A COMPUTE! Books Publication §16.95

MAPPING
THE ATARI

Ian Chadwick
Introduction by Bill Wilkinson

REVISED EDITION

The comprehensive sourcebook and memory guide for
beginning and veteran programmers of the Atari 400,
800, XL, and XE personal computers.

e
\4'\ e il r
I SR] S
S r‘ \—1+———]'-“‘
\J\\ I~ 11
}\\\L \ﬂ-—»—r—
q\ —\-_0—_“—__ !
Ny i
\1\ ™ 1 N1 \",
ST NA— i
[T- N
q s
e N1 |
~ »-\""—-1—-——d— ;
\“____J-—— |
N ;]
\ 1
i q ‘! I
N i (i
111!
X 71T
— : K \
b : | \ ¥ }\
: ' ; .
. : i ‘ ’
i :,A———"""
=y 1 2° N MR
e « i
RN N —
~Ne=NJN N K =
3 ST S [|
"_- N ‘E == J| o e
=\ N\
’—-;}'. N\ 3 W N

- MAPPING

—

- THE ATARI

I Revised Edition

Ian Chadwick
Introduction by Bill Wilkinson

- COMPUTE! Publico’rions,lnc.@

One of the ABC Publishing Companies

Greensboro, North Carolina

Revised edition copyright 1985, Ilan Chadwick. All rights reserved.

Previous edition copyright 1983 by Irata Press, Lid. Michael Reichmann,
Publisher.

Reproduction or translation of any part of this work beyond that permitted by
Sections 107 and 108 of the United States Copyright Act without the permission
of the copyright owner is unlawful.

Printed in the United States of America
10987654321
ISBN 0-87455-004-1

We do not accept any responsibility for any damage done to the reader’s
programs through use or misuse of the information presented here. Readers
are advised to read the warning in the introduction with regard to saving
critical programs and removing important disks or cassettes before attempt-
ing to use this manual.

The author and publisher have made every effort in the preparation of this book to in-
sure the accuracy of the programs and information. However, the information and pro-
grams in this book are sold without warranty, either express or implied. Neither the
author nor COMPUTE! Publications, Inc. will be liable for any damages caused or al-
leged to be caused directly, indirectly, incidentally, or consequentially by the programs
or information in this book.

COMPUTE! Publications, Inc., Post Office Box 5406, Greensboro, NC 27403, (919)
275-9809, is one of the ABC Publishing Companies and is not associated with
any manufacturer of personal computers. Atari 400, 800, 1200XL, 600XL,
800XL, 65XE, and 130XE are trademarks of Atari, Inc.

Contents

Author’s Preface to the Revised Edition v
Author’s Preface vii
Introduction / Bill Wilkinson xxi
Memory Map 1
Appendix 1. VBLANK Processes 154
Appendix 2. A Graphics Memory Map 155
Appendix 3. Atari Timing Values 160
Appendix 4. Old (A) and New (B) ROMs 161
Appendix 5. Color 163
Appendix 6. Sound and Music 167
Appendix 7. Player/Missile Graphics

Memory Map 169
Appendix 8. Display Lists 171
Appendix 9. Numerical Conversions 175
Appendix 10. ATASCII and Internal Character

Code Values 180
Appendix 11. Addenda and Errata to the

First BAIiON ;v owons s omans s s moni 182
Appendix 12. The XL/XE Memory Map 200
Appendix 13. XL/XE Enhancements and Bugs 230
Appendix 14. The XL/XE Parallel Bus 232
Appendix 15. XL/XE Graphics Modes 236
Appendix 16. Memory Management on the 130XE 238
Appendix 17. DOS 2.5 and the 1050 Drive 241
Appendix 18. Changing the 400/800 OS

on the XL/XE Computers 244
Appendix 19. XL/XE Programs 247
XL/XEIndex 255
IndexbyLabel ...:..:ocicvivicmivivimmainsssais 258

Index By SUDJECT . . vuneevussins viommmnnessmms 263

iii

Author’s Preface
To The Revised Edition

In the past two years, many people have written to me about Map-
ping—mostly complimentary. [was gratified that no serious errors
were uncovered, only a few typos and minor corrections—a tribute
to COMPUTE!'s editing skills. There are too many people to mention
everyone, but [appreciate the efforts of you, the readers; please
continue to write to me, even if I can’t answer every letter.

Special thanks to Joe Miller of Koala Technologies (previously
with Atari, author of the Translator disk, and frequent CompuServe
user), Matt Ratcliff (remote sysop on the Gateway BBS), Randy Tjin of
Atari Canada, Neil Harris and Richard Frick of Atari USA for tech-
nical support, Bill Wilkinson for the frequent mentions in COMPUTE!
magazine, Gary Yost of Antic, and my friend Yoram Rostas for his in-
cessant prodding and poking into the machine. Also to Atari for its
"open system” policy which helped make this book possible.

The Atari SIG on CompuServe has been a great help and sup-
port; it may be the best source of information and public domain
software for the Atari presently available. If you haven't used
CompusServe, I highly recommend that you do so; the sysop, Ron
Luks, and his group run a super online operation. Ron helped me
gather some of this information by putting up a special message ask-
ing for suggestions and answers to questions I had.

Most of all, I owe an immeasurable amount of love, gratitude,
and affection to the ever-patient Susan McCallan, my constant
companion these past two-plus. How she stands me, ['ve never quite
figured out, but I hope she continues to do so for a long time. This
book is for her.

Publications and Products

Since the first edition, OSS has released an excellent new language,
Action!, as well as a considerably superior BASIC—BASIC XL. Action!
is probably the best language yet for the Atari; it's a bit like C and
Pascal, with a dash of Forth. I recommend it. (Russ Wetmore wrote
Atari HomePak in Action!. Even the Commodore 64 version was writ-
ten in Action! on the Atari.) Many Action! utilities and programs are
available on CompuServe's Atari SIG as well,

Too many magazine articles have been published since the orig-
inal edition to cross-reference all of them, but Bill Wilkinson'’s "Insight:
Atari” in COMPUTE! magazine, Paul Swanson's "'From Here to Atari”
in Micro, plus articles in Analog, Antic, Creative Computing, and
ROM have all provided their share of information. Atari’s own maga-
zine, Atari Explorer, also has many useful articles, especially for
novice programmers.

As for books, The Programmer’s Reference Guide for the Atari
400/800 computers by David Heiserman (Howard Sams, 1984) is a
good “single volume' reference. Mark Chasin’s Assembly Language
Programming for the Atari Computers (McGraw-Hill, 1984) is highly
recommended; it provides many excellent examples strictly for Atari
users, explaining such difficult concepts as I/O, handlers, and VBIs.
Carl Evans’s Atari BASIC Faster and Better (1JG, 1983) is an excellent
technique book for BASIC programmers who want to improve their
style and learn some machine language.

Jerry White, well-known Atari software author, coauthored a
good compendium with Gary Phillips called The Atari User’s
Encyclopedia (The Book Company, 1984). Linda Schreiber’s Ad-
vanced Programming Techniques for Your Atari (Tab, 1983) has sev-
eral good routines for graphics and strings in BASIC.

COMPUTE! Books has published several good books, including
COMPUTE!’s Third Book of Atari, COMPUTE!’s First and Second Book
of Atari Graphics, and COMPUTE!’s First Book of Atari Games. A real
hacker’s delight is The Atari BASIC Sourcebook, by Bill Wilkinson,
Kathleen O'Brien, and Paul Laughton, which includes the entire
source code for Atari BASIC—a must for serious BASIC users (along
with Wilkinson'’s Inside Atari DOS). One of COMPUTE!'s best books
recently is Richard Mansfield’'s Machine Language for Beginners,

a painless way to introduce yourself to machine language
programming.

Finally, for the real hardware buff, Atari once published their
400-800 Home Computer Field Service Manual (part # FD 100001); it
has a wealth of data, schematics, parts lists, diagnostic tests, and
assembly information. It's hard to get, but worth it. An 800XL Field
Service Manual is also available. Sams has released an excellent
hardware technical service manual for the 800 and 800XL, it's expen-
sive, but contains material any hardware hacker needs to know.

It looks like the Atari will have a long life; it's already into its
third generation (all compatible). I'm glad to see that the recent
change in ownership did not spell the end of my favorite home com-
puter, but rather Jack Tramiel is continuing to support and develop it
as well as maintain compatibility between models. I'm looking for-
ward to seeing his new 68000-based ST machines.

March 1985

Ian Chadwick

55 Kent Rd

Toronto, Ont.

MA4L 2X5

Canada

CompuServe 70375,1010

vi

AUTHOR'S PREFACE

What exactly is a memory map? It is a guide to the memory locations in
your computer. A memory location is one of 65536 storage places
called bytes in which a number is stored. Each of these bytes holds a
number for programs, data, color, sound, system operation, or is
empty (i.e., has a zero in it), waiting for you to fill it with your own
program.

Each byte is composed of eight bits, each of which can be either a one
(on) or a zero (off). The alterable area of memory you use for your
programs is called the Random Access Memory (RAM), while the area
used by the Atari to run things is called the Read Only Memory
(ROM). Although some of the memory locations in the special Atari
chips were designed to be written to like the RAM, the rest of the ROM,
including the Operating System ROM, cannot be altered by you since
it contains routines such as the floating point mathematics package
and the input/output routines.

I hope that the reader is familiar enough with his or her Atari to
understand some of these rudimentary uses of a memory map. It is not
the scope of this manual to fully explain how to use PEEK and POKE
statements; refer to your BASIC manual. Briefly, however, PEEK
allows you to look at the value stored in any one memory location. If
you want that value to be printed to the screen, you must preface the
PEEK statement with a PRINT statement such as:

PRINT PEEK (708)

If you haven't changed your color registers, this will return the number
40 to your screen. All bytes in the Atari can hold a number between
zero and 255. POKE allows you to place a value into a byte, such as:

POKE 755,4

By doing this you will have turned your text upside down! You can
return it to normal by:

POKE 755,2

Similarly, POKE 710,80 will turn your screen dark purple! As with
PEEK, POKE can only involve numbers between zero and 255. You will
not be able to POKE into most of the ROM locations since the numbers
in many of them are “hard-wired,” "burned” into the chip, and cannot
be changed in this manner.

So how does the Atari (or other eight-bit microcomputers, for that
matter) store a number larger than 255? By breaking it down into two
parts; the Most Significant Byte (MSB), which is the number divided
by 256 and rounded down to the nearest whole number, and the Least
Significant Byte (LSB), which is the original number minus the MSB.
The Atari knows to multiply the MSB by 256 and add the LSB to get the
number. For example, the number 45290 is stored as two parts: 234

vii

AUTHOR'S PREFACE

(LSB) and 176 (MSB). 176 times 256 equals 45056, plus 234 equals
45290.

LEAST-MOST STORAGE

The Atari uses the convention of storing addresses in the LSB/MSB
manner in memory (i.e., the smaller part is in the first memory
location). For example, locations 88 and 89 store the lowest address of
the screen memory. Let's say the numbers found there are 22 and 56,
respectively. To get the decimal address, you take the MSB (stored in
89) and multiply it by 256, then you add it to the LSB at 88. In our case
that's 56 * 256 equals 14336, plus 22 equals 14358. This is the address
of the upper left corner of the screen. A simple way to do this in BASIC
is:

BYTE = PEEK (88) + PEEK (89) * 256

The reverse (to break up a decimal location into MSB and LSB) is done
by:

MSB = INT (BYTE/256):LSB = BYTE - MSB * 256

This process is easier for assembly language programmers who use
hexadecimal numbers, since the right two digits are always the LSB
and the two left of them are the MSB. For example:

$D016 (hexadecimal for 53270) equals 16 (LSB) and DO (MSB)

$16 equals 22 in decimal, and $D0 equals 208 decimal. Multiply the
MSB by 256 and add 22 and you get 53270. Throughout the map
portion of this book I have provided both decimal and hexadecimal
numbers together for ease of reference. In 8K BASIC, you can use
decimal numbers only with POKE, and PEEK will return only decimal
values to you.

Hexadecimal is a base 16 used instead of the normal base ten system
because it is more suited to the eight-bit structure of the computer. So,
when we say 2175 in decimal, what we really mean is:

10000 1000 100 10 1
0 2 l 7 8

In hex, the same number is $87F. That breaks down to:

4096 256 16 1
0 8 7 F

Rather than multiply each next step up by ten, we multiply by 16.
Okay, but where do we get "F" from? Well, if base ten has the numbers
zero to nine, base 16 will have to have some letters added to the end to
make up for the extra numbers:

Decimal 0 1 2 3 4 5 6
Hex 01 2 3 4 5 6

10 11 12 13 14 15

7 8 9
7 89 A B C D E F

viil

AUTHOR'S PREFACE

So $F equals 15 in decimal. Now here’s how it all relates to binary math
and bits:
Each byte can be broken up into two parts (nybbles), like this:

0000 0000

If each nybble is considered a separate number, in decimal, the value
of each would range from zero to 15, or zero to $F. Aha! So if all the
bits in each group are on (one, or set), then you have:

1111 1111 Binary
15 15 Decimal
F F Hex

You join the two hex numbers together and you get SFF (255 in deci-
mal). the largest number a byte can hold. So you can see how we
translate bytes from binary to hex, by translating each nybble. For
example:

1001 1101 Binary
9 13 Decimal
9 D Hex

$9D equals nine times 16 plus 13, or 157 in decimal.

0100 0110 Binary
4 6 Decimal
4 6 Hex

$46 equals four times 16 plus six, or 70 in decimal.

1111 1010 Binary
15 10 Decimal
F A Hex

$FA equals 15 times 16 plus ten, or 250 in decimal.

Obviously, it is easier to do this with a translation program or a
calculator!

Since I will often be discussing setting bits and explaining a small
amount of bit architecture, you should be aware of the simple
procedures by which you can turn on and off specific bits in any
location (that is, how to manipulate one of the eight individual bits
within a byte). Each byte is a collection of eight bits: numbers are
represented by turning on the particular bits that add up to the number
stored in that byte. Bits can be either zero (0 equals off) or one (1
equals on, or SET). The bits are numbered zero to seven and represent
the following decimal numbers:

Bit 7 6 5 43 210
Value 128 64 32 16 8 4 2 1

The relationship between the bits and the powers of two should be

AUTHOR'S PREFACE

obvious. Adding up all the numbers (all the bits are set) gives us 255.
So each byte can hold a number between zero (no bits are set) and 255
(all bits are set).

Sometimes, instead of zero, no bits set is intended to mean 256. That
will be noted in the relevant locations. So how do you set a bit? Simple:
POKE it with the appropriate number. For example, to set Bit 5, POKE
the location with 32. To set Bits 7, 5 and 4, add up their values, 128 +
32 + 16, and POKE the location with the total: 176.

Sometimes you need to set a bit without changing other bits already
set, so you:

POKE number, PEEK (number) + decimal value for the bit to be set.
(i.e., POKE 50418, PEEK (50418) + 32)

To turn off a bit, instead of adding the value you would subtract it with
POKE number, PEEK (number), minus the decimal value for the bit to
be turned off. Binary math is simple and easy to learn; if you don't
understand it now, you should do further reading on machine
language before attempting any serious use of this guide.

AND, OR, And EOR

It is useful for the reader to know how to perform Boolean logic on bits.
There are three functions used in assembly code for bit manipulation
in this manner: AND, OR and EOR (exclusive OR). Each requires you
to use two numbers, the one being acted upon and the one used to
perform the function. Here is a brief explanation of how these logical
functions work:

AND is usually used as a mask — to zero out unwanted bits. You
compare two binary numbers using AND); if both bits in the same
location are one, then the result is one. If either bit is zero, then the
result is zero. For example:

51 = 00110011
AND 15 = 00001111

Result = 00000011 = 3

OR is frequently used to force setting of a bit. If either bit in the
original or the mask is one, then the result is one. For example:

65 = 01000001
OR 128 = 10000000

Result 11000001 = 193

In this case, 65 is the ATASCII "A"”. By ORing it with 128, we get 193,
the ATASCII inverse “A".

EOR “flips" bits in the original if the mask has a one in the same
location. For example:

Il

AUTHOR'S PREFACE

193 = 11000001
EOR 128 = 10000000

Result 01000001 = 65
In this case, we have returned the inverse "A" to the normal ATASCII

value. An EOR with 255 (all ones) will produce the complement of the
number:

171 = 10101011
EOR 255 = 11111111
Result = 01010100 = 84
In brief:

Original: Mask: AND: OR: EOR:
0 0 0 0 0
0 1 0 1 1
1 0 0 1 1
1 1 1 1 0

Atari BASIC supports AND, OR and NOT; NOT is the logical
complement where NOT1 equals zero and NOTO equals one. If the
expression is true, you get a zero; if NOT true, a one is returned — for
example, NOT ((3+4) > = 6) results in zero. See COMPUTE!, May
1981 for a machine language routine to allow you to perform Boolean
bit logic using a USR call from BASIC.

In general, I have attempted to avoid using 6502 assembly language
mnemonics, but have included them where I felt their use described
the action to be taken better than a lengthy explanation. Most common
are JMP (jump to location), ISR (jump to subroutine), RTS (return from
subroutine), and RTI (return from interrupt). Readers should be
minimally familiar with machine language in order to understand any
machine language subroutines used here.

I also suggest that if the reader doesn't already have one, he or she
obtain a program to translate hex to decimal and decimal to hex
(possibly even one with binary translations as well). The ROM
cartridge from Eastern House Software, Monkey Wrench, is useful for
this purpose. Perhaps the easiest to use is the TI Programmer
calculator from Texas Instruments.

The examples in this book were all written using Atari 8K BASIC. They
are intended to demonstrate the use or the effect of a particular
memory location. They are not intended as the best examples of
BASIC programming; they were written for simplicity, not
sophistication.

As afinal note, any question or doubt as to either a particular location
or explanation has been noted. It can't hurt to play around yourself,
POKEing in the memory to see what other effects you can discover. If

xi

AUTHOR'S PREFACE

you find something I didn't, good! Please write and let me know.

You can't hurt the machine by POKEing about in memory, although
you may crash any program in memory, so SAVE your program first.
Usually you can salvage it by pushing RESET, but you may have to
turn off the machine and reboot on occasion. You can learn a lot about
your machine by simply playing around with it.

ABOUT LANGUAGES

The majority of the information here concerns language-independent
locations and can be used regardless of the language you use for your
programming. When the location is language-dependent, such as the
BASIC or DOS areas, | have noted it in the proper section. You may
exert the same control over your Atari in FORTH, Pascal, LISP, or
whatever language you chose. You will obviously have to change the
commands PEEK and POKE to the proper commands of your
language.

BASIC is a good language to start with: you can use it to learn
programming, to explore your computer, to experiment with, and to
have fun with. However, when you are ready to go on, you will have to
learn a more efficient, faster language if you really want to make the
best use of your Atari. Many people choose 6502 machine language
because of its speed.

If you want to stay with a high-level language, I suggest you learn
FORTH. It has some of the speed of machine language code with the
ease of “higher level language” programming.

Computer languages, whichever you use, are quite exact in their
meaning, especially compared to English. Consider that in English, a
fat chance and a slim chance both mean the same thing. Yet POKE,
PUT, and PUSH have very different meanings in computerese.

TEXT KEY
Example: 912-927 390-39F IOCBS

The main memory map shows you the decimal and then the
hexadecimal location, the label (assigned by Atari and used by OS,
DOS or DUP routines), and then comments and description. The label
has no real function; it is merely a mnemonic convenience. Readers
are referred to Stan Kelly-Bootle's delightful book, The Devil’s DP
Dictionary (McGraw-Hill Ryerson, 1981), for a full definition of the
word “label”. The following abbreviations are also noted in the
comments:

(R) Read
(W) Write

Sometimes the functions are different in a particular location, so each
is noted.

xii

AUTHOR'S PREFACE

(D:) Disk Drive

(E:) Screen Editor

(S:) Display

(K:) Keyboard

(P:) Printer

(C:) Cassette

(R:) RS-232interface. (Don't confuse this with (R) for Read.) The

context should be obvious.

(number) e.g. (708) Shadow Register. This is a RAM register which
corresponds to a ROM register in one of the special Atari chips such as
GTIA or POKEY. The shadow location is the address you use to PEEK
and POKE values. These shadow locations are polled by the hardware
addresses 30 times a second at every stage two VBLANK interval, and
the values used are transferred to the hardware locations for use. In
order to effect any “permanent” change to the hardware location, you
have to use the shadow register in BASIC (of course, every change is
negated when you turn the machine off!). Only machine language is
fast enough to use the hardware addresses directly.

For example, location 54273 is for character control. It polls location
755 to see if the screen characters are to be normal, inverse, or upside-
down. To change the characters, you POKE location 755 — the shadow
— not 54273. If you POKE 54273, you will get the desired effect — for
1/60 of a second! As mentioned above, you can use the hardware
addresses directly in machine language, but not in BASIC. It's just too
slow.

Sometimes, where most appropriate, a hexadecimal number will be
displayed and the decimal number put in parentheses. The context
should be obvious concerning which is a shadow or a decimal number.

(* letter) refersto a source in the case of a conflicting location
or explanation. See the source below.

($number) refers to a hexadecimal (also called hex) number
(i.e.: $D40E). I also refer to “"pages” in memory. Pages are
sections of 256 bytes ($100) of memory which end with 00 (i.e.:
$E200, $C000, $600). Four pages ($400) equals 1024 bytes or 1K
(kilobyte) of memory.

GLOSSARY

ANTIC, CTIA AND GTIA, PIA, POKEY: Special Atari
chips controlling the 400/800’s graphics, color and screen
resolution, controller jacks and sound, respectively. Located in
ROM, locations 53248 to 54783. ANTIC also processes the Non-
Maskable Interrupts and POKEY processes the Interrupt Requests.
These chips, along with the 6502 microprocessor which runs the
rest of the Atari, are housed inside your computer, protected by

xiii

AUTHOR'S PREFACE

the metal shielding underneath the plastic cover.

BIT, BYTE: A bit is the smallest size division of memory in your
computer. It is so small that it can hold only one value in it: off
(zero) or on (one). Eight bits together form a byte; this is the size of
the memory locations discussed in this book. You will sometimes
hear programmers talk about a half-byte called a “nybble.”

CIO: Central Input/Output routines located in ROM. Controls
Input/Output Control Block operations. Briefly, CIO handles the
data input and output through the device driver(s) (also known as
device handlers), then passes control to those drivers. It's a single
interface with which to access all peripherals in a device-
independent manner (i.e., uniform handling of data with no
regard to the device being accessed). As an example: writing data
to a disk file is treated in an identical manner as writing data to the
screen; commas insert blanks between elements and both semi-
colons and commas suppress the End-Of-Line character (EOL).

DCB: Device Control Block, used by Serial Input/Output.

DL: Display List. This is a set of instructions which tell the ANTIC chip
where to find the screen display data and how that data is to be
placed on the TV screen.

DLI: Display List Interrupt. A DLI causes the display to stop
processing to temporarily run a user-written routine.
DOS: Disk Operating System. The software loaded from disk file

DQOS.SYS that controls all disk I/O. The latest edition of DOS is
called DOS 2.0S (S for single density).

DUP: Disk Utilities Package. The software loaded from disk file
DUP.SYS that handles the DOS menu functions such as Copy.

FMS (or sometimes DFMS): File Management System portion of
DOS; a dedicated device driver that controls all I/O operations for
device "D:".

FP: Floating Point mathematical package in ROM.

I/O: Input/Output.

IOCB: Input/Cutput Control Block. Area of RAM (locations 832
to 959) used by CIO to define operations to devices such as the
disk drive (D:), printer (P:), screen display (S:), keyboard (K:) and
screen editor (E:). ZIOCB is the page zero IOCB.

IRQ: Interrupt Request used for serial port communication,
peripheral devices, timing and keyboard input. IRQ's are
processed by the POKEY chip.

NMI: Non-Maskable Interrupt; used for video display and
RESET. NMIs are processed by the ANTIC chip.

xiv

AUTHOR'S PREFACE

OS: Operating System. The resident system that runs the Atari.
The OS resides in the 10K front cartridge slot under the hood in
your Atari 800. It's not visible in the 400 without taking the cover
apart (not recommended). The OS is the same for both the 400 and
800. There are two versions of the OS currently in circulation: the
older "A"” ROMs and the newer “"B” ROMs, released around
January 1982. The new OS is almost identical to the old OS except
that it corrects a few bugs and changes some addresses. Not all of
your old software will run with the new OS. The differences
between the two are better explained in Appendix Four.

Although people often refer to the entire ROM area as the OS, this
is not correct. The OS ROM is that portion of memory which holds
the floating point package, the Atari character set, the device
handlers, and both CIO and SIO. The actual operating system
itself is the portion of the OS ROM which handles the I/O.

PMG, PM Graphics: Player/missile graphics. Players and
missiles are special moveable, user-defined, colored screen
objects. They are often used for games, animation, or special
cursors. PM graphics are unique in that you can establish the
manner (priority) in which they interact with the rest of the screen
display and each other.

RAM: Random Access Memory. All memory below the OS area
(0to 49151) which is used for storage, programs, buffers,
cartridges, DOS, IOCB, shadow registers, and registers for the
special Atari chips. Random Access means you can get to and
from these locations at random, not that they store information
randomly!

ROM: Read Only Memory. That part of high memory (locations
49152 to 65535) in which the special hardware chips and the OS
reside. ROM is also used to describe cartridge memory such as the
8K BASIC ROM, which cannot be user-altered (the cartridge
ROM supersedes the RAM). You cannot alter most of the ROM,
although some of the locations in the special Atari chips may be
temporarily set to a new value.
With both RAM and ROM, we refer to areas with lesser values as
being in "low” memory and locations with larger values as being in
“high” memory.

SIO: Serial Input/Output routines located in ROM. Controls
serial operations including the 850 interface (R:) and cassette
recorder (C:). Briefly, SIO controls the Atari peripherals as per

the request placed in its Device Control Block (DCB) by the
proper device driver. It is also accessed by FMS for data transfer.

VBI: VBLANK interrupt. A VBI is an interrupt that occurs

XV

AUTHOR'S PREFACE

during the VBLANK interval, causing the computer to jump to a
user-specified location to process a short user-written routine
during the VBLANK process.

VBLANK: Vertical Blank. The interval between the time the TV
electron beam turns off after reaching the bottom right corner of
the screen and returns to the top left corner and turns back on
again. This small time period may be used by machine language
programmers for short routines without interrupting the display
by writing a VBI (above). There are two VBLANK stages. Stage
one is performed every VBLANK cycle (1/60 second). Stage two
is performed either every 1/30 second or every 1/60 second when
it doesn't interrupt time-critical code being executed. See the
end of the memory map for the processes executed in each stage.

SOURCES

Letters in brackets are used in this guide to identify the source.

(*M) Master Memory Map Ver. 2, Santa Cruz Educational Software,
1981. A memory guide by the same people who brought us the
TRICKY TUTORIAL series. The latter are both tutorials and

applications utilities. The map does contain some annoying errata.

(*Y) Your Atari Computer, by Lon Poole with Martin McNiff & Steven
Cook, Osborne/McGraw-Hill, 1982. The best guide to date on general
use of the Atari. Very highly recommended.

(*C) COMPUTE!’s First Book of Atari, by the Editors of GOMPUTE!
Magazine, Small System Services Inc., 1981. A good collection of
early articles that appeared in the magazine.

At the time of this writing, COMPUTE!’s Second Book of Atari had just
been released. It is therefore not used as a reference source here, but it
is a must for serious programmers. It contains a wealth of information
on an enormous range of topics, including advanced graphics, forced-
read modes, page flipping, Atari BASIC and many valuable utilities. It
should be a staple in most Atari owners’ libraries.

(*I) Inside Atari DOS, compiled by Bill Wilkinson, published by
COMPUTE! Books, Small System Services, Inc., 1982. An

explanation and copyrighted source code for the FMS portion of DOS
2.0,

Atari BASIC: Learning by Using, by Thomas Rowley, Hofhacker
Press, 1981. A lot of information packed into a surprisingly good little
book.

The following publications are all from Atari, Inc. I recommend them
to all truly interested in understanding their Atari computers:

(*D): De Re Atari: an arcane, but indispensable reference to the
Atari's operations and come of its most impressive aspects, by Chris

xvi

AUTHOR'S PREFACE

Crawford et al. Serialized in BYTE magazine, late 1981 to mid 1982.
Earlier editions have some errata, so make sure you obtain the latest
edition.

(*O) Operating System User’s Manual and

(*H) Hardware Manual. The famous “technical manuals” pair.
Indispensable for serious users, albeit heavy going and not generally
very professional in their presentation of material.

(*8) 850 Interface Module Operator’s Manual. The 850 manual gives
many examples in BASIC of how to use the RS232 serial interface ports
for both printer control and telecommunications. A very good terminal
program called Jonesterm, in BASIC with machine language
subroutines, is in the public domain and is available on many
electronic bulletin board systems, including CompuServe. Modem
users will find many useful programs available in CompuServe.

(*L) Operating Systems Listing and

(*U) Disk Utilities Listings are the commented, copyrighted source
code listings for the OS and the DUP.SYS portion of DOS.

(*B) Atari BASIC Reference Manual.
(*S) Disk Operating System II Reference Manual.

(*A) Atari Microsoft BASIC Instruction Manual. Microsoft BASIC
makes excellent use of PEEKs and POKEs to accomplish many tasks. It
also has many powerful commands not available in the 8K BASIC.

MAGAZINES

ANTIC Magazine had an extensive memory map, written by James
Capparell, which continued over a number of issues. When it was used
as a source, I labelled these references with (AM). It has a few minor
errata in it.

I found a number of other magazine articles useful, particularly those
in COMPUTE! and Creative Computing. I also found Softside, BYTE,
ANALOG and Micro magazines to be useful in the preparation of this
book. These are all referred to throughout the book by month or issue.
We owe a vote of thanks to the folks at Atari who published the
technical manuals and the source listings of the operating system and
the DOS. We owe another vote of thanks to Bill Wilkinson, of
Optimized Systems Software Inc., who created the DUP portion of
DOS and decided to publish the source code in his Inside Atari DOS.
No other computer manufacturer has, to my knowledge, ever provided
users with such in-depth material or the details of its own operating
systems. Without it, none of this would have been possible: a lot of the
information here was gleaned from those sources.

This book is arranged in four sections: a numerical listing of the main

xvii

AUTHOR'S PREFACE

Atari memory locations, their labels and their use; a general map
diagram to show how the memory is broken down; an appendix of
utility material with charts and tables, and an index/cross-reference
guide.

There is an awful lot of information contained here; tedious as it might
appear, I suggest that you read this manual through at least once.
Some of the information which is not clear in one area may be
elaborated on and made clearer in another area. Wherever another
location is referred to in one description, you should turn to the
reference and read it after you have read through the first location.
You should also refer to the locations used in any sample program. The
more familiar you are with the memory, the more you will get out of
your Atari. When you read the description in any memory location,
make sure you refer to either the shadow or the hardware register
mentioned, for more information.

POWERUP AND RESET

COLD STARTS

On powerup (when you turn on the computer) the Atari OS performs a
number of functions, some of which are noted as defaults in the
memory locations to follow. Among these functions are:

Determine the highest RAM address and clear all RAM to zeroes
(except locations zero to 15; $0 to $F).

Erase and format the device table.

S:, E:, K:, P:, C: handlers, SIO, CIO and interrupt processor are all
initialized.

Set the screen to GRAPHICS mode zero, 24 lines by 40 columns; set
screen margins.

Initialize the cartridge(s) if present; test for the B (right), then for the A
(left) cartridge.

Check the cartridge slots for disk boot instructions and, if they are
present, boot disk.

Transfer control to the cartridge or booted program.
Initialize the RAM interrupt vectors at 512 to 548 ($200 to $224).

Store zero in the following hardware registers: 53248 to 53503, 53760
to 54527 ($D000 - $DOFF, $D200 - $D4FF).

The START key flag is tested and, if set (the START key is held down),
CKEY (74; $4A) requests a cassette boot.

HATABS (794; $31A) is initialized to point to the ROM-resident device
handlers.

xviii

AUTHOR'S PREFACE

IOCB zero is OPENed to device E:.

Coldstart (powerup) essentially wipes the computer clean and should
only be used for such. It's rather drastic.

WARM STARTS

When the RESET key is pushed, the OS performs some of the same
functions as in powerup as well as some unique functions, including:

Set the warmstart flag (location 8) to true (255; $FF).

Clear the OS portion of RAM from locations 16 to 127 ($10 - $7F) and
51210 1023 ($200 - $3FF).

Reset all RAM interrupt vectors.

Reformat the device handler table (HATABS); added vectors are lost.
Re-initialize the cartridge(s).

Return to GRAPHICS mode zero.

Transfer control to the cartridge or booted program.

Restore the default values in RAM.

Note that a RESET does not wipe RAM, but leaves it intact. Usually
your program and variables will be secure when you press RESET.
This is considerably less drastic than powerup as above.

There are two vectors for initialization so that these processes may be
user initiated: 58484 ($E474) for RESET and 58487 ($E477) for
powerup.

See the OS User’s Manual, pages 109 to 112, and De Re Atari for a
flowchart of the process.

xXix

INTRODUCTION

Bill Wilkinson

When I was asked by the editors at COMPUTE! to write this
introduction, I was at first a little hesitant. How does one introduce
what is essentially a map of the significant locations on the Atari other
than by saying "Thisisamap of . . .”?

And, yet, there is something about this book which makes it more
than “simply a map.” After all, if this were “simply” a memory map, I
might “simply” use it to learn that "SSKCTL" is the “serial port
control” and that it is at location $232. But what does that mean? Why
would I want to control the serial port? How would I control it?

The value of this book, then, lies not so much in the map itself as it
does in the explanations of the various functions and controls and the
implications thereof. Even though I consider myself reasonably
familiar with the Atari (and its ROM-based operating system), I expect
to use this book often.

Until now, if I needed to use an exotic location somewhere in the
hardware registers, I would have to first locate the proper listing, then
find the right routine within the listing, figure out why and how the
routine was accessing the given register, and finally try to make sure
that there were no other routines that also accessed this same register.
Whew! Now, I will open this book, turn to the right page, find out what
I need to know, and start programming.

Okay. So much for this introduction. And if you are comfortable
programming your “home” language, the language you know best,
and two or three other languages, you don't need any more from me.
So good luck and bon voyage.

A Common Problem

What? Still with me? Does that mean that you are not comfortable
doing memory mapped access in three or four languages? Well, to tell
the truth, neither am I. And so the one thing I decided would be of
most value in this introduction would be a summary of how to do
memory access from no less than seven different languages. (Or is it
eight? Well)

The title of this section is perhaps a little misleading (on purpose,
of course, as those of you who read my column “Insight: Atari” in
COMPUTE! Magazine can attest). The “common problem’ we will
discuss here is not a bug-type problem. Rather, it is a task-type
problem which occurs in many common programs. Or perhaps we
could approach it as a quiz. Why not?

Quiz: Devise a set of routines which will (1) alter the current
cursor position (in any standard OS graphics mode) to that
horizontal and vertical position specified by the variables "H" and
"V and (2) retrieve the current cursor position in a like manner.
To receive full credit for this problem, implement the routine in at
least seven different computer languages.

xXxi

INTRODUCTION

Well, our first task will be to decide what seven languages we will
use. First step in the solution: find out what languages are available on
the Atari computers. Here's my list:

Atari BASIC

BASIC A +

Atari Microsoft BASIC

Forth

@

Pascal

PILOT

LISP

Assembler/Machine Language

Does it match yours? You don't get credit for more than one
assembler or more than one Forth. And, actually, you shouldn't get
credit for Microsoft BASIC, since it uses exactly the same method as
Atari BASIC. And I will tell you right now that I will not attempt this
task in LISP. If you are a LISP fanatic, more power to you; but I don't
have any idea of how to approach the problem with Datasoft's LISP (the
only LISP currently available on the Atari).

Anyway, let's tackle these languages one at a time.

Atari BASIC And Microsoft BASIC

Well, how about two at a time this one time? The implementation really
is the same for these two languages.

Actually, the first part of this problem set is done for you in Atari
BASIC: the POSITION statement indeed does exactly what we want
(POSITION H,V will do the assigned task). But that's cheating, since
the object of these problems is to discover how to do machine level
access without such aids.

Step 1 is to look at the memory map and discover that COLCRS, at
locations 85 and 86, is supposed to be the current graphics cursor
column (COLumn of CuRSor). Also, ROWCRS (ROW of CuRSor) at
location 84 is the current graphics cursor row.

Let's tackle the row first. Assuming that the row number is in the
variable "V (as specified above), then we may set the row cursor via
“POKE 84,V"”. And, in a like manner, we may say "V =PEEK(84)" to
assign the current position to "V". Now that's fairly straightforward: to
change a single memory location, use "POKE address,value”; to
retrieve the contents of a single memory location, use
“PEEK (address)"”. Virtually anyone who has programmed in BASIC on
an Atari is at least familiar with the existence of PEEK and POKE, since
that is the only method of accessing certain functions of the machine
(and since the game programs published in magazines are loaded with
PEEKs and POKEs).

But now let’s look at the cursor column, specified as being

xxii

INTRODUCTION

locations 85 and 86, a “'two byte” value. What does that mean? How
can something occupy two locations? Actually, it all stems from the
fact that a single location (byte, memory cell, character, etc.) in an
Atari computer can store only 256 different values (usually numbered
0to 255). If you need to store a bigger number, you have to use more
bytes. For example, two contiguous bytes can be used to store 65536
different values, three bytes can store 16,777,216 different values, etc.

Since the Atari graphics mode can have as many as 320 columns,
we can't use a single one-byte location to store the column number.
Great! We'll simply use two bytes and tell BASIC that we want to talk to
a bigger memory cell. What's that? You can't tell BASIC to use a
bigger memory cell? Oops.

Ah, but have no fear. We can still perform the task; it just takes a
little more work in BASIC. The first sub-problem is to break the
column number (variable “"H") into two “'pieces,” one for the first byte
and one for the second. The clearest way to accomplish this is with the
following code:

H1 = INT(H/256)
H2 = H-256 * H1

Because of the nature of machine language “arithmetic,” numbers
designed to be two-byte integers must usually be divided as shown: the
“high order byte"” must be obtained by dividing the number by 256,
and any fractional part of the quotient must be discarded. The “low
order byte" is actually the remainder after all units of 256 have been
extracted (often designated as “'the number modulo 256").

So, if we have obtained “H1" and "H2" as above, we can change
the cursor row as follows:

POKE 85,H2
POKE 86,H1

Notice the reversal of the order of the bytes! For the Atari (and
many other microcomputers), the low order (or least significant) byte
comes first in memory, followed by the high order (or most significant)
byte.

Now, suppose we wish to avoid the use of the temporary variables
“H1" and “H2" and further suppose that we would now like to write the
entire solution to the first problem here. Voila:

POKE 84,V
POKE 86,INT(H/256)
POKE 85,H -256 * INT(H/256)

And we wrote those last two lines in “"reverse” order so that we
could offer a substitute last line, which will not be explained here but
which should become clear a few paragraphs hence:

POKE 85,H -256*PEEK(86)

xxiii

INTRODUCTION

Whew! All that to solve just that first problem! Cheer up, it does
get easier. In fact, we already mentioned above that you can retrieve
the current row via "PEEK(84)". But how about the column?

Again, we must remember that the column number might be big
enough to require two adjacent bytes (locations, memory cells, etc.).
Again, we could construct the larger number via the following:

H2 = PEEK(85)
H1 = PEEK(86)
H = H2 + 256 *Hl

Do you see the relationship between this and the POKEs? To “put
it back together,” we must multiply the "high order byte” by 256
(because, remember, it is actually the number of 256's we could obtain
from the larger number) before adding it to the “low order byte.”

Again, let us summarize and simplify. The following code will
satisfy the second problem requirement for BASIC:

V = PEEK(84)
H = PEEK(85) + 256 * PEEK(86)

Okay. We did it. For two languages. And if you are only interested
in BASIC, you can quit now. But if you are even a little bit curious,
stick with us. It gets better.

BASICA +

There might be a little bit of prejudice on my part here, but I do feel
that this is the easiest language to explain to beginners. In fact, rather
than start with text, let’s show the solutions:

Problem 1.
POKE 84,V
DPOKE 85,H

Problem 2.
V = PEEK(84)
H = DPEEK(85)

As you can see, for the single memory cell situations, BASIC A +
functions exactly the same as the Atari and Microsoft BASICs. But for
the double-byte problems, BASIC A + has an extra statement and an
extra function, designed specifically to interface to the double-byte
“words”’ of the Atari's 6502 processor.

DPOKE (Double POKE) performs exactly the equivalent of the two
POKEs required by Atari BASIC. DPEEK (Double PEEK) similarly
combines the functions of both the Atari BASIC PEEKs. And that's it.
Simple and straightforward.

Forth

I think the ease of performing the required problems in Forth will show
how tightly and neatly Forth is tied to the machine level of the

Xxiv

—y

INTRODUCTION

computer. In fact, we don't really have to “invent” a way to solve these

problems; the solutions are within the normal specifications,

expectations, and capabilities of virtually all Forth implementations.
Again, [think I will show the solutions before explaining:

Problem 1.
V @ 84 c!
H@85!

Problem 2.
84c@H!
85 @ V!

Now, if you are not a Forth user, that may all look rather cryptic
(looks like a secret code to me), but let's translate it into pseudo-
English. The first line of the first problem might be read like this:

V means the location (or variable) called “V"
@ means fetch the contents of that location
84 means use the number 84
c! means store the character (byte) that we fetched first into the
location that we fetched second
or, in shorter form,
"V is to be fetched as the data and 84 is to be used as the address
of a byte-sized memory store.”

The second line, then, would read essentially the same except that
the "1 used (instead of “'c!") implies a full word (double byte) store, as
does DPOKE in BASIC A +.

The similarity and symmetry of the solutions of Problems 1 and 2
are striking. Let us “"read” the first line of the second problem:

84 means use the number 84 (in this case, as a location)
c@ means fetch the byte (character) at that location
V means fetch the location (variable) called “V”
! means store the data fetched first into the location fetched
second

And, again, the only difference between this and the next line is
that "@" (instead of "c@"’) implies a double-byte fetch (again, as does
DPEEK of BASIC A +).

Neither is there space here nor it is appropriate now to discuss the
foibles of Forth’s reverse Polish notation and its stacking mechanism,
but even dyed-in-the-wool algorithmic language freaks (like me) can
appreciate its advantages in situations such as those demonstrated
here.

C

No, that does not mean "“Section C."” Believe it or not, "C" is the name
of a computer language. In fact, it is one of the more popular computer

XXV

INTRODUCTION

languages among systems programmers. It is “'the” language used on
and by the UNIX operating system, which appears to have the inside
track on being the replacement for CP/M on the largest
microcomputers (e.qg., those based on 68000 and other more advanced
Processors).

C, somewhat like Forth, is fairly intimately tied to the machine
level. For example, there are operators in C which will increment or
decrement a memory location, just as there are such instructions in the
assembly language of most modern microprocessors.

Unlike Forth, however, C requires the user to declare that he/she
is going beyond the scope of the language structures in order to
“cheat” and access the machine level directly. In standard C (i.e., as
found on UNIX), we could change the current cursor row via
something like this:

((char)84) = V;

Which, I suppose, is just as cryptic as Forth to the uninitiated. If
you remember that parentheses imply precedence, just as in BASIC,
you could read the above as "Use the expression '84’ as a pointer to a
character (i.e., the address of a byte — specified by ‘char*’) and store
V (*=") indirectly (the first **') into that location.” Whew! Even
experienced C users (well, some of us) often find themselves putting in
extra parentheses to be sure the expression means what they want it to.

Anyway, that ‘(char *)’ is called “type casting” and is a feature of
more advanced C compilers than those available for the Atari. But, to
be fair, it is really a poor way of doing the job, anyway. So let's do it
“right’":

Problem 1.

char *pc ; /* pcis a pointer to a byte */
int *pi; /* piis a pointer to a double byte */
pc =84 ;pi =85;

‘pe =V;"pi = H;
Problem 2.

char *pc;

int *pi;

pc = 84;pi =85;

V =*pc;H = "pi;

As with the Pascal solutions, in the following section, we must
declare the “type” of a variable, rather than simply assuming its
existence (as in BASIC) or declaring its existence (as in Forth). The
theory is that this will let the compiler detect more logic errors, since
you aren't supposed to do the wrong thing with the wrong variable
type. (In practice, the C compilers available for the Atari, including

Xxvi

INTRODUCTION

our own C/65, are “loose’ enough to allow you to cheat most of the
time.)

Here, the declarations establish that “'pc” (program counter) will
always point to (i.e., contain the address of) a byte-sized item. But “'pi”
will always point to a word-sized (double byte) item. Now, actually,
these variables point to nothing until we put an address into them,
which we proceed to do via "pc=84" and “'pi =85".

And, finally, the actual “assignments’ to or from memory are
handled by the last line in each problem solution. Now, all this looks
very complicated and hardly worthwhile, but the advantage of C is,
once we have made all our declarations, that we can use the variables
and structures wherever we need them in a program module, secure in
the knowledge that our code is at least partially self-documented.

Pascal

Actually, standard Pascal has no methods whatsoever available to
solve these problems. Remember, Pascal is a “'school” language, and
access to the machine level was definitely not a desirable feature in
such an environment. In fact, most of the Pascal compilers in use today
have invented some way to circumvent the restrictions of “'standard”
Pascal, and it is largely because of such “inventions’ that the various
versions of the language are incompatible.

Anyway, Atari Pascal does provide a method to access individual
memory cells. I am not sure that the method I will show here is the best
or easiest way, but it appears to work. Again, the solution is presented
first:

Note: the code in this first part is common to both problems, both
forHand V.
(* in the “type” declarations section *)
charaddr = record
row : char ;
end ;
wordaddr = record
col : integer ;
end ;
(* in the “'var” declarations section *)
pc : ~charaddr ;
pw : “wordaddr ;
rowcrs : absolute [84] ~charaddr ;
colcrs : absolute [85] “wordaddr ;
Problem 1.
(includes the above common code)
(* execution code in the procedure *)
pC : = TOWCIS ;
pw : = colcrs ;

xxvii

INTRODUCTION

pc” .Iow :

pw~.col:
Problem 2.

(includes the above common code)

(* again, procedure execution code *)

V;
H;

pc : = rowcrs ;
pw: = colcrs;

V:=pc~.row;
H:=pw~.col;

Did you get lost? Don't feel bad. I really felt that this could be
written in a simpler fashion, but I wanted to present a version which I
felt reasonably sure would work under most circumstances.

The type declarations are necessary simply to establish record
formats which can be pointed to (and it was these record formats which
I felt to be redundant). Then the variables which indeed point to these
record formats are declared. Most importantly, the “absolute” type
allows us to inform the Pascal compiler that we have a constant which
really is (honest, really, please let it be) the address of one of those
record formats we wanted to point to. (And it is this “absolute” type
which is the extension of Pascal which is not in the standard.)

Once we have made all our declarations, the code looks
surprisingly like the C code: assign the absolute address to the pointer
and then fetch or store via the pointer. The overhead of the record
element reference (the "'.row” and ".col”) is the only real difference
(and perhaps unneeded, as [stated).

PILOT

And here we are at last at the simplest of the Atari languages. Again,
standard PILOT has no defined way of accessing individual memory
cells. And, again, the reason for this is that PILOT was (and is) a
language designed for use in schools, where the last thing you want is
poking around in memory and crashing the 100 megabyte disk with
next year’s budget on it.

However, when using PILOT on an Atari computer, the worst
anyone can do is to crunch their own copy of their own disk or cassette.
So Atari has thoughtfully provided a way to access memory cells from
PILOT; and they have done it in a fashion that is remarkably
reminiscent of BASIC. Once more, the solution is given first:

Problem 1.
C:@B84 = #V
C:@B86 = #H/256
C:@B85 = #H\256
Problem 2.
C:#V = @B84
C:#H = @B85 + (256 * @B86)

xxviii

INTRODUCTION

The trick to this is that Atari PILOT uses the "@B" operator to
indicate a memory reference. When used on the left side of the equals
sign in a C: (compute) statement, it implies a store (just as does POKE
in BASIC). When used on the right side of an equals sign (or, for that
matter, in Jump tests, etc.), it implies a memory fetch (just as does
PEEK in BASIC).

If you have already examined the BASIC code, you will probably
note a marked similarity between it and this PILOT example. Again,
we must take the larger number apart into its two components: the
number of units of 256 each (#H/256) and the remainder. Notice that
with PILOT we do not need to (nor can we) specify “"INT(#H/256)".
There is no INT function simply because all arithmetic in Atari PILOT
is done with double-byte integers already. Sometimes, as in this
instance, that can be an advantage. Other times, the lack of floating
point will preclude PILOT being used for several applications.

Notice the last line of the solution to problem 1: the use of the '\’
(modulo) operator is essentially just a convenient shorthand available
in several languages. In PILOT,

“#H \256"
is exactly equivalent to
“#H - (256 * (# H/256))".

Atari PILOT is much more flexible and usable than the original, so
why not take advantage of all its features? Experiment. You will be glad
you did.

Assembly And Machine Language

I almost didn't include this section, since anyone working with
assembly language (and especially those trying to debug at the
machine language level) would presumably know how to manipulate
bytes and words. And yet, it might prove interesting to those who do
not know assembler to see just how the 6502 processor really does
perform its feats.

For the purposes of the example solutions, we will presume that
somewhere in our program we have coded something equivalent to the
following:

V *

H *

Those lines do not give values to V and H; they simply assign
memory space to hold the eventual values (somewhat like
DIMensioning an array in Atari BASIC, which does not put any
particular values into the array). If we wished not only to reserve space
for the “variables”” V and H but also to assign an initial value to them,
we could code this instead:

*+1 ;reserveone byteforV
*+2 ;reservetwo bytes for H

XXix

INTRODUCTION

V .BYTE3 ; assign initial value of 3 to byte V
H .WORD 290 ; assign initial value of 290 to word H

Anyway, given that H and V have been reserved and have had
some value(s) placed in them, here are the solutions to the problems:

Problem 1.
LDAYV ; get the contents of V
STA 84 ; and store them in ROWCRS
LDAH ; then get the first byte of H
STA 85 ; and store in first byte of COLCRS
LDAH+1 ; what's this? the second byte of H !
STA 86 ; into the second byte of COLCRS

Problem 2.
LDA 84 ; almost, we don't need to comment this . . .
STAV ; it's just problem 1 in reverse!
LDA 85 ; first byte of COLCRS again
STAH ; into the least significant byte of H

LDA 86 ; and also the second byte
STAH+1 ;thehigh order byte of H

Do you wonder why we didn't try to move both bytes of H at one
time, as we did in BASIC A +, above? Simple: the 6502
microprocessor has 7o way to move two bytes in a single instruction!
Honest! (And this is probably its biggest failing as a CPU.)

Of course, if you have a macro assembler, you could write a
macro to perform these operations. Here is an example using one
macro assembler available for the Atari, though all macro assemblers
will operate in at least a similar fashion. First, we define a pair of
macros:

.MACRO MOVEWORD

LDA %1

STA %2

LDA %1+1

STA %2 +1
.ENDM

.MACRO MOVEBYTE
LDA %1

STA %2

.ENDM

Both these macros simply move their first "argument” into their second
“argument” (and we won't define here just what “arguments’ are and
how they work — examine a macro assembler manual for more
information). The first macro moves two adjacent bytes (i.e., a
“word"), and the second moves a single byte. And now we can write
our problem code in a much simpler fashion:

XXX

INTRODUCTION

Problem 1.
MOVEBYTE V,84
MOVEWORD H,85

Problem 2.
MOVEBYTE 84,V
MOVEWORD 85,H

And yet another concept before we leave assembly language. One
of the most powerful features of an assembler is its ability to handle
equated symbols. The real beauty of this, aside from producing more
readable code, is that you can change all references to a location or
value or whatever by simply changing a single equate in your source
code. Thus, if somewhere near the beginning of our source program
we had coded the following two lines:

ROWCRS = 84 ; address of ROW CuRSor
COLCRS = 85; address of COLumn CuRSor

then we could have “solved” the problems thus:

Problem 1.
MOVEBYTE V,ROWCRS
MOVEWORD H,COLCRS
Problem 2.
MOVEBYTE ROWCRS,V
MOVEWORD COLCRS,H

And I believe that this looks as elegant and readable as any of the
higher level languages! In fact, it looks more readable than most of the
examples given above. To be fair, though, we should note that all of
the examples could have been made more readable by substituting
variable names instead of the absolute numbers "84’ and "'85," but the
overhead of declaring and assigning variables is sometimes not worth
it for languages such as BASIC and PILOT.

Luckily, the remaining languages (Forth, C, and Pascal) all have
a means of declaring constants (akin to the assembly language equate)
which has little or no consequential overhead. So go ahead — be the
oddball on your block and make your code readable and
maintainable. It may lose you friends, but it might help you land a job.

Happy Mapping
Well, we made it. [hope you now at least have an idea of what to do to
modify and examine various memory locations in all of the languages
shown. Virtually all of the many locations mapped in this book will fall
into one of the two categories examined: they will involve changing or
examining either a single byte or a double byte (word, integer,
address, etc.). Follow the models shown here, and you should have
little trouble effecting your desires.

For those few locations which do not follow the above patterns

XXxi

INTRODUCTION

(e.q., the system clock, which is a three-byte location in high-middle-
low order), you may be able to accomplish your ends by considering
each byte individually. Also, we have made no discussion here of the
Atari floating point format, which is truly accessible in any reasonable
fashion only from assembly language, and which has little pertinence
to this memory map in any case.

I think I would like to add only one more comment, which will be
in the form of a caution: If you aren't sure what you are doing when
changing or examining memory locations, make sure that your
program in memory is backed up (on disk or cassette), and then make
sure that you have “"popped” (unloaded) your disks and/or tapes. It is
unlikely that changing memory will cause problems affecting your
saved files, but why take chances. (And, if you make a mistake or are
in doubt, re-boot the disk; don't just hit RESET, since that won't
necessarily clean up all your errors.)

Good luck and happy mapping.

xxxii

-

* MEMORY MAP

& 4 o
A W n n

r

r

» N

[~

n -

9% "

r-

0.1

Locations zero to 255 ($0 to $FF) are called “"page zero” and have
special importance for assembly language programmers since these
locations are accessed faster and easier by the machine.

Locations zero to 127 ($0 to $7F) are reserved as the OS page zero,
while 128 to 255 ($80 to $FF) are the BASIC and the user zero page
RAM. Locations zero to 1792 ($0 to $700) are all used as the OS and (if
the cartridge is present) 8K BASIC RAM (except page six). Locations
zero to 8191 ($0 to $1FFF) are the minimum required for operation
(8K).

Locations two through seven are not cleared on any start operation.

DECIMAL HEX LABEL

0.1 0.1 LINZBS
LINBUG RAM, replaced by the monitor RAM. See the OS
Listing, page 31. It seems to be used to store the VBLANK timer
value. One user application I've seen for location zero is in a
metronome program in De Re Atari. Also used in cross-
assembling the Atari OS.

2.3 2.3 CASINI

Cassette initialization vector: JSR through here if the cassette
boot was successful. This address is extracted from the first six
bytes of a cassette boot file. The first byte is ignored. The second
contains the number of records, the third and fourth contain the
low and high bytes of the load address, and the fifth and sixth
contain the low and high bytes of the initialization address.
Control upon loading jumps to the load address plus six for a
multi-stage load and through CASINI for initialization. JSR
through DOSVEC (10 and 11; $A,$B) to transfer control to the
application.

4,5 4,5 RAMLO
RAM pointer for the memory test used on powerup. Also used to
store the disk boot address — normally 1798 ($706) — for the
boot continuation routine.

6 6 TRAMSZ

Temporary Register for RAM size; used during powerup
sequence to test RAM availability. This value is then moved to
RAMTOP, location 106 ($36A). Reads one when the BASIC or the
A (left) cartridge is plugged in.

7 7 TSTDAT
RAM test data register. Reads one when the B or the right
cartridge is inserted.

RAMLO, TRAMSZ and TSTDAT are all used in testing the RAM

size on powerup. On DOS boot, RAMLO and TRAMSZ also act as
temporary storage for the boot continuation address. TRAMSZ
and TSTDAT are used later to flag whether or not the A (left)
and/or B (right) cartridges, respectively, are plugged in (non-
zero equals cartridge plugged in) and whether the disk is to be
booted.

Locations eight through 15 ($8-$F) are cleared on coldstart only.

8

8 WARMST

Warmstart flag. If the location reads zero, then it is in the middle
of powerup; 255 is the normal RESET status. Warmstart is similar
to pressing RESET, so should not wipe out memory, variables, or
programs. WARMST is initialized to zero and will not change
values unless POKEd or until the first time the RESET button is
pressed. It will then read 255 ($FF).

Warmstart normally vectors to location 58484 ($E474). WARMST
is checked by the NMI status register at 54287 ($D40F) when
RESET is pressed to see whether or not to re-initialize the
software or to re-boot the disk.

9 BOOT?
Boot flag success indicator. A value of 255 in this location will
cause the system to lockup if RESET is pressed. If BOOT? reads
one, then the disk boot was successful; if it reads two, then the
cassette boot was successful. If it reads zero, then neither
peripheral was booted.

It it is set to two, then the cassette vector at locations two and
three will be used on RESET. Set to one, it will use the DOS
vector at 10 and 11 ($A and $B). Coldstart attempts both a
cassette and a disk boot and flags this location with the success or
failure of the boots. BOOT? is checked during both disk and
cassette boot.

10.11 AB DOSVEC

Start vector for disk (or non-cartridge) software. This is the
address BASIC jumps to when you call up DOS. Can be set by
user to point to your own routine, but RESET will return DOSVEC
to the original address. To prevent this, POKE 5446 with the LSB
and 5450 with the MSB of your vector address and re-save DOS
using the WRITE DOS FILES option in the menu. Locations 10
and 11 are usually loaded with 159 and 23 ($9F and $17),
respectively. This allows the DUP.SYS section of DOS to be
loaded when called. It is initially set to blackboard mode vector
(58481; $ E471 — called by typing "BYE" or "B.” from BASIC); it
will also vector to the cassette run address if no DOS vector is
loaded in. If you create an AUTORUN.SYS file that doesn’t end

12,13

- with an RTS instruction, you should set BOOT? to one and 580
($244) to zero.

12,13 C.D DOSINI
Initialization address for the disk boot. Also used to store the
cassette-boot RUN address, which is then moved to CASINI (2,
3). When you powerup without either the disk or an autoboot
cassette tape, DOSINI will read zero in both locations.

14,15 EF APPMHI
Applications memory high limit and pointer to the end of your
BASIC program, used by both the OS and BASIC. It contains the
lowest address you can use to set up a screen and Display List
(which is also the highest address usable for programs and data
below which the display RAM may not be placed). The screen
handler will not OPEN the "S:"” device if it would extend the
screen RAM or the Display List below this address; memory
above this address may be used for the screen display and other
data (PM graphics, etc.).
If an attempted screen mode change would extend the screen
memory below APPMHI, then the screen is set up for GRAPHICS
mode zero; MEMTOP (locations 741, 742; $2E5, $2E6) is updated
and an error is returned to the user. Otherwise, the memory is not
too small for the screen editor; the mode change will take effect
and MEMTOP will be updated. This is one of five locations used
by the OS to keep track of the user and display memory.
Initialized to zero by the OS at powerup. Remember, you cannot
set up a screen display below the location specified here.
If you use the area below the Display List for your character sets,
PM graphics or whatever, be sure to set APPMHI above the last
address used so that the screen or the DL data will not descend
and destroy your own data. See RAMTOP location 106 ($6A4),
MEMTOP at 741, 742 ($2E5, $2E6), PMBASE at 54279 ($D407)
and CHBASE at 54281 ($D409) for more information.

Locations 16 through 127 ($10-$7F) are cleared on either cold- or
warmstart.

16 10 POKMSK
POKEY interrupts: the IRQ service uses and alters this location.
Shadow for 53774 ($D20E). POKE with 112 ($70; also POKE this
same value into 53774) to disable the BREAK key. If the following
bits are set (to one), then these interrupts are enabled (bit
decimal values are in parentheses):

BIT DECIMAL FUNCTION

7 128 The BREAK key is enabled.
6 64 The “other key” interrupt is enabled.

17

17

5 32 The serial input data ready interrupt is
enabled.

4 16 The serial output data required interrupt is
enabled.

3 8 The serial out transmission finished
interrupt is enabled.

2 4 The POKEY timer four interrupt is enabled
(only in the "B" or later versions of the OS
ROMs).

1 2 The POKEY timer two interrupt is enabled.

0 1 The POKEY timer one interrupt is enabled.

Timer interrupt enable means the associated AUDF registers are
used as timers and will generate an interrupt request when they
have counted down to zero. See locations 528 to 535 ($210 to
$217) and the POKEY chip from locations 53760 ($D200) on, for a
full explanation. 192 ($C0) is the default on powerup.

You can also disable the BREAK key by POKEing here with 64
($40; or any number less than 128; $80) and also in location
53774. The problem with simple POKEs is that the BREAK key is
re-enabled when RESET is pressed and by the first PRINT
statement that displays to the screen, or any OPEN statement that
addresses the screen (S: or E:), or the first PRINT statement after
such an OPEN and any GRAPHICS command. In order to
continually disable the BREAK key if such commands are being
used, it's best to use a subroutine that checks the enable bits
frequently during input and output operations, and POKEs a
value less than 128 into the proper locations, such as:

1000 BREAK = PEEK(16) - 128: IF EREA
K < O THEN RETURN
1010 FPOKE 16, BREAK: FOKE S3774, BERE

Ak : RETURN
The new OS “"B" version ROMs have a vector for the BREAK key

interrupt, which allows users to write their own routines to
process the interrupt in the desired manner. It is located at 566,

567 ($236, $237).
11 BRKKEY

Zero means the BREAK key is pressed; any other number means
it's not. A BREAK during I/O returns 128 ($80). Monitored by
both keyboard, display, cassette and screen handlers. See
location 16 ($A) for hints on disabling the BREAK key. The latest
editions of OS provide for a proper vector for BREAK interrupts.
The BREAK key abort status code is stored in STATUS (48; $30).
It is also checked during all I/O and scroll/draw routines. During
the keyboard handler routine, the status code is stored in DSTAT

18,19.20

(76; $4C). BRKKEY is turned off at powerup. BREAK key abort
status is flagged by setting BIT 7 of 53774 ($D20E). See the note
on the BREAK key vector, above.

18,19.20 12,13.14 RTCLOK
Internal realtime clock. Location 20 increments every stage one
VBLANK interrupt (1/60 second = one jiffy) until it reaches 255
($FF); then location 19 is incremented by one and 20 is reset to
zero (every 4.27 seconds). When location 19 reaches 255, it and
20 are reset to zero and location 18 is incremented by one (every
18.2 minutes or 65536 TV frames). To use these locations as a
timer of seconds, try:

TIME = INT ((PEEK (18) * 65536 + PEEK (19) * 256 +
PEEK (20)) / 60)

To see the count in jiffies, eliminate the "'/60" at the end. To see
the count in minutes, change /60" to '/360."” The maximum
value of the RT clock is 16,777,215. When it reaches this value, it
will be reset to zero on the next VBLANK increment. This value is
the result of cubing 256 (i.e., 256 * 256 * 256), the maximum
number of increments in each clock register. The RT clock is
always updated every VBLANK regardless of the time-critical
nature of the code being processed.

A jiffy is actually a long time to the computer. It can perform
upwards of 8000 machine cycles in that time. Think of what can
be done in the VBLANK interval (one jiffy). In human terms, a
jiffy can be upwards of 20 minutes, as witnessed in the phrase "I'll
be ready in a jiffy.” Compare this to the oft-quoted phrase, “I'll
be there in a minute,” used by intent programmers to describe a
time frame upwards of one hour.

Users can POKE these clock registers with suitable values for
their own use. The realtime clock is always updated during the
VBLANK interval. Some of the other timer registers (locations
536 to 544; $218 to $220) are not always updated when the OS is
executing time critical code.

Here's one way to use the realtime clock for a delay timer:
10 GOSUE 100

100 FOKE 20,0: POKE 19,0
110 IF NOT PEEK({(19) THEN 110
120 RETURN

Line 110 waits to see if location 19 returns to zero and, when it
does, passes control to the RETURN statement.

21,22

See COMPUTE!, August 1982, for a useful program to create a
small realtime clock that will continue to display during your
BASIC programming. See also De Re Atari for another realtime
clock application.

21,22 15.16 BUFADR

Indirect buffer address register (page zero). Temporary pointer
to the current disk butfer.

23 17 ICCOMT

Command for CIO vector. Stores the CIO command; used to find
the offset in the command table for the correct vector to the
handler routine.

24,25 18.19 DSKFMS
Disk file manager pointer. Called IMPTBL by DOS; used as
vector to FMS.

26.27 1A.1B DSKUTL

The disk utilities pointer. Called BUFADR by DOS, it points to
the area saved for a buffer for the utilities package (data buffer;
DBUF) or for the program area (MEMLO); 743, 744; $2E7, $2E8).

28 1C PTIMOT

Printer timeout, called every printer status request. Initialized to
30, which represents 32 seconds (the value is 64 seconds per 60
increments in this register); typical timeout for the Atari 825
printer is five seconds. The value is set by your printer handler
software. It is updated after each printer status rquest operation.
It gets the specific timeout status from location 748 ($2EC), which
is loaded there by SIO.

The new "B" type OS ROMs have apparently solved the problem
of timeout that haunted the "A"” ROMs; you saw it when the
printer or the disk drive periodically went to sleep (timed out) for
a few seconds, causing severe anxiety attacks in the owners who
thought their Ataris had just mysteriously died. This is
compounded when one removes a disk from the drive, believing
the I/O process to be finished — only to have the drive start up
again after the timeout and trying to write to or read from a
nonexistent disk. Usually both the system and the user crash
simultaneously at this point. See the appendix for more
information on the new ROMs.

29 1D PBPNT

Print buffer pointer; points to the current position (byte) in the
print buffer. Ranges from zero to the value in location 30.

30 1E PBUFSZ

Print butfer size of printer record for current mode. Normal

31

buffer size and line size equals 40 bytes; double-width print
equals 20 bytes (most printers use their own control codes for
expanded print); sideways printing equals 29 bytes (Atari 820
printer only). Printer status request equals four. PBUFSZ is
initialized to 40. The printer handler checks to see if the same
value is in PBPNT and, if so, sends the contents of the buffer to
the printer.

31 1F PTEMP

Temporary register used by the printer handler for the value of
the character being output to the printer.

Locations 32 to 47 ($20 to $2F) are the ZIOCB: Page zero Input-Output
Control Block. They use the same structure as the IOCB’s at locations
832 t0 959 ($340 to $3BF). The ZIOCB is used to communicate I/O con-
trol data between CIO and the device handlers. When a CIO opera-
tion is initiated, the information stored in the IOCB channel is moved
here for use by the CIO routines. When the operation is finished, the
updated information is returned to the user area.

32 20 ICHIDZ

Handler index number. Set by the OS as an index to the device

name table for the currently open file. If no file is open on this
IOCB (IOCB free), then this register is set to 255 ($FF).

33 21 ICDNOZ
Device number or drive number. Called MAXDEV by DOS to in-
dicate the maximum number of devices. Initialized to one.

34 22 ICCOMZ
Command code byte set by the user to define how the rest of the
IOCB is formatted, and what I/O action is to be performed.

35 23 ICSTAZ

Status of the last IOCB action returned by the device, set by the
OS. May or may not be the same status returned by the STATUS
command.

36.37 24,25 ICBALZ/HZ
Buffer address for data transfer or the address of the file name for
commands such as OPEN, STATUS, etc.

38.39 26.27 ICPTLZ/HZ

Put byte routine address set by the OS. It is the address minus
one byte of the device's "put one byte” routine. It points to CIO's
“IOCB not OPEN" on a CLOSE statement.

40,41 28.29 ICBLLZ/HZ
Buffer length byte count used for PUT and GET operations;

42

42

43

decreased by one for each byte transferred.

2A ICAX1Z

Auxiliary information first byte used in OPEN to specity the type
of file access needed.
ICAX2Z

CIO working variables, also used by some serial port functions.
Auxiliary information second byte.

44,45 2C.2D ICAX3Z/4Z

46

47

Used by BASIC NOTE and POINT commands for the transfer of
disk sector numbers. These next four bytes to location 47 are also
labelled as: ICSPRZ and are defined as spare bytes for local CIO
use.

2E ICAXS5Z
The byte being accessed within the secior noted in locations 44
and 45. It is also used for the IOCB Number multiplied by 16.
Each IOCB block is 16 bytes long. Other sources indicate that the
6502 X register also contains this information.

2F ICAX6Z
Spare byte. Also labelled CIOCHR, it is the temporary storage
for the character byte in the current PUT operation.

48

49

30 STATUS

Internal status storage. The SIO routines in ROM use this byte to
store the status of the current SIO operation. See page 166 of the
OS User’s Manual for status values. STATUS uses location 793
($319) as temporary storage. STATUS is also used as a storage
register for the timeout, BREAK abort and error values during
SIO routines.

31 CHKSUM

Data frame checksum used by SIO: single byte sum with carry to
the least significant bit. Checksum is the value of the number of
bytes transmitted (255; $FF). When the number of transmitted
bytes equals the checksum, a checksum sent flag is set at location
59 ($3B). Uses locations 53773 ($D20D) and 56 ($38) for com-
parison of values (bytes transmitted).

50,51 32,33 BUFRLO/HI

Pointer to the data buffer, the contents of which are transmitted
during an I/O operation, used by SIO and the Device Control
Block (DCB); points to the byte to send or receive. Bytes are
transferred to the eight-bit parallel serial output holding register
or frem the input holding register at 53773 ($D20D). This register

52,53

is @ one-byte location used to hold the eight bits which will be
transmitted one bit at a time (serially) to or from the device. The
computer takes the eight bits for processing when the register is
full or replaces another byte in it when empty after a
transmission.

52,53 34,35 BFENLO/HI

54

55

56

57

58

59

60

61

62

63

Next byte past the end of the SIO and DCB data buffer described
above.

36 CRETRY
Number of command frame retries. Default is 13 ($0D). This is the
number of times a device will attempt to carry out a command
such as read a sector or format a disk.

37 DRETRY
Number of device retries. The default is one.
38 BUFRFL
Data buffer full flag (255; $FF equals full).
39 RECVDN
Receive done flag (255; $FF equals done).
3A XMTDON
Transmission done flag (255; $FF equals done).
3B CHKSNT
Checksum sent flag (255; $FF equals sent).
3C NOCKSM
Flag for “no checksum follows data.” Not zero means no
checksum follows; zero equals checksum follows transmission
data.
3D BPTR

Cassette buffer pointer: record data index into the portion of data
being read or written. Ranges from zero to the current value at
location 650 ($28A). When these values are equal, the buffer at
1021 ($3FD) is empty if reading or full if writing. Initialized to 128
($80).

3E FTYPE
Inter-record gap type between cassette records, copied from
location 43 ($2B; ICAX2Z) in the ZIOCB, stored there from
DAUX2 (779; $30B) by the user. Normal gaps are a non-zero
positive number; continuous gaps are zero (negative number).

3F FEOF

Cassette end of file flag. If the value is zero, an end of file (EOF)
has not been reached. Any other number means it has been

64

detected. An EOF record has been reached when the command
byte of a data record equals 254 ($FE). See location 1021 ($3FD).

64 40 FREQ

Beep count retain register. Counts the number of beeps required
by the cassette handler during the OPEN command for play or
record operations; one beep for play, two for record.

65 41 SOUNDR
Noisy I/0 flag used by SIO to signal the beeping heard during
disk and cassette I/O. POKE here with zero for blessed silence
during these operations. Other numbers return the beep. In-
itialized to three. The hardware solution to this problem is to turn
your speaker volume down. This can also be used to silence the

digital track when playing synchronized voice/data tapes. See
location 54018.

66 42 CRITIC

Critical I/O region flag; defines the current operation as a time-
critical section when the value here is non-zero. Checked at the
NMI process after the stage one VBLANK has been processed.
POKEing any number other than zero here will disable the repeat
action of the keys and change the sound of the CTRL-2 buzzer.
Zero is normal; setting CRITIC to a non-zero value suspends a
number of OS processes including system software timer coun-
ting (timers two, three, four and five; see locations 536 to 558;
$218 to $22E). It is suggested that you do not set CRITIC for any
length of time. When one timer is being set, CRITIC stops the
other timers to do so, causing a tiny amount of time to be "lost.”
When CRITIC is zero, both stage one and stage two VBLANK
procedures will be executed. When non-zero, only the stage one
VBLANK will be processed.

67-73 43-49 FMZSPG
Disk file manager system (FMS) page zero registers (seven
bytes).
67.68 43.44 ZBUFP
Page zero buffer pointer to the user filename for disk I/O.
69.70 45,46 ZDRVA

Page zero drive pointer. Copied to here from DBUFAL and
DBUFAH; 4905 and 4913 ($1329, $1331). Also used in FMS “free
sector,” setup and “get sector’’ routines.

71,72 47.48 ZSBA
Zero page sector buffer pointer.
73 49 ERRNO

Disk I/O error number. Initialized to 159 ($39F) by FMS.

74

75

76

77

78

79

74

4A CKEY
Cassette boot request flag on coldstart. Checks to see if the
START key is pressed and, if so, CKEY is set. Autoboot cassettes
are loaded by pressing the START console key while turning the
power on. In response to the beep, press the PLAY button on the
recorder.

4B CASSBT

Cassette boot flag. The Atari attempts both a disk and a cassette
boot simultaneously. Zero here means no cassette boot was suc-
cessful. See location 9.

4C DSTAT

Display status and keyboard register used by the display handler.
Also used to indicate memory is too small for the screen mode,
cursor out of range error, and the BREAK abort status.

4D ATRACT

Attract mode timer and flag. Attract mode rotates colors on your
screen at low luminance levels when the computer is on but no
keyboard input is read for a long time (seven to nine minutes).
This helps to save your TV screen from “"burn-out” damage suf-
fered from being left on and not used. It is set to zero by IRQ
whenever a key is pressed, otherwise incremented every four
seconds by VBLANK (see locations 18 - 20; $12 - $14). When the
value in ATRACT reaches 127 ($7F), it is then set to 254 ($FE) un-
til attract mode is terminated. This sets the flag to reduce the
luminance and rotate the colors when the Atari is sitting idle.
POKE with 128 ($80) to see this effect immediately: it normally
takes seven to nine minutes to enable the attract mode. The OS
cannot “attract” color generated by DLI's, although your DLI
routine can, at a loss of time.

Joysticks alone will not reset location 77 to zero. You will have to
add a POKE 77,0 to your program periodically or frequently call
in a subroutine to prevent the Atari from entering attract mode if
you are not using any keyboard input.

4E DRKMSK
Dark attract mask; set to 254 ($FE) for normal brightness when
the attract mode is inactive (see location 77). Set to 246 ($F6)
when the attract mode is active to guarantee screen color
luminance will not exceed 50%. Initialized to 254 ($FE).

4F COLRSH
Color shift mask; attract color shifter; the color registers are
EORd with locations 78 and 79 at the stage two VBLANK (see
locations 18 - 20; $12 - $14). When set to zero and location 78
equals 246, color luminance is reduced 50% . COLRSH contains

13

80

the current value of location 19, therefore is given a new color
value every 4.27 seconds.

Bytes 80 to 122 ($50 to $7A) are used by the screen editor and display
handler.

80

81

82

83

84

50 TEMP
Temporary register used by the display handler in moving data to
and from screen. Also called TMPCHR.

51 HOLD1

Same as location 80. It is used also to hold the number of Display
List entries.

52 LMARGN
Column of the left margin of text (GR.0 or text window only).
Zero is the value for the left edge of the screen; LMARGN is
initialized to two. You can POKE the margin locations to set them
to your specific program needs, such as POKE 82,10 to make the
left margin start ten locations from the edge of the screen.

53 RMARGN
Right margin of the text screen, initialized to 39 ($27). Both
localions 82 and 83 are user-alterable, but ignored in all
GRAPHICS modes except zero and the text window.

Margins work with the text window and blackboard mode and are
reset to their default values by pressing RESET. Margins have no
effect on scrolling or the printer. However, DELETE LINE and
INSERT LINE keys delete or insert 40 character lines (or delete
one program line), which always start at the left margin and wrap
around the screen edge back to the left margin again. The right
margin is ignored in the process. Also, logical lines are always
three physical lines no matter how long or short you make those
lines.

The beep you hear when you are coming to the end of the logical
line works by screen position independent of the margins. Try
setting your left margin at 25 (POKE 82,25) and typing a few lines
of characters. Although you have just a few characters beyond
60, the buzzer will still sound on the third line of text.

54 ROWCRS

Current graphics or text screen cursor row, value ranging from
zero to 191 ($BF) depending on the current GRAPHICS mode
(maximum number of rows, minus one). This location, together
with location 85 below, defines the cursor location for the next
element to be read/written to the screen. Rows run horizontally,
left to right across the TV screen. Row zero is the topmost line;
row 192 is the maximum value for the bottom-most line.

|

85,86

85.86 55.56 COLCRS

87

Current graphics or text mode cursor column; values range from
zero to 319 (high byte, for screen mode eight) depending on
current GRAPHICS mode (maximum number of columns minus
one). Location 86 will always be zero in modes zero through
seven. Home position is 0,0 (upper left-hand corner). Columns
run vertically from the top to the bottom down the TV screen, the
leftmost column being number zero, the rightmost column the
maximum value in that mode. The cursor has a complete top to
bottom, left to right wraparound on the screen.

ROWCRS and COLCRS define the cursor location for the next
element to be read from or written to in the main screen segment
of the display. For the text window cursor, values in locations 656
to 667 ($290 to $29B) are exchanged with the current values in
locations 84 to 95 ($54 to $5F), and location 123 ($7B) is set to 255
($FF) to indicate the swap has taken place. ROWCRS and
COLCRS are also used in the DRAW and FILL functions to
contain the values of the endpoint of the line being drawn. The
color of the line is kept in location 763 ($2FB). These values are
loaded into locations 96 to 98 ($60 to $62) so that ROWCRS and
COLCRS may be altered during the operation.

BASIC’s LOCATE statement not only examines the screen, but
also moves the cursor one position to the right at the next PRINT
or PUT statement. It does this by updating locations 84 and 85,
above. You can override the cursor advance by saving the
contents of the screen before the LOCATE command, then
restoring them after the LOCATE. Try:

100 REM: THE SCREEN MUST HAVE EBEEN O
FENED FOR READ OR READ/WRITE FPREV
IoUusLYy

110 LOOK = PEEK{84): SEE = FEEK((8%5)

120 LOCATE X.Y.THIS
130 FOKE 84, LOOK: POKE 85. SEE

Note that CHR$(253) is a non-printing character — the bell —
and doesn't affect the cursor position.

See COMPUTE!, August 1981, for an example of using COLCRS
for dynamic data restore and updating with the screen editor and

the IOCBs.

57 DINDEX
Display mode/current screen mode. Labelled CRMODE by (*M).
DINDEX contains the number obtained from the low order four
bits of most recent open AUXI1 byte. It can be used to fool the OS
into thinking you are in a different GRAPHICS mode by

87

POKEing DINDEX with a number from zero to 11. POKE with
seven after you have entered GRAPHICS mode eight, and it will
give you a split screen with mode seven on top and mode eight
below. However, in order to use both halves of the screen, you
will have to modify location 89 (below) to point to the area of the
screen you wish to DRAW in. (See Your Atari 400/800, pp. 280 -
283.)

Watch for the cursor out-of-range errors (number 141) when
changing GRAPHICS modes in this manner and either PRINTing
or DRAWIing to the new mode screen. POKE 87 with the BASIC
mode number, not the ANTIC mode number.

Did you know you can use PLOT and DRAWTO in GR.0? Try
this:

10 GR. O

20 PLOT ©.0: DRAWTO 10,10: DRAWTO 0O
.10

30 DRAWTO 39,0: DRAWTO 20,23: DRAWT
0 0.20

40 GOTO 40

You can also set the text window for PRINT and PLOT modes by
POKEing 87 with the graphics mode for the window. Then you
must POKE the address of the top left corner of the text window
into 88 and 89 ($58, $59). The screen mode of the text window is
stored at location 659 ($293).

You may have already discovered that you cannot call up the
GTIA modes from a direct command. Like the + 16 GRAPHICS
modes, they can only be called up during a program, and the
screen display will be reset to GR.0 on the first INPUT or PRINT
(not PRINT#6) statement executed in these modes.

Since this location only takes BASIC modes, you can’t POKE it
with the other ANTIC modes such as “E", the famous “seven-and-
a-halt” mode which offers higher resolution than seven and a four
color display (used in Datasoft’s Micropainter program). If you're
not drawing to the screen, simply using it for display purposes,
you can always go into the Display List and change the
instructions there. But if you try to draw to the screen, you risk an
out-of-bounds error (error number 141).

See Creative Computing, March 1982, for an excellent look at
mode 7Y%2. The short subroutine below can be used to change the
Display List to GR. 7Va:

1000 GRAPHICS B+16: DLIST = PEEK (560
) + FEEK(S61) X 256:POKE DLIST +
3,78

—

88.89

1010 FOR CHANGE = DLIST + 6 TO DLIST

+ 204: IF PEEK{(CHANGE) = 15 THE
N POKE CHANGE.14
1020 IF PEEEK(CHANGE) = 79 THEN POKE

CHANGE ., 78: NEXT CHANGE
1030 FOKE 87.7:RETURN

(Actually, 15 ($F) is the DL number for the maximum memory
mode; it also indicates modes eight through eleven. The DL's for
these modes are identical.) Fourteen is the ANTIC E mode;
GR.7%. This program merely changes GR.8 to mode E in the
Display List. The value 79 is 64 + 15; mode eight screen with BIT
6 set for a Load Memory Scan (LMS) instruction (see the DL
information in locations 560, 561; $230, $231). It does not check
for other DL bits.

You can also POKE 87 with the GTIA values (nine to eleven). To
get a pseudo-text window in GTIA modes, POKE the mode
number here and then POKE 623 with 64 for mode nine, 128 for
mode ten, and 192 for mode eleven, then POKE 703 with four, in
program mode. (In command mode, you will be returned to
GR.0.) You won't be able to read the text in the window, but you
will be able to write to it. However, to get a true text window,
you'll need to use a Display List Interrupt (see COMPUTE!,
September 1982). If you don't have the GTIA chip, it is still
possible to simulate those GRAPHICS modes by using DINDEX
with changes to the Display List Interrupt. See COMPUTE!, July
1981, for an example of simulating GR. 10.

88.89 58,59 SAVMSC

The lowest address of the screen memory, corresponding to the
upper left corner of the screen (where the value at this address
will be displayed). The upper left corner of the text window is
stored at locations 660, 661 ($294, $295).

You can verify this for yourself by:
WINDOW = PEEK(88) + PEEK(89) * 256: POKE WINDOW, 33

This will put the letter "A" in the upper left corner in GR.0, 1 and
2. In other GRAPHICS modes, it will print a colored block or
bar. To see this effect, try:

S REM FIRST CLEAR SCREEN

10 GRAPHICS Z: IF Z > 59 THEN END

15 SCREEN = PEEE (88) #* PEEK (8%) *%
256

20 FOR N = O TO 255: FOKE SCREEN + N
« N

25 NEXT N: FOR N = 1 T0O 3I00: NEXT N:

88.89

Z = Z + 1
30 60TO 10O

You will notice that you get the Atari internal character code, not
the ATASCII code. See also locations 560, 561 ($230, $231) and
57344 ($E000).

How do you find the entire screen RAM? First, look at the chart
below and find your GRAPHICS mode. Then you multiply the
number of rows-per-screen type by the number of bytes-per-line.
This will tell you how many bytes each screen uses. Add this
value, minus one, to the address specified by SAVMSC.
However, if you subtract MEMTOP (locations 741, 742; $2ES,
$2E6) from RAMTORP (106; $6A * 256 for the number of bytes),
you will see that there is more memory reserved than just the
screen area. The extra is taken up by the display list or the text
window, or is simply not used (see the second chart below).

Mode O 1 2 3 4 5 6 7 8 9-12
Rows

Full 24 24 12 24 48 48 96 96 192 192
Split — 20 10 20 40 40 80 80 160 —
Bytes per

Line 40 20 20 10 10 20 20 40 40 40
Columns

per Line 40 20 20 40 80 80 160 160 320 80
Memory (1) 993 513 261 273 537 1017 2025 3945 7900 7900

Memory (2)
Full 992 672 420 432 696 1176 2184 4200 8138 8138
Split — 674 424 434 694 1174 2174 4190 8112 —

(1) According to the Atari BASIC Reference Manual, p. 45; OS
User’s Manual, p. 172, and Your Atari 400/800, p. 360.

(2) According to Your Atari 400/800, p. 274, and Atari Microsoft
Basic Manual, p. 69. This is also the value you get when you
subtract MEMTOP from RAMTORP (see above).

For example, to POKE the entire screen RAM in GR.4, you
would find the start address of the screen (PEEK(88) + PEEK(89)
* 256), then use a FOR-NEXT loop to POKE all the locations

specified above:

10 GRAFHICS 4: SCRN = PEEK{88) + PE
EK (89) 256

20 FOR LOOF = SCRN to SCRN + 479: R
EM 48 ROWS x 10 BYTES - 1

30 FPOKE LOOFP,35: NEXT LOOF

88.89

Why the minus one in the calculation? The first byte of the screen
is the first byte in the loop. If we add the total size, we will go one
byte past the end of the screen, so we subtract one from the total.
Here's how to arrive at the value for the total amount of memory
located for screen use, display list and text window:

Total memory allocation for the screen

Screen display Display List
Text unused bytes screen unused used
GR window always cond. wuse bytes bytes Total
0 e 5 none none 960 none 32 992
1 160 none 80 400 none 34 674
2 160 none 40 200 none 24 424
3 160 none 40 200 none 34 434
4 160 none 80 400 none 54 694
5 160 none 160 800 none 54 1174
6 160 none 320 1600 none 94 2174
7 160 none 640 3200 96 94 4190
8 160 16 1280 6400 80 176 8112

The number of bytes from RAMTOP (location 106; $6A) is counted
from the left text window column towards the total column.
MEMTOP (741, 742; $2E5, $2E6) points to one byte below
RAMTQOP * 256 minus the number of bytes in the total column. If
16 is added to the GRAPHICS mode (no text window), then the
conditional unused bytes are added to the total. Then the bytes
normally added for the text window become unused, and the
Display List expands slightly. (See COMPUTE!, September 1981.)

When you normally PRINT CHR$(125) (clear screen), Atari sends
zeroes to the memory starting at locations 88 and 89. It continues to
do this until it reaches one byte less than the contents of RAMTOP
(location 106; $6A). Here is a potential source of conflict with your
program, however: CHR$(125) — CLEAR SCREEN — and any
GRAPHICS command actually continue to clear the first 64 ($40)
bytes above RAMTOP!

It would have no effect on BASIC since BASIC isa ROM
cartridge. The OS Source Listing seems to indicate that it ends at
RAMTORP, but Atari assumed that there would be nothing after
RAMTORP, so no checks were provided. Don't reserve any data
within 64 bytes of RAMTOP or else it will be eaten by the CLEAR
SCREEN routine, or avoid using a CLEAR SCREEN or a
GRAPHICS command. Scrolling the text window also clears 800
bytes of memory above RAMTOP.

You can use this to clear other areas of memory by POKEing the

88.89

20

LSB and MSB of the area to be cleared into these locations. Your

routine should always end on a $FF boundary (RAMTOP indicates

the number of pages). Remember to POKE back the proper screen

locations or use a GRAPHICS command immediately after doing

so to set the screen right. Try this:

10 BECTTOM = 30000: TOP = 346863: REM
LOWEST AND HIGHEST ADDRESS TO CLEA
R = %7330 & $8FFF

20 RAMTOFP = PEEK{(106): POKE 106, INT
(TGP + 1 / 256)

I0 TEST = INT(BOTTOM /s 256): POKEB8Y.

TEST

40 POKE 88, BOTTOM - 256 % TEST

50 PRINT CHR$%{(125): FOKE 10&6. RAMTOP

60 GRAPHICS 0

This will clear the specified memory area and update the address
of screen memory. If you don't specity TOP, the CLEAR SCREEN
will continue merrily cleaning out memory and, most likely, will
cause your program to crash. Use it with caution.

Heré's a means to SAVE your current GR.7 screen display to disk
using BASIC:

1000 SCREEN = PEEK(88B) + FPEEK(89) X
236

1010 OPEN #2,8,0,"D:picturename”

1020 MODE = PEEK{(87): PUT #2. MODE:
REM SAVE GR. MODE

1030 FOR SCN = O TO 4: COL = PEEK(70
8 + SCN): PUT #2.C0OL: NEXT SCN:
REM SAVE COLOR REGISTERS

1040 FOR TV = SCREEN TO SCREEN + 319
:BYTE = PEEK(TV): PUT #2, BYTE:
NEXT TV: CLOSE #2

To use this with other screen modes, you will have to change the
value of 3199 in line 1040 to suit your screen RAM (see the chart
above). For example, GR.7 + 16 would require 3839 bytes (3840
minus one). You can use the same routine with cassette by using
device C:. To retrieve your picture, you use GET#2 and POKE
commands. You will, however, find both routines very slow. Using
THE CIO routine at 58454 ($E456) and the IOCBs, try this machine

language save routine:
10 DIM ML$E(10): B$(10): GR.8+16

20 B$ = "your picture name”:@ = PEEK
{S57)
30 FOR N = 1 TO 6: READ BYTE: ML$ (N,

-

90

N) = CHR${(BEYTE): NEXT N

35 DATA 104,162,16,76,86,.22

36 REM PLA.LDX.$10,JMP $E456

40 OFEN #1,4,0,B%

50 POKE 849.,1: POKE B50,7: FOKE 852,
PEEK (88): POKE 853,PEEK(8%9): FOKE
854,70: POKE 857,30: POKE 858,4

55 REM THESE POKES SET UP THE IOCEH

60 POKE 559,0: REM TURN OFF THE SCRE
EN TO SPEED THINGS UP

70 X = USR(ADR{ML%)): CLOSE #1
80 POKE 559.8: REM TURN IT BACK ON A
GAIN

Note that there is no provision to SAVE the color registers in this
program, so I suggest you have them SAVEd after you have
SAVEd the picture. It will make it easier to retrieve them if they are
at the end of the file. You will have to make suitable adjustments
when SAVEing a picture in other than GR.8 + 16 — such as
changing the total amount of screen memory to be SAVEd, POKEd
into 856 and 857. Also, you will need a line such as 1000 GOTO
1000 to keep a GTIA or + 16 mode screen intact. See the Atari
column in InfoAge Magazine, July 1982, for more on this idea. See
location 54277 ($D405) for some ideas on scrolling the screen

RAM.

A SHORT DIGRESSION

There are two techniques used in this book for calling a machine
language program from BASIC with the USR command. One method
is to POKE the values into a specific address — say, page six — and
use the starting address for the USR call, such as X = USR(1536). For
an example of this technique, see location 632 ($278).

The other technique, used above, is to make a string (ML$) out of the
routine by assigning to the elements of the string the decimal
equivalents of the machine language code by using a FOR-NEXT and
READ-DATA loop. To call this routine, you would use X =
USR(ADR(MLS$)). This tells the Atari to call the machine language
routine located at the address where MLS$ is stored. This address will
change with program size and memory use. The string method won't
be overwritten by another routine or data since it floats around safely
in memory. The address of the string itself is stored by the string/array
table at location 140 ($8C).

90 SA OLDROW

Previous graphics cursor row. Updated from location 84 ($54)

21

91,92

before every operation. Used to determine the starting row for

the DRAWTO and XIO 18 (FILL command).
91,92 5B.5C OLDCOL

Previous graphics cursor column. Updated from locations 85 and
86 ($55, $56) before every operation. These locations are used by
the DRAWTO and XIO 18 (FILL) commands to determine the
starting column of the DRAW or FILL.

93 5D OLDCHR

Retains the value of the character under the cursor, used to
restore that character when the cursor moves.

94,95 SE.SF OLDADR
Retains the memory location of the current cursor location. Used
with location 93 (above) to restore the character under the cursor
when the cursor moves.

96 60 NEWROW
Point (row) to which DRAWTO and XIO 18 (FILL) will go.
97.98 61,62 NEWCOL

Point (column) to which DRAWTO and XIO 18 (FILL) will go.
NEWROW and NEWCOL are initialized to the values in
ROWCRS and COLCRS (84 to 86; $54 to $56) above, which
represent the destination end point of the DRAW and FILL
functions. This is done so that ROWCRS and COLCRS can be

altered during these routines.

99 63 LOGCOL
Position of the cursor at the column in a logical line. A logical
line can contain up to three physical lines, so LOGCOL can
range between zero and 119. Used by the display handler.

100,101 64.65 ADRESS
Temporary storage used by the display handler for the Display
List address, line buffer (583 to 622; $247 to $26E), new MEMTOP
value after DL entry, row column address, DMASK value, data to
the right of cursor, scroll, delete, the clear screen routine and for
the screen address memory (locations 88, 89; $58, $59).

102,103 66.67 MLTTMP
Also called OPNTMP and TOADR,; first byte used in OPEN as
temporary storage. Also used by the display handler as
temporary storage.

104,105 68.69 SAVADR
Also called FRMADR. Temporary storage, used with ADRESS
above for the data under the cursor and in moving line data on
the screen.

22

106

106

6A RAMTOP

RAM size, defined by powerup as passed from TRAMSZ (location
6), given in the total number of available pages (one page equals
256 bytes, so PEEK(106) * 256 will tell you where the Atari thinks
the last usable address — byte — of RAM is). MEMTOP (741,
742; $2ES, $2E6) may not extend below this value. In a 48K Atari,
RAMTOP is initialized to 160 ($A0), which points to location
40960 ($A000). The user’s highest address will be one byte less
than this value.

This is initially the same value as in location 740. PEEK(740) / 4 or
PEEK(106) / 4 gives the number of 1K blocks. You can fool the
computer into thinking you have less memory than you actually
have, thus reserving a relatively safe area for data (for your new
character set or player/missile characters, for example) or
machine language subroutines by:

POKE(106), PEEK(106) - # of pages you want to reserve.

The value here is the number of memory pages (256-byte blocks)
present. This is useful to know when changing GR.7 and GR.8
screen RAM. If you are reserving memory for PM graphics,
POKE 54279, PEEK(106) - # of pages you are reserving before
you actually POKE 106 with that value. To test to see if you have
exceeded your memory by reserving too much memory space,
you can use:

10 SIZE = (PEEK{(106) — # of pages)
X 256

20 IF SIZE < = PEEK(144) + PEEK (145
) X 256 THEN PRINT "T0OO MUCH MEMOR
Y USED"

If you move RAMTOP to reserve memory, always issue a
GRAPHICS command (even issuing one to the same GRAPHICS
mode you are in will work) immediately sc that the display list
and data are moved beneath the new RAMTOP.

You should note that a GRAPHICS command and a CLEAR
command (or PRINT CHR$ (125)) actually clear the first 64 bytes
above RAMTOP (see location 88; $58 for further discussion).
Scrolling the text window of a GRAPHICS mode clears up to 800
($320) bytes above RAMTOP (the text window scroll actually
scrolls an entire GR.0 screen-worth of data, so the unseen 20
lines * 40 bytes equals 800 bytes). PM graphics may be safe
(unless you scroll the text window) since the first 384 or768 bytes
(double or single line resolution, respectively) are unused.
However, you should take both of these effects into account when
writing your programs.

23

107

107

To discover the exact end of memory, use this routine (it's a tad

slow):

10 RAMTOF = 1046: TOP = FPEEK(RAMTOPF)

20 ‘BYTE = TOP %X 256: TEST = 255 - PE
EK(BYTE): POKE BYTE,TEST

30 IF PEEK(RYTE) = TEST THEN TOPFP = T
OF +1: POKE BYTE, 255 - TEST

40 GOTO 20

S0 PRINT "MEMORY ENDS AT "3 BYTE

One caution: BASIC cannot always handle setting up a display
list and display memory for GRAPHICS 7 and GRAPHICS 8
when you modify this location by less than 4K (16 pages; 4096
bytes). Some bizarre results may occur if you use PEEK(106) - 8
in these modes, for example. Use a minimum of 4K (PEEK(106) -
16) to avoid trouble. This may explain why some people have
difficulties with player/missile graphics in the hi-res (high
resolution; GR.7 and GR.8) modes. See location 54279 ($D407).
Another alternative to reserving memory in high RAM is to save
an area below MEMLO, location 743 ($2E7: below your BASIC
program). See also MEMTOP, locations 741, 742 ($2E5, $2E6).

6B BUFCNT

Butfer count: the screen editor current logical line size counter.

108.109 6C.6D BUFSTR

110

111

Editor low byte (AM). Display editor GETCH routine pointer
(location 62867 for entry; $F593). Temporary storage; returns the
character pointed to by BUFCNT above.

6E BITMSK
Bit mask used in bit mapping routines by the OS display handler
at locations 64235 to 64305 ($FAEB to $FB31). Also used as a
display handler temporary storage register.

6F SHFAMT

Pixel justification: the amount to shift the right justified pixel data
on output or the amount to shift the input data to right justify it.
Prior to the justification process, this value is always the same as
that in 672 ($2A0).

112,113 70,71 ROWAC

ROWAC and COLAC (below) are both working accumulators for
the control of row and column point plotting and the increment
and decrement functions.

114,115 72,73 COLAC

24

Controls column point plotting.

116.117

116.117 74,75 ENDPT

118

End point of the line to be drawn. Contains the larger value of
either DELTAR or DELTAC (locations 118 and 119, below) to be
used in conjunction with ROWAC/COLAC (locations 112 and

114, above) to control the plotting of line points.
76 DELTAR

Delta row; contains the absolute value of NEWROW (location 96;
$60) minus ROWCRS (location 84; $54).

119,120 77.78 DELTAC

121

122

123

124

125

Delta column; contains the absolute value of NEWCOL (location
97; $61) minus the value in COLCRS (location 85; $55). These
delta register values, along with locations 121 and 122 below, are
used to define the slope of the line to be drawn.

79 ROWINC
The row increment or decrement value (plus or minus one).
7A COLINC

The column increment or decrement value (plus or minus one).

ROWINC and COLINC control the direction of the line drawing
routine. The values represent the signs derived from the value in
NEWROW (location 96; $60) minus the value in ROWCRS
(location 84; $54) and the value in NEWCOL (locations 97, 98;
$61, $62) minus the value in COLCRS (locations 85, 86; $55,
$56).

7B SWPFLG

Split-screen cursor control. Equal to 255 ($FF) if the text window
RAM and regular RAM are swapped; otherwise, it is equal to
zero. In split-screen modes, the graphics cursor data and the text
window data are frequently swapped in order to get the values
associated with the area being accessed into the OS data base
locations 84 to 95 ($54 to $5F). SWPFLG helps to keep track of
which data set is in these locations.

7C HOLDCH

A character value is moved here before the control and shift logic
are processed for it.

7D INSDAT

Temporary storage byte used by the display handler for the
character under the cursor and end of line detection.

126,127 7E.7F COUNTR

Starts out containing the larger value of either DELTAR (location
118; $76) or DELTAC (location 119; $77). This is the number of
iterations required to draw a line. As each point on a line is

25

128,129

drawn, this value is decremented. When the byte equals zero, the
line is complete (drawn).

User and/or BASIC page zero RAM begins here. Locations 128 to 145
($80 to $91) are for BASIC program pointers; 146 to 202 ($92 to $CA)
are for miscellaneous BASIC RAM; 203 to 209 ($CB to $D1) are
unused by BASIC, and 210 to 255 ($D2 to $FF) are the floating point
routine work area. The Assembler Editor cartridge uses locations 128
to 176 ($80 to $BO) for its page zero RAM. Since the OS doesn't use this
area, you are free to use it in any non-BASIC or non-cartridge
environment. If you are using another language such as FORTH,
check that program’s memory map to see if any conlflict will occur.

See COMPUTE!’s First Book of Atari, pages 26 to 53, for a discussion
of Atari BASIC structure, especially that using locations 130 to 137
($82 to $89). Included in the tutorials are a memory analysis, a line
dump, and a renumber utility. See also De Re Atari, BYTE, February
1982, and the locations for the BASIC ROM 40960 to 49151 ($A000 to
$BFFF).

128.129 80.81 LOMEM
Pointer to BASIC's low memory (at the high end of OS RAM
space). The first 256 bytes of the memory pointed to are the token
output buffer, which is used by BASIC to convert BASIC
statements into numeric representation (tokens; see locations
136, 137; $88, $89). This value is loaded from MEMLO (locations
743, 744; $2E7, $2E8) on initialization or the execution of a NEW
command (not on RESET!). Remember to update this value when
changing MEMLO to reserve space for drivers or buffers.
When a BASIC SAVE is made, two blocks of information are
written: the first block is the seven pointers from LOMEM to
STARP (128to 141; $80 to $8D). The value of LOMEM is
subtracted from each of these two-byte pointers in the process, so
the first two bytes written will both be zero. The second block
contains the following: the variable name table, the variable
value table, the tokenized program, and the immediate mode
line.
When a BASIC LOAD is made, BASIC adds the value at MEMLO
(743, 744; $2E7, $2E8) to each of the two-byte pointers SAVEd as
above. The pointers are placed back in page zero, and the values
of RUNSTK (142, 143; $8E, $8F) and MEMTOP (144, 145; $90,
$91) are set to the value in STARP. Then 256 bytes are reserved
above the value in MEMLO for the token output buffer, and the
program is read in immediately following this buffer.
When you don't have DOS or any other application program
using low memory loaded, LOMEM points to 1792 ($700). When

26

130,131

DOS 2.0 is present, it points to 7420 ($31CFC). When you change
your drive and data buffer defaults (see 1801, 1802; $709, $70A),
you will raise or lower this figure by 128 bytes for each buffer
added or deleted, respectively. When you boot up the RS-232
handler, add another 1728 ($6C0) bytes used.

LOMEM is also called ARGOPS by BASIC when used in
expression evaluation. When BASIC encounters any kind of
expression, it puts the immediate results into a stack. ARGOPS
points to the same 256 byte area; for this operation it is reserved
for both the argument and operator stack. It is also called
OUTBUFF for another operation, pointing to the same 256 byte
bufter as ARGOPS points to. Used by BASIC when checking a
line for syntax and converting it to tokens. This buffer
temporarily stores the tokens before moving them to the
program.

130.131 82,83 VNTP

Beginning address of the variable name table. Variable names
are stored in the order input into your program, in ATASCII
format. You can have up to 128 variable names. These are stored
as tokens representing the variable number in the tokenized
BASIC program, numbered from 128 to 255 ($80 to $FF).

The table continues to store variable names, even those no longer
used in your program and those used in direct mode entry. It is
not cleared by SAVEing your program. LOADing a new program
replaces the current VNT with the one it retrieves from the file.
You must LIST the program to tape or disk to save your program
without these unwanted variables from the table. LIST does not
SAVE the variable name or variable value tables with your
program. It stores the program in ATASCII, not tokenized form,
and requires an ENTER command to retrieve it. You would use a
NEW statement to clear the VNT in memory once you have
LISTed your program.

Each variable name is stored in the order it was entered, not the
ATASCII order. With numeric (scalar) variables, the MSB is set
on the last character in a name. With string variables, the last
character is a "'$" with the MSB (BIT 7) set. With array variables,
the last character is a (" with the MSB set. Setting the MSB turns
the character into its inverse representation so it can be easily
recognized.

You can use variable names for GOSUB and GOTO routines,
such as:

10 CALCULATE = 1000

27

132,133

100 GOSUR CALCULATE

This can save a lot of bytes for a frequently called routine. But
remember, each variable used for a GOSUB or GOTO address
uses one of the 128 possible variable names. A disadvantage of
using variable names for GOTO and GOSUB references is when
you try to use a line renumbering program. Line renumbering
programs will not change references to lines with variable
names, only to lines with numbered references.

Here's a small routine you can add to the start of your BASIC
program (or the end if you change the line numbers) to print out
the variable names used in your program. You call it up with a
GOTO statement in direct mode:

1 POKE 1664, PEEK{(130): FOKE 1665,
PEEK (131)

2 IF PEEK(16464) = PEEK(132) THEN IF
PEEK (1665) = PEEK(133) THEN STOP

3 PRINT CHR$(PEEK(FEEK (1664) + PEEK
(1665) 256)))

4 IF PEEK(FEEK (1664) + PEEK(14465) X
256)Y) > 127 THEN PRINT"":

S IF PEEK(1664) = 255 THEN POKE 166
4, 0: POKE 1665, PEEK(16465) + 1: GO
T 2

6 FPOKE 14664, PEEK{(1664) + 1: GOTO 2

See COMPUTE!, October 1981.

132,133 84.85 VNTD

28

Pointer to the ending address of the variable name table plus one
byte. When fewer than 128 variables are present, it points to a
dummy zero byte. When 128 variables are present, this points to
the last byte of the last variable name, plus one.

It is often usetul to be able to list your program variables; using
locations 130 to 133, you can do that by:

10 VARI = PEEK{(130) + PEEK{131) x 2
596 :REM This gives you the start o
f the table.

20 FOR VARI = VARI TO PEEK (132 o
EEK(133) 256 - 1: PRINT CHR$(PEE
K{(VARI) - 128 %x PEEK(VARI > 127));

CHR$% (27 + 128 % PEEK({(VARI) > 127)
) s = NEXT VARI

REM this finds the end of the va
riable name table (remember table
is end + 1), then PRINTs ASCII cha

r
w

134,135

racters < 128

30 NUM = 0: FOR VARI = PEEK{130) +
PEEK{(313) % 256 TO PEEK(132) + PEE
K{131) %x 256 - 1:NUM = NUM + (PEEK
(VARI) < 127):NEXT VARI: PRINT NU
M:; "Variables in use"

Or try this, for a possibly less opaque example of the same
routine:

1000 NUM = 0: FOR LOOF = FPEEK{(130) +
FEEK (131) 256 TO PEEK$132) +
PEEEK{133) % 2568 = 1

1010 IF PEEKA(LOOP) < 128 THEN PRINT
CHR$ (PEEK(LOOP)):: G6OTO 1030

1020 PRINT CHR$(PEEK(LOOF) - 128): N
UM = NUM + 1

1030 NEXT LOOP: PRINT: PRINT NUM: "
VARIABLES IN USE": END

134,135 86.87 VVTP

Address for the variable value table. Eight bytes are allocated for
each variable in the name table as follows:

Byte 1 2 3 4 5 6 7 8
Variable
Scalar 00 var # six byte BCD constant
Array;DIMed 65 var # offset first second
unDIMed 64 from DIM+1 DIM+1
STARP
String;DIMed 129 var # offset length DIM
unDIMed 128 from
STARP

In scalar (undimensioned numeric) variables, bytes three to eight
are the FP number; byte three is the exponent; byte four contains
the least significant two decimal digits, and byte eight contains
the most significant two decimal digits.

In array variables, bytes five and six contain the size plus one of
the first dimension of the array (DIM + 1; LSB/MSB), and bytes
seven and eight contain the size plus one of the second dimension

(the second DIM + 1; LSB/MSB).

In string variables, bytes five and six contain the current length
of the variable (LSB/MSB), and bytes seven and eight contain the
actual dimension (up to 32767). There is an undocumented
BASIC statement, "COM," mentioned only in the BASIC
Reference Manual’s index, which executes exactly the same as

29

136,137

the "DIM" statement (see Your Atari 400/800, p. 346). Originally,
it was to be used to implement “common" variables.

In all cases, the first byte is always one of the number listed on the
chart above (you will seldom, if ever, see the undimensioned
values in a program). This number defines what type of variable
information will follow. The next byte, var # (variable number), is
in the range from zero to 127. Offset is the number of bytes from
the beginning of STARP at locations 140 and 141 ($8C, $8D).
Since each variable is assigned eight bytes, you could find the
values for each variable by:
1000 VVYTP = PEEK(134) + PEEK(135) X
256: INPUT VAR: REM VARIAELE NUM
BREK
1010 FOR LOOP = O TO 7: PRINT FPEEK({(V
VTP + LOOFP + 8 % VAR): NEXT LOOP

where VAR is the variable number from zero to 127.

If you wish to assign the same value to every element in a DIMed
string variable, use this simple technique:

10 DIM TEST${(100)

2Q TEST$S = "¥x": REM or use TEST&(1)
30 TEST$(100) = TESTS%
40 TEST®(2) = TEST%: FRINT TEST%

By assigning the first, last, and second variables in the array, in
that order, your Atari will then assign the same value to the rest of
the array. Make sure you make the second and last elements
equal to the string, not the character value (i.e., don't use
TEXT$(2) = "*").

See De Re Atari for an example of SAVEing the six-byte BCD
numbers to a disk file — very useful when dealing with fixed
record lengths.

136,137 88.89 STMTAB

30

The address of the statement table (which is the beginning of the
user’'s BASIC program), containing all the tokenized lines of
code plus the immediate mode lines entered by the user. Line
numbers are stored as two-byte integers, and immediate mode
lines are given the default value of line 32768 ($8000). The first
two bytes of a tokenized line are the line number, and the next is
a dummy byte reserved for the byte count (or offset) from the start
of this line to the start of the next line.

Following that is another count byte for the start of this line to the
start of the next statement. These count values are set only when
tokenization for the line and statement are complete.

138,139

Tokenization takes place in a 256 byte ($100) buffer that resides at
the end of the reserved OS RAM (pointed to by locations 128,
129; $80, $81).

To see the starting address of your BASIC line numbers, use this
routine:

10 STMTAER = FEEK{136) + PEEK(137)%2
36

20 NUM = PEEK(5TMTAB) + PEEK{(STMTAER
+1) %256

30 IF NUM = 32768 THEN END

40 FPRINT"LINE NUMEBER: ":NUM:"™ ADDRE
55: ":S5THMTARB

S0 STMTAR = STMTAR + PEEK(STMTABR+2)

60 GOTO 20

The August 1982 issue of ANTIC provided a useful program to
delete a range of BASIC line numbers. The routine can be
appended to your program and even be used to delete itself.

138.139 8A.8B STMCUR

Current BASIC statement pointer, used to access the tokens
being currently processed within a line of the statement table.
When BASIC is awaiting input, this pointer is set to the
beginning of the immediate mode (line 32768).
Using the address of the variable name table, the length, and the
current statement (locations 130 to 133, 138, 139), here is a way to
protect your programs from being LISTed or LOADed: they can
only be RUN! Remember, that restricts you too, so make sure you
have SAVEd an unchanged version before you do this:
32000 FOR VARI = PEEK(130) + PEEK(1
1) X 256 TO PEEK(132) + PEEK((1
3I3) % 256:FPOKE VARI.1ISS:NEXT VA
RI
32100 POKE PEEK {(138) + PEEK(13%9) X
256 + 2,0: SAVE "D:Ffilename”: N
EW
This will cause all variable names to be replaced with a RETURN
character. Other characters may be used: simply change 155 for
the appropriate ATASCII code for the character desired. Make
sure that these are the last two lines of your program and that
NEW is the last statement. CLOAD will not work, but a filename
with C: will.

140,141 8C.8D STARP

The address for the string and array table and a pointer to the end
of your BASIC program. Arrays are stored as six-byte binary

31

142,143

coded decimal numbers (BCD) while string characters use one
bye each. The address of the strings in the table are the same as
those returned by the BASIC ADR function. Always use this
function under program control, since the addresses in the table
change according to your program size. Try:

10 DIM A${(10) ,B${(10)

20 At = "%x": AS(10) = A%: AF(2)
%

30 B = "&”: B$(10) = B&: B&E(2)
k3

40 PRINT ADR{(A%), ADR(B$)

30 PRINT PEEK(140) + PEEK(141) %x 25
6: REM ADDRESS OF A%

60 PRINT PEEK(140) + PEEK{(141) X% 25
6 + 10: REM ADRESS OF A$ + 10 BYTE
S = ADDRESS OF E$

This table is expanded as each dimension is processed by
BASIC, reducing available memory. A ten-element numeric
array will require 60 bytes for storage. An array variable such as
DIM A(100) will cost the program 600 bytes (100 * six per
dimensioned number equals 600). On the other hand, a string
array such as DIM A$(100) will only cost 100 bytes! It would save
a lot of memory to write your arrays as strings and retrieve the
array values using the VAL statement. For example:

10 DIM A${(10): A% = "1234567890"
20 PRINT VAL {A%)

30 PRINT VAL{(A${(4,4))

40 PRINT VAL(A$/3I. X)) +VAL{(A$(8,9))

See COMPUTE!, June 1982, for a discussion of STARP and
VVTP. See De Re Atari for a means to SAVE the string/array area
with your program.

I
>

I
o]

142,143 8E.8F RUNSTK

32

Address of the runtime stack which holds the GOSUB entries
(four bytes each) and the FOR-NEXT entries (16 bytes each). The
POP command in BASIC affects this stack, pulling entries off it
one at a time for each POP executed. The stack expands and
contracts as necessary while the program is running.

Each GOSUB entry consists of four bytes in this order: a zero to
indicate a GOSUB, a two-byte integer line number on which the
call occurred, and an offset into that line so the RETURN can
come back and execute the next statement.

Each FOR-NEXT entry contains 16 bytes in this order: first, the
limit the counter variable can reach; second, the step or counter

144,145

increment. These two are allocated six bytes each in BCD format
(12 bytes total). The 13th byte is the counter variable number with
the MSB set; the 14th and 15th are the line number and the 16th is
the line offset to the FOR statement.

RUNSTK is also called ENDSTAR,; it is used by BASIC to point to
the end of the string/array space pointed to by STARP above.

144,145 90.91 MEMTOP

Pointer to the top of BASIC memory, the end of the space the
program takes up. There may still be space between this address
and the display list, the size of which may be retrieved by the
FRE(0) command (which actually subtracts the MEMTOP value
that is at locations 741 and 742; $2E5, $2E6). Not to be confused
with locations 741 and 742, which have the same name but are an
OS variable. MEMTOP is also called TOPSTK; it points to the top
of the stack space pointed to by RUNSTK above.
When reserving memory using location 106 ($6A) and MEMTOP,
here’s a short error-trapping routine you can add:
10 SIZE = (PEEK{(106)- # of pages vyo
u are reserving) ¥ 256
20 IF SIZE < = PEEK(144) + PEEK (145
) *¥ 256 THEN PRINT " FPROGRAM T0OO L
ARGE": END
Locations 146 to 202 ($92 to $CA) are reserved for use by the 8K
BASIC ROM.
Locations 176 to 207 ($B0 to $CF) are reserved by the Assembler
Editor cartridge for the user’s page zero use. The Assembler debug
routine also reserves 30 bytes in page zero, scattered from location 164
($A4) to 255 ($FF), but they cannot be used outside the debug process.
(See De Re Atari, Rev. 1, Appendix A for a list of these available
bytes.)
186.187 BA.BB STOPLN
The line where a program was stopped either due to an error or
the use of the BREAK key, or a STOP or a TRAP statement
occurred. You can use PEEK (186) + PEEK (187) * 256 in a
GOTO or GOSUB statement.
195 C3 ERRSAVE
The number of the error code that caused the stop or the TRAP.
You can use this location in a program in a line such as:

10 IF PEEK(195) <> 144 THEN 100
201 C9 PTABW

This location specifies the number of columns between TAB
stops. The first tab will be at PEEK(201). The default is ten. This is

33

203-207

the value between items separated in a PRINT statement by com-
mas — such as PRINT A$, LOOP, C(12) — not by the TAB key
spacing.

The minimum number of spaces between TABS is three. If you
POKE 201,2, it will be treated as four spaces, and POKE 201,1 is
treated as three spaces. POKE 201,0 will cause the system to
hang when it encounters a PRINT statement with commas. To
change the TAB key settings, see TABMAP (locations 675 to 689;
$2A3 - $2B1). PTABW is not reset to the default value by pressing
RESET or changing GRAPHICS modes (unlike TABMAP).
PTABW works in all GRAPHICS modes, not merely in text
modes. The size of the spaces between items depends on the pixel
size in the GRAPHICS mode in use. For example, in GR.0, each
space is one character wide, while in GR.8 each space is one-half
color clock (one dot) wide.

203-207 CB-CF
Unused by either the BASIC or the Assembler cartridges.
208-209 D0-D1

Unused by BASIC. The only time I have seen any of these unused
locations in use is in COMPUTE! (March 1982 and October
1981), when they were used for user sort routines, and in ANTIC
(June 1982), where they were used as flags in a graphic
demonstration. The bytes from 203 to 209 ($CB to $D1) are the
only page zero bytes uncontestably left free by BASIC.

210-211 D2-D3 sise
Reserved for BASIC or other cartridge use.

Locations 212 to 255 ($D4 to $FF) are reserved for the floating point
package use. The FP routines are in ROM, from locations 55296 to
57393 ($D800 to $EO031). These page zero locations may be used if the
FP package is not called by the user’s program. However, do not use
any of these locations for an interrupt routine, since such routines
might occur during an FP routine called by BASIC, causing the
system to crash.

Floating Point uses a six-byte precision. The first byte of the Binary
Coded Decimal (BCD) number is the exponent (where if BIT 7 equals
zero, then the number is positive; if one, then it is negative). The next
five bytes are the mantissa. If only that were all there was to it. The

BCD format is rather complex and is best explained in chapter eight of
De Re Atari.

212-217 D4-DS FRO

Floating point register zero; holds a six-byte internal form of the
FP number. The value at locations 212 and 213 are used to return
a two-byte hexadecimal value in the range of zero to 65536

34

218-223

($FFFF) to the BASIC program (low byte in 212, high byte in
213). The floating point package, if used, requires all locations
from 212 to 255. All six bytes of FRO can be used by a machine
language routine, provided FRO isn't used and no FP functions
are used by that routine. To use 16 bit values in FP, you would
place the two bytes of the number into the least two bytes of FRO
(212, 213; $D4, $D5), and then do a JSR to $D9AA (55722), which
will convert the integer to its FP representation, leaving the result
in FRO. To reverse this operation, do a JSR to $D9D2 (55762).

218-223 DA-DF FRE
FP extra register (?)
224-229 EO0-ES FR1

Floating point register one; holds a six-byte internal form of the
FP number as does FRO. The FP package frequently transfers
data between these two registers and uses both for two-number
arithmetic operations.

230-235 E6-EB FR2
FP register two.

236 EC FRX
FP spare register.

237 ED EEXP
The value of E (the exponent).

238 EE NSIGN
The sign of the FP number.

239 EF ESIGN
The sign of the exponent.

240 FO FCHRFLG
The first character flag.

241 Fl DIGRT
The number of digits to the right of the decimal.

242 F2 CIX

Character (current input) index. Used as an offset to the input

text buffer pointed to by INBUFF below.

243,244 F3.F4 INBUFF

Input ASCII text buffer pointer; the user’s program line input
buffer, used in the translation of ATASCII code to FP values. The
result output buffer is at locations 1408 to 1535 ($580 to $5FF).

245,246 F5.F6 ZTEMP1

Temporary register.

35

247,248

247,248 F7.F8 ZTEMP4
Temporary register.

249,250 F9.FA ZTEMP3
Temporary register.

251 FB RADFLG

Also called DEGFLG. When set to zero, all of the trigonometric
functions are performed in radians; when set to six, they are done
in degrees. BASIC’s NEW command and RESET both restore

RADFLG to radians.
252,253 FC.FD FLPTR
Points to the user’s FP number.
254,255 FE.FF FPTR2
Pointer to the user’s second FP number to be used in an
operation.
End of the page zero RAM.

PAGE ONE: THE STACK

Locations 256 to 511 ($100 to $1FF) are the stack area for the OS, DOS
and BASIC. This area is page one. Machine language JSR,PHA and
interrupts all cause data to be written to page one, and RTS, PLA and
RTI instructions all read data from page one. On powerup or RESET,
the stack pointer is initialized to point to location 511 ($1FF). The stack
then pushes downward with each entry to 256 ($100). In case of
overflow, the stack will wrap around from 256 back to 511 again.

PAGES TWO TO FOUR

Locations 512to 1151 ($200 to $47F) are used by the OS for working
variables, tables and data buffers. In this area, locations 512 to 553
($200 to $229) are used for interrupt vectors, and locations 554 to 623
($22A to $26F) are for miscellaneous use. Much of pages two through
five cannot be used except by the OS unless specifically noted. A
number of bytes are marked as “‘spare”, i.e., not in use currently. The
status of these bytes may change with an Atari upgrade, so their use is
not recommended.

There are two types of interrupts: Non-Maskable Interrupts (NMI)
processed by the ANTIC chip and Interrupt Requests (IRQ) processed
by the POKEY and the PIA chips. NMI's are for the VBLANK interrupts
(VBI's; 546 to 549, $222 to $225), display list interrupts (DLI) and
RESET key interrupts. They initiate the stage one and stage two
VBLANK procedures; usually vectored through an OS service routine,
they can be vectored to point to a user routine. IRQ'’s are for the timer

36

512,513

interrupts, peripheral and serial bus interrupts, BREAK and other key
interrupts, and 6502 BRK instruction interrupts. They can usually be
used to vector to user routines. See NMIST 54287 ($D40F) and IRQEN
53774 ($D20E) for more information. NMI interrupt vectors are marked
NMTI; IRQ interrupt vectors are marked IRQ.

Refer to the chart below location 534 for a list of the interrupt vectors in
the new OS “"B" version ROMs.

512,513 200,201 VDSLST

The vector for NMI Display List Interrupts (DLI): containing the
address of the instructions to be executed during a DLI (DLI's are
used to interrupt the processor flow for a few microseconds at the
particular screen display line where the bit was set, allowing you
to do another short routine such as music, changing graphics
modes, etc.). The OS doesn't use DLI's; they must be user-
enabled, written and vectored through here. The NMI status
register at 54287 ($3D40F) first tests to see if an interrupt was
caused by a DLI and, if so, jumps through VDSLST to the routine
written by the user. DLI's are disabled on powerup, but VBI's are
enabled (see 546 to 549; $222 to $225).

VDSLST is initialized to point to 59315 ($E7B3), which is merely
an RTI instruction. To enable DLI's, you must first POKE 54286
($D40E) with 192 ($C0); otherwise, ANTIC will ignore your
request. You then POKE 512 and 513 with the address (LSB/MSB)
of the first assembly language routine to execute during the DLI.
You must then set BIT 7 of the Display List instruction(s) where
the DLI is to occur. You have only between 14 and 61 machine
cycles available for your DLI, depending on your GRAPHICS
mode. You must first push any 6502 registers onto the stack, and
you must end your DLI with an RTI instruction. Because you are
dealing with machine language for your DLI, you can POKE
directly into the hardware registers you plan to change, rather
than using the shadow registers that BASIC uses.

There is, unfortunately, only one DLI vector address. If you use
more than one DLI and they are to perform different activities,
then changing the vectoring to point to a different routine must
be done by the previous DLI's themselves.

Another way to accomplish interrupts is during the VBLANK
interval with a VBI. One small problem with using DLI's is that
the keyboard “click” routine interferes with the DLI by throwing
off the timing, since the click is provided by several calls to the
WSYNC register at 54282 ($D40A). Chris Crawford discusses
several solutions in De Re Atari, but the easiest of them is not to
allow input from the keyboard! See Micro, December 1981,
Creative Computing, July 1981 and December 1981.

37

514,515

Here's a short example of a DLI. It will print the lower half of your

text screen upside down:

10 START = PEEK {(S60) + PEEK(S61) X
256: FPOKE START + 16,130

20 FAGE = 1536: FOR PGM = PAGE TO P
AGE + 7: READ BYTE: POKE PGM, BYTE
: NEXT PGM

30 DATA 72,169.4,141,1,212,104,64

40 FPOKE S12,0: POKE S13.6: POKE 542
86,192

S0 FOR TEST = t TO 240: PRINT"SEE "
s NEXT TEST

60 GOTO &0

Another example of a DLI changes the color of the bottom half of
the screen. To use it, simply change the PAGE + 7to PAGE + 10
in the program above and replace line 30 with:

30 DATA 72,169,222,141,10,212,141,2
4,208,104,64

Finally, delete lines 50 and 60. See also location 54282 ($D40A).
514,515 202,203 VPRCED

Serial (peripheral) proceed line vector, initialized to 59314
($E7B2), which is merely a PLA, RTI instruction sequence. It is
used when an IRQ interrupt occurs due to the serial I/O bus
proceed line which is available for peripheral use. According to
De Re Atari, this interrupt is not used and points to a PLA, RTI
instruction sequence. This interrupt is handled by the PIA chip
and can be used to provide more control over external devices.
See the OS Listing, page 33.

516,517 204,205 VINTER
Serial (peripheral) interrupt vector, initialized to 59314 ($E7B2).
Used for the IRQ interrupt due to a serial bus I/O interrupt.
According to De Re Atari, this interrupt is not used and points to
a PLA, RTI sequence. This interrupt is processed by PIA. See the
OS Listing, page 33.

518,519 206,207 VBREAK
Software break instruction vector for the 6502 BRK ($00)
command (not the BREAK key, which is at location 17; $11),
initialized to 59314 ($3E7B2). This vector is normally used for
setting break points in an assembly language debug operation.
IRQ.

520,521 208,209 VKEYBD
POKEY keyboard interrupt vector, used for an interrupt
generated when any keyboard key is pressed other than BREAK

38

522,523

or the console buttons. Console buttons never generate an
interrupt unless one is specifically user-written. VKEYBD can be
used to process the key code before it undergoes conversion to
ATASCII form. Initialized to 65470 ($FFBE), which is the OS
keyboard IRQ routine.

522,523 20A,20B VSERIN

POKEY serial I/O bus receive data ready interrupt vector,
initialized to 60177 ($3EB11), which is the OS code to place a byte
from the serial input port into a buffer. Called INTRVEC by DOS,
it is used as an interrupt vector location for an SIO patch. DOS
changes this vector to 6691 ($1A23), the start of the DOS
interrupt ready service routine. IRQ.

524,525 20C.,20D VSEROR

POKEY serial I/O transmit ready interrupt vector, initialized to
60048 (EA90), which is the OS code to provide the next byte in a
buffer to the serial output port. DOS changes this vector to 6630
($19E6), the start of the DOS output needed interrupt routine.

IRQ.

526,527 20E.20F VSEROC

POKEY serial bus transmit complete interrupt vector, initialized
to 60113 ($EADI1), which sets a transmission done flag after the
checksum byte is sent. IRQ.

SIO uses the three last interrupts to control serial bus
communication with the serial bus devices. During serial bus
communication, all program execution is halted. The actual
serial I/O is interrupt driven; POKEY waits and watches for a flag
to be set when the requested I/O operation is completed. During
this wait, POKEY is sending or receiving bits along the serial
bus. When the entire byte has been transmitted (or received), the
output needed (VSEROR) or the input ready (VSERIN) IRQ is
generated according to the direction of the data flow. This causes
the next byte to be processed until the entire buffer has been sent
or is full, and a flag for “'transmission done" is set. At this point,
SIO exits back to the calling routine. You can see that SIO wastes
time waiting for POKEY to send or receive the information on the
bus.

528,529 210,211 VTIMRI

POKEY timer one interrupt vector, initialized to 59314 ($E7B2),
which is a PLA, RTI instruction sequence. Timer interrupts are
established when the POKEY timer AUDF1 (53760; $D200)
counts down to zero. Values in the AUDF registers are loaded

into STIMER at 53769 ($D209). IRQ.

39

530,531

530,531 212,213 VTIMR2

POKEY timer two vector for AUDF2 (53762, $D202), initialized to

59314 ($E7B2). IRQ.

532,533 214,215 VTIMR4
POKEY timer four vector for AUDF4 (53766, $D206), initialized
to 59314 ($E7B2). This IRQ is only vectored in the "B’ version of
the OS ROMs.

534,535 216,217 VIMIRQ
The IRQ immediate vector (general). Initialized to 59126
($E6F6). IMP through here to determine cause of the IRQ
interrupt. Note that with the new ("B"") OS ROMs, there is a
BREAK key interrupt vector at locations 566, 567 ($236, $237).

See 53774 ($3D20E) for more information on IRQ interrupts.

The new “"B” version OS ROMs change the vectors above as
follows:

VDSLST 59280 ($E790)
VPRCED 59279 ($E78F)
VINTER 59279 ($E78F)
VBREAK 59279 ($E78F)
VKEYBD NO CHANGE
VSERIN 60175 ($EBOF)
VSEROR NO CHANGE
VSEROC 60111 ($EACF)
VTIMR1-4 59279 ($E78F)
VIMIRQ 59142 ($E706)
VVBLKI 59310 ($E7AE)
VVBLKD 59653 ($E905)

The locations from 536 to 558 ($218 to $22E) are used for the system
software timers. Hardware timers are located in the POKEY chip and
use the AUDF registers. These timers count backwards every 1/60
second (stage one VBLANK) or 1/30 second (stage two VBLANK)
interval until they reach zero. If the VBLANK process is disabled or
intercepted, the timers will not be updated. See De Re Atari for
information regarding setting these timers in an assembly routine
using the SETVBYV register (58460; $E45C). These locations are user-
accessible and can be made to count time for music duration, game
1/0O, game clock and other functions.

Software timers are used for durations greater than one VBLANK
interval (1/60 second). For periods of shorter duration, use the
hardware registers.

536.537 218,219 CDTMVI

System timer one value. Counts backwards from 255. This SIO

40

538,539

timer is decremented every stage one VBLANK. When it reaches
zero, it sets a flag to jump (JSR) through the address stored in
locations 550, 551 ($226, $227). Only the realtime clock
(locations 18-20; $12-14), timer one, and the attract mode
register (77; $4D) are updated when the VBLANK routine is cut
short because time-critical code (location 66; $42 set to non-zero
for critical code) is executed by the OS. Since the OS uses timer
one for its I/O routines and for timing serial bus operations
(setting it to different values for timeout routines), you should use
another timer to avoid conflicts or interference with the operation
of the system.

538,539 21A,21B CDTMV2

System timer two. Decremented at the stage two VBLANK. Can
be decremented every stage one VBLANK, subject to critical
section test as defined by setting of CRITIC flag (location 66;
$42). This timer may miss (skip) a count when time-critical code
(CRITIC eqguals non-zero) is being executed. It performs a JSR
through location 552, 553 ($228, $229) when the value counts
down to zero.

540,541 21C,21D CDTMV3
System timer three. Same as 538. Timers three, four, and five are
stopped when the OS sets the CRITIC flag to non-zero as well.
The OS uses timer three to OPEN the cassette recorder and to set
the length of time to read and write tape headers. Any prior value
in the register during this function will be lost.

542,543 21E.21F CDTMV4
System timer four. Same as 538 ($21A).
544,545 220,221 CDTMVS

System timer five. Same as 538 ($21A). Timers three, four, and
five all set flags at 554, 556 and 558 ($22A, $22C, $22E),

respectively, when they decrement to zero.

546,547 222,223 VVBLKI
VBLANK immediate register. Normally jumps to the stage one
VBLANK vector NMI interrupt processor at location 59345
($E7D1); in the new OS “B” ROMs; 59310, $E7AE). The NMI
status register tests to see if the interrupt was due to a VBI (after
testing for a DLI) and, if so, vectors through here to the VBI
routine, which may be user-written. On powerup, VBI's are
enabled and DLI's are disabled. See location 512; $200.

548,549 224,225 VVBLKD

VBLANK deferred register; system return from interrupt,
initialized to 59710 ($E93E, in the new OS "B’ ROMs; 59653;

41

550,551

$E905), the exit for the VBLANK routine. NMI.

These two VBLANK vectors point to interrupt routines that occur
at the beginning of the VBLANK time interval. The stage one
VBLANK routine is executed; then location 66 ($42) is tested for
the time-critical nature of the interrupt and, if a critical code
section has been interrupted, the stage two VBLANK routine is
not executed with a JIMP made through the immediate vector
VVBLKI. If not critical, the deferred interrupt VVBLKD is used.
Normally the VBLANK interrupt bits are enabled (BIT 6 at
location 54286; $D40E is set to one). To disable them, clear BIT 6
(set to zero).

The normal sequence for VBLANK interrupt events is: after the
OS test, IMP to the user immediate VBLANK interrupt routine
through the vector at 546, 547 (above), then through SYSVBV at
58463 ($E45F). This is directed by the OS through the VBLANK
interrupt service routine at 59345 ($E7D1) and then on to the
user-deferred VBLANK interrupt routine vectored at 548, 549. It
then exits the VBLANK interrupt routine through 58466 ($E462)
and an RTI instruction.

If you are changing the VBLANK vectors during the interrupt
routine, use the SETVBV routine at 58460 ($E45C). An
immediate VBI has about 3800 machine cycles of time to use; a
deferred VBI has about 20,000 cycles. Since many of these cycles
are executed while the electron beam is being drawn, it is
suggested that you do not execute graphics routines in deferred
VBI's. See the table of VBLANK processes at the end of the map

area.

If you create your own VBI's, terminate an immediate VBI with a
JMP to 58463 ($E45F) and a deferred VBI with a JMP to 58466
($E462). To bypass the OS VBI routine at 59345 ($E7D1) entirely,
terminate your immediate VBI with a JMP to 58466 ($E462).

Here's an example of using a VBI to create a flashing cursor. It
will also blink any text you display in inverse mode.

10 FOR BLINK = 1664 TD 1680: READ R
YTE: POKE BLINK, BYTE: NEXT BLINK

20 POKE S48,128: POKE S49.6

30 DATA 8.72.165,20,41,16,74,74,74,
141

40 DATA 243,2,104,40,76,62,233

To restore the normal cursor and display, POKE 548,62 and
POKE 549,233.

550,551 226,227 CDTMALl

42

System timer one jump address, initialized to 60400 ($EBFO).

552,553

When locations 536, 537 ($218, $219) reach (count down to) zero,
the OS vectors through here (jumps to the location specified by
these two addresses). You can set your machine code routine
address here for execution when timer one reaches (counts down
to) zero. Your code should end with the RTS instruction.
Problems may occur when timer values are set greater than 255,
since the 6502 cannot manipulate 16-bit values directly (a
number in the range of zero to 255 is an eight-bit value; if a value
reguires two bytes to store, such as a memory location, it is a
16-bit value). Technically, a VBLANK interrupt could occur
when one timer byte is being initialized and the other not yet set.
To avoid this, keep timer values less than 255. See the Atari OS
User’s Manual, page 106, for details.

Since the OS uses timer one, it is recommended that you use
timer two instead, to avoid conflicts with the operation of the

Atari. Initialized to 60396 ($EBEA) in the old ROMs, 60400
($EBFO) in the new ROMs. NMI

552,553 228,229 CDTMA2

554

555

556

557

558

System timer two jump address. Not used by the OS, available to
user to enter the address of his or her own routine to JMP to when
the timer two (538, 539; $21 A, $21B) count reaches zero.
Initialized to zero; the address must be user specified. NMI

22A CDTMF3
System timer three flag, set when location 540, 541 ($21C, $21D)
reaches zero. This register is also used by DOS as a timeout flag.

22B SRTIMR

Software repeat timer, controlled by the IRQ device routine. It
establishes the initial 2 second delay before a key will repeat.
Stage two VBLANK establishes the 1/10 second repeat rate,
decrements the timer and implements the auto repeat logic.
Every time a key is pressed, STIMER is set to 48 ($30). Whenever
SRTIMR is equal to zero and a key is being continuously pressed,
the value of that key is continually stored in CH, location764
($2FC).

22C CDTMF4
System timer four flag. Set when location 542, 543 ($21E, $21F)
counts down to zero.

22D INTEMP
Temporary register used by the SETVBL routine at 58460
($E45C).

22E CDTMF5
System timer five flag. Set when location 558, 559 ($22E, $22F)
counts down to zero.

43

559

559 22F SDMCTL
Direct Memory Access (DMA) enable. POKEing with zero allows
you to turn off ANTIC and speed up processing by 30%. Of
course, it also means the screen goes blank when ANTIC is
turned off! This is useful to speed things up when you are doing a
calculation that would take a long time. It is also handy to turn off
the screen when loading a drawing, then turning it on when the
screen is loaded so that it appears instantly, complete on the
screen. To use it you must first PEEK(559) and save the result in
order to return your screen to you. Then POKE 559,0 to turn off
ANTIC. When you are ready to bring the screen back to life,
POKE 559 with the number saved earlier.

This location is the shadow register for 54272 ($D400), and the
number you PEEKed above defines the playfield size, whether or
not the missiles and players are enabled, and the player size
resolution. To enable your options by using POKE 559, simply
add up the values below to obtain the correct number to POKE
into SDMCTL. Note that you must choose only one of the four
playfield options appearing at the beginning of the list:

Option Decimal Bit
No playfield 0 O
Narrow playfield 1 .0
Standard playfield 2 01
Wide playfield 3 0l
Enable missle DMA 4 2
Enable player DMA 8 3
Enable player and missile

DMA 12 2,3
One line player resolution 16 4
Enable instructions to fetch

DMA 32 5 (seebelow)

Note that two-line player resolution is the default and that it is not
necessary to add a value to 559 to obtain it. I have included the
appropriate bits affected in the table above. The default is 34
($22).

The playfield is the area of the TV screen you will use for display,
text, and graphics. Narrow playfield is 128 color clocks (32
characters wide in GR.0), standard playfield is 160 color clocks
(40 characters), and wide playfield is 192 color clocks wide (48
characters). A color clock is a physical measure of horizontal
distance on the TV screen. There are a total of 228 color clocks on
a line, but only some of these (usually 176 maximum) will be
visible due to screen limitations. A pixel, on the other hand, is a

44

560,561

logical unit which varies in size with the GRAPHICS mode. Due
to the limitations of most TV sets, you will not be able to see all of
the wide playfield unless you scroll into the offscreen portions.

BIT 5 must be set to enable ANTIC operation; it enables DMA for
fetching the display list instructions.

560,561 230,231 SDLSTL

Starting address of the display list. The display list is an
instruction set to tell ANTIC where the screen data is and how to
display it. These locations are the shadow for 54274 and 54275
($D402, $D403). You can also find the address of the DL by
PEEKing one byte above the top of free memory:

PRINT PEEK(741) + PEEK(742) * 256 + 1.

However, 560 and 561 are more reliable pointers since custom
DL's can be elsewhere in memory. Atari standard display lists
simply instruct the ANTIC chip as to which types of mode lines to
use for a screen and where the screen data may be found in
memory. Normally, a DL is between 24 and 256 bytes long (most
are less than 100 bytes, however), depending on your
GRAPHICS mode (see location 88,89 for a chart of DL sizes and
screen display use).

By altering the DL, you can mix graphics modes on the same
screen; enable fine scrolling; change the location of the screen
data; and force interrupts (DLI's) in order to perform short
machine language routines.

DL bytes five and six are the addresses of the screen memory
data, the same as in locations 88 and 89 ($58, $59). Bytes four,
five, and six are the first Load Memory Scan (LMS) instruction.
Byte four tells ANTIC what mode to use; the next two bytes are
the location of the first byte of the screen RAM (LSB/MSB).
Knowing this location allows you to write directly to the screen by
using POKE commands (you POKE the internal character codes,
not the ATASCII codes — see the BASIC Reference Manual, p.
55).

For example, the program below will POKE the internal codes to
the various screen modes. You can see not only how each screen
mode handles the codes, but also roughly where the text window
is in relation to the display screen (the 160 bytes below
RAMTOP). Note that the GTIA modes have no text window. If
you don't have the GTIA chip, your Atari will default to
GRAPHICS 8, but with GTIA formatting.

1 TRAP 10: GRAPHICS Z
S SCREEN = PEEK (560) + PEEK{(361) X
256

45

560,561

46

b TV = SCREEN + 4: TELE = SCREEN +5

8 DISFLAY = PEEK({(TV) + PEEK(TELE) x
256

10 FOR N = O TO 255: POKE DISPLAY +
N.,N: NEXT N

20 DISPLAY = DISFLAY + N

30 IF DISPLAY > 40959 THEN Z = Z + 1
£ BOTO 1

40 GOTO 10

S50 Z = Z + 1:1IF Z » 60 THEN END

60 GOTO 1

Here's another short program which will allow you to examine the
DL in any GRAPHICS mode:

10 REM CLEAR SCREEN FIRST

20 PRINT"ENTER GRAPHICS MODE": REHM A
DD 146 TO THE MODE TO SUPPRESS THE
TEXT WINDOW

20 INFUT A: GRAPHICS A

40 DLIST = PEEK({(5360) + PEEK{561) % 2
96

S5O LOOK = PEEKA(DLIST): PRINT LOOK;:;"

60 IF LOOK <> 65 THEN DLIST = DLIST
+ 1: GOTO S0

70 LPRINT PEEK(DLIST + 1);" ";PEEK(D
LIST + 2)
80 END

The value 65 in the DL is the last instructicn encountered. It tells
ANTIC to jump to the address in the next two bytes to re-execute
the DL, and wait for the next VBLANK. If you don't have a
printer, change the LPRINT commands to PRINT and modify the
routine to save the data in an array and PRINT it to the screen
after (in GR.0).

If you would like to examine the locations of the start of the
Display List, screen, and text window, try:

3 REM CLEAR SCREEN FIRST

6 INPUT A: GRAPHICS A
10 DIM DLIST$(10), SAVMSCH(10), TXT%

(10)

15 DLIST$ = "DLIST": SAVMSCS$ = "SAVM
SC": TXT$ = "TEXT”

20 DLIST = PEEK(560) + PEEK(S561) % 2
S6

30 SAV = PEEK(88) + PEEK(8%9) % 256:

560,561

TXT = PEEK(660) + PEEK(661) % 256

40 PRINT DLIST$;" ":DLIST,SAVMSC$;"
"; SAV
S50 PRINT TAT$:" ";TEXT

60 INPUT A: GRAPHICS A: GOTO 20

Since an LMS is simply a map mode (graphics) or character
mode (text) instruction with BIT six set, you can make any or all of
these instructions into LMS instructions quite easily, pointing
each line tc a different RAM area if necessary. This is discussed
in De Re Atari on implementing horizontal scrolling.

DL's can be used to help generate some of the ANTIC screen
modes that aren’t supported by BASIC, such as 7.5 (ANTIC
mode E) or ANTIC mode three, the lowercase with descenders
mode (very interesting; ten scan lines in height which allow true
descenders on lowercase letters).

If you create your own custom DL, you POKE its address here.
Hitting RESET or changing GRAPHICS modes will restore the
OS DL address, however. The display list instruction is loaded
into a special register called the Display Instruction Register (IR)
which processes the three DL instructions (blank, jump, or
display). It cannot be accessed directly by the programmer in
either BASIC or machine language. A DL cannot cross a 1K
boundary unless a jump instruction is used.

There are only four display list instructions: blank line (uses BAK
color), map mode, text mode, and jump. Text (character mode)
instructions and map mode (graphics) instructions range from
two to 15 ($2 to $F) and are the same as the ANTIC GRAPHICS
modes. A DL instruction byte uses the following conventions
(functions are enabled when the bit is set to one):

Bit Decimal Function

7 128 Display List Interrupt when set (enabled
equals one)
6 64 Load Memory Scan. Next two bytes are the
LSB/MSB of the data to load.
5 32 Enable vertical fine scrolling.
4 16 Enable horizontal fine scrolling.
3-0 8-1 Mode
0 0 1 0 Character
to Modes
0 1 1 1
1 0 0 0 Map
to Modes
I F &1 1

47

562

562

563

564

565

48

The above bits may be combined (i.e., DLI, scrolling and LMS
together) if the user wishes.

Special DL instructions (with decimal values):

Blank lline = 0 O5lines = 64
2lines = 16 6lines = 80
3lines = 32 7lines = 96
4 lines = 48 8lines = 112

Jump instruction (JMP) = zero (three-byte instruction).
Jump and wait for Vertical Blank (JVP) = 65 (three-byte
instruction).

Special instructions may be combined only with DL interrupt
instructions.

A Display List Interrupt is a special form of interrupt that takes
place during the screen display when the ANTIC encounters a
DL instruction with the interrupt BIT 7 set. See location 512
($200) for DLI information.

Since DL's are too large a topic to cover properly in this manual,
I suggest you look in the many magazines (i.e., Creative
Computing, July 1981, August 1981; Micro, December 1981;
Softside, #30 to 32, and BYTE, December 1981) for a more
detailed explanation.

232 SSKCTL

Serial port control register, shadow for 53775 ($D20F). Setting
the bits in this register to one has the following effect:

Bit Decimal Function
0 1 Enable the keyboard debounce circuit.
1 2 Enable the keyboard scanning circuit.
2 4 The pot counter completes a read within two
scan lines instead of one frame time.
3 8 Serial output transmitted as two-tone instead
of logic true/false (POKEY two-tone mode).
4-6 16-64 Serial port mode control.
T 128 Force break; serial output to zero.
Initialized to 19 ($13), which sets bits zero, one and four.
233 SPARE
No OS use. See the note at location 651 regarding spare bytes.
234 LPENH

Light pen horizontal value: shadow for 54284 ($D40C). Values
range from zero to 227.

235 LPENV
Light pen vertical value: shadow for 54285 ($D40D). Value is the

—

566,567

same as VCOUNT register for two-line resolution (see 54283;
$D40B). Both light pen values are modified when the trigger is
pressed (pulled low). The light pen positions are not the same as
the normal screen row and column positions. There are 96
vertical positions, numbered from 16 at the top to 111 at the
bottom, each one equivalent to a scan line. Horizontal positions
are marked in color clocks. There are 228 horizontal positions,
numbered from 67 at the left. When the LPENH value reaches
2585, it is reset to zero and begins counting again by one to the
rightmost edge, which has a value of seven.

Obviously, because of the number of positions readable and the
small size of each, a certain leeway must be given by the
programmer when using light pen readouts on a program. At the
time of this writing, Atari had not yet released its light pen onto
the market, although other companies have.

566.567 236,237 BRKKY
BREAK key interrupt vector. This vector is available only with
the version "B OS ROMs, not the earlier version. You can use
this vector to write your own BREAK key interrupt routine.

Initialized to 59220 ($E754).

568,569 238,239
Two spare bytes.
570 23A CDEVIC

Four-byte command frame buffer (CFB) address for a device —

used by SIO while performing serial I/O, not for user access.
CDEVIC is used for the SIO bus ID number. The other three CFB

bytes are:
571 23B CCOMND
The SIO bus command code.
572 23C CAUX1
Command auxiliary byte one, loaded from location 778 ($30A)
by SIO.
573 23D CAUX2
Command auxiliary byte two, loaded from location 779 ($30B) by
SIO.
574 23E TEMP
Temporary RAM register for SIO.
575 23F ERRFLG

SIO error flag; any device error except the timeout error (time
equals zero).

49

576

576 240 DFLAGS

Disk flags read from the first byte of the boot file (sector one) of
the disk.

877 241 DBSECT

The number of disk boot sectors read from the first disk record.

578,579 242,243 BOOTAD
The address for where the disk boot loader will be put. The
record just read will be moved to the address specified here,
followed by the remaining records to be read. Normally, with
DQOS, this address is 1792 ($700), the value alsc stored
temporarily in RAMLO at 4, 5. Address 62189 ($F2ED) is the OS
disk boot routine entry point (DOBOOT).

580 244 COLDST

Coldstart flag. Zero is normal; if zero, then pressing RESET will
not result in reboot. If POKEd with one (powerup in progress
flag), the computer will reboot whenever the RESET key is
pressed. Any non-zero number indicates the initial powerup
routine is in progress.

If you create an AUTORUN.SYS file, it should end with an RTS
instruction. If not, it should POKE 580 with zero and POKE 9 with one.
You can turn any binary file that boots when loaded with DOS menu
selection "L" into an auto-boot file simply by renaming it
“"AUTORUN.SYS". Be careful not to use the same name for any two
files on the same disk.

When this is combined with the disabling of the BREAK key discussed
in location 16 ($10) and the program protection scheme discussed in
location 138 ($8A), you have the means to protect your BASIC
software fairly effectively from being LISTed or examined, although
not from being copied.

581 245 fag
Spare byte.

582 246 DSKTIM

Disk time-out register (the address of the OS worst case disk time-
out). It is said by many sources to be set to 160 at initialization,
which represents a 171 second time-out, but my system shows a
value of 224 on initialization. Timer values are 64 seconds for
each 60 units of measurement expressed.

It is updated after each disk status request to contain the value of
the third byte of the status frame (location 748; $2EC). All disk
operations have a seven second time-out (except FORMAT),
established by the disk handler (you had noticed that irritating
little delay, hadn't you?). The “'sleeping disk syndrome”’ (the

50

583-622

printer suffers from this malady as well) happens when your drive

times out, or the timer value reaches zero. This has been cured
by the new OS "B" version ROMs.

583-622 247-26E LINBUF

Forty-byte character line buffer, used to temporarily butfer one
physical line of text when the screen editor is moving screen
data. The pointer to this buffer is stored in 100, 101 ($64, $65)
during the routine.

623 26F GPRIOR
Priority selection register, shadow for 53275 ($D01B). Priority
options select which screen objects will be “in front” of others. It
also enables you to use all four missiles as a fifth player and
allows certain overlapping players to have different colors in the
areas of overlap. You add your options up as in location 559,
prior to POKEing the total into 623. In this case, choose only one
of the four priorities stated at the beginning. BAK is the
background or border. You can also use this location to select
one of GTIA GRAPHICS modes nine, ten, or eleven.

Priority options in order Decimal Bit
Player 0 - 3, playfield 0 - 3, BAK

(background) 1 0
Player 0 - 1, playfield O - 3, player 2 - 3,

BAK 2 1
Playfield 0 - 3, player 0 - 3, BAK 4 2
Playfield 0 - 1, player O - 3, playfield 2 -3,

BAK 8 3
Other options
Four missiles = fifth player 16 4
Overlaps of players have 3rd color 32 5
GRAPHICS 9 (GTIA mode) 64 6
GRAPHICS 10 (GTIA mode) 128 7
GRAPHICS 11 (GTIA mode) 192 6,7

It is quite easy to set conflicting priorities for players and
playfields. In such a case, areas where both overlap when a
conflict occurs will turn black. The same happens if the overlap
option is not chosen.

W ith the color/overlap enable, you can get a multicolor player
by combining players. The Atari performs a logical OR to colors
of players 0/1 and 2/3 when they overlap. Only the 0/1, 2/3
combinations are allowed; you will not get a third color when
players 1 and 3 overlap, for example (you will get black instead).
If player one is pink and player O is blue, the overlap is green. If
you don't enable the overlap option, the area of overlap for all

51

623

52

players will be black.
In GTIA mode nine, you have 16 different luminances of the

same hue. In BASIC, you would use SETCOLOR 4,HUE,0. To
see an example of GTIA mode nine, try:

10 GRAPHICS 9: SETCOLOR 4,9,0

20 FOR LOOFP = 1 TO 15: COLOR LOOP
30 FOR LINE = 1 TO 2

40 FOR TEST = 1t TO 25: PLOT 4 + TES

T, LOOFP + LINE + SPACE: NEXT TEST
45 NEXT LINE

S0 SPACE = SPACE + 4
60 NEXT LOOP
70 GOTO 70: REM WITHOUT THIS LINE,

SCREEN WILL RETURN TO GR.O

In GTIA mode ten, you have all nine color registers available;
hue and luminance may be set separately for each (it would
otherwise allow 16 colors, but there are only nine registers). Try
this to see:

10 N = 0: GRAPHICS 10

20 FOR & = 1 TO 2
30 FOR B = O TO 8: POKE 704 + B, N
¥ 16 + A

35 IF A > 15 THEN A
40 COLOR H
45 A=A + 1: N =N + 1

I
<

S0 IF N > 15 THEN N Q

60 NEXT B

65 TRAFP 70: NEXT @

70 PUP: N = N + 1: FOR Z = 1 T0O 200
: NEXT Z

75 GOTO 30

GTIA mode eleven is similar to mode nine except that it allows 16
different hues, all of the same luminance. In BASIC, use
SETCOLOR 4,0,luminance. Try this for a GTIA mode eleven
demonstration:

10 GRAFHICS 11

20 FOR LOOP = O TO 79: COLOR LOOP:
PLOT LOOP,.O: DRAWTO LOOP,191: NEXT
LOOP

30 Go1a 30

You can use these examples with the routine to rotate colors,
described in the text preceding location 704. GTIA mode pixels
are long and skinny; they have a four to one horizontal length to
height ratio. This obviously isn't very good for drawing curves

624

and circles!

GTIA modes are cleared on the OPEN command. How can you
tell if you have the GTIA chip? Try POKE 623,64. If you have the
GTIA, the screen will go all black. If not, you don't have it. Here
is a short routine, written by Craig Chamberlain and Sheldon
Leemon for COMPUTE!, which allows an Atari to test itself for the
presence of a CTIA or GTIA chip. The routine flashes the answer
on the screen, but can easily be modified so a program will
“know"’ which chip is present so it can adapt itself accordingly:

10 POKE 66.,1:GRAPHICS 8:FOKE 709,0:PO0
KE 710,0:FOKE 66,0:FPOKE 23,.64: POK
E S3248,42:POKE 53261,3:PUTH#6,1
POKE S53278,.0:F0OR K=1 TO 300:NEXT K
:GRAFPHICS 18:FOKE S53248,0:P0SITION
8,5:7 #6:CHR$(71-PEEK(53252)):;"T1
P
30 POKE 708,PEEK{(20):60T0 30
How can you get the GTIA if you don't have one? Ask your local
Atari service representative or dealer, or write directly to Atari in
Sunnyvale, California.
See the GTIA/CTIA introduction at location 53248 ($D000) for
more discussion of the chip. See BYTE, May 1982, COMPUTE!,
July through September 1982, and De Re Atari for more on the
GTIA chip, and the GTIA Demonstration Diskette from the Atari
Program Exchange (APX).

M

Locations 624 to 647 ($270 to $287) are used for game controllers:
paddle, joystick and lightpen values.

624

625

626

270 PADDLO

The value of paddle O (paddles are also called pots, short for
potentiometer); PEEK 624 returns a number between zero and
228 ($E4), increasing as the knob is turned counter-clockwise.
When used to move a player or cursor (i.e., PLOT
PADDLE(0),0), test your screen first. Many sets will not display
locations less than 48 ($30) or greater than 208 ($D0), and in
many GRAPHICS modes you will get an ERROR 141 — cursor
out of range. Paddles are paired in the controller jacks, so paddle
0 and paddle 1 both use jack one. PADDL registers are shadows
for POKEY locations 53760 to 53767 ($D200 to $D207).

271 PADDL1

This and the next six bytes are the same as 624, but for the other
paddles.

272 PADDL2

53

627

627
628
629
630
631

632

54

273 PADDL3
274 PADDL4
275 PADDLS
276 PADDL6
277 PADDL7
278 STICKO

The value of joystick 0. STICK registers are shadow locations for
PIA locations 54016 and 54017 ($D300, $D301). There are nine
possible decimal values (representing 45 degree increments)
read by each joystick register (using the STICKn command),
depending on the position of the stick:

Decimal Binary
14 1110
10 6 1010\ 0110
Lk 15 ——7 1011——1111— 0111
7, TN
9 5 1001 0101
13 1101

15 (1111) equals stick in the upright (neutral) position.

See Micro, December 1981, for an article on making a
proportional joystick. For an example of a machine language
joystick driver you can add to your BASIC program, see
COMPUTE!, July 1981.

One machine language joystick reader is listed below, based on
an article in COMPUTE!, August 1981:

1 GOSUER 1000

10 LOOK = STICK{(Q)

20 X = USR{(1764,L00K): Y = USR({(1781,
LOOK)

Q ON X GOTO 120, 100, 110

LI |

100 REM YOUR MOVE LEFT ROUTINE HERE
105 6070 10
110 REM YOUR MOVE RIGHT ROUTINE HERE
115 60TO 10

633

634
635

636

637
638
639
640

633

120 ON Y G6OT0O 150, 130, 140

130 REM YOUR MOVE DOWN ROUTINE HERE

135 6070 10

140 REM YOUR MOVE UP ROUTINE HERE

145 GOTO 10

150 REM IF X <> 1 THEN NOTHING DOING.
BRANCH TO YOUR OTHER ROUTINES OR
TO 155

155 G60OT0O 10

1000 FOR LODP = 1764 TO 1790: READ RY
TE: POKE LOOFP, BYTE: NEXT LOOP

1010 DATA 104,104,133,213,104,41,12,7
4,74,73,2,24,105,1

1020 DATA 133,212,96.104,104,133,213,
1084,41,3,76,237.6

1030 RETURN

See locations 88, 89 ($58, $59) for an example of a USR call using
a string instead of a fixed memory location.

279 STICK1

This and the next two locations are the same as 632, but for the
other joysticks. These four locations are also used to determine if
a lightpen (PEN O - 3) switch is pressed.

27A STICK2
27B STICK 3
27C PTRIGO

Paddle trigger 0. Used to determine if the trigger or button on
paddle 0 is pressed (zero is returned) or not (one is returned).
Since these are the same lines as the joystick left/right switches,
you can use PTRIG for horizontal movement. PTRIG(1) -
PTRIG(O)returns -1 (left), O (center), + 1 (right). The next seven
locations are for the other paddle buttons. PTRIG 0 - 3 are
shadows for PIA register 54016 ($D300).

27D PTRIG1
27E PTRIG2
27F PTRIG3
280 PTRIG4

PTRIG 4 - 7 are shadows for PIA register 54017 ($D301).

55

641

641 281 PTRIGS
642 282 PTRIG6
643 283 PTRIG7
644 284 STRIGO

Stick trigger 0. This and the next three locations perform the
same function as the PTRIG locations except for the joysticks.
Like PTRIG, zero is returned when the button is pressed; one is
returned when it is not. STRIG registers are shadow registers for

GTIA/CTIA locations 53264 to 53267 ($D010 to $D013).

645 285 STRIG1
646 286 STRIG2
647 287 STRIG3

Locations 648 to 655 ($288 to $28F) are for miscellaneous OS use.

648 288 CSTAT
Cassette status register.
649 289 WMODE

Register to store either the read or the write mode for the cassette
handler, depending on the operation: zero equals read, 128 ($80)
equals write.

650 28A BLIM

Cassette data record buffer size; contains the number of active
data bytes in the cassette buffer for the record being read or
written, at location 1021 ($3FD). Values range from zero to 128
(cassette record size is 128; $80). The pointer to the byte being
read or written is at 61 ($3D). The value of BLIM is drawn from
the control bytes that precede every cassette record, as
explained in location 1021.

651-655 28B-28F

Spare bytes. It is not recommended that you use the spare bytes
for your own program use. In later upgrades of the OS, these
bytes may be used, causing a conflict with your program. For
example, the new OS ROMs use locations 652 and 653 ($28C,
$28D) in the new IRQ interrupt handler routines. It is best to use a
protected area of memory such as page six, locations 1536 to

1791 ($600 to $6FF).

Locations 656 to 703 ($290 to $2BF) are used for the screen RAM
display handler (depending on GRAPHICS mode).

56

656

In split-screen mode, the text window is controlled by the screen editor
(E:), while the graphics region is controlled by the display handler
(S:), using two separate IOCB'’s. Two separate cursors are also
maintained. The display handler will set AUX1 of the IOCB to split-
screen option. Refer to the IOCB area, locations 832 to 959 ($340 to
$3BF). See COMPUTE!, February 1982, for a program to put GR.1
and GR.2 into the text window area. The text window uses 160 bytes of
RAM located just below RAMTOP (see location 106; $6A). See
location 88 ($58) for a chart of screen RAM use.

656 290 TXTROW

Text window cursor row; value ranges from zero to three (the text
window has only four lines). TXTROW specifies where the next
read or write in the text window will occur.

657.658 291,292 TXTCOL

Text window cursor column; value ranges from zero to 39. Unless
changed by the user, location 658 will always be zero (there are
only 40 columns in the display, so the MSB will be zero). Since
POSITION, PLOT, LOCATE and similar commands refer to the
graphics cursor in the display area above the text window, you
must use POKE statements to write to this area if PRINT
statements are insufficient.

659 293 TINDEX
Contains the current split-screen text window GRAPHICS mode.
It is the split-screen equivalent to DINDEX (location 87; $57) and
is always equal to zero when location 128 ($7B) equals zero.
Initialized to zero (which represents GR.0). You can alter the
display list to change the text window into any GRAPHICS mode
desired. If you do so, remember to change TINDEX to reflect that
alteration.

660,661 294,295 TXTMSC
Address of the upper left corner of<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>