
~. N 
'1 

--'-.~J,"-._~'.~ The Word Processor ~==::;;r,;; . " 
M' : for Atari Computers 

I I 
l; : Charles Brannon 





SPEEDSCRIPT 
The Word Processor 
for Atari Computers 

Charles Brannon 

~~!t!n~~!g!L~!Jblications/lnc .• 
One of the ABC Publishing Componies 

Greensboro, North Carolina 



"SpeedScript 3.0: All Machine Language Word Processor for Atari" was originally 
published in COMPUTE! magazine, May 1985, copyright 1985, COMPUTE! Publica­
tions, Inc. 

Copyright 1985, COMPUTE! Publications, Inc. All rights reserved. 

Reproduction or translation of any part of this work beyond that permitted by 
Sections 107 and 108 of the United States Copyright Act without the permission of 
the copyright owner is unlawful. 

Printed in the United States of America 

10 9 8 7 6 5 4 3 2 

ISBN 0-87455-003-3 

The author and publisher have. made every effort in the preparation of this book to insure the ac­
curacy of the programs and information. However, the information and programs in this book are 
sold without warranty, either express or implied. Neither the author nor COMPUTE! Publications, 
Inc. will be liable for any damages caused or alleged to be caused directly, indirectly, incidentally, 
or consequentially by the programs or information in this book. 

The opinions expressed in this book are solely those of the author and are not necessarily those of 
COMPUTE! publications, Inc. 

COMPUTE! Publications, Inc., Post Office Box 5406, Greensboro, NC 27403, (919) 
275-9809, is part of ABC Consumer Magazines, Inc., one of the ABC Publishing 
Companies, and is not associated with any manufacturer of personal computers. Atari 
400, 800, 600XL, 800XL, 1200XL, and XE are trademarks of Atari, Inc. 



Contents 

Foreword ...... . .... . .... ... . ...... . .. . ........... v 

Chapter 1. Using SpeedScript ..................... 1 
SpeedScript 3.0: All Machine Language 
Word Processor for the A tari .. ...... . ............... 3 

Chapter 2. Entering SpeedScript ............ .. ... 25 
The Machine Language Editor: MLX ....... . ....... .. 27 
The Automatic Proofreader ........... .. ..... .... .. 34 
SpeedScript Program Listings ... .. ..... . .. .......... 37 

Chapter 3. SpeedScript Source Code. . . . . . . . . . . . .. 67 
Atari Source Code .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 69 

Index ... ................ .. ....... .. ............ 113 
Order Coupon for Disk ........................... 115 





Foreword 

SpeedScript is the most popular program ever published by 
COMPUTE! Publications. Ever since it first appeared in the 
January 1984 issue of COMPUTEf's Gazette, the letters have 
been pouring in. People wanted to know more about the pro­
gram and word processing, and they had countless sugges­
tions about how to make SpeedScript better. 

The result is SpeedScript 3.0, an even more powerful word 
processor for all eight-bit Ataris (including the 400/800, 
600XL/800XL, 1200XL, and new XE series). Enhanced with 
additional commands and features, this all machine language 
word processor gives you all the things you expect from a 
commercial software package. You can write, edit, format, and 
print anything from memos to novels on your Atari. With a 
few keystrokes you can change the color of the screen and its 
text to whatever combination best suits you. 

It's easy to add or delete words, letters, even whole para­
graphs. You can search through an entire document and find 
every occurrence of a particular word or phrase, then replace it 
with something new. Of course, when you finish writing, you 
can save your work to tape or disk. 

The ability to quickly change the appearance of a printed 
document is one of the things that make word processing so 
efficient. SpeedScript lets you alter the margins, page length, 
spacing, page numbers, page width, as well as set up headers 
and footers at the top and bottom of the paper. 

And once you've formatted your document, you'll find 
enough print features to make even the most demanding 
writer happy. With SpeedScript, you can start printing at any 
page, force the printer to create a new page at any time, even 
make it wait while you put in another sheet of paper. Under­
lining and centering are simple. If you want to get fancy, you 
can use your printer's codes to create graphics symbols or 
logos. And if you're writing something really long-perhaps a 
novel or term paper-SpeedScript lets you link any number of 
files so that they print out as one continuous document. 

In addition to the SpeedScript program for the Atari, you'll 
find complete documentation and a keyboard map in this 
book. SpeedScript's source code has also been included for 

v 



your examination. By studying it, you'll see exactly how the 
program is put together. 

"The Machine Language Editor: MLX" makes typing in 
the program easier. MLX almost guarantees that you'll have an 
error-free copy of the program the first time you type it in. If 
you prefer to purchase a copy of SpeedScript on disk rather 
than type it in, just use the convenient coupon in the back, or 
call toll-free 1-800-334-0868. 

SpeedScript is an exceptionally easy-to-use and powerful 
word processor that will meet all your writing needs. 

vi 



Chapter 1 

Using 
5"ee"5cr;,,~ 





SpeellScript ~.D 
All Machine Language Word 

Processor for the Atari 
SpeedScript has become one of the most popular word processors for the 
Commodore 64, VIC-20, and Apple computers. And now SpeedScript 
has been translated to run on all eight-bit Ataris with at least 24K, with 
either disk or cassette (including the 400, 800, 600XL with memory 
expansion, 800XL, 1200XL, and new XE series). SpeedScript compares 
favorably. with commercial word processors and has some features never 
seen before in an Atari word processor. It represents unique value in a 
type-in program. 

SpeedScript 3.0, though compact in size (8K), has many fea­
tures found on commercial word processors. SpeedScript is also 
very easy to learn and use. You type in everything first; pre­
view and make corrections on the screen; insert and delete 
words, sentences, and paragraphs; then print out an error-free 
draft, letting SpeedScript take care of things like margins, 
centering, headers, and footers. 

Typing In 5peed5crlpt 
Atari SpeedScript is the longest machine language program 
we've ever published, but COMPUTErs "MLX" entry system 
helps you type it right the first time. MLX can detect most er­
rors people make when entering numbers. (See the instruc­
tions for using MLX in chapter 2.) MLX also lets you type 
SpeedScript in more than one sitting. Although the program 
listing is lengthy, we guarantee the effort will be worthwhile. 

After you run the Atari version of MLX, answer the first 
two questions like this: 
Starting Address? 7936 
Ending Address? 16229 
RunjInit Address 7936 

Next, you'll be asked "Tape or Disk." SpeedScript can be 
saved as either a binary file on disk or as a boot tape. Press T 
for use with a tape drive. If you press D for disk, you'll be 
asked "Boot Disk or Binary File." Press F to select the Binary 
File option. Although you could save SpeedScript as an auto­
booting disk, it makes no sense, because such a disk cannot 

3 



SpeedScript 

contain DOS, which is necessary for file-oriented disk access. 
The screen will then show the first prompt, the number 

7936 followed by a colon (:). Type in each three-digit number 
shown in the listing. You do not need to type the comma 
shown in the listing. MLX inserts the comma automatically. 

The last number you enter in each line is a checksum. It 
represents the values of the other numbers in the line summed 
together. If you type the line correctly, the checksum cal­
culated by MLX and displayed on the screen should match the 
checksum number in the listing. If it doesn't match, you will 
have to retype the line. MLX is not foolproof, though. It's pos­
sible to fool the checksum by exchanging the positions of the 
three-digit numbers. Also, an error in one number can be off­
set by an error in another. MLX will help catch your errors, 
but you must still be careful. 

Typing In Multiple Sittings 
If you want to stop typing the listing at some point and pick 
up later, press CTRL-S and follow the screen prompts. (For 
disk, MLX will ask you to specify a filename; do not use 
AUTORUN.5YS until the entire listing is typed in.) Remember 
to note the line number of the last line you entered. When 
you are ready to continue typing, load MLX, answer the 
prompts as you did before, then press CTRL-L. For a boot 
tape, be sure the cassette is in the tape drive and rewound. For 
a binary disk file, MLX asks for the filename you gave to the 
partially typed listing. After the LOAD is complete, press 
CTRL-N and tell MLX the line number where you stopped. 
Now continue typing as before. 

When you finish all typing, MLX automatically prompts 
you to save the program. For disks with Atari DOS 2.0 or 3.0, 
save the completed program with the filename 
AUTORUN.5YS. This will allow SpeedScript to load and run 
automatically when the disk is booted. 

At this point, MLX has saved either a boot tape or binary 
disk file. To load your boot tape, remove all cartridges, rewind 
the tape, and hold down the START button while turning on 
the power. (On the 600XL, 800XL, and XE series, disable 
BASIC by holding down both START and OPTION while 
turning on the power.) When the computer turns on, you'll 
hear a single beep tone. (On the XL and XE series, make sure 
the volume is turned up on your TV or monitor.) Press PLAY 

4 



Using SpeedScript 

on the tape drive, then press any key on the keyboard to start 
the load. SpeedScript will automatically run once the boot is 
successfully completed. 

To use SpeedScript with an Atari DOS disk, you must save 
or copy it on a disk which also contains DOS.SYS and 
DUP.SYS. Since you've saved SpeedScript as AUTORUN.SYS, 
it will automatically load and run when you turn on your 
computer with this disk in the drive. (On the 600XL, 800XL, 
and XE series, disable BASIC by holding down OPTION when 
switching on the computer.) SpeedScript must always be 
named AUTORUN.SYS in order to load properly with Atari 
DOS. If you want to prevent it from automatically running for 
some reason, you can save it with another name, then rename 
it AUTORUN.SYS later. 

If you're using Optimized System Software's OS/A+ 
DOS or a compatible successor, you can give SpeedScript any 
filename you like. Just use the LOAD command from DOS, 
and SpeedScript will automatically run. Or you can give it a 
filename with the extension .COM, such as SPEED. COM. 
Then you can start up by just typing SPEED at the DOS 
prompt. You can also write a simple batch file to boot up 
SpeedScript automatically. Some enhanced DOS packages like 
Optimized System Software's DOS XL may use so much 
memory that they conflict with SpeedScript. In this case, you'll 
need either to use Atari DOS instead on your SpeedScript disks 
or to reassemble the source code at a higher address to avoid 
conflicts. 

Note: The AUTORUN.SYS file on your DOS master disk 
is responsible for booting up the 850 Interface Module for 
RS-232 communications. There is no easy way to combine the 
850 boot program with SpeedScript, so you can't access the R: 
device. We'll show you later how to transfer files over a mo­
dem or print to a serial printer. 

If you prefer, Atari SpeedScript is available for purchase on 
disk. To order the disk, use the coupon in the back of this book 
or call COMPUTE! Publications toll-free at 800-334-0868. 

Entering Text 
When you run SpeedScript, the screen colors change to black 
on white. The first line on the screen is black with white let­
ters. SpeedScript presents all messages on this command line. 
The remaining 18 lines of the screen are used to enter, edit, 

5 



SpeedScript 

and display your document. SpeedScript makes use of a spe­
cial, but little-used, Atari character mode that permits larger, 
more readable characters with true lowercase descenders. The 
screen still shows up to 40 columns; only five rows are sac­
rificed. We think you'll agree that this is the most readable 
text you've ever seen on an Atari-perfect for word process­
ing. (Technical note: SpeedScript starts at $lFOO, and the AN­
TIC 3 character set is embedded at $2000.) 

The cursor, a blinking square, shows where the next 
character you type will appear on the screen. SpeedScript lets 
you move the cursor anywhere within your document, making 
it easy to find and correct errors. 

To begin using SpeedScript, just start typing. When the 
cursor reaches the right edge of the screen, it automatically 
jumps to the beginning of the next line, just as in BASIC. But 
unlike BASIC, SpeedScript never splits words at the right edge 
of the screen. If a word you're typing won't fit at the end of 
one line, it's instantly moved to the next line. This feature, 
called word-wrap, or parsing, also helps to make your text 
more readable. 

Scrolling and Screen Formatting 
When you finish typing on the last screen line, SpeedScript 
automatically scrolls the text upward to make room for a new 
line at the bottom. Imagine the screen as an I8-line window 
on a long, continuous document. If you've unpl\lgged all car­
tridges or disabled BASIC as described above, there's room in 
memory for 3328 characters of text with 24K RAM and up to 
27,904 characters on a 48K machine. (Unfortunately, Speed­
Script 3.0 cannot make use of the extra memory available in 
the XL and XE series.) An additional 2K of text memory is 
available if SpeedScript is loaded from a boot tape. To check at 
any time how much unused space is left, press CTRL-U (hold 
down the CTRL key while pressing the U key). The number 
appearing in the command line indicates how much unused 
room remains for characters of text. 

If you're used to a typewriter, you'll have to unlearn some 
habits if this is your first experience with word processing. 
Since the screen is only 40 columns wide, and most printers 
have 80-column carriages, it doesn't make sense to press RE­
TURN at the end of each line as you do on a typewriter. 
SpeedScript's word-wrap takes care of this automatically. Press 

6 



Using SpeedScript 

RETURN only when you want to force a carriage return to 
end a paragraph or limit the length of a line. A return-mark 
appears on the screen as a crooked left-pointing arrow. 

using the Keyboard 
Most features are accessed with control key commands-you 
hold down CTRL while pressing another key. In this book, 
control key commands are abbreviated CTRL-x (where x is 
the key you press in combination with CTRL). An example is 
the CTRL-U mentioned above to check on unused memory. 
CTRL-E means hold down CTRL and press E. Sometimes you 
must also hold down the OPTION button to select a special 
option of a command, such as OPTION-CTRL-H. Other keys 
are referenced by name or function, such as DELETE/BACK S 
for the backspace key, CTRL-CLEAR for the clear-screen key, 
and cursor left or CTRL-+ for the cursor-left key. (See the 
"Keyboard Map," page 18, for a summary of the keyboard 
commands.) 

Some keys let you move the cursor to different places in 
the document to make corrections or scroll text into view. You 
can move the cursor by character, word, sentence, or para­
graph. Here's how to control the cursor: 

• The cursor left/right keys (CTRL-+ and CTRL-*) work as 
usual; pressing CTRL-* moves the cursor right (forward) one 
space, and CTRL- + moves the cursor left (backward) one 
space. 

• The cursor up/down keys (CTRL-minus and CTRL-=) move 
the cursor to the beginning of either the next or previous 
sentence. Press CTRL-minus to move the cursor up (back­
ward) to the beginning of the previous sentence. Press 
CTRL-= to move the cursor down (forward) to the begin­
ning of the next sentence. 

• SHIFT - + moves the cursor left (backward) to the beginning 
of the previous word. SHIFT -* moves the cursor right (for­
ward) to the beginning of the next word. If you get confused, 
just look at the arrows on the keys for a reminder. 

• SHIFT-minus moves the cursor up (backward) to the begin­
ning of the previous paragraph. SHIFT - = moves the cursor 
down (forward) to the beginning of the next paragraph. 
Again, look at the arrows on these keys for a reminder. A 
paragraph always ends with a return-mark. 

7 



SpeedScript 

• The START button, pressed once, moves the cursor to the 
top (start) of the screen without scrolling. Pressed twice, it 
moves the cursor to the start of the document. 

• CTRL-Z moves the cursor to the end of the document. 
scrolling if necessary. It's easy to remember since Z is at the 
end of the alphabet. 

For special applications, if you ever need to type the ac­
tual character represented by a command or cursor key, press 
ESC before typing the CTRL key. Press ESC twice to get the 
ESCape character, CHR$(27). 

Correcting Your Typing 
Sometimes you'll have to insert some characters to make a 
correction. Use CTRL-INSERT to open up a single space, just 
as in BASIC. Merely position the cursor at the point where 
you want to insert a space, and press CTRL-INSERT. 

It can be tedious to use CTRL-INSERT to open up 
enough space for a whole sentence or paragraph. For conven­
ience, SpeedScript has an insert mode that automatically inserts 
space for each character you type. In this mode, you can't type 
over characters; everything is inserted at the cursor position. 
To enter insert mode, press CTRL-I. To cancel insert mode, 
press CTRL-I again. To let you know you're in insert mode, 
the black command line at the top of the screen turns blue. 

Insert mode is the easiest way to insert text, but it can be­
come too slow when inserting near the top of a very long 
document because it must move all the text following the 
cursor position. So SpeedScript has even more ways to insert 
blocks of text. 

One way is to use the TAB key. It is programmed in 
SpeedScript to act as a five-space margin indent. To end a para­
graph and start another, press RETURN twice and press TAB. 
TAB always inserts; you don't need to be in insert mode. You 
can also use TAB to open up more space than CTRL-INSERT. 
(You cannot set or clear tab stops in SpeedScript as you can 
with the normal screen editor.) No matter how much space 
you want to insert, each insertion takes the same amount of 
time. So the TAB key can insert five spaces five times faster 
than pressing CTRL-INSERT five times. 

There's an even better way, though. Press SHIFT -INSERT 
to insert 255 spaces (it does not insert a line; use RETURN for 

8 



Using SpeedScript 

that). You can press it several times to open up as much space 
as you need. And SHIFT -INSERT is fast. It inserts 255 spaces 
as fast as CTRL-INSERT opens up one space. Now just type 
the text you want to insert over the blank space. (You don't 
want to be in CTRL-I insert mode when you use this trick; 
that would defeat its purpose.) 

Since the DELETE/BACK 5 key (backspace) is also slow 
when working with large documents (it, too, must move all 
text following the cursor), you may prefer to use the cursor-left 
key to backspace when using this method. 

After you've finished inserting, there may be some in­
serted spaces left over that you didn't use. Just press 
SHIFT-DELETE/BACK S. This instantly deletes all extra 
spaces between the cursor and the start of following text. It's 
also useful whenever you need to delete a block of spaces for 
some reason. 

Erasing Text 
Press DELETE/BACK S by itself to erase the character to the 
left of the cursor. All the following text is pulled back to fill 
the vacant space. 

Press CTRL-DELETE/BACK S to delete the character on 
which the cursor is sitting. Again, all the following text is 
moved toward the cursor to fill the empty space. 

These keys are fine for minor deletions, but it could take 
all day to delete a whole paragraph this way. So SpeedScript 
has two commands that can delete an entire word, sentence, 
or paragraph at a time. CTRL-E erases text after (to the right 
of) the cursor position, and CTRL-D deletes text behind (to the 
left of) the cursor. 

To use the CTRL-E erase mode, first place the cursor at 
the beginning of the word, sentence, or paragraph you want to 
erase. Then press CTRL-E. The command line shows the mes­
sage "Erase (S,W,P): RETURN to exit." Press 5 to erase a sen­
tence, W for a word, or P for a paragraph. Each time you press 
one of these letters, the text is quickly erased. You can keep 
pressing 5, W, or P until you've erased all the text you wish. 
Then press RETURN to exit the erase mode. 

The CTRL-D delete mode works similarly, but deletes 
only one word, sentence, or paragraph at a time. First, place 
the cursor after the word, sentence, or paragraph you want to 

9 



SpeedScript 

delete . Then press CTRL-D. Next, press 5, W, or P for sen­
tence, word, or paragraph. The text is immediately deleted and 
you return to editing. You don't need to press RETURN to exit 
the CTRL-D delete mode unless you pressed this key by mis­
take . (In general, you can escape from any command in Speed­
Script by simply pressing RETURN.) CTRL-D is most 
convenient when the cursor is already past what you've been 
typing. 

The Text Buffer 
When you erase or delete with CTRL-E or CTRL-D, the text 
isn't lost forever. SpeedScript remembers what you've removed 
by storing deletions in a separate area of memory called a 
buffer. The buffer is a fail-safe device. If you erase too much or 
change your mind, just press CTRL-R to restore the deletion. 
However, be aware that SpeedScript remembers only the last 
erase or delete you performed. 

Another, more powerful use of this buffer is to move or 
copy sections of text. To move some text from one location in 
your document to another, first erase or delete it with CTRL-E 
or CTRL-D. Then move the cursor to where you want the text 
to appear and press CTRL-R. CTRL-R instantly inserts the 
contents of the buffer at the cursor position . If you want to 
copy some text from one part of your document to another, 
just erase or delete it with CTRL-E or CTRL-D, restore it at the 
original position with CTRL-R, then move the cursor else­
where and press CTRL-R to restore it again. You can retrieve 
the buffer with CTRL-R as many times as you like. If there is 
no room left in memory for inserting the buffer, you'll see the 
message "Memory Full." 

Important: The CTRL-E erase mode lets you erase up to 
the maximum size of the buffer (2K for disk, about 6K for 
tape), and CTRL-E also removes the previous contents of the 
buffer. Keep this in mind if there 's something in the buffer 
you'd rather keep. If you don't want the buffer to be erased, 
hold down the OPTION key while you press CTRL-E . This 
preserves the buffer contents and adds newly erased text to 
the buffer. 

If you ever need to erase the contents of the buffer, press 
CTRL-K (kill buffer). 

10 



Using SpeedScript 

The wastebasket Command 
If you want to start a new document or simply obliterate all 
your text, hold down OPTION while you press SHIFT -CLEAR 
(that's not a combination you're likely to press accidentally). 
SpeedScript asks, "ERASE ALL TEXT: Are you sure? (YIN)." 
This is your last chance. If you don't want to erase the entire 
document, press N or any other key. Press Y to perform the ir­
reversible deed. There is no way to recover text wiped out 
with Erase All. 

Search and Replace 
SpeedScript has a Find command that searches through your 
document to find a selected word or phrase. A Change option 
lets you automatically change one word to another throughout 
the document. 

OPTION-CTRL-F (find) activates the search feature, 
OPTION-CTRL-C (change) lets you selectively search and re­
place, and CTRL-G (global) is for automatically searching and 
replacing. 

Searching is a two-step process. First, you need to tell 
SpeedScript what to search for, then you trigger the actual 
search. Hold down OPTION and press CTRL-F. The command 
line prompts "Find:". Type in what you'd like to search for, 
the search phrase . If you press RETURN alone without typing 
anything, the Find command is canceled. 

When you are ready to search, press CTRL-F. SpeedScript 
looks for the next occurrence of the search phrase starting from 
the current cursor position. If you want to hunt through the en­
tire document, press START twice to move the cursor to the 
very top before beginning the search. Each time you press 
CTRL-F, SpeedScript looks for the next occurrence of the search 
phrase and places the cursor at the start of the phrase. If the 
search fails, you'll see the message "Not Found." 

CTRL-C works together with CTRL-F. After you've speci­
fied the search phrase with OPTION-CTRL-F, press OPTION­
CTRL-C to select the replace phrase. (You can press RETURN 
alone at the "Change to:" prompt to select a null replace 
phrase. When you hunt and replace, this deletes the located 
phrase.) To search and replace manually, start by pressing 
CTRL-F. After SpeedScript finds the search phrase, press 
CTRL-C if you want to replace the phrase. If you don't want 

11 



SpeedScript 

to replace the phrase, don't press CTRL-C. You are not in a 
special search and replace mode. You're free to continue writ­
ing at any time. 

CTRL-G links CTRL-F and CTRL-C together. It first asks 
"Find:", then "Change to:", then automatically searches and 
replaces throughout the document, starting at the cursor 
position. 

There are a few things to watch out for when using 
search and replace. First, realize that if you search for the, 
SpeedScript finds the embedded the in words like therefore and 
heathen. If you changed all occurrences of the to cow, these 
words would become cowrefore and heacown. If you want to 
find a single word, include a space as the first character of the 
word, since almost all words are preceded by a space. Natu­
rally, if you are replacing, you need to include the space in the 
replace phrase, too. 

SpeedScript also distinguishes between uppercase and 
lowercase. The word Meldids does not match with meldids. 
SpeedScript will not find a capitalized word unless you capital­
ize it in the search phrase. To cover all bases, you will some­
times need to make two passes at replacing a word. Keep 
these things in mind when using CTRL-G, since you don't 
have a chance to stop a global search and replace. 

Storing Your Document 
Just press CTRL-S to store a document. You'll see the prompt 
"Save: (Device:Filename}>". Type C: for cassette or D: plus a 
legal Atari filename for disk. If you use the same name as a 
file already on disk, that file will be replaced by the new one. 
CTRL-S always saves the entire document. The cursor position 
within the document is not important. 

When the SAVE is complete, SpeedScript reports "No er­
rors" if all is well or gives a message like "Error #144" if not. 
Check your DOS or BASIC manual for a list of error numbers 
and their causes. 

Loading a Document 
To recall a previously saved document, press CTRL-L. Answer 
the "Load: (Device:Filename}>" prompt with the filename. 
Again, remember to include the C: for cassette or D: for disk. 
SpeedScript loads the file and should display "No errors." 
Otherwise, SpeedScript reports the error number. 

12 



Using SpeedScript 

The position of the cursor is important before loading a file. 
Documents start loading at the cursor position, so be sure to 
press START twice or OPTION-SHIFT -CLEAR (Erase All) to 
move the cursor to the start of text, unless you want to merge 
two documents. When you press CTRL-L to load, the com­
mand line turns green to warn you if the cursor is not at the 
top of the document. 

To merge two or more files, simply load the first file, 
press CTRL-Z to move the cursor to the end of the document, 
and then load the file you want to merge. Do not place the 
cursor somewhere in the middle of your document before 
loading. A load does not insert the text from tape or disk, but 
overwrites all text after the cursor position. The last character 
loaded becomes the new end-of-text pointer, and you cannot 
access any text that appears ahead of this pointer. 

Since SpeedScript stores files in ASCII (American Standard 
Code for Information Interchange), you can load any ASCII 
file with SpeedScript . You could write a BASIC program with 
SpeedScript, save it on disk, then use ENTER to read the file 
from BASIC. In BASIC, you can store a program in ASCII 
form with LIST "D:filename" for disk or LIST "C" for tape, 
ready to load with SpeedScript. You can even load files pro­
duced by most other word processors, and most other Atari 
word processors can read SpeedScript files. You can make full 
use of SpeedScript's editing features to prepare ASCII files for 
the Atari Assembler/ Editor, MAC/65, and most other Atari 
assemblers. And SpeedScript files can be transferred via modem 
with your favorite telecommunications program that handles 
ASCII. 

Disk Commands 
Sometimes you forget the name of a file, or need to delete or 
rename a file . SpeedScript provides a unique mini-DOS for 
your convenience. Just press CTRL-M (menu). SpeedScript 
reads the entire disk directory and puts it on the screen in 
three columns. A large cursor shows you which file is cur­
rently selected. Use the cursor keys to move the cursor to the 
file you want to select. A menu at the bottom of the screen 
shows you what keys you need to press . Press CTRL-D to de­
lete the selected file, R to rename, L to lock, U to unlock, or F 
to format the disk. You can load the selected file by pressing 
CTRL-L. The position of the cursor within your document is 

13 



SpeedScript 

not important when loading a file from the menu-SpeedScript 
always erases anything you previously had in memory. 

Any changes you make to the directory will not show up 
until you call up the directory again. Press either I, 2, 3, or 4 
to update the directory from drives 1-4. This also sets the de­
fault disk drive, the drive accessed for further changes. When 
you're ready to return to writing, press either ESC or the RE­
TURN key. 

Additional Features 
SpeedScript has a few commands that don't do much, but are 
nice to have. CTRL-X exchanges the character under the 
cursor with the character to the right of the cursor. Thus, you 
can fix transposition errors with a single keystroke. CTRL-A 
changes the character under the cursor from uppercase to 
lowercase or vice versa. 

Press CTRL-B to change the background and border col­
ors. Each time you press CTRL-B, one of 128 different back­
ground colors appears. Press CTRL-T (text) to cycle between 
one of eight text luminances. The colors are preserved until 
you change them or reboot SpeedScript . 

If your TV suffers from overscanning, some characters on 
the left or right margin may be chopped off. Atari SpeedScript 
lets you widen and narrow the width of the screen. Press 
OPTION-CTRL-+ (the cursor-left key) to decrease the width 
of the screen. Each time you press it, the text is reformatted, 
and the left and right screen margins are adjusted by one 
character. You can decrease the width all the way down to two 
characters (although if your screen overscans that much, it's 
time to buy a new TV). To increase the width, to a maximum 
of 40 (the default width), press OPTION-CTRL-* (the cursor­
right key). 

One disadvantage of word-wrapping is that it's hard to 
tell exactly how many spaces are at the end of a screen line. 
When a word too long to fit on a line is wrapped to the next 
line, the hole it left is filled with "false" spaces. That is, the 
spaces are not actually part of your text and won't appear on 
paper. If you want to distinguish between true spaces and 
false spaces, press CTRL-O (on/off). The false spaces become 
tiny dots. You can write and edit in this mode if you wish, or 
turn off the feature by pressing CTRL-O again . 

14 



Using SpeedScript 

Atari SpeedScript disables the BREAK and inverse-video 
keys when you're entering or editing text. The inverse-video 
key was disabled because it is frequently pressed by accident 
on the 800 and 800XL models. If you want to enter inverse­
video characters, hold down SELECT while typing the keys. 

Atari 400 and 800 owners will notice that the action of 
the CAPS/LOWR key has been changed in SpeedScript. It 
works like the CAPS key on the XL and XE models. Press it 
once to switch to uppercase, and again to switch to lowercase. 
In other words, the CAPS /LOWR key toggles between upper­
case and lowercase. You can still use SHIFT-CAPS/LOWR to 
force entry to all uppercase. CTRL-CAPS/LOWR has no 
effect. 

Pressing SYSTEM RESET returns you to SpeedScript with­
out erasing your text when using Atari DOS. With as / A + 
DOS, SYSTEM RESET returns you to the DOS command 
prompt. You can get back to SpeedScript without losing any 
text if you type RUN at the prompt. 

PRINT! 
If you already think SpeedScript has plenty of commands, wait 
until you see what the printing package offers. SpeedScript 
supports an array of powerful formatting features. It automati­
cally fits your text between left and right margins which you 
can specify. You can center a line or block it against the right 
margin . SpeedScript skips over the perforation on continuous­
form paper, or it can wait for you to insert single-sheet paper. 
A line of text can be printed at the top of each page (a header) 
and/or at the bottom of each page (a footer), and can include 
automatic page numbering, starting with whatever number 
you like. (See page 19 for a summary of the formatting 
commands.) 

SpeedScript can print on different lengths and widths of 
paper, and single-, double-, triple-, or any-spacing is easy. You 
can print a document as big as can fit on a tape or disk by 
linking several files together during printing. You can print to 
the screen or to a file instead of to a printer. Other features let 
you send special codes to the printer to control features like 
underlining, boldfacing, and double-width type (depending on , 
the printer). 

15 



SpeedScript 

But with all this power comes the need to learn additional 
commands. Fortunately, SpeedScript sets most of these vari­
ables to a default state. If you don't change these settings, 
SpeedScript assumes a left margin of 5, a right margin position 
of 75, no header or footer, single-spacing, and continuous­
paper page feeding. You can change these default settings if 
you want (see below). Before printing, be sure the paper in 
your printer is adjusted to top-of-form (move the paper 
perforation just above the printing element). One additional 
note: Some printers incorporate an automatic skip-over­
perforation feature. The printer skips to the next page when it 
reaches the bottom of a page. Since SpeedScript already con­
trols paper feeding, you need to turn off this automatic skip­
over-perf feature before running SpeedScript, or paging won't 
work properly. 

To begin printing, simply press CTRL-P. SpeedScript 
prompts "Print: (Device:Filename» " . You can print to almost 
any device, even disk or cassette. If you enter E (for Editor), 
SpeedScript prints to the screen, letting you preview where 
lines and pages break. Enter P to Print for most printers. If 
your printer is attached, powered on, and selected (online), 
SpeedScript begins printing immediately. To cancel printing, 
hold down the BREAK key until printing stops. You can use 
CTRL-l to pause printing. Press CTRL-l again to continue. 

If you need to print to an RS-232 printer, just Print to a 
disk file, then boot up your DOS master disk and use the copy 
selection to copy the print file to the R: device. You can also 
write BASIC programs to read and process a Printed disk file. 
Remember, a Print to disk is not the same as a Save to disk. 

Formatting Commands 
The print formatting commands must be distinguished from 
normal text, so they appear onscreen in inverse video with the 
text and background colors switched. As mentioned above, the 
regular inverse-video key is not used for entering inverse­
video text. Instead, hold down the SELECT key while typing 
the format key. All lettered printer commands should be en­
tered in lowercase (unSHIFTed). During printing, SpeedScript 
treats these characters as printing commands. 

There are two kinds of printing commands, which we'll 
call Stage 1 and Stage 2. Stage 1 commands usually control 
variables such as left margin and right margin. Most are fol-

16 



Using SpeedScript 

lowed by a number, with no space between the command and 
the number. Stage 1 commands are executed before a line is 
printed. 

Stage 2 commands, like centering and underlining, are 
executed while the line is being printed. Usually, Stage 1 com­
mands must be on a line of their own, although you can group 
several Stage 1 commands together on a line. Stage 2 com­
mands are by nature embedded within a line of text. Again, 
remember to hold down SELECT to enter the boldface charac­
ters shown here. 

Stage 1 Commands 
1 Left margin. Follow with a number from 0 to 255. Use 0 

for no margin. Defaults to 5. 
f Right margin position, a number from 1 to 255. Defaults 

to 75. Be sure the right margin value is greater than the left 
margin value, or SpeedScript will go bonkers. 

t Top margin . The position at which the first line of text is 
printed, relative to the top of the page. Defaults to 5. The 
header (if any) is always printed on the first line of the page, 
before the first line of text. 

b Bottom margin. The line at which printing stops before 
continuing to the next page. Standard 8-1/2 X 11 inch paper 
has 66 lines . Bottom margin defaults to line 58. Don't make 
the bottom margin greater than the page length. 

p Page length. Defaults to 66. If your printer does not 
print six lines per inch, multiply lines-per-inch by 11 to get the 
page length. European paper is usually longer than American 
paper-11-5/8 or 12 inches. Try a page length of 69 or 72 . 

s Spacing. Defaults to single-spacing. Follow with a num­
ber from 1 to 255 . Use 1 for single-spacing, 2 for double­
spacing, 3 for triple-spacing. 

@ Start numbering at page number given. Page number­
ing normally starts with 1. 

? Disables printing until selected page number is reached. 
For example, a value of 3 would start printing the third page 
of your document. Normally, SpeedScript starts printing with 
the first page. 

x Sets the page width, in columns (think a cross). Defaults 
to 80. You need to change this for the sake of the centering 
command if you are printing in double-width or condensed 
type, or if you are using a 40-column or wide-carriage printer. 

17 



.....
. 

0
0

 
A

la
ri

 S
p

e
e
d

S
c
ri

p
t 

3
.0

 K
e
y

b
o

a
rd

 M
ap

 

U
se

 
(C

IR
L)

 w
it

h
 m

o
s
t 

co
m

m
a

n
d

s.
 

II
IS

fl
't

 s
p~

c •
 

..
. /

S
H

IF
T

: 
In

S
fl

't
 2

5
5

 
s .

.. t
ft

tC
. 

4
o

V
II

. 
1_

 ..
 -

t 
S

IM
Y

 
s
p

_
.s

 
/S

H
IF

T
-

..
..

.,
0

 
E

 ... 
~
s
e
 -

S
e
n

t.
n

e
. 

f 
I 

..
. 

-
5 
sp

~c
.s

 
"'
O"
'd
:P
~"
'~
"'
~P
':
 

U
n

u
s.

d
 

s
::

c
·.

s
: 

..
,/

O
P

T
lO

N
: 

lf
e.

xt
 P

 ..
..

 ~
.
 

l 
ln

t.
 b

u
ff

..
..

 
ch

~ 
... 
~c

t .
..

. s
 

O
ll

l/
O

F
F

 
E

R
A

S
E

 A
ll

 
Sh

oW
' 
n

.x
t 

C
h 

t 
t 

D
e
l.

t.
 c

h
 _

_
 ~c

tf
l:
. 

C
T

R
L

 
S~

y.
 

R
e
t ..

. w
v

e
 

.'
,'

9
..

x
 

In
s .

..
. t

 
K

t1
1 

_ 
W

' /
S

H
IF

T
: 

ch~
 .... c

te
..

. 
B

uf
f·

...
. 

1uml
l'~n

c. 
} 

M
od

e 
b

u
ff

.r
 

p 
... ~n

t 
o

. t
.t

. 
s
p

_
.s

_
 

~
 CD

-
0

1
 m
m
~
~
 

m
m
~
"
 ~@
 m
~
 

m
u

 
E
J
l
'
-
.
!
)
~
~
W
W
~
~
W
l
2
)
<
 

(i
ip
~ 

@
 0

 
E

 
R

 
T

 
0 

U
 

l
O

P
 

0
=

 
D~
 (

 
R

E
T

U
R

N
 
);::

.-:n
 

(CT
~L 
X
~
~
~
 F

 
G

 
®

 0
 

K
 

L 
0 

CI~
 @

 ~'
P~ 

'~i
;i:

;T.
 

~:::
 .. (

 S"
IFT

 ~!
P.

P 
~
 0 
@~

~ H
© 0

2.£
2. c

P ~
£ 

:::
T )
:~

f 
S

.n
t.

n
c
e
. 

o
f 

p
o

s .
.
.
.
 /O

P
T

lO
N

: 
C

o
lo

r 
(D

O
S

) 
..

. /
S

H
IF

T
: 

o
n

/o
ff

 
"
'o

rd
 

t.
x

t 
S

I
t
 co

.. 
P
~
r
~
r
~
p
h
 u

p
 

..
. /

S
H

IF
T

: 
C

A
P

S
 L

o
ck

 
• 

• 
.c

 
"~

IM
J.

 
G
l
o
b
~
1
 

P 
..

..
 ~g

r-
~p
h 

F
in

d
 

p
h
r
~
s
.
 

ln
t.

 b
u

ff
.r

 
..

 /O
P

T
IO

tI
: 

F
1
n
d
/
C
h
~
n
g
.
 

l
o
~
d
 

S
.l

.c
t 
s
.
~
r
c
~
 p

h
 ... 
~
s
.
 

C
h
~
 ...

 ~
c
t
 ..

..
 I

.f
t_

 
W

' /
S

H
IF

T
: 

",
 ..

..
 d 

I.
ft

. 
y 

/O
P

T
 l0

II
I:

 l
I
I
~
r
r
.
Y
 
S

c
 ..

..
. n

 

R
E

S
E

T
 

F
or

ce
d 

re
tu

rn
 t

o
 e

d
it

in
g

 m
od

e 

O
P

T
IO

N
 

S
E

L
E

C
T

 

S
T

A
R

T
 

U
se

d 
w

it
h

 s
om

e 
co

m
m

a
n

d
s 

fo
r 

sp
e

ci
a

l 
o

p
ti

o
n

 

H
ol

d 
d

o
w

n
 w

h
il
e

 t
yp

in
g

 f
o

rm
a

t 
ke

ys
 

P
re

ss
 o

nc
e:

 t
o

p
 o

f 
sc

re
e

n
; 

t w
i c

e:
 t

o
p

 o
f 

te
x
t 

~
 ~ -5' f"

t-



Using SpeedScript 

Formatting Commands Enter with SELECT 

Command Default Command Default 

IIbottom margin 58 II page length 66 
Bcentering IIright margin 75 
fledge right Elspacmg 1 

lIdefi ne footer IItop margin 5 
IIgoto linked fHe Dunderline toggle 
mdefine header apage wait off 
n information IIcolumns across 80 II select hnefeeds IiIpage number II left margin 5 
II mlJrgin relelJse tm starting page number 1 

iii next page Iprint startmg with # 1 

n Forced paging. Normally, SpeedScript prints the footer 
and moves on to the next page only when it has finished a 
page, but you can force it to continue to the next page by issu­
ing this command. It requires no numbers. 

m Margin release. Disables the left margin for the next 
printed line. Remember that this executes before the line is 
printed. It's used for outdenting. 

w Page wait. This command should be placed at the 
beginning of your document before any text. With page wait 
turned on, SpeedScript prompts you to " Insert next sheet, press 
RETURN" when each page is finished printing. Insert the next 
sheet, line it up with the printhead, then press RETURN to 
continue. Page wait is ignored during disk or screen output. 

j Select automatic linefeeds after carriage return. Like w, 
this command must be placed before any text. Don't use this 
command to achieve double-spacing, but only if all text prints 
on the same line. 

i Information. This works like REM in BASIC. You follow 
the command with a line of text, up to 255 characters, ending 
in a return-mark. This line will be ignored during printing and 
is handy for making such notes to yourself as the filename of 
the document. 

19 



SpeedScript 

h Header define and enable. The header must be a single 
line of text (up to 254 characters) ending in a return-mark. The 
header prints on the first line of each page. You can include 
Stage 2 commands such as centering and page numbering in a 
header. You can use a header by itself without a footer . The 
header and footer should be defined at the top of your docu­
ment, before any text. If you want to prevent the header from 
printing on the first page, put a return-mark by itself at the 
top of your document before the header definition. 

f Footer define and enable. The footer must be a single 
line of text (up to 254 characters) ending in a return-mark. The 
footer prints two lines prior to the last line of each page. As 
with the header, you can include Stage 2 printing commands, 
and you don't need to set the header to use a footer. 

g Go to (link) next file. Put this command as the last line 
in your document. Follow the command with the filename, 
including D: for disk. After the text in memory is printed, the 
link command loads the next file into memory. You can con­
tinue linking in successive files , but don't include a link in the 
last file. Before you start printing a linked file, make sure the 
first of the linked files is in memory. When printing is fin­
ished, the last file linked to will be in memory. 

Stage 2 Commands 
These commands either precede a line of text or are embedded 
within one. 

c Centering. Put this at the beginning of a line you want 
to center. This will center only one line ending in a return­
mark. Repeat this command at the beginning of every line you 
want centered. Centering uses the page-width setting (see 
above) to center the line properly. To center a double-width 
line, either set the page width to 40 or pad out the rest of the 
line with an equal number of spaces. If you use double-width, 
remember that the spaces preceding the centered text will be 
double-wide spaces. 

e Edge right. This works in the same manner as centering, 
but it blocks the line flush with the right margin. 

# When SpeedScript encounters this command, it prints 
the current page number. You usually embed this within a 
header or footer. 

20 



Using SpeedScript 

u A simple form of underlining. It works only on printers 
that recognize CHR$(8) as a backspace and CHR$(95) as an 
underline character. Underlining works on spaces, too. Use the 
first u to start underlining and another one to turn off 
underlining. 

Fants and Styles 
Most dot-matrix printers are capable of more than just printing 
text at ten characters per inch. Some printers have several 
character sets, with italics and foreign language characters. 
Most can print in double-width (40 characters per line), con­
densed (132 characters per line), and in either pica or elite. 
Other features include programmable characters, pro­
grammable tab stops, and graphics modes. Many word proces­
sors customize themselves to a particular printer, but 
SpeedScript was purposely designed not to be printer-specific. 
Instead, SpeedScript lets you define your own Stage 2 printing 
commands. 

You define a programmable printkey by choosing any 
character that is not already used for other printer commands. 
The entire uppercase alphabet is available for printkeys, and 
you can choose letters that are related to their function (like D 
for double-width) . You enter these commands like printer 
commands, by holding down SELECT while you type them. 
The printkeys are like variables in BASIC. 

To define a printkey, just hold down SELECT while you 
type the key you want to assign as the printkey, then an equal 
sign (=), and finally the ASCII value to be substituted for the 
printkey during printing. Now, whenever SpeedScript en­
counters the printkey embedded in text, it prints the character 
with the ASCII value you previously defined. 

For example, to define the + key as the letter z, you first 
look up the ASCII value of z (in either your printer manual or 
in any Atari manual). The ASCII value of the letter z is 122, so 
the definition is 

G-122 

Now, anywhere you want to print the letter z, substitute the 
printkey: 

Gad~oks~ The ~o is ~ny~ 

21 



SpeedScript 

This would appear on paper as 

Gadzooks! The zoo is zany! 

More practically, here's how you could program italics on 
an Epson MX-80-compatible printer. You switch on italics by 
sending an ESC (a character with an ASCII value of 27), then 
the character 4. You turn off italics by sending ESC 5. So de­
fine SHIFT -E as the escape code. Anywhere you want to print 
a word in italics, bracket it with printkey E, then 4, and 
printkey E, then 5, 

The word ~italics~ is in italics 

You can similarly define whatever codes your printer uses 
for features like double-width or emphasized mode. For your 
convenience, four of the printkeys are predefined, though you 
can change them. Keys 1-4 are defined as 27, 14, 15, and 18, 
common values for most printers. On most printers, CHR$(27) 
is the ESCape key, CHR$(14) starts double-width, CHR$(15) 
either stops double-width or starts condensed characters, and 
CHR$(18) usually cancels condensed characters. 

SpeedScript actually lets you embed any character within 
text, so you may prefer to put in the actual printer codes as 
part of your text. To set italics, you could just press ESC twice, 
then 4. The ESC key appears in text as a mutant E. Double­
width has a value of 14, the same value as CTRL-N. To start 
double-width, just embed a CTRL-N. Remember that you 
must press ESC before any CTRL key to get it to appear in 
text. CTRL keys appear as small "shadowed" capital letters. 
These characters, though, are counted as part of the length of 
a line, and excessive use within one line can result in a shorter 
than normal line. It can be more convenient to use the 
printkeys, since if you ever change printers, you have to 
change only the definitions of the keys. 

Keep one thing in mind about printkeys: SpeedScript al­
ways assumes it is printing to a rather dumb, featureless 
printer, the least common denominator. SpeedScript doesn't 
understand the intent of a printkey; it justs sends out its value. 
So if you make one word within a line double-width, it may 
make the line overflow the specified right margin. There's no 

22 



Using SpeedScript 

way for SpeedScript to include built-in font and typestyle codes 
without being customized for a particular printer since no set 
of codes is universal to all printers. 

Hints and Tips 
It may take you awhile to fully master SpeedScript, but as you 
do, you'll discover many ways to use the editing and format­
ting commands. For example, there is a simple way to simu­
late tab stops, say, for a columnar table. Just type a period at 
every tab stop position. Erase the line with CTRL-E, then re­
store it with CTRL-R multiple times. When you are filling in 
the table, just use word left/word right to jump quickly be­
tween the periods. Or you can use the programmable print­
keys to embed your printer's own commands for setting and 
jumping to tab stops. 

You don't have to change or define printer commands 
every time you write. Just save these definitions and load this 
file each time you write. You can create many custom defi­
nition files and have them ready to use on disk. You can cre­
ate customized "fill-in-the-blank" letters. Just type the letter, 
and everywhere you'll need to insert something, substitute a 
unique character, such as an ... or a CTRL character. When 
you're ready to customize the letter, use Find to locate each 
symbol and insert the specific information. Instead of typing 
an oft-used word or phrase, substitute a unique character, then 
use CTRL-G to globally change these characters into the actual 
word or phrase. You can even use SpeedScript as a simple fil­
ing program. Just type in all your data, flagging each field 
with a unique character. You can use Find to quickly locate 
any field. 

23 



-



Chapter 2 

Entering 
Spee"Seript 





The Machine 
Language Editor: 

MLX 
Two program-entry aids written in BASIC are included here to make 
typing in SpeedScript as easy as possible. The first, "MLX," is explained 
in this article. The second, "The Automatic Proofreader," is a short pro­
gram that will help you type in MLX without typing mistakes. Read the 
instructions for using the Automatic Proofreader later in this chapter 
before you type in the MLX program. 

"MLX" is a new way to enter long machine language (ML) 
programs with a minimum of fuss. MLX lets you enter the 
numbers from a special list that looks similar to BASIC DATA 
statements. It checks your typing on a line-by-line basis. It 
won't let you enter illegal characters when you should be typ­
ing numbers . It won't let you enter numbers greater than 255 
(forbidden in ML). And it won't let you enter the wrong num­
bers on the wrong line. In addition, MLX creates a ready-to­
use tape or disk file. 

using MLX 
Type in and save MLX, Program 2-1 (you'll want to use it in 
the future). When you're ready to type in SpeedScript, run 
MLX. MLX asks you for three numbers: the starting address, 
the ending address, and the run/init address. These numbers 
for SpeedScript are 
Starting Address? 7936 
Ending Address? 16229 
Run/lnit Address 7936 

Next, you'll be asked "Tape or Disk." SpeedScript can be 
saved as either a binary file on disk or as a boot tape. Press T 
for use with a tape drive . If you press 0 for disk, you'll be 
asked "Boot Disk or Binary File. " Press F to select the Binary 
File option. Although you could save SpeedScript as an auto­
booting disk, it makes no sense, since such a disk cannot con­
tain DOS, which is necessary for file-oriented disk access. 

The screen will then show the first prompt, the number 
7936 followed by a colon. Type in each three-digit number 

27 



SpeedScript 

shown in the listing. You do not need to type the comma 
shown in the listing; MLX inserts the comma automatically. 
The prompt is the current line you are entering from the list­
ing. It increases by six each time you enter a line. That's be­
cause each line has seven numbers-six actual data numbers 
plus a checksum number. The checksum verifies that you 
typed the previous six numbers correctly. If you enter any of 
the six numbers wrong, or if you enter the checksum wrong, 
the computer rings a buzzer and prompts you to reenter the 
line. If you enter it correctly, a bell tone sounds and you con­
tinue to the next line. 

MLX accepts only numbers as input. If you make a typing 
error, press the DELETE/BACK S key; the entire number is 
deleted. You can press it as many times as necessary back to 
the start of the line. If you enter three-digit numbers as listed, 
the computer automatically prints the comma and goes on to 
accept the next number. If you enter less than three digits, you 
can press the comma key, the space bar, or the RETURN key 
to advance to the next number. The checksum automatically 
appears in inverse video for emphasis. 

MLX Commands 
When you finish typing an ML listing (assuming you type it 
all in one session), you can then save the completed program 
on tape or disk. Follow the screen instructions. If you get any 
errors while saving, you probably have a bad disk or the disk 
is full or you made a typo when entering the MLX program 
itself. 

Fortunately, you don't have to enter all of SpeedScript in 
one sitting. MLX lets you enter as much as you want, save it, 
and then reload the file from tape or disk later. MLX rec­
ognizes these commands: 
CTRL-S Save 
CTRL-L Load 
CTRL-N New Address 
CTRL-D Display 

To issue a command, hold down the CTRL key (CON­
TROL on the XL models) and press the indicated key. When 
you enter a command, MLX jumps out of the line you've been 
typing, so we recommend you do it at a new prompt. Use the 
Save command (CTRL-S) to save what you've been working 

28 



Entering SpeedScript 

on. It will save on tape or disk as if you've finished, but the 
tape or disk won't work, of course, until you finish the typing. 
Remember to make a note of the address where you stop. The 
next time you run MLX, answer all the prompts as you did 
before-regardless of where you stopped typing-then insert 
the disk or tape. When you get to the line number prompt, 
press CTRL-L to reload the partly completed file into memory. 
Then use the New Address command to resume typing. 

To use the New Address command, press CTRL-N and 
enter the address where you previously stopped. The prompt 
will change, and you can then continue typing. Always enter a 
New Address that matches up with one of the line numbers in 
the MLX-format listing, or the checksum won't work. The Dis­
play command lets you display a section of your typing. After 
you press CTRL-D, enter two addresses within the line-number 
range of the listing. You can break out of the listing display 
and return to the prompt by pressing any key. 

Program 2-1. MLX: The Machine Language Editor 
Refer to the "Automatic Proofreader" article before typing in this program. 

DA 1~~ GRAPHICS ~:DL=PEEK(56~)+256*PEEK(561)+4 
:POKE DL-1,71:POKE DL+2,6 

NJ 11 ~ POS I T I ON 8, ~:? "ML X" : POS I T I ON 23, ~ :? "[i 

ailsaf'e en"1:r :' : POKE 71 ~, ~: ? 
JK 12~ ? "Starting Address";: INPUT BEG:?" En 

ding Address";:INPUT FIN:? "Run/lnit Ad 
dress";:INPUT STARTADR 

DD 13~ DIM A(6),BUFFERS(FIN-BEG+127),T$(2~),F$ 
(2~),CIO$(7),SECTOR$(128),DSKINV$(6) 

JJ14~ OPEN ttl,4,~,"K:":?:? , "ijape or /!:isk:"; 
~15~ BUFFER$=CHR$(~):BUFFER$(FIN-BEG+3~)=BUF 

FERS:BUFFERS(2)=BUFFER$:SECTOR$=BUFFER$ 
GC 1 6 ~ ADD R = BEG: C I 0 $ = " h h h " : C I 0 $ ( 4 ) = C H R $ ( 1 7 ~) : C 

IO$(5)="LV":CIO$(7'=CHR$(228) 
~ 17~ GET ttl,MEDIA:IF MEDIA<>84 AND MEDIA<>68 

THEN 17~ 
~18~ ? CHRS(MEDIA):? :IF MEDIA<>ASC("T") THE 

N BUFFER$="":GOTO 25~ 
PL 19~ BEG=BEG-24:BUFFER$=CHR$(~):BUFFER$(2)=C 

HR$(INT«FIN-BEG+127)/128» 
KF2~~ H=INT(BEG/256):L=BEG-H*256:BUFFER$(3)=C 

HRS(L):BUFFER$(4)=CHR$(H) 
EC21~ PINIT=BEG+8:H=INT(PINIT/256):L=PINIT-H* 

256:BUFFER$(5)=CHR$(L):BUFFER$(6)=CHR$( 
H) 

29 



SpeedScript 

PB220 FOR 1=7 TO 24:READ A:BUFFER$(I)=CHR$(A) 
:NEXT I:DATA 24,96,169,60,141,2,211,169 
,0,133,10,169,0,133,11,76,13,0 

DP230 H=INT(STARTADR/256):L=STARTADR-H*256:BU 
FFER$(15)=CHR$(L):BUFFER$(19)=CHR$(H) 

KL240 BUFFER$(23)=CHR$(L):BUFFER$(24)=CHR$(H) 
HI250 IF MEDIA< >ASC ("D") THEN 360 
002607:7 "Boot IEisk or Binary Giile:"; 
LI270 GET ~1,DTVPE:IF DTVPE< >68 AND DTVPE<>713 

THEN 270 
6"280 7 CHR$(DTVPE):IF DTVPE=70 THEN 360 
PJ290 BEG=BEG-30:BUFFER$=CHR$(0):BUFFER$(2)=C 

HR$ ( I NT ( (F I N-BEG+ 127> 1128) ) 
KS300 H=INT(BEG/256):L=BEG-H*256:BUFFER$(3)=C 

HR$(L):BUFFER$(4)=CHR$(H) 
HH310 PINIT=STARTADR:H=INT(PINIT/256):L=PINIT 

-H*256:BUFFER$(5)=CHR$(L) :BUFFER$(6)=CH 
R$(H) 

A0320 RESTORE 330:FOR 1=7 TO 30:READ A:BUFFER 
$(I)=CHR$(A):NEXT I 

6A 3 3 0 D A T A 1 69 , 0, 1 4 1 , 2 3 1 , 2 , 1 3 3, 1 4, 1 6 9 , 0. 1 4 1 , 2 
32,2,133,15,169,0,133,10,169,0,133,11,2 
4,96 

OB340 H=INT(BEG/256):L=BEG-H*256:BUFFER$(8)=C 
HR$(L):BUFFER$(15)=CHR$(H) 

D0350 H=INT(STARTADR/256):L=STARTADR-H*256:BU 
FFER$(22)=CHR$(L):BUFFER$(26)=CHR$(H) 

JP360 GRAPHICS 0:POKE 712,10:POKE 710,10:POKE 
709,2 

JK 370 7 ADD R; " : " ; : FOR J = 1 TO 6 
NF380 GOSUB 570:IF N=-l THEN J=J-1:GOTO 380 
BF 390 I F N = - 1 9 THE N 720 
01400 IF N=-12 THEN LET READ=1:GOTO 720 
AI410 TRAP 410: IF N=-14 THEN 7 : 7 "New Addres 

s";:INPUT ADDR:7 :GOTO 370 
~420 TRAP 40000:IF N(> -4 THEN 480 
AJ 430 T RAP 430: 7 : 7 "D i s pIa y : Fro m " ; : I N PUT F: 7 

,"To";: INPUT T:TRAP 32767 
~440 IF F<BEG OR F)FIN OR T<BEG OR T ) FIN DR 

T<F THEN 7 CHR$(253);"At least ";BEG ;", 
Not More Than ";FIN:GOTO 430 

"H 450 FOR I = F TOT S T E P 6:? :" I;":";: FOR K = 0 
TO 5:N=PEEK(ADR(BUFFER$)+I+K-BEG) :T$=" 

000":T$(4-LEN(STR$(N»)=STR$(N) 
KA460 IF PEEK(764)<255 THEN GET #1,A:PoP :POP 

:7 :GOTo 370 
F" 470 7 T $; " , " ; : N EXT K:? C H R $ ( 1 26) ; : N EXT I'? 

:? :GoTO 370 
6A480 IF N<0 THEN" :GOTO 370 
"H 490 A ( J ) = N : N EXT J 

30 



Entering SpeedScript 

J~5~~ CKSUM=ADDR-INT(ADDR/256)*256:FoR 1=1 TO 
6:CKSUM=CKSUM+A(I):CKSUM=CKSUM-256*(CK 

SUM>255):NEXT 1 
KK51~ RF=128:SoUND ~,200,12,8:GoSUB 570:SoUND 

0,~,0,0:RF=~:7 CHRS(126) 
eN 5 2 ~ I F N ( > C K SUM THE N 7 : 7 .. Inc or- r- e c t .. ; C H R S ( 

253);:7 :GOTO 370 
EK530 FOR W=15 TO ~ STEP -l:SoUND 0,50,10,W:N 

EXT W 
FL54~ FOR 1=1 TO 6:POKE ADR(BUFFERS)+ADDR-BEG 

+I-l,A(l):NEXT 1 
~55~ ADDR=ADDR+6:IF ADDR(=FIN THEN 370 
6~ 5 6 ~ GOT 0 7 1 0 
FI570 N=0: Z=~ 
PH580 GET #1,A:IF A=155 OR A=44 OR A=32 THEN 

670 
FB59~ IF A< 32 THEN N=-A:RETURN 
EB 6 ~ ~ I F A < > 1 26 THE N 6 3 ~ 
~61~ GoSUB 69~:IF 1=1 AND T=44 THEN N=-1:7 C 

HRS(126);:GOTO 690 
6N 62~ GOTO 570 
GJ63~ IF A(48 OR A>57 THEN 58~ 

AN64~ ? CHRS(A+RF);:N=N*10+A-48 
EB65~ IF N>255 THEN? CHRS(253);:A=126:GoTO 6 

~~ 

EH66~ Z=Z+1:IF Z< 3 THEN 58~ 
JH67~ IF Z=0 THEN? CHRS(253);:GoTO 57~ 
KC 680 ? .. , .. ;: RETURN 
N0690 POKE 752,1:FOR 1=1 TO 3:? CHRS(3~);:GET 

#6,T:IF T< >44 AND T<>58 THEN? CHRS(A) 
;:NEXT 1 

PI 70~ POKE 752,0:? .. ";CHRS(126) .; :RETURN 
K"71~ GRAPHICS ~:POKE 71~,26:POKE 712,26:PoKE 

7~9,2 

FF 72~ IF MED I A=ASC ( "T") THEN 89~ 
OJ 73~ REM •• )"'-J:_ 
OK 7 4 ~ I F REA D THE N ? :? " L a a d F i 1 e " : ? 
16 75~ IF DTVPE< >7~ THEN 1 ~4~ 
M76~ ? :? "Enter- AUTORUN.SVS for- automatic u 

sen:? :? "Enter filename":INPUT TS 
~77~ F$=T$:IF LEN(TS»2 THEN IF TS(1,2)<>"D: 

" THEN FS="D:":FS(3)=TS 
NJ7B~ TRAP 870:CLOSE #2:0PEN #2,B-4*READ,0,FS 

:? :? .. Working ..... 
J"79~ IF READ THEN FOR 1=1 TO 6:GET #2,A:NEXT 

I:GOTO B2~ 
POB~~ PUT #2,255:PUT #2,255 
DJB1~ H-INT(BEG/256):L=BEG-H*256:PUT #2,L:PUT 

#2,H:H=INT(FIN/256):L=FIN-H*256:PUT #2 
,L:PUT #2,H 

31 



SpeedScript 

NF820 GOSUB 970:IF PEEK(195»1 THEN 870 
IF830 IF STARTADR=0 OR READ THEN 850 
FD840 PUT #2,224:PUT #2,2:PUT #2 , 225:PUT #2,2 

:H=INT(STARTADR/256):L=STARTADR-H*256:P 
UT #2,L:PUT #2,H 

Be 850 T RAP 40121 121 121 : C LOS E # 2 : ';' "F i n ish e d . " : I F R E 
AD THEN? : ? :LET READ=I2I:GOTO 360 

HF 860 END 
FO 870 ? " Err 0.... "; PEE K ( 1 95) ; " try i n g to ace e s s 

":? F$:CLOSE #2:? :GOTO 76121 
"C 880 REM • • Ia1o •• ,:1=-4 
HN 89121 I F REA D THE N ? :? "R e a d Tap e " 
H1900? :? :? "Insert , Rew i nd Tape.":? "Press 

PLAY ";:IF NOT READ THEN? "& RECORD" 
LP 910 ? :? "Press 1:.iiiiIJ:t : when ready:"; 
JH920 TRAP 960:CLOSE #2:0 P EN #2,8-4*READ,128, 

"C: ":? :? "Working . • . " 
NH930 GOSUB 970:IF PEEK(195»1 THEN 960 
GC 9412' C LOS E # 2 : T RAP 4121 000 : ';' " Fin ish e d . " : ';' :") 

:IF READ THEN LET READ=0 : GOTO 3 60 
HF 950 END 
CD 960 ? :? " E ........ 0 r "; PEE K ( 1 95) ;" w hen rea din g I 

w .... iting boot tape":? :CLOSE #2:GOTO 89121 
:1;;(:1.2, 

EA980 X=32:REM File#2,$20 
EF990 ICCOM=834:ICBADR=B36:ICBLEN=840: ICSTAT= 

835 
"D 1000 H=INT(ADR(BUFFER$)/256):L=ADR(BUFFER$) 

-H*256:POKE ICBADR+X,L:POKE ICBADR+X+l 
, H 

~1010 L=FIN-BEG+ 1 :H=INTIL/256):L=L-H*256:POK 
E ICBLEN+X,L:POKE ICBLEN+X+1,H 

"D 1020 POKE ICCOM+X,11-4*READ:A=USR(ADR(CIO$) 
, X) 

~103121 POKE 195,PEEKIICSTAT):RETURN 
Y.A 104121 REM .. ..,#(lti.]:_U .• 
K1050 IF READ THEN 1100 
HE 1 060 ? :? "F 0 r mat Dis kIn D r i vel? I YIN) : " ; 
~ 1070 GET #1,A:IF A<>78 AND A< >89 THEN 1070 
EC 1080 ? CHR$IA):IF A=78 THEN 1112'0 
CP 1 09 0 ? :? " For mat tin g . . . " : X I 0 2 5 4 , # 2 , 121 , 0, "D 

:":? "Format Complete":? 
~ 110121 NR=INT«FIN-BEG+127)/128):BUFFER$(FIN­

BEG+2)=CHR$(fZl) : IF READ THEN? "Reading 
••• ":GOTO 1120 

LE 1 1 1 121 ? " W r i tin g . . . " 
LJ 1120 FOR 1=1 TO NR: S=I 
10113121 IF READ THEN GOSUB 1220:BUFFER$II*128-

127)=SECTOR$:GOTO 116121 

32 



Entering SpeedScript 

~ 114~ SECTOR$=BUFFER$(I*128-127) 
A" 115~ GOSUB 122~ 
~116~ IF PEEK(DSTATS)<>1 THEN 12~0 

FB 1 1 7 ~ N EXT I 
~118~ IF NOT READ THEN END 
"119~ ? :? :LET READ=~:GOTO 36~ 
JJ 12~~ ? "Error on disk access. ":? "May need 

formatting.":GOTO 1~4~ 

K1121~ REM 
BL 122~ REM "1"1:O:lji:'1:_:to:.t~?i--s.~-'!IJ;! :t.l'j~ 

IS 123~ REM Dr i ve ONE 
IH 124~ REM Pass buffer in SECTOR$ 
~125~ REM sector # in variable 5 
~126~ REM READ=1 for read, 
KJ 1 2 7 ~ REM REA D = ~ for w r i t e 
~128~ BASE=3*256 
SL 129~ DUNIT=BASE+1:DCOMND=BASE+2:DSTATS=BASE 

+3 
NL 13~~ DBUFLO=BASE+4:D8UFHI=BASE+5 
Al 131 ~ DBYTLO=BASE+8: D8YTH I =BASE+9 
JA 132~ DAUX1=BASE+l~:DAUX2=BASE+11 
~133~ REM DIM DSKINV$(4) 
CA 1 3 4 ~ D 5 KIN V $ = " h L 5 " : D 5 KIN V $ C 4 ) = C H R $ C 228 ) 
PF 135~ POKE DUNIT,1:A=ADR(SECTOR$):H=INT(A/25 

6):L=A-256*H 
• 136~ POKE DBUFHI,H 
~137~ POKE DBUFLO,L 
PD 138~ POKE DCOMND,87-5*READ 
AA 139~ POKE DAUX2,INT(S/256):POKE DAUX1,S-PEE 

K(DAUX2)*256 
~ 14~~ A=USR(ADRCDSKINV$» 
KS 141 ~ RETURN 

33 



The Automatic 
Proofreader 

At last there's a way for your computer to help you check your typing. 
"The Automatic Proofreader" will make entering programs faster, easier, 
and more accurate. 

The strong point of computers is that they excel at tedious, 
exacting tasks. So why not get your computer to check your 
typing for you? 

"The Automatic Proofreader" will help you type in 
"MLX" program listings without typing mistakes. It is a short 
error-checking program that hides itself in memory. When ac­
tivated, it lets you know immediately after typing a line from 
a program listing if you have made a mistake . Please read 
these instructions carefully before typing the MLX program. 

preparing the Proofreader 
1. Type in the Proofreader (Program 2-2) . Be very careful 

when entering the DATA statements-don't type an I in­
stead of a 1, an 0 instead of a 0, extra commas, and so on. 

2. Save the Proofreader on tape or disk at least twice before 
running it for the first time. 

3. After the Proofreader is saved, type RUN. It will check itself 
for typing errors in the DATA statements and warn you if 
there's a mistake. Correct any errors and save the corrected 
version. Keep a copy in a safe place-you'll need it again 
and again when typing in programs from other COMPUTE! 
books or COMPUTE! magazine. 

4. When a correct version of the Proofreader is run, the 
following message will appear on the screen: /I Automatic 
Proofreader Now Activated." Type NEW and press RE­
TURN. You are now ready to enter the MLX program list­
ing. If you press SYSTEM RESET, the Proofreader is 
disabled. To reactivate it, just type PRINT USR(lS36) and 
press RETURN. 

34 



Entering SpeedScript 

Using the Proofreader 
The MLX program listing has a checksum found immediately 
to the left of each line number. Don't enter the checksum when 
typing in a program. It is just for your information. 

When you type in a line from the program listing and 
press RETURN, the Proofreader displays the checksum letters 
at the top of your screen. These checksum letters must match the 
checksum letters in the printed listing. If they don't match, it 
means you typed the line differently from the way it is listed. 
Immediately recheck your typing. You can correct any mis­
takes you find. 

The Proofreader is not picky with spaces. It will not no­
tice extra spaces or missing ones. This is for your convenience 
since spacing is generally not important. But occasionally 
proper spacing is important, so be extra careful with spaces. 
The Proofreader will catch practically everything else that can 
go wrong. Characters in inverse video will appear like this: 

III! = L!J~ :.,,1_ I) if~] *l( 

Enter these characters with the Atari key. 
Due to the nature of a checksum, the Proofreader will not 

catch aU errors. The Proofreader will not catch errors of trans­
position. In fact, you could type in a line in any order, and the 
Proofreader wouldn't notice. 

There's another thing to watch out for: If you enter a line 
by using abbreviations for commands, the checksum will not 
match up. But there is a way to make the Proofreader check 
the line. After entering the line, LIST it. This eliminates the 
abbreviations. Then move the cursor up to the line and press 
RETURN. It should now match the checksum. You can check 
whole groups of lines this way. The only abbreviation that 
cannot be handled this way is when a question mark (?) is 
used instead of PRINT; they are not the same to the 
Proofreader. 

Program 2-2. The Automatic Proofreader 

1~~ GRAPHICS ~ 

11~ FOR 1=1536 TO 17~~:READ A:POKE I,A:CK=C 
K+A:NEXT I 

12~ IF CK<>19~72 THEN? "ERROR IN DATA STAT 
EMENTS_ CHECK TYPING_":END 

13~ A=USR(1536) 

35 



SpeedScript 

140 7 :7 "AUTOMATIC PROOFREADER NOW ACTIVAT 
ED. " 

150 END 
1536 DATA 104,160,O,185,26,3 
1542 DATA 201,69,240,7,200,200 
1548 DATA 192,34,208,243,96,200 
1554 DATA 169,74,153,26,3,200 
1560 DATA 169,6,153,26,3,162 
1566 DATA O,189,O,228,157,74 
1572 DATA 6,232,224,16,208,245 
1578 DATA 169,93,141,78,6,169 
1584 DATA 6,141,79,6,24,173 
1590 DATA 4,228,105,1,141,95 
1596 DATA 6,173,5,228,105,0 
1602 DATA 141,96,6,169,0,133 
1608 DATA 203,96,247,238,125,241 
1614 DATA 93,6,244,241,115,241 
1620 DATA 124,241,76,205,238,0 
1626 DATA 0,O,0,0,32,62 
1632 DATA 246,8,201,155,240,13 
1638 DATA 201,32,240,7,72,24 
1644 DATA 101,203,133,203,104,40 
1650 DATA 96,72,152,72,138,72 
1656 DATA 160,0,169,128,145,88 
1662 DATA 200,192,40,208,249,165 
1668 DATA 203,74,74,74,74,24 
1674 DATA 105,161,160,3,145,88 
1680 DATA 165,203,41,15,24,105 
1686 DATA 161,200,145,88,169,0 
1692 DATA 133,203,104,170,104,168 
1698 DATA 104,40,96 

36 



:) 
I 

SpeedScript Program 
Listings 

Before you begin typing SpeedScript, you must load and run 
the "MLX" program. Answer the MLX prompts as follows: 
Starting Address? 7936 :.,' FO 

Ending Address? 16229 3-F ~s 
Run/lnit Address 7936 "L. '\ 0,3 1) S")) ~ \ 

.IFF .., 

Program 2-3. SpeedScript 
To enter this program, you must use Program 2-1, MLX, found earlier in this chapter. 

e l 7936:173,198,002,141,197,002,201 . 
7942:032,137,037,169,203,205,021 ,.JJ 
7948: 179,066,141,179,066,240, 115 ~r" 
7954:033,032,031,037,032,080,007 
7960:042,165,012,141,118,037,027 
7966:165,013,141,119,037,169,162 
7972:117,133,012,169,037 ,133,125 
7978: 013,169 4~~ 141,068,002,179 
7984:169,001, ,009,032,234,114 
7990:037,076,072,038,000,000,021 
7996:000,000,000,000,000,000,060 
8002:000,000,000 ,000,000,000,066 
8008:000,000,000,000,000,000,072 
8014:000,000,000,000,000,000,078 
8020:000,000,000,000,000,000,084 
8026:000,000,000,000,000,000,090 
8032:000,000,000,000,000,000,096 
8038:000,000,000,000,000 ,000,102 
8044:000,000 ,000,000,000,000,108 
8050:000,000,000,000,000,000,114 
8056:000,000,000,000,000,000,120 
8062:000,000,000,000,000 ,000, 126 
8068:000,000 ,000,000~000,000,132 
8074:000,000,000,000,000,000,138 
8080:000,000,000,000,000,000,144 
8086:000,000,000,000,000,000,150 
8092:000,000,000,000 ,000,000,156 
8098:000,000,000,000,000,000,162 
8104:000,000,000,000,000,000,168 
8110:000,000,000,000,000,000,174 
8116:000,000,000,000,000,000,180 
8122:000,000 ,000,000,000,000,186 
8128:000 ,000,000,000,000,000,192 

37 

CJ...( 



u 

SpeedScript 

8134:000,000,000,000,000,000,198 
8140:000,000,000,000,000,000,204 
8146:000,000,000 ,000,000,000,210 
8152:000,000,000,000,000,000,216 
8158:000,000,000,000,000,000,222 
8164:000,000,000,000,000,000, 228 
8170:000,000,000,000,000,000,234 
8176:000,000,000,000,000,000,240 
8182:000,000,000,000,000,000,246 
8188: 036,037,045,017,1000-;-000,131 
8194:000,000,000,000 ,000,000,002 
8200:000,024,024,024,024,024,128 
8206:000,024,000,102,102,102,088 
8212:000,000,000,000,000,102,122 
8218:2~,102,102,255,102,000,074 

8224 1. 024~ 062,096,060,006,124,148 
8230:024,000,000,204,216,048,018 
8236:096,204,140,000,000,056,028 
8242:108,056,112,222,204,118,102 
8248:000 ,024,024,048,000,000,152 
8254:000,000,000,024,048,096,230 
8260:096,096,048,024,000,048,124 
8266:024,012 ~,012,024,048,206 

8272:000,000 ~060,255,060,045 
8278:102,000,000,000,024,024,236 
8284:126,024,024,000,000 ,000,010 
8290:000,000,000,048,048,096,034 
8296:000,000,000,000,126,000,230 
8302:000,000,000,000,000,000,110 
8308:000,000,048,048,000,000,212 
8314:006,012,024,048,096,192,244 
8320:000,124,206,222,~ 230,132 
8326:198,124,000,024,056,024,048 
8332:024,024,024,126,000,124,206 
8338:198,012,024,048,096,254,010 
8344 :000,254,012,024,056,012,254 
8350:198 ,124,000,028,060,108,164 
8356:204,254,012,012,000,254 ,132 
8362:192,252,006,006,198,124,180 
8368:~,124,192,252,198,198,116 
8374:~,124,000,126,006,012,136 
8380:024,048,096,096,000,124,064 
8386:198,198,124,198,198, ~24,210 
8392:000,124,198,198,126,012,090 

7 8398:024,048,000,000,048,048,118 
8404:000,048,048,000,000,000,052 
8410:048,048,000,048,048,096,250 
8416:000'012 ~02 ,048,096,048,196 
8422:024,012 00 ,000,000,126,136 
8428:000,000,12 ,000,000,048,154 

38 



;0 

8434:024,012,006,012,024,048,112 
8440:000,060,102,006,012,024,196 

~ ~::~~~~~:~;~:~~~:~~~:~~~:t;~:~~: 
8458:198,198,198,254,198,198,230 
8464:000,2~2,198,198,252,198,090 
8470: 9 ,252,000,124,198,192,218 
8476:i92,192,198,124,000,248,214 
8482:204,198,198,198,204,248,004 
8488:000,254,192,192,252,192,098 
8494:192,254,000,254,192,192,106 
8500:252,192,192,192,000,124,236 
8506:198,192,222,198,198,124,166 
8512:000,198,198,198,254,198,086 
8518:198,198,0@0 126,024,024,128 
8524:024,024,024,126,000,062,080 
8530:012,012,012,012,204,120,198 
8536:000,198,204,216,240,216,138 
8542:204,198,000,192,192,192,048 
8548:192,192,192,254,000,198,104 
8554:238,254,214,198,198 , 198,126 
8560:000,198,230,246,254,222,238 
8566: 206, 198, 000,124,198),198,018 
8572:198,198,198,124,000,252,070 
8578:198,198,198,252,192,192,080 
8584:000,124,198,198,198,222,052 
8590:124,014,000,252,198,198,160 
8596:252,216,204,198,000,124,118 
8602:198,192,124,006,198,124,228 
8608:000,126,024,024,024,024,126 
8614:024,024,0~0,198,198,198,040 
8620 @]), 198,198,124,000,198,064 
8626:198,198,198,198,108,056,110 
8632:000,198,198,198,214,254,222 
8638:238,198,000,198,198,108,106 
8644:056,108,198,198,000,102,090 
8650:102,102,060,024,024,024,026 
8656:000,254,012,024,048,096,130 
8662:192,254,000,030,024,024,226 
8668:024,024,024/,030,000,064,130 
8674:096,048,024,012,006,000,156 
8680:000,240,048,048,048,048,152 
8686:048,240,000,008,028,054,104 
8692:099,000,000,000,000,000,087 
8698:000,000,000,000,000;255;249 
8704:000,000,000,000,000,000,000 
8710:000,000,124,194,153,153,118 
8716:/129),153,153,230,252,130,035 
8722:153,130,153,153,131,252,222 
8728:124,194,153,158,158,153,196 

Entering SpeedScript 

39 



II 

13 

SpeedScript 

8734:194,124,252,130,153,153,012 
8740:153,153,130,252,254,130,084 
8746:158,132,156,158,130,254,006 
8752:126,193,206,194,206,204,153 
8758:204,120,124,194,153,158,239 
8764:145,!53,~,124,246,153,051 
8770:153,129,153,153,153,246,029 
8776:127,097,115,050,050,115,114 
8782:097,127,062,050,050,050,002 
8788:050,114,198,124,230,153,185 
8794:146,132,146,153,153,230,026 
8800:120,076,076,076,076,078,086 
8806:066,124,230,153,129,129,165 
8812: 137 , 153,153,2.30 /%30),153,140 
8818:137,129,145,153,153,230,037 
8824:124,194,153,153,153,153,026 
8830:194,124,254,195,201,201,015 
8836:195,206,200,240,124,194,011 
8842:153,153,153,146,201,118,038 
8848:124,194,201,201,194,201,235 
8854:201,247,126,195,158,194,247 
8860:249,153,195,126,254,194,047 

r._ ~ 
8866: ~0~,100,100,100,100,124,020 
8872 :';246,153,153,153,153,153,155 
8878:194,124,230,153,153,153,157 
8884:153,194,100,056,246,153,058 
8890:153,153,137,129,153,246,133 
8896:230,153,153,194,153,153,204 
8902:153,230,230,153,153,195,032 
8908:230,100,100,124,254,193,181 
8914: 249, 050,~ 206,193,254,110 
8920:120,096,120,096,126,024,030 
8926:030,000,000,024,060,126,206 
8932:024,~24,024,000,000,024,068 
8938:024,024,126,060,024,000,236 
8944:000,000,000,012,012,088,096 
8950:112,120,000,024,012,126,128 
8956:~,024,000,000,000,000,032 
8962:024,060,126,126,060,024,166 
8968:000,000,000,124,006,126,008 
8974:198,126,000,000,192,252,014 
8980:198,198,198,252,000,000,098 
8986:000,124,198,192,198,124,094 
8992:000,000,006,126,198,198,048 
8998:198,126,000,000,000,124,230 
9004:198,254,192,124,000,000,044 
9010:062,096:~,096,096,096,236 
9016:006,252~,126,198,198,068 
9022:198,126,000,000,192,192,002 
9028:252,198,198,198,000,000,146 

40 



- . 

9034:024,000,056,024,024,060,006 
9040:024,240,024,000,024,024,160 
9046:024,024,000,000,192,204,018 
9052:216,248,204,198,000,000,190 
9058:056,024,024,024 ~~,060,054 
9064:000,000,000,204,254,254,048 
9070:214,198,000,000,000,252,006 
9076:198,198,198,198,000,000,140 
9082:000,124,198,198,198,124,196 
9088:192,192,000,252,198,198,136 
9094:198,252,006,006,000,126,210 
9100:198,198,198,126,000,000,092 
9106:000,252,198,192,192,192,148 
9112 f 0"®), 000,000,126 ,\I9i, 124,082 
9118:006,252,000,000,048,254,206 
9124:048,048,048,030,000,000,082 
9130:000,198,198,198,198,126,064 
9136:000,000,000,198,198,198,002 
9142:108,056,000,000,000,198,032 
9148:214,254,124,108,000,000,120 
9154:000,198,108,056,108,198,094 
9160: 006,252 ,1r01f),198, 198,198,028 
9166:198,126,000,000,000,254,016 
9172:012,056,096,254,014,000,132 
9178:014,024,024,056,024,024,128 
9184:024,024,024,024,024,024,112 
9190:024,024,112,000,112,024,014 
9196:024,028,024,024,000,000,080 
9202:~,008,024,056,024,008,106 
9208 ~), 000,000,016,01.6,024,048 
9214: 028,024,;-000,000,000,000,050 
9220:000,000,000,000,000,000,004 
9226:000,000,000,000,000,000,010 
9232:165,128,141,048,036,165,187 
9238:129,141,049,036,165,130,160 
9244:141,051,036,165,131,141,181 
9250:052,036,166,133,240,032,181 
9256:169,000,141,115,063,160,176 
9262:000,185,255,255,153,255,125 
9268: 255,200 ,204~ 115,063,208,073 
9274:244,238,049,036,238,052,147 
9280:036,224,000,240,007,202,005 
9286:208,224,165,132,208,222,205 
9292:096,165,133,170,005,132,009 
9298:208,001,096,024,138,101,138 
9304:129,141,120,036,165,128,039 
9310:141,119,036,024,138,101,141 
9316:131,141,123,036,~6~,130,058 
9322:141,122,036,232,164,132,165 
9328:208,004,240,013,160,255,224 

Entering SpeedScript 

c , ) 1" ' , I 

41 



SpeedScript 

9334:185,255,255,153,255,255,196 
9340:136,192,255,208,245,206,086 
9346:120,036,206,123,036,202,085 
9352:208,234,096,169,040,200,059 
9358:024,109,108,068,024,101,064 
9364:088,133,136,165,089,105,096 
9370:OO 133,137,024,173,111,220 
9376:063,133,138,173,112,063,074 
9382:133,139,162,001,173,114,120 
9388:063,133,145,160,OOO,177,082 
9394:138,153,123,063,200,041,128 
9400:127,201,094,240,022,204,048 
9406:107,068,208,239,136,177,101 
9412:138,041,127,201,OOO,240,175 
9418:007,136,~,245,172,107,053 
9424:068,136~,132,140,160,020 
9430:000,185,123,063,145,136,098 
9436:200,196,140,208,246,024,210 
9442:152,101,138,133,138,165,029 
9448:139,105,OOO,133,139,224,204 
9454:001,208,003,140,110,063,251 
9460:204,107,068,240,008,169,016 
9466: 064,145,136, 200,~ 244,091 
9472:036,024,165,136,105,040,250 
9478:133,136,144,002,230,137,020 
9484:232,224,019,240,003,076,038 
9490:175,036,165,138,141,121,026 
9496:063,165,139; 41,122 _063'5,205 
9502:096,173,102,063,133,138,223 
9508:14i,111,063,141,117,063,160 
9514: 1-33,134,@ , 1133,063,1'33,013 
9520:139,141,112 , 063,141,118,250 
9526:063,133,135,056,173,105,207 
9532:063,237,103,063,170,169,097 
9538:000,160,255,198,139,145,195 
9544:138,200,230,139,145,138,038 
9550:200,208,251,230,139,202,028 
9556:208,246,145,138 , 096,133,026 
9562:140,132,141,169 ~01,141,046 
9568:240,002,160,000,177,140,047 
9574:240,006,032,127,047,200,242 
9580:208,246,096,032,204,047,173 
9586:240,251,096,032,064,021,050 
9592:173,106,068,240,006,160,105 
9598:OOO,165,144,145,134,032,234 
9604:234,037,076,072,038,169,246 
9610:125,032,127,047,169,OOO,126 
9616 :/14 ,114,063,141,102,063, OOO 
9622:~1,104,063,141,106,063,000 
9628:141,108,063,141,245,063,149 

42 

'" lEG,,,,:; 
" ~ ~ f=L ~ 3i-, \. 

1 



I -- ~ I- -,) ~ L 

Entering SpeedScript 

9634:141,020,064,141,182,067,009 
9640:141,190,002,141,108,068,050 
9646:169,040,141,107,068,169,100 
9652:068,024,105,001,141,103,110 
9658:063,173,~,002,056'233'250 
9664:001,141,1 9,063,056,233,027 
9670:008,141,107,063,056,233,038 
9676:001,141,105,063,169,255,170 
9682:141,243,063,165,075,240,113 
9688:016,173,109,063,141,105,055 
9694:063,169,007,141 , 107,063,004 
9700: ~&I~' 030,141 .. 1E'''% , 063,096,068 
9706:~,~J~ ,045 } 173,102,063,054 
9712:133,134,173,103 l06 ~,133,211 
9718:135,032,139,036,032,010,118 
9724:038,169,152,160,061,032,096 
9730:089,037,238,113,063,076,106 
9736:207,039,032,026,038,169,007 
9742:136,160,061,032 , 089,037,017 
9748:169,000,141,113,063 , 096,090 
9754:160,039,169,000 , 145,088,115 
9760:136,016~,169,000,133,225 
9766:082,133,085,133,084,096,139 
9772:072,041,128,133,140,104,150 
9778:041,127,201,096,176,013,192 
9784:201,032,176,006,024,105,088 
9790:064 , 076,069,038,056,233,086 
9796:032,005,140,096,160,000,245 
9802:140,106,068,177,134,133,064 
9808:144,160,000,14~,184,067,007 
9814:177,134,073,128,145,134,109 
9820:173,106,068,073,001,141,142 
9826:106,068,032,139,036,032,255 
9832:204,047,208,040 , 169,008,012 
9838:141,031,208,173,031,208,134 
9844:201,006,208,015,160,000,194 
9850:140,106,068,165,144,145,122 
9856:134,032,161,043,076,072,134 
9862:038,165,020,041,016,240,142 
9868:218,169,000 , 133,020,076,244 
9874:081,038,170,169,008,141,241 
9880:031,208,173,031,208 , 201,236 
9886:005,208,005,169,128,141,046 
9892:184,067,160,000,165,144,116 
9898:145,134,173,113,063,240,014 
9904:007,138,072,032,010,038,217 
9910:104,170,138,201,155,208,134 
9916:005,162,030,076,226,038,213 
9922:138,044,182,067,048 , 026,187 
9928:201,156,176 , 102,041,127,235 

I II-· .. !-' r ~I I ~ 

43 



Speed Script 

9934:201,032,144,096,201,123,235 
9940:176,092,201,092,240,088,077 
9946:201,094,240,084,201,095,109 
9952:240,080,138,072,160,000,146 
9958:140,182,067,177,134,201,107 
9964:094,240,005,173,114,063,157 
9970:240,003,032,124,044,104,021 
9976:032,044,038,041,127,013,031 
9982:184,067,160,000,145,134,176 
9988:032,139,036,056,165,134,054 
9994:237,117,063,133,140,165,097 
10000:135,237,118,063,005,140,202 
10006:144,014,165,134,105,000,072 
10012:141,117,063,165,135,105,242 
10018:000,141,118,063,230,134,208 
10024:208,002,230,135,032,207,086 
10030:039,076,072,038,174,083,016 
10036:039,221,083,039,240,006,168 
10042:202,208,248,076,072,038,134 
10048:202,138,010,170,169,038,023 
10054:072,169,071,072,189,120,251 
10060:039,072,189,119,039,072,094 
10066:096,035,031,030,092,094,204 
10072:002,020,028,029,126,255,036 
10078:004,009,125,124,095,005,200 
10084:012,019,013,018,024,026,212 
10090:016,254,001,011,006,021,159 
10096:127,157,003,007,156,027,077 
10102:015,132,040,183,040,236,252 
10108:040,034,041,130,041,138,036 
10114:041,154,041,000,042,049,201 
10120:043,123,044,091,043,225,193 
10126:044,001,045,048,045,081,150 
10132:045,050,046,056,053,092,234 
10138:052,186,049,124,054,016,123 
10144:055,102,041,189,055,076,166 
10150:043,032,055,079,042,132,037 
10156:059,109,061,083,044,075,091 
10162:044,047,060,099,059,216,191 
10168:043,188,039,197,039,173,095 
10174:182,067,073,128,141,182,195 
10180:067,096,173,004,034,073,131 
10186:016,141,004,034,096,032,013 
10192:045,040,056,165,134,237,117 
10198:111,063,165,135,237,112,013 
10204:063,176,032,056,173,111,063 
10210:063,237,102,063,133,140,196 
10216:173,112,063,237,103,063,215 
10222:005,140,240,013,165,134,167 
10228:141,111,063,165,135,141,232 

44 



10234:112 , 063,032,139,036,056,176 
10240:173,121,063,229,134,133,085 
10246:138,173,122,063,229,135,098 
10252:133,139,005,138,240,002,157 
10258:176,024,024,173,111,063,077 
10264:109,110,063,141,111,063,109 
10270:173,112,063,105,OOO,141,112 
10276:112,063,032,139,036,076,238 
10282:255,039,096,056,173,117,010 
10288:063,237,104,063,133,140,020 
10294:173,118,063,237,105,063,045 
10300:005,140,144,012,173,104,126 
10306:063,141,117,063,173,105,216 
10312:063,141,118,063,056,165,166 
10318:134,237,102,063,133,140,119 
10324:165,135,237,103,063,005,024 
10330:140,176,011,173,102,063,243 
10336:133,134,173,103,063,133,067 
10342:135,096,056,165,134,237,157 
10348:117,063,133,140,165,135,093 
10354:237,118,063,005,140,176,085 
10360:001,096,173,117,063,133,191 
10366:134,173,118,063,133,135,114 
10372:096,169,008,141,031,208,017 
10378:173,031,208,201,003,208,194 
10384:030,173,107,068,201,040,251 
10390:240,020,238,107,068,238,037 
10396:107,068,206,108,068,032,233 
10402:139,036,032,207,039,169,016 
10408:125,032,127,047,076,010,073 
10414:038,230,134,208,002,230,248 
10420:135,076,207,039,169,008,046 
10426:141,031,208,173,031,208,210 
10432:201,003,208,030,173,107,146 
10438:068,201,002,240,020,206,167 
10444:107,068,206,107,068,238,230 
10450:108,068,032,139,036,032,113 
10456:207,039,169,125,032,127,147 
10462:047,076,010,038,165,134,180 
10468:208,002,198,135,198,134,079 
10474:076,207,039,165,134,133,220 
10480:138,165,135,133,139,198,124 
10486:139,160,255,177,138,201,036 
10492:OOO,240,004,201,094,208,231 
10498:003,136,208,243,177,138,139 
10504:201,OOO,240,008,201,094;240 
10510:240,004,136,208,243,096,173 
10516:056,152,101,138,133,134,222 
10522:165,139,105,OOO,133,135,191 
10528:076,207,039,160,OOO,177,179 

Entering SpeedScript 

45 



SpeedScript 

10534:134,201,000,240,008,201,054 
10540:094,240,004,200,208,243 , 009 
10546:096,200,208,011,230,135,162 
10552:165,135,205,118,063,144,118 
10558:002,208,025,177,134,201,041 
10564:000,240,236,201,094,240,055 
10570:232,024,152,101,134,133,082 
10576:134,165,135,105,000,133,240 
10582:135,076,207,039,173,117,065 
10588:063,133,134,173,118,063,008 
10594:133,135,076,207,039,169 , 089 
10600:000,141,111,063,173,118,198 
10606:063,056,233,004,205,103,006 
10612:063,176,003,173,103,063,185 
10618:141,112,063,032,139,036,133 
10624:076,090,041,238,138,041,240 
10630:238,138,041,096,008,238,125 
10636:154,041,238,154,041,173,173 
10642:154,041,041,015,141,154,180 
10648:041,096,002,165,134,133,211 
10654:138,165,135,133,139,198, 04 2 
10660:139,160,255,177,138,201,210 
10666:014,240,012,201,001,240,110 
10672:008,201,031,240,004,201,093 
10678:094,208,004,136,208,235,04 3 
10684:096,177,138,201,014,24 0,030 
10690:027,201,001,240,023,201,119 
10696:031,240,019,201,094,240,001 
10702:015,136,208,235,198,139,113 
10708:165,139,205,102,063,176,038 
10714:226,076,244,041,132,140,053 
10720:198,140,200,240,010,177,165 
10726:138,201,000,240,247,136,168 
10732:076,020,041,164,140,076,241 
10738:189,041,173,102,063,133,175 
10744:134,173,103,063,133,135,221 
10750:076,207,039 , 160,000,177,145 
10756:134,201,014,240,029,201,055 
10762:001,240,025,201,031,240, 2 36 
10768:021,201,094,240,017,200,021 
10774:208,235,230,135,165,135,106 
10780:205,118,063,240,226,144 ,000 
10786:224,076,090,041,200,208 , 105 
10792:014,230,135,165,135,205,156 
10798:118,063,144,005,240,003,107 
10804:076,090,041,177,134,201,003 
10810:000.240,233,201,014,2 40,218 
10816:229,201,001,240,225,201 , 137 
10822:031,240,221,201,094,240 , 073 
10828:217,076,075,041,173,106,252 

46 



10834:063,141,209,063,173,107,070 
10840:063,141,210,063,032,026,111 
10846:038,169,172,160,061,032,214 
10852:089,037,169,001,141,113,138 
10858:063,096,056,165,134,237,089 
10864:102,063,133,140,165,135,082 
10870:237,103,063,005,140,208,106 
10876:003,104,104,096,165,134,218 
10882:133,128,165,135,133,129,185 
10888:096,056,165,134,133,130,082 
10894:073,255,101,128,141,213,029 
10900:063,165,135,133,131,073,080 
10906:255,101,129,141,214,063,033 
10912:165,128,141,215,063,165,013 
10918:129,141,216,063,165 , 130,242 
10924:141,217,063,133,128,165,251 
10930:131,141,218,063,133,129,225 
10936:056,173,214,063,109,210,241 
10942:063,205,109,063,144 , 016,022 
10948:032,026,038,169,187 , 160,040 
10954:061,032,089,037,169,001,079 
10960:141,113,063,096,173,209,235 
10966:063,133,130,173,210 , 063,218 
10972:133,131,173,213,063,133,042 
10978:132,024,109,209,063,141,136 
10984:209,063 , 173,214,063 , 133,063 
10990:133,109,210,063,141,210,080 
10996:063,032,016,036,173,215 , 011 
11002:063,133,128,173,216,063 , 002 
11008:133,129,173,217,063,133,080 
11014:130,173,218,063,133,131,086 
11020:056,173,117,063,229,130,012 
11026:133,132,173,118,063,229,098 
11032:131,133,133,032,016,036,249 
11038:056,173,117,063,237,213,121 
11044:063,141,117,063,173,118,199 
11050:063,237,214,063,141,118,110 
11056:063,096,032,108,042,032,165 
11062:184,040,032,137,042,056,033 
11068:173,209,063,233,001,141,112 
11074:209~063,173,210,063,233,249 
11080:000,141,210,063,096,032,102 
11086:133,040,032,108,042,032,209 
11092:184,040,032,137,042,076,083 
11098:059,043,032,080,042,169,003 
11104:050,133,145,032,026,038,008 
11110:169,199,160,061,032,089,044 
11116:037,032,111,037,072,032,173 
11122:010,038,104,041,095,009,155 
11128:064,201,087,208,009,032,209 

Entering SpeedScript 

47 



SpeedScript 

11134:108,042,032,237,040,076,149 
11140:137,042,201,083,208,009,044 
11146:032,108,042,032,155,041,036 
11152:076,137,042,201,080,208,120 
11158:009,032,108,042,032,082,199 
11164:045,076,137,042,096,056,096 
11170:165,134,237,111,063,133,237 
11176:140,165,135,237,112,063,252 
11182:005,140,240,026,173,111,101 
11188:063,133,134,173,112,063,090 
11194:133,135,169,000,133,020,008 
11200:141,031,208,165,020,201,190 
11206:030,208,250,076,207,039,240 
11212:173,102,063,133,134,173,214 
11218:103,063,133,135,076,188,140 
11224:043,165,134,133,138,133,194 
11230:130,165,135,133,139,133,033 
11236:131,160,000,177,138,201,011 
11242:000,208,030,200,208,247,103 
11248:165,139,205,118,063,144,050 
11254:015,173,117,063,133,138,117 
11260:173,118,063,133,139,160,014 
11266:000,076,011,044,230,139,246 
11272:076,231,043,024,152,101,123 
11278:138,133,128,169,000,101,171 
11284:139,133,129,056,173,117,255 
11290:063,229,130,133,132,173,118 
11296:118,063,229,131,133,133,071 
11302:056,165,128,229,130,141,119 
11308:213,063,165,129,229,131,206 
11314:141,214,063,032,016,036,040 
11320:056,173,117,063,237,213 , 147 
11326:063,141,117,063,173,118,225 
11332:063,237,214,063,141,118,136 
11338:063,096,169,255,141,238,012 
11344:063,076,102,044,169,005,027 
11350:141,238,063,032,102,044,194 
11356:177,134,201,000,208,001,045 
11362:200,076,075,041,169,000,147 
11368:141,239,063,032,146,044,001 
11374:169,000,174,238,063,160,146 
11380:000,145,134,200,202,208,237 
11386:250,096,169,001,141,238,249 
11392:063,169,000,141,239,063,035 
11398:032,146,044,169,000,160,173 
11404:000,145,134,076,207,039,229 
11410:024,173,117,063,109,238,102 
11416:063,173,118,063,109,239,149 
11422:063,205,105,063,144,005,231 
11428:104,104,076,225,044,024,229 

48 



11434:165,134,133,128,109 , 238,053 
11440:063,133,130,165,135,133,167 
11446:129,109,239,063,133,131,218 
11452:056,173,117,063,229,128,186 
11458:133,132,173,118,063,229,018 
11464:129,133,133,032,077,036 , 228 
11470:024,173,117,063;109 , 238;162 
11476:063,141,117,063,173,118,119 
11482:063,109,239,063,141,118,183 
11488:063,096,173,114,063,073,038 
11494:116,141,114,063,096,169,161 
11500:214,160,061,032,089,037,061 
11506:032,204,047,041,127,240,165 
11512:249,201,125,240,245,041,069 
11518:223,201,089,096,169,008,016 
11524:141,031,208,173,031,208,028 
11530:201,003,240,001,096,169,208 
11536:050,133,145,032,026,038,184 
11542:169,237,160,061,032,089,002 
11548:037,032,235,044,240,003,107 
11554:076,010,038,162,250,154,212 
11560:032,031,037,032,234 , 037,187 
11566:076,072,038,160,000,177,057 
11572:134,201,094,240,017,200,170 
11578:208,247,230,135,165,135,154 
11584:205,118,063,144,238,240,048 
11590:236,076,090,041,200,208,153 
11596:002,230,135,076,075,041,123 
11602:165,134,133,138,165,135,184 
11608:133,139,198,139,160,255,088 
11614:177,138,201,094,240,017,193 
11620:136,192,255,208 , 245,198,054 
11626:139,165,139,205,103,063,152 
11632:176,236,076,244,041,056 , 173 
11638:152,101,138,133,138,169,181 
11644:000,101,139,133,139,056,180 
11650:165,138,229,134,133,140,045 
11656:165,139,229,135,005,140,181 
11662:208,018,132,140 , 024,165,061 
11668:138,229,140,133,138,165,067 
11674:139,233,000,133,139,076,106 
11680:100,045,165,138,133,134,107 
11686:165,139,133,135,076,207,253 
11692:039,\JL69 ,064,141,014,2f2~043 
11698:169,010,141,000,002,169,157 
11704:046,141,001,002,173,048 , 083 
11710:002,133,140,173,049,002,177 
11716:133,141,160,000,185,238,029 
11722:045,145,140,200,192,028,184 
11728:208,246,160,004,165,088,055 

Entering SpeedScript 

1...1 I b I--J (,1 6, (_I 1 

\ i (;,f) ::;, 

49 



SpeedScript 

11734:145,140,165,089,200,145,074 
11740:140,160,026,165,140,145,228 
11746:140,165,141,200,145,140 133 
11752:169,192,141,014,212,096~ 032 
11758:112,112,112,195,000,000,001 
11764:003,003,003,003,003,003,006 
11770:003,003,003,003,003,003,012 
11776:003,003,003,003,003,003,018 
11782:016,065,000,000 r 072,173,076 
11788:138,041,141,010,212,141,183 
11794:024,208,141,200,002,173,254 
11800:154,041,141,023,208,165,244 
11806:145,141,198,002,169,010,183 
11812:141,197,002,169,032,141,206 
11818:244,002,169,000,141,182,012 
11824:002,104,064rro9~ 008,141,024 
11830:031,208,173 ~ 031,208,201,138 
11836:003,240,003,032,080,042,204 
11842:032,026,038,169,252,160,231 
11848:061,032,089,037,160,000,195 
11854:177,134,073,128,145,134,101 
11860:032,139,036,160,000,177,116 
11866:i34;073;128;145;134;169;1~5 
11872:050,133,145,032,111,037,092 
11878:041,095,009,064,201,087,087 
11884:208,009,032,151,046,032,074 
11890:035,041,076,166,046,201,167 
11896:083,208,009,032,151,046,137 
11902:032,001,042,076,166,046,233 
11908:201,080,208,009,032,151,045 
11914:046,032,049,045,076,166,040 
11920:046,032,207,039,076,010,042 
11926:038,165,134,133,130,141,123 
11932:203,063,165,135,133,131,218 
11938:141,204,063,096,056,165,119 
11944:134,133,128,237,203,063,042 
11950:141,213,063,165,135,133,000 
11956:129,237,204,063,141,214,144 
11962:063,032,160,042,173,203,091 
11968:063,133,134,173,204,063,194 
11974:133,135,032,139,036,076,237 
11980:076,046,169,039,229,085,080 
11986:141,119,063,160 , 000,140,065 
11992:120,063,140,240 , 002,169,182 
11998:032,032,127,047,169,126,243 
12004:032,127,047,140,120,063,245 
12010:032,111,037,172,120,063,001 
12016:044,182,067,048,057,201,071 
12022:027,208,011,169,128,141,162 
12028:182,067,141,162,002,076,114 

50 

( 1, .... 1' , 

(. I )0 "if f-"r ( 
, , 

EIJ 0 0 r ,- - I 



12034:231,046,201,155,240,069,176 
12040:201,126,208,015,136,016,198 
12046:004,200,076,231,046,169,228 
12052:126,032,127,047,076,231,147 
12058:046,133,140,041,127,201,202 
12064:032,144,196,201,125,176,138 
12070:192,204,119,063,240,187,019 
12076:165,140,041,127,162,008,175 
12082:142,031,208,174,031,208,076 
12088:224,005,208,002,009,128,120 
12094:153,163,063,032,127,047,135 
12100:169,000,141,182,067,200,059 
12106:076,231,046,162,001,142,220 
12112:240,002,169,000,153,163,039 
12118:063,152,096,162,000,169,216 
12124:012,141,066,003,032,086,176 
12130:228,162,000,169,153,141,183 
12136:068,003,169,047,141,069,089 
12142:003,169,002,141,072,003,244 
12148:142,073,003,169,003,157,151 
12154:066,003,076,086,228,140,209 
12160:203,047,162,000,142,072,242 
12166:003,142,073,003,142,255,240 
12172:002,160,011,140,066,003,010 
12178:032,086,228,172,203,047,146 
12184:096,069,058,160,128,076,227 
12190:162,047,160,000,140,104,003 
12196:068,134,212,133,213,032,188 
12202:170,217,032,230,216,160,171 
12208:000,177,243,072,041,127,068 
12214:044,104,068,048,006,032,228 
12220:127,047,076,196,047,032,201 

Entering SpeedScript 

12226:098,055,104,048,003,200,190 - ro· ... 11 
O FI ·;> 

12232:208,231,096,018,173,252,154 
12238:002,201,255,208,003,169,020 
12244:000,096,173,252,002,201,168 
12250:255,240,249,141,109,068,000 
12256:169,255,141,252,002,133,152 
12262:017,032,041,048,173 ; 109,138 
12268:068,201,192,176,016,041,162 
12274:063,201,060,208,024,173,203 
12280:109,068,041,064,240,006,008 
12286:141,190,002,169,000,096,084 
12292:173,190,002,073,064,141,135 
12298:190,002,169,000,096,174,129 
12304:109,068,189,064,048,044,026 
12310:190,002,080,010,201,097,090 
12316:144,006,201,123,176,002,168 
12322:041,223,201,128,240,217,060 
12328:096,072,169,050,141,000,056 

Sl 



SpeedScript 

12334:210,162,175,142,001,210,178 
12340:160,128,136,208,253,202,115 
12346:224,159,208,243,104,096,068 
12352:108,106,059,128,128,107,188 
12358:043,042,111,128,112,117,111 
12364:155,105,045,061,118,128,176 
12370:099,128,128,098,120,122,009 
12376:052,128,051,054,027,053,197 
12382:050,049,044,032,046,110,169 
12388:128,109,047,128,114,128,242 
12394:101,121,127,116,119,113,035 
12400:057,128,048,055,126,056,070 
12406:060,062,102,104,100,128,162 
12412:130,103,115,097,076,074,207 
12418:058,128,128,075,092,094,193 
12424:079,128,080,085,155,073,224 
12430:095,124,086,128,067,128,002 
12436:128,066,088,090,036,128,172 
12442:035,038,027,037,034,033,102 
12448:091,032,093,078,128,077,147 
12454:063,128,082,128,069,089,213 
12460:159,084,087,081,040,128,239 
12466:041,039,156,064,125,157,248 
12472:070,072,068,128,131,071,212 
12478:083,065,012,010,123,128,099 
12484:128,011,030,031,015,128,027 
12490:016,021,155,009,028,029,204 
12496:022,128,003,128,128,002,107 
12502:024,026,128,128,133,128,013 
12508:027,128,253,128,000,032,020 
12514:096,014,128,013,128,128,221 
12520:018,128,005,025,158,020,074 
12526:023,017,128,128,128,128,022 
12532:254,128,125,255,006,008,252 
12538:004,128,132,007,019,001,029 
12544:032,132,049,162,112,169,144 
12550:122,157,068,003,169,062,075 
12556:157,069,003,169,005,157,060 
12562:072,003,169,000,157,073,236 
12568:003,169,006,157,074,003,180 
12574:169,003,157,066,003,032,204 
12580:086,228,048,092,169,000,147 
12586:141,103,068,174,103,068,187 
12592:165,100,157,229,067,165,163 
12598:101,157,230,067,238,103,182 
12604:068,238,103,068,032,169,226 
12610:049,048,063,201,043,176,134 
12616:075,032,127,047,032,169,042 
12622:049,048,051,169,000,141,024 

52 



12628:105,068,032,169,049,048,043 
12634:041,032,127,047,238,105,168 
12640:068,173,105,068,201,008,207 
12646:208,008,169,046,032,127,180 
12652:047,076,086,049,201,011,066 
12658:208;226,169 ~005, 133,140,227 
12664:032,169,049,198,140,165,105 
12670:140,208,247,076,045,049,123 
12676:162,112,169,012,157,066,042 
12682:003,032,086,228,162,112,249 
12688:188,067,003,096,072,169,227 
12694:155,032,127,047,104,032,135 
12700:127,047,032,169,049,048,116 
12706:225,032,127,047,076,158,059 
12712:049,162,112,169,000,157,049 
12718:072,003,157,073,003,169,139 
12724:007,157,066,003,076,086,063 
12730:228,032,255,053,032,089,107 
12736:047,032,255,053,169,001,237 
12742:141,240,002,133,082,169,197 
12748:125,032,127,047,032,000,055 
12754:049,032,239,051,173,229,215 
12760:067,133,136,173,230,067,254 
12766:133,137,169,000,141,228,006 
12772:067,206,103,068,206,103,213 
12778:068,032,227,051,032,111,243 
12784:037,162,001,142,240,002,056 
12790:174,025,050,201,097,144,169 
12796:002,041,095,133,140,221,116 
12802:025,050,240,006,202,208,221 
12808:248,076,242,050,202,138,196 
12814:010,170,189,042,050,072,035 
12820:189,041,050,072,096,015,227 
12826:030,031,028,029,004,082,230 
12832:076,085,070,049,050,051,157 
12838:052,027,012,070,050,083,076 
12844:050,112,050,129,050,228,151 
12850:050,007,051,247,050,255,198 
12856:050,084,051,110,051,110,000 
12862:051,110,051,110,051,152,075 
12868:051,118,051,032,227,051,086 
12874:174,228,067,240,031,202,248 
12880:202,076,097,050,032,227,252 
12886:051,174,228,067,232,232,046 
12892:236,103,068,176,013,142,062 
12898:228,067,189,229,067,133,243 
12904:136,189,230,067,133,137,228 
12910:076,235,049,032,227,051,012 
12916:173,228,067,201,006,144,167 
12922:243,056,233,006,170,076,138 

Entering SpeedScript 

53 



SpeedScript 

12928:097,050,032,227,051,173,246 
12934:228,067,024,105,006,205,001 
12940:103,068,116,222,170,076,187 
12946:097,050,162,000,189,122,254 
12952:062,157,187,067,232,224,057 
12958:003,208,245,160,001,177,184 
12964:136,041,127,032,056,055,099 
12970:201,032,240,004,157,187,223 
12976:067,232,200,192,013,208,064 
12982:236,189,186,067,201,046,083 
12988:208,001,202,142,227,067,011 
12994:169,000,157,187,067,096,102 
13000:162,112,157,066,003,173,105 
13006:227,067,157,072,003,169,133 
13012:000,157,073,003,169,187,033 
13018:157,068,003,169,067,157,071 
13024:069,003,076,086,228,032,206 
13030:148,050,169,033,032,200,094 
13036:050,016,003,076,182,051,102 
13042:032,227,051,076,235,049,144 
13048:032,148,050,169,035,076,246 
13054:234,050,032,148,050,169,169 
13060:036,076,234,050,032,170,090 
13066:051,169,079,160,063,032,052 
13072:089,037,169,064,141,190,194 
13078:002,032,206,046,169,000,221 
13084:141,190,002,173,120,063,205 
13090:240,043,032,148,050,162,197 
13096:000,172,227,067,169,044,207 
13102:153,187,067,200,189,163,237 
13108:063,153,187,067,200,232,186 
13114:236,120,063,208,243,140,044 
13120:227,067,169,000,153,187,099 
13126:067,032,239,051,169,032,148 
13132:076,234,050,032,239,051,246 
13138:076,242,050,032,170,051,191 
13144:169,090,160,063,032,089,179 
13150:037,032,235,044,208,235,117 
13156:032,239,051,032,148,050,140 
13162:169,254,076,234,050,165,030 
13168:140,141,123,062,076,187,073 
13174:049,162,112,142,185,067,067 
13180:169,004,157,074,003,169,188 
13186:000,133,142,133,143,032,201 
13192:148,050,169,003,032,200,226 
13198:050,048,037,032,031,037,121 
13204:032,126,053,048,029,162,086 
13210:250,154,169,125,032,127,243 
13216:047,032,173,045,032,010,243 

54 



13222:038,076,072,038,169,022,069 
13228:133,084,169,157,032,127 , 106 
13234:047,076,127,047,140,236,083 
13240:063,032,132,049,032,170,150 
13246:051,169,050,160,062,032,202 
13252:089,037,174,236,063,169,196 
13258:000,032,160,047,169,253,095 
13264:032,127,047,169,108,160,083 
13270:062,032,089,037,032,111,065 
13276:037,032,239,051,076 , 242,129 
13282:050,160,012,177,136,073,066 
13288:128,145,136,136,016,247,016 
13294:096,032,170,051,169,000,244 
13300:160,063,032,089,037,173,030 
13306:123,062,076,127,047,169,086 
13312:000,141,183,067,076,012,223 
13318:052,169,128,141,183,067,234 
13324:173,102,063,133,138,173,026 
13330:103,063,133,139,076,038,058 
13336:052,169,000,141,183,067,124 
13342:165,134,133,138,165,135,132 
13348:133,139,056,173,118,063,206 
13354:229,139,170,232,160,000,204 
13360:177,138,044,183,067,048,193 
13366:015,201,155,208,005,169,039 
13372:094,076,082,052,032,044,184 
13378:038,076,082,052,201,094,097 
13384:208,005,169,155,076,082,255 
13390:052,032,056,055,145,138,044 
13396:200,208,217,230,139,202,000 
13402:208,212,096,032,026,038,190 
13408:169,026,160,062,032,089,122 
13414:037,169,008,032,235,052,123 
13420:048,064,032,007,052,162,217 
13426:112,173,102,063,157,068,021 
13432:003,173,103,063,157,069,176 
13438:003,056,173,117,063,237,007 
13444:102,063,157,072,003,173,190 
13450:118,063,237,103,063,157,111 
13456:073,003,169,011,157,066,111 
13462:003,032,086,228,048,011,046 
13468:032,255,051,032,132,049,195 
13474:048,010,076,232,053,152,221 
13480:072,032,255,051,104,168,082 
13486:192,128,240,033,152,072,223 
13492:169,125,032,127,047,169,081 
13498:050,160,062,032,089,037,104 
13504:104,170,169,000,032,160,059 
13510:047,032,224,052,032,173,246 
13516:045,169,001,141,113,063,224 

Entering SpeedScript 

55 



SpeedScript 

13522:096,032,026,038,169,058,117 
13528:160,062,032,089,037,076,160 
13534:199,052,174,185,067,169 ,044 
13540:012,157,066,003,076,086,116 
13546:228,162,112,142,185 ,067,106 
13552:141,186,067,173,190,002,231 
13558:072,169,064,141,190,002,116 
13564:032,206,046,104,141,190,203 
13570:002,173,120,063,208,008,064 
13576:032,010,038,104,104,076,116 
13582:173,045,032,224,052,174,202 
13588 :185,067,169,163,157,068,061 
13594:003,169,063,157,069,003,234 
13600:173,120,063,157,072,003 ,108 
13606:169,000,157,073,003,173,101 
13612:186,067,157,074,003,169,188 
13618:003,157,066,003,076,086,185 
13624:228,056,165,134,237,102,210 
13630:063,133,138 ,133,142,165,068 
13636:135,237,103,063,133,139,110 
13642:133,143,005,138,240,004,225 
13648:169,196,133,145,032,026,013 
13654:038,169,084,160,062,032,119 
13660:089,037,169,004,032,235,146 
13666:052,016,003,076,174,052,215 
13672:165,145,201,196,240,003,030 
13678:032,031,037,032,126,053,165 
13684:192,128,144,003,076,174,065 
13690:052,076,232,053,174,185,126 
13696:067,165,134,157,068,003,210 
13702:165,135,157,069,003,056 ,207 
13708:173,104,063,229,134,157,232 
13714:072,003,173,105,063,229,023 
13720:135,157,073,003,169,007,184 
13726:157,066,003,032,086,228,218 
13732:016,005,192,136,240,001,242 
13738:096,174,185,067,024,189,137 
13744:072,003,109,102,063 ,141,154 
13750:117,063,189,073,003,109,224 
13756:103,063,141,118,063,024,188 
13762:173,117,063,101,142,141,163 
13768:117,063,173,118,063,101,067 
13774:143,141,118,063,032,025,216 
13780:052,173,117,063,133,138,120 
13786:173,118,063,133,139,169,245 
13792:000,168,145,138,200,208,059 
13798:251,096,032,224,052,016,133 
13804:003,076,174,052,169,125,067 
13810:032,127,047,169,074,160,083 
13816:062,032,089,037,076,199,231 

56 



13822:052,169,064,141,014,212,138 
13828:173,138,041,141,198,002,185 
13834:141,200,002,173,154,041,209 
13840:141,197,002,096,162,000,102 
13846:142,205,063,142,206,063,075 
13852:142,207,063,142,208,063,085 
13858:056,177,138,233,016,144,030 
13864:042,201,010,176,038,014,009 
13870:205,063,046,206,063,014,131 
13876:205,063,046,206,063,014,137 
13882:205,063,046,206,063,014,143 
13888:205,063,046,206,063,013,148 
13894:205,063,141,205,063,200,179 
13900:208,212,230,139,076,034,207 
13906:054,248,173,205,063,013,070 
13912:206,063,240,028,056,173,086 
13918:205,063,233,001,141,205,174 
13924:063,173,206,063,233,000,070 
13930:141,206,063,238,207,063,000 
13936:208,003,238,208,063,076,140 
13942:084,054,173,207,063,216,147 
13948:096,056,173,209,063,237,190 
13954:106,063,141,211,063,173,119 
13960:210,063,237,107,063,141,189 
13966:212,063,013,211,063,208,144 
13972:016,032,026,038,169,140,057 
13978:160,062,032,089,037,169,191 
13984:001,141,113,063,096,024,086 
13990:165,134,133,128,109,211,022 
13996:063,133,130,165,135,133,163 
14002:129,109,212,063,133,131,187 
14008:056,173,117,063,229,128,182 
14014:133,132,173,118,063,229,014 
14020:129,133,133,024,101,131,079 
14026:205,105,063,144,016,032,255 
14032:026,038,169,128,160,062,023 
14038:032,089,037,169,001,141,171 
14044:113,063,096,032,077,036,125 
14050:024,173,211,063,133,132,194 
14056:109,117,063,141,117,063,074 
14062:173,212,063,133,133,109,037 
14068:118,063,141,118,063,165,144 
14074:134,133,130,165,135,133,056 
14080:131,173,106,063,133,128,222 
14086:173,107,063,133,129,032,131 
14092:016,036,076,207,039,160,034 
14098:000,177,134,170,200,177,108 
14104:134,136,145,134,200,138,143 
14110:145,134,096,160,000,177,230 
14116:134,041,063,201,033,144,140 

Entering SpeedScript 

57 



SpeedScript 

14122:010,201,059,176,006,177,159 
14128:134,073,064,145,134,076,162 
14134:133,040,072,041,128,133,089 
14140:140,104,041,127,201,096,001 
14146:176,011,201,064,144,005,155 
14152:233,064,076,079,055,105,172 
14158:032,005,140,096,005,075,175 
14164:066,005,058,001,001,001, 216 
14170:000,001,000,080,027,014, 212 
14176:015,018,141,244,063,138,203 
14182:072,152,072,056,173,228, 087 
14188:063,237,230,063 ,173,229,079 
14194:063,237,231,063,144,049,133 
14200:169,001,141,254,002,162 ,08 1 
14206:112,169,000,157,072,003,127 
14212:157,073,003,169,011,157,190 
14218:066,003,173,244,063,032,207 
14224:086, 228,008 ,1 69 ,000,141,008 
14230:254,002,040,016,009,032,247 
14236:174,052,162 , 250, 154,07 6,000 
14242:072,038,173, 255,002 ,208,142 
14248:251,104,168, 104,170 ,17 3,114 
14254:244,063,096,032,026,038,161 
14260:169,183, 160,062 ,076,089,151 
14266:037,076, 2 15,056,032,026,116 
14272:038,169,158, 160 ,06 2,032,043 
14278:089,037,032,255,053,169 ,065 
14284:008,032,235,05 2,0 16,003,038 
14290:076,215,056,032,255,053,129 
14296:032,177,055,162,000,142,016 
14302:220,063,142,219,063,142,047 
14308:240,063,142,241,063,142,095 
14314:181,067,189,082,055,157,197 
14320:221,063,232,224,01 2,208,1 76 
14326:245,169,255,141,235,063,074 
14332:141,233,063,162,004,189,020 
14338:093,055,157,067,064,202,128 
14344:208,247,173,102,063,133,166 
14350:138,173,103,063,133,139,25 1 
14356:160,000,140,234 ,063,204,053 
14362:233,063,240,006,173,221,194 
14368:063,141,234,063,177 , 138,080 
14374:016,003,076,166,057,201,045 
14380:094,240,041,153,179,064,047 
14386:200,238,234,063,173,234 ,168 
14392:063,205,222,063,144,230,215 
14398:140,116,063,177,138,201,129 
14404:000,240,017,206,234,063,060 
14410:136,208,244,172,116,063,245 
14416:200,177,138,201,000,240,012 

58 



14422:001,136,140,116,063,152,182 
14428:056,101,138,133,138,165,055 
14434:139,105,000,133,139,160,006 
14440:000,173,235,063,201,255,007 
14446:208,003,032,077,057,173,148 
14452:233,063,240,003,032,117,036 
14458:057,056,046,233,063,173,238 
14464:116,063,141,115,063,169,027 
14470:179,133,142,169,064,133,186 
14476:143,032,220,060,032,134,249 
14482:057,173,235,063,205,225,080 
14488:063,144,003,032,238,056,176 
14494:056,165,138,237,117,063,166 
14500:133,140,165,139,237,118,072 
14506:063,005,140,240,060,144,054 
14512:058,173,220,063,240,011,173 
14518:169,000,141,219,063,141,147 
14524:224,063,032,238,056,173,206 
14530:163,063,201,069,208,015,145 
14536:169,155,032,127,047,169,131 
14542:108,160,062,032,089,037,182 
14548:032,111,037,032,132,049,093 
14554:162,250,154,032,173,045,010 
14560:169,125,032,127,047,032,244 
14566:010,038,076,072,038,076,028 
14572:020,056,056,173 , 223,063,059 
14578:237,235,063,168,136,136,193 
14584:240,008,048,006,032,152,222 
14590:057,136,208,250,173,220,018 
14596:063,240,017,141,115,063,131 
14602:169,180,133,142,169,066,101 
14608:133,143,032,117,057,032,018 
14614:220,060,032,152,057,032,063 
14620:152,057,032,152,057,238,204 
14626:228,063,208,003,238,229,235 
14632:063,173,227,063,208,031,037 
14638:056,173,228,063,237,230,009 
14644:063,173,229,063,237,231,024 
14650:063,144,016,032,026,038,121 
14656:169,197,160,062,032,089,005 
14662:037,032,111,037,032,177,240 
14668:055,173,219,063,240,017,075 
14674:141,115,063,169,179,133,114 
14680:142,169,065,133,143,032,004 
14686:117,057,032,220,060,172,240 
14692:224,063,140,235,063,136,193 
14698:240,008, 0 48,006,032,152,080 
14704:057,136,208,250,096,169,004 
14710:032,172,221,063,140,234,212 
14716:063,240,006,032,098,055,106 

Entering SpeedScript 

59 



SpeedScript 

14722:136,208,250,096,172,226,194 
14728:063,024,152,109,235,063,014 
14734:141,235,063,032,152,057,054 
14740:136,208,250,096,169,155,138 
14746:032,098,055,173,181,067,248 
14752:240,003,032,098,055,096,172 
14758:141,237,063,041,127,032,039 
14764:056,055,174,241,057,221,208 
14770:241,057,240,009,202,208,111 
14776:248,206,234,063,076,246,233 
14782:058,202,138,010,170,140,140 
14788:236,063,169,057,072,169,194 
14794:212,072,189,004,058,072,041 
14800:189,003,058,072,096,056,170 
14806:173,236,063,101,138,133,034 
14812:138,165,139,105,000,133,132 
14818:139,076,020,056,177,138,064 
14824:201,094,240,001,136,140,020 
14830:236,063,096,017,119,108,109 
14836:114,116,098,115,110,104,133 
14842:102,064,112,063,120,109,052 
14848:105,103,106,097,058,115,072 
14854:058,125,058,135,058,145,073 
14860:058,155,058,165,058,180,174 
14866:058,214,058,071,058,087,052 
14872:058,055,058,045,058,036,078 
14878:058,239,058,024,059,106,062 
14884:058,200,169,000,141,233,069 
14890:063,076,230,057,200,032,188 
14896:020,054,141,232,063,076,122 
14902:230,057,200,032,020,054,135 
14908:141,230,063,173,208,063,170 
14914:141,231,063,076,230,057,096 
14920:200,032,020,054,141,228,235 
14926:063,173,208,063,141,229,187 
14932:063,076,230,057,200,032,230 
14938:020,054,141,223,063,076,155 
14944:230,057,169,000,141,227,152 
14950:063,200,076,230,057,169,129 
14956:010,141,181,067,200,076,015 
14962:230,057,200,032,020,054,195 
14968:141,221,063,076,230,057,140 
14974:200,032,020,054,141,222,027 
14980:063,076,230,057,200,032,022 
14986:020,054,141,224,063,076,204 
14992:230,057,200,032,020,054,225 
14998:141,225,063,076,230,057,174 
15004:200,032,020,054,141,226,061 
15010:063,076,230,057,172,236,228 
15016:063,200,152,072,032,238,157 

60 



15022:056,104,168,140,236,063,173 
15028:096,032,207,058,136,140,081 
15034:219,063,160,001,177,138,176 
15040:153,178,065,200,204,219,187 
15046:063,144,245,240,243,200,053 
15052:076,230,057,200,177,138,058 
15058:201,094,208,249,096,032,066 
15064:207,058,136,140,220,063,016 
15070:160,001,177,138,153,179,006 
15076:066,200,204,220,063,144,101 
15082:245,240,243,076,230,057,045 
15088:032,207,058,076,230,057,132 
15094:200,177,138,201,029,240,207 
15100:007,136,173,237,063,076,176 
15106:047,056,200,032,020,054,155 
15112:072,173,237,063,041,127,209 
15118:170,104,157,051,064,032,080 
15124:230,057,076,213,057,160,045 
15130:001,162,000,177,138,201,193 
15136:094,240,012,032,056,055,009 
15142:157,163 , 063,200,232,224,053 
15148:014,208,238,142,120,063,061 
15154:169,000,157,163,063,162,252 
15160:096,142,185,067,169,004,207 
15166:141,186 , 067,032,016,053,045 
15172 : 016,003,076,155,055,169,030 
15178:000,133,142,133,143,032,145 
15184:031,037,032,126,053,016,119 
15190:003,076,155,055,104,104,071 
15196:162,112,141,185,067,076,067 
15202:010,056,032,145,059,173,061 
15208:245,063,240,022,032,060,254 
15214:060,032,183,059,173,243,092 
15220:063,201,255,240,009,032,148 
15226:095,060,032,139,036,076,048 
15232:111,059,076,010,038,169,079 
15238:008,141,031,208,173,031,214 
15244:208,201,003,208,038,032,062 
15250:026,038,169,229,160,062,062 
15256:032,089,037,032,206,046,082 
15262:141,245,063,208,003,076,126 
15268:010,038,160,000,185,163,208 
15274:063,153,246,063,200,204,075 
15280:120,063,208,244,076,010,129 
15286:038,165,134,133,138,165,187 
15292:135,133,139,169,255,141,136 
15298:243,063,160,001,162,000,055 
15304:173,24 5,06 3,240,083,189,169 
15310:246 , 063,0 32,044,038,209,070 

Entering SpeedScript 

61 



SpeedScript 

15316:138,240,005,224,000,208,003 
15322:235,202,200,208,011,230,024 
15328:139,165,139,205,118,063,029 
15334:240,002,176,054,232,236,146 
15340:245,063,208,221,024,152,125 
15346:101,138,133,140,165,139,034 
15352:105,000,133,141,173,117,149 
15358:063,197,140,173,118,063,240 
15364:229,141,144,024,056,165,251 
15370:140,237,245,063,133,134,194 
15376:141,242,063,165,141,233,233 
15382:000,133,135,141,243,063,225 
15388:032,207,039,096,032,026,204 
15394:038,169,235,160,062,032,218 
15400:089,037,169,001,141,113,078 
15406:063,096,169,008,141,031,042 
15412:208,173,031,208,201,003,108 
15418:208,035,032,026,038,169,054 
15424:245,160,062,032,089,037,177 
15430:032,206,046,141,020,064,067 
15436:240,014,160,000,185,163,070 
15442:063,153,021,064,200,204,019 
15448:120,063,208,244,076,010,041 
15454:038,056,165,134,133,130,238 
15460:237,242,063,133,140,165,056 
15466:135,133,131,237,243,063,024 
15472:005,140,208,101,169,255,222 
15478:141,243,063,024,173,245,239 
15484:063,101,134,133,128,169,084 
15490:000,101,135,133,129,056,172 
15496:173,117,063,229,130,133,213 
15502:132,173,118,063,229,131,220 
15508:133,133,032,016,036,056,042 
15514:173,117,063,237,245,063,028 
15520:141,117,063,173,118,063,067 
15526:233,000,141,118,063,173,126 
15532:020,064,240,041,141,238,148 
15538:063,169,000,141,239,063,085 
15544:032,146,044,160,000,185,239 
15550:021,064,032,044,038,145,022 
15556:134,200,204,020,064,208,002 
15562:242,024,165,134,109,020,128 
15568:064,133,134,165,135,105,176 
15574:000,133,135,076,207,039,036 
15580:160,000,204,115,063,240,234 
15586:029,177,142,048,026,032,168 
15592:056,055,032,098,055,173,189 
15598:241,063,240,010,169,008,201 
15604:032,098,055,169,095,032,213 
15610:098,055,200,076,222,060,193 

62 



15616:096,140,236,063,041,127,191 
15622:141,237,063,032,056,055,078 
15628:201,099,208,027,056,173,008 
15634:232,063,237,115,063,074,034 
15640:056,237,221,063,168,169,170 
15646 :032,032,098,055,136,208,079 
15652:250,172,236,063,076,252,061 
15658:060,201,101,208,017,056,173 
15664:173,222,063,237,115,063,153 
15670:056 ,237,221,063,168,169,200 
15676:032,076,031,061,201,117,066 
15682:208,008,173,241,063,073,064 
15688:001,141 ,241,063,201,035,242 
15694:208,018,140,236,063,174,149 
15700:228,063,173 ,229,063,032,104 
15706:155,047,172,236,063,076,071 
15712:252,060,174,237,063,189,047 
15718:051,064,032,098,055,076,222 
15724:252,060,032,026,038,056,060 
15730:173,104,063,237,117,063,103 
15736:170,173,105,063,237,118,218 
15742:063,032,160,047,169,001,086 
15748:141,113,063,096,083,112,228 
15754:101,101,100,083,099,114,224 
15760:105,112,116,03 2,051,046,094 
15766:048,000,032,098,121 ,032,225 
15772:067,104,097,114,108,101,235 
15778:115 ,032,066,114,097,110,184 
15784:110,111,110,000,066,117,170 
15790:102 ,102,101,114,032,067,180 
15796:108,101,097,114,101,100,033 
15802:000,066,117 ,102,102,101,162 
15808:114,032,070,117,108,108,229 
15814:000,068,101 ,108,101,116,180 
15820:101,032,040,083,044,087,079 
15826:044,080,041,000,058,032,209 
15832:065,114,101,032,121,111,248 
15838:117,032,115,117,114,101,050 
15844:063,032,040,089,047,078,065 
15850:041,058,000,069,082,065,037 
15856:083,069,032,065,076,076,129 
15862:032,084,069 ,088,084,000,091 
15868:069,114,097,115,101,032,012 
15874:040 ,083,044,087,044,080,124 
15880:041,058,032,210,197,212,246 
15886:213,210,206,032,116,111,134 
15892:032,101,120 ,105,116,000,238 
15898:083,097,118 ,101,~32,040,241 
15904:068,101,118,105,099,101,112 

Entering SpeedScript 

63 



SpeedScript 

15910:058 ,070, 105 ,108,101,110,078 
15916:097 , 109 ,101,041,062,000,198 
15922:069,114,114,111,114,032,092 
15928:035,000,066 ,082,069,065,117 
15934:075 ,032,075,101,121,032,242 
15940:065,098,111,114,116 ,000,060 
15946:078,111,032 ,069,1 14,114,080 
15952:111,114 , 115,000,076,111 ,095 
15958:097,100,032,040,068,101,012 
15964:118,105,099,101,058,070,131 
15970:105,108,101,110,097,109 ,216 
15976:101,041,062,000,032,080,164 
15982:114,101,115,115,032,210,029 
15988:197,212,213 ,210,206,000,130 
15994:068,049 ,058,042,046,042,171 
16000:077,101 ,109,111, 114,121,249 
16006:032,070 ,117,108, 108 ,000,057 
16012:078,111,032 ,116, 101 ,120, 186 
16018:116,032 ,105,110,032,098 ,127 
16024:117 ,102,102,101,114,000,176 
16030:080,114,105,110,116,032,203 
16036:040,068,101,118,105,099,183 
16042:101,058,070,105 ,108,101,201 
16048:110,097,109 ,101,041,062,184 
16054:000 ,080,114,105, 110,116 ,195 
16060:105 ,110,103,046,046,046,132 
16066:155 ,155,000,073,110,115,034 
16072:101,114,116 ,032, 110 ,101,006 
16078:120,116 ,032,115, 104,101,026 
16084:101 ,116,044,032,112,114,219 
16090:101,115,115,032 ,210,197,220 
16096:212 ,213,210,206,000,070,111 
16102:105,110 ,100,058,000,078,169 
16108:111,116,032,102,111,117 ,057 
16114:110,100,000 ,067,104,097 ,208 
16120:110,103 , 101,032,116,111 ,053 
16126:058 ,000,027,028,027,029,167 
16132:027 ,030,02 7,031,032 , 195 ,090 
16138:212,210,204,045,196,101,210 
16144 :108,101,116,101,032,204,166 
16150:111 ,099,107,032,213,1 10,182 
16156:108 ,1 11,099,107,032,210 ,183 
16162:101,110,097,109,101,032,072 
16168:197,211,195 ,198,111,114,042 
16174:109,097,116,032,195,212,039 
16180 :210,204,045,204,111 ,097,1 55 
16186:100,032,032,068,114,105 ,253 
16192:118,101 ,032,09 1,177 ,032,103 
16198:178,032,179,032,180,093,252 

64 



16204:058,032,000,082,101,110,203 
16210:097,109,101,032,116,111,136 
16216:058,000,070,111,114,109,038 
16222:097,116,032,100,105,115,147 
16228:107,000,000,000,000,000,207 

Entering 5peed5cript 

3.;' 
) 

65 





Chapter 3 

SpeellScript 
Source Code 





Atari Source Code 

The source code for SpeedScript was originally developed using 
the MAC/65 assembler (from Optimized Systems Software, 
Inc.). The MAC/65 assembler uses the standard MOS source 
code format, so this source code can be assembled on a va.riety 
of Atari assemblers, including EASMD from OSS and the Atari 
Assembler/Editor cartridge. The source code was originally bro­
ken up into a number of modules, each SAVE#'d to disk. The 
.INCLUDE pseudo-op was used to link all the modules to­
gether. All files must be merged together to be assembled with 
the Atari Assembler/Editor cartridge. Line numbers are 
omitted. 

Most pseudo-ops are in standard MOS 6502 notation: >I< = 
updates the program counter (some assemblers use .ORG in­
stead); .BYTE assembles a list of numbers or an ATASCII char­
acter string; .WOR, or .WORD, assembles a list of addresses 
into low byte/high byte format; < extracts the low byte of a 
16-bit expression; > extracts the high byte of a 16-bit ex­
pression (some assemblers reverse the use of < and >; others, 
such as EASMD and the Assembler/Editor cartridge, use a suffix 
of &255 and /256 to achieve the same effect); and = is used 
to assign an expression to a label (some assemblers use .EQU). 

Beginners should make sure they understand Indirect-Y 
addressing, as in LDA ($FB),Y or LDA (CURR),Y. This mode is 
used extensively in SpeedScript. 

The Atari version of SpeedScript was developed by send­
ing the Commodore 64 source code to the Atari via modem. 
References to Commodore 64 Kernal ROM routines were re­
placed with Atari CIO routines. Some routines built into the 
Commodore 64's ROM had to be programmed into Atari 
SpeedScript, with resulting code expansion. References to loca­
tion 1 (which maps banks of ROM in and out in the 64) were 
omitted. The REFRESH routine, TOPCLR, and a few other 
routines were changed to compensate for Atari's floating 
screen memory. The raster interrupt used to highlight the 
command line in the 64 version became a display-list inter­
rupt. A custom character set was added to take advantage of 
the Atari's special nine-line character mode. The DOS package 
was written to support disk functions. But much of the source 
code did not need to be changed at all, since SpeedScript's 

69 



SpeedScript 

machine-specific code is segregated into distinct modules . 
These modules were rewritten. Approximately one week was 
required to get a primitive version running, followed by two 
months of testing, debugging, and refining to complete Atari 
SpeedScript . Because of the new character set, the DOS pack­
age, smoother input/output programming (such as Atari's 
device-independent I/O), and more logical keyboard layout, 
the Atari version may be the best version of SpeedScript yet. 

SpeedScript is written in small modules. Some people 
think that subroutines are useful only when a routine is called 
more than once. I strongly believe in breaking up a problem 
into a number of discrete tasks. These tasks can be written as 
subroutines, then tested individually. Once all the modules are 
working, just link them together with JSRs and you have a 
working program. 

I've also tried to use meaningful labels, but sometimes 
one just runs out of imagination. Comments are added below 
as signposts to guide you through the source code (you 
needn't type them in-if you do, precede each comment with 
a semicolon for the sake of your assembler). Modules are also 
set apart with blank lines. Notice that some modules are used 
in rather creative ways. For example, word left/word right is 
used both for moving the cursor and in delimiting a word to 
be erased in the erase mode. Also, note that memory locations 
are sometimes used instead of meaningful labels. In order to 
fit the complete source code into memory at once, I sometimes 
had to compromise readability for the sake of brevity. 

Crucial to the understanding of SpeedScript is the RE- 2 -+ S177 
FRESH routine. Study it carefully. REFRESH is the only rou-
tine in SpeedScript that writes directly to the screen (CIO is 
used to print on the command line). It automatically takes care 
of word-wrap and carriage returns, and provides useful point-
ers so that the CHECK routine can easily scroll the screen. 
This frees the rest of SpeedScript to just move and modify 
contiguous memory. Carriage returns are not padded out in 
memory with spaces to fill the rest of a line; the REFRESH 
routine takes care of this transparently. 

70 



SpeedScript Source Code 

er1~ :'D I 

J"?Jp'5-":/.". - _ Q . ,-J lTD 3~FF 
SpeedScript 3.0 Source Code for Atari 

Filename: D:SPEED.O 
)0Jb 

Location $lFOO is safely above DOS 
2.0S, DOS 3, and OS/A+ DOS. Some 
DOS's may use more memory, so you 
may need to reassemble SpeedScripl at 
a higher address, usually the address of 
LOMEM plus 256 bytes to be safe. 

• = SlFOO - \.'.~" ""'t" 

Locations used by high-speed memory 
move routines. 

FROML 
FROMH 
OESTL 
OESTH 
LLEN 
HLEN 

$80 $81 t I .J~. :~ '''""'I 

$82 . C - -1Fr r,r, ,. 
$83 ~ ~ 

$84 
$85 

CURR: Position of cursor within text 
memory. SCR: used by the REFRESH 
routine. f- . 
CURR 
SCR 

$86 
$88 

TEX: An alternate location used in tan­
dem with CURR. COLR is used by RE­
FRESH. TEMP is used throughout as a 
scratchpad pointer. INDIR is also a re­
usable indirect pointer. UNDERCURS 
stores the value of the character high­
lighted by the cursor. 

TEX $8A 
TEMP $8C 
INDIR $8E 
UNOERCURS $90 

WINDCOLR: Color of command line 
window supported by HIGHLIGHT. 
RETCHAR is the screen-code value of 
the return-mark (a left-pointing arrow). 
SPACE is the screen-code value of the 
space character. RED and BLUE are 
used as command-line colors 

WINOCOLR 
RETCHAR 
SPACE 
RED 
BLUE 

$91 
94 
o 
$32 
$74 

Input/Output Control System defi­
nitions for input/output control blocks 
(IOCBs). CIO is the entry point for all 
file-oriented input/output. SHFLOK is 
the SHiFtLOcK flag . 

ICCOM 
ICBAOR 
ICBLEN 
ICAUX1 
ICAUX2 
ICSTAT 
SHFLOK 
CIO 

$0342 
$0344 · 
$0348 ." 
$034A­
$034B ": 
$0343 'J 

$02BE 
$E456 

\:::. ,,,,0 of=" J '0 

......... , 

Called only when run from DOS. It is 
\ assumed that the author's initials (that 

conveniently work out in hex) are not 
normally present in memory. If they 
are, we know that SpeedScript has been 
run before, so we avoid the ERASE 
routine to preserve the text in memory. t. 
BEGIN 0.3 LOA 710 0/,.,",' "'-' ~ --, " 

II'OT> O"!> STA~" ,,) 77 e... 
7 ,e?9S JSR INiT - \'1' t----

tF6 CP ---LOA #$CB 
, r - CMP FIRSTRUN 
/ r:J STA FIRSTRUN 

BEQ SKIPERAS 
JSR ERASE P'-' 
JSR KILLBUFF c&, e 

We save the DOS reset vector and 
change this vector to point to 
SpeedScript's SYSTEM RESET routine. 
Since this routine is called at power-up, 
right after DOS.5YS runs, we need to 
disable the cold-start flag (location 580) 
and set location $09 to signify a 
successful disk boot. 

/F/!./) 

SKIPERAS 

/ r ? ) 

LOA 
STA 
LOA 
STA 
LOA 
STA 
LOA 
STA 
LDA 
STA 
LOA 
STA 
JSR 
JMP 

SOC 
JOOS+1 
$00 
JOOS+2 
# <JOOS 
SOC 
# >JOOS 
$00 
#0 
580 
#1 
$09 
INIT2 P 7<:- L-
MAIN f')(" Q.... 

The character set for the ANTIC 3 
nine-line character mode must be on an 
even 512-byte boundary, so we force 
the assembler's program counter to ad­
dress $2000 and merge in the character 
set. We then link in each successive 
module of SpeedScripl. Again, if your 
assembler cannot handle .INCLUDE, 

71 



SpeedScript 

you'll have to merge all these files to­
gether in the order indicated. .= $2000 '8) J'?'L 

.INCLUDE #D:CHSET.SRC 

.INCLUDE #D:SPEED.1 

.INCLUDE #D:SUPPORT 

.INCLUDE #D:DOSPAK 

.INCLUDE #D:SPEED.2 

.INCLUDE #D:DATA 

.END 

Filename D:CHSET.SRC 

The character set here is stored as eight 
bytes per line, so each line defines one 
character. Sheldon Leemon's INSTEDIT 
character editor was used to crea te the 
character set, and I wrote a special pro­
gram to convert the character set into 
.BYTE statements. In ANTIC mode 3, 
each character takes up ten scan lines 
of vertical screen space. The characters 
in the lowercase portion of the charac­
ter set are displayed with a blank line 
at the top line, then the character data 
from bytes 1-7 of the character set. 
Byte 0 of the character's definition is 
displayed at the ninth line of the 
character. The tenth line is always 
blank. This lets you define characters 
with true descenders. The forced blank 
line lets you use more of the character 
matrix for defining a character, so these 
characters are larger than normal Atari 
characters. ;, 

.BYTE 5,0,0,0,0,0,0,0 

72 

.BYTE 0,24,24,24,24,24,0,24 

.BYTE 0,102,102,102,0,0,0,0 

.BYTE 0,102,255,102,102,255,102,0 

.BYTE 24,62,96,60,6,124,24,0 

.BYTE 0,204,216,48,96,204,140,0 

.BYTE 0,56,108,56,112,222,204,118 

.BYTE 0,24,24,48,0,0,0,0 

.BYTE 0,24,48,96,96,96,48,24 

.BYTE 0,48,24,12,12,12,24,48 -

.BYTE 0,0,102,60,255,60,102,0 

.BYTE 0,0,24,24,126,24,24,0 

.BYTE 0,0,0,0,0,48,48,96 

.BYTE 0,0,0,0,126,0,0,0 

.BYTE 0,0,0,0,0,0,48,48 

.BYTE 0,0,6,12,24,48,96,192 

.BYTE 0,124,206,222,246,230,198,124 

.BYTE 0,24,56,24,24,24,24,126 

.BYTE 0,124,198,12,24,48,96,254 

.BYTE 0,254,12,24,56,12,198,124 -

.BYTE 0,28,60,108,204,254,12,12 

.BYTE 0,254,192,252,6,6,198,124 

.BYTE 0,124,192,252,198,198,198,124 

.BYTE 0,126,6,12,24,48,96,96 

.BYTE 

.BYTE 

.BYTE 

.BYTE 

.BYTE 

.BYTE 

.BYTE 

.BYTE 

.BYTE 

.BYTE 

.BYTE 

.BYTE 

.BYTE 

.BYTE 

.BYTE 

.BYTE 

.BYTE 

.BYTE 

.BYTE 

.BYTE 

.BYTE 

.BYTE 

.BYTE 

.BYTE 

.BYTE 

.BYTE 

.BYTE 

.BYTE 

.BYTE 

.BYTE 

.BYTE 

.BYTE 

.BYTE 

.BYTE 

.BYTE 

.BYTE 

.BYTE 

.BYTE 

.BYTE 

.BYTE 

.BYTE 

.BYTE 

.BYTE 

.BYTE 

.BYTE 

.BYTE 

.BYTE 

.BYTE 

.BYTE 

.BYTE 

.BYTE 

.BYTE 

.BYTE 

.BYTE 

.BYTE 

.BYTE 

.BYTE 

.BYTE 

.BYTE 

.BYTE 

.BYTE 

.BYTE 

.BYTE 

0,124,198,.198,124,198,198,124 
0,124,198,198,126,12,24,48 
0,0,48,48,0,48,48,0 
0,0,48,48,0,48,48,96 
0,12,24,48,96,48,24,12 
0,0,0,126,0,0,126,0 _ 
0,48,24,12,6,12,24,48 
0,60,102,6,12,24,0,24 
0,124,198,222,214,220,224,60 
0,124,198,198,198,254,198,198 
0,252,198,198,252,198,198,252 
0,124,198,192,192,192,198,124 
0,248,204,198,198,198,204,248 
0,254,192,192,252,192,192,254 
0,254,192,192,252,192,192,192 
0,124,198,192,222,198,198,124 _ 
0,198,198,198,254,198,198,198 
0,126,24,24,24,24,24,126 
0,62,12,12,12,12,204,120 
0,198,204,216,240,216,204,198 
0,192,192,192,192,192,192,'254 
0,198,238,254,214,198,198,J.98 
0,198,230,246,254,222,206,198 
0,124,198,198,198,198,198,124 
0,252,198,198,198,252,192,192 
0,124,198,198,198,222,124,14 -
0,252,198,198,252,216,204,198 
0,124,198,192,124,6,198,124 
0,126,24,24,24,24,24,24 
0,198,198,198,198,198,198,124 
0,198,198,198,198,198,108,56 
0,198,198,198,214,254,238;198 
0,198,19&,108,56,108,198,198 
0,102,102,102,60,24,24,24 
0,254,12,24,48,96,192,254 
0,30,24,24,24,24,24,30-
0,64,96,48,24,12,6;0 
0,240,48,48,48,48,48,240 
0,8,28,54,99,0,0,0 
0,0,0,0,0,0,0,255 
0,0,0,0,0,0,0,0 
124,194,1 :;3, 153, 129,153,153,230 
252,130,153,130,153,153,131,252 
124,194,153,158,158,153;194,124 
252,130,153,153,153,153,130,252 
254,130,158,132,156,158,130,254 -
126,193,206,194,206,204,204,120 
124,194,153,158,145,153,194,124 
246,153,153,129,153,153,153,246 
127,97,115,50,50,115,97,127 
62,50,50,50,50,114,198,124 
230,153,146,132,146,153,153,230 
120,76,76,76,76,78,66,124 
230,153,129,129,137,153,153,230 
230,153,137,129,145,153,153,230 
124,194,153,153,153,153,194,124-
254,195,201,201,195,206,200,240 
124,194,153,153,153,146,201,118 
124,194,201,201,194,201,201,247 
126,195 .. 158,194,249,153,195,126 
254,194,102,100,100,100,100,124 
246,153,153,153,153,153,194,124 
230,153,153,153,153,194,100,56 



SpeedScript Source Code 

UMOVE is a high-speed memory move 
routine. It gets its speed from self­
modifying code (the $FFFFs at 
MOVLOOP are replaced by actual ad­
dresses when UMOVE is called) . 
UMOVE is used to move an overlap­
ping range of memory upward (toward 
location 0), so it is used to delete. Set 
FROML/FROMH to point to the source 
area of memory, DESTL/DESTH to 
point to the destination, and 
LLEN/HLEN to hold the length of the 
area being moved . 

.BYTE 

.BYTE 

.BYTE 

.BYTE 

.BYTE 

. BYTE 

.BYTE 

.BYTE 

.BYTE 

.BYTE 

.BYTE 

.BYTE 

.BYTE 

.BYTE 

. BYTE 

.BYTE 

.BYTE 

.BYTE 

.BYTE 

.BYTE 

.BYTE 

.BYTE 

.BYTE 

.BYTE 

.BYTE 

.BYTE 

.BYTE 

.BYTE 

.BYTE 

.BYTE 

.BYTE 

.BYTE 

.BYTE 

.BYTE 

.BYTE 

.BYTE 

.BYTE 

.BYTE 

.BYTE 

.BYTE 

.BYTE 

2..4-/ ".:) UMOVE LQ.A 

246,153,153,153,137,129,153,246 
230,153,153,194,153,153,153,230 
230,153,153,195,230,100,100,124 -
254,193,249,50,228,206,193,254 
120,96,120,96,126,24,30,0 
0,24,60,126,24,24,24,0 
0,24,24,24,126,60,24,0 
0,0,0,12,12,88,112,120 
0,24,12,126,12,24,0,0 
0,0,24,60,126,126,60,24 
0,0,0,124,6,126,198,126 
0,0,192,252,198,198,198,252 
0,0,0,124,198,192,198,124 -
0,0,6,126,198,198,198,126 
0,0,0,124,198,254,192,124 
0,0,62,96,252,96,96,96 
6,252,0,126,198,198,198,126 
0,0,192,192,252,198,198,198 
0,0,24,0,56,24,24,60 
24,240,24,0,24,24,24,24 
0,0,192,204,216,248,204,198 
0,0,56,24,24,24,24,60 
0,0,0,204,254,254,214,198 -
0,0,0,252,198,198,198,198 
0,0,0,124,198,198,198,124 
192,192,0,252,198,198,198,252 
6,6,0,126,198,198,198,126 
0,0,0,252,198,192,192,192 
0,0,0,126,192,124,6,252 
0,0,48,254,48,48,48,30 
0,0,0,198,198,198,198,126 
0,0,0,198,198,198,108,56 
0,0,0,198,214,254,124,108 -
0,0,0,198,108,56,108,198 
6,252,0,198,198,198,198,126 
0,0,0,254,12,56,96,254 
14,0,14,24,24,56,24,24 
24,24,24,24,24,24,24,24 
112,0,112,24,24,28,24,24 

FROML 
MOVLOOP+1 
FROMH 
MOVLOOP+2 
DESTL 
MOVLOOP+4 
DESTH 
MOVLOOP+5 
HLEN 
SKIPMOV 

.~ 

.END 

0,0,0,8,24,56,24,8 
0,0,0,16,16,24,28,24 
'+16 

Filename D:SPEED.l 

This module is chiefly concerned with 
the word processor editing functions. It 
contains many common subroutines, 
such as TOPCLR and PRMSG to clear 
the command line and print messages. 
It contains the initialization routines 
and takes care of memory moves (in­
serts and deletes). A second module, 
SPEED.2, is responsible for most 
input/output, including the printer 
routines. SPEED. 1 is the largest file in 
the linked chain. 

MOV1 
MOV2 

MOVLOOP 

SKIPMOV 

OUT 

STA 
LDA 
STA 
LDA 
STA 
LDA 
STA 
LDX 
BEQ 
LDA 
STA 
LDY 
LDA 
STA 
INY 
CPY 
BNE 
INC 
INC 
CPX 
BEQ 
DEX 
BNE 
LDA 
BNE 
RTS 

#0 
ENDPOS 
#0 
$FFFF,Y 
$FFFF,Y 

ENDPOS 
MOVLOOP 
MOVLOOP+2 
MOVLOOP+5 
#0 
OUT 

MOV1 
LLEN 
MOV2 

DMOVE uses the same variables as 
UMOVE, but it is used to move an 
overlapping block of memory down­
ward (toward location $FFFF), so it is 
used to insert. If the block of memory 
to be moved does not overlap the 
destination area, then either routine can 
be used. 

DMOVE LDA HLEN 
TAX 
ORA LLEN 
BNE NOTNULL 
RTS 

NOTNULL CLC 
TXA 
ADC FROMH 

73 



. " 

5peed5cript 

STA DMOVLOOP +2 
LOA FROML 
STA DMOVLOOP+1 
CLC 
TXA 
ADC DESTH 
STA DMOVLOOP+5 
LOA DESTL 
STA DMOVLOOP+4 
INX 
LOY LLEN 

/1 
TOPLIN points to the first charact";;;~ 
within text to be printed at tht oP-left 
corner of the screen. , 

t-i 1 

" CLC / ", 1== 
~ LOA TOPLIN 3 F (';;"F 
'- STA TEX 
, LDA TOPLIN+1 

STA TEX+l 
v LDX #1 L!<oJ £: .£: 
' LOA INSMODE f 

. STA WINDCOLR BNE DMOVLOOP 
BEQ SKIPDMOV 

er O 

,J€ 1 

/..1 PPAGE ' LOY #0 _ col"" c "" 

DMOV1 
DMOVLOOP 

SKIPDMOV 

LOY 
LOA 
STA 
DEY 
CPY 
BNE 
DEC 
DEC 
DEX 
BNE 
RTS 

#255 
$FFFF,Y 
$FFFF,Y 

#255 
DMOVLOOP 
DMOVLOOP +2 
DMOVLOOP +5 

DMOV1 

REFRESH copies a screenful of text 
from the area of memory pointed to by ­
TOPLIN. It works like a printer routine, 
fitting a line of text between the screen 
margins. wrapping words, and restarts 
at the left margin after printing a car­
riage return. SpeedScrip/ constantly calls 
this routine while the cursor is blink­
ing. so it has to be very fast. To elimi­
nate flicker, it clears out the end of 
each line instead of first clearing the 
screen . It stores the length of the first 
screen line for the sake of the CHECK 
routine (which scrolls up by adding 
that length to TOPLIN) and the last 
text location referenced (so CHECK can 
see if the cursor has moved off the vis-
ible screen). REFRESH can automati­
cally handle different screen widths. 

PLINE \ ' LOA (TEX),Y 
" STA LBUFF,Y .... r"; 

C v INY 
"' AND I ./CMP 

\ / BEQ 
I v CPY 
'-- r BNE 

/ DEY 

t l 
#127 -- ' , 
#RETCHAR -- ,,;.« .i 
BREAK ---' 
LINELEN 
PUNE 

. '1---

:~::: ['~~~ 
r· ,J1 '/ <~r ~~i~ 

- • BNE 

SBRK 
BREAK 

COpy 

') J 

LOY 
' DEY 
/ INY 

STY 
LOY 

/ LDA 

INY 

TEMP 
#0 
LBUFF,Y 
(SCR),Y 

-, 

[ 

~TA 
"""CPY TEMP B' L "'; .... 
/ BNE COPY 

J'. 

..r CLC c/,·.- 'r" I 
"'TYA '1= 51''''(( ".-,,·,,1 

./ ADC TEX tJ Ob "1 ' 0 T~ X 
v STA TEX 
·/ LDA TEX+1 

ADC #0 _. 
. STA TEX+1 

#1 

ZLlc;5 <D REFRESH LOA j40 C. r ®::I S <. 

INY 0 /' 24F9-CLRLN 

, CPX 
"' BNE 
£..STY 

CLRLN I 
LENTABLE 
LINELEN , -! ' q."7 
CLEARED 

CLC (-"".ev ' 'w_ 
/or 0 J 

RLM: Left margin. Locafion $58/$59 
points to the address of screen 

vCPY 
cBEQ 

Character #64 (ATASCII value of 0) 
fills the gap when a line is broken. It 

memory _ -r'" d'" I 0(0 . • .JP. 4- .. ~ can be redefined to show or not show 
;;.CI·;<~' ~ - ADC RLM '" (2.V ",0 r"l these false spaces. 

t '. !-" CLC I /) I,.r'l \ ('Ill « v-
p'o' / '"r~ '7-, ADC $58. pdd> ... ,e£E..... (;1 r '-:, ' LOA #64 

r-l,J -r'> 5 ,'I' ,I' v'STA (SCR),Y 
.;: 0 , STA SCR \.- ,""'f' I • ,', VlNY A.'''''' 'r I LOA $59 (11 '1MP CLRLN 

" ~C~ ~ 
J/I'; STA SCR+1 CLEARED CLC 
'/ " ~LDA 

,0' 

t ' 
74 



2.S0" INCNOT 

25\4 PDONE 

, 1)-

SpeedScript Source Code . , .... 

IV) 

ADC 
STA 
BCC 
INC 

#'4cT 15 '") r /,.". \ (character out) prints the character in 
SCR VI' .I ir~( "i 'r) the accumulator to the screen. 
INCNOT ' CHROUT is a subroutine in the SUP-

INX 
SCR+1 PORT package. A 9 1'1~ 

LO W I 
CPX~ d!-I' I <: 

BEQ- mONE 
JMP PPAGE 
LDA TEX 1: 'S 

PRMSG 
Z55~" 

TEMP 
TEMP+l 
#1 
752 {\ ' 

J-Jlb t I)/}I , 

. , ./ ( STA BOTSCR 
a 0.,°" LDA TEX+1 
'Z-o (;' " (/:'-"',.) STA BOTSCR + 1 

PRLOOP 

STA 
STY 
lOA 
STA 
LDY 
LDA 
BEQ 
JSR 
INY 
BNE 
RTS 
JSR 
BEQ 
RTS 
JSR 
LDA 
BEQ 
LDY 
LDA 
STA 
JSR 
JMP 

#0 
(TEMP),Y 
PREXIT 
CHROUT 

i ... 

\ (j I 
1;,,') lS I r;- RTS '7 I.-. 

\ The following routine fills the entire 
text area with space characters (screen 
code 0), effectively erasing all text. It is 
called when the program is first run 
and when an Erase All is performed. It 
also initializes the cursor position 
(CURR) and the end-of-text pointer 
(LASTLINE). 

ERASE TEXSTART I j,,,,T 
TEX 
TOPLIN 
LASTLINE 

PREXIT 
GETAKEY 

JDOS 

NOBLINK 

PRLOOP 

GET IN 
GETAKEY 

PREXIT 
BLINK 
NOBLINK 
#0 
UNDERCURS 
(CURR),Y 
INIT2 
MAIN 

LDA 
STA 
STA 
STA 
STA CURR The initialization routine sets up the 

TEXSTART + 1 memory map, clears out certain flags, 

= #';? r;rJD + I [~~£ TEX+1 
TOPLIN +1 and enables the display-list interrupt. 

zs q. c 
'Z. c:: .1· 

STA 
STA 
SEC 

LASTLINE + 1 ZS~ INIT LDA #125 

CLRLOOP 

CLR2 

LDA 
SBC 
TAX 

CURR + 1 

TEXEND+1 
TEXSTART+1 

LDA #SPACE 
LDY #255 
DEC ' TEX + 1 
STA (TEX),Y 
INY 
INC 
STA 
INY 
BNE 
INC 
DEX 

TEX+1 
(TEX),Y 

CLR2 
TEX+1· 

BNE CLR2 
"- STA (TEX),Y 

Z-SS? RTS 
PRMSG is used anytime we need to 
print sometl>ing at the top of the screen 
(the command line). Pass it the address 
of the message to be printed by storing 
the low byte of the address in the accu­
mulator and the high byte in the Y reg­
ister. The message in memory must end 
with a zero byte. The routine does not 
add a carriage return . CHROUT 

JSR CHROUT ----
LDA #0 
STA INSMODE 
STA TEXSTART 
STA TEXEND 
STA TEXBUF 
STA BUFEND 
STA HUNTLEN 
STA REPLEN 
STA ESCFLAG 
STA SHFLdK 
STA RLM 

"?-
) . 

LDA ~ -t:;'r '{lo 
-STA --LINELEN 

Label END is at the end of the source 
code, so it points to the last address 
used by the object code. We use it to 
calculate the start-of-text memory. 

LDA # >END 
CLC 
ADC #1 
STA TEXSTART+1 

Location 561 points to the display list, 
which holds screen information at the 
top of memory. We use it as the last 
address available for storing text or 
buffer text. 

75 



SpeedScript 

LOA 561 
SEC 
SBC #1 
STA BUFENO+l 
SEC 
SBC #8 
STA TEXBUF + l 
SEC 
SBC #1 
STA TEXENO+l 
LOA #$FF 
STA FPOS+l 

If location $45 is 0,. then SpeedScript is 
booted from disk. If we booted from 
cassette, we free up the DOS area 
($0700-$lEOO) for use as the text 
buffer, and free up the text memory 
used by disk-based SpeedScript as the 
text buffer. 

DISKBOOT 

LOA 
BEQ 
LOA 
STA 
LOA 
STA 
LOA 
STA 
RTS 

$48 
DISKBOOT 
BUFENO+l 
TEXENO+l 
#$07 
TEXBUF+l '­
#$IE 
BUFENO+1 

The second initialization routine turns 
on the display-list interrupt (HIGH­
LIGHT), homes the cursor, and prints 
the credit line. 

JSR PRMSG 
LOA #0 
STA MSGFLG 
RTS 

TOPCLR keeps the command line 
clean . It is called before most messages. 
It's like a one-line clear-screen. It also 
forces the left margin (82) to 0, and 
homes the cursor to the beginning of 
the command line by zeroing out the X 
and Y cursor positions (84 and 85). 

TOPCLR LOY #39 

TOPLOOP 
LOA #SPACE 
STA ($58),Y 
OEY 
BPL 
LOA 
STA 
STA 
STA 
RTS 

TOPLOOP 
#0 
82 
85 
84 

Convert ATASCII to screen codes. 

Z b Z. Q..ASTOIN PHA 
ANO #128 
STA TEMP .,5 £:.­
PLA 
ANO 
CMP 
BCS 
CMP 

\" BCS 

#127 
#96 
LOWR ~2.c:>Lf1:> 
#32 _. '';. 
NOTCTRL!::.';'~'2.-

_ CLC 

11 \ .:. ~ 

,. p INIT2 JSR 
LOA 
STA 
LOA 
STA 
JSR 
JSR 
LOA 
LOY 
JSR 
INC 
JMP 

HIGHLIGHT 
TEXSTART 
CURR 
TEXSTART+l 
CURR + l 
REFRESH 
SYSMSG 

, \0. , \ ?' AOC #64 l ,.... .. ~ 

# < MSG2 
# > MSG2 
PRMSG 
MSGFLG 
CHECK 

------ JMP LOWR .~2(..4S 
NOTCTRL SE~ 
-- SBC #32> 
LOWR - --O~RA TEMP 

RTS 

The MAIN loop blinks the cursor, 
checks for keystrokes, converts them 
from ATASCII to screen codes, puts 
them in text at the CURRent position, 
and increments the CURRent position 
and LASTLINE. It also checks for spe-

SYSMSG displays "Speed Script 3.0." cial cases like the RETURN key and 
The message flag (MSGFLG) is set passes control characters to the CON-
when a message is to be left on the TROL routine. The INSMODE flag is 
screen only until the next keystroke. checked to see if we should insert a 
After that keystroke, SYSMSG is called. space before a character. 
The INIT2 routine prints the credit line 2 "'I" MAIN LOY #0 
with the MSGFLG set so that you . '6 I STY BLINK 
won' t have to stare at the author's LOA (CURR),Y 
name while you're writing-a modesty STA UNOERCURS 
feature. MAIN2 LOY #0 ' 

'Z (" 0 (Y SYSMSG 
7., ),-

76 

JSR TOPCLR 
LOA # < MSGI 
LOY # > MSGI 

STY SELFLAG 
LOA (CURR), Y 

! ., ~ ~ ~ EOR #$80 



:"'L () -

I STA (CURR),Y 
LOA BLINK 
EOR #1 NOTCR 
STA BLINK 

ZcO:44- JSR REFRESH ./ z.. 4 B 12:> 
WAIT JSR GETIN ./ / 

BNE KEYPRESS 

We check for the START key, and if 
pressed, go to the HOME cursor 
routine. 

#8 
53279 '1 ·vf ),z,; r 

53279 --..J 
#6 
FLIPIT 
#0 

SpeedScript Source Code 

LDX #30 
IMP OVERCTRL 
TXA 
BIT ESCFLAG 
BMI OVERCTRL 
CMP #156 
BCS CONTROL 
ANO #127 
CMP #32 
BCC CONTROL 
CMP #123 
Bes CONTROL 
CMP #92 
BEQ CONTROL 
CMP #94 
BEQ CONTROL 
CMP #95 
BEQ CONTROL 

LOA 
STA 
LOA 
CMP 
BNE 
LOY 
STY 
LOA 
STA 
JSR 
IMP 

BLINK Z b ~ "L 
UNDER CURS OVERCTRL TXA 
(CURR),Y 
HOME 

PHA 
LOY #0 

MAIN STY ESCFLAG 
LOA (CURR),Y 
CMP #RETCHAR -The realtime clock (location 20), which 

counts in 1/60 seconds, is checked for 
16/60 seconds (about 1/ 5 second) to 
see if it's time to blink the cursor. 

BEQ 
LOA 

OOINS 
INSMOOE 

,. • ... , I 

BEQ NOTINST 

FLIPIT LOA 
ANO 
BEQ 
LOA 
STA 
IMP 

20 
#16 
WAIT 
#0 

DOINS 
2..:...':' 7 NOTINST 

rf'j ,,)0 \'" 

ISR INSCHAR z.c.,C 
PLA 
IS~ ASTOIN 
ANO #127 

20 
MAIN2 

A key has been pressed . We check the 
SELECT key to see if the keystroke 
should be inverted. 

KEYPRESS 

NOTSEL 

NOTBKS 

NOMSG 

TAX 
LOA #8 
STA 
LDA 
CMP 

53279 
53279 
#5 
NOTSEL r BNE 

LOA 
STA 

"" LOY 
LOA 
STA 
LOA 

,.,.-BEQ 
TXA 
PHA 
JSR 
PLA 
TAX 

-, TXA 
CMP 
BNE 

#128 
SELFLAG 
#0 
UNOERCURS 
(CURR),Y 
MSGFLG 
NOMSG 

SYSMSG 

#155 
NOTCR 

Change a carriage return into a back 
arrO'."I. 

ORA SELFLAG 
LOY #0 

Put the character into memory. 

STA (CURR),Y 
ISR REFRESH 
SEC 
LOA 
SBe 
STA 
LOA 
SBC 
ORA 
BCC 
LOA 
ADC 
STA 
LOA 
AOC 
STA 

CURR 
LASTLINE 
TEMP 
CURR+1 
LASTLINE+1 
TEMP 
INKURR 
eURR 
#0 
LASTLINE 
CURR+1 
#0 
LASTLINE+1 

Move the cursor forward. 

INKURR 

NOINC2 

INC 
BNE 
INC 
JSR 
JMP 

CURR 
NOINC2 
CURR+1 
CHECK 
MAIN 

CONTROL looks up il keyboard com­
mand in the list of control codes at 
CTBL. The first byte of CTBL is the 

77 

'\' / '':'' 



SpeedScript 

actual number of commands. Once the 
position is found, this position is dou­
bled as an index to the two-byte ad­
dress table at VECT. The address of 
MAIN -1 is put on the stack, simulat­
ing the return address; then the address 
of the command routine taken from 
VECT is pushed. We then perform an 
RTS. RTS pulls the bytes off the stack 
as if they were put there by a JSR. This 
powerful technique is used to simulate 
ON-GOTO in machine language. 

;=. ') S'L CONTROL LOX CTBL 
SRCH CMP CTBL,X 

BEQ FOUND 
DEX 
BNE SRCH 
JMP MAIN 

FOUND DEX 
TXA 
ASL A 
TAX 
LOA # >MAIN-l 
PHA 
LOA # <MAIN-l 
PHA 
LOA VECT+l,X 
PHA 
LOA VECT,X 
PHA 
RTS 

CTBL .BYTE 35 
.BYTE 31,30,92,94,2,20,28,29 
.BYTE 126,255,4 
.BYTE 9,125,124,95,5,12,19 
.BYTE 13,18,24,26,16 
. BYTE 254,1,11,6,21,127,157 
.BYTE 3,7,156,27,15 

VECT .WORD RIGHT-l,LEFT-l, 

78 

WLEFT-l,WRIGHT 
-1,BORDER -1,LET 
TER,S-1 

.WORD SLEFT-l,SRIGHT­
I,DELCHAR -1,INSC 
HAR -1,DELETE-l 

.WORD INSTGL-l,CLEAR 
-1,PARIGHT-l,PA 
RLEFT-l 

.WORD ERAS-l,TLOAD-l, 
TSAVE-l 

.WORD DOS-l,INSBUFFER 
-1,SWITCH -1 

.WORD ENDTEX-l,PRINT 
-1 

.WORD DELIN-l,ALPHA­
I,KILLBUFF -1,HUN 
T -1,FREEMEM -1,T 
AB-l 

.WORD WTTASPACE-l,RE 
PSTART-l,SANDR 
-1,EA TSPACE -1,E 
SC-l,ONOFF-l 

Toggle ESCape mode. 

ESC LOA ESCFLAG 
EOR #128 
STA ESCFLAG 
RTS 

Change the character definition of the 
character used to fill in the end of a 
line. It alternates between being a 
blank space, and being a blank space 
with a tiny dot visible. This lets you see 
which spaces are actually part of your 
text and which are just used to parse 
the screen. Beware of the address 
$2204 if you reassemble at a different 
address (sorry, I didn' t use a label). 

ONOFF LOA $2204 
EOR #16 
STA $2204 
RTS 

The CHECK routine first prevents the 
cursor from disappearing past the 
beginning or end-of-text memory and 
prevents us from cursoring past the 
end-of-text pointer. It also checks to see 
if the cursor has left the visible screen, 
scrolling with REFRESH to make the 
cursor visible. The double-byte SBCs 
are used as a 16-bit CMP macro, setting 
the Z and C flags just like CMP does . 

CHECK JSR CHECK2 
SEC 

OKI 

LOA CURR 
SBC TOPLIN 
LOA CURR+l 
SBC TOPLlN+l 
BCS OKI 
SEC 
LOA TOPLIN 
SBC TEXSTART 
STA TEMP 
SBC TEXSTART+l 
ORA TEMP 
BEQ OKI 
LOA CURR 
STA TOPLIN 
LOA CURR+l 
STA TOPLlN + l 
JSR REFRESH 
SEC 
LOA BOTSCR 
SBC CURR 



SpeedScript Source Code 

STA TEX LOA 53279 
LOA BOTSCR+1 CMP #3 
SBC CURR + 1 BNE CRIGHT 
STA TEX + 1 LOA LINELEN 
ORA TEX CMP ~ "E O 
BEQ EQA BEQ NOBIGGER 
BCS OK2 INC LINELEN 

:',?I c:. EQA CLC INC LINELEN 
LOA TOPLIN OEC RLM 
AOC LENTABLE JSR REFRESH 
STA TOPLIN JSR CHECK 
LOA TOPLIN+1 LOA #125 
AOC #0 JSR CHROUT 
STA TOPLIN + l NOBIGGER JMP SYSMSG 

REF JSR REFRESH CRIGHT INC CURR 
JMP OK1 BNE NOINCR 

OK2 RTS INC CURR+1 
CHECK2 SEC NOINCR JMP CHECK 

LOA LASTLINE 
Move cursor left. If the OPTION key is SBC TEXENO 

STA TEMP held down, we instead decrease the line 
LOA LASTLINE + 1 length. 
SBC TEXENO+1 LEFT LOA #8 
ORA TEMP STA 53279 
BCC CK3 LOA 53279 
LOA TEXENO CMP #3 
STA LASTLINE BNE CLEFT 
LOA TEXENO + 1 LOA LINELEN 
STA LASTLINE + 1 CMP #2 

CK3 SEC BEQ TOOSMALL 
LOA CURR OEC LINELEN 
SBC TEXSTART ~ OEC LINELEN 
STA TEMP INC RLM 
LOA CURR + 1 JSR REFRESH 
SBC TEXSTART + 1 J5R CHECK 
ORA TEMP LOA #125 
BCS INRANGE JSR CHROUT 
LOA TEXSTART TOOSMALL JMP SYSMSG 
STA CURR CLEFT LOA CURR 
LOA TEXSTART + 1 BNE NOOEC 
STA CURR + 1 OEC CURR + l 
RTS NOOEC OEC CURR 

INRANGE SEC JMP CHECK 
LOA CURR 
SBC LASTLINE ' Word left. We look backward for a 
STA TEMP space. 
LOA CURR + 1 
SBC LASTLINE + 1 WLEFT LOA CURR 

ORA TEMP STA TEX 

BCS OUTRANGE LOA CURR+1 

RTS STA TEX+1 

OUTRANGE LOA LASTLINE OEC TEX+1 

STA CURR LOY #$FF 

LOA LASTLINE + 1 STRIP LOA (TEX),Y 

STA CURR+l CMP #SPACE 

RTS BEQ STRLOOP 
CMP #RETCHAR 

Move cursor right. If the OPTION key BNE WLOOP 
is held down, we instead increase the STRLOOP OEY 

line length. BNE STRIP 
WLOOP LOA (TEX),Y 

RIGHT LOA #8 CMP #SPACE 
STA 53279 BEQ WROUT 

79 



SpeedScript 

CMP #RETCHAR cursor there and call REFRESH. Other-
BEQ WROUT wise, we step back lK from the end-of-
DEY text and then scroll to the end. This is 
BNE WLOOP necessary since in the worst case only 
RTS 

Z -'lll~ WROUT SEC 
18 ch aracters of return-marks would fill 

TYA the screen . 

ADC TEX ENDTEX LOA #0 
STA CURR STA TOPLIN 
LDA TEX + 1 LDA LASTLINE + 1 
ADC #0 SEC 
STA CURR+1 SBC #4 
JMP CHECK CMP TEXSTART + 1 

Word right. We scan forward for a BCS SAFE 

space. OIDS is not a meaningful label. 
LOA TEXSTART + 1 

SAFE STA TOPLIN + 1 
WRIGHT LDY #0 JSR REFRESH 
RLOOP LDA (CURR),Y JMP LASTWORD 

CMP #SPACE Change the border color. The display-
BEQ ROUT 
CMP #RETCHAR list interrupt automatically places 
BEQ ROUT SCRCOL into the hardware back-
INY ground color register #2. 
BNE RLOOP BORDER 
RTS 

INC SCRCOL 
INC SCRCOL 

ROUT INY 
BNE OIDS 

RTS 
SCRCOL .BYTES 

INC CURR + 1 
LOA CURR + 1 Change text luminance. TEXCOLR is 
CMP LASTLINE + 1 stored into hardware color register #1 
BCC OIDS during the display-list interrupt. 
BNE LASTWORO 

OIDS LDA (CURR),Y LETTERS INC TEXCOLR 

CMP #SPACE INC TEXCOLR 

BEQ ROUT LDA TEXCOLR 

CMP #RETCHAR AND #15 

BEQ ROUT STA TEXCOLR 
RTS 

Add the Y register to the CURRent TEXCOLR .BYTE2 
cursor position to move the cursor. 

Sentence left. We look backward for CHECK prevents illegal cursor move-
ment. LASTWORD is called if the end ending punctuation or a return-mark, 

of the word cannot be found before we then go forward until we run out of 

reach the end-of-text. spaces . 

AOYCURR CLC 
SLEFT LOA CURR 

TYA 
STA TEX 

ADC CURR 
LDA CURR + 1 

STA CURR 
STA TEX + 1 

LDA CURR+1 
DEC TEX+1 

ADf: #0 
LOY #$FF 

STA CURR + 1 
PMANY LOA (TEX),Y 

WRTN JMP CHECK 
CMP #'. -32 

LASTWORD LDA LASTLINE 
BEQ PSRCH 

STA CURR 
CMP #'1-32 

LDA LASTLINE + 1 
BEQ PSRCH 

STA CURR + 1 
CMP #'7-32 

JMP CHECK 
BEQ PSRCH 
CMP #RETCHAR 

ENDTEX is tricky. If the end-of-text BNE PSLOOP 

pointer would point to an area already PSRCH DEY 

visible on the screen, we just move the BNE PMANY 

80 



SpeedScript Source Code 

RTS NOFIXCURR LDA (CURR),Y 
L PSLOOP LDA (TEX),Y CMP #SPACE 

CMP #'.-32 BEQ PUNCT2 
BEQ PUNCT CMP #'.-32 
CMP #'1-32 BEQ PUNCT2 
BEQ PUNCT CMP #'1-32 
CMP #'7-32 BEQ PUNCT2 
BEQ PUNCT CMP #'7-32 _ 
CMP #RETCHAR BEQ PUNCT2 
BEQ PUNCT CMP #RETCHAR 
DEY BEQ PUNCT2 
BNE PSLOOP IMP ADYCURR 
DEC TEX+1 

The text buffer starts at a fixed location, LDA TEX+1 
CMP TEXSTART but the end of the buffer is changed as _ 
BCS PSLOOP text is added to it. To clear the buffer, 
IMP FIRSTWORD we just set the end of the buffer to the 

PUNCT STY TEMP value of the start of the buffer. No text 
DEC TEMP '--. is actually erased. 

SKIPSPC INY 
.....-----KILLBUFF LDA BEQ REPEAT TEXBUF 

LDA (TEX),Y STA TPTR 
CMP #SPACE LDA TEXBUF+1 
BEQ SKIPSPC STA TPTR+1 
DEY ISR TOPCLR 

IMP WROUT LDA # <KILLMSG 
REPEAT LDY TEMP LDY # >KILLMSG 

IMP PSLOOP ISR PRMSG (? I'" t) 
FlRSTWORD LDA TEXSTART LDA #1 

STA CURR STA MSGFLG 
LDA TEXSTART+1 RTS 
STA CURR + 1 This is the second level of the general-
IMP CHECK purpose delete routines . UMOVE is the 

Sentence right. We look forward for primitive core of deleting. For CTRL-D, 
ending punctuation, then skip forward the CURRent cursor position is the 
until we run out of spaces. source; then a cursor command is 

SRIGHT LDY #0 called to update the cursor pointer. This 
SRLP LDA (CURR),Y becomes the destination. For CTRL-E, 

CMP #'.-32 the CURRent cursor position is the 
BEQ PUNCT2 destination; a cursor movement routine 
CMP #'1-32 is called, and this becomes the source. 
BEQ PUNCT2 UMOVE is then called. We actually 
CMP #'7-32 move more than the length from the 
BEQ PUNCT2 
CMP #RETCHAR source to the end-of-text. Some extra 

BEQ PUNCT2 text is moved from past the end-of-text. 
INY Since everything past the end-of-text is 
BNE SRLP spaces, this neatly erases everything 
INC CURR + 1 past the new end-of-text position. 
LDA CURR + 1 Naturally, the end-of-text pointer is up-
CMP LASTLlNE + 1 dated. Before the actual delete is per-
BEQ SRLP formed, the text to be deleted is stored 
BCC SRLP in the buffer so that it can be recalled SREXIT IMP LASTWORD 

in case of error. The buffer doubles as a PUNCT2 INY 
BNE NOFlXCURR fail-safe device, and for moving and 
INC CURR + 1 copying text. Checks are made to make 
LDA CURR+1 sure that the buffer does not overflow. 
CMP LASTLlNE+1 

DEll SEC BCC NOFIXCURR 
LDA CURR BEQ NOFIXCURR 

IMP LASTWORD SBC TEXSTART 

81 



SpeedScript 

STA TEMP STA FROMH 
LDA CURR+1 LDA DESTSAV 
SBC TEXSTART + 1 STA DESTL 
ORA TEMP LDA DESTSAV+1 
BNE DEllA STA DESTH 

~ {, :D DEL ABORT PLA SEC 
PLA LDA LASTLINE 
RTS SBC DESTL 

DEllA LDA CURR STA LLEN 
STA FROML LDA LASTLINE+1 
LDA CURR +1 SBC DESTH 
STA FROMH STA HLEN 
RTS JSR UMOVE 

DEL2 SEC SEC 
LDA CURR LDA LASTLINE 
STA DESTL SBC GOBLEN 
EOR #$FF STA LASTLINE 
ADC FROML LDA LASTLINE+1 
STA GOBLEN SBC GOBLEN+! 
LDA CURR+1 STA LASTLINE+1 
STA DESTH RTS 
EOR #$FF 

Most delete commands end up calling ADC FROMH 
STA GOBLEN+! the above routines. The single-character 

DELC LDA FROML deletes must subtract 1 from the buffer 
STA FROMSAV \.....-· pointer so that single characters are not 
LDA FROMH added to the buffer. But note how short 
STA FROMSAV + 1 these routines are. 
LDA DESTL 
STA DESTSAV Delete character (BACK S) 
STA FROML DELCHAR JSR DEll 
LDA DESTH JSR LEFT 
STA DESTSAV + 1 JSR DEL2 
STA FROMH FIXTP SEC 
SEC LDA TPTR 
LDA GOBLEN+1 SBC #1 
ADC TPTR+1 STA TPTR 
CMP BUFEND + 1 LDA TPTR + 1 
BCC GOSAV SBC #0 
JSR TOPCLR STA TPTR + 1 
LDA # < BUFERR RTS 
LDY # > BUFERR 
JSR PRMSG CTRL-BACK S 
LDA #1 DELIN JSR RIGHT 
STA MSGFLG JSR DEll 
RTS JSR LEFT 

GOSAV LDA TPTR JSR DEL2 
STA DESTL JMF FIXTP 
LDA TPTR+1 
STA DESTH Called by CTRL-D. As mentioned, it 
LDA GOBLEN stores CURR into FROML/FROMH, 
STA LLEN moves the cursor either by sentence, 
CLC word, or paragraph, then stores the 
ADC TPTR new position of CURR into DESTL and 
STA TPTR 
LDA GOBLEN+1 DESTH. The above routines perform 

STA HLEN the actual delete. CTRL-D always dis-
ADC TPTR + l cards the previous contents of the 
STA TPTR+l buffer, for deleting text backward cre-
JSR UMOVE ates a buffer of out-of-order text. Notice 
LDA FROMSAV how we change the color of the com-
STA FROML mand window to red to warn the user 
LDA FROMSAV + l \....... of the impending deletion. 

82 



SpeedScript Source Code 

?. 1)'5(. DELETE JSR KILLBUFF EATSPACE LOA CURR 
LOA #REO STA TEX 
STA WINDCOLR STA OESTL 
JSR TOPCLR LOA CURR+l 
LDA # < OELMSG STA TEX + l 
LOY # > OELMSG STA DESTH 
JSR PRMSG LDY #0 
JSR GETAKEY SPCSRCH LDA (TEX),Y 
PHA CMP #SPACE 
JSR SYSMSG BNE OUTSPACE 
PLA INY 
AND #95 BNE SPCSRCH 
ORA #64 LOA TEX+l 
CMP #'W CMP LASTLINE+l 
BNE NOTWORD BCC GOINC 

OELWORO JSR DEll LDA LASTLINE 
JSR WLEFT STA TEX 
JMP DEL2 LDA LASTLINE+l 

NOTWORO CMP #'5 STA TEX+l 
BNE NOTSENT LOY #0 

OELSENT JSR DEll JMP OUTSPACE 
JSR SLEFT GOINC INC TEX+l 
JMP DEL2 JMP SPCSRCH 

NOTSENT CMP #'P OUTSPACE CLC 
BNE NOTPAR TYA 
JSR DEll ADC TEX 
JSR PARLEFT STA FROML 
JMP DEL2 LOA #0 

NOTPAR RTS ADC TEX+l 

Home the cursor. This is called by the 
STA FROMH 
SEC 

START key. We check to see if START LOA LASTLINE 
is held down for at least 1/ 2 second. If SBC DESTL 
it is, we move the cursor to the top of STA LLEN 
text. LDA LASTLINE+l 

HOME SEC 
SBC DESTH 
STA HLEN 

LDA CURR SEC 
SBC TOPLIN LOA FROML 
STA TEMP SBC DESTL 
LOA CURR + l STA GOBLEN 
SBC TOPLIN + l LOA FROMH 
ORA TEMP SBC DESTH 
BEQ TOPHOME STA GOBLEN+l 
LDA TOPLIN JSR UMOVE 
STA CURR SEC 
LDA TOPLIN+l LDA LASTLINE 
STA CURR+l SBC GOB LEN 

WAITST LOA #0 STA LASTLINE 
STA 20 LDA LASTLINE+l 
STA 53279 SBC GOBLEN+l 

HOMEPAUSE LOA 20 STA LASTLINE+l 
CMP #30 RTS 
BNE HOMEPAUSE 

OUTHOME JMP CHECK Insert 255 spaces. Notice how it and 
TOPHOME LDA TEXSTART other insert routines use TAB2. 

STA CURR 
#255 LDA TEXSTART+l LOTTASPACE LDA 

STA CURR+l STA INSLEN 

JMP WAITST JMP TAB2 
TAB LDA #5 

This deletes all spaces between the STA INSLEN 
cursor and following nons pace text. JSR TAB2 
Sometimes inventing labels can be fun. LDA (CURR),Y 

83 



SpeedScript 

CMP #SPACE STA LASTLINE+1 
BNE NOINCY INOUT RTS 
INY 

Zc.tO'3 NOINCY JMP AOYCURR Toggle insert mode. The INSMODE 
TAB2 LOA #0 flag doubles as the color of the com-

STA INSLEN+1 mand line. 
JSR INSBLOCK INSTGL LOA INSMOOE 
LOA #SPACE 
LOX INSLEN 

EOR #BLUE 

LOY #0 
STA INSMOOE 

FILLSP STA (CURR),Y 
RTS 

INY Another example of modular code. This 
OEX is called anytime a yes/no response is 
BNE FILLSP called for. It prints " Are you sure? 
RTS (Y / N): ' then returns with the zero flag 

Insert a single space. set to true if Y was pressed, ready for 

INSCHAR LOA #1 
the calling routine to use BEQ or BNE 

STA INSLEN as a branch for yes or no. We trap out 
LOA #0 the clear-screen key in case this routine 
STA INSLEN + 1 is called by Erase All, since otherwise 
JSR INSBLOCK repeating keys may instantly cancel the 
LOA #SPACE command. The AND #223 zaps out the 
LOY #0 distinction between uppercase and 
STA (CURR),Y 
JMP CHECK 

lowercase Y. 

A general routine to insert as many 
YORN LOA # < YMSG 

LOY # > YMSG 
spaces as are specified by INSLEN. JSR PRESG 

INSBLOCK CLC YORNKEY JSR GETIN 

LOA LASTLINE ANO #127 

AOC INSLEN BEQ YORNKEY 

LOA LASTLINE+1 CMP #125 

AOC INSLEN+1 BEQ YORNKEY 

CMP TEXENO+1 ANO #223 

BCC OKINS CMP #'Y 

PLA RTS 

PLA Erase all text. Allowed only if the OP-
JMP INOUT 

OKINS CLC 
TION key is held down with 

LOA CURR 
SHIFT -CLEAR. It calls YORN to affirm 

STA FROML the deadly deed, then calls ERASE to 
AOC INS LEN erase all text, INIT2 to reset some flags, 
STA OESTL then jumps back to the MAIN loop. 
LOA CURR + 1 LDX #$FA / TXS is used to clean up 
STA FROMH the stack. 
AOC INSLEN + 1 
STA OESTH CLEAR LOA #8 

SEC STA 53279 

LOA LASTLINE LOA 53279 

SBC FROML CMP #3 

STA LLEN BEQ OKCLEAR 

LOA LASTLINE+1 RTS 

SBC FROMH OKCLEAR LOA #REO 

STA HLEN STA WINOCOLR 

JSR OMOVE JSR TOPCLR 

CLC LOA # < CLRMSG 

LOA LASTLINE LOY # > CLRMSG 

AOC INS LEN JSR PRMSG 

STA LASTLINE JSR YORN 

LOA LASTLINE+1 BEQ OOiT 

AOC INSLEN + 1 JMP SYSMSG 

84 



2l>,-S OOIT 

Paragraph right. 

LOX 
TXS 
JSR 
JSR 
JMP 

PARIGHT LOY 
PARLP LOA 

RETFOUNO 

GOAOY 

CMP 
BEQ 
INY 
BNE 
INC 
LOA 
CMP 
BCC 
BEQ 
JMP 
INY 
BNE 
INC 
JMP 

#$FA 

ERASE 
IN!T2 
MAIN 

#0 
(CURR),Y 
#RETCHAR 
RETFOUNO 

PARLP 
CURR+1 
CURR + 1 
LASTLlNE + 1 
PARLP 
PARLP 
LASTWORO 

GOAOY 
CURR+1 
AOYCURR 

Paragraph left. Notice the trick of 
decrementing the high byte of the 
pointer, then starting the index at 255 
in order to search backward. 

PARLEFT CURR 

PARLOOP 

SpeedScript Source Code 

LOA TEX 
SBC TEMP 
STA TEX 
LOA TEX+1 
SBC #0 
STA TEX+1 
JMP PARCONT 

TEXTOCURR LOA TEX 
STA CURR 
LOA TEX + 1 
STA CURR+1 
JMP CHECK 

This enables the display-list interrupt 
(DLI). The DLI allows separate back­
ground colors for the command line 
and the rest of the screen. It lets us 
change the color of the top line to flag 
insert mode or to warn the user with a 
red color that he/she should be careful. 
Since it is an interrupt, it is always run­
ning in the background. Interrupt 
routines must always be careful not to 
corrupt the main program. 

HIGHLIGHT turns off any DLIs (by 
storing #64 into $D40E), sets the NMI 
pointer ($200/$201), creates a custom 
display list of IRG mode 3 (lowercase 
descenders, GRAPHICS 0112) with DLI 
set in one line, then enables DLIs ($CO 
into $D40E) and returns. The routine 
DLI is now running constantly in the 

PARCONT 

LOA 
STA 
LOA 
STA 
OEC 
LOY 
LOA 
CMP 
BEQ 
OEY 
CPY 
BNE 
OEC 
LOA 
CMP 
BCS 
JMP 
SEC 
TYA 
AOC 
STA 
LOA 
AOC 
STA 
SEC 
LOA 
SBC 
STA 
LOA 
SBC 
ORA 
BNE 
STY 
CLC 

TEX 
CURR+1 
TEX + 1 
TEX+1 
#$FF 
(TEX),Y 
#RETCHAR 
RETF2 

p background, changing the screen color 
~.)"" of all text below the DLI. 1"''7 

orf r1 :» HIGHLIGHT ~ LOA #64 

RETF2 

#255 
PARLOOP 
TEX+1 
TEX + 1 
TEXSTART + 1 
PARLOOP 
FIRSTWORO 

TEX 
TEX 
#0 
TEX+1 
TEX + 1 

TEX 
CURR 
TEMP 
TEX+1 
CURR + 1 
TEMP 
TEXTOCURR 
TEMP 

::. 7)'J! STA $040E 7 = 
~ If L r LOA # < OLI 

rJO DC_T STA $0200 I __ 
- LOA # > OLI ,.'-... i' 1·{ V ~ . 

Z DCS$ OLOOP 

STA $0201 _/ r:-", '-, -t > 
LOA 560 
STA TEMP 
LOA 561 
STA TEMP+1 
LOY #0 
LOA OLIST,Y 
STA (TEMP),Y 
INY 
CPY 
BNE 
LOY 
LOA 
STA 
LOA 
INY 
STA 
LOY 
LOA 
STA 

#28 
OLOOP 
#4 
$58 
(TEMP),Y 
$59 

(TEMP),Y 
#26 
TEMP 
(TEMP),Y 

85 



2. DE (~ 

SpeedScript 

LOA TEMP+! 
INY 
STA (TEMP),Y 
LOA #$CO 

')i 
STA $040E 
RTS 

.3V_J.-: > ... '" '-_~ 
The custom display liSt., / , ) 

'" ' OLIST .BYTE 112,112,1 2,3+64+128,0,0 
.BYTE 3,3,3,3,3,3,3,3,3,3,3,3,3 
. BYTE 3,3,3,3,3,16,65,0,0 ..' 

'-J 'JB 
The display-list interrupt routine stores 
the SCReen COLor and TEXt COLoR 
into the appropriate hardware registers, 
then stores the WINDow COLoR into 
710, and #10 into 709 to set the color 
of the top line of the screen , This line is 
automatically set by the normal vertical­
blank interrupt. We also force the 
character-set pointer to keep our 
character set in place whenever we're 
on the editing screen, 

OLI PHA 
LOA SCRCOL 
STA $040A 
STA $0018 
STA 712 
LOA TEXCOLR 
STA $0017 
LOA WINOCOLR 
STA 710 
LOA #10 
STA 709 
LOA #$20 
STA 756 
LOA #0 
STA $02B6 
PLA 
RTI 

ERAS is called by CTRL-E, It works 
much like CTRL-D. Notice that the 
ORA #64 allows users to press either S, 
W, P, or CTRL-S, CTRL-W, CTRL-P, in 
case they have a habit of leaving the 
control key held down, It must call RE­
FRESH after each move and adjust the 
new position of the cursor. If OPTION 
is held down with CTRL-E, we don't 
erase the previous contents of the 
buffer, letting the user chain non­
contiguous sections into the buffer for 
later recall, 

ERAS 

86 

LOA 
STA 
LOA 
CMP 
BEQ 
JSR 

#8 
53279 
53279 
#3 
ERAS1 
KILLBUFF 

ERAS1 JSR TOPCLR 
LOA # <ERASMSG 
LOY # > ERASMSG 
JSR PRMSG 

ERASAGAIN LOY #0 
LOA (CURR),Y 
EOR #$80 
STA (CURR),Y 
JSR REFRESH 
LOY #0 - LOA (CURR),Y U vU"'-' 

EOR #$80 ) , . " , 
STA (CURR~ 
LOA #REO 
STA WINOCOLR 
JSR GETAKEY 
AND #95 
ORA #64 
CMP #'W 
BNE NOWORO 

ERASWORO JSR ERA1 
JSR WRIGHT 
JMP ERA2 

NOWORO CMP #'S 
BNE UN SENT 

ERASENT JSR ERA1 
JSR SRIGHT 
JMP ERA2 

UNSENT CMP #'P 
BNE NOPAR 
JSR ERA1 
JSR PARIGHT 
JMP ERA2 

NOPAR JSR CHECK 
JMP SYSMSG 

ERA1 LOA CURR 
STA OESTL 
STA SAVCURR 
LOA CURR + 1 
STA OESTH 
SVA SAVCURR+1 
RTS 

ERA2 SEC 
LOA CURR 
STA FROML 
SBC SAVCURR 
STA GOBLEN 
LOA CURR+1 
STA FROMH 
SBC SAVCURR+1 
STA GOBLEN + l 
JSR OELC 
LOA SAVCURR 
STA CURR 
LOA SAVCURR+1 
STA CURR+1 
JSR REFRESH 
JMP ERASAGAIN 

The INPUT routine is used to get re-
sponses from the command line. It re-
turns the complete line in INBUFF. 
INLEN is the length of the input. A 



zero byte is stored at INBUFF+INLEN 
after the user presses RETURN. This 
routine is foolproof (I know ... ), since no 
control keys other than BACK S are al­
lowed, unless preceded by ESCape. 
The SELECT key can be held down to 
enter inverse-video characters. The sys­
tem cursor is turned on for this routine 
(by putting #0 into 752), then turned 
off when we exit (by putting #1 into 
752). This routine also prevents the 
user from typing past the end of the 
command line. If the limit of typing 
length must be set arbitrarily, LIMIT is 
preset and INPUT is called at INPI. 
CURSIN is the MAIN loop. 

INPUT #39 
85 
LIMIT 

IN PI #0 
INLEN 
752 

SpeedScript Source Code 

SKIPSEL 

INEXIT 

LOX 
CPX 
BNE 
ORA 
STA 
JSR 
LOA 
STA 
INY 
JMP 
LOX 
STX 
LOA 
STA 
TYA 
RTS 
.ENO 

Filen~me D:SUPPORT. 

53279 
#5 
SKIPSEL 
#128 
INBUFF,Y 
CHROUT 
#0 
ESCFLAG 

CURSIN 
#1 
752 
#0 
INBUFF,Y 

This module supports most primitive 
input/output functions, including a 
tou tine to clear the screen and reset the 
screen editor (OPENEDITOR), print a 
character (CHROUT), and get a key 
from the keyboard (GETAKEY). 

LOA 
SBC 
STA 
LOY 
STY 
STY 
LOA 
JSR 
LOA 
JSR 
STY 
JSR 
LOY 
BIT 
BMI 
CMP 
BNE 
LOA 
STA 
STA 
JMP 
CMP 
BEQ 
CMP 
BNE 
OEY 
BPL 
INY 
JMP 
LOA 
JSR 
JMP 
STA 
ANO 
CMP 
BCC 
CMP 
BCS 
CPY 
BEQ 
LOA 
ANO 
LOX 
STX 

#32 
CHROUT 
#126 
CHROUT 
INLEN 
GETAKEY 
INLEN 
ESCFLAG 
ESCKEY 
#27 
NOESC 
#128 
ESCFLAG 
$02A2 
CURS IN 
#155 
INEXIT 
#126 
NOBACK 

2- F'S"'I OPENEDITOR LOX 
LOA 
STA 
JSR 
LOX 
LOA 
STA 
LOA 
STA 
LOA 
STA 
STX 
LOA 
STA 
JMP 

#0 
#12 CURSIN 

NOESC 

NOTZERO 

NOBACK 

ESCKEY 

NOTZERO 

CURSIN 
#126 
CHROUT 
CURSIN 
TEMP 
#127 
#32 
CURSIN 
#125 
CURSIN 
LIMIT 
CURSIN 
TEMP 
#127 
#8 
53279 

(t n 
ICCOM 'c:. 
CIO 
#0 
# <ENAME 
ICBAOR {I I. 

# >ENAME 
ICBAOR+l 
#2 
ICBLEN 
ICBLEN+l 
#3 
ICCOM,X 
CIO 

Put the ATASCII value of the character 
into the accumulator and call CHROUT 
to print a character. The Y register is 
preserved. We call CIO with a buffer 
length of zero. 

Z :' F- CHROUT STY 

C::r .'~OX 
o '7' .' STX 

STX 
STX 
LOY 
STY 
JSR 
LOY 
RTS 

CHR-YSAVE 
#0 
ICBLEN 
ICBL~N+l 
$02FF .ss FU'l b-; 
#11 P ,J1 (HAt<: 
ICCOM .,. 
CIO 
CHRYSAVE 

The filename of the Editor device. 

ZP,)",,) ENAME .BYTE"E:" 

87 

""/_ f· 

C 1L i. 



r . ,-

SpeedScript 

OUTNUM and PROUTNUM print 
decimal numbers to the display or 
printer. The integer to be printed is 
passed with the low byte in the X reg­
ister and the high byte in the accu­
mulator. The integer to floating-point 
routine ($D9AA) is called first, followed 
by floating-point to ATASCII routine, 
which creates a string of ATASCII dig-· 
its. The last digit of the number has bit 
7 set, which we use to terminate 
printing. 

. 2 I==D 0 
BEQ 
STA 
LOA 
STA 

GETCHAR ; /.-r"\ 
KEYVAL -.., ,$446 0 
#$fF (.",,-,. (<;IltL 

PROUTNUM 

OUTNUM 
OVERZAP 

ONUMLOOP 

GOPCHR 
OVERPCHR 

ONUMEXIT 
CHRYSAVE 

LOY 
IMP 
LOY 
STY 
STX 
STA 
JSR 
ISR 
LOY 
LOA 
PHA 
ANO 
BIT 
BMI 
JSR 
JMP 
ISR 
PLA 
BMI 
INY 

#128 
OVERZAP 
#0 
WHICHFLAG 
$04 
$05 
$09AA 
$08E6 
#0 
($F3),Y 

#$7F 
WHICHFLAG 
GOPCHR 
CHROUT 
OVERPCHR 
PCHROUT 

ONUMEXIT 

BNE ONUMLOOP 
RTS 
.BYTE 0 

The system keyboard fetch routine 
interferes with the display-list interrupt, 
since the blip of each key is timed with 
WSYNC, which freezes the ANTIC 
chip for one line. This causes annoying 
flicker. This routine uses POKEY sound 
decaying from volume 15 to 0 for the 
keyboard feedback tone. It's not hard 
to create any sound effect you want for 
the keyboard blip. This routine mimics 
the system routine fairly closely. It's 
easy to expand it to allow many more 
keyboard functions and full processing 
of new keystrokes just by changing 
some of this code and the keyboard 
table. 

GETIN 
t· , . ..;, 

764 V v 

2.FE"L. 764 !- ~ 

Clear break flag. 

2FE=7 
STA $11 / 
JSR BUP ,£-;'0 2. "l 
LOA KEYVAL ./ 1-'.~,-?'--' 

Check for SHIFT+CTRL. 

GXIT 

CMP #$CO <./ 

BCS GXIT t 300 ( 
ANO #63 ~' 
CMP #60 . 
BNE NOTCAPS ,7,::'001-
LDA KEYVAL .f l{!<7b :-; 
ANO #64 
BEQ NOT SET g-Oz.::'1 
STA SHFLOK /, \ ;:::; 
LO A #0 --_ r;-£ vi, v f' L- \ 
RTS (e,,\ , , \ 

1- ' y-
The CAPS/ LOWR key toggles the 
SHiFtLOcK flag to allow either only 
uppercase, or both uppercase and 
lowercase . 

NOTSET LOA 
EOR 
STA 
LOA 
RTS 

SHFLOK 
#64' 
SHFLOK 
#0 

NOTCAPS ;Q' LOX 
_ ./( / LOA 

KEYVAL' 
KEYBOARO,X 
SHFLOK 
NOTLOCKEO 
#'a 
NOTLOCKEO 
#'z+l 
NOTLOCKEO 
#223 

r.-::; " BIT 
BVC 
CMP 
BCC 
CMP 
BCS 
ANO 

NOTLOCKEO CMP #$80 
BEQ 
RTS 

GXIT 

The sound effect for the keyboard 
"blip." 

BLIP PHA 
LOA 
STA 
LOX 

SNOLOOP STX 
LOY 

SLOW 

#50 
$0200 
#$AF 
$0201 
#128 

SLOW 

1 LOA 
CMP 
BNE 
LOA 

#$FF -_ no ,,' ," J 

GETCHAR ,t F f'O L. \=O l4 
#O cW'( 1t- . ) 

OEY 
BNE 
OEX 
CPX 
BNE 
PLA 
RTS 

#$9F 
SNOLOOP 

GETCHAR 

88 

RTS 
LOA 
CMP 

764 / r.' 
#$F.F - ,'" ,,/I'" 

KEYBOARO _BYTE 
.BYTE 

108,106,59,128,128,107 
43,42,111,128,112,117 



SpeedScript Source Code 

.BYTE 155,105,45,61,118,128 LOA # >D1RNAME 

.BYTE 99,128,128,98,120,122 5TA ICBAOR+1,X 

.BYTE 52,128,51,54,27,53 LOA #5 

.BYTE 50,49,44,32,46,110 5TA ICBLEN,X 

.BYTE 128,109,47,$80,114,128 ./ LOA #0 

.BYTE 101,121,127,116,119,113. 5TA ICBLEN+1,X 

.BYTE 57,128,48,55,126,56v LOA #6 

.BYTE 60,62,102,104,100,128 5TA ICAUX1,X 

.BYTE 130,103,115,97,76,74 ./ LOA #3 

.BYTE 58,128,128,75,92,94 5TA ICCOM,X 

.BYTE 79,128,80,85,155,73 J5R CIO 

.BYTE 95,124,86,128,67,128 BMI CL05E7 

.BYTE 128,66,88,~,36,128 LOA #0 

.BYTE 35,38,27,37,34,33 5TA XPTR 

.BYTE 91,32,93,78,128,77 REDIR LOX XPTR 

.BYTE 63,$80,82,128,69,89 LOA $64 

.BYTE 159,84,87,81,40,128 5TA 5LOT,X 

.BYTE 41,39,156,64,125,157 LOA $65 

.BYTE 70,72,68,128,131,71 5TA 5LOT+1,X 

.BYTE 83,65,12,10,123,128 ~ INC XPTR 

.BYTE 128,11,30,31,15,128 ~ INC XXTR i<PTfl-~ 

.BYTE 16,21,155,9,28,29 J5R GET7 

.BYTE 22,128,3,128,128,2 BMI CL05E7 

.BYTE 24,26,128,128,133,128 CMP #'·+1 

.BYTE 27,128,253,128,0,32 BC5 ENDIR 

.BYTE 96,14,128,13,128,$80 J5R CHROUT 

.BYTE 18,128,5,25,158,20 J5R GET7 

.BYTE 23,17,128,128,128,128 BMI CL05E7 

.BYTE 254,128,125,255,6,8 LOA #0 

.BYTE 4,128,132,7,19,1 5TA D1RCOUNT 

.ENO D1RLOOP J5R GET7 
BMI CL05E7 

Filename D:DOSPAK ONOTCR J5R CHROUT 
INC D1RCOUNT 

DOSPAK is a self-contained substitute LOA D1RCOUNT 
for the DOS menu, although it uses CMP #8 

several routines built into SpeedScripl. BNE ONOT8 

The concept of DOSPAK is that all LOA #'. 
J5R CHROUT directory entries should fit on one JMP D1RLOOP 

screen. A large cursor is used to move ONOT8 CMP #11 
from filename to filename. At any time, BNE D1RLOOP 
you can delete, rename, lock, unlock, or LOA #5 
load the selected filename, just by 5TA TEMP 
pressing one key, or a CTRL key THROWS J5R GET7 

combination. Except for Rename, you OEC TEMP 

don't have to type the filename . You LOA TEMP 
BNE THROWS can also format the entire disk or JMP REDIR 

redisplay the directory. CL05E7 LOX #$70 
CATALOG fits the entire disk LOA #12 

directory onto the screen by skipping 5TA ICCOM,X 
over the sector counts, trimming up J5R CIO 
spacing, and placing three items per LOX #$70 

line. The cursor position of each file- LOY IC5TAT,X 

name is saved into a slot in memory so RT5 
ENDIR PHA 

that the cursor routine can qUickly and LOA #155 
easily skip about. J5R CHROUT 

.:. '")0 CATALOG J5R CL05E7 PLA 
LOX #$70 J5R CHROUT 
LOA # <D1RNAME ENOLP J5R GET7 
5TA ICBAOR,X BMI CL05E7 

89 



3/A'? 

SpeedScript 

GET7 

ISR 
IMP 
LDX 
LDA 
STA 
STA 
LDA 
STA 
IMP 

CHROUT 
ENDLP 
#$70 
#0 
ICBLEN,X 
ICBLEN+l,X 
#7 
ICCOM,X 
CIO 

The main DOS routine calls the CAT­
ALOG routine to fill the screen with 
filenames, then puts the cursor on the 
current filename, waiting for a 
keypress. 

DOS ISR DELITE 
ISR OPENEDITOR 
ISR DELITE 
LDA #1 
STA 752 
STA 82 
LDA _ #125 

- Jsi{ CHROUT 
ISR CATALOG 

GETNAME 

NAMELP 

ISR DOSMSG 
LDA SLOT 
STA SCR 
LDA SLOT+l 
STA SCR+l 
LDA #0 
STA XSLOT 
DEC XPTR 
DEC XXVR 
JSR INVNAME 
JSR GETAKEY 
LDX #1 
STX 752 

Now that we've got a keypress, we 
look it up in the keypress table, then 
vector to the appropriate routine. This 
is the same ML ON-GOTO routine that 
we've used in several places in Speed­
Script, including the CONTROL 
routine. 

NOPROB 
FINDIT 

FOUNDIT 

90 

LDX 
CMP 
BCC 
AND 
STA 
CMP 
BEQ 
DEX 
BNE 
JMP 
DEX 
TXA 
ASL 
TAX 
LDA 
PHA 

DOSTABLE 
#97 
NOPROB 
#95 
TEMP 
DOSTABLE,X 
FOUNDIT 

FINDIT 
JNAME 

A 

DOSADR+I,X 

LDA DOSADR,X 
PHA 
RTS 

The braces surround control characters, 
some entered with the ESCape key: 
cursor-left, cursor-right, cursor-up, 
cursor-down, CTRL-D, ESCape, and 
CTRL-L. 

DOSTABLE .BYTE 15 
.BYTE "{LEFT}{RIGHT){ 

UP){DOWN){ D}R 
LUF1234{ESC) {L}" 

DOSADR .WORD DLEFT-l,DRIGH 
T-l,DUP-l,DDO 
WN -l,DELFILE-
1,RENAME-l 

.WORD LOCK-I,UNLOCK 
-l,FORMAT-l,D 
RIVE-l,DRIVE-l 
,DRIVE-l 

.WORD DRIVE-I,ESCDO 
S-l,LOADIT-l 

Move bar cursor left by decrementing 
slot pointer. 

DLEFT ISR 
LDX 
BEQ 
DEX 
QEX 
IMP 

INVNAME 
XSLOT 
NRANGE 

RES LOT 

Move bar cursor right by incrementing 
slot pointer. 

DRIGHT ISR INVNAME 
LDX XSLOT 
INX 
INX 
CPX XPTR 
BCS NRANGE 

Store new slot index. 

RES LOT STX 
LDA 
STA 
LDA 
STA 

NRANGE IMP 

XSLOT 
SLOT,X 
SCR 
SLOT + I,X 
SCR+l 
NAMELP 

Move bar cursor up by subtracting 6 
from the slot pointer (each slot is two 
bytes). 

DUP JSR 
LDA 
CMP 
BCC 
SEC 

INVNAME 
XSLOT 
#6 
NRANGE 

SBC #6 
TAX 
IMP RESLOT 



SpeedScript Source Code 

Move bar cursor down by adding 6 to stroke; otherwise, print the DOS error 
the slot pointer. message and wait for a keystroke. 

22. q ': OOOWN ISR INVNAME DEL FILE ISR NAMER 
LOA XSLOT LOA #33 
CLC 

Jump to the XIO routine. AOC #6 
CMP XPTR GOXIO ISR XIO 
BCS NRANGE BPL INAME 
TAX JMP OOSERR 
IMP RESLOT INAME ISR INVNAME 

This routine turns a filename pointed to IMP NAMELP 

by the bar cursor into a legal CIO file- Lock a file. 
name, complete with Dx: and legal LOCK ISR NAMER 
extension. LOA #35 

NAMER LOX #0 IMP GOXIO 

COPYO LOA DIRNAME,X Unlock a file . 
STA FNBUFF,X 
INX UNLOCK ISR NAMER 

CPX #3 LDA #36 

BNE COPYO IMP GOXIO 

LOY #1 We ask for the new name of the file, 
COPYNAME LOA (SCR),Y build the rename string, then jump to 

AND #127 
ISR INTOAS the XIO routine. 

CMP #32 RENAME ISR BOTCLR 
BEQ NOSTOR LOA # < RENMSG 
STA FNBUFF,X LOY # > RENMSG 
INX ISR PRMSG 

NOSTOR INY LOA #64 
CPY #13 STA $02BE 
BNE COPYNAME ISR INPUT 
LOA FNBUFF-I,X LOA #0 
CMP #'. STA $02BE 
BNE NOTOOT LOA INLEN 
OEX BEQ NONAME 

NOTOOT STX FNLEN ISR NAMER 
LOA #0 LOX #0 
STA FNBUFF,X LOY FNLEN 
RTS LOA #', 

This routine passes any CIO command 
STA FNBUFF,Y 
INY 

along with a formed filename. COPYR LOA INBUFF,X 
XIO LOX #$70 STA FNBUFF,Y 

STA ICCOM,X INY 
LOA FNLEN INX 
STA ICBLEN,X CPX INLEN 
LOA #0 BNE COPYR 
STA ICBLEN + 1,X STY FNLEN 
LOA # < FNBUFF LOA #0 
STA ICBAOR,X STA FNBUFF,Y 
LOA # > FNBUFF ISR OOSMSG 
STA ICBAOR + 1,X LOA #32 
IMP CIO IMP GOXIO 

NONAME ISR OOSMSG 
The DOS functions are quite short. IMP INAME 
NAMER builds the name; then we sim-

Format routine. We use YORN to af-ply pass the number of the DOS CIO 
firm this operation, which erases an en-function unto XIO. If there 's no error, 

we return to waiting for the next key- tire disk . BOTCLR clears the bottom 
line of the screen. 

91 



SpeedScript 

FORMAT JSR 
LOA 
LOY 
JSR 
JSR 
BNE 
JSR 
JSR 
LOA 
JMP 

BOTCLR 
# <FORMSG 
# > FORMSG 
PRMSG 
YORN 
NONAME 
OOSMSG 
NAMER 
#254 
GOXIO 

Select new drive number and redisplay 
directory. 

DRIVE LOA TEMP 
STA DIRNAME+1 
JMP DOS 

The Load-from-directory routine opens 
the file, then jumps into the Sp eedScript 
Load routine. 

LOADIT LOX 
STX 
LOA 
STA 
LOA 
STA 
STA 
JSR 

#$70 
IOCB 
#4 
ICAUX1,X 
#0 
INDIR 
INDIR+1 
NAMER 

Command 3 is for OPEN file . 

LOA #3 
JSR XIO 
BMI OOSERR 
JSR ERASE 
JSR LOAOLINK 

If the load ended with an error, we dis­
play the error; otherwise, we exit the 
DOSPAK at ESCDOS. 

BMI OOSERR 

The ESCape DOS routine clears the 
stack, clears the screen, reenables the 
display-list interrupt, prints the "Speed­
Script" message, then jumps back to 
the editing loop. 

ESCOOS LOX #$FA 
TXS 
LOA 
JSR 
JSR 
JSR 
JMP 

#125 
CHROUT 
IIIGIILlCII'F 
SYSMSG 
MAIN 

BOTCLR erases the bottom two lines of 
the screen by positioning the cursor on 
the next-to-the-last line, then printing 
two INSERT LINE characters that push 
any text on these lines off the bottom 
of the screen. Nifty, eh? 

92 

BOTCLR LOA 
STA 
LOA 
JSR 
JMP 

#22 
84 
#157 
CHROUT 
CHROUT 

This is the error routine for the 
DOSPAK. We print "ERROR #", then 
print the error number with OUTNUM, 
a bell character (actually sounds like an 
annoying buzzer, appropriate Pavlovian 
treatment), then "Press RETURN." We 
wait for a keystroke, then return to get­
ting keys for the DOSPAK commands. 

OOSERR STY YSAVE 
JSR CLOSE7 
JSR BOTCLR 
LOA # <ERRMSG 
LOY # >ERRMSG 
JSR PRMSG 
LOX YSAVE 
LOA #0 
JSR OUTNUM 
LOA #253 
JSR CHROUT 
LOA # < DIRMSG 
LOY # > DIRMSG 
JSR PRMSG 
JSR GETAKEY 
JSR OOSMSG 
JMP JNAME 

Inverse the filename field of the cur­
rently selected filename. Used to create 
the bar cursor. 

INVNAME LOY #12 
INVLP LOA (SCR),Y 

EOR #128 
STA (SCR),Y 
DEY 
BPL INVLP 
RTS 

DOSMSG erases the bottom line of the 
screen and prints the DOSPAK com­
mand line, an abbreviated menu. 

OOSMSG JSR 
LOA 
LOY 
JSR 
LOA 
JMP 
.ENO 

Filename D:SPEED.2 

BOTCLR 
# <DIRINS 
# > DIRINS 
PRMSG 
DIRNAME+1 
CHROUT 

This is the main input/output portion 
of SpeedScript, responsible for loading, 
saving, and all printing functions. 



SpeedScript Source Code 

CAST and CINSTOAS (standing document area using the CIO block 
for Convert to ASCII and Convert IN- output routine (PUT TEXT). TOPEN is 
Temal code to ASCII) translate the way called by both TSAVE and TLOAO to 
SpeedScript stores text in memory (in- get the filename and open the file. The 
temal screen codes) into ASCII so that device specification (0: or C:) must be 
disk files will be compatible with most typed in by the user. 
other software. In addition, the return-
mark is changed to character 155, and TSAVE prints the Save: prompt, goes to 
vice versa. This is why you can't load a TOPEN with an 8 (for output, the same 
machine language file into SpeedScript, number in OPEN 1,8,0,"0 :file"), and 
edit it, then save it back as a runnable uses IOCB #7 (LOX #$70) to send a 
modification. All back-arrows are PUT TEXT command (11). Text is writ-
turned into carriage returns on output, ten from the start-of-text with a length 
and all carriage returns (155 's) are of LASTLINE-TEXSTART. 
turned into back-arrows (30 's) on input. TSAVE JSR TOPCLR 

.' r l CAST LOA #0 LOA # <SAVMSG 
STA CONVFLAG LOY # > SAVMSG 
JMP CAST! JSR PRMSG 

CINTOAS LOA #128 LOA #8 
STA CONVFLAG JSR TOPEN 

CAST! LOA TEXSTART BMI ERROR 
STA TEX JSR CINTOAS 
LOA TEXSTART+1 LOX #$70 
STA TEX + 1 LOA TEXSTART 
JMP CIN STA ICBAOR,X 

CASTOIN LOA #0 LOA TEXSTART+1 
STA CONVFLAG STA ICBAOR+1,X 
LOA CURR SEC 
STA TEX LOA LASTLINE 
LOA CURR + 1 SBC TEXSTART 
STA TEX+1 STA ICBLEN,X 

CIN SEC LOA LASTLINE+1 
LOA LASTLINE + 1 SBC TEXSTART+l 
SBC TEX + 1 STA ICBLEN+1,X 
TAX LOA #11 
INX STA ICCOM,X 
LOY #0 JSR CIO 

CVLOOP LOA (TEX),Y The N (negative) bit is set when an er-BIT CONVFLAG 
BMI COTHER ror occurs after a call to CIO or a rou-
CMP #155 tine that ends up calling CIO. 
BNE NOTRTN Therefore, we can use BMI to branch 
LOA #RETCHAR on an error condition . 
JMP OVEROTHER 

BMI ERRI NOTRTN JSR ASTOIN 
JSR CAST JMP OVEROTHER 

COTHER CMP #RETCHAR JSR CLOSE7 

BNE NOTRC BMI ERROR 

LOA #155 JMP FINE 

JMP OVEROTHER ERR1 TYA 
PHA NOTRC JSR INTOAS 
JSR CAST OVEROTHER STA (TEX),Y 

INY PLA 

BNE CVLOOP TAY 

INC TEX + 1 The error routine uses the error number 
OEX found in the Y register, prints the error 
BNE CVLOOP message with PRMSG, and the error 
RTS number with OUTNUM. The open file 

Here is where most of the input/ output is closed. If the BREAK key was used to 
routines start. TSAVE saves the entire stop the operation, we distinguish this 

93 



-::;,qp. 

SpeedScript 

from an ordinary error, and print 
"BREAK Abort" instead. 

ERROR CPY #128 
BEQ STOPPED 
TYA 
PHA 
LDA #125 
JSR CHROUT 
LDA # <ERRMSG 
LDY # >ERRMSG 
JSR PRMSG 
PLA 
TAX 
LDA #0 
JSR OUTNUM 

ERXIT JSR IOCLOSE 
-lSI!. HICHUCIIT 
LDA #1 
STA MSGFLG 
RTS 

STOPPED JSR TOPCLR 
LDA # <BRMSG 
LDY # >BRMSG 
JSR PRMSG 
JMP ERXIT 

General file closing routine. IOCB con­
tains the channel number times 16. 

IOCLOSE LDX IOCB 
LDA #12 
STA ICCOM,X 
JMP CIO 

TOPEN is used to get a filename, 
including the device specification . It's 
used by Save, Load, and Print. It forces 
the CAPS key to uppercase for the file­
name, which is not quite as satisfactory 
as converting the filename if lowercase 
was used. It does return the CAPS key 
to its former value, though. TOPEN 
opens the file and returns with the er­
ror code in the Y register. 

TOPEN LDX #$70 
STX IOCB 
STA ACCESS 

Save current CAPS value. 

CAPS On. 

LDA SHFLOK 
PHA 

LDA #64 
STA SHFLOK 
JSR INPUT 

Restore CAPS value. 

94 

PLA 
STA SHFLOK 
LDA IN LEN 
BNE OPCONT 

OPABORT JSR 
PLA 
PLA 
fll>IP 

OPCONT JSR 
LDX 
LDA 
STA 
LDA 
STA 
LDA 
STA 
LDA 
STA 
LDA 
STA 
LDA 
STA 

~JMP 

SYSMSG 

HtffiH,IGII'F-­
IOCLOSE 
IOCB 
# <INBUFF 
ICBADR,X 
# >INBUFF 
ICBADR+1,X 
INLEN 
ICBLEN,X 
#0 
ICBLEN+1,X 
ACCESS 
ICAUX1,X 
#3 
ICCOM,X 
CIO 

The Load routine checks the cursor po­
sition. If the cursor is at the top-of-text 
(CURR=TEXSTART), we call the 
ERASE routine to wipe out memory 
before the load. Otherwise, the load 
starts at the cursor position, performing 
an append, and we change the com­
mand line to green ($C4, sorry about 
not using a label) to warn the user. We 
open the file for reading by passing a 4 
to TOPEN, then at LOADLINK use 
GET TEXT (command 7) to get no 
more than the length of the text area. 
The actual length loaded is found in 
lCBLEN, so we add this to TEXSTART 
and the offset between the cursor po­
sition and TEXSTART to get the po­
sition of the end-of-text (LASTLINE). 

A funny thing happens, though. 
Up to 255 garbage characters appear 
following an otherwise normal load, 
after the end-of-text. I was never able 
to figure out why (and 1 puzzled over it 
for a week), so 1 wrote a stopgap rou­
tine to just clear out one page past the 
end-of-text. The bug is not fixed per se, 
but it has no effect anymore! I still 
think it must be the fault of the operat­
ing system (1 know ... ). 

TLOAD SEC 
LDA CURR 
SBC TEXSTART 
STA TEX 
STA INDIR 
LDA CURR+1 
SBC TEXSTART+1 
STA TEX+1 
STA INDIR+1 
ORA TEX 



SpeedScript Source Code 

BEQ LOA02 NOGARBAGE STA (TEX),Y 
LOA #$C4 INY 
STA WINOCOLR BNE NOGARBAGE 

LOAD2 JSR TOPCLR RTS 
LOA # < LOAOMSG FINE JSR IOCLOSE 
LOY # > LOAOMSG BPL PROKMSG 
JSR PRMSG JMP ERROR 
LOA #4 PROKMSG LOA #125 
JSR TOPEN JSR CHROUT 
BPL OKLOO LOA # < OKMSG 

GOERROR JMP ERROR LOY # > OKMSG 
OKLOO LOA WINOCOLR JSR PRMSG 

CMP #$C4 JMP ERXIT 
BEQ NOER 

Disable display-list interrupt and re-JSR ERASE 
NOER JSR LOAOLINK store screen colors, 

CPY #128 OELITE LOA #$40 
BCC lFINE STA $040E 
JMP ERROR LOA SCRCOL 

JFINE JMP FINE STA 710 

Entry point for linked files loading. STA 712 
LOA TEXCOLR 

LOAD LINK LOX IOCB STA 709 
LOA CURR RTS 
STA ICBAOR,X 
LOA CURR+1 A rather short routine that converts a 
STA ICBAOR + 1,X string of ASCII digits into a number in 
SEC hex and the accumulator. It takes 
LOA TEXENO advantage of decimal mode. In decimal 
SBC CURR mode, the accumulator is adjusted after 
STA ICBLEN,X additions and subtractions so that it 
LOA TEXENO + 1 acts like a two-digit decimal counter. SBC CURR + 1 
STA ICBLEN+1,X We shift BCD over a nybble and add in 
LOA #7 the left nybble of the ASCII number 
STA ICCOM,X until we reach the end of the ASCII 
JSR CIO number. We then subtract 1 from BCD 
BPL TEXOK and increment X (which doesn' t con-
CPY #136 form to decimal mode) until BCD is 
BEQ TEXOK down to O. The X register magically 
RTS 

TEXOK LOX IOCB holds the converted number. Naturally, 

CLC decimal mode is cleared before this 
LOA ICBLEN,X routine exits, or it would wreak major 
AOC TEXSTART havoc. ASCHEX is used to convert the 
STA LASTLINE parameters of printer commands like 
LOA ICBLEN+1,X left margin. 
AOC TEXSTART+1 
STA LASTLINE + 1 ASCHEX LOX #0 
CLC STX BCD 
LOA LASTLINE STX BCO+1 
AOC INOIR STX HEX 
STA LASTLINE STX HEX+1 
LOA LASTLINE+1 DIGIT SEC 
AOC INDIR + 1 LOA (TEX),Y 
STA LASTLINE + 1 SBC #16 
JSR CASTOIN BCC NONUM 
LOA LASTLINE CMP #10 
STA TEX BCS NONUM 
LOA LASTLINE + l ASL BCD 
STA TEX + l ROL BCO+l 
LOA #0 ASL BCD 
TAY ROL BCO+1 

95 



SpeedScript 

ASL BCD LDA LASTLINE 
ROL BCD+1 SBC FROML 
ASL BCD STA LLEN 
ROL BCD+1 LDA LASTLINE+1 
ORA BCD SBC FROMH 
STA BCD STA HLEN 
INY CLC 
BNE DIGIT ADC DESTH 
INC TEX+1 CMP TEXEND+1 
IMP DIGIT BCC OKMOV 

<::,t:.'5) NONUM SED ISR TOPCLR 
r-::t DECHEX LDA BCD LDA # <INSERR 

ORA BCD+1 LDY # >INSERR 
BEQ DONENUM ISR PRMSG 
SEC LDA #1 
LDA BCD STA MSGFLG 
SBC #1 RTS 
STA BCD OKMOV ISR DMOVE 
LDA BCD+1 CLC 
SBC #0 LDA BUFLEN 
STA BCD+1 STA LLEN 
INC HEX ADC LASTLINE 
BNE NOHEXINC STA LASTLINE 
INC HEX+1 LDA BUFLEN+1 

NOHEXINC IMP DECHEX STA HLEN 
DONENUM LDA HEX ADC LASTLINE+1 

CLD STA LASTLINE+1 
RTS LDA CURR 

Insert the buffer. This is the recall rou-
STA DESTL 
LDA CURR+1 

tine called by CTRL-R. It must not STA DESTH 
allow an insertion that would overfill LDA TEXBUF 
memory. It calls DMOVE to open a STA FROML 
space in memory, then UMOVE (which LDA TEXBUF+1 
is a little faster than DMOVE) to copy STA FROMH 

the buffer to the empty space. ISR UMOVE 
IMP CHECK 

INSBUFFER SEC 
LDA TPTR Exchange the character highlighted by 
SBC TEXBUF the cursor with the character to the 
STA BUFLEN right of it. Not a vital command, but it 
LDA TPTR+1 was included due to the brevity of the 
SBC TEXBUF+1 code. 
STA BUFLEN+1 
ORA BUFLEN SWITCH LDY #0 
BNE OKBUFF LDA (CURR),Y 

JSR TOPCLR TAX 
LDA # <INSMSG INY 
LDY # >INSMSG LDA (CURR),Y 

JSR PRMSG DEY 
LDA #1 STA (CURR),Y 

STA MSGFLG INY 
RTS TXA 

OKBUFF CLC STA (CURR),Y 

LDA CURR RTS 
STA FROML Change the case of the character high-
ADC BUFLEN 
STA DESTL lighted by the cursor. 

LDA CURR +1 ALPHA LDY #0 
STA FROMH LDA (CURR),Y 
ADC BUFLEN+1 AND #63 
STA DESTH CMP #33 
SEC BCC NOTALPHA 

96 



, , . ~ NOTALPHA 

CMP #59 
BCS NOTALPHA 
LOA (CURR),Y 
EOR #64 
STA (CURR),Y 
JMP RIGHT 

Convert internal (screen code) format to 
Atari ASCII (ATASClI). Used to con­
vert the screen-code format of Speed­
Script documents to ASCII for the sake 
of printing. 

INTOAS 

INCONT 

INTl 
XINT 

PHA 
AND 
STA 
PLA 
AND 
CMP 
BCS 
CMP 
BCC 
SBC 
JMP 
AOC 
ORA 
RTS 

#128 
TEMP 

#127 
#96 
XINT 
#64 
lNTl 
#64 
XI NT 
#32 
TEMP 

The start of the prin ter routines. This 
part could logically be called a separate 
program, but many variables are com­
mon to the above code. 

DEFTAB: Table of default settings for 
left margin, right margin, page length, 
top margin, bottom margin, etc. See the 
table starting at LMARGIN at the end 
of this source code. 

OEFTAB .BYTE 5,75,66,5,58,1,1,1,0, 
1,0,80 

Table of default printer codes. 

PRCOOES .BYTE 27,14,15,18 

Another advantage of modular coding 
is that you can change the behavior of 
a lot of code by just changing one 
small common routine. This is a sub­
stitute for the normal CHROUT rou­
tine. It checks to see if the current page 
number equals the page number speci­
fied by the user to start printing. It also 
checks for the BREAK to abort the 
printing and permits printing to be 
paused with CTRL-1. 

PCHROUT STA PCR 
TXA 
PHA 
TYA 
PHA 

SpeedScript Source Code 

SEC 
LOA PAGENUM 
SBC STARTNUM 
LOA PAGENUM+1 
SBC STARTNUM+1 
BCC SKIPOUT 
LOA #1 
STA 766 
LOX #$70 
LOA #0 
STA ICBLEN,X 
STA ICBLEN+1,X 
LOA #11 
STA ICCOM,X 
LOA PCR 
JSR CIO 
PHP 
LOA #0 
STA 766 
PLP 
BPL SHIFTFREEZE 

ERR LINK JSR ERROR 
LOX #$FA 
TXS 
JMP MAIN 

SHIFTFREEZE LOA $02FF ;CTRL-1 
BNE SHIFTFREEZE 

SKIPOUT PLA 
TAY 
PLA 
TAX 
LOA PCR 
RTS 

Displays "Printing ... " 

PRIN JSR TOPCLR 
LOA # <PRINMSG 
LOY # >PRINMSG 
JMP PRMSG 

PBORT JMP PEXIT 

Called by CTRL-P. We get the filename 
to print to (usually P:, although you 
can use E: to print to the screen) with 
ICAUXI set to 8 for output. We exit on 
any error. The DE LITE routine turns off 
the display-list interrupt, which might 
otherwise interfere with output timing. 

PRINT JSR TOPCLR 
LOA # <FNMSG 
LOY # >FNMSG 
JSR PRMSG 
JSR DE LITE 
LOA #8 
JSR TOPEN 
BPL PROK 
JMP PEXIT 

Reset several flags (footer length, 
header length, true ASCII, underline 
mode, and linefeed mode). Notice how 
DE LITE is called again. This isn't a 

97 



3>iO 'S 

SpeedScript 

mistake. The first time we called 
DE LITE, we then may have opened a 
file to the Editor device. This reset the 
screen to the default colors, so the sec­
ond DELITE retains the user's true 
color choice. 

PROK JSR DELITE 
JSR PRIN 
LDX #0 
STX FTLEN 
STX HDLEN 
STX NEEDASC 
STX UNDERLINE 
STX LINEFEED 

Copy definition tables and default 
printer codes. 

COPYDEF LDA DEFTAB,X 
STA LMARGIN,X 
INX 
CPX 
BNE 
LDA 
STA 
STA 
LDX 

COPYDEFS LDA 
STA 
DEX 

#12 
COPYDEF 
#$FF 
LINE 
NOMARG 
#4 
PRCODES-1,X 
CODEBUFFER + 16,X 

BNE COPYDEFS 

Reentry point for printing after linked 
files. 

RETEX LDA TEXSTART 
STA TEX 
LDA TEXSTART + 1 
STA TEX+1 

Main printing loop. We print the left 
margin, grab a line of text, scan back­
ward until we find a space or a carriage 
return, then break the line there. If 
printer codes are encountered, they' re 
passed on to the SPECIAL routine . 
Otherwise, we end up calling BUFPRT 
to print the line and process some other 
control codes. 

PLOOP 

PLOOP1 

NOTSP 

NOTRET 

98 

LDY #0 
STY POS 
CPY NOMARG 
BEQ PLOOP1 
LDA LMARGIN 
STA POS 
LDA (TEX),Y 
BPL NOTSP 
JMP SPECIAL 
CMP #RETCHAR 
BEQ FOUNDSPACE 
STA PRBUFF,Y 
INY 

FINDSPACE 

FSPACE 

FOUNDSPACE 
OVERSTOR 

INC 
LDA 
CMP 
BCC 
STY 
LDA 
CMP 
BEQ 
DEC 
DEY 
BNE 
LDY 
INY 
LDA 
CMP 
BEQ 
DEY 
STY 
TYA 
SEC 
ADC 
SVA 
LDA 
ADC 
STA 
LDY 

POS 
POS 
RMARGIN 
PLOOP1 
FINPOS 
(TEX),Y 
#SPACE 
FOUNDSPACE 
POS 

FINDSPACE 
FINPOS 

(TEX),Y 
#SPACE 
FOUNDSPACE 

FINPOS 

TEX 
TEX 
TEX+1 
#0 
TEX+1 
#0 

If this is the first page, we need to print 
the header, if any, with JSR TOP. 

DOBUFF 

DOBUF2 

OVERMARG 

LDA LINE 
CMP #$FF 
BNE DOBUF2 
JSR TOP 
LDA NOMARG 
BEQ OVERMARG 
JSR LMARG 
SEC 
ROL 
LDA 
STA 
LDA 
STA 
LDA 
STA 
JSR 

NOMARG 
FINPOS 
ENDPOS 
# < P-Z.BUFF 
INDIR 
# > PRBUFF 
INDIR+1 
BUFPRT 

A line has been printed. We check to 
see if we 've hit the bottom margin and, 
if so, go to PAGE, which goes to the 
end of the page, prints the footer (if 
any), and feeds to the next page. 

ZBUFF JSR CRLF 
LDA LINE 
CMP BOTMARG 
BCC NOTPAGE 
JSR PAGE 

Have we reached the end-of-text? 

NOTPAGE SEC 
LDA TEX 
SBC LASTLINE 



STA TEMP 
LOA TEX+l 
SBC LASTLINE + 1 
ORA TEMP 
BEQ OORPT 
BCC OORPT 

If so, we check for a footer. If there is 
one, we set HOLEN and TOPMARG to 
o (so that the printhead will end up at 
the right place on the last page) and 
call PAGE, which prints the footer. If 
there is no footer, we leave the print­
head on the same page so that paper 
isn't wasted. 

LOA FTLEN 
BEQ PXIT 
LOA #0 
STA HOLEN 
STA TOPMARG 
JSR PAGE 

Exit routines. If screen output was se­
lected, we wait for a keystroke before 
going back to editing mode. 

PXIT 

PEXIT 

OORPT 

LOA INBUFF 
CMP #'E 
BNE PEXIT 
LOA #155 
JSR CHROUT 
LOA # < DIRMSG 
LOY # > DIRMSG 
JSR PRMSG 
JSR GETAKEY 
JSR CLOSE7 
LOX #$FA 
TXS 
J6K 
LOA 
JSR 
JSR 
JMP 
JMP 

WiCH11CHT 

#125 
CHROUT 
SYSMSG 
MAIN 
PLOOP 

Paging routines. We skip (PAGE­
LENGTH - LINE) - two blank lines to 
get to the bottom of the page, print a 
footer (if there is one) or a blank line (if 
not), then page to the beginning of the 
next page, skipping over the paper 
perforation . If the wait mode is en­
abled, we wait for the user to insert a 
new sheet of paper. 

PAGE SEC 
LOA PAGELENGTH 
SBC LINE 
TAY 
DEY 
DEY 
BEQ NOSK 

SpeedScript Source Code 

BMI NOSK 
NEXPAGE JSR CR 

DEY 
BNE NEXPAGE 

NOSK LOA FTLEN 
BEQ SKIPFT 
STA ENOPOS 
LOA # <FTBUFF 
STA INDIR 
LOA # > FTBUFF 
STA INDIR+l 
JSR LMARG 
JSR BUFPRT 

SKIPFT JSR CR 
JSR CR 
JSR CR 

Increment the page number. 

INC PAGENUM 
BNE NOIPN 
INC PAGENUM+1 

The page wait mode is inappropriate 
when printing to the screen or to disk, 
or when skipping over pages with the? 
format command. 

NOIPN LOA CONTINUOUS 
BNE TOP 
SEC 
LOA PAGENUM 
SBC STARTOUM 
LOA PAGEN.uM+1 
SBC STARTNUM+1 
BCC TOP 
JSR TOPCLR 
LOA # < WAITMSG 
LOY # > WAITMSG 
JSR PRMSG 
JSR GETAKEY 
JSR PRIN 

Print the header; skip to the top 
margin. 

/' TOP LOA HOLEN 
BEQ NOHEAOER 
STA ENOPOS 
LOA # < HOBUFF 
STA INDIR 
LOA # > HDBUFF 
STA INDIR+1 
JSR LMARG 
JSR BUF~ 

NOHEAOER LOY TOPMARG 
STY LINE 
DEY 

SKIP}6P BEQ 
BMI SKIPTOP 

TOPLP JSR CR 
DEY 
BNE TOPLP 

SKIPTOP RTS 

99 



SpeedScript 

Left margin routine. This routine is not 
called if NOMARG is selected (margin 
release). 

3"11') LMARG LDA #32 
LDY LMARGIN 
STY POS 
BEQ LMEXIT 

3"'n r::: LMLOOP JSR PCHROUT 
DEY 
BNE LMLOOP 

LMEXIT RTS 

CRLF is called at the end of most 
printed lines. It increments the LINE 
count and takes into account the cur­
rent line spacing mode set by the s for­
mat command. 

CRLF LDY SPACING 
CLC 
TYA 
ADC LINE 
STA LINE 

CRLOOP JSR CR 
DEY 
BNE CRLOOP 
RTS 

CR just prints a single carriage return 
and linefeed (if specified). 

CR LDA 

NOLF 

#155 
JSR 
LDA 
BEQ 
JSR 
RTS 

PCHROUT 
LINEFEED 
NOLF 
PCHROUT 

Handle special printer codes like left 
margin. This looks up the printer code 
using a routine similar to CONTROL. 

SPECIAL STA SAVCHAR 
AND #127 
JSR INTOAS 
LDX SPTAB 

SRCHSP CMP SPTAB,X 
BEQ FSP 
DEX 
BNE SRCHSP 
DEC POS 
JMP DEFINE 

FSP DEX 

100 

TXA 
~ ASL A 

TAX 
STY YSAVE 
LDA # >SPCONT-1 
PHA 
LDA # <SPCONT-1 
PHA 
LDA SPVECT + 1,X 
PHA 

LDA SPVECT,X 
PHA 
RTS 

After the format code is processed, we 
must skip over the format command 
and its parameter so that it's not 
printed. 

SPCONT SEC 
LDA 
ADC 
STA 
LDA 
ADC 
STA 
JMP 

YSAVE 
TEX 
TEX 
TEX+1 
#0 
TEX + 1 
PLOOP 

If the format command ends with a re­
turn-mark, we must skip over the re­
turn-mark as well. 

SPCEXIT LDA (TEX),Y 
CMP #RETCHAR 
BEQ NOAD 
DEY 

NOAD STY YSAVE 
RTS 

Special format code table. It starts with 
the number of format commands, then 
the characters for each format 
command. 

SPTAB .BYTE 17 
.BYTE "wlrtbsnhf@p?xmigj" 

The address -1 of each format routine. 

SPVECT .WORD PW-1,LM-1,RM-1,T 
P-1 

.WORD BT-1,SP-l,NX-l,HD 
-1,FT-1 

.WORD PN-1,PL-1,SPAGE-1 
,ACROSS-I 

.WORD MRELEASE-I,COMME 
NT -1,LINK-1 

.WORD LFSET-1 

m Margin release. INY is used to skip 
over the format character. 

MRELEASE INY 
LDA #0 
STA NOMARG 
JMP SPCEXIT 

x Columns across, used by centering. 

ACROSS INY 
JSR 
STA 
JMP 

ASCHEX 
PAGEWIDTH 
SPCEXIT 

? Start printing at specified page. 

SPAGE INY 
JSR ASCHEX 



STA STARTNUM 
LDA HEX + 1 
STA STARTNUM+1 
JMP SPCEXIT 

@ Set starting default page number. 

j 1 4'; PN INY 
JSR ASCHEX 
STA PAGENUM 
LDA HEX + 1 
STA PAGENUM + 1 
JMP SPCEXIT 

P Page length. 

PL INY 
JSR ASCHEX 
STA PAGELENGTH 
JMP SPCEXIT 

w Set page wait mode. 

PW LDA/ 
#0 
STA CONTINUOUS 
INY 
JMP SPCEXIT 

j Set linefeed mode. 

LFSET LDA #10 
STA LINEFEED 
INY 
JMP SPCEXIT 

1 Left margin . 

LM INY 
JSR ASCHEX 
STA LMARGIN 
JMP SPCEXIT 

r Right margin. 

RM INY 
JSR ASCHEX 
STA RMARGIN 
JMP SPCEXIT 

t Top margin. 

TP INY 
JSR ASCHEX 
STA TOPMARG 
JMP SPCEXIT 

b Bottom margin. 

BT INY 
JSR ASCHEX 
STA BOTMARG 
JMP SPCEXIT 

s Set line spacing. 

SP INY 
JSR ASCHEX 
STA SPACING 
JMP SPCEXIT 

SpeedScript Source Code 

n Jump to next page. 

NX LDY YSAVE 
INY 
TYA 
PHA 
JSR PAGE 
PLA 
TAY 
STY YSAVE 
RTS 

h Define header. Copy header into 
header buffer. 

HD 

HDCOPY 

JSR 
DEY 
STY 
LDY 
LDA 
STA 
INY 
CPY 
BCC 
BEQ 
INY 
JMP 

PASTRET 

HDLEN 
#1 
(TEX),Y 
HDBUFF-1,Y 

HDLEN 
HDCOPY 
HDCOPY 

SPCEXIT 

Skip just past the return-mark. 

PASTRET INY 

f Define footer. 

FT 

FTCOPY 

LDA (TEX),Y 
CMP #RETCHAR 
BNE PASTRET 
RTS 

JSR PASTRET 
DEY 
STY FTLEN 
LDY #1 
LDA (TEX),Y 
STA FTBUFF-1,Y 
INY 
CPY FTLEN 
BCC FTCOPY 
BEQ FTCOPY 
JMP SPCEXIT 

i Ignore a line of information . 

COMMENT JSR PASTRET 
JMP SPCEXIT 

Define programmable printkeys. We 
check for =. If not found, this is not an 
assignment, so we just skip past the 
code. Otherwise, we use the screen 
code value as the index into the 
CODEBUFFER and put the value there, 
ready to be called during printing by 
BUFPRT. 

DEFINE INY 
LDA (TEX),Y 

101 



:;..1:;,0"1-

SpeedScript 

CMP #'=-32 
BEQ OOOEFINE 
OEY 
LOA SAVCHAR 
JMP NOTRET 

OOOEFINE INY 
ISR ASCHEX 
PHA 
LOA SAVCHAR 
ANO #127 
TAX 
PLA 
STA COOEBUFFER,X 
ISR SPCEXIT 
IMP SPCONT 

g Link to next file . We get the filename 
from text and put it into the input 
buffer, just as if the filename were 
typed in with INPUT. We then jump 
into the TOPEN routine to open the 
file, and into the Load routine to load 
the file . After the load, we check for a 
load error, then jump to RETEX to con­
tinue printing. 

LINK 

FNCOPY 

FNENO 

LNOERR 

LCONT 

LOY 
LOX 
LOA 
CMP 
BEQ 
ISR 
STA 
INY 
INX 
CPX 
BNE 
STX 
LOA 
STA 
LOX 
STX 
LOA 
STA 
ISR 
BPL 
IMP 
LOA 
STA 
STA 
ISR 
ISR 
BPL 
IMP 
PLA 
PLA 
LOX 
STA 
IMP ' 

#1 
#0 
(TEX),Y 
#RETCHAR 
FNENO 
INTOAS 
INBUFF,X 

#14 
FNCOPY 
INLEN 
#0 
INBUFF,X 
#$60 
IOCB 
#4 
ACCESS 
OPCONT 
LNOERR 
ERRLINK 
#0 
INDIR 
INDIR + 1 
ERASE 
LOAOLINK 
LCONT 
ERRLINK 

#$70 
IOCB 
RETEX 

Global search and replace. This just 
links together the search-specify rou­
tine, the replace-specify routine, then 

102 

repeatedly calls Hunt and Replace, until 
Hunt returns "Not Found." (FPOS+l 
is $FF after a search failure.) 

SANOR ISR RESET 
LOA HUNTLEN 
BEQ NOSR 
ISR ASKREP 

SNR ISR CONTSRCH 
LOA FPOS+1 
CMP #$FF 
BEQ NOSR 
ISR REPL 
ISR REFRESH 
IMP SNR 

NOSR IMP SYSMSG 

If OPTION is held down with CTRL-F 
we ask for and store the search phrase~ 
If OPTION is not down, we perform 
the actual search. The line in the 
IN BUFF is compared with characters in 
text. If at any point the search fails, we 
continue the comparison with the first 
character of INBUFF. The search is a 
failure if we reach the end-of-text. If 
the entire length of INBUFF matches, 
the search succeeds, so we change the 
CURRent cursor position to the found 
position, save the found position for 
the sake of the replace routine, then 
call . ~HECK to scroll to the foun~ 
pOSItion. CI.£(! I 

HUNT LDA #81 - <;~;;~ I S flEe', 

STA 53279 (2c d.fJ 
LOA 53279 ---
CMP #3 opno'" j)",i:"":;:'£' );> 

BNE CONTSRCH 
RESET ISR TOPCLR 

LOA # <SRCHMSG 
LOY # >SRCHMSG 
ISR PRMSG 
ISR INPUT 
STA HUNTLEN 
BNE OKSRCH 
IMP SYSMSG 

OKSRCH LOY #0 
TOBUFF LOA INBUFF,Y 

STA HUNTBUFF,Y 
INY 
CPY INLEN 
BNE TOBUFF 
IMP SYSMSG 

CONTSRCH LOA CURR 
STA TEX 
LOA CURR+1 
STA TEX + 1 
LOA #$FF 
STA FPOS+1 
LOY #1 

SRCHO LOX #0 



SpeedScript Source Code 

LOA HUNTLEN REPS TART LOA #8 
BEQ NOTFOUNO STA 53279 

SRCH1 LOA HUNTBUFF,X LOA 53279 
JSR ASTOIN CMP #3 
CMP (TEX),Y BNE REPL 
BEQ CY ASKREP JSR TOPCLR 
CPX #0 LOA # <REPMSG 
BNE SRCHO LOY # > REPMSG 
OEX JSR PRMSG 

CY INY JSR INPUT 
BNE NOVFL STA REPLEN 
INC TEX + 1 BEQ NOREP 
LOA TEX + 1 LOY #0 
CMP LASTLINE + 1 REPMOV LOA INBUFF,Y 
BEQ NOVFL STA REPBUFF,Y 
BCS NOTFOUNO INY 

NOVFL INX CPY INLEN 
CPX HUNTLEN BNE REPMOV 
BNE SRCH1 . NOREP JMP SYSMSG 
CLC REPL SEC 
TYA ,-' _ Arc- LOA CURR 
AOC TEX STA OESTL 
STA TEMP SBC FPOS 
LOA TEX + 1 STA TEMP 
AOC #0 LOA CURR+l 
STA TEMP + 1 STA OESTH 
LOA LASTLINE SBC FPOS+l 
CMP TEMP ORA TEMP 
LOA LASTLINE + 1 BNE NOREPL 
SBC TEMP + 1 LOA #$FF 
BCC NOTFOUNO STA FPOS+1 
SEC CLC 
LOA TEMP LOA HUNTLEN 
SBC HUNTLEN AOC CURR 
STA CURR STA FROML 
STA FPOS LOA #0 
LOA TEMP + 1 AOC CURR+1 
SBC #0 STA FROMH 
STA CURR + l SEC 
STA FPOS + 1 LOA LASTLINE 
JSR CHECK SBC OESTL 
RTS STA LLEN 

NOTFOUNO JSR TOPCLR LOA LASTLINE+1 
LOA # < NFMSG SBC OESTH 
LOY # > NFMSG STA HLEN 
JSR PRMSG JSR UMOVE 
LOA #1 SEC 
STA MSGFLG LOA LASTLINE 
RTS SBC HUNTLEN 

The change (replace) routine checks to 
STA LASTLINE 
LOA LASTLINE+1 

see if OPTION is held down with SBC #0 
CTRL-C. If it is, we ask for a replace STA LASTLINE+1 
phrase, and exit. If not, we check to see LOA REPLEN 
if the cursor is at the position pre- BEQ NOREPL 
viously located by the search routine. If STA INSLEN 

it is, we delete the found phrase, then LOA #0 

insert the replace phrase. The cursor is STA INSLEN+1 
JSR INSBLOCK 

moved past the replace phrase for the LOY #0 
sake of the next search . This also pre- REPLOOP LOA REPBUFF,Y 
vents endless recursion, as in replacing JSR ASTOIN 
in with winner. STA (CURR),Y 

103 



,C ") 

SpeedScript 

INY 
CPY REPLEN 
BNE REPLOOP 
CLC 
LDA CURR 
ADC REPLEN 
STA CURR 
LDA CURR+1 
ADC #0 
STA CURR+1 

NOREPL JMP CHECK 

Suddenly, we're back to a PRINT sub­
routine. This examines the buffer as it's 
being printed, checking for printkeys 
and Stage 2 commands like centering. 

BUFPRT LDY #0 
BUFLP CPY ENDPOS 

BEQ ENDBUFF 
LDA (INDIR),Y 
BMI SPEC2 
JSR INTOAS 
JSR PCHROUT 

In underline mode, after we print the 
character, we backspace the printhead 
and print an underline character. 

LDA UNDERLINE 
BEQ NOBRK 
LDA #8 
JSR PCHROUT 
LDA #95 
JSR PCHROUT 

NOBRK INY 
JMP BUFLP 

ENDBUFF RTS 

Stage 2 format commands. 

SPEC2 STY YSAVE 
AND #127 
STA SAVCHAR 
JSR INTOAS 

OTHER CMP #'c 
BNE NOTCENTER 

c Centering looks at the length of the 
line, then sends out extra spaces (the 
left margin has already been printed) to 
move th e printhead to the right place. 

SEC 
LDA PAGEWIDTH 
SBC ENDPOS 
LSR A 
SEC 
SBC LMARGIN 
TAY 
LDA #32 

CLOOP JSR PCHROUT 
DEY 

104 

BNE CLOOP 
LDY YSAVE 

NOTCENTER 
JMP NOBRK 
CMP #'e 
BNE NOTEDGE 

e Edge right. This subtracts the length 
of the line from the right margin po­
sition and moves the printhead to this 
position. 

EDGE 

NOTEDGE 

SEC 
LDA 
SBC 
SEC 
SBC 
TAY 
LDA 
JMP 
CMP 
BNE 

RMARGIN 
ENDPOS 

LMARGIN 

#32 
CLOOP 
#'u 
NOTOG i 

u Toggle underline mode. \.. 

LDA UNDE~NE 
EOR #1 
STA UNDERLINE 

NOTOG CMP #'# 
BNE DOCODES 

# Substitute the current page number 
for the # symbol. 

DOPGN STY YSAVE 
PAGENUM 
PAGENUM+1 
PROUTNUM 
YSAVE 
NOBRK 

LDX 
LDA 
JSR 
LDY 
JMP 

Do special format codes. This just uses 
the screen-code value of the character 
as an index into the CODEBUFFER, 
then sends out the code. SpeedScript 
makes no judgment on the code being 
sent out. 

DOCODES LDX 
LDA 
JSR 
JMP 

SAVCHAR 
CODEBUFFER,X 
PCHROUT 
NOBRK 

Display free memory using OUTNUM. 

FREEMEM JSR TOPCLR 
SEC 

3D"i?7 

LDA TEXEND 
SBC LASTLINE 
TAX 
LDA 
SBC 
JSR 
LDA 
STA 
RTS 
.END 

TEXEND+1 
LASTLINE+1 
OUTNUM 
#1 
MSGFLG 

,00 
'/,1 



Filename D:DATA Data tables 
7 -) ~j... \ ':::J 

~ Messages are stored in ATASCII, with a 
zero byte for a delimiter. - / '6"0 

3D~q MSGl .BYTE "SpeedScript 3.<Y, 
.BYTE 0 

MSG2 .BYTE "by Charles Brannon" 
.BYTE 0 

KILLMSG .BYTE "Buffer Cleared" 
.BYTE 0 

BUFERR .BYTE "Buffer Full" 
.BYTE 0 

OELMSG .BYTE "Delete (S,W,P)" 
.BYTE 0 

YMSG .BYTE ": Are you sure? 
(YIN):" 

.BYTE 
CLRMSG .BYTE 

.BYTE 
ERASMSG .BYTE 

o 
"ERASE ALL TEXT" 
o 
"Erase (S, W,P): 1m 
I'IIImI to exit" 

.BYTE ~ 
SAVMSG .BYTE 

.BYTE 

"Save 
(Device:Filename»" 
o 

SpeedScript Source Code 

DlRINS .BYTE 

RENMSG .BYTE 
FORMSG .BYTE 

i
"~;~C 

ck 

ad 
"Rename 
"Format disk",O 

The .OPT NO OBI and .OPT OBI 
pseudo-ops turn on and off object code 
generation. This insures that no object 
code is generated for the variable table. 

.OPT NO OBI 

TEXSTART .~ '+2 ;Start-of-text 
area 

TEXENO .~ '+2 ;End-of-text 
area 

TEXBUF .~ '+2 ;Start of 
buffer 

BUFENO .~ '+2 ;End-of-
buffer area 

LENTABLE .~ '+1 ;Length of 
first screen 

ERRMSG .BYTE 

BRMSG 
.BYTE 
.BYTE 
.BYTE 

"Error #" 
o 
"BREAK Key Abort" 
o 

7r~r;:OPLIN line 
.~ '+2 ;Home po-

OKMSG .BYTE 
.BYTE 

LOAOMSG .BYTE 

.BYTE 
DlRMSG .BYTE 

.BYTE 
DlRNAME .BYTE 

"No Errors" 
o 
"Load 
(Device:Filename»" 
o 
II Press Ulij"IJA'f' 
o 
"01: 

INSERR .BYTE "Memory Full" 
.BYTE 0 

lNSMSG .BYTE "No text in buffer" 
.BYTE 0 

FNMSG .BYTE "Print 
(Device:Filename»" 
o 

~ 

MSGFLG 
INSMOOE 

E NOPOS 

FINPOS 
LASTLINE 

LIMIT 

INLEN 
BOTSCR 

LBUFF 

INBUFF 
.BYTE 

PRINMSG .BYTE 
.BYTE 

WAITMSG .BYTE 

"Printing ... " 
155,155,0 3r 17 SAVCURR 

"Insert next sheet, 
press 'iji,uA¢t' 

.BYTE 0 
SRCHMSG .BYTE "Find:" 

.BYTE 0 
NFMSG .BYTE "Not found" 

< .BYTE 0 y;P.I REPMSG .BYTE "Change to:" 
}G"FF .BYTE 0 )EfPp 
The {ESC} 's represent the ESCape key. 
The arrows are the cursor keys, which 
must be preceded by ESC to be entered 
into text. There is actually only one 
space between the e of Rename and the 
E of ESC. 

BCD 

HEX 
TPTR 

BUFLEN 

GOB LEN 

FROMSAV 

OESTSAV 
HOLEN 

.~ 

.~ 

,~ 

,~ 

.~ 

.~ 

,~ 

.~ 

.~ 

.~ 

,~ 

,~ 

,~ 

,~ 

,~ 

,~ 

,~ 

,~ 

,~ 

sition in text 
'+1 ;Message flag 
'+1 ;Insert mode 
'+1 ;Used by de-

lete routines 
'+1 ;"" 
'+2 ;End-of-text 

position 
'+1 ;Used by 

INPUT 
·+1 ;/1" 
'+2 ;Bottom of 

screen in text 
• + 40 ;Line buffer 

(REFRESH) 
'+40 ;INPUT 

buffer 
'+2 ;Used by de­

lete routines 
'+2 ;Used by 

ASCHEX 
'+2 ;"" 
'+2 ;Last charac-

ter in buffer 
'+2 ;Buffer 

length 
'+2 ;Size of de-

leted text 
'+2 ;Used by de-

lete routines 
'+2 i"" 
'+1 ;Header 

length 

105 



SpeedScript 

3FCC. FTLEN '= '+1 ;Footer ESCFLAG '= '+1 ;Was ESC 
length pressed? 

LMARGIN '= '+1 ;Holds left CONVFLAG '= '+1 ;Used by 
margin CAST and 

RMARGIN '= '+1 ;Right CINTOAS 
margin SELFLAG '= '+1 ;The SELECT 

PAGELENGTH '= '+1 ;Page length key flag 
TOPMARG '= '+1 ;Top margin IOCB '= '+1 ;Which IOCB 
BOTMARG '= '+1 ;Bottom is OPEN 

margin ACCESS '= '+1 ;Direction of 
SPACING '= '+1 ;Line spacing ACCESS 
CONTINUOUS '= '+1 ;Page wait (read/write) 

mode FNBUFF '= '+40 ;Filename 
PAGENUM '= '+2 ;Page buffer 

number FNLEN '= '+1 ;Filename 
STARTNUM '= '+ 2 ;Start print- length 

ing at # XSLOT '= '+1 ;Number of 

3 0::1/P' PAGEWIDTH '= '+1 ;Columns filename 
across slots 

NOMARG '= "+ 1 ;Margin re- (DOSPAK) 
lease flag SLOT '= • + 130;Slot po-

POS '= '+ 1 ;POSition sitions 
within line (DOSPAK) 

LINE '= '+1 ;Line count XPTR '= '+1 ;Current £ile-
YSAVE '= '+1 iPreserves Y name slot 

register (DOSPAK) 
SAVCHAR '= '+1 ;Preserves WHICHFLAG '= '+1 ;Which key 

accumulator is pressed 
INS LEN '= '+1 ;Length of an DIRCOUNT '= '+1 ;Directory 

insertion count 
DEVNO '= '+1 ;Device BLINK '= '+1 ;Cursor blink 

number flag 
NEEDASC '= '+1 ;True ASCII LINELEN '= '+1 ; Length of 

flag screen lines 

)r-F- \ UNDERLINE '= '+1 ;Underline RLM '= '+1 ;REFRESH 
mode flag 

44bY 
left margin 

FPOS '= '+2 ;Found value 
position KEYVAL '= '+1 ;Which key 

PCR '= '+1 ;Used by - is pressed 
PCHROUT END ;High byte of 

HUNTLEN '= '+1 ;Length of this +$100 is 
hunt phrase TEXSTART 

HUNTBUFF '= '+30 ;Holds hunt .OPTOBJ 
phrase 

Autorun vector REPLEN '= '+1 ;Length of re-
place phrase '= $02E2 ) ;' (' 0 

REPBUFF '= • + 30 ;Holds re- .WORD BEGIN 
place phrase .END 

CODEBUFFER '= • + 128;Holds de-
finable 

Label Cross Reference. This chart printkeys 
PRBUFF '= • + 256;Printer line makes it easier to find your place in the 

buffer object code while looking at the source 
HDBUFF '= • + 256;Holds code. The number to the left of each la-

header bel is its value or position within the 
FIRSTRUN '= '+1 ;Has program object code. Labels preceded by an = 

been run mark are equates. Others are internal 
before? 

FTBUFF '= • + 256;Holds footer 
labels for object code positions. 

SAVCOL '= '+1 ;Save 43BA ACCESS 
SCRCOL 3A2E ACROSS 

LINEFEED '= '+1 ;Linefeed 294B ADYCURR 
mode flag 3721 ALPHA 

106 



SpeedScript Source Code 

3614 ASCHEX 3282 DDOWN 
3C3C ASKREP 3654 DECHEX 
262C ASTOIN 3AF6 DEFINE 
3FCD BCD 3752 DEFTAB 
1FOO BEGIN 2A6C DEll 
446A BLINK 2A80 DEllA 
3029 BLIP 2A89 DEL2 

= 0074 BLUE 2A7D DELABORT 
2983 BORDER 2AAO DELC 
33AA BOTCLR 2B32 DELCHAR 
3FE1 BOTMARG 2B5C DELETE 
3F79 BOTSCR 32E5 DELFILE 
24D3 BREAK 2B4D DELIN 
3E3A BRMSG 35FF DE LITE 
3A92 BT 3DC7 DELMSG 
3F6C BUFEND 2B8A DELSENT 
3DBB BUFERR 2B7D DELWORD 
3FD3 BUFLEN = 0083 DESTH 
3CDE BUFLP = 0082 DESTL 
3CDC BUFPRT 3FD9 DESTSAV 
33FF CAST 3FEF DEVNO 
340C CASTl 3622 DIGIT 
3419 CASTOIN 4469 DlRCOUNT 
3100 CATALOG 3FOO DlRINS 
27CF CHECK 3156 DlRLOOP 
282D CHECK2 3E6C DlRMSG 
2F7F CHROUT 3E7A DlRNAME 
2FCB CHRYSAVE 25E9 DlSKBOOT 
3426 CIN 3247 DLEFT 
3407 CINTOAS 2EOA DLI 

= E456 C10 2DEE DLIST 
284C CK3 2DC8 DLOOP 
2D02 CLEAR 2474 DMOVI 
2501 CLEARED 244D DMOVE 
28E2 CLEFT 2476 DMOVLOOP 
3DlF CLOOP 3170 DNOT8 
3184 CLOSE7 315B DNOTCR 
254C CLR2 3873 DOBUF2 
24F4 CLRLN 3869 DOBUFF 
2543 CLRLOOP 3D62 DOCODES 
3DED CLRMSG 3B04 DODEFINE 
4033 CODEBUFFER 26F4 DOINS 
3AFO COMMENT 2D25 DOlT 
3FE3 CONTINUOUS 3678 DONENUM 
2732 CONTROL 3D 50 DOPGN 
3BB7 CONTSRCH 38EB DORPT 
43B7 CONVFLAG 31BB DOS 
24D7 COPY 3229 DOSADR 
3296 COPYD 33B6 DOSERR 
37EC COPYDEF 33EF DOSMSG 
3801 COPYDEFS 3219 DOSTABLE 
32A3 COPYNAME 3254 DRIGHT 
3332 COPYR 336F DRIVE 
3446 COT HER 3271 DUP 
3998 CR 2BD9 EATSPACE 
28AF CRIGHT 3D2F EDGE 
3986 CRLF 2F99 ENAME 
3991 CRLOOP = 446E END 
2753 CTBL 3DOO END BUFF 

= 0086 CURR 3194 ENDIR 
2EE7 CURSIN 319E ENDLP 
3430 CVLOOP 3F73 ENDPOS 
3BDC CY 2967 ENDTEX 

107 



SpeedScript 

2814 EQA 41B3 HDBUFF 
2E97 ERA 1 3ABE HDCOPY 
2EA6 ERA2 3FDB HDLEN 
2E33 ERAS 3FCF HEX 
2E42 ERAS1 2DAD HIGHLIGHT 
2E4C ERAS AGAIN = 0085 HLEN 
251F ERASE 2BA1 HOME 
2E7B ERASENT 2BC3 HOMEPAUSE 
3DFC ERASMSG 3B85 HUNT 
2E6E ERAS WORD 3FF6 HUNTBUFF 
34A7 ERR1 3FF5 HUNTLEN 
379B ERRLlNK = 034A lCAUX1 
3E32 ERRMSG = 034B ICAUX2 
34AE ERROR = 0344 ICBADR 
34C7 ERXIT • = 0348 ICBLEN 
27BD ESC = 0342 lCCOM 
3399 ESCDOS = 0343 lCSTAT 
43B6 ESCFLAG 3FA3 INBUFF 
2F2E ESCKEY 250C INCNOT 
2C75 FILLSP 3744 INCONT 
3201 FINDIT = 008E INDIR 
3841 FINDSPACE 2F4D IN EXIT 
35E8 FINE 2589 INIT 
3F74 FINPOS 25EA INIT2 
42B3 FIRSTRUN 2726 INKURR 
29F4 FIRST WORD 3F78 INLEN 
2B3B FIXTP 2CE1 INOUT 
2687 FLIPIT 2ED5 INP1 
43BB FNBUFF 2ECE INPUT 
3B1D FNCOPY 2868 INRANGE 
3B2F FNEND 2C92 INSBLOCK 
43E3 FNLEN 367D INSBUFFER 
3E9E FNMSG 2C7C INSCHAR 
3355 FORMAT 3E80 INSERR 
3F5A FORMSG 3FEE INS LEN 
2740 FOUND 3F72 INS MODE 
320C FOUNDIT 3E8C INSMSG 
3858 FOUNDSPACE 2CE2 INSTGL 
3FF2 FPOS 374D INTl 
3D6E FREEMEM 3738 INTOAS 

= 0081 FROMH 33E5 INVLP 
0080 FROML 33E3 INVNAME 
3FD7 FROMSAV 3B9 IOCB 
39BF FSP 34EO IOCWSE 
3850 FSPACE 2575 JDOS 
3AD7 FT 357B JFINE 
42B4 FTBUFF 32F2 JNAME 
3AEO FTCOPY 3040 KEYBOARD 
3FDC FTLEN 2694 KEYPRESS 
31A9 GET7 446D KEYVAL 
256F GETAKEY 2A50 KILLBUFF 
2FD6 GETCHAR 3DAC KILLMSG 
2FCC GETIN 3F75 LASTLINE 
31D6 GETNAME 295A LASTWORD 
2D4F GOADY 3F7B LBUFF 
3FD5 GOBLEN 3B5A LCONT 
3565 GOERROR 28B8 LEFT 
2C06 GOINC 3F6E LENTABLE 
2FC1 GOPCHR 298B LETTERS 
2AD4 GOSAV 3A6B LFSET 
32EA GOXIO 3F77 LIMIT 
3001 GXIT 3FEB LINE 
3AB5 HD 43B5 L1NEFEED 

108 



SpeedScript Source Code 

446B LINELEN 2642 NOTCTRL 
3B19 LINK 32BF NOTOOT 

= 0084 LLEN 3040 NOTEOGE 
3A74 LM 3C20 NOTFOUNO 
3975 LMARG 26F7 NOTINST 
3FOO LMARGIN 3024 NOTLOCKEO 
3985 LMEXIT 2455 NOTNULL 
397F LMLOOP 304C NOTOG 
3B49 LNOERR 389E NOTPAGE 
3554 LOA02 2BAO NOTPAR 
3377 LOADIT 344F NOTRC 
357E LOAOLINK 382F NOTRET 
3E54 LOAOMSG 3440 NOTRTN 
32F8 LOCK 26A6 NOTSEL 
2C4C LOTTA SPACE 2B93 NOTSENT 
2645 LOWR 3004 NOTSET 
2648 MAIN 382B NOTSP 
2651 MAIN2 2B86 NOTWORO 
2428 MOV1 2F13 NOTZERO 
242A MOV2 3BEA NOVFL 
242F MOVLOOP 2E77 NOWORO 
3A25 MRELEASE 326E NRANGE 
3088 MSG1 3AA6 NX 
3098 MSG2 24C7 NXCUR 
3F71 MSGFLG 2941 OIDS 
31EB NAMELP 27FF OK1 
3294 NAMER 282C OK2 
3FFO NEEOASC 36A5 OKBUFF 
38FC NEXPAGE 2DOF OK CLEAR 
3EEB NFMSG 2CA9 OKINS 
39EO NOAO 3568 OKLOO 
2F1B NOBACK 360F OKMOV 
28AC NOBIGGER 3E4A OKMSG 
2583 NOB LINK 3BA6 OKSRCH 
3CFC NOBRK 27C6 ONOFF 
28E8 NOOEC 2FCA ONUMEXIT 
3571 NOER 2FB1 ONUMLOOP 
2F04 NOESC 3508 OPABORT 
2A37 NOFlXCURR 3510 OPCONT 
35E2 NOGARBAGE 2F59 OPENEDITOR 
3963 NOHEAOER 300C OTHER 
3675 NOHEXINC 244C OUT 
272C NOlNC2 2BC9 OUTHOME 
28B5 NOINCR 2FAO OUTNUM 
2C63 NOINCY 287A OUT RANGE 
3929 NOlPN 2COB OUTSPACE 
39A5 NOLF 26E2 OVERCTRL 
3FE9 NOMARG 387B OVERMARG 
26B8 NOMSG 3452 OVEROTHER 
334F NONA ME 2FC4 OVERPCHR 
3653 NONUM 385B OVERSTOR 
2E91 NOPAR 2FA2 OVERZAP 
31FF NOPROB 38EE PAGE 
3C5C NOREP 3FOF PAGELENGTH 
3C09 NOREPL 3FE4 PAGENUM 
3902 NOSK 3FE8 PAGEWIDTH 
3B82 NOSR 2064 PARCONT 
32B2 NOSTOR 2031 PARIGHT 
3735 NOTALPHA 2052 PARLEFT 
26AC NOTBKS 205E PARLOOP 
300F NOTCAPS 2033 PARLP 
302B NOTCENTER 3ACF PASTRET 
26C2 NOTCR 37BB PBORT 

109 



SpeedScript 

3762 PCHROUT 298A SCRCOL 
3FF4 PCR 43B8 SELFLAG 
2514 PO ONE = 02BE SHFLOK 
3807 PEXIT 37A4 SHIFTFREEZE 
3A58 PL 2481 SKIPOMOV 
24B1 PLINE IF34 SKIPERAS 
3814 PLOOP 3918 SKIPFT 
3824 PLOOPI 2448 SKIPMOV 
29A7 PMANY 37A9 SKIPOUT 
3A48 PN 2F3E SKIPSEL 
3FEA P~S 29E2 SKIPSPC 
24AF PPAGE 3974 SKIPTOP 
40B3 PRBUFF 299B SLEFT 
375E PRCOOES 24C3 SLOOP 
256E PREXIT 43E5 SLOT 
37B1 PRIN 3036 SLOW 
3EB7 PRINMSG 3031 SNOLOOP 
37BE PRINT 3B6F SNR 
2564 PRLOOP 3A9C SP 
2559 PRMSG = 0000 SPACE 
3705 PROK 3FE2 SPACING 
35FO PROKMSG 3A38 SPAGE 
2F9B PROUTNUM 39E6 SPCEXIT 
29BO PSLOOP 3905 SPCONT 
29B9 PSRCH 2BE7 SPCSRCH 
290E PUNCT 3001 SPEC2 
2A26 PUNCT2 39A6 SPECIAL 
3A62 PW 39Fl SPTAB 
38Cl PXIT 3A03 SPVECT 

= 0032 REO 2735 SRCH 
3120 REDIR 3BC6 SRCHO 
2826 REF 3BCO SRCHI 
248B REFRESH 3EE5 SRCHMSG 
3308 RENAME 39Bl SRCHSP 
3F4F RENMSG 2A23 SREXIT 
4015 REPBUFF 2AOI SRIGHT 
29EF REPEAT 2A03 SRLP 
3C5F REPL 3FE6 STARTNUM 
4014 REPLEN 3403 STOPPEO 
3CBO REPLOOP 28F9 STRIP 
3C50 REPMOV 2903 STRLOOP 
3EF5 REPMSG. 3711 SWITCH 
3C30 REPSTART 260A SYSMSG 
3B91 RESET 2C54 TAB 
3261 RESLOT 2C66 TAB2 

= 005E RETCHAR = 008C TEMP 
380A RETEX = 008A TEX 
2075 RETF2 3F6A TEXBUF 
204A RETFOUNO 299A TEXCOLR 
2885 RIGHT 3F68 TEXENO 
446C RLM 35AB TEXOK 
2925 RLOOP 3F66 TEXSTART 
3A7E RM 2DA2 TEXTOCURR 
3FOE RMARGIN 3178 THROWS 
2933 ROUT 3539 TLOAO 
297A SAFE 3BA8 TOBUFF 
3B64 SANOR 280F TOOSMALL 
3FEO SAVCHAR 3940 TOP 
43B4 SAVCOL 261A TOPCLR 
3FCB SAVCURR 34EB TOPEN 
3EIA SAVMSG 2BCC TOPHOME 
2402 SBRK 3F6F TOPLIN 

= 0088 SCR 261E TOPLOOP 

110 



SpeedScript Source Code 

396E TOPLP ~ 0091 WINOCOLR 
3FEO TOPMARG 28EO WLEFT 
3A88 TP 2906 WLOOP 
3F01 TPTR 2923 WRIGHT 
3450 TSAVE 2914 WROUT 
2410 UMOVE 2957 WRTN 

~ 0090 UNOERCURS 374F XINT 
3FF1 UNDERLINE 32C8 XIO 
3300 UNLOCK 4467 XPTR 
2E84 UNSENT 43E4 XSLOT 
2777 VECT 3006 YMSG 
2667 WAIT 2CEB YORN 
3EC5 WAITMSG 2CF2 YORNKEY 
2BBC WAITST 3FEC YSAVE 
4468 WHICHFLAG 3890 ZBUFF 

111 





Index 

ASCII files 13 
ASCII value, use of in defining a 

printkey 21-22 
Atari DOS 2.0, use of 4, 15 
Atari DOS 3.0, use of 4, 15 
"The Automatic Proofreader" 34-36 

preparing the program 34 
program listing 35-36 
using the program 35 

command line 5 
control key commands 7-15 

CTRL-A 14 
CTRL-B 14 
CTRL-C 11-12 
CTRL-CLEAR 7 
CTRL-D 9, 10 
CTRL-DELETE/BACK S 9 
CTRL-E 9, 10 
CTRL-F 11 
CTRL-G 11 , 12 
CTRL-I8 
CTRL-INSERT 8 
CTRL-K 10 
CTRL-L 11-12 
CTRL-M 13 
CTRL-O 14 
CTRL-P 16 
CTRL-R 10 
CTRL-S 12 
CTRL-T 14 
CTRL-U 6 
CTRL-X 14 
CTRL-Z 8, 13 
CTRL-l 16 
CTRL-+7 
CTRL-·7 
CTRL--7 
CTRL-=7 
ESC key, use of with CTRL 8 
explanation of how to enter 7 
OPTION button, use of with CTRL 7, 
11 , 14 

cursor movement 7-8 
cursor-down key 7 
cursor-left key 7 
cursor-right key 7 
cursor-up key 7 

delete mode 9-10 
disk commands 13-14 
entering of text 5-9 
erase mode 9 
erasing of text 9-10 

format commands 15-23 
SELECT key 16-17, 21 
Stage 1 commands 16-20 
Stage 2 commands 20-21 
summary of 19 

insert mode 8-9 
keyboard commands 7-12. See also 

control key commands; keyboard 
map, illustration of 
BREAK key 16 
CAPS/ LOWR key 15 
DELETE/ BACK S key 9 
OPTION-CTRL-C 11 
OPTION-CTRL-F 11 
OPTION-CTRL-G 11 
OPTION-CTRL-+ 14 
OPTION-CTRL-· 14 
SELECT key 16- 17, 21 
SHIFT-DELETE/ BACK S 9 
SHIFT-INSERT 8 
SHIFT- +7 
SHIFT-·7 
SHIFT--7 
SHIFT-=7 
START button 8 
SYSTEM RESET button 15 
TAB key 8 

keyboard map, illustration of 18 
loading of a document 12 
loading of program 

binary disk file 4 
boot tape 4-5 

"The Machine Language Editor: MLX" 
27-33 
commands 4, 28-29 
ending address 3, 27, 37 
explanation of use 27 
program listing 29-33 
run / init address 3, 27, 37 
starting address 3, 27, 37 
typing in multiple sittings 4-5 

MAC/ 65 Assembler 69 
merging, of files 13 
Optimized Systems Software, Inc. 5, 69 
OPTION button, use of 11 
OS/ A + DOS, use of 4, 15 
overscanning 14 
parsing 6 
printing of documents 

default settings 16 
explanation of use 15- 23 
to an RS-232 printer 16 

113 



printkey, defining of 21-23 
program listing 37-65 
return-mark 7 
saving of the program 

as a binary file 3, 27 
as a boot tape 3, 27 

screen formatting 6-7 
scrolling 6-7 
search and replace 11-12 
source code 69-111 

explanation of 69-70 
listing of 71-111 

114 

start a new document 11 
storing of a document 12 
text buffer 10 
typing it in 3-5 

in multiple sittings 4-5 
using the program 3-23 
width of the screen, how to change it 

14 
word wrap 6 



To order your copy of the Atari Speedscript Disk call our toll­
free US order line: 1-800-346-6767 (in NY 212-887-8525) or 
send your prepaid order to: <r.o/1r"( llil '1 )OJ-Z)5S'? gO <7") 

A tori Speedscripf Disk 
COMPUTE! Publications 
P,O, Box 5038 

! F f ' " 

P. 
FD,R, Station 
New York, NY 10150 

C-..y (-~ r ?' y. )c oJ "',...H 
) , 1\ . z. ) cj.O::? 

All orders must be prepaid (check, charge, or money order). NC 
residents add 4,5% sales tax. 

Send __ copies of the Atari Speedscript Disk at $12,95 per 
copy. 

Subtotal $, ____ _ 

Shipping and Handling: $2.00jdisk $, ____ _ 
($5.00 airmail) 

Sales tax (if applicable) $, ____ _ 

Total payment enclosed $, ____ _ 

o Payment enclosed 
o Charge 0 Visa 0 MasterCard 0 American Express 

Acct, No, _____________ Exp. Date __ _ 
(Required) 

Name _____________________ _ 

Address _____________________ _ 

City ____________ State ___ Zip __ _ 

Please allow 4-5 weeks for delivery. 



-



If you've enjoyed the articles in this book, you'll find 
the same style and quality in every monthly issue of 
COMPUTE! Magazine, Use this form to order your 
subscription to COMPUTE!, 

For Fastest SeNice 
Call Our Toll-Free US Order Line 

1-800-247-5470 
In IA call 1-800-532-1272 

COMPUTE! 
p,o, Box 10954 
Des Moines, IA 50340 

My computer is: 
D Commodore 64 or 128 D TI-99j4A D IBM PC or PCjr D VIC-20 
DApple DAtari DAmiga DOther _________ _ 
D Don't yet have one .. , 

D $24 One Year US Subscription 
D $45 Two Year US Subscription 
D $65 Three Year US Subscription 
Subscription rates outside the US: 
D $30 Canada and Foreign Surface Mail 
D $65 Foreign Air Delivery 

Name 

Address 

City State 

Country 
Zip 

Payment must be in US funds drawn on a US bank, international 
money order, or charge card, 
D Payment Enclosed 0 Visa 
o MasterCard 0 American Express 

Acct, No, Expires I 
(Required) 

Your subscription will begin with the next available issue, Please 
allow 4-6 weeks for delivery of first issue, Subscription prices subject 
to change at any time, 



-



COMPUTE! Books 
p,O, Box 5038 
F.D,R, Station 
New York, NY 10150 

Ask your retailer for these COMPUTEI Books, If he or she 
has sold out, order directly from COMPUTE!, 

For Fastest Service 
Call Our TOLL FREE US Order Line 

1-800-346-6767 
In NY call 212-887-8525 
Or write COMPUTE I Books, 

P,O, Box 5038, FD,R, Station, New York, NY 10150 
Quantity Title 

COMPUTE!'s First Book of Atari (00-0) 
COMPUTE!'s Second Book of Atari (06-X) 
COMPUTE!'s Third Book of Atarl (18-3) 
COMPUTE!'s First Book of Atari Graphics (08-6) 
COMPUTE!'s Second Book of Atari 

Price 

$12.95 
$12.95 
$12.95 
$12.95 

Graphics (28-0) $12.95 
COMPUTE! 's First Book of Atari Games (14-0) $12.95 
COMPUTE! 's Atari Collection, Volume 1 (79-5) $12.95 
COMPUTE! 's Atari Collection, Volume 2 (029-7) $14.95 
Machine Language for Beginners (11 -6) $14.95 
Second Book of Machine Language (53-1) $14.95 
SpeedScript: The Word Processar 
for the Atari (003) $ 9.95 

$16.95 

Total 

Mapping The Atarl, Revised (004) 
COMPUTE!'s ST Programmer's Guide (023-8) 
The Elementary Atari ST (024) 
COMPUTE!'s Kids and the ST (386) 
Elementary ST BASIC (343) 

$16.95 __ 
$16.95 __ 
$14.95 __ 
$14.95 __ 

Introduction to Sound and Graphics 
$14.95 __ on the A tori ST (035) 

Add $2,00 per book shipping and handling, Outside US add 
$5,00 air mail or $2,00 surface mail. 

Ne residents add 4.5% sales tax __ _ 

Shipping. handllng __ _ 

Total payment __ _ 
All orders must be prepaid (money order, check, or charge), All 
payments must be in US funds, 
o Payment enclosed Please charge my: 0 Visa 0 MasterCard 
o American Express 

Acct, No, _______________ Exp, Date __ _ 
Name ______________________ _ 

Address _______________________________________ _ 

City ____________ _ State ____ Zip ____ _ 
Country _____________________ __ 
• Allow 4-5 weeks for delivery, 
Prices and a vailability subject to change without notice. 



--



COMPUTE! Books 
Ask your retailer for these COMPUTEI Books or order 
directly from COMPUTEI. 

Call toll free (in US) 800-346-6767 (in NY 212-887-
8525) or write COMPUTE! Books, P.O. Box 5038, F.D.R. 
Station, New York, NY 10150 

Quantity Title Price' Total 

Machine Language for Beginners (11-6) $14.95 
The Second Book of Machine Language (53-1) $14.95 
COMPUTEI's Guide to Adventure Games (67-1) $12.95 
Computing Together: A Parents & Teachers 

$12.95 Guide to Computing with Young Children (51-5) 
COMPUTEI's Personal Telecomputing (47-7) $12.95 
BASIC Programs for Small Computers (38-8) $12.95 
Programmer's Reference Guide to the 

$12.95 Color Computer (19-1) 
Home Energy Applications (10-8) $14.95 
The Home Computer Wars: 
An Insider's Account of Commodore and Jack Tramiel 

Hardback (75-2) $16.95 
Paperback (78-7) $ 9.95 

The Book of BASIC (61-2) $12.95 
The Greatest Games: The 93 Best Computer 

$ 9.95 Games of all Time (95-7) 
Investment Management with Your 
Personal Computer (005) $14.95 
40 Great Flight Simulator Adventures (022) $ 9.95 
40 More Great Flight Simulator Adventures (043-2) $ 9.95 
100 Programs for Business and Professional Use (017-3) $24.95 
From BASIC to C (026) $16.95 
The Turbo Pascal Handbook (037) $14.95 
Electronic Computer Projects (052-1) $ 9.95 

• Add $2.00 per book for shipping and handling. 
Outside US add $5.00 air mail or $2.00 surface mail. 

Ne residents add 4.5% sales tax. 
Shipping" handling: $2.00jbook 

Total payment 
All orders must be prepaid (check, charge, or money order). 
All payments must be in US funds. 
o Payment enclosed. 
Charge 0 Visa 0 MasterCard 0 American Express 

Acct. No. Exp. Date ___ _ 
(Required) Name __________________________________________________ __ 

Address ________________________________________________ ___ 

City ____________ _ 
• Allow 4-5 weeks tor delivery. 
Prices and availability subject to change. 
Current catalog available upon request . 

State ____ Zip __ _ 



3;.. ? ~ 

I n 

" 
~ 

':J 
'/ 

l 
11, 

, 
tl 
0_ 

(" 

L-> 

--
~ 

I 





Writing Made Easy 
Thousands of people have already made SpeedScript COM­
PUTE! Publications' most popular program ever. Offering 
nearly every feature and convenience you expect to find in 
a quality word processor, SpeedScript is the perfect writing 
tool. With SpeedScript, writing, editing, formatting, and print­
ing any document-from the shortest letter to the longest 
novel-become easier. Anything can be changed, modified, 
or rewritten with just a few keystrokes on your Atari 400/800, 
600XL/800XL, 1200XL, or new XE and at least 24K of memory. 
The mechanics of writing become less intrusive-so you can 
concentrate on the writing, not the process itself. 

SpeedScript 3.0 is our most powerful version of this easy­
to-use word processor. Commands have been added, other 
features enhanced, to give you the best possible writing 
instrument. 

Here are just a few of the features of this book: 

• Complete program listing for SpeedScript 3.0 
• Detailed documentation that shows you how to use all of 

SpeedScripfs commands and capabilities 
• "The Machine Language Editor: MLX," an entry program 

which insures that you'll type in SpeedScript right the first 
time 

• SpeedScript 3.as source code (by studying it, you'll see how 
SpeedScript was written) 

SpeedScript is a most impressive word processor. It's a 
writer's tool that you can use from the moment you run it. 
With SpeedScript. The Word Processor for the A tari, you have 
a complete package-the word processor and the com­
plete documentation. 

ISBN 0-87455-003-3 


	Cover

	Contents

	Foreword

	Using SpeedScript

	Entering SpeedScript

	MLX: Machine Language Editor

	Automatic Proofreader

	Program Listings


	Speedscript SourceCode

	Atari Source Code


	Index


