




No. 1453 
$16.95 

PROGRAMMING 
YOUR 

ATARI® COMPUTER 
BY MARK THOMPSON 



FIRST EDITION 

FIRST PRINTING 

Copyright 10 1983 by TAB BOOKS Inc. 

Printed in the United States of America 

Reproduction or publication of the content in any manner, without express 
permission of the publisher, is prohibited. No liability is assumed with respect to 
the use of the information herein. 

Library of Congress Cataloging in Publication Data 

Thompson, Mark S. 
Programming your Atari computer. 

Includes index. 
1. Atari 800 (Computer)-Programming. I. Title. 

QA76.8.A814T46 1983 001 .64'2 82-19334 
ISBN 0-8306-0453-7 
ISBN 0-8306-1453-2 (pbk.) 



Contents 
Preface 

Number Systems and Codes 
The Decimal Number System-The Binary Number System­
Converting Decimal Numbers to Binary Numbers-Converting Bi­
nary Numbers to Decimal Numbers-octal Number System­
Hexadecimal Number System-Binary Codes 

vii 

2 Microcomputer Basics 12 
Computer Structure-Software-Interconnection of Elements­
Scaling of Computers-Microprocessors-Computer Bus 
Systems-Types of Storage-Bus Control of I /0 

3 Computer Arithmetic 31 
Addition and Subtraction of Binary Numbers-Multiplication and 
Division of Binary Numbers-Fractions and Decimals 

4 Boolean Operations 44 
Boolean Algebra-Classes and Elements-Venn Diagrams­
Connectives and Variables-Applications to Switching Cir­
cuits-Fundamental Laws and Axioms of Boolean Algebra­
Boolean Equation Simplification a:1d Mechanization 

5 Introduction to Programming 80 
BASIC-The Programming Process-Let's Write a Program-
Line Numbers-BASIC Statements 

6 Introduction to the ATARI 800 97 
Understanding Software-Keyboard-Program Recorder­
Learning to Program the ATARI aOO-Writing BASIC Source 
Programs-Editing Your Program-Transferring Programs to and 
from Cassette Tapes 



7 Optional Peripherals and Software 119 
8K Computer Systems-The Printer-16K Computer Sys-
tems-Controliers-The ATARI 810 Disk Drive-Disk Operating 
System-BASIC Commands Used with Disk Operations-
Directory of BASIC Words Used with Disk Operations-BASIC 
Error Messages Used During Disk Operation 

8 I/O Operations 135 
Input /Output Devices-Input and Output Commands 

9 Mathematical and Other Functions 143 
Arithmetic Functions-Trigonometric Functions-Special Pur-
pose Functions 

10 Programming Techniques to Save Memory 147 

11 Sample Programs: Conversions 149 
Currency Exchange-Metric Conversions 

12 More Programs 157 
Finding Greatest Common Divisor of Two Numbers-Program for 
Gun Coliectors-Checkbook Balancer 

13 Flowcharting Techniques 165 
Flowcharting Symbols-Control Structures-The If Statement-
The Else Option-Pseudocode 

14 ATARI Graphics and Sound 174 
Commands to Control the Graphics-Text Modes Character Print 
Program-Light Show Program-United States Flag Program-
Video Graffiti-Using Sound-Type-a-Tune Program-Computer 
Blues 

15 Programming in Machine Language 198 

16 Continuing Education 205 
NRI-National Technical School-Typical Correspondence 
Lessons 

Appendix A Alphabetical Directory 
of BASIC Reserved Words 220 

Appendix B Error Messages 226 

Appendix C ATASCII Character Set 229 

Appendix D ATARI 400/800 Memory Map 234 

Appendix E Derived Functions 237 



Appendix F Printed Versions of Control Characters 238 

Appendix G Memory Locations 239 

Appendix H Glossary of Microcomputer Items 242 

Index 270 





Preface 

This book is directed to the person interested in obtaining a com­
plete understanding of the design and capabilities of the ATARI 800 
computer. It opens the door to many applications of the AT ARI 800. 
It differs from many books in that it explains fundamental micro­
processor techniques while it enables you to use your own ATARI 
effectively. 

Software packages are available that will enable the user of an 
ATARI 800 to begin running programs without spending time 
learning the basic fundamentals. However, to write and run pro­
grams effectively, the programmer should have a fundamental un­
derstanding of the components that make up the ATARI 800. This 
knowledge begins with the microprocessor chips, memory chips, 
and 110 chips . It extends to the keyboard and switches for setting up 
an instrument or device, transducers for sensing inputs, actuators 
for control, devices for communicating with remote computers and 
other instruments, devices to provide extra storage capability. and 
printers and displays for informing the user of results. 

Once the basic components of the machine are understood, the 
programmer must thoroughly understand programming processes 
and be able to translate these into the language of the AT ARI 800 . It 
is also helpful for the programmer to understand how the extensive 
requirements of the AT ARI 800 can be broken down into manage­
able parts and how sections of programs can be written to meet each 
requirement. Finally, the programmer must be able to put the 

vii 



software parts together into a coordinated whole so that the overall 
goals of the program are met. 

To the novice. all of these requirements may seem a little 
much to conquer right at the beginning. but this book is designed to 
lead you step-by-step-taking first things first-until even the 
beginner will be able to program the ATARI 800 just like a seasoned 
pro. 

Some of the initial data may seem immaterial at first. but as you 
get more and more into actual programming. all of this material will 
"gel"-and result in a thorough knowledge of the ATARI 800 and 
how to program it to suit personal needs. 

viii 



Chapter 1 

Number Systems and Codes 

Binary numbers and codes are the basic language of all micro­
processors-including the ATARI 800-and a good, solid founda­
tion in these numbers and codes is essential in understanding how 
microprocessors operate and how they are programmed . A good 
knowledge of octal and hexadecimal numbers is also important as 
they allow easy manipulation of binary numbers and data. Under­
standing these systems thoroughly will give you an excellent 
working knowledge of the codes used in programming the ATARI 
800. 

THE DECIMAL NUMBER SYSTEM 
All of you are familiar with the decimal number system as this 

is the system you were introduced to when you first started to learn 
mathematics . You may remember that this system has a base, which 
indicates the number of characters or digits used to represent 
quantities, of 10 (the numerals zero through nine). 

Other number systems also have bases, but they differ from 
each other. In fact, the base (sometimes called radix) is the basic 
distinguishing feature of all number systems. When necessary a 
subscript is used to show the base. To illustrate, the number 1982

10 
is from a number system with a base of 10 . 

Each digit position in a number in the decimal number system 
carries a particular weight which determines the magnitude of that 
number. Each position has a value determined by some power of the 

1 



base, in this case 10. The value of each 10°,101,102
, and so forth. 

Condensed, they are as follows: 

lOU = 1 
101 = 10 
102 = 100 
103 = 1,000 
104 = 10,000 
105 = 100,000 
106 = 1.000,000 
107 = 10,000,000 
108 = 100,000,000 
109 = 1.000,000,000 

It is easy to see that for most uses, we seldom have the need to 
go higher than 109-except to balance our national budget! 

The small figure used to indicate the power to which a number 
is raised is called an exponent, and the number raised to that power 
is called the base number, or simply the base. Thus, in the previous 
example, 10°, 101,102

, etc., the number 10 is the base, and 0,1,2, 
3,4,5,6,7,8, and 9 are exponents. 

The total quantity of a number is evaluated by considering the 
specific digits and the values of their positions. For example, the 
number 6403 is meaningful as written, but it may also be written in 
positional notation as, 

(6 x 103) + (4 x 102) + (0 x 101
) + (3 x 10°) 

which equals, 
(6 x 1000) + (4 x 100) + (0 x 10) + (3 x 1) 

or, 
6000 + 400 + 0 + 3 = 6403 

In other words , to determine the value of a number, multiply each 
digit by the value of its position and add the results. 

In the previous examples, only integer or whole numbers have 
been discussed. Sometimes , however, it becomes necessary to 
express quantities in terms of fractional parts of a whole number. 
We must then use numbers whose positions have values that are 
negative powers of ten. A partial listing of negative powers of 10 
are: 

2 



10- 1 = 1 
or 0.1 

10 

10-2 1 
or 0.01 

100 

10-3 = 1 
or 0.001 

1000 

10-4 = 1 
or 0.0001 

10,000 

10-5 = 1 
or 0.00001 

100,000 

10- 6 = 1 
or 0.000001 1,000,000 

We could continue, but the point should be clear for our purposes. 
You also know that a decimal point separates the whole and 

fractional parts of a number. The whole number is to the left of the 
decimal point and the fractional part is written to the right of the 
decimal point. To illustrate this, the decimal number 3.17 can be 
written with positional notation as follows: 

(3 x lOll) + (1 x 10- 1) + (7 x 10-2) 

which equals, 
(3 x 1) + (1 x 1/10) + (7 x 1/100) 

or, 
3 + .1 + .07 = 3.17 

In the example above, the left-most digit (3 x lOll) is the most 
significant digit as it obviously carries the greatest weight in deter­
mining the value of the number. The number to the far-right of the 
decimal point is the least significant digit as it carries the least 
weight in determining the value of the number. 

THE BINARY NUMBER SYSTEM 
The simplest number system that uses scientific notation (ex­

ponents) is the binary number system, which consists of only two 
elements, and is expressed as a base of 2 (0 and 1). These two digits 
have the same basic value as 0 and 1 in the decimal number system. 

Because of its simplicity, microprocessors use the binary 
number system to manipulate data , which is represented by binary 
digits called bits. The term "bit" is derived from the contraction of 

3 



Table 1-1. Decimal and Binary Positional Values. 

Decimal 103 102 101 10° 
1000 100 10 1 

Binary 23 22 21 2° 
Value expressed 8 4 2 1 
in decimal 

Value expressed 1000 100 10 1 
in binary 

binary digit . Microprocessors operate on groups of bits which are 
referred to as words. The binary number 00001101 contains eight 
bits. 

When dealing with the binary number system, it is very im­
portant not to confuse the numbers involved . The binary number 10, 
for example, should be thought of being "one , zero" and not "ten" as 
it would in the decimal number system. Ten has no meaning in 
binary notation . Similarly, the binary number 100 should be thought 
of as "one, zero, zero" and not as "one hundred." Always think of the 
binary numbers as "ones" and "zeros." 

Note that when you are dealing with several number systems, 
it is best to identify a number with an appropriate subscript. For 
example, the notation 1010 identifies the number as being in the 
decimal system (base of 10) and the number is "ten." The notation 
10010 would be "one hundred." The notation 1002 is "one, zero, 
zero" in the binary system; lOOs is "one , zero, zero" in the octal 
system; and 10016 is "one, zero, zero" in the hexadecimal system. 
The latter two systems will be discussed later in this chapter. 

In the binary system, you will either multiply 2° by one or by 
zero , as we are using only two numbers. The positional values in the 
decimal and binary systems are shown in Table 1-1 . Notice that the 
power to which the base is raised is the same in both systems. To 
better understand these positional values, let 's express decimal 1 in 
binary numbers. Binary 2° = 1, and one times 1 equals one. There­
fore , decimal 1 equals binary 1. 

Decimal 2 expressed in binary numbers means that we move 
over into the next position in Table 1-1 and find that by multiplying 
21 by one results in 10 or "one , zero" equals decimal 2. 

CONVERTING DECIMAL NUMBERS TO BINARY NUMBERS 
In programming the AT ARI 800 and other microprocessors, 

4 



you will often need to determine the decimal value of binary num­
bers. In addition, you will find it necessary to convert a specific 
decimal number into its binary equivalent. 

The chart in Table 1-2 gives the decimal/binary equivalents for 
numbers from 0 to 16. This would be very helpful if they were the 
only numbers encountered in programming. Actually, this is not the 
case; you will need to convert many different numbers and an easier 
method must be used. Since a binary number is based on powers of 
2, we can convert a decimal number to binary by repeatedly dividing 
by two. ~ 

To simplify matters , let 's take the number 1010' Set up your 
division as follows: 

Notice we first take the number 10 and divide by 2 . Two goes into 10 
five times with a remainder of zero. We write the 5 beneath the 10 
and the 0 to the right of the vertical line . Now divide 2 into 5, it goes 
two times with a remainder of one. Write the 2 beneath the 5 and the 
remainder 1 beneath the 0 to the right of the vertical line . Divide 2 

Table 1-2. DecimaV 
Binary Equivalents. 

Decimal 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 

Binary 

0 
1 

10 
11 

100 
101 
110 
111 

1000 
1001 
1010 
1011 
1100 
1101 
1110 
1111 

10000 

5 



into 2; it goes 1 time with a remainder of O. Write the 1 beneath the 2 
to the right of the vertical line. Finally, divide 2 into 1; it goes 0 
times with a remainder of 1, so write the remainder to the right of 
the vertical line . The digits to the right of the vertical line are the 
binary equivalent of the decimal number. The number is written 
from right to left working from top to bottom, or from left to right 
working from bottom to top . Therefore, the binary equivalent of 10 
is 1010, as listed in Table 1-2 . 

The same procedure can be used no matter how large the 
numbers. Just continually divide by 2, placing either a 0 or a 1 to the 
right of the vertical line. If you haven't tried converting decimal 
numbers to binary, work a few examples from numbers, say, 12 to 
16 and then check your answers with Table 1-2. 

Example of this type of method (using fractions) is shown in 
Table 1-3. The decimal fraction 0.90625 is continually multiplied by 
2! Did you say multiply? Yes , to convert a decimal fraction to a 
binary number, mUltiply the fraction successively by the desired 
base (two in our case) and record any integers produced by the 
multiplication as an overflow. These calculations will result in 
numbers with a 1 or 0 in the units position . Subtract the unit and 
multiply the rest by 2 again. The decimal fraction 0.90625 is con­
verted as follows: 

Table 1-3. Converting Decimal Fractions to Binary. Note That the 
Original Number Is First Multiplied by 2, the Product of which is 

Multiplied by 2, and so on Until the Number Comes Out Even. There 
Will Be Times, However, Where the Number May Not Come Out Even-Just 

Like in the Decimal System. But All Can Be Carried Out for Practical Accuracy. 

0.90625 x 2 = 1.8125 - 0.8125 with overflow 1 
0.81250 x 2 = 1.6250 = 0.6250 1 
0.6250 x 2 = 1.2500 = 0.2500 1 
0.25000 x 2 = 0.5000 = 05000 0 
0.50000 x 2 = 1.0000 = 0 1 

Notice that the multiplication process is continued until either 0 or 
the desired precision is obtained . The overflows are then collected 
beginning with the most significant value, which is the first digit to 
the right of the binary point, and proceeding to the least significant 
value. The number is 0.11101

2
, 

If the decimal number contains both an integer and fraction, 
you must separate the integer and fraction using the decimal point 
as the break point. Then perform the appropriate conversion pro­
cess on each portion . After you convert the binary integer and 
binary fraction, recombine them . 

6 



CONVERTING BINARY NUMBERS TO DECIMAL NUMBERS 
The easiest way (and the way recommended initially) to con­

vert binary fractions to decimal numbers is to use a table, such as 
the one shown in Table 1-4 . To use this table, let's take a number , 
say binary 1011010 and convert it to its decimal equivalent. There 
are seven digits in the number 1011010 . The first 1 (the digit 
farthest left) is in the 26 column and is equal to the decimal number 
64. There is a zero under 25

, so there is nothing taken from this 
column . Under 24 there is a 1, so we write the value 16 next to our 
previous number 64. There is a 1 in the 23 column, so an 8 is placed 
next to the 16. In the 22 column there is a 0, and therefore, the value 
will be omitted . But there is a 1 beneath the 21 column and this 
means a 2 is placed next to the previous 8. There is a 0 beneath 2°, 
so we omit this value also . Now the numbers 64, 16, 8 and 2 are 
totalled for a sum of gO-the decimal number equivalent to 
1011010. 

Refer again to the table in Table 1-4 and follow the description 
of the conversion step-by-step until you are certain that you under­
stand how the conversion was made . Then practice some conver­
sions of your own. Check your answers by reversing the conversion 
process; that is, use repeated divisions (or mUltiplications, de­
pending upon the case) by 2. 

OCTAL NUMBER SYSTEM 
Octal is another number system, this time with a base of 8. It 

uses the digits 0 through 7, and these have the same basic value as 
the digits 0 through 7 in the decimal number system. Actually, octal 
numbers are really nothing more than 3-bit groups of binary num­
bers. In fact, octal numbers are a form of binary shorthand. 

To convert a binary number to an octal number, first write 
down the binary value and, starting from the right-hand end of the 

Table 1-4. Table for Converting Binary Fractions to Decimal Numbers. 

2- 2 2- 3 

0.25 0.125 

2 - 7 

0 .0078125 

2 .-8 

0 .00390625 

2 - 4 I 2- 5 

0.0625 0 .03125 

2- 9 

0.001953125 

2-6 

0 .015625 

2- 10 

0.0009765625 

7 



Table 1-5. Binary-to-Octal Conversion. 

Octal Binary 

o 
1 
2 
3 
4 
5 
6 
7 

000 
001 
010 
011 
100 
101 
110 
111 

01 
1 

010 
2 

110 
6 

011 
3 

(binary) 
(octal) 

number, mark off groups of three bits. Now, using Table 1-5, write 
down the equivalent octal value in each group. Notice that this 
conversion is exactly like binary-to-decimal conversion, except that 
the decimal digits 8 and 9 don't exist in the octal system. 

Converting a decimal number to octal is accomplished in the 
same manner as decimal to binary except that the base number is 
now 8 rather than 2. Therefore, wri te the decimal number and 
divide by 8. For example, to convert the decimal number 469 to 
octal, set up your division as shown in Fig. 1-1. Note that the 
decimal number 469 is equal to 725 octal number . Just keep dividing 
the decimal number by 8 until 0 results. 

To convert from an octal number back to a decimal number, we 
use the same procedure as we used to convert a binary number back 
to a decimal number. In the binary conversion, a table showing 
different powers of 2 was used . In the octal system, a table based on 
the values of powers of 8, as might be expected, is used. Decimal­
octal equivalents are shown in Table 1-6. 

HEXADECIMAL NUMBER SYSTEM 
Hexadecimal ("hex") is another number system that is often 

used with microcomputers . It is similar in value structure to the 

8~69 
8 58 

8 7 

o 

5 

2 

7 ~ 725 

Fig. 1-1. Example of converting decimal number to the octal number system. 

8 



Table 1-6. Decimal/Octal Equivalents. 

Decimal Octal Decimal Octal 

0 0 10 12 
1 1 11 13 
2 2 12 14 
3 3 13 15 
4 4 14 16 
5 5 15 17 
6 6 16 20 
7 7 17 21 
8 10 18 22 
9 11 19 23 

Decimal Octal 

20 24 
21 25 
22 26 
23 27 
24 30 
25 31 
26 32 
27 33 
28 34 
29 35 

octal number system , and allows easy conversion with the binary 
number system. 

As might be imagined, the base is 16 for the hexadecimal 
system. The symbols are 0,1, 2, 3, 4,5,6,7,8,9, A, B, C, D, E, 
and F. In hex, A, B, C, D, E, F, are digits, not letters; that is, just as 
the next digit after 8 (8 + 1) is 9, the next digit after 9 (9 + 1) is A, 
the next digit (A + 1) is B, and so forth. 

Conversion of binary numbers to hex is similar to converting 
binary numbers to octal except that 4-bit groups are used instead. 
The conversions are shown in Table 1-7. 

You can convert from a decimal number to a hex number the 
same way you did from a decimal number to an octal number, except 
that you divide by 16 instead of 8. In converting from decimal to hex, 
it's recommended that you first convert the decimal number to 
binary, and then convert the binary value to hexadecimal. Similarly, 
to convert from hexadecimal to decimal, first convert from hex to 
binary and then go from binary to decimal. 

To illustrate, to convert decimal 685 to hex, convert decimal 
685 to binary, which will be 0010 1010 1101. Mark the numbers off 
in groups of four bits from the right; that is, 

9 



1°1101011101 
2 A D 

and the result is 2AD in hex. 

BINARY CODES 
Has the converting of decimal number to binary or binary 

shorthand systems reminded you of anything? Sure, it's obviously a 
form of code just like you see in the cloak and dagger films. The act 
of conversion is called "coding" and codes and coding is what this 
section is all about. 

The decimal number system is easy to use because it has more 
than likely been the system you have used most in your life. The 
binary number system is less convenient to use because it is less 
familiar, and few people can glance at a binary number and recognize 
its decimal equivalent. You can readily calculate its value within a 
few minutes, but you probably won't recognize it at a glance. 
Therefore, the amount of time it takes to convert or recognize a 
binary number quantity is a distinct disadvantage in working with 
this code despite the numerous hardware advantages. Computer 
designers have therefore come up with a special form of binary code 
that is more compatible with the decimal system. This particular 
code is known as binary coded decimal, which combines some of the 

10 

Table 1-7. Binary­
to-Hex Conversion. 

Decimal 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

010 I 2 
1011 I B 

Hex Binary 

0 0000 
1 0001 
2 0010 
3 0011 
4 0100 
5 0101 
6 0110 
7 0111 
8 1000 
9 1001 
A 1010 
B 1011 
C 1100 
D 1101 
E 1110 
F 1111 

011 (binary) 
3 (hexadecimal) 



Table 1·8. Standard 8421 BCD Code and the Decimal Equivalents. 

Decimal 8421 BCD Binary 

a 0000 0000 
1 0001 0001 
2 0010 0010 
3 0011 0011 
4 0100 0100 
5 0101 0101 
6 0110 0110 
7 0111 0111 
8 1000 1000 
9 1001 1001 

10 0001 0000 1010 
11 0001 0001 1011 
12 0001 0010 1100 
13 0001 0011 1101 
14 0001 0100 1110 
15 0001 0101 1111 

characteristics of both the binary and decimal number systems. 
In general, the BCD code is a system of representing the 

decimal digits 0 through 9 with a four-bit binary code, using the 
standard 8421 position weighting system of the pure binary code. 
The standard 8421 BCD code and the decimal equivalents are 
shown in Table 1-8 . Converting the BCD numbers into their deci­
mal equivalents is done by simply adding together the values of the 
bit positions whereby the binary 1's occur. Note, however, that 
there are only ten possible valid 4-bit code arrangements . The 4-bit 
binary numbers representing the decimal numbers 10 through 15 
are invalid in the BCD system. To represent a decimal number in 
BCD notation, substitute the appropriate 4-bit code for each deci­
mal digit. 

One big advantage of the BCD code is that the ten BCD code 
combinations are easy to remember once you have worked with 
them a while . In fact, after some time spent in learning the BCD 
code combinations, you should be able to make the conversion 
almost as quickly as if the number were already in decimal form! 

One big disadvantage of the BCD code is that it is less efficient 
than the pure binary code because it takes more bits to represent a 
given decimal number in BCD than it does using pure binary nota­
tion. 

There are other codes used in microprocessors, but for now, 
we will stop at pure binary and the BCD numbering system. 

11 



Chapter 2 

Microcomputer Basics 

A microcomputer is a very complex electronic device consisting of 
thousands of microscopic transistors squeezed onto a tiny chip of 
silicon, related leads, keyboard, housing, and other mechanical and 
electronic components. Regardless of the type of microcomputer 
used, the programmer should have a basic knowledge of how these 
devices operate. 

In general, there are two basic types of computers: digital and 
analog. Digital computers represent everything in terms of digits. 
That is, all data is discrete and discontinuous. There are some 
hybrid computers that connect digital computers to analog comput­
ers, but most oftoday's computers are of the purely digital kind. You 
should now be getting an idea of why certain number systems were 
covered in Chapter 1. 

An analog computer uses a quantity, such as an electrical 
voltage, as an analog of some other quantity. For example, 3.145 
volts in an electrical circuit might represent a velocity of 3,145 feet 
per second in a ballistics simulation program . Analog computers are 
fast for certain specialized applications, but they are not practical 
for many purposes . 

To help you understand the essential elements of a digital 
computer, well-known analogy will be presented. Imagine a faith­
ful, loyal, dedicated employee, such as a secretary, who follows 
every instruction to a "T." This secretary, given a manual of 
procedures and some documents to work with, can refer to history 

12 



files and produce required reports for your company . He or she 
needs only a calculator (to perform computations) and a sheet of 
instructions. If he unerringly follows those instructions, he will 
produce a stack of papers in his out-basket that represents a trans­
formed version of the information contained on papers in the in­
basket. If the secretary transforms legitimate inputs into correct 
outputs by following the instruction sheet, those instructions can be 
considered a correct and valid "program." 

In the example above, the secretary performs five distinct 
functions . 

1. Reading source information (both the documents in the 
in-basket, and the list of instructions). 
2. Storing intermediate results (remembers information for a 
short time, either in her head or on a scratch pad). 
3. Computing, using a desk-top calculator (to find totals or to 
arrange data into proper order) . 
4. Writing transformed information (the required results in 
the out-basket or records in files for future use). 
5. Controlling these activities (sequencing of these four ac­
tivities to achieve the required result). 

Figure 2-1 shows that a computer can perform these five 
functions, but all of the data and instructions must be supplied in a 
special computer-readable form. In other words, the program is a 
computer's equivalent of a manual of procedures. Under the guid­
ance of the steps in that program, the computer may read input data, 
store intermediate results, perform arithmetic using numbers from 
inputs and from previous computations, and write outputs in many 
forms . The control element of the computer selects which of the 
other four elements are to be used at any given time. The computer, 
then, performs five functions similar to those performed by a sec­
retary : 

SECRETARY 
Read 
Store 
Compute 
Write 
Control 

COMPUTER 
Input 
Storage 
Arithmetic 
Output 
Control 

As human beings, we perform input functions through our 
senses: taste , smell, touch, sight, and hearing. Some computers 

13 



Documents 

Disk 

~ 
Tape unit 

Files 

Computer 

Instructions 
(program) 

Printed 
reports 

Teletypewriter 

Fig. 2-1 . A computer performs functions that are similar to those performed by a 
secretary. 

sense inputs by sight (optical character readers, for example) or feel 
(wire contacts through holes in punched paper tape). Some inputs 
are simple electrical on-off signals from remote sources. Sound also 
plays an important part in allowing computers to read . 

Humans store information for short-term retention in their 
memory, relying on a variety of filing systems for more permanent 
storage. Computers also have memory. Their capacity to store 
information varies from machine to machine, depending on the 
number of external devices, such as tapes, disks, and drums, that 
are used. The storage capacity of computers using these devices is 
almost infinite . 

Both man and his machines can perform arithmetic. The arith­
metic capability of digital computers ranges from elementary to 

14 



complex. As you learned in an earlier chapter, computers perform 
all arithmetic operations using binary numbers . The computer can 
also perform other "logical" functions such as determining whether 
or not one number is greater than another. 

We create output by our actions . We write, speak, or change a 
situation appropriately. The computer produces output in the form 
of rewritten magnetic tapes, disks, and drums ; printed reports; and 
even motor on/off controls. Since the computer operates electron­
ically, it can also control electronic circuitry , such as the circuitry 
necessary to automatically open or close a flow valve in a water 
supply system. 

We can control both ourselves and our machines. Machines can 
control only what they are instructed and permitted to control. 
When the secretary does some work, he or she is responsible for 
controlling the order in which various steps of the procedure are 
performed . He can, under the guidance of the detailed instruction 
list, read some information, perform some computations, and pro­
duce some output in the order specified in the program . 

Computers are controlled by computer program's. The pro­
gram is a description of a detailed procedure that is to be followed. 
Just as a theater program outlines the events that are to follow, a 
computer program outlines the steps to be followed to arrive at a 
solution to the problem presented . The program is interpreted by 
the computer which turn various circuits on and off in the sequence 
necessary to produce the solution. 

COMPUTER STRUCTURE 
The diagram in Fig. 2-2 shows the five basic elements of a 

digital computer. Every digital computer , no matter how large or 
small, has these five elements plus the set of instructions that tells 
the computer what to do. A computer must be able to accept input 
data, process it through arithmetic or logical operations, store some 
intermediate results, and eventually produce output data-all under 
the guidance of a central control element . The control element is 
guided in its operations by the instructions supplied by a program­
mer . The five basic elements comprise the hardware of the com­
puter. Hardware can be touched, squeezed, observed; it is tangible. 
The instructions, on the other hand, represent the software of a 
computer. We may be able to observe, touch, or squeeze a storage 
medium, but the specific bit patterns held within are not physical; 
they are information. 

Inputs: Nearly all computers require inputs from one or more 

15 



external sources. A computer that receives no input signals can only 
repeat the same sequence of instructions over and over again . Some 
small computers are used in precisely this way, but most computers 
have inputs that can be brought into the computer for subsequent 
processing . 

To compute a payroll check , for example, the computer must 
have the ability to fetch an employee record from a file and to read in 
the number of hours worked in the week. These both require an 
input path to the computer. In some simple applications where small 
computers are used to replace older eiectromechanicallogic, inputs 
may not be required . A programmable controller of a numerically­
controlled milling machine may not require inputs. The program 
contains the sequence of instructions which cause the machine to 
mill the same part repeatedly . External inputs are of no value in this 
case. 

Inputs to the computer may take the form of punched cards, 
magnetic tapes or disks, or simple switch closures. When a 
keyboard is operated by a human, each key depression results in a 
switch closure. The computer can accept this switch closure as a 
binary signal and convert the key depression into a binary pattern . 

Input 

Central 
processing 
unit (CPU) 

-- - --I 

II Arithmetic- 1 

logic unit 
(ALU) 

Control 

Storage 
(memory) 

1 

-I 

Fig. 2-2. Five elements in all digital computers. 

16 

Output 



That binary pattern, in tum, can be used to print a selected charac­
ter on a printer or display it on a cathode-ray tube (CRT). 

Outputs: A computer must produce outputs to be useful. A 
computer's output may be in the form of printed results, graphic 
plots drawn with special plotting equipment, or simply an electrical 
signal that can tum a lamp on or off . The range of possible outputs 
from a computer is virtually unlimited. The output element of a 
computer is selected when the control unit executes an instruction 
that transfers data from the arithmetic-and-Iogic unit (ALU) storage 
area, or when an input is to be output. Most often, the data comes 
from storage, and was created by a complex combination of inputs 
that were modified by the ALU. 

The input and output devices are points at which humans 
interact with the computer. Much care must be taken to make 
computers easy for people to use, rather than making people adapt 
to poorly designed or poorly programmed computers. 

Storage: In most computer applications, data must be stored 
before it is processed completely or used to produce outputs. The 
electrical digital signals that represent the data values are placed in 
the storage element, or memory. Instructions can also be read into 
storage and held for future use . 

Arithmetic: A computer processes information. That pro­
cessing is performed by the ALU which accepts data from input and 
storage elements, and produces computed results for storage or 
output. To add a pair of numbers, the ALU is directed to fetch the 
values from storage, and to place the sum back into storage. The 
ALU may include capabilities for addition, subtraction, comparison, 
logical operations, and even multiplication and division. 

Control: All elements of a computer operate under the direc­
tion of the control element which opens and closes the various 
pathways for data from input to storage, from storage to the ALU, 
and from the ALU to output. The control element operates as 
directed by the instructions provided in storage. By writing the 
proper sequence of instructions, the computer programmer can 
completely control the detailed transfers of data within the com­
puter to produce desired results. Thus, with different programs, 
the computer can be made to perform different functions, even 
though the underlying electronic circuitry remains unchanged. 

SOFTWARE 
Software consists of a collection of instructions that can be 

followed by the control element of the computer. These instruc-

17 



tions must be detailed step-by-step instructions. Unlike humans, 
who can inject common sense into the completion of a task, a 
computer is not capable of logical reasoning. A computer must be 
ordered to do even the simplest part of a task . There are four major 
classes of computer instructions : 

1. Input/output instructions cause data to be accepted as 
inputs , or to be produced as outputs. 

2. Arithmetic-logic instructions cause data to be transformed 
through simple operations in the ALU. These operations 
include addition, subtraction, shifting, and logical operations 
(AND, OR, etc.). 

3. Storage instructions move data between storage and other 
elements. 

4 . Control instructions specify changes in the normal se­
quence of instruction execution. 

The instruction set is the collection of general-purpose instruc­
tions available in a given computer. This set of instructions can 
show you how that computer works. The number and type of 
instructions are an indication of the ease with which the computer 
can perform operations. Some computers, for example, have a 
multiply instruction. Given two numbers, this instruction will pro­
duce the product . Most microcomputers, on the other hand, do not 
have a multiply instruction. Multiplication can be done on these 
computers, but many more instructions must be executed. Since 
most microcomputers are used in applications that do not require 
multiplication , the lack of a mUltiply instruction is seldom a prob­
lem . However , it is important to note that those facilities that are 
not provided in the instruction set can be created through the 
execution of the right sequence of simpler instructions . 

INTERCONNECTION OF THE ELEMENTS 
Each element of a computer can be treated as a subsystem. 

Each element has certain inputs and outputs, and certain actions 
that take place internally to transform those inputs into outputs. A 
revised view of the five-block model of the computer is shown in 
Fig. 2-3. Here, all of the inputs and outputs to each element of the 
computer are identified . Note that except for the interfaces be-

18 



ALU 

c c 
o.Q 

g~ ::J'" 
:> '" ;i~ l!.<n 

Input Output 
selection selection 

Input Output 

Input Output 
data 

~ c data 

'" 0 ~U 
'" "'''' Cii £~ 0 

Storage 

Fig. 2-3. The interconnections between elements consist of both data and control 
signals. 

tween the computer and the outside world, the output from one 
element becomes the input for another element. By analyzing how 
these paths between elements operate, we can discover how a 
computer functions in detail. 

Most of the pathways for data are bidirectional . However, 
issuing data to an input source, or attempting to acquire data from an 
output destination is meaningless. These data pathways can be 
easily limited to a single direction. On the other hand, data must 
move in both directions between control and storage, and between 
control and the ALU . Since data may flow both ways, these paths 
are called bidirectional. 

Notice that all of the control signals originate in the control 
element, and that all data passes through the control element. 
"Control" may be thought of as a gigantic switch-board that operates 
at microsecond rates to switch data from one source to another 
destination . In fact, this is precisely how contemporary computers 
work. 

At anyone time, control may be directing one of the other four 
e lements to perform some operation. In very complex computers, 
more than one element may be accessed at one time. The input 

19 



element of the computer has many possible data sources. but only 
one of them is to be selected at a time. When reading from input 
sources. the control element must first specify which input source 
is to be selected. Control places some bit pattern on the wires that 
comprise the input selection lines . The selected data is then placed 
on the input data lines . Once input data has been acquired. the 
control element must store that data somewhere for future use. The 
data might be shipped off to the ALU . or to storage. or even to one of 
the output destinations. 

If the input data is to be saved in storage. the control element 
must specify where in storage the data is to be placed. Since many 
numbers can be stored. each one must be stored in a unique place so 
each can be selectively retrieved . The data is placed on the data 
lines. and the storage module is commanded to write (store) the 
data. The command is sent by the control element through the 
Read/Write selection line. The specific register into which the data 
is to be stored is specified by a pattern of bits on the register 
se lection lines . 

The specification of which input lines to read and into which 
register to place the data in storage. is carried in an instruction. 
That instruction contains three essential items of information: 

1. The operation to be performed (read data from an input and 
store it away) . 
2 . The source of the data (the specific input source to se lect). 
3. The destination of the data (the specific register into 
which the data is to be placed). 

One way to visualize this operation is to examine a small 
sequence of instructions that might be found in a large program . 
This brief instruction sequence (program segment) acquires two 
input numbers and produces a sum which is output. This program is 
summarized in the following sequence of instructions. 

20 

1. Accept a number from input source 5. and save that 
number in storage at register 83 . 
2 . Accept a number from input source 2. and save that 
number in storage at register 43. 
3. Read the first number (from register 83) and pass it to the 
ALU. commanding the ALU to save that number. 
4. Read the other number (from register 43) and pass it to the 



ALU. commanding the ALU to add it to the previously saved 
number. 
5. Accept the sum from the ALU and pass it to output desti­
nation 7. 

Each of these instructions can be described in more detail by 
referring to the signals that appear on the wires between the various 
computer elements. For example. the first step above (accept a 
number and place it in storage) can be described in more detail like 
this: 

1. Control issues the number of the required input source (5) 
on the input selection lines . The input element accepts that 
number and selects that data source. 
2. The data source presents some data (say . the number 113) 
on the input data lines to control. Control accepts that number 
and holds it temporarily. 
3 . Control issues the storage register number (83) to storage 
by placing that number on the register selection lines. Con­
trol also commands the writing action on the Read/Write 
selection line . Storage accepts the register number and gains 
access to that register . 
4. Control places the temporarily held data (113) on the data 
lines. Storage writes that number into the selected register. 

Obviously. such detailed English explanations could be dif­
ficult to follow for any reasonably complex set of instructions. 
Therefore. a shorthand method is sometimes used to describe those 
sequences. The narrative description for reading and storing a 
number could be written in a briefer form like this: 

1. Input selection control (5); 
Input input selection (5) 

2 . Input data input (113. from source 5); 
Temporary input data (113) 

3. Register selection control (83); 
Read/Write selection control (Write); 
Storage register selection (83) 

4. Data temporary (113); 
Storage (at register 83) data 

21 



Each of the items named in this brief example is a register in 
the computer. One of the control registers (which happens. in this 
example. to contain the number 5) supplies its contents to the input 
selection register. 

Now. reconsider the application posed earlier: the production 
of the sum of two numbers . In the following example. each of the 
original instructions has been broken down into a number of detailed 
steps. These steps are represented in the shorthand form. You 
should fill in the descriptive shorthand for the last instruction 
yourself to be certain that you understand exactly how the computer 
works: 

22 

1. Input selection control (5); 
Input input selection 

Input data input (113) ; 
Temporary input data 

Register selection control (83) ; 
Read/Write selection control (Write); 
Storage register selection 

Data temporary; 
Storage register 83 data (113) 

2. Input selection control (2); 
Input input selection 

Input data input (102) 
Temporary input data 

Register selection control (43); 
Read/Write selection control (Write); 
Storage register selection 

Data temporary ; 
Storage register 43 data (102) 

3. Register selection control (83); 
Read/Write selection control (Read); 
Storage register selection 

Data storage (113) ; 
Temporary data 

Function selection control (Save); 
ALU data temporary (113) 

4. Register selection control (43); 
Read/Write selection control (Read); 



Storage register selection 
Data storage (102); 

Temporary data 
Function selection control (Add); 

ALU data temporary (102) 

5. Function selection __ (Fetch); 
Temporary ___ _ 

Output selection __ (_); 
__ output selection 

Output __ (215) 

SCALING OF COMPUTERS 
It might appear that the size of numbers is I imi ted by the widths 

(number of data lines) of the data paths that exist between elements. 
Actually, in the example, data path widths of eight bits would be 
sufficient, since the numbers never got larger than 215 (an 8-bit 
register can hold numbers up to decimal 255) . However, even 
larger numbers can be handled by breaking them up into pieces. 
Then each part of the number has to be handled independently, and 
that would require more instructions. 

Large computers have wide data paths; smaller computers 
have narrower paths. Some of the largest computers have paths as 
wide as 64 bits for numbers. Programmers seldom have to resort to 
the slow technique of breaking a number up into pieces and pro­
cessing each piece separately. On the other hand, a small micro­
processor may have paths as narrow as four bits. Processing a 64-bit 
number would take at least 16 times as long as it would take on the 
larger data path. 

There are special electronics techniques that can be used with 
large computers to make them operate much, much faster . How­
ever, because these techniques are only economical with very large 
computers, they are seldom used with microprocessors . Some of 
the largest computers can execute instructions 400 times faster 
than a typical microprocessor. That speed advantage. multiplied by 
the speed advantage of wide data paths, marks the difference be­
tween large, medium. and small computers . 

Large-scale computers, or supercomputers, have thousands of 
Ies and require huge rooms for installation. Purchasing one hour of 
computer time may cost more than $3000. The only way these fast, 
powerful computers can be economical is to have a large number of 

23 



users. Each user occupies only a small percentage of the computer 
resources, and for only a short period of time . 

These large computers have large input/output systems with 
millions (or even trillions) of bits of storage on magnetic tapes and 
disks. The main storage module of the computer may have over one 
million registers, and the ALU-control element may be designed to 
permit hundreds of people to use the computer simultaneously. 
Most of these people use supercomputers to solve mathematical 
and engineering problems . These kinds of computers are seldom 
used for commercial data processing. 

Commercial data processing is most often done on a computer 
scaled to the size of the business. For example, large insurance 
firms use complex medium-scale computers. Accessing information 
about policies and billing data requires a large input/output capac­
ity, but the need for processing is relatively small. However, a 
relatively large computer is required to support hundreds of com­
puter terminals in agents' offices throughout the country. 

A typical medium-scale computer might have disk and tape 
storage that rivals that are used with a supercomputer for capacity. 
However, the central processing unit (CPU) will seldom be as large 
or complex, and storage may be limited to 250,000 registers or so. 
An hour of computer time on such a system might cost $800 . By 
using 1/4 of the computer's capacity for three minutes, a business 
executive can perform all the computations required for a small 
office at a cost of about $10. 

Small-scale computers are usually called minicomputers. 
Some minicomputers are used in small- to medium-sized organiza­
tions for business data processing. However, more of them are used 
to perform communication chores for a larger computer. The 
minicomputer may service hundreds of telephone lines on the 
"front-end" of the computer, passing data to the central medium­
sized computer over a set of highspeed wires. Other minicomputers 
are used to effect on-line control of production processes. 

A typical minicomputer might have 65,000 registers of main 
storage, and a relatively simple ALU-control element. Some appli­
cations might demand disk or tape storage, but many do not. The 
operating cost of a minicomputer might be as low as $40.00 an hour. 
By occupying the entire computer for 15 minutes, an engineer may 
be able to control an experimental process at a cost of about $10. 

The least expensive computers are microcomputers. Some of 
these are used in small businesses as data processing tools; others 

24 



are used for personal entertainment; and still others are installed 
inside other equipment for internal control . These computers are so 
inexpensive that dedicating one to a single application is feasible . A 
small retail establishment might use a microcomputer with disk 
storage, 16,000 bytes registers of main storage, and a simple 
ALU-control element. The cost of operating such a microcomputer 
system might be as low as $10 a day. By having the entire computer 
available at all times, the retailer may be able to better control store 
operations at a cost of about $10 a day. 

Technologically, all of these computer alternatives are alike 
except for their underlying capacity. The lower capacity computers 
cost less, but take longer to perform their tasks. Finding an account 
balance for a customer in a bank might require 1/10,000 of a second 
on a large supercomputer and two seconds on a microcomputer. 
Will the customer notice? Is the faster speed necessary, especially 
in view of the fact that the teller's terminal may require 20 seconds 
to print out the account information? In other words, for many 
applications, time is not a critical issue, and a less expensive 
computer can be used. 

MICROPROCESSORS 
When the CPU (the ALU and the control element) of a com­

puter is implemented in a single integrated circuit (I C) , we call that 
the central processor a microprocessor. The term microprocessor is a 
contraction of microelectronics and central processor, and indicates 
the technology used in the heart of the computer. 

A microprocessor is not an entire computer: it is only the ALU 
and the control portion of a computer. When the microprocessor is 
combined with storage, and input/output devices, however, the 
result may be properly called a microcomputer. A microcomputer is 
any computer based on a microprocessor. 

At this point, it is important to distinguish between two dif­
ferent kinds of microcomputers . One kind integrates all computer 
elements on one IC or on a very small number of rcs. A "one-chip 
microcomputer" cannot be distinguished from its microprocessor 
counterpart by simple inspection . However, one-chip microcom­
puters are small, powerful computers that are useful for a wide 
range of special applications. They are found in consumer goods, 
electronic games, and electronic interfaces between larger 
computers and peripheral devices like cassette tape drives. 

One-chip microcomputers are inexpensive, but limited . They 

25 



are useful in certain low-cost applications that demand little in the 
way of computing power or storage capacity. However, because the 
pins of the IC are devoted to input and output wires, these devices 
have little expansion capability. 

The more popular kind of microcomputer is made up of sepa­
rate ICs for the CPU, storage, input, and output. All these elements 
are interconnected by wiring etched on a printed circuit board. 
When a microcomputer is created out of many individual elements, 
as are many of the popular single-board computers, more power is 
available to the user. If the application demands more memory, 
more memory boards can be added to the configuration. If special 
I/O capabilities are required, they can be installed as special 
boards. Although more expensive than the one-chip microcomput­
ers, microcomputers in printed circuit board form may be used in 
vastly more complex configurations, and may contain an almost 
limitless variety of storage and I/O capabilities. 

Many of the general-purpose single-board computers lise many 
one-chip microcomputers to act as I/O interfaces . A single com­
puter complex might have dozens of one-chip microcomputers per­
forming peripheral interface chores under internal software 
control-all supporting a single fast microprocessor with a large 
amount of storge on other boards. More and more interface systems 
are composed of one-chip microcomputers that have been suitably 
programmed. Most of these can be treated , however, as dedicated 
I Cs. Internally, they've been programmed to perform some specific 
task. However, since the user or maintenance technician cannot 
change any of that programming, the programmed one-chip mi­
crocomputer is effectively a special-purpose IC developed for the 
intended interface application. The trend is away from huge cen­
tralized computer systems to systems of computers in which the 
computing power is distributed among many small one-chip mi­
crocomputers. 

COMPUTER BUS SYSTEMS 
A computer bus can be defined as a group of wires that allow 

storage, control, and I/O devices to exchange information. One of 
the best ways to achieve high-speed operation in a computer is to 
keep all of the buses or pathways between various computer ele­
ments separated. In addition to the pathways to and from control as 
shown in Fig . 2-3, very fast computers include special pathways 
between other elements . A special circuit path called direct mem­
ory access (DMA) may exist between input and storage elements so 

26 



that data can be sent rapidly to storage while other operations are 
being performed. The more complex the computer, the more likely 
it is to have some special interelement paths. However, most 
microcomputers are designed with only simple pathways. Effi­
ciency is sacrificed for the simplicity of a more organized structure. 

Master Bus Control 
The bus system can be used to transfer information between a 

master (controlling) and a slave (controlled) element of the com­
puter. The design of the master element, normally what has been 
previously referred to as "control," defines the order, arrangement, 
and timing of the various electrical signals that affect information 
transfer. All slave elements must comply with the rules laid down 
by the master element. 

Data is always transferred between one of the slaves and the 
master that is in control of the bus system. Since there is only one 
address (or location) on the address bus (shown in Fig. 2-3 as the 
"register selection" pathway) at a time, only a source or a destina­
tion register can be specified. One of the bits on the control bus (the 
path linking control to storage labelled "Read/Write selection" in 
Fig. 2-3) specifies whether the master is the source (and, hence, the 
slave is the destination) or the destination (in which case data is 
being read from the slave) . Of course, with two separate address 
buses, data could be transferred directly between two slaves under 
master element control . However, the improvements in informa­
tion transfer rates that can be obtained by having more than one 
address bus are generally not worth the effort on small computers. 
Such multi-bus systems are found on large computer systems where 
speed is paramount. 

The Control Bus 
The key to understanding a computer is to examine its control 

bus. The address and data buses of a computer may be wider, but 
the control bus is always the most complex of the three. The 
address bus is always used to select one particular register to be 
involved in a transfer to or from the microprocessor. The data bus is 
always used to transfer data. But the control bus is composed of 
many different kinds of signals, all of which complex interpretations 
over time. 

Writing to Storage 
Writing or storing data takes place in a fashion analogous to 

27 



reading or retrieving data. The data is put on the data bus by the 
CPU. (For those who are curious. Fig. 2-4 shows a detailed view of 
the address bus. VMA and /W (low) signals are produced just like 
the equivalent signals used during reading.) However. the storage 
element cannot take the data from the data bus until the specific 
register has been addressed . It takes time to gain access to the 
required register. This is called the access time. (In most comput­
ers with a sequence of this kind. the storage element would cause 
writing to occur at the instant the E signal made the end-of-cycle 
high-to-low transition.) 

Transferring data from one storage register to another simply 
requires two successive read-and-write storage cycles. Some in­
structions in the computer cause successive cycles like this to 
happen automatically. Invariably. however. the process ends with 
another storage read operation which will retrieve another instruc­
tion from the program that is in memory for execution. 

Master Clocks 
To create the enable (preparation) signal for controlling the 

One bus cycle 
1QQQ ns 

1 I ~ 
E O~I L 

Address 1 _ I 
bus 0 - ~ \ \ \ \ \ ' 1\\\ 

VMA 6:.\\\\\\\1 I ~ 

~~~ o~ :~\)\\S~OYd')~ 
bus 

Data 
from 

LEGEND CPU 

6 :-1 LHigh 

6 :-, '_LoW 

6 = f.\\\\\\'i Data. 
1 changing 

o : ~ ~ Data may 
be high or 
low, but 
stable 

Fig. 2-4. A typical timing diagram for a write to storage. 

28 



1k 
+5 

D7 
1k 

+5 

D6 
1k 

+5 

D5 
1k 

+5 

D4 
1k 

+5 

D3 
1k 

+5 

D2 
1k 

+5 

D1 
1k 

+5 

DO 

A15 
Input A14 

VMA 

R/W 

Fig. 2-5. A simple input port places the input data on the data bus only when 
addressed for reading with a valid memory address. 

bus cycle, a central clock is required for the microprocessor, or for a 
part of the microprocessor Ie. In either event, an external 
frequency-determining component is necessary. 

Storage and the Buses 
The signals on the address and control buses, and on the data 

bus during writing are all produced directly by the microprocessor . 

29 



Sometimes there may be digital logic external to the microproces­
sor itself required to create all of these signals, but these external 
ICs are considered part of the microprocessor complex. How these 
signals are used determines the complexity of the input, output , and 
storage elements of the microcomputer . 

TYPES OF STORAGE 
Storage in a microcomputer is usually made up of read-only 

memory (ROM) ICs for permanent storage, and random-access 
memory (RAM) ICs for temporary storage. The ROMs are written 
once before installation in the microcomputer. Since these storage 
elements are not written to by the microprocessor, they can be 
permanently encoded with a program, and that program will be 
ready to execute whenever power is turned on. On the other hand, 
the RAM uses semiconductor ICs that can be both read and written 
to. However, when power is first applied their initial data contents 
are random . Data cannot be stored in semiconductor RAMs while 
the power is off. 

BUS CONTROL OF I/O 
Input signals can be connected to the data bus for use when the 

instructions call for the reading of input data. A simplified version of 
the techniques used for storage shown in Fig. 2-5 can be used. The 
address bus and parts of the control bus are combined to create an 
input signal. When that signal is high , the input data is sent to the 
data bus lines. 

30 



Chapter 3 

Computer Arithmetic 

In Chapter 1 of this book you were introduced to how to use the 
binary number system, how to convert decimal numbers to binary 
numbers (and vice versa), and how to convert between other 
number systems. This chapter is designed to introduce you to the 
fundamentals of binary mathematics-addition, subtraction, mul­
tiplication, and division. Since microprocessors use binary numbers 
for data and control, it is extremely important that you become 
familiar with them. 

ADDITION AND SUBTRACTION OF BINARY NUMBERS 
Binary numbers can be added and subtracted in much the same 

way that the more familiar decimal numbers are. When doing binary 
arithmetic, remember that when you add or subtract two binary 
numbers, the result must be equal to the value obtained by adding or 
subtracting the decimal equivalents and then converting that result 
to a binary number . 

It is obvious that we could add two binary numbers by con­
verting the binary numbers into their decimal equivalents, adding 
the decimal numbers as we did in grade school, and then converting 
the result back into the binary numbers. However, there's an easier 
way. Perhaps you won't think it's easier at first, but after you 
become more familiar with the binary number system, you will find 
it so. 

31 



In the binary system, there are four rules that help to make 
addition quite simple. They are summarized as follows: 

1. 0 + 0 = 0 
2. 0 + 1 1 
3. 1 + 1 0 with a carry of 1 equals 10 
4. 1 + 1 + 1 = 1 with a carry of 1 equals 11 

Before continuing, let's review the decimal/binary equivalents 
shown in Table 3-1. 

With the above table in mind, let's look at the following addi­
tion problem. 

1010 
+101 
1111 

Looking at the conversion table, we see that binary number 11112 is 
equal to decimal number 15. Now let's add these numbers another 
way . Again, looking at the table, we note that the top number, 1010, 
is equal to the decimal number 10; the lower number, 101, is equal 
to the decimal number 5. So, the problem states 10 + 5 = 15. Now 
the total should be converted to a binary number. The table tells us 
that decimal 15 is equal to binary 1111-our original answer. So we 
know our addition was correct. 

A more complicated example of binary addition, with several 
carries, is shown as follows: 

11111 
+1111 
101110 

At first glance you might have thought the sum of the two numbers 
in the example above should have been 12222, but you must re­
member that we are working with the binary number system, and 
our only digits are 0 and 1. We must go back to the four rules given 
earlier in this chapter. Starting with the first column at the right, we 
add binary 1 to binary 1 (Rule #3) . The result is a 0 which is written 
under the first column, and a 1 that must be carried to the second 
column .In the second column, 1 plus 1 equals 0 with a carry of 1. To 
this sum, you must add the 1 you carried from the first column. 
Thus, 0 plus 1 (Rule #2) equals 1; this result is written under the 

32 



Table 3-1. Decimal­
Binary Equivalents. 

DECIMAL 

o 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 

BINARY 

o 
1 

10 
11 

100 
101 
110 
111 

1000 
1001 
1010 
1011 
1100 
1101 
1110 
1111 

10000 

second column sum. In column 3,1 pluS' 1 equals 0 with a carry of 1. 
To this sum, the second column carry is added. This yields a third 
column sum of 1 (0 plus 1 = 1). Rules 2 and 3 are used to obtain the 
sum in this column. In column 4, 1 plus 1 equals 0 with a carry of 1. 
To this sum, the third column carry is added, yielding a fourth 
column sum of 1 (0 plus 1 = 1) . Now we have only the carry to add to 
the number in column 5, which gives us 10 as the sum in the fifth 
column. This figure was obtained by using rule #3 (1 + 1 = 0 with a 
carry of 1) . The carry is written immediately because there are no 
more columns to carry it to. 

If we write the equivalent decimal numbers, we'll find that 
Illll in binary is equal to decimal 31, and IllI in binary is equal to 
decimal 15 . The sum of these two decimal numbers is 46. Decimal 
46 is equal to binary IOIllO, proving that our binary addition is 
correct. 

Binary addition is not limited to two figures. On the contrary, 
any number of figures may be added as long as the basic rules are 
followed. Here they are one more time. 

0+0 0 
1 + 0 1 
1 + 1 10 (zero with carry of 1) 
1 + 1 + 1 = II (one with carry of 1) 

Now let's try adding three binary figures just to £ee how this is 
accomplished . Look at the following figures . 

33 



110101 
11011 

+ 101111 
1111111 

To add these three binary numbers, start at the extreme right 
as before and add the first column. We have 1 + 1 which equals zero 
(with a carry of one) plus 1 which equals 1 (1 + 1 = 0; 0 + 1 = 1 with 
a carry of 1 to the second column). Adding this carried 1 to 0 (the top 
digit in the second column) , gives us 1 (Rule #2) . This 1 added to 
the remaining two Is in the column gives us 1 with a carry of 1 (Rule 
#4) . In the third column, the carried 1 plus the top 1 in the column 
equals 0 with a carry of 1; 0 plus 0 (the second digit from the top) 
equals 0; then 0 plus 1 equals 1 (Rule #2). Thus the digit 1 is written 
for the sum of the third column and we have a carry of 1. 

This procedure is continued until we have a total sum of 
1111111 in binary. To check this addition, convert the binary num­
bers to decimal numbers. They are, from top to bottom, 53, 27, and 
47 respectively . These three decimal numbers added together 
gives a sum of 127. The decimal number 127 is equal to the binary 
number 1111111. So our addition is correct. 

In performing binary addition, do not use a pocket calculator as 
this will only confuse you. Also, you might find it helpful to make a 
small pencil mark at the top of the column to indicate each 1 carried . 
The carries of our last example could be indicated as follows: 

11111 
110101 

11011 
+ 101111 

1111111 

You may not need these marks in simple binary addition, but in 
the more complex problems you'll certainly find a need for them . 
For example, let's look at the following addition of four binary 
numbers. 

11001 
10101 
11101 

+ 10101 

The addition is done, and the carries are marked as follows: 

34 



1 111 11 11 1 11 
1 100 1 
1 0 101 
1 1 101 

+10101 
1100000 

To add these figures, first deal with the column on the extreme right 
as discussed previously; we have 1 plus 1 equals 0 with a carry of l. 
A small 1 is then placed above the second column before we proceed 
to add the rest to the first column . We have another 1 plus 1 which 
again gives us 0 plus another 1 to carry. So a second small 1 is placed 
above the second column as shown in the example above. The total 
of the first column is therefore O. 

In the second column, we have four zeros which would total 0; 
then the two 1's (from our carries) are added . Since 1 plus 1 equals 0 
with a 1 to carry, 0 is written as the sum of the second column, and a 
small 1 is placed at the top of the third column. 

When the third column is added in the same manner, the sum is 
o with two 1's to carry. The sum of the fourth column is also 0 with a 
carry of two 1's. When we add the fifth column, we have 1 + I, which 
equals 0 and with 1 to carry, so we place a lover the sixth column's 
place. We add the next 1 plus 1 which gives another 1 to be placed in 
the sixth column. Now we have to add the two carries, which gives 
us a 0 under the fifth column and a third 1 to carry to the sixth 
column. 

In the sixth column, there are no numbers to be added-just 
the numbers that have been carried. One plus 1 equals 0 with a 1 to 
be carried to the seventh column; we place a small 1 where the 
seventh column would be. Now we have a 0 plus the third 1 that we 
carried to add. That gives us the sum of 1 for the sixth column . 

The seventh column has only a single carry so it is written 
down at the bottom as the seventh figure in the total sum. This gives 
us a binary sum of 1100000. 

The decimal equivalents of the binary numbers just discussed 
are as follows: 

25 
21 
29 

+ 21 
96 

35 



Subtraction 
Binary subtraction is performed exactly as decimal subtraction 

is performed, so a review of decimal subtraction is in order. You 
know, for example, that if decimal 1827 is subtracted from 6845, the 
difference obtained is 5018. 

6845 Minuend 
-1827 Subtrahend 

5018 Difference 

In the right-hand colurrm , the digit 7 is larger than the digit 5 in the 
minuend, so a 1 is borrowed from the next higher-order digit in the 
minuend (the 4 in our case) . The 5 in the minuend becomes 15 and 
the 4 becomes 3. No other borrowing is necessary in our example . 

When subtracting binary numbers there are a few basic rules to 
remember. 

1.0-0=0 
2. 1 - 1 = 0 
3. 1 - 0 = 1 

These are three of the four subtractions you will have to 
perform in binary . The other is to subtract 1 from O. In this case, you 
must borrow from the next digit to the left as you would in decimal 
subtraction. Thus the fourth rule is: 

10 - 1 = 1 

With these basic rules in mind, let's work a few examples . 

11011 
-1001 
10010 

Starting from the right -hand column, 1 - 1 = 0 (Rule #2) in the first 
colurrm; 1- 0 = 1 (Rule #3) in the second colurrm; 0 - 0 = 0 (Rule 
#1) in the third colurrm; 1 - 1 = 0 (Rule #2) in the fourth colurrm; 
and in the last colurrm, 1 - 0 = 1 as stated in Rule #3. 

The subtraction may be checked by doing the same problem 
using decimal numbers. Binary 11011 is equal to 27 in decimal and 
binary 1001 is equal to decimal 9. Therefore, 27 - 9 = 18. When you 
convert decimal 18 to binary, you'll find that the number is 10010, 
the same as our original answer. Our subtraction was correct! 

You may also check binary subtraction by adding; using binary 
addition. In our previous example, we found the difference to be 

36 



10010 in binary. If we add this to 1001, we get an answer of llOll, 
again proving our subtraction correct. 

Now let's look at another example which requires borrowing. 

101101 
-llOll 

10010 

The first column is regular subtraction, but in the second column it 
becomes necessary to borrow 1 from the third column. The differ­
ence for the second column will then be 1 since 10 - 1 = 1. Since the 
1 in the third column was transferred to the second column during 
the borrowing, the third column subtraction is 0 - 0 = O. One from 
one in the fourth column is again 0 (Rule #2). The fifth column again 
requires borrowing. The 1 is borrowed from the sixth column, 
making the problem 10 - 1 = 1 and completing our subtraction. 

The subtraction in the preceding problem was really not too 
difficult since all borrowing involved adjacent columns. In the fol­
lowing problem, however, we must borrow from the third column, 
rnaking the value in the second column 10. From the binary 10 we 
have in the second column, we borrow 1, giving us 10 in the first 
column and leaving 1 in the second column. The rest of the problem 
now becomes simple subtraction. 

ll100 
-1001 
1O0ll 

MULTIPLICATION AND DIVISION OF BINARY NUMBERS 
Multiplication is a short method of adding a number to itself the 

number of times specified by the multiplier. Binary multiplication 
follows the same general principles as decimal multiplication. 
However, with only two possible multipliers (1 or 0), binary mul­
tiplication is much simpler than decimal multiplication . As with 
binary addition and subtraction, there are a few simple rules to 
follow when multiplying binary numbers. 

1. 0 x 0 0 

2. 0 x 1 0 

3. 1 x 0 0 

4. 1 x 1 1 

37 



As in addition and subtraction, once the multiplication is perfonned 
in binary, the answer may be checked by converting all numbers to 
their decimal equivalents and doing the problem again. . 

Let's multiply the binary number 1010 by binary 11; the 
problem is written as follows: 

1010 Multiplicand 
xl1 Multiplier 

1010 
1010 
11110 Product 

To multiply, we use the right-hand digit in the multiplier to multiply 
each digit in the multiplicand. So, using the four basic rules as a 
guide, 1 x 0 = 0,1 x 1 = 1, 1 x 0 = 0, and 1 x 1 = 1 or 1010. The 
second 1 in the mUltiplier is used to multiply each digit in the 
mul tiplicand again, just as in decimal mUltiplication. All that's left to 
do now is to add using the rules we learned earlier. Our answer is 
11110. 

Binary multiplication becomes somewhat more difficult when 
we have to do a series of carries. For example, let's multiply the 
following binary numbers: 

1110 
x 111 

In this example, the multiplication is standard, but the addition of 
the three subproducts is complicated by carries. To illustrate, 

1110 
x 111 

1110 
1110 

1110 
1100010 

Using the four rules of binary addition, the first 0 is merely brought 
down. In the second column, 1 + 0 = 1. In the third column, 1 + 1 = 
o with a carry of 1. In the fourth column, 1 + 1 = 0 with a carry of 1; 
then 1 plus the 1 carried from the third column = 0 with another 
carry of 1. In the fifth column, 1 + 1 = 0 with a carry of 1. Then, 
adding the two l 's carried from the fourth column, we get 0 with 

38 



another carry of one. In the sixth column. 1 + 1 + 1 equals 1 with a 
carry of 1 (or 11 since there are no other digits to add in the seventh 
column). The answer. therefore. is 1100010. 

If the process seems difficult to you at first, practice several 
problems with carries , and then check your answer by converting 
,the problems to the decimal number system . If any problem does 
not work out correctly, be sure to repeat it until you locate your 
mistake. 

Binary Division 
Division is the reverse of multiplication. Therefore. since 

multiplication primarily involves addition, division primarily in­
volves subtraction. If you learned the basic principles of binary 
subtraction earlier in this chapter, you should have little trouble 
doing binary division . 

The numbers in binary division are set up in much the same 
way as decimal numbers are set up in conventional decimal division. 
For example, in dividing binary 100 into binary 1000, the problem is 
set up as follows : 

100) 1000 

In the above example, the divisor is 100 and the first three digits in 
the dividend are 100. so 100 will go into these three digits once. 
Then the divisor is multiplied by this 1 and the results written 
beneath the first three digits. Now we subtract. The remaining 0 is 
brought down. The divisor (100) will go into 0 zero times, so we 
place a 0 in the quotient for a total of 10. 

10 

100) 1000 
100 

00 

Now look at the following example . Here 101 is divided into 
1111. 

11 
101JITi'f 

101 
101 
101 

o 

39 



Binary 101 goes into binary 111 once, so we place a 1 above the third 
1 from the left. Then we subtract 101 from 111 leaving 10. The 
remaining 1 in the dividend is brought down and the divisor (101) 
goes into this 1 time with no remainder. Thus, the result of this 
division is binary 11 . 

The preceding examples were relatively short and quite sim­
pie, but they should suffice to introduce you to binary division. In 
longer problems, the division is essentially the same. There may be 
many more steps and more chances to make errors, but the division 
is done the same way . It is important to do your borrowing when you 
subtract. When you borrow 1 from I, for example, you get binary 10 
and leave 0 behind . If you borrow 1 from 10, you get 10, and leave 1 
behind . To remind yourselfthat you have borrowed, put the appro­
priate figure near the original digit. If you don't do this, chances are 
that you will forget what the digit should be and make a mistake. 

Learning binary arithmetic is mostly a matter of getting prac­
tice, so do several problems daily until the procedure becomes 
second nature to you. Always convert the binary numbers to deci­
mal ones and check your math for errors. If any are found, rework 
the problem until you find your mistakes . 

FRACTIONS AND DECIMALS 
Converting decimal fractions and decimals to their binary 

equivalents is not quite as easy as converting whole numbers. The 
value of the negative powers of 2 decreases as the exponent in­
creases, whereas the positive powers of 2 are just the opposite. 
Nevertheless, fractions and decimals can be converted to their 
binary equivalents. 

In some cases, just like within the decimal system, an exact 
equivalent cannot be obtained. Take, for example the decimal frac­
tion Ij3; it equals .333 ... and no matter how far we carry this 
expression, it will never work out evenly. While it's true that the 
more 3's that are added to the right of the decimal point, the more 
accurate the decimal expression of the fraction becomes, we will 
never get an exact equivalent of the fraction Ij3. The inability to 
convert some fractions to an exact "decimal" equivalent should be 
no problem in either the binary or decimal number systems . The 
decimal equivalent can simply contain a sufficient number of digits 
to give the particular degree of accuracy needed. 

A complete table showing the negative powers of 2 up to 2- 10 is 
given in Table 3-2 . Note that as the negative exponent increases, 
the value of the fraction and the decimal equivalent decreases . 

40 



Table 3-2. Negative Powers of 2. 

2- 1 
0.5 

2 

2- 2 
0.25 

4 

2- 3 1 0.125 -8 

2- 4 
0.0625 

16 

2- 5 1 
0.03125 

32 

2- 6 
64 

0.015625 

2- 7 
0.0078125 

128 

2-8 1 
0.00390625 -

256 

2- 9 0.001953125 
512 

2- 10 = 0.0009765625 
1024 

Table 3-3 gives the binary equivalents of a set of fractions (six­
teenths). You can see that we work with fractional binary numbers 
in essentially the same way as we do with whole numbers. As we 
work from the binary point to the left in whole binary numbers. the 
value increases . As we go from the binary point to the right in 
fractional binary numbers. the value of each term decreases . 

The addition and subtraction of binary fractions is done in the 
same way as the addition and subtraction of whole binary numbers. 
Carrying and borrowing procedures are the same. even across the 
binary point. 

When adding mixed binary numbers and whole binary num­
bers, be sure to line up the binary points and to add the columns one 
at a time . 

The problems of multiplying and dividing binary fractional 
numbers are essentially the same as those encountered when 
working with our regular decimal numbering system. Division 
problems are handled the same way as decimal divisions: when 

41 



_1_ 
0.0625 0.001 16 

1 0.125 0.0010 
8 

3 0.1875 0.0011 
16 

1 0.250 0.0100 
4 

5 0.3125 0.0101 
16 

3 
8 

0.375 0.0110 

7 0.4375 0.0111 
16 Table 3-3. Binary 

Equivalents of Fractions in Sixteenths. 
1 0.500 01000 2" 

9 0.5625 0.1001 16 

5 0.625 0.1010 
8 

11 0.6875 0.1011 -16 

3 0.750 0.1100 4" 

13 
0.8125 0.1101 

16 

7 
8 

0.875 01110 

15 -
16 

0.9375 0.1111 

16 1.000 10000 
16 

dividing with a decimal number , get rid of the decimal in the divisor 
by moving the decimal point to the right in both the divisor and the 
dividend. In other words, you have the same basic problem in both 
number systems-keeping track of the decimal point. Here are 
some examples of binary multiplication and division. 

42 



10.1 
x 10.1 

10.1 
101 
110.01 

0.01) 0.0001 
0.01 

1 )0.01 
1 

-0 

43 



Chapter 4 

Boolean Operations 

Along with the basic mathematical processes examined earlier, the 
microprocessor in the ATARI 800 can manipulate binary numbers 
logically. This system was conceived using the theorems developed 
by the English mathematician George Boole (1815-1864). Boolean 
values are used in the process of reasoning (Boolean algebra), or in 
a deductive system of theorems using a symbolic logic, and dealing 
with classes, propositions, or on-off circuit elements. Boolean 
algebra employs symbols to represent operations such as AND, 
OR, NOT, EXCEPT, and in some cases (in programming) if ... then 
to permit mathematical calculation. 

The simplest kind of Boolean expression states a relationship 
which mayor may not be true , between two quantities. If the 
quantities are numeric, then the possible relations are strict in­
equalities; <, > ; and reflexive inequalities: less than or equal, 
< =, and greater than or equal, > =, equals, =; and does not equal, 
~. If the quantities are non-numeric , for instance, the address of 
apartments, it makes no sense to talk about inequalities which 
derive from an ordering of values, but the relationships "equals" and 
"does not equal" are still meaningful. 

A relational expression results in a Boolean value, 1 or 0, 
depending on whether the two quantities compared in the relational 
expression do or do not satisfy the given relation. If variables or 
numerical expressions are written to represent the related quan­
tities, the values of these variables or expressions are first obtained 

44 



and then examined to determine whether or not the indicated 
relationship holds for these values . 

Relational expressions are the most obvious, but they are not 
the only kind of Boolean expression . We sometimes wish to base a 
decision on whether or not several relational conditions hold 
simultaneously or on whether or not at least one of several possible 
conditions hold. Consider the following : 

The U.S. Postal service has recently imposed restrictions on 
the maximum size and weight of a package to be sent by parcel post . 
The weight must not exceed 44 pounds, and the sum of the length 
plus the girth must not exceed 72 inches. Assume that for parcels of 
rectangular cross-section , the dimensions are given as values of the 
variables A, B, and C in units of inches, and the weight as the value 
of WGHT in pounds. However , the dimensions are not necessarily 
given in order from greatest to least. We must write a procedure to 
determine whether or not any given parcel is acceptable. 

In order to calculate the postal dimension, we need to know 
which of the three dimensions is the largest , for the equation 
restricts girth more than it does length. We can compute a value for 
the postal dimension by making use of conditional assignment. 

IF A = B & A = C THEN 
POSTALDIMENSIONS = A + 2* (B+C); 

ELSE IF B = C THEN 
POSTALDIMENSION = B + 2 * (A+C) 

ELSE 
POSTALDIMENSION = C + 2 * (A+B); 

We won't take time to investigate the entire program; rather, 
let's look at the first line of the statement. Here two conditions are 
tested to find out whether A is the largest of the three dimensions. If 
it is, then the expression A + 2 *(B+C) is evaluated and assigned to 
the variable . Otherwise, if one or the other of the conditions tested 
in the first line is false, the assignment on the second line is not 
evaluated, but instead control passes beyond the first ELSE. The 
second alternative is tried only after it has been determined that A 
cannot be the largest of the three dimensions, etc. 

BOOLEAN ALGEBRA 
Before going further into conditional execution, the reader 

should have a good knowledge of Boolean Algebra . This will help 
him or her to approach the work more intelligently . 

45 



In the spring of 1847, George Boole wrote a pamphlet entitled 
"A Mathematical Analysis of Logic ." Later, in 1854, he wrote a 
more exhaustive treatise on this subject which was entitled. "An 
Investigation of the Laws of Thought." It is this later work which 
forms the basis for our present day mathematical theories used for 
the analysis of logical processes. 

Although conceived in the 18th Century, little practical appli­
cation was found for Boolean algebra until 1938 when it was found 
that Boolean algebra could be adapted for the analysis of telephone 
relay and switching circuits . Since that time , the extent of its use 
has expanded rapidly, roughly paralleling the development and use 
of more complex switching circuits such as those found in present 
day automatic telephone dialing systems and digital computers. 
Thus Boolean algebra has become an important subject which must 
be learned if the operation of digital computers and other devices 
using complex switching circuits is to be understood. 

CLASSES AND ELEMENTS 
In our universe, it is logical to visualize two divisions; all 

things of interest in a discussion are in one division and all things 
which are not of interest in the discussion are in the other division. 
These two divisions comprise a set or class which is designated the 
universal class, and all things contained in the universal class are 
called elements . One may also visualize another set or class; this 
class contains no elements and has been designated the null class. 

In a particular discussion, certain elements of the universal 
class may be grouped together to form combinations which are 
known as classes. However, these classes are actually subclasses 
of the universal class and thus should not be confused with the 
universal class or the null class. Each subclass of the universal class 
is dependent on its elements and the possible states (stable, unsta­
ble , or both) that these elements may take . 

Boolean algebra is limited to the use of elements which have 
only two possible states, both of which are stable. These states are 
usually designated TRUE (1) or FALSE (0). Thus, to determine the 
number of classes (or possible combinations of elements) in 
Boolean Algebra, we find the numerical value of 2" when n equals 
the number of elements. If we have two elements (each element has 
two possible states), we have 22 possible classes . If the elements 
are designated A and B, then A may be true or false and B may be 
true or false. Using the connective word "and," the classes which 
could be formed are as follows : 

46 



A true and B false 
A true and B true 
A false and B true 
A false and B false 

However, if the connective word "or" is used, four additional 
classes are formed. The differences between the two classes, 
groups or forms are discussed below. 

VENN DIAGRAMS 
The Venn diagram is a topographical picture of logic, com­

posed of the universal class divided into classes depending on the 
number of elements. Venn diagrams may be used to illustrate 
Boolean logic as follows: 

Consider the universal class as containing submarines and 
atomic-powered items. Let A equal submarines and B equal 
atomic-powered items. We have four classes which are: 

(1) Submarines and not atomic powered 
(2) Submarines and atomic powered 
(3) Atomic powered and not submarines 
(4) Not submarines and not atomic powered 

These four classes are called minterms since they represent 
the four minimum classes of elements. The opposite of the min­
terms are the maxterms which are stated as follows: 

(1) Atomic powered or not submarines 
(2) Not submarines or not atomic powered 
(3) Submarines or not atomic powered 
(4) Submarines or atomic powered 

The various relationships which may exist are represented by 
the Venn diagrams in Fig. 4-1. 

CONNECTIVES AND VARIABLES 
Before proceeding it will be necessary to identify and define 

the symbology used in Boolean algebra. As may be seen, most of 
these symbols are common to other branches of mathematics; 
however in Boolean algebra they may have a slightly different 
meaning or application. 

47 



~ Not submarines 

~submarines 

A Venn Diagram 

Submarines Atomic 
_

Not submarines, not 
atomic powered 

�----------~ B ~----------I 

~[E]~D 
1 2 1 2 

~[QJ .m:J. 
3 4 3 4 

c D 

Fig. 4-1. The Venn diagram. 

= 

or x 

+ 

48 

The equal sign , just as in conventional math­
ematics, represents a relationship of equiva­
lence between the expressions so connected. 

The dot or small x indicates the logical product, 
or conjunction of the terms so connected. The 
operation is also frequently indicated with no 
symbol use , i.e . , A·B = A x B = AB. Most 
generally referred to as the AND operation, 
the terms so related are said to be "ANDed ." 

The plus sign indicates the logical sum opera­
tion, a disjunction of the terms so connected. 
Usually called the OR operation and the terms 
so connected are said to be ORed. 



( ) 

A,B, etc. 

The vinculum serves a dual purpose. It is at the 
same time a symbol of grouping and of opera­
tion . As a sign of operation it indicates that the 
term(s) so over lined are to be complemented. 
Complement can be defined as "a Boolean op­
eration whose result is the same as that of 
another operation but with the opposite sign; 
thus, OR and NOR operations are comple­
mentary ." As a symbol of grouping it collects 
all terms to be complemented together. Terms 
so overlined are often said to be negated, the 
process of taking the complement is then called 
negation. 

These familiar signs of grouping are used in the 
customary fashion to indicate that all terms so 
contained are to be treated as a unit. 

Various letters are used to represent the vari­
ables under consideration, generally starting 
with A. Since the variables are capable of being 
in only one of two states the numerals 0 and 1 
are the only numbers used in a Boolean expres­
sion. 

APPLICATIONS TO SWITCHING CIRCUITS 
Since Boolean algebra is based upon elements having two 

possible stable states, it becomes very useful for analyzing switch­
ing circuits. The reason for this is that a switching circuit can be in 
only one of two possible states. That is, it is either open or it is 
closed. We may represent these two states as 0 and 1 respectively. 
The basic switching operations are discussed below. All other 
switching operations (even the most complex) are merely combina­
tions of these basic operations . 

Let us consider the Venn diagram in Fig. 4-2A. Its classes are 
labeled using the basic expressions of Boolean algebra. Note that 
there are two elements, or variables, A and B. The shaded area 
represents the class of elements that are A·B in Boolean notation 
and is expressed as: 

f(A,B) = A·B 

49 



o Venn Diagram 

~~"O" 
" 1" ~ "0 " 

8 e AND switching circuit 

Fig. 4-2. The AND operation. 

A B f(A,B) = AB 

0 0 0 
0 1 0 
1 0 0 
1 1 1 e Truth table 

CD Logic diagram 
mechanization of f(A,B) = AB 

The other three classes are also indicated in Fig. 4-2A. This ex­
pression is called an AND operation because it represents one of the 
four minterms previously discussed . Recall that AND indicates 
class intersection and both A and B must be considered simultane­
ously. 

We can conclude then that a minterm of n variables is a logical 
product of these n variables with each variable present in either its 
noncomplemented or its complemented form . It is considered an 
AND operation . 

For any Boolean function there is a corresponding truth table 
which shows, in tabular form, the true conditions of the function for 
each state its variables can be in. In Boolean algebra, ° and 1 are the 
symbols assigned to the variables of any function . Figure 4-2B 
shows the AND operation function of two variables and its corre­
sponding truth table . 

You can see that this function is true if you think of the logic 
involved; AB is equal to A and B which is the function f(A,B) . Thus, 
if either A or B takes the condition of 0, or both take this condition, 
the ftmction f(A ,B) = AB is equal to 0 . But if both A and B take the 
condition of 1, the AND operation function has the condition of 1. 

Figure 4-2C shows a switching circuit for the function f(A ,B) = 
AB . There will be an output only if both A and B are closed. An 
output in this case equals 1. If either switch is open (0 condition), 
there will be no output or O. 

50 



In any digital equipment, there will be many circuits like the 
one shown in Fig. 4-2C. In order to analyze circuit operation, it is 
necessary to refer frequentl y to these circuits without looking at 
their switch arrangements. This is done by doing a logic diagram 
mechanization as shown in Fig. 4-2D. This figure indicates that 
there are two inputs, A and B, into an AND operation circuit 
producing the function (in Boolean algebra form) of AB. This dia­
gram simplifies the circuit diagram by indicating operations without 
drawing all the circuit details. 

It should be understood that while the previous discussion 
concerning the AND operation dealt with only two variables the 
same ideas can be applied to any number of variables. For example, 
in Fig. 4-3 three variables are shown along with their Venn diagram, 
truth table, switching circuit, and logic diagram mechanization . 

Consider the Venn diagram in Fig . 4-4A; note that there are 
two elements, or variables, A and B. The shaded area represents 
the class of elements that are A + B in Boolean notation and is 
expressed in Boolean algebra as: 

f(A,B) = A + B 

o Venn diagram 

I~ A 
" 1" "0" 

"1"~"0" 
r.::\J~o 
~ 

eAND switching circuit 

A BC I(A,B.C) = ABC 

o 0 0 0 
o 0 1 0 
o 1 0 0 
o 1 1 0 
1 o 0 0 
1 o 1 0 
1 1 0 0 
1 1 1 1 

o Truth table 

A 

~ 
o Logic diagram 

mechanization 01 I(A,B,C) = ABC 

Fig. 4-3. The AND operation (three variables) . 

51 



A B f(A,B) = A + B 

0 0 0 
0 1 1 
1 0 1 
1 1 1 • o Truth table 

o Logic diagram 
mechanization of f(A, B) = A + B 

Fig. 4-4. The OR operation. 

This expression is called an OR operation for it represents one of 
the four maxterms previously discussed . Recall that OR indicates 
class union, and either A or B or both must be considered. A 
maxterm of n variables is a logical sum of these n variables where 
each variable is present in either its noncomplemented or its com­
plemented form. 

In Fig. 4-4B the truth table of an OR operation is shown. You 
can understand this truth table if you think of A+B as being equal to 
A or B. Thus if ei ther A or B takes the value 1, f(A,B) must equal 1. 
If neither A nor B takes the value 1, the function equals zero. 

Figure 4-4C shows a switching circuit for the OR operation . It 
contains two or more switches in parallel. It is apparent that the 
circuit will transmit if either A or B is in a closed position (that is, 
equal to 1). If, and only if, both A and B are open (equal to 0) the 
circuit will not transmit. 

The logic diagram for the OR operation is given in Fig. 4-4D. 
This means that there are two inputs, A and B, into an OR operation 
circuit producing the function in Boolean form of A+B. Note how 
this diagram is different from that in Fig. 4-2D. 

As in the discussion of the AND operation, the OR operation 
may also be used with more than two inputs. Figure 4-5 shows the 
OR operation with three inputs. 

52 



The shaded area in Fig . 4-6A represents the complement of A 
which in Boolean algebra is A and read as "NOT A" . The expression 
f(A) equals A is called a NOT operation . The truth table for the NOT 
operation (Fig. 4-6B) is explained by the NOT switching circuit. A 
NOT circuit must take a signal that is injected at the input and 
produce the complement of this signal at the output. Thus, in Fig. 
4-6C it can be seen that when switch A is closed (equal to 1), the 
relay opens the circuit to the load. When switch A is open (equal to 
0) the relay completes a closed circuit to the load. The logic diagram 
for the NOT operation is given in Fig. 4-6D. It shows that A is the 
input to a NOT operation circuit and gives an output of A. The NOT 
operation may be applied to any operation circuit such as AND or 
OR . 

The shaded area in Fig . 4-7A represents the quantity A OR B 
negated . This figure represents the minterm expression A+B; that 
is, A OR B negated is A OR B and by application of DeMorgan's 
Theorem is equal to AB . 

The truth table for the NOR operation is shown in Fig. 4-7B. 
The table shows that if neither A or B is equal to 1, then f(A,B) is 
equal to 0. Furthermore, if A and Bare equal 0, thenf(A,B) equals 1. 

A B C f(A,B,C) = A+B+C 

0 0 0 0 
0 0 1 1 
0 1 0 1 
0 1 1 1 
1 0 0 1 
1 0 1 1 
1 1 0 1 
1 1 1 1 

o Truth table 

e OR switching circuit 

Fig. 4-5. The OR operation (three operations). 

53 



A I(A) = A 

1 0 
o 1 

o Venn diagram o Truth table 

~2ioQ 

fg 
e NOT switching circuit e Logic diagram _ 

mechanization 01 I(A) = A 

Fig. 4-6. The NOT operation. 

A B A + B I(A ,B) = A + B 

0 0 0 1 
0 1 1 0 
1 0 1 0 
1 1 1 0 

G Truth table 

" 1" ~
A 

A + B A+ B 
B I 

o Logic diagram __ 
~ mechanization 01 I(A,B) = A + B 

"0" 

C9NOR switching circuit 

Fig. 4-7. The NOR operation. 

54 



The NOR operation is a combination of the OR operation and 
the NOT operation . The NOR switching circuit in Fig. 4-7C is the 
OR circuit placed in series with the NOT circuit. If either switch A. 
switch B. or both are in the closed pos ition (equal to 1). then there is 
no transmission to the load. If both switches A and B are open (equal 
to 0). then current is transmitted to the load. 

The logic diagram mechanization of f(A.B) = A+B (NOR 
operation) is shown in Fig. 4-7D. It uses both the 0 R logic diagrams 
and the NOT logic diagrams. The NOR logic diagram mechanization 
shows there are two inputs. A and B. into an OR circuit producing 
the function in Boolean form of A + B. This function is the input to 
the NOT (inverter) which gives the output. in Boolean form. of 
A+B . Note that the whole quantity of A+B is complemented and 
not the separated variables. 

The shaded area in Fig. 4-SA represents the quantity A AND B 
negated (NOT). and is a max term expression. Notice that AB is 
equal to the maxterm expression A + B. 

A B AB f(A .B) = AB 

0 0 0 1 
0 1 0 1 
1 0 0 1 
1 1 1 0 

e Truth table 

e NAND switching circuit 

Fig. 4-8. The NAND operation. 

55 



The truth table is shown for the NAND operation in Fig. 4-8B. 
When A and B equal 1, then f(A ,B) is equal to O. In all other cases, 
the function is equal to 1. 

The NAND operation is a combination of the AND operation 
and the NOT operation . The NAND switching circuit is shown in 
Fig . 4-8C. Note that the AND circuit is in series with the NOT 
circuit. If either switch A or B is open (equal to 0), then current is 
transmitted to the load. If both switches Aand B are closed (equal to 
1), then there is no transmission to the load . 

The logic diagram mechanization of f(A,B) = AB (NAND oper­
ation) is shown in Fig . 4-8D . The AND part of the diagram and the 
NOT part of the diagram show that there are two inputs, A and B, 
put into the AND circuit. The result is then input to the NOT circuit 
which gives the output, in Boolean form, of AB. Note that the entire 
quantity AB is complemented and not the separate variables. 

NOTE : The logic diagrams in Figs . 4-7 and 4-8 do not conform 
to the American Standard Logic Symbology (MIL-STD). They were 
drawn in this fashion to illustrate a point in the text, normally they 
will be drawn as shown in Fig. 4-9. 

The exclusive OR operation is actually a special application of 
the OR operation. In this operation either A or B must be true in 
order for the function to be true ; however , if both are true at the 
same time the function will be false . 

As shown by the Venn diagram (Fig. 4-10A), this operation 
must be assigned a special class since it does not conform to any of 
the min term or maxterm classes previously discussed. 

In the mechanization of this operation (Fig. 4-10C) the 
switches are mechanically linked together so that one or the other, 
but not both, may be closed at a time . The truth table for this 
operation is shown in Fig. 4-10B and the logic symbol in Fig. 4-lOD. 

FUNDAMENTAL LAWS AND AXIOMS OF BOOLEAN ALGEBRA 
The laws and axioms of Boolean algebra are used to simplify 

any Boolean expression. They are listed below. Figures 4-11 

~ ~~ ~ 
NAND NOR 

Fig. 4-9. American Standard logic symbology for the NOR and the NAND 
operations. 

56 



A B I(A.B) - AB+BA 

0 0 0 0 
0 1 1 
1 0 1 
1 1 0 

o Venn diagram G Truth table 

J 17-1 
~ A 1----1 B 
B AB+BA 

T T 
4i)L09iC diagram ,r-8 I exclusive "OR" 

function 

eeXCIUSlVe "OR" switching 
CircUit 

Fig. 4-10. The EXCLUSIVE OR operation. 

through 4-20 show the truth tables , logic diagrams, and mechaniza­
tion for these laws and axioms. 

I. Law of Identity 
A=A 

II . Law of Complementarity 
l.AA=O 
2. A+A = 1 

III . Idempotent Law 
l.AA=A 
2. A + A = A 

A=A 

A 

Fig. 4-11. Law of identity. 

rnA 

o 0 

1 1 

57 



IV. Commutative Law 
1. AB = BA 
2. A + B = B + A 

V. Associative Law 
1. (AB)C = A(BC) 
2. (A + B) + C = A + (B + C) 

VI. Distributive Law 
1. A(B+C) = (A B) + (AC) 
2. A + (BC) = (A + B) (A + C) 

VII. Law of Dualization (DeMorgan's Theorem) 
1. (A + B) = AS 
2. (AB) = A + B 

VIII . 1,aw of Double Negation 
A=A 

IX. Law of Absorption 
1. A(A + B) = A 
2. A + (AB) = A 

Axioms 
1.A+O=A 
2. A • 0 = 0 
3. A + 1 = 1 
4. A • 1 = A 

(The variable A may be lor 0.) 

e 

Fig. 4-12. Complementary law. 

58 



........ v 

Fig. 4-13. Idempotent law. 

EQual 
AA =A 

A A A+A 

~
:;-
: r--
I "0" 

A 0::-;---

OR Cl<1 

A+A= A 

BOOLEAN EQUATION SIMPLIFICATION AND MECHANIZATION 
As you have seen, Boolean algebra comprises a set of axioms 

and theorems which are useful in describing logic equations such as 
those used in computer technology . Likewise, these laws and 
axioms are used to simplify logic equations so that logic conditions 
can be designed in their simplest and most economic form. For 
example, the equation below is a logic equation which describes the 
logic circuit (Fig. 4-21A) in Boolean terms. 

f = AC + AD + BC + BD 

Boolean algebra can be used to simplify the logic equation. 

f AC + AD + BC + BD 
A(C + D) + B(C + D) 
(A + B) (C + D) 

The logic circuit arrangement for the simplified expression is 
shown in Fig . 4-21B. Factors such as the loading and standardi­
zation of logic circuits may dictate the use of other than the 
simplest possible Boolean expression . In this discussion, the 
only concern is the simplification of equations. Other design 
considerations are not dealt with . 

Consider the following as a second example: 
EXAMPLE: Simplify the logic equation, 

f = ABC + ABD + AC + ABCD + AC 

59 



e AB=BA :=r=r AB :~BA 
"0" "0" 

B ' ''O '' ~ ''O'' 

C-Vo d~ ~II:ND~'~ t BA 

A B AS B A BA 

0 0 0 0 0 0 

0 1 0 0 1 0 

1 0 0 1 0 0 

1 1 1 1 1 1 

~EqUal~ 
e AB=BA 

A + B=B + A 

:=L)--.A+B :=r=rB
+

A 

A 'O' '0" 
B 

' I ' 'o:-:r-
r---< '0' ~ - "0" ~ 

~ ~" 1 " " I ' 
A + B B+A 

I OR ckt 

~ 
OR ckt 

I 

A B A+B B A B+A 

0 0 0 0 0 0 

0 1 1 0 1 1 

1 0 1 1 0 1 

1 1 1 1 1 1 

~EqUal~ 
A + B=B + A 

Fig. 4-14. Commutative law. 

60 



SOLUTION: Rearrange terms and factor as follows: 

f = ABC + AC + ABCD + AC + ABD 
= A(BC + C) + A(BCD) + ABD 

Apply the complementary law to (BC + C) and (BCD + C). Then: 

f = A(B + C) + A(BD + C) + ABD 

Apply distributive law . Then : 

f = AB + AC + ABD + AC + ABD 
f = (AB + ABD) + AC + AC + ABD 

Apply the law of absorption to (AB + ABD) and rearrange terms. 
Then: 

f = AB + AC + AC + ABD 

This equation is the easiest to mechanize . However , the simplifica­
tion process could be carried one step further by factoring, in which 
case: 

f = A(B + C) + A(C + BD) 

The foregoing examples of simplification show the process to 
be rather difficult at first. For the beginner there is no positive 
indication that the simplest possible logic equation has been 
reached. You must learn by experience. Repeated use of these 
theorems is the only solution. Simplification theorems are of 
greatest value in the preliminary stages of simplification, or in the 
simplification of elementary functions . 

A second way approach to equation simplification is to use the 
Veitch diagram . This type of diagram provides a very quick and easy 
way for finding the simplest logic equation needed to express a 
given function. Veitch diagrams for two, three, or four variables are 
readily constructed (Fig. 4-22). Any number of variables may be 
plotted on a Veitch diagram, although the diagrams are difficult to 
construct and use when more than four variables are involved. 

Because each variable has two possible states (true or false), 
the number of squares needed is the number of possible states (two) 
raised to a power dictated by the number of variables. Thus, for four 
variables the Veitch diagram must contain 24 or 16 squares. Five 
variables require 25 or 32 squares. An eight -variable Veitch diagram 
needs 28 or 256 squares-a rather unwieldy diagram. If it becomes 

61 



~
 

e 
(A

' B
) 

• 
C

 =
 A 

• (
B

 •
 C

) 

A
 

(A
B

)C
 

B
 

C
 

A
~
)
 

B
 

(B
C

) 

C
 

+1 
I 

"0
0 
1
0
~
-

A
 ? 

0
-"

.;
: 

(A
B

)o
C

 
" 

L
o

ad
 

"1
" 

0 
c?

;; 
1 

"1
" 

(A
B

lC
 

+
 I
~
 

"0
" 

B"
O"

 
C

 
"0

," 
I 

Lo
ad

 
--I 

~
 
~
~
 

'
'
1

'
'
'

1 

A
 

B
 

C
 

A
B

 
(A

B
)'

C
 

(B
C

) 
A

(B
C

) 

0 
0 

0 
0 

0 
0 

0 

0 
0 

1 
0 

0 
0 

0 

0 
1 

0 
0 

0 
0 

0 

0 
1 

1 
0 

0 
0 

0 

0 
0 

0 
0 

0 
0 

0 
1 

0 
0 

0 
0 

0 
1 

0 
0 

0 

1 
1 

1 

~
E
q
U
a
l
~
 

(A
' B

) 
• 

C
 =

 A
 • 

(B
' C

) 



e 
(A

+
B

) 
+

C
 =

A
+

(B
+

C
) 

A
 
D
A
+
B
D
+
B
)
+
c
A
~
A
+
(
B
+
C
)
 

B
 

• 
B

 
B

+
C

 
• 

C
 

C
 

+
 . 

A
 

9
-

U
 

_ 
I 

+
 I 

A
 

a-
"0

" 

"1
" 

I 
(A

+
B

) 

4:
0 

Lo
ad

 
B

 
0

, 
I 

1 A +
 (

B
 +

 C
) 

"1
" 

"0
" 

(A
+

B
) 

+
 C

 
"0

" 
Lo

ad
 

~
 

C
 

B
 +

 C
 

0
-
-

"1
" 

''1
'' 

A
 

B
 

C
 

A
+

B
 

(A
+

B
)+

C
 

B
+

C
 

A
+

(B
+

C
) 

0 
0 

0 
0 

0 
0 

0 
0 

0 
1 

0 
1 

1 
1 

0 
1 

0 
1 

1 
1 

1 

0 
1 

1 
1 

1 
1 

1 

1 
0 

0 
1 

1 
0 

1 

1 
0 

1 
1 

1 
1 

1 

1 
1 

0 
1 

1 
1 

1 

1 
1 

1 
1 

1 
1 

1 
L

--
-.

..
--

J
 

~
 

(A
+

B
) 

+
C

 =
A

+
(B

+
C

) 

ffi 
F

ig
, 4

-1
5

, A
ss

oc
ia

tiv
e 

la
w

, 



~
 

e 
A

(B
+C

) 
=

 (A
B

)+
 (

A
C)

 

A
 

~
 

B
 

~
.
o
 .. 

.. ,
.. 

··0
·· 

L
j .. o. ;
fb.' ..

 
C

 
.. ,

. 
A

(B
+C

) 

A
 

B
 

C
 

B
+C

 
A

(B
+C

) 

0 
0 

0 
0 

0 

0 
0 

, 
, 

0 
0 

1 
0 

1 
0 

0 
1 

1 
, 

0 

1 
0 

0 
0 

0 
, 

0 
1 

, 
, 

, 
1 

0 
, 

, 
, 

1 
, 

, 
, 

··0
· 

·0
·· 

~:
::
J 

I"·,
, 

4 A
 

B
 

C
 

AB
 

AC
 

AB
+

A
C 

0 
0 

0 
0 

0 
0 

0 
0 

, 
0 

0 
0 

0 
, 

0 
0 

0 
0 

0 
, 

1 
0 

0 
0 

1 
0 

0 
0 

0 
0 

, 
0 

, 
0 

1 
, 

, 
, 

0 
1 

0 
1 

1 
, 

, 
1 

, 
, 

L 
. 

E
qu

al
 

...
. f-

--
--
--
-~
--
--
-'
 

A
 (B

+C
) 
=

 (A
B

) +
 (A

C)
 

A
B

+A
C

 



(J
) 

0
1

 

A
 +

 B
C

 =
 (

A
+

B
) (

A
+

C
) 

e 
A

 
tI.

 
A

 B
 

B
 

C
 

C
 

o 

(A
+

B
) 

(A
+

C
) 

A
~
O

'l ~"
~h

H"
 

-
-

I 

A
 

B
 

C
 

B
C

 
A

+
B

C
 

I 
A

 
B

 
C

 
A

+
B

 
A

+
C

 
(A

+
B

)(
A

+
C

) 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 

0 
0 

1 
0 

0 
0 

0 
1 

0 
1 

0 

0 
1 

0 
0 

0 
0 

1 
0 

1 
0 

0 
0 

1 
1 

1 
1 

0 
1 

1 
1 

1 
1 

1 
0 

0 
0 

1 
1 

0 
0 

1 
1 

1 

1 
0 

1 
0 

1 
1 

0 
1 

1 
1 

1 

1 
1 

0 
0 

1 
1 

1 
0 

1 
1 

1 

, 
1 

~ 
, 

1 
1 

1 
1 

~
 

1 
1 

1 
1 

-

L 
. E

qu
al

 
<II

 
T

 
A

 +
 B

C
 =

 (A
+

B
) 

(A
+

C
) 

Fi
g.

 4
-1

6
. D

is
tr

ib
ut

iv
e 

la
w

. 



0
)
 

0
)
 

e 
A

-
-

B
~
 

"0
" 

A
~
~
 

+
 ..

. -
-
-

"1
" 

I 
"0

" 

B
 

--
<

f'
 

0
-
-

"1
" 

A
 

B
 

A
+

B
 

0 
0 

0 

0 
1 

1 

1 
0 

1 

1 
1 

1 
'
-
-
-
-

(A
 +

B
) 

=
 A

 B
 

A
+

B
 

"0
" 

10
 

I 
"1

" 
A+

'i3
 Lo

ad
 

(A
+

B
) 

1 0 0 0 

: :
8:

 ~
 
) 

.A
B

 

+
 

A
 

"0
" 

A
 

B
 

0 
0 

0 
1 

1 
0 

1 
1 

"0
" 

"1
" A
 

B
 

1 
1 

1 
0 

0 
1 

0 
0 

-
' 

0
"0

" 
A

 I 
"1

" 
A

B
 

-
.J

V
V

' 

A
B

 

1 0 d 0 

L 
. E

qu
al

 
~ 

~
 

(A
+

B
) 

=
 A

 B
 



0
)
 

.....
. 

e
A
~
~
 

B
 

"0
" 

"0
" 

+1 
A
~
 

B/o
o...

.-o_
 

"1
" 

"1
" 

1
0

"0
" 

I 
"1

" 

A
B

 

A
 

B
 

0 
0 

0 
1 

1 
0 

1 
1 

~
 

-
-
-

A
B Lo

ad
 

A
B

 

0 0 0 1 -
-

F
ig

. 4
-1

7
. 

La
w

 o
f 
du

a~
za

ti
on

 (
O

eM
or

ga
n'

s 
T

he
or

em
) .

 

A
 
~
A
+
B
~
 

B
I
B

 

A
 

o.
 "

0
':'

1"
 

A
B

=
A

+
B

 

+
 

"1
" 

Lo
ad

 A
+B

 

A
B

 
A

 
B

 
A

 +
B

 

1 
1 

1 
1 

1 
1 

0 
1 

1 
0 

1 
1 

0 
0 

0 
0 

L:E
QU

a,5
 

A
B

=
A

+
B

 



= A=A 

A A A A A 
0 0 

0 
"0" 

~EqUal ~ "'" 
A=A 

"0" 

"0"= 
A 

"'" 
Load 

Fig. 4-18. Law of double negation. 

necessary to simplify logic equations containing more than six 
variables, other methods of simplification should be used . 

An exploded view of a four variable Veitch diagram is shown in 
Fig. 4-23. Note the division of the diagram into labeled columns and 
rows. The entries into the diagram are placed in these columns and 
rows in accordance with the function values for a given Boolean 
expression . 

Looking at the square in the upper left corner of the main 
Veitch diagram in Fig. 4-23, and using the extensions, it is seen that 
it contains the variables ABeD; the next lower block contains 
ABCD; the next lower block contains ABeD; and the block in the 
lower left corner contains the variables ABeD . All of the squares in 
the diagram are similarly identified. Note that the term AC is 
contained in each of the four terms just discussed. Ac­
cording to the distributive law, the variables B and D can be 
dropped, because they appear in both asserted and complemented 
fonn. Thus, the left vertical column identifies the tenns AC. This is 
proven by the equation: 

68 



m
 

<
0 

e 
A

(A
+

B
)=

A
 

:=t
)dr

---
rl 

r
-
-
-
-
-

I 
iA

'"
 "

1
' 

+
 

I 
"0

" 
I 

~
,
 

IA
(A

+
B

) 

'"1
" 

''1
"" 

A
 

B
 

A
+

B
 

A
 (A

+B
) 

I 

0 
0 

0 
0 

0 
1 

1 
0 

1 
0 

1 
1 

1 
1 

1 
1 

LE
qU
al
~ 

-
-

A
(A

+
B

)=
A

 

F
ig

. 4
-1

9.
 A

bs
or

pt
io

n 
la

w
. 

e 
A

+
(A

B
)=

A
 

:==
L 

) A
B 
D

 A+IA
B

I 

+
 

A
 

"0
" 

A
 

B
 

A
B

 
A

+(
A

B
) 

0 
0 

0 
0 

0 
1 

0 
0 

1 
0 

0 
1 

1 
1 

1 
1 

t 
E

qu
al

 
t 

A
+

 (A
B

) 
=

A
 



""-
I o 

(0
 

A
+

O
=

A
 

:=
L

r 
0

"0
" 

o 
I A

+o
l 

A
 o 

0
1

0
 

o 
I 

1 

l;
'E

q
u

a
l:

r
 

A
+

O
=

A
 

ce
?:1

 
"1

" 
A

+
O

=
A

 

I 
O

R
ck

l 

CD
 

I+
A

=
1

 

:=r
:=r

 
~

'
.
O

.'
 

~
 

"I
" 

1 
;
J
l 

I 
O

R
 c

kt
 

, 

F
ig

. 4
-2

0.
 A

xi
om

at
ic

 e
xp

re
ss

io
ns

. 

I+
A

=
1

 

1 
+

A
 

=
1

 

CD
 

A
O

 =
 0 

:=r
=r 

A
 

til
l 

o 
0 

o 
0 +
 

o 

t
~

··~~
. 
~

·O"
 

''1
'' 

A
O

 =
0 

E
qu

al
 

to
 0

 
A

O
=

A
 

o 
A

(l
)=

A
 

:=
L

r 
o 

A
 

A
('

) 

o 

to.
 

1 
0

"0
' 
~
 
~
 

::
J

l 
1 

E
Q

u
a

l.
,J

 
A

(l
)=

A
 

A
(l

) 
=

A
 

A
N

D
 c

kt
 



Fig. 4-21 . Simplified logic circuitry resulting from simplifying logic equations. 

AC = AC (1) 
= AC (B + B) 
= ABC + ABC - -= ABC (1) + ABC (1) 
= ABC (5 + D) + ABC (D + 5) 
= ABCD + ABCD + ABeD + ABeD 

The final expression represents four of the maxterms of the 
term AC. Also note that a two-variable term is represented by four 
squares. A study of the diagram will reveal that a term with one 
variable is represented by eight squares, a three-variable term by 2 
squares, and a four-variable term by 1 square. 

To illustrate the use of the Veitch diagram, the logic equation 

f = ABC + ABD + AC + ABCD + Xc 

71 



AlA 

~E8 
2 Variables 

Fig. 4-22. Veitch diagrams. 

AlA" 

:fHB 
ele Ie 

3 Variables 

smAIA 

5 - D 
B -

IT 
(3'1 e Ie 
4 Variables 

B t-+-t--+-+-t-+-+--i....:D:­
-+-i!-t--+--+-+-+-+--; D F 
B I-+-+-+--+-t-+-+~--

I-+-+-+--+-t-+-+~ D­
B I-+-+-+--+-t-+-+-I 
_ t-+-+--+-+-t-+-t--I D F 
8 I-+-+-+--+-t-+-+~-== 

'=+--'--+-±--!-l--+-::::!. D 
elelelele 

6 Variables 

will be used. Because there are four variables, a four variable 
Veitch diagram is needed . The step-by-step process is as follows: 

Step 1. Draw the appropriate Veitch diagram . See Fig . 4-24. 
Step 2. Plot the logic function on the Veitch diagram, term by 

term. This is accomplished by placing a ''1'' in each square rep­
resentative of the term. (Use Fig . 4-24 to identify the squares and 
Fig. 4-25 to understand the plotting of the terms on the diagram.) 
The term ABC in the equation (f = ABC + ABD + AC + ABCD + 
AC) is identified in the Veitch diagram by squares 2 and 6. The 
derivation is as follows: ABCD + ABCD = ABC (D + D) = ABC (1) 
+ ABC 

The term ABD, identified by squares 1 and 2 as follows: ABED 
+ ABCD + ABD (C + C) = ABD (1) = ABD 

For the term AC, use squares 1,5, 9, and 13: ABED + ABCD 
+ ABCD + ABeD = ABC (D + D) + ABC (D + D) = ABC (1) + 
ABC (1) + AC (B + ii) = AC (1) = AC 

The term ABCD, identifIed by square 16, is self-ex­
plana tory. The term A C, shown in squares 3,7,11, and 15, can be 
figured as follows: ABCD + ABCD + ABCD + ABCD = ABC (D + 

72 



(j
 

A
 

A
 

O
ng

in
al

 d
ia

gr
am

 

.-
A

 
A

B
C

D
 

{
f
l
1
~
 l 

A
B

C
D

 
-

A
B

C
D

 
3 

A
B

eD
 

B[
TI
-[
-l
~ IC

 

R
 

C
 

\
I
 

I 14
-i

~ E
xt

e
n

si
o

n
s ~
 

_ ~
[
_l

_J
_l

_j
o 

o 
I 

A
 

A
BC

D
 

A
BC

D
 

A
BC

D
 

A
BC

D
 

A
BC

D
 

A
BC

D
 

A
BC

D
 

A
BC

D
 

A
B

C
D

 
D
~
f
f
i
E
D
 

A
BC

D
 

A
BC

D
 

A
BC

D
 

r 
c\

'C
T

JT
Jo

 

l1J: 
I 

I 

I 
I 
~ 

C
 

c 

Fi
g.

 4
-2

3
. E

xp
lo

de
d 

V
ei

tc
h 

di
ag

ra
m

s.
 



B 

-
B 

-
A A 

ABeD ABCD ABCD ABeD 
1 2 3 4 

- -
ABCD ABCD ABCD ABCD 

5 6 7 8 
-- --

ABCD ABCD ABCD ABCD 
9 10 11 12 
- - - ---

ABCD ABCD ABCD ABCD 
13 14 15 16 

-
C C C 

Note : The numbers in each 
square are for the purpose 
of illustration only. 

Fig. 4-24. Identifying the squares of a Veitch diagram. 

-
D 

D 

-
D 

D) + ABC (D + D) = ABC (1) + ABC (1) = AC (B + B) = AC (1) = 
AC 

Step 3. Obtain the simplified logic equation by using Fig. 4-26 
and observing the following rules: 

-
A A 

-- - - - -- -ABCD ABCD ABCD ABCD D 
1 1 1 

B 
ABCD ABCD ABCD ABCD 

1 1 1 
D -- - -- ---

ABCD ABCD ABCD ABCD 
- 1 1 
B - - -

ABCD ABCD ABCD ABCD -D 
1 1 1 

- -C C C 

Fig. 4-25. Plotting of the logic function. 

74 



a. If I's are located in adjacent squares or at opposite ends of 
any row or column, one of the variables may be dropped . 

h. If I's fill any of the following locations, two of the variables 
may be dropped : any row or column of squares, any block of four 
squares, the four end squares of any adjacent rows or columns , or 
the four comer squares. 

c. If l's fill any of the following locations, three of the variables 
may be dropped: any two adjacent rows or columns, the top and 
bottom rows, or the right and left columns. 

d. To reduce the original equation to its simplest form, you 
must simplify until aliI's have been included in the final equation. 
The digit "1" may be used more than once, and the largest possible 
combination of I's , in groups of 8, 4, 2, or as a single 1 (block) , 
should be used . 
Squares 1,5,9, and 13 are combined (Fig. 4-26) using rule (b) to 
yield AC (l 's in Band 13 cancel). 
Squares 3,7,11, and 15 are combined using rule (b) to yie ld XC. 
Squares 1,2,5, and 6 are combined using rule (b) to yield AB. 
Squares 15 and 16 are combined using rule (a) to yield ASD. 

To keep track of the squares combined, draw loops around the 
combined squares. When you do this , the Veitch diagram takes on 
the appearance shown in Fig. 4-26. 

AliI 's have been used ; therefore , a logic equation can now be 
written 

A A 

,-... r---, 
1, 2, 3, 4 IT 

B 

5, 6 , 7, 8 

0 
9, 10 11, 12 -

B - ----- ---
13, 14 15, 1

1
\,16,) 

-
0 

- ~/ ,--

C -c c 

Fig. 4-26. Derivation of resultant. 

75 



A A 

B 1 21 3 4 

5 6 7 8 

cl c I c 

Fig. 4-27. Three-variable Veitch diagram showing statement True. 

f = AB + AC + AC + ABD 

which agrees with the simplified logic equation obtained by the use 
of the simplifying theorems. 

A Veitch diagram provides a convenient means of finding the 
complement of a logic equation. This is done by plotting the original 
equation on a Veitch diagram and then putting 1's on another Veitch 
diagram everywhere except where the original diagram has 1's. An 
example will illustrate the procedure. 

EXAMPLE: 
If: f = ABC 
What is f? 

A three variable Veitch should give the answer. The original 
equation is first plotted as shown in Fig. 4-27. 

On another Veitch diagram, all squares which do not have a 1 in 
the original diagram are assigned a 1 (Fig. 4-28). 

Now the equation for f can be written. Squares 3,4,7, and 8 
combine to form A; squares 5,6,7, and 8 combine to form B; and 
squares 1,5,4, and 8 combine to form C. Therefore, the equation for 
f is: 

f=A+B+C 

which agrees with the result obtained by directly applying DeMor­
gan's Theorem. 

In the earlier discussion of logic operations, switching circuits 
were used to illustrate the various operations. These switching 
circuits were actually the mechanization of the logic operations 
using conventional single-pole double-throw switches. Before 

76 



A 

B ~ ;; ~ 1, 2 4, \ 

B 5, 6, \ 7, 8~J 
'--'" "-... ../' 

el c Ie 
Fig. 4-28. Three-variable Veitch diagram showing statement complemented. 

using the actual logic symbols, the conventional switches are again 
used to mechanize an equation. The equation: 

f = AB + AC + AC + ABD 

will be mechanized. 
It will be recalled that the AND function used a series switch­

ing circuit, and the OR function used a parallel switching circuit. 
Therefore, the mechanization of the above equation is as illustrated 
in Fig. 4-29. This diagram illustrates the AND and OR functions. 
The AND functions are each series-connected switch grouping of 
the four possible parallel paths- the OR function . The logic dia­
gram for the above equation and mechanization are shown in Fig . 
4-30, which uses the logic symbols for the AND and OR gates. A 

SWitch A 
F 

0 
I T 
I 
I 
I 
1 F 

I T 
I F 
I 

oT 

SwitchB 
?,oF 

I T 
I 
I 
I 

F 

SwitchC 

F 

lOT 
I F 

SwitchD 

1...--.-' o-T~---~ 

F 

I...------c-ro T 

I = True when LIT and False whennolliT 

Fig. 4-29. Mechanization of a logic equation. 

77 



logic equation can be always mechanized by a switching network. 
This involves the following four steps: 

1. Construct a truth table. 
2. Write the logic equation. 
3. Simplify the equation, if possible. 
4. Draw the required switching network. 

You are encouraged to apply these four steps to several 
hypothetical problems. 

Consider the following equations: 

1. f = AB + AB + AB 

2. f = A + B 

Equation 1 is the sum of three Boolean terms, each of which is the 
product of two variables (A and B) . Each variable is represented in 
either its true or complemented form. Equation 2 represents the 
sum of the two variables A and B when B is complemented. Equa­
tion 1 is a min term expression of the two variables, and equation 2 is 
a maxterm expression of these variables. 

In general, a minterm expression of n variables is defined as 
the product of these n variables where each variable is expressed in 
either its true or complemented form. A maxterm of n variables is 
the sum of these n variables where each variable is added in either 
its true or complemented form. Consequently, there are four min-

A 

B 

A f=AB+AC+AC+AC+ABD 

C 

A 

C 

A ABD B 
5 

Fig. 4-30. Mechanization of a logic equation using logic symbols. 

78 



Miniterm Maxterm 

1 ABC 16 A+B+C 
3 -- 14 - -

ABC A+B+C 
5 - - 12 -ABC A+B+C 
7 -- 10 - -

ABC A+B+C 
9 - 8 -

ABC A+B+C 
11 - 6 -ABC A+B+C 
13 ABC 4 -

A+B+C 
15 ABC 2 A+B+C 

Fig. 4-31 . Minterms and maxterms of variables A. B. and C. 

terms of two variables, and they are (AB, AB. AS AND AS). 
Likewise, there are four maxterms of two variables. They are (A + 
B) , (A + B) , (A + B) and (A + B). 

There are eight minterms and eight maxterms of three vari­
ables as shown in Fig. 4-31. As might be expected, there are 2n 

minterms and 2n maxterms when n variables are considered. 
Observe that the minterm identified by an odd number in the 

upper left corner of each block in the left column relates to the next 
higher even number in the right column in accordance with DeMor­
gan's Theorem . For example, the maxterm in block #2 is the 
complement of the minterm in block #1. 

79 



Chapter 5 

Introduction to Programming 

The process of writing instructions to control the operation of a 
computer is called programming. Most of the remaining chapters in 
this book will deal with programming in one form or another so we 
will only briefly describe the basic technique at this point. 

In general, computer programming refers to the analysis and 
planning of a problem solution . The phase of instruction writing is 
referred to as coding . Here are a few of the concepts involved in 
programming. 

Binary Operation: The programming process wi\l be de­
scribed in terms of the most common form of digital computer. This 
machine operates internally entirely in binary (base 2) arithmetic 
logic, and is arranged so that information is stored and accessed in 
units termed words. The ATARl uses words that are 8 bits in size . 

Decimal Operation: The other broad class of computers 
operates logically in the decimal system (although decimal digits 
are fabricated within the machine by combinations of bits) and 
stores and accesses its information in units of individual characters 
such as digits or letters. This machine is referred to as a character­
addressable or variable-word-length computer. 

Notation: The ATARI operates internally using the binary 
number system. Skilled programmers often work using the octal 
(base 8), or hexadecimal (base 16) systems. These systems are 
simply conveniences for programmers to use while they work. 
However, the discussion here will be in terms of decimal values to 

80 



simplify understanding of computer principles. It must be kept in 
mind that the basic nature of the machine is binary . 

Number Operations: The purpose of a computer is to ma­
nipulate information that is stored within the machine in the form of 
binary numbers . These numbers can be treated as symbols and can 
represent alphabetical information. They can also be treated as 
numbers and can be used arithmetically. Each word contains one 
number and its associated algebraic sign (positive or negative). The 
instructions which dictate the operations to be performed on such 
numbers (data) are also numbers and are also as a single word in the 
same physical medium as the data . The stored programming con­
cept presumes that there is no physical difference between these 
two types of numbers and that the instruction numbers may also be 
manipulated, in the proper context, as data. 

Addresses: Each word in storage is assigned an address in 
order to refer to it, in a manner analogous to postal addresses. The 
addressing scheme is part of the hardware of the machine, and is 
wired in permanently. Word addresses range from zero to the 
storage size of the machine. Any word may be loaded with any 
desired information. Some of this information is the data of the 
problem being processed; the rest is the instructions to be exe­
cuted. The machine is designed basically to execute instructions in 
the order in which they are stored, advancing sequentially through 
the instruction words at addresses that increase by one. 

Instruction Format: Each instruction contains two basic 
parts: (1) a coded number that dictates what operation is to be 
performed and (2), the address of the word (data) on which to 
perform that operation. 

Programming for a digital computer could be done in binary, 
but becomes increasingly difficult as programs get longer. For this 
reason, programmers prefer to work in languages that are at a 
higher level. In higher-level languages, mnemonic operation codes 
are used in place of numbers, and all absolute machine addresses 
are replaced by symbols. These alterations greatly speed up the 
work of the programmer. High-level languages permit a format that 
fits the problem rather than the machine . BASIC is one such lan­
guage that is readily adapted to both home and business applica­
tions. 

BASIC 
BASIC means Beginner's All-Purpose Symbolic Instruction 

Code.It is a high-level language that a beginning programmer can 

81 



understand with relative ease. An interpreter that changes the in­
structions in BASIC to terms that can be used by the machine must 
be present in the computer when a BASIC program is used . BASIC 
was developed at Dartmouth College in the sixties for educational 
purposes . It is. in fact. probably the simplest higher-level language 
available at this time . 

BASIC is widely implemented on microcomputers like the 
ATARI 800. and it is also available on most large scale computers. 

THE PROGRAMMING PROCESS 
Programming is a creative process because it is primarily a 

problem-solving job . You. the programmer must select the best or 
most effective and efficient solution for a given problem . Once a 
solution is developed. you must then code it into a language the 
computer understands. so that the computer can help solve the 
problem. 

Before beginning to write a program to solve a given problem. 
there are some basic considerations with which you should become 
familiar. In general. there are four objectives in programming: 

1. Economy of storage 
2. Speed of computation 
3. Accuracy 
4. Simplicity 

With these four basic objectives in mind. let's see what steps 
are involved when programming a computer . 

1. Accurately define the problem-exactly. 
2. Propose a feasible and economical solution . 
3. Redefine the problem in terms of what the computer is 
expected to do. 
4. Prepare a flowchart of the computer solution . 
5. Code the solution . 
6. Debug (remove errors from) the program. 
7. Document the program . 

Before you can solve a problem. you must understand the 
problem. First make a list of all available data . Then define the 
problem in terms that are understandable terms both to yourself and 
others who might be involved with the problem . Finally . propose a 
method of solving the problem. If there is more than one possible 
solution-and there usually is-choose the one that best fulfills the 

82 



four basic objectives of programming, especially simplicity. 
When you define a problem and then propose a feasible solution 

to it, you are developing what is called an algorithm, or a step-by­
step solution to a specific problem . Once this is accomplished, you 
must tailor the solution to fit the computer's capabilities, or the 
solution will be useless. You must define both the problem and 
solution in terms of what the computer can do . 

Next, you should draw a flowchart of the solution. Basically, a 
flowchart is the algorithm illustrated in graphical form. See Chapter 
13 for more details . After the solution is flowcharted, it can be 
coded into a language that the computer understands. You must then 
check the program for errors and finally, document it. 

LET'S WRITE A PROGRAM 
We could continue on the theory of program writing for several 

more pages , but to get you acquainted with the practice, let's jump 
right in and try writing a simple program. If this is your first attempt 
at such an undertaking , there will still be a few hazy areas once we 
are finished , but you should have a good basic knowledge which will 
enable you to attempt the more advanced problems later on in the 
book . 

Remember, to write a computer program , you must have the 
following: 

1. A precise definition of what the program is to accomplish. 
2. A detailed , step-by-step plan of how the program goals will 
be achieved. 
3. Knowledge of the programming statements can be used to 
implement the step-by-step plan . 

Define precisely what the program is to accomplish: 
You are more than likely familiar with the Fahrenheit temperature 
system. You have also probably heard of the Celsius temperature 
system that is supposed to eventually replace the Fahrenheit sys­
tem. So let's write a temperature conversion program. Here's 
exactly what the program is to accomplish: 

This program is to provide a fast and easy means of converting 
between the Celsius and Fahrenheit temperature systems. 
The direction of the conversion is to be specified; then the 
temperature that is to be converted must be entered. The 
converted temperature is then displayed or printed. 

83 



This precise definition of what the program is to accomplish is 
the first and most important part of program writing. With this out of 
the way, we can continue to the second step. 

Make a step-by -s tep plan of how the program goals will 
be achieved: There will usually be more than one solution to a 
problem, so the exact method of developing the step-by-step plan 
will differ with each programmer. In most cases, however, it is best 
to rely on the technique known as flowcharting. A flowchart is 
simply a set of symbols that indicate the steps of program execu­
tion . Each block in a flowchart usually contains one and only one 
instruction . The standard flowcharting symbols appear in Fig . 5-l. 

The terminal symbol is used to indicate the beginning and 
ending points of a program; words like "start," "end," or "stop" are 
normally written inside it. The input/output symbol is used to 
indicate an input or output operation. The decis ion symbol indicates 
a decision or yes/no question, with the nature of the decision 
normally written inside the symbol. As might be imagined, the yes 
and no paths provide two directions for the program to continue in, 
depending upon the result of the decision. 

(~) 

(A) Terminal start 
or stop 

D 
(D) Process 

o 
(8) Input/output 

o 
(E) Connectoi 

D 
(G) Document 

Fig . 5·1 . Flowcharting symbols. 

84 

<> 
(C) Decision 

(F) Keyboard 

i 

(H) Arrows . flow 
lines 



The process symbol is a rectangle . It indicates operations such 
as add. subtract. load accumulator. or store. The circle is used to 
refer from one point to another when it is difficult or impossible to 
physically connect them with a line . For example. corresponding 
letters placed in these circles could show the continuation of a 
program from one sheet of paper to another. 

The keyboard symbol is used to represent an output to a video 
terminal or input from a keyboard. The document symbol generally 
represents an output on a printer. Finally. the arrowheads and the 
flow lines depict the relationship between symbols and identify 
operational sequences . 

To write a flowchart for our sample program. we must take the 
description of exactly what the program is to accomplish and pro­
vide the appropriate flowchart symbol for each step. 

First. each program must have a begin­
ning point. 

Next a prompt must indicate what infor­
mation the user should input. 

Now. the description says we will have to 
input a temperature in either Celsius or 
Fahrenheit. We can change this each 
time the program is run. so the informa­
tion should come from the keyboard. 

Now the computer must perform an op­
eration (convert the temperature in one 
system to the other) . 

Now the results of the conversion (the 
output) should be printed . 

All programs must have an Ending Point. 

tempera tures 

85 



Implement the step-by-step plan with programming 
statements: Before we can actually write the program, we must 
have an understanding of standard programming statements. The 
BASIC programming statements used in this program are shown in 
Table 5-1. Let's apply these statements to accomplish the steps 
shown in the program flowchart . 

The first step in the flowchart is "Begin". Since we do not need 
a program line to "begin", we will take this opportunity to write a 
REMark statement that gives the title of the program: 

10 REM **CELSIUS TO F AHRENHEIT** 
20 PRINT "CELSIUS TEMP" 

The second statement PRINT "CELSIUS TEMP", causes the 
computer to display the question, CELSIUS TEMP? The second 
step in the flowchart calls for an input; in this case, the temperature 
in the Celsius. So the response to the next line of the program (30) 
will come from the keyboard. We need to select a name for the 
variable which will receive the data . How about "C" for Celsius? 

30 INPUT C 

The next step in the flowchart calls for a computer operation: 
the Celsius temperature must be converted to Fahrenheit. To 
convert the Celsius temperature to Fahrenheit, the Celsius temp­
erature is multiplied by 1.8 and then 32 degrees is added to the 
results . So our next statement will be: 

40 LET F = 1.8*C+32 

The next step in the flowchart calls for printing the results of 
the computation. 

50 PRINT C; "C EQUALS " ;F;"F" 

The last step on the flowchart is the end of the program so we'll 
write 

60 END 

Here is the initial version of our program 

86 



Table 5-1. BASIC Programming Statements. 

Atari Programming Statements 

Let Assigns names and values to 
variables. 

PRINT "string literal" Prints on paper or displays 
on screen the exact char<;lc-
ters enclosed by quotation 
marks. 

PRINT variable name Prints or displays numerical 
content of variable. 

PRINT expression Computes mathematical expres-
sion ; then prints or displays 
the result. 

PRINT item; item List of items printed or dis-
played on same line without 
added spaces. 

PRINT item. item List of items printed or dis-
played on same line aligned 
into columns 

REM Remarks can be included in 
program to document or ex-
plain . Ignored by computer. 

Goto Alters order of program 
execution. 

ILthen Makes decisions based on re-
lational tests. 

Read .. . data Supplies data items from pro-
gram-resident list. 

Input Supplies data items from 
keyboard . 

Stop Stops program execution. 

Deluxe Programming Statement 

On ... goto Program branches made to 
computed line number. 

87 



10 REM **CELSIUS TO FAHRENHEIT .. 
20 PRINT "CELSIUS TEMP" 
30 INPUT C 
40 LET F = 1.8*C + 32 
50 PRINT C; "C EQUALS ";F; "F" 
60 END 

And here's how the program will look when executed: 

CELSIUS TEMP? 
15 
15 C EQUALS 59F 

To satisfy our initial program requirements, we must writ~ 
another program to provide a means to convert Fahrenheit to 
Celsius. In general, we merely reverse the operations of the first 
part of the program to come up with the following scheme. 

10 REM .. FAHRENHEIT TO CELSIUS** 
20 PRINT "FAHRENHEIT TEMP"; 
30 INPUT F 
40 LET C = 5/9*(F-32) 
50 PRINT F; "F EQUALS" ;C;"C" 
60 END 

Assuming we have a Fahrenheit temperature of 59 degrees, 
what is its Celsius equivalent? 
Here's how the program will look when executed. 

FAHRENHEIT TEMP? (The computer asks) 
59 (You type this in) 

The computer will print or display the following: 

59 F EQUALS 15 C 

LINE NUMBERS 
From the previous discussion, we know that a BASIC program 

is composed of a series of statements which manipulate data. Each 
BASIC statement occupies one line. Each line is identified by a 
number which appears at the beginning of the line. Obviously, no 
two lines may use the same number. In most cases, the computer 

88 



executes the statements in the order of their line number, and 
these line numbers are normally increments of ten; that is, 10 ,20, 
30, etc . This gives the programmer nine numbers between state­
ments to add other statements later to expand the program if 
necessary. 

BASIC STATEMENTS 
Earlier in this chapter you were introduced to BASIC state­

ments, but since these must be thoroughly understood to program 
in BASIC, let's review these statements and go into more detail. 
There aren't really very many to learn , so make sure you know and 
understand each before continuing wi th programming. 

Let: The let or replacement statement is used to assign a value 
to a variable name . For example, in our temperature conversion 
program , 40 LET C = 5/9*(F-32) assigns C the value of 5/9 times 
the Fahrenheit temperature minus 32 degrees. 

Successive let statements can be used to place a number of 
constants into different variables. For example, suppose we wish to 
place the four constants 22, 32, 43, -12 in variables A, B, C, and D 
respectively. Four let statements could be written as follows: 

10 LET A = 21 
20 LET B = 32 
30 LET C = 43 
40 LET D = -12 

The four constants 21 , 32, 43, and -12 are then assigned to the four 
variables A, B, C, and D. 

Read and Data Statements: While the let statement allows 
for the placement of a constant into a variable, its use becomes 
unwieldy if a large number of constants are to be entered. In the 
above example, four statements were required to enter four con­
stants. The read and data statements are used to overcome this 
difficulty . To assign the four constants in the above example, only 
two statements are required . One statement identifies the con­
stants (data). It would be written: 

10 DATA 21, 32, 43, -12 

The read statement assigns these constants to the variables. It 
would be written: 

89 



20 READ A,B,C,D 

The first constant is assigned to the first variable listed, the second 
constant to the second variable, and so forth. Thus, with only two 
statements we could assign dozens of constants to corresponding 
variables. The read and data statements are the most common way 
of entering constants into the computer. 

Print Statement: Once the program has finished, we need a 
means of displaying the results . The print statement is used for this 
purpose. It consists of the word print followed by a list of the data 
and variables to be put on the screen. For example, if we wished to 
print out the values of variables A,B,C, and D, we would write: 

20 PRINT A,B,C,D 

When this statement is executed, the constants stored in these 
locations are printed. 

The print statement also allows a message to be printed. The 
message is enclosed in quotation marks . For example, the state­
ment: 

30 PRINT "END OF DATA" 

causes the words END OF DATA to be printed. Notice the differ­
ence between the two statements PRINT X and PRINT "X". In the 
first statement, the value assigned to the variable X is printed. In 
the second statement, the message X is printed. To illustrate how 
this can be used, consider the program: 

50 LET X = 3 
60 PRINT "X=" ,X 

Statement number 50 assigns X the value of 3. Statement 60 causes 
the message "X=" to be printed. It is followed by the value of X. 
This gives a printout of 

X = 3 

If ... then statement: One of the most powerful control 
statements in BASIC is the if.. .then statement. It is a decision­
making statement that allows the computer to choose alternative 
courses of action, depending upon the relative size of two constants. 

90 



Table 5-2. Symbols Used in the BASIC Programming Language. 

Symbol 

< 
> 
< = 
> = 
<> 

Meaning 

is equal to 
is less than 
is greater than 
is less than or equal to 
is greater than or equal to 
is not equal to 

The two constants can be compared in any of six different ways. The 
symbol explaining the relationship of the two constants are shown in 
Table 5-2. 

The if.. .then statement takes the form: 

10 IF X > 0 THEN 30 

This says that if X is greater than 0, execute statement 30. If X is not 
greater than 0, then the next statement in the sequence is executed . 
As you can see, this type of statement is a conditional branch which 
depends on the value of X. 

Goto Statement: The goto statement is the unconditional 
branch statement. It consists of the word go to followed by a line 
number. For example, GOTO 160 causes line 160 to be executed 
next rather than the line that is next in sequence. 

On ... goto Statement: This statement is a conditional 
mUltiple-branch statement. It is also known as a computed goto 
statement. The format is: 

10 ON X GOTO 20,30,40 

The integer portion of X is evaluated. If X = 1, the program 
branches to statement 20. If X = 2, the program branches to 
statement 30. If X = 3, the program branches to statement 40. 
Although only three possible branches are shown here, the state­
ment can contain as many possibilities as needed. Also, the X may 
be a formula or expression rather than a single variable. An expres­
sion such as X = A - B would be evaluated first; then the outcome 
would be used to determine the branch. Noninteger values of X will 
be truncated to their integer values before being used to determine 
the branch . As you can see, this type of statement can become very 
complex. However, when properly used, it can do the same job as 
many if. .. then statements. 

91 



For ... To and Next Statement: These statements are used 
to control the repeated execution of a program loop. When using 
these statements, the program loop begins with the for. .. to state­
ment and ends with a next statement. The format of the for. .. to 
statement is 

15 FOR X = 1 to 100 

When this statement is encountered, a counter, X, is set to the first 
value on the right side of the equal sign. In the example above, X is 
initially set to 1. The program then executes the statements in the 
loop . If the variable X is encountered in any of the statements in the 
loop, it is assumed to have the value of l. 

The last statement in the loop is the next statement. Its format 
is: 

NEXT X 

This informs the computer that the first pass through the loop is 
complete and that X should be set to its next sequential value. In 
this case, X is incremented by 1 to the value 2 and the loop is 
repeated. The loop is repeated again and again with X being set to 
every value from 1 to 100. Each time the next X statement is 
executed, the new value of X is compared with the final value of 100. 
This continues until X has assumed all values called for in the 
for ... to statement. The loop is repeated for the last time when X is 
set to 100. At this time, the program leaves the loop and executes 
the first statement following the next. 

As a simple example, consider the loop below 

10 FOR X = 1 TO 5 
20 PRINT X 
30 NEXT X 

The computer will set X = 1, then print it. X will then be in­
cremented and the loop repeated . The program above will produce 
the following output: 

92 

1 
2 
3 
4 
5 



In our example, X was set to all values for 1 to 5. The for. . . to 
statement could just as easily have called for all values from 1 to 
1000 or from 13 to 20, etc. The variable which assumes these values 
need not be X. Any variable could have been assigned. Most of the 
time when a for. .. to statement is written , a step size of 1 is used. In 
our example , X was stepped (incremented) by 1 each time through 
the loop. However, other size steps can be specified by the for. .. to 
statement. For example the statement: 

FOR N = 2 TO 1000 STEP 2 

specifies that the variable N will be assigned the values 
2,4,6,8, ... 1000. The for. .. to statement can also be told to count 
backwards by using the following format: 

FOR X = 1000 TO 1 STEP-1 

In other words, X is decremented. 

Subscripted Variables: It is often convenient to use sub­
scripted variables when programming with BASIC. For example, if 
we have a list of 20 numbers to be added , we can call the entire list 
by a single variable name. If we call the list A, the first number on 
the list could be A

1
; the second, Az; the third, A

3
; and so forth. When 

entering data from a video terminal or I/O typewriter, the subscript 
must be typed on the same line as the variable. For this reason, 
subscripts are written in parentheses . For example, AI is written 
A(1), Az is written A(2), etc. Be careful not to confuse subscripted 
variables such as X(U with simple variables composed of a letter 
and a numeral such as Xl. 

In the terminology of BASIC, the list of 20 numbers described 
above is called an array . We arbitrarily called the array by the 
variable name A. In BASIC, an array name must consist of a single 
letter. Since there are only 26 letters, we can use no more than 26 
arrays in a single program. The list of 20 numbers described above 
is called a one-dimensional array. The 20 numbers in the array are 
known by the subscripted variables A(l) through A(20). An array 
can sometimes have two dimensions . For example, consider the 
numbers shown in Table 5-3. This table contains 20 numbers just 
like the list discussed earlier. However, the table is divided into 4 
colurrms of 5 numbers each. Thus, we call this a two-dimensional 
array or matrix. The numbers in this type of array are described by 
double subcripted variables. If the array is A, the number in the first 

93 



Table 5-3. A Two-Dimensional Array. 

Second Subscript (columns) 

Vi 
~ (1) (2) (3) (4) g 
c. 31 .7 79.6 16.8 11.5 
.~ 19.9 37.3 87.2 53.6 

.0 10.3 94.0 83.2 44.4 
~ 76.1 19.9 49.4 29.1 (/) 

~ 
01 .7 21.7 57.9 37.3 

u:: 

row and first column is A(l ,1). By the same token, the third number 
in the second column is A(3,2). Arrays are useful when large 
amounts of data must be handled nonsequentially or when alterna­
tions of data must be achieved . 

Dim Statement: The dim or dimension statement is used to 
deal with lists and two-dimensional arrays in BASIC . It allocates 
storage and assigns names to the lists and tables to be used. The 
dim statement has two formats: 

30 DIM A(6) 
40 DIM F(lO,4) 

The first statement defines a list called A and allocates 6 memory 
locations for storage. The second statement defines a table (a 
two-dimensional array) called F with 10 rows and 4 columns. Sev­
erallists or arrays may be defined with one dim statement by simply 
including the definitions on the same line separated by a comma. 

Gosub and Return Statements: In BASIC, as in most lan­
guages, subroutines can be used . An often needed computation can 
be written in BASIC, then used by the main program as often as 
needed. The gosub statement causes the main program to branch to 
the subroutine. A line number following the word gosub tells where 
the subroutine is located. For example, the statement go sub 205 
tells the program to branch to line 205 and execute the statements it 
finds there . The end of the subroutine is signified by a return 
statement, which sends execution of the program to return to the 
main program. The return causes the statement following the one 
containing the gosub to be executed next. 

List Command: List is generally used as a command, not as 
a statement within a program. It causes the program in the com-

94 



puter to be displayed in its entirety. This allows you to review, edit, 
or modify the program conveniently without retyping it. 

REM Statement: The remark statement lets the program­
mer insert notes , comments, or messages of any kind into the 
program . The remarks do not affect the program itself. They simply 
allow you to tell what the program is, how it is used , and how to use 
it. For example, 10 REM PROGRAM FOR COMPUTING GRADE 
AVERAGE will cause the statement PROGRAM FOR COMPUT­
ING GRADE AVERAGE to be printed when the program is listed . 

Input Statement: We have seen that data can be assigned to 
variables by using the let statement or by using the read and data 
statements in pairs. There is also a third method of assigning 
values. It involves the use of the input statement. The format of the 
input statement is 

50 INPUT A,B,C 

If this input statement is used in a program, the computer executes 
the program in the normal fashion until this statement is encoun­
tered. When the computer finds the input statement, it will display a 
question mark on the terminal. After displaying this question mark, 
the program cannot proceed until a reply is received from the user. 
The user sees the question mark and types the values he wishes to 
assign to the variables A, B, and C. The computer then accepts the 
three values, assigns them to variables A, B, and C, and continues 
the execution of the program. 

The input statement can specify as many or as few variables as 
needed. However, when the computer types the question mark, the 
program must respond by typing as many constants as there are 
variables in the input statement. 

It is often convenient to have several different input state­
ments scattered through a program . Each input statement can 
specify a different combination of variables. In this case, it would be 
very easy for the programmer to forget which input statement calls 
for which variable. For this reason , programmers usually adopt the 
technique of placing a print statement just before the input state­
ment. For example, in the following program, line 20 causes a 
message to be printed which clarifies the question mark produced 
by line 30. The program looks like this : 

20 PRINT "WHAT ARE THE VALUES OF A,B,C,X, AND Y"; 
30 INPUT A,B,C ,X,Y 

95 



Without the print statement the computer simply prints a 
question mark. However, with the print statement the computer 
prints: 

WHAT ARE THE VALUES OF A,B,C,X, AND Y? 

By requiring a reply from the programmer, the input statement 
allows the "real-time" input of data. When used with an appropriate 
print statement, it also allows two-way communication between the 
programmer and the computer. In fact, if enough print and input 
statements are carefully used, it can appear that the computer and 
the programmer are carrying on an intelligent conversation. 

End Statement: The end statement is important because it 
must make up the last statement in any program. It consists simply 
of a line number followed by the word end . When the computer 
encounters this statement, it stops execution of the program. 

96 



Chapter 6 

Introduction to the AlARI 800 

The AT ARI 800 is a series of components which function together 
with a television set as a single system. The basic system includes: 

* Computer Console 
* TV Switch Box 
* Ac Power Adapter 
* Program Recorder and Power Cord 
* 2 Instruction Books: 

Operators Manual 
ATARI BASIC 

* 2 Cartridges: 
AT ARI Educational System 
ATARI BASIC LANGUAGE 

The software components are the operating system software, 
the programs inside the ATARI Educational System, the ATARI 
BASIC Language cartridges and, of course, the contents of the two 
books. 

The basic system may be enhanced in several ways: with 
controllers; 8 and 16K RAM memory modules; a printer; floppy 
disk drives, and cartridge, disk, and cassette software. 

Inside the AT ARI 800 Console are the central processing unit 
(CPU) and the memory bank containing the operating-system 
read-only-memory (10K ROM) module and 8K (8 thousand charac­
ters or "bytes") of user programmable random access memory (8K 
RAM), and two expansion sockets for additional RAM memory 

97 



modules . The Console also holds the keyboard, cartridge slots, 
controller jacks, and a serial 1/0 Port for connecting to peripheral 
components . 

The TV switch box allows you to change from regular TV 
reception to computer display by moving the sliding switch on the 
box. The ac power adapter plugs into a normal wall socket and 
converts it to the low voltage used by the ATARI 800. 

The ATARI program recorder provides software storage in 
computer readable form. You may purchase preprogrammed cas­
settes from your AT ARI retailer or other software and computer 
dealers and you may use any blank "high-quality audio cassette tape 
to save programs you write yourself. 

UNDERSTANDING SOFTWARE 
The AT ARI 800 Basic System is very much like an empty sheet 

of paper. It has the potential for an unlimited number of applications, 
but that potential remains dormant until you add the software. 

The software that accompanies the AT ARI computer consists 
of programs considerably more complex than those you studied in 
the preceding chapter. The foundation programs are supplied in 
the operating system ROM module . They activate the keyboard and 
the screen display so that you can create pictures and text one 
screenful at a time. These programs control the flow of all informa­
tion within the computer. 

Usually you add a second level of software to the ATARI 800 . 
This can be done by inserting a cartridge into the cartridge slot. 
This software transforms the AT ARI 800 into a special purpose 
machine for playing a game, presenting educational material, ma­
nipulating information or entering programs through the keyboard. 
The program recorder and optional floppy disk drive provide addi­
tional methods for loading programs into the computer. 

ATARI application cartridges contain programs that are per­
manently recorded in a ROM within the cartridge. They control the 
computer in machine language, the most intricate level on which to 
manipUlate the computer. These cartridge programs produce full­
color, animated displays and complex electronic decision-making. 
Many entertaining game cartridges are available, and each is de­
signed to be easy to learn but difficult to master . 

Other AT ARI Cartridges have a more serious purpose. They 
are tools for increasing your speed and accuracy in handling words 
and numbers. ATARI programmers identify and analyze problems 
of interest such as checkbook or mail list management. They then 

98 



design a generalized solution to each problem, program that solu­
tion in machine language, and record it in the cartridge . When you 
insert the cartridge, the ATARI 800 repeats this preprogrammed 
solution, substituting your data from the keyboard into its equa­
tions. Although all cartridges operate in the same general fashion, 
each cartridge causes the ATARI 800 to use the screen display, 
keyboard , and/or controllers in a different way. You will need to 
read the instructions which accompany each cartridge for specific 
details. 

KEYBOARD 
The ATARI 800 Keyboard (Fig. 6-1) has alphabetic, numeric, 

graphic and screen editing functions which are detailed in the 
paragraphs to follow. Most keystrokes produce a visible change on 
the display screen. However, there are a few keys which are only 
used in combination with others . To investigate the effects of each 
key, power up your AT ARI 800 without a cartridge in the cartridge 
slot and you will see the display pictured in Fig. 6-2. Notice the 
square below the A in ATARI. This square is called the cursor. A 
cursor is a mark which indicates where the next character you type 
will appear on the screen. The ability to move the cursor to any 
position on the screen and change the characters being displayed is 
one of ATARI 800's most useful features. 

A glance at the keyboard (Fig. 6-1) tells you that it closely 
resembles that of an ordinary typewriter. In using this keyboard, 
remember that each key will repeat its function rapidly if you 
depress it for longer than one second. 

Special Keys 
Pressing either of the shift keys and holding it down while 

pressing another key will produce the upper case letter or the 
character shown on the upper half of the key, the exclamation mark 
or quotation mark, etc. 

The control key, ctrl , functions as a second type of shift. When 
it is depressed in conjunction with the escape (esc) key and another 
key, a character from a completely new set of characters appears on 
the screen. These "graphic" characters can be used to produce 
interesting pictures , designs,and graphs either with or without the 
ATARI BASIC cartridge. Striking a key while holding down the ctrl 
key will produce the upper-left symbol on those keys having three 
functions . 

Find the caps/lowr key on the right hand side of the keyboard 

99 



100 



Fig. 6-2. The "memo page mode." 

and press it once. You can then type lower case letters, numbers, 
some punctuation marks, and math symbols by pushing single keys. 

You can see that the caps/lowr key locks all the alphabet keys 
into their alternate character displays. The non-alphabet keys­
those which show two or three characters on the key tops-remain 
unchanged . Note that this is not the way the shift lock works on an 
ordinary typewriter. Try out the caps/lowr function following the 
chart in Fig. 6-3. You will find this feature useful when creating 
pictures with graphic characters and when programming in BASIC. 

The ~ key has three functions. First , it moves the printing 
mechanism to the left margin and down one line. The AT ARI 800 
will do this automatically after 38 characters even if the return key 
hasn't been pushed. The largest number of characters that will fit on 
a single physical line across the screen is 38. However, the com­
puter allows as many as three display lines (116 characters) to be 
combined into a single entity called a logical line . Logical lines will 
be important when using the screen editor and when programming 
in BASIC language. 

Second , the return key can be pushed to indicate the end of a 
logical line for the computer . At times it will be convenient to push 
the return key at the end of each physical line, making it coincide 
with each logical line . At other times the end of a logical line will not 
coincide with the end of a display line . 

Third, the return key activates the computer. The specific 
action taken depends on the software that is controlling the com­
puter at the time the return key is pushed . 

The c1r-set-tab key operates much the same as the tab key on a 
regular typewriter. The shift and c1r-set-tab keys set a tab stop at 
the cursor position . The ctrl and clr-set-tab keys clear the tab stop 
under the cursor. The c1r-set-tab key by itself spaces the cursor 

101 



DOTHIS SEE THIS 
PRESS TYPE 

HOLD DOWN mD ABeD •• • 

ISH 1FT' TYPE 
PUSH ABe D ••• 

liD PRESS TYPE 
HOLD DOWN EJ ABeD ••• 

ICTRL' 
Return Key 

Fig. 6-3. Upper and lowercase characters. 

COMMENTS 

UPPERCASE 
ALPHABET 

LOWERCASE 
ALPHABET 

CONTROL 
GRAPHICS 
ON ALL 
LETTER KEYS 

over to the next tab stop. This key operates on logical lines so you 
can set tabs at any position as far as the 116th character. 

The )Il Key switches characters into inverse video. Press it 
again to go back to nonnal display. 

The Break Key interrupts the computer while it is busy fol­
lowing instructions. Refer to the cartridge instruction sheet that 
came with your computer and to Fig. 6-4 for its exact function. 

The Four Keys to the right of the keyboard allow you to select 
different starting positions within a cartridge. Each starting posi­
tion is the beginning of a game or an application stored within a 
single cartridge. Push the system reset key to stop the computer 
and start from the beginning of the next game or application. Push 
the option key to choose among the variations possible within a 
game or application . After you have made your choices with the 
select and option keys, push the start key to begin the action. More 
complete instructions are provided with each cartridge. 

Edit Features 
In addition to these special function keys, there are keys that 

allow immediate editing capabilities. These keys move the cursor 
and modify the display . They are used in conjunction with the shift 
and ctrl keys. 

102 

The following key functions are described in this section. 

CTRL CLEAR )Il 
SHIFT CLEAR 
CTRLINSERT 
CTRL DELETE 

CTRL + SHIFT INSERT 
CTRL.... BREAK 



CTRL+ 
CTRL4-

SHIFT DELETE 
DELETE 

ESC 

Homing the Cursor. Pressing the shift and clear or ctrl and 
clear keys simultaneously erases all characters on the screen and 
moves the cursor to the home position at the upper left corner of the 
screen. 

Moving the Cursor. To move the cursor, press the ctrl key 
and the appropriate arrow key at the same time. 

CTRL • : Moves cursor up one physical line without changing 
the program or display. 

CTRL ... : Moves cursor one space to the right without dis­
turbing the program display . 

GIiII 2 

lID 3 

Inserts one character space. 

Deletes one character or space. 

Stops temporarily and restarts screen display with­
out "breaking out" of the program. 

Rings buzzer. 

Indicates end-of-file. 

Keys Used With ~ 

Inserts one physical line. 

Deletes one physical line. 

~ ''''4',,'£*- Returns screen display to upper-case alphabetic char­
acters. 

Special Function Keys 

Stops program execution or program list, prints a 
READY on the screen, and displays cursor. 

Allows commands normally used in direct mode to 
be placed in deferred mode; e.g., In direct mode, 
IiDiII Emil clears the screen display. To clear the 
screen in deferred mode, type the following after the 
program line number. Press .. then press GmI 
and I!I!EI together. 

PRINT " .. IIIiII E!D " 

Fig. 6-4. Keys used with the control keys. 

103 



CTRL' : Moves cursor down one physical line without chang­
ing the program or display . 

CTRL+: Moves cursor one space to the left without disturbing 
the program or display . 

Like the other keys on the AT ARI keyboard, holding the cursor 
control keys for more than V2 second causes the keys to repeat. 
When the cursor is placed on top of a letter, that letter is shown in 
"inverse video" on the screen . When the cursor is moved away from 
the letter, the letter returns to its normal state . If the cursor is 
placed on top of a character and then another key is pushed, the new 
character will replace the original one . 

Line Insert Function: Press the shift and insert keys simul­
taneously to create a space for a new line. The logical line that 
contained the cursor, and all lines below, it will be moved down one 
line . Be aware that any information on the bottom line of the screen 
will be lost. 

Character Insert Function: Press the control and insert 
keys simultaneously to a space for a new character. The character 
under the cursor will be moved to the right. The rest of the line will 
also shift to the right . The cursor remains on the space which is now 
available for a new character . 

Character Erase Function: Pressing the delete back s key 
erases each character as the cursor moves back one space at a time . 
The total length of the line remains unchanged . 

Line Delete Function: Pressing the shift and delete back s 
keys simultaneously removes one whole logical line . If there are 
lines below the one that was deleted, they will all move up one line 
leaving a new blank line at the bottom of the screen. 

Character Delete Function: Pressing the ctrl and delete 
back s keys erases the character under the cursor by moving all the 
characters to the right of the cursor one space to the left. The lines 
become shorter. 

The Esc (escape) Key disables the cursor control move­
ments and prints a graphic character instead . For example, press 
the esc key; then hold down the ctrl key while pressing the delete 
back s key . Instead of the text moving to the left, you will see a 
special graphics character displayed. This function will prove very 
useful when you begin programming in BASIC. The characters 
produced in this manner are shown in Fig. 6-5 . 

TheJllKey switches characters into inverse video . Press it 
again to go back to normal display. 

The Break Key interrupts the computer while it is busy 

104 



DO THIS SEE THIS 

PUSH PUSH • • • 18 • • 
PUSH PUSH SIMULTANEOUSLY • iii II • • iii • • II • D (11 

• • • 
PUSH PUSH SIMULTANEOUSLY • D 18 • iii • • • 18 • • • • •• C'·I 

• •• • • • Special Computer Keys 

TheD key switches characters into inverse video. Press it again to go back to normal 
display. 
IIiIZI:I interrupts the computer while it is busy following instructions. Refer to the 
cart ridge instruction sheet for its exact function . 

Fig. 6-5. Keys producing graphics. 

following instructions . Refer to the cartridge instruction sheet that 
came with your computer and to Fig. 6-5 for its exact function. 

PROGRAM RECORDER 
The AT ARI program recorder is used with a cassette to hold 

blocks of software too large to be maintained in cartridge form. 
Programs, recorded on magnetic tape, are copied by the computer 
from the tape into RAM memory . You can run or modify these 

105 



programs by entering instructions through the keyboard. You can 
also type your own programs into memory, and then store them on 
tape for later use or modification. 

The ATARI program recorder resembles an ordinary audio 
cassette tape recorder. Its playback and recording levels have been 
permanently set at the correct volume for use with the AT ARI 
Computer. 

The instructions with each program cassette type on the 
keyboard to have the computer begin to load the tape . After the 
program is completely loaded into the computer , the tape will stop 
automatically. Press the stop-eject button on your recorder to tum 
off the motor. Now type a command or press the computer system 
key labeled "start" - whichever is specified on the instruction 
sheet-to begin using the program . 

LEARNING TO PROGRAM THE ATARI 800 
With the large array of preprogrammed cartridges available for 

the ATARI 800, one might find it difficult to imagine why it is 
necessary to learn how to program the computer . Once you become 
involved in computer use, you will quickly find that you'll have 
numerous uses for the computer for which no preprogrammed 
cartridges are available . You can, of course, hire a programmer to 
work the problem out for you, but this can run into the money and 
cost you a pretty penny. So, it's best if you learn to work out the 
programs for yourself. 

Even if you have no practical use for computer programming, 
you may find that learning to write programs in BASIC for your 
AT ARI 800 is an exciting and valuable experience. Programming 
sharpens your skill in thinking, in analyzing problems, and in de­
vising step-by-step solutions. It deepens your understanding of 
computers in general, and no one can deny that computers are 
becoming a major force in modem society . A knowledge of pro­
gramming makes you a more informed consumer and citizen who no 
longer accepts "It was the computer's fault" as an excuse for bad 
management. 

But perhaps the most important reason to learn to program is 
that it is fun. Start by instructing the computer to draw pictures and 
to print verbal messages on the display screen. Soon you will be 
choosing more and more complex tasks for your AT ARI 800 and will 
be enjoying the challenge of designing programs which allow the 
computer to do your bidding. 

As mentioned in an earlier chapter , good computer programs 

106 



are usually created in three stages-design, coding and debugging. 
During design you choose a task for the computer and analyze it into 
its component parts. During coding you translate these parts from 
their English or mathematical form into a computer language, in this 
case ATARI BASIC. Next you type your coded program into the 
ATARI 800 computer. As each line is typed, ATARI BASIC will 
check it and report any mistakes in coding. After you have corrected 
these mistakes in coding, you can try to run your program. In other 
words, you can direct the computer to follow the set of instructions 
you have given it. Often you find you have made an error some­
where. The ATARI 800 may succeed in running your program, but 
the result is not exactly what you wanted. Perhaps you have made 
an error in design and need to go back and plan your program more 
carefully. At other times the computer will tell you that it can't 
follow your instructions as given because they contain logical or 
grammatical errors . You have made an error in coding or typing. At 
the third stage, debugging, you find and correct all of your remain­
ing errors. You continue to run and debug your program until the 
AT ARI 800, under the control of your program, produces the re­
sults you desire. 

Note that no computer actually "solves problems" or "answers 
questions" by itself. Using your design, the computer performs the 
instructions you have given it. It mechanically produces a "solution" 
to a problem whenever you run the program. 

As mentioned in Chapter 5, BASIC (Beginners All-Purpose 
Symbolic Instruction Code) was invented so that people could learn 
to write programs quickly and easily. To you, the user, the BASIC 
language is a set of rules stated in English which tells you how to 
give the computer the instructions it needs to do your bidding. To 
the computer, BASIC is the same set of rules written in machine 
language. The rules enable it to translate your BASIC instructions 
into action. We call this machine language program that "translates" 
BASIC into machine language the BASIC language interpreter.ltis 
contained in the AT ARI BASIC Language Cartridge. The program 
which you write is called the BASIC source program. You enter 
your source program into the ATARI's random access memory by 
typing it on the keyboard while the BASIC cartridge is in the 
cartridge slot. The AT ARI uses the operating system programs (in 
the operating system ROM), the BASIC language interpreter (in 
the cartridge), and your BASIC source program (typed on the 
keyboard or loaded from cassette and stored in RAM) in order to 
follow the instruction you have written in your program. 

107 



WRITING BASIC SOURCE PROGRAMS 
This section will give you a brief introduction to actually 

programming the ATARI 800 computer-in ATARI BASIC. You 
were given a brief introduction to fundamental BASIC programming 
in an earlier chapter, but here you will actually start to press keys on 
the keyboard and see the results on the screen . Follow the instruc­
tions exactly, but don't expect to understand all of them at this time. 
You'll eventually have a good understanding of programming, but it 
will have to come with time and experience. If you are a program­
mer experienced in using other forms of BASIC, the following 
paragraphs will give you insights into AT ARI BASIC specifically. 
Remember , however, there is a great deal more to learn than is 
presented in this chapter. 

First of all, let's explore the use of nine BASIC commands: run, 
break, return, dim, print, input , list, if ... then, and goto. Start out 
by inserting the BASIC cartridge and powering up. In the upper left 
hand comer of the screen, you'll see the word ready. This is the 
BASIC prompt. It is a message from BASIC to you telling you that 
the computer is waiting for a command. You'll also see a small 
square mark directly beneath the word ready. This mark is the 
cursor. It tells you where the next character will be printed. 

Since ATARI BASIC language can only read upper case let­
ters, press the shift and caps/lowr keys. This locks all letters into 
upper case . Now type an English sentence 

COMPUTER, ARE YOU AWAKE? 

and push return. The screen will now appear as shown in Fig . 6-6. 
Yes, ATARI 800 is awake. It is sending you a prerecorded 

message saying that you have typed in, or entered , a line of charac­
ters which is not in its list of correct BASIC language codes. You 
may find out more about your mistakes in the chapter on Error 
Messages in AT ARI BASI C in your AT ARI owners' manual. Before 
you look at this chapter, however, try entering the line again with 
these changes . Type the line exactly as shown , including the word 
print and the quotation marks : 

PRINT "ATARI 800, ARE YOU AWAKE ?" 

Be meticulous when you type . The computer cannot guess what you 
meant to include nor can it ignore extra characters . The computer 
will display each character on the screen as you type. The line above 

108 



DO THIS 

TYPE 
COMPUTER , ARE YOU AWAKE ? 

PUSH 

SEE THIS 

Fig. 6-6. The error message. 

COMMENTS 

1. BASIC prompt - This will disappear off the 
top of the screen as new lines are added 
at the bottom. 

2. You typed this line. 

3. This is an ERROR MESSAGE from 
BASIC telling you that your source pro­
gram cannot be interpreted. 

The light and dark colors are reversed at 
the first illegal character. 

4. BASIC prompt 

5. The cursor again. 

is correct BASIC code. Now push the return key and the new screen 
should appear as shown in Fig. 6-7. 

If your screen display doesn't look like the one in Fig. 6-7, 
check the display to make sure you have copied every character 
exactly. Be sure to start your line with the cursor at the left margin. 
When you have found your mistake push the return key and try 
again. 

Play around with the print command for a few minutes. You 
may put any characters you like inside the quotation marks including 
all the graphic and control characters described earlier in this 
chapter. Experiment with the cursor controls and with logical lines 
of up to 116 characters. What happens if you forget to put in the 
quotation marks? Try it and see. 

Occasionally you may "lose control" of your computer by 
inadvertantly commanding it to do something you didn't anticipate. 
If this happens, press the break key. If you have been using a 
program the computer should display 

STOPPED AT LINE 10 (or some other number) 

If the break key doesn't work, press the system reset key. The 
initial (blank) screen will be displayed. 

You can also use the print command to turn your AT ARI 800 
into a calculator. Type the following on the keyboard. 

PRINT 45782 + 11111 

109 



DO THIS 
TYPE 

PRINTATARI 800 , ARE 
YOU AWAKE?" 

PUSH 

I RETURN I 
SEE THIS 

1, READY 

2, PRINT " ATARI800, ARE YOU AWAKE?" 

3, ATARI 800, ARE YOU AWAKE 

Fig, 6-7, Printing in the direct mode, 

and push return. The display should appear as shown in Fig. 6-8. 
The AT ARI 800 evaluates expressions in the same way you 

were taught to do it in elementary school. Everything inside 
parentheses ( ) will be done first. Then exponentiation (A) will be 
done. Exponentiation involves mUltiplying a number by itself a 

DO THIS 
TYPE 
PRINT 45782 + 11111 
PUSH 

I RETURN' 

SEE THIS 

1. READY 

2. PRINT 45782 + 11111 

3, 56893 

4. READY 

Fig, 6-8. Using the computer as a calculator. 

110 



specified number of times. For example, 5/\3 means 5 times 5 
times 5 and is equal to 125. You will often see this expression 
written 53. It is read "five raised to the third power". Type the 
exponentiation symbol on the computer by pressing the shift key 
and the key with the symbol/\ on it (The /\ symbol will be found in 
the upper right-hand corner of a key near the right side of the 
keyboard.) 

All multiplication (*) and division / is done next. Addition + 
and subtraction - are performed last. If you have forgotten that the 
order in which calculations are done is important, try a few prob­
lems . You will find that (4+6)/5 = 2, while 4+6/5 = 5.2, and 4/5+6 
= 6.8. 

The AT ARI 800 will print any whole number value in the range 
-999999999 to 999999999. It will express fractions and numbers 
outside this range in scientific notation as a decimal number be­
tween one and ten times a power of ten. For example, if the value of 
your expression is 12,345,678,909 the ATARI 800 will write it as 
1.23456789E + 10. E + 10 means you must move the decimal point 
ten places to the right to obtain the original number. You read 
this number as 1.23456789 times ten to the tenth power 
(10,000,000,000) . 

You can enter any expression and the AT ARI 800 will do the 
arithmetic. Remember that the BASIC language does not tell you 
the correct expression to use to solve number problems. You must 
figure out how to calculate interest payments, sales commissions, 
expected time of arrival, or whatever you want to know. BASIC 
does have a large repertoire of arithmetic, algebraic, and trig­
onometric functions available, but you, the programmer, must tell 
the computer how to combine them to produce meaningful results. 
You will find a complete discussion of BASIC language arithmetic in 
a later chapter. 

Thus far, we have been using ATARI BASIC language in the 
direct mode; that is, the ATARI 800 follows your command as soon 
as you give it and then forgets about it. In the program mode, you 
may give the computer as many as about two hundred lines of 
instructions. Each line is then stored until the run command is 
entered. Then the computer follows one instruction after another 
until the whole task is completed. 

Although most BASIC commands can be given in direct mode, 
only a few of them are useful to the beginner. The run command is 
almost always used in direct mode . It is used to start a program at 
the beginning. It is typed as a three letter sequence in upper case 

111 



only. No action occurs until you press the return key . This key 
signals the computer to read what you have typed and to execute the 
entire series of instructions. Pressing the break key stops the 
program from running and displays the cursor. Break and return are 
the only single key commands in BASIC. All others are typed as a 
series of letters followed by the return key. 

If you wish to enter a program into the A TAR! 800 using the 
program mode, start each line at the left margin of the screen with a 
line number. You may number your lines with any whole numbers 
between one and 32767. You may enter program lines in any order. 
However, the computer will rearrange them and execute them 
starting with the line with the smallest number and proceeding to 
the next higher numbered line until all instructions have been 
followed. Most BASIC language programmers number their lines 
by tens so that they have nine line numbers available in case they 
wish to add new lines between the original ones. 

To get started, power down and up once again. This will clear 
out your RAM memory . Then print: 

10 PRINT "WIZARD, ARE YOU AWAKE?" 

Continue by pushing return and then typing run; then press return 
again. The display should appear as shown in Fig . 6-9. You have just 
entered and run a BASIC program! 

To edit any line of BASIC code, use the display control keys. 
Position the cursor over the character you wish to change and make 
the corrections within a logical line. When the line is correct , press 
the return key. The ATAR! 800 will put the corrected line in place of 

DO THIS COMMENTS 
TYPE 
'10 PRINT "WIZARD, ARE YOU AWAKE?" 1. Here is your one line program: 

SEE THIS 

Fig, 6-9. Printing in the deferred mode. 

112 

2. The computer found your stored Instruction 
and followed it. 

3. After completing its task, the computer slg' 
nals you with the BASIC prompt. 



the original one in RAM. To remove a whole line, type its line 
number and press the return key. For practice, replace the word 
"Wizard" in line 10 with your own name. Be sure to make your 
changes in the numbered line 10, not the line displayed after "run." 

List is the command that makes the computer display your 
BASIC source program. Any time you wish to see the instructions 
your computer is following, press break, type list, and press the 
return key. Note that you may use the break key to interrupt the 
computer even if it is running a program or calculating. All other 
commands must be given only after the cursor is displayed. Com­
mands must be typed in upper case or you will get an error message. 
Now add the following lines to your program. Remember to press 
the return key before beginning a new line that starts with a line 
number. Be sure not to leave out the colons. 

5 DIMA$(10) 
20 Input A$ 
30 IF A$ = "YES" THEN PRINT "YOUR PROG 

RAMMING CAREER HAS BEGUN.":GOTO 60 
40 IF A$ = "NO" THEN PRINT "TECHNOLO 

GY MAY PASS YOU BY . . . ":GOTO 10 
60 PRINT "TillS PROGRAM HAS ENDED." 

You should know that BASIC ignores blank spaces unless they 
are inside quotation marks so you can leave them out when you need 
to save space. However, do put them in when you can so your 
listings will be easier for people to read. 

Run this program and answer the question "Are you awake?" 
several times. Type your answer after the ? and then push the 
return key. Run the program several times more. Try responding 
Yes; YES; yes; No; and maybe. What happens when your answer is 
neither'YES" nor "NO"? The program should print the message in 
line 60 and then end. 

To understand what the computer is doing, examine the pro­
gram line by line. Line 5 sets aside a place in the computer's 
memory for your answer to the question in line 10. Line 10 has the 
command print "something." This something that you put be­
tween the quotation marks is called a string constant: string be­
cause it is a string of letters, numbers, and/or graphic characters, 
and constant because it will remain the same every time you run this 
program. 

Line 20 has the command "input something". This means: 

113 



"Computer, wait until something is typed on the keyboard. Show 
whatever is typed on the screen and store it in a space in RAM 
memory labeled A$ . When the return key is pressed, go on to the 
instruction with the next higher line number." A$ (read A string) is 
called a string variable because it is a string of letters, numbers, 
and/or graphic characters which will be different every time you run 
this program. Each string variable within a single program must 
have a different label. Many labels are available in BASIC, but for 
now, limit yourself to A$ through Z$. Line 5 gave us space to store 
ten characters in A$ . If we expected a long answer we could save 
more memory for A$ by using a large number within the paren­
theses. 

Line 30 has if . .. then print "something": GOTO 60. When the 
condition following if is met , that is, when the computer finds the 
letters Y -E-S stored in the place in memory labeled A$, the instruc­
tions in the rest of the line are followed. It prints "Your Program­
ming career has just begun." The computer encounters the colon (:) 
next. This tells it that another command is coming. The GOTO 
command says "skip down to line 60 and ignore the lines in be­
tween." 

When the condition is not met, that is, when the computer finds 
that anything besides Y-E-S has been entered at line 20, the rest of 
the line is ignored and the computer goes on to the next numbered 
line, in this case, line 40. 

Line 40 operates the same way as line 30 does . If anything but 
N-O has been entered at line 20, its condition isn't met , and line 40 
doesn't print anything . The computer just goes on to the next 
numbered line which is line 60 . Line 60 prints its message , and 
since there are no more lines, the program ends and ready is 
disp layed. If N -0 has been entered at line 20, all of the line 40 would 
be executed. The message in line 40 would be printed and program 
control would jump back to line 10. The program would begin over 
again . 

Suppose the programmer wants to demand an answer of "YES" 
or "NO" before the program will end. The computer must be 
programmed to print a message whenever something other than 
"YES" or "NO" has been entered . After this message, the question 
should be repeated on the display screen. Try to figure out what line 
to add to make the computer do this. There are many ways, but one 
solution would be: 

50 PRINT "YOU MUST ANSWER 'YES' OR 'NO' 
TO GO ON.":GOTO 10 

114 



Enter this line . List and run this revised program several 
times. To anticipate what the display will look like, pretend you are 
the computer and follow the program . Remember that computers 
are machines which blindly stick to their programs no matter how 
nonsensical the results may be . This is why the design stage of 
programming is so important. It is up to you, the programmer, to 
plan each display the user will see, to anticipate what the user will 
type in response to that display, and to tell the computer what to do 
with every response. 

You can use the previous format to code an unlimited number of 
dialogue-type programs. You will need to change the string con­
stants and occasionally rearrange the GOTO's. Here is another 
example . . . a type of quiz . 

10 DIMN$(100) 
20 DIMA$(20) 
30 DIMP$(20) 

110 PRINT "THIS IS THE OCEANS PROGRAM." 
120 PRINT "HELLO, WHAT IS YOUR NAME"; 
130 INPUT N$ 
140 PRINT "OK, ";N$; 
150 PRINT ".NAME AN OCEAN THAT BEGINS WITH P." 
160 INPUT P$ 
170 IF P$ = "PACIFIC" THEN PRINT "PERFECT.":GOTO 

190 
180 PRINT "THAT ISN'T THE ONE WE ARE LOOKING FOR. 

TRY AGAIN."; GOTO 150 
190 PRINT "NOW NAME ONE THAT BEGINS WITH A." 
200 INPUT A$ 
210 IF A$ = "ATLANTIC" THEN PRINT "YOU'RE TOO 

GOOD, "N$;" . NOW GIVE SOMEONE ELSE A 
TURN.":GOTO 120 

220 PRINT "TRY AGAIN. REMEMBER SPELLING 
COUNTS!":GOTO 190 

The display on the screen will appear as shown in Fig. 6-6 for 
this particular program. See if you can follow the program and the 
answers on the screen . Does it make sense? 

EDITING YOUR PROGRAM 
To perfect your program, you will want to use the keys de­

scribed under "Edit Features" earlier in this chapter . When you are 
using these keys, remember that the keyboard and display are 

115 



Fig. 6-10. A question and answer program. 

logically combined for a mode of operation known as screen-editing. 
Each time a change is completed on the screen, the return key must 
be pressed. Otherwise, the change is not made to the program in 
RAM. 

Example: 10 REM PRESS RETURN AFTER LINE EDIT 
20 PRINT :PRINT 
30 PRINT "THIS IS LINE 1 ON THE SCREEN." 

To delete line 20 from the above program, type the line number 
and press the return key . Merely deleting the line from the screen 
display does not delete it from the program. 

TRANSFERRING PROGRAMS TO AND FROM CASSETTE TAPES 
Now that you have a BASIC program entered into the com­

puter, and you know that it runs, you may want to save it on tape . 
Once you have a copy of the program on tape , you will never have to 
type that particular program again . When you want to change your 
program, you can load your first version from the tape; edit the old 
lines and add new ones; then save the new version. The copy in the 
computer disappears each time you tum off your computer or load 

116 



another program, but the copy on the tape will be available until you 
choose to erase it. 

Set up your program recorder according to the instructions 
provided by the manufacturer . See Fig. 6-11. If you already have a 
program in the computer, be sure not to shut the power off at any 
time. If you have not yet written a BASIC Source Program, write 
one. 

To transfer a program to tape : 
1. Insert a blank cassette tape into the program recorder with 
the recording surface toward you and the label so that you can 
read it. 
2. Push the rewind button and wait until the tape stops. 
3. Push the tape-counter reset button until it reads 0000 . 
4. Push the stop-eject button once. 
5. Type CSAVE on the computer keyboard. Then press the 
return key. You should hear two beeps. 
6. Push the record and play buttons simultaneously. Now 
push the return key on again. You will hear a series of tones 
indicating that the recorder is now being controlled by the 
computer. The recorder will erase the beginning of the tape 
surface for eighteen seconds; write the introductory header 
needed by the computer; copy your program onto the tape; 
then stop. 

Fig. 6-11. Connecting the cassette recorder. 

117 



7. It is always good programming technique to create a 
backup copy of each program you wish to save. ATARI re­
comends that you store one program on each cassette and 
keep a backup on a separate cassette-just in case! 
8. If you are planning to store more than one copy of the 
program on the tape, you may make your backup by repeating 
steps 5 and 6. Be sure to write down the starting tape-counter 
number for your backups as well as for your original pro­
grams. 
9. Push the stop button on the program recorder. 

10. Finally, write the name ot your new program and its tape­
counter number on the cassette label and on a page which you 
keep in the binder with your manuals. 
To load a program from tape to the computer. 

1. Insert BASIC source tape into the program recorder. 
2. Rewind tape to the beginning and press the stop-eject 
button. 
3. Press the tape-counter reset button until it reads 000. If 
you have put more than one program on a single tape, advance 
the tape to the number where your program starts. 
4. Type CLOAD on the computer keyboard. Then press the 
return key. You will hear one beep. 
5. Push the play button on the program recorder. Then push 
the return key again. You will hear a series of tones as your 
program is loaded. 
6. When the tape stops, your program has been transfered 
from the cassette tape to the computer. 
7. Push the stop-eject button on the program recorder. 

We have covered quite a lot of material in this chapter so don't 
be discouraged if you're somewhat confused at this point. Many 
people are inexperienced in the kind of logical thinking required to 
write programs , so allow yourself plenty of time to become com­
fortable with the step-by-step nature of the computer, and the 
sometimes infuriating attention you must pay to detail . Remember 
that inexperience does not mean inability. There are a tremendous 
number of new and sophisticated concepts presented in this book. 
You will want to read it many times and keep it handy so that you can 
look up details when you forget them. 

The chapters that follow will give you more experience in 
BASIC programming on the ATARI 800. They will include methods 
of using graphics and sound. 

118 



Chapter 7 

Optional Peripherals and Software 

The ATARI 800 can be customized by adding components that are 
appropriate for the tasks you have at hand. By choosing a particular 
combination of preprogrammed software, controllers, memory 
modules, and peripheral components, you can completely change 
the character and capacity of the machine. 

8K COMPUTER SYSTEMS 
The ATARI 800 basic system contains 8K of random-access 

memory and the ATARI 410 program recorder. This system config­
uration will accommodate all of the preprogrammed cartridges and 
cassettes which make up ATARI'S 8K library. Some of the software 
in the 8K library will require the use of hand held controllers which 
are available from AT ARI retailers. 

In addition to the preprogrammed 8K library, the BASIC lan­
guage cartridge may be used in conjunction with the 410 program 
recorder and any high-quality audio cassette to create and store an 
unlimited number of programs that you may want to write yourself. 
The ATARI BASIC language offers you the opportunity to use 
sophisticated graphic displays, four-voice sound, and input from the 
controllers of your choice in programs limited only by your imagi­
nation. 

THE PRINTER 
The AT ARI 820 printer may be added to any AT ARI 800 

119 



system. Some programs in the 8K library will offer the option of 
printing program results as well as displaying them on the screen. 
The 820 is a high-resolution, dot-matrix, impact printer which uses 
standard 4-inch roll paper and will output up to forty characters per 
second. Your printer should be connected in a "daisy chain" series 
between the serial jack labeled PERIPHERAL on the side panel of 
the AT ARI console and the program recorder . See your manual for 
details. 

16K COMPUTER SYSTEMS 
The basic AT ARI BOO system comes with one 8K random­

access memory module installed. This module contains approxi­
mately B,OOO storage cells to use. The capacity of the computer may 
be expanded to enable you to use longer programs by inserting 
additional RAM memory modules into one or both of the empty 
sockets in the memory bank. These modules may be purchased in 
BK and 16K versions . The 8K version is ATARI part number 
CX852. The 16K version is part number CXB53. 

These additional memory modules may be inserted in any 
combination (see Fig. 7-1) , except that the 10K ROM must remain 
in socket O. Also, socket 1 must be filled first; then socket 2, and 
finally socket 3. Note that the ninth option, 48K of memory, dis­
ables the cartridge slots and should only be used after gaining some 
experience operating the computer. 

The memory bank is located under the ribbed top cover of the 
console. You may install modules yourself by opening the cover and 
arranging the modules in one of several configurations as shown in 
Fig. 7-1. To install these modules, first , tum the power off using the 
main power switch, and open the cartridge door. Next rotate the 
two black clamps outward as far as they will go . Lift up the front 
edge of the cover slightly and slide the entire hinged door and ribbed 
top cover toward you. lnside the memory bank you will see four 
module sockets, two of which are already occupied by the operating 
system 10K ROM and one BK RAM module. The operating system 
10K ROM must remain in the front socket. The other three sockets 
are available for expanding the computer's RAM . 

When inserting modules, press firmly on both sides and push 
straight down. The ATARI BOO may then be reassembled by slip­
ping the back of the ribbed cover into place first. The two metal tabs 
on the underside of the cover fit into two slots at the back edge of the 
console . Shut the front edge of the cover and replace the blank 

120 



Fig. 7-1. The ATARI console . 

. plastic clamps by rotating them forward . Close the cartridge slot 
door and power up again. 

CONTROLLERS 
There are several different controllers used with the ATARI 

800. Each of them can be attached directly to the computer or to 
external mechanical devices so that outside events can be fed 
directly to the computer for processing and control purposes . 

Paddle: A paddle consists of a knob that can be turned to send 
a number between 1 and 228 to the computer. The number in­
creases as the knob is rotated counterclockwise. This number can 

121 



be used with other functions or commands to "cause" further actions 
such as changes in sound or graphics. For example, you can use the 
statement IF PADDLE(3) = 14 THEN PRINT "PADDLE AC­
TIVE." The ATARI console can control eight paddle controllers 
numbered zero through seven from left to right. 

Paddle Trigger (PTRIG): The paddle trigger is a button on 
the paddle. You can use the PTRIG statement to determine whether 
the button is pressed (returns a value of 0) or not pressed (returns a 
value of 1) on a particular paddle (0-7). For example, you can use the 
statement IF PTRIG (3) = 0 THEN PRINT "BOMBS DROPPED!" 

Joystick: Many game cartridges available for the ATARI use 
"joystick controllers to move images on the screen. All four joy­
sticks in a set are identical and can plug into any of the controller 
jacks provided on the console. Each joystick has one button and a 
stick which can be pointed in eight possible positions. Hold the 
joystick with the button in the upper left-hand comer and push the 
top of the stick in the direction that you want to move the object on 
the screen. Always consult the instructions that came with the 
cartridge to determine whether or not joystick should be used and, if 
so, what each position means. 

If you wish to use the joystick in programs you write yourself, 
use the stick command just as you used the paddle command. Each 
joystick position will return a different number as shown in Fig. 7-2. 
The joystick controllers are numbered from 0-3 from left to right. 

First controller 
Second controller 
Third controller 
Fourth controller 

STICK(O) 
STICK(I) 
STICK(2) 
STICK(3) 

Stick Trigger (STRIG): The button on the joystick is the 
stick trigger. You can use the STRIG statement for the stick trigger 
in the same way you used the PTRIG statement for the paddle 
trigger. You can also use the STRIG statement to evaluate the 
status of a key on the keyboard that you have designated as a 
controller. 

THE ATARI 810 DISK DRIVE 
The ATARI 810 disk drive provides fast, reliable data storage 

and has the capabilities to: 

1. Store programs on diskette . 

122 



14 

10 6 

11"--~ ...... ---1·7 

9 s 

13 

Fig. 7-2. Joystick controller movement. 

2. Retrieve programs from diskette. 
3. Create and add to data files needed by programs. 
4. Make copies of disk files. 
5. Erase old files from a diskette. 
6. Load and save binary files. 
7. Move files to and from memory, screen, diskette, printer, 
and any new peripherals that AT ARI may introduce. 

Each disk drive contains a microprocessor with its own 
software in addition to the hardware necessary for the magnetic 
head to move back and forth "across" a floppy diskette. The A TARI 
800 with 16K of RAM can accommodate up to four ATARI 810 disk 
drives, and each will operate independently of the others. 

ATARI diskettes are thin, circular mylar sheets covered with 
an oxide similar to that used on recording tape. They are protected 
by a special, black jacket which keeps them from being bent, 
scratched, or contaminated. See Fig. 7-3. 

Before writing on a blank diskette, the surface must be "or­
ganized" so that the disk operating system (see the next section) 
will know where the infonnation is located. This is accomplished by 
formatting a diskette into tracks and sectors . The diskette is logically 
divided into 40 tracks with 18 sectors per track. Each of these 

123 



Spindh Hah 

Timing Hoi. 

Fig. 7-3. An ATARI diskette. 

single-density diskettes has a total of 720 sectors on which informa­
tion may be written. 

Eleven of the sectors are allocated by the DOS for "special 
duty" so they are not available to you. 

1 sector is used for the boot . 
8 sectors are used for the directory. 
1 sector is used for the volume table of contents. 
1 sector (number 720) is not addressable and so is unused. 

llTOTAL 

Each of the remaining 709 sectors can store 128 bytes of 
information, 3 bytes of which are used for overhead. That gives a 
total byte capacity per single-density diskette of 88,625 bytes! 

DISK OPERATING SYSTEM 
DOS (pronounced doss) is an acronym for disk operating sys­

tem. It is an extension of the ATARl operating system (OS) that 
allows interfacing with a disk drive so that information can be 
passed between the diskette and the computer memory (RAM). 

The operating system contains two main parts: a disk utility 
package (DUP) and a file management subsystem. When the system 
is energized, it executes a bootstrap loader (selfloader) that brings a 
special file called DOS SYS into RAM and begins executing the 

124 



initial code in that file . DOS SYS contains both the file management 
subsystem and the disk utility package . 

When DOS is loaded into the computer RAM, it occupies a 
special area in RAM that does not interfere with the memory 
locations allocated for BASIC or assembly language programs. The 
memory map in Fig. 7-4 shows the RAM locations occupied by the 
DOS . After the disk drive system has been booted and the DOS SYS 
file is loaded, the AT ARI operating system turns control of the 
system to the cartridge . If no cartridge has been inserted, OS gives 
control of the system directly to the disk utility package (OUP). 

The executive program in the DUP allows you to display the 
DOS menu which lists the commands available to you . For example, 
DELETE FILESPEC is menu selection D. It then executes the 
selected utility . The DUP program also allows easy access to the 
file management subsystem (FMS) without your having to under­
stand the logical structure of FMS. 

ADDRESS 
DECIMAL HE~ADECIMAL 
6~~3~ ~FFF 

EOOO 

1087'1 O1A7F 

'1856 2680 

'1985 
4864 

4863 
17'12 

0167F 
!JOO 

12FF 
700 

CONTENTS 

OPERATING SYSTEM ROM 

DIS~ OPERATING SYSTEM (2A7F-700) 
DIS~ 1/0 BUFFERS (curr.nt DOS) 

DIS~ OPERATING SYSTEM RAM 

FILE MANAGEMENT SYSTEM RAM 

17'11 bFF FREE RAM 
1536 bOO ---------------- -. -- ._------_ .. _---- --_ .. _---------------------------
1151 
1021 

'1'1'1 
'160 

511 
256 

212 

211 
210 

209 
209 

207 
203 

202 
176 

128 

47F 
3FD 

3E7 
3CO 

IFF 
100 

FF 

04 

03 
02 

01 
DO 

CF 
(8 

CA 
80 

80 

Fig. 7-4. Memory map (partial). 

OPERATING SYSTEM RAM (47F-200) 
CASSETTE BUFFER 

PRINTER BUFFER 

HARDWARE STAC~ 

PAGE ZEIIO 
FLOATINQ POINT (u •• d b~ OASIC) 

BASIC or CARTRIDGE PROGRAM 

FREE BASIC RAM 

FREE BASIC .nd ASSEMBLER RAM 

FREE ASSEMBLER RAM 
------------------- BASIC 

ZERO PAGE 
ASSEMBLER ZERO PAGE 

125 



File Management Subsystem 
This system provides a simple way of storing data on a diskette 

by putting a logical structure on top of the formatted diskette . 
Because of the file manager program. it is not necessary to keep 
track the number of the sectors a program occupies. which sectors 
they are. or how to find a particular file . FMS reI ieves the user of all 
that responsibility. 

Operations on a file. such as open. close. put. and get are also 
controlled by the FMS. In addition. it defines the subfunctions 
displayed on the DOS menu and are accessed by the DUP. The 
subfunctions that are not defined by FMS are binary load. binary 
save, run at an address. run cartridge. copy file, duplicate file and 
duplicate disk . 

The FMS organizes files using filenames you have assigned to 
your files. 

The disk directory contains a li st of all the files on a diskette. 
On demand, it displays the filename. the extender. and the number 
of sectors allocated to that file. It will either display a partial list or a 
complete list depending on the parameters entered. Wild cards can 
be used in the parameters. 

The AT ARI DOS recognizes two "wild cards" which can be 
substituted for characters in a filename. They are represented by 
the special characters ? and *. The first. ?, is used in place of any 
single valid character. If there are 25 files on a diskette and you want 
to display a list of those five-letter file names that begin with PROB 
and have the extender (ending) .BAS. you would type PROB? .BAS. 
This wild card can only be substituted for a single character. To 
substitute for a variable number of characters. there is another, 
more flexible wild card. 

The * stands for any valid combination of characters in a 
filename or an extender. The following examples illustrate the use 
of the .... 

* .BAS will list all the program files on a diskette in 
drive 1 that end in .BAS . 

02:*. * will list all the program files on the diskette in 
drive 2. 

PRO* .BAS will list all the program files on the diskette in 
drive 1 that begin with PRO and have .BAS as 
the extender. 

126 



A program may be loaded from the diskette using a wild card in 
the file name if there is no more than one file to which it is 
applicable. 

The ATARI 810 also has the capabilities to copy files . For 
example , if you desire to copy a file from one diskette in drive 1 to a 
second diskette in drive 2, this can be easily done. You can also 
create a backup copy of a file on the same diskette by using the same 
filename with a different extender, or even by using a completely 
different filename. 

BASIC COMMANDS USED WITH DISK OPERATIONS 
BASIC commands used to store and retrieve files are load, 

save, list, and enter. Other BASIC commands used with disk oper­
ations are note, point, and DOS. 

LOAD(LO.) 
Format: LOAD filespec 
Example: LOAD "D1:JANINE.BRY" 
This command causes the computer system to load the file 

from the disk drive specified into the RAM. (Note here that it loads 
the tokenized version of the program. The tokenized version is 
shorter than the untokenized version in that, when recorded, this 
version contains shorter interrecord gaps. However, when a 
tokenized version is loaded, it also loads the program's symbol 
table . If the program is altered or deletions are made, the symbol 
table is NOT changed. This means that all variables which are. 
defined in the original program still exist in the symbol table. 
Therefore, it is recommended that load and save be used only when 
saving a program is its final form.) When loading a file from drive 1, 
it is not necessary to specify the drive number. 

The load command can also be used as a BASIC statement to 
"chain" programs. If you have a program that is too big to run in the 
available RAM, you can use the load statement as the last line of the 
first program. When the program encounters the load statement, it 
will automatically read in the next part of the program from the 
diskette . However, the second program must be able to stand alone 
without depending on any variables, and the like from the first 
program. 

SAVE(S.) 
Format: SA VE "filespec" 
Example: SAVE "D1:JANINE.BRY" 

127 



This command causes the computer system to save a program 
on a diskette using the file name designated in the command. Save is 
the complement of load and stores programs in tokenized form. 

LlST(L.) 
Format : LIST "filespec" 
Example : LIST "D: DEMOPR.INS" 
When a disk drive is specified, the list command causes the 

computer system to move the program currently in RAM to a file on 
the diskette using the filename specified in the command. This 
command unlike save, saves the file in untokenized format. 

ENTER(E.) 
Format: ENTER "filespec" 
Example: ENTER "D:DEMOPR.INS" 
This command causes the computer to move the file you 

specify from the diskette into RAM . The program is entered in 
untokenized form and is interpreted as the data is received. Enter, 
unlike load, will not destroy a RAM-resident BASIC program, but 
will merge the RAM-resident program and the disk file being 
loaded. If there are duplicate line numbers in the two programs, the 
line in the program being entered will replace the same line in the 
RAM-resident program. 

NOTE(NO.) 
Format: NOTE #aexp ,avar,avar 
Example: 100 NOTE #l,X,Y 
This command is used to store the current disk sector number 

in the first arithmetic variable, (avar) and the current byte number 
(within the sector) in the second avar. The numbers specify the 
current read or write position and thus indicate where the next byte 
to be read or written is located. The note command is u~ed when 
writing data to a disk file. The information in the note command is 
written into a second file which is then used as an index into the first 
file. 

Note: aexp indicates an arithmetical expression. The item 
placed here must have a numerical, not a string value. 

POINT(P.) 
Format: POINT #aexp,avar,avar 
Example: 100 POINT #2, A,B 
This command is used when reading a file into RAM. The first 

avar specifies the sector number and the second avar specifies the 

128 



byte within that sector where the next byte will be read or written . 
Essentially, it moves a software-controlled pointer to the specified 
location in the file. This gives the user "random" access to the data 
stored on a disk file. The point and note commands are discussed in 
more detail in your DOS Manual. 

DOS(DO.} 
Format: DOS 
Example: DOS 
The DOS command is used to go from BASIC to the disk 

operating system (DOS). If the disk operating system has not been 
booted into memory, the computer will go into "Memo Pad" mode 
and the user must press the system reset button to return to the 
direct mode. If the disk operating system has been booted, the DOS 
menu is displayed. To clear the DOS menu from the screen, press 
the system reset button. Control then returns to BASIC. Control 
can also be returned to BASIC by selecting B (Run Cartridge) on the 
DOS menu. 

DIRECTORY OF BASIC WORDS USED WITH DISK OPERATIONS 
The following is an alphabetical directory of BASIC reserved 

words (words reserved for BASIC) used with disk operations . Note 
that the period (.) is mandatory after all abbreviated keywords. 

RESERVED ABBREVIATION BRIEF SUMMARY 
WORD: OF BASIC STATEMENT 

CLOSE CL. IIO statement used to close a 
disk file at the conclusion of 
IIO operations . 

DOS DO. This command causes the 
menu to be displayed . The 
menu contains all DOS utility 
selections. 

END Stops program execution; 
closes files; turns off sounds. 
Program may be restarted 
using cont. 

ENTER E. I/O command used to retrieve 
a listed program in unto-

129 



GET 

INPUT 

LIST 

LOAD 

OPEN 

PRINT 

PUT 

SAVE 

STATUS 

130 

GE. 

1. 

L. 

LO . 

O. 

PR.or ? 

PU . 

S. 

ST. 

kenized fonn. If a program or 
lines are entered when a pro­
gram is resident in RAM, 
enter will merge the two pro­
grams. 

Used with disk operation to 
input a s ingle byte of data into a 
s pecified var iab le from a 
specified device . 

This command requests data 
from a specified device . The 
default device is E: (Screen 
Editor) . 

This command outputs the 
untokenized version of a pro­
gram to a specified device. 

I/O command used to retrieve 
a saved program in tokenized 
form from a specified device. 

Opens the specified file for 
input or output operations. 

I/O command causes output 
from the computer to specified 
output device . 

Causes output of a single byte 
of data from the computer to 
the specified device. 

I/O statement used to record a 
tokenized version of a program 
in a specified file on a specified 
device. 

Calls status routine for a 
specified device. 



RESERVED ABBREVIATION 
Word: 

TRAP T. 

XlO x. 

BRIEF SUMMARY 
OF BASIC STATEMENT 

Directs execution to a 
specified line number in case 
of an input error, allowing the 
user to maintain control of 
program . 

General 110 statement used in 
a program to perform DOS 
menu selections and specified 
I/O commands . 

BASIC ERROR MESSAGES USED DURING DISK OPERATION 
The BASIC error messages used by the ATARI 810 disk 

operating system are: 

ERROR 
CODE NO . ERROR CODE MESSAGE 

2 Insufficient memory to store the statement or the new 
variable name or to dim a new string variable, 

3 Value Error: A value expected to be a positive integer 
is negative; a value expected to be within a specific 
range is not . 

4 Too Many Variables : A maximum of 128 different 
variable names is allowed. 

5 String Length Error: Attempted to store beyond the 
dimensioned string length. 

6 Out of Data Error: Read statement requires more data 
items than supplied by data statement(s). 

7 Number greater than 32767: Value is not a positive 
integer or is greater than 32767 . 

8 Input Statement Error : Attempted to input a non­
numeric value into a numeric variable. 

131 



9 Array or String Dim Error: Dim size is greater than 
32767 or an array/matrix reference is out of the range 
of the dimensioned size, or the array/matrix or string 
has already been dimensioned, or a reference has been 
made to an undimensioned array or string. 

10 Argument Stack Overflow: There are too many 
gosubs or too large an expression. 

11 Floating Point Overflow/Underflow Error: Attemp­
ted to divide by zero or refer to a number larger than 
+ 1E98 or smaller than -lE99. 

12 Line Not Found: A gosub, goto, or then referenced a 
nonexistent line number . 

13 No Matching For Statement: A next was encountered 
without a previous for, or nested for/next statements 
do not match properly. (Error is reported at the next 
statement, not at for). 

14 Line Too Long Error: The statement is too complex or 
too long for BASIC to handle . 

15 Gosub or For Line Deleted: A next or return state­
ment was encountered and the corresponding for or 
gosub has been deleted since the last run. 

16 Return Error: A return was encountered without a 
matching gosub . 

17 Garbage Error: Execution of "garbage" (bad RAM 
bits) was attempted . This error code may indicatE;! a 
hardware problem, but may also be the result of faulty 
use of poke. Try typing new or powering down, then 
re-enter the program without any poke commands. 

18 Invalid String Character: String does not start with a 
valid character, or string in val statement is not a 
numeric string. 

19 Load Program Too Long: Insufficient memory re­
mains to complete load. 

132 



20 Device Number Larger than 7 or Equal to O. 

21 Load File Error: Attempted to load a nonload file. 

The following are input/output errors that result during the 
use of disk drives, printers, or other accessory devices. 

128 Break Abort: User hit the break key during I/O oper­
ation . 

129 Input/output Control Block (lOCB) already open: 
Open statement within a program loop or IOCB al­
ready in use for another device or file. 

130 Nonexistent Device Specified: Device is not turned on 
or not attached. 

131 IOCB Write Only: Command to a write-only device 
(Printer) . 

132 Invalid Command: The command is invalid for this 
device . 

133 Device or File not Open: No open specified for the 
device. 

134 Bad IOCB Number: Illegal device number. 

135 IOCB Read Only Error: Command to a read-only de­
vice. 

136 EO F: End of File read has been reached. (NOTE : This 
message can occur when using cassette files.) 

137 Truncated Record: Attempt to read a record longer 
than 256 characters . 

138 Device Timeout. Device doesn't respond. Check con­
nections between peripheral equipment and console. 

139 Device NAK: Garbage on serial port or bad disk drive. 

140 Serial Bus input framing error. 

133 



141 Cursor Out of Range for particular mode. 

142 Serial Bus Data Frame Overrrun . 

143 Serial Bus Data Frame Checksum Error . 

144 Device Done Error (invalid "done" byte): Attempt to 
write on a write-protected diskette. 

145 Read After Write Compare Error (disk handler) or bad 
screen mode handler . 

146 Function not Implemented in handler. 

147 Insufficient RAM for operating selected graphics 
mode . 

160 Drive Number Error . 

161 Too Many Open Files (no sector buffer available). 

162 Disk Full (no free sectors). 

163 Unrecoverable System Data I/O Error. 

164 File Number Mismatch: Links on disk are messed up . 

165 File Name Error. 

166 Point Data Length Error . 

167 File Locked. 

168 Command Invalid (special operation code.) 

169 Directory Full (64 files). 

170 File Not Found. 

171 Point Invalid. 

134 



Chapter 8 

I/O Operations 

This chapter describes input/output (110) devices and how data is 
moved between them. The commands explained in this chapter are 
those that allow access to the input/output devices. The input 
commands are those associated with getting data into the RAM. 
The output commands are those associated with retrieving data 
from RAM . 

As stated before, in order for the computer to be a useful 
machine, it must be able to communicate with its user. The user 
must be able to supply the computer with the programs and data 
which enable it to perform some useful operation. In addition, the 
computer must be able to provide an output showing the results of 
the computations. The input/output section of the AT ARI 800 
provides this communications capability between the central pro­
cessing unit and the outside world. 

The 110 section of the computer buffers (stores temporarily) 
and controls data transfers between the computer memory and the 
various peripheral devices . In the AT ARI 800, the data transfers 
take place in the central process ing unit. They are under the control 
of a computer program being executed by the CPU. 

In small digital computers the 110 section is extremely simple, 
consisting generally of nothing more than some gating (devices that 
output a signal when specified input conditions are met) and simple 
control circuitry. In such computers, the data transfers take place 
through the accumulator register. To read a word in from a 

135 



peripheral device, the computer executes an input instruction and 
stores that word in the accumulator. Other instructions in the 
program then cause that word to be stored in some specified mem­
ory location and/or used in a calculation . 

Output operations are performed by first loading the ac­
cumulator with the desired word. An output instruction then causes 
that word in the accumulator to be transferred to the peripheral 
device. This basic form of I/O system is simple and desirable for 
many types of computer operations . However, it is very slow and 
inefficient. 

The simplest form of input/output for any digital computer is a 
system of binary switches and lights . A group of switches can act as 
a temporary storage resister for a data word. The switches can be 
set to their off or on positions corresponding to the binary ones and 
zeros in the word to be used or entered . A button on the computer 
can be used to store that word . At the same time, output can be 
accomplished by placing lights on the various registers in the 
machine. The lights will indicate the ones and zeros stored, for 
example, in the accumulator register. The operator can read the 
numbers stored there by interpreting the binary number rep­
resented by the lights . Binary switches and lights provide a low 
cost, simple means of input/output operations in a computer . All 
digital computers have this type of I/O capability. 

Although binary lights and switches are widely used, they are 
entirely inadequate for the bulk of most computer applications. 
Consider the problem involved in storing, say, a 1000 word instruc­
tion program plus data in the computer's memory by using only a set 
of input switches. The process would be extremely time-con­
suming, and the chances of making an error would be great. This 
large program may produce a substantial number of output results 
that the programmer wishes to observe. In such case, the pro­
grammer would have to observe the resulting words one at a time on 
the binary lights of the accumulator register. This would be time­
consuming and inconvenient. As a result, more sophisticated 
input/output methods are required. 

Most of the I/O data in a digital computer is handled by 
peripheral devices. Peripheral devices are machines that communi­
cate with the computer through the input/output section. You have 
already seen several of these devices in Chapter 7. Peripheral 
devices are, in effect, a man-made interface. These peripheral 
devices not only speed up the input/output process tremendously, 

136 



but they also make it more convenient for the programmer and the 
operator. Most peripheral devices use the decimal number system 
and alphabet so that the operators and programmers do not have to 
deal with binary numbers . In the ATARI 800, the input/output 
keyboard simplifies the I/O process. 

INPUT/OUTPUT DEVICES 
The Central Input/Output (CIO) subsystem on the ATARI 800 

provides the user with a single interface to access all of the system 
peripheral devices in an independent manner. This means there is a 
single entry point and a device-independent calling sequence. Each 
device has a symbolic device name used to identify it; K, for 
example, is used for keyboard. Each device must be opened before 
it can be accessed, and each must be assigned to an I/O control 
block. From then on, the device is referred to by its 10CBnumber. 

ATARI BASIC contains 8 blocks in RAM which give the 
operating system the information it needs to perform the I/O oper­
ation. This information includes the command, buffer length, buffer 
address, and two auxiliary control variables. ATARI BASIC sets up 
the IOCB's, but you must specify which IOCB to use. BASIC 
reserves 10CB 0 for I/O to the Screen Editor; therefore you may 
not request ICOB O. The graphics statement opens 10CB 6 for input 
and output to the screen. 10CB 7 is used by BASIC for the LPRINT, 
CLOAD, and CSAVE commands. The 10CB number may also be 
referred to as the device number. IOCB's 1 through 5 are used in 
opening the other devices for input/output operations. If IOCB 7 is 
in use, it will prevent LPRINT or some of the other BASIC VO 
statements from being performed. 

The ATARI 800 uses the following, I/O devices: 
Keyboard. (K:) Input only device. The information you enter 

is displayed on the screen as each key is pressed. 
Line Printer: (P :) Output only device. The line printer prints 

ASCII (American Standard Code for Information Interchange) 
characters a line at a time . It recognizes no control characters. 

Program Recorder: (C:) Input and Output device. The re­
corder is a read/write device which can be used as either one or the 
other but never as both simul taneously. The cassette has two tracks 
for sound and program recording purposes. The AT ARI system 
cannot put sound on the audio track but the sound on the track may 
be played back through the TV speaker . 

Disk Drives: (Dl : ,D2: ,D3: ,D4:) Input and Output devices . If 

137 



16K or RAM is installed, the ATARI can use from one to four disk 
drives. If only one disk drive is attached , there is no need to add a 
number after the device cocle D. 

Screen Editor: (E:) Input and Output device. This device 
uses the keyboard and the display to simulate a screen-editing 
terminal. Writing to this device causes data to appear on the display 
starting at the current cursor position. Reading from this device 
activates the screen-editing process and allows the user to enter 
and edit data. Whenever the return key is pressed, the entire logical 
line within which the cursor resides is selected as the current 
record to be transferred to the user program. 

TV Monitor: (S:) Input and Output device. This device allows 
the user to read characters from the display and write characters to 
it using the cursor as the screen addressing mechanism. Both text 
and graphics operations are supported. 

Interface, RS-232: (R:) The RS-232 device enables the 
ATARI system to interface with RS-232-compatible devices such as 
printers, terminals, and plotters. It contains a port to which the 
SO-column printer (ATARI S25) can be attached. 

INPUT AND OUTPUT COMMANDS 
The following commands are used to control input from the 

various peripherals and output to them. Because commands in­
volving disk operations have been described in Chapter 7, they will 
not be covered again in this chapter . 

General Commands Controlling I/O Devices 
OPEN(O.) 
CLOSE(CL.) 

Formats 

Examples: 

OPEN #aexp, aexp 1 ,aexp2 ,filespec 
CLOSE #aexpr 
100 OPEN #2,S,0,"D1:ATARI800.BAS" 
100 A$="Dl:ATARISOO.BAS" 
110 OPEN #2,S ,0,A$ 
150 CLOSE #2 

Before a device can be accessed, it must be opened. This 
"opening" process links a specific IOCB to the appropriate device 
handler, initializes any CIO-related control variables, and passes 
any device-specific options to the device handler. The parameters 
for the OPEN command are defined as follows: 

138 



# 

aexp · 

aexp1 

aexp2 

filespec 

Mandatory character that must be entered by the 
user . 

IOCB or file number. This number must be used 
with the same parameters in future operations. It 
may be any number from 1 through 7. It serves to 
select the device that will be utilized. 

Code number to determine input or output opera­
tion . 
Code 4 = input operation 

8 = output operation 
12 = input and output operation 
6 = disk directory input operation 
9 = end-of-file append (output) opera-

tion. 
Append is also used for a special screen editor 
input mode. This mode allows a program to input 
the next line from E: without waiting for the user 
to press the return key. 

Device-dependent auxiliary code. An 83 in this 
parameter indicates sideways printing on a 
printer. 

Specific file designation. Must be enclosed in 
quotation marks . The format for the file-spec 
parameter is shown below. 

"D 1 \A T A ~ I 8 0 9 . ~ 

Device ~ 4L----+---If--- File 
Code Name 
Device Period 
Number required 
(Optional) as separator 

if extender 
is used. 

Required Colon I----Extender 

The close command simply closes files that have previously 
been opened with an open command. Note in the example that the 

139 



aexp number following the mandatory # character must be the same 
as the aexp reference number in the open statement. 

Other commands which are most often associated with a single 
device, but which may be used to control other devices, are de­
scribed on the following pages under the topics "Controlling 
Keyboard I/O" and "Controlling Output to the Screen" 

Controlling Cassette Input and Output 
CLOAD(CLOA .) 

Format: CLOAD 
Examples: CLOAD 

100 CLOAD 

This command can be used in either direct or deferred mode to 
load a program from cassette tape into RAM for execution. After 
you enter cload, one bell rings to indicate that you should press the 
play button and then the return key. However, do not press the play 
button until you have positioned the tape. Specific instructions for 
cloading a program are contained in the ATARI 410 Program Recor­
der Manual. Steps for loading oversized programs are included in 
the paragraphs under "Chaining Programs" at the end of this sec­
tion. 

CSAVE(CS.) 

Format: CSAVE 
Examples: CSA VE 

100 CSAVE 
100 CS. 

This command is usually used in Direct mode to save a RAM­
resident program onto cassette tape. Csave saves the tokenized 
version of the program. When you enter csave two bells ring to 
indicate that you should press the play and record buttons simul­
taneously and then press the return key. Do not, however, press 
these buttons until the tape has been positioned. It is faster to save a 
program using this command rather than a save "c" command 
because short interrecord gaps are used. 
Notes: Tapes saved using the two commands, save and csave, are 

not compatible. 
It may be necessary to enter an lprint before using csave. 
Otherwise, csave may not work properly. 

ENTERCE.) 

140 



Format : ENTER filespec 
Examples: ENTER "C" 

This statement causes a program originally recorded using the 
list command to be loaded into RAM . The program is entered in 
unprocessed (untokenized) form , and is interpreted as the data is 
received . When the loading is complete, it may be run in the normal 
way. The enter command may also be used with the disk drive as 
outlined in Chapter 7. Note that both load and cload clear the old 
program from memory before loading the new one . Enter merges 
the old and new programs . This enter statement is usually used in 
direct mode . 

Controlling Keyboard I/O 

INPUT(I.) 

Format: 

Examples : 

INPUTr#aexp{:'llfavar'\f favai\. J l ,JJ~vaI)LtsvarJ . . 
100 INPUT X 
100 INPUT N$ 
100 PRINT "ENTER THE VALUE OF X" 
100 INPUT X 

This statement requests keyboard data from the user. The 
computer displays a ? prompt when the program encounters an input 
statement. The input statement is usually preceded by a print 
statement that tells the user what type of information is being 
requested. String variables are allowed only if they are not sub­
scripted. Matrix variables are not allowed. 

The #aexp (arithmetic expression) is optional and is used to 
specify the file or device number from which the data is to be input. 
(See your owner's manual for the specifics.) If no #aexp is specified, 
input is from the screen editor (E:). If several strings are to be input 
from the screen editor, you must type one string, press the return 
key, type the next string and press the return key again. Numerical 
values can be typed on the same line separated by commas. 

Controlling Output to the Printer 

LPRINT(LP .) 

Format: LPRINT exp , exp . . . 
Example : LPRINT "PROGRAM TO CALCULATE X" 

100 LPRINT X; " " ;Y;" " ;2 

141 



This statement causes the computer to print data on the line 
printer rather than on the screen. It can be used in either direct or 
deferred modes . It requires no device specifier and no open or close 
statement. 

The following program listing illustrates a program that will 
add 5 numbers entered by the user . 

10 PRINT "ENTER 5 NUMBERS TO BE SUMMED" 
20 FOR N=l TO 5 
30 INPUT X 
40 C=C+X 
50 NEXT N 
60 PRINT "THE SUM OF YOUR NUMBERS IS ";C 
70 END 

Controlling Output to the Screen 

PRINT(PR or ?) 

Format: PRINT #aexp , exp ,exp .. . 
Examples: PRINT X,Y,Z,A$ 

100 PRINT" "THE VALUE OF X IS" ;X 
100 PRINT "COMMAS" , "CAUSE", "COLUMN", 
"SPACING" 
100 PRINT # 3,A$ 

A print command can be used in either the direct or the 
deferred mode. In the direct mode, this command prints whatever 
information is contained between the quotation marks exactly as it 
appears. In the first example, print X,Y,Z,A$ , the screen will 
display the current values of X,Y ,Z,A$ as they appear in the RAM­
resident program . In the las t example , print #3,A$, the 3 is the file 
specifier (may be any number between 1 and 7) that specifies the 
device where the value of A$ will be printed . 

A comma causes tabbing to the next tab location . Several 
commas in a row cause several tab jumps. A semicolon causes the 
next expression or value to be placed immediately after the pre­
ceding expression with no spacing . Therefore , in the second exam­
ple, a space is placed before the ending quotation mark so the value 
of X will not be placed immediately after the word "IS" . If no comma 
or semicolon is used at the end of a print statement, a return is 
output and the next print statement will start on the following line. 

142 



Chapter 9 

Mathematical and Other Functions 

The material in this chapter is designed to acquaint you with the 
arithmetic, trigonometric, and special purpose functions incorpo­
rated in the ATARl BASIC system. A function performs a computa­
tion and returns the result which can be either printed or used in 
additional computations. Included in the trigonometric functions are 
two statements, radians (RAD) and degrees (DEG) , that are fre­
quently used within trigonometric functions. Each function de­
scribed in this chapter may be used in either the direct or the 
deferred mode. Multiple functions are perfectly legal. 

The following functions and statements are described in this 
section: 

ABS 
CLOG 
EXP 
INT 
LOG 

RND 
SGN 
SQR 
ATN 

ARITHMETIC FUNCTIONS 

COS 
SIN 
DEG/RAD 
ADR 

FRE 
PEEK 
POKE 
USR 

ABS: This function returns the absolute value of a number 
without regard to whether it is positive or negative. The returned 
value is always positive . 

CLOG: Returns the logarithm to the base 10 equivalent of the 

143 



variable or expression in parentheses. CLOG(O) should give an 
error and CLOG(l) should be O. 

EXP: Returns the value of e raised to the power specified by 
the expression in parentheses. In some cases , EXP is accurate only 
to six significant digits. 

INT: Returns the greatest integer less than or equal to the 
value of the expression. This is true whether the value of the 
expression is a positive or negative number . This INT function 
should not be confused with the function used on calculators that 
simply truncates (cuts off) all decimal places . 

LOG: Returns the natural logarithm of the number or expres­
sion in parentheses . LOG(O) should give an error and LOG(l) 
should be O. 

RND: Returns a hardware-generated random number between 
o and l, but never returns 1. The variable or expression in paren­
theses following RND is a dummy and has no effect on the numbers 
returned. However, the dummy variable must be used. Generally, 
the RND function is used in combination with other BASIC state­
ments or functions to return a number for games, decision making , 
and the like. Here's a simple routine that returns a random number 
between 0 and 999 . 
10 X=RND(O) 
20 RX=INT(lOOO*X) 
30 PRINT RX 

SGN: Returns a -1 if the value of an expression is a negative 
number; a 0 if it is 0, or a 1 if it is a positive number. 

SQR: Returns the square root of an expression whose value is 
positive. 

TRIGONOMETRIC FUNCTIONS 
ANT: Returns the arctangent of the variable or expression in 

parentheses. 
COS: Returns the trigonometric cosine of the expression in 

parentheses . 
SIN: Returns the trigonometric sine of the expression in 

parentheses. 
DEG/RAD: These two statements allow the programmer to 

specify degrees or radians for trigonometric function computations. 
The computer defaults to radians unless DEG is specified. Once the 
DEG statement has been executed, RAD must be used to return to 
radians . 

144 



SPECIAL PURPOSE FUNCTIONS 
ADR: Returns the decimal memory address of the string 

specified by the expression in parentheses. Knowing the address 
enables the programmer to pass the information to USR routines , 
etc. 

FRE: This function returns the number of bytes of user RAM 
left. Its primary use is in the direct mode using a dummy variable (0) 
to inform the programmer how much memory space remains for 
completion of a program. Of course FRE can also be used with a 
BASIC program in the deferred mode. 

PEEK: Returns the contents of a specified memory address 
location. The address specified must be an integer, or an arithmetic 
expression that evaluates to an integer, between 0 and 65535. It 
must represent the memory address in decimal notation. The 
number returned will also be a decimal integer with a range from 0 
to 255. This function allows the user to examine either RAM or 
ROM locations . In the first example below, the peek is used to 
determine whether location 4000 (decimal) contains the number 
255. In the second example below , the peek function is used to 
examine the left margin . 

Format: PEEK(aexp) 
Examples: 1000 IF PEEK (4000) = 255 THEN PRINT 255 

100 PRINT "LEFT MARGIN IS";PEEK (82) 

POKE: Although this is not a function, it is included in this 
chapter because it is closely associated with the peek function. The 
poke command inserts data into the memory location or modifies 
data already stored there. Note that the data must be a decimal 
number between 0 and 255. Poke cannot be used to alter ROM 
locations. While you are gaining familiarity with this command, you 
should look at the memory location using a peek and write down the 
contents of the location. Then, if the poke doesn't work as antici­
pated, the original contents can be poked back into the location. 

USR: This function returns the results of a machine-language 
subroutine. The first expression (aexpl) must be an integer , or an 
arithmetic expression whose value is an integer, that represents 
the decimal memory address of the machine language routine to be 
performed. Subsequent input arguments, aexp2, aexp3, etc., are 
optional. These should be arithmetic expressions within a decimal 
range of 0 through 65535. If a noninteger value is used it will be 
rounded off to the nearest integer. 

145 



N (Number of arguments on the stack-may be 0) 
X 1 (High byte of argument X) 
X2 (Low byte of argument X) 
y 1 (High byte of argument Y) 
y 2 (Low byte of argument Y) 
Z 1 (High byte of argument Z) 
Z2 (Low byte of argument Z) 

R1 (Low byte of return address) 
R2 (High byte of return address) 

Fig. 9-1. Hardware stack definition. 

These values returned will be converted from BASIC's Binary 
Coded Decimal floating point number format to a two-byte binary 
number; then pushed onto the hardware stack. The hardware stack 
is composed of a group of RAM locations under the direct control of 
the 6502 microprocessor chip. Figure 9-1 illustrates the structure of 
the hardware stack. 

146 



Chapter 10 

Programming 
Techniques to Save Memory 

This chapter includes hints on increasing programming efficiency 
and conserving memory. These hints give ways of conserving 
memory on the ATARI 800. Some of these methods make programs 
less readable and harder to modify, but there are cases when this is 
necessary due to memory limitations . 

1. In many small computers, eliminating blank spaces be­
tween words and characters as they are typed into the 
keyboard will save memory. This is not true of the ATARI 
800, which automatically removes extra spaces . Statements 
are always displayed in the same manner no matter how many 
spaces were used on program entry. Spaces should be used 
(just as in typing on a conventional typewriter) between suc­
cessive words and between words and variable names . Here 
is an example: 

10 IF A = 5 THEN PRINT A 

Note the space between IF and A and between then and print. 
In most cases, a statement will be interpreted correctly by the 
computer even if all spaces are left out, but this is not always true. 
Therefore use conventional spacing. 

2. Each new line number represents the beginning of what is 
called a new "logical line" . Each logical line takes 6 bytes of 
"overhead", whether it is used to full capacity or not. Adding 

147 



an additional BASIC statement by using a colon (:) to separate 
each pair of statements on the same line takes only 3 bytes . If 
you need to save memory , avoid programs like the following: 

10 X=Y+1 
20 Y=Y+1 
30 Z=X+Y 
40 PRINT Z 
50 GOTO 50 

and consolidate lines like this : 

10 X=X+1:Y=Y+1:Z=X+Y:PRlNT Z: GOTO 10 

The above consolidation saves 12 bytes. 

3. Variables and constants should be "managed" for savings, 
too. Each time a constant (4,5,16 ,3.14, etc.) is used, it takes 7 
bytes . Defining a new variable requires 8 bytes plus the 
length of the variable name (in characters) . But each time it is 
used after being defined, it takes only 1 byte, regardless of its 
length . Thus, if a constant is used more than once or twice in a 
program, it should be defined as a variable, and the variable 
name should be used throughout the program. For example: 

10 PI=3.14159 
20 PRINT "AREA OF A CIRCLE IS THE RADIUS 

SQUARED TIMES ";PI 

148 

4. Literal strings found in print statements require 2 bytes 
overhead and 1 byte for each character (incl uding all spaces) in 
string. 
5. String variables take 9 bytes each, plus the length of the 
variable name (including spaces) , plus the space eaten up by 
the DIM statement , plus the size of the string itself when it is 
defined. Obviously , the use of string variables is very costly 
in terms of RAM. 
6. Definition of a new matrix requires 15 bytes, plus the 
length of the matrix variable name , plus the space needed for 
the DIM statement, plus 6 times the size ofthe matrix. Thus, 
a 25 row by 4 column matrix would require 15 + (approxi­
mately) 3 + (approximately) 10+6 times 100, or about 630 
bytes. 



Chapter 11 

Sample Programs: Conversions 

In this day and age conversions are quite common ... Celsius to 
Fahrenheit, centimeters to inches, dollars to pesos ... just to name 
a few. The AT ARI can be used to help you make these conversions 
quickly and easily. The following programs are examples of several 
such conversions. Other uses for the programs should readily come 
to mind as you read through these. 

CURRENCY EXCHANGE 
More and more Americans are traveling to foreign countries 

each year, and as you know, monetary values are different. Let's 
assume that you plan a trip to Britain and France and you wish to 
convert monetary values among three systems: British pound, 
French franc, and U.S. dollar. In order to facilitate these conver­
sions, you decide to write a program to compute them for you. Each 
currency system is to be denoted by a code number. You must 
initialize the program each time you use it by entering equivalent 
monetary values for each currency. Then you can enter the currency 
code and the amount to be converted. The currency system and the 
equivalent amount will be printed. 

On a certain morning, 1 British pound is equivalent to 8 .3981 
francs and 1.8248 U.S. dollars. At these rates, find how much an 
airplane ticket worth 284 British pounds will cost in dollars and in 
francs. Do the same for an English double-barreled shotgun valued 
at 1205 U.S. dollars. 

149 



10 REM * CURRENCY EXCHANGE 
20 PRINT "ENTER CODE, AMT FOR 3 

SYSTEMS" 
30 PRINT "l=BR, 2=FR, 3=US" 
40 INPUT C1,A1,C2 ,A2,C3,A3 
50 PRINT 
60 PRINT "CODE, AMT TO CONVERT ( 

O,O=STOP)" 
70 INPUT C,A 
80 IF C=O THEN STOP 
90 REM * DETERMINE REFERENCE 

100 ON C GOTO 110,130,150 
110 R=A1 
120 GOTO 160 
130 R=A2 
140 GOTO 160 
150 R=A3 
160 V1=A*A1/R 
170 V2=A*A2/R 
180 V3=A*A3/R 
190 PRINT "EQUIVALENT AMOUNTS :" 
200 PRINT "BR . POUND ";Vl 
210 PRINT "R.F. FRANC ";V2 
220 PRINT "U.S. DOLLAR ";V3 
230 PRINT 
240 GOTO 50 
250 END 

Display 
When the following is run, you will see the following on your 

screen: 

ENTER CODE, AMT FOR 3 SYSTEMS 
I=BR, 2=FR, 3=US 
? 
1; 1,2,8.3981,3,1.8248 
CODE, AMT TO CONVERT (O,O=STOP) 
? 
1,284 
EQUIVALENT AMOUNTS 
BR. POUND 284 
R.F. FRANC 2385 

150 



U.S. DOLLAR 518 
CODE, AMT TO CONVERT (O,O=STOP) 
? 
3,1205 
EQUIVALENT AMOUNTS 
BR . POUND 669 
R.F. FRANC 5622 
U.S. DOLLAR 1205 
CODE, AMT TO CONVERT (O,O=STOP) 
? 
0,0 

METRIC CONVERSIONS 
The metric system will eventually become universal-or so it 

seems at this time-and the ATARI can be programmed to make 
these conversions for you. The program which follows allows con­
versions of length, area, mass (weight) , and liquid volume. The 
conversion can be either to or from the metric units. 

10 REM'" METRIC CONVERSION PROGRAM 
20 M=8 
30 M1=9 
40 M2=6 
50 M3=8 
60 DIM U$(8) 
70 DIM L2$(8) 
80 DIM L3(8) 
90 DIM A1$(9) 

100 DIM A2$(9) 
110 DIM A3(9) 
120 DIM W1$(6) 
130 DIM W2$(6) 
140 DIM W3(6) 
150 DIM V1$(8) 
160 DIM V2$(8) 
170 DIM V3(8) 
180 FOR I = 1 TO M 
190 READ LI$(1) ,L2$(l) ,L3(1) 
200 NEXT I 
210 FOR I = 1 TO M1 
220 READ A1$(I) ,A2$(1) ,A3(1) 
230 NEXT I 

151 



240 FOR I = 1 TO M2 
250 READ W1$(1) , W2$<D, W3<D 
260 NEXT I 
270 FOR I = 1 TO M3 
280 READ VI$(I) , V2$(I) , V3(1) 
290 NEXT I 
300 REM ••••••••• 
310 REM **** PROCESSING AREA ***** 
320 PRINT"DO YOU WISH TO CONVERT LENGTH (L), 

AREA (A). " 
330 PRINT" MASS (M) , OR LIQUID VOLUME (V)?" 
340 INPUT A1$ 
350 PRINT 
360 PRINT: CONVERSIONS AVAILABLE" 
370 PRINT 
380 PRINTTAB(9) ;"NER" ;T AB(l4) ;" 

FROM";TAB(39) ;" TO" 
390 PRINTT AB(9);" ---";T AB(14) ;" ----------";T AB(39);" ---------" 
400 IF A1$="L" THEN 460 
410 IF A1$="A" THEN 590 
420 IF A1$="M" THEN 720 
430 IF A1$="V" THEN 850 
440 PRINT"ENTRY MUST BE L, A, M, OR V" 
450 GOTO 300 
460 REM **** PRINT FOR LENGTH **** 
470 FOR I = 1 TO M 
480 PRINT AB(lO) ; I;T AB(15); L1$(I);T AB( 40); L2$(I) 
490 NEXT I 
500 PRINT 
510 PRINT"ENTER THE NUMBER OF THE CONVERSION 

TO BE USED (0 WHEN DONE),, ; 
520 INPUT N 
530 IF N =0 THEN 980 
540 PRINT"ENTER THE NUMBER OF " ;L1$(N) 
550 INPUT LO 
560 L=LO* L3(N) 
570 PRINTLO;L1$(N);"= "L;L2$(N) 
580 GOTO 500 
590 REM **** PRINT OF AREA **** 
600 FOR I = 1 TO M1 
610 PRINTTAB(9) ;I;TAB(14) ;A1$(I);TAB(39) ;A2$(I) 
620 NEXT I 

152 



630 PRINT 
640 PRINT"ENTER THE NUMBER OF THE CONVERSION 

TO BE USED (0 WHEN DONE),' 
650 INPUT N 
660 IF N =0 THEN 990 
670 PRINT"ENTER THE NUMBER OF ";A1$(N); 
680 INPUT AO 
690 A=AO*A3(N) 
700 PRINTAO;A1$(N);"=";A;A2$(N) 
710 GOTO 630 
720 REM ** •••••• PRINT OF MASS ••••••••• 
730 FOR I = 1 TO M2 
740 PRINTTAB(10);I;TAB(15);W1$(I) ;TAB(40);W2$(1) 
750 NEXT I 
760 PRINT 
770 PRINT"ENTER THE NUMBER OF THE CONVERSION 

TO BE USED (0 WHEN DONE)"; 
780 INPUT N 
790 IF N =0 THEN 990 
880 PRINT"ENTER THE NUMBER OF ";W1$(N); 
810 INPUT WO 
820 W=WO.W3(N) 
830 PRINTWO/W1$(N); "=" ;W;W2$(N) 
840 GOTO 760 
850 REM * ••• PRINT OF LIQUID VOLUME •••• 
860 FOR 1= 1 TO M3 
870 PRINTT ABO O) ;I ;T AB(15); V1$(I);T AB( 40); V2$(I) 
880 NEXT I 
890 PRINT 
900 PRINT"ENTER THE NUMBER OF THE CONVERSION 

TO BE USED (0 WHEN DONE)" ; 
910 INPUT N 
920 IF N =0 THEN 990 
930 PRINT"ENTER THE NUMBER OF ";V1$(N); 
940 INPUT VO 
950 V=VO*V3(N) 
960 PRINTVO;V1$(N) ;"= ";V;V2$(N) 
970 GOTO 890 
980 REM •• * ••• *** 
990 REM * •••• * PROGRAM TERMINATION POINT •••••• 

1000 PRINT 
1010 PRINT "END" 

153 



1020 END 
1030 REM ********** 
1040 REM ***** DATA FOR INITIALIZATION ******* 
1050 REM ****** LENGTH ***** 
1060 DATA INCHES, MILLIMETERS, 25.4,FEET,ME­

TERS,.3048 
1070 DATA YARDS, METERS,.0144,MILES,KILOME­

TERS,I.6093 
1080 DATA MILLIMETERS, INCHES,.0394,METERS,FEET, 

3.2808 
1090 DATA METERS, YARDS, 1.0936,KILOMETERS, 

MILES,.6214 
1100 REM ******* AREA 
1110 DATA SQ INCHES, SQ CENTIMETERS,6.4516,SQ 

FEET ,SQ METERS, .0929 
1120 DATA SQ YARDS,SQ METERS,.8361,SQ MILES,SQ 

KILOMETERS,2.59 
1130 DATA ACRES,SQ HECTOMETERS(HECTARES),.4047 
1140 DATA SQ CENTIMETERS,SQ INCHES,.115,SQ MET-

ERS,SQ YARDS,I.196 
1150 DATA SQ KILOMETERS,SQ MILES,.3861 
1160 DATA SQ HECTOMETERS(HECTARES),ACRES,2.471 
1170 REM **** MASS 
1180 DATA OUNCES, GRAMS ,28 .3495,POUNDS,KILO­

GRAMS, .4536 
1190 DATA SHORT TONS, MEGAGRAMS,.9,GRAMS, 

OUNCES, .0353 
2000 DATAKILOGRAMS,POUNDS,2.2046,MEGAGRAMS 

, SHORT TONS,I.1 
1200 REM ******* LIQUID VOLUME 
1220 DATA OUNCE,MILLILITERS,30,PINTS,LITERS,.4732 
1230 DATA QUARTS,LITERS, .9464,GALLONS,LITERS, 

3.7856 
1240 DATA MILLILITERS,OUNCES,.03,LITERS,PINTS, 

2.1134 
1250 DATA LITERS,QUARTS,I.0567,LITERS,GALLONS, 

.2642 
1260 REM ********* 

Display: When the program is run , you may see the following 
on your screen: 

154 



DO YOU WISH TO CONVERT LENGTH (L), AREA (A), 
MASS (M) , OR LIQUID 

VOLUME (V)? 
?L 

CONVERSIONS AVAILABLE 
NBR FROM TO 
----- -------------- ----------------

1 INCHES MILLIMETERS 
2 FEET METERS 
3 YARDS METERS 
4 MILES KILOMETERS 
5 MILLIMETERS INCHES 
6 METERS FEET 
7 METERS YARDS 
8 KILOMETERS MILES 

ENTER THE NUMBER OF THE CONVERSION TO BE USED (0 
WHEN DONE)? 3 
ENTER THE NUMBER OF YARDS? 10 
10 YARDS= 9.144 METERS 

ENTER THE NUMBER OF THE CONVERSION TO BE USED (0 
WHEN DONE)? 0 
END 

If you run the program again and do a different conversion, you 
may see the following: 

DO YOU WISH TO CONVERT LENGTH (L), AREA(A) , 

?A 

MASS (M), OR LIQUID VOL­
UME (V)? 

CONVERSIONS AVAILABLE 
NBR FROM ----- ----------------------------------1 SQINCHES 

2 SQ FEET 
3 SQ YARDS 
4 SQ MILES 
5 ACRES 

6 SQ CENTIMETERS 
7 SQ METERS 
8 SQ KILOMETERS 
9 SQ HECTOMETERS(HECTARES) 

TO 
-------------------.-SQ CENTIMETERS 
SQ METERS 
SQ METERS 
SQ KILOMETERS 
SQ HECTOMETERS 

(HECTARES) 
SQINCHES 
SQ YARDS 
SQ MILES 
ACRES 

155 



ENTER THE NUMBER OF THE CONVERSION TO BE USED (0 
WHEN DONE)? 4 
ENTER THE NUMBER OF SQUMILES? 10 

10 SQ MILES=25 .9 SQ KILOMETERS 
ENTER THE NUMBER OF THE CONVERSION TO BE USED (0 
WHEN DONE) ? 0 
END 

156 



Chapter 12 

More Programs 

The following programs in BASIC can be run as they are for experi­
ence and then modified to suit your own personal needs. For 
example, the one on gun collecting could be modified to be used to 
organize a coin collection ... or perhaps your bottle or old canning 
jar collection. 

To give you some experience with you ATARI 800, some of the 
programs will require a slight modification to make them work. Can 
you make them work? 

FINDING GREATEST COMMON DIVISOR OF TWO NUMBERS 
Description 

This program finds the greatest common divisor of two num­
bers. 

Functions of the Program 
The program reads in the number of greatest common divisors 

to be found and then the pairs of numbers for which the greatest 
common divisors are desired . You, however will have to supply the 
lines that will determine the greatest common divisor. 

Instruction for Use 
Use data statements to supply the number of pairs of numbers 

for which a G.C.D. is desired, followed by those pairs of numbers. 

157 



Data Format 
The format to put the data in is : 

1. Number of greatest common divisors needed. 
2. First number of first pair. 
3. Second number of first pair . 
4 . First number of second pair , etc . 

Output Description 
Appropriate headings with columns of supplied data and the 

calculated G.C.D . (if you add the right lines). 

10 REM This program finds the greatest common divisor of 2 
numbers 

15 REM N is the number of pairs of numbers 
20 REM A and B are the two numbers for which a G.C.D. is 

desired 
25 REM Q is the quotient and R is the remainder of NB 
30 READ N 
35 PRINT "NUMBER OF G.C.D. to be found is " ,N 
37 PRINT 
40 IF N =0 THEN 99 
45 PRINT "A", "B", "GCD" 
50 READ A,B 
55 PRINT A,B; 
60 LET Q = INT (NB) 
65 LET R=A-Q*B 
70 IF R=O THEN 90 
75 LET A=B 
80 PRINT B 
85 GOTO 60 
90 PRINT B 
92 LET N=N-l 
94 IF N =0 THEN 99 
95 GOTO 50 
97 DATA 3,256 ,243 ,5,15 ,130 ,169 
99 END 

RUN 
Number of G.C .D.s to be found is 3 

A B G.C .D. 
256 243 1 

158 



5 15 5 
130 169 13 

PROGRAM FOR GUN COLLECTORS 
Description 

This program enables gun collectors to organize and control 
their collections. All the items in your collection can be listed, or 
you can select items by the manufacturer. 

Functions of the Program 
The program accepts the gun information from the data state­

ments and prints the items specified. Items to be printed can be 
selected according to manufacturer or the entire list can be printed. 
Watch out! Some of the program lines will have to be fixed. A few 
hints: Are the same variable names used for different variables? Are 
variable names changed or confused? Are string variables used 
where necessary? Are there references to nonexistent line num­
bers? 

Instructions for Use 
Use data statements to enter the total number of guns to be 

listed and to enter the pertinent information concerning each gun. 

Data Format 
The format to put the data in is : manufacturer, model number, 

serial number, type of action , caliber or gauge , condition, value . 

Output Description 
See the example below . Output is either a formatted list of all 

items or a list of those items that satisfy the selection criteria. 

Important Variables 

M .. Maximum number of data reads 
(total number of guns to be entered) 

M2 . . Manufacturer of gun 
N .. Model number 
S .. Serial number 
C . . Caliber or gauge 
A .. Type of action 
C2 .. Condition 
V .. Current Value 

159 



10 REM GUN COLLECTION PROGRAM 
20 REM *** READ DATA *** 
30 PRINT "ENTER TOTAL NUMBER OF GUNS TO BE 

RECORDED" 
40 INPUT M 
50 PRINT "DO YOU WISH TO HAVE ALL ENTRIES 

LISTED? (Y OR N)" 
60 INPUT L$ 
70 PRINT 
80 IF L$ = "Y" THEN 110 
90 PRINT" ENTER MANUFACTURER YO U WISH LISTED" 

100 INPUT LO 
no PRINT 
120 PRINT 
130 PRINT "MANUFACTURER", TAB(lS); "Model" 

TAB(lO); "Serial"; 
140 PRINT TAB(lO); "Caliber";TAB(lO); "Action";TAB(10); 
150 PRINT "Condition"; TAB(lO); "Value" 
155 PRINT 
160 FOR 1=1 TO M 
170 READ 11$ 
180 IF 11$ = "END" THEN 320 
190 READ M2,N,S,C,A,C2,V 
200 IF Z$ < > "Y" THEN 240 
210 PRINT 11$; TAB(lO); A; TAB(lS); C2; TAB(r);V 
230 GOTO 
240 IF 11$ < > AO THEN 310 
250 C=C+l 
260 IF C = 1 THEN 290 
270 11$="" 
280 PRINT 11$; TAB (lS);M2; TAB(lO);S:TAB(lO); 
300 PRINT C; TAB(lO); A; TAB(lS);C2; TAB(S);V 
310 NEXT I 
320 PRINT 
330 PRINT 
340 STOP 
350 REM *** DATA*** 
360 DATA Winchester, 70,44271, .270W,Bolt,Good, 450 
370 DATA Remington, noo, 00714, 12, Auto, Ex, 312 
380 DATA Hand R, 158C, 77431, 20 , single, good, 95 
390 DATA Remington, 742, 00853, .30-06, auto, ex, 375 
400 DATA END 

160 



RUN 
ENTER TOTAL NUMBER OF GUNS TO BE RECORDED ?4 

DO YOU WISH TO HAVE ALL ENTRIES LISTED? (Y OR N) ? Y 
Manufacturer Model Serial Caliber Action Condition Value 
Winchester 70 44371 .270W Bolt Good 450 
Remington llOO 00714 12 Auto Ex 312 
Hand R 158C 77431 20 Single Good 95 
Remington 742 00853 30-06 Auto Ex 375 

RUN 
ENTER MAXIMUM NUMBER OF GUNS TO BE RECORDED 
?4 
DO YOU WISH TO HAVE ALL ENTRIES LISTED? (Y OR N) N 
?Remington 

Manufacturer Model Serial Caliber Action 
Auto 
Auto 

Condition Value 
Remington llOO 00714 12 Ex 312 

742 00853 30-06 Ex 375 

CHECKBOOK BALANCER 

This is one of the "traditional" programs that every beginning 
computerist writes. It allows the entry of outstanding checks and 
uncredited deposits as well as cleared checks and credited deposits. 
Remember that the question mark is simply a symbol for print. 
10 DIM A$(30) ,MSG$( 40) ,MSG 1$(30) ,MSG2$(30) 

,MSG3$(30) ,MSG4$(30) ,MSG5$(30) ,MSG6$(30) 
20 OUTSTAND=O 
30 GRAPHICS O:? :?" CHECKBOOK BALANCER":? 
40 ? "You may make corrections at any time by entering a 

negative dollar value." 
50 MSG1$="OLD CHECK -- STILL OUTSTANDING" 
60 MSG2$="OLD DEPOSIT -- NOT CREDITED" 
70 MSG3$= "OLD CHECK -- JUST CLEARED" 
80 MSG4$= "OLD DEPOSIT -- JUST CREDITED" 
90 MSG5$= "NEW CHECK (OR SERVICE CHARGE)" 

100 MSG6$="NEW DEPOSIT (OR INTEREST)" 
150 TRAP 150:? "Enter beginning balance from your 

checkbook";:INPUT YOURBAL 
160 TRAP 160:? "Enter beginning balance from your 

bankstatement"; :INPUT BANKBAL 
165 TRAP 40000 
170 GOTO 190 
180 CLOSE #1:? "PRINTER IS NOT OPERATIONAL." 

161 



185 ? "PLEASE CHECK CONNECTORS." 
190 PERM=O 
200 ? "Would you like a permanent record on the printer"; :IN-

PUT A$ 
210 IF LEN(A$)=O THEN 200 
220 IF A$(l,l)="N" THEN 400 
230 IF A$(l,l) "Y" THEN 200 
240 TRAP 180 
250 LPRINT :REM TEST PRINTER 
260 PERM=l . 
280 LPRINT "YOUR BEGINNING BALANCE IS $";YOUR­

BAL 
290 LPRINT "BANK STATEMENT BEGINNING BALANCE 

IS $";BANKBAL;LPRINT 
400 TRAP 400:? :? "Choose one of the following :" 
410 ? "(1) ";MSGl$ 
415 ? "(2) ";MSG2$ 
420 ? "(3) ";MSG3$ 
425 ? "(4) ";MSG4$ 
430 ? "(5) ";MSG5$ 
435 ? "(6) ";MSG6$ 
440 ? "(7) ";NO MORE ENTRIES" 
490 ? 
500 INPUT N:IF N< l OR N> 7 THEN 400 
505 TRAP 40000 
510 ON N GOSUB 1000,2000 ,3000,4000 ,5000 ,6000,7000 
520 MSG$="NEW CHECKBOOK BALANCE IS": AMOUNT 

=YOURBAL:GOSUB 8000 
530 MSG$ ="NEW BANK STATEMENT BALANCE 

IS":AMOUNT=BANKBAL:GOSUB 8000 
540 MSG$ ="OUTSTANDING CHECKS - DEPOSITS=" 

:AMOUNT=OUTSTAND:GOSUB 8000 
545 IF PERM THEN LPRINT 
550 GOTO 400 

1000 REM OLD CHECK -- STILL OUTSTANDING 
1010 MSG$=MSG1$:GOSUB 8100 
1020 OUTSTAND=OUTST AND+AMOUNT 
1030 RETURN 
2000 REM OLD DEPOSIT -- STILL NOT CREDITED 
2010 MSG$=MSG2$:GOSUB 8100 
2020 OUTST AND=OUTST AND- AMOUNT 

162 



2030 RETURN 
3000 REM OLD CHECK - - JUST CLEARED 
3010 MSG$=MSG3$:GOSUB 8100 
3020 BANKBAL=BANKBAL-AMOUNT 
3030 RETURN 
4000 REM OLD DEPOSIT -- JUST CREDITED 
4010 MSG$=MSG4$:GOSUB 8100 
4020 BANKBAL=BANKBAL+AMOUNT 
4030 RETURN 
5000 REM NEW CHECK (OR SERVICE CHARGE) -- JUST 

CLEARED 
5010 MSG$=MSG5$:GOSUB 8100 
5020 YOURBAL=YOURBAL-AMOUNT 
5030 ? "IS NEW CHECK STILL OUTSTANDING";:INPUT A$ 
5040 IF LEN(A$)=O THEN 5030 
5050 IF A$(l,l) "N" THEN 5060 
5055 BANKBAL=BANKBAL-AMOUNT 
5057 IF PERM THEN LPRINT "CHECK HAS CLEARED." 
5058 RETURN 
5060 IF A$(l,l) < >"Y" THEN 5030 
5070 OUTST AND =0 UTST AND + AMO UNT 
5075 IF PERM THEN LPRINT "CHECK IS STILL OUT­

STANDING." 
5080 RETURN 
6000 REM NEW DEPOSIT (OR INTEREST) -- JUST CRE-

DITED 
6010 MSG$=MSG6$:GOSUB 8100 
6020 YOURBAL=YOURBAL+AMOUNT 
6030 ? "HAS YOUR NEW DEPOSIT BEEN CREDITED";:IN-

PUT A$ 
6040 IF LEN(A$)=O THEN 6030 
6050 IF A$(1 ,l) < >"Y" THEN 6060 
6052 BANKBAL=BANKBAL+AMOUNT 
6053 IF PERM THEN LPRINT"DEPOSIT HAS BEEN CRE-

DITED ." 
6055 RETURN 
6060 IF A$(1 ,l) < > "N" THEN 6030 
6070 OUTSTAND=OUTSTAl"JD-AMOUNT 
6075 IF PERM THEN LPRINT "DEPOSIT HAS NOT BEEN 

CREDITED ." 
6080 RETURN 

163 



7000 REM DONE 
7010 ? "BANK'S BALANCE MINUS (OUTSTAND­

ING CHECKS-DEPOSITS) SHOULD NOW EQUAL 
YOUR CHECKBOOK BALANCE." 

7020 DIF=YOURBAL-(BANKBAL-OUTSTAND) 
7030 IF DIF< > 0 THEN 7040 
7035 ? "IS $";BANKBAL;" THE ENDING BALANCE ON YOUR 

BANK STATEMENT"; :INPUT A$ 
7036 IF LEN(A$)=O THEN 7035 
7037 IF A$(l,l)="Y" THEN? CONGRATULATIONS: YOUR 

CHECKBOOK BALANCES!":END 

7038 GOTO 7060 
7040 IF DIF>O THEN? "YOUR CHECKBOOK TOTAL IS 

$";DIF;" OVER YOUR BANK's TOTAL. ":GOTO 7060 
7050 ? "WOULD YOU LIKE TO MAKE CORRECTIONS?" 
7070 ? "REMEMBER, YOU CAN ENTER A NEGATIVE DOL-

LAR VALUE TO MAKE A CORRECTION. 
7080 ? "ENTER Y OR N";:INPUT A$ 
7090 IF LEN(A$)=O THEN END 
7100 IF A$(l,l)="Y" THEN RETURN 
7110 END 
7999 REM MSG PRINTING ROUTINE 
8000 ? MSG$;" $";AMOUNT 
8010 IF PERM=l THEN LPRINT MSG$;" $";AMOUNT 
8020 RETURN 
8100 REM MSG PRINT & INPUT ROUTINE 
8UO TRAP 8UO:? "ENTER AMOUNT FOR ";MSG$;:INPUT 

AMOUNT 
8120 TRAP 40000 
8130 IF PERM=l THEN LPRINT MSG$;" $";AMOUNT 

164 



Chapter 13 

Flowcharting Techniques 

If you are a beginning programmer, you may be interested in 
learning some of the techniques that allow you to more easily 
advance a programming task from a conceptual stage to a finalized 
stage. 

Flowcharts , which pictorialize the solution to a programming 
task, are valuable programming tools . They are often drawn long 
before the actual program statements are written. 

While flowcharting your program, you might change or 
simplify your approach, or see a flaw in your logic. After several 
attempts, you should have a workable flowchart and, once you do, 
your programming task is greatly reduced. 

Any flowchart that you draw is useful; but a few basic conven­
tions are described in this chapter. Terminal (that is, starting or 
ending) activities are represented by ovals. Arrows, indicate the 
direction of program flow between operations. Most calculator 
operations are represented by rectangles . A diamond represents a 
decision point. 

To illustrate, in the following example we have labeled each 
flowcharting operation with the corresponding program line 
number. See Fig. 13-1. As you can see, once the flowchart is 
finalized, the program can be written relatively easily. 

10 REM-THIS PROGRAM AVERAGES UP TO 20 POSI­
TIVE NUMBERS 

20 REM-IF YOU HAVE FEWER THAN 20 NUMBERS TO 

165 



Line Number 

40 

50 

60 

70 

80 

90 

110 

120 

130 

Fig. 13-1 . 

166 

INITIALIZE 
TOTALING 
VARIABLE 



ENTER. 
30 REM-ENTER A NEGATIVE NUMBER TO END THE 

INPUTTING. 
40 A=O 
50 FOR 1=1 TO 20 
60 INPUT B 
70 IF B < 0 THEN 110 
80 A=A+B 
90 NEXT I 

110 1=1-1 
120 PRINT "THE AVERAGE OF THE "I" NUMBERS IS "NI 
130 END 

As mentioned previously, flowcharts use boxes and lines, 
following a few simple rules, to represent a program design. Only a 
few shapes and a few ways of drawing the connecting lines are used. 
These restrictions are intended to make the resulting flowcharts 
easy to understand by displaying the relationship of parts very 
clearly. After a correct flowchart has been drawn, translation to a 
program (writing statements corresponding to the boxes) is rela­
tively simple. 

FLOWCHARTING SYMBOLS 
Five different shapes of boxes are required for most flow­

charts. 

Rectangle 
A rectangle indicates any processing operation except input/ 

output or a decision. 

Diamond 
A diamond indicates a decision. The lines leaving the box are 

labeled with the results that cause each path to be followed. 

Parallelogram 
A parallelogram indicates an input or output operation. 

Oval 
An oval indicates the beginning or ending point of a program or 

program segment. 

167 



Circle 
A small circle indicates a collection point, where lines from 

other boxes join. 

CONTROL STRUCTURES 
The fundamental function of a flowchart, as of any other pro­

gram design tool, is to show in exact and unambiguous detail the 
sequence in which actions are to be carried out and the conditions 
under which alternatives are to be taken. In depicting these matters 
in flowcharts, three control structures are normally used. 

Sequence 
When an arrow leads from one box to the next, that means 

simply that the two are to be executed in sequence in the order 
shown. 

Selection 
The choice indicated by the decision box always has just two 

outcomes, depending on whether the condition is true or false. 

Iteration 
Processing actions are executed repeatedly until a stated con­

dition terminates the repetition. The number of repeats may in 
some cases be zero . 

The basic structures stated above may be combined. For exam­
pie, a path coming out of a decision box may lead to another decision 
or perhaps an iteration. Furthermore, it will commonly happen that 
the actions specified in a loop will include decisions. This is per­
fectly acceptable so long as only the three basic structures are used. 

THE IF STATEMENT 
Often there are times when you want to make a decision. In the 

averaging program discussed previously, we wanted the program to 
branch to either the end of the program, or to the inquiry for more 
information. The branch was dependent on the outcome of a 
specified condition, using the if . . . then statement. 

IF numeric expression THEN statement 

The if ... then statement makes a decision based upon the 
outcome of the numeric expression. If the expression is true, the 
then part of the statement is executed. If the outcome is false, 

168 



execution continues with the statement following the if ... then 
statement. 

For example, suppose an accountant wishes to write a program 
that will calculate and print the amount of tax to be paid by a number 
of persons. For those with incomes of $10,000 per year or less, the 
amount of tax is 17.5%. For those with incomes ofover$10,000, the 
tax is 20%. A flowchart for the program might look like the one in 
Fig. 13-2. The diamond in the flowchart would be represented by an 
if .. . then statement in a program. The program may look like the 
following: 

10 PRINT "INCOME" 
20 INPUT I 
30 IF I > 10000 THEN 60 
40 PRINT "TAX ="; I· .175 
50 GOTO 70 
60 PRINT "TAX="; 1·.2 
70 END 

As you can see, we used a relational operation in the if ... then 
statement. The if . . . then statement is most often used with 
relational operators, although the decision can be based on the value 
of any numeric expression. 

If the condition is true-the income is greater than $10,000-
program control is transferred to statement 60. If the condition is 
false-the income is less than or equal to $10,000-the rest of the if 
statement is ignored and the program continues at statement 40. To 
test this program, use the values of $20,000 and $9,000. 

THE ELSE OPTION 
The ATARI does not have the else option, however its action 

is useful to study while discussing flowcharts. In the previous 
example, if the numeric expression was evaluated as false, program 
execution continued with the next sequential statement following 
the if . . . then statement. But if you specify the else option with the 
if . .. then statement , the program will instead perform the instruc­
tions that follow the else . This gives you tremendous power using 
conditional branching. 

IF numeric expression THEN state number or executable instr. 
ELSE statement number or executable instr. 

If the numeric expression is false and else is specified execu­
tion is transferred to the statement number following else or the 

169 



Line Number 

10 

20 

30 

40 

50 

60 

70 

Fig. 13·2. 

170 

PRINT 
PROMPT 

GOTO 
END 

OUTPUT 
INCOME • 

.2 



indicated else statement is executed. Look at the following exam­
ple. 

A quadratic equation is of the form 0=ax2+bx+c. If a=O, its 
two roots may be found by the formulas 

To write a program to compute the roots of a quadratic equa­
tion given the values of the coefficients a, b, and c, proceed as 
follows: If a is zero, display an error message and reenter new 
values. If b2 

- 4 ac is less than zero, then the square root of that 
value would give a warning message or an error. So make sure that 
b2 - 4 ac is greater than or equal to zero before you compute the 
roots. The flowchart is shown in Fig. 13-3. In this solution we use 
two fonns of the if ... then ... else statement. Study it carefully and 
then load the program and run it . 

10 REM * ROOTS * 
20 PRINT "IF A QUADRATIC" 
30 PRINT "EQUATION IS OF THE" 
40 PRINT "FORM O=A*X 2+B*X+C 
50 PRINT "ENTER A, B, C" 
60 INPUT A, B, C 
70 D=B*B-4*A*C 
80 IF A=O THEN PRINT "A=O; NOT QUADRATIC. 

REENTER VALUES" ELSE 100 
90 GOTO 60 

100 IF D >=0 THEN 120 ELSE PRINT "COMPLEX ROOTS: 
CANNOT COMPUTE . REENTER VALUES." 

110 GOTO 60 
120 R1=(-B+SQR(D))/(2*A) 
130 R2=(-B-SQR(D))/(2*A) 
140 PRINT "COEFFICIENTS=";A;B;C 
150 PRINT "ROOTS=";R1;R2 
160 END 

To summarize, if A =0, the program displays message, then 
continues to next statement. If A=O, the statement else 100 is read 
and the program branches to statement 100. If D > =0, the program 
branches to line 120. If D < 0, the else message is displayed and the 
program then continues to statement 110. 

Run the program to find the roots of the equation x2+x - 6=0. 
Then run the program again to test the decision with x+1=0 and 

171 



Fig. 13-3. 

172 

32 - 4 AC 

I 
I 
I 
I 
I 

--____ -1 

110 ...-__ -L __ ---, 



x2+2x-l=O 

RUN 
IF A QUADRATIC EQ 
EQUATION IS OF THE 
FORM O=A*X /\2+B*X+C 
ENTER A, B, C 
? 
1,1, - 6 (x2 + X - 6) 
COEFFICIENTS = 1 1 - 6 
ROOTS=2 -3 
RUN 
IF A QUADRATIC 
EQUATION IS OF THE 
FORM O=A*X/\2+B*X+C 
ENTER A, B, C 
? 
1, 2, 2 (X2 + 2 X + 2) 
COMPLEX ROOTS: CANNOT COMPUTE 
REENTER VALUES 
? 
3, 2, -1 (3X2 + 2X - 1) 
COEFFICIENTS=3 2 -
ROOTS= .333333333333 - 1 

PSEUDOCODE 
Pseudocode may be used as an alternative to flowcharting for 

program design, the logic that determines the sequence in which 
processing operations are carried out. In general, this technique 
uses a code notation which has similarities to BASIC, but is not 
quite the same . 

In pseudocode, we are restricted to just three logic control 
elements: sequence, selection, and iteration. In pseudocode, the 
selection element is if . .. then . . . e lse and the iteration element is 
perform ... until. However, the overall structure of the pseudocode 
need not show all the details of processing, just as a flowchart need 
not show them. 

Sequence requires no special notation . It is simply a conven­
tion that unless specified otherwise, operations are carried out from 
top to bottom in the order written. 

173 



Chapter 14 

ATARI Graphics and Sound 

The ATARI 800 allows you to create graphics using BASIC com­
mands and different graphics modes . Using these commands, it is 
possible to create graphics for games, illustrations, and diagrams. 
Commands covered in this chapter will include: 

GRAPHICS LOCATE PUT/GET 
COLOR PLOT SET/COLOR 
DRA WTO POSITION XIO 

COMMANDS TO CONTROL THE GRAPHICS 
Graphics 

The graphics command is used to select one of the nine 
graphics modes . Table 14-1 summarizes the nine modes and the 
characteristics of each. The graphics command automatically opens 
the screen, S:(the graphics window), as device #6. So when print­
ing text in the text window, it is not necessary to specify the device 
code. The mode number must be positive and rounded to the 
nearest integer. Graphics Mode 0 is a full-screen display while 
modes 1 through 8 are split screen displays. To override the 
split-screen, add the characters + 16 to the mode number (aexp) in 
the graphics command . Adding 32 prevents the graphics command 
from clearing the screen . 

To return to Graphics Mode 0 in the direct mode, press the 
system reset button or type G R.O and press the return key. 

Graphics Mode 0: This mode is the I-color, 2-luminance 

174 



Table 14-1. Modes and Screen Format. 

SCREEN FORMAT 

Gr. Mode Horiz. Vert. Vert. Number RAM 
Mode Type (Rows) (Col) (Col) Of Required 

S~1it Full Colors (Bytes) 
Screen Screen 

0 TEXT 40 24 2 993 
1 TEXT 20 20 24 5 513 
2 TEXT 20 10 12 5 261 
3 GRAPHICS 40 20 24 4 273 
4 GRAPHICS 80 40 48 2 537 
5 GRAPHICS 80 40 48 4 1017 
6 GRAPHICS 160 80 96 2 2025 
7 GRAPHICS 160 80 96 4 3945 
8 GRAPHICS 320 160 192 v, 7900 

(brightness) defaul t mode for the AT ARI 800. It contains a 24 by 40 
character screen matrix. The default margin settings at 2 and 39 
allow 38 characters per line. Margins may be changed by poking 
LMARGN and RMARGN (82 and 83). Some systems have different 
margin default settings. The color of the characters is determined 
by the background color. Only the luminance of the characters can 
be different. To display characters at a specified location, use one of 
the following two methods. Note: "sexp" denotes a string expres­
sion; "aexp" denotes an arithmetic expression. "Lineno" means line 
number. 

Method 1 

lineno POSITION aexp1, aexp2 
lineno PRINT sexp 

Method 2 
lineno GR.O 
lineno POKE 752,1 
lineno COLOR ASC(sexp) 

lineno PLOT aexpl , 
aexp2 

lineno GOTO lineno 

Puts cursor at location 
specified by aexp1 
and aexp2. 

Specifies graphics mode. 
Suppresses cursor. 
Specifies character to be 
printed. 
Specifies where to print 
character. 
Start loop to prevent READY 
from being printed. (GOTO) 
same lineno.) 
Press BREAK to terminate 
loop. 

Graphics 0 is also used as a clear screen command either in the 
direct mode or the deferred mode. It terminates any previously 

175 



selected graphics mode and returns the screen to the default mode 
(graphics 0). 

Graphics Modes 1 and 2: As defined in Table 14-1, these 
two five-color modes are text modes. However, they are both 
split-screen modes. Characters printed in Graphics Mode 1 are 
twice the width of those printed in graphics 0, but are the same 
height. Characters printed in Graphics Mode 2 are twice the width 
and height of those in Graphics Mode o. In the split-screen mode, a 
print command is used to display characters in either the text 
window or the graphics window. To print characters in the graphics 
window, specify device #6 after the PRINT command. 

Example: 100 GR.l 
110 PRINT #6; "ATARI" 

The default colors depend on the type of character input. The 
following table defines the default color and color register used for 
each type . 

DEFAULT COLORS FOR SPECIFIC INPUT TYPES 
Character Type 

Upper case alphabetical 
Lower case alphabetical 
Inverse upper case alphabetical 
Inverse lower case alphabetical 
Numbers 
Inverse numbers 

Color Register 
o 
1 
2 
3 
o 
2 

Default Color 
Orange 

Light Green 
Dark Blue 

Red 
Orange 

Dark Blue 

Unless otherwise specified, all characters are displayed in 
upper case noninverse form. To print lower case letters and 
graphics characters, use a poke 756,226. To return to upper case, 
use poke 756,224. In Graphics Modes 1 and 2, there is no inverse 
video, but it is possible to get all the rest of the characters in four 
different colors. 

A split-screen display for Graphics Modes 1 and 2 is shown in 
Fig. 14-1. The X and Y coordinates start at 0 (upper left of screen). 
The maximum values are the numbers of rows and columns minus 1 
(see Table 14-1). 

Example: GRAPHICS 1 + 16 

Graphics Modes 3,5, and 7: These three 4-color graphics 

176 



(X =0) 
(y=o) 

X-coordinate 

Fig. 14-1. The graphics and text windows. 

Border (size 
depends on 

or 

individuat TV's overscan) 

modes are also split-screen displays in their default state, but may 
be changed to full screen by adding + 16 to the mode number. Modes 
3, 5, and 7 are alike except that modes 5 and 7 use more points 
(pixels) in plotting, drawing, and positioning the cursor _ The points 
are smaller, thereby giving a much higher resolution than that in 
modes 0, 1, and 2. 

Graphics Modes 4 and 6: These graphics modes are like 
modes 5 and 7 respectively except that they use only two colors, 
and therefore use less memory . 

Graphics Mode 8: This graphics mode gives the highest 
resolution of all the modes _ As it takes a lot of RAM to obtain this 
kind of resolution, it can only accommodate a maximum of one color 
and two different luminances_ 

Color (C .): The value of the expression in the color statement 
determines the data to be stored in the display memory and used by 
all subsequent plot and drawto commands until the next color 
statement is executed _ The value must be positive and is usually an 
integer from 0 through 255. Nonintegers are rounded to the nearest 
integer. The graphics-display hardware interprets this data in dif­
ferent ways in the different graphics modes. In Text Modes 0 
through 2, the number can be from 0 through 255 (8 bits) and 
determines the character to be displayed and its color. 

Tables 14-4 and 14-5 later in this chapter illustrate the internal 
character set and the character/color assignment. 

177 



Graphics Modes 3 through 8 are not text modes, so the data 
stored in the display RAM simply determines the color of each 
pixel. Two-color or two-luminance modes require either 0 or 1 
(I-bit) and four-color modes require 0,1,2, or 3. The actual color 
which is displayed depends on the value in the color register which 
corresponds to the data of 0,1,2, or 3 in the particular graphics mode 
being used. This may be determined by looking in Table 14-2, which 
gives the default colors and the corresponding register numbers . 
Colors may be changed by using the setcolor command described on 
the following pages. 

Note that when BASIC is first powered up, the color data is 0, 
and when a graphics command (without +32) is executed, all of the 
pixels are set to o. Therefore, nothing seems to happen when the 
plot and drawto commands are used in graphics 3 through 7 when no 
color statement has been executed. Correct by doing a color 1 first. 

Drawto: This statement causes a line to be drawn from the 
last point displayed by a plot to the location specified by aexpl and 
aexp2. The first expression represents the X coordinate and the 
second represents the Y coordinate. The color of the line is the 
same color as the point displayed by plot. 

Locate: This command positions the invisible graphics cursor 
at the specified location in the graphics window, retrieves the data 
at that pixel, and stores it in the specified arithmetic variable. This 
gives a number from 0 to 255 for Graphics Modes 0 through 2; 0 or 1 
for the 2-color graphics modes; and 0,1,2, or 3 for the 4-color 
modes. The two ari th me tic expressions specify the X and Y coordi­
nates of the point. locate is equivalent to: 

POSITION aexpl, aexp2:GET #6, avar 

Doing a print after a locate may cause the data in the pixel 
which was examined to be modified . This problem is avoided by 
repositioning the cursor and putting the data that was read back into 
the pixel before doing the PRINT . The following program illus­
trates the use of the locate command. 

10 GRAPHICS 3 + 16 
20 COLOR 1 
30 SETCOLOR 2,10,8 
40 PLOT 10 ,15 
50 DRAWTO 15,15 
60 LOCATE 12, 15 ,X 
70 PRINT X 

178 



.....
. 

.....
. 

<
0 

D
ef

au
lt

 
C

ol
or

s 

L
IG

H
T

 B
LU

E 
D

A
R

K
 B

L
U

E
 

B
L

A
C

K
 

O
R

A
N

G
E

 
L

IG
H

T
 G

R
E

E
N

 
D

A
R

K
 B

L
U

E
 

R
ED

 
B

LA
C

K
 

O
R

A
N

G
E

 
L

IG
H

T
 G

R
E

E
N

 
D

A
R

K
 B

L
U

E
 

B
L

A
C

K
 

O
R

A
N

G
E

 

B
L

A
C

K
 

L
IG

H
T

 G
R

E
E

N
 

D
A

R
K

 B
L

U
E

 

B
L

A
C

K
 

M
o

d
e 

o
r 

C
on

d
it

io
n

 

M
O

D
E 

0 
an

d
 

A
L

L
 T

E
X

T
 

W
IN

D
O

W
S

 

M
O

D
E

S 
1 

an
d

 
2 

(T
ex

t 
M

od
es

) 

M
O

D
E

S 
3,

 5
, 

an
d

 7
 

(F
ou

r-
co

lo
r 

M
od

es
) 

M
O

D
E

S 
4 

an
d

 6
 

(T
w

o-
co

lo
r 

M
od

es
) 

4 

M
O

D
E

 8
 

(1
 C

ol
or

 
2 

L
um

in
an

ce
s)

 

Ta
bl

e 
14

-2
. 

M
od

e,
 S

et
co

lo
r, 

Co
lo

r T
ab

le
. 

S
E

T
C

O
W

R
 

(a
ex

p
l)

 
C

ol
or

 
C

ol
or

 
R

eg
is

te
r 

N
o.

 
(a

ex
p

) 
D

E
SC

R
IP

T
IO

N
 A

N
D

 C
O

M
M

E
N

T
S 

0 
C

O
L

O
R

 d
at

a 
-

1 
ac

tu
al

ly
 

C
h

ar
ac

te
r 

lu
m

in
an

ce
 (

sa
m

e 
co

lo
r 

as
 b

ac
k

g
ro

u
n

d
) 

2 
d

et
er

m
in

es
 

B
ac

k
g

ro
u

n
d

 
3 

ch
ar

ac
te

r 
to

 
-

4 
b

e 
p

lo
tt

ed
 

B
o

rd
er

 

0 
C

O
L

O
R

 d
at

a 
C

h
ar

ac
te

r 
1 

ac
tu

al
ly

 d
et

er
m

in
es

 
C

h
ar

ac
te

r 
2 

ch
ar

ac
te

r 
to

 b
e 

C
h

ar
ac

te
r 

3 
p

lo
tt

ed
 

C
h

ar
ac

te
r 

4 
B

ac
k

g
ro

u
n

d
, 

B
o

rd
er

 

0 
1 

G
ra

ph
iC

S
 p

o
in

t 
1 

2 
G

ra
ph

iC
S

 p
o

in
t 

2 
3 

G
ra

p
h

ic
s 

p
o

in
t 

3 
-

4 
0 

G
ra

p
h

ic
s 

p
o

in
t 

(b
ac

k
g

ro
u

n
d

 d
ef

au
lt

),
 B

o
rd

er
 

0 
1 

G
ra

ph
iC

S
 p

o
in

t 
1 

-
2 

-
3 

-
-

0 
G

ra
ph

ic
S

 p
o

in
t 

(b
ac

k
g

ro
u

n
d

 d
ef

au
lt

),
 B

o
rd

er
 

0 
-

-
1 

1 
G

ra
p

h
ic

s 
p

o
in

t 
lu

m
in

an
ce

 (
sa

m
e 

co
lo

r 
as

 b
ac

k
g

ro
u

n
d

) 
2 

0 
G

ra
ph

iC
S

 p
o

in
t 

(b
ac

k
g

ro
u

n
d

 d
ef

au
lt

) 
3 

-
-

4 
B

o
rd

er
 



On execution, the program prints the data (1) determined by 
the color statement which was stored in pixel 12, 15. 

Plot: The plot command is used in Graphics Modes 3 through 8 
to display a point in the graphics window. The aexpl specifies the 
X-coordinate and the aexp2, the Y-coordinate. The color of the 
plotted point is determined by the hue and luminance in the color 
register determined by the last color statement executed. To 
change this color register, and the color of the plotted point, use 
setcolor. Points that can be plotted on the screen are dependent on 
the graphics mode being used . The range of points begins at 1 and 
extends to one less than the total number of columns (X-coordinate) 
or rows (Y-coordinate) shown in Table 14-1. 

Position: The position statement is used to place the invisible 
graphics-window cursor at a specified location on the screen. This 
statement can be used in all modes . Note that the cursor does not 
actually move until an VO command which involves the screen is 
issued. 

Put: In graphics work, put is used to output data to the screen 
display. This statement works hand-in-hand with the position 
statement. Mter a put , the cursor is moved to the next location on 
the screen . Doing a put to device #6 causes the one-byte input to be 
displayed at the cursor position. The byte is either an ATASCII 
code byte for a particular character or the color data. 

Get: Is used to input the code byte of the character displayed at 
the cursor position into the specified arithmetic variable. The val­
ues used in put and get correspond to the values in the color 
statement. (Print and input may also be used.) 

Doing a print after get from the screen may cause the data in 
the pixel which was examined to be modified. To avoid this prob­
lem, reposition the cursor and put the data that was read, back into 
the pixel before doing the print. 

Setcolor: This statement is used to choose the particular hue 
and luminance to be stored in the specified color register . The 
parameters of the setcolor statement are defined below: 

aexpl 
aexp2 
aexp3 

= Color register (0-4 depending on graphics mode). 
Color hue number (0-15. See Table 14-3) . 
Color luminance (must be an even number between 0 
and 14; the higher the number , the brighter the dis­
play. 14 is almost pure white!) 

The ATARI display hardware contains five color registers, 

180 



Table 14-3. Hue (Setcolor Command) Numbers and Colors. 

Colors 

Gray 
Light orange (gold) 
Orange 
Red-orange 
Pink 
Purple-blue 
Blue 
Blue 
Light blue 
Turquoise 
Green-blue 
Green 
Yellow-green 
Orange-green 
Light orange 

Setcolor (aexp2) Numbers 

o 
1 
2 
3 
4 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

Note: Colors will vary with type and adjustment of TV or monitor used. 

numbered from 0 through 4. The operating system (OS) has five 
RAM locations (colorO through color4) where it keeps track of the 
current colors. The setcolor statement is used to change the values 
in these RAM locations. The setcolor statement requires a value 
from 0 to 4 to specify a color register. The color statement uses 
different numbers because it specifies data which only indirectly 
corresponds to a color register. This can be confusing, so ex­
perimentation and study of the various tables in this chapter is 
recommended. 

No setcolor commands are needed if the default set of five 
colors is used. See Table 14-4. Although 128 different color­
luminance combinations are possible, not more than five can be 
displayed at anyone time. The purpose of the color registers and 
setcolor statement is to specify these five colors . 

A program illustrating Graphics Mode 3 and the commands 
explained so far is shown below: 

10 GRAPHICS 3 
20 SETCOLOR 0,2,8: COLOR 1 
30 PLOT 17,1: DRAWTO 17, 10: DRAWTO 9,18 
40 PLOT 19 ,1: DRAWTO 19, 18 
50 PLOT 20,1: DRAWTO 20,18 
60 PLOT 22,1: DRAWTO 22, 10: DRAWTO 30,18 
70 POKE 752 ,1 

181 



Table 14-4. Setcolor "Defaulf' Colors.· 

Setcolor Defaults To Luminance Actual Color 
(Color Register) Color 

0 
1 
2 
3 
4 

2 8 Orange 
12 10 Green 
9 4 Dark blue 
4 6 Pink or blue 
0 0 Black 

·"Default" occurs if no setcolor statement is used. 
Note: Colors may vary depending upon the television 
monitor type, condition, and adjustment. 

80 PRINT :PRINT" 
90 GOTO 90 

ATARI PERSONAL COMPUTERS" 

The setcolor and color statements set the color of the points to 
be plotted. The setcolor command loads color register 0 with hue 2 
and a luminance of 8. The next 4 lines plot the points to be dis­
played. Line 90 suppresses the cursor and line 100 prints the string 
expression AT ARI PERSONAL CO MPUTERS in the next window. 
Figure 14-2 shows how this program appears on the screen. 

To assign colors to characters in Text Modes 1 and 2, first look 
up the character number in Table 14-5. Then look at Table 14-6 to 
get the conversion of that number required to assign a color register 
to it. 

Example: Assign setcolor 0 to lower case "r" in mode 2 whose 
color is determined by register O. 
1. In Table 14-6, find the column and number for "r" (114-
column4). 
2. Using Table 14-7, locate column 4. Conversion is the 
character number minus 32 (114-32=82). 
3. Poke the Character Base Address (CHBAS) with 226 to 
specify lower case letters or special graphics characters; that 
is, poke 756,226 or CHBAS = poke CHEBAS, 226. 
To return to upper case letters, numbers, and punctuation 
marks, poke CHBAS with 224. 
4. A print statement using the converted number (82) assigns 
the lower case "r" to setcolor 0 in mode 2. 

XIO: This special application of the XIO statement fills an area 
on the screen between plotted points and lines with a non-zero 
value. 

182 

The following steps illustrate the fill process: 
1. Plot bottom right comer (point 1). 



2. Drawto upper right comer (point 2). This outlines the right 
edge of the area to be filled. 

3. Drawto upper left comer (point 3) . 
4. Position cursor at lower left comer (point 4). 
5. Poke address 765 with the fill color data (1,2, or 3) . 

This method is used to fill each horizontal line from top to 
bottom of the specified area . The fill starts at the left and proceeds 
across the line to the right until it reaches a pixel which contains 
non-zero data. Fill cannot be used to change an area which has been 
filled in with a non-zero value so the fill will stop. The fill command 
will go into an infinite loop if a fill-with-zero command is attempted 
on a line which has no non-zero pixels. Press the break key or the 
system reset button to stop the fill if this happens. 

The following program creates a shape and fills it with a data 
(color) of 3. Note that the XIO command draws in the lines on the 
left and bottom of the figure. 

10 GRAPHICS 5+16 
20 COLOR 3 
30 PLOT 70,45 
40 DRAWTO 50,10 
50 DRAWTO 30,10 
60 POSITION 10,45 
70 POKE 765,3 
80 XIO 18,#6,0,0,"S: " 
90 GOTO 90 

l . 
;;; ) 

it: II 

~ '7 - . 
~ I~ 
~" 
~ lit 
lOI 1:1 
~ 14 .... ,. 

,~ ,. 
m 

X-AXIS rolNTS (OOLUMNS) 

AlARI PERSONAl COMPUTERS 

Fig. 14-2. The ATARI symbol as produced by the program. 

.(GRAPHICS 
WINDOW) 
DEVICE COOE ·'S." 

..... n 
(Grllphks or 'h'zd 

/(TEXT WINDOW) 

£dUor 
OEVICE CODE "E." 

(T~xt Only) 

183 



Table 14-5. Internal Character Set. 

Column 1 Column 2 

II CUR II CUR II CUR II CUR 

0 Space 16 0 32 @ 48 P 

1 ! 17 1 33 A 49 Q 

2 " 18 2 34 B 50 R 

3 /I 19 3 35 C 51 S 

4 $ 20 4 36 D 52 T 

5 % 21 5 37 E 53 U 

6 ~ 22 6 38 F 54 V 

7 , 
23 7 39 G 55 W 

8 ( 24 8 40 H 56 X 

9 ) 25 9 41 I 57 Y 

10 * 26 42 J 58 Z 

11 + 27 , 43 K 59 [ 

12 , 28 < 44 L 60 \ 

13 - 29 - 45 M 61 ] -

14 - 30 > 46 N 62 A 

15 / 31 ? 47 0 63 -

184 



Column 3 Column 4 

11 CHR 11 CHR 11 CHR 11 CHR 

64 C 80 g 96 C 112 P 

65 G 81 ~ 97 a 113 q 

66 ~ 82 = 98 b 114 r 

67 CI 83 D 99 c 115 s 

68 H 84 D 100 d 116 t 

69 ~ 85 .~ 101 e 117 u 

70 ~ 86 (I 102 f 118 v 

71 ~ 87 ~ 103 g 119 w 

72 ~ 88 ~ 104 h 120 x 

73 m 89 (] 105 i 121 Y 

74 ~ 90 ~ 106 j 122 z 

75 ~ 91 CD" 107 k 123 D 
76 a 92 0 108 1 124 I 

77 iii 93 0 109 m 125 CDI'ij 

78 ~ 94 = 110 n 126 CD~ 

79 ~ 95 = 111 0 127 CD~ 

1. In mode 0 these characters must be preceded with an escape, CHR$(27J, 
to be printed. 

185 



Table 14-6. Character/Color Assi&nment. 

eo.-.Ion 1 Conversk>n 2 Conversion 3 ConvIl'1iOn .. 

_0 2Se1color 2 1'+32 1'+32 " - 32 Non. 

POke 756.224 Poke 756.22e 

SeICOIor 0 -$32 "+32 "-32 "-32 
_ 1 

Selcolorl None "+64 "-64 None 
Or 
_2 

SelcolOr 2 "+160 "+160 "+96 ,,+~ 

SelcolOr 3 "+128 "+192 "+64 ''+121l 

2. Luminanc. con11011ed by SeICOior 1.0. LUM. 

Graphic Control Characters: These characters are pro­
duced when the CTRL key is pressed with the alphabetic keys 
shown in Fig. 14-3. These characters can be used to draw designs, 
pictures, and the like in mode 0 and in modes 1, and 2 if CHBAS is 
changed. 

TEXT MODES CHARACTER PRINT PROGRAM 
The following program prints the A TAR! characters in their 

default colors for Text Modes 0,1, and 2. When entering this 
program, remember that the clear screen symbol" "is printed as 
H}". 

1 DIM A$(l) 
5 ?"}":REM CLEAR SCREEN 

10 ? "GRAPHICS 0,1, AND 2 (TEXT MODES)" 
20 ? "DEMONSTRATION." 
30 ?"DISPLAYS CHARACTER SETS FOR EACH MODE." 
60 WAIT=1000:REM SUBROUTINE LINE NUMBER 
70 CHBAS=756:REM CHARACTER BASE ADDRESS 
80 UPPER=224:REM DEFAULT FOR CHBAS 
90 LOWER=226:REM LOWER CASE LETTERS - GRAPH­

ICS 
95 GOSUB WAIT 

100 FOR L=O TO 2 
112 REM USE E: FOR GRAPHICS 0 
115 IF L=O THEN OPEN #1,8 ,0, "E":GOTO 118 
116 REM USE S: FOR GRAPHICS 0 

186 



Table 14-7. Pitch 
Values for Musical Notes. 

High 
Notes 

Middle C 

Low Notes 

Fig. 14·3. The keyboad graphics characters. 

C 
B 
A# or B~ 
A 
G# or AD 
G 
F# or G ~ 
F 
E 
D# or E 
D 
C# or D ~ 
C 
B 
A# or B 
A 
G# or A· 
G 
F# or G I> 

F 
E 
D# or E ~ 
D 
C# or D~ 
C 
B 
A# or B I> 

A 
G# or A ~ 
G 
F# G ~ 
F 
D 
D# or E~ 
D 
C# or D~ 
C 

29 
31 
33 
35 
37 
40 
42 
45 
47 
50 
53 
57 
60 
64 
68 
72 
76 
81 
85 
91 
96 

102 
108 
114 
121 
128 
136 
144 
153 
162 
173 
182 
193 
204 
217 
230 
243 

187 



117 OPEN #1. 8, 0, "S:" 
118 GRAPHICS L 
120 PRINT "GRAPHICS ";L 
130 FOR J =0 TO 7:REM 8LINES 
140 FOR 1=0 TO 31 :REM 32 CHARSILINE 
150 K=32*J+I 
155 REM DON'T DISPLAY "CLEAR SCREEN" OR "RE-

TURN" 
160 IF K=ASC(")") OR K=155 THEN 180 
165 IF L=O THEN PUT #1, ASC (" "):REM ESCAPE 
170 PUT #l,K:REM DISPLAY CHARS 
180 NEXT I 
190 PRINT #1;" " :REM END OF LINE 
200 IF L< > 2 or J< >3 THEN 240 
210 REM SCREEN GULL 
220 GOSUB WAIT 
230 PRINT #1;"}":REM CLEAR SCREEN 
240 NEXT J 
250 GOSUB WAIT 
265 PRINT "LOW CASE AND GRAPHICS" 
270 IF L< >0 THEN POKE CHBAS, LOWER:GOSUB WAIT 
275 CLOSE #1 
280 NEXT L 
300 GRAPHICS O:END 

1000 REM WAIT FOR "RETURN" 
1010 PRINT "HIT RETURN TO CONTINUE"; 
1020 INPUT A$ 
1030 RETURN 

LIGHT SHOW PROGRAM 
The following program demonstrates another aspect of ATARI 

graphics . It uses Graphics Mode 7 for high resolution and the plot 
and drawto statements to draw the lines. In line 20, the title will be 
more effective if it is entered in inverse video using the ATARI logo 
key. 

10 FOR ST=1 TO 8:GRAPHICS 7 
15 POKE 752,1 
20 ?:?" ATARI's Special Light Show ":SETCOLOR 2,0,0 
30 SETCOLOR 1, 2*ST,8:COLOR 2 
40 FOR DR=O TO 80 STEP ST 
50 PLOT 0,0: DRAWTO 100,DR 

188 



60 NEXT DR: FOR N=l TO 800: NEXT N: NEXT ST 
70 FOR N=l TO 2000: NEXT N"GOTO 10 

UNITED STATES FLAG PROGRAM 
This program involves switching colors to set up the stripes. 

It uses Graphics Mode 7 plus 16 so that the display uses the full 
screen. Note the correspondence between the color statements and 
the setcolor statements . For fun and experimentation purposes, add 
a sound statement and use a read/data combination to add "The Star 
Spangled Banner" after line 470 . Refer to next section to see how 
this is done. 

10 REM DRAW THE UNITED STATES FLAG 
20 REM HIGH RESOLUTION 4-COLOR GRAPHICS, NO 

TEXT WINDOW 
30 GRAPHICS 7+16 
40 REM SETCOLOR 0 CORRESPONDS TO COLOR 1 
50 SETCOLOR 0,4,4:RED =1 
60 REM SETCOLOR 1 CORRESPONDS TO COLOR 2 
70 SETCOLOR 1,0,14: WHITE=2 
80 REM SETCOLOR 2 CORRESPONDS TO COLOR 3 
90 BLUE =3:REM DEFAULTS TO BLUE 

100 REM DRAW 13 RED & WHITE STRIPES 
110 C=RED 
120 FOR 1=0 TO 12 
130 COLOR C 
140 REM EACH STRIPE HAS SEVERAL HORIZONTAL 

LINES 
150 FOR J=O TO 6 
160 PLOT 0,l*7+J 
170 DRAWTO 159,1*7+J 
180 NEXT J 
190 REM SWITCH COLORS 
200 C=C+1:IF C> WHITE THEN C=RED 
210 NEXT I 
300 REM DRAW BLUE RECTANGLE 
310 COLOR BLUE 
320 FOR 1=0 TO 48 
330 PLOT 0,1 
340 DRAWTO 79,1 
350 NEXT I 
360 REM DRAW gROWS OF WHITE STARS 

189 



370 COLOR WHITE 
380 K=O:REM START WITH ROW OF 6 STARS 
390 FOR 1=0 TO 8 
395 Y=4+I*5 
400 FOR J=O TO 4: REM 5 STARS IN A ROW 
410 X=K+5+J*14: GOSUB 1000 
420 NEXT J 
430 IF K< >0 THEN K=O: GOTO 470 
440 REM ADD 6TH STAR EVERY OTHER LINE 
450 X=5+5*14:GOSUB 1000 
460 K=7 
470 NEXT I 
500 REM IF KEY HIT THEN STOP 
510 IF PEEK (764)=255 THEN 410 
515 REM OPEN TEXT WINDOW WITHOUT CLEARING 

SCREEN 
520 GRAPHICS 7+32 
525 REM CHANGE COLORS BACK 
530 SETCOLOR 0,4,4: SETCOLOR 1,0,14 
550 STOP 

1000 REM DRAW 1 STAR CENTERED AT X,Y 
1010 PLOT X-1,Y:DRAWTO X+1 ,Y 
1020 PLOT X,Y-1 : PLOT X,Y+1 
1030 RETURN 

VIDEO GRAFFITI 
This program requires a joystick controller for each player. 

Each joystick has one color associated with it. By maneuvering the 
joystick, different patterns are created on the screen. Note the use 
of the stick and strig commands . 

1 GRAPHICS 0 
2 ? "VIDEO GRAFFITI" 
5 REM X&Y ARRAYS HOLD COORDINATES 
6 REM FOR UP TO 4 PLAYERS' POSITIONS. 
7 REM COLR ARRAY HOLDS COLORS. 

10 DIM A$(l),X(3) ,Y(3),COLR(3) 
128 ? "USE JOYSTICKS TO DRAW PICTURES" 
129 ? "PRESS BUTTONS TO CHANGE COLORS" 
130 ? "INITIAL COLORS:" 
131 ? "JOYSTICK 1 IS RED" 
132 ? "JOYSTICK 2 IS WHITE" 

190 



133 ? "JOYSTICK 3 IS BLUE" 
134 ? "JOYSTICK 4 IS BLACK (BACKGROUND)" 
135 ? "BLACK LOCATION IS INDICATED BY A BRIEF 

FLASH OF RED ." 
136 ? "IN GRAPHICS 8, JOYSTICKS 1 AND 3 ARE WHITE 

AND 4 IS BLUE." 
138 PRINT "HOW MANY PLAYERS (1-4)" ; 
139 INPUT A$ :IF LEN(A$)=0 THEN A$="I" 
140 jOYMAX= VAL(A$)-1 
145 IF jOYMAX< O OR jOYMAX =4 THEN 138 
147 PRINT "GRAPHICS 3 (40X24), 5 (80X48)," 
150 PRINT "7 (160X96), OR 8 (320XI92)"; 
152 INPUT A$:IF LEN(A$)=0 THEN A$="3" 
153 A=VAL(A$) 
154 IF A=3 THEN XMAX=40:YMAX=24:GOTO 159 
155 IF A=5 THEN XMAX=80:YMAX=48:GOTO 159 
156 IF A=7 THEN XMAX=160:YMAX=96:GOTO 159 
157 IF A=8 THEN XMAX=320:YMAX=192:GOTO 159 
158 GOTO 147:REM A NOT VALID 
159 GRAPHICS A+16 
160 FOR 1=0 TO jOYMAX:X(I)=XMAXl2+I:Y(l)=YMAXI 

2+I:NEXT I: REM START NEAR CENTER OF SCREEN 
161 IF A< >8 THEN 166 
162 FOR 1=0 TO 2:COLR(I)=1:NEXT I 
163 SETCOLOR 1,9 ,14:REM LT. BLUE 
165 GOTO 180 
166 FOR 1=0 TO 2:COLR(I)=I+l:NEXT I 
167 SETCOLOR 0,4,6 :REM RED 
168 SETCOLOR 1,0,14:REM WHITE 
180 COLR(3)=0 
295 FOR j=O TO 3 
300 FOR 1=0 TO jOYMAX:REM CHECK JOYSTICKS 
305 REM CHECK TRIGGER 
310 IF STRIG(I) THEN 321 
311 IF A< >8 THEN 320 
312 COLR(I)=COLR(I)+1:IF COLR(I)=2 THEN COLR(I)= 

O:REM 2-COLOR MODE 
313 GOTO 321 
320 COLR(I)=COLR(l)+I:IF COLR(I»=4 THEN COLR(I)= 

O:REM 4-COLOR MODE 
321 IF J> O THEN COLOR COLR(I) :GOTO 325 
322 IF COLR(I)=O THEN COLOR I:GOTO 325 

191 



323 COLOR O:REM BLINK CURRENT SQUARE ON AND 
OFF 

325 PLOT X(I),Y(I) 
330 JOYIN=STICK(I):REM READ JOYSTICK 
340 IF JOYIN=15 THEN 530:REM NO MOVEMENT 
342 COLOR COLR(I):REM MAKE SURE COLOR IS ON 
344 PLOT X(I),Y(I) 
350 IF JOYIN>=8 THEN 390 
360 X(I)=X(I)+l:REM MOVE RIGHT 
370 IF X(I»=XMAX THEN X(I)=O 
380 GOTO 430 
390 IF JOYIN>=12 THEN 430 
400 X(I)=X(I)-l:REM MOVE LEFT 
410 IF X(I)<O THEN X(I)=XMAX-1 
430 IF JOYIN< >5 AND JOYIN< >9 AND JOYIN< > 13 

THEN 470 
440 Y(I)=Y(I)+ l:IF Y(I»=YMAX THEN Y(I)=O: REM MOVE 

DOWN 
460 GOTO 500 
470 IF JOYIN< >6 AND JOYIN< >10 AND JOYIN< > 14 

THEN 500 
480 Y(I)=Y(I)-l:IF Y(I)<O THEN Y(I)=YMAX-1:REM 

MOVE UP 
500 PLOT X(I),Y(I) 
530 NEXT I 
535 NEXT J 
540 GO TO 295 

USING SOUND 
In general, BASIC statements are used to generate musical 

notes and sounds through the audio system of the television 
monitor. Up to four different sounds can be "played" simultaneously 
creating harmony. The sound statement can also be used to simu­
late explosions, whistles, and other interesting noises. 

Sound: The sound statement causes the specified note to 
begin playing as soon as the statement is executed. The note will 
continue playing until the program encounters another sound 
statement with the aexp1 or an end statement. This command can 
be used in either direct or deferred modes. 

The sound parameters are described as follows: 

192 



aexp1= Voice. Can be 0-3, but each voice requires a separate 
sound statement. 

aexp2= Pitch . Can be any number between 0 and 255. The 
larger the number, the lower the pitch. Table 14-7 
shows the pitch numbers for the various musical 
notes ranging from two octaves above middle C to one 
octave below middle C. 

aexp3= Distortion. Can be any even number between 0 and 
14. A 0 is used to create a "pure" tone whereas a 12 
gives an interesting buzzer sound. A buzzing sound 
can be produced using two separate sound commands 
with the distortion value alternating between 0 and 1. 

aexp4= Volume control. Can be between 1 and 15. Using a 1 
creates a sound barely audible whereas a 15 is loud. A 
value of 8 is considered normal. If more than one 
sound statement is being used, the total volume 
should not exceed 32 or an unpleasant "clipped" tone 
will resul t. 

The following example shows how to write a program that will 
"play" the C scale. 

10 READ A 
20 IF A=256 THEN END 
30 SOUND 0,A,10,10 
40 FOR W=1 TO 400:NEXT W 
50 PRINT A 
60 GOTO 10 
70 END 
80 DATA 29,31,35,40,45,47,53,60,64,72,81,91,96,108, 

121 
90 DATA 128, 144, 162, 182, 193, 217, 243, 256 

Note that the data statement in line 90 ends with a 256. A glance at 
Table 14-7 will tell us that this is outside of the designated range. 
The 256 is used as an end-of-data marker. 

TYPE-A-TUNE PROGRAM 
The following program turns the AT ARI 800 into a single-scale 

piano; that is, it assigns musical note values to the keys on the top 

193 



row of the computer keyboard . When you are using this program, do 
not try to play harmony; press only one key at a time. 

KEY 
INSERT 
CLEAR 

° 9 
8 
7 
6 
5 
4 
3 
2 
1 

MUSICAL VALUE 
B 

B" (or A#) 
A 

Ab (or G#) 
G 

F# (or GO) 

F 
E 

E" (or D#) 
D 

D~ (or C#) 
C 

10 DIM CHORD(37) ,TUNE(12) 
20 GRAPHICS o:? :?" TYPE-A-TUNE PROGRAM" 
25 ?:? "PRESS KEYS 1-9,0,< ,> TO PRODUCE NOTES."; 
27 ? "RELEASE ONE KEY BEFORE PRESSING THE 

NEXT." 
28 ? "OTHERWISE THERE MAY BE A DELAY." 
30 FOR X=l TO 37: READ A:CHORD(X)=A:NEXT X 
40 FOR X=l TO 12:READ A:TUNE(X)=A:NEXT X 
50 OPEN #1.4.0,"K:" 
55 OLDCHR=-l 
60 A=PEEK(764):IF A=255 THEN 60 
63 IF A=OLDCHR THEN 100 
65 OLDCHR=A 
70 FOR X=l TO 12:IF TUNE(X)=A THEN SOUND 0, 

CHORD(X),10,8:GOTO 100 
80 NEXT X 

100 I=INT(PEEK(53775)/4):IF (I/2)=INT(I12) THEN 60 
110 POKE 764,255:S0UND O,O,O,O:OLDCHR=-l: GOTO 60 
200 DATA 243,230,217,204,193,182,173,162,153,144,136, 

128,121,114,108,102,96,91,85,81,76,72,68,64,60 
210 DATA 57,53,50,47,45,42,40,37,35,33,31,29 
220 DATA 31,30,26,24,29,27,51,53,48,50,54,55 

To play "Twinkle, Twinkle Little Star" press the following 
keys: 

194 



1,1,8,8,0,0,8 
8,8,6,6,5,5,3 
1,1.8,8,0,0,8 

6,6,5,5,3,3,1 
8,8,6,6,5,5,3 
6,6,5,5,3,3,1 

To play the "Marine's Hymn" press the following keys: 

1,5,8,8,8,8,8,1,8 
1,5,8,8,6,3,1 

The following keys are pressed to play "London Bridge Is 
Falling Down": 

8,9,8,6,5,6,8 
8,9,8,6,5,6,8 

COMPUTER BLUES 

3,5,6 5,6,8 
3,8,5,1 

This program generates random musical notes to "write" some 
very interesting melodies for the programmed bass. 

1 GRAPHICS O:? :?" COMPUTER BLUES":? 
2 PTR=l 
3 THNOT=l 
5 CHORD=l 
6 PRINT "BASS TEMPO (l=FAST)" ; 
7 INPUT TEMPO 
8 GRAPHICS 2+ 16:GOSUB 2000 

10 DIM BASE(3,4) 
20 DIM LOW(3) 
25 DIM LINE(16) 
26 DIM JAM(3 ,7) 
30 FOR X=l TO 3 
40 FOR Y=l TO 4 
50 READ A:BASE(X,y)=A 
60 NEXT Y 
70 NEXT X 
80 FOR X=l TO 3:READ A:LOW(X)=A 
90 NEXT X 
95 FOR X=l TO 16:READ A:LINE(X)=A:NEXT X 
96 FOR X=l TO 3 
97 FOR Y=l TO 7 
98 READ A:JAM(X,y)=A:NEXT Y:NEXT X 

100 GOSUB 500 

195 



110 T=T+1 
115 GOSUB 200 
120 GOTO 100 
200 REM PROCESS HIGH STUFF 
205 IF RND(0) < 0.25 THEN RETURN 
210 IF RND(0)<0.5 THEN 250 
220 NT=NT+1 
230 IF NT> 7 THEN NT=7 
240 GOTO 260 
250 NT=NT-1 
255 IF NT< l THEN NT=l 
260 SOUND 2,JAM(CHORD,NT),10,NT.2 
280 RETURN 
500 REM PROCESS BASE STUFF 
510 IF BASS=l THEN 700 
520 BDUR=BDUR+ 1 
530 IF BDUR< > TEMPO THEN 535 
531 BASS=l:BDUR=O 
535 SOUND 0,LOW(CHORD),10,4 
540 SOUND 1,BASE(CHORD),THNOT) ,10,4 
550 RETURN 
700 SOUND 0,0,0,0 
710 SOUND 1,0,0,0 
720 BDUR-BDUR+1 
730 IF BDUR < > 1 THEN 800 
740 BDUR=O:BASS=O 
750 THNOT=THNOT + 1 
760 IF THNOT< > 5 THEN 800 
765 THNOT=l 
770 PTR=PTR=l 
780 IF PTR=17 THEN PTR=l 
790 CHORD=LINE(PTR) 
800 RETURN 

1000 DATA 162,144,136,144,121, 108,102,108,108,96,91 ,96 
1010 DATA 243,182,162 
1020 DATA 1,1,1,1,2,2,2,2,1,1,1,1,3,2,1,1 
1030 DATA 60,50,47,42,40,33,29 
1040 DATA 60,50,45,42,40,33,29 
1050 DATA 81,68,64,57,53,45,40 
2000 PRINT #6:PRINT #6:PRINT #6 
2005 PRINT #6;" Computer" 

196 



2006 PRINT #6 
2010 PRINT #6;" Blues" 
2030 RETURN 

197 



Chapter 15 

Programming in Machine Language 

Machine language is the simplest form of computer language (for 
the computer that is). It consists of the binary instruction codes that 
define the basic computer instruction. Each instruction is defined by 
a unique binary code. When that code is interpreted by the com­
puter, the CPU and other sections of the computer carry out those 
specific operations defined by that instruction . 

Programs can be written in machine language by listing the 
instructions in the proper sequence. Such a sequence of instructions 
comprises the program that results in some worthwhile end result. 

Machine language is by far the most difficul t of all computer 
languages to use. It not only requires a knowledge of the computer's 
architecture and operation, but it is tedious and time-consuming . 
Machine language programming , using binary numbers is also error 
prone, and is therefore sometimes simplified by using octal or 
hexadecimal codes instead of binary codes. Despite this improve­
ment, machine language programming is difficult. It is used for 
writing only short, simple programs. When longer and more com­
plex programs are to be written, machine language programming is 
abandoned in favor of assembly-language programming. 

The AT ARI 800 contains a 6502 microprocessor and it is 
possible to call 6502 machine code subroutines from BASIC using 
the USR function . Short routines may then be entered into a pro­
gram by hand assembly. Before the AT ARI 800 returns to BASIC, 
the assembly language routine must do a pull accumulator (PLA) 

198 



instruction to remove the number (N) of input arguments off the 
stack. If this number is not 0, all of the input arguments must be 
popped off the stack also using PLA. 

The subroutine should end by placing the low byte of its result 
in location 212 (decimal). It should then return to BASIC using an 
RTS (Return from Subroutine) instruction. The BASIC interpreter 
will convert the 2-byte binary number stored in locations 212 and 
213 into an integer between ° and 65535 in floating-point format to 
obtain the value returned by the USR function. 

The ADR (address) function may be used to pass data that is 
stored in arrays or strings to a subroutine in machine language . Use 
the ADR function to get the address of the array of strings, and then 
use this address as one of the USR input arguments. 

We will take a look at an actual program very soon, but before 
we do, let's review assembly language. Assembly-language pro­
gramming is the next step up from machine language. It still uses 
the individual computer instructions for writing programs, but in­
stead of referring to these instructions by binary, octal, or 
hexadecimal codes, each instruction is referred to by a shorthand 
term. Each instruction is referred to by a short multi letter desig­
nator known as a mnemonic. For example, the instruction that 
causes the addition of binary numbers is referred to by the 
mnemonic ADD. The mnemonic for a store accumulator instruction 
might be STA. These mnemonics eliminate the need to deal with 
binary code. In addition, assembly-language programming provides 
the ability to identify memory locations by symbolic names rather 
than by actual address numbers. For example, the memory location 
designated to hold the sum of an arithmetic operation might simply 
be referred to as SUM. The actual memory address of that memory 
location need not be used. 

When you use assembly language, you will usually also use a 
program called an assembler. The assembler is a translator pro­
gram that resides in memory and converts your program, written in 
mnemonics and symbolic addresses, into machine code which can 
be executed by the computer. The assembler looks at each 
mnemonic operation code and symbolic address and converts it into 
its appropriate binary operation code or address. Each mnemonic 
typically results in the creation of one binary instruction. 

Assembly language programming greatly speeds up and 
simplifies the programming process. It eliminates many of the 
complications of dealing with binary numbers . Yet because assem­
bly language programs are capable of using the individual computer 

199 



instructions. poweriul and efficient programs can be written. 
The following program. Hexcode Loader . provides the means 

of entering hexadecimal codes. converting each hexadecimal 
number to decimal. and storing the decimal number in an array. The 
array is then executed as an assembly-language subroutine. To use 
this program. first enter it. Then save it on disk or cassette for 
future use . 

10 GRAPHICS O:PRINT "HEXCODE LOADER PRO­
GRAM":PRINT 

20 REM STORES DECIMAL EQUIVALENTS IN ARRAY A, 
OUTPUTS IN PRINTED 'DATA STATEMENTS' AT 

21 REM LINE NUMBER 1500 
30 REM USER THEN PLACES CURSOR ON PRINTED 

OUTPUT LINE, HITS "RETURN", AND ENTERS 
31 REM REST OF BASIC PROGRAM INCLUDING USR 

STATEMENT. 
40 DIM A(50) ,HEX$(5) 
50 REM INPUT, CONVERSION, STORAGE OF DATA. 
60 N=O:PRINT"ENTER 1 HEX CODE . IF THERE ARE NO 

MORE, ENTER 'DONE' ."; 
70 INPUT HEX$ 
80 IF HEX$="DONE" THEN N=999:GOTO 130 
90 FOR 1=1 TO LEN(HEX$) 

100 IF HEX$(I, 1) < ="9" THEN N=N*16+VAL(HEX$(l, 
I)):GOTO 120 

110 N=N*16+ASC(HEX$(I, I))-ASC("A")+10 
120 NEXT I 
130 PRINT N:C=C+l 
140 A(C)=N 
150 IF N<>999 THEN GOTO 60 
190 REM PRINT OUT DATA LINE AT 1500 
200 GRAPHICS 0: PRINT "1500 DATA" ; 
210 C-O 
220 C=C+1 
230 IF A(C)=999 THEN PRINT "999":STOP 
240 PRINT A(C);" ,"; 
250 A(C)=O 
260 GOTO 220 
300 PRINT "PUT CORRECT NUMBER OF HEX BYTES IN 

LINE 1000.":STOP :REM TRAP LINE 

200 



999 REM·· EXECUTION MODULE . '. 
1000 CLR :BYTES=O 
1010 TRAP 300:DIM E$ (1) ,E(INT(BYTES/6)+ t) 
1030 FOR 1=1 TO BYTES 
1040 READ A: IF A> 255 THEN GOTO 1060 
1050 POKE ADR(E$)+I ,A 
1060 NEXT I 
1070 REM BASIC PART OF USER'S PROGRAM FOLLOWS 

Once this much of the program has been typed, add your own 
BASI C language part of the program. Start at line 1080 and inel ude 
the USR function that calls the machine-language subroutine. Some 
sample programs follow. 

Count the total number of hex codes to be entered and enter 
this number on line 1000 when requested. If another number is 
already entered, simply replace it. 

Run the program and enter the hexadecimal codes of the 
machine-level subroutine . Press the return key after each entry. 
After the last entry, type done and press the return key . 

Now the data line (1500) displays on the screen. It will not be 
entered into the program until the cursor is moved to it and the 
return key is pressed. 

Add a program line 5 goto 1000 to bypass the hexcode loader 
(or delete the hex code loader through line 260). Now save the 
completed program by using csave or save. It is important to save 
the program before executing the part of the program containing the 
USR call. A mistake in a machine-language routine may cause the 
system to crash . If the system does hang up, press the system reset 
button. If the system doesn't respond, turn power off and on again, 
reload the program, and correct the mistake. 

The following sample programs can each be entered into the 
Hexcode Loader program . The first program prints NOTHING IS 
MOVING while the machine-language program changes the colors. 
The second simple program displays a BASIC graphics design and 
then changes the colors. 

1080 GRAPHICS 1+16 
1090 FOR 1=1 TO 6 
1100 PRINT #6; "nothing is moving' " 
1110 PRINT #6; "NOTHING IS MOVING'" 
1120 PRINT #6; "nothing is moving' " 
1130 PRINT #6; "NOTHING IS MOVING'" 

201 



1140 NEXT I 
1150 Q=USR(ADR(E$)+ 1) 
1160 FOR 1=1 TO 25:NEXTI :GOTO ll50 
After entering this program, change line 1000 to read : 

1000 CLR:BYTES = 21 

Type RUN and press the return key . 
Now enter the hexadecimal codes column by column as shown . 

68 2 
A2 E8 
o EO 
AC 3 
C4 90 
2 F5 
BD 8C 
C5 C7 
2 2 
9D 60 
C4 BYTES = 21 

When you have entered them all, type DONE and press the 
return key. Now place the cursor after the last entry (999) on the 
data line and press the return key . 

Now run the program by typing GOTO 1000 and pressing the 
return key, or if line 5 has been added, type RUN and press the 
return key . Press the break key to stop the program and delete line 
5. 

The second program, which follows, should be entered in place 
of the NOTHING IS MOVING program. Be sure to check the 
BYTES = count in line 1000. 

1080 GRAPHICS 7+16 
1090 SETCOLOR 0,9,4 
l100 SETCOLOR 1,9,8 
1110 SETCOLOR 2,9,4 
l120 CR=l 
1130 FOR X=O TO 159 
l140 COLOR INT(CR) 
l150 PLOT 80,0 
l160 DRAWTO X,95 
l170 CR=CR+0 .125 
l180 IF CR=4 THEN CR=l 

202 



I\
) o CI
J 

O
bj

ec
t 

A
dd

re
ss

 
C

od
e 

02
C

4 
02

C
5 

02
C

6 
02

C
7 

60
00

 
68

 
60

01
 

A
20

0 
60

03
 

A
C

C
40

2 
60

06
 

B
O

C
50

2 
60

09
 

9
0

C
4

0
2

 
60

0C
 

E
8 

6
0

0
0

 
E

00
2 

60
0F

 
9

0
F

5
 

60
11

 
8

C
C

6
0

2
 

60
14

 
60

 

A
ss

em
bl

er
 

P
rin

ts
 T

hi
s 

Li
ne

 N
o.

 
la

b
e

l 

01
00

 
01

10
 

01
20

 
01

30
 

01
40

 
01

50
 

01
60

 
01

70
 

01
75

 
01

80
 

01
90

 
02

00
 

02
10

 
02

20
 

02
30

 
L

oo
p 

02
40

 
02

50
 

02
60

 

02
70

 

02
80

 
02

90
 

M
ne

m
on

ic
 

D
at

a 

R
ou

tin
e 

to
 r

ot
at

e 
C

O
LO

R
 d

at
a 

F
ro

m
 o

n
e

 r
eg

is
te

r 
to

 a
no

th
er

. 
4 

co
lo

rs
 a

re
 r

ot
at

ed
. 

O
p

e
ra

tin
g

 s
ys

te
m

 a
dd

re
ss

 
C

ol
or

 0
 =

 $0
2

C
4

 
C

ol
or

 
1 

=
 $0

2C
5 

C
ol

or
 2

 =
 $0

2C
6 

C
ol

or
 3

 =
 $0

2C
7 

. -
$

6
0

0
0

 
M

ac
hi

ne
 p

ro
gr

am
 s

ta
rt

in
g 

a
d

d
re

ss
· 

P
LA

 
P

o
p

 s
ta

ck
 (

S
ee

 C
ha

p
te

r 
4)

 
LO

X
 

#
0

 
Z

e
ro

 t
he

 X
 r

eg
is

te
r 

LO
Y 

C
ol

or
tJ

 
S

av
e 

C
O

L
O

R
 0

 
LO

A
 

C
o

lo
rl

.X
 

S
T

A
 

C
oI

or
tJ

,X
 

IN
X

 
In

cr
em

en
t 

th
e 

X
 r

eg
is

te
r 

(a
dd

 o
n

e
) 

C
P

X
 

#
3

 
C

o
m

p
a

re
 c

o
n

te
n

ts
 0

1 
X

 r
eg

is
te

r 
w

ith
 2

 
B

C
C

 
L

oo
p 

Lo
op

 if
 X

 r
eg

is
te

r 
co

nt
en

ts
 a

re
 

le
ss

 t
ha

n 
2 

S
T

Y
 

C
oI

O
r3

 
S

av
e 

co
lo

r 
0 

in
 C

O
lo

r 
3 

R
T

S
 

R
e

tu
rn

 f
ro

m
 m

ac
hi

ne
 l

ev
el

 s
ub

-
ro

ut
in

e 

T
h

is
 P

or
tio

n 
is

 S
o

ur
ce

 I
nf

o
rm

at
io

n 
P

ro
g

ra
m

m
e

r 
E

nt
er

s 
U

si
ng

 A
T 

A
R

I 
A

ss
em

b
le

r 
C

ar
tr

id
ge

 
-
-
~
 

Ta
bl

e 
15

-1
. 

A
ss

em
bl

er
 

Ro
ut

in
e 

to
 R

ot
at

e 
Co

lo
rs

. 

~
 
In

di
ca

te
s 

d
a

ta
 (

so
ur

ce
) 

• 
R

ou
tin

e 
is

 r
el

oc
at

ab
le

 
S 

In
di

ca
te

s 
a 

h
e

xa
d

e
ci

m
a

l 
n

u
o

lb
e

r 



1190 NEXT X 
1200 X=USR(ADR(E$)+ 1) 
1210 FOR 1=1 TO 15:NEXT 1 
1220 GOTO 1200 

Type RUN and press the return key . 
Enter the hexadecimal codes for this program column by col-

umn. 

68 2 
A2 E8 
0 EO 
AC 2 
C4 90 
2 F5 
BD 8C 
C5 C6 
2 2 
9D 60 
C4 BYTES = 21 

When you have entered them all, type DONE and press the 
return key . Now place the cursor after the last entry (999) on the 
data line and press the return key. 

Now run the program by typing GOTO 1000 and pressing the 
return key, or add line 5 GOTO 1000, type RUN and press the 
return key. Press the break key to stop program and delete line 5. 

Table 15-1 illustrates an assembler subroutine used to rotate 
colors which might prove useful. It is included here for your infor­
mation. 

204 



Chapter 16 

Continuing Education 

Computer technology isn't something you can learn quickly by 
simply buying a microcomputer and studying a couple of books . Not 
that it isn't possible to teach yourse lf this way, but you'll save a lot of 
time if you start with some professional instruction. 

Ideally, the best way to learn computer technology is to attend 
one of the bona fide schools offering courses in compute r science, 
but for some of you , attending one of these co lleges or schools may 
not always be possible . You have to earn a I iving and , therefore , 
full-time instruction is out of the question . You may find that a 
home-study school can solve the problem. Location, working hours, 
age, and educational background are not barriers for the serious, 
highly-motivated home -study student. Furthermore, a person tak­
ing a home-study course can progress at his or her own pace -as 
fast as he or she can master the lessons or as slowly and irregularly 
(within reason) as necessary. Two correspondence schools offering 
courses in computer technology include: 

and 

NRI 
McGraw-Hill Continuing Education Center 
3939 Wisconsin Avenue 
Washington, DC 20016 

National Technical Schools 
4000 South Figueroa Street 
Los Angeles, CA 90037 

205 



NRI 

NRI's advanced course of study called the Professional Course 
is designed to get qualified individuals into the exciting and rapidly 
growing field of computer technology as quickly as possible. The 
course was created by selecting the lessons from NRI's Master 
Course that deal specifically with computers. The Professional 
Course lesson texts are described in detail later on. The first lesson 
in the course is "Introduction to Computers." The final lesson is 
"Digital Troubleshooting Equipment." 

The Professional Course lesson texts are supplemented with 
thorough training on the Radio Shack TRS-80 model III microcom­
puter. This training is accomplished by interfacing the NRI Discov­
ery Lab with the TRS-80. The lab is the only equipment that is not 
included in the tuition price of the course. If you've previously taken 
an NRI electronics course perhaps you have a Discovery Lab al­
ready. If not, you can order the Discovery Lab through NRI for 
$100. 

The TRS-80 model III with 16K RAM is included in their 
Professional Course training. This Radio Shack microcomputer 
comes fully assembled and ready to use . It has many practical 
applications that you can utilize after you've finished using it as a 
training device. Training on the TRS-80 will give you the hands-on 
experience you will need to move ahead in the world of microcom­
puter technology . 

The NRI Professional Course in Microcomputer training pre­
pares you for the tremendous employment surge in the field of 
computer service technicians-a growth that has soared from 
63,000 back in 1978 and will reach 160,000 in 1990. This phe­
nomenal growth predicted by the U.S. Department of Labor, 
Bureau of Labor Statistics will occur in an incredibly short 
period-154% growth in 12 years! 

In the fields of computers and electronics, education is not only 
necessary to get a job but also important to advance in your career. 
NRI courses provide a sound technical education as a foundation for 
entry level jobs at the technician level. In addition, NRI courses are 
ideal for continuing education, the on-going process of refreshing 
your fundamentals and gaining new knowledge of high technology 
subjects . Continuing education will keep you competent and pro­
vide the kind of knowledge you will need to advance on the job or 
land a new, better job . If you are serious about a technical career, an 
NRI course can get you into one sooner and keep you going longer. 

206 



An NRl course can open many opportunities for earning extra 
income in your spare time . Many NRI graduates have opened 
part-time service shops in their homes to make extra money. That 
opportunity and many others still exists today. Completion of an 
NRI course could help you get an FCC license that would allow you 
to do part-time service and installation work on mobile, marine, 
aircraft, or CB radios . There is also a great need for part-time 
technicians to repair microcomputers. Part-time and "moonlight­
ing" opportunities abound in electronics, and an NRI course will let 
you take advantage of them. Part-time work will often open up 
unexpected opportunities that blossom into a full-time business or a 
rewarding career. 

Electronics and computers are great hobbies and leisure-time 
activities. There are literally thousands of individuals that enjoy 
electronics as a general-interest, spare-time diversion. Electronics 
is fun, interesting, challenging, and exciting . It involves a variety of 
interests including amateur radio, CB , personal computing, hi-fil 
audio, model trains, radio control, and just plain experimenting, kit 
building and the like. An NRI course can get you into a hobby quickly 
and easily or enhance and enrich your present electronic hobby. 
After all, a major part of any hobby is learning more about a subject 
in your spare time. What better way than with a home-study course 
such as those offered by NRI? 

NATIONAL TECHNICAL SCHOOL 
The subjects covered in NTS's microcomputer course are very 

similar to those offered by NRI, except that NTS utilizes the Heath 
89 computer instead of the Radio Shack TRS-80. In fact, when 
sample lessons supplied by both schools were examined, each set of 
lessons showed strong and weak points which were balanced-out by 
similar inconsistencies in the lessons from the other school. Both 
schools are approved by the Veterans Administration for GI train­
ing, and both have a staff of well-known professional consultants. 

Courses for both schools are surprisingly complete, well 
thought out, and well written . All the material was very easy to read 
and understand , and the many illustrations created interest 
throughout. Any person who finishes either of these courses and 
who obtains a complete reference library (and knows how to use it) 
should have the basic knowledge necessary to become a good 
employee for any computer firm. The trained hobbyist will be able 
to accomplish much more on his home computer than he or she 
would otherwise. 

207 



TYPICAL CORRESPONDENCE LESSONS 
The following is a sampling of the lessons and kits found in 

typical correspondence courses. Of course, the exact contents will 
vary from school to school , but these examples should give the 
reader a good idea of what is in store for him or her. 

Introduction to Electronics: You get off to a fast start with 
an overview of the microcomputer industry. You get right to the 
heart of the business with the study of what electricity is, how 
electrical current is made to flow in a circuit, and the relationship 
between current, voltage , and resistance. 

How Electricity is Produced for Electronics: You explore 
the important types of batteries such as dry cells , mercury cells. 
manganese cells, lead-acid cells and nickle-cadmium cells. You are 
then introduced to direct current (dc) and to alternating current (ac) 
generators, and you carefully analyze how they work . 

Current, Voltage, and Resistance: You are now ready for a 
close-up examination of current, voltage, and resistance, discov­
ering how units of each are measured and how voltage sources act 
when connected . You also learn how resistance limits the flow of 
current. Since no discussion of electricity is complete without 
carefully considering Ohm's Law (which is one of the most impor­
tant laws of electronics), it is presented here in a readily under­
standable manner . You quickly learn how to use it to determine 
circuit parameters. 

Series and Parallel Circuits: In this lesson you get into 
more complex circuits , learning the difference between series and 
parallel circuits. You learn all about resistance in series circuits, 
voltage drops, and the very important relationship between the 
vol tage drops in a series circuit and the source voltage. Building on 
this knowledge, you learn how to find the resistance in a parallel 
circuit . The lesson concludes with a study of voltage and current in 
parallel circuits. 

How Resistors are Used: Now that you have the basic 
background to understand resistors and how they are used in cir­
cuits, you study the watt, the wattage rating of resistors, and the 
transfer of power. You learn about resistor values, the color code 
used to indicate the value of a resistor, and about resistors with 
special characteristics, such as the temperature-sensitive ther­
mistor and the voltage-dependent varistor. 

How Coils Are Used: You discover the different types of 
coils , their uses and their basic function in electronic circuits. You 
learn about magnetic circuits and compare them to circuits you have 

208 



already covered. You learn about inductive reactance and the op­
position that a coil offers to alternating current. You study Lenz's 
Law for coils and learn how changing flux linkages can produce a 
voltage. You study Kirchhoffs Voltage Law, and learn how Ohm's 
Law is applied to simple circuits having resistance and inductance. 

How Capacitors Are Used: In this lesson you study 
capacitors (once called condensers) and examine the differences 
between the various types (variable, paper, mica, ceramic and 
electrolytic). You learn how these capacitors are made, and how 
they are used. You learn how a capacitor stores electricity, and how 
it works in ac circuits. You also learn about capacitive reactance. 

How Resistors, Coils, and Capacitors Are Used To­
gether: Now that you understand resistance, capacitance , and 
inductance, you see how circuits which contain all three can form 
resonant circuits. You learn about both series-resonant and 
parallel-resonant circuits . You learn how important resonant cir­
cuits are and how they are used in electronics. 

How Transistors Work: You begin your study of the theory 
behind transistors. You learn what a semiconductor is and how 
semiconductor materials are combined to form diodes and transis­
tors. You learn about the junction diode, the Zener diode, the tunnel 
diode, the pin diode, and the varactor diode. You study npn transis­
tors and pnp transistors and learn how field-effect transistors work. 
By the time you have completed this lesson, you will know what a 
MOSFET is, and how it works . 

How Transistors Are Used: You learn about the three prin­
cipal transistor circuits: the common-base circuit, the common­
emitter circuit, and the common-collector circuit. You learn how 
these circuits are used in amplifiers. You learn how the field-effect 
transistor is used as an amplifier and how the gain of a dual-gate 
field-effect transistor can be controlled. 

Integrated Circuits: Here is an invaluable lesson showing 
how transistors can be integrated into entire circuits and used in 
computers and other equipment. This lesson is rounded out with a 
study of both linear and digital integrated circuits. 

Printed Circuit Boards: You get your first exposure to how 
printed circuit boards are used to provide a convenient, low-cost, 
and reliable means of mounting and interconnecting electronic com­
ponents. You learn how these boards are made and what materials 
are used. You also learn how to layout typical printed circuit boards 
and how to repair them. 

Periodic Waves and Time Constants: This lesson pro-

209 



vides an in-depth study of the types of signals and circuits used in 
control systems, computers, and other advanced electronic sys­
tems. You study periodic waveforms and pulses as well as the RC 
and RL circuits which are used to shape the pulses and other 
waveforms. 

Cathode Ray Oscilloscopes: This lesson explains in detail 
how the cathode-ray tube is combined with various circuits to form a 
complete cathode-ray oscilloscope. You see how the oscilloscope is 
used as a tool to observe and measure waveforms in circuits. 

Relays and Relay Circuits: Now you analyze the construc­
tion and operation of various types of relays . You see how they 
perform remote switching operations and are able to control large 
amounts of power under the control and direction of small signals . 

Regulated Power Supplies: You explore the basic half­
wave and full-wave rectifier circuits and elementary filter circuits. 
You even get a full explanation of how active regulators are used to 
provide pure dc for electronic circuits. You also become familiar 
with the basic series and shunt regulators, as well as with the 
special switching and other feedback regulators. 

Transistor Amplifier Circuits: In this lesson you study 
common transistor amplifier circuits in detail and see how various 
configurations affect input and output impedance, voltage and power 
gain, and phase shift. You also consider the differential amplifiers 
and special compensating techniques used for stabilization. 

How Oscillators Work: Now you can concentrate on how 
transistors and integrated circuits can be used with LC circuits, RC 
circuits, and crystals to produce oscillation . You study practical 
circuits that generate the sinusoidal and pulse waveforms useful in 
rf and computer timing applications. You investigate the operation 
of several types of special digital circuits including the monos table 
multivibrator and the astable multivibrator. 

Introduction to Computers: You are now ready for a 
close-up look at computers and their applications. You learn the 
basic structure of computers, with special emphasis on the different 
types of computers and their various circuits. 

How Computers Are Used: The entire thrust of this lesson 
is a well organized overview of how computers are used . A wide 
variety of computer applications are discussed, paying particular 
attention to their business and scientific applications. You explore 
special topics such as simulation, time sharing, and process control. 

Basic Computer Arithmetic: This lesson provides a review 
of the decimal number system. It then teaches you what binary 

210 



numbers are and how they relate to decimal numbers. You go on to 
study the forms used for binary addition, subtractions, multiplica­
tion and division in whole and fractional number applications. When 
you complete this lesson you'll see the relationships between bi­
nary, octal , hexadecimal , and decimal numbers clearly . 

Digital Codes and Computer Arithmetic: Now you begin a 
close examination of fixed and floating point numbers, and the 
methods used by computers to handle these numbers. You investi­
gate special codes such as the Gray code and the BCD code. You 
learn about the complement representation of negative numbers in 
binary and the popular ASCII code used by computers. 

Digital Logic Circuits: Here you observe the basic transis­
tor inverter used as a switch to represent the two binary states, one 
and zero. Basic, AND, and OR gates are covered using simple diode 
logic . And, you learn all about the more complex logic elements 
such as NAND , NOR, and EXCLUSIVE ORusingRTL, DTL, TTL, 
ECL, MOS, and CMOS logic elements. The characteristics of the 
various logic families are discussed clearly and simply. 

Boolean Algebra and Digital Logic: This lesson contains 
an introduction to the special Boolean math used to analyze, design, 
and optimize combinational logic circuits. This is the math that 
permits complex logic networks to be expressed in easily manipu­
lated equations which can be translated directly into optimized 
circuits using simple logic gates. 

Flip-Flops, Registers, and Counters: You now look at the 
various types of flip-flop circuits used to store and manipulate 
binary data. Here you learn that special registers are made up of 
combinations of flip-flops to store and shift large numbers of binary 
digits. You also see how other combinations of special flip-flops 
form binary and BCD counter or divider circuits. 

How Digital Logic Is Used: You gain an understanding of 
how easily any complex logic function can be performed using only 
basic NAND and NOR gates. The most widely used combinational 
logic circuits are presented in such detail that you'll have no trouble 
understanding them. They include encoders, multiplexers, demul­
tiplexers , comparators , and parity generators. 

Computer Arithmetic Operations: You learn how the 
arithmetic section of this computer uses logic to perform its func­
tions and operations on fixed and floating point numbers. You 
become familiar with methods that are used to handle negative 
numbers and you discuss hardware versus software handling of the 
multiply and divide operations. 

211 



How Digital Computers Operate: You study the major 
elements of the digital computer and discover how each section 
depends on the others for proper operation and execution of stored 
programs. 

Register Transfer and Addressing: You learn the impor­
tance of registers in the computer. Special registers such as ac­
cumulators, index registers , program counters, and data registers 
are discussed in detail. You find out how memory as well as input 
and output can be considered to be registers when you are dealing 
with the flow of data through the computer . 

Computer Memories: Here you are introduced to the vari­
ous types of memories used in computers. You consider volatile as 
well as nonvolatile memory , paying particular attention to semicon­
ductor memory and magnetic memory such as tape and disk . 

Computer Input/Output: You learn how the I/O section of a 
computer operates. In this lesson , special emphasis is placed on 
becoming acquainted with some of the more popular types of 
peripheral equipment used with computers. 

Computer Peripheral Equipment: Peripheral equipment 
makes up a large portion of any computer system so it is important 
for you to learn how the different types of devices operate . This 

. lesson carefully surveys printers , magnetic tapes, floppy disks, and 
terminals. 

Data Conversion Systems: Analog-to-digital (ND) and 
digital-to-analog (D/ A) conversion techniques are covered in detail. 
Here you also get into related topics such as multiplexing and 
sample-and-hold amplifiers. You round out this lesson by consider­
ing how these units are combined with computers to form various 
types of data conversion and data acquisition systems. 

Microprocessors and Microcomputers: The computer­
on-a-chip is the most powerful kind of electronic component. Called 
the microprocessor, these devices are used in complete systems 
called microcomputers. The elements that make up microcomput­
ers of all kinds are described , and examples of some popular mi­
croprocessors are shown . The ways that microprocessors are com­
bined with memory and input/output chips to create complete 
computers for business and industrial applications are clearly and 
concisely illustrated. 

Microcomputer Applications: Already, millions of micro­
processors and microcomputers have been installed in consumer 
products, industrial-process control systems, and small business­
es. In this lesson, several examples of popular applications are 

212 



illustrated. Examples include: (a) one-chip microcomputers in 
high-volume consumer appliances; (b) single-board microcomput­
ers used in industrial control; (c) special-purpose computers de­
veloped for industrial applications like automatic bowling scoring 
systems and telephone PABX's; and for small business computer 
uses, including payroll, inventory control, and project scheduling. 

Microprocessors and Support Circuits: To adequately un­
derstand the operation of a microprocessor, you must be thoroughly 
familiar with the electrical characteristics of major products and the 
support chips required to make them work in practical circuits. 
Support circui ts covered here include clock generators, bus buffers, 
and status latches. Also pinpointed are the differences between 
synchronous and asynchronous storage reference systems, and the 
means by which these systems are supported by additional ICs. 

Memories and Input/Output Ports: The structure of 
memory systems and input/output ports are amazingly similar, and 
are treated together. You learn the various ways the different 
memory technologies are used. You also study the support circuitry 
required to decode and select memory chips for both eight and 
sixteen-bit word systems. You discover that some of the popular 
methods of implementing simple serial and parallel 110 ports are 
really special cases of memory architectures, and that the same 
decoding methods apply . 

Interface Circuits: Although input/output ports are essen­
tial to a microcomputer, most applications require specialized ways 
of interfacing to unique sensors and actuators. In this lesson you 
concentrate on those additional circuits and see how they work. You 
explore the general rules that all interfaces follow and study some 
specific examples of interfaces. Included in these examples are 
audio cassette interfaces and simple analog interfaces for driving 
conventional meters . 

Register Transfers in Software: Now you are ready to 
learn the simplest approach to programming any microcomputer. 
This technique depends upon understanding all of the registers that 
exist, and transferring data among these registers to achieve some 
objective. You learn the techniques used for analyzing a computer's 
instruction set and register complement. You also get detailed 
step-by-step instructions for writing simple programs that use that 
instruction set effectively. 

Software and Programming: The important subject of 
programming is introduced here. You get a general overview of 
computer software including types of programming languages, 

213 



machine language, assembly language, higher-level languages, 
higher-level compiler languages such as FORTRAN, and interpret­
ers such as BASIC, and programming and software systems. 

Higher Level Languages: This lesson discusses the need 
for the higher level languages and how they are used by computing 
machines. Many popular languages are covered. A detailed expla­
nation, examples, and practice problems are included for the BASIC 
and FORTRAN languages. 

Programming Languages: Although programming can be 
done in binary and assembly forms, the use of higher-level pro­
gramming languages is more popular and productive. In this lesson 
you study the major features of the BASIC language, as well as some 
features of the FORTRAN, PASCAL, and COBOL languages. Also 
covered are other languages like FORTH and PL/M. 

Development Environments: You begin a careful analysis 
of the various ways to develop microcomputer hardware and 
software, including s imple kits, software development systems, 
and complete multiterminal systems. You discover the differences 
between cross-support and native-support products, and the need 
for compatible program storage media in the cross-support envi­
ronment. You also become familiar with various software tools, 
including assemblers, compilers, editors, interpreters and operat­
ing systems. 

Digital Troubleshooting Equipment: This lesson care­
fully surveys the basic tools used with microcomputers that are 
different from the more conventional electronics instrumentation. 
You discover the advantages of using equipment such as the digital 
delayed-sweep scope. You also learn how to use such special 
troubleshooting equipment as portable front panels (such as the 
Intel 820 Scope), logic state analyzers, and in-circuit emulation. 

After studying topics like those described in this chapter, 
you'll be one of the new breed of computer technician familiar not 
only with programming and operations, but with the mechanical and 
electronic nature of the expanding world of computers. 

The following describes the various kits that currently accom­
pany correspondence courses in microcomputers and microproces­
sors. The examples are specifically from NRI's courses. 

Kit No.1: In your first training kit, you begin your study of 
actual electronic circuits, the ones you need to know about to be the 
new breed of computer specialist; the parts you need are included. 

Even if you don't know one end of a soldering iron from the 
other, you can use this kit. The instructions in your first training kit 

214 



take you step-by-step through ten carefully-written experiments 
which develop your basic electronics ski ll s. You learn how to 
identify and install parts and make good solder connections to both 
component terminals and printed circuit boards. It isn't long before 
you recognize symbols and know how to construct circuits using 
schematic diagrams. These fundamentals are your foundation for 
sound troubleshooting and repair techniques . 

Using your batteries, resistors, and the LED (light-emitting 
diode) supplied as part of your kit, you work on actual circuits . You 
see the effect of changing the resistance or voltage in the circuit as 
you study both series and parallel circuits. Using NRI's new Action 
Audio cassettes and specially coord inated diagrams, you learn the 
operation and practical applications of your Beckman 3Y2 digit digi­
tal multimeter. You learn the professional way to take voltage, 
current , and resistance measurements . The DMM becomes an 
integral part of your training when you use it in your experiments to 
demonstrate the basic fundamentals of e lectronics. You'll use it 
later to measure power supply voltage and to verify the perfor­
mance of discrete components such as diodes. resistors. and tran­
sistors found on circuit boards in computers. 

Specifications 
Display : 

3Y2 digit liquid crystal display (LCD) with a maximum read­
ing of 1999 . 

Power: 
Single, standard 9-volt transistor battery. 

Maximum Voltage: 
1500 Vdc or peak ac. 

Dimensions: 
6.85" long x 3.65" wide x 1.8" high. 

Weight : 
16 ounces including battery. 

Case: 
High-impact ABS plastic . recessed switch and display. 

Dc Volts: 
100V to 1000V in 5 ranges. 

Ac Volts: 
100V to 1000V in 5 ranges. 

Dc Current: 
100 nA to 2A in 5 ranges. 

Ac Current: 

215 



100 nA to 2A in 5 ranges. 
Resistance: 

0.1 to 20 M in 6 ranges. 

Kit No.2: You receive as part of your second kit, a profes­
sional hand-held digital multimeter. It's the basic, indispensible 
tool for all computer specialists . You'll use this precision instru­
ment for all voltage, resistance and current measurements in the 
experiments you petiorm in this kit, and you'll find it invaluable 
after you've completed your course. You'll use it then to measure 
voltages of power supplies and to verify the petiormance of discrete 
components such as diodes, resistors, and transistors found on 
most circuit boards in computers. 

Using new audio cassettes and carefully coordinated diagrams 
and schematics, you're personally talked through the operation and 
practical applications of your digital multimeter (DMM). By fol­
lowing the step-by-step instructions on the cassette, you learn why 
it is important to establish a reference point when taking measure­
ments and that a point in the circuit can be both positive and 
negative. 

You learn about voltage dividers and discover how a shunt 
resistor, called a bleeder, can reduce variations in the output 
voltage. You also learn how to check continuity by making voltage 
measurements with your DMM. As you listen to the carefully­
sequenced instructions, you put the ohmmeter section of your 
DMM into operation, learning how to trace circuits and measure 
series and parallel resistor combinations. 

Because you are working with NRI's Action Audio cassette, 
your hands are free to petiorm the necessary operations and you can 
make your visual observations at the same time. You avoid the 
necessity of looking back and forth between printed instructions and 
your digital multimeter, thus saving time and reinforcing your 
learning . 

Kit No.3: This kit introduces you to ac circuits and the 
particular components used in them. To petiorm the experiments in 
this kit, you get a special chassis, a power transformer, an iron-core 
choke (inductor), an ac line cord, resistors, capacitors, and miscel­
laneous hardware . 

You explore the ac and dc characteristics of tubular and elec­
trolytic capacitors, learning first-hand about "Re time constants," 
capacitor leakage, and capacitive voltage dividers . You see how a 
capacitor can pass ac current and block dc current. 

You also examine in detail the characteristics of inductors in dc 

216 



and ac circuits and you determine how special resonant circuits can 
be made by combining inductors and capacitors. You also look at 
series and parallel resonance, seeing how these circuits can be 
tuned by changing component values. 

By the time you've completed this kit, you'll have no trouble 
using your DMM to make both ac and dc current readings and 
resistor measurements. 

The special design of the kits give you a complete breadboard­
ing system for setting up and modifying prototype circuits, per­
forming tests, and evaluating electronic components. You are intro­
duced to the kind of high technology that's at the heart of today's 
astounding electronics revolution. 

You'll perform an incredible array of tests and experiments. 
Even as you assemble the Lab, you perform 10 specific experiments 
demonstrating the nature of electronic princip les; then you perform 
10 experiments using parts that range from transistors through 
integrated circuits. 

SpeCifications 

Power Supply: 
±10V unregulated 
±5V regulated, 50 rnA max 

Function Generator: 
Switch selectable waveform: 

Triangle: lOV p-p 
Square : 0 to 5V TTL/CMOS compatible 
Frequencies: 2Hz, 1Hz, 1kHz switch selectable. 

Logic Indicators: 
(4) identical LED circuits with drivers TTL/CMOS com­
patible inputs 

Push buttons : 
(1) debounced and buffered; TTL/CMOS compatible output 

Slide Switch: 
(1) 0 or +5V with 1K pullup resistor 

Line Clock: 
60 Hz buffered output, TTL/CMOS compatible 

Other Features: 
2-5k free potentiometer 

SPDT meter switch: 
Breadboarding socket, solderless connections for les and 
discrete components. 

217 



Kit No.4: The successful operation of any computer depends 
on a correctly operating power supply. In this kit you study the 
fundamentals of power supplies. 

You start by demonstrating counter-electromotive force and 
showing that it can be used to produce a high voltage. Then you 
study and compare the characteristics of the half-wave rectifier and 
the full-wave bridge rectifier circuit. You demonstrate the former's 
operation, see the effects of circuit defects, and compare its opera­
tion with that of a conventional full-wave rectifier. You go on to 
observe how a simple filter increases the dc component and de­
creases the ac component of a rectifier's output. You also take a 
good look at the operation of the pi filter and simulate a leaky 
electrolytic capacitor to observe the problem of the power factor in 
filters. 

At this point you're ready to experiment with voltage doubler 
rectifiers and observe how they produce twice the dc output voltage 
of the basic half-wave and full-wave rectifiers. You go on to investi­
gate the operation of shunt voltage regultors using reverse-biased 
Zener diodes. You examine the basic dc operation of npn and pnp 
transistors. You wrap up this kit by studying the series voltage 
regulator, and you actually assemble a dual polarity regulated 
power supply on an etched circuit board . You'll use this power 
supply in later parts of your course. 

Kit No.5: You're given detailed instruction for assembling the 
major portion of your kits. Their special design gives you a com­
plete breadboarding system for setting up and modifying prototype 
circuits, performing tests , and evaluating components. Later, you'll 
use these kits to demonstrate the action of various computer func­
tions. 

Connecting components is quick and easy with the universal 
components matrix of your kits. You simply plug in component leads 
and you're ready to conduct experiments. 

The experiments in this kit cover transistor fundamentals, and 
solid-state amplifiers and oscillators. You begin by demonstrating 
different methods of biasing npn and pnp transistors, and you build 
the basic amplifier types: common-emitter, common-collector, and 
common-base. 

Now having experimented with the basic circuits, you are 
ready to use the transistor in more complex configurations. First 
you observe the operation of a phase splitter; then the operation of a 
common-emitter stage used as a switch and as a voltage amplifier. 
You learn about direct-coupled CDC) and resistance-capacitance 

218 



coupled (RC) amplifiers, and you construct and verify the operation 
of an LC oscillator circuit. You inves tigate the workings of two 
types of RC oscillators: phase-shift and multivibrator. 

You'll quickly discover that the field-effect transistor plays an 
important role in computer electronics. Consequently, you round 
out this kit by experimenting with the methods of FET biasing and 
the three basic FET amplifiers: common-source, common-drift, and 
common-gate. 

Kit No.6: Now you're ready to move into high tech advanced 
electronic components and systems . To perform the experiments, 
you receive 2 dual operational amplifier (op amp) integrated circuits 
(lCs) , 7 digital ICs, a 6-digit LED numeric display, an LED and 
phototransistor, a unijunction transistor (UlT), and a silicon con­
trolled rectifier (SCR) . 

After you learn the basics of operational amplifier circuits you 
use a special dual op-amp IC to build a versatile function generator. 
This circuit provides you with a permanent signal source to furnish 
variable-frequency square and triangular waves. You use an LED 
level detector to see how these two waveforms differ. 

You constuct and examine digital logic circuits-circuits just 
like those that make up all computers . You work with the basic 
digital storage element , the flip-flop and see how it can be used as a 
frequency divider. You also learn how a binary-coded-decimal 
(BCD) counter works, and how to connect the BCD output to a 
decoder and numeric display unit. 

219 



Appendix A 

Alphabetical Directory 
of Basic Reserved Words 

The following material is courtesy of ATARI. Inc .. a Warner Communications 
Company and is used with their permission. 

Note: The period is mandatory after all abbreviated keywords . 

RESERVED 
WORD: 

ABS 

ADR 

AND 

ASC 

ATN 

BYE 

CLOAD 

CHR$ 

220 

ABBREVIATION: 

B. 

CLOA . 

BRIEF SUMMARY 
OF BASIC STATEMENT 

Function returns absolute 
value (unsigned) of the var­
iable or expression. 
Function returns memory 
address of a string. 
Logical operator: Expression 
is true only if both subex­
pressions joined by and are 
true. 
String function returns the 
numeric value of a single 
string character. 
Function returns the arctan­
gent of a number or expres­
sion in radians or degrees. 
Exit from BASIC and return 
to the resident operating sys­
tem or console processor. 
Loads data from Program Re­
corder into RAM . 
String function returns a sin­
gle string byte equivalent to 
a numeric value between 0 
and 255 in ATASCII code. 



RESERVED BRIEF SUMMARY 
WORD: ABBREVIATION: OF BASIC STATEMENT 

CLOG Function returns the base 10 
logarithm of an expression. 

CLOSE CL. I/O statement used to close a 
file at the conclusion of I/O op-
erations. 

CLR The opposite of DIM : 
Undimensions all strings; 
matrices. 

COLOR C. Chooses color register to be 
used in color graphics work . 

COM Same as DIM. 
CONT CON. Continue. Causes a program 

to restart execution on the 
next line following use of the 
.. key or encountering 
a stop. 

COS Function returns the cosine 
of the variable or expression 
(degrees or radians). 

CSAVE Outputs data from RAM to 
the program recorder for 
tape storage. 

DATA D. Part of read/data combi-
nation. Used to identify the suc-
ceeding items (which must be 
separated by commas) as indi-
vidual data items . 

DEG DE . Statement deg tells com-
puter to perform trigo-
nometric functions in degrees 
instead of radians. (Default in 
radians.) 

DIM DI. Reserves the specified amount 
of memory for matrix, array, 
or string. All string variables, 
arrays, matrices must be di-
mensioned with a dim state-
ment. 

DOS DO . Reserved word for disk oper-
ators. Causes the menu to be 
displayed. (See DOS Manual.) 

DRAWTO DR. Draws a straight I ine be-
tween a plotted point and 
specified point. 

END Stops program execution; clos-
es files; turns off sounds. Pro-
gram may be restarted using 
cont. (Note: end may be 
used more than once in a pro-
gram.) 

ENTER E. I/O command used to store 
data or programs in untok-
enized (source) form. 

221 



RESERVED BRmF SUMMARY 
WORD: ABBREVIATION: OF BASIC STATEMENT 

EXP Function returns e (2 .7182818) 
raised to the specified power. 

FOR F. Used with next to estab-
lish for/ next loops . Intro-
duces the range that the loop 
variable will operate in dur-
ing the execution of loop. 

FRE Function returns the amount 
of remaining user memory 
(in bytes). 

GET GE . Used mostly with disk opera-
tions to input a single byte of 
data. 

GOSUB GOS. Branch to a subroutine begin-
ning at the specified line 
number. 

GOTO G. Unconditional branch to a 
specified line number. 

GRAPHICS GR. Specifies which of the eight 
graphics modes is to be used . 
Gr.O may be used to clear 
screen . 

IF Used to cause conditional 
branching or to execute 
another statement on the same 
line (only if the first expres-
sion is true) . 

INPUT I. Causes computer to ask for 
input from keyboard . Execu-
tion continues only when the 
I3I!IlI:I key is pressed after input-
ting data. 

INT Function returns the next low-
est whole integer below the 
specified value. Rounding is 
always downward, even 
when number is negative. 

LEN String function returns the 
length of the specified string 
in bytes or characters (1 byte 
contains 1 character). 

LET LE . Assigns a value to a specific 
variable name . Let is option-
al in ATARI BASIC, and may be 
simply omitted. 

LIST L. Display or otherwise output 
the program list. 

LOAD LO. Input from disk, etc . into the 
computer. 

LOCATE LOC. Graphics : Stores, in a speci-
fied variable , the value that 
controls a specified graphics 
point. 

222 



RESERVED BRIEF SUMMARY 
WORD: ABBREVIATION: OF BASIC STATEMENT 
LOG Function returns the natural 

logarithm of a number. 
LPRINT LP. Command to line print~r to 

print the specified message. 
NEW Erases all contents of user RAM. 
NEXT N. Causes a for/next loop 

to terminate or continue de-
pending on the particular 
variables or expressions. All 
loops are executed at least once . 

NOT A "1" is returned only if the 
expression is NOT true . If it 
is true, a "0" is returned. 

NOTE NO. See DOS/FMS Manual . . . used 
only in disk operations. 

ON Used with goto or gosub 
for branching purposes. Mul-
tiple branches to different line 
numbers are possible depend-
ing on the value of the ON 
variable or expression. 

OPEN O. Opens the specified file for in-
put of output operations . 

OR Logical operator used be-
tween two expressions . If 
either one is true , a ''1' is eval-
uated . A "0" results only if 
both are false. 

PADDLE Function returns position of 
the paddle game controller. 

PEEK Function returns decimal 
form of contents of specified 
memory location (RAM or 
ROM). 

PLOT PL. Causes a single point to be 
plotted at the X, Y location 
specified. 

POINT P . Used with disk operations 
only . 

POKE POK. Insert the specified byte into 
the specified memory location. 
May be used only with RAM . 
Don't try to POKE ROM or 
you'll get an error. 

POP Removes the loop variable 
from the gosub stack. Used 
when departure from the 
loop is made in other than 
normal manner. 

POSITION POS . Sets the cursor to the speci-
fied screen position . 

PRINT PR o or ? I/O command causes output 
from the computer to the spec-
ified output device . 

223 



RESERVED BRIEF SUMMARY 
WORD: ABBREVIATION: OF BASIC STATEMENT 

PTRIG Function returns status of the 
trigger button on game con-
trollers. 

PUT PU . Causes output of a single byte 
of data from the computer to 
the specified device. 

RAD Specifies that information is 
in radians rather than de-
grees when using the trig-
onometric functions. Default 
is to rad. (See Deg.) 

READ REA. Read the next items in the 
data list and assign to spec-
ified variables. 

REM R. or. E!mJ Remarks. This statement does 
nothing, but comments may 
be printed within the pro-
gram list for future ref-
erence by the programmer. 
Statements on a line that starts 
with REM are not executed. 

RESTORE RES. Allows data to be read 
more than once. 

RETURN RET. Return from subroutine to 
the statement immediately 
following the one in which 
gosub appeared. 

RND Function returns a random 
number between 0 and I, but 
never 1. 

RUN RU. Execute the program. Sets 
normal variables, to 0, undims 
array and string. 

SAVE S. I/O statement causes data or 
program to be recorded on 
disk under filespec provided 
with save. 

SETCOLOR SE. Store hue and luminance color 
data in a particular color reg-
ister. 

SGN Function returns +1 if value 
is positive, 0 if zero, -1 if neg-
ative. 

SIN Function returns trigonomet-
ric sine of given value (deg 
or rad). 

SOUND SO. Contro Is register, sound pitch, 
distortion, and volume of a 
tone or note. 

SQR Function returns the square 
root of the specified va lue . 

STATUS ST. Calls status routine for speci-
fied device. 

224 



RESERVED BRmF SUMMARY 
WORD: ABBREVIATION: OF BASIC STATEMENT 

STEP Used with for/next. De-
termines quality to be 
skipped between each pair of 
loop variable values . 

STICK Function returns position of 
stick game controller. 

STRIG Function returns 1 if stick 
trigger button not pressed . 0 
if pressed . 

STOP STO . Causes execution to stop. but 
does not close files or tum off 
sounds. 

STR$ Function returns a character 
string equal to numeric value 
given . For example : STR$(65) 
returns 65 as a string . 

THEN Used with if: If expres-
sion is true. the then 
statements are executed . If the 
expression is false. control 
passes to next line. 

TO Used with for as in "FOR X 
= 1 TO 10" . Separates the loop 
range expressions. 

TRAP T . Takes control of program in 
case of an INPUT error and 
directs execution to a speci-
fied line number. 

USR Function returns results 
of a machine-language sub-
routine. 

VAL Function returns the equiva-
lent numeric value of a string . 

XIO x. General I/O statement used 
with disk operations (see 
DOS/FMS Manual) and in 
graphics work (Fill) . 

225 



Appendix B 

Error Messages 

ERROR 
CODE NO. 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

226 

ERROR CODE MESSAGE 

Memory Insufficient to store the statement or the 
new variable name or to dim a new string variable. 
Value Error: A va lue expected to be a positive in­
teger is negative, a value expected to be with in a 
specified range is not. 
Too Many Variables: A maximum of 128 different 
variable names is allowed. (See Variable Name 
Limit.) 
String Length Error: Attempted to store beyond the 
DIMensioned string length. 
Out of Data Error: Read statement requires more 
data items than supplied by DATA statement(s). 
Number greater than 32767: Value is not a posi­
tive integer or is greater than 32767 . 
Input Statement Error: Attempted to input a 
non-numeric value into a numeric variable. 
Array or String DIM Error: Dim size is greater 
than 32767 or an array/matrix reference is out of the 
range of the dimensioned size, or the array/matrix or 
string has been already dimensioned, or a reference 
has been made to an undimensioned array or string. 
Argument Stack Overflow: There are too many 
go subs or too large an expression. 
Floating Point OverflowlUnderflow Error: 
Attempted to divide by zero or refer to a number 
larger than 1 x 1098 or smaller than 1 x 10-99. 

Line Not Found: A gosub, goto, or then ref­
erenced a non-existent line number. 
No Matching For Statement: A next was en­
countered without a previous for, or nested for/ 



ERROR 
CODE NO. 

14 

15 

16 

17 

18 

Note: 

19 

20 
21 

128 

129 
130 
131 

132 

133 

134 
135 

136 

137 

138 
139 

140 
141 
142 
143 
144 

ERROR CODE MESSAGE 

next statement do not match properly. (Error is re­
ported at the next statement, not at FOR). 
Line Too Long Error: The statement is too com­
plex or too long for BASIC to handle. 
Gosub or For Line Delected: A next or return 
statement was encountered and the corresponding 
for or gosub has been deleted since the last run. 
RETURN Error: A return was encountered with­
out a matching gosub. 
Garbage Error: Execution of "garbage" (bad RAM 
bits) was attempted. This error may indicate a 
hardware problem, but may also be the result of faulty use 
of poke. Try typing NEW or powering down, then 
re-enter the program without any poke commands. 
Invalid String Character: String does not start with 
a valid character, or string in val statement is not a 
numeric string. 
The following are input/output errors that re­
sult during the use of disk drivers, printers, or 
other accessory devices. Further information is 
provided with the auxiliary hardware. 
Load program Too Long: Insufficient memory re­
mains to complete load. 
Device Number Larger than 7 or Equal to O. 
LOAD FILR ERROR: Attempted to load a nonload 
file . 
BREAK Abort: Use hit theDI!ll key during 110 
operation 
IOCB l already open 
Nonexistent Device was specified . 
IOCB Write Only. Read command to a write-only 
device (Printer) . 
Invalid Command: The command is invalid for this 
device . 
Device or File not Open: No open specified for the 
device . 
Bad IOCB Number: l11egal device number. 
IOCB Read Only Error: Write command to a 
read-only device. 
EOF: End of File read has been reached . (NOTE: 
This message may occur when using cassette files.) 
Truncated Record: Attempt to read a record longer 
than 256 characters . 
Device Timeout. Device doesn't respond . 
Device NAK: Garbage at serial port or bad disk 
drive. 
Serial bus input framing error. 
Cursor out of range for particular mode . 
Serial bus data frame overrun. 
Serial bus data frame checksum error. 
Device done error (invalid "done" byte): Attempt to 
write on a write-protected diskette . 

227 



ERROR 
CODE NO. 

145 

146 
147 

160 
161 
162 
163 
164 

165 
166 
167 
168 
169 
170 
171 

ERROR CODE MESSAGE 

Read after write compare error (disk handler) or 
bad screen mode handler. 
Function not implemented in handler. 
Insufficient RAM for operating selected graphics 
mode . 
Drive number error. 
Too many OPEN files (no sector buffer available). 
Disk full (no free sectors) 
Unrecoverable system data I/O error. 
File number mismatch: Links on disk are messed 
up. 
File name error. 
Point data length error. 
File locked. 
Command invalid (special operation code) . 
Directory full (64 files). 
File not found. 
Point invalid. 

IIOCB refers to input/ output control block . The device number is the same as the 
IOCB number. 

228 



Appendix C 

ATASCII 
Character Set 

,,?-" v ,v 
,<:,~ 

.... ,~ -+ '-' ,,~ 

?-" -(~ v .(Y. ~," .\..~ " ~'V~"V ~. 

,,,,,,:,<~,, .~~~, .... """ ~~'- ' .~ .... ~~ ...... +~ .... "-t",,,-, ~'r' .~ .... +~ 
s,., It..' (~'\ ~,~~~' ,~"7 \.. (",:>'~ .- \.. ?" 

~v(~ ," "...... (~' 

0 0 C 13 D ~ 26 lA C 
1 G 14 E @!!!I 27 IB ~ 

2 2 IJ 15 F fI 28 lC 0 
3 3 CI 16 10 g 29 10 0 
4 4 D 17 11 ~ 30 IE = 
5 5 CJ 18 12 = 31 IF C 
6 6 ~ 19 13 ~ 32 20 Spa(,e 

7 7 ~ 20 14 C 33 21 

8 8 ~ 21 15 ~ 34 22 

9 9 It 22 16 (I 35 23 .. 
10 A ~ 23 17 ~ 36 24 $ 

11 B iii 24 18 Q 37 25 9b 

12 C iii 25 19 ~ 38 26 Ii» 

229 



39 27 62 3E > 85 55 u 

40 28 63 3F 86 56 v 

41 29 64 40 @ 87 57 w 

42 2A 65 41 r\ 88 58 x 

43 2B + 66 42 H 89 59 y 

44 2C 67 43 c 90 5A z 

45 20 68 44 [) 91 5B 

46 2E 69 45 E 92 5C \ 

47 2F / 70 46 r 93 50 

48 30 I) 71 47 G 94 5E 

49 31 72 48 H 95 5F 

50 32 73 49 96 60 D 
51 33 74 4A 97 61 a 

52 34 75 4B K 98 62 b 

53 35 76 4C l. 99 63 c 

54 36 77 40 M 100 64 d 

55 37 7 78 4E N 101 65 e 

56 38 8 79 4F o 102 66 f 

57 39 9 80 50 I' 103 67 g 

58 3A 81 51 104 68 h 

59 3B 82 52 105 69 

60 3C < 83 53 s 106 6A 

61 30 84 54 T 107 6B k 

230 



~V ~ ~'r'V ~ ~'r'V ~ 

~~~ "'~'" ~~ 'r'V ~~~'" ~ 'r'V "'~~'" ~~ ~r& 'r' fJ>~~'" ~'r' ,,0 'r'~ sP~~'" ~'r',,0 'r' 
~& ~ a- ¢ ,,0 ~'" ,,~ ~ ,,0 ~'" ,,~ 

108 6C 131 83 154 9A 

6D 155 9B 
I EOLI 

109 m 132 84 Im!IiIlI 

110 6E n 133 85 156 9C [t] 

111 6F 0 134 86 157 9D [!] 

112 70 p 135 87 158 9E [B 

113 71 q 136 88 159 9F [±J 

114 72 137 89 160 AO 

115 73 138 8A 161 Al 

116 74 139 8B 162 A2 

117 75 u 140 8C 163 A3 

118 76 v 141 8D 164 A4 

119 77 w 142 8E 165 A5 

120 78 x 143 8F 166 A6 

121 79 y 144 90 167 A7 

122 7A z 145 91 168 A8 

123 7B D 146 92 169 A9 

124 7C 147 93 170 AA 

125 7D IJ 148 94 171 AB 

126 7E [J 149 95 172 AC 

127 7F (] 150 96 173 AD 

128 80 151 97 174 AE 

129 81 152 98 175 AF 

130 82 153 99 176 BO 

231 



#".... cf"+ ~.... ~+ ,~.... cf"+ 
'1-.... Q~Q'" ~ '1-.... Q~V ~~ '1-.... Q~QV ~ #:~QV fv.,J" ,,0 ~'I- #:~Qv ~ho ~ ,#:~Qv +",,,0 ~ Q ,,0 ~ V Q ,,0 ~ V Q ,,0 ~.., v 

177 B1 200 C8 223 DF 

178 B2 201 C9 224 EO 

179 B3 202 CA 225 E1 

180 B4 203 CB 226 E2 

181 B5 204 CC 227 E3 

182 B6 205 CD 228 E4 

183 B7 206 CE 229 E5 

184 B8 207 CF 230 E6 

185 B9 208 DO 231 E7 

186 BA 209 D1 232 E8 

187 BB 210 D2 233 E9 

188 BC 211 D3 234 EA 

189 BD 212 D4 235 EB 

190 BE 213 D5 236 EC 

191 BF 214 D6 237 ED 

192 CO 215 D7 238 EE 

193 C1 216 D8 239 EF 

194 C2 217 D9 240 FO 

195 C3 218 DA 241 F1 

196 C4 219 DB 242 F2 

197 C5 220 DC 243 F3 

198 C6 221 DD 244 F4 

199 C7 222 DE 245 F5 

232 



to" 
"'~ 

toV to" 
,~ ..... ~' "'~ .,,,' "'~ 

toV Q<JJ.~'" 6 " ~¢~" 6 ?-V Q"~Q'" / 

"~~'" ~?- ~?-
~?- .,~,., 

i-~vo (.~~~v ",i-?- ,," i-?- V" ?-~ 
Q¢'v" ~'" ~?- ~v(..~ .~?- ,," .... ~\)" ,~'" ,,~ ~ ~ '", 

246 F6 250 FA 254 FE [1] '''''''''' ' /U""""/ 'I 

247 F7 251 FB 255 FF [!] "",.'" 
' / UIi III TI"/ 

248 F8 252 Fe 

249 F9 253 FD ~ 'H'''''''' 

See AppE"ndix H lor a Ulwr pm~nlm Ihal pt'rlorm~ dt'dl lWI.lwXiir!t'dlllill t'O n\·('r~lO n . 

NOf~8 : 

1. ATASCII s landl' lo r " ATARI ASC II" , L('tlt;'rs <lnn nUlllhl'rs haw t ill' SilJnC \'ahl('sas thost· i ll ASCII. bUl 
some' of I hI;' special charal'len; are dillt-ren t . 

2. Excepl as shown. characlers from 1~8·255 are r(,Vf'I'SI;' co lors of I 10 1.:.!7 . 

3. Add 32 to upper cast' ('od t' to get lower cas(' code for sa mt' leflt'L 

4. To gel ATASCII code. 1(' 11 computeI' Id irect model to PK INT ASC (,, _ _ .,) f ill b la nk wi th lefle r, 
character. or number of cadl', Must us!;' Ih t' qllot~ s~ 

233 



Appendix 0 

ATARI 400/800 Memory Map 

ADDRESS CONTENTS 
Decimal Hexadecimal 

65535 FFFF 
OPERATING SYSTEM ROM 57344 EOOO 

57343 DFFF FLOATING POINT ROM 55296 D800 

55295 D7FF 
HARDWARE REGISTERS 53248 DOOO 

53247 CFFF NOT USED 
49152 COOO 

49151 BFFF CARTRIDGE SLOT A 

40960 AOOO (may be RAM if no A or B cartridge) 

40959 9FFF CARTRIDGE SLOT B 
(may be RAM if no B cartrid~ I 

RAMTOP (MSB) 
32768 8000 

32767 7FFF (7FFF if 32K system) 
DISPLAY DATA (size varies) 

234 



ADDRESS CONTENTS 
Decimal Hexadecimal 

DISPLA Y LIST (size varies) 
31755 7CIF (7C1F if 32K system, (GRAPHICS 0) 

10SMEMTOPI 4 

FREE RAM 
(size varies) I BASIC MEMTOa 4 

BASIC program, buffers, tables, run-time stack. 
(2A80 if DOS, may vary) 

10880 2A80 4 Cf=ii OS MEMLO I 
• BASIC LOMEM: 

10879 2A7F DISK OPERATING SYSTEM (2A7F-700) 
9856 2680 DISK I/O BUFFERS (current DOS) 

9855 267F DISK OPERATING SYSTEM RAM (current DOS) 
4864 1300 

4863 12FF FILE MANAGEMENT SYSTEM RAM (current DOS) 
1792 700 

1791 6FF 
FREE RAM 

1536 600 

1535 5FF FLOATING POINT (used by BASIC) 1406 57E 

1405 570 
BASIC CARTRIDGE 

1152 480 

1151 47F ] OPERATING SYSTEM RAM (47F-200) 
1021 3FD CASSETTE BUFFER 

1020 3FC RESERVED 
1000 3E8 

999 3E7 PRINTER BUFFER 
960 3CO 

959 3BF ] IOCB's 
832 340 

831 33F ] MISCELLANEOUS OS VARIABLES 
512 200 

511 IFF HARDWARE STACK 
256 100 

255 FF PAGE ZERO 
212 04 FLOATING POINT (used by BASIC) 

235 



ADDRESS CONTENTS 
Decimal Hexadecimal 

211 D3 BASIC or CARTRIDGE PROGRAM 
210 D2 

209 D1 FREE BASIC RAM 
208 DO 

207 CF FREE BASIC AND ASSEMBLER RAM 
203 CB 

202 CA FREE ASSEMBLER RAM } BASIC 
176 BO 

ASSEMBLER ZERO PAGE ZERO PAGE 
128 80 

127 7F OPERATING SYSTEM RAM 
0 0 

As the addresses for the top of RAM . OS . and BASIC and the ends of OS and BASIC 
vary according to the amount of memory. these addresses are indicated by pointers. 

236 



Derived Functions 

Secant 
Cosecant 
Inverse Sine 
Inverse Cosine 

Inverse Secant 

Inverse Cosecant 

Inverse Cotangent 
Hyperbolic Sine 
Hyperbolic Cosine 
Hyperbolic Tangent 
Hyperbolic Secant 
Hyperbolic Cosecant 
Hyperbolic Cotangent 
Inverse Hyperbolic Sine 
Inverse Hyperbolic Cosine 
Inverse Hyperbolic Tangent 
Inverse Hyperbolic Secant 
Inverse Hyperbolic Cosecant 

Appendix E 

Derived Functions 

Derived Functions in Terms 
of AT ARI Functions 

SEC(X)=l/COS(X) 
CSC(X) = 1/SIN (X) 
ARCSIN(X)=ATN(XlSQR(-X*X+l» 
ARCCOS(X)=-ATN(XlSQR(-X.X+1)+ 

CONSTANT 
ARSEC(X)=ATN(SQR(X.X-l»+(SGN(X-l)* 

CONSTANT 
ARCCSC(X)=ATN(1/SQR(X*X-1»+(SGN(X-l) 

-CONSTANT 
ARCCOT(X)=ATN(X)+CONSTANT 
SINH(X)=(EXP(X)- EXP( - X»/2 
COSH(X) =(EXP(X) + EXP( - X) )/2 
TANH(X)=-EXP(-X)/(EXP(X)+EXP(-X»*2+1 
SECH(X)=2/(EXP(X)+EXP( - X» 
CSCH(X) =2/(EXP(X)- EXP( - X» 
COTH(X)=EXP(- X)/(EXP(X)- EXP( - X»-2+ 1 
ARCSINH(X) =LOG(X +SQR(X*X + 1» 
ARCCOSH(X)+LOG(X+SQR(X*X-1» 
ARCT ANH(X)=LOG«l + X)/(1- X»/2 
ARCSECH(X)=LOG«SQR(-X*X+1)+:11X) 
ARCCSCH(X)=LOG«SGN(X).SQR(X·X+1)+1) 

IX) 
Inverse Hyperbolic Cotangent ARCCOTHOO=LOG«X+1)/(X-1»/2 

Notes: 
1. If in RAD (default) mode, constant = 1.57079633 

If in DEG mode, constant = 90. 
2. In this chart, the variable X in parentheses represents the value or expression to 

be evaluated by the derived function. Obviously, any variable name is permissi­
ble, as long as it represents the number or expression to be evaluated. 

237 



Appendix F 

Printed Versions 
of Control Characters 

The cursor and screen control characters can be placed in a string in a program or 
used as a direct mode statement by pressing the" key before entering the 
character from the keyboard . This causes the special symbols which are shown 
below to be displayed . 

SEETHIS 

PRESS PRESS - -- • - • PRESS AND 
PRESS HOLD PRESS - a II - a III - a III - a i1 

OR- a • - • • - a • • a • • • • • • • • a. - •• - a • 
238 



Appendix G 

Memory Locations 

Note: Many of these locations are of primary interest to expert programmers and are 
included here as a convenience . The labels given are used by ATARI programmers to 
make programs more readable. 

DECIMAL HEXADECIMAL COMMENTS 
LABEL LOCATION LOCATION AND DESCRIPTIONS 

APPMHI 14,15 DE Highest location used by 
BASIC (LSB, MSB) 

RTCLOK 18,19,20 12,13,14 TV frame counter 0/60 
sec.) (LSB, NSB, MSB) 

SOUNDR 65 41 Noisy-l/O Flag (O'=quiet) 
77 Attract Mode Flag 

(l28=Attract mode) 
LMARGIN, 82,83 52,53 Left, Right Margin (De-
RMARGIN faul ts 2, 39) 
ROWCRS 84 54 Current cursor row 

(graphics window). 
COLCRS 85,86 55,56 Current cursor column 

(graphics window) 
OLD ROW 90 5A Previous cursor row 

(graphics window) . 
OLDCOL 91,92 5B Previous cursor column 

(graphics window) . 
93 5C Data under cursor (graph-

ics window unless mode 
0). 

NEWROW 96 60 Cursor row to which 
drawto will go. 

NEWCOL 97,98 61,62 Cursor column to which 
drawto goes . 

RAMTOP 106 6A Actual top of memory 
(number of pages). 

239 



DECIMAL HEXADECIMAL COMMENTS 
LABEL LOCATION LOCATION AND DESCRIPTIONS 

LOMEM 128,129 80,81 BASIC low memory 

MEMTOP 144,145 
pointer. 

90,91 BASIC top of memory 

STOPLN 186,187 BA,BB 
pointer. 
Line number at which 
stop or trap occurred 
(2-byte binary number). 

ERRSAV 195 C3 Error number. 
PTABW 201 C9 Print tab width 

(defaults to 10) 
FRO 212,213 D4,D5 Low and high bytes of 

value to be returned to 
BASIC from USR function . 

RADFLG 251 FB RADIDEG flag (O=ra-
dians,6=degrees). 

LPENH 564 234 Light Pen- Horizontal 
value. 

LPENV 565 235 Light Pen- Vertical value. 
TXTROW 656 290 Cursor row (text window) 
TXTCOL 657 ,658 291,292 Cursor column (text 

window) 
COLORO 708 2C4 Color Register 0 
COLOR1 709 2C5 Color Register 1 
COLOR2 710 2C6 Color Register 2 
COLOR3 711 2C7 Color Register 3 
COLOR4 712 2C8 Color Register 4 
MEMTOP 741.742 2E5,2E6 OS top of available 

user memory pointer 
(LSB, MSB) 

MEMLO 743 ,744 2E7,2E8 OS low memory pointer 
CRSINH 752 2FO Cursor inhibit (O=cursor, 

on, 1 = cursor off) 
CHACT 755 2F3 Character mode register 

4 = vertical reflect; 2 = 
normal; 1 = blank) 

CHBAS 756 2F4 Character base register 
(defaults to 224) (224 = 
upper case, 226 = lower 
case characters) 

ATACHR 763 2FB Last ATASCII character. 
CH 764 2FC Last keyboard key 

pressed; internal code; 
(255 clears character). 

FILDAT 765 2FD Fill data for graphics 
Fill (XIO) . 

DSPFLG 766 2FE Display Flag (1 = 
display control character). 

SSFLAG 767 2FF Start/Stop flag for paging 
0= normal listing) Set by 
am l. 

HATABS 794 31A Handler address table (3 
bytes/handler) 

240 



DECIMAL HEXADECIMAL COMMENTS AND 
LABEL LOCATION LOCATION DESCRIPTION 

IOCB 832 340 I/O control blocks (16 
bytes/IOCB) 

1664-1791 680-6FE Spare RAM 
CONSOL 53279 D01F Console switches (bit 2 = 

Option; bit 1 = Select; bit 
o = Start. Poke 53279, 
o before read ing . 0 = 
switch pressed .) 

PORTA 54016 D300 PIA Port A Controller 
Jack I/O ports . 

PORTB 54017 D301 PIA Port B Initialized to 
hex 3C. 

PACTL 54018 D302 Port A Control Register 
(on Program Recorder 52 
= ON. 60 = OFF). 

PBCTL 54019 D303 Port B control register. 
SKCTL 53775 D20F Serial Port control reg-

ister. Bit 2 = 0 (last key 
sti ll pressed). 

• Future product. 

241 



Appendix H 

Glossary of Microcomputer Terms 

Address: A location in memory, usually specified by a two-byte 
number in hexadecimal or decimal format. 

Algorithm: A precisely defined set of rules or a structured proce­
dure which provides the solution to a problem in a finite number 
of steps. An example follows: 

Compute the value of a polynomial of the form 
f(9x)=axn + bxn

-
1 + cxn

-
2 

••• 

For n=5 we can write the following algorithm: 
f(x) =«« (a)x+b)x +c)x+d)x+e)x+f 

This algorithm indicates that the computation can be done by 
repeating a mul tiply-and-add step five times . 

Alphanumeric: The capital letters A-Z and the numbers 0-9, 
and/or combinations of letters and numbers. Specifically 
excludes graphics symbols, punctuation marks, and other special 
characters. 

ALU: Abbreviation for arithmetic-and-Iogic unit. 
Analog computer: A computer that uses variables represented by 

voltages, currents, or other parameters whose values are 
analogous to the quantitative magnitude of the variables. 

Analog-to-digital conversion: The process of representing pre­
cisely a varying voltage or current by a series of discrete pulses 
when the varying voltage or current itself is an analog of some 
other form of information . Analog-to-digital conversion 
techniques are required to convert any information that is in 

242 



Analog-to-digital conversion-Assembly language 

analog fonn into the digital form required by the microcomputer. 
Analog data is frequently encountered in data acquisition as 
voltage from a transducer, potentiometer, or other sensor of 
physical data. 

Analyzer: A routine to analyze a program . It usually consists of 
summarizing references to storage locations and tracing jump 
sequences. 

AND: A logic operation that states that if A and B are both state­
ments, then A AND B is true ifboth statements are true, but it is 
false if either one or both statements are false. Truth is usually 
expressed by the value 1, while 0 is used to indicate a false state. 
The AND operator is usually represented by a centered dot 

A·B 
or by no sign 

AB 
An inverted u is sometimes used to denote the logical product 

AnB 
Finally, the standard multiplication sign may be used to express 
the AND function 

AxB 
Array: A one dimensional set of elements that can be referenced 

one at a time or as a complete list by using the array variable 
name and one subscript. Thus the array B, element number 10 
would be referred to as B(10). Note that string arrays are not 
supported by BASIC, and that all arrays must be DIMensioned . A 
matrix is a two dimensional array. 

ASCII keyboard: A typewriter terminal keyboard laid out in a 
specific format and containing the character symbol buttons and 
function switches required to generate signals representing the 
127 different character variations of the American Standard Code 
for Infonnation Interchange. 

Assembler: A computer program that is used to translate symbolic 
language into machine language . A typical program supplied by a 
microcomputer manufacturer is loaded using PROM or ROM 
chips and then executed to perform the assembly operation. 

Assembly language: A language that uses words, statements, 
and phrases to produce machine instructions . Most micro­
processor programs are written as a series of source statements 
that are then translated using an assembly language into machine 
code. 

243 



ATASCll-Binary Load 

ATASCII: Stands for ATARl American Standard Code for Infor­
mation Interchange . It is the method of coding used to store text 
data . In ATASCII each character and graphics symbol, as well as 
most of the control keys, has a number assigned to represent it. 
The number is a one-byte code (decimal 0-255). 

Backup DOS Disk: An exact copy of original master DOS 
diskette. Always keep backups of your DOS master diskette and 
of all important data diskettes. 

BASIC: High-level programming language. Acronym for Begin­
ner's All-purpose Symbolic Instruction Code. BASIC is always 
written using all capital letters . Developed by Mssrs . Kemeny 
and Kurtz at Dartmouth College in 1963. 

Baud Rate: Signalling speed or speed of information interchange in 
bits per second . 

BCD: Abbreviation for binary-coded decimal, a method of coding in 
which each decimal digit is coded into a separate 4·bit word. 
BCD is also known as the 8421 code due to the weight assigned to 
each 4-bi t word . The numbers used to count to ten are as follows: 

DECIMAL 
o 
1 

BINARY 
10 
11 

100 
101 
110 
III 

1000 
1001 
1010 

BINARY 
o 
1 

DECIMAL 
2 
3 
4 
5 
6 
7 
8 
9 

10 

Binary: A number system us ing the base two. Thus the only 
possible digits are 0 and 1, which may be used in a computer to 
represent true and false, on and off, etc. 

Binary Arithmetic: Mathematical operations performed using 
the binary digits of 0 and 1. 

Binary Load: Loading a binary machine-language object file into 
the computer memory . 

244 



Binary Save-Bug 

Binary Save: Saving a binary machine-language object file onto a 
disk drive or program recorder. 

Bit: Short for Binary Digit. A bit can be thought of as representing 0 
or I, true or false, whether a circuit is on or off, or any other type 
of two-possibility concept. A bit is the smallest unit of data with 
which a computer can work. The word bit is a blend word formed 
from "binary digit ," a unit of information equal to one binary 
decision. It can be a single character in a binary number, a single 
pulse in a coded group of pulses , or a unit of information capacity. 

When used as a unit of information capacity, the capacity in bits 
is equal to the logarithm to the base two of the number of possible 
states available. In a memory, for example, each element is 
capable of representing a zero or a one at any instant, and the 
total number of ones and zeros at any instant is the capacity of the 
memory. 

Boot: This is the initialization program that "sets up" the computer 
when it is powered up . At conclusion of the boot (or after 
"booting up"), the computer is capable of loading and executing 
higher-level programs. 

Branch: 1. ATARI BASIC executes a program in order of line 
numbers. This execution sequence can be altered by the pro­
grammer, and the program can be told to skip over a certain 
number of lines or return to a line earlier in the program. This 
contrived change in execution sequence is called "branching". 2. 
The selection of one or more paths in the flow of data or signals 
through a system or stage . Selection of a path is based upon some 
criterion to allow a decision to be reached. The instructions used 
to mechanize the selection are sometimes called branch instruc­
tions . Transfer of control and jump operations are also used in 
this context. In a microprocessor program, branching is done on 
the basis of computed results causing modification of the function 
or program sequence. The usual modification can be classed as ' 
(1) a change of the program direction, or (2) a departure from the 
normal sequence. 

Break: To interrupt execution of a program. Pressing the break 
key causes a break in execution. 

Buffer: A temporary storage area in RAM used to hold data for 
further processing, input/output operations, etc. 

Bug: A usually elusive error in a program, circuit, or machine. 

245 



Byte-Chip 

Byte: Usually eight bits (enough to represent the decimal number 
255 or 11111111 in binary notation). A byte of data can be used to 
represent an AT ASCII character or a number in the range of 0 to 
255. Byte is a generic term developed by IBM to indicate a 
measureable number of consecutive binary digits which are usu­
ally operated upon as a unit. Bytes of eight bits representing 
either one character or two numerals are most often encoun­
tered . Words in some systems are divided into high and low 
bytes and the byte addresses are either odd or even numbers. 
The high bytes are stored at the odd-numbered locations and the 
low bytes at the even-numbered ones. 

Cassette: A magnetic-tape housing that contains a tape of a specific 
length . The cassette includes the supply reel. take up reel, head 
pressure pad, and a slot for the capstan drive. 

Central Processing Unit (CPU): In microcomputers such as the 
ATARI systems, these are also called microprocessors or MPU. 
At one time, the CPU was that portion of any computer that 
controlled the memory and peripherals. Now the CPU or MPU is 
usually found on a single integrated circuit or "chip" (in AT ARI's 
case a 6502 microprocessor chip). 

Character: A letter, numeral, or other symbol that is used to 
express information. It is usually part of an ordered set and may 
be graphic. Letters from English and other languages, any form 
of numeral, all punctuation marks, and other formatting symbols 
are all considered characters. 

Character Code: An ordered pattern of bits that are assigned in a 
particular system to represent characters. Baudot and ASCII are 
character codes. 

Chip: In its basic form, a chip is the integrated circuit inside an IC 
housing. Those used in microcomputers typically utilize large­
scale integration techniques and up to 10,000 transistors have 
been placed on chips of 6 mm square! The chips are usually 
mounted in dual-inline packages which may have up to 40 pins for 
mounting on circuit boards. 

A microcomputer chip usually includes the arithmetic logic 
unit (ALU) , general purpose register, and bus controls . The chip 
of chips may also be combined with memory and input/output 
chips to form a computer system that will fit on a single circuit 
board. 

246 



CIO-Console 

CIO: Central Input/Output Subsystem. The part of the operating 
system that handles input/output. 

CLOSE: To terminate access to a disk file. Before further access to 
the file, it must be opened again. See Open. 

Code: 1. (noun) Instructions written in a language understood by a 
computer. 

Code: 2. (verb) To write or form a routine in a computer program 
using a system of rules and ordered characters which represent 
symbols and characters from a different character set. 

Coding: The process of converting program flowcharts into the 
desired computer language. 

Command: An instruction to the computer that is excuted im­
mediately. A good example is the BASIC command run. (See 
Statement.) 

Compiler: A coding or programming system that inputs source 
language data and outputs a program either in assembly or 
machine language. The compiler provides a language that re­
quires fewer statements for algorithm wiring and eliminates the 
requirement for detailed coding to control loops, access data 
structures, and write complex formulas and functions. 

Computer: Any device that can receive and then follow instruc­
tions to manipulate information. Both the instructions and the 
information may be varied from moment to moment. The dis­
tinction between a computer and a programmable calculator lies 
in the computer's ability to manipulate text as well as numbers. 
Most calculators can only handle numbers. 

Computer Code: The machine language or code used with a 
computer system. 

Computer Program: The series of instructions and statements 
prepared in order to solve a specific problem or achieve a certain 
result. 

Concatenation: The process of joining two or more strings to­
gether to form one longer string. 

Console: The part of a computer system that is used for communi­
cation between the computer operator and the CPU. The com­
puter console may contain a start key, a stop key, a power control 
switch, sense switches, and register lights. Other console func­
tions allow manual control, error correction, and status determi­
nation for counter and storage circuits. Some consoles allow the 
programmer to debug the program by slowly stepping the 

247 



Console-CPU 

machine through each instruction and observing the status indi­
cators; other consoles include a CRT terminal which may have 
pictorial capabilities . 

Constant: A fixed value or an item of data that does not vary. 
Constants are those quantities or messages which are available 
as data for the program and are not subject to change with time . A 
constant can be one character or a group of characters which 
represent a value and are used to identify, measure, or compare. 

Control Characters: Characters produced by holding down the 
key labeled CTRL while simultaneously pressing another key. 

Control Console; A console that enables the operator to control 
and monitor all processing functions from a central location. The 
control console usually has a typewriter or other keyboard to 
allow communication with the processor. 

Controller: A unit which operates automatically to regulate the 
performance of a controlled variable or system. Controllers use 
the data from the input and the output of a device to obtain the 
maximum and most efficient control of the device or process . 
Controllers are also used in computer systems for generation of 
signals to interface the CPU with memory and peripheral equip­
ment. A typical controller chip performs all the control functions 
required for the flow of data at the interface. 

Control Program: A sequence of instructions used to guide the 
CPU through operations . A control program in a microprocessor 
is usually stored in ROM where it can be accessed, but not 
erased by the CPU. 

Core Memory: A memory that uses toroids in matrix arrays for 
storing binary digits. A core memory is a programmable 
random-access memory that uses ferromagnetic storage 
techniques. 

Coupler: A device which transfers signals and has its input and 
output isolated electrically. Also known as an isolator, a coupler 
usually consists of a light-emitting diode (LED) and a light 
sensor. The input signal activates the LED, which in tum forces 
current through the output light sensor. When the two devices 
are separated by an air gap rather than glass or plastic, the 
coupler can be used to sense motion and encode cards , plates, 
and slotted disks. 

CPU: Abbreviation for central processing unit. A primary unit of 
the computer system which controls the interpretation and 

248 



CPU-Decode 

execution of instruction. A CPU may consist of registers, com­
putational circuits such as the arithmetic and logic unit, control 
circuits, and input/output ports. The register may include ac­
cumulators , index registers, and perhaps stack registers. All 
registers are treated as internal memory. 

CRT: Abbreviation for "cathrode-ray tube" (the tube used in a TV 
set) . In practice, this is often used to describe the television 
receiver used to display computer output. Also called a 
"monitor". CRTs are used for both display and storage in com­
puter systems. As a display, the CRT can be operated in the point 
mode to allow points to be established and displayed on the 
screen. CRT storage uses the electron beam to sense the pres­
ence or absence of spots on the CRT screen. 

Cursor: A square displayed on the TV monitor that shows where 
the next typed character will be displayed. It is a manually 
controllable pointer and can be employed to indicate a character 
to be changed or corrected , or a position where data is to be 
entered via the keyboard. The cursor may also take the form of an 
underscore , an undertext caret, or an arrow . 

Daisy Wheel: A plastic or metal print wheel on certain types of 
impact printers, so called because of its symmetrical "petals." 

Data: Information of any kind . 
Debug: The process of locating and correcting mistakes and errors 

in a program. Debugging involves the running and checking of 
programs to detect any errors. One typical method of debugging 
includes running a similar problem with a known answer through 
the system checkout. Debugging aids are available to allow quick 
development of microcomputer programs . 

Decimal: A number base system using the digits 0 through 9. 
Decimal numbers are stored in binary-coded-decimal format in 
the computer. See Bit, Hexadecimal, and Octal. 

Decision: A determination of future action . A decision in computer 
systems usually involves a comparison to determine the exis­
tence or nonexistence of a specific condition before taking a 
specific succeeding action. The action may involve a conditional 
jump or transfer of control . The comparison may take place 
between words or numerical characters in registers or other 
temporary storage. 

Decode: The act of applying a set of data rules to restore a previous 
representation , or to reverse a previous encoding operation. 

249 



Decoder-Disk file 

Decoder: A device which determines the meaning of a set of data 
and usually initiates some action based on the meaning . A de­
coder may be a matrix of switching elements used to select one 
or more channels according to the combination of input signals. 
Many decoder chips can be expanded so that each decoder drives 
eight or more other decoders for large system applications. 

Default: A mode or condition "assumed" by the computer until it is 
told to do something else. For example, The ATARI will "de­
fault" to screen and keyboard unless told to use other 110 de­
vices. It will also default to GRAPHICS 0 until another graphics 
mode is entered. 

Delimiter: A character that marks the start or finish of a data item 
but is not part of the data. For example, the quotation marks (") 
are used by most BASIC systems to delimit strings . 

Destination: The device or address that receives data during an 
exchange of information (and especially an 1/0 exchange). See 
Source . 

Digital: Information that can be represented by a collection of bits. 
Virtually all modem computers , especially microcomputers, use 
the digital approach. 

Digital-to-analog converter: A device for converting digital sig­
nals into continuous analog signals . Digital-to-analog converters 
usually buffer the input so that the output remains the same until 
the input changes. Units are available with up to 16 channels that 
can operate at 10,000 samples per second with a 100-micro­
second conversion time. 

Directory: A listing of the files contained on a diskette. 
Discrete programming: A class of procedures used in operations 

research for locating the maximum and minimum values of a 
function . All variables must have integer values or similar con­
straints. 

Diskette: A small disk . A record/playback medium like tape, but 
made in the shape of a flat disk that is placed inside a stiff 
envelope for protection . The advantage of the disk over cassette 
or other tape for memory storage is that access to any part of the 
disk is virtually immediate . The AT ARI 800 Personal Computer 
System can control up to 4 diskette drive peripherals simultane­
ously. In this book, disk and diskette are used interchangeably . 

Disk file: An associated set of records of a similar format which can 
be grounded by a common label and may be accessed as a unit. 

250 



Disk pack-Erase 

Disk pack: Portable direct-address storage units which use 
magnetic disks. Disk packs are mounted on disk storage drives 
for read and write operations . 

Disk storage: A memory system that stores data on magnetic 
disks. The disks require a disk drive. Floppy disks, which are 
used on the ATARI, are flexible and can store up to 300,000 
words. 

Display: A visual representation of data, which may take the form 
of numerals, alphanumeric characters, or graphics. A display unit 
can provide viewing access into the operation of the microcom­
puter system. 

DOS: Abbreviation for "disk operating system". The software or 
programs which facilitate use of a disk-drive system. 

DOS.SYS: Filename reserved by Disk Operating System. 
Drive Number: An integer from 1 to 4 that specifies the drive to be 

used. 
Drive Specification or Drivespec: Part of the filespec that tells 

the computer which disk drive to access. If this is omitted the 
computer will assume drive 1. 

Edit: To make corrections or changes in a program or data. 
Electronic digital computer: A machine which uses electronic 

circuitry to perform arithmetic and logic operations by means of 
an internally or externally stored program of machine instruc­
tions. 

Electronic pen: A stylus that is used with a CRT display for input 
to the system computer. Also called a light pen, the stylus 
signals the computer with electronic pulses which the computer 
interprets. 

Encoder: Any device or circuit that provides an enabling code to 
permit an otherwise unusable system or device to be used in an 
environment where the code is required. In a selective calling 
communications system, an encoder may be a simple tone oscil­
lator of a specific frequency . 

End of File: A marker that tells the computer that the end of a 
certain file on disk has been reached . 

Entry Point: The address where execution of a machine-language 
program or routine is to begin. Also called the transfer address. 

Erase: To clear or obliterate information in a storage medium. 
Erasing results in the replacement of all digits with zeros in 

251 



Erase-Flowchart 

magnetic storage. Erasing in some EPROMs is done with a 
specified level of ultraviolet light. 

Execute: To do what a command or program specifies. To run a 
program or portion thereof. 

Expression: A combination of variables, numbers , and operators 
(+, -, etc.) that can be evaluated to a single quantity . The 
quantity may be a string (sexp) or a number (aexp). 

Fetch: 1. To locate and load a program from storage, as in bringing 
a program phase into main storage for execution from the mem­
ory library . 2. That portion of a computer cycle from which the 
location of the next instruction is obtained . A fetch can also be 
used to retrieve phases of a program and load them into main 
storage, or transfer control to a system loader. 

File: An organized collection of related data. A file is the largest 
grouping of information that can be addressed with a single name. 
For example, a BASIC program is stored on diskette as a par­
ticular file, and may be addressed by the statements save or load 
(among others). 

Filename: The alphanumeric characters used to identify a file. A 
total of 8 numbers and/or letters may be used. The first of these 
must be a letter. 

Filename Extender or Extension: From 1 to 3 additional 
characters used following a period (required if the extender is 
used) after the filename . For example , in the filename PHON­
LIST.BAS . the letters "BAS" comprise the extender. 

Filespec: Abbreviation for file specification. A sequence of 
characters which specifies a particular device and filename. Do 
not create two files with exactly the same filespec. If you do, and 
they are both stored on the same diskette, you will not be able to 
access the second file, and the DOS functions of delete file, 
rename file , and copy file will act on both files. 

Flip-flop: A circuit that is capable of assuming either one of two 
stable states ; a bistable multivibrator. It will assume a given 
state depending upon the previous history of the inputs. 

Floppy Disks: A magnetic storage medium that uses flexible disks 
that resemble phonograph records. Each one can provide random 
access storage for as much as 163,000 or more bytes , (double 
density) and are used to replace cassettes in many applications. 

Flowchart: A graphical representation of the definition or solution 

252 



Flowchart-Graphic display 

of a problem, in which symbols are used to represent functions, 
operations, and flow . It can contain all of the logical steps in a 
routine or program in order to allow the designer to concep­
tualize and visualize each step . It defines the major phases of the 
processing, as well as the path to problem solution. 

Format: 1. (noun) A predetermined arrangement of data, words, 
letters, characters, files, etc. 2 . (verb) To specify the form in 
which something is to appear. 3. To organize a new or magnet­
ically (bulk) erased diskette into tracks and sectors. When for­
matted , each diskette contains 40 circular tracks, with 18 sectors 
per track. Each sector can store up to 128 bytes of data (single 
density), or 256 bytes of data (double density). 

Gap: A space or interval which appears between items of data. A 
magnetic gap refers to the air space in the magnetic circuit. A 
head gap refers to the separation between the pole pieces of a 
magnetic recording head. A data gap may appear as an interval of 
space or time to indicate the end of a word, record, orfile on tape, 
or it may be the complete absence of information for a length of 
time or space on the recording medium . 

Gate: A circuit or device having one output and one or more inputs 
with the output state completely determined by the previous and 
present states of the inputs. A gate can also be a trigger used to 
allow the passage of other signals through a circuit. Logical gates 
can take many forms. 

Get: To locate, fetch , and transfer an item from storage, (the 
activity required to develop or make a record from an input file 
available) , or to obtain or extract a coded value from a field . The 
get command might be used to obtain a numerical value from a 
series of decimal digits. 

Goto: A multi language statement that directs the computer to leave 
the current sequence of instructions and begin operating at 
another point in the program. A typical BASIC goto instruction 
might be: 

goto 5; (the next statement to be executed is number 5) 

Graphic: 1. Any assembly of symbols or characters that is used to 
denote any concept, configuration , or idea non-textually. 2. Any 
symbol produced by printing , drawing, handwriting, etc. 

Graphic display: A non textual display which reproduces data on a 
video screen , panel , or page. 

253 



Halt-Information bits 

Halt: A condition occurring after the sequence of operations in a 
program stops. A halt may be due to a halt (stop) instruction, an 
unexpected halt, or an interrupt. The program would normally 
continue after the halt unless a "drop-dead" halt occurs. In this 
case there is no recovery. The drop-dead hal t may be a part of the 
program designed to shut down the system, or it may be due to an 
error in programming such as division by zero, or transfer to a 
nonexistent instruction. 

Hard Copy: Printed output as opposed to temporary TV monitor 
display. 

Hardware: The physical components of a computer system, in­
cluding all electronic and electromechanical devices and connec­
tions. 

Hardware assembler: An assembler that usually consists of 
PROMs which are mounted on simulation boards. A hardware 
assembler allows the prototype unit to assemble its own pro­
grams. 

Hexadecimal or Hex: Number base system using 16 alpha­
numeric characters: 0,1, 2, 3, 4, 5, 6, 7,8,9, A, B, C, D, E, and 
F. 

Hold: A condition which suspends operation of a system or circuit 
for a specified time. 

Hold instruction: An instruction which causes data called from 
storage to be retained after it is called out. 

Imprinter: A device for marking characters onto a form. Imprint­
ers include typewriters, printers , presses, pressure plates, and 
stamping machines. 

Increment: Increase in value (usually) by adding one. Used a lot 
for counting (as in counting the number of repetitions through a 
loop). 

Index: 1. A symbol or number used to identify a specific quantity in 
an array of similar items. 2. An ordered reference list of the 
contents of a file with keys for identification of the contents and 
the action required in preparing such a list. 3. In numerical 
control, movement of a machine part to a predetermined loca­
tion. 

Information bits: Any bits that are generated by the data source 
and not used for error control . Information theory provides that 
all information can be represented by some collection of bits, 

254 



Infonnation bits-Instruction 

regardless of the complexity of the information . 
Initialize: To set to an initial or starting value; to do the prelimi­

nary steps that are not to be repeated, such as setting counters 
and addresses to zero. In ATARI BASIC, all nonarray variables 
are initialized to zero when the command run is given. Array and 
string elements are not initialized. 

Input: 1. (noun) Information transferred to the computer. Output is 
information transferred away from the computer. In this manual, 
input and output are always in relation to the computer. 2. (verb) 
To transfer data from outside the computer (say, from a diskette 
file) into RAM. Output is the opposite, and the two words are 
often used together to describe data transfer operations: Input/ 
Output or just "I/O". Note that the reference point is always the 
computer. 

Input device: A device or set of devices used to bring data into 
another device. An input may be a channel for impressing or 
inserting a state or condition on another device, or a device or 
process involved in an input operation . 

Input/output: Pertaining to either input or output or both. It is 
abbreviated I/O. 

Input/output channel: A circuit path which allows independent 
communication between the processor and external devices . 
Input/output channels may transfer data between memory and 
external interfaces in blocks of any size without disturbing 
working r~gisters in the processor. Multiple channels are al­
lowed to operate concurrently with hardware priority control of 
each channel. Transfers are in full words, with automatic packing 
and unpacking allowed in some systems. 

Instruction: A statement containing information which can be 
coded and used as a unit in a digital computer to command it to 
perform one or more operations . An instruction usually contains 
one or more addresses and may specify arithmetic operations 
such as addition or mUltiplication, or control operations for data 
manipulation. Instructions can be grouped as: 

1. Data transfers between registers and memory . 
2. Branching operations. 
3. Input/output control. 
4. Loading and storing accumulators. 
5. Restoring registers and accumulators . 
6. Jumps and stack-pointer operations. 

255 



lnstruction-Keyboard 

7. Binary and decimal arithmetic. 
8. Set and reset interrupts. 
9. Increment and decrement registers and memory . 

Instruction code: All of the symbols and definitions used to 
systematize the instructions for a given computer or executive 
routine. 

Integrated circuit: An interconnected array of components, 
which is fabricated from a single crystal of semiconductor mate­
rial by etching, doping, and diffusion, and which is capable of 
performing at least one and sometimes many complete circuit 
functions. 

Interactive: A system that responds quickly to the user, usually 
within a second or two. All personal computer systems are 
interactive. 

Interface: The electronics used to allow two devices to communi­
cate. An interface enables devices to exchange information and 
implies a connection to complete the interchange . 

Interpreter: An executive routine which translates a stored pro­
gram written in a high-level language into machine code and 
performs the indicated operations using subroutines as they are 
translated. 

I/O: Short for input/output, I/O devices include the keyboard, TV 
monitor, program recorder , printer, and disk drives. 

lOeB: Input/Output Control Block. A block of data in RAM that 
tells the operating system the information it needs to know for an 
I/O operation. It is written as an arithmetic expression equal to a 
number between 1 and 7. 

I/O test program: Refers to a special PROM containing a program 
which plugs into the checks input/output circuit boards. 

Item size: The magnitude of an item expressed in words, charac­
ters, or blocks. 

K: Stands for "kilo" meaning "times 1000". Thus 1 Kbyte is (ap­
proximately) 1000 bytes . (Actually 1024 bytes.) Also, the device 
type code for the keyboard. 

Keyboard: A unit containing keys for entering data or information 
into a system. Keyboards may be alphanumeric (as used for word 
processing, text processing, and data processing) or numeric as 
used for Touch-Tone telephones , accounting machines, and cal­
culators. 

256 



Keyword-List 

Keyword: A word that has meaning as an instruction or command 
in a computer language , and thus must not be used as a variable 
name or at the beginning of a variable name. 

Kilobyte or K: 1024 bytes of memory . Thus a 16K RAM capacity 
actually gives us 16*1024 or 16,384 bytes. 

Language: A set of conventions specifying how to tell a computer 
what to do . A language consists of a carefully defined set of 
characters and rules for combining the characters into larger 
units such as words or expressions. There are also rules for word 
arrangement and usage to achieve specific meanings. Most com­
puter languages have the following features: 

1. Data objects or structures with descriptions that correspond 
to nouns and adjectives in natural languages . 

2. Operations and commands which act upon the data objects, 
corresponding to verbs and adverbs in a natural language. 

3. Control structures to specify the sequence of operations 
which correspond to phrasing and forming paragraphs in natural 
languages. 
Language interpreter: A processor, assembler, or other routine 

that accepts statements in one language and produces equivalent 
statements in another language. 

Language translator: A program or routine that converts state­
ments in one language to equivalent statements in another lan­
guage . The languages may be computer or machine languages, or 
natural languages such as English . 

Least significant byte: The byte in the rightmost position in a 
number or a word. 

Light pen: A photosensitive device that can cause the computer to 
change or modify the display on a CRT screen or can be used to 
enter input into a program. As the display information is selected 
by the operator, the light pen signals the computer using a pulse. 
The computer can then instruct other points or lines to be plotted 
on the screen following the pen movements, or can utilize the 
input in the program. 

List: An ordered set of items. A pushdown list is a set of items in 
which the last item entered is the first item in the list, and the 
position of the other items is pushed back by one . A pushup list 
has items entered at the end of the list, and the other items 
maintain the same relative position in the list. 

257 



Load-Matrix printer 

Load: The process offilling a storage unit in a computer. Loading 
includes the reading of the beginning of a program into storage 
and the modifications necessary to the program for the transfer of 
control for execution . Loading also includes the transfer of stor­
age between memory units . A typical load operation transfers 
the contents of a memory byte and stores it in the accumulator. 
The memory is read bit by bit, and as each bit is read, the next 
sequential accumulator bit will be set or reset to reproduce the 
status of the memory bit just read. 

Logic gates: A circuit or single component capable of performing a 
logic operation . A gate may have several inputs but only one 
output. 

Loop: A self-contained series of instructions in which the final 
instruction can modify itself, causing the process to be repeated 
until a terminal condition is reached. Productive instructions in 
the loop are used to manipulate operands while housekeeping or 
bookkeeping instructions modify the productive instructions and 
keep track of the number of operations and repetitions. A loop 
may be terminated under any number of conditions. 

Machine: A general term for a device such as a microprocessor 
or microcomputer that can store and process numeric and al­
phabetic information . Machine is used to refer to both analog and 
digital computers along with related data processing equipment. 

Machine-code: An operation code that a machine is designed to 
recognize directly and without translation. 

Machine language: A language that can be used directly by a 
microprocessor; a binary language. All other languages must be 
translated or compiled into binary code before entering the 
processor. Users generally write the program in coded instruc­
tions that are more meaningful to them. Then assembly pro­
grams are used to translate the symbolic instructions into binary 
machine code. 

Magnetic core storage: A storage system that uses a core of 
magnetic material coupled by wires or other conductors. The 
cores are magnetized to represent binary ones or zeros . 

Matrix printer: A device that uses an array of dots to form 
characters. Dot-matrix character formation is also used in some 
display devices . Sometimes called dot matrix printer. 

258 



Memory-Microprocessor 

Memory: The part of a computer (usually RAM or ROM) that 
stores data or information. 

Memory bus: The circuit path for communication between the 
CPU and memory . A memory bus may actually consist of three 
buses which are time-shared over a single bus: 

1. Memory address bus. 
2. Memory-to-CPU data bus . 
3. CPU-to-memory data bus. 

Memory scan: An option which provides a rapid search of any part 
of memory for any word . With a memory-scan option, any block 
of locations may be searched using a single instruction. 

Menu: A list of options from which the user may choose. 
Microcomputer: A computer based on a microprocessor chip; in 

ATARI's case, the 6502. A microcomputer is a complete small 
computing system consisting of hardware and software. The 
hardware includes the microprocessing unit, memory, auxiliary 
circuits, power supply, and control panel. The main processing 
blocks are typically fabricated with large-scale integration circuit 
packages. 

A typical microcomputer has the CPU on a single chip or circuit 
board; the system also contains ROM storage for programs and 
data along with clock circuits, input and output units , selector 
registers, and control circuits. The console control panel typi­
cally has a typewriter-type keyboard. The keyboard is an input 
port. Standard software often includes an assembler, loader, 
source editor, and debugging and diagnostic routines. 

Microprocessor: The large-scale integration equivalent of a com­
puter's central processing unit, designed to work as a sequential 
computational or control unit by executing a defined set of in­
structions contained in memory. In a microcomputer with a fixed 
instruction set, the microprocessor may consist of an arith­
metic-logic unit and a control-logic unit. In a microcomputer with 
a microprogrammed logic set, it may contain an additional 
control-memory unit. The microprocessor determines what de­
vices should have access to data and makes these decisions based 
upon timing requirements. It also correlates the activities of the 
memory and input/output units . 

All microprocessors use large-scale integrated circuit tech­
nology; some feature a single-chip construction while others use 

259 



Microprocessor-Monitor system 

several chips. The division or partitioning of functions is based 
on considerations of word length, flexibility, and performance. 

Microprogramming: The techniques of modifying an instruction 
set by building higher-level instructions from basic elemental 
operations. The higher-level instructions can then be directly 
programmed. If a machine has basic instructions for addition, 
subtraction, and multiplication, an instruction for division could 
be defined by microprogramming . Microprogramming adds 
flexibility to the microcomputer. Compared to conventional 
programming, the distinctive feature is the storage associated 
with the control unit. In microprogramming, a user instruction 
determines an address in control memory which provides the 
starting point for executing the microprogrammed steps . 

Microprogramming enhances flexibility by allowing the 
machine to optimize its control memory for specific applications . 
This ability to adjust can greatly simplify programming. It is 
generally slow, since each user instruction requires that a se­
quence of programmed steps be executed. Control storage ROM 
must be fast enough to allow the use of a separate clock that is 
five to ten times faster than that used for main memory. 

Mnemonic: 1. A word-like symbol used in assembly languages to 
cause a computer to execute an instruction whose description 
resembles the word symbol. The term MOV A, B is a mnemonic 
for "move the contents of register B into arithmetic register A." 

Modem: An electronic device that performs the modulation and 
demodulation functions required for communications. A modem 
(formed from a blending of modulator and demodulator) can be 
used to connect computers and terminals over telephone cir­
cuits . On the transmission end, the modulator converts the 
signals to the correct codes for transmission over the communi­
cations line . At the receiving end, the demodulator reconverts 
the signals for communication to the computer using the com­
puter interface unit. 

Monitor: The television receiver used to display computer output. 
Monitor system: The hardware and software used to control 

computer system functions. The monitor system can simulate 
the processor, maintain continuity between jobs, observe and 
report on the status of input/output. devices , and provide au­
tomatic accounting of jobs. 

260 



Most Significant Byte-Numerical control 

Most Significant Byte: The byte in the leftmost position in a 
number or a word. 

Multiplier: A device that generates a product from two numbers. A 
digital mUltiplier generates the product from two digital numbers 
by additions of the mUltiplicand in accordance with the value of 
the digits in the mUltiplier. It then shifts the multiplicand and 
adds it to the product if the multiplier digit is a one. or shifts 
without adding if the digit is a zero. This is done for each 
successive digit of the multiplier. 

NOR: A logical operation that has a true output only if all inpu s are 
zero (false). The negative-OR operation. 

NOT: A logic operator having the property: if P is a statement. then 
the NOT of P is true if P is false; and it is false if P is true. The 
NOT operator is represented by an overline. 

NOT AND: The NAND operation. 
NOT AND gate: An AND gating circuit combined with an inverter; 

a NAND gate. 
Notation: The act. process. or method used to represent technical 

facts or quantities. In computer practice. the term typically 
describes the number radix. as follows: 

NOTATION RADIX 
BINARY 2 
TERNARY 3 
QUATERNARY 4 
QUINARY 5 
DECIMAL 10 
DUODECIMAL 12 
HEXADECIMAL 16 
DUOTRICENARY 32 
BIQUINARY 2.5 

NOT if-then gate: A gate that performs the A AND NOT B and B 
AND NOT A operations. 

Null String: A string consisting of no character whatever. For 
example. A$= ... • stores the null string as A$. 

Numerical control: The automatic control of a machine or process 
using numerical data that is introduced using punched tapes or 
other input methods. Most numerical-control devices have lim­
ited logical capability. and they rely on the input medium for 

261 



Numerical control-Operator console 

detailed guidance. A computer is generally used to prepare the 
control media. 

Object code: Machine language derived from "source code," typi­
cally from Assembly Language. 

Octal: The octal numbering system uses the digits 0 through 7. 
Address and byte values are sometimes given in octal form. 

One-address: A system of instructions such that each complete 
instruction explicitly describes one operation and one storage 
location. 

Open: To prepare a file for access by specifying whether an input or 
output operation will be conducted, and specifying the filespec. 

Operand: 1. The fundamental quantity on which a mathematical 
operation is performed. A statement usually consists of an 
operator and an operand; in an add instruction, the operator will 
indicate "add," and the operand will indicate what is to be added. 
2. A result, parameter, or the address portion of an instruction. 

Operating console: A unit which contains all controls and indi­
cators necessary for the operation of the processor. A typical 
microcomputer operating console may include the following 
functions: 

1. Run indicator and switch 
2. Halt indicator and switch 
3. Reset switch 
4. Link indicator 
5. Interrupt indicator 
6. Accumulator program counter, and memory display 

Operation code: A code that represents specific actions. Also 
called instruction code. 

Operation decoder: A device that selects one or more channels of 
operation according to the operator part of the machine instruc­
tion. 

Operator: 1. The mathematical symbol which represents the pro­
cess to be performed on an associated operand. 2. The portion of 
an instruction which indicates the action to be performed on the 
operands. 

OperalOr console: A hardware unit which allows the operator to 
communicate with the computer. The operator console is used to 
enter data or information, to request and display stored data, and 
to actuate the various command routines. 

262 



OR-Precedence 

OR: A logic operator having the following property for logical 
quantities P and Q: 

P 
o 
o 
1 
1 

Q 
o 
1 
o 
1 

P ORQ 
o 
1 
1 
1 

The OR operator is represented in electrical terminology by a 
"plus" symbol. 

OR ELSE: A logical operator which states that if P and Q are 
statements, then P 0 R ELSE Q is either true orfalse. Also called 
EITHER/OR. 

OS: Abbreviation for operating system. This is actually a collection 
of programs to aid the user in controlling the computer. 

Output: The produced signals used to drive peripheral tenninals. 
See 110. 

Paging: The procedure used to locate and transmit pages between 
main storage and auxiliary storage, or to exchange them with 
pages of the same program or other programs. Paging can be 
used to assist in the allocation of a limited amount of main storage 
among several concurrent programs. 

Parallel: Two or more things happening simultaneously. A parallel 
interface, for example, controls a number of distinct electrical 
signals at the same time. Opposite of serial. 

Pen light: A pen-like device with light and a photosensor on one 
end for communicating with a computer through a CRT device. 

Peripheral: An I/O device. See 110. 
Permutation: Anyone of the total number of changes in position or 

fonn that are possible in a group. 
Pilot system: A collection of file records and data obtained from a 

business over a period of time and used for simulation purposes. 
Pip: A spot of light on a CRT screen for display pointing, calibra­

tion. 
Pixel: Picture Element. One point on the screen display. Size 

depends on graphics mode being used. 
Precedence: Rules that determine the priority in which operations 

are conducted, especially with regard to the arithmet­
ical/logical operators. 

263 



Problem language-Programming 

Problem language: The language used by a programmer in stat­
ing the definition of a problem. 

Processor: A hardware data processor or a program that performs 
the functions of compiling, assembling, and translating for a 
specific language. Processor operations can involve registers, 
accumulators, program counters and stacks, and input/output 
and internal instruction control. 

Processor module: The circuit card that contains the micro­
processor along with the logic and control circuitry necessary to 
operate as a processing unit. The processor support circuits 
consist of clock circuits, multiplexer, bus control, input/output 
control, and interrupt logic. 

Program: 1. A set of instructions arranged in the proper se­
quence for directing the computer in performing a desired oper­
ation, such as the solution of a mathematical problem or the 
sorting of data. 2. To prepare a set of ordered instructions for 
automatic computer operation. 

A program includes plans for the transcription of data, coding 
for the computer, and plans for the absorption of results into the 
system. 

Program counter: A counter which contains the address of the 
next instruction to be fetched from memory. The address is 
automatically incremented after an instruction fetch except when 
modified by branch instructions. During interrupts , the program 
counter saves the address of the instruction. 

Program error: A mistake made in the program code by the 
programmer, keypuncher, compiler, or assembler. 

Program library: A collection of available computer programs and 
routines. A typical microcomputer library might include a text 
editor, loader, assembler, RAM test program, decimal addition, 
PROM programmer, ND conversion, logic subroutines, and 
BCD-to-binary conversion . 

Programmable logic: Devices and systems which provide logic 
functions that can be changed by the user . Programmable logic 
devices include FPLAs, PLAs, ROMs, EAROMs, RAMs, 
CAMs, and microprocessors . Programmable logic systems in­
clude microcomputers, programmable calculators , minicomput­
ers, and large-scale computers . 

Programming: The design, writing, and testing of programs. 
Programming may consist of: 

264 



Programming-Random number generator 

1. Definition of problem. 
2. Preparation of flowchart. 
3. Listing of computer instructions. 
4 . Selecting circuit patterns or control modes. 

Programming flowchart: A flowchart used to represent the 
sequence of operations in a program . 

Prompt: A symbol that appears on the monitor screen that indi­
cates the computer is ready to accept keyboard input. In AT ARI 
BASIC, this takes the form of the word "READY". A "?" is also 
used to prompt a user to enter (input) information or take other 
appropriate action . 

Pseudo code: A code that requires translation prior to execution. 
Pseudo codes are often used to link a subroutine into the main 
routine, and they usually express programs in terms of source 
language by referring to locations and operations using symbolic 
names and addresses. 

Pseudo instruction: A group of characters having the same gen­
eral form as an instruction, but never executed as an actual 
instruction. Pseudo instructions are used as symbolic represen­
tations in compilers, interpreters, and assemblers to designate 
groups of instructions for performing a particular task. 

RAM: Abbreviation for random-access memory. The main memory 
in most computers. RAM is used to store both programs and 
data. It is a mass store that provides fast access to any storage 
location point. A RAM system can be divided into three main 
sections: 

1. Address buffers, read-write logic, and chip-select logic. 
2. Data bus buffers and memory array. 
3. Refresh and control logic. 

During a cycle, a Ion a write input/output line will be inter­
preted by the RAM as a write enable command, and data on the 
bus will be written in. Available RAMS have access times from 2 
nanoseconds to 3 seconds and range in size from 4 to 4096 bits 
per chip. 

Random number generator: May be hardware (as is AT ARI's) or 
a program that provides a number whose value is difficult to 
predict. Used primarily for decision-making in game programs, 
etc. 

265 



Record-Selector 

Record: A block of data . 
Reserved word: See Keyword. 
Reset: To return a device such as a register to zero or to an initial 

or selected condition. 
Restore: To return an index, address, word, or character to its 

initial state, sometimes by periodic recharge or regeneration. 
ROM: Abbreviation for read-only memory . In this type of solid­

state electronic memory, information is stored by the manufac­
turer and it cannot be changed by the user. Programs such as the 
BASIC interpreter and other cartridges used with the ATARI 
systems use ROM. 

Routine: An ordered set of instructions used to direct the com­
puter to perform one or more specific tasks or operations. A 
closed routine is one that is not entered as a block of instructions 
within the main routine, but entered by a linkage from the main 
routine. A routine may be considered as a subdivision of a 
program with two or more instructions that are functionally 
related. 

Run: The execution of a program on or of several routines linked 
together so that they form an operating unit. Usually during a 
run, manual operations are minimal ; a typical run may involve 
loading, reading, processing, and writing. 

Save: To copy a program or data into some location other than RAM 
(for example, diskette or tape) . 

Screen: The TV screen, In ATARI BASIC, a particular I/O device 
codes "S:" 

Sector: The smallest block of data that can be written to a disk file 
or read from one. Sectors can store up to 128 bytes (single 
density) or 256 bytes (double density). 

Segment: 1. To divide a routine into parts with each one capable of 
being completely stored in internal storage and containing the 
necessary instructions to jump to other segments. 2. A part of a 
routine short enough to be sorted entirely in the internal storage 
of a computer, yet containing the coding necessary to call in and 
jump to other segments . A segment can be placed anywhere in 
memory and addressed relative to a common origin. 

Selector: 1. A switching operation based on previous processing 
which allows a logical choice to be made in the program or 
system. 2 . A mechanical multiposition switch. 3. Cursor. 

266 



Separator--Storage 

Separator: A specific character used to mark the logical boundary 
between items that can be considered as separate and distinct 
units. 

Serial: The opposite of parallel. Things happening only one at a 
time in sequence. Example: A serial interface. 

Shift instruction: A computer instruction which causes the con­
tents of an accumulator register to shift to the right or left. A 
right shift instruction is equivalent to dividing by two; a left shift 
instruction is equivalent to multiplying by two, or adding the 
contents of the register to itself. 

Signal: The intelligence, message, or effect to be conveyed over a 
transferal system; it may be electrical, visual, or audible. It is the 
event or phenomenon for conveying the data from one point to 
another . 

Software: As opposed to Hardware. Refers to programs and data. 
Software package: The programs or sets of programs used in a 

particular application or function. Many software packages in­
clude diagnostic programs for verifying processor and memory 
operation along with cross-assemblers . 

Software system: The entire set of programs and software de­
velopment aids used in a microcomputer system. 

Source: The device or address that contains the data to be sent to a 
destination. 

Source code: A series of instructions, written in language other 
than machine language, which requires translation in order to be 
executed. 

Special character: A character that can be displayed by a com­
puter but is neither a letter nor a numeral. The ATARI graphics 
symbols are special characters. So are punctuation marks, etc. 

Specific routine: A routine used to solve a particular arithmetic, 
logic, or data-handling problem in which each address refers to 
explicitly stated registers and locations. 

Statement: An instruction to the computer. See also Command. 
While all commands may be considered statements, all state­
ments are certainly not commands. A statement contains a line 
number (deferred mode), a keyword, the value to be operated on, 
and the RETURN command. 

Storage: A device or medium on or into which data can be entered, 
held, and retrieved later; a memory. Storage may use electro-

267 



Storage-Track 

static, magnetic, acoustic, optical, electronic, or mechanical 
methods . 

String: (1) A sequence of letters, numerals and characters which 
may be stored in a string variable. The string variable's name 
must end with a $. (2) Any linear sequence of items which are 
grouped in a series according to certain rules. A string may be a 
set of records grouped in ascending or descending sequence 
according to a key contained in the records. 

Subroutine: A part of a program that can be executed by a special 
statement (go sub) in BASIC. A subroutine can be a portion of 
another routine which allows the computer to carry out a defined 
mathematical or logical operation. This effectively gives a single 
statement the power of a whole program. The subroutine is a 
very powerful construct. 

System data bus: A bus designed for communications between all 
external units and the CPU. A typical bus transfers information 
between any two devices connected to the bus by granting access 
through a priority network for bus control. 

System handbook: A document that provides a concise reference 
of all the major characteristics of the microcomputer system. 
The system handbook will contain operation codes, addressing 
modes, service status details, interfaces, timing diagrams, and 
data flow. 

Termination: The end of a program or program run. 
Text editing: An editing facility designed into a text-editing pro­

gram to allow the keyboard entry of text or copy without regard 
to the final format. Mter the copy has been placed in storage, it 
can be edited and justified by specifying the desired format. 

Tokenizing: The process of interpreting textual BASIC source 
code and converting it to the internal format used by the BASIC 
interpreter. 

Trace routine: A routine used to provide a time history of machine 
registers and controls during the execution of the object routine. 
A complete tracing routine can provide the status of all registers 
and locations affected by each instruction each time the instruc­
tion is executed. 

Track: A circle on a diskette used for magnetic storage of data. 
Each track has 18 sectors , each with 128 byte storage capability 
(single density) . There are a total of 40 tracks on each diskette. 

268 



Variable-Zone Bit 

Variable: A variable may be thought of as a box in which a value 
may be stored. Such values are typically numbers and strings. 

Visual display terminal: This is a device that permits inputs to a 
computer system through a keyboard or other manual terminal or 
input device such as a light pen, and whose primary output is 
visual through a CRT unit or other type of display . The terminals 
allow keyboarding, verification, editing, correction, and refor­
matting of material. 

Window: A portion of the TV display devoted to a specific purpose 
such as for graphics or text. 

Word processing: The preparation of printed material using au­
tomatic data processing equipment . 

Write-Protect: A method of preventing the disk drive from writing 
on a diskette. AT ARl diskettes are write-protected by covering a 
notch on the diskette cover with a small sticker . 

Zone Bit: A bit in a group of positions used to indicate a specific 
class of items or, in some cases, a bit used as a key to a code. 

269 



Index 
A 

Access time, 28 
Addition, binary, 31-35 
Addresses, 81 
Algebra, Boolean, 44-79 
Analog computers, 12 
AND (Boolean operation), 50, 51 
AND (Boolean term), 46, 47 
Arithmetic, computer, 17,31-43 
Arithmetic functions, 14, 15, 143, 144 
Arithmetic-logic unit, 16 
Assembly language programming, 

199, 200 
ATASCII character set, 229 

B 
BASIC, 81, 82, 107 
BASIC commands, 127-131 
BASIC language cartridge, 107 
BASIC programming statements, 

87-96 
BASIC reserved words, directory, 

220-225 
BCD code, 11 
Binary arithmetic, 31-43 
Binary coded decimal, 10 
Binary codes, 10 
Binary digit, 4 
Binary number codes, 198 
Binary numbers, 1 
Binary number system, 3, 4 
Bits, 3 
Boolean algebra applications to 

switching circuits, 49-58 
Boolean algebra laws, 56-59 
Boolean classes, 46, 47 
Boolean element, 46, 47 
Boolean equation mechanization 

59-79 
Boolean equation simplification, 59-79 
Boolean expressions, relational, 44, 

45 
Boolean operations, 44-79 
Boolean symbols, 47-49 
Bus, address, 27 
Bus, computer, 26, 27 
Bus, control, 27 
Bus, data, 27, 28 
Bus systems, 26, 27 

C 
Cartridges, program, 98, 99 
Cassette input {output, 140, 141 
Cassette recorder, 105, 106, 137 

270 

Cassette recorder, loading programs 
from the, 118 

Cassette recorder, saving programs 
on the, 116-118 

Cathode ray tube, 17 
Celsius-Fahrenheit temperature con­

version, 83-88 
Central processing unit, 16 
Checkbook balancer program, 161-

164 
Chip, 25, 26 
Chips, 12 
Clock, master, 28, 29 
Codes, 1 
Commands, graphic, 174-192 
Commands, input {output, 138-142 
Commands, sound, 192, 193 
Complements, Boolean, 53 
Computer blues program, 195 
Computer components, 97-106 
Computer elements, basic, 15-17 
Computers, analog, 12 
Computers, digital, 12, 15 
Computer structure, 15-17 
Continuing education, 205-219 
Control, 16, 17, 19,20 
Control characters, printed versions, 

238 
Controllers, 121, 122 
Conversions between number sys­

tems, BCD to decimal, 11 
Conversions between number sys­

tems, binary to decimal, 7 
Conversions between number sys­

tems, binary to hexadecimal, 9, 
10 

Conversions between number sys­
tems, binary to octal, 7 

Conversions between number sys­
tems, decimal to binary, 4-7 

Conversions between number sys­
tems, decimal to binary deci­
mals, 40-43 

Conversions between number sys­
tems, decimal to octal, 8 

Conversions between number sys­
tems, octal to decimal, 8 

CPU, 25 
Currency exchange program, 149-151 

D 
Data manipulation, 19-23 
Data storage, 20, 21 
Decimal number system, 1-3 



DeMorgan's Theorem. 76. 79 
Derived functions. 237 
Digital computers. 12. 15 
Direct memory access. 26 
Disk drives. 122-134. 137. 138 
Diskettes. 123 
Disk operating system (DOS). 124-

127 
Disk operations. 127-134 
Disk operations. BASIC commands 

used with. 127-131 
Disk utility package (DUP). 124. 125 
Division. binary. 39. 40 

E 
Edit features. 102-1 05 
Education. computer. 205-219 
Elements. interconnection. 18 
Error messages. BASIC. 131-134 
Exclusive OR. 56 

F 
File management subsystem (FMS). 

126, 127 
File names, 126 
Flowcharts, 84-86, 165-173 
Fractions, binary, 40-43 
Functions, arithmetic, 143, 144 
Functions, computer, 12, 13 
Functions, derived, 237 
Functions, secretarial, 13 
Functions, special purpose, 145, 146 
Functions, trigonometric. 144 

G 
Glossary, 242 
GraphiCS, 174-192. 
Graphics commands, 174-186 
Graphics modes, 174-177 
Graphics modes, color, 176, 177 
Graphics window, 177 
Greatest common divisor program, 

157-159 
Gun collector program, 159-161 

H 
Hardware. 15 
Hexadecimal numbers, 1 
Hexadecimal number system, 8-10 
Hexcode loader program, 200 
High-level language. 81 

IC, 25, 26 
ICs, dedicated, 26 
Input. 16 
Input/output commands, 138-142 
Input/output devices, 137, 138 

Inputs, computer, 15, 16 
Instructions, arithmetic-logic, 18 
Instructions, control, 18 
Instructions, data movement, 18 
Instructions, input /output, 18 
Integer, 2 
Instruction set, 18 
Integrated circuits, 25, 26 
Interconnection of computer ele-

ments,18 
Interface, RS-232, 138 
10CB (input/output control block), 

137 
I /0 operations, 135-142 

Joystick, 122 

K 
Keyboard, 99-105, 137 
Keyboard input/output, 141 
Keys, special, 99-105 

L 
Large-scale computers, 23, 24 
Laws of Boolean algebra, 56-59 
Learning to program, 108-116 
Lessons, correspondence, 208-219 
Light show program, 188 
Line numbers, 88, 89 

M 
Machine language, 198-204 
Margins, 175 
Master bus control, 27 
Master element, 27 
Mathematics, binary, 31-43 
Maxterms, Boolean, 47 
McGraw-Hili Continuing Education 

Center, 205 
Medium-scale computers, 24 
Memory, computer, 14, 16 
Memory locations, 239 
Memory map, 234-236 
Memory modules. 97. 120 
Memory saving techniques. 147, 148 
Metric conversion program, 151-156 
Microcomputer basics, 12 
Microcomputers, 24, 25 
Microcomputers, one chip, 26 
Microcomputer terms, 242 
Microprocessors, 23, 25, 26 
Minicomputers, 24 
Minterms, Boolean, 47 
Multiplication, binary, 37-39 
Multiply instruction, 18 

271 



N 
NAND (Boolean operation), 55 
National Technical Schools, 205, 207 
NOR (Boolean operation), 53-55 
NRI (correspondence school), 205 
Number systems, 1 . 
Number systems, binary, 3,4 
Number systems, decimal, 1-3 
Number systems, hexadecimal, 8-10 
Number systems, octal, 7, 8 
Number systems and codes, 1 

o 
Octal numbers, 1 
Octal number system, 7, 8 
OR (Boolean operation), 52 
OR (Boolean term), 47 
Output devices, 15 
Outputs, computer, 17 

p 
Paddle, 121, 122 
Pathways, bidirectional, 19 
Pathways, data, 19,23,26,27 
Peripherals, 97, 106, 119-134 
Printer, 137 
Printer input loutput, 141, 142 
Printers, 119, 120 
Program, checkbook balancer, 161-

164 
Program, computer blues, 195 
Program, currency exchange, 149-

151 
Program, greatest common divisor, 

157-159 
Program, gun collector, 159-161 
Program, hexcode loader, 200 
Program, light show, 188 
Program, metric conversion, 151-156 
Program, text modes character print, 

186 
Program, type a tune, 193 
Program, United States flag, 189 
Program, video graffiti, 190 
Programming, 80-96 
Programming, purposes for, 106 
Programming, simple steps in, 108-

116 
Programming in machine-language, 

198-204 
Programming objectives, 82 
Programming statements, BASIC, 87, 

90,96 
Programming steps, 82-88 
Program recorder, 105, 106, 137 
Programs, computer, 13, 15 
Programs, sample, 149-156 

272 

Pseudocode, 173 

R 
Radix, 1 
RAM, 30,107 
Random-access memory, 30 
Read command, 20, 21 
Read-only memory, 30 
Register, 20 
Registers, storage, 28 
ROM, 30, 98, 107 
RS-232 interface, 138 

S 
Saving programs on tape, 116-118 
Schools, correspondence, 205-208 
Screen editor, 138 
Screen output, 142 
Size, computer, 23-26 
Slave element, 27 
Software, 15, 17, 18 
Sound, 192-197 
Sound commands, 192, 193 
Special purpose functions, 145, 146 
Storage, computer, 17 
Storage types, kinds of, 30 
Subtraction, binary, 36, 37 
Symbology, Boolean, 47-49 

T 
Techniques, flowcharting, 165-173 
Temperature conversion program, 

83-88 
Text modes character print program, 

186 
Text window, 1n 
Transistors, 12 
Trigonometric functions, 144 
TV monitor, 138 
Type a tune program, 193 

U 
United States flag program, 189 
USR function, 198 

V 
Veitch diagrams, 61-76 
Venn diagrams, 47, 49-56 
Video graffiti program, 190 

W 
Write command, 20, 21 
Writing to storage, 27, 28 

X 
XOR (Boolean operation), 56 






	Cover

	Contents

	Preface

	Number Systems and Codes

	Microcomputer Basics

	Computer Arithmetic

	Boolean opearations

	Introduction
 to Programming 
	Introduction to the Atari 800

	Optional Peripherals and Software

	I/O Operations

	Mathematical and other Functions

	Programing to Save Memory

	More Programs

	Flowcharting Techniques 
	ATARI Graphics and Sound

	Programming in Machine Language

	Continuing Education

	Appendix

	BASIC Reserved Words

	Error Message

	ATASCII Character Set

	Memory Map

	Derived Functions

	Printed Versions of Control characters

	Memory Locations

	Computer 
Terms 

	Index


