ATARI

Let
Learn

BASIC

akidsintroductionto
BASIC programmingon
ATARI Home Computers

Lets
leangi
BASIG

A Kids’ Introduction to
BASIC Programming on
ATARI® Home Computers

The Little, Brown Microcomputer Bookshelf

BANSE, TIMOTHY
Home Applications and Games for the VIC-20
BANSE, TIMOTHY
Home Applications and Games for the Apple® II, Apple® II Plus, and Apple® Ile
Computers
BANSE, TIMOTHY
Home Applications and Games for the ATARI® 400™/800™, 600XL™, 800XL™,
1200XL™, 1400XL™, and 1450XLD™ Home Computers
BARNETT, MICHAEL P. AND GRAHAM K. BARNETT
Personal Graphics for Profit and Pleasure on the APPLE® II Plus Computer
BARNETT, MICHAEL P. AND GRAHAM K. BARNETT
Personal Graphics for Profit and Pleasure on the IBM® Personal Computers
HODGES, WILLIAM S. AND NEAL A. NOVAK
Personal Finance Programs for Home Computers
MORRILL, HARRIET
BASIC for IBM® Personal Computers
MORRILL, HARRIET
Mini and Micro BASIC: Introducing Applesoft®, Microsoft®, and BASIC PLUS
NAHIGIAN, J. VICTOR AND WILLIAM S. HODGES
Computer Games for Businesses, Schools, and Homes
NAHIGIAN,]. VICTOR AND WILLIAM S. HODGES
Computer Games for Business, School, and Home for TRS-80 Level II BASIC

ORWIG, GARY W. AND WILLIAM S. HODGES
The Computer Tutor: Learning Activities for Homes and Schools (for the TRS-80%,
Apple®, and PET/CBM® Home Computers)

ORWIG, GARY W. AND WILLIAM S. HODGES
The Computer Tutor: ATARI® Home Computer Edition (for the ATARI®
400/800™, 600XL™, 800XL™, 1200XL™, 1400XL™, and 1450XLD™ Home Com-
puters)

ORWIG, GARY W. AND WILLIAM S. HODGES
The Computer Tutor: IBM® Personal Computer Edition (for the IBM® PC and
PCijr)

SHNEIDERMAN, BEN
Let’s Learn BASIC: A Kids’ Introduction to BASIC Programming on the Commo-
dore 64®

SHNEIDERMAN, BEN
Let’s Learn BASIC: A Kids’ Introduction to BASIC Programming on IBM®
Personal Computers

SHNEIDERMAN, BEN
Let’s Learn BASIC: AKids’ Introduction to BASIC Programming on the Apple®
II Series

SHNEIDERMAN, BEN
Let’s Learn BASIC: A Kids’ Introduction to BASIC Programming on ATARI®
Home Computers

WINDEKNECHT, THOMAS G.
6502 Systems Programming

A Kids’ Introduction to
BASIC Programming on
ATARI® Home Computers

Ben Shnetderman

University of Marylani‘i

Little, Brown and Company
Boston Toronto

Library of Congress Cataloging in Publication Data

Shneiderman, Ben.
Let’s learn BASIC.

(The Little, Brown microcomputer bookshelf)

Includes index.

1. Atari computer—Programming. 2. Basic (Computer
program language) I. Title. II. Series.
QA76.8.A82S53 1984 001.64°2 84 -12540
ISBN 0-316-78722 -1

Copyright © 1984 by Ben Shneiderman

All rights reserved. No part of this book may be reproduced in any form or by any electronic
or mechanical means including information storage and retrieval systems without permission
in writing from the publisher, except by a reviewer who may quote brief passages in review.

Library of Congress Catalog Card No. 84 —12540

ISBN 0-31b-78722-1

98 7 6 5 4 3 2 1

HAL

Published simultaneously in Canada
by Little, Brown & Company (Canada) Limited
Printed in the United States of America

Disclaimer of Liabilities: Due care has been exercised in the preparation of this book to insure its
effectiveness. The author and publisher make no warranty, expressed or implied, with respect to
the programs or other contents of this book. In no event will the author or publisher be liable for
direct, indirect, incidental, or consequential damages in connection with or arising from the
furnishing, performance, or use of this book. This book is published by Little, Brown and
Company, which is not affiliated with Atari, Inc. Atari is not responsible for any inaccuracies.

ATARI is a registered trademark of Atari, Incorporated.

400, 800, and 1200XL are trademarks of Atari, Incorporated.

IBM is a registered trademark of International Business Machines Corporation.

Apple is a registered trademark of Apple Computer, Incorporated.

Commodore 64 and VIC-20 are registered trademarks of Commodore Electronics Limited.
TRS-80 is a registered trademark of the Radio Shack Division of Tandy Corporation.
Texas Instruments is a registered trademark of Texas Instruments Incorporated.

Hlustrations by True Kelley

Preface

Who is this book for? This book was written for eight year
olds (third graders) up through fourteen year olds (ninth graders).
I believe that children want a challenge in their education and
that they are eager to learn if offered stimulating educational
materials. This book requires no knowledge of programming or
mathematics beyond simple arithmetic. I hope that many adults
will enjoy and benefit from this book too.

Why did I write this book? 1 was genuinely surprised in
searching through bookstores for an introduction to BASIC for
my eight-year-old daughter Sara. There were several cute books
that described the wonderful world of computers but offered only
a slim discussion of programming. The books that taught
programming used advanced concepts such as scientific notation,
exponentiation, sines and cosines, and two-dimensional array
operations. These books also used sophisticated examples of
bank-interest computation, numerical integration, standard
deviations, or elaborate sales-commission calculations.

I decided to write a book that Sara and her friends could use to
learn BASIC programming. I wanted to teach the important
concepts in programming in a way that made sense to anyone
who was interested. My goal is to preserve intellectual rigor
while simplifying the presentation by offering a logical sequence,
lucid explanations, and adequate examples. I begin with simple
PRINT commands to teach the step-by-step process of
programming. Loops for repeating PRINT commands convey
some of the power of a computer. Next, INPUT commands
allow students to create simple interactions. Writing programs
that do arithmetic, make decisions, and create stories comes after
that. I worked hard to choose interesting and enjoyable examples

vii

viii

Preface

that are easy to understand. The examples and exercises use
stories, riddles, graphics, games, poetry, and simple
computations.

My research on human factors in programming and interactive
systems heightened my awareness of human learning and
problem-solving abilities with respect to computers. The
academic literature on novice programming provided a basis for
developing a precise model of learning and a plan for teaching.
Classroom and individual testing provided feedback for me to
change the wording sequencing, and technical content.

Why BASIC? There is a lively debate among educators about
which language to use for teaching new programmers. I agree
with critics of BASIC who point to its weaknesses in control
structures, data organization, and modular organization. These
become important limitations in longer and more complicated
programs, but for beginners BASIC has many advantages:

[] It is very easy to get started. Learning the PRINT command
is all you need to begin writing programs.

[J Line numbering organizes short programs. The line numbers
emphasize the sequential execution of programs, a difficult
concept for new programmers. Line numbers also make adding,
changing, and deleting lines easy.

[It uses simple control structures and data structures. Some of
the very aspects of BASIC that annoy experts make BASIC very
useful for beginners. The flexible PRINT command, the
FOR-NEXT loop, the simple IF-THEN conditional, and the
convenient INPUT command allow new programmers to make
rapid progress. The confusing distinctions between real or
integer variables are avoided and strings are handled in a simple
form.

[] Operations on numbers are easy to program. BASIC is
well-designed to accept numbers in an INPUT command, store

Preface

them, compare them, print them in neat columns, and do
arithmetic with familiar notation.

[J The BASIC environment is simple and understandable.
Program editing, storing, retrieval, and printing are easy to learn,
remember, and use. Programs are often run rapidly, by just
typing RUN, and error messages can be specific and constructive.
Tracing during RUNs and fast repairs encourage exploration.

[J BASIC is widely available. Almost every microcomputer
offers BASIC. As children move among classrooms, schools,
their home, and their friends’ homes, they can be quite confident
that the computers they use will offer BASIC in a largely
standardized form.

These are important advantages of BASIC, but don’t forget the
limitations. Once you’ve mastered BASIC, keep your mind open
to learning other languages, especially if you want to do
advanced programming.

Some people push for LOGO as the language for new
programmers. It is especially appealing because new
programmers can easily draw certain kinds of figures and
modular programming is more convenient. But LOGO may
make it more difficult to edit programs, to input numbers and
strings, to do some arithmetic, and to do some kinds of printing.
I think that once you learn BASIC you could benefit from
learning LOGO, and once you learn LOGO you could benefit
from learning BASIC.

Objectives

This book introduces computer programming and shows the
important ideas with programs written in BASIC. After reading
this book carefully and doing the exercises, you should be a
competent novice in BASIC programming. I used only a part of

ix

Preface

the BASIC language to simplify learning. The parts of BASIC
that I used work on most microcomputers.

This book is especially for the ATARI Home Computer series:
the 400, 600XL, 800, and 800XL. (There are versions of this
book for other microcomputers.) Sections called Differences
Among Computers compare the ATARI Home Computers, Apple
II series, Commodore 64, IBM Personal Computers,
Timex/Sinclair, TRS-80 Microcomputer, and TI 99/4A.

Acknowledgments

I have to begin by thanking my daughter Sara and her teachers
Karen Glantz and Sheila Ford for getting me started on writing
this book. Other teachers and parents at the Murch Elementary
School in Washington, D.C., helped and encouraged me in many
ways. Gary Orwig, Ron Schwartz, and George Richardson
offered insightful comments on the manuscript’s early stages.
Marilyn Barth, Skip MacArthur, Mary Mullins, and Lee Ripley
gave very helpful, detailed reviews of the complete book.
Valuable comments, encouragement, and classroom testing were
provided by Herb Bernstein, Virginia Bradley, Mary Brown,
Judy Cook, Walter Ellis III, Charles Kreitzberg, John Lovgren,
Patrick Pope, Jerry Weinberg, Howard Weiss, and others.
Gordon Lewis of the District of Columbia Public Schools was
influential in arranging the use of this book for the 1983 Summer
Computer Camps. Jenelle Leonard of the Computer Literacy
Training Laboratory at the Takoma Elementary School supported
this effort in many ways. This trial with thousands of students
and dozens of teachers helped demonstrate and improve the
effectiveness of the material.

The University of Maryland Computer Science Center provided
computer resources to support the many, many changes made to

Preface

the drafts. Deb Stoffel was wonderful in preparing the
typesetting. Mildred Johnson helped with many secretarial
chores and worked with her husband, Joseph, to prepare one of
the solution sets. Len Pedowitz and Nick Roussopoulos
contributed to checking the exercises and the solutions. Donald
R. Mattison provided the computer picture of the violin.

Tom Casson of Little, Brown and Company was always open
to discuss troubling issues and contributed substantially to many
critical decisions. Mark Walsh added his expertise during the
final phases. Sally Stickney and George McLean diligently
pursued the numerous details of the production process.

I'm especially pleased to thank the many children who tried out
the book, worked out every exercise, and urged me to make it
clearer, especially Chris Barth, Walter Ellis IV, Eve and Mema
Roussopolous, Sara Shneiderman, and Warren Tildon.

Xi

Contents

Let’s Get Started !

Getting the Computer to Do Printing 7

1 Printing Strings (PRINT) (LIST, RUN, NEW) 9

2 Printing Strings on the Same Line (,) 19
(SAVE, CATALOG, LOAD)

3 Here We Go Loop-the-Loop (FOR-NEXT) 26

4 Loops Inside Loops (;) 37

5 Putting in the Input (INPUT) 47

Making the Computer Do Arithmetic 57
6 Here Comes the Count 59
7 Simple Arithmetic (+-%/) 69
8 Arithmetic Variables (=) 79
9 Adding Up Numbers 87

Steering the Computer 93

10 To Jump or Not to Jump (IF, GOTO) 95
11 Working with IF Commands 105

12 Random Chances (RND, INT) 116

13 Fill-in-the-Blanks Storytelling 126

14 The Mystery of the Haunted House 133

15 Building Programs from Parts (GOSUB) 144

Let’s Keep Learning 157
Solutions to Selected Exercises 171

Index 193

xiii

DEDICATED

AND
AND
AND
AND
AND
AND
AND

THEIR
THEIR
THEIR
THEIR
THEIR
THEIR
THEIR

TO SARA AND ANNA
FRIENDS
FRIENDS
FRIENDS
FRIENDS
FRIENDS
FRIENDS
FRIENDS

10 PRINT "DEDICATED TO SARA AND ANNA"
20 FOR I
30 PRINT "AND THEIR FRIENDS"
40 NEXT I

=1T0 7

Let’s Get Started

Computer programming is easier to learn than piano playing but
more difficult than tic-tac-toe. In both computer programming and
piano playing, you begin with simple patterns and steadily improve
over a lifetime. Both skills offer a great deal of satisfaction when
you can produce just what you want.

Each time you correctly get the computer to do what you want,
you'll feel great. You’ve learned something new and proved to
yourself that you are in charge of the computer. In order to create a
program that works, you have to

understand each problem completely,

decide exactly what you want to do,

make a step-by-step plan for action,

write commands for the computer to carry out your plan, and
then

5. carefully test your commands to make sure that they work.

BN =

Let’s Get Started

A group of commands is called a program. You may write
programs to print pictures, play games, add or subtract numbers,
print poems, learn science, count money, or find telephone numbers.
You may write learning games to help you or your friends,
information programs to explain about your school’s computer, or
joke-telling programs for fun.

There is a lot to learn about computers. There are many kinds of
computers and many different ways to use them. Most people use a
microcomputer which sits right on a desk or a computer terminal
which is connected to a big computer. Some people use a display
screen, which looks like a small television, while other people use a
terminal that prints on paper.

Most computers and terminals have a keyboard that looks like a
typewriter for you to type commands on. A command is an
instruction to the computer, such as “add 2 and 3.” Sometimes there
are game paddles, joysticks, touchscreens, or other ways of giving
commands to the computer.

When you play computer games, you use a program written by
somebody else. A program is a group of commands that makes the
computer work. To give commands to the computer, you need to
learn a programming language.

There are several hundred programming languages, but a popular
and easy-to-learn one is called BASIC (Beginner’s All-purpose
Symbolic Instruction Code). It was created by John Kemeny and
Thomas Kurtz of Dartmouth College in the early 1960s. This book
will help you learn computer programming in BASIC.

Most of the BASIC commands in this book will work on every
microcomputer. But each microcomputer is slightly different—the
number of letters in a line, the number of lines on the screen,
abbreviations, and so on. This version of Let’s Learn BASIC has
examples and exercises that fit the ATARI 400, 600, 800, and 1200

Let’s Get Started

Home Computer series. The solutions to the exercises were run on
the ATARI 800.

To get started, turn on your ATARI and make sure that it is
connected to your screen. Practice typing the letters on the
keyboard. In addition to the letters there are special keys such as
RETURN, SHIFT, the space bar, CTRL (CONTROL on the 1200),
DELETE/BACK S (DELETE/BACK SPACE on the 1200), and
BREAK . (See Figure 1 for photographs of the ATARI 400, 800,
and 800XL keyboards.)

There are four arrow keys that let you move (up, down, left, and
right) the cursor on the screen. To move the cursor, hold down the
CTRL key and then press one of the four arrow keys. The cursor on
the ATARI is a rectangle that goes over a letter or a blank space.
To get started, just turn on the power switch (on some models you
need to put in the BASIC cartridge).

Differences Among Computers. Most of what you learn in this book
will work on any computer that uses BASIC:

ATARI 400, 600, 800, and 1200 Home Computer series
Apple II, 11+, and Ile

Commodore 64

IBM PC, PCjr, and XT

Texas Instruments (TI) 99/4A and 99/2

Radio Shack TRS—80 Color Computer, Model 100, etc.
Timex/Sinclair 1000, 1500, and 2068

VIC-20

Oo0ooooooao

The differences in the way BASIC works on these computers will be
explained in sections like this one.
If someone has been using the computer before you, you may want to
turn the power switch off and then back on to clear out their programs.
One of the obvious differences is in the size of the screen. The ATARI

Let’s Get Started

has places for 40 characters on the screen, but only 38 are used in BASIC.
The Apple, Commodore 64, and the TRS-80 Model 100 have 40
characters in each line, while the Timex, TI, and TRS-80 Color
Computers have 32 characters. The IBM has 40 or 80 depending

on the computer and the screen. i

When you have finished studying and have tried the keys, you are
ready for Chapter 1. The ATARI is ready for your commands when
the word READY appears with the cursor below it.

Figure 1. Keyboards for the ATARI 400 (top), 800 (middle), and 800XL
(bottom). (ATARI® 400, 800, and 800XL are trademarks of Atari, Inc.
Copyright ©1984.)

Getting

the Computer
to Do
Printing

FEAMT
apnYhe Sueme LIAZ RETURN
RUN

SAVE

Printing Strings

UNITED STAIES of AMERICA
TS

P PREVIEW: The first command you will give to the
computer is to print the word HELLO on the screen.
You type in the command and then get the computer
to carry out your command.

P NEW IDEAS: command, line number, PRINT,
string, RETURN, stored program, RUN

10

Getting the Computer to Do Printing

Your First Command, Your First Program

The first exercise in programming is to get the computer to print
words, such as HELLO on the screen. Sit down in front of the
keyboard and type the command

10 PRINT "HELLO"

The 10 is the line number, and PRINT is the command that gets
the computer to print. The word inside the quotes, HELLO, is what
the computer will print. A word or any letters between a pair of
quotes is called a string.

Now, press the key marked RETURN to store your command in the
computer. The stored command stays in the computer, and the
computer is now ready to take your next command. Your stored
program is made up of the one PRINT command you typed. To get
the computer to carry out your one PRINT command, type

RUN
and press the RETURN key. The computer prints the word

HELLO

If it didn’t work, try again. Type the 10 PRINT "HELLO" and
RUN commands again. If you get a message like ERROR, check the
line and retype it. If you notice a mistake while typing a line, just
press the DELETE/BACK S key to erase the wrong letters.

Congratulations! You have written and run your first program.

Differences Among Computers. The ATARI, Apple, and Commodore
64 use RETURN, but Timex and TI use ENTER, and IBM uses a picture
of an arrow that goes down and to the left.

If you have made a mistake in typing a command, you will get a
message that starts with the line number, has the word ERROR, and then
shows the part of the line that the computer could not accept. Look

1/ Printing Strings

closely at what you have typed, and try again to get it right. Check to
make sure you were careful in using the number zero and the letter 0. W

P PREVIEW (for second part of Chapter 1): You
give line numbers to commands so that they can be
kept in order, changed, and deleted. Your commands
make the computer print words and messages on one
or more lines. A group of commands is called a
program. You can have the computer show your
program on the screen to check it over. You can
make the computer carry out your commands and see
if your program does what you want it to do.

P NEW IDEAS: group of commands, LIST, adding,
changing, deleting, NEW

Adding a Second Command
You can add a second command to your program by typing
20 PRINT "GOODBYE"

and pressing RETURN. The line number 20 means that this
command comes after line 10. This PRINT command gets the
computer to print the string GOODBYE on the next line. To see the
entire program, type the command

LIST
and press RETURN. The computer displays

10 PRINT "HELLOQO"
20 PRINT "GOODBYE"

To have the computer RUN your program, type

RUN

11

12

Getting the Computer to Do Printing

and press RETURN. The computer carries out your two commands
and displays

HELLO
GOODBYE

You can use any whole numbers as line numbers. You can also
put as many blanks as you wish before or after the PRINT
command. These programs do exactly the same thing:

10 PRINT "LUKE"
20 PRINT "SKYWALKER"

3 PRINT "LUKE"
4 PRINT "SKYWALKER"

77 PRINT "LUKE"
4321 PRINT '"SKYWALKER"

They all print

LUKE
SKYWALKER

There are a few rules to remember in numbering your commands:

1. each command must have its own number—no two
commands can have the same number;

2. the numbers should get larger from one line to the next; and

3. you should leave enough space between numbers so that you
can add new commands. Many people like to number lines

by tens (10, 20, 30 . . .) so that they can add lines (15, 17,
18 .. .).

Adding More Commands

You can add a third command between the two lines in your

1/ Printing Strings

program by typing
15 PRINT "HAVE A NICE DAY"

and pressing RETURN to store it. Because the number 15 is between
10 and 20, the computer will put the new command in between the
two old ones. This new command, number 15, makes the computer
print four words: HAVE A NICE DAY. Now type

LIST

and press RETURN to display the entire three command program:

10 PRINT "HELLO"
15 PRINT "HAVE A NICE DAY"
20 PRINT "GOODBYE"

To get the computer to carry out your commands, type

RUN

and press RETURN. The computer shows the results of running your
program:

HELLO
HAVE A NICE DAY
GOODBYE

If you would like an extra blank line to print out between the
second and third lines, you would add another command:

17 PRINT

By now you probably know that you have to press RETURN after
every command. If you ask for the LIST and press RETURN, you
get

10 PRINT "HELLO"

15 PRINT "HAVE A NICE DAY"
17 PRINT

20 PRINT "GOODBYE"

13

14

Getting the Computer to Do Printing

Now when you type RUN and press RETURN, you get

HELLO
HAVE A NICE DAY

GOODBYE

Changing and Deleting Commands
If you decide to change a command, just retype it:

10 PRINT "HI"

The new command number 10 replaces the old one. This is why it
1s important to give each line a different number. Now type in
LIST to see if your stored program is what you expected:

10 PRINT "HI"

15 PRINT "HAVE A NICE DAY"
17 PRINT

20 PRINT '"GOODBYE"

To get rid of or delete a command, type just the line number:

17

When you press RETURN, the command will no longer be part of
your program. You can delete another command

20
and check your work by typing
LIST '
which will display the remaining program:

10 PRINT "HI"
15 PRINT "HAVE A NICE DAY"

1/ Printing Strings

Can you predict what happens when you type RUN?
Instead of printing words, you can get your computer to print
shapes, too. You can get this little diamond shape

X
XX
X X
X X
X

by simply printing it out with five PRINT commands. Spacing is
very important in this program so that you come out with the right
shape. In line 10 you must have exactly two blanks between the "
and the X. In line 15 there must be exactly one blank after the "
and after the first X. In line 20 there must be exactly three blanks
between the two X’s.

10 PRINT " X "
15 PRINT " X X "
20 PRINT "X X"
25 PRINT " X X "
30 PRINT " X "

It may not be a valuable diamond, but it’s a jewel of a program.

Differences Among Computers. The ATARI and many other computers
let you abbreviate the word PRINT by a single question mark, 7. ll

Starting Fresh

If you want to clear out all the commands in your program, you
could delete one at a time by typing each of the line numbers. A
shortcut is to type

NEW

Getting the Computer to Do Printing

which deletes all commands at once. Now you can start over and
type this program:

10 PRINT "ROSES ARE RED"

20 PRINT "VIOLETS ARE BLUE"
30 PRINT "SUGAR IS SWEET"

40 PRINT "AND SO ARE YOU"

50 PRINT

60 PRINT " BYE BYE"

This program has six commands. Five of the commands print a
string, but line 50 just prints a blank line. In line 60 the three
blanks between the " and the BYE BYE make this closing message
appear three spaces over to the right.

Computers can do a lot more than print strings, but you’ve made
a good start in learning programming.

Summary

1. You can use the PRINT command to write letters, words, and
messages.

2. Commands are kept in order by line number.

. The LIST command displays all the lines in a program.

4. The RUN command gets the computer to carry out your
program.

5. You can delete each numbered command one at a time. You
can delete the whole program with the NEW command.

w

Exercises

Each chapter ends with exercises for you to try on your computer.
Read each exercise until you understand it, make a step-by-step
plan, write commands, and test your program carefully.

If the exercise has an asterisk (*) in front of it, that means it is

1/ Printing Strings

more difficult. If the exercise has a plus (+) in front of it, that
means the solution is in the back of the book. I hope you enjoy
doing the exercises.

1.

Write a program with one command to print your first name.
Then add a second command to print your last name on
another line.

(+) Write a program to print the alphabet like this:

ABCDEFG
HIJKLMNOP
QRSTUVWXYZ

. Write a program to print this saying:

A STITCH IN TIME
SAVES NINE

(+) Write a program to print a rectangle in which there are
exactly seven spaces between the two R’s in the second and
third rows: '

RRRRRRRRR
R R
R R
RRRRRRRRR

. Write a program to print this poem:

TWINKLE, TWINKLE LITTLE STAR
HOW I WONDER WHAT YOU ARE

UP ABOVE THE WORLD SO HIGH
LIKE A DIAMOND IN THE SKY

. Now, how about printing this star to go with the program in

Exercise 5. There are four blanks before the A on the first
line and three blanks before the A on the second line. You
will have to count the As and the blanks carefully.

17

18 Getting the Computer to Do Printing

A
AAA
AAAAAAAAA
AAAAAAA
AAAAAAAAA
AAA
A

7. (*+) Write a program to draw this picture of a cat. Be sure
to count the spaces carefully—this exercise is tricky.

M M
MM MM
I - --1
I I
I0 01
I I

I 0-1I

I I

Printing Strings
on the Same Line

ANNA | COME OVER
AND see MY
NEW ADDRESS

P PREVIEW: Sometimes you will want to print two or
more strings on one line. Strings can be printed in
columns to produce neat lists. Programs can be saved
on a cassette tape player or a disk drive.

» NEW IDEAS: printing in columns, cassette tape
player, disk drive, magnetic tape, magnetic disk,
floppy disk, CSAVE, CLOAD, SAVE, LOAD.

19

20

Getting the Computer to Do Printing

Printing Lists

Keeping track of information such as school grades, library books
or addresses is a common use of computers. You might want to
write a program to print your friends’ names and phone numbers.
To get rid of your old program and start a new one, give the
command

b

NEW

Now you are ready to type in program commands. If you have
four friends, you might write a program like this:

10 PRINT '"ANNA 928-3744"
20 PRINT "ELIZA 485—-4788"
30 PRINT "SARA 744-0902"
40 PRINT "WENDY 864-3435"

If you type it this way, you put the names in alphabetical order. If
you run this program, the output is

ANNA 928-3744
ELIZA 485-4788
SARA 744-0902
WENDY 864-3435

As the list gets longer, it would look much neater if all the phone
numbers are lined up in a column:

ANNA 928-3744
ELIZA 485-4788
SARA 744~-0902
WENDY 864-3435

This output also makes it easier to spot an extra or missing digit in
the telephone number.

To print the list in two columns, each print command should have
two strings: the name and the telephone number.

2/ Printing Strings on the Same Line

10 PRINT "ANNA", "928-3744"
20 PRINT "ELIZA", "485—4788"
30 PRINT "SARA", "744-0902"
40 PRINT "WENDY", ''864-3435"

Each of the two strings is enclosed in quotes and separated by a
comma. The blank after the comma is not necessary but makes the
program easier to read. The comma is the part of the PRINT
command that tells the computer to start a new column for the next
string. The ATARI has 10 spaces in each column, so the telephone
numbers begin in the 11th space.

Now, if you want to add a new friend to your list and still keep
the alphabetical order, you could just choose the right line number.
For example, to add JEREMY, any line number in the 20s would be
fine:

25 PRINT "JEREMY", '244-3809"
Your program now looks like this:

10 PRINT "ANNA", '928-3744"
20 PRINT "ELIZA", "485-4788"
25 PRINT "JEREMY", "244-3809"
30 PRINT "SARA", "744-0902"
40 PRINT "WENDY", ''864-3435"

Can you predict what the five lines of output for this program

would be?

Differences Among Computers. The ATARI and Commodore 64 have
10 letters in each column. The IBM and TI have 14, and the Apple and
Timex have 16. l

Printing Column Headings

A nice touch would be to add column headings for the list:

21

22

Getting the Computer to Do Printing

5 PRINT "NAME", "TELEPHONE"
6 PRINT

The comma in line 5 makes the word NAME appear in the first
column and the word TELEPHONE in the second column. The
PRINT in line 6 leaves a blank line in the output. Remember, the
second column on the ATARI begins in the 11th space from the left
side. The final output looks neatly labeled by column:

NAME TELEPHONE
ANNA 928-3744
ELIZA 485-4788
JEREMY 244-3809
SARA 744-0902
WENDY 864—-3435

You can print lists for many different things. You could keep
lists of books and authors, homework assignments and due dates,
toys you want and their prices, or birthdays of family and friends.

Since your ATARI and many computers have narrow screens
(with space for 38 or fewer letters), you may have to print some
items on several lines. The title of a book could be on one line, and
the author, date of publication, and number of pages could be on the
next line. To make the list more readable, you could print a blank
line before each book title. The ATARI has room for 40 characters
on the screen, but in ATARI BASIC the first two spaces are left
blank. That means that you can only display 38 characters on a
line.

Saving Your Program

Getting a nice display or printed copy of a list is useful, but if
you turn off your computer, the list will be gone forever. To avoid
having to retype the program each time you want to use it, you need

2/ Printing Strings on the Same Line

to SAVE the program. Your ATARI can be connected to a cassette
tape player (such as the ATARI 410 Program Recorder) or a disk
drive (such as the ATARI 810). These devices contain either
magnetic tape or a magnetic disk which can store a copy of your
program. Many microcomputers use a soft magnetic disk called a
floppy disk.

On the ATARI, you can save a copy of your program on a
cassette tape player by typing:

CSAVE

After you press RETURN you will hear two beeps. Put a blank
cassette in the Program Recorder and press the PLAY and RECORD
keys at the same time. Now press RETURN on the computer. You
will hear a high pitched sound, then a raspy sound while the
program is being copied to the tape. When the noise stops the word
READY should show on your screen. Press the STOP key on the
Program Recorder and rewind the tape so that you can read the
program back when you want it. Keep track of which programs you
have saved by writing the names down on a sheet of paper.

To retrieve an old program that has been stored away, first make
sure that the tape is rewound to the beginning. Type the command:

CLOAD

After you press RETURN you will hear one beep from the computer.
Press the PLAY key on the cassette tape player and RETURN on the
computer. You should soon begin to hear the raspy sound of your
program being loaded into the computer’s storage. When the
loading is done, you will get the READY message on your screen.
Press STOP on the Program Recorder and rewind the tape so it will
be ready when you need it again.

Now you can try the LIST command or just go ahead and RUN
the program.

If you have a disk drive, then saving and loading programs is

23

Getting the Computer to Do Printing

even simpler. When storing on a disk drive you have to give a
name for your program such as PHONES. Instead of CSAVE and
CLOAD you use these commands:

SAVE "D:PHONES"
LOAD "D:PHONES"

You will hear the disk drive spinning and the computer will beep.
You do not have to press any buttons, the disk drive will come on
automatically. To get a list of the programs on your disk, use the
Disk Operating System (DOS) menu option "A”.

Differences Among Computers. You can check in your computer
manual to learn how to SAVE and LOAD programs with your cassette tape
player or magnetic disk drive.

The commands for using a disk are different on each computer. For

example, you get a list of programs by typing LOAD "§",8 (Commodore
64), CATALOG (Apple), or FILES (IBM). B

Summary

1. You can print two or more strings on the same line in neat
columns.

2. The comma separates the strings in the PRINT command.

3. The CSAVE or SAVE command stores a program on tape or
disk.

4. The CLOAD or LOAD command retrieves an old program that
has been stored on tape or disk.

Exercises

Remember, an * means that the exercise is more difficult and a +
means that the solution is in the back of the book.

2/ Printing Strings on the Same Line

1. (+) Write a program to print out this list of abbreviations in
two columns:

KG KILOGRAM
CM CENTIMETER
MM MILLIMETER

2. Write a program to print out this list of birthdates:

NAME MONTH DAY
ANDREW MARCH 25
TOM OCTOBER 6
BETTY JUNE 12

3. (+) Write a program to print these little flags spread out in
three columns:

+000000 +XXXXXX +IITITI
+000000 +XXXXXX +IITIII
+000000 +XXXXXX +IIIITI

+ + +
+ + +
+ + +

4. (*) Write a program to print a book list with titles, authors,
year of publication, and number of pages. Include books that
you have read.

THE MAGIC OF 0Z
L. FRANK BAUM 1919 208

THE SECRET OF PIRATES HILL
FRANKLIN W. DIXON 1972 178

CHARLOTTE'S WEB
E. B. WHITE 1952 184

26

Here We Go
Loop-the-Loop

7 will be bus

for a while . |
used the magic

words © FOR- NEXT,

-

P PREVIEW: The computer’s power is best used when
a simple action can be repeated. In this chapter you
will learn how to repeat printing a string 2, 10, 500,
Or more times.

>

NEW IDEAS: loops, counter variable, FOR-NEXT

loops

3/ Here We Go Loop-the-Loop

The Power of Repetition

The great advantage of using a computer shines through when you
can make the computer repeat some action again and again. Once
you write a program to print a picture, multiply numbers, make a
move in a game, or convert inches to centimeters, it’s easy to make
the computer repeat the same action many times.

Our first program printed the word HELLO once. If you want to
print a string four times, you wrap a repetition loop around the
command. It’s called a loop because the computer goes around and
around repeating the same commands again and again.

The repetition loop begins with a FOR command and ends with a
NEXT command:

10 FORI =1 TO 4
20 PRINT "HELLO"
30 NEXT I

The FOR command at line 10 makes the computer count from 1
up to 4 using the counter variable named I. Imagine a cup labeled
I into which you drop stones. Every time you drop in one of the
stones, the computer carries out the commands until it reaches the
NEXT command. If the cup contains the full number of stones, in
this case 4, the computer goes on to the line following the NEXT
command. If the cup contains fewer than 4 stones, the computer
adds one and goes through the loop again. The output of this
program is

HELLO
HELLO
HELLO
HELLO

The counter variable in the FOR command must match the counter
variable in the NEXT command. To make it easy, we’ll use a single
letter for counter variables. The counter variable in this first

27

28

Getting the Computer to Do Printing

program is I. It is the name of the imaginary cup for counting from
1 to 4.

To print HELLO six times, change the FOR command so that T
goes from 1 to 6:

10 FORI =1 T0O 6
20 PRINT "HELLO"
30 NEXT I

Just to see how this all works, you can add PRINT commands
before and after the FOR-NEXT loop

7 PRINT "WELCOME"
10 FORI =1 TO 6
20 PRINT "HELLO"
30 NEXT I

40 PRINT "GOODBYE"

When you type RUN, you get this output:

3/ Here We Go Loop-the-Loop

WELCOME
HELLO
HELLO
HELLO
HELLO
HELLO
HELLO
GOODBYE

To print 20 HELLOs, just change the FOR command to go up to 20.
If you added another command inside the loop, it would get
repeated, too. Let’s add line 25:

7 PRINT "WELCOME"

10 FORI =1 T0 6

20 PRINT "HELLO"

25 PRINT '"HOW ARE YOQU?"
30 NEXT I

40 PRINT "GOODBYE"

And then the output is

WELCOME
HELLO

HOW ARE YOU?
HELLO

HOW ARE YOU?
HELLO

HOW ARE YOU?
HELLO

HOW ARE YOU?
HELLO

HOW ARE YOU?
HELLO

HOW ARE YOU?
GOODBYE

I’'m fine, I'm fine, I’m fine, I’m.fine, I’'m fine, I'm fine.

30

Getting the Computer to Do Printing

Shapes, Too

Once you have repetition, you can make shapes much more
easily. A rectangle is made by repeating a line of symbols or letters
such as the A. The program might be

10 FORI =1T05

20 PRINT "AAAAAAAAAA"
30 NEXT I

When you RUN this program, you get

AAAAAAAAAA
AAAAAAAAAA
AAAAAAAAAA
AAAAAAAAAA
AAAAAAAAAA

To get a rectangle that is empty in the middle requires a little
more planning. If the goal is

RRRRRRRRR
R R
R R
R R
RRRRRRRRR

you would have to get the top line done with a simple PRINT
command, then loop three times to get the sides (with exactly seven
blank spaces between the two R’s) and finally get the bottom line
with another simple PRINT command

10
20
30
40
50

3/ Here We Go Loop-the-Loop

PRINT "RRRRRRRRRR"
FORI =1TO 3

PRINT "R R"
NEXT I
PRINT "RRRRRRRRRR"

What if you wanted the rectangle to be moved over to the right?
You could add blanks to the PRINT commands in lines 10, 30, and

50.

10
20
30
40
50

PRINT " RRRRRRRRRR"
FORI =1 TO 3

PRINT " R R"
NEXT I

PRINT " RRRRRRRRRR"

You could also just print a string with a single blank, before

skipping over. This would cause the rectangle to start in the second

column:

10
20
30
40
50

PRINT " ", "RRRRRRRRRR"
FORI =1TO0 3

PRINT n H, HR RH
NEXT I

PRINT " ', "RRRRRRRRRR"

To make a taller rectangle, you could just change the FOR command
to go from 1 up to 15, or more.

31

32

Getting the Computer to Do Printing

Snack Time

This section uses the FOR-NEXT loop to print out a fork and a
layer cake. Let’s print the fork shifted over into the second printing
column, like this:

16 I e BRC B Be |
i B IR Be B |
i e B B B |

I IR B B e B

F F
FFFFFFFFFF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF

The four tines (tips of the fork) are produced by repeating the same
pattern for six lines:

10 FORI =1 T0 6

20 PRINT " ", "F F F F"
30 NEXT I
In line 20 the " " and the comma space the fork over to the second

column, and there are two blanks between each F. The line that
joins the tines is produced by a PRINT command:

3/ Here We Go Loop-the-Loop

40 PRINT " ", "FFFFFFFFFF"

The long handle is made of 14 lines of two Fs, which are four
spaces in from the left side. Line 60 prints a blank in the first
column and uses the comma to skip to the second column.

50 FOR I = 1 TO 14
60 PRINT " ", " FF"
70 NEXT I

The four blanks before the FF are necessary to center the fork
handle.

Now that your appetite is growing, it’s time for the three-layer
cake:

AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA
BBBBBBBBBBBBBB
BBBBBBEBBBBBBB
BBBBBBBBBBBBBB
BBBBBBBBBBBBBB
ccceeeceecccececcececececce
ccceeeceeececeecceccececc
CCCCccceceeececcececcecc

Three sets of FOR-NEXT loops will be all that you need to bake this
cake. The top layer begins with six blanks and then has eight A’s,
the middle layer has three blanks and 14 B’s, and the bottom layer
has 20 C’s:

10 FORI =1 TO0 5

20 PRINT " AAAAAAAAT

30 NEXT I

40 FOR I = 1 TO 4

50 PRINT " BBBBBBBBBBBBBB"

33

34

Getting the Computer to Do Printing

60 NEXT I

70 FORI = 1T0 3

80 PRINT "ccCcCcccccceeeeceeecee”
90 NEXT I

Hearty appetite!

Summary

1. FOR-NEXT loops cause the commands between them to be
repeated. The command to repeat six times is FOR I = 1
TO 6. The counter variable I goes from 1 up to 6.

2. With clever use of FOR-NEXT loops and PRINT commands
you can print pictures.

3. Each letter or blank inside the quotes of a PRINT command
must be counted carefully.

b

Exercises

1. Write a program to print your first name 7 times and then
your last name once.

2. (+) Write a program to print stripes like these:

00000000000000
XXXXXXXXXXXXXX
00000000000000
XXXXXXXXXXXXXX
00000000000000
XXXXXXXXXXXXXX

You’ll need two PRINT commands inside one FOR-NEXT
loop.

3. Write a program to print this rectangle with dots on the
inside:

3/ Here We Go Loop-the-Loop

00000000
O...... 0
0...... 0
0...... 0
0...... 0
0...... 0
0...... 0
00000000

4. (+) Write a program to print this flag:

S I
S — I
S I
S S I
S S I
S S I
+
+
+
+
+
+
+
+

5. (*) The game called “dots” is played on a paper filled with a
grid of dots like this:

Using pencils, players take turns adding a line to connect a
pair of dots horizontally or vertically. If your line completes
a box, you get to put your initials inside the box and you get

36 Getting the Computer to Do Printing

another turn. When the board is filled, the player with the
most boxes with his or her initials in it is the winner. Write a
program to produce the board with four rows of six dots
shown above. There are three blanks going across between
each dot and a blank line between each row of dots. Then
make a board with fifteen rows of six dots.

6. (*) Add another layer of D’s to the bottom of the layer cake
and a candle to the top.

! Loops
Inside Loops

YOUR BOAT
ROW
ROW
ROW
YOUR BOAT

p PREVIEW: In this chapter you will learn how to
make some fancier programs by combining loops.
You will learn how to control the printing of letters
more carefully.

p NEW IDEAS: inner loop, outer loop, print control
with comma and semicolon

37

38

Getting the Computer to Do Printing

Row, Row, Row Your Boat

Up until now each FOR-NEXT loop was separate from the other
loops in the program. Sometimes it is necessary to have one loop
inside another. Let’s start with a loop around a PRINT command
followed by a second PRINT command, to print a line from a
familiar song:

10 FORI =1T0 3
20 PRINT "ROW"

30 NEXT I

40 PRINT "YOUR BOAT"

The output of this program is

ROW
ROW
ROW
YOUR BOAT

What if you want to repeat this pattern twice? You could write
the four commands again. Or you could wrap a FOR-NEXT loop
around the whole program:

8 FORJ = 1T0 2

10 FOR I=1 TO 3).
nner

20 PRINT "ROW" 100 outer
30 NEXT I P loop
40 PRINT "YOUR BOAT"

48 NEXT J

The FOR-NEXT loop on lines 10 and 30 is called the inner loop and
it uses the counter variable I to count from 1 up to 3. The
FOR-NEXT loop on lines 8 and 48 is called the outer loop, and it
must use a different counter variable. The outer loop uses the
counter variable J, which goes from 1 up to 2. If you run this
program, you get

4/ Loops Inside Loops

ROW
ROW
ROW
YOUR BOAT
ROW
ROW
ROW
YOUR BOAT

If J in line 8 went from 1 up to 7, you would get seven copies of
the four-line song. You can change the outer loop counter variable
to repeat the inner loop as many times as you want. Remember that
the counter variable in the inner loop must be different from the
counter variable in the outer loop.

Controlling the Printing

You could have all of the ROWs appear on the same line. You’ve
already learned that a comma between two strings prints them in two
columns on the same line. By putting a comma at the end of line
20, you can make the next string print on the same line.

8 FORJ =1 TO 2

100 FORI =1T0 3

20 PRINT "ROW", — notice the comma
30 NEXT I

40 PRINT "YOUR BOAT"

48 NEXT J

With this slight change the program output is

ROW ROW ROW YOUR BOA
T
ROW ROW ROW YOUR BOA

T

39

Getting the Computer to Do Printing

The letter T does not fit on the line, so it is forced onto the next
line. Line 40 does not have a comma on the end, so the next string
to print will begin on a new line.

You may find that this form is still too spread out and that you
would like to put the words right next to each other. To do this,
use a semicolon (;) instead of a comma. This will make each string
print right next to the previous string. The only change is the
semicolon in line 20:

8 FORJ =1T0 2

10 FORI = 1T0 3
20 PRINT "ROW";

30 NEXT I

40 PRINT "YOUR BOAT"
48 NEXT J

With this change the output is

ROWROWROWYOUR BOAT
ROWROWROWYOUR BOAT

This output is too squeezed together. There is no space between
each of the ROWs. To separate strings you could add a blank right
after the W in line 20. You can add one more line to the song with
line 60:

8 FORJ =1 T0 2

10 FORI =11T0 3

20 PRINT "ROW "; — notice the blank after ROW
30 NEXT I

40 PRINT "YOUR BOAT"
48 NEXT J
60 PRINT "GENTLY DOWN THE STREAM"

The semicolon at the end of line 20 makes each string print next to
the previous string. The first time through the loop "ROW " gets
printed on a new line. The next time through the loop "ROW " gets

Blast it all!
Now Were
5{;32@& too Ci!ose,

We've spaced
much Yoo far

4/ Loops Inside Loops

11

42

Getting the Computer to Do Printing

printed on the same line. Then the third time through the loop
"ROW " gets printed again on the same line. When "YOUR BOAT"
is printed, it is still on the same line. Line 40 does not end with a
semicolon, so "GENTLY DOWN THE STREAM" begins on a new
line. The output is

ROW ROW ROW YOUR BOAT
ROW ROW ROW YOUR BOAT
GENTLY DOWN THE STREAM

Loops are just a dream!

Slow Down, You’re Moving too Fast

It’s amazing how fast the computer can print out line after line of
letters or words, but sometimes you may want to slow things down.
Instead of printing

HELLO
GOODBYE

you may want to have the computer wait a few seconds between
printing these two words. One way to do this is to have the
computer just count from 1 to 1000 between the PRINT commands:

10 PRINT "HELLO"

20 FOR I = 1 TO 1000
30 NEXT I

40 PRINT "GOODBYE"

On some computers counting from 1 to 1000 may take less than a
second, so you may want to have the computer count up to 10,000.
If your computer is slow, you may want to go up to only 100. Try
it out on your computer.

One enjoyable use of this idea is to have the computer pretend to
be a beating heart:

4/ Loops Inside Loops 43

LUB
DUB
(pause here)
LUB
DUB
(pause here)
LUB
DUB

You can decide how long a pause you want between each heartbeat.
Let’s say you find that counting to 500 is about right. To get 20
heartbeats, you could use an outer Joop and an inner loop:

10 FOR B = 1 TO 20
20 PRINT "LUB"

30 PRINT "DUB"

40 FOR I = 1 TO 500
50 NEXT I

60 NEXT B

The counter variable B stands for bear. You could speed up or slow
down the heartbeat by changing the highest number in the FOR
command on line 40.

Your ATARI has a loudspeaker in it. Try to find someone who
has used it. Maybe together you can make the sound of a heartbeat.

Summary

1. By wrapping one loop around another loop, you can repeat
commands to make complicated patterns.

2. The semicolon in a PRINT command causes two strings to be
printed right next to each other.

Getting the Computer to Do Printing

3. A FOR-NEXT loop without any commands inside the loop can
be used to make a slight pause between PRINT commands.

Exercises
1. (+) Write a program to print

NO
NO
YES
NO
NO
YES
NO
NO
YES

2. Write a program to print

SHE LOVES ME
SHE LOVES ME
NOT

SHE LOVES ME
SHE LOVES ME
NOT

SHE LOVES ME
SHE LOVES ME
NOT

4/ Loops Inside Loops

3. (+) Write a program to print this flag. (Hint: you can do it
using three loops.)

+XXXXXXXXXXXXXXXXXX
+XXXXXXXXXXXXXXXXXX
+XXXXXXXXXXXXXXXXXX
+000000000000000000
+XXXXXXXXXXXXXXXXXX
+XXXXXXXXXXXXXXXXXX
+XXXXXXXXXXXXXXXXXX
+000000000000000000

+ 4+ + ++

+

4. (+) Write a program that imitates a clock by printing

TICTOC
TICTOC
TICTOC
TICTOC
TICTOC
TICTOC
TICTOC
TICTOC
TICTOC
TICTOC

Figure out how long a pause to put in so that one line is
printed every second. The 10 lines should take 10 seconds.
You’ll need a watch that shows seconds to see if your
program is accurate.

45

Getting the Computer to Do Printing

5. (*) Here’s another challenge. Print this ladder:

I
I
I
00000000000
I
I
I
00000000000
I
I
I
00000000000
I
I
I
000000000000
I I
I I
I I

HHHOHHHOMHMMHEHOMHH H

Have a safe climb to the top.

Putting in
the Input

How did you gel it fo wait ?

ts alt in how you INPUT.

» PREVIEW: In all the programs you have written
until now, you could make changes as you wished
until you typed in the RUN command. Sometimes it
is useful to control a program while it is running. In
this chapter you will learn how to take in numbers
and strings to control a running program. You will
have to reserve space for input variables that store
strings.

P NEW IDEAS: INPUT, input variables for strings and
numbers, controlling loops, BREAK key, DIM

47

48

Getting the Computer to Do Printing

The Riddle Machine

Everyone likes funny riddles. Everyone moans at silly riddles.
Now you can turn your computer into a riddle machine which asks a
riddle and gives the answer whenever the user presses RETURN.

The computer might display

WHAT DID ONE HOT DOG SAY TO THE OTHER?

PRESS RETURN TO GET THE ANSWER
?

and then wait until the user presses RETURN. The question mark
shows that the computer is waiting before going on. When the user
presses RETURN, the answer is shown:

HI, FRANK.

To have the computer print a ? and wait, you use the INPUT
command. INPUT commands have an input variable to store
whatever someone types. To reserve space for the input variable
you must use a DIM (it stands for dimension) command. Since this
program only asks the user to press RETURN (the user doesn’t type
anything), we reserve only one space for A$.

10 DIM A$(1)

20 PRINT "WHAT DID ONE HOT DOG SAY ";

30 PRINT "TO THE OTHER?"

40 PRINT " PRESS RETURN TO GET THE ANSWER"
50 INPUT A$

60 PRINT "HI, FRANK."

In line 50 the INPUT command has the input variable A$, which can
take a letter, a number, or just the RETURN. The input variable can
be any letter of the alphabet followed by a $ (A$, B$, C$. . .).

A one-riddle riddle machine is nice, but you can expand this
program with two riddles or as many as you like:

5/ Putting in the Input

70 PRINT

80 PRINT

90 PRINT "WHAT IS THE BEST THING ";:

100 PRINT "TO PUT IN A PIE?"

110 PRINT "PRESS RETURN TO GET THE ANSWER"
120 INPUT A$

130 PRINT "YOUR TEETH."

140 PRINT

150 PRINT

160 PRINT "IF YOU THROW A WHITE STONE IN"
170 PRINT "THE RED SEA, WHAT WILL 1T BECOME?"
180 PRINT "PRESS RETURN TO GET THE ANSWER"
190 INPUT A$

200 PRINT "WET."

210 PRINT "THAT'S ALL FOLKS."

If the user of the program gets bored, he or she can stop the
program by pressing the BREAK key.

Differences Among Computers. On other computers you can end the
program after a 7 by pressing the BREAK or RESET keys. On the Apple
you have to type CTRL—C and RETURN. On the Commodore 64 you
have to hold down the RUN/STOP key and press RESTORE. Ml

Controlling a Loop
In Chapter 3 the first program printed HELLO four times:

10 FORI =1 T0 4
20 PRINT "HELLO"
30 NEXT I

You could get nine HELLOs by changing the FOR command to I =
1 TO 9 and then running the program again. Another way of
changing a program is to let the user control the FOR loop. An

49

50

Getting the Computer to Do Printing

INPUT command can have an input variable that is used as the

upper limit of a FOR loop. The program should begin by asking the
user for a number:

10 PRINT "HOW MANY HELLOS DO YOU WANT"
20 INPUT N

30 FORI =1 TON

40 PRINT "HELLO"

50 NEXT I

The number that the user types is stored in the input variable N.
Any letter of the alphabet (A, B, C...) can be used for an input
variable to store a number. A DIM command is not needed for
variables that store a number.

The value the user has given N will also be used as the N in the
FOR command in line 30. When you run this program, it will print
the message

HOW MANY HELLOS DO YOU WANT
?

and then wait for the user to type a number such as

9
followed by RETURN. The output is

HELLO
HELLO
HELLO
HELLO
HELLO
HELLO
HELLO
HELLO
HELLO

5/ Putting in the Input 51

Printing Address Labels

If you have a printer connected to your ATARI, you can list the
output on the printer by using LPRINT instead of PRINT. If you
just have a display screen, you can enjoy seeing your address
repeated on the screen.

You can control the number of labels printed each time by an
INPUT command:

10
20
30
40
50
60
70
80

PRINT
INPUT
FOR I
PRINT
PRINT
PRINT
PRINT
NEXT I

"HOW MANY LABELS DO YOU WANT";
N

= 1TO N

"NANCY DREW"

"48 GHOSTLY LANE"

"MILLTOWN, NY 14226"

52

Getting the Computer to Do Printing

When this program is RUN, the question in line 10 will be asked.
Since there is a semicolon at the end of the PRINT command, the ?
from the INPUT command will appear immediately after the
question. If the user types 5, then the program loops five times,
printing five copies of the address label.

In addition to taking in the number of labels, you could take in
the address as well. Start by asking for the number of labels and
then ask for the name, street address, city, state, and zip code.
Remember that you need to reserve space for input variables which
store letters or strings. We’ll reserve 30 characters for the name
(N$), address (A$), city (C$), and state (S$). The number of labels
(N) and the zip code (Z) do not need dimension information.

10 DIM N$(30), A$(30), C$(30), S$(30)

20 PRINT "PRESS RETURN AFTER EVERY ITEM"
30 PRINT "HOW MANY LABELS DO YOU WANT ";
40 INPUT N

50 PRINT "TYPE YOUR NAME"

60 INPUT N§

70 PRINT "TYPE YOUR ADDRESS"

80 INPUT A$

90 PRINT "TYPE YOUR CITY"

100 INPUT C$%

110 PRINT "TYPE YOUR STATE"

120 INPUT S$

130 PRINT "TYPE YOUR ZIP CODE"

140 INPUT Z

The input variable N takes the number of labels. The input variables
N$, A$, C$, and S$ will each take a string and store it until it is
used. The input variable Z will take the number of the zip code and
store it until it is used.

150 FOR I = 1 TO N
160 PRINT
170 PRINT N$

5/ Putting in the Input

180 PRINT A$
190 PRINT C$; ", "; S§; " "; 2
200 NEXT I

The name and street address are printed by lines 170 and 180. The
city, state, and zip code are printed by line 190 which puts a comma
and a space between the city and state, and a space between the
state and the zip code. The semicolons make the strings print next
to each other on the same line. Here is how the program runs:

PRESS RETURN AFTER EVERY ITEM
HOW MANY LABELS DO YOU WANT 93
TYPE YOUR NAME

?MISS PIGGY

TYPE YOUR ADDRESS

?77 SESAME STREET

TYPE YOUR CITY

?KERMITSVILLE

TYPE YOUR STATE

?NEW YORK

TYPE YOUR ZIP CODE

?10001

MISS PIGGY
77 SESAME STREET
KERMITSVILLE, NEW YORK 10001

MISS PIGGY
77 SESAME STREET
KERMITSVILLE, NEW YORK 10001

MISS PIGGY
77 SESAME STREET
KERMITSVILLE, NEW YORK 10001

We’ll use a single letter for variables that store a number. We’ll
use a single letter followed by a $ for variables that store a string.

53

54

Getting the Computer to Do Printing

Differences Among Computers. On many microcomputers, counter and
input variable names can be one letter, two letters, or one letter followed
by a number, for example A, AB, or K9. Variables that store strings have
a § on the end, for example A$, AB$, or K9$. On the ATARI you can
use longer variable names (up to 120 characters long), for example AGE,
INNINGO, or FIRSTNAMES$. In this book, we’ll keep using one letter
variable names, because it simplifies typing and reading. Longer and
more meaningful variable names are useful when you write programs with
tens or hundreds of variable names. ll

Summary

1. In this chapter you learned to use an INPUT command which
stops the program until RETURN is pressed.

2. The second use of the INPUT command is to take a number
from the user to control a loop or to print later in the
program.

3. The third use of the INPUT command is to take a string from
the user which can be printed later in the program.

4. When the input variable stores a string, the variable name
must have a $ and you must put in a DIM command to
reserve enough space.

Exercises

1. Write a program to be a Wisdom Machine. Every time the
user presses RETURN, he or she gets another wise saying:

A STITCH IN TIME SAVES NINE
PRESS RETURN FOR ANOTHER SAYING ?

A PENNY SAVED IS A PENNY EARNED
PRESS RETURN FOR ANOTHER SAYING ?

A WATCHED POT NEVER BOILS
THE END

You can add another wise saying of your own.

5/ Putting in the Input 55

2. (+) In Exercise 4 at the end of Chapter 4 you were asked to
make a clock-imitating program that printed TICTOC every
second for 10 seconds. Now, ask for the number of seconds
that the user wants the clock to run. In this program print
TICTOC every second and then print TIME IS UP when the
program is done.

3. In Exercise 5 at the end of Chapter 4 you were asked to print
a ladder. Write a program that asks the user how many steps
he or she would like on the ladder. Then print the right sized
ladder.

4. In Exercise S at the end of Chapter 3 you were asked to print
four rows of six dots each. Can you write a new program
with an INPUT command that asks for the number of rows
and a second INPUT command asking for the number of dots
in each row? Then print the correct number of dots in each
row and continue printing for the correct number of rows.

5. (+) Write a program to ask the user to type in a short
message, followed by the number of times the message
should be printed. For example:

TYPE A SHORT MESSAGE AND PRESS RETURN
?MY NAME IS THEA

HOW MANY TIMES DO YOU WANT THIS MESSAGE
76

MY NAME IS THEA
MY NAME IS THEA
MY NAME IS THEA
MY NAME IS THEA
MY NAME IS THEA
MY NAME IS THEA

6. (*) Write a program to ask for a person’s first name and then
last name. Print out the last name, a comma and a space,
and the first name.

56 » Getting the Computer to Do Printing

TYPE YOUR FIRST NAME AND PRESS RETURN
?ROBIN

TYPE YOUR LAST NAME AND PRESS RETURN
?HOOD

YOUR NAME IN THE TELEPHONE BOOK IS
HOOD, ROBIN

Making
the Computer
Do Arithmetic

Here Comes
the Count

PREVIEW: You’ve been using the computer to count
the number of times through a FOR-NEXT loop. Now
you can use this ability to do counting by printing the
value of the counter variable. You can also get the
computer to count from one number to another
number, for example, from 11 to 20.

NEW IDEAS: counting, printing numbers and strings
together

59

60

Making the Computer Do Arithmetic

Printing the Counter Variable
In Chapter 3 you learned how to print HELLO six times:

10 FORI =1 T0 6
20 PRINT '"HELLO"
30 NEXT I

The counter variable I went from 1 up to 6. You can see how
many times you print HELLO by printing out the value of the counter
variable I. Since you want the value of I, not the letter I, you put
the counter variable I in the PRINT command without quotes:

10 FORI =1 TO 6
20 PRINT "HELLO", I
30 NEXT I

When you run this program, it prints

HELLO
HELLO
HELLO
HELLO
HELLO
HELLO

O OLbdh NN

The string HELLO is printed in the first column and the value of I is
printed in the second column.

If you changed the order in the PRINT command
20 PRINT I, "HELLO"

you would get the numbers in the first column and the string HELLO
in the second column. So the output is

1 HELLO
2 HELLO
3 HELLO
4 HELLO

6 / Here Comes the Count

5 HELLO
6 HELLO

If you wanted to watch the computer print out the numbers
quickly from 1 to 100, you could just have a PRINT command that
printed the value of I:

10 FOR I = 1 TO 100
20 PRINT I
30 NEXT I

But watch carefully. On most computers, this would go very, very
quickly.

Printing Strings and Numbers Close Together

You can bring numbers and strings close together by using the
semicolon in the PRINT command. If you put semicolons around
the variable, you’ll need to put single blanks inside the quotes to
make sure that the output has a blank before and after the value of
the variable:

10 FORI =1 TO 4

20 PRINT "I WISH I HAD "; I;
30 PRINT " SLICES OF PIZZA"
40 NEXT I

Notice the blank after HAD and before SLICES. When you run this
program, you get

I WISH I HAD 1 SLICES OF PIZZA
I WISH I HAD 2 SLICES OF PIZZA
I WISH I HAD 3 SLICES OF PIZZA
I WISH I HAD 4 SLICES OF PIZZA

It sounds yummy, even though the first line would leave a bad
taste with an English grammar teacher.

61

Making the Computer Do Arithmetic

e 8 % aseq.,

50 slices of "=,

P
Vs

Printing Numbers Across the Line

So far you’ve learned how to print strings inside a pair of quotes
and the value of a variable. You can also print out numbers that are
not inside a pair of quotes. You could just print the number 1984

10 PRINT 1984

and your computer would simply show the number on the screen. If
you printed two numbers separated by a comma

10 PRINT 1984, 2001
you would get
1984 2001

The semicolon keeps strings and numbers closely packed together.
If you print numbers only, they’ll also be kept close together.

10 PRINT 1; 2; 3; 4; 5; 6; 7
would print as

1234567

6 / Here Comes the Count

To get the numbers spread out, you will have to include spaces:

10 PRINT 1; " ": 2, "M, Z.on o, 4; " n. 5; nn
20 PRINT 6; " "; 7

The blanks between the quotes are the ones getting printed, so the
line could be written a bit more compactly as

lO PRINT l;” 17;2;” H;S;ll ll;4;ll ll;5;ll ”;6;" ";7
In either case the output would be:
1234567

Sometimes getting the exact spacing that you want can be tricky.

You can think of the comma (,) and semicolon (;) as two forms of
glue. The comma glues two strings or numbers together and places
them in neat columns. The semicolon is much stronger since it
glues two strings or numbers together and places them right next to
each other.

Differences Among Computers. The ATARI, Apple, and Timex do not
put blanks around numbers. The Commodore 64 and IBM put a blank
before and after each number, so there are two blanks between numbers.
For example:

10 PRINT 1;2;3;4;5;6;7
would print as
1 2 3 4 5 6 7
on the IBM and Commodore 64. H

Instead of just printing the numbers, you could use a loop to get
the spaced out output:

10 FORI =1T0 7
20 PRINT I; " ";
30 NEXT I

63

64

Making the Computer Do Arithmetic

To see your screen or printer filled with numbers, you could write
a FOR command to go up to 100 or 200 or even more. If the
numbers fill up a line, the computer just begins a new line and
keeps right on going.

Counting from Here to There

You’ve used the FOR command to do something seven times by
counting from 1 to 7. You can also use the FOR command to count
from any number up to another bigger number, for example, from
11 up to 20. If you write this program

10 FOR I = 11 TO 20
20 PRINT I; "
30 NEXT I

yow’ll get
11 12 13 14 15 16 17 18 19 20

You could also print all the years from the time you were born,
let’s say 1975 to 1984.

1975
1976
1977
1978
1979
1980
1981
1982
1983
1984

The program for this would be

10 FOR Y = 1975 TO 1984
20 PRINT Y
30 NEXT Y

6 / Here Comes the Count

The Y counter variable stands for year.

If you were born in 1971 or even earlier, you could print out all
the years and remember the good years as they appeared in the
output. You could also look ahead to the years from 1985 to 2001
or beyond.

There is a limit to the size of a number that your computer can
handle. If you are going to be using very large numbers, read the
computer instruction manual and find out the largest number that is
allowed on your computer.

Inner and Outer Counts

When you have one loop inside another, it may be helpful to see
the counter variables. You could print the numbers by themselves
or with a note about which counter variable is being printed:

10 FORI =1T0 3

20 PRINT "HERE IS I "; I

30 FORJ =1 T0 4

40 PRINT "THERE GOES J "; J
50 NEXT J

60 NEXT I

When you ran this program, you could see the pattern

HERE IS I 1

THERE GOES J 1
THERE GOES J 2
THERE GOES J 3
THERE GOES J 4
HERE IS I 2

THERE GOES J 1
THERE GOES J 2
THERE GOES J 3
THERE GOES J 4

65

Making the Computer Do Arithmetic

HERE IS I 3
THERE GOES
THERE GOES
THERE GOES

J
J
J
THERE GOES J

1
2
3
4

Have a Seat

Imagine that you are in a theater where the rows are numbered
from 1 to 4 and the seats are numbered from 101 to 105. There are
four rows of five seats. You could get an idea of the theater by
printing out the floor plan:

ROW 1 SEAT 101 102 103 104 105
ROW 2 SEAT 101 102 103 104 105
ROW 3 SEAT 101 102 103 104 105
ROW 4 SEAT 101 102 103 104 105

The program for this has to be planned carefully to get the spacing
just right. You need a plain PRINT command in line 60 to make
each theater row begin on a new line of the output:

10 FORR =1 TO 4

20 PRINT "ROW "; R; " SEAT";
30 FOR S = 101 TO 105

40 PRINT S; " ";

50 NEXT S

60 PRINT

70 NEXT R

Enjoy the performance!

Summary

1. Counting is done easily with the FOR command. The counter
variable starts at the lowest value and goes up to the highest
value.

6 / Here Comes the Count

2. You can see how this happens by printing the value of the
counter variable.

3. Numbers and strings can be printed in columns, using the
comma, or close together using the semicolon.

4. Counting can start at any number and go up to any higher
number.

Exercises
1. (+) Write a program to print

POTATO
POTATO
POTATO
POTATO
POTATO
POTATO
POTATO

N 0NN

MORE
2. Write a program to print

LITTLE INDIAN
LITTLE INDIAN
LITTLE INDIAN
LITTLE INDIAN
LITTLE INDIAN
LITTLE INDIAN
LITTLE INDIAN
LITTLE INDIAN
LITTLE INDIAN
10 LITTLE INDIAN
BOYS AND GIRLS

(ColiNo o BN I e) I &1 I SN S IR O I g

68

Making the Computer Do Arithmetic

3. (+) Write a program to print

WAS SO HUNGRY THAT

ATE 1 ICE CREAM CONES

ATE 2 ICE CREAM CONES

ATE 3 ICE CREAM CONES

ATE 4 ICE CREAM CONES

ATE 5 ICE CREAM CONES

ATE TOO MANY ICE CREAM CONES

HHH H HH H

It would take a bit of clever programming to make the second
line grammatically correct (CONE instead of CONES). If you
want an extra challenge, try to find a way.

4. (*) Write a program to print this schedule for five weeks of

summer camp:

WEEK 1 DAY 1 2 3 4 5 6 7
WEEK 2 DAY 1l 2 3 4 5 6 7
WEEK 3 DAY1 2 3 4 5 6 7
WEEK 4 DAY1 2 3 4 5 6 7
WEEK 5 DAY 1 2 3 4 5 6 7

Use an inner loop to print the days from 1 to 7. Use an outer
loop to print the weeks from 1 to 5.

Simple Arithmetic

You Finished

your arithmetic
homewortf 7 [t
or\l\{ been. five

minutes !

» PREVIEW: Computers are very useful in adding
(+), subtracting (), multiplying (%), and dividing (/).
In this chapter you will learn to program simple
calculations and to print the results.

P NEW IDEAS: arithmetic with +, —, *, and /

69

70

Making the Computer Do Arithmetic

Calculating and Printing

Computers were first built in the 1940s to do complicated
arithmetic. Modern computers can perform millions of additions or
multiplications in a second! You can begin to use this power with a
very simple calculation:

10 PRINT 2+3

This one line program will add two and three and display the result
when you type RUN:

5
You can get several calculations done at once:
10 PRINT 2+3, 247, 6-2, 9-6
and get the results when you RUN the program:
5 9 4 3

The plus sign (+) means addition and the minus sign (=) means
subtraction. Multiplication is done with the asterisk (*) and division
with the slash (/).

10 PRINT 3x4, 8/2
produces the output
12 4

If you use a semicolon, your answers will print closer together.
You can print the three’s multiplication table across the line by
using a semicolon and a blank between each calculation:

10 PRINT 3x1; " "; 3%2; " . 23 n n. 3*4;

» ’

20 PRINT " "; 3#5; " "; 3xG; " 1. 347

This prints

3 6 9 12 15 18 21

7/ Simple Arithmetic

Can you get the computer to print the four’s multiplication table?

4 8 12

16 20 24 28

You might want to print your three’s multiplication table in a
column. You can get this by having one calculation in each PRINT

command:

10 PRINT
20 PRINT
30 PRINT
40 PRINT
50 PRINT
60 PRINT
70 PRINT

3*1
3%2
3%3
34
3*5
36
37

When you run this program, it will print

3
6
9
12
15
18
21

This program is fine, but it uses one command for every line of

printed output.

Repeating Calculations

If you wanted to multiply 3 by every number from 1 up to 20,
you’d get tired of typing all of the commands. To multiply up to 20
requires 20 PRINT commands! How did you repeat commands
before? Did you think of a FOR-NEXT loop? You can write a
FOR-NEXT loop that changes the counter variable I from 1 up to 7:

7

72

Making the Computer Do Arithmetic

10 FORI =1T0 7
20 PRINT 3xI
30 NEXT I

The same seven lines of output are printed with less work for you!

Two Column Table

What if someone asked you to use the three’s multiplication table
to find out what 3 times 5 was? You’d have to count down to the
fifth line to find the answer—15. It would be easier if the number
5 was printed next to the number 15. You can do just that by
having your computer print a three’s multiplication table with two
columns:

3
6
9
12
15
18
21

O D W

The left column is exactly the values that the counter variable I
takes, so why not just print I:

10 FORI = 1T0 7
20 PRINT I, 3x*I
30 NEXT I

7/ Simple Arithmetic

A More Meaningful Printout

The multiplication table would be even nicer if it appeared as

31 =23
3 %2 =6
3 %3 =9
3 x4 = 12
3 x5 =15
3 *x6 = 18
37 =21

To get this requires a few more changes to the PRINT command.
You need to PRINT the number 3, then next to it an asterisk, then
next to that the value of the counter variable I. All you need now
is to print a string with an equals sign and finally the answer:

10 FORI =1T0 7
20 PRINT 3; " % "; I; " = "; 3xI
30 NEXT I

Getting tables of calculations should now be “a piece of cake.”
Speaking of cake, you could put the table-making program idea to
good use for Warren. He needs to print out the number of ounces
of flour necessary in a recipe that gives instructions by cups.
Remember each cup has 8 ounces. To produce this table with a
heading

CUPS OUNCES

8

16
24
32
40
48
56
64

000 A WN

73

74

Making the Computer Do Arithmetic

you could write this program:

10
20
30
40
50

PRINT "CUPS'", "OUNCES"
PRINT

FORI =1 TO 8

PRINT I, 8xI

NEXT I

Now, why not add some chocolate frosting. Yum yum!

Calculations with INPUT Values

Instead of printing a whole table of values every time, you might
just want the computer to do a calculation when you need it. The
program could ask the user for the number of cups and then print
out the number of ounces, like this:

THIS PROGRAM WILL CALCULATE THE
NUMBER OF OUNCES IF YOU GIVE THE
NUMBER OF CUPS.

HOW MANY CUPS DO YOU HAVE 96
THAT MAKES 48 OUNCES

7/ Simple Arithmetic

The program would begin by giving the instructions:

10 PRINT "THIS PROGRAM WILL CALCULATE THE"
20 PRINT "NUMBER OF OUNCES IF YOU GIVE THE"
30 PRINT ''"NUMBER OF CUPS."

Now the program asks for the INPUT:

40 PRINT "HOW MANY CUPS DO YOU HAVE ";
50 INPUT C

There is a semicolon at the end of the string in line 40. This means
that the question mark printed out by the INPUT command will
appear on the same line. The INPUT command asks for the value
of the variable C, which represents cups.

The calculation and the printing complete the program:

60 PRINT "THAT MAKES"; 8xC; '"OUNCES"

Each time you need to compute ounces given the number of cups,
you could RUN this program. Since you may want to make several
calculations at once, you could wrap a loop around the whole
program. You could have the instructions repeated 10 times:

S FORI =1 TO 10

10 PRINT "THIS PROGRAM WILL CALCULATE THE"
20 PRINT "NUMBER OF OUNCES IF YOU GIVE THE"
30 PRINT "NUMBER OF CUPS."

40 PRINT "HOW MANY CUPS DO YOU HAVE ";

50 INPUT C

60 PRINT "THAT MAKES"; 8%C; "OQUNCES"

70 NEXT I

You could write this program so that the instructions appear only
once. Instead of putting the FOR command on line 5, you might put
it at line 35. This program stops when you have done exactly 10
calculations. If you want to stop at eight, you press the BREAK key,
when the computer is waiting for INPUT.

A typical run might be:

75

76 Making the Computer Do Arithmetic

THIS PROGRAM WILL CALCULATE THE

NUMBER OF OUNCES IF YOU GIVE THE

NUMBER OF CUPS.

HOW MANY CUPS DO YOU HAVE 95

THAT MAKES 40 OUNCES

HOW MANY CUPS DO YOU HAVE 2?12

THAT MAKES 96 OUNCES

HOW MANY CUPS DO YOU HAVE 9261

THAT MAKES 2088 OUNCES

HOW MANY CUPS DO YOU HAVE 97

THAT MAKES 56 OUNCES

HOW MANY CUPS DO YOU HAVE ?
(Press BREAK)

and then the program would stop. You can now RUN the program
again, do a LIST, or other commands.

Summary

1. Simple arithmetic calculations can be done by using the plus
sign (+), minus sign (-), multiplication (*), and division .

2. The result of the calculations can be printed across the line in
columns, across the line closely together, or down the page.

3. The user of a program can supply a number for a calculation
whenever you put an INPUT command in your program.

Exercises

1. Test out the arithmetic calculations by finding 2 plus 2, 2
minus 2, 2 times 2, and 2 divided by 2.

2. (+) Did you ever wonder how many hours there are in a
week? Compute the number of hours in a week by
multiplying the number of days in a week by the number of
hours in a day.

7 / Simple Arithmetic

3. Find out how many inches in a mile by multiplying the
number of inches in a foot (12) by the number of feet in a

mile (5280).

(+) Karen was making a ghost costume for Halloween. She

figured out that she needed 54 inches of cloth, but the store
sells cloth by the foot. Make a table of feet and inches like

this:

12
24
36
48
60
72

o OB NN

Now Karen can figure out how many feet of cloth to buy.
5. Expand the feet and inches table to be yards, feet, and inches.
There are 3 feet per yard and 36 inches per yard.

YARDS FEET
3

6

9

12

15
18

OOt VN

INCHES

36
72
108
144
180
216

6. (+) Write a program to ask the user for the input of a number
of feet and print out the number of inches. The run might

look like this

THIS PROGRAM WILL CALCULATE THE
NUMBER OF INCHES IF YOU GIVE THE

NUMBER OF FEET.

HOW MANY FEET DO YOU HAVE 23

THERE ARE 36 INCHES

77

78 Making the Computer Do Arithmetic

7. (*) Write a program to ask users for the year in which they
were born (call it B) and for this year (call it T). Then print
out a table that shows their age in each year. For example:

WHICH YEAR WERE YOU BORN IN ?1974
WHAT YEAR IS IT NOW ?1984

YEAR YOUR AGE

1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984

= O 030 0N WNDHO

0

You'll need a loop from B to T and then a subtraction to get
the age.

Arithmetic
Variables

P PREVIEW: Many arithmetic problems require only a
simple calculation and printout of the result.
Sometimes you need to save the result of one
calculation and use the value in another calculation.
This chapter shows how to use arithmetic variables to
store the results of a calculation.

P NEW IDEAS: arithmetic variables, LET, storing
with =, printing arithmetic variables

79

80

Making the Computer Do Arithmetic

Storing Values in a Variable

David and Lisa set up a lemonade stand. They are charging 15
cents for a large cup and 10 cents for a small cup. Their first
customers are the family next door. The parents each have a large
cup, and the four children each have a small cup. David and Lisa
need to know how much to charge for 2 large cups and 4 small cups
of lemonade. The total charge is 2 times 15 plus 4 times 10. You
could probably do this in your head, but you might want to try
programming this simple problem.

First, you multiply 2 cups times 15 cents for the large cups. You
need to store the result in an arithmetic variable called L for large.
The LET command sets an arithmetic variable to a given value. For
example,

10 LET L = 215

does the multiplication of 2 times 15. The value—30—is stored in
the arithmetic variable L. The value of L is now 30. The next step
1s to use another LET command to multiply the 4 small cups times
10 cents and store the result. The value—40—is stored in another
arithmetic variable S for small. Now, you can add L and S to get
the total. You store this result in an arithmetic variable called T for
total. Finally, you print the total:

10 LET L = 2x15
20 LET S = 4%*10
30 LET T = L+S
40 PRINT "TOTAL COST IS "; T

Running this program produces one line of output:
TOTAL COST IS 70

Line 10 gets the computer to multiply 2 times 15 and store the
result—30—in the arithmetic variable L. Line 20 multiplies 4 times
10 and stores the result —40—in the arithmetic variable S. Line 30

8 / Arithmetic Variables

adds the values in L and S and stores the answer in the arithmetic
variable T. The semicolon in line 40 makes the value print out
close to the string.

You could print the results of each step by adding some other
PRINT commands:

10 LET L = 215

15 PRINT "COST FOR LARGE CUPS IS ": L
20 LET S = 4%10

25 PRINT "COST FOR SMALL CUPS IS "; S
30 LET T = L+S

40 PRINT "TOTAL COST IS '"; T

and rerunning the program:

COST FOR LARGE CUPS IS 30
COST FOR SMALL CUPS IS 40
TOTAL COST IS 70

LET commands are used to store a value in a variable.

LET commands begin with a line number and the word LET.
Then comes a variable followed by an equal sign. To the right of
the equal sign there can be a calculation using numbers and
variables.

The first step for the computer is to carry out the arithmetic on the
right side of the equal sign. Then the second step is to take this
value and store it in the variable. A simple LET command is

10 LET X =1
which would set the variable X to 1. Another LET command is
20 LET P = Q

which would set the variable P to the same value as Q. Many times
LET commands have arithmetic calculations such as

30 LET M = 4K

81

82

Making the Computer Do Arithmetic

which multiplies K by 4 and stores the result in M. If K was 6, then
after the LET command was done, M’s value would be 24. K would
still be 6.

Differences Among Computers. With the ATARI and most computers
you can leave out the LET part of the LET command. For example:

10X =1
20 P = Q
30 M = 4%K

Some computers, such as the Timex, require the word LET. ll

Lawn Service

Two friends started a lawn mowing and gardening service which
had this poem as their advertisement:

Jack and Jill went up the hill

To fetch a pail of water.

They wet the flowers, mowed the lawns,
And did just what they oughta.

Jack and Jill wrote a computer program to help them add up charges
for watering plants, mowing lawns, raking leaves, and trimming
hedges. Their program asked for the amount of money for each
service and then added up the total:

10 PRINT "TYPE IN THE DOLLAR AND CENTS AMOUNTS"
20 PRINT " FOR EACH SERVICE AND PRESS RETURN"
30 PRINT

40 PRINT "WATERING PLANTS";

50 INPUT W

60 PRINT "MOWING LAWNS "

70 INPUT M

80 PRINT "RAKING LEAVES ";

8 / Arithmetic Variables 83

90 INPUT R

100 PRINT "TRIMMING HEDGES":
110 INPUT T

120 LETC =W+ M+ R + T
130 PRINT

140 PRINT "TOTAL COST IS § "; C

Line 120 adds up the four separate charges so that the total cost can
be printed in line 140. A typical run might be

TYPE IN THE DOLLAR AND CENTS AMOUNTS
FOR EACH SERVICE AND PRESS RETURN

WATERING PLANTS?1.75
MOWING LAWNS ?4.50
RAKING LEAVES ?20.0
TRIMMING HEDGES?0.0

TOTAL COST IS $ 6.25

Can you see how to expand the program to include other services

such as pulling weeds or to offer a $1.00 discount for advance
payment?

84

Making the Computer Do Arithmetic

Fahrenheit and Celsius Temperatures

The Fahrenheit temperature scale is used in the United States, but
most of the countries in the world use the Celsius temperature scale.
The freezing temperature of water is 32 degrees Fahrenheit and 0
degrees Celsius. The boiling temperature of water is 212 degrees
Fahrenheit and 100 degrees Celsius.

Changing from Fahrenheit to Celsius requires three calculations:

1. Start with the Fahrenheit temperature and subtract 32
2. Multiply by §
3. Divide by 9 to get the Celsius temperature

The program to change Fahrenheit temperatures to Celsius might
start by asking the user to give a Fahrenheit temperature. The three
calculations are done, and finally, the result is printed:

10 PRINT "TO CHANGE FAHRENHEIT TO CELSIUS"
20 PRINT "TYPE THE DEGREES AND PRESS RETURN"
30 PRINT "FAHRENHEIT DEGREES ";

40 INPUT F
50 LET G = F - 32

60 LET H = G * 5

70 LET C =H / 9

80 PRINT "CELSIUS DEGREES "; C

The run might look like this:

TO CHANGE FAHRENHEIT TO CELSIUS
TYPE THE DEGREES AND PRESS RETURN
FAHRENHEIT DEGREES ?212

CELSIUS DEGREES 100

If the program had more print commands you could show the
subtraction of 32 to give 180, the multiplication by 5 to give 900,
and the division by 9 to give 100. In this program the arithmetic
variables G and H were used just to save the results of steps 1 and 2
of the calculation. These values do not need to be printed out.

8 / Arithmetic Variables

Summary

1.

The results of arithmetic calculations can be stored in
arithmetic variables.

The LET command stores a value in a variable. It has a line
number, the word LET, an arithmetic variable, an equal sign,
and the calculation.

Complicated calculations can be done one step at a time.

Exercises

1.

Courtney has 2 quarters and 3 dimes. Write a program to
find the total amount of money by multiplying 2 times 25 and
storing the result. Then multiply 3 times 10 and store the
result in another arithmetic variable. Finally, add the two
values and print the result.

(+) Have you ever wondered how many seconds there are in
a day? There are 60 seconds in a minute, 60 minutes in an
hour, and 24 hours in a day. First, calculate and print the
number of seconds in an hour. Then calculate and print the
number of seconds in a day. Be sure to print a message to
describe each number.

. Michael and Matthew have started a car-washing business.

They call themselves M and M, and give free candy to their
customers. They offer car washing, waxing, and vacuuming
as their services. Write a program that asks for the charge for
each of these three services and prints out the total cost.

. Richard has a newspaper route and must figure out the

monthly charge for his customers. A weekday newspaper
costs 25 cents, and the Sunday newspaper costs 75 cents.
Write a program that asks for the total number of weekday
papers delivered and the total number of Sunday newspapers
delivered. Then calculate and print the total amount in cents:

85

86 Making the Computer Do Arithmetic

TYPE THE NUMBER AND PRESS RETURN

HOW MANY WEEKDAY PAPERS THIS MONTH ?26
HOW MANY SUNDAY PAPERS THIS MONTH %4
TOTAL COST IN CENTS IS 950

5. (*) Changing from Celsius to Fahrenheit has three steps:
a. Multiply the Celsius temperature by 9
b. Divide this amount by 5
c. Add 32
Write a program that asks for a Celsius temperature, does the
calculation, and prints out the Fahrenheit temperature.

6. (*+) Katie collects stamps from four countries: France,
England, Italy, and Germany. She likes to keep track of how
many stamps she has from each country. Write a program
that helps her keep track. It might run like this:

TYPE IN THE NUMBER OF STAMPS
FROM EACH COUNTRY AND PRESS RETURN
FRANCE 223
ENGLAND 9?49
ITALY ?13
GERMANY 921
TOTAL NUMBER OF STAMPS IS 106

Adding Up
Numbers

Dot <stop yet..
you need (o
move minutes Yo

qej to loo.

P PREVIEW: Sometimes people use computers to add
up a list of numbers. The list may be prices on a
supermarket bill or the number of minutes you spent
practicing piano each week. In these cases an
arithmetic variable can be used for adding up the
total.

P NEW IDEAS: adding up a list of numbers, setting an
arithmetic variable to zero

87

88

Making the Computer Do Arithmetic

How Much Cheese?

Three mice are saving up cheese and want to know how much
they have, so they write a computer program. The program uses an
arithmetic variable called T for total, which is set to zero. Then
when the amounts of cheese in ounces—C—are typed in, the total
variable is increased. Finally, the result is printed:

10 PRINT "TYPE IN THE NUMBER OF OUNCES"
20 PRINT " FOR EACH OF THE THREE MICE"
30 PRINT " AND PRESS RETURN EACH TIME"

40 LET T = 0O

50 FORM =1 TO 3
60 INPUT C

70O LET T =T + C
80 NEXT M

90 PRINT "TOTAL AMOUNT OF CHEESE IS "; T;
100 PRINT " OUNCES"

The counter variable M goes from mouse number 1 up to mouse
number 3. The input variable C takes the number of ounces of
cheese for each mouse. Line 70 causes the current total amount—
T—to be added to the amount of cheese—C-—and the result is
stored back in T. If the mice had 3, 7, and 4 ounces each, the run
might look like:

TYPE IN THE NUMBER OF OUNCES
FOR EACH OF THE THREE MICE
AND PRESS RETURN EACH TIME
?3
7
74
TOTAL AMOUNT OF CHEESE IS 14 OUNCES

The total variable T was first set to O, then 3 was added. The
second time through the FOR-NEXT loop, 7 was added to T to make
it 10. The third time through the loop, 4 was added to 10 to make
T have the value 14. Then the final value was printed by line 90.

9 / Adding Up Numbers 89

Remember that when a question mark has been displayed, you can
stop the program by pressing the BREAK key.

Adding up numbers is one of the first things programmers learn to
do. Adding up starts by setting a total variable to zero. Then each
time a value has to be added, you take the current value of the total
variable and add another amount to it. This sum is stored back into
the total variable.

Piano Practice

Claire’s piano teacher requires 100 minutes of practice every
week, but Claire can spend as long as she wants in each practice
period. To make sure that she gets all her practicing done, she gets
the computer to total up the number of minutes in each practice
period. The program asks for the number of practice periods and
then asks for the number of minutes in each practice period. When
all the numbers have been typed in, the program prints the total
number of minutes:

90 Making the Computer Do Arithmetic

10 PRINT "TYPE THE NUMBER OF PRACTICES"

20 PRINT " AND PRESS RETURN"

30 INPUT S

40 PRINT "FOR EACH PRACTICE, TYPE THE NUMBER"
50 PRINT " OF MINUTES AND PRESS RETURN"

60 LET T =0

70 FORI =1 TO0 S

80 PRINT "PRACTICE "; I;

90 INPUT M

10O LET T =T + M

110 NEXT I

120 PRINT "TOTAL NUMBER OF MINUTES IS "; T
The program might run like this:

TYPE THE NUMBER OF PRACTICES
AND PRESS RETURN
76
FOR EACH PRACTICE, TYPE THE NUMBER
OF MINUTES AND PRESS RETURN
PRACTICE 1 ?12

PRACTICE 2 ?31
PRACTICE 3 ?5
PRACTICE 4 ?15
PRACTICE 5 925

PRACTICE 6 9?22
TOTAL NUMBER OF MINUTES IS 108

As you can see, Claire did more than enough piano practice.

Summary

1. Adding up lists of numbers can be done by using an
arithmetic variable to total up the numbers one at a time.

2. A LET command is used to set the total variable to zero.

3. Another LET command is used to add in each number.

9 / Adding Up Numbers

4. A FOR-NEXT loop controls the number of items added in to
get the total.

Exercises
1. What is the output of this program?

10 LET T =0

20 FOR I = 1 TO 5
B0LET T =T + I
40 NEXT I

50 PRINT T

Run it and see if your guess was right.

2. (+) Every weeknight Jenna gets a math worksheet with 100
problems on it. She has 8 minutes to do as many as she can.
Write a program that will help Jenna add up the number of
problems she completes in a five-day week.

3. Billy’s ski team has four racers. They each ski down the trail
as fast as they can. The team score is the sum of the time in
seconds for all four racers. Write a program to ask for and
add up time for each racer.

TYPE THE NUMBER OF SECONDS
AND PRESS RETURN

RACER 1 9?79
RACER 2 786
RACER 3 277
RACER 4 ?80
TOTAL TEAM TIME IS 322 SECONDS

4. Becky likes to check the bill she gets when she goes
shopping. Write a program that asks how many shopping
items were purchased. Then set the total cost variable to
zero. Now loop from 1 to the number of items, printing a

91

92 Making the Computer Do Arithmetic

message to request the price, and finally print the total:

TYPE THE NUMBER OF ITEMS YOU BOUGHT
AND PRESS RETURN

74

ITEM 1 PRICE WAS ?1.25

ITEM 2 PRICE WAS ?93.87

ITEM 3 PRICE WAS ?.63

ITEM 4 PRICE WAS ?12.00

TOTAL COST WAS $§ 17.75

5. (*) In some games, like Scrabble, players take turns and score
points. Write a program that will keep score and show the
score of each player after each move. Set arithmetic variables
to zero for player A and player B. Ask for each score and
add it to the score for each player.

TYPE IN THE SCORE FOR EACH PLAYER
AND PRESS RETURN

PLAYER A SCORE IS 0
PLAYER B SCORE IS 0

HOW MANY POINTS DID PLAYER A SCORE 98
HOW MANY POINTS DID PLAYER B SCORE 99

PLAYER A SCORE IS 8
PLAYER B SCORE IS 9

HOW MANY POINTS DID PLAYER A SCORE 711
HOW MANY POINTS DID PLAYER B SCORE 96

PLAYER A SCORE IS 19
PLAYER B SCORE IS 15

HOW MANY POINTS DID PLAYER A SCORE ?

(Press BREAK to stop the program.)

Steering
the Computer

£ ,
To Jump or Not fo Jump \

WovKihq with ¢ Compm