16228 FOR 1-1 TO 258:NEXT 1
16238 FOR 1-1 TO 5:FOR J - 18 TO 5 STEP
-1:S0UND 8.J.14.8:S0UND 1.J.2.8:NEXT J
:SOUND 8,8.8.8:S0UND 1.8.8.8
16248 FOR K-l TO MK:NEXT K:MK - MK-18:NE
XT I
16258 RETURN

TYPO TABLE

Variable checksum - 1878383
Lin e num ran g e Cod e Length
4 - 14 HB 523
1 5 - 58 NJ 532
52 - 65 JK 534
78 - 118 VV 598
1 28 - 238 OU 561
232 - 288 KD 589
298 - 312 KH 548
348 - 388 UC 584
385 - 428 J U 583
438 - 465 JI 589
478 - 494 VU 582
495 - 525 ON 51 8
527 - 787 AW 447
71 3 - 721 AD 587
722 - 735 KR 582
748 - 828 NR 552
825 - 848 II 51 2
841 - 854 I J 530
855 - 1885 ZO 458
1818 - 1418 KZ 537
1420 - 15949 V F 495
15950 - 15989 LH 521
15998 - 16200 GN 529
1 6295 - 16258 RH 374

100

ATTACK ON THE DEATH STAR

Attack on the Death Star

I
n order to protect your home base from the dreaded Death Star, you are
launched in your X-wing fighter to attack the enemy. A s the simulation
begins, you are fl ying "down the trench ," the walls of the trench whip­

ing past . The object: destroy the fi ve radiat ion vents leading to the Death
Star's main reactor. If you succeed, the reactor will overheat and self-destruct,
destroying the Death Star.

To hit the radiation vents, line up your cursor aiming system, using a
joystick in Port One, and fi re , using the red button. The vents are green oval
openings in the bottom of the trench . The Death Star h as a full complement
of Tie fighters for its defense. The figh ters attack one by one, firing furiously. If
you are hit too many times , your figh ter will explode and crash. To combat the
Tie fighters , you 'll h ave to wait till the Tie fighter is in the center of the screen
before you can h it it .

This game h as been improved since it fi rst appeared in A NTIC. It now
has a scoring line and two new "endings."

by David Plotkin
System Requirements: 32K RAM , joysticl<

David Plotkin is a Chemical Engineer with Standard Oil. of California, and a game programmer by
avoCCltion . His Attack on the Death Sta r has been improved since publiCCltion, and the new version
is printed here in the bool<. Dave programs mostly in BASIC, but with some assembly langLwge ro ut ines,
and his games have appeared in several publications, including ANTIC.

5 REM ******** DEATHSTAR **** ****
8 REM 8Y DAVE PLOTKIN REVISED 8Y D. PL
OTKIN 1983
19 GOSUB 1599 : SCORE =9:SD =1299:B =9:HISC
ORE =9:F =1 : F1 =1 :GOSUB 899
90 COl =PEEK(708) : POKE 708.PEEK(709) :PO
KE 799 , PEEK(719) :POKE 710.COL
190 ST =PEEK(63l) :I F ((NUMH =RT AND ST =l
3) OR (NUMH =RT +4 AND ST =14)) THEN ST =l
5:GO TO 130
110 NUML =NUMl +lO * (ST =14) - lO*(ST =13) :NU

101

GAMES

MH =NUMH+(NUML>255) - (NUML<8):NUML =NUML+
256*(NUML<8) - 256*(NUML>255)
128 POKE OL4,NUML:POKE OL5,NUMH:NN =2*(
ST =13) - 2*(ST=14) :N =N+NN:Y3 =Y3 +NN
138 YTEMP=Y:IF SIZEL =8 THEN GOTO 175
148 IF SIZEL>l THEN SIZEL =SIZEL - l :Y =78
(SIZEL =2) +56(SIZEL =1):SH =68 * (SIZEL =2
)+76*(SIZEL=1) :GOTO 188
158 IF ABS(Y-Y2 - 7)<5 AND ABS(X - X2)<4 T
HEN SOUND 1,48,8,8:POKE 656,8:POKE 657
,1:SCORE =SCORE +18:? SCORE:SIZEC =1.9
168 IF ABS(Y3 - Y)<3 AND SIZEH <> 8 THEN P
OKE 787,82:S0UND 2,188,8,18:B =B+l:POKE

656,8:POKE 657,15:? B:FOR W=l TO 188:
NEXT W:IF B=5 THEN 788
178 SH =84:S0UNO 2,8,8,8:SIZEL =8:Y =55
175 IF STRIG(8) =8 THEN SIZEL =3:Y =88:S0
UNO 2,18,8,8:SH =68
188 IF (SIZEC =8 AND INT((38 - 5*B)*RND(8
)) =8) THEN SIZEC =2:Y2 =28:X2 =128
198 IF SIZEC =8 THEN GOTO 288
288 IF SIZEC =2 THEN GOTO 218
282 SIZEC=SIZEC - 8.1:Y2 =Y2 - 2 : X2 =X2 +5:PO
KE 53258,X2:F =F+l:IF F>4 THEN F=l
285 SH2 =27*(F =1) +188*(F =2) +288*(F =3) +2
12*(F =4) :SOUND 1,X2 - 128,18,18:IF SIZEC
<> 8 AND SIZE C <> 1 . 8 THE N GOT 0 2 4 8
287 SH2 =BLANK:SOUND 1,8,8,8:GOTO 248
218 XX =RND(8) :Y2 =Y2 +2*(Y2 <78)*(ST =13) -
2*(ST =14)*(Y2 >28) +4*(XX >8.8)*(Y2 <78) - 4
(XX<8.12)(Y2 >28)
228 FF =FF +2*(X2<112) - 2*(X2 > 138) :X2 =X2 +
fF:POKE 53258,X2:SH2 =28*(Y2<65 AND Y2 >
43) + 48 * (Y 2 <= 43)
225 IF (SIZEC =1.8 OR SIZEC =8) THEN SH2
=BLANK:SOUNO 1,48*(SIZEC =1 . 8) ,8,8*(SIZ
EC =1.8)
238 I F (S M= 8 AND I NT (R N 0 (8) * (1 6 - 2 * B)) =
8) THEN Yl =Y2:Xl =X2 - 4:POKE 53249,Xl:SM
=1 :SOUNO 3,158,8,6
248 IF SM =8 THEN GOTO 288
258 Yl =Yl +2*(ST =13)*(Yl<78) - 2*(ST =14):
SM=SM +8.25*LV

102

ATTACK ON THE DEATH STAR

255 SH1 =BLANK-(SM =4) +128-(SM<4 AND SM>
=3) +148-(SM<3 AND SM> =2) +168-(SM<2)
269 IF SM =4 THEN SOUND 3.9.9.9 : IF (Yl>
49 - 5-(LV =1) AND Yl<69 +5-(LV =1)) THEN S
OUNO 3.199.8.8:SETCOLOR 4.5.12:S0 =SO - 1
99-LV:FOR 0=1 TO 59:NEXT Q
265 IF SM =4 THEN SM =9:POKE 656.9:POKE
657.8 : ? SO;" ":SETCOLOR 4.9.9:S0UNO 3
.9.0.9
270 IF SO <9 THEN SO =O:POKE 656.0:POKE
657.8:? SO;" ":GOTO 600
289 Fl =Fl +l :IF Fl =4 THEN Fl = l
282 S H 4 = 2 24- (F 1 = 1) + 232 - (F'l = 2) + 2 49 * (F 1 =
3)
285 IF SIZEH =9 THEN GOTO 320
290 IF SIZEH<l THEN SIZEH =SIZEH +0 . 05:S
OUNO 0.29-SIZEH.19.6 : GOTO 409
300 IF SIZEH =l THEN Y3 =34 +N:SH3 =372:SI
ZEH =2:S0UNO 0.10.8.3:X4 =X4 +4*LV:FOR Q=
o TO 3:POKE 53252 +Q.X4 - 4-Q:NEXT Q
305 IF Y3 >85 THEN SH3 =BLANK:SIZEH =0:GO
TO 499 +209-(X4 >= 132)
319 Y3 =Y3 +3:SH3 =92-(Y3 - N> =75) +194*(Y3 -
N>46 AND Y3 - N<75) +116-(Y3 - N< =46)

103

GAMES

328 IF PEEK(19»=18 THEN POKE 19,8:SIZ
EH=8.1:POKE 787,196
488 IF YTEMP<>Y THEN D=USR(ADR(E$),P8+
YTEMP,PB+BLANK) :D=USR(ADR(E$) ,P8+Y,PB+
S H)
418 D=USR(ADR(E$)+58-25*(SIZEC<1.8) ,P2
+Y2,PB+SH2):D=USR(ADR(E$)+58,Pl+Yl,PB+
S H 1)
428D=USR(ADR(E$)+25,P3+Y3,PB+SH3):D =U
SR(ADR(E$),P4,PB+SH4):GOTO 98
688 D=USR(AOR(ES) ,P8+YTEMP,PB+BLANK):D
=USR(AOR(ES)+58,P2+Y2,PB+BLANK)
6820=USR(ADR(ES)+58,P1+Yl,PB+BLANK):D
=USR(ADR(ES)+25,P3+Y3,PB+BLANK)
685 IF SD>8 THEN GOTO 616
618 FOR W=l TO 58:POKE 788,RNO(8)*255:
POKE 789,RNO(8)*255:POKE 718,RNO(8)*25
5
615 SOUND INT(RNO(8)*4) ,RNO(8)*255,8,8
: NEXT W
616 NUML =PEEK(OL4) :NUMH=PEEK(OL5)
628 IF NUMH-RT> =4 THEN GOTO 635
625 NUML=NUML+28:NUMH=NUMH+(NUML>255):
NUML=NUML-256*(NUML>255)
638 POKE DL4,NUML:POKE DL5,NUMH:GOTO 6
28
635 FOR W=128 TO 1 STEP - 1:S0UNO 8,188
,8,W/18:NEXT W
648 SOUND 8,8,8,8:S0UNO 1,8,8,8:S0UND
2,8,8,8:S0UNO 3,8,8,8
645 POKE 788,232:POKE 789,258:POKE 718
,132:POKE 712,8:POKE 784,98
658 FOR XNEW=X4 TO 132:FOR 0=8 TO 3:PO
KE 53252+0,XNEW-4*0:NEXT O:NEXT XNEW
655 FOR C=18 TO 188 STEP 18:FOR Y=38 T
o 13 STEP - l:D=USR(AOR(E$) ,P9+Y,PB+13)
:SOUND l,Y,6,8:NEXT Y
657 POKE P4+INT(RND(8)*8),PEEK(53779)
669 SOUND 8,128-C,8,B:POKE 711,C:FOR W
=1 TO 75:NEXT W:NEXT C:SOUNO 1,8,8,8
665 O=USR(AOR(E$) ,P8+13,PB+BLANK)
678 POKE 623,1:SETCOLOR 4,8,14:S0UNO 8
,148,B,B:FOR N=14 TO 8 STEP - 1:S0UNO 8

104

ATTACK ON THE DEATH STAR

,149 - N*19,8,8:SETCOLOR 4,9,N
673 FOR NN =l TO 39:NEXT NN:XN =XN +8:POK
E 53252,132 +XN:POKE 53255,129 - XN:NEXT
N:XN=9
677 FOR N=14 TO 9 STEP -1 :SOUND 9,149-
N*1S,8,8:SETCOLOR 4,9,N:FOR NN = l TO 39
:NEXT NN:XN =XN +8
689 POKE 53253,128 +XN:POKE 53254,124-X
N:NEXT N:XN =9:FOR W=l TO 599:NEXT W:PO
KE 53277,9:GRAPHICS 17
683 SOUND 9,9,9,9:POSITION 1,8:? #6;"T
HE DEATH STAR HAS":? #6;"DESTROYED YOU
RHOME":? #6;"8ASE.YOU loslllill"
684 IF SCORE>HISCORE THEN HISCORE =SCOR
E
685 ? #6:? #6;" FINAL SCORE ";SCORE:?
6 ; " IlilIIIIG" :? # 6 ; " TOP L AY A G

AIN··:? #6;" PRESS IIIID BUTTON"
686 ? #6;" HIGH SCORE ";HISCORE
687 IF STRIG(9) =1 THEN GOTO 687
699 B=9:SCORE =9:SD =1299:F =1 :Fl =l:GOSUB

836:GOTO 99
799 D=USR(ADR(E$) ,P9 +YTEMP,PB +BLANK):D
=USR(ADR(E$) +59,P2 +Y2,PB +BLANK)
791 D=USR(ADR(E$) +58,P1 +Y1,PB +BLANK):D
=USR(ADR(E$) +25,P3 +Y3,PB +BLANK)
793 SOUND 1,9,9,9:S0UND 2.9,8,8:S0UND
3,8,9,9
795 NUML =PEEK(DL4) :NUMH =PEEK(DL5) :FOR
W=l TO 18:IND =48*(W/2 =INT(W/2)) - 48*(W
I 2 <> I N T (WI 2))
719 NUML =NUML +IND:NUMH =NUMH + (NUML >255)
- (NUML<8) :NUML =NUML - 256*(NUML>255) +256
*(NUML<9)
715 SOUND 9,W*29,8,8:POKE DL4,NUML:POK
E DL5,NUMH
729 FOR M=l TO 199:NEXT M:NEXT W:D =USR
(ADR(E$) ,PB +394,PB +BLANK) :POKE 53277,8
: 8YT =7: LIN =23
7 2 5 D $ (1) - " 19'91191IiI!JjjJ[!][!Il!UIj P [!][!][!][!]lfJI!IliIl!I!l k l!IJ

kl!lJy~mU A yjjJ[!]m~W~

~~~~~m~mmooW~ 

105 



GAMES 

lIDm U/\ y[!][!]lIDkl!lJyl.I.I/IW'.l!lldll i _t·nn.U.1 k~[!][!][] 
•• II.I.I!!lIll i P~" 
727 D$(161)-"[!]":POKE DL4,II:POKE DL5,RT 
+1 :STRT-256*(RT+l )+111*211+6:D-USR(PICT 
,STRT,ADR(D$) ,BYT,LIN.211) 
728 FOR N-l TO 1511:NEXT N 
7311 FOR NN-l TO 21111:S0UND II.NN,8,14:S0 
UNO 1.NN+ll1,8.14:POKE 712,14-NN/15:NEX 
T NN:FOR NN-l TO 36:COL-PEEK(7118) 
732 POKE 7118,PEEK(7119) :POKE 7119,PEEK(7 
111):PDKE 7111,COL:SOUND II.NN*6,8,14:S0 
UNO 1,NN*5.8.14 . 
735 FOR MM-l TO 15:NEXT MM:NEXT NN:POK 
E 712.II:FOR 0-11 TO 2:FOR N-14 TO II STE 
P -1 :POKE 7118+0,N:SOUND 1I.1411-111*N.8.1 
4 
7411 SOUND 1.152-111*N.8.14:FOR NN-l TO 

311:NEXT NN:NEXT N:FOR NN-l TO 511:NEXT 
NN:NEXT 0 

745 FOR N-14 TO II STEP -1 :SOUND 11.1411. 
8.N:SOUND 1,152,8,N:FOR NN-l TO 311:NEX 
T NN:NEXT N 
775 GRAPHICS 17:POSITION 3,3:? #6:"CON 
G RAT U L A T ION S WIi'jljOlljl" :? #6;" Y 
OU HAVE DESTROYED":? #6;" THE" 
7811 ? #6;" death star":GOTO 684 
81111 DIM 0$(6511) ,E$(811) :FOR A-l TO 75:R 
EAD I:E$(A.A)-CHR$(I) :NEXT A 
8114 DATA 1114.1114.133,2114.1114.133,2113.1 
II 4 • 1 33 , 211 7 , 1 II 4 , 1 33 • 211 6 , 1 6 II • II • 1 77 , 2 II 6 • 1 
45.2113,21111.192.8,2118.247.96 
8115 DATA 1114.1114.133,2114.1114,133.2113,1 
114.133,2117,1114,133,2116.1611.11.177.2116.1 
45.2113~21111.192.12,2118.247.96 
8116 DATA 1114.1114.133.2114.1114.133,2113.1 
II 4 • 1 33 • 2 II 7 • 1 II 4 • 1 3 3 , 2 II 6 • 1 69 • 9 • 1 77 , 296 • 1 
45.2113.2119.192,211.298.247.96 
819 A- PEEK(196)-29:POKE 54279.A:PB-256 
*A:FOR A-PB TO PB+247:READ I:POKE A.I: 
N EXT A 
815 DATA 9.9.1I.9.1I,9.129.129,153, .~J.2 
3 1 , 1 53 , 1 29 . 1 29 • 9 , II • 9 • 9 , 9 , 9 • 9 • II • II , 91 11 , II 
, 11,66.911.1112,911,66,11.11.11 ,II, II, 11,9.11 

106 



ATTACK ON THE DEATH STAR 

816 DATA 11,,0,0,0,0,0,0,0,36,60,36,8,0, 
0,0,9,0,9,9,0,24,24,69,60,69,126,255,2 
19,9,24,24,24,69,126,99,9 
829 DATA 9,9,16,16,56,49,9,9,9,0,16,16 
,124,16,16,9,9,9,9,9,9,24,69,126,255,1 
26,69,24,9,9,0,9,9,24,69,126,69,24,8,9 
821 DATA 9,9,9,9,9,24,69,24,9,9,9,0,8, 
9,24,69,36,126,189,99,99,165,255,165,9 
9,99,189,192,60,24,9,9 
825 DATA 9,0,0,24,36,69,69,99,99,36,36 
,36,99,90,69,36,24,0,9,9,9,9,9,9,9,9,9 
,24,36,24,24,24,36,24,9,9,0,9,8,0 
826 DATA 16,32,96,184,42,69,8,16,9,0,8 
, 0 , 9 , 6 2 , 8 , 2 9 , 29 , 8 , 6 2 , 9 , 9 , 9 , 9 , 9 , 8 , 4 , 6 • 2 
9,84,69,16,8,9,9,9,9 
827 DATA 69,24,255.219,255,153.24,69.6 
0,24,255,109,255,153.24.69,60.24,255,1 
82,255,153,24.69 
839 POKE 53256,1 :PDKE 53257.3:POKE 532 
58.1 :PDKE 53259,1 :PDKE 53269,85 
835 FOR A=PB+384 TO PB+1924:PDKE A,9:N 
EXT A:RT-PEEK(196)-8 
836 POKE 623,17:X-121 :Xl-X:X2-X:POKE 5 
3248,X:POKE 53259,X:POKE 53251,X 
849 POKE 88,9:FOR N-9 TO 8:POKE 89,RT+ 
N :? "~": NEXT N: P 0 K E 1 9 6 , R T : G RAP HIe S 5: 
POKE 559,9 
85 9 PIC T-A 0 R (" h haGh"!ajh h~h hll~ ~mG 
~"m8~8Ll1f:1lG .m'~ 
" ) 
865 POKE 794,98:POKE 795.36:POKE 796,5 
9:POKE 797,196:POKE 798,232:POKE 799.2 
59:POKE 710.132:POKE 711,24 
8 7 9 0 $ ( 1 ) =" r:n[IJ::u::~rmu:n:D)[J]I:D 

uuuuuu 

~umllyuUuuUUuuuuUUUUUUmUUyUUUUUUUUCCCl 

~~I:i::G.""""" 8 7 2 ,0$ (161) -"."""Lij 

107 



GAMES 

g:J::u:~U U U U U U" 
1 )-"UUUUUUV 

UUUaQI 
uuwm" 

.O:POK 89.RT+1 : FOR N- 1 TO 
40:COlOR RND(O) *3+ 1 :PlOT RND(O) *79.RN 
D(O)*47:NEXT N 
885 DL - PEEK(560)+256 *PEEK(561) :Dl4 - Dl 
+4:DL5 - DL+5:NUMl - 9:NUMH - RT+4:POKE 88.N 
UML:POKE 89.NUMH 
890 STRT - (RT+4)*256 +9*20:A - USR(PICT.S 
TRT.ADR(D$) .20.31 .20) :POKE Dl4.NUMl:PO 
KE DL5.NUMH:A - Dl 
900 DlIC -ADR("H~4~h@"):HI - IN 
T(DLIC/256) :LO - DLIC-HI *256:POKE 512.LO 
:POKE 513.HI 
910 lBASE - DL-2:POKE LBASE+40+6.PEEK(LB 
ASE+40+6)+128:POKE 54286.192 
920 IF PEEK(A)<>66 THEN A- A+1 :GOTO 920 
930 POKE A.71 :POKE A+3.6:POKE A+4.6:PO 
KE A+5.65:POKE A+6.PEEK(A+7):POKE A+7. 
PEEK(A+8) 
940 POKE 656.0:POKE 657.29:PRINT "LIIiIll 
E SHIELDS PORTS 
959 POKE 656.0:POKE 657.1 :PRINT SCORE: 
lil o K E 656. 9 : PO K E 657 . 8 : P R I N T SO: PO K E 6 f · 
6.0:POKE 657.15:PRINT B 
955 X4 - 60:FOR N- O TO 3:POKE 53252+N.X4 
-~*N:NEXT N:D - USR(ADR(E$) .PB+384+19.P 

108 



ATTACK ON THE DEATH STAR 

B + 224·) • 960 POKE 53277,3:POKE 559,46:Y-56:D-US 
R ( A 0 R·( E $ ) , P B + 5 1 2 + Y , P B + 8 4 ) 
980 SIZEC - 0:SM-0:SIZEL - 0:N-0:Y3-38 : SIZ 
EH-O:~F-l :LV-l :POKE 656,1 :POKE 657,0:P 
RINT "BEGINNER" 
990 It PEEK(53279)-3 THEN LV-l:POKE 65 
6,1:POKE 657 , 0:PRINT "BEGINNER" 
1000 "I F PEEK(53279) - 5 THEN LV-2 : POKE 6 
56,1 : POKE 657,0:PRINT "EXPERT 
1010 IF PEEK(53279)-6 THEN GOTO 1030 
1020 ' GOTO 990 
1030 POKE 656,1:POKE 657,0:PRINT " 
1040 SOUND 0,18,8,3:PO-PB+512:Pl-PB+64 
0:P2-PB+768:P3-PB+896:P4-PB+394:BLANK-
524 
1050 SH-84:SH1-BLANK:SH2-BLANK:SH3-BLA 
NK:RETURN 
1500 GRAPHICS 2+16:POSITION 3,4:PRINT 
#6;"DOWN THE TRENCH" 
1510 POSITION 0,5:PRINT #6;"allack on 
the dealh":POSITION 7,6:PRINT #6;"slar 
":POSITION 2,7:PRINT #6;"BY DAVID PLOT 
KIN" 

ION 0,8;PRINT #6;" 
':POSITION 1,9:PRI 

ase wa 0 SEC, " 
1530 SOUND 2,55,12,8:FOR WW-l TO 5 
1548 FOR W- l0 TO 100 STEP 2:S0UND O,W, 
10.8:S0UND 1,110-W,10.B:POKE 708,W:NEX 
T W:NEXT WW 
1550 SOUND 2.8,8.0:S0UND 1,0.0,0;SOUND 
0.0.0.8 

1560 FOR W- 10 TO 255:POKE 710.W:SOUND 
0.W.18.6:NEXT W:SOUND 9.0.0.8:RETURN 

TYPO TABLE 

Variable checksum -
Line num ra nge 
5 - 120 
130 - 170 
175 - 207 
210 - 230 

2394018 
Code Length 

PO 532 ' 
GA 554 . 
YP 542 \ 
WT 503 ' 

109 



GAMES 

240 - 265 YD 548 • 
270 - 305 DT 506 • 
318 - 618 RS 603 ' 
615 - 645 ZM 504 ' 
650 670 KG 543 • 
673 - 684 AW 509 I 

685 - 705 PO 608 ' 
718 - 727 VO 557' 
728 - 740 ME 569 . 
745 - 885 VO 562 
886 - 821 OP 594 
825 - 836 JL 528 • 
840 - 871 WW 525 
872 - 877 LT 574 
880 - 918 PV 520 
920 - 960 J H 541 
988 - 1840 UZ 538 
1850 - 1540 NV 520 
1 550 - 1569 VM 209 

• 

110 



SPEED DEMON 

Speed Demon 
A slick way to circumvent 

Player/Missile programming. 

Speed Demon! is a one-player car-raci ng game using a joystick in Port 
One. You are given a high-performance stock car which leaks oil every 
now and then. At the start your car is warming up at the gate, waiting 

for the count-down.ln the test window you see a prompt for the skill level you 
wish. There are two levels: pressing [1] starts you at the beginner's level; press­
ing [2] starts you at the pro level, in which your car has a severe oil leak. Once 
the count reaches zero, "Yer Off!" Your objective is to circle the entire course 
three times in as little time as possible. 

Avoid hitting the bales of hay that line the course, and the oil slicks, left 
behind by your car. These cause your car to spin out. You can only resume 
driving when your car has regained traction. 

To start the game, press [START] and get ready to burn rubber!! 

by John Magdziarz 
System Requirements: 16K RAM, joystick 

80 REM *** '***** SPEED DEMON ******** 

90 REM 8Y JOHN MAGDZIARZ 1982 
100 GRAPHICS 1+16 
110 POSITION 7,8:? #6;"ANTIC" 
1 2 0 PO SIT ION 6, 1 0 :? # 6 ; "presents" 
1 3 0 P 0 SIT ION 4, 1 2 :? # 6 ; "speed demon I " 
140 FOR lOOP =l TO 1000:NEXT lOOP 
1 5 0 P 0 SIT ION 3, 1 6 :? # 6 ; "please wail . . . " : F 0 
R T=l TO 600:NEXT T 
160 GOTO 180 
170 FOR LOOP = l TO 10:NEXT LOOP:RETURN 
180 GRAPHICS O:POKE 559,0:REM SHUT OFF 

111 



GAMES 

SCREEN TEMPORARILY 
190 OPEN #1.4.0."K:":REM OPEN KEYBOARO 

FOR DIRECT 
200 A ~ PEEK(106) :POKE 106.A - 5 
210 CP ~ PEEK(106) + 1 :POKE 756.CP 
220 CHAR ~ CP*256 
230 FOR M ~ O TO 1923 
240 POKE CHAR +M.PEEK(57344 +M) :REM COPY 

CHAR SET FROM ROM TO RAM 
250 NEXT M 
260 FOR NC ~ l TO 9:READ OLD 
270 DIF ~ (OLD + 4 + 64)*8 
280 FOR M ~ O TO 7:READ LINE:REM POKE DA 
TA FOR ALTERED CHARACTERS SET 
290 POKE CHAR +D1F +M.LINE:NEXT M 
380 NEXT NC:REM DATA FOR NEW CHARACTER 
S 
310 DATA 1.136.136.255.255.255.255.136 
. 1 36 
320 DATA 2.68.68.198.198 . 60.68.198.198 
338 DATA 3.34.34.191.191.191.191.34.34 
348 DATA 4.198.198.68.68.198.198.69.60 
358 DATA 9.8.8.29.28.20.28.8.8 
360 DATA 18.284.284.51.51.284.284.51.5 
1 
370 DATA 11.255.85.255.178.68.28.68.8 
388 DATA 12.8.68.28.68.178.255.85.255 
398 DATA 13.8.42.168.42.178.178.168.49 
488 GRAPHICS 8:POKE 756.CP:POKE 559.9 
410 DL ~ PEEK(569) + PEEK(561 )*256:REM ALT 
ER DISPLAY LIST 
420 POKE DL +3.68 
438 FOR I ~ 6 TO 23:POKE DL +I.4:NEXT I 
448 POKE DL +28 . 4 
458 FOR I ~ 8 TO 4:READ eOL:REM SET SeRE 
EN COLORS. REGISTERS 8- 4 
460 POKE 788 +I.eOL:NEXT I 
470 DATA 26.0.198.72.5 
4 8 0 ? "I!SI": DIM H 0 R $ ( 4 8 ) . V E R 1$ ( 3 0 ) : DIM C 
R 1 $ ( 4 ) 
4 9 8 P O.K E 5 5 9 • 0 :? "I!SI": RES TOR E 5 5 8 : S 1 ~ 7 
589 FOR I2 ~ 1 TO 39:HOR$(I2.I2) ~ eHR$(13 
) :NEXT 12 

112 



SPEED DEMON 

519 FOR I - I TO 39 STEP 3:VERT$(I.I) - CH 
R$(13) :VERT$(I + l .I + l) - CHR$(29) :VERT$(I 
+2.I + 2) - CHR$(39) :NEXT I 
529 POKE 82.9 
539 REM DRAW PLAYFIELD 
549 FOR LOOP - I TO 8:READ I.J.K.L:POSIT 
ION I.J:? HOR$(K.L) :NEXT LOOP 
559 DATA 9.9.1.39.28.3.1.9.3.6.1.29.25 
.6.1.8.9.9.1.19.3. 12.1.13.15.15 .1.22.9 
• 1 8 • 1 • 39 
569 FOR LOOP - I TO 27:READ I.J.K.L:POSI 
TION I.J:? VERT$(K.L) :NEXT LOOP 
579 REM DATA FOR PLAYFIELD 
589 DATA 9.0.1.39.9.19.1.22.3.1.1.1.3. 
3.1.12.6.3.1.9.9.1.1.9 
599 DATA 13.3.1.9.17.1.1.12.21.3.1.9.2 
5.1.1.28.25.11.1.6.29.9.1.18 
699 DATA 32.7.1.18.36.4.1.6.35.6.1.21. 
36.13.1.6.38.1.1.39 
619 DATA 38.11.1.24.19.19.1.6.15.13.1. 
6.12.14.1.12.9.13.1.9 
629 DATA 6.14.1.12.3.13.1.9.22.7.1.6.2 
1.9.1.12.22.13.1.6 
639 POSITION 3.19:? "I DRIVER ITIMEIL 

113 



GAMES 

API" 
648 POSITION 3 , 28:? " 
658 POSITION 3,21 : ? "IPLAYER #11 0 
8 I" 
668 POSITION 3 , 22 : ? " 
678 POSITION 24,19:? CHR$(124) ;CHR$(29 
) ;CHR$(38) ;CHR$(124) ;CHR$(29) ;CHR $ (30) 
;CHR$(124) ;CHR$(29) ;CHR$(38) ;CHR$( 124) 
688 POSITION 26,28:? CHR$(14); " SPEED 
";CHR$(14) 

698 POSITION 26,21:? CHR$(2) ; " DEMON 
";CHR$(22) 
788 POSITION 24,15:? CHR$(15) : POSI TION 

24,18 : ? CHR$(16) 
710 FOR 1=1 TO 4:CR1$(I,I) =CHR$(I +132) 
:NEXT I:LAP1 =- 1 :OK =8:AG =0:TIME1 =8 : LP =1 
728 POSITION 23,16:? CR1$(l,l) : Xl =23:Y 
1 = 1 6 
738 POKE 559,34:POKE 752,l:POKE 53279 , 
8 
748 SOUND 8,170,4,4 
750 POSITION 26,19:? "WHAT LEVEL?"; :GE 
T #l,LEV 
768 IF LEV =49 THEN SC =45:GOTO 790 
770 SC =lO 
788 IF LEV<> l AND LEV <> 50 THEN 758 
798 POSITION 26,19:? .. 
80 0 REM 
810 GOSUB 1288 
820 FOR G=5 TO 1 STEP - l:POSITION 23.2 
1:? G:SOUND 0.40.18.4 : FOR T=l TO . 180 : N 
EXT T:S~UND 8.8,8.0:GOSUB 170:NEXT G 
830 POSITION 23,21:? " " 
849 SOUND 0.85.6.5 
850 POKE 20.0 : POKE 19.0 : REM RESET REAL 

TIME CLOCK 
860 REM START OF GAME ROUTINE 
870 . POSITION 15.21:? PEEK(19) :IF PEEK( 
19»98 THEN 480 
880 IF PEEK(53279) =6 THEN 490 
890 IF OK1 =1 THEN 870 
g88 IF AG =l THEN 1200 
910 S=STICK(O):IF S=15 OR 8=10 OR 8=6 

114 



SPEED DEMON 

OR S- 5 OR S- 9 THEN S-Sl 
9211 Sl - S 
9311 REM READ STICK 
9411 ON S-4 GOTO 9611.9711.9811.11.9911.1111111 
.111111.11.111311.111411 
9511 GOTO 9111 
9611 GOTO 8711 
9711 GOTO 8711 
9811 Xll - Xl+l: Yll - Yl: PI-I: GOTO 111711 
9911 GOTO 8711 
1111111 GOTO 8711 
111111 X1L - X1-1 :Y1L - Yl:Pl - 3:IF. (Xl - 24 OR 

Xl - 25) AND (Yl -1 6 OR Yl-17) THEN 8711 
111211 GOTO 18711 
111311 X1L - X1:Y1L - Y1+1 :Pl - 4:GOTO 111511 
111411 X1L - Xl:Y1L - Yl-l:Pl - 2 
111511 IF (S - 14 OR S- 13) AND (Xl-24) AND 

(Yl - 16 OR Y- 17) THEN S- 7:GOTD 9411 
111611 REM CHECK COLLISIONS 
111711 LOCATE X1L.Y1L.Zl :POSITION X1L.Yl 
L:PUT #6.Z1:LX - Xl :LY-Yl 
111811 IF Zl - 17 THEN POSITION Xl.Yl:? " 
" :X1 - Xll:Y1 - Yll 
111911 IF Zl<>32 THEN 11711 
111111 REM MOVE CAR 
11111 POSITION Xl.Yl:? " ":POSITION XIL 
.Y1L: ~ CR1S(Pl.Pl) :IF Pl<>LP THEN GOSU 
8 135 II 
11211 ~ 0 -P l:X1 - X1L:Yl-Y1L 
11311 IF Xl - 24 AND (Yl - 16 OR Yl - 17) THE 
N LAP1~L AP1+1 :SOUND 2.511.12.111:GOSUB 1 
711:POS,ITION 211.21:? LAPI 
11411 SOUND 2.11.11.11 
11511 IF LAPI-3 THEN POSITION Xl.Y1:? " 
":SOUND II.II . II.II:GOSUB 12911:GOTO 6411 

11611 ~OSUB 12311:GOTO 8711 
11711 ~- INT(RND(II)·3+1) 
11811 FOR 1-14 TO II STEP -2:S0UND 1.11111 
.II.I : GOSUB 1711:NEXT I 
11911 FOR G- l TO K:FOR 1- 1 TO 4:POSITIO 
N X1.Y1:? CR1S(I.I) :AG - 1 :GOTO 8711 
121111 NEXT I:NEXT G:AG - II:POSITION X1.Yl 
:? CRl$(P1.P1) 

115 



GAMES 

1218 GOTO 9111 
12211 REM OIL SLICK PLACEMENT ROUTINE 
12311 I-INT{RND{I1) *SC+l ) 
12411 IF 1-7 THEN GOSUB 12611 
12511 RETURN 
12611 LOCATE LX.LY.l:IF l-32 THEN POSIT 
ION LX.LY:? CHR$(17) :RETURN 
12711 POSITION LX.LY:PUT #6.l:RETURN 
12BI1 RETURN 
12911 POSITION 26.211:? "GAME OVERI":POS 
ITION 25.21:? " 
131111 POKE 53279.11 
13111 S2 - PEEK(53279) :IF S2<>6 THEN 13111 
13211 GOTO 4911 
13311 RETURN 
13411 REM CAR TURNING SOUND 
13511 SOUND 2.5.I1.S:S0UND 3.2.111.S:FOR 
X-l TO 111:NEXT X:SOUND 2.11.11.I1:S0UND 3 
.11.11.11 
13611 RETURN 

TYPO TABLE 

Variable checksum - 11165147 
Lin e n u m ran g e Cod e Length 
SI1 - 1 911 OP 48 0-
2011 - 3111 J G 394 ' 
3211 - 4311 XV 4 3 6 ~ 

449 - 5511 OY 568 . 
5611 - 6611 BX 51 4. 
6711 - 7311 PS 54~ 
749 - 8511 AF 51 6' 
8611 - 9711 N F 4113 
9811 - 111911 Xl 462 . 
1 1 1111 - 11911 OA 524 -
1 2 1111 - 1 31 11 FT 353 ' 
1 320 - 13611 GX 211' 

116 



BATS 

Bats 

T he objects of Bats is to fly your bat through a cavern while avoiding 
the walls and eating insects. You score points for every insect eaten. 
Pressing the fire button causes your bat to fly higher, releasing it 

causes the bat to fall. Your bat always flies steadily forward. You start over 
after you either score 300 points or you lose your bats. You lose all points if 
you hit a stalactite. There are poison bugs, the color of your bat. Eat one of 
these and your bat dies, you lose all points, and 100 penalty points are 
deducted. 

The cavern narrows as the game progresses. You get a bonus bat for every 
1000 points, with four bonus bats maximum. The game ends when all bats are 
dead. by Stan Ockers 

System requirements: 16 RAM, joystick 

19 REM ••••••• BATS •••••••••• 
20 REM BY STAN OCKERS 3-82 
39 DIM ZZ$(32) :FOR 1-1 TO 32:READ A:ZZ 
$(I)-CHR$(A):NEXT I:GOSUB 1240:CLR 
49 DATA 194.104.133.204.194.133.293.19 
4.133.296.104.133.295.162.4.169.9 
59 DATA 177.203.145.295.136.298.249.23 
0.204.230.206.202,208.249.96 
60 TRAP 60:? "# PLAYERS"; :POKE 764.25 
5:INPUT NP 
79 REM •• PM GRAPHICS •• 
89 DIM D$(1).F$((INT(ADR(D$)/1924)+1)* 
1924-ADR(D$)-1) .PM$(384) .M$(128) .P$(12 
8).MM$(8) 
99 RESTORE 199:FOR 1-1 TO 8:READ A:MM$ 
(I)-CHR$(A) :NEXT I 
199 DATA 3.3.12.12.48.48.192.192 
119 PM$-CHR$(9) :PM$(384)-CHR$(9) :PM$(2 

117 



GAMES 

)- PM$:M$=PM$ : P$-M$ 
129 REM ** MISSILE COLORS *. 
139 POKE 794.14:POKE 795.39:POKE 786.5 
4:POKE 797.79 
149 REM ** VBI ROUT. TO MOVE MISSILES 

* * 
159 FOR 1- 1536 TO 1566:READ A:POKE I.A 
:NEXT I 
169 DATA 194.169.14.162.6.169.7.76.92. 
228.99.129.159.189.162.3.222.19.6.189. 
19.6.157.4.298.282.16.244,76,98,228 
179 REM ** BAT IMAGES ** 
180 DIM BATDN$(5):BATDN$ - P$:FOR 1- 2 TO 

4:READ A: BATDN$(I.I) - CHR$(A):NEXT I 
190 DATA 24.165,66 
299 DIM BATUP$(5) :BATUP$ - P$:FOR 1-2 TO 

4:READ A:BATUP$(I,I) - CHR$(A) :NEXT I 
219 DATA 66,165,24 
229 POKE 54279 , ADR(PM$)/256 : POKE 559,4 
6:POKE 53277,3:POKE 623,4:A - USR(1536) 
239 REM ** STALACTITES AND STALAGMITE 
S •• 
249 DIM C$(42) ,U$(42) :C$ - "··*··$%**··· 
·& " :U$-")(·**··' •••••• .. :FOR 1- 1 TO 14 
:C$(1+14)-CHR$(ASC(C$(I))-32) 
259 U$(I+14) - CHR$(ASC(U$(I) )-32) :C$(I+ 
28)-CHRS(ASC(CS(I))+128):US(I+28) - CHRS 
(ASC(U$(I))+128):NEXT I 
269 DIM P(NP) .SCORE(NP) ,TOTAL(NP) ,BN(N 
P) . BON U S ( N P ) 
279 W-7:P-9:POKE 82,0 
280 FOR 1-1 TO NP : SCORE(I) - O:TOTAL(I) -
0:BN(I)-3:BONUS(I) - 1000:NEXT I:NXTCV-3 
00· N P 
290 REM *. CHANGE WIDTH OF CAVERN *. 
399 IF W>3 THEN W- W-l 
319 GOSUB 669 
329 P- P+l:IF P>NP THEN P- 1 
330 IF BN(P)-9 THEN 320 
340 MS-PM$:FOR 1- 0 TO 3:MS(YST+5·W+W· 
( 3 - I ) ) -MM $ ( 2 *I + 1 , 2 • 1+2 ) : NEXT I 
350 REM •• MAIN LOOP *. 
369 POKE 656,1 :POKE 657.22:?" Pul I J 

118 



BATS 

oyslick" 
370 IF STICK(0)<> 13 THEN 370 
380 REM •• SCORECARD •• 
390 ? CHR$(125) :GOSUB 1989:POKE 656,0: 
PO K E 65 7 , 26 :? " P l A V E R #": P 
409 POKE 656,1 :POKE 657,24:? "Round 
Tolal" ; :GOSUB 1109 
410 POKE 53248,30 : VPOS=VST+20:POKE 532 
78,0:T-0:oIS - 12 
420 FOR XPOS - 47 TO 200:POKE 53248,XPOS 
:IF STRIG(9) - 0 THEN VPOS=VPOS-1 :P$(VPO 
S) - BATUP$ 
430 IF STRIG(O) - l THEN VPOS - VPOS+1 :P$( 
VPOS) - BAToN$ 
440 IF PEEK(53256»9 THEN POKE 1546,0: 
TOTAl(P) - TOTAl(P)-l09 : GOTO 570 
450 IF PEEK(53257»0 THEN POKE 1547,0: 
GOSUB 1130 
460 IF PEEK(53258»0 THEN POKE 1548,0 : 
GOSUB 1130 
470 IF PEEK(53259»0 THEN POKE 1549,0 : 
GOSUB 1139 
480 IF PEEK(53252»0 THEN 570 
490 NEXT XPOS:P$ - PM$ 
500 IF SCORE(P) <300 THEN 410 

119 



GAMES 

519 TOTAL(P)-TOTAL(P)+SCORE(P) :SCORE(P 
)-9:GOSUB 1119 
529 IF TOTAL(P»BONUS(P) AND BN(P)<4 T 
HEN BONUS(P)-BONUS(P)+1999:BN(P)-BN(P) 
+1:GOSUB 19B9:DIS - 19:T-39:GOSUB 790 
530 FOR I-I TO 30:GOSUB 1120:FOR J - l T 
o 39:NEXT J:GOSUB 1100:NEXT I 
540 IF P-NP THEN 300 
550 GOTO 320 
560 REM .* LOSE A BAT .* 
570 DIS-l0:T - 9:GOSUB 799 
580 YPOS-YPOS+l:P$(YPOS)-BATDN$:POKE 5 
3278,0:SOUND 1,YPOS,10,10:IF PEEK(5325 
2)-0 THEN 580 
5~0 GOSUB 800:P$ - PM$:SCORE(P) - 0:BN(P)­
BN(P)-l :GOSUB 1980:IF BN(P) - 9 THEN POK 
E 656,0:POKE 657,6:?" ":GOSUB 830 
600 GOSUB 1090:FOR 1- 1 TO NP:IF BN(I» 
9 THEN 539 
619 NEXT I:GOSUB 1150:GRAPHICS 17:POSI 
TI 0 N 5, 2 :? # 6 : "111m E 0 v iii" : FOR I - 1 TON 
P : PO SIT ION 3, 2 + 2 *I :? # 6 : "m I a V er #": I ; 
620 ? #6;" - ";TOTAL(I):NEXT I:POSITIO 
N 3,23:? #6;"PRESS ANY KEY": 
630 FOR 1- 1 TO 300:NEXT I:GOSUB 820:IF 

FL-8 THEN 638 
640 GOTO 270 
650 REM •• DRAW CAVERN *. 
668 GOSUB 1158:GRAPHICS 2:GOSUB 1178:P 
OKE 77,8 
670 D L - I NT ( R N D ( 8 ) • ( 8 -W) ) + 1 : YS T - 8 • ( D L + 
1 ) 
689 FOR X-O TO 19:GOSUB 770:Y - 8:FOR 1-
R+7-DL TO R+6:POSITION X,Y:? #6;C$(I.1 
): Y-Y+l : NEXT I 
698 FOR I-I TO W:POSITION X,Y:? #6;" " 
:Y-Y+l:NEXT I 
798 IF DL+W>- 19 THEN Y-Y-l:POSITION X, 
V:? #6:"''':GOTO 728 
719 GOSUB 779:FOR I - R TO R+9 - DL-W:POSI 
TION X,Y:? #6:U$(I,I):Y - Y+l:NEXT I 
728 IF DL<-1 THEN DL - 2:GOTO 759 
738 IF DL>- 18-W THEN DL - 9-W : GOTO 759 

120 



748 DL - DL+INT(RND(0) *3)-1 
750 NEXT X 
760 RETURN 
770 R- INT(RND(0) *6)*7+1:RETURN 
780 REM ** SOUND SUBR'S ** 

BATS 

790 FOR 1- 15 TO 0 STEP -1 :SDUND 9,1,01 
S,I:FOR J - l TO T:NEXT J : NEXT I:RETURN 
809 FOR 1- 19 TO 2 STEP -2:S0UND O,RND( 
9)*255,8,I:SOUND l,RND(0)*255,8,I:FOR 

J - l TO 30:NEXT J:NEXT I 
Bl0 SOUND O,O,O,O:SOUND 1,0,0,0:RETURN 

829 RESTORE 1050:LS-30:LL-5:GOSUB 840: 
RETURN 
830 RESTORE 1000:LS - 20:LL - l0 
840 FL - O 
850 READ I,J:IF 1- 3 THEN RETURN 
860 IF 1- 0 THEN 890 
879 IF PEEK(53775)<255 THEN FL - l :RETUR 
N 
880 SOUND 0,I,10,10:S0UND 1,1-2,10,6 
899 FOR 1- 1 TO J:FOR K- l TO LS:NEXT K: 
NEXT I:SOUND O,O,O,O : SOUND 1,0,0,0 
909 FOR 1- 1 TO LL:NEXT I:GOTD 850 
919 RESTORE 1010:LS - 12:LL - 12:GDSU8 840 
929 IF FL - l THEN RETURN 
939 RESTORE 1930:GOSUB 840 
940 IF FL - l THEN RETURN 
959 RESTORE 1010:GOSUB 840 
960 IF FL - l THEN RETURN 
979 RESTORE 1040:GOSUB 840 
989 IF FL-l THEN RETURN 
990 FOR 1- 1 TO 300:NEXT I:GOTO 910 
1000 DATA 243,4,243 , 4,243,1,243,4,204, 
4.217.1.217.4,243 . 1.243.4 . 255 . 1.243,6, 
3 • 3 
1019 DATA 243.1.217.1 . 204,1,182.1.162, 
1 .204.1 .162.1 . 0.1 .173.1 .217.1 .173.1 .0, 
1.182.1.239.1.182.1 . 0.1 
1920 DATA 243.1.217 . 1.204.1.182.1,162. 
1.204.1.162,1.121.1.3.3 
1039 DATA 136.1.162.1,204.1.162.1.136, 
4.3.3 

121 



GAMES 

1849 DATA 162.1.294.1.162 . 1.121 . 1 . 243. 
4.3.3 
1059 DATA 81 . 4.85 . 2.182.1.108.1.121.6 . 
198.1.192.1 . 81.2.81.2.85.2.102.1.198.1 
• 1 21 • 8 
1869 DATA 198.2.91.2.192.2.188.2.121.1 
.128.1.121.1.198 . 1.102.2.121.2.81.4.10 
2.4.121.8.3.3 
1979 REM ** SU8R. TO INDICATE BATS LE 
F T * * 
1980 POKE 656.9:POKE 657.6:7 " ". 
:POKE 657.6:FOR 1- 1 TO BN(P):7 .. + " ; :N 
EXT I : RETURN 
1999 POKE 656.1 :POKE 657.5:7 SCORE(P); 

":RETURN 
1180 POKE 656.1:POKE 657.12:7 TOTAL(P) 
." ":RETURN 
1110 POKE 656.1:POKE 657.5 : 7" ". 
RETURN 
1120 POKE 656.1 :POKE 657.12:7 .. 
:RETURN 
1130 GOSUB 799:POKE 53278.0:SCORE(P)=S 
CORE(P)+25:GOTO 1090 
1149 REM ** SUBR. TO REMOVE PM GR . ** 
1150 POKE 53277.0:POKE 54272 . 9:FOR 1=5 
3261 TO 53264:POKE I.9:NEXT I : RETURN 
1160 REM ** SUBR. TO INSERT PM GR. ** 
1179 POKE 53277.3:POKE 559.46:START=(P 
EEK(196)+1) : POKE 756.START 
1189 REM ** ALTER DISPLAY LIST ** 
1199 A-PEEK(569)+256*PEEK(561) 
1299 IF PEEK(A)<>66 THEN A=A+l :GOTO 12 
99 
1218 POKE A.79:POKE A+3.6:POKE A+4 . 6:P 
OKE A+5.6 
1220 RETURN 
1239 REM ** CHANGE CHARACTER SE T ** 
1249 POKE 106.PEEK(196) - 5:GRAPHICS O: S 
TART-(PEEK(196)+1) *256:POKE 756.START 
1256:POKE 752.1 
1250 7 "INITIALIZING .. . . .. .. 
1260 A-USR(ADR(ZZ$) . 57344 . START) : RESTO 
RE 1290 

122 



BATS 

1279 READ X:IF X=-l THEN RESTORE :RETU 
RN 
1289 FOR Y=9 TO 7:READ Z:POKE X+Y+STAR 
T.Z:NEXT Y:GOTO 1279 
1299 DATA 32.255.255.127.127.126.62.62 
.69 
1390 DATA 49.69,28.28.24.8.8.8.8 
1319 DATA 48.255.127.126.69.56.24.8.8 
1329 DATA 56.8,24.28.124.124.254,254,2 
55 
1339 DATA 64.69.126.126.126.126.126.12 
7.255 
1349 DATA 72.16.16.16.16.16.24.69.69 
1359 DATA 89.255,255.255.255.255,255.2 
55.255 
1369 DATA 88.9.24.24,165.165.66.66.9 
1379 DATA -1 

TYPO TABLE 

Variable checksum - 1934921 
Line num range Code Length 
19 - 199 OF 522 
119 - 299 EF 518 
219 - 289 OX 551 
299 - 499 U G 518 
419 - 599 BE 592 
519 - 599 KF 559 
609 - 689 L G 582 
699 - 899 FH 696 
819 - 919 TW 514 
929 - 1039 YJ 444 
1949 - 1119 HK 599 
1129 - 1219 MZ 529 
1229 - 1330 GO 463 
1349 - 1379 E Y 1 1 2 

123 



BONUS GAMES 
Tie--Fighter 

T ie,Fighter is a game for the ATARI 400 or 800 computer requiring 
Atari BASIC 16K for cassette or 24K for disk system. The object of 
the game is to destroy the Tie-Fighters before they destroy you and 

your Rebel Base. You have a pilot's perspective into space, with cross-hairs in 
the middle of the screen. An enemy Tie-Fighter appears and approaches. By 
moving the joystick you can maneuver to bring the enemy into your sights. 
Push the button to fire at him. If you don't hit the Tie-Fighter direct! y it may 
take several shots to bring him down. Ifhe manages to escape your pursuit (go 
off the screen) he will join other successful fighters attacking your base. If 10 
Tie-Fighters get past you, your base is destroyed. 

This game has four levels of difficulty, but as you get better the game speed 
will continue to increase even beyond level four. You start out the game with 
40 units of energy. Each time you fire, the energy will go down one unit. When 
the energy runs out or when 10 Tie-Fighters have escaped, the game will be 
over. For every 10 points (or hits), your energy will be refueled to 40 units again 
and all misses will be cleared. There is a time limit for you to destroy the Tie­
Fighters. When the timer runs out, the Tie-Fighter on the screen will be 
cleared and it counts as if you had let the Tie-Fighter escape . Pushing the space 
bar while you are playing will freeze the game. Pushing the space bar again will 
enable you to continue where you left off. 

Notice the smooth animation of the Tie-Fighter. This is due to the fast 
string-handling ability of Atari BASIC. The PM$ is defined to be the 
Player/Missile Base. When a player needs to be moved, all the program has to 
do is to assign the player's data(PO$) to the PM$. 

Variables: 
A - check collision flag. 
C - sound counter. 
E - the units of energy. 
H - horizontal movement flag . 
HARDERS - level of difficulty. 

124 



TIE FIGHTER 

MI - misses (fie-Fighters escaped ). 
PO - location of player within Pl ayer / Missile Base . 
PO$ - Player 0 data. 
PM$ - Player/Missile Base . 
R - random number. 
S - STICK (0). 
SC - score or hits. 
T - units of time. 
V - vertical movement fl ag. 
X - horizontal coordi nate of Player 0. 
Y - vertical coordinate of Pl ayer 0. 

by Jimmy and Tommy Sa 

System Requirements: 16K RAM, joystick 

18 REM ** *TIE-FIGHTER ** * 
20 REM BY JIMMY AND TOMMY SA 
38 GOSUB 1848:GOSUB 258 : GOSUB 488:GOTO 

110 
48 REM PLOT LASER ROUTINE 
58 SOUND 8,1,4,6:FOR 1- 1 TO 4 STEP 3:C 
OLOR I:PLOT 8,89:DRAWTO 75,37:PLOT 159 
,89:DRAWTO 75,37:NEXT I : E- E-l 
68 POKE 53278.15:POKE 53249 . 8 
78 IF A>9 THEN SOUND 8,8,8,8:GOSUB 548 
88 IF E- 8 THEN POP :POKE 53248.8 : GOTO 
998 
9 0 ? " mrl'I.,.,ij 

" : S C :" 
IIIII1 MISSES";" ";E ; " 
";MI;" ":?" ... : 

" • II ., 

1 8 8 REM MM!M'.'.U 
110 POKE 71 , 8:POKE 53248,X:PM$(P8+Y,PO 
+ Y + 7 ) - P 8 $ : SOU N DO, 1 88 • 24 , 4 * ( S <> 1 5 ) : PO 6f' 
KE 799.118-(R<8 . 1) *118 
128 SOUND 1,28,8,1 :C - C+l :T - T-1 :R - RND(8 
) : Y-Y+V:X - X+H*HARDERS:S-STICK(8) 
130 IF T<l THEN GOSUB 758:GOTO 118 
140 IF C>6-HARDERS THEN SOUND 1,238,18 
.4:C - 8 

125 



BONUS GAMES 

159 ? "m ... :" ; T; " " 
169 IF X>294 OR X<47 OR Y>90 OR Y<14 T 
HEN GOSUB 750 
179 IF STRIG(O)-O THEN POKE 53249.119: 
A-PEEK(53269) :GOSUB 50:S0UND 0 . 0.9.0 
1BO V=-(S-13 OR S=5)+(S=14 OR S=10) 
190 H=-(S-7 OR S=6)+(S=9 OR S=ll) 
200 IF V-O THEN V=-(R>0.98)+(R<0.97) 
219 IF H=O THEN H=-(R>0.98)+(R<0.97) 
220 IF PEEK(764) <>255 THEN GOSUB 810 
230 GOTO 119 
240 REM DRAW PLAYFIELD 
250 GRAPHICS 7:POKE 752.1 :POKE 82.0 
260 POKE 708.106:SETCOLOR 2.6.0:COLOR 
1 
270 A=PEEK(560)+PEEK(561)*256+4 
280 IF PEEK(A)<>66 THEN A-A+l :GOTO 280 
290 POKE A.79:POKE A+3.6:POKE A+4.6:PO 
KE A+5.6 
300 RESTORE 
310 FOR 1-1 TO 28:READ A.R:PlOT A.R:RE 
AD A.R:DRAWTO A.R:NEXT I 
320 DATA 75.0.75.33.75.42 .75.76.78.42. 
83.42.83.42.83.40.83 .38.139.38.67.42.6 
7.40.67.38.19.38 .67.36.67,33.67.33 
330 DATA 72.33.78 .33.83.33.83.33.83.36 
.67.42.72.42.113.34.113.42 .105.41.105. 
35.97.36.97.40.99.39.99.37 .59.37 
349 DATA 59.39.52.49 . 52.36.44.35.44.41 
.35.42.35.34.71.48.79 .48.77.53.73.53.7 
1.58.79.58.73.63.77.63 
359 DATA 77.14 .73.14.71.18.79.18.73.2 3 
.77.23.71.28.79.28.72.28 
360 COLOR 2:FOR A-l TO 19:PLOT RND(9)* 
159.RND(0)*89:NEXT A 
370 COLOR l:FOR A-1 TO 20:PLOT RND(O)* 
159.RND(0)*89:NEXT A 
380 RETURN 
3 9 9 REM ~r.I'r:I';";I.""II:W.-':w'I'':!IIII'Ir.'II':'I~.~\\''n":I'r:.,rs,-,:IIW-tJ:r.jW"i,r.'I'TI:Q...::tifr.l1 
409 DIM PMS(2948) .P9S (7) :X-70:Y=20 
410 A-ADR(PMS) 
420 PMBASE -INT (A/1024) *1024 
430 IF PMBASE<A THEN PMBASE=PMBASE+102 

126 



TIE FIGHTER 

4 
449 S-PMBASE-A 
459 POKE 559.46:POKE 54279.PMBASE/256: 
POKE 794.192:POKE 53277.3 
469 PM$=CHR$(9) :PM$(2948)=CHR$(9) :PM$( 
2)-PM$ 
479 RESTORE 499 
489 FOR 1-1 TO 7:READ A:P9S(I.I)-CHRS( 
A) :NEXT 1 
499 DATA 9.153.189.255.189.153.9 
599 P9-S+512:PM$(P9+Y.P9+Y+7)=P9$:POKE 

53248.X:PM$(P9+183.P9+183)=CHRS(28) 
519 GOSUB 669 
529 RETURN 

5 3 9 REM """"':'-a-"-.'-''''''''"'II 549 SOUND 1.9.9.9 
559 FOR 1=1 TO 39:POKE 794.RND(9)*299+ 
14 :NEXT 1 
569 FOR 1-1 TO 39:POKE 794.RND(9)*299+ 
1 4 : P M $ ( P 9 + Y + 1 I 3 . P 9 + Y.+ 1 I 3 ) - C H R $ ( R N D ( 9 ) * 
29) 
579 SOUND 9.299+1.8.16-1/2:S0UND 1.9*1 
.16.16-1/2:S0UND 2.299+1.8.15:NEXT 1 
589 SOUND 9.9.9.9:S0UND 1.9.9.9:S0UND 

127 



BONUS GAMES 

2, B, B, B 
5 9 B PM $ ( P B + Y , P B + Y + 1 2 ) -" f!I!ml[iJ[!)[!]I.II.Ijl[jJij][j]" : 

REM 12 HEART-CHARACTERS 
60B SC-SC+l 
61B IF SC/1B<>INT(SC/1B) OR SC-B THEN 
649 
62B HARDERS-HARDERS+l:E-4B:MI-B 
63B FOR 1-1 TO 6B:POKE 53279,RND(0)*2: 
NEXT I 
64B X-INT(RND(B)*100+70) :Y -2B:PM$(PO+Y 
,PO+Y+7)-PB$:POKE 704,lB2:POKE 53248,0 
65B REM I I 
66 B ? " 
670 FOR R-l TO -1 TO 2:S0UND B, 
116*I,lB,8:FOR TO 2B:NEXT A:SETCOL 
OR 4,4,6 
680 FOR A-l TO 1*28:NEXT A:NEXT I 
690 SOUND R,O,O,O:FOR A-1 TO 50:NEXT A 
:NEXT R 
7BB T-1BB+HARDERS*lB+l00*(HARDERS-1):V 
-l:SETCOLOR 4,B,0:SOUND B,O,O,O 
7 1 B ? "11,11,111' IDIIJ MIS S E S" : " ": E : .. 

":SC:" ":MI:?" IIIIJ :":" 
72B FOR 1-1 TO 1BO:NEXT I 
730 SOUND 1,24,8,1:POKE 53248,X:RETURN 

74" REM ESCAPE ROUTINE 
75" SOUND B,O,O,O:SOUND 1,0,0,0:MI-MI+ 
1 
760 PM$ ( P B+ Y , P 0+ Y + 12 ) -"~IiJ.n.lljJ[!]ij][j] " : 

REM 12 HEART-CHARACTER 
77B FOR 1-1 TO 10:POKE 53279,RND(B)*1: 
NEXT I 
780 IF MI-l" THEN POKE 53248,":POP :GO 
TO 92" 
79" GOSUB 64":SOUND 1 ,2",8,1 :RETURN 
8"" REM STOP ROUTINE 
81B SOUND B,B,B,O:SOUND 1,0,B,":POKE 7 
64,255 
82" IF PEEK(764)-255 THEN 82" 
839 SOUND 1,2",8,1:POKE 764.255:RETURN 

128 



TIE FIGHTER 

840 REM GAME OVER ROUTINE 
850 SOUND O.O.O.O:POKE 53248.0:POKE 53 
278.15 
860 ? :? " . ; S C : ? 
8 7" 0 ? " ... UIlll ..... I!I'l!Ii IDIJEii I!III!I,'II!II.IR ....... : 
POP 
880 
890 
900 
91 0 

POKE 77.128:X-USR(ADR(RAINBOW$) .1) 
IF STRIG(O)-l THEN 880 
RUN 
REM 

920 ? " under EI "'i .... ·· 930 COLOR 4:FOR 1-0 TO 80:PLOT O.I:DRA 
WTO 159.I:POKE 712. (RND(0)<0.5)*50:S0 
UNO 0.I*6.8.4:NEXT I 
940 SOUND O.O.O.O:FOR 1-1 TO 3 
950 FOR A- O TO 30:S0UND 0.A*8.8.20-AI 
2+I:SOUND 1.A*8.16.20-A/2+I:POKE 712.R 
ND(0)*255:NEXT A 
960 NEXT I:SETCOLOR 4.0.0 
970 GRAPHICS 17:POKE 87.0:POKE 82.2 
980 ? :? .. 
" :? :? " 
990 SOUND 
1 0 0 0 ? "l!Sl you 1iI,.IW. 
o Imtl""" 

:GOTO 
D 0.0.0.9 

h a v 8 rBl i,li",'1J 
1010 FOR 1- 1 TO 200:NEXT I 
1020 GOTO 920 
1030 HEM SELECT ROUTINE 
1040 GRAPHICS 17:DIM RAINBOW$(32) 
1050 HARDERS-1 :E - 40:SC-0:MI-0:V-1 :H -1 
1060 RESTORE 1080 
1070 FoOR 1- 1 TO 32:READ A:RAINBOW$(I.I 
)-CHR$ (A):NEXT I 
1080 QATA 104.104.104.72.162.57.169.9. 
173.0210.101.20.141.25.208.141.10.212 
1090 DATA 136.208.242.202.208.237.104. 
56.233.1.208.228.96 
1100 POSITION 2.3:? #6;" 
1110 POSITION 2.15:7 #6;" 
11207#6;" 
1130? #6;" 
1140 SOUND O. 

" :? #6 

1.255.10. 

129 



BONUS GAMES 

19 
1 1 5 II P 0 SIT ION 4. 1 II :? # 6 ; .. <_-I'AiI'"> 
11611 POSITION 11.3:? #6;HARDERS:A=PEEK 
(53279) 
11711 IF A-6 THEN T- 11I1I+HARDERS*111+11111* 
(HARDERS-l) :SOUND 1I.1I.1I.II:S0UND 1.11.9. 
II : RETURN 

.11811 IF A-5 THEN HARDERS - HARDERS+1 :IF 
HARDERS>4 THEN HARDERS - l 
11911 A-USR(ADR(RAINBOW$) .1) 
121111 GOTO 11611 
12111 DATA 2112.189.1.6.157.2.6 
12211 DATA 224.11.2118.245.173.61.6 
12311 DATA 141.1.6.162.11.189.111.6.157.9 
.6.232.224.7.2118.245.173.62 . 6.141.16.6 
. 169. 9 
12411 DATA 141.69.6.238.69.6.194.1711.19 
4.76.98.228 

TYPO TABLE 

Variable checksum - 396898 
Lin e num ran g e Cod e Length 
1 9 - 911 FP 599 
199 - 1 79 DY 547 · 
1 89 - 299 CH 527 1 
399 - 3611 EL 599 .. 
379 - 489 HR 43 6 · 
499 - 579 BE 592 • 
589 - 679 yo 697 -
689 - 769 TL 528,.! 
7711 - 879 GZ 51 5' 
889 - 9611 KO 539 -
979 - 19811 01 539 ' 
1999 - 11 79 MM 513 " 
11 89 - 1249 00 265 , 

130 



TIN PAN ALLEY CATS 

Tin Pan Alley Cats 

After you've worked hard all day and programmed all night, the last 
thing you need is to have your few ho urs of sleep disturbed by alley 
cats howling on your back fen ce. There are three of the buggers-a 

green one, a white one and a pink one. Every now and then one jumps up 
where you can hit it with a tin can, if you're quick enough. 

That's the scenario for Tin Pan Alley Cats, a one-player game requiring 
joystick and 16K RAM. You start out with 25 tin cans that you can kick 
toward the fence by pressing the fire button. But first you must move horizon­
tally along the fe nce to lineup under the cats as they appear and disappear at 
random. The pink cat is the fastest, and hitting it scores the most points. The 
green cat is slowest, and hitting it yields the least. The cats will appear 35 times 
dur ing a game, and the pace quickens as you use up your cans. When you hit a 
cat you will see it and hear it, and points will be added to your score. 

If you score 2,000 points, you get five extra cans, and the cats appear five 
extra times. The bonus is repeated if you reach 3,000 and 4,000 points. The 
high score of your session is saved after each round . The difficulty of the game 
can be adjusted by changing the value of TUF in lines 280-310. 

Thanks go to Stan Ockers for his ideas on vertical blank interrupts 
(ANTIC, June 1982). We modified the VBI into a fast joystick routine. 

We al so thank Jerry White for his ideas on sounds and the ATARI 
(ANTIC, October 1982). 

by Rick Bloom and Rob Glassman 

System Reql.tiremencs; 16K RAM, joystick 

10 REM ******** TIN PAN ALLEY CATS ** 

• • * * * * 
20 REM BY RICK BLOOM AND ROB GLASSMAN 
1 9 8 3 
50? "1!Sl": P 0 K E 7 5 2 , 1 

131 



BONUS GAMES 

100 DIM POS(1),Pl$(1),P2$(1),P3$(1),M$ 
( 1 ) 
110 VTAB-PEEK(114)+256*PEEK(135) :ATAB 
-PEEK(14 *PEEK 141 
120 REM 
130 FOR 
ML:NEXT A 
140 DATA 104,160,10,162,6,169,7,76,92, 
2 2 8 , 1 73 , 1 20 , 2 , 2 0 1 , 7 , 240 , 9 , 1 73 , 1 2 0 , 2 , 2 0 
1,11,240,13,208 
150 DATA 18,230,209,166,209,142,3,208, 
1 44 , 9 , 1 76 , 7 , 1 98 , 2 09 , 1 66 , 20 9 , 1 42 , 3 , 2 08 , 
76,98,228 
155 GOSUB 870:GOSUB 960 
160 GRAPHICS 17:POSITION 4,10:7 #6;"13 
I ready!!! 
170 FOR X-1 TO 60~:NEXT X 
180 BONUS-O: HSCOR - O: X- USR (1536): GOTO 
250 
190 REM CAT HIT SOUND 
200 FOR X-40 TO 20 STEP -5 
205 FOR J-704 TO 706:POKE J,X:NEXT J 
210 SOUND 1 ,X,12, 10 
220 FOR Z-l TO 10:NEXT Z 
230 NEXT X 
240 FOR Y-15 TO 55 STEP 5 
245 FOR J-704 TO 706:POKE J,Y:NEXT J 
250 SOUND 1 ,Y,12, 10 
260 FOR A-l TO 8:NEXT A 
270 NEXT Y 
280 SDUN 
290 REM ._ 
300 IF X-- ~~ :SOUND 
, 0 , 0 , 0 : FOR w- 1 TO 1 00 : N EXT W: RET URN 
310 READ X,Y,Z:IF X- O THEN 340 
320 IF Y- O THEN SOUND 1,0,0,0 
330 GOTO 380 
340 IF Y-O THEN SOUND 1,0,0,g 
350 POKE 540,Z 
360 IF PEEK(540)<>0 THEN 360 
370 GOTO 300 
380 POKE 540,Z 
390 Z-PEEK(540) :IF Z- O THEN 410 

132 



TIN PAN ALLEY CATS 

499 SOUND 9,X.19,12:S0UND 1 . Y.19.8:GOT 
o 399 
419 SOUND 9.9.9.9:GOTO 399 
429 DATA 81,162.6,9.162,3,85,162.6.9.1 
62,3 . 96,217,6.9.217.3.192,217.6,9,217, 
3.198,162.6,9,162.3,192.162,6,9,162.3 
439 DATA 96.217,12.9,217,6,198.162.6,9 
,162.3,198,162,3,192,162.6,9,162,3.96. 
217.6.9.217,3,91,217,6.9,217,3 
449 DATA 85.173 , 39.9,9 . 9,9.173,3,81,17 
3,6.9,217,3.85.173.6,9.173.3.96.217.6. 
9.217.3.192.217.6.9.173.3.198.173.6 
459 DATA 9.173 . 3.192.173.6.9.173.3.96. 
217.12.9.173.3.198,173,6.9.173,3.198.1 
73.3.192 . 173,6,9,173.3,96.217.6 
469 DATA 9 . 217.3.85 , 217.6.9.217.3.81.1 
62.26.-1 - 9 

479 REM ! ~"~Im~~~~~. 
489 Z- US ): 
Z=USR(MOVE . M+YM3+LM3+DYM3.B.-DYM3,63) 
499 YM3 - YM3+DYM3:XM3-XM3+DXM3:DXM3=9:D 
YM3=9: RETURN 
5l1li REM 
519 REM 

••• THE MAIN LOOP!!! ••• 

133 



BONUS GAMES 

52B VM3-93:XM3 - B:POKE 53270.1:POKE 532 
51.PEEK(209):POKE 53255.B:TIME - B:SETCO 
LOR 4.0.INT(CNS/5) 
53B REM RANDOMLV POKE CAT TO SCREEN 
54B A- (3*RND(B))+1:0N A GOTO 55B.568. 
570 
55B TIME - 1:X "'!! (15B*RND(B))+45:POKE 5324 
O.X:GOTO 50B 
56B TIME - 2:X - (150*RND(B))+45:POKE 5324 
9.X:GOTO 50B 
57B TIME - 3:X - (150*RND(B))+45:POKE 5325 
B.X 
580 N- INT((2B*RNO(B))+20):FOR X- 1 TO 2 
5:S0UND 3.N.1B.0:NEXT X:SOUND 3.B.B.B 
59B TUF-25:IF CNS<- 2B THEN TUF - TUF-2 
6BO IF CNS<- 15 THEN TUF - TUF-4 
61B IF CNS<- 10 THEN TUF - TUF-6 
62B IF CNS<- 5 THEN TUF - TUF-8 
638 GOSUO 75B 
648 POKE 53248.B:POKE 53249.0:POKE 532 
5 B • B 
65B POKE 704.72:POKE 705.14:POKE 7B6.1 
84 
66B FOR X- 1 TO 15B:NEXT X:GOSUB 1B78:I 
F CNS - B THEN 11BB 
670 KIT-KIT-1 :IF KIT - B THEN 11BB 
60B POKE :GOTO 510 
689 REM 
69B REM 
7BB GOSUB 20B:D3$ - DB2$:P3$(VP3.VP3+LP3 
-1 ) - 0 3 $ : M $ -" ": M $ ( 1 28 ) =M $ : M $ ( 2 ) - M $ 
710 ON TIME GOTO 720.730.740 
720 SCOR - SCOR+200:RETURN 
730 SCOR - SCOR+1BB:RETURN 
74B SCOR - +5B:RETURN 
749 REM 
750 FOR 09)+14 
760 IF STRIG(O) - B THEN D3$ - D03$ : P3$(VP 
3.VP3+LP3-1) - D3$:SOUNO B.60.12.12:M$(V 
M3.VM3+LM3-1) - OM3$:GOTO 820 
770 D3$-D02$:P3$(VP3.VP3+LP3-1) - D3$ 
780 ON TIME GOTO 790.800.810 
790 FOR X-l TO 5:NEXT X:NEXT Z:RETURN 

134 



TIN PAN ALLEY CATS 

899 FOR X- l TO 19:NEXT X:NEXT Z:RETURN 

819 FOR X- l TO 29:NEXT X:NEXT Z:RETURN 

829 MM R - 1 : C N 8 - C N 8 -1 : 80 UNO 9, 9 , 9 , 9 
825 IF R8>- 219 OR RB<- 49 THEN RETURN 
839 POKE 53255,RB:DYM3 - -6:GOSUB 478:IF 

PEEK(53259)<>9 THEN POKE 53255,9:GOTO 
699 

849 MMR - MMR+l :IF MMR - 29 THEN 779 
859 GOTO 
869 REM 
879 GRAP ,4:? #6;"T 
INC A ;.111'.11'11" : P 0 S IT ION 9, 8 :? # 6 ; " 

by __ BLOOM" 
8 8 9 P 0 8 I T ION 2, 9 :? # 6 ; " D rob n,ii1 
g" 
898 Cl - 8:C2 - 166:C3=86:C4-52:C5-8:CNT-l 
999 POKE 798,Cl :POKE 799,C2:POKE 719,C 
3:POKE 711,C4 : POKE 712,C5 
919 CNT - CNT+l :IF CNT - 19 THEN 939 
929 TEMP ~ Cl:Cl - C2:C2 - C3:C3-C4:C4-TEMP: 
FOR X=l TO 199:NEXT X:GOTO 999 
939 RE8TORE 429:G08UB 399 
949 RETU 
959 REM 
969 GRAP #6;". 
III'",., , ," : P 0 S IT ION 1, 3 :? # 6 ; " G R EE N S L EE 
V E S" : P 0 S I TI 0 N 8, 4 :? # 6 ; " , , ,111.-,.111111" 
979 POKE 798,72:POKE 799,198:POKE 719, 
129:POKE 711,12:POKE 712,9 
989 P081TION 1,5:? #6;"FRI8KY WHlTE":P 
o SIT ION 8, 6 :? # 6 ; " , ,11"'-"Dllli" : P 0 SIT I 
ON 1 ,7:? #6 ; "PINK PANTHER" 
999 POSITION 7,8:? #6;" " 
1999 RESTORE 429:GOSUB 319 

200 POINTS 

1919 POSITION 9 , 19:? #6;"AND 111!1 AS .. , 
'l'IMu!e" 
1929 REST TURN 
1939 REM 
1949 GRAP 
1959 ST = PEEK(569)+PEEK(561)*256+4:POK 
E ST-l ,79:POKE ST+48,65:POKE ST+49,PEE 

135 



BONUS GAMES 

K(560) :POKE ST+50.PEEK(561) 
1060 NON-PEEK(559) :POKE 559.0:CNS-25 
1070 POKE 87.1:POSITION O.O:? #6;"II1II 
D:";SCOR 
1075 IF SCOR>-2000 AND BONUS - O THEN GO 
SUB 2000 
1076 IF SCOR>-3000 AND BONUS-l THEN GO 
SUB 2100 
1077 IF SCOR>-4000 AND BONUS - 2 THEN GO 
SUB 2200 
1080 IF CNS<10 THEN POSITION 13.0:? #6 
;"1111: 0"; CNS: RETURN 
1090 POSITION 13.0:? #6;"I111:";CNS:RE 
TURN 
1100 REM 
1110 POK 
1115 POKE 53277.0:POKE 559.2 
1130 GRAPHICS 2+16:POSITION 6.2:? #6;" 
1iIIIII.":POSITION 2.4:? #6;"FINAL SCO 
RE ";SCOR 
1140 NU-SCOR 
1150 IF NU>HSCOR THEN HSCOR-NU:FOR X-l 

TO 5:POSITION 0.6:? #6;"new high scor 
e "; H S COR: FOR W-l TO 5 0 : N EXT W: G 0 TO 1 1 
70 
1160 GOTO 1195 
1170 POSITION 0.6:? #6;"NEW HIGH SCORE 

" ; H S CO R : FOR W-l TO 50: SOU N D 2. W • 1 0 • 1 0 
:NEXT W 
1180 POSITION 0.6:? #6;" new high score 

" ; H S COR : FOR W-l TO 50 : NEXT W : POSITION 
0.6:? #6;" ";HSCOR 

1190 FOR W-l TO 50:S0UND 2.51-W.l0.l0: 
NEXT W:NEXT X:SOUND 2.0.0.0:GOTO 1200 

HIGH SCORE 1195 POSITION 2.6:? #6;" "; 
HSCOR 
1200 POSITION 1.8:? #6;"press trigger 
for" 
1205 POSITION 4.10:? #6;"another game" 
1210 IF STRIG(O)-O THEN SCOR - O:BONUS-O 
:GOSUB 1840:POKE 53277.3:GOTO 1800 
1220 GOTO 
1230 REM 

136 



TIN PAN ALLEY CATS 

1248 GRAPHICS 18:POSITION lB,6 : ? #6;N: 
RETURN 
1249 REM 
1258 GRAP 
1268 PMBASE - PEEK(186)-12:POKE 54279,PM 
BASE:PMBASE - PMBASE*256 
1278 N-3 : GOSUB 1248 
1288 POKE 623,17:POKE 784,72:POKE 785, 
14 : POKE 786.184:POKE 787,138:POKE 5325 
6,1 :POKE 53257,1 
1298 POKE 53258,1 : POKE 53259,1 :POKE 53 
268 . 64:POKE 53248,8:POKE 53249,8:POKE 
53258,8:POKE 289,128:POKE 53251,8 
1388 FENCE - 48:SIZE - 17 
1318 OIM D8$(SIZE) 
1328 RESTORE 1338:FOR 1- 1 TO SIZE:READ 

BYTE:D8$(I,I) - CHR$(BYTE) :NEXT I 
1338 DATA 248,248,32,248,32,216,88,126 
.31,31.18,18,18,18,18.18,54 
1348 DIM Dl$(SIZE) 
1358 RESTORE 1368:FOR 1- 1 TO SIZE:READ 

BYTE:Dl$(I,I) - CHR$(BYTE) :NEXT I 
1369 DATA 248,248,32.248,32,216,88,112 
.248,249,115 , 118.124,128.88,88,88 
1378 DIM D2$(SIZE) 
1388 RESTORE 1398 : FOW 1- 1 TO SIZE:READ 

BYTE:D2$(I.I) - CHR$(BYTE) :NEXT I 
1398 DATA 62,62 , 8,62,8,54,28 , 28,28,62, 
62 , 28,28,188,84,28,54 
1488 YP3 - 181 :LP3 - 16 
1418 N- 2:GDSUB 1248 
1428 DIM D3$(LP3) 
1438 RESTORE 1448:FOR 1- 1 TO LP3:READ 
BYTE : D3$(I , I) - CHR$(BYTE) :NEXT I 
1448 DATA 254.138,178,138,186,198,56,5 
6,254 , 186,186,186,186.48,48,188 
1458 YM3 - 93:LM3 - 4:REM VERTICAL POSITIO 
N AND LENGTH OF MISSILE3 
1468 DIM DM3$(LM3) 
1478 RESTORE 1488 : FOR 1- 1 TO LM3:READ 
BYTE : DM3$(I,I) - CHR$(BYTE) :NEXT I:DM3 - A 
DR(DM3$) 
14811 DATA 192,192,192,192 

137 



BONUS GAMES 

1499 OFFSET-PM8ASE+512-ATA8 
1599 FOR 1-9 TO 4 
1519 V3=INT(OFFSET/256) :V2 - 0FFSET-256* 
V3 
1529 POKE VTA8+2,V2:POKE VTA8+3,V3 
1539 POKE VTA8+4,128:POKE VTA8+5,9 
1549 POKE VTA8+6,128:POKE VTA8+7,9 
1559 VTAB-VTAB+8:0FFSET-OFFSET+128 
1569 IF 1-3 THEN OFFSET - PMBASE+384-ATA 
B 
1579 NEXT I 
1589 P9$(FENCE,FENCE+SIZE-l)=09$ 
1599 Pl$(FENCE,FENCE+SIZE-l)=Dl$ 
1699 P2$(FENCE,FENCE+SIZE-l)=02$ 
1619 P3$(YP3,YP3+LP3-1) - D3$ 
1629 M$(YM3,YM3+LM3-1)-OM3$ 
1639 FOR 1-1 TO LM3:X=YM3+I-l :MS(X,X)­
CHR$(ASC(M$(X,X))+ASC(OM3S(I,I))) :NEXT 

I 
1649 DIM 8$(17) :FOR 1=1 TO 17:B$(I,I)­
CHR$(9) :NEXT I:B - ADR(8$) 
1659 N-l :GOSUB 1249 
1 6 5 9 REM hi"'i:\'I'WUlltJlliltJM/",gWjIiIIIQIU 
1669 DIM MOVE (38) :MOVE-AOR(MOVd) :M-A 
DR(M$)-1 
1679 RESTORE 1699 
1689 FOR 1-1 TO 37:REAO BYTE:MOVE$(I,I 
)=CHR$(BYTE) :NEXT I 
1699 DATA 194,194,133,294,194,133,293, 
194,133,296,194,133,295,194,194,133,29 
7,194.194.133.298 
1799 DATA 169.9.177.293,37.298,113,295 
.145.293.299.196,297.298.243 . 96 
1719 GOSUB 1949 
1 7 2 9 0 I M 0 9 1 $ ( 1 6 ) . D 9 2 $ ( 1 6 ) ,,0 9 3 $ ( 1 6 ) 
1739 091$-03$ 
1749 RESTORE 1789 
1759 FOR I-I TO 16:REAO 8YTE:092$(I.I) 
- CHR$(BYTE):NEXT I 
1769 FOR 1-1 TO 16:REAO BYTE:093$(I.I) 
-CHR$(8YTE):NEXT I 
1779 D3$-D92$:P3S(YP3.YP3+LP3-1 )=03$ 
1789 DATA 254.139.179.139.186,198.56.5 

138 



TIN PAN ALLEY CATS 

6,254,186,186,186,49,49,49,198 
1799 DATA 254,139,179,139,186,198,56,5 
6,254,57, ,63,32,32,224 
1899 REM 
1819 POKE OlOR 3:FOR TO 29: 
PLOT 9,X:DRAWTO 79,X:NEXT X 
1829 COLOR 1 :PlOT 19,2:DRAWTO 12,2:PlO 
T 9,3:DRAWTO 13,3:PlOT 8,4:DRAWTO 14,4 
:PlOT 8,5:DRAWTO 14 , 5:PlOT 9,6 
1839 DRAWTO 13,6:PlOT 19,7:DRAWTO 12,7 
1849 COLOR 2:FOR X-5 TO 75 STEP 5:PlOT 

X,19 : DRAWTO X,29:NEXT X:SETCOlOR 4,9, 
4:SCOR=9:KIT=35 
1859 POKE 711,86:POKE 53277,3:POKE 299 
,129:POKE 559,46:GOTO 519 
2999 CNS-CNS+5:KIT=KIT+5:BONUS=1 
2995 FOR X=l TO 5:S0UND 9,59,19,19 : FOR 

Y=l TO 19:NEXT Y:SOUND 9,9,9,9:NEXT X 
2919 FOR Z=l TO 29:NEXT Z:RETURN 
2199 CNS=CNS+5:KIT - KIT+5:BONUS-2 
2195 FOR X- 1 TO 5:S0UND 9,59,19,19:FOR 

Y-1 TO 19:NEXT Y:SOUND 9,9,9,9 : NEXT X 
2119 FOR Z= l TO 29:NEXT Z:RETURN 
2299 CNS=CNS+5:KIT =KIT+5:BONUS-3 
2295 FOR X=l TO 5:S0UND 9,59,19,19:FOR 

Y=l TO 19:NEXT Y:SOUND 9,9,9,9:NEXT X 
2219 FOR Z- l TO 29:NEXT Z:RETURN 

TYPO TABLE 

Variable checksum = 

line num range 
19 - 155 
169 - 259 
269 - 379 
389 - 459 
469 - 559 
569 - 659 
669 - 759 
769 - 859 
869 - 969 
979 - 1959 

2531549 
Code length 

RT 597 
10 38 1 
V H 416 
YZ 594 
MN 529 
o U 510 
OA 397 
E J 597 
KJ 641 
VY 552 

139 



BONUS GAMES 

1868 - 1138 VM 527 
1141J - 1195 AD 529 
1288 - 1281J L C 521J 
1298 - 13 91J VT 534 
1488 - 151 8 AV 41 3 
1 528 - 1631J QV 375 
164B - 1748 IC 456 
1 751J - 1828 RQ 526 
1 831J - 2185 J U 61 5 
2118 - 2218 ZR 222 

140 



DROP 

Drop 
Catch the falling faces 

Y O U can never beat this game, just get better and better. It starts slowly 
as faces appear at the top of the playfield and fall towards the bottom. 
You move a dish laterally with the joystick to catch the faces before 

they reach the bottom. If you miss one, that ends your turn. 
With every successful catch your score increases, and after a while bonus 

points accrue. However, the speed of the game increases too, and it is unlikely 
you will ever exceed 1000. A little "falling" sound accompanies the action. 

by John Zakour 

System Requirements: 16K RAM, joystick 

1 REM ******** DROP ******** 
2 REM BY JOHN ZAKOUR 
5 GOTO 199 
19 IF X-2 THEN X=3:RETURN 
29 IF X-15 THEN X-14:RETURN 
30 RETURN 
199 DIM SA(15) 
195 GOSUB 1909:C=1 :HI-9 
119 FOR N-l TO 15:SA(X)~0:NEXT N:SA(7) 
- l :SA (ll) - -l 
115 GRAPHICS 1+16:SETCOLOR 4,4,9 
116 POSITION 2,5:PRINT #6;"d":POSITION 

2 , 7 : P R I N T # 6 : .. D" : P 0 S IT ION 2, 9 : P R I N T # 
6 : .. 0" : P 0 SIT ION 2, 1 1 : P R I N T # 6 ; "iii" 
117 POKE 756,64 • 
129 Y-19:X - 19:DL=1 
121 FOR PY-2 TO 18 
122 POSITION 4,PY:PRINT #6;"&":POSITIO 

141 



BONUS GAMES 

N 1 7 , P Y : P R I N T # 6 ; "fa" 
123 NEXT PY 
124 DlA-lS 
125 DY-1 :DX-INT(12*RND(1)+5) 
127 DX2-INT(12*RND(1)+5) :DY2 - 1 
139 DX3-INT(9*RND(1)+5) :DY3=1 
169 POSITION X,Y:PRINT #6;" #$%" 
299 S-SA(PEEK(632)) 
219 IF S<>9 THEN X- X+S:GOSUB 10:POSITI 
ON X,Y:PRINT #6;" #$% " 
2 2 9 P 0 S I TI 0 N 0 X , 0 Y : P R I N T # 6 ; "g" 
239 Dl-Dl+1 
235 IF Dl<DlA THEN 290 
236 IF C-1 THEN POKE 756,64:C - 2:GOTO 2 
49 
238 POKE 756,68:C-1 
249 Dl-1:POSITION DX,DY:PRINT #6;" ":0 
Y - 0 Y + 1 : P 0 S IT ION 0 X , 0 Y : P R I N T # 6 ; "g" : P 0 K 
E 53762,DY+19:POKE 53763,163 
245 IF DY>9 THEN POSITION DX2 , DY2:PRIN 
T #6;" ":DY2-DY2+1 :POSITION DX2,DY2:PR 
INT #6;"'" 
247 IF DY>15 THEN POSITION DX3,DY3:PRI 
NT #6;" ":DY3-DY3+1:POSITION DX3,DY3:P 
RINT #6;"'" 
259 IF DY<>19 THEN 290 
255 IF DX-X+1 OR DX - X+2 OR DX-X+3 THEN 

269 
257 GOTO 266 
269 SC-SC+INT(ll-DlA) :DlA - DlA-9.35:POS 
ITION 1,1:PRINT #6;SC:DX - DX2:DY-DY2:DX 
2-DX3:DY2 - DY3:GOTO 139 
265 DX-DX2:DY - DY2:GOTO 139 
266 GOSUB 2999 
267 SOUND O,164,10,8:FOR S- l TO 150:NE 
XT 8:80UND O,O,O,O:FOR 8- 1 TO 5:NEXT 8 
:SOUND 0,164,19,8:FOR 8-1 TO 150:NEXT 
S 
268 SOUND 0,0,9,O:FOR S=l TO 5:NEXT S: 
SOUND 0,217,19,10:FOR S-l TO 300:NEXT 
S:SOUND 0,0,0,0 
270 POSITION 6,8:PRINT #6;"1!I'IIlI over": 
SOUND 1 ,O,O,O:POKE 77,0 

142 



DROP 

275 IF SC>HI THEN HI-SC 
277 POSITION 5,9:PRINT #6;"lDIIbuIIOn" 
: POSITION 6,12: PRINT #6:" HIGH"; HI 
279 IF STRIG(O)<>O THEN 270 
280 SC - O:GRAPHICS 1+16:SETCOLOR 4,4,0: 
GOTO 120 
400 GOTO 290 
1999 GRAPHICS 2+16:POSITION 6,8:PRINT 
#6;"PLEASE":POSITION 7,9:PRINT #6;". 
0" 
1092 POSITION 2,2:PRINT #6;"catch the 
f a I lin g" : P 0 S IT ION 4, 4 : P R I N T # 6 ; "',',ii , , , , ,,, 
1995 FOR 1-96 TO 729 
1910 POKE 16384+I,PEEK(57344+I) 
1920 POKE 17408+I,PEEK(57344+I) 
1939 NEXT I 
1199 FOR 1-16392 TO 16439 
1119 READ 0 
1129 POKE 1,0 
1139 NEXT I 
1149 FOR 1-17416 TO 17463 
1150 READ 0 
1169 POKE I,D 
1179 NEXT I 

143 



BONUS GAMES 

1180 DATA 126,129,165,129,165,189,129, 
1 26 
1182 DATA 24,24,24,24,24,24,24,24 
1184 DATA 0,0,0, 63,64,64,63,31 
1186 DATA 0,0,0,255,0,0,255,255 
1188 DATA 0,0,0,252,2,2,252,248 
1189 DATA 0,0,0,0,24,24,24,24 
1190 DATA 0,0,255,153,255,189,129,255 
1192 DATA 0,0,0,0,24,24,24,24 
1194 DATA 0,0,0, 63,64,64,63,31 
1196 DATA 0,0,0 , 255,0,0,255,255 
1198 DATA 0,0,0,252,2,2,252,248 
1199 DATA 24,24,24,24,0,0,0,0 
1200 POKE 756,64 
1205 SOUND 0,31,10,8:FOR S-l TO 50:NEX 
T S:SOUND 0,0,0,0 
1210 RETURN 
2000 FOR LD-1 TO 15:S0UND 2,75,8,14:S0 
UNO 3,76,8,14:POKE 712,PEEK(53770) 
2 0 lOP 0 SIT ION X, Y : P R I N T # 6 : "0" : FOR S 
-1 TO 10:NEXT S:POSITION 4,Y:PRINT #6: 
" # $ 0/0" 
2020 NEXT LD 
2025 SOUND O,O,O,O:SOUND 1,0,0,0:SOUND 

2,0,0,0:SOUND 3,0,0,0:SETCOLOR 4,4,0 
2030 RETURN 
3000 REM THANKS:PAM C,JB,JBJ,ED,DAVID, 
LARRY,& COREY 

TYPO TABLE 

Variable checksum = 286608 
Lin e num ran g e Cod e Length 
1 - 1 1 7 IW 468 
1 29 - 229 NP 41 9 
239 - 269 OX 559 
265 - 277 TM 565 
279 - 1 1 20 RD 428 
11 30 - 1 1 9 ° I K 258 
11 92 - 2025 R P 627 
2939 - 3000 HA 54 

144 



FALLOUT 

Fallout 
A cycle of birth, labor, and goodbye 

YOU are the man, the only player in this electrolife drama. You have 
three "lives" to live , and watch out, they go rather quickly! Once play 
begins you wi ll find yourself confronted by a curtain of falling objects 

- babies (pink), diamonds (blue), and monsters (green). Your first task is to 

survive by intercepting babies (each confers an additional life), and then to 
catch the diamonds (they are worth points). Touching a monster takes one life 
away, and if you have no more, that's the end of the game. 

In the first wave the diamonds are worth one point each. In the second 
wave they are worth two points. This progresses up through lO points at Level 
lO, after which they stay the same. The action, however, continues to change. 
The directions, angles and speed of the falling items changes randoml y, usual­
ly for the worse. 

Your score at the end of each wave is augmented by multiplying the 
number of the level by the number of lives you have left at the time. 

by Scott McKissock 
System Requirements: 16K RAM, joystick 

1 REM ******** FALLOUT ******** 
2 REM BY SCOTT MCKISSOCK 
18 GOTO 499 
49 REM MAIN LOOP 
58 0=28+0R:OR =-OR :NS =INT(RND(8)*18)+SN 
:FOR SC =l TO NS:FOR T= l TO FN:NEXT T 
62 S=STICK(9):M = (S =7)*8 - (S =1 1)*8:IF M= 
9 THEN 65 
63 X=X+M:POKE 53248,X:SOUND 8,255,18,8 
: IF PEEK(53252) THEN COL=PEEK (53252):G 
OTO 188 
65 LB =LB - D:IF LB<8 THEN LB = LB +256:HB =H· 

145 



BONUS GAMES 

B- l:POKE 559.9:POKE DL,LB:POKE DL +l.HB 
:POKE 559.46 
79 SOUND 9.9.9.9:POKE DL.LB:IF HB =P196 
- 1 THEN POKE 559.9:POKE DL +l.HB - l:POKE 

DL.248:POKE 559.46:GOTO 399 
71 IF PEEK(53252) THEN CDL =PEEK(53252) 
:GOTO 188 
72 OK =9:S =STICK(9) :M = (S =7)*8 - (S =11 ) *8: 
X=X+M:IF M=9 THEN 77 
74 IF X> =299 THEN X=56 
75 IF X< =48 THEN X=192 
76 POKE 53248.X 
77 IF PEEK(53252) THEN COL =PEEK(53252) 
:GOTO 189 
89 NEXT SC:GOTO 59 
199 SOUND 9.99.1 .14:IF OK =l THEN FOR T 
=1 TO 39:NEXT T:POKE 53278.9:NEXT SC:G 
OTO 59 
119 OK =l:POKE 53278.9:REM CLEAR COLISI 
ON REGISTER 
115 GOTO 129 +(29 *COL ) :REM COL =VALUE IN 

COLISION REGISTER 9 
149 FOR T=15 TO 9 STEP - 9.75:POKE 712. 
T*16:S0UND 9.T*16.19.16 - T:NEXT T:SDUND 
9.9.9.9 

145 LIVES =LIVES +l - (LIVES =6) :POKE (P196 
- 4)*256 +19 +LIVES .l 
159 NEXT SC:GOTO 59 
169 FOR T=255 TO 5 STEP - 5:POKE 794.T: 
SOUND 9.T.2.15:NEXT T:SDUND 9.9.9.9:PO 
KE 794.24 
165 LIVES =LIVES - l :POKE (P196 - 4)*256 +11 
+LIVES.9 
179 IF LIVES =9 THEN 259 
175 NEXT SC:GOTO 59 
189 GOTO 169 
299 FOR T=- 125 TO 125 STEP 19:POKE 719 
.ABS(T) :SOUND 9.ABS(T) .19.15:NEXT T:SO 
UNO 9.9,9.9:POKE 718.148 
295 AD =AD +l - (AD =19) :SCORE =SCORE +AD:POS 
ITION 7.9:? #6;SCORE 
219 POKE 53248.X:NEX T SC:GOTO 59 
229 GOTO 149 

146 



FALLOUT 

240 GOTO 160 
250 POKE 87,1:POKE 89,P106 - 1 :POSITION 
10,7 :? #6;" mh,,'MI',,' 
2 5 5 P 0 SIT ION 1 0 , 1 0 :? # 6 ; " ";,,,.1 
IIDi 
257 POKE 559,0:POKE DL+1 ,P106 - 2:POKE D 
L,248:POKE 559,46:REM DISPLAY "GAME OV 
E R" 
260 POKE DL +26,P106 - 5:FOR T- 255 TO 252 

STEP - 1 :POKE DL +25,T:FOR Y- 1 TO 20:NE 
XT Y:NEXT T:REM SCROLL SCORE 
280 IF PEEK(53279)<>6 THEN 280:REM CHE 
CK FOR START 
285 SCORE =0:LIVES - 3:LV =0:POKE DL +25,0: 
POKE DL +26,P106 - 4:REM LINE UP SCORE 
290 POKE 88,0:POKE 89,P106 - 4:POSITION 
o , 0 :? # 6 ;" l"lli, "; S COR E ; " I I " . 
GOTO 305 
300 FOR T- 1 TO 500:NEXT T:POKE 77,0 
395 LV =LV +1:FN =69 - (4*LV) - (LV =1)*69:DR ­
l - (LV =l) :S~ = INT(12 - LV*0.5) :IF SN<O THE 
N SN =O 
365 IF LV =l THEN 385:REM NO BONUS IF G 
AME JUST STARTED 
379 FOR BNS =l TO LIVES:SOUND 0,100-BNS 

147 



BONUS GAMES 

*5,10,10:SCORE=SCORE +LV - l :POSITION 7,0 
:? #6;SCORE:SOUND l,90 - BNS*5,10,lO 
375 FOR DLY =l TO 50:NEXT DLY:SOUND 0,0 
,O,O:SOUND 1,0,0,0 
380 FOR DLY =l TO 50:NEXT DLY:NEXT BNS 
385 LB =216:HB =P l06 +15:POKE 559,O:POKE 
DL,LB:POKE DL+l,HB:POKE 559,46 
390 POKE 87,l:POKE 559,O:POKE 89,Pl06 -
1 : P 0 SIT ION 1 4 , 7 :? # 6 ; "I'ii," " ; LV;" • 
"da" : A 0 = 0 : P 0 K E 5 5 9 , 4 6 
3 9 5 P 0 S IT ION 1 4 , 10 :? # 6 ; "B rJI'III1'6 llI!1 
lIB ":POKE 88,O:POKE 89,P106 - 4:0K =1:GO 
TO 50 
488 GRAPHICS 17:POSITION 6,8:? #6;"FaD 
L o lilT " 
4 lOP 0 S IT ION 4, 1 2 :? # 6 ; "I'tl'." 4 2 0 PO S IT ION 4, 14 :? #6;" ___ i!:t" 
430 FOR R=l TO 100 
450 Z=PEEK(711) :POKE 711 ,PEEK(709) :POK 
E 709,PEEK(708) :POKE 708,Z:REM ROTATE 
COLORS 
460 N=PEEK(53770) :FOR T=4 TO 10:S0UND 
O,N,T,15:NEXT T:NEX T R:SOUND O,O,O,O:R 
EM RANDOM TONE 
500 POKE 559,O:Pl06 =PEEK (106) - 16:FOR T 
=(Pl06-2)*256 TO (Pl06 +16)*256:POKE T, 
O:NEXT T:REM CLEAR MEMORY 
505 POKE 106,Pl06:REM MOVE RAMTOP DOWN 

16 PAGES 
510 CHSET=(PEEK(106) - 8)*256:FOR 1=0 TO 

512:POKE CHSET+I,PEEK(57344+1) :NEXT I 
:REM MOVE CHARACHTER SET INTO RAM 
525 CSETP=CHSET/256:R EAD CHTR:IF CHTR = 
-1 THEN GOTO 788 
530 FOR I - CHTR*8 TO CHTR*8 +7:READ A:PO 
KE CHSET +I ,A:NEXT I:GOTO 525:REM DRAW 
CHARACHTER SHAPES 
688 DATA 1,12,12,0,15,28,44,10,9 
610 DATA 2,14,21.31,17,14,10,27,0 
620 OATA 3,14 ,17,17,10,10,4,4,0, - 1 
699 REM PUT SHAPES IN MEMORY 
700 FOR I =(Pl06 +16 ) *256 TO (Pl06*256) + 
460 STEP - 3:D =RN O(0) :IF 0<0.9 THEN NEX 

148 



FALLOUT 

T I:GOTO 800 
710 IF 0>0.99 THEN POKE 1.1 :BB =BB +l :NE 
XT I:GOTO 800 
715 IF 0>0.96 THEN POKE 1.131 :NEXT I:G 
OTO 800 
720 POKE 1.66:NEXT 1 
799 REM SET UP P/M GRAPHICS 
800 PBP =Pl06 - 16:POKE 54279.PBP:PMBASE= 
PBP*256:X =129:Y =92 
810 POKE 53277.3:POKE 704.216 
820 FOR I =PMBASE +512 +Y TO PMBASE +526 +Y 
:REAO A:POKE I.A:NEXT I:POKE 53248.X 
870 DATA 24.24.24.0,60.90,90.90.24.24. 
36.36,36.36.102 
899 REM PUT IN DISPLAY LIST 
900 GRAPHICS 17:POKE 559.46:POKE 756.C 
H S ET 1256 : 0 l = PEEK ( 560 ) + 256 * PEE K ( 561 ) + 4 : 
POKE DL+24.79:POKE DL +25.9 
919 POKE Dl +26.Pl06-4:POKE DL +27.65:LB 
=PEEK(Dl) :HB =PEEK(Dt +l) :POKE 88,9:POKE 

89,P1B6 - 4 
929 POKE 88.9:POKE 89.P196 - 4:GOTO 285 

TYPO TABLE 

Variable checksum 723906 
Lin e num ran 9 e Cod e Length 
1 - 70 JK 588 
71 - 140 NY 622 
1 45 - 205 SC 526 
21 0 - 285 CJ 558 
290 - 375 KS 586 
380 - 420 JQ 51 3 
430 - 525 FE 543 
530 - 800 LA 596 
81 9 - 929 LW 464 

149 



BONUS GAMES 

Skull Chase 
Watch out for the trees. 

T his game exploits the techniques of table lookup to get speed out of 
BASIC. As the player, you control the race car with a joystick 
plugged into Port 1. You are supposed to chase the skull, which moves 

randomly around the playfield to the extent permitted by the walls. When 
you catch the skull, action is frozen for an instant while you are credited with 
points, and a tree is planted somewhere in the playfield. Then you begin to 
chase the skull anew. 

Obviously, that would be too easy. Now you must avoid the tree, or trees, 
while chasing the skull. There are two kinds of trees, pine and oak. If you 
touch a pine tree, you lose points; but if you hit an oak tree, you lose your car 
and the game is over for that round. Your score-and the high score for this 
session-will be displayed, and you will be prompted to play again if you wish. 

System Requirements: 16K RAM , joystick 

19 REM ******** SKULL CHASE ******** 
29 REM BY DAVE MILLER APRIL 1983 
199 GRAPHICS 17:0IM TITLE$(12) :TITLE$ = 
"sllugl mHfj)SII": POSITION 4,8: FOR X= l T 
o 1 2 
191 ? #6;TITLE$(X,X);:SOUNO 9,29 - (X*1. 
5 ) , 8 , 1 4 : FOR W= 1 TO 2.59: N EXT W: N EXT X: S 
OUNO 9,9,9,9 
119 DIM CHR(15),OX(15) ,OY(15):SCORE =9: 
HISCORE =9: XTRA =9 
129 OX(14) =9:0X(13) =9:DX(9) =- 1 :OX(19) = 
- 1 :OX(ll) =- l :OX(5)=1 :OX(6) =1 :OX(7) =1 
1390Y(11) =9:0Y(7) =9:0Y(6) =-1:0Y (19) =-
1 : 0 Y ( 14) =- 1 : 0 Y ( 5 ) = 1 : 0 Y ( 9) = 1 : 0 Y ( 13) = 1 
149 CHR(14) =92:CHR(13) =93:CHR(11) =94:C 
HR(7) =95:CHR(19) =81:CHR(6) =69:CHR(9)=9 
9:CHR(5)=67:SKULL =147 - 64:GOSUB 619 
1 59? # 6 ; . '[!SI" : P 0 K E 7 9 8 , 1 9 6 : P 0 K E 7 9 9 , 2 2 : 

150 

by Dave Miller 



SKULL CHASE 

POKE 719.52:POKE 711.8 
169 POKE 756.CHSET/256:SCREEN =PEEK(88) 
+256*PEEK(89) :GOSUB 669 
179 PX =19:PY =11 :POKE SCREEN +PX +29*PY.C 
HR(14) :DX =l :DY =l 
1898X =INT(16*RND(1) +3):BY =INT(29*RND( 
1 ) + 3 ) 
199 REM ******* MAIN LOOP ********** 
299 ST =STICK(9) :IF ST =15 THEN SOUND 2. 
9.9.9:GOTO 319 
219 SOUND 2.99.6.2 
229 TX =PX +DX(ST) :TY =PY +DY(ST) 
239 CPOS =SCREEN +TX +29*TY 
249 IF PEEK(CPOS) =SKULL THEN 429 
259 IF PEEK(CPOS) =9 THEN 499 
269 IF PEEK(CPOS) =19 THEN SCORE =SCORE ­
XTRA:FOR W=l TO 29:S0UND 3.199.19.14:P 
OKE 712.58 : NEXT W 
279 SOUND 3.9.9.9:POKE 712.9 
289 IF PEEK(CPOS) THEN 319 
299 CHR =CHR(ST) 
399 POKE SCREEN +PX +29*PY.9:POKE CPOS.C 
HR: PX =TX: PY =TY 
319 TEMPBX =BX +DX : TEMPBY =BY +DY 
329 SPOS =SCREEN +TEMPBX +29*TEMPBY 

151 



BONUS GAMES 

338 IF NOT PEEK(SPOS) THEN 388 
348 SOUND 2.188.18.14:S0UND 2 . 8.8.8 
358 IF RND(1»8.5 THEN DX =- DX:GOTO 288 
368 IF RND(1»8.5 THEN DY =- DY:GDTO 288 
378 DX =- DX:DY =- DY:GOTO 288 
388 POKE SCREEN +BX +28*BY.8:POKE SPOS . S 
KULL 
398 BX =TEMPBX:BY =TEMPBY 
488 GOTO 288 
418 REM ••• * ••• SUCCESS • • •• •••• 
428 SCORE =SCORE +58 +XTRA : XTRA =XTRA +25:P 
OKE 77.8 
438 FOR T=48 TO 18 STEP - 18:S0UND 2.7. 
18.1f:SOUND 2.8.8.8:FOR 1=1 TO 15:NEXT 

I:NEXT T 
448 A=PEEK(789):FOR 1=255 TO 8 STEP - 5 
:POKE 789.I:NEXT I:POKE 789.A 
458 S=INT(RND(8)·2) +9 
468 R=SCREEN +INT(488·RND(8)) :IF PEEK(R 
) OR PEEK(R) =SKULL THEN GOTO 468 
478 POKE R.S:POKE SCREEN +BX +28 . BY . 8:PO 
KE SCREEN +PX +28.PY.8:GOTO 178 
488 REM ••• ****. FAILURE .***** .* 
498 SOUND 2.8.8.8 
588 FOR 1=188 TO 288 STEP 2 
518 POKE SCREEN+PX +28*PY.INT(RND(8)*4) 
+76:POKE 789.PEEK(53778) 
528 SOUND 8.1.6.15-INT((1 - 188)/7) 
538 NEXT I 
548 POKE SCREEN+PX +28*PY.8 
558 FOR 1=158 Tn 1 STEP - l:POKE 711.1: 
POKE 789.1 +16:POKE 788.1 +32:POKE 718.1 
+64:S0UND 8.1+58.18.8:NEXT I 
568 SOUND 8.8.8.8:IF SCORE >= HISCORE TH 
EN HISCORE =SCORE 
578 GRAPHICS 1+16:POSITION 8.5:? #6;"y 
ourSCORE WAS ";SCORE:POSITION 8 . 8:? #6 
;"DB SCORE IS ";HISCORE 
5 8 8 P 0 S IT ION 5. 1 9 :? # 6 ; ".""'-"'a" : IF 

STRIG(8)=1 THEN 588 
598 SCORE =8:GOTO 158 
688 REM *** READ DATA FOR CHSET ***** 
618 CHSET =(PEEK(186) - 8)*256 

152 



SKULL CHASE 

629 RESTORE 859:IF PEEK(CHSET+9*8)=56 
THEN RETURN 
639 READ A:A =A-64:IF A<9 THEN RETURN 
649 FOR J =9 TO 7:READ B:POKE CHSET+A*8 
+J.B:POKE 798+3*RND(9) .PEEK(53779) :NEX 
T J 
659 GOTD 639 
655 
669 
679 
68 
69 
79 
71 
72 
73 
74 
75 
76 
77 
78 
79 
89 
81 
82 
83 
84 
85 
86 
87 
88 
89 
99 
91 
92 
93 
949 
959 
2 1 9 

REM ****** CREATE BRICK WALL***** 
WALL =219:BWALL=188 
FOR W=9 TO 5:P=INT(RND(9 )*479) 
FOR 1=9 TO 4 
POKE SCREEN+P+I.BWALL 
NEXT I:NEXT W 
FOR W=9 TO 5:P=INT(RND(9 )*479) 
FOR 1=9 TO 4 
POKE SCREEN+P+I*29.BWALL 
NEXT I:NEXT W 
REM *****.* CREATE BORDER ******* 
FOR 1=9 TO 19 
POKE SCREEN+I.WALL 
POKE SCREEN +469+I.WALL 
NEXT I 
FOR 1=9 TO 23 
POKE SCREEN +I*29.WALL 
POKE SCREEN +19+I*29.WALL 

EXT I: RETURN 
EM ** *** DATA FOR CHSET ******** 
ATA 67.24.28.48.259.223.77.24.12 
ATA 69.12.24.77.223.259.48.28.24 
ATA 73.56.254.127.62.8.8.8.255 
ATA 74.8.28.62.127.62.8.8.8 
ATA 75.9.32.9.16.8.16.4.9 
ATA 76.9.64.9,16,68.16,4,9 
ATA 77,9.64,16,2,9,128,32,2 
ATA 78,128,8,1,9,9,9,9,64 
ATA 79,8,9.9,9,9,9,9,9 
ATA 81,48,24,178.251,95,12,56,24 
ATA 82,219,153,24,231,231,24,153. 

969 DATA 83.189.126.99.126.69.36.99.12 
9 
979 DATA 99.24.56.12.95.251.178.24.48 
989 DATA 92.192.126.192.24.24.219.255. 

153 



BONUS GAMES 

1 95 
998 DATA 93,195,255,219,24,24,192,126 , 
102 
1999 DATA 94,15,239,226,94,94,226,239, 
1 5 
1919 DATA 95,249,247,71,122,122,71 , 247 
,240 
1929 DATA 124,255,145,145,255,255,137, 
137,255 
1030 DATA - 1 

TYPO TABLE 

Variable checksum 1142917 
Lin e num ran g 8 Cod e Length 
10 - 1 29 R P 528 
1 311 - 169 RA 532 
1 79 - 279 WH 544 
280 - 399 BT 362 
409 - 4911 JT 524 
500 - 579 TO 500 
580 - 689 OU 489 
699 - 800 EN 246 
8111 - 929 VR 33 1 
930 - 1039 RH 365 

154 



CRYSTAL CAVES 

Crystal Caves 

Making the most of a tight situation 

Navigate your ship through treacherous caves in an attempt to get 
enough energy pellets to escape the cave you are in. The next cave is 
harder to escape from. Crystal Caves calls for both fast reflexes and 

strategy! 
When you begin the game you will hear a beep. Your ship will appear in 

the center of the top part of your screen. You move right and left using the 
joystick. The fire button relocates you randomly at the top of the screen. If 
your ship touches any of the crystal walls, it will be destroyed. You only get 
one life . 

If you absorb enough of the diamond-shaped energy pellets (by running 
into them), you will be transported out of the cave you are in. In the new cave 
will start fresh, but you will have to get more energy pellets to escape. Your 
score is based on how many caves you have gone through, and also how many 
extra energy pellets you have absorbed . 

When your ship has been destroyed, the game will end and your score will 
be displayed. The game can be paused at any time by pressing [CTRL] and [1], 
and you can continue by pressing those keys again. 

A good strategy for this game is to go into the largest "corridor" you can 
when faced with a choice of directions. You should use little jerks on the 
joystick when in cramped quarters. The fire button on your joystick should be 
used only if imminent death is certain. 

by Thomas Edwards 

S),stem Requirements: 16K RAM , jo),stic/< 

5 REM ******** CRYSTAL CAVES 
10 REM BY THOMAS EOWARDS 
20 REM REVISION JUNE 10 1983 
40 P R I NT"~" : P R - 0 : ESC APE - 5 : C 1 - 0 
50 GOSUB 3S0 : DIM C$(4) .0$(37) :GOTO 

155 



BONUS GAMES 

60 C$(l, 1 )- CHR$(33) : C$(2,2) - CHR$(34):C 
$(3,3) - " " 
70 SC - PEEK(88)+256 *PEEK(89) 
80 RA-53770 
90 PROBl - 150:PROB2 - 150 
100 REM 
110 REM MAIN GAME BLOCK 
120? :? :? :? :PRINT " m 
_ ";Cl+l 
130 HW- O 
140 P- SC+20:0$ - "" 
150 0$(1,1)-C$(1.1):FOR 1- 2 TO 36:0$(1 
" I ) -" ": N EXT I: 0 $ ( 37 , 37 ) - C $ ( 2 , 2 ) 
160 FOR 1-1 TO 30 : PRINT O$:NEXT I 
170 PRINT O$:IF PEEK(P) - O THEN GOTO 22 
o 
180 IF PEEK(P) - 96 THEN PR - PR+l:S0UNO 0 
,30,12,14:GOTO 200 
190 POKE P,3:GOTO 280 
200 SOUND O,O,O,O:IF PR <ESCAPE THEN GO 
TO 170 
210 POKE P, 3:FOR 1- 255 TO 0 STEP -1 :SO 
UNO 1,I,10 , 10:NEXT I:SOUND 1,0,0,0:ESC 
APE-ESCAPE+1:C1 - C1+1 :PR - 9:GOTO 60 
229 POKE P,3:S-PEEK(632) :P - P+(S - 7)-(S -
11) :SOUND 1 ,(P-SC) *4.35+78 , 2,2:IF PEEK 
(644) - 9 THEN GOTO 750 
230 IF PEEK(RA»PROB1 THEN GOTO 260 
249 IF PEEK(RA)<PROB2 THEN 170 
259 T-PEEK(RA)/7.5+2:W- INT(PEEK(RA)/86 
)+1 :O$(T,T)-C$(W,W) :GOTO 179 
269 POKE SC+869+PEEK(RA)/6,96:GOTO 249 
279 REM GAME OVER 
280 FOR 1- 1 TO 12:FOR J - CA TO CA+7:POK 
E J,PEEK(RA) :POKE 719,PEEK(RA) :SOUND 1 
,PEEK(RA) ,8,19:NEXT J:NEXT I 
299 POKE 719,0:SOUND 1,9,0,9 
309 SOUND 9,9,0 , 9:RESTORE :CA - CA-24 : FO 
R 1-1 TO 19:? :NEXT I:GOSUB 520 
310 PRINT "CAVES FINISHEO:";Cl:? "EXTR 
A ENERGY PELLETS:"; PR 
329? :? :? " PRESS START TO BE 
_ ":PR - 0:ESCAPE - 5:Cl - 9 

156 



CRYSTAL CAVES 

338 ? .. PRESS OPTION FOR INSTRUCTION 
m 
348 IF PEEK(53279)-3 THEN GOSUB 788:GO 
TO 328 
35 IF PEEK(53279)<>6 THEN 348 
36 FOR 19 - 78 TO 8 STEP -3:S0UND 8.15. 
12 I9/5:NEXT I9:GOTO 68 
37 REM REDEFINE CHARACTERS 
38 Xl - PEEK(186) 
39 X2 - Xl-4 
48 POKE 186.X2 
41 POKE 789.13 
42 GRAPHICS 8 
43 POKE 718.8:POKE 752.1 
44 CR - PEEK(756) * 256 
45 POKE 756.X2 
46 CA - X2*256 
47 GOSUB 628 
48 FOR N- W TO 1823+W STEP 8 
49 POKE CA+N.PEEK(CR+N) 
51J1J NEXT N 
5 1 8 W-W+ 1 : I F W< 8 THE N 48 8 
528 FOR 1- 1 TO 3:CA - CA+8 
538 DATA 178.178.178.178 . 178.178 . 178.1 
78 

157 



BONUS GAMES 

DATA 85,85,85,85,85,85,85,85 54 
55 
56 
57 
58 
59 
69 
61 
62 
63 
64 
65 
66 
67 
68 
69 
79 

DATA 179,179,255,192 , 69,24,24,24 
FOR ADDR-CA TO CA+7 
READ DAT:POKE ADDR,DAT 
NEXT ADDR 
NEXT I 
RETURN 
REM TITLE 
? :? :? 
? " 
? " 
? . " 

? " 
? :? 
? " 
? " 
? " 

71 ?:?:?:? 

0~ " 
"1/1'-'1""'1_1'"'1 I~'I~/I ISJ []I IZlISl U" 
ISIJEIS] U 0 []I 1 11-1- 11 [J" 

EEl" 

I;) 0" 
o IZlISl IIJ][]J;] ISJ" 
1"\1 11-1-11 1,.1/1 11_1 0" 

72 ?" By Thomas Edwards" 
73 RETURN 
74 REM HYPERWARP ROUTINE 
75 IF HW>C1+1 THEN GOTO 239 
76 HW-HW+1:POKE P,9:P - SC+3+INT(35 *R N 
D(l)):GOTO 179 
779 REM INSTRUCTIONS 
789 ? 
799 ? " CRYSTAL CAVES 

899 ? : ? " You h a v e bee n cursed I 0 
fly " 

81 9 ? "Ihrough I he Cryslal C a v e s for 
he " 

829 ? " r a s I o f you r nalural I i f e . The 

I 

839 ? "daeper you go in a cava . the mo 
r e " 
849 ? "Ireacherous Ihe cave becomes . I 
f you" 
859 ? "gal enough energy pellels. you 
can " 
869 ? "slarl frash on a new cave. Howe 
ve r • " 

158 



CRYSTAL CAVES 

878 ? "each succesive cave becomes har 
d e r " 
888 ? "10 escape from. Use Ihe joysli 
c k I 0" 

898? "move. The fire bullon will relo 
c a Ie" 
988 ? "you randomly al the lop of Ihe 

918 ? "screen. Good luck." 
929? :? :? :? :RETURN 

TYPO TABLE 

Variable checksum - 448382 
lin e num ran g e Cod e 
5 - 1 29 Z I 
1 39 - 218 YJ 
228 - 398 SS 
318 - 428 OA 
439 - 548 UR 
558 - 668 KV 
678 - 788 QY 
799 - 998 AK 
918 - 928 PZ 

lenglh 
426 
536 
572 
442 
399 
237 
396 
597 
44 

159 



~----~EYES~--~ 

t--------aLIPS .--------1 



Translate 

T hose of you who use your ATARI computers for business applications 
someday might wish to print checks. It seems like a simple task to 
write a program that prints the date, amount, and payee, in specific 

locations on a check form. But who wants to enter the English translation of 
an amount like ONE THOUSAND FOUR HUNDRED SEVENTY EIGHT 
DOLLARS AND TWENTY THREE CENTS? If you've got to do that much 
typing, you might as well write your check by hand. 

Your computer should be able to perform this task. Unfortunately, the 
transl ation of doll ars and cents into English isn 't as easy as just printing a 
number. I spent quite a while using the trial-and-error system to provide you 
with this program. I'm sure there must be a more effi cient algorithm than the 
one I came up with, but this one does the job. 

What I did was to store the English versions of the required numbers in 
the string N$, and the start ing and ending locations of each number in the 
two dimensional array, N. You enter the number in the normal numeric for­
mat, and the program does the required translation. The translation sub­
routine begins at line 130 and ends at line 320. B$ is a string of 80 blanks, EA$ 
holds the translated English amount, and AMOUNT$ stores the numeric 
amount you enter through the keyboard. 

The program will tell you what it wants and includes error-handling 
routines. The [BREAK] key and [SYSTEM RESET] have been left operational. 

I haven't gone so far as to actually print your check, but I have taken care 
of the trickly part. Add your own inputs for date and payee, position your 
data according to the layout of your check form, and put your ATARI to work. 
When you actually print checks, please remember that Jerry starts with a "J." 

by Jerry White 

199 REM TRANSLATE 5/28/82 BY JERRY WHI 
TE for ANTIC Magazine 
119 DIM B$(89).N$(152).EA$(89).AMOUNTS 
(19),N(27,27) 
129 EA$-" ":EA$(89)-" ":EA$(2)-EA$:B$-

161 



FEATURES 

EA$:GOTO 330 
130 EAS-B$:EA$-" ":SW-O:FOR ME - l TO LA 
140 IF AMOUNT$(ME.ME)- ..... THEN EAS(LEN 
( E A $ ) + 1 ) -" AND ":? .. AND ": GOT 0 280 
150 IF SW-l THEN SW-O:GOTO 280 
160 IF AMOUNT$(ME.ME)- .. , .. THEN SW-2:GO 
TO 270 
170 TRAP 280:SW-0:N-VAL(AMOUNT$(ME.ME) 
) :Jl-N(N.l) :J2-N(N.2) :TRAP 40000 
180 IF N-O THEN SW-2:GOTO 280 
190 IF LA-ME OR ME-LA-3 OR ME - LA-5 OR 
ME-LA-6 OR ME-LA-7 THEN 240 
200 IF LA-O AND ME-l THEN 240 
210 IF AMOUNT$(ME.ME)<>"l" THEN 239 
2 2 0 S W-l : N - VAL ( AM 0 U N T$ ( ME, ME + 1 ) ) : J 1 - N ( 
N,l) :J2-N(N,2):GOTO 240 
230 N-N+l0:J1-N(N.1) :J2-N(N.2) 
240 EA$(LEN(EA$)+l)-N$(Jl .J2):? N$(Jl. 
J 2) : 
250 IF ME-LA-5 AND N<>O THEN EA$(LEN(E 
A$ )+1 )-" HUNDRED":? .. HUNDRED": 
2 6 0 IF S W<> 2 THE N E A $ ( LEN ( E A $ ) + 1 ) -" ": 
? .... : 
270 IF SW-2 THEN EAS(LEN(EA$)+l)-"THOU 
SAN 0 ": S W- 0 :? .. THO USA NO" 
200 NEXT ME 
290 IF AMOUNT$(LA-l.LA)-"lfO" THEN EAS( 
LEN ( E A $ ) + 1 ) -" NO" :? .. NO" : 
300 IF AMOUNT$(LA-l.LA)-"lfl" THEN EA$( 
LEN(EA$)+l)-"CENT":? "CENT":GOTO 320 
310 EA$(LEN(EAS)+l)-"CENTS":? "CENTS" 
320 LEA-LEN(EA$):? :? EA$(2.LEA):? #2: 
EA$(2.LEA):? #2:RETURN 
330 N $ -" 0 N ETWO T H REEF 0 U R F I V E S I X S EVE N E I G 
HTNINETENELEVENTWELVETHIRTEENFOURTEENF 
IFTEENSIXTEENSEVENTEEN" 
340 N$(LEN(N$)+l )-"EIGHTEENNINETEENTWE 
NTYTHIRTYFORTYFIFTYSIXTYSEVENTYEIGHTYN 
INETY" 
350 DATA 1.3.4.6.7.11.12.15.16.19.20.2 
2.23.27.28.32.33.36.37.39.41f.45.46.51. 
52.59.60.67.68.74.75.01.02.90 
360 DATA 91.90.99.106.107.112.113.110. 

162 



TRANSLATE: DOLLARS TO SENSE 

119.123.124,128,129.133,134.140.141 . 14 
6,147.152 
370 GRAPHICS O:POKE 82.2:POKE 83,39:PO 
KE 710.160:POKE 752,1 
380? :?" This program translates n 
umeric" 
390? :? "dollar and cent amounts into 

Engl ish." 
400? :? "Input must bo numoric so do 
not ontor" 
410? :? "dollar signs. Always includ 
e decimal" 
420? :? "point botwoon dollars and co 
nts, and" 
430? :? "a comma betweon the thousand 

and tho" 
440? :? "hundred columns whon the amo 
un tis" 
450? :? "groator than 999.99." 
460 FOR J - 1 TO 27:READ J1,J2:N(J.1)=J1 
:N(J.2)-J2:NEXT J 
470? :?" Mako sure your printer is 

ready.":? :? "thon press START." 
480 IF PEEK(53279)<>6 THEN 480 
490 TRAP 560:CLOSE #2:0PEN #2.8.0,"P:" 
:TRAP 40000:POKE 752,0:? CHR$(125) 
500? : ? "Enter numoric amount or just 
press":? :? "the RETURN key to quit"; 

510 INPUT AMOUNT$:LA=LEN(AMOUNT$) :IF L 
A-O THEN 570 
520 TRAP 550:IF LA<4 OR LA>9 OR AMOUNT 
$ ( LA - 2 • LA - 2 ) <>" ." THE N 550 
524 IF LA<7 THEN 530 
5 2 5 IF LA> 6 AND AM 0 U N T$ ( L A - 6 • L A - 6 ) <>" • 
" THEN? CHR$(253):? "A , MUST SEPERAT 
E THOUSANDS.HUNDREDS":GOTO 500 
539 TRAP 49999:? CHR$(125):? :? "CONVE 
RTING $";AMOUNT$:? :? #2:"$";AMOUNT$ 
549 GOSUB 139 : GOTO 500 
550 ? CHR$(253):? ,"INVALID AMOUNT" :GO 
TO 500 
560 ? CHRS(253) : ?" READY PRINTER TH 
EN PRESS START" :GOTO 480 

163 



FEATURES 

579 GRAPHICS 9:? :? .. BASIC":? .. IS";: EN 
o 

TYPO TABLE 

Variable checksum - 217291 
Lin e num ran g e Code Length 
199 - 199 MO 547 
299 - 399 OF 545 
319 - 379 ZO 562 
389 - 489 OE 529 
499 - 559 CT 545 
569 - 579 KF 191 

164 



DISPLAY LISTS SIMPLIFIED 

Display Lists Simplified 

A
n important step in understanding your ATARl's graphics 
capabilit ies is to create your own custom display lists. This art icle wi ll 
show you step-by-step how to mix text and graphics on your T V 

screen. Our method uses BASIC commands to modify Graphics Modes 0 
through 8. BASIC sacrifi ces some of the ATARl's fl exibility; however, these 
techni ques wi ll help you eventually create display lists in assembly language. 

The graphics capabil ities of the ATARI are controlled by a 
microprocessor chip called ANTIC (Alpha-Numeric Television Interface Cir­
cuit). Any display list is a /JTOgram fo r ANTIC. 

There is a d isplay li st program provided automatically by each BASIC 
Graphics command, or you can define your own. The display list specifies 
where screen data is located, wh at display modes to use, and any special 
display options ANTIC is to implement. Since the display list describes the 
screen from top to bottom, any mix of graphics or text modes can be displayed 
on the screen. 

To understand displays, you need to know a bit about television. In a TV, 
a beam of electrons is shot at the screen . The beam starts at the top left-h and 
corner and moves across the screen. When it reaches the right-hand side, the 
beam is turned off, returned to the left, and moved down slightly. It is then 
turned on aga in , and the process is repeated 262 times to form a completed 
screen Image. 

Wh en the beam reaches the bottom right-hand corner of the screen , it is 
turned off and returned to the top left-hand corner to start over. These 
horizontal sweeps are ca lled scan lines and are the basis of the display. The 
scan-line pattern actuall y starts above and ends below the physical boun­
daries of the TV screen. To assure that information is not displayed where you 

Allan Moose is an associate /Jrofessor (math Iphysics) at SOt/t }wmpcon College, NY. Marian Lorenz 
is a special edt/cation teacher for handicapped children in Central Islip, NY. They have been frequent 
contribl(tors to ANTIC. 

165 



FEATURES 
can't see it, the ATARI display usually is restricted to 192 scan lines, position­
ed in the middle of the screen. 

There are several other concepts you will need. These are: 

ANTIC MODE NUMBER: ANTIC identifies modes with a set of 
numbers different from those used by BASIC. The ANTIC mode numbers 
corresponding to each BASIC Graphics Mode , 0 through 8, are listed in Table 
2. 

MODE LINE: A mode line is a grouping of scan lines into a fundamental 
unit for each Graphics Mode. For example, Graphics 8 uses one scan line per 
mode line; for Graphics 0 there are eight scan lines per mode line. Screen 
displays are made up of 192 scan lines grouped into mode lines (see Table 2). 

LOAD MEMORY SCAN (LMS): The LMS number is the sum of the AN­
TIC mode number for the first mode line, plus 64. The LMS number has two 
functions. First, it tells ANTIC what mode will be used for the first mode line 
of the screen display. Second, LMS instructs ANTIC to take information 
from the screen memory area of RAM and display it. The next two bytes in 
the display list following the LMS number give ANTIC the starting address of 
the screen memory. 

DISPLAY LIST POINTER: This is a variable that establishes the memory 
address for the first line of the display list. This address is found by the BASIC 
command: PEEK (560) +PEEK(561)*256. 

JUMP WHILE VERTICAL BLANK aVB): This signals ANTIC that 
the end of the display list has been reached and it must loop back to the begin­
ning. The jump is located immediately following the last mode line of your 
display list and is indicated by the decimal number 65. The low byte of the 
return address is given by PEEK (560). The high byte of the return address is 
given by PEEK(561). 

RAM REQUIREMENTS: The Graphics Modes differ in the number of 
bytes that must be set aside in memory for screen data (see Table 1). 

RAM BYTES PER MODE LINE: Just as the Graphics Modes differ in 
their total RAM needs, they differ in the number of bytes required per mode 
line (see Table 2). This information is important for synchronizing the 
Operating System (OS) and ANTIC. 

166 



DISPLAY LISTS SIMPLIFIED 

Developing a 
Custom Display List 

Step 1 
Make a rough sketch of what you want to appear on the screen. Our example 

appears as Figure 1. 

ATARI 

IS FUN 

Step 2 
Select the Graphics Modes you want to use and the number of lines for 

each mode . Two requirements must be met. First, the total number of scan 
lines in all the mode lines should not exceed 192. If it does, the screen image 
may roll. However, the total can be less than 192 with no adverse effect. Se­
cond, when you insert new mode lines into an existing display list, the total 
number of bytes required for the inserted lines must be a whole multiple of the 
bytes required per mode line in the existing display list. To understand this 
more fully, refer to Figure 2. Diagrams such as this are invaluable in planning a 
display list. 

RAM Bytes/Mode 

2 x20 =40 

40 X 128=5120 

4 x 10 =40 

Figure 2 

GRAPHICS MODE 2 
(2 lines) 

GRAPHICS MODE 8 
(128 lines) 

GRAPHICS MODE 1 
(4 lines) 

Scanlines 

2x16=32 

128 X 1 = 128 

4 x8=32 
TOTAL 192 

167 



FEATURES 
Our example will modify a Graphics 8 display list. Each line of Graphics 8 

requires 40 bytes of RAM. Therefore, at the top we must insert at least two 
lines of Mode 2 (two lines x20 bytes) to match the 40 bytes per line of Mode 8. 
At the bottom we will insert four lines of Mode 1, each requiring 10 bytes, for a 
total of 40 bytes. 

Matching up the byte requirements between inserted lines and existing lines 
insures that the text and graphics will appear where we want them. 

Step 3 
After choosing the modes you want, determine from Table 1 which of 

them requires the most RAM. Use this mode as your base (existing) mode, on­
to which you make changes that create your custom display list . This insures 
that the OS has set aside sufficient memory to hold your screen data. We have 
chosen Modes 2, 8 and 1. Mode 8 requires the most RAM, so it will be our 
base mode, called in line 30, but first we'll write a line to clear the screen and 
turn off the cursor: 

20 ? CHR$(125):POKE 752,1 
Next we call the display list to be modified. Adding 16 to GR. 8 eliminates the 
GR. 0 window that is a normal part of GR. 8. 

30 GRAPHICS 8 + 16 
We recommend that you enter the program as we go along. It will help you 
understand the process. 

Step 4 
PEEK the display list pointer and assign it to a variable such as "DL". 

40 DL=PEEK(560)+PEEK(561)* 256+4 
The number 4 is added to the display list pointer for insurance. Recall that the 
TV generates scan lines that do not appear on the screen. To allow for this, 
BASIC Graphics Modes generate 24 blank scan lines at the start of the display 
list. Adding 4 to the display list pointer will make sure that we don't inadver­
tantly remove any of these lines. 

Step 5 
POKE the LMS instruction into DL minus 1. The value 71 derives from 

ANTIC mode number 7, plus 64. This instruction will establish the first mode 
line of the display list. If your first mode line belongs to your base mode, skip 
this step: 

50 POKE DL-1,71 

168 



DISPLAY LISTS SIMPLIFIED 
Step 6 

Every mode line in your diagram requires a statement in your display list. 
Write these in the same order as they appear on the screen, and POKE the 
ANTIC mode numbers as appropriate. This is the second line of our Graphics 
Mode 2. 

60 POKE DL+2,7 
From the diagram we can see that the next 128 lines are Graphics 8. Since this 
is our base mode, these lines already exist in the display list. The next mode 
lines to insert are the four Graphics 1 lines at the bottom. 

70 POKE DL+132,6 90 POKE DL+1 34,6 
80 POKE DL+ 133,6 100 POKE DL+ 135,6 

Table 1 

GRAPHICS MODE RAM REQUIREMENTS 

MODE BYTES MODE BYTES 

8 + 16 . ........ . .. . ..... . . . 8138 4 + 16 ........................ 696 
8 .... .. . . . . . ............ 81 12 4 . ......... . . ..... . ......... 694 

7+16 .. . ... . . ....... . . . ... 4200 3+16 ... .. . . ....... . ...... . .. 432 
7 ....... . .... . .. . . ..... . 4190 3 ......... . .... .. . . .... . .. ~ . 434 

6 + 16 ......... ... . . ....... 2184 2 + 16 ..... . ... .. ........... . . 420 
6 . . .. . ...... . ... . . ...... 2174 2 .... . ............ . .... . .. . . 424 

5 + 16 . . . .. ....... ......... 1176 1 + 16 ........................ 672 
5 .................. . .. .. 1174 1 .... . ... ... .. ...... ..... .. . 674 

O .... . .. . ................... 992 

Table 2 

BASIC MODE ANTIC LMS # OF MODE SCAN LINES/ RAM BYTES/ 
TYPE 

NUMBER NUMBER BYTE LINES MODE LINE MODE LINE 

.. .. . 0 .. .. .. .. 2 text ... 66 . .. .. 24. . ..... . 8 ........ . 40 ... . 

..... 1 ....... . 6 ... text ... 70 . . . . . 24. . .. . .. . 8 ......... 20 ... . 

..... 2 ..... . 7 text ... 71 . . . .. 12 ........ 16 ......... 20 . .. . 

..... 3 ...... .. 8 ... graph ics .. 72 . . . .. 24........ 8 ......... 10 ... . 

..... 4 ...... .. 9 ... graphics .. 73 . . . .. 48 .. ,..... 4 . . . . ..... 10 ... . 

..... 5 ... .... . 10 ... graphics . . 74 . . . .. 48 .. ,..... 4 ... . ..... 20 ' .. . 

..... 6 ...... .. 11 ... graphics .. 75 . . . . . 96 .... . .. . 2 .. . . . .... 20 ... . 

..... 7 .... . . 13 ... graphics .. 77 . . 96 . . . . . . .. 2 ...... . .. 40 ... . 

..... 8 .. .. 15 ... graphics . . 79 . 192 .. . ... .. 1 ... . ..... 40 ... . 

169 



FEATURES 

Step 7 
End the display list with a JVB, followed by the low byte and high byte of 

the return address: 
110 POKE DL+136,65 
120 POKE DL+137,PEEK(560) 
130 POKE DL+138,PEEK(561) 
140 GOTO 140 

Now RUN the program. You will see the top section (GR.2) black, the bottom 
section (GR.1) black, and the middle section (GR.8) blue. To make the middle 
section black, change line 30 to: 

30 GRAPHICS 8+ 16:SETCOLOR 2,0,0 
Table 3 shows the relevant portions of our display list and demonstrates 
another important point. Line 30 of our program has stored the LMS instruc­
tion in address 32825. Line 40 stores the value 7 in address 32828 to give us 
the second mode line of Graphics 2. Instructions for the Graphics 1 lines and 
JVB are stored in addresses 32958 through 32962 . 

Look at addresses 3292 1 through 32923. Note that here in the middle of 
the display list is another LMS instruction followed by a screen memory ad­
dress! The reason is that ANTIC cannot address a block of memory longer 
than 4K bytes. Since Graphics 8 requires 8K bytes, the screen memory must 
be broken up into two blocks. ANTIC is sent to the first block of screen 
memory by the first LMS instruction in address 32825, and is sent to the se­
cond block of screen memory by the second LMS instruction in address 
32921. "Jumping the 4K boundary" occurs only for Graphics 8. 

You must be careful of two things when you modify a Graphics 8 display 
list. First, don't clobber the second LMS instruct ion and the two following 
bytes by putting mode lines in their place . Second, you must calculate an off­
set if you change modes after the boundary jump. We did this in line 70, by 
adding two lines to the display list (DL + 132 vs. DL + 130). 

At this point the actual display is written into screen memory. The next 
task will be to print "ATARI" in the Graphics 2 sect ion . Line 10 established 
GR.8 and instructed the OS that data in screen memory is to be interpreted as 
graphics, not text. Consequently if we simply enter PRINT #6: "ATARI", the 
OS will not carry out the command. The OS must be told how to interpret 
the data it finds in screen memory by POKEing the appropriate Graphics 
Mode number into memory address 87. 

140 POKE 87,2 

170 



DISPLAY LISTS SIMPLIFIED 
150 POSITION 8,0:PRINT #6; "ATARI" 

The OS positions text or graphics on the screen by counting bytes from the 
start of the screen memory associated with the Graphics Mode value stored in 
location 87. Thus, it is possible for total screen memory to be considerably 
longer th an the memory for the mode the OS is using. This disparity can cause 
"cursor out of range" error messages and trouble positioning material on the 
screen. 

The cure for both problems is fairly simple. Before creating a display on 
the screen, change the start of the screen memory to coincide with the start of 
the mode section where you want the display to appear. For the Graphics 
Mode 8 section this will el iminate the trial-and-error method of placement. 
For the Graphics Mode 1 section this will prevent a "cursor out of range" 
message. 

To write our display we start with: 
160 POKE 87,8 

to tell the OS what mode we're in. Then locate the current top of the screen 
address with: 

170 TPSCRN =PEEK(88)+ PEEK(89)*256 

Next, offset the variable TPSCRN by the number of bytes in the Mode 2 lines 
+ 1 (four Mode 2 lines X ten bytes per line = 40 bytes): 

180 TPSCRN = TPSCRN + 41 

Finally, POKE this memory location back into 88 Gow byte) and 89 (high 
byte): 

190 POKE 88,TPSCRN-(INT(TPSCRN I256)*256) 
200 POKE 89 ,INT(TPSCRN/256) 

This procedure sets up the Graphics 8 section of our display so that the top 
left-hand corner corresponds to position 0,0. You can appreciate how much 
simpler it will be to place your display components. 

210 COLOR l :FOR 1=1 TO 40 STEP 5 
220 PLOT 60+1,40 +I:DRAWTO 100 +I,40+I: 

DRAWTO 100+I,80+I:DRAWTO 60+1,80+1: 
DRAWTO 60 + 1,40 + I 

230 NEXT I 

Finally, print "IS FUN" in the Mode 1 section at the bottom of the screen. 
240 POKE 87, 1 
250 TPSCRN = TPSCRN + 512 1 

171 



FEATURES 
Line 250 offsets TPSCRN to the beginning of the Mode 1 section. 5121 is ob­
tained from (128 lines of Gr. 8) * (40 bytes per line) = (5120 bytes) + 1. 

260 POKE 88,TPSCRN-(lNT(TPSCRNI256) * 256) 
270 POKE 89,INT(TPSCRNI256) 
280 POSITION 6,2:?#6j "IS FUN" 
290 GOTO 290 

Table 3 

ADDRESS OUR LABEL VALUE MEANS 
32822 DL-4 112 Blank scan lines 

23 DL-3 112 provide for "overscan" 
24 DL-2 112 
25 DL-I 71 LMS - 64+7 sets ANTIC mode 7 
26 DL 80 and one lin e of same 
27 DL+I 129 gives address of start of screen 
28 DL+ 2 7 memory 

32829 DL+3 15 la-byte +hi-byte*256 =33 104 
sets ANTIC 7 for second mode line 
(equiv. of GR .2) 

32921 DL+ 95 79 
reverts to 

22 DL+96 0 
ANTIC mode 15 LMS and address for 

23 DL+97 144 
for 128 4K boundary jump, 

32924 DL+98 15 
mode lines includes one line of 
(equivalent mode 15 
of GR. 8) 

32957 DL+ 131 15 sets ANTIC mode 6 
32958 DL+132 6 for four lines 

59 DL+133 6 (equivalent of GR .]) 
60 DL+ 134 6 
61 DL+135 6 
62 DL+ 136 65 JVB to address given by next two 
63 DL+ 137 54 bytes 

32964 DL+138 128 la-byte of return address 
128*256=32768, hi-byte of return 
address 

+54 

32822 =rewrn address 

172 



TINY TEXT 

Tiny Text 

T
iny Text is a small but clever cassette-based text editor written by 
Stan Ockers, originally in the A.C.E. Newsletter (3662 Vine Maple 
Dr., Eugene, OR 97405). Tiny Text was never intended to be an all­

purpose word-processor, even though it does provide several of the important 
features found in larger programs. Tiny Text was written to facilitate submis­
sion of "machine readable" copy to the Eugene A.C.E. Newsletter. The real 
advantage of this program is that it is small, inexpensive, and very easy to use. 

The program that follows is a slightly-enh anced version that includes: 

• support for Atari 820 Printer. 
• separate Print and Display modes. 
• forms control for Print mode. 
• top-of-page command for Print mode. 
• save text on Cassette or Disk . 
• error trap control. 
• adapts to different RAM sizes. 

Cassette tapes recorded by the original Tiny Text can still be used with this 
modified version. Finally, this version corrects a couple of minor formatting 
bugs and is about ten percent "tinier" than the original. 

Using the Program 
The [OPTION] key selects one of five options: LOAD, EDIT, PRINT, 

SAVE, and DISPLAY. The following paragraphs describe each of these 
options. 

The LOAD option reloads text that was previously saved on cassette or 
disk. When LOAD is selected, you will be asked to enter the "file spec" of the 
text you want to load. If the text is on cassette, simply type a C . The computer 
will "beep" once to remind you to set up the recorder to play. Then press 

Jim Carr has a B. S. in physics from Oregon State University, and is employed in the field of 
computer·controlled processing. 

173 



FEATURES 

[RETURN] to begin loading the text . If the text is on disk, type the complete 
file name of the text file, for example, "Dl:TTHELP.TXT". 

The EDIT option lets you enter text or change text previously entered. 
When the Edit mode is requested, a blank area (text-entry window) appears 
in the center of the screen. Up to three lines of text can be typed into the 
window. Pressing [RETURN] causes text in the window to be added to pre­
viously entered text. You can use the standard screen-editing functions to 

edit text in the window. All trailing blanks in the window will be deleted, so 
it is good to end each entry at the end of a word and start each new entry 
with a space. 

Such functions as tabulating and indentation are controlled by special 
formatting symbols. These symbols always cause the current line to end 
before the requested formatting function is executed: 

CTRL E - End the current line and start a new line with no inden­
tation. 
CTRL I - Indent the next line. 
CTRL S - Space before starting the next line. 
CTRL T - Tab a specified number of spaces before the next line. 
CTRL C - Center the next line. 
CTRL P - Page. Advance the paper in the printer to the top of the 
next page before printing the next line. 

When in the Edit mode, pressing the [SELECT] key will cause the line of 
text below the window to be moved up into the window. The normal screen­
editing functions can then be used to fix the text in the window. Use the 
joystick to scroll the desired line to the position below the text window. Press­
ing [SELECT] twice (without making any changes) simply causes the text 
line to move up into the window and then back. To DELETE a line of text, 
move it below the text window and press [RETURN]. Press the joystick 
trigger to jump to the end of the text. 

The PRINT option prints the formatted text on the printer. Before print­
ing begins you may change the default settings for line length, tab stop, etc. 
Use the screen-edit functions to make any desired change, then press 
[RETURN]. The items that may be changed are: 

Line - Line length (maximum number of characters per line). 
Indent - The number of spaces to be indented Oeft margin). 
Tab Stop - The number of spaces for the tab stop. 
Paper Size - The total number of lines that can be printed on a fully-

174 



TINY TEXT 
covered page. For example, an l1-inch form with six lines per inch has 66 lines. 

Forms Feed - The number of blank lines printed to separate the bot­
tom of one page from the top of the next. For example, if three blank lines are 
required at the top and bottom of each page, then Forms Feed is set to six. 

Save option lets you save text on either cassette or disk. The SAVE 
selection will ask for the "file name" to be used. If using a cassette , simply type 
C. The computer wi ll beep twice for you to set up to record. After that, press 
[RETURN] to begin saving text. To save text on disk, enter the complete file 
name to be used. For example "D:TTHELPTXT". 

The DISPLAY option displays the text on the screen. It provides the 
same format-change options as the print option. Display is relatively slow. 
The program jumps to menu immediately after the last line . 

Programming Notes 
The default settings for the format control functions are defined at line 120. 

If you make any changes to this program, you first make a change to line 
14 which automatically expands the main data storage array T$ to use all 
available memory. Try changing "SIZ =FRE(0)-50" to "SIZ =FRE(O)- 500': 
When you have finished making your changes you can restore the statement 
to its original form. 

If a system error occurs, it is trapped and printed out by the program. 
You are then prompted to press [RETURN] to make the program continue at 
the option selection menu. This will generally allow you to recover from 
errors without loss of data. 

System Reql"iremencs: 16K RAM , 

1 REM **** TINY TEXT **** 
2 REM 
3 REM SIan 0 ckers S epl - 8 1 
4 REM ACE Newsletter Nov - 81 
5 REM 
6 REM Mod by Jim Carr 0 1 - 0 C T - 8 2 
7 REM 

by Jim Carr 

12 OIM SP$(40) :FOR 1= 1 TO 40:SP$(I,I) = 
" ":NEXT I 
14 DIM S$(45),I$(120),A$(128):SIZ=FRE( 
O) - 50:DIM T$(SIZ) :FOR 1= 1 TO 45:READ A 
:S$(I) =CHR$(A) :NEXT 1 

175 



FEATURES 

28 DATA 184,184,133,284,184,133,283,18 
4,133,286,184,133,285,184,184,168,162, 
8,161,283,145,283,198,283,165 
38 DATA 283,281,255,2f8,2,198,284,165, 
283,197,285,288,236,165,284,197,286,28 
8,238,96 
48 FOR 1- 1536 TO 1643 : flEAD A: POKE I,A: 
NEXT I 
58 DATA 184,184.133.284.184.133.283 . 18 
4.133,286.184,133,285,162.8,169.248,32 
.53.6.169.48 . 32.91.6 
68 DATA 165,287.288.8,169.168.32,91.6. 
24.144.18.169.48.32.53 . 6.169.128 . 32.91 
.6.169.248.32.53.6.96 
78 DATA 133.288.161 . 283.281.96 . 176,11. 
281.32.176.5.24.185.64 , 288.2 , 233.32,12 
9.285.238.283,288.2 
88 DATA 238.284.238,285.288.2.238,286, 
198,288.288,221.96 .1 33.288.169.8.129,2 
95.239,295,298.2 
99 DATA 238.296.198 , 298,288,244.96 
118 P=241:POKE 297 . 9 : POKE 82 , 9:0PEN #2 
.4. 9, .. E : " : T S ( 1 ) =" . " : T S ( 489) =" . " : T S ( 2 ) = 
T$ 
129 SCR =PEEK(88) +256*PEEK(89) +129:LL =3 
5:LM =1:IND =5:TAB =19:PS =66:FF =6:GOTO 59 
9 
299 ? "INSERT TEXT OR . . . PRESS SELEC 
T TO EDIT" 
399 POSITION 9,9 : ? SIZ - LEN(TS);" FREE 

":S =STICK(9):IF S=15 THEN 339 
395 IF S=14 AND P<LEN(TS) - 329 THEN P=P 
+48 
319 IF S=13 AND P>289 THEN P=P- 49 
315 IF S=ll AND P<LEN(TS) - 288 THEN P=P 
+1 
328 IF S=7 AND P> 241 THEN P=P- l 
338 A=USR(1536.ADR(T S) +P- 241 .seR) 
335 K=9 
349 POKE 53279.8:PK =PEEK(53279) :IF PK = 
5 THEN GOSUB 999 
359 IF PK =3 THEN 599 
369 IF PEEK(764)<255 THEN 499 

176 



TINY TEXT 

365 K=K+ l :IF K<18 THEN 348 
378 IF STRIG(8) =8 THEN P=LEN(T$)-248:P 
OKE 287.8 
389 GOTO 399 
499 POSITION 9.19:INPUT #2;1$:PK=PEEK( 
297): IF PK =8 THEN A$ = .... 
495 LI =LEN(I$) :LT =LEN(T$) :IF LI =9 THEN 

469 
497 IF LI +LT >SIZ THEN POSITION 9,1:?" 
OUT OF SPACE ":GOTO 399 
419 IF PK =l THEN A$ =T$(P.P +39) :IF T$(P 
+39.P+39) =" .. THEN 1$(LI +l) =" ":LI =LI + 
1 
429 LA =LEN(A$) :AD =ADR(T$) :IF LI>LA THE 
N A=USR (ADR (S$). AD +L T- l. AD +P- 2, LI - LA) 
439 T$(P.P +LI - l )=1$ 
449 IF LA >LI THEN T$(P +LI) =T$(P +LA) 
459 P=P+LI:T$(LT +LI - LA +l) = .... :POKE 297, 
9:GOTO 399 
469 IF PEEK(287) =1 THEN 478 
465 IF P<LEN(T$) - 279 THEN T$(P) =T$(P +4 
9 ) 
478 POKE 764,255:GOTO 399 
599 TRAP 959:ST =PEEK(569) +PEEK(561)*25 
6 ~ 4:POKE ST - l,78:POKE ST +2,7:POKE ST +3 
.112:POKE ST +4.6:POKE ST +5,6 
591 POKE ST +24,65 
519 POKE ST +25,PEEK(569) :POKE ST +26,PE 
E K ( 561 ) 
515 OP =OP +l:IF OP =6 THEN OP = l 
529 ? CHR$(125) :POSITION 28,9:IF OP =l 
THEN? "LOAD" 
522 IF OP =2 THEN? "EDIT" 
534 IF OP =3 THEN? "PRINT" 
536 IF OP =4 THEN? "SAVE" 
538 IF OP =5 THEN? "DISPLAY" 
549 POSITION 9.1:? "PRESS START TO BEG 
IN" 
559 FOR 0=1 TO 38:NEXT 0 
555 POKE 53279,8:IF PEEK(53279) =3 THEN 

5 1 5 
557 IF PEEK(53279)<>6 THEN 555 
569 POKE 764.255:POSITION 28,1:? CHR$( 

177 



FEATURES 

125) :POSITION 9.1 :ON OP GOTO 2999.299. 
599.1599.599 
599 FOR 1=1 TO 6:? CHR$(127):CHR$(158) 
::NEXT I : ? : FOR 1=1 TO 6:?" ";CHR$(15 
9);" ";:NEXT I 
594 POSITION 9.1:? " SET FORMAT CONTROL 
S":POSITION 9.6:? "LINE LEFT IN - TAB 

PAGE FORM" 
595 ? "SIZE MARG DENT STOP SIZE FEED ": 
? CHR$(127):LL;".";CHR$(127);LM;".";CH 
R$(127);IND:".";CHR$(127) ; 
596 ? TAB;". " ;CHR$(127);PS;". " ;CHR$(12 
7) ;FF:POSITION 9.8 
699 INPUT LL.LM.IND . TAB.PS.FF : P=249 : P= 
249:GOTO 719 
619 P=249 

-- 679 GOTO 629 
719 LINE =9:GRAPHICS 9 : POSITION 9.3:FL = 
9 
715 RL =LL:TP =P: B=ASC(T$(TP.TP)) 
729 RL =LL - IND*(B =9) - TAB*(B =29) 

- 725 IF B=19 AND OP =3 AND LINE <=(PS - FF) 
THEN LPRINT .. " : LINE =LINE +l 

726 IF B=19 AND OP =5 THEN? 
_ - 727 IF B=16 AND OP =3 THEN FOR 1=1 TO P 

S- LINE:LPRINT" ":NEXT I:LINE =9 
. 728 IF B- 16 AND OP =5 THEN? :? :? :LIN 
. E = 9 

735 C=9:K =9 
749 K=K+l :TP =TP +l :IF K=RL +l THEN 765 
745 IF TP >LEN(T$) - 241 THEN FL=l :GOTO 8 
1 9 
759 A=ASC(T$(TP.TP)) :IF A<32 THEN C=9: 
GOTO 789 
755 IF A- 32 THEN C=C+l 
769 GOTO 749 
765 IF C- 9 THEN A$ - T$(P +l.TP - l):TP =TP ­
l : GOTO 819 
767 IF T$(TP.TP) - " .. THEN A$ =T$(P +l.TP 
- l):GOTO 819 
768 IF T$(TP - l.TP - l) =" .. THEN C=C- l 
779 K=l 
715 TP =TP - l:IF T$(TP.TP) <>" .. THEN K=K 

178 



'ISo eLosE# 

TINY TEXT 

+l:GOTO 775 
780 IF TP =P+1 THEN P=TP:GOTO 715 
785 A$ ="": I =P+1 
790 A$(LEN(A$) +l) =T$(I,I) :IF T$(I,I)<> 
" " THEN 805 
795 IF C> l THEN A=INT(K/C +RND(O)) :IF A 
> 0 THEN FOR J = l TO A:A$(LEN(A$) +l) =" " 
:NEXT J : K=K- A 
800 C=C- 1 
802 IF C=l AND K> O THEN FOR J = l TO K:A 
$(LEN(A$) +l) =" ":NEXT J 
805 1=1+1 :IF I <TP THEN 790 
810 IF FL THEN A$ =T$(P +l ,TP - l) 
815 IF OP =3 THEN LINE =LINE +1:IF LINE > ( 
PS - FF) THEN LINE =l :FOR 1 ~ 1 TO FF:LPRIN 
T " ":~EXT I 
820 SP ~ LM + (B = 9)*IND + (B = 20)*TAB + (B = a)*( 
LL - LEN(A$))/2:IF SP >40 THEN SP =40 
830 IF OP =3 THEN LPRINT SPS(l,SP) :A$ 
840 I F OP =5 THEN? SP$(l ,SP) :A$ 
850 IF FL THEN 500 
860 P=TP:GOTO 715 
900 PK =PEEK(207) :IF PK =l THEN POKE 287 
, O:GOTO 930 
910 IF PK =8 AND P<LEN(T$) - 279 THEN POK 
E 287,1 
930 A=USR(1536,ADR(T$) +P- 241,SCR) :FOR 
0=1 TO 50 : NEXT D: RETURN 

.!HHt? " ERROR ";PEEK(195);" AT " : 256*PE 
e EK (187) +PEEK(186):? "PRESS RETURN TO C 

ONTINUE":INPUT I$:GOTO 508 
1500 ? " ENTER FILE NAME" : INPUT I$:OPE 
N #3,8,0,1$ : N=INT(LEN(T$)/128):? #3 : N: 
IF N=O THEN ST =O: GOTO 1528 
1510 FOR 1=1 TO N:ST =128*1:? #3:T$(ST -
127 , ST) :NEXT I 
1520 ? #3:T$(ST +1 .LEN(T$)) :CLOSE #3:GO 
TO 599 
2009 ? " ENTER FILE NAME":INPUT I$:OPE 
N #3 , 4,0.1$:INPUT #3.N:IF N=O THEN BEG 
=- 127:GOTO 2020 
2019 GRAPHICS O: FOR 1=1 TO N:BEG ~ 128*I 
- 127 : INPUT #3,A$:? A$ ; : T$(BEG) =A$:NEXT 

179 



FEATURES 

I 
2020 INPUT #3,A$:T$(BEG +128) =A$ : CLOSE 
#3:POKE 1536,104:GOTO 500 

TYPO TABLE 

Variable checksum = 636317 
Line num range Code L englh 
1 - 40 RL 509' 
50 - 110 ON 536 
1 20 - 340 OW 525 
350 - 420 MY 501 
430 - 520 WU 536 
522 - 594 CP 569 
595 - 727 U F 505 
728 - 775 NA 495. 
780 - 820 WM 51 5 • 
830 - 1510 OJ 556' 
1 520 - 2020 CJ 31 0 

180 

( -. . -
.if ' 



CHRISTMAS MAILING LISTER 

Christmas Mailing Lister 

Exchanging Christmas cards helps make this the holidays special, but 
digging through old slips of paper to find your addresses can take the 
fun out of it. H and addressing all those outgoing envelopes is no thrill 

either. This year let your ATARI start handling this chore. 
Christmas Mailing Lister is a cassette-based program that stores up to 

140 addresses. You can create, change, or delete addresses at any time. You 
can print individual addresses, selected categories, or the whole file, sorted 
alphabetically by name or city. The printout can be done on labels, if you have 
the proper supplies and equipment, or in the form of an address book. 

The unique feature that makes this nice for a Christmas list is that names 
are stored beginning with the letter entered in inverse video, rather than the 
first letter of the name field. This way your labels can read "John and Mary 
Smith," or "The John Smith Family," instead of "Smith, John and Sue," or 
"Smith Family, The John ." Just type the capital "S" in inverse video. Un­
fortunately, this sort only works when running the whole list. An individual 
search for the Smith entry would still require hunting for "John and Mary 
Smith." "Smith" alone would not be enough. 

You can also define up to six different categories for selected sub-sorts. 
Each name must belong to one category only, although this assignment may 
be changed at will. One possible use for the categories is to keep track of card 
exchange. For example, the categories could be defined as follows: 

1. sent LI S a ca rd in 1981 
2. sent LI S a card in 1982 
3. sent us a card in 1983 
4. sent us a card in 1984 
5. sent us a card in 1985 
6. did not send card 

This should keep you organized for a few years, by which time you'll pro­
bably have a disk drive and a store-bought program. 

Bill Lukeroth .is a heat" equ ipment claims adjuster, freelance writer and self·[/l·owed ''ATARI hacker." 

181 



FEATURES 
This program requires a printer, a 410 Program Recorder, and at least 32K 

of RAM. The first step is to type the program into the com puter. I recommend 
that you CSAVE to your permanent cassette and a backup before attempting 
to RUN the program. Note th at "Merry C hristmas !" in line 250 must be in 
upper-case inverse video. 

When you RUN the program, first you'll see the title page, which ch anges 
to a menu after 20 seconds. You can shorten the wait by pressing [START]. 
The first four items on the menu require insertion of a data cassette, so the first 
time through you must select item #5 ("create a completely new address list"). 
Then you will define your six categories , each using 25 characters or less. You 
can bypass the category feature by pressing [RETURN ] each time. 

The next screen asks for a name, address , etc. Each of the first three fields 
can hold 28 characters . You can put in a nine-cligit ZIP code (or shorter) and 
an area code with your phone numbers. Sorry, no numerical sorting with this 
program. 

Enter a few addresses, then return to the main menu to experiment with 
the print, change and delete opt ions. When you understand these, continue 
to enter addresses until you exhaust your list, or your computer's memory. 
Then return to the menu and select item #7 ("end"). You will be prompted to 
insert a blank cassette so you can record all your data o nto tape. Do not use 
your program cassette for this. Also make a backup tape at this time , it's a lot 
of work to retype data! Now you can try the other program features without 
fear. 

Tips and Hints 
Every printer is different. The Atar i 822 , or other thermal printer (such as 

the Alphacom), does not h ave ready-made label paper. You can still cut and 
paste your labels though . 

The Atari 825 Printer, and certain other 80-column printers (such as the 
Epson), can use fan-fold labels with adhesive backs. Typically these labels are 
spaced at one-inch (six lines) intervals. You may have to adj ust lines 7220 and 
7230 of the program to accomodate your labels. LE is the variable that deter­
mines the number of blank lines between labels. If you ch ange the value ofLE 
in 7220, you must ch ange 7230 so that LE equals one less th an it does in 7220. 

7720 LE=2 
7230 IF Q2 $ "Y" THE N #2 i B4 $ iN A ME $ (l05, 11 9), 

NAME$(l20, 120):LE = 1 

182 



CHRISTMAS MAILING LISTER 
The Atari 820 Printer does not work well with fan-fold labels because 

these are too thick. Try Dennison's "file-folder labels," product number 
36-471, which come in rolls of 250 labels. 

When you are sorting the whole fil e , the screen should change color each 
time a sort ing loop is completed . This reassures you that the sort is t aking 
place . 

Abort and return features include these: the [BREAK] key is disabled to 
prevent acc idental crashes; YES or NO prompts require "Y," anything else 
returns to main menu; [OPTION ] aborts to main menu, even while printing, 
except at a prompt. [OPTION] plus [RETURN] escapes a prompt. Atari 
screen editing is always ava il able , but can destroy a screen if misused. 

Load the data tape accord ing to screen instructions and standard pro ­
cedures. If t here is a t ape error, you must "end ." The tape can take five to 10 
minutes to load . A tone alerts you when it is finished. 

Searching for a single entry requires you to enter the name line, exactly as 
entered, far enough to make the search uni que. Remember, the inverse video 
character does not function in search mode. If you h ave "John and M ary 
Smith" and "John and Milly Doe" in your fil e , you will h ave to specify the 
search at least through the second letter of the woman's n ame to call the cor­
rect record . 

If one of us h as goofed terribly, the anguished program will go out in a 
blaze of glory, which should include the offending line number. Note this 
carefully and study the fault. To witness the death scene, type GOTO 9200 
instead of RUN. Caution: th is will erase any addresses not on tape. 

M ay you h ave many pleasant holiday seasons . 
by Bill Lukeroth 

19 REM •• CHRISTMAS MAILING LIST •• 
29 REM BY BILL LUKE ROTH 
199 REM REVISION 9.3.WRITTEN 19/97/B2 
159 REM 
169 REM MEMORY USED:32K 
189 REM DESCRIPTION : mai I ing I ist.print 
s labels or address books 
199 DIM BK$(28) :FOR L=l TO 28:BK$(l.l) 
-"_" : NEXT L:MSL - 15499:REM allows for 1 
49 names 
299 DIM MAIN$(MSl) .NAME$(119) .TEMP$(11 

183 



FEATURES 

9),SEARCHNAMES(28) ,SEARCHCITYS(28) ,FIR 
MS(28),ADDS(28) ,CITYS(28) 
219 DIM ZIPS(19) ,PHONES(14),02S(1) ,CAT 
S( 1) ,CSt 19) ,CATl$(25) ,CAT2S(25) ,CAT3S( 
25) ,CAT4S(25) ,CAT5S(25) ,CAT6S(25) 
229 DIM CIVS(l) ,CIV2S(1) ,NAME2S(119),B 
4$ (6) , B $ ( 1 ) : B 4$-" " : B S-" " 
239 FLAG1-0:CS-"CATAGORY #":FLAG3 - 9:FL 
AG6-0:S-9 
240 00PS - 9999:MENU -300:TRAP OOPS:DISBR 
K- 9699:REBRK-9659 
259 GRAPHICS 2+16:SETCOLOR 2,3,S:SETCO 
LOR 4,14,9:SETCOLOR 9,3,9:? #6:? #6;" 
MII;';'1 "11;'1,'1'1"",, :? # 6 

269 ? #6;" MAILING LIST":? #6:? #6: 
? #6:? #6 
280 FOR TITLE-l TO 30:IF PEEK(53279)-6 

THEN POP :GOTO 300:REM check start b 
u II 0 n 
285 FOR LO-l TO 199:NEXT LO:IF S- O THE · 
N S- 8:GOTO 288 
287 S- 9 
288 SETCOLOR 2,3,S 
299 NEXT TITLE 
300 CLOSE #l:CLOSE #2:GRAPHICS 0 
310? :? "CHOOSE ONE:":? 
320 ?" D.SEARCH FOR A LISTING(IN ORO 
ER TO PRINT A MAILING LABEL,OR C 
HAHGE"; 
3 as ? " 
349 ? " 
359 ? " 
00 K' ." 
369 ? " 
ERYONE 
370 ? " 
RESS 
38B ? " 
390 ? " 
4B9 ? :? 

DISBRK 

OR DELETE A LISTING)." 
fd.ADD A LISTING." 
m.PRINT A COMPLETE 'ADDRESS B 

g.PRINT MAILING LABELS FOR EV 
ON THE LIST." 

m·CREATE A COMPLETELY NEW ADD 
LIST(A NEW DATA BASE)." 

tIl.CREATE A BACK-UP TAPE." 
Ii·END." 
"TYPE 1,2,3,4.5 .6 OR 7":GOSUB 

4lB INPUT 01 : GRAPHICS O:IF 01<1 OR 01> 
7 THEN? "ANSWER MUST BE BETWEEN 1 AND 

184 



CHRISTMAS MAILING LISTER 

7,":? :GOTO 310 
420 GOSUB DISBRK:ON 01 GOTO 430.430.43 
0,430.1100.2020.2000 
430 FLAG6-FLAG6+1 :IF FLAG6>1 THEN 500 
440 ? "INSERT THE 0 A T AC ASS E TT E , R EWI N 0 

TO START,PRESS' PLAY' AND HIT' RET 
URN' .. 
445 OPEN #1.4.0."C:":REM get data from 
casselle file 

459 FOR L-1 TO 128:GET #l.DUMMY:NEXT L 
:REM this loop does nothing but is req 
uired by Atari BASIC 
460 INPUT #1 ;CAT1$:INPUT #1 ;CAT2$:INPU 
T #1; CAl3$: INPUT #1; CAT4$: INPUT #1; CAT 
5$:INPUT #1;CAT6$ 
479 INPUT #1 ;TEMP$:IF TEMP$-CHR$(253) 
THEN 499 
489 MAIN$(LEN(MAIN$)+l )-TEMP$:TEMP$-.... 
:GOTO 470 
499 SOUND 0.69.10.14:FOR L-1 TO 259:NE 
XT L:SOUND 0.9.9.9:? :? "TURN RECORDER 

OFF.THEN PRESS 'START' TO CONTINUE, 

495 IF PEEK(53279)<>6 THEN 495 
497 CLOSE #1 :GRAPHICS 9:GOSUB DISBRK 
599 ON 01 GOTO 529.1210.1490.1870 
520 ? "WHAT NAME ARE YOU LOOKING FOR?" 
539 INPUT TEMP$:MARK-28:GOSUB 8590 
540 SEARCHNAME$-TEMP$: TEMP$- .... 
559 ? "WHAT CITY?(OPTIONAL ,IF NOT NEED 
ED TYPE'N')"; 
569 INPUT TEMP$:MARK-28:GOSUB 8599 
570 SEARCHCITY$-TEMP$: TEMP$- .... 
575 NL-1 
589 FOR L2-NL TO LEN(MAIN$)-109 STEP 
1 9 
585 GOSUB 7890:IF FLAG4-1 THEN POP :GO 
TO 300 
599 NAME$-MAIN$(L2,L2+109) :FLAG2-0 
595 REM line 600 compares nameS and se 
arch$ character by character 
699 FOR L3-1 TO LEN(SEARCHNAME$) :CIV$­
NAME$(L3.L3):CIV2$-SEARCHNAME$(L3.L3) : 

185 



FEATURES 

XN-ASC(CIV$) :XS-ASC(CIV2$) 
695 IF XN<>XS AND XN<>XS+128 THEN FLAG 
2-1 
619 NEXT L3:IF FLAG2-1 THEN 639 
629 NL-L2+11S:POP :GOTO 689:REM names 
mat c h 
639 NEXT L2 
649 ? "NO RECORD FOUND.ARE YOU SURE TH 
AT" 
659 ? SEARCHNAME$:? "IS THE CORRECT SP 
ELLING?":GOTO 318 
688 IF SEARCHCITY$-"N" THEN 759 
699 CITY$-NAME$(57.84) :FLAG3-9 
799 FOR L4-1 TOLEN(SEARCHCITY$) 
795 GOSUB 7888:IF FLAG4-1 THEN 399 
718 IF SEARCHCITY$(L4.L4)<>CITY$(L4.L4 
) THEN FLAG3-1 
729 NEXT L4:IF FLAG3-9 THEN 759 
739 ? "FOUND ONE IN:":? CITY$:? "STILL 

SEARCHING FOR THE RIGHT ONE.":? : GOlO 
589 

759 FIRM$-NAME$(1.28) :ADD$-NAME$(29.56 
) :CITY$-NAME$(57.84) :ZIP$-NAME$(85.94) 
:PHONE$-NAME$(95.198) 
755 CAT$-NAME$(199.119) 
779 GRAPHICS 9:SETCOLOR 2.5.2:GOSUB 01 
SBRK:? B$;FIRM$:? B$;ADD$:? B$:CITY$:? 

B$:ZIP$:? B$:PHONE$:? B$:CAT$ 
789 POSITION 2.8:? "DO YOU WANT TO:":? 
" a.PRINT A LABEL":? " fa. DELETE THIS 

LISTING":? " IJ. CHANGE THIS LISTING" 
799 ? .. II. RETURN TO MENU" 
899? "CHOOSE 1.2.3 OR 4"::INPUT 02 
819 IF 02<1 OR 02>4 THEN 789 
829 ON 02 GOTO 849.999.959.399 
835 REM label printing routine 
849 GOSUB 7999 
859 OPEN #2.8.9."P:":LABEL-9 
869 GOSUB 7299 
879 GOTO 390 
895 REM file deletion routine 
gee? :? "ARE YOU SURE THAT YOU WANT T 
o DELETE THIS(ENTER Y OR N)": :INPUT 0 

186 



CHRISTMAS MAILING LISTER 

2$ 
929 IF 02$<>"Y" THEN 789 
939 GOSUB 7599 
949 GOTO 399 
959 RESTORE :NAME$- .... :? .. IF LINE IS O. 
K. PRESS RETURN.IF NOT MAKE CHANGES 

AND THEN PRESS RETURN" 
969 ? "(HERE ARE YOUR CATAGORIES:)":GO 
SUB 6299 
979 POSITION 2,9 
989 FOR l7 - 1 TO 6:INPUT TEMP$ 
999 GOSUB 7899:IF FlAG4-1 THEN 779 
1999 READ CR,MARK 
1919 IF lEN(TEMP$»MARK THEN? CHRS(25 
3) :RES TORE :POP :GOTO 779 
1949 IF lEN(TEMP$)<MARK THEN TEMP$(lEN 
(TEMP$)+l)-" ":GOTO 1949 
1945 GOSUB 8599 
1959 NAME$(lEN(NAME$)+l)-TEMP$ 
1969 NEXT 17 
1979 MAIN$(Nl-119,Nl-1)=NAME$:GOTO 399 
1999 REM now data base creation routin 
e 
1199 SETCOlOR 2,6,6:? "THIS IS GOING T 
o ERASE ANY ADDRESSES NOW IN MEMORY.I 
S THAT O.K.?" 
1119? "(ENTER Y OR N)";:INPUT 02$ 
1129 IF 02$<>"Y" THEN 399 
1139 GOSUB DISBRK:MAIN$- .... :? "YOU'RE G 
DING TO HAVE TO FURNISH THE NAMES FO 
R 6 CATAGORIES.IF YOU DON'T" 
1149 ? "WANT TO NAME A PARTICULAR CATA 
GORY JUST PRESS' RETURN'" 
1 1 5 9 ? :? C $ ; .. 1" ; : INPUT CAT 1$ 
1169 ? C$;"2";:INPUT CAT2$ 
1179 ? C$;"3"; : INPUT CAT3$ 
1189? C$;"4"; :INPUT CAT4$ 
1199? C$;"S";:INPUT CATS$ 
1299 ? C$;"6";:INPUT CAT6$ 
1295 ? :? "DOUBLE CHECK THE CATAGORIES 
,IF THEY ARE O.K. ENTER' Y' ,IF NOT 
ENTER' N' .";: INPUT 02$ 
1296 IF 02$<>"Y" THEN GRAPHICS 9:? "lE 

187 



FEATURES 

T'S TRY IT AGAIN:":GOTO 1139 
1299 REM add a file routine 
1219 GRAPHICS 9:SETCOlOR 2,6,2:FlAG1-l 
: FlAG6-1: NAME$-"": RESTORE : GOSUB DISBR 
K 
1229 IF lEN(MAIN$)-MSl THEN? "All FIl 
ES FUll":GDTO 319 
1239 ? "YOU MAY NOW ADD UP TO ";(MSl-l 
EN(MAIN$ 1119;" ADDRESSES" 
1249 ? " ';BK$:? " ';BK$:? " 

':BK$(l,l) 
UB 6299 

OPEN #1,4,9,"K:" 
FOR 19-1 TO 6 

$(1,19): 

1265 GOSUB 7899:IF FlAG4-1 THEN RESTOR 
E :GOTO 399 
1 2 7 9 REA 0 C R , MAR K : P 0 S I TI 0 NCR , l 9 :? " I" 
::REM move cursor 10 correct position 
1289 GOSUB 5999 
1299 NAME$(lEN(NAME$)+l)-TEMP$ 
1399 NEXT 19 
1385 CLOSE #1 
1318 MAIN$(lEN(MAIN$)+l)-NAME$:? :? "W 
ANT TO ADD ANOTHER(ENTER Y OR N)": :INP 
UT 02$ 
1328 RESTORE :IF 02S-"Y" THEN 1219 
1339 GOTO 399 
1398 REM address book rout Ine 
1488 SETCOlOR 2,13,2:? "DO YOU WANT TH 
E BOOK SORTED AlPHA- BETICAllY BY:" 
1418 ? "g,lAST NAME":? "I.CITY":? "OR" 
:? "IJ·UNSORTEO" 
1428? "(ENTER 1,2 OR 3)";:INPUT 05 
1425 GOSUB 789B:IF FlAG4-1 THEN 399 
1439 GRAPHICS 9:SETCOlOR 2,13,2:GOSUB 
DISBRK:? ''~O YOU WANT:":GOSUB 6299:GOS 
UB 6218 
1435 GRAPHICS 8:? :? :? " PLEA 
SE STAND BY":GOSUB DISBRK 
1448 FlAG5-1 :STR-l :STR2-1 :ENNO-28:0N 0 
5 GOTO 1468,1458.1888 

188 



CHRISTMAS MAILING LISTER 

1459 STR-57:STR2 - 57:ENND-84:REM city$ 
1469 FOR l15 - lEN(MAIN$)-219 TO 1 STEP 
-11 9 
1465 SETCOlOR 2.l15/119.l16 
1479 IF FlAG5 - 9 THEN POP : GOTO 1890 
1489 FlAG5 - 9 
1499 FOR l16 - 1 TO l15 STEP 119 
1599 NAMES - MAINS(l16 . l16+199) :NAME2$ - M 
AINS(l16+110.l16+219) :IF Q5=2 THEN 151 
9 
1593 FOR l21 - 1 TO 28:CIV$ - NAMES(l21.l2 
1) :IF ASC(CIV$»159 THEN STR - l21 
1594 NEXT l21 
1595 FOR l22 - 1 TO 28:CIV$ - NAME2S(l22.l 
22) :IF ASC(CIVS»159 TH EN STR2 =l22 
1596 NEXT l22 
1519 IF NAMES(STR.ENND)<- NAME2$(STR2.E 
NNO) THEN 1539 
1529 MAIN$(L16. l 16+199) - NAME2$:MAIN$(l 
16+119.l16+219) - NAME S :FlAG5=1 
1539 NEXT l16 
1549 NEXT L15 
1559 REM sort ing completed 
1899 GRAPHICS 9:Q3 -1 :Q2$ - "Y":PAGE=-1:F 
lAG4 - 9:0PEN #2.8.9."P : ":GOSUB 5299:GOS 
UB 6599 
1819? :? ''~O YOU WAN T ANOTHER COPY?" : 
IF FlAG4 - 1 THEN 399 
1829 ? "(ENTER Y OR N) " ; : INPUT Q2$ 
1839 IF Q2$ - "Y" THEN 1899 
1849 GOTO 399 
1869 REM mass mailing routine 
1879 SETCOlOR 2.4.4:? " DO YOU WANT MAl 
lING lABELS FOR:" 
1889 GOSUB 6299:GOSUB 6219 
1899 GOSUB 7999 
1999 PAGE - -1999:0PEN #2.8.9 . "P:":GOSUB 

6 599 
1919 GOTO 399 
2999 SETCOlOR 2.13 . 4 : TEMPS - .... :IF FlAGl 
- 9 THEN 4999 
2919 ? "SINCE YOU HAVE CHANGED SOME FI 
lES(OR CREATED NEW ONES)YOU MUST NOW 

189 



FEATURES 

SAVE THE DATA ON TAPE . " 
2828 ? "INSERT THE IiIII1 CASSETTE,REWIN 
o TO START,PRESS' PLAY' AND' RECOR 
0' AND HIT 'RETURN'." 
2825 ? "MAKE SURE THAT YOU USE THE OAT 
A TAPE, NOT THE PROGRAM TAPE.":GOSUB 5 
588 
2838 OPEN #1,8 , 8,"C:" 
2848 FOR l-l TO 128:PUT #1,8:NEXT l 
2858 ? #1 ;CAT1$:? #1 ;CAT2$:? #1 ;CAT3$: 
? #1 ;CAT4$:? #1 ;CAT5$:? #1 ;CAT6$ 
2855 IF INT(lEN(MAIN$)/118) <> lEN(MAIN$ 
)/119 THEN MAIN$ - MAIN$(l,lEN(MAIN $ )-l) 
:GOTO 2955 
2969 FOR l12=1 TO lEN(MAIN$)-199 STEP 
1 1 9 
2979 TEMP$ - MAIN$(l12,l12+199):IF TEMP$ 
( 1 , 1 ) =" @" THE N 2875 
2973? #l;TEMP$ 
2975 NEXT l12 
2989 ? #1;CHR$(253) :ClOSE #1 
2999 ? :? "DO YOU WANT TO MAKE AIANOTH 
ER BACK-UP TAPE(ENTER Y OR N)" ; :INPUT 
Q2$ 
2199 IF Q2$ ="Y" THEN 2929 
2119 IF Q1=6 THEN 399 
4999 GRAPHICS 9:? : ? "PROGRAM TERMINAT 
ED . ":END 
5999 TEMP$ - "" : lNl=l 
5919 GET #l.KEY : IF KEY =155 THEN 5989:R 
EM check return button 
5929 IF KEY - 126 AND lNl > l THEN lNl=lNl 
-1 : TEMP $ ( l N l , l N l ) ="" :? C H R $ ( KEY) ; : R EM 
backspace 
5939 IF KEY>96 AND KEY <123 THEN KEY=KE 
Y-32:REM convert lower case to upper 
5949 IF KEY<32 OR KEY > 223 THEN 5919:RE 
M mask out bad input 
5959 IF KEY>122 AND KEY <169 THEN 5919: 
REM ditto 
5969 TEMP$(lNl.lNl) =CHR$(KEY) : ? CHR$(K 
EY): :lNl-lNl+1:IF lNl >MARK THEN 5989 
5979 GOTO 5919 

190 



CHRISTMAS MAILING LISTER 

5989 IF LEN(TEMP$)<MARK THEN TEMP$(LEN 
.( TE M P $ ) + 1 ) -" ": GOT 0 5 9 8 9 
5999 RETURN 
5299 ? #2;" CATAGORY INDEX 
" :? #2 
5219 ? #2;"1.":CAT1$:? #2:"2.":CAT2$:? 
#2:"3.":CAT3$:? #2;"4,";CAT4$:? #2;"5 

, ;, ; CAT 5 $ :? # 2 ; " 6 . " ; CAT 6 $ 
5229 FOR L18-1 TO 29:? #2:NEXT L18:FOR 

L19 - 1 TO 49:? #2;"-";:NEXT L19:FOR L2 
9-1 TO 5:? #2:NEXT L29 
5239 RETURN 
5599 POKE 53775,35:POKE 53768,49:POKE 
53764,9:POKE 53766,9:POKE 53773,225 
5519 RETURN :REM per Atari this rout in 
o is necessary to help provent tape er 
r 0 r s 
6999 FOR L19-1 TO CR:? CHR$(31); :NEXT 
L19:REM move cursor to right 
6919 RETURN 
6299 ? "D..";CAT1$:? "o..";CAT2$:? "n·"; 
CAT3$:? ~.";CAT4$:? ~.";CAT5$:? ~." 
:CAT6$ 
6295 RETURN 
6219 ? "a.ALL OF THE ABOVE.":? "(ENTER 
1,2,3,4,5,6 OR 7)"::INPUT Q4 

6229 RETURN 
6599 LABEL~9:REM printing control rout 
i n 0 

6519 FOR L11-1 TO LEN(MAIN$)-199 STEP 
119 
6515 GOSUB 7899:IF FLAG4=1 THEN POP : R 
ETURN 
6529 NAME$-MAIN$(L11 ,L11+199) 
6525 IF NAME$(l,l) - "@" THEN 6569 
6539 IF Q4 - 7 THEN 6559 
6549 IF VAL(NAME$(199,199) )<>Q4 THEN 6 
569 
6559 PAGE - PAGE+1 :IF PAGE-7 THEN PAGE-9 
:FOR L14-1 TO 49:? #2:"-"::NEXT L14:FO 
R L15=1 TO 5:? #2:NEXT L15 
6553 FOR L19-1 TO LEN(NAME$) :CIV$=NAME 
$(L19,L19) :IVC-ASC(CIV$) :IF IVC>159 TH 

191 



FEATURES 

EN NAME$(L19,L19)-CHR$(IVC-128) 
6554 NEXT L19:REM this changes Inverse 
characters back to normal,so we can p 

rint them 
6555 GOSUB 7298 
6569 NEXT Lll 
6579 CLOSE #2:RETURN 
7989 ? :? "DO YOU WANT THE PHONE NUMBE 
R ON THE LABEL(ENTER Y OR N)"; :INPUT 

02$ 
7919 ? "HOW MANY COPIES"; :INPUT 03 
7929 RETURN 
7299 FOR L5-1 TO 03 
7295 GOSUB 7899:IF FLAG4-1 THEN POP :R 
ETURN 
7219? #2;B4$;NAME$(1,28):? #2;B4$;NAM 
E$(29,56):? #2;84$;NAME$(57,84):? #2;8 
4$:NAME$(85,94) 
7229 LE-4 
7239 IF 02$-"Y" THEN? #2;B4$;NAME$(95 
,108) ,NAME$(199,199) :LE-3 
7235 IF 01-3 THEN LE-3 
7249 FOR L6-1 TO LE:? #2:NEXT L6 
7259 NEXT L5:RETURN 
7598 FLAG1-l:MAIN$(L2,L2)-"@":REM dele 
t e f i I e 
7519 RETURN 
7899 FLAG4-9:IF PEEK(53279)-3 THEN FLA 
G4-1 :REM check opt ion but ton 
7819 RETURN 
8495 REM rout ine to convert lower case 
letters to upper case 

8599 FOR Ll-l TO LEN(TEMP$):Tl-ASC(TEM 
P$(L1,Ll)) :IF T1>96 THEN TEMP$(Ll,Ll)­
CHR$(Tl-32) :NEXT Ll 
8595 IF LEN(TEMP$»MARK THEN TEMPS-TEM 
PS( 1 ,MARK) 
8519 RETURN 
9989 REM error trapping routine 
9919 ERR-PEEK(195) :REM error # stored 
in location 195 
9929 ERRLN-PEEK(187)*256+PEEK(186) :VV 
- 9:REM error line # stored at these 10 

192 



· 
CHRISTMAS MAILING LISTER 

cations.low byte first 
9030 SETCOLOR 2.3.4:? CHRS(253) :TRAP 0 
OPS:REM turn screen pink.sound buzzer. 
reset trap 
9040 IF ERR>8 AND ERR<138 THEN 9209 
9050 IF ERR - 141 THEN 9200 
9060 IF ERR<>3 AND ERR<>8 THEN 9089 
9070 ? "INPUT ERROR. EITHER THE VALUE W 
AS OUTSIDE THE EXPECTED RANGE OR 
YOU" 
9075 ? "INPUT A LETTER WHERE A NUMBER 
WAS CALLED FOR.":? : GOTO ERRLN-lO 
9080 IF ERR<>138 THEN 9110 
9090 ? "PRINTER OR TAPE ERROR.MAKE SUR 
E THAT THE DEVICE IS TURNED ON AND AL 
L CABLE" 
9100 ? "CONNECTIONS SECURE.AND THEN CH 
OOSE:":GOTO 9130 
9119 IF ERR<140 OR ERR>143 THEN 9290 
9120 ? "TAPE ERROR . REWIND AND THEN CHO 
OS E : " 
9130 ?" g.RETURN TO MAIN MENU" 
9140 ?" a.END" 
9150? :? "(ENTER 1 OR 2)":TRAP OOPS:I 
NPUT ERRQ : REM reset trap before return 
ing to main program 
9160 ON ERRQ GOTO 9170.9190 
9170 FLAG6 - 0:CLOSE #l:CLOSE #2:CLOSE # 
3:GOTD MENU 
9190 GRAPHICS O: END 
9200 GRAPHICS O:SETCOLOR 2.3.0:POKE 75 
2.1:FOR XX - 1 TO 5:REM turn screen red. 
turn cursor off;all hope Is lost 
9210 POSITION 14.10:? "FATAL ERROR":SO 
UNO 0.47.10.10:REM make warbler sound 
9220 FOR YY - 1 TO 25:NEXT YY 

FATAL ERROR 9230 POSITION 14.10:? " " : SO 
UNO 0.64.10.10 
9240 FOR YY - l TO 25:NEXT YY 
9250 NEXT XX 
9260? : ? " FATAL ERROR ";ERR;" AT LINE 

";ERRLN:? "DEBUG AND RESTART":? :LIST 
ERRLN:END 

193 



FEATURES 

9699 REM routine to disable break key 
9619 BB-PEEK(16) :IF BB>127 THEN BB=BB-
128:POKE 16,BB:POKE 53774,BB 
9629 RETURN 
19999 REM suppl ies data for line 1279 
19910 DATA 6,28,8,28,9,28,19,19,9,14,1 
9,2 

TYPO TABLE 

Variable checksum - 6459964 
Lin e num ran g e Cod e Length 
1 9 - 229 EA 561 
239 - 287 GY 592 
288 - 399 TM 465 
499 - 469 QD 551 
479 - 579 PJ 519 
575 - 659 BV 439 
689 - 789 MM 584 
799 - 929 ZO 359 
939 - 1959 NL 373 
1 969 - 1189 LK 452 
1 1 99 - 1 243 L L 524 
1 245 - 1 339 CO 335 
1 399 - 1469 CM 529 
1 465 - 1539 KU 381 
1 549 - 1999 DB 449 
1 9 1 9 - 2959 HM 596 
2955 - 5919 CJ 459 
5929 - 5219 EW 5 1 7 
5229 - 6599 PM 520 
651 9 - 6579 BG 489 
7999 - 7599 OK 486 
751 9 - 9939 XO 51 9 
9949 - 9139 VV 595 
9149 - 9239 OW 593 
9249 - 1 991 9 WW 282 

194 



Save the Pieces 
Whenever you spend time and effort entering program code, word-processing text, or 
other voluminous data into your computer, be sure to save your work periodically to 
disk o r tape. You should do this as often as every fifteen minutes or so. You won't 
regret it. 

This protects you against loss of the major portion of your work if you lose power 
or suffer computer lockup. These conditions do occur, and usually at the very worst 
times. 

Good intentions don't count here. You h ave to do it in order to benefit. A cheap 
kitchen timer or photo lab t imer should be part of yo ur computing paraphenalia . Just 
start it ticking when you star t typing. You'll be surprised how soon it rings. 

As you save, alternate the file names so you don 't write over your last material. 
For example, call your first saved piece DOC 1, the second save DOC2, the third 
DOCI again , etc. This makes sure you always h ave protection against a "bad" save. 

Cassettes for the Atari are notorious for loading problems. When backing up a 
program on cassette it is wise to save twice on each side (four times in all ). Be sure to 
record the footage counter reading for each save so th at you can find the starting 
places of the various saves. 

195 



----



Memory Map 

W hat follows in this section is a list of important locations in the 
silicon memory of your ATARI 400 or 800. This sequential list of 
memory locations is called a memory map. The memory inside any 

ATARI is divided into sections called pages. Each page contains 256 bytes 
Gocations}. In a 64K machine there are 256 pages of memory. Memory is fur­
ther divided into RAM and ROM locations. The ROM cannot be changed 
by the program. It is created at the factory and contains those values and pro­
grams always available on any ATARI. The RAM memory addressess 0 -1012 
can be, and are altered by running programs . It is these low memory addresses 
that are described here. To adequately identify these RAM locations, our for­
mat gives the decimal value of the location, the equivalent hexadecimal (base 
16) value, the number of contiguous locations serving the specified function, 
the name used in the Operating System listing published by Atari, and a 
description of the function. For example: 
783 $30F 1 CASFLG Cassette mode indicator. 
This means that location 783 OOF in hexidecimal) uses one byte for the func­
tion called CASFLG, and is the cassette mode indicator. 

NOTE: Hexidecimal numbers are preceeded by a dollar sign ($). This nota­
tion is arbitary but is the consensus method of indicating base 16 numbers. 

The low memory locations that follow are used by the Operating System for 
housekeeping functions. Information such as location of Player I Missile data, 
screen colors, timer values, interrupt vectors, display list pointers and almost 
any other important information needed by the system to operate is stored 
here . 

Figure 1 shows the gross memory map. This should give you some idea of 
where BASIC resides in memory, what part of memory is used and unused, etc. 

James Capparell, a native of Rochester , New York, and graduate of the University of Rochester, is 
the fo under and In(blisher of ANTIC-The ATA RI ResoLlrce . His interest in ATARI computers began 
while working as a programmer at N ASA's Ames Research Center in MOLtntain View, California. He 
also did programming fo r Ford Aerospace in Palo Alto . He originally obtained an ATARI to QL(gment his 
NASA projects, bw soon became involved with it as a hobbyist and as founder of ABACUS, the Atari 
Bay Area CompLtter Users' Society. 

197 



SYSTEMS GUIDE 
Not all of the 65,536 possible memory locations are described, nor need to 

be. Most of memory is left "free" for the user . If you have 16K memory, your 
ATARI has RAM locations 0 through 16,383 available. Then accessible 
memory jumps to the locations reserved for cartridges, such as BASIC, from 
40960 through 49151, and then to high memory where the Operating 
System's ROM locations are found (See Figure 1). 

Many low memory RAM locations are initialized by the Operating System 
in ROM when the computer is turned on. These values govern execution of 
user programs and are important for programmers to know. Additional infor­
mation about memory is found in De Re Atari, the Atari Technical User Notes, 
(available from Atari Program Exchange), and in Mapping the ATARl, from 
COMPUTE! Books. 

With no DOS 
Operating System RAM 

198 

Free 
RAM 
Space 

---I 

BASIC or other 
8K cartridge 

unallocated 

h ardware I/O 

O perati ng System 

RO M 

FIG URE 1 

Address in 
Hexidecimal 

0000 

1000 

2000 

3000 

4000 

5000 

6000 

9000 

AOOO 

BOOO 

COOO 

0 000 

EOOO 

FOOO 

FFFF 

With DOS 2.0S 

Operat ing System RAM 

DOS 2.0S 

Free 

RAM 
Space 

BASIC o r other 
8K cart ri dge 

1----

unallocated 

hardware I/O 

Operati ng System 
ROM 



1 $02 LlNZBS 
2$22 CAStNt 

4 $4 2 RAMLO 
6 $61 TRAMSZ 
7 $71 TSTOAT 
8 $81 WARMST 

9$91 BOOT 

10 $A 2 DOSVEC 
12 $C 2 DOStNt 

14 $E 2 APPMHt 

16 $10 1 POKMSK 

17 $111 BRKKEY 

18 $12 3 RTCLOK 

21 $152 BUFADR 

23 $17 1 tCCOMT 

MEMORY MAP 

Page Zero 
May be used to store VBLANK timer. 
If cassette booted successfully during powerup then 
]SR thru here. 
Ram pointer for memory test used on powerup. 
Temporary register for RAM size. 
RAM test data register. 
Warmstart flag set equal to 1 when S/RESET 
pushed. When set equal to 0 then powerup retry. 
Boot flag success indicator. When equal to 1 then 
successful disk boot. When equal to 2 then successful 
cassette boot. 
Disk software start vector. 
Used to store address of initialization of application 
upon DOS boot. ]SR indirect thru here to initialize 
application. 
Contains highest address of RAM needed by user. 
Screen handler opens S: only if no RAM needed 
below this address. 
IRQ service uses and alters POKMSK. These are 
POKEY interrupts. Shadow for IRQEN[$D20E). 
bit 7 = 1 Break key interrupt enable. 
bit 6 = 1 Other key interrupt enable. 
bit 5 = 1 Serial input data ready interrupt enable. 
bit 4 = 1 Serial output data needed interrupt enable. 
bit 3 = 1 Serial out finished interrupt enable. 
bit 2 = 1 Timer 4 interrupt enable. 
bit 1 = 1 Timer 1 interrupt enable. 
This is initalized to 1 by OS (1 =no break key 
pressed). Monitored by keyboard, also screen editor. 
Break during I/O returns status of $80. This is set to 
o when break key is pressed. 
Updated every Vblank interrupt (1 / 60 Sec.) Called 
frame counter, initialized to 0 and overflows to O. 
The least significant byte of counter is $12 and it uses 
16 msec units. 
Indirect buffer address register. Used as a temporary 
Page Zero pointer to current disk buffer. 
Command for CIO vector. Used to find correct vec­
tor to the handler routine. 

199 



SYSTEMS GUIDE 
24 $182 OSKFMS 

26 $1A 2 OSKUTL 

28 $1C 1 PTiMOT 

29 $10 1 PBPNT 

30 $1 E 1 PBUFSZ 

31 $1F 1 PTEMP 

32 $20 1 ZIOCB 

33 $21 1 ICONOZ 

34 $22 1 ICCOMZ 
35 $23 1 ICSTAZ 

36 $24 21CBALZ 

38 $26 2 ICPTLZ 

40 $282 ICBUZ 

42 $2A 2 ICAZIZ 

43 $2B 1 ICAX2Z 

44 $2C 2 ICSPRZ 

46 $2E 1 ICSPRZ 
47 $2F 1 CIOCHR 

48 $301 STATUS 

49 $311 CHKSUM 
50 $32 2 BUFRLO 

52 $34 2 BFENLO 
54 $36 1 CRETRY 
55 $371 ORETRY 
56 $381 BUFRFL 
57 $39 1 RECVON 
58 $3A 1 XMTOON 

200 

Disk file manager pointer. Used as vector to FMS. 
Disk utilities pointer. Points to a buffer for utilities 
package. 
Printer timeout every printer status request . Typical 
timeout for the 825 is 5 seconds. Initialized to 30 sec. 
Print buffer pointer, index into printer buffer ranges 
from 0 to value of PBUFSZ. 
Print buffer size of printer record for current mode. 
normal =40 bytes 
double width = 20 bytes 
sideways = 29 bytes (Atari 820 printer) 
status =4 
Printer handler uses this temp register to save value 
of character to output to printer. 
H andler index number into the device name table 
for currently opened file . Set to 255 if no file opened. 
Device # (DRIVE #). Initialized to 1. 
Command code. 
Status of last IOCB action . 
Buffer address for data transfer. 
Put byte routine (address -1) set by OS. 
Buffer length byte count used by PUT and GET 
commands. 
Auxiliary information first byte used in OPEN to 
specify type of file access. 
A uxiliary information second byte. C IO working 
variables . 
Spare bytes local CIO use. 
IOCB Number multiplied by 16. 
Character byte for current operation . 
Internal status storage. 
Single byte sum with carry to least significant bit. 
Pointer to data buffer transmitted during I/O 
operation . 
Next byte past end of data buffer. 
Number of command frame retries. Default is 13. 
Number of device retries. Default is one. 
Buffer full flag. (255 indicates full). 
Receive done fl ag. (255 indicates done). 
Transmission done fl ag. (255 indicates done). 



59 $381 CHKSNT 
60 $3C 1 NOCKSM 

61 $30 1 8PTR 

62 $3E 1 FTYPE 

63 $3F 1 FEOF 

64 $401 FREQ 

65 $41 1 SOUNOR 

66 $42 1 CRITIC 

67 $437 FMSZPO 
74 $4A 1 CKEY 

75 $48 1 CASSBT 
76 $4C 1 OSTAT 
77 $40 1 ATRACT 

78 $4E 1 ORKMSK 
79 $4F 1 COLRSH 

80 $501 TEMP 

81 $51 1 HOLD1 

MEMORY MAP 
Checksum sent flag. (255 indicates done). 
No checksum fo llows data flag. Zero indicates 
checksum follows transmission. 
Cassette record data index into data portion of 
record being read or written. Values range 0 to 
current value BUMl [$28A]. When BPTR=BU M 
then buffer CASBOFF [$3FD] is empty if reading or 
full if writing. 
Interecord gap type. Copy of ICAX2Z from open 
command. (0 indicates continuous gaps; non-zero 
indicates normal gaps.) 
Cassette end of fi le flag used by cassette h andler to 
indicate end of file. 
Beep count. Retain and count number of beeps 
requested of beep routine by cassette handler during 
open processing ; one beep for play, two for record. 
Noisy I/O fl ag, when I/O is done buzzer sounds. 
POKE 0 and it won't buzz. 
Defines critical section (if non -zero) checked on NMI 
process after stage 1 processed. 
Disk file manager zero page. 
Cassette boot request flag on powerup (coldstart). 
Start key checked, if pressed then CKEY is set. 
Cassette boot fl ag. 
Display status used by display handler. 
Attract flag set to 0 by IRQ whenever a key is 
pressed. Incremented every 4 seconds by stage 1 
Vblank. When value is < 127 then value is set to 

$FE until attract mode is terminated. 
Dark attract mask =$FE when attract mode inactive. 
Attract color sh ifter XOR'd with playfield colors. At 
stage 2 Vblank color registers are XOR'd with 
COLRSH and DRKMSK then sent to hardware 
color registers. When attract inactive COLRSH =0 
and DRKMSK =$F6 reducing luminance 50% and 
COLRSH =RTCLOCK + 1 affecting color change 
every 256/60 =4.1 sec. 
Used by display handler in moving data to and from 
screen. 
Same as [$50]. When BASIC in use these 2 locations 

201 



SYSTEMS GUIDE 

82 $52 1 LMARGN 

83 $531 RMARGN 

84 $541 ROWCRS 

85 $552 COLCRS 

87 $571 OINOEX 

88 $58 2 SAVMSC 

90 $5A 10LDROW 

91 $582 OLDCOL 

93 $501 OLDCHR 

94 $5E 2 OLDAOR 

96 $601 NEWROW 

97 $612 NEWCOL 

99 $63 1 LOG COL 

100 $64 2 AORESS 

102 $662 ML TTMP 

104 $682 SAVAOR 
106 $6A 1 RAMTOP 

202 

called LOMEM and point to 256 byte buffer at end 
of OS. RAM used to tokenize one line of BASIC. 
Column of left margin of text screen, initialized to 2. 
Column of right margin of text screen initialized to 
39. Margins are user alterable. Ignored in every mode 
but O. 
Display row number used in graphics screen and 
mode O. Range 0 - 191. This location and COLCRS 
define the cursor location for the next data element 
to be read / written to main screen segment. 
Display column number used in graphics and mode 
o Gobyte}. Range 0 - 319 (hibyte). Home position is 
0,0 for both graphics and text. 
Display mode current screen mode obtained from 
low order 4 bits of most recent open AUXI byte. 
Lowest address of display memory this location 
corresponds to the upper left corner of screen. 
These next 3 locations are updated from ROWCRS 
and COLCRS before every operation. This location 
is used by ORA WTO and XIO to determine starting 
row. 
These variables used only in draw and fill 
commands. 
Retains value of character under visible text cursor. 
Used to restore character after cursor moves. 
Retains memory address of current visible text cursor 
location . Used in conjunction with OLDCHR to 
restore character value after cursor moves. 
Indicates row location that the ORA WTO and XIO 
fill routine will use. 
Indicates column DRAWTO and XIO will go. 
Points at cursor position in logical line. A logical line 
can contain up to 3 physical lines. This variable is 
used by display handler and ranges from 0 to 119. 
Temporary storage holds contents of SAYMSC 
[$58). 
OPNTMP first byte used in open as temporary 
storage. 
Temporary storage . 
RAM size defined by power on logic. This value is 



107 $6B 1 BUFCNT 
108 $6C 2 BUFSTR 

110 $6E 1 BITMSK 

111 $6F 1 SHFAMT 
112 $70 2 ROWAC 
114 $722 COLAC 

116 $74 2 ENOPT 

118 $761 DEL TAR 

119 $772 OELTAC 

121 $791 ROWINC 
122 $7A 1 COLINC 
123 $7B 1 SWPFLG 
124 $7C 1 HOLDCH 

125 $70 11NSOAT 

126 $7E 2 COUNTR 

128 $80 2 LOMEM 

130 $82 2 VNTP 

132 $84 2 VNTD 

134 $862 VVTP 

136 $88 2 STMTAB 

138 $8A 2 STMCUR 

MEMORY MAP 
given in pages (page = 256 bytes of memory) . 
Screen editor current logical line size. 
Editor low byte. 
Used in bit mapping routines by OS display handler. 
Pixel justification . 
Control for row and column point plotting. 
Controls column po int plotting. 
Contains larger of DELTAR and DELTAC used in 
conjunction with ROWAC/COLAC to control 
plotting of line po ints. 
Contains absolute value of NEWROW minus 
ROWCRS. 
Contains absolute value NEWCOL minus 
COLCRS. These values and ROWINC and 
COLINC define slope of line to be drawn. 
Row increment + 1 or - 1. 
Column increment + lor-I. 
Split screen cursor control. 
C haracter moved here before control and shift logic 
processed. 
Temporary storage used by display handler. 
Initially contains larger of DEL TAR and DELTAC 
which is number of iterations to generate a line. This 
value decremented after every point is plotted. 
When = 0 then line is finished . 
This points to a 256 byte buffer used to tokenize one 
line of BASIC. This buffer is located at the end of 
the O.S.RAM. 
Points to list of all vari able names used in a program . 
Each name is stored in the order entered. Maximum 
of 128 names. 
Points to end of vari able n ame table. Points to a zero 
byte when all 128 names not used. 
Points to variable value table. Eight bytes allocated 
fo r each variable in name table. 
Points to statement table which contains the 
to kenized BASIC statements. Also the immediate 
mode lines. 
The BASIC interpreter uses this pointer to access 
the tokens within a line of the statement table. 

203 



SYSTEMS GUIDE 
140 $8C 2 STARP 

142 $8E 2 RUNSTK 

144 $902 MEMTOP 

Points to the block containing all the string and 
array data. Memory is reserved and enlarged 
whenever a dimension statement is encountered. 
Strings are stored one byte (ATASCII) per character. 
Arrays are stored as six byte BCD (Binary Coded 
Decimal) per element. 
Points to the software run time stack. The stack 
maintains GOSUB and FORINEXT entries. The 
POP statement affects this stack. 
Points to the end of the user program. T he FRE 
function returns the value calculated by subtracting 
the contents of this location from the contents of 
HIM EM at $2E5 and $2E6. Don't confuse this 
MEMTOP with the O.S. variable of the same name 
at $2E5. 

The remainder of Page Zero is used by BASIC cartridge, floating point 
routines and assembler cartridges. 

Page One is the stack area and is not available for use by programmers. 

512 $200 2 VDSLST 

514 $2022 VPRCED 

516 $204 2 VINTER 

518 $206 2 VBREAK 

520 $2082 VKEYBD 

522 $20A 2 VSERIN 

524 $20C 2 VSEROR 

526 $20E 2 VSEROC 

528 $210 2 VTIMR1 

204 

Page Two 
Initialized to [$E7B3] if NMI interrupt occurred and 
it was caused by a DU then ]MP thru here. Since 
the OS does not use DUs this is initialized to point 
to an RTI. 
Initialized to [$E7B2] if IRQ interrupt occurred due 
to serial I/O bus proceed line then ]MP thru here. 
Initialized to [$E7B2] if IRQ interrupt due to serial 
I/O bus interrupt then ]MP thru here. 
Initialized to [$E7B2] if IRQ interrupt due to 6502 
BRK instruction execution then ]MP thru here. 
Initialized to [$FFBE] if IRQ interrupt due to 
keypress then ]MP thru here to keyboard handler . 
Initialized to [$EB 11] if IRQ interrupt due to I/O bus 
input ready then ]MP thru here. 
In itialized to [$EA90] if IRQ interrupt due to I/O 
bus output ready then ]MP thru here. 
Initialized to [$EADl] if IRQ interrupt due to I/O 
bus output complete then ]MP thru here. 
POKEY timer 1 interrupt vector. 



530 $212 2 VTlMR2 

532 $214 2 VTlMR4 

534 $2162 VIMIRQ 

536 $218 2 COTMV1 

538 $21A 2 CO TM V2 

540 $21C 2 COTMV3 

542 $21 E 2 COTMV4 
544 $2202 OCTMV5 

546 $222 2 VVBLKI 

548 $2242 VVBLKO 

550 $226 2 COTMA 1 

552 $2282 COTMA2 

554 $22A 1 COTMF3 

555 $22B 1 SRTlMR 

556 $22C 1 COTMF4 

557 $220 1 INTEMP 
558 $22E 1 COTMF5 
559 $22F 1 SMOCTL 

MEMORY MAP 
POKEY timer 2 interrupt vector. 
POKEY timer 4 interrupt vector. 
Initialized to [$E6F6] if IRQ interrupt occurs then 
]MP thru here to determine cause. 
SIO timeout decremented at every VBLANK stage 1 
when this location counts down to 0 then ]SR thru 
CDTMA 1 [$226]. 
Timer decremented at almost every VBLANK 
subject to critical section test (stage 2 process). 
Timer decremented at almost every VBLANK 
subject to critical section test (stage 2 process). 
Timer same as 2 & 3. 
Timer same as 2,3 & 4. 3,4,5 set flags 
CDTMF3 =$22A CDTMF4 = $22C and 
CDTMV5 =$22E when they equal zero. 
Initialized to [$E701] stage 1 vertical blank vector 
NMI interrupt. 
Initia lized to [$E93E] system return from interrupt. 
SIO timeout vector. When CDTMVI [$2 18] times 
out it vectors through here. 
NO SYSTEM FUNCTION. Available to user enter 
address of routine to be executed at timer count 
down to O. 
Byte flag set when CDTMV3 [$2IC,2 ID] counts 
down to O. 
Software repeat timer, controlled by IRQ device 
routine, establishes initial I!z second delay before key 
will repeat. Stage 2 Vblank establishes 1110 second 
repeat rate. Decrements timer, implements auto 
repeat logic. 
Byte flag set when C DTMV4 [$2 IE] counts down to 
O. 
Used by SETVBL routine. 
Byte flag set when CDTMV5 [$220] counts to O. 
Shadow for DMACTL [$0400] default value $22. 
bit 5 = 1 enable Display List instruction fetch DMA. 
bit 4= 1 enable 1 line P/ M resolution. 

=0 enable 2 line P 1M resolution. 
bit 3 = 1 enable Player DMA. 
bit 2 = 1 enable Missile DMA. 

205 



SYSTEMS GUIDE 

560 $230 2 SDLSTL 

562 $232 1 SSKCTL 

563 $233 1 SPARE 

564 $234 1 LPENH 

565 $235 1 LPENV 

566 $236 4 SPARE 

570 $23A 1 CDEVIC 

571 $23B 1 CCOMND 

572 $23C 1 CAUXI 
573 $23D 1 CAUX2 

574 $23E 1 TEMP 

575 $23F 1 ERRFLG 

576 $2401 DFLAGS 

577 $241 1 DBSECT 
578 $242 2 BOOTAD 

580 $244 1 COLDST 

581 $2451 SPARE 

206 

bit 1,0=00 no Playfield OMA. 
=0 1 narrow Playfield OMA 128 color clocks. 
= 1 0 standard Playfield OMA 160 clocks. 
= 1 1 wide Playfield OMA 192 clocks. 

Shadow for OLISTL [$0402j. This location 
initialized to Start of Display List. 
Shadow for SKCTL [$020Fj. 
bit 7 = 1 force break serial output to O. 
bit 6,4 =serial port mode control. 
bit 3 = 1 seri al output transmitted as 2-tone instead of 
logic truelfalse. 
bit 2 = 1 pot counter completes within 2 scan lines 
instead of 1 frame time. 
bit 1 = 1 enable keyboard scanning circuit. 
NO OPERATING SYSTEM FUNCTION. 
Light pen horizontal value shadow for [$040C]. 
Value range 0-227 wrap to 0 at right edge of standard 
width screen. 
Light pen verticl value shadow for [$0400j. Value 
same as VCOUNT 2 line resoluton. Both pen values 
modified if any joystick trigger lines pulled low. 
NO OPERATING SYSTEM FUNCTION. 
SIO bus 1.0. number. 
SIO bus command code. 
SIO auxi liary byte loaded from location 778. 
SIO command auxi li ary byte loaded from location 
779. 
Receives one-byte responses from serial bus con­
trollers. 
SIO error flag. Indicates any device error except 
timeout errors. 
Disk flags from sector 1, contains value of first byte 
of boot file. 
Number of disk boot sectors. 
Address where disk boot loader will be put. 
Coldstart flag when = 1 then powerup in progress. 
When = 0 then S/RESET in progress. If set = 1 
during normal program execution then S/RESET 
will act like powerup giving some protection. 
NO OPERATING SYSTEM FUNCTION. 



582 $246 1 OSKTIM 
583 $247 40 LlNBUF 

623 $26F 1 GPRIOR 

624 $270 8 PAOOLO­

PAOOLl 
632 $278 4 STICKO­

STlCK3 

636 $27C 8 PTRIGO-

PTRIG7 
644 $284 4 STRIGO 

648 $2881 CSTAT 
649 $289 1 WMOOE 

650 $28A 1 BLIM 

651 $28B 4 SPARE 

656 $2901 TXTROW 

657 $291 2 TXTCOL 

659 $2931 T1NOEX 

660 $294 2 TXTMSC 

662 $296 6 TXTOLO 

668 $29C 1 TMPXI 
669 $2901 HOLD3 

670 $29E 1 SUBTMP 
671 $29F 1 HOLD2 
672 $2AO 1 OMASK 

MEMORY MAP 
Disk timeout register. 
Forty byte character line buffer used to temporarily 
buffer one physical line of text when screen editor is 
moving screen data. 
Global priority shadow for PRIOR [$0018] controls 
priority of player / missile / playfield. 
These locations store values returned when paddles 
are used. Values are between 0 and 228. 
These locations store values returned when a joystick 
is used . There are 9 possible values. These locations 
are shadows (duplicates) of ROM locations 53760-
53767. 
These locations store values of trigger on paddles. 

Joystick trigger 0 - 3. 
Cassette status register. 
Used by cassette handler as read /write mode flag. 
Zero = read; $80 = write. 

Cassette record data size count of number of data 
bytes being read. Range 1-128 depends on record 
control byte. 
NO OPERATING SYSTEM FUNCTION. Use of 
these bytes in your program may conflict with later 
OS upgrades. 
Text window row cursor range 0-3. Specifies where 
next read / write will occur. 
Text window column cursor range 0-39 used in split 
screen. These two variables give cursor position. 
Split screen text window graphics mode. Index 
always = O. When SWPFLG [$7B]=0. This is split 
screen equivalent of OINOEX. 
Split screen text window version SAVMSC [$58]. 
Old row and old column for text and then some split 
screen cursor data. 
Temporary storage . 
Used by the display handler to hold scroll loop 
counter. 
Temporary storage. Unknown function. 
Temporary sto rage. Unknown function. 
Pixel location mask. 

207 



SYSTEMS GUIDE 
673 $2A 1 1 TMPL8T 
674 $2A2 1 ESCFLG 

675 $2A3 15 TA8MAP 

690 $282 4 LOGMAP 

694 $286 11NVFLG 

695 $2871 FILFLG 

696 $2881 TMPROW 
697 $2892 TMPCOL 

699 $288 1 SCRFLG 

700 $28C 1 HOLD4 

701 $280 1 HOLD5 
702 $28E 1 SHFLOK 

703 $28F 1 80TSCR 

704 $2CO 4 PCOLRO -
PCOLR3 
PCOLRO 
PCOLR1 

PCOLR2 
PCOLR3 

708 $2C4 5 COL ORO -
COLOR4 

COLORO 

208 

Temporary storage for bit map. 
Used by screen editor. R ag set to $80 when 
ESC [$lB] character detected. Reset to 0 following 
output of next character. Causes character following 
ESC to be displayed, only exception is EOL [$9B]. 
Indicates where tab stops are set. There are 120 
possible tab stops in one logical line. 
Logical line bitmap. When a bit is set then a logical 
line starts at the corresponding physical row number. 
All bits set to 1 when text screen is opened or 
cleared. 
Inverse video fl ag toggled by ATARI logo key sets bit 
7 = 1 
Indicates to display handler whether current 
operation is Fill (not 0) or Draw (0) 
Temporary storage used by ROWC RS [$54]. 
Temporary storage used by COLCRS [$55]. 
Scroll fl ag set to number of physical lines minus 1 
that were deleted from top of screen . Since logical 
lines range from 1 - 3 physical lines then this variable 
ranges from 0 - 2. 
Used to save and restore value in ATACHR[$2FB] 
during fill process when ATACHR is temporarily set 
to value in FILDAT[$2FD]. 
Similiar fu nction to HOLD4. 
Shift / control lock fl ag initialized to $40 at powerup 
$00 =normal mode lower case alpha $61-$7 A 
$40 =caps lock upper case $41 -$5A 
$80 =controllock $O l -$ lA 
Bottom of screen. If = 4, then mixed graphics mode. 
If = 24 then normal text mode. 

Player color registers and shadows 
= COLPMO[$D012] 
= C OLPM l[$D013] 
= C OLPM2[$D014] 
= C OLPM3[$D015] 

Playfield color registers and shadows. 
= COLPFO[$DI06] 



COLOR1 

COLOR2 
COLOR3 

COLOR4 
713 $2C9 23 SPARE 

736 $2EO 2 GLBABS 
738 $2E1 2 SPARE 

740 $2E4 1 RAMSIZ 

741 $2E5 2 MEMTOP 

743 $2E7 2 MEMLO 

745 $2E9 1 SPARE 
746 $2EA 4 DVSTAT 

750 $2EE 2 CBAUDL 
752 $2FO 1 CRSINH 

753 $2F1 1 KEYDEL 

754 $2F2 1 CH1 

755 $2F3 1 CHACT 

bit 2 = 1 

bit 1 = 2 

bit 0 = 1 

MEMORY MAP 
= COLPFl[$DOI7] 
= COLPF2[$DOI8] 
= COLPF3[$DOI9] 
= COLBK[$D OIA] 

** 
Contains entry address of code for auto -boot / run. 

** 
Size in pages (page = 256 bytes) of available RAM 
permanently retains RAM top address contained in 
TRAMSZ[$6]. With BASIC and 48K installed this 
equals $160=40960 bytes. 
Top of available user memory RAMSIZ less display 
list and display memory (first nonuseable program 
address). This value established by powerup logic 
and reset. Re-established when screen display is 
opened. 
Bottom of available user memory established at 
powerup and reset, not altered after that. 

** 
Device status buffer Get status command puts 
information in these bytes. 
Cassette baud rate low byte. 
Cursor inhibit fl ag. When equal to 0 then cursor 
turned on. If not equal 0 then no visible cursor. 
Key delay set to 3 whenever key code accepted. 
Decremented every 1160 sec by stage 2 VBLANK 
process until it reaches O. 
Prior key code read and accepted . Current key 
pressed compared with contents of CHI if same then 
debounce time checked if OK then accepted. If 
current key not the same as CHI then accepted. 
When code is accepted then stored in CH[$2FC]. 
Shadow for CHACTL[$D401] character control 
register. 
Causes current character line to invert, sampled at 
every char. line. 
In 40 char. mode if bit 7 of current char. code = 1 
then char. is blue on white. 
In 40 char. mode if bit 7 of current char. code = 1 
then char. will be blank. Blinking char. produced by 

209 



SYSTEMS GUIDE 

756 $2F4 1 CHBAS 

757 $2F5 5 SPARE 
762 $2FA 1 CHAR 

763 $2FB 1 ATACHR 

764 $2FC 1 CH 

765 $2FD 1 FILDAT 
766 $2FE 1 DSPFLG 

767 $2FF 1 SSFLAG 

setting bit 7 of char. and periodically changing bit 0 
here. 
Vector to page address of character set initialized to 
$EO (upper case and punctuation ). The character set 
in ROM is located at $EOOO-$E3FF, shadow for 
CHBASE[$D409]. 

** 
Contains internal code corresponding to what is in 
ATACHR[$2FB]. This will be converted to ATASCII 
code. 
ATASCII value for most recent character read or 
written or value of the graph ics point. This value 
also determines color of line in draw and fill 
commands. 
Holds keyboard code for a character (not ATASClI). 
Keyboard h andler gets all data from here when it 
gets a character it writes $FF here to indicate code 
read. This location loaded when a key is pressed 
causing an IRQ interrupt which vectors at $208. 
This interrupt service routine loads the code into 
$2FC for processing at VBLANK stage 2. 
Color to be used by XIO FILL Command. 
Display fl ag will allow control codes other than EOL 
[$98B] to be displayed if fl ag not equal to O. If flag = 

o then control codes processed normally. 
Start I stop flag toggled by control-! keys cleared by 
break key, reset key, or powerup 

Page Three 

DCB DEVICE CONTROL BLOCK 
Used for handler ISIO communication and between user and disk handler. 
768 $3001 DDEVIC Pheripheral unit bus 1.D. number. 
769 $301 1 DUNIT Unit number. 
770 $3021 DCOMND Bus command. 
771 $303 1 DSTATS Command type status return. 
772 $304 2 DBUFLO D ata buffer pointer. Set by handler to indicate source 

or destination data buffer. 
774 $3061 DTiMLO Device timeout in 64 / 80 second units. Set by 

handler. 
775 $307 1 DUNUSE Unused in DCB. 

210 



776 $308 2 oBYTLO 

778 $30A 1 oAUX1 

779 $30B 1 oA UX2 

780 $30C 2 TlMER1 
782 $30E 1 AooCOR 
783 $30F 1 CASFLG 
784 $3102 TlMER2 

786 $312 2 TEMP1 
788 $3141 TEMP2 
789 $3151 TEMP3 

790$3161 SAVIO 
791 $3171 TlMFLG 
792 $318 1 STACKP 
793 $3191 TSTAT 
794 $31A 38 HTABS 

rOCB 

MEMORY MAP 
N umber of bytes to be transferred into or out of data 
buffer. Not required if no dat a transfer. 
Command auxiliary byte 1. Device specific 
info rmation set by h andler. 
Command auxiliary byte Z. 

Ini t ial t imer value. 
Used for interpo lation adjustment of baud rate. 
Cassette mode when set . 
Final timer value used with TIMER1 to compute 
interval fo r baud rate. 
Temporary sto rage . 

** 
** 
Save serial data port . 
T ime out fl ag fo r baud rate correction. 
SIO stack pointer save cell. 
Temporary status ho lder. 
Start of h andler address table. 

START OF I/O CONTROL BLOCKS 
Used to communicate information between user program and cro. 

832 $3401 ICHID 
833 $341 1 ICoNO 
834 $342 1 ICCOM 
835 $343 1 ICSTA 
836 $344 2 ICBAL 
838 $346 2 ICPTL 
840 $348 2 ICBLL 
842 $34A 1 ICAX1 
843 $34B 1 ICAX2 
844 $34C 3 ICSPR 
860 $35016 IOCB # 1 
876 $360 16 IOCB # 2 
892 $37016 IOCB # 3 
908 $38016 IOCB # 4 

924 $39016 IOCB # 5 
940 $3AO 16 IOCB # 6 
956 $3BO 16 IOCB # 7 
972 $3CO 40 PRNBUF 
1012 $3E8 21 SPARE 

Space reserved for 8 rOCBs . 
H andler index number ($FF = IOCB unused). 
Device number (drive number). 
Command code. 
Status o f last IOCB actio n. 
Buffer address. 
Put byte ro utine address minus 1. 
Buffer length. 
Auxiliary information first byte. 
Auxiliary informatio n second byte . 

*** Spare bytes *** 

Printer buffer. 

*** Spare bytes *** 

211 



SYSTEMS GUIDE 

Scrolling 

T he strongest features of the ATARI relative to game programming are 
the 12 Graphics Modes (high resolution 320 x 192); two direct 
memory access (DMA) video channels (sort of a simplified multipro­

cessing system); display-list controlled, memory-mapped graphics; redefinable 
character sets; hooks for vertical blank interrupts and scan line interrupts; 
and, of course, four channels of sound. 

The ATARI maps its memory to video via an LSI chip called ANTIC. 
This chip is a dedicated processor with its own instruction set. These instruc­
tions make up what is called a display list. The display list controls the 
Graphics Mode which will be displayed on the screen. Recall that there are 12 
modes, each specifying memory use, resolution and color. The display list tells 
ANTIC what part of the 6502 memory space to display, what mode to display, 
whether an interrupt should be generated, and whether horizontal and / or 
vertical scrolling should be enabled. It is this last feature which will be 
demonstrated here. 

There are two methods which can be used to scroll the image. The fir st is 
direct and easy to comprehend. The display list has, as part of its instructions, 
a feature called Load Memory Scan (LMS). This operator is three bytes long. 
The last two bytes are the address Go-byte/hi-byte, 6502 style) of the start of 
display memory. As a result, the entire address space is available for display 
under program control. This gives the observer a "window" into memory. 
Scrolling windows are created by simpl y changing the two address bytes of the 
LMS. In other words, it is not data being moved through memory, but a win­
dow moving across the data residing in memory which causes the image to 
scroll. 

Listing 1 should give a good idea of "coarse" vertical scrolling. I call it 
coarse because the image moves a full character width at a time. Lines 170 and 
180 are really doing all the dirty work. The new display address is being insert­
ed into the display list at this point after appropriate incrementing or 

"&rol1ing," by James CapareU, is reprinred with permission from MICRO Magazine, Issue No. 42, P.o. Box 6502, 
I\mherst, NH 03031. 

212 



SCROLLING 
decrementing of the address bytes. I've chosen to vertically scroll the entire 
image but it is an easy matter to set up a scrolling window within a 
background display. In fact, Listing 2 does just that, only in the horizontal 
direction. 

I've also mixed two modes on the screen. The only complication here is 
the need to have more than one LMS instruction. The second LMS restores 
the pointer to memory prior to the hori zontal intrusion . There is nothing to 
stop you from placing an LMS instruction on every mode line; each could be 
scrolling in independent directions. 

Listing 3 is meant to demonstrate the second scrolling method, smooth or 
fine scrolling. This is accomplished with the help of hardware scrolling 
registers , one for horizontal and another fo r vertical direction. When the ap­
propri ate bits are set in a display li st instruction, the values in each of these 
registers control the number of scan lines vertically or color clocks horizontal­
ly that each line will be d isplaced . The limitation here is the amount of fine 
scrolling allowed . A line can be moved eight fu ll color-clocks horizontally and 
16 scan lines verticall y. Wh en this amount is scrol led , the LMS address bytes 
must be incremented or decremented and t he whole process must be started 
again . in thi s way smooth scrolling can be m aintained. 

by James Cappare ll 

19 REM COARSE VERTICAL SCROLLING DEMO 
15 REM PRESS UP/DOWN ARROWS TO MOVE 01 
SPLAY THRU MEMORY 
29 DLIST =PEEK(569) +PEEK(561)*256:REM G 
ET START OF DISPLAY LIST 
39 LMSL =DLIST +4:REM POINTER TO DISPLAY 

MEMORY 
49 LMSH =DLIST +5 
59 DISPLAYL =9:REM INITIALIZE ADDRESS 0 
F DISPLAY MEMORY 
55 REM READ KEYBOARD 
69 IF PEEK(764) =255 THEN GOTO 69:REM W 
AIT FOR KEY 
79 IF PEEK(764} = 14 THEN POKE 764.255:G 
OTO 119:REM UP ARROW / 
89 IF PEEK(764} =15 THEN POKE 764 . 255:G 
OTO 149:REM DOWN ARROW? 
99 GOTO 69 

213 



SYSTEMS GUIDE 

188 REM MOVE DISPLAY WINDOW INTO LOWER 
MEMORY 

118 DISPLAYL =DISPLAYL - 48 
128 IF DISPLAYL>=8 THEN GOTO 178:REM C 
AN'T DISPLAY NEGATIVE MEMORY 
1220ISPLAYH =DISPLAYH - l:DISPLAYL =8 
124 IF DISPLAYH<8 THEN DISPLAYH =8 
126 GOTO 178 
138 REM MOVE DISPLAY WINDOW INTO HIGHE 
R MEMORY 
148 DISPLAYL =DISPLAYL +48 
158 IF DISPLAYL>248 THEN DISPLAYH =DISP 
LAYH+l:DISPLAYL =8 
168 REM CHANGE DISPLAY MEMORY POINTER 
178 POKE LMSL,DISPLAYL:REM PUT NEW DIP 
LAY ADDR IN DISPLAY LIST 
188 POKE LMSH.DISPLAYH 
288 GOTO 68:REM GO WAIT FOR KEYBOARD E 
NTRY 

18 REM COARSE HORIZONTAL SCROLLING OEM 
o 
28 REM USE LEFT AND RIGHT POINTING ARR 
OWS TO CONTROL SCROLL DIRECTION 
25 LIST 
38DLST =PEEK(561)*256 +PEEK(568) 
35 DMEM =PEEK(DLST +4)+PEEK(DLST +5)*256 
48 SKIPH=INT((DMEM +288)/256) :SKIPL =DME 
M+288 - SKIPH*256 
45 POKE DLST +15.66:POKE DLST +16.SKIPL: 
POKE DLST+17.SKIPH 
58 ADDRL=DLST +13:ADDRH =DLST +14:VALL =B: 
VALH =3 
55 POKE DLST +12.71:POKE ADDRL.VALL:POK 
E ADDRH.VALH 
68 IF PEEK(764) =255 THEN GOTO 6B:REM S 
CAN KE 
65 IF PEEK(764) =7 THEN POKE 764.255:GO 

214 



SCROLLING 

TO 199:REM RIGHT ARROW? 
79 IF PEEK(764) =6 THEN POKE 764,255:GO 
TO 149:REM LEFT ARROW? 
89 GOTO 59:REM ONLY ARROWS ARE LEGAL R 
ESPONSE 
99 REM SCROLL RIGHT 
199 VALL =PEEK(DLST +13) +1 :REM MOVE DISP 
LAY TO LEFT 
119 IF VALL>255 THEN VALL =9:VALH =VALH + 
1 
129 GOTO 55 
139 REM SCROLL LEFT 
149 VALL =PEEK(DLST +13) - 1 :REM MOVE DISP 
LAY TO RIGHT 
159 IF VALL<9 THEN VALL =9:VALH =VALH - 1 
169 IF VALH<9 THEN VALH =9 
179 GOTO 55 

19 REM FINE SCROLLING HORIZONTALLY AND 
VERICALLY 

29 DLST =PEEK(569) +256*PEEK(561) 
25 DMEM =PEEK(DLIST +4) +PEEK(DLST +5)*256 
39 SKIPH =INT((DMEM +289)/256) :SKIPL =DME 
M+289 - SKIPH*256 
35 VALL =9:VALH =2 
49 POKE DLST +12,l19:POKE DLST +13,VALL: 
POKE DLST +14,VALH 
45 POKE DLST +15,66:POKE DLST +16,SKIPL: 
POKE DLST +17,SKIPH 
59 IF PEEK(764) =255 THEN GOTO 59:REM S 
CAN KEYBOARD 
55 IF PEEK(764) =14 THEN POKE 764,255:G 
OTO 299:REM UP ARROW? 
69 IF PEEK(764) =15 THEN POKE 764,255:G 
OTO 259:REM DOWN ARROW? 
65 IF PEEK(764) =6 THEN GOTO 399:REM LE 
FT ARROW? 

21.5 



SYSTEMS GUIDE 

78 IF PEEK(764) =7 THEN GOTO 358:REM RI 
GHT ARRDW ? 
75 GOTO 58:REM IGNORE OTHER RESPONSES 
288 Y=Y+1:IF Y<16 THEN GOTO 588 

' 218 Y=8 
215 VALL=VALL +4B 
228 IF VALL>248 TH EN VALL =8 : VALH =VALH + 
1 
238 GOTD 458 
258 Y=Y- l 
255 IF Y>-l THEN GOTO 588 
268 Y=15 
265 VALL =VALL - 48 
288 · GOTD 445 
388 X=X- l:IF X> - l THEN GOTO 585 
385 X=15 
318 VALL =PEEK(DLST +13) +2 
325 GOTD 445 
3S8 X=X+l:IF X<16 THEN GO TO 585 
355 X=8 
368 VALL =PEEK(DLST +13) - 2 
448 IF VALL<8 THEN VALL =8:VALH =VALH - l 
445 IF VALH<8 THEN VALH =8 
458 POKE DLST +12,119:POKE DLST +13.VALL 
:POKE DLST+14.VALH 
588 POKE 54277.Y:REM VERTICAL SCROLL R 
EGISTER 
585 POKE 54276.X:REM HORIZONTAL SCROLL 

REGISTER 
518 GOTD 58 

216 



ANTIC DISASSEMBLER 

ANTIC Disassembler and 
Raster Scan Graphics 

R
ecall that the display list is the set of instructions used to control an 
LSI chip called ANTIC. ANTIC, a dumb microprocessor, functions 
as a graphics controller. Its principal duties are to specify the location 

in memory to be displayed, the mode of display (12 Graphics Modes with dif­
fering resolutions to choose from), horizontal /vertical scroll enable and 
display list instuct ion interrupt enable. 

Included here is an ANTIC disassembler. This program requires you to 
enter a BASIC Graphics Mode numbered 0-11, and will then locate the 
associated display list and decode the instructions. Note that this program 
prints the ANTIC display modes numbered 2 - 15. Use the program and the 
ANTIC/BASIC correspondences will become apparent . (See Listing 1.) Also 
described are basic raster scan graphics (ATARI style), and then a quick lesson 
in the use of display list interrupts. 

The normal NTSC raster television is made up of 625 interlaced scan 
lines. These scan li nes are the horizontal lines appearing in the picture tube 
phosphor when energized by the electron beam as it sweeps left to right, top to 
bottom, across your screen. Interlacing occurs in normal television to 
eliminate flicker. It simply means that all even scan line rows are "painted" in 
one frame, and all odd lines in the next. The frame refresh rate is 60 Hz. 

Each ATARI frame image contains 262 scan lines with no interlacing. 
Every frame is the duplicate of the prior one unless there is program interven­
tion. The image is repainted 60 times per second, and the electron beam is 
turned off at the end of every scan line. At that time it is returned to the left 
edge of the screen to start the next line trace. This is called horizontal blank 
time. 

The beam is also turned off after every frame so that it may return to the 

"ANTIC Di<8JSSernbier," 0' James CapareU, il re/Jrinte£iwith /x'rlnillion from MICRO Magazine, Is.sue No. 43, P.O. 
Eh~ 6502, Amhem, l\'H 0303 1. 

217 



SYSTEMS GUIDE 
top left corner of the screen. This is called vertical blank time. These two time 
periods are very important to the would-be animator. It is crucial to under­
stand how much time is available and how to enter code so that it will be ex­
ecuted at the appropriate moment. 

The 6502 microchip in the ATARI cycles at 1.79 megahertz, almost twice 
as fast as the normal 6502. This cycle rate was chosen so that two color-dock 
widths on a scan line equal one machine cycle. There are 228 color-clocks on 
every scan line, and the maximum displayable width of any scan line is 176 
color-clocks, called "wide playfield" in the ATARIliterature. The maximum 
resolution is 1/2 color-clock, and therefore ATARI can display up to 352 picture 
elements (pixels) horizontally. The maximum vertical resolution, in scan line 
units is 240. Effectively, ATARI h as a high-resolution mode of 352 X 240. 

It's important to realize that there are physical limitations to this size dis­
play. Depending on your televisions 's adjustment, some of the displayed image 
may appear on the curved edge of the picture tube. This overlap is called 
overscan. While overscan is not important in normal television viewing, it is 
crucial if what your word processor is printing you can't see. 

Atari, in its Operating System (OS), used a more conservative screen size 
of 320 (160 clocks) horizontally by 192 scan lines vertically. This width screen 
is called "normal playfield" in the documentation. In this way Atari defeated 
normal overscan and assured us of seeing an entire image. There is a narrow 
playfield width as well, 256 pixels (128 clocks wide). These dimensions and 
timing are important since what is not used at display time is left over and 
available at interrupt time . (See Table 1 for timing.) 

It is relatively simple to change between screen widths. Location $22F 
controls playfield width. Called SDMCTL in the documentation, it is ini­
tialized to 34. Writing a 35 will change the screen dimension to wide, and writ­
ing 33 will reduce the screen to narrow. SDMCTL is the OS shadow for a 
hardware register in the ANTIC chip at $D400, called DMACTL. 

Since many of these h ardware locat ions are write only, the OS keeps 
copies, called shadows, in RAM . Shadow registers update the associated hard­
ware at vertical-blank-interrupt time. Remember to use the shadows to effect a 
permanent change to the entire frame. The exception occurs when using a 
display list interrupt . These interrupts can occur, under programmer control, 
on any scan line of every frame. To effect an immediate change at scan line in­
terrupt, you must write directly to the hardware register. 

To use the display list interrupt (DU), a number of things must be accom-

218 



ANTIC DISASSEMBLER 
plished. First, write the DLI service routine. The important thing to 

remember here is to save and restore any registers needed by the routine. 
Then find a free place in memory for this routine. (As you know, ATARI has 
reserved Page Six, decimal 1536- 1791 ,just for users. ) Next, update the vector at 
$200 and $201 to point to start of the routine. Now ch ange the appropriate 
display list instruction to cause an interrupt (accomplished by turning on bit 7 
of the instruction) . Finall y, enable DUs by setting bit 7 of hardware register 
$D40E, called NMIEN (Non-Maskable Interrupt Enable). See Listing 2 for a 
simple example . 

Also remember to set the interrupt in the mode line prior to the location 
where you would h ave the changes occur. Then write to a location call 
WSYNC $D40A. This will cause any changes to be delayed to the start of the 
next scan line and, therefore, allow a smoothly synchro nized transition . 

DLIs can be used for everything from putting many colors on the screen, 
to ch anging among a number of ch aracter sets, to moving Player/Missiles 
around . To get the most from your ATARI, experiment with this concept. 

Table 1: Timing 
1.79 MHZ machi ne cycl e 
262 sca n lines per frame 
228 co lo r cloc ks per scan line 
60 frames per second refresh rare 

1.79/60 = 29868 machine cycles per fram e 
298681262 = 114 machi ne cycles per scan line 
228/ 11 4 = 2 colo r cloc ks per machine cycle 

Vertical Blank Time 
262 scan Ines . 192 d ispl ayed sca n li ne = 70 
70 x 114 cyc les / line = 7980 cycles ava il ab le* 

Horizontal Blank Time 
Wide Pl ay fi eld 
22 8 cloc ks - 192 clocks = 36 clocks 
3612 = 18 machine cycles 

Norm al Pl ay fi eld 
228 clocks - 160 machine cyc les = 68 clocks 
68/ 2 = 34 mac h ine cycles 

Narrow Pl ay fi eld 
228 clocks - 128 clocks = 100 clocks 
10012 = 50 mac h ine cycles 

by James Capparell 

*AII graphics arc cycl e-s(ealing direc( M emory Access (DMA). Depending 
on grap hi cs mode and memory refresh, (hi s value will be less. 

219 



SYSTEMS GUIDE 

18 REM .** PROGl *** 
28 REM MEMORY ANO DISPLAY LIST VARIES 
WITH GRAPHICS MODE 
38 REM DUMP AND DISASSEMBLE DISPLAY LI 
ST 
48 REM 
188 ? " INPUT GRAPHICS MODE "; :INPUT M 
ODE 
118 LST-PEEK(568)+PEEK(561)*256:REM FI 
NO START OF DISPLAY LIST 
128 MEMRY-PEEK(LST+4)+PEEK(LST+5)*256: 
REM FIND START OF DISPLAY MEM. 
138 RAMTOP-PEEK(186)*256:REM NUMBER OF 

PAGES IN MEM DEFINED AT POWER ON 
148 REM LIST 
158 LPRINT .. OS GRAPHICS MODE ";MODE 
168 LPRINT " RAM AVAILABLE AT POWER ON 

";RAMTOP 
178 LPRINT " START OF DISPLAY LIST ";L 
ST 
188 LPRINT " START OF DISPLAY MEMORY" 
;MEMRY 
198 REM DUMP DISPLAY LIST WITH DISASSE 
MBLY OF INSTRUCTIONS 
195 LMS-64:INT-128:HSCR-16:VSCRL-32:JV 
B-65:JMP-l 
288 FOR I-LST TO MEMRY-1 
285 LPRINT I;" ";PEEK(I); 
218 INST-PEEK(I) :REM DISPLAY LIST VALU 
E 
215 IF INST>-128 THEN GOSUB 1188:GOTO 
488 
228 GOSUB 1148 
488 NEXT I 
418 STOP 
1188 INST-INST-INT:REM GET RID OF INTE 
RRUPT BIT 
1185 LPRINT " INSTRUCTION INTERRUPT EN 
ABLE" 
1148 GOSUB 2888:REM FIND JUMPS AND BLA 
NKS 
1158 IF INST-8 THEN RETURN 
1168 GOSUB 1488:REM GO FIND LMS 

220 



ANTIC DISASSEMBLER 

1179 GOSUB 1599:REM GO FINO VSCROL 
11B9 GOSUB 1699:REM GO FIND HORIZONTAL 

SCROLL 
. 1199 GOSUB 1799:REM TRANSLATE ANTIC MO 

DE TO OS GRAPHICS MODE 
1299 RETURN 
1499 IF INST<66 THEN RETURN :REM NO LM 
S 
1495 LPRINT " LOAD MEM SCAN FROM " ; PEE 
K(I+1 )+PEEK(I+2)*256 
1419 INST-INST-LMS:REM GET RID OF LMS 
BIT 
1429 1-1+2:REM INCREMENT LOOP AROUND A 
DDRESS BYTES 
1439 RETURN 
1599 IF INST<34 THEN RETURN :REM NO VS 
CROL ENABLE 
1519 INST-INST-VSCRL:REM GET RID OF VS 
CROLLL BIT 
1529 LPRINT "VERTICAL SCROLL ENABLED" 
1539 RETURN 
1699 IF INST<18 THEN RETURN :REM NO HS 
CROLL ENABLE 
1619 INST-INST-HSCRL:REM GET RID OF HO 
RIZONTAL SCROLL BIT 
1629 LPRINT "HORIZONTAL SCROLL ENABL 
ED " 
1639 RETURN 
1799 LPRINT " ANTIC DISPlAY MODE"; INS 
T 
1759 RETURN 
2999 IF INST-9 OR INST-16 DR INST-32 0 
R INST-48 OR INST-64 DR INST-89 OR INS 
T-96 OR INST-112 THEN GOSUB 2199 
2919 IF INST-1 THEN GOSUB 2299 
2929 IF INST-65 THEN GOSUB 2399 
2930 RETURN 
2100 LPRINT " BLANK ";INT(INST / 16)+1;" 

LINES" 
2119 INST-O:RETURN 
2129 REM 
2299 LPRINT " JUMP INSTRUCTION TO ": PE 
EK ( 1+1 ) +- PEEK ( 1+2) * 256 

221 



SYSTEMS GUIDE 

2218 I-I+2:REM INCREMENT AROUND ADORES 
S BYTES 
2215 INST-INST-JMP:RETURN 
2228 REM 
2388 LPRINT " JUMP & WAIT FOR VERTICAL 

BLANK TO ":PEEK(I+1)+PEEK(I+2)*256 
2318 I-I+2:REM INCREMENT AROUND ADORES 
S BYTES 
2315 INST-INST-JVB:RETURN 

TYPO TABLE 

,Variable checksum - 351876 
Line num ran g e Cod 8 Length 
18 - 1 78 01 468 
1 80 - 1185 PT 372 
1148 - 1438 SU 397 
15 gg - 2818 MI 393 
2828 - 2315 I P 376 

18 REM *** PROGRAM 2 *** 
28 REM THIS WILL CREATE A DISPLAY LIST 

WITH DLI ENABLED 
38 REM THE SCREEN WIDTH IS NARROWED AT 

DLI TIME AS WELL 
48 REM 
45 GRAPHICS 8:SETCOLOR 4,4,9:REM SET B 
ORDER COLOR 
58 DLST-PEEK(568)+PEEK(561)*256:REM FI 
NO START OF DISPLAY LIST 
60 POKE DLST+14,PEEK(DLST+14)+128:REM 
TURN ON INTERRUPT BIT 7 
70 FOR L-8 TO 29:REM POKE DLI SERVICE 
ROUTINE INTO PAGE 6 
88 READ INSTRCT:POKE 1536+L,INSTRCT 
98 NEXT L 
108 DATA 72,138,72,169,40,162,48,141.1 
8,212,141,23,288 

222 



ANTIC DISASSEMBLER 

119 DATA 142.24.208.169.33.141.0.212.1 
62.140.142.26.208.104.170.104.64 
120 POKE 512.0:POKE 513.6:REM POINT TO 

DLI INTERRUPT SERVICE ROUTINE 
130 POKE 54286.192:REM ENABLE DMI 
140 LIST 
150 REM ••• DLI SERVICE ROUTINE ••• 
152 REM PHA SAVE REGISTERS 
154 REM TXA 
156 REM PHA 
158 REM LOA 
160 REM LOX 
162 REM STA 
SYNCH 

#S28 CHARACTER LUMINENCE 
#S30 BACKGROUND COLOR 
SD40A WAIT FOR HORIZONTAL 

164 REM 
166 REM 
168 REM 

STA SD017 PLAYFIELD 1 
STX SD018 PLAYFIELD 2 
LOA #21 NARROW PLAYFIELD 

170 REM 
WIDTH 

STA SDUO DMACTl ENABLE ' NAROW 

, 

172 REM LOX 
174 REM STX 
176 REM PLA 
178 REM TAX 

#S8C BORDER COLOR 
SDOtA COLBK 

RESTORE REGISTERS 

180 REM PtA 
182 REM RTI RETURN FROM INTERRUPT 

TYPO TABLE 

Variable checksum -
Line num rango 
1 0 - 1 10 
120 - 166 
168 - 182 

99022 
Codo 

TN 
OH 
LO 

Length 
531 
357 
198 

223 



SYSTEMS GUIDE 

Interrupts 

A
n important feature to understand is the vertical blank (Vblank) in­
terrupt. I will give you a working definition of what an interrupt is, 
then discuss how Vblank fits into the overall interrupt structure, 

what is accomplished in this time period, and how programmers may access 
this interrupt for their own use. I will also provide a simple program to illus­
trate the use of Vblank vectors and how to insert code at VVBLKD. 

Recall from my discussion of raster scan graphics, that the term vertical 
blank is given to that time period when the electron beam is turned off and 
returned to the upper-left corner of the video screen, ready to start tracing a 
new frame. The number of machine cycles available at Vblank is some frac­
tion of 29868 machine cycles that are needed to trace one entire television 
frame. In the normal Graphics Mode 0 (text screen), approximately 7980 ma­
chine cycles are left over at Vblank to be shared by the Operating System 
Vblank interrupt service routine (lSR) and any programmer supplied code. 
The term interrupt applies to any signal, originating from hardware or soft­
ware, which serves to suspend normal mainline program flow. 

When an interrupting event occurs, the program counter (PC) and 
processor status registers are automatically saved on the system stack. The 
processor then executes special code referred to as an interrupt service routine 
(lSR). The address of the ISR is found in a memory location reserved for this 
purpose, called an interrupt vector. When the ISR is finished, the values of the 
PC and status registers are retrieved from the stack and processing of the sus­
pended program is resumed as if nothing had intervened. This all happens at 
machine speed-in hundreds of microseconds. 

The vertical blank interrupt is an essential part of the ATARI Operating 
System and appears as a non-maskable interrupt (NMI) to the system. The 
NMI is one one of three possible interrupts that the ATARlcan process. These 
three-chip reset, NMI, and IRQ-are analyzed further by interrupt service 
software. Whenever an NMI or an IRQ signal occurs, the appropriate service 

"Inteml/Jts," by James Cnparell, is reprinted with permission from MICRO Magazine, Issue No. 43, P.o. Box 6502, 
Amhmt, NH 03031. 

224 



INTERRUPTS 
routine is executed. These service routines interrogate a status register to iso­
late the interrupting source . See Table 1 for a breakdown of vectors and con­
tents for each type of interrupt. 

It's apparent from Table 1 that all NMI interrupts are vectored through 
location $FFFA to the NMI interrupt service routine starting at address 
$E7B4. Since there are three possible causes of an NMI, the ISR must deter­
mine the source of the interrupt by interrogating an NMI status register at ad­
dress $D40F. This location, called NMIST in the documentation, has bit 7 set 
when a DLI occurs, bit 6 set when [SYSTEM RESET] has been pressed. If 
neither a DLI nor a [SYSTEM RESET] caused the NMI, then a Vblank inter­
rupt is assumed by the ISR and the processor jumps to the address contained 
in the vector at $0222. There are actually two vectors used by Vblank through 
which a programmer may introduce additional or replacement code. One vec­
tor, referred to as vertical blank immediate vector VVBLKI, is at address 
$0222. This vector normally contains the address $E7D 1, the start of the 

Table 1. 

INTERRUPT VECTOR 

CHIP RESET FFFC 

NMI FFFA 

IRQ 

Display list 

Vertical Blank 

S/ Reset key 

FFFE 

Jump through 

Serial bus output ready jump through 

Serial bus output complete 

Serial bus input ready 

*Serial bus proceed line 

*Serial bus interrupt line 

*Pokey timer 1 

*Pokey timer 2 

*Pokey timer 4(Bug in O.S. timer 4) 

Keyboard key scan 

Break key 

*6502 break instruction 

ISR LOCATION 

E477 

E784 

E6F3 

0200 

0222 and 0224 

E474 

020e 

020A 

020E 

0202 

0204 

0210 

02 12 

02 14 

0208 

???? 

0206 

" These vectors are unused by the O.S. and are initialized to point to an RTI instruction. 

225 



SYSTEMS GUIDE 
system Stage 1 Vblank ISR. Should it be necessary to either replace system 
functions or simply perform operations prior to the system code, then you 
would use this vector. The other vector location, called vertical blank deferred 
VVBLKD, is at address $0224 . This vector normally contains the address 
$E93E, which is the start of code for the system return from interrupt. The 
contents of $0224 would be changed to point to new code when your opera­
tion was needed after system housekeeeping was accomplished. 

The Vblank process is actually di vided into two stages. Whenever a 
Vblank NMI occurs, the following events always happen: 

1. Processor registers A, X, and Yare pushed on stack . 
2. Interrupt request is cleared by writing zero to 

$D40F. 
3. Jump through VVBLKI normally pointing to 

Stage 1 Vblank. 

When Stage 1 processing is executed, it increments the three-byte counter 
called RTCLOK at addresses $12, $13, and $14. Location at $12 is the most 
significant byte . This cou nter wraps to zero after approximately 77 hours and 
then continues counting. The attract mode is also processed at Stage 1; that is 
the process which causes the colors on your screen to start shifting if no key 
has been pressed on the keyboard in the previous nine minutes. 

Additionally, system timer one at locations $218 and $219 is decremented 
if it is non-zero . When the counter goes to zero , an indirect ]SR is performed 
via a vector at addresses $226 and $227. Note that an indirect]SR is performed 
by copying the address from the vector to the stack and executing an RTS in ­
struction. 

At this point a test is made to determine if a time-cri t ical section of code 
was interrupted. If either the I b it in the processor status register or the critical 
fl ag at address $42 are set, then the interrupted code is assumed to be time­
critical. When this occurs, the registers are restored and an RTI instruction is 
executed. 

The critical fl ag can be set by a Seri al I/O in progress. If no time con­
straints are present, then Stage 2 processing is begun. It is in this section of 
code that IRQ interrupts are enabled, keyboard auto-repeat logic is processed, 
keyboard debounce is performed, and system timers, 2, 3, 4, and 5 are pro­
cessed. In addition, the color data for playfield and Player / Missiles are up­
dated. This color data and other RAM locat ions, called shadow registers, are 

226 



INTERRUPTS 
copied into thei r associated hardware locatio ns. Stage 2 also reads the game 
co ntroller data from jacks 1, 2, 3, and 4 into RAM memory. 

To insert code either at VVBLKI or VVBLKD, the address where the 
new code res ides must be pl aced into the appropriate vector. A system routine 
insures th at both bytes of the vector will be updated while Vblank is enabled . 
A verti cal blank can be processed during a call to this routine. The routine is 
ca lled SETVBV in the documentat ion and th e calling sequence is: 

Register A (update indicator) 

1-5 then update timers 1-5 

6 for immedi ate Vblank vector VVBLKI 

7 for deferred V blank vector VVBLKD 

Register X most significant byte of vector address (hi-byte) 

Register Y = least-sign ifi ca nt byte of vector address (lo-byte) 

JSR SETVBV Jump to subroutine 

The A, X, and Y registers may be altered. 

The display list interru pt will always be enabled on return. 

A knowledge of processing interrupts and insert ing code at 
interrupt vectors is essenti al to get the most from the ATARI. 
With this example you should h ave enough information to ex­
periment with the Vbl ank vectors. Interrupt-driven sound con­
trol, page fli pping, animation techniques , greater color control, 
and many other procedures are possible. 

James Cappare ll 

9 : * * PROGRAM EXAMPLE 1 ** 
29 :PROGRAM SETS UP A VVBLKD ISR 
39 : 
49 : SET UP NEW VECTOR WITH A BASIC US 
R CALL A-USR(1536) 
59 : NEED TO DO THIS WHENEVER SYSTEM I 
S RESET 
69 * = $699 

1 536 
79 PLA 
89 LOA #7 
99 LOX #96 

PUT IN PAGE 6 DECIMAL 

NULL VALUE FROM BASIC 
INDICATOR FOR VV8LKD 
HIGH BYTE FOR VECTOR 

227 



SYSTEMS GUIDE 

AooR 
81SS LOY #$48 
ooR 

LOW BYTE FOR VECTOR A 

8118 JSR $E45C SET UP DEFER 
8128 RTS RETURN TO BASIC 
8138 ; ** ** ** ** 
8148 ; ROUTINE AT DECIMAL 1688 IS DESI 
GNED TO WASTE TIME. 
8158; PUT A NUMBER FROM 1 - 5 IN DECI 
MAL 1568. 
8168 ; USE POKE 1568,N 
8178 ; THIS IS THE ISR WHICH SIMPLY WA 
STES TIME. 

18 *- $648 
19 LOX 8 
28 LOY 8 
21 LOOPl INX 
22 CPX $628 
23 BEO LOOP2 
24 CLC 
25 BCC LDOPl 
26 LOOP2 INY 
27 CPY $628 
28 BEO EXIT 
29 CLC 
as BCC LOOPl 

INIT COUNTERS 

INCR COUNT 
DELAY VALUE 

FORCE BRANCH 

DELAY VALUE 
DONE ? 
NO-FORCE BRANCH 

31 EXIT JMP $E93E TAKE NORMAL VBLANK 
EX T 

228 



Handling Media 

Diskettes and cassettes with computer data on them are easily damaged, especially 
diskettes . Never touch the surface of the magnetic medium with your fingers. Oil from 
your skin will interfere with the readability of data underneath . 

Protect tapes and disks from magnetic sources such as televisions, telephones and 
magnetized tools. Prolonged exposure to sunlight and heat can be damaging too, so 
store media safel y away when not in use. 

Dust and ash from cigarettes can accumulate on exposed disks, so always keep 
disks in their envelopes when not in use. Vertical storage in protective boxes helps. 
Liquid spilled on disks or tapes is almost always fatal. It is best not to eat or drink in 
your computing area . 

Disks must be perfectly fl at and free to move in their protective sheaths. Never 
bend or fold a diskette, nor wri te on it with a pen or pencil that requires pressure. Do 
not use paperclips on disks as these may crimp the sheath. Accidental creasing or 
crushing of disks in briefcases is a common tragedy. 

Atari Support 

Atari is the only microcomputer company with an extensive program of help for the 
owners of its products . There are more the 1700 authorized service centers in the 
United States, plus others abroad, where you can seek help . Just look in the yellow 
pages under "Computers - Service and Repair." 

Also, Atari maintains a staff of trained Agents and Product Specialists available 
at toll -free phone lines to answer questions from customers. These numbers are: 
800-538-8543 (continenta l U.S., except California) and 800-672-1404 (California 
only.) 

Users groups, that is, local or regional clubs of Atari owners , are located in may 
populated areas and are especially helpfu l to beginners. Atari has an office from which 
a list of these groups can be obtained. Call 408-743-4196 for user group information 
only, or write User Group Support, Atari, Inc., 1399 Moffet Park Drive , Sunnyvale, 
CA 94086. 

229 



o 

~ 

(I 
• 
( 



Move--It 

M ove-It provides the ATARI programmer with the abi lity to move 
one byte of data into a range of memory locations . This assembly 
language routine is position independent. It is loaded into a string 

from data statements 250 and 260. The routine is useful for clearing sections of 
screen memory) Player/Missile memory) erasing a player) and clearing 
memory used in page flipping. 

The parameters which control this routine are passed in a USR state­
ment. The start location and byte total to be moved are passed. There are no 
limitations on the total bytes which can be moved. 

Interest ing sounds are also generated by the BASIC routine. The 
soundless version moves bytes at the rate of almost a quarter of a million per 
second (256 X 960). 

by Jerry White 

19 ; This is a posilion independenl su 
brouline 
29 ; found in DATA stalemenls line num 
be red 259 and 269 
39 Cal I ing Sequence from BASIC is: 
49 A - USR(ADR($STR).Slarl Addr,Coun 
I) 
59 
69 
79 
Dun I 
89 
esl addr 
99 
9199 

add r 
91 1 9 
91 29 

*= $699 ;can go anywhere 
PlA ignore argumenl c 

PLA ;save lo-byle of d 

STA $CC 
PLA ;save hi-byle of desl 

STA $CB 
PLA ;save lola I 10 be 

231 



ASSEMBLY LANGUAGE 

moved 
0139 
0140 PlA 
0150 

STA $CE;* 
;save lolal 10 be moved 

STA $CD . * 
0160 LOX $CE counl of byles 

10 move 
0170 LOY #0 Inlt index 
0180 LOA #8 inlt characler 

10 be moved 
8198 MOV STA ($CB).Y ; move data 
8288 DEY decrement inde 
x 
8218 BNE MOV go move n ext c 
haracter 
0228 INC $CC Inc r des I add r 

18-byle 
0239 DEX dec r lo-byte c 
ounl 10 move 
8248 BMI EX IT 
8258 BNE MOV go move n ext c 
haracter 
8268 LOY SCD hi-byte o I co u 
nt to move 
8278 BNE MOV 9 0 move n ext c 

DEC $CC dec r lo-byte d 
haracter 
0280 EXIT 
est addr 
0290 LOY #0 
039 8 STA (SCB).Y 
0318 RTS ; return 10 BASI 
C 
0320 .END 

232 



REM W.""I'~"P"'i'r."'lttl'il 35 GRAPHICS :POKE 82. :DIM Z (42) :POK 
E 752.1 :S-PEEK(569)+PEEK(561)*256+4:S 
M-PEEK(S +PEEK S+l *256:C-53279 
45 REM 

[II 
69 FOR X-1 TO 42:READ IT:ZS(X.X)-CHRS( 
IT) : N EXT X: P 0 K E 8 2 • 9 :? .. 6" ; : P 0 K E 8 3 • 3 9 
:SOUND 9.9.9.9 
65 ZS(19.19)-CHRS(128) :Z-USR(ADR(ZS).S 
M.969) :POKE 719.113:POSITION 39.9:? CH 
RS(169); 
757" This IlIiIiJ demonstrates an as 
sembler ":?" MOVE routine called 
from BASIC. 
897" Possible uses would be to m 
ove ":7" blanks or special ch 
aracters to an 
85 ?" area of screen memory. or to 

clear ":?" RAM used for player 
missiles or 
99?" page flipping etc. 

95 7 ··_"".-"'O,.IMI.I'9':IIi_ 
~ (1) FAST WITH SOUND 

":GOSUB 239 
199 7 " (2) VERY FAST WITH SOUND 

":GOSUB 239:? " (3) THAT 
'S INCREDIBLE (SILENT) ":GOSUB 239 
119 POKE 764.255:CLOSE #1 :OPEN #1.4.9. 
"K:":GET #l.K:CLOSE #1 
115 REM ACCEPT ONLY A 1 2 OR 3 
129 IF K<49 OR K>51 THEN FOR ME-15 TO 
9 STEP -9.5:S0UND 9.192.12.ME:NEXT ME: 
GOTO 119 
138 REM I lOVE SOUND ROUTINES 
135 FOR J-1 TO 7:POKE 718.J*16:FOR X-
2 TO 8 STEP -1 :FOR ME - 14 TO 8 STEP -2: 
SOUND 8.X+J.2.ME:NEXT ME:NEXT J 
145 REM EXECUTE SELECTED MOVErT ROUTrN 
II 

233 



ASSEMBLY LANGUAGE 

150 IF K-51 THEN GOSUB 20:GOTO 175 
155 IF K-50 THEN GOSUB 190:GOTO 175 
160 GOSUB 210:GOTO 175 
170 REM DING . . . ALL DONE .. . START OVER 
175 FOR ME -15 TO 0 STEP -O.2:S0UND 0.0 
.2.ME:NEXT ME:RUN 
185 REM VERY FAST SUBROUTINE WITH SOUN 
III 
190 FOR M-O TO 255:Z$(19.19)=CHR$(M):P 
OKE 53761.168:POKE 53763.168:POKE 5376 
0.255-M:POKE 53768.13:POKE 712.M 
195 POKE 53762.M:POKE 53762.M/8:POKE 5 
3768.2:Z-USR(ADR(Z$) .SM.960) :POKE 5376 
1.0:POKE 53763.0:NEXT M:RETURN 
2 0 5 REM l'I,.,I':'j •.• II,.I,.?",,!, .• I.I •. 1 
210 FOR M-255 TO 0 STEP -l:Z (19.19)=C 
HR$(M) :POKE 53760.M:FOR V=175 TO 160 S 
TEP -l:POKE 53761.V 
215 POKE 53768.V-160:NEXT V:POKE 712.M 
:Z-USR (ADR(Z$) .SM.960) :NEXT M:RETURN 
225 REM BLINK 6 BUZZ SUBROUTING 
230 FOR JW-O TO 8:POKE 755.1:POKE C.O: 
POKE C.8:NEXT JW:FOR JW-O TO 8:POKE 75 
5.2:NEXT JW:RETURN 
2 4 0 REM lI'II-"-"""-.-111,r':II'j-1I, 1:'j'.IIIUI" 
250 DATA 104.104.133.204.104.133.203.1 
04 . 1 33 • 296 • 1 04 • 1 3 3 • 2 05 . 1 66 • 2 06 . 1 6 0 . 0 . 1 
69.0.145.203.136 
260 DATA 208.251.230.204.202.48.6.208. 
244.164.205.208.240.198.204.160.0.145. 
203.96 

TYPO TABLE 

Variable checksum - 139986 
Lin e num ran g 8 Co d.8 Length 
5 - 60 CB 588 
65 - 95 AO 537 
190 - 1 45 J J 522 
1 59 - 295 GJ 51 6 
2 1 0 - 269 UT 534 

234 



BUBBLE SORT 

Bubble Sort 

T his is a handy Sort Utility intended to be called from BASIC and 
allows you to sort almost anything that can fit in your computer's 
memory. The fl exibility of the sort should cover many applications. 

Records may be any size up to 256 bytes. The sort fields may be any size up to 
the length of the record. You can sort on as many different fields as you need, 
and each field can be independently sorted in ascending or descending 
sequence. 

The sorting technique is the traditional Bubble Sort which works by look­
ing through a fil e of records in memory, and comparing the sort field of each 
record to the one following it . If any two adjacent records are not in sequence, 
the sort will exchange the positions of those two records. The sort continues to 
scan the fil e until there are no more records to exchange. In this way, records 
with the higher sort fields get pushed towards the end of the file, and records 
with the lower sort fields get pushed towards the beginning of the file. All of 
this takes place in memory so that it appears that the records bubble into 
place. 

The sort only requires 182 bytes and the machine language is relocatable, 
therefore you can load and execute this sort anywhere in memory. Although 
you can put the sort in any program you like, your file size is going to be 
limited by available memory. For large files, it is best to write a small BASIC 
program that contains only this sort, a string large enough to hold your file, 
and whatever BASIC statements it takes to load a file, call the sort and write 
out the new sequenced fil e. 

Although the sort works very fast, its speed can be improved by about 30 
percent by turning ANTIC off. Just before calling the sort, save the value at 
PEEK(559) then POKE in a zero. All this does is shut down the screen display, 
but in so doing, it makes about 30 percent more CPU cycles available to the 
sort. After the sort, POKE the saved value back into 559 and the screen 
display will turn back on. 

All sort parameters are passed to the sort in the BASIC USR call in the 
following sequence: 1. Address of the string containing the file; 2. Length of 
the records; 3. Number of records to be sorted. The next parameters specify 

235 



ASSEMBLY LANGUAGE 
the fields to be sorted by: 4.1. Position of the first byte of the field; 
4.2. Length of the field; 4.3. '0' for ascending sequence, or '1' for descending 
sequence. Sort fi elds are specified in Major to Minor order. That is, if you 
want to sort on state, and zip code within state, then state is the Major order 
and should be the first set of sort field parameters. The only limitation on the 
number of sort fields is the number of parameters that fit in the BASIC state­
ment calling the sort. 

The program in Listing 2 loads the machine language code for the sort in 
Lines 1 to 9. The rest of the program demonstrates one of many techniques 
that can be used to read an unsequenced file, sort and rewrite a sequenced 
file. Type and run the program and at the prompt, enter the first and last 
names of about nine friends. The first names will be sorted ascending, the 
last names will be sorted descending and then displayed on the screen. 

by Adrian Dery 

9 REM ******** SORT UTILITY DEMONSTRAT 
ION ******** 
1 DATA 216,194,56,233,3,133,217,194,13 
3,294,194,133,293,194,133,215,194 ,133, 
214,194,133,219,194,133,299,162,9 
2 DATA 194,194,157,0,1,232,228,217,298 
,246,56,165,299,233,2,133,209,165,210, 
233 , 0 , 1 3 3 , 2 1 0 , 48 , 19 8 , 1 65 , 2 09 , 1 33 , 2 1 1 
3 DATA 165,210,133,212,165,204,133,296 
,133,298,165,293,133,205,24,101,214 ,13 
3 , 28 7 , 1 6 5 , 208 , 19 1 , 2 1 5 , 1 33 , 208 , 1 6 0 
4 DATA 9,185,9,1,190,2,1,134,218,190 ,1 
, 1 , 2 gg , 2 8IJ , 2 8IJ , 1 3 2 , 2 1 6 , 1 68 , 1 36 , 1 77 , 2 0 5 
, 209 , 207 , 248 , 1 2 , 1 65 , 2 1 8 , 2 88 , 4 , 1 44 
5 DATA 16,176,46,144;44,176,10,200,202 
, 28 8 , 234 , 1 64 , 2 1 6 , 1 96 , 2 1 7 , 2 98 , 2 1 0 , 1 9 8 , 2 
11,169,255,197,211,208,6,166 ,212,240 
6 DATA 11,198,212,165,208 ,133,206,165, 
20 7 , 24 , 1 44 , 1 72 , 1 6 5 , 2 1 3 , 248 , 4 , 1 34 , 2 1 3 , 2 
08,148,96,134,213,160,9,177,205,179 
7 DATA 177,297,145,205,138,145,207,200 
,196,214,208,241,240,203 
8 DIM SORT$(182) :FOR 1= 1 TO 182 
9 READ A:SORT$(I,I) =CHR$ (A) :NEXT I 

236 



BUBBLE SORT 

199 REM ------------------ - --------- -
195 REM INPUT A FILE TO BE SORTED 
119 DIM FILE$(279),NAME$(15) 
115 FILE$ =" ·":FILE$(279) =FILE$ 
129 FILE$(2) =FILE$ 
125 GRAPHICS 9 
139 ? "ENTER THE NAMES OF 9 FRIENDS" 
135 FOR 1=9 TO B:LE =I-39 +1 
149 ? 1+1;" FIRST NAME";: INPUT NAME$ 
145 FILE$(LE,LE +14) =NAME$ 
159 ? 1+1;" LAST NAME";: INPUT NAME$ 
155 FILE$(LE +15,LE +29) =NAME$ 
169 NEXT I 
299 REM -----------------------------
295 REM PRINT UNSORTED FILE 
219 GRAPHICS 9:? "UNSORTED NAME LIST" 
215 FOR 1=9 TO 8:LE =I-39 +1 
229 ? FILE$(LE,LE +29) 
225 NEXT I 
399 REM -----------------------------
395 REM SORT AND PRINT THE FILE 
319 ANTIC =PEEK(559) :POKE 559,9 
315 X=USR(ADR(SORT$) ,ADR(FILE$) ,39,9,1 
6,15.1,1,15,9) 
329 POKE 559,ANTIC 
325? :? "SORTED NAME LIST" 
339 FOR 1=9 TO 8:LE =I-39 +1 
335? FILE$(LE,LE +29) 
349 NEXT I 
345 END 

TYPO TABLE 

Variable checksum = 179377 
Line num range Code 
9 - 5 OH 
6 - 1 35 GC 
1 49 - 399 UQ 
395 - 345 Ie 

L englh 
596 
463 
33 1 
269 

237 



ASSEMBLY LANGUAGE 

9199 ;UTILITY SORT - CALLED FROM BASIC 
91 95 . 
9119 ;ENTRY PARAMETERS: 
911 5 
9129 
91 25 
9139 
9135 
T IN 
914 9 

1. FILE ADDRESS 
2. RECORD LENGTH <=256 BYTES 
3. NUMBER OF RECORDS TO SORT 
4. ANY NUMBER OF FIELDS TO SOR 

9145 
9159 
9155 
ING 
9169 
9165 
9179 FILE 
DDRESS 
9175 PNTRl 
TWO 
9189 PNTR2 
ORDS. 
9185 RECNBR 
CORDS 
9199 SCOUNT 
ER 
9195 BUBLE 
NCE 
9299 RECSIZ 
RD 
9295 FlDNDX 
OUNTER 
9219 FlDCNT 
RT FIELDS 
9215 SORTAD 
SCENDING 
9229 STACK 
ELDS HERE 
9225 

MAJOR TO MINOR ORDER 
4.1 FIELD POSITION 
4.2 FIELD LENGTH 
4.3 9=ASCENDING l =DESCEND 

ORG $9699 
293 

295 

297 

299 

2 1 1 

21 3 

214 

216 

21 7 

21 8 

256 

; FILE START A 

;POINTERS TO 

;ADJACENT REC 

;NUMBER OF RE 

;RECORD COUNT 

;OUT OF SEQUE 

;SIZE OF RECO 

;SORT FIELD C 

;NUMBER OF SO 

;ASCENDING/OE 

;SAVE SORT FI 

9239 :DETERMINE HOW MANY FIELDS TO SOR 
T 
9235 
6249 

238 

CLO 
PLA ;ALL BUT TH 



E FIRST 
9245 
METERS 
9259 

TO 
9255 
9269 
9265 : PICK 
9279 
9275 
9289 
9285 
9299 
GTH 
9295 
9399 
9395 
93 19 
RECORDS 
931 5 
9329 
9325 

BUBBLE SORT 

SEC :THREE PARA 

SBC #3 ;ARE FIELDS 

STA FLDCNT :SORT 

UP SORT PARAMETERS 
PLA :FILE START 
STA FILE +l :ADDRESS 
PLA 
STA FILE 
PLA 

STA RECSll +l 
PLA 
STA RECSll 
PLA 

STA RECNBR +l 
PLA 
STA RECNBR 

:RECORD LEN 

; 

:NUMBER OF 

9339 
9335 
9349 
9345 
9359 

: PICK UP FIELDS 
LOX #9 

PICKFIELDS 

TO SORT 

E SORT 
9355 
METERS FOR 
9369 
LENGTH 
9365 
ION. 
9379 
9375 
M 

PLA 

PLA 

STA STACK,X 

INX 

:GET ALL TH 

; FIELD PARA 

;POSITION, 

:AND DIRECT 

CPX FLDCNT :ANY MORE 
BN E PICKFIELDS :GO GET THE 

9389 
9385 
9399 
9395 

:SET UP NUMBER OF RECORDS TO SORT 

LEAST 
9499 

SEC 
LOA RECNBR 

SBC #2 

:MUST BE AT 

:TWO RECORD 

239 



ASSEMBLY LANGUAGE 

S TO 
8485 STA RECNBR ;SoRT 
8418 LOA RECNBR+1 
8415 SBC #8 
8428 STA RECNBR +1 ; 

8425 BMI ENDSoRT ;ELSE GET 0 
UT 
8438 ; 
8435 ; MAIN LI N E SORT LOOP 
844B ; 
8445 SORT LOA RECNBR ;RESET NUMB 
ER OF 
845 8 STA SCoUNT ;RECoRDS TO 

SORT 
8455 LOA RECNBR+1 
846 8 STA SCOUNT +1 ; 

8465 LOA FILE +1 ; SET UP POI 
NTE RS 
8478 STA PNTR1 +1 ;FOR THE F I 
RST 
8475 STA PNTR2+1 ;AND 
8488 LOA FILE ;SECOND REC 
oRDS. 
8485 BUMPRECoRD 
849 8 STA PNTR1 ;PUT PNTR2 
8495 CLC ;AHEAD 
85B8 ADC RECSll ;oF 
8585 STA PNTR2 ;PNTR1 
8518 LOA PNTR2 +1 ;BY 
851 5 ADC RECSll +1 ;ONE 
8528 STA PNTR2 +1 ;RECORD. 
8525 ; 

8538 ;SEQUENCE CHECK RECORDS 
8535 
854B LOY #8 ;RESET STA C 
K INDEX 
8545 NEXTFIELD 
8558 LOA STACK.Y ; FIELD PoSI 
TI ON. 
8555 LOX STACK +2.Y ;SoRT DIREC 
TI ON 
8568 STX SORTAD ;SAVE IT . 
8565 LOX · STACK+1.Y ; FIELD LENG 

240 



BUBBLE SORT 

TH. 
9579 INY ;BUMP 
9575 INY ;STACK 
9589 INY ;INDEX 
9585 STY FLDNDX ;AND SAVE I 
T. 
9599 TAY ; FIELD PO S I 
TION TO Y 
9595 DEY ;MAKE R E L AT 
IVE TO ZE R 0 
9699 SEQCHECK 
9695 LOA (PNTR1),Y ;COMPARE AD 
JACENT 
9619 CMP (PNTR2),Y ;RECORDS 
961 5 BEQ SEQNDX ; = ~EEP ON 
LOOKING 
9629 LOA SORTAD ;GET SORT 0 
IRECTION 
9625 BNE DSNDG ;GO TO DESC 
ENDING 
9639 ; 

9635 ; SORT IN ASCENDING SEQUENCE 
9649 ; 

9645 BCC BUMPINDEX ;< BUMP NEX 
T RECORD 
9659 BCS SWAP ;> SWAP POS 
ITIONS 
9655 ; 

9669 ; SORT IN DESCENDING SEQUENCE 
9665 : 
9679 DSNDG BCC SWAP ;< SWAP POS 
ITIONS 
9675 BCS BUMPINDEX ;> BUMP NEX 
T RECORD 
9689 : 
9685 SEQNDX INY :CHECK THE 
LENGTH OF 
9699 DEX :THE SORT F 
I E L D AND 
9695 BNE SEQCHECK ;KEEP SEQUE 
NCE CHECKING. 
9799 LOY HONOX :ANY MORE F 
I El 0 S 

241 



ASSEMBLY LANGUAGE 

8785 
8718 

IT 
871 5 . 

Cpy FLDCNT 
BNE NEXTFIELD 

;TO SORT 
;YES, GO TO 

0720 ;INDEX THROUGH THE SORT FILE 
0725 
0730 BUMPINDEX 
0735 DEC SCOUNT 

RECORDS 
0740 
FOR 
0745 
E. 

LOA #255 

CMP SCDUNT 

0750 BNE NOTEOF 
SCOUNT +l 
CKSWAP 
SCOUNT +l 
PNTR2 +1 

0755 LOX 
0760 BEQ 
0765 DEC 
0770 NOTEOF LOA 

AND 
0775 
HE 
0780 
OS. 
0785 
0790 
0795 ; 

STA PNTR1 +l 

LOA PNTR2 

CLC 
BCC BUMPRECORO 

;COUNT DOWN 

;AND CHECK 

; END OF FIL 

. 
;BUMP PNTR2 

; PNTRl TO T 

;NEXT RECOR 

0800 ;AT END OF FILE SEE IF A SWAP WAS 
MADE 

9805 ; 
0810 CKSWAP LOA BUBLE 
RDS SWAPPED 
0815 
o OF SORT, 
0820 
NCE CHECK 
0825 
GAIN. 
0830 ENDSORT 

BEQ ENDSORT 

STX BUBLE 

BNE SORT 

0835 RTS 
SIC 
0840 

; IF NO RECO 

;THEN IS EN 

;ELSE SEQUE 

; THE FILE A 

; BACK TO BA 

9845 ;SWAP RECORDS IF OUT OF SEQUENCE 
8850 

242 



BUBBLE SORT 

9855 SWAP STX BUBLE ;STIlL OUT 
OF SEQUENCE 
9869 LOY #9 
9865 SWAPLOP 
9879 LOA (PNTR1) ,Y ;THIS ROUT! 
NE 
9875 TAX ;EXCHANGES 
THE 
9889 LOA (PNTR2),Y ; POSITIONS 
OF TWO 
9885 STA (PNTR1),Y ;OUT OF SEQ 
UENCE 
9899 TXA ;ADJACENT R 
ECORDS 
9895 STA (PNTR2),Y 
9999 INY 
9995 CPY RECSIZ ;KEEP LOOPI 
NG FOR 
9919 BNE SWAPLOP ;THE LENGTH 

OF RECORD. 
9915 BEQ BUMPINDEX ;GO GET NEX 
T RECORD 
9929 .END 

243 



JPall(Q)it )f(Q)M7f AWl11i 
6 ~( 

L ____ 



\ 
\ 

( 

Pilot Your Atari 

PILOT is not just another computer language designed to meet some of 
the needs of new programmers, educators, and children. PILOT grew 
o ut of work by John Starkweather at the University of California at 

San Francisco back in 1972. H e wanted a language that would make it easy to 
write tutorial programs for students, programs capable of recognizing 
responses other than the typical "I, 2, 3" choices prevalent in many current 
teaching programs. With PILOT, it is as easy to ask, "Who was the first presi­
dent of the United States?" and record and score answers such as "President 
Washington," "I believe it was G. Washington ," "George Washington," 
"GEORGE WASHINGTON," "Washington." PILOT needs only three 
statements to accomplish this type of user interaction. 

Dean Brown at Stanford Research Institute proved that teachers could 
understand PILOT, and students loved it . Since PILOT is word-oriented, as 
contrasted to BASIC's number orientation, it naturally fits the "riddle" and 
"tell-a-story" type of program which youngsters like. At the same time, 
Seymour Papert at MIT developed a new way to conceptualize and teach 
geometry and shapes. This development was called "turtle graphics" and 
proved ideal for use on home computers. Atari wisely included a turtle 
graphics command language with the PILOT module. 

The old "Cartesian coordinate" system required commands like this: 
Start at position X = 20 and Y = 10. Draw a line to X =40 and Y = 10; draw 
a line to X =40 and Y = 30; draw a line to X = 20 and Y =30; finally, draw a 
line to X = 20 and Y = 10. 

Can you guess what figure this is? How big is it? Using turtle graphics the same 
picture can be drawn like this: 

Ken Hanns is a resident of the San Francisco Bay Area, and is Vice President of Administration for 
the California division of the American Cancer Society. He is especially interested in PILOT and Logo, 
and in computing as a tool to enhance the education of his two daughters. He is one of the earliest and most 
dedicated of Atari PILOT programmers whose articles in ANTIC regularly expand the usefulness of that 
language. 

245 



PILOT YOUR ATARI 
Do this 4 times: draw a line 20 spaces long, turn Right 90 degrees. 

The box shape is more apparent and the commands are more readily 
understood. A small collection of 14 and 15 commands represent the core of 
PILOT. All are only one or two characters long and easi ly remembered-a "J" 
is the "jump to" command. Anyone who is not a good typist will appreciate 
the wisdom of short commands. Short, easy to remember commands and tur­
tle graphics combined with Atari's wonderful screen editor will make almost 
anyone's introduction to computing more pleasurable and rewarding. Finally, 
PILOT programs become n aturally organized around modules. This en­
courages a well-structured programming style. 

PILOT is available in two packages; one is just the language cartridge and 
users' guide (about $90), the other is a well-documented, comprehensive 
package that I recommend (about $130). This package includes: 

PILOT CARTRIDGE-Gove those cartridges; little fingers can't destroy 
them). 

STUDENT PILOT -a cleverly illustrated learner's manual for the new 
programmer. 

PILOT PRIMER-an instruction manual for the experienced program-
mer. 

DEMONSTRATION TAPES-two cassettes showing language, color, 
graphics, and sound. 

POCKET CHART -presents all commands in an easy-to-use format. 

I like Atari's version of PILOT. There are still a few rough spots: not all 
syntax errors are caught, the manuals do not include indices, several com­
mands are not explained in the manual, and a few typographical errors re­
main to confuse you. In spite of these few "start-up" problems, Atari PILOT 
meets its "primary design goals": it is "consistent and easy to learn ... it allows 
reasonable access to the Atari system capabilities, but not at the user's 
expense." 

We intend to help you get the most from PILOT. Watch for programming 
tips, warnings, and more help . by Ken Harms 

246 



\ 
\ 

LARGE TEXT 

Large Text 

T his series of articles will show you how to do what Atari left out of the 
PILOT manuals-fancy tricks such as large letters and ch anging col­
ors, useful features like breaking strings into words, and using the 

mysterious commands in the demonstration programs. 

When you run your PILO T program, three sets of instructions work 
together to give you the result you need. The Operating System in the 
400 /800 provides the instruct ions for reading the keyboard, and for writing 
characters to the TV screen and I/O devices, such as disk drives and printers. 
Additionall y, the PILOT cartridge contai ns the translation system which ac­
tually interprets your PILOT program for the Atari hardware. These two 
systems working together allow the ATARI to perform the instructions you 
provide with the third type of instructions, the PILOT application program. 

PILOT programs operate on data stored in the computer's memory or 
RAM (random access memory). PILOT stores each variable, constant, or in­
struction as a value in a unique location or address. These are like P.O. boxes. 
You can put messages into them and read data from them . Some addresses are 
used by the Operating System to hold information such as the color used on 
the screen and what size text characters to print, large or small. PILOT lets 
you change the contents of these addresses to give greater graphics control. 

The Operating System supports fourteen different ways to display data on 
the screen. Those of you familiar with BASIC know eight of these modes. 
PILOT normally uses only two modes, Graphics 0, and Graphics 7; the first is 
a text mode, the second is a graph ics mode. But you ca n turn on at least two of 
the extra modes to display large letters as eyecatch ing program titles. 

To enable large text, we need to change va lues in two special addresses, 
1373 and 1374, by using a special form of the Compute command: 

C:@B1373=16 
C:@B1374=1 
This command might read as: "Compute the 'byte ' at address 1373 equals 

16". "Byte," in this context, means a va lue in memory. The first command puts 
a 16 in address 1373 to tell the ATARI that you want a graphic screen with 

247 



PILOT YOUR ATARI 
regular letters at the bottom. The value 1 at address 13 74 tells the ATARI th at 
you want it to print medium-large letters. These Mode 1 letters are so large 

that only 20 fit on a line. Listing 1, lines 20 and 30, demonstrates these com­
mands. 

The next command you'll need is WRITE. It tells the ATARI to write data 
to a specific "device." These devices are identified by letters such as "0" for 
disk, "P" for printer, "C" for cassette and "S" for screen. Line 40 tells the 
ATARI to write anything you want. So, with those three simple commands, 
you have a dramatic opening for a program. 

Change the contents oflocation 1374 to determine the size and number of 
characters per line. 

1374 =0 regular letters , 40 per line 
1374 = 1 20 rows of medium letters, 

20 characters per line 

1374 =2 10 rows of large letters 
20 characters per line 

The *TEST 2 module demo nstrates Mode 2 large letters. In both modes, 
try using upper, lower and inverse characters. You'll find that each prints in a 
different color for interesting effects. 

Address 1373 is the "sub-mode" address. 
1373 =0 a full screen (no "text window") 
1373 = 16 split screen (text "text window") 
1373Z=32 full screen open s without erasing prior data 
Listing 2 uses the 32 sub-mode to erase the text window. If you're in sub­

mode 0 or 32, any text (even the READY at the end of a program) clears the 
screen; use a PA: command to keep the screen up. To change any mode or sub­
mode, you must CLOSE:S between modes and issue both 1373 and 1374 com­
mands in the next mode . After enter ing a new mode, always issue a WRITE 
command before a type command (T:) . 

Next time, we'll look at ch anging colors and breaking strings into letters 
or words. 

by Ken W. Harms 

18 *TEST1 [MEDIUM LETTERS MODE 
28 C:@81373-16 [SPLIT SCREEN 
38 C:@81374 - 1 [SET MODE 1 
48 WRITE:S. MODE 1 LETTERS 
58 PA:248 [PAUSE TO WATCH SCREEN 

248 



LARGE TEXT 

60 CLOSE:S [REQUIRED TO CHANGE MODES 
70 J: *TEST2 
80 *TEST2 [LARGE LETTERS MODE 2 
90 C:@B1373 - 16 [SPLIT SCREEN 
100 C:@B1374 - 2 [SET MODE 2 
110 WRITE:S. THIS IS MODE 2 
1 2 0 T: "D" Y P E D TE X TAP PEA R S BEL 0 W S C R E 
EN 
130 PA:240 
140 CLOSE:S 
150 J: *TESTO 
160 *TESTO 
170 C:@B1373 - 0 
180 C:@B1374 - 0 
190 WRITE:S . THIS IS WRITE IN MODE 0 
200 PA:100 

249 



PILOT YOUR ATARI 

~\ 
Colors For Your Pilot 

T his time I will show you how to use all 128 colors of the ATARI and 
how you can rapidly change these colors in your displays. To display 
data on the TV screen, PILOT first gets data (character or graphics in­

formation) from your program and then looks at special memory locations to 
determine the color to use. You can use a maximum of four colors at one time 
on your screen. Each color is selected by the PEN: (color) instruction. This 
instruction calls these locations by the names "Red," "Blue," "Yellow," and 
"Erase." Once PILOT knows what name (location) a line belongs to, it uses the 
color value found there for all lines drawn by that PEN:(color) instruction. 

When PILOT looks at th e "Blue" location it wi ll find a color value there. 
This value will cause the ATARI to draw b lue lines when you first turn it on. 
Fortunately, you can put any color value into these locations. So, even though 
PILOT calls these locat ions by color names (for convenience) any color may 
be found there. You can change these colors using a special form of the C:om­
pute command. Turn your machine on and type this in direct mode: 

C:@B71O=86 
C:@B712 =5*16 +6 
The first instruction might be spoken "Compute byte 710 equals 86." In 

this case , the 710 is the special address PILOT calls its "Blue" location. The 86 
is a color value for a red color. In effect we put "red paint into a can labeled 
blue." 

In the second instruction, the 712 is PILOT's "Erase" register. The "5" is a 
hue (color) number and the "6" is a luminance number (more on them later). 

In the graphics mode, PILOT uses four locations, or registers. Their 
names, addresses and uses are listed in Table l. 

You change the color of any register (paint can) by placing a different color 
value in any of the addresses. Color values are made up of two numbers, a 
"hue number" and a "luminance" or br ightness number. Table 2 gives these 
va lues and what they usually look like on my TV. 

250 



COLORS FOR YOUR PILOT 

Name Register 
Red 0 
Yellow I 
Blue 2 
None 3 
Erase 4 

Hue 
o = gray 

I = green brown 

2 =yellow/o range 

3 =orange 

4 =red / orange 

5 =pink 

6=bluish purple 

7 =purple 

8 =blue 

9=bri ght blue 

10 =tu rquo ise 

II =greenish blue 

12 = green 

Value 
70 
26 

148 
148 

0 

13 = yellowish green 

14 =orangish green 

15=light orange 

TABLE 1 

Used for Address 
Graphics 708 
G raphics 709 

Tex t Window & Graphics 710 
Not Used 711 

Background & Border 712 

TABLE 2 

Luminance 
O-Iowest possible luminance (black) 

2-
4-
6-
8-

10-

12-

14-maximum luminance (white) 

The colo r value needed in each register is calcul ated as follows: 

Hue num ber*16 +luminan ce number. 

A color value for the red we used above is 86 o r "16*5 + 6." Changing a 
register can be done at any time in your program. 

The li sting draws two horses in different color registers and then ch anges 
the colors rap idl y to illustrate the power of this technique. 

Let me leave you with an exper iment: Use Mode 1 o r Mode 2 letters (see 
previous article) and determine which color registers are used for upper-case 
and lower-case letters. 

251 



PILOT YOUR ATARI 

You may be interested in a new learning club for PILOT / 
Logo users. It has a good newsletter, simple programs and an educational 
orientation . It is free to people under 18. Write to : 

Young People's Logo Association 
1208 Hillsdale Drive 
Richardson, Texas 75081 

10 R:HOUSES 
20 R:----- -- Draws houses and shifts 
30 R:-- - ---- all four color registers 
40 R:------- ANTIC Issue 3 
50 *COLOR 
60 GR:CLEAR 
70 GR:GOTO -20.10 
80 U:*HOUSE 
90 GR:GOTO 20 . 10 
100 U:*HOUSE 
110 U:*REGISTERO 
120 PA:240 
130 U: *REGISTERl 
140 PA:240 
150 U:*REGISTER2 
160 PA:240 
170 U' *REGISTER4 
1 80 E 
190 * OUSE 
200 G : PEN YELLOW 
210 G :TURNTOO 
220 G : TURN135;DRAW 14 

by Ken Harms 

230 G :TURN 45 ; PEN 8LUE;DRAW 15 [REG 2 
249 G :TURN 90:DRAW 5 
259 G :TURN 90:FILL 8 
260 G :TURN - 90;DRAW 10 
270 G :TURN -90;PEN RED;FILL 8 [REG 0 
280 G :TURN 90;PEN BLUE;DRAW 5 
290 G :TURN 90;FILL 14 
300 G :TURN 45;PEN YELLOW;FILL 14 [REG 

1 

252 



COLORS FOR YOUR PILOT 

3 1 8 E: 
328 -REGISTER8 
33 C:#A-192 [HUE 12 LUM 8 
34 *INCREMENT8 
35 C:@B7B8-#A 
36 T:788 - #A 
37 PA:38 
38 C:#A-#A+2 
39 J(#A<282) :-INCREMENT8 
4B E: 
41 -REGISTER1 
42 C:#A-224 [HUE 14 LUM 8 
43 *INCREMENT1 
44 C:@B789-#A 
45 T:789 - #A 
46 PA:3B 
47 C:#A-#A+2 
48 J(#A<228) :-INCREMENT1 
49 E: 
58 -REGISTER2 
51 C:#A-88 (HUE 5 LUM 8 
52 *INCREMENT2 
53 C:@B718-#A 
54 T:718 - #A 
55 PA:38 
56 C:#A-#A+2 
57 J(#A<88) :-INCREMENT2 
588 E: 
598 *REGISTER4 
688 C:#A-144 [HUE 9 LUM 8 
618 *INCREMENT4 
628 C:@B712-#A 
638 T:712 - #A 
648 PA:38 
658 C:#A-#A+2 
668 J(#A<152):*INCREMENT4 
678 E: 

253 



PILOT YOUR ATARI 

The Musical Pilot 

T his article will open the door to string parsing, a powerful way to 
analyze PILOT strings. Along the way, we 'll read and write on the 
disk (or cassette), do some Boolean algebra, ch ange data types and 

reveal a beautiful PILOT bug. And, oh yes , we'll play four-voice music. 
As always, we'll be way "beyond the book." Since it will be getting pretty 

deep, I'll give page references to Atari's PILOT Primer. 
A string is a combination of letters, numbers, symbols, words, etc., 

"strung together." In PILOT, a "string variable" is made by giving it a name 
(always beginning with "$") in an A:ccept or C:ompute instruction (pp. 
69-76). The book tells how to concatenate ("grow") strings. We'll discuss how 
to parse ("cut") strings so you can analyze each part of a string. This could be 
useful for analyzing sentences , riddles, or in this case, for stor ing data for a 
program's use (pILOT lacks a "Data" statement). 

String parsing relies o n the Match String command which produces 
three pre-named variables, $Left, $Match, and $Right (pp. 41-44, 81-82). 
Parsing programs work as follows (refer to the Pilot Player li st ing): 

1. Place the string into the "accept buffer" Gine 1270). 
2. Match on the "separator." In this case, I used the blank as a separator. 
In line 1280, we skip over the initial blank, which the A:ccept instruction 
inserts in each string, and M:atch on the second blank. (Note the right 
arrow in the instruction which doesn 't print in front of the "_ "). 
3. Check for the end of string (the IN: in line 1290). 
4. Store the remainder of the string (found in $Right) in a safe place 
(line 1300). 
5. Use $LEIT as the parsed word, letter, etc. Gines 1310-1370). 
6. Jump back to step 1. 

Although this may seem complicated, it's conceptually as easy as BASIC. 
To playa C,D,E,F chord for a sixteenth , the Pilot Composer produces a 

string looking like this: " 1 3 56 16 ! "The first four values are the usual notes 
(pp. 106-107) for each of the ATARI's four voices. The "16" is the inverse 
duration of the note (1 / 16 of a note). The "!" is a "terminator" to tell us that 
we're out of notes. Our problem: parse it and play it . The *Loop2 routine 

254 



THE MUSICAL PILOT 
(lines 1250- 1390) cuts the string and sets up variables for each voi ce and for 
the PAUSE command . After each Match String, the vari ables look this way 
(the underlines represent bl anks): 

$PLA YVALUES 
PASS BEFORE M ATCH $LEFT $M ATCH 

o 
1 
2 
3 
4 
5 
6 

_1 _3_5_ 6_16_ NULL 
_1_3_5_ 6_16 __ 1_ 
_ 3_ 5_6_1 6_ _ 3_ 
_ 5_6_1 6_ _5_ 
_ 6_16_ _6_ 
_1 6_ _16_ 

_ 16_ 

NULL 
$RIGHT 
NULL 

_3_5_ 6_ 16_ 
_5_6_1 6_ 
_6_16 
_ 16_ 

$LEFT 
USED FOR 

#A 
#B 
#C 
#0 
#L 

NO MATCH 

Simply put, each value marches to the left into the $LEFT bucket and 
then gets used . Notice th at the "no match" in pass six did not change any of 
the special string variables . 

The PILOT C omposer parses strings in a simil ar fashio n but on each let­
ter. In this case, the match parsing instruction (line 1200) skips two spaces 
(the leading bl ank and the first letter) and M :atches on the next character to 

put all remaining ch aracters in $MAT C H (the comma does that) . Once the 
string is split , a simple $LEFT inspection finds the ch aracter and then 
restores the balance of the string. The *TRANSLATE module (lines 
1400-1690) performs a simil ar M :atch to find good notes and durations in 
$GOODNOTES and $GOODDU RATION , and then to translate them in­
to note and duration va lues. The translation lookup in $NOTEABLE is "fail 
safe" - it fir st M: atches on the note followed by "I" and then M:atches on 
the subsequent " ." This forces the va lue (a 5, say ) into $LEFT. This was re­
quired, since at M: atch for 1 or 8 without the "." would h ave found the value 
of notes C and G . Of course , I could h ave designed the string in reverse order 
- that's an improvement for you to m ake. 

Let's digress to the music before going on \-v ith the programming. The 
PILOT Music "System" now h as tWO sim ple programs. PILOT Composer ac­
cepts four-note chords composed of the eight basic notes (no sh arps or fl ats), 
fo llowed by a duration (a whole note, h alf note, etc. ). It checks these data , 
catches most errors, and rings a "bell " when it 's ready for another chord. It 
won't find short chords, so make sure you enter four notes and a duration, or 
change the *TRANSLATE module between lines 1670 and 1680. Chords 
are written to the di sk or cassette every 10 chords. This is required since the 
maximum length of an accept buffer is 254 characters. 

255 



PILOT YOUR ATARI 
The PILOT Player asks for a tempo (how fast to play) and a file of music. 

It then opens that file and plays the notes stored there. 
Back to the PILOT Composer program. Under PILOT (p.73), strings are 

concatenated by naming two strings in a C:ompute (or A:ccept) instruction 
(e.g.:C:$ONE =$ONE$TWO). If, however, one of the strings is "undefined," 
because it has never been used before, it has the value of a text literal rather 
than the value of a string. In the example, if $TWO had the value JOHN but 
$ONE was undefined, the new valueof$ONE would be $ONEJOHN -hard­
ly what we wanted! I avoid this by initializing strings used in this way (see lines 
130 and 140). 

PILOT input and output (I / O) is handled with READ:, WRITE: and 
CLOSE: instructions . Each instruction requires a "device name" (a "C:" for 
cassette or a "D:" for disk) and, for disk, a file name. These are separated from 
following data by a comma. The data can be text literals, numeric or string 
variables. In a single file, READ: must be separated from WRITE: by a 
CLOSE:. You can try this in immediate mode or in a program: 

DISK 
WRITE:D:TEST,ABCD 
CLOSE:D:TEST 
READ:D :TEST,$STRING 
T:$STRING 

CASSETTE 
WRITE:C,ABCD 
CLOSE:C: 
READ:C:,$STRING 
T:$STRING 

We'll have more on I/O in a future art icle to discuss a hidden glitch. For now, 
just do as line 430 does and put all device specifications in a single string. 

Keeping a clean screen in a program often requires erasing a line on the 
screen. It's not so simple in PILOT since the "blank line" string automatically 
defaults to one character. Lines 750 and 1230 show an easy way; just print a 
series of blanks followed by a non-printing character such as an arrow. Line 
750, for instance, prints the #A followed by a blank and a left arrow. When 
the line is printed, the right-most character is blanked out, and the left arrow 
holds the space, but doesn't show. You can type an arrow by keying [ESC] 
then holding down the [CTRL] key while typing the desired arrow key. 
Repeat all three strokes for each arrow. 

Although the Primer tells us that variables come in two flavors - strings 
(pp. 69-81) and numerics (pp. 85-92), we never find out how to change one 
into the other. It 's simple but tricky. String variables can be made from 
numeric variables by C:omputing or A:ccepting them: 

256 



C :$ONE= #A 
A:$ONE=#A 

THE MUSICAL PILOT 

Astringvariablecan be turned into a numericvariableONLYby A:cceptingit: 

A:#A=$ONE 

After this instruction, #A will h ave the numeric value from $ONE; non­
numeric data will be disregarded (see the Pl ayer program, lines 1310-1350). 

Line 1140 in th e Pl ayer program presents a powerful way to combine 
"relational operators" to make "conditional statements" (pp. 89-90). Linking 
conditions with" +" signs creates "logical ors ." For inst ance, line 1140 would 
be read, "if #T =256 OR if #T = 128 OR if #T = 64 then J:ump .. . . " In other 
words, if #T equaled anyone of the three numbers, the program would find a 
"true" and J:ump. Neat! But , you can 't do it the other way, with a IN: 
instruction to execute on a "false ," because the "N" looks at the 
M:atch register, not at the conditionals. 

You can get "logical ands" by multiplying the conditionals: 

T(#T = 100) * (#U =200) * (#V =50):ALL THREE 

This statement would be read: "if if = 100 AND if #U =200 AND if #V =50 
then T:ype ALL THREE." 

At last, the BUG. (A fri end says that micros are too small to have bugs. 
She claims that they have fleas !) Right there on page 31 the Primer tells us 
that the computer "ignores" remarks. Although that may be accurate in the 
linguistic sense, it's not so in the operat ive sense. In line 1150 in the Com­
poser program the remark set off by a "[" MUST be typed witho ut spaces . It 
seems that the [ turns any intervening spaces into significant space and, 
therefore, part of the accept buffer. Ditto for other commands. I don't know 
if it's a bug or a flea - I know it 's a bear to fi gure out! (Atari's internal 
manuals even h ave it wrong!) Be safe , don't use brackets when in doubt. 

by Ken Harms 

5 B R : PILOT COMPOSER 
6 B R: ANTIC, VOL. 1, NO.4 
7 B R : K. W. HARMS 
8 B R: 
1 DB R: I NIT 

257 



PILOT YOUR ATARI 

110 *INIT 
120 C:#A=O 
130 C:$NOTEVALUES-
140 C:$PLAYVALUES-
150 C:$END-I 
160 C:$GOODNOTES=C D E F GAB 0 
170 C:$GOODDURATION - l 2 4 8 S 0 
180 C:$NOTETABLE-C. 1/ D. 3/ E. 5/ F. 
6/ G. 8/ A. 10/ B. 121 O. 0/1. 11 2. 
2/4.4/8. 8/ S. 16/ 
300 R: FILE 
310 *FILE 
320 R: 
330 T: ENTER DEVICE TO SAVE MUSIC ON 
340 T:D=DISK, C-CASSETTE 
350 A:$D 
360 R:NEXT, CHECK TO SEE IF CASSETTE 
370 M: C 
380 CY:$FILESPEC=C: 
390 JY:*FILEDONE [IF CASS JUMP OUT 
400 M: D 
410 TY:ENTER FILE NAME 
420 AY:$FILE [GET FILE NAME 
430 CY:$FILESPEC-$D:$FILE 
440 TN: I DON' T K N O.W T HAT D E V ICE 
450 IN :* FILE 
460 *FILEDONE 
470 T:~ [ESC-CTRL-CLEAR .. CLEARS SCRE 
EN 

R: INSTRUCTIONS 
*INSTRUCTIONS 
R : 
T: 

500 
510 
520 
530 
540 
550 
560 
570 
580 
590 
600 
61 0 
629 
630 

T:NOTES ARE: C D E F G A B 

258 

T: AND 0 FOR OFF 
T: 
T:DURATIONS ARE: 
T: l-WHOLE 
T: 4-QUARTER 
T: S-SIXTEENTH 
T: 
T:ENTER & TO QUIT 
T: 

2=HALF 
8=EIGHTH 
O-NONE 



THE MUSICAL PILOT 

799 R: ENTER 
719 *ENTER 
729 R: 
739 C:#A - #A+1 
749 POS:l.12 
159 T:ENTER 4 NOTES + OURATION FOR CHO 
RO #A B[SPACE. ESC-CTRL - LEFT 
169 POS:17.15 
179 A: $NOTES 
189 M:& 
199 JY :* ENOER 
899 EY : 
819 U: *CHECKNOTES 
829 SO:29 [BEEP ON COMPLETION 
839 PA:7 
849 SO : 9 
859 WRITE(#A=19) :$FILESPEC.$PLAYVALUES 
869 C(#A =19):#A=9 
819 J :* ENTER 
999 R: ENDER 
919 * ENDER 
929 R: 
939 C: $PLAYVALUES-$PLAYVALUES! 
949 WRITE : $FILESPEC.$PLAYVALUES 
959 CLOSE : $FILESPEC 
969 T: 
979 T: SAVED IN FILE $FILESPEC 
989 T: 
999 T: SESSION ENDED 
1999 E: 
1199 R: CHECKNOTES 
1119 *CHECKNOTES 
1 1 29 R: 
1139 A: =$NOTES [MOVE $N . TO ACCEPT 
1149 MS:. [MATCH ON 1ST BLANK 
1159 A: - $RIGHTI/[AOO/ . MOVE TO ACCEPT 
1169 C: #C =9 [SETS NOTE COUNTER TO 9 
1179 C:$NOTEVALUES -
1189 C:#G - 9 
1199 * LOOP 
1299 MS :EB . [SKIPS 2 SPACES 
1219 CN(#G=9) :$PLAYVALUES=$PLAYVALUES$ 
NOTEVALUES 

259 



PILOT YOUR ATARI 

1229 POSN(#G-9) :2.22 
1239 TN(#G-9): 

[JJ (ESC-CTRL-UP 
1249 EN: 
1259 MS:$RIGHT(MATCH WID 1ST LETTER 
1269 C:$SAVE-$MATCH (SAVE ALL 
1279 A:-$LEFT ($L. HAS BLANK+LETTER 
1289 MS:6_ (SKIP BLANK & LETTER 
1299 R:$LEFT HAS THE LETTER WE NEED 
1399 C:$NOTE-$LEFT 
131 U:*TRANSLATE 
132 A:-$SAVE (PUT ALL IN BUFFER 
133 J:*LOOP 
149 R: TRANSLATE 
141 *TRANSLATE 
1 42 R : 
143 C:#C-#C+l 
144 E(#C-7): 
145 A(#C<5):-$GOO.DNDTES 
146 A(#C-5) :-$GOODDURATION 
147 M:$NOTE 
148 POSN:2.22 
149 TN:ERROR IN THIS VALUE: $NDTE 
159 R:SET G FLAG FOR BAD NOTE 
1510 CN:#G-l 
152 EN: 
153 A(#C-6):-$NOTE 
154 M(#C-6): J 

155 EY(#C-6): 
156 POSN(#C-6) :2 .22 
157 TN(#C-6) :TDO MANY VALUES:$NDTE 
158 CN(#C-6):#G-l 
159 EN(#C-6): 
169 POS(#C>6) :2.22 
161 T(#C>6):TOO MANY VALUES: $NOTE 
162 C(#C>6):#G-l 
163 E(#C>6): 
164 A:-$NOTETABLE 
165 MS:$NOTE. 
1669 A:-$RIGHT 
1679 MS:I 
1689 C:$NOTEVALUES-$NOTEVALUES$LEFT 
1699 E: 

260 



THE MUSICAL PILOT 

59 R: 
69 R: 
79 R: 
89 R: 
399 R: 
319 ·FILE 
329 R: 

PILOT PLAYER 
ANTIC. VOL, 1. NO.4 
K. W. HARMS 

FILE 

339 T:ENTER DEVICE TO PLAY MUSIC FROM 
349 T:D-DISK. C-CASSETTE 
359 A:$D 
369 R:NEXT. CHECK TO SEE IF CASSETTE 
379 M: C 
389 CY:$FILESPEC-C: 
399 JY:·FILEDONE (IF CASS JUMP OUT 
499 M: 0 
419 TY:ENTER FILE NAME 
429 AY:$FILE (GET FILE NAME 
439 CY:$FILESPEC-$D:$FILE 
449 TN:I DON' .T KNOW THAT DEVICE 
459 IN:·FILE 
469 ·FILEDONE 
479 T:~ (ESC-CTRL-CLEAR . . CLEARS SCRE 
EN 
1 9 9 9 
1 9 1 9 
1 929 
1 93D 
1949 
1 959 
1969 
1 97 B 
1 989 
1999 
1 1 9 9 
1 1 1 9 
1 1 2 9 
1 1 3 9 
1140 
1 1 5 9 
1 1 6 9 
1 1 7 9 
1 1 8 9 
1 1 9 9 

R : 
R: 
R: 
·TEMPO 

TEMPO & PLAY 

TEMP 0 

T:~ (ESC-CTRL-CLEAR CLEARS SCREEN 
POS:9.5 
T:PLEASE ENTER A TEMPO 
T: 
T: 
T: 
T: 
POS:17.11 
·RESTART 
A:#T 

256 - Adagio 
128 - Andante 

64 - Allegro 

J(#T - 256)+(#T - 128)+(#T - 64): ·READ 
T:PLEASE ENTER NUMBER AGAIN 
J: *RESTART 
R: READ 
*READ 
T: 

261 



PILOT YOUR ATARI 

1288 T: PLAYING FILE $FIlESPEC 
1218 READ:$FIlESPEC.$PlAYVAlUES 
1228 R:THIS DEMOS WORD PARSING 
1238 *lOOPl 
1248 C:#N-8 
1258 *lOOP2 
1268 C:#N - #N+l 
1278 A:-$PlAYVAlUES 
1288 MS :EL 
1298 IN:*READ 
1388 C:$PlAYVAlUES - $RIGHT 
1318 A(#N - l) :#A-$lEFT 
1328 A(#N-2):#8-$lEFT 
1338 A(#N - 3):#C-$lEFT 
1348 A(#N-4):#D-$lEFT 
1358 A(#N - 5):#l - $lEFT 
1368 A:-$lEFT 
1378 M: I 
1388 EY: 
1398 J(#N<5) :*lOOP2 
1488 SO:#A#8#C#D 
1418 PA:#T/#l 
1428 J: *lDDPl 

262 



HOLIDAY TREES 

Holiday Trees 

Add to your holiday pleasure by decking out these cybernetic trees 
usi ng this PILOT program. It comes complete with colored lights, a 
scrolling message, and "Jingle Bells" in one-part harmony. To do this 

we will use some innovative techniques that will expand your understanding 
of PILOT programming. 

Let's wander through the list ing. After the title lines, we find a }:ump 
command at line 50. As you'll see , we U:se * PARSE, *COLORS, and 
*LLOOP over and over as the program operates. Each time PILOT hits a 
U :se or J :ump command, it goes to the fir st instruction (in this case, line 1) 
and reads every line until it finds the required module name. Putting of ten­
used modules near the front of the listing makes the program run faster. 
PILOT is fast. Even putting the modules at the end of the 225 lines of this 
program did not noticeably slow down the song, but this programming con­
cept makes it run even faster. 

Now J :ump to * ORA WTREES Gines 1000-1540). This module uses a 
mirror-image concept to draw two trees for nearly the price of one. Notice 
that the first tree is drawn at X =-40, Y =32 Gines 1050-1070) and the second 
at X =40, Y =32 Gines 1080 and 1090). This means that the Y positions in 
both trees are the same whi le the X positions differ by only the sign. As a 
result, we can draw in the same locat ion in both trees by using positive and 
negative values of the same number for the X position. 

We use this concept to draw the stars and balls with a single position and 
*MIRRORSTAR and *MIRRORBALL modules Gines 2100- 2160 and 
2400-2460). The C:ompute instruction in line 2140 changes the sign of #X by 
multiplying it by -1. Simple and neat! 

Back to the *TREE module. PILOT graphics uses only four colors. 
Although it calls these RED, BLUE, YELLOW and ERASE, PILOT really 
looks at a memory location each time it draws in a PEN color to see what col­
or should be used . Normally, of course, it finds a number in BLUE which 
means blue. In line 1650, we force a different number into location 708 to tell 
PILOT that we want it to draw in green whenever it hits a BLUE command. 
Line 1760 sets the RED pen to brown. Location 709 controls YELLOW and 

263 



PILOT YOUR ATARI 

711 the ERASE commands. You might want to experiment to see how these 
"registers" work. 

After we finish drawing and decorating the trees, we end up at line 1530, 
which C:omputes a string into the $MESSAGE variable. I had to double­
space the message because the A:ccept command, used later in the *PARSE 
module, automatically inserts blanks at the start and end of each string. At 
present, there doesn't seem to be a good way around this restriction, but we 
end up with a nice message anyway. Although the printer doesn't show it, an 
Escape character is placed between each word to preserve word spacing. This 
is necessary because A:ccept also condenses all multiple spaces to single 
spaces . The Escape character will not print the message: you enter it by press­
ing the [ESC] key twice. 

You1l probably want to enter your own message. Just type [space] [ESC] 
[space] between each word and two [ESCl's at the end. Also, keep the 
message less than 255 letters long. 

When finished drawing the trees, we J:ump to *MAINLOOP Gines 
600-699). This module is the workhorse, it plays the song, calls for the 
message and color changes. It's rather long but really simple to type in. All 
the * LLOOP commands are on multiples of three - just type it once and use 
ATARI's wonderful screen editor to change the line number. Ditto for the 
SO:ound and PA:use commands. 

*MAINLINE does one other important thing. Since the program 
doesn't use any keystrokes, the ATARI would soon begin changing screen 
colors. The C:ompute in line 688 puts a 0 in location 77 to tell the computer 
that a key has been pressed even when none was. This delays the "attract" 
mode each time through the loop. 

The next module, *LLOOP, simply calls *PARSE and *COLORS. The 
*PARSE module breaks strings into individual characters ("parsing"). As 
you type it, remember the two right arrows in line 150 and 37 in line 180. 
The arrows tell the MS: command to skip a character for each arrow before 
looking for a M:atch. 

After skipping 37 ch aracters in line 180, the MS:$RIGHT in line 190 
forces the first 37 letters into the $LEIT string which we T:ype in line 210. 
That's the billboard section of the message. By repeatedly stripping off the 
first character and adding it to the end of the message , we make the words 
march across the text window at the bottom of the graphic screen. Oh yes, 
C:@B656?That's a memory location which tells PILOT to T:ype the message 

264 



HOLIDAY TREES 

on the second line of the text window. Without that, each message would 
T:ype on a different line and would scroll off the top. Oust for fun, the lines 
are numbered 0 through 3.) 

Although *PARSE is busy, *COLORS Qines 300-400) is a speedy devil 
too. By C:omputing different values for location 709, *COLORS changes 
the color in the YELLOW pen. This flashes red, blue, brown, and yellow in 
the stars and balls. 

To close, let me an"~wer two questions. How do I get PILOT to number 
the modules in different series? Simple. As I build a program, each module is 
stored in a different disk file. After all modules are debugged, each is LOAD· 
ed into memory and RENumbered in a number series which doesn't overlap 
with any other module. It's then SAVEd, memory NEWed and the next 
module loaded. After all are RENumbered, all are LOADed into a complete 
program and SAVEd in a different file. 

Last, how do I get those big letters in the R:emarks? Just enter a control 
N (a bar symbol) right after the colon . 

Best wishes for a happy holiday season watching your cybernetic trees! 
by Ken Harms 

1 R: IIlEIllO & 
19 R:~CHRISTMAS TREES 
29 R: 
as R: ANTIC. VOLUME 1. NO.5 
49 R: 
59 J:·ORAWTREES 
1 SO R: 
119 R:~ PARSE 
1 29 R: 
139 ·PARSE 
149 A:-$MESSAGE 
159 MS:EEi, 
169 MS:$RIGHT 
179 A:$MESSAGE-$MATCH$LEFT 
1 89M S : FFF·FEFEI-F·F·EEI- I-·EEI-·I- I-·F·EEEI- I- EEFEEFI 
FEEI-·F-FI • 
185 R: LINE 189 IS 37 RIGHT ARROWS AND 

COMMA 

265 



PILOT YOUR ATARI 

190 MS:$RIGHT 
200 C:@B656 - 1 
210 T:$lEFT 
220 E: 
300 R: 
310 R:r;] COLORS 
320 R: 
33 *COLORS 
34 C:#B-#B+1 
35 C(#B-l):@B709 - 146 
36 C(#B - 2):@B709 - 66 
37 C(#B-3):@B709 - 26 
38 C(#B-4):@B709 - 18 
39 C(#B-4):#B - O 
40 E: 
50 R: 
51 R:r;] LLOOP 
52 R: 
53 *LLOOP 
54 U:*COLORS 
55 U:*PARSE 
560 SO:O 
570 E: 
600 R: 
601 R:r;] MAINLOOP 
602 R: 
603 *MAINLOOP 
604 U:*PARSE 
605 R: 1ST PARSE TO GET TEXT 
606 R: NOTE NUMBER SEQUENCE 
607 SO:22 
608 n:16 
609 U:*LLOOP 
610 SQ:~2 
611 PA:16 
612 U:*LLOOP 
613 SO:22 
614 PA:32 
615 U:*LLOOP 
616 SO:22 
617 PA:16 
618 U:*LLOOP 
619 SO:22 

266 



629 PA :1 6 
621 U:*llOOP 
622 80:22 
623 PA : 32 
624 U:*llOOP 
625 80:22 
626 PA:16 
627 U:*llOOP 
628 80:25 
629 PA:16 
639 U: *llOOP 
631 80:18 
632 PA:24 
633 U:*llOOP 
634 80:29 
635 PA:8 
636 U:* llOOP 
637 80:22 
638 PA:48 
639 U:*llOOP 
649 80:9 
641 PA:16 
642 U:*llOOP 
643 80:23 
644 PA:16 
645 U:*llOOP 
646 80:23 
647 PA:16 
648 U:*llOOP 
649 80:23 
659 PA:24 
651 U:*llOOP 
652 80:23 
653 PA:8 
654 U:*llOOP 
655 80:23 
656 PA:16 
657 U: *llOOP 
65880:22 
659 PA:16 
669 U:*llOOP 
661 80:22 
662 PA : 16 

HOLIDAY TREES 

267 



PILOT YOUR ATARI 

663 U:*LLOOP 
664 SO:22 
665 PA:8 
666 U:*LLOOP 
667 SO:22 
668 PA:8 
669 U:*LLOOP 
678 SO:25 
671 PA:16 
672 U:*LLOOP 
673 SO:25 
674 PA:16 
675 U:*LLOOP 
676 SO:23 
677 PA:16 
678 U:*LLOOP 
679 SO:29 
689 PA: 16 
681 U:*LLOOP 
682 SO: 18 
6 3 PA:48 
6 4 U:*LLOOP 
65 SO:9 
66 SO:9 
6 7 PA:64 
6 8 C:@B77-9 
6 9 J:*MAINLOOP 
1 9 R : 
1 1 R:~ DRAWTREES 
1 2 R : 
1 3 *DRAWTREES 
1 4 GR:CLEAR 
1 5 C:#X--49 
1 6 C:#Y--28 
1 7 U:*TREE 
1 8 C : #X-49 
19 U:*TREE 
119 R: NOW PUT SOME STARS ON THEM 
111 C :#X--49 
112 C:#Y-32 
113 U:*STAR 
114 C:#X-49 
115 U:*STAR 

268 



HOLIDAY TREES 

1160 R: OK THAT DID THE TOPS. NOW FOR 
A FEW MORE 

1170 C:#X - -48 
1180 C:#Y - 16 
1199 U:*STAR 
1299 U:*MIRRORSTAR 
1210 C:#X - -32 
1220 U: *STAR 
1230 U:*MIRRORSTAR 
1249 C:#X - -56 
1250 C:#Y - O 
1260 U: *STAR 
1270 U:*MIRRORSTAR 
1280 C:#X - -24 
1299 U:*STAR 
1309 U:*MIRRORSTAR 
1319 C:#X - -65 
1320 C:#Y--20 
1330 U:*STAR 
1340 U:*MIRRORSTAR 
1350 C:#X--13 
1360 U:*STAR 
1370 U:*MIRRORSTAR 
1389 R: HOW BOUT A FEW BAllS? 
1390 C:#X - -43 
1490 C:#Y - 8 
1410 U:*BAll 
1420 U:*MIRRORBAll 
1430 C:#X - -59 
1449 C:#Y -- 19 
1450 U:*BAll 
1460 U:*MIRRORBAll 
1470 C:#X-- 33 
1480 C:#Y - -12 
1499 U: *BAll 
1500 U:* MIRRORBAll 
1510 R: TREES DRAWN. SET UP TYPING. CO 
LOUR AND MUSIC LOOP 
1520 R:SPACE BETWEEN EACH CHARACTER. H 
IT SPACE.ESC.ESC.SPACE BETWEEN EACH WO 
RD AND SPACE.ESC.ESC.SPACE.ESC.ESC AT 
E 
1530 C: $MESSAGE - H A V E ~ A ~ HAP P 

269 



PILOT YOUR ATARI 

Y ~ H 0 LID A Y ~ ~ 

1549 J: *MAINLOOP 
1600 R: 
1610 R:[;l TREE 
1620 R: 
1630 *TREE 
1640 R: NEXT LINE SETS "BLUE" PEN TO 
GREEN 
1650 C:@B710-(12*16)+6 
1660 GR:PEN BLUE 
1670 GR:GDTD #X+28.#Y+5 
1680 GR:TURNTO 0 
1690 GR:TURN -26 
1700 GR:DRAW 63 
1710 GR:TURN 232 
1720 GR:DRAW 2 
1730 GR:FILL 61 
1740 R: DRAW THE TRUNK 
1750 R: NEXT LINE SETS "RED" PEN TO BR 
OWN 
1760 C:@B708-(14*16)+(4) 
1770 GR:PEN RED 
1780 GR:GDTD #X+4.#Y 
1790 GR:TURNTO 0 
1800 GR:DRAW 4 
1810 GR:PEN ERASE 
1820 GR:GDTD #X-4.#Y-l 
1830 GR:PEN RED 
1849 GR:FILL 5 
1850 E: 
1900 R: 
1910 R:[;l STAR 
1920 R: 
1930 *STAR 
1940 GR:PEN YELLOW 
1950 GR:GOTO #X.#Y 
1960 GR:TURNTD 0 
1970 GR:DRAW 4 
1980 GR:TURN 180 
1990 GR:DRAW 2 
2000 GR:TURN 90 
2010 GR:DRAW 2 
2028 GR:TURN 180 

270 



HOLIDAY TREES 

2939 GR:DRAW 4 
2949 E: 
21 99 R: 
2119 R:~ MIRRORSTAR 
21 29 R: 
2139 *MIRRORSTAR 
2149 C:#X - (#X*-l)+l 
2159 U:*STAR 
21 69 E: 
2299 R: 
2219 R:~ BALL 
2229 R: 
2239 *BALL 
2249 GR:PEN YELLOW 
2259 GR:GOTO #X.#Y 
2269 GR:TURNTO 9 
2279 C:#A - 9 
2289 *STARTBALL 
2299 C:#A-#A+1 
2399 GR:4(DRAW #A;TURN99) 
2319 J(#A<3) :*STARTBALL 
2329 GR:TURNTO 279;PEN BLUE;DRAW 
2339 GR:1(TURN 99;PEN YELLOW;DRAW 2;PE 
N BLUE;DRAW 2) 
2349 GR:3(TURN 99;DRAW l;PEN YELLOW;DR 
AW 2;PEN BLUE;DRAW 2) 
2359 E: 
2490 R: 
2419 R:~ MIRRORBALL 
2429 R: 
2439 *MIRRORBALL 
2449 C:#X = (#X*-l)+l 
2459 U:*BALL 
2469 E: 

271 



• 

- - - ----1"-

• 



Turtle Graphics 

T his chapter first appeared in ANTIC as two articles implementing a 
turtle graphics system in Forth. 
Let me make two quick points about Forth: 

• Doing this project in any other computer language would have been so 
involved that I would never have done it, and so lengthy that this 
magazine would never have published it. 

• Doing it in Forth was so easy it took me considerably longer to write the 
English for this article than the Forth code! 

Those of you who have Pink Noise Studios' pns-Forth (l use version 1.4) 
can edit the screens accompanying these articles "as is" and start turtle-ing. If 
you have another implementation of Forth for the ATARI, some revisions are 
inevitable. I have used words like PLOT and DRAWTO that pns-Forth pro­
vides for making graphics calls to the ATARI's Operating System. Your 
system may already have similar words. Later, I'll discuss the functions of any 
non-fig-Forth words that I've used. 

Turtle Graphics Versus Coordinate Graphics 
"Turtle graphics" is a simple but powerful approach to creating graphic 

designs with a computer. It was originally developed in the 1960's at MIT -
primarily by computer scientist, child psychologist and educator, Seymour Papert 
- as part of the Logo system. 

Let me give you a very simple example of how it works. Suppose we want to 
draw a square on the screen, 10 units on a side. The sequence of commands 

10 DRAW 10 DRAW 
90 TURN 90 DRAW 
10 DRAW 10 DRAW 
90 TURN 90 TURN 

Gordon Smith is a graduate stHdent in physiology at Stanford University. He 
is interested in graphics and music, as well as Forth programming. 

273 



FORTH FACTORY 
or, in a shorter form, 

4 (10 DRAW 90 TURN) 
requests an imaginary "turtle" on the screen to crawl 10 units forward, draw a line 
as it goes, turn 90 degrees clockwise, and repeat four times. The turtle will leave 
behind a square. 

By typing 
DEFINE SQUARE AS 4 ( 10 MOVE 90 TURN) END 

we can add the new command SQUARE to our turtle's graphics repertoire. 
Then typing the single command 

SQUARE 
will have the same effect as o ur previous sequence of commands. For example, 
to draw a square tilted by thirty degrees, we need only to type 

30 TURN 
SQUARE. 

The conventional approach to graphics, in which one must specify fixed 
screen coordinates and the endpoints of each line, is much more complicated. 

The principle advantage of turtle graphics is that it describes shapes in an 
intrinsic way, without referring to where they are or how they're oriented. 
The numbers used in turtle graphics represent easily visualized things, like 
lengths of lines or angles. 

A further important aspect of a turtle graphics system is the nature of the 
programming it encourages : structured, modular, and hierarchical. The 
DEFINE ... AS ... END construct shown above is the key to this. Basic sub­
designs can be made into new turtle commands which are then as much a part 
of the turtle's language as the predefined system commands. These higher­
level commands can then be used to define still higher ones, and so on. 

For example, a simple picture of a house like that in Figure 1 could be 
drawn with a long sequence of DRAWs and TURNs (along with another com­
mand for the turtle to move without drawing). But the structure of the design 
cries out for the programmer to instead first enr ich the turtle's vocabulary by 
defining commands such as, perhaps, RECTANGLE, WINDOW, DOOR, 
FRONT and ROOF, before using these higher-level commands to define one 
called HOUSE. 

The Forth Advantage 
Forth is so ideally suited to turtle graphics that, in a sense , implementing it is a 

trivial exercise. 

274 



TURTLE GRAPHICS 
The most complicated aspect of turtle graphics is the problem of providing a 

programming environment in which turtle commands can be executed. Such a 
capability is already intrinsic to Forth , while it is qu ite foreign to conventional 
languages like BASIC. 

The point here is that the turtle's language can be just an extension of the 
Forth language - turtle commands are simply Forth words. There is no need to 
write an extensible command language processor. That's what a Forth system 
already is! 

What the Screens Contain 

The ten screens of Forth listed in this arti cle lay the necessary founda­
tions for us to build a turtle graphics system . The words here are not specifi­
cally turtle-oriented. Rather, they extend Forth's capabi lities in directions 
particularl y useful to the application. 

Screens 1, 2, and 3 add some trigonometric capability to Forth. If the 
turtle is to move 10 units forward at 30 degrees from the vertical, we need to 
compute how far up and how far over she goes . For this we use a lookup­
table approach. Scaling the va lues by 10,000 enables us to store them as 
single-precision integers . The words SIN* and COS* are the result of this. 

For example, 
1030 SIN* 

leaves 5, or 10 times the si ne of 30 degrees , on the stack; and this is how far 
over the turtle would move. 

Screen 4a makes avai lable a defin ing word, VALUE, for a new data type . 
An alternat ive to CONSTANT and VARIABLE, VALUE words tend to 
m ake Forth code more readabl e. They are best explained by the following 
example: 

VALUE A VALUE B VALUE C 
ok 
2 T O A 3 TO B 
ok 
A. B. 
23 ok 
A B + TO CC. 

5 ok 
VALUE words return their value when executed, except when they are 
preceded by TO , in which case they store the top of the stack into 

275 



FORTH FACTORY 

themselves. ([his idea h as been discussed in the "Forth Dimensions" 
newsletter of the Forth Interest Group.) 

In screen 4a the words TO and VALUE are defined in assembly 
language, rather than Forth, so that they will execute as fast as CON­
STANTs and VARIABLEs. If you don't have an assembler, use the alternate 
Forth code on screen 4b. 

Screens 5 through 8, culminating in the word CLIP, implement a line­
clipping algorithm . We want the turtle to be able to cross the edge of the 
screen, so that if we execute SQUARE when she is near the top we'll get 
something like Figure 2. But the Operating System will refuse to draw a line 
whose endpoints aren't both within the screen boundaries. Therefore, we 
must be able to calculate the endpoints of the portion of the line which lies 
on the screen. If we give CLIP the coordinates of two points, it first deter­
mines whether any part of the line between them lies within a "clipping rec­
tangle" whose extent we can specify by setting the values of LEFT, RIGHT, 
TOP, and BOTTOM. (Note that these words are in the vocabulary CLIP­
PING.) If so, it returns the coordinates of the endpoints of the portion within 
the clipping rectangle, and a true flag. If not, it returns only a false flag. 

For example, suppose we set the clipping rectangle to be the size of the 
Graphics Mode-7 screen with 

CLIPPING 
OTO LEFT 
159 TO RIGHT 
OTOTOP 
79 TO BOTTOM 
Then 
30 30 50 50 CLIP 

leaves 30 30 50 SOlon the stack because the line between (30,30) and (50,50) is 
completely within the clipping rectangle. But 

80 100 200 40 CLIP 
leaves 122 79159611 because only the portion between (122,79) and (159,61) 
of the specified line lies inside the clipping rectangle. And 

200 200 300 300 CLIP 
leaves 0 because no part of the line lies inside. The Cohen-Sutherland 
algorithm that CLIP uses is described in detail in Chapter 5, "Clipping and 
Windowing," of Newman and Sproull's Principles of Interactive Computer 
Graphics. 

276 



TURTLE GRAPHICS 

The last screen, number 9, defines the word GRAPHICS for opening the 
screen in the graphics mode specified by the top of the stack, and LINE, which 
takes the coordinates of two endpoints and draws the clipped part of it on the 
screen. 

If you want to see the clipping in action, before the rest of the code is 
given, try the following: Define the words BORDER, RANDOM_LINE, 
and RANDOM_ LINES as 

: BORDER 
CLIPPING 
1 COLOR 

LEIT BOTTOM PLOT 
LEIT TOP ORA WTO 

RIGHT TOP ORA WTO 
RIGHT BOTTOM ORA WTO 

LEFT BOTTOM DRAWTO 

: RANDOM_LINE 
4 0 DO CRANDOM LOOP LINE 

: RANDOM_LINES 
o DO RANDOM_LINE LOOP 

and then type 
CLIPPING 
20 TO LEIT 
140 TO RIGHT 
20 TO TOP 
60 TO BOTTOM 
7 GRAPHICS 
BORDER 
100 RANDOM_LINES 

The Inhabitants and Language of Turtleland 

F Our independent turtles live in Turtleland. Multiple turtles open up 
interesting possibilities, like having turtles chase each other. With four 
turtles, each can draw in a different color (there are only four colors 

possible at one time). If you want a different number, you can change the value 
of the constant #TURTLES on screen 2 before loading. One turtle at a time 

277 



FORTH FACTORY 

can be designated the "active turtle" with the SET ACTIVE command . She is 
the one who will respond when we type a command like " 10 DRAW." 

Each turtle carries a pen. The active turtle's pen can be lowered with the 
PENDOWN command, leaving a trail when she moves , or raised with the 
PENUP command. The more general SET PEN command can be used to do 
either. 

The SET INK command fill s the active turtle's pen with various colors of 
ink, depending on the graphics mode used. (Modes 3 through 8 can be selec­
ted with the SET MODE command .) In all modes, ink of type 0 is erasing 
ink . It is black, the same color as the background, except in Mode 8 when it 
is light blue. The command, ERASING, is the same as 0 SET INK. Both 
choose erasing ink. In Modes 3, 5, and 7, there is also ink of type 1 (gold), type 
2 Oight green), and type 3 (dark blue). In Modes 4, 6, and 8, types 2 and 3 are 
not available. The number of ink types is determined by the color video 
capabilities of the CTIA or GTIA chip . The colors are established by the 
Operating System when it opens the screen. You can use pns-Forth SET­
COLOR word to change them. 

Each turtle has a position and a heading. The heading is the number of 
degrees clockwise from the vertical th at she is facing. The active turtl e's head­
ing can be ch anged directly to any value with SET HEADING, also known 
as TURNTO, or it can be changed incrementally by the commands RIGHT 
(or TURN) and LEFT. 

The system keeps track of each turtle's position with X and Y coordi­
nates. These are not the same as the screen column and row numbers . The 
SET MODE command arranges these coordinates so that the turtle 's home 
at X =0 and Y =0 is the center of the screen, and so th at there are o ne hun­
dred X or Y units per pixel. This means that if a turtle is at X = 1000 and Y = 

500 she will appear ten pixels to the right and fi ve pixels up from the center. 
You can arrange the coordinates differently if you wish. 

The active turtle's coordinates can be individually or jointly set with the 
commands SET X, SET Y, or SET POSITION (also known as GOTO). 
They cause the turtle to leave a track only ifher pen is down . MOVETO can 
be used to temporarily raise the pen, or DRAWTO to lower it, before chang­
ing position. The pen is restored to its original state after the change. 

The most interesting way to move the act ive turtle is with FORWARD, 
BACKWARD, DRAW, and MOVE comm ands. These move her a specified 
number of steps in whatever direct ion she is currently headi ng. FORWARD 

278 



TURTLE GRAPHICS 

and BAC KWARD draw a line only if the pen is down; DRAW always draws ; 
MOVE never does . Each step normally moves the turtle one pixel, a distance 
of 100 units in XY coordinates , unless you use the SET SIZE command to 

alter the step size. By changing the step size you can use the same word to 

draw the same shape in different sizes. 
A turtle's heading and her XY coord inates are always integers. The max­

imum range for X and Y is from -32768 to 32767. If you drive a turtle beyond 
this range you may see unwanted tracks as she "jumps" to the other edge of 
Turtleland. 

U sually you can't see all of Turtleland on the screen. For example: in 
Mode 7 the screen displays only the part of Turtleland from X = 15900 to 
X = 15800 and from Y =-7900 to Y = 7800. You can select your own 
"window" into Turtleland with SET WINDO W command. Any tracks 
beyond the edges of the window won't be visible. Changing the window will 
affect the number of X or Y units per pixe l. An alternate way to set the win ­
dow (and the step size) is with the PER-PIXEL command. 

The reason th at the system defaults to 100 units per pixel is to let the tur­
tle sit "between " pixels. If we used a coordinate system as coarse as the screen 
pixels, then every time we moved a turtle at some angle, her new position 
would get "rounded " to the nearest pixel. We wouldn 't be able to do a series 
of moves without errors accumul at ing. Using 100 XY units per pixel gives us 
increased precision . 

The SET MODE command establishes the whole screen as the "view­
port." This means that the view of Turtl eland visibl e th rough the window 
will be projected onto all of the screen. You can select any rectangular piece 
of the screen to be the viewport with the SET VIEWPORT command. When 
you experiment wi th this, use the FRAME or N EW commands to draw a 
fr ame around the new viewport so you can see where it is. 

So far, four commands - M O DE, SIZE, WINDO W, and VIEWPORT 
- relate to T urtleland as a whole, and seven of them - ACTIVE, PEN, INK, 
HEADING , X, Y, and POSITION - relate to the turtles. It is also possible 
for you to determine the current value of any of these parameters, by leaving 
out the word SET or by ch angi ng it to SH O W. For example, the command X 
by itself (i.e., not preceded by SET) leaves the active turtle's current X co­
ordinate o n the stack, where it can be used by any word for any purpose . So , 
the command SHOW X will display some message like "Turtle #1 is at 
X= 300." 

279 



FORTH FACTORY 
The system also has miscellaneous commands like CLEAR for clearing 

the screen, FRAME for drawing a frame around your picture, and HOME, 
START, and NEW for starting over. The command BYE leaves Turtleland 
and returns to pns-Forth. 

Of course, all the usual Forth words are still ava ilable while you're in 
Turtleland, in case you need to do arithmetic, comparisons , branching, loop­
ing, or whatever. You can use the more compact loop syntax ( ... ) and ( . . . 
+) in place of the structures 0 DO ... LOOP and 0 DO .. . + LOOP. 

The important command DEFINE .. . AS ... END allows you to add 
new words to the turtle's vocabulary. This makes it very easy to change any 
of my command names that you don't like. 

As an interesting example, you might want to 

DEFINE HILDA 
AS 1 SET ACTIVE END 

DEFINE GILDA 
AS 2 SET ACTIVE END 

DEFINE MATILDA 
AS 3 SET ACTIVE END 

so that you can talk to a turtle simply by invoking her name. 

Using The System 
To start turtle-ing, just use the SET MODE command . If you want to have 
Turtleland displayed in Graphics Mode 7, for example, type 7 SET MODE. 
After this you can immediately move the turtles around with 10 DRAW, 45 
TURN, etc. SET MODE initiali zes the system as follows: 

• All four turtles are home at X =0 and Y =0, with heading 0 degrees. 
• They all have their pens down. 
• Their pens are filled with various ink types as described under the 

START command in the glossary. 
• Turtle #1 is active. 
• The window is such that X =0, Y =0 is in the center of the screen and 

there are 100 X or Y units per pixel. 
• The viewport is the whole screen. 

After you get acquainted with the var ious commands, you'll want to 
start extending the system by defining your own. Here is an example of a 
new command: 

280 



VALUE STEPS 
VALUE INCREMENT 
VALUE ANGLE 

DEFINE POLYSPI AS 
TO ANGLE 
TO INCREMENT 
o TO STEPS 
BEGIN 
STEPS INCREMENT + TO STEPS 
STEPS FORWARD 
ANGLE TURN 

AGAIN 
END 

TURTLE GRAPHICS 

POLYSPI can make all sorts of interesting polygonal spirals. It expects to 
find two numbers on the stack. It stores the top one in ANGLE; this will be 
how many degrees the turtle will turn between each move. The one below 
gets stored in INCREMENT; this will be how many more steps the turtle will 
take each time compared to the previous time. Next STEPS is initialized to 0 
and we enter a Forth BEGIN ... AGAIN loop. The words between BEGIN 
and AGAIN wi ll be executed indefinitely. (You must press a yellow console 
button to stop POLYSPI.) Each time through the loop, STEPS is incre­
mented by INCREMENT, and the turtle takes the number of steps in STEPS 
and turns the number of degrees in ANGLE. Thus POLYSPI is just an auto­
mated sequence of FORWARDs and TURNs. For example, 2 90 POLYSPI is 
really the same as 

2FORWARD 90TURN 
4 FORWARD 90 TURN 
6 FORWARD 90 TURN 

and so on. 
The three VALUE words POLYSPI uses make it easy to see what's going 

on. However, another definition of POLYSPI is possible which uses no vari­
ables at all : 

DEFINE POLYSPI AS 
o 
BEGIN 
3 PICK + 

281 



FORTH FACTORY 
DUPFORWARD 
OVER TURN 

AGAIN 
END 

This version keeps everything on the stack, using the Forth words PICK, 
DUP, and OVER for stack manipulation. You can make a variety of patterns 
with this one command by changing its two parameters. 

Pressing a yellow console button will break out of an indefinite loop of 
turtle moves. In fact, every time a turtle changes position , the system checks 
the console buttons and returns to command level if one is depressed. This 
makes it easy to regain control. 

As mentioned earl ier, ten of the words used in my screens are pns-Forth 
words which won't be ava ilable (at least not with the same meanings) in 
other Forth systems. Two of these, 1- and TABLE, are common Forth exten­
sions whose high-level definitions are 

: 1- 1 - ; 

and 
: TABLE BUILDS DOES OVER 

+ + @; 

The others are highly system-specific. Four of them - SETUP S, 
CLOSE S, SPLIT-SCREEN, and GR. - were used in the word GRAPHICS. 
Their definitions are quite complex, as these words are part of pns-Forth's in­
terface to the CIO routines in the Operating System. Their joint effect in the 
word GRAPHICS, however, is quite simple. Any Forth system sold for the 
ATARI will probably have words for opening the screen for graph ics. Simply 
use whatever your system provides to define your own GRAPHICS, wh ich 
takes one number from the stack and opens the screen in that mode, with a 
text window at the bottom. 

The last four words specific to pns-Forth are CL#, COLOR, PLOT, and 
DRAWTO. These are used by LINE, FRAME, and POSITION. The first 
two are simple to define; just use 

o VARIABLE CL# 

and 

: COLOR DUP CL#! PAD C! ; 

CL# is a variable which is used to keep track of the color data used to 
plot a pixel. COLOR takes a number from the stack and stores it both in 

282 



TURTLE GRAPHICS 
Cl# and at PAD, for later use by PLOT and DRAWTO. The definitions of 
PLOT and DRAWTO are complicated because these words result in calls to 
CIO. A gain, however, their functions are simple and your system probably 
provides similar words. Define a PLOT which takes a column and a row 
number from the stack, moves the screen cursor to that position, and plots a 
pixel there using whatever byte is at PAD as the color data. Similarly, define 
a DRAWTO which takes a column and a row number from the stack , and 
draws a line from the current posit ion of the screen cursor to this specified 
position, using the byte at PAD as color data. 

I believe that all the other words I've used in this system are either stan­
dard fig-Forth words or new words that I've defined. 

Glossary of Turtle Commands 
MODE Commands 
SET MODE [ mode --- 1 Opens the screen in the Graphics Mode 
specified by mode , which should be 3-8. Sets up a default viewport, win­
dow, and step size by exec~ting WHOLE-SCREEN SET VIEWPORT and 
100 PER-PIXEL. Draws a frame around the viewport with ink of type 1. Initial­
izes the turtles by executing START. 

MODE [--- mode 1 Leaves the number of the current Graphics Mode on 
the stack. 

SHOW MODE [ --- 1 Displays a message indicating the current Graphics 
Mode. 

ACTIVE Commands 
SET ACTIVE [ turtle# --- 1 Makes the turtle whose number is turtle# 
the active turtle. Future commands will be directed to her. 

ACTIVE [--- turtle# 1 Leaves the number of the active turtle on the 
st ack. 

SHOW ACTIVE [ --- 1 Displays a message indicating the currently acti ve 
turtle. 

283 



FORTH FACTORY 

PEN Commands 
SET PEN [ state --- ] Lowers the active turtle's pen if state is nonzero 
and raises it if state is zero . 

PEN [--- state ] Leaves 1 on the stack if the act ive turtle's pen is down and 
o if it is up. 

SHOW PEN [---] Displays a message indicat ing whether the active turtle's 
pen is up or down. 

INK Commands 
SET INK [ ink# ] Fills the active turtle's pen with ink of type ink#. 
Type 0 ink is erasing ink. Types 1,2, and 3 are colored. Types 2 and 3 are not 
ava ilable in modes 4, 6, or 8. 

INK [--- ink# ] Leaves on the stack the type of ink in the active turtle's 
pen. 

SHOW INK [--- ] Displays a message indicating the type of ink in the ac­
tive turtle's pen. 

HEADING Commands 

SET HEADING [ degrees --- ] Makes the active turtle head in the direc­
tion specified by degrees . Directions are measured clockwise from the ver­
tical. 

HEADING 
[--- degrees ] Leaves the active turtle's heading on the stack. 

SHOW HEADING [ --- ] Displays a message indicat ing the active turtle's 
heading. 

X Commands 

SET X [ x --- ] C hanges the active turtle's X coordinate to x . Draws a line 
if her pen is down. 

X [ --- x ] Leaves the active turtle's X coordinate on the stack. 

SHOW X [ --- ] Displays a message indicating the active turtle's X coordinate. 

284 



TURTLE GRAPHICS 
YCommands 
Similar to X Commands. 

POSITION Commands 
SET POSITION [ x y ---] Changes the active turtle's coordinates to 
X = x and Y = y . Draws a line if her pen is down. 

POSITION [--- x y] Leaves the active turtle's X and Y coordinates on 
the stack. 

SHOW POSITION [---] Displays a message indicating the active turtle's 
X and Y coordinates. 

SIZE Commands 
SET SIZE [distance steps --- 1 Sets the step size so that the number of 
steps given by steps will cover a distance in XY coordinates given by 

distance 

SIZE [--- distance steps] Leaves the current size parameters on the stack. 

SHOW SIZE [ ---] Displays a message indicating the current step size. 

WINDOW Commands 
SET WINDOW [ xmin xmax ymin ymax ---] Sets the window to 
be the region from X = xmin to X = xmax and from Y = ymin to 
Y= ymax . 

WINDOW [--- xmin xmax ymin ymax ] Leaves the current win­
dow parameters o n the stack. 

SHOW WINDOW [--- 1 Displays a message indicating the current win­
dow. 

VIEWPORT Commands 
SET VIEWPORT [left right top bottom ---] Sets the viewport 
to extend from screen column left to screen column right and from screen 
row top to screen row bottom . 

285 



FORTH FACmRY 
WHOLE·SCREEN SET VIEWPORT [---J Sets the viewport to extend 
from column 1 to the next to the last column and from row 1 to the next to the 
last row. 

VIEWPORT [--- left right · top bottom J Leaves the current view­
port parameters on the stack. 

SHOW VIEWPORT [---J Displays a message indicating the current 
viewport. 

Other Commands 
CLEAR [--- J Clears the graphics screen without affecting the turtles. 

FRAME [ ink# ---J Draw a frame around the viewport, using ink of type 
ink# . 

HOME [--- J Moves the active turtle to X =0 and Y =0 with heading 0, 
without drawing a line, and then lowers her pen. 

START [ --- J HOMEs all the turtles first. Then fills their pens with ink. (In 
Mode 3,5, or 7, the Nth turtle's pen is filled with ink of type N. In Mode 2, 4, or 
6, turtle O's pen is filled with type 0 ink while the pens of turtles 1, 2, and 3 are 
filled with type 1 ink, the only colored ink available in these modes.) Finally, 
makes turtle 1 the active turtle. 

NEW [ --- J Clears the screen, draws a frame with type 1 ink, and initializes 
the turtles by executing START. 

PER· PIXEL [ distance ---J Sets the window so that the point X =0, Y =0 is 
the center of the viewport, and so that the distance in XY coordinates given 
by distance will be the size of one pixel. Also, sets the step size so that each 
step is distance units long. 

FORWARD steps ---J Moves the active turtle forward the number of 
steps specified by steps . The movement is in the direction she is currently 
heading if steps is positive and in the opposite direction if steps is 
negative. The turtle's heading is unaffected. A line is drawn ifher pen is down. 

BACKWARD [steps ---J Like FORWARD except in the opposite direc­
tion. 

DRAW [ steps ---J Lowers the active turtle 's pen so that a line will defi­
nitely be drawn as she moves forward the number of steps given by steps . 
Then her pen is returned to its previous state. 

286 



TURTLE GRAPHICS 
MOVE steps --- ] Raises the active turtle 's pen so that a line will 
definitel y not be drawn as sh e moves forw ard the number of steps given by 

steps . Then her pen is returned to its previous state. 

RIGHT [ degrees ---] Turns the active turtle the specified number of 
degrees , to the r ight if degrees is positi ve and to the left if negative. 

LEFT [ degrees --- ] Like RIGHT except in the opposite direct ion. 

TURN [ degrees --- ] The same as RIGHT. 

GOTO [ x y ---] The same as SET POSITION . 

DRAWTO [ x y --- ] Lowers the active turtle 's pen so that a line will 
definitely be drawn as she moves to X = x and Y = y . Then her pen is 
returned to its previous state. 

MOVETO [ x y ---] Raises the active turtle's pen so that a line will 
definitely not be drawn as she moves to X = x and Y = y . Then her pen 
is retur ned to its previous state. 

TURN TO [ degrees --- ] The same as SET HEADING . 

PENDOWN [---] Lowers the active turtle's pen: This is the same as 1 
SET PENSTATE. 

PENUP [ ---] Raises the active turtle's pen. This is the same as 0 SET 
PENSTATE. 
PENDOWN? [ --- fl ag ] Leaves a 1 on the stack if the active turtle's 

'pen is down and a 0 if it is up . Thi s is the same as PEN. 

PENUP? [ --- fl ag ] Leaves a 1 on the stack if the active turtle's pen is 
up and a 0 if it is dow n . This is the opposite of PEN. 

ERASING [--- ] Fills the active turtle's pen with type 0 ink (the eras ing 
type). This is the same as 0 SET INK. 

( ... ) [ #loops --- ] Executes the words between the left parenthesis and 
the right parenthesis the number of times given by #loops . 

DEFINE . .. AS ... END Defines the word between DEFINE and AS to 
be a new turtle comm and which will execute the words between AS and 
END. 

BYE [ --- J Leaves Turtleland and returns to pm-Forth . 
by Gordon Smith 

287 



FORTH FACTORY 

( T urI I e Graphics I , screen 1 
DECIMAL 
TA B L E SINES 
9999 , 91 75 , 9349 , 9523 , 9698 
9872 , 1945 , 1 21 9 , 1 392 , 1 564 
1 736 , 1 998 , 2979 , 2259 , 241 9 
2588 , 2756 , 2924 , 3999 , 3256 
3429 , 3584 , 3746 , 3997 , 4967 
4226 , 4384 , 4549 , 4695 , 4848, 
5999 , 5 1 59 , 5299 , 5446 , 5592 
5736 , 5878 , 691 8 , 61 57 , 6293 
6428 , 6561 , 669 1 , 6829 , 6947 
797 1 , 7 1 93 , 7314 , 7431 , 7547 
7669 , 7771 , 7889 , 7986 , 8999 
81 92 , 8299 , 8387 , 8489 , 8572 
8669 , 8746 , 8829 , 8919 , 8988 
9963 , 91 35 , 9295 , 9272 , 9336 
9397 , 9455 , 951 1 , 9563 , 9613 
9659 , 9793 , 9744 , 9781 , 981 6 
9848 , 9877 , 9993 , 9925 , 9945 
9962 , 9976 , 9986 , 9994 , 9998 
1 9999 , --> 
( T urI I e Graphics I , screen 
) 

(SIN) (nl --- n2 
DUP 99 > IF 

189 SWAP - THEN 
SINES ; 

SIN (nl --- n2 ) 
( Relurns 19999 limos Ihe sine 
( of nl degrees. ) 

369 MOD 
DUP 9< IF 

369 + THEN 
DUP 189> IF 

189 - (SIN) MINUS ELSE 
(SIN) THEN 

COS (nl --- n2 ) 

2 

, 
, 
, 
, 
, 

, 
, 
, 
, 
, 
, 
, 
, 
, 
, 
, 
, 

( Relurns 19999 limes Ihe cosine 
( of nl degrees. ) 
369 MOD 99 + SIN 

--> 

( 32 Turtle Graphics I. screon 3 

288 



TURTLE GRAPHICS 

SIN* (n1 n2 --- n3 ) 
( Returns n1 times the sine of) 
( n2 degrees. ) 
SIN 10999 */ ; 
COS* (n1 n2 --- n3 ) 
( Returns n1 times the cosine of) 
( n2 degrees. ) 
COS 19999 */ : 

--> 

( 33 Turtle Graphics I, screen 4a 
) 

9 VARIABLE TO - FLAG 
CODE TO (---) 

1 # LOA, TO - FLAG STA, 
NEXT JMP, END-CODE 

: VALUE 
9 CONSTANT 

:CODE 
TO-FLAG LOA, 9- IF, 

2 # LOY, W )Y LOA, PHA, 
INY, W )Y LOA, PUSH JMP, ELSE, 

--> 

9 # LOA, TO-FLAG STA, 
BOT LOA, 2 # LOY, W )Y STA, 

BOT 1+ LOA, INY, W )Y STA, 
POP JMP, THEN, 

END-CODE 

( 34 Turtle Graphics I, screen 4b 
9 VARIABLE TO-FLAG 

TO 
1 TO-FLAG I ; 
VAL U E 

<BUILDS 9 , 
DOES> TO-FLAG @ IF 

9 TO - FLAG I 

--> 

I ELSE 
@ THEN 

( Turlle Graphics I, screen 5 
VOCABULARY CLIPPING IMMEDIATE 
CLIPPING DEFINITIONS 
VALUE LEFT VALUE TOP 

289 



FORTH FACTORY 

VALUE RIGHT VALUE BOTTOM 
2 BASE I 

CODE P --- n 
8 

OVER TOP < IF 
1888 + SWAP DROP ELSE 

SWAP ' BOTTOM> IF 
8188 + THEN 

THEN 
OV E R t EF T < I F 

8881 + SWAP DROP ELSE 
SWAP RIGHT> IF 

8818 + THEN 
THEN 

--> 

( Turtle Graphics I. screen 6 
VALUE Xl 
VALUE Y 1 
VALUE C 1 
V ALU E X2 
VAL U E Y2 
VAL U E C2 
VAL U E C 

CLIP _X ( n 1 n 2 ) 
Y 1 -

X2 Xl -
Y2 Y 1 -

*/ Xl + 
CLIP_Y n 1 n 2 

Xl -
Y2 Y 1 -

X2 Xl -

* / Y 1 + 
--> 

3 7 T u rl I e Graph i c s I. s ere 8 n 7 
2 BASE I 
: WHERE? (--- P ) 

290 

C 8881 AND IF 
LEFT LEFT CLIP_Y ELSE 

C 8818 AND IF 
RIGHT RIGHT CLIP_Y ELSE 

C 8188 AND IF 
BOTTOM CLIP_X BOTTOM ELSE 



TURTLE GRAPHICS 

DECIMAL 
HEREI 

C 1 IJ IJ 8' AND I F 
TOP CLIP_X TOP , 'THEN 

p --- ) 

THEN 
THEN 

THEN 

C C1 - IF 
TO Yl TO Xl Xl Yl tODE TO C1 ELSE 
TO T2 TO X2 X2 Y2 CODE TO C2 THEN 

--> 

( 38 Turlle Graphics 
FORTH DEFINITIONS 

I, screen 8 

: CLIP (p1 p2 
( 

TO Y2 
,'" TOY 1 

( p 1 P 2 

TO X2 
TO Xl 

o r 
pl' P 2 . I ) 

) 
) 

CLIPPING 
X2 Y2 CODE TO C2 
Xl Yl CODE TO Cl 

BEGIN 
Cl C2 OR WHILE 

C1 C2 AND IF 
e ;S THEN 

C 1 IF 
C1 TO C ELSE 
C2 TO C THEN 

WHERE? HEREI REPEAT 
Xl Yl X2 Y2 1 

39 Turlle Graphics 1, s ,creen 9 

GRAPHICS (n --- ) 
( Clears the screen and sels il up 

lor grapblcs mode n wIth , . texl , ) 
( wludow . ) 
>R SETUP S CLOSE .'8 ,' ' 

SPLIf - SCRE EN 8> ~R . ,: 
LIRE (pl p2 --- ) 
( Displays whatever piece 01 Ihe 
( I I n e 1 rom p 1 lop 2 I s w,l I h I n 
( I h,e c I I P pin g win dow. ) 

291 



FORTH FACTORY 

CL# @ COLOR 
CLIP IF 

PLOT DRAWTO THEN 
;S 

Turtle Graphics II. screen 1 
) 

DECIMAL 
VALUES 

<BUILDS "DO 
" • LOOP 

DOES> OVER + + 
TO-FLAG @ IF 

" TO-FLAG I I ELSE 
@ THEN 

VALUE PREFIX 
SET (---) 2 TO PREFIX 
SHOW (---) 4 TO PREFIX 
ROO T : (---) 

<BUILDS SMUDGE I 
DOES> PREFIX + @ EXECUTE 

" TO PREFIX 
--> 

( Turlle Graphics II. screen 2 
) 

4 CONSTANT #TURTLES 
VALUE WHICH 

( The number of the active turlle 
ACTIVEI (n ---) TO WHICH; 
. WHICH (---) 
." T u r tie #" W HI C H . ; 
ACTIVE? (---) 
. WH I C H . " i sac t i ve .. C R 

ROOT: ACTIVE WHICH ACTIVEI ACTIVE? 
--> 

Turtle Graphics II. screen 3 
) 
MODE@ 
MODE? 
." T his 

( --- n ) 
( --- ) 
is graphics mode" 

MODE@ . CR 
TABLE MAX_COL# (n1 --- n2 ) 

39. 19. 19. 39 • 79 • 79 • 

292 



TURTLE GRAPHICS 

159 , 159 , 319 , 
TABLE MAX_ROW# (n1 --- n2 ) 

19 , 19, 9, 19 , 39 , 39, 
79 , 79 , 159 , 
WHOLE-SCREEN ( n1 n2 n3 n4 ) 
1 MODE@ MAX _COL# 1-
1 MODE@ MAX _ ROW# 1-

--> 

( 44 Turtle Graphics II. screen 4 

VIEWPORT@ (--- n1 n2 n3 n4 ) 
CLIPPING LEFT RIGHT TOP BOTTOM 
VIEWPORT? (---) CLIPPING 
." The viewport is from column .. 

LEFT . . " to" CR ." column 
RIGHT ... and from row" TOP 

" to row" BOTTOM CR 
VALUE XMIN VALUE YMIN 
VALUE XMAX VALUE YMAX 

WIN 0 0 W@ (-- - n 1 n 2 n 3 n 4 
XMIN XMAX YMIN YMAX 
WINDOW? (---) 

" The window is from X=" XMIN . 
" to X- " XMAX . CR . " and from Y=" 

YMIN . . " to Y=" YMAX . CR 

--> 

( Turtle Graph i cs II, screen 5 
) 

VAlUE 9COL VAlUE gROW 
-- - ) CLIPPING 
MINUS RIGHT LEFT -
* / LEFT + TO 9COL 
MINUS TOP BOTTOM -

: ORIGIN! ( 
XMIN 

XMAX XMIN -
YMAX 

YMAX YMIN -
VIEWPORT! 

* / TOP + TO gROW 
( n1 n2 n3 n4 --- ) 

CLIPPING 
MODE@ MAX_ROW# MIN TO BOTTOM 

9 MAX TO TOP 
MODE@ MAX_COL# MIN TO RIGHT 

9 MAX TO LEFT 
ORIGIN! 

WINDOW! ( n1 n2 n3 n4 --- ) 

293 



FORTH FACTORY 

TO YMAX TO YMIN TO XMAX TO XMIN 
ORIGINI 

--> 
( Turlle Graphics II, screen 6 

) 
ROOT: VIEWPORT 

VIEWPORT@ VIEWPORTI VIEWPORT? 
ROOT: WINDOW 

WINDOW@ WINDOWI WINDOW? ; 
LEFT- (--- n ) 
CLIPPING LEFT 1- 9 MAX; 
TOP- (--- 0) 
CLIPPING TOP 1- 9 MAX ; 
RIGHT+ (--- n) CLIPPING 
RIGHT 1+ MODE@ MAX_COL# MIN 
BOTTQM+ (--- n) CLIPPING 
BOTTOM 1+ MODE@ MAX_ROW# MIN 
FRAME (n---) COLOR 

LEFT- TOP- PLOT 
RIGHT+ TOP- DRAWTO 
RIGHT+ BOTTOM+ DRAWTO 
LEFT- BOTTOM+ DRAWTO 
LEFT- TOP- DRAWTO 

--> 

Turlle Graphics II, screen 7 
) 

#TURTLES VALUES PEN() 
P E N@ (--- f I a g ) WHICH PEN() 
PENDOWN? (--- flag ) PEN@; 
PENUP? (--- flag) PEN@ g- ; 
PENI (flag --- ) 
g- g- WHICH TO PEN() ; 
PENDOWN (---) 1 PENI 
PENUP (---) 9 PENI ; 
PEN? (---) .WHICH 
" has her pen" PEN@ IF 

." down" ELSE 
." up .. THEN 

ROOT: PEN 
eR 

P E N@ PEN I P'E N ? ; 
--> 

Turtle Graphics II, screen 8 

294 



TURTLE GRAPHICS 

#TURTLES VALUES INK() 
INK@( --- n) WHICH INK() : 
INKI (n ---) WHICH TO INK<() 

ERASING (---) 0 INKI ; 
INK? (---) 
.WHICH ." is us i ng ink #" INK@ CR 

ROOT: INK I N K@ INK I INK? ; 
--> 

( Turtle Graphics II. screen 9 
) 

#TURTLES VALUES HEAOING() 
HEADING@ (--- n ) 
WHICH HEADING() ; 
HEADING? (---) .WHICH 
. " has heading" HEADING@ , CR 
HEADING' (n --- ) 
360 MOD WHICH TO HEADING() ; 
TURNTO (n ---) HEADINGI 

ROOT: HEADING 
HEADING@ HEADING I HEADING? 
TURN (n --- ) 
HEADING@ + HEADINGI ; 
RIGHT (n ---) TURN 
LEFT (n ---) MINUS TURN 

--> 

( Turtle Graphics II. screen 10 
) 

. #TURTLES VALUES X() 
#TURTLES VALUES V() 

X@ , ( --- n) WH I C HX () ; 
V@ (--- n) WHICH V() ; 
X? (---) 
.WHICH ." is at X-" X@ . CR 
V? (---) 
.WHICH." is at V= " V@. CR • 
PO SIT I 0 N@ (--- n 1 n 2) X@ V@ 
POSITION? (---) .WHICH 

" is at X-" X@ ... and V=" V@ , CR 

--> 

Turtle Graphics II. screen 11 

295 



FORTH FACTORY 

) 
X->COL (n1 --- n2) CLIPPING 
RIGHT LEFT - XMAX XMIN - */ SCOL + 
Y->ROW (n1 --- n2) CLIPPING 
TOP BOTTOM - YMAX VMIN */ SROW + 

SCALE (n1 n2 --- n3 n4 
SWAP X->COL SWAP V->ROW 
?CONSOLE (--- flag) 
53279 C@ 7 = NOT 
POSITIONI (n1 n2 ) 

?CONSOLE IF 
SP! CR .. ok" QUIT THEN 

P E N@ IF 
INK@ COLOR 

OVER OVER SCALE POSITION@ SCALE 
LINE THEN 

WHICH TO V() WHICH TO X() 
--> 

Turt!e Graphics II. screen 12 
) 

: GOTO (n1 n2 --- POSITION I 
ROOT: POSITION 

POSITION@ POSITIONI POSITION? ; 
: XI (n ---) V@ POSITION! ; 
: VI (n ---) X@ SWAP POSITIONI 
ROO T: X X@ X I X? ; 
ROOT: Y V@ VI V? ; 

MOVETO (n1 n2 --- ) 
PEN@ ROT ROT PENUP POSITION! PENI ; 

: 0 R A WT 0 (n 1 n 2 --- ) 
PEN@ ROT ROT PENDOWN POSITION I PENI 

--> 

( Turtle Graphics II, screen 13 
) 

VALUE SIZE_N VALUE SIZE_D 
S I Z E@ (--- n 1 n 2 
SIZE_N SIZE_D ; 
SIZE* (n1 --- n2) SIZE@ */ 
SIZEI (n1 n2 --- ) 
TO SIZE_D TO SIZE_N 
SIZE? (---) 

296 



TURTLE GRAPHICS 

SIZE_D DUP , 1 - IF 
," step is" ELSE 

," steps are" THEN 
," a distance of " SIZE_N , CR 

ROOT: SIZE SIZE@ SIZEI SIZE? ; 
--> 

Turlle Graphics II. screen 14 
) 
VECTOR (n --- nl n2 

DUP HEADING@ SIN* X@ + 
SWAP HEADING@ COS* Y@ + 
FORWARD (n --- ) 
SIZE* VECTOR POSITION I 
BACKWARD (n - --) MINUS FORWARD 

MOVE 
PEN@ 
DRAW 
PEN@ 

( n 
SWAP 

( n 
SWAP 

--- ) 
PENUP FORWARD PENI ; 
--- ) 
PENDOWN FORWARD PENI 

--> 

( Turlle Graphics II, screen 15 
) 

PER-PIXEL ( n --- ) 
CLIPPING >R 

RIGHT LEFT - 2 / 
DUP MINUS R * SWAP 1+ R * 

BOTTOM TOP - 2 / 
DUP MINUS R * SWAP 1+ R * 
SET WINDOW R> 1 SET SIZE . 
Make SURE you typed the >R and R> ) 
in this correclly, ) 
SCREEN-DEFAULTS (---) 
WHOLE-SCREEN SET VIEWPORT 

100 PER-PIXEL 
TABLE GR,BYTES (nl --- n2 ) 

960, 400, 200, 200, 400, 
800 . 1600 . 3200 . 6400 . 

: CLEAR (---) 
88 @ MODE@ GR,BYTES ERASE 

--> 

( Turtle Graphics II. screen 16 
) 
: HOME ( ---) 

297 



FORTH FACTORY 

8 8 MOVETO 8 TURNTO PENDOWN 
STAiH (-~-) 

q U R TL E S ' 8 0' 0 
I SET ' ACTIVE HOME 

MODE@ 2 MOD IF 
I ELSE I 8- 8- THEN 

SET INK LOOP 
1 SEl ACTIVE 

MODEl (0 --- ) 
GRAPHICS SCREEN - DEFAULTS 

1 F R A M,E STAR T ; 
ROO T: MOO E MO 0 E@ MOD ElM ODE ? ' ; 
: ·N E W ( ) C LEA R 1 F RAM E STAR T 

: BYE ( -- ~ ,) 8 G RAP H I C S 
8 718 CI 6B 712 CI ' ; 

--> 
T ur I I 8 G rap hIe s I I. s c r 8 8 0 1 7 

) , 

DEFINE [COMPILE) ; IMMEDIATE 
AS; I MM ED I ATE 
END (COMPILE); , ; I M M E 0 I A TE 
\ ' ( ' Ignores resl 011108 ) 
IN @ Cll I 1+ Cll • IN I ; IMMEDIATE 
l" , COMPILE 8 [COMPILE) DO ; IMMEDIATE 
) (COMPILE) LOOP ; IMMEDIATE 
+) [COMPILE) ,' +LOOP; IMMEDIATE 

;' S 

298 






	Cover

	Contents

	What's in a Name

	Introduction

	Listing Conventions

	Starting Line

	Help for the New User

	Screen Editing

	Oh, Those Bugs 
	A Sound Introduction

	Typo


	Education

	Spin Colors with the Spider

	Zachron

	Tuning your Atari

	Candle, Candle, Burning Bright


	Sound and Music 
	Some Sound Advice

	Audio while you CLOAD

	Muisc with BASIC

	Ultra Sound

	Tari Talkers


	Communications

	Modems

	Communications Software

	Dialing for Data

	Pronto


	Games in the Public Domain

	Chicken

	Attack on the Death Star

	Speed Demon

	Bats


	Bonus Games

	Tie Fighter

	Tin Pan Alley Cats

	Drop

	Fallout

	Skull Chase

	Crystal Caves


	Features

	Translate

	Display Lists Simplified

	Tiny Text

	Christmas Mailing Lister

	Save the Pieces


	Systems Guide

	Memory Map

	Scrolling

	ANTIC Disassembler and Raster Scan Graphics

	Interrupts

	Haldnling Media and Atari Support


	Assembly Language

	Move-It

	Bubble Sort


	Pilot Your Atari

	Pilot Your Atari

	Large Text

	Colors for your Pilot

	The Musical Pilot

	Holiday Trees


	Forth Factory

	Turtle Graphics

	Glossary of Turtle Commands



