

MAPPING
THE ATARI

Revised Edition

Ian Chadwick
Introduction by Bill Wilkinson

22~~!!!~LEsublications/lnc .•
Greensboro, North Carolina

Revised edition copyrig ht 1985, Ian Chadwick. All rights reserved.

Previous edition copyright 1983 by Irata Press, Ltd . Michael Reichmann,
Publisher.

Reproduction or translation of any part of this work beyond that permitted by
Sections 107 and 108 of the United States Copyright Act without the permission
of the copyright owner is unlawful.

Printed in the United States of America

10 9 8 7 6 5 4 3 2 I

ISBN 0-87455-004-1

We do not accept any responsibility fo r any damage d one to the reader's
programs through use or misuse of the information presented here. Readers
are advised to read the warning in the introduction with regard to saving
critical programs and removing important disks or cassettes before attempt­
ing to use this manual.

The author and publisher have made every effort in the preparation of this book to in­
sure the accuracy of the programs and information. However, the information and pro­
grams in this book are sold without warranty. either express or imptied. Neither the
author nor COMPUTE! Publications. Inc. will be liable for any damages caused or al­
leged to be caused directly, indirectly. incidentally, or consequen tially by lhe programs
or information in this book .

COMPUTE! Publications, Inc., Post Office Box 5406, Greensboro, NC 27403, (9 19)
275-9809, is one of the ABC Publishing Companies and is not associated with
any manufacturer of personal computers . Atari 400, 800, 1200XL, 600XL.
800XL, 65XE, and 130XE are trademarks of Atari. Inc.

Contents ______ _

Author's Preface to the Revised Edition v
Author's Preface vii
Introduction / Bill Wilkinson
Memory Map
Appendix 1.
Appendix 2.
Appendix 3.
Appendix 4 .
Appendix 5.
Appendix 6.
Appendix 7.

Appendix 8.
Appendix 9.
Appendix 10.

VBLANK Processes
A Graphics Memory Map
Atari Timing Values
Old (A) and New (B) ROMs
Color
Sound and Music
Player / Missile Graphics
Memory Map
Display Lists
Numerical Conversions
ATASCII and Internal Character
Code Values

Appendix 11 . Addenda and Errata to the

Appendix 12.
Appendix 13.
Appendix 14.
Appendix 15.
Appendix 16.
Appendix 17 .
Appendix 18.

First Edition
The XL/XE Memory Map
XL/XE Enhancements and Bugs
The XL/XE Parallel Bus
XL/XE Graphics Modes
Memory Management on the 130XE
DOS 2.5 and the 1050 Drive
Changing the 400/800 OS
on the XL/XE Computers
XL/XE Programs Appendix 19.

XLjXE Index
Index by Label
Index by Subject

xxi
1

154
155
160
161
163
167

169
171
175

180

182
200
230
232
236
238
241

244
247
255
258
263

iii

Author's Preface ___ _
To The Revised Edition

In the past two years, many people have written to me about Map­
ping-mostly complimentary. I was gratified that no serious errors
were uncovered, only a few typos and minor corrections-a tribute
to COMPUTE!'s editing skills . There are too many people to mention
everyone, but I appreciate the efforts of you, the readers; please
continue to write to me, even if I can't answer every letter.

Special thanks to Joe Miller of Koala Technologies (previously
with Atart author of the Translator disk, and frequent CompuServe
user), Matt Ratcliff (remote sysop on the Gateway BBS), Randy Tjin of
Atari Canada, Neil Harris and Richard Frick of Atari USA for tech­
nical support Bill Wilkinson for the frequent mentions in COMPUTE!
magazine, Gary Yost of Antic, and my friend Yoram Rostas for his in­
cessant prodding and poking into the machine. Also to Atari for its
" open system" policy which helped make this book possible .

The Atari SIG on CompuServe has been a great help and sup­
port; it may be the best source of information and public domain
software for the Atari presently available. If you haven't used
CompuServe, I highly recommend that you do so; the sysop, Ron
Luks, and his group run a super online operation. Ron helped me
gather some of this information by putting up a special message ask­
ing for suggestions and answers to questions I had.

Most of alL lowe an immeasurable amount of love, gratitude,
and affection to the ever-patient Susan McCallan, my constant
companion these past two-plus . How she stands me, I've never quite
figured out but I hope she continues to do so for a long time. This
book is for her.

Publications and Products
Since the first edition, OSS has released an excellent new language,
Action!, as well as a considerably superior BASIC-BASIC XL. Action!
is probably the best language yet for the Atari; it's a bit like C and
PascaL with a dash of Forth. I recommend it. (Russ Wetmore wrote
Atari HomePak in Action!. Even the Commodore 64 version was writ­
ten in Action! on the Atari.) Many Action! utilities and programs are
available on CompuServe 's Atari SIG as well.

Too many magazine articles have been published since the orig­
inal edition to cross-reference all of them, but Bill Wilkinson's "Insight:
Alari" in COMPUTE! magazine, Paul Swanson's " From Here to Atari"
in Micro, plus articles in Analog, Antic, Creative Computing, and
ROM have all provided their share of information. Atari's own maga­
zine, Atari Explorer, also has many useful articles, especially for
novice programmers.

v

As for books, The Programmer's Reference Guide for the Atari
400/800 computers by David Heiserman (Howard Sams, 1984) is a
good "single volume" reference . Mark Chasin's Assembly Language
Programming for the Atari Computers (McGraw-Hill, 1984) is highly
recommended; it provides many excellent examples strictly for Atari
users, explaining such difficult concepts as I/ O, handlers, and VBls.
Carl Evans's Atari BASIC Faster and Better (IJG, 1983) is an excellent
technique book for BASIC programmers who want to improve their
style and learn some machine language.

Jerry White, well-known Atari software author, coauthored a
good compendium with Gary Phillips called The Atari User 's
Encyclopedia (The Book Company, 1984). Linda Schreiber's Ad­
vanced Programming Techniques for Your Atari (Tab, 1983) has sev­
eral good routines for graphics and strings in BASIC.

COMPUTE! Books has published several good books, including
COMPUTEl's Third Book of Atari. COMPUTE/ 's First and Second Book
of Atari Graphics, and COMPUTEt's First Book of Atari Games. A real
hacker's delight is The Atari BASIC Sourcebook, by Bill Wilkinson,
Kathleen O'Brien, and Paul Laughton, which includes the entire
source code for Atari BASIC-a must for serious BASIC users (along
with Wilkinson's Inside Atari DOS). One of COMPUTE! 's best books
recently is Richard Mansfield's Machine Language for Beginners,
a painless way to introduce yourself to machine language
programming.

Finally, for the real hardware buff. Atari once published their
400-800 Home Computer Field Service Manual (part # FD 100001); it
has a wealth of data, schematics, parts lists, diagnostic tests, and
assembly information. It's hard to get. but worth it. An 800XL Field
Service Manual is also available. Sams has released an excellent
hardware technical service manual for the 800 and 800XL, it's expen­
sive, but contains material any hardware hacker needs to know.

It looks like the Atari will have a long life; it's already into its
third generation (all compatible). I'm glad to see that the recent
change in ownership did not spell the end of my favorite home com­
puter, but rather Jack Tramiel is continuing to support and develop it
as well as maintain compatibility between models. I'm looking for­
ward to seeing his new 68000-based ST machines.

March 1985
Ian Chadwick
55 Kent Rd
Toronto, Ont.
M4L 2X5
Canada
CompuServe 70375,1010

vi

AUTHOR'S PREFACE ___ _

What exactly is a memory map? It is a guide to the memory locations in
your computer. A memory location is one of 65536 storage places
called bytes in which a number is stored. Each of these bytes holds a
number for programs, data, color, sound, system operation, or is
empty (i.e., has a zero in it), waiting for you to fill it with your own
program.
Each byte is composed of eight bits, each of which can be either a one
(on) or a zero (off). The alterable area of memory you use for your
programs is called the Random Access Memory (RAM), while the area
used by the Atari to run things is called the Read Only Memory
(ROM). Although some of the memory locations in the special Atari
chips were designed to be written to like the RAM, the rest of the ROM,
including the Operating System ROM, cannot be altered by you since
it contains routines such as the floating point mathematics package
and the input/output routines .
I hope that the reader is familiar enough with his or her Atari to
understand some of these rudimentary uses of a memory map. It is not
the scope of this manual to fully explain how to use PEEK and POKE
statements; refer to your BASIC manual. Briefly, however, PEEK
allows you to look at the value stored in anyone memory location. If
you want that value to be printed to the screen, you must preface the
PEEK statement with a PRINT statement such as:

PRINT PEEK (708)

If you haven't changed your color registers, this will return the number
40 to your screen . All bytes in the Atari can hold a number between
zero and 255. POKE allows you to place a value into a byte, such as:

POKE 755,4

By doing this you will have turned your text upside down! You can
return it to normal by:

POKE 755,2

Similarly, POKE 710,80 will turn your screen dark purple! As with
PEEK, POKE can only involve numbers between zero and 255. You will
not be able to POKE into most of the ROM locations since the numbers
in many of them are "hard-Wired," "burned" into the chip, and cannot
be changed in this manner.

So how does the Atari (or other eight-bit microcomputers , for that
matter) store a number larger than 255? By breaking it down into two
parts; the Most Significant Byte (MSB), which is the number divided
by 256 and rounded down to the nearest whole number, and the Least
Significant Byte (LSB), which is the original number minus the MSB.
The Atari knows to multiply the MSB by 256 and add the LSB to get the
number. For example, the number 45290 is stored as two parts: 234

vii

AUTHOR'S PREFACE

(LSB) and 176 (MSB) . 176 times 256 equals 45056, plus 234 equals
45290.

LEAST-MOST STORAGE
The Atari uses the convention of storing addresses in the LSB/MSB
manner in memory (i.e., the smaller part is in the first memory
location). For example, locations 88 and 89 store the lowest address of
the screen memory. Let's say the numbers found there are 22 and 56,
respectively . To get the decimal address, you take the MSB (stored in
89) and multiply it by 256, then you add it to the LSB at 88. In our case
that's 56 * 256 equals 14336, plus 22 equals 14358. This is the address
of the upper left corner of the screen. A simple way to do this in BASIC
is:

BYTE = PEEK (88) + PEEK (89) * 256

The reverse (to break up a decimal location into MSB and LSB) is done
by:

MSB = INT (BYTE/256):LSB = BYTE - MSB * 256

This process is easier for assembly language programmers who use
hexadecimal numbers, since the right two digits are always the LSB
and the two left of them are the MSB . For example:

$D016 (hexadecimal for 53270) equals 16 (LSB) and DO (MSB)

$16 equals 22 in decimal, and $DO equals 208 decimal. Multiply the
MSB by 256 and add 22 and you get 53270 . Throughout the map
portion of this book I have provided both decimal and hexadecimal
numbers together for ease of reference. In 8K BASIC, you can use
decimal numbers only with POKE, and PEEK wi ll return only decimal
values to you .
Hexadecimal is a base 16 used instead of the normal base ten system
because it is more suited to the eight-bit structure of the computer . So,
when we say 2175 in decimal, what we really mean is :

10000 1000 100 10 1
o 2 175

In hex , the same number is $87F. That breaks down to:

4096 256 16 1
o 8 7 F

Rather than multiply each next step up by ten, we multiply by 16.
Okay, but where do we get "F" from? Well, if base ten has the numbers
zero to nine, base 16 will have to have some letters added to the end to
make up for the extra numbers:

Decimal 0 1 2 3 4 5 6 7 8 9 10 11
Hex 0 1 2 3 4 5 6 7 8 9 A B

viii

12 13
C D

14 15
E F

AUTHOR'S PREFACE

So $F equals 15 in decimal. Now here's how it all relates to binary math
and bits:
Each byte can ~e broken up into two parts (nybbles), like this:

0000 0000

If each nybble is considered a separate number, in decimal, the value
of each would range from zero to 15, or zero to $F. Aha! So if all the
bits in each group a re on (one, or set), then you have:

1111 1111 Binary
15 15 Decimal

F F Hex

You join the two hex numbers together and you get SFF (255 in deci­
mal). the largest number a by te can hold. So you can see how we
translate bytes from binary to hex, by translating each nybble. For
example:

1001 1101 Binary
9 13 Decimal
9 D Hex

$9D equals nine times 16 plus 13, or 157 in decimal.

0100 0110 Binary
4 6 Decimal
4 6 Hex

$46 equals four times 16 plus six, or 70 in decimal.

1111 1010 Binary
15 10 Decimal

F A Hex

$FA equals 15 times 16 plus ten, or 250 in decimal.
Obviously, it is easier to do this with a translation program or a
calculator!

Since I will often be discussing setting bits and explaining a small
amount of bit architecture, you should be aware of the simple
procedures by which you can tu rn on and off specifi c bits in any
location (that is, how to manipulate one of the eight individual bits
within a byte). Each byte is a collection of eight bits: numbers are
represented by turning on the particular bits that add up to the number
stored in that byte. Bits can be e ither zero (0 equals off) or one (l
equals on, or SET) . The bits are numbered zero to seven and represent
the following decimal numbers:

Bit 7 6 5 4 3 2 1 a
Value 128 64 32 16 8 4 2 1

The relationship between the bits and the powers of two should be

ix

AUTHOR'S PREFACE

obvious. Adding up all the numbers (all the bits are set) gives us 255 .
So each byte can hold a number between zero (no bits are set) and 255
(all bits are set) .
Sometimes, instead of zero, no bits set is intended to mean 256. That
will be noted in the relevant locations . So how do you set a bit? Simple:
POKE it with the appropriate number. For example, to set Bit 5, POKE
the location with 32. To set Bits 7,5 and 4, add up their values, 128 +
32 + 16, and POKE the location with the total: 176.
Sometimes you need to set a bit without changing other bits already
set, so you:

POKE number, PEEK (number) + decimal value for the b it to be set.
(Le., POKE 50418, PEEK (50418) + 32)

To turn off a bit, instead of adding the value you would subtract it with
POKE number, PEEK (number), minus the decimal value for the bit to
be turned off . Binary math is simple and easy to learn; if you don't
understand it now, you should do further reading on machine
language before attempting any se rious use of this guide.

AND. OR, And EOR
It is useful for the reader to know how to perform Boolean logic on bits.
There are three functions used in assembly code for bit manipulation
in this manner: AND, OR and EOR (exclusive OR) . Each requires you
to use two numbers, the one being acted upon and the one used to
perform the function. Here is a brief explanation of how these logical
functions work:
AND is usually used as a mask - to zero out unwanted bits. You
compare two binary numbers using AND; if both bits in the same
location are one , then the result is one. If either bit is zero, then the
result is zero. For example:

51 = 00110011
AND 15 = 00001111
Result = 00000011 = 3

OR is frequently used to force setting of a bit. If either bit in the
original or the mask is one, then the result is one . For example:

65 = 01000001
OR 128 = 10000000

Result = 11000001 = 193

In this case, 65 is the ATASCII "A". By ORing it with 128, we get 193,
the ATASCII inverse "A".

EOR "flips" bits in the original if the mask has a one in the same
location. For example:

x

AUTHOR'S PREFACE

193 = 11000001
EOR 128 = 10000000

Result = 01000001 = 65

In this case, we have returned the inverse "A" to the normal ATASCII
value. An EOR with 255 (all ones) will produce the complement of the
number:

171 = 10101011
EOR 255 = 11111111
Result = 01010100 = 84

In brief:

Original:
o
o
1
1

Mask:
o
1
o
1

AND:
o
o
o
1

OR:
o
1
1
1

EOR:
o
1
1
o

Atari BASIC supports AND, OR and NOT; NOT is the logical
complement where NOIl equals zero and NOTO equals one. If the
expression is true, you get a zero; if NOT true, a one is returned - for
example, NOT ((3 + 4) > = 6) results in zero. See COMPUTE!, May
1981 for a machine language routine to allow you to perform Boolean
bit logic using a USR call from BASIC.
In general, I have attempted to avoid using 6502 assembly language
mnemonics, but have included them where I felt their use described
the action to be taken better than a lengthy explanation. Most common
are JMP (jump to location), JSR (jump to subroutine), RTS (return from
subroutine), and RII (return from interrupt). Readers should be
minimally familiar with machine language in order to understand any
machine language subroutines used here.
I also suggest that if the reader doesn't already have one, he or she
obtain a program to translate hex to decimal and decimal to hex
(possibly even one with binary translations as well). The ROM
cartridge from Eastern House Software, Monkey Wrench, is useful for
this purpose. Perhaps the easiest to use is the II Programmer
calculator from Texas Instruments.
The examples in this book were all written using Atari 8K BASIC. They
are intended to demonstrate the use or the effect of a particular
memory location. They are not intended as the best examples of
BASIC programming; they were written for simpliCity, not
sophistication.
As a final note, any question or doubt as to e ither a particular location
or explanation has been noted . It can't hurt to play around yourself,
POKEing in the memory to see what other effects you can discover . If

xi

AUTHOR'S PREFACE

you find something I didn't , good! Please write and let me know.
You can't hurt the machine by POKEing about in memory, although
you may crash any program in memory, so SAVE your program first.
Usually you can salvage it by pushing RESET, but you may have to
turn off the machine and reboot on occasion . You can learn a lot about
your machine by simply playing around with it.

ABOUT LANGUAGES
The majority of the information here concerns language-iridependent
locations and can be used regardless of the language you use for your
programming. When the location is language-d ependent, such as the
BASIC or DOS areas, I have noted it in the proper section . You may
exert the same control over your Atari in FORTH, Pascal, LISP, or
whatever language you chose . You will obviously have to change the
commands PEEK and POKE to the proper commands of your
language.
BASIC is a good language to start with: you can use it to learn
programming, to explore your computer, to experiment with, and to
have fun with. However, when you are ready to go on, you will have to
learn a more efficient, faster language if you really want to make the
best use of your Atari. Many people choose 6502 machine language
because of its speed.
If you want to stay with a high-level language, I suggest you learn
FORTH . It has some of the speed of machine language code with the
ease of "highe r leve l language" programming .
Computer languages, whichever you use , are quite exact in the ir
meaning, especially compared to English. Consider that in English, a
fat chance and a slim chance both mean the same thing. Yet POKE,
PUT, and PUSH have very different meanings in compute rese.

TEXT KEY
Example: 912-927 390-39F IOCB5
The main memory map shows you the decimal and then the
hexadecimal location, the label (assigned by Atari and used b y OS,
DOS or DUP routines), and then comments and description. The labe l
has no real function; it is merely a mnemonic convenience. Readers
are referred to Stan Kelly-Bootie's delightful book, The Devi} 's DP
Dictionary (McGraw-Hill Ryerson, 1981), for a full definition of the
word "label". The follOWing abbreviations are also noted in the
comments:

(R) Read
(W) Write

Sometimes the functions are different in a particular location, so each
is noted.

xii

AUTHOR'S PREFACE

(D:) Disk Drive
(E:) Screen Editor
(S:) Display
(K:) Keyboard
(P:) Printer
(C:) Cassette
(R:) RS-232 interface. (Don't confuse this with (R) for Read.) The

context should be obvious.

(number) e.g . (708) Shadow Register. This is a RAM register which
corresponds to a ROM register in one of the special Atari chips such as
GIlA or POKEY. The shadow location is the address you use to PEEK
and POKE values. These shadow locations are polled by the hardware
addresses 30 times a second at every stage two VBLANK interval, and
the values used are transferred to the hardware locations for use. In
order to effect any "permanent" change to the hardware location, you
have to use the shadow register in BASIC (of course, every change is
negated when you turn the machine offl). Only machine language is
fast enough to use the hardware addresses directly.
For example, location 54273 is for character control. It polls location
755 to see if the screen characters are to be normal, inverse, or upside­
down. To change the characters, you POKE location 755 - the shadow
- not 54273. If you POKE 54273, you will get the desired effect - for
1/60 of a second! As mentioned above, you can use the hardware
addresses directly in machine language, but not in BASIC. It's just too
slow.
Sometimes, where most appropriate , a hexadecimal number will be
displayed and the decimal number put in parentheses. The context
should be ob vious concerning which is a shadow or a decimal number.

(* letter) refers to a source in the case of a confli cting location
or explanation. See the source below.

($number) refers to a hexadecimal (also called hex) number
(i.e.: $D40E). I also refer to "pages" in memory. Pages are
sections of 256 bytes ($100) of memory which end with 00 (i.e.:
$E200, $COOO, $600). Four pages ($400) equals 1024 bytes or IK
(kilobyte) of memory .

GLOSSARY
ANTIC, CTIAAND GTIA, PIA, POKEY: Special Atari

chips controlling the 400/800's graphics, color and screen
resolution, controller jacks and sound, respectively. Located in
ROM, locations 53248 to 54783. ANTIC also processes the Non­
Maskable Interrupts and POKEY processes the Interrupt Requests .
These chips, along with the 6502 microprocessor which runs the
rest of the Atari, are housed inside your computer, protected by

xiii

AUTHOR'S PREFACE

the metal shielding underneath the plastic cover .

BIT, BYTE: A bit is the smallest size division of memory in your
computer. It is so small that it can hold only one value in it: off
(zero) or on (one). Eight bits together form a byte; this is the size of
the memory locations discussed in this book . You will sometimes
hear programmers talk about a half-byte called a "nybble."

CIO: Central Input/Output routines located in ROM. Controls
Input/Output Control Block operations. Briefly , CIO handles the
data input and output through the device driver(s) (also known as
device handlers), then passes control to those drivers. It's a single
interface with which to access all peripherals in a device­
independent manner (i.e., uniform handling of data with no
regard to the device being accessed) . As an example: writing data
to a disk file is treated in an identical manner as writing data to the
screen; commas insert blanks between elements and both semi­
colons and commas suppress the End-Of-Line character (EOL).

DCB: Device Control Block, used by Serial Input/Output.

DL: Display List. This is a set of instructions which tell the ANTIC chip
where to find the screen display data and how that data is to be
placed on the TV screen.

DLI: Display List Interrupt. A DLI causes the display to stop
processing to temporarily run a user-written routine.

DOS: Disk Operating System. The software loaded from disk file
DOS .SYS that controls all disk I/O . The latest edition of DOS is
called DOS 2.0S (S for single density).

DUP: Disk Utilities Package . The software loaded from disk file
DUP.SYS that handles the DOS menu functions such as Copy.

FMS (or sometimes DFMS): File Management System portion of
DOS; a dedicated device driver that controls all I/O operations for
device "D:".

FP: Floating Point mathematical package in ROM.

I/O: Input/Output.

IOCB: Input/Output Control Block. Area of RAM (locations 832
to 959) used by CIO to define operations to devices such as the
disk drive (D:), printer (P :), screen display (S:), keyboard (K:) and
screen editor (E :). ZIOCB is the page zero IOCB.

IRQ: Interrupt Request used for serial port communication,
peripheral devices, timing and keyboard input. IRQ's are
processed by the POKEY chip.

NMI: Non-Maskable Interrupt; used for video display and
RESET . NMIs are processed by the ANTIC chip.

xiv

AUTHOR'S PREFACE

OS: Operating System. The resident system that runs the Atari.
The OS resides in the 10K front cartridge slot under the hood in
your Atari 800. It's not visible in the 400 without taking the cover
apart (not recommended). The OS is the same for both the 400 and
800. There are two versions of the OS currently in circulation: the
older "A" ROMs and the newer "B" ROMs, released around
January 1982. The new OS is almost identical to the old OS except
that it corrects a few bugs and changes some addresses. Not all of
your old software will run with the new OS . The differences
between the two are better explained in Appendix Four.
Although people often refer to the entire ROM area as the OS, this
is not correct. The OS ROM is that portion of memory which holds
the floating point package , the Atari character set, the device
handlers, and both C IO and SIO. The actual operating system
itself is the portion of the OS ROM which handles the I/O.

PMG, PM Graphics: Player/missile graphics. Players and
missiles are special moveable, user-defined, colored screen
objects. They are often used for games, animation, or special
cursors. PM graphics are unique in that you can establish the
manner (priority) in which they interact with the rest of the screen
display and each other.

RAM: Random Access Memory. All memory below the OS area
(0 to 49151) which is used for storage, programs, buffers,
cartridges, DOS, IOCB, shadow registers, and registers for the
special Atari chips. Random Access means you can get to and
from these locations at random, not that they store information
randomly!

ROM: Read Only Memory. That part of high memory (locations
49152 to 65535) in which the special hardware chips and the OS
reside . ROM is also used to describe cartridge memory such as the
8K BASIC ROM, which cannot be user-altered (the cartridge
ROM supersedes the RAM) . You cannot alter most of the ROM,
although some of the locations in the special Atari chips may be
temporarily set to a new value .
With both RAM and ROM, we refer to areas with lesser values as
being in "low" memory and locations with larger values as being in
"high" memory.

SIO: Serial Input/Output routines located in ROM. Controls
serial operations including the 850 interface (R:) and cassette
recorder (C:). Briefly, SIO controls the Atari peripherals as per
the request placed in its Device Control Block (DCB) by the
proper device driver. It is also accessed by FMS for data transfer .

VBI: VBLANK interrupt. A VBI is an interrupt that occurs

xv

AUTHOR'S PREFACE

during the VB LANK interval, causing the computer to jump to a
user-specified location to process a short user-written routine
during the VBLANK process .

VBLANK: Vertical Blank. The interval between the time the TV
electron beam turns off after reaching the bottom right corner of
the screen and returns to the top left corner and turns back on
again . This small time period may be used by machine language
programmers for short routines without interrupting the display
by writing a VBI (above). There are two VBLANK stages . Stage
one is performed every VBLANK cycle (1/60 second). Stage two
is performed either every 1130 second or every 1160 second when
it doesn't interrupt time-critical code being executed. See the
end of the memory map for the processes executed in each stage.

SOURCES
Letters in brackets are used in this gUide to identify the source.

(*M) Master Memory Map Ver . 2, Santa Cruz Educational Software,
1981. A memory guide by the same people who brought us the
TRICKY TUTORIAL series. The latter are both tutorials and
applications utilities. The map does contain some annoying errata.

(*Y) Your Atari Computer, by Lon Poole with Martin McNiff & Steven
Cook, Osborne/McGraw-Hill, 1982. The best gUide to date on general
use of the Atari. Very highly recommended.

(*C) COMPUTEt's First Book of Atari, by the Editors of COMPUTE!
Magazine, Small System Services Inc., 1981. A good collection of
early articles that appeared in the magazine.
At the time of this writing, COMPUTEJ's Second Book of Atari had just
been released. It is therefore not used as a reference source here, but it
is a must for serious programmers. It contains a wealth of information
on an enormous range of topics, including advanced graphics, forced­
read modes, page flipping, Atari BASIC and many valuable utilities . It
should be a staple in most Atari owners' libraries.

(*1) Inside Atari DOS, compiled by Bill Wilkinson, published by
COMPUTE! Books, Small System Services, Inc., 1982. An
explanation and copyrighted source code for the FMS portion of DOS
2.0 .

Atari BASIC: Learning by Using, by Thomas Rowley, Hofhacker
Press, 1981. A lot of information packed into a surprisingly good little
book.
The following publications are all from Atari, Inc. I recommend them
to all truly interested in understanding their Atari computers:

(*D): De Re Atari: an arcane, but indispensable reference to the
Atari's operations and come of its most impressive aspects, by Chris

xvi

AUTHOR'S PREFACE

Crawford et al. Serialized in BYTE magazine, late 1981 to mid 1982 .
Earlier editions have some e rrata, so make sure you obtain the latest
edition.

(*0) Operating System User's Manual and

(*H) Hardware Manual. The famous "technical manuals" pair.
Indispensable for serious users, a lbeit heavy going and not generally
very professional in their presentation of material.

(*8) 850 Interface Module Operator's Manual. The 850 manual gives
many examples in BASIC of how to use the RS232 serial interface ports
for both printer control and telecommunications. A very good terminal
program called Jonesterm, in BASIC with machine language
subroutines , is in the public domain and is available on many
electronic bulletin board systems, including CompuServe . Modern
users will find many useful programs available in CompuServe.

(* L) Operating Systems Listing and

(*U) Disk Utilities Listings are the commented, copyrighted source
code listings for the OS and the DUP.SYS portion of DOS.

(* B) A tari BASI C Reference Man ual.

(*S) Disk Operating System II Reference Manual.

(*A) Atari Microsoft BASIC Instruction Manual. Microsoft BASIC
makes excellent use of PEEKs and POKEs to accomplish many tasks . It
also has many powerful commands not available in the 8K BASIC.

MAGAZINES
ANTIC Magazine had an extensive memory map, written by James
Capparell, which continued over a number of issues. When it was used
as a source, I labelled these references with (AM). It has a few minor
errata in it.
I found a number of other magazine articles useful, particularly those
in COMPUTE! and Creative Computing. I also found Softside, BYTE,
ANALOG and Micro magazines to be useful in the preparation of this
book. These are all referred to throughout the book by month or issue.
We owe a vote of thanks to the folks at Atari who published the
technical manuals and the source listings of the operating system and
the DOS . We owe another vote of thanks to Bill Wilkinson, of
Optimized Systems Software Inc ., who created the DUP portion of
DOS and decided to publish the source code in his Inside Atari DOS.
No other computer manufacturer has, to my knowledge, ever prOVided
users with such in-depth material or the details of its own operating
systems. Without it, none of this would have been possible: a lot of the
information here was g leaned from those sources .
This book is arranged in four sections: a numerical listing of the main

xvii

AUTHOR'S PREFACE

Atari memory locations, their labels and their use; a general map
diagram to show how the memory is broken down; an appendix of
utility material with charts and tables, and an index/cross-reference
gUide.

There is an awful lot of information contained here ; tedious as it might
appear, I suggest that you read this manual through at least once.
Some of the information which is not clear in one drea may be
elaborated on and made clearer in another area. Wherever another
location is referred to in one description, you should turn to the
reference and read it after you have read through the first location.
You should a lso refer to the locations used in any sample program . The
more familiar you are with the memory, the more you will get out of
your Atari. When you read the description in any memory location,
make sure you refer to e ither the shadow or the hardware register
mentioned, for more information.

POWERUP AND RESET
COLD STARTS
On powerup (when you turn on the computer) the Atari OS performs a
number of functions, some of which are noted as defaults in the
memory locations to follow. Among these functions are:
Determine the highest RAM address and clear all RAM to zeroes
(except locations zero to 15; $0 to $F).
Erase and format the device table.
S:, E:, K:, P:, C: handlers, SIO, C IO and interrupt processor are all
initia lized .
Set the screen to GRAPHICS mode zero, 24 lines by 40 columns; set
screen margins.
Initialize the cartridge(s) if present; test for the B (right), then for the A
(left) cartridge.
Check the cartridge slots for disk boot instructions and, if they are
present, boot disk.
Transfer control to the cartridge or booted program.
Initialize the RAM interrupt vectors at 512 to 548 ($200 to $224).
Store zero in the follOWing hardware registers: 53248 to 53503 , 53760
to 54527 ($DOOO - $DOFF, $D200 - $D4FF).
The START key flag is tested and, if set (the START key is he ld down),
CKEY (74; $4A) requests a cassette boot.
HATABS (794; $3IA) is initialized to point to the ROM-resident device
handlers.

xviii

AUTHOR'S PREFACE

10CB zero is OPENed to device E:.
Coldstart (powerup) essentially wipes the computer clean and should
only be used for such. It's rather drastic.

WARM STARTS
When the RESET key is pushed, the OS performs some of the same
functions as in powerup as well as some unique functions, including:
Set the warmstart flag (location 8) to true (255; $FF) .
Clear the OS portion of RAM from locations 16 to 127 ($10 - $7F) and
512 to 1023 ($200 - $3FF).
Reset all RAM interrupt vectors .
Reformat the device handler table (HATABS); added vectors are lost.
Re-initialize the cartridge(s).
Return to GRAPHICS mode zero.
Transfer control to the cartridge or booted program.
Restore the default values in RAM.
Note that a RESET does not wipe RAM, but leaves it intact. Usually
your program and variables will be secure when you press RESET.
This is considerably less drastic than powerup as above.
There are two vectors for initialization so that these processes may be
user initiated: 58484 ($E474) for RESET and 58487 ($E477) for
powerup.
See the OS User's Manual, pages 109 to 112, and De Re Atari for a
flowchart of the process.

xix

INTRODUCTION ____ _
Bill Wilkinson

When I was asked by the editors at COMPUTE! to write this
introduction , I was at first a li ttle hesitant. How does one introduce
what is essentially a map of the significant locations on the Atari other
than by saying "This is a map of ... "?

And, yet, there is something about this book which makes it more
than "simply a map." After a ll, if this were "simply" a memory map, I
might "simply" use it to learn that "SSKCTL" is the "serial port
control" and that it is at location $232. But what does that mean? Why
would I want to control the serial port? How would I control it?

The value of this book, then, lies not so much in the map itself as it
does in the explanations of the various functions and controls and the
implications thereof. Even though I consider myself reasonably
familiar with the Atari (and its ROM-based operating system), I expect
to use this b ook often.

Until now, if I needed to use an exotic location somewhere in the
hardware registers, I wou ld have to first locate the proper listing , then
find the right routine within the listing, figure out why and how the
routine was accessing the given register, and fina lly try to make sure
that there were no other routines that also accessed this same register .
Whew! Now, I will open this book, turn to the right page, find out what
I need to know, and start programming.

Okay . So much for this introduction . And if you are comfortable
programming your "home" language, the language you know best,
dnd two or three other languages, you don't need any more from me.
So good luck and bon voyage.

A Common Problem
What? Still with me? Does that mean that you are not comfortable
doing memory mapped access in three or four languages? Well, to tell
the truth, ne ithe r am I. And so the one thing I decided would be of
most value in this introduction would be a summary of how to do
memory access from no less than seven d ifferent lang uages . (Or is it
eight? Well)

The title of this section is perhaps a little misleading (on purpose,
of course , as those of you who read my column "Insight: Atari" in
COMPUTE! Magazine can attest) . The "common problem" we will
discuss here is not a bug-type problem . Rather, it is a task-type
problem which occurs in many common programs . Or perhaps we
could approach it as a quiz. Why not?

Quiz: Devise a set of routines which will (1) alter the current
cursor position (in any standard OS graphics mode) to that
horizontal and vertical position speCified by the variables "H" and
"V" and (2) retrieve the current cursor pOSition in a like manner.
To receive full credit for this problem , implement the rO'Jtine in at
least seven different computer languages.

xxi

INTRODUCTION

Well, our first task will be to decide what seven languages we will
use. First step in the solution: find out what languages are available on
the Atari computers. Here's my list:

Atari BASIC
BASICA+
Atari Microsoft BASIC
Forth
C
Pascal
PILOT
LISP
AssemblerlMachine Language

Does it match yours? You don't get credit for more than one
assembler or more than one Forth. And, actually, you shouldn't get
credit for Microsoft BASIC, since it uses exactly the same method as
Atari BASIC. And I will tell you right now that I will not attempt this
task in LISP. If you are a LISP fanatic, more power to you; but I don't
have any idea of how to approach the problem with Datasoft's LISP (the
only LISP currently available on the Atari).

Anyway, let's tackle these languages one at a time .

Atari BASIC And Microsoft BASIC
Well, how about two at a time this one time? The implementation really
is the same for these two languages.

Actually, the first part of this problem set is done for you in Atari
BASIC : the POSITION statement indeed does exactly what we want
(POSITION H,V will do the assigned task). But that's cheating, since
the object of these problems is to discover how to do machine level
access without such aids.

Step 1 is to look at the memory map and discover that COLCRS, at
locations 85 and 86, is supposed to be the current graphics cursor
column (COLumn of CuRSor). Also, ROWCRS (ROW of CuRSor) at
location 84 is the current graphics cursor row.

Let's tackle the row first. Assuming that the row number is in the
variable "V" (as specified above), then we may set the row cursor via
"POKE 84,V". And, in a like manner, we may say "V =PEEK(84)" to
assign the current position to "V" . Now that's fairly straightforward: to
change a single memory location, use "POKE address,value"; to
retrieve the contents of a single memory location, use
"PEEK{address)". Virtually anyone who has programmed in BASIC on
an Atari is at least familiar with the existence of PEEK and POKE, since
that is the only method of accessing certain functions of the machine
(and since the game programs published in magazines are loaded with
PEEKs and POKEs).

But now let's look at the cursor column, specified as being

xxii

INTRODUCTION

locations 85 and 86, a "two byte" value. What does that mean? How
can something occupy two locations? Actually, it all stems from the
fact that a single location (byte, memory cell, character, etc.) in an
Atari computer can store only 256 different values (usually numbered
o to 255). If you need to store a bigger number, you have to use more
bytes . For example, two contiguous bytes can be used to store 65536
different values, three bytes can store 16,777,216 different values, etc.

Since the Atari graphics mode can have as many as 320 columns,
we can't use a single one-byte location to store the column number.
Great! We'll simply use two bytes and tell BASIC that we want to talk to
a bigger memory cell. What's that? You can't tell BASIC to use a
bigger memory cell? Oops.

Ah, but have no fear. We can still perform the task; it just takes a
little more work in BASIC. The first sub-problem is to break the
column number (variable "H") into two "pieces," one for the first byte
and one for the second. The clearest way to accomplish this is with the
follOWing code:

HI = INT(H/256)
H2 = H-256 * HI

Because of the nature of machine language "arithmetic," numbers
designed to be two-byte integers must usually be divided as shown: the
"high order byte" must be obtained by dividing the number by 256,
and any fractional part of the quotient must be discarded. The "low
order byte" is actually the remainder after all units of 256 have been
extracted (often designated as "the number modulo 256").

So, if we have obtained "H 1 ': and "H2" as above, we can change
the cursor row as follows:

POKE 85,H2
POKE 86,HI

Notice the reversal of the order of the bytes! For the Atari (and
many other microcomputers) , the low order (or least significant) byte
comes first in memory, followed by the high order (or most significant)
byte.

Now, suppose we wish to avoid the use of the temporary variables
"H 1" and "H2" and further suppose that we would now like to write the
entire solution to the first problem here. Voila:

POKE 84,V
POKE 86,1NT(H /256)
POKE 85,H -256 * INT(H/256)

And we wrote those last two lines in "reverse" order so that we
could offer a substitute last line , which will not be explained here but
which should become clear a few paragraphs hence:

POKE 85,H -256*PEEK(86)

xxiii

INTRODUCTION

Whew! All that to solve just that first problem! Cheer up, it does
get easier. In fact, we already mentioned above that you can retrieve
the current row via "PEEK(84)". But how about the column?

Again, we must remember that the column number might be big
enough to require two adjacent bytes (locations, memory cells, etc.) .
Again, we could construct the larger number via the following:

H2 = PEEK(85)
HI = PEEK(86)
H = H2 + 256 * HI
Do you see the relationship between this and the POKEs? To "put

it back together," we must multiply the "high order byte" by 256
(because , remember, it is actually the number of 256's we could obtain
from the larger number) before adding it to the "low order byte."

Again, let us summarize and simplify. The following code will
satisfy the second problem requirement for BASIC :

V = PEEK(84)
H = PEEK(85) + 256 * PEEK(86)

Okay. We did it. For two languages. And if you are only interested
in BASIC, you can quit now . But if you are even a little bit curious ,
stick with us. It gets better .

BASICA+
There might be a little bit of prejudice on my part here, but I do feel
that this is the easiest language to explain to beginners . In fact, rather
than start with text, let's show the solutions:

Problem 1.
POKE 84,V
DPOKE85,H

Problem 2.
V = PEEK(84)
H = DPEEK(85)

As you can see, for the single memory ce ll situations, BASIC A +
functions exactly the same as the Atari and Microsoft BASICs . But for
the double-byte problems, BASIC A + has an extra statement and an
extra function, designed specifically to interface to the double-byte
"words" of the Atari's 6502 processor.

DPOKE (Double POKE) performs exactly the equivalent of the two
POKEs required by Atari BASIC. DPEEK (Double PEEK) similarly
combines the functions of both the Atari BASIC PEEKs. And that's it.
Simple and straightforward .

Forth
I think the ease of performing the required problems in Forth will show
how tightly and neatly Forth is tied to the machine level of the

xxiv

INTRODUCTION

computer. In fact, we don't really have to "invent" a way to solve these
problems; the solutions are within the normal specifications,
expectations, and capabilities of virtually all Forth implementations.

Again, I think I will show the solutions before explaining :

Problem 1.
V@84c!
H@85!

Problem 2.
84c@H !
85@V!

Now, if you are not a Forth user, that may a ll look rather cryptic
(looks like a secret code to me), but let's translate it into pseudo­
English . The first line of the first problem might b e read like this:

V means the location (or variable) called "V"
@ means fetch the contents of that location
84 means use the number 84
c! means store the character (byte) that we fetched first into the

location that we fetched second
or, in shorter form,
"V is to be fetched as the data and 84 is to be used as the address
of a byte-sized memory store."

The second line, then, would read essentially the same except that
the "!" used (instead of "c!") implies a full word (double byte) store, as
does DPOKE in BASIC A + .

The similarity and symmetry of the solutions of Problems I and 2
are striking. Le t us "read" the first line of the second problem :

84 means use the number 84 (in this case, as a location)
c @ means fetch the byte (character) at that location

V means fetch the location (variable) called "V"
means store the data fetched first into the location fetched
second

And, again, the only difference between this and the next line is
that "@" (instead of "c@/I) implies a double -byte fetch (again, as does
DPEEK of BASIC A +).

Ne ither is there space here nor it is appropriate now to discuss the
foibles of Forth's reverse Polish notation and its stacking mechanism,
but even dyed-in-the-wool algorithmic language freaks (like me) can
appreciate its advantages in situations such as those demonstrated
here.

C
No, that does not mean "Section C ./I Be lieve it or not, "C" is the name
of a computer language. In fact, it is one of the more popular computer

xxv

INTRODUCTION

languages among systems programmers. It is "the" language used on
and by the UNIX operating system, which appears to have the inside
track on being the replacement for CP/M on the largest
microcomputers (e.g., those based on 68000 and other more advanced
processors).

C, somewhat like Forth, is fairl y intimately tied to the machine
level. For example, there are operators in C which will increment or
decrement a memory location, just as there are such instructions in the
assembly language of most modern microprocessors .

Unlike Forth, however, C requires the user to declare that he/she
is going beyond the scope of the language structures in order to
"cheat" and access the machine level directly . In standard C (i.e., as
found on UNIX), we could change the current cursor row via
something like this:

* ((char *) 84) = V;

Which, I suppose, is just as cryptic as Forth to the uninitiated. If
you remember that parentheses imply precedence, just as in BASIC,
you could read the above as "Use the expression '84' as a pointer to a
character (i.e., the address of a byte - speCified by 'char*') and store
V (' = ') indirectly (the first '*') into that location." Whew! Even
experienced C users (well, some of us) often find themselves putting in
extra parentheses to be sure the expression means what they want it to.

Anyway, that '(char *)' is called "type casting" and is a feature of
more advanced C compilers than those available for the Atari . But, to
be fair, it is really a poor way of doing the job, anyway . So let's do it
"right":

Problem 1.
char *pc ; /* pc is a pointer to a byte * /
int *pi ; / * pi is a pointer to a double byte * /
pc = 84 ; pi = 85 ;

* pc = V ; * pi = H ;
Problem 2.

char *pc ;
int *pi ;
pc = 84 ; pi = 85 ;

V = *pc ; H = *pi;

As with the Pascal solutions, in the follOWing section, we must
declare the "type" of a variable, rather than simply assuming its
existence (as in BASIC) or declaring its existence (as in Forth). The
theory is that this will let the compiler detect more logic errors, since
you aren't supposed to do the wrong thing with the wrong variable
type. (In practice, the C compilers available for the Atari, including

xxvi

INTRODUCTION

our own C/65, are "loose" enough to allow you to cheat most of the
time.)

Here, the declarations establish that "pc" (program counter) will
always point to (i. e., contain the address of) a byte-sized item . But "pi"
will always point to a word-sized (double byte) item. Now, actually,
these variables point to nothing until we put an address into them,
which we proceed to do via "pc = 84" and "pi = 85".

And, finally, the actual "assignments" to or from memory are
handled by the last line in each problem solution. Now, all this looks
very complicated and hardly worthwhile, but the advantage of Cis,
once we have made all our declarations, that we can use the variables
and structures wherever we need them in a program module , secure in
the knowledge that our code is at least partially self-documented.

Pascal
Actually, standard Pascal has no methods whatsoever available to
solve these problems. Remember, Pascal is a "school" language, and
access to the machine level was definitely not a desirable feature in
such an environment. In fact, most of the Pascal compilers in use today
have invented some way to circumvent the restrictions of "standard"
Pascal, and it is largely because of such "inventions" that the various
versions of the language are incompatible.

Anyway, Atari Pascal does provide a method to access individual
memory cells. I am not sure that the method I will show here is the best
or easiest way, but it appears to work. Again, the solution is presented
first:

Note: the code in this first part is common to both problems, both
for Hand V.
(* in the "type" declarations section *)
charaddr = record

row: char;
end;

wordaddr = record
col: integer;
end;

(* in the "var" declarations section *)
pc : "charaddr ;
pw : "wordaddr ;
rowcrs: absolute [84J " charaddr ;
colcrs : absolute [85] " wordaddr ;

Problem 1.
(includes the above common code)
(* execution code in the procedure *)
pc : = rowcrs ;
pw : = colcrs ;

xxvii

INTRODUCTION

pe A .row: = V;
pw A . col: = H ;

Problem 2.
(includes the above common code)
(* again, procedure execution code *)
pc : = rowers;
pw : = colcrs;
V : = pc A . row;
H : = pw A .col ;

Did you get lost? Don't feel bad. I really felt that this could be
written in a simpler fashion, but I wanted to present a version which I
felt reasonably sure would work under most circumstances .

The type declarations are necessary simply to establish record
formats which can be pointed to (and it was these record formats which
I felt to be redundant) . Then the variables which indeed point to these
record formats are declared. Most importantly, the "absolute" type
allows us to inform the Pascal compiler that we have a constant which
really is (honest , really, please let it be) the address of one of those
record formats we wanted to point to . (And it is this "absolute" type
which is the extension of Pascal which is not in the standard.)

Once we have made a ll our declarations, the code looks
surprisingly like the C code: assign the absolute address to the pointer
and then fetch or store via the pointer. The overhead of the record
element reference (the" .row" and" .col") is the only real difference
(and perhaps unneeded, as I stated) .

PILOT
And here we are at last at the simplest of the Atari languages. Again,
standard PILOT has no defined way of accessing individual memory
cells. And, again, the reason for this is that PILOT was (and is) a
language designed for use in schools, where the last thing you want is
poking around in memory and crashing the 100 megabyte disk with
next year's budget on it.

However, when using PILOT on an Atari computer, the worst
anyone can do is to crunch their own copy of their own disk or cassette .
So Atari has thoughtfully proVided a way to access memory cells from
PILOT; and they have done it in a fashion that is remarkably
reminiscent of BASIC. Once more, the solution is given first:

xxviii

Problem 1.
C :@B84 = #V
C:@B86 = #H/256
C: @B85 = #H\256

Problem 2.
C:#V = @B84
C:#H = @B85 + (256 * @B86)

INTRODUCTION

The trick to this is that Atari PILOT uses the "@B" operator to
indicate a memory reference. When used on the left side of the equals
sign in a C: (compute) statement, it implies a store (just as does POKE
in BASIC). When used on the right side of an equals sign (or, for that
matter, in Jump tests, etc.), it implies a memory fetch (just as does
PEEK in BASIC).

If you have already examined the BASIC code, you will probably
note a marked similarity between it and this PILOT example . Again,
we must take the larger number apart into its two components: the
number of units of 256 each (#H/256) and the remainder. Notice that
with PILOT we do not need to (nor can we) specify "INT(#H/256)".
There is no INT function simply because all arithmetic in Atari PILOT
is done with double-byte integers a lready. Sometimes, as in this
instance, that can be an advantage . Other times, the lack of floating
point will preclude PILOT being used for several applications.

Notice the last line of the solution to problem 1: the use of the" \"
(modulo) operator is essentially just a convenient shorthand available
in several languages . In PILOT,

"#H \ 256 11

is exactly equivalent to

"#H - (256 * (# H/256))11.

Atari PILOT is much more flexible and usable than the original, so
why not take advantage of a ll its features? Experiment. You will be glad
you did.

Assembly And Machine Language
I almost didn't include this section, since anyone working with
assembly language (and especially those trying to debug at the
machine language level) would presumably know how to manipulate
bytes and words. And yet, it might prove interesting to those who do
not know assembler to see just how the 6502 processor really does
perform its feats.

For the purposes of the example solutions, we will presume that
somewhere in our program we have coded something equivalent to the
following :

V * = * + 1 ; reserve one byte for V
H * = * + 2 ; reserve two bytes for H

Those lines do not give values to V and H; they simply assign
memory space to hold the eventual values (somewhat like
DIMensioning an array in Atari BASIC, which does not put any
particular values into the array). If we wished not only to reserve space
for the "variables" V and H but also to assign an initial value to them,
we could code this instead:

xxix

INTRODUCTION

V .BYTE 3 ; assign initial value of 3 to byte V
H . WORD 290 ; assign initial value of 290 to word H

Anyway, given that H and V have been reserved and have had
some value(s) placed in them, here are the solutions to the problems:

Problem 1.
LDAV
STA84
LDAH
STA85
LDAH+1
STA86

; get the contents of V
; and store them in ROWCRS
; then get the first byte of H
; and store in first byte of COLCRS
; what's this? the second byte of H !
; into the second byte of COLCRS

Problem 2.
LDA84
STAV
LDA85
STAH
LDA86
STAH+1

; almost, we don't need to comment this . ..
; it's just problem 1 in reverse!
; first byte of COLCRS again
; into the least significant byte of H
; and also the second byte
; the high order byte of H

Do you wonder why we didn't try to move both bytes of H at one
time, as we did in BASIC A +, above? Simple: the 6502
microprocessor has no way to move two bytes in a single instruction!
Honest! (And this is probably its biggest failing as a CPU.)

Of course, if you have a macro assembler, you could write a
macro to perform these operations. Here is an example using one
macro assembler available for the Atari, though all macro assemblers
will operate in at least a similar fashion. First, we define a pair of
macros:

.MACRO MOVEWORD
LDA
STA
LDA
STA
.ENDM
.MACRO
LDA
STA
.ENDM

%1
%2
%1+1
%2+1

MOVEBYTE
%1
%2

Both these macros simply move their first "argument" into their second
"argument" (and we won't define here just what "arguments" are and
how they work - examine a macro assembler manual for more
information). The first macro moves two adjacent bytes (i.e., a
"word"), and the second moves a single byte. And now we can write
our problem code in a much simpler fashion:

xxx

INTRODUCTION

Problem 1.
MOVEBYTE V,84
MOVEWORD H,85

Problem 2.
MOVE BYTE 84,V
MOVEWORD 85,H

And yet another concept before we leave assembly language. One
of the most powerful features of an assembler is its ability to handle
equated symbols. The real beauty of this, aside from producing more
readable code, is that you can change all references to a location or
value or whatever by simply changing a single equate in your source
code. Thus, if somewhere near the beginning of our source program
we had coded the following two lines:

ROWCRS = 84 ; address of ROW CuRSor
COLCRS = 85 ; address of COLumn CuRSor

then we could have "solved" the problems thus :

Problem 1.
MOVEBYTE V,ROWCRS
MOVEWORD H,COLCRS

Problem 2.
MOVEBYTE ROWCRS,V
MOVEWORD COLCRS,H

And I believe that this looks as elegant and readable as any of the
higher level languages ! In fact, it looks more readable than most of the
examples given above. To be fair, though, we should note that all of
the examples could have been made more readable by substituting
variable names instead of the absolute numbers "84" and "85, " but the
overhead of declaring and assigning variables is sometimes not worth
it for languages such as BASIC and PILOT.

Luckily, the remaining languages (Forth, C, and Pascal) all have
a means of declaring constants (akin to the assembly language equate)
which has little or no consequential overhead. So go ahead - be the
oddball on your block and make your code readable and
maintainable. It may lose you friends, but it might he lp you land a job .

Happy Mapping
Well, we made it. I hope you now at least have an idea of what to do to
modify and examine various memory locations in all of the languages
shown. Virtually all of the many locations mapped in this book will fall
into one of the two categories examined: they will involve changing or
examining e ither a single byte or a double byte (word, integer,
address, etc.) . Follow the models shown here, and you should have
little trouble effecting your desires.

For those few locations which do not follow the above patte rns

xxxi

INTRODUCTION

(e.g ., the system clock, which is a three-byte location in high-middle­
low order), you may be able to accomplish your ends by considering
each byte individually . Also, we have made no discussion here of the
Atari floating point format, which is truly accessible in any reasonable
fashion only from assembly language, and which has little pertinence
to this memory map in any case.

I think I would like to add only one more comment, which will be
in the form of a caution: If you are n't sure what you are doing when
changing or examining memory locations, make sure that your
program in memory is backed up (on disk or cassette) , and then make
sure that you have "popped" (unloaded) your disks and/or tapes . It is
unlikely that changing memory will cause problems affecting your
saved files, but why take chances. (And, if you make a mistake or are
in doubt, re-boot the disk; don't just hit RESET, since that won't
necessarily clean up a ll your errors.)

Good luck and happy mapping.

xxxii

0.1

Locations zero to 255 ($0 to $FF) dre called "page zero" and have
special importance for assembly language programmers since these
locations are accessed faster and easier by the machine.
Locations zero to 127 ($0 to $7F) are reserved as the OS page zero,
while 128 to 255 ($80 to $FF) are the BASIC and toe user zero page
RAM. Locations zero to 1792 ($0 to $700) are all used as the OS and (if
the cartridge is present) 8K BASIC RAM (except page six). Locations
zero to 8191 ($0 to $1 FFF) are the minimum required for operation
(8K).
Locations two through seven are not cleared on any start operation.

DECIMAL
0,1

HEX
0,1

LABEL
LINZBS

LINBUG RAM, replaced by the monitor RAM. See the OS
Listing, page 31. It seems to be used to store the VBLANK timer
value. One user applicatior. I've seen for location zero is in a
metronome program in De ReAtari. Also used in cross­
assembling the Atari OS.

2,3 2,3 CASINI

4,5

6

Cassette initialization vector: JSR through here if the cassette
boot was successful. This address is extracted from the first six
bytes of a cassette boot file . The first byte is ignored. The second
contains the number of records, the third and fourth contain the
low and high bytes of the load address, and the fifth and sixth
contain the low and hig h bytes of the initialization address.
Control upon loading jumps to the load address plus six for a
multi-stage load and through CASINI for initialization. JSR
through DOSVEC (10 and II; $A,$B) to transfer control to the
application.

4,5 RAMLO
RAM pointer for the memory test used on powerup. Also used to
store the disk boot address - normally 1798 ($706) - for the
boot continuation routine.

6 TRAMSZ
Temporary Register for RAM size; used during powerup
sequence to test RAM availability . This value is then moved to
RAMTOP, location 106 ($6A). Reads one when the BASIC or the
A (left) cartridge is plugged in .

1 1 TSTDAT
RAM test data register. Reads one when the B or the right
cartridge is inserted.

RAMLO, TRAMSZ and TSTDAT are all used in testing the RAM

3

8

size on powerup. On DOS boot, RAMLO and TRAMSZ also act as
temporary storage for the boot continuation address. TRAMSZ
and TSTDAT are used later to flag whether or not the A (left)
and/or B (right) cartridges, respectively, are plugged in (non­
zero equals cartridge plugged in) and whether the disk is to be
booted.

Locations eight through 15 ($8-$F) are cleared on coldstart only.

8 8 WARMST

9

Warmstart flag. If the location reads zero, then it is in the middle
of powerup; 255 is the normal RESET status. Warmstart is similar
to pressing RESET , so should not wipe out memory, variables, or
programs. WARMST is initialized to zero and will not change
va lues unless POKEd or until the first time the RESET button is
pressed. It will then read 255 ($FF).
Warmstart normally vectors to location 58484 ($E474). WARMST
is checked by the NMI status registe r at 54287 ($D40F) when
RESET is pressed to see whether or not to re-initialize the
software or to re -boot the disk.

9 BOOT?
Boot flag success indicator. A value of 255 in this location will
cause the system to lockup if RESET is pressed. If BOOT? reads
one, then the disk boot was successful; if it reads two, then the
cassette boot was successful. If it reads zero, the n neithe r
peripheral was booted.
If it is set to two, then the cassette vector at locations two and
three will be used on RESET. Set to one, it will use the DOS
vector at 10 and 11 ($A and $B). Coldstart attempts both a
cassette and a disk boot and flags this location with the success or
failure of the boots. BOOT? is checked during both disk and
cassette boot.

10,11 A,B DOSVEC

4

Start vector for disk (or non-cartridge) software. This is the
address BASIC jumps to when you call up DOS. Can be set by
user to point to your own routine, but RESET will return DOSVEC
to the original address . To prevent this, POKE 5446 with the LSB
and 5450 with the MSB of your vector address and re-save DOS
using the WRITE DOS FILES option in the menu. Locations 10
and 11 are usually loaded with 159 and 23 ($9F and $17),
respectively. Thi s allows the DUP.SYS section of DOS to be
loaded when called. It is initia lly set to blackboard mode vector
(58481; $ E471 - called by typing "BYE" or "B." from BASIC); it
will also vector to the cassette run address if no DOS vector is
loaded in. If you create an AUTORUN .SYS fil e that doesn' t end

12,13

with an RTS instruction, you should set BOOT? to one and 580
($244) to zero .

12,13 C,D DOSINI
Initialization address for the disk boot. Also used to store the
cassette-boot RUN address, which is then moved to CASINI (2,
3). When you powerup without either the disk or an autoboot
cassette tape, DOSINI will read zero in both locations.

14,15 E,F APPMHI
Applications memory high limit and pointer to the end of your
BASIC program, used by both the OS and BASIC. It contains the
lowest address you can use to set up a screen and Display List
(which is also the highest address usable for programs and data
below which the display RAM may not be placed). The screen
handler will not OPEN the "S:" device if it would extend the
screen RAM or the Display List below this address; memory
above this address may be used for the screen display and other
data (PM graphics, etc .).
If an attempted screen mode change would extend the screen
memory below APPMHI, then the screen is set up for GRAPHICS
mode zero; MEMTOP (locations 741, 742; $2E5, $2E6) is updated
and an error is returned to the user. Otherwise, the memory is not
too small for the screen editor; the mode change will take effect
and MEMTOP will be updated. This is one of five locations used
by the OS to keep track of the user and display memory .
Initialized to zero by the OS at powerup . Remember, you cannot
set up a screen display below the location specified here.
If you use the area below the Display List for your character sets,
PM graphics or whateve r, be sure to set APPMHI above the last
address used so that the screen or the DL data will not descend
and destroy your own data . See RAM TOP location 106 ($6A),
MEMTOP at 741,742 ($2E5, $2E6), PMBASE at 54279 ($D407)
and CHBASE at 54281 ($D409) for more information.

Locations 16 through 127 ($1O-$7F) are cleared on either cold- or
warmstart .

16 10 POKMSK
POKEY interrupts: the IRQ service uses and alters this location .
Shadow for 53774 ($D20E). POKE with 112 ($70; also POKE this
same value into 53774) to disable the BREAK key . If the following
bits are set (to one) , then these interrupts are enabled (bit
decimal values are in parentheses):

BIT DECIMAL FUNCTION
7 128 The BREAK key is enabled.
6 64 The "other key" interrupt is enabled.

5

17

5 32 The serial input data ready interrupt is
enabled.

4 16 The serial output data required interrupt is
enabled.

3 8 The serial out transmission finished
interrupt is enabled.

2 4 The POKEY timer four interrupt is enabled
(only in the "E" or later versions of the OS
ROMs).

1 2 The POKEY timer two interrupt is enabled .
0 1 The POKEY timer one interrupt is enabled.

Timer interrupt enable means the associated AUDF registers are
used as timers and will generate an inte rrupt request when they
have counted down to zero. See locations 528 to 535 ($210 to
$217) and the POKEY chip from locations 53760 ($D200) on, for a
full explanation. 192 ($CO) is the default on powerup .
You can also disable the BREAK key by POKEing here with 64
($40; or any number less than 128; $80) and also in location
53774. The problem with simple POKEs is that the BREAK key is
re-enpbled when RESET is pressed and by the first PRINT
statement that displays to the screen, or any OPEN statement that
addresses the screen (S: or E:), or the first PRINT statement after
such an OPEN and any GRAPHICS command . In order to
continually disable the BREAK key if such commands are being
used, it's best to use a subroutine that checks the enable bits
frequently during input and output operations, and POKEs a
value less than 128 into the proper locations , such as:

1000 BREAK = PEEI«16) - 128: IF BREA
I< < 0 THEN RETURN

1010 POI<E 16, BREAK: POKE 53774, BRE
AI<: RETURN

The new OS "B" version ROMs have a vector for the BREAK key
interrupt, which allows users to write their own routines to
process the interrupt in the desired manner. It is located at 566,
567 ($236, $237).

17 11 BRKKEY

6

Zero means the BREAK key is pressed; any other number means
it's not. A BREAK during 1/0 returns 128 ($80) . Monitored by
both keyboard, display, cassette and screen handlers. See
location 16 ($A) for hints on disabling the BREAK key. The latest
editions of OS provide for a proper vector for BREAK interrupts .
The BREAK key abort status code is stored in STATUS (48; $30).
It is also checked during all I/O and scrollidraw routines. During
the keyboard handler routine, the status code is stored in DSTAT

18,19,20

(76; $4C). BRKKEY is turned off at powerup. BREAK key abort
status is flagged by setting BIT 7 of 53774 ($D20E). See the note
on the BREAK key vector, above.

18,19,20 12,13,14 RTCLOK
Interna l realtime clock. Location 20 increments every stage one
VBLANK interrupt (1/60 second = one jiffy) until it reaches 255
($FF); then location 19 is incremented by one and 20 is reset to
zero (every 4.27 seconds) . When location 19 reaches 255, it and
20 are reset to zero and location 18 is incremented by one (every
18.2 minutes or 65536 TV frames). To use these locations as a
timer of seconds, try:

TIME = INT ((PEEK (18) * 65536 + PEEK (19) * 256 +
PEEK (20)) / 60)

To see the count in jiffies, eliminate the "/60" at the end. To see
the count in minutes, change "/60" to "/360." The maximum
va lue of the RT clock is 16,777,215. When it reaches this va lue, it
wi ll be rese t to zero on the next VBLANK increment. This va lue is
the result of cubing 256 (i.e . , 256 * 256 * 256), the maximum
number of increments in each clock register. The RT c lock is
a lways updated every VBLANK regardless of the time-critical
nature of the code being processed .

A jiffy is actually a long time to the computer . It can perform
upwards of 8000 machine cycles in that time. Think of what can
be done in the VB LANK interval (one jiffy). In human terms, a
jiffy can be upwards of 20 minutes , as witnessed in the phrase ''I'll
be ready in a jiffy." Compare this to the oft-quoted phrase, ''I'll
be there in a minute," used by intent programmers to describe a
time frame upwards of one hour.
US8rs can POKE these clock registers with suitable values for
their own use. The realtime clock is always updated during the
VBLANK interval. Some of the other timer registers (locations
536 to 544; $218 to $220) are not a lways updated when the OS is
executing time critical code .
Here's one way to use the realtime clock for a delay timer:

10 GOSUB 10')

100 POKE 20.0: POKE
110 IF NOT PEEK(19)
120 RETURN

19.0
THEN 1 10

Line 110 waits to see if location 19 returns to zero and, when it
does, passes control to the RETURN statement.

7

21.22

See COMPUTE!, August 1982, for a useful program to create a
small realtime clock that will continue to display during your
BASIC programming. See also De Re Atari for another realtime
clock application.

21.22 15.16 BUFADR

23

Indirect buffer address register (page zero). Temporary pointer
to the current disk buffer.

17 ICCOMT
Command for CIO vector. Stores the C IO command; used to find
the offset in the command table for the correct vector to the
handler routine.

24.25 18.19 DSKFMS
Disk file manager pointer. Called]MPTBL by DOS; used as
vector to FMS .

26.27 lA.IB DSKUTL
The disk utilities pointer. Called BUFADR by DOS, it points to
the area saved for a buffer for the utilities package (data buffer;
DBUF) or for the program area (MEMLO; 743 , 744; $2E7, $2E8).

28 lC PTIMOT

29

30

8

Printer timeout, called every printer status request. Initia lized to
30 , which represents 32 seconds (the va lue is 64 seconds per 60
increments in this register); typical timeout for the Atari 825
printer is five seconds. The value is set by your printer handler
software. It is updated after each printer status rquest operation.
It ge ts the specific timeout sta tus from location 748 ($2EC), which
is loaded there b y SIO .
The new "B" type OS ROMs have apparently solved the problem
of timeout that haunted the "A" ROMs; you saw it when the
printe r or the disk drive periodically went to sleep (timed out) for
a few seconds, causing severe anxiety attacks in the owners who
thought the ir Ataris had just mysteriously died . This is
compounded when one removes a disk from the drive, believing
the I/O process to be fin ished - only to have the drive start up
again after the timeout and try ing to write to or read from a
nonexistent disk . Usually both the system and the user crash
simultaneously a t this point. See the appendix for more
information on the new ROMs .

ID PBPNT
Print buffer pointer; points to the current position (byte) in the
print buffer. Ranges from zero to the va lue in location 30.

IE PBUFSZ
Print buffe r size of printer record for current mode. Normal

31

buffer size and line size equals 40 bytes; double-width print
equals 20 bytes (most printers use their own control codes for
expanded print); sideways printing equals 29 bytes (Atari 820
printer only). Printer status request equals four. PBUFSZ is
initialized to 40. The printer handler checks to see if the same
value is in PBPNT and, if so, sends the contents of the buffer to
the printer.

IF PTEMP
Temporary register used by the printer handler for the value of
the character being output to the printer.

31

Locations 32 to 47 ($20 to $2F) are the ZIOCB: Page zero Input-Output
Control Block. They use the same structure as the IOCB's at locations
832 to 959 ($340 to $3BF). The ZIOCB is used to communicate I/O con­
trol data between CIO and the device handlers. When a CIO opera­
tion is initiated, the information stored in the IOCB channel is moved
here for use by the CIO routines. When the operation is finished, the
updated information is returned to the user area.

32 20 ICHIDZ
Handler index number. Set by the OS as an index to the device
name table for the currently open file . If no file is open on this
IOCB (lOCB free), then this register is set to 255 ($FF).

33 21 ICDNOZ

34

Device number or drive number. Called MAXDEV by DOS to in­
dicate the maximum number of devices. Initialized to one.

22 ICCOMZ
Command code byte set by the user to define how the rest of the
IOCB is formatted, and what I/O action is to be performed.

35 23 ICSTAZ
Status of the last IOCB action returned by the device, set by the
OS. Mayor may not be the same status returned by the STATUS
command.

36,37 24,25 ICBALZ/HZ
Buffer address for data transfer or the address of the file name for
commands such as OPEN, STATUS, etc.

38,39 26,27 ICPTLZ/HZ
Put byte routine address set by the OS. It is the address minus
one byte of the device's "put one byte" routine. It points to CIO's
"IOCB not OPEN" on a CLOSE statement.

40.41 28,29 ICBLLZ/HZ
Buffer length byte count used for PUT and GET operations;

9

42

decreased by one for each byte transferred.

42 2A ICAXIZ
Auxiliary information first byte used in OPEN to specify the type
of fil e access needed.

43 2B ICAX2Z
CIO working variables, also used by some seria l port functions.
Auxiliary information second byte.

44.45 2C,2D ICAX3Z/4Z

46

47

48

49

Used by BASIC NOTE and POINT commanc:is for the transfer of
disk sector numbers. These next four bytes to location 47 are also
labelled as: ICSPRZ and are defined as spare bytes for local CIO
use .

2E ICAX5Z
The byte being accessed within the sector noted in locations 44
and 45. It is also used for the IOCB Number multiplied by 16.
Each IOCB block is 16 bytes long. Other sources indicate that the
6502 X register also contains this information.

2F ICAX6Z
Spare byte. Also labelled C IOCHR, it is the temporary storage
for the character byte in the current PUT operation.

30 STATUS
Internal status storage . The SIO routines in ROM use this byte to
store the status of the current SIO operation. See page 166 of the
OS User's Manual for status values. STATUS uses location 793
($319) as temporary storage. STATUS is a lso used as a storage
register for the timeout, BREAK abort and error va lues during
SIO routines.

31 CHKSUM
Data frame checksum used by SIO : single byte sum with carry to
the least significant bit. Checksum is the value of the number of
bytes transmitted (255; $FF). When the number of transmitted
bytes equals the checksum, a checksum sent flag is set at location
59 ($3B). Uses locations 53773 ($D20D) and 56 ($38) for com­
parison of values (bytes transmitted).

50,51 32,33 BUFRLO/HI

10

Pointer to the data buffer, the contents of which are transmitted
during an I/O operation, used by S10 and the Device Control
Block (DCB); points to the byte to send or receive. Bytes are
transferred to the eight-bit parallel serial ou tput holding register
or from the input holding register at 53773 ($D20D). This register

52,53

is a one-byte location used to hold the eight bits which will be
transmitted one bit at a time (serially) to or from the device. The
computer takes the eight bits for processing when the register is
full or replaces another byte in it when empty after a
transmission.

52,53 34,35 BFENLO/HI

54

55

56

Next byte past the end of the SIO and DCB data buffer described
above.

36 CHETRY
Number of command frame retries. Default is 13 ($OD) . This is the
number of times a device will attempt to carry out a command
such as read a sector or format a disk.

37 DHETRY
Number of device retries. The default is one.

38 BUFRFL
Data buffer full flag (255: $FF equals full).

57 39 RECVDN
Receive done flag (255; $FF equals done).

58 3A XMTDON
Transmission done flag (255; $FF equals done).

59 3B CHKSNT
Checksum sent flag (255; $FF equals sent).

60 3C NOCKSM

61

62

63

Flag for "no checksum follows data." Not zero means no
checksum follows; zero equals checksum follows transmission
data.

3D BPTR
Cassette buffer pointe r: record data index into the portion of data
being read or written. Ranges from zero to the current value at
location 650 ($28A). When these values are equal, the buffer at
1021 ($3FD) is empty if reading or full if writing. Initialized to 128
($80) .

3E FTYPE
Inter-record gap type between cassette records, copied from
location 43 ($2B; ICAX2Z) in the ZIOCB, stored there from
DAUX2 (779; $30B) by the user. Normal gaps are a non-zero
positive number; continuous gaps are zero (negative number).

3F FEOF
Cassette end of file flag. If the value is zero, an end of file (EOF)
has not been reached. Any other number means it has been

II

64

detected . An EOF record has been reached when the command
byte of a data record equals 254 ($FE). See location 1021 ($3FD).

64 40 FREQ

65

66

Beep count retain register. Counts the number of beeps required
by the cassette handler during the OPEN command for play or
record operations; one beep for play, two for record.

41 SOUNDR
Noisy I/O flag used by SIO to signal the beeping heard during
disk and cassette I/O. POKE here with zero for blessed silence
during these operations . Other numbers return the beep. In­
itialized to three. The hardware solution to this problem is to turn
your speaker volume down. This can also be used to silence the
digital track when playing synchronized voice/data tapes. See
location 54018.

42 CRITIC
Critical I/O region flag; defines the current operation as a time­
critical section when the value here is non-zero. Checked at the
NMI process after the stage one VB LANK has been processed.
POKEing any number other than zero here will disable the repeat
action of the keys and change the sound of the CTRL-2 buzzer.
Zero is normal; setting CRITIC to a non-zero value suspends a
number of OS processes including system software timer coun­
ting (timers two, three , four and five; see locations 536 to 558;
$218 to $22E). It is suggested that you do not set CRITIC for any
length of time. When one timer is being set, CRITIC stops the
other timers to do so, causing a tiny amount of time to be "lost."
When CRITIC is zero, both stage one and stage two VBLANK
procedures will be executed. When non-zero, only the stage one
VBLANK will be processed.

67-73 43-49 FMZSPG
Disk file manage r system (FMS) page zero registers (seven
bytes) .

67.68 43.44 ZBUFP
Page zero buffer pointer to the user filename for disk I/O.

69.70 45.46 ZDRVA
Page zero drive pointer. Copied to here from DBUFAL and
DBUFAH; 4905 and 4913 ($1329, $1331). Also used in FMS "free
sector," setup and "get sector" routines.

71.72 47.48 ZSBA
Zero page sector buffer pointer.

73 49 ERRNO
Disk I/O error number . Initialized to 159 ($9F) by FMS .

12

74

75

76

74

4A CKEY
Cassette boot request flag on coldstart. Checks to see if the
START key is pressed and, if so, CKEY is set. Autoboot cassettes
are loaded by pressing the START console key while turning the
power on. In response to the beep, press the PLAY button on the
recorder.

4B CASSBT
Cassette boot flag. The Atari attempts both a disk and a cassette
boot simultaneously. Zero here means no cassette boot was suc­
cessful. See location 9.

4C DSTAT
Display status and keyboard register used by the display handler.
Also used to indicate memory is too small for the screen mode,
cursor out of range error, and the BREAK abort status.

77 4D ATRACT

78

Attract mode timer and flag. Attract mode rotates colors on your
screen at low luminance levels when the computer is on but no
keyboard input is read for a long time (seven to nine minutes).
This helps to save your TV screen from "burn-out" damage suf­
fered from being left on and not used. It is set to zero by IRQ
whenever a key is pressed, otherwise incremented every four
seconds by VBLANK (see locations 18 - 20; $12 - $14). When the
value in ATRACT reaches 127 ($7F), it is then set to 254 ($FE) un­
til attract mode is terminated. This sets the flag to reduce the
luminance and rotate the colors when the Atari is sitting idle.
POKE with 128 ($80) to see this effect immediately: it normally
takes seven to nine minutes to enable the attract mode. The OS
cannot "attract" color generated by DLI's, although your DLI
routine can, at a loss of time .
Joysticks a lone will not reset location 77 to zero. You will have to
add a POKE 77,0 to your program periodically or frequently call
in a subroutine to prevent the Atari from entering attract mode if
you are not using any keyboard input.

4E DRKMSK
Dark attract mask; set to 254 ($FE) for normal brightness when
the attract mode is inactive (see location 77) . Set to 246 ($F6)
when the a ttract mode is active to guarantee screen color
luminance will not exceed 50%. Initialized to 254 ($FE).

79 4F COLRSH
Color shift mask; attract color shifter; the color registers are
EORd with locations 78 and 79 at the stage two VB LANK (see
locations 18 - 20; $12 - $ 14). Whe n set to zero and location 78
equals 246 , color luminance is reduced 50%. COLRSH contains

13

80

the current value of location 19, the refore is given a new color
value every 4.27 seconds.

Bytes 80 to 122 ($50 to $7 A) are used by the screen editor and display
handler.

80

81

82

83

84

14

50 TEMP
Temporary register used by the display handler in moving data to
and from screen. Also called TMPCHR.

51 HOLDI
Same as location 80. It is used also to hold the number of Display
List entries.

52 LMARGN
Column of the left margin of text (GR.O or text window only).
Zero is the value for the left edge of the screen; LMARGN is
initialized to two. You can POKE the margin locations to set them
to your specific program needs, such as POKE 82,10 to make the
left margin start ten locations from the edge of the screen .

53 RMARGN
Right margin of the text screen, initialized to 39 ($27). Both
10caHons 82 and 83 are user-alterable, but ignored in all
GRAPHICS modes except zero and the text window.
Margins work with the text window and blackboard mode and are
reset to their default values by pressing RESET. Margins have no
effect on scrolling or the printer . However, DELETE LINE and
INSERT LINE keys delete or insert 40 character lines (or delete
one program line), which always start at the left margin and wrap
around the screen edge back to the left margin again . The right
margin is ignored in the process. Also, logical lines are always
three physical lines no matter how long or short you make those
lines .
The beep you hear when you are coming to the end of the logical
line works by screen position independent of the margins. Try
setting your le ft margin at 25 (POKE 82,25) and typing a few lines
of characters. Although you have just a few characters beyond
60, the buzzer will still sound on the third line of text.

54 RoweRS
Current graphics or text screen cursor row, value ranging from
zero to 191 ($BF) depending on the current GRAPHICS mode
(maximum number of rows, minus one). This location , together
with location 85 below, defines the cursor location for the next
element to be read/written to the screen. Rows run horizontally,
left to right across the TV screen. Row zero is the topmost line;
row 192 is the maximum value for the bottom-most line .

85.86

85.86 55.56 COLCRS

87

Current graphics or text mode cursor column; values range from
zero to 319 (high byte, for screen mode eight) depending on
current GRAPHICS mode (maximum number of columns minus
one). Location 86 will always be zero in modes zero through
seven. Home position is 0,0 (upper left-hand corner). Columns
run vertically from the top to the bottom down the TV screen, the
leftmost column being number zero, the rightmost column the
maximum value in that mode. The cursor has a complete top to
bottom, left to right wraparound on the screen.
ROWCRS and COLCRS define the cursor location for the next
element to be read from or written to in the main screen segment
of the display . For the text window cursor, values in locations 656
to 667 ($290 to $29B) are exchanged with the current values in
locations 84 to 95 ($54 to $5F), and location 123 ($7B) is set to 255
($FF) to indicate the swap has taken place. ROWCRS and
COLCRS are also used in the DRAW and FILL functions to
contain the values of the endpoint of the line being drawn. The
color of the line is kept in location 763 ($2FB). These values are
loaded into locations 96 to 98 ($60 to $62) so that ROWCRS and
COLCRS may be altered during the operation.
BASIC's LOCATE statement not only examines the screen, but
also moves the cursor one position to the right at the next PRINT
or PUT statement. It does this by updating locations 84 and 85,
above. You can override the cursor advance by saving the
contents of the screen before the LOCATE command, then
restoring them after the LOCATE . Try:

100 REM: THE SCREEN MUST HAVE BEEN 0
PENED FOR READ OR READ/WRITE PREV
IOUSLY

110 LOOK = PEEK(84): SEE = PEEK(85)
120 LOCATE X,Y,THIS
130 POKE 84, LOOK: POKE 85. SEE

Note that CHR$(253) is a non-printing character - the bell­
and doesn't affect the cursor position.
See COMPUTE!, August 198 1, for an example of using COLCRS
for dynamic data restore and updating with the screen editor and
the IOCBs.

57 DINDEX
Display mode/current screen mode. Labelled CRMODE by (*M).
DINDEX contains the number obtained from the low order four
bits of most recent open AUXI byte. It can be used to fool the OS
into thinking you are in a different GRAPHICS mode by

15

87

16

POKEing DINDEX with a number from zero to 11 . POKE with
seven after you have entered GRAPHICS mode eight, and it will
give you a split screen with mode seven on top and mode eight
below. However, in order to use both halves of the screen, you
will have to modify location 89 (below) to point to the area of the
screen you wish to DRAW in. (See Your Atari 4001800, pp. 280-
283.)
Watch for the cursor out-of-range errors (number 141) when
changing GRAPHICS modes in this manner and either PRINTing
or DRAWing to the new mode screen. POKE 87 with the BASIC
mode number, not the ANTIC mode number.
Did you know you can use PLOT and DRAWTO in GR.O? Try
this :
10 GR.O
20 PLOT 0,0: DRAW TO 10,10: DRAWTO 0

, 10
30 DRAWTO 39.0: DRAWTO 20.23: DRAWT

o 0.20
40 GOTO 40

You can also set the text window for PRINT and PLOT modes by
POKEing 87 with the graphics mode for the window. Then you
must POKE the address of the top left corner of the text window
into 88 and 89 ($58, $59) . The screen mode of the text window is
stored at location 659 ($293).
You may have already discovered that you cannot call up the
GTIA modes from a direct command. Like the + 16 GRAPHICS
modes, they can only be called up during a program, and the
screen display will be reset to GR.O on the first INPUT or PRINT
(not PRINT#6) statement executed in these modes.

Since this location only takes BASIC modes, you can't POKE it
with the other ANTIC modes such as "E", the famous "seven-and­
a-half" mode which offers higher resolution than seven and a four
color display (used in Datasoft's Micropainter program). If you're
not draWing to the screen, simply using it for display purposes,
you can always go into the Display List and change the
instructions there. But if you try to draw to the screen, you risk an
out-of-bounds error (error number 141) .

See Creative Computing, March 1982, for an excellent look at
mode 7V2. The short subroutine below can be used to change the
Display List to GR . 7V2:

1000 GRAPHICS 8+16: DLIST = PEEK(560
) + PEEl< (561) * 256: POKE DLIST +
3,78

88,89

1010 FOR CHANGE = DLIST + 6 TO DLIST
+ 204: I F PEEK (CHANGE) = 15 THE

N POKE CHANGE.14
1020 IF PEEK(CHANGE) = 79 THEN POKE

CHANGE.78:NEXT CHANGE
1030 POKE 87.7:RETURN

(Actually, 15 ($F) is the DL number for the maximum memory
mode; it a lso indicates modes eight through e leven. The DL's for
these modes are identical.) Fourteen is the ANTIC E mode;
GR.7Y2. This program merely changes GR.8 to mode E in the
Display List. The value 79 is 64 + 15; mode eight screen with BIT
6 set for a Load Memory Scan (LMS) instruction (see the DL
information in locat ions 560,561; $230, $231). It does not check
for other DL bits.
You can a lso POKE 87 with the GTIA values (nine to e leven) . To
get a pseudo-text window in GTIA modes, POKE the mode
number here and then POKE 623 with 64 for mode nine, 128 for
mode ten, and 192 for mode eleven, then POKE 703 with fou r, in
program mode . (In command mode, you will be returned to
GR.O.) You won't be able to read the text in the window , but you
will be able to write to it. However, to get a true text window,
you'll need to use a Display List Interrupt (see COMPUTE!,
September 1982). If you don't have the GTIA chip, it is still
possible to simulate those GRAPHICS modes by using DINDEX
with changes to the Display List Interrupt. See COMPUTE!, July
1981, for an example of simulating GR.10.

88,89 58,59 SAVMSC
The lowest address of the screen memory, corresponding to the
upper left corner of the screen (where the value at this address
will be displayed). The upper left corner of the text window is
stored at locations 660,661 ($294, $295).
You can verify this for yourself by :

WINDOW = PEEK(88) + PEEK(89) * 256: POKE WINDOW, 33

This will put the le tter "AU in the upper left corner in GR .O, 1 and
2. In other GRAPHICS modes, it will print a colored block or
bar. To see this effect, try:

5 REM FIRST CLEAR SCREEN
10 GRAPH I CS Z: IF Z :: 59 THEN END
15 SCREEN = PEEK (88) + PEEK (89) *

256
20 FOR N = 0 TO 255: POKE SCREEN + N

• N
NEXT N: FOR N = 1 TO 300: NEXT N:

17

88.89

18

z = Z + 1
30 GOTO 10

You wi ll notice that you get the Atari internal character code, not
the ATASCII code. See also locations 560,561 ($230, $231) and
57344 ($EOOO).
How do you find the entire screen RAM? First, look at the chart
below and find your GRAPHICS mode. Then you multiply the
number of rows-pei-screen type by the number of bytes-per-line.
This wi ll tell you how many bytes each screen uses. Add this
value, minus one, to the address specified by SAVMSC .
However, if you subtract MEMTOP (locations 74 1,742; $2E5,
$2E6) from RAMTOP (l06; $6A * 256 for the numbe r of bytes),
you will see that there is more memory reserved than just the
screen area. The extra is taken up by the display list or the text
window, or is simply not used (see the second chart below).

Mode 0 1 2 3 4 5 6 7 8 9-12

Rows
Full 24 24 12 24 48 48 96 96 192 192
Split 20 10 20 40 40 80 80 160

Bytes per
Line 40 20 20 10 10 20 20 40 40 40

Columns
per Line 40 20 20 40 80 80 160 160 320 80

Memory (1) 993 513 261 273 537 1017 2025 3945 7900 7900

Memory (2)
Full 992 672 420 432 696 1176 2184 4200 8138 8138
Split -- 674 424 434 694 1174 2174 4190 8112

(1) According to the Atari BASIC Reference Manual, p . 45 ; OS
User's Manu al, p. 172, and Your Atari 4001800, p. 360.
(2) According to Your Atari 4001800, p. 274, and Atari Microsof(
Basic Manual , p. 69. This is a lso the va lue you get when you
subtract MEMTOP from RAMTOP (see above) .
For example, to POKE the entire screen RAM in GR.4, you
wou ld find the start address of the screen (PEEK(88) + PEEK(89)
* 256), then use a FOR-NEXT loop to POKE all the locat ions
speCified above :

10 GRAPHIC S 4: SCRN = PEEK(88) + PE
EI< (89) * 2 56

20 FOR LOO P = SCRN t o SCRN + 479: R
EM 48 ROWS * 10 BYTES - 1

30 POKE LOOP .35: NEXT LOOP

88,89

Why the minus one in the calculation? The first byte of the screen
is the first byte in the loop. If we add the iotal size, we will go one
byte past the end of the screen, so we subtract one from the total.
He re's how to arrive at the va lue for the total amount of memory
located for screen use, display list and text window:

Total memory allocation for the screen

Screen display Display List

Text unused bytes screen unused used
GR window always condo use bytes bytes Total

0 none none 960 none 32 992
1 160 none 80 400 none 34 674
2 160 none 40 200 none 24 424
3 160 none 40 200 none 34 434
4 160 none 80 400 none 54 694
5 160 none 160 800 none 54 1174
6 160 none 320 1600 none 94 2174
7 160 none 640 3200 96 94 4190
8 160 16 1280 6400 80 176 8112

The number of bytes from RAM TOP (location 106; $6A) is counted
from the left text window column towards the total column.
MEMTOP (741,742; $2E5, $2E6) points to one byte below
RAMTOP * 256 minus the number of bytes in the total column. If
16 is added to the GRAPHICS mode (no text window), then the
conditional unused bytes are added to the total. Then the bytes
normally added for the text window become unused, and thE:
Display List expands slightly. (See COMPUTE!, September 1981.)
When you normally PRINT CHR$(l25) (clear screen), Atari sends
zeroes to the memory starting at locations 88 and 89. It continues to
do this until it reaches one byte less than the contents of RAMTOP
(location 106; $6A). Here is a potential source of conflict with your
program, however: CHR$(l25) - CLEAR SCREEN - and any
GRAPHICS command actually continue to clear the first 64 ($40)
bytes above RAMTOP!
It would have no effect on BASIC since BASIC is a ROM
cartridge. The OS Source Listing seems to indicate that it ends at
RAMTOP, but Atari assumed that there would be nothing after
RAMTOP, so no checks were provided. Don't reserve any data
within 64 bytes of RAM TOP or e lse it will be eaten by the CLEAR
SCREEN routine, or avoid using a CLEAR SCREEN or a
GRAPHICS command. Scrolling the text window also clears 800
bytes of memory above RAMTOP.
You can use this to clear other areas of memory by POKEing the

19

88,89

20

LSB and MSB of the area to be cleared into these locations. Your
routine should always end on a $FF boundary (RAMTOP indicates
the number of pages) . Remember to POKE back the proper screen
locations or use a GRAPHICS command immediately after doing
so to set the screen right. Try this:

10 BOTTOM = 30000: TOP = 36863: REM
LOWEST AND HIGHEST ADDRESS TO CLEA
R = $7530 & $8FFF

20 RAMTOP = PEEl< (106): POKE 1 06 ~ I NT
(TOP + 1 / 256)

30 TEST = INT(BOTTOM / 256): POKE89~

TEST
40 POKE 88, BOTTOM - 256 * TEST
50 PRINT CHR$(125): POKE 106, RAM TOP
60 GRAPHICS 0

This will clear the specified memory area and update the address
of screen memory . If you don't specify TOP, the CLEAR SCREEN
will continue merrily cleaning out memory and, most likely, will
cause your program to crash. Use it with caution.
Here's a means to SAVE your current GR.7 screen display to disk
using BASIC :

1000 SCREEN = PEEK(88) + PEEK(89) *
256

1010 OPEN #2,8,O,"D:picturename"
1020 MODE = PEEK(87): PUT #2, MODE:

REM SAVE GR. MODE
1030 FOR SCN = (I TO 4: COL = PEEK(70

8 + SCN): PUT #2,COL: NEXT SCN:
REM SAVE COLOR REGISTERS

1040 FOR TV = SCREEN TO SCREEN + 319
9:BYTE = PEEK(TV): PUT #2, BYTE:
NEXT TV: CLOSE #2

To use this with other screen modes, you will have to change the
value of 3199 in line 1040 to suit your screen RAM (see the chart
above). For example, GR.7 + 16 would require 3839 bytes (3840
minus one). You can use the same routine with cassette by using
device C:. To retrieve your picture, you use GET#2 and POKE
commands. You will, however, find both routines very slow. Using
THE CIO routine at 58454 ($E456) and the IOCBs, try this machine
language save routine:

10 DIM ML$(10): B$(10): GR.8+16
20 B$ = "your picture name":Q PEEK

(559)
30 FOR N = 1 TO 6: READ BYTE: ML$(N~

N) = CHR$(BYTE): NEXT N
35 DATA 104,162,16,76,86,228
36 REM PLA,LDX,$10,JMP $E456
40 OPEN ~I,4,O,B$

90

50 POKE 849,1: POKE 850,7: POKE 852,
PEE K(88): POKE 853,PEEK(89): POKE
856,70: POKE 857,30: POKE 858,4

55 REM THESE POKES SET UP THE IOCB
60 POKE 559,0: REM TURN OFF THE SCRE

EN TO SPEED THINGS UP
70 X = USR(ADR(ML$»: CLOSE ~1

80 POKE 559,Q: REM TURN IT BACK ON A
GAIN

Note that there is no provision to SAVE the color registers in this
program, so I suggest you have them SAVEd after you have
SAVEd the picture. It will make it easier to retrieve them if they are
at the end of the file . You will have to make suitable adjustments
when SAVEing a picture in other than GR.8 + 16 - such as
changing the total amount of screen memory to be SAVEd, POKEd
into 856 and 857. Also, you will need a line such as 1000 GOTO
1000 to keep a GIlA or + 16 mode screen intact. See the Atari
column in InfoAge Magazine, July 1982, for more on this idea. See
location 54277 ($D405) for some ideas on scrolling the screen
RAM.

A SHORT DIGRESSION
There are two techniques used in this book for calling a machine
language program from BASIC with the USR command. One method
is to POKE the values into a specific address - say, page six - and
use the starting address for the USR ca ll, such as X = USR(1536). For
an example of this technique, see location 632 ($278).
The other technique, used above, is to make a string (ML$) out of the
routine by assigning to the elements of the str ing the decimal
equivalents of the machine language code by using a FOR-NEXT and
READ-DATA loop. To call this routine, you wou ld use X =
USR(ADR(ML$)). This tells the Atari to call the machine language
routine located at the address where ML$ is stored . This address will
change with program size and memory use. The string method won't
be overwritten by another routine or data since it floats around safely
in memory. The address of the string itself is stored by the string/array
table at location 140 ($8C).

90 SA OLDROW
Previous graphics cursor row. Updated from location 84 ($54)

21

91,92

before every operation. Used to determine the starting row for
the DRAWTO and XIO 18 (FILL command).

91,92 5B,5C OLDCOL
Previous graphics cursor column. Updated from locations 85 and
86 ($55, $56) before every operation. These locations are used by
the DRAWTO and XIO 18 (FILL) commands to determine the
starting column of the DRAW or FILL.

93 50 OLDCHR
Retains the value of the character under the cursor, used to
restore that character when the cursor moves.

94,95 5E,5F OLDAOR

96

Retains the memory location of the current cursor location. Used
with loca tion 93 (above) to restore the character under the cursor
when the cursor moves.

60 NEWROW
Point (row) to which DRAWTO and XIO 18 (FILL) will go.

97,98 61,62 NEWCOL

99

Point (column) to which DRAWTO and XIO 18 (FILL) will go .
NEWROW and NEW COL are initialized to the va lues in
ROWCRS and COLC RS (84 to 86; $54 to $56) above, which
represent the destination end point of the DRAW and FILL
functions. This is done so that ROWCRS and COLCRS can be
a ltered during these routines.

63 LOGCOL
Position of the cursor at the column in a logical line. A logical
line can contain up to three physical lines, so LOGCOL can
range between zero and 11 9. Used by the display handler.

100,101 64,65 AORESS
Temporary storage used by the display handler for the Display
List address, line buffe r (583 to 622; $247 to $26E), new MEMTOP
va lue after DL entry, row column address, DMASK va lue , data to
the right of cursor, scroll, delete, the clear screen routine and for
the screen address memory (locations 88,89; $58 , $59).

102,103 66,67 MLTTMP
Also called OPNTMP and TOADR; first byte used in OPEN as
temporary storage. Also used by the disp lay handler as
temporary storage.

104,105 68,69 SAVADR

22

Also called FRMADR . Temporary storage, used with ADRESS
above for the data unde r the cursor and in moving line data on
the screen.

106

106

6A RAMTOP
RAM size, defined by powerup as passed from TRAMSZ (location
6)' given in the total number of ava ilab le pages (one page equals
256 bytes, so PEEK(1 06) * 256 wi ll tell you where the Atari thinks
the last usab le address - byte - of RAM is) . MEMTOP (74 1,
742; $2E5 , $2E6) may not extend below this value. In a 48K Atari,
RAM TO P is initia lized to 160 ($AO), which points to location
40960 ($AOOO). The user's highest address will be one byte less
than this value .
Th is is initially the same va lue as in location 740. PEEK(740) / 4 or
PEEK(l06) / 4 gives the numbe r of l K b locks. You can fool the
computer into thinking you have less memory than you actually
have, thus reserving a re latively safe area for data (for your new
character set or p layer/m issile characters, for example) or
machine language subroutines by :

POKE(106), PEEK(106) - # of pages you want to reserve .

The va lue here is the number of memory pages (256-byte b locks)
p resent. This is useful to know when chang ing GR.7 and GR.8
screen RAM. If you are reserving memory for PM graphics,
POKE 54279, PEEK(l06) - # of pages you are reserving before
you actua lly POKE 106 with that va lue . To test to see if you have
exceeded your memory by reserving too much memory space,
you can use :

10 SIZE = (PEEl< (1(6) - 0# of pages)

* 256
20 IF SIZE <' = PEEl< (144) + PEEK (145 ,

* 256 THEN PRINT "TOO MUCH MEMOR
Y USED"

If you move RAMTOP to reserve memory, a lways issue a
GRAPHICS command (even issuing one to the same GRAPHICS
mode you are in wi ll work) immediate ly so that the display list
and data are moved beneath the new RAMTOP.
You should note that a GRAPHICS command and a C LEAR
command (or PRINT C HR $ (125)) actua lly clear the firs t 64 bytes
above RAMTOP (see location 88; $58 for further discussion).
Scrolling the text window of a GRAPHICS mode clears up to 800
($320) bytes above RAMTOP (the text window scroll actua lly
scrolls an entire GR.O screen-worth of data, so the unseen 20
lines * 40 bytes equa ls 800 bytes). PM graphics may be safe
(unless you scroll the text window) since the first 384 or768 bytes
(double or single line resolution, respectively) are unused.
However, you should take both of these e ffects into account when
writing your programs.

23

107

To discover the exact end of memory, use this routine (it's a tad
slow):
10 RAMTOP = 106: TOP = PEEKCRAMTOP)
20 'BYTE = TOP * 256: TEST = 255 - PE

EKCBYTE): POKE BYTE,TEST
30 IF PEEKCBYTE) = TEST THEN TOP = T

OP +1: POKE BYTE, 255 - TEST
40 GOTO 20
50 PRINT "MEMORY ENDS AT "; BYTE

One caution: BASIC cannot a lways handle setting up a display
list and display memory for GRAPHICS 7 and GRAPHICS 8
when you modify thi s location by less than 4K (16 pages; 4096
bytes) . Some bizarre results may occur if you use PEEK(l06) - 8
in these modes, for example. Use a minimum of 4K (PEEK(l06) -
16) to avoid trouble . This may explain why some people have
difficulties with player/missile graphics in the hi-res (high
resolution ; GR.7 and GR.8) modes. See location 54279 ($D407).

Another alternative to reserving memory in hig h RAM is to save
an area below MEMLO, location 743 ($2E7: below your BASIC
program) . See also MEMTOP, locations 741,742 ($2E5, $2E6) .

107 SB BUFCNT
Buffer count : the screen editor current logical line size counte r.

108,109 SC,SD BUFSTR

110

III

Editor low byte (AM). Display editor GETC H routine pointer
(locat ion 62867 for entry; $F593). Temporary storage; returns the
character pointed to by BUFCNT above.

SE BITMSK
Bit mask used in bit mapping routines by the OS display handler
at locations 64235 to 64305 ($F AEB to $FB31). Also used as a
display handle r temporary storage register .

SF SHFAMT
Pixe l justification : the amount to shift the right justified pixel data
on output or the amount to shift the input data to right justify it .
Prior to the justification process, this va lue is always the same as
that in 672 ($2AO).

112,113 70,71 ROWAC
ROWAC and COLAC (below) are both working accumulators for
the control of row and colu mn point p lotting and the increment
and decrement functions .

114,115 72,73 CO LAC
Controls colu mn point p lotting .

24

116,11 7

116,117 74,75 ENDPT
End point of the line to be drawn. Contains the larger value of
either DELTAR or DELTAC (locations 118 and 119, below) to be
used in conjunction with ROWAC/COLAC (locations 112 and
114, above) to control the plotting of line points .

118 76 DELTAR
Delta row; contains the absolute value of NEWROW (location 96;
$60) minus ROWCRS (location 84; $54) .

119,120 77,78 DELTAC
Delta column; contains the absolute value of NEW COL (location
97; $61) minus the value in COLCRS (location 85; $55). These
delta register values, along with locations 121 and 122 below, are
used to define the slope of the line to be drawn.

121 79 ROWINC

122

123

124

125

The row increment or decrement value (plus or minus one).

7A COLINC
The column increment or decrement value (plus or minus one).
ROWINC and COLINC control the direction of the line drawing
routine. The values represent the signs derived from the value in
NEWROW (location 96; $60) minus the value in ROWCRS
(location 84; $54) and the value in NEW COL (locations 97, 98;
$61, $62) minus the value in COLCRS (locations 85,86; $55,
$56).

7B SWPFLG
Split-screen cursor control. Equal to 255 ($FF) if the text window
RAM and regular RAM are swapped; otherwise, it is equal to
zero. In split-screen modes , the graphics cursor data and the text
window data are frequently swapped in order to get the values
associated with the area being accessed into the OS data base
locations 84 to 95 ($54 to $5F). SWPFLG helps to keep track of
which data set is in these locations.

7C HOLDCH
A character value is moved here before the control and shift logic
are processed for it.

70 INSDAT
Temporary storage byte used by the display handler for the
character under the cursor and end of line detection.

126,127 7E,7F COUNTR
Starts out containing the larger value of either DELTAR (location
118; $76) or DELTAC (location 119; $77) . This is the number of
iterations required to draw a line . As each point on a line is

25

128,129

drawn, this va lue is decremented. When the byte equals zero, the
line is complete (drawn) .

User and/or BASIC page zero RAM begins here. Locations 128 to 145
($80 to $91) are for BASIC program pointers; 146 to 202 ($92 to $CA)
are for miscellaneous BASIC RAM; 203 to 209 ($CB to $Dl) are
unused by BASIC, and 210 to 255 ($D2 to $FF) are the floating point
routine work area. The Assembler Editor cartridge uses locations 128
to 176 ($80 to $BO) for its page zero RAM. Since the OS doesn't use this
area, you are free to use it in any non-BASIC or non-cartridge
environment. If you are using anothe r language such as FORTH,
check that program's memory map to see if any conflict will occur .
See COMPUTE/'s First Book of Atari, pages 26 to 53, for a discussion
of Atari BASIC structure, especially that using locations 130 to 137
($82 to $89). Included in the tutorials are a memory analysis, a line
dump, and a renumber utility. See a lso De Re Atari, BYTE, February
1982, and the locations for the BASIC ROM 40960 to 49151 ($AOOO to
$BFFF).

128,129 80,81 LOMEM

26

Pointe r to BASIC's low memory (at the hig h end of OS RAM
space). The first 256 bytes of the memory pointed to are the token
output buffe r, which is used by BASIC to convert BASIC
statements into numeric representation (tokens; see locations
136,137; $88, $89) . This va lue is loaded from MEMLO (locations
743, 744; $2E7, $2E8) on initialization or the execution of a NEW
command (not on RESET!). Remember to update this value when
changing MEMLO to reserve space for drivers or buffers .
When a BASIC SAVE is made, two b locks of informatio:1 are
written : the first block is the seven pOinters fro m LOMEM to
STARP (128 to 141 ; $80 to $8D). The va lue of LOMEM is
subtracted from each of these two-byte pOinters in the process, so
the fir st two bytes written will both be zero . The second block
contains the following: the variable name table, the variable
va lue table, the tokenized program, and the immediate mode
line.
When a BASIC LOAD is made, BASIC adds the va lue at MEMLO
(743,744; $2E7, $2E8) to each of the two-byte pointers SAVEd as
above. The pointers are placed back in page zero, and the values
of RUNSTK (142, 143; $8E, $8F) and MEMTOP (144, 145; $90,
$9 1) are set to the value in STARP. Then 256 bytes are reserved
above the va lue in MEMLO for the token output buffer, and the
program is read in immediately folloWing this buffe r .
When you don't have DOS or any other application program
using low memory loaded, LOMEM points to 1792 ($700) . When

130,131

DOS 2 .0 is present , it points to 7420 ($lCFC). Whe n you change
your drive and data buffer defaults (see 1801, 1802; $709, $70A),
you will raise or lowe r this figure by 128 bytes for each buffer
added or deleted, respective ly. When you boot up the RS-232
handler, add another 1728 ($6CO) bytes used.
LOMEM is also called ARGOPS by BASIC when used in
expression evaluation. When BASIC encounters any kind of
express ion, it puts the immediate results into a stack . ARGOPS
points to the same 256 byte area; for this operation it is reserved
for both the argument and operator stack. It is a lso called
OUTBUFF for another operat ion, pointing to the same 256 byte
buffe r as ARGOPS points to. Used by BASIC when checking a
line fo r syntax and converting it to tokens. This buffer
temporarily stores the tokens before moving them to the
program.

130,131 82,83 VNTP
Beginning address of the variable name table. Variable names
are stored in the orde r input into your program, in ATASCII
format. You can have up to 128 va riable names. These are stored
as tokens representing the variable numbe r in the tokenized
BASIC prog ram, numbered from 128 to 255 ($80 to $FF).
The table continues to store variable names, even those no longer
used in your program and those used in direct mode entry . It is
not cleared by SAVEing your program. LOADing a new program
replaces the current VNT with the one it retrieves from the file.
You must LIST the program to tape or disk to save your program
without these unwanted va riables from the table. LIST does not
SAVE the va;iable name or variable value tables with your
program. It stores the program in ATASCII, not toke nized form,
and requires an ENTER command to retr ieve it. You would use a
NEW statement to clear the VNT in memory once you have
LISTed your program.
Each var iable name is stored in the order it was ente red, not the
ATASCII order . With numer ic (sca lar) variables , the MSB is set
on the last character in a name . With string variables , the last
character is a "$" with the MSB (BIT 7) set. With array variables ,
the last character is a "(" with the MSB set. Setting the MSB turns
the character into its inverse representation so it can be easi ly
recognized.
You can use variable names for GOSUB a nd GOIO routines,
such as:
10 CALCULATE = 1000

27

132,133

100 GOSUB CALCULATE

This can save a lot of bytes for a frequently called routine. But
remember, each variable used for a GOSUB or GOTO address
uses one of the 128 possible variable names. A disadvantage of
using variable names for GOTO and GOSUB references is when
you try to use a line renumbering program. Line renumbering
programs will not change references to lines with va riable
names, only to lines with numbered references.
Here's a small routine you can add to the start of your BASIC
program (or the end if you change the line numbers) to print out
the variable names used in your program. You call it up with a
GOTO statement in direct mode:

1 POKE 1664, PEEK(130): POKE 1665,
PEEK(131)

2 IF PEEK(1664) = PEEK(132) THEN IF
PEEK(1665) = PEEK(133) THEN STOP

3 PRINT CHR$(PEEK(PEEK(1664) + PEEK
(1665) * 256»);

4 I F PEEK (PEEK (1664) + PEEK (1665) *
256»)- 127 THEN PR I NT" .. ;

5 IF PEEK(1664) = 255 THEN POKE 166
4, 0: POKE 1665, PEEK (1665) + 1: GO
TO 2

6 POKE 1664, PEEK(1664) + 1: GOTO 2

See COMPUTE!, October 1981.

132.133 84,85 VNTD

28

Pointer to the ending address of the variable name table plus one
byte. When fewer than 128 variables are present, it points to a
dummy zero byte. When 128 variables are present, this points to
the last byte of the last variable name, p lus one.
It is often useful to be able to list your program variables; using
locations 130 to 133, you can do that by:

10 VAR I = PEEK (130) + PEEl< (131) * 2
56 :REM This gives you the start 0

f the table.
20 FOR VARI = VARI TO PEEI«132) + P

EEl< (133) * 256 - 1: PR I NT CHR$ (PEE
K(VARI> - 128 * PEEI«VARI)- 127»;

CHR$ (27 + 128 * PEEK (VAR I))- 127 >
>;:NEXT VARI

25 REM this finds the end of the va
riable name table (remember table
is end + 1), then PRINTs ASCII cha

134,135

30
racte.rs <

NUM = 0:
128

FOR VARI = PEEK(130} +
PEEK(313) * 256 TO PEEK(132} + PEE
K (131) * 256 - 1: NUM = NUM + (PEEK
(VARI) < 127}:NEXT VARI: PRINT NU
M;"Variables in use"

Or try this, for a possibly less opaque example of the same
routine :

1000 NUM = 0: FOR LOOP = PEEK(130) +
PEEK (131) * 256 TO PEEK (132) +

PEEK(133) * 256 - 1
1010 IF PEEK(LOOP) < 128 THEN PRINT

CHR$(PEEK(LOOP»;: GOTO 1030
1020 PRINT CHR$(PEEK(LOOP) 128): N

UM = NUM + 1
1030 NEXT LOOP: PRINT:

VARIABLES IN USE":

134,135 86,87 VVTP

PRINT NUM;
END

Address for the variable value table. Eight bytes are allocated for
each variable in the name table as follows:

Byte 1 2 3 4 5 6 7 8
Variable

Scalar 00 var # six byte BCD constant
Array;DIMed 65 var # offset first second

unDIMed 64 from DIM+1 DIM+1
STARP

String; DIMed 129 var # offset length DIM
unDIMed 128 from

STARP

In scalar (undimensioned numeric) variables, bytes three to eight
are the FP number; byte three is the exponent; byte four contains
the least significant two decimal digits, and byte eight contains
the most significant two decimal digits.
In array variables, bytes five and six contain the size plus one of
the first dimension of the array (DIM + 1; LSBIMSB), and bytes
seven and eight contain the size p lus one of the second dimension
(the second DIM + 1; LSBIMSB) .
In string variables, bytes five and six contain the current le ngth
of the variable (LSBIMSB), and bytes seven and eight contain the
actual dimension (up to 32767). There is an undocumented
BASIC statement, "COM," mentioned only in the BASIC
Reference Man ual's index, which executes exactly the same as

29

136.137

the "DIM" statement (see Your Atari 4001800, p. 346). Originally,
it was to be used to implement "common" variables.
In all cases, the first byte is always one of the number listed on the
chart above (you will seldom, if ever, see the undimensioned
values in a program). This number defines what type of variable
information will follow. The next byte, var # (variable numbe r), is
in the range from zero to 127. Offset is the number of bytes from
the beginning of STARP at locations 140 and 141 ($8C, $8D).
Since each variable is assigned eight bytes, you could find the
values for each variable by:

1000 VVTP = PEEK(134) + PEEK(135) *
256: INPUT VAR: REM VAR I ABLE NUM
BER

1010 FOR LOOP = 0 TO 7: PRINT PEEK(V
VTP + LOOP + 8 * VAR): NEXT LOOP

where VAR is the variable number from zero to 127.
If you wish to assign the same value to every e lement in a DIMed
string variable, use thi s simple technique:

10 DIM TEST$(100)
20 TEST$ = "*": REM Dr use TEST$(l)
30 TEST$(lOO) = TEST$
40 TEST$(2) = TEST$: PRINT TEST$

By assigning the first, last, and second variables in the array, in
that order, your Atari will then assign the same value to the rest of
the array. Make sure you make the second and last elements
equal to the string, not the character value (i.e., don't use
TEXT$(2) = ".").

See De He Atari for an example of SAVEinq the six-byte BCD
numbers to a disk file - very useful when dealing with fixed
record lengths.

136,137 88,89 STMTAB

30

The address of the statement table (which is the beginning of the
user's BASIC program), containing all the tokenized lines of
code plus the immediate mode lines entered by the user. Line
numbers are stored as two-byte integers, and immediate mode
lines are given the default value of line 32768 ($8000). The first
two bytes of a tokenized line are the line number, and the next is
a dummy byte reserved for the byte count (or offset) from the start
of this line to the start of the next line .

Following that is another count byte for the start of this line to the
start of the next statement. These count values are set only when
tokenization for the line and statement are complete.

138.139

Tokenization takes place in a 256 byte ($100) buffer that resides at
the end of the reserved OS RAM (pointed to by locations 128,
129; $80, $81).

To see the starting address of your BASIC line numbers, use this
routine:

10 STMTAB = PEEK(136) + PEEK(137)*2
56

20 NUM = PEEK(STMTAB) + PEEK(STMTAB
+1}*256

30 IF NUM = 32768 lHEN END
40 PRINT"LINE NUMBER: ";NUN;" ADDRE

SS: "; STNTAB
50 STMTAB = STMTAB + PEEK(STMTAB+2)
60 GOTO 20

The August 1982 issue of ANTIC provided a useful program to
delete a range of BASIC line numbers. The routine can be
appended to your program and even be used to delete itself .

138,139 8A,8B STMCUR
Current BASIC statement pointer, used to access the tokens
being currently processed within a line of the statement table.
When BASIC is awaiting input, this pointer is set to the
beginning of the immediate mode (line 32768).
Using the address of the variable name table, the length, and the
current statement (locations 130 to 133, 138, 139), here is a way to
protect your programs from being LISTed or LOADed: they can
only be RUN! Remember, that restricts you too, so make sure you
have SAVEd an unchanged version before you do this:

32000 FOR VARI = PEEK(130) + PEEK(1
31) * 256 TO PEEK (132) + PEEK (1
33) * 256:POKE VARI.155:NEXT VA
RI

32100 POKE PEEK(138} + PEEK(139) *
256 + 2,0: SAVE "D:filename": N
EW

This will cause all variable names to be replaced with a RETURN
character. Other characters may be used: simply change 155 for
the appropriate ATASCn code for the character desired. Make
sure that these are the last two lines of your program and that
NEW is the last statement. CLOAD will not work, but a filename
with C: will.

140,141 8C,8D STARP
The address for the string and array table and a pointer to the end
of your BASIC program. Arrays are stored as six-byte binary

31

142.143

coded decimal numbers (BCD) while string characters use one
bye each . The address of the strings in the table are the same as
those returned by the BASIC ADR function. Always use this
function under program control, since the addresses in the table
change according to your program size . Try:

10 DIM A$(10),B$(10}
20 A$ ".": A$(10) A$: A$(2) A

$

30 B$.. ~ .. : B$ (10) B$: B$(2} B
$

40 PRINT ADR(A$), ADR(B$)
50 PRINT PEEK (140) + PEEK (141) • 25

6: REM ADDRESS OF A$
60 PRINT PEEK (140) + PEEK (141) • 25

6 + 10: REM ADRESS OF A$ + 10 BYTE
S = ADDRESS OF B$

This table is expanded as each dimension is processed by
BASIC, reducing avai lable memory. A ten-element numeric
array will require 60 bytes for storage . An array variable such as
DIM A(lOO) will cost the program 600 bytes (l00 * six per
dimensioned number equals 600). On the other hand, a string
array such as DIM A$(lOO) will only cost 100 bytes! It would save
a lot of memory to write your arrays as strings and retrieve the
array values using the VAL statement. For example:

10 DIM A$(10): A$ = "1234567890"
20 PRINT VAL(A$)
30 PRINT VAL(A$(4,4»
40 PRINT VAL(A$'3,3»+VAL(A$(S,9»

See COMPUTE!, June 1982, for a discussion of STARP and
VVTP. See De Re Atari for a means to SAVE the string/array area
with your program.

142,143 8E,8F RUNSTK

32

Address of the runtime stack which holds the GOSUB entries
(four bytes each) and the FOR-NEXT entries (l6 bytes each). The
POP command in BASIC affects this stack, pulling entries off it
one at a time for each POP executed. The stack expands and
contracts as necessary while the program is running.
Each GOSUB entry consists of four bytes in this order: a zero to
indicate a GOSUB, a two-byte integer line number on which the
call occurred, and an offset into that line so the RETURN can
come back and execute the next statement.
Each FOR-NEXT entry contains 16 bytes in this order: first, the
limit the counter variable can reach; second, the step or counter

144,145

increment. These two are allocated six bytes each in BCD format
(12 bytes total). The 13th byte is the counter variable number with
the MSB set; the 14th and 15th are the line number and the 16th is
the line offset to the FOR statement.
RUNSTK is also called ENDSTAR; it is used by BASIC to point to
the end of the string/array space pointed to by STARP above.

144,145 90,91 MEMTOP
Pointer to the top of BASIC memory, the end of the space the
program takes up. There may still be space between this address
and the display list, the size of which may be retrieved by the
FRE(O) command (which actually subtracts the MEMTOP value
that is at locations 741 and 742; $2E5, $2E6). Not to be confused
with locations 741 and 742, which have the same name but are an
OS variable . MEMTOP is also called TOPSTK; it points to the top
of the stack space pointed to by RUNSTK above.
When reserving memory using location 106 ($6A) and MEMTOP,
here's a short error-trapping routine you can add:
10 SIZE = (PEEK(106)- # of pages yo

u are reserving) * 256
20 IF SIZE < = PEEK(144) + PEEK(145

* 256 THEN PRINT " PROGRAM TOO L
ARGE": END

Locations 146 to 202 ($92 to $CA) are reserved for use by the 8K
BASIC ROM.
Locations 176 to 207 ($BO to $CF) are reserved by the Assembler
Editor cartridge for the user's page zero use. The Assembler debug
routine also reserves 30 bytes in page zero, scattered from location 164
($A4) to 255 ($FF), but they cannot be used outside the debug process.
(See De Re Atari, Rev. 1, Appendix A for a list of these ava ilable
bytes.)

186,187 BA,BB STOPLN

195

201

The line where a program was stopped either due to an error or
the use of the BREAK key, or a STOP or a TRAP statement
occurred. You can use PEEK (186) + PEEK (187) * 256 in a
GOTOorGOSUB~~eme~.

C3 ERRSAVE
The number of the error code that caused the stop or the TRAP.
You can use this location in a program in a line such as:

10 IF PEEK(195) <> 144 THEN 100

C9 PTABW
This location speCifies the number of columns between TAB
stops. The first tab will be at PEEK(201). The defau lt is ten. This is

33

203·207

the value between items separated in a PRINT statement by com­
mas -- such as PRINT A$, LOOP , C (l 2) - not by the TAB key
spacing.
The minimum number of spaces between TABS is three. If you
POKE 201 ,2, it will be treated as four spaces , and POKE 20 1,1 is
treated as three spaces. POKE 20 1,0 will cause the system to
hang when it encounters a PRINT statement with commas. To
change the TAB key settings, see TABMAP (locations 675 to 689;
$2A3 - $2B 1) . PTABW is not reset to the default va lue by p ressi ng
RESET or chang ing GRAPHICS modes (unlike TABMAP).
PTABW works in a ll GRAPHICS modes, not mere ly in text
modes. The size of the spaces between items depends on the pixel
size in the GRAPHICS mode in use . For example, in GR.O, each
space is one character wide, while in GR.8 each space is one-ha lf
color clock (one dot) wide.

203·207 CB·CF
Unused by e ither the BASIC or the Asse mbler cartridges.

208·209 00·01
Unused by BASIC. The only time I have seen any of these unused
locations in use is in COMPUTE! (March 1982 and October
1981), when they were used for user sort routines , and in ANTIC
(June 1982), where they were used as flags in a graphic
demonstration. The bytes from 203 to 209 ($CB to $Dl) a re the
only page zero bytes uncontestably left free by BASIC.

210·211 02·03
Reserved for BASIC or other cartridge use.

Locations 212 to 255 ($D4 to $FF) are rese rved for the floa ting point
package use. The FP routines are in ROM, from loca tions 55296 to
57393 ($D800 to $E031). These page zero locations may be used if the
FP package is not called by the user's program. However, do not use
any of these locations for an interrupt routine, since such routines
might occur during an FP routine called by BASIC, causing the
system to crash .
Floating Point uses a six-byte precision. The first byte of the Binary
Coded Decimal (BCD) number is the exponent (where if BIT 7 equals
zero, then the number is positive; if one, then it is negative). The next
fi ve bytes are the mantissa. If only that were a ll there was to it. The
BCD format is rather complex and is best explained in chapter e ight of
De ReAtari.

212·217 D4·09 FRO

34

Floating point register zero; holds a six-byte internal form of the
FP number. The va lue at locat ions 212 and 213 are used to return
a two-byte hexadecima l va lue in the range of zero to 65536

218-223

($FFFF) to the BASIC program (low byte in 212, high byte in
213). The floating point package, if used, requires all locations
from 212 to 255 . All six bytes of FRO can be used by a machine
language routine, provided FRO isn't used and no FP functions
are used by that routine . To use 16 bit values in FP, you would
place the two bytes of the number into the least two bytes of FRO
(212,213; $D4, $D5), and then do a JSR to $D9AA (55722), which
will convert the integer to its FP representation, leaving the result
in FRO . To reverse this operation, do a JSR to $D9D2 (55762).

218-223 DA-DF FRE
FP extra register (?)

224-229 EO-E5 FRI
Floating point register one; holds a six-byte internal form of the
FP number as does FRO. The FP package frequently transfers
data between these two registers and uses both for two-number
arithmetic operations.

230-235 E6-EB FR2
FP register two.

236 EC FRX
FP spare register.

237 ED EEXP
The value of E (the exponent).

238 EE NSIGN
The sign of the FP number.

239 EF ESIGN

240

241

242

The sign of the exponent.

FO FCHRFLG
The first character flag.

Fl DIGRT
The number of digits to the right of the decimal.

F2 CIX
Character (current input) index. Used as an offset to the input
text buffer pointed to by INBUFF below.

243,244 F3,F4 IN BUFF
Input ASCII text buffer pointer; the user's program line input
buffer, used in the translation of ATASCII code to FP values. The
result output buffer is at locations 1408 to 1535 ($580 to $5FF).

245,246 F5,F6 ZTEMPI
Temporary register.

35

247.248

247.248 F7.F8 ZTEMP4
Temporary register.

249,250 F9,FA ZTEMP3

251
Temporary register.

FB RADFLG
Also called DEGFLG . When set to zero, all of the trigonometric
functions are performed in radians; when set to six, they are done
in degrees. BASIC's NEW command and RESET both restore
RADFLG to radians .

252,253 FC,FD FLPTR
Points to the user's FP number .

254,255 FE,FF FPTR2
Pointer to the user's second FP number to be used in an
operation.
End of the page zero RAM.

PAGE ONE: THE STACK
Locations 256 to 511 ($100 to $IFF) are the stack area for the OS, DOS
and BASIC . This area is page one. Machine language JSR,PHA and
interrupts all cause data to be written to page one, and RTS, PLA and
RTI instructions all read data from page one. On powerup or RESET,
the stack pointer is initialized to point to location 511 ($IFF) . The stack
then pushes downward with each entry to 256 ($100) . In case of
overflow, the stack will wrap around from 256 back to 511 again.

PAGES TWO TO FOUR
Locations 512 to 1151 ($200 to $47F) are used by the OS for working
variables, tables and data buffers . In this area, locations 512 to 553
($200 to $229) are used for interrupt vectors, and locations 554 to 623
($22A to $26F) are for miscellaneous use . Much of pages two through
five cannot be used except by the OS unless speCifically noted . A
number of bytes are marked as "spare", i.e., not in use currently . The
status of these bytes may change with an Atari upgrade, so their use is
not recommended .
There are two types of interrupts : Non-Maskable Interrupts (NMI)
processed by the ANTIC chip and Interrupt Requests (IRQ) processed
by the POKEY and the PIA chips. NMI's are for the VBLANK interrupts
(VBI's; 546 to 549, $222 to $225), display list interrupts (DLI) and
RESET key interrupts . They initiate the stage one and stage two
VBLANK procedures; usually vectored through an OS service routine,
they can be vectored to point to a user routine . IRQ's are for the timer

36

512,513

interrupts, peripheral and serial bus interrupts, BREAK and other key
interrupts, and 6502 BRK instruction interrupts. They can usually be
used to vector to user routines. See NMIST 54287 ($D40F) and IRQEN
53774 ($D20E) for more information. NMI interrupt vectors are marked
NMI; IRQ interrupt vectors are marked IRQ.
Refer to the chart be low location 534 for a list of the interrupt vectors in
the new OS "B" version ROMs.

512.513 200.201 VDSLST
The vector for NMI Display List Interrupts (DLI): containing the
address of the instructions to be executed during a DLI (DLI's are
used to interrupt the processor flow for a few microseconds at the
particular screen display line where the bit was set, allowing you
to do another short routine such as music, changing graphics
modes, etc.) . The OS doesn't use DLI's; they must be user­
enabled, written and vectored through here. The NMI status
register at 54287 ($D40F) first tests to see if an interrupt was
caused by a DLI and, if so, jumps through VDSLST to the routine
written by the user . DLI's are disabled on powerup, but VBI's are
enabled (see 546 to 549; $222 to $225).
VDSLST is initialized to point to 59315 ($E7B3), which is merely
an RTI instruction . To enable DLI's, you must first POKE 54286
($D40E) with 192 ($CO); otherwise, ANTIC will ignore your
request. You then POKE 512 and 513 with the address (LSBIMSB)
of the first assembly language routine to execute during the DLI.
You must then set BIT 7 of the Display List instruction(s) where
the DLI is to occur. You have only between 14 and 61 machine
cycles available for your DLI, depending on your GRAPHICS
mode . You must first push any 6502 registers onto the stack, and
you must end your DLI with an RTI instruction . Because you are
dealing with machine language for your DLI, you can POKE
directly into the hardware registers you plan to change, rather
than using the shadow registers that BASIC uses .
There is, unfortunately, only one DLI vector address . If you use
more than one DLI and they are to perform different activities,
then changing the vectoring to point to a different routine must
be done by the previous DLI's themselves.
Anothe r way to accomplish interrupts is during the VBLANK
interval with a VBL One small problem with using DLI's is that
the keyboard "click" routine interferes with the DLI by throwing
off the timing, since the click is provided by several calls to the
WSYNC register at 54282 ($D40A). Chris Crawford discusses
several solutions in De Re Atari, but the easiest of them is not to
allow input from the keyboard! See Micro, December 1981,
Creative Computing, July 1981 and December 1981.

37

514,515

Here's a short example of a DLI. It will print the lower half of your
text screen upside down:
10 START = PEEK(560) + PEEK(561) *

256: POKE START + 16,130
20 PAGE = 1536: FOR PGM = PAGE TO P

AGE + 7: READ BYTE: POKE PGM, BYTE
NEXT PGM

30 DATA 72,169.4.141,1,212,104.64
40 POKE 512.0: POKE 513.6: POKE 542

86,192
50 FOR TEST = 1 TO 240: PRINT"SEE "

;: NEXT TEST
60 GOTO 60
Another example of a DLI changes the color of the bottom half of
the screen. To use it, simply change the PAGE + 7 to PAGE + 10
in the program above and replace line 30 with:

30 DATA 72,169,222,141,10,212,141,2
4,208,104,64

Finally, delete lines 50 and 60. See also location 54282 ($D40A).

514,515 202,203 VPRCED
Serial (peripheral) proceed line vector, initialized to 59314
($E7B2), which is merely a PLA, RTI instruction sequence. It is
used when an IRQ interrupt occurs due to the serial I/O bus
proceed line which is available for peripheral use. According to
De Re Atari, this interrupt is not used and points to a PLA, RTI
instruction sequence. This interrupt is handled by the PIA chip
and can be used to provide more control over external devices.
See the OS Listing, page 33.

516,517 204,205 VINTER
Serial (peripheral) inte rrupt vector, initialized to 59314 ($E7B2).
Used for the IRQ interrupt due to a serial bus I/O inte rrupt.
According to De Re Atari, this interrupt is not used and points to
a PLA, RTI sequence. This inte rrupt is processed by PIA. See the
OS Listing, page 33 .

518,519 206,207 VBREAK
Software break instruction vector for the 6502 BRK ($00)
command (not the BREAK key, which is at location 17; $11),
initialized to 59314 ($E7B2). This vector is normally used for
setting break points in an assembly language debug operation.
IRQ.

520,521 208,209 VKEYBD

38

POKEY keyboard interrupt vector, used for an interrupt
generated when any keyboard key is pressed other than BREAK

522,523

or the console buttons. Console buttons never generate an
interrupt unl6ss one is specifically user-written. VKEYBD can be
used to process the key code before it undergoes conversion to
ATASCII form. Initialized to 65470 ($FFBE), which is the OS
keyboard IRQ routine.

522,523 20A,20B VSERIN
POKEY serial I/O bus receive data ready interrupt vector,
initialized to 60177 ($EB 11), which is the OS code to place a byte
from the serial input port into a buffer. Called INTRVEC by DOS,
it is used as an interrupt vector location for an SIO patch. DOS
changes this vector to 6691 ($lA23), the start of the DOS
interrupt ready service routine. IRQ.

524,525 20C,20D VSEROR
POKEY serial I/O transmit ready interrupt vector, initialized to
60048 (EA90), which is the OS code to provide the next byte in a
buffer to the serial output port. DOS changes this vector to 6630
($19E6), the start of the DOS output needed interrupt routine.
IRQ.

526,527 20E,20F VSEROC
POKEY serial bus transmit complete interrupt vector, initialized
to 60113 ($EADl), which sets a transmission done flag after the
checksum byte is sent. IRQ.
SIO uses the three last interrupts to control serial bus
communication with the serial bus devices. During serial bus
communication, all program execution is halted. The actual
serial I/O is interrupt driven; POKEY waits and watches for a flag
to be set when the requested I/O operation is completed. During
this wait, POKEY is sending or receiving bits along the serial
bus . When the entire byte has been transmitted (or received), the
output need6d (VSEROR) or the input ready (VSERIN) IRQ is
generated according to the direction of the data flow. This causes
the next byte to be processed until the entire buffer has been sent
or is full, and a flag for "transmission done" is set. At this point,
SIO exits back to the calling routine. You can see that S10 wastes
time waiting fo r POKEY to send or rece ive the information on the
bus.

528,529 210,211 VTIMRI
POKEY timer one interrupt vector, initialized to 59314 ($E7B2),
which is a PLA, RTI instruction sequence. Timer interrupts are
established when the POKEY timer AUDFI (53760; $D200)
counts down to zero. Values in the AUDF registers are loaded
into STIMER at 53769 ($D209). IRQ.

39

530,531

530,531 212,213 VTIMR2
POKEY timer two vector for AUOF2 (53762, $0202), initialized to
59314 ($E7B2). IRQ.

532,533 214,215 VTIMR4
POKEY timer four vector for AUOF4 (53766, $0206), initialized
to 59314 ($E7B2) . This IRQ is only vectored in the "B" version of
the OS ROMs.

534,535 216,217 VIM IRQ
The IRQ immediate vector (general). Initialized to 59126
($E6F6). JMP through here to determine cause of the IRQ
interrupt. Note that with the new ("B") OS ROMs, there is a
BREAK key interrupt vector at locations 566,567 ($236, $237).
See 53774 ($020E) for more information on IRQ interrupts.
The new "B" version OS ROMs change the vectors above as
follows:

VDSLST
VPRCED
VINTER
VBREAK
VKE¥BD
VSERIN
VSEROR
VSEROC
VTIMR 1-4
VIMIRQ
VVBLKI
VVBLKD

59280 ($E790)
59279 ($E78F)
59279 ($E78F)
59279 ($E78F)
NO CHANGE
60175 ($EBOF)
NO CHANGE
60111 ($EACF)
59279 ($E78F)
59142 ($E706)
59310 ($E7AE)
59653 ($E905)

The locations from 536 to 558 ($218 to $22E) are used for the system
software timers. Hardware timers are located in the POKEY chip and
use the AUOF registers. These timers count backwards every 1/60
second (stage one VBLANK) or 1/30 second (stage two VBLANK)
interval until they reach zero . If the VBLANK process is disabled or
intercepted, the timers will not be updated. See De He Atari for
information regarding setting these timers in an assembly routine
using the SETVBV register (58460; $E45C) . These locations are user­
accessible and can be made to count time for music duration, game
I/O, game clock and other functions.
Software timers are used for durations greater than one VB LANK
interval (1/60 second) . For periods of shorter duration, use the
hardware registers .

536,537 218,219 CDTMVI
System timer one value. Counts backwards from 255. This SIO

40

538,539

timer is decremented every stage one VBLANK. When it reaches
zero, it sets a flag to jump (ISR) through the address stored in
locations 550,551 ($226, $227). Only the realtime clock
(locations 18-20; $12-14), timer one, and the attract mode
register (77; $4D) are updated when the VBLANK routine is cut
short because time-critical code (location 66; $42 set to non-zero
for critical code) is executed by the OS. Since the OS uses timer
one for its I/O routines and for timing serial bus operations
(setting it to different values for timeout routines), you should use
another timer to avoid conflicts or interference with the operation
of the system.

538,539 21A,21B CDTMV2
System timer two. Decremented at the stage two VBLANK. Can
be decremented every stage one VBLANK, subject to critical
section test as defined by setting of CRITIC flag (location 66;
$42). This timer may miss (skip) a count when time-critical code
(CRITIC equals non-zero) is being executed. It performs a JSR
through location 552,553 ($228, $229) when the value counts
down to zero .

540,541 21C,21D CDTMV3
System timer three. Same as 538. Timers three, four, and five are
stopped when the OS sets the CRITIC flag to non-zero as well.
The OS uses timer three to OPEN the cassette recorder and to set
the length of time to read and write tape headers. Any prior value
in the register during this function will be lost.

542,543 21E,21F CDTMV4
System timer four. Same as 538 ($21A).

544,545 220,221 CDTMV5
System timer five . Same as 538 ($21A). Timers three, four, and
five all set flags at 554,556 and 558 ($22A, $22C, $22E),
respectively, when they decrement to zero .

546,547 222,223 VVBLKI
VBLANK immediate register. Normally jumps to the stage one
VB LANK vector NMI interrupt processor at location 59345
($E7Dl); in the new OS "B" ROMs; 59310, $E7AE). The NMl
status register tests to see if the interrupt was due to a VBl (after
testing for a DLI) and, if so, vectors through here to the VBl
routine, which may be user-written . On powerup, VBl's are
enabled and DLI's are disabled. See location 512; $200.

548,549 224,225 VVBLKD
VBLANK deferred register; system return from interrupt,
initialized to 59710 ($E93E, in the new OS "B" ROMs; 59653;

41

550,551

$E905), the exit for the VBLANK routine. NMI.
These two VBLANK vectors point to interrupt routines that occur
at the beginning of the VBLANK time interval. The stage one
VBLANK routine is executed; then location 66 ($42) is tested for
the time-critical nature of the interrupt and, if a critical code
section has been interrupted, the stage two VBLANK routine is
not executed with a IMP made through the immediate vector
VVBLKI. If not critical, the deferred interrupt VVBLKO is used.
Normally the VBLANK interrupt bits are enabled (BIT 6 at
location 54286; $040E is set to one). To disable them, clear BIT 6
(set to zero).
The normal sequence for VBLANK interrupt events is: after the
OS test, IMP to the user immediate VBLANK interrupt routine
through the vector at 546,547 (above), then through SYSVBV at
58463 ($E45F). This is directed by the OS through the VBLANK
interrupt service routine at 59345 ($E701) and then on to the
user-deferred VB LANK interrupt routine vectored at 548,549. It
then exits the VBLANK interrupt routine through 58466 ($E462)
and an RTI instruction.
If you are changing the VBLANK vectors during the interrupt
routine, use the SETVBV routine at 58460 ($E45C). An
immediate VBI has about 3800 machine cycles of time to use; a
deferred VBI has about 20,000 cycles. Since many of these cycles
are executed while the electron beam is being drawn, it is
suggested that you do not execute graphics routines in deferred
VBl's. See the table of VBLANK processes at the end of the map
area.
If you create your own VBI's, terminate an immediate VBl with a
IMP to 58463 ($E45F) and a deferred VBl with a IMP to 58466
($E462). To bypass the OS VBI routine at 59345 ($E701) entirely,
terminate your immediate VBI with a IMP to 58466 ($E462).
Here's an example of using a VBI to create a flashing cursor. It
will also blink any text you display in inverse mode.

10 FOR BLINK = 1664 TO 1680: READ B
YTE: POKE BLINK. BYTE: NEXT BLINK

20 POKE 548.128: POKE 549.6
30 DATA 8.72.165.20.41.16,74,74,74.

141
40 DATA 243.2,104.40.76,62.233

To restore the normai cursor and display, POKE 548,62 and
POKE 549,233.

550,551 226,227 CDTMAI
System timer one jump address, initialized to 60400 ($EBFO).

42

552,553

When locations 536,537 ($218, $219) reach (count down to) zero,
the OS vectors through here (jumps to the location specified by
these two addresses). You can set your machine code routine
address here for execution when timer one reaches (counts down
to) zero . Your code should end with the RTS instruction.
Problems may occur when timer values are set greater than 255,
since the 6502 cannot manipulate 16-bit values directly (a
number in the range of zero to 255 is an eight-bit value; if a value
requires two bytes to store, such as a memory location, it is a
16-bit value) . Technically, a VB LANK interrupt could occur
when one timer byte is being initialized and the other not yet set.
To avoid this, keep timer values less than 255. See the Atari OS
User 's Manual , page 106, for details.
Since the OS uses timer one, it is recommended that you use
timer two instead, to avoid conflicts with the operation of the
Atari. Initialized to 60396 ($EBEA) in the old ROMs , 60400
($EBFO) in the new ROMs. NMI

552,553 228,229 CDTMA2
System timer two jump address. Not used by the OS, avai lab le to
user to enter the address of his or her own routine to JMP to when
the timer two (538,539; $21A, $21B) count reaches zero.
Initialized to zero; the address must be user speCified. NMI

554 22A CDTMF3

555

556

551

558

System timer three flag, set when location 540,54 1 ($21C, $2lD)
reaches zero . This registe r is also used by DOS as a timeout flag.

22B SRTIMR
Software repeat timer, controlled by the IRQ device routine. It
establishes the initial Y'2 seconci delay before a key will repeat.
Stage two VBLANK establishes the 1110 second repeat rate,
decrements the timer and implements the auto repeat logic.
Every time a key is pressed, STIMER is set to 48 ($30). Whenever
SRTIMR is equal to zero and a key is being continuously pressed,
the value of that key is continually stored in CH, location764
($2FC).

22C CDTMF4
System timer four flag. Set when location 542,543 ($21E, $21F)
counts down to zero.

22D INTEMP
Temporary register used by the SETVBL routine at 58460
($E45C).

22E CDTMF5
System timer five flag. Set when location 558,559 ($22E, $22F)
counts down to zero.

43

559

559

44

22F SDMCTL
Direct Memory Access (DMA) enable. POKEing with zero allows
you to turn off ANTIC and speed up processing by 30%. Of
course, it also means the screen goes blank when ANTIC is
turned off! This is useful to speed things up when you are doing a
calculation that would take a long time . It is also handy to turn off
the screen when loading a drawing, then turning it on whe n the
screen is loaded so that it appears instantly, complete on the
screen. To use it you must first PEEK(559) and save the result in
order to return your screen to you. Then POKE 559,0 to turn off
ANTIC. When you are ready to bring the screen back to life,
POKE 559 with the number saved earlier.
This location is the shadow register for 54272 ($D400), and the
number you PEEKed above defines the playfield size, whether or
not the missiles and players are enabled, and the player size
resolution . To enable your options by using POKE 559, simply
add up the values below to obtain the correct number to POKE
into SDMCTL. Note that you must choose only one of the four
playfield options appearing at the beginning of the list:

Option Decimal Bit
No playfield 0 0
Narrow playfield 1 0
Standard playfield 2 0,1
Wide playfield 3 0,1
Enable missle DMA 4 2
Enable player DMA 8 3
Enable player and missile

DMA 12 2,3
One line player resolution 16 4
Enable instructions to fetch

DMA 32 5 (see below)

Note that two-line p layer resolution is the default and that it is not
necessary to add a value to 559 to obtain it. I have included the
appropriate bits affected in the table above. The default is 34
($22).
The playfield is the area of the TV screen you will use for display,
text, and graphics. Narrow playfield is 128 color clocks (32
characters wide in GR.O), standard playfield is 160 color clocks
(40 characters), and wide playfield is 192 color clocks wide (48
characters). A color clock is a physical measure of horizontal
distance on the TV screen. There are a total of 228 color clocks on
a line, but only some of these (usually 176 maximum) will be
visible due to screen limitations. A pixel, on the other hand, is a

560,561

logical unit which varies in size with the GRAPHICS mode. Due
to the limitations of most TV sets, you will not be able to see all of
the wide playfield unless you scroll into the offscreen portions .
BIT 5 must be set to enable ANTIC operation; it enables DMA for
fetching the display list instructions .

560,561 230,231 SDLSTL
Starting address of the display list. The display list is an
instruction set to tell ANTIC where the screen data is and how to
display it. These locations are the shadow for 54274 and 54275
($D402, $D403) . You can also find the address of the DL by
PEEKing one byte above the top of free memory:

PRINT PEEK(741) + PEEK(742) • 256 + l.
However, 560 and 561 are more reliable pointers since custom
DL's can be elsewhere in memory. Atari standard display lists
simply instruct the ANTIC chip as to which types of mode lines to
use for a screen and where the screen data may be found in
memory. Normally, a DL is between 24 and 256 bytes long (most
are less than 100 bytes, however), depending on your
GRAPHICS mode (see location 88,89 for a chart of DL sizes and
screen display use).
By altering the DL, you can mix graphics modes on the same
screen; enable fine scrolling; change the location of the screen
data; and force interrupts (DLI's) in order to perform short
machine language routines.
DL bytes five and six are the addresses of the screen memory
data, the same as in locations 88 and 89 ($58, $59). Bytes four,
five, and six are the first Load Memory Scan (LMS) instruction.
Byte four tells ANTIC what mode to use; the next two bytes are
the location of the first byte of the screen RAM (LSBIMSB).
Knowing this location allows you to write directly to the screen by
using POKE commands (you POKE the internal character codes,
not the ATASCII codes - see the BASIC Reference Manual, p.
55).
For example, the program below will POKE the internal codes to
the various screen modes . You can see not only how each screen
mode handles the codes, but also roughly where the text window
is in relation to the display screen (the 160 bytes below
RAMTOP). Note that the GTIA modes have no text window. If
you don't have the GTIA chip, your Atari will default to
GRAPHICS 8, but with GTIA formatting.

1 TRAP 10: GRAPHICS Z
5 SCREEN = PEEK(560) + PEEK(561) *

256

45

560,561

46

6 TV = SCREEN + 4: TELE = SCREEN +5
8 DISPLAY PEEK(TV) + PEEK(TELE) *

256
10 FOR N = 0 TO 255: POKE DISPLAY +

N~N: NEXT N
20 DISPLAY = DISPLAY + N
30 IF DISPLAY > 40959 THEN Z = Z + 1

: GOTO 1
40 GOTO 10
50 Z = Z + l:IF Z > 60 THEN END
60 GO TO 1

Here's another short program'which will allow you to examine the
DL in any GRAPHICS mode:

10 REM CLEAR SCREEN FIRST
20 PRINT"ENTER GRAPHICS MODE": REM A

DD 16 TO THE MODE TO SUPPRESS THE
TEXT WINDOW

30 INPUT A: GRAPHICS A
40 DLIST = PEEK(560) + PEEK(561) * 2

56
50 LOOK = PEEK(DLIST): PRINT LOOK;"

" .
~

60 IF LOOK <> 65 THEN DLIST = DLIST
+ 1: GOTO 50

70 LPRINT PEEK(DLIST + 1);" ";PEEK(D
LIST + 2)

80 END

The value 65 in the DL is the last instruction encountered. It tells
ANTIC to jump to the address in the next two bytes to re-execute
the DL, and wait for the next VBLANK, If you don't have a
printer, change the LPRINT commands to PRINT and modify the
routine to save the data in an array and PRINT it to the screen
after (in GR.O).
If you would like to examine the locations of the start of the
Display List, screen, and text window, try:

5 REM CLEAR SCREEN FIRST
6 INPUT A: GRAPHICS A
10 DIM DLIST$(10)~ SAVMSC$(10)~ TXT$

(10)
15 DLIST$ = "DLIST": SAVMSC$ = "SAVM

SC": TXT$ = "TEXT"
20 DLIST = PEEK(560) + PEEK(561) * 2

56
30 SAV = PEEK(88) + PEEK(89) * 256:

560,561

TXT = PEEK(660)
40 PRINT DLIST$;"

"; SAV

+ PEEK (661) * 256
";DLIST.SAVMSC$;"

50 PRINT T;(T$;" ";TEXT
60 INPUT A: GRAPHICS A: GOTO 20

Since an LMS is simply a map mode (graphics) or character
mode (text) instruction with BIT six set , you can make any or all of
these instructions into LMS instructions quite easily, pointing
each line to a different RAM area if necessary . This is discussed
in De Re Atari on implementing horizontal scrolling.
DL's can be used to help generate some of the ANTIC screen
modes that aren't supported by BASIC, such as 7.5 (ANTIC
mode E) or ANTIC mode three , the lowercase with descenders
mode (very interesting; ten scan lines in height which allow true
descenders on lowercase letters).
If you create your own custom DL, you POKE its address here.
Hitting RESET or changing GRAPHICS modes will restore the
OS DL address, however. The display list instruction is loaded
into a special register called the Display Instruction Register OR)
which processes the three DL instructions (blank, jump, or
display) . It cannot be accessed directly by the programmer in
either BASIC or machine language. A DL cannot cross a lK
boundary unless a jump instruction is used.
There are only four display list instructions: blank line (uses BAK
color), map mode, text mode, and jump . Text (character mode)
instructions and map mode (graphics) instructions range from
two to 15 ($2 to $F) and are the same as the ANTIC GRAPHICS
modes . A DL instruction byte uses the following conventions
(functions are enabled when the bit is set to one) :

Bit Decimal Function
7 128 Display List Interrupt when set (enabled

equals one)
6 64 Load Memory Scan. Next two bytes are the

LSB/MSB of the data to load.
5
4
3-0

32
16

8-1

Enable vertical fine scrolling.
Enable horizontal fine scrolling.
Mode
o 0 1 0 Character

to Modes
o 1 1 1

1 0 0 0 Map
to Modes

1 1 1 1

47

562

The above bits may be combined (i.e., DLI, scrolling and LMS
together) if the user wishes.
Special DL instructions (with decimal va lues):

Blank 1 line = 0 5 lines = 64
2 lines = 16 6 lines = 80
3 lines = 32 7 lines = 96
4 lines = 48 8 lines = 112

Jump instruction (JMP) = zero (three-byte instruction).
Jump and wait for Vertical Blank (JVP) = 65 (three-byte
instruction) .
Special instructions may be combined only with DL interrupt
instructions.
A Display List Interrupt is a special form of interrupt that takes
place during the screen display when the ANTIC encounters a
DL instruction with the interrupt BIT 7 set. See location 512
($200) for DLI information.
Since DL's are too large a topic to cover properly in this manual,
I suggest you look in the many magazines (i.e ., Creative
Computing, July 1981, August 1981; Micro, December 1981;
Soitside, #30 to 32, and BYTE, December 1981) for a more
detailed explanation.

562 232 SSKCTL
Serial port control register, shadow for 53775 ($D20F). Setting
the bits in this register to one has the following effect :

Bit Decimal Function
o 1 Enable the keyboard debounce circuit.
1 2 Enable the keyboard scanning circuit.
2 4 The pot counter completes a read within two

scan lines instead of one frame time.
3 8 Serial output transmitted as two-tone instead

of logic true/false (POKEY two-tone mode).
4-6 16-64 Serial port mode control.
7 128 Force break; serial output to zero.

Initialized to 19 ($13), which sets bits zero, one and four.

563 233 SPARE
No OS use. See the note at location 651 regarding spare bytes .

564 234 LPENH

565

48

Light pen horizontal value: shadow for 54284 ($D40C) . Values
range from zero to 227 .

235 LPENV
Light pen vertical value: shadow for 54285 ($D40D). Value is the

566,567

same as VCOUNT register for two- line resolution (see 54283;
$D40B). Both light pen values are modified when the trigger is
pressed (pulled low) . The light pen positions are not the same as
the normal screen row and column positions. There are 96
vertical positions, numbered from 16 at the top to 111 at the
bottom, each one equivalent to a scan line. Horizontal positions
are marked in color clocks. There are 228 horizontal positions,
numbered from 67 at the left. When the LPENH value reaches
255, it is reset to zero and begins counting again by one to the
rightmost edge, which has a value of seven.
Obviously, because of the number of positions readable and the
small size of each, a certain leeway must be given by the
programmer when using light pen readouts on a program. At the
time of this writing, Atari had not yet released its light pen onto
the market, although other companies have .

566,567 236,237 BRKKY
BREAK key interrupt vector. This vector is available only with
the version "B" OS ROMs, not the earlier version. You can use
this vector to write your own BREAK key interrupt routine .
Initialized to 59220 ($E754).

568,569 238,239

570

571

572

573

574

575

Two spare bytes.

23A CDEVIC
Four-byte command frame buffer (CFB) address for a device­
used by SIO while performing serial I/O, not for user access .
CDEVIC is used for the SIO bus ID number. The other three CFB
bytes are:

23B CCOMND
The SIO bus command code.

23C CAUXI
Command auxiliary byte one, loaded from location 778 ($30A)
by SIO.

23D CAUX2
Command auxiliary byte two , loaded from location 779 ($30B) by
SIO.

23E TEMP
Temporary RAM register for SIO.

23F ERRFLG
SIO error flag; any device error except the timeout error (time
equals zero).

49

576

576

577

240 DFLAGS
Disk flags read from the first byte of the boot fil e (sector one) of
the disk.

241 DBSECT
The number of disk boot sectors read from the first disk record.

578.579 242.243 BOOTAD
The address for where the disk boot loader will be put. The
record just read will be moved to the address specified here,
followed by the remaining records to be read . Normally, with
DOS, this address is 1792 ($700), the va lue also stored
temporarily in RAMLO at 4,5. Address 62189 ($F2ED) is the OS
disk boot routine entry point (DOBOOT).

580 244 COLDST
Coldstart flag. Zero is normal; if zero, then pressing RESET will
not result in reboot. If POKEd with one (powerup in progress
flag), the computer will reboot whenever the RESET key is
pressed. Any non-zero number indicates the initial powerup
routine is in progress .

If you create an AUTORUN .SYS file, it should end with an RTS
instruction. If not, it should POKE 580 with zero and POKE 9 with one.
You can turn any binary file that boots when loaded with DOS menu
selection "L" into an auto-boot file simply by renaming it
"AUTORUN .SYS" . Be careful not to use the same name for any two
files on the same disk.
When this is combined with the disabling of the BREAK key discussed
in location 16 ($10) and the program protection scheme discussed in
location 138 ($8A), you have the means to protect your BASIC
software fairly effectively from being LISTed or examined, although
not from being copied.

581

582

50

245
Spare byte .

246 DSKTIM
Disk time-out register (the address of the OS worst case disk time­
out) . It is said by many sources to be set to 160 at initialization,
which represents a 171 second time-out, but my system shows a
value of 224 on initialization . Timer values are 64 seconds for
each 60 units of measurement expressed .
It is updated after each disk status request to contain the value of
the third byte of the status frame (location 748; $2EC). All disk
operations have a seven second time-out (except FORMAT),
established by the disk handler (you had noticed that irritating
little delay, hadn't you?). The "sleeping disk syndrome" (the

583-622

printer suffers from this malady as well) happens when your drive
times out, or the timer value reaches zero. This has been cured
by the new OS "B" version ROMs.

583-622 247-26E LINBUF

623

Forty-byte character line buffer, used to te mporarily buffer one
physical line of text when the screen editor is moving screen
data. The pointer to this buffer is stored in 100, 101 ($64, $65)
during the routine.

26F GPRIOR
Priority selection register, shadow for 53275 ($D01B) . Priority
options select which screen objects will be "in front" of others. It
also enables you to use a ll four missiles as a fifth player and
allows certain overlapping players to have different colors in the
areas of overlap. You add your options up as in location 559,
prior to POKEing the total into 623 . In this case, choose only one
of the four priorities stated at the beginning. BAK is the
background or border. You can a lso use this location to select
one of GIlA GRAPHICS modes nine, ten, or e leven.

Priority options in order Decimal Bit
Player 0 - 3, playfield 0 - 3, BAK

(background) 1 0
Player 0 - 1, playfield 0 - 3, player 2 - 3,

BAK 2 1
Playfield 0 - 3, player 0 - 3, BAK 4 2
Playfield 0 - I, player 0 - 3, playfield 2 -3,

BAK 8 3
Other options
Four missiles = fifth player 16 4
Overlaps of players have 3rd color 32 5
GRAPHICS 9 (GTIA mode) 64 6
GRAPHICS 10 (GTIA mode) 128 7
GRAPHICS 11 (GTIA mode) 192 6, 7

It is quite easy to set conflicting priorities for players and
playfie ld s. In such a case, areas where b oth overlap when a
conflict occurs will turn black. The same happens if the overlap
option is not chosen.
With the color/overlap enable, you can get a multicolor player
by combining players. The Atari performs a logical OR to colors
of players 011 and 2/3 when they overlap . Only the 011,2/3
combinations are allowed; you will not get a third color when
players I and 3 overlap, for example (you will get black instead) .
If player one is pink and player 0 is blue, the overlap is green. If
you don't enable the overlap option, the a rea of overlap for all

51

623

52

players will be black.
In GTIA mode nine, you have 16 different luminances of the
same hue. In BASIC, you would use SETCOLOR 4,HUE,0. To
see an example of GTIA mode nine, try :

10 GRAPHICS 9: SETCOLOR 4,9,0
20 FOR LOOP 1 TO 15: COLOR LOOP
30 FOR LINE = 1 TO 2
40 FOR TEST = 1 TO 25: PLOT 4 + TES

T, LOOP + LINE + SPACE: NEXT TEST
45 NEXT LINE
50 SPACE = SPACE + 4
bO NEXT LOOP
70 GOTO 70: REM WITHOUT THIS LINE,

SCREEN WILL RETURN TO GR.O

In GTIA mode ten, you have all nine color registers available;
hue and luminance may be set separately for each (it would
otherwise allow 16 colors, but there are only nine registers). Try
this to see:

10 N = 0: GRAPHICS 10
20 FOR Q = 1 TO 2
30 FOR B = 0 TO 8: POI<E 704 + B, N

* Ib + A
35 IF A > 15 THEN A = 0
40 COLOR B
45 A = A + 1 : N = N + 1
50 IF N) . 15 THEN N 0
bO NEXT B
b5 TRAP 70: NEXT Q

70 PUP: N = N + 1 : FOR Z 1 TO 200
NEXT Z

75 GOTO 30

G TIA mode eleven is similar to mode nine except that it a llows 16
different hues, all of the same luminance. In BASIC, use
SETCOLOR 4,O,luminance. Try this for a GTIA mode eleven
demonstration:
10 GRAPHICS 11
20 FOR LOOP = 0 TO 79: COLOR LOOP:

PLOT LOOP,O: DRAWTO LOOP,191: NEXT
LOOP

30 G010 30

You can use these examples with the routine to rotate colors,
described in the text preceding location 704 . GTIA mode pixels
are long and skinny; they have a four to one horizontal length to
height ratio. This obviously isn't very good for drawing curves

624

and circles!
GIlA modes are cleared on the OPEN command. How can you
tell if you have the GIlA chip? Try POKE 623,64. If you have the
GIlA, the screen will go all black. If not, you don't have it. Here
is a short routine, written by Craig Chamberlain and Sheldon
Leemon for COMPUTE!, which allows an Atari to test itself for the
presence of a CIlA or GIlA chip. The routine flashes the answer
on the screen, but can easily be modified so a program will
"know" which chip is present so it can adapt itself accordingly:

10 POkE 66.1:GRAPHICS 8:POkE 709.0:PO
kE 710.0:POkE 66.0:POkE 623.64:POk
E 53248.42:POkE 53261,3:PUT#6.1

20 POkE 53278.0:FOR k=1 TO 300:NEXT K
:GRAPHICS 18:POkE 53248.0:POSITION
8,5: 7 #6;CHR$(71-PEEk(53252»;"TI

A"
30 POKE 708.PEEk(20):GOTO 30

How can you get the GIlA if you don't have one? Ask your local
Atari service representative or dealer, or write directly to Atari in
Sunnyvale, California.
See the GIlA/CIlA introduction at location 53248 ($DOOO) for
more discussion of the chip. See BYTE, May 1982, COMPUTE!,
July through September 1982, and De Re Atari for more on the
GIlA chip, and the GTIA Demonstration Diskette from the Atari
Program Exchange (APX).

Locations 624 to 647 ($270 to $287) are used for game controllers:
paddle, joystick and lightpen values.

624 270 PADDLO
The value of paddle 0 (paddles are also called pots, short for
potentiometer); PEEK 624 returns a number between zero and
228 ($E4), increasing as the knob is turned counter-clockwise.
When used to move a player or cursor (i.e . , PLOT
PADDLE(O),O) , test your screen first. Many sets will not display
locations less than 48 ($30) or greater than 208 ($DO), and in
many GRAPHICS modes you will get an ERROR 141 - cursor
out of range. Paddles are paired in the controller jacks, so paddle
o and paddle 1 both use jack one . PADDL registers are shadows
for POKEY locations 53760 to 53767 ($D200 to $D207).

625 271 PADDLI

626

This and the next six bytes are the same as 624, but for the other
paddles.

272 PADDL2

53

627

627
628
629
630
631

632

54

273
274
275
276
277

278

PADDL3
PADDL4
PADDL5
PADDL6
PADDL7

STICKO
The value of joystick O. STICK registers are shadow locations for
PIA locutions 540 16 and 54017 ($D300, $D30 1). There are nine
possible decimal values (representing 45 degree increments)
read by each joystick register (using the STICKn command) ,
depending on the position of the stick:

Decimal

14

10~ /6
1l--lS--7

g/ ~S
13

Binary

1110

1010", /01l0

101l--1l1l--Olll

1001 0101 /1'"
1101

15 (1111) equals stick in the upright (neutral) position.
See Micro, December 1981, for an article on making a
proportional joyst ick. For an example of a machine language
joystick driver you can add to your BASIC program, see
COMPUTE!, July 1981.
One machine language joystick reader is listed below, based on
an a rticle in COMPUTE!, August 1981:

1 GOSUB 1000
10 LOOK = STICK(O)
20 X = USR(1764 .L OO K) : Y = USR(1781 ,

LOOK)
30 ON X GOTO 120. 100, 110

100 REM YOUR MOVE LEFT ROUTINE HERE
105 GOTO 10
110 REM YOUR MOVE RIGHT ROUTINE HERE
115 GOTO 10

633

634
635

636

637
638
639
640

633

120 ON Y GOTO 150, 130, 140
130 REM YOUR MOVE DOWN ROUTINE HERE
135 GOTO 10
140 REM YOUR MOVE UP ROUTINE HERE
145 GO TO 10
150 REM IF X <> 1 THEN NOTHING DOING,

BRANCH TO YOUR OTHER ROUTINES OR
TO 155

155 GOTO 10

1000 FOR LOOP = 1764 TO 1790: READ BY
TE: POKE LOOP, BYTE: NEXT LOOP

1010 DATA 104.104.133.213.104.41.12,7
4.74.73.2,24,105,1

1020 DATA 133,212.96,104.104.133,213.
104,41.3,76.237,6

1030 RETURN

See locations 88,89 ($58, $59) for an example of a USR call using
d string instead of a fixed memory location .

279 STICKl
This and the next two locations are the same as 632, but for the
other joysticks. These four locations are also used to dete rmine if
a lightpen (PEN 0 - 3) switch is pressed.

27A STICK2
27B STICK 3

27C PTRIGO
Paddle trigger O. Used to determine if the trigger or button on
paddle 0 is pressed (zero is returned) or not (one is ·returned).
Since these are the same lines as the joystick left/right switches,
you can use PTRIG for horizontal movement. PTRIG(1) -
PTRIG(O)returns - 1 (left), 0 (center), + 1 (right). The next seven
locations are for the other paddle buttom. PTRIG 0 - 3 are
shadows for PIA register 54016 ($D300).

27D PTRIGl
27E PTRIG2
27F PTRIG3
280 PTRIG4

PTRIG 4 - 7 are shadows for PIA register 54017 ($D30 1).

55

641

641

642
643
644

281
282
283
284

PTRIG5
PTRIG6
PTRIG7
STRIGO

Stick trigger O. This and the next three locations perform the
same function as the PTRIG locations except for the joysticks.
Like PTRIG, zero is returned when the button is pressed; one is
returned when it is not. STRIG registers are shadow registers for
GTIA/CTIA locations 53264 to 53267 ($DOlO to $D013) .

645 285 STRIGI
646
647

286
287

STRIG2
STRIG3

Locations 648 to 655 ($288 to $28F) are for miscellaneous OS use.

648 288 CSTAT
Cassette status register.

649 289 WMODE

650

Register to store either the read or the write mode for the cassette
handler, depending on the operation: zero equals read, 128 ($80)
equals write.

28A BLIM
Cassette data record buffer size; contains the number of active
data bytes in the cassette buffer for the record being read or
written, at location 1021 ($3FD). Values range from zero to 128
(cassette record size is 128; $80) . The pointer to the byte being
read or written is at 61 ($3D). The value of BUM is drawn from
the control bytes that precede every cassette record, as
explained in location 1021.

651-655 28B-28F
Spare bytes. It is not recommended that you use the spare bytes
for your own program use. In later upgrades of the OS, these
bytes may be used, causing a conflict with your program. For
example, the new OS ROMs use locations 652 and 653 ($28C,
$28D) in the new IRQ interrupt handler routines . It is best to use a
protected area of memory such as page six, locations 1536 to
1791 ($600 to $6FF).

Locations 656 to 703 ($290 to $2BF) are used for the screen RAM
display handler (depending on GRAPHICS mode).

56

656

In split-screen mode, the text window is controlled by the screen editor
(E:), while the graphics region is controlled by the display handler
(S:), using two separate IOCB's. Two separate cursors are also
maintained. The display handler will set AUXI of the IOCB to split­
screen option. Refer to the IOCB area, locations 832 to 959 ($340 to
$3BF). See COMPUTE!, February 1982, for a program to put GR. 1
and GR.2 into the text window area. The text window uses 160 bytes of
RAM located just below RAMTOP (see location 106; $6A). See
location 88 ($58) for a chart of screen RAM use.

656 290 TXTROW
Text window cursor row; value ranges from zero to three (the text
window has only four lines) . TXTROW specifies where the next
read or write in the text window will occur .

657,658 291,292 TXTCOL

659

Text window cursor column; value ranges from zero to 39. Unless
changed by the user, location 658 will always be zero (there are
only 40 columns in the display, so the MSB will be zero). Since
POSITION, PLOT, LOCATE and similar commands refer to the
graphics cursor in the display area above the text window, you
must use POKE statements to write to this area if PRINT
statements are insufficient.

293 TINDEX
Contains the current split-screen text window GRAPHICS mode.
It is the split-screen equivalent to DINDEX (location 87; $57) and
is always equal to zero when location 128 ($7B) equals zero.
Initialized to zero (which represents GR.O). You can alter the
display list to change the text window into any GRAPHICS mode
desired. If you do so, remember to change TINDEX to reflect that
alteration.

660,661 294,295 TXTMSC
Address of the upper left corner of the text window . Split-screen
equivalent of locations 88,89 ($58, $59).

662-667 296-29B TXTOLD

668

669

These locations contain the split-screen equivalents of OLDROW
(90; $5A), OLDCOL (91,92; $5B, $5C), OLDCHR (location 93,
$5D) and OLDADR (locations 94,95; $5E, $5F). They hold the
split-screen cursor data.

29C TMPXl
Temporary register, used by the display handler for the scroll
loop count record.

29D HOLD 3
Temporary register .

57

670

670

671

672

58

29E SUBTMP
Temporary storage.

29F HOL02
Temporary register.

2AO DMASK
Pixel location mask. DMASK contains zeroes for all bits which do
not correspond to the specific pixel to be operated upon, and
ones for bits which do correspond, according to the GRAPHICS
mode in use, as follows:

11111111 Modes 0, 1 and 2: one pixel per screen display
byte.

1111 0000 Modes 9, 10 and 11: two pixels per byte.
00001111
11000000 Modes 3, 5 and 7: four pixels per byte.
00110000
00001100
00000011
10000000 Modes 4,6 and 8: eight pixels per byte.
01000000

etc. to:

00000001

A pixel (short for picture cell or picture element) is a logical unit
of video size which depends on the GRAPHICS mode in use for
its dimensions. The smallest pixel is in GR.8 where it is only 1f2
color clock wide and one scan line high . In GR.O it is also only 1f2
color clock wide, but it is eight scan lines high. Here is a chart of
the pixel sizes for each mode:

Text Modes Graphics modes
GR. mode 0 1 2 3 4 5 6 7
Scan lines
per pixel 8 8 16 8 4 4 2 2
Bits
per pixel 1 1 1 2 1 2 1 2
Color clocks
per pixel .5 1 1 4 2 2 1 1
Characters
per line 40 20 20
Pixels

8

1

1

.5

per width 40 80 80 160 160 320

The number Clf pixels per screen width is based on the normal
playfield screen. See location 559 ($22F) for information on

--

673

play field size .

673 2AI TMPLBT

674

Temporary storage for the bit mask .

2A2 ESCFLG
Escape flag. Normally zero, it is set to 128 ($80) if the ESC key is
pressed (on detection of the ESC character; 27, $IB). It is reset to
zero fo llowing the output of the next character. To display
ATASCII control codes without the use of an ESC character, set
location 766 ($2FE) to a non-zero va lue.

675-689 2A3-2BI TABMAP
Map of the TAB stop positions. There are 15 bytes (120 bits) here,
each bit corresponding to a column in a logical line. A one in any
bit means the TAB is set; to clear all TABs simply POKE every
location with zero. There are 120 TAB locations because there
are three physical lines to one logical line in GRAPHICS mode
zero, each conSisting of 40 columns. Setting the TAB locations for
one logical line means they will also be set for each subsequent
logical line until changed. Each physical line in one logical line
can have different TAB settings, however.
To POKE TAB locations from BASIC, you must POKE in the
number (i.e., set the bit) that cortesponds to the location of the
bit in the byte (there are five bytes in each line) . For example:
To set tabs at locations 5,23,27 and 32, first visualize the line as a
string of zeros with a one at each desired tab setting:

0000100000000000000000100010000100000000

Then break it into groups of eight bits (one byte units). There are
three bytes with ones (bits set), two with all zeros:

00001000 = 8
00000000 = 0
00000010 = 2
00100001 = 33
00000000 = 0
Converting these to decimal, we get the values listed at the right
of each byte. These are the numbers you'd POKE into locations
675 (the first byte) to 679 (the fifth byte on the line) . On powerup
or when you OPEN the display screen (S: or E:), each byte is
given a value of one (i.e., 00000001) so that there are tab default
tab stops at 7, 15,23, etc., incrementing by eight to 119. Also,
the leftmost screen edge is also a valid TAB stop (2,42, and 82).
In BASIC, these are set by the SET-TAB and CLR-TAB keys.
TABMAP also works for the lines in the text display window in
split-screen formats. TABMAP is reset to the defau lt values on

59

690-693

pressing RESET or changing GRAPHICS modes .
See location 201 ($C9) about changing the TAB settings used
when a PRINT statement encounters a comma.

690-693 2B2-2B5 LOGMAP
Logical line start bit map. These locations map the beginning
physical line number for each logical line on the screen (initially
24, for GR.O). Each bit in the first three bytes shows the start of a
logical line if the bit equals one (three bytes equals eight bits *
three equals 24 lines on the screen). The map format is as follows:

Bit 7 6 5 4 3 2 1 0 Byte
Line 0 1 2 3 4 5 6 7 690

8 9 10 11 12 13 14 15 691
16 17 18 19 20 21 22 23 692

693

The last byte is ignored . The map bits are all set to one when the
text screen is OPENed or CLEARed, when a GRAPHICS com­
mand is issued or RESET is pressed. The map is updated as
logical lines are entered, edited, or deleted.

694 2B6 INVFLG
Inverse character flag; zero is normal and the initialization value
(i.e., normal ATASCII video codes have BIT 7 equals zero). You
POKE INVFLG with 128 ($80) to get inverse characters (BIT 7
equals one). This register is normally set by toggling the Atari
logo key; however, it can be user-altered. The display handler
XOR's the ATASCII codes with the value in INVFLG at all times .
See location 702 ($2BE) below.
INVFLG works to change the input, not the output . For example ,
if you have A$ = "HELLO", POKE 694, 128 will not change A$
when you PRINT it to the screen. However, if you POKE 694, 128
before an INPUT A$, the string will be entered as inverse .

695 2B7 FILFLG

696

Right fill flag for the DRAW command. If the current operation is
a DRAW, then this register reads zero . If it is non-zero, the
operation is a FILL.

2B8 TMPROW
Temporary register for row used by ROWCRS (location 84; $54).

697,698 2B9,2BA TMPCOL
Temporary register for column used by COLCRS (locations 85,
86; $55, $56).

699 2BB SCRFLG
Scroll flag; set if a scroll occurs. It counts the number of physical

60

700

701

702

700

lines minus one that were deleted from the top of the screen. This
moves the entire screen up one physical line for each line
scrolled off the top . Since a logical line has three physical lines,
SCRFLG ranges from zero to two .
Scrolling the text window is the equivalent to scrolling an entire
GR.O screen. An additional20-line equivalent of bytes (800) is
scrolled upwards in the memory below the text window address .
This can play havoc with any data such as PIM graphics you have
stored above RAMTOP.

2BC HOLD4
Temporary register used in the DRAW command only; used to
save and restore the value in ATACHR (location 763; $2FB)
during the FILL process.

2BD HOLDS
Same as the above register.

2BE SHFLOK
Flag for the shift and control keys. It returns zero for lowercase
letters, 64 ($40) for all uppercase (called caps lock: uppercase is
required for BASIC statements and is also the default mode on
powerup) . SHFLOK will set characters to all caps during your
program if 64 is POKEd here. Returns the value 128 ($80;
control-lock) when the CTRL key is pressed . Forced control-lock
will cause all keys to output their control-code functions or
graphics figures. Other values POKEd here may cause the
system to crash. You can use this location with 694 ($2B6) above
to convert all keyboard entries to uppercase, normal display by :

10 OPEN #2,4.0,"K:"
20 GET #2,A
30 GOSUB 1000
40 PRINT CHR$(A);: GO TO 20

1000 IF A 155 THEN 1030: REM RETURN
KEY

1010 IF A > = 128 THEN A = A - 128: R
EM RESTORE TO NORMAL DISPLAY

1020 IF PEEK(702) = 0 AND A > 96 THEN
A A - 32: REM LOWERCASE TO UP

PER
1030 POKE 702,64: POKE 694,0
1040 RETURN

61

703

703 2BF BOTSCR
Flag for the number of text rows available for printing. 24 ($18) is
normal for text mode GR .O; four for the text window, zero for all
graphics modes. In all GRAPHICS modes except zero, if there is
no text window then 703 will also read zero. The large-text
displays in GR. 1 and GR.2 are treated as graphics displays for
this purpose. The display handler specifically checks for split­
screen mode by looking for the variable 24 or four here . If it finds
24 here, it assumes there is no text window; if not, it looks for the
variable four .
You can add a text window to GR.O by POKEing here with four.
The top portion (20 lines) of the screen will not scroll with the
bottom. To write to the top part of the screen you will have to use
the PRINT#6 statement as with modes one and two . One possible
application of this would be to keep a fixed menu at the top of the
screen while scrolling the bottom part, as done with the DOS
menu .

Locations 704 to 712 ($2CO to $2C8) are the color registers for players,
missiles, and playfields. These are the RAM shadow registers for
locations 53266 to 53274 ($D012 to $DOIA). For the latter, you can use
the SETCOLOR command from BASIC. For all registers you can
POKE the desired colQr into the location by using this formula:

COLOR = HUE * 16 + LUMINANCE

It is possible to get more colors in GR.8 than the one (and a half) that
Atari says is possible by using a technique called artiiacting. There is a
small example of artifacting shown at location 710 ($2C6). See De Re
Atari, Your Atari 4001800, Creative Computing, June 1981, and
COMPUTE!, May 1982.
Here are the 16 colors the Atari produces, along with the ir POKE
values for the color registers . The POKE values assume a luminance of
zero. Add the luminance value to the numbers to brighten the color.
The color registers ignore BIT 0; that's why there are no "odd" values
for luminance, just ever, values.

Color Value Color Value
Black 0, 0 Medium blue 8, 128
Rust 1, 16 Dark blue 9, 144
Red-orange 2, 32 Blue-grey 10, 160
Dark orange 3, 48 Olive green 11, 176
Red 4, 64 Medium green 12, 192
Dklavender 5, 80 Dark green 13, 208
Cobalt blue 6, 96 Orange-green 14, 224
Ultramarine 7, 112 Orange IS, 240

62

703

The bit use of the PCOLR and COLOR registers is as follows:

Bil 7 6 5 4 3 2 1 0

Grey
Rust

- color - luminance unused

o 0 0 0 0 0 0 Darkest
000 1 001

etc. to: etc . to:

Orange 1 1 1 1 1 1 1 Lightest

When you enable the color overlap at location 623 ($26F), ANTIC
performs a log ical OR on the overlap areas. For example:

01000010 Red, luminance two
OR 10011010 Dark blue, luminance ten

Result = 10011010 Dark green, luminance ten

Here's a sr.ort machine language routine which will rotate the colors in
registers 705 to 712:

10 DIM ROT$(30)
20 FOR LOOP = 1 TO 27: READ BYTE: R

OT$(LOOP,LOOP) = CHR$(BYTE): NEXT
LOOP

PUT YOUR GRAPHICS ROUTINE HERE

100 CHANGE = USR(ADR(ROT$»
105 FOR LOOP 1 TO 200: NEXT LOOP:

GOTO 100
110 DATA 104,162,0,172,193,2,189,194

,2. 157
120 DATA 193,2 ,232,224,8,144,245,140

, 2()(J, 2

130 DATA 96 . 65 . 65.65 , 65,65.65

If you wish to rotate the colors in reg isters 704 to 7 11 instead, change
lines 110 and 120 to read as follows:

110 DATA 104 .1 62 ,0.172.1 92,2,189,193
,2, 157

120 DATA 192,2.232,224,8,144,245,140
,199,2

If you wish to include a ll of the reg isters 704 to 7 12 in the routine, make
the changes as above and change the eight in line 120 to nine and
restore the 199 to 200 in line 120. This routine works well with th9
G TIA demos at location 623 ($26F) .

For further detail, refer to your Atan BASIC Reference Manual, pp . 45

63

704

- 56, and the GTIA Demo Disk from APX .

704 2CO PCOLRO

705

Color of player 0 and missile O. Locations 704 to 707 are also
called COLPM# in some sources . This is the shadow for 53266
($DOI2). In GTIA mode ten, 704 holds the background color
(BAK; normally held by 712). You cannot use the SETCOLOR
commands to change the PCOLR registers; color values must be
POKEd into them.

2CI PCOLRI
Color of player and missile 1. Shadow for 53267 ($DO 13).

706 2C2 PCOLR2
Color of player and missile 2 . Shadow for 53268 ($DOI4) .

707 2C3 PCOLR3
Color of player and missile 3. When the four missiles are
combined to make a fifth player, it takes on the color in location
711 (COLOR3) . Shadow for 53269 ($DOI5) .

708 2C4 COLORO
Color register zero, color of playfield zero, controlled by the
BASIC SETCOLORO command . In GRAPHICS 1 and
GRAPHICS 2, this color is used for the uppercase letters.
Shadow for 53270 ($DOI6) . You can change the values in all of
the COLOR registers from BASIC by using either the
SETCOLOR command or a POKE .

709 2C5 COLORI
The next four locations are the same as location 708 for the
different playfields and SETCOLOR commands. In GR. 1 and
GR .2, this register stores the color for lowercase letters .
COLORI is also used to store the luminance value of the color
used in GR.O and GR.8. Shadow for 53271 ($DOI7).

710 2C6 COLOR2

64

The same as above for playfield two; in GR.l and GR . 2, this
register stores the color of the inverse uppercase letters . Shadow
for 53272 ($D018). Used for the background color in GR.O and
GR.8. Both use COLORI for the luminance value .
Despite the official limitations of color selection in GR .8, it is
possible to generate additional colors by "artifacting," turning
on specific pixels (\12 color clock each) on the screen. Taking
advantage of the physical structure of the TV set itself, we
selectively turn on vertical lines of pixels which all show the same
color. For example:

10 A = 40: B = 30: C = 70: D = 5: F
= 20 GRAPHICS 8: POKE 87,7: POK

711

E 710,0: POKE 709,15: COLOR 1
30 PLOT A,D: DRAWTO A,C: COLOR 2: P

LOT F,D: DRAW TO F,C:
40 PLOT A + I,D: DRAW TO A + I,C
50 COLOR 3: PLOT B,D: DRAWTO B,C
60 GOTO 60
A little experimentation with this will show you that the colors
obtained depend on which pixels are turned on and how close
together the pixel columns are. There are four "colors" you can
obtain, as shown before. Pixels marked one are on; marked zero
means they are off. Each pair of pixels is one color clock. Three
color clocks are shown together for clarity:

00:01:00 = color A 00:11:00 = color B
00: 10:00 = color C 00:01:10 = color D

See BYTE, May 1982, De ReAtari, and Your Atari 4001800.

711 2C7 COLOR3

712

The same as the above but for playfield three . Also, the color for
GR .1 and GR.2 inverse lowercase letters . Shadow for 53273
($D019) .

2C8 COLOR4
The same as the above but for the background (BAK) and border
color . Shadow for 53274 ($D01A) . In GTIA mode ten, 704 stores
the background color (BAK), while 712 becomes a normal color
register.
Here are the default (powerup) values for the COLOR registers
(PCOL registers are all set to zero on powerup):

Register Color = Hue Luminance
708 (CO.O) 40 2 8
709 (CO.l) 202 12 10
710 (CO.2) 148 9 4
711 (CO.3) 70 4 6
712 (CO.4) 0 0 0

Locations 713 to 735 ($2C9 to $2DF) are spare bytes. Locations 736 to
767 ($2EO to $2FF) are for miscellaneous use.

736-739 2EO-2E3 GLBABS
Global variables, or, four spare bytes for non-DOS users. For
DOS users they are used as below :

736-737 2EO-2El RUNAD
Used by DOS for the run address read from the disk sector one or
from a binary file . Upon completion of any binary load, control

65

738-739

will normally be passed back to the DOS menu . However, DOS
can be forced to pass control to any specific address by storing
that address here. If RUNAD is set to 40960 ($AOOO), then the left
cartridge (BASIC if inserted) will be called when the program is
booted.
With DOS 1.0, if you POKE the address of your binary load file
here, the file will be automatically run upon using the DOS
Binary Load. (selection L) . Using DOS 1.0's append (fA) option
when saving a binary file to disk, you can cause the load address
POKEd here to be saved with the data . In DOS 2.0, you may
speCify the initialization and the run address with the program
name when you save it to disk (i.e.,
GAME.OBJ,2000,4FFF,4F00,4000) . DOS 2.0 uses the IA option
to merge files. In order to prevent your binary files from running
automatically upon loading in DOS 2.0, use the IN appendage to
the file name when loading the file.
For users of CompuServe, the re is an excellent little BASIC
program (with machine language subroutines) to create autoboot
files, chain machine language files with BASIC and to add an 850
autoboot file in the Popular Electronics Magazine (PEM) access
area . It is available free for downloading.

738-739 2E2-2E3 INITAD

740

Initialization address read from the disk . An autoboot fi le must
load an address value into either RUNAD above or INITAD. The
code pointed to by INITAD will be run as soon as that location is
loaded. The code pointed to by RUNAD will be executed only
after the entire load process has been completed. To return
control to DOS after the execution of your program, end your
code with an RTS instruction .

2E4 RAMSIZ
RAM size, high byte only; this is the number of pages that the top
of RAM represents (one page equals 256 bytes). Since there can
never be less than a whole page, it becomes practical to measure
RAM in those page units . This is the same value as in RAMTOP,
location 106 ($6A), passed here from TRAMSZ, location 6. Space
saved by moving RAMSIZ or RAMTOP has the advantage of
being above the display area. Initialized to 160 for a 48K Atari.

741,742 2E5,2E6 MEMTOP

66

Pointer to the top of free memory used by both BASIC (which
calls it HIMEM) and the OS, passed here from TRAMSZ, location
6 after powerup. This address is the highest free location in RAM
for programs and data. The value is updated on powerup, when
RESET is pressed, when you change GRAPHICS mode, or when
a channel (IOCB) is OPENed to the display. The display list starts

743,744

at the next byte above MEMTOP.
The screen handler wi ll only OPEN the S: device if no RAM is
needed below this va lue (i.e., there is enough free RAM below
here to accommodate the requested GRAPHICS mode change).
Memory above this address is used for the display li st and the
screen display RAM . Also, if a screen mode change would
extend the screen mode memory below APPMHI (iocations 14 ,
15 : $E, $F), then the screen is set back for GR.O, MEMTOP is
updated, and an error is returned to the user. Otherwise the
mode change wi ll take place and MEMTOP will be updated.
Space saved by moving MEMTOP is below the display list. Be
careful not to overwrite it if you change GRAPHICS modes in
mid-program. When using memory below MEMTOP for storage,
make sure to set APPMHI above your data to avoid having the
screen data descend into it and destroy it.

743,744 2E7,2E8 MEMLO
Pointe r to the bottom of free memory, initialized to 1792 ($700)
and updated by the presence of DOS or any other low-memory
application program. It is used by the OS; the BASIC pointer to
the bottom of free memory is at locations 128, 129 ($80 , $81) . The
value in MEMLO is never altered by the OS after powerup.
This is the address of the first free location in RAM available for
program use. Set after all FMS buffers have been allocated (see
locations 1801 and 1802; $709 and $70A). The address of the last
sector buffer is incremented by 128 (the buffer size in bytes) and
the value p laced in MEMLO. The value updates on powerup or
when RESET is pressed. This value is passed back to locations
128, 129 ($80, $8 1) on the execution of the BASIC NEW
command, but not RUN , LOAD or RESET.
If you a re reserving space for your own device driver(s) or
reserving buffer space, you load your routine into the address
specified by MEMLO, add the size of your routine to the MEMLO
value, and POKE the new va lue p lus one back into MEMLO.
When you don't have DOS or any other applica tion program
using low-memory resident, MEMLO points to 1792 ($700). With
DOS 2.0 present, MEMLO points to 7420 ($ ICFC) . If you change
the buffer defaults mentioned earlier, you wil l ra ise or lower th is
latter va lue by 128 ($80) bytes for every buffer added or deleted,
respectively. When you boot up the 850 Interface with or without
disk, you add a nother 1728 ($6CO) bytes to the value in MEMLO.
You can alter MEMLO to protect an area of memory below your
program. This is an a lternative to protecting an area above
RAMTOP (location 106; $6A) and avoids the problem of the
CLEAR SCREEN routine destroying data. However, unless you

67

745

have created a MEM. SAY file, the data will be wiped out when
you call DOS. To alter MEMLO, you start by POKEing WARMST
(location 8) with zero, then doing a JMP to the BASIC cartridge
entry point at 40960($AOOO) after defining your area to protect .
For example, try this:
10 DIM MEM$(24):PROTECT=700:REM NUMBE

R OF BYTES TO CHANGE
15 HIBYTE=INT(PROTECT/256):LOBYTE=PRO

TECT-256*HIBYTE
20 FOR N=1 TO 24:READ PRG:MEM$(N)=CHR

$(PRG):NEXT N
30 MEM$(6.6)=CHR$(LOBYTE):MEM$(14.14)

=CHR$(HIBYTE)
40 RESERVE=USR(ADR(MEM$»
50 DATA 24.173,231,2,105, 0.141,231.2.

173.232.2.105
60 DATA 0.141.232.2.169,0,133.8.76,0,

160
You will find the address of your reserved memory by: PRINT
PEEK(743) + PEEK(744) * 256 before you run the program. This
program will wipe itse lf out when run. Altering MEMLO is the
method used by both DOS and the RS-232 port driver in the 850
Interface. See COMPUTE!, July 1981.

745 2E9
Spare byte.

746-749 2EA-2ED DVSTAT

68

Four device status registers used by the I/O status operation as
follows:
746 ($2EA) is the device error status and the command status
byte. If the operation is a disk 1/0, then the status returned is that
of the In I controller chip in your Atari disk drive. Bits set to one
return the folloWing error codes:

Bit Decimal Error
o 1 An invalid command frame was received (error).
1 2 An invalid data frame was received.
2 4 An output operation was unsuccessful.
3 8 The disk is write-protected .
4 16 The system is inactive (on standby).
7 32 The peripheral controller is "intelligent" (has its

own microprocessor: the disk drive). All Atari
devices are intelligent except the cassette
recorder, so BIT 7 will normally be one when a
device is attached.

747 ($2EB) is the device status byte. For the disk, it holds the

750,751

value of the status register of the drive controller. For the 850
Interface, it holds the status for DSR,CTS,CRX and RCV when
concurrent I/O is not active (see the 850 Interface Manual) . It also
contains the AUX2 byte value from the previous operation (see
the IOCB description at 832 to 959; $340 to $3AF).
748 ($2EC) is the maximum device time-out value in seconds. A
value of 60 here represents 64 seconds. This value is passed back
to location 582 ($246) after every disk status request. Initialized to
31.
749 ($2ED) is used for number of bytes in output buffer . See 850
Manual , p . 43 .
When concurrent I/O is active, the STATUS command returns
the number of characters in the input buffer to locations 747 and
748, and the number of characters in the output buffer to location
749.

750,751 2EE,2EF CBAUDL/H

752

753

Cassette baud rate low and high bytes. Initialized to 1484
($5CC), which represents a nominal 600 baud (bits per second).
After baud rate calculations, these locations will contain POKEY
values for the corrected baud rate. The baud rate is adjusted by
SIO to account for motor variations, tape stretch, etc. The
beginning of every cassette record contains a pattern of
alternating off/on bits (zer%ne) which are used solely for speed
(baud) correction.

2FO CRSINH
Cursor inhibit flag. Zero turns the cursor on; any other number
turns the cursor off. A visible cursor is an inverse blank (space)
character. Note that cursor visibility does not change until the
next time the cursor moves (if changed during a program) . If you
wish to change the cursor status without alte ring the screen data,
follow your CRSINH change with a cursor movement (i.e . , up,
down) sequence. This register is set to zero (cursor restored) on
powerup, RESET, BREAK, or an OPEN command to either the
display handler (S:) or screen editor (E:). See location 755 for
another means to turn off the cursor .

2Fl KEYDEL
Key delay flag or key debounce counter; used to see if any key
has been pressed. If a zero is returned, then no key has been
pressed. If three is returned, then any key. It is decremented
every stage two VBLANK (1160 or 1/30th second) until it reaches
zero. If any key is pressed while KEY DEL is greater than zero, it
is ignored as "bounce ." See COMPUTE!, December 1981, for a
routine to change the keyboard delay to suit your own typing
needs.

69

754

754

755

70

2F2 CHI
Prior keyboard character code (most recently read and
accepted). This is the previous value passed from 764 ($2FC). If
the value of the new key code equals the va lue in CH I , then the
code is accepted only if a suitable key debounce delay has taken
place since the prior va lue was accepted.

2F3 CHACT
Character Mode Register. Zero means normal inverse
characters, one is blank inverse characters (inverse characters
will be printed as blanks, i.e., invisible), two is norma l
c haracters, three is solid inverse characters. Four to seven is the
same as zero to three, but prints the display upside down .
This register also controls the transparency of the cursor. It is
transparent with va lues two and six, opaque with va lues three
and seven. The cursor is absent with values zero, one, four and
five.
Toggling BIT 0 on and off can be a handy way to produce a
blinking e ffect for printed inverse characters (characters with
ATASCII values greater than 128 - those that have BIT 7 set).
Shadow fo r 54273 ($D40 1). There is no visible cursor for the
graphics mode output. CHACT is initia lized to two.
Here's an example of blinking text using this register:

10 CHACT=755 : REM USE INVERSE FOR WORD
S BELOW

1 5 P R I NT" C'u.:,.-ro."'"'¥"';WI-"'"'¥:r:: =---=:,-:;.r=;j;""";1fI"'"""'_--="l]r::::I_;3 _ 11:':+ .. : (rw
iH:jj"

20 POKE CHACT.INTCRND(0)*4)
30 FOR N=1 TO 100:NEXT N:GOTO 15

See COMPUTE!, December 1981.
Using a machine language routine and page six space, try:

10 PAGE=1536:EXIT=1568
20 FOR N=PAGE TO EXIT:READ BYTE:POKE

N,BYTE:NEXT N
30 PGM=USR(PAGE)
40 PRINT .. ~ IS A ~ OF 1;3_":1:+":£i1

TEXT":REM MAKE SOME WORDS INVERSE
50 GOTO 50
60 DATA 104,169,17,141,40 ,2, 169,6,141

,41
70 DATA 2,169,30 , 141, 26,2, 98 ,1 73,243,

2
80 DATA 41, 1, 73, I, 141 ,243,2, 169,30,14

1,26,2,96

756

756

The blink frequency is set to \1'2 second; to change it, change the
30 in line 80 to any number from one 0 /30 second) to 255 (eight
\1'2 seconds). For another way to make the cursor visib le or
invisible, see locations 752 above .

2F4 CHBAS
Character Base Registe r, shadow for 54281 ($D409). The defau lt
(initia lization value) is 224 ($EO) for uppercase characters and
numbers; POKE CHBAS with 226 ($E2) to get the lowercase and
the graphics characte rs in GR.l and GR.2. In GR.O you get the
entire set disp layed to the screen, but in GR.l and GR.2, you
must POKE 756 for the appropriate half-set to be displayed.
How do you create an altered character set? First you must
reserve an area in memory for your set (5 12 or 1024 bytes; look at
location l06; $6A to see how). Then either you move the ROM set
(or ha lf set, if that's all you intend to change) into that area and
alter the selected characters, or you fill up the space with bytes
which make up your own set. Then you POKE 756 with the MSB
of the location of your set so the computer knows where to find it.
What does an a ltered character set look like? Each character is a
block one byte wide by e ight bytes high . You set the bits for the
points on the screen you wish to be "on" when displayed. Here
are two examples:

one byte wide:
00100000 = 32
00010000 = 16
00010000 = 16
00010000 = 16
00011110 = 30
00000010 = 2
00001100 = 12
00010000 = 16

Hebrew leiter Lamed

one byte wide :
10000001 = 129
10011001 = 153
10111101 = 189
11111111 = 255
11111111 = 255
10111101 = 189
10011001 = 153
10000001 = 129

Tie-fighter

########
########

71

756

72

You can turn these characters into DATA statements to be POKEd
into your reserved area by using the values for the bytes as in the
above examples. To change the ROM set once it is moved, you
look at the internal code (see the BASIC Reference Manual, p.
55) and find the value of the letter you want to replace - such as
the letter A - code 33. Multiply this by eight bytes for each code
number from the start of the set (33 * eight equals 264). You then
replace the eight bytes used by the letter A, using a FOR-NEXT
loop with the values for your own character. For example, add
these lines to the machine language found a few pages further on:

1000 FOR LOOP=1 TO 4:READ CHAR:SET=CH
ACT+CHAR*8

1010 FOR TIME=O TO 7:READ BYTE:POKE 5
ET+TIME.BYTE:NEXT TIME

1020 NEXT LOOP
1030 DATA 33,0,120.124.22.22.124,120.

o
1040 DATA 34,0,126,82.82.82,108,0.0
1050 DATA 35.56,84.254,238,254,68,56.

o
1060 DATA 36.100,84.76,0,48.72.72.48
2000 END

R UN it and type the letters A to D.
Why 224 and 226? Translated to hex, these values are $EO and
$E2, respectively . These are the high bytes (MSB) for the location
of the character set stored in ROM: $EOOO (57344) is the address
for the start of the set (which begins with punctuation, numbers
and uppercase letters), and $E200 (57856), for the second half of
the ROM set, lowercase and graphic control characters (both
start on page boundaries). The ROM set uses the internal order
given on page 55 of your BASIC Reference Manual, not the
ATASCII order. See also location 57344 ($EOOO).
You will notice that using the PRINT#6 command will show you
that your characters have more than one color available to them
in GR. 1 and GR .2. Try PRINTing lowercase or inverse
characters when you are using the uppercase set. This effect can
be very useful in creating colorful text pages. Uppercase letters,
numbers, and special characters use color register zero (iocation
708; $2C4 - orange) for normal display, and color register two
(710; $2C6 - blue) for inverse display. Lowercase letters use
register one (709; $2C5 - aqua) for normal display and register
three (711; $2C7 - pink) for inverse. See COMPUTE!, December
1981, page 98, for a discussion of using the CTRL keys with letter
keys to get different color effects.

756

One problem with POKEing 756 with 226 is that there is no blank
space character in the second set: you get a screen full of hearts.
You have two choices: you can change the color of register zero
to the same as the background and lose those characters which
use register zero - the control characters - but get your blanks
(and you still have registers one, two and three left). Or you can
redefine your own set with a blank character in it. The latter is
obviously more work. See "Ask The Readers," COMPUTE!, July
1982.

It is seldom mentioned in the manuals, but you cannot set 756 to
225 ($E 1) or any other odd number. Doing so will only give you
screen garbage . The page number 756 points to must be evenly
divisible by two.
When you create your own character set and store it in memory,
you need to reserve at least 1 K for a full character set (l024 bytes
- $400 or four pages), and you must begin on a page boundary.
In hex these are the numbers ending with $XXOO such as $COOO
or $600 because you store the pointer to your set here in 756; it
can only hold the MSB of the address and assumes that the LSB is
always zero - or rather a page boundary. You can reserve
memory by:

POKE 106, PEEK(106) -4 (or any multiple of four)

And do a GRAPHICS command immediately after to have your
new memory value accepted by the computer. If you are using
only one half of the entire set, for GR. 1 or GR .2, you need only
reserve 512 bytes, and it may begin on a Y2 K boundary (like
$E200; these are hexadecimal memory locations that end in
$X200). If you plan to switch to different character sets, you will
need to reserve the fulllK or more, according to the number of
different character sets you need to display. RAM for half-K sets
can be reserved by:

POKE 106, PEEK (106) -2 (or a multiple of two)

The location for your set will then begin at PEEK(l06) ·256.
Because BASIC cannot always handle setting up a display list for
GR.7 and GR.8 when you modify location 106 by less than 4K (16
pages), you may find you must use PEEK(l06) -16. See location
88,89 ($58,$59) and 54279 ($D407) for information regarding
screen use and reserving memory.

Make sure you don't have your character set overlap with your
player/missile graphics. Be very careful when using altered
character sets in high memory. Changing GRAPHICS modes, a
CLEAR command, or scrolling the text window all clear memory
past the screen display. When you scroll the text window, you

73

756

74

don't simply scroll the four lines; you actually scroll a full 24 (20
additional lines * 40 bytes equals 800 bytes scrolled past
memory)! This messes up the memory past the window display
address, so position your character sets below all possible
interference (or don't scroll or clear the screen).
You can create and store as many character sets as your memory
will allow. You switch back and forth between them and the ROM
set by simply POKEing the MSB of the address into 756. Of
course, you can display only one set at a time unless you use an
altered display list and DLI to call up other sets. There are no
restrictions outside of memory requirements on using altered
character sets with P/M graphics as long as the areas reserved for
them do not overlap.
A GRAPHICS command such as GR.O, RESET or a DOS call
restores the character set pointer to the ROM location, so you
must a lways POKE it again with the correct location of your new
set after any such command. A useful place to store these sets is
one page after the end of RAM, assuming you've gone back to
location 106 ($6A) and subtracted the correct number of pages
from the value it holds (by POKE 106 , PEEK(l06) minus the
number of pages to be reserved; see above). Then you can reset
the character set location by simply using POKE
756,PEEK(106) + 1 (the p lus one simply makes sure you start at
the first byte of your set).
A full characte r set requires 1024 bytes (lK: four pages) be
reserved for it. Why? Because there are 128 characte rs, each
represented by e ight bytes, so 128 * e ight equals 1024 . If you are
using a graphics mode that uses only ha lf the character set, you
need only reserve 512 bytes (64 * eight equals 512). Remember to
begin either one on a page boundary (1 K boundary for full sets or
1/2 K for ha lf sets). By switching back and forth between two
character sets, you could create the illusion of a nimation.
Many magazines have published good utilities to aid in the
design of a ltered character sets, such as the January 1982
Creative Computing, and SuperFont in COMPUTE!, January
1982. I suggest that you examine Th e Next Step from Online,
Instedit from APX, or FontEdit from the Code Works for very
useful set generators. One potentially useful way to alte r just a
few of the characters is to duplicate the block of memory which
holds the ROM set by moving it byte by byte into RAM. A BASIC
FOR-NEXT loop can accomplish this, a lthough it's very slow . For
example:
5 CH=57344
10 START=PEEK(106) - 4:PLACE=START*256:

POKE 106.PEEK(106)-5:GRAPHICS O:RE

757-761

M RESERVE EXTRA IN CASE OF SCREEN
CLEAR

20 FOR LOO P=O TO 1023:POKE PLACE+LOOP
,PE EK(CH+LOOP):NEXT LOOP:REM MOVE
THE ROM SET

30 POKE 756,PLACE/256:REM TELL ANTIC
WHERE CHSET IS

Here's a machine language routine to move the set :

10 D IM BYTE$(SO)
15 REM MEM-1 TO PROTECT SET FROM CLEA

R SCREEN DESTRUCTION (SEE LOC_SS)
20 MEM=PEEK(106)-4:POKE 106,MEM-1:CHA

CT=MEM*256:GRAPHICS 0
30 FOR LOOP=1 TO 32:READ PGM:BYTE$(LO

OP,LOOP)=CHR$(PGM):NEXT LOOP
40 DATA 104,104,133,213.104,133,212
50 DATA 104,133,215,104.133,214,162
60 DATA 4,160,0,177.212,145,214
70 DATA 200,20S,249,230,213,230,215
SO DATA 202,20S,240,96
90 Z=USR(ADR(BYTE$),224*256,CHACT)

ADD YO UR OWN ALTERATION PROGRAM OR
THE EARLIER EXAMPLE HERE

1500 POKE MEM-1,0:POKE 756.ME M

If you have Microsoft BASIC or BASIC A +, you can do this very
easily with the MOVE command!

Remember, when altering the ROM set, that the characters aren't
in ATASCII order; rather they are in their own internal order.
Your own set will have to follow this order if you wish to have the
characters correlate to the keyboard and the ATASCII values.
See page 55 of your BASIC Reference Manual for a listing of the
internal order. Creative Computing, January 1982, had a good
article on character sets, as well as a useful method of
transferring the ROM set to RAM using string manipulation. See
also "Using Text Plot for Animated Games" in COMPUTE!, April
1982, for an example of using character sets for animated
graphics.

757-761 2FS-2F9
Spare bytes.

75

762

762

763

764

76

2FA CHAR
Internal code value for the most recent character read or written
(internal code for the value in ATACHR below). This registe r is
difficult to use with PEEK statements since it returns the most
recent character; most often the cursor value (128, $80 for a
visible, zero for an invisible cursor) .

2FB ATACHR
Returns the last ATASCII character read or written or the value of
a graphics point. ATACHR is used in converting the ATASCII
code to the internal character code passed to or from CIO. It also
returns the value of the graphics point. The FILL and DRAW
commands use this location for the color of the line drawn,
ATACHR being temporarily loaded with the value in FILDAT,
location 765; $2FD. To force a color change in the line, POKE the
desired color number here (color * sixteen + luminance). To see
this register in use as character storage, try :

100PEND2.4.0."K:"
20 GETD2.A
30 PRINT PEEI«763);" ";CHR$(A)
40 GOTO 20

Make sure the PEEK statement comes before the PRINT CHR$
statement, or you will not get the proper value returned. When
the RETURN key is the last key pressed, ATACHR will show a
value of 155 .

2FC CH
Internal hardware value for the last key pressed. POKE CH with
255 ($FF; no key pressed) to clear it. The keyboard handler gets
all of its key data from CH. It stores the value 255 here to indicate
the key code has been accepted, then passes the code to CH I,
location 754 ($2F2). If the value in CH is the same as in CHI, a
key code will be accepted only if the proper key debounce delay
time has transpired . If the code is the CTRL-l combination (the
CTRL and the" 1" keys pressed simultaneously), then the
start/stop flag at 767 ($2FF) is complemented, but the va lue is not
stored in CH. The auto repeat logic will also store store key
information here as a result of the continuous pressing of a key.
This is neither the ATASCII nor the internal code value; it is the
"raw" keyboard matrix code for the key pressed. The table for
translation of this code to ATASCII is on page 50 of the OS User's
Manual . In a two-key operation, BIT 7 is set if the CTRL key is
pressed, BIT 6 if the SHIFT key is pressed. The rest of the bytes
are the code (ignored if both BITs 7 and 6 are set). Only the code
for the last key pressed is stored here (it is a global variable for

765

765

keyboard).
When a read request is issued to the keyboard, CH is set to 255
by the handler routine . After a key code has been read from this
register, it is reset to 255. BREAK doesn't show here, and CTRL
and SHIFT will not show here on their own. However, the inverse
toggle (Atari logo key), CAPS/LOWR, TAB and the ESC keys
will show by themselves. You can examine this register with:

10 LOOK=PEEK(764)
20 PRINT "KEY PRESSED = ";LOOK
30 POKE 764,255
40 FOR LOOP=1 TO 250:NEXT LOOP
50 GOTO 10

See COMPUTEf's First Book of Atari for an example of using this
register as a replacement for joystick input.

2FD FILDAT
Color data for the fill region in the XIO FILL command.

766 2FE DSPFLG

767

Display flag, used in displaying the control codes not associated
with an ESC character (see location 674; $2A2). If zero is
returned or POKEd here, then the ATASCII codes 27 - 31, 123-
127, 187 - 191 and 251 - 255 perform their normal display screen
control functions (i.e., clear screen, cursor movement,
deletelinsert line, etc .). If any other number is returned, then a
control character is displayed (as in pressing the ESC key with
CTRL-CLEAR for a graphic representation of a screen clear).
POKEing any positive number here will force the display instead
of the control code action . There is, however, a small bug, not
associated with location 766, in Atari BASIC: a PRINTed CTRL-R
or CTRL- U are both treated as a semicolon.

2FF SSFLAG
Start/stop display screen flag, used to stop the scrolling of the
screen during a DRAW or graphics routine, a LISTing or a
PRINTing. When the value is zero, the screen output is not
stopped. When the value is 255 ($FF; the one's complement), the
output to the screen is stopped, and the machine waits for the
value to become zero again before continuing with the scrolling
display. Normally SSFLAG is toggled by the user during these
operations by pressing the CTRL-l keys combination to both start
and stop the scroll. Set to zero by RESET and powerup .

PAGE THREE
Locations 768 to 831 ($300 to $33F) are used for the device handler and
vectors to the handler routines (deVices S:, P: , E:, D:, C:, R: and K:).

77

768

A device handler is a routine used by the OS to control the transfer of
data in that particular device for the task allotted (such as read, write ,
save, etc.). The resident D: handler does not conform entirely with the
other handler - SIO calling routines. Instead, you use the DeB to
communicate directly with the disk handler. The device handler for R:
is loaded in from the 850 interface module. See De Re Atari, the 850
Interface Manual , and the OS Listings pages 64 - 65.
Locations 768 to 779 ($300 to $30B) are the resident Device Control
Block (DCB) addresses, used for I/O operations that require the serial
bus; also used as the disk DCB. DUP .SYS uses this block to interface
the FMS with the disk handler . The Atari disk drive uses a serial access
at 19,200 baud (about 20 times slower than the Apple!). It has its own
microprocessor, a 6507, plus 128 bytes of RAM, a 23 16 2K masked
ROM chip (like a 2716), a 2332 RAM-I/O timer chip with another 128
bytes of RAM (like the PIA chip) and a WD 1771 FD controller chip .
See the "Outpost Atari" column, Creative Computing, May 1982, for
an example of using the disk DCB.
All of the parameters passed to SIO are contained in the DCB . SIO
uses the DCB information and returns the status in the DCB for
subsequent use by the device handler.

768 300 DDEVIC

769

770

78

Device serial bus ID (serial device type) set up by the handler,
not user-alterable . Values are:

Disk drives Dl- D4 49-52 ($31-$34)
Printer PI 64 ($40)
Printer P2 79 ($4F)
RS232 ports RI-R4 80-83 ($50-$53)

301 DUNIT
Disk or device unit number: one to four, set up by the user.

302 DCOMND
The number of the disk or device operation (command) to be
performed, set by the user or by the device handler prior to
calling SIO. Serial bus commands are:

Read 82 ($52)
Write (verify) 87 ($57)
Status 83 ($53)
Put (no verify) 80 (0)
Format 33 ($21)
Download 32 ($20)
Read address 84 ($54)
Read spin 81 ($51)
Motor on 85 ($55)
Verify sector 86 ($56)

771

All of the above are disk device commands , except write and
status, which are also printer commands (with no verify).

303 DSTATS

771

The status code upon return to user . Also used to set the data
direction; whether the device is to send or receive a data frame.
This byte is used by the device handler to indicate to SIO what to
do after the command frame is sent and acknowledged. Prior to
the SIO call , the handler examines BIT 6 (one equals receive
data) and BIT 7 (one equa ls send data). If both bits are zero, then
no data transfer is assoc iated with the operation. Both bits set to
one is invalid . SIO uses it to indicate to the handle r the status of
the requested operation after the S10 call.

772,773 304,305 DBUFLO/HI

774

775

Data buffer address of the source or destina tion of the da ta to be
transferred or the device status information (or the disk sector
data). Set by the user, it need not be set if there is no data
transferred, as in a status request.

306 DTIMLO
The time-out value for the handler in one-second units, supplied
by the handler for use by SIO. The cassette time-out value is 35,
just over 37 seconds. The timer values a re 64 seconds per 60 units
of measurement. Initia lized to 31.

307 DUNUSE
Unused byte.

776,777 308,309 DBYTLO/HI
The number of bytes transferred to or from the da ta buffer (or the
disk) as a result of the most recent operation , set by the handler.
Also used for the count of bad sector data . There is a small bug in
SIO which causes incorrect system actions when the last byte in a
buffer is in a memory location ending with $FF, such as $AOFF .

778,779 30A,30B DAUXl /2
Used tor device-specific informat ion such as the disk sector
number for the read or write opera tion. Loaded down to locations
572,573 ($23C, $23D) by SIO.
There are only five commands supported by the disk handler:
GET sector (82; $52), PUT sector (80 ; $50), PUT sector with
VERIFY (87; $57), STATUS request (83; $53) and FORMAT e ntire
disk (33; $21) . There is no command to FORMAT a portion of the
disk; this is done by the INS 177 1-1 formatter/controlle r chip in
the drive itself and isn't user-accessible. The re is a new disk drive
ROM to rep lace the current "C" version. It is the "E" ROM. Not
only is it faster than the older RO Ms, but it also a llows for
se lect ive formatting of disk sectors. Atari has not announced yet

79

780.781

whether this new 810 ROM will be made available. For more
information, see the OS User's Manual.

Locations 780 to 793 ($30C to $319) are for miscellaneous use.
Locations 794 to 831 ($3IA to $33F) are handler address tables. To use
these DCBs, the user must provide the required parameters to this
block and then do a machine language JSR to $E453 (58451) for disk
I/O or $E459 (58457; the SIO entry point) for other devices.

780,781 30C,30D TIMERI

782

783

Initial baud rate timer value.

30E ADDCOR
Addition correction flag for the baud rate calculations involving
the timer registers.

30F CASFLG
Cassette mode when set. Used by SIO to control the program
flow through shared code. When set to zero, the current
operation is a standard SIO operation; when non-zero, it is a
cassette operation.

784,785 310,311 TIMER2
Final timer value. Timer one and timer two contain reference
times for the start and end of the fixed bit pattern receive period.
The first byte of each timer contains the VCOUNT value (54283;
$D40B), and the second byte contains the current realtime clock
value from location 20 ($14). The difference between the timer
values is used in a lookup table to compute the interval for the
new values for the baud rate passed on to location 750,751
($2EE, $2EF).

786,787 312,313 TEMPI
Two-byte temporary storage register used by SIO for the
VCOUNT calculation during baud timer routines. See location
54283 ($D40B) .

788 314 TEMP2

789

790

Temporary storage register .

315 TEMP3
Ditto.

316 SAVIO
Save serial data-in port used to detect, and updated after , each
bit arrival. Used to retain the state of BIT 4 of location 53775
($D20F; serial data-in register).

791 317 TIMFLG

80

Time-out flag for baud rate correction, used to define an
unsuccessful baud rate value . Initially set to one, it is

792

792

decremented during the I/O operation. If it reaches zero (after
two seconds) before the first byte of the cassette record is read,
the operation will be aborted.

318 STACKP
SIO stack pointer register. Points to a byte in the stack being
used in the current operation (locations 256 to 511; $100 to $1 FF) .

793 319 TSTAT
Temporary status holder for location 48 ($30).

794-831 31A-33F HATABS
Handler Address Table. Thirty-eight bytes are reserved for up to
12 entries of three bytes per handler, the last two bytes being set
to zero. On powerup, the HATABS table is copied from ROM .
Devices to be booted, such as the disk drive, add their handler
information to the end of the table . Each entry has the character
device name (C,D,E,K,P,S,R) in ATASCII code and the handler
address (LSBIMSB). Unused bytes are a ll set to zero . FMS
searches HATABS from the top for a device "D:" entry, and when
it doesn't find it, it then sets the device vector at the end of the
table to point to the FMS vector at 1995 ($7CB). CIO searches for
a handler character from the bottom up. This allows new handlers
to take precedence over the old . Pressing RESET clears HATABS
of all but the resident handler entries!

794 31A Printer device ID (P:), initialized to 58416 ($E430).
797 31D Cassette device ID (C:), initialized to 58432 ($E440).
800 320 Display editor ID (E:), initialized to 58368 ($E400).
803 323 Screen handler ID (S :) , initialized to 58384 ($E41O) .
806 326 Keyboard handler ID (K:), initialized to 58400

($E420).

HATABS unused e ntry points:
809 ($329), 8 12 ($32C), 815 ($32F), 818 ($332),821 ($335),824
($338),827 ($33B), and 830 ($33E). These dre numbered
sequentially from one to eight. The re are only two bytes in the last
entry (unused), both of which are set to zero . When DOS is
present, it adds an entry to the table with the ATASCII code for
the letter "D" and a vector to address 1995 ($7CB).
The format for the HATABS table is:
Device name
Handler vector table address
More entries
Zero fill to the end of the table
The device handler address table entry above for the specific
handler points to the first byte (low byte/high byte) of the vector

8l

794-831

table which starts at 58368 ($E400). Each handler is designed
with the following format :
OPEN vector
CLOSE vector
GET BYTE vector
PUT BYTE vector
GET STATUS vector
SPECIAL vector
Jump to initialization code (IMP LSB/MSB)
CIO uses the ZIOCB (see location 32; $20) to pass parameters to
the originating IOCB , the A, Y and X registers and CIO. It is
possible to add your own device driver(s) to OS by following
these ru les:
1) Load your routine, with necessary buffers at the address

pointed to by MEMLO: location 743 ($2E7).
2) Add the size of your routine to the MEMLO value and POKE

the result back into MEMLO.
3) Store the name and address of your driver in the handler

address table; HATABS.
4) Change the vectors so that the OS will re-execute the above

steps if RESET has been pressed. This is usually done by
adjusting locations 12 ($C: DOSINIT) and 10 ($A; DOSVEC).

See the "Insight: Atari" columns in COMPUTE!, January and
April 1982, for details. The APX program "T: A Text Display
Device" is a good example of a device handler application.
See De Re Atari for more information on the DCB and HATABS,
including the use of a null handler.

Locations 832 to 959 ($340 to $3BF) are reserved for the eight IOCB's
(input/output control blocks) . IOCB's are channels for the transfer of
information (data bytes) into and out of the Atari, or between devices.
You use them to tell the computer what operation to perform, how
much data to move and, if necessary, where the data to be moved is
located. Each block has 16 bytes reserved for it .

What is an IOCB? Every time you PRINT somethi ng on the screen or
the printer, every time you LOAD or SAVE a file, every time you OPEN
a channel, you are using an rOCB. In some cases, operat ions have
automatic OPEN and CLOSE functions built in - like LPRINT. In
others, you must tell the Atari to do each step as you need it. Some
rOCB 's are dedicated to speCific use, such as zero for the screen
display. Others can be used for any I/O function you wish. The
information you place after the OPEN command te lls cro how you
want the data transferred to or from the device. It is s ro and the device
handlers that do the actua l transfer of data.

82

832-847

You can easily POKE the necessary va lues into i:he memory locations
and use a machine language subroutine th rough a USR funct ion to call
the CIO directly (you must sti ll use an OPEN and C LOSE statement for
the cha nne l, however). This is useful because BASIC only supports
e ithe r record or sing le byte data transfer, while the CIO will handle
comp le te buffer I/O . See the C IO entry address, location 58454
($E456), for more details . These blocks are used the same way as the
page zero IOCB (locat ions 32 to 47; $20 to $2F) . The OS ta kes the
information here, moves it to the ZIOCB for use by the ROM C IO, the n
returns the updated information back to the user area when the
operation is done.
Note that when BASIC encounters a DOS command, it C LOSEs a ll
channels except zero . Refer to the Afari Hardware Manual and the 850
Inferface Manual for more deta iled use of these locations .

832-847 340-34F IOCBO
I/O Control Block (lOCB) zero. Normally used for the screen
editor (E:). You can POKE 838,166 and POKE 839,238 and send
everything to the printer instead of to the screen (POKE 838,163,
and POKE 839,246 to send everything back to the screen aga in) .
You cou ld use this in a program to toggle back and forth between
screen and printed copy when prompted by user input. This will
save you multiple PRINT and LPRINT coding.
You can use these locations to transfer data to other devices as
well since they pOint to the address of the device's "put une byte"
routine. See the OS Manual for more information. Location 842
can be given the value 13 for read from screen and 12 for write to
screen. POKE 842, 13 puts the Atari into "RETURN key mode" by
setting the auxi liary byte one (lCAX 1) to screen input and
output. POKEing 842 with 12 returns it to keyboa rd input and
screen output mode . The former mode a llows for dynamic use of
the screen to act upon commands the cursor is made to move
across.
You can use this "forced read" mode to read data on the screen
into BASIC without user intervention . For example, in the
program below, lines 100 through 200 will be deleted by the
program itself as it runs.

10 GRAPHICS O:POSITION 2,4
20 PRINT 100:PRINT 150:PRINT 200
25 PRINT "CONT"
30 POSITION 2,0
50 POKE 842 , 1 3: STOP
60 POKE 842 , 12
70 REM THE NEXT LINES WILL BE DELETED
100 PRINT .. DELETING

83

848-863

150 PRINT .. DELETING
200 PRINT "DELETED~"

See COMPUTE!, August 1981, for a sample of this powerful
technique. See Santa Cruz's Tricky Tutorial #1 (display lists) for
another application. The last four bytes (844 to 847; $34C to $34F
in this case) are spare (auxiliary) bytes in all IOCB's.
When you are in a GRAPHICS mode other than zero, channel
zero is OPENed for the text window area. If the window is absent
and you OPEN channel zero, the whole screen returns to mode
zero. A BASIC NEW or RUN command closes all channels
except zero. OPENing a channel to S: or E: a lways clears the
display screen.
See COMPUTE!, October 1981, for an example of using an IOCB
wi th the cassette program recorder, and September 1981 for
another use with the Atari 825 printer.

848-863 3S0-3SF IOCB1
IOCB one.

864-879 360-36F IOCB2
IOCB two.

880-895 370-37F IOCB3
IOCB three.

896-911 380-38F IOCB4
IOCB four.

912-927 390-39F IOCBS
IOCB five.

928-943 3AO-3AFIOCB6
IOCB six. The GRAPHICS statement OPENs channel six for
screen display (S:), so once you are out of mode zero, you cannot
use channel six unless you first issue a CLOSE#6 statement. If
you CLOSE this channel, you wi ll not be able to use the
DRAWTO, PLOT or LOCATE commands until you reOPEN the
channel. The LOAD command closes channel six; it also closes
all channels except ze ro .

944-959 3BO-3BF IOCB7

84

IOCB seven. LPRINT automatically uses channe l seven for its
use. If the channel is OPEN for some other use and an LPRINT is
done, an error wi ll occur, the channe l will be CLOSEd, and
subsequent LPRINTs wi ll work. The LIST command also uses
channel seven, even if channel seven is already OPEN. However,
when the LIST is done, it CLOSEs channe l seven . The LOAD
command uses c hannel seven to transfer programs to and from

944-959

the recorder or disk. LIST (except to the display screen), LOAD
and LPRINT also close all sound voices. The RUN from tape or
disk and SAVE commands use channel seven, as does LIST.
The bytes within each IOCB are used as follows:

Label Offset Bytes Description

ICHID 0 1 Index into the device name
table for the currently OPEN fil e. Set by the OS. If not in use, the
value is 255 ($FF), which is also the initialization value.

ICDNO 1 1 Device number such as one
for D 1: or two for D2:. Set by the OS.

ICCOM 2 1 Command for the type of
action to be taken by the device, set by the user. This is the first
variable after the channel number in an OPEN command. See
below for a command summary. Also called ICCMD.

ICSTA 3 1 The most recent status
returned by the device, set by the OS. Mayor may not be the
same value as that which is returned by the STATUS request in
BASIC. See the OS User's Manual, pp. 165-166, for a list of status
byte values.

ICBALIH 4,5 2 Two-byte (LSB,MSB) buffe r
address for data transfer or the address of the file name for OPEN,
STATUS, e tc.

ICPTLIH 6,7 2 Address of the device's put-
one-byte routine minus one. Set by the OS at OPEN command,
but not actually used by the OS (it is used by BASIC, however).
Points to CIG's "IOCB NOT OPEN" message at powerup.

ICBLLlH 8,9 2 Buffer length set to the
maximum number of bytes to transfer in PUT and GET
operations. Decremented by one for each byte transferred;
updated after each READ or WRITE operation. Records the
number of bytes actually transferred in and out of the buffer after
each operation.

ICAX1 10 1 Auxiliary byte number one,
referred to as AUXI. Used in the OPEN statement to specify the
type of file access: four for READ, e ight for WRITE, twe lve for
both (UPDATE). Not all devices can use both kinds of operations.
This byte can be used in user-written drivers for other purposes
and can be altered in certain cases once the IOCB has been
OPENed (see the program example above). For the S: deVice, if
AUXI equals 32, it means inhibit the screen clear function when
changing GRAPHICS modes. Bit use is as follows for most
applications:

85

944-959

86

Bit
U&e

7 6 5 4
. .. . unused

3
W

2
R

1
D

o
A

W equals write, R equals read, D equals directory, A equa ls
append .

ICAX2 11 1 Auxiliary byte two, referred
to as AUX2. Special use by each device driver; some seria l port
functions may use thi s byte. Auxiliary bytes two to fi ve have no
fixed use; they are used to contain device-dependent and/or
user-established data.

ICAX3/4 12 ,13 2 Auxil iary bytes three and
four; used to maintain a record of the disk sector number for the
BASIC NOTE and PO INT commands.

ICAX5 14 1 Auxiliary byte five. Used by
NOTE and POINT to maintain a record of the byte with in a sector.
It stores the re lative displacement in sector from zero to 124
($7C) . Bytes 125 and 126 of a sector are used for sector-link
values, and byte 127 ($7F) is used as a count of the number of
data bytes in actual use in that sector.

ICAX6 15 1 Spare auxil iary byte.

Offset is the number you wou ld add to the sta rt of the lOeB in
order to POKE a va lue into the right fie ld, such as POKE 832 +
OFFSET, 12 .
The following is a list of the values associated with OPEN
parameter number I. Most of these values are listed in Your Atari
4001800. These a re the va lues found in ICAX I , not the ICCOM
values.

Device Task # Description

Cassette 4 Read
recorder 8 Write (can do either, not both)

Disk
file

4 Read
6 Read disk directory
8 Write new file. Any file OPENed in

this mode wi ll be deleted, and the first byte wri tten will be at the
start of the file.

9 Write - append . In thi s mode the
file is left intact, and bytes written are put at the end of the file.

12 Read and write - update . Bytes
read or written will start at the fir st byte in the fi le.

D: if BIT 0 equa ls one and BIT 3 equals one in AUXl, then
operation wi ll be appended output.

Screen
editor

8
12

Screen output
Keyboard input and screen ou tput

944-959

(E:) 13 Screen input and output

E: BIT 0 equals one is a forced read (GET command).

Keyboard 4 Read

Printer 8 Write

RS-232 5 Concurrent read
serial 8 Block write
port 9 Concurrent write

13 Concurrent read and write

Screen 8
display 12
(S:) 24

28
40
44

C lear
Screen
after GR.

yes
yes
yes
yes
no
no

Text Read
Window Oper-
also ation

no no
no yes
yes no
yes yes
no no
no yes

56 no yes no
60 no yes yes

Note that with S :, the screen is a lways cleared in GR.O and there
is no separate text window in GR.O unless specifically user­
designed. Without the screen clear, the previous material will
remain on screen between GRAPHICS mode changes, but will
not be legible in other modes. The values with S: are placed in
the first auxiliary byte of the IOCB. All of the screen values above
are also a write operation.

The second parameter in an OPEN statement (placed in the
second auxiliary byte) is far more restricted in its use. Usually set
to zero. If set to 128 ($80) for the cassette, it changes from normal
to short inter- record gaps (A UX2).
With the Atari 820 printer, 83 ($53; AUX byte two) means
sideways characters (Atari 820 printer only) . Other printer
variables (all for AUX2 as well) are: 70 ($4E) for normal 40
character per line printing and 87 ($57) for wide printing mode .
With the screen (S:), a number can be used to specify the
GRAPHICS modes zero through e leven . If mode zero is chosen,
then the AUXI options as above are ignored.
For the ICCOM field, the following values apply (BASIC XIO
commands use the same values):

Command Decimal Hex

Open c hannel 3 3

87

944-959

88

Get text record (line) 5 5 BASIC:
INPUT
#n,A

Get binary record (buffer) 7 7 BASIC:
GET#n,A

Put text record (line) 9 9
Put binary record (buffer) 11 B BASIC:

PUT#n,A
Close 12 C
Dynamic (channel) status 13 D

BASIC uses a special "put byte" vector in the IOCB to talk
directly to the handler for the PRINT#n,A$ command.
Disk File Management System Commands (BASIC XIO
command) :

Rename
Erase (delete)
Protect (lock)
Unprotect (unlock)
Point
Note
Format

32
33
35
36
37
38

254

20
21
23
24
25
26
FE

In addition, XIO supports the following commands:

Get character 7 7
Put character 11 B
Draw line 17 11 Display

handler
only .

Fill area 18 12 Display
handler
only .

FILL is done in BASIC with XIO 18,#6,12,0, "S:" (see the BASIC
Reference Manual for details).

For the RS-232 (R :), XIO supports:

Output partial block 32 20
Control RTS,XMT,DTR 34 22
Baud, stop bits, word size 36 24
Translation mode 38 26
Concurrent mode 40 28

(see the 850 Interfa ce Manual for details)

CIO treats any command byte value greater than 13 ($D) as a
special case, and transfers control over to the device handler for
processing . For more information on lOCB use, read Bill

960-999

Wilkinson's "Insight: Atari" columns in COMPUTE!, November
and December 1981, and in Microcomputing, August 1982 . Also
refer to the OS User's Manual and De Re Atari .

960-999 3CO-3E7 PRNBUF
Printer buffer . The printer handler collects output from LPRINT
statements here, sending them to the printer when an End of Line
(EOL; carriage return) occurs or when the buffer is full. Normally
this is 40 characters. However, if an LPRINT statement generates
fewer than 40 characters and ends with a semicolon or 38
characters and ends with a comma, Atari sends the entire buffer
on each FOR-NEXT loop, the extra bytes filled with zeros. The
output of the next LPRINT statement will appear in column 41 of
the same line. According to the Operating System User's
Manual, the Atari supports an 80-column printer device called
P2: . Using OPEN and PUT statements to P2: may solve this
problem . Here is a small routine for a GR.O BASIC screen dump:

10 DIM TEXT$(1000): OPEN#2,4,0,"S:":
TRAP1050

1000 FOR LINE = 1 TO 24: POSITION PE
EI«82),LINE

1010

1020
1030
1040
1050

FOR COL = 1 TO 38: GET#2,CHAR:
TEXT$(COL,COL)=CHR$(CHAR)

NEXT COL: GET#2,COL
LPRINT TEXT$
NEXT LINE
RETURN

You can use the PTABW register at location 201 ($C9) to set the
number of spaces between print elements separated by a comma.
The minimum number of spaces accepted is two. LPRINT
automatically uses channel seven for output. No OPEN statement
is necessary and CLOSE is automatic.

Locations 1000 to 1020 ($3E8 to $3FC) are a reserved spare buffer
area.

1021-1151 3FD-47F CASBUF
Cassette buffer . These locations a re used by the cassette handler
to read data from and write data to the program (tape) recorder.
The 128 ($80) data bytes for each cassette record are stored
beginning at 1024 ($400 - page four). The current buffer size is

89

1406

found in location 650 ($28A). Location 6 1 ($3D) points to the
current byte being written or read.
CASBUF is also used in the disk boot process; the first disk
record is read into this buffer.
A cassette record consists of 132 bytes: two control bytes set to 85
($55; alternating zeros and ones) for speed measurement in the
baud rate correction routine; one control byte (see be low); 128
data bytes (compared to 125 data bytes for a disk sector), and a
checksum byte . Only the data bytes are stored in the cassette
buffer. See De Re Atari for more information on the cassette
recorder .

CONTROL BYTE VALUES
Value Meaning
250 ($FA) Partial record follows. The actual number of bytes is stored

in the last byte of the record (127).
252 ($FC)
254 ($FE)

Record full; 128 bytes follow .
End of File (EOF) record; followed by 128 zero bytes.

Locations 1152 to 179 1 ($480 to $6FF) are for user RAM (outer
environment) requirements, depending on the amount of RAM
available in the machine. Provided you don't use the FP package or
BASIC, you have 640 ($280) free bytes here.
Locations 1152 to 1279 ($480 to $4FF) dre 128 ($80) spare bytes.
The floating point package, when used, requires locations 1406 to 1535
($57E to $5FF) .

1406 57E LBPRI
LBUFF prefix one.

1407 57F LBPR2
LBUFF prefix two.

1408-1535 580-5FF LBUFF

1504

BASIC line buffer; 128 bytes. Used as an output result buffer for
the FP to ASCII routine at 55526 ($D8E6) . The input buffer is
pointed to by locations 243,244 ($F3, $F4).

5EO PLYARG
Polynomial arguments (FP use).

1510-1515 5E6-5EB FPSCR
FP scratch pad use.

1516-1535 5EC-5FF FPSCRI
Ditto . The end of the buffer is named LBFEND .

90

1536-1791

1536-1791 600-6FF
Page six: 256 ($FF) bytes protected from OS use. Page six is not
used by the OS and may be safely used for machine language
subroutines, special 1/0 handlers, altered character sets, or
whatever the user can fit into the space. Some problem may arise
when the INPUT statement retrieves more than 128 characters.
The locations from 1536 to 1663 ($600 to $67F) are then
immediately used as a buffer fo r the excess characters. To avoid
overflow, keep INPUT statements from retrieving more than 128
characters. The valFORTH implementation of fig -FORTH (from
ValPar International) uses all of page six for its boot code, so it is
not available for your use . However, FORTH allows you to
reserve other blocks of memory for similar functions . BASIC A +
uses locations $0600 - $67F.

Locations 1792 to the address speCified by LOMEM (locations
128, 129; ($80, $81) - the pointer to BASIC low memory) are also
used by DOS and the File Management System (FMS). Refer to
the DOS source code and Inside Atari DOS for details. The
addresses which follow are those for DOS 2.0S, the official Atari
DOS at the time of this writing. Another DOS is avai lable as an
alternative to DOS 2.0 - K-DOS (TM), from K-BYTE (R). K-DOS
is not menu driven but command driven. It does not use all of the
same memory locations as the Atari DOS although it does use a
modified version of the Atari FMS. (Another command-driven
DOS, called OSIA + , is completely compatible with DOS 2 .0S
and is available from OSS, the creators of DOS 2.0S.)

1792-5377 700-1501
File management system RAM (pages seven to fifteen). FMS
provides the interface between BASIC or DUP and the disk
drive. It is a sophisticated device driver for all I/O operations
involving the D: device. It allows disk users to use the special
BASIC XIO disk commands (see the IOCB area 832 to 959: $340
to $3BF). It is resident in RAM below your BASIC RAM and
provides the entry point to DOS when called by BASIC .

5440-13062 1540-3306
DUP .SYS RAM. The top will vary with the amount of buffer
storage space allocated to the drive and sector buffers.

6780-7547 lA7C-ID7B
Drive buffers and sector-data buffers. The amount of memory wi ll
vary with the number of buffers allocated.

7548-MEMLO ID7C-3306 {maximum}

91

7548-MEMLO

Non-resident portion of DUP.SYS, DOS utility routines . DUP
provides the utilities chosen from the DOS menu page, not from
BASIC. It is not resident in RAM when you are using BASIC or
another cartridge; rather it is loaded when DOS is called from
BASIC or on autoboot powerup (and no cartridge supersedes it).
When DUP is loaded, it overwrites the lower portion of memory.
If you wish to save your program from destruction, you must have
created a MEM. SA V file on disk before you called DOS from your
program. See the DOS Reference Manual.

Locations 1792 to 2047 ($700 to $7FF; page seven) are the user boot
area. MEMLO and LOMEM point to 1792 when no DOS or DUP
program is loaded . This area can then be used for your BASIC or
machine language programs. The lowest free memory address is 1792,
and programs may extend upwards from here . There is a one-page
buffer before the program space used for the tokenization of BASIC
statements, pointed to by locations 128, 129 ($80, $81). Actually a
program may start from any address above 1792 and below the screen
display list as long as it does not overwrite this buffer if it is a BASIC
program. Also, 1792 is the start of the FMS portion of DOS when
resident.
When software is booted, the MEMLO pointer at 743,744 ($2E7,$2E8)
in the OS data base (locations 512 to 1151; $512 to $47F) points to the
first free memory location above that software; otherwise, it points to
1792 . The DUP portion of DOS is partly resident here, starting at 5440
($1540) and running to 13062 ($1540 to $3306). The location of the OS
disk boot entry routine (DOBOOT) is 62 189 ($F2ED). The standard
Atari DOS 2.0S takes up sectors one through 83 ($53) on a disk. Sector
one is the boot sector. Sectors two through 40 ($28) are the FMS
portion, and sectors 41 ($29) through 83 are the DUP.SYS portion of
DOS . For more information, see the DOS and OS source listings and
Inside Atari DOS.

FMS, DOS.SYS and DUP.SYS

92

Disk boot records (sector one on a disk) are read into 1792 ($700).
Starting from $700 (1792), the format is:

Byte Hex Label and use
o 700 BFLAG: Boot flag equals zero (unused) .
1 701 BRCNT: Number of consecutive sectors to

2,3
4,5
6

702,703
704,705
706

read (if the file is DOS, then BRCNT equals
one) .
BLDADR: Boot sector load address ($700) .
BIWTARR: Initialization address.
JMP XBCONT: Boot continuation vector; $4C

1801

(76): JMP command to next address in bytes seven and eight.

7,8 707,708 Boot read continuation address
(LSB/MSB).
9 709 SABYTE: Maximum number of concurrently
OPEN files. The default is three (see 1801 below) .
10 70A DRVBYT: Drive bits: the maximum number
of drives attached to the system. The default is two (see 1802
below).
11 70B (unused) Buffer allocation direction, set to
zero.
12,13 70C,70D SASA: Buffer allocation start address. Points
to 1995 ($7CB) when DOS is loaded.
14 70E DSFLG: DOS flag . Boot flag set to non-zero
Must be non-zero for the second phase of boot process. Indicates
that the file DOS. SYS has been written to the disk; zero equals no
DOS file, one equals 128 byte sector disk, two equals 256 byte
sector disk.
15,16 70F,710 DFLINK: Pointer to the first sector of DOS.SYS
file .
17 711 BLDISP: Displacement to the sector link byte
125 ($7D). The sector link byte is the pointer to the next disk
sector to be read. If it is zero, the end of the file has been
reached.

18,19 712,713 DFLADR: Address of the start of DOS.SYS
file .
20 + 714 + Continuation of the boot load file. See the
OS User 's Manual and Chapter 20 of Inside Atari DOS.

Data from the boot sector is placed in locations 1792 to 1916 ($700
to $77C). Data from the rest of DOS.SYS is located starting from
1917 ($77D). All binary file loads start wi th 255 ($FF). The next
four bytes are the start and end addresses (LSB/MSB),
respectively .

1801 709 SABYTE
This records the limit on the number of files that can be open
simultaneously. Usually set to three, the maximum is seven (one
for each available IOCB - remember IOCBO is used for the
screen display). Each available file takes 128 bytes for a buffer,
so if you increase the number of buffers, you decrease your RAM
space accordingly. You can POKE 1801 with your new number to
increase or decrease the number of files and then rewrite DOS
(by calling DOS from BASIC and choosing menu selection "H")
and have this number as your default on the new DOS.

93

1802

1802 70A DRVBYT
The maximum number of disk drives in your system, the DOS 2 .0
default va lue is two. The least four bits are used to record which
drives are avai lab le, so if you have drives one , three and four,
th is location wou ld read:

00001101 or 13 in decimal.

Each drive has a separate buffer of 128 bytes reserved for it in
RAM. If you have more or less than the defau lt (two), then POKE
1802 with the appropriate number:

1 drive = 1 BIT 0
2 drives = 3 BITS 0 & 1
3 drives = 7 BITS 0, 1 & 2
4 drives = 15 BITS 0, 1,2 & 3

Binary 00000001
00000011
00000111
00001111

This assumes you have them numbered sequentially. If not ,
POKE the appropriate decimal translation for the correct binary
code: each drive is specified by one of the least four bits from one
in BIT 0 to four in BIT 3. If you PEEK (1802) and get back three,
for example, it means drives one and two are allocated, not three
drives.
You can save your modification to a new disk by calling up DOS
and chOOSing menu selection "H." This new DOS wi ll then boot
up with the number of drives and buffers you have allocated. A
one-drive system can save 128 bytes this way (256 if one less data
buffer is chosen). See the DOS Manual, page G .87.

1900 76C BSIO
Entry point to FMS d isk sector I/O routines.

1906 772 BSIOR
Entry point to the FMS disk handler (?).

1913 779
Write verify flag for disk I/O operations. POKE with 80 ($50) to
turn off the verify funct ion, 87 ($57) to turn it back on. Disk write
without verify is faster, but you may get e rrors in your data. I
have had very few errors generated by turning off the verify
function, but even one error in critical materia l can destroy a
whole program. Be careful about using this location. You can
save DOS (as above with menu selection "H") without write verify
as your new default by writing DOS to a new disk. See the DOS
Manual, page F.85. K-DOS's write-verify flag is located at 1907
($773).

1995 7CB DFMSDH

94

Entry point to a 21-byte FMS device (disk) handler. The address
of this hand ler is placed in HATABS (locations 794 to 83 1; $31 A

2016

to $33F) by the FMS initialization routine. When CIO needs to
call an FMS function, it will locate the address of that function via
the handler address table. See Chapters 8-11 of Inside Atari
DOS, published by COMPUTE! Books.

2016 7EO DINT
FMS initialization routine. The entry point is 1995 ($7CB). DUP
calls FMS at this point. K-DOS uses the same location for its
initialization routine.

2219 8AB DFMOPN
OPEN routines, including open for append, update, and output.

2508 900 DFMPUT
PUT byte routines.

2591 A1F WTBUR
Burst IIO routines.

2592-2773 A20-AD5
In COMPUTE!, May and July 1982, Bill Wilkinson discussed
BURST IIO, which should not take place when a file is OPEN for
update, but does, due to a minor bug in DOS 2.0 (see also Inside
Atari DOS, Chapter 12). This will cause update writes to work
properly, but update reads to be bad. The following POKEs will
correct the problem. Remember to save DOS back to a new disk.

POKE 2592,130 ($A20,82)
POKE 2593,19 ($A21,l3)
POKE 2594,73 ($A22,49)
POKE 2595,12 ($A23,OC)
POKE 2596,240 ($A24,FO)
POKE 2597,36 ($A25,24)
POKE 2598,106 ($A26,6A)
POKE 2599,234 ($A27,EA)
POKE 2625,16 ($A41,10)
POKE 2773,31 ($AD5,lF)

(Note that the July 1982 issue of COMPUTE! contained a typo
where the value to be POKEd into 2773 was mistakenly listed as
13, not 31 !) Wilkinson points out that one way to completely
disable BURST 1/0 (useful in some circumstances such as using
the DOS BINARY SAVE to save the contents of ROM to disk!) is
by:

POKE 2606,0 ($A2E,O)

This, however, will make the system LOAD and SAVE files
considerably more slow ly, so it's not recommended as a
permanent change to DOS.

95

2751

2751 ABF DFMGET
GET byte routines, including GET file routines.

2817 BOI DFMSTA
Disk STATUS routines.

2837 B15 DFMCLS
IOCB CLOSE routines.

2983 BA7 DFMDDC
Start of the device-dependent command routines, including the
BASIC XIO special commands:

3033 BD9 XRENAME
RENAME a fil e.

3122 C32 XDELETE
DELETE a file.

3196 C7C XLOCK, XUNLOCK
LOCK and UNLOCK files. UNLOCK routines begin at 3203
($C83).

3258 CBA XPOINT
BASIC POINT command.

3331 D03 XNOTE
BASIC NOTE command . See the DOS Manual for information
regarding these two BASIC commands, and see De Re Atari for a
sample use.

3352 D18 XFORMAT
Format the entire diskette.

3501 DAD LISTDIR
List the disk directory.

3742 E9E FNDCODE
File name decode, including wi ldcard validity test. The current
file name is pointed to by ZBUFP at locations 67,68 ($43, $44).

3783 EC7
By POKEing the desired ATASCII value here, you can change
the wildcard character (*; ATASCII 42, $2A) used by DOS to any
other character of your choice. Your altered DOS can be saved
back to disk with DOS menu selection "H".

3818,3822 EEA,EEE

96

By POKEing 3818 with 33 and 3822 with 123 ($21 ,$7B;), you can
modify DOS to accept file names with punctuation, numbers and
lowercase as valid; 33 is the low range of the ATASCII code and
127 the high range (lower or higher values are control and

3850

graphics codes and inverse characters). Of course, any
unmodified DOS still won't accept such file names. You could
actually change the range to any value from zero to 255 at your
discretion. This, however, may cause other problems with such
ATASCII codes as spaces and the wildcard (*; see above) . Can
be saved back to disk with menu selection "H".

3850 FOA FDSCHAR
Store the file name characters that result from the file name
decode routines.

3873 F21 SFDIR
Directory search routines; search for the user-specified file
name.

3988 F94 WRTNXS
Write data sector routine .

4111 100F RDNXTS
Read data sector routine.

4206 106E RDDIR
Read and write directory sector routines.

4235 108B RDVTOC
Read or write the volume table of contents (VTOC) sectors.

4293 10C5 FRESECT
Free sector(s) routine; returns the number of free sectors on a
disk that are available to the user.

4358 1106 GETSECTOR
Get sector routine; retrieves a free sector for use from the disk.

4452 1164 SETUP
SETUP - initialization of the FMS parameters. Prepares FMS to
deal with the operation to be performed and to access a
particular file. See Inside Atari DOS, Chapter seven.

4618 120A WRTDOS
Write new DOS.SYS file to disk routine, including new FMS file
to DOS.SYS file.

4789 12B5 ERRNO
Start of the FMS error number table.

4856-4978 12F8-1372
Miscellaneous FMS storage area: sector length, drive tape, stack
level, file number, etc.

4993-5120 1381-1400 FCB
Start of the FMS File Control Blocks (FCB's). FCB's are used to

97

5121

store information about fil es currently being processed. The
eight FCB's are 16-byte blocks that correspond in a one-on-one
manner with the lOCB's. Each FCB consists of:

Label Bytes Purpose
FCBFNO 1 File number of the current file being
processed .
FCBOTC 1 Which mode the file has been OPENed for:
append is one, directory read is two, input is four, output is
eight, update is twelve .
SPARE 1 Not used.
FCBSLT 1 Flag for the sector length type; 128 or 256
bytes .
FCBFLG Working fl ag. If equal to 128 ($80), then the
file has been OPENed for output or append and may acquire new
data sectors. If the value is 64, then sector is in the memory buffer
awaiting writing to disk.
FCBMLN 1 Maximum sector data length ; 125 or 253 bytes
depending on drive type (single or double density). The last
three sector bytes are reserved for sector link and byte count
data .
FCBDLN 1 Current byte to be read or modified in the
operation in a data sector .
FCBBUF 1 Tells FMS which buffer has been allocated
to the file being processed.
FCBCSN 2 Sector number of thp. sector currently in the
buffer .
FCBLSN 2 Number of the next sector in data chain .
FCBSSN 2 Starting sectors for appended data if the file
has been OPENed for append.
FCBCNT 2 Sector count for the current file.
DUP doesn't use these FCB's; it wri tes to the lOCB's directly.
cro transfers the control to FMS as the operation demands, then
on to SlO.

5121 1401 FILDIR
File directory, a 256 ($ 100) byte sequential buffer for entries to
the disk directory.

5377 1501 ENDFMS

98

Disk directory (VTOC - Volume Table Of Contents) buffer. 64
($40) bytes are reserved, one byte for each possible fil e. It also
marks the end of FMS. The VTOC (sector 360; $168) is a
sequential bit map of each of the 720 sectors on the disk . It starts
at byte ten and continues through to byte 99. When a bit is set

5440

(one), it indicates that the sector associated is in use.

5440 1540 DOS
DUP.SYS initialization address. Beginning of mini-DOS; the
RAM-resident portion of DUP . Used for the same purpose in K­
DOS.

5446,5450 1546,154A, ',"

5533

5534

Contains the location (LSB/MSB) of the DOSVEC (location 10;
$A) . This is the pointer to the address BASIC will jump to when
DOS is called.

159D DUPFLG
Flag to test if DUP is already resident in memory . Zero equals
DUP is not there.

159E OPT
Used to store the value of the disk menu option chosen by the
user.

5535 159F LOADFLG
If this location reads 128, then a memory file (MEM.SAV) file
doesn't have to be loaded.

5540 15A4 SFLOAD
Routines to load a MEM .SAV file if it exists.

5888

5899

1700 USRDOS
Listed in the DUP.SYS equates file but never explained in the
listings.

170B MEMLDD
Flags that the MEM .SAV file has been loaded. Zero means it has
not been loaded.

5947 173B
The MEM.SAV (MEMSAVE) file creation routines begin here.
They start with the file name MEM.SAV stored in ATASCII
format. The write routines begin at MWRITE, 5958 ($1746) . The
DOS utility MEMSAVE copies the lower 6000 bytes of memory to
disk to save your BASIC program from being destroyed when
you call DOS, which then loads DUP .SYS into that area of
memory.

6044,6045 179C-179D INISAV
DOSINI (see location 12, 13; $C, $D) vector save location. Entry
point to DOS on a call from BASIC.

6046 179E MEMFLG
Flag to show if memory has been written to disk using a
MEM.SAV file .

99

6418

6418 1912 CLMJMP
Test to see if DOS must load MEM.SAV from the disk before it
does a run at cartridge address, then jumps to the cartridge
address.

6432 1920 LMTR
Test to see if DOS must load MEM.SAV before it performs a run at
address command from the DOS menu .

6457 1939 LDMEM
MEMSAVE load routines (for the MEM .SAV file).

6518 1979 INITIO
DUP. SYS warmstart entry. An excellent program to eliminate the
need for DUP .SYS and MEM. SAY (not to mention the time
required to load them!) was presented in COMPUTE!, July 1982,
called MicroDOS; it's well worth examining . See also "The Atari
Wedge," COMPUTE!, December 1982.

6630 19E6 ISRODN
Start of the serial interrupt service routine to output data needed
routines in DUP.SYS.

6691

6781

lA23 ISRSIR
Start of the serial interrupt ready service routines in DUP .SYS.

lA7D
Start of the drive and data buffers. Drive buffers are numbered
sequentially one to four, data buffers one to eight, assuming that
many are allocated for each. Normally, the first two buffers are
allocated for drives and the next three for data . Buffers are 128
($80) bytes long each and start at 6908 ($IAFC), 7036 ($lB7C),
7162 ($IBFA) and 7292 ($IC7C) . See locations 1801 and 1802
($709, $70A).

7420 lCFC

100

MEMLO (743, 744; $2E7, $2E8) points here when DOS is resident
unless the buffer allocation has been altered . MEMLO will point
to 7164 for a one drive, two data buffer setup, a saving of 256
bytes. Loading the RS-232 handler from the 850 Interface will
move MEMLO up another 1728 bytes . The RS-232 handler in the
850 Interface will only boot (load into memory) if you first boot
the AUTORUN .SYS file on your Atari master diskette or use
another RS-232 boot program such as a terminal package. The
RS-232 handler will boot up into memory if you do not have a disk
attached and you have turned it on before turning on the
computer. You may still use the printer (parallel) port on the 850
even if the RS-232 handler is not booted .

7548

7548 ID7C
Beginning of non-resident portion of DUP; 40 ($28) byte
parameter buffer .

7588 IDA4 LINE
80 ($50) byte line buffer.

7668 IDF4 DBUF
256 ($100) byte data buffer for COPY routines. Copy routines
work in l25-byte passes , equal to the number of data bytes in
each sector on the disk. There are 256 bytes because Atari had
planned a double density drive which has 253 data bytes in each
sector.

7924 lEF4
Miscellaneous variable storage area and data buffers.

7951-8278 IFOF-2056 DMENU
Disk menu screen display data is stored here.

8191 IFFF
This is the top of the minimum RAM required for operation (8K).
To use DOS, you must have a minimum of 16K.

DUP.SYS ROUTINES
Locations 8192 to 32767 ($2000 to $7FFF) are the largest part of the
RAM expansion area; this space is generally for your own use. If you
have DOS .SYS or DUP.SYS loaded in, they a lso use a portion of this
area to 13062 ($3306) as below:

8309 2075 DOSOS
Start of the DOS utility monitor, including the utilities called
when a menu selection function is comple ted and the display of
the "SELECT ITEM" message.

8505 2139 DIRLST
Directory listing .

8649 21C9 DELFIL
Delete a file.

8990 231E
Copy a file . This area starts with the copy messages. The copy
routines themselves begin at PYFIL, 9080 ($2378) .

9783 2637 RENFIL
Rename a disk file routines.

9856 2680 FMTDSK
Format the entire disk. There is no way to format speCific sectors

101

9966

of a disk with the "C" ROMs currently used in your 810 drives.
There is a new ROM, the "E" version, which not only a llows
selective sector formatting, but is also considerably faster. It was
not known at the time of this writing whether Atari would release
the "E" version.

9966 26EE STCAR
Start a cartridge .

10060 274C BRUN
Run a binary file at the user-specified address .

10111 277F
Start of the write MEM .SAV file to disk routine. The entry point is
at MEMSAV, 10138 ($279A).

10201 2709 WBOOT
Write DOS/DUP files to disk.

10483 28F3 TESTVER2
Test for version two DOS. DOS.20S is the latest official DOS,
considerably improved over the earlier DOS 1.0 . The S stands for
single density. Atari had planned to release a dual density drive
(the 8 15), but pulled it out of the production line at the last minute
for some obscure high-level reason. A double density drive is
available from the Percom company .

10522 291A LOFIL
Load a binary file into memory. If it has a run address speCified in
the file, it will autoboot.

10608 2970 LKFIL, ULFIL
Lock and unlock files on a disk .

10690 29C2 OOMG
Duplicate a disk.

11528 2008 OFFM
Duplicate a file.

11841 2E41
Miscellaneous subroutines.

12078 2F2E SAVFIL
Save a binary file .

12348 303C
Miscellaneous subroutines.

13062 3306
End of DUP .SYS.
The rest of RAM is available to location 32767 ($7FFF).

102

CARTRIDGE B: 8K
Locations 32768 to 40959 ($8000 to $9FFF) are used by the right
cartridge (Atari 800 only), when present. When not present, this RAM
area is available for use in programs. When the 8K BASIC cartridge is
being used, this area most frequently contains the display list and screen
memory. As of this writing, the only cartridge that uses this slot is
Monkey Wrench from Eastern House Software.
It is possible to have 16K cartridges on the Atari by either combining
both slots using two 8K cartridges or simply having one with large
enough ROM chips and using one slot. In this case, the entire area from
32768 to 49151 ($8000 to $BFFF) would be used as cartridge ROM.
Technically, the right cartridge slot is checked first for a resident
cartridge and initialized, then the left. You can confirm this by putting
the Assembler Editor cartridge in the right and BASIC in the left slots.
BASIC wi ll boot, but not the ASED. Using FRE(O), you will see,
however, that you have 8K less RAM to use; and PEEKing through this
area wi ll show that the ASED program is indeed in memory, but that
control was passed to BASIC. Control will pass to the ASED cartridge if
the cartridges are reversed. This is because the last six bytes of the
cartridge programs tell the OS where the program begins - in both
cases, it is a location in the area dedicated to the left cartridge. The six
bytes are as follows:

Byte Purpose
Left (A) Right(B)
49146 ($BFF A) 40954 ($9FF A) Cartridge start address (low byte)
49147 ($BFFB) 40955 ($9FFB) Cartridge start address (high byte)
49148 ($BFFC) 40956/($9FFC) Reads zero if a cartridge is

inserted, non- zero when no c;artridge is present . This information
is passed down to the page zero RAM: if the A cartridge is plugged
in, then location 6 will read one; if the B cartridge is plugged in,
then location 7 will read one; otherwise they will read zero.

49149 ($BFFD) 40957 ($9FFD) Option byte. If BIT 0 equals one,
then boot the disk (else the re is no disk boot). If BIT 2 equals one,
then initialize and start the cartridge (else initialize but do not
start). If BIT 7 equals one, then the cartridge is a diagnostic
cartridge which will take control, but not initialize the OS (else
non-diagnostic cartridge) . Diagnostic cartridges were used by
Atari in the development of the system and are not available to the
public.

49150 ($BFFE) 40958 ($9FFE) Cartridge initia lization address
low byte.

49151 ($BFFF) 40959 ($9FFF) Cartridge initialization address
high byte. This is the address to which the OS will jump during all

103

powerup and RESETs.
The OS makes temporary use of locations 36876 to 36896 ($900C to
$9020) to set up vectors for the interrupt handler. See the OS
listings pages 31 and 81. This code was only used in the
development system used to design the Atari.

CARTRIDGE A: 8K
Locations 40960 to 49151 ($AOOO to $BFFF) are used by the left
cartridge, when present. When not present, this RAM area is available
for other use. The display list and the screen display data will be in this
area when there is no cartridge present.
Most cartridges use this slot (see above) including the 8K BASIC,
Assembler-Editor, and many games. Below are some of the entry
points for the routines in Atari 8K BASIC. There is no official Atari
listing of the BASIC ROM yet. Many of the addresses below are listed
in Your Atari 4001800. Others have been provided in numerous
magazine articles and from disassembling the BASIC cartridge .

BASIC ROUTINES
40960-41036 AOOO-A04C
Cold start.
41037-41055 A04D-A05F
Warm start.
41056-42081 A060-A461
Syntax checking routines.
42082-42158 A462-A4AE
Search routines.
42159-42508 A4AF-A60C
STATEMENT name table . The statement TOKEN list begins at 42161
($A4Bl) . You can print a list of these tokens by:

5 ADDRESS = 42161
10 IF NOT PEEKCADDRESS) THEN PRINT:

END
15 PRINT TOKEN.
20 BYTE = PEEKCADDRESS): ADDRESS = A

DDRESS + 1
30 IF BYTE < 128 THEN PRINT CHR$CBYT

E};: GOTO 20
40 PRINT CHR$CBYTE - 128}
50 ADDRESS = ADDRESS + 2: TOKEN TO

KEN + 1: GOTO 10
42509-43134 A60D-A87E
Syntax tables . The OPERATOR token list begins at 42979 ($A7E3). You

104

can print a list of these tokens by:

5 ADDRESS = 42979: TOKEN = 16
10 IF NOT PEEK(ADDRESS) THEN PRINT:

END
15 PRINT TOKEN.
20 BYTE = PEEK(ADDRESS): ADDRESS = A

DDRESS + 1
30 IF BYTE < 128 THEN PRINT CHR$(BYT

E);: GOTO 20
40 PRINT CHR$(BYTE - 128)
50 TOKEN = TOKEN + 1
60 GO TO 10

See COMPUTE!, January and February 1982; BYTE, February 1982,
and De Re Atari for an explanation of BASIC tokens.
43135-43358 A87F-A95E
Memory manager.
43359-43519 A95F-A9FF
Execute CONT statement.
43520-43631 AAOO-AA6F
Statement table.
43632-43743 AA70-AADF
Operator table .
43744-44094 AAEO-AC3E
Execute expression routine.
44095-44163 AC3F-AC83
Operator precedence routine.
44164-45001 AC84-AFC9
Execute operator routine.
45002-45320 AFCA -B 1 08
Execute function routine.
45321-47127 B109-B817
Execute statement routine.
47128-47381 B818-B915
CONT statement subroutines.
47382-47542 B916-B9B6
Error handling routines.
47543-47732 B9B7-BA74
Graphics handling routines.
47733-48548 BA75-BDA4
1/0 routines.
48549-49145 BDA5-BFF9
Floating point routines (see below).

105

48551

48551 BDA7 SIN
Calculate SIN(FRO). Checks DEGFLG (location 251; $FB) to see if
trigonometric calculations are in radians (DEGFLG equals zero)
or degrees (DEGFLG equals six).

48561 BDBI COS
Calculate Cosine (FRO) with carry. FRO is Floating Point register
zero, locations 212-217; $D4-$D9. See the Floating Point package
entry points from location 55296 on.

48759 BE77 ATAN
Calculate Atangent using FRO, with carry.

48869 BEE5 SQR
Calculate square root (FRO) with carry.
Note that there is some conflict of addresses for the above
routines. The addresses given are from the first edition of De Re
Atari. The Atari OS Source Code Listing gives the follOWing
addresses for these FP routines:
These are entry points, not actual start addresses .

SIN
COS
ATAN
SQR

48513
48499
48707
48817

($BD81)
($BD73)
($BE43)
($BEB1)

However, after disassembling the BASIC ROMs, I found that the
addresses in De Re Atari appear to be correct.

49146,7 BFFA,B
Left cartridge start address.

49148 BFFC
A non-zero number here te lls the OS that there is no cartridge in
the left slot .

49149 BFFD
Option byte. A cartridge which does not specify a disk boot may
use all of the memory from 11 52 ($480) to MEMTOP any way it sees
fit.

49150.1 BFFE,F

106

Cartridge initialization address. See the above section on the right
slot, 32768 to 40959, for more information.

When a BASIC program is SAVEd , only 14 of the more than 50
page zero locations BASIC uses are written to the disk or cassette
with the program. The rest are all recalculated with a NEW or
SAVE command , sometimes with RUN or GOTO. These 14

locations are:

128,129 80,81 LOMEM
130,131 82,83 VNTP
132,133 84,85 VNTD
134,135 86,87 VVTP
136,137 88,89 STMTAB
138,139 8A,8B STMCUR
140,141 8C,8D STARP
The string/array space is not loaded; STARP is included only to
point to the end of the BASIC program.
The two other critical BASIC page zero pOinters, which are not
SAVEd with the program, are:

142,143 8E,8F RUNSTK
144,145 90,91 MEMTOP
For more information concerning Atari BASIC, see the appendix.
For detailed description, refer to the Atari BASIC Reference
Manual. For more technical information, see De Re Atari, BYTE,
February 1982, and COMPUTE/ 's First Book of Atari and
COMPUTEf's Second Book of Atari.

Locations 49152 to 53247 ($COOO to $CFFF) are unused.
Unfortunately, this rather large 4K block of memory cannot be written
to by the user, so it is presently useless . Apparently, this area of ROM
is reserved for future expansion. Rumors abound about new Atari OS's
that allow 3-D graphics, 192K of on-board RAM and other delights.
Most likely this space will be consumed in the next OS upgrade.
PEEKing this area will show it not to be completely empty; it was
apparently used for system development in Atari's paleozoic age.
Although the Atari is technically a 64K machine (l K equals 1024 bytes,
so 64K equals 65536 bytes), you don't really have all 64K to use . The
OS takes up 10K; there is the 4K block here that's unused, plus a few
other unused areas in the ROM and, of course, there are the hardware
chips. BASIC (or any cartridge) uses another 8K. The bottom 1792
bytes are used by the OS, BASIC, and floating point package. Then
DOS and DUP take up their memory space, not to mention the 850
handler if booted - leaving you with more or less 38K of RAM to use
for your BASIC programming.

Locations 53248 to 55295 ($DOOO to $D7FF) are for ROM for the special
I/O chips that Atari uses. The CTIA (or GTIA, depending on which
you have) uses memory locations 53248 to 53503 ($DOOO to $DOFF).
POKEY uses 53760 to 54015 ($D200 to $D2FF). PIA uses 54016 to 54271

107

53248-53505

($D300 to $D3FF) . ANTIC uses 54272 to 54783 ($D400 to $D5FF).
ANTIC, POKEY and G/CTIA are Large Scale Integration (LSI) circuit
chips. Don't confuse this chip ROM with the OS ROM which is be
found in higher memory . For the most extensive description of these
chips, see the Atari Hardware Manual.
There are two blocks of unused, unavailable memory in the I/O areas :
53504 to 53759 ($DlOO to $DlFF) and 54784 to 55295 ($D600 to
$D7FF).
Many of the following registers can't be read directly, since they are
hardware registers . Writing to them can often be difficult because in
most cases the registers change every 30th second (stage two
VBLANK) or even every 60th second (stage one VBLANK)! That's
where the shadow registers mentioned earlier come in . The values
written into these ROM locations are drawn from the shadow registers;
to effect any "permanent" change in BASIC (i.e., while your program
is running), you have to write to these shadow registers (in direct mode
or while your program is running ; these values will all be reset to their
initialization state on RESET or powerup).
Shadow register locations are enclosed in parentheses; see these
locations for further descriptions. If no shadow register is mentioned,
you may be able to write to the location directly in BASIC . Machine
language is fast enough to write to the ROM locations and may be able
to bypass the shadow registers entirely.
Another feature of many of these registers is their dual nature . They
are read for one value and written to for another . The differences
between these functions are noted by the (R) for read and (W) for write
functions . You will notice that many of these dual-purpose registers
also have two labels.

CTIAorGTIA
53248-53505 DOOO-DOFF

108

GTIA (or CTIA) is a special television interface chip designed
exclusively for the Atari to process the video signal. ANTIC
controls most of the C/GTIA chip functions. The GTIA shifts the
display by one-half color clock off what the CTIA displays, so it
may display a different color than the CTIA in the same piece of
software. However, this shift allows players and playfields to
overlap perfectly.

There is no text window available in GTIA modes, but you can
create a defined area on your screen with either a DLI (see
COMPUTE!, September 1982) or by POKEing the GTIA mode
number into location 87 ($57), POKEing 703 with four and then
setting the proper bits in location 623 ($26F) for that mode. Only in

53248

the former method will you be able to get a readable screen,
however. In the latter you will only create a four line, scrolling,
unreadable window. You will be able to input and output as with
any normal text window; you just won't be able to read it! GTIA,
by the way, apparently stands for "George's Television Interface
Adapter ." Whoever George is, thanks, but what is CTIA?
See the OS User's Manual, the Hardware Manual, De Re Atari and
COMPUTE!, July 1982 to September 1982, for more information.

53248 0000 HPOSPO
(W) Horizontal position of player o. Values from zero to 227 ($E3)
are possible but, depending on the size of the playfield, the range
can be from 48 ($30) as the leftmost position to 208 ($DO) as the
rightmost position. Other positions will be "off screen."
Here are the normal screen boundaries for players and missiles.
The values may vary somewhat due to the nature of your TV
screen. Players and missiles may be located outside these
boundaries, but will not be visible (off screen):

48 for both
resolutions

Top
32 for single,

16 for double line
resolution

Bottom
224 for single,

112 for double line
resolution

208 for both
resolutions

Although you can POKE to these horizontal position registers, they
are reset to zero immediately. The player or missile will stay on the
screen at the location speCified by the POKE, but in order to move
it using the horizontal pOSition registers, you can't use:

POKE 53248, PEEK (53248) + n (or -n)

which will end up generating an error message. Instead, you need
to use something like this:

10 POKE 704,220: GRAPHICS 1: HPOS =
53248: POKE 623,8

109

53248

IIG

20 N = 100: POKE HPOS.N: POKE 53261
'")0:- 0:-

!IIL..JoJ

30 IF STICI«O) 1 1 THEN N = N - 1 :
POKE HPOS.N: PRINT N

40 IF STICK(O) = 7 THEN N = N + 1 :
POKE HPOS.N: PRINT N

50 GOTO 3()

There are no vertical position registers for PIM graphics, so you
must use software routines to move players vertically. One idea for
vertical motion is to reposition the player within the PIM region
rather than the screen RAM. For example , the program be low uses
a small machine language routine to accomplish this move:

1 REM LINES 5 TO 70 SET UP THE PLAYER
5 I<EEP=PEEI«106)-16
10 POKE 106.KEEP:POKE 54279,KEEP
20 GRAPHICS 7+16:POKE 704,78:POKE 559

.46:POKE 53277,3
30 PMBASE=KEEP*256
40 FOR LOOP=PMBASE+512 TO PMBASE+640:

POKE LOOP.O:NEXT LOOP:REM CLEAR OU
T MEMORY FIRST

50 X=100:Y=10:POKE 53248.X
60 FOR LOOP=O TO 7:READ BYTE:POKE PMB

ASE+512+Y+LooP,BYTE:NEXT LoOP:REM
PLAYER GRAPHICS INTO MEMORY

70 DATA 129.153.189.255.255.189.153.1
29

80 REM LINES 100 TO 170 SET UP MACHIN
E LANGUAGE ROUTINE

100 DIM UP$(21).DOWN$(21):UP=ADR(UP$)
:DOWN=ADR(DOWN$)

110 FOR LOOP=UP TO UP+ 20: READ BYTE:PO
KE LOOP.BYTE:NEXT LOOP

120 FOR LOOP=DOWN TO DOWN +2 0:READ BYT
E:POKE LOoP.BYTE:NEXT LOOP

130 DATA 104.104.1 33, 204.104.133.203.
160.1,177

140 DATA 203.136.145.203.200.200.192.
11.208.245.96

150 DATA 104.104.133.204.104.133.203.
160.10.177

160 DATA 203,200,145.203.136.136.192.
255 !II 2(.8 !II 245 !II 96

200 REM VERTICAL CONTROL
210 IF STICK(0)=14 THEN GOSUB 300

53249

220 IF STICK(0)=13 THEN D=USR(DOWN.PM
BASE+511+Y):Y=Y+l

250 GOTO 21(1
300 U=USR(UP.PHBASE+511+Y):Y=Y-l
310 RETURN

This wi ll move any nine-line (or less) size player vertically with the
joystick. If you have a larger player size, increase the 11 in line 140
to a number two larger than the number of vertical lines the player
uses, and change the ten in line 150 to one greater than the
number of lines. To add horizontal movement, add the following
lines:

6 HPOS = 53248
230 IF STICK(O)

POKE HPOS, X
240 IF STICK(O)

POKE HPOS. X

11 THEN X = X-I:

7 THEN X = X + 1:

You can use the routine to move any player by changing the
number 511 in the USR calls to one less than the start address of the
object to be moved. See the appendix for a map of PIM graphics
memory use. Missiles are more difficult to move vertically with this
routine, since it moves an entire byte, not bits. It would be useful
for moving all four missiles vertically if you need to do so; they
could still be moved horizontally in an individual manner.
See COMPUTE!, December 1981, February 1982 , and May 1982,
for some solutions and some machine language move routines, and
COMPUTE!, October 1981 , for a solution with animation involving
P/M graphics.

MOPF
(R) Missile 0 to p layfield collision. This register will tell you which
playfield the object has "collided" with, i.e., overlapped. If missile
o collides with playfield two, the register would read four and so
on. Bit use is :

Bit 7 6 5 4
Playfield unused
Decimal

53249 0001 HOPSPI
(W) Horizontal position of p layer 1.

MIPF
(R) Missile 1 to p layfield collision.

53250 D002 HPOSP2
(W) Horizontal position of player 2.

M2PF

3 2 1 0
3 2 1 0
8 4 2 1

III

53251

(R) Missile 2 to playfield collision.

53251 0003 HPOSP3
(W) Horizontal position of player 3.

M3PF
(R) Missile 3 to playfield collision.

53252 0004 HPOSMO
(W) Horizontal position of missile O. Missiles move horizontally like
players. See the note in 53248 ($DOOO) concerning the use of
horizontal registers.

POPF
(R) Player 0 to playfield collisions. There are some problems using
collision detection in graphics modes nine to eleven. There are no
obviously recognized collisions in GR .9 and GR. 11. In GR.10,
collisions work only for the playfield colors that correspond to the
usual playfield registers . Also, the background (BAK) color is set
by PCOLRO (location 704; $2CO) rather than the usual COLOR4
(location 712; $2C8), which will affect the priority detection. In
GR.lO, playfield colors set by PCOLRO to PCOLR3 (704 to 707;
$2CO to $2C3) behave like players where priority is concerned. Bit
use is:

Bit 7 6 5 4 3 2 1 0
P1ayfie1d unused 3 2 1 0
Decimal 8 4 2 1

53253 0005 HPOSMI
(W) Horizontal position of missile 1.

PIPF
(R) Player 1 to playfield collisions.

53254 0006 HPOSM2
(W) Horizonal position of missile 2.

P2PF
(R) Player 2 to playfield collisions.

53255 0007 HPOSM3
(W) Horizontal position of missile 3.

P3PF
(R) Player 3 to playfield collisions.

53256 0008 SIZEPO

112

(W) Size of player O. POKE with zero or two for normal size (eight
color clocks wide), POKE with one to double a player's width
(sixteen color clocks wide), and POKE with three for quadruple
width (32 color clocks wide). Each player can have its own width set.

53257

A normal size player might look something like this :

00011000
00111100
01111110
11111111
11111111
01111110
00111100
00011000

In double width, the same p layer would like this:

0000001111000000
0000111111110000
0011111111111100
1111111111111111
1111111111111111
0011111111111100
0000111111110000
0000001111000000

In quadruple width , the same player would become:

00000000000011111111000000000000
00000000111111111111111100000000
00001111111111111111111111110000
11111111111111111111111111111111
11111111111111111111111111111111
00001111111111111111111111110000
00000000111111111111111100000000
00000000000011111111000000000000
Bit use is :

Bli 7 6 5 4 3 2 1 0
Size: unused 0 0 Normal (8 color clocks)

o 1 Double (16 color clocks)
1 0 Normal
1 1 Quadruple (32 color clocks)

MOPL
(R) Missile 0 to p layer collisions. There is no missile-to-missile
collision registe r . Bit use is :

Bli 7 6 5 4 3 2 1 0
Player .. unused . . 3 2 1 0
Decimal 8 4 2 1

53257 D009 SIZEPI
(W) Size of player 1 .

11 3

53258

MIPL
(R) Missile I to player collisions.

53258 DOOA SIZEP2
(W) Size of player 2.

M2PL
(R) Missile 2 to player collisions.

53259 DOOB SIZEP3
(W) Size of player 3 .

M3PL
(R) Missile 3 to player collisions.

53260 DOOe SIZEM

114

(W) Size for all missiles; set bits as be low (decimal values
included):

Bits Size:
Normal Double Quadruple

7&6:missile3 0,128 64 192
5 & 4: missile 2 0, 32 16 48
3&2: missile 1 0,8 4 12
1 & 0: missile 0 0, 2 1 3

where turning on the bits in each each pair above does as follows :

o and 0: normal size - two color clocks wide
o and 1: twice normal size - four color clocks wide
1 and 0: normal size
1 and 1: four times normal size - eight color clocks wide

So, to get a double-sized missile 2, you would set BITs 5 and 6, or
POKE 53260,48. Each missile can have a size set separately from
the other missiles or players when using the GRAF registers.
A number of sources, including De Re Atari, say that you can set
neither missile sizes nor shapes separate ly. Here's a routine to
show that you can in fact do both :

10 POKE 53265,255: REM SHAPE START
15 GR.7
20 POKE 623~1: REM SET PRIORITIES
30 FOR X = 1 TO 25
35 F = 50
40 FOR C = 704 TO 707: POKE C,F + X:

F = F + 50: NEXT C: REM COLOURS
45 S = 100
50 FOR P = 53252 TO 53255: POKE P~S

+ X: S = S + 20: NEXT P : REM SCRE
EN POSITIONS

53261

60 NEXT X
70 INPUT A,B: REM MISSILE SIZE AND S

HAPES
80 POKE 53260 ,A: POKE 53265,B
100 GOTO 30

Here's another example using DMA; GRACTL and DACTL
(53277 and 54272; $DOI D and $D400):

10 POKE 623,1: POKE 559,54: POKE 542
79, 224: POKE 53277,1

20 FOR N = 53252 TO 53255: POKE N, 1
00 + X: X = X + 10: NE X TN: X = 0

30 INPUT SIZE: POKE 53260 , SIZE
40 GOTO 30

See 54279 ($D407) for more information on P/M graphics .

POPL
(R) Player 0 to player collisions. Bit use is:

Bit 7 6 5 4 3 2 1 0
Player ... unused . . . 3 2 1 0
Decimal 8 4 2 1

53261 0000 GRAFPO
(W) Graphics shape for player 0 written directly to the player
graphics register. In using these registers, you bypass ANTIC.
You only use the GRAFP# registers when you are not using
Direct Memory Access (DMA: see GRACTL at 53277). If DMA is
enabled, then the graphics registers will be loaded automatically
from the area speCified by PMBASE (54279; $D407).
The GRAF registers can only write a single byte to the playfield,
but it runs the e ntire height of the screen. Try this to see:

10 POI<E 53248, 160: REM SET HOR I ZONT
AL POSITION OF PLAYER 0

20 POKE 704, 245: REM SET PLAYER 0 C
OLOUR TO ORANGE

30 POKE 53261, 203: REM BIT PATTERN
11001011

To remove it, POKE 53261 with zero. The bit order runs from
seven to zero, left to right across the TV screen. Each bit set will
appear as a vertical line on the screen. A value of 255 means all
bits are set , creating a wide vertical line . You can also use the
size registers to change the player width . Using the GRAF
registers will allow you to use players and missiles for such things
as boundaries on game or text fields quite easily .

PIPL

115

53262

(R) Player 1 to player collisions.

53262 DOOE GRAFPI
(W) Graphics for player 1.

P2PL
(R) Player 2 to player collisions.

53263 DOOF GRAFP2
(W) Graphics for player 3.

P3PL
(R) Player 3 to player collisions.

53264 DOlO GRAFP3
(W) Graphics for player 3.

TRIGO
(R) Joystick trigger 0 (644). Controller jack one, pin six. For all
triggers, zero equals button pressed, one equals not pressed. If
BIT 2 of GRACTL (53277; $DOlD) is set to one, then all TRIG
BITs 0 are latched when the button is pressed (set to zero) and are
only reset to one (not pressed) when BIT 2 of GRACTL is reset to
zero. The effect of latching the triggers is to return a constant
"button pressed" read until reset.

53265 0011 GRAFM
(W) Graphics for all missiles, not used with DMA. GRAFM works
the same as GRAFPO above. Each pair of bits represents one
missile, with the same allocation as in 53260 ($DOOC) above.

Bit 7 6 5 4 3 2 1 0
Missile - 3 - - 2 - - 1 - - 0 -

Each bit set will create a vertical line running the entire height of
the TV screen. Missile graphics shapes may be set separately
from each other by using the appropriate bit pairs. To mask out
unwanted players, write zeros to the bits as above.

TRIGI
(R) Joystick trigger 1 (645) . Controller jack two, pin six.

53266 0012 COLPMO
(W) Color and luminance of player and missile 0 (704). Missiles
share the same colors as their associated players except when
joined together to make a fifth player. Then they take on the same
value as in location 53733 ($DOI9; color register 3).

TRIG 2
(R) Joystick trigger 2 (646). Controller jack three, pin six.

53267 0013 COLPMI
(W) Color and luminance of player and missile 1 (705).

116

-

53268

TRIG3
(R) Joystick trigger 3 (647). Controller jack four, pin six.

53268 DO 14 COLPM2
(W) Color and luminance of player and missile 2 (706).

PAL
(R) Used to determine if the Atari is PAL (European and Israeli
TV compatible when BITs 1 - 3 equal zero) or NTSC (North
American compatible when BITs 1 - 3 equal one; 14 decimal, $E).
European Ataris run 12% slower if tied to the VBLANK cycle (the
PAL VBLANK cycle is every 50th second rather than every 60th
second). They use only one CPU clock at three MHZ, so the 6502
runs at 2.217 MHZ - 25% faster than North American Ataris .
Also, their $EOOO and $FOOO ROMs are different, so there are
possible incompatibilities with North American Ataris in the
cassette handling routines. There is a third TV standard called
SECAM, used in France, the USSR, and parts of Africa. I am
unaware if there is any Atari support for SECAM standards.
PAL TV has more scan lines per frame, 312 compared to 262.
NTSC Ataris compensate by adding extra lines at the beginning
of the VBLANK routine. Display lists do not have to be altered,
and colors are the same because of a hardware modification.

53269 0015 COLPM3
Color and luminance of player and missile 3 (707).

53270 0016 COLPFO
Color and luminance of playfield zero (708).

53271 0017 COLPFI
Color and luminance of playfield one (709).

53272 0018 COLPF2
Color and luminance of playfield two (710).

53273 0019 COLPF3
Color and luminance of playfield three (711).

53274 DOIA COLBK
Color and luminance of the background (BAK). (712).

53275 DOIB PRIOR
(W) Priority selection register. PRIOR establishes which objects
on the screen (players, missiles, and playfields) will be in front of
other objects. Values used in this register are also described at
location 623 ($26F), the shadow register. If you use conflicting
priorities, objects whose priorities are in conflict will turn black
in their overlap region.

II?

53276

Priority order
(Decimal values in brackets):

Bit 0 = 1(1): Bit 1 = 1(2):
Player 0 Player 0
Player 1 Player 1
Player 2 Playfield 0
Player 3 Playfield 1
Playfield 0 Playfield 2
Playfield 1 Playfield 3 and Player 5
Playfield 2 Player 2
Playfield 3 and Player 5 Player 3
Background Background

Bit 2 = 1 (4): Bit 3 = 1 (8):
Playfield 0 Playfield 0
Playfield 1 Playfield 1
Playfield 2 Player 0
Playfield 3 and Player 5 Player 1
Player 0 Player 2
Player 1 Player 3
Player 2 Playfield 2
Player 3 Playfield 3 and Player 5
Background Background

Bit 4 = 1: Enable a fifth player out of the four missiles .
Bit 5 = 1: Overlap of players 0 and 1, 2 and 3 is third color (else
overlap is black). The resulting color is a logical OR of the two
player colors .

Bits 6 and 7 are used to select GTIA modes:
o 0 = no GTIA modes
o 1 = GTIA GR.9
1 0 = GTIA GR.lO
1 1 = GTIA GR .ll

53276 DOIC VDELAY

lIB

(W) Vertical delay register. Used to give one-line resolution
movement capability in the vertica l positioning of an object when
the two line resolution disp lay is enabled. Setting a bit in
VDELAY to one moves the corresponding object down by one TV
line. If DMA is enabled, then moving an object by more than one
line is accomplished by moving bits in the memory map instead.

Bit Decimal Object
7 128 Player 3
6 64 Player 2
5 32 Player 1
4 16 Player 0

53277

3 8 Missile 3
2 4 Missile 2
1 2 Missile 1

° 1 Missile °
53277 DOID GRACTL

(W) Used with DMACTL (location 54272; $D400) to latch all sti ck
and paddle triggers (to remember if triggers on joysticks or
paddles have been pressed), to turn on p layers and to turn on
missiles . To get the va lues to be POKEd here, add the following
options together for the desired function:

Decimal Bit
To turn on missiles 1 °
To turn on players 2 1
To latch trigger inputs 4 2

To revoke PIM authorization and turn off both p layers and
missiles, POKE 53277,0 . Once latched, triggers will g ive a
continuous "button pressed" read the first time they are pressed
until BIT 2 is restored to zero . Triggers are placed in "latched"
mode when each individual trigger is pressed, but you cannot set
the latch mode for individual triggers.

Have you ever hit BREAK during a program and still had players
or their residue le ft on the screen ? Sometimes hitting RESET
doesn't clear th is material from the screen. There are ways to get
rid of it:

POKE 623A: This moves all players behind playfields.
POKE 53277 ,0: This should turn them off .

POKE 559,2: This should return you to a blank screen.

Make sure you SAVE your program before POKEing, just in
case !

53278 DOlE HITCLR
(W) POKE with any number to clear all player/missile collision
registe rs. It is important to clear this register often in a program
- such as a game - which frequ ently tests for collisions .
Otherwise, old coll ision va lues ;nay remain and confu se the
program. A good way to do thi s is to POKE HITC LR just before
an event which may lead to a collision; for example, right before
a joyst ick or paddle is "read" to move a p layer or fire a missile.
Then test for a collision immediately a fte r the action has taken
place. Remember that multiple colli sions cause sums of the
colli sion values to be written to the collision registers; if you d o
not clear HITC LR often enough, a program checking for
individual col lisions wi ll be thrown off by these sums .

Ilg

53279

53279 DOIF CONSOL

120

(W IR) Used to see if one of the three yellow console buttons has
been pressed (not the RESET button!). To clear the register,
POKE CON SOL with eight. POKEing any number from zero to
e ight will cause a click from the speaker. A FOR-NEXT loop that
alternately POKEs CONSOL with eight and zero or just zero,
since the OS put in an 8 every 1/60 second, will produce a buzz.
Values PEEKed will range from zero to seven according to the
following table:

Key

OPTION
SELECT
START

Bits 2
1
o

Value o

x
X
X

o
o
o

1

X
X

o
o
1

2

X

X

o
1
o

3

X

o
1
1

4

X
X

1
o
o

5

X

1
o
1

6

X

1
1
o

7

1
1
1

Where zero means all keys have been pressed, one means
OPTION and SELECT have been pressed, etc . , to seven, which
means no keys have been pressed. CONSOL is updated every
stage two VBLANK procedure with the value eight.

It is possible to use the console speaker to generate different
sounds . Here is one idea based on an article in COMPUTE!,
August 1981:

10 GOSUB 1000
20 TEST = USR(1536)

999 END
1000 FOR LOOP 0 TO 26: READ BYTE: P

OKE 1536 + LOOP~ BYTE: NEXT LOOP
RETURN

1010 DATA 104.162.255.169,255,141,31.
208.169

1020 DATA 0.160.240.136.208,253,141,3
1.208,160

1030 DATA 240.136,208,253,202,208,233
,96

To change the tone, you POKE 1547 and 1555 with a higher or

53760-54015

lower value (both are set to 240 above) . To change the tone
duration, you POKE 1538 with a lower value (it is set to 255 in the
routine above). Do these before you do your USR call or alter the
DATA statements to permanently change the values in your own
program. Turn off DMA (see location 559) to get clearer tones.

Locations 53280 to 53503 ($D020 to $DOFF) are repeats of locations
53248 to 53279 ($DOOO to $DOIF). You can't use any of the repeated
locations; consider them "filler." They may be used for other purposes
in any Atari OS upgrade.

Locations 53504 to 53759 (SDIOO to SD IFF) are unused. These loca­
tions are not empty; you can PEEK into them and find out what's
there. They cannot, however, be user-altered.

POKEY
53760-54015 D200-D2FF

POKEY is a digital I/O chip that controls the audio frequency and
control registers, frequency dividers, poly noise counters, pot
(paddle) controllers, the random number generator, keyboard
scan, serial port I/O, and the IRQ interrupts.
The AUDF# (audio frequency) locations are used for the pitch for
the corresponding sound channels, while the AUDC# (audio
control registers) are the volume and distortion values for those
same channels. To POKE sound values, you must first POKE zero
into locations 53768 ($D208) and a three into 53775 ($D20F).

Frequency values can range from zero to 255 ($FF), although the
value is increased by the computer by one to range from one to
256. Note that the sum of the volumes should not exceed 32, since
volume is controlled by the least four bits. It is set from zero as no
volume to 15 ($F) as the highest. A POKE with 16 ($10) forces
sound output even if volume is not set (i.e., it pushes the speaker
cone out. A tiny "pop" will be heard). The upper four bits control
distortion: 192 ($CO) is for pure tone; other values range from 32 to
192. Note that in BASIC, the BREAK key will not turn off the
sound; RESET will, however. See De Re Atari and BYTE, April
1982, for more information on sound generation .

The AUDF registers are also used as the POKEY hardware timers .
These are generally used when counting an interval less than one
VBLANK. For longer intervals, use the software timers in locations
536 to 545 ($218 to $221). You load the AUDCTL register with the

121

53760

number for the desired clock frequency. You then set the volume
to zero in the AUDC register associated with the AUDF register
you plan to use as a timer. You load the AUDF register itself with
the number of clock intervals you wish to count. Then you load
your interrupt routine into memory, and POKE the address into the
appropriate timer vector between locations 528 and 533 ($21O and
$215). You must set the proper bit{s) in IROEN and its shadow
register POKMSK at location 16 ($1O) to enable the interrupt.
Finally, you load STIMER with any value to load and start the
time r{s) . The OS will force a jump to the timer vector and then to
your routine when the AUDF register counts down to zero. Timer
processing can be preempted by ANTIC's DMA, a DLI, or the
VBLANK process.

POT values are for the paddles, ranging from zero to 240,
increasing as the paddle knob is turned counterclockwise, but
values less than 40 and greater than 200 represent an area on
e ithe r edge of the screen that may not be visible on all TV sets or
monitors.

53760 0200 AUOFI
(W) Audio channel one frequency. This is actually a number (N)
used in a "divide by N circuit"; for every N pulses coming in (as set
by the POKEY clock), one pulse goes out. As N gets larger , output
pulses will decrease, and thus the sound produced will be a lower
note . N can be in the range from one to 256; POKEY adds one to
the value in the AUDF register. See BYTE, April 1982, for a
program to create chords instead of single tones.

POTO
(R) Pot (paddle) 0 (624); pot is short for potentiometer. Turning the
paddle knob clockwise results in decreasing pot values. For
machine language use: these pot values are valid only 228 scan
lines after the POT GO command or after ALLPOT changes (see
53768; $D208 and 53771; $D20B). POT registers continually count
down to zero, decrementing every scan line. They are reset to 228
when they reach zero or by the values read from the shadow
registe rs . This makes them useful as system timers. See
COMPUTE!, February 1982, for an example of this use.

The POT GO sequence (see 53771; $D20B) resets the POT
registe rs to zero, then reads them 228 scan lines later. For the fast
pot scan, BIT 2 of SKCTL at 53775 ($D20F) must be set.

53761 D201 AUOCI

122

(W) Audio channel one control. Each AUDF register has an
associated control register which sets volume and distortion levels.
The bit assignment is:

53762

Bit 7 6 5 4 3 2 1 0
Distortion Volume Volume

(noise) only level

0 0 0 0 0 0 0 0 Lowest
0 0 1 0 0 0 1
etc. to: etc. to:
1 1 1 1 1 1 1 1 Highest

(forced
output)

The values for the distortion bits are as follows. The first process is
to divide the clock va lue by the frequency, then mask the output
using the polys in the order below. Finally, the result is divided by
two.

Bit
7 6 5
0 0 0 five bit, then 17 bit, polys
0 0 1 five bit poly only
0 1 0 five bit, then four bit, polys
0 1 1 five bit poly only
1 0 0 17 bit poly only
1 0 1 no poly counters (pure tone)
1 1 0 four bit poly only
1 1 1 no poly counters (pure tone)

In general, the tones become more regular (a recognizable
droning becomes apparent) with fewer and lower value polys
masking the output. This is a ll the more obvious at low frequency
ranges . POKE with 160 ($AO) or 224 ($EO) plus the volume for pure
tones.

See De Re Atari and the Hardware Manual for details.

POTI
(R) Pot 1 register (625).

53762 0202 AUDF2
(W) Audio channel two frequency. Also used with AUDF3 to store
the 19200 baud rate for SIO .

POT2
(R) Pot 2 (626).

53763 D203 AUDC2
(W) Audio channel two control.

POT3
(R) Pot 3 (627).

123

53764

53764 D204 AUDF3
(W) Audio channe l three frequency . Used with AUDF3 above and
with AUDF4 to store the 600 baud rate for SIO.

POT4
(R) Pot 4 (628).

53765 0205 AUDC3
(W) Audio channel three control.

POT5
(R) Pot 5 (629).

53766 D206 AUDF4
(W) Audio channel four frequency.

POT6
(R) Pot 6 (630).

53767 0207 AUOC4
(W) Audio channel four control.

POT7
(R) Pot 7 (631).

53768 0208 AUOCTL

124

(W) Audio control. To properly initialize the POKEY sound
capabilities, POKE AUDCTL with zero and POKE 53775,3
($D20F). These two are the equivalent of the BASIC statement
SOUND 0,0,0,0. AUDCTL is the option byte which affects all
sound channels. This bit assignment is:

Bit Description:
7 Makes the 17 bit poly counter into nine bit poly

(see below)
6 Clock channel one with 1.79 MHz
5 . Clock channel three with 1. 79 MHz
4 Join channels two and one (16 bit)
3 Join channels four and three (16 bit)
2 Insert high pass filter into channel one, clocked by channel

two
1 Insert high pass filter into channel two, clocked by channel

four
o Switch main clock base from 64 KHz to 15 KHz

Poly (polynomial) counters are used as a source of random pulses
for noise generation. There are three polys: four, five and 17 bits
long . The shorter polys create repeatable sound patterns, while the
longer poly has no apparent repetition. Therefore, setting BIT 7
above, making the 17·bit into a nine-bit poly will make the pattern

53769

in the distortion more evident. You chose which poly(s) to use by
setting the high three bits in the AU DC registers . The 17 -bit poly is
also used in the generation of random numbers; see 53770
($D20A).

The clock bits allow the user to speed up or slow down the clock
timers, respectively, making higher or lower frequency ranges
possible. Setting the channels to the 1.79 MHz will produce a
much higher sound, the 64 KHz clock will be lower, and the 15
KHz clock the lowest. The clock is also used when setting the
frequency for the AUDF timers.
Two bits (three and four) allow the user to combine channels one
and two or three and four for what amounts to a nine octave range
instead of the usual five. Here's an example from De Re Atari of
this increased range, which uses two paddles to change the
frequency: the right paddle makes coarse adjustments, the left
paddle makes fine adjustments:

10 SOUND O.O.O.O:POKE 5376B.BO:REM SE
T CLOCK AND JOIN CHANNELS 1 AND 2

20 POKE 53761.160:POKE 53763.16B:REM
TURN OFF CHANNEL 1 AND SET 2 TO PU
RE TONE GENERATION

30 POKE 53760.PADDLECO):POKE 53762.PA
DDLE(1):GOTO 30

High pass filters allow only frequencies higher than the clock value
to pass through. These are mostly used for special effects. Try:

10 SOUND O.O.O,O:POKE 5376B,4:REM HIG
H PASS FILTER ON CHANNEL 1

20 POKE 53761.16B:POKE 53765.16B:REM
PURE TONES

30 POKE 53760,254:POKE 53764,127
40 GOTO 40

See the excellent chapte r on sound in De Re Atari: it is the best
explanation of sound functions in the Atari available. See also the
Hardware Manual for complete details.

ALLPOT
(R) Eight line pot port state; reads all of the eight POTs together.
Each bit represents a pot (paddle) of the same number . If a bit is
set to zero, then the register value for that pot is valid (it's in use); if
it is one, then the value is not valid . ALLPOT is used with the
POTGO command at 53771 ($D20B).

53769 D209 STIMER
(W) Start the POKEY timers (the AUDF registers above) . You

125 ,

"

53770

POKE any non-zero value here to load and start the timers; the
value isn't itse lf used in the calculations. This resets a ll of the audio
frequency dividers to their AUDF values. If enabled by IRO EN
below, these AUDF registers generate timer interrupts when they
count down from the number you POKEd there to zero . The
vectors for the AUDFI, AUDF2 and AUDF4 timer interrupts are
located between 528 and 533 ($210 and $2 15) . POKEY timer four
interrupt is only enabled in the new "B" OS ROMs.

KBCODE
(R) Holds the keyboard code which is then loaded into the shadow
register (764; $2FC) when a key is hit. Usually read in response to
the keyboard interrupt. Compares the va lue with that in C HI at
754 ($2F2). If both values are the same, then the new code is
accepted only if a suitable key debounce delay time has passed.
The routines which test to see if the key code will be accepted start
at 65470 ($FFBE) . BIT 7 is the control key flag , BIT 6 is the shift key
fl ag .

53770 D20A SKREST
(W) Reset BITs 5 - 7 of the seria l port status register at 53775 to one.

RANDOM
(R) When this location is read, it acts as a random number
generator. It reads the high order eight bits of the 17 b it
polynomial counter (nine bit if BIT 7 of AUDCTL is set) for the
va lue of the number. You can use this location in a program to
generate a random integer between zero and 255 by:

10 PRINT PEEK(53770)

This is a more elegant solution than INT(RND(O) *256) . For a test of
the va lues in this register, use this simple program:

10 FOR N = 1 TO 20: PRINT PEEK(53770) : NEXT N

53771 D20B POTGO
(W) Start the POT scan sequence. You must read your POT va lues
first and then start the scan sequence, since POTGO resets the
PO T registers to zero. Written by the stage two VB LANK
sequence.

53772 D20C
Unused .

53773 D20D SEROUT

126

(W) Seria l port data output. Usually written to in the event of a
serial data out interrupt. Writes to the eight bit (one byte) para lle l
holding register that is transferred to the serial shift register when a
fu ll byte of data has been transmitted. This "holding" register is
used to contain the bits to be transmitted one at a time (serially) as

53774

a one-byte unit before transmission.

SERIN
(R) Serial port input. Reads the one-byte parallel holding register
that is loaded when a full byte of serial input data has been
received. As above, this holding register is used to hold the bits as
they are received one bit at a time until a full byte is received. This
byte is then taken by the computer for processing. Also used to
verify the checksum value at location 49 ($31).
The serial bus is the port on the Atari into which you plug your
cassette or disk cable. For the pin values of this port, see the OS
User's Manual , p. 133, and the Hardware Manual.

53774 D20E IRQEN
(W) Interrupt request enable. Zero turns off all interrupt requests
such as the BREAK key; to disable or re-enable interrupts, POKE
with the values according to the follOWing chart (setting a bit to one
- i.e., true - enables that interrupt; decimal va lues are also
shown for each b it):

Bit Decimal Interrupt

o 1 Timer 1 (counted down to zero)

1 2 Timer 2 (counted down to zero)

2 4 Timer 4 (counted down to zero)

3 8 Serial output transmission done

4 16 Serial output data needed

5 32 Serial input data ready

6 64 Other key pressed

7 128 BREAK key pressed

Vector

VTIMRI
(528; $210)
VTIMR2
(530; $212)
VTIMR4
(532; $214), OS
"B" ROMs only)
VSEROC (526;
$20E)
VSEROR
(524; $20C)
VSERIN
(522; $20A)
VKEYBD
(520; $208)
see below

Here is the procedure for the BREAK key interrupt: clear the
interrupt register. Set BRKKEY (17; $11) to zero; clear the
start/stop flag SSFLAG at 767 ($2FF); clear the cursor inhibit flag
CRSINH at 752 ($2FO); clear the attract mode flag at 77 ($4D), and
return from the interrupt after restoring the 6502 A register. (There
is now (in the OS "B" ROMs) a proper vector for BREAK key
interrupts at 566, 567 ($236, $237) which is initialized to point to
59220 ($E754).) If the interrupt was due to a serial IIO bus proceed
line interrupt, then vector through VPRCED at 514 ($202). If due to
a serial IIO bus interrupt line interrupt, then vector th rough

127

53775

VINTER at 516 ($204). If due to a 6502 BRK instruction, then vector
through VBREAK at 518 ($206).
Timers relate to audio dividers of the same number (an interrupt is
processed when the dividers count down to zero). These bits in
IRQEN are not set on powerup and must be initiated by the user
program before enabling the processor IRQ.
There are two other interrupts, processed by PIA, generated over
the serial bus Proceed and Interrupt lines, set by the bits in the
PACTL and PBCTL registers (54018 and 54019; $D302, $D303):

Bit Decimal Location Interrupt
0 1 PACTL Peripheral A (PORTA) interrupt enable

bit.
7 128 PACTL Peripheral A interrupt status bit.
0 1 PBCTL Peripheral B (PORTB) interrupt enable

bit.
7 128 PBCTL Peripheral B interrupt status bit.

The latter PORT interrupts are automatically disabled on powerup.
Only the BREAK key and data key interrupts are enabled on
powerup. The shadow register is 16 ($10).

IRQST
(R) Interrupt request status. Bit functions are the same as IRQEN
except that they register the interrupt request when it is zero rather
than the enable when a bit equals one. IRQST is used to determine
the cause of interrupt request with IRQEN, PACTL and PBCTL as
above.
All IRQ interrupts are normally vectored through 65534 ($FFFE) to
the IRQ service routine at 59123 ($E6F3), which determines the
cause of the interrupt. The IRQ global RAM vector VIMIRQ at 534
($216) ordinarily points to the IRQ processor at 59126 ($E6F6). The
processor then examines 53774 ($D20E) and the PIA registers at
54018 and 54019 to determine the interrupt cause. Once
determined, the routine vectors through one of the IRQ RAM
vectors in locations 514 to 526 ($202 to $20E) . For Non-Maskable
Interrupts (NMI's), see locations 54286 to 54287 ($D40E; $D40F) .
See the OS User's Manual for complete details.

53775 D20F SKCTL

128

(W) Serial port control. Holds the value 255 ($255) if no key is
pressed, 251 ($FB) for most other keys pressed, 247 ($F7) for
SHIFT key pressed (*M) . See the (R) mode below for an
explanation of the bit functions. POKE with three to stop the
occasional noise from cassette after I/O to bring POKEY out of the
two-tone mode. (562).

SKSTAT

53775

(R) Reads the serial port status. It also returns values governed by
a signal on the digital track of the cassette tape. You can generate
certain values using the SOUND command in BASIC and a PEEK
to SKSTAT:

SOUND 0,5,10,15 returns a value to here of 255 (or, on
occasion, 127).

SOUND 0,8,10,3 returns a value of 239.

This is handy for adding a voice track to Atari tapes . You use the
left channel for your voice track and the right for the tone(s) you
want to use as cuing marks . You can use the speaker on your TV to
generate the tones by placing the right microphone directly in
front of the speaker. The computer will register these tones in this
register when it encounters them during a later cassette load. See
COMPUTE!, July 1981, for some other suggestions on doing this.
Remember, you can turn the cassette off by POKEing 54018
($D302) with 60 ($3C) and back on with 52 ($34).
Bits in the SKCTL (W) register are normally zero and perform the
functions below when set to one. The status when used as (R) is
listed below the write (W) function:

Bit Function
o (W) Enable keyboard debounce circuits.

(R) Not used by SKSTAT.
(W) Enable keyboard scanning circuit.
(R) Serial input shift register busy.

2 (W) Fast pot scan: the pot scan counter completes its
sequence in two TV line times instead of one frame time (228
scan lines). Not as accurate as the normal pot scan,
however.
(R) the last key is still pressed.

3 (W) Serial output is transmitted as a two-tone signal rather
than a logic true/false. POKEY two-tone mode .
(R) The shift key is pressed.

4,5,6 (W) Serial port mode control used to set the bi-directional
clock lines so that you can either receive external clock data
or provide c lock data to external devices (see the Hardware
Manual , p. II.27). There are two pins on the serial port for
Clock IN and Clock OUT data. See the OS User's Manual,
p.133.

4 (R) Data can be read directly from the serial input port,
ignoring the shift register.

5 (R) Keyboard over-run. Reset BITs 7 to 5 (latches) to one
using SKRES at 53770 ($D20A).

6 (R) Serial data input over-run. Reset latches as above.
7 (W) Force break (serial output to zero).

129

54016-54271

(R) Serial data input frame error caused by missing or extra
bits. Reset latches as above.

BIT 2 is first set to zero to reset POT registers to zero (dumping the
capacitors used to change the POT registers). Then BIT 2 is set to
one to enable the fast scan. Fast scan is not as accurate as the
normal scan routine. BIT 2 must be reset to zero to enable the
normal scan mode; otherwise, the capacitors will never dump.

Locations 53776 to 54015 ($D210 to $D2FF) are duplications of locations
53760 to 53775 and have no particular use at present.

PIA: 6520 CHIP
54016-54271 D300-D3FF

The Peripheral Interface Adapter (PIA) integrated circuit is a
special microprocessor used to control the Atari ports, controller
jacks one to four. Ports can be used for both input and output
simultaneously or alternately. Barely tapped at the time of this
writing, the ports represent a major resource for external (and
internal) control and expansion. PIA also processes two of the IRQ
interrupts: VINTER and VPRCED, vectored at locations 514 to 517
($202 to $205). These interrupts are unused by the OS, but also
may be used to provide greater control over external devices.

54016 0300 PORTA

130

(W IR) Reads or writes data from controller jacks one and two if BIT
2 of PACTL (location 54018) is one. Writes to direction control if
BIT 2 of PACTL is zero.

These two port registers also control the direction of data flow to
the port, if the controller register (54018, below) is POKEd with 48
($30). Then, if the bits in the register read zero , it is in input (R)
mode; if they read one, it is in output (W) mode. A zero POKEd
here makes all bits input, a 255 ($FF) makes all bits output. BITs 0
to 3 address pins one to four on jack one, BITs 4 to 7 address pins
one to four on jack two. POKE 54018 with 52 to make this location
into a data register again. Shadow registers are: STICKO (632;
$278, jack one), STICKI (633; $279, jack two) and PTRIGO-3
(636-639; $27C-$27F) .

Bits used as data register
7 6 5 4 3 2 1 0

- Jack 0 - - Jack 1 -
- Stick 1 - - Stick 0 -

Forward = BIT 0,4 = 1
Backward = BIT 1,5 = 1

54017

Left = BIT 2, 6 = 1
Right = BIT 3,7 = 1
Neutral = All four jack bits = 1

PORTA is also used to test if the paddle 0-3 triggers (PTRIG) have
been pressed, using these bits:

Bit 7 6 5 4 3 2 1 0
PTRIG 3 2 1 0

Where zero in the appropriate bit equals trigger pressed, one
equals trigger not pressed.
The PORT registers are a lso used in the keyboard controlle r (used
with a keypad) operation where:

Bit 7 6 5 4 3 2 1 0
Row 4 3 2 Top 4 3 2 Top
lack 2 1

Columns for the keyboard operation are read through the POT
(PADDL) and TRIG registers. See Micro, May 1982, and the
Hardware Manual for more information on jacks and ports.

54017 0301 PORTB
(W IR) Port B. Reads or writes data to andlor from jacks three and
four. Same as PORTA, above, for the respective jacks. Shadow
registers are : STICK2 (634; $27A, jack three), STICK3 (635, $27B,
jack four), and PTRIG4-7 (640-643; $280-$283).

54018 0302 PACTL
(W/R) Port A controller (see 54016 above). POKE with 60 ($3C) to
turn the cassette motor off, POKE with 52 to turn it on. You can put
a music cassette in your program recorder, press PLAY and then
POKE 54018,52 . Your music will play through the TV speaker or
external amplifier while you work at the Atari. You can use this
technique to add voice tracks to your programs. To turn off the
music or voice, type POKE 540 18,60.
PACTL can be used for other exte rnal applica tions by the user . Bit
use is as follows:

Bit
7 (read only)

6
5
4
3 (write)

2 (write)

Function
Peripheral A interrupt (IRQ) status bit. Set by
Peripheral (PORT) A. Rese t by reading PORTA
(53774; $D20E).
Set to zero.
Set to one.
Set to one.
Peripheral motor control line (turn the cassette on
or off; zero equals on) .
Controls PORTA addressing. One equals PORTA

131

54019

o (write)

register; zero equals direction control register.
Set to zero.
Peripheral A interrupt (IRQ) enable. One equals
enable. Set by the OS but ava ilable to the user;
reset on powerup.

54019 0303 PBCTL
(W IR) Port B controller . Initialized to 60 ($3C) by the OS IRQ
code. PBCTL is the same as PACTL, above , with the folloWing
exception (this may actually perform the same function as in
PACTL, but I am not sure of the distinction between descriptions):

Bit Function
3 Peripheral command identification (serial bus

command), initialized to 60 ($3C) .

Ports can be used for external control applications by the
technically minded reader who is wi lling to do some soldering to
develop cables and connectors . A good example can be found in
COMPUTE!, February 1981, where the author gives directions for
using jacks three and four as a printer port. The Macrotronic
printer cables use just this method, bypassing the 850 interface
entirely (one way of reducing your hardware costs) . Theoretically,
the entire Atari can be controlled through the ports!

Locations 54020 to 54271 ($D304 to $D3FF) are repeats of locations
54016 to 54019 ($D300 to $D303).

ANTIC
54272-54783 0400-D5FF

ANTIC is a special, separate microprocessor used in your Atari
to control C /GTIA, the screen display, and other screen-related
functions including processing the NMI interrupts. It uses its own
instruction set, ca lled the display list , which tells ANTIC where to
find the screen data in RAM and how to d isplay it. ANTIC also
uses an internal four bit counter called the Delta Counter (DCTR)
to control the vertical dimension of each block.

54272 0400 OMACTL

132

(W) Direct Memory Access (DMA) control. It is also used to
define one- or two- line resolution for players and to turn on
players and missiles. Values are POKEd into the shadow register,
559 ($22Fl, and are also described there. You POKE the shado~
register with the follOWing numbers in order to:

Turn off the playfield 0
Use narrow playfield 1

Use normal playfield
Use wide playfield
Enable missile DMA
Enable player DMA
Enable both player and missile DMA
Single line player resolution
Enable DMA Fetch instructions

2
3
4
8

12
16
32

54273

Double line resolution is the default status. Use this register in
conjunction with GRACTL at 53277 ($DOID). Both must be set
properly or no display will result. BIT 5 enables DMA to fetch the
display list instructions . If BIT 5 is not set (BIT 5 equals zero),
ANTIC will not work. DMACTL is initialized to 34 ($22).
A player in single line resolution might look like this:

00011000
00111100
01111110
11111111
11111111
01111110
00111100
00011000

########
########

so that each byte is displayed on one TV line. The same player in
double line resolution would look like this:

00011000
00011000
00111100
00111100
01111110
01111110
11111111
11111111
11111111
11111111
01111110
01111110
00111100
00111100
00011000
00011000

########
########
########
########

where every byte is displayed over two TV lines.

54273 0401 CHACTL
(W) Character mode control. See shadow register 755 for values
that can be POKEd in. Only the least three bits (decimal zero to

133

54274.5

seven) are read, as below:

Decimal 0 1 2 3 4 5 6 7

Cursor
Transparent X X X X
Opaque X X X X
Present X X X X
Absent X X X X

Characters
Normal X X X X
Inverted X X X X

54274.5 D402.3 DLISTL/H
Display list pointer. Tells the OS the address of the display li st
instructions about what screen mode(s) to display and where to
find the screen data. See SDLIST (560, 561 ; $230, $23 1).

54276 D404 HSCROL

134

(W) Horizontal scroll enable, POKE HSCROL with from zero to
16 clock cycles for the number of cycles to scroll . Horizonta l fine
scrolls can be used only if BIT 4 of the display list instruction is
set. The difficulty in horizontal scroll ing lies in arranging the
screen data to be scrolled in such a manner as to prevent
wraparound (i.e., the bit or byte scrolled off screen in one line
becomes the bit or byte scrolled on screen in an adjacent line).
Normal data a rranged for TV display looks like this on the screen :

where it is a one-dimensional memory area "folded" at the proper
p laces to c reate the image of a two dimensional screen. This is
done by the DL character or map mode instruction . Without
othe r instructions, it reads the memory continuously from the first
speCified locat ion, each line taking the correct number of bytes
for the GRAPHICS mode specified . To properly scroll it
horizontally, you must arrange it in relation to the TV screen like
this:

54277

Now you will have to make each display instruction for each line
into a Load Me mory Scan (LMS) instruction. To direct each LMS
to the proper screen RAM for that line, you will have to increment
each memory location by the tota l length of the line . For
example, if you want to scroll a 256-byte horizontal screen, each
LMS instruct ion will have to point to a location in memory 256
bytes above the last one. Of course, you will have to implement
error-trapping routines so that your screen does not extend
beyond your desired boundaries.
Coarse scrolling, one byte at a time, can be done without setting
the HSCROL register by the method described above. For
smooth scrolling, you will ha ve to use this register. See De Re
Atari.

54277 0405 VSCROL
(W) Vertical scroll enable, POKE VSCROL with from zero to 16
scan lines, depending on the GRAPHICS mode of the screen for
the number of scan lines to scroll. Vertical fine scrolls can be
used only if BIT 5 of the display list instruction has been set.
Coarse scrolling can be done without using this register, simply
by moving the top of the screen address (as defined by the DL
LMS instruction) up or down one mode line (plus or minus 40 or
20 bytes, depending on the GRAPHICS mode) . The top of the
screen address can be found by:

10 DLIST = PEEK(560) + PEEK(561) * 2
56

20 SCRNLO = DLIST + 4: SCRNHI = DLIS
T + 5: REM LSB/MSB OF SCREEN ADDRE
SS

25 PRINT "SCREEN ADDRESS = Of PEEK(SC
RNLO) + PEEK(SCRNHI) * 256

You could then add a routine to this for a coarse - scroll vertically
through the memory with a joystick, such as:

30
40

LOBYTE = 0: HIBYTE = 0
IF STICI«O) 14 THEN LOBYTE

BYTE + 40:GOTO 100
LO

50 IF STICK(O) 13 THEN LOBYTE LO
BYTE - 40

60 IF LOBYTE < 0 THEN LOBYTE LOBYT
E + 256: HIBYTE = HIBYTE - 1

70 IF HIBYTE <
,

0 THEN HIBYTE 0

80 GOTO 200
100 IF LOBYTE ""- 255 THEN LOBYTE LOB .'

YTE - 256
110 HIBYTE = HIBYTE + 1

135

54278

200 POKE SCRNLOW, LOBYTE: POKE SCRNHI
HIBYTE

210 GOTO 40

Coarse scrolling is relatively easy to implement in the Atari: one
basically a lters the screen RAM to display the new material. Fine
scrolling is more difficult : each scroll register must be POKEd
with the number of units to be scrolled - color clocks or scan
lines - and the corresponding display list instructions must have
the proper bits set. This means you can selectively fine scroll any
mode lines you wish by setting only those bits of the lines you
intend to scroll. Other lines will be displayed normally. You can
set a DL instruction for both horizontal and vertical scroll enable.
See the Hardware Manual for a discussion of the problems in fine
scrolling .
Fine scrolling will allow only a certain amount of data to be
scrolled before the register must be reset (16 clock bits or scan
lines maximum). In order to make the scrolling activity
continuous, the register involved must be reset to zero when the
desired value is reached, a coarse scroll must be implemented
(usua lly during a DLI or VBLANK interval) and a new fine scroll
begun. This is not easily done in BASIC since it is too slow, and
changing registers during ANTIC's display process usually
causes rough or jerky motion. Assembly routines are suggested
for smooth display. See De ReAtari, Micro, November 1981,
BYTE, January 1982, and Santa Cruz's Tricky Tutorial #2 for
more information.

54278 D406
Unused.

54279 D407 PM BASE

136

(W) MSB of the player/missile base address used to locate the
graphics for your players and missiles (the address equals
PMBASE • 256. PIM graphics are tricky to use since there are no
direct Atari 8K BASIC commands to either create or move them
(there are, however, commands for P/M graphics in BASIC A +
and in val FORTH utilities).
Your PIM graphics must always begin on a lK boundary
(PEEK(RAMTOP) -4 for double line resolution players) or 2K
boundary (PEEK(RAMTOP) - 5 for single line resolution), so the
LSB is always zero (page numbers always end in $XXOO) . For
example:

10 POKE 106, PEEK(106) - 8: GRAPHIC
S 8: SETCOLOR 2,3,4

20 POKE 559,62: POKE 53248,100: POK

54279

E 704,160: POKE 53256,2
30 MEM = PEEK(106) - 8
40 POKE 54279, MEM: POKE 53277,3: S

TART = MEM * 256 + 1024
50 FOR LOOP = 100 TO 119: READ BYTE

POKE START + LOOP, BYTE: NEXT LO
OP

60 DATA 16,16,56,40,40,56,40,40,40
70 DATA 124,84,124,84,254,146,254,1

70,170,68
100 END

You can change the color, width, resolution, and horizontal
position of the player in the example by altering the registers
used above .
Each player is one byte (eight bits) wide . Single line resolution
PIM characters (POKE 559,62) can be up to 256 bytes high.
Double line resolution PIM characters (POKE 559,46) can be up
to 128 bytes high. In either case, they can map to the height of the
screen. Missiles have the same height, but are only tw.o bits wide
each . Four missiles can be combined into a fifth player by setting
BIT 4 of location 623 ($26F). You need not fill the entire height of
a PIM character, but you should POKE unused bytes with zero to
eliminate any screen garbage. You can do this by:

FOR N = PMBASE + 1024 TO PMBASE + 2048:
POKEN,O: NEXTN

where PMBASE is the starting address of the reserve memory
area. In double line resolution, change the loop value to N =
PMBASE + 512 TO PMBASE + 1024. Here's a short machine
language routine to do the same thing. You would put the start
address of the area to be loaded with zero and the number of
bytes to be cleared in with the USR call as the first two
parameters. In this example, I have arbitrarily chosen 38012 and
2048 for these values.

10 START = 38012: BYTE = 2048: DIM
PGM$(42)

20 FOR LOOP = 1 TO 42: READ ML: PGM
$(LOOP, LOOP) = CHR$(ML): NEXT LOO
P

30 DATA 104,104,133,204,104,133,203
,104,133,206,104

40 DATA 133,205,166,206,160,0,169,0
,145,203,136

50 DATA 208,251,230,204,202,48,6,20
8,244,164

137

54279

138

60 DATA 205,208,240,198,204,160,0,1
45,203,96

70 A = USR(ADR(PGM$),START,BYTE)

You can use this routine to clear out memory anywhere in the
Atari. You can also use it to load anyone value into memory by
changing the second zero (after the 169) in line 40 to the value
desired.
Locating your graphics tables at the high end of memory may
cause addressing problems for playfield graphics, or may leave
some of the display unusable and cause PLOT to malfunction. If
you locate your tables just before the screen display, it may be
erased if you change graphics modes. You can look at your
highest RAM use graphics statement and plan according ly . To
calculate a safe starting address below the display list, try:

100 DUST = PEEK(560) + PEEK(561) * 256: PMBASE =
INT (DUST/SIZE -1) * SIZE

where SIZE is 2048 for single line resolution, 1024 for double
line .
Once you have the starting address, determine the ending
address of your table by adding the correct number of bytes for
the size (same as the SIZE variable above), and POKE this
number (LSB/MSB) into APPMHI at locations 14 and 15 ($E, $F) .
This sets the lower limit for playfield graphics memory use . If you
change graphics modes in the program now, it should leave your
player tables intact. For example, if the DL is at 39968, the
PMBASE will equal 36864 in the equation above . Add 2048
(single line resolution) to get 38912. This is $9800 . In decimal,
the LSB is zero and the MSB is 152. POKE these values into
APPMHI. This sets the lowest limit to which the screen and DL
data may descend.

The unused portion of the RAM set aside for P/M use, or any
RAM reserved for players, but not used, may be used for other
purposes in your program such as machine language routines.
See the appendix for a map of P/M memory use. The register
stores the address as below:

Bit 7 6 5 4 3 2 1 0
One line resolution: MSB unused . . .
Two line resolution: MSB unused . .

There are some restri ctions on locating your P/M data above the
display list. If not positioned far enough above your screen data,
you may end up with both the normal and screen data being
displayed at once, resulting in garbage on the screen. A display
list may not cross a lK boundary without a jump instruction, and

54280

the screen disp lay RAM cannot cross a 4K boundary without an
LMS instruction to point to the proper byte(s). Due to problems
that arise when moving the GR.7 and GR.8 screens and data less
than 4K, you should never reserve less than 16 pages above
RAMTOP in these modes. If you are reserving more, add the
pages in blocks of 4K (16 pages).
See COMPUTE!, September 1981, for a discussion of the
problems of positioning P/M graphics in memory, and using P/M
graphics for animation.
See De Re Atari, COMPUTE!, June 1982, and Creative
Computing, April 1982, for a discussion of using string
manipulation with P/M graphics. See Your Atari 4001800 for a
general discussion of P/M graphics. Most of the popular
magazines have also carried articles on simplifying P/M
graphics.

54280 0408
Unused.

54281 0409 CHBASE
(W) Character base address; the location of the start of the
character set, either the standard Atari set or a user-designed set.
The default is 224 ($EO), which points to the start of the Atari
ROM character set. Iridis, a short- lived disk -and- documentation
magazine, produced a good utility called FontEdit to aid in the
design of altered character sets. Online Systems' program The
Next Step is also very usefu l for this purpose, as is COMPUTE!'s
"SuperFont, " January 1982. Uses shadow register 756 ($2F4).
Normally, this points to location 57344 or 57856 ($EOOO or $E200)
depending on your choice of characters used in which text mode .
GRAPHICS mode zero uses the entire 128-character set; GR . l
and GR.2 use only half the set (64 characters). You POKE a
different number into the shadow register at 756 ($2F4) to point to
your own character set in RAM. This must be an e ven number
that pOints to a page in memory that is evenly divisible by two. In
GR. 1 and GR.2 this number is 224 (pointing to $EOOO), giving
you uppercase, punctuation and numbers. POKEing the shadow
or this location (in machine language) with 226 wi ll g ive you
lowercase and control characters .
See the information about the ROM character set at 57344
($EOOO) .

54282 040A WSYNC
(W) Wait for horizontal synchronization. Allows the OS to
synchronize the vertica l TV display by causing the 6502 to halt
and restart seven machine cycles before the beginning of the

139

54283

next TV line. It is used to synchronize the VBI's or DLI's with the
screen display.
To see the effect of the WSYNC register, type in the second
example of a Display List Interrupt at location 512 . RUN it and
observe that it causes a clean separation of the colors at the
change boundary. Now change line 50 to:

50 DATA 72,169,222,234,234,234,141,24,208,104,64

This eliminates the WSYNC command. RUN it and see the
difference in the boundary line .
The keyboard handler sets WSYNC repeatedly while generating
the keyboard click on the console speaker at 53279 ($DO 1 F).
When interrupts are generated during the WSYNC period, they
get delayed by one scan line . To bypass this, examine the
VCOUNT register below and delay the interrupt processing by
one line when no WSYNC delay has occurred.

54283 040B VCOUNT
(R) Vertical line counter. Used to keep track of which line is
currently being generated on the screen . Used during Display
List Interrupts to change color or graphics modes. PEEKing here
returns the line count divided by two, ranging from zero to 130
($82; zero to 155 on the PAL system; see 53268; $DOI4) for the
262 lines per TV frame .

54284 040C PENH
(R) Light pen horizontal pOSition (564). Holds the horizontal color
clock count when the pen trigger is pressed.

54285 0400 PENV
(R) Light pen vertical position (565). Holds the VCOUNT value
(above) when the pen trigger is pressed. See the Hardware
Manual, p. II-32, for a description of light pen operation.

54286 040E NMIEN

140

(W) Non-maskable interrupt (NMI) enable . POKE with 192 to
enable the Display List Interrupts . When BIT 7 is set to one, it
means DL instruction interrupt; any display list instruction where
BIT 7 equals one will cause this interrupt to be enabled at the
start of the last video line displayed by that instruction . When BIT
6 equals one, it allows the Vertical Blank Interrupt and when BIT
5 equals one, it allows the RESET button interrupt. The RESET
interrupt is never disabled by the OS . You should never press
RESET during powerup since it will be acted upon .
NMIEN is set to 64 ($40) by the OS IRQ code on powerup,
enabling VBl's, but disabling DLI's. All NMI interrupts are
vectored through 65530 ($FFF A) to the NMI service routine at

54287

59316 ($E7B4) to determine their cause.

Bit 7 6 5 4 3 2 1 0
Interrupt: DLI VBI RESET unused

54287 D40F NMIRES
(W) Reset for NMIST (below); clears the interrupt request
register; resets all of the NMI status together.

NMIST
(R) NMI status; holds cause for the NMI interrupt in BITs 5,6 and
7; corresponding to the same bits in NMIEN above. If a DLI is
pending, a jump is made through the global RAM vector
VDSLST (512; $200). The OS doesn't use DLI's, so 512 is
initialized to point to an RTI instruction and must be changed by
the user before a DLI is allowed.
If the interrupt is not a DLI, then a test is made to see if the
interrupt was caused by pressing RESET key and, if so, a jump is
made to 58484 ($E474) . If not a RESET interrupt, then the system
assumes the interrupt was a VBLANK interrupt, and a jump is
made through VVBLKI at 546 ($222), which normally points to
the stage one VBLANK processor. From there it checks the flag at
CRITIC (66; $42) and, if not from a critical section, jumps
through VVBLKD at 548 ($224), which normally points to the
VBLANK exit routine . On powerup, the VB LANK interrupts are
enabled while the display list interrupts are disabled. See the end
of the memory map for a description of the VB LANK procedures .
For IRQ interrupts, see location 53744 ($D20E).

Locations 54288 to 54303 ($D41O to $D41F) are repeats of locations
54272 to 54287 ($D400 to $D40F).

Locations 54784 to 55295 ($D600 to $D7FF) are unused but not empty
nor user alterable . See the note at 53504 ($D100).

OPERATING SYSTEM ROM
Locations 55296 to 65535 ($D800 to $FFFF) are the OS ROM.
These locations are contained in the 10K ROM cartridge, which sits in
the front slot of the Atari 800 or inside the Atari 400. The OS is
identical for both computers.
The locations given here are for the "A" version of the OS ROMs .
There are changes in the new "B" version ROMs, which are explained
in the appendix. Most of the changes affect the interrupt handler
routines and SIO. In making these changes , Atari cured some bugs

141

55296

such as the device time-out problem. Unfortunately, there is a cloud
with this silver lining: not all of your old software will run with the new
ROMs. Megalegs, one of my favorite games, cannot run under the new
ROMs. A pity that. There are others; I'm sure you'll find them. The
solution is to have both sets of ROMs so you can use all of your
software.

FLOATING POINT PACKAGE ROM
Locations 55296 to 57343 ($D800 to $DFFF) are reserved for the ROM's
Floating Point Mathematics Package. There are other areas used by the
FP package: page zero (locations 212 to 254; $D4 to $FE) and page five
(locations 1406 to 1535; $57E to $5FF), which are used only if FP
routines are called . There are also trigonometric functions in the BASIC
cartridge located between 48549 and 49145 ($BDA5 to $BFF9) which
use the FP routines. See De He Atari for more information.
These are the entry points to some of the subroutines; unless otherwise
noted, they use FP register zero (FRO at 212 to 217, $D4 to $DB):

55296 D800 AFP
ASCII to Floating Point (FP) conversion.

55526 D8E6 FASC
FP value to ASCII conversion.

55722 D9AA IFP
Integer to FP conversion.

55762 D9D2 FPI
FP to integer conversion.

55876 DA44 ZFRO
Clear FRO at 212 to 217 ($D4-$DB) by setting all bytes to zero.

55878 DA46 ZFl
Clear the FP number from FR1, locations 224 to 229 ($EO to $E5),
by setting all bytes to zero. Also called AF 1 by De He Atari.

55904 DA60 FSUB
FP subtract routine; the value in FRO minus the value in FR 1.

55910 DA66 FADD
FP addition routine; FRO plus FRI.

56027 DADB FMUL
FP multiplication routine; FRO times FRI.

56104 DB28 FDIV
FP division routine; FRO divided by FRl.

56640 DD40 PLYEVL
FP polynomial evaluation.

142

56713

56713 DD89 FLDOR
Load the FP number into FRO from the 6502 X, Y registers .

56717 DD8D FLDOP
Load the FP number into FRO from user routine, using FLPTR at
252 ($FC).

56728 DD98 FLDlR
Load the FP number into FR1 from the 6502 X,Y registers.

56732 DD9C FLDlP
Load the FP number into FRI from user program, using FLPTR.

56743 DDA7 FSTOR
Store the FP number into the 6502 X, Y registers from FRO .

56747 DDAB FSTOP
Store the FP number from FRO, using FLPTR.

56758 DDB6 FMOVE
Move the FP number from FRO to FR 1.

56768 DDCO EXP
FP base e exponentiation.

56780 DDCC EXPlO
FP base 10 exponentiation.

57037 DECD LOG
FP natural logarithm.

57041 DEDI LOGlO
FP base 10 logarithm.

Locations 57344 to 58367 ($EOOO to $E3FF) hold the standard Atari
character set: at $EOOO the special characters, punctuation and numbers
begin; at $E100 (57600) the capital letters begin; at $E200 (57856) the
special graphics begin, and at $E300 (58112) the lowercase letters
begin.
There are 1024 bytes here ($400), with each character requiring eight
bytes, for a total of 128 characters (inverse characters simply manipulate
the information here to reverse the bits by performing an OR with 128-
the value in location 694 ($2B6) when the Atari logo key is toggled - on
the bits. To return to the normal ATASCII display, the inverse characters
are EORed with 128). The first half of the memory is for numerals ,
punctuation, and uppercase characters; the second half ($E200 to
$E3FF) is for lowercase and control characters . When you POKE 756
($2F4) with 224 ($EO), you are POKEing it with the MSB of this address
($EOOO). When you POKE it with 226 ($E2), you are moving the address
pointer to the second half of the character set. In GR.O, you have the

143

entire character set to use. In GR.l and GR.2, you can use only one half
of the set at a time. You can't POKE it with 225 because the number
POKEd must be evenly divisible by two.
The characters stored here aren't in ATASCII order; they have their own
internal order for storage. The order of the characters is listed on page
55 of your BASIC Reference Manual.
Here's an example of how a letter (A) is stored in ROM. Each line
represents a byte. The decimal values are those you'd find if you
PEEKed the eight locations where "A" is stored (starting at 57608;
$El08):

144

Bit 76543210 Decimal

00000000 0
00011000 24 ##
00111100 60 ####
01100110 102 ## ##
01100110 102 ## ##
01111110 126 ######
01100110 102 ## ##
00000000 0

When you create your own character sets (or alter the Atari set
when you move it to RAM - see location 756; $2F4 for a routine
to do this), you do a "bit-map" for each character as in the
example above . It could as easily be a spaceship, a Hebrew
letter, an APL c haracter, or a face. Chris Crawford's game
Eastern Front 1941 (APX) shows excellent use of an altered
character set to create his large map of Russia, plus the symbols
for the armies.
Here's an example of using the bit-mapping of the character set
to provide text in GRAPHICS 8:

1 GRAPHICS 8
5 DLIST = PEEK(560) + PEEK(561)*256
6 LOBYTE = DLIST+4: HIBYTE = DLIST +

5
7 REAL = PEEK(LOBYTE) + PEEK(HIBYTE)

*256: SCREEN = REAL: TV = SCREEN
10 CHBASE = 57344
20 DIM A$(12B).BYTE(128).WANT(12B)
27 PRINT "INPUT A 40 CHARACTER STRIN

G: "
30 INPUT A$
35 TIME = TIME + 1
40 FOR LOOK = 1 TO LEN(A$)
50 BYTE(LOOK) = ASC(A$(LOOK,LOOK»

51 IF BYTE(LOOK) > 127 THEN BYTE(LOO
K) = 9YTE(LOOK} - 128

52 IF BYTE(LOOK) < 32 THEN BYTE(LOOK
) BYTE(LOOK) + 64: GOTO 55

53 IF BYTE(LOOK} < 97 THEN BYTE(LOOK
} BYTE(LOOK) 32

55 NEXT LOOK
59 FOR EXTRA = 0 TO 7
60 FOR LOOK = 1 TO LEN(A$)
70 WANT(LOOK} = PEEK(CHBASE + EXTRA

+ BYTE(LOOK)*8)
80 POKE TV + EXTRA, WANT(LOOK): TV =

TV + 1
82 NEXT LOOK
85 SCREEN = SCREEN + 39: TV = SCREEN
90 NEXT EXTRA
100 SCREEN = REAL + TIME*320
110 IF SCREEN> REAL + 6080 THEN TIM

E = 0: GOTO 100
120 GOTO 30

This program simply takes the bytes which represent the letters
you input as A$ and finds their places in the ROM character set.
It then proceeds to POKE the bytes into the screen RAM, using a
FOR-NEXT loop.
To convert ATASCII codes to the internal codes, use this table:

ATASCII value Operation for
internal code

o - 31
32 - 95
96 -127
128 -159
160 - 223
224 - 255

add 64
subtract 32
remains the same
add 64
subtract 32
remains the same

See COMPUTE!, November 1981, for the program "TextPlot"
which displays text in diffe rent sizes in GRAPHICS modes three
to eight, and January 1982 for a program to edit character sets,
"SuperFont."

Locations 58368 to 58447 ($E400 to $E44F) are the vector tables, stored
as LSB, MSB . These base addresses are used by resident handlers .
Handler vectors use the following format:

OPEN vector
CLOSE vector

145

58368

GET BYTE vector
PUT BYTE vector
GET STATUS vector
SPECIAL vector
Jump to handler initialization routine (IMP LSB/MSB)

The device tables in location 794 ($3IA) point to the particular
vector(s) usedip each appropriate table. In each case, the 6502 X
register is used to point to the originating IOCB.

58368 E400 EDITRV
Screen Editor (E:) entry point table.

58383 E40F
If you PEEK here and get back 56, then you have the older "A"
version of the OS ROMs. If you get back zero, then you have the
newer "B" version that was released in January 1982. The "B"
version fixes some minor bugs, including the device time-out
problems, enables POKEY timer four, and provides a vector for
BREAK key interrupts. See Appendix 4.

58384 E410 SCRENV
Display handler (television screen) (S:).

58400 E420 KEYBDV
Keyboard handler (K:).

58416 E430 PRINTV
Printer handler (P:).

58432 E440 CASETV
Cassette handler (C:).

Locations 58448 to 58533 ($E450 to $E4A5) are more vectors: those to
location 58495 ($E47F) are Jump vectors, those from 58496 to 58533
($E480 to $E4A5) are the initia l RAM vectors.

58448 E450 DISKIV
Disk handler initialization vector, initialized to 60906 ($EDEA).

58451 E453 DSKINV
Disk handler (interface) entry; checks the disk status. Initialized
to 60912 ($EDFO).

58454 E456 CIOV

146

Central Input/Output (CIO) utility entry. CIO handles a ll of the
I/O operations or data transfers. Information placed in the
IOCB's tells CIO what operations are necessary. CIO passes this
information to the correct device driver routine and then passes
control to the Device Control Block (DCB). This in turn calls up

58457

SIO (below) to control the actua l peripheral(s). CIO treats all 1/0
in the same manner: device independent. The differentiation
between operations is done by the actual device drivers.
You jump to here to use the IOCB handler routines in ROM.
BASIC supports only record I/O or one-byte-at-a-time 1/0 (GET
and PUT). Addressing CIOV directly will allow the user to input
or output a buffer of characters at a time, such as loading a
machine language program directly into memory from a disk file.
This is considerably faster than using BASIC functions such as
GET. Here is a typical machine language subroutine to do this :

PLA, PLA, PLA, TAX, IMP $E456
(104,104,104,170,76,86,228)
($68,$68,$68,$AA,$4C,$56,$E4)

This gets the IOCB number into the 6502 X register and the
return address on the stack. CIOV expects to find the IOCB
number 16 in the 6502 X register (i. e., IOCB zero is zero, IOCB
one is 16; $10, IOCB two is 32, $20, etc .) . $E456 is the CIO
initialization entry point (this address) .

To use C IOV in a program, first you must have OPENed a
channel for the appropriate actions, POKEd the correct IOCB
(locations 848 to 959; $350 to $3BF) with the correct values, and
established a location in which to load your file (IOCB address
plus four and plus five). One use is calling up a high-res picture
from a disk and storing it in the screen memory (locations 88,89;
$58, $59). You can POKE the appropriate decimal values into
memory and call it with a USR call, or make it into a string
(ST ART$ = "hhh * LV d" where the * and the d are both inverse
characters) and call it by:

JUMP = USR(ADR(START$))

This method is used to start the concurrent mode in the RS-232 of
the 850 interface in the 850 Interface Manual . See location 88, 89
($58, $59) for another example of the machine language routine
technique. Still another use of this method can be found in De Re
Atari. Init ialized to 58564 ($E4C4).

58457 E459 SIOV
Seria l Input/Output (SIO) utility entry point. SIO drives the
serial bus and the peripherals . When a request is placed in the
Device Control Block (DCB) by a device handler, SIO takes
control and uses the data in the DCB to perform the operation
required. SIO takes care of the transfer of data as defined by the
DCB. CIO (above) is responsible for the "packaging" of the data
and transfers control to SIO when necessary. See the DCB
locations 768 to 779 ($300-$30B).

147

58460

SIO first sends a command frame to the device, consisting of five
b ytes: the device ID , the command BYTE , two auxiliary bytes for
device-specific information, then a checksum (which is the sum
of the fir st four bytes). If the device acknowledges this frame, it is
followed, if necessary, by the data frame of a fixed number of
bytes depending on the device record size, plus a checksum
byte. Initialized to 59737 ($£959) .

58460 E45C SETVBV
Set system timers during the VBLANK routine. Uses the 6502 X
register for the MSB of vector/times, Y for the LSB and A for the
number of the vector to hack (change). SETVBV insures that both
bytes of the vector addressed will be updated while VBLANK is
enabled . You can JSR here when creating your own timer
routines. See COMPUTE! , November 1981, for an application.
Initia lized to 59666 ($E912) old ROMs, 59629 ($E8ED) new
ROMs.

58463 E45F SYSVBV
Stage one VBLANK calculations entry . It performs the
processing of a VBLANK interrupt. Contains JMP instruction for
the vector in the next two addresses (58464,58465; $E460,
$E461). This is the address normally found in VVBLKI (546,547;
$222, $223). It is initialized to 59345 ($E7D 1), which is the
VBLANK routine entry. Initia lized to 59345 ($E7D 1) old ROMs,
59310 ($E7 AE) new ROMs.

58466 E462 XITVBV
Exit from the VBLANK routine, entry point. Contains JMP to the
address stored in next two locations (58467, 58468; $E463 ,
$E464). This is the address normally found in VVBLKD (548, 549;
$224, $225). Initialized to 59710 ($E93E), which is the VBLANK
exit routine. It is used to restore the compute r to its pre-interrupt
state and to resume normal processing . Initialized to 59710
($E93E) old ROMs, 59653 ($£905) new ROMs .

58469 E465 SIOINV
SIO utility initialization, OS use only.

58472 E468 SENDEV
Send enable routine, OS use only.

58475 E46B INTINV
Interrupt handle r initialization , OS use only.

58478 E46E CIOINV
C IO ut ility initi a lization, OS use only .

58481 E471 BLKBDV
Blackboard mode entry. Blackboard mode is the "ATARI MEMO

148

58484

PAD" mode. It can be reached from BASIC by typing "BYE",
"B." or by powering up with no peripherals or cartridges.
Nothing you write to the screen in blackboard mode is acted
upon by the computer. You can enter this mode to protect your
programs temporarily from prying and curious fingers.
All of the screen editing commands continue to work in
blackboard mode. You can enter blackboard mode from any
graphics mode with a text window; the display screen will remain
intact on the screen while the text window will be in blackboard
mode. Pressing RESET will, of course, return the entire screen to
GR.O. You can also enter blackboard mode from a program, but
cannot get out of it in BASIC once you are in it.
If you entered blackboard mode from BASIC, you can return to it
by pressing RESET. Any BASIC program will still be there. So
will any RS-232 or DOS handlers previously booted. Initialized to
61987 ($F223).

58484 E474 WARMSV
Warmstart entry point (RESET button vector). Initializes the OS
RAM region. The RESET key produces an NMI interrupt and a
chip reset (see below). Jump to here on an NMI caused by
pressing the RESET key. Initialized to 61723 ($F lIB).

58487 E477 COLDSV
Coldstart (powerup) entry point. Initializes the OS and user RAM
regions; wipes out any program in memory. Initialized to 61733
($FI25).

58490 E47A RBLOKV
Cassette read block routine entry, OS use only.

58493 E47D CSOPIV
Cassette OPEN for input vector, OS use only .

58496 E480 VCTABL
RAM vector initial value table.

The following are the addresses for the handler routines:

58534-59092 E4A6-E6D4 CIOORG
Addresses for the Central Input/Output routines (CIO):

58534 ($E4A6) CIOINT is the CIO initialization routine called by
the monitor on powerup.

58577 ($E4Dl); move the user IOCB to the ZIOCB.

58596 ($E4E4); check for a valid command.

58633 ($E509); OPEN command routines.

149

58675

58675 ($E533); CLOSE command routines.

58702 ($E54E); STATUS and special command routines.

58729 ($E569) CIREAD; process the C IO commands for read and
write, including buffer check for full or empty.

58907 ($E61B); routine to return to the user from CIO.

58941 ($E630); routines to compute the device handler entry point,
jump to the handler, transfer control, and then return to CIO after the
operation.

59093-59715 E605-E943 INTORG
Addresses for the interrupt handler routines:

59123 ($E6F3) PIRQ; IRQ interrupt service routines start here.

59126 ($E6F6); the immediate IRQ vector to the IRQ handler. The
global NMI and IRQ RAM vectors in locations 512 to 527 ($200 to $20F)
are all initialized to this area (59142, $E706 for the new OS ROMs).

59314 ($E7B2); the vector for the IRQ interrupts on powerup; it
points to a PLA and RTI instruction sequence (new OS ROMs; 59219;
$E78F).

59316 ($E7B4) PNMI; the NMI handler, tests for the reason for the
NMI, then jumps through the appropriate RAM vector. Also called the
Interrupt Service Routine (ISR).

59345 ($E7Dl) SYSVBL; the VBLANK routines start here,
including frame counter, update timer, update hardware registers
from shadow registers, update the attract mode counter and the
realtime clock. The vertical blank immediate vector, VVBLKLl,
normally pointed to by locations 546, 547 ($222, $223)' points to here.
The Updated OS ROMs point to 59310 ($E7 AE).

59666 ($E912) SETVBL; subroutines to set the VB LANK timers
and vectors.
The vertica l blank deferred interrupt, normally vectored from
locations 548,549 ($224, $225), pOints to 59710 ($E93E). In the
Updated OS ROMs, it points to 59653 ($E905). In both cases they point
to the VBLANK exit routine.
See page 104 of the OS User's Manual for a list of the vectors and
MICRO, January 1982, for an explanation of the VBLANK process.

59716-60905 E944-EOE9 SIOORG
Routines for the Serial Input/Output (SIO) routines:

60011 ($EA6B) SEND; is the SIO send buffer routine entry.

60048 ($EA90) ISRODN; is the seria l output ready IRQ vector.

150

60113

60113 ($EAD 1) ISRTD; is the seria l output complete IRQ vector .
This is at 60111 ($EACF) in the new OS ROMs.

60177 ($EBll) ISRSIR; is the serial input ready IRQ vector. This
is 60175 ($EBOF) in the new OS ROMs.

60292 ($EB84) CASENT; is the start of the cassette handling code
SIO subroutine to set baud rate, tone values, inter-record gap, to load
the buffer from the cassette and to turn on the recorder motor . Write
routines are located in 61249 to 61666 ($EFF5 to $FOE2) .

60515 ($EC63) is the start of the disable POKEY interrupts routine
entry, which also disables the send and receive functions.

60583 ($ECA7) COMPUT; is the subroutine to calculate baud
rate using the POKEY frequency registers and the VCOUNT timer.
The tables for the AUDF and VCOUNT values are between 60882 and
60905 ($EDD2 and $EDE9).

60906-61047 EDEA-EE77 DSKORG
Routines for the disk handler .
Initialization is at DIN IT , 60906 ($EDEA), entry is at DSKIF, 60912
($EDFO).

61048-61248 EE78-EF40 PRNORG
Routines for the printer handler.

61249-61666 EF41-FOE2 CASORG
Routines for the cassette handle r.

The buzz used in the cassette CLOAD command can be called up from
BASIC by:

BUZZ = USR(61530) .

You can turn it off with the RESET key . While this isn't terribly
exciting, it points to the potential of using the console speaker for
sound instead of merely for beeps (the RAM locat ion for the speaker is
at 53279; $D01F). See the speaker location and COMPUTE!, August
1981, for a short routine to use the speaker for sound effects.

61667-62435 FOE3-F3E3 MONORG
Routines for the monitor handler. This is also the address area of
PWRUP, the powerup module (61733; $FI25) . Coldstart routines are
initialized to this location. The routine to check for cartridge
installation begins at 61845 ($FI95). Hardware initialization begins at
62081 ($F28l) .

61723 ($FIIB) RESET; the RESET button routine starts here.

62081 ($F281) HARDI; the start of the hardware initialization
routines.

151

62100

62100 ($F294) OSRAM; the start of the OS RAM initialization
and setup routines.

62159 ($F2CF) BOOT; the entry point for the disk boot routine.

62189 ($F2ED) DOBOOT; the disk boot routine activation.

62334 ($F37E) DOPEN; the entry point for the reinitialization
of disk software .

62436-65535 F3E4-FFFF KBDORG
Routines for the display and.keyboard handler . The display
handler begins at 62454 ($F3F6) and the keyboard handler
begins at 63197 ($F6DD), below.

63038 F63E EGETCH
Like the BASIC INPUT command, EGETCH gets a line from the
screen and keyboard, but only one character at a time. You must
do a JSR $F63E for each character input. This is also the address
of the beginning of the screen editor routines.

63140 F6A4 EOUTCH
This routine puts the character currently in the accumulator onto
the screen in the next print location. Similar to the BASIC PUT
command.

63197 F6DD KGETC2
Beginning of the keyboard handler .

63202 F6E2 KGETCH
This routine waits for a key to be pressed and returns its value to
the accumulator (6502 register A) . Similar to the BASIC GET
command.

64428 FBAC SCROLL
The screen scroll routine starts here .

64764 FCFC DRAW
Screen draw routines begin here, end at 65092 ($FE44) . See
Creative Computing, March 1982, for an example of a
modification to the draw routines to avoid the "out-of-bounds"
error for use in GR.7 +.

65093-469 FE45-FFBD
The ROM tables for display lists, ANTIC codes, control codes,
and ATASCII conversion codes.

65470 FFBE PIRQQ

152

Subroutines to test the acceptance of the last key pressed and to
process the debounce delay routines start here .
When a key is pressed, it initiates an IRQ through VKEYBD at

65528

locations 520,521 ($208, $209) to 65470 ($FFBE). This is the
keyboard service routine. It processes debounce, and SHIFT­
CTRL logic (see location 559; $22F); saves the internal keyboard
code in 754 ($2F2) and 764 ($2FC); sets the ATTRACT mode flag
at 77 ($4D) and sets location 555 ($22B - SRTIMR) to 48 ($30).

65528 FFF8 CHKSUN
According to Softside Magazine , December 1981, if a PEEK here
returns 255, then you have the older OS ROM(s). There were
some troubles with cassette loads in the older ROMs that
sometimes require the following to cure :
Do an LPRINT without a printer attached before CLOAD. This
clears the cassette buffer.
Press RESET before CSAVEing or CLOADing will restore the
system to its initialization parameters and help with loading and
saving routines.
There is a new OS available from Atari which fixes a bug that
would cause the I/O operations to "time out" for a few seconds. It
apparently does not alter any of the routines mentioned here.
The chip reset interrupt (powerup) vectors through location
65532 ($FFFC) to 58487 ($E477) where a IMP vector to the
powerup routine is located. A chip reset is not the same as
pressing the RESET key, which in itself does not generate a chip
reset.
The NMI interrupts are vectored through 65530 ($FFF A) to the
NMI service routine (ISR) at 59316 ($E7B4), and all IRQ
interrupts are vectored through 65534 ($FFFE) to the IRQ service
routine at 59123 ($E6F3). In these service routine areas, the
cause of the interrupt is determined, and the appropriate action
is taken, either by the OS or through a IMP to a RAM vector
where a user routine exists .

153

APPENDIX ONE _____ _

VBLANK Processes
The VBLANK routines are all documented in the OS listings, pages 35
to 38. In the "A" ROMs, they are processed in locations 59345 to 59665
($E7D 1 to $E911). In the "B" ROMs, they are processed at 59310 to
59628 ($E7 AE to $E8EC). See also De Re Atari for more explanation .

Stage 1 VBLANK:
Performed every VBI :
1) Increment the realtime clock at 18 - 20 ($12-$14)
2) Process the attract mode variables (location 77; $4D)
3) Decrement system timer one at 536 ($218) and if zero JSR through

550 ($226).

Stage 2 VBLANK:
Performed every VBI which does not interrupt critical sections :
1) Update the hardware registers from the shadows as follows:

Shadow: Hardware: Update reason:
SDLISTL/H DLISTLIH DISPLAY LIST END
SDMCTL DMACTL
CHBAS CHBASE
CHACT CHACTL
GPRIOR PRIOR
COLORO-4 COLPFO-4,BAK
PCOLO-3 COLPMO-3
LPCNV IH PENV IH
STICKO-l PORTA
PTRIGO-3 PORTA
STICK2-3 PORTB
PTRIG4-7 PORTB
PADDLO-7 POTO-7
STRIGO-3 TRIGO-3

CON SOL

ATTRACT MODE

LIGHT PEN
JOYSTICKS
PADDLE TRIGGERS

PADDLES
JOYSTICK TRIGGERS
CONSOLE SPEAKER OFF

2) System timers two to five (locations 540,542,544; $21 C,$21 E,S220)
are decremented and if the value is zero, the corresponding flags
are set. A JSR is made through 552 (S228) if timer two equals zero.

3) A character is read from POKEY keyboard register at 53769
(SD209) and read into CH at 764 (S2FC) if the auto-repeat is active .

4) The keyboard debounce counter is decremented by one if it is not
zero and if no key is being pressed.

5) Keyboard auto-repeat logic is processed.
6) Exit the VBLANK routine through 58466 (SE462).

154

APPENDIX TWO _____ _

A Graphics Memory Map
This diagram is not to scale; it is merely meant to give you a visual idea
of the structure of the Atari memory. The numbers on the right are the
memory pointers: these locations point to the addresses shown . The
numbers on the left are the actual locations in memory .

Location

65535 __

60906-65535
59716-60905
59093-59715

58534-59092

58533 __
58496-58533
58448-58495
58432-58447
58416-58431
58400-58415
58384-58399
58368-58383

Contents

Top of memory
Operating System ROM

Pointers

Device handler routines 794-831 HATABS
Serial Input/Output (810) utilities
Interrupt handler 512,513 VDSLST

514-527 Vectors
Central Input/Output (CIO) utilities

Operating System vectors
Initial RAM vectors on powerup
}MP vectors
Cassette
Printer
Keyboard
Screen
Editor

58367 __ ROM Character set ___ _ 756 CHBAS __ _

57344

57343 __ Floating Point ROM package

55295 __ 110 chips ________________ 1

54784-55295 Unused
54272-54783 ANTIC 756 CHBAS

755 CHI
564-565 LPEN
560-561 SDLSTL
559 SDMCTL

155

APPENDIX TWO

54016-54271 PIA

53760-54015 POKEY

53504-53759 unused
53248-53503 GTIA or CTIA

636-639 PTRIG#
632-635 STICK#
624-631 PADDL#
562 SSKCTL
16 POKMSK

704-707 PCOLR#
708-712 COLOR#
644-647 STRIG#
623 GPRIOR

53247 Unused 4K ROM block -----------1

49151 8K BASIC ROM
or Left cartridge (A) ____________ 1

40959 __ Top of BASIC RAM or 106 RAMTOP

Size and
location
vary with
GRAPHICS
mode

(OS)

156

740 RAMSIZ

Right cartridge (B) ROM if present
(Atari 800 only)

Text window screen RAM
40800 for GR.O

Bottom of screen RAM
40000 for GR.O

Display List:
39968 for GR.O

Top of BASIC RAM

60,661 TXTMSC

88,89 SAVMSC

560,561 SDLSTL

741,742 MEMTOP

APPENDIX TWO

32768

32767 __ User-program RAM

The amount of RAM can be ascertained by:
PRINT FRE(O)

Bottom varies: see note below
(13062) Depends on buffer area allocated.

RAM used by DOS and File System Manager

144,145 MEMTOP
Stack for FOR-NEXT & GOSUB 142,143 RUNSTK

14,15 APPMHI
Size and
location
vary with
program
size

String & array table &
end of BASIC program 140,141 STARP

BASIC program
area

Statement table: 136,137 STMTAB
Beginning of BASIC program
Variable variable table 134,135 VVTP

VNTP + 1 132,133 VNTD

Variable name table 130,131 VNTP

(7420) BASIC bottom of memory 743,744 MEMLO
128,129 LOMEM

Sector buffers 4921,4937 SABUFL/H
6781 Drive & sector buffers 4905,4913 DBUFAlIH
6047 DOS vector 10, 11 DOSVEC
5440 DUP. SYS start

157

APPENDIX TWO

5377 VTOC buffer
DOS initialization 12,13 DOSINI

(743,744 MEMLO)
(128 ,129 LOMEM)

or BASIC RAM without
DOS resident
FMSRAM

1792 DUP. SYS beginning

1791 RAM used by OS and cartridge .
(to bottom of RAM)

Page six RAM

1535 _ _ RAM used by BASIC _ _______
1

(to bottom of RAM)

1406 Floating Point RAM
1405 BASIC RAM

1151 Operating System RAM

Cassette buffer

Printer buffer

IOCB's

512

511 Stack

256

255 BASIC zero page RAM

Floating Point pg. 0

Assembler Cart. pg. 0

158

-
-

APPENDIX TWO

128

127 OS page zero RAM

Zero page lOeB

o Bottom of memory

Notes
The bottom of the BASIC RAM depends on whether or not you have
DOS files loaded in . Without DOS, LOMEM should be 1792, with DOS
7420. If you increase or decrease the number of disk and sector buffe rs
by modifying DOS, th is value will change again. See locations 743,
744 and 1801, 1802 .
The size and location of the va riable, string and array tables depend
on the program use and size. The more variables and a rrays , the larger
the memory the tables use.
The size and address of the Display List and screen me mory depend on
the GRAPHICS mode in use .
The first 256 bytes pointed to by LOMEM are the token output buffer.
The actua l BASIC program starts at the address pointed to by VNTP.

159

APPENDIX THREE ___ _

Atari Timing Values
clock frequency = 1.79 MHZ
1 machine cycle = 0.558 J.l.sec.
1 frame = 1/60 second
scan lines = 262/frame
color clocks = 228/scan line
color clocks = 2/machine cycle
machine cycles = 29868/frame
machine cycles = 114/scan line
VBLANK time = 7980 machine cycles or less, depending on
GRAPHICS mode. The shortest 6502 instruction requires two cycles;
during that time the e lectron beam moves four color clocks.

Horizontal blank time:
Wide playfield 18 machine cycles
Normal playfield 34 machine cycles
Narrow playfield 50 machine cycles

See the Hardware Manual for more information on cycle counting.

160

,.

APPENDIX FOUR ___ _

Old (A) And New (B) ROMS
The new OS ROMs have been mentioned throughout the book. They
fixed some of the earlier OS bugs, but also changed a few ROM
locations in the process . The result is a better OS, but some of your
earlier software which calls up old ROM locations may not work with
the new.
There are two ways to test to see if you have the new or old ROMs; one
is to PEEK location 58383, as described there . The other (the hardware
solution) is to take out your ROM card, unscrew the metal top, and look
inside. If the two chips faCing you on your left have an "A" after their
first code number, you have the earlier ROMs. If they have a "B",
lucky you. You have the latest ROMs . There is also the empirical test: if
your drive times out during I/O operations, you've got the old ROMs.
Here are the differences between the new and old ROM locations.
There are a lso a number of changes made with the new ROMs to the
vectors at locations 512 to 534,546 to 549 and 550. Refer to those
locations and the OS locations for more information . The list below
first specifies the old ROM locations, then the changes in the new
ROMs.

55296-57343 (FP package) same

57344-58367 (character set) same

58368-58477 (vector tables) are the same to 58459 ($E45B) where there
are changes in the table between 58460-58466 ($E45C to $E462).

58467-59092 ($E463-$E604) same

59093 ($E605) is the start of the IRQ handler. Changes to the new
ROMs begin at 59126 ($E6F6) and continue to the end of the new IRQ
handler at 59280 ($E790).

59316 ($E7B4) is the NMI interrupt handler in the old ROMs, now starts
at 59281 ($E791). It is the same as the old version except moved 35
bytes lower.

59345 ($E701) is the start of the VBLANK routines in the old ROMs;
they now start at 59310 ($E7 AE) in the new ROMs. The routines remain
the same until the SETVBL routine is reached at 59666 ($E912) old
ROMs, 59629 ($E8ED) new ROMs. The changes to the VBLANK
routine are mostly to adjust for the shift in the new memory locations.

58457 ($E459) is the SIO entry point for both versions. There are
changes in the SIO routines to accommodate the new memory
locations, but the entry point is still the same .

60048 ($EA90) output data needed interrupt service routine is
changed, but the entry point is the same in both versions.

60113 ($EA01) the transmit done interrupt service routine is the same,

161

APPENDIX FOUR

but has a new entry point at 60 111 ($EACF).

60130 ($EAE2) the receive routine has some address changes and is
moved to 60128 ($EAEO).

60177 ($EBll) the serial input ready interrupt service routine is the
same, but the new entry point is 60175 ($EBOF).

60222 ($EB3E) the SIO subroutines have some changes and a new entry
point at 60220 ($EB3C).

60270 ($EB6E) the load buffer subroutine is the same, but moved to
60266 ($EB6A).

60292 to 60905 ($EB84 to $EDE9) all of the routines in this area are the
same, but have entry points four bytes lower in ROM (i.e., 60288;
$EB80).

60906 to 62014 ($EDEA to $F23E) these routines are the same and at
the same locations in both versions.

62015 ($F23F) test for RAM and special cartridge has the same entry
point, but has some changes to the routine.

62038 ($F256) RAM check subroutine has changes and a new entry
point, now at 62036 ($F254) .

62081 ($F281) the hardware initialization routines, have changes and a
new entry point at 62071 ($F277) in the new ROMs. The changes
continue to 62159 ($F2CF) where everything again becomes the same
for both versions until the end of ROM at 65535 ($FFFF).

/' I .I

II
1 - .'

162

APPENDIX FIVE ___ _

Color
Color is a very important aspect in the Atari computers; you may not
fully appreciate it unless you've spent a long time working with
computers or monitors with monochrome displays . The Atari has
sixteen colors available for display in eight different luminance
(brightness) factors. These colors are stored in memory locations 704
to 712 . The first four of these registers are used to determine the color
of your players and missiles. The second five determine the color of the
playfields, background, lines drawn and areas filled .
The Atari has a default value for each of the five playfield registers that
is assigned on powerup:

Playfield Location Color
o 708 Orange
1 709 Light green
2 710 Dark blue
3 711 Red
4 (BAK) 712 Black

Value
40

202
148

70
o

The figure in the value category represents the number you would get
if you PEEKed into that location . For discussion of the locations, refer
to the Memory Map.
To change these colors, you can use either a POKE statement or the
BASIC command SETCOLOR (abbreviated to SE). You should refer to
the description in the earlier Memory Map text. SET COLOR has three
parameters: the register to change (which always corresponds to one
of the memory locations above); the hue (a number from zero to fifteen
which corresponds to the available colors); and the luminance (an
even number between zero and fourteen). The Atari will treat any odd
number as if it were the next lowest even number where luminance is
concerned. Your statement might look like this:

SETCOLOR 0,2,8

This will produce the orange color in playfield zero. To change it to
red, you would use:

SETCOLOR 0,4,6

Unless you are changing the background or border or you are
changing a register which has already been used for drawing on the
screen, you won't see any change from using SETCOLOR. The effect
comes when you follow up with a COLOR command, telling the Atari
which register to use for the DRAWTO or fill command. You can easily
POKE the location with the proper color value by using this formula:

COLOR = HUE * 16 + LUMINANCE

So the orange in the above example would be obtained by:

163

APPENDIX FIVE

POKE 708,40

and the red by:

POKE 708,70

These are the values listed in the chart above. It's quite simple to
change them to your own colors using either method. Of course, you'll
have to adjust your colors every time you change GRAPHICS modes
or press RESET, since both restore the registers to their default values.
What's more, the player/missile registers can only be changed using
POKE; they have no corresponding SETCOLOR commands and are
all preset to zero. The winter 81/82 edition of The Atari Connection,
the house organ of Atari Inc., had a nice little chart in full color to
display all of the colors available. The SET COLOR number in the
following list is the value you would place as the second number in the
statement right after the register number.

SETCOLOR POKE
Color number number
Black 0 0
Rust 1 16
Red-orange 2 32
Dark orange 3 48
Red 4 64
Dark lavender 5 80
Cobalt blue 6 96
Ultramarine blue 7 112
Medium blue 8 128
Dark blue 9 144
Blue-grey 10 166
Olive green 11 176
Medium green 12 192
Dark green 13 208
Orange-green 14 224
Orange 15 240

The next number in the SETCOLOR statement would be the
luminance. You would add the luminance value to the POKE number.
When you want to use the DRAWTO or XIO 18 (FILL) commands, you
must first speCify what color register to use by the COLOR command.
The confUSing part for most people is that the number in the COLOR
command doesn't correspond to the same number as the SETCOLOR
register and, to make things worse, it's not always the same number in
different GRAPHICS modes! Modes zero, one, and two are text
modes; they print characters to the screen rather than graphics, so you
don't use the COLOR command in these modes. In GR.O, you actually
have only one color as chosen by SETCOLOR 2. The luminance is

164

APPENDIX FIVE

ignored in this command and is instead set with SETCOLOR 1 -
where the color is ignored. You can use SET COLOR to change the
colors of the text and the background as below:

GRAPHICS 0 SET COLOR Register
Character luminance 1 709
Background 2 710
Border (BAK) 4 712

GRAPHICS 1 and 2 SETCOLOR Register
Uppercase and numbers 0 708
Lowercase characters 1 709
Inverse uppercase 2 710
Inverse lowercase 3 711
Background,border 4 712
When you want to draw or fill an area in modes three to eight, you must
use the proper COLOR statement for the SETCOLOR register:

GRAPHICS 3,5,7 SET COLOR COLOR Register
Four c olor modes
Graphics point or 0 1 708
fill area 1 2 709

2 3 710
Background, border 4 0 712
GRAPHICS 4,6 SETCOLOR COLOR Register
Two color modes
Graphics point 0 1 708
Background, border 4 0 712
GRAPHICS 8 SETCOLOR COLOR Register
One color, two luminances
Graphics luminance 1 1 709
Background color 2 0 710
Border 4 712

It's awkward, but not difficult to use . You will have to refer to this chart
or the chart on page 53 of your BASIC Reference Manual until you get
the hang of it. Reme mber to precede any COLOR statement with a
SETCOLOR somewhere in your program and to precede a DRAW or
XIO 18 with a COLOR or the computer will use the previously
designated register.
The GIlA chip confuses things somewhat : in GRAPHICS 10, register
704 stores the background color while 712 is used as a normal color
register. This means you must change it with a POKE rather than a
SETCOLOR statement. However, in the two other GIlA modes (GR.9
and GR . 11), you still use location 712, SETCOLOR 4, for the
background; see the examples of GIlA modes at location 623.

165

APPENDIX FIVE

With GRAPHICS 9, the COLOR command is used to set the luminance
level to one of sixteen possible values; the value you use with the
COLOR statement is equal to the luminance used (so you can have
COLOR 15, COLOR 10, etc. Actually you can use any value up to 255
with COLOR and not get an error message; see the demo program for
GR.11 in location 623). SET COLOR 4 defines the background and
graphics color. There is only one color in GR .9. In GRAPHICS 11,
COLOR is used to define the color the same way it is used for
luminance in GR .9, while the luminance of each color is the same
value; you can have sixteen colors all of the same luminance .
GRAPHICS 10 allows you to set the nine color registers to individual
colors and luminances, but you must use POKE commands for the
registers 704 to 707 .
For more information on the GTIA modes, see COMPUTE!, July to
September 1982, and De ReAtari. There are many good programs for
drawing your own pictures in various GRAPHICS modes;
Micropainter from Datasoft is one of my favorites; then there's Drawpic
from Artworx, The Graphics Machine from Santa Cruz, Graphic
Master from Datasoft, Graphics Composer from Versaware and The
Next Step from Online which is really a utility for character creation
and color set selection. COMPUTE! published an interesting program
called "Supercube" over many issues in 1980 and 1981.

166

APPENDIX SIX ____ _

Sound And Music
Sound on the Atari can be quite sophisticated or quite simple,
depending on your needs and programming abilities. Simple sounds
may be input using the SOUND command; you enter the voice (zero to
three), the pitch (zero to 255), the distortion (even numbers from zero
to fourteen) and the volume (one to fifteen) in this manner :

SOUND 0,121,10,8
This will give you a pure tone middle C, moderate volume .
The SOUND command is only one way to adjust your music or sound in
the Atari. You can also POKE directly into the POKEY registers to
effect changes. For example, you can increase the normal five octave
range to nine by setting the proper bits in location 53768. This method
reduces the number of voices to two or three, but does give you quite a
range. You can use all sorts of tricks with fiiters, clock channels, and
poly counters, as described in the POKEY locations. For the best
description of sound control technique, see De ReAtari.
Here are the pitch values for the major notes when used with a pure
tone in the sound command:

Note Octave 1 2 3 4 5
C 14 29 60 121* 243
B 15 31 64 128 255

A#orBb 16 33 68 136
A 17 35 72 144

G#orAb 18 37 76 153
G 19 40 81 162

F#or Gb 21 42 85 173
F 22 45 91 182
E 23 47 96 193

D# orEb 24 50 102 204
D 26 53 108 217

C#orDb 27 57 114 230
You can see that the intervals between notes increase as the pitch
decreases (the larger the number, the lower the pitch). Middle C is
marked with ".". Here's a simple routine to test pitch and distortion
with one voice :

5 PRINT CHR$(125): POKE 752~2
10 A = 0: B = 0: C = 0
20 SOUND O,A~B~C: POSITION O~O
30 PRINT "PITCH"~ "DISTORTION", "VO

LUME"
3 5 P Q SIT ION () ~ 2 : P R I NT A, B; I. " ~ ,

C; ..

167

APPENDIX SIX

40 IF STICI«O) = 14 THEN A = A + 1 :
IP A ~. 255 THEN A = 0: GOTO 20

50 IF STICI«O) = 13 THEN A = A - 1 :
IF A < 0 THEN A = 255: GOTO 20

60 IF STICI«O) = "7 THEN B = B + '"). , .L. •

IF B "> 14 THEN B = 0: GO TO 20
70 IF STICI«O) = 1 1 THEN B = B - '").

.L. •

IF B <' 0 THEN B = 14: GOTO 20 ,

80 IF STRIG(O) = 0 THEN C = C + 1 :
IF C)- 15 THEN C = 0: GOTO 20

90 GOTO 20

You move the stick up or down to change pitch, right or left to change
the distortion level. Press the trigger to change the volume level. See
Softside, #30 for a similar program using all four voices and Santa
Cruz's Tricky Tutorial #6 (sound). You should also examine Atari's
Music Composer cartridge; it is not only a fine program, but it also has
excellent documentation on music, sound, and composition . There are
two excellent programs from APX, Sound Editor and Insomnia, both of
which allow you to create sounds to include in your programs (not
tunes however). Insomnia is particularly interesting in that it creates
sound which is played during the VB LANK intervals .

168

APPENDIX SEVEN ___ _

Player/Missile Graphics Memory Map
You have no doubt seen this little map in dozens of publications. It
shows you where your PM graphics are located in memory . The
problem is: what does it mean? I'll attempt to explain it below . First,
the map:

Double
Line
Resolution
Offset

o

+384

+512

+640

+768

+896

+ 1024

One byte wide

unused
area

I I I
011 12 I 3

missiles

Player 0

Player 1

Player 2

Player 3

o

Single
Line
Resolution
Offset

+768

+ 1024

+ 1280

+ 1536

+ 1792

+2048

No matter where in memory you reserve your PM graphics area, the
location of the space used by the players and missiles will be offset the
same number of bytes from the beginning of the reserved area. That's
what the offset numbers represent: the number of bytes from the
beginning of the PM area where that object's graphics begin .
So, if you decide to reserve sixteen pages (4096 bytes) from the top of
your memory (40960), your PM graphics will begin at 36864.
Depending on which resolution you have chosen, the missile graphics
area will begin either 384 or 768 bytes from that location : or at 37248
and 37632 respectively. In double line resolution, you can define your
objects up to 128 bytes in length; in single line they can be 256 bytes
long.
Even if your object is only eight or ten bytes in height, the boundaries
for their placement are always the same relative offset from the top of
PM graphics memory.

169

APPENDIX SEVEN

This map is only eight bits - one byte - wide. You can see that all four
missiles share the same width byte, each using two bits for resolution .
If you combine the missiles to form a fifth player, you use this area
exactly as you would the area for any other player.
One means of moving your players vertically is to move the players
within their reserved area rather than on the screen itse lf. In BASIC,
this is considerably faster than having to move the player on the
screen, but it's a slow process anyway . As far as the boundaries of the
TV set are concerned, all players in both resolutions are mapped to the
entire height of the screen.
There are many good programs to create and edit PM graphics,
mentioned earlier in the Memory Map text. PM graphics are one of the
Atari's most powerful and least understood capabilities. I suggest you
read up on them and try to master their use; they're not as difficult as
they seem.

170

APPENDIX EIGHT ___ _

Display Lists
A display list is a short program for the ANTIC chip, telling it how to
display data on the screen. This program includes such instructions as
how many blank lines to place on the screen for top boundaries, where
the screen display data is stored, what mode the line(s) to be displayed
are in, whether or not there is an interrupt to execute and where to find
the display list itself.
There are nine pre-programmed display lists (ten with the GTIA) you
use in BASIC, one for each GRAPHICS mode. You can examine the
display lists for each mode by running the program at location 560.
You can change these lists to suit your own needs without much effort.
It is quite easy to design and implement your own display list once you
know where it's located and what the proper instructions are .
Certain techniques, such as horizontal and vertical fine scrolling,
require that you modify the display list in order to properly display
your screen data. Sometimes you want to be able to display data in
more than one mode or mix graphics and text in the same screen.
These are all done by modifying the display list.
The smallest display list is for GRAPHICS 2, so I'll use it as an
example. It consists of a mere twenty odd bytes, but the format is the
same for every list; it's just the instructions that change. Use the
program listed in the Memory Map to examine the list or use a simple
two-liner such as:

10 GRAPHICS 2: P = PEEK(560) + PEEK
(561) * 256

20 FOR N = 0 TO 23: PRINT PEEK(P +
N);" ";: NEXT N

When you RUN this example, you should get this:

112 112 112 71 112 158 7 7 7 7 7 7 7 7 7 66
96 159 2 2 2 65 88 158

Or something similar depending on your available memory. If you
change the GR.2 to GR .2 + 16, you will get :

112 112 112 71 112 158 7 7 7 7 7 7 7 7 7 7 7
65 92 158

The display list instruction set is discussed at location 560, but here's a
chart to summarize it:

Instruction BASIC
Decimal Hex mode

o
16
32

o
10
20

Scan Pixels Bytes Comments
lines line line

1
2
3

Blank instructions
1 blank line
2 blank lines
3 blank lines

171

APPENDIX EIGHT

48
64
80
96

112

2
3
4
5
6
7

8
9

10
11
12
13
14
15

1
65

30
40
50
60
70

2
3
4
5
6
7

8
9

A
B
C
D
E
F

1
41

o

1
2

3
4
5
6

7

8

4 4 blank lines
5 5 blank lines
6 6 blank lines
7 7 blank lines
8 8 blank lines

Display instructions
8 40 40 text mode 0

10 40 40 text mode·
8 40 40 text mode·

16 40 40 text mode·
8 20 20 text mode 1

16 20 20 text mode 2

8 40 10 graphics mode 3
4 80 10 graphics mode 4
4 80 20 graphics mode 5
2 160 20 graphics mode 6
1 160 20 graphics mode •
2 160 40 graphics mode 7
1 160 40 graphics mode •
1 320 40 graphics mode 8

Jump instructions
(three bytes long)
jump to location
jump and wait for
VBLANK

Modes marked with an asterisk (*) have no equivalent in BASIC.
These are the instructions in the display list. You can alter the display
instructions by setting the bits for horizontal or vertical scroll, load
memory scan (tells ANTIC where the next line(s) to be displayed are in
memory and what mode to use for them) and enable a display list
interrupt. These are:

Function add
decimal hex bit

Vertical scroll 16 10 4
Horizontal scroll 32 20 5
Load memory scan 64 40 6
Display list interrupt 128 80 7

The LMS instruction is a three-byte instruction; the second and third
bytes are the LSB and MSB of the address where the line or screen data
is to be displayed . You can add any or all of these modifications to the
text or graphics mode instructions . You can only add the interrupt
modification to blank line or jump instructions. The two bytes that
follow the jump instructions are the LSB and MSB of the address to
which the ANTIC jumps to continue or repeat the list.

172

APPENDIX EIGHT

So let's analyze the DL for GRAPHICS 2 that we printed above:

112 These three instructions print
112 24 blank scan lines at the top
112 of the screen
71 GR .2 with LMS instruction added
112 Address of the first line of screen data
158 158 * 256 + 112 = 40560
7 Display the rest of the data in
7 GR. 2, so we have a total of
7 ten GR.2lines, or 10 * 16 =
7 160 scan lines used.
7
7
7
7
7
66
96
159
2
2
2
65
88
158

GR.O with LMS instruction added
Address of the text window at bottom
159 * 256 + 96 = 40800
GR.O for text window, so we have
a total of four lines

Jump and wait for vertical blank
Address of display list itself
158 * 256 + 88 = 40536
(return to the top of this list)

Now examine the list for GR.2 + 16. You can see that it adds two 7's
to replace the GR.G lines at the bottom of the screen. A little math
shows us that the screen in both cases has a total of 192 scan lines.
That's an important number; if you want your screen to come out
properly, you must insure that you get as close to this figure as
possible; otherwise you'll end up with blank lines at the bottom of your
screen, or worse - in the display itself.

You will find the value 112 in every Atari display list. The three of them
are used to bring the display to a readable location on your set. Try
replacing one or more of them with a zero to see what happens without
them. The jump instructions are also used to skip across a 1 K
boundary, since the DL itself cannot cross a 1 K boundary without such
a jump. Also, DL data cannot cross a 4K boundary, so you must use an
LMS instruction before crossing one.

The critical factor in designing your own display list is to make sure
that the data and the scan lines match . This may require you to
manipulate your data so that you have the proper number of bytes per
line so that the display appears correctly on the screen . Here are the

173

APPENDIX EIGHT

number of bits per pixel for each of the ANTIC modes:

Mode Bits per
decimal hex BASIC pixel

2 2 ° 8 text modes
3 3 8
4 4 8
5 5 8
6 6 1 8
7 7 2 8

8 8 3 2 graphics modes
9 9 4 1

10 A 5 2
11 B 6 1
12 C 1
13 D 7 2
14 E 2
15 F 8 1

You can have as many DL's as you wish, using the jump/vertical blank
instruction at the end of the DL to tell ANTIC where your new DL is
located. When placing your new DL (page six, unless used for other
routines, is a good protected place to put it), do a POKE 559,0 to
disable the DL fetch instructions, then POKE it with the proper value to
turn it back on afterwards. Be inventive and create your own screens
with varied lines of text and graphics.
I suggest that you read De Re Atari and Your Atari 4001800 for more
information . The latter has a few good examples of altered display lists
and tells how to create them . Two DL utilities are The Next Step from
Online and Tricky Tutorial #1 from Santa Cruz.

174

APPENDIX NINE ___ _

Numerical Conversions
If you uSe this map a lot , or use the Atari a lot for machine language
routines, interrupts, graphics and the like, you know the need to
translate between decimal and hexadecimal, even back and forth with
binary, frequently. It is possible, although tedious, to do your
translations by hand, using pencil and paper . The tables for doing so
are below. It's not the best nor the fastest method available. I
recommend you get the Texas Instruments TI Programmer calculator.
It does most of this work for you, plus bit manipulation (unfortunately it
does not offer binary translation). It's an indispensable tool for
programmers.
There are other ways around buying the calculator : you can buy
Monkey Wrench from Eastern House Software, which will do the hex­
decimal translations for you quite nicely. Or you can buy any of the
numerous disk or programming utilities which include such translation
routines, such as Disk Scan from Micro Media. However, those who
wish to do the work themselves can use a simple translator program.
One such example, modified from routines that appeared separately in
COMPUTE!, November 1981 and March 1982, is:

10 DIM HEXS(16)~DEC$(23)~NUMS(10)~W$(
4)~BINS(8)~BNY$(8)~TRANS(8)

15 DATA 128~64~32~16~8~4~2,1
20 FOR N=l TO 8:READ B:TRANS(N)=B:NEX

T N:POI<E 201~14
25 PRINT CHRS(125)
30 HEX$="0123456789ABCDEF":DECS="@ABC

DEFGHI ~ ~ ~ ! ~ ! I JI<LMNO"
4 0 ?:? IJ PRE S S CI];j. (I]: FOR HEX AD E C I MAL" :

?" {6 SPACES:':- t#J"";hl. FOR DEC I MAL" : ? II

{6 SPACES}t#JIi:l:i' FOR BINARY"
42 ?"{6 SPACES}TRANSLATIONS":A=l:MAX=

4096
50 IF PEEK(53279)=3 THEN GOTO 100
60 IF PEEK(53279)=5 THEN GOTO 200
70 IF PEEK(53279)=6 THEN GOTO 300
80 GO TO 50
100? ?"ENTER HEXADECIMAL NUMBER":~'

"SOOOO TO $FFFF ": INPUT NUMS: ACC=
O:A=l:TRAP 100

120 FOR NUM=l TO LEN(NUMS):ACC=ACCt16
+ASC(DECS(ASC(NUMS(NUM»-47»-64:
NEXT NUM:T=ACC

175

APPENDIX NINE

125 IF ACC >255 THEN BYN$= " • . " : G
OTO 170

130 FOR N=7 TO 0 STEP-l:BIN=2 A N
135 IF INT(ACC/B I N)=l THEN BNY$(A~A}=

"l":ACC=ACC-BIN:GOTO 150
140 BNY$(A~A)="O"
150 A=A+l:NEXT N
170 ':> :?"HEXADECIMAL"~"DECIMAL"~"BINA

RY"
180':>" ";NUM$~T~BNY$

190 ? :':> : GOTO 40
200 ? :? "ENTER DECIMAL NUMBER": ?"O

TO 65535": INPUT NUI'1:T=NUM:Z=T:MA
X=4096:TRAP 200

205 IF NUM >65535 THEN GOTO 200
208 IF NUM{l THEN GOTO 200
210 FOR N=l TO 4:BYTE=INT(NUM/MAX}:W$

(N~N)=HEX$(BYTE+l~BYTE+l):NUM=NUM

-MAX*BYTE:MAX=MAX/16 : NEXT N
220 IF T >255 THEN BNY$= " ": GOT

o 270
230 FOR N=7 TO 0 STEP -1:BIN=2 A N
235 IF INT(Z/BIN)=1 THEN BNY$(A,A)="l

":Z=Z-BIN:GOTO 250
240 BNY$(A~A}="O"
250 A=A+l:NEXT N
270 ':>:?"DECIMAL"~"HEXADECIMAL"~"BINAR

Y"
280 ':> II ";T~W$ ~ BNY$

290 GOTO 40
300 'J : ':> "I NPUT B I NARY NUt-1BER":":>" 0000

0000 TO lllll1ll": ? : 7 "7654:5210 B
ITS":INPUT BIN$:TRAP 3 00

305 IF LEN(BIN$) {> 8 THEN GOTO 300
308 FOR B=1 TO 8:IF VAL (BIN$(B~B}»l

THEN POP:GOTO 3 00
310 NEXT B
320 FOR B=1 TO 8:IF BIN$(B~B)="I" THE

N TOT=TOT+TRANS(B)
325 NEXT B: Q=TOT
330 FOR L=l TO 4:BYTE=INTCTOT/MAX):W$

(L~L)=HEX$(BYTE+l,BYTE+l):TOT=TOT

176

APPENDIX NINE

-MAX*BYTE:MAX=MAX/16:NEXT L
340 ?:?"BINARY","HEXADECIMAL","DECIMA

L"
350 ? " ";BIN$,W$,Q
390 GOTO 40
This program will translate any hexadecimal, decimal, and binary
number to and from the others. There are some constraints in its use : it
will not translate a binary number for any hex number larger than $FF
or decimal number larger than 255. It will not translate any hex
number larger than $FFFF or any decimal number larger than 65535 .
Since about 99% of your numeric manipulations will be within these
ranges, you should have no problems. You can easily remove the
translation routines from the program for use in your own utility .
For a quick way to translate any number in the range of zero to 65535
($FFFF), use the table below . It's quite simple to use: to translate hex to
decimal you take the number that appears in the column that
corresponds to the value in the proper row and add the values
together. The total is your decimal number. For example:

$7AC1 = 28672
2560

192
1

31425

fourth column, 7
third column, A

second column, C
first column, 1

decimal value

To translate decimal into hex, you find the largest number less than the
number you wish to translate and subtract it from your original
number. The value in the row is the first hexadecimal value. You then
do the same with the remainder until your result is zero. The values in
the row are then concatenated together for a hexadecimal number . For
example:

31425 = 31425
- 28672 largest number, column four. first hex number = 7

2753 remainder, minus third column
2560 second hex number = A

193 remainder, minus second column
192 third hex number = C

1 remainder and fourth hex number
Hexadecimal value = $7AC1

Hex Column Hex
number fourth third second first number

1 4096 256 16 1 1
2 8192 512 32 2 2
3 12288 768 48 3 3

177

APPENDIX NINE

4 16384 1024 64 4 4
5 20480 1280 80 5 5
6 24576 1536 96 6 6
7 28672 1792 112 7 7
8 32768 2048 128 8 8
9 36864 2304 144 9 9
A 40960 2560 160 10 A
B 45056 2816 176 11 B
C 49152 3072 192 12 C
D 53248 3328 208 13 D
E 57344 3584 224 14 E
F 61440 3840 240 15 F

The next few pages are simply a listing of the decimal, hex,and binary
values for the range of numbers be tween zero and 255. I have found
this listing to be extremely useful when I couldn't ente r a translator
program or lay my hands on a calculator. Read the note in the
introduction regarding the translation techniques for binary and
hexadecimal .

Decimal Hex Binary Decimal Hex Binary Decimal Hex Binary
0 0 00000000 34 22 00 1000 10 68 44 01000 100
I I 0000000 1 35 23 001000 11 69 45 01000101
2 2 00000010 36 24 00100100 70 46 01000 110
3 3 0000001 1 37 25 00100 101 71 47 0 10001 11
4 4 00000100 38 26 00100 11 0 72 48 0 100 1000
5 5 0000010 1 39 27 00 100 111 73 49 0100100 1
6 6 00000 110 40 28 00 10 1000 74 4A 01001010
7 7 00000 111 41 29 00101001 75 4B 0 1001011
8 8 00001000 42 2A 0010 1010 76 4C 0100 1100
9 9 00001001 43 2B 00 101011 77 4D 0100 11 0 1
10 A 000010 10 44 2C 0010 11 00 78 4E 010011 10
II B 0000101 1 45 2D 0010 11 01 79 4F 01001 111
12 C 0000 11 00 46 2E 00101110 80 50 01010000
13 D 00001101 47 2F 00101111 81 51 0101000 1
14 E 00001110 48 30 0011 0000 82 52 01010010
15 F 00001111 49 31 00110001 83 53 010100 11
16 10 00010000 50 32 00110010 84 54 010 10100
17 II 000 10001 51 33 00110011 85 55 010 10101
18 12 00010010 52 34 00110 100 86 56 01010110
19 13 0001001 1 53 35 00110101 87 57 010 10111
20 14 00010100 54 36 0011 011 0 88 58 010 11000
21 15 000 10101 55 37 00 11 0111 89 59 010 11 00 1
22 16 000 10 110 56 38 00 111 000 90 5A 010 11 010
23 17 00010 111 57 39 00111001 91 5B 010 11 011
24 18 000 11000 58 3A 001 11 010 92 5C 010 11100
25 19 000 11 001 59 3B 00 111 011 93 5D 010 111 01
26 I A 00011010 60 3C 001111 00 94 5E 01011110
27 I B 000 11 011 61 3D 0011 11 01 95 5F 010 11111
28 I C 00011100 62 3E 00 11111 0 96 60 011 00000
29 I D 0001 11 01 63 3F 00 111111 97 61 01 100001
30 I E 0001 1110 64 40 01000000 98 62 01100010
31 IF 0001 1111 65 41 01000001 99 63 011 00011
32 20 00100000 66 42 010000 10 100 64 0 1100100
33 21 0010000 1 67 43 01000011 101 65 0 110010 1

178

APPENDIX NINE

Decimal Hex Binary Decimal Hex Binary Decimal Hex Binary
102 66 01 1001 10 163 A3 101000 11 224 EO 11100000
103 67 0 11 00 111 164 A4 10100100 225 E I 11100001
104 68 01 101000 165 A5 10 100 101 226 E2 11100010
105 69 01 101001 166 A6 10100 110 227 E3 111 00011
106 6A 01101010 167 A7 101001 11 228 E4 111 00 100
107 6B 0 1101011 168 A8 10101000 229 E5 1110010 1
108 6C 01101100 169 A9 10101001 230 E6 11100110
109 60 01101101 170 AA 10101010 23 1 E7 11100111
110 6E 0 1101110 17 1 AB 10101011 232 E8 11101000
I I I 6F 0 11011 11 172 AC 10101100 233 E9 111 01001
112 70 01110000 173 AD 10101 101 234 EA 111 010 10
113 7 1 01110001 174 AE 1010111 0 235 EB 1II010ll
114 72 0 11 10010 175 AF 10101 11 1 236 EC 11101100
115 73 011 1001 1 176 BO 10110000 237 ED 111 01101
11 6 74 0 11 10 100 177 BI 10 110001 238 EE 111 01110
11 7 75 0 11 10101 178 B2 1011 00 10 239 EF 111 0 1111
118 76 0111 0110 179 B3 10110011 240 FO 11110000
11 9 77 0111 0111 180 B4 10110100 24 1 FI 11110001
120 78 01 111000 181 B5 10110101 242 F2 11110010
121 79 0 11 11001 182 B6 10110110 243 F3 1111 00 11
122 7A 01111010 183 B7 1011011 1 244 F4 11110100
123 7B 01 111011 184 B8 10111000 245 F5 11110101
124 7C 01 111100 185 B9 10 111001 246 F6 11110 11 0
125 70 01 111101 186 BA 10111010 247 F7 111101 11
126 7E 01111110 187 BB 10111011 248 F8 11111000
127 7F 01111 111 188 BC 101 II 100 249 F9 1111100 1
128 80 10000000 189 BO IOI ll l 01 250 FA 11 1110 10
129 81 10000001 190 BE 10 1111 10 25 1 FB 11111011
130 82 10000010 191 BF 101111 11 252 FC 11111100
131 83 10000011 192 CO 11000000 253 FD 11111 101
132 84 10000100 193 C I 11 000001 254 FE 11111110
133 85 1000010 1 194 C2 11 0000 10 255 FF 11111111
134 86 10000 11 0 195 C3 11 0000 11
135 87 10000111 196 C4 11 000 100
136 88 10001000 197 C5 11000 101
137 89 10001001 198 C6 11000110
138 8A 10001010 199 C7 11000111
139 8B 10001011 200 C8 11001000
140 8C 10001100 201 C9 11001001
14 1 80 10001101 202 CA 11001010
142 8E 10001110 203 CB 1100101 1
143 8F 100011 11 204 CC) 1001100
144 90 10010000 205 CD 1100110 1
145 91 10010001 206 CE 110011 10
146 92 10010010 207 CF 11001 111
147 93 10010011 208 DO 11 0 10000
148 94 100 10100 209 01 110 1000 1
149 95 100 1010 1 210 02 110100 10
150 96 100 10 11 0 211 03 110100 11
151 97 10010 111 212 04 11010100
152 98 10011000 213 05 11 010 101
153 99 10011001 214 06 11010 110
154 9A 10011010 2 15 07 1101011 1
155 9B 10011011 216 08 11011000
156 9C 10011 100 2 17 09 1101 100 1
157 90 10011 101 218 OA 1101 1010
158 9E 10011110 219 DB 1101 10 11
159 9F 10011111 220 DC 1101 11 00
160 AO 10100000 221 DO 11 01 11 01
161 A l 10 10000 1 222 OE 1101 11 10
162 A2 10 100010 223 OF 11011 11 1

179

APPENDIX TEN_= ___ _

ATASCII And Internal Character Code Values

Character ATASCII Internal Character ATASCII Internal
space 32 0 Z 90 58
! 33 1 [91 59
" 34 2 \ 92 60
35 3 [93 61
$ 36 4 A 94 62
% 37 5 95 63
& 38 6 CTRL- , 0 64

39 7 CTRL-A 1 65
40 8 CTRL- B 2 66
41 9 CTRL-C 3 67
42 10 CTRL- D 4 68

+ 43 I I CTRL-E 5 69
44 12 CTRL - F 6 70
45 13 CTRL-G 7 71
46 14 CTRL- H 8 72

/ 47 15 CTRL- J 9 73
0 48 16 CTRL-J 10 74
I 49 17 CTRL-K 11 75
2 50 18 CTRL- L 12 76
3 51 19 CTRL - M 13 77
4 52 20 CTRL - N 14 78
5 53 21 CTRL-O 15 79
6 54 22 CTRL-P 16 80
7 55 23 CTRL-Q 17 81
8 56 24 CTRL- R 18 82
9 57 25 CTRL-S 19 83

58 26 CTRL- T 20 84
; 59 27 CTRL- U 21 85
< 60 28 CTRL - V 22 86

61 29 CTRL - W 23 87
> 62 30 CTRL-X 24 88
? 63 31 CTRL- Y 25 89
@ 64 32 CTRL-Z 26 90
A 65 33 ESCAPE 27 91
B 66 34 UPARROW 28 92
C 67 35 DOWN
D 68 36 ARROW 29 93
E 69 37 LEFT ARROW 30 94
F 70 38 RIGHT ARROW 31 95
G 71 39 CTRL- . 96 96
H 72 40 a 97 97
I 73 41 b 98 98
J 74 42 c 99 99
K 75 43 d 100 100
L 76 44 e 101 101
M 77 45 f 102 102
N 78 46 g 103 103
0 79 47 h 104 104
P 80 48 105 105
Q 81 49 j 106 106
R 82 50 k 107 107
S 83 51 I 108 108
T 84 52 m 109 109
U 85 53 n 110 110
V 86 54 0 II I II I
W 87 55 p 112 11 2
X 88 56 q 113 113
Y 89 57 114 11 4

180

APPENDIX TEN

Character ATASCII Internal
11 5 11 5
11 6 116

u 11 7 117
v 11 8 118
w 11 9 119
x 120 120
Y 121 121
z 122 122
CTRL -; 123 123
I 124 124
CLEAR 125 125
DELETE 126 126
TAB 127 127

Inverse characters are the same as the characters above with 128
added to the values li sted. This is done by setting the seventh bit
(adding 128).
There are other codes used which are outside this range:

ATASCII

155
156
157
158
159
253
254
255

Function
End Of Line (Return)
Delete line
Insert line
CTRL - Tab
Shilt - Tab
CTRL - 2 (buzze r)
Delete character
Insert character

See your Atari Reference Manu al , pages Cl to C3 and Fl. In order
to print the arrow keys, c lear, insert, delete, buzzer, escape key, or
any of the codes li sted above to the screen, you must press the
ESC key be fore entering the keyboard character{s) .
Not all of these codes can be sent to the printer . ATASCII codes
zero to 3 1 print b lank or they may send control codes to your
printer, depending on the make. 96 wi ll print a backwards
apostrophe instead of a diamond, 123 will print a left bracket
instead of a spade, 125 wi ll print a right bracket instead of a clear,
126 will pr int a tildis instead of a backspace and 127 will print a
blank instead of tab .
There is a third set of codes used by the Atari keyboard handle r.
These values are li sted in the OS User's Manual.

181

APPENDIX ELEVEN __ _

Addenda And Errata To The First Edition
The material which follows is arranged by decimal address, hex,
then name, followed by the description. In some locations, all that's
added is a particularly good reference article or book which further
elucidates the use of that memory.

Lower memory locations used by BASIC and page six may be used
for other purposes by other languages-the ABC and Dafasoff BASIC
compilers and MACj65, for example, use many locations to perform
different tasks from those performed in the same space by BASIC.
Read the language's or compiler's memory map before using these
locations in order to avoid a conflict. The same may be true of the
more recent custom DOS programs which have been released since
the first edition of the book.

9 9 BOOT
A value of 3 means both cassette and disk boot were successful.
You can trap the RESET button by POKE 9,3 followed by a POKE
2 and 3 (CASINI) with the address (LSBjMSB) of your machine
language routine to trap RESET (also store 3 into location 9
within the routine) and an RTS at the end.

12,13 C,D DOSINI
To trap RESET into rerunning your machine language program,
load the initialization address of the program here. You can
also do it through CASINI; see above.

18,19,20 12,13,14 RTCLOK

29

33

59

182

The number referred to in the second paragraph should be 256
cubed minus 1 (256 • 256 • 256 - 1). Also, to get the number of
seconds from the jiffy count. divide by 59.92334 (the actual VBI
time interval), not 60. See articles by Stephen Levy in COM­
PUTErs Third Book of Afari and by Bob Cockcroft in ROM
(December 1984 and February 1985) for articles on Atari timers.

ID PBPNT
The pointer to the current byte or character to be sent to the
printer.

21
The current device number.

3B
Zero means not sent.

ICDNOZ

CHKSNT

66

APPENDIX ELEVEN

42 CRITIC
POKE 66,1 to disable the update between shadow and hard­
ware registers ; then you can POKE directly into the hardware
registers themselves . You can disable VB LANK at 54286 (SD40E)
as well.

67-73 43-49 FMZSPG
Reinitialized by FMS each time it takes control.

82, 83 52,53 LMARGN and RMARGN
Both have a range of 0 to 39.

85,86 55,56 COLCRS

87

Has a range of 0 to 319.

57 DINDEX
To turn off the cursor when drawing in a text mode, POKE 752,1,
followed by a PRINT statement. To get different colors, add a
COLOR statement before the PLOT routine. The character will
be the ASCII equivalent of the number which follows COLOR.

88,89 58,59 SAVMSC
The program to save the graphics screen doesn't work. To save
your graphics screen, create a string to hold a machine lan­
guage call routine :

1 DATA 104,104,104,170,76,86,228
2 REM PLA, PLA, PLA, TAX, JMP $E456
5 FOR N=l TO 7:READ BYTE:ML$(N,N)=CHR$(BYTE

) : NE X T N

Now OPEN a channel for writing to disk (OPEN #4,8,0,
"D:filename.ext"). Find RAM TOP (FINISH = PEEK(l06) • 256 -
160), subtracting 160 bytes for any text window screen. Find the
address of the display list (DLIST = PEEK(560) + 256 •
PEEK(561): START = PEEK(DLIST + 4) + 256 • PEEK(DLIST + 5):
HIGH = INT(START/256): LOW = START - 256 • HIGH), and
POKE it into the proper location in the IOCB (POKE 900,LOW:
POKE 901.HIGH).

Next, figure the screen length (SIZE = (FINISH - START) + 1:
SZHI = INT(SIZE/256):SZLO = SIZE - 256 • Bl), and POKE it into
the IOCB (POKE 904,SZLO: POKE 905,SZHI). POKE the binary SAVE
command into the 10CB (POKE 898,11). Call the CIO with the
USR command (X =USR(ADR(MLS)A • 16)). Finally, save your
current graphics mode (MODE = PEEK(87) :PUT #4,MODE) and
color registers (FOR N = 708 TO 712 PUT #4,PEEK(N): NEXT N)
and CLOSE #4.

183

APPENDIX ELEVEN

106

118

121

122

To recall the screen, use the same USR routine and the above
PEEKs and POKEs, but POKE 898,7 rather than II. This was de­
rived from a larger program by Fred Pinto in the March 1984 is­
sue of Antic. An article by Steve Kaufman in COMPUTE!,
November 1983, has a fast and dirty method which works just
as well (save and load), but doesn't save the color registers.
Creative Computing, November 1983, also had a similar ex­
ample in "Outpost Atari."

6A RAMTOP
See K. W. Harm's article on the "RAMTOP Dragon" in COM­
PUTEl's Second Book of Atari Graphics to see how to protect
high memory; another article in the same book, by Jim Clark,
describes how to protect low memory.

76 DELTAR
This is the change of vertical position when drawing a sloped
line.

79 ROWINC
Direction of line draw: 0 is down, 255 is up.

7A COLINC
Direction of draw: 0 is right 255 is left.

126, 127 7E,7F COUNTR
Iterations or steps required to draw a line.

132,133 84,85 VNTD
COMPUTE!, October 1983, has an article by E. H. Foerster on
how to reserve a portion of RAM above VNTD-within a BASIC
program-which will also be saved intact when you save the
program.

138,139 8A,8B STMCUR
Another way to lock up the system if something is done-say,
BREAK pressed-is by Z=USR(O).

146 92 MEOLFLG

147

BASIC's modified EOL flag register. The Atari BASIC Sourcebook
lists all the RAM locations used by BASIC (pages 144-147).

93
Spare.

149,150 95,96 POKADR

184

Address (LSB/MSB) of last POKE location. If no POKE command
was given, it is the address of the last OPERATOR token (often
155 for EOL).

182

APPENDIX ELEVEN

B6 DATAD
The data element being read, Registers the number of the ele­
ment in that line, say the tenth item in a DATA statement.

183,184 B7,B8 DATALN

190

192

193

DATA statement line number; the BASIC line number of a DATA
statement being currently read, The RESTORE statement sets the
locations (and 182, above) back to zero, You can do the same
with a POKE, Here's a program which demonstrates these loca­
tions from Steve Rockower, Atari SIG, CompuServe,

1~ REM DEMONSTRATES 182- 184($B6-$B8) AS SU
BSTITUTES FOR RESTORE

2~ REM 182 ($B6) POINTS TO ITEM OF A LINE T
o BE READ NEXT

3~ REM DATA STATEMENTS HAVE ELEMENT NAME SE
QUENTIALLY AND

4~ REM NUMBER IN CURRENT LINE
~~ DIM C$(2),A$(2~)IC$-CHR$(12~)
1~~ DATA ONE-1,TWO-2,THREE-3,FOUR-4,~
11~ DATA FIVE-1,SIX-2,SEVEN-3,EIaHT-4,~
12~ DATA <9-1>,<1~-2>,<11-3>,<12-4>,1
1~~ PRINT C$IRESTORE 1~~

16~ READ A$IIF A$-"~" THEN 2~~

17~ IF PEEK(182)-1 THEN PRINT IPRINT "READI
Na LINEI "IPEEK(183)+2~6*PEEK(184)

18~ IF A$-"1" THEN 3~~

19~ PRINT "*",PEEK(182)," "IA$,"{3 SPACES)"
II aOTO 16~

2~~ PRINT laOTO 16~

3~~ PRINT IPRINT
31~ TRAP 4~~IPRINT "WHICH DATA LINE (1,2, 0

R 3)"IIINPUT DATALINE
32~ PRINT "WHICH ITEM (1,2,3, OR 41";IINPUT

ITEM
33~ LET DATALINE-9~+1~*DATALINE
34~ POKE 1B4,INT(DATALINE/2~6)IPOKE 1B3,DAT

ALINE-INT(DATALINE/2~6)

3~~ POKE lB2,ITEM-1
36~ READ A$IPRINT A$
37~ aOTO 31~
4~~ END

BE SAVCUR
Saves current line address ,

CO IOCMD
I/O command,

Cl IODVC
I/O device,

185

APPENDIX ELEVEN

194

200

202

C2 PROMPT
Prompt character.

CS COLOR
Stores the COLOR number used in a PLOT or DRAWTO statement.
The statement COLOR x can be replaced by POKE 200, x. Same
as location 763 ($2FB), but BASIC takes the value from 200 and
loads it into 763 before drawing or filling. From Judson Pewther,
New York.

CA LOADFLG
Load in progress flag.

210,211 D2,D3
BASIC floating-point work area. $D2 is used for the variable
type, $D3 for the variable number and length of the FP
mantissa.

212,213 D4,D5 FRO
Used by the USR command to return a two-byte number to
BASIC. If you store nothing here, then the equation
"I=USR(address, variables)" returns the address of the USR sub­
routine. Otherwise, you can store an integer (range 0-65535)
here which becomes the value of the USR function. From Judson
Pewther. New York.

522,523 20A,20B VSERIN
Serial input ready vector.

524,525 20C, 20D VSEROR
Serial output ready vector.

52S-533 210-215 POKEY timers

186

In "From Here to Atari" in Micro, June and December 1983,
Paul Swanson explained how POKEY timers work-properly.
The manuals have an inaccurate description that causes your
system to lock up. The method below is taken from those issues.

This is described for channell; it can be used in channels 2
and 4 (not 3) by selecting the appropriate control and interrupt
vectors. First, POKE AUDCTL (53768; $D208) with a frequency
value (0 = 64 kilohertz, 1 = 15 kilohertz, 96 = 1.79 megahertz).
(You can actually change frequency between interrupts if you
wish.) Next set the channel control register (53761; $D201). Enter
your interrupt routine and POKE its address into 528, 529 ($210,
$211).

555

558

570

632

APPENDIX ELEVEN

After this is done, POKE 53769,0 ($D209). Now enable the inter­
rupt: POKE 16 with PEEK(l6) plus the number of the interrupt
you're using (l = timer 1 interrupt, 2 = timer 2, 4 = timer 4-
there's no timer 3!). POKE the same value into 53774. Your inter­
rupt routine will begin: it will generate an interrupt when the
timer counts down to zero. The timer is reloaded with the orig­
inal value you POKEd there, and the process begins all over
again.

There are several problems to watch for: First, the OS pushes
the A register onto the stack before jumping through the vector
address. If you need the X and Y registers, push them on as
well. Before you return from the interrupt, pull the X and Y back
off, PLA, and clear the interrupt with CLl.

If you don't need the screen display, POKE 559,0 to turn it off;
DMA steals clock cycles from the timer. This means you 'll have
to make any commands which deal with shadow registers (like
SETCOLOR and GRAPHICS) first. DMA also turns off the keyboard
repeat and realtime clock. Disable the keyboard to gain a bit
more time if necessary.

Refer to Micro and ROM. December 1984, for more information
about POKEY timers .

22B SRTIMR
Each time you read this location, you get a different number.
That's because it's counting down from when a key is de­
pressed to time the delay before repeating the key.

22E CDTMF5
Set when location 544,545 ($220,$221) counts down to zero. From
Joe Gelman, Atari SIG, CompuServe.

23A CDEVIC
The current SIO bus ID (device) number.

278 STICKO
The pins on the joystick port are mapped as follows:

1 Stick forward
2 Stick back
3 Stick left

187

APPENDIX ELEVEN

4 Stick right (1-4 are four bits of the PIA port)
5 Potentiometer (paddle) B input (analog pin 1)
6 Trigger
7 + 5 volts (recommended load of one TTL at 50 ma)
8 GND
9 Potentiometer A input (analog pin 2)

See Creative Computing, August 1983, for an example of using
the Atari ports for external control.

743,744 2E7,2E8 MEMLO

752

755

763

188

It's quite handy to reserve a block of memory below your
BASIC program and use it to store variables which can be
passed back and forth between programs with PEEKs and
POKEs. Here's another routine which will reserve low memory
for you:

5 PRINT FRE(13)
6 REM PROGRAM IS WIPED OUT AFTER RUNNING: B

E SURE TO SAVE IT FIRST
7 REM PRINT FRE(13) AFTER RUNNING TO COMPARE

VALUES
113 REM REPLACE BYTES VARIABLE WITH NUMBER 0

F BYTES TO PROTECT
20 MEMLO=BYTES+PEEK(743)+PEEK(744)*256
30 HIBYTE=INT(MEMLO/256)
40 LOBYTE=MEMLO-(INT(MEMLO/ 256) *256)
513 POKE 743,LOBYTE:POKE 744,HIBYTE
60 POKE 128,LOBYTE:POKE 129,HIBYTE:REM BASI

C LOMEM POINTER
70 POKE 8,0:REM RESET FLAG
80 X=USR(40960):REM JUMP TO BASIC COLDSTART

2FO CRSINH
Watch out for conflict with 755 when setting this location (and
vice versa).

2F3 CHACT
See COMPUTE!'s Third Book of Atari for an article by Frank
Jones on creating blinking characters.

2FB ATACHR
Not the color times 16 plus luminance; this is the number of the
latest COLOR statement taken from location 200 (SC8). If you
POKE the number here, BASIC will take the number stored in
location 200 and dump it changing your value (not so in ma­
chine language, however). From Karl Wiegers, Rochester, and
Judson Pewther, New York.

764

APPENDIX ELEVEN

2FC CH
In COMPUTE/ 's Third Book of AtarL Orson Scott Card explained
the keyboard and how to read it using the CH register,

The values listed as "internal code" in Appendix 10 are not the
same as those produced at 764, The internal code is the order
the characters are stored in the character set. The keycode re­
flected by 764 is the hardware code, which is altogether dif­
ferent for no reason I've been able to ascertain,

768-779 300-308 Page three device
information

Here are some brief examples showing how to use these loca­
tions with the disk drive (it already has a handler in place, and
we don't have to write a new one), The CIO call routine can be
used in all your disk I/O routines based around these locations,

To check if a sector has data in it:

5 DIM SEC$(128),CHK$(128)
10 DATA 104,32,83,228,96
15 SEC$(1)=CHR$(0):SEC$(128)=SEC$:SEC$(2)=S

EC$:CHK$(1)=CHR$(0):CHK$(128)=CHK$:CHK$(
2)=CHK$

16 REM SETS UP ARRAY SPACE AND FILLS IT
17 REM CHK$ IS FULL OF BLANK SPACES - CONTE

NTS OF UNUSED SECTORS
20 FOR N=1536 TO 1540:READ X:POKE N,X:NEXT

N
25 REM THIS POKES THE CIO CALL UP ROUTINE I

NTO PAGE SIX
30 POKE 769,1:POKE 770,82
35 REM THIS POKES THE DRIVE NUMBER (1) AND

READ FUNCTION (82)
40 PRINT "ENTER A SECTOR NUMBER TO CHECK":I

NPUT SNUM
45 IF SNUM <0 OR SNUM >720 THEN 40:REM VALIDI

TV CHECK ON NUMBERS
50 POKE 778 , SNUM-(INT(SNUM/256)*256):POKE 7

79,INT(SNUM/256)
51 REM POKES LSB , MSB OF SECTOR INTO 778, 7

79
55 BUFFER=ADR(SEC$):BUFFL=BUFFER-(INT(BUFFE

R/256)*256):BUFFH=INT(BUFFER/256)
56 POKE 772,BUFFL:POKE 773,BUFFH
57 REM POKE ADDRESS OF SEC$ INTO BUFFER ADD

RESS
60 Z=USR(1536):REM CALL UP CIO ROUTINE
70 IF SEC$=CHK$ THEN PRINT "NO DATA IN SECT

OR":GOTO 40
80 PRINT "SECTOR HAS DATA":GOTO 40

189

APPENDIX ELEVEN

190

Another method to check jor sector use is to see if byte 125
(S7D) shows a sector has data in it ; if not zero, it is being used (it
records the number oj bytes used in a sector) . You can examine
the sector contents by adding PRINT SECS alter the read.

PRINT PEEK(77I) alter reading a sector will display the status; I
means good, any other number means bad. Check jor bad sec­
tors by PEEKing here alter any sector read.

The above routine with a jew modifications will print a list oj all
the sectors on a disk with data in them (best directed to your
printer, but I use the screen display in the example below). This
is a slow and inelegant routine, but you can easily rework it jor
your own use.

5 DIM SEC$(128),CHK$(128),CNT(720)
1~ DATA 104,32,83,228,96
15 SEC$(1)=CHR$(0):SEC$(128)=SEC$:SEC$(2)=S

EC$:CHK$(1)=CHR$(0):CHK$(128)=CHK$:CHK$(
2)=CHK$

16 REM SETS UP ARRAY SPACE AND FILLS IT
17 REM CHK$ IS FULL OF BLANK SPACES - CONTE

NTS OF UNUSED SECTORS
18 FOR LOOP=0 TO 720:CNT(LOOP)=0:REM EMPTY

ARRAY
20 FOR N=1536 TO 1540:READ X:POKE N,X:NEXT

N
25 REM THIS
30 POKE 769,1:POKE 770,82
35 TRAP 100
40 FOR SNUM=l TO 720
50 POKE 778,SNUM-(INT(SNUM/256)*256):POKE 7

79,INT(SNUM/256)
51 REM POKES LSB, MSB OF SECTOR INTO 778, 7

79
55 BUFFER=ADR(SEC$):BUFFL=BUFFER-(INT(BUFFE

R/256)*256):BUFFH=INT(BUFFER/256)
56 POKE 772,BUFFL:POKE 773,BUFFH
60 Z=USR(1536)
7~ IF SEC$=CHK$ THEN CNT(SNUM)=0:NEXT SNUM:

GOTO 1~0

80 CNT(SNUM)=SNUM:NEXT SNUM
100 FOR LOOP=l TO 720
110 IF CNT(LOOP)=0 THEN NEXT LOOP:GOTO 150
120 PRINT CNT(LOOP);" ";:NEXT LOOP
150 END

To copy one sector to another, use the routine below. Add a
loop routine to copy more than one at a time. This routine
copies all 128 bytes, including the three "record" bytes.

APPENDIX ELEVEN

1 DIM SEC$(128),Z$(1)
2 REM SPACE FOR SECTOR DATA
5 DATA 104,32,83,228,96
10 FOR N=1536 TO 1540:READ X:POKE N,X:NEXT

N
15 REM POKE CIO CALL DATA INTO PAGE SIX
20 PRINT "WHAT SECTOR TO COpy FROM?"
25 INPUT START:IF START <0 OR START >720 THEN

25
30 PRINT "WHAT SECTOR TO COPY TO?"
35 INPUT FINISH:IF FINISH <0 OR FINISH >720 0

R FINISH=START THEN 35
40 POKE 770,82:REM READ COMMAND
45 POKE 778,START-(INT(START/256)*256):POKE

779,INT(START/256)
46 REM POKE LSB/MSB OF SECTOR TO COPY
50 LOC=ADR(SEC$):POKE 772,LOC-(INT(LOC/256)

*256):POKE 773,INT(LOC/256)
55 REM POKE LSB/MSB OF ADDRESS OF DATA (SEC

$) INTO BUFFER ADDRESS
60 A=USR(1536):REM READ SECTOR INTO SEC$
70 PRINT "PRESS RETURN TO WRITE SECTOR":INP

UT Z$
80 POKE 770,87:REM WRITE COMMAND
85 POKE 778,FINISH-(INT(FINISH/256)*256):PO

KE 779,INT(FINISH/256)
86 REM POKE LSB/MSB OF SECTOR TO COPY TO
90 A=USR(1536):REM WRITE IT
100 GOTO 20

See Antic magazine, December 1984, for more information about
device control. Several magazines have published BASIC pro­
grams to edit your disk by sectors. There are also good public
domain programs of this sort on the Atari SIG on CompuServe.

769 301 DUNIT
Current number of device being used.

771 303 DSTATS
Status = 1 means good.

784, 785 310,311 TIMER2
Final baud rate timer value .

191

APPENDIX ELEVEN

832-959 340-3BF IOCBs

IOCB Address Chart
Label

ICHID
ICDNO
ICCOM
ICSTA
ICBAL/H
ICPTL/H
ICBLL/H
ICAXI
ICAX2
ICAX3
ICAX4
ICAX5
ICAX6

IOCBO IOCBI IOCB2 IOCB3 IOCB4 IOCBS IOCB6 IOCB7 Use

832 848 864 880 896 912 928 944 index
833 849 865 881 897 913 929 945 dev#
834 850 866 882 898 914 930 946 command
835 851 867 883 899 915 931 947 status
836 852 868 884 900 916 932 948 buffer
838 854 870 886 902 918 934 950 put buf
840 856 872 888 904 920 936 952 buflen
842 858 874 890 906 922 938 954 task #
843 859 875 891 907 923 939 955 aux2
844 860 876 892 908 924 940 956 sectorl
845 861 877 893 909 925 941 957 sectorh
846 862 878 894 910 926 942 958 byte #
847 863 879 895 911 927 943 959 aux 6

1152-1405 480-57D STACK
A 254-byte BASIC syntax checking stack; $480 is a BASIC input
index, $481 an output index, $482 a program counter.

1536 600 Page Six
Any I/O greater than 128 bytes in BASIC will wipe out the bot­
tom 128 bytes in page six. This is because the I/O buffer starts at
1408 ($580), a mere 128 bytes below page six.

1792 700 DOS

192

Here's a quick routine to read a disk directory in BASIC:

5 DIM R$(2~)
1~ OPEN #4,6,~,"D:*.*"
2~ INPUT #4,R$:TRAP 6~
3~ PRINT R$
4~ IF R$(1~,16)="SECTORS" THEN 100
5~ GO TO 2~

6~ PRINT R$
1~'" CLOSE #4

For a quick method of inputting text into a file , choose Copy
from the DOS menu and answer E:, D:filename. You can now
type directly to a disk file. End each line with RETURN and end
the file with CTRL-3. You can change with backspace, but each
line must have a RETURN in order to be accepted.

Another Digression: Disk Sectors
In a normal disk sector there are 128 bytes, 0 through 127. The
last three bytes are reserved by DOS for:

APPENDIX ELEVEN

Byte Use
125 Leftmost six bits: file number (0-63, $3F);

rightmost two bits: next sector number (high two
bits)

126 Next sector number (low eight bits of the sector
number)

127 Number of bytes used in this sector (0-125, $7D)

The next sector to read is in a ten-bit number: eight bits from
byte 126 (S7E) and the two low bits of 125 (S7D), This means the
six leftmost bits remaining in byte 125 can be used only to count
up to 63 (which with zero makes for 64 filenames in one direc­
tory), This is true when reading linked files, such as BASIC pro­
grams or text files; auto-boot programs are usually sequential
and are not linked in this manner (nor are the first four boot
sectors, the VTOC, or directory sectors), When the next sector
number is zero, there are no more sectors to read,

A binary file always begins with 255 (SFF) twice, then four
bytes: the LSB and MSB of the start and end addresses, respec­
tively, of the data to follow (that is, if they were 00 AO 00 BO, it
would start at SAOOO and end at SBOOO), When a number of
bytes are loaded to fulfill the load vector, DOS assumes the next
four bytes are more starl/end address vectors and will continue
to input the following data at the new address unless an EOF
(End Of File) is reached, Control is passed back to DOS at the
end of a load unless you put a new run address into 736,737
(S2EO, S2El), You can append a code like EO 02 El 0200 AO to
your binary file (four address bytes, followed by the appro­
priate data-two bytes to fill the two locations specified), which
in this case makes the new run address SAOOO, See COMPUTE!,
March 1982,

1801 709 SABYTE
Can be set greater than 7, but it only wastes memory space,

1923 783
Stores the drive number for the DUP,SYS file, If you POKE here
with the ASCII equivalent of the drive number (for example,
POKE 1923, 50 for drive 2), when you call DOS from BASIC,
DUP,SYS will be loaded from the drive specified rather than the
default D 1:, To make a permanent change to your DOS, POKE
the appropriate number, go to DOS, and write DOS files to a
disk,

193

APPENDIX ELEVEN

3118 C2E
POKE with 0 to change only the first of matching filenames in
case of duplication error in your directory (normally, Rename
changes all files of the same name). POKE with 184 (SB8) to re­
store. From the OSIA + manual.

3460 D84
Deallocation bytes of the VTOC and directory; see the next few
locations.

4226 1082
LSB of the current directory sector (first of eight reserved sec­
tors). The directory is normally located in sectors 361-368. The
default number here is 105 (S69).

4229 1085
MSB of current directory sector. To change the location of the
directory, first copy the current sectors to the desired location
(see 768 above), then POKE the new location of the first sector
into the LSB/MSB bytes. That and the next seven sectors will be
recognized as the new directory area. Finally, write the number
for the new start sector (sector number/8 + 10) into 3460 (SD84).
Leave BASIC and rewrite DOS onto a newly formatted disk. DOS
disks with the original directory locations cannot read your
directory.

Disk Directories
Format of a directory entry:

Byte Use
o Flag:

1-2
3-4
5-12
13-15

$00 entry new (never used)
$01 file opened for I/O
$02 file created by DOS 2
$20 file locked
$40 file in use (normal)
$80 file deleted

Number of sectors in the file
Starting sector number (LSB/MSB)
Filename (space or $20 if blank)
Extension

4264 IOA8

194

LSB of the current VTOC (Volume Table Of Contents-only one
sector reserved).

APPENDIX ELEVEN

4266 lOAA
MSB of the VTOe sector, normally sector 360. The VTOe is a bit­
map of the disk contents; after the initial status bytes, each of
the following bits represents one sector on the disk in sequential
order. There are 720 sectors, but sector 0 cannot be accessed
by the OS. Sectors 1-4 are reserved as "boot" sectors on a DOS
disk, sectors 360-368 are reserved for the VTOe and directory
leaving 707 free for files . You can move the VTOe the same
way you move the directory.

If you change the directory location (make sure there 's nothing
in the new directory location that you don't mind erasing first),
go into the VTOe and deallocate the original directory sectors
(write a one into the bits) and write a zero into the bits
representing the new location-this prevents them from being
overwritten. You can also lock out sectors by de allocating them
in the VTOe.

Volume Table of Contents

Byte Use
o DOS code (0 = DOS 2.0)
1-2 Total number of sectors (707; $2C3)
3-4 Number of currently unused sectors
5 Reserved (unused at present)
6-9 Unused
10-99 Bitmap: one bit for each sector (O=in use­

locked; 1 = unused-free) . The leftmost bit of
byte 10 ($OA) is sector 0 (see above), the next bit
to the right is sector 1, and so on, until the
rightmost bit of byte 99 ($63), which is sector 719
($2CF).

100-127 Unused

There are only 707 sectors counted in bytes 1 and 2 (not 720),
since the first 4 are "boot" sectors; then the VTOe and directory
take another 9, for a total of 13.

A typical DOS 2.0 VToe with DOS.SYS and DUP.SYS, but nothing
else except the boot, VTOe, and directory sectors in use; it looks
like this:

Byte
o 02 C302 50 02 00 00 00
8 00 00 00 00 00 00 00 00

16 00 00 00 00 00 00 00 00
24 01 FF FF FF FF FF FF FF
32 FF FF FF FF FF FF FF FF
40 FF FF FF FF FF FF FF FF

195

APPENDIX ELEVEN

48 FF FF FF FF FF FF FF 00
56 7F FF FF FF FF FF FF FF
64 FF FF FF FF FF FF FF FF
72 FF FF FF FF FF FF FF FF
80 FF FF FF FF FF FF FF FF
88 FF FF FF FF FF FF FF FF
96 FF FF FF FF 00 00 00 00

104 00 00 00 00 00 00 00 00
112 00 00 00 00 00 00 00 00
120 00 00 00 00 00 00 00 00

The VTOC is the leftmost bit of byte 55 ($37), and the directory
sectors are the remainder of the byte plus the leftmost bit of
byte 56 ($38). The leftmost four bits of byte 10 ($OA) are the boot
sectors, and the remainder of the bytes up to and including the
leftmost seven bits of byte 24 ($ 18) are in use by DOS and DUP.
Remember that the last three bytes in the VTOC and directory
are not status bytes.

Disk directories and the VTOC (as well as many other disk mys­
teries and delights) are explained in detail in Bill Wilkinson's
Inside Atari DOS from COMPUTE! Books, and are somewhat dis­
cussed in Atari Software Protection Techniques by George Mor­
rison (Alpha Systems, 1983).

4856 12F8
Should read drive type, not tape.

5446,5450 1546,154A
LSB and MSB of the address the warm start routine places in 10
and 11 (DOSVEC). POKE your RESET handler routine address
here to always load it back into DOSVEC when RESET is
pressed. Point to 6047 ($ 179F); a USR call to 6047 loads DUP and
sends you to the DOS menu.

5576 15C8
You can run some machine language programs from within
BASIC by typing OPEN #1,4,0, "D:fl1ename" then
X=USR(5576). CLOSE the channel afterward if you return to
BASIC.

40960 AOOO

196

A USR here will cold start the BASIC cartridge. If you're handy
with machine code, you can add commands to BASIC by trap­
ping the keystrokes before they get passed on to the editor.
Charles Brannon describes how to do this (with a good pro­
gram of commands) in COMPUTEt's Third Book of Atari.

APPENDIX ELEVEN

53260 DOOC SIZEM
POKE with 255 to quadruple the size of all missiles.

53268 D014 PAL
NTSC systems have 60 frames per second and 262 lines per
frame; PAL systems have 50 frames and 312 lines. Should read
13 decimaL not 14.

53768 D208 AUDCTL
Frequencies are rounded off; they are actually 63.9210 kilo­
hertz, 15.6999 kilohertz, and 1.78979 megahertz. You can use the
frequency to calculate the POKEY interrupt frequency by

INTFREQ = clock frequency/(2 • (1 + value in AUDF register
for that channel)).

COMPUTEt's Third Book of Atari has articles by Mati Giwer and
Fred Tedsen on using POKEs to control the sound effects, the au­
dio channels, and AUDCTL.

53770 D20A RANDOM
For example, random 0 to 9 would be INT(PEEK(53770)
*10/256) and 0 to 99 would be INT(PEEK(53770)*100/256).

54272 D400 DMACTL
POKE with zero to blank out screen.

54286 D40E NMIEN
POKE with zero, and VB LANK and system clock are disabled,
and shadowing is suspended. See COMPUTE! magazine, June
1983 (p . 254), for a method of trapping the RESET key in BASIC.

57344 EOOO Character set
See COMPUTE! magazine, June 1983 (p. 226).

58368-58447 E400-E44F Handler vectors
Each vector consists of a 15-byte table, 2 bytes each for OPEN,
CLOSE, GET byte, PUT byte, Get status, and Special routine ad­
dresses. The next 3 bytes are a JMP instruction followed by the
address of the initialization routine for that handler. A zero
separates handlers (byte 16). Here are the locations for each
routine in the table:

Handler OPEN CLOSE GET PUT Status Special JMP
E: E400 E402 E404 E406 E408 E40A E40C

58368 58370 58372 58374 58376 58378 58380

s: E410 E412 E414 E416 E418 E41A E41C
58384 58386 58388 58390 58392 58394 58396

197

APPENDIX ELEVEN

Handler OPEN CLOSE GET PUT Status Special JMP
K: E420 E422 E424 E426 E428 E42A E42C

58400 58402 58404 58406 58408 58410 58412

P: E430 E432 E434 E436 E438 E43A E43C
58416 58418 58420 58422 58424 58426 58428

C: E440 E442 E444 E446 E448 E44A E44C
58432 58434 58436 58438 58440 58442 58444

58451 E453 DSKINV
Takes its information from the bytes in the lower part of page
three (S300) for operation. The vectors between 58448 and
58496 (SE450-SE480) are all three-byte vectors; a JMP instruction
followed by an address in LSB/MSB format.

58454 E456 CIOV
Page 147: IOCB number times 16 in the X register . The X register
becomes the CIO channel number. Since the screen is always
open for channel 0, when using the screen you make the X reg­
ister 0 as well. Bill Wilkinson says that to output a single charac­
ter through the CIO instead of an entire buffer (the normal
occurrence), set the buffer length to O. This forces the I/O to in­
put or output a single character only. See COMPUTE!, January
1985.

58457 E459 SIOV
Here are the pinouts for the serial I/O jack:

L 2 4 6

_1 3 5 7

1 Clock input
3 Data input
5 Data output
7 Command
9 Proceed

11 Audio input
13 Interrupt

8 9 10 II 12 13 \

2 Clock output
4 Ground
6 Ground
8 Motor control

10 + 5v dc/Ready
12 + 12v de

58484 E474 WARMSV
Do a USR here to warm start the computer.

58487 E477 COLDSV
Do a USR here to cold start the computer.

198

-

APPENDIX ELEVEN

59280, 81 E790, 91 ?
Seems to be the same DLI vector address as 512-513,

GTIA Graphics Modes
Graphics modes 9, 10, and 11 are unique to the GTIA chip; the early
CTIA chip didn't have them, Of course, the GIlA is standard now in
all later model 400, 800, XL, and XE models, The GIlA modes all use
8138 bytes of RAM, have 80 X 192 full-screen (no text window)
resolution, and have no border color. Each pixel is a wide, but short.
rectangle with a ratio of 4: 1 for width to height. Each pixel uses four
bits, Here's a small chart which summarizes these modes,

GR# Colors SETCOLOR
9 1 (16 lum) 4

10 9 0
1
2
3
4
5
6
7
8

11 1 (16 hues) 4

Registers
712 Use the COLOR com­

mand (0-15) for
luminance

704 Must be POKEd
705 Must be POKEd
706 Must be POKEd
707 Must be POKEd
708 Use COLOR 0
709 COLOR 1
710 COLOR 2
711 COLOR 3
712 COLOR 4 (BAK)

712 Use COLOR command
(0-15) for hue

Information on GTIA modes has been published in many books and
magazines, including De Re Atari and Your Atari Computer by Poole
et a1. (a revised edition of the latter is available now), An example of
adding a text window to a GIlA screen by way of a DLI was in
David Sander's article in Antic, April 1983,

199

APPENDIX TWELVE __ _

The XL/XE Memory Map
Most of the information in the first edition of Mapping the Atari ap­
plies equally well to the XL and XE lines of computers; only those
locations below represent known changes. Atari made several
changes to RAM locations, and the OS was almost entirely rewritten
in the newer models .

The information here pertains to the 600XL, 800XL, 1200XL, 65XE, and
130XE. Except for the 1200XL, the XL and XE models are virtually
identical to each other. There have been changes in the BASIC
ROMs, but I have no official word on any changes in the OS, al­
though I have reason to believe there have been some.

For those owners of XL computers who have difficulty using older 800
software, Atari (and several other companies) makes a Translator
disk which loads an 800 operating system on top of the XL OS, allow­
ing you to run almost all 800 programs. Ask your local Atari dealer
for this disk if you don't already have it. Side A of the Translator disk
permits you to press RESET and usually remain within the older OS;
side B doesn't have this code patch, so it reboots the XL OS when RE­
SET is pressed. A public domain translator called FIXXL is also avail­
able on CompuServe. A hardware solution is available: the XL BOSS
chip from Allen MacroWare.

The DDT subprogram in OSS's MAC/65 assembler is an excellent tool
for examining memory, especially since it gives you the option of
ASCII display and disassembly of visible memory. It allows you to
write directly to memory or jump to any location. I used it constantly
while writing this chapter.

Unless otherwise noted, this material pertains to all XL and XE models
(as does much of the earlier section of the book). RAM locations and
interrupt and OS vectors will remain the same in all systems; how­
ever, the locations and contents of routines they point to may differ
among computers. Not all of the OS ROM locations described here
will be the same in the l200XL. Some of the changes here are to vec­
tors, not to functions. References to function keys (Fl to F4) and LEDs
are for l200XL users only. My original l200XL memory map ap­
peared in COMPUTEf's Third Book of Atari.

Most RAM and hardware locations belonging to the GTIA ANTIC,
POKEY, and PIA chips (53248-55295; SDOOO-SD7FF except for PORTB)
have generally not changed. The floating-point package remains at
55296-57343 (SD800-SDFFF), but routines have been altered within it.
The major change in the OS was the shifting of interrupt handlers
from high ROM into the area previously unused between 49152 and
52223 (SCOOO-SCBFF) and the addition of the international character
set at 52224-53247 (SCCOO-SCFFF) .

200

APPENDIX TWELVE

Atari promises the XE series will maintain 100 percent compatibility
with the XL series-as long as the software obeys the "rules" and
sticks to officiaL published vectors and entry points and doesn't try to
take advantage of some ROM routine to save a few bytes (see 62026
and 62128 below). The OS in the XE series is the same as that in the
800XL, at least at the time of this writing. When the ROM routine gets
moved-the software crashes. Don't blame Atari; they've published ,
this material since day one. If developers don't pay attention, it's not
Atari's fault .

Deleted Registers
The following registers have been completely deleted from the
XL/XE, and other uses have been found for the location (previous
400/800 locations given):

PTEMP (31; $IF)
LINBUF (583-622; $247-$26E)
CSTAT (648; $288)
TMPXl (668; $29C)
HOLD5 (701; $2BD)
ADDCOR (782; $30E).

00 00 LNFLG
Used by the Atari in-house debugging programs and OS on
power-up.

01 01 NGFLAG
Used during power-up routines for self-testing; checks for bad
memory bytes; zero means memory failure .

07 07 CMCMD
Command flag for 835 and 1030 modems; set to any nonzero
number to pass commands to the modem. Used to be TSTDAT.

10,11 A,B DOSVEC
Points to 6047 ($ 179F).

12,13 C,D DOSINI
Points to 5440 ($1540).

28-31 IC-IF ABUFPT
Intended OS use as buffer pointers; currently unused.

54,55 36,37 LTEMP
Temporary buffers for the general-purpose peripheral handler
loader routines . The general-purpose handler routines help the
OS deal with new handlers and peripherals which load their

201

APPENDIX TWELVE

own handlers. All locations marked as being used by the
peripheral handler or loader are for OS use only; do not use
them.

74,75 4A,4B ZCHAIN
Temporary storage registers for general-purpose peripheral
handler loader.

96,97 60,61 FKDEF

98

202

The 1200XL has four redefinable function keys . FKOEF points
(LSB/MSB) to their definition table-an eight-byte table for keys
Fl to F4 and then SHIFT-Fl to SHIFT-F4. Each byte is assigned a
value corresponding to an internal (not ASCII) code. The keys
themselves are values 138-141 (S8A-S80), but you must not as­
sign a key its own value since it generates an endless loop. Ini­
tially points to 64529 (SFC 11).

The function keys perform the following activities :

Key Combination function
FI Cursor up (ATASCII 28; $IC)
F2 Cursor down (29; $1 D)
F3 Cursor left (30; $IE)
F4 Cursor right (31; $IF)

With SHIFT
FI
F2
F3
F4

With CTRL
FI

F2
F3
F4

Home (cursor to upper left, 28; $IC)
Cursor to lower-left corner (29; $ID)
Cursor to start of physical line (30; $IE)
Cursor to right end of physical line (31;
$IF)

Keyboard enable/disable toggle (not con­
sole keys)
Screen display enable/disable
Key click sound enable/disable
Domestic/international character set
toggle

Function keys are ignored w ith both a SHIFT and CTRL
combination. You cannot redefine CTRL-function key definitions.

62 PALNTS
Flag to determine PAL or NTSC version of the display handler,
previously at 53268 (500 14). Zero means North American
standard.

APPENDIX TWELVE

121,122 79,7A KEYDEF
Pointer (LSB/MSB) to the keyboard definition table, initialized to
64337 ($FB51), where the system keyboard table resides . You
can redefine the keyboard by writing a 192-byte table and
POKEing its address here. The table consists of three 64-byte
portions: lowercase keys, SHIFTed keys, and CTRL keys . The sys­
tem table has the following assignments:

Byte Key Byte Key
00 1 32
01 33
02, 34
03 F1 (1200XL) 35
04 F2 (1200XL) 36
05 k 37
06 + 38
07 39
08 0 40
09 (128 ; see below) 41
10 P 42
11 u 43
12 RETURN 44
13 45
14 46
15 47
16 v 48
17 HELP (128) 49
18 c 50
19 F3 (1200XL) 51
20 F4 (1200XL) 52
21 b 53
22 x 54
23 z 55
24 4 56
25 (128) 57
26 3 58
27 6 59
28 ESC 60
29 5 61
30 2 62
31 1 63

,
Space

n
(128)
m
/
Inverse key (114)
r
(128)
e
y
TAB
t
w
q
9
(128)
o
7
BACKSPACE
8
<
>
f
h
d
(128)
CAPS (130)
9
s
a

The next 64 bytes contain the shifted characters (for example, a
shifted is A 5 shifted is %; look at the upper characters on your
keyboard) . The lollowing 64 are CTRL key characters (many
graphics characters). You have to create a table lor all 192

203

APPENDIX TWELVE

bytes, although you need change key assignments only jor a
specilic jew. Use the ATASCII values when writing the table.

Several values have specilic meaning to the keyboard decoder
on the XL:

Dec/Hex
128/80
129/81
130/82
131/83
132/84
133/85
137/89
138-141/8A-8D

142/8E
143/8F
144/90
145/91

Use
Not used; invalid combination
Inverse output
Upper/lowercase toggle
CAPS lock
CTRL key lock
End of file (EOF)
Keyboard click toggle
Function keys FI-F4 (1200XL only) or:
cursor up (ATASCII 28; $1C)
cursor down (ATASCII 30; $lD)
cursor left (ATASCII 31; $1 E)
cursor right (ATASCII 32; IF)
Cursor home (upper-left screen corner)
Cursor to bottom-left corner
Cursor to left margin (1200)
Cursor to right margin (1200)

You can't redeline BREAK, SHIFT, CTRL, or the console keys (nor
the CTRL-junction key assignments on the 1200XL). The 1200XL
Addenda gives a Dvorak keyboard assignment easily written
into memory. The system table address is returned to RAM on
power-up or RESET.

128,129 80,8 1 LOMEM
Points to 7676 ($$lDFC) .

512-551 200-227 Interrupt vectors

204

The locations oj the vectors and their junctions remain the
same, but they now point to dillerent locations in the OS
memory:

Vector
512,513
514,515
516,517
518,519
520,521
522,523
524,525
526,527
528,529
530,531

Hex
200,201
202,203
204,205
206,207
208,209
20A,20B
20C,20D
20E,20F
210,211
212,213

Label
VDSLST
VPRCED
VINTER
VBREAK
VKEYBD
VSERIN
VSEROR
VSEROC
VTIMRI
VTIMR2

Points to
49358 ($COCE)
49357 ($COCD)
49357 ($COCD)
49357 ($COCD)
64537 ($FC19)
6691 ($lA23)
6630 ($19E6)
60140 ($EAEC)
49357 ($COCD)
49357 ($COCD)

APPENDIX TWELVE

Vector Hex Label Points to
532,533 214,215 VTIMR3 49357 ($COCD)
534,535 216,217 VIMIRQ 49200 ($C030)
546,547 222,223 VVBLKI 49378 ($COE2)
548,549 224,225 VVBLKD 49802 ($C28A)
550,551 226,227 CDTMA1 60433 ($EC11)
The OS was rewritten in the XL/XE models, moving the interrupt
handlers down into the previously unused region 49152-53247
(SCOOO-SCFFF),

563 233 LCOUNT
Temporary counter for peripheral handler loader,

566,567 236,237 BRKKY
Now points to 49298 (SC092) ,

568,569 238,239 RELADR (1200XL)
VPIRQ (All XL/XEs

581

except 1200XL)
Previously spare bytes, now the address of the relocatable
loader routine in the 1200XL and vector for parallel bus inter­
rupt requests on all XL/ XEs except 1200XL (where it points to a
routine at 51566; SC96E)-the vector for any initialized generic
parallel device, '

245 RECLEN
Relocatable loader routine variable for record length,

583-618 $247-$26A

583

584

585

Reserved (unused) on the 1200XL.

247 PDVMSK
Shadow mask for the device selection register at 53759 (SDI FF;
active only when the OS deselects the floating-point ROM by
writing to that address), You can run up to eight parallel de­
vices through the bus; each bit in this register corresponds to
one device, The mask must be set for the proper device before
the OS will allow an IRQ to be sent to that device,

248 SHPDVS
Shadow for parallel bus register ; each bit represents one of
eight parallel devices, Allows the OS to service VBls while run­
ning the device masked by this bit.

249 PDMSK
Parallel bus interrupt mask; allows OS to service IRQs from the
device masked by the bit in this register, See above,

205

APPENDIX TWELVE

586,587 24A,24B RELADR
Relocatable loader relative address,

588,589 24C,24D PPTMPA, PPTMPX
One-byte temporary storage registers for relocatable loader.

590-618 24E-26A

619

Spare bytes, reserved for future use,

26B CHSALT
Alternate character set pointer for the 1200XL, initialized to 204
(SCC) to point to the international character set as the next set
to display on the CTRL-F4 toggle , The XL has two internal
character sets, one at 52224 (SCCOO) and the other at 57344
(SEOOO),

620 26C VSFLAG

621

622

Fine-scroll temporary register,

26D KEYDIS
Keyboard disable, POKE with 255 to disable the keyboard, 0 to
reenable, You have to press RESET (all XL/XEs except 1200XL) to
get control back if you are locked out; 1200XL users can press
CTRL-Fl (toggles it on and off; LED 1 is on when the keyboard is
disabled) ,

26E FINE
Fine-scroll enable for graphics mode 0 (text) ; POKE with 0 for
coarse scrolling (the default) and 255 (SFF) for fine scrolling,
Follow the POKE with GR,O or an OPEN for device E:, Try listing
a long program-it's slow and smooth! The display list for fine
scrolling is one byte longer than for coarse scrolling, The OS
places the address (64708; SFCC4) of a Display List Interrupt
(DLI) at 512, 513 (S200,201), replacing any you might have
placed there, The color register at 53271 (SDO 17) is altered for
the last visible screen line,

If you enable fine scrolling and go immediately to DOS, you'll
see that it's still enabled when you do a copy to screen or disk
directory, Jerry White wrote an article demonstrating fine
scrolling and other XL features in Analog, February 1984,

628-631 272-277 PADDL4-7
The XL has only two ports, so only paddles 0-3 are active ,

634-635 27A-27B STICK2-3
No longer in use since there are ports only for sticks 0 and 1.

206

APPENDIX TWELVE

The OS VBLANK process now copies the PORTA joystick (0-1)
and paddle (0-3) values into the shadow registers for PORTB so
that STICKO affects both STICKO and STICK2, STICK 1 affects
STICKI and STICK3, PADDLO affects PADDLEO and PADDL4, and
so on,

640-643 280-283 PTRIG4-7
No longer in use (see PADDL4-7) ,

646-647 286-287 STRIG2-3
No longer in use (see STICK2-3),

648 288 HIBYTE
High-byte register for relocatable loader routine ,

651 28B IMASK
Unused,

652 28C JVECK
Temporary jump vector; unused,

654,655 28E,28F NEWADR

668

Used by relocatable loader; new address vector ,

29C CRETRY
Number of command retries; moved from 54 ($36) in the
400/800,

701 2BD DRETRY
Number of device retries; moved from 55 ($37) in the 400/800,

713,714 2C9,2CA RUNADR
Run address register for relocatable loader routine,

715,716 2CB,2CC HIUSED
Used by relocatable loader routines,

717,718 2CD,2CE ZHIUSE
Used by relocatable loader routines,

719,720 2CF,2DO GBYTEA
Used by relocatable loader routines ,

721,722 2Dl,2D2 LOADAD
Used by relocatable loader routines,

723,724 2D3,2D4 ZLOADA
Used by relocatable loader routines ,

207

APPENDIX TWELVE

725,726 2D5,2D6 DSCTLN
Disk sector size register; default of 128 (S80) bytes, but can be
altered to a length from 0 to 65535 (SFFFF). Your drive may not
support other sizes, however.

717,728 2D7,2D8 ACMISR

729

730

731

732

733

734

208

Interrupt service routine address; unused.

2D9 KRPDEL
Auto-delay rate; the time elapsed before keyboard repeat be­
gins. Initially set at 48 (S30; S28 for PAL machines) for 0.8 sec­
onds; you can POKE it with the number of VBLANK intervals
(1/60 second each) before repeat begins. A value of 60 would
be a one-second delay. A value of 0 means no repeat.

2DA KEYREP
The rate of the repeat: default is 6, which means ten characters
per second (one each six VBLANK intervals after the delay
above). POKE with the number of VBLANK intervals between
repeats; with a value of 1, you get 60 characters per second (50
on PAL systems)! A value of 0 provides one key repeat only per
press.

2DB NOCLIK
This is the keyboard click disable register; POKE with any non­
zero number to disable the annoying keyboard sound pro­
duced through your TV. POKE again with 0 to enable the sound.
On the 1200XL, CTRL-F3 toggles the sound as well.

2DC HELPFG
Register to hold the HELP key status; 17 is HELP has been
pressed alone, 81 means it has been pressed with SHIFT. and
145 with CTRL. This register can be cleared under program
control only by POKEing it with O. The OS ignores it otherwise.

2DD DMASAV
This saves the DMA value from 559 (S22F) on the 1200XL when
CTRL-F2 is pressed to disable the screen. On all XL/XEs except
the 1200XL, if you POKE 559,0 to turn off the screen, the value is
not saved in 733. However, if you POKE 733 with the DMA value
(usually 34) at the next keystroke, the screen will automatically
be activated again.

2DE PBPNT
Print buffer pointer; moved from 29 (S ID) on the 400/800.

APPENDIX TWELVE

735 2DF PBUFSZ
Print buffer size; moved from 30 (S lE) on the 400/800.

745 2E9 HNDLOD
Relocatable loader routine handler flag.

746-749 2EA-2ED DVSTAT

756

757

Additional device status registers to contain information re­
turned to the computer by the peripheral after the new type 3
and 4 polls. The bytes contain:

746/747 LSB/MSB of the handler size (must be an even
number)

748 Device SIO address to be used for loading
749 Peripheral revision number

The new poll types are fully explained in the 1200XL operating
system manual; earlier poll types are described in the 400/800
hardware manual. Basically, type 3 is an "are you there?" poll
(device address S4F. command byte S40, AUXI S4F. AUX2 S4F.
checksum normal), and poll 4 is a null poll (values S4F. S40, S4E
and S4E, respectively; checksum normal).

2F4 CHBAS
Character set select; default of 224. The international set can be
selected by POKE 756, 204 (SCC). On the 1200XL, the value in
CHBAS is switched with that in CHSALT (619; S26B) whenever
CTRL-F4 is used to toggle the alternate character set. The val­
ues in the two registers are swapped and LED 2 is lit.

2F5 NEWROW
Moved from 96 (S60) in the 400/800.

758,759 2F6,2F7 NEWCOL
Moved from 97,98 (S61.S62) in the 400/800.

760 2F8 ROWINC
Moved from 121 (S79) in the 400/800.

761 2F9 COLINC
Moved from 122 (S7 A) in the 400/800.

782 30E JMPERS
Storage for hardware option jumpers on the 1200XL, intended to
tell the OS how the system is configured; if bit 0 (POT 4) is not set
(0), then the self-test will run. Bits 1-7 are unused. Used only in
the 1200XL.

209

APPENDIX TWELVE

787 313 TEMP2
One-byte temporary storage register .

788 314 PTIMOT
Moved from 28 (S 1 C) in the 400/800. Same initial value (30).

829-831 33D-33F PUPBTI-3
Power-up and reset validation registers 1-3. Used on warm start
to verify the integrity of memory. The OS initializes these loca­
tions to 92 (S5C), 147 (S93), and 37 (S25), respectively. When RE­
SET is pressed, these bytes are checked, and if they are the
same as initialized, a warm start is done; otherwise, a cold start
occurs.

838,839 346,347 IOCBO
To send your output to the printer. POKE 838,202 and POKE
839,254. To turn off the printer and send everything back to the
screen, POKE 838,175 and POKE 839,242. This program from
Matt Ratcliff allows you to toggle output between printer and
screen by pressing SELECT (it works equally well on the
400/800):

10 DIM AS(I):CoNSoL=53 279:GRAPHIC S 0:IoCB0E
=838

20 PHOLR=58422
30 EHDLR=58374
40 PL=PEEK(PHOLR):PH=PEEK(PHOLR+l)
50 EL=PEEK(EHOLR):EH=PEEK(EHDLR+1)
60 PRINT "Text will print continuously."
70 PRINT "Press SELECT to toggle output"
80 PRINT "between printer and screen.":?
90 PRINT "Get printer ready and press RETUR

N"
100 INPUT AS:I=1:0IR=0
110 PRINT I;" Press select to change output

.":1=1+1
120 IF PEEK(CoNSoL) <>5 THEN 110
130 IF DIR THEN POKE IOCB0E,EL:POKE IOCB0E+

1,EH
140 IF NOT OIR THEN POKE IOCB0E,PL:PoKE 10

CB0E+1,PH
150 OIR= NOT OIR
160 IF PEEK(CoNSoL) <>7 THEN 160
170 GoTo 110

1000 3E8 SUPERF

210

Screen editor register; cleared on entry to the "put byte" rou­
tine, the editor changes keycodes 142- 145 (S8E-S9 1) to 28-31
(S 1 C-S 1 F; see 121; S79) and sets SUPERF to nonzero.

APPENDIX TWELVE

1001 3E9 CKEY
Moved from 74 (S4A) in the 400/800,

1002 3EA CASSBT
Moved from 75 (S4B) in the 400/800,

1003 3EB CARTCK
Cartridge checksum, A checksum of page one of the cartridge,
The checksum is recalculated each VBLANK and checked
against this register, If not the same, the OS assumes the car­
tridge isn't there any more (was pulled out) and does a cold
start; 1200XL only,

1004 lEC DERRF
Screen open error flag; if zero, then no error. if nonzero, then OS
can't initialize the screen editor,

1005-1015 3ED-3F7 ACMVAR
Reserved for OS variables; on power-up or cold start. all vari­
ables between 1005 and 1023 (S3ED-S3FF), inclusive, are set to
zero, but are left unchanged on warm start.

1016 3F8 BASICF
Shadow of current status of BASIC. Zero means ROM BASIC is
enabled; nonzero means it 's not. Must be in sync with disabling
of ROM BASIC. To disable BASIC, set BASICF to nonzero, then do
a warm start (press RESET); DOS will load and tell you there is
no cartridge present when you try to return to BASIC.

1017
Unused,

1018

3F9

3FA

MINTLK

GINTLK
Cartridge interlock register; the complement of BASICF, above,
It reads I when an external cartridge is installed, 0 when not
(or ROM BASIC is in use), The value of TRIG3 (53267; SDI03) is
loaded here by the OS initialization routine, If at any time, the
external cartridge is pulled, the system will crash,

1019,1020 3FB,3FC CHLINK
Relocatable handler chain use; allows chaining of portions of
handler routines ,

1792-7419 700-1CFB
Used by DOS when loaded; otherwise available as free RAM,

211

APPENDIX TWELVE

3889 F31 DOS 3
If you PEEK here and get 76 (S4C), you have an early version of
DOS 3 (the later version will read 78) . To correct some errors in
the earlier FMS files , type this in :

10 FOR N=l TO 9:READ A,B:POKE A,B:NEXT N
20 DATA 3889,78,3923,78,3943,78,3929,76,389

5,76
30 DATA 3901,77,3935,77,3955,77,2117,240

Better yet. get DOS 2.5 from Atari (supports double-density and
the 130XE RAMdisk). DOS 3.0 saves in blocks, not sectors-of a
minimum 1000 bytes per block. If you write a program 1001
bytes long, it saves 2000 bytes, wasting 999 bytes on your disk.

20480-22527 $5000-$57FF Self-test ROM
Self-test ROM when enabled, controlled by bit 7 of PORTB
(540 17; SD301). The self-test code is in a special ROM area
underneath the GTIA. POKEY. ANTIC chips area (starting at
53248; SD3000) and is moved (remapped) here when you type
BYE in BASIC or when you POKE PORTB with the right value and
JMP (or USR) to the initialization vector (see 58481; SE47 1 and
58496-58499, SE480-SE483). RAM when self-test isn't enabled.

39967-40959 9C IF-9FFF
Display list and screen RAM, moved into lower memory if a
cartridge is 16K (using RAM from 32767 to 49151 as well) .

43234 A8E2 BASIC ROM
If you PEEK here and get 96 (S60), you have the BASIC Revision
B ROMs. What you need is Revision C. B stands for Bugs! See
Appendix 13 on enhancements and bugs. If you get 234 (SEA),
you have Revision C. From Matt Ratcliff.

You can turn BASIC off when you go to DOS by POKEing 1016
(S3F8), then pressing RESET. The problem is to turn it back on
again from DOS rather than rebooting the system. There is a
public domain program by Matt Ratcliff on the Gateway BBS
which does this for you .

Introduction to the OS ROM
Atari modified the new XL/XE ROMs since Revision B. Atari main­
tained the handler and interrupt vectors, although the routines they
point to changed between versions.

Atari did produce a listed source code for the XL OS, although for
some reason it was never published for public sale as it was in­
tended. It may be available now through Atari-write and ask for it.
It is an excellent 500 + page resource document.

212

APPENDIX TWELVE

49152-52223 COOO-CBFF Interrupt handlers
os ROM, In the 400/ 800, the block between 49152 and 53247
was unused; now the area holds many of the interrupt handlers
(vectored here from page two), Some 400/800 software checks
for certain values in these locations and won't run if the value is
not found, Use the Translator disk in that case (with the 400/800
OS installed; the area between SCOOO and SCEFF becomes user­
accessible RAM), The area between 52069 (SCB65) and 52223
(SCBFF) is empty (all zeros),

A lot of interrupts are set to jump to 49357 or 49358 (SCOCD or
SCOCE), The former contains a PLA statement followed by an
RTI. The net result is a simple return back into the program
without any other activity taking place,

Bytes 49152-49163 (SCOOO-SCOOB) are used to identify the com"
puter and the ROM in the SCOOO-SDFFF block:

Byte Use
49152-3jCOOO-l Checksum (LSBjMSB) of all the bytes

in ROM except the checksum bytes
themselves .

49154jC002

49155jC003
49156jC004
49157jC005

Revision date, stored in the form
DDMMYY. This is DD, day, usually $10.
Revision date, month; usually $05.
Revision date, year; usually $83 .
Reserved option byte; reads zero for
the 1200, 800XL, and 130XE.

49158jC006 Part number in the form AANNNNNN;
AA is an ASCII character and
NNNNNN is a four-bit BCD digit. This is
byte AI ,

49159-62jC007-A Part number, bytes A2, NI-N6 (each

49163jCOOB

byte has two N values of four bits
each).
Revision number. My 800XL and
130XE say 2.

49 I 64jCOOC Interrupt handler initialization
49176jCOl8 NMI intitialization

Interrupt handlers and other routines in the SCOOO block:

Entry Handler or Use
49196jC02C IRQ processor
49298jC092 BREAK key IRQ
49312jCOAO Continue IRQ processing
49359jCOCF Table of IRQ types and offsets (16 bytes)
49378jCOE2 Immediate VBLANK NMI processing
49743jC24F Process countdown timer I expiration

213

APPENDIX TWELVE

214

Entry
49890/C2E2
49749/C255
49778/C272
49802/C28A
49808/C290
49834/C2AA
49864/C2C8
49866/C2CA

502l7/C429
50220/C42C
50237/C43D
50248/C448
5025l/C44B

50289/C47l

50394/C4DA
50485/C535
5057l/C58B
506l9/C5BB
50633/C5C9
50729/C629
50747/C63B
50750/C63E
50777/C659
S0798/C66E
S08Sl/C6A3
S0867/C6B3
Sl002/C73A
Sl013/C74S

Sl093/C795
Sl15l/C7CF
SllS4/C7D2
SllS7/C7DS
S128l/C8Sl
S1309/C86D
S1346/C892
S1452/C8FC
S1468/C90C
S1507/C933

S163l/C9AF

Handler or Use
Process countdown timer 2 expiration
Decrement countdown timer
Set VBLANK parameters
Process deferred VBLANK NMI
Perform warm start
Process RESET
Perform cold start
Preset memory (cold and warm start
continuation)
Initialize cartridge software
Process ACMI interrupt
BOOT ERROR message
Screen editor specification (E:)
Table of interrupt handler vectors (same or­
der as RAM vectors at 512-S49 ($200-$22S)
Miscellaneous initialization routines : OP­
TION key status checked at S0330 ($C49A);
BASIC enabled at S0337 ($C4Al)
Hardware initialization
Software and RAM variable initialization
Attempt disk boot
Boot and initialize disk
Complete boot and initialize
Execute boot loader
Initialize booted software
Display BOOT ERROR message
Get next sector routine
Attempt cassette boot
Initialize DIO (disk I/O)
Disk I/O (DIO)
Set buffer address
Relocate relocatable routine to new
address
Handle end record type
Get byte
Execute run at address
Handle text record
Relocate text into memory
Handle word reference record type
Handle low-byte and one-byte record type
Select and execute self-test
Initialize generiC parallel device
PIO-parallel device I/O; PIO vector tables
(see 58368, $E400) begin at S160l ($C99l)
Select next parallel device

Entry
51658jC9CA
51753jCA29
51799jCA57

52054jCB56

APPENDIX TWELVE

Handler or Use
Invoke parallel device handler
Load and initialize peripheral handler
Start of self-test offsets and text (uses hard­
ware values for character display)
Checksum linkage table

52224-53247 CCOO-CFFF CHARSET2
International character set. assembled in the same manner as
the standard character set at 57344 (SEOOO), There are two
character sets in the XL series . and you can switch between
them by POKE 756.224 (standard) or POKE 756.204
(international),

53279 DOIF CONSOL
If you hold down the OPTION key when booting an application
on the XL. you disable BASIC (but no other cartridge). allowing
the memory space to be used for applications, You generally
need to keep the key held down only for the first few seconds of
the boot.

53504-53759 DI00-DIFF
Unused in both the 400/ 800 and XL models by the OS. this area
is switched out when an external device connected to the
expansion bus is selected and the device memory switched in,
The situation is reversed when the device I/ O is completed,

Locations Hex Use
53504-53758 DIOO-DIFE Device registers
53504 D I 00 Hardware get and put register

(HWGET, HWPUT); data from
the device on the bus is stored
here,

53505 DIOI

53759 DIFF

Hardware reset and status reg­
ister (HWRSET for write-this re-
sets the get/put register;
HWSTAT for read) ,
Hardware select register, shad­
owed by byte 583 ($247), Bit 0
is device 0, bit 1 device 1, and
so on. Writing to this byte de­
selects the FP ROM and selects
the device ROM (try looking at
it and subsequent locations
with MAC/65's DDT or a similar
tool while altering $DlFF).

215

APPENDIX TWELVE

54017 D301 PORTB

216

Since the XL and XE series no longer have a PORT B (on the
400/800 this controls joystick ports 3 and 4), this register is used
for LED control (l200XL only) and memory management.

You can disable the ROM between 49152-53247 (SCOOO-SCFFF)
and 55296-65535 (SD800-SFFFF) by setting bit 0 to 0 (the ROM
area becomes RAM; note that the area between SDOOO and
SD7FF remains intact). However, unless another OS has been
provided, the system will crash at the next interrupt (1/60 sec­
ond later!), so you need to disable the interrupts first.

Bit 1 controls BASIC; if 0, BASIC is enabled, if 1, it is disabled
and the 8K RAM space enabled for program use. If you disable
BASIC within a BASIC program, you lock up. Disable BASIC dur­
ing a boot operation by holding down the OPTION key.

Bits 2 and 3 control the 1200XL LEDs; 0 means on, 1 means off.
LED 1 means the keyboard is disabled; LED 2 means the inter­
national character set is selected. In the 130XE, these bits are
used for bank switching 16K blocks of RAM. The 130XE allows
you to use the extra memory as video memory or program/
data memory. See the section on memory management in the
130XE at the end of this chapter.

Bits 4-6 are reserved (unused) in the XL and 65XE. Bits 4 and 5
in the 130XE are used to enable bank switching (see below).

Bit 7 controls the RAM region 20480-22527 (S5000-S57FF), nor­
mally enabled 1). When disabled 0), the OS ROM in that area is
enabled and access provided to the self-test code moved from
53248-55295 (SDOOO-SD7FF).

Try this: POKE 54017, PEEK(54017) - 128 to enable the self-test
ROM. Now type X=USR(20480). The self-test screen appears. The
RAM is reset on power-up or warm start. Of course, you can al­
ways simply type BYE to enter the test routines as well.

Here's a program from Joe Miller of Koala Technologies which
copies portions (skips the SDOOO-SD7FF block) of the OS into
RAM, disables the ROM, then moves the copied portion back:

1~~ REM RAMROM - Install RAM-based
11~ REM 05 in an XL compute~

12~ REM by Joe Mille~
13~ REM Ma~ch 23, 1985
19~ PRINT "MOVING 05 INTO RAM"
2~~ FOR 1=1536 TO 1635
21~ READ B:POKE I,B:NEXT I
22~ B=USR(1536)
23~ PRINT CHR$(125)
24~ PRINT "RAM 05 INSTALLED"

APPENDIX TWELVE

2511J PRINT "PRESS RETURN TO TEST IT"
2611J PRINT :PRINT :PRINT
2711J PRINT "POKE 57344,1"
275 PRINT "{5 SPACES}$EI1lI1JI1l=1":PRINT
2811J PRINT "POKE 57344,11l"
2911J POSITION 1,4
311J11J DATA 169,11J, 133,211J3, 133,211J5, 169
3111J DATA 192,133,211J4,169,64,133,211l6
3211J DATA 1611J,11J,177,211J3,145,211J5,211J11J
3311J DATA 211J8,249,2311l,211l6,230,204,2411J
3411J DATA 12,165,211l4,211l1,208,208,237
3511J DATA 169,216,133,204,208,231,8
3611J DATA 120,173,14,212,72,169,0
370 DATA 141,14,212,173,1,211,41
3811J DATA 254,141,1,211,169,192,133
3911J DATA 211J6,169,64 , 133,211J4, 177,211l3
4 III III DATA 145,211J5,211J0,208,249,230,204
410 DATA 230,211J6,240, 12, 165,211l6,211J1
4211J DATA 208,208,237,169,216, 133,211l6
430 DATA 211l8,231,111l4,141,14,212,411l
440 DATA I11J4,96

You can make this into a machine language AUTORUN.SYS file
by changing the loop to 1634, removing the number 104 in line
440, and deleting the USR call in line 220. Go to DOS and do a
binary save (option K) at addresses $600-$662, with a run ad­
dress of $600. This w ill change your ROM OS into a RAM OS ev­
ery time you boot up that disk. Pressing RESET switches the OS
back to ROM. The machine language source code for this short
program (also by Joe Miller) is included here because I felt it
important for machine language programmers to see how this
is done:

;Move XL OS ROM into RAM

;RAMROM-Installs the XL ROM-based
OS in RAM at the same address
space. This is useful for
making small patches to the
OS or for experimenting with
new design concepts, such as
multitasking, window
management, etc .

By Joe Miller.

;This version is configured
;as an AUTORUN.SYS file .

SOURCE EQU SCB ; zero page usage

217

APPENDIX TWELVE

DEST EQU SOURCE+2
START EQU $0600 ; START address
OSROM EQU $COOO ; address of OS ROM start
OSRAM EQU $4000 ; address of ROM

destination
NMIEN EQU $D40E ; NMI enable register
PORTB EQU $D30l ; memory mgt. control

latch
ORG START
LDA #low OSROM
STA SOURCE
STA DEST ; initialize copy addrs
LDA #high OSROM
STA SOURCE+ 1
LDA #high OSRAM
STA DEST+ 1
LDY #0

; Repeat
Passl LDA (SOURCE),Y ; copy ROM to RAM

STA (DEST),Y
INY
BNE Passl
INC DEST+ 1
INC SOURCE + 1
BEQ Swap ; If done
LDA SOURCE+ 1
CMP #$DO
BNE Passl ; skip 2K block at $DOOO
LDA #$D8
STA SOURCE+ 1
BNE Passl ; Until SOURCE = $0000

Swap PHP ; save processor status
SEI ; disable IRQs
LDA NMIEN
PHA ; save NMIEN
LDA #0
STA NMIEN ; disable NMIs
LDA PORTB
AND #$FE ; turn off ROMs
STA PORTB ; (leaving BASIC

unchanged!)
LDA #high OSROM
STA DEST+ 1 ; set up block copy
LDA #high OSRAM
STA SOURCE+ 1

; Repeat

218

APPENDIX TWELVE

Pass2 LDA (SOURCE),Y ; move RAM OS to proper
address

STA (DEST),Y
INY
BNE Pass2
INC SOURCE+l ; move to next page
INC DEST + 1
BEQ Enable ; If complete
LDA DEST + 1
CMP #$DO
BNE Pass2 ; skip block at $DOOO
LDA #$D8
STA DEST + 1
BNE Pass2 ; Until DEST = $000

Enable PLA
STA NMIEN ; reestablish NMI mask
PLP ; reenable IRQs
RTS
END START

A sophisticated program called " RamMaster." by Matt Ratcliff,
is available free through the Gateway BBS in St. Louis, Missouri.
It not only creates a RAM OS, but it has a trap to keep the OS as
RAM even w hen you press RESET. It also allows you to switch
BASIC in and out from DOS. Probably the most elegant solution
is the XL BOSS board which allows you to switch in a RAM OS,
the older 800 OS, and the XL OS, as well as turn BASIC on or off
with a few keypresses. It's available from Allen MacroWare in
Redondo Beach, California.

When you change the OS ROM into RAM, you can change all
but a small portion of the OS at 53248-55295 ($DOOO- $D7FF),
since it's RAM. You could always write an OS, load it into RAM,
disable the ROM, and load yours in. You can change the
character sets in their original locations rather than having to
move them and use more memory. You could rewrite the han­
dlers, interrupts, and other routines-almost anything.

This is exactly what the Translator disk does when it writes the
800 OS into the XL. Boot the Translator and place a regular DOS
disk in at the prompt so that BASIC READY comes up. Now type:

10 FOR N=57344 TO 57351
20 READ A:POKE N,A:NEXT N
30 DATA 255,1,1,1,1,1,1,1

You'll see a "graph pad" screen: You've POKEd directly into
the character set at $EOOO, altering the first character (space).

219

APPENDIX TWELVE

This also means that the area from 49152 to 52991 ($COOO to
$CEFF) isn't used-almost 4K of free RAM for player missiles,
machine language routines, anything you need it for. Be care­
ful not to run over into the interrupt handlers at 52992 ($CFOO).

54019 D303 PBCTL
The PORT B controller on the 400/800; not used since there isn't
one on the XL/XE series.

54528-54783 D500-D5FF
Unused in both XL and 400/800 models . Any access read or
write to this area enables the cartridge control line CCNTL as in
the cartridge interface in the 400/800.

55296-57343 D800-DFFF FP

220

Floating-point package; although corrected, the entry point re­
mains the same as in the 400/800. You now get an error if you
try to get a LOG or LOG 10 of O. This area becomes addressable
by the device when the OS switches out ROM to perform I/O on
a device connected to the expansion slot.

There are several tables built into the FP package:

Address Table
56909/DE4D Power of 10 coefficients
57202/DF72 Logarithm coefficients
57262/DFAE Arctangent coefficients (unused?)

The OS switches the floating point out and switches in the par­
allel bus interface (PBI) ROM when an external device attached
through the bus is selected, switching it back when the I/O is
completed. This means an external device can't use floating
point or any software which does (such as BASIC).

The first 26 bytes of the hardware ROM vector area (when OS
ROM is deselected) are:

Byte Hex
55296/55297 D800/D80 1

55298

55299
55300
55301
55302/55303
55304
55305/55306
55307

D802

D803
D804
D805
D806/D807
D808
D809/D80A
D80B

Use
ROM checksum LSB/MSB
(optional)
ROM revision number
(optional)
ID number (128; $80)
Device type (optional)
JMP instruction ($4C)
I/O vector LSB/MSB
JMP
Interrupt vector LSB/MSB
ID number (145; $91)

Byte
55308

55309/55310
55311/55312
55313/55314
55315/55316
55317/55318
55319/55320
55321
55322/55323
55324

Hex
D80C

D80D/D80E
D80F/D810
D811/D812
D813/D814
D815/D816
D817/D818
D819
D81A/D81B
D81C

APPENDIX TWELVE

Use
Device name in ASCII
(optional)
Open vector LSB-l/MSB
Close vector LSB-l/MSB
Get byte LSB-l/MSB
Put byte LSB-l/MSB
Status vector LSB-l/MSB
Special vector LSB-l/MSB
JMP
Init vector LSB/MSB
Unused

On a cold start. the OS polls for parallel devices, and if it finds
one, JMPs (through 55321; SD819) to the INIT routine at
55322/55323 (SD8IA SD8IB) which places the address of the ge­
neric parallel device handler into the handler tables with the
device name.

57344-58367EOOO-E3FF CHARSETI
Standard (domestic) character set; default on power-up or RE­
SET; pointed to by 756 (S2F4).

58368-65535E400-FFFF OS
The OS has been considerably rewritten and changed since the
400/800. The ANTIC, PIA and POKEY chips are the same, but
many OS routines have been moved. The vectors in RAM have
remained in place for the most part. so software which avails it­
self of these locations can run on all machines. Always use the
vectors when writing software to use OS routines, never the ac­
tual routines themselves; they may change, while the vectors
will not.

Locations 58368-58495 (SE400-SE47F) still contain the vector ta­
bles, but point to different locations than the 400/800 (for more
information, refer back to the 400/ 800 section). The vectors (ex­
cept JMP) all point to the address of the routine minus I:

Device 8< Loc Open Close Get Put Status Special JMPto
E: 58368 $E400 EF93 F202 F249 F2AF F210 F2C2 EF6E
s: 58384 $E410 EF80 F202 FI7F FIA3 F21D F9AE EF6E
K: 58400 $E420 F210 F210 F2FC F22C F21D F22C EF6E
P: 58416 $E430 FECI FF06 FECO FECA FEA2 FECO FE99
C: 58432 $E440 FCE5 FOCE FD79 FOB3 FOCB FCE4 FCOB

The JMP vectors in locations 58448-58583 (SE450-SE4D7) remain
the same, but point to new vector addresses:

221

APPENDIX TWELVE

Label
DISKlV
DISKlNV
ClOY
SlOV
SETBV
SYSBV
XlTBV
SlOINV
SENDEV
lNTINV
ClOlNV
SELFSV
WARMSV
COLDSV
RBLOKV
CSOPlV

Loe
E450
E453
E456
E459
E45C
E45F
E462
E465
E468
E46B
E46E
E471
E474
E477
E47A
E47D

JMP to
C6A3
C6B3
E4DF
C933
C272
COE2
C28A
E95C
EC17
COOC
E4Ci
F223 (used to be BLKBVD)
C290
C2C8
FD8D
FCF7

Several of these locations themselves are JMP locations to other
routines, done to maintain compatibility with the older 800 OS.

Some new fixed entry point vectors have been added:

58496/E480 PUPDIV: Entry to power-on display (selt-test
mode in all XL/XEs except 1200XL; Atari
logo screen display in the 1200XL). Try
X=USR(58496). Points to 61987 ($F223) .

58499/E483 SLFTSV: 1200XL only: entry to selt-test mode.
Points to 20480 ($5000) (see PORTB above).

58502/E486 PENTV: Entry to the handler uploaded from
peripheral or disk. Points to 61116 ($EEBC).

58505/E489 PHUNLV: Entry to uploaded handler unlink.
Points to 59669 ($E915).

58508/E48C PHlNlV: Entry to uploaded handler initializa­
tion. Points to 59544 ($E898) .

58481 E471 SELFTST

222

Entry into the self-test mode by typing BYE in BASIC or X =
USR(58481). This used to be the blackboard (Memo Pad)
mode-a feature parents used to entertain their children, while
keeping them from actually tinkering with the system or pro­
grams. In the l200XL, this is the location of the logo screen. I
miss the blackboard mode myself: the self-test isn't really all
that useful. There is no equivalent mode to blackboard in the
XL/XE system.

-

APPENDIX TWELVE

58511 E48F GPDVV
Generic parallel device handler general-purpose vector. You
can use this to talk to any expansion port device; move this ad­
dress into HATABS (794-831; $31 A -$33F) along with an appro­
priate device name such as V: or T:. See the appendix on the
expansion bus. There are seven vectors in this table.
corresponding to the vector tables at 58348 ($E400).

58528-58560 E4AO-E4CO
Blank area (all zeros).

58561 E4Cl ICIO
Initialize CIa.

58588 E4DC liN
IOCB not OPEN error routine.

58591 E4DF CIO
The CIa area includes the following routines:

Routine
Nonexistent device error
Load peripheral handler for OPEN
Perform CIO command
Execute OPEN command
Initialize IOCB for OPEN
Poll peripheral for OPEN
Execute CLOSE command

Address
58640/E510
58645/E515
58650/E51A
58687/E53F
58716/E55C
58742/E576
58748/E57C
58775/E597
58802/E5B2
58910/E610
58992/E670
58994/E672
59029/E695
59067/E6BB
59080/E6C8
59089/E6DI
59096/E6D8
59114/E6EA
59 I 24/E6F4
59135/E6FF
59158/E716

Execute STATUS and SPECIAL commands
Execute GET command

59193

Execute PUT command
Set status
Complete CIO operation
Compute handler entry point
Decrement buffer length
Decrement buffer pointer
Increment buffer pOinter
Set final buffer length
Execute handler command
Invoke device handler
Search handler table
Find device handler

E739 PHR
Peripheral handler loader. Includes the following routines:

223

APPENDIX TWELVE

Address
59193/E739
59326/E7BE
59358/E7DE
59414/E816
59443/E833
59485/E85D
59540/E894
59544/E898
59550/E89E
59584/E8CO
59648/E900
59669/E915

Routine
Initialization
Perform poll
Load handler
Get byte routine
Get next load block
Search handler chain
Handler warm start initialization
Warm start initialization with chaining
Cold start initialization
Initialize handler and update MEMLO
Initialize handler
Handler unlinking

59740 E95C SIO

224

The SIO section includes the following routines:

Address Routine
59740/E95C Initialization
59761/E971 SIO main routine
59946/EA2A Complete SIO operation
59959/EA37 Wait for completion or ACK
60040/EA88 Send buffer to serial bus
60077/EAAD Process serial output ready IRQ
60140/EAEC Process serial output complete
60157/EAFD Receive
60199/EB27 Indicate timeout
60204/EB2C Process serial input ready IRQ
60295/EB87 Set buffer pointers
60317/EB9D Process cassette I/O
60433/EC 11 Timer expiration
60439/EC 17 Enable SIO send
60480/EC40 Enable SIO receive
60502/EC56 Set for send or receive
60548/EC84 Disable send or receive
60570/EC9A Get device timeout
60585/ECA 9 Table of SIO interrupt handlers (six bytes)
60591/ECAF Send to intelligent device
60608/ECCO Set timer and wait
60616/ECC8 Compute baud rate
60718/ED2E Adjust VCOUNT value
60733/ED3D Set initial baud rate
60871/EDC7 Process BREAK key
60898/EDE2 Set SIO VBLANK parameters

APPENDIX TWELVE

60921 EDF9 TPFV
Table of POKEY frequency values (24 bytes).

60945 EEl I NTSC/PAL
Table of constant values .

60957 EEID Tables
Screen memory and display list tables.

Address Table
60957/EEID Screen memory allocation
60973/EE2D Display list entry counts
61005/EE4D ANTIC graphics modes
61021/EE5D Display list vulnerability
61037/EE6D Left shift columns
61053/EE7D Mode column counts
61069/EE8D Mode row counts
61085/EE9D Right shift counts
61101/EEAD Display masks

61116 EEBC PHE
Peripheral handler entry. includes the following routines:

Address Routine
61177/EEF9 PH poll at OPEN
61222/EF26 Put-byte routine for provisionally open IOCB

61294 EF6E SIN
Initialize screen routine . Includes other screen handler routines:

Address
6 1 326/EF8E
61332/EF94
61340/EF9C
61824/F180
61839/F18F
61860/F184
61828/F184
61898/FICA
61929/FIE9
61960/F208
61982/F21E
61997/F22D
61998/F22E
62026/F24A
62l28/F2BO
62l42/F2BE

Routine
Perform screen OPEN
Perform editor OPEN
Complete OPEN command
Screen get-byte routine
Get data under cursor
Screen put-byte routine
Check end of line
Plot point
Display
Set exit conditions
Screen STATUS
Screen editor SPECIAL (just RTS)
Screen editor CLOSE
Editor get-byte (see below)
Editor put-byte (see below)
Process character

225

APPENDIX TWELVE

62026 F24A GETCHAR
New location for the "get character" routine (used to be at
63038), If you use the routines for screen display in Machine
Language for Beginners, you 'll have to change this address for
proper XL operation,

62128 F2BO OUTCHAR
New location for the "put character" routine , See the note in
62026, Several programs make use of an illegal call to the "get
character" and " put character" routines, previously at 63038
and 63140 (SF63E and F6A4), now at locations 62026 and 62128
(SF24A and SF2BO), respectively, You may be able to correct
some problems in your software by searching for and replac­
ing the older vectors with the new locations,

62200 F2F8 IGN
Ignore character and do keyboard get-byte,

62205 F2FD KGB

226

Keyboard GET-BYTE routine , The keyboard handler follows and
includes the following routines:

Address Routine
62432/F3EO Escape character handler
62438/F3E6 Move cursor up
6245l/F3F3 Move cursor down
62464/F400 Move cursor left
62474/F40A Move cursor to right margin
62476/F40C Set cursor column
62481/F41l Move cursor point
6249l/F4lB Move cursor to left margin
62496/F420 Clear screen
62528/F440 Move cursor home (upper-left corner)
62586/F47A Tab character handler
626 1 3/F495 Set tab
626l8/F49A Clear tab
62623/F49F Insert character
62677/F4D5 Delete character
62732/F50C Insert line
62752/F52D Delete line
62806/F556 Sound bell
62815/F55F Cursor to bottom
6282l/F565 Double-byte double decrement
62825/F569 Store data for fine scrolling
62840/F578 Double-byte single decrement
62880/F5AO Set scrolling display list entry
62892/F5AC Convert cursor row/column to address

APPENDIX TWELVE

Address
62986/F60A
63073/F661
63077/F665
63l50/F6AE
63 1 64/F6BC
63256/F7l8

63267

Routine
Advance cursor routines
Return with scrolling
Return
Subtract end point
Check cursor range routines
Restore old data under cursor

F723 BMI
Bitmap routines for the editor and screen handler.

63479 F7F7 SCR
Screen scroll routines .

63665 FaBl CBC
Buffer count computation routines; various keyboard, editor,
and screen follow, including:

Address Routine
63768/F9l8 Delete line
63804/F93C Check for control character
63820/F94C Save row and column values
6383l/F957 Restore row and column
63842/F962 Swap cursor with regular cursor position
63875/F983 Sound key click
63895/F997 Set cursor at left edge
639l0/F9A6 Set memory scan counter address
63919 /F9 AF Perform screen SPECIAL command

64260 FB04 TMSK
Various screen and keyboard tables begin here:

Address Table
64260/FB04 Bit masks
64264/FB08 Default screen colors (PFO-3, BAK)
64269/FBOD Control character routines (each entry is

three bytes; control character and two-byte

643 1 7/FB3D
64329/FB49
64333/FB4D
64337/FB5l
64529/FCll

64337

address of processing routine)
Shifted function key routines (1200XL)
ATASCII to internal conversion constants
Internal to ATASCII conversion constants
Keyboard definition (see below)
Function key definitions

FB5l
Start of the 192-byte keyboard definition table; see location 121,
122 ($79, $7A).

227

APPENDIX TWELVE

64537 FC19 KIR
Keyboard IRQ processing routines; check and process charac­
ter, CONTROL-I, HELP key, CONTROL and function keys (l200XL;
although the code for function keys remains in the 800XL and
XE series)

64708 FCC4 FDL
Process display list interrupt for fine scrolling.

64728 FCD8 CIN
Cassette initialization routine, followed by cassette 1/0 routines
and table of NTSC/PAL constants for file leader length and
beep duration.

65177 FE99 PIN
Printer initialization and I/O routines including:

Address Routine
65218/FEC2 Printer OPEN
65227/FECB Printer put-byte
65261/FEED Fill printer buffer
65270/FEF6 Perform printer put
65287/FF07 Printer CLOSE
65300/FF 17 Set up DCB for printer
65348/FF44 Printer timeout from STATUS
65355/FF4B Process print mode

65395 FF73 VFR
ROM checksum verify routines for first 8K bank.

65426 FF92 VSR
Verify routines for ROM checksum, second 8K bank, including
routines to examine checksum region and table of addresses to
verify.

65518-65529 FFEE-FFF9

228

Checksum and identification data for the ROM area
57344-65535 (SEOOO-SFFFF-see 49152, SCOOO for more
information):

Byte
65518/FFEE
65519/FFEF
65520/FFFO
65521/FFFl

65522-26/FFF2-6

Use
Revision date Dl and D2 (four-bit BCD)
Revision date M 1 and M2
Revision date Y 1 and Y2
Option byte; should read 1 for the
1200XL (my 800XL reads 2)
Part number in the form AANNNNNN

65527/FFF7
65528-9/FFF8-9

APPENDIX TWELVE

Revision number (again, mine reads 2)
Checksum, bytes (LSB/MSB)

65527 and 65528 should read 221 (SDD) and 87 (S57) for the
400/800 revision A ROMS; 243 (SF3) and 230 (SE6) for the B
ROMS. PAL versions read 214/87 (SD6/S57) and 34/88 (S22/S58),
respectively. The 1200XL should read 10 at 65527 for revision A
and 11 for revision B. The 600XL should read 1 at 65527, and the
800XL, 2. For the 1200XL. 64728 (SFCD8) should not read 162
(SA2).

65530-65535 FFFA-FFFF Machine vectors
Contain NMJ. RESET (power-up), and IRQ service vectors, initial­
ized to 49176 (SC018), 49834 (SC2AA), and 49196 (SC02C),
respectively.

229

APPENDIX THIRTEEN __

XL/XE Enhancements And Bugs
First the Good News
The XL computers fixed several bugs in the 400/ 800 and added
many enhancements including relocatable handlers, new poll and
new graphics modes in BASIC.

Now, the OS inserts an end of line (EOL) character in the printer
buffer if there isn't one already there when you CLOSE the device.
You don't have to force out the last characters in the buffer. Printer
numbers PI through P8 are also accessible now.

When reading either a record that's too long or one truncated with
an end of file (EOF), the OS inserts an EOL into the input buffer to pro­
vide at least as much as the buffer can handle without an error. so
data isn't lost.

The screen will clear no matter what the cursor coordinates . The dis­
play handler and screen editor no longer clear memory above
RAMTOP, so any data such as player/ missile graphics you have up
there is protected, even when changing graphics modes.

The cassette loading mechanics have been greatly improved by a
change in timing values (see the XL manual for details).

Now the Bad News
The Revision B BASIC ROMs have several awesome bugs in them,
pointed out to me by Matt Ratcliff (a fountain of knowledge about
the XL) on the Gateway BBS, St. Louis, Missouri. If you PEEK(43234)
and get 96, you have the bug-ridden B ROMs; write to Atari and ask
them for a new C ROM cartridge.

Here are some of the bugs Matt described: First, BASIC appends 16
useless bytes to the end of a file on sav ing. This is a cumulative pro­
cess; each time you load and save the same program, another 16
bytes are appended. This can cause severe problems and errors like
l64-truncated record. Make sure you have nothing good on your
disk and try this:

10 PRINT FRE(O): SAVE "D:JUNK":RUN "D:JUNK"

and watch your memory dwindle away, 16 bytes at a time! Even­
tually, your system will crash.

Now try this : Type CSAVE (even if you don't have a cassette) and turn
up your TV volume-press RETURN after the beeps and listen; you'll
hear the CSAVE tones . When the READY prompt reappears , turn the
volume up even more. Hear that? It 's the sound of the load still on!
You'll have to type END or SOUND 0,0,0,0 to get rid of it. CLOAD has
the same problem. This is a bug in both versions, not just the B ROMs.

230

..

APPENDIX THIRTEEN

Another problem is the unaccountable error 9-string not DIMed­
occurring on the line where the DIM statement actually resides!
When you do too many loads and saves, especially with files 16K or
larger. your system will lock up, Don 't fool around; get the new ROM,
which is available on cartridge , Write to Atari Customer Relations,
390 Caribbean Drive, Sunnyvale, California 94088, (See Appendix 19
for a temporary fix ,)

The 65XE and 130XE use the Revision C ROMs, so you don't have to
worry about these bugs, XL owners can type in Matt's program from
Appendix 19 to cure their woes until they get the proper chips or
cartridge .

231

APPENDIX FOURTEEN __

The XL/XE Parallel Bus
The most exciting new feature on the XL computers is probably the
least heralded and the most unused: the parallel expansion bus port
(PBI) on the back of the machines. It provides direct, unbuffered ac-
cess to all of the address, data, and control lines, allowing the use of
high-speed peripherals (fast parallel I/O disk drives, hard disks, and
custom I/O devices). The April 1985 issue of Analog magazine has an
article by Michael Barton on adding additional memory to his 600XL
via the expansion port. Antic ran a special four-part series by Earl
Rice on the bus from January to April 1985. The bus connector looks
like this:

Top Pin Pin Bottom
Ground GND 1 2 External select
Address output AO 3 4 Al

A2 5 6 A3
A4 7 8 A5
A6 9 10 GND
A7 11 12 A8
A9 13 14 AIO
All 15 16 A12
A13 17 18 A14
GND 19 20 A15

Data lines DO 21 22 Dl
(Bidirectional) D2 23 24 D3

D4 25 26 D5
D6 27 28 D7
GND 29 30 GND

Phase 2 clock output 31 32 GND
Reserved NC 33 34 Reset output
Interrupt request (IRQ) 35 36 Ready input

NC 37 38 External decoder
output

NC 39 40 Refresh output
Column address
output 41 42 GND
Math pack disable
input 43 44 Row addr strobe

GND 45 46 Latch read/write
out

(+5v dc?) NC 47 48 NC (+5v dc?)
Audio input 49 50 GND

Looking at the bus from the back, it looks like this:

232

APPENDIX FOURTEEN

TOP

1 3 5 7 9 11 1315 17 1921 2325272931333537394143454749

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

BOTTOM

The expansion bus is a complex sUbject-enough for a whole book.
Refer to Rice's articles w hich cover the bus in greater detail. The XE
continues the parallel bus, but improves it with a clock line and built­
in +/-5v dc current. (Barton, in his article in Analog, says pins 47
and 48 are already 5v dc on the XL bus.)

Changes on the 130XE
On the 130 XE, the parallel bus is called the enhanced cartridge
interface-Eel-basically, a 14-pin extension to the cartridge slot
which allows external devices to connect to the machine's address
and data bus lines and to access the operating system software and
detect the internal state of the computer. It is functionally similar to
and software-compatible with the PBI described above. The pin uses
for the cartridge and the extension are as follows:

Present 30-pln cartridge connector
Top side
Pin Place
RD4 A
GND B
A4-A9 C-J
Al2 K
D3 L
D7 M
All N
AIO P
R/W R
PHI2 S

Bottom side
Pin
S4

A3
A2

Place
I

2
3

Description
ROM present
Ground
Address lines
Address line
Data line
Data line
Address line
Address line
Processor read/write line
System clock line

Description
Chip select line-$8000 to $9FFF
(right slot address on the 800)
Address line
Address line

233

APPENDIX FOURTEEN

Pin Place
Al 4
AO S
D4 6
DS 7
D2 8
Dl 9
DO 10
D6 11
5S 12

+Sv 13
RDS 14
CCTL IS

Description
Address line
Address line
Data line
Data line
Data line
Data line
Data line
Data line
Chip select line-$AOOO to $BFFF
(left slot address on the 800)
DC power supply
ROM present
ROM bank control selection line

Looking at the cartridge slot from the back, the pins are as follows:

A B C D E F H J K L M N P R 5

• • • •

• • •
2 3 4 S 6 7 8 9 10 11 12 13 14 IS

1. 54 A. RD4
2. A3 B. GND
3. A2 C . A4
4. Al D. AS
S. AO E. A6
6 . D4 F. A7
7 . DS H. A9
8 . D2 J. A9
9. Dl K. A12

10. DO L. D3
11 . D6 M.D7
12. 5S N. All
13. +Sv P. AIO
14. RDS R. RjW
IS . CCTL 5. B02

234

APPENDIX FOURTEEN

14-pln extension
Top side
Pin Place
Res A
IRQ B
HALT C
A13-15 D-F
GND H

Bottom side
Pin Place
EXSEL I
RST 2
Dlxx 3
MPD 4
AUDIO
REF 6
+5v 7

Description
Reserved
Interrupt request line
ANTIC halt signal
Upper three address lines
Ground

Description
External device select ?
System RESET
Chip select at area $Dlxx
Math pack (FP) disable
5 External audio input
Present cycle is a refresh cycle line
Second dc power supply

Looking at the extension from the back, we see:

ABC D E F H

• •
2 3 4 5 6 7

A. Reserved l. EXSEL
B. IRQ 2. RST
C. HALT 3. DIXX
D. Al3 4. MPD
E. Al4 5. Audio
F. Al5 6 . REF
H. GND 7. + 5v

Atari 65XE
There is no parallel bus on the 65XE; it was dropped by Atari since
third-party manufacturers had not taken advantage of it.

235

APPENDIX FIFTEEN __ _

XL/XE Graphics Modes
The new graphics modes are 12, 13, 14, and 15 in BASIC; ANTIC
modes 4, 5, 12 (SC), and 14 (SE), respectively. These have always
been available internally, but BASIC programmers had to trick the
OS to get at them.

GRAPHICS 12 is a four-color text mode (plus background). Each
character on the screen is the same height as a GRAPHICS 0 charac­
ter (8 scan lines), but only four pixels get displayed instead of eight.
The screen has 20 lines (24 with GRAPHICS 12 + 16) and 4 lines of
text, using 40 bytes of RAM per screen line.

GRAPHICS 13 is another four-color text mode (plus background), but
this time the characters are double the size of GRAPHICS 0 characters
(16 scan lines high), while only four pixels are displayed (the system
interprets the character set by bit pairs rather than single bits; see
below). The screen has 10 lines (12 with GRAPHICS 13 + 16), also
using 40 bytes per screen line.

Since both GRAPHICS 12 and 13 display only four bits in each line of
character definition, the color of the pixel displayed depends on the
bit pair in the byte being addressed:

Bit Pair Color RAM Location
00 BAK 712
01 PFO 708
10 PFl 709
11 This depends on bit 7 of the byte.

If bit 7 = 0, then use PF2 (at 710),
else use PF 3 (at 711).

Note that each line in a character set definition (eight lines, one byte
wide, form one character) can have different color combinations.
Since bit pairs (one color clock) are displayed, the normal character
set becomes unrecognizable. In order to use these modes, you should
build a character set in which each character is half a letter and
can be combined Jor display. Or build a 7 X 7 character set with a
blank row and column between each character.

The characters displayed are not the full character set. They are
only one half of the ATASCII set, depending on the value in location
756 (S2F4): 224 (SEQ) for uppercase, 226 (SE2) for lowercase. When
using GET or PUT operations in these modes, the lower seven bits
(0-6) are used for character data (allowing a range from 0 to 127;
S7F), while the high bit is the color modifier (see the table above).

GRAPHICS 14 is a two-color mode with a resolution of 160 pixels
wide (half the horizontal distance of GRAPHICS 8) and 192 high (160
with text lines) . Each screen line is one scan line high, compared

236

APPENDIX FIFTEEN

with GRAPHICS 6 where each line is two scan lines (GRAPHICS 14 is
sometimes called GRAPHICS 6-1/2). BAK and PFO are the two-color
registers; the first bit of a screen byte identifies the color.

GRAPHICS 15 has been made popular by many drawing and paint­
ing programs such as Datasoft's Micropainter and both Koala's and
Atari's drawing programs for their touch tablets . It is a four-color
mode with a resolution of 160 across X 192 down (160 with text
lines), each screen line being one scan line high. Colors are BAK,
PFO-PF2; only the first two bits of a screen byte identify the byte
color. It is sometimes called GRAPHICS 7-1/2 .

Mode
12
13
14
15

Lines
40 X 20/24
40 X 10/12

160 X 160/192
160 X 160/192

Colors
5
5
2
4

Memory Used

Spilt Screen Full Screen
1154 1152
664 660

4270 4296
8112 8138

Here are the pinouts on the 800 and XL/ XE's monitor jack (looking at
the back of the unit):

Audio output Composite luminance

Composite chroma Composite video

Ground

237

APPENDIX SIXTEEN __ _

Memory Management On The 130XE
The bank se.lect location is 54017 (SD301). PORTB, now an output
rather than the input byte it was on the 400/800 machines, uses bits
2-5 (corresponding to pins 2-5 on the PIA 6520 chip) to select which
16K bank is being accessed and whether or not the area is used for
video (ANTIC) access or 6502 access. There is another 64K of RAM in

. the 130XE (not the 65XE) which is identical to the main bank in layout
and controL but it can be accessed only in 16K banks at anyone
time. Of course, using a fast interrupt driven ML routine, you can
change bits in PORTB to shunt between 16K banks as necessary.

When a bank is enabled for access, it appears through an "access
window" in the main memory, at locations 16384-32767 (S4000-S7FFF.
below the OS ROM or cartridge areas). If you enable bank switching,
you cause the normal RAM in this area to be replaced by the bank
you've chosen. Bit 4 is the CPU Bank Enable bit-CBE-and bit 5 is
the Video Bank Enable bit-VBE. Bits 3 and 2 are the MSB and LSB of
the secondary bank address, respectively.

You can configure the system to one of four modes: compatible with
existing XL/XE software, CPU extended RAM, video extended RAM,
and general extended RAM modes. In all cases, only the area in the
access window is affected by the mode selection.

No synchronization between areas is required by the programmer;
the system will know where the display area is by the bit settings in
PORTB. This is important: Once you set the bits, you don't have to
worry about where the access will occur; the OS takes over and se­
lects the right bank. If you intend to make use of more than one 16K
block in the extended RAM, you'll have to set and reset the bank
selection bits as necessary, but not the CPE or VBE bits.

In CPU extended RAM mode, only the CPU accesses the extra mem­
ory. All ANTIC cycles operate in the main 64K memory. This means
you can use the extended memory for programs and data, while
using the main bank for display lists and screen data.

In the video extended RAM mode, all ANTIC references to the area
S4000-S7FFF will be directed to the secondary bank; all CPU ref­
erences will occur in the main bank. This allows programmers to ac­
cess the entire RAM memory for programs and data in the main
area, while locating display lists and screen data in the secondary
bank.

In the extended RAM mode, both the CPU and ANTIC process in the
second bank, exactly as if it were the main bank in compatibility
mode (which is then not accessed at all). The normal state of the bits
for either CPE or VBE is 1; secondary bank disabled. When set to 0,

238

APPENDIX SIXTEEN

the access to the second bank is enabled, Here are the possible bit
configurations eM stands for main bank, E for extended or secondary
bank) :

CompaUblUty mode (only main bank enabled)
Bit 5 Bit 4 Bit 3 Bit 2 CPU accesses: ANTIC accesses:
VBE CPE Bank selection
1 1 doesn't matter M $4000-$7FFF M $4000-$7FFF

CPU extended RAM mode
Bit 5 Bit 4 Bit 3 Bit 2
VBE CPE Bank selection
1 0 0 0
1 0 0 1
1 0 1 0
1 OIl

CPU accesses:

E $OOOO-$3FFF
E $4000-$7FFF
E $8000-$BFFF
E $COOO-$FFFF

ANTIC accesses:

M $4000-$7FFF
M $4000-$7FFF
M $4000-$7FFF
M $4000-$7FFF

Video (ANTIC) extended RAM mode
Bit 5 Bit 4 Bit 3 Bit 2 CPU accesses: ANTIC accesses:
VBE CPE Bank selection
0 1 0 0 M $4000-$7FFF E $OOOO-$3FFF
0 1 0 1 M $4000-$7FFF E $4000-$7FFF
0 1 1 0 M $4000-$7FFF E $8000-$BFFF
0 1 1 1 M $4000-$7FFF E $COOO-$FFFF

General extended RAM Mode
Bit 5 Bit 4 Bit 3 Bit 2 CPU accesses: ANTIC accesses:
VBE CPE Bank selection
0 0 0 0 E $OOOO-$3FFF E $OOOO-$3FFF
0 0 0 1 E $4000-$7FFF E $4000-$7FFF
0 0 1 0 E $8000-$BFFF E $8000-$BFFF
0 0 1 1 E $COOO-$FFFF E $COOO-$FFFF

To select which mode and bank you want to access in
BASIC. use

POKE 54017, 193 + (MODE· 16) + (BANK· 4)

For MODE and BANK. chose the number below which represents the
type and area of address :

MODE
No. 6502
o
1
2
3

Extd
Main
Extd
Main

ANTIC
Extd
Exd
Main
Main

BANK
No.
o
1
2
3

Address
$OOOO-$3FFF
$4000-$7FFF
$8000-$BFFF
$COOO-$FFFF

Access to the extended memory is always through the bank
$4000-$7FFF, so no matter what the address of the extended bank,

239

APPENDIX SIXTEEN

you still PEEK and POKE at locations 16384-32767 (S4000-S7FFF), not
the extended bank address,

DOS 2,5 includes a program called RAMDISK,SYS which, when the
disk is booted, checks to see if you have a 130XE and, if so, creates a
64K memory disk (RAMdisk) out of the extended memory, (See the
section on DOS 2,5,) The RAMdisk occupies the entire 64K extended
block, so you cannot use the extra 64K for BASIC or other programs if
you want to keep the RAMdisk intact.

240

APPENDIX SEVENTEEN_

DOS 2.5 And The 1050 Drive
The latest version of DOS (Disk Operating System) for the XL and XE
computers is 2.5. It offers several advantages over the earlier ver­
sions (including the ill-received DOS 3.0), including dual-density
formatting, new XIO formatting commands available from BASIC, a
RAMDISK program for the 130XE, and greater compatibility with DOS
2.0. If you use DOS 3.0, I suggest you get a copy of 2.5 as soon as you
can.

DOS 2.5 formats a track with 26 sectors instead of the 18 DOS 2.0 han­
dles; this means a disk with 1010 sectors free instead of 707 (leaving
931 free sectors with DOS and DUP.SYS files on a disk). The 1050 (not
the 810) drive can automatically sense which density the disk in the
drive is using. DOS 2.0 can read a 2.5 disk but the additional sectors
are invisible to it .

New BASIC Commands for DOS 2"5
When you OPEN a disk from BASIC to get a directory read (see loca­
tion 1792; $700 in the Addenda section), you normally use OPEN
#1,6,0,"D:"" ." Now, if you use OPEN #1,7 ,0,"D:""," DOS will specify
files which occupy disk sectors that can't be accessed by 2.0 with
angle brackets, like <RAMROM.ASM>. These files are invisible to
DOS 2.0 when reading a directory; they can't be loaded, nor do they
show up in the directory.

Formatting the disk by the XIO command is enhanced. The usual
method is XIO 254, #l,O,O,"Dl :. " This will format the disk, trying first
for dual density, and if the drive doesn't support it, formatting in
single (2.0) density. XIO 253, #l,O,O,"Dl :" formats a disk with single
density only (a new option-P-has been added to the DOS menu to
format in single density as well) . XIO 253, #1,34,0,"Dl:" will format a
disk in dual density only.

RAMdisk for the 130XE
DOS 2.5 includes a special program called RAMDISK.SYS. This loads
up when the disk is booted and determines if your computer is a
130XE. If so, it runs a small program which creates a "disk drive" out
of the 64K extended memory bank. The RAMdisk acts just like a real
disk, except that it's faster . It is formatted into 499 sectors and a direc­
tory and has the drive number D8:. DOS 2.5 supports drives 1-8, but
is initialized to drives 1, 2, and 8, so if you have other drives, change
location 1802 ($70A); that is, if you have three drives and the
RAMdisk, POKE 1802, 135. All bits in location 1802 now represent pos­
sible drives.

When it runs, RAMDISK.SYS copies MEM.SAV and DUP.SYS to the
RAMdisk, then modifies a location so that you call up DUP.SYS from

241

APPENDIX SEVENTEEN

the RAMdisk rather than D I :. This brings up DOS almost immediately
when you leave BASIC. However, if you want to delete DUP.SYS from
the memory drive and call it up from drive I as usuaL type POKE
5439, ASC(" I "); this points DOS back to the original drive. You can
also delete MEM.SAV from D8: if you don't need it.

DOS 2.5 Boot Sector and Memory Map
Locations 1792-1812 ($700-$714) are loaded directly into RAM from
the boot sector (sector I) on a disk. Refer back to the section in the
400/800 memory map for more explanation. These are from an article
by Neil Harris in the Atari Explorer; they are locations Atari promises
to support in the future :

1792 700 BFLG
Boot flag; always equals O.

1793 701 BRCNT
Number of sectors in the disk boot; three-the first three on the
disk.

1794,1795 702,703 BLDADDR
Boot load address; where DOS is loaded into memory; always
1792 ($700).

1796,1797 704,705 BINTAD
DOS initialization address; always 5440 ($ 1540).

1798-1800 706-708 BCONT
JMP instruction to jump to the address where the boot program
continues execution; 1812 ($714) .

1801 709 SABYTE
Maximum number of concurrently open files-usually three .

1802 70A DRVBYT
Drive allocation byte; one bit per drive.

1803
Unused.

1804,1805

70B SAFBFW

70C,70D SASA
Buffer allocation address for drives and files .

1806 70E DFSFLG
Reads zero if there is no DOS.SYS on disk; nonzero if present.

1807,1808 70F,710 DFLINK
Points to first sector of the DOS.SYS file .

242

APPENDIX SEVENTEEN

1809 711 BLDI5P
Number of displacement bytes to sector link bytes (last three);
always 125 (S7D).

1810,1811 712,713 DFLADDR
Address of the FMS (D:) handler table; 1995 (S7CB).

1812 714 XBCONT
Boot program begins here.

1900 76C B510
BASIC SIO routines.

1906 772 B510R
FMS disk handler routines.

1913 779
Write verify flag; 80 (S50) turns it off, 87 (S57) turns it on.

1995 7CB DFM5DH
FMS handler table. Has data in it different from 2.0 handler.

2016 7EO DINIT
DOS initialization routine .

4993 1381 FBC
Start of the FMS file control blocks; first of eight.

5121 1401 FILDIR
1 28-byte buffer for a disk directory sector.

5439 153F
POKE with 49 (ASC(" 1 ")) to reroute DOS to call DUP.SYS from D 1:
rather than D8 : when using the RAMdisk-you can then delete
DUP.SYS and MEM.SAV from the RAMdisk for extra space. See
location 1923 (S783) in the Addenda.

5440 1540 MINIDUP
Start of permanently resident portion of DUP.SYS.

5540 154A 5FLOAD
Entry to DUP.SYS's routine to load binary files.

5542 15A6 5TLOAD
Used with SFLOAD.

5545 15A9 LOAD
Used with SFLOAD.

243

APPENDIX EIGHTEEN __

Changing The 400/800 OS On The
XL/XE Computers
When you boot the Translator disk, use one of the commercial "fix"
disks (such as FIXXL), or run Matt Ratcliff's "ROM OS to RAM OS" pro­
gram (Appendix 19), you turn your OS from ROM based to RAM
based. This allows you to change it by POKEing directly into mem­
ory. When you use the Translator or the Allen MacroWare XL BOSS
chip, you have the 400/800 operating system in memory instead of
the XL/XE OS.

This section describes many changes which can be made to the
400/800 OS when in the XL/XE RAM. In all cases, Revision B OS is de­
scribed since the Translator and Allen MacroWare don't use the Re­
vision A OS. These changes can be POKEd into memory it you have
the Translator booted or the XL BOSS installed. For 400/800 owners, if
you have the hardware for making your own PROMs or EPROMs, you
can make these changes into the PROMs and replace them in your
OS board. The same applies for the Newell Industries RamRod
board.

I have tested and used both the Newell RamRod and the Allen
MacroWare XL BOSS and consider them both excellent products and
highly recommend them. Much of the following material was de­
rived from their manuals.

57344 EOOO CHARSETI
You can change the character set directly by POKEing here
rather than reserving space in memory for an altered set. See
the section on character sets in the main memory map and
54017 ($D30l). (XL/XE users can change this and the inter­
national set also.)

59497 E869
The interval for the keyboard repeat. The original value is 6;
POKE with 3 to move the cursor twice as fast for repeating
characters (XL/XE also).

60294 EB86

244

To increase the cassette baud rate by almost one-third and re­
duce the time of the leader from 20 to 10 seconds, POKE the
following:

POKE
Address
60294
60299

Value
00
04

Hex
$EBB4, $00
$EBBB, $04

low byte, write baud
high byte

61250

61255
61346
61351
61371

00

04
00
04
02

$EF42, $00

$EF47, $04
$EFA2, $00
$EFA7, $04
$EFBB, $02

61683-61707 FOF3-FI0B

APPENDIX EIGHTEEN

low byte, baud rate init
routine
high byte
baud rate open routine
high byte
leader time

Memo pad mode startup message; "ATARI COMPUTER - MEMO
PAD (CR), "

61709-61718 FI0D-FI16
BOOT ERROR message, This is at 50237 (SC43D) in the XL/XE,

61812 F174
Left margin default; initially 2,

61816 F178
Right margin default; initially at the maximum 39 (S27),

63227-63229 F6FB-F6FD
Key click sound; change these three bytes to 234 (SEA) to dis­
able the key click sound completely.

64728 FCD8 CLICK
You can also remove the click sound by changing the first byte
of the routine here to 96 (S60; RTS),

64729 FCD9
The buzzer/bell time for warning sound prompts , Initially 127
(S7F), you can reduce it to any time; 63(S3F) is half the time,
This location also affects the key click sound time ,

65217-65221 FECI-FEC5
Default (startup) color value tables , These values are moved to
the shadow registers 708-712 (S2C5-S2C8) on power-up or RE­
SET, The screen startup is blue; to change it to black, POKE
65219 (SFEC3), 0,

65278 FEFE
The keyboard table; you can redefine the entire keyboard by
POKEing here (see the XL/XE map section) , One trick is to
change the keyboard so that the cursor (arrow) keys work on
pressing, and you have to press SHIFT and arrow to get - , = ,

+, and ·, and CONTROL and arrow to get t, L, , and , Do
this by:

245

APPENDIX EIGHTEEN

POKE
Address
65284
65285
65292
65293
65348
65349
65356
65357
65412
65413
65420
65421

Value
30
31
28
29
43
42
45
61
92
94
95

124

Hex
$FF04, $IE
$FF05, $IF
$FFOC, $IC
$FFOD, $ID
$FF44, $2B
$FF45, $2A
$FF4C, $2D
$FF4D, $3D
$FF84, $5C
$FF85, $5E
$FF8C, $5F
$FF8D, $7C

(XL/XE owners: Your keyboard definition table begins at 64337,
so to use this modification, subtract 941 from the addresses
given above.)

65281 FFOI
1200XL owners : You can use your function keys as cursor keys
by POKE 65281, 30 ($FFOl.SIE), POKE 65282, 31 ($FF02,$lF),
POKE 65297, 28 ($FFI 1, $l C) and POKE 65298, 11 ($FF12,$lD) .

65487 FFCF
XL/XE only : To make the HELP key a start/stop key equivalent to
CONTROL-1, POKE here with 17 ($11). The HELP key returns a
keycode value at 732 ($2DC) of 17 ($ 11) for normal use, 81 ($51)
for SHIFT+HELP, and 145 ($91) for CONTROL + HELP.

65507 FFE3
The time delay for the repeat feature; initially 3; POKE with 1.
See also 65516 (FFEC) below.

65516 FFEC

246

Key repeat delay. Initially 48 ($30); change to 15 ($OF). Do this
in conjunction with the change at 65507 ($FFE3).

APPENDIX NINETEEN __

XL/XE Programs
BASIC Software Toggle
This is a version of the BASIC switcher routine used in a public do­
main program called " RamMaster," available on the Gateway BBS,
S!' Louis, Missouri, used here with permission by its author, Matt
Ratcliff. The program creates an AUTORUN,SYS tile which prompts
you to turn BASIC on and oft: there 's no need to hold down the op­
TION key when booting a disk, When you turn it ott from DOS, you
gain the 8K RAM it occupies; DOS takes advantage of this memory
space for copy and disk duplication routines, Refer back to the
XL/XE memory map for more information,

800XL BASIC Switcher

1~ GRAPHICS 0:DIM AS(10): ? "800XL BASIC SWI
TCHER"

15 PRINT "By Matthew Ratcliff 3/25/85"
20 PRINT :PRINT "GET DOS DISK READY AND PRE

SS RTN;"
25 INPUT AS
30 TRAP 2~0:0PEN #1,8,0,"D:AUTORUN.SYS"
4~ RESTORE
50 READ A:IF A<0 THEN 100
6~ PUT #l,A:GOTO 50
1~0 CLOSE #1:PRINT "BASIC SWITCHER READY."
1~5 PRINT "PUT THIS FILE ON ALL YOUR ' BASIC

110
115
120
200
21~

10~~

PRINT
PRINT
END
PRINT
PRINT
): END

DATA
, 1

"PROGRAMMING DISKS.":PRINT
"SAVE THIS LOADER AS A BACKUP'"

"UNEXPECTED ERROR ";PEEK(195)
"AT LINE ";PEEK(186)+256*PEEK(187

255,255,~,52,236,53,173,25~,3,24~

1005 DATA 96,32,16~,53,76,34,52,184,176
1~1~ DATA 176,216,2~4, 160, 194, 193,211,201, 1

95
1~15 DATA 160,211,247,233,244,227,232,229,2

42,155,4
1020 DATA 162,12 , 160,52,32,120 , 53,76,56,52,

194
1025 DATA 249,160,205,225,244,170,210,225,2

44
103~ DATA 155,4,162,44,160,52,32,120,53,76,

88
1~35 DATA 52,80, 114, 1~1, 115, 115,32,35,32
1040 DATA 97,110,100,32,21~,212,2~6,32,107,

101
1~45 DATA 121,58 , 155,4,162 ,66,160,52,32,120
105~ DATA 53,76,115,52,91,49,93,32,66,65,83
1~55 DATA 73,67,32,160,2~7,2~6,160,160,155

247

APPENDIX NINETEEN

111'6111 DATA 4,162,98,16111,52,32,12111,53,76,142,
52,91

111165 DATA 5111,93,32,66,65,83,73,67
11117111 DATA 32,16111,21117,198,198,16111,155,4,162,

125
111175 DATA 16111,52,32,12111,53~32,21113,53,21111,50
11118111 DATA 21118,41,173,1,211,9,2,141,1,211,16

9
111185 DATA 192,133,11116,32,16111,53,76,187,52
11119111 DATA 16111,194,193,211,21111,195,16111,21117,1

98
111195 DATA 198,16111,155,4,162,174,16111,52,32,1

2111,53
11111111 DATA 76,62,53,21111,49,24111,3,76,79,53,17

3,1,211

111115 DATA 41,253,141,1,211,169,16111
111111 DATA 133,11116,32,160,53,76,235,52,16111,1

94
1115 DATA 193,211,21111,195,16111,21117,21116,16111,2

9,155
1120 DATA 4,162,222,16111,52,32,12111,53,173,22

6,168
1125 DATA 21111,96,21118,48,76,31,53,82,69
113111 DATA 86,46,66,32,45,32,195,239,238,244

,225,227
1135 DATA 244,16111,193,212,193,21111,21111,16111
114111 DATA 23111,239,242,16111,21111,197,214,174,1

95
1145 DATA 16111,161,155,4,162,252,16111,52,32,1

2111,53
115111 DATA 76,62,53,21111,234,21118,17,76,55,53,

82,69
1155 DATA 86,46,67,155,4,162,48,16111
116111 DATA 53,32,12111,53,76,71,53,29,29,29,29

,155
1165 DATA 4,162,65,16111,53,32,12111,53
117111 DATA 96,76,11117,53,16111,194,193,196,16111,

21113
1175 DATA 197,217,253,32,32,32,8111,82,69,83
1180 DATA 83,32,16111,21111,212,21116,16111,155,4
1185 DATA 162,82,16111,53,32,12111,53,32,21113,53

,76
119111 DATA 111,52,142,68,3,134,21118,14111,69,3,13

2,21119
1195 DATA 16111,111,14111,72,3,14111,73,3
1200 DATA 177,21118,21111,4,24111,6,238,72,3,21110,

208
1205 DATA 244,169,11,162,111,141,66,3,76
121111 DATA 86,228, 162,96, 169, 12, 157,66,3,32,

86,228
1215 DATA 162,96,169,3,157,66,3,169
122111 DATA 2111111,157,68,3,169,53,157,69,3,169,

11.1

1225 DATA 157,75,3,169,28,157,74,3,76
123111 DATA 86,228,83,58,111,162,111,169,5,157

248

APPENDIX NINETEEN

1235 DATA 66,3,169,~,157,68,3,169,4.157
124~ DATA 69,3,169,4,157 , 72,3,169,~,157

1245 DATA 73,3,32,86,228,173,~,4,96,226
125~ DATA 2,227,2,~,52,-1

ROM OS to RAM OS Toggle
The second program is a short version of the "RamMaster" also on
the Gateway BBS; it turns your ROM OS into a RAM OS and traps RE­
SET so that if you press it. it doesn't jump back to ROM. When you
press RESET. the routine leaves the block at 52224-53247 ($CCOO­
$CFFF) intact. so any altered character set you've loaded there will
remain untouched. It also creates an AUTORUN.SYS file, so if you
want it on the same disk as the BASIC switcher above, you'll have to
rename it (line 30) . The RESET handler routine loads into page 6 at
byte 1616 ($650) . Both programs can be loaded from DOS with the
"L" command.

ROM to RAM OS Handler
1~ GRAPHICS ~:DIM AS(I~):? "ROM TO RAM O/S

HANDLER"
15 PRINT "BY Matthew Ratcliff 3/25/85"
2~ PRINT :PRINT "GET DOS DISK READY AND PRE

SS RTN";
25 INPUT AS
3~ TRAP 2~~:oPEN #1,8,~,"D:AUTORUN.SYS"
4~ RESTORE
5~ READ A:IF A < ~ THEN 1~~

6~ PUT #l,A:GoTO 5~
1~~ CLOSE #l:PRINT "64K 'XL ROM-) RAM O/S C

ONVERTER"
1~5 PRINT "AUTORUN.SYS FILE COMPLETE . "
11~ PRINT "BE SURE TO SAVE THIS LOADER"
1 Hi PR I NT "AS A BACKUP!": END
2~~ PRINT "UNEXPECTED ERROR ";
2~S PRINT PEEK(195):PRINT "AT LINE ";PEEK(l

86)+256*PEEK(187)
21~ END
1~~~ DATA 255,255 , ~,52,1~5,53,169,80, 133,2
1~~5 DATA 133,216,169,6,133,3,133,217,165,9
1~1~ DATA 9,2,133,9,160,0 , 169,144,133,222,1

69
1~15 DATA 52,133.223,173,6~,53,133,214,177
1~2~ DATA 222.145,216,230,222,2~8,2,230,223
1~25 DATA 23~,216,2~8,2,230,217,198,214,2~8

,236,76
1~3~ DATA 91,52,2~5,225,244,170,21~,225,244

• 167
1~35 DATA 243, 16~,21~,2~7,205, 173, 190,21~, 1

93,2~5

1~4~ DATA 160.20~,225,238,228,236,229,242,1
6~,242

249

APPENDIX NINETEEN

1~45 DATA 229,225,228,249,174,155,4,162,56,
16~

1Ii'5~ DATA 52,32,61,53,76, 136,52, 16~, 16~, 16~
,2~8

1~55 DATA 21~, 197,211,211, 16~, 167,21~, 197,2
11

1~6~ DATA 197,212,167,160,203,229,249,160,2
44

1~65 DATA 239,160,229,238,225,226,236,229,1
74, 16~, 16~

1~7~ DATA 155,4,162,101,160,52,32,61,53,96
1~75 DATA 169,80,133,2,169,6,133,3,165,9
108~ DATA 9,2, 133,9, 12~, 169,0, 141,47,2, 133
1085 DATA 16,141,0,212,141,14,210,141,14
1~9~ DATA 212,133,219,169,1,133,66,169,192
1095 DATA 133,217,169,204, 133,218, 160,0,24~

,81,169
11~~ DATA 216,133,217,132,218,230,219,2~8,7

1
11~5 DATA 169,128,133,16,141,14,210,169,64,

141,14
1110 DATA 212,169,34,141,47,2,141,0,212,198
1115 DATA 66,88,162,96,169,12,157,66,3,32
112~ DATA 86,228,162,96,169,3,157,66,3,169
1125 DATA 83,141, Ill, 4,169,58,141,1,4,169
1130 DATA 4,157,69,3,169,0,157,75,3,157
1135 DATA 68,3,169,28,157,74,3,76,86,228
1140 DATA 132,216,173,1,211,9,1,141,1,211
1145 DATA 177,216, 170, 173, 1,211,41,254, 141,

1
1150 DATA 211,138,145,216,230,216,208,230,2

30
1155 DATA 217,165,218,197,217,208,222,165,2

19,240,135
116~ DATA 208,143,173,142,68,3,134,212,140
1165 DATA 69,3,132,213,160,0,140,72,3,140,7

3
1170 DATA 3,177,212,201,4,240,11,238,72,3
1175 DATA 208,3,238,73,3,200,208,239,169,11
1180 DATA 162,0,141,66,3,76,86,228,226,2,22

7
1185 DATA 2,0,52,-1

BASIC Revision B Fix
This small program "fixes" your Revision B BASIC (see above) by
copying BASIC ROM to RAM and writing the correct bytes into the
location. This brings your BASIC B up to BASIC C, without needing the
ROM chips or cartridge to do so (I still recommend that you acquire
a new Revision C ROM from Atari). This means your BASIC is also
alterable, since it is in RAM now. Matt the wizard does it again. I sug­
gest you get onto the Gateway BBS and download his programs if
you haven't already done so.

250

APPENDIX ·NINETEEN

Revision B BASIC to Revision C Converter

1~ REM 8~~XL ~ 64K-6~~XL REV.B(UGS)
2~ REM BASIC TO REV.C CONVERTER.
3~ REM By Matthew J. W. Ratcliff 4/5/85
4~ REM THIS LOADER WILL CREATE AN
5~ REM AUTORUN.SYS FILE FOR YOU.
6~ REM ADVISABLE TO MOVE DOWN RAMTOP
7~ REM WHEN IN THE RAM/BASIC, SINCE
8~ REM SOME ATARI GRAPHICS COMMANDS
9~ REM WILL CLEAR RAM ABOVE RAMTOP.
1~~ REM (i.e. POKE 1~6,PEEK(1~6)-4:GR.~-6)

11~ REM (i.e. POKE 1~6 , PEEK(1~6)-16:GR.7-11

)

12~ RESTORE
13~ GRAPHICS ~:DIM A$(l~)
14~ ? "GET DOS DISK READY FOR REV.B TO C"
15~ ? "AUTORUN FILE AND PRESS RETURN KEY~

16~ TRAP 22~:INPUT AS
17~ OPEN *1,8,~,"D:AUTORUN.SYS"
18~ READ A:IF A<~ THEN 2~0

19~ PUT *l,A:GOTO 180
2~~ CLOSE #1:? "** ALL DONE **"
21~ ? "SAVE THIS LOADER AS A BACKUP":? "JUS

T IN CASE!":END
22~ ? "ERROR # ";PEEK(195);" AT LINE ";PEEK

(186) +256*PEEK (187): END
10~0 DATA 255,255,O,6, 13~,6, 169,O, 133,2
101111 DATA 169,6,133,3,173,25111,3,240,1,96
1~2~ DATA 169,0,133,216,169,160, 133,217, 16~

, ~
1~3~ DATA 173 , 1,211,41,253,141,1,211,177,21

6
1~4~ DATA 72,173,1,211,9,2,141, 1,211, 1~4
11115~ DATA 145,216,230,216,208,228,23~,217,1

65,217
11116~ DATA 2~1, 192,208,220, 162,~, 169, 12, 133,

218
1~7~ DATA 160,0,189,95,6,133,216,232,189,95
1~8~ DATA 6,133,217,232,189,95,6,145,216,23

2
1~9~ DATA 198,218,208,232,165,9,9,2,133,9
1100 DATA 96,223,168,234,224,168,24~,225,16

8,17
111~ DATA 226,168,234,41,187,~,243,191,~,24

4
112~ DATA 191,~,245, 191,~,246, 191,111,247, 191
113111 DATA ~,248,191,~,249 , 191,~,226,2,227
114~ DATA 2,0,6,-1

251

-

XL/XE INDEX ____ _

This is an index by label and subject of the locations discussed in the
XL/XE Addenda (Appendices 12-19). The numbers are decimal
memory references. not pages.

ABUFPT 28-31
ACMI interrupt 50220
ACMISR 717. 728
ACMVAR 1005-1016
alternate character set 619
ATASCII 64329

BASIC 50337
BASIC bugs 43234
BASIC disabled 1016. 54017
BASICF 1016
BASIC revision test 43234
baud rate 64728
BBYTEA 719. 720
bitmap routines 63267
blackboard mode 58481
BMI63267
BOOT ERROR 50237 . 50750
BREAK key 49298
BRKKY 566. 567
bulfer 63665

C : 58432
CARTCK 1003
cartridge 1003. 10 18. 50217
CASINI2.3
CASSBT 1002
cassette boot 50798
cassette handler 64728
CBC 63665
character set 619. 756
CHARSETl 54017 . 57344-58367
CHARSET2 52224-52991
CHBAS 756
checksum 52054. 65395. 65426.

65518
CHLINK 1019. 1020
CHSALT 619
CIN 64728
CIO 58591
CKEY 1001
CMCMD 07
cold ~aM 49864. 49866. 55296
COLINC 761
CONSOL 53279
Cant 64269

CRETRY 668

DERRF 1004
device polls 746
device registers 583 . 746-749.

53504-53758
DI050851 . 50867 . 51002
disk boot 50571. 50619. 50729.

50747. 50777
disk sectors size 725
display lists 38868. 60957 . 64708
DMASAV 733
DOS 1792-7419
DOS 3 .0 3889
DOSINI 12. 13
DOSVEC 10. 11
DRETRY 701
DSCTLN 725. 726
DVSTAT 746-749

E: 50248$ 58368

FDL 64708
FINE 622
fine scrolling 620. 622
FKDEF 96.97
floating point 55296
floating-paint tables 56090
FP 55296-57343
function keys 96. 97 . 64529

GBYTEA 719.720
get byte 51151
GETCHAR 62026
GINTLK 1018
GPDVV 58511

hardware initialization 50394
hardware option jumpers 782
hardware ROM vectors

55296-55324
HDWSEL 53759
HELPFG 732
HELP key 732
HIBYTE 648
HIUSED 715. 716

255

INDEX

HNDLOD 745
HWGET 53504
HWPUT 53504
HWRSET 53505
HWSTAT 53505

ICIO 58561
identity bytes 49152-49163,

65518-65529
lIN 58588
IMASK 651
interrupt handlers 49152-52223,

52992-53247
interrupt vectors 512-551, 50251
IRQ processing 49196, 49312
IRQ vector 65534

JMPERS 782
JVECK 652

K: 58400
keyboard click 731
keyboard definition 121 , 122,

64337
keyboard delay 555, 709
keyboard disable 621
keyboard handler 62205, 63665,

64537
keyboard repeat 730
keyboard silence 731
keyboard tables 64260, 64337
KEYDEF 121, 122
KEYDIS 621
KEYREP 730
KGB 62205
KIR 64537
KRPDEL 729

LCOUNT 563
LEDs621 , 756, 54017
LNFLG 00
LOADAD 721 , 722
loader routine 568, 581. 648 ,

713-724, 745
LOMEM 128, 129
LTEMP 54, 55

machine vectors 65530
memo pad mode 58481
memory management 54017
MINTLK 1017

256

modem flag 07

NEWADR 654, 655
NEWCOL 758 , 759
NEWQOW 757
NGFLAG 01
NMls 65530
NOCLIK 731
NTSC register 98
NTSC/PAL 60945

OPTION key 50330, 53279
OS 58368-65535
OS variables 1005-1016
OS vectors 65530-65535
OUTCHAR 62128

P: 58416
PADDL4-7628-631
PALNTS 89
parallel bus handler 58511
parallel bus interrupts 585
parallel device 51468, 51507,

51631,51658,53504,55296,
58511

PBI 55296-57243
PBI vectors 55296-55324
PBPNT 734
PBUFSZ 735
PDMSK 585
PDVMSK 583
PENTV 58502
peripheral handler 51753, 59193,

61116
PHE 61116
PHINIV 58508
PHR 59193
PHUNLV 58505
PIN 65177
PIO 51507
POKEY timers 49743, 49890, 49749
PORTB 20480, 54017
power-up vector 65532
PPTMPA 588
print buffer 734, 735
printer output 838
PTIMOT 788
PTRIG4-7 640-643
PUPBT 829-831

RECLEN 581

redefined function keys 96, 97
redefined keyboard 121 , 122
RELADR 568 , 569
RESET 9, 12, 13
RESET vector 65530
RLADDR 586, 587
ROM vectors (hardware)

55296-55324
ROWINC 760
RUNADR 713,714

screen editor 1000
self-test 20480, 54017 ,

58496-58499
self-test enabled 54017
SELFTST 58481

SHPDVS 584
spares 590-618
SRTlMR 555
STlCK2-3 634-635
STRIG2-3 646-647
SUPERF 1000

TEMP2787

vector tables 58368-58508
VPIRQ 568, 569
VSFLAG 620

ZCHAIN 74, 75
ZHIUSE 71 7, 7 1 8
ZLOADA 723, 724

INDEX

257

INDEXBYLABEL __________ _

This is an index of the labels used to identify the various memory
locations, registers, subroutines, and vectors in the Atari. The
references are to decimal memory loca tions, not to page numbers. For
an index by subject, see the next index section.

Label
ADDCOR
ADRESS
AFI
AFP
ALLPOT
ANTIC
APPMHI
ARGOPS
ATACHR
ATAN
ATRACT
AUDCI
AUDC2
AUDC3
AUDC4
AUDCTL
AUDFI
AUDF2
AUDF3
AUDF4
BFENLO/HI
BFLAG
BITMSK
BIWTARR
BLDADR
BLDISP
BLIM
BLKBDV
BOOT
BOOT?
BOOTAD
BOTSCR
BPTR
BRCNT
BRKKEY
BRKKY
BRUN
BSIO
BSIOR
BUFADR
BUFCNT
BUFRFL
BUFRLO/HI
BUFSTR
CARTA
CARTB
CARTRIDGES
CASBUF
CASENT
CASETV
CASFLG
CASINI
CASORG

258

Location
782
100, 101
55878
55296
53768
54272 - 54783
14, 15
128, 129
763
48759
77
53761
53763
53765
53767
53768
53760
53762
53764
53766
52, 53
1792
110
1796, 1797
1794, 1795
1809
650
58481
62 159
9
578,579
703
61
1793
17
566, 567
10060
1900
1906
21, 22
107
56
50, 51
108, 109
40960 - 49151
32768 - 40959
32768 - 49151
1021 - 1151
60292
58432
783
2,3
61249 - 61666

Label
CASSBT
CAUX I
CAUX2
CBAUDLIH
CCOMND
CDEVI C
CDTMA I
CDTMA2
CDTMF3
CDTMF4
CDTMF5
CDTMVI
CDTMV2
CDTMV3
CDTMV4
CDTMV5
CFB
CH
CHI
CHACT
CHACTL
CHAR
CHARSET
CHBAS
CHBASE
CHKSNT
CHKSUM
CHKSUN
CIOINT
CIOINV
CIOORG
CIOV
CIREAD
CIRTN
CIX
CKEY
CLMJMP
COLAC
COLBK
COLCRS
COLDST
COLDSV
COLINC
COLOR 0-4
COLPFO-3
COLPMO-3
COLRSH
COMENT
COMPUT
CONSOL
COS
COUNTR
CPYFIL

Location
75
572
573
750, 751
57 1
570
550,55 1
552,553
554
556
558
536,537
538,539
540, 54 1
542,543
544,545
570 - 573
764
754
755
54273
762
57344 - 58367
756
54281
59
49
65528
58534
58478
58434 - 59092
58454
58729
58907
242
74
64 18
114, 115
53274
85, 86
580
58487
122
708 -712
53270 - 53273
53266 - 53269
79
5894 1
60583
53279
48561
126,127
9080

INDEX BY LABEL

CRETRY 54 DUNIT 769
CRITIC 66 DUNUSE 775
CRSINH 752 DUPFLG 5533
CSOPIV 58493 DVSTAT 746 -749
CSTAT 648 EDITRV 58368
CTIA 53248 - 53503 EEXP 237
DAUXlI2 778,779 EGETCH 63038
DB SECT 577 ENDFMS 5377
DBUF 7668 ENDPT 116,117
DBUFLO/HI 772, 773 ENDSTAR 142,143
DBYTLO/HI 776, 777 EOUTCH 63140
DCB 768 -779 ERRFLG 575
DCOMND 770 ERRNO 73. 4789 - 4816
DDEVIC 768 ERRSAVE 195
DDMG 10690 ESCFLG 674
DEGFLG 251 ESIGN 239
DELFIL 8649 EXP 56768
DELTAC 119, 120 EXPIO 56780
DELTAR 118 FADD 559 10
DFLADR 1810,1811 FASC 55526
DFLAGS 576 FCB 4993 - 5120
DFLINK 1807,1808 FCHRFLG 240
DFMCLS 2837 FDIV 56104
DFMDDC 2983 FDSCHAR 3850
DFMGET 2751 FEOF 63
DFMOPN 2219 FILDAT 765
DFMPUT 2508 FILDIR 5121
DFMSDH 1995 FILFLG 695
DFMSTA 2817 FLDOP 56717
DFSFLG 1806 FLDOR 56713
DIGRT 241 FLDIP 56732
DINDEX 87 FLDIR 56728
DINI 62334 FLPTR 252,253
DINIT 60906 FMOVE 56758
DINT 2016 FMUL 56027
DIRLST 8505 FMZSPG 67 -73
DISKINV 58451 FNDCODE 3742
DISKIV 58448 FPI 55762
DLISTLIH 54274,54275 FPOINT 55296 - 57393
DMACTL 54272 FPSCR 1510 - 1515
DMASK 672 FPSCRI 1516 - 1535
DMENU 7951 - 8278 FPTR2 254,255
DO BOOT 62189 FRE 218 - 223
DOPEN 62454 FREO 64
DOS 5440 FRESECT 4293
DOSINI 12,13 FRO 212 - 217
DOSOS 8309 FRI 224 - 229
DOSVEC 10,11 FR2 230 - 235
DPFM 11528 FRX 236
DRAW 64764 FSTOP 56747
DRETRY 55 FSTOR 56743
DRKMSK 78 FSUB 55904
DRVBYT 1802 FTYPE 62
DSKFMS 24,25

GETSECTOR 4358 DSKIF 60912
GLBABS 736 -739 DSKORG 60906 - 61047
GPRIOR 623 DSKTIM 582
GRACTL 53277 DSKUTL 26,27
GRAFM 53265 DSPFLG 766
GRAFPO-3 53261 - 53264 DSTAT 76
GTIA 53248 - 53503 DSTATS 771

DTIMLO 774 HARDI 62081

259

INDEX BY LABEL

HATABS 794 - 831 LINBUF 583 - 622
HITCLR 53278 LINE 7588
HOLDCH 124 LINZBS 0,1
HOLD 1 81 LISTDIR 3501
HOLD2 671 LKFIL 10608
HOLD3 669 LMARGN 82
HOLD4 700 LOADFLG 5535
HOLD5 701 LOG 57037
HPOSMO-3 53252 - 53255 LOG 10 5704 1
HPOSPO-3 53248 - 53251 LOGCOL 99
HSCROL 54276 LOG MAP 690 - 693
ICAXIZ 42 LOMEM 128, 129
ICAX2Z 43 LPENH 564
ICAX3Z/4Z 44, 45 LPENV 565
ICAX5Z 46 LMTR 6432
ICAX6Z 47 MOPF-M3PF 53248 - 53251
ICBALZlHZ 36,37 MOPL-M3PL 53256 - 53259
ICBLLZlHZ 40,41 MEMFLG 6046
ICCOMT 23 MEMLO 743, 744
ICCOMZ 34 MEMSAV 10138
ICDNOZ 33 MEMTOP 144, 145,741,742
ICHIDZ 32 MLTTMP 102,103
ICPTLZ/HZ 38, 39 MONORG 61667 - 62435
ICSTAZ 35 MWRITE 5958
IFP 55722 NEWCOL 97,98
INBUFF 243,244 NEWROW 96
INISAVE 6044, 6045 NMIEN 54286
INITAD 738, 739 NMIRES 54287
INITIO 6518 NMIST 54287
INSDAT 125 NOCKSM 60
INTEMP 557 NSIGN 238
INTINV 58475 OLDADR 94,95 INTORG 59093 - 59715
INTRVEC 522, 523 OLDCHR 93

INVFLG 694 OLDCOL 91,92

IOCBO 832 - 847 OLDROW 90

IOCB1 848 - 863 OPT 5534

IOCB2 864 - 879 OS 55296 - 65535

IOCB3 880 - 895 OSRAM 62100

IOCB4 896 - 911 OUTBUFF 128, 129

IOCB5 912 - 927 POPF-P3PF 53252 - 53255
IOCB6 928 - 943 POPL-P3PL 53260 - 53263
IOCB7 944 - 959 PACTL 54018
IOCBS 832 - 959 PADDL O-7 624 - 631
IROEN 53774 PAGE ONE 256 - 511
IROST 53774 PAGE SIX 1536-1791
ISRDON 6630 PAGE THREE 768 - 1023
ISRODN 60048 PAGE TWO 512 -767
ISRSIR 6691,60177 PAGE ZERO 0-255
ISRTD 60113 PAL 53268

KBCODE 53769 PBCTL 54019

KBDORG 62436 - 65535 PBPNT 29
KEYBDV 58400 PBUFSZ 30
KEYDEL 753 PCOLR 0-3 704 - 707
KGETC2 63197 PENH 54284
KGETCH 63202 PENV 54285

PIA 54016 - 54271
LBFEND 1535 PIRO 59123
LBPR I 1406 PIROO 65470
LBPR2 1407 PLYARG 1504
LBUFF 1408 - 1535 PLYEVL 56640
LDFIL 10522 PMBASE 54279
LDMEM 6457

260

INDEX BY LABEL

PNMI 59316 SIOV 58457
POKEY 53760 - 54015 SIZEM 53260
POKMSK 16 SIZP 0-3 53256 - 53259
PORTA 54016 SKCTL 53775
PORTB 54017 SKREST 53770
POT 0-7 53760 - 53767 SKSTAT 53775
POT GO 53771 SOUNDR 65
PRINTV 58416 SPARE 563,568,569,581,
PRIOR 53275 651 - 655, 713 -735,
PRNBUF 960 - 999 745,757 - 761, 1000-
PRNORG 61048 - 61248 1020, 1152 - 1279
PTABW 201 SQR 48869
PTEMP 31 SRTIMR 555
PTIMOT 28 SSFLAG 767
PTRIGO-7 636 - 643 SSKCTL 562
PWRUP 61733 STACK 256 - 511

RADFLG 251 STACKP 792
RAM 0-49151 STARP 140, 141
RAMLO 4,5 STATUS 48
RAMSIZ 740 STCAR 9986
RAM TOP 106 STICK 0-3 632 - 635
RANDOM 53770 STIMER 53769
RBLOKV 58490 STMCUR 138,139

RDDIR 4206 STMTAB 136, 137
RDNXTS 4111 STOPLN 186, 187

RDVTOC 4235 STRIG 0-3 644 - 647
RECVDN 57 SUBTMP 670
RENFIL 9783 SWPFLG 123

RESET 61723 SYSVBL 59345
RMARGN 83 SYSVBV 58463

ROM 49152 - 65535 TABMAP 675 - 689
ROWAC 112,113 TEMP 80, 574
ROWCRS 84 TEMPI 786, 787
ROWINC 121 TEMP2 788
RTCLOK 18,19,20 TEMP3 789
RUNAD 736 - 737 TESTVER2 10483
RUNSTK 142,143 TIMER 1 780, 781

SABYTE 1801 TIMER2 784, 785

SA SA 1804,1805 TIMFLG 791

SAVADR 104, 105 TINDEX 659
SAVFIL 12078 TMPCOL 697,698
SAVIO 790 TMPLBT 673
SAVMSC 88, 89 TMPROW 696
SCRENV 58384 TMPXl 668
SCRFLG 699 TRAMSZ 6
SCROLL 64428 TRIG 0-3 53264 - 53267

SDLSTL 560, 561 TSTAT 793
SDMCTL 559 TSTDAT 7
SEND 60011 TXTCOL 657,658
SENDEV 58472 TXTMSC 660, 661
SERIN 53773 TXTOLD 662 - 667

SEROUT 53773 TXTROW 656

SETUP 4452 ULFIL 10648
SETVBL 59666 VBREAK 518,519
SETVBV 58460 VCOUNT 54283
SFDIR 3873 VCTABL 58496
SFLOAD 5540 VDELAY 53276
SHFAMT III VDSLST 512,513
SHFLOK 702 VECTORTBL 58368 - 58477
SIN 48551 VIMIRQ 534, 535
SIOINV 58469 VINTER 516,517
SIOORG 59716 - 60905 VKYBD 520, 521

261

INDEX BY LABEL

VNDT 132,133 WRTNXS 3988
VNTP 130,131 WSYNC 54282
VPRCED 514, 515 WTBUR 2591
VSCROL 54277 XCONT 1798 - 1800
VSERIN 522, 523 XDELETE 3122
VSEROC 526, 527 XFORMAT 3352
VSEROR 524,525 XITVBV 58466
VTIMRI 528,529 XLOCK 3196
VTIMR2 530,531 XMTDON 58
VTIMR4 532,533 XNOTE 3331
VVBLKD 548, 549 XPOINT 3258
VVBLKI 546, 547 XRENAME 3033
VVTP 134, 135 XUNLOCK 3203
WARMST 8 ZBUFP 67,68
WARMSV 58484 ZDRVA 69, 70
WBOOT 10201 ZFRO 55876
WMODE 649 ZFl 55878
WRTDOS 4618

262

INDEX BY SUBJECT ___ _

This is an index by subject. The references are to decimal memory
locations, not to page numbers. For an index to the location and
routine labels, see the previous index.

Subject Location Subject Location
ANTIC DOS vec tor 9
direct memory access success flag 9
(DMA) 559, 54272 system lockup 9
interrupts 512,513

BREAK key mode numbers 87
PIM graphics 559, 54272 disable 16,53774

ROM 54272 - enable 16,53774

54783 flag 17,53774

Attract mode 77 -79
forced 53775
interrupt 16, 53774

BASIC restored 16,53774
array table 140,141 shadow register 16,53774
blackboard mode 5848 1 status 17,48
cartridge 40960 - vector 566, 567

49151 Buffers
error code, line 186,187, cassette 1021-1151

195 command frame 570 - 573
Floating Point routines 48549 - data 50 - 53, 56

49145 device (SIO data) 772, 773
GOTO, GOSUB 142, 143
graphics modes 87

line 30,583 - 622

jump to DOS 10, 11
printer 29,960 - 999

line numbers 136, 137
ZIOCB 36,37,40,

memory pointers 128, 129,
41

144, 145, Cartridges
740 - 744 A (left) cartridge 40960 -

OPERATOR list 42509 49151

page zero 128 - 209 B (right) cartridge 32768 -

program 14, 15, 136 - 40959

139 BASIC; see A cartridge

program end 14,15,144, test for presence 6,7,61845

145 Cassette
runtime stack 142, 143 baud rate 750, 751
stack 256 - 511 beep count 64, 65
statement pointer, table 136 - 139 boot 2,3,9,74,
stopped line 186, 187 75
string table 140, 141 buffer 61,1021-
TOKEN list 42 159 11 51
variable name, value buffer size 650
tables 130 - 135 buzzer 61530

Blackboard mode end of file 63

entry point 58481 handler routines 61249 -

start vector 10,11 61666
handler vector 58432

BOOT initialization vector 2,3
cassette 9, 12,75 inter-record gap 62
disk boot initialization 12, 13 load 2,3
disk boot routine 4,5,62159, mode 649, 783

62189 motor control 54018

263

INDEX BY SUBJECT

OPEN for input 58493 Coldstart
read block entry 58490 cassette boot 9, 74
record size 1021 disk boot 9
run address 10, II, 12, entry point 58487

13 flag 580
status register 648 powerup 61733
voice track 53775 Color
Characters attract mode 77 -79
ATASCII 763,57344 default values 712
autorepeat 764 GTIA registers 53266 -
bit mapping 57344 53274
blinking text 548,549, player/missile shadows 704 -707

755 playfield shadows 708 -712
character sets 756,57344 - rotate 77,703

58367 screen mode 87
character set address 756,54281 Command frame buffer
colors 756 (CFB) 570 - 573
control codes 766 Console keys
control key 702, 764 cassette boot 74
control register 755 Controller jacks 54016,
cursor inhibit 752
hardware code 764

54017

internal code 762, 764 CTIA

inverse 694 see GTIA

invisible inverse 755 Cursor
last character read, advance 85
written 763 character under 93, 125
logic processing 124 column 85,86
mode 755, 54273 current position 84 -86,94,
move set to RAM 756 95
printer output 31 end of line 125
prior character code 754 graphics 90- 92
ROM routines 63038 - inhibit (disable) 752

63196, LOCATE 85,86
63202 logical line 99

screen location 87 opaque, transparent 755,54273
shadow 756 out of range error 87
shift key 702 previous position 90-92
tests 65470 row 84
translation of code 57344 tab width 201
under cursor 93 text window 85,86,123
upsidedown 512,513, Device

755, 54273 buffer 772,773
Checksum 49, 59, 60 byte transfer 776, 777
CIO command 770
command 23 Device Control Block

IOCBs 832 - 959 (DCB) 768 -779
utility initialization 58478 drivers (adding) 806
variables 43 error status 746
vector 58454 handler address table 794 - 831

Clock
handler routines 58534 -

attract mode 77 -79
59092

realtime 18,19,20
handler vectors 768 - 831
retries 55

serial clock lines 53775 status registers 746 - 749,
sound use 53768

264

INDEX BY SUBJECT

771 instructions 559 - 561
timeout value 747 interrupts 512,513,
vector tables 58368 - 560,561,

58447 54286,
ZIOCB number 33 54287

Direct Memory Access location 560,561,

(DMA) 54274

graphics control 53277 lowest address 14,15

ROM 54272 reserving memory 106

shadow 559 ROM tables 65093

Disk (see also DOS) screen mode 87

beep during I/O 65
scrolling 54276,

boot 9 - 13,74, 54277

75 size 88,89

boot address 578, 579 vertical line count 54283

boot continuation 4,5 DOS (see also Disk)

boot rou tine 62159, boot address 578,579

62189 boot record 1792

buffer 21,22,1802 buffers 6780 -7547,

flags 576, 577 5121 - 5440,

FMS page zero 67 -73 7588 -7923

FMS pointer 24, 25 burst I/O 2952 - 2773

handler commands 778 drives in system 1802

handler routines 60906 - DUP.SYSRAM 5440 - 13062

61047 filename change 3818,3822

handler vector 58448, files reserved 1801

58451 FMSRAM 1792 - 5377

initialization address 12, 13,738, initialization 12,13,738,

739 739

records open 1801 run address 736 -737

retries 54 start vector 9 - 11

run address 736 -739 wildcard character 3783

start vector 10,11 DRAW command
timeout 582 color of line 763
utilities 26, 27 cursor 90 - 92
vector 10, 11 endpoint of line 84 - 86,96-
verify routine 1913 98
Display handler (see flag 695
also Characters, Screen) GR.O 87
logical line map 690 - 693 ROM routines 64764

memory 14,15 screen mode 87

pixel mask 672 DUP.SYS
RAM 656 -703 load 10,11
registers 76,80,81, Errors

99 - 105, 107 BASIC 186, 187, - 127
routines 62454

195

Text window 656 - 667
device 746

vector 58384
disk I/O 73
SIO 575

Display List
address 560,561,

ESC (Escape) key

54274,
control codes without 766

54275
flag 674

enable 559 FILL command (see also

entries 81 DRAW)

265

INDEX BY SUBJECT

color of fill area 765 Interrupts
color of line 763 BREAK key disabled 16
endpoint of line 84 - 86,96- BREAK key vector 566,567

98 Display List 512, 513
flag 695 enabled 16,53774
Floating Point handler routines 59093 -
BASIC ROM 48549 - 59715

49145 IRQ 16,514 -
degree or radians flag 251 535,53774,
page zero 210 - 255 59123,
pointers 252 - 255 59126
RAM page live 1406 - 1535 NMI 512,513,
registers 212 - 217, 54286,

224 - 229 59316
ROM (OS) 55296 - PIA (peripheral) 54018,

57343 54019
trig functions 251 POKEY 16, 53774

FMS RAM 512 - 535,

page zero buffer 67 -73 566,567

pointer 24,25 serial 16

RAM 1792 - 5377 status request 53774

Graphics (see also timer 16

player/missiles) VB LANK 546 - 549,

display mode 87
54286,

DRAW, DRAWTO, FILL 85,86,96 -
58460 -

98
58468,

IOCB 928 - 943
59345 -

line plotting 112 - 122
59715

memory use 88,89,106 Inverse characters
player, missile shapes 53261 - flag 694

53265 IOCB
row and column plotting 112 - 122 graphics screen 928 - 943
screen memory 14, 15, 123, LIST, LOAD, LPRINT 944 - 959

126,127 move 58577
scroll 54276, page zero 32- 47

54277 RAM 832 - 959
tab width 201 screen editor 832 - 847
XIO commands 96- 98 IRQ
GTIA Break key vector 566,567
collisions 53252 service routines 59123 -
examples 623 59315
mode selection 87,623 vectors 514 - 535
ROM 53248 - Jiffies, jiffy 18 - 20

53503 Joystick
stick triggers 53264 - see Stick

53267
Keyboard test 623

text window 87,623 code 764,53769

Handlers
console keys 53279

interrupt handlers 59093 -
control key flag 702,53769
controller 54016

59715 delay flag 753
RESET 794
ROM routines 58534 -

display flag 766

59092
enable debounce,
scanning 562, 53775

266

INDEX BY SUBJECT

escape key flag 674 Operating system
handler routines 63 197 - character set 57344 -

65535 58367
handler vector 58400 Floating Point 55296 -
interrupts 16,53774 57343
inverse toggle 694 handlers 58534 -
option, select, start keys 53279 65535
shift key flag 702, 53769 ROM 55296 -
start , stop flag 767 65535
status 76 vectors 58368 -
synchronization 54282 58533
timer delay 555 Paddles
Light pen see Pots
horizontal value 564, 54284 Page zero
vertical value 565, 54285 BASIC use 128 - 209
Line buffer 21, 22
bit map 690 - 693 Floating Point use 210 - 255
buffer 583 - 622 FMS registers 67 - 73
cursor 99 IOCB 32 - 47
logical line 83 RAM 0- 255
margins 83 Peripherals
plotting 11 2 - 122, controllers 54018,

126 54019
screen editor 107 interrupts 53744
tabs 201, 675 - ports 54016,

689 54017
Luminance PIA
attract mode 77 - 79 ROM 54016-
Machine language 54271
page six 1536 - 1791 stick 54016,
techniques 88 54017
Margins paddle (pot) triggers 54016,
editing 83 54017
initializa tion 82,83 ports 54016-
left 82 54019
right 83 Player/Missile Graphics
scrolling 83 (PMG)

Memory character base 54279
see RAM collision clear 53278

collision detection 53248 -
Monitor 53263
handler routines 61667 - color registers 703 -707

62435 disable, enable 559, 53277
Non-Maskable Inter- DMA 54272
rupts(NMI) fifth player 623, 53275
DLI 560,561, graphic shape 53261 -

54286 53265

reset register 54287 horizontal movement 53248
service routines 593 16 - horizontal position 53248 -

59715 53255
status 54287 location 54279
VBLANK 546 - 549, memory reservation 54279

54286 movement 53248
vectors 512,513 multicolor 623,53275

267

INDEX BY SUBJECT

overlap 623,53275 shadow 623
priority 623,53275 RAM
resolution (line) 559,54272 clear memory 88, 89, 106
screen boundaries 53248 free memory, bottom 743,744,
size, width 53256 - 1792

53260, free memory, top 741,742
54279 monitor 0,1

vertical delay 53276 pOinters 4,5,15,
vertical motion 53248 128, 129
Playfleld protected area (page six) 1536 - 1791
enable 559 reserving 106,743,
priority 623,53275 744
size 559 RAM top 106,740 -
PLOT 742
screen mode 87 screen 88,89

POKEY
scrolling 699

interrupts 16, 514 - 535 size 106, 740

pots 53760 - test 4-7

53767 vector table 58496

ROM 53760 - Random numbers
54015 poly counters 53768

Polynomials register 53770

random numbers 53770 RESET
sound dividers 53761, colds tart 580

53768 DOS 10, II

Pots (paddles) handler routine 61723
handler tables 794 fast scan enable 562, 53775
interrupt 54286 POKEY registers 53760 -

53767 lockup 9

port state read 53768 margins 83

shadows 624 - 631 warmstart 8,58484

start read sequence 53771 Retry
trigger latch 53277 command frame 54
triggers 636 - 643, device 55

54016 Screen (See also Cursor)
values 624 bit mapping 110
Powerup boundaries 53248
RAM size 6, 740 buffer 107
warmslart 8 clear memory 88,89

PRINT clear screen 88
screen mode 87 color clocks 672

control codes 766
Printer GRAPHICS modes 87 - 89, 106
buffer 29,30,960 - handler vector 58368

999 IOCB use 832,928
character output 31 line buffer 583 - 622
handler routines 61048 - logical line map 690 - 693

61248 lowest address 14, 15,88,
handler vector 58416 89
IOCBuse 944 memory restrictions 74 1,742
sideways printing 30 memory use 88
status 28, 30 mode 87
timeout 28 page zero RAM 80 - 120
Priority PAL compatible 53268
ROM 53275 pixel justification I II

268

INDEX BY SUBJECT

pixel mask 672 cassette buzzer 61530
rows 703 clock frequency 53768
save routines 88,89 console register 53279
screen modes 560, 561 CTRL-2 buzzer 66
scrolling 88,89,106, distortion 53761

699,767, filters 53768
54276, I/O beeps 65
54277, keyboard speaker 53279
64428 margins 83

size 76,88,89, octave range 53768
672 poly counters 53761

split screen 123 Stack
TAB map 675 - 689 page one 256 - 511
text rows 703 runtime 142,143
vectors 800,803, Status

58368, device 747
58384 display 76

vertical line counter 54283 printer timeout 28
wait synchronization 54282 SIO 48
Serial port ZIOCB 35
control 562,53775 Stick (joystick)
data port 790 attract mode 77
input/output 16,53773 PIA registers 54016,
interrupts 16, 53774 54017
reset status 53770 read routines 632
shadow 562 shadows 632 - 635
status 53775 trigger latch 53277
SIO triggers 644 - 647
checksum 49 values 632
command frame buffer 570 - 573 Tabs
data buffer 50 - 53, 56 comma spaces 201
Device Control Block stop map 675 - 689
(DCB) 768 -779
disk flags 576,577 Text window

error flag 575 address 660, 661

flags 56 - 60 cursor 123,656 -

interrupt handler 58475 658

interrupts 514 - 527 GIlA 87

routines 597 16 - margins 82,83

60905 plot 87

send enable 58472 rows available 703

stack pointer 792 screen mode 87,659

status 48 scrolling 699

timeouts 28 tab width 201

transmission flags 55 - 60 Timeouts
utility initialization 58469 baud rate correct ion 791
vector 58457 device 748

Software timers 536 - 545 disk 582

Sound
printer 28

audio control 53761 -
storage 48

53768
value 28

audio frequency 53760 - Timers

53768 attract mode 77

beeps 64,65 baud rate 780 -782,

buzz 61530 784 -787

269

INDEX BY SUBJECT

critical code 66 attract mode 77 -79
interrupt enable 16,53774 clock 18- 20
jump vectors 550 - 553 critical section 66
POKEY {hardware} 16,528 - entry point 58463

533,53768 exit 58466
realtime clock 18-20 interrupts 546 - 549,
repeat 555 54286
start hardware 53769 key delay 753
suspended 66 set timers 18,58460
system {software} 536 - 558 timer value 0, I
VBLANK 66 Vectors
vectors 550 - 558 cassette handler 58432
Transmission flags 56- 60 CIO 58454
Trigge" {see Pots, command 23
Sticks} device handlers 794-831,
C/GTIA registers 53264 - 58368 -

53267 58477
latches 53277 disk 10,11
paddle {pot} 636 - 643 disk handler 58448,
PIA registers 54016, 58451

54017 display handler 58384
stick (joystick) 644 - 647 Display List interrupt 512, 513

Variables
keyboard handler 58400
printer handler 58416

assign values 134 screen editor 58368
list 132 warm start 8,54287
name table 130- 133
statement table 136,137 Warmstart

string and array table 140, 141 entry point 58484

value table 134, 135 flag 8
NMI check 8,54287

VBLANK vector 8,58484

270

COMPUTE! Books
p,o , Box 505B Greensboro. NC 27403

Ask your retailer for these COMPUTE! Books. If he or she
has sold out, order directly from COMPUTE! .

For Fastest Service
Call Our TOLL FREE US Order Line

800-334-0868
In NC call 919-275-9809

Quanti ty Title

COMPUTE!'s First Book of Atari (00-0)
COMPUTE!'s Second Book of Atari (06-X)
COMPUTE!'s Third Book of Atari (18-3)
COMPUTE!'s First Book of Atari Graphics
(08-6)
COMPUTE!'s Second Book of Atari
Graphics (28-0)
Mapping the Atari (09-4)
COMPUTE!'s First Book of Atari Games
(14-0)
The Atari BASIC Source Book (15-9)
Inside Atari DOS (02-7)
COMPUTE!'s Atari Collection, Volume 1
(79-5)
Machine Language for Beginners (11-0)
Second Book of Machine Language
(53-1)
Computing Together: A Parent and
Teacher's Guide to Using Computers
with Young Children (51-5)
SpeedScript: The Word Processor
for the Atari (003-3)
Mapping The AtarL Revised (004-1)

Price Total

$12.95 __
$12.95 __
$12.95 __

$12.95 __

$12.95 __
$14.95 __

$12.95 __
$12.95 __
$19.95 __

$12.95 __
$14.95 __

$14.95 __

$12.95 __

$ 9.95 __
$16.95 __

Add $2,00 shipping and handling , Outside US add
$5,00 air mail or $2,00 surface mail ,

Please add shipping & handling for each
book ordered. __ _

Total enclosed or to be charged __ _

Ali orders must be prepaid (money order, check, or charge). All
payments must be in US funds, NC residents add 4%% sales tax.
o Payment enclosed Please charge my: 0 Visa 0 MasterCard
o American Express

Acct . No. ______________ Exp . Date __ _
Name _____________________ __

Address ____________________ ___

City ___________ _ State ____ Zip __ _
Country ____________________ ___
. Allow 4- 5 weeks for delivery.
Prices and availability subject to change without notice . ~5800~3

-

-.

\

	Cover

	Contents

	Preface

	Introduction

	Memory Map

	Page 0
	Page 1 and 2
	Page 3 and 4
	Page 5 and 6

	Page 7 to 9 amd Free RAM

	Top ROM O/S
	CTIA/GTIA

	POKEY

	PIA

	ANTIC

	O/S ROM

	Floating Point Package ROM

	Appendix

	VBLANK Processes

	Graphics memory Map

	Timing values

	A and B ROMS

	Color

	Sound and Music

	P/M memory map

	Display Lists

	Numerical Conversions

	ATASCII Codes

	First Edition Errata
	The XL/XE Map

	XL/XE Enhancements
	The XL/XE Parallel Bus

	XL/XE Graphics Modes

	Memory Management on the 130XE

	DOS 2.5 and the 1050 Disk Drive

	Changing the 400/800 OS on XL/XE Computers

	XL/XE Programs

	Index

