Compufer Direct 312/382-5050

Programmer’s
Reference Guide for
the ATARI' 400 /800

Computers

David Heiserman

Programmer’s
Reference Guide
for the
ATARI 400 /800

Computers

David Heiserman

Howard W. Sams & Co., Inc.

4300 WEST 62ND ST. INDIANAPOLIS, INDIANA 46268 USA

Copyright © 1984 by David Heiserman

FIRST EDITION
FIRST PRINTING

All rights reserved. No part of this book shall be repro-
duced, stored in a retrieval system, or transmitted by any
means, electronic, mechanical, photocopying, record-
ing, or otherwise, without written permission from the
publisher. No patent liability is assumed with respect to
the use of the information contained herein. While
every precaution has been taken in the preparation of
this book, the publisher assumes no responsibility for
errors or omissions. Neither is any liability assumed for
damages resulting from the use of the information con-
tained herein.

International Standard Book Number: 0-672-22277-9
Library of Congress Catalog Card Number: 83-51616

Edited by Welborn Associates
lHlustrated by D.B. Clemons

ATARI®, 400™ and 800™ are trademarks of and used by
permission of Atari, Inc.

This book is published by Howard W. Sams & Co., Inc.
which is not affiliated with Atari, Inc. and Atari is not
responsible for any inaccuracies.

Printed in the United States of America.

Programmer’s Reference Guide
for the
ATARI® 400™/800™ Computers

David L. Heiserman has been a freelance writer
since 1968. He is the author of more than 100
magazine articles and 20 technical and scientific
books. He studied applied mathematics at Ohio
State University and is especially interested in the
history and philosophy of science. He is the
author of the Sams books Intermediate Program-
ming for the TRS-80 and Intermediate-Level
Apple Il Handbook.

Preface

The ATARI 400 and 800 Personal Computers are marvel-
ous machines. The graphics system is, I think, incompara-
ble; and it is no coincidence that the graphics in Chapters
4 and 5 occupy more space in this book than any other
single topic. The 1/0 system is unusually flexible, and
much of the material in this book deals with that part of
the system; particularly Chapter 6.

The ATARI 400/800 Operating System holds its own in
terms of quality and performance. And unlike some other
brands of personal computers, the operating system is
wide open for experimentation. Chapters 8 and 9 are
especially meaningful in this regard, because they map the
entire operating system and review the 6502 instruction
set. These chapters indicate addresses and relevant data in
both hexadecimal and decimal formats (the latter being
more appropriate for use with ATARI BASIC).

This book is organized by general topics so that the
reader can get access to certain information in the most
effective way. That sort of format is especially useful for
someone who is already familiar with the most common
ATARI Home Computer features, and wants to know
more about them. It is also a guide for users who are
accustomed to other personal computers, but want to
become familiar with the special features of the ATARI
system in the shortest possible time (see especially Chap-
ters 1, 2, and 3).

That is not to say that a beginner cannot learn anything
from this book—quite the contrary. The organization of
material in this book is most satisfactory for a beginner
who has a desire to experiment with new ideas and tech-
niques on a first-hand basis. Although such an individual
might not fully understand the finer points of some topics,
the mere effort guarantees a level of success that is often
difficult to achieve from simpler, step-by-step pre-
sentations.

I would like to acknowledge the invaluable assistance
offered by my personal secretary, Robin M. Yates. She
prepared many of the tables and drawings, proofread the
drafts, and assembled the final manuscript for us.

DAvib HeisSERMAN

Contents

CHAPTER 1

GettingStarted ... 13
SOME ATARI SYSTEM CONFIGURATIONSccoiiiinnnnnns 15
A Minimum Working System ... 15
Minimum System Plus Program Recorder 16
Minimum System Plus One Disk Drive 17

A Common Multiple-Peripheral System 18
SOME SPECIAL KEYBOARD OPERATIONScoovvviviinnnn, 19
Some Control Keyscoiiiiiiiiiiiiiiiiinnn, 20
SOME SCREEN EDITING FEATUREScooiiiiviiiiniinnann, 22
WORKING WITH THE PROGRAM RECORDER 23
Connecting the Program Recorder to the System 24
Saving and Loading Programs With the Program Recorder .. 24
ROUTINE DISK OPERATIONS ...ttt 26
Displaying the Current Disk Directory 26
Returningto BASIC 28
Copying Files to the Same Diskoooviiennnn. 28
Deleting Filesccooviiiiiiiiiiiiiii 30
Renaming Existing Filesccooviiiiiiiiiiiin, 31
Locking Files «.........ccooviviiiiiiiiiiiii 32
Unlocking Files ..., 32
Copying DOSFilescooiiiiiiiiiiiiiiiii i, 32
Formatting aDiskc.ccooviiiiiiiiiiiiiiiiii, 33
Duplicating an Entire Diskccooviiiiiiiii, 33
Getting MEM.SAVONtoa Diskcoooviviiiiiinnn, 35

An Alternative File-Copying Operation 35
The Machine-Language Optionsc.ccoovvviiiiinnnn 36

Saving and Loading Programs With the Disk Drives 36

CHAPTER 2

ATARI BASIC Notation, Rules, and Limitations 39
NUMERIC AND STRING CONSTANTSccooevviininnnnn, 39
Numeric Constantscoiiiiiiiiiininn.. .. 40
String CONStantso.oooiuiiiiniiiiiieeiaeiann... 42
BASIC VARIABLES AND VARIABLENAMES 44
Numeric Variables 45
String Variables 47
DIMENSIONING STRING VARIABLES AND NUMERIC
ARRAY S 48
DIMensioning String Variables 49
Subscripted Numeric Variables and Arrays 51
OPERATIONS AND OPERATORS ..., 55
Arithmetic Operatorscoooviiiiiieinonn.. 55
Relational Operatorsccccooiiiiiiiiiin.., 56
Logical Operatorsoooiiiiiiiiiiiii i, 62
Order of Precedence for Operators 64
CHAPTER 3
The BASIC Programming Language 67
A SUMMARY OF STATEMENTS, COMMANDS, AND
FUNCTIONS ..o e 68
A SUMMARY OF ATARI BASIC SYNTAX AND APPLICATIONS .. 73
CHAPTER 4
The Text and Graphics Screens 115
FEATURES COMMON TO ALL SCREEN MODES 115
MODE-O0GRAPHICS ...ttt e, 143
Organization of the Mode-0 Color Registers 144
Working With the Mode-0 Column/Row Format 145
Working With the Mode-0 Margins 147
Using the POSITION Statement 148
Alternative Column/Row Techniques 148
Using LOCATE, GET,and PUTinMode 0 149
The Mode-0 Screen RAM Format 150
MODE-1 AND MODE-2GRAPHICS ..., 152
Organization of the Mode-1 and Mode-2 Color
ReGISIEIS ...t 153
Accessing the Character Set From Modes 1and 2 154
Working With the Mode-1 and -2 Column/Row Format ... 155
Using the POSITION Statement 159
Alternate Column/Row Techniques 160
Using LOCATE, GET, and PUTin Modes 1and 2 165
The Mode-1and Mode-2 Screen RAM Formats 166
Full-Screen Formatsooiiiviieeiiiiiiiii i, 168

CUSTOM CHARACTERS SETS FOR MODES 0,1, AND 2 179

THE FOUR-COLOR MODES: 3,5, AND 7
Working With the Color Registers
Column/Row Screen Formats and Graphics Operations ...
The Screen RAM Address Formats and Operations

TWO-COLORMODES4and 6covueeeeannnaann i,
Working With the Color Registers for

Screen Modes4and 6ooiiiiiinl,
Column/Row Screen Formats and Operations for
Modesd4and 6ooooiiiiii i,

Screen RAM Formats and Operations for Modes 4and 6 ..
THE 2-COLOR MODE-8 SCREEN

......................

CHAPTER 5

Player/Missile Graphics
PLAYER AND MISSILE CONFIGURATIONS
Bit Maps for the Player Figures
Bit Maps for the Missile Figures
The Overall Player/Missile Bit Map

Setting the Starting Address of the Player/Missile
BitMap ...
Protecting the Player/Missile BitMap
ADJUSTING THE WIDTH OF THE PLAYER/MISSILE FIGURES ...
SETTING PLAYER/MISSILE COLORSc.covveeeennnnn.,

INITIATING AND TERMINATING PLAYER/MISSILE

GRAPHICS

PLAYER/PLAYFIELD PRIORITIES
COLLISION DETECTION

CHAPTER 6
More About 1I/O Operations
WORKING WITH THE PROGRAM RECORDER 1/0
ATASCII-Coded BASIC Program—LIST“C:”
and ENTER“C:”

Nonprogram Files—PUT and GET
WORKING WITH THEDISK DRIVEL/O ..o,

ATASCII-Coded BASIC Programs—LIST “D:”
and ENTER “D:”

Nonprogram Files—PUT and GET
SAVING, LOADING, AND RUNNING
BINARY FILES UNDERDOScoovveeeeeieiiiiinn .
Saving Binary Programsand Data
Loading and Running Binary Programs
OPENING AND CLOSING 10CB CHANNELS

USINGTHEXIOCOMMANDoiiiiiiiiiiiiiiiiia s
Controlling Outgoing Lines With XIO34
Configuring Baud Rate, Word Size, and Stop Bits

With XIO 36 ..ot

CHAPTER 7

A Miscellany of Principles and Procedures

MORE ABOUT THE SOUND FEATUREScoovvvviiennnn.
The SOUND Statementc..evvvvereinunreerersannnens
Reproducing Musical Scorescociiiiiiiiiiin.n.
Experimenting With Sound Effects

MORE ABOUT THE USR FUNCTIONcciiiiiiviinnennen
Passing Values to a Machine Routine
Passing Values from a Machine Language Routine

SCREEN DISPLAY LISTS ...ttt et eee e
The ANTIC Instruction Setcovviiiereernnnnnnnnnn.
Structure of a Display Listccoiiiiiiiiiinnen.
Locating the Display Listooiiiiiiiiiiant

A LOOKATTOKENIZED BASIC ..o iiiinennens

CHAPTER 8

The ATARIMemory Mapocooeeeiinn...

ZERO-PAGEAND STACKRAMottt
OPERATING SYSTEM AND BASICRAMc.civvvnvnnnnen
Operating System RAM: 512-1151cooiiiiennnn
BASIC System RAM: 1152-1535ovriviiirnnrneennennns
DOS RAM USAGE: 1792-10879c.oiiiiiaiiniiieannannns
BASIC ROM AREA: 40960-49151c.ovviiiiinnnnnnennnns
HARDWARE 170 ROM AREA: 53248-55295
The CTIA (or GTIA) DeViCe ...covvvvreriiirenreeinenncneenn.
The POKEY D@VICeoviiiiiriiiieiiiieiieinniannnennnns
The PIADeVICEccviiiiniiiiiiiriiii it eiiaeeannanans
THe ANTIC DeViCecooininiiiiiiiieiiiianrnenrnenennns
OPERATING SYSTEM ROM AREA: 55296-65535

CHAPTER 9

The 6502 Instruction Setcl.

APPENDIX A

Number-System Base Conversions

HEXADECIMAL-TO-DECIMAL CONVERSIONS
DECIMAL-TO-HEXADECIMAL CONVERSIONS
CONVENTIONAL DECIMAL TO 2-BYTE DECIMAL FORMAT ..

283
285

285
286

349

38
382
384

. 385

TWO-BYTE DECIMAL TO CONVENTIONAL

DECIMALFORMAT ... 387
BINARY-TO-DECIMAL CONVERSIONoovvvviiinneninnnns 387
BINARY-TO-HEXADECIMAL CONVERSIONovvvvvnnans 388
HEXADECIMAL-TO-BINARY CONVERSIONccovvnns. 390
DECIMAL-TO-BINARY CONVERSIONoovvvivinii . 390
A COMPLETE CONVERSION TABLE FOR DECIMAL 0-255 391

APPENDIX B
ATARI BASIC Reserved Words and Tokens 395
APPENDIX C
ATARI CharacterCodes 401
APPENDIX D
ATARI Keyboard Codes 425
APPENDIX E
Screen RAM Addressing Ranges for the
ATARIScreenModes 435
APPENDIX F
Derived Trigonometric Functions 469
APPENDIX G
ATARIErrorand Status Codes 471
APPENDIX H
ATARI 400/800 Hardware Details 479
INdeX ... 489

Chapter 1

Getting Started

The ATARI® 400™/800™ personal computer systems are
adaptable to a wide range of configurations and possible
operating schemes. The purpose of this opening chapter is
to introduce some of those features.

Figs. 1-1and 1-2 show the basic console units for models
400 and 800, respectively. One obvious difference between
them is the nature of the keyboard. The ATARI 400 Home
Computer uses a film, touch-sensitive keyboard, while the
800 model uses an ordinary mechanical-key mechanism.

Fig. 1-1. The ATARI 400 Home Computer console. (Courtesy Atari,
Inc.)

13

Fig. 1-2. The ATARI 800 Home Computer console. (Courtesy Atari,
Inc.)

There are a couple of less-obvious differences. For one,
the ATARI 800 Home Computer can accept two different
program cartridges, while the 400 can accept only one.

Fig. 1-3 shows the arrangement of jacks and switches
along the right-hand side of the ATARI 800 console unit.
The arrangement for the model 400 is similar, but does not
include the MONITOR jack. That simply means that the
400 must use an ordinary tv receiver as its display screen,
while the 800 offers the option of using a tv receiver or a
monitor.

POWER POWER

@ PERIPHERAL 2-CHAN-3 ON OFF
(OO ONONONO) —
Feceosy [EO| OO

MONITOR

Fig. 1-3. Connection panel for the Model 800. The Model 400 is
identical except for the lack of a MONITOR jack.

For the most practical purposes, however, the 400 and
800 models are identical, and they are treated as such
throughout this book.

Also, it will be assumed through this book that the
ATARI BASIC cartridge is installed. As far as the 400 model
is concerned, that means plugging it into the only slot that

14

is available for that purpose—under the hatch just above
the keyboard assembly. For the 800 unit, the BASIC car-
tridge must be installed in the left-hand cartridge slot.
(The discussions further assume that the 800’s right-hand
cartridge slot is unused.)

SOME ATARI SYSTEM CONFIGURATIONS

The individual components of an ATARI system must be
connected in certain ways if that overall system is to func-
tion properly. This section outlines several commonly
used systems.

A Minimum Working System

Fig. 1-4 illustrates the minimum working ATARI system: a
console unit and an ordinary tv receiver.

CONVENTIONAL

TV RECEIVER
VHF ANTENNA
TERMINALS
ANTENNA [Z2 S CONVENTIONAL TV
SWITCH F ANTENNA OR CABLE
L COMPOSITE
VIDEO

TO
120 VAC
OQUTLET

ATARI! 400/800
CONSOLE

Fig. 1-4. Diagram of the simplest ATARI Home Computer system.

15

The power-transformer assembly is plugged into an
ordinary 120 V ac outlet, and the smaller plug goes into
the POWER IN jack on the side of the console unit.

A cable and plug attached to the rear of the console
goes to the antenna terminals on a standard tv receiver. If
you plan to use the tv for viewing ordinary programming,
that antenna connection should be made through an
antenna switch that is provided with the basic unlt

To get this configuration into operation:

1. Turn on the tv set.

2. If you are using the antenna switch, set the switch to
its COMPUTER position.

3. Turn on the computer console, using the POWER
switch located on the left-hand side of the unit.

4. Set the CHAN switch on the side of the console for
either Channel 2 or 3, and match the tv channel
selector accordingly. Use the channel that can be
tuned for the lesser amount of outside interference.

When all is going well, the tv will show a blue back-
ground color, a lighter blue READY message, and a light-
blue square just below the message. At that time, the sys-
tem is ready to operate in ATAR| BASIC.

If you have an ATARI 800 system and wish to work with a
monitor unit instead of a tv receiver, the hardware arrange-
ment is somewhat simpler. You have no need for the
antenna switch nor the tv cable coming from the back of
the console. Simply run the monitor cable from the 5-slot
MONITOR jack on the side of the console to the video
and audio input terminals on the monitor. The CHAN
selector switch setting is not relevant at all.

Minimum System Plus Program Recorder

Fig. 1-5 shows the minimum system configuration as
extended to include the ATARI 410 program recorder.
Using the program recorder enables you to save programs
on the magnetic tape in a standard tape cassette, and then
reload those programs at some later time.

16

o™

CONVENTIONAL
TV RECEIVER
VHF ANTENNA
TERMINALS
ANTENNA g -2 CONVENTIONAL TV
SWITCH [G ANTENNA OR CABLE

COMPOSITE

/ VIDEO

power POWER
IN

UNIT
TO
120 VAC
OUTLET
ATARI 400/800
CONSOLE PERIPHERAL |
ATARI 410
PROGRAM
RECORDER

Fig. 1-5. Connection diagram for an ATARI Home Computer system
that is using the 410 program recorder.

Connect the program recorder to the PERIPHERAL jack
on the side of the console unit, using a cable assembly that
is provided for that purpose.

The start-up procedures are identical to those already
described for the minimum system.

Minimum System Plus One Disk Drive

A single ATARI 810 disk-drive unit is connected to the
console in the same way that the program recorder is—
directly to the PERIPHERAL jack. The start-up procedure
includes two additional steps, however.

First, when installing a disk-drive, make certain that the
slide switches on the back of the drive unit are set for
drive No. 1.

17

Turn on the tv receiver or monitor, and then insert a
diskette into the disk-drive unit. That diskette must be
properly formatted and include the DOS system pro-
gramming (the DOS system disk supplied with the disk
assembly will include that programming).

Next, turn on the disk-drive unit. Do not have the con-
sole unit turned on at this time. Only when the disk drive
stops running (the red light will go out) should you turn
on the console.

A Common Muitiple-Peripheral System

Fig. 1-6 illustrates one of the most common ATARI config-
urations: the basic console unit, a tv receiver or monitor, a
single disk-drive unit, a model 850 serial interface module,
and a printer.

The start-up sequence for such arrangements is quite
critical. In this particular case:

1. Turn on the tv set or monitor.

2. Insert a diskette containing the DOS system pro-
gramming into the disk-drive unit.

3. Turn on the disk-drive unit and wait for the drive to
stop running.

4. Turn on the 850 serial interface module.

5. Turn on the printer.

There are many other possible configurations that can
be far more complex that these—using multiple disk
drives, for instance. Consult the manuals that are supplied
with the peripherals for exact details.

Generally speaking, however, the turn-on procedure
follows the same general plan: turn on the tv or monitor,
boot DOS by turning on disk-drive 1, turn on the console,
turn on the interface module, and turn on peripherals that
are connected through the interface module.

18

CONVENTIONAL
TV RECEIVER

VHF ANTENNA
TERMINALS

.:_:},_____‘_ CONVENTIONAL TV
= ANTENNA OR CABLE

} comPosITE
VIDEO

CMP

POWER POWER
IN UNIT

TO
120 VAC
OUTLET

PERIPHERAL

ATARI 400/800
CONSOLE

ATARI
]) ot PRINTER
S
ATARI 810 ATARI 850

DISK DRIVE SERIAL

INTERFACE

Fig. 1-6. Connection diagram for an ATARI Home Computer system
that uses a single 810 disk drive, an 850 serial interface
module, and an ATARI Home Computer printer.

SOME SPECIAL KEYBOARD OPERATIONS

When an ATARI system is properly configured and initial-
ized, you should see a blue screen, BASIC’s READY
prompting message, and the cursor (the light blue square
under READY). That means that the system is ready for
commands from the keyboard.

19

Much of the material remaining in this book deals with
the nature of those BASIC commands. During the course
of working with those commands, however, it is often

necessary or desirable to execute some special keyboard
functions.

Some Control Keys

Most of the ATARI computer keyboard is identical to that
of a conventional typewriter. There are some special keys
and key functions that are generally irrelevant for ordinary
typing operations, but quite important for operating a
computer.

The key is perhaps the most-used control key.
You must strike the control key whenever you want the
computer to execute a command that you’ve given it in a
typewritten form. When you are ready to execute a BASIC
program, for example, you should type RUN on the key-
board, and then strike the key to get the comput-
er to read and execute the command. The special control-
key operations described in this section do not have to be
followed by a keystroke, however.

The two keys serve much the same function as
the shift keys on an ordinary typewriter. There are some
differences, though. For instance, when you turn on the
ATARI system, you find that all letters of the alphabet are
printed to the screen in an upper-case format. Depressing
a key while typing letters of the alphabet will cause
the system to print lower-case letters. That is just the
reverse of ordinary typewriters.

It is possible to change the format by striking the
key. Having done that, all letters of the
alphabet are normally printed in their lower-case form;
and you must hold down one of the keys in order
to print upper-case letters.

To return to normal upper-case printing, hold down
one of the keys and strike the key

again.

20

The key affects only the letters of the
alphabet. That is another feature that makes the computer
different from a typewriter. No matter what the
XX setting might be, striking the key will print a

3, and holding down a key while striking the
key will print a ““ to the screen.

As mentioned earlier, the screen shows light-blue char-
acters against a darker blue background. You can reverse
the situation by striking the ATARI logo key—the one
marked with the familiar ATARI symbol. Strike that key
again, and the colors return to normal.

The key, in effect, multiplies the number of key
functions that are available. Holding down the key
while striking another key often changes its function.
Throughout this book, a statement such as
means: hold down the key while striking the IEM
key.

The key is intended for programmers
who make typing errors. Hold down a key while
striking the key, and the computer de-
letes the entire line of text that is marked by the cursor.
Strike the key without holding down a
key, and the computer erases the character under
the cursor and moves it one column, or character loca-
tion, to the left.

The key will create a blank line for inserting
a new line of printed text—if you are holding down a
key at the time. Make that keystroke without hold-
ing down one of the keys, and the computer will
print the > symbol on the screen. To insert a single charac-
ter into a line of text, do a operation.

The same general idea applies to the key.
Hold down a key while striking the key,
and the computer will clear the screen and set the cursor

to its home position in the upper left-hand corner of the
screen,

21

The four arrow keys located near the right side of the
keyboard allow you to move the cursor to any desired
point on the screen. In order to use them, however, you
must be holding down the key at the same time.

The key serves the purpose of the tab
functions on an ordinary typewriter. Strike that key alone,
and the cursor will jump to its next horizontal tab location
on the screen. You can set new tab positions by first set-
ting the cursor to the desired tab position, and then strik-
ing the key while holding down one of the
keys. Finally, you can clear a current tab setting by
holding down both the key and one of the
keys while striking the key.

The key is used for stopping the execution of a
program.

The key, like the key, changes the normal
functions of other keys. Whereas you must hold down the
key while striking another key, you use the
key in sequence: first strike the key, release it, and
then strike another key. The special and
operations are described in later discussions in this book.

SOME SCREEN EDITING FEATURES

When working in BASIC, it is often necessary to change
some of the material printed in the program. The ATARI
system offers some program-editing features that make
the task much simpler.

The most important point to bear in mind is that the
ATARI screen is “live.” That is to say, what you see on the
screen is what is actually in program memory. So change
something on the screen, and you also change the pro-
gramming as well.

22

This leads to the notion of editing a program by first
listing the relevant portions of it on the screen, using the
KSEM-arrow keys to position the cursor, and then using
the insert/delete operations to change the text. Once you
have changed a line of programming, you strike the
key in order to enter that change into memory.

WORKING WITH THE PROGRAM RECORDER

The ATARI 410 program recorder offers the most econom-
ical means for saving and loading programs and other
kinds of data. When saving programs and data by means of
the program recorder, the ATARI system converts the
information into audio tones that can be easily recorded
on magnetic tape; specifically on the narrow tape in ordi-
nary audio cassettes. And when loading previously saved
information, the program recorder reproduces the audio
tones, and the system converts them back into meaningful
computer data for the system’s RAM.

It is possible, and certainly economically attractive, to
save more than one program on a single cassette. The only
problem is being able to find the segment of tape that
contains the desired program. For that reason, the ATARI
program recorder includes a numerical tape-counter
mechanism,

Whenever you are starting to work with a cassette, itis a
good idea to rewind it to the beginning and reset the tape
counter to zero. Then when you are ready to record a
program from the ATARI computer memory, note the
tape-counter reading before starting the recording opera-
tion. Write down that reading as well as a short, but mean-
ingful, description of the program. Then note the tape-
counter reading at the end of the recording session so that
you will know where to begin recording another program
on the same tape at some later time.

23

If you wish, you can listen to the audio tones during a
data recording or playback session. If you are using an
ordinary tv set as a screen monitor for the system, simply
turn up the volume control; or if you are using a monitor,
make sure that the audio plug is inserted into the moni-
tor’s audio input jack, and turn up the volume control on
that unit.

Connecting the Program Recorder to the System

Fig. 1-5 shows the arrangement of the system if you are
using no peripheral devices other than a tv or monitor and
the program recorder. The program recorder plugs di-
rectly into the peripheral connector on the side of the
ATARI console unit.

If the program recorder is used in conjunction with sev-
eral other peripheral devices, it must be connected to the
system through a serial interface module, and it must be
the last peripheral in line.

Saving and Loading Programs With the Program
Recorder

The most commonly used command for saving BASIC
programs on cassette is CSAVE; and getting a BASIC pro-
gram from tape and into the ATARI computer is by means
of the CLOAD command.

To save a BASIC program on the program recorder, first
use the FAST FORWARD and REVERSE keys on the pro-
gram recorder to find the end of any programming that
currently exists on the tape. Note the reading on the
recorder’s tape counter for future reference.

Set the recorder to its record mode by depressing both
the RECORD and PLAY levers; and immediately follow
that by entering the following command at the ATARI
console:

CSAVE

24

The recording session will require at least 30 seconds.
Turn up the volume on the tv set or monitor if you want to
listen to the steady whistle of the leader and the obnox-
ious sound of the data being transferred. Whether you
wish to listen to the sounds or not, you know that the
recording session is done when the BASIC prompt symbol
and READY message reappear on the screen. Turn off the
program recorder at that time.

You can load a BASIC program from cassette tape to the
ATARV’s program memory with the help of the CLOAD
command. You must, however, first cue the tape to the
beginning of the program you want to load.

Assuming that you have saved the reading from the tape
counter as suggested for the CSAVE routine, find that
location on the tape by entering the CLOAD command at
the console and, upon hearing two beeps from the con-
sole loudspeaker, cue the tape to the beginning of your
program.

Next, depress the PLAY lever on the program recorder
and strike any key on the ATARI console (except the
key)—that will begin the loading operation. You
can listen to the audio activity through the loudspeaker of
the tv or monitor unit; and if you do, you should hear a
rather long, steady leader tone, followed by a lot of whis-
tles and beeps that represent the data. The loading session
is done when the sounds end or, if you choose not to
listen to them, when the BASIC cursor and READY mes-
sage reappear on the screen.

As is the case with most program-recorder operations,
the system automatically selects IOCB Channel 7 for this
one. That channel must not be open for any other pur-
pose at the time you execute a CSAVE or CLOAD com-
mand. If you run into difficulties in this regard, try execut-
ing an LPRINT or CLOSE command before doing the
CSAVE or CLOAD.

See Chapter 6 for some alternative techniques and
commands for saving and loading all kinds of data.

25

ROUTINE DISK OPERATIONS

Fig. 1-6 shows a disk-drive unit connected to the ATARI
system. When using more than one disk drive, determine
the proper installation procedures from the user’s manual.
Assuming that DOS is properly booted as described earlier
in this chapter, typing DOS and striking the key
brings up the DOS menu—it is a convenient guide to run-
ning variety disk utility operations. See the two common
versions of the DOS menu in Chart 1-1.

Chart 1-1. Two Common Versions of the DOS Menu

DOS Version 1.0

A. DISK DIRECTORY l. FORMAT DISK

B. RUN CARTRIDGE J. DUPLICATE DISK
C. COPY FILE K. BINARY SAVE

D. DELETE FILE(S) L. BINARY LOAD

E. RENAME FILE M. RUN AT ADDRESS
F. LOCK FILE N. DEFINE DEVICE

G. UNLOCK FILE 0. DUPLICATE FILE
H. WRITE DOS FILE

DOS Version 2.0S

A. DISK DIRECTORY l. FORMAT DISK

B. RUN CARTRIDGE J. DUPLICATE DISK
C. COPY FILE K. BINARY SAVE

D. DELETE FILE(S) L. BINARY LOAD

E. RENAME FILE M. RUN AT ADDRESS
F. LOCK FILE N. CREATE MEM.SAVE
G. UNLOCK FILE 0. DUPLICATE FILE
H. WRITE DOS FILE

Displaying the Current Disk Directory

Execute the DOS command from the keyboard, and then
select menu option A. The system will respond by printing
this prompting message:

DIRECTORY—SEARCH SPEC, LIST FILE?

26

From there, you can see the complete listing of files on the
current disk by striking the key twice in succes-
sion or entering this response:

D1:

If you have more than one disk drive, you can see the
directory for drive number 2 by responding to the prompt-
ing message by entering this:

D2:

And if you have an ATARI printer connected to the
system and want to print a disk directory to it, modify your
response to this form:

D1.P

The directory includes the filenames and the number of
disk sectors each occupies. The directory concludes with a
message that indicates the number of unused sectors.

A single diskette can hold as many as 64 files in its direc-
tory, and that many filenames cannot fit onto the display
screen. It is possible to search and display the name of a
single file by modifying your response to the prompting
message to include the desired filename.

Suppose, for example, you want to know whether or
not a filename SILLY.FUN is on the current disk. When you
see the prompting message, respond by entering a:

D:SILLY.FUN

If, indeed, that file is present, the system will print the
name again, along with the number of sectors devoted to
it. If the file is not on the current disk, the system will
simply print the number of free sectors remaining on the
disk.

It is also possible to list just certain kinds of file names.
Perhaps you want to list only those files that end with the
extension .BAS. In that case, respond to the prompting
message with this sort of entry:

D:* BAS

27

In a manner of speaking, the asterisk tells the system to
work with any combination of letters and numerals in that
part of the file name.

By way of another example, suppose that you want to
see the directory of all file names that begin with the let-
ters ALT. This sort of response will do that for you:

D:ALT* *

Returning to BASIC

The all-around safest way to return to BASIC from the
DOS menu is to strike the key. Alterna-
tively, you can elect menu item B, but there is a chance
that you will lose some BASIC programming that is resi-
dent in the system.

Actually the purpose of DOS menu item B is to return
program control to the resident cartridge. If that happens
to be the BASIC cartridge, the system begins running in
BASIC. Or if it is a special language or game cartridge,
selecting menu item B begins execution of that program.

Copying Files to the Same Disk

DOS menu item C provides a means for copying files and
programs onto their own disk. This feature is most often
used for generating backup copies on the same diskette.
Perhaps you are planning to revise a program that already
exists on the disk. You want to save the original version,
but create a copy that you can modify. That is the primary
application of DOS menu selection C.

Upon entering that selection, you will see this prompt-
ing message:

COPY FILE—FROM,TQ?

28

The system is expecting you to enter two filenames separ-
ated by a comma. The first name is one that is to be copied
and already in the disk directory. The second name is the
name of its copy. The two names must be different; per-
haps different only in the extension, but nevertheless dif-
ferent (see the general rules for composing disk file names
described later in this chapter).

So if you want to copy a file that already has the name
BIGTIME and give that copy the name of BIGTIME.BAK,
this is the sort of response you should enter:

BIGTIME,BIGTIME.BAK

If you are using DOS version 2.0S and you have a BASIC
program resident in the ATARI system, you will see the
following kind of prompting message before the actual
copying operation takes place:

TYPE “Y" IF OK TO USE PROGRAM AREA
CAUTION: A 'Y INVALIDATES MEM.SAV

The idea here is that the copying procedure might de-
stroy any BASIC programming that is resident in the sys-
tem at the time. If you are willing to lose that program-
ming, then a “Y” response is appropriate. Otherwise, it is
better to respond with an “N’’ and save the resident pro-
gram on disk before attempting the copying routine
again.

If you are using more than one disk drive, menu option
C allows you to copy files from one disk to the other. In
this instance, you can use the same file name if you
choose, just making sure to indicate the source and desti-
nation drives in your response. For example:

COPY FILE—FROM,TO?
D1:BIGTIME,D2:BIGTIME

That will copy a file named BIGTIME from drive 1to drive 2.

29

You can also use global (or “wild-card”) file names
under the file-copying option. Suppose that you want to
transfer all of the SYS, or system, routines from drive 2 to
drive 1. The appropriate response to the prompting mes-
sage is:

D2:*SYS,D1:*.SYS

Or if you want to copy all files beginning with FUS to the
same disk, but add a BAK extension, the appropriate entry
is:

FUS*.* FUS*.BAK

Finally, there is the option of merging disk files—adding
the content of a source file to the end of an existing desti-
nation file. The only catch is that both files must have been
saved in an ATASCII format (see Chapter 6). The general
syntax of such an operation is:

source,dest/A

where source is the file name for the source file, and dest
is the file name of the destination file. The suffix /A is what
prevents the source file from completely writing over the
destination file.

Deleting Files

There is little point in cluttering valuable disk space with
files and programs that are no longer of any use. DOS
menu option D allows you to delete, or erase, any un-
wanted programs or files.

Upon selecting menu option D, the system displays this
prompting message:

DELETE FILE SPEC

You should respond by entering the name of the file to be
deleted. And if you enter a file name that exists on the
disk, the system will ask you whether or not you really
want to delete it:

TYPE "Y' TO DELETE . ..
30

If you change your mind about deleting the file, simply
respond by entering an N. Respond with a Y, and the
system will delete the file you named.

Use the asterisk option to cite global file names. The
extreme case is that of deleting all the files on a disk. To do
that, respond to the original prompting message by
entering:

* ¥

and enter a Y in response to the “are-you-sure” prompt-
ing message. Herein lies a certain problem: the system
brings up the “are-you-sure” message for every program
or file that it is about to delete. It can be quite trouble-
some to respond with a Y for each one to be deleted. The
way around that inconvenience is to append the *.*
response with /N. For example:

* */N

The /N overrides the “are-you-sure” prompting feature.

Renaming Existing Files

DOS menu option E gives you an opportunity to rename
an existing file. Elect that option, and you will see this sort
of prompting message on the screen:

RENAME—GIVE OLD NAME,NEW

The general idea is to respond by citing the old file
name followed by the revised name. If the old name does
not exist, or if that file is locked, the system returns an
error code. But you are in trouble if you inadvertently cite
a NEW name that is identical to one that already exists on
the disk. You end up with two different files having the
same name, and the system has no way of distinguishing
them.

31

Locking Files

DOS menu option F allows you to lock a file so that it
cannot be changed or renamed as long as the file remains
locked. Responding with that menu selection brings up
this prompting message:

WHAT FILE TO LOCK?

Simply respond by entering the name of the file—one that
already exists in the directory.

You can use the global option to lock all files having a
specified name or extension in common. It is a good idea,
for example, to lock all SYS files so that they cannot be
inadvertently changed, erased, or renamed. Do that by
responding with:

*.8YS

Unlocking Files

There are instances where it is necessary to unlock a pre-
viously locked file; perhaps to modify it or erase it alto-
gether. DOS menu option G offers this feature. Selecting
that option brings up this sort of prompting message:

WHAT FILE TO UNLOCK?

Simply respond with the name of the file to be unlocked,
and the computer will take care of the task for you.

Copying DOS files

A finished disk of BASIC programs ought to contain the
system files that boot DOS for you. That circumvents the
troublesome need to boot DOS with a special systems disk
and then replacing it with your working BASIC disk. Elect-
ing DOS menu item H does that for you. The mechanical
procedures are different for DOS 1.0 and 2.0S.

If you are using version 1.0, the system prints this
prompting message:

TYPE Y TO WRITE NEW DOS FILE

32

Insert a properly formatted disk into drive number 1, and
respond by entering a Y. That will copy the DOS.SYS pro-
gram to the disk.

If you are running under DOS version 2.0S, the system
prints this prompting message:

DRIVE TO WRITE FILES TO?

Insert a properly formatted disk into one of the disk-drive
units, and respond with the drive number. The system
brings up a TYPE “Y” TO WRITE prompting message; and
if you respond with Y, it copies DOS.SYS and DUP.SYS to
the designated disk.

Formatting a Disk

DOS menu item | is the one that formats a new disk for
you. Every disk must be formatted before it can be of any
practical use. Upon entering that option, the system
responds with this sort of prompting message:

WHICH DRIVE TO FORMAT

Insert the disk to be formatted into one of the disk-drive
units, and respond to the prompting message with the
disk-drive number. The system will then display a TYPE
“Y” TO FORMAT message to confirm that everything is
set up properly. If that is the case, enter a Y, and the
system will format the disk for you.

Duplicating an Entire Disk

DOS menu selection C allows you to copy disk files and
programs one at a time. Menu selection | copies an entire
disk. Selecting DOS menu item C brings up this prompting
message:

DUP DISK—SOURCE,DEST DRIVES?

33

The general idea is to respond with the disk-drive number
of the disk to be copied (the source disk), a comma and
the disk-drive number of the new copy (the destination
disk). The appropriate response and operations from that
point are slightly different, depending on whether you
have one or two disk drives available.

If you have just one disk drive available, you must
respond to the prompting message by entering 1,1. That,
in effect, says that the source and destination disks will
both be in drive 1. Obviously you cannot fit two disks into
the same drive unit, so the system will respond with this
message:

INSERT SOURCE DISK, TYPE RETURN

Insert the disk to be copied and strike the key.
The system will load up the ATARI RAM with disk data;
and when it is full, you will see this message:

INSERT DESTINATION DISK, TYPE RETURN

Respond by replacing the source disk with a clean and
formatted disk, and striking the key. The system
will then load the most recent blocks of data to that disk.

When using a single disk drive in this fashion, it is often
necessary to alternate the source and destination disks
several times. This swapping operation will come to an
end only after the entire contents of the source disk is
copied to the destination disk.

Things are a lot simpler for the operator when two disk
drives are available. Electing the disk copy operation, as
before, brings up this prompting message:

DUP DISK—SOURCE,DEST DRIVES?

Respond by entering two different disk-drive numbers:
the source followed by the destination. Suppose that you
want to copy the content of the disk in drive 1 to a fresh
disk in drive 2. That being the case, the appropriate
response to that prompting message is:

1,2

34

After making that response, the system will print:

INSERT BOTH DISKETTES, TYPE RETURN

The computer then takes over the copying task com-
pletely. Usually you will find the disk drives running
alternately through several cycles.

Getting MEM.SAV Onto a Disk

When you are working under DOS version 2.0S, electing
menu item N will cause the system to generate the
MEM.SAY file onto the disk in drive number 1. (Although
the DOS version 1.0 lists an operation for menu item N, it
is not functional.)

Most of the DOS menu operations use generous por-
tions of the RAM area. That is not a problem if you have
no vital programming in RAM at the time, But if you want
to preserve a resident BASIC program you either have to
save that program on disk before beginning DOS menu
operations (the only option available under DOS version
1.0) or including the MEM.SAV routine on the current
disk.

If MEM.SAV is on the current disk, the system will
automatically use it to save portions of RAM-based pro-
gramming that might otherwise be lost. Then when you
leave the DOS menu operations, MEM.SAVE returns the
original programming to RAM,

An Alternative File-Copying Operation

Menu item O is most useful when it is necessary to copy a
file from one disk to another when you have just one disk
drive unit. Menu item C lets you copy from one disk drive
to another, or on the same disk if the file names are some-
how different; but that selection cannot copy the same
file name on two different disks that are alternately
inserted into the same drive unit.

35

Upon selecting DOS menu item O, the system prints
this prompting message:

NAME OF FILE TO MOVE?

Respond with the file name of the file to be copied. Hav-
ing done that, the system will prompt you to insert the
source disk and strike the key. After that, it
prompts you to replace the source disk with the destina-
tion disk—and strike the IGERINEIM key. If the file is a fairly
long one, you will have to switch the source and destina-
tion disks several times.

The Machine-Language Options

DOS menuitems K, L, and M deal with machine-language

program operations. Chapter 6 describes these operations
in detail.

Saving and Loading Programs With the Disk Drives

Starting with a properly formatted diskette, simply insert
the diskette into a drive unit and enter a command of this
general form:

SAVE “'Din] :filenamel.ext]

That command includes a couple of optional expressions
that are included in brackets. Expression n is necessary
only when (1) using more than one disk drive and (2) you
want to save the program on a drive other than drive No.
1. The filename is not optional, and it must follow these
general rules:

1. It must be composed of nothing but numerals and
capital letters.

2. It must be no more than eight characters long.

3. It must begin with a letter of the alphabet.

36

The file name extension ext is optional. It can be com-
posed of no more than three characters, but they can be
all numerals, all upper-case letters, or any combination of
the two. The extension is separated from the file name
with a period.

Normally, the extensions are used for specifying the
type of file being saved. The following list suggests some
commonly used file extensions and their meaning.

.ASM—an assembly language source file
.BAS—a BASIC program

.BAK—a backup file

.DAT—a DATA file

.LST—an ATASClI-coded program file
.OBJ—an object-code file

.SCH or TMP—a “scratch,” or temporary file
.TXT—a text file

Avoid using the SYS file extension, however, because
the ATARI operating system uses that one for much of its
own internal programming.

Executing the SAVE command will cause the disk drive
to run and the upper red lamp to turn on. The routine is
complete when the disk drive stops running and the
uppermost lamp goes off.

You can load a tokenized BASIC program from the disk
system by using a LOAD command of this form:

LOAD‘D[n):filenamel.ext}’

where n is the optional disk-drive number, filename is the
name of the file to be loaded, and ext is the optional
extension.

Assuming that the designated file exists on the current
diskette, executing the LOAD command will cause the
disk system to run until the program is completely loaded.

LOAD used IOCB Channel 7. If Channel 7 is already
open for some other purpose when you execute a LOAD
“D: command, DOS will automatically close and reopen
Channel 7 for disk 1/0 operations.

37

Chapter 2

ATARI BASIC Notation, Rules,
and Limitations

Most people begin familiarizing themselves with the
ATARI 400/800 systems through the BASIC programming
language, so this chapter introduces some of the funda-
mental concepts of that language. Although it is assumed
that you are running the system with the ATARI BASIC
COMPUTING LANGUAGE cartridge (CXL4002) connected
into the single cartridge slot (Model 400) or the left-
cartridge slot (Model 800), many of the principles apply
equally well to BASIC for other computers.

NUMERIC AND STRING CONSTANTS

In terms of BASIC programming, a constant is a specific
value; and as described in the following sections, con-
stants can be classified as either numeric constants or
string constants. Knowing how to work with numeric and
string constants can eliminate a lot of undesirable and
puzzling programming effects.

39

Numeric Constants

A numeric constant is some fixed numerical value. Here
are a few numeric constants that are expressed in rather
familiar forms:

23 —212 1.6888 9.9999 1432000

Numeric constants can be very small or very large
numbers, they can be positive or negative, and they can
be whole numbers or numbers having decimal parts. Just
ordinary number values—that is all numeric constants are.

There are a few special rules, limitations and forms of
notation that apply to numeric constants in BASIC. For
one, large numbers must not use commas in the conven-
tional fashion; in fact they must not use commas at all. So
if you wish to express a value of one million in BASIC, you
must enter it as 1000000, and not as 1,000,000.

In keeping with the usual arithmetic convention, neg-
ative-valued numeric constants are preceded by a minus
sign, while positive values can be expressed with a plus
sign or no sign at all. If you enter a PRINT —128 command,
for example, ATARI BASIC will respond by printing —128
on the screen. But if you enter a PRINT +128 command,
BASIC will exercise the no-sign option and print 128.

ATARI BASIC uses a number format called floating-
point notation. Among other things, that means it ex-
presses very large and very small values in terms of
powers-of-10, or scientific notation. Very large numbers,
in this context, are positive or negative numbers having
more than nine digits to the left of the decimal point; and
very small numbers are those between —0.01 and 0.01.

To see how ATARI BASIC handles very large values,
enter this command:

PRINT 12345678901

and you will see this response:
1.2345678901E+10

40

The PRINT statement specifies a positive constant that has
more than nine significant digits, and BASIC responds by
converting the value to a form of scientific notation. The E
+ 10 in that response represents x10'°—ten to the tenth
power.

The same general idea applies to small numeric values.
Enter this command:

PRINT 0.00012345

and ATARI BASIC will show this version:
1.2345E — 04

That value in the PRINT statement is less than 0.01, so
ATARI BASIC automatically converts it to scientific nota-
tion, where E — 04 means 10°™*.

There are some limitations on the range of numeric
values that can be expressed in ATARI BASIC, even when
using scientific notation; and that range is:

—9.99999999E + 97 through 9.99999999E + 97

Furthermore, there is a range of values that is very close to
zero wherein a value will be automatically set to zero. That
range is:

—9.99999999E — 98 through 9.99999999E — 98

Finally, there are not only limitations on the values of
numeric constants, but also on the number of significant
nonzero digits—nine of them. ATARI BASIC allows only
nine significant digits that are not zero; it accepts numbers
having more than nine significant digits, but it sets all dig-
its beyond the nine to zero.

The constant 123456789123456789, for example, has 18
significant digits, but ATARI BASIC will deal with it as
123456789000000000. There are still 18 significant digits, but
only the first nine have nonzero values. And as described
earlier, it will convert such values to scientific notation:
1.23456789E + 17.

41

The same principle applies to fractional numbers. A
constant such as 0.00123456789123456789 has 20 significant
digits to the right of the decimal point. Eighteen of them
are nonzero digits, so ATARI BASIC will treat the number
as 0.00123456789 and display it as 1.23456789E-03.

Summarizing the limitations and conventions required
for numeric constants in ATARI BASIC:

® Large numeric values must not include commas.

® A negative sign (—) must precede a negative-valued
constant, but a plus sign (+) is optional for positive-
valued constants (ATARI BASIC will always print posi-
tive values without the plus sign).

® ATARI BASIC uses scientific notation for expressing
very large and very small numeric constants.

® ATARI BASIC will deal with only nine nonzero signif-
icant digits; any beyond that number will be set to
zero.

String Constants

Whereas numeric constants must be composed of mean-
ingful numeric values, string constants can be constructed
of any combination of letters, punctuation marks, special
symbols and numerals. What’s more, string constants usu-
ally must be enclosed in quotation marks.

The following BASIC statement prints a string constant,
HELLO:

PRINT “HELLO"

The string constant in that instance is composed entirely
of upper-case letters of the alphabet and, as is usually the
case, the constant is enclosed in quotation marks. When
you execute that PRINT command, however, you will see
ATARI BASIC printing HELLO without the quotes.

As implied earlier, a string constant can be built from all |
sorts of letters and punctuation. For example:

PRINT "‘Hello, there, you silly goose!”

42

The string constant in that case includes both upper- and
lower-case letters as well as some spaces and punctuation
marks. The only punctuation that doesn’t work is the quo-
tation mark, itself; it is used to mark the beginning and
end of a string constant, and, therefore, cannot appear
within the string, itself. Most programmers cope with that
little difficulty by using apostrophes where quotes would
normally appear within a string.

Numerals that are included in a string constant- are
treated as literal characters rather than numeric values.
You can prove that point with a simple demonstration.
First, treat the expression 1 + 2 as a string constant. In
other words, execute this statement:

PRINT "“1+2"

The fact that you have enclosed the expression within
quotation marks means that the computer will interpret
the numerals as part of a string, and it will respond by
printing out a literal version of your string:

1+2
Next, execute this command:
PRINT 1+2

Omitting the quotation marks suggests that the numerals
are to be treated as numeric constants, and the computer
responds to that fact by printing the result of the summa-
tion operation:

3

The only limitation on the length of a string constant
(the number of characters included in it) is the amount of
available computer memory; however, it is a good prac-
tice to make a habit of dealing with 130 characters or less.
The reason for that limit, incidentally, is that it is the size of
the INPUT string buffer.

43

NOTE: There is a special string constant that contains no
characters whatsoever. It is defined by a pair of successive

Izezs

quotation marks, “”, and is called the null string.

Summarizing the rules and limitations for expressing
string constants:

® In most instances, string constants must be enclosed
in quotation marks. (The special exceptions will be
described in later discussions.)

® String constants may be composed of any characters
except a quotation mark.

® Numerals appearing within a string constant are
treated as literal characters rather than numeric
values.

® The recommended maximum length of a string con-
stant is 130 characters.

BASIC VARIABLES AND VARIABLE NAMES

Most arithmetic and control operations in BASIC make
reference to variables and, particularly, variable names. A
variable is an expression that can take on a wide variety of
different values—values that are assigned to variables
through the normal execution of a program. A variable
name is a set of one or more alphanumeric characters that
you, the programmer, devise yourself according to a few
simple rules.

NOTE: ATARI BASIC allows up to 128 different variables to
be used through the execution of a program.

BASIC uses two kinds of variables: numeric variables
and string variables. The following discussions point out
their differences.

44

Numeric Variables

Numeric variables and numeric variable names refer to
numbers or quantities. They are used in much the same

way that variables are used in ordinary algebra, This 2-line

program illustrates the use of a particular numeric
variable:

10 AX=200
20 PRINT AX

Line 10 assigns a numeric constant, 200, to a numeric vari-
able that has the name AX. Line 20 then prints the value
that is currently assigned to variable AX—a value of 200 in
this case. You could get the same overall result by
executing:

PRINT 200

but that limits the operation to printing a single value. The
advantage of using variables is that you can get this pro-
gram to print some other number by assigning a different
constant to AX in line 10. There is no need to adjust the
PRINT statement in line 20, because that statement refers
to the variable name in a general way and makes no spe-
cific reference to the constant value that is assigned at an
earlier time.

A BASIC programmer has a great deal of latitude, and
only a few rules to follow, when making up numeric vari-
able names:

1. A numeric variable name is composed of upper-case
letters of the alphabet and numerals 0 through 9;
punctuation, including spaces and periods, is not
allowed.

2. There has to be at least one valid character in a
numeric variable name, of course, but the maximum
number of characters is limited only by the ability to
fit the name into the lines of BASIC programming
that use it. (Generally, it is good practice to use shor-
ter variable names, and yet make them long enough
to be meaningful.)

45

3. Numeric variable names should not include the
words shown in the Reserved Word List, Chart 2-1.
(Although ATARI BASIC will usually accept variable
names from the Reserved Word List, there are many
instances where such names will cause an Error-
interrupt during the execution of a program.)

Chart 2-1. ATARI BASIC Reserved Words List

ABS IF RESTORE
ADR INPUT RETURN
AND INT RND
ASC LEN RUN
ATN LET SAVE
BYE LIST SETCOLOR
CLOAD LOAD SGN
CHRs LOCATE SIN
CLOG LOG SOUND
CLOSE LPRINT SQR
CLR NEW STATUS
COLOR NEXT STEP
COM NOT STICK
CONT NOTE STRIG
Cos ON STOP
CSAVE OPEN STR$
DATA OR THEN
DEG PADDLE TO

DIM PEEK TRAP
DOS PLOT USR
DRAWTO POINT VAL
END POKE X0
ENTER POP

EXP POSITION

FOR PRINT

FRE PTRIG

GET PUT

Gosus RAD

GOTO READ

GRAPHICS REM

NOTE: These words should not be used as variable names, nor should
they appear within variable names. It is possible to break that rule in
many instances, but a wise programmer will avoid the risks involved.

Here are some examples of valid numeric variable
names:

TRY AXIS MODELT NAMESFROMTABLE100

46

And here are some invalid numeric variable names:

try (uses lower-case words)
1TRY (begins with a numeral)
DARLING.SET (includes punctuation)
AND (uses a reserved word)

String Variables

String variables and string variable names refer mainly to
literal expressions, but they can also refer to combinations
of special control operations and graphics symbols. This
3-line program illustrates the use of a particular string
variable:

5 DIM AX$(10)
10 AX$="HELLO"
20 PRINT AX$

Line 5 dimensions a string variable, AX$, for 10 characters,
and then line 10 assigns a string constant, HELLO, to that
variable. Line 20 prints the constant that is currently
assigned to variable AX$—HELLO in this case. You could
get the same result on the screen by executing:

PRINT “HELLO"

but that limits the operation to printing a single string
constant. The advantage of using string variables is that
you can get this program to print some other string by
assigning a different constant to AX$in line 10. There is no
need to adjust the PRINT statement in line 20, because
that statement refers to the variable name instead of a
specific string constant that is assigned at an earlier time.

As with numeric variable names, a BASIC programmer
has a great deal of latitude, and only a few rules to follow,
when making up string variable names:

1. Every string variable name must end with a dollar-
sign ($) symbol.

2. A string variable name is composed of upper-case
letters of the alphabet and numerals 0 through 9.

47

3. There has to be at least one valid character and a
dollar sign in a string variable name, but the maxi-
mum number of characters is limited only by the abil-
ity to fit the name into the lines of BASIC program-
ming that use it.

4. String variable names should not include the words
shown on the Reserved Word List, Chart 2-1. (Like
some numeric variable names, ATARI BASIC will
often accept variable names from the Reserved Word
List, even when appended with a dollar-sign symbol;
but the risk of causing an Error-interrupt during the
execution of a program makes it unwise to use such
names.)

Here are some examples of valid string variable names:

TRY$ AXIS$ MODEL1S NAMESFROMTABLE10$

And here are some invalid string variable names:

try$ (uses lower-case letters)
1TRYS (begins with a numeral)
DARLING.SETS$ (includes punctuation)
MIXSMONEY$ (includes $ as punctuation)
CHRs (uses a reserved word)
SALT (does not end with $)

NOTE: All string variables must be DIMensioned before
they are used in a program. See DIMENSIONING String
Variables and Numeric Arrays.

DIMENSIONING STRING VARIABLES
AND NUMERIC ARRAYS

BASIC’s DIM statement is always important for setting the
DIMension of numeric and string variables. It is especially
important in ATARI BASIC because it is required for estab-
lishing the maximum length of constants that are assigned
to every string variable in the program. The DIM state-
ment also sets up subscripted numeric variables and mul-
tidimensional numeric arrays. In spite of appearances to

48

the contrary, however, ATARI BASIC does not support
subscripted string variables nor string arrays.

DIMensioning String Variables

Every string variable that is used in an ATARI BASIC pro-
gram must be dimensioned with respect to the maximum
number of characters they are to contain. The dimension-
ing operation must occur prior to using the string varia-
bles, and it should occur just one time through the execu-
tion of the program.

Suppose that you anticipate using a string variable PY$in
a program, and you think that any constants assigned to it
will contain no more than 10 characters. The appropriate
dimensioning statement is:

DIM PY${10)

Because the dimensioning statements must occur prior
to any reference to the corresponding string variables,
most programmers make it a habit of placing the DIM
statements very early in the program—often in one of the
very first lines. So it isn’t at all unusual to see the first
operational line in an ATARI BASIC program looking
something like this:

10 DIM AS(1), XE$(20), F$(6)

Having done that, string variable A$ will work with 1
character, XE$ will work with up to 20 characters, and F$
will work with as many as 6 characters.

The program will work, even if it happens that a dimen-
sioned string variable picks up more characters than is set
aside for it. In such cases, the computer simply truncates,
or cuts off, the string after the dimensioned number of
characters has been reached. The following program illus-
trates that point:

10 DIM NAS$(b)
20 NAS="SOMETIMES"
30 PRINT NAS

49

Line 10 dimensions string variable NA$ for a maximum
of 5 characters, but line 20 assigns a string constant that has
9 characters in it. When line 30 prints the current string
constant that is thus assigned to NAS$, it will show only the
first 5 characters: SOMET.

In actual practice, it is often inconvenient, and some-
times impossible, to determine the maximum number of
characters that will ever be assigned to a given string vari-
able. The temptation in such instances is to go overboard,
and dimension the variable at some large figure; say, DIM
X$(200). That should be avoided wherever possible, how-
ever, because the dimensioning operation reserves
memory space for the string characters; and using need-
lessly large dimensioning values uses up memory that
might be put to better use.

Incidentally, a CLR statement within a program clears all
previous dimensioning specifications. That can, in effect,
make it possible to redimension a string variable during
the course of a program. But CLR makes it necessary to
redimension all string variables to be used and sets the
DATA pointer to the first item in the lowest-numbered
data list. In other words, the notion of using a CLR state-
ment to redimension a variable during the execution of a
program is of questionable value.

Summarizing the procedures for dimensioning string
variables:

® All string variables must be dimensioned with regard
to the maximum number of characters they can
handle.

® String variables must be dimensioned prior to using
them, generally in one of the first lines of pro-
gramming.

® String variables cannot be dimensioned more than
one time during the execution of a program unless a
CLR statement is first used to zero-dimension all pre-
viously dimensioned variables.

50

® Assigning a string constant that has more characters
than is specified by the corresponding DIM state-
ment simply truncates the string.

Subscripted Numeric Variables and Arrays

The DIM statement in ATARI BASIC serves two entirely
different purposes for string and numeric variables. As
described in the previous section, every string variable
cited in a program must be DIMensioned according to the
maximum number of characters expected for its string-
constant assignments. Numeric variables, on the other
hand, do not have to be dimensioned unless they are to
be used as subscripted or multidimensional array varia-
bles. Whereas this simple string routine will not run with-
out the benefit of the DIM statement in line 10:

10 DIM As$(1)
20 As="G”"
30 PRINT AS

the following numeric program runs quite well without
any prior dimensioning of variable N:

10 FOR N=0TO 100
20 PRINT N;
30 NEXTN

Subscripted numeric variables or arrays must be dimen-
sioned prior to using them, however.

Generally speaking, subscripted numeric variables serve
the same purpose as their counterparts in conventional
algebraic notation. A mathematics or physics textbook, for
example, might show some subscripted variables this way:

Y =%x1+x2+x3+ X4

51

The idea is to indicate the sum of four different numeric
variables that are closely related, but are able to take on
different numeric-constant values. Because BASIC does
not use subscripted characters, it is necessary to indicate
those characters within parentheses. Here is the BASIC
form of the “textbook” equation just cited:

Y=X(1)+X(2)+X(3)+X(4)

A program cannot refer to such subscripted numeric
variables in ATARI BASIC without first dimensioning them
with regard to the largest-value subscript you intend to
use. So before it is possible to execute that BASIC state-
ment, the program must include a DIM X(4) statement.

The general form of a subscript dimensioning statement
is:

DIMnumvar(d)

where numvar is any valid numeric variable name, and d is
the largest subscript index to be used. Thus a typical line
of programming for dimensioning several subscripted
numeric variables might look like this:

10 DIM X(3), FE(20), YY(9)

That one will dimension subscripted variable X for four
variables—X(0) through X(3). By the same token, it dimen-
sions FE for subscripted variables FE(0) through FE(20), and
YY for YY(0) through YY(9).

The following program prompts you to enter four dif-
ferent numbers. After that, it displays the four numbers,
their sum, and their average. In this particular case, the
numeric values are assigned to subscripted variables N(0)
through N(3) by means of INPUT and assignment state-
ments within a FOR . . . NEXT loop.

It can be very helpful to realize that the execution of a
RUN command automatically sets any subscripted
numeric values to zero. That eliminates the need for zero-
ing them as one of the first steps in a program.

52

10 DIM N (3)

20 FORE=0TO 3

30 PRINT “ENTER A NUMBER ",
40 INPUT X:N(E)=X

50 NEXTE

60 PRINT:PRINT

70 FORE=0TO 3

80 PRINT N(E),:S=S+N(E)
90 NEXTE

100 PRINT “"SUM=";S
110 PRINT “AVE=";S/4

A numeric array is an extension of subscripted variables.
Instead of using just one subscripted index numeral,
numeric arrays use two or more of them. The traditional
foundation for arrays in BASIC are the matrices of modern
algebra.

A 3 X 3 algebraic matrix is often organized this way in
math-oriented books:

ai1di,24d1,3
dz2,1d224d23
da314d324d33

The two subscripted numerals that are separated by a
comma indicate the row, column locations. So variable a3
indicates the third element in the second row.

Such elements are expressed in BASIC by including the
index terms—also separated by a comma—within a set of
parentheses. For example:

ALY A(L2) A(1,3)
A(2,1) A(22) A(23)
A(3, 1) A(32) A(33)

53

Those are examples of a 2-dimensional array for variable
A; and that variable would have to dimensioned as DIM
A(3,3). The dimensioning operation for an array must indi-
cate the largest value that is to appear in the corre-
sponding element locations. A statement such as:

DIM XE(10,5)

would set aside space for 66 different array values for
variable—row indices 0 through 10, and column indices 0
through 5.

The maximum size of an array is limited only by the
amount of available RAM, but ATARI BASIC does not
allow arrays of more than 2 dimensions.

It is particularly important to realize that executing a
RUN command in ATARI BASIC does not automatically
set all elements in an array to zero. It does so for simple
numeric variables and subscripted numeric variables (1-
dimensional arrays); but not for 2-dimensional arrays. So
arrays not only have to be dimensioned early in the pro-
gramming, but they must be initialized as well.

Suppose that a program is using a 2-dimensional array
for variable G, where the row elements range from 0
through 4, and the column elements range from 0 through
8. A suitable initialization routine looks like this:

10 DIM G(4,8)

20 FORX=0TO 4FORY=0TO 8
30 G(X.Y)}=0

40 NEXT Y:NEXT X

The DIM statement in line 10 dimensions the array. The
remainder of the routine then uses nested FOR . .. NEXT
loops to set all elements of the array (45 of them) to zero.
Of course there has to be additional programming in
order to make the operation meaningful, but at least this
gets matters under control at the outset.

54

OPERATIONS AND OPERATORS

Much of the computing and control activity of a computer
are determined by the nature of operators that are written
into the programs. There are just three families of opera-
tors: arithmetic, relational, and logical operators. This sec-
tion describes and compares those three families.

Arithmetic Operators

Most people who are attempting to learn something
about computer programming are well aware of the.
application of arithmetic operators—special, well-defined
symbols that indicate a mathematical operation that is to
take place between two numeric constants or variables.
Table 2-1 lists the arithmetic operators that apply under
ATARI BASIC and, indeed, most other versions of BASIC.

Table 2-1. BASIC's Arithmetic Operators

Operator Function

+ addition {sum)
subtraction (difference)
multiplication (product)
division {quotient)
exponentiation (power)
negation (change of sign)

(I NG |

It is easy to check out the function of these operators by
entering some simple commands that use them. The com-
puter, in effect, works like a calculator.

PRINT 2 + 3 will show the sum, 5, on the screen.

PRINT 2 — 3 will show the difference, —1, on the screen.
PRINT 2*3 will show the product, 6, on the screen.
PRINT 3/2 will show the quotient, 1.5, on the screen.
PRINT 3"2 will evaluate 3* and show 9 on the screen.
PRINT 2°3 will evaluate 2* and show 8 on the screen.

X = 2:PRINT —X will negate the value originally assigned
to variable X, and show —2 on the screen.

55

Relational Operators

Relational operators suggest the relative magnitudes of
numeric values or values assigned to numeric variables.
The operations apply equally well to string values and var-
iables, but their applications in that case are rather differ-
ent. In either case, the operators are generally meaningful
only when used in conditional, IF . .. THEN statements.
Table 2-2 shows BASIC’s family of relational operators.

Table 2-2. BASIC’s Relational Operators

Operator Function

less than

greater than

equal to

less than or equal to
greater than or equal to
does not equal

VA

AV A
Vo

Like the arithmetic operators, most of the relational
operators look like their counterparts in most math-
oriented text. The not-equal is the only one that is differ-
ent; it is most often shown as # in noncomputer literature.

The following programming routines let you observe
the function of BASIC's relational operators.

1. The /ess-than operator:

10 X=1

20 IF X <10 THEN 40
30 END

40 PRINT X;

50 X=X+1

60 GOTO 20

The less-than conditional statement in line 20 allows the
program to print the current value of X only as long as that
value is less than 10. The program, in other words, prints
integers 1 through 9, inclusively.

56

. The greater-than operator:

10 X=1

20 IF X > 9 THEN END
30 PRINT X;

40 X=X+1

50 GOTO 20

That program also prints integer values of X in the range

of 1 through 9. Line 20, however, uses a greater-than
operator to determine when the current value of X
exceeds 9 and, consequently, brings the program to an
end.

3.

The equal-to operator:

10 X=1

20 IF X=10 THEN END
30 PRINT X;

40 X=X+1

50 GOTO 20

The routine prints integers 1 through 9, and comes to an

end when the equal-to condition in line 20 is satisfied.

4. The less-than-or-equal-to operator:

10 X=1

20 IF X< 10 THEN 40
30 END

40 PRINT X;

50 X=X+1

60 GOTO 20

This is yet another way to print integers from 1 through

9. In this case, the program continues printing those
integers as long as X is less than 10 as determined by the
conditional statement in line 20.

57

5. The greater-than-or-equal-to operator:

10 X=1

20 IF X>=10THEN END
30 PRINT X;

40 X=X+1

50 GOTO 20

The end of the integer-printing operation is detected by
the greater-than-or-equal-to operator in line 20,

6. The does-not-equal operator

10 X=INT(10*RND(1))

20 PRINT “GUESS A NUMBER BETWEEN O AND 9 **:
30 INPUT N

40 IF N <> X THEN PRINT “NOPE":GOTO 20

50 PRINT “THAT'S IT!”

Line 10 assigns a randomly generated integer value in
the range of 0 through 9 to variable X. Lines 20 and 30 then
prompt you to enter your guess at that number and, sub-
sequently, assign it to variable N. Line 40 compares the
current values of N and X; if they are not equal, then the
program prints NOPE and loops back to line 20 to give you
another chance. But if it turns out that N is indeed equal to
X, the does-not-equal condition in line 40 fails, and the
program concludes at line 50 by printing THAT’S IT.

The foregoing examples all refer to relational opera-
tions as they apply to numeric constants and variables.
They apply equally well to string constants and variables,
however,

The notion of using relational operators to test relation-
ships between strings might seem puzzling at first to
anyone who has very little experience with BASIC. It
might seem curious, for example, to question whether
HELLO is greater-than-or-equal-to GOOD BYE—but it
does make sense.

58

One way to think of relational operations between
strings is in terms of alphabetical sequence. And in that
context, it can be helpful to interpret the relational opera-
tor this way:

A$ < B$—the string currently assigned to A$ occurs
alphabetically before the one assigned to B$.

A$ > B$—the string currently assigned to A$ occurs
alphabetically after the one assigned to B$.

A$ = B$—the string currently assigned to A$is alpha-
betically identical to the one assigned to B$.

A$ < = B$—the string currently assigned to A$ occurs
alphabetically before, or is identical to, the
one assigned to B$.

A$ < = B$—the string currently assigned to A$ occurs
alphabetically after, or is identical to, the one
assigned to B$.

A$ <> B$—the string currently assigned to A$is some-
how different from the one assigned to B$.

Here is one of the most popular applications of string
comparisons:

10 DIM K$(1)

20 PRINT “DO YOU WANT TO QUIT (Y/N)";
30 INPUT K$

40 IF K$="Y" THEN END

50 GOTO 20

The basic idea is to determine whether or not the user
wants to end an ongoing program. Line 20 prompts the
user to enter a Y or N response, and line 30 assigns that
string response to variable K$. The conditional statement
in line 40 then tests the user’s response against constant Y;
if, indeed, the operator’s response is Y, then the program
ends. Otherwise it loops back to line 20 to prompt the user
once again.

59

The next program lets the user enter two different
words, prints them in alphabetical order, and asks
whether or not the user wants to do the whole operation
again.

10 DIM K$(1),X$(10),Y$(10)

20 PRINT “ENTER A WORD ",

30 INPUT X$

40 PRINT "ENTER A SECOND WORD ",
50 INPUT Y$

60 IF X$ > =Y$ THEN PRINT Y$:PRINT X$:GOTO 80
70 PRINT X$:PRINT Y$

80 PRINT:PRINT “DO AGAIN (Y/N)";
90 INPUT K$

100 IF K$="N" THEN END

110 PRINT:PRINT:GOTO 20

Program lines 20 through 50 prompt the user to enter
two words and, in the process, the statements assign those
words to X$ and Y$. The conditional statement in line 60
compares the two words; and if X$ occurs later alphabeti-
cally, or is identical to Y$, the program prints Y$ followed
by X$. But if the relational condition in line 60 is not satis-
fied, the program executes line 70 to print X$ followed by
Y$.

As mentioned earlier in this discussion, there is some-
thing more to using strings with relational operators than
looking at alphabetical arrangements. BASIC actually
looks at the strings in terms of the ATASCII code number
for each character. (ATASCIl is an acronym for ATari
ASCII; and ASCll is an acronym for the standard character-
coding format, American Standard Code for Information
Interchange.) Table 2-3 shows the ATASCI! code numbers
for the characters most relevant to this discussion; and a
complete listing appears in Appendix B.

60

Table 2-3. Partial Listing of Characters and ASCII Codes

ASCII Char ASCII Char ASCH Char
32 {space) 63 ? 93]
33 ! 64 @ 94 .
34 " 65 A 95 —
35 # 66 B 96 h
36 $ 67 (o 97 a
37 % 68 D 98 b
38 & 69 E 99 c
39 ! 70 F 100 d
40 ! 71 G 101 e
41) 72 H 102 f
42 * 73 I 103 g
43 + 74 J 104 h
44 ’ 75 K 105 i
45 - 76 L 106 j
46 . 77 M 107 k
47 / 78 N 108 |
48 0 79 0 109 m
49 1 80 P 110 n
50 2 81 Q 11 0
51 3 82 R 112 p
52 4 83 S 113 q
53 5 84 T 114 r
54 6 85 U 115 s
55 7 86 Y 116 t
56 8 87 W 117 u
57 9 88 X 118 v
58 : 89 Y 119 w
59 ; 90 z 120 X
60 < 91 [121 y
61 = 92 \ 122 2z
62 >

NOTE: See Appendix B for a complete listing.

According to that table, the upper-case letter A has a
lower ATASCII code number than does the upper-case Z.
Itis the code number that is used when a BASIC statement
determines whether one letter of the alphabet should
appear before another. That principle leads to the fact
that BASIC will regard all numerals as being ““earlier in the
alphabet” than all other letters are. In other words, a
string version of numeral 9 is less than A. By the same
token, all lower-case letters carry larger ATASCII-code
values than the upper-case letters do; thus, a will be
regarded as appearing “later” in the alphabet than Z does.

61

That fact causes some difficulty when you are attempting
to write a program that sorts strings into alphabetical
order when they are composed of combinations of upper-
and lower-case characters. (The way around the difficulty
is to write a routine that converts all lower-case letters to
their upper-case counterparts—by subtracting a value of
32 from all lower-case ATASCII code numbers.)

Logical Operators

Table 2-4 shows the logical operators that are directly
available from ATARI BASIC. There are just three of
them—AND, OR, and NOT—but they are sufficient to
perform any desired logical operation.

Table 2-4. ATARI BASIC's Logical Operators

Operator Function
AND Logical AND
OR Logical OR
NOT Logical negation
Used in conjunction with IF ... THEN conditional

statements, the AND and OR operators connect two or
more expressions in explicit ways. Consider this general
type of AND statement:

IF expr1 AND expr2 THEN expr3

The literal interpretation of that statement is: IFexpri is
true AND if expr2 is also true, THEN execute expr3. IF
either expr1 or expr2 is not true, then the implication is
that computer operations should ignore the action pre-
scribed by expr3, and go to the next statement in the
program.

By way of a specific example:

IF A>=0AND A <=9 THEN PRINT A

When executing that statement, the computer will print
the value currently assigned to variable A only if that value
is between 0 and 9, inclusively.

62

A conditional statement that uses AND operators is sat-
isfied only when all of the ANDed expressions are true at
the same time.

Consider this general form of a conditional statement
that uses an OR operator:

IF expr1 OR expr2 THEN expr3

The literal interpretation of that statement is: IF expr1 is
true, if expr2 is true, OR if both are true, THEN execute
expr3. IF both expr1 and expr2 are not true, then the
implication is that computer operations should ignore the
action prescribed by expr3, and go to the next statement
in the program.

Here is a specific example:

IFA<OORA>9THEN END

When executing that statement, the program will end if
the value currently assigned to variable A is less than 0 or if
it is greater than 9.

A conditional statement that uses OR operators is satis-
fied when one or more of its ORed expressions are true.

The AND and OR operators are both binary logical
operators in the sense that they connect at least two dif-
ferent expressions. The NOT operator, on the other hand,
is an unary operator—it applies to a single expression.

The NOT operator reverses the logic of the expression
to which it applies. For instance:

IF NOT A> 10 THEN END

That statement literally says: IF the value currently assigned
to variable A is NOT greater than 10, then END the
program.

The foregoing examples each used one particular logi-
cal operator; but it is often necessary to use various com-
binations of them within the same conditional statement.

63

Order of Precedence for Operators

Many programming situations call for including more
than one operator within a statement—combinations of
more than one arithmetic, relational, and logical operator.
That situation gives rise to a question concerning the
order of precedence. Will the operators be regarded by
the computer in a strict left-to-right sequence, or will
some operators take a priority of execution over others?
The answer to that question is, “Yes.”

Table 2-5 shows the order of precedence for the execu-
tion of BASIC’s operators. Those having a higher order of
precedence will always be executed before others having
a lower order. And operators having the same order of the
precedence will be executed in a left-to-right sequence.

Table 2-5. Order of Precedence of
ATARI BASIC Operators

Operator Function Precedence Level
Grouping
) Sign of grouping 9 Highest precedence

Arithmetic Operators

. Exponentiation 8

- Negation 7

* Muitiplication 6

/ Division 6

+ Addition 5

- Subtraction 5

Relational QOperators

= Equal 4

< Less than 4

> Greater than 4

<= Less than or equal to 4

>= Greater than or equal to 4

<> Not equal 4

Logical Operators

NOT Logical negation 3

AND Logical AND 2

OR Logical OR 1 Lowest precedence

64

Suppose that you have written a BASIC statement of this
form:

A=B+2—C/16*D

Of all the operators appearing in that statement, the
multiplication operator has the highest priority. The signif-
icance of that fact is that the computer will do the 16*D
operation before any others. It will then deal with the
division operator; having already multiplied constant 16
by variable D, the computer divides that result into varia-
ble C. What remains, then, are the addition and subtrac-
tion operations.

According to the established order of precedence, addi-
tion and subtraction operators have the same order of
precedence; and in such instances, the computer exe-
cutes the operators from left to right. In this particular
example, that means summing variable B with constant 2,
and then subtracting the result of the previously executed
C/16*D operators from the result.

The same idea applies to all of the operators cited in the
table. Notice that all of the relational operators have the
same level of precedence. That means they will be
regarded in a strict left-to-right sequence. The logical
operators are at the bottom of the list, thereby taking the
lowest levels of precedence.

Perhaps it seems that a need for setting up BASIC state-
ments according to those fixed orders of precedence
makes it troublesome for a programmer. That isn’t quite
the case, however. BASIC includes signs of grouping, par-
entheses, that take precedence over all other operators.
And that means it is possible to specify the operators in
any convenient or meaningful sequence and then use sets
of parentheses to establish the order of execution.

Recall this BASIC statement:

A=B+2—-C/16*D

65

It is possible to avoid any troublesome references to the
orders of execution by expressing it this way:

A=B+2—(C/(16*D))
Knowing that nested parenthetical expressions are always

executed from the innermost to outermost levels, that
form of the statement more clearly suggests: multiply 16
times D, divide the result into C, subtract the result from 2
and add variable B. Having to recall the orders of prece-
dence is far less important when using parentheses to dic-
tate the sequence.

66

Chapter 3

The BASIC
Programming Language

This chapter summarizes the ATARI BASIC programming
language. Many of the examples apply equally well to
other versions of BASIC as run on other kinds of personal
computers. But for the most part, the examples and dis-
cussions assume that you are working with the ATARI
BASIC cartridge.

The purpose of the chapter is to provide a ready refer-
ence for the BASIC commands, statements, and functions.
There are some differences between ATARI BASIC and
some other commonly used versions; and readers who
have previously learned BASIC from other sources will
find this material a handy guide for dealing with those
differences.

It is beyond the scope of this book to deal with the
general principles of BASIC programming on an elemen-
tary level, however; so anyone who is not already
acquainted with the essential elements of programming in
BASIC should refer to an appropriate beginner’s book.

67

A SUMMARY OF STATEMENTS, COMMANDS, AND
FUNCTIONS

Chart 3-1 is an alphabetical listing of the primitive com-
mands, statements, and functions for ATARI BASIC. Most

of them will be familiar to readers who have learned
BASIC before, and they can be found in most other books
that deal with BASIC in a general fashion.

Table 3-1 classifies the instructions according to their
general use and, incidentally, cites some abbreviated
forms that can simplify the keyboard-programming task.

Generally, the BASIC Commands are executed directly
from the keyboard while the computer is in its program,
or immediate, mode of operation. Most of them, how-
ever, can be included within a program and, in fact, are
truly useful only in that context.

The Control Statements control the flow of an operating
BASIC program. As shown in the table, many of them
represent two-word statements.

The Input/Output Commands generally control the
flow of information—into the computer, out of the com-
puter, and between different sections within the com-
puter.

There are relatively few ATARI BASIC commands that
are specifically designed for string operations; but the
String Commands and Functions can be used with other
statements to yield a wide range of useful string
manipulations.

The Math Functions are common to most versions of
BASIC and they can be organized to execute virtually any
mathematical calculation. A table of Derived Trigonomet-
ric Functions appears in Appendix F.

There are only two Array Statements; however, it is
quite possible to compound other kinds of statements to
manipulate any sort of array or matrix.

68

Chart 3-1. Alphabetical Listing of ATARI BASIC
Primitive Commands, Statements, and Functions

ABS NEXT
ADR NOTE
ASC ON

ATN OPEN
BYE PADDLE
CLOAD PEEK
CHR$ PLOT
CLOG POINT
CLOSE POKE
CLR POP
COLOR POSITION
COM PRINT
CONT PTRIG
COs PUT
CSAVE RAD
DATA READ
DEG REM
DIM RESTORE
DOS RETURN
DRAWTO RND
END RUN
ENTER SAVE
EXP SETCOLOR
FOR SGN
FRE SIN
GET SOUND
GosuB SQOR
GOTO STATUS
GRAPHICS STEP

IF STICK
INPUT STRIG
INT STOP
LEN STR$
LET THEN
LIST TO
LOAD TRAP
LOCATE USR
LOG VAL
LPRINT Xio

NEW

Table 3-1. ATARI BASIC Commands, Statements,
and Functions
Arranged by Their General Purposes

ATARI BASIC Commands

Command Abbreviation
BYE B.
CONT CON.
END none
LET LE.
LIST L.
NEW none
REM R. or period followed by a space
RUN RU.
STOP STO.

ATARI BASIC Control Statements

Command Abbreviation
FOR F.
Gosus GOS.
GOTO G.

IF none
NEXT N.
ON none
POP none
RESTORE RES.
RETURN RET.
STEP none
THEN none
TO none
TRAP T.

NOTE: Some of these statements must be used in conjunction with
others in order to complete their meaning:

FOR...TO...NEXT
GOSUB . .. RETURN

ON ... GOSsusB
FOR...TO...STEP... NEXT
IF. .. THEN

ON...GOTO

70

Table 3-1—cont. ATARI BASIC Commands,

Statements, and Functions
Arranged by Their General Purposes

Input/Output Commands

Command Abbreviation
CLOAD CLOA.
CLOSE CL.
CSAVE CS.
DATA D.

DOS DO.
ENTER E.
GET GE.
INPUT R
LOAD LO.
LPRINT LP.
NOTE NO.
OPEN 0.
POINT PO.
PRINT PR. or?
PUT PU.
READ REA.
SAVE S.
STATUS ST.
Xio X.

NOTE: Some of these statements must be used in conjunction with
another in order to make up complete I/0 operations:

OPEN . ..
READ . ..
OPEN.. ..

CLOSE
DATA
END

ATARI BASIC String Commands

and Functions

Command Abbreviation
ASC none
CHRS$ none
LEN none
STR$ none
VAL none

71

Table 3-1—cont. ATARI BASIC Commands,

Statements, and Functions
Arranged by Their General Purposes

ATARI BASIC Math Functions

Function Abbreviation
ABS none
ADR none
ATN none
CLOG none
Cos none
DEG none
EXP none
FRE none
INT none
LOG none
PEEK none
POKE none
RAD none
RND none
SGN none
SIN none
SQR none
USR none

ATARI BASIC Array Statements
Statement Abbreviation
DimM DI.
CLR none

ATARI BASIC Graphics Commands

Command Abbreviation
GRAPHICS GR.
COLOR C.
DRAWTO DR.
GET GE.
LOCATE LOC.
PLOT PL.
POSITION POS.
PUT PU.
SETCOLOR SE.
X0 X.

72

Table 3-1—cont. ATARI BASIC Commands,
Statements, and Functions
Arranged by Their General Purposes

ATARI BASIC Sound
and Game-Controller Commands
Command Abbreviation
SOUND SO.
PADDLE none
PTRIG none
STICK none

The Graphics Commands refers to what is now com-
monly regarded as the most powerful feature of the
ATARI system—its graphics.

The Sound and Game-Controller Commands might be
better classified among the 170 commands; but they are
set apart here in order to underscore their existence as a
special kind of command.

A SUMMARY OF ATAR! BASIC SYNTAX
AND APPLICATIONS

This section describes, in alphabetical order, all ATARI
BASIC commands, statements and functions. The purpose
is to show the proper syntax and suggest some applica-
tions. Most of the descriptions are complete in their own
right, but others refer you to further details in other
chapters.

ABS(x)

ABS(x) is a numeric function that returns the absolute, or
unsigned, value of x, where x is any numeric constant or
expression.

Examples:
PRINT ABS(—1.2),ABS(30)

The example will print 1.2 and 30—the unsigned values
of —1.2 and 30.

73

10 FORN=-5T0 5
20 PRINT N,ABS(N)
30 NEXTN

That program will return this sort of display:

-5 5
-4 4
-3 3
-2 2
-1 1
0 o0
1 1
2 2
3 3
4 4
5 5

ADR(x$)

ADR(x$) is a special control function that returns the RAM
address of the first character in string x$; where x$ is a
string variable or constant.

Whenever a program dimensions a string variable,
ATARI BASIC sets aside the specified amount of RAM
space. This control function allows you to locate the start-
ing address of that string. The function is especially useful
for passing string variables to USR—called machine-
language routines (see Chapter 7).

Demonstration Program:

10 DIM Ms(5)

20 M$="HELLO"

30 SA=ADR(MS)

40 FOR =0 TO LEN(M$)-1

50 PRINT SA+,CHRS(PEEK(SA+))
60 NEXTI

74

Lines 10 and 20 simply dimension string variable M$ and
assign string HELLO to it. Line 30 uses the ADR function to
determine the starting address of the string and assigns
that value to SA. The remaining lines then increment the
address locations, PEEKing into each one and printing the
addresses and character contained in each one of them.

AND

AND is used as a logical operator in conditional state-
ments such as:

IF expr1 AND expr2 THEN statement

The statement is executed only if both expr1 AND expr2
are true.

Examples:
IF X >=0 AND X < =9 THEN PRINT X

The statement will print the current value of X only if that
value is both greater than or equal to 0 AND less than or
equal to 9. If X happens to be less than 0 or greater than 9,
the PRINT statement is not executed.

IF K$="Y" AND V < 10 THEN END

That line will END its program only if string K$ is Y AND
the value currently assigned to V is less than 10.
See Chapter 2 for further details.

ASC(x$)

ASC(x$) is a string function that returns the ATASCII code
number for the first character in string x$; where x$ is a
string variable or constant. If x$ is the null character, the
function returns an ATASCII value of 44.

Examples:

10 DIM Ms(1)
20 Ms="y”
30 PRINT ASC(MS$)

75

That routine will print 89 to the screen—the ATASCII
code for upper-case Y.

10 DIM Ms(5)
20 M$="HELLO"
30 PRINT ASC(MS$)

In this instance, the computer will print 72 to the screen—
the ATASCII code for the first character in HELLO.

On occasions where it is necessary to print the ATASCII
codes for all of the characters in a specified string variable,
use this sort of routine:

10 DIM M$(5)

20 M$="HELLO"

30 FOR C=0TO LEN(M$)—1
40 PRINT PEEK(ADR(M$)+C)
50 NEXT C

ATN(x)

ATN(x) is a numeric function that returns the Arctangent,
or inverse tangent, of x; where x is any floating-point con-
stant or expression.

The Arctangent value of a number is the angle whose
tangent is equal to that number. BASIC will normally
express the angle in units of radian measure, but preced-
ing the operation with a DEG command will cause all
angles to be expressed in degrees.

BYE
Abbreviation: B.

BYE is a command that switches from ATARI BASIC to the
Memo Pad screen mode. The command does not affect
resident BASIC programming, current variable assign-
ments, DOS or RS-232 assignments. Return to BASIC from
the Memo Pad by striking the SYSTEM RESET key.

76

CLOAD
Abbreviation: CLOA.

CLOAD is acommand that loads tokenized BASIC into the
computer from the program recorder. Upon executing
the command, the computer will generate a brief audio
signal. Respond to that signal by locating the beginning of
the program to be loaded, depressing the PLAY switch on
the recorder and striking any key on the console (except
the BREAK key). The loading is done when the READY
message is printed again to the screen.

CLOAD works only with cassette-based programs that
have been recorded with the tokenizing CSAVE or SAVE
statements. It does not work with ATASCII-formatted files
that have been saved by means of the LIST command. See
Chapter 6 for further information.

CLOAD operations automatically refer to the device to
IOCB Channel 7, so it must be closed if it has been opened
for any other purpose.

CHR$(x)

CHR$ (x) returns the string value that is represented by
ATASCII code x; where x is a numeric constant or expres-
sion that has a value between 0 and 255.

Examples:
10 FORC=97to 122

20 PRINT C,CHRS(C)
30 NEXTC

The routine prints the ATASCII codes and characters for
all lower-case letters of the alphabet.

10 FOR C=97t0 122
20 CHR$(C),CHRS$(C—-32)
30 NEXT C

77

This example increments through the ATASCII codes for
the lower-case letters of the alphabet. Line 20 first prints
the lower-case character and then subtracts 32 from the
current ATASCI! value to specify and print the upper-case
version.

CLOG(x)

CLOG(x) is a numeric function that returns the base-10
logarithm of x; where x is a floating-point constant or
numeric expression that is greater than zero.

Use the LOG(x) function when it is desirable to obtain
the natural, base-e logarithm of x.

CLOSE #x
Abbreviation: CL.

CLOSE is a statement that closes the IOCB channel that is
specified by x; where x is a valid channel number—an
integer value between 0 and 7.
Executing an END statement closes all IOCB channels
except 0, which is normally assigned to the screen editor.
See Chapter 6 for further details concerning 10CB
operations.

CLR

CLR is a command that sets all numeric variables and DIM
assignments to zero, and resets the DATA-list pointer.

An inappropriate application of CLR can destroy vital
information; but a proper application makes it possible to
zero numeric arrays very efficiently, redimension string
variables, and re-READ a DATA list from the beginning.

78

COLOR x
Abbreviation: C.

COLOR is a graphics function that determines the color
register for subsequent PLOT and DRAW TO statements;
where x is a positive numeric value or expression.

The relationship between the COLOR value and the
color of the text or graphic printed on the screen depends
largely upon the current graphics mode. See more details
in Chapter 4.

COM x$(x),y$(y) - - -
COM x1(y1,zl), x2(y2,z2) ...

The COM statement defines the length of string variables
and the size of numeric arrays. Its application is virtually
identical to the more commonly used DIM statement.

Example:

COM SA(4,5),M$(5)

That command dimensions numeric variable SA for a 4 by
5 array and sets the length of string variable M$ to 5. It is
functionally identical to:

DIM SA(4,5),M$(5)
CONT
Abbreviation: CON.

CONT is a command that can, under the proper circum-
stances, allow a program to CONTinue after it has been
halted. Normally it is used in conjunction with the STOP
command as a program-debugging tool—whenever pro-
gram execution is halted by a STOP command, you can
resume operations from the beginning of the following
program line by entering the CONT command.

79

CONT can also be used in conjunction with a BREAK-
key depression to stop and then resume the LISTing of a
program on the video screen. Once a LIST is initiated, it
can be stopped for inspection by striking the BREAK key;
and then the listing can be resumed by entering the
CONT command.

The CONT command does not yield reliable results
when it is used after other kinds of program-halting events
have occurred.

COS(x)

COS(x) is a numeric function that returns the trigonomet-
ric cosine of an angle expressed as x; where x is a floating-
point constant or numeric expression. The expression, x, is
normally taken as an angle that is expressed in radians, but
itcan be expressed in degrees by preceding the functions
with a DEG command.

CSAVE
Abbreviation: CS.

CSAVE is a command that is used for saving tokenized
BASIC programs on the program recorder. Upon execut-
ing the command, the computer will respond with two
beeping signals. Begin the recording by depressing the
PLAY and RECORD buttons on the program recorder and
striking any key on the console, except the BREAK key.
The system signals the end of the saving operation by
reprinting the READY message.

CSAVE automatically opens 10CB Channel 7, so it is
important that the channel be closed prior to executing
the CSAVE command.

Because CSAVE saves BASIC programs in a tokenized
format, they can be reloaded only by means of the
CLOAD command. See Chapters 7 and 8 for further details
about tokenized BASIC.

80

DATA list
Abbreviation: D.

DATA is a nonexecutable statement that contains the list
of items to be read by a READ command. The items in the
list can be numeric constants or string constants separated
by commas. String constants in a DATA list need not be
enclosed in quotation marks.

Numerical and string constants can be mixed within the
same DATA list, but only as long as the corresponding
READ operation specifies the correct variable type.

Examples:

10 FORN=1TO 5

20 READ A: PRINT A

30 NEXTN

40 DATA 100,200,300,400,600

That routine will read and print the numeric constants,
one at a time, from the DATA list.

10 DIM As$(10)

20 FORN=1TOb

30 READ AS:PRINT AS

40 NEXTN

50 DATA, HARRY,GEORGE,RALPH,CINDY,JUDY

The routine reads and prints the five string constants spec-
ified in the DATA list.

10 DIM N$(10)

20 FORN=1T0 4

30 READ N$ A:PRINT N$,A

40 NEXTN

50 DATA SUSAN,20,JENNIFER,18 MIKE,22,TED, 21

Line 30 reads a string value followed by a numeric value,
and then prints them to the screen in that sequence.
Notice that the DATA listing includes variable types in that
same sequence—a string followed by a numeric value.

81

See the READ and RESTORE statements for further
examples and relevant details.

DEG
Abbreviation: DE.

DEG is a command that converts all subsequent angular

expressions to units of degrees. Use the RAD command to
reset the normal units of radians.

DIM x$(x),y$¥(y) ...
DIM x1(y1,2), x2(y2,22) . ..
Abbreviation: DI.
The DIM statement defines the length of string variables

and the size of numeric arrays. It must be executed in the
program prior to making any reference to the variables.

Examples:

DIM Ms$(20)

That statement dimensions string variable M$ for up to 20
characters.

DIM X(4)

That statement dimensions five subscripted variables of
X—variables X(0) through X(4).

DIM Ms$(10),X(2,4)

That statement dimensions string M$ for up to 10 charac-
ters, and defines a 2 by 4 array for variable X.

See Chapter 2 for further details about dimensioning
string variables, subscripted numeric variables, and
numeric variable arrays.

DOS

DOS is a command that brings up the utility menu for the
Disk Operating System (see Chapter 1). Return to BASIC

by selecting menu-item B or striking the SYSTEM RESET
key.

82

DRAWTO x,y
Abbreviation: DR.

DRAWTO draws a straight line from the last-plotted graph-
ics point to a point having coordinates x and y; where x
and y are numeric constants or expressions that evaluate
to valid points for the current graphics mode.

See further details in Chapter 4.

END

END is a statement that is sometimes necessary for signal-
ing the final statement in a BASIC program. The statement
is not necessary if the last statement to be executed in the
program happens to carry the highest-valued line number.

END closes all IOCB channels except No. 0, which is
normally assigned to the screen editor.

ENTER device
Abbreviation: E.

ENTER is a command that is used for merging ATASCII-
coded BASIC programming from device (cassette or disk)
to the computer’s memory. Existing programming is not
erased; rather, the new program lines are added to (or
merged with) the existing ones. In instances where the
new programming has line numbers that are identical to
those already in program RAM, the new numbers and
statements write over the old ones.

In a similar way, ENTER can add new variable specifica-
tions to the existing program, and it will not affect existing
specifications unless they are redefined by the incoming
program.

ENTER automatically opens IOCB Channel 7 for loading
the new programming, and it closes that channel when
the transfer is completed.

Because ENTER works only with ATASCII-coded pro-
gramming, it loads only tokenized BASIC programs that
were saved by means of the LIST command.

83

Examples:

ENTER “C.”

That command loads, or merges, untokenized files from
the program recorder.

ENTER “D:NEWSTF.ASC"

That command merges an ATASClI-coded program named
NEWSTF.ASC from the default disk.

See Chapter 6 for further details regarding the nature of
tokenized programs and nontokenized files.

EXP(x)

EXP(x) is a numeric function that returns constant e
(2.71828182) to a power of x; where x is a floating-point
numeric constant or expression.

FOR var = begin TO end [STEP y)

Abbreviations: FOR F.
NEXT N.

This statement defines and initiates a FOR . .. NEXT
loop. A numeric variable name, var, is stepped between
values begin and end; where begin and end are numeric
constants or expressions. Unless specified otherwise by
the STEP option, the FOR . .. NEXT loop increments var
in steps of +1. Other STEP intervals are determined by the
numeric constant or expression, y.

FOR must be used with a corresponding NEXT state-
ment.

Examples:

10 FORN=0TO 9
20 PRINT “HELLO"
30 NEXT N

That example prints HELLO 10 consecutive times on the
screen.

84

10 FOR X=0TO 100 STEP 2
20 PRINT X
30 NEXT X

That example prints even-valued integers between 0 and
100.

10 FOR DWN=10TO —10 STEP —1
20 PRINT DWN
30 NEXT DWN

That routine prints backwards from 10 to —10, and prints
each of the integers in that range.

10 FORN=O0TO 9
20 PRINT N;

30 FORT=0TO 100
40 NEXTT

50 NEXT N

The example uses an outer loop to establish and print
values of N and a second, inner loop to execute a time
delay between each printing. The example, in other
words, uses nested FOR . .. NEXT loops. Notice that the
FOR statements refer first to variable N and then T, while
the NEXT statements refer to variable and then N.

There are a couple of techniques for breaking out of a
FOR ... NEXT loop before var reaches the end value.
One way is to assign a value to var that is equal to end
within the loop, itself. Basically, the following program
counts and prints integer values from zero to whatever
value is assigned to variable N, but never more than 9. So if
you respond to the prompting message by entering a 4,
the program will print integers 0 through 4; if you enter 9,
it will print 0 through 9; but if you enter any number
larger than 9—even 1000000—line 50 forces the FOR . ..
NEXT loop to a premature conclusion.

85

10 PRINT “"ENTER A POSITIVE NUMBER:"’;
20 INPUTN

30 FORK=0TON

40 PRINT K

90 IFK>=9 THEN K=N
60 NEXT K

A second way to terminate a FOR . .. NEXT loop is to
use statements POP:GOTO line number. The following
example runs just like the previous one, but uses the POP
statement to force the computer to “forget” it is running a
FOR ... NEXT loop. A NEXT-Without-FOR error will
occur if you fail to follow the POP statement with a well-
defined GOTO statement.

10 PRINT “"ENTER A POSITIVE NUMBER:";
20 INPUTN

30 FORK=OTON

40 PRINT K

50 IF K> =9 THEN POP:GOTO 70

60 NEXTK

70 END

FRE(x)

FRE(x) is a numeric function that returns the number of
bytes of RAM that remain available for the user’s pur-
poses. Variable x is a “dummy variable,” so its value is not
relevant as long as it is a valid floating-point constant or
numeric expression.

Example:
PRINT FRE(O)

That will print to the screen the amount of RAM that
remains available for the program.

86

——

GET #x, var
Abbreviation: GE.

GET fetches a single byte from opened 10CB Channel x,
and subsequently assigns the value to var. The type
(numeric or string) of the fetched item must match that of
var.

Example:

10 OPEN #1,4,0,7K:”

20 GET #1,K$

30 IFK$ <="A"" AND K$ <="Z" THEN PRINT K$;
:GOTO 20

Line 10 opens IOCB Channel 1 for input from the console
keyboard. Line 20, in effect, waits for a single keystroke;
and when it occurs, it assigns the character string to varia-
ble K$. If, according to line 30, the character is an upper-
case letter of the alphabet, the program prints the charac-
ter and loops back to line 20 to fetch the next keystroke. A
keystroke representing anything but an upper-case letter
will bring the program to an end (and close IOCB Channel
1). That particular example can be quite useful for fetching
single-keystroke characters without having to conclude
the entry by striking the key (as is the case with
INPUT statements).

GOSUB line number
Abbreviation: GOS.

GOSUB line number is a program-control statement that
directs the execution of a program to a subroutine that
begins a line number. Unless the subroutine ends the
entire program with an END statement, it must conclude
with a RETURN statement that will return program opera-
tions to the statement that follows GOSUB.

87

Because GOSUB refers to a specific line number, line
number must be a positive integer constant or numeric
expression that refers to a line number in the existing
program.

A conditional POP statement that is included within a
subroutine makes it possible to nullify the normal,
automatic-return feature of a RETURN statement. You
can, for instance, execute a GOSUB statement, run a por-
tion of the routine and, if desired, break completely away
from the subroutine. Suppose that this sort of conditional
Statement appears at line 1020 in a subroutine:

1020 IF X > 5 THEN POP:GOTO 100

If variable X happens to take on a value that is greater than
5, the computer will “forget” that it was executing a sub-
routine, and go immediately to line 100. Some sources
regard this optional POP feature as a technique for
dynamically transforming a GOSUB operation into a
GOTO operation.

GOTO line number
Abbreviation: G.

GOTO line number is a program-control statement that
directs the execution of a program directly to line number.
Because line number represents a specific line number in
the program, it must be a positive integer constant or
numeric expression,

Examples:
10 GOTO 100

That will direct the program to line 100.

10 GOTO 10*N
That will direct the program to a line number that is equal
to 10 times the numeric value currently assigned to varia-

ble N. The expression, of course, must point to a line
number that exists in the program at the time.

88

GRAPHICS x
Abbreviation: GR.

The GRAPHICS command sets the ATARI BASIC graphics
mode, where x is a numeric constant or expression that
represents a valid graphics-mode number.

If x is a positive integer value between 0 and 8, the
command will set the normal graphics modes, clear the
screen and establish the normal text windows.

Adding a constant 16 to the value sets the graphics
modes 0 through 8, clears the screen, but does not include
the normal split-screen text windows.

Adding a constant 32 to the value retains the split-
screen text windows, but prevents the mode operation
from clearing the screen.

Adding a constant 40 suppresses the text windows and
the screen-clearing operations.

See Chapter 4 for further examples and details.

IF expr THEN statement:statement . . .

IF ... THEN is BASIC’s primary conditional statement.
Literally it says: IF some arithmetic or logical expression,
expr is true, THEN execute the specified statement or
sequence of statements. By implication, if the statement is
NOT true, then ignore any following statements, and
GOTO the beginning of the next program line.

Example:
IF K$="Y"" THEN PRINT “DONE":END

That statement literally says: IF the string currently
assigned to variable K$ is a Y, then print DONE and END
the program (otherwise, go to the next line of pro-
gramming).

If the statement portion of an IF ... THEN statement
happens to be a GOTO line number statement, you can
shorten the programming a bit:

89

IFA<=10 THEN GOTO 100
is the same as
IF A<=10THEN 100

A line number following the THEN portion of an IF . ..
THEN statement implies a GOTO operation.

INPUT var1, var2, ...
INPUT #chan,var,var . ..

Abbreviation: 1.

The simplest form of the INPUT statement halts the execu-
tion of a program, prints a question mark on the screen,
and awaits a response from the keyboard that ends with a
keystroke. The statement assigns the keyboard
entry to the var.

Examples:

INPUT X

The program in that instance is expecting a numeric value
from the keyboard and will subsequently assign it to vari-
able X.

INPUT X:N(1)=X

INPUT statements cannot directly assign values to sub-
scripted numeric values. The example shows how the
INPUT value is first assigned to variable X, and then an
assignment statement assigns X to subscripted variable
N(1).

INPUT Ms

The program in that instance is expecting a string entry
from the keyboard, and it will subsequently assign it to
string variable M$. The variable, of course, must be prop-
erly dimensioned at some earlier point in the program.

It is possible to enter more than one numeric or string
constant from the keyboard under a single INPUT state-
ment. Such compound INPUT statements must show the
variable names separated by commas.

90

Examples:
INPUT X,Y,Z

The INPUT statement is expecting three consecutive
numerical constants from the keyboard. The operator has
the option of entering all three constants, and separating
them with commas before striking the key; or
striking the key after each entry.

INPUT AS$,BS,C$

That INPUT statement expects a series of three string-
constant entries from the keyboard. Each string entry must
conclude with a keystroke.

INPUT X,AS$

The example shows that it is possible to mix variable types
within a compound INPUT statement. This one is expect-
ing a numeric constant followed by a string constant.

Unless specified otherwise, it is assumed that the INPUT
statement is expecting numeric or string constants from
the keyboard—actually, the screen editor assigned to
IOCB 0. It is altogether possible, however, to assign the
INPUT statement to other input sources.

The general form of the INPUT statement in that case is:

INPUT #Hchan,var

where chan is the IOCP channel number that is to supply
the constant for variable var.

The simple INPUT statement cited earlier will always
print a prompting question mark. That feature is usually an
asset, but it is often inappropriate. The following example
allows the operator to enter a numeric constant from the
keyboard by first assigning the keyboard to 10CB 1. The
question mark will not appear in that instance. (Unfortu-
nately, the entry isn’t printed to the screen while it is
being entered, either.)

91

10 OPEN #1,4,0,”K:"

20 PRINT "ENTER A NUMBER BETWEEN QO AND 9 *';
30 INPUT #1.X

40 CLOSE #1

See Chapter 6 for additional information regarding the
INPUT statement as a dynamic I/O command.
INT(x)

INT(x) is a numeric function that returns the next-smaller
integer value of x; where x is any floating-point constant
or expression,

Examples:

PRINT INT(3.8)
That statement will print 3 to the screen.

PRINT INT(8.3)
That will print 8 to the screen.

PRINT INT(—1.2)

Bearing in mind that negative values that are farther from
zero are considered to be smaller than those closer to
zero, that statement will print —2 to the screen.

LEN (x$)

LEN (x$) is a string function that returns the number of
characters assigned to string x$.

LET var-expr
Abbreviation: LE.

LET is a variable-assignment statement that assigns a
numeric or string constant or expression, expr, to a desig-
nated numeric or string variable name, var.

The variable types must match: numeric values and
expressions must be assigned to numeric variable names,
and string values and expressions must be assigned to
string variable names.

92

The LET expression is actually optional; var = expr is
adequate.

Examples:

LET X=1+Y
LET X$="FLIP YOUR WIG"
G=X*Y
LIST output device start line, last line
Abbreviation: L.

The LIST command is used for writing information, or
selected portions of it, to the designated output device in
an ATASCII-coded format. If no output device is desig-
nated in the command, the system automatically assumes
it to be the video display. The terms first line and last line
represent program line numbers that may be used in the
following combinations:

LIST—list the entire program, from the lowest-numbered
line through the highest-numbered line.

LIST start line—list only line number start line in the
program.

LIST start line, last line—list the program, beginning from
line number start line and ending with line number /ast
line.

Values start line and last line need not refer to specific
line numbers in the program, but they must be positive
integer values.

Examples:

LIST 10
That command lists program line 10 to the screen.

LIST "P:”

That command lists the entire program to the ATARI
printer.

93

LIST “D:TRY.BAS”

That command saves the entire BASIC program as TRY.
BAS in ATASCII-coded (nontokenized) format to the
default disk drive. See Chapter 6 for further details con-
cerning ATASCII-coded programs and files.

A LISTing operation can be aborted by striking the
BREAK or SYSTEM RESET keys, but the user should be
aware that such an interruption will render LISTs to the
program recorder or disk system useless.

LOAD input device
Abbreviation: LO.

LOAD is used for loading BASIC programs or files into the
system from the designated input device. The specified
device must be one that is appropriate for input opera-
tions and the programming must have been saved in a
tokenized format—by means of a SAVE command. Be-
cause programs that are saved by CSAVE or LIST com-
mands are saved in an ATASCII-coded format, they cannot
be loaded by means of the LOAD command.

See Chapter 1 for applications of the LOAD command
and Chapters 6 and 7 for further information about token-
ized BASIC.

LOCATE col,row,x
Abbreviation: LOC.

LOCATE is a graphics function that determines the charac-
ter or graphics code for a specified screen position, and
assigns the value to a numerical variable, x. The screen
position is given in column/row coordinates, col and row,
that are appropriate for the current graphics mode.

In graphics Modes 0, LOCATE returns the ATASCII code
number for the character at col,row.

In graphics Modes 1and 2, LOCATE returns a value that
indicates both the character being displayed and the color
register it is using.

94

In graphics Modes 3 through 8, LOCATE returns the
color register being used for plotting to col,row.

See Chapter 4 for further details concerning the format-
ting of text and graphics data.

The LOCATE statement is not valid until the program
executes a GRAPHICS statement, thereby opening 10CB
Channel #6 for input from the screen.

Executing the LOCATE statement automatically leaves
the print cursor (whether it is actually visible or not) at the
column location that immediately follows the col,row
designation,

LOG(x)

LOG(x) is a numeric function that returns the natural,
base-e, logarithm of x; where x is a floating-point constant
or numeric expression that is greater than zero.

Use the CLOG(x) function when it is desirable to obtain
the base-10 logarithm of x.

LPRINT expr list
Abbreviation: LP.

LPRINT is a statement that is quite similar to PRINT, but
prints data to an ATARI printer instead of the video
screen. It can print lists, numeric constants and expres-
sions, as well as string constants and expressions.

If the items in the expr list are separated by a semicolon,
the printing of one item begins immediately after the end
of a previous one. If the items are separated by a comma,
each is printed at the beginning of the next-available tab-
stop column on the screen.

LPRINT uses IOCB Channel #7.

NEW

NEW is a command that, in effect, clears all existing BASIC
programming from RAM. It also closes all IOCB channels
except #0 (which is used for the screen editor), and sets all
trigonometric functions to work in units of radians.

95

It is advisable to execute the NEW command prior to
entering a new program.

NEXT
Abbreviation: N.

The NEXT statement is meaningless without a preceding
FOR statement. See FOR.

NOT

NOT is a logical operator that is used to negate a logical
expression. It is generally used in conditional statements
such as:

IF NOT expression THEN statement
See Chapter 2 for further details:
NOTE #chan,sec, byte
Abbreviation: NO.

The NOTE function returns the sector and byte values at
the current disk-file pointer position for a disk device at
IOCB channel, chan. Those values are assigned to the
designated numeric variable, sec and byte.

The NOTE function is not available under ATARI DOS
1.0.

ON x GOSUB Ilinel,line2 . ..

ON ... GOSUB s a control statement that calls a subrou-
tine beginning at one of a list of line numbers, line?,
line2, . .. and so on. The line number that is selected is

determined by the current value of the integer expres-
sion, x. If x happens to have a value of 1, the statement will
call the subroutine specified by the first line designation;
if x is equal to 2, the statement will call the second-
specified line; if x is equal to 8, the statement will call a
subroutine that begins at the eighth line number in the
list.

96

If it happens that the current value of x is 0 or if its value
exceeds the number of lines designated in the program,
the computer ignores the ON . . . GOSUB altogether and
goes to the next statement.

Examples:

10 FORN=1TO 5
20 ON N GOSUB 100,110,135,100,150
30 NEXT N

As the value of N increments from 1 through 5, line 20 calls
subroutines that begin at lines 100, 110, 135, 100 and 150 in
that order. (Notice that it is possible to call the same sub-
routine more than one time within the list.)

100 ON X=GOSUB 1000, X*100, 200

If X is equal to 0, the computer will ignore this statement
and resume execution from the next-available program
statement. If X is equal to 1, the statement will send opera-
tions to a subroutine beginning at line 1000; and when X is
equal to 2, the computer will consider the X*100 listing
and send the operations to line 200. When X is equal to 3,
the program will look at the third line listing, and send
operations to a subroutine that begins at line 200, Finally,
whenever X is greater than 3, the computer will resume
execution from the next-available program statement,

ON x GOTO linel,line2 . ..

ON ... GOTO is a control statement that selects one of
any number of line numbers that are listed in the state-
ment. The general features and purposes are nearly iden-
tical to those for the ON ... GOSUB statement. The only
differences are those that distinguish the simpler GOTO
and GOSUB statements.

OPEN #chan,task,aux,“dev”’
Abbreviation: O.

97

The OPEN command represents the most direct and use-
ful means for opening an IOCB channel for service. Some
ATARI BASIC functions automatically open certain chan-
nels, but a good many operations call for opening and
configuring a channel for a particular purpose.

The command has four different arguments. The first,
chan, designates the channel that is to be opened—1
through 7; and the last, dev, designates the type of device
the channel is to service. Parameters task and aux define
the operations.

Chapter 6 includes tables for defining those arguments
for given devices.

Examples:

OPEN #1,4,0,7K:”

That opens IOCB Channel #1 for input from the keyboard.
The function is especially useful, when in conjunction
with a subsequent INPUT #1,X statement, for picking up
single-keystroke character codes from the keyboard.

OPEN #2,13,0,”R1:"

That opens IOCB Channel #1 for read/write operations
from RS-232serial port number 1. The device handler rou-
tine, AUTORUN.SYS, must be resident in the system
before any serial operation can be performed.

All channels thus opened will be automatically closed
when the program reaches its end. You can close all chan-
nels during the execution of a program (except #0 for the
screen editor) by executing a CLOSE command.

OR

OR is used as a logical operator in conditional statements
such as:

IF expr1 OR expr2 THEN statement
See Chapter 2 for further details.

98

PADDLE(x)

PADDLE returns an integer value between 1 and 228 that
indicates the rotated position of the paddle connected to
paddle input x. The lowest values indicate a full clockwise
turn, and the higher values indicate full counterclockwise
turn. There is no meaningful relationship between the
values generated by the PADDLE function and the amount
of angular rotation.

Example:

FOR D=0 TO 100+10*PADDLE(0):NEXT D

That example executes a time-delay interval that becomes
shorter as paddle 0 is rotated in a clockwise direction. The
function in this case could be controlling the speed of a
missile figure on the screen.

PEEK(addr)

PEEK is a special-purpose function that returns the decimal
value of the byte that is stored at memory address addr.

Example:
PRINT PEEK(88)+256*PEEK(89)

That statement PEEKs into RAM addresses 88 and 89, and
prints a decimal value that happens to indicate the starting
address of the current screen RAM.

PLOT col,row
Abbreviation: PL.

The PLOT command sets up a graphics operation to plot a
character or pixel at the column/row location indicated
by col,row. Appropriate ranges for numeric expressions
col and row depend on the current graphics screen mode.
See Chapter 4 for further details.

99

POINT #chan,sect,byte
Abbreviation: P,

The POINT statement adjusts the position of the disk-file
pointer for the specified channel, chan. The adjustment is
to sector sect and byte byte.

The complement of this statement js NOTE. Neither is
available under ATARI DOS 1.0,

POKE addr,data

POKE is a special statement that sends a byte of data to the
designated memory-mapped address, addr. The data byte
must be a decimal integer value between 0 and 255, and
addr may be a decimal address between 0 and 65535. It is
the complement of the PEEK function,

However, POKEing data to ROM locations, control
blocks that are opened for input operations or to RAM
addresses where no physical RAM exists has no effect on
the system.

The user should avoid careless or indiscriminate use of
the POKE command, because POKEing into RAM ad-
dresses that have functions already assigned to them by
the operating system, BASIC or DOS, can cause a system
software “crash.”

POP

POP is a special control command that, in effect, forces
the computer to abort the automatic return or looping
features of GOSUB, ON . .. GOSUB and FOR ... NEXT
operations that are in effect at the time. It actually POPs
the return address off the top of the run-time stack.

Practical applications of POP generally concern tech-
niques for breaking out of a subroutine or FOR . . . NEXT
loop under a prescribed condition. A general statement
imbedded within a subroutine or FOR -« . NEXT loop
might look like this:

IF condition THEN POP:GOTO line number

100

If the designated condition is satisfied, the POP statement
effectively clears the way for doing a GOTO to some pro-
gram line number that is outside the subroutine or loop.
The program will then progress as though the GOSUB or
FOR ... NEXT loops were never initiated.

Use POP statements sparingly and with care, especially
in programs that use extensively nested GOSUBs and
FOR ... NEXT loops.

POSITION col,row
Abbreviation: POS.

The POSITION statement moves the print cursor directly
to the column/row screen position as designated by the
col and row values or expressions. The range of values that
are available for this statement varies with the screen
mode. See Chapter 4 for examples and further details.

PRINT expr list
Abbreviations: PR. or ?

PRINT is a statement that is used for printing information
to the video display. It can print lists of numeric constants
and expressions as well as string constants and expressions.

If the items in the expr list are separated by a semicolon,
the printing of one item begins immediately after the end
of a previous one. If the items are separated by a comma,
each is printed at the beginning of the next-available tab-
stop column on the screen.

The following version of the print statement transfers
numeric or string data to an IOCB channel:

PRINT #chan; . ..
See Chapter 6 for details.
PTRIG x

PTRIG returns a value of 0 or 1, depending on whether the
pushbutton on paddle device x is pressed or not pressed.

101

Example:
IF PTRIG 1=0 THEN END

That short routine will end the program if the player
happens to be pressing the pushbutton on paddle device
1 when the conditional statement is executed.

PUT #chan,x
Abbreviation: PU.

The PUT statement outputs a single integer value or
expression, x, to the designated |OCB channel, chan. It is
the functional complement of the GET statement.

See Chapter 6 for examples and further details.

RAD

RAD is a statement or command that converts all subse-
quent expressions of angles to units of radians. Executing a
RUN command automatically sets the RAD mode, and you
must include a DEG statement into the program whenever
you want to work with the degrees format.

READ vart,var2 ...
Abbreviation: REA.

READ statements must be used in conjunction with DATA
statements. The statement sequentially reads items in
DATA lines and assigns them to the specified string or
numeric variables. The variable types must match; that is,
a READ A$statement expects a string value from the DATA
list, and a READ X statement expects a numeric value.
Compounded READ statements may mix variable types as
long as the corresponding sequence of DATA items fol-
lows the same format.

For example, this combination of READ/DATA state-
ments will work:

10 DIM As(4)
20 READ As,X
30 DATA BOY,10

102

but this one will not, because it attempts to assign a string
constant, GIRL, to a numeric variable, X

10 DIM As(4)
20 READ As$,X
30 DATA BOY.GIRL

It might appear that the next example would return a
type-mismatch error, but it does not. The numbers as-
signed to A$ and B$, however, will be regarded as string
constants.

10 DIM A${4),B$(4)
20 READ A$,B$
30 DATA 5,6

Remember that numbers can be regarded as either
numeric or string constants, while string values can be
regarded only as strings.

REM
Abbreviations: R. or a period followed by a space

REM is a nonexecutable statement that allows you to
insert printed text, or REMarks, within a program listing.

Examples:

10 REM ** COUNT TO TEN **
100 R. NOTE: BEGIN PRINTER ROUTINE HERE < < <

RESTORE line number
Abbreviation: RES.

RESTORE is a program command that allows a DATA list to
be READ, beginning from the DATA line having the
designated line number. If line number is omitted from
the command, the next READ operation will begin from
the lowest-numbered DATA line.

103

RETURN
Abbreviation: RET.

RETURN is a program-control command that returns
operations from a subroutine to the statement following
the corresponding GOSUB. The command is meaningless
without a calling GOSUB or ON . .. GOSUB statement.

RND(x)

RND is a numeric function that returns a random-
number value that is equal to or greater than 0, but less
than 1. The x term is a dummy argument that has no effect
on the function, so it can have any numeric value.

Programs that use randomly generated numbers most
often require integer values and, even more often, values
that are larger than 1. The trick in such instances is to use a
function of this general form:

INT(modulus*RND(O) +lownum

where modulus is the number of integers to be included
in the random series, and lownum is the lowest-valued
integer in the series. So if you want to generate random
integers between 0 and 9, inclusively, modulus = 10 (there
are 10 different integers in the range of 0 through 9) and
lownum = 0. The following program used that format to
print a series of 100 random integers separated by spaces:

10 FOR N=1TO 100
20 PRINT INT(10*RND(0)); CHR$(32);
30 NEXT N

Or perhaps you need random integers between 50 and
100, inclusively. That represents a modulus of 51 and a
lownum of 50. To see a hundred such numbers:

10 FOR N=1TO 100
20 PRINT INT(51*RND(0))+50; CHR$(32);
30 NEXT N

104

RUN [input device]
Abbreviation: RU.

Used without the optional input device specification,
RUN is a command that initiates the execution of the resi-
dent BASIC program from the lowest-numbered line. It
closes all 170 control channels and sets the trigonometric-
angle format to RAD (radians).

Alternatively, RUN input device erases any resident
BASIC programming, replaces it with a tokenized BASIC
program from the specified input device, and begins exe-
cuting the program from the lowest-numbered line.

Examples:

RUN

That command initiates execution of the resident BASIC
program from the lowest-numbered line.

RUN “D:FIXER"

That version loads a tokenized BASIC program named
FIXER from the default disk drive, and initiates execution
from the lowest-numbered line.

Use GOTO line number to begin execution of a resi-
dent program from some line number other than the
lowest-numbered line.

SAVE output device
Abbreviation: S.

SAVE is a command that transfers tokenized BASIC pro-
gramming from the computer to the specified output
device.

See Chapter 1 for examples and further details.

105

SETCOLOR reg, hue, lum
Abbreviation: SF.

SETCOLOR sets color register reg to the specified hue
and luminance values, hue and lum.

The value assigned to reg must specify one of the five
color registers: 0,1,2,3, or 4.

The value assigned to hue ought to be a positive integer
between 0 and 15. The colors vary in brightness, or shade,
according to the subsequent Jum value, so the following
list of hue values and colors is determined with the
assumption that the lum value is 0.

It is possible to specify a lum value as any positive
integer. The lowest-valued Jum factors that cover the
entire luminance range are even numbers between 0 and
14, inclusively; where 0 sets up the darkest shade and 14
sets up the lightest.

See Chapter 4 for tables of hue and luminance values,

SGN(x)

SGN(x) is a numeric function that returns integer values of
—1, 0, or 1, depending on the sign of x; where x is any
floating-point constant or numeric expression.

If x is negative, SGN(x) returns a value of —1
If x is equal to 0, SGN(x) returns a value of O
If x is positive, SGN(x) returns a value of 1

SIN(x)

SIN(x) is a numeric function that returns the trigono-
metric sign value of angle x; where x is any floating-point
constant or numeric expression. The angle is normally
assumed to be expressed in radian measure, but it can be
expressed in degrees by preceding the function with a
DEG command.

106

SOUND voice, pitch, dist,vol
Abbreviation: SO.

The SOUND statement causes a tailored sound to be pro-
duced at the loudspeaker in the tv receiver or monitor.
The four arguments voice, pitch, dist, and vol determine
the voice, pitch, amount of distortion, and volume,
respectively.

There are four voices that are numbered 0 through 3. It
is possible to select any combination of them. The pitch is
set by assigning an integer value between 0 and 255,
where 0 is the highest available pitch and 255 is the lowest.
See Chapter 7 for a table of pitch values and correspond-
ing musical notes.

The distortion figure determines the amount of noise,
or tonal distortion, that is injected into the sound. The
values must be even-numbered integers, where the lower
values produce more distortion than the higher values do.

The volume of the sound is set by assigning integer
values between 0 and 15, where a value of 0 completely
silences the voice, and 15 produces the loudest sound.

Once a SOUND command is executed, it generates its
sound until that voice is told to do otherwise, or you exe-
cute certain commands that affect the normal operation
of BASIC programs.

See Chapter 7 for examples and further details.

SQR(x)

SQR(x) is a numeric function that returns the square-root
of x; where x is any positive-valued, floating-point con-
stant or numeric expression.

107

STATUS #chan, numvar

Abbreviation: ST.

STATUS assigns the status code of the last-used 1OCB
channel, chan, to a numerical variable, numvar. Table 3-2

lists the status codes and their interpretations.

Table 3-2. Status Codes That Are Returned by the

STATUS Command

Code Meaning
001 Operation complete (no errors)
003 End of file (EOF)
128 BREAK executed
129 IOCB channel already in use (OPEN)
130 Nonexistent device
131 Opened for WRITE only
132 Invalid command
133 Device or file not open
134 Invalid IOCB channel number
135 Opened for READ only
136 End of file (EOF) encountered
137 Truncated record
138 Device timeout (doesn't respond)
139 Device NAK
140 Serial bus input framing error
141 Cursor out of range
142 Serial bus data frame overrun error
143 Serial bus data frame checksum error
144 Device-done error
145 Bad screen mode
146 Function not supported by handier
147 Insufficient memory for screen mode
160 Disk drive number error
161 Too many open disk files
162 Disk full
163 Fatal disk /0 error
164 Internal file number mismatch
165 Filename error
166 Point data length error
167 File locked
168 Command invalid for disk
169 Disk directory full
170 File not found
171 Point invalid

108

STEP

STEP is an optional part of a FOR ... NEXT statement,
and thus does not function alone. See FOR.
STICK(jsno)

STICK returns one of eight different integer values that
indicate the position of the joystick handle connected to

joystick input number jsno. Fig. 3-1 shows the joystick
positions and their values.

14

11 = @ —7

9\ Js

y
13

Fig. 3-1. Joystick positions and the values returned by the joystick
statements.

The relationships between jsno and the game-controller
connections are:

Controller jsno

1 0
2 1
3 2
4 3
Example:

IF STICK(0)=14 THEN DY=DY+1

109

That conditional statement will increment the value of DY

if the joystick that is connected to game controller #1 is
pushed straight up.

STRIG(jsno)

STRIG refers to the condition of the pushbutton on the
joystick that is connected to game controller number jsno.
The statement returns a value of 0 whenever the pushbut-
ton is depressed, and a value of 1 whenever it is not
depressed. (See a table of game-controller input numbers
and jsno under STICK.)

STOP
Abbreviation: STO.

The STOP command halts the execution of a program and
causes the computer to return a message, STOPPED AT
LINE ____. STOP does not close any files, so the program
can be resumed from the STOP command by entering the
CONT command.

STOP is often inserted temporarily into a program to
halt program operations for debugging purposes. It is
rarely included in programs that are intended for use by
anyone but the programmer.

STR$ (x)

STR$ converts any valid, floating-point numeric value, x,
to a string equivalent.

See Chapter 2 for a detailed discussion of numeric and
string values.

THEN

THEN is an integral part of IF ... THEN conditional
statements, and makes no sense without the IF statement.
See IF.

TO

TOis an integral part of a FOR ... NEXT statement, and
thus makes no sense outside that context. See FOR.

110

TRAP lineno
Abbreviation: T.

The TRAP statement is used for dealing with statements
that might otherwise cause annoying error-message inter-
rupts. A classic instance appears in the following routine:

10 PRINT "ENTER A NUMBER" .
20 INPUT X

30 PRINT 1/X

40 GOTO 10

The idea is simple: prompt the user to enter a number,
then display its inverse—that number divided into 1. Ever-
ything works fine until the user enters a 0. That bringsup a
divide-by-0 error signal.

The following modification uses a TRAP statement to
deal with that situation in a far more graceful fashion:

10 PRINT "ENTER A NUMBER"
20 INPUT X

25 TRAP 100

30 PRINT 1/X

40 GOTO 10

100 PRINT “INFINITY"

120 GOTO 10

A TRAP statement must always precede the statement that
contains the potential error situation—at line 25 in this
instance. The lineno portion of the TRAP statement directs
program operations to that line, but only in the event of
an error condition. This program will “trap” to line 100
only if the operator happens to enter a 0 in response to
the INPUT statement in line 20.

A truly professional piece of BASIC programming will
use TRAP statements to avoid error problems whenever
users are not running the system properly. Commercial
software should never “crash” because of an error-
producing situation that can be dealt with more gracefully
with TRAP routines.

m

USR(addr)

The USR function directs the computer out of BASIC and
to a machine-language routine that begins at address
addr. Assuming that the machine-language programming
is properly structured, the computer will execute the pro-
gram and return to BASIC at the statement following the
USR.

Itis possible to carry any number of numeric values, or
2-byte memory addresses that point to numeric or string
values, by adding appropriate arguments to the USR func-
tion. Those arguments are placed, in right-to-left order,
on the system’s hardware stack. Consider this example:

USR(7148,128 ADR(MS$))

This USR function calls a machine-language subroutine
that begins at decimal memory address 7148. It first pushes
the line number for the next BASIC command onto the
hardware stack, followed by the value returned by the
ADR(MS$) function (the memory address of the content of
string variable M$), a 2-byte version of constant 128 and,
finally, a 1-byte integer indicating the number of argu-
ments in the function. The actual machine-language rou-
tine is then run.

An assembly language RET returns operations to the
BASIC instruction line that was originally pushed onto the
stack. The assumption, however, is that the instruction line
number is now residing on the top of the stack: and that
suggests that all other data, including that pushed to the
stack by the USR function, itself, must be pulled off before
executing the RET instruction.

See Chapter 7 for examples and further details.

112

VAL(x$)

VAL converts numerals that are represented in a string
format, x$, into their corresponding numeric value. It is
the inverse of the STR$(x) function.

X10 cmd, #chan, param1, param2, dev
Abbreviation: X.

The XIO command might well be the most versatile 1/0
command in ATARI BASIC. It can direct the flow of data
into and out of any available IOCB channel, work with any
sort of computer-compatible device, format special serial
operations, and even fill in blocks of graphics on the
screen.

See Chapter 6 for a special treatment of this command,
including tables that define its parameters.

113

Chapter 4

The Text and Graphics Screens

The ATARI system features 8 different screen modes and
21 meaningful variations of them. Table 4-1 summarizes
those screen formats.

Modes 0, 1, and 2 are usually classified as text and char-
acter modes, primarily because they are used for printing
characters from a well-defined, bit-mapped character set.
Modes 3 through 8, and their variations, are regarded as
graphics modes because they plot pixels of color to the
screen. The graphics modes are further divided into 4-
color, 2-color, and 1-color modes. The discussions in this
chapter are organized according to these classifications.

FEATURES COMMON TO ALL SCREEN MODES

Hue and luminance values, and the RAM addresses of the
five color registers, are common to all ATARI screen
modes. Table 4-2 lists the hue values, Table 4-3 shows the
luminance values, and Fig. 4-1 shows the basic arrange-
ment of the color registers and their RAM addresses.

NOTE: Color is defined throughout this book as the combi-
nation of hue and luminance values. There are 16 possible
hue values and 8 luminance values; and that implies that
ATARI graphics features 128 basic colors.

115

Table 4-1. Summary of ATARI
Home Computer Screen Modes

Graphics Size Text Window N
Mode {col Xrow) [{col X row) otes
0 40 X 24 — Text only
1 20 X 20 40 x4 Expanded charactars
with text window
2 20X 10 40X 4 Expanded characters
with text window
3 40 X 20 40 X 4 Low-resolution, 4-
color graphics with
text window
4 80 X 40 40 X 4 Medium-resolution,
2-color graphics with
text window
5 80 X 40 40 X 4 Medium-resolution, 4-
color graphics with
text window
6 160 X 80 40 X 4 High-resolution, 2-
color graphics with
text window
7 160 X 80 40 X 4 High-resolution, 4-
color graphics with
text window
8 320 X 160 40 X 4 Very high resolution,
2-color graphics with
text window
17 20X 24 none Same as Mode 1
without text window
18 20Xx12 none Same as Mode 2
without text window
19 40 X 24 none Same as Mode 3
without text window
20 80 X 48 none Same as Mode 4
without text window
21 80 X 48 none Same as Mode 5
without text window
22 160 X 96 none Same as Mode 6
without text window
23 160 X 96 none Same as Mode 7
without text window
24 320 X192 none Same as Mode 8
without text window

116

Table 4-1—cont. Summary of ATARI
Home Computer Screen Modes

Graphics Size Text Window
Mode {col Xrow) | {(col X row) Notes

32 40X 24 — Same as Mode 0

without screen clearing
33 20X 20 40X 4 Same as Mode 1

without screen clearing
34 20X 10 40X 4 Same as Mode 2

without screen clearing
35 40 X 20 40X 4 Same as Mode 3

without screen clearing
36 80X 40 40X 4 Same as Mode 4

without screen clearing
37 80 X 40 40X 4 Same as Mode 5

without screen clearing
38 160 X 80 40X 4 Same as Mode 6

without screen clearing
39 160 X 80 40X 4 Same as Mode 7

without screen clearing
40 320 X 160 40X 4 Same as Mode 8

without screen clearing
49 20X 24 none Same as Mode 17

without screen clearing
50 20X 12 none Same as Mode 18

without screen clearing
51 40 X 24 none Same as Mode 19

without screen clearing
52 80 X 48 none Same as Mode 20

without screen clearing
53 80 X 48 none Same as Mode 21

without screen clearing
54 160 X 96 none Same as Mode 22

without screen clearing
55 160 X 96 none Same as Mode 23

without screen clearing
56 320X 192 none Same as Mode 24

without screen clearing

117

Table 4-2. Standard ATARI Home Computer Hue
Values and Those Values as Multiplied by 16

Hue 16*Hue
Color Value Value
Black 0 0
Brown 1 16
Red-orange 2 32
Dark orange 3 48
Red 4 64
Deep tavender 5 80
Deep blue-green 6 96
Ultramarine blue 7 112
Medium blue 8 128
Deep blue 9 144
Blue-gray 10 160
Olive 11 176
Medium green 12 192
Deep green 13 208
Orange-green 14 224
Orange 15 240

NOTE: All color values assume a luminance of 0. Their actual
appearance depends on the color adjustments on the tv or monitor, and
the names, themselves, are subject to personal interpretation.

Table 4-3. Relevant Luminance Values

Relative
Luminance

Value

Darkest [0}

Lightest 14

NOTE: Odd-numbered integers in the range of 1 through 15 produce the
same luminance as the preceding even-numbered value.

118

REGISTER 0
ADDRESS 708

REGISTER 1
ADDRESS 709

Fig. 4-1. The five standard color

registers and their deci- AREGISTER 2
mal RAM addresses. DDRESS 710
REGISTER 3

ADDRESS 711

REGISTER 4

ADDRESS 712

The ATARI system uses a ROM-based character set that
is used for plotting text characters and a handful of special
graphics characters. Each character has a code number
assigned to it, but there are two different coding schemes.

One coding scheme, shown in Table 4-4, uses code
numbers that are closely related to the customary ASCII
format (the addition of some special graphics characters
prompts most writers to refer to it as the ATARI ASCII, or
ATASCI, character set). These are the character codes that
are relevant to BASIC functions such as CHR$ and ASC.

Table 4-5 shows the ATARI internal character set and
corresponding codes. These are the values that are actu-
ally carried as data in the screen RAM address locations;
and from a programmer’s point of view, they are the
values that are most relevant when POKEing and PEEKing
characters into the screen RAM area. The table does not
include the inverse characters, but they are plotted by
setting the most-significant bit of the character data byte
to 1, or adding 128 to the code numbers shown here.

Generally speaking, the print cursor is a mechanism that
points to a position on the screen when the next character
or pixel of color is to be plotted. All screen modes share
several sets of registers that are directly related to the posi-
tion of the print cursor, and the addresses and functions
are summarized for you in Table 4-6.

119

Table 4-4. The ATASCII-Coded Character Set

Code é :::fgllr Cllll\a?acclt'er Keystroke(s)
or Control
0] IE NUL CTRL-,
1 II’ SOH CTRL-A
2 [j} STX CTRL-B
3 E ETX CTRL-C
4 @ EOT CTRL-D
5 i ENQ CTRL-E
6 ACK CTRL-F
7 BEL CTRL-G
8 @ BS CTRL-H
9 G] HT CTRL-I
10 E LF CTRL-J
1 = VT CTRL-K
12 u FF CTRL-L
13 E CR CTRL-M
14 [;) SO CTRL-N
15 l:——J Sl CTRL-O
16 @ DLE CTRL-P
17 E] DC1 CTRL-Q

120

Table 4-4—cont. The ATASCII-Coded Character Set

Code é l.nraArasc(;’:r Crf\asrfclier Keystroke(s)
or Control
18 E) DC2 CTRL-R
19 E DC3 CTRL-S
20 [] pCa CTRL-T
21 - NAK CTRL-U
22 I SYN CTRL-V
23 E] ETB CTRL-W
24 wlke CAN CTRL-X
25 l_ EM CTRL-Y
26 9 SUB CTRL-Z
27 E ESC ESC/ESC
28 'f FS ESC/CTRL--
29 * GS ESC/CTRL-=
30 | RS ESC/CTRL-+
31 -3 us ESC/CTRL-*
32 (space) Space Bar
L .
33 ! SHIFT-1
34 i " SHIFT-2

121

Table 4-4—cont. The ATASCII-Coded Character Set

ASCII
Code ATASCII Character Keystroke(s)
Character
or Control

4k
35 iF # SHIFT-3

_.8.
36 £ s SHIFT-4
37 ' % SHIFT-5
38 & & SHIFT-6
39) ' SHIFT-7
40 i { SHIFT-9
M 3) SHIFT-0
42 e . .
43 + + +
44 * ,
45 - - -
46 +
a7 / /

i3

48 L o} 0
a0 , ,
50 = 2 2

122

Table 4-4—cont. The ATASCII-Coded Character Set

ASCli
ATASCII
Code Character Character Keystroke(s)
or Control

52 4 4 4
53 wd 5 5
54 & 6 6
55 7 7

:;:E
56 o 8 8
57 i 9 9

L3
58 ° SHIFT-;

<
59 &
60 < <
61 — = =
62 > >
63 2 ? SHIFT-/
64 4 @ SHIFT-8
65 A A A
66 I B 8
67 i c C

‘st
68) D D

123

Table 4-4—cont. The ATASCII-Coded Character Set

ASCIl
ATASCII
Code Character Character Keystroke(s)
or Control
-
69 Ed E E
70 i F F
71 is G G
Li
72 i1 H H
73 . .
i
74 ui J J
75 f‘ K K
;
76 i L L
77 ,"'§ M M
ki
78 it N N
N
79 L (0] (o]
i
80 i P P
81 i Q o}
82 N R R
83 = s s
84 T T T
85 i U u

124

Table 4-4—cont. The ATASCII-Coded Character Set

ASCll
Code ATASCII Character Keystroke(s)
Character
or Control
86 ii Vv Y
87 fd W w
88 X X
89 - Y Y
":.‘
90 R z 4
91 i [SHIFT-;
92 \ SHIFT-,
-1
93 R] SHIFT-+
94 " . SHIFT-*
95 - — SHIFT--
96 l e ~ CTRL-
97 & a LOWR A
H
98 L b LOWR B
99 L c LOWR C
100 8] d LOWR D
101 i3 e LOWR E
102 f f LOWR F

125

Table 4-4—cont. The ATASCII-Coded Character Set

Code (‘:\Jaeas(g:r Cl‘\\affclt'er Keystroke(s)
or Control

103 g LOWR G
104 h LOWRH
105 i LOWR |
106 7 j LOWR J
107 . k LOWR K
108 1 | LOWR L
109 m LOWR M
110 1 n LOWR N
11 o o LOWR O
112 E p LOWR P
113 ! q LOWR Q
114 T r LOWR R
115) s LOWRS
116 i t LOWR T
117 | u LOWR U
118 W v LOWR V
119 w LOWR W

126

Table 4-4—cont. The ATASCII-Coded Character Set

Code é:::‘g:;lr gl%s:)a:c:t:z Keystroke(s)
120 :] x LOWR X
121 g y LOWR Y
122 ? z LOWR Z
123 i g CTRL-;

124 i | SHIFT-=
125 N | ESC/CTRL-<
126 4 ~ ESC/BACK S
127 .' DEL ESC/TAB
128 n NUL (A\) CTRL-,
129 [: SOH (M) CTRL-A
130 .] STX () CTRL-B
131 u ETX (M) CTRL-C
132 :] EOT (A) CTRL-D
133 n ENQ (M) CTRL-E
134 ACK () CTRL-F
135 BEL (A) CTRL-G
136 E BS (A) CTRL-H

127

Table 4-4—cont. The ATASCII-Coded Character Set

Code é’.‘ral:as(g:_ g}%s;a:c:tl;rl Keystroke(s)
137 E HT (AN) CTRL-
138 [! LF (AN cTRL-Y
139 : vT (A) CTRL-K
140 u FF (M) CTRL-L
141 i CR (A) cTRL-M
142 ! SO (A) CTRL-N
143 u St (AN crrL-0
144 H DLE (M) CTRL-P
145 n DC1 (M) cTRL-Q
146 = DC2 (A) CTRL-R
147 DC3 (M) cTRL-s
148 D DC4 (M) CTRL-T
149 5 NAK (A) CTRL-U
150 [. SYN (M) CTRL-V
151 E ETB (AN cTRL-w
152 : CAN (A) CTRL-X
153 El EM (N) CTRL-Y

128

Table 4-4—cont. The ATASCII-Coded Character Set

Code g::fc(::r g'l%s:)%{zz Keystroke(s)
154 u suB (M) CTRL-Z
155 E ESC (M) RETURN
156 ﬂ FS ESC/SHIFT-BACK S
157 ﬂ GS ESC/SHIFT->
158 RS ESC/CTRL-TAB
159 us ESC/SHIFT-TAB
160 . {space) (M) Space Bar
161 - ! (M) SHIFT-1
162 n - () SHIFT-2
163 E # (M) SHIFT-3
164 B $ (M) SHIFT-4
165 m % () SHIFT-5
166 ﬂ & (M) SHIFT-6
167 . . (M) SHIFT-7
168 n ((M) SHIFT-9
169 u) (M) SHIFT-0
170 E * (M) =

129

Table 4-4—cont. The ATASCII-Coded Character Set

Cods | ATASCH | er | Keystrokels
or Control

171 H + (AN +

172 n (AN

173 . — AN —

174 - (AN

175 u / N 7

176 E 0 (A) O

177 n 1 T

178 ﬂ 2 (AN 2

179 B 3 AN) 3

180 B 4 A 4

181 E 5 (AN) 5

182 & 6 (N) 6

183 n 7 (AN 7

184 E 8 (AN) 8

185 B 9 (M) 9

186 () SHIFT-;
187 (N

130

Table 4-4—cont. The ATASCII-Coded Character Set

Code onasch ;:'r%s:,%:r: Keystroke(s)
188 - < N <
189 B = (N =
190 n > AN >
191 B ? (M) SHIFT-/
192 ﬂ @ (M) SHIFT-8
193 E A A A
194 B B (A) B
195 E c (AN ¢
196 E D (AN) D
197 ﬂ E (A) E
198 E F (M) F
199 B G (AN) G
200 E H (A) H
201 8 | (M)
202 u J (N J
203 E K A K
204 ﬂ L AN L

131

Table 4-4—cont. The ATASCII-Coded Character Set

Code onasch grr%s:)a:{tlrirl Keystroke(s)
205 m M (AN) M
206 m N (A) N
207 m o) (AN) O
208 E p (AN) P
209 Q (AN a
210 iy R (A) R
211 B S (A s
212 B T AN T
213 m u V. SRV
214 m v (A) V
215 m w (A w
216 E X (N) X
217 n Y (AN) v
218 ﬂ z (M) 2
219 n [(M) SHIFT,
220 ! \ () SHIFT-+
221 B] () SHIFT-.

132

Table 4-4—cont. The ATASCII-Coded Character Set

Code é\:::asgélr g}%s:,%{zrl Keystroke(s)
222 n & (M) SHIFT-*
223 ! — (M) SHIFT--
224 u N (M) CTRL-.
225 E a (A) LOWRA
226 E b (M) LOWRB
227 n c (A) LOWRC
228 E d (A) LOWRD
229 B e (M) LOWRE
230 n f (A) LOWRF
231 g (A) LOWRG
232 B h (M) LOWRH
233 a i (AN) LOWRI
234 u j () LOWRJ
235 E k (AN LOWRK
236 i (A) LOWRL
237 o m (AN) LOWR M
238 E n (A) LOWRN

133

Table 4-4—cont. The ATASCII-Coded Character Set

Code é::fg:r Ctﬁ?:;:er Keystroke(s)
or Control
239 n o () LOWRO
240 u p () LOWRP
241 B q (AN) Lowra
242 n r (A) LOWRR
243 E s (M) Lowrs
244 B t (A) LOWRT
245 E u (A) LOWRU
246 u v (M) LOWRV
247 B w (A) LOWRW
248 u x (M) LOWR X
249 E y (A) Lowry
250 u z (A) LOWRZ
251 n i (AN cTRL-;
252 n | () SHIFT-=
253 B ! ESC/CTRL-2
254 :] ~ (M) ESC/CTRL-BACK S
255 I] DEL (M) ESC/CTRL->

134

Table 4-5. The ATARI's Internal Character Set

ROM Addresses

Code Character Start End
0 57344 57351
1 i 57352 57359
2 H 57360 57367
3 ik 57368 57375
4 £ 57376 57383
5 = 57384 57391
6 57392 57399
7 57400 57407
8 i 57408 57415
9 3 57416 57423

10 < 57424 57431
11 4 57432 57439
12 . 57440 57447
13 - 57448 57455
14 . 57456 57463
15 57464 57471

135

Table 4-5—cont. The ATARI’s Internal Character Set

Code Character ROM Addresses
Start End
16 '} 57472 57479
17 1 57480 57487
8 .: 57488 57495
19 3 57496 57503
20 < 57504 57511
21 5 57512 57519
= & 57520 57527
23 57528 57535
24 g 57536 57543
% ¥ 57544 57551
26 Z 57552 57559
27 E 57560 57567
28 57568 57575
29 o 57576 57583
30 57584 57591
31 “:. 57592 57599

136

Table 4-5—cont. The ATARI's Internal Character Set

ROM Addresses

Code Character Stort End
32 id 57600 57607
33 ? 57608 57615
34 B 57616 57623
35 i 57624 57631
36 N 57632 57639
37 E 57640 57647
38 E 57648 57655
39 i 57656 57663
40 H 57664 57671
41 i 57672 57679
42 g 57680 57687
43 H 57688 57695
a4 { 57696 57703
45] 57704 57711
46 §‘~ 57712 57719
a7 i 57720 57727

137

Table 4-5—cont. The ATARI’s Internal Character Set

Code Character ROM Addresses
Start End
48 = 57728 57735
49 i 57736 57743
50 i 57744 57751
51 o 57752 57759
52 T 57760 57767
53 i 57768 57775
54 i} 57776 57783
55 o 57784 57791
56 57792 57799
57 ¥ 57800 57807
58 _:’- 57808 57815
59 { 57816 57823
60 57824 57831
61 i 57832 57839
62 57840 57847
63 57848 57855

138

Table 4-5—cont. The ATARI’s Internal Character Set

ROM Addresses

Code Character Start End
64 n 57856 57863
65 I} 57864 57871
66 .] 57872 57879
67 n 57880 57887
68 :] 57888 57895
69 ﬂ 57896 57903
70 57904 57911
71 57912 57919
72 !I 57920 57927
73 E 57928 57935
74 B 57936 57943
75 n 57944 57951
76 “ 57952 57959
77 i 57960 57967
78 ! 57968 57975
79 ﬂ 57976 57983

139

Table 4-5—cont. The ATARI's Internal Character Set

Code Character ROM Addresses
Start End
80 n 57984 57991
81 n 57992 57999
82 = 58000 58007
83 58008 58015
84 D 59016 58023
85 E 58024 58031
86 [. 58032 58039
87 n 58040 58047
88 = 58048 58055
89 I:I 58056 58063
90 u 58064 58071
1 E 58072 58079
92 ﬂ 58080 58087
93 ﬂ 58088 58095
94 58096 58103
95 58104 58111

140

Table 4-5—cont. The ATARI’s Internal Character Set

Code Character ROM Addresses
Start End
926 u 58112 58119
97 = 58120 58127
98 3 58128 58135
929 o 58136 58143
100 i 58144 58151
101 & 58152 58159
102 £ 58160 58167
103 = 58168 58175
104 3] 58176 58183
105 i 58184 58191
106 ": 58192 58199
107 i 58200 58207
108 1 58208 58215
109 E 58216 58223
110 " 58224 58231
11 - 58232 58239
o

141

Table 4-5—cont. The ATARI’s Internal Character Set

Code Characfer St:tOM Addresse;nd
112 B 58240 58247
113 o 58248 58255
114 T 58256 58263
115 o 58264 58271
116 1. 58272 58279
117 i 58280 58287
118 ¥ 58288 58295
119 1 58296 58303
120 g 58304 58311
121 iy | 58312 58319

e
122 T 58320 58327
123 E 58328 58335
124 i 58336 58343
125 N 58344 58351
126 4 58352 58359
127 | 3 58360 58367

142

Table 4-6. Cursor-Position Registers

Label Address Purpose
ROWCRS 84 Row location of the active cursor
COLCRS 85 LSB of column location of the
active cursor
86 MSB of column location of the
active cursor
OLDROW 90 Current row location of the drawing
cursor
OoLDCOL 91 LSB of current column tocation of
the drawing cursor
92 MSB of the current column location
of the drawing cursor
NEWROW 96 Destination row location for the
drawing cursor
NEWCOL 97 LSB of destination column location
of the drawing cursor
98 MSB of destination column location
of the drawing cursor
TXTROW 656 Swapped text/drawing row location
of the cursor
TXTCOL 657 LSB of swapped text/drawing column
location of the cursor
658 MSB of swapped text/drawing column
location of the cursor
CRSNH 752 Cursor inhibit; 0=0N, 1=0FF

Cursor-related BASIC statements make full use of those
registers, and it is possible to POKE new cursor positions
into them.

MODE-0 GRAPHICS

The Mode-0 screen is the most-used text screen, and it is
the system’s default screen. Its characteristics apply to the
text-window portion of other screen modes that use the
split-screen feature.

Itis usually adequate to enter this screen mode by doing
a keystroke, but a few lesser-used text
operations are valid only by first executing the GRAPHICS
0 command, or opening |OCB Channel 6 for read/write
operations for the screen device.

143

Organization of the Mode-0 Color Registers

Fig. 4-2 shows the organization of the ATARI’s five color
registers for the Mode-0 text screen. The same organiza-
tion, incidentally, applies to the text-window portions of
other split-screen graphics modes.

MODE-0
USAGE
REGISTER 0
NOT US
USED ADDRESS 708
CHARACTER REGISTER 1
LUMINANGE ADDRESS 709

CHARACTER HUE

REGISTER 2
AND BACKGROUND

COLOR ADDRESS 710

NOT USED REGISTER 3

ADDRESS 711

BORDER REGISTER 4
COLOR ADDRESS 712

Fig. 4-2. Organization of color registers for the Mode-O text screen.

Color register 1 carries the luminance value for the text
characters. The hue value assigned to Register 2 applies to
both the background and foreground characters, while
the luminance value applies only to the background. It is
thus impossible to assign different hue values to the
Mode-0 characters and background; the relative lumi-
nance values assigned to registers 1 and 2 determine the
contrast between the background and characters.

Register 4 carries the full color definition for the Mode-
0 border.

From BASIC, the Mode-0 color registers can be set by
applying the SETCOLOR statement or by POKEing the
appropriate data directly into the registers. The registers
can, of course, be directly loaded from a machine-
language program as well.

144

The SETCOLOR statement refers directly to the color-
register number, hue values and luminance values:

SETCOLOR 1,0,lum
SETCOLOR 2,hue,lum
SETCOLOR 4,hue,lum

Those three statements, in turn, set the luminance of the
foreground characters, the background color and charac-
ter hue, and the border color.

When using POKE statements to set the color registers,
the addr portion of the statement refers to the address of
the color register and the data portion refers to the overall
color designation: 16*hue + lum. So in a general sense, a
POKE statement for setting the color registers takes this
form:

POKE addr,16*hue + lum

The following POKE statements, in turn, set the lumi-
nance of the foreground characters, the background color
and character hue, and the border color.

POKE 709,lum
POKE 710,16*hue + lum
POKE 712,16*hue + lum

Working With the Mode-0 Column/Row Format

Fig. 4-3 shows the Mode-0 screen as organized in a
column/row format. It shows 40 columns (labeled 0
through 39) and 24 rows (labeled 0 through 23). That is, in
a manner of speaking, the equivalent of a horizontal-
vertical coordinate system; and it is most convenient
when using BASIC statements that refer directly to col and
row parameters and use the print-cursor features.

145

T T 1T T T T T T T 11 T T T T T T T T T T T T T T 1T
6€8ELEIESEPECETELEOE6CBCLC 92522 ECTTIC0Z6L8LLLILGLYLELSLLL

" NAWN109 SOIHdYHD

T

oL

T T T
68 L

T
9

T T 11
Svee

-

Lol

MOY SOIHdVYHYD

Fig. 4-3. The column/row format for the Mode-0 text screen.

146

BASIC’s PRINT statement provides the most convenient
means for printing text information to the Mode-0screen.
Although the print cursor is normally invisible during the
execution of a program, every character that is PRINTed to
the screen affects the cursor’s position. Generally, that
means plotting a character to the screen and then moving
the cursor to the next-available column location. If a line
of text happens to exceed column-location 39, printing
will resume from the first column in the next-available
row. The print cursor responds to an EOL (end-of-line)
character by moving to the beginning of the next-avail-
able line on the screen. End-of-screen scrolling is in effect
throughout Mode-1 text-printing operations.

In Mode 0, PRINT statements directly affect the cursor
locations in ROWCRS and COLCRS (see Table 4-6).

Working With the Mode-0 Margins

Normal Mode-0 PRINT operations do not print text into
the first two column locations of each line. The system
automatically assigns this 2-column margin at the left side
of the screen; and under those circumstances, PRINT
operations are confined to columns 2 through 39.

It is possible, however, to adjust those print margins by
POKEing some appropriate values into the following RAM
locations:

LMARGN 82 Column number of left margin
RMARGN 83 Column number of right margin

The default values for LMARGN and RMARGN are 2
and 39, respectively. You can PRINT into the full row by
eliminating the left margin:

POKE 82,0

Other margin settings are possible, but the column value
POKED to RMARGN must be greater than the value
POKED to LMARGN. Doing a restores the
default text-margin settings.

147

Using the POSITION Statement

The POSITION col,row statement, when used with the
Mode-0 screen, refers directly to the screen’s column/row
format. In that context, the values assigned to col and row
must be 0 through 39 and 0 through 23, respectively.

POSITION is most useful for formatting text on the
screen, and the statement makes it possible to see the
print cursor outside the current margin boundaries.

POSITION directly affects the values that are assigned to
the ROWCRS and COLCRS registers (see Table 4-6); and
one can, in fact, mimic the function of a POSITION state-
ment by POKEing the same col and row values into those
registers.

Alternative Column/Row Techniques

The matter of plotting text to the Mode-0 screen is not
limited to using PRINT statements. Three statements that
are normally regarded as purely graphics statements can
be used with the Mode-0 text screen as well: COLOR,
PLOT, DRAWTO and XIO 18.

NOTE: The COLOR, PLOT, DRAWTO and XIO 18 state-
ments function as described in Mode 0 only if IOCB 6 is
open; and that is most easily accomplished by preceding
the operations with a GR.0 command.

PLOT col,row is normally used for plotting a colored
pixel to the designated column/row coordinate of a graph-
ics screen. The color of the pixel in such instances is
determined by the most recently executed COLOR reg
statement, where reg refers to the color residing in a par-
ticular color register. Used with the Mode-0 screen, how-
ever, PLOT prints a single character to the designated
point on the screen, and the character that is thus printed
is determined by the most recent COLOR statement,
where the COLOR parameter is the ATASCII code number
(see Table 4-4). Consider the following sequence:

GR.0:COLOR 65:PLOT 10,5
148

That will print an upper-case letter A (ATASCII code 65) to
column 10, row 5.

And applying a bit of imagination, it is also possible to
create some special text effects with the DRAWTO state-
ment. Normally, DRAWTO col,row will draw a line of
color from a PLOT point to the designated column/row
coordinate. The last-executed COLOR statement deter-
mines the color of that line. When working with the
Mode-0 screen, however, the parameter assigned to the
COLOR statement determines the ATASCII character to
be plotted between PLOT-specified place and the DRAWTO-
specified place. The following routine plots lower-case
letter as from column 0, row 0 to column 39, row 20:

GR.O:COLOR 97:PLOT 0,0:DRAWTO 39,20

These operations do not affect the text-cursor registers,
ROWCRS and COLCRS; rather they work with OLDROW,
OLDCOL, NEWROW and NEWCOL (see Table 4-6).

The XIO 18 statement can fill a section of the screen
with a specified character. For example:

10 GRAPHICS O

20 PLOT 20,10:DRAWTO 20,0:DRAWTO 0,0:POSITION
0,10

30 POKE 765,97

40 X!10 18,#6,0,0,”'S:"

Program line 10 sets screen 0 (and opens IOCB #6 for
screen operations), and line 20 defines the outline of a
rectangular field on the screen. Line 30 POKEs the ATASCII
code for the desired character, and line 40 executes the
“fill” operation.

Using LOCATE, GET, and PUT in Mode-0

LOCATE, GET, and PUT also deal with the Mode-0 screen
in a column/row format; and like the graphics statements
described in the previous section, IOCB Channel 6 must
be open in order to use them.

149

Executing a PUT #6,x plots the ATASCIlI character
represented by code x to the screen. The position is
determined by the main print cursor registers, ROWCRS
and COLCRS, and the execution of the statement advan-
ces the cursor position. In this context, the PUT statement
is easier to use than the COLOR/PLOT combination.

The GET statement is the complement of PUT. Rather
than plotting a specified character to the current cursor
location, it returns the ATASCII code value of any charac-
ter that might be printed there. The general form is:

GET #6,numvar

where numvar is a numerical variable that takes on the
ATASCII value determined by the GET statement.

The LOCATE function is quite similar to GET, but
LOCATE does not operate according to the current cursor
position. In fact, it operates entirely independent of it.
Executing a statement of this general form:

LO CATE col,row,numvar

assigns the ATASCII code number of any character printed
to Mode-0 location col,row to numerical variable, num-
var.

The Mode-0 Screen RAM Format

It is quite often helpful to view the Mode-0 screen in
terms of the screen RAM addresses and data. Fig. 4-4
shows the addressing ranges for each line on the screen.

This view of the Mode-0 screen facilitates the use of
POKE and PEEK statements and machine-language rou-
tines for text operations. (The version in the Appendices
lists both the decimal and hexadecimal address locations.)

POKE and PEEK statements both refer to an address and
a byte of data that is associated with that address. The
address in this case refers to the absolute screen address
locations shown in the table; the data refers to the internal
character codes cited in Table 4-5.

150

65S60%

0c60y

6160¥

[-08807

6.280¥

-0v80y

6€£80¥

I-0080Y

66,07

[-09.0¥

65207

—0c.0Y

6L20¥

- 0890y

6.90v

-0¥90p

6£90¥

-0090

6650

- 0950V

6GG0Y —

- 02S0Y

6160V —

- 08v0Y

640¥

- Oovvoy

6EYOY

-00vOY

66€0Y

[-09E0Y

6GE0Y —

0zeoy

6LE0Y

08zov

6420%

-0rcoy

6€20Y

[-0020v

6610V —

-09L0¥

6510V

-0ci0v

6LL0v—

-0800¢

6,007

-0v00Y

6£00¥ —

[-0000%

OCr N OTHOMNO®D

Fig. 4-4. The screen RAM address format for the Mode-0 text screen.

151

Plotting a character to the screen is thus a matter of
executing a statement of this general form:

POKE addr,data

where addr is the screen address that represents the

desired printing location on the screen, and data is the
internal character code of the character to be printed
there. POKEing data values larger than 127 will print the
inverse version of the internal character set.

In this context, the following sort of PEEK statement
returns the internal-code value of the character residing at
the specified address:

PEEK(addr)

MODE-1 AND MODE-2 GRAPHICS

Screen Modes 1 and 2 are expanded-text modes. Mode
1 expands the characters to twice their Mode-0 width, and
Mode 2 expands the characters to twice their Mode-0
width and height. Modes 1 and 2 both have a 4-line text
window along the bottom of the screen that is devoted to
text operations that are similar to those of the Mode-0
screen.

The normal procedure for setting up the expanded-text
modes is by executing a GRAPHICS 1 or GRAPHICS 2
command. In both instances, the system will clear the gra-
phics and text-window portions of the screen. A later dis-
cussion in this section describes how to set up versions
that do not have a text window, and enter one of the
expanded-text modes without clearing the screen. Initiat-
ing either expanded-text mode automatically opens IOCB
6 for the graphics portion of the screens.

152

Organization of the Mode-1 and Mode-2 Color Registers

Fig. 4-5 shows the organization of the ATARI’s five color
registers as applied to both Modes 1and 2. The figure also
indicates the register organization for the text-window
portion of the screens.

TEXT WINDOW EXPANDED-CHARACTER
USAGE SCREEN
UPPER-CASE LETTERS,
NOT USED REGISTER 0 NUMERALS AND
ADDRESS 708 PUNCTUATION
CHARACTER REGISTER 1 O el T o
LUMINANCE ADDRESS 709 GRAPHICS
CHARACTER HUE INVERSE-VIDEO
AND BACKGROUND ’B%Ggggg”;fo VERSION OF
COLOR A REGISTER 0
INVERSE-VIDEO
NOT USED REGISTER 3 VERSION OF
ADDRESS 711 REGISTER 1
BORDER REGISTER 4 BACKGROUND
COLOR ADDRESS 712 COLOR

Fig. 4-5. Organization of the color registers for Modes 1 and 2.

Screen Modes 1 and 2 can use all five registers, with
register 4 determining the background color for the graph-
ics portion of the screen (which, incidentally, is the same
as the border color for the text window).

The graphics and text window also share registers 1 and
2, thus making it difficult to print a graphic from register 2
that has a color different from the text-window’s back-
ground. Likewise, working with color register 1in terms of
graphics will influence the luminance of the characters in
the text-window area.

From BASIC, the color registers can be set by applying
the SETCOLOR statement or by POKEing the appropriate
data directly into the registers.

153

The SETCOLOR statement works with the register color
in terms of separate hue and luminance values:

SETCOLOR reg hue,lum

where reg is the register number (0 through 4), and hue
and lum values are specified according to Tables 4-2 and
4-3.

When using POKE statements to set the color registers,
the addr portion of the statement refers to the address of
the color register and the data portion refers to the overall
color designation: 16*hue + lum. So in a general sense, a
POKE statement for setting the color registers takes this
form:

POKE addr,16*hue + lum

Accessing the Character Set From Modes 1 and 2

The graphics portion of the screen for Modes 1 and 2 uses
the same character set as Mode 1 and the text windows for
Modes 1and 2. When working in the expanded-character
modes, however, it is not possible to access the entire
character set at any given moment—only one-half or the
other is available.

Unless directed otherwise, the system accesses only the
first 64 characters shown in Table 4-5 (internal codes 0
through 63). That includes all of the commonly used
numerals, punctuation and upper-case letters of the
alphabet. Whenever it is necessary to access the second
half of the character table (codes 64 through 127), the MSB
of that address of that part of the ROM table must be
POKEd into address 756.

154

NOTE: Unless you are using a custom character set (de-
scribed later in this chapter), the following POKE functions
are necessary only when printing text to the expanded-
character portion of screen Modes 1 and 2:

Access the characters for internal codes 0 through 63 by
executing:

POKE 756,224

Access the characters for internal codes 64 through 127 by
executing:

POKE 756,226

It is not possible to print inverse versions of the
expanded characters.

Working With the Mode-1 and -2 Column/Row Format

Figs. 4-6 and 4-7 show the column/row formats for the
Mode-1 and Mode-2 screens, respectively. Both have a 40
column, 4-row text window, but the expanded-character
portions are different. The Mode-1 screen uses a 20-
column, 10-row format, while the Mode-2 screen uses a
20-column, 20-row format.

Although it is also possible to regard these screens from
a RAM address format, the column/row format is more
appropriate when working with BASIC statements that
refer directly to col and row parameters and use the print-
cursor features.

BASIC’s PRINT statement provides the most convenient
means for printing characters to both portions of the
Mode-1 and -2 screens. The expanded-character and text-
window portions use a different PRINT syntax and differ-
ent cursor-position registers.

155

MOANIM
1xX3al

NWNI0D £X3al

86 9 ¥e 2 Of 82 o_m v_N (44 o_w 8L 9l ¥l 2 JF

| 1] |] | | | 1 |

—

>4

=14

-2

02

—61

-8

L1

-9t

-Gl

=i

—cl

—2l

-

-0l

—6

-8

-4

-9

—G

-y

—€

-

-t

-0

]
6}

l l | I | | | | B | |)
8L ZL 9L GL vL € 21 L 0L B8 8 L 9

NHNNT0D SOIHdYHD

w0 —

-

< —1

-

MOHY SDOIHdVYHYD

Fig. 4-6. Column/row format for screen Mode 1.

156

When working with split-screen Modes 1 and 2, ordi-
nary PRINT statements refer to the text window and use
the TXTCOL and TXTROW registers for keeping track of
the text window cursor position (see Table 4-6).

But the printing operations for the expanded-character
portion of the screen uses IOCB Channel 6. So any PRINT
operation to that part of the screen must use a PRINT #6
statement. The general syntax is:

PRINT #6;item

where item is a valid PRINT constant or variable.

Printing operations to the expanded-character screen
use cursor-position registers ROWCRS and COLCRS.

The expanded-character and text window portions of
the screens thus use different cursor registers. Both sets of
registers keep track of their respective cursor locations
and carry out automatic operations, such as advancing the
cursor after printing each character. The text window has
a vertical scrolling feature, but the expanded-character
portion of the screen does not. It is also possible to adjust
the margin settings for the text window (as described for
Mode-0 operations), but the expanded-character part of
the screen has no margin feature at all.

Using a PRINT #6 statement to print characters directly
to the expanded-character portion of the screen causes
some potentially troublesome, but generally manageable,
character and color effects. What is prescribed by a PRINT
#6 statement doesn’t necessarily appear that way on the
expanded-character part of the screen. This is due to the
fact that Modes 1 and 2 can access only half the internal
character set at any given time (see Table 4-5). So if a
PRINT #6 statement refers to some lower-case letters, and
the system is working with the first half of the internal
character set, those characters will be printed to the
expanded-character screen as upper-case characters.

157

MOGNIM
X3l

8¢ 9t e ¢t
[1 | |

oc 8

_Nw_m ve

NWN10D 1X31

¢¢c 0c 8 9L vL ¢ 0L 8 9 vy z 0
1 1 1 — | 1 1 L 1

!
61

T T
8l Ll

T
9l

T
Gl

1
143

I 1
€Lzl

1 I T I I | T
L 0L 6 8 L 9 § vy € 2 l 0

NIWNT0J SJIHdYHO

—

MOY SOIHdVYHYH

Fig. 4-7. Column/row format for screen Mode 2.

158

Furthermore, the color-register selection depends on
the nature of the characters specified by a print #6
statement:

PRINT #6;upper case will print from color register 0
PRINT #6;lower case will print from color register 1
PRINT #6;inverse upper case will print from color regis-
ter 2

PRINT #6;inverse lower case will print from color regis-
ter 3

Using the POSITION Statement

The POSITION statement always affects cursor-position
registers COLCRS and ROWCRS; and since these registers
refer to the expanded-character cursor in Modes 1 and 2,
it follows that the POSITION statement works only with
that part of the screen. The text window is not affected by
that statement.

When used with screen Modes 1 and 2, POSITION col,
row statement refers directly to the screens’ column/row
format. In that context, the values assigned to col and row
must be within the ranges specified for those screens in
Figs. 4-6 and 4-7. For Mode 1 must be 0 through 19 for
both parameters; and those assigned for Mode 2 must be
0 through 19 for the col parameter, and 0 through 9 for the
row parameter.

POSITION is most useful for formatting text that is
printed to the expanded-character portion of the screen.

As mentioned earlier, POSITION does not affect the
formatting of text in the text window. It is possible to
simulate a POSITION statement for that portion of the
screen by POKEing col and row values directly into the
text-window cursor registers, TXTCOL and TXTROW. The
general syntax is:

POKE 656,row
POKE 657,col

where the text-window row values are between 0 and 3,
and the col values are between 0 and 39.

159

Alternative Column/Row Techniques

Plotting expanded-character text to the Mode-1 and -2
screens is not limited to PRINT #6 statements; four state-
ments that are normally regarded as purely graphics
statements—COLOR, PLOT, DRAWTO, and XIO 18—can
be useful, too. PLOT, DRAWTO, and XIO 18 deal with
cursor-position registers OLDROW, OLDCOL, NEWROW
and NEWCOL (see Table 4-6); and in screen Modes 1 and
2, those registers are dedicated to cursor operations in the
expanded-character portions of the screen. Those state-
ments are thus quite useful for expanded-text operations,
but cannot be used for text-window operations.

I0CB Channel 6 must be open in order to use them, but
the execution of a GRAPHICS 1 or GRAPHICS 2 statement
will do that job for you.

Used with the Mode-1 or Mode-2screen, PLOT col,row
prints a single character to the designated point on the
expanded character portion of the screen. The character
that is thus printed, and the color register it uses, is deter-
mined by the most recent COLOR statement. Table 4-7
summarizes the character and color register that is speci-
fied by a COLOR statement.

The table shows that each character can be printed from
one of four color registers. Using the normal character set,
for instance, a COLOR 97 will cause a subsequent PLOT
statement to print an upper-case letter A from color regis-
ter 2. But if the alternate internal character set is
selected—by executing a POKE 756,226—the COLOR 97
statement will cause a subsequent PLOT operation to print
a lower-case letter a from color register 2.

In screen Modes 1 and 2, then, the COLOR statement
specifies both the character to be printed and the color
register itis to use. Subsequent PLOT, DRAWTO, and XIO
18 statements will use that information.

160

Table 4-7. Character and Color-Register Codes

for the Color Statement in Screen Modes 1 and 2

Color value and

Character Printed

Register Used norm alt
32 0 160 128 E
33 1 161 129 ! "
ii
34 2 162 130 l
3 3 163 131 ik ol
*
36 4 164 132 % *
37 5 165 133 e -
38 6 166 134 D P4
3 7 167 135 ! “
40 8 168 136 D ‘
a1 9 169 137 -
| "
42 10 170 138 k2 L:
3 11 7 139 = n
‘ L
4 12 172 140 . o
P S|
A | —_—
a5 13 173 141 -
46 14 174 142 . i -—
O
a7 15 175 143 B "

161

Table 4-7—cont. Character and Color-Register Codes
for the Color Statement in Screen Modes 1 and 2

Color value and Character Printed
Register Used norm alt
Y
48 16 176 144 R o
49 17 177 148 1 -
50 18 178 146 & -
|
51 19 179 147 PG +
— —
| ot
52 20 180 148 e L
e | —
53 21 181 149 C R
D hed : -
54 22 182 150 & l
3
2 1 151 vl
55 3 83 5 £ =
56 24 184 152 5 ol
57 25 185 153 =y [|
58 26 186 154 M I
L
.
59 27 187 155 3 E
60 28 188 156 = f
61 29 189 157 e
5 4
62 30 190 158 D %=
63 3N 191 159 DA -3

162

Table 4-7—cont. Character and Color-Register Codes
for the Color Statement in Screen Modes 1 and 2

Color value and
Register Used

Character Printed

norm alt
64 96 192 224 &
65 97 193 225 & =
66 98 194 226 0 £
— F—
67 99 195 227 s ~
Yo haid
68 100 196 228) i
69 101 197 229 e o
L& =
i eeee |
70 102 198 230 o o
el i
71 103 199 231 i a
72 104 200 232 L B
i it
73 105 201 233 s il
[—
74 106 202 234 N i
| ot
75 107 203 235 e i
LA ¢80
76 108 204 236 ; i (1
77 109 205 237 el | M
i s N
78 110 206 238 R 'y
79 111 207 239 -
*oed

163

Table 4-7—cont. Character and Color-Register Codes
for the Color Statement in Screen Modes 1 and 2

Color value and Character Printed

Register Used norm alt
80 112 208 240 k3 -
81 113 209 241 11 ! o
82 114 210 242 'R T

%

83 115 211 243 | =y o
84 116 212 244 ! T +,
85 117 213 245 1 i

86 118 214 246 .
.y
87 119 215 247 il "
88 120 216 248 L
KikS R
89 121 217 249 e e
H et
9 122 218 250 7 -
91 123 218 251 'y .
i ! | i
. | * ;
92 124 220 252 - L
| ot
o | ="

93 125 221 253

=
2

= —
94 126 222 254 L 4

L .

i 1
95 127 223 255 L ;.. z

164

Normally, DRAWTO col,row will draw a line of color
from a PLOT point to the designated column/row coordi-
nate. The last-executed COLOR statement determines the
color of that line. When working with the Mode-1 or
Mode-2 screens, however, the parameter assigned to the
COLOR statement determines the character and color to
be plotted between a PLOT-specified place and the sub-
sequent DRAWTO-specified place.

The XIO 18 statement can fill a section of the screen
with a specified character. For example:

10 GRAPHICS 2

20 PLOT 10,8:DRAWTO 10,0:DRAWTO 0,0:POSITION
0.8

30 POKE 765,193

40 XIO 18,#6,0,0,”'S:"

Program line 10 sets screen 2 (and opens IOCB #6 for
screen operations), and line 20 defines the outline of a
rectangular field on the screen. Line 30 POKEs the special
COLOR code (Table 4-7) for the desired character, and
line 40 executes the “fill” operation.

Using LOCATE, GET, and PUT in Modes 1 and 2

LOCATE, GET, and PUT also deal with the Mode-1 and -2
screens in a column/row format. Executing a PUT #6,x
plots a character and uses a color register as specified in
Table 4-7. The position is determined by the main print
cursor registers, ROWCRS and COLCRS, and the execu-
tion of the statement advances the cursor position. In this
context, the PUT statement is easier to use than the
COLOR/PLOT combination.

165

The GET statement is the complement of PUT. Rather
than plotting a specified character to the current cursor
location, it returns a code value representing the charac-
ter and color register (as represented in Table 4-7) for any
character that might be printed there. The general form is:

GET #6,numvar

where numvar is a numerical variable that takes on the
special code value.

The LOCATE function is quite similar to GET, but
LOCATE does not operate according to the current cursor
position. In fact, it operates entirely independent of it.
Executing a statement of this general form:

LOCATE col,row,numvar

assigns the code number of any character printed to
Mode-0 location col,row to numerical variable, numvar.
The code format is the one that is shown in Table 4-7.

In screen Modes 1 and 2, the LOCATE statement works
only with the expanded-character portion of the screen.

The Mode-1 and Mode-2 Screen RAM Formats

It is quite often helpful to view the Mode-1and -2 screens
in terms of the screen RAM addresses and data. Figs. 4-8
and 4-9 show the addressing ranges for each line on the
screen.

This view of the Mode-1 and -2 screens facilitate the use
of POKE and PEEK statements and machine-language rou-
tines for text operations. (The versions in the Appendices
show both decimal and hexadecimal address locations.)

166

MOOANIM
1X31

65607
650~ 0260 | €
62807 oror | 1
8.80v- — oveoy | |
680v- - 00807 | 0
61201 F00z0v | 61
86907 - ogaov | 81
629011 - 09907 | 21
sso0r - ov90p | 9t
6090/ - 0z90v | 51
615011 - 0090v | vi
ses0r- L o850y | €1
82500 - ogsov | 2L
6950r- - ovgoy | 11
6501 - 0250 | o1
6150/ - o0sov | 6
66vor- - ogvor | 8
8L07 - 09v0p | £
esvor- - ovvor | 9
it L ozvov | S
oL vovJ - oovar | v
6504 - ogor | ¢
sLc0r - o9gov | 2
eseor - oveor | 1
- ozeor | 0
Moy

Fig. 4-8. Screen RAM address format for Mode 1.

167

POKE and PEEK statements both refer to an address and
a byte of data that is associated with that address. The
address in this case refers to the absolute screen address
locations shown in the table; the data refers to the internal
character codes cited in Table 4-5 as modified by a 2-bit
color-register selection scheme:

POKE addr,16*reg + char

where addr is a RAM address for the expanded-character
portion of the screen, reg is the desired color register, and
char is the internal character code, 0 through 63.

The fact that the internal character codes are limited to
0 through 63 implies that the statement works with half of
the character set and, further, it cannot deal with inverse
characters. Executing a POKE 756,226 sets up the alternate
half of the character set, and executing a POKE 756,224
returns the system to the normal character set.

In this context, the following sort of PEEK statement
returns the combined internal-code value and color regis-
ter of the character residing at the specified address:

PEEK(addr)

It is possible to do direct PEEK and POKE operations to
the text-window portions of the screen. Tables 4-8 and 4-9
indicate the RAM addressing range for that part of the
screen. The data refers to the ATASCII character codes in
the same way it does for Mode-0 screen operations.

Full-Screen Formats

Adding 16 to the graphics screen number brings up the
screen without a text window. Executing a GRAPHICS 17,
for example, brings up a full-screen version of Mode-1.
Several seconds after the conclusion of a program that
uses the full screen, the system automatically reverts to its
split-screen version.

168

MOGNIM
X3l

6G60¥ —0260F | €
61607 — —0880F | ¢
64807 — 0ovgor | L
6E£807 — [—0080% | O
6620V — —~ovior | 6
6E.L07— —o0zL0v |8
6120V 0007 | 4
6690% — —0890V | 9
62901 — — 09907 | &
6G90Y — F0p90p | ¥
6£90r— —0290y | €
6190V — l—0090¥ | ©
6650V — I—08G0¥ | ¢
6.50Y — —0950% | O
MOH

Fig. 4-9. Screen RAM address format for Mode 2.

169

Table 4-8. Color Register Sequences
and Screen Data Bytes for 4-Pixel/Bit Screens

{(Modes 3,5,7, and Their Variations)

Color Register Data Color Register Data
(Left — Right) Byte (Left — Right) Byte
0 (o] (o) (0] 0 0 2 0 0 32
0 0 0 1 1 0 2 0 1 33
0 (0] 0 2 2 0 2 0 2 34
0 0 0 3 3 (0] 2 0 3 35
0 0 1 0 4 0 2 1 (0] 36
0 0 1 1 5 0 2 1 1 37
0 0 1 2 6 0 2 1 2 38
0 0 1 3 7 0 2 1 3 39
0 0 2 o] 8 0 2 2 0 40
0 0 2 1 9 0 2 2 1 41
0 o] 2 2 10 (o] 2 2 2 42
0 o] 2 3 11 o] 2 2 3 43
0 0 3 (o] 12 (o] 2 3 0 44
0 0 3 1 13 o] 2 3 1 45
0 0 3 2 14 () 2 3 2 46
0 0 3 3 15 o] 2 3 3 47
o] 1 [0 0 16 0 3 0 (0] 48
0 1 0 1 17 0 3 0 1 49
¢] 1 o] 2 18 o] 3 0 2 50
o] 1 o] 3 19 0 3 o] 3 51
0 1 1 0 20 [¢] 3 1 o] 52
o] 1 1 1 21 0] 3 1 1 53
(0] 1 1 2 22 (0] 3 1 2 54
0 1 1 3 23 0 3 1 3 55
0 1 2 0 24 0] 3 2 0 56
0 1 2 1 25 (o} 3 2 1 57
0 1 2 2 26 (o] 3 2 2 58
0 1 2 3 27 0 3 2 3 59
0 1 3 0] 28 0 3 3 0 60
0 1 3 1 29 0 3 3 1 61
0 1 3 2 30 o] 3 3 2 62
0 1 3 3 31 o] 3 3 3 63

170

Table 4-8—cont. Color Register Sequences

and Screen Data Bytes for 4-Pixel/Bit Screens
(Modes 3,5,7, and Their Variations)

Color Register Data Color Register Data

(Left — Right) Byte (Left — Right) Byte
1 0 0 0 64 1 2 0 0 96
1 (0] 0 1 65 1 2 0 1 97
1 0 0 2 66 1 2 0 2 98
1 0 4] 3 67 1 2 (o] 3 99
1 0 1 0 68 1 2 1 0 100
1 0 1 1 69 1 2 1 1 101
1 0] 1 2 70 1 2 1 2 102
1 0 1 3 71 1 2 1 3 103
1 0 2 0 72 1 2 2 (o] 104
1 0 2 1 73 1 2 2 1 105
1 (0] 2 2 74 1 2 2 2 106
1 0 2 3 75 1 2 2 3 107
1 0 3 0 76 1 2 3 0 108
1 0 3 1 77 1 2 3 1 109
1 0 3 2 78 1 2 3 2 110
1 0 3 3 79 1 2 3 3 111
1 1 0 (0} 80 1 3 o] o] 112
1 1 o 1 81 1 3 0 1 13
1 1 o] 2 82 1 3 o] 2 114
1 1 0 3 83 1 3 0 3 115
1 1 1 0] 84 1 3 1 0 116
1 1 1 1 85 1 3 1 1 117
1 1 1 2 86 1 3 1 2 118
1 1 1 3 87 1 3 1 3 119
1 1 2 (o] 88 1 3 2 o] 120
1 1 2 1 89 1 3 2 1 121
1 1 2 2 90 1 3 2 2 122
1 1 2 3 a1 1 3 2 3 123
1 1 3 0 92 1 3 3 0 124
1 1 3 1 93 1 3 3 1 125
1 1 3 2 94 1 3 3 2 126
1 1 3 3 95 1 3 3 3 127

171

Table 4-8 —cont. Color Register Sequences

and Screen Data Bytes for 4-Pixel/Bit Screens
(Modes 3,5,7, and Their Variations)

Color Register Data Color Register Data

(Left — Right) Byte (Left — Right) Byte
2 0 0 0 128 2 2 0 0 160
2 0 0 1 129 2 2 0 1 161
2 0 0 2 130 2 2 0 2 162
2 0 (0] 3 131 2 2 0 3 163
2 o] 1 0 132 2 2 1 (o] 164
2 0 1 1 133 2 2 1 1 165
2 (o 1 2 134 2 2 1 2 166
2 (o] 1 3 135 2 2 1 3 167
2 0 2 0 136 2 2 2 0 168
2 o] 2 1 137 2 2 2 1 169
2 o] 2 2 138 2 2 2 2 170
2 0 2 3 139 2 2 2 3 171
2 0 3 (o) 140 2 2 3 0 172
2 0 3 1 141 2 2 3 1 173
2 o 3 2 142 2 2 3 2 174
2 () 3 3 143 2 2 3 3 175
2 1 0 0 144 2 3 0 o 176
2 1 0 1 145 2 3 0 1 177
2 1 0 2 146 2 3 (o} 2 178
2 1 0 3 147 2 3 () 3 179
2 1 1 (o} 148 2 3 1 0 180
2 1 1 1 149 2 3 1 1 181
2 1 1 2 150 2 3 1 2 182
2 1 1 3 151 2 3 1 3 183
2 1 2 () 152 2 3 2 0 184
2 1 2 1 153 2 3 2 1 185
2 1 2 2 154 2 3 2 2 186
2 1 2 3 155 2 3 2 3 187
2 1 3 0 156 2 3 3 o 188
2 1 3 1 157 2 3 3 1 189
2 1 3 2 158 2 3 3 2 190
2 1 3 3 169 2 3 3 3 191

172

Table 4-8—cont. Color Register Sequences

and Screen Data Bytes for 4-Pixel/Bit Screens
(Modes 3,5,7, and Their Variations)

Color Register Data Color Register Data

(Left — Right) Byte (Left — Right) Byte
3 0 0 0 192 3 2 0 0 224
3 0] 0 1 193 3 2 0 1 225
3 (0] 0 2 194 3 2 0 2 226
3 0 0 3 195 3 2 0 3 227
3 0 1 0 196 3 2 1 0 228
3 0 1 1 197 3 2 1 1 229
3 0 1 2 198 3 2 1 2 230
3 0 1 3 199 3 2 1 3 231
3 0 2 (o] 200 3 2 2 0 232
3 0 2 1 201 3 2 2 1 233
3 0 2 2 202 3 2 2 2 234
3 o] 2 3 203 3 2 2 3 235
3 0 3 (0] 204 3 2 3 0 236
3 0 3 1 205 3 2 3 1 237
3 0 3 2 206 3 2 3 2 238
3 0 3 3 207 3 2 3 3 239
3 1 o 0 208 3 3 0 0 240
3 1 0 1 209 3 3 o] 1 241
3 1 (0] 2 210 3 3 0 2 242
3 1 0 3 211 3 3 o] 3 243
3 1 1 0 212 3 3 1 0 244
3 1 1 1 213 3 3 1 1 245
3 1 1 2 214 3 3 1 2 246
3 1 1 3 215 3 3 1 3 247
3 1 2 0] 216 3 3 2 0 248
3 1 2 1 217 3 3 2 1 249
3 1 2 2 218 3 3 2 2 250
3 1 2 3 219 3 3 2 3 251
3 1 3 0 220 3 3 3 0 252
3 1 3 1 221 3 3 3 1 253
3 1 3 2 222 3 3 3 2 254
3 1 3 3 223 3 3 3 3 255

173

Table 4-9. Starting and Ending Addresses
for Each Row of the Mode-5 Screen RAM

Decimal Decimal
Row Row
Start End Start End

Row O | 39840 | 39859 | Row 24 40320 40339
Row 1 39860 | 39879 Row 25 40340 40359
Row 2 39880 39899 Row 26 40360 40379
Row 3 39900 39919 Row 27 40380 40399
Row 4 39920 39939 Row 28 40400 40419
Row 5 39940 39959 Row 29 40420 40439
Row 6 39960 39979 Row 30 40440 40459
Row 7 39980 39999 Row 31 40460 40479
Row 8 40000 40019 Row 32 40480 40499
Row 9 40020 40039 Row 33 40500 40519
Row 10 40040 40059 Row 34 40520 40539
Row 11 40060 40079 Row 35 40540 40559
Row 12 40080 40099 Row 36 40560 40579
Row 13 40100 40119 Row 37 40580 40599
Row 14 40120 40139 Row 38 40600 40619
Row 15 40140 40159 Row 39 40620 40639
Row 16 40160 40179

Row 17 40180 40199 Text window begins here
Row 18 40200 40219

Row 19 40220 40239 Row O 40800 40839
Row 20 40240 40259 Row 1 40840 40879
Row 21 40260 40279 Row 2 40880 40919
Row 22 40280 40299 Row 3 40920 40959
Row 23 40300 40319

Figs. 4-10 and 4-11 show the column/row formats for
full-screen Modes 17 and 18, respectively. Those versions
offer more rows of expanded-character space than is

available with their split-screen counterparts.

Figs. 4-12 and 4-13 show full-screen Modes 17 and 18 in
a screen RAM address format—one more suitable for

PEEK, POKE, and machine-language operations.

174

34

—¢c

e

-02

—6L

—8l

Lt

-9l

=St

—vi

L

-ct

~L

oL

-6

-8

=2

-9

-G

€

—c

— 1

-0

|
cl

-

|
Ll

T
ol

I
6

I
8

" NIWN10D SOIHdVYHD

Lot

MOY SOIHdVYHD

Fig. 4-10. Column/row format for Mode 17 (full-screen version of

Mode 1).

175

12
|

GRAPHICS COLUMN

0

1

2

3

4

5

6

7

8

9
10—
11—

MOH SOIHdYHD

Fig. 4-11. Column/row format for Mode 18 (full-screen version of
Mode 2).

176

66,61 —

08.0v

6.L07—

—09.0%

66207

= Oovi0v

6€L0v

- 02.L0v

6420V —

— 00,0V

6690V —

- 0890Y

6490v —

- 0990V

6G90Y —

[~ 0vooy

6€90Y —

- 0290V

6190¥ —

— 0090V

6650V —

I~ 08G0Y

64507 —

[~ 09507

6550y —

- OvSov

650V —

|- 02sov

61507 —

- 00S0¥

66v0¥ —

[~ 08v0y

6.v0¥ —

- 09¥0¥

65Y0Y —

[~ OvvOy

6EY0Y —

—0croy

61¥0Y —

~ 00¥0P

66€0Y —

- 08E0Y

62€0v—

= 09€0¥

65E0Y —

- ovYeEoy

6£E0V

- 02e0y

Or-rNMTNDONO®D

3
Fig. 4-12. Screen RAM address format for Mode 17 (full-screen

(o]
o

f Mode 1).

version o

177

66.0v—

0820t L1

6..0v—

—09.0% | Ol

6GL0P—

—OvL0v | 6

6€20¥—

020 | 8

64207

0007 | £

6690Y —

—0830v | 9

62907

— 0990V | S

6G90v—

—0r90v | v

6€90v

—0290v | €

61901 —

—0090v] ¢

6650V —

08507 | |

64507 —

— 09507 | O

MOHY

(full-screen

Fig. 4-13. Screen RAM address format for Mode 18
version of Mode 2).

178

CUSTOM CHARACTERS SETS FOR MODES 0. 1,
AND 2

The foregoing discussions make numerous reference to
the ATARI’s ROM-based character set. Recall that the
Mode-0 screen can access all 128 characters with no spe-
cial programming, and that screen modes 1 and 2 can
access it 64 characters at a time by POKEing appropriate
values into register address 756.

It is possible, however, to construct custom character
sets, load them into some unused RAM area, and then
substitute them for ATARI’s ROM-based set.

The character set must be bit mapped, with each charac-
ter being 8 bytes long. Fig. 4-14 illustrates the procedure
for generating the bit maps for four custom characters—
the first four letters of the Hebrew alphabet, in this case.

Starting with a sheet of ordinary graph paper, construct
the desired characters within an 8 x 8 character window.
Then translate each square into a 0 or 1 binary bit; specify
a 1 where a pixel of light is to be plotted, and a 0 where the
background color is to appear. Finally, translate the result-
ing 8 bytes into their decimal counterparts. The series of
decimal numbers are those that are to be inserted into the
RAM area where your custom character set is to appear.

Actually, there will be five characters in this example,
because the first character ought to be a blank—eight
decimal zeros. The reason is that the computer will use the
first character in the character set as the one for plotting

the background; and you normally want the background
to be blank.

179

00000000 0
01001110 78
00100100 38
00110010 50
01001100 76
00100100 36
01100010 98
00000000 0
00000000 0
01000000 64
00111100 60
00000010 2
B 00010010 18
00000010 2
01111100 124
00000000 0
00000000 0
01000000 64
00111100 60
00000010 2
00000010 2
00000010 2
01111100 124
00000000 0
00000000 0
01000000 64
00110000 48
00010000 18
00010000 16
00010000 18
01101000 104
00000000 0

Fig. 4-14. Development of the bit map for several Hebrew characters
to be used in a custom character set. The set must begin
with an 8 X 8 bit map that is filled with zeros if the screen
background is to be blank.

One good place to insert a custom, bit-mapped charac-
ter set is at address 32768. (The standard ATARI character
set begins at address 57344, or hexadecimal $£000; but you
cannot use that area because it is a ROM area.)

180

Here is a routine that will define the blank character and
the four Hebrew characters, and insert them into RAM
space at address 32768 ($8000):

10 DATA 0,0,0,0

20 DATA 0,78,36,50,76,36,98,0
30 DATA 0,64,60,2,18,2,124,0
40 DATA 0,64,60,2,2,2,124,0

50 DATA 0,64,48,16,16,16,104,0
100 FORN=0TO 39

110 READ A:POKE 32768+N A
120 NEXT N

The DATA in lines 10 through 50 define the blank space
and four Hebrew characters. Lines 100 through 120 then
READ the data and POKE it into 40 successive RAM loca-
tions, beginning from address 32768. The custom charac-
ter set is useless, however, unless you can print it to the
screen.

A routine that lets you print the custom characters must
begin by informing the system where the character set
begins; and that is a matter of POKEing the MSB of the
starting address into address 756—the same location that is
used for specifying the first or second half of the standard
character set.

The custom character set in this example begins at
address 32768, or $8000. The hexadecimal version of the
MSB is $80, and that translates into decimal 128. So in this
instance, you specify the location of the custom character
set with this sort of statement:

POKE 756,128

From that point on, the system will literally substitute your
character set for the normal one.

181

Assuming, then, that you have executed a routine that
loads the custom character set at address 32768, the fol-
lowing routine will print the blank character and four
Hebrew characters to the Mode-0 screen:

200 GRAPHICS O

210 SETCOLOR 1,0,14
220 POKE 756,128
230 FORN=0TO 4
240 POKE 40500+N,N
250 NEXT N

All printing and expanded-character operations described
for the ROM-based character set apply to custom charac-
ter sets. The custom character set can have up to 128 dif-
ferent characters in it, and the system will access them in
the same sequence that it accesses the ROM-based set. In
Modes 1and 2, you can access no more than 64 characters
at a time; and whenever there is a need to access a differ-
ent part of any character set, simply POKE the decimal
version of the MSB of the starting address to location 756
(that, incidentally, allows you to mix custom and normal
characters). And you can display inverse versions of a cus-
tom character set in screen Mode 0 by adding 128 to the
usual internal character code number; likewise, you can
use different color registers in Modes 1and 2 by using the
COLOR statement.

In short, a custom character set can be treated exactly
like the normal ROM-based character set. The only diffi-
cult parts are designing and loading the custom character
set into the system.

THE FOUR-COLOR MODES: 3,5, AND 7

Graphics Modes 3, 5, 7, and their variations have a great
deal in common, particularly with regard to the organiza-
tion of the color registers and the screen data. The most
obvious differences concern the size and number of pixels
they use,.

182

Working With the Color Registers

Fig. 4-15 shows the organization of the color registers for
graphics Modes 3, 5,and 7. The text window uses the usual
Mode-0 register format: the luminance of the characters is
determined by register 1, the character hue and text-
window background color is determined by register 2,
and the text-window color is carried in register 4.

MODES
TEXT WINDOW 35,7
REGISTER 0
NOT USED T s COLOR 1
LUMINANCE OF REGISTER 1
CHARACTER ADDRESS 709 COLOR 2
CHARACTER HUE
AND BACKGROUND AF:)E[?F:EQEF;% COLOR 3
COLOR
REGISTER 3
NOT USED i NOT USED
BORDER REGISTER 4 BACKGROUND
COLOR ADDRESS 712 COLOR 0

Fig. 4-15. Color register organization for Modes 3. 5, 7. and their
variations.

The color-register diagram shows that the graphics and
text window share three of the four color registers used in
these graphics modes. For that reason, there is bound to
be some interaction between the color environments for
the graphics and text-window portions of the screen.

The colors assigned to any of these registers can be
determined by executing the SETCOLOR reg,hue,lum
statement, where reg refers to the standard color-register
numbering format, and hue and lum are determined from
Tables 4-2 and 4-3. It is also possible to specify the colors
by executing POKE addr,color statements, where addr is
the RAM address of the register and color is the overall
color designation that is determined by the formula:

color = 16*hue + lum

183

It is very important, however, to understand that the
COLOR statement—the BASIC statement that refers some
subsequent plotting operation to a color register—does
not refer to the same register-numbering format as the
SETCOLOR statement. The general COLOR num refers to
color-register num in this fashion:

COLOR O — Register 4 (RAM address 712)
COLOR 1 — Register O (RAM address 708)
COLOR 2 — Register 1 (RAM address 709)
COLOR 3 — Register 2 {(RAM address 710)

Column/Row Screen Formats and Graphics Operations

Figs. 4-16, 4-17, and 4-18 show the column/row format for
screen Modes 3, 5, and 7, respectively. Notice that all of
them include a 40-column, 4-row text window.

It is important to bear in mind the column/row sizes
when using a good many of the BASIC graphics statements—
attempting to work outside the column/row areas will
bring up error messages.

The following BASIC graphics statements apply directly
to these column/row formats:

POSITION col, row
PLOT col, row
DRAWTO col, row
LOCATE col, row, x

And these BASIC statements refer to the column/row
formats in a less direct way—through the cursor-position
registers (see Table 4-6):

PUT #6, reg
GET #6, x
PRINT #6;

184

MOGANIM
1X3L

€

¢

b

-0

-6}

-8l

A

3

i

vl

el

-ci

-

-0t

6

9

S

v

e

-

-0

T T T T T T T T T T T I T T T T T O I T I 1 1 T
6E8E /£ 9CGEYEEEZELE0E6282L292G2VC€CTT 06181 LLOLGIVLIELCLLLOL

-

NWNT0D SOIHdVYD

o

MOY SOIHdVHD

Fig. 4-16. Column/row format for the Mode-3 screen.

185

MOANIM
1X3l

6E8C OE vE 2€ 06 82 9 ¥z 2 0Z @
l 1 1 1 1 1 |] 1 1 l

e

NWNI0J 1X31

9L v 2l
1] I

413
|

~

Y

[~ 6€

-Gt

- 0¢

— G2

02

—Gl

MOHY SOIHdVHD

SS

[
0S

-t

T I I T
°i4 or Ge 0F

NWNT0D SOIHdVYYD

174

Gl

04

n—

Fig. 4-17. Column/row format for the Mode-5 screen.

186

MOAGNIM
1X3l

6 £ GE
]] |

€€
]

1€ 6
]

4
|

x4
J

NWNT0D LX3L

e

14
]

>4
|

(¥4
|

6l
}

Ll
1

Sl
1

€l
|

=

€

—C

-

-0

6.

6G1

-

NWNT00 SOIHdVYHUD

MOY SOIHdVYD

Fig. 4-18. Column/row format for the Mode-7 screen.

187

As in the case of the expanded-character modes, the
PRINT statement refers to text-window coordinates as
defined in register TXTROW and TXTCOL, and the XIO 18
function does a graphics fill operation when applied
according to the following algorithm:

PLOT the lower right-hand pixel of the figure.
DRAWTO the upper right-hand pixel location.
DRAWTO the upper left-hand pixel location.
POSITION the lower right-hand pixel location.
POKE the color register to be used to address 765.
Execute XIO 18,#6,0,0,S:”.

Figs. 4-19, 4-20, and 4-21 show the full-screen versions of
the 4-color modes that are called by graphics Modes 19,
21, and 23. Doing away with the text window adds more
rows of graphics to the bottom of the screen.

SUuhwn =

The Screen RAM Address Formats and Operations

Fig. 4-22 shows the RAM addressing format for the Mode-
3 screen. It is particularly important to notice that this
40-column screen uses 10 consecutive RAM address loca-
tions per row. The reason for this apparent discrepancy is
that all 4-color modes use a single byte of data to specify
the color registers for four consecutive column locations.
Itis thus possible to plot 800 different pixels (column/row
format) with just 200 screen RAM locations (screen RAM
format).

One byte of screen data covers four consecutive, hori-
zontal pixel, or PLOT, locations on the screen; and the
information carried within that byte specifies the color
registers that are to be used for plotting its four graphics.

Consider a general POKE statement of this form:

POKE addr,data

In terms of the Mode-3 screen RAM format, addr referen-
ces one of 200 groups of 4 pixels each. The data then sets a
color for plotting each of those 4 pixels. Fig. 4-23 shows
how the data byte is organized.

188

St R S AL AL UL IR, LN, UL S N N N A S AL S B
6S8€/€ 9EGE PEEEZE LE0E628CLC92GeY2Eee e 0C6L8LLLOLGIYIELCLLL

T NWN109 SOIHdYHD

0t

T 1
68

o

MOY SOIHdVHD

Fig. 4-19. Column/row format for the Mode-19 screen.

189

GRAPHICS COLUMN

7% 79

70
1

O~

5—
10+
5

T 1 T
[=] 0
& & 8

MOY SOIHdVHD

—

I
1]
©

40

Fig. 4-20. Column/row format for the Mode-21 screen.

190

45—
47

159

P

GRAPHICS COLUMN

95

MOY SOIHdVHD

Fig. 4-21. Column/row format for the Mode-23 screen.

191

MOGANIM
1X3l

6560 — 0260y
6160t [~ 0880
62801 — - 0v80Y
65801 - - 0080%
65201 -0S.20%
6v.01 —- 0.0t
6€L0¥ -0€L0v
62201 ~0c.l0v
6120V — FoLL0p
60.0% — -00.L0¥%
66901 ~0690Y
68901 — 0890V
6490t -0.90¢
6990 — 0990t
65901 — F-0S90Y
6v90v — ~0v90y
6€901 —0£90Y
6290V — -0290v
61901 —0190%
60901 -0090¥
66501 — - 0650¥
68501 — - 08S0v
6250 — - 0.50p

31A8 ¥Y3d S13XId 1VLNOZIYOH v

Fig. 4-22. Screen RAM address format for the Mode-3 screen.

192

SCREEN DATA BYTE

MSB LSB PIXEL-BIT| EQUIVALENT COLOR
- -SELECT | REGISTER
|D7|Dsloslmlm|oz]o1]m| vaLues | “O-QRSE USED
| | ——
PIXEL | PIXEL | PIXEL PIXEL' 00 COLOR 0 5
0 2 3 (03} COLOR 1

LEFT RIGHT 10 COLOR 2 1
1 COLOR 3 2

Fig. 4-23. Organization of screen data bytes for Modes 3, 5, 7, and
their variations.

The data byte is divided into 4 pairs of bits. The two
higher-order bits determine the color that is plotted by
the leftmost pixel, bits D5 and D4 fix the color for the
second pixel, bits D3 and D2 determine the color for the
third pixel, and the two lower-order bytes determine the
color for the rightmost pixel in the group.

In a manner of speaking, the addr portion of a POKE
statement determines the location of the plotting opera-
tion within four pixels; and then the data portion of both
fine-tunes the pixel positions and determines their color.

Now recall the COLOR num statement as it applies to
the 4-color graphics modes. The num term can be a posi-
tive integer value between 0 and 3, inclusively; thereby
making it possible to specify colors from one of four dif-
ferent color registers. The four num values for a COLOR
statement relate directly to the values assigned to the data
portion of a POKE statement.

The figure shows a 2-bit binary equivalent for each
COLOR statement that can be used in 4-color graphics. If
a pair of bytes assigned to one pixel happens to be 00, a
POKE statement will plot that pixel position with a color
that is equivalent to that of doing a COLOR 0 statement.

Suppose, then, that you POKE this data byte into some
Mode-3 screen address:

10 11 00 01

193

The leftmost pixel will be plotted with a color that is equi-
valent to doing a COLOR 2 statement (a color from regis-
ter 1). The second pixel will take a color that is equivalent
to COLOR 3; the third will be equivalent to doing COLOR
0; and the rightmost pixel will be plotted with a color that
is equivalent to doing a COLOR 1 statement.

The following program plots four consecutive pixels at a
single RAM address:

10 GRAPHICS 3
20 POKE 40664,109

The POKE address points to the middle of the graphics
screen; and if you break down the data—decimal 109—
into its binary counterpart, you will find it is:

01 10 11 01
And that suggests this COLOR sequence:

COLOR 1
COLOR 2
COLOR 3
COLOR 1

Each byte of POKE data refers to four consecutive,
horizontal pixel locations and four color registers. | have
just described how the data byte is organized, but it is
clearly a troublesome procedure to implement. On the
other hand, graphics programs using POKE statements can
have the same level of resolution, but switch around the
color-register designations, with far fewer programming
statements than the more conventional COLOR/PLOT
combinations.

194

Table 4-8 goes a long way toward simplifying the proce-
dure for determining the value of a desired POKE byte.
The table indicates four different COLOR-oriented num
values that are fit into a data byte and plot to the screen in
a left-to-right fashion. Thus, if you want to POKE four
consecutive pixels that use the equivalent of COLOR 1,
COLOR 3, COLOR 3, COLOR 2, simply find the sequence
13 3 2in the table. The decimal data byte associated with
that combination—126 in this case—is the corresponding
data for the POKE statement.

The procedure applies equally well to all 4-color graph-
ics screen formats.

Fig. 4-24 shows the screen RAM organization for the
Mode-5 screen, and Table 4-9 shows the starting and end-
ing addresses for each row, including those used for the
text-window portion of the screen. Fig. 4-25 and Table
4-10 show the same information as it relates to the Mode-7
screen.

Figs. 4-26 through 4-28, and Tables 4-11 through 4-13
show the RAM screen organization and corresponding
start-and-end addresses for each row of screen Modes 19,
21, and 23.

TWO-COLOR MODES 4 AND 6

Screen Modes 4 and 6 are 2-color, high-resolution graph-
ics screens. They use a color-register scheme and data-
byte format that is different from the 4-color screens.

195

65607 —0c60y

MOANIM { 6607 b
1X31 6.80%

6£807 - 0080%

6£901 7 i 0290V

6586€- —0v86¢

31A8 H3d S73XId IVANOZIHOH v

Fig. 4-24. Screen RAM address format for the Mode-5 screen. See
detailed listing of the addresses in Table 4-9.

196

65607 [~0z60v

MOGNIM | 61600 - 0880%
1x3i] 6807 [~ oveor
6807 - 0080%

6510V 0zio¥

6669¢€ 0969¢€

31A8 H3d S13XId TVANOZIHYOH v

Fig. 4-25. Screen RAM address format for the Mode-7 screen. See a

detailed listing of the addresses in Table 4-10.

197

Table 4-10. Starting and Ending Addresses
for Each Row of the Mode-7 Screen RAM

Addresses Addresses
Row Row
Start End Start End

Row 1 37000 37039 Row 45 38760 38799
Row 2 37040 37079 Row 46 38800 38839
Row 3 37080 37119 Row 47 38840 38879
Row 4 37120 37159 Row 48 38880 38919
Row 5 37160 37199 Row 49 38920 38959
Row 6 37200 37239 Row 50 38960 38999
Row 7 37240 37279 Row 51 39000 39039
Row 8 37280 37319 Row 52 39040 39079
Row 9 37320 37359 Row 53 39080 39119
Row 10 37360 37399 Row 54 39120 39159
Row 11 37400 37439 Row 55 39160 39199
Row 12 37440 37479 Row 56 39200 39239
Row 13 37480 37519 Row 57 39240 39279
Row 14 37520 37559 Row 58 39280 39319
Row 15 37560 37599 Row 59 39320 39359
Row 16 37600 37639 Row 60 39360 39399
Row 17 37640 37679 Row 61 39400 39439
Row 18 37680 37719 Row 62 39440 39479
Row 19 37720 37759 Row 63 39480 39519
Row 20 37760 37799 Row 64 39520 39559
Row 21 37800 37839 Row 65 39560 39599
Row 22 37840 37879 Row 66 39600 39639
Row 23 37880 37919 Row 67 39640 39679
Row 24 37920 37959 Row 68 39680 39719
Row 25 37960 37999 Row 69 39720 39759
Row 26 38000 38039 Row 70 39760 39799
Row 27 38040 38079 Row 71 39800 39839
Row 28 38080 38119 Row 72 39840 39879
Row 29 38120 38159 Row 73 39880 39919
Row 30 38160 38199 Row 74 39920 39959
Row 31 38200 38239 Row 75 39960 39999
Row 32 38240 38279 Row 76 40000 40039
Row 33 38280 38319 Row 77 40040 40079
Row 34 38320 38359 Row 78 40080 40119
Row 36 38360 38399 Row 79 40120 40159
Row 36 38400 38439

Row 37 38440 38479 Text window begins here
Row 38 38480 38519

Row 39 38520 38559 Row O 40800 40839
Row 40 38560 38599 Row 1 40840 40879
Row 41 38600 38639 Row 2 40880 40919
Row 42 38640 38679 Row 3 40920 40959
Row 43 38680 38719

66.0%

- 06.0v

68,0V

080V

62.0¥

0.0V

6920t

-09.0v

66207

-0G.0¥

6v.0v —

- 0v20v

6€L0¥

-0eL0v

62L0v

~02.0v

6120¥]

-0LL0v

60.0Y -

- 0040V

6690V

[-0690¢

6890V —

[~ 0890v

6290V —

-0290%

6990¥ —

~0990%

65907

-0590v

6790¥

I-0¥90¥

6€90V

|- 0E90¥

6290V

I-0290v

61907

—0190Y

6090%

-0090v

6650V

|- 0650V

68507

[-08S0¥

6/507

-0450v

69501 -1

0950V

O N O NON~N0OO

MOY

Fig. 4-26. Screen RAM address format for the Mode-19 screen. Seea

detailed listing of the addresses in Table 4-11.

199

39859
40799

1 NSO ERARANEEEERES]

IERAENESE NSNS ESNEESEEEEEEEEEGRARERRE N

ﬁ
)t |
) |
H |

N |
1
|l |

4 HORIZONTAL PIXELS PER BYTE

39840
40780

Fig. 4-27. Screen RAM address format for the Mode-21 screen. See a
detailed listing of the addresses in Table 4-12.

200

, 36999

4 HORIZONTAL PIXELS PER BYTE

36960

Fig. 4-28

L

—
T 40799

T

i

40760

. Screen RAM address format for the Mode-23 screen. Seea

detailed listing of the addresses in Table 4-13.

201

Working With the Color Registers for Screen Modes 4
and 6

Fig. 4-29 shows the organization of the color registers for
screen Modes 4, 6 and their variations. The text window
uses the usually Mode-0 register format: the luminance of
the characters is determined by register 1, the character
hue and text-window background color is determined by
register 2, and the text-window color is carried in regis-
ter 4.

Unlike the 4-color screens, there is no troublesome
sharing of color registers between the graphics portion of
the screen and the text window. The graphics and text-
window portions do share register 4 (graphics COLOR 0),
but register 0 (graphics COLOR 1) is now for the exclusive
use of graphics operations.

You can set the color for register 0 in one of two ways:

SETCOLOR 0,Aue, lum
or
POKE 708,16*/um + hue

where the hue and Jum values can be determined from
Tables 4-2 and 4-3, respectively. In either case, you can
then access that register by doing a COLOR 1 statement.

The system forces you to use color register 4 for the
graphics background. A SETCOLOR statement will refer to
it as register 4, but a COLOR statement will refer to it in
terms of COLOR 0. Although it is dedicated to the back-
ground color, color register 4 can be useful for deleting
selected portions of previously drawn graphics.

202

Table 4-11. Starting and Ending Addresses
for Each Row of the Mode-19 Screen RAM

Address
Row
Start End
Row O 40560 40569
Row 1 40570 40579
Row 2 40580 40589
Row 3 40590 40599
Row 4 40600 40609
Row 5 40610 40619
Row 6 40620 40629
Row 7 40630 40639
Row 8 40640 40649
Row 9 40650 40659
Row 10 40660 40669
Row 11 40670 40679
Row 12 40680 40689
Row 13 40690 40699
Row 14 40700 40709
Row 15 40710 40719
Row 16 40720 40729
Row 17 40730 40739
Row 18 40740 40749
Row 19 40750 40759
Row 20 40760 40769
Row 21 40770 40779
Row 22 40780 40789
Row 23 40790 40799

Column/Row Screen Formats and Operations for
Modes 4 and 6

Figs. 4-30 and 4-31 show the column/row screen formats
for graphics Modes 4 and 6. These formats are most
appropriate when using PLOT, POSITION, DRAWTO, and
LOCATE statements; and they are, incidentally, important
when working with LOCATE, PUT #6, GET #6, XIO 18, and
PRINT #6 statements. As in the case of the 4-color, split-
screen modes, these feature a 40-column, 4-row text win-
dow that can be directly accessed with normal PRINT
statements.

203

Table 4-12. Starting and Ending Addresses
for Each Row of the Mode-21 Screen RAM

Decimal Decimal
Row Row
Start End Start End
Row O .| 39840 39859 Row 24 40320 40339
Row 1 39860 39879 Row 25 40340 40359
Row 2 39880 39899 Row 26 40360 40379
Row 3 39900 39919 Row 27 40380 40399
Row 4 39920 39939 Row 28 40400 40419
Row 5§ 39940 39959 Row 29 40420 40439
Row 6 39960 39979 Row 30 40440 40459
Row 7 39980 39999 Row 31 40460 40479
Row 8 40000 40019 Row 32 40480 40499
Row 9 40020 40039 Row 33 40500 40519
Row 10 40040 40059 Row 34 40520 40539
Row 11 40060 40079 Row 35 40540 40559
Row 12 40080 40099 Row 36 40560 40579
Row 13 40100 40119 Row 37 40580 40599
Row 14 40120 40139 Row 38 40600 40619
Row 15 40140 40159 Row 39 40620 40639
Row 16 40160 40179 Row 40 40640 40659
Row 17 40180 40199 Row 41 40660 40679
Row 18 40200 40219 Row 42 40680 40699
Row 19 40220 40239 Row 43 40700 40719
Row 20 40240 40259 Row 44 40720 40739
Row 21 40260 40279 Row 45 40740 40759
Row 22 40280 40299 Row 46 40760 40779
Row 23 40300 40319 Row 47 40780 40799

204

Table 4-13. Starting and Ending Addresses
for Each Row of the Mode-23 Screen RAM

Addresses Addresses
Row Row
Start End Start End
Row O 36960 36999 Row 36 38400 38439
Row 1 37000 37039 Row 37 38440 38479
Row 2 37040 37079 Row 38 38480 38519
Row 3 37080 37119 Row 39 38520 38559
Row 4 37120 37159 Row 40 38560 38599
Row 5 37160 37199 Row 41 38600 38639
Row 6 37200 37239 Row 42 38640 38679
Row 7 37240 37279 Row 43 38680 38719
Row 8 37280 37319 Row 44 38720 38759
Row 9 37320 37359 Row 45 38760 38799
Row 10 37360 37399 Row 46 38800 38839
Row 11 37400 37439 Row 47 38840 38879
Row 12 37440 37479 Row 48 38880 38919
Row 13 37480 37519 Row 49 38920 38959
Row 14 37520 37559 Row 50 38960 38999
Row 15 37560 37599 Row 51 39000 39039
Row 16 37600 37639 Row 52 39040 39079
Row 17 37640 37679 Row 53 39080 39119
Row 18 37680 37719 Row 54 39120 39159
Row 19 37720 37759 Row 55 39160 39199
Row 20 37760 37799 Row 56 39200 39239
Row 21 37800 R7839 Row 57 39240 39279
Row 22 37840 37879 Row 58 39280 39319
Row 23 37880 37919 Row 59 39320 39359
Row 24 37920 37959 Row 60 39360 39399
Row 25 37960 37999 Row 61 39400 39439
Row 26 38000 38039 Row 62 39440 39479
Row 27 38040 38079 Row 63 39480 39519
Row 28 38080 38119 Row 64 39520 39559
Row 29 38120 38159 Row 65 39560 39599
Row 30 38160 38199 Row 66 39600 39639
Row 31 38200 38239 Row 67 39640 39679
Row 32 38240 38279 Row 68 39680 39719
Row 33 38280 38319 Row 69 39720 39759
Row 34 38320 38359 Row 70 39760 39799
Row 35 38360 38399 Row 71 39800 39839

205

Table 4-13—cont. Starting and Ending Addresses
for Each Row of the Mode-23 Screen RAM

Addresses Addresses
Row Row
Start End Start End
Row 72 39840 39879 Row 84 40320 40359
Row 73 39880 39919 Row 85 40360 40399
Row 74 39920 39959 Row 86 40400 40439
Row 75 39960 39999 Row 87 40440 40479
Row 76 40000 40039 Row 88 40480 40519
Row 77 40040 40079 Row 89 40520 40559
Row 78 40080 40119 Row 90 40560 40599
Row 79 40120 40159 Row 91 40600 40639
Row 80 40160 40199 Row 92 40640 40679
Row 81 40200 40239 Row 93 40680 40719
Row 82 40240 40279 Row 94 40720 40759
Row 83 40280 40319 Row 95 40760 40799
MODES
TEXT WINDOW 486
REGISTER 0
NOT USED ADDRESS 708 COLOR 1
LUMINANCE OF REGISTER 1
CHARACTER ADDRESS 709 NOT USED
CHARACTER HUE
REGISTER 2
AND BACKGROUND NOT USED
COLOR ADDRESS 710
REGISTER 3
NOT USED ADDRESS 711 NOT USED
BORDER REGISTER 4 BACKGROUND
COLOR ADDRESS 712 AND COLOR 0

Fig. 4-29. Color register organization for Modes 4, 6, and their

variations.

206

MOANIM
1X3l1

NWNT0J LX31

6c8c 9 pe 26 O 82 92 ¥e e 02 8 9 vl ¢ O
Ll [N | [| 1 |] [] [—

[~ ©

€

¢

— 1

-0

- 6E

— GE

I~ 0¢

-GS¢

-0¢

Gt

-0t

207

MOY SOIHdVHD

1 T I T 1 | 1 I 1 I I T
6, 6. 0L 59 09 g6 0% Sy or ge 0 G 0c

>y

T NWNT02 SOIHAVYD

o
Fig. 4-30. Column/row format for the Mode-4 screen.

MOANIM
1X31

6€

FAN

€ €€ IE 6
L1 |

¢ LC

]

NWNT00 1X3L

14
|

€C

|

FNmth_.
| | |]

€l

-c

i

-0

6.

6G1}

-

NANTOO SOIHdVYHD

L

MOY SOIHdYHD

Fig. 4-31. Column/row format for the Mode-6 screen.

208

Figs. 4-32 and 4-33 show the column/row formats for
screen Modes 20 and 22—the full-screen versions of
Modes 4 and 6, respectively.

Screen RAM Formats and Operations for Modes 4 and 6

Figs. 4-34 through 4-37 illustrate some key RAM addresses
for screen Modes 4, 6, 20, and 22. Tables 4-14 through 4-17
indicate the starting and ending addresses for each row. A
comparison of these RAM-addressing formats with the
corresponding column/row formats show an 8:1 ratio
between the number of columns per row and the number
of successive RAM addresses per row. Each byte of screen
data, in other words, cites the color register to be used by
8 successive pixel locations.

Fig. 4-38 shows the organization of the data byte that is
carried by each screen RAM address location. Each of the
8 bits carries a 0 or 1 that corresponds to a COLOR desig-
nation for Mode-4 and Mode-6 graphics.

If you POKE a data byte that is equivalent to using ones
in all eight locations (decimal 255), the graphics system will
respond by plotting eight consecutive pixels from the
COLOR 1 register.

POKE a 170 into a screen RAM address and you will see
four pixels separated by background color. The binary
equivalent of 170 is:

10101010

And that will give alternate pixels a color that is different
from the background.

Table 4-18 makes it easier to determine the data values
whenever it is necessary to POKE it directly to the 2-color
screens.

209

75 79

70
]

GRAPHICS COLUMN

T I | I T T |
[2] o 0 = o] 0 =}
- - N 31 8 3] <

—_

MOHY SOIHdVYHD

Fig. 4-32. Column/row format for the Mode-20 screen.

210

45
47

159

Po

GRAPHICS COLUMN

MOY SOIHdVUD

Fig. 4-33. Column/row format for the Mode-22 screen.

95

211

65601 0260y

MOANIM { 6160Y - 088017
1X31 6480v —0v80Y
6€80v - 0080v

612017 I 0LL0V

62€0v —02e0y

31A8 43d S713XId TVLNOZIHOH 8

Fig. 4-34. Screen RAM address format for the Mode-4 screen. See a

detailed listing of the addresses in Table 4-14.

212

6960¥ 0c60v

MOQANIM | 6160% I-0880¥
1X3al 6280%— —0v80y
6£807— [~ 0080F

6.v0¥ 09v0y

6196¢€ 0096€

31A8 H3d ST13XId TVINOZIHOH 8

Fig. 4-35. Screen RAM address format for the Mode-6 screen. See a
detailed listing of the addresses in Table 4-15.

213

40329
40799

8 HORIZONTAL PIXELS PER BYTE

40320
40790

Fig. 4-36. Screen RAM address format for the Mode-20 screen. See a
detailed listing of the addresses in Table 4-16.

214

, 38899
L1
—
' 40799

8 HORIZONTAL PIXELS PER BYTE

-

]
40780 |

38880 ,

Fig. 4-37. Screen RAM address format for the Mode-22 screen. See a
detailed listing of the addresses in Table 4-17.

215

Table 4-14. Starting and Ending Addresses
for Each Row of the Mode-4 Screen RAM

Addresses Addresses

Row Row

Start End Start End
Row O 40320 40329 Row 24 40560 40569
Row 1 40330 40339 Row 25 40570 40579
Row 2 40340 40349 Row 26 40580 40589
Row 3 40350 40359 Row 27 40590 40599
Row 4 40360 40369 Row 28 40600 40609
Row 5 40370 40379 Row 29 40610 40619
Row 6 40380 40389 Row 30 40620 40629
Row 7 40390 40399 Row 31 40630 40639
Row 8 40400 40409 Row 32 40640 40649
Row 9 40410 40419 Row 33 40650 40659
Row 10 40420 40429 Row 34 40660 40669
Row 11 40430 40439 Row 35 40670 40679
Row 12 40440 40449 Row 36 40680 40689
Row 13 40450 40459 Row 37 40690 40699
Row 14 40460 40469 Row 38 40700 40709
Row 15 40470 40479 Row 39 40710 40719
Row 16 40480 40489
Row 17 40490 40499 Text window begins here
Row 18 40500 40509
Row 19 40510 40519 Row O 40800 40839
Row 20 40520 40529 Row 1 40840 40879
Row 21 40530 40539 Row 2 40880 40919
Row 22 40540 40549 Row 3 40920 40959
Row 23 40550 40559

THE 2-COLOR MODE-8 SCREEN

The Mode-8 screen offers the highest resolution of all. It
uses the same 8-bit screen-data format as Modes 4 and 6
(see Fig. 4-38), the same graphics commands, and the same
general 2-color scheme. Aside from the higher level of
resolution, the only difference between the Mode-8 and
other 2-color modes is the organization of the two color

registers.

216

Table 4-15. Starting and Ending Addresses
for Each Row of the Mode-6 Screen RAM

Addresses Addresses
Row Row
Start End Start End

Row O 38880 38899 Row 44 39760 39779
Row 1 38900 38919 Row 45 39780 39799
Row 2 38920 38939 Row 46 39800 39819
Row 3 38940 38959 Row 47 39820 39839
Row 4 38960 38979 Row 48 39840 39859
Row 5 38980 38999 Row 49 39860 39879
Row 6 39000 39019 Row 50 39880 39899
Row 7 39020 39039 Row 51 39900 39919
Row 8 39040 39059 Row 52 39920 39939
Row 9 39060 39079 Row 53 39940 39959
Row 10 39080 39099 Row 54 39960 39979
Row 11 39100 39119 Row 55 39980 39999
Row 12 39120 39139 Row 56 40000 40019
Row 13 39140 39159 Row 57 40020 40039
Row 14 39160 39179 Row 58 40040 40059
Row 15 39180 39199 Row 59 40060 40079
Row 16 39200 39219 Row 60 40080 40099
Row 17 39220 39239 Row 61 40100 40119
Row 18 39240 39259 Row 62 40120 40139
Row 19 39260 39279 Row 63 40140 40159
Row 20 39280 39299 Row 64 40160 40179
Row 21 39300 39319 Row 65 40180 40199
Row 22 39320 39339 Row 66 40200 40219
Row 23 39340 39359 Row 67 40220 40239
Row 24 39360 39379 Row 68 40240 40259
Row 25 39380 39399 Row 69 40260 40279
Row 26 39400 39419 Row 70 40280 40299
Row 27 39420 39439 Row 71 40300 40319
Row 28 39440 39459 Row 72 40320 40339
Row 29 39460 39479 Row 73 40340 40359
Row 30 39480 39499 Row 74 40360 40379
Row 31 39500 39519 Row 75 40380 40399
Row 32 39520 39539 Row 76 40400 40419
Row 33 39540 39559 Row 77 40420 40439
Row 34 39560 39579 Row 78 40440 40459
Row 35 39580 39599 Row 79 40460 40479
Row 36 39600 39619

Row 37 39620 39639 Text window begins here
Row 38 39640 39659

Row 39 39660 39679 Row O 40800 40839
Row 40 39680 39699 Row 1 40840 40879
Row 41 39700 39719 Row 2 40880 40919
Row 42 39720 39739 Row 3 40920 40959
Row 43 39740 39759

217

Table 4-16. Starting and Ending Addresses
for Each Row of the Mode-20 Screen RAM

Addresses Addresses
Row Row
Start End Start End

Row O 40320 40329 Row 24 40560 40569
Row 1 40330 40339 Row 25 40570 40579
Row 2 40340 40349 Row 26 40580 40589
Row 3 40350 40359 Row 27 40590 40599
Row 4 40360 40369 Row 28 40600 40609
Row 5 40370 40379 Row 29 40610 40619
Row 6 40380 40389 Row 30 40620 40629
Row 7 40390 40399 Row 31 40630 40639
Row 8 40400 40409 Row 32 40640 40649
Row 9 40410 40419 Row 33 40650 40659

Row 10 40420 40429 Row 34 40660 40669
Row 11 40430 40439 Row 35 40670 40679
Row 12 40440 40449 Row 36 40680 40689
Row 13 40450 40459 Row 37 40690 40699
Row 14 40460 40469 Row 38 40700 40709
Row 15 40470 40479 Row 39 40710 40719
Row 16 40480 40489 Row 40 40720 40729
Row 17 40490 40499 Row 41 40730 40739
Row 18 40500 40509 Row 42 40740 40749
Row 19 40510 40519 Row 43 40750 40759
Row 20 40520 40529 Row 44 40760 40769
Row 21 40530 40539 Row 45 40770 40779
Row 22 40540 40549 Row 46 40780 40789

Row 23 40550 40559 Row 47 40790 40799

Fig. 4-39 shows that the Mode-8 colors refer to register 1
and 2. This can cause some difficulty when working with
the text-window versions, because adjustments in the
graphics color will affect the luminance of the text-
window characters and both portions of the screen have
the same background color.

When adjusting the Mode-8 graphics color, you have
two options:

SETCOLOR 1,hue. lum
and
POKE 709,16*/um + hue

Conveniently, you can PLOT that color by first execut-
ing a COLOR 1 statement.

218

Table 4-17. Starting and Ending Addresses
for Each Row of the Mode-22 Screen RAM

Addresses Addresses
Row Row
Start End Start End
Row O 38880 38899 Row 36 39600 39619
Row 1 38900 38919 Row 37 39620 39639
Row 2 38920 38939 Row 38 39640 39659
Row 3 38940 38959 Row 39 39660 39679
Row 4 38960 38979 Row 40 39680 39699
Row 5 38980 38999 Row 41 39700 39719
Row 6 39000 39019 Row 42 39720 39739
Row 7 39020 39039 Row 43 39740 39769
Row 8 39040 39059 Row 44 39760 39779
Row 9 39060 39079 Row 45 39780 39799
Row 10 39080 39099 Row 46 39800 39819
Row 11 39100 39119 Row 47 39820 39839
Row 12 39120 39139 Row 48 39840 39859
Row 13 39140 39159 Row 49 39860 39879
Row 14 39160 39179 Row 50 | 39880 39899
Row 15 39180 39199 Row 51 39900 39919
Row 16 39200 39219 Row 52 39920 39939
Row 17 39220 39239 Row 53 39940 39959
Row 18 39240 39259 Row 54 39960 39979
Row 19 39260 39279 Row 55 39980 39999
Row 20 39280 39299 Row 56 40000 40019
Row 21 39300 39319 Row 57 40020 40039
Row 22 39320 39339 Row 58 40040 40059
Row 23 39340 39359 Row 59 40060 40079
Row 24 39360 39379 Row 60 40080 40099
Row 25 39380 39399 Row 61 40100 40119
Row 26 39400 39419 Row 62 40120 40139
Row 27 39420 39439 Row 63 40140 40159
Row 28 39440 39459 Row 64 40160 40179
Row 29 39460 39479 Row 65 40180 40199
Row 30 39480 39499 Row 66 40200 40219
Row 31 39500 39519 Row 67 40220 40239
Row 32 39520 39539 Row 68 40240 40259
Row 33 39540 39559 Row 69 40260 40279
Row 34 39560 39579 Row 70 40280 40299
Row 35 39580 39599 Row 71 40300 40319

219

Table 4-17—cont. Starting and Ending Addresses
for Each Row of the Mode-22 Screen RAM

Addresses Addresses
Row Row
Start End Start End

Row 72 40320 40339 Row 84 40560 40579
Row 73 40340 40359 Row 85 40580 40599
Row 74 40360 40379 Row 86 40600 40619
Row 75 40380 40399 Row 87 40620 40639
Row 76 40400 40419 Row 88 40640 40659
Row 77 40420 40439 Row 89 40660 40679
Row 78 40440 40459 Row 90 40680 40699
Row 79 40460 40479 Row 91 40700 40719
Row 80 40480 40499 Row 92 40720 40739
Row 81 40500 40519 Row 93 40740 40759
Row 82 40520 40539 Row 94 40760 40779
Row 83 40540 40559 Row 95 40780 40799

SCREEN DATA BYTE

LsB
BIT EQUIVALENT | REGISTER
Blmlosl D4l D3 I Dz]m | °°| VALUE | COLOR VALUE USED
PXeL| 0 f1|2|aal5]6]7
e e e B B 0 COLOR 0 4
1 COLOR 1 0
RIGHT

Fig. 4-38. Organization of screen data bytes for Modes 4, 6, and their
variations.

But when it comes to the bacl{ground color, you must
SETCOLOR or POKE the information by designating regis-
ter 2; and then use a COLOR 0 statement to access it.

220

Table 4-18. Color Register Sequences and
Screen Data Bytes for 8-Pixel/Bit Screens

{Modes 4,6,8, and Their Variations)

[+

m Or—am <t OO~ VNHO -~ NM W O~ 0o, Qe NM < WO~ VMO —

a - - - - - NNNN NANANN NNMOM
OO OrOr OFOr O-Or OrOr OcOr OrO+ Or~O-~
OO+ OOrr OOrr OO+~ OOrr- OO+ OOr+~ OO«

=

£

2

Floooo 0000 rre-e- == 0000 0000 rrerr c—rc-=

iloooco co0oco 0000 00O rerrer rFrrerr CEre Ceee

£

@

=4
OCO000 0OCOO COOO OOOO0 0000 OOO0OO OO0OO0O 0000
OCO00O COOO 0000 0000 OO00O OO0O0O0 0000 CO0O0O0
OCO0O 0000 0OOO0O0 0000 0000 O00O0 0000 000

221

Table 4-18—cont. Color Register Sequences and

Screen Data Bytes for 8-Pixel/Bit Screens

(Modes 4,6,8, and Their Variations)

]

“2345 O~OD Oe=NMm <TI0 O~ 0O~ N M <t O ©O©M~O» Or—NNMm

[a) mmomm mmMmmm <t <t < < <t < < tTTOW w0 Www 0w WL w0 © O ©
OrQOr OrOr OrFrOr OrOr OrOr OrOr OrOr OO~
OO0r-~ OO+~ OOr+ OOrr OOv+r OOre OOrr OO~
O0O0O +~rer QOO0 rrre 0000 +wrer OOO0O0 mwe«

£

2

Cloo00o 0000 rrerr crre 0OOOO 0000 rrrre rceee

{|]OOOO ©O0O0 ©0OOOC 0000 Frrr rrerr rFere ceee-

&

]

=
e e rr mrer rrrr e e e -
O0O0O0 ©OO0OO 0000 OO0OO O0O0OC 0000 0000 0000
O0O0O0 0000 0000 O0OOO COOOO 0000 OO00O 0000

222

Table 4-18—cont. Color Register Sequences and

Screen Data Bytes for 8-Pixel/Bit Screens

(Modes 4,6,8, and Their Variations)

(]

Slevwor 0O~ NIV OREO Q-NO TVLON VRO o AOLW

0 [{o] (e R (o J (o] OO~ [l i [l 0 0 ™ 00 00 00 0 wo M (o)X= N2 K]
OO OO+ OrOr OO+~ OrOr- O-Or~ OrO- O~-O-r
OO cer OOr—- OO+~ OO+~ OOrr+ OOr+ OO~= OO--

]

2

€loocco 0000 rrr- c-r-r- 0000 0000 rwrer ccoo-

!

|

lloooo cooo 0000 0000 rrrr- —r-r- CooT ToTe

=

4]

=
CcO0CO OOOO 0000 COOO0OO O0O0O 0000 O00O0 0000
e ctctr rrrr Feer Emree mrere mEee oo
cCO0O 0000 0OO0O OO0O 0000 0000 Q000 0000

223

Table 4-18—cont. Color Register Sequences and

Screen Data Bytes for 8-Pixel/Bit Screens

(Modes 4,6,8, and Their Variations)

——

- — -

[N oRoNe]

- —— -

- —

[oNoNeNe)

— -

——

[sXeReNa]

— - -

—— -

[eNeoNoNo

- — -

———

[eReNeoNe]

- -

———

[eReRoNe]

—_—— -

—— — —

[eXeNoNo]

[}

58583 85898 IBES 838z VoL oree g-ooo JwoN

o reee 2222 22T ZICT Cooo Jood aNAo
OO OrOe+ OrOr O-Or OrOr OrOr OrOr OrOw—
OOr-+- OOr+ OOrr OOr+ OOrr OO~ OOre OO«

=

£

2

Cloooo 0000 rrerr rrer- 0COOO 00O rree crmewe

.

i

i

iloooo 0000 0000 0000 rrre rere ceee ceewe

£

)

=

- ———

— o — -

[eNoNeoN o)

224

Table 4-18—cont. Color Register Sequences and

Screen Data Bytes for 8-Pixel/Bit Screens

(Modes 4,6,8, and Their Variations)

Data

132
133
134
135

136
137
138
139

144
145
146
147

148
149
160
151

162
153
164
1556

156
167
158
169

{Left - Right)

QO =

OO0OO0O0O

[eNoNoNo]

[oNeoRoNo)

[eXoNeoNe)

[eNoNoXo)

-——— -

OQ v~

— o

[eNeoRoNo]

[eNeNoNo)

[oNeNoNo]

[eReNoRo]

—— = —

OO w™

[eXoN oo

- —— -

[eNoNoNo]

[oNoRoNo

[eNeNoRe)

- -

OO e «—

— -

- ———

[eNeNoRe)

0000

[eNoRoXo]

— -

OO v

[oNeoRoNeo]

[eNeNoRo]

— o ——

[eReoNoReo)

ol =Rojo]

—

OO0 «—

-————

O0O0O0

— - ——

[eNojoReo)

[oNeoNo N

— -

OO~

[eNeNoRo)

—_———

———

[eReRoNo]

[oNeoNoNo]

—— - -

OO~

- -

————

- ———

000

[eReoNoNao)

-————

225

quences and

Pixel/Bit Screens

Table 4-18—cont. Color Register Se

Screen Data Bytes for 8-

(Modes 4,6,8, and Their Variations)

[eNoNeNe)

- -

[eNeXeNo]

— -

- ——

— e

— e

—

]
-l O &N M 0O~ 0 N Nm n or~0o;M (@] N M 0 W0 ™~ QDO
58008 I885 BBRF YRR CRR2 28 I8S8% 3385
Qlrrre reecr seecr 2222 DRCR 2XXR X200 RXD2D
O-Or OrOr OrOr OrOv OrOr OrOr OrFrOr OO«
£
2
Eloc00O 0000 rerrr crece 0OCOO 0000 rrere ceewe
i
i
i
i|]ocoo 0000 COOCO 0000 Frrrr Frre Fere e
§
=
- -—— - - — - - - - - e - — - - -
CO0O0O 0OOOO ©OO0O0O0 0000 OO0O0 0000

——

———

226

Table 4-18—cont. Color Register Sequences and

Screen Data Bytes for 8-Pixel/Bit Screens

(Modes 4,6,8, and Their Variations)

-—— -

——

-————

-

- -

- -

-

-

- - —

- = -

——— -

————

- -

- ———

TIHOOON OOHOO [eXoNe] OO0 OO0rr e=rre= rweee NONNN
Qv+~ - NNANN NNNN NANNN NONNN NANNN NANANN
OO O+Or OrOr OrFOr OrOr OrOr OO~ OrO-r
OO+~ OO+~ OO0~~~ OO~ O0re= OO~ OO~ OO~
O000 w=vw=wvre OO0OO ——r—r— OO000 wrerr-~ [oXoNoRo RN R 8
z
2
Cloooco 0000 +rr- +r-- 0000 0000 rrrr —--o-
[
m [eNoNoNo 0000 [eNoRol o] [eNoNoRe) - - L R -
§
=
OCO00 0000 0000 0000 OO0O0O ©OO0OO0OO ©0O0O0O 0000

— -

- = -

227

Table 4-18—cont. Color Register Sequences and

Screen Data Bytes for 8-Pixel/Bit Screens

{Modes 4,6.8, and Their Variations)

Data

224
225
226
227

228
229
230
231

232
233
234
235

236
237
238
239

240
241
242
243

244
245
246
247

(Left ----——-—--- R ight)

0
1
0
1

OO«

[eJoNoNa)

[eNeoNoNo]

QOO0

———

—— -

—— -

OO0+~

——— -

0000

[=NeoNoNe]

— -

———

- —— -

00~

[oXeNoNa)

———

[ofeoNoNo

———

— =

—_—— -

OO0 v

—— -

— -

[oNeNoNeo)

—_——— -

~—— - -

- ——

o]
1
0
1

OO

[oNeoNoNeo)

[oNoNoNo

—— -

—— - —

- ——

—— -

OCQ e

- -

[eNeoNoXe]

— -

—-—— -

— -

——— -

OO

[eNeNoNo

- — -

- — -

— -

——— -

-———

OQ ™= v

-—— -

_—— -

—— -

-———

— -

—

228

TEXT WINDOW GRAHICS

USABLE MODE 8
REGISTER 0
NOT USED ADDRESS 708 NOT USED
CHARACTER REGISTER 1
LUMINANGE ADDRESS 709 COLOR1

CHARACTER HUE

REGISTER 2
AND BACKGROUND ADDRESS 710 BACKGROUND

COLOR
REGISTER 3
NOT USED ADDRESS 711 NOT USED
BORDER REGISTER 4 BORDER
COLOR ADDRESS 712 COLOR

Fig. 4-39. Organization of color registers for the Mode-8 screen.

Fig. 4-40 shows the row/column format for the Mode-8
screen. Notice that it uses 320 columns (labeled 0 through
310) and 160 graphics rows (0 through 159). That figures
out to be 51,200 pixel locations. Fig. 4-41, however, shows
that the 8-pixel-per-byte scheme allows the system to do
the job with just 6400 bytes of screen RAM.

Table 4-19 shows the first and last addresses for each
row of the screen’s RAM area.

Screen Mode 24 is a Mode-8 screen without the text
window. Fig. 4-42 shows its 320-column, 192-row format,
Fig. 4-43 indicates the screen RAM addressing range, and
Table 4-20 details the RAM addressing range for each row.

229

NWNI0D 1X31

omunmmmn_.mmmnwmwmw—Nmrtmpnp:mNm
/N [N I R A I Ry M I M R Y

=

MOANIM

1X3l

-

MOY SOIHdYHD

61€

-

NHWNT0D SOIHdYYD

Fig. 4-40. Column/row format for the Mode-8 screen.

230

65607 — 0260¥

MOQNIM | 61607 - 0880Y
1X3L 6,801 — —0v80P
6€80V— - 0080¥

€0G6¢€ yor6e

eviee POLEE

31A8 H3d S713XId TVINOZIYOH 8

Fig. 4-41. Screen RAM address format for the Mode-8 screen. See a

detailed listing of the addresses in Table 4-19.

231

Table 4-19. Starting and Ending Addresses

for Each Row of the Mode-8 Screen RAM

Addresses Addresses
Row Row
Start End Start End

Row 0O 33104 33143 Row 42 34784 34823
Row 1 33144 33183 Row 43 34824 34863
Row 2 33184 33223 Row 44 34864 34903
Row 3 33224 33263 Row 45 34904 34943
Row 4 33264 33303 Row 46 34944 34983
Row 5 33304 33343 Row 47 34984 35023
Row 6 33344 33383 Row 48 35024 35063
Row 7 33384 33423 Row 49 35064 35103
Row 8 33424 33463 Row 50 35104 35143
Row 9 33464 33503 Row 51 35144 35183
Row 10 33504 33543 Row 52 35184 35223
Row 11 33544 33583 Row 53 35224 35263
Row 12 33584 33623 Row 54 35264 35303
Row 13 33624 33663 Row 55 35304 35343
Row 14 33664 33703 Row 56 35344 35383
Row 15 33704 33743 Row 57 35384 35423
Row 16 33744 33783 Row 58 35424 35463
Row 17 33784 33823 Row 59 35464 35503
Row 18 33824 33863 Row 60 35504 35543
Row 19 33864 33903 Row 61 35544 35583
Row 20 33904 33943 Row 62 35584 35623
Row 21 33944 33983 Row 63 35624 35663
Row 22 33984 34023 Row 64 35664 35703
Row 23 34024 34063 Row 65 35704 35743
Row 24 34064 34103 Row 66 35744 35783
Row 25 34104 34143 Row 67 35784 35823
Row 26 34144 34183 Row 68 35824 35863
Row 27 34184 34223 Row 69 35864 35903
Row 28 34224 34263 Row 70 35904 35943
Row 29 34264 34303 Row 71 35944 35983
Row 30 34304 34343 Row 72 35984 36023
Row 31 34344 34383 Row 73 36024 36063
Row 32 34384 34423 Row 74 36064 36103
Row 33 34424 34463 Row 75 36104 36143
Row 34 34464 34503 Row 76 36144 36183
Row 35 34504 34543 Row 77 36184 36223
Row 36 34544 34583 Row 78 36224 36263
Row 37 34584 34623 Row 79 36264 36303
Row 38 34624 34663 Row 80 36304 36343
Row 39 34664 34703 Row 81 36344 36383
Row 40 34704 34743 Row 82 36384 36423
Row 41 34744 34783 Row 83 36424 36463

232

Table 4-19—cont. Starting and Ending Addresses
for Each Row of the Mode-8 Screen RAM

Addresses Addresses
Row Row
Start End Start End

Row 84 36464 36503 Row 126 38144 38183
Row 85 36504 36543 Row 127 38184 38223
Row 86 36544 36583 Row 128 38224 38263
Row 87 36584 36623 Row 129 38264 38303
Row 88 36624 36663 Row 130 38304 38343
Row 89 36664 36703 Row 131 38344 38383
Row 90 36704 36743 Row 132 38384 38423
Row 91 36744 36783 Row 133 38424 38463
Row 92 36784 36823 Row 134 38464 38503
Row 93 36824 36863 Row 135 38504 38543
Row 94 36864 36903 Row 136 38544 38583
Row 95 36904 36943 Row 137 38584 38623
Row 96 36944 36983 Row 138 38624 38663
Row 97 36984 37023 Row 139 38664 38703
Row 98 37024 37063 Row 140 38704 38743
Row 99 37064 37103 Row 141 38744 38783
Row 100 37104 37143 Row 142 38784 38823
Row 101 37144 37183 Row 143 38824 38863
Row 102 37184 37223 Row 144 38864 38903
Row 103 37224 37263 Row 145 38904 38943
Row 104 37264 37303 Row 146 38944 38983
Row 105 37304 37343 Row 147 38984 39023
Row 106 37344 37383 Row 148 39024 39063
Row 107 37384 37423 Row 149 39064 39103
Row 108 37424 37463 Row 150 39104 39143
Row 109 37464 37503 Row 151 39144 39183
Row 110 37504 .| 37543 Row 152 39184 39223
Row 111 37544 37583 Row 153 39224 39263
Row 112 37584 37623 Row 154 39264 39303
Row 113 37624 37663 Row 155 39304 39343
Row 114 37664 37703 Row 156 39344 39383
Row 115 37704 37743 Row 157 39384 39423
Row 116 37744 37783 Row 158 39424 39463
Row 117 37784 37823 Row 159 39464 39503
Row 118 37824 37863

Row 119 37864 37903 Text window begins here
Row 120 37904 37943

Row 121 37944 37983 Row O 40800 40839
Row 122 37984 38023 Row 1 40840 40879
Row 123 38024 38063 Row 2 40880 40919
Row 124 38064 38103 Row 3 40920 40959
Row 125 38104 38143

233

319

e

GRAPHICS COLUMN

MOHY SOIHdVYD

Fig. 4-42. Column/row format for the Mode-24 screen.

234

1N

T 40783

, 33143
L1

8 HORIZONTAL PIXELS PER BYTE

H

-

33104
40744 '

Fig. 4-43. Screen RAM address format for the Mode-24 screen. See a
detailed listing of the addresses in Table 4-20.

235

Table 4-20. Starting and Ending Addresses
for Each Row of the Mode-24 Screen RAM

Addresses Addresses
Row Row
Start End Start End
Row O 33104 33143 Row 36 34544 34583
Row 1 33144 33183 Row 37 34584 34623
Row 2 33184 33223 Row 38 34624 34663
Row 3 33224 33263 Row 39 34664 34703
Row 4 33264 33303 Row 40 34704 34743
Row 5 33304 33343 Row 41 34744 34783
Row 6 33344 33383 Row 42 34784 34823
Row 7 33384 33423 Row 43 34824 34863
Row 8 33424 33463 Row 44 34864 34903
Row 9 33464 33503 Row 45 34904 34943
Row 10 33504 33543 Row 46 34944 34983
Row 11 33544 33583 Row 47 34984 35023
Row 12 33584 33623 Row 48 35024 35063
Row 13 33624 33663 Row 49 35064 35103
Row 14 33664 33703 Row 50 35104 35143
Row 15 33704 33743 Row 51 35144 35183
Row 16 33744 33783 Row 62 35184 35223
Row 17 33784 33823 Row 53 35224 35263
Row 18 33824 33863 Row 54 35264 35303
Row 19 33864 33903 Row 55 35304 35343
Row 20 33904 33943 Row 56 35344 356383
Row 21 33944 33983 Row 57 35384 35423
Row 22 33984 34023 Row 68 35424 35463
Row 23 34024 34063 Row 59 35464 35503
Row 24 34064 34103 Row 60 35504 35543
Row 25 34104 34143 Row 61 35544 35583
Row 26 34144 34183 Row 62 35584 35623
Row 27 34184 34223 Row 63 35624 35663
Row 28 34224 34263 Row 64 35664 35703
Row 29 34264 34303 Row 65 35704 35743
Row 30 34304 34343 Row 66 35744 35783
Row 31 34344 34383 Row 67 35784 35823
Row 32 34384 34423 Row 68 35824 35863
Row 33 34424 34463 Row 69 35864 35903
Row 34 34464 34503 Row 70 35904 35943
Row 35 34504 34543 Row 71 35944 35983

236

Table 4-20—cont. Starting and Ending Addresses
for Each Row of the Mode-24 Screen RAM

Addresses Addresses
Row Row
Start End Start End
Row 72 35984 36023 Row 107 37384 37423
Row 73 36024 36063 Row 108 37424 37463
Row 74 36064 36103 Row 109 37464 37503
Row 75 36104 36143 Row 110 37504 37543
Row 76 36144 36183 Row 111 37544 37583
Row 77 36184 36223 Row 112 37584 37623
Row 78 36224 36263 Row 113 37624 37663
Row 79 36264 36303 Row 114 37664 37703
Row 80 36304 36343 Row 115 37704 37743
Row 81 36344 36383 Row 116 37744 37783
Row 82 36384 36423 Row 117 37784 37823
Row 83 36424 36463 Row 118 37824 37863
Row 84 36464 36503 Row 119 37864 37903
Row 85 36504 36543 Row 120 37904 37943
Row 86 36544 36583 Row 121 37944 37983
Row 87 36584 36623 Row 122 37984 38023
Row 88 36624 36663 Row 123 38024 38063
Row 89 36664 36703 Row 124 38064 38103
Row 90 36704 36743 Row 125 38104 38143
Row 91 36744 36783 Row 126 38144 38183
Row 92 36784 36823 Row 127 38184 38223
Row 93 36824 36863 Row 128 38224 38263
Row 94 36864 36903 Row 129 38264 38303
Row 95 36904 36943 Row 130 38304 38343
Row 96 36944 36983 Row 131 38344 38383
Row 97 36984 37023 Row 132 38384 38423
Row 98 37024 37063 Row 133 38424 38463
Row 99 37064 37103 Row 134 38464 38503
Row 100 37104 37143 Row 135 38504 38543
Row 101 37144 37183 Row 136 38544 38583
Row 102 37184 37223 Row 137 38584 38623
Row 103 37224 37263 Row 138 38624 38663
Row 104 37264 37303 Row 139 38664 38703
Row 105 37304 37343 Row 140 |' 38704 38743
Row 106 37344 37383 Row 141 38744 38783

237

Table 4-20—cont. Starting and Ending Addresses
for Each Row of the Mode-24 Screen RAM

Addresses Addresses
Row Row
Start End Start End
Row 142 38784 38823 Row 167 39784 39823
Row 143 38824 38863 Row 168 39824 39863
Row 144 38864 38903 Row 169 39864 39903
Row 145 38904 38943 Row 170 39904 39943
Row 146 38944 38983 Row 171 39944 39983
Row 147 38984 39023 Row 172 39984 40023
Row 148 39024 39063 Row 173 40024 40063
Row 149 39064 39103 Row 174 40064 40103
Row 150 39104 39143 Row 175 40104 40143
Row 151 39144 39183 Row 176 40144 40183
Row 152 39184 39223 Row 177 40184 40223
Row 153 39224 39263 Row 178 40224 40263
Row 154 39264 39303 Row 179 40264 40303
Row 155 39304 39343 Row 180 40304 40343
Row 156 39344 39383 Row 181 40344 40383
Row 157 39384 39423 Row 182 40384 40423
Row 158 39424 39463 Row 183 40424 40463
Row 159 39464 39503 Row 184 40464 40503
Row 160 39504 39543 Row 185 40504 40543
Row 161 39544 39583 Row 186 40544 40583
Row 162 39584 39623 Row 187 40584 40623
Row 163 39624 39663 Row 188 40624 40663
Row 164 39664 39703 Row 189 40664 40703
Row 165 39704 39743 Row 190 40704 40743
Row 166 39744 39783 Row 191 40744 40783

238

Chapter 5

Player/Missile Graphics

The ATARI home computer system features an enhanced
animation package that generally goes by the name,
player/missile graphics. The name is derived from the
terminology that was applied to the original ATARI arcade
game systems; and, indeed, the computer player/missile
graphics retains many other general features of those
highly successful systems.

Generally speaking, those games involved some figures
that could be moved about on the screen (cannons, tanks,
airplanes, and the like), and a different kind of figure—
usually a simpler one—that is “fired” from the moving
objects. The former was termed the player and the latter
the missile. The terminology remains with ATARI systems,
even though the original ideas have been superceded by a
great many improvements and technological develop-
ments.

The ATARI 400/800 systems allow you to work with four
different player and missile figures simultaneously (and
even more if one cares to master some special program-
ming tricks).

239

Player/missile graphics is something quite different
from the other graphics and character modes that are de-
scribed in the previous chapter. In the context of the dis-
cussions in this chapter, it is more meaningful to refer to
those graphics and character modes as playfield graphics.
The reasoning behind that bit of terminology is that the
graphics modes provide colorful background and fore-
ground material for the animated player-and-missile
figures.

It is certainly possible to combine playfield and player/
missile graphics. In fact, it is difficult to avoid the tempta-
tion of drawing some interesting and colorful playfield
material to support the appearance and meaning of player/
missile animation. The two kinds of ATARI graphics func-
tion quite differently from one another, however. And
unlike the playfield graphics, there are no BASIC state-
ments that relate directly to player/missile operations.

Anyone who does not feel comfortable with the notion
of writing programs that are largely composed of PEEK and
POKE statements will have some difficulty with player/
missile graphics. All of the main.player/missile operations
refer to register addresses rather than convenient BASIC
statements and functions.

The best approach to player/missile graphics is thus
through the mechanisms of 6502 machine language.

In short, readers whose understanding of the ATARI
programming is limited to BASIC are going to have some
difficulty dealing with the full potential of player/missile
graphics.

PLAYER AND MISSILE CONFIGURATIONS

The player and missile figures, up to four each, are all
bit-mapped figures. Designing and loading the figures
into a well-defined area of RAM is, in a sense, much the
same as designing and entering custom text/graphics
character sets as described at the end of Chapter 4.

240

Bit Maps for the Player Figures

All player figures are mapped as exactly 8 bits wide. Exactly
how those eight bits translate into width as the figures
appear on the screen depends on the values that are
POKEd into certain register locations. The important point
here is that each line in a player figure is established by a
single byte of data.

The number of successive 1-line bytes in the player-
figure bit map determines its vertical length on the screen.
The map must consist of exactly 128 or 256 bytes—no
more, and no less. The 128-byte versions will use 1 byte of
mapped data for every two horizontal scan lines on the tv
or monitor; and the 256-byte version will use 1 byte for
each horizontal scan line. The vertical resolution of the
128-byte version of a player figure is thus half that of the
256-byte version.

In either case, a player-figure bit map that uses mean-
ingful color information throughout its entirety will pro-
duce a figure that extends the entire height of the screen.
But that does not mean that every player figure has to
appear that large. Portions of the bit map that contain
binary 0 will be invisible; so you can create short figures
by first setting all of the map addresses to 0, and then
loading only those bytes that define the figure you want to
see on the screen.

Designing a bit map for a player figure is a straightfor-
ward, if somewhat, tedious task. The usual technique is to
score a sheet of graph paper such that you work with a
figure window that is exactly 8 squares wide and as long as
necessary (not exceeding the 128- or 255-bit limits).

241

Fig. 5-1 illustrates the map-development procedure for
a 9-line player figure. The dark areas in Fig. 5-1A are to be
colored, and the light areas are to be invisible. That pat-
tern then translates to binary 1s and 0s as shown in Fig.
5-1B—1 = colored, 0 = invisible. The final step, shown in
Fig. 5-1C, translates the binary codes to decimal and hex-
adecimal formats. (The decimal format is most useful
when POKEing the data to the bit map, and the hexade-
cimal format is better when loading the bit map by means
of a 6502 assembly language routine.)

1-LINE-PER-BYTE
BYTE PLAYER FIGURE

0
1
g (A) Sketch the figure on square
a graph paper, using 8 squares
S er line.
b p
7
8
BINARY DATA
00011000
00100100
01000010
01000010 DECIMAL
00100100 DATA
00011000 2
00011000 »
00111100 hod
00011000 bod
36
24
24
REMAINING 247 BYTES 60
ARE SET TO 0 24
(B) Translate the drawing into bi- (C) Convert the binary format to
nary bytes: O = background decimal.

color, 1 = figure color.

Fig. 5-1. Development of a player bit map.

242

Bearing in mind that the bit map for a player figure must
be divided into 1-byte lines, a bit map merely suggests the
general proportions of the player figure, and not necessar-
ily its size as it will eventually appear on the screen. And
the fact that this particular example uses only 9 bytes does
not change the fact that its bit map must be either 128 or
256 bytes long. A later discussion suggests a simple tech-
nique for filling the remainder of a figure’s bit map with
zeros.

It is possible, but certainly not necessary, to develop
three more player-figure bit maps. In fact, you can use the
bit-map areas for any unused player figures for other pur-
poses such as machine-language programs. Suppose, for
example, that you are using player figures 0 and 1, and
have no intention of using figures 2 and 3. You must
commit the entire bit-map area for figures 0 and 1 to that
purpose, but then the areas that are normally set aside for
figures 2 and 3 are free for other uses.

Bit Maps for the Missile Figures

Missile figures, up to four of them, are likewise bit
mapped into RAM. Mapping a 0 creates an “invisible”
point and mapping a 1 creates a point of some desired
color. And like player figures, missiles must be mapped as
either 128 or 256 bytes—even if it means POKEing a lot of
zeros to fill out that much space.

One big difference between the player and missile bit
maps is the fact that each missile figure is defined in terms
of 2 bits instead of 8. The missile map is 128 or 256 bytes
long; but for a given missile figure, it is only 2 bits (¥4 byte)
wide. :

For the sake of RAM efficiency, the four missile figures
are lined up side by side. Fig. 5-2 shows how a single byte
accounts for line data for all four missile figures.

243

MISSILE MISSILE MISSILE MISSILE
3 2 1 0

BYTE D7 D6 D5 D4 D3 D2 D1 DO

0 MSB LS8

1

2

3

4

UP TO BYTE 1023 FOR 2-LINE RESOLUTION
UP TO BYTE 2047 FOR 1-LINE RESOLUTION

Fig. 5-2. Organization of the bit map for missile figures.

The two most-significant bits (D7 and D6) are devoted to
missile figure M3, bits D5 and D4 are devoted to missile
figure M2, bits D3 and D2 are devoted to missile figure
M1, and the two least-significant bits (D1 and DO) are
devoted to missile figure MO. Missile figure MO, for
instance, will occupy the two least-significant bits of the
missile bytes.

Having just 2 bits for each bit-mapped missile byte
doesn’t leave a whole lot of room for applying one’s crea-
tive imagination. It is possible, however, to salvage the
idea by combining two different missile figures into one
(and making certain that they remain side by side
throughout their animation routines).

244

The Overall Player/Missile Bit Map

Fig. 5-3 shows the two kinds of player/missile bit maps.
You must use one or the other, and you must set aside the
full amount of memory.

2 LINES PER BYTE | 1 LINE PER BYTE
0 0
128 |—128
UNUSED
256 — |- 256
384 UNUSED 384
M3]M2‘M1IMO
512 |-512
PO
640 |- 640
P
768 768
P2
896 M3 | M2 | M1 | MO [-896
P3
1024 1024
PO [—1152
1280
P1 |~ 1408
1536
P2 — 1662
1792
P3 —1920

2048

Fig. 5-3. The overall player/missile bit map for 2-line and 1-line
vertical resolution.

The 2-lines-per-byte configuration devotes two hori-
zontal scan lines per byte of player/missile data. In that
instance, the space devoted to player and missile figures
fills the screen—from top to bottom—with just 128 bytes
per figure.

245

The 1-line-per-byte configuration offers a greater level
of vertical resolution, but of course requires twice as
much RAM to do the job. In that instance, there is 256
bytes set aside for each figure.

So if you elect to use the 2-lines-per-byte configuration,
the player/missile bit map must occupy a total of 1024
bytes—no matter how many figures you choose to use, or
how large or small they might be. Likewise, using the 1-
line-per-byte configuration demands that you set aside
2048 bytes of memory for the bit maps.

The fact that you must set aside either 1024 or 2048 bytes
of RAM for the player/missile bit map is not really a waste
of good memory. If you are using just two player figures,
for example, it is quite possible to use the RAM that is
allocated for the other two player figures for machine-
language programs. You are also free to use the unused
RAM areas for your own purposes.

Actually, this business of having to fill the unused areas
of the player/missile bit map with zeros is a rather trivial
one. Once you have established the starting address of the
bit map, called PMBASE, zeroing all the 2-lines-per-byte
area is a matter of executing this sort of BASIC routine:

FOR N=0 TO 1023:POKE PMBASE+N,0:NEXT N
Or when using the 2048-byte version:
FOR N=OTO 2047:POKE PMBASE+N,0:NEXT N

After setting all of the bit-map locations to zero, then
the player/missile data and any custom machine-language
programming can be POKEd or loaded into the map area.
The only critical problem in the entire affair is that of
determining the value of PMBASE—the base address for
the player/missile bit map.

246

Setting the Starting Address of the Player/Missile Bit
Map

The player/missile bit map must be located in a section of
RAM where it can be protected from the operating system
and BASIC, and yet in an area where there is no conflict
with the playfield graphics operations. The usual location
is just below the ANTIC display list for the playfield graph-
ics; but even then it is necessary to contend with the fact
that the location of the display list changes with the graph-
ics modes and the amount of RAM installed in the compu-
ter (see Chapters 7 and 8).

What’s more, PMBASE must begin at a 1k boundary
value for a 1024-byte map, or at a 2k boundary value for a
2048-byte map.

Those might appear to be rather severe and trouble-
some restrictions upon the placement of the player/mis-
sile bit maps. But there is a reliable step-by-step proce-
dure for carrying out the task.

The procedure begins by determining the starting
addresses of all the playfield display lists you will be using,
and then select the one having the lowest address.

You can determine the starting address of a display list
by entering this program, setting up the playfield graphics
mode, and then executing the program:

10 DISPL=PEEK(560)+256*(561)
20 GRAPHICS O
30 PRINT DISPL

The LSB of the starting address of the display list is carried
in RAM address 560, and the MSB is in address 561. The
program thus PEEKs into those areas, converts the resuit to
a decimal number and prints it to the Mode-0 screen.

The starting address of the player/missile bit map must
then be at least 1024 or 2048 bytes lower—but at a 1k or 2k
boundary value.

247

Table 5-1 shows all possible 1k and 2k boundary values
for the ATARI system. If you are using the 1024-byte ver-
sion of a player/missile bit map, subtract 1024 from the
lowest display-list address, and then use the table to find
the next-lower 1k boundary value. So if your lowest-
numbered display list happens to begin at address 40540,

and you are using a 1024-byte player/missile bit map,
then:

40540—-1024=39516

Table 5-1. 1k and 2k
Boundary Values for RAM Addresses

1k 2k
1024 32768 2048
2048 33792 4096
3072 34816 6144
4096 35840 8192
5120 36864 10240
6144 37888 12288
7168 38912 14336
8192 39936 16384
9216 40960 18432
10240 41984 20480
11264 43008 22528
12288 44032 24576
13312 45056 26624
14336 46080 28672
16360 47104 30720
16384 48128 32768
17408 49152 34816
18432 50176 36864
19456 51200 38912
20480 52224 40960
21504 53248 43008
22528 54272 45056
23552 55296 47104
24576 56320 49152
25600 57344 51200
26624 58368 653248
27648 59392 55296
28672 60416 57344
29696 61440 59392
30720 62464 61440
31744 63488 63488
64512

248

But 39516 does not represent a 1k boundary value.
According to the 1k boundary-value list in Table 5-1, the
next-lower address is 38912—and that is a 1k boundary
value. Thus, the player/missile bit-map should begin at
address 38912.

By way of another example, suppose that you want to
use a 2048-byte map, and your lowest-addressed display
list begins at 40266. Subtracting those values:

40266-2048-38218

And according to the 2k boundary table, the next-lower
address is 36864. That is where the 2048-byte bit map
should begin in this particular example.

If you do not feel inclined to do all of those calculations
yourself, you can let the ATARI Home Computer do the
work for you:

10 PRINT “SELECT ONE:"

20 PRINT ~ 1—SINGLE-LINE RESOLUTION
30 PRINT ~ 2—DOUBLE-LINE RESOLUTION
40 INPUTR

50 R=INT(R):IF NOT(R=1 OR R=2) THEN 40

60 DLST=PEEK({560)+256*PEEK(561)

70 IF R=1 THEN D=2048:GOTO 90

80 D=1024

90 PMBA=INT(DLST/D-1)*D

100 PRINT "DISPLAY LIST STARTS AT: ";DLST
110 PRINT “BIT MAP SHOULD START AT: ";PMBA

Protecting the Player/Missile Bit Map

It is important to protect the player/missile bit map from
operating-system and BASIC RAM operations. Once you
know the starting address of the bit map, simply derive a
2-byte decimal version of it and POKE the LSB into RAM
address 14 and the MSB into address 15. Those two
addresses, often labeled APPEMHI set the highest RAM
address that is available for operating-system and BASIC
operations. A program that uses player/missile graphics
should thus have POKEs to addresses 14 and 15 appearing

249

very early in the listing; certainly before attempting to set
up the bit map.

ADJUSTING THE WIDTH OF THE PLAYER/MISSILE
FIGURES

The selection of single- or double-line resolution has a lot
to do with the vertical size of a player/missile figure; and,
of course, so does the length of the bit map for those
figures. The bit map, however, allows player figures to be
only 8 pixels wide and missile figures to be just 1 pixel
wide. Obviously, there are going to be instances where
you want to use figures that are much wider than that—at
least they should appear wider on the screen.

There are some registers available for expanding the
width of the player/missile figures; specifically, it is possi-
ble to double or quadruple their width. Table 5-2 shows
the RAM addresses of those width-control registers and
the data bytes that should be POKEd to them in order to
get 1x, 2x or 4x horizontal expansion.

Table 5-2. Player/Missile Figure Width Registers

Width-Register Width-Register Figure(s)
Label Address Affected

SIZEPO 53256 Player O

SIZEP1 63257 Player 1

SIZEP2 53258 Player 2

SIZEP3 53259 Player 3

SIZEM 53260 Missiles O through 3
POKE values:

O=normal width (1x bit-map width)
1=double width (2x bit-map width)
2=quadruple width (4x bit-map width)

Notice that it is possible to adjust the width of the four
player figures independently. The scheme, however,
allows just one width setting for all four missiles.

The default width is 1x. So if you plan to use alternative
widths, it is important to POKE into the width-setting
addresses very early in the program.

250

SETTING PLAYER/MISSILE COLORS

The color of the player/missile figures is set according to
the same scheme that is used for playfield graphics. In that
regard, Table 4-1 lists the basic hues and their data values,

and Table 4-2 shows the relevant luminance values that
must be summed with 16*hue to get a desired color. The
player/missile figures, however, use a different set of
RAM addresses for their color registers.

Table 5-3 shows the addresses of the color registers for
player/missile figures 0 through 3. Notice that a given
player figure and its corresponding missile share the same
color register. Because of that particular feature, a player
and its corresponding missile will always have the same
color.

Table 5-3. Player/Missile Color Registers

Color-Register Color-Register Figures

Label Address Affected
COLPMO 707 Player/Missile O
COLPM1 708 Player/Missile 1
coLPM2 709 Player/Missile 2
COLPM3 710 Player/Missile 3

NOTE: See Tables 4-1 and 4-2 in Chapter 4 for listings of appropriate

hue and luminance data values.

Naturally, it is important to POKE the desired player/
missile colors into the color registers before initiating rou-
tines that display them on the screen.

INITIATING AND TERMINATING PLAYER/MISSILE
GRAPHICS

The mere presence of a player/missile bit map and the
setting of width color registers is not sufficient for initiat-
ing player/missile graphics modes. Two additional regis-
ters must be loaded with data that configures the entire
scheme. The registers are GRACTL (address 53277) and
DMACTL (address 559). GRACTL enables and disables the

251

player/missile graphics, and DMACTL is used for setting
up a desired player/missile configuration.

Table 5-4 shows the relevant data values that can be
POKEd to GRACTL.

Table 5-4. POKE Operations for the GRACTL
(Graphics Control) Register

POKEs to GRACTL Function
POKE 53277.0 Disable all player/missile operations
POKE 532771 Enable missiles only
POKE 53277,2 Enable players only
POKE 53277,3 Enable both players and missiles

NOTE: Add 4 to the data values to latch all paddle trigger inputs. Using
the values shown here will clear and disable the paddle trigger latches.

It is not sufficient to deal only with GRACTL. Every
GRACTL should follow a POKE statement to DMACTL at
address 559—a statement that actually configures the
graphics operations.

Table 5-5 shows all possible playfield and player/missile
configurations. Notice that the value POKEd to DMACTL
must be greater than or equal to 32. POKEing values less
than 32 will disable ANTIC altogether, thereby making it
impossible to work with any kind of graphics—including
normal Mode-0 text.

Those POKE-to-559 values offer a wide range of options.
The default value, for example, is 34. From the table, you
can see that it specifies a normal-sized playfield and dis-
ables the player/missile graphics.

It is often desirable to adjust those values during the
execution of a program, but there is one parameter that
ought to remain unchanged—the number of lines of reso-
lution. That figure must match the choice you made ear-
lier when setting up the player/missile bit map.

Generally, a programmer will first set up the DMACTL
register, followed immediately by POKEing the appro-
priate value to GRACTL.

252

Table 5-5. POKE Values for Configuring the
Player/ Missile Operations at the DMACTL
(Direct-Memory-Address Control) Register

POKE Playfield Missile Player Vertical

Value Configuration Status Status Resolution
32 none disable disable not relevant
33 narrow disable disable | -notrelevant
34 standard disable disable not relevant
35 wide disable disable not relevant
36 none enable disable 2-line
37 narrow enable disable 2-line
38 standard enable disable 2-line
39 wide enable disable 2-line
40 none disable enable 2-line
41 narrow disable enable 2-line
42 standard disable enable 2-line
43 wide disable enable 2-line
44 none enable enable 2-line
45 narrow enable enable 2-line
46 standard enable enable 2-line
47 wide enable enable 2-line
48 none disable disable not relevant
49 narrow disable disable not relevant
50 standard disable disable not relevant
51 wide disable disable not relevant
52 none enable disable 1-line
53 narrow enable disable 1-line
54 standard enable disable 1-line
55 wide enable disable 1-line
56 none disable enable 1-line
57 narrow disable enable 1-line
58 standard disable enable 1-line
59 wide disable enabie 1-line
60 none enable enable 1-line
61 narrow enable enable 1-line
62 standard enable enable 1-line
63 wide enable enable 1-line

253

MOVING THE PLAYER/MISSILE FIGURES

Moving player and missile figures horizontally across the
screen is a relatively simple operation—just POKE the
desired column number into a register that is designated
for that purpose. The POKEd value will determine the
column location of the left-hand side of the bit-mapped
figure, and the range of useful values depends on the
figure’s bit-mapped width and its width-register setting.

Table 5-6 lists the horizontal position registers for the
eight player and missile figures.

Table 5-6. The Horizontal 6-Position Registers
for the Player/Missile Figures

Figure

Label Address Affected
HPOSPO 53248 Player O
HPOSP1 53249 Player 1
HPOSP2 53250 Player 2
HPOSP3 563251 Player 3
HPOSMO 563252 Missile 0
HPOSM1 53253 Missile 1
HPOSM2 53254 Missile 2
HPOSM3 53255 Missile 3

POKEing horizontal-position values less than 40 will
generally bury the figure within the horizontal blanking
area of the raster scan. That renders the figure virtually
invisible—which isn’t necessarily an undesirable situation.
Itis far easier to remove a figure from the screen by POKE-
ing 0into its horizontal-position register than it is to hide it
by any other means.

Vertical motion is generated by actually moving the fig-
ure through its own bit map. The bit map for a 2-line-per-
byte player figure is 128 bytes long. As described earlier,
that much RAM must be allocated for every player figure.
Few player figures will be that long, however, and the
space that remains is space that can be used for moving
the figure in the vertical directions.

254

That earlier discussion also implied that the top of a
figure should begin at the start of its bit-map area. That
isn’t necessarily the case; but when a figure is located at
the top of its bit-map area, it will appear at the top of the
screen. Downward vertical motion is then achieved by
pushing the figure deeper into its bit-map area (into suc-
cessively higher RAM addresses).

Fig. 5-3 shows the memory maps for the overall player/
missile bit map. If you are using a 2-line resolution, the bit
map for player figure 0 begins at a known address: the
starting address of the bit map (PMBASE) + 512. It is then
possible to move the figure downward by means of a rou-
tine that copies the bit map with successively higher
addresses.

That sort of vertical-motion operation can be rather
time consuming when run in BASIC, however, so it is gen-
erally considered a good practice to do the job with the
help of a simple machine-language move operation.

PLAYER /PLAYFIELD PRIORITIES

ATARI computers, with their special ANTIC graphics devi-
ces, make it rather easy to create the impression that one
object is moving behind or in front of another. There is a
priority-select register that lets you determine whether a
given figure has priority over, or will move in front of,
another figure on the screen.

That register is normally labeled GPRIOR, and it is
located at address 632. Table 5-7 shows the values that
should be POKEd to GPRIOR in order to establish the
orders of priority.

Executing a POKE 632,1 will give the player/missile fig-
ures priority over any playfield objects, and any playfield
objects will take priority over the background color.

255

Table 5-7. POKE Values for GPRIOR at Address 632.
These Values Set the Priority of the Player, Missile, and
Playfield Figures

Value Priorities
1 Player/missiles 0, 1, 2, and 3
Playfield registers 0, 1, 9, and 3
Background
2 Player/missiles 0 and 1

Playfield registers 0, 1, 2, and 3
Player/missiles 2 and 3

4 Playfield registers 0, 1, 2, and 3
Player/missiles 0, 1, 2, and 3
Background

8 Playfield registers O and 1

Player/missiles 0, 1, 2, and 3
Playfield registers 2 and 3
Background

Add 16—All four missiles take on the color specified at playfield regis-
ter 3; a condition often regarded as one that adds a fifth player to the
screen.

Add 32—Overlapping of player/missiles Oand 1, or 2 and 3, will create
a third color in the overlapped region. Other combinations of over-
lapped figures will always show black in the overlapped region.

On the other hand, executing a POKE 632,8 will give any
playfield graphic that is plotted from color registers 0 and
1priority over all of the player/missile figures; but then all
player/missile figures will take priority over any playfield
graphic that is plotted from color registers 2 or 3. The
background, as usual, takes the lowest precedence.

It is important to recall that only the 4-color graphics
modes (Modes 3, 5, and 7) use all four playfield color
registers. Using the 2-color graphics modes limits the cap-
ability of this powerful animation and graphics tool.

256

COLLISION DETECTION

Yet another feature of the ATARI graphics system is a
built-in scheme for detecting a collision between figures.
The scheme not only detects a collision, but returns values
that indicate the kinds of figures involved.

There are 16 collision-detection registers and an addi-

“tional register that is used for clearing them. Normally, a
program will clear the collision-detection registers and
then poll them from time to time to see whether or not
certain collision events have taken place. After some rele-
vant collisions have occurred, the program can take some
appropriate action and clear the registers once again.

The collision-status clearing register, HITCLR, is located
at address 53278; and POKEing any value greater than zero
will cause the system to clear the collision-detection
registers.

Table 5-8 summarizes the collision format for collisions

Table 5-8. Values Returned by PEEKing Into
the Missile-to-Playfields Collision Registers

Collision Scenario

ols3

no collision since most recent HITCLR;
POKE 53278,255

Playfield from color register O

Playfield from color register 1

Playfields from color registers O and 1

Playfield from color register 2

Playfields from color registers O and 2

Playfields from color registers 1 and 2

Playfields from color registers O, 1 and 2

Playfield from color register 3

Playfields from color registers O and 3

10 Playfields from color registers 1 and 3

11 Playfields from color registers 0, 1, and 3

12 Playfields from color registers 2 and 3

13 Playfields from color registers O, 2, and 3

14 Playfields from color registers 1, 2, and 3

15 Playfieids from color registers 0, 1, 2, and 3

nPEEK(53248) for Missile-0 Collisions with Playfields
nPEEK({53249) for Missile-1 Collisions with Playfields
nPEEK(53250) for Missile-2 Collisions with Playfields
nPEEK(53251) for Missile-3 Collisions with Playfields

woOoNOOUA_RWN =

257

between the missile figures and any playfield objects that
are plotted from color registers 0 through 3. Whenever it
is necessary to see whether or not a collision has occurred
between missile figure 2 and a playfield object drawn from
color register 1, this sort of BASIC statement is in order:

IF PEEK 53250=2 THEN PRINT “BOOM"’

Table 5-9 summarizes the same sort of information; but
in this case, the collision-detection operations refer to col-
lisions between player figures and playfield colors.

Table 5-9. Values Returned by PEEKing Into
the Player-to-Playfields Collision Registers

n Collision Scenario

(=]

no collision since most recent HITCLR;
POKE 53278,255

Playfield from color register O

Playfield from color register 1

Playfields from color registers O and 1

Playfield from color register 2

Playfields from color registers O and 2

Playfields from color registers 1 and 2

Playfields from color registers O, 1, and 2

Playfield from color register 3

Playfields from color registers 0 and 3

10 Playfields from color registers 1 and 3

11 Playfields from color registers 0, 1, and 3

12 Playfields from color registers 2 and 3

13 Playfields from color registers 0, 2, and 3

14 Playfields from color registers 1, 2, and 3

15 Playfields from color registers 0, 1, 2, and 3

nPEEK(53252) for Player-O Collisions with Playfields
nPEEK(53253) for Player-1 Collisions with Playfields
nPEEK(53254) for Player-2 Collisions with Playfields
nPEEK(53255) for Player-3 Collisions with Playfields

CONOOHWN =

Again, the same general format appears in Table 5-10.
The collisions in this instance, however, are between mis-
siles and players.

Tables 5-11 through 5-14 show the PEEK values that are
returned from registers that detect collisions between two
different player figures. The summary is divided into four
separate parts because a collision between a player figure
and itself is not a relevant, or even meaningful, situation.

258

Table 5-10. Values Returned by PEEKing Into
the Missile-to-Players Collision Registers

n Collision Scenario
0 no collision since most recent HITCLR;
POKE 53278,255
i Player O
2 Player 1
3 Players 0 and 1
4 Player 2
5 Players O and 2
6 Players 1 and 2
7 Players 0, 1, and 2
8 Player 3
9 Players 0 and 3
10 Players 1 and 3
1" Players 0,1, and 3
12 Players 2 and 3
13 Players O, 2, and 3
14 Players 1,2, and 3
15 Players 0,1, 2, and 3

n=PEEK(532586) for Missile-O Collisions with Players
n=PEEK(53257) for Missile-1 Collisions with Players
n=PEEK(53258) for Missile-2 Collisions with Players
n=PEEK(53259) for Missile-3 Collisions with Players

Table 5-11. Values Returned by PEEKing Into the
Player-to-Players Collision Registers
(Player O to Players 1, 2, and 3)

Collision Scenario

no collision since most recent HITCLR;
POKE 53278,255

Player 1

Player 1

Player 2

Player 2

Players 1 and 2

Players 1 and 2

Player 3

Player 3

10 Players 1 and 3

11 Players 1 and 3

12 Players 2 and 3

13 Players 2 and 3

14 Players 1,2, and 3

15 Players 1,2,and 3

CONONBWN O3

nPEEK(53260) for Player-0 Collisions with Players 1, 2, and 3

259

Table 5-12. Values Returned by PEEKing Into the
Player-to-Players Collision Registers
(Player 1 to Players 0, 2, and 3)

Collision Scenario

n
0 no collision since most recent HITCLR;
POKE 53278,255

1 Player O

3 Player O

4 Player 2

5 Players O and 2

6 Player 2

7 Players O and 2

8 Player 3

9 Players O and 3
10 Player 3
11 Players O and 3
12 Players 2 and 3
13 Players O, 2, and 3
14 Players 2 and 3
15 " Players 0, 2, and 3

nPEEK(53261) for Player-1 Collisions with Players 0, 2, and 3

Table 5-13. Values Returned by PEEKing Into the
Player-to-Players Collision Registers
(Player 2 to Players 0, 1, and 3)

n Collision Scenario
0 no collision since most recent HITCLR;
POKE 53278,255
1 Player O
2 Player 1
3 Players O and 1
5 Player O
6 Player 1
7 Players O and 1
8 Player 3
9 Players O and 3
10 Players 1 and 3
11 Players 0, 1, and 3
12 Player 3
13 Players O and 3
14 Players 1 and 3
15 Players 0, 1, and 3

n=PEEK(53262) for Player-2 Collisions with Players 0, 1, and 3

260

Table 5-14. Values Returned by PEEKing Into the
Player-to-Players Collision Registers
(Player 3 to Players O, 1, and 2)

n Collision Scenario

o

no collision since most recent HITCLR;
POKE 53278,255
1 Player O
2 Player 1
3 Players O and 1
4 Player 2
5 Players O and 2
6 Players 1 and 2
7 Players 0, 1, and 2
9 Player O
10 Player 1
1" Players O and 1
12 Player 2
13 Players O and 2
14 Players 1 and 2
15 Players O, 1, and 2

nPEEK(53264) for Player-3 Collisions with Players O, 1, and 2

261

Chapter 6

More About 1/0 Operations

A computer is useless without being able to perform
operations that let it accept data from other devices,
including the keyboard, and let it direct information to
other devices, including the display screen. Computer
users often take such operations for granted, but the
ATARI Operating System offers some fine opportunities
for redirecting the normal flow of information and,
indeed, creating new ones.

WORKING WITH THE PROGRAM RECORDER 1/0

Chapter 1 describes the most commonly used techniques
for saving and loading tokenized BASIC programs at the
program recorder. The general idea is to execute CSAVE
and CLOAD commands or, alternatively, SAVE “C:” and
LOAD “C:” commands.

The following discussions extend the range of tech-
niques to include ATASClI-coded BASIC and pure data
files.

263

ATASCII-Coded BASIC Programs—LIST*‘C:"* and
ENTER’'C:"’

The mechanical operations involved in saving and loading
BASIC programs that are saved in an ATASCII, or nontok-
enized, format are essentially the same as those already
described for tokenized programs. The only real differ-
ence is the nature of the commands.

To save an ATASCII-coded version of a BASIC program
on the program recorder, find the desired place on the
cassette tape and note the tape-counter reading.

Set the recorder to its record mode and enter this
command:

LIST "C:”

That will list the entire BASIC program, in the ATASCII-
coded format, to the program recorder. You know that
the operation is finished when the BASIC prompt symbol
and READY message reappear on the screen. Turn off the
program recorder at that time.

Alternatively, you can record selected portions of a
BASIC program that is resident in the system. This proce-
dure is especially helpful whenever you want to save some
commonly used subroutines for future programs. Where-
as the LIST “C:” command will save the entire program on
cassette tape, this command will list a portion of it:

LIST “C:”, strtline,lastline

where strtline is the line number of the first line to be
recorded, and Jastline is the final line number in the
segment.

The LIST command thus saves an ATASClI-coded ver-
sion of a BASIC program, or a selected portion of it, onto
cassette tape. The ENTER command is used for loading
that material back into RAM from the program recorder.

264

The mechanical procedures for using the ENTER com-
mand are quite similar to those for using the CLOAD
command. The ENTER command, however, must be used
with programs that were originally saved under the LIST
command.

First, enter this command at the ATARI console:

ENTER “C:”

The system will respond to that command by beeping the
console loudspeaker twice. That is the time to cue the
tape to the beginning of the ATASClI-coded program you
want to load. After doing that, depress the PLAY lever on
the program recorder and strike any key on the ATARI
console (except the BREAK key). That will begin the load-
ing operation. The loading session is done when the
BASIC cursor and READY message reappear on the
screen.

The important advantage of the LIST/ENTER operations
is that they permit the merging of smaller program seg-
ments into a larger program in RAM. Recall that the LIST
program lets you specify selected portions of a program to
be saved on cassette tape. That is one difference. The big
. difference, however, is that the ENTER command, unlike
its CLOAD counterpart, does not erase existing BASIC
programming from the system RAM; rather it adds the
previously saved routines to the existing program.

In the event that there are duplicate line numbers, the
most recently ENTERed segment will take precedence; in
effect, writing over lines of programming having the same
line numbers. When contemplating the use of these merg-
ing operations, it is thus very important to make sure that
the LISTed program line numbers will not duplicate
important program lines when you return them to the
system via the ENTER command.

Given some practice and some careful planning, it is
quite possible to use the LIST/ENTER commands to build
very large programs in a highly efficient fashion from rou-
tines that you developed and LISTed to the program
recorder at previous times.

265

The LIST and ENTER commands that refer to the pro-
gram recorder automatically select IOCB Channel 7. That
channel must not be open for any other purpose at the
time you execute either command.

Nonprogram Files—PRINT and INPUT

In the context of saving and loading information to the
program recorder, the PRINT and INPUT statements are
useful for working with files that are composed of infor-
mation other than lines of BASIC programming. Unlike
the program saving and loading operations, PRINT and
INPUT must be included in a program of their own—the
scheme cannot work directly from the keyboard.

The following example suggests a programming proce-
dure for a relatively simple data-recording operation:

10 OPEN #7,8,0,”°C:"
20 FOR N=0 TO 1000
30 PRINT #7,N;

40 NEXT N

Line 10 opens IOCB Channel 7 for output to the pro-
gram recorder, the FOR ... NEXT loop generates the
numerical values for variable N, and line 30 outputs those
values to the program recorder.

Upon executing the OPEN statement in line 10, the sys-
tem will beep the console loudspeaker twice to signal the
time to set the program recorder to its RECORD mode
and strike any key (except the BREAK key) to begin the
recording operation.

The PRINT statement loads the values to the tape in
groups of 128; and you will notice a pause between each
group. Turn off the program recorder when the program
ends.

266

The example illustrates the fact that it is important to
open an IOCB channel prior to executing the PRINT
command. In this context, the general form of that OPEN
statement is

OPEN #chan,8,gap

where chan is the desired IOCB channel for the opera-
tion, and gap is a value of zero or 128. Setting gap to zero
causes the program recorder to pause while the system is
loading the next 128 bytes of data to the output buffer.
Setting gap shortens that interval, but risks inserting gar-
bage between successive segments of data on the cassette
tape.

The PRINT statement must specify the same IOCB
channel that is opened by the previous OPEN statement:

PRINT #chan, ..

The following example suggests a way to reload the
numerals that were saved by the previous example of the
PRINT statement:

10 DIM X(1000)

20 OPEN #7,4,0,C:"”

30 FOR N=0TO 1000
soBEEHZNN \NPUT 4 7,%(N)
B0 NEXT N

Line 10 dimensions subscripted variable X, and line 20
opens IOCB Channel 7 for input from the program
recorder, using normal inter-record delays. Lines 30
through 50 then read the data from the cassette tape,
assigning each numerical value to the subscriped variable,
X.

Upon executing the OPEN statement, the system will
beep the console loudspeaker twice, thus signaling the
time to set the program recorder to the PLAY mode and
strike any key (except BREAK) to continue.

267

The PRINT and INPUT techniques work equally well
with string data and, indeed, combinations of numerical
and string data. It is absolutely necessary, however, to
make certain that the variable names are organized such
that there is no type mismatch anywhere through the sav-
ing and loading routines.

Nonprogram Files—PUT and GET

BASIC’s PUT and GET statements offer an alternative
means for working with file data. Unlike PRINT and
INPUT, however, PUT and GET operations are limited to
numerical values (although strings can be converted to
ATASCIl codes before they are PUT to the program
recorder. But generally speaking, the PUT/GET routines
are quite similar to the PRINT/INPUT routines just
described.

The following example suggests a programming proce-
dure for a relatively simple data-recording operation:

10 OPEN #7,8,0,"C:”
20 FOR N=0 TO 1000
30 PUT #7,N

40 NEXT N

Line 10 opens IOCB Channel 7 for output to the pro-
gram recorder, the FOR ... NEXT loop generates the
numerical values for variable N, and line 30 outputs those
values to the program recorder.

Upon executing the OPEN statement in line 10, the sys-
tem will beep the console loudspeaker twice to signal the
time to set the program recorder to its RECORD mode
and strike any key (except the BREAK key) to begin the
recording operation.

The PUT statement loads the values to the tape in
groups of 128; and you will notice a pause between each

group. Turn off the program recorder when the program -

ends.

268

As with the PRINT-recording technique, an IOCB chan-
nel must be opened for output to the program recorder
before the PUT operations begins:

OPEN #chan,8,gap

where chan is the desire 10CB channel for the operation,
and gap is a value of zero or 128 for the purpose described
for the PRINT/INPUT operations.

The subsequent PUT statement must specify the same
IOCB channel that is opened by the OPEN statement:

PUT #chan,x

where chan is the IOCB channel number and x is any
numeric variable, constant or expression.

The following example suggests a way to reload the
numerals that were saved by the previous example of the
PUT statement:

10 DIM X(1000)

20 OPEN #7,4,0,”C:”
30 FOR N=0TO 1000
40 GET #7 X(N)

50 NEXTN

Line 10 dimensions subscripted variable X, and line 20
opens 10CB Channel 7 for input from the program
recorder, using normal inter-record delays. Lines 30
through 50 then read the data from the cassette tape,
assigning each numerical value to the subscripted varia-
ble, X.

Upon executing the OPEN statement, the system will
beep the console loudspeaker twice, thus signaling the
time to set the program recorder to the PLAY mode and
strike any key (except BREAK) to continue.

It is possible to use the PUT/GET operations with string
data if the strings are first converted to their ATASCII
codes.

269

WORKING WITH THE DISK DRIVE I/0

Chapter 1 describes the most commonly used techniques
for saving and loading tokenized BASIC programs on a
diskette by means of SAVE “D:” and LOAD “D:” com-
mands, respectively.

The following discussions extend the range of tech-
niques to include ATASCIll-coded BASIC and pure data
files.

ATASCII-Coded BASIC Programs—LIST’'D:’’ and
ENTERD:"’

The mechanical operations involved in saving and loading
BASIC programs that are saved in an ATASCII, or nontok-
enized, format are essentially the same as those described
for tokenized programs. The only real difference is the
nature of the commands.

Use a command of this form to save an ATASCII-coded
version of a BASIC program on a selected disk drive
system:

LIST“D[n]:filename[.ext]”

That will list the entire BASIC program to disk-drive n
under the name, filename, and with an optional exten-
sion, ext. See the previous discussion for general rules
regarding the selection of filenames and extensions.
Example:

LIST “D:SILLY.FUN"

That LIST command will use the default disk drive (usually
drive #1) for saving an entire BASIC program—
SILLY.FUN—in an ATASCII-code format.

270

Alternatively, you can record selected portions of a
BASIC program that is resident in the system. This proce-
dure is especially helpful when you want to save some
commonly used subroutines for future programs. Where-
as the previous saves the entire program, this form of the
command saves a selected portion of it:

LIST“D[n]:filename[.ext]” strtline, lastline

where strtline is the line number of the first line to be
recorded, and lastline is the final line number in the
segment.

Example:

LIST'D:MIXER",200,300

That command will save the BASIC programming between
lines 200 and 300, inclusively, on the default disk drive
under the name MIXER.

The ENTER command is used for loading ATASCII-
coded BASIC programs that were originally saved with the
LIST command. The general form of the command is;

ENTER“D[n]:filename[.ext]”’

The important advantage of the LIST/ENTER operations
is that they permit the merging of smaller program seg-
ments into a larger program in RAM. Recall that the LIST
program lets you specify selected portions of a program to
be saved on a diskette. That is one difference. The big
difference, however, is that the ENTER command, unlike
its SAVE counterpart, does not erase existing BASIC pro-
gramming from the system RAM; rather it adds the pre-
viously saved routines to the existing program.

271

In the event that there are duplicate line numbers, the
most recently ENTERed segment will take precedence; in
effect, writing over lines of programming having the same
line numbers. When contemplating the use of these merg-
ing operations, it is thus very important to make sure that
the LISTed program line numbers will not duplicate
important program lines when you return them to the
system via the ENTER command.

Given some practice and some careful planning, it is
quite possible to use the LIST/ENTER commands to build
very large programs in a highly efficient fashion from rou-
tines that you developed and LISTed on a diskette at pre-
vious times.

Nonprogram Files—PRINT and INPUT

In the context of saving and loading information to a
selected disk drive, the PRINT and INPUT statements are
useful for working with files that are composed of infor-
mation other than lines of BASIC programming. Unlike
the operations for saving and loading BASIC programs,
PRINT and INPUT must be included in a program of their
own—the scheme cannot work directly from the key-
board.

The following example suggests a programming proce-
dure for a relatively simple data-recording operation:

10 OPEN #7,8,0,”D:NUMBERS.FIL"
20 FOR N=0TO 1000

30 PRINT #7.N;

40 NEXT N

Line 10 opens IOCB Channel 7 for writing a new pro-
gram to the default disk drive under the name NUMBERS.
FIL. The FOR ... NEXT loop generates the numerical
values for variable N, and line 30 outputs those values to
the program recorder.

Upon executing the OPEN statement in line 10, the disk
drive will begin running, and it will continue running until
the saving routine is completed.

272

The example illustrates the fact that it is important to
open an 10CB channel prior to executing the PRINT
command. In this context, the general form of the OPEN
statement is

OPEN #chan,task,0,“D:filename”

where chan is the desired IOCB channel for the operation
and task defines the exact nature of the disk operation. [t
is possible to specify an alternate disk drive, Dn, and assign
an extension to the filename. There are two different task
assignments that are useful for PRINT operations:

Write a new file—8
Append an existing file—9

The example suggests a task value of 8 so that NUM-
BERS.FIL will be opened as a new file. You can add data to
an existing file, though, by using a task value of 9.

The PRINT statement must specify the same IOCB
channel that is opened by the previous OPEN statement:

PRINT #chan, ...

The following example suggests a way to reload the
numerals that were saved by the previous example of the
PRINT statement:

10 DIM X(1000)

20 OPEN #7,4,0,"D:NUMBERS.FIL"”
30 FOR N=0TO 1000

40 GET #7.X(N)

50 NEXT N

Line 10 dimensions subscripted variable X, and line 20°
opens IOCB Channel 7 for reading data from a disk file
named NUMBERS.FIL. Lines 30 through 50 then read the
data from that file, assigning each numerical value to the
subscripted variable, X.

273

The PRINT and INPUT techniques work equally well
with string data and, indeed, combinations of numerical
and string data. It is absolutely necessary, however, to
make certain that the variable names are organized such
that there is no type mismatch anywhere through the sav-
ing and loading routines.

Nonprogram Files—PUT and GET

BASIC’s PUT and GET statements offer an alternative
means for working with file data. Unlike PRINT and
INPUT, however, PUT and GET operations are limited to
numerical values (although strings can be converted to
ATASCIl codes before they are PUT to the program
recorder). But generally speaking, the PUT/GET routines
are quite similar to the PRINT/INPUT routines just
described.

The following example suggests a programming proce-
dure for a relatively simple data-recording operation:

10 OPEN #7,8,0,"D:NUMBERS.FIL"
20 FOR N=0 TO 1000

30 PUT #7,N

40 NEXTN

Line 10 opens IOCB Channel 7 for writing a new file to
the default disk drive. The FOR . . . NEXT loop generates
the numerical values for variable N, and line 30 outputs
those values to the disk.

As with the PRINT-recording technique, an IOCB chan-
nel must be opened for output to the program recorder
before the PUT operation begins. The PUT statement must
then specify the same IOCB channel number. The general
form of PUT statement is:

PUT #chan x

where chan is the IOCB channel number and x is any
numeric variable, constant, or expression.

274

The following example suggests a way to reload the
numerals that were saved by the previous example of the
PUT statement:

10 DIM X(1000)

20 OPEN #7,4,0,”"D:NUMBERS.FIL”
30 FOR N=0TO 1000

40 GET #7,X(N)

50 NEXT N

Line 10 dimensions subscripted variable X, and line 20
opens IOCB Channel 7 for reading data from a disk file
named NUMBERS.FIL. Lines 30 through 50 then read the
data from the cassette tape, assigning each numerical
value to the subscripted variable, X.

It is possible to use the PUT/GET operations with string
data if the strings are first converted to their ATASCII
codes with the help of the ASC or ADR functions.

SAVING, LOADING, AND RUNNING BINARY FILES
UNDER DOS

Chapter 1 describes most of the DOS operations that can
be conducted directly from the DOS menu. The idea is to
bring up the menu by entering the DOS command from
BASIC, select one of the menu options, and then follow
the prompting messages from there. Returning to BASIC is
a matter of selecting DOS menu option B (assuming that
the BASIC cartridge is installed) or by striking the SYSTEM
RESET key.

It was not appropriate to describe the three DOS menu
options that deal with binary, or machine-language, files.
This is a better place to deal with that matter.

275

Saving Binary Programs and Data

The DOS menus for both versions, 1.0 and 2.0S, show
BINARY SAVE as option K. They both accomplish the same
task—saving specified block of binary-coded information
on disk—but the mechanical procedures are somewhat
different.

Under DOS version 1.0, selecting the K option brings up
this prompting message:

SAVE-GIVE FILE,START,END

The system is expecting you to enter, in turn, a filename,
the start address of the data to be saved, and the last
address. Both addresses must be entered in a hexadecimal
format.

When the data is loaded back into the computer at
some later time, you can have things arranged so that it
will begin execution immediately. The procedure requires
several steps, but the results can be quite satisfying. Before
executing the DOS command to see the menu, POKE a
2-byte binary version of the starting address of the
machine-language routine into RAM addresses 736 and
737—LSB followed by MSB. Then execute the DOS com-
mand, and select menu item K. Respond to the prompting
message as before, but this time append the filename with
/A. The latter step, along with setting the starting address
into locations 736 and 737, will save the starting address on
the disk as well as the machine-language routine, itself.

Having done that, electing menu option L will not only
load the program, but begin running it immediately.

Matters are somewhat simple when saving binary files
under DOS 2.0S. Upon selecting option K, you see this
prompting message:

SAVE-GIVE FILE,START,ENDLINIT,RUN]

276

Your first series of entries should be a filename, a starting
address and an ending address—both addresses using a
hexadecimal format. If you choose to ignore the portion
of the prompting message that is enclosed in brackets,
there will be no automatic run when the program is
loaded at some later time.

Responding with hexadecimal addresses in the INIT and
RUN locations will allow the system to begin execution of
the machine-language routines the moment it is loaded
under DOS menu item L.

INIT is the starting address of the first of two possible
machine-language routines; and if that routine concludes
with an RTS, the system will then begin execution at the
address specified by RUN.

If INIT and RUN happen to have the same address, only
INIT need be specified when the program is saved. In any
event, include the commas, but do not include the brack-
ets in your entry. .

Loading and Running Binary Programs

Electing DOS menu option L, BINARY LOAD, will bring up
this prompting message:

LOAD FROM WHAT FILE?

Respond with a valid filename of a binary program that
was saved at some earlier time. If the program was saved in
a fashion that forces the system to run it immediately, it
will do so. Otherwise, you must elect DOS menu item M.

Selecting item M, RUN AT ADDRESS, you see this
prompting message:

RUN FROM WHAT ADDRESS?

Respond by entering the starting address of the binary
program. The entry must be in a hexadecimal format.

277

OPENING AND CLOSING I0CB CHANNELS

The ATARI Operating System has eight separate channels
that are organized into 1/0 control blocks, or IOCBs. One
is fully dedicated to the normal screen/keyboard opera-
tions, and two others are automatically opened and closed
as the operating system dictates. The remaining five IOCBs
are free for custom applications. Table 6-1 summarizes the
IOCB channels and their allocation.

The operating system automatically closes all channels,
except Channel 0, during its normal start-up routine. In
order to use one of the channels, then, you must execute
a statement that opens it; and there are two BASIC state-
ments that can serve that purpose:

OPEN #chan,task,aux1,“dev”
and
X10 3,#chan task,aux1,“dev”

where chan is the IOCB channel to be opened, task is a
code number representing a task to be performed, aux7 is
a code number for a secondary task description, and dev is
a device-type specifier.

Table 6-1. Summary of lOCB Channels
and Their Allocation

Channel Allocation

0 Always open for screen editor (E:)

1 Free to use

2 Free to use

3 Free to use

4 Free to use

5 Free to use

6 Automatically opened and closed for
graphics operations

7 Automatically opened and closed for
170 operations to a program recorder
or disk drive

278

Chart 6-1 summarizes the device types that can be speci-
fied for 1/0 operations. Notice that the specifiers must
end with a colon.

Chart 6-1. Summary of IOCB Device Types, Dev

Device-Name Expressions

Program recorder

C:
Disk drive
Din}filenamel.ext}
Where n is the optional drive number (1-4)
filename is a mandatory filename
.ext is an optional filename extension
Filenames can be composed of up to eight letters and numer-
als, but must begin with a letter.
Extensions can be composed of up to three letters and numer-
als, but must be preceded with a period.
Examples:

D:FOAM References filename FOAM on the only disk
drive connected to the system.

D2:RATS.BAS References filename RATS with extension
BAS on disk drive 2.

NOTE:DOS must be booted in order to use this device expression.

Screen Editor
E:
Console Keyboard
K:
ATARI Printer
P:
RS-232 Serial Port
RIn]:
Where n is the serial-port number (1-4 if used with the 850

serial interface module). Omitting n implies serial
port 1.

NOTE: The serial device handler, loaded through AUTORUN.SYS,
must be resident in memory before this device expression
can be used.

Video Screen
S:

279

Table 6-2 first lists the general task codes and then cites
some examples that apply to particular devices.
Obviously, not all possible tasks apply equally well to all
types of devices. A write, or output, operation to the pro-
gram recorder is a meaningful task, but that sort of opera-
tion has no meaning at all for keyboard operations.

Table 6-2. Summary of IOCB Task Codes for
BASIC’s OPEN Statement

General Task Codes

Append

Disk operation
Input

Output
Text-window flag
No screen clear

W =
NOOBAN—

Examples:
12 Input/OQutput task
9 Output with append
6 Read disk directory

Useful Program-Recorder Tasks

Task Code Operation
4 Read from program recorder
8 Write to program recorder
Useful Disk-File Tasks
Task Code Operation
4 Read from disk
6 Read disk directory
8 Write new file to disk
9 Append disk file
Useful Screen-Editor Tasks
Task Code Operation
8 Write to screen
9 Append screen
12 Keyboard input/screen output
13 Screen input and output
Useful Keyboard Task
Task Code Operation
4 | Read from keyboard

280

Table 6-2—cont. Summary of IOCB Task Codes for

BASIC’s OPEN Statement

Useful Printer Task

Task Code Operation
8 Write to printer
Useful RS-232 Port Tasks
Task Code Operation
4 Block read
5 Concurrent read
8 Write entire block
9 Concurrent write
13 Concurrent read and write
Useful Screen Tasks
Task Code Operation
8 Clear the screen, use no text window,
and allow write only
12 Clear the screen, use no text window,
and allow both read and write
24 Clear the screen, use a text window, and
allow write only
28 Clear the screen, use a text window, and
allow both read and write
40 Do not clear the screen (except Mode 0),
use no text window, and allow write only
44 Do not clear the screen {except Mode 0),
use no text window, and allow both read
and write
56 Do not clear the screen (except Mode 0),
use a text window, and allow write only
60 Do not clear the screen (except Mode 0),

use a text window, and allow both read
and write

The aux1 parameter in the OPEN and XIO statements
refer to device-specific operations. There is nothing gen-
eral about them. Table 6-3 indicates the aux7 codes as they
apply to the various device types. Notice that the value is
normally zero, with the notable exception of display-
screen applications.

281

Table 6-3. Summary of Device-Specific Aux 1
Codes for BASIC's OPEN Statement

For Program Recorder‘

Code Operation
0 Normal inter-record delay
128 Short inter-record delay

For Disk Drive

Always 0
For Screen Editor

Always 0
For Keyboard

Always 0
For ATARI Printer
Code Operation
0 Normai printing
83 Sideways printing (ATARI 820 only)

RS-232 Ports

Always 0

For Display Screen
Code Operation

BASIC Mode-0 screen
BASIC Mode-1 screen
BASIC Mode-2 screen
BASIC Mode-3 screen
BASIC Mode-4 screen
BASIC Mode-5 screen
BASIC Mode-6 screen
BASIC Mode-7 screen
BASIC Mode-8 screen

ONOOPRWN=O

Consider this OPEN statement:

OPEN #2,4,0.K:

That statement literally says: open 10CB Channel 2 for
reading operations from the keyboard. An equivalent XIO
version of the same thing is:

XIO 3,#2,4,0,K:

282

After executing either of those statements, you can fetch a
character from the keyboard by executing INPUT #3,
numvar or GET #3, numvar; where numvar will take on the
ATASCII code of the current keystroke.

The operating system normally uses IOCB Channel 6 for
the screen, but you can open another channel for graph-
ics operations:

OPEN #4,40,4,S:

That happens to open IOCB Channel 4 for a version of
screen Mode 4 that does not clear and has no text
window.

Although the operating system automatically closes all
opened channels when it successfully comes to an end, it
is a good idea to keep things tidy by closing the channels
you use when you are through with them. There are two
ways to go about doing that:

CLOSE #chan
X10 12,#chan,0,0,dev”

USING THE XIO COMMAND

The XIO command is one of the most powerful of ATARI
BASIC’s commands. It can be a rather complicated com-
mand, but it can be used for setting up virtually any kind
of 170 task through the ATARI system’s available /O con-

trol blocks.
The previous section in this chapter demonstrated the

fact that properly formatted XIO commands can replace
the OPEN and CLOSE commands. A brief look at Table 6-4
shows that it can simulate a lot of other I/O-related BASIC
commands.

The XIO command has this general syntax:

X10 cmd #chan,aux1,aux2,dev”

283

where chan and dev are identical to their counterparts in
the OPEN statement, and Table 6-4 shows the cmd code
and their meaning.

Table 6-4. Summary of XIO Commands, CMD

For General Operations
Code Operation BASIC Equivalent
3 Open a channel OPEN
5 Input a line INPUT
7 Input a character GET
9 Output a line PRINT
11 Output a character PUT
12 Close a channel CLOSE
13 Get current IOCB status STATUS
17 Draw a line (graphics) DRAWTO
18 Fill an area (graphics) none
For Disk Operations
Code Operation BASIC Equivalent
32 Rename a file DOS menuitem E
33 Delete a file DOS menu item D
35 Lock a file DOS menuitem F
36 Unlock a file DOS menu item G
37 Move the file pointer POINT
38 Find the file pointer NOTE
254 Format a disk DOS menu item |
For RS-232 Serial Operations
Code Operation
32 Output short block
34 Set outgoing lines DTR, RTS, and XMT
36 Set baud rate, word size, stop bits, and
ready monitoring
38 Set translation modes and parity
40 Start concurrent 1/0 mode

The aux7 and aux2 parameters are set to 0 under all but
the following XIO commands: X10 3, XIO 34, XIO 36 and
XIO 38. The XIO 3 command simulates the OPEN state-
ment, using OPENS task and aux? arguments (Chart 6-1
and Table 6-2) for XIO’s aux7 and aux2, respectively. This
chapter concludes with descriptions of the special argu-
ments for XIO 34, XIO 36 and XIO 38,

284

Controlling Outgoing Lines With XIO 34

The ATARI 850’s serial output can be configured for Data
Terminal Ready (DTR), Request To Send (RTS) and data
Transmit (XMT) lines. Serial can handle all three, ports 2
and 3 have the DTR and XMT options, while port 4 has
only XMT.

The general form of the XIO 34 command thus looks
like this:

X10 34 #chan,aux1,0,R[n]:”

where chan is the IOCB that is handling the data, and n is
the serial port number. The aux7 argument determines
the DTR/RTS/XMT configuration as summarized in Table
6-5.

Table 6-5. XIO 34 Aux 1 Values. Set
Aux 2 to O in All Instances

DTR RTS XMT Code
Off Off Off 162
Off Off On 163
Off On Off 178
Off On On 179
On Off Off 226
On Off On 227
On On Oft 242
On Oon On 243

Configuring Baud Rate, Word Size, and Stop Bits With
XiO0 36

The XIO 36 statement must be used for specifying serial-
port operations with regard to the number of stop bits, the
word size, transmission baud rate, and incoming-signal
tests.

The general form of this X1O statement is

X10 36,#chan,aux1,aux2,“R[n}:”

285

Table 6-6 shows the values for aux7 that are to be
derived by summing one value from each of the three
columns. If, for example, you are configuring the port of 1
stop bit (value = 0), a 7-bit word size (value = 16) and a
baud rate of 1200 (value = 10), the final value of (aux1)is0
+ 16 + 10 = 26.

The aux2 argument sets the tests performed on the
incoming signal. The options are Data Set Ready (DTS),
Clear to Send (CTS), Carrier Detect (CRX), or any combi-
nation of them. Table 6-6 also summarizes the values that
correspond to those testing features.

Setting Translation Modes and Parity with XI10 38

The XIO 38 command handles two rather independent
features of the RS-232 scheme. One feature exploits the
fact that the 850 and serial device handler can send and
receive data of opposite or like parity. See the Input and
Output Parity columns in Table 6-7.

The second feature expressed by the XIO 38 command
has to do with the unusual character coding scheme for
the ATARI system. As long as you are communicating
between ATARI systems, the built-in ATASCII coding
causes no problems; and there is no need for an append-
ed line feed nor any translation. But the differences
between standard ASCIl and ATASCII can become trou-
blesome when communicating between an ATARI system
and another device that uses standard ASCII coding. The
purpose of the translation feature is to smooth out the
significant differences.

286

Table 6-6. XIO 36 Values for Aux 1 and Aux 2

aux 1
Stop Word Baud
Bits Value Size Value Rate Value
1 0 8 0 300 0
2 128 7 16 455 1
6 32 50 2
5 48 56.875 3
75 4
110 5
1345 6
150 7
300 8
600 9
1200 10
1800 11
2400 12
4800 13
9600 14
9600 15
aux 2
DSR CTS CRX Value
No No No 0
No No Yes 1
No Yes No 2
No Yes Yes 3
Yes No No 4
Yes No Yes 5
Yes Yes No 6
Yes Yes Yes 7

Table 6-7. XIO 38 Values for Aux 1. Set Aux 2
to Zero Unless Using the Heavy Translation Mode

Line Feed Translation Input Parity Output Parity
No 0 Light 0 Ignore 0 Same o]
Yes 64 Heavy 16 Odd 4 Qdd 1

None 32 Even 8 Even 2
Ignore 12 Bit on 3

The values shown in each of the four columns in Table
6-7 should be selected and summed to arrive at a final
value for aux7 in the X1O 38 command.

287

Working under light translation, the system changes the
EOL character to the standard CR and sets the most-
significant bit of each ATASCII code to zero. The result is
something that is quite close to standard ASCII. As far as
incoming data is concerned, the standard ASCIl CR char-
acter is translated to the ATARI system’s equivalent, EOL,-
and the most-significant bit of each character code is
ignored.

Under the heavy-translation transmission, a light trans-
lation is performed, but then only those ATASCII charac-
ters that correspond directly to equivalent ASCII codes are
sent. And during the input operations, the system changes
ASCIl’s CR character to EOL, passes those characters
whose ASCIl and ATASCII codes are identical. If the codes
aren’t identical, the system substitutes the ATASCII char-
acter code that is specified by the aux2 parameter of the
X10 38 command.

288

Chapter 7

A Miscellany of Principles and
Procedures

Whenever authors and editors are organizing a book of
this sort, it seems that there are always a few topics that do
not fit neatly into the overall presentation. That has been
the case with this book, and the purpose of this chapter is
to discuss some of those topics.

MORE ABOUT THE SOUND FEATURES

The ATARI system’s sound features are about as unique in
the world of personal computing as its color graphics fea-
tures are. For a programmer with the proper interest and
motivation, the sound features offer a wealth of fascinat-
ing opportunities—from renditions of 4-part musical
scores to complex sound effects.

Working under ATARI BASIC, the SOUND statement
can select one of four voices, or sound channels, set the
pitch of the sound, the amount of distortion and the
loudness for the selected voice. It is possible to work with
all four voices simultaneously; and all of that sound is
reproduced at the loudspeaker in the tv receiver or
monitor.

289

The SOUND Statement
ATARI BASIC’s SOUND statement has this general syntax:
SOUND voice,pitch,dist,volume

where voice is the sound channel (0 through 3) being
addressed, pitch is the frequency code (0 is highest and
255 is lowest), dist is an even-numbered distortion value ©
for maximum noise, or distortion, and 14 for pure tones),
and volume is the volume level (0 for no sound, and 15 for
maximum loudness).

The SOUND statement does not include any provisions
for determining the duration of the sound; once a
SOUND statement is executed, it produces its specified
sound until some other action causes it to change or stop.
In fact, it is sometimes more troublesome to stop a sound
than it is to initiate it. If a short SOUND program includes
no provisions for turning off the sounds and it does not
conclude with an END statement, the system will continue
generating the prescribed sounds even after the program
is done. One way to silence the system in that case is to
strike the key. Or better, yet, conclude
the program with an END statement.

There are some other BASIC statements that automati-
cally silence any sound: CLOAD, CSAVE, DOS, ENTER,
LOAD, NEW, RUN and SAVE. The most elegant way to
silence a particular voice, however, is by specifying zeros
for the tone, distortion and volume parameters in its
SOUND statement. The following program plays a particu-
lar sound from voice 0 for a short period of time, then
silences that voice before coming to an end.

10 SOUND 0,193,14,12

20 FOR D=0TO 100:NEXT D
30 SOUND 0,0,0,0

Fig. 7-1 relates some of the tone values to an ordinary
musical scale. The figure is most helpful when you want to
reproduce music that is already printed on a score.

290

3
L+
L Ll

lll'

fffregedyy

Y

31 33

2 35 37 40 42 45 47 50 53 57 &0
© ® 8 W@Eh @ 6 @ €) © 4 ©
b b

ot T T T e o b

@ ="t ——
64 68 72 76 81 85 a1 96 102 108 114 121
® @) @ @) @ FH B ©® E) O ©) ©

A =

1 f ————¢ T L
128 136 144 153 162 173 182 193 204 217 230 243
® @) B @GH @ F B B € O € ©

Fig. 7-1. The tone values as they relate to a musical scale.

Here is a routine that sets up some “barbershop”

harmony:

10 SOUND 0,121,14,12:GOSUB 60
20 SOUND 1,96,14,12:GOSUB 60
30 SOUND 2,81,14,12:GOSUB 60
40 SOUND 3,60,14,12:GOSUB 60
50 GOSUB 60:END
60 FOR D=1 TO 200:NEXT D:RETURN

Or if you want a single voice to play those four notes in

succession:

10 SOUND 0,121,14,12:GOSUB 60
20 SOUND 0,96,14,12:GOSUB 60
30 SOUND 0,81,14,12:GOSUB 60
40 SOUND 0,60,14,12:GOSUB 60
50 GOSUB 60:END
60 FOR D=1 TO 200:NEXT D:RETURN

291

Clearly, the duration of sounds and their timing must be
handled by separate timing statements, usually FOR . . .
NEXT loops.

Reproducing Musical Scores

Reproducing simple musical scores is a straightforward
procedure. As long as all voices are playing notes of the
same duration, it is a simple matter of setting up the
SOUND statements and executing them for appropriate
periods of time.

But matters become more complicated when dealing
with scores calling for controlling notes of different dura-
tion simultaneously. There are a number of workable ways
to approach that situation, but perhaps the most dynamic
is to apply a multitasking technique. The general idea is to
write a separate musical subroutine for each voice, and
then use ON ... GOSUB statements to cycle through the
subroutines until the composition is finished.

Unfortunately, it is beyond the intended scope of this
book to pursue that idea any further. It has to be enough
to say that anyone with an understanding of program mul-
titasking and the basic principles of music can reproduce
compositions of complexity and duration that are limited
only by one’s patience and creative ability. (RAM capacity
is not a serious obstacle if you use some linking tech-
niques to load new segments of programming from a disk
as the composition progresses.)

Experimenting With Sound Effects

Whereas it is possible to reproduce musical compositions
from a score, matters are not so clearly defined for gener-
ating sound effects. Achieving a desired sound is more a
matter of trial-and-error experimentation than anything
else. A few general principles can guide your work,
however.

292

The distortion parameter can be especially important
for sound effects. A bit of experimenting with that
parameter, alone, can give you a good feeling for its
effects.

Then, too, it is often desirable to create certain sounds
by combining two or more voices. Few other brands of
personal computers offer that advantage.

The duration of events is, of course, determined by tim-
ing loops.

Finally, it can be instructive to work with some attack
and decay routines. The general idea is to fit a SOUND
statement within a FOR . .. NEXT loop that increments or
decrements a variable for the loudness parameter,

MORE ABOUT THE USR FUNCTION

The USR function is ATARI BASIC’s route into machine
language programs. In its simplest form, the USR function
has this syntax:

var = USR(addr)

That function initiates the execution of a machine lan-
guage program that begins at address addr. A numerical
variable, var is meaningless—a ‘“dummy”’ variable—in this
simple context.

The USR function initiates a fnachine language routine,
and an RTS instruction at the conclusion of that routine
returns the system to BASIC once again.

Fig. 7-2 shows how the simplest kind of USR function
affects the 6502 stack. Prior to executing the USR state-
ment, the stack contains undetermined data that is related
to the operation of the system (Fig. 7-2A). Immediately
after executing a simple USR function, the computer
pushes the BASIC return address and the number of vari-
ables in the function to the stack. In this simple case, there
are no variables being passed; but nevertheless, that byte
of data appears on the top of the stack. See Fig. 7-2B.

293

TOP OF
STACK

1

1 BYTE | NO. OF VALUES
TOP OF

STACK MSB| BASIC RETURN
2BYTES S8 | — ADDRESS

CURRENT
CONTENTS
(A) Stack prior to executing USR. (B) Stack just after executing the
USR.
TOP OF
STACK
BASIC RETURN MSB}) (C) The necessary condition of
ADDRESS LSB [BYTES the stack before using an
RTS statement to return to
BASIC.

Fig. 7-2. The system stack under the simplest kinds of USR
commands.

Before returning to BASIC by executing a machine-
language RTS instruction, you must use a PLA instruction
to pull that number-of-variables byte off the stack. Fig.
7-2C shows how the stack should appear before executing
the RTS instruction.

Thus, any USR statement of this simple form:

var = USR(addr)

must call a machine-language routine that ends with these
two instructions:

PLA ;Pull no. of variables off the stack
RTS ;Returnto BASIC

The following BASIC program first POKES the two-
instruction machine code into addresses 1536 and 1537,
and then it uses a USR function to execute it.

294

10 POKE 1536,104:POKE 1537 96
20 A=USR(1536)

An assembly language version of that two-instruction rou-
tine looks like this:

1536 104 PLA ;Pull no. of variables from stack
1537 96 RTS ;Return to BASIC

It is a do-nothing routine, but it does illustrate the need
for pulling the number-of-values byte off the stack before
executing the RTS instruction.

The next program uses a machine language routine to
print the ATARI character set, including the inverse ver-
sions, along the top of the screen:

10 FOR N=1536 TO 1549

20 READ X:POKE N,X

30 NEXT N

40 GRAPHICS O

50 POSITION 0,15

60 A=USR(1536)

70 DATA 162,0,138,157,64,156

80 DATA 232,138,201,128,208,246
90 DATA 104,96

An assembly language rendition of the routine that is
POKEed into addresses 1536 through 1549 looks like this:

15636 162 O LDX#0 ;Zero the X register

1538 138 TXA ;Transfer X to A

1539 157 64 156 STA 40000,X;Plot A to the
screen

1542 232 INX ;Increment X

1543 138 TXA ;Transfer X to A

1544 201 128 CMP#128 ;Counting done?

1546 208 246 BNE — 10 ;If not, plot again

1548 104 PLA ;Get rid of no. var.

1549 96 RTS ;Return to BASIC

295

Passing Values to a Machine Routine

The USR function includes provisions for passing any
number of numerical values to a machine language rou-
tine. The general syntax in this case is:

var = USR(addr,expr)

where addr is the starting address of the machine lan-
guage programming, expr is a numeric value or expres-
sion to be passed to the machine language routine, and
var is (in this context) a “dummy” variable. The value of
expr must be a positive integer between 0 and 65536.

The value is passed to the machine language routine
through the 6502 stack, and Fig. 7-3 shows how the stack
appears before the USR function is executed, immediately
after the function is executed, and how it should appear
just prior to executing the RTS instruction to return to
BASIC.

Notice from the diagram that the number-of-values
byte appears on the top of the stack. After that comes the
MSB of the value expr, followed by the LSB of expr. The
return address of the BASIC program is the final item in
the stack.

NOTE: The MSB of a value passed to a machine language

routine appears on the stack before its LSB does.

The value that is passed to the stack is thus buried under
the number-of-values byte; so in order to do anything
useful with the value, the machine language routine must
first execute a PLA to get rid of that byte. Then the value—
MSB followed by LSB—is available via two more PLA
instructions.

The following BASIC program first POKEs a machine
language routine into addresses 1536 through 1543. It then
prompts the user to enter a positive integer between 0 and
65536, executes an INPUT statement to assign the value to
variable N, and then executes a USR function that both
initiates the routine and passes the value of N to it.

296

TOP OF
STACK

CURRENT
CONTENTS

(A) Stack prior to executing USR.

(C) The necessary condition of
the stack before using an
RTS statement to return to
BASIC.

TOP OF
STACK

1 BYTE | NO. OF VALUES

2ByTES {MSB
Es {¥oe | VALUE PASSED

MsgB| BASIC RETURN
2BYTES{ cx| ADDRESS

(B) Stack just after executing the
USR.

TOP OF
STACK

BYTES

BASIC RETURN {MSB| 2
ADDRESS LSB

Fig. 7-3. The system stack when passing a single variable under USR

commands.

The program returns to BASIC at line 90 where it prints a
pair of values from zero-page memory addresses 203 and
204. And what you see there is a 2-byte decimal version of

the value assigned to N.

297

10 FOR N=1536 TO 1543

20 READ D:POKEN,D

30 NEXT N

50 GRAPHICS O

60 PRINT “ENTER A POSITIVE INTEGER VALUE
(0-65536)"

70 INPUT N

80 X=USR(1536,N)

90 PRINT PEEK(203) ,PEEK(204)

100 DATA 104,104,133,204,104,133,203,96

The assembly version of the machine language routine
looks like this:

1536 104 PLA ;Throw away no. of
vals. byte

15637 104 PLA ;Fetch MSB of N
from stack

1538 133 204 STA 204 ;Store it in 204

1540 104 PLA ;Fetch LSB of N
from stack

1541 133 203 STA 203 ;Store it in 203

1543 96 RTS ;Return to BASIC

Whenever it is necessary to pass more than one value

to a machine language program, the USR statement looks
like this:

var = USR(addr,expril,expr2, .. .)

The multiple expressions are passed to the stack as 2-
byte integer values, and their MSB appears on the stack
before their LSB does. What’s more, the values are placed
on the stack in reverse order: expr1 will be buried deeper
in the stack than any other expressions that follow it in the
USR function. Fig. 7-4 illustrates how the stack should be
handled whenever the USR function passes more than
one value to it. '

298

TOP OF
STACK

CURRENT
CONTENTS

{A) Stack prior to executing USR.

(C) The necessary condition of
the stack before using an
RTS statement to return to

BASIC.

TOP OF
STACK

NO. OF VALUES

FIRST VALUE
PASSED

FINAL VALUE
PASSED

Ms8 | BASIC RETURN
2BYTES [LSB ADDRESS

1BYTE

LSB

MSB} 2 BYTES

MSB
LSB}2 BYTES

(B) Stack just after executing the

U

SR.

TOP OF
STACK

BASIC RETURN [MSB
ADDRESS | LSB

2
BYTES

Fig. 7-4. The system stack when passing multiple variables under

USR commands.

The following version of the USR function passes the
length and address location of a string, M$:

X = USR(1536,LEN(M$),ADR(M$))

Having done that, the number-of-values byte will appear
on the top of the stack, followed by the results of the LEN
function, the results of the ADR function, and the return-
ing address for BASIC. As in the earlier instances, the MSB
for a given value appears on top of its LSB.

299

Passing Values From a Machine Language Routine

The previous discussions treat the USR function in such a
way that the var is a simple dummy variable. It takes on
some meaning, however, when a machine language rou-
tine is supposed to pass a numerical value back to basic.
Consider this portion of a BASIC program that loads and
executes a machine language routine:

100 X=USR(1536)
110 PRINT X

The idea is to initiate some sort of machine language
routine from address 1536. And assuming that the routine
generates a meaningful numerical value, it can be re-
turned to BASIC as assigned to variable X. In order to do
that, however, the machine language routine must save
the value in address locations 212 and 213 (LSB followed by
MSB).

Alternatively, you can return values from machine lan-
guage to BASIC by storing the values to some well-defined
RAM locations; and after returning to BASIC, fetch the
values by means of PEEK statements.

SCREEN DISPLAY LISTS

The ATARI system’s ANTIC hardware device is actually a
small microprocessor in its own right; and like a micro-
processor, it can be programmed to perform some special
tasks.

The primary purpose of ANTIC is to control all the fea-
tures of the display, and those features are developed by
the special ANTIC programming, called the display list.

The ANTIC Instruction Set

The ANTIC instruction set includes codes for leaving a
designated number of blank lines on the screen, setting
up 14 different kinds of screen formats, and two kinds of
address jumps.

300

Chapter 4 describes eight basic screen formats that are
directly accessible from BASIC. ANTIC actually allows 14
screens; but of equal importance is the fact that ANTIC
uses different screen-number assignments than BASIC
does. Table 7-1 lists all available screen formats.

Table 7-1. ANTIC'S Screen Modes

ANTIC | BASIC | Pixels Bytes TV Lines Bits per
Mode Mode | (horiz.) | per Line | per Pixel Pixel
2 0 40 40 8 8
3 none 40 40 10 8 Character
4 none 40 40 8 8 Modes
5 none 40 40 16 8
6 1 20 20 8 8
7 2 20 20 16 8
8 3 40 10 8 2
9 4 80 10 4 1 Bit-Mapped
10 5 80 20 4 2 Graphics
11 6 160 20 2 1 Modes
12 none 160 20 1 1
13 7 160 40 1 2
14 none 160 40 8 2
15 8 320 40 16 1

Notice that BASIC’s Mode-0 screen is called mode 2 as
far as ANTIC is concerned. Also notice that ANTIC offers
five additional screen modes. The columns of data asso-
ciated with each mode indicate the number of pixels per
line (under normal screen width), the number of screen
data bytes per line, the number of tv vertical scan lines per
pixel, and the number of screen data bits per pixel. As
described later, the number of tv vertical scan lines per
pixel is an especially important number when composing
the display list.

Chart 7-1 shows the basic display list instruction set. The
instruction set actually uses most of the decimal values
between 0 and 255, but the ones shown here represent the
starting points.

301

Chart 7-1. ANTIC Display List Instruction Set

HSCROL N Y N Y N Y N Y

VSCROL N N Y Y N N Y Y

LMS N N N N Y Y v Yy

BLK 1 0O 0 0 0 0 0 0 0 Blank lines
BLK 2 16 16 16 16 16 16 16 16

BLK 3 32 32 32 32 32 32 32 32

BLK 4 48 48 48 48 48 48 48 48

BLK 5 64 64 64 64 64 64 64 64

BLK 6 96 96 96 96 96 96 96 926

BLK 7 112 112 112 112 112 112 112 112

BLK 8 128 128 128 128 128 128 128 128

JMP 1 1 1 1 1 1 1 1 Jumps
JvB 65 65 65 65 65 65 65 65

CHR 2 2 18 34 50 66 82 98 114 BASIC Mode O
CHR 3 3 19 35 51 67 83 99 115

CHR 4 4 20 36 52 68 84 100 116

CHR 5 5 21 37 53 69 85 101 117

CHR 6 6 22 38 54 70 86 102 118 BASIC Mode 1
CHR 7 7 23 39 55 71 87 103 119 BASIC Mode 2
MAP 8 8 24 40 56 72 88 104 120 BASIC Mode 3
MAP 9 9 25 41 57 73 89 105 121 BASIC Mode 4
MAP10 10 26 42 58 74 90 106 122 BASIC Mode 5
MAP11 11 27 43 59 75 91 107 123 BASIC Mode 6
MAP12 12 28 44 60 76 92 108 124

MAP13 13 29 45 61 77 93 109 125 BASIC Mode 7
MAP14 14 30 46 62 78 94 110 126

MAP15 156 31 47 63 79 95 111 127 BASIC Mode 8

NOTE: Add 128 to ANTIC Opcodes to obtain the corresponding Instruc-
tion interrupt codes.

The BLNK instructions indicate the number of succes-
sive blank lines that are to appear on the screen, and the
ANTIC instructions dictate the screen mode to be applied
for the current number of vertical scan lines. Referring to
Table 7-1, for example, ANTIC mode 10 uses 4 scan lines
per pixel; so an ANTIC 10 display-list instruction will apply
that mode to 4 successive tv scan lines. And if you happen
to want 8 such lines in succession, the display list must
show two ANTIC 10 instructions in succession.

The only difference between the two jump instructions
is that JVB waits for the next tv vertical retrace before it is
executed. JMP does not. Both instructions must be fol-
lowed by a 2-byte destination address.

302

JVB is always used at the end of a display list; it usually
jumps the ANTIC programming back to the beginning of
the display list. It is altogether possible to interweave dif-
ferent kinds of screen formats, however, by doing a JVB to
the beginning of a different display-list program.

The simpler JMP instruction is used only when the
display-list addressing crosses a 1k boundary—something
most programmers prefer to avoid in the first place.

Structure of a Display List

As in the case of any sort of microprocessor programming,
display-list programming for the ANTIC chip must follow
some strict rules.

First, every display list must begin by specifying 24 con-
secutive blank lines. This requirement eliminates difficul-
ties that are associated with tv vertical overscan. Using the
fewest possible number of instructions, the 24 lines can be
specified by three BLNK 8 instructions in succession:

112
112
12

The second step in the program is to point to the start-
ing address of the screen RAM to be used for the project.
That is a matter of loading ANTIC’s memory-screen coun-
ter with that address; and that is done by invoking the
LMS option.

The LMS option is invoked by summing a value of 64
with the ANTIC mode instruction to be used next. So if
you are setting up ANTIC mode 10, invoke the LMS by
means of instruction code 10 + 64, or 74.

But that isn’t all. The LMS instruction must be followed
by a 2-byte version of the starting address of the screen
RAM. If you are planning to set the screen RAM from
address 40960, the LMS instruction must be followed by 0
(the LSB) and 160 (the MSB).

303

Thus far, the display list programming looks like this:

112 BLNK 8
112 BLNK 8
112 BLNK 8
74 LMS, ANTIC 10
0 {to address 40960)
160

It specifies the initial 24 blank lines, establishes the begin-
ning of the screen RAM at address 40960, and draws the
first 4 vertical scan lines of an ANTIC mode 10 screen.

In the simplest case, the third step is to continue specify-
ing ANTIC mode instructions until the total number of
vertical scan lines (including blanks) is equal to 192. The
example just cited is using ANTIC mode 10—4 scan lines
per operation, so adding 41 consecutive ANTIC 10 instruc-
tions completes the screen.

NOTE: A display list must account for no more than 192
vertical scan lines—the number of lines required for filling
the screen. It is possible to use fewer lines to shorten the
screen, but using more than 192 lines causes undesirable
video effects.

After accounting for all of the lines, usually 192 of them,
the final step is to apply the JVB instruction. The purpose is
to wait for the next vertical blanking interval, and then
loop the display list back to the beginning. Thatis a 3-byte
instruction that begins with the JVB op code, 65, followed
by a 2-byte rendition of the RAM starting address of the
display list.

So if you decide to locate your display list at address
32768 (it is generally located just below the screen RAM
area), then the final three instructions look like this:

65 JVvB
o (to 32768)
144

304

Table 7-2 shows the actual display list for BASIC’s Mode-
3 screen. Notice how it begins with three BLNK 8 instruc-
tions in sequence, followed by an LMS for ANTIC mode 8
that points to the starting address of that screen—40560.
After that, there is a series of ANTIC 8 down to the point
where the text window is to appear.

Table 7-2. Display List for the Mode-3 Screen
Display List

112
112
112

72
112
158

-
gNngggmmmwmmmmmmmmmmmmmmm

305

The beginning of the ANTIC Mode 7 text window is
marked by an LMS instruction that points to the beginning
of the screen addressing for that part of the display—to
address 40800. The program concludes with three addi-
tional ANTIC 7 lines and a JVB back to the beginning of
the display list at 40526,

That is a good example of a mixed-mode display list.

There are two additional rules that must apply in all
instances:

1. A JMP instruction must be used wherever the
display-list programming must cross a 1k boundary
value.

2. An LMS instruction must be used wherever the
screen addressing crosses a 4k boundary address.

Both situations can be avoided by being very selective
about the choice of starting addresses for the display list
and screen RAM. They most often arise, however, when it
is necessary to conserve RAM and, of course, when using
very long and complex display lists or large screen RAM
areas.

Other display list options include horizontal scrolling
(HSCROL), vertical scrolling (VSCROL) and display inter-
rupts (INT). They are invoked in a fashion similar to LMS—
by summing certain values with the current ANTIC mode
or BLNK code (see Chart 7-2).

Locating the Display List

The display-list programming generally takes up a lot less
RAM space than the screen RAM wiil. Programmers thus
tend to specify the screen RAM area first, avoiding a 4k
boundary value wherever possible.

The display list, more by convenience and convention
than necessity, is generally located below and as close as
possible to the beginning of the screen RAM. And, where
feasible, the display-list addressing should not cross a 1k
boundary.

306

Chart 7-2. Summary of Display-List Options
For mode instructions—mode=ANTIC+HSCROL+VSCROL+LMSHNT
For blank instructions—blank=BLNK+INT
Where:
mode=op code for a mode line
blank=o0p code for a blank line
ANTIC=the current ANTIC mode number (Table 7-1)
BLNK=the current BLNK number (Table 7-1})

HSCROL: O=no horizontal scrolling
16=horizontal scrolling

VSCROL: O=no vertical scrolling
32=vertical scrolling

LMS: 0=LMS not invoked
64=LMS invoked

INT: 0=no interrupt
128=interrupt invoked

The starting address of the screen RAM then becomes
part of the display list—inserted by means of an LMS
instruction. The starting address of the display list, itself,
usually appears as part of the JVB instruction at the end of
the display list.

Once the display list is loaded into RAM, it is necessary
to POKE its starting address into SDSTL, addresses 560 and
561; but that can be done properly only if the DMA con-
trol (address 559) is turned off during the POKE intervals.
The routine generally takes this form:

POKE 559,0 (disable DMA)

POKE 560,isb of list address

POKE 561,msb of list address

POKE 559,34 (enable DMA for standard playfield)

A LOOK AT TOKENIZED BASIC

BASIC is an interpretive language. That is, the computer
reads each instruction in the program just prior to usingit.
It follows, then, that programs using shorter statements
can be executed faster and loaded into smaller amounts of

307

RAM. A system that would have to read every character in
every line of a program would be terribly slow-acting and
take up a great deal of RAM space.

BASIC gets around that difficulty by translating every
valid command, statement, function and operator into a
1-byte token. Variable names and constant values are still
carried in the usual ATASCII forms, but virtually every-
thing else is tokenized. See the list of ATARI BASIC tokens
in Tables 7-3 through 7-5.

Table 7-3. Command Tokens

Code Command Code Command
0 REM 28 POINT
1 DATA 29 X10
2 INPUT 30 ON
3 COLOR 31 POKE
4 LIST 32 PRINT
5 ENTER 33 RAD
6 LET 34 READ
7 IF 35 RESTORE
8 FOR 36 RETURN
9 NEXT 37 RUN
10 GOTO 38 STOP
11 GOTO 39 POP
12 GOsuB 40 ?
13 TRAP 41 GET
14 BYE 42 PUT
15 CONT 43 GRAPHICS
16 COM 44 PLOT
17 CLOSE 45 POSITION
18 CLR 46 DOS
19 DEG 47 DRAWTO
20 DIM 48 SETCOLOR
21 END 49 LOCATE
22 NEW 50 SOUND
23 OPEN 51 LPRINT
24 LOAD 52 CSAVE
25 SAVE 53 CLOAD
26 STATUS 54 implied LET
27 NOTE 55 ERROR - (syntax)

308

Table 7-4. Operator Tokens

Code Operator Code Operator
14 num constant 37 +
15 string constant 38 -
16 not used 39 /
17 not used 40 NOT
18 , 41 OR
19 $ 42 AND
20 : (end of statement) 43 (
21 ; 44)
22 end of line 45 = (num assign)
23 GOTO 46 = (str assign)
24 GOosuB 47 <= (string)
25 TO 48 <>
26 STEP 49 >=
27 THEN 50 <
28 # 51 >
29 < = (numeric) 52 =
30 <> 53 + (unary)
31 >= 54 -
32 < 55 ((as in a string)
33 > 56 ((array)
34 = 57 ((array)
35 58 ((function)
36 * 59 { {dimension)
60 , {as in an array)

Unless directed otherwise, BASIC programs are saved
on tape or disk in this tokenized form. However, Chapter
6 describes conditions where it is more desirable to deal
with a nontokenized version—a version where every
character in every BASIC statement is literally saved as an
ATASCII character.

309

Table 7-5. Function Tokens

Code Function
61 STR$
62 CHR$
63 USR
64 ASC
65 VAL
66 LEN
67 ADR
68 ATN
69 cOs
70 PEEK
VAl SIN
72 RND
73 FRE
74 EXP
75 LOG
76 CLOG
77 SQR
78 SGN
79 ABS
80 INT
81 PADDL
82 STICK
83 PTRIG
84 STRIG

310

Chapter 8

The ATARI Memory Map

Fig. 8-1 shows the general memory map for the ATARI
system. It is divided into two main parts: a RAM area
between addresses 0 and 49152, and a ROM area from
49152 through 65535.

The ROM area is common to all systems, regardless of
the amount of RAM that is installed. The minimum RAM
area (8k) is situated between addresses 0 and 8192. The
material in this chapter deals most extensively with those
two portions of the ATARI memory map.

Thus, any working ATARI system has at least 8k of RAM
installed at the lower end of the memory map. A 16k sys-
tem includes that RAM area plus an additional 8k of RAM
between addresses 8192 and 16383. A 32k system would
have RAM available up to address 32767.

A 48k system has RAM available through address 49151.
Notice from the overall memory map that the upper 16k
of RAM in such a system overlaps the left- and right-
cartridge areas. The cartridges are actually ROM devices;
and in a 48k system, the cartridge ROM operations take
full precedence over any RAM that they overlay.

So if you happen to have a 48k system and install a
cartridge in the left-cartridge area, you will still have some
RAM available in the right-cartridge area (between
addresses 32768 and 40959).

Table 8-1 summarizes the RAM area that is generally
available to the user when the BASIC cartridge is installed.

311

65535 $FFFF
] SYSTEM ROM AREA
] 8K)

734

:529; FLOATING-POINT ROM (2K) :gggg

53248 HARDWARE 1/0 ROM (2K) $0000
. UNUSED ROM (4K)

49152 $C000
7] LEFT CARTRIDGE RAM AREA
] (8K)

40960 $A000
7] MODEL 800 RIGHT CARTRIDGE
N RAM AREA (8K)

32768 $8000
. EXPANSION RAM AREA
- 24K)

8192 $2000
] SYSTEM RAM AREA
] (8K)
0 $00

Fig. 8-1. Overallmemory map of the ATARI Home Computer system.

Table 8-1. Range of RAM Addresses Available to the
User as a Function of the Amount of Installed RAM.
It Is Assumed That the Standard ATAR! Home
Computer BASIC Cartridge is Installed

RAM Address Range
RAM Available
Size
Decimal Hexadecimal
8k 1536-8191 $0600-$1FFF
16k 1536-16383 $0600-$3FFF
32k 1536-32767 $0600-$7FFF
48k 1636-40959 S0600-$9FFF

NOTE: If DOS is installed, the lowest-usable RAM address is raised to
10879 ($2A7F). DOS thus requires at least a 16k system.

312

ZERO-PAGE AND STACK RAM

The ATARI system uses a 6502 microprocessor as the cen-
tral processor unit (CPU); and it is the nature of that
device that dictates the application of the RAM area from
address 0 through 255 ($00-$FF). Using conventional 6502
terminology, the first half of that area is called the zero-
page, and it has special significance in terms of machine-
language addressing. (See the 6502 instruction set in Chap-
ter 9.)

The second half of this RAM area is normally dedicated
entirely to 6502 stack operations; and a programmer
should use it only when fully aware of those internal
operations.

ATARI Home Computer engineers have divided the
zero-page RAM, itself, into two equal sections. The lower
section, 0-127, is used for the general operating-system
and the remainder, addresses 128-255, is used for BASIC’s
zero-page operations.

Chart 8-1 outlines the usage of the operating-system
portion of the zero-page area, and Chart 8-2 outlines the
portion used by BASIC.

Chart 8-1.0perating System Usage
of the Zero-Page RAM: 0-127

$00-$01 0-1 LNZBS
Application is unclear.

$02-$03 2-3 CASINI
Successful cassette boot initialization data and addresses.

$04-$05 4-5 RAMLO
RAM test pointer during initialization.

$06 6 TRAMSZ
Page number of highest available RAM address. Value is passed to
RAMTOP at $6AS$ (106) after initialization is done.

$07 7 TSTDAT
RAM-test register; set to 1 when a cartridge is inserted in the right-
hand (B} slot.

313

Chart 8-1—cont. Operating System Usage
of the Zero-Page RAM: 0-127

$08 8 WARMST
Warm-start flag; it is set to O during cold start.

$09 9 BOOT?
Successful disk-boot flag.

$0A-$0B 10-11 DOSVEC
Diskette vector; points to start of BASIC programs.

$0C-s$0D 12-13 DOSINI
Disk-boot initialization vector.

$OE-SOF 14-15 APPMHI
Lowest RAM address available for screen memory.

$10 16 POKMSK
POKEY interrupt mask.

$11 17 BRKKEY
BREAK-key flag: O = break
$80 (120) = no break

$12-$14 18-20 RTCLOK
Real-time clock.

$15-$16 21-22 BUFADR
Temporary zero-page address pointer for disk buffer.

$17 23 ICCOMT
Command table index pointer.

$1A-$1B 26-27 DSKUTL
Disk utility address.

$1C 28 PTIMOT
Printer time-out value.

$1D 29 PBPNT
Printer buffer index pointer.

S1E 30 PBUFSZ
Printer-buffer record size.

$1F 31 PTEMP
Temporary register for next character to printer.

$20 32 ICHIDZ
Current device handier index number.

314

Chart 8-1—cont. Operating System Usage
of the Zero-Page RAM: 0-127

$21 33 ICDNOZ
Current device drive number.

$22 34 ICCOMZ

Current device command number.

$23 35 ICSTAZ

Last-returned status code.

$24-$25 36-37 ICBALZ
ICBAHZ

Command buffer address pointer.

$26-$27 38-39 ICPTLZ
ICPTHZ

PUT-byte address pointer.

$28-$29 40-41 ICBLLZ
ICBLHZ

Buffer length for GET and PUT operations.

$2A-$28 42-43 ICAX1Z
ICAX2Z

2-byte auxiliary registers; used mainly for 1/0 control block op-
erations.

$2C-$2F 44-47 ICSPRZ

Temporary-storage registers.

$30 48 STATUS

Internal status register.

$31 49 CHKSUM

Checksum register for detecting frame-transfer errors.

$32-$33 50-51 BUFRLO
BUFFRH

Next-byte address pointer for buffer operations.

$34-$35 52-53 BFENLO
BFENHI

End-of-buffer byte pointer.

$36 54 CRETRY
Command retry counter.

$37 55 DRETRY
Device retry counter.

315

Chart 8-1—cont. Operating System Usage
of the Zero-Page RAM: 0-127

Drive address pointer.

$38 56 BUFRFL
Buffer full flag.
$39 57 RECVDN
Receive-done flag.
$3A 58 XMTDON
Transmit-done flag.
$38 59 CHKSNT
Checksum byte-sent flag:

0 = not sent

SFF (255) = sent
$3C 60 NOCKSM
No-checksum-coming flag:

0 = checksum is coming

NOT O = no checksum
$3D 61 BPTR
Cassette buffer index pointer.
$3E 62 FTYPE
Type flag for inter-record gap.
$3F 63 FEOF
Cassette end-of-file flag:

0 = not EOF

$FE (255) = EOF
$40 64 FREQ
Cassette read/write BEEP count:

= play

2 = record
$41 65 SOUNDR
Audio sound flag: 0 = no noise
$42 66 CRITIC
Critical-code flag.
$43-544 67-68 ZBUFP
Buffer address pointer.
$45-$46 69-70 ZDRVA

316

Chart 8-1—cont. Operating System Usage
of the Zero-Page RAM: 0-127

$47-$48 71-72 ZSBA
Sector buffer address pointer.

549 73 ERRNO
Error number for disk operations.

$4A 74 CKEY
Cassette-boot request flag.
$4B 75 CASSBT
Boot flag:

0O = disk boot

1 = cassette boot

$4C 76 DSTAT
Display status.

$4D 77 ATRACT

ATTRACT mode timer register/flag. Increments from O to $7F (127) at
4 second intervals after 9 minutes of no key activity. Set to $FE (254)
at the end of that timing interval.

$4E 78 DRKMSK

Dark-color mask used during ATTRACT mode to reduce screen lumi-
nance. Has a value of $FE (254) when ATTRACT is inactive, and $F6
(246) when active.

$4F 79 COLRSH
Color-shift mask register used in ATTRACT mode. Has value of O
when ATTRACT is inactive.

$50 80 TMPCHR
Temporary register screen data during transfer.

$51 81 HOLD1
Temporary register for number of entries in a display list.

$52 82 LMARGN
Screen address of the left text margin.
Range: $0-$27 (0-39)

$53 83 RMARGN
Screen address of the right text margin.
Range: $0-27 (0-39)

317

Chart 8-1—cont. Operating System Usage
of the Zero-Page RAM: 0-127

$54 84 ROWCRS
Row address of the current cursor position.
Range: $00-$BF (0-191)

$55-$56 85-86 COLCRS
Column address of current cursor position.
Range: $00-$13F (0-319)

$67 87 DINDEX
Index value of current screen mode.
$58-$59 88-89 SAVMCS
Address of upper-left corner of display.
$BA 90 OLDROW
Row address of the previous graphics cursor position.
$5B-$5C 91-92 oLDCcoL
Column address of the previous graphics cursor position.
$5D 93 OLDCHR
Holds screen character while it is “hidden’’ by the text cursor.
$5E-$5F 94-95 OLDADR
Screen memory address of current text cursor location.
$60 96 NEWROW
Row destination for next LINE/DRAW step.
$61-$62 97-98 NEWCOL
Column destination for next LINE/DRAW step.
$63 29 LOGCOL
Logical-line column number for the current cursor position.
$64-$65 100-101 ADRESS
General-purpose 2-byte register.
$66-$67 102-103 MLTTMP

OPNTMP

Multipurpose 2-byte register; used with OPEN command and as
address pointer.

$68-$69 104-105 SAVADR
FRNADR
General-purpose 2-byte register.

318

Chart 8-1—cont. Operating System Usage
of the Zero-Page RAM: 0-127

$6A 106 RAMTOP

Page number of highest available RAM address. Used by display
handler.

§68 107 BUFCNT

Current logical line-size counter.

$6C-$6D 108-109 BUFSTR
Temporary 2-byte register used with display routines.

$6E 110 BITMSK
Temporary register for bit masks.

$6F 11 SHFAMT
Amount of pixel shift required to right-justify the data.

$70-871 112-113 ROWAC
Accumulator for row-counting during plotting operations.

$72-$73 114-115 COLAC
Accumulator for column-counting during plotting operations.

$74-$75 116-117 ENDPT
End point designation for a line being plotted to the screen.

$76 118 DELTAR
Change in screen row position {vertical component) of a slope drawing.

$77-$78 119-120 DELTAC
Change in screen column position (horizontal component) of a slope
drawing.

$79 121 ROWINC
Drawing row direction:
$01 (1) = down

$FF (255) = up
$7A 122 COLINC
Drawing column direction:

$01 (1) = right

$FF (255) = left
$7B 123 SWPFLG
Split-screen cursor flag:

0 = normal

$FF (255¢%) = swapped

319

Chart 8-1—cont. Operating System Usage
of the Zero-Page RAM: 0-127

$7C 124 HOLDCH
Current character code for subsequent SHIFT or CONTROL logic.

$7D 125 INSDAT
Cursor-related temporary storage.

$7E-$7F 126-127 COUNTR
Number of steps involved in drawing a line.

Chart 8-2.BASIC Usage
of the Zero-Page RAM: 128-255

$80-$81 128-129 LOMEM
Starting address of resident BASIC programming features.

$82-583 130-131 VNTP
Starting address of BASIC variable table.

$84-$85 132-133 VNTD
Ending address of BASIC variable table.

$86-$87 134-135 VVTP
Variable table pointer.

$88-$89 136-137 STMTAB
Starting address of BASIC statement table.

$8A-$8B 138-139 STMCUR
BASIC statement pointer.

$8C-$8D 140-141 STARP
Address of the end of the string and array table.

$BE-$8F 142-143 RUNSTK
BASIC stack for GOSUB, FOR-NEXT, etc.

$90-s91 144-145 MEMTOP
Top of BASIC programming area.

$92-$D3 146-211
Reserved for general BASIC operations.

320

Chart 8-2—cont. BASIC Usage
of the Zero-Page RAM: 128-255

$D4-sD9 212-217 FRO
Floating-point register O.

$DA-$DF 218-223 FRE
Spare floating-point registers.

$EO-SES 224-229 FR1
Floating-point register 1.

$EG-SEB 230-235 FR2
Floating-point register 2.

$EC 236 FRX
Not used.

$ED 237 EEXP

Exponent value.

SEE 238 NSIGN
Sign of floating-print value.

SEF 239 ESIGN
Sign of floating-point exponent.

$FO 240 FCHRFLG
First-character flag for floating-point operation.

$F1 241 DIGRT
Number of digits to right of decimal point.

$F2 242 CIX
Character index for input buffer.

$F3-$F4 243-244 INBUFF
Input buffer pointer for ATASCII text.

$F5-$F6 245-246 ZTEMP1
Temporary registers.

$F7-$F8 247-248 ZTEMP4
Temporary registers.

321

Chart 8-2—cont. BASIC Usage
of the Zero-Page RAM: 128-255

S$F9-SFA 249-250 ZTEMP3
Temporary registers.

$FB 251 RADFLG
DEGFLG
Angle flag:
0 = radians
6 = degrees
$FC-$FD 252-253 FLPTR

Floating-point number pointer.

SFE-SFF 254-255 FPTR2
Floating-point second number pointer.

OPERATING SYSTEM AND BASIC RAM

The ATARI Home Computer’s main operating system uses
a significant portion of the system RAM area; and when
the BASIC cartridge is installed, it, too, uses some system
RAM. Exploring both of these areas can turn up a wealth
of potentially useful information.

Operating System RAM: 512-1151

Chart 8-3 outlines the operating system RAM area. Most
of the comments accompanying the addresses and labels
are sufficient to define their function for anyone who is
familiar with the fundamental internal workings of a com-
puter and is willing to experiment with some PEEKs and
POKEs.

322

Chart 8-3.0perating-System RAM: 512-1151

$0200-$0201 512-513 VDSLST
Display-list interrupt vector.

$0202-$0203 514-515 VPRCED

/0 proceed vector.

$0204-$0205 516-517 VINTER

1/0 interrupt vector.

$0206-$0207 518-519 VBREAK

BREAK vector.

$0208-$0209 520-521 VKEYBD

Keyboard interrupt vector.

$020A-$0208B 522-523 VSERIN

Serial input ready vector.

$020C-$020D 524-525 VSEROR

Serial output ready vector.

$020E-$020F 526-527 VSEROC

Serial transfer complete vector.

$0210-80215 528-533 VITMR1
VITMR2
VITMR4

POKEY timer vectors.

$0216-$0217 534-535 VIMIRQ

Interrupt-request vector.

$0218-$0219 536-537 CDTMW1

System timer-1 value; decrements with each VBLANK.

$021A-$021B 538-539 CDTMV2

System timer-2 value.

$021C-$0221 540-545 CDTMV3
CDTMV4
CDTMV5

System timers 3, 4, and 5.

$0222-$0223 546-547 VVBLKI
VBLANK interrupt vector.

$0224-$0225 548-549 VVBLKD
Return from VBLANK interrupt vector.

323

Chart 8-3—cont. Operating-System RAM: 512-1151

$0226-$0227 550-551 CDTMAT1
System timer-1 jump address.

$0228-$0229 552-553 CDTMA2

System timer-2 jump address.

$022A 554 CDTMF3

System timer-3 time-out flag.

$0228B 555 SRTIMR

Key-repeat timer.

$022C 556 CDTMF4.

System timer-4 time-out flag.

$022D 557 INTEMP

Temporary integer register.

$022E 5568 CDTMF5

System timer-5 time-out flag.

$022F 559 SDMCTL

DMA enable/control.

$0230-$0231 560-561 SDLSTL
SDLSTH

Starting address of display list.

$0232 562 SSKCTL

Copy of serial port control register $D20F (53775).

$0233 563

Not used.

$0234 564 LPENH

Light pen horizontal position.

$0235 565 LPENV
Light pen vertical position.

$0236-$0237 566-567
Spare; or possible BREAK key vector.

$0238-$0239 568-569
Not used.

$023A 570 CDEVIC
Current [/0 device number.

324

Chart 8-3—cont. Operating-System RAM: 5612-1151

$023B 571 CCOMND
Bus command code.
$023C-$023D 572-573 CAUX1
CAUX2

Auxiliary registers.
$023E 574 TEMP
Temporary |/0 data register.
$023F 575 ERRFLG
1/0 error flag.
$0240 576 DFLAGS
Disk flags.
$0241 577 DBSECT
Disk-boot sector counter.
$0242-$0243 578-579 BOOTAD
Address of disk-boot loader.
$0244 580 COLDST
Cold-start complete flag:

0 = end of start

1 = start not done
$0246 582 DSKTIM
Disk timeout register.
$0247-$026E 583-622 LINBUF

40-byte physical line buffer; used when moving screen data.

$026F 623 GPRIOR
Priority control for display handler.

$0270 624 PADDLO
Paddle O position.

$0271 625 PADDL1
Paddle 1 position.

$0272 626 PADDL2
Paddle 2 position.

$0273 627 PADDL3

Paddle 3 position.

325

Chart 8-3—cont. Operating-System RAM: 512-1151

$0274 628 PADDL4
Paddle 4 position.

$0275 629 PADDLS
Paddle 5 position.
$0276 630 PADDL6
Paddle 6 position.
$0277 631 PADDL7
Paddle 7 position.
$0278 632 STICKO
Joystick O position.
$0279 633 STICK1
Joystick 1 position.
$027A 634 STICK2
Joystick 2 position.
$0278B 635 STICK3
Joystick 3 position.
$027C 636 PTRIGO
Paddie O trigger sense:

0 = pressed

1 = not pressed

$027D 637 PTRIG1
Paddle 1 trigger sense:

0 = pressed

1 = not pressed

$027E 638 PTRIG2
Paddle 2 trigger sense:

0 = pressed

1 = not pressed
$027F 639 PTRIG3
Paddle 3 trigger sense:

0 = pressed

1 = not pressed
$0280 640 PTRIG4
Paddle 4 trigger sense:

0 = pressed

1 = not pressed

326

Chart 8-3—cont. Operating-System RAM: 512-1151

$0281 641 PTRIGS
Paddle 5 trigger sense:

0 = pressed

1 = not pressed
$0282 642 PTRIG6
Paddle 6 trigger sense:

0 = pressed

1 = not pressed

$0283 643 PTRIG7
Paddle 7 trigger sense:

O = pressed

1 = not pressed

$0284 644 STRIGO
Joystick O trigger sense:

0 = pressed

1 = not pressed

$0285 645 STRIG1
Joystick 1 trigger sense:
0 = pressed

1 = not pressed

$0286 646 STRIG2
Joystick 2 trigger sense:

0 = pressed

1 = not pressed

$0287 647 STRIG3
Joystick 3 trigger sense:
0 = pressed

1 = not pressed

$0289 649 WMODE
Cassette read/write flag:

0 = read

$80 (128) = write

$028A 650 BLIM
Number of bytes in cassette record buffer.

$028B-$028F 651-655
Unused.

$0290 656 TXTROW

Row address for the current split-screen cursor position.

327

Chart 8-3—cont. Operating-System RAM: 512-1151

$0291-$0292 657-658 TXTCOL
Column address for the current split-screen cursor position.

$0293 659 TINDEX
Screen mode number for split-screen operations.

$0294-$0295 660-661 TXTMSC

Display address of upper-left corner of text window during split-screen
operations.

$0296-$0298 662-667 TXTOLD
Split-screen, previous cursor information: row, column, character, and
display address.

$029C 668
Temporary-storage register.

$029D 669 HOLD3
Temporary-storage register.

$029E 670 SUBTMP
Temporary-storage register.

$029F 671 HOLD2
Temporary-storage register.

$02A0 672 DMASK

Data mask for locating graphics pixels; affected by current screen
mode.

$02A1 673 TMPLBT
Temporary register for bit masks.

$02A2 674 ESCFLG
Escape-key flag; set to $80 (128) by ESC keystroke; returned by O at
subsequent keystroke.

$02A3-s028B1 675-689 TABMAP
Cursor tab settings for the 15 logical lines on the screen.

$02B2-$02B5 690-693 LOGMAP
Beginning screen-line number for each of the 15 logical lines.

$02B6 694 INVFLG
Inverse-video flag:

0 = normal video

$80(128) = inverse video

328

Chart 8-3—cont. Operating-System RAM: 512-1151

$02B7 695 FILFLG
FILL/DRAW command flag:
0 = DRAW
$FF (255) = FILL
$02B8-$02BA 696-698 TMPROW
TMPCOL

Temporary row and column location registers.

$028B 699 SCRFLG
Number of lines deleted from the top of the screen after a scrolling
operation (minus 1).

$02BC 700 HOLD4
Temporary register for ATACHR during a FILL operation.

$02BE 702 SHFLOK

Shift/control lock mode:
$00 (0) = normal mode
$40 (64) = caps lock
$80(128) = control lock

$02BF 703 BOTSCR
Number of lines available for text. Has $18(24) for GR.0 and $04 (4) for
split-screen modes.

$02C0 704 PCOLRO

Color for player and missile 0. Also color for duplicate in $ D012
(53266).

$02C1 705 PCOLR1

Color for player and missile 1. Also color for duplicate in $ D013
(63267).

$02C2 706 PCOLR2

Color for player and missile 2. Also color for duplicate in $ D014
(53268).

$02C3 707 PCOLR3

Color for player and missile 3. Also color for duplicate in $ D015
{53269).

$02C4 708 COLRO
Color of playfield 0. Also used in $D016 (53270).

$02C5 709 COLR1
Color of playfield 1. Also used in $D017 (563271).

329

Chart 8-3-—cont. Operating-System RAM: 512-1151

$02C6 710 COLR2
Color of playfield 2. Also used in $D018 (53272).
$02C7 711 COLR3
Color of playfield 3. Also used in $D019 (63273).
$02C8 712 COLR4
Color of playfield 4. Also used in $DO1A (63274).
$02E4 740 RAMSIZ
Page number of highest available RAM address.
$02E5-$02E6 741-742 MEMTOP
Highest RAM address available to user.
$02E7-$02E8 743-744 MEMLO
Lowest RAM address available to user.
$02EA-$Q02ED 746-749 DVSTAT
Device status registers.
$02EE-SO2EF 750-751 CHBAUDL
CHBAUDH
Cassette baud rate (600 baud); uses $05CC (14846).
$02F0 752 CRSINH
Cursor inhibit flag:
O = cursor ON
1 = cursor OFF
$O2F1 753 KEYDEL

Keyboard debounce timer.

$02F2 754 CH1
Previous keyboard character code.

$02F3 755 CHACT
Character-mode/control register.

$02F4 756 CHBAS
Character address base.

S02FA 762 CHAR
Code for the most recent character at input or to output.

$02FB 763 ATACHR
Character code for the last-read or last-written ASCIl character or plot
point.

330

Chart 8-3—cont. Operating-System RAM: 512-1151

$02FC 764 CH
Character code for the most recently accepted keystroke; set to $FF
(256) when keyboard handler accepts the data.

$02FD 765 FILDAT
Fill color data; used with the FILL command.

$O2FE 766 DSPFLG
Display flag for ASCII control characters:

0 = normal control

NOT O = character displayed

$O2FF 767 SSFLAG
Start/stop flag for screen output:

0 = don’t stop

$FF (255) = stop

$0300 768 DDEVIC

Serial device ID number.

$0301 769 DUNIT

Device unit number.

$0302 770 DCOMND

Device command.

$0303 7N DSTATS

Device status code.

$0304-$0305 772-773 DBUFLO
DBUFHI

Device buffer address.

$0306 774 DTIMLO

Device time-out value.

$0308-$0309 776-777 DBYTLO
DBYTHI

Device-transfer byte counter.

$030A-$0308 778-779 DAUX1
DAUX2

Auxiliary device-transfer registers.

$030C-$030D 780-781 TIMER1
Starting baud-rate timer reference value.

$030E 782 ADDCOR
Addition correction flag for baud-rate timer values.

331

Chart 8-3—cont. Operating-System RAM: 512-1151

$030F 783 CASFLG
Cassette flag:

O = standard serial /0

NOT O = cassette I/0

$0310-$0311 784-785 TIMER2
Final baud-rate timer reference value.

$0312-50313 786-787 TEMP1
2-byte temporary register for baud-rate timer operations.

$0315 789 TEMP3
1-byte temporary register; probably used during baud-rate timer
operations.

$0316 790 SAVIO
Serial input data detect register.
$0317 791 TIMFLG
Cassette baud-rate timeout (error) flag:

1 = Ok

0 = error
$0318 792 STACKP

Operating-system version of the 6502 stack pointer.

$0319 793 TSTAT
Next status byte upon return from a WAIT routine.

$031A-$033F 794-831 HATABS
Handler device table (38 bytes)—device codes and handler addresses.

$0340 832 ICHID [0}
Device handler ID for control block 0.

$0341 833 ICDNO {0]
Device number for control block O.

$0342 834 ICCOM [0]
Current execution command for control block O.

$0343 835 ICSTA [0]
Most recent status returned by device for control block O.

$0344-$0345 836-837 ICBAL,H [0])
Buffer address for data transfer under control block O.

332

Chart 8-3—cont. Operating-System RAM: 512-1151

$0346-$0347 838-839 ICPTL,H [O]
Address of PUT-a-byte routine for contro! block O.

$0348-$0349 840-841 ICBLL.H [0]
Current length of buffer being serviced by control block O.

$034A-$034B 842-843 ICAX1,2 [0}
Auxiliary registers for control block O.

$034C-$034F 844-847 ISCPR [0]

Spare registers for use of handler serviced by control block O.

$0350 848 ICHID [1]
Device handler ID for control block 1.

$0351 849 ICDNO [1]
Device number for control block 1.

$0352 850 ICCOM [1]
Current execution command for control block 1.

$0353 851 ICSTA[1]
Most recent status returned by device for control block 1.

$0354-$0355 852-853 ICBAL,H[1]
Buffer address for data transfer under control block 1.

$0356-$0357 854-855 ICPTLH[1]
Address of PUT-a-byte routine for control block 1.

$0358-$0359 856-857 ICBLL,H[1]
Current length of buffer being serviced by control block 1.

$035A-$0358B 858-859 ICAX1,2 [1]
Auxiliary registers for control block 1.

$035C-$035F 860-863 ISCPR [1]

Spare registers for use of handler serviced by control block 1.

$0360 864 ICHID [2]
Device handler ID for control block 2.

$0361 865 ICDNO [2]
Device number for control block 2.

$0362 866 ICCOM [2]
Current execution command for control block 2.

333

Chart 8-3—cont. Operating-System RAM: 512-1151

$0363 867 ICSTA [2)]
Most recent status returned by device for control block 2.

$0364-$0365 868-869 ICBAL,H [2]
Buffer address for data transfer under control block 2.

$0366-50367 870-871 ICPTL,H [2]
Address of PUT-a-byte routine for control block 2.

$0368-$0369 872-873 ICBLL,H[2]
Current length of buffer being serviced by control block 2.

$036A-$036B 874-875 ICAX1,2(2]
Auxiliary registers for control block 2.

$036C-$036F 876-879 ISCPR {2]
Spare registers for use of handler serviced by control block 2.

$0370 880 ICHID [3]
Device handler ID for control block 3.

$0371 881 ICDNO [3]
Device number for control block 3.

$0372 882 ICCOM [3)
Current execution command for control block 3.

$0373 883 ICSTA [3]
Most recent status returned by device for control block 3.

$0374-50375 884-885 ICBAL,H [3]
Buffer address for data transfer under control block 3.

$0376-$0377 886-887 ICPTL,H [3]
Address of PUT-a-byte routine for control block 3.

$0378-$0379 888-889 ICBLL,H 3]
Current length of buffer being serviced by control block 3.

$037A-$037B 890-891 ICAX1,2 (3]
Auxiliary registers for control block 3.

$037C-s037F 892-895 ISCPR [3]
Spare registers for use of handler serviced by control block 3.

$0380 896 ICHID [4]
Device handier ID for control block 4.

334

Chart 8-3—cont. Operating-System RAM: 512-1151

$0381 897 ICDNO (4]
Device number for control block 4.

$0382 898 ICCOM [4]
Current execution command for control block 4.

$0383 899 ICSTA [4]
Most recent status returned by device for control block 4.

$0384-50385 900-901 ICBAL,H [4]
Buffer address for data transfer under control block 4.

$0386-$0387 902-903 ICPTL.H {4}
Address of PUT-a-byte routine for control block 4.

$0388-$0389 904-905 ICBLL H [4]
Current length of buffer being serviced by control block 4.

$038A-5038B 906-907 ICAX1,2 [4]
Auxiliary registers for control block 4.

$038C-$038F 908-911 ISCPR [4]
Spare registers for use of handler serviced by control block 4.

$0390 912 ICHID [5]
Device handler ID for control block 5.

$0391 913 ICDNO [5]
Device number for control block 5.

$0392 914 ICCOM [5]
Current execution command for control block 5.

$0393 915 ICSTA [5]
Most recent status returned by device for control block 5.

$0394-50395 916-917 ICBAL,H [5]
Buffer address for data transfer under control block 5.

$0396-$0397 918-919 ICPTL,H {5]
Address of PUT-a-byte routine for control block 5.

$0398-$0399 920-921 ICBLL.H 5]
Current length of buffer being serviced by control block 5.

$039A-$039B 922-923 ICAX1,2 [5]
Auxiliary registers for control block 5.

335

Chart 8-3—cont. Operating-System RAM: 512-1151

$039C-$039F 924-927 ISCPR [5]
Spare registers for use of handler serviced by control block 5.

$03A0 928 ICHID [6]
Device handler ID for control block 6.

$03A1 929 ICDNO [6]
Device number for control block 6.

$03A2 930 ICCOM [6]
Current execution command for control block 6.

$03A3 931 ICSTA [6]
Most recent status returned by device for control block 6.

$03A4-$03A5 932-933 ICBAL.H [6]
Buffer address for data transfer under control block 6.

$03A6-$03A7 934-935 ICPTL.H [6])
Address of PUT-a-byte routine for control block 6.

$03A8-$03A9 936-937 ICBLL,H [6]
Current length of buffer being serviced by control block 6.

$O3AA-$03AB 938-939 ICAX1,2 [6]
Auxiliary registers for control block 6.

$03AC-$03AF 940-943 ISCPR [6]
Spare registers for use of handier serviced by control block 6.

$03B0O 944 ICHID [7]
Device handler ID for control block 7.

$03B1 945 ICDNO (7]
Device number for control block 7.

$03B2 946 ICCOM (7}
Current execution command for control block 7.

$03B3 947 ICSTA [7]
Most recent status returned by device for control block 7.

$03B4-$0385 948-949 ICBAL,H [7]
Buffer address for data transfer under control block 7.

$03B6-$03B7 950-951 ICPTL,H [7]
Address of PUT-a-byte routine for control biock 7.

336

Chart 8-3—cont. Operating-System RAM: 512-1151

$03B8-$03B9 952-953 ICBLL,H [7]
Current length of buffer being serviced by control block 7.

$03BA-$03BB 954-955 ICAX1,2{7]
Auxiliary registers for control block 7.

$03BC-$03BF 956-959 ISCPR [7]
Spare registers for use of handler serviced by control block 7.

$03CO0-$03E7 960-999 PRNBUF
40-byte printer buffer.

$03FD-$047F 1021-1151 CASBUF
131-byte cassette buffer.

BASIC System RAM: 1152-1535

BASIC uses some specified sections of lower RAM for its
purposes. Chart 8-4 outlines those special addresses and
functions for you.

Chart 8-4. BASIC Usage of System RAM: 1152-1791

$0480-$-057D 1152-1405
BASIC syntax stack; 254 bytes.

$057E-$O5FF 1406-1535
INPUT buffer; 130 bytes.

$0600-$06FF 1536-1791
User RAM space that is protected from everything but an
INPUT buffer overflow.

Notice the 256-byte RAM area immediately above BAS-
IC’s input line buffer. Generally speaking, this area
(addresses 1536 through 1791) is protected from the oper-
ating system, BASIC and, indeed, DOS as well. Itis thus a
fine place to locate machine-coded programs. The only
thing that can go wrong is loading a response to an INPUT
statement that is more than 130 bytes long. Whenever that
happens, the INPUT buffer area extends into this other-
wise “protected” RAM space. Just avoid INPUTting such
large amounts of information at one time.

337

DOS RAM USAGE: 1792-10879

If DOS is not active in the ATARI system, BASIC program-
ming information will normally begin at address 1792.
Booting DOS, however, fills at least 9088 bytes of system
RAM with DOS and file-management programming. As
indicated in Chart 8-5, that programming begins at address
1792 and extends to 10879, or to the current LOMEM set-
ting. That being the case, BASIC programming picks up
from the end of the DOS area.

Chart 8-5. DOS Usage of System RAM: 1792-1 0879,
or LOMEN

$0700-$12FF 1792-4863
File-management RAM area; 3072 bytes.

$1300-$267F 4864-9855
DOS operating system RAM area; 4992 bytes.

$2680-$2A7F 9856-10879
DOS 1/0 buffers; 1024 bytes.

BASIC ROM AREA: 40960-49151

The ATARI BASIC cartridge overlays any RAM that might
be present in the area that it uses. Chart 8-6 offers a map of
that section of the memory map.

Chart 8-6. BASIC ROM AREA: 40960-49151

$A000-$A04C 40960-41036
BASIC cold start routine.

$A04D-$AO5F 41037-41055
BASIC warm start routine.

338

Chart 8-6—cont. BASIC ROM Area: 40960-49151

$A060-$A461 41056-42081
Syntax checking routine.

$A462-$A4AE 42082-42158
Search routines.

SA4AF-SA60C 42159-42508
Statement name table, with statement token list beginning at
$A4B1 (42161).

$ACOD-$A87E 42509-43134
Operator symbol table, with the operator token list
beginning at SA7E3 (42979).

$A87F-SA95E 43135-43358
Memory manager routines.

$SA95F-SAQFF 43359-43519
CONT statement routine.

SAAQO-SAAGF 43520-43631
Statement table.

$AAT70-SAADF 43632-43743
Operator table.

SAAEOQ-$AC3E 43744-44094
Routines for executing BASIC expressions.

SAC3F-$AC83 44095-44163
Operator precedence routine.

SAC84-$AFCY 44164-45001
Operator-execution routines.

SAFCA-$B108 45002-45320
Function-execution routines.

$B109-$B817 45321-47127
Statement-execution routines.

$B818-$B915 47128-47381
Subroutines for CONT statement.

339

Chart 8-6—cont. BASIC ROM Area: 40960-49151

$B916-$B9B6 47382-47542
Error-handling routines.

$B9B7-$BA74 47543-47732
Graphics-handling routines.

$BA75-$BDA4 47733-48548
170-handling routines.

$BDA5-$BFF9 48549-49145
Trigonometric function routines.

$BFFA-$BFFB 49146-49147
Left cartridge start address.

$BFFC 49148
Left-cartridge instalied byte:
O = cartridge installed
nonzero = cartridge not installed

SBFFD-49149
Purpose is unclear.

$BFFE-$BFFF 49150-49151
Cartridge initialization address; jump point after executing
SYSTEM reset under BASIC.

HARDWARE |/0 ROM AREA: 53248-55295

Chart 8-7 gives an overview of the hardware 170 ROM
area. This is regarded as ROM only in a casual sense. Some
addresses are devoted to RAM-like read/write opera-
tions; the practical difficulty, from a programmer’s point
of view, is that such areas are available for write operations
only during the screen’s vertical retrace interval.

Chart 8-7. Hardware 1/0 ROM Area: 53248-55295

$DO00-$DOFF 53248-53503 CTIA (or GTIA)
$D100-$D1FF 53504-53759 Unused
$D200-$D2FF 53760-54015 POKEY
$D300-$D3FF 54016-54271 PIA
$D400-$D5FF 54272-54783 ANTIC
$D600-$SD7FF 54784-55295 Unused

340

The CTIA {or GTIA) Device

CTIA, or GTIA, is a piece of system hardware—a proprie-
tary integrated circuit, in fact—that is accessed from
addresses 53248-53503 (see Chart 8-8). The chip is largely
responsible for processing the ATARI’s video information.

Chart 8-8. CTIA (or GTIA)
1/0 Map Detail: 53248-53503

$D000 53248 HPOSPO/MOPF

Player O horizontal position/missile O playfield collision.

$DO01 53249 HPOSP1/M1PF

Player 1 horizontal position/missile 1 playfield collision.

$D002 53250 HPOSP2/M2PF

Player 2 horizontal position/missile 2 playfield collision.

$D003 53251 HPOSP3/M3PF

Player 3 horizontal position/missile 3 playfield collision.

$D004 53252 HPOSMO/POPF

Missile O horizontal position/player O playfield collision.

$D005 53253 HPOSM1/P1PF

Missile 1 horizontal position/player 1 playfield collision.

$D006 532564 HPOSM2/P2PF

Missile 2 horizontal position/player 2 playfield collision.

$D0O07 532556 HPOSM3/P3PF

Missile 3 horizontal position/player 3 piayfield collision.

$D008 53256 SIZEPO/MOPL
Size of player O0/missile O player collision.

$D009 53257 SIZEP1/M1PL
Size of player 1/missile 1 player collision.

$D0O0OA 53258 SIZEP2/M2PL
Size of player 2/missile 2 player collision.

sbooB 53259 SIZEP3/M3PL
Size of player 3/missile 3 player collision.

$DOOC 53260 SIZEM/POPL
Size of all missiles/player O player collision.

341

Chart 8-8—cont. CTIA (or GTIA)
1/0 Map Detail: 53248-53503

$DOOD 53261 GRAFPO/P1PL
Shape of player O/player 1 player collision.

$DOOE 53262 GRAFP1/P2PL
Shape of player 1/player 2 player collision.

$DOOF 53263 GRAFP2/P3PL
Shape of player 2/player 3 player collision.

$DO10 53264 GRPFP3/TRIGO
Shape of player 3/joystick O trigger.

$DO11 53265 GRAFM/TRIG1
Shape of all missiles/joystick 1 trigger.

$D0O12 53266 COLOPMO/TRIG2
Color of player and missile 0/joystick 2 trigger.

$D013 53267 COLOPM1/TRIG3
Color of player and missile 1/joystick 3 trigger.

$D014 53268 COLOPM2/PAL
Color of player and missile 2/European TV sync. flag.

$DO015 53269 COLOPM3
Color of player and missile 3.

$D016 53270 COLPFO
Color of playfield O.

$DO17 53271 COLPF1
Color of playfield 1.

$D018 53272 COLPF2
Color of playfield 2.

$DO19 53273 COLPF3
Color of playfield 3.

SDO1A 63274 COLBK
Color of background.

$DO1B 53275 PRIOR
Figure priority-select; determines whether a figure is to be
located behind or in front of another.

342

Chart 8-8—cont. CTIA (or GTIA)
1/0 Map Detail: 563248-53503
$DO1C 53276 VDLAY

Vertical delay; used for moving players or missiles in their
1-line or 2-line resolution formats.

$DO1D 53277 GRACTL
Turns trigger, missile and player elements on and off.

$DO1E 53278 HITCLR
Flag register for clearing collision events.

$DOTF 53279 CONSOL
Console-button register.

$D020-$DOFF 53280-53503
Duplicate of addresses $D000-$DO1F (53248-53279).

The POKEY Device

Like CTIA, POKEY is a piece of system hardware. It handles
several different kinds of digital tasks, including generat-
ing the audio tones, random noise and numbers, strobing
the keyboard, polling the game ports, and generating tim-
ing pulses.

Chart 8-9 summarizes some of the important addresses
for the POKEY chip.

Chart 8-9. POKEY Map Detail: 563760-54015

$D200 53760 AUDF1/POTO
Audio voice 1 frequency/paddie O setting.

$D201 53761 AUDC1/POT1
Audio voice 1 volume and distortion/paddle 1 setting.

$D202 53762 AUDF2/POT2
Audio voice 2 frequency/paddle 2 setting.

$D203 53763 AUDC2/POT3
Audio voice 2 volume and distortion/paddle 3 setting.

343

Chart 8-9—cont. POKEY Map Detail: 53760-54015

$D204 53764 AUDF3/POT4
Audio voice 3 frequency/paddle 2 setting.

$D205 53765 AUDC3/POT5
Audio voice 3 volume and distortion/paddie 5 setting.
$D206 53766 AUDF4/POT6
Audio voice 4 frequency/paddle 6 setting.

$D207 53767 AUDC4/POT7
Audio voice 4 volume and distortion/paddle 7 setting.
$D208 53768 AUDCTL/ALLPOT
Audio voice master control/all paddles.

$D209 53769 STIMER/KBCODE
Start POKEY timers/keyboard latch.

$D20A 53770 RANDOM
Random-number counter/register.

$D208 63771 POTGO

Read paddles flag.

$D20C 53772

Not used.

$D20D 53773 SEROUT/SERIN

Serial 1/0 register.

$D20E 53774 IRQEN/IRQST
Interrupt request enable and interrupt status request
register.

$D20F 53775 SKCTL/SKSTAT
Serial control and status register; includes keyboard
debounce, keyboard scanning, and serial port mode control.

$D210-$D2FF 53776-54015
Duplicate of $D200-$D20F (53760-53775)

344

The PIA Device

The Peripheral Interface Adaptor (PIA) hardware system is
accessible from addresses 54016 through 54271. Chart 8-10
outlines the functions performed at some of the critical
address locations.

Chart 8-10. PIA Map Detail: 54016-54271

$D300 54016 PORTA
Register for controller jacks 1 and 2.

$D301 54017 PORTB
Register for controller jacks 3 and 4.

$D302 54018 PACTL
Port A control register.

$D303 54019 PBCTL
Port B control register.

$D304-$D3FF 54020-54271
Duplicates of $D300-$D303 (54016-54019)

The ANTIC Device

ANTIC is a hardware device that is largely responsible for
the ATARI system’s unique graphics capabilities. Chart 8-
11 lists the important addresses for that chip.

Chart 8-11. ANTIC Map Detail: 54272-54303

$D400 54272 DMACTL
Direct-memory-access control (DMA).

$D401 54273 CHACTL
Character mode control.

$D402-$D403 54274-54275 DLISTL

DLISTH
Display list pointer.

$D404 54276 HSCROL
Horizontal-scroll enable.

345

Chart 8-11—cont. ANTIC Map Detail: 64272-54303

$D405 54277 VSCROL
Vertical-scroll enable.

$D406 54278

Unused.

$D407 54279 PMBASE
Most-significant byte of the player/missile base address.
$D40s8 54280

Unused.

$D409 54281 CHBASE

Text character bit map base address.

$D40A 54282 WSYNCH
Wait-for-horizontal sync flag.

$D40B 54283 VCOUNT
Verticai-scan line counter.

$D40C 54284 PENH
Horizontal position of light pen.

$D40D 54285 PENV
Vertical position of light pen.

$D40E 54286 NMIEN
Enable nonmaskable interrupt.

$D40F 54287 NMIRES/NMIST
Clear interrupt-request, reset any nonmaskable interrupts,
and return current interrupt status.

$D410-$D41F 54288-54303
Duplicate of $D400-$D40F 54272-54287

OPERATING SYSTEM ROM AREA:55296-65535

The uppermost section of the ATARI memory map is
devoted to ROM operations for the operating system,
itself. This section is common to both the 800 and 400
systems, and it is used whether a BASIC cartridge is
installed or not.

346

Chart 8-12 outlines the major functions and entry-point
addresses.

Chart 8-12. Operating System
ROM Area: 565296-65535

$D800-$DFFF 55296-57393
Floating-point arithmetic.

$SEO0O-$E3FF 57344-58367
Internal character set (see Appendix C2).

$E400-$SE40F 58368-58383
Editor vectors.

SE410-$SE41F 58384-58399
Screen vectors.

$SE420-SE42F 58400-58415
Keyboard vectors.

SE430-$E43F 58416-58431
Printer vectors.

SE440-$E44F 58432-58447
Cassette vectors.

SE450-$E4AS 58448-58533
Jump and initial RAM vectors.

$SEA6-SE6D4 58534-59092
Central | /0 (ClO) handler addresses.

$E6D5-$E943 59093-59715
Interrupt handler addresses.

$E944-$EDE9 59716-60905
Serial 1/0 (S10) routines.

SEDEA-$EE77 60906-61047
Disk handler routines.

SEE78-$EF40 61048-61248
Printer handler routines.

$EF41-$FOE2 61249-61666
Cassette handler routines.

347

Chart 8-12—cont. Operating System
ROM Area: 55296-65535

$FOE3-$F3E3 61667-62435
Monitor handler routines.

$F3E4-SFFFF 62436-65535
Display and keyboard handler routines.

348

Chapter 9

The 6502 Instruction Set

The hallmarks of machine-language programs are higher
operating speeds and more efficient use of available RAM
space. There are two different ways to work with machine-
language programs with the ATARI system and, indeed,
most personal computers.

One technique uses a BASIC program to POKE decimal
versions of the machine instructions and data into a speci-
fied area of memory (also specified in a decimal format),
and then execute the routines from BASIC by means of
the USR command.

An alternative approach is to take advantage of the
ATARI Assembler Editor software. The programmer can
write, enter, edit, and debug machine-language programs
in a source code, or assembly language, format. Although
source programs generally use a hexadecimal data and
addressing format, the Assembler Editor package offers
the option of working with decimal values as well.

It is beyond the scope of this book to deal with pro-
gramming procedures for the 6502 microprocessor. Any
good book on the subject of 6502 programming or,
indeed, ATARI’s Assembler Editor Manual can be of valu-
able help in this regard.

Table 9-1 summarizes the 6502 instruction set, showing
the op codes in both decimal and hexadecimal forms.

349

Table 9-1. Summary of the 6502 Instruction
Set as Organized by Op Codes

Hex Dec M .

Op Code Op Code nemonic
$00 0 BRK implied
$01 1 ORA (indirect, x)
$02 2 not used
$03 3 not used
$04 4 not used
$05 5 ORA zero page
$06 6 ASL zero page
$07 7 not used
$08 8 PHP implied
$09 9 ORA immediate
SOA 10 ASL accumulator
$0B 1 not used
$0C 12 not used
$0D 13 ORA absolute
SOE 14 ASL absolute
SOF 15 not used
$10 16 BPL relative
$11 17 ORA (indirect),Y
$12 18 not used
$13 19 not used
$14 20 JSR
$15 21 ORA zero page, X
$16 22 ASL zero page,X
$17 23 not used
$18 24 CLC implied
$19 25 ORA absolute,Y
$1A 26 not used
$1B 27 not used
$1C 28 not used
$1D 29 ORA absolute, X
$1E 30 ASL absolute,X
$1F 31 not used

350

Table 9-1—cont. Summary of the 6502 Instruction
Set as Organized by Op Codes

Hex Dec .

Op Code Op Code Mnemonic
$20 32 JSR absolute
$21 33 AND (indirect,X)
$22 34 not used
$23 35 not used
$24 36 BIT zero page
$25 37 AND zero page
$26 38 ROL zero page
$27 39 not used
$28 40 PLP implied
$29 41 AND immediate
$2A 42 ROL accumulator
$28 43 not used
$2C 44 BIT absolute
$2D 45 AND absolute
$2E 46 ROL absolute
$2F 47 not used
$30 48 BMi relative
$31 49 AND {indirect),Y
$32 50 not used
$33 51 not used
$34 52 not used
$35 53 AND zero page, X
$36 54 ROL zero page,X
$37 55 not used
$38 56 SEC implied
$39 57 AND absolute,Y
$3A 58 not used
$38B 59 not used
$3C 60 not used
$3D 61 AND absolute, X
$3E 62 ROL absolute, X
$3F 63 not used

351

Table 9-1—cont. Summary of the 6502 Instruction
Set as Organized by Op Codes

Hex Dec Mnemonic

Op Code Op Code
$40 64 RTI implied
$41 65 EOR {(indirect,X)
$42 66 not used
$43 67 not used
$44 68 not used
$45 69 EOR zero page
$46 70 LSR zero page
$47 YA not used
$48 72 PHA implied
$49 73 EOR immediate
$4A 74 LSR accumulator
$4B 75 not used
$4C 76 JMP absolute
$4D 77 EOR absolute
$4E 78 LSR absolute
$4F 79 not used
$50 80 BvVC relative
$51 81 EOR (indirect),Y
$52 82 not used
$53 83 not used
$54 84 not used
$565 85 EOR zero page,X
$56 86 LSR zero page,X
$57 87 not used
$568 88 Cul implied
$59 89 EOR absolute,Y
$5A 90 not used
$58 91 not used
$6C 92 not used
$5D 93 EOR absolute, X
$5E 94 LSR absolute, X
$5F 95 not used

352

Table 9-1—cont. Summary of the 6502 Instruction
Set as Organized by Op Codes

Hex Dec M .

Op Code Op Code nemonic
$60 96 RTS implied
$61 97 ADC (indirect,X)
$62 98 not used
$63 99 not used
$64 100 not used
$65 101 ADC zero page
$66 102 ROR zero page
$67 103 not used
$68 104 PLA implied
$69 105 ADC immediate
$6A 106 ROR accumulator
$6B 107 not used
$6C 108 JMP indirect
$6D 109 ADC absolute
$6E 110 ROR absolute
$6F 111 not used
$70 112 BVS relative
$71 113 ADC (indirect),Y
§72 114 not used
$73 115 not used
$74 116 not used
$75 117 ADC zero page,X
$76 118 ROR zero page,X
$77 119 not used
$78 120 SEI implied
$79 121 ADC absolute,Y
$7TA 122 not used
$7B 123 not used
s$7C 124 not used
$7D 125 ADC absolute, X
$7€ 126 ROR absolute,X
$7F 127 not used

353

Table 9-1—cont. Summary of the 6502 Instruction
Set as Organized by Op Codes

Hex Dec M .

Op Code Op Code nemonic
$80 128 BCS relative
$81 129 STA (indirect,X)
$82 130 not used
$83 131 not used
$84 132 STY zero page
$85 133 STA zero page
$86 134 STX zero page
$87 135 not used
$88 136 DEY implied
$89 137 not used
$8A 138 TXA implied
$88B 139 not used
$8C 140 STY absolute
$8D 141 STA absolute
$S8E 142 STX absolute
$8F 143 not used
$90 144 BCC relative
$91 145 STA (indirect),Y
$92 146 not used
$93 147 not used
$94 148 STY zero page,X
$95 149 STA zero page,X
$96 150 STX zero page,Y
$97 151 not used
$98 152 TYA implied
$99 153 STA absolute,Y
$9A 154 XS implied
$9B 155 not used
$9C 156 not used
$9D 157 STA absolute, X
$9E 158 not used
SOF 159 not used

354

Table 9-1—cont. Summary of the 6502 Instruction
Set as Organized by Op Codes

Hex Dec .

Op Code Op Code Mnemonic
$AO 160 LDY immediate
$A1 161 LDA (indirect,X)
$A2 162 LDX immediate
$A3 163 not used
SA4 164 LDY zero page
$SAS 165 LDA zero page
$A6 166 LDX zero page
$A7 167 not used
SA8 168 TAY implied
$A9 169 LDA immediate
SAA 170 TAX implied
S$AB 171 not used
SAC 172 LDY absolute
$SAD 173 LDA absolute
SAE 174 LDX absolute
SAF 175 not used
$BO 176 BCS
$B1 177 LDA (indirect),Y
$B2 178 not used
$B3 179 not used
$B4 180 LDY zero page, X
$B5 181 LDA zero page, X
$B6 182 LDX zero page,Y
$B7 183 not used
$B8 184 CLv implied
$B9 185 LDA absolute,Y
$BA 186 TSX implied
$8B 187 not used
$BC 188 LDY absolute, X
$BD 189 LDA absolute, X
$BE 190 L.DX absolute,Y
$BF 191 not used

355

Table 9-1—cont. Summary of the 6502 Instruction
Set as Organized by Op Codes

Hex Dec .

Op Code Op Code Mnemonic
$CO 192 CPY immediate
$C1 193 CMP {indirect,X)
$C2 194 not used
$C3 195 not used
$C4 196 CPY zero page
$ChH 197 CMP zero page
$C6 198 DEC zero page
$C7 199 not used
$C8 200 INY implied
$C9 201 CMP immediate
$CA 202 DEX implied
$CB 203 not used
$CC 204 CPY absolute
$CD 205 CMP absolute
$CE 206 DEC absolute
SCF 207 not used
$DO 208 BNE relative
$D1 209 CMP {indirect),Y
$D2 210 not used
$D3 211 not used
sD4 212 not used
$D5 213 CMP zero page,X
$D6 214 DEC zero page,X
$D7 215 not used
$D8 216 CLD implied
$D9 217 CcMmp absolute,Y
$DA 218 not used
sDB 219 not used
s$DC 220 not used
$DD 221 CMP absolute, X
$DE 222 DEC absolute, X
$DF 223 not used

356

Table 9-1—cont. Summary of the 6502 Instruction
Set as Organized by Op Codes

Hex Dec .

Op Code Op Code Mnemonic
SEO 224 CcPX immediate
$E1 225 SBC (indirect,X)
SE2 226 not used
SE3 227 not used
$E4 228 CPX zero page
$E5 229 SBC zero page
SE6 230 INC zero page
SE7 231 not used
SE8 232 INX implied
SE9 233 SBC immediate
SEA 234 NOP implied
SEB 235 not used
SEC 236 CPX absolute
SED 237 SBC absolute
SEE 238 INC absolute
SEF 239 not used
$FO 240 BEQ relative
$F1 241 SBC (indirect),Y
S$F2 242 not used
$F3 243 not used
SF4 244 not used
$F5 245 SBC zero page, X
$F6 246 INC zero page, X
SF7 247 not used
$F8 248 SED implied
$F9 249 SBC absolute,Y
SFA 250 not used
S$FB 251 not used
$FC 252 not used
$FD 253 SBC absolute, X
$FE 264 INC absolute, X
$FF 255 not used

357

Fig. 9-1 illustrates the organization of registers within
the 6502 microprocessor.

REGISTER BITS
15

—
—

ACCUMULATOR

X REGISTER

Y REGISTER

[PcH

—

PCL] PROGRAM COUNTER

{o]+] s] stack poinTER

H

PROCESSOR STATUS REGISTER

Fig. 9-1. The 6502 internal registers.

The remainder of this chapter is devoted to a detailed
version of the instructions set. The material is arranged by
instruction mnemonics, and in alphabetical order. Aste-
risks shown under the heading, Status register, indicate
status-register bits that are affected by the operation.

358

ADC ADD memory to accumulator with carry
Operation: A+M+C—A, C

Status register (P)

N Z C I DV

* k% I
Addressing | Assembly Language Hex Dec Bytes

Mode Format Op Code | Op Code
Immediate ADC #Oper 69 105 2
Zero Page ADC Oper 65 101 2
Zero Page, X ADC Oper,X 75 117 2
Absolute ADC Oper 6D 109 3
Absolute, X ADC Oper,X 7D 125 3
Absolute,Y ADC Oper,Y 79 121 3
(Indirect,X) ADC (Oper,X) 61 97 2
(Indirect),Y ADC (Oper),Y 71 113 2
AND Logically AND memory with accumulator
Operation: A*"M—A
Status register (P)

N Z C I DV

* % _ _
Addressing | Assembly Language Hex Dec Bytes

Mode Format Op Code | Op Code

Immediate AND #Oper 29 41 2
Zero Page AND Oper 25 37 2
Zero Page, X AND Oper,X 35 53 2
Absolute AND Oper 2D 45 3
Absolute, X AND Oper,X 3D 61 3
Absolute,Y AND Oper,Y 39 57 3
{Indirect,X) AND (Oper,X) 21 33 2
(Indirect),Y AND (Oper).Y 31 49 2

359

ASL Shift memory or accumulator 1 bit to the left

Operation:
[FI6[513132[T0-{0)
Status register (P)
N Z C I D vV
* * * - - -
Addressing | Assembly Language Hex Dec Bytes
Mode Format Op Code | Op Code
Accumulator| ASL A 0A 10 1
Zero Page ASL Oper 06 6 2
Zero Page, X ASL Oper,X 16 22 2
Absolute ASL Oper OE 14 3
Absolute, X ASL Oper,X 1E 30 3
BCC Branch on carry clear
Operation: Branch if C=0
Status register (P)
N Z C I DV
Addressing | Assembly Language Hex Dec Bytes
Mode Format Op Code | Op Code
Relative BCC Oper S0 144 2
BCS Branch on carry set
Operation: Branch on C=1
Status register (P)
N Z C I DV
Addressing | Assembly Language Hex Dec Bytes
Mode Format Op Code | Op Code
Relative BCS Oper 80 128 2

360

BEQ Branch on result zero

Operation: Branch if Z=1
Status register {P)
N Z C | DV
Addressing | Assembly Language Hex Dec Bytes
Mode Format Op Code | Op Code
Relative BEQ Oper FO 240 2
BIT Test memory bits with accumulator
Operation: A"M, M,—~N, M~V
Status register (P)
N Z C | DV
M, * - - - Mg
Addressing | Assembly Language Hex Dec Bytes
Mode Format Op Code | Op Code
Zero Page BIT Oper 24 36 2
Absolute BIT Oper 2C 44 3
BMI Branch on result minus
Operation: Branch if N=1
Status register (P)
N Zz C I DV
Addressing | Assembly Language Hex Dec Bytes
Mode Format Op Code | Op Code
Relative BMI Oper 30 48 2

361

BNE Branch on result not zero
Operation: Branch if Z=0

Status register (P)

N Z C I D vV
Addressing | Assembly Language Hex Dec Bytes
Mode Format Op Code | Op Code
Relative BNE Oper DO 208 2

BPL Branch on result plus
Operation: Branch if N=0

Status register (P)

N Z C I D vV
Addressing | Assembly Language Hex Dec Bytes
Mode Format Op Code | Op Code
Relative BPL Oper 10 16 2

BRK Forced break
Operation: Interrupt, PC+21P}
Status register (P)

N Z C 1 DV
- - - 1 -
Addressing | Assembly Language Hex Dec Bytes
Mode Format Op Code | Op Code
Implied BRK 00 (o] 1

362

BVC Branch on overflow clear

Operation: Branch if V=0
Status register (P)
Nz C 1| DV
Addressing | Assembly Language Hex Dec Bytes
Mode Format Op Code | Op Code
Relative BVC Oper 50 80 2
BVS Branch on overflow set
Operation: Branch if V=1
Status register (P)
N Z C | DV
Addressing | Assembly Language Hex Dec Bytes
Mode Format Op Code | Op Code
Relative BVS Oper 70 112 2
CLC Clear carry flag
Operation: 0—~C
Status register (P)
N Z C | DV
- - - 0 -
Addressing | Assembly Language Hex Dec Bytes
Mode Format Op Code | Op Code
Implied CcLC 18 24 1

363

CLD Clear decimal arithmetic mode

Operation: 0—D
Status register (P)
N Z C 1 DV
-0 - - - .
Addressing | Assembly Language Hex Dec Bytes
Mode Format Op Code | Op Code
Implied CLD D8 216 1

CLI Clear interrupt disable bit

Operation: 0—I
Status register (P)
N Z C | DV
- - - 0 - -
Addressing | Assembly Language Hex Dec Bytes
Mode Format Op Code | Op Code
Implied cu 58 88 1

CLV Clear overflow flag
Operation: 0—V

Status register (P)

N z C | DV
o - - - - .
Addressing | Assembly Language Hex Dec Bytes
Mode Format Op Code | Op Code
Implied CLV B8 184 1

364

—

CMP Compare memory and accumulator
Operation: A-M
‘ Status register (P)

N zZ C | DV

x * *x _ - -
Addressing | Assembly Language Hex Dec Bytes
Mode Format Op Code | Op Code
Immediate CMP #Oper c9 201 2
Zero Page CMP Oper Cc5 197 2
Zero Page, X CMP Oper, X D5 213 2
Absolute CMP Oper CD 205 3
Absolute, X CMP Oper,X DD 221 3
Absolute,Y CMP Oper,Y D9 217 3
(Indirect,X) CMP {Oper.X) ct 193 2
(Indirect),Y CMP (Oper),Y D1 209 2
CPX Compare memory and X register
Operation: X-M
Status register (P)
N Z C I DV
*x * *x _ _ .
Addressing | Assembly Language Hex Dec Bytes
Mode Format Op Code | Op Code
Immediate CPX #Oper EO 224 2
Zero Page CPX Oper E4 228 2
Absolute CPX Oper EC 236 3

365

CPY Compare memory and Y register
Operation: Y-M
Status register (P)

N Z C | DV
x ok ok _
Addressing | Assembly Language Hex Dec Bytes
Mode Format Op Code | Op Code
Immediate CPY #Oper co 192 2
Zero Page CcPY Oper C4 196 2
Absolute CPY Oper cc 204 3
DEC Decrement memory by 1
Operation: M-1 - M
Status register (P)
N Z C1 DV
* % _ _ _
Addressing | Assembly Language Hex Dec Bytes
Mode Format Op Code | Op Code
Zero Page DEC Oper C6 198 2
Zero Page, X DEC Oper,X D6 214 2
Absolute DEC Oper CE 206 3
Absolute, X DEC Oper,X DE 222 3
DEX Decrement X register by 1
Operation: X-1 —X
Status register (P)
N Z C I DV
* * - - - -
Addressing | Assembly Language Hex Dec Bytes
Mode Format Op Code | Op Code
Implied DEX CA 202 1

366

DEY Decrement Y register by 1
Operation: Y-1 —Y
Status register (P)

N Z C | DV

* * - - - -
Addressing | Assembly Language Hex Dec Bytes
Mode Format Op Code | Op Code
Implied DEY 88 136 1

EOR Logicalply EXCLUSIVE-OR memory and accumulator
Operation: Ay M— A
Status register (P)

N Z C 1l DV

* * _ - - -
Addressing | Assembly Language Hex Dec Bytes
Mode Format Op Code | Op Code
Immediate EOR #Oper 49 73 2
Zero Page EOR Oper 45 69 2
Zero Page X EOR Oper, X 55 85 2
Absolute EOR Oper 4D 77 3
Absolute, X EOR Oper, X 5D 93 3
Absolute,Y EOR Oper,Y 59 89 3
(Indirect,X) EOR {Oper.X) 41 65 2
(Indirect),Y EOR (Oper),Y 51 81 2

367

INC Increment memory by 1

Operation: M+1 — M
Status register (P)
N Z C | DV
* ok
Addressing | Assembly Language Hex Dec Bytes
Mode Format Op Code | Op Code
Zero Page INC Oper E6 230 2
Zero Page, X INC Oper,X F6 246 2
Absolute INC Oper EE 238 3
Absolute, X INC Oper,X FE 254 3
INX Increment X register by 1
Operation: X+1 — X
Status register (P)
N 2 C I DV
* * - - - -
Addressing | Assembly Language Hex Dec Bytes
Mode Format Op Code | Op Code
Implied INX E8 232 1
INY Increment Y register by 1
Operation: Y+1 —Y
Status register (P)
N Z C | DV
* * - - - -
Addressing | Assembly Language Hex Dec Bytes
Mode Format Op Code | Op Code
Implied INY c8 200 1

368

JMP Unconditional jump to new address

Operation: (PC+1) — PCL
(PC+2) — PCH
Status register (P)
N zZ C 1 DYV
Addressing | Assembly Language Hex Dec Bytes
Mode Format Op Code | Op Code
Absolute JMP Oper 4C 76 3
Indirect JMP (Oper) 6C 108 3
JSR Jump to new address and save return address
Operation: PC+2 |
(PC+1) — PCL
(PC+2) — PCH
Status register (P)
N z C I DV
Addressing | Assembly Language Hex Dec Bytes
Mode Format Op Code | Op Code
Absolute JSR Oper 20 32 3

369

LDA Load the accumulator with memory
Operation: M — A
Status register (P)
N Z C I DV
*

*

Addressing | Assembly Language Hex Dec Bytes
Mode Format Op Code | Op Code
Immediate LDA #Oper A9 169 2
Zero Page LDA Oper A5 165 2
Zero Page,X LDA Oper,X BS 181 2
Absolute LDA Oper AD 173 3
Absolute, X LDA Oper,X BD 189 3
Absolute,Y LDA Oper,Y B9 185 3
(Indirect,X) LDA (Oper,X) Al 161 2
(Indirect),Y LDA {Oper),Y B1 177 2

LDX Load X register with memory
Operation: M — X
Status register (P)

N Z C I D v

* % _ _
Addressing | Assembly Language Hex Dec Bytes

Mode Format Op Code | Op Code

Immediate LDX #Oper A2 162 2
Zero Page LDX Oper A6 166 2
Zero Page,Y LDX Oper,Y B6 182 2
Absolute LDX Oper AE 174 3
Absolute,Y LDX Oper,Y BE 190 3

370

LDY Load Y register with memory
Operation: M —Y
Status register (P)

N z C | DV

* * _ - - -
Addressing | Assembly Language Hex Dec Bytes
Mode Format Op Code | Op Code
Immediate LDY #Oper A0 160 2
Zero Page LDY Oper A4 164 2
Zero Page, X LDY Oper, X B4 180 2
Absolute LDY Oper AC 172 3
Absolute, X LDY Oper,X BC 188 3
LSR Shift memory or accumulator 1 bit to right
Operation:
[7I6[51413[2] 110} 0
Status register (P)
N Z C | DV
Q0 * * - - -
Addressing | Assembly Language Hex Dec Bytes
Mode Format Op Code | Op Code
Accumulator LSR A 4A 74 1
Zero Page LSR Oper 46 70 2
Zero Page X LSR Oper.X 56 86 2
Absolute LSR Oper 4E 78 3
Absolute X LSR Oper.X 5E 94 3

: 371

NOP No operation
Status register (P)

N Z C 1 D vV
Addressing Assembly Language Hex Dec Bytes
Mode Format Op Code | Op Code
Implied NOP EA 234 1

ORA Logically OR memory and accumulator
Operation: AVM — A
Status register (P)
N zZz C I DV
*

*

Addressing | Assembly Language Hex Dec Bytes
Mode Format Op Code | Op Code
Immediate ORA #Oper 09 9 2
Zero Page ORA Oper 05 5 2
Zero Page, X ORA Oper,X 15 21 2
Absolute ORA Oper oD 13 3
Absolute, X ORA Oper,X 10 29 3
Absolute,Y ORA Oper,Y 19 25 3
(Indirect,X) ORA (Oper,X) 01 1 2
(Indirect),Y ORA {Oper),Y 11 17 2

PHA Push accumulator to top of stack
Operation: Al
Status register (P)

N Z C I D vV
Addressing | Assembly Language Hex Dec Bytes
Mode Format Op Code | Op Code
Implied PHA 48 72 1

372

PHP Push status register to top of stack

Operation: P |
Status register (P)
N Z C 1 DV
Addressing | Assembly Language Hex Dec Bytes
Mode Format Op Code | Op Code
Implied PHP 08 8 1

PLA Pull top of stack to accumulator

Operation: Al
Status register (P)
N z C I DV
* % _ . . -
Addressing | Assembly Language Hex Dec Bytes
Mode Format Op Code [Op Code
Implied PLA 68 104 1

PLP Pull top of stack to status register
Operation: P!

Status register (P)

From Stack
Addressing | Assembly Language Hex Dec Bytes
Mode Format Op Code | Op Code
Implied PLP 28 40 1

373

ROL Rotate memory or accumulator 1 bit to left

Operation: j
| 7165]413[2[1]0]
Status register (P)
N Z C I DV
* x % _
Addressing | Assembly Language Hex Dec Bytes
Mode Format Op Code | Op Code
Accumulator| ROL A 2A 42 1
Zero Page ROL Oper 26 38 2
Zero Page,X ROL Oper,X 36 54 2
Absolute ROL Oper 2E 46 3
Absolute, X ROL Oper,X 3E 62 3
ROR Rotate memory or accumulator 1 bit to right
Operation:
(7161514 3[2[1]0]
Status register (P)
N Z C | DV
* * * _ - -
Addressing | Assembly Language Hex Dec Bytes
Mode Format Op Code | Op Code
Accumulator, ROR A 6A 106 1
Zero Page ROR Oper 66 102 2
Zero Page, X ROR Oper,X 76 118 2
Absolute ROR Oper 6E 110 3
Absolute, X ROR Oper,X 7€ 126 3

374

RTI Return from interrupt
Operation: P! PC!
Status register (P)

From Stack
Addressing | Assembly Language Hex Dec Bytes
Mode Format Op Code | Op Code
Implied RTI 40 64 1

RTS Return from subroutine
Operation: PCt,PC-1—PC
Status register (P)

N z C | DV

Addressing | Assembly Language Hex Dec Bytes
Mode Format Op Code | Op Code
Implied RTS 60 96 1

SBC Subtract memory from accumulator with borrow

Operation: A-M-C — A
Status register (P)

N Z C | DV

* Kk * - . *
Addressing | Assembly Language Hex Dec Bytes
Mode Format Op Code | Op Code
Immediate SBC #Oper E9 233 2
Zero Page SBC Oper ES 229 2
Zero Page, X SBC Oper,X F5 245 2
Absolute SBC Oper ED 237 3
Absolute, X SBC Oper. X FD 253 3
Absolute,Y SBC Oper,Y F9 249 3
(Indirect,X) SBC (Oper,X) E1 225 2
(Indirect),Y SBC (Oper).Y F1 241 2

375

SEC Set carry flag
Operation: 1—C
Status register (P)

N Z C I D v
B
Addressing Assembly Language Hex Dec Bytes
Mode Format Op Code | Op Code
Implied SEC 38 56 1

SED Set decimal arithmetic mode
Operation: 1—-D
Status register (P)

N Z C I D v
| -
Addressing | Assembly Language Hex Dec Bytes
Mode Format Op Code | Op Code
Implied SED F8 248 1

SEI Set disable interrupt flag
Operation: 1—1
Status register (P)

N Z C I D vV
- - -1 - -
Addressing | Assembly Language Hex Dec Bytes
Mode Format Op Code | Op Code
Implied SEI 78 120 1

376

STA Store accumulator in memory
Operation: A —-M
Status register (P)

N Z C | DV
Addressing | Assembly Language Hex Dec Bytes
Mode Format Op Code | Op Code
Zero Page STA Oper 85 133 2
Zero Page X STA Oper,X 95 149 2
Absolute STA Oper 8D 141 3
Absolute, X STA Oper,X 9D 157 3
Absolute,Y STA OperY 99 153 3
(Indirect,X) STA (Oper,X) 81 129 2
(Indirect),Y STA (Oper)Y 91 145 2
STX Store X register in memory
Operation: X — M
Status register (P)
N Z2 C 1 DV
Addressing | Assembly Language Hex Dec Bytes
Mode Format Op Code | Op Code
Zero Page STX Oper 86 135 2
Zero Page,Y STX OperY 96 150 2
Absolute STX Oper 8E 142 3
STY Store Y register in memory
Operation: Y - M
Status register (P)
N Z C I DV
Addressing | Assembly Language Hex Dec Bytes
Mode Format Op Code | Op Code
Zero Page STY Oper 84 132 2
Zero Page, X STY OperX 94 148 2
Absolute STY Oper 8C 140 3

377

TAX Transfer accumulator to X register
Operation: A — X
Status register (P)

N Z C I DV

* % _ _ _
Addressing | Assembly Language Hex Dec Bytes
Mode Format Op Code | Op Code
Implied TAX AA 170 1

TAY Transfer accumulator to Y register
Operation: A—Y
Status register (P)

N Z C | DV
* % _ _ _
Addressing { Assembly Language Hex Dec Bytes
Mode Format Op Code | Op Code
Implied TAY A8 168 1

TSX Transfer stack pointer to X register
Operation: S — X
Status register (P)

N 2z C I DV
* ox _ _ _
Addressing | Assembly Language Hex Dec Bytes
Mode Format Op Code | Op Code
Implied TSX BA 186 1

378

TXA Transfer X register to accumulator

Operation: X — A
Status register (P)
N ZC I DV
* - - - -
Addressing | Assembly Language Hex Dec Bytes
Mode Format Op Code | Op Code
Implied TXA 8A 138 1
TXS Transfer X register to stack pointer
Operation: S — X
Status register (P)
N Z C 1| DV
* - - -
Addressing | Assembly Language Hex Dec Bytes
Mode Format Op Code | Op Code
Implied TSX BA 186 1
TYA Transfer Y register to accumulator
Operation: Y — A
Status register (P)
N Z C I DV
* - - -
Addressing | Assembly Language Hex Dec Bytes
Mode Format Op Code | Op Code
Implied TYA 98 152 1

379

Appendix A

Number-System
Base Conversions

just about any computer (certainly the ATARI system) is
essentially a binary machine; the 6502 microprocessor
does all of its control, arithmetic, and logic operations in a
base 2, or binary, number system. And it so happens that
the 6502 works with 8-bit binary numbers—a full byte of
them.

People do not think and work with binary numbers very
well, however. Such numbers, being made up exclusively
of 0s and 1s, are very cumbersome. One alternative to
purely binary representations of numbers is hexadecimal
numbers. The hexadecimal (base 16) number system looks
at binary numbers in groups of four; every group of four
binary numbers (sometimes called a nibble) can be re-
presented by a single hexadecimal number. So, instead of
having to work with strings of eight 0s and 1s in base-2
binary, it is possible to work with just two hexadecimal
characters.

While, indeed, many machine-language programmers
can learn to work with hexadecimal numbers with great
proficiency, the general population still prefers the ordi-
nary decimal (base 10) number system. ATARI engineers
were aware of that fact, so they designed the ATARI BASIC
ROM cartridge exclusively around the decimal number
system.

381

As long as one works with ATARI BASIC in its most
elementary fashion—doing no special addressing or
machine-language work—there is no need to be aware of
hexadecimal or binary numbers. But hexadecimal num-
bers become quite helpful when doing extensive machine-
language programming.

Thus, programmers who are working their way deeper
and deeper into the ATARI system will find themselves
having to make conversions between decimal and hex-
adecimal numbers and, eventually, between binary and
hexadecimal numbers. The purpose of this appendix is to
make such conversion tasks as simple as possible.

There are many ways to approach the conversions
between these three different systems; the following are
the most straightforward.

HEXADECIMAL-TO-DECIMAL CONVERSIONS

In the ATARI system, data is carried as a 1-byte (two-
hexadecimal-number) code. Addresses are carried as 1-
byte codes for the zero-page memory and as 2-byte codes
for the remainder of the usable memory space. Table A-1
can be very helpful for translating hexadecimal numbers
into their decimal counterparts. This sort of situation often
arises when one is writing programs in both BASIC and
machine language.

The table can be used for converting up to four hexadec-
imal places, or nibbles, to their counterpart. Notice that
there are four major columns, labeled 1 through 4. These
column numbers represent the relative position of the
hexadecimal characters as they are usually written, with
the least-significant nibble on the right and the most-
significant nibble on the left.

382

Table A-1. Hexadecimal /Decimal Conversion Table

MSB LSB
4 3 2 1
HEX DEC HEX DEC HEX | DEC HEX | DEC
0 0 0 0 (o} 0 0 0
1 4096 1 256 1 16 1 1
2 8192 2 512 2 32 2 2
3 12288 3 768 3 48 3 3
4 16384 4 1024 4 64 4 4
5 20480 5 1280 5 80 5 5
6 24576 6 1536 6 96 6 6
7 28672 7 1792 7 112 7 7
8 32768 8 2048 8 128 8 8
9 36864 9 2304 9 144 9 9
A 40960 A 2560 A 160 A 10
B 45056 B 2816 B 176 B 11
Cc 49152 Cc 3072 Cc 192 Cc 12
D 53248 D 3328 D 208 D 13
E 57344 E 3584 E 224 E 14
F 61440 F 3840 F 240 F 15

To see how the table works, suppose that you want to
convert the hexadecimal value $1A3F into decimal. The
first character on the left takes a decimal equivalent
shown in column 4—4096. The second character from the
left takes on the value from column 3—2560. The last two
figures get their decimal equivalents from columns 2 and
1—48 and 15, respectively. Then, to get the true decimal
value, add those decimal equivalents: 4096 + 2560 + 48 +
15, or 6719. In other words, $1A3F is equal to 6719 in
decimal.

If you are converting a two-place hexadecimal number,
just use columns 2 and 1. Hexadecimal $C3, for instance, is
equal to 192 + 3, or decimal 195.

Table A-1is adequate for hexadecimal-to-decimal con-
versions for all the usual sort of work on the ATARI
system.

383

DECIMAL-TO-HEXADECIMAL CONVERSIONS

When working back and forth between BASIC and machine-
language routines, it is often necessary to convert decimal
data and addresses into hexadecimal notation. Table A-1
comes to the rescue again. The procedure is a rather
straightforward one, but it involves several steps.

Suppose, for example, that you want to convert decimal
65 into its hexadecimal counterpart. First, find the decimal
number on the table that is equal to, or less than, the
desired decimal number. The decimal number in this
example is 65, and the closest value less than 65 is 64. The
64 is equivalent to a hexadecimal $4 in column 2. Thus the
most-significant number in the hexadecimal representa-
tion is 4.

Next, subtract that 64 from the number that you are
working with: 65 — 64 = 1. Then look up the hexadecimal
value of the 1 in the next-lower column of the table—
column 1 in this instance. The hexadecimal version of that
number is $1. Putting together those two hexadecimal
characters, you get a $41. Indeed, decimal 65 translates
into hexadecimal $41.

By way of a somewhat more involved conversion, sup-
pose that you must convert decimal 19314 into hexadec-
imal notation.

Looking through the columns of decimal numbers in
the table, you find that 16384 is the next-lower value; it
translates into hexadecimal $4 in column 4. So you are
going to end up with a four-digit hexadecimal number,
with the digit on the left being a 4.

To get the next-lower place value, subtract the table
value 16384 from 19314: 19314 — 16384 = 2930. The next
lower decimal value in this case is 2816 from column 3;
that turns up a $B as the next hexadecimal character. So
far, the number is $4B.

384

Now subtract the table value 2816 from 2930: 2930 —
2816 = 114. The next-lower decimal value from column 2
is 112, and its hexadecimal counterpart is 7. And to this
point, the hexadecimal number is $4B7.

Finally, subtract the table value 112 from 114. 114 — 112 =
2. From column 1, decimal 2 is the same as hexadecimal $2;
so the final hexadecimal character is $2.

Putting all this together, it turns out that decimal 19314 is
the same as hexadecimal $4B72. Fig. A-1 summarizes the
operation.

HEXADECIMAL
EQUIVALENT
4 B 7 2
b

DECIMAL

NUMBER

19314—— COLUMN 4
6384

2930— COLUMN 3
- 2816

114—— COLUMN 2
112

*

" 2—— COLUMN 1
19314 (DECIMAL) = $4B72 (HEXADECIMAL)
*COLUMN NUMBERS REFER TO TABLE A1

Fig. A-1. Converting decimal values to hexadecimal values.

CONVENTIONAL DECIMAL TO 2-BYTE DECIMAL
FORMAT

When POKEing addresses as 2-byte numbers into memory,
it is necessary to convert the address to be affected into a
2-byte format. In decimal, such an operation isn’t easy, but
it is all a part of setting up address locations in decimal-
oriented BASIC.

385

By way of an example, suppose that you are to load a
2-byte version of decimal address 1234 into memory
addresses 16787 and 16788. That number to be stored,
1234, is too large for either of those 1-byte addresses, so it
has to be broken up into two parts: one for each of the
address locations.

Before a decimal number can be divided into a 2-byte
version, it must be converted into hexadecimal form.
Using the decimal-to-hexadecimal conversion described
in the previous section, you find that decimal 1234 is equal
to hexadecimal $04D2.

Next, you divide that hexadecimal version of the num-
ber into two bytes: the most-significant byte (MSB) is $04,
and the least-significant byte (LSB) is $D2. Divided that
way, you end up with two 1-byte hexadecimal values: $04
and $D2.

Finally, convert those two sets of hexadecimal numbers
into their decimal equivalents, treating them as two sepa-
rate hexadecimal values. Thus $04 converts to decimal 4
and $D2 converts to 210.

The 2-byte version of decimal 1234 is thus 4 and 210
with 4 being the MSB and 210 being the LSB.

That takes care of the conversion of an ordinary decimal
number into a 2-byte version, also in decimal. Now you
must POKE these numbers into decimal addresses 16787
and 16788.

If you place the LSB of the 2-byte number into the
lower-numbered address, the BASIC operation for satisfy-
ing the requirements of the example looks like this:

POKE 16787, 210 : POKE 16788.4

No, it isn’t a simple procedure to convert an ordinary
decimal number into a 2-byte decimal format, but it’s the
price that must be paid for working with a byte-oriented
machine in a decimal-oriented BASIC language.

>

>

386

TWO-BYTE DECIMAL TO CONVENTIONAL DECIMAL
FORMAT

Suppose that you are analyzing a machine-language rou-
tine that is presented in a decimal-oriented, BASIC format.
Under that condition, a 2-byte address appears as a set of
two decimal numbers; if you want to get that pair of
numbers into a conventional decimal format, you have to
play with them a bit.

Consider an instance where 223 turns up as the LSB in
decimal, and 104 is the MSB. What address, or 2-byte
decimal number, do they represent?

First, convert both sets of numbers into their hexadec-
imal counterparts; decimal 223 = $DF, and decimal 104 =
$68. Since $DF is the MSB and $68 is the LSB, the overall
hexadecimal representation of that 2-byte decimal format
is $DF68.

All that remains to be done is to convert that hexadec-
imal number into its full decimal counterpart:

$DF68 = 24567 + 2048 + 208 + 15 = 26849

That’s it—the conventional representation of the origi-
nal 2-byte decimal values. The combination of decimal
numbers 223 and 104 actually points to decimal 26849.

BINARY-TO-DECIMAL CONVERSION

In practice, most binary-to-decimal conversions are car-
ried out with 1-byte (or 8-bit) binary numbers, although
there are occasions when it is necessary to do the conver-
sion from 2-byte (16-bit) numbers.

Fig. A-2 shows the breakdown of an 8-bit binary num-
ber. The positions are labeled 0 through 7, with zero indi-
cating the least-significant bit position. Each of those 8-bit
locations contains eitheraQ ora 1.

387

leEi T leEi Fig. A-2. An 8-bit binary number.

Suppose that you want to POKE 01101011. But you have
to use a decimal version of that binary number from
BASIC. Here is how to go about determining that decimal
version.

First, multiply the 0 or 1 in each bit location by 2n,
where n is the bit place in each case. Then simply add the
results. (See the example in Fig. A-3.)

ol1|1]o|1|o|1]TlB|NARY

———1x20=1x1=1

= 1x21=1x2=2

——————0x22=0x4=0

—_— = 1x23-1x8=8
0x24=0x16=0
—1x25=1x32=32

»1x26=1x64=64

+0x27=0x128=0_
01101011 BINARY = 107 DECIMAL 107 TOTAL

Fig. A-3. Converting binary values to decimal values.

The same idea applies to converting 16-bit binary to a
decimal equivalent. The place values run from 0 to 15 in
that case, and Table A-2 can help you determine those
powers of 2.

BINARY-TO-HEXADECIMAL CONVERSION

Converting a binary number into a hexadecimal format is
perhaps the simplest of all the conversion operations. All
you have to do is group the binary number into sets of 4
bits each, beginning with the least-significant bit, and then
find the hexadecimal value for each group. Table A-3
helps with the latter operation.

388

Table A-2. Powers of 2

n 2"
0 1
1 2
2 4
3 8
4 16
5 32
6 64
7 128
8 256
9 512
10 1024
11 2048
12 4096
13 8192
14 16384
156 32768

Table A-3. Binary/Hexadecimal Conversion Table

Binary Hex
0000 $0
0001 $1
0010 $2
0011 $3
0100 $4
0101 $5
0110 $6
0111 $7
1000 $8
1001 $9
1010 $SA
1011 $B
1100 $C
1101 $D
1110 $SE
1111 SF

Suppose the binary number is 10011101. There are two
sets of 4 bits (or nibbles) here, 1001 and 1101. The hexadec-
imal equivalent is 9 for the first set, and D for the second
set, as Table A-3 shows. Therefore, the hexadecimal ver-
sion of that 8-bit binary number is $9D.

389

The same procedure works equally well for 16-bit
numbers; the only difference is that you end up with four
hexadecimal characters instead of just two.

HEXADECIMAL-TO-BINARY CONVERSION

Converting a hexadecimal number to its binary form is a
simple matter of applying Table A-3 to change each hex-
adecimal character into the appropriate groups of 4 binary
bits.

Example: Convert address $404D into a binary format.
According to the table, that hexadecimal number can be
represented as 0100 0000 0100 1101.

DECIMAL-TO-BINARY CONVERSION

There are several commonly cited algorithms for mathe-
matically converting any decimal number into its binary
format. But it is simpler in the long run, and probably
more accurate, to use a two-step procedure.

The general idea is to convert the decimal number into
its hexadecimal counterpart as described earlier in this
appendix. Then convert the hexadecimal characters into
their binary versions as described in the previous section.

Example: Convert 1234 decimal into binary. First, as de-
scribed earlier, calculate the hexadecimal version of
decimal 1234. Your answer should come out to be $04D2.
And that hexadecimal number, expressed in binary (from
Table A-3) is 0000 0100 1101 0010. Thus 1234 is equal to
binary 10011010010. You may include the five leading
zeros if you wish.

390

A COMPLETE CONVERSION TABLE FOR DECIMAL

0-255

For readers who have no heart for doing a lot of number
conversions, Table A-4 can come to the rescue. It is
impractical to tabulate the conversions for the entire
memory range of the ATARI system, but the range of

values shown here will apply to any data byte.

Table A-4. Decimal/Hexadecimal/Binary Table

for Decimal Values O Through 255

DEC HEX BIN DEC HEX BIN
0 $00 00000000 32 $20 00100000
1 $01 00000001 33 s$21 00100001
2 $02 00000010 34 $22 00100010
3 $03 00000011 35 $23 00100011
4 $04 00000100 36 $24 00100100
5 $05 00000101 37 $25 00100101
6 $06 00000110 38 $26 00100110
7 $07 00000111 39 $27 00100111
8 $08 00001000 40 $28 00101000
9 $09 00001001 41 $29 00101001
10 $OA 00001010 42 $2A 00101010
1 $0B 00001011 43 $2B 00101011
12 $0C 00001100 44 $2C 00101100
13 $0D 00001101 45 $2D 00101101
14 $OE 00001110 46 $2E 00101110
15 $OF 00001111 47 $2F 00101111
16 $10 00010000 48 $30 00110000
17 $11 00010001 49 $31 00110001
18 $12 00010010 50 $32 00110010
19 $13 00010011 51 $33 00110011
20 $14 00010100 52 $34 00110100
21 $15 00010101 53 $35 00110101
22 $16 00010110 54 $36 00110110
23 $17 00010111 55 $37 00110111
24 $18 00011000 56 $38 00111000
25 $19 00011001 57 $39 00111001
26 $1A 00011010 58 $3A 00111010
27 $1B 00011011 59 $3B 00111011
28 $1C 00011100 60 $3C 00111100
29 $1D 00011101 61 $3D 00111101
30 $1E 00011110 62 $3E 00111110
31 $1F 00011111 63 $3F oo111111

391

Table A-4—cont. Decimal/Hexadecimal/Binary Table
for Decimal Values O Through 255

DEC HEX BIN DEC HEX BIN
64 $40 01000000 96 $60 01100000
65 $41 01000001 97 | 61 01100001
66 $42 01000010 98 $62 01100010
67 $43 01000011 99 $63 01100011
68 $44 01000100 100 $64 01100100
69 $45 01000101 101 $65 01100101
70 $46 01000110 102 $66 01100110
n $47 01000111 103 $67 01100111
72 $48 01001000 104 $68 01101000
73 $49 01001001 105 $69 01101001
74 $4A 01001010 106 $6A 01101010
75 $48 01001011 107 $68 01101011
76 $4C 01001100 108 $6C 01101100
77 $4D 01001101 109 $6D 01101101
78 $4E 01001110 110 $6E 01101110
79 $4F 01001111 111 S6F 01101111
80 $50 01010000 112 $70 01110000
81 $51 01010001 113 s 01110001
82 $52 01010010 114 $72 01110010
83 $63 01010011 1156 $73 01110011
84 $54 01010100 116 $74 01110100
85 $55 01010101 17 $75 01110101
86 $56 01010110 118 $76 01110110
87 $57 01010111 119 $77 o111011
88 $568 01011000 120 $78 01111000
89 $59 01011001 121 $79 01111001
90 $5A 01011010 122 $7A 01111010
91 $568 01011011 123 $78 01111011
92 $5C 01011100 124 $7C 01111100
93 $6D 01011101 125 $7D 01111101
94 $5E 01011110 126 $7E 01111110
95 $5F 01011111 127 $7F Oo1111111

392

Table A-4—cont. Decimal/Hexadecimal/Binary Table

for Decimal Values O Through 255

DEC HEX BIN DEC HEX BIN

128 $80 10000000 160 $AO0 10100000
129 $81 10000001 161 SA1 10100001
130 $82 10000010 162 SA2 10100010
131 $83 10000011 163 $A3 10100011
132 $84 10000100 164 SA4 10100100
133 $85 10000101 165 $A5 10100101
134 $86 10000110 166 $A6 10100110
135 $87 10000111 167 SA7 10100111
136 $88 10001000 168 $A8 10101000
137 $89 10001001 169 $A9 10101001
138 $8A 10001010 170 $AA 10101010
139 $88 10001011 171 $AB 10101011
140 $8C 10001100 172 SAC 10101100
141 $8D 10001101 173 $AD 10101101
142 $8E 10001110 174 SAE 10101110
143 $8F 10001111 175 $AF 10101111
144 $90 10010000 176 $BO 10110000
145 $O 10010001 177 $B1 10110001
146 $92 10010010 178 $B2 10110010
147 $93 10010011 179 $B3 10110011
148 $94 10010100 180 $B4 10110100
149 $95 10010101 181 $B5 10110101
150 $96 10010110 182 $B6 10110110
151 $97 10010111 183 $B87 10110111
152 $98 10011000 184 $B8 10111000
163 $99 10011001 185 $B9 10111001
154 $9A 10011010 186 $BA 10111010
1565 $98 10011011 187 $BB 1011101
166 $9C 10011100 188 $BC 10111100
157 $9D 10011101 189 $8D 10111101
158 $9E 10011110 190 $BE 10111110
159 $9F 10011111 191 $BF 10111111

393

Table A-4—cont. Decimal/Hexadecimal/Binary Table
for Decimal Values 0 Through 255

DEC HEX BIN DEC HEX BIN

192 $CO 11000000 224 $EO 11100000
193 $C1 11000001 225 $E1 11100001
194 $C2 11000010 226 $E2 11100010
195 $C3 11000011 227 $E3 11100011
196 $C4 11000100 228 SE4 11100100
197 $C5 11000101 229 $E5 11100101
198 $C6 11000110 230 $E6 11100110
199 $C7 11000111 231 SE7 11100111
200 $C8 11001000 232 SE8 11101000
201 $C9 11001001 233 $E9 11101001
202 $CA 11001010 234 $EA 11101010
203 $CB 11001011 235 $SEB 1110101
204 $CC 11001100 236 SEC 11101100
205 $CD 11001101 237 SED 11101101
206 $CE 11001110 238 SEE 11101110
207 $CF 11001111 239 SEF 1110111
208 $DO 11010000 240 $FO 11110000
209 sD1 11010001 241 $F1 11110001
210 sD2 11010010 242 $F2 11110010
21 $D3 11010011 243 $F3 11110011
212 $D4 11010100 244 $F4 11110100
213 $D5 11010101 245 $F5 11110101
214 $D6 11010110 246 $F6 11110110
215 $D7 11010111 247 $F7 11110111
216 $D8 11011000 248 $F8 11111000
217 $D9 11011001 249 $F9 11111001
218 $DA 11011010 250 SFA 11111010
219 sDB 11011011 251 $FB 1111101
220 $DC 11011100 252 $FC 11111100
221 $DD 11011101 253 $FD 1111110
222 $DE 11011110 254 $FE 11111110
223 $DF 11011111 255 SFF 1111111

394

Appendix B

ATARI BASIC Reserved Words
and Tokens

Chart B-1 lists the reserved words for ATARI BASIC. These
must not be used as variable names.

Table B-1 shows the ATARI BASIC commands, opera-
tors, and functions that are tokenized in RAM as they are
entered from the keyboard. BASIC programs can be saved
on cassette tape or disk in this abbreviated format, or they
can be saved as longer ATASCII character codes. See
Chapter 7 for a discussion of the tokenizing procedure.

395

Chart B-1. ATARI BASIC Reserved Words

ATARI BASIC Reserved Words

ABS
ADR
AND
ASC
ATN
BYE
CLOAD
CHR$
CLOG
CLOSE
CLR
COLOR
COM
CONT
Ccos
CSAVE
DATA
DEG
DIM
DOS
DRAWTO
END
ENTER
EXP
FOR
FRE
GET
GOosuB
GOTO
GRAPHICS
F
INPUT
INT

LEN SGN
LET SIN
LIST SOUND
LOAD SQR
LOCATE STATUS
LOG STEP
LPRINT STICK
NEW STRIG
NEXT STOP
NOT STR$
NOTE THEN
ON TO
OPEN TRAP
OR USR
PADDLE VAL
PEEK XIO
PLOT

POINT

POKE

POP

POSITION

PRINT

PTRIG

PUT

RAD

READ

REM

RESTORE

RETURN

RND

RUN

SAVE

SETCOLOR

396

Table B-1. ATARI BASIC Command Keywords
and Their Decimal/Hexadecimal Tokens

Command Tokens

Command Tokens

Dec Hex Keyword Dec Hex Keyword
0] $00 REM 28 $1C POINT
1 $01 DATA 29 $1D X0
2 $02 INPUT 30 $1E ON
3 $03 COLOR 31 $1F POKE
4 $04 LIST 32 $20 PRINT
5 $05 ENTER 33 $21 RAD
6 $06 LET 34 $22 READ
7 $07 IF 35 $23 RESTORE
8 $08 FOR 36 $24 RETURN
9 $09 NEXT 37 $25 RUN
10 $O0A GOTO 38 $26 STOP
11 $OB GO TO 39 $27 POP
12 $0C GOSsuB 40 $28 ?
13 $0OD TRAP 41 $29 GET
14 $OE BYE 42 $2A PUT
15 $OF CONT 43 $2B GRAPHICS
16 $10 COM 44 $2C PLOT
17 $11 CLOSE 45 $2D POSITION
18 $12 CLR 46 $2E DOS
19 $13 DEG 47 $2F DRAWTO
20 $14 DIM 48 $30 SETCOLOR
21 $15 END 49 $31 LOCATE
22 $16 NEW 50 $32 SOUND
23 $17 OPEN 51 $33 LPRINT
24 $18 LOAD 52 $34 CSAVE
25 $19 SAVE 53 $35 CLOAD
26 $1A STATUS 54 $36 implied LET
27 $1B NOTE 55 $37 ERROR - (syntax)

397

Table B-1—cont. ATARI BASIC Operator Keywords
and Their Decimal/Hexadecimal Tokens

Operator Tokens Operator Tokens
Dec| Hex Keyword Dec| Hex Keyword
14 SE num constant 37 $25 +
15 SF string constant 38 $26 -
16 $10 not used 39 $27 /
17 $11 not used 40 $28 NOT
18 $12 , 41 $29 OR
19 $13 $ 42 $2A | AND
20 $14 : {end of statement) | 43 $2B {
21 $15 ; 44 $2C)
22 $16 end of line 45 $2D = {num assign)
23 $17 GOTO 46 $2E = (str assign)
24 $18 GOSUB 47 $2F < = (string)
25 $19 TO 48 $30 <>
26 $1A | STEP 49 $31 >=
27 $1B THEN 50 $32 <
28 $1C # 51 $33 >
29 $1D | < =(numeric) 52 $34 =
30 $1E <> 53 $35 + (unary)
31 $1F >= 54 $36 -
32 $20 < 55 $37 ((as in a string)
33 $21 > 56 $38 ((array)
34 $22 = 57 $39 ((array)
35 $23 58 $3A [((function}
36 s$24 * 59 $3B { (dimension)
60 $3C ,(as in an array)

398

Table B-1—cont. ATARI BASIC Function Keywords
and Their Decimal/Hexadecimal Tokens

Function Tokens Function Tokens

Dec Hex Keyword Dec Hex Keyword
61 $3D STR$ 73 $49 FRE

62 $3E CHR$ 74 $4A EXP

63 $3F USR 75 $4B LOG
64 $40 ASC 76 $4C CLOG
65 $41 VAL 77 $4D SQR
66 $42 LEN 78 $4E SGN
67 $43 ADR 79 $4F ABS
68 $44 ATN 80 $50 INT

69 $45 (oo} 81 $51 PADDL
70 $46 PEEK 82 $52 STICK
71 $47 SIN 83 $53 PTRIG
72 $48 RND 84 $54 STRIG

399

Appendix C
ATARI Character Codes

Table C-1 lists the decimal and hexadecimal codes for the
ATARI ATASCII characters and control functions. The
table also indicates the conventional ASCl! characters and
control operations and the ATARI keystrokes that gener-
ate the ATASCII codes.

Keystroke designations that are separated by a hyphen
indicate simultaneous key depressions. For example,
CTRL-2 means strike the 2 key while holding down the
CTRL key.

Keystroke designations that are separated by a slash
indicate a sequence of keystrokes. For example, ESC/
BACK S means strike the ESC key followed by the BACK S
key.

Table C-2 portrays the ATARI system’s internal character
set. It shows the decimal or hexadecimal value, the ATARI
character and the starting and ending addresses of the
ROM location for that character. Inverse characters are
generated by setting the most-significant bit of the code
to 1, or adding 128 to the decimal code.

401

Table C-1

. The ATARI ATASCII Character Set

Code ASCIl
é\l;rz::as(:(t:elzlr Character | Keystroke(s)
Dec Hex or Control
0 $00 v NUL CTRL-,
1 s01 E’ SOH CTRL-A
2 502 || STX CTRL-B
3 $03 ol ETX CTRL-C
4 S04 * EOT CTRL-D
5 505 b | ENQ CTRL-E
6 $06 v ACK CTRL-F
L
7 $07 “ BEL CTRL-G
.
8 508 ‘ BS CTRL-H
° 509 I HT CTRL-I
10 SO0A L LF CTRL-J
" $08 o vT CTRL-K
12 soc - FF CTRL-L
'3 s0D - CR CTRL-M
S——
14 $OE _I SO CTRL-N
15 SOF [] | sl CTRL-O
16 $10 | DLE CTRL-P
17 s11 2 r DC1 CTRL-Q
LW

402

Table C-1—cont. The ATARI ATASCII Character Set

Code ASCII

ATASCH Character Keystroke(s)

Dec Hex Character or Control
]

18 $12 | — DC2 CTRL-R
L
p—

19 $13]+ DC3 CTRL-S

20 $14 E - DC4 CTRL-T

7 $15 [NAK CTRL-U

22 $16 l SYN CTRL-V

23 $17 - ETB CTRL-W

24 $18 wlla| CAN CTRL-X
-

25 $19 I EM CTRL-Y

26 $1A 9 SUB CTRL-Z
—

27 $1B | E ESC ESC/ESC

28 $1C f FS ESC/CTRL--

29 $1D ‘ GS ESC/CTRL-=
L=

30 $1E . RS ESC/CTRL-+
|

31 $1F -» us ESC/CTRL-*
T

32 $20 i {space) Space Bar
bog

33 $21 P ! SHIFT-1

34 $22 § i "’ SHIFT-2

403

Table C-1—cont. The ATARI ATASCII Character Set

Code ASCII
é:::fg:r Character | Keystroke(s)
Dec Hex or Control
L dk
% 523 il # SHIFT-3
36 $24 $ SHIFT-4
37 $25 % SHIFT-5
38 $26 & SHIFT-6
39 $27 . ’ SHIFT-7
40 $28 R (SHIFT-9
. 1
4 529 s) SHIFT-0
42 $2A e » .
43 $28 l + +
44 $2¢C P
45 $2D sone) i
o—
46 $2E PO
. R
47 $2F L , y
48 $30 S 0 o
49 $31 L 1 1
50 $32 i 2)
51 $33 a4 3 3

404

Table C-1—cont. The ATAR! ATASCII Character Set

Code ASCII
ATASCHI Character Keystroke(s)
Dec Hex Character or Control
52 $34 4 4
53 $35 5 5
54 $36 6 6
55 $37 7 7
56 $38 il 8 8
IV I
57 $39 CE 9 °
fe !
58 $3A e SHIFT-;
Te
59 $38 LR
60 $3C L < <
61 $3D e = -
62 $3E > >
.3 s3F ? SHIFT-/
. s40 @ SHIFT-8
65 $41 A A
66 $42 B B
67 $43 ¢ ¢
68 sa4 D o

405

Table C-1—cont. The ATARI ATASCII Character Set

Code ATASCI | ioC! <
aracter eystroke(s)

Dec Hex Character or Control

69 $45 b E E
e
]

70 $46 PP F F

7 $47 s G G

72 $48 e H H
Do |

73 $49 P [1

.

74 $4A R J J

75 $4B | Ey K K

76 $4C L L L
H !"."*

77 $4D [M M

78 $4E Bk N N
IT
[

79 $4F P o] o]
P

80 $50 i P P
i

81 $51 [Q Q

82 $52 n R R

83 $53 o s s
M=

84 $54 b T T
Nl

85 $55 gny U U

406

Table C-1—cont. The ATARI ATASCII Character Set

Code ASCII
é:::«g:r Character | Keystroke(s)
Dec Hex or Control

86 $56 Vi v v

87 $57 ied w W

88 $58 X x

89 $59 ¥ v v

"':-'
90 $5A A z 2
Lo
= 58 '_L_ [SHIFT-;
o

92 $5C | \ SHIFT-,

93 $5D i] SHIFT-+

94 $5E . SHIFT-*

l

% SSF L - SHIFT--

96 $60 E N CTRL-.

97 $61 = a LOWR A

H
98 $62 Lt b LOWRB
[

99 %63 - c LOWR C
100 $64 3 d LOWR D
101 $65 & e LOWRE

i Ind
102 $66 LT f LOWR F

407

Table C-1—cont. The ATARI ATASCII Character Set

COde ASCII
é : ::asg:_ Character Keystroke(s)
Dec Hex or Control
103 $67 E}' g LOWR G
104 $68 i h LOWR H
i

|
105 $69 i i LOWR |
106 $6A N j LOWR J
107 s68 i k LOWR K
108 $6C i I LOWR L
109 $6D Y m LOWR M
110 $6E I n LOWR N
1m $6F o o LOWR O
112 $70 B p LOWR P

L
113 $71 = q LOWR Q
114 $72 T r LOWR R
115 $73 o s LOWR S
116 $74 1 t LOWRT
117 $75 ii u LOWR U

i

118 $76 W v LOWR V
119 $77 | w LOWR W

408

Table C-1—cont. The ATARI ATASCII Character Set

Doo CodeHex é::as‘ggr frl%s:)%t:z; Keystroke(s)

120 $78 ~— x LOWR X

121 $79 : y LOWR Y

122 $7A f_, z LOWR Z
—

123 $7B 3 { CTRL-;

124 $7C z | SHIFT-=

125 $7D E } ESC/CTRL-<

126 $7E I ~ ESC/BACK S

127 $7F T DEL ESC/TAB

128 $80 n NUL CTRL-,

129 $81 I] SOH CTRL-A

130 $82 .] STX CTRL-B

131 $83 u ETX CTRL-C

132 $84 :] EOT CTRL-D

133 $85 n ENQ CTRL-E

134 $86 ACK CTRL-F

135 $87 BEL CTRL-G

136 $88 !] BS CTRL-H

409

Table C-1—cont. The ATARI ATASCH Character Set

Code ATAgCH | AScl
Character Keystroke(s)

Dec Hex Character or Control
137 $89 E HT CTRL-I
138 $8A B LF CTRL-J
139 $8B n vT CTRL-K
140 $8C “ FF CTRL-L
141 $8D i CR CTRL-M
142 $8E ! SO CTRL-N
143 $8F u Sl CTRL-O
144 $90 u DLE CTRL-P
145 $91 n DC1 CTRL-Q
146 $92 = DC2 CTRL-R
147 $93 DC3 CTRL-S
148 $94 D DC4 CTRL-T
149 $95 E NAK CTRL-U
150 $96 m SYN CTRL-V
151 $97 n ETB CTRL-W
152 $98 = CAN CTRL-X
153 $99 l:l EM CTRL-Y

410

Table C-1—cont. The ATARI ATASCII Character Set

Code ATASCII CI':;srg:er Keystroke(s)
Dec Hex Character or Control
154 $9A u sus CTRL-2
155 $98 E ESC RETURN
156 $9C ﬂ FS ESC/SHIFT-BACK S
157 $9D ﬂ GS ESC/SHIFT->
158 $9E RS ESC/CTRL-TAB
169 $OF us ESC/SHIFT-TAB
160 $AQ . (space) Space Bar
161 $A1 n ! SHIFT-1
162 $A2 - " SHIFT-2
163 $A3 E # SHIFT-3
164 $A4 E $ SHIFT-4
165 $A5 E % S'!-IIFT-S
166 $A6 E & SHIFT-6
167 $A7 - SHIFT-7
168 $A8 ‘ (SHIFT-9
169 $A9 n) SHIFT-0
170 SAA H * *

411

Table C-1—cont. The ATARI ATASCI!I Character Set

or Control

171 $AB E + *
172 SAC .

173 SAD . - i
174 $AE -

178 SAF ’ / 4
176 $BO a 0 °
177 $81 B 1 !
178 $B2 B 2 2
179 $B3 B 3 3
180 $B4 E 4 4
181 $B5 E 5 °
182 $B6 6 ®
183 $B7 n 7 ’
184 $B8 B 8 8
185 $B9 B 9 9
186 sBA SHIFT-;
187 $BB

412

Table C-1—cont. The ATARI ATASCII Character Set

188 $BC - < <
189 $BD H = -
190 $BE n > >
191 $BF n ? SHIFT-/
192 sCO E @ SHIFT-8
193 sC1 E A A
194 $C2 B B 8
196 $C3 E ¢ ¢
196 sca E o P
197 $C5 E E :
198 $C6 ﬂ F F
199 $C7 E G N
200 $C8 E H H
201 $C9 E ! !
202 $CA B J J
203 $CB E K K
204 $CC H L L

413

Table C-1—cont. The ATARI ATASCII Character Set

|:";(:Code . é:£:§L |r f,%s:,%:r: Keystroke(s)
205 $CD ﬁ M M

206 SCE m N N

207 $CF E 0 o

208 $DO E P P

209 $D1 a Q

210 $D2 R R

211 $D3 B S S

212 $D4 B T T

213 $D5 E u v

214 $D6 m v v

215 $D7 m w w

216 | D8 E X X

217 sD9 u Y Y

218 $DA E z z

’1e 0B ﬂ [SHIFT-,
220 sbe - \ SHIFT-+
221 . u ! SHIFT-.

414

Table C-1—cont. The ATARI ATASCII Character Set

- CodeHex é\:aAr::i:r g%s:,%:,iﬁ Keystroke(s)
222 $DE H R SHIFT-*
223 SDF - — SHIFT--
224 $E0 u ~ CTRL-.
225 SE1 E a LOWRA
226 $SE2 E b LOWR B
227 $E3 E c LOWR C
228 SE4 E d LOWRD
229 SE5 B e LOWRE
230 SE6 f LOWRF
231 SE7 E g LOWR G
232 SE8 E h LOWR H
233 $E9 n i LOWR |
234 SEA u j LOWR J
235 $EB E k LOWR K
236 SEC | LOWR L
237 $ED 5 m LOWR M
238 $EE E n LOWRN

415

Table C-1—cont. The ATARI ATASCII Character Set

De::OdeHex é\J :r fcct::a'r Er%s:)%t:z Keystroke(s)
239 SEF B o LOWR O

240 | s$FO E p LOWR P

241 $F1 B q LOWR Q

242 $F2 n r LOWRR

243 SF3 E s LOWR S

244 SF4 t LOWRT

245 $F5 E u LOWR U

246 SF6 u v LOWR V

247 SF7 B w LOWR W

248 SF8 ! X LOWR X

249 $F9 B y LOWRY

250 SFA E z LOWR Z

251 SFB n { CTRL-;

252 S$FC n | SHIFT-=

253 $FD m ! ESC/CTRL-2
254 SFE n ~ ESC/CTRL-BACK S
255 $FF u DEL ESC/CTRL->

416

Table C-2. The ATARI System’s Internal Character Set

Cod ROM Map Addresses
[-]
Character Decimal Hexadecimal
Dec | Hex Start End Start End
s $E007
o| so0 57344 | 57351 | $E00O 00
1] so1 i 57352 | 57359 | $E008 | SEOOF
2| so2| | ¥ 57360 | 57367 | SEO10| $EO17
3| so3| |dk 57368 | 57375 | sE018 | SEOIF
ode |
a| soa| [§ 57376 | 57383 | $E020 | sE027
5 | sos | | 57384 | 57391 | $E028 | SEO2F
6 | so6 | |3 57392 | 57399 | SE030 | $E037
7| so7 . 57400 | 57407 | $E038 | $EO3F
8| so| | i 57408 | 57415 | $E040 | sE047
9 | so9 3 57416 | 57423 | sE048 | sEo04F
10| soa| |35 57424 | 57431 | $E050 | $E057
11 | soB| |- 57432 | 57439 | sEoss | sEosF
12 | soc ’ 57440 | 57447 | $E060 | $EO67
13| sop| |~ 57448 | 57455 | $E068 | SEO6F
14 | soE . 57456 | 57463 | $E070 | $EO77
15 | soF | |~ 57464 | 57471 | $E078 | SEO7F

417

Table C-2—cont. The ATARI System’s

Internal Character Set

Code ROM Map Addresses
Character Decimal Hexadecimal
Dec | Hex Start End Start End
16 $10 57472 57479 $E080 $EO087
17 $11 57480 57487 $EO88 $EO8F
18 $12 57488 57495 $EO090 $E097
19 $13 57496 57503 $E098 $EO9F
20 $14 57504 | 57511 $EOAQ $EOA7
21 $15 57512 57519 $EOA8 SEOAF
22 $16 57520 57527 $EOBO $EOB7
23 $17 57528 57535 $EOBS $EOBF
24 $18 57536 57543 $EOCO $EOC7
25 $19 57544 57551 SEOC8 SEOCF
26 $1A ii 57552 57559 $EODO $EOD7
27 $1B _;1“ 57560 | 57567 $EODS $SEODF
]
28 $1C - 57568 57575 SEOEO $EOE7
29 $1D o 57576 57583 $EOES8 SEOEF
30 $1E j 57584 57591 $EOFO $EOF7
31 $1F _; 57592 57599 $EOF8 $EOFF

418

Table C-2—cont. The ATARI System's
Internal Character Set

ROM Map Addresses

Code
Character Decimal Hexadecimal
Dec { Hex Start End Start End
32 | s20 i 57600 | 57607 | S$E100 | $E107
33| s21| ' & 57608 | 57615 | SE108 | SE10F
—
o)
34 | s22| B! 57616 | 57623 | SE110 | $E117
35 | s23 | i 57624 | 57631 | SE118 | S$E11F
L
36 | s24 R 57632 | 57639 | $E120 | $E127
37 | s25 | i 57640 | 57647 | $E128 | SE12F
—_—
38 | s26 - 67648 | 57655 | SE130 | S$E137
[SERE—]
s27 | 1 L5 SE1 SE13F
39 . 57656 | 57663 3s 3
40 | s28 | | H 57664 | 57671 | S$E140 | $E147
a1 | s29| 1. 57672 | 57679 | $E148 | SE14F
a2 | s2a| ! 57680 | 57687 | SE150 | S$E157
43 | s | | H 57688 | 57695 | S$E158 | SE1SF
a4 | s2c i 57696 | 57703 | S$E160 | $E167
"
45 | s$20 " 57704 | 57711 | $E168 | SE16F
46 | s$2€ i 57712 | 57719 | $E170 | sE177
47 | soF id 57720 | 57727 | $E178 | SE17F

419

Table C-2—cont. The ATARI System's
Internal Character Set

Code ROM Map Addresses
Character Decimal Hexadecimal

Dec | Hex Start End Start End

48 | s30| i’ 57728 | 67735 | $E180 | s$E187
a9 | s | 11 57736 | 57743 | $E188 | SE18F
50 | s32| .} 57744 | 57751 | $E190 | sE197
51| s33| o 57752 | 57759 | sE198 | SE19F
52| s3a| | T. 57760 | 57767 | SE1AO | SE1A7
53 | 35| i} 57768 | 57775 | SE1A8| SE1AF
54 | s3s| (i} 57776 | 57783 | sE1Bo| sE1B7

B
55 | 837 | i 57784 | 57791 | S$E1B8 | SE1BF
56 | $38 | | 57792 | 57799 [sEicO| SEIC7
57 | s3a| |y 57800 | 57807 | sE1c8 | SEICF
58 | s3a| |7 57808 | 57815 | SE1DO| SE1D7
59 | s3B| [57816 | 57823 | SE1D8 | SE1DF
L&

60 | s3c| ™. 57824 | 57831 | S$E1E0 | SE1E7
61 | $3D 1 57832 | 57839 | SE1E8 | SE1EF
62 | $3E| |- 57840 | 57847 | sE1FO | SE1F7
63 | $3F - 57848 | 57855 | SE1F8 | SE1FF

420

Table C-2—cont. The ATARI System'’s
Internal Character Set

Code

ROM Map Addresses

Character Decimal Hexadecimal
Dec | Hex Start End Start End
64 $40 u 57856 57863 $E200 $E207
65 $41 “ 57864 57871 $E208 SE20F
66 $42 m 57872 57879 $E210 $E217
67 $43 u 57880 57887 $E218 SE21F
68 $44 n 57888 57895 $E220 $E227
69 $45 ﬂ 57896 57903 $E228 SE22F
70 $46 57904 | 57911 $E230 $€237
71 $47 57912 57919 $E238 SE23F
72 $48 ﬂ 57920 57927 $E240 $E€247
73 $49 E 57928 57935 $E248 SE24F
74 $4A [! 57936 57943 $E250 $E257
75 $4B n 57944 57951 $E258 $E25F
76 $4C “ 57952 57959 $E260 $E267
77 $4D i 57960 | 57967 $E268 $E26F
78 $4E ! 57968 57975 $E270 $E277
79 $4F B 57976 57983 $E278 $E27F

421

Table C-2—cont. The ATARI System's

Internal Character Set

Code ROM Map Addresses
Character Decimal Hexadecimal
Dec | Hex Start End Start End
80 $50 n 57984 57991 $E280 $E287
81 $51 n 57992 57999 $E288 $E28F
82 | $52 = 58000 | 58007 | $E290 | $E297
83 $53 58008 58015 $E298 $E29F
84 $54 D 58016 58023 $E2A0 SE2A7
85 $65 E 58024 58031 SE2A8 SE2AF
86 $56 m 58032 58039 $E2BO $E2B7
87 $67 = 58040 58047 $E2B8 SE2BF
88 $58 n 58048 58065 $E2CO $E2C7
89 $59 D 58056 58063 $E2C8 $E2CF
90 $6A u 58064 58071 $E2DO SE2D7
91 $68 E 58072 58079 $E2D8 $E2DF
92 $5C ﬂ 58080 58087 $E2EO SE2E7
93 $5D | ﬂ 58088 58095 $E2E8 SE2EF
94 $5E 58096 58103 $E2F0 SE2F7
95 $5F 58104 58111 SE2F8 $SE2FF

422

Table C-2—cont. The ATARI System'’s
Internal Character Set

Cod ROM Map Addresses
ode
Character Decimal Hexadecimal
Dec | Hex Start End Start End
96 $60 n 58112 58119 $E300 $E307
97 $61 = 58120 58127 $E308 SE30F
98 $62 ;‘;’; 58128 58135 $E310 $E317
99 $63 ‘ o 58136 58143 $E318 SE31F
100 $64);" | 58144 58151 $E320 $E327
I
101 $65 Uim | 58162 58159 $E328 $E32F
1 e
102 $66 -f-‘ 58160 58167 $E330 $E337
| |
103 $67 Q ! 58168 58175 $E338 $E33F
104 $68 ?i 58176 58183 $E340 SE347
105 $69 1 i 58184 58191 $E348 SE34F
106 $6A . § 58192 58199 $E350 $E357
107 $6B §" 58200 58207 $E358 $E35F
108 $6C l 58208 58215 $E360 $E367
109 $6D | 58216 58223 $E368 SE36F
110 $6E e 58224 58231 $E370 $E377
11 $6F o ! 58232 58239 $E378 SE37F

423

Table C-2—cont. The ATARI System’s

Internal Character Set

Code ROM Map Addresses
Character Decimal Hexadecimal
Dec| Hex Start End Start End
112 $70 58240 58247 $E380 $E£387
—
113 $71 = \ 58248 58255 $E388 $E38F
114 $72 ™ 58256 58263 $E390 $E397
| o
115 $73 = 58264 58271 $E398 SE39F
—
i
116 $74 I 'L 58272 58279 $E3A0 SE3A7
117 $75 @ 58280 58287 $E3A8 SE3AF
118 $76 vi 58288 58295 $E3BO $E3B7
—
119 $77 i iad 58296 58303 $E3BO SE3BF
120 $78 e 58304 58311 $E3CO $E3C7
121 $79 1 %4] 58312 58319 SE3C8 SE3CF
122 $7A z 58320 58327 $E3D0 $E3D7
123 $78 n 58328 58335 $E3D8 $E3DF
3
124 $7C i 58336 58343 $E3EO $E3E7
125 $7D “ 58344 58351 SE3E8 SE3EF
126 $7E " 58352 58359 $E3FO SE3F7
127 $7F ' 59360 58367 SE3F8 $E3FF

424

Appendix D
ATARI Keyboard Codes

Every keystroke and appropriate combination of key-
strokes produces a character code that represents that
keyboard action. The tables shown here list those key-
strokes and codes that are subsequently generated within
the ATARI system.

Tables D-1 through D-3 list the information by showing
the keystroke and corresponding decimal and hexade-
cimal codes. Table D-4 lists the same information, but it is
organized according to the numerical sequence of the
codes.

425

Table D-1. Keystrokes and Corresponding Key Codes
(Single-Key Operations)

Code Code
Key Key

Dec Hex Dec Hex

Space Bar 32 $20 9 57 $39
! 33 $21 : 58 $3A
’ 34 $22 ; 59 $3B
35 $23 < 60 $3C
$ 36 $24 = 61 $3D
% 37 $25 > 62 $3E
& 38 $26 ? 63 $3F
' 39 $27 @ 64 $40
(40 $28 A 65 $41
) 41 $29 B 66 $42
* 42 $2A C 67 $43
+ 43 $28B D 68 $44
44 $2C E 69 $45

- 45 $2D F 70 $46
. 46 $2E G VAl $47
/ 47 $2F H 72 $48
0 48 $30 1 73 $49
1 49 $31 J 74 $4A
2 50 $32 K 75 $4B
3 51 $33 L 76 $4C
4 52 $34 M 77 $4D
5 53 $35 N 78 S4E
6 54 $36 (0] 79 $4F
7 55 $37 P 80 $50
8 56 $38 Q 81 $51

426

Table D-1—cont. Keystrokes and Corresponding
Key Codes (Single-Key Operations)

Code Code
Key Key
Dec Hex Dec Hex

R 82 $652 | 108 $6C
S 83 $63 m 109 $6D
T 84 $54 n 110 $6E
U 85 $55 o 111 $6F
\% 86 $56 p 112 $70
w 87 $57 q 113 $71
X 88 $58 r 114 $72
Y 89 $59 s 115 $73
b4 90 $5A t 116 $74
[91 $5B u 117 $75
/ 92 $5C v 118 $76
1 93 $6D w 119 $77
R 94 $5E X 120 $78
— 95 $5F y 121 $79
a 97 $61 z 122 $7A
b 98 $62 | 124 $7C
c 99 $63 ESC 127 $1B
d 100 $64 CLEAR 125 $7D
e 101 $65 BACK S 126 $7E
f 102 $66 TAB 127 $7F
g 103 $67 RETURN 155 $98B
h 104 $68 DELETE 156 $9C
i 105 $69 INSERT 157 $9D
i 106 $6A TAB 158 $9E
k 107 $6B SET 159 SOF

427

Table D-2. Keystrokes and Corresponding Key Codes
(CTRL-Key Operations)

Ke Code K Code

v Dec Hex ey Dec Hex
CTRL-, 0 $00 CTRL-S 19 $13
CTRL-A 1 $O1 CTRL-T 20 $14
CTRL-B 2 $02 CTRL-U 21 $15
CTRL-C 3 $03 CTRL-V 22 $16
CTRL-D 4 $04 CTRL-W 23 $17
CTRL-E 5 $05 CTRL-X 24 $18
CTRL-F 6 $06 CTRL-Y 25 $19
CTRL-G 7 $07 CTRL-Z 26 $1A
CTRL-H 8 $08 CTRL- 28 $1C
CTRL- 9 $09 CTRL- 29 $1D
CTRL-J 10 $0A CTRL- 30 $1E
CTRL-K 1 $0B CTRL- 31 $1F
CTRL-L 12 $0C CTRL-. 96 $60
CTRL-M 13 $0D CTRL-; 123 $78
CTRL-N 14 $OE CTRL-2 253 $FD
CTRL-O 15 SOF CTRL-3 155 $98
CTRL-P 16 $10 CTRL-DELETE 254 $FE
CTRL-Q 17 $11 CTRL-INSERT 255 $FF
CTRL-R 18 $12

NOTE: CTRL-key operations that are not indicated here will generate
the same codes as their non-CTRL counterparts.

428

Table D-3. Keystrokes and Corresponding Key Codes
{Inverse-Key Operations)

Ke Code K Code
e

v Dec Hex v Dec Hex
<inv.> CTRL-, 128 $80 <inv.> 1 177 $B1
<inv.> CTRL-A 129 $81 <inv.>2 178 $B2
<inv.> CTRL-8B 130 $82 <inv.>3 179 $B3
<inv.> CTRL-C 131 $83 <inv.> 4 180 $B4
<inv.> CTRL-D 132 $84 <inv.>5 181 $B5
<inv.> CTRL-E 133 $85 <inv.> 6 182 $B6
<inv.> CTRL-F 134 $86 <inv.>7 183 $B87

<inv.> CTRL-G 135 $87 <inv.>8 184 $B8
<inv.> CTRL-H 136 $88 <inv.>9 185 $BS

<inv.> CTRL-I 137 $89 <inv.>: 186 $BA
<inv.> CTRL-J 138 $8A <inv.>; 187 $BB
<inv.> CTRL-K 139 $88 <inv.> < 188 $BC
<inv.> CTRL-L 140 $8C <inv.> = 189 $BD
<inv.> CTRL-M 141 $8D <inv.>> 190 $BE
<inv.> CTRL-N 142 $8E <inv.>? 19 S$BF
<inv.> CTRL-O 143 $8F <inv>@ | 192 $CO
<inv.> CTRL-P 144 $90 <inv.> A 193 $Ci
<inv.> CTRL-Q 145 $91 <inv.>B 194 $C2
<inv.> CTRL-R 146 $92 <inv.>C 195 $C3

<inv.>CTRL-S 147 $93 <inv.>D 196 s$C4
<inv.> CTRL-T 148 $94 <inv.>E 197 $C5
<inv.> CTRL-U 149 $95 <inv.>F 198 $C6
<inv.> CTRL-V 150 $96 <inv.>GQG 199 $C7
<inv.>CTRL-W | 151 $97 <inv.>H 200 sCs8
<inv.> CTRL-X 152 $98 <inv.> | 201 $C9
<inv.> CTRL-Y 153 $99 <inv.>J 202 $CA
<inv.> CTRL-Z 154 $9A <inv.>K 203 $CB
<inv.> Spc Bar 160 $AO <inv.>L 204 $CC

<inv.>1 161 SA1 <inv.>M | 205 $CD
<inv.> " 162 $A2 <inv.>N 206 $CE
<inv.> # 163 $A3 <inv.>0 207 $CF
<inv.> $ 164 $A4 <inv.> P 208 $DO
<inv.> % 165 SA5 <inv.>Q 209 $D1
<inv.> & 166 $A6 <inv.> R 210 sD2
<inv.> '’ 167 $A7 <inv.>$§ 211 $D3
<inv.>{(168 $A8 <inv.>T 212 $D4
<inv.>) 169 $A9 <inv.>U 213 $D5
<inv.>* 170 $AA <inv.>V 214 $D6
<inv.> + 171 $AB <inv.>W | 215 $D7
<inv.>, 172 $AC <inv.> X 216 $D8
<inv.> - 173 $AD <inv.>Y 217 $D9
<inv.>. 174 $AE <inv.>Z 218 $DA
<inv.> / 175 SAF <inv.> [219 s$DB
<inv>0 176 $BO <inv.> \ 220 $DC

429

Table D-3—cont. Keystrokes and Corresponding
Key Codes (Inverse-Key Operations)

Code Code
Key Key

Dec Hex Dec Hex
<inv.> | 221 $DD <inv.>n 238 SEE
<inv.> . 222 $DE <inv.>o 239 SEF
<inv.>— | 223 $DF <inv.>p 240 $FO
<inv.>a 225 $E1 <inv.>q 241 $F1
<inv.>b 226 $E2 <inv.>r 242 $F2
<inv.>c¢ 227 $E3 <inv.>s 243 $F3
<inv.>d 228 SE4 <inv.>t 244 $F4
<inv.>e 229 $E5 <inv.>u 245 $F5
<inv.>f 230 $E6 <inv.>v 246 $F6
<inv.>g 231 SE7 <inv.>w 247 $F7
<inv.>h 232 SE8 <inv.>x 248 $F8
<inv.> i 233 $E9 <inv.>y 249 $F9
<inv.>j 234 SEA <inv.>z 250 $FA
<inv.>> k 235 $EB <inv.>| 252 $FC
<inv.>1 236 SEC <inv.>CTRL-. | 224 $EO
<inv.>m 237 $ED <inv.>CTRL-; | 251 $FB

430

Table D-4. Keystrokes and Corresponding Key Codes
Arranged With Key Codes in Numerical Order

Code Code
Key Key
Dec Hex Dec Hex
0 $00 CTRL-, 43 $2B +
1 $O1 CTRL-A 44 $2C
2 $02 CTRL-B 45 $2D -
3 $03 CTRL-C 46 $2E .
4 $04 CTRL-D 47 $2F /
5 $05 CTRL-E 48 $30 o
6 $06 CTRL-F 49 $31 1
7 $07 CTRL-G 50 $32 2
8 $08 CTRL-H 51 $33 3
9 $09 CTRL-I 52 $34 4
10 $0A CTRL-J 53 $35 5
1 $0B CTRL-K 54 $36 6
12 $0C CTRL-L 55 $37 7
13 $OD CTRL-M 56 $38 8
14 $OE CTRL-N 57 $39 9
15 $OF CTRL-O 58 $3A :
16 $10 CTRL-P 59 $3B ;
17 $11 CTRL-Q 60 $3C <
18 $12 CTRL-R 61 $3D =
19 $13 CTRL-S 62 $3E >
20 $14 CTRL-T 63 $3F ?
21 $15 CTRL-U 64 $40 @
22 $16 CTRL-V 65 $41 A
23 $17 CTRL-W 66 $42 B
24 $18 CTRL-X 67 $43 Cc
25 $19 CTRL-Y 68 $44 D
26 $1A CTRL-Z 69 $45 E
27 $1B ESC 70 $46 F
28 $1C CTRL- 71 $47 G
29 $1D CTRL- 72 $48 H
30 $1E CTRL- 73 $49 !
31 $1F CTRL- 74 $4A J
32 $20 Space Bar 75 $4B K
33 $21 ! 76 $4C L
34 $22 " 77 $4D M
35 $23 # 78 $4E N
36 $24 $ 79 $4F 0
37 $25 % 80 $50 p
38 $26 & 81 $51 Q
39 $27 ! 82 $52 R
40 $28 { 83 $53 S
41 $29 } 84 $54 T
42 $2A * 85 $55 U

431

Table D-4—cont. Keystrokes and Corresponding Key
Codes Arranged With Key Codes in Numerical Order

Code K Code K

Dec| Hex i Dec| Hex ey
86 $56 \Y 129 | 81 <inv.> CTRL-A
87| $57| wW 130 | $82 <inv.> CTRL-B
88| 58 X 131 $83 <inv.> CTRL-C
89| $59 Y 132 84 <inv.> CTRL-D
90| $5A | Z 133 | s85 <inv.> CTRL-E
91 $58 [134 $86 <inv.> CTRL-F
92 $5C \ 135 $87 <inv.> CTRL-G
93| $5D|] 136 | 88 <inv.> CTRL-H
94 $5E R 137 $89 <inv.> CTRL-!
95 $6F — 138 $8A <inv.> CTRL-J
96 $60 CTRL- 139 $88 <inv.> CTRL-K
97 $61 a 140 $8C <inv.> CTRL-L
98 $62 b 141 $8D <inv.> CTRL-M
99 $63 c 142 $8E <inv.> CTRL-N

100 $64 d 143 $8F <inv.> CTRL-O

101 $65 e 144 $90 <inv.> CTRL-P

102 $66 f 145 $91 <inv.> CTRL-Q

103 $67 g 146 $92 <inv.> CTRL-R

104 $68 h 147 $93 <inv.> CTRL-S

1056 $69 i 148 $94 <inv.> CTRL-T

106 $6A i 149 $95 <inv.> CTRL-U

107 $68B k 150 $96 <inv.> CTRL-V

108 $6C 1 1561 $97 <inv.> CTRL-W

109 $6D m 152 $98 <inv.> CTRL-X

110 $6E n 163 $99 <inv.> CTRL-Y

111 $6F (] 154 $9A <inv.> CTRL-Z

112 $70 p 155 $9B RETURN and CTRL-3

113 $71 q 156 $9C DELETE

114 $§72 r 157 $9D INSERT

115 $73 s 158 $9E TAB

116 $74 t 159 $9F SET

117 $75 u 160 $AQ <inv.> Space

118 $76 v 161 $A1 <inv.> |

119 $77 w 162 $A2 <inv.> "

120 $78 X 163 $A3 <inv.> #

121 $79 y 164 $A4 <inv.> $§

122 $7A z 165 $AS <inv.> %

123 $78B CTRL- 166 $A6 <inv.> &

124 $7C | 167 SA7 <inv.> "’

125 $7D CLEAR 168 $A8 <inv.>(

126 $7E BACK S 169 $A9 <inv.>)

127 $7F TAB 170 SAA <iny.>*

128 $80 <inv.>CTRL-, | 171 SAB <inv.> +

432

Table D-4—cont. Keystrokes and Corresponding Key
Codes Arranged With Key Codes in Numerical Order

Code Code

Key Key
Dec Hex Dec Hex
172 $AC <inv.>, 214 $D6 <inv.>V
173 $AD <inv.> - 215 $D7 <inv.>W
174 SAE <inv.>. 216 $D8 <inv.> X
175 $AF <inv.> / 217 $D9 <inv.>Y
176 $80 <inv.>0 218 $DA <inv.>Z
177 $B1 <inv.> 1 219 $DB <inv.> [
178 $B2 <inv.> 2 220 $DC <inv.>\
179 $B3 <inv.>3 221 s$DD <inv.>]
180 $B4 <inv.> 4 222 $DE <inv.> .
181 $B5 <inv.>5 223 $DF <inv.> —
182 $B6 <inv.> 6 224 SEO <inv.> CTRL-.
183 $B7 <inv.>7 225 $E1 <inv.>>a
184 $B8 <inv.>8 226 SE2 <inv.>b
185 $B9 <inv.>9 227 SE3 <inv.>c¢
186 $BA <inv.>: 228 $E4 <inv.>d
187 $BB <inv.>; 229 $ES <inv.> e
188 $B8C <inv.> < 230 SE6 <inv.> f
189 $BD <inv.> = 231 SE7 <inv.>g
190 $BE <inv.> > 232 S$E8 <inv.> h
191 $BF <inv.>? 233 SE9 <inv.> i
192 $CO <inv.> @ 234 SEA <inv.> j
193 $Ci1 <inv.> A 235 SEB <inv.> k
194 $C2 <inv.>8 236 SEC <inv.> |
195 $C3 <inv.>C 237 SED <inv.>m
196 $C4 <inv.>D 238 SEE <inv.>n
197 $C5 <inv.> E 239 $EF <inv.> o
198 $C6 <inv.>F 240 $FO <inv.>>p
199 $C7 <inv.> G 241 S$F1 <inv.>q
200 $C8 <inv.>H 242 $F2 <inv.>r
201 $C9 <inv.> | 243 $F3 <inv.>s
202 $CA <inv.>J 244 S$F4 <inv.>t
203 $CB <inv.> K 245 $F5 <inv.>u
204 $CC <inv.> L 246 $F6 <inv.>v
205 $CD <inv.> M 247 $F7 <inv.>w
206 $CE <inv.>N 248 $F8 <inv.> x
207 $CF <inv.> 0 249 $F9 <inv.>y
208 $DO <inv.>P 250 $FA <inv.>z
209 $D1 <inv.>Q 251 $FB <inv.> CTRL-;
210 $D2 <inv.> R 252 $FC <inv.>|
211 $D3 <inv.> S 253 $FD CTRL-2
212 $D4 <inv>T 254 SFE CTRL-DELETE
213 $D5 <inv.> U 255 $FF CTRL-INSERT

433

4

Appendix E

Screen RAM Addressing Ranges
for the ATARI Screen Modes

The tables in this appendix cite the starting and ending
addresses for the screen RAM. Modes included here are 0

through 8 and their full-screen counterparts, 17 through
24,

435

Table E-1. Absolute Addresses for ATARI
BASIC Mode-0 Screen Display

Decimal Hexadecimal
Row
Start End Start End

Row O 40000 40039 $9C40 $9C67
Row 1 40040 40079 $9C68 $9C8F
Row 2 40080 40119 $9C90 $9CB7
Row 3 40120 40159 $9CB8 $9CDF
Row 4 40160 40199 $9CEO $9D07
Row 5 40200 40239 $9D08 $9D2F
Row 6 40240 40279 $9D30 $9D57
Row 7 40280 40319 $9D58 $9D7F
Row 8 40320 40359 $9D80 $9DA7
Row 9 49360 40399 $9DAS8 $9DCF
Row 10 40400 40439 $9DDO $9DF7
Row 11 40440 40479 $9DF8 $SOE1F
Row 12 40480 40519 $9E20 $9E47
Row 13 40520 40559 $9E48 $9EGF
Row 14 40560 40599 $9E70 $9E97
Row 15 40600 40639 $9E98 S9EBF
Row 16 40640 40679 $9ECO S9EE7
Row 17 40680 40719 S$9EES8 $9FOF
Row 18 40720 40759 $9F10 $9F37
Row 19 40760 40799 $9F38 $SOF5F
Row 20 40800 40839 $9F60 $OF87
Row 21 40840 40879 $9F88 SOFAF
Row 22 40880 40919 $9FBO $9FD7
Row 23 40920 40959 S$9FD8 SOFFF

436

Table E-2. Absolute Addresses for ATARI

BASIC Mode-1 Screen Display

Decimal Hexadecimal
Row
) Start End Start End
Row O 40320 40339 $9D80 $9D93
Row 1 40340 40359 $9D94 $9DA7
Row 2 40360 40379 S9DAS8 $9DBB
Row 3 40380 40399 $9DBC $9DCF
Row 4 40400 40419 $9DDO $9DE3
Row § 40420 40439 $9DE4 $S9DF7
Row 6 40440 40459 $9DF8 $9EOB
Row 7 40460 40479 $9EOC $OE1TF
Row 8 40480 40499 $9E20 $9E33
Row 9 40500 40519 $9E34 $9E47
Row 10 40520 40539 $9E48 $9ESB
Row 11 40540 40559 $9ESC $SOEGF
Row 12 40560 40579 $9E70 $9E83
Row 13 40580 40599 $9EB4 $9E97
Row 14 40600 40619 $9E98 $9EAB
Row 15 40620 40639 SOEAC $SOEBF
Row 16 40640 40659 $9ECO $9ED3
Row 17 40660 40679 $9ED4 $OEE7
Row 18 40680 40699 $9EES $9EFB
Row 19 40700 40719 $9EFC SOFOF
Text Window Begins Here

Row 0O 40800 40839 $9F60 $9F87
Row 1 40840 40879 $OF88 SOFAF
Row 2 40880 40919 $9FBO $9FD7
Row 3 40920 40959 $9FD8 $OFFF

437

Table E-3. Absolute Addresses for ATARI
BASIC Mode-17 Screen Display

Decimal Hexadecimal
Row
Start End Start End

Row O 40320 40339 $9D80 $9D93
Row 1 40340 40359 $9D94 $9DA7
Row 2 40360 40379 $9DAS $9DBB
Row 3 40380 40399 $9DBC $9DCF
Row 4 40400 40419 $9DDO $9DE3
Row 5 40420 40439 $9DE4 $9DF7
Row 6 40440 40459 $9DF8 $9EOB
Row 7 40460 40479 $9EOC $9E1F
Row 8 40480 40499 $9E20 $9E33
Row 9 40500 40519 $9E34 $9E47
Row 10 40520 40539 $9E48 $9E5B
Row 11 40540 40559 $9ESC $9EG6F
Row 12 40560 40579 $9E70 $9E83
Row 13 40580 40599 $9E84 $9E97
Row 14 40600 40619 $9E98 SOEAB
Row 15 40620 40639 S9EAC $9EBF
Row 16 40640 40659 $9ECO $9ED3
Row 17 40660 40679 $9ED4 $9EE7
Row 18 40680 40699 $OEE8 $9EFB
Row 19 40700 40719 $9EFC $OFOF
Row 20 40720 40739 $9F10 $9F23
Row 21 40740 40759 $9F24 $9F37
Row 22 40760 40779 $9F38 $9F4B
Row 23 40780 40799 $9F4C $9F5F

438

Table E-4. Absolute Addresses for ATAR!

BASIC Mode-2 Screen Display

Decimal Hexadecimal
Row
Start End Start End
Row O 40560 40579 $9E70 $9E83
Row 1 40580 40599 $9E84 $9E97
Row 2 40600 40619 $9E98 $9EAB
Row 3 40620 40639 $9EAC $9EBF
Row 4 40640 40659 $9ECO $9ED3
Row 5 40660 40679 $9ED4 $OEE7
Row 6 40680 40699 $9EES8 $OEFB
Row 7 40700 40719 $9EFC $9OFOF
Row 8 40720 40739 $9F10 $9F23
Row 9 40740 40759 $9F24 $9F37
Text Window Addressing Begins Here

Row O 40800 40839 $OF60 $9F87
Row 1 40840 40879 $OF88 $SOFAF
Row 2 40880 40919 $9FBO $9FD7
Row 3 40920 40959 $9FD8 S$SOFFF

Table E-5. Absolute Addresses for ATARI
BASIC Mode-18 Screen Display

Decimal Hexadecimal
Row
Start End Start End

Row 0O 40560 40579 $9E70 $9E83
Row 1 40580 40599 $9E84 $9E97
Row 2 40600 40619 $9E98 SOEAB
Row 3 40620 40639 $9EAC $SOEBF
Row 4 40640 40659 $9ECO $9ED3
Row 5 40660 40679 $9ED4 $9EE7
Row 6 40680 40699 $OEES8 SOEFB
Row 7 40700 40719 $9EFC $9FOF
Row 8 40720 40739 $9F10 $9F23
Row 9 40740 40759 $9F24 $9F37
Row 10 40760 40779 $9F38 $9F4B
Row 11 40780 40799 $9F4C $9F5F

439

Table E-6. Absolute Addresses for ATARI

BASIC Mode-3 Screen Display

Decimal Hexadecimal
Row
Start End Start End
Row O 40560 40569 $9E70 $9E79
Row 1 40570 40579 $9E7A $9E83
Row 2 40580 40589 $9E84 $9E8D
Row 3 40590 40599 $9ESE $9E97
Row 4 40600 40609 $9E98 $9EA1
Row 5 40610 40619 $9EA2 $9EAB
Row 6 40620 40629 $9EAC $9EBS
Row 7 40630 40639 $OEB6 $9EBF
Row 8 40640 40649 $9ECO $9EC9
Row 9 40650 40659 $9ECA $9ED3
Row 10 40660 40669 $9ED4 $9EDD
Row 11 40670 40679 $9EDE $9EE7
Row 12 40680 40689 $OEES $9EF1
Row 13 40690 40699 $9EF2 $OEFB
Row 14 40700 40709 $9EFC $9F05
Row 15 40710 40719 $9F06 $9FOF
Row 16 40720 40729 $9F10 $9F19
Row 17 40730 40739 $OF1A $9F23
Row 18 40740 40749 $9F24 $9F2D
Row 19 40750 40759 $OF2E $9F37
Text window addressing begins here

Row O 40800 40839 $9F60 $SOF87
Row 1 40840 40879 $9F88 $9FAF
Row 2 40880 40919 $9FBO $9FD7
Row 3 40920 40959 $9FD8 $OFFF

440

Table E-7. Absolute Addresses for ATARI
BASIC Mode-19 Screen Display

Decimal Hexadecimal
Row
Start End Start End

Row O 40560 40569 $9E70 $9E79
Row 1 40570 40579 $9E7A $9E83
Row 2 40580 40589 $9E84 $9ESD
Row 3 40590 40599 $OESE $9E97
Row 4 40600 40609 $9E98 $9EA1
Row 5 40610 40619 $9EA2 $SOEAB
Row 6 40620 40629 $9EAC $9EBS
Row 7 40630 40639 S9EB6 $9EBF
Row 8 40640 40649 $9ECO $9EC9
Row 9 40650 40659 $9ECA $9ED3
Row 10 40660 40669 $9ED4 $9EDD
Row 11 40670 40679 $9EDE $9EE7
Row 12 40680 40689 $9EES $9EFI
Row 13 40690 40699 $9EF2 $9EFB
Row 14 40700 40709 $9EFC $9F05
Row 15 40710 40719 $9F06 $9FOF
Row 16 40720 40729 $9F10 $9F19
Row 17 40730 40739 $9F1A $9F23
Row 18 40740 40749 $9F24 $9F2D
Row 19 40750 40759 $9F2E $9F37
Row 20 40760 40769 $9F38 $9F41
Row 21 40770 40779 $9F42 $9F4B
Row 22 40780 40789 $9F4C $9F55
Row 23 40790 40799 $9F56 $9F5F

441

Table E-8. Absolute Addresses for ATARI

BASIC Mode-4 Screen Display

Decimal Hexadecimal
Row
Start End Start End

Row 0O 40320 40329 $9D80 $9D89
Row 1 40330 40339 $9D8A $9D93
Row 2 40340 40349 $9D94 $9D9D
Row 3 40350 40359 $9D9E $9DA7
Row 4 40360 40369 $9DAS $9DB1
Row 5 40370 40379 $9DB2 $9DBB
Row 6 40380 40389 $9DBC $9DC5
Row 7 40390 40399 $9DC6 $9DCF
Row 8 40400 40409 $9DDO $9DD9
Row 9 40410 40419 $9DDA $9DE3
Row 10 40420 40429 $9DE4 $9DED
Row 11 40430 40439 $9DEE $9DF7
Row 12 40440 40449 $9DF8 $9EO1
Row 13 40450 40459 $9E02 $9EOB
Row 14 40460 40469 $9EOC $9E15
Row 15 40470 40479 $9E16 $SOE1F
Row 16 40480 40489 $9E20 $9E29
Row 17 40490 40499 S9E2A $9E33
Row 18 40500 40509 $9E34 $9E3D
Row 19 40510 40519 $9E3E $9E47
Row 20 40520 40529 $9E48 $9ES1
Row 21 40530 40539 $9ES2 $SOESB
Row 22 40540 40549 $9ESC $9EGS
Row 23 40550 40559 $9E66 $SOE6F
Row 24 40560 40569 $9E70 $9E79
Row 25 40570 40579 S9E7A S9E83
Row 26 40580 40589 SOE84 $9E8D
Row 27 40590 40599 $9ESE $9E97
Row 28 40600 40609 $9E98 $9EA1
Row 29 40610 40619 SOEA2 $OEAB
Row 30 40620 40629 $9EAC $9EBS
Row 31 40630 40639 $9EB6 $S9EBF
Row 32 40640 40649 S$9ECO $9EC9
Row 33 40650 40659 $9ECA $9ED3
Row 34 40660 40669 $9ED4 $9EDD
Row 35 40670 40679 $9EDE S9EE7

442

Table E-8-—cont. Absolute Addresses for ATARI
BASIC Mode-4 Screen Display

Decimal Hexadecimal
Row
Start End Start End
Row 36 40680 40689 $9EE8 $9EF1
Row 37 40690 40699 $9EF2 $9EFB
Row 38 40700 40709 $9EFC $9F05
Row 39 40710 40719 $9F06 $9FOF
Text window addressing begins here

Row O 40800 40839 $9F60 $9F87
Row 1 40840 40879 $9F88 $OFAF
Row 2 40880 40919 $9FBO $9FD7
Row 3 40920 40959 $9FD8 $OFFF

443

Table E-9. Absolute Addresses for ATARI
BASIC Mode-20 Screen Display

Decimal Hexadecimal
Row
Start End Start End

Row O 40320 40329 $9D80 $9D89
Row 1 40330 40339 $9D8A $9D93
Row 2 40340 40349 $9D94 $9D9D
Row 3 40350 40359 $9D9E $9DA7
Row 4 40360 40369 $9DAS $9DB1
Row 5 40370 40379 $9DB2 $9DBB
Row 6 40380 40389 $9DBC $9DC5
Row 7 40390 40399 $9DC6 $9DCF
Row 8 40400 40409 $9DDO $9DD9
Row 9 40410 40419 $9DDA $9DE3
Row 10 40420 40429 $9DE4 $9DED
Row 11 40430 40439 $9DEE $9DF7
Row 12 40440 40449 $9DF8 $9EO1
Row 13 40450 40459 $9E02 $SOEOB
Row 14 40460 40469 $9EQOC $9E15
Row 15 40470 40479 $9E16 $OE1F
Row 16 40480 40489 $9E20 $9E29
Row 17 40490 40499 SOE2A $9E33
Row 18 40500 40509 $9E34 $9E3D
Row 19 40510 40519 SOE3E $9E47
Row 20 40520 40529 $9E48 $9EH1
Row 21 40530 40539 $9ES2 $9E5B
Row 22 40540 40549 $9ESC S9E65
Row 23 40550 40559 $9E66 $9E6F
Row 24 40560 40569 $9E70 $9E79
Row 25 40570 40579 $9E7A $9E83
Row 26 40580 40589 $9E84 S9ESD
Row 27 40590 40599 $9ESE $S9E97
Row 28 40600 40609 $9E98 $9EA1
Row 29 40610 40619 SOEA2 SOEAB
Row 30 40620 40629 $9EAC $9EBS
Row 31 40630 40639 $9EB6 $9EBF
Row 32 40640 40649 $9ECO $9EC9
Row 33 40650 40659 $9ECA S9ED3
Row 34 40660 40669 $9ED4 $9EDD
Row 35 40670 40679 $9EDE $9EE7

Table E-9—cont. Absolute Addresses for ATARI
BASIC Mode-20 Screen Display

Decimal Hexadecimal
Row
Start End Start End

Row 36 40680 40689 $9EE8 S$OEF1
Row 37 40690 40699 $9EF2 $9EFB
Row 38 40700 40709 $9EFC $9F05
Row 39 40710 40719 $9F06 $OFOF
Row 40 40720 40729 $9F10 $9F19
Row 41 40730 40739 $9F1A $9F23
Row 42 40740 40749 $9F24 $9F2D
Row 43 40750 40759 $9F2E $9F37
Row 44 40760 40769 $9F38 $9F41
Row 45 40770 40779 $9F42 $9F4B
Row 46 40780 40789 $9F4C $OF55
Row 47 40790 40799 $9F56 $9F5F

445

Table E-10. Absolute Addresses for ATARI
BASIC Mode-5 Screen Display

Decimal Hexadecimal
Row
Start End Start End

Row O 39840 39859 $9BAO $9BB3
Row 1 39860 39879 $9BB4 $9BC7
Row 2 39880 39899 $9BC8 $9BDB
Row 3 39900 39919 $9BDC $9BEF
Row 4 39920 39939 $9BFO $9C03
Row 5 39940 39959 $9C04 $9C17
Row 6 39960 39979 $9C18 $9C2B
Row 7 39980 39999 $9C2C $9C3F
Row 8 40000 40019 $9C40 $9C53
Row 9 40020 40039 $9C54 $9C67
Row 10 40040 40059 $9C68 $9C78B
Row 11 40060 40079 $9C7C $9C8F
Row 12 40080 40099 $9C90 $9CA3
Row 13 40100 40119 $9CA4 $9CB7
Row 14 40120 40139 $9CB8 $9CCB
Row 15 40140 40159 $9CCC $9CDF
Row 16 40160 40179 $9CEOQ $9CF3
Row 17 40180 40199 $9CF4 $9D07
Row 18 40200 40219 $9D08 $9D18B
Row 19 40220 40239 $9D1C $9D2F
Row 20 40240 40259 $9D30 $9D43
Row 21 40260 40279 $9D44 $9D57
Row 22 40280 40299 $9D58 $9D68
Row 23 40300 40319 $9D6C $9D7F
Row 24 40320 40339 $9D80 $9D93
Row 25 40340 40359 $9D94 $9DA7
Row 26 40360 40379 $9DAS $9DBB
Row 27 40380 40399 $9DBC $9DCF
Row 28 40400 40419 $9DDO $9DE3
Row 29 40420 40439 $9DE4 $9DF7
Row 30 40440 40459 $9DF8 $9EOB
Row 31 40460 40479 $9EQOC SOE1F
Row 32 40480 40499 $9E20 $9E33
Row 33 40500 40519 $9E34 $9347
Row 34 40520 40539 $9E48 $9ES5B

446

Table E-10-—cont. Absolute Addresses for ATARI

BASIC Mode-5 Screen Display

Decimal Hexadecimal
Row
Start End Start End
Row 35 40540 40559 $9ESC $OE6F
Row 36 40560 40579 $9E70 $9E83
Row 37 40580 40599 $OE84 $9E97
Row 38 40600 40619 $9E98 $9EAB
Row 39 40620 40639 $9EAC $9EBF
Text window addressing begins here

Row O 40800 40839 $9F60 $9F87
Row 1 40840 40879 $9F88 S$9FAF
Row 2 40880 40919 $9FBO $9FD7
Row 3 40920 40959 $9FD8 $OFFF

447

Table E-11. Absolute Addresses for ATARI
BASIC Mode-21 Screen Display

Decimal Hexadecimal
Row
Start End Start End

Row O 39840 39859 $9BAO $9BB3
Row 1 39860 39879 $9BB4 $9BC7
Row 2 39880 39899 $9BCS8 $9BDB
Row 3 39900 39919 $9BDC $9BEF
Row 4 39920 39939 $9BFO $9C03
Row 5 39940 39959 $9C04 $9C17
Row 6 39960 39979 $9C18 $9C28
Row 7 39980 39999 $9C2C $9C3F
Row 8 40000 40019 $9C40 $9C53
Row 9 40020 40039 $9C54 $9C67
Row 10 40040 40059 $9C68 $9C78-
Row 11 40060 40079 $9C7C $9C8F
Row 12 40080 40099 $9C90 $9CA3
Row 13 40100 40119 $9CA4 $9CB7
Row 14 40120 40139 $9CB8 $9CCB
Row 15 40140 40159 $9CCC S9CDF
Row 16 40160 40179 $9CEQ $9CF3
Row 17 40180 40199 $9CF4 $9D07
Row 18 40200 40219 $9D08 $9D1B
Row 19 40220 40239 $9D1C $9D2F
Row 20 40240 40259 $9D30 $9D43
Row 21 40260 40279 $9D44 $9D057
Row 22 40280 40299 $9D58 $9D6B
Row 23 40300 40319 $9D6C $9D7F
Row 24 40320 40339 $9D80 $9D93
Row 25 40340 40359 $9D94 $9DA7
Row 26 40360 40379 $9DAS $9D88
Row 27 40380 40399 $9DBC $9DCF
Row 28 40400 40419 $9DDO $9DE3
Row 29 40420 40439 $9DE4 $9DF7
Row 30 40440 40459 $9DF8 $9EOB
Row 31 40460 40479 $9EQC $9E1F
Row 32 40480 40499 $9E20 $9E33
Row 33 40500 40519 $9E34 $9E47
Row 34 40520 40539 $9E48 S9ESB
Row 35 40540 40559 $9ESC $OE6F

448

Table E-11—cont. Absolute Addresses for ATARI
BASIC Mode-21 Screen Display

Decimal Hexadecimal
Row
Start End Start End

Row 36 40560 40579 $9E70 $9E83
Row 37 40580 40599 $9E84 $9E97
Row 38 40600 40619 $9E98 $9EAB
Row 39 40620 40639 $9EAC $9EBF
Row 40 40640 40659 $9ECO $9ED3
Row 41 40660 40679 $9ED4 $9EE7
Row 42 40680 40699 $9EE8 $9OEFB
Row 43 40700 40719 $9EFC $OFOF
Row 44 40720 40739 $9F10 $9F23
Row 45 40740 40759 $9F24 $9F37
Row 46 40760 40779 $9F38 $9F4B
Row 47 40780 40799 $9F4C $9F5F

449

Table E-12. Absolute Addresses for ATARI
BASIC Mode-6 Screen Display

Decimal Hexadecimal
Row
Start End Start End

Row O 38880 38899 $97E0 $97F3
Row 1 38900 38919 $97F4 $9807
Row 2 38920 38939 $9808 $9818B
Row 3 38940 38959 $981C $982F
Row 4 38960 38979 $9830 $9843
Row 5 38980 38999 $9844 $9857
Row 6 39000 39019 $9858 $9868
Row 7 39020 39039 $986C $987F
Row 8 39040 39059 $9880 $9893
Row 9 39060 39079 $9894 $98A7
Row 10 39080 39099 $98A8 $98BB
Row 11 39100 39119 $98BC $98CF
Row 12 39120 39139 $98D0 $98E3
Row 13 39140 39159 $98E4 $98F7
Row 14 39160 39179 $98F8 $990B
Row 15 39180 39199 $990C $991F
Row 16 39200 39219 $9920 $9933
Row 17 39220 39239 $9934 $9947
Row 18 39240 39259 $9948 $9958
Row 19 39260 39279 $995C $996F
Row 20 39280 39299 $9970 $9983
Row 21 39300 39319 $9984 $9997
Row 22 39320 39339 $9998 $99AB
Row 23 39340 39359 $99AC $99BF
Row 24 39360 39379 $99C0O $99D3
Row 25 39380 39399 $99D4 $99E7
Row 26 39400 39419 $99ES8 $99FB
Row 27 39420 39439 $99FC SOAOF
Row 28 39440 39459 $9A10 $9A23
Row 29 39460 39479 $9A24 $9A37
Row 30 39480 39499 $9A38 $9A4B
Row 31 39500 39519 $9A4C $9AS5F
Row 32 39520 39539 S9A60 $9A73
Row 33 39540 39559 $9A74 $9A87
Row 34 39560 39579 $9A88 $9A9B
Row 35 39580 39599 $9A9C $OAAF
Row 36 39600 39619 $9ABO $9AC3
Row 37 39620 39639 $9AC4 $9AD7
Row 38 39640 39659 $9ADS8 S9AEB
Row 39 39660 39679 $9AEC SOAFF
Row 40 39680 39699 $9B0O0 $9B13
Row 41 39700 39719 $9B14 $9B27
Row 42 39720 39739 $9B28 $9B3B
Row 43 39740 39759 $9B3C $9B4F

Table E-12—cont. Absolute Addresses for ATARI

BASIC Mode-6 Screen Display

Decimal Hexadecimal
Row
Start End Start End
Row 44 39760 39779 $9B50 $9B63
Row 45 39780 39799 $9B64 $9877
Row 46 39800 39819 $9B78 $9B8B
Row 47 39820 39839 $9B8C $9BOF
Row 48 39840 39859 $9BAO $9BB3
Row 49 39860 39879 $98B4 $9BC7
Row 50 39880 39899 $9BC8 $9BDB
Row 51 39900 39919 $9BDC $9BEF
Row 52 39920 39939 $9BFO $9C03
Row 53 39940 399569 $9C04 $9C17
Row 54 39960 39979 $9C18 $9C2B
Row 55 39980 39999 $9C2C $9C3F
Row 56 40000 40019 $9C40 $9C563
Row 57 40020 40039 $9C5h4 $9C67
Row 58 40040 40059 $9C68 $9C78B
Row 59 40060 40079 $9C7C $9C8F
Row 60 40080 40099 $9C90 $9CA3
Row 61 40100 40119 $9CA4 $9CB7
Row 62 40120 40139 $9CB8 $9CCB
Row 63 40140 40159 $9CCC $9CDF
Row 64 40160 40179 $9CEO $9CF3
Row 65 40180 40199 $9CF4 $9D07
Row 66 40200 40219 $9D08 $9D1B
Row 67 40220 40239 $9D1C $9D2F
Row 68 40240 40259 $9D30 $9D43
Row 69 40260 40279 $9D44 $9D57
Row 70 40280 40299 $9D58 $9D6B
Row 71 40300 40319 $9D6C $9D7F
Row 72 40320 40339 $9D80 $9D93
Row 73 40340 40359 $9D94 S9DA7
Row 74 40360 40379 $9DAS8 $9DBB
Row 75 40380 40399 $9DBC $9DCF
Row 76 40400 40419 $9DDO $9DE3
Row 77 40420 40439 $9DE4 $9DF7
Row 78 40440 40459 $9DF8 $9EOB
Row 79 40460 40479 $9EOC $9E1F
Text window addressing begins here

Row O 40800 40839 $9F60 $9F87
Row 1 40840 40879 $9F88 $OFAF
Row 2 40880 40919 $9FBO $9FD7
Row 3 40920 40959 $9FD8 $OFFF

451

Table E-13. Absolute Addresses for ATARI
BASIC Mode-22 Screen Display

Decimal Hexadecimal
Row
Start End Start End

Row O 38880 38899 $97E0 $97F3
Row 1 38900 38919 $97F4 $9807
Row 2 38920 38939 $9808 $981B
Row 3 38940 38959 $981C $982F
Row 4 38960 38979 $9830 $9843
Row 5 38980 38999 $9844 $9857
Row 6 39000 39019 $9858 $986B
Row 7 39020 39039 $986C $987F
Row 8 39040 39059 $9880 $9893
Row 9 39060 39079 $9894 $98A7
Row 10 39080 39099 SO8A8 $988B
Row 11 39100 39119 $98BC $98CF
Row 12 39120 39139 $98D0 $98E3
Row 13 39140 39159 $98E4 $98F7
Row 14 39160 39179 $98F8 $9908
Row 15 39180 39199 $990C $991F
Row 16 39200 39219 $9920 $9933
Row 17 39220 39239 $9934 $9947
Row 18 39240 39259 $9948 $995B
Row 19 39260 39279 $995C $996F
Row 20 39280 39299 $9970 $9983
Row 21 39300 39319 $9984 $9997
Row 22 39320 39339 $9998 $99AB
Row 23 39340 39359 $99AC $99BF
Row 24 39360 39379 $99CO $99D3
Row 25 39380 39399 $99D4 $99E7
Row 26 39400 39419 S99E8 $99FB
Row 27 39420 39439 $99FC $9A0F
Row 28 39440 39459 $9A10 $9A23
Row 29 39460 39479 $§9A24 $9A37
Row 30 39480 39499 $9A38 $9A4B
Row 31 39500 39519 $9A4C $9A5F
Row 32 39520 39539 $9A60 $9A73
Row 33 39540 39559 $9A74 $9A87
Row 34 39560 39579 $9A88 $9A9B

452

Table E-13—cont. Absolute Addresses for ATARI
BASIC Mode-22 Screen Display

Decimal Hexadecimal
Row
Start End Start End

Row 35 39580 39599 $9A9C $9AAF
Row 36 39600 39619 $9ABO $9AC3
Row 37 39620 39639 $9ACH $9AD7
Row 38 39640 39659 $9ADS8 $OAEB
Row 39 39660 39679 $9AEC $9AFF
Row 40 39680 39699 $9B00O $9B13
Row 41 39700 39719 $9B14 $9B27
Row 42 39720 39739 $9828 $9B3B
Row 43 39740 39759 $9B3C $9B4F
Row 44 39760 39779 $9B50 $9B63
Row 45 39780 39799 $9B64 $9B77
Row 46 39800 39819 $9B78 $9B8B
Row 47 39820 39839 $9B8C $9BOF
Row 48 39840 39859 $9BAO $9BB3
Row 49 39860 39879 $9BB4 $9BC7
Row 50 39880 39899 $9BC8 $98BDB
Row 51 39900 39919 $9BDC $9BEF
Row 52 39920 39939 $9BFO $9C03
Row 53 39940 399569 $9C04 $9C17
Row 54 39960 39979 $9C18 $9C2B
Row 55 39980 39999 $9C2C $9C3F
Row 56 40000 40019 $9C40 $9C563
Row 57 40020 40039 $9C54 $9C67
Row 58 40040 40059 $9C68 $9C7B
Row 59 40060 40079 $9C7C $9C8F
Row 60 40080 40099 $9C90 $9CA3
Row 61 40100 40119 $9CA4 $9CB7
Row 62 40120 40139 $9CB8 $9CCB
Row 63 40140 40159 $9CCC $9CDF
Row 64 40160 40179 $9CEO $9CF3
Row 65 40180 40199 $9CF4 $9D07
Row 66 40200 40219 $9D08 $9D1B
Row 67 40220 40239 $9D1C $9D2F
Row 68 40240 40259 $9D30 $9D43
Row 69 40260 40279 $9D44 $9D57

453

Table E-13—cont. Absolute Addresses for ATARI
BASIC Mode-22 Screen Display

Decimal Hexadecimal
Row
Start End Start End

Row 70 40280 40299 $9D58 $9D6B
Row 71 40300 40319 $9D6C $9D7F
Row 72 40320 40339 $9D80 $9D93
Row 73 40340 40359 $9D94 $9DA7
Row 74 40360 40379 $9DAS8 $9DBB
Row 75 40380 40399 $9DBC $9DCF
Row 76 40400 40419 $9DDO $9DE3
Row 77 40420 40439 $9DE4 $9DF7
Row 78 40440 40459 S$9DF8 $9EOB
Row 79 40460 40479 S$9EQC $9E1F
Row 80 40480 40499 $9E20 $9E33
Row 81 40500 40519 $9E34 $9E47
Row 82 40520 40539 $9E48 $9ESB
Row 83 40540 40559 $9ES5C $OE6F
Row 84 40560 40579 $9E70 $9E83
Row 85 40580 40599 $9E84 $9E97
Row 86 40600 40619 S9E98 $9EAB
Row 87 40620 40639 $9EAC $OEBF
Row 88 40640 40659 $9ECO $9ED3
Row 89 40660 40679 $9ED4 $9EE7
Row 90 40680 40699 $9EES8 $OEFB
Row 91 40700 40719 $9EFC $9FOF
Row 92 40720 40739 $9F10 $9F23
Row 93 40740 40759 $9F24 $9F37
Row 94 40760 40779 $9F38 $9F4B
Row 95 40780 40799 S$9F4C $SOFS5F

454

Table E-14. Absolute Addresses for ATARI
BASIC Mode-7 Screen Display

Decimal Hexadecimal
Line
Start End Start End

Line O 36960 36999 $9060 $9087
Line 1 37000 37039 $9088 $90AF
Line 2 37040 37079 $90B0 $90D7
Line 3 37080 37119 $90D8 $90FF
Line 4 37120 37159 $9100 $9127
Line 5 37160 37199 $9128 $914F
Line 6 37200 37239 $9150 $9177
Line 7 37240 37279 $9178 $919F
Line 8 37280 37319 $91A0 $91C7
Line 9 37320 37359 $91C8 $91EF
Line 10 37360 37399 $91FO0 $9217
Line 11 37400 37439 $9218 $923F
Line 12 37440 37479 $9240 $9267
Line 13 37480 37519 $9268 $928F
Line 14 37520 37559 $9290 $92B7
Line 15 37560 37599 $92B8 $92DF
Line 16 37600 37639 $92E0 $9307
Line 17 37640 37679 $9308 $932F
Line 18 37680 37719 $9330 $9ES7
Line 19 37720 37759 $9358 $937F
Line 20 37760 37799 $9380 $93A7
Line 21 37800 37839 $93A8 $93CF
Line 22 37840 37879 $93D0 $93F7
Line 23 37880 37919 $93F8 $941F
Line 24 37920 37959 $9420 $9447
Line 25 37960 37999 $9448 $946F
Line 26 38000 38039 $9470 $9497
Line 27 38040 38079 $9498 $94BF
Line 28 38080 38119 $94C0 $94E7
Line 29 38120 38159 $94ES8 $950F
Line 30 38160 38199 $9510 $9537
Line 31 38200 38239 $9538 $955F
Line 32 38240 38279 $9560 $9587
Line 33 38280 38319 $9588 SOSAF
Line 34 38320 38359 $95B0 $95D7
Line 35 38360 38399 $95D8 $95FF
Line 36 38400 38439 $9600 $9627
Line 37 38440 38479 $9628 $964F
Line 38 38480 38519 $9650 $9677
Line 39 38520 38559 $9678 $969F
Line 40 38560 38599 $96A0 $96C7
Line 41 38600 38639 $96C8 $96EF
Line 42 38640 38679 $96FO0 $9717
Line 43 38680 38719 $9718 $973F

455

Table E-14—cont. Absolute Addresses for ATARI

BASIC Mode-7 Screen Display

Line Decimal Hexadecimal
Start End Start End
Line 44 38720 38759 $9740 $9767
Line 45 38760 38799 $9768 $978F
Line 46 38800 38839 $9790 $9787
Line 47 38840 38879 $9788 $97DF
Line 48 38880 38919 $97E0 $9807
Line 49 38920 38959 $9808 $982F
Line 50 38960 38999 $9830 $9857
Line 51 39000 39039 $9858 $987F
Line 52 39040 39079 $9880 $98A7
Line 53 39080 39119 $98A8 $98CF
Line 54 39120 39159 $98D0 $98F7
Line 55 39160 39199 $98F8 $991F
Line 56 39200 39239 $9920 $9947
Line 57 39240 39279 $9948 $996F
Line 58 39280 39319 $9970 $9997
Line 59 39320 39359 $9998 $99BF
Line 60 39360 39399 $99CO $99E7
Line 61 39400 39439 $99E8 $9AO0F
Line 62 39440 39479 $9A10 $9A37
Line 63 39480 39519 $9A38 $9AS5F
Line 64 39520 39559 $9A60 $9A87
Line 65 39560 39599 $9A88 $OAAF
Line 66 39600 39639 $9ABO $9AD7
Line 67 39640 39679 $9AD8 $9AFF
Line 68 39680 39719 $9B00O $9827
Line 69 39720 39759 $9B828 $9B4F
Line 70 39760 39799 $9B50 $9B77
Line 71 39800 39839 $9878 $9BIF
Line 72 39840 39879 $9BAO $9BC7
Line 73 39880 39919 $9BC8 $9BEF
Line 74 39920 39959 $9BFO $9C17
Line 75 39960 39999 $9C18 $9C3F
Line 76 40000 40039 $9C40 $9C67
Line 77 40040 40079 $9C68 $9C8F
Line 78 40080 40119 $9C90 $9CB7
Line 79 40120 40159 $9CB8 $9CDF
Text window addressing begins here

Line O 40800 40839 $9F60 $9F87
Line 1 40840 40879 $9F88 $OFAF
Line 2 40880 40919 $9FBO $OFD7
Line 3 40920 40959 $9FD8 $OFFF

456

Table E-15. Absolute Addresses for ATARI
BASIC Mode-23 Screen Display

Decimal Hexadecimal
Line
Start End Start End

Line O 36960 36999 $9060 $9087
Line 1 37000 37039 $9088 $90AF
Line 2 37040 37079 $90BO $90D7
Line 3 37080 37119 $90D8 $90FF
Line 4 37120 37159 $9100 $9127
Line 5 37160 37199 $9128 $914F
Line 6 37200 37239 $9150 - $9177
Line 7 37240 37279 $9178 $919F
Line 8 37280 37319 $91A0 $91C7
Line 9 37320 37359 $91C8 $91EF
Line 10 37360 37399 $91F0 $9217
Line 11 37400 37439 $9218 $923F
Line 12 37440 37479 $9240 $9267
Line 13 37480 37519 $9268 $928F
Line 14 37520 37559 $9290 $92B7
Line 15 37560 37599 $92B8 $92DF
Line 16 37600 37639 $92E0 $9307
Line 17 37640 37679 $9308 $932F
Line 18 37680 37719 $9330 $9357
Line 19 37720 37759 $9358 $937F
Line 20 37760 37799 $9380 $93A7
Line 21 37800 37839 $93A8 $93CF
Line 22 37840 37879 $93D0 $93F7
Line 23 37880 37919 $93F8 $941F
Line 24 37920 37959 $9420 $9447
Line 25 37960 37999 $9448 $946F
Line 26 38000 38039 $9470 $9497
Line 27 38040 38079 $9498 $94BF
Line 28 38080 38119 $94C0 $94E7
Line 29 38120 38159 $94E8 $950F
Line 30 38160 38199 $9510 $9537
Line 31 38200 38239 $9538 $955F
Line 32 38240 38279 $9560 $9587
Line 33 38280 38319 $9588 $95AF
Line 34 38320 38359 $95B0 $95D7

457

Table E-15—cont. Absolute Addresses for ATARI
BASIC Mode-23 Screen Display

Line Decimal Hexadecimal
Start End Start End

Line 35 38360 38399 $95D8 $95FF
Line 36 38400 38439 $9600 $9627
Line 37 38440 38479 $9628 $964F
Line 38 38480 38519 $9650 $9677
Line 39 38520 38559 $9678 $969F
Line 40 38560 38599 $96A0 $96C7
Line 41 38600 38639 $96C8 S96EF
Line 42 38640 38679 $96F0 $9717
Line 43 38680 38719 $9718 $973F
Line 44 38720 38759 $9740 $9767
Line 45 38760 38799 $9768 $978F
Line 46 38800 38839 $9790 $97B7
Line 47 38840 38879 $97B8 $97DF
Line 48 38880 38919 $97E0 $9807
Line 49 38920 38959 $9808 $982F
Line 50 38960 38999 $9830 $9857
Line 51 39000 39039 $9858 $987F
Line 562 39040 39079 $9880 $98A7
Line 63 39080 39119 $98A8 $98CF
Line 54 39120 39159 $98D0 $98F7
Line 55 39160 39199 $98F8 $991F
Line 56 39200 39239 $9920 $9947
Line 567 39240 39279 $9948 $996F
Line 58 39280 39319 $9970 $9997
Line 59 39320 39359 $9998 $99BF
Line 60 39360 39399 $99C0O $99E7
Line 61 39400 39439 $S99ES8 $9AOF
Line 62 39440 39479 $9A10 $9A37
Line 63 39480 39519 $9A38 $9ASF
Line 64 39520 39559 $9A60 $9A87
Line 65 39560 39599 $9A88 $OAAF
Line 66 39600 39639 $9ABO $9AD7
Line 67 39640 39679 $9ADS8 $9AFF
Line 68 39680 39719 $9B0OO $9B27
Line 69 39720 39759 $9B28 $9B4F

458

Table E-15—cont. Absolute Addresses for ATARI
BASIC Mode-23 Screen Display

Line Decimal Hexadecimal
Start End Start End

Line 70 39760 39799 $9B50 $9B77
Line 71 39800 39839 $9B78 $9BIF
Line 72 39840 39879 $9BAO $9BC7
Line 73 39880 39919 $9BC8 S9BEF
Line 74 39920 39959 $9BFO $9C17
Line 75 39960 39999 $9C18 $9C3F
Line 76 40000 40039 $9C40 $9C67
Line 77 40040 40079 $9C68 $9C8F
Line 78 40080 40119 $9C90 $9CB7
Line 79 40120 40159 $9CB8 $9CDF
Line 80 40160 40199 $9CEQ $9D07
Line 81 40200 40239 $9D08 $9D2F
Line 82 40240 40279 $9D30 $9D57
Line 83 40280 40319 $9D568 $9D7F
Line 84 40320 40359 $9D80 $9DA7
Line 85 40360 40399 $9DAS8 $9DCF
Line 86 40400 40439 $9DDO $9DF7
Line 87 40440 40479 $9DF8 $OE1F
Line 88 40480 40519 $9E20 $9E47
Line 89 40520 40559 $9E48 $9E6GF
Line 90 40560 40599 $9E70 $9E97
Line 91 40600 40639 $9E98 $9EBF
Line 92 40640 40679 $9ECO $9EE7
Line 93 40680 40719 $9EES8 $9FOF
Line 94 40720 40759 $9F10 $9F37
Line 95 40760 40799 $9F38 $9F5F

459

Table E-16. Absolute Addresses for ATARI
BASIC Mode-8 Screen Display

5 Decimal Hexadecimal
Line
Start End Start End

Line O 33104 33143 $8150 $8177
Line 1 33144 33183 $8178 $819F
Line 2 33184 33223 $81A0 $81C7
Line 3 33224 33263 $81C8 $81EF
Line 4 33264 33303 $81FO0 $8217
Line 5 33304 33343 $8218 $823F
Line 6 33344 33383 $8240 $8267
Line 7 33384 33423 $8268 $828F
Line 8 33424 33463 $8290 $82B7
Line 9 33464 33503 $82B8 $82DF
Line 10 33504 33543 $82E0 $8307
Line 11 33544 33583 $8308 $832F
Line 12 33584 33623 $8330 $8357
Line 13 33624 33663 $8358 $837F
Line 14 33664 33703 $8380 $83A7
Line 15 33704 33743 $83A8 $83CF
Line 16 33744 33783 $83D0 $83F7
Line 17 33784 33823 $83F8 $841F
Line 18 33824 33863 $8420 $8447
Line 19 33864 33903 $8448 $846F
Line 20 33904 33943 $8470 $8497
Line 21 33944 33983 $8498 $84BF
Line 22 33984 34023 $84C0 $84E7
Line 23 34024 34063 $84E8 $850F
Line 24 34064 34103 $8510 $8537
Line 25 34104 34143 $8538 $855F
Line 26 34144 34183 $8560 $8587
Line 27 34184 34223 $8588 $85AF
Line 28 34224 34263 $85B0 $85D7
Line 29 34264 34303 $85D8 $85FF
Line 30 34304 34343 $8600 $8627
Line 31 34344 34383 $8628 $864F
Line 32 34384 34423 $8650 $8677
Line 33 34424 34463 $8678 $869F
Line 34 34464 34503 $86A0 $86C7
Line 35 34504 34543 $86C8 $86EF
Line 36 34544 34583 $86F0 $8717
tine 37 34584 34623 $8718 $873F
Line 38 34624 34663 $8740 $8767
Line 39 34664 34703 $8768 $878F
Line 40 34704 34743 $8790 $87B7
Line 41 34744 34783 $878B8 $87DF

460

Table E-16—cont. Absolute Addresses for ATARI
BASIC Mode-8 Screen Display

Line Decimal Hexadecimal
Start End Start End
Line 42 34784 34823 $87E0 $8807
Line 43 34824 34863 $8808 $882F
Line 44 34864 34903 $8830 $8857
Line 45 34904 34943 $8858 $887F
Line 46 34944 34983 $8880 $88A7
Line 47 34984 35023 $88A8 $88CF
Line 48 35024 35063 $88D0 $88F7
Line 49 35064 35103 $88F8 $891F
Line 50 35104 35243 $8920 $8947
Line 51 35144 35183 $8948 $896F
Line 52 35184 35223 $8970 $8997
Line 53 35224 35263 $8998 $89BF
Line 54 35264 35303 $89C0 $89E7
Line 55 35304 35343 $89E8 $8AOF
Line 56 35344 35383 $8A10 $8A37
Line 57 35384 356423 $8A38 $8ASF
Line 58 35424 35463 $8A60 $8A87
Line 59 35464 35503 $8A88 $8AAF
Line 60 35504 35543 $8ABO $8AD7
Line 61 35544 35583 $8ADS8 $8AFF
Line 62 35584 35623 $8B00 $8B27
Line 63 35624 35663 $8B28 $8B4F
Line 64 35664 35703 $8B50 $8B77
Line 65 35704 35743 $8B78 $8B9F
Line 66 35744 35783 $8BAO $8BC7
Line 67 35784 35823 $8BC8 $8BEF
Line 68 35824 35863 $8BFO $8C17
Line 69 35864 35903 $8C18 $8C3F
Line 70 35904 35943 $8C40 $8C67
Line 71 35944 35983 $8C68 $8C8F
Line 72 35984 36023 $8C90 $8CB7
Line 73 36024 36063 $8CB8 $8CDF
Line 74 36064 36103 $8CEO $8D07
Line 75 36104 36143 $8D08 $8D2F
Line 76 36144 36183 $8D30 $8D57
Line 77 36184 36223 $8D58 $8D7F
Line 78 36224 36263 $8D80 $8DA7
Line 79 36264 36303 $8DAS8 $8DCF
Line 80 36304 36343 $8DDO $8DF7
Line 81 36344 36383 $8DF8 $8E1F
Line 82 36384 36423 $8E20 $8E47
Line 83 36424 36463 $8E48 $8E6F

461

Table E-16—cont. Absolute Addresses for ATARI
BASIC Mode-8 Screen Display

Li Decimal Hexadecimal
ine

" Start End Start End
Line 84 36464 36503 $8E70 $8E97
Line 85 36504 36543 $8E98 $8EBF
Line 86 36544 36583 $8ECO $8EE7
Line 87 36584 36623 $8EE8 $8FOF
Line 88 36624 36663 $8F10 $8F37
Line 88 36664 36703 $8F38 $8F5F
Line 90 36704 36743 $8F60 $8F87
Line 91 36744 36783 $8F88 $8FAF
Line 92 36784 36823 $8FBO $8FD7
Line 93 36824 36863 $8FD8 $8FFF
Line 94 36864 36903 $9000 $9027
Line 95 36904 36943 $9028 $904F
Line 96 36944 36983 $9050 $9077
Line 97 36984 37023 $9078 $909F
Line 98 37024 "37063 $90A0 $90C7
Line 99 37064 37103 $90C8 $90EF
Line 100 37104 37143 $90F0 $9117
Line 101 37144 37183 $9118 $913F
Line 102 37184 37223 $9140 $9167
Line 103 37224 37263 $9168 $918F
Line 104 37264 37303 $9190 $91B7
Line 105 37304 37343 $91B8 $91DF
Line 106 37344 37383 $91E0 $9207
Line 107 37384 37423 $9208 $922F
Line 108 37424 37463 $9230 $9257
Line 109 37464 37503 $9258 $927F
Line 110 37504 37543 $9280 $92A7
Line 111 37544 37583 $92A8 $92CF
Line 112 37584 37623 $92D0 $92F7
Line 113 37624 37663 $92F8 $931F
Line 114 37664 37703 $9320 $9347
Line 115 37704 37743 $9348 $936F
Line 116 37744 37783 $9370 $9397
Line 117 37784 37823 $9398 $93BF
Line 118 37824 37863 $93C0 $93E7
Line 119 37864 37903 $93E8 $940F
Line 120 37904 37943 $9410 $9437
Line 121 37944 37983 $9438 $945F
Line 122 37984 38023 $9460 $9487
Line 123 38024 38063 $9488 $94AF
Line 124 38064 38103 $94B0 $94D7
Line 125 38104 38143 $94D8 $94FF

462

Table E-16—cont. Absolute Addresses for ATARI

BASIC Mode-8 Screen Display

Line Decimal Hexadecimal
Start End Start End
Line 126 38144 38183 $9500 $9527
Line 127 38184 38223 $9528 $954F
Line 128 38224 38263 $9550 $9577
Line 129 38264 38303 $9578 $959F
Line 130 38304 38343 $95A0 $95C7
Line 131 38344 38383 $95C8 $95EF
Line 132 38384 38423 $95F0 $9617
Line 133 38424 38463 $9618 $963F
Line 134 38464 38503 $9640 $9667
Line 135 38504 38543 $9668 $968F
Line 136 38544 38583 $9690 $96B7
Line 137 38584 38623 $96B8 $96DF
Line 138 38624 38663 $96E0 $9707
Line 139 38664 38703 $9708 $972F
Line 140 38704 38743 $9730 $9757
Line 141 38744 38783 $9758 $977F
Line 142 38784 38823 $9780 $97A7
Line 143 38824 38863 $97A8 $97CF
Line 144 38864 38903 $9700 $97F7
Line 145 38904 38943 $97F8 $981F
Line 146 38944 38983 $9820 $9847
Line 147 38984 39023 $9848 $986F
Line 148 39024 39063 $9870 $9897
Line 149 39064 39103 $9898 $98BF
Line 150 39104 39143 $98CO $98E7
Line 151 39144 39183 $98ES8 $990F
Line 152 39184 39223 $9910 $9937
Line 153 39224 39263 $9938 $995F
Line 154 39264 39303 $9960 $9987
Line 155 39304 39343 $9988 $99AF
Line 156 39344 39383 $99B0O $99D7
Line 157 39384 39423 $99D8 $99FF
Line 158 39424 39463 $9A00 $9A27
Line 159 39464 39503 $9A28 S9A4F
Text window addressing begins here
Line O 40800 40839 $9F60 $9F87
Line 1 40840 40879 $OF88 $9OFAF
Line 2 40880 40919 $9FBO $9FD7
Line 3 40920 40959 $9FD8 $9OFFF

463

Table E-17. Absolute Addresses for ATARI
BASIC Mode-24 Screen Display

Line Decimal Hexadecimal
Start End Start End

Line O 33104 33143 $8150 $8177
Line 1 33144 33183 $8178 $819F
Line 2 33184 33223 $81A0 $81C7
Line 3 33224 33263 $81C8 $81EF
Line 4 33264 33303 $81F0 $8217
Line 5 33304 33343 $8218 $823F
Line 6 33344 33383 $8240 $8267
Line 7 33384 33423 $8268 $828F
Line 8 33424 33463 $8290 $82B7
Line 9 33464 33503 $82B8 $82DF
Line 10 33504 33543 $82E0 $8307
Line 11 33544 33583 $8308 $832F
Line 12 33584 33623 $8330 $8357
Line 13 33624 33663 $8358 $837F
Line 14 33664 33703 $8380 $83A7
Line 15 33704 33743 $83A8 $83CF
Line 16 33744 33783 $83D0 $83F7
Line 17 33784 33823 $83F8 $841F
Line 18 33824 33863 $8420 $8447
Line 19 33864 33903 $8448 $846F
Line 20 33904 33943 $8470 $8497
Line 21 33944 33983 $8498 $84BF
Line 22 33984 34023 $84C0 $84E7
Line 23 34024 34063 $84E8 $850F
Line 24 34064 34103 $8510 $8537
Line 25 34104 34143 $8538 $855F
Line 26 34144 34183 $8560 $8587
Line 27 34184 34223 $8588 $85AF
Line 28 34224 34263 $85B0 $85D7
Line 29 34264 34303 $85D8 $85FF
Line 30 34304 34343 $8600 $8627
Line 31 34344 34383 $8628 $864F
Line 32 34384 34423 $8650 $8677
Line 33 34424 34463 $8678 $869F
Line 34 34464 34503 $86A0 $86C7
Line 35 34504 34543 $86C8 $86EF
Line 36 34544 34583 $86F0 $8717
Line 37 34584 34623 $8718 $873F
Line 38 34624 34663 $8740 $8767

464

Table E-17—cont. Absolute Addresses for ATARI

BASIC Mode-24 Screen Display

Line Decimal Hexadecimal
i
Start End Start End

Line 39 34664 34703 $8768 $878F
Line 40 34704 34743 $8790 $8787
Line 41 34744 34783 $878B8 $87DF
Line 42 34784 34823 $87E0 $8807
Line 43 34824 34863 $8808 $882F
Line 44 34864 34903 $8830 $8857
Line 45 34904 34943 $8858 $887F
Line 46 34944 34983 $8880 $88A7
Line 47 34984 35023 $88A8 $88CF
Line 48 35024 35063 $88D0 $88F7
Line 49 35064 35103 $88F8 $891F
Line 50 35104 35143 $8920 $8947
Line 51 35144 35183 $8948 $896F
Line 52 35184 35223 $8970 $8997
Line 53 35224 35263 $8998 $89BF
Line 54 35264 35303 $89CO $89E7
Line 55 35304 35343 $89E8 S$8AOQF
Line 56 35344 35383 $8A10 $8A37
Line 67 35384 35423 $8A38 $8AS5F
Line 58 35424 35463 $8A60 $8A87
Line 59 35464 35503 $8A88 $8AAF
Line 60 35504 35543 $8ABO $8AD7
Line 61 35544 35583 $8AD8 $8AFF
Line 62 35584 35623 $8B0O0 $8827
Line 63 35624 35663 $8B28 $8B4F
Line 64 35664 35703 $8B50 $8B77
Line 65 35704 35743 $8B878 $8B9F
Line 66 35744 35783 $8BAO $8BC7
Line 67 35784 35823 $8BC8 $8BEF
Line 68 35824 35863 $8BFO $8C17
Line 69 35864 35903 $8C18 $8C3F
Line 70 35904 35943 $8C40 $8C67
Line 71 35944 35983 $8C68 $8C8F
Line 72 35984 36023 $8C90 $8CB7
Line 73 36024 36063 $8CB8 $8CDF
Line 74 36064 36103 $8CEQ $8D07
Line 75 36104 36143 $8D08 $8D2F
Line 76 36144 36183 $8D30 $8D57
Line 77 36184 36223 $8D58 S$8D7F

465

Table E-17—cont. Absolute Addresses for ATARI

BASIC Mode-24 Screen Display

Line Decimal Hexadecimal
1
Start End Start End

Line 78 36224 36263 $8D80 $8DA7
Line 79 36264 36303 $8DAS $8DCF
Line 80 36304 36343 $8DDO $8DF7
Line 81 36344 36383 $8DF8 S8E1TF
Line 82 36384 36423 $8E20 $8E47
Line 83 36424 36463 $8E48 S8E6F
Line 84 36464 36503 $8E70 $8E97
Line 85 36504 36543 $8E98 $8EBF
Line 86 36544 36583 $8ECO $8EE7
Line 87 36584 36623 $8EES $8FOF
Line 88 36624 36663 $8F10 $8F37
Line 89 36664 36703 $8F38 $8F5F
Line 90 36704 36743 $8F60 $8F87
Line 91 36744 36783 $8F88 $8FAF
Line 92 36784 36823 $8FBO $8FD7
Line 93 36824 36863 $8FDS8 $8FFF
Line 94 36864 36903 $9000 $9027
Line 95 36904 36943 $9028 $904F
Line 96 36944 36983 $9050 $9077
Line 97 36984 37023 $9078 $909F
Line 98 37024 37063 $90A0 $90C7
Line 99 37064 37103 $90C8 $90EF
Line 100 37104 37143 $90F0 $9117
Line 101 37144 37183 $9118 $913F
Line 102 37184 37223 $9140 $9167
Line 103 37224 37263 $9168 $918F
Line 104 37264 37303 $9190 $91B7
Line 105 37304 37343 $91B8 $91DF
Line 106 37344 37383 $91E0 $9207
Line 107 37384 37423 $9208 $922F
Line 108 37424 37463 $9230 $9257
Line 109 37464 37503 $9258 $927F
Line 110 37504 37543 $9280 $92A7
Line 111 37544 37583 $92A8 $92CF
Line 112 37584 37623 $92D0 $92F7
Line 113 37624 37663 $92F8 $931F
Line 114 37664 37703 $9320 $9347
Line 115 37704 37743 $9348 $936F

466

Table E-17—cont. Absolute Addresses for ATARI
BASIC Mode-24 Screen Display

Decimal Hexadecimal
Line
Start End Start End
Line 116 37744 37783 $9370 $9397
Line 117 37784 37823 $9398 $93BF
Line 118 37824 37863 $93C0 $93E7
Line 119 37864 37903 $93E8 $940F
Line 120 37904 37943 $9410 $9437
Line 121 37944 37983 $9438 $945F
Line 122 37984 38023 '$9460 $9487
Line 123 38024 38063 $9488 $94AF
Line 124 38064 38103 $94B0 $94D7
Line 125 38104 38143 $94D8 $94FF
Line 126 38144 38183 $9500 $9527
Line 127 38184 38223 $9528 $954F
Line 128 38224 38263 $9550 $9577
Line 129 38264 38303 $9578 $959F
Line 130 38304 38343 $95A0 $95C7
Line 131 38344 38383 $95C8 S95EF
Line 132 38384 38423 $95F0 $9617
Line 133 38424 38463 $9618 $963F
Line 134 38464 38503 $9640 $9667
Line 135 38504 38543 $9668 $968F
Line 136 38544 38583 $9690 $96B7
Line 137 38584 38623 $96B8 $96DF
Line 138 38624 38663 $96EOQ $9707
Line 139 38664 38703 $9708 $972F
Line 140 38704 38743 $9730 $9757
Line 141 38744 38783 $9758 $977F
Line 142 38784 38823 $9780 $97A7
Line 143 38824 38863 $97A8 $97CF
Line 144 38864 38903 $97D0 $97F7
Line 145 38904 38943 $97F8 $981F
Line 146 38944 38983 $9820 $9847
Line 147 38984 39023 $9848 $986F
Line 148 39024 39063 $9870 $9897
Line 149 39064 39103 $9898 $98BF
Line 150 39104 39143 $98C0O $98E7
Line 151 39144 39183 $98E8 $990F
Line 152 39184 39223 $9910 $9937
Line 153 39224 39263 $9938 $995F

467

Table E-17—cont. Absolute Addresses for ATARI
BASIC Mode-24 Screen Display

Line Decimal Hexadecimal
Start End Start End
Line 154 39264 39303 $9960 $9987
Line 155 39304 39343 $9988 $99AF
Line 156 39344 39383 $99B0O $99D7
Line 157 39384 39423 $99D8 $99FF
Line 158 39424 39463 $9A00 $9A27
Line 159 39464 39503 $9A28 $S9A4F
Line 160 39504 39543 $9A50 $9A77
Line 161 39544 39583 $9A78 $9ASF
Line 162 39584 39623 $9AAOQ $9AC7
Line 163 39624 39663 $9ACS8 $OAEF
Line 164 39664 39703 $9AFO $9B17
Line 165 39704 39743 $9B18 $9B3F
Line 166 39744 39783 $9B40 $9B67
Line 167 39784 39823 $9B68 $9B8F
Line 168 39824 39863 $9B90 $9BB7
Line 169 39864 39903 $9BB8 $9BDF
Line 170 39904 39943 $9BEO $9C07
Line 171 39944 39983 $9C08 $9C2F
Line 172 39984 40023 $9C30 $9C57
Line 173 40024 40063 $9C58 $9C7F
Line 174 40064 40103 - $9C80 $9CA7
Line 175 40104 40143 $9CAS8 $9CCF
Line 176 40144 40183 $9CDO $OCF7
Line 177 40184 40223 $9CF8 $SODI1F
Line 178 40224 40263 $9D20 $9D47
Line 179 40264 40303 $9D48 $9D6F
Line 180 40304 40343 $9D70 $9D97
Line 181 40344 40383 $9D98 $9DBF
Line 182 40384 40423 $9DCO $9DE7
Line 183 40424 40463 $9DES8 $S9EOF
Line 184 40464 40503 $9E10 $9E37
Line 185 40504 40543 $9E38 S9ESF
Line 186 40544 40583 $9E60 $9E87
Line 187 40584 40623 $9E8S8 SOEAF
Line 188 40624 40663 $9EBO $9ED7
Line 189 40664 40703 $9EDS8 SOEFF
Line 190 40704 40743 $9F00 $9F27
Line 191 40744 40783 $9F28 SOF4F

468

Appendix F

Derived

Trigonometric Functions

The following functions are not represented in ATARI
BASIC. They can be executed, however, by applying the
corresponding equivalent expressions in Table F-1.

Table F-1. Derived Trigonometric Functions

Inverse cosine

Inverse secant

Inverse cosecant

Inverse cotangent
Hyperbolic sine

Hyperbolic cosine
Hyperbolic tangent
Hyperbolic secant
Hyperbolic cosecant
Hyperbolic cotangent
Inverse hyperbolic sine
Inverse hyperbolic cosine
Inverse hyperbolic tangent
Inverse hyperbolic secant
Inverse hyperbolic cosecant
Inverse hyperbolic cotangent

Function Equivalent
Secant 1/COS(X)
Cosecant 1/SIN(X)
Cotangent 1/TAN(X)
Inverse sine ATN(X/SQR(1-X*X))

k-ATN(X/SQR(1-X*X))
ATN(SQR(X*X-1))+SGN(X-1)*k
ATN(1/SQR(X*X-1))+SGN(X-1}-+k
ATN(X)+k

(EXP(X)-EXP(—X))/2
(EXP(X)+EXP(-X})}/2
(EXP({X)-EXP(—X))/(EXP(X)+EXP{-X))
2/(EXP(X)+EXP(-X))
2/(EXP(X)—EXP(—-X))
(EXP(X)+EXP(-X))/(EXP(X)—-EXP(-X}))
LOG(X+SQR(X*X+1))
LOG(X+SQR(X*X-1))
LOG((1+X)/(1-X))/2
LOG((1-SQR(1-X*X)}/X)

LOG((1 +SGN(X)*SQR(1 +X*X)}/X)
LOG((X+1)/(X-1))/2

NOTE: The value assigned to variable & in these functions should be
1.670796 if in the RAD (radian) mode, or 90 if in the DEG (degree)

mode.

469

Appendix G

ATARI Error and Status Codes

The ATARI! operating system does not generate error mes-
sages in a plain-text format. Rather, it displays an error
code number. Table G-1 lists the error code numbers and
their general intrepretations.

The current status of a given IOCB operation can be
checked by executing a STATUS #chan,x statement; where
chan is the IOCB channel to be tested, and x is a numeric
variable that takes on the status code. It is also possible to
see the current status for all eight IOCB channels by PEEK-
ING or loading the 6502 from the following RAM loca-
tions:

Status Register
10CB Channel Address
Dec Hex
0 833 $0343
1 851 $0353
2 867 $0363
3 883 $0373
4 899 $0383
5 915 $0393
6 931 $03A3
7 947 $0383

Table G-2 shows the status codes (both decimal and
hexadecimal) and their meaning.

471

Table G-1. ATARI Error Codes and Their Meaning

10

1"

Number | Meaning

2 Out of memory.
There is insufficient RAM available for the size of the
program or programming task.

3 lllegal function call.
A numerical value is too large, too small or has a sign
that is inappropriate for the statement that uses it.

4 Too many variables.
ATARI BASIC aliows no more than 128 different var-
iable names to be used throughout the execution of a
program.

5 String too long.
Actual string assignment contains more characters
than DiMensioned its variable name. The ERROR
message does not appear on all ATARI! systems; the
string is simply truncated to the DIMensioned length,
and no interruption occurs.

6 Qut of DATA error.
The number of READ operations executed by the pro-
gram exceeds the number of items in the correspond-
ing DATA list.

7 Number exceeds 32767.
This error indicates that an operation that is expect-
ing a positive integer value is getting either a value
that exceeds 32767 or is a negative value.

8 Type mismatch in an INPUT statement.

An INPUT statement that assigns values to a numeri-
cal variable cannot accept a string value from the
keyboard.
DiMension error.
This error occurs when attempting to use a non-
DiMensioned string or array variable, to DIMension
the same string or array variable more than one time,
or to DIMension an array beyond the limit of 32767
elements.

Expression too complex.
A string or arithmetic expression is too complex, an
arithmetic expression contains too many levels of
parentheses nesting, or the program contains too
many nested GOSUB statements.

Floating-point value overflow/underflow.
The result of a floating-point arithmetic operation
vielded a value that exceeds the system’s notation

format. This error occurs, for instance, when attempt-
ing to divide by zero.

472

Table G-1—cont. ATARI Error Codes and Their Meaning

Number | Meaning

12 invalid fine number.

A GOSUB or GOTO statement references a line
number that does not exist in the program.

13 NEXT without FOR.

The program contains a NEXT statement that does
not have a corresponding FOR statement.

14 Line too long.

A BASIC line contains statements that are too com-
plex or too long.

15 Missing GOSUB or FOR.

The program contains RETURN or NEXT statements
whose corresponding GOSUB or FOR was deleted
since the execution of the last RUN command.

16 RETURN without GOSUB.

The program uses a RETURN statement that does not
have a corresponding GOSUB.

17 Meaningiess RAM-byte error.

Data previously POKEd into RAM does not make
sense when read during the execution of a program.
Possibly a hardware fault, but most often the resuit of
POKEing invalid data into RAM.

18 Invalid string character.

A nonnumeric character resides within a string when
the program attempts to execute a VAL function on
that string.

19 LOAD program too large for RAM.

A program being loaded from cassette or disk is too
long for the amount of RAM that is available in the
system.

20 Bad device number.

A specified device number is equal to O or greater
than 7.

21 File not in LOAD format.

The program is using a LOAD statement for files or
programs saved with a format other than SAVE.

128 BREAK abort.

The user aborted an |/0 operation by striking the
BREAK key.

129 Device already OPEN.

The program attempts to OPEN a device channel that
is already OPEN.

473

Table G-1—cont. ATARI Error Codes and Their Meaning

Number | Meaning

130 Bad device specification.

The program specifies an unrecognized device code,
or the specified device is not properly connected to
the system.

131 Write-only error.

The program specifies a read operation from a write-
only device (such as a printer).

132 Bad XIO syntax.

An XIO statement is using inappropriate or unintellig-
ible specifications.

133 Not-OPEN error.

Program attempts to use a device or file that was not
previously OPENed.

134 Bad 1/0 channel number.

Program attempts to use a device number other than
1,2,3,4,5,6,0r7.

135 Read-only error.

The program attempts to write to a device or file that
is specified for reading operations.

136 EOF error.

The program has found the End Of a File before
expected.

137 Truncated record.

Data record is more than 256 bytes long, and has
been truncated at that point.

138 Device timeout.

A specified 1/0 device does not respond after a
period of repeated trying.

139 Device NAK

A specified serial port or disk does Not AcKnowledge
attempts to use it.

140 Bus framing error.

Serial-bus data is improperly formatted or inconsist-
ent.

141 lllegal cursor position.

A cursor function is generating an illegal line/row
position for the current screen mode.

142 Serial frame overrun.
Inconsistent serial-bus data.

474

Table G-1—cont. ATARI Error Codes and Their Meaning

Number | Meaning

143 Serial frame checksum error.
Inconsistent serial-bus data.
144 Disk error.
Disk system is not responding properly; the disk
might be write-protected, its directory garbled or the
drive is malfunctioning.
145 Read-after-Write error.
Disk or screen handler finds a discrepancy between
what was written to RAM and what actually appears
there.
146 Operation not implemented.
A specified operation cannot be carried out.
147 Out of graphics RAM.

Insufficient amount of RAM for the graphics mode
being implemented.

160 Invalid drive number.

Program attempts to use an invalid disk drive des-
ignation.

161 Too many files.

The program attempts to open more than three files
at a time.

162 Disk full.
All disk sectors are in use.
163 Device | /0 error.

The |/0 system has encountered an error that it can-
not handle.

164 File number mismatch.

A discrepancy exists in the disk file management
system.

165 Bad file name.
Program cites an invalid file name.
166 POINT length error.

A POINT statement refers to a sector byte that does
not exist.

167 File locked.

The program attempts to modify or erase a locked
disk file.

168 Invalid X!O command.

An X10 command is invalid, inappropriate or contains
a syntax error.

475

Table G-1—cont. ATARI Error Codes and Their Meaning

Number | Meaning

169 Directory full.

A given directory cannot contain more than 64 file
names.

170 File not found.

The program specifies a file name that is not included
in the current disk directory.
171 Invalid POINT.

A POINT statement refers to a disk sector that is not
included in the current file.

476

Table G-2. ATARI IOCB (1/0 Control Block)
Status Codes and Their Meaning

HEX DEC Meaning
$01 001 Operation complete (no errors}
$03 003 End of file (EOF)
$80 128 BREAK key abort
$81 129 10CB already in use (OPEN)
$82 130 Nonexistent device
$83 131 Opened for write only
$84 132 Invalid command
$85 133 Device or file not open
$86 134 Invalid I0CB number (Y register only)
$87 135 Opened for read only
$88 136 End of file (EOF) encountered
$89 137 Truncated record
$8A 138 Device timeout (doesn’t respond)
$8B 139 Device NAK
$8C 140 Serial bus input framing error
$8D 141 Cursor out of range
$8E 142 Serial bus data frame overrun error
$8F 143 Serial bus data frame checksum error
$90 144 Device-done error
$91 145 Bad screen mode
$92 146 Function not supported by handler
$93 147 Insufficient memory for screen mode
$AQ 160 Disk drive number error
SA1 161 Too many open disk files
$A2 162 Disk fuil
$A3 163 Fatal disk |/0 error
$A4 164 Internal file number mismatch
$AS 165 Filename error
$A6 166 Point data length error
SA7 167 File locked
$A8 168 Command invalid for disk
$A9 169 Directory full (64 files)
SAA 170 File not found
SAB 171 Point invalid

477

Appendix H

ATARI 400/800
Hardware Details

Vss(=) (&)RES
RDY (~) (@)b,(0UT)
&4(0UT) (=) ()S.0.

IRQ (>) () dolIN)

N.C.(=) &N.C.
NMI(=) EN.C.
Fig. H-1. 6502 microprocessor SYNG(>) (@ RW

pinout diagram. Vee (=) (2)DBO
ABO (=) (2)DB1
AB1(®) (=)DB2
AB2(2) (8)DB3
AB3(S) (2)DB4
AB4 (@) (®)DB5
AB5 (=) (2)DB6
AB6 () (®)pB7
AB7(2) (R)AB15
AB8(2) (®)AB14
ABY(=) (&) AB13
AB10(3) (®)aB12
AB11(x) (Mvgg

AQY

v
300030
NOILONYLSNI
(s)
H318193Y
ANIOd
(8) MOvisS

X
4315193y
3 X30NI

Q1907
LdNyy3aLNI

I]

WN DI S3Y

~+————NO0IL03S 10HINOJ

A
yalsIo3y
L@ X3aNI

NOILO3S H31SI0I e

(8)

—:8v

[—98Y

——-GaY

gV

8y

[—£tav

—-28Y

——18Y

Ll‘om<|¥

Fig. H-2. 6502 microprocessor

480

—

£80-080
SN\8 vivd

(8)

(8)

CEEENL:]
sng viva

(a)
HOLV1
Y1iva LNdNI

®

8

HOd

g

10d

43151934
NOILONYLSNI
38a
MH
uno¥e¢
unoit¢ 1 _
d
LNdNI HOLVHINID 13181930
¥2010 %0070 (9) SNLVLS
HOSS300Hd
(NP} | (NDED i8)
OHINOD
DNIWIL

g1

v
HOLYINWNOOY

SN v.1vad | TvNUILNI

10V TYNHIANI

HAV TYNH3LNI

HEY

—-slav
—-rLaY
——e-£19Y
—-2igv
F——>-118Y
—2e-019V
|,|'wm<

p——»g8aY

SNE $S3HOAY

internal block diagram.

481

(A gL 1V a34nsan)
HLAIM 3SNd (LNOX P =EPHMd

(A S’} 1Y g3”NSIw)
HLQIM 35710d (LNO)'P = loHMd

IWIL 1TV4

‘3814 (NDOp =0¢ 41 Oy
(AS'L LV @34NSYIW)

HL1aim 381Nd (IN1)°P =OPpHMd

anzoa
8. 43y V. 434
ZPpHMd |
AV AV
NGk AGL
(wno¥¢
tPHMd
(no)*¢
ASL
_ HOPHMd _ WpHMd |
—l———At0
ASL AS'L
_ (N)O¢
Opy1 0p41 _

Fig. H-3. 6502 microprocessor clock timing diagram.

482

l«—REF "A” [+ REF "B" {
+-4V - — 4V
Taws T
e— —1 HRW _:J
20V
20V
RW sem—
THA —] —
ADDRESS
FROM 20v 20V
MPU
08V
. Taos — 20V —
DATA
FROM
MEMORY 0.8V
Tacc Tpsu ‘—THR
RDY, S.0.
—1 TroY,50
SYNC
T
SYNG LEGEND

Trws = READIWRITE SETUP TIME
Taps = ADDRESS SETUP TIME

Tace = MEMORY READ ACCESS TIME
Tpsy = DATA STABILITY TIME PERIOD
Tur = DATA HOLD TIME-READ

Taw =DATA HOLD TIME-WRITE

Tups =DATA SETUP TIME
Trov = RDY, S.0. SETUP TIME
Tsync = SYNC SETUP TIME
Tha =ADDRESS HOLD TIME
Tuaw =R/W HOLD TIME

Fig. H-4. 6502 microprocessor READ-cycle timing diagram.

483

le——— REF "A" L—REF "g"
AV T4V
le—TRWS —]
(2777 R ———
|08V
—_—
ADDRESS 20v
FROM
MPU 08V
—_TADS——
20v
DATA
FROM
MPU LEGEND 08V
Trws = READ/WRITE SETUP TIME l—Tmos —] Thw
Taps = ADDRESS SETUP TIME

Tuw = DATA HOLD TIME
Tmps = DATA SETUP TIME

Fig. H-5. 6502 microprocessor WRITE-cycle timing diagram.

484

Fig. H-6. ATARI Home Com-
puter GTIA (or CTIA)
pinout.

485

Fig. H-7. ATARI ANTIC pinout.

SERIAL /0 JACK

1. CLOCK INPUT 8. MOTOR CONTROL
2 4 6 8 10 12 2. CLOCK OUTPUT 9. PROCEED
® © @ @ © o 3. DATA INPUT 10. + 5/READY
4. GROUND 11. AUDIO INPUT
® ®© © ® © © © 5. DATA OUTPUT 12. +12 VOLTS
1 3 6 7 9 11 13 6. GROUND 13. INTERRUPT
7. COMMAND

Fig. H-8. ATARI serial 1/0 jack pinout.

486

CONTROLLER JACK 1 (JOYSTICK) FORWARD INPUT
2. (JOYSTICK) BACK INPUT

1.2 3 4 5
32 3 & & | 3WOYSTICK) LEFT INPUT

4. (JOYSTICK) RIGHT INPUT
5. B POTENTIOMETER INPUT
®© o o o 6. TRIGGER INPUT

6 7 8 9 7. +5VOLTS

8. GROUND

9. A POTENTIOMETER INPUT

Fig. H-9. ATARI controller jack pinout.

MONITOR JACK (800 ONLY)
D.I.LN 5 JACK

3 1
AUDIO OUTPUT ® COMPOSITE LUMINANCE
LS p “L
COMPOSITE CHROMA ®© @ COMPOSITE VIDEO
GROUND

Fig. H-10. ATARI 800 monitor jack pinout.

487

Index

A

Accessing character set, 154-155

Addr, 152

Addresses
mode-0 screen, 436
mode-1 screen, 437
mode-2 screen, 439
mode-3 screen, 440
mode-4 screen, 442
mode-5 screen, 446
mode-6 screen, 217, 450
mode-7 screen, 455
mode-8 screen, 232, 460
mode-17 screen, 438
mode-18 screen, 439
mode-19 screen, 203, 441
mode-20 screen, 218, 444
mode-21 screen, 204, 448
mode-22 screen, 219, 452
mode-23 screen, 205, 457
mode-24 screen, 236, 464
starting and ending, 174

Animation, 244

Antenna switch, 16

ANTIC, 255
device, 345
instruction set, 300-303
map detail, 345
screen modes, 301

Append, 31

Arithmetic operators, 55

Arrays, DIM, 48-54

ASCl, 60
codes, 61

Asterisk option, 31

ATARI
ATASCII character set, 402
BASIC, 40
commands, 73-113
reserved words, 396
error codes, 472
internal character set, 135, 417
status codes, 477
system configuration, 15-18
ATASCI, 60
character set, 402
coded BASIC programs, 264-266
character set, 120

BASIC
commands, 68
ROM area: 40960-49151, 338
system RAM, 337
tokenized, 307-310
variables, 44-48
Baud rate, 285-286
Binary-to
-decimal conversion, 387-388
-hexadecimal conversion, 388-390
Bit
map, player/missile, 245-246
protecting player/missile,
249-250
maps for missile figures, 243-244
for player figures, 241-243
Boundary values for RAM addresses,
248
BREAK, 22
Buffer, INPUT string, 43

489

Byte
least significant, 386
most significant, 386

C

Cable assembly, 17
CAPS/LOWR, 20
Channel switch, 16
Character
set, accessing, 154-155
ATARI ATASCII, 402
internal, 417
CLOAD, 24
CLOSE, 25

Closing 10CB channels, 278-283

CLR/SET/TAB, 22
Codes, color register, 161
COLCRS, 157
Collision detection, 257-261
COLOR, 148
registers, 183-184
codes, 161
screen mode 4, 204
mode 6, 204
sequences, 170
Column/row
format, 145-147
screen formats, 184-188, 203
techniques, 148-149
Commandy(s), 68-73, 308
Common multiple-peripheral
system, 18

Configurations, player and missile,

240-250
Constants
numeric, 39-44
string, 39-44
Control
keys, 20-22
statements, 68
Conversion
binary to decimal, 387-388
to hexadecimal, 388-390
decimal to binary, 390
to hexadecimal, 384-385
hexadecimal to binary, 390
to decimal, 382-383
table, decimal, 391
Copying
DOS files, 32-33
files to same disk, 28-30

490

CSAVE, 24
CTIA device, 341
CTRL, 21
key operations, 428
Cursor
position, 23
registers, 143
related BASIC statements, 143
Custom
character
set for mode 0, 179-182
for-mode 1, 179-182
for mode 2, 179-182

D

DATA pointer, 50
Decimal
conversion table, 391
to binary conversion, 390
hexadecimal conversions,
384-385

2-byte decimal format, 385-386

DELETE/BACK S, 21
Deleting files, 30-31
DiMensioning
numeric arrays, 48-54
string variables, 48-54
Directory, 26-28
Disk
directory, 26-28
drive 1/0, 270-275
loading programs, 36-37
one, 17-18
saving programs, 36-37
duplicating, 33-35
formatting, 33
operations, routine, 26-37
utility operations, 26
Display
list, 303-306
locating, 306-307
DMACTL, 251
DOS
files, copying, 32-33
menu, 26
system, 18
RAM usage, 338
DRAWTO, 148
Duplicating entire disk, 33-35

E

Editing features, screen, 22-23
ENTER “C:”, 264-266
“D:”, 270-272
ESC, 22
Execute DOS, 26
Existing files, renaming, 31

F

Fast forward, 24
File(s)
copying DOS, 32-33
operation, 35-36
deleting, 30-31
designated, 37
locking, 32
name extension, 37
nonprogram, 266-269
renaming existing, 31
unlocking, 32
Floating-point notation, 40
Formatting a disk, 33
Four-color modes 3, 5, 7, 182-195
Full-screen formats, 168-178
Function(s)
summary, 68-73
tokens, 310

G

Game-controller commands, 73
GET, 149-150, 268-269, 274-275
in mode 1, 165-166
in mode 2, 165-166
Global fite names, 30
GPRIOR, 255
GRACTL, 251
Graphics
commands, 73
mode-0, 143
mode-1, 152-178
mode-2, 152-178
operations, 184-188
split screen, 144
GTIA device, 341

H

Hexadecimal
to binary conversion, 390
decimal conversions, 382-383
HITCLR, 257

Horizontal 6-position registers, 254
Hue, 115
values, 118

INPUT, 266-268, 272-274
string buffer, 43
Input/output commands, 68
INSERT, 21
Interface module, 18
Interference, 16
Internal character set, 417
Invalid numeric variable names, 47
lnverse-key operations, 429
1/0 ROM area: 53248-55295, 340

J
Jack, peripheral, 77

K

Key codes, 426

Keyboard operations, special,
19-22

Keystrokes, 426

Keys, control, 20-22

L

Least
significant byte, 386
nibble, 382
LIST “C.”, 264-266
“D:”, 270-272
Loading
binary programs, 277
programs, 24-25
with disk drive, 36-37
under DOS, 275-277
LOCATE, 149-150
in mode 1, 165-166
in mode 2, 165-166
Locking files, 32
Logical operators, 62-63
LPRINT, 25
LSB, 386
Luminance, 115
values, 118

M

Machine
language options, 36
routine, 300

491

Machine—cont.
routine, 296-299
Map development, 242
Margins, mode-0, 147
Math functions, 68
Memory, 22
MEM.SAYV, 35
Minimum working system, 15-16
Missile figures, bit maps, 243-244
Mode-0
color registers, 144-145
column/row format, 145-147
graphics, 143
margins, 147
PRINT, 147
screen, 143
text screen, 144
Mode-1
color registers, 153-154
graphics, 152-178
Mode-2
color registers, 153-154
graphics, 152-178
Mode-8 screen, 216-238
Modes, screen, 115-143
Most
significant byte, 386
nibble, 382
MSB, 386
Multiple-peripheral system, 18
Musical scores, reproducing, 292

Names
invalid numeric variable, 47
valid numeric variable, 46
variable, 44-48
NEWROW, 160
Nibble, 381
least significant, 382
most significant, 382
Nonprogram files, 266-269
Notation
floating point, 40
scientific, 40
Null string, 44
Numeric
arrays, DIM, 48-54
constants, 39-44
variable(s), 44, 45-47
names, valid, 46

492

Numerical variable names, invalid,
47
Numvar, 150

OLDCOL, 160
OLDROW, 160
One disk drive, 17-18
OPEN, 266
Opening IOCB channels, 278-283
Operating system ROM area:
55296-65535, 346-348
Operator(s), 55-66
arithmetic, 55
logical, 62-63
order of precedence, 64-66
relational, 56-62
tokens, 309

Parity, 286-288
PEEK, 150
Peripheral jack, 17
PIA
device, 345
map detail, 345
Pixel, 193
Play, 24
Player
and missile configurations,
240-250
figures, bit maps, 241-243
Player/missile
bit map, 245-246
protecting, 249-250
setting starting address,
247-249
color registers, 251
colors, setting, 251
figures, adjusting width, 250
moving, 254-255
width registers, 250
graphics, initiating, 251-253
terminating, 251-253
Player/playfield priorities,
255-256
PLOT, 148
POKE, 144
operations for GRACTL register,
252

POKEY
device, 343
map detail, 343
POSITION, 148
statement, 159
Power switch, 16
Powers of 2, 389
PRINT, 41, 266-268, 272-274
Print-cursor features, 145
Program
editing features, 22
memory, 22
recorder, 16-17, 23-25
connecting to system, 24
170, 263-269
Programs, loading, 24-25
saving, 24-25
Protecting player/missile bit map,
249-250
PUT, 149-150, 268-269, 274-275
in mode 1, 165-166
in mode 2, 165-166

R

RAM, 23, 150-152
address, 312
READY, 16
Record, 24
Recorder
connecting to system, 24
170, working with program,
263-269
program, 16-17, 23-25
Registers
color, 183-184
mode-0 color, 144-145
mode-1, 153-154
mode-2, 153-154
Relational operators, 56-62
Renaming existing files, 31
Reserved
word list, 46
words, ATARI BASIC, 396
RETURN, 20
Return to BASIC, 28
Reverse, 24
ROWCRS, 157
Running
binary files under DOS, 275-277
programs, 277

Saving
binary data, 276-277
programs, 276-277
programs, 24-25
with disk drives, 36-37
under DOS, 275-277
Scientific notation, 40
Screen
display lists, 300-307
editing features, 22-23
mode 8, 216-238
modes, features, 115-143
RAM address formats, 188-195
format for mode 4, 209-216
for mode 6, 209-216
SETCOLOR, 144
Setting starting address of
player/missile bit map,
247-249
SHIFT, 20
Single-key operations, 426
6502 instruction set, 349
Sound
commands, 73
effects, experimenting, 292-293
features, 289-293
statement, 290-292
Split-screen graphics, 144
Stack RAM, 313
Starting and ending addresses, 174
for mode-4 screen, 216
for' mode-6 screen, 217
for mode-7 screen RAM, 198
for mode-8 screen, 232
for mode-19 screen, 203
for mode-20 screen, 218
for mode-21 screen, 204
for mode-22 screen, 219
for mode-23 screen, 205
for mode-24 screen, 236
Start-up
procedure, 17
sequence, 18
Statements, summary, 68-73
Stop bits, 285-286
String
buffer, INPUT, 43
commands, 68
constants, 39-44

493

String—cont.
null, 44
variables, 44, 47-48
DIM, 48-54
Subscripted
arrays, 51-54
numeric variables, 51-54
Switch
antenna, 16
channel, 16
power, 16
SYSTEM RESET, 28

T

Tape counter, 23
Text window, 144
Tokenized BASIC, 307-310
Translation modes, 286-288
Turn-on procedure, 18
Two
byte decimal to conventional
decimal format, 387
color mode 4, 195-216
mode 6, 195-216
TXTCOL, 157
TXTROW, 157

494

U

Unlocking files, 32
USR function, 293-299

v
Valid numeric variable names, 46
Variable(s)
BASIC, 44-48
DIM, 48-54
names, 44-48
invalid numeric, 47
valid numeric, 46
numeric, 44, 45-47
string, 44, 47-48

w
Wild-card file names, 30
Words
ATARI BASIC reserved, 396
list, reserved, 46
size, 285-286
Working system, minimum, 15-16
X
XIO command, 283-288

r4
Zero page, 313

Computer Direcf 312/382-5050

Programmer’s
Reference Guide for
the ATARI' 400/800
Computers

Programmer’s Reference Guide for the ATARI 400/800 Computers

Introduces some of the fundamental concepts of BASIC language
Provides a ready reference for the ATARI BASIC commands
Discusses the 8 different screen modes and their 21 variations
Features the enhanced animation package (player/missile/graphics)
Covers the flexible 1 /O system

Describes the memory map

Contains the 6502 instruction set

Covers the numbering system
—Hexadecimal-to-decimal conversion
—Decimal-to-hexadecimal conversion
—Binary-to-decimal conversion

Lists ATARI BASIC reserved words and tokens
Gives ATARI character codes
Features the ATARI keyboard codes

Lists the error code numbers and their general interpretations

The information contained in this book is organized so the user can
efficiently locate facts and application notes

Computer Direct

We Love Our Customers
Box 1001, Barrington, IL 60010

