

I1II11II1I1I111

'f), ...

~
~ .

"'~~ . '-

BY
Edward H. Carlson

Department of Physics and Astronomy
Michigan State University

Illustrated by
Paul D. Trap

First Printing January, 1983
Second Pri nti ng March, 1983

©1983by

RESTON PUBLISHING COMPANY, INC.
A Prentice-Hall Company

Reston, Virginia

ISBN 0-8359-3670-8

COPYRIGHT © 1983 BY DATA MOST, INC.
This manual is published and copyrighted by DATAMOST, Inc. A" rights are reserved by

DATAMOST, Inc. Copying, duplicating, selling, or otherwise distributing this product is hereby
expressly forbidden except by prior consent of DATAMOST, Inc.

The word ATARI and the Atari logo are registered trademarks of ATARI Inc. Atari Inc. was not in
any way involved in the writing or other preparation of this manual, nor were the facts presented
here reviewed for accuracy by that company. Use of the term ATARI should not be construed to
represent any endorsement, official or otherwise, by ATARllnc.

TABLE OF CONTENTS

Acknowledgements
To The Kids
To The Parents
To The Teachers
About Programming
About The Book

INTRODUCTION

1 PRINT, NEW, REM, and RUN
2 Buzz, Inverse, and String Constants
3 List and Memory Boxes
4 Backspace, Cursor Keys, Insert, Delete
5 String Boxes, DIM, LET
6 The INPUT Command
7 Tricks with PRINT
8 The GOTO Command and Break Key
9 The IF Command

10 Introducing Numbers
11 Delay Loops, Sound
12 The IF Command with Numbers
13 Random Numbers and the INT Function
14 Saving to Tape

GRAPHICS, GAMES, AND ALL THAT

15 Some Shortcuts
16 Graphics Characters, POSITION
17 FOR-NEXT Loops
18 Edit and Run Modes, the Calculator
19 DATA, READ, RESTORE
20 SOUND
21 Color Graphics
22 ASCII Code
23 Secret Writing and the GET Command
24 Pretty Programs, GOSUB, RETURN, END

ADVANCED PROGRAMMING

25 Keyboard, ON ... GOTO
26 Snipping and Gluing Strings
27 Switching Numbers with Strings
28 Joystick for Action Games
29 Shooting Stars
30 Arrays
31 Logic: AND, OR, NOT
32 User Friendly Programs
33 Debugging, STOP, CONT

Reserved Words
Answers to Assignments
Glossary
Commands
Error Messages
Index

1

Page
2
3
4
5
6
7

9
15
21
28
33
38
43
47
51
57
64
68
73
78

83
88
92
97

102
107
112
118
122
126

132
136
142
145
149
155
160
166
172

178
179
203
214
215
217

ACKNOWLEDGEMENTS

My sincere thanks go to Paul Sheldon Foote for suggesting I write this book.

I helped prepare and teach in "The Computer Camp" summer camp at Michigan State
University for these last two summers. I am deeply grateful to my fellow teachers and
board members at the summer camp: Mark Lardie, Mary Winter, and John Forsyth,
each of whom shared their teaching experiences with me and suggested techniques for
communicating the material in an effective way.

Mark Lardie has been especially generous in reading the typescript and offering
suggestions from his extensive experience in teaching computing to children under a
variety of formats.

Remembering the enthusiastic pleasure of the summer camp students has encouraged
me during the months spent in preparing this book.

Several families have used the first version of this book in their homes and offered
suggestions for improvement. I especially wish to thank Steve Peter and his girls
Karen and Kristy; George Campbell and his youngsters Andrew and Sarah; Beth
O'Malia and Scott, John and Matt; Chris Clark and Chris Jr., Tryn, Daniel, and Vicky;
and Paul Foote and David.

John Decarli of the Computer Mart in East Lansing has helped in many ways.

My own family has respected my need for long periods in the writing den and for quiet
in the house. So my final and heartfelt thanks go to my wife, Louise, and our children
Karen, Brian and Minda.

2

TO THE KIDS

This book teaches you how to write programs for the ATARI computer.

You will learn how to make your own action games, board games and word games. You
may entertain your friends with challenging games and provide some silly moments at
your parties with short games you invent.

Perhaps your record collection or your paper route needs the organization your special
programs can provide. If you are working on the school yearbook, maybe a program to
handle the finances or records would be useful.

You may help your younger sisters and brothers by writing drill programs for
arithmetic facts or spelling. Even your own schoolwork in history or foreign language
may be made easier by programs you write.

How to Use This Book: Do all the examples. Try all the assignments. If you get stuck,
first go back and reread the lesson carefully from the top. You may have overlooked some
detail. After trying hard to get unstuck by yourself, you may go ask a parent or teacher
for help.

There are review questions for each lesson. Be sure you can answer them before
announcing that you have finished the lesson!

MAY THE BLUEBIRD OF HAPPINESS EAT ALL OF THE BUGS IN YOUR
PROGRAMS!

3

TO THE PARENTS

This book is designed to teach ATARI BASIC to youngsters in the range from 10 to 14
years old. It gives guidance, explanations, exercises, reviews and "quizzes~' Some
exercises have room for the student to write in answers that you can check later.
Answers are provided in the back of the book for assignments. Your child will probably
need some help in getting started and a great deal of encouragement at the sticky
places.

Learning to program is not easy because it requires handling some sophisticated
concepts. It also requires accuracy and attention to detail which are not typical
childhood traits. For these very reasons it is a valuable experience for children. They
will be well rewarded if they can stick with the book long enough to reach the fun
projects that are possible once a repertoire of commands is built up.

How to Use the Book: The book is divided into 33 lessons for the kids to do. Each
lesson is preceded by a NOTES section which you should read. It outlines the things to
be studied, gives some helpful hints, and provides questions which you can use verbally
(usually at the computer) to see if the skills and concepts have been mastered.

These notes are intended for the parents, but the older students may also profit by
reading them. The younger students will probably not read them, and can get all the
material they need from the lessons themselves. For the youngest children, it may be
advisable to read the lesson out loud with them and discuss it before they start work.

4

TO THE TEACHER

This book is designed for students in about the 7th grade. It teaches ATARI BASIC on
cassette ATARI systems. The lessons contain explanations (including cartoons),
examples, exercises and review questions. Notes for the instructor which accompany
each lesson summarize the material, provide helpful hints and give good review
questions.

The book is intended for self study but may also be used in a classroom setting.

I view this book as teaching programming in the broadest sense, using the BASIC
language, rather than teaching "BASIC." Seymour Papert has pointed out in
MINDSTORMS that programming can teach powerful ideas. Among these is the idea
that procedures are entities in themselves. They can be named, broken down into
elementary parts, and debugged. Some other concepts include these: "chunking" ideas
into "mind sized bites," organizing such modules in a hierarchical system, looping to
repeat modules, and conditional testing (the IF ... THEN statement).

Each concept is tied to everyday experiences of the student through choice of language
to express the idea, through choice of examples and through cartoons. Thus metaphor
is utilized in making the "new" material familiar to the student.

5

ABOUT PROGRAMMING

There is a common misconception that programming a computer must be very similar
to doing arithmetic. Not so. The childhood activities that computing most resembles
may be playing with building blocks and writing an English composition.

Like a set of blocks, BASIC uses many copies of a small number of elements
(commands) that are combined in rather standardized ways to achieve an original end
result. As familiarity with the system grows, a "bag of tricks" is collected by the
programmer that allows each command to serve a larger number of functions, just as
the child first uses the "triangle block" in making roofs but later finds that two of them
make a splendid fir tree.

Like an essay, a program is a finished product that fulfills a specified need. The child
writing to the theme "How I spent my summer," adopts one of several working styles.
The beginner may be hung-up in how to hold the pencil and how to spell. The same
child a few grades later will just start writing, not spending much time in forming good
paragraphs much less in planning the overall structure of the composition. With
maturity comes freedom to move back and forth among the levels of concern, now
thinking about the overall form, and a few moments later paying attention to word
choice or punctuation.

Computing does have some similarities to arithmetic as seen by most children. There
are rigid rules to learn: procedures in arithmetic but only syntax in programming.
Even the tiniest mistake makes the whole result "wrong." (A more effective attitude in
programming is that "wrong" results are partly right, and need debugging, a normal
and expected activity.) However, the limited scope for creativity in arithmetic
contrasts sharply with the emphasis on creativity in program writing.

6

Programming offers general education advantages not easily found elsewhere in a
child's experiences. The plasticity of the form, words on a screen that are created and
destroyed by the touch of a key, allows effort to be concentrated on the central features
to be learned. These features are balanced between analysis (why doesn't it work as I
want) and synthesis (planning on several size scales, from the program as a whole
down through loops and subroutines to individual commands). Learning on the
computer is efficient of effort. Errors of syntax are automatically pointed out by the
computer.

The analytical and synthetical skills learned in programming can be transfered to more
general situations and can help the child to a more mature style of thinking and
working.

ABOUT THE BOOK

The book is arranged in 33 lessons, each with notes to the instructor and each
containing assignments and review questions.

For instructors who feel themselves weak in BASIC or are beginners, the student's
lessons form a good introduction to BASIC. The lessons and notes differ in style. The
lessons are pragmatic and holistic, the notes and GLOSSARY are detailed and
explanatory.

The book starts with a bare bones introduction to programming, leading quickly to the
point where interesting programs can be written. See the notes for lesson 5, THE
INPUT COMMAND, for an explanation. The central part of the book emphasizes more
advanced and powerful commands. The final part of the book continues this, but also
deals with broader aspects of the art of programming such as editing and debugging,
and user friendly programming.

The assignments involve writing programs, usually short ones. Of course, many
different programs are satisfactory "solutions" to these assignments. In the back of the
book I have included solutions for assignment problems, some of them written by
children who have used the book.

The ATARI computer has many sophisticated features, such as player-missile graphics
and the Central I/O subsystem, that cannot be covered in this manual. These are
discussed very clearly in the book De Re Atari.

Lessons 14: SAVING TO TAPE, and 18: EDIT AND RUN MODES can be studied
anytime after the first lesson.

7

8

INTRODUCTION

INSTRUCTOR NOTES 1 PRINT, NEW, REM, AND RUN

This lesson is an introduction to the computer.

The contents of the lesson:
1. Turning on the computer.
2. Typing versus entering commands or lines. RETURN key.
3. The computer understands only a limited number of commands.
4. In this lesson, NEW, PRINT, REM, RUN.
5. What a program is. Numbered lines.
6. Clearing the screen.
7. Memory can be cleared with NEW.
8. What is seen on the screen and what is in memory are different. This may be

a hard concept for the student to grasp at first.
9. RUN makes the computer go to memory, look at the commands in the lines

(in order) and perform the commands.
10. One can skip numbers in choosing line numbers, and why one may want to do

so.

QUESTIONS:

1. Write a program that will print your name.
2. Run it.
3. Make the program disappear from the TV screen but stay in memory.
4. Run it again.
5. Erase the program from memory.

9

LESSON 1 PRINT, NEW, REM, AND RUN

GETTING STARTED

Put the BASIC COMPUTING LANGUAGE cartridge in the ATARI computer. The
label side is towards you. If you have an ATARI 800, put the cartridge in the left slot.

Turn on the computer. You will see:

READY

Below READY is a square. This square is called the "cursor." When you see it on the
screen, the computer wants you to type something.

"Cursor" means "runner." The square runs along the screen showing where the next
letter you type will appear.

TYPING

Type some things. What you type shows on the TV screen.

ERASING THE SCREEN

Two keys together erase the TV screen.

Hold down one of the SHIFT keys and press the CLEAR key. The screen is erased.

CLEAR stands for "clear the screen." "Clear" means the same as "erase."

10

COMMAND THE COMPUTER

Try this. Type: G I lylE ME CANDY

and press the RETURN key.

The computer says:

ERROR- G I I)E ME CANDY

The computer only understands about 80 words. You need to learn which words the
computer understands.

Here are the first 4 words to learn: ~ •
NEW t P R I NT t REM t and RUN.

THE NEW COMMAND

Type: NEW

and press RETURN.

NEW empties the computer's memory so you can put your program in it. It doesn't
erase anything from the TV screen.

11

HOW TO ENTER A LINE

When we say "enter" we will always mean to do these two things.

1. type a line
2. then press the RETURN key.

Enter this line: 10 PR I NT "H I"

(The" marks are quotation marks. To make quotation marks, hold down the SHIFT
key and press the key that has the 2 and the " on it.)

(Did you remember to press the RETURN key at the end of the line?)

Now line number 10 is in the computer's memory. It will stay in memory until you
enter the NEW command, or until you turn off the computer. Line 10 is a very short
program.

THE NUMBER ZERO AND THE LETTER "0"

The computer always writes the zero like this:

zero o

and the letter 0 like this:

letter 0 o

You have to be careful to do the same.

right
wrong

10 PRINT "HI"
10 PRINT "HI"

12

WHAT IS A PROGRAM?

A program is a list of commands you wish the computer to do. The commands are
written in lines. Each line starts with a number. The program you entered above has
only one line.

HOW TO RUN A PROGRAM

A moment ago you put this program in memory:

10 PRINT "HI"

Now enter: RUN

(Did you remember to press the RETURN key?)

The RUN command tells the computer to look in its memory for a program and then to
obey the commands it reads in the lines.

Did the computer obey the PRINT command? The PRINT command tells the
computer to print whatever is between the quotation marks. The computer printed:

13

A LONGER PROGRAM

Clear the memory with NEW

(Did you remember to press RETURN afterward?).

Enter this program: 1 REM PROGRAM
2 PRINT "HI"
3 PRINT "FRIEND"

This program has 3 lines. Each line starts with a command.

Enter: RUN

Line 1-the computer skips this line because it is a REM. Line 2-the computer prints
"H!." Line 3-then computer prints "FRIEND." The REM command lets you put little
notes to yourself in the program. REM means "remark" or "reminder~'

In line 1 we used REM to give a name to the program. The name is "PROGRAM 1"
The computer does the commands in the lines. It starts with the lowest line number
and goes down the list in order.

HOW TO NUMBER THE LINES IN A PROGRAM

Usually you will skip numbers when writing the program.

Like this: 10 REM PROGRAM 1

20 PRINT "HI"

30 PRINT "FRIEND"

It is the same program but has different numbers. The numbers are in order, but some
numbers are skipped. You skip numbers so that you can put new lines in between th.e
old lines later if the program needs fixing.

Assignment 1 :

1. Show how to "clear the screen".
2. Use the command NEW. Explain what it does.
3. Write a program that uses REM once and PRINT twice. Then use the RUN

command to make the program obey the commands.

14

INSTRUCTOR NOTES 2 BUZZ, INVERSE, AND STRING
CONSTANTS

This lesson opens with the CTRL 2 key sequence which makes the buzzer sound. We
wish to make plenty of "bells and whistles" available to the student to increase
program richness.

The idea of a "string constant," used in Lesson 1, is explained. The numbers appearing
in a string, for example the "19," cannot be used directly in arithmetic.

The INVERSE command puts a little pizazz on the screen.

Although the ATARI can print in lower case letters, we will not do so in this book.
There are several reasons: we need lower case to indicate special commands like "buzz,
inverse, normal, clear" in PRINT commands. The lower case letters are so small that
they are not very clear anyway. And it just adds an unnecessary complication. If the
instructor wishes to include lower case typing, do so by giving extra explanations,
especially emphasizing that "clear" in a PRINT line does not mean type the word
"clear;' etc.

QUESTIONS:

1. How do you do each of these things: Make the ATARI "buzz"? Erase the
screen? Empty the memory?

2. What is a "string"?
3. What special key do you press to "enter" a line?
4. What is a command? Give some examples.
5. How could you print "FIRE" in inverse letters and make the computer buzz?

15

LESSON 2 BUZZ, INVERSE, AND STRING CONSTANTS

Enter: NEW (remember: RETURN key)

Then clear the screen. (remember: SHIFT CLEAR keys)

You are ready to start this lesson.

SOUNDING THE BUZZER.

The ATARI has a buzzer. Use two keys to make it sound.

Hold down the CTRL key. Then press the "2" key.

You hear a loud buzzing sound.

CTRL stands for "contro!:' This key helps control things on the computer. CTRL 2
makes the buzzer sound.

PRINTING AN EMPTY LINE

Run this:

Line 30 just prints a blank line.

10 REM LINES
20 PRINT "HERE IS A LINE"
30 PRINT
40 PRINT "ONE LINE WAS SKIPPED"

16

STRING CONSTANTS

Look at these PRINT statements:

10 PRINT "JOE"
10 PRINT " #047*'X,"
10 PRINT "18"
10 PRINT "3.1418"
10 PRINT " I 'M 14"

Letters, numbers and punctuation marks are called "characters."

Even a blank space is a character. Look at this:

10 PRINT " "

(Later we will have graphics characters too, and some special characters like "buzz"
and "clear.") Characters in a row make a "string."

The letters are stretched out like beads on a string.

A string between quotation marks is called a "string constant."

It is a string because it is made of letters, numbers and punctuation marks in a row.

It is a constant because it stays the same. It doesn't change as the program runs.

17

INSIDE OUT PRINTING

There is a special key on the ATARI computer. It looks like this:

It is called "the ATARI key.")Il
Press it. Type.

Now all the letters you type are in the "inverse" mode.

Press the ATARI key again. Type.

You are back to normal (non-inverse) letters.

Use inverse to make the stuff printed on the screen look more interesting.

INVERSE AND NORMAL IN PRINT COMMANDS

In this book we have a special way of telling you to press the ATARI key.

We will say "inverse" or "normal." It looks like this:

This means:

Type:
Press the ATARI key

Type:
Press the ATARI key again

Type:
Press the RETURN key.

Run the program.

10 REM BLACK AND WHITE
20 PRINT" ilHlerse WHITE norll1al
BLACK"

20 PRINT"

WHITE

BLACK"

18

CAPITAL LETTERS AND SMALL LETTERS

The ATARI can print in small letters (the ones called "lower case").

But in this book, we will not use any lower case on the computer.

IMPORTANT! Whenever you see lower case writing inside the quotation marks of a
PRINT command, it will have a special meaning.

20 PRINT inverse
20 PRINT normal

is not
is not

20 PRINT "INVERSE"
20 PRINT "NORMAL"

We saw one special meaning above with the ATARI key. Here is another.

THE ESC KEY

Find the ESC key. It is in the upper left corner of the keyboard. ESC is short for
ESCAPE.

This key helps us give special instructions like "clear" and "buzz" to the computer.

Whenever you see "clear" in a PRINT command, do this:

Press the ESC key once.

Then hold down the SHIFT key and press the CLEAR key. Got it?

Enter: 10 REM SPECIAL PRINT
20 PRINT "clear"
30 PRINT "CLEAN SLATE"

Of course you do not see "clear" in line 20. You see a funny bent arrow instead.

Whenever you see "buzz" in a PRINT command, do this:

Press the ESC key once.

Then hold down the CTRL key and press the 2 key.

Add this: 40 PRINT "buzz"

Of course, you do not see "buzz" in line 40. You see a funny inverse bent arrow
instead.

Run the program. It should clear the screen, print CLEAN SLATE, and sound the
buzzer.

19

Assignment 2:

1. Write a program that prints your first, middle and last names. Make the first
and middle names in normal letters, and the last name in inverse letters.

2. Now make the program clear the screen before writing anything.
3. Now make the buzzer sound before printing each name.

20

(
\

INSTRUCTOR NOTES 3 LIST AND MEMORY BOXES

In this lesson:

LIST, LIST 30
REM for titles, remarks
memory boxes holding lines
erase one line from memory
add a line between old lines
replace a line
drawings using PRINT commands

The difference between "command" and "statement" is artificial. The BASIC
interpreter does not distinguish between them. Our wishes are called "commands"
when used in the edit mode and "statements" when used in a program line. PRINT is a
good example of a command used both ways. In the first part of this book I will call all
of these things "commands" and later on explain what is meant by a statement (when
talking about colons and having several statements on one line).

For now your student needs to understand that the program is stored in memory even
when it is not visible on the screen, and that LIST just lists the program to the screen.
The special use LIST 100,300 will be taken up later.

The memory as a shelf of boxes is a key model of the computer that we will develop in
this book. It is an important tool in helping the student understand variables and the
detailed workings of complicated expressions in a statement.

REM as a remark command can be a little confusing to new students. It needs to be
distinguished both from PRINT and from just typing to the screen.

Using print to draw pictures is demonstrated. It is better to draw some at the end of
each lesson than to do a lot now. Drawing after lesson 4 helps develop line editing
skills.

QUESTIONS:

1. How do you erase a line you no longer want?
2. Clear the screen. Now how do you show the program in memory on the

screen?
3. How can you replace a wrong line with a corrected one?
4. Suppose you want to put a line in between two lines you already have in

memory. How do you do this?
5. Explain how the computer puts program lines in "boxes" in memory. What

does it write on the front of the box?

21

LESSON 3 LIST AND MEMORY BOXES

Start each lesson by clearing the screen and the memory.

Now enter: 1121 REM HEARING
2121 PRINT "clear"
3121 PRINT "LISTEN"
a 121 PRINT "buzz"
5121 PRINT "DID YOU HEAR IT?"

Run this 5 line program. Then clear the screen.

The program is no longer visible on the screen.

But the program is not lost. The computer has stored the program in its memory. We
can ask the computer to show us the program again.

LISTING THE PROGRAM

To ask the computer to show line 30 of the program, enter:

LIST 3121

The computer will list whatever line you ask for by number. If you want to list the
whole stored program just enter

with no number after it.

Try it.

LIST

Qb~=~
~~Jr-----.

JCI!J:
cll<X1

22

THE MEMORY

The computer's memory is like a shelf of boxes. The name of the box goes on the front
of each box. At the start, all the boxes are empty and no box has a name.

When you entered: 10 REM HEARING

the computer took the first empty box and wrote the name "Line 10" on the label.
Then it put the command REM HEARING into the box and put the box back on the
shelf.

When you entered: 20 PRINT "clear"

the computer took the second box and wrote "Line 20" on its label. Then it put the
command PRINT "clear" into the box and put that box in its place on the shelf

ERASING A LINE FROM MEMORY

To erase one line of the program, enter the line number with nothing after it. For
example,

to erase line 20, enter: 20

You still see the line on the screen, but do a LIST and you see that line 20 is gone from
memory.

When you enter just a line number with nothing after it, the computer finds the box
with that line number on it, empties the box and erases the name off the front of the
box.

How do you erase the whole program? (Look at lesson 1 to see the answer.)

What does the computer do to the boxes when you give it the command NEW?

23

ADDING A LINE

You can add a new line anywhere in the program, even between two old lines. Just pick
a line number between those of the old lines, and type your line in. The computer puts
it in the correct place.

Enter NEW and this: 10 REM MORE AND MORE
20 PRINT "MORE LINES WANTED"
40 PRINT "HERE THEY ARE"

List it and run it. Now add this line:

15 PRINT "STILL"

List and run it again.

24

FIXING A LINE

If a line is wrong, just type it over again. For example, in the above program line
number 40 can be changed by entering:

4121 PRINT "NEEDS FIXING"

What did the computer do to the box named "Line 40" when you entered the line?

-

25

THE REM COMMAND

Use a REM command to put remarks in your program.

Enter NEW and this: 10 REM PROGRAM 2
20 PRINT "clear"
30 PRINT "LINE 10 DOES NOTHING"
35 REM THIS LINE DOES NOTHING
40 LIST
RUN

REM means "remark." Use REM to write any little note in the program that can help
the reader understand the program.

26

PICTURE DRAWING

You can use the PRINT command to draw pictures. Here is a picture of a car. Enter
NEW before drawing the car.

10 PRINT"clear"
20 PRINT
30 PR I NT" }{}{}{}{}{}{"
40 PR I NT" }O{}{}OO{}{}{}{}O{}{"
50 PRINT" 0 0"

Don't forget to put the spaces in the PRINT lines! They are part of the drawing.

Assignment 3:

1. What command will list line 10 of the program?
2. How do you tell the computer to list the whole program on the screen?
3. What does the computer do (if anything) when it sees the REM command?
4. What is the REM command used for?
5. Use "clear," "buzz," REM, and PRINT to draw 3 flying birds on the screen.

Make each bird squawk after it is drawn.

27

INSTRUCTOR NOTES 4 BACKSPACE, CURSOR KEYS, INSERT,
DELETE

This lesson shows how to use the cursor movement keys and the backspace, insert and
delete keys.

The BACK S key is a "rubout" key. Pressing it erases the character to the left of the
cursor. The cursor moves onto the empty space. Hold down the BACK S key and after
a half second pause, it starts repeating, erasing as it goes.

In fact, most keys on the keyboard repeat if you hold them down.

The arrow keys are used in moving the cursor around on the screen. The CTRL key
must be held down while using the arrow keys.

Wherever the cursor stops, you can type in new characters.

The INSERT and DELETE keys also require holding down the CTRL key. The
DELETE key deletes the character the cursor is on. The INSERT key inserts a space
to the left of the cursor, then the cursor moves onto the space.

QUESTIONS:

1. What is a "cursor"? What is it good for?
2. Have your student demonstrate how to edit a line:

Using the BACK S key to rubout recent errors,
Using the cursor arrow keys,
Correcting letters in the middle of a line,
Inserting spaces into the middle of a line, then typing into them,
Deleting characters from the middle of a line.

28

LESSON 4 BACKSPACE, CURSOR KEYS, INSERT, DEL~TE

BACKSPACE

Type a long line. Then press the BACK S key. It erases one letter and moves the
cursor back one space.

Now hold the BACK S key down. It whizzes along, erasing!

(BACK S stands for "backspace.")

THE ARROW KEYS

There are 4 arrow keys. They are in a little square at the right of the keyboard.
On top, one has an up arrow. The other has a down arrow.
On the bottom, one has a left arrow, the other a right.
Hold down the CTRL key.
Press any of the cursor keys.
The cursor goes in the direction of the arrow.
Then press another cursor key.
When you get the cursor where you want it, type something.

v.

c::? 1((Ja)'

~
\

.) ~
I

29

WHIZZING ALONG

Hold down the CTRL key. Now hold down an arrow key. The cursor goes whizzing
along!
This works with other keys too. Hold down the "N' key. After a pause, you get a row:

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

FIXING MISTAKES

Enter: 10 REM ATERI

Move the cursor key over the letter E.

Type an II A II instead.

N ow the line is correct, reading:

10 REM ATARI

Press RETURN to store the line in the memory.

30

INSERT KEY

Type this: 20 REM DRADN

We want a G in the word DRAGON. Move the cursor over the 0.

Hold down the CTRL key and press the INSERT key. The line opens up and a space is
put to the left of the cursor. The cursor moves onto the new space. Type a G.

Now we have 20 REM DRAGON

Of course, if you hold down the CTRL and INSERT keys, a whole row of spaces is
inserted.

DELETE KEY

This key is the opposite of the INSERT key.

Move the cursor back over the G in DRAGON.

Hold down the CTRL key and press the DELETE key. The G disappears and the line
closes up from the right. It again reads:

20 REM DRAON

HEY LOOK! IT IS REALLY EASY.

You use the CTRL key for all kinds of fixing.

Hold CTRL down. Then:

Press the cursor arrow keys to get where you want.

Press the DELETE key if you want to erase.

Press the INSERT key to add room for letters.

Then let up on the CTRL key and type what you want.

31

Assignment 4:

1. Type a line and use the arrow keys to move around in the line. Change letters
in the line. When you are done, press RETURN to enter the line. Use LIST to
look at the line.

2. Type a line, use the arrow keys to get to the middle of it. Use the DELETE
key to remove letters. Press RETURN. LIST.

3. Type a line and use the arrow keys to get to the middle. Use the INSERT key
to add spaces. Type something in the spaces. Press RETURN. LIST.

4. Draw a "smiley face."

32

INSTRUCTOR NOTES 5 STRING BOXES, DIM, LET

The concept of memory boxes is introduced. DIM is explained and LET is used to fill
the box with a string constant.

The box model is used to emphasize that LET is a replacement command, not an
"equal" relationship in the sense used in arithmetic.

The box idea nicely separates the concepts "name of the variable" and "value of the
variable!' The name is on the label of the box, the value is inside. The contents of the
box may be removed for use, and new contents inserted.

More exactly, when a variable is used, a copy of the contents is made and used. The
original contents remain intact. This point is explained.

Used so far:

PRINT, NEW, REM, RUN, LIST, DIM, LET

Special keys discussed so far:

SHIFT, RETURN, CTRL, ESC, BACK S, DELETE, INSERT, CLEAR, four arrow
keys.

QUESTIONS:

1. Why do you have to use the DIM command?
2. If you run this little program:

10 DIM A$(2S) ,6$(2S)
20 LET A$="HI"
30 LET 6$=A$

what will be in box A$ at the end? What will be in box B$?
3. In this program:

10 DIM Q$(S)
20 Q$="MDM"

What is "MOM" called?
What is the name of the string variable in this program?
What is the value of the string variable after line 10 runs?
What is the value of the string variable after line 20 runs?

4. What is wrong with this program?

10 DIM H$(S)
20 LET H$="FAT SAUSAGE"

33

LESSON 5 STRING BOXES, DIM, LET

STRING CONSTANTS

You know what a string constant is. For example:

"MOPSEY"

You can use the string constant in a PRINT statement:

Enter: 20 PRINT "MOPSEY"

BOXES IN MEMORY

We want to have a box in memory for holding any string we choose.

First we must tell the computer how big a box we need. We use the DIM command.
Add these lines:

Line 15 says:

10 REM STRING BOX
15 DIM W$(10)

Get a box big enough to hold 10 letters.
Write the name W$ on the front.
Leave the box empty for now.

DIM stands for "dimension" or "size." The DIM command gives the name of the box
and how large it is.

STRING VARIABLES

The DIM command made a string variable.

Its name is W$.

Rule: String variable names always end in a dollar sign, "$." Pick any letter you like
for the name and then put a dollar sign after it.

W$ is called a variable because you can put different strings in the box at different
times. The box can hold only one string at a time.

The memory box can be any size from one letter up to thousands of letters (if your
memory is not yet full).

34

FILLING THE BOX

The LET command puts things in boxes. Enter and run:

Here is what the computer does:

10 REM STRING BOX
12 PRINT "clear"
15 DIM 101$(10)
20 LET W$="MOPSEY"
40 PRINT 101$

Line 12 The computer clears the screen.

Line 15 It picks a box big enough to hold 10 letters and puts the name W$ on the
front. The box is empty for now.

Line 20 The computer takes the string "MOPSEY" and puts it into the box W$. (The
box holds 10 letters, MOPSEY fits because it has only 6 letters.)

Line 40 The computer sees that it must print whatever is in box "W$!' It goes to the
box and makes a copy of the string "MOPSEY" that it finds there. It puts the
copy on the TV screen. The string "MOPSEY" is still in box ''W$.''

35

f\Y NN1E IS W$
/1Y VALUE J5 ''!1(Y5Ey.

u

NAMES AND VALUES

The name of the variable was W$. It is put on the front of the box.

The value of the variable was "MOPSEY." The value is put into the box.

MANY BOXES

The DIM command can create more than one box at a time. Look at this:

10 DIM A$(S), Z$(40), D$(10)

Line 10 made three string variables. Their names are A$, Z$, and D$.

RULES for boxes:

1. You must make a box with DIM before you put something into it.
2. Each box has a different name. Make each box only once.
3. You can have as many DIM commands as you want, but each makes boxes with

different names.

36

ANOTHER EXAMPLE:

Enter and run: 10 DIM A$(40)
12 DIM Z$(40) t D$(40)
15 LET D$="PICKLES"
20 LET A$=" AND"
30 PRINT "WHAT GOES WITH PICKLES?"
35 INPUT Z$
40 PRINT "clear"
50 PRINT D$;A$;Z$

Explain what the computer does in each line.

10 __ ___

12 __ __

15 __ ___

20 __ ___

30 __ ___

35 __ ___

40 __ ___

50 __ ___

Assignment: 5

1. Write your own program that uses the DIM and the LET commands and
explain how it stores things in "boxes."

2. Write a program that makes a box called N$. Then use LET to put your first
name into the box. Take your first name out of the box and PRINT it. Finally,
put your friend's name into the same box. Take it out and print it.

37

INSTRUCTOR NOTES 6 THE INPUT COMMAND

This lesson reviews the idea of a string variable and memory boxes and the DIM and
LET commands. It introduces the INPUT command and the SETCOLOR command
for GRAPHICS 0 screens.

We will give only the central features of each command for the whole of the
introduction of the book (through lesson 14). This allows us to quickly outline the
essentials of programming so that the student "sees the forest" and is able to write
meaningful programs. The commands essential for interesting programs are:

PRINT
INPUT
GOTO
IF
RND

allows output
input
infinite looping
branching and decisions
random numbers for games

Back to this lesson. String variables are introduced using the "box" concept again.
Variable names are restricted to one letter for the time being. This does not lead to
confusion in short programs and allows faster typing.

We will work with strings and ignore numbers for as long as possible because strings
make for more interesting programs and offer a less confusing entry into the logical
concepts of programming.

The SETCOLOR command is introduced using the idea of "paint pots." The student is
shown how to make colored screens and borders in the GRAPHICS 0 screen mode.

QUESTIONS:

1. What two different things does the computer put into boxes?
2. How does the program ask a person to type in something?
3. How do you know the computer is waiting for an answer?
4. What is a letter with a "$" after it called?
5. Write a short program that uses DIM, LET, PRINT and INPUT.
6. How do you change the color of the screen to green?

38

LESSON 6 THE INPUT COMMAND

MAKING THE BOXES

We make a box before putting a string into it.

Enter: 10 REM STRING BOXES
15 DIM B$(30), C$(40)

Rule: You must do a DIM for each variable before you use the variable.

If you forget, the computer will print:

ERROR- 9 when you run the program.

FILLING THE BOXES

The boxes B$ and C$ are still empty.

There are two ways to put something into a box:

The first way uses the LET command.

The second way uses the INPUT command.

39

THE LET COMMAND

Add this line:

20 LET B$="SAY SOMETHING"

Line 20 takes the string constant "SAY SOMETHING" and puts it into the variable
B~ .

B$ is the "name" of the string variable.

"SAY SOMETHING" is the "value" of the string variable.

The value has 13 characters. (One space, and 12 letters.)

"SAY SOMETHING" easily fits because the box is 30 characters long. (It was made
that big by DIM in line 15.)

THE INPUT COMMAND

The INPUT comand makes the computer ask you for something.

The INPUT command is the other way to put something into a string box.

You have: 10 REM STRING BD>{ES
15 DIM B$(30). C$(40)
20 LET B$="SAY SOMETHING"

Enter: 22 PRINT B$
25 INPUT C$
30 PRINT
35 PRINT "DID YOU SAY "
40 PRINT III II ;C$;"/?II

Run it. When you see a question mark, type "HI" and press the RETURN key.

The question mark was written by INPUT in line 25. The cursor means the computer
expects you to type something in.

When you type "HI," the computer stores this word in the box named C$.

Run the program again and this time say something funny.

40

PAINT POTS WITH 16 COLORS

The ATARI has 5 paint pots numbered 0, 1, 2, 3, and 4.

We need to use pots 2 and 4.

ATARI numbers its colors from 0 (grey) to 15 (orange)

Try this: 10 REM COLORED SCREEN
20 PRINT "PAINT POT 2 I S THE SCREEN COLOR"
30 PRINT "WHAT COLOR SCREEN 00 YOU WANT"
33 PRINT "NUMBERS FROM 0 TO 15"
38 INPUT C
40 PRINT "HOW BRIGHT <0 TO 14> "
45 INPUT B
50 SETCOLOR 2 t C t B
80 GOTO 30

Line 50 tells what color and brightness to make paint pot 2.

It is like choosing a clean, empty, paint pot and pouring a color (by number) into it so
you can paint the screen.

Run the program and try all the colors from 0 to 15. For each, try even numbers from
o to 14 for the brightness.

Black is color 0 with brightness o.

(This program uses number variables Band C. We will learn more about numerical
variables in lesson 12.)

Line 60 has the GOTO command. The next lesson explains this command.

41

COLORED BORDERS

Make these changes in the program above:

10 REM COLORED BORDER
20 PRINT "PAINT POT 4 IS THE BORDER COLOR"
30 PRINT "WHAT COLOR BORDER DO YOU WANT?"
33 saMe
36 saMe
40 saMe
45 saMe
50 SET COLOR 4t Ct B
60 saMe

Assignment 6:

1. Write a program that asks for a person's name. Then have it change the screen
and border colors and print something silly to the person, by name.

2. Write a program that asks you to INPUT your favorite food and put it into a
box called F$. Now the program asks you your favorite animal and puts this
into box F$ too.
Have the program print F$. What will be printed? Run the program and see if
you are right.

42

INSTRUCTOR NOTES 7 TRICKS WITH PRINT

In this lesson:

PRINT with a semicolon at the end
PRINT with semicolons between items
the "invisible" PRINT cursor
PRINT with commas between items
GRAPHICS 1,2 screens, an introduction

The lesson introduces the output cursor which is invisible on the screen. It marks the
place where the next character will be placed on the screen by a PRINT command.
(The input cursor is the square you can see on the screen. It is familiar from the edit
mode and the INPUT command.)

When a PRINT statement ends with a semicolon, the output cursor remains in place.
The next PRINT will put its first character exactly into the spot following the last
character printed by the current PRINT command.

Without a semicolon at the end, the PRINT command will advance the output cursor
to the beginning of the next line as its last official act.

A PRINT command can print several items, a mixture of string and numerical
constants, variables, and expressions. Numerical constants and variables have not yet
been introduced. The items are separated by semicolons.

The series of printed items will have their characters in contact. If spaces are desired,
as in the "HAM AND EGGS" example, the spaces have to be put into the strings
explicitly.

The 11 graphics modes of the ATARI require some awkward sequences of commands
for best use. We introduce these modes slowly.

QUESTIONS:

1. Which cursor is a little flashing square? What command puts it on the screen?
2. Which cursor is invisible? What command uses it?
3. How do you make two PRINT statements print on the same line?
4. Will these two words have a space between them when run?

10 PRINT "HI";"THERE!"

If not, how do you put a space between them?
5. What do commas do in print lines?

43

LESSON 7 TRICKS WITH PRINT

ONE LINE OR MANY?

Enter this program: 10 REM FOOD
20 PRINT
30 PRINT "HAM"
40 PRINT "AND"
50 PRINT "EGGS"

and run it. Each PRINT command prints a separate line.

Now enter: 30 PRINT "HAM ";
40 PRINT "AND ";

(Don't change or erase the other lines.) Be careful to put the space at the end of
"HAM" and at the end of "AND" and the semicolon at the end of each line.

Run it.

What was different from the first time?

THE HIDDEN CURSOR

Remember the square you see on the screen? It is the INPUT cursor and shows where
the next letter will appear when you type.

The PRINT command also has a cursor, but it is invisible. It marks where the next
letter will appear when the computer is PRINTing.

44

Rule: The semicolon makes the invisible PRINT cursor wait in place on the screen.
The next PRINT command adds on to what has already been written on the same line.

\ ~ /
~ ==- ~ "" r------,

I
I

=7 '11/:
I I

~ I I~ L _____ -1

FAMOUS PAIRS

Enter: 10 PRINT "clear"
15 DIM A$(30) ,B$(30)
20 PRINT "ENTER A NAME"
30 INPUT A$
35 PRINT "clear"
40 PRINT "ENTER ANOTHER"
50 INPUT B$
60 PRINT "clear"
70 PRINT"PRESENTING THAT FAMOUS TWOSOME: "
75 PRINT
80 PRINT A$; " AND " ; B$

Be sure to put a space before and after the "AND".

SQUASHED TOGETHER OR SPREAD OUT?

Enter NEW then try this:

10 PR I NT "ROCK";" AND" ; "ROLL"

after you have run it, try also:

10 PR I NT "ROCK"," AND" ," ROLL"

Rule: When you put a comma between two items in a PRINT list, the computer spreads
them out in columns.

45

BIG LETTERS

The ATARI has 11 different ways to use the TV screen. Here are the first three of
them.

Run:

GRAPHICS 0
GRAPHICS 1
GRAPHICS 2

what you have been using
wide colored letters
large colored letters

10 GRAPHICS 1
20 PR I NT #6 j "H I THERE"
30 PRINT "clear FRIEND"

Press the SYSTEM RESET key to get the screen back to normal.

Use the #6 in PRINT when writing the big letters.

Don't use #6 when writing to the little screen below.

Try it again with a "2" in place of the "I."

SPLIT SCREEN

Both GRAPHICS 1 and GRAPHICS 2 have a "split screen" below the large letter
screen.

If you want all large letters, do this

10 GRAPHICS 1+16
20 PRINT #6j "NO SPLIT"
30 GDTO 30

Try it again with GRAPHICS 2+ 16

Line 30 is an "infinite loop!' It keeps the program from ending. When the program
ends, the screen goes back to GRAPHICS 0 automatically.

We will study the GOTO command in lesson 8.

Assignment 7:

1. Write a program that asks for the name of a musical group and one of their
tunes. Then using just one PRINT command, print the group name and the
tune name, with the word "plays" in between.

2. Do the same, but use 3 print commands to print on one line.
3. Now have it printed out in large letters (GRAPHICS 2).

46

INSTRUCTOR NOTES 8 THE GOTO COMMAND AND BREAK
KEY

The GOTO command allows a "dumb" loop that goes on forever. It also helps in flow of
command in later programs, after the IF is introduced. It provides a slow and easy
entrance for the student into the idea that the flow of command need not just go down
the list of numbered lines.

For now its main use is to let programs run on for a reasonable length of time. In each
loop through, something can be modified.

The problem is how to stop it. The BREAK key does this nicely.

We now have three of the four major elements that lead to "real" programming. They
are PRINT, INPUT and GOTO. Lacking is the IF, which will change the computer
from some sort of a record player into a machine that can evaluate situations and make
decisions accordingly.

QUESTIONS:

1. In this little program:

10 PRINT "HI"
20 GOTO 40
30 PRINT "BIG"
40 PRINT "DADDY"

what will appear on the screen when it is run?
2. And this one:

10 PRINT "CHERRY"
20 PRINT "PIE ";
30 GOTO 20

3. How do you stop the program in question 2?
4. Write a short program that buzzes, asks you your favorite movie star's name,

and then does it over and over again.

47

LESSON 8 THE GOTO COMMAND AND BREAK KEY

JUMPING AROUND IN YOUR PROGRAM

Try this program: 10 REM WHIZZING
12 DIM N$(40)
15 PRINT "clear"
20 PRINT"YDUR NAME?"
25 INPUT N$
30 PRINT N$
35 PRINT
40 GDTD 30

R UN this program. It never stops by itself! To stop your name from whizzing past
your eyes, press the BREAK key.

Line 40 uses the GOT 0 command. It is like "G 0 TO J A I L " in a game of Monopoly.
Every time the computer reaches line 40, it has to go back to line 30 and print your
name again.

We will use GOTO in a lot of programs.

MORE JUMPING

Enter: 10 REM NON-STOP TALKER
15 DIM S$(40)
20

[

30
40
45
50

PRINT "SAY SOMETHING"
INPUT S$
PRINT "DID YOU SAY ''';S$;'''?''
PRINT
GOTO 30

Run the program. Type a different answer every time you see the "?" and the cursor.
Press the BREAK key to end the program.

Notice the arrow from line 50 to line 30. It shows what the GOTO does. You may want
to draw such arrows in your program listings.

48

KINDS OF JUMPS

There are only two ways to jump: ahead or back.

Jumping back gives a LOOP.

10 PRINT "HI"
20 GOTO 10

The path through the program is like this:
• 10 PRINT "HI "~

L Z0 GOTO 10--~---'
The computer goes around and around in this loop. Press the BREAK key to stop.

Jumping ahead lets you skip part of the program. It is not useful yet, but we will use it
later in the IF command.

THE BREAK KEY

The BREAK key is a "life saver." When you are in trouble, press BREAK and the
computer will "peep" and start over, waiting for your next command. Your program is
still safe in memory.

If the computer still is messed up, for example if it "hangs:' press the SYSTEM
RESET key.

(When the computer just sits there like a dolt, and doesn't do anything no matter what
key you press, we say that the computer is "hanging.")

49

Assignment 8:

1. Write a program that prints your first name over and over.
2. How do you stop your program?
3. Write another that prints your name on one line, then a friend's on the next,

over and over. Stop the program with the RESET key.
4. Write a program that uses each of these commands: PRINT, INPUT, LET,

GOTO.

50

INSTRUCTOR NOTES 9 THE IF COMMAND

IF is a powerful but intricate command that is at the very heart of the computer as a
logic machine.

Both verbal (the "cake" cartoon) and visual (the "fork in the road" cartoon) metaphors
help in understanding the IF command.

The GOTO command has already introduced the idea that the flow of control down the
program list may be altered. To that idea is now added the conditional test: if an
assertion is true, one thing happens; if it is false, another.

The phrase "something Pi' is used for the assertion being tested for truth. The phrase
"command C" is used for the command to be done if the assertion is true.

Two levels of abstract ideas occur in the assertions. On the literal level we have "equal
and not equal":

A$ = 8$
CX$ <> 0$

The next level up we have the TRUTH or FALSITY of the assertion.

Some care may be needed to separate and clarify these notions.

When you see "A = B" it may not REALLY be true that A equals B because the
assertion may actually be FALSE.

The larger set of relations:

< t > t = t = < t = > , < >

will be treated in later lessons.

QUESTIONS:

1. How do you make this program print "THAT'S FINE"?

10 DIM T$(5)
15 PRINT "DOES YOUR TOE HURT?"
17 INPUT T$
20 IF T$="NAH" THEN GO TO 80
a0 IF T$="SOME" THEN GOTO 15
80 PRINT "THAT'S FINE"

2. Write a short program which asks if you like chocolate or vanilla ice cream.
Answers to be "e" or "V." For the "c" print "Yummy!" For the "V" answer,
print "Mmmmmm!"

51

LESSON 9 THE IF COMMAND

Clear the memory and enter:

10 PRINT "clear"
15 DIM A$(3)
20 PRINT "ARE YOU HAPPY? (YES OR NO)"
30 INPUT A$
40 IF A$="YES" THEN PRINT "1'M GLAD"
50 IF A$="NO" THEN PRINT "TOO BAD"

Run the program several times. Try answering "YES;' "NO" or "MAYBE." What
happens?

YES __ __

NO __ _

MAYBE __ __

THE IF STATEMENT

The IF statement has two parts:

10 IF something A THEN command c

First the computer looks at "something A:'

If it is true, the computer does the command C.

If "something Pi' is not true, then the computer goes on to the next line without doing
the command C.

IF YaR pt)MEWQRK
i IS fX)N~
THIN you 11M HAV£

SOME emfl

52

It looks like this:

10 IF

or

10 IF

something A is true THE N do command C
and then go on to the next line.

something is A false THE N
go on to the next line.

SOME EXAMPLES OF IF

10 REM IF TEST PROGRAM
50 IF A$="YES" THEN PRINT ''GOO~''

55 IF "YES"=A$ THEN PRINT "GOOD"
60 IF A$=B$ THEN LET C$="No WAY!"
70 IF N$="BIRD" THEN PRINT IIbuzz"
75 IF A$="READY" THEN PRINT "inverse"

Line 50 and line 55 do exactly the same thing.

Assignment 9A:

1. Add these lines to the program:

12 DIM A$(10), B$(10), C$(10), N$(10)
15 INPUT A$
17 LET C$="WHAT?"
20 LET B$="PAY UP"
25 LET N$=A$
85 PRINT C$
87 PRINT "inverse"
88 GoTo 15

Run the program and enter these words:

YES, BIRD, READY, NO WAY

and some other words you choose yourself. Look at what the program prints to
see that IF commands are working as you expect. (Remember, if "something Pi' is
true, then the command after the THEN is executed.)
2. Clear memory and write a program that asks if you are a "BOY" or "GIRL." If

the answer is "BOY;' the program prints "SNIPS AND SNAILS." If the
answer is "GIRL," print "SUGAR AND SPICE."

53

A FORK IN THE ROAD

When it sees "IF," the computer must choose which road to take.

If "something N' is true, it must go past the "THEN" and obey the command it finds
there. Then it goes down to the next line.

If "something N' is false, it goes down to the next line right away.

Here is the road map with the fork in the road marked:

30 L(COmmand):J (',
I ,fork in the road

Ll0 '+ I F A$= II HUNGRY II 1 ~ THEN--l"~ PR I NT II EAT II ~

50 l(command)

U
AT

54

THE "NOT EQUAL" SIGN

The "<>" sign means "not equal." It is the opposite of the" =" sign when used in an
English phrase.

To make the "<>" sign, press the "<" key, then the ">" key.

40 IF something A THEN PRINT "NO SMOKE"

"Something N' is a phrase that is TRUE or FALSE. If it is true, then the computer
prints "NO SMOKE." Look at this "something N' phrase:

Q$<>"FIRE"

and put it in an IF command:

40 IF Q$<>"FIRE" THEN PRINT "NO SMOKE"

If the Q$ box contains "COLD" then Q$ is not equal to "FIRE" and the expression
Q$<>"FIRE" is TRUE. The computer will print "NO SMOKE."

If the Q$ box contains "FIRE" then the phrase:

Q$<>"FIRE" is FALSE and

the computer will not print anything.

Here is how it looks in a program:

10 DIM Q$(4)
15 PRINT"IS YOUR HOUSE ON FIRE?"
20 PRINT"(ENTER 'FIRE' OR 'COLO')"
30 INPUT Q$
40 IF Q$<>"FIRE" THEN PRINT "NO SMOKE"
50 IF Q$= "FIRE" THEN PRINT "HELP"

55

Assignment 98:

1. Write a "pizza" program. Ask what topping is wanted. Make the computer
answer something silly for each different choice. You can choose mushrooms,
pepperoni, anchovies, green peppers, etc. You can also ask what size.

2. Write a color guessing game. One player INPUTs a color in string C$ and the
other keeps INPUTing guesses in string G$. Use two IF lines, one with a
"something A"

G$<>C$

for when the guess is wrong, and the other with an "=" sign for when the
guess is right. The "command C" prints "wrong" or "right."

)J

56

INSTRUCTOR NOTES 10 INTRODUCING NUMBERS

Numerical variables and operations are introduced. The LET, INPUT and PRINT
commands are revisited.

The idea of memory as a shelf of "boxes" is extended to numbers. Again, variable
names are limited to one letter for the time being.

The arithmetic operations are illustrated. The "*,, symbol for mUltiplication will
probably be unfamiliar to the student. Division will give decimal numbers, so it is nice
if your student is familiar with them. But most arithmetic will be addition and
subtraction, with a little multiplication, and a student unfamiliar with decimal numbers
will not experience any disadvantage.

It may seem strange to the student that the numbers in string constants are not
"numbers" that can be used directly in arithmetic. The VAL and STR$ functions will
be introduced later in the book and allow interconversion of numbers and strings.

A mixture of string and numerical values can be printed by PRINT.

The non-standard use of" =" in BASIC, that it means "replace" and not "equal;' shows
up strongly in the statement:

LET N=N+l

The cartoon uses the box idea to illustrate this meaning of " = ".

QUESTIONS:

1. Name the three kinds of "boxes" in memory. (That is, named by the kinds of
things stored in the boxes.)

2. Explain why "N = N + 1" for a computer is not like "7 = 7 + 1" in arithmetic.
3. Give another example of "bad arithmetic" in a LET command. Use the * or /

symbols.
4. Explain what is meant by the "name of a variable" and the "value of a

variable" for numerical variables. For string variables.
5. If the boxes A and B have the numbers 5 and 8 in them, then PRINT A;B will

print 58. How do you make the computer print 5 8 instead of 58?

57

LESSON 10 INTRODUCING NUMBERS

INPUT, LET AND PRINT

So far we have only used strings. Numbers can be used too. Enter and run this
program:

MEMORY BOXES

10 REM BIGGER
20 PRINT"GIVE ME A NUMBER"
30 INPUT N
lI0 LET A=N+1
lI5 PRINT
50 PRINT"HERE IS A BIGGER ONE"
80 PRINT A

Numbers go into memory boxes, just like strings. There is one difference:

Strings: You must use DIM to tell how large the box is.
Numbers: All number boxes are the same size, and the DIM command is not used.

Here is what happens in the BIGGER program.

Line 10 A REM, so the computer ignores it.

Line 20 PRINTS the string.

Line 30 The computer waits for a number to be INPUTed. It takes the number and
looks for a box named N. The computer does not find a box named N because
N has not been used in this program before. So the computer takes a new box,
writes N on the front, and puts the number into it.

Line 40 The computer takes the number in box N, adds one to it, and puts it into
another box and puts the name A on the front.

Line 45 PRINTs an empty line.

Line 50 PRINTs a message.

Line 60 Goes to box A, takes a copy of the number out, and PRINTs the number. (The
original number is still in box A.)

58

ARITHMETIC

The minus sign, the equal sign, the plus sign, and the multiplication sign are on the
cursor arrow keys.

The computer uses "*,, for a multiplication sign.

Try this. Change line 40 so that N is multiplied by 5.

Computers use "/" for a division sign. It is on the same key as the question mark.

Answers to division problems are given as decimal numbers.

\\/; ~
y

VARIABLES

The name of a box that contains a string must end with a dollar sign. Examples: N$,
A$, Z$.

The name of a box that contains a number doesn't have a dollar sign. Examples: N, A,
Z.

The thing that is put into the box is called the "value" of the variable.

59

ARITHMETIC IN THE LET COMMAND

Some more examples:

10 LET A=2
20 LET 6=3
30 LET C=6-A
40 PRINT A;" ";6;" ";C

10 LET 6=15
20 LET A=6/5
30 LET X=A*4+2
40 PRINT X;" ";A

NAME
BICY01..£

HAME
8JGYCLEi

CAREFUL!

Numbers and strings are different. Example: "1984" is not a number. It is a string
constant because it is in quotes.

Rule: Even if a string is made up of number characters it is still not a number.

Some numerical constants: 5,22,3.14, -50

Some string constants: "HI", "7", " TWO", "3.14"

60

Rule: You cannot do arithmetic with the numbers in strings.

Correct: 1121 LET A = 3 + 7

Wrong: 1121 LET A$ = 3 + 7

Wrong: 1121 LET A$ = "3" + "7"

Wrong: 1121 LET A "3" + 117 11

If you enter any of these wrong lines, the computer will print:

ERROR-

The two types of variables are "string" and "numerical." You cannot mix them.

61

Enter: 10 DIM 5$(15)
15 LET A=5
20 LET 5$=/110"
30 LET C=A+5$

Lines 10, 15, and 20 are OK, line 30 is wrong. What will the computer do when you
enter line 30? Try it.

Try to guess what each of these statements will print, then enter the line to see what
happens:

PRINT 5

PRINT /15/1

PRINT /15+3/1

PRINT /15/1+/13/1

PRINT 5 + 3

MIXTURES IN PRINT

You can print numbers and strings in the same PRINT command. (Just remember that
you cannot do arithmetic with the mixture.)

Correct: PRINT A;/lSEI)EN/I;/l7/1

Correct: PRINT A;5$

Run this line. 10 PRINT 5/2;" IS EQUAL TO 5/2/1

Whatdoyouget? __ _

"
62

A FUNNY THING ABOUT THE EQUAL SIGN

The" =" sign in computing does not mean "equals" exactly. Look at this program:

10 LET N=N+1

This does not make sense in arithmetic. Suppose N is 7. This would say that:

7=7+1

which is not correct.

But it is OK in computing to say N = N + 1 because the" =" sign really means
"replace." Here is what happens:

Look at this: 10 LET N=N+1

The computer goes to the box with N written on the front.

It takes the number 7 from the box.

It adds 1 to the 7 to get 8.

Then it puts the 8 into the box.

Another way to say the same thing is:

10 LET N=N+1 means

LET N = N + 1
LET (new N) equal (old N) plus one

Assignment 10:

1. Write a program that asks for your age and the current year. Then subtract
and print out the year of your birth. Be sure to use PRINT statements to tell
what is wanted and what the final number means.

2. Write a program that asks for two numbers and then prints out their product.
(Multiplies them.)

63

INSTRUCTOR NOTES 11 DELAY LOOPS, SOUND

This lesson introduces loops in a painless way.

Delay loops slow the program down so that its operation can be more easily observed.
They also are used for portions of the program that must run at certain speeds, and
should then be called "timing loops."

The delay loop is all on one line with a colon to separate off the NEXT command. The
amount of delay is determined by the size of the loop variable. A value of 500 gives
about a one second delay.

After the student sees that the loop simply counts until a particular value is reached
before going on to the next instruction, it will be easier to handle loops in which things
are going on inside.

The SOUND command is introduced. Of the 4 arguments, only the pitch is dealt with.
SO UND will be treated more fully later.

QUESTIONS:

1. Show how to write a delay loop that lasts for about 2 seconds.
2. Will this work for a delay loop?

120 FOR Q=1000 TO 5000
122 NE>{T Q

3. Write a two line program to make a tone. Use a delay loop for one second. Try
different numbers for pitch. Which numbers give high notes? Which give low
notes?

64

LESSON 11 DELAY LOOPS, SOUND

DELAY LOOPS

Here is a way to slow down parts of the program.

It is a "delay loop."

Run this program: 10 REM DELAY LOOP
20 PRINT "clear"
30 PRINT "WAIT"
40 FOR 1=1 TO 2000:NEXT
50 PRINT "DONE"

I

Line 40 is the delay loop. The computer counts from 1 to 2000 before going on to the
next line. It is like counting when you are "it" in a game of hide and seek.

J .. l"

Try changing the number "2000" in line 40 to some other number.

Each 500 in the delay loop is worth about 1 second of time. Try this:

10 REM - - -- TICK TOCK - - --
20 PRINT "clear"
30 INPUT "WAIT HOW LONG? 11 ; S
36 T=S*500
40 FOR 1=1 TO T:NEXT I
45 PRINT . PRINT "buzz" .
50 PRINT S ; " SECONDS ARE UP"

65

YOUR NAME IS FALLING!

1121 PRINT "clear"
15 LET N=l
2121 PRINT"yoUR FIRST NAME"
3121 INPUT W$
4121 PRINT W$
45 FOR T=l TO 1121*N:NEXT T
5121 LET N=N+l
6121 GO TO 4121

Press B REA K to stop the run.

This program prints your name down the screen.

Assignment: 11 A

1. Write an "insult" program. It asks your name. Then it clears the screen and
writes your name. Then it waits for 2 seconds, prints an insult and buzzes.

SOUND

Run this:
1121
15
2121
3121
4121
45
5121
55
6121
61
65
7121
8121
9121

REM TONES
REM -----------------------FIRST TONE
PRINT "clear START MIDDLE C"
SOUND 1 t 121 t 1121t 8
FOR T=l TO 1121121121:NEXT T
PRINT "STOP"
SOUND 1 t 15121, 1121t 121
REM --------------- ---- ----PAUSE
FOR T=l TO 5121121:NEXT T
REM -----------------------SECoND TONE
PRINT "START AGAINt LOWER"
SOUND 1 t 162t 1121t 8
FOR T=l TO 1121121121:NEXT T
PRINT "END"

If you do not hear the tones, then turn up the volume on your TV monitor.

The SOUND command has 4 numbers after it.

The second number tells the pitch of the note (number 121 in line 30 and number 162 in
line 70). Use numbers from 1 to 255.

66

The fourth number tells how loud. Use "8" for normal loudness.

Line 50 shuts off the sound by making the loudness equal to zero.

The sound also shuts off automatically when the program ends.

Assignment 11 B:

1. Write a Sound Program that lets the user choose which tone to play and how
long it lasts. End it with a GOTO so the user can tryout many sounds.

2. Write a digital "clock" program that uses a delay to count seconds and print
them out. When 60 seconds have gone by, add one to the minutes and put
seconds back to zero. (See next lesson.) Same with hours. Run the clock a long
time and adjust the timing loop so the clock keeps good time. Add chimes on
the quarter hour.

67

INSTRUCTOR NOTES 12 THE IF COMMAND WITH NUMBERS

The IF command is extended to numerical expressions. The logical relations used in
this lesson are:

= > < < >

The use of nested IF's is demonstrated.

A "home made" loop is demonstrated in the GUESSING GAME, but not discussed.
The loop starts in line 50 and goes to 80. The exit test is made in line 70. The logic of
this loop is that of a DO UNTIL.

QUESTIONS:

1. What part of the IF command can be TRUE or FALSE?
2. What follows the THEN in an IF command?
3. After this little program runs, what will be in box D?

10 LET D=4
15 IF 3 < 7 THEN LET D=8

4. Same question, but for 3> 7.

68

LESSON 12 THE IF COMMAND WITH NUMBERS

Try this: 10 REM *** TEENAGER *** 15 PRINT "clear"
20 PRINT"YOUR AGE";
30 INPUT A
40 IF A<13 THEN PRINT" NOT YET A TEENAGER! "
50 IF A>18 THEN PRINT" GROWN UP ALREADY!"

This IF command is like the one that you used before with strings. Again we have:

10 IF something is true THE N do command C

"Something Pi' can have these arithmetic symbols:

= equal to
> greater than
< less than
< > not equal to

Each "something Pi' is a phrase. It is written in "math language" but you should say it
out loud in English. For example:

A < > B
5 < 7

PRACTICE

is pronounced
is pronounced

"A is not equal to B"
"five is less than seven"

For these examples, LET A = 7 and LET B = 5 and LET C = 5.

Say each "something Pi' out loud and tell if it is true or false:

A=B T F
A>B T F
A<B T F
A=C T F
A<C T F
A>C T F
B=C T F
B>C T F
B<C T F
A< >B T F
B<>C T F

69

AN IF INSIDE AN IF

The "teenager" program above is missing something. Add:

80 IF A>12 THEN IF A<20 THEN PRINT "TEENAGER!"

To understand this, break it into two parts:

80 IF A>12 THEN (command C) where

(command C) is (IF A< 20 THEN PR I NT "TEENAGER!")

This line first asks "is the age greater than 12?"

If the answer is "yes" the line gets to ask the second question: "Is the age less than
20?"

If the answer is again "yes" the line prints "TEENAGER!"

If the answer to either question is no, the PRINT command is not reached, so nothing
is printed.

Assignment 12A:

1. Draw the "fork in the road" diagram for line 60 above. There will be two forks
on the diagram. (See page 54 .)

GUESSING GAME

10 REM --- GUESSING GAME - - -
15 PRINT "clear"
20 PRINT "TWO PLAYER GAME"
25 PRINT
30 PRINT "FIRST PLAYER ENTER A NUMBER FROM 1 TO 100"
35 PRINT "WHILE SECOND PLAYER ISN'T LOOKING"
37 PRINT
40 INPUT N
45 PRINT "clear"
50 PRINT "MAKE A GUESS ";
55 INPUT G
80 IF G<N THEN PRINT "TOO SMALL"
85 IF G>N THEN PRINT "TOO BIG"
70 IF G=N THEN GoTo 80
80 GoTo 50
80 REM THE GAME IS OVER
82 PRINT
85 PRINT "THAT'S IT!"

70

If you want to save this program on tape, read lesson 14.

Usually line 80 sends you to line 50 so you can make more guesses. But if G = N in line
70, then you skip to line 90 and print "THAT'S IT!".

ASSignment 128:

1. Tell what happens in lines 50 through 80:

If G is 31 and N is 88:
50 __ ___

55 __ ___

60 __ _

65 __ ___

70 __ ___

75 __ ___

80 __ ___

If G is 88 and N is 88:

50 __ ___

55 __ ___

60 __ ___

65 __ ___

70 __ ___

80 ______________________________________ ~-------------------

71

2. Here is another program. What will it print, and how many times?

10 LET N=l
20 IF N=13 THEN PRINT "UNLUCKY!"
30 LET N=N+2
40 IF N)30 THEN GOTO 88
50 GOTO 20
88 PRINT "DONE"

What will it print if line 10 is changed to:

10 LET N=2

3. Write a program that says something about each number from one to ten. The
player enters a number and the computer prints something about each number:
"three strikes, you're out" or "seven is lucky" etc.

4. Write a game for guessing a card that someone has entered. You must enter the suit
(club, diamond, heart, or spade) and the value (1 through 13). First they guess the
suit, then the program goes on to ask the value. Keep score.

72

INSTRUCTOR NOTES 13 RANDOM NUMBERS AND THE INT
FUNCTION

This lesson introduces two functions: RND and INT. These are very important in
games and also handy in making interesting displays like kaleidoscopes.

The RND function produces psuedo-random decimal numbers between 0.0 and 1.0.
Such numbers are directly usable as probabilities, but integers over some range such
as 1 to 6 for a die, or 1 to 13 for a suit of cards are often more to the point.

Your student may be shaky in decimal arithmetic, but all that is required here is
multiplication of the random number by an integer, and perhaps also addition to an
integer. The computer does the multiplication, of course, so only a rough idea of the
desired result is necessary.

After extending the random number to a larger range than 0 to 1, conversion to an
integer is desired. The INT function does this by simply truncating the number,
"throwing away the decimal part!' (For negative numbers the situation is a little more
complicated, and that rare case is not treated here.)

The concept of functions is again used in this lesson and is further clarified.

The nesting of one function in the parentheses of another is illustrated by using RND
in the argument of an INT function.

QUESTIONS:

1. Tell what the computer will print for each case:

10 PRINT INT(G)

and the box G contains: 2, 2.1, 2.95,3.001,67,0,0.2
2. Tell how the INTO function is different from "rounding off" numbers. Which is

easier for you to do?
3. Tell how to change a number so that the INTO function will round it off.
4. What does the RND(9) function do?
5. How can you get random integers (whole numbers) from 0 through 10. (Hint:

INT(RND(9)*10) is not quite right.)
6. How can you get random integers from 5 through 8?

73

LESSON 13 RANDOM NUMBERS AND THE INT FUNCTION

THE RND FUNCTION

When you throw dice, you can't predict what numbers will come up.

When dealing cards, you can't predict what cards each person will get.

The computer needs some way to let you "roll dice" and "deal cards" and do many
other unpredictable things.

Use the RND function to do this. RND stands for "random;'

Run this program: 10 REM RANDOM NUMBERS
20 PRINT "clear"
25 LET N=RND(S)
30 PRINT N
40 IF N<.85 THEN GOTO 25

You see a lot of decimal numbers on the screen. The RND function in line 25 made
them.

It doesn't matter what number you put in the parentheses just so long as it is positive.
I chose "9" because it is near the "()" signs on the keyboard making it easy to type (9).

74

RND gives numbers that are decimals larger than 0 but smaller than 1. To make
numbers larger than one, you just multiply.

Change the program above to:

25 LET N=RND(8)*52
40 IF N(45 THEN GOTO 25

and run it again.

N ow the numbers are between 0 and 52 in size. They could be used for choosing the 52
cards in a deck.

But:

We usually want whole numbers like 7 and 8 rather than decimal numbers like
7.03454323 and 8.89746582. Do this by using the INT function.

THE INT FUNCTION

The INT function takes the number in its parentheses and throws away the decimal
part, leaving an integer.

Try the INT function in this little program:

And in this:

And this:

10 LET I=INT (6.3)
20 PRINT I

10 LET }(=0.3
20 PRINT "X= ";X
30 PRINT "INT(X)= ";INT(X)

10 LET X=.3
20 LET Y=2.5
30 LET P=X+Y
40 LET Q=INT(X+Y)
50 PRINT P,Q

Look at the answers to see that the decimal part was thrown away.

Try this: 10 REM - - - -- INT - - - --
20 PRINT "clear"
30 PRINT"GIVE ME A DECIMAL
32 INPUT D
35 LET I=INT(D)

NUMBER

40 PRINT "DECIMAL " ; D ;" INTEGER"; I
50 IF 1<>0 THEN GOTO 30

Enter 0 to end the program.

75

"

ROLLING THE BONES

Usually dice games use two dice. One of them is called a "die!' Here is a program that
acts like rolling a single die:

10 REM IIIIII ONE DIE IIIIII
15 DIM Y$(l)
20 PRINT "clear"
30 LET R=RND(9)
40 PRINT "RANDOM NUMBER ";R
50 LET S=R*6
55 PRINT "TIMES 6 ";S
60LET I =INT(S)
65 PR I NT "I NTEGER PART"; I
70 LET D=I+l
75 PRINT "DIE SHOWS";D
77 PRINT
80 PRINT "ANOTHER? <YIN> ";
82 INPUT Y$
85 IF Y$="Y" THEN GOTO 20

76

WHAT GOES INSIDE THE ()?

Numbers: 10 LET X=1NT(34.7)

Variables: 10 LET }{=1NT(J)

Expressions: 10 LET X=1NT(3*Y+2)

Functions: 10 LET X=1NT(RNO(9))

Here is how to save a lot of room.

Instead of: 30 LET R=RNO(9)
50 LET S=R*8
80 LET 1=1NT(S)
70 LET 0=1+1

Use just: 70 LET 0=1+1NT(RNO(9)*8)

Assignment 13:

1. Write a program that "rolls" two dice, called D1 and D2. Show the number on
D1 and on D2 and the sum of the dice. You do not need the variables R, S, and
I in the program above. They were used to show how the final answer was
found.

2. Write a "paper, scissors, and rock" game, you against the computer. (Paper
wraps rock, rock breaks scissors, scissors cut paper.) The computer chooses a
number 1, 2 or 3 using the RND() function: 1 is paper, 2 is rock, 3 is scissors.
You INPUT your choice as P, R, or S and the computer figures out who won
and keeps score.

77

INSTRUCTOR NOTES 14 SAVING TO TAPE

This lesson shows how to save programs to tape and how to load them again.

The commands: CSAVE

The only other commands used are:

NEW
LIST

CLOAD

REM
PRINT

This lesson can be used any time after lesson 3.

are introduced.

We put it this late in the book because most programs up to this point are relatively
short and uninteresting, not worth saving. The process of programming was being
emphasized, not the end result of useful programs.

However, your own judgement should prevail, and you can insert this chapter at an
earlier point in the flow of lessons so that your student can save some programs helshe
is particularly proud of.

Ordinary audio tape is usually satisfactory for computer use. However, remember that
a tiny imperfection can cause the tape to "drop a bit" and this makes the program
wrong, or worse, unloadable!

You will not need long tapes. In fact, the special 10 minute data tapes are inexpensive
and convenient.

The ATARI computers support use of named file and autobooting tapes but this is not
discussed in this book. Please refer to the ATARI 400/800 manual.

QUESTIONS:

1. When you enter CSAVE, the computer buzzes twice. What does that mean?
2. What command tells the computer to get a program from tape?
3. About how long does it take to save a short program?
4. If a program is put onto tape, is it still in the computer's memory?

78

LESSON 14 SAVING TO TAPE

ENTERING A PROGRAM

If you have a program you want to save at this moment, skip to SAVING A
PROGRAM.

If not, enter:

SAVING A PROGRAM

NEW
10 REM :::HI:::
20 PRINT "HI"

Put a brand new tape in the ATARI 410 program recorder and rewind it.

Press the little button beside the "speedometer" dial on the recorder. This resets it to
zero. (More exactly to "000.")

Enter: CSAI,JE

You will hear the buzzer give two "beeps." This is a signal to press two keys on the
recorder.

Press the REC and the PLAY keys together.

N ow you must press the

RETURN

key on the computer again.

79

The computer turns on the motor of the recorder and lets about 10 seconds go by so
that a "leader" is left on the tape. Then it starts to record the program on tape.

After about 20 seconds (for the short program) the computer will finish recording and
turn off the recorder motor. It will print:

READY

The dial on the recorder will read about 10.

MAKE A LITTLE LIST

You should write the name of the program on the front of the tape cassette, and put
after it the number showing on the dial.

This is where the program ends. (It starts at zero or "000" on the dial.)

CAREFUL! If this is an important program, I suggest you put a second copy on the
tape, right after the one you just did. (That is, don't rewind the tape. Just start where
the directions above say CSAVE and continue on.)

If this is a short practice program, just go on to LOADING THE PROGRAM below.

If,\>
'{~;

80

LOADING THE PROGRAM INTO THE COMPUTER

Let's practice loading the program we just saved.

First, enter NEW

Then LIST

to erase the program from the computer. (Otherwise we won't know if it loaded from
tape or just was left over from before.)

Rewind the tape.

Enter: CLOAD

Press: RETURN

The buzzer will beep once, telling you to press one key on the recorder.

Press the PLAY key on the recorder.

Then press RETURN on the keyboard again.

The computer will start the recorder motor and look for a program.

You will see the dial on the recorder start turning again.

After about 20 seconds, it will print:

Enter
READY
LIST

to see if the program got into the computer memory OK.

81

HOW MANY PROGRAMS ON ONE TAPE?

If you use the dial on the recorder and keep a good list, you can put many programs on
one tape. Just follow the directions starting at CSAVE. (Of course, you do not rewind
between programs.)

But the more programs you put on tape , the harder it is to find them again, even with
the help of the dial readings.

With many programs on a tape, it is more likely that you will make some mistake and
ruin a lot of programs.

When you start writing long programs (over 25 lines), you will probably put only one
program on each tape.

Assignment 14:

1. Write a short program (4 lines) and SAVE it on tape.
2. Do NEW, and write another short program. SAVE it.
3. Do NEW. Then load and run each program.

82

INSTRUCTOR NOTES 15 SOME SHORTCUTS

This lesson covers:

? used for PRINT
LET omission

used between statements on a line

The sprint is over. We have reached RND and the saving of programs to tape. All the
elements are in place for the student to write substantial programs. Programs will get
longer and some shortcuts will help in writing them.

The colon is used to shorten and clarify programs by putting several statements on a
line. A line should contain statements that have something in common.

The colon can mess up a program too. Some statements are reached by GOTO's. If you
move such a statement to the middle of another line, you will get an error message
upon running the program.

A more subtle error that even experienced programmers occasionally make is to move
a statement to the back of a line that has an IF in it. This changes the logic of the
program, as now the statement will be executed only if the IF condition is true.

On the other hand, the colon in BASIC allows one to put a little "subroutine"
consisting of several statements after an IF. This makes using a GOTO unnecessary for
reaching the extended segment of the program: a shorter and much less cluttered
program results. So the colon becomes a powerful and nontrivial means of improving
the clarity of the program.

QUESTIONS:

1. What shortcut does the "?" give?
2. How can you tell that the word LET is missing from a LET command?
3. Why is it sometimes good to put two statements on the same line, separated by

a colon?
4. What is wrong with each of these lines?

10 REM BEGINNING:GOTO 1000
10 GOTO 50:S$=IFAST"

83

LESSON 15 SOME SHORTCUTS

A PRINT SHORTCUT

Instead of typing PRINT, just type a question mark.

Run: 10 ? "HI"

The computer understands that the question mark means PRINT.

A LET SHORTCUT

These two lines do the same thing:

10 LET A=41 and 10 A= 41

also these two: 20 LET B $ = " HI" and 2 0 B $ = " HI"

You can leave out the word LET from the LET statement! The computer knows that
you mean LET whenever the line starts with a variable name followed by an "=" sign.

84

A LIST SHORTCUT

There are 3 ways to use the LIST command:

L I 8 T lists whole program
L I 8T 1!2l lists line 10
L I 8 T 1!2l t 34 lists all lines from 10 through 34

A COLON SHORTCUT

Put several statements on a line with a colon ":" between them. This saves space.

Instead of 1!2l Q=17*3
2!2l R=Q+2
3!2l PRINT R

you can write: 1!2l Q=17*3:R=Q+2:? R .

WHEN TO USE THE COLON SHORTCUT

Use the shortcut:

1. To make the program clearer.

Put similar statements on the same line. Example:

Instead of: 1!2l }{ =!2l
12 Y=!2l
14 Z=0

write: 1!2l }{=0:Y=!2l:Z=!2l

2. To make the program shorter.

3. To put a REM on the end of the line.

Example: 4!2l H=X+Y/GG

THE COLON AFTER AN IF COMMAND

You can make neater IF statements using colons.

Without: 5!2l IF A=!2l THEN
G!2l B=Q
G2 C=B*D

REM H 18 THE HEIGHT

GOTO 8!2l

GG PRINT "WRONG"
8!2l FOR •••

85

With colons: 50 IF A<>0 THEN B=Q:C=B*O:PRINT "WRONG"
80 FOR •••

All the commands in the path "A = 0 is TRUE" are on the line after THEN.

CAREFUL!

Do not put something on the end of an IF line that doesn't belong.

Example:

is not the same as:

35 IF A=B THEN PRINT "ALIKE"
40 Q=R

37 IF A=B THEN PRINT "ALIKE":Q=R

because Q = R in line 40 is always done, no matter if A = B is true or not. But Q = R in
line 37 is done only if A = B is true.

SOME MORE MISTAKES WITH COLONS

The REM and the GOTO commands must be last on a line. Anything following them is
ignored.

Correct: 35 P=3:REM P IS THE PRICE

Wrong: 35 REM P IS THE PRICE:P=3

Because the computer jumps to the next line after reading REM.

Correct:

Wrong:

40 R=P+l:GOTO 88
42 S=3

40 R=P+l:GOTO 88:S=3

Because the computer goes to line 88 and can never come back to do the S = 3
command.

COMMANDS, STATEMENTS AND LINES

Commands tell the computer to do something. So far we have used these commands:

PRINTt NEWt RUNt LISTt REMt INPUTt LETt
GOTOt 1Ft CSAVEt CLOAOt

Commands used in numbered lines may be called "statements." Used alone, they are
always called "commands."

Enter: LIST We say we have "entered a command."

86

But if we write this line in a program:

20 LIST We say that line 20 has one "statement;'
the LIST command.

Some lines have several statements, separated by colons.

30 DIM E$(28):PRINT:LET Z=55

is a line with three statements.

Assignment 15:

1. Write a program that uses each of these shortcuts at least once.
2. Write a "silly vacation" program. It asks how much you want to spend. Then it

tells where you should go or what you should do.
3. Write a "crazy" program that asks your name. The program has three funny

ways of saying you are crazy. The program randomly chooses one of these and
prints it after your name.

87

INSTRUCTOR NOTES 16 GRAPHICS CHARACTERS, POSITION

The POSITION command is used to move the output cursor to any point on the text
screen.

These commands are used for flexible manipulation of text and/or for graphics.

To make effective use of this command, the screen needs to be thought of as a 40
character across by 24 line down grid.

ATARI computers have graphics characters that appear when the CTRL key is held
down and letter and punctuations keys are pressed. These include various lines and
corners as well as diagonals and even card suit symbols.

QUESTIONS:

1. If you want to print the next word on line 12, what command do you use?
2. If you want to print the next character on line 6, indented by 20 spaces, what

command to you use?
3. Show how to print the two words "FAT" and "CAT" on the same line with

"CAT" printed first, starting at space 25, and then "FAT" printed starting at 5.

88

LESSON 16 GRAPHICS CHARACTERS, POSITION

IN GRAPHICS 0 MODE

There is room for 24 lines of typing on the screen. The lines are numbered from 0 at
the top to 23 at the bottom.

Each line can hold 40 characters. They are numbered from zero on the left to 39 on the
right.

Run this: 113 REM POSITION DEMO
15 PRINT "clear"
213 POSITION 13t113:PRINT "LINE 113 FIRST"
25 FOR T=l TO 51313:NEXT T
313 POSITION 13 t l:PRINT "LINE 1 NEXT"
35 FOR T=l TO 51313:NEXT T
413 POSITION 13t17:PRINT "LINE 17 LAST"

The second number in POSITION tells which row the printing cursor will go.

89

JUMPING ANYWHERE ON THE SCREEN

Run: 10
15
20
30
40
45
50

REM COLUMN AND RDW
PRINT "clear"
PRINT "WHICH RDW";:INPUT R
PRINT "WHICH COLUMN";:INPUT C
POSITION CtR:PRINT u*";
FOR T=1 TO 500:NEXT T
GOTO 20

Press BREAK to stop the program.

ERASING WHAT YOU WRITE

10 REM JUMPING HERE
12 POKE 752t1:REM TURN OFF CURSOR
15 PRINT "clear":POKE 752t1
20 X=INT(RND(9)*38)
25 Y=INT(RND(9)*24)
30 POSITION X tV: PRINT "HERE"
50 FOR T=l TO 200:NEXT T
80 POSITION X tV: PRINT"
80 GOTO 20

"

MAKING THE CURSOR INVISIBLE

Look at line 15. POKE puts a number 1 in the memory box 752. This box tells the
cursor to be "on" or "off."

When the box holds a zero, the cursor shows on the screen.

When the box holds a 1, the cursor is off.

90

GRAPHICS CHARACTERS FROM THE KEYBOARD

You are in the GRAPHICS 0 screen mode.

You can print graphics symbols directly from the keyboard.

Try this: Hold down the CTRL key and press any letter key, semicolon, comma, or
period. You see graphics symbols.

N ow press the "ATARI" key once, then again hold down the CTRL key and type
letters. This makes the inverse of the characters.

All together, there are 58 characters you can use.

These can be put in PRINT commands to make the program print a picture.

Use POSITION to put the parts of the picture in the right spots on the screen.

Run: 10 REM CHOO-CHOO
12 PRINT "clear"
20 POSITION 10,10
30 PRINT " .. """"" ..
32 POSITION 10 ,11
34 PRINT "
38 POSITION 10,12
38 PRINT " "

Assignment 16:

1. Use the RND() function to write your name at random places on the screen.
Make it write your name many times all over the screen.

2. Use POSITION to write your name in a large "X" on the screen.
3. Draw the rest of the train by using graphics in PRINT commands.

91

INSTRUCTOR NOTES 17 FOR-NEXT LOOPS

FOR, NEXT and STEP commands which make loops are described in this lesson.

The loop is made of two statements, one starting with FOR and the other with NEXT.
These commands may be separated by several lines and yet are strongly
interdependent. This could be a bit confusing to your student. The delay loop in a
previous lesson helps form the notion that the FOR ... and the NEXT are coupled. It
remains then to show the utility of repeating a set of commands in the middle of the
loop.

Nested loops are introduced using a case where the inside loop is a delay loop.

There are subtle points not discussed in this lesson that may arise sooner or later. The
loop is always traversed at least once because the test for exit is made at the NEXT
statement which can be reached only by going through the loop.

The FOR statement is evaluated just once at the time the loop is entered. It puts the
starting value of the loop variable into variable storage where it is treated just as any
other numerical variable. The STEP value, the ending value, and the address of the
first statement after the FOR are put on a stack.

From then on, all the looping action takes place at the NEXT command. Upon
reaching NEXT, the loop variable is incremented by the value of the STEP and
compared with the end value. If the loop variable is larger than the end value (or
smaller in the case of negative STEPs) NEXT passes control to the statement after
itself. Otherwise, it sends control to the statement after the FOR command.

Because the loop variable is treated just like any other variable by BASIC, it can be
used or changed in the body of the loop. Changing it should be done with care, as it
will be further changed by the NEXT which also uses it to decide if the loop has
ended.

QUESTIONS:

1. Write a loop that prints the numbers from 0 to 20.
2. Write a program loop that prints the numbers from 30 down to 20, by twos.
3. Write a pair of nested loops to print the numbers 100, 200, 300 and between

them, the numbers 1, 2, 3, 4, 5 on separate lines.

92

LESSON 17 FOR-NEXT LOOPS

Remember the delay loop? The computer counted from 1 to 2000 and then went on.

30 FOR T=l TO 2000:NEXT T

The computer is smarter than that. It can do other things while it is counting.

Run this: 10 REM COUNTING
20 PRINT "clear"
30 FOR 1=5 TO 20
40 PRINT I
50 NEHT I

The loop can start on any number and end on any higher number. Try changing line 30
in these ways:

MARK UP YOUR LISTINGS

30 FOR 1=100 to 101
30 FOR 1=-7 TO 13
30 FOR 1=1.3 TO 5.7

Show where the loop is by a bracket:

10 REM ON PAPER
20 PRINT "clear"

[

30 FOR 1=0 TO 7
40 PRINT I
50 NEHT I

93

THE STEP COMMAND

The computer was counting by one's in the above programs. To make it count by two's,
change line 30 to this:

30 FOR 1=10 TO 30 STEP 2

Assignment 17A:

1. Have the computer count by five's from zero to 100.

COUNT DOWN LOOPS

You can make the computer count down by using a negative STEP.

Try this:

Line 60 is the timing loop.

10 REM *** APOLLO 11 ***
20 PRINT "clear"
30 PRINT "T MINUS 12 SECONDS AND COUNTING"
35 FOR T=l TO 500:NEXT T
40 FOR 1=11 TD 0 STEP -1
50 PRINT I:PRINT "buzz"
80 FOR J=l TO 500:NEXT J:REM TIMING LOOP
70 NEXT I
80 PR I NT "ALL ENG I NES RUNN I NG. LIFT OFF. "
81 FOR T=l TO 500:NEXT T
82 PRINT "\AlE HAI)E A LIFT OFF."
83 FOR T=l TO 500:NEXT T
84 PRINT "32 MINUTES PAST THE HOUR."
85 FOR T=l TO 500:NEXT T
88 PRINT "LIFT OFF ON APOLLO 11."

(If you got tired of all those FORT = ... relief is at hand. When we get to GOSUB. ..
it will save all that repetition.)

NESTED LOOPS

In this program, we have one loop inside another.

The outside loop starts in line 40 and ends in line 70.

The inside loop is in line 60.

These are 'nested'. It is like the baby's set of toy boxes which fit inside each other.

94

LOOP VARIABLES

To make sure that each FOR command knows which NEXT command belongs to it, the
NEXT command ends in the 'loop variable' name. Look at line 60:

60 FOR J=1 TO 500:NEXT J

J is the loop variable. And for the loop starting in line 40:

40 FOR 1=12 TO 0 STEP -1
• • •

70 NEXT I

I is the loop variable.

BADLY NESTED LOOPS

The inside loop must be all the way inside:

Right:

II :g
FOR X=3 TO 7
FOR Y=3 TO 7
PRINT }{*Y
NEXT Y

60 NE>{T }{

~;~
FOR }{ = 3 TO 7
FOR Y=3 TO 7

40 PRINT X*Y
50 NE>{T }{

60 NEXT Y

Wrong:

95

Assignment 178:

1. Write a program that prints your name 15 times.
2. Now make it indent each time by 2 spaces more. It will go diagonally down the

screen.
3. Now make it write your name 24 times, starting at the bottom of the screen

and going up.
4. Now make it write your name on one line, your friend's name on the next and

keep switching until each name is written 5 times.
5. Make the locomotive picture in the last lesson move across the screen.

Remember: "Draw, erase, draw, erase " Use the POSITION command to
put each new locomotive in the correct spot. Then a delay loop. Then erase by
writing blanks to the same spot. Then draw the new picture. Use a loop whose
loop variable gives the column number where the picture starts.

96

INSTRUCTOR NOTES 18 EDIT AND RUN MODES, THE
CALCULATOR

This lesson explains the EDIT MODE and the RUN MODE of the computer.

We placed this material rather late in the book, despite its fundamental nature,
because it is abstract and because we did not wish to slow down the race to mastery of
the core commands in BASIC.

However, you may want to take up this chapter at some earlier time in the course. The
only commands used in this lesson are:

Other names for these modes are:

Edit mode:

Run mode:

PR I NT and RUN

direct mode
calculator mode

deferred mode

immediate mode
command mode

The edit mode is the home base of the computer user. In the edit mode, you enter a
line. The characters go into the input buffer.

When RETURN is pressed, the computer looks to see if the liIie starts with a number.
If so, it stores the line in the program space, making room at the right location so that

• the lines are numbered in order.

If the line doesn't start with a number, the computer executes the line right out of the
input buffer. Most commonly, the line consists of a single command, like LIST or
RUN. But the immediate mode is a very powerful one in that fairly long one line
programs can be executed. This feature is handy both in the program design phase,
where arithmetic concerning the design can be done in between entering lines of the
program, and during debugging.

QUESTIONS:

1. What does the computer do in the "RUN mode"?
2. How can you tell if the computer is in the "edit mode"?
3. What 3 kinds of things can you do in the edit mode?
4. If you enter a line that starts with a line number, what happens to the line?
5. If you enter a line that does not have a line number, what happens?

97

LESSON 18 EDIT AND RUN MODES, THE CALCULATOR

Enter: NEW

press SH I FT CLEAR

You are ready to begin the lesson.

EXECUTION AND RUNNING

We mean "execution" like the soldier executing the command "Left Face:' not
"execution by firing squad."

"Execute a program" means the same as "run a program."

DEFERRED EXECUTION

Enter and run this program:

10 PRINT "HI"

This is the usual way to make and run programs, and is called "deferred execution."

In "deferred execution" the computer waits until you enter the "RUN" command
before executing the program.

Rule for Deferred Execution: If the line starts with a number, it is put into memory.
The line becomes part of the program in the computer's memory. The program is executed
by the "RUN" command.

98

•

IMMEDIATE EXECUTION

Here is a short cut. Enter this (no line number in front):

PRINT "HI"

This time the computer printed "HI" right away, without waiting for you to enter
RUN. This is called "immediate execution."

Rule for Immediate Execution: If the line does not start with a number, the computer
executes the command right away (as soon as you press the RETURN key).

Try this longer example:

FOR 1=1 TO 20:PRINT I:NEXT I:PRINT:PRINT"DONE"

Rule: In immediate execution you can run a one line program that has several state­
ments separated by colons.

ASLEEP OR AWAKE?

People act one way if they are awake and another way if they are asleep. They have
two "operating modes."

You can tell if they are asleep because they snore. (Well, not all people snore, but to
explain how computers are like people, let's pretend that all sleeping people snore.)

The computer has two operating modes too. They are called the "edit mode" and the
"RUN mode."

99

THE EDIT MODE

Press the BREAK key.

You see READY and the cursor square. READY is called a "prompt" and says that the
computer is in the "edit mode" of ATARI BASIC. The READY is the "snoring" of the
computer when it is in the edit mode.

The square is called the "cursor." It tells us that the computer is waiting for us to type
something. The next letter we type will be on the screen at the cursor square.

While the computer is in the edit mode:

You can enter programs by typing lines that start with numbers.

You can use the computer like a pocket calculator. Big pocket!

You can correct errors in programs. This is called "editing" a program and gives the
"edit mode" its name. Later in the book we will learn more about how to edit
programs.

THE CALCULATOR

You can do arithmetic in the Edit Mode. Try this:

PRINT 3+7

The computer prints the answer "10':

Of course, you can use the PRINT shortcut of using "?" in place of "PRINT."

? 3+7

100

THE RUN MODE

Enter RUN to leave the EDIT MODE and go to the RUN MODE.

While the computer is in the run mode:

The program in memory runs.

When the program is finished, the computer automatically goes back to the edit mode.

Assignment 18:

1. Explain what "immediate execution" means. Use the computer as a calculator
to do some arithmetic problems.

2. Explain what "deferred execution" means. Write a program that has several
lines. In one line it prints "22 plus 67 is" and then in another line does the
addition and prints the answer.

3. How can you tell if the computer is in the edit mode?
4. What does the computer do in the RUN mode?
5. What mode does the computer enter when the program is done running?
6. How can you tell where the next letter you type will appear on the screen?

101

INSTRUCTOR NOTES 19 DATA, READ, RESTORE

This lesson concerns the DATA statement. READ gets data from the DATA
statements and RESTORE puts the pointer back to the beginning of the first DATA
statement.

The storing of data in DATA statements has a few confusing aspects when first
confronted. You can never change any of the data in the statement unless you rewrite
the program. Of course, you can READ the data into a variable box, then change
what's in the box.

You must READ the data to be able to use it. It must be read in order, starting from
the beginning. If you want to skip some data, you have to read and throwaway the
stuff before it. (This procedure is not discussed in the lesson, and may be mentioned to
the student when other ideas about DATA are well entrenched.)

The idea of a "pointer" is used in this lesson. A pencil in the hand of the instructor,
pointing to items in a DATA statement, helps clarify this concept.

U sing DATA saves some error prone typing if you have a lot of data.

However, it is also useful in cases where there is not really very much data because it
clearly separates the actual data from the processing of the data. This helps when
debugging programs.

One of the most common uses of DATA is to fill arrays with initial values.

QUESTIONS:

1. What happens if you try to READ more data items than are in the DATA
statements?

2. What rule tells you where to put the DATA statements in the program? How
about where to put the READ statements?

3. Can you put numerical data and string data into the same DATA statement?
4. Can you change the items in a DATA statement while the program runs?

102

LESSON 19 DATA, READ, RESTORE

TWO KINDS OF DATA

There are two kinds of data in your programs:

1. The data you INPUT or GET through the keyboard.

10 REM FIRST KIND OF DATA
15 DIM P$(40)
20 PRINT"clear"
30 PRINT"YOUR PET PEEI)E" ; : INPUT
40 PRINT"REALLY!"
50 PRINT"YOU DON'T LIKE"
B0 PRINT P$

P$

In this program P$ is data entered by the user as the program runs.

2. The data that is stored in the program at the time it is written.

10 REM THE SECOND KIND OF DATA
20 PRINT"clear"
30 X=2
40 Y=3
50 PRINT X+Y

In this program X and Yare data stored in the program by the programmer when
she wrote the program.

STORING LOTS OF DATA

It is OK to store small amounts of data in LET statements. But it is awkward to store
large amounts of data that way.

Use the DATA statement to store large amounts of data.

Use the READ statement to get the data from the DATA statement.

10 REM LOTS OF DATA
15 DIM D1$(10) ,D2$(10) ,D3$(10) ,D4$(10)
20 PRINT"clear"
30 DATA SUNDAY,MONDAY,TUESDAY,WEDNESDAY,THURSDAY
FRIDAY,SATURDAY
1I0 READ D1$
1I2 READ D2$
1I11 READ D3$
liB READ D4$
B0 PRINT D1$,D2$

After the program runs, box Dl$ holds the first item in the DATA list (SUNDAY) and
box D2$ holds the second (MONDAY), etc.

103

STRANGE RULES

1. It doesn't matter where the DATA statement is in the program.

Do this: Change line number 30 in the above program to line number 90. Run the
program. It works just the same.

2. It doesn't matter how many DATA statements there are.

Do this: Break the DATA statement into two:

80 DATA SUNDAY,MONDAY,TUESDAY
81 DATA WEDNESDAY,THURSDAY,FRIDAY,SATURDAY

Run the program. It works just the same as before.

IT IS POLITE TO "POINT"

READ uses a pointer. It always points to the next item to be read.

You can't see the pointer. Just imagine it is there.

When the program starts, the READ pointer points to the first item in the first DATA
statement in the program. (That is, the DATA statement with the lowest line number
of all DATA statements in the program.)

Each time the program executes a READ command, the pointer moves to the next
item in the DATA list.

If the pointer gets to the end of one DATA statement, it automatically goes to the next
DATA statement. (That is, to the DATA statement with the next higher line number.)

It doesn't matter if there are a lot of lines between.

Do this: Change line 90 back to line 30. (Leave line 91 alone.)

30 DATA SUNDAY, MONDAY, TUESDAY
• • •

81 DATA WEDNESDAY,THURDSAY,FRIDAY,SATURDAY

Run the program. It works just the same.

104

FALLING OFF THE END OF THE DATA PLANKS

When the pointer reaches the last item in the last DATA statement in the program,
there are no more items left to read. If you try to READ again, you will see an error
message:

ERROR-

BACK TO SQUARE ONE

At any point in the program, you have only two choices for the READ pointer.

1. You can do another READ; then the pointer moves ahead one item.
2. You can command RESTORE; then the READ pointer is put back to the

beginning of the first DATA statement in the program.

105

MIXTURES OF DATA

The DATA statement can hold strings or numbers in any order.

But you must be careful in your READ command to have the correct kind of variable
to match the kind of data.

Correct: 70 DATA 77tFUZZ
75 READ N
80 READ B$

Wrong: 70 DATA 77tFUZZ
75 READ B$ OK, B$ box holds "77"
80 READ N TYPE MISMATCH ERROR

You can't put "FUZZ" into a number box.

ASSignment 19:

1. Write a program naming your relatives. When you ask the computer
"UNCLE" it gives the names of all your uncles. DATA statements will have
pairs of items. The first item is a relation like FATHER or COUSIN. The
second item is a person's name. Of course, you may have several brothers, for
example, each with a DATA statement.

106

INSTRUCTOR NOTES 20 SOUND

The SOUND command turns any of 4 voices on and off. You can set the pitch, loudness
and "distortion" of each voice.

Musical notes use a "distortion" value of 10 (a square wave form). The other distortion
numbers eliminate certain pulses from the square wave form, giving various amounts
of roughness or hissing and popping.

The sound must be turned off after it is turned on.

When using sound in graphics situations, you get the most elaborate effects if you
interweave the sound commands with the "move the graphics" commands.

The DATA command is useful for storing the notes in music.

QUESTIONS:

1. Which pitch numbers give deep sounds? Which give high notes?
2. How do you turn the sound off?
3. How do you make the most musical sounding note?
4. How do you make a hissing noise?
5. What number gives the loudest noise? The softest?
6. How do you make a "motor" sound?

107

LESSON 20 SOUND

The ATARI has 4 sound voices. All can "sing" at the same time.

They can be used in music and in other sound effects.

Examples: 30 SOUND V, p, D, L
30 SOUND 0,121,10, 8

VOICE

variable

I) for "voice"
P for "pitch"
D for "distortion"
L for "loudness"

value

0, 1,2, or 3
from 1 to 255
even numbers from 0 to 14
from 0 to 15

The voices are all alike. It does not matter which one you pick to use.

There are 4 voices so you can use 2, 3 or 4 together if you want.

108

PITCH

Pitch tells whether you have a "high note" or "low note." The bigger the number, the
deeper the pitch. Here is a tempered scale of musical notes:

note number

C (below middle C) 243
C # 229
D 216
D # 204
E 193
F 182
F # 172
G 162
G # 153
A 144
A # 136
B 129
C (middle C) 121
C # 115
D 108
D # 102
E 96
F 91
F # 86
G 81
G # 77
A 72
A # 68
B 64
C (above middle C) 60

These notes may be a little out of tune.

This is the reason:

only integers are allowed in the SOUND command

but: decimal numbers are needed for notes in tune

You get very high notes for pitch numbers near 10. You may not be able to hear
anything for pitch number 2, 1, or o.

109

DISTORTION

Change the "timber" or sound quality by changing the distortion number.

The purest musical notes come from distortion 10.

Sound effects may want distortion numbers different from 10.

Try other even numbers in the program below.

Can you make thunder?, snake hissing?, motor boat?, laser gun?

LOUDNESS

Zero turns the voice off.

N ormalloudness is 8.

The loudest is 15.

Of course, you can turn up the TV to get a louder sound.

CAREFUL! If more than one voice is used at the same time, the sum of the loudness
numbers should not be bigger than 32.

Example: 30 SOUND 0,200,10,9
32 SOUND 1, 35,8 Ii 1
34 SOUND 2,155,12,9

This is OK because 9 + 11 + 9 is only 29.

110

ONE VOICE

DUET

10 REM ONE IJOICE
20 PRINT "IJOICE ZERO"
25 PRINT "WHAT PITCH <1 TO 255>"
28 INPUT P
30 PRINT "WHAT DISTORTION <0 TO 14, EVEN>"
31 INPUT D
35 PRINT "HOW LOUD <0 TO 15>"
38 INPUT L
40 SOUND V,P,D,L
45 FOR T=l TO 1000:NEXT T
50 GOTO 20

10 REM DUET
20 PRINT "IJOICES 0 AND 1 "
25 PRINT "PITCH 0":INPUT
30 PRINT "PITCH l":INPUT
40 SOUND 0,P0t10,8
42 SOUND 1,P1t10,8
45 FOR T=l TO 1000:NEXT T
50 GO TO 20

P0
Pi

Assignment 20:

1. Make a list of sounds that each distortion number gives. For each distortion
number 0, 2, 4, 6, 8, 10, 12, 14 try pitch 244, 122, 66, and 33. Write a little note
to tell what the sound is like. Think of a game or program that the sound would
be good for.

2. Write a program to playa short tune, like "Row, Row, Row Your Boat" or
"Mary Had A Little Lamb." Use a DATA statement to store the pitch
numbers.

111

INSTRUCTOR NOTES 21 COLOR GRAPHICS

This lesson introduces the commands GRAPHICS 3, SETCOLOR, COLOR, PLOT,
and DRAWTo.

If you have a black and white TV or monitor then you can still use graphics. In fact,
the drawings will be somewhat crisper.

If you have a color monitor, then the student should set up its controls for pleasing
color. The pink and gold colors are sensitive to correct setting of the TV color controls.

The GRAPHICS 3 mode uses spots (pixels or PIcture ELements) that are rather
large. They are rectangles and each is the size of a letter in text mode of display.

GRAPHICS 5 and GRAPHICS 7 use smaller pixels. It will be easy for the student to
use all other graphics modes after mastering GRAPHICS 3.

Drawing pictures dot by dot is quite tedious. It is a little less work when using the
DRAWTO command.

In any case, use of graph paper to block out the picture first is often helpful. I
recommend using a variable to designate a corner (or the center) of the drawing, with
offsets from the corner for the other points and lines in the drawing. Then it is easy to
move the whole figure if necessary for animation or just for correction of the
composition.

QUESTIONS:

1. If you give the command GRAPHICS 3, what happens?
2. How do you "pour paint into the pots" if you want faint pink in pot 2?
3. What brush must you use for pot 2? What command "picks up the brush"?
4. How many colors are there to choose from?
5. How many colors can you use at once?
6. What range of numbers are allowed for X and Y in the command PLOT X, Y?
7. Where will this line be on the screen?

20 PLOT 1,5 : DRAWTO 1 ,20

112

LESSON 21 COLOR GRAPHICS

Before you use color graphics, you have to tell the computer "which kind" of graphics
you will use. In this lesson you will use only GRAPHICS 3.

In lesson 29 you will learn how to use the rest of the color graphics modes.

PAINT POTS

The ATARI has 5 "paint pots" numbered 0 to 4.

Before using color, you must use the SETCOLOR command to "pour paint" into the
pots.

SETCOLOR PtCtB

P is the pot number (13 t 0 4)
C is the color put into the pot (13 t 0 1 5)
B is the brightness of the color (even numbers 13 to 14)

You have 15 colors to choose from, but you can never use more than 5 colors at the
same time (because you have only 5 paint pots.)

In GRAPHICS 3 you can only use pots 0, 1, 2, and 4.

13 GREY 8 BLUE
1 GOLD 8 LIGHT-BLUE
2 ORANGE 113 TURQUOISE
3 RED-ORANGE 1 1 GREEN-BLUE
4 PINK 12 GREEN
5 PURPLE 13 YELLOW-GREEN
G PURPLE-BLUE 14 ORANGE-GREEN
7 BLUE 15 LIGHT ORANGE

113

PAINT BRUSHES

You have 5 "paint brushes" to dip into the paint pots. Each brush belongs in a certain
pot. In GRAPHICS 3 these are the brushes you use.

Brush 1 in pot 0
Brush 2 in pot 1
Brush 3 in pot 2
Brush 0 in pot 4

(Sorry, the numbers don't match up!)

Pot 4 has a special use. The paint you put into pot 4 is poured directly on the screen as
background color. You can also dip brush COLOR 0 into it and erase any dot you
painted earlier.

paint pot paint brush

SETCOLOR 0,C,B COLOR 1
SETCOLOR 1 , C , B COLOR 2
SETCOLOR 2,C,B COLOR 3
SETCOLOR lj,C,B COLOR 0 and background

You "pick up" a brush to paint with by using the COLOR command.

114

A TWO COLOR PROGRAM

Run: 10 REM ((((SMILE))))

15 DIM A$ (1)
20 GRAPHICS 0
25 PRINT "BACKGROUND COLOR <0- 15)": INPUT
26 PRINT "PICTURE COLOR <0- 15)";INPUT C
31 GRAPHICS 3+16
32 SETCOLOR 4,BC,8
35 SETCOLOR 0,C,8
40 COLOR 1
42 PLOT 20,10
44 PLOT 21 til
46 PLOT 22 t 12
48 PLOT 23,12
50 PLOT 24,12
52 PLOT 25 ,11
54 PLOT 26,10
60 FOR T=l TO 1000:NEXT T
80 INPUT "AGAIN? <YIN> " ;A$
85 IF A$="Y" THEN GOTO 20
88 GRAPHICS 0

save to tape

First, make the background pink and the smile gold and adjust your TV or monitor
color controls to give the right colors.

PLOT Z2;ZZ

115

BC

What happens?

Line 20 Sets the screen mode to the text mode we have been using

Line 25 Gets the color for the background

Line 26 Gets the color for the smile.

Line 31 Changes the screen to "graphics 3." The" + 16" means that the whole screen is
graphics. Otherwise 4 lines of text appear at the bottom.

Line 32 Sets the background color

Line 35 Sets paint pot 0 to the chosen color

Line 40 Use brush 1. (It dips into pot zero.)

Line 42 Puts a dab of paint at 20 across and 10 down

THE PLOT COMMAND

PLOT a t13 Puts a spot 4 lines down and 13 "squares"
across.

Rule: The command PLOT X, Y means put a spot on the screen at point X across and
Y down. For a GRAPHICS 3 screen, X is a number or variable in the range 0 to 39. Y
is in the range 0 to 23.

THE DRAWTO COMMAND

Change line 44 to read:

aa DRAWTO 3.8

It ruins the picture but shows how to draw lines.

Rule: The DRAWTO X, Y command draws a line from where the cursor is now to the
point X across and Y down.

116

Assignment 21 :

1. Add lines 27 and 28 to the SMILE program so the user can choose the
brightness to go in lines 32 and 35.

2. Put eyes and a nose on the face in the "smile" program.
3. Use the PLOT and the DRAWTO commands to draw a picture in 3 colors on

the screen. (Also one background color.)
4. Add to the number guessing game in lesson 13 so that a colored star shows

when the correct answer is guessed. Use a timing loop so that the star shows
for a few seconds before the game starts again.

5. Write a program to draw "Sinbad's Magic Rug." Let the user choose which
colors to put in the rug. Then draw a pattern on the screen.

117

INSTRUCTOR NOTES 22 ASCII CODE

This lesson treats the ASCII code for characters, and the functions ASCO and CHR$O
that change characters to numbers and vice versa.

The ASCII code consists of numbers from 0 through 127. Each upper and lower case
letter, digit and punctuation mark is assigned an ASCII number. Also included are
numbers for certain functions such as "line feed" and "bell" that teletypes use.

The ASCII code is primarily intended to standardize signals between hardware pieces
such as computers with printers, terminals, other computers, etc. But within programs
the ASCII numbers also are useful. The letters are numbered in increasing order and
so the ASCII numbers are useful in alphabetizing routines. The numerical digits are
also in order, and the punctuation marks also have ASCII numbers.

The ATARI uses a modified set called ATASCII. It excludes the "teletype" codes but
includes graphics characters. ATASCII numbers between 128 and 255 are the inverses
of those between 0 and 127.

The GET command treated in the next lesson uses ATASCII numbers.

QUESTIONS:

1. Does ASC(S$) return a string or a number for its value?
2. Does ASC(S$) have a string or a number for its argument?
3. Same two questions for CHR$(N).
4. Which letter has the larger ASCII code number, B or W?
5. Do you know the ASCII code for the character "1"? Is it the number 1?

118

LESSON 22 ASCII CODE

NUMBERING THE LETTERS IN THE ALPHABET

"That is easy:' you say. "A is 1, B is 2, C is 3 ... "

Well, for some strange reason it goes like this: A is 65, B is 66, C is 67

These numbers are called the ASCII code of the characters. ASCII is pronounced
"ask-key."

The punctuation marks and number digits have ASCII code numbers too.

ASCII AND ATASCII CHARACTERS

The ASCII numbers are used by all computer brands.

The ATARI uses a special kind of ASCII called ATASCII.

ATASCII is the same as ASCII for all the letters, numbers and punctuation. These are
the numbers 32 to 127 (except 96).

ATASCII is different from ASCII in numbers 0 to 31 which are graphics characters.

The ATASCII numbers 128 to 255 are usually the inverses of the characters 0 to 127.

119

CHR$() MAKES NUMBERS INTO CHARACTERS

Use CHR$() to change ATASCII code numbers into a string holding one character.

Run:
10 REM ___ DISPLAY ALL THE ATASCII NUMBERS __
11 REM
20 PRINT "clear"
30 FOR 1=0 TO 255
40 PRINT I, CHR$(I)
50 FOR T=l TO 500:NEXT T
80 NEXT I

As this program runs, you see the number and its ATASCII character. Something
funny happens for numbers 27 to 31, 125 to 127, 155 to 159 and 253 to 255.

These numbers are control characters. Look at the list of ATASCII numbers in your
ATARI 400/800 Basic Reference Manual to see what they do.

Number 253 makes the buzzer sound.

ASC() CHANGES CHARACTERS INTO NUMBERS

Use the ASC() function to change characters into ASCII numbers.

Run: 10 REM --- WHAT NUMBER IS THIS KEY? ---
15 DIM C$(l)
17 OPEN #1,4,0,"K:"
20 PRINT "clear"
25 PR I NT "PRESS KEYS TO SEE ASC I I NUMBER"
30 GET #l,C
35 C$=CHR$(C)
40 PRINT C$;"
50 GO TO 30

" ;ASC(C$)

Tryout some letters, digits, and punctuation. Try also the RETURN key and other
keys.

Try this: Hold down CRTL and press keys. Hold down SHIFT and press keys.

Press BREAK to end the program.

GET and OPEN are explained in the next lesson.

120

II

ALPHABETICAL LIST

What good are the ASCII numbers? Well, they can help in making alphabetical lists.

Run: 10 REM ALPHABETIZE
15 DIM A$(1), B$(1)

20 PRINT
30 PRINT"GIVE ME A LETTER: ";INPUT A$
35 PRINT
lI0 PRINT"GIVE ME ANOTHER: "; INPUT B$
lI5 A=ASC(A$):B=ASC(B$)
lI7 REM PUT IN ALPHABETICAL ORDER BY
LIS REM SEEING WHICH HAS THE LOWER ASCII NUMBER
50 IF A>B THEN X=A:A=B:B=X:REM SWAP THEM
55 PRINT
60 PRINT"HERE THEY ARE IN ALPHABETICAL ORDER"
65 PR I NT: PR I NT CHR$ (A) ; " "; CHR$(B)

Look at these two functions: AS C () and C H R $ () •

ASC() gives you the ASCII number for the FIRST character in the string.

CHR$() does the reverse. It gives you the character belonging to each ASCII number.

Assignment 22:

1. Write a program which asks for a word. Then it rearranges all the letters in
alphabetical order.

2. Write a program that speaks "double dutch." It asks for a sentence then
removes all the vowels and prints it out.

121

INSTRUCTOR NOTES 23 SECRET WRITING AND THE GET
COMMAND

This lesson concerns the GET command.

GET is a method of requesting a single character from the keyboard. The computer
waits until the keystroke is made.

There is no screen display at all. No prompt or cursor is displayed while waiting and
the keystroke, when made, is not echoed to the screen.

The utility of the GET command lies just in this fact. For example, a requested word
may be received with a series of GET's without displaying it to bystanders.

Another advantage over INPUT is that no RETURN keypressing is required. This
makes GET useful in "user friendly" programming.

To use GET you must first OPEN the keyboard as an input device. Then the GET
command obtains a keystroke as an ATASCII number. Use CHR$() to convert the
number to a character.

QUESTIONS:

1. Compare INPUT and GET. One gets one letter at a time, the other gets whole
words and sentences. One has a cursor, the other not. One prints on the
screen, the other not. One needs the RETURN key, the other not. Which does
which?

122

LESSON 23 SECRET WRITING AND THE GET COMMAND

THE INPUT COMMAND

Examples: 10 INPUT A$
10 INPUT N
10 INPUT NAME$,AGE,DAY,MDNTH$,YEAR

The "?" and cursor square show that you should INPUT a letter, word, sentence or
number.

THE GET COMMAND AND SECRET WRITING

The GET command is different from INPUT. It gets a single character from the
keyboard.

Nothing shows on the screen:

no question mark will show on the screen
no cursor will show
what you type will not show.

You do not need to press the RETURN key afterward. The computer waits for a key to
be pressed then immediately goes on with the program.

123

Use GET in guessing games for entering the word or number to be guessed without
the other player being able to see it.

Run this program: 10 REM -----GET-----
15 DIM K $ (1)
17 OPEN #1,lI,0,"K:"
20 PRINT "clear"
30 PRINT "PRESS ANY KEY"
lI0 GET # 1 , K
lI5 K$=CHR$(K)
lI7 FOR T=1 TO 500:NEXT T
50 PRINT "THE KEY YOU PRESSED WAS";K$
55 FOR T=1 TO 500:NEXT T
99 GO TO 20

Line 17 is the OPEN command. OPEN tells the computer to listen to the keyboard
under a different name: "I/O device #1."

Line 40 is the GET command. GET #1,K says: "listen to I/O device number 1 and put
what he says into variable box K:'

The number the keyboard sends to box K is the ATASCII number of the key that was
pressed.

MAKING WORDS OUT OF LETTERS

The GET command gets one letter at a time. To make words, glue the strings.

10 REM GET A WORD
15 DIM W$(lI0) ,L$(1)
17 OPEN #1tllt0t"K:"
20 PRINT "clear"
30 PR I NT" TYPE A WORD, END IT WITH A PER I 00, "
35 W$="": REM WORD STRING IS EMPTY
39 1=1
lI0 GET #1 tQ:L$=CHR$(Q):REM GET A LETTER
50 IF L$="," THEN GoTo 80:REM TO TEST FOR END
60 W$(I)=L$:I=I+1:REM ADD LETTER TO END OF WORD
65 GoTo lI0: REM TO GET ANOTHER LETTER
80 REM WORD IS FINISHED
85 PRINT W$

How does the computer know when the word is all typed in? It sees a period at the end
of the word. Line 50 tests for the period and ends the word when it finds the period.
Line 60 glues the letters together to make a longer string. Lesson 26 tells more about
gluing strings.

124

Assignment 23:

1. Write a program that has a "menu" for the user to choose from. The user
makes her choice by typing a single letter. Use GET to get the letter.
Example:

PRINT "WHICH COLOR? <R=RED. B=BLUE. G=GREEN>"

2. Write a sentence making game. Each sentence has a noun subject, a verb, and
an object. The first player types a noun (like "The donkey"). The second player
types a verb (like "sings"). The third player types another noun (like "the
toothpick."). Then clear the screen and print the sentence. Use GET so no
player can see the words of the others. You may expand the game by having
adjectives before the nouns.

125

INSTRUCTOR NOTES 24 PRETTY PROGRAMS, GOSU8,
RETURN, END

This lesson covers subroutines. The END command is also treated here because the
program will usually have its subroutines at high line numbers and so must END in the
middle line numbers.

Subroutines are useful not only in long programs but in short ones where "chunking"
the task into sections leads to clarity.

One of the hardest habits to form in some students (and even some professionals) is to
impose structure on the program. Structuring has gone by many names such as
"structured programming" and "top down programming" and uses various techniques
to discipline the programmer.

Call the student's attention to ways that structuring can be done and the advantages in
clarity of thought and ease of programming that result. In this book, writing good
REM statements and using modular construction in the program are the main
techniques offered.

GOSUB was put in BASIC for making modules. This lesson shows modular
construction by example in the outline to the hangman program.

QUESTIONS:

1. What happens when the command END is executed?
2. How is GOSUB different from GOTO?
3. What happens when RETURN is executed?
4. If RETURN is executed before a GOSUB, what happens?
5. What does "call the subroutine" mean?
6. How many END commands are you allowed to put in one program?
7. Why do you want to have subroutines in your programs?

126

LESSON 24 PRETTY PROGRAMS, GOSUB, RETURN, END

Run this program then save it to disk:

100 REM ------------------ MAIN PROGRAM
101 REM
110 PRINT "READY TO GO TO THE SUBROUTINE"
120 GOSUB 200
130 PRINT "BACK FROM THE SUBROUTINE"
133 PRINT
135 PRINT "GO TO THE SUBROUTINE AGAIN"
140 GOSUB 200
150 PRINT "BACK AGAIN"
180 END
188 REM
200 REM ------------------ SUBROUTINE
201 REM
210 PRINT "IN THE SUBROUTINE"
215 FOR T=1 TO 1000:NEXT T
217 PRINT "buzz"
280 RETURN

This is the skeleton of a long program. The main program starts at line 100 and ends at
line 190.

Where there are PRINT commands, you may put many more program lines.

The END command in line 190 tells the computer that the program is over. The
computer goes back to the edit mode.

Line 120 and 140 "call the subroutine." This means the computer goes to the lines in
the subroutine, does them, and then comes back.

The GOSUB 200 command is like a GO TO 200 command except that the computer
remembers where it came from so that it can go back there again.

The RETURN command tells the computer to go back to the statement after the
GOSUB.

127

WHAT GOOD IS A SUBROUTINE?

In a short program, not much.

In a long program, it does two things:

1. It saves you work and saves space in memory. You do not have to repeat the
same program lines in different parts of the program.

2. It makes the program easier to understand and faster to write and debug.

THE END COMMAND

The program may have zero, one, or many END commands.

Rule: The END command tells the computer to stop running and go back to the Edit
Mode.

That is really all it does. You can put an END command anywhere in the program-for
example, after THEN in an IF statement.

MOVING PICTURES

1121 REM ??? JUMPING J ???
12 PRINT "clear"
13 GRAPHICS 3+16
111 SETCOLOR 121.6.8
18 SETCOLOR 1I.12I.121
2121 X=15:Y=1121:D=1
25 FOR J=l TO 1121

128

26 FOR I=l TO 10
30 COLOR l:GOSUB 100:REM DRAW
35 COLOR 0:GOSUB 100:REM ERASE
45 Y=Y-D
50 NEXT I
55 D=-D
613 NE>{T J
89 END
1130 REM
1131 REM DRAW THE J
1132 REM
110 PLOT X,Y:DRAWTO X+6,Y
115 PLOT X+3,Y+l:DRAWTO X+3,Y+7
120 PLOT X,Y+7:DRAWTO X+2,Y+7
125 PLOT X,Y+6
180 RETURN

The picture is the letter "J." The subroutine starting in line 100 draws the "J." Before
you GOSUB 100 you pick what color you want the "J" to be, using a COLOR
command. Look at line 30 and at line 35. If you pick color number two, then the
subroutine erases a "J" from that spot.

The subroutine draws the "J" with its upper left corner at the spot X, Y on the screen.
When you change X or Y (or both) the "J" will be drawn in a different spot.

The letter "D" tells how far the "J" will move from one drawing to the next. Line 20
makes "D" equal to 1, but line 55 changes D to -1 after 10 pictures have been drawn.

Line 45 says that each picture will be drawn at the spot where Y is larger than the last
Y by the amount D.

Assignment 24A:

1. Enter the JUMPING J program and run it. Then make these changes:

Change the subroutine so it prints your own initial.

Change the color of your initial to blue.

Change the "jumping" to "sliding" (so the J moves horizontally instead of
vertically).

Change the starting point to the lower right hand corner instead of the middle
of the screen.

Change the distance the slide goes to 12 steps instead of 10.

Change the size of each step from 1 to 2.

Change the "sliding" so it slides uphill. Use

}{=X+D:Y=Y-D

Change the program so the initial changes color from grey (color 0) through all
the colors 1;0 orange (color 15) as it jumps.

129

HOW TO WRITE A LONG PROGRAM

Let's write a hangman game. This is a word guessing game where you draw another
part of the hanging person each time you make a wrong guess for a letter.

First make an outline. You can do this on paper or right on the screen. If you have
trouble deciding what to do, then just play through a game on paper and keep track of
what happens. Then the program has to do the same things.

The outline of could be:

10 REM --- HANGMAN GAME
200 REM INSTRUCTIONS
300 REM GET THE WORD TO GUESS
400 REM MAKE A GUESS
500 REM TEST IF RIGHT
600 REM ADD TO THE DRAWING
700 REM TEST IF GAME IS OVER
800 REM END GAME MESSAGE

After making this outline, I filled in more details.

10 REM --- HANGMAN GAME - __
88 REM
100 REM MAIN LOOP
101 REM
115 DIM Y$(l)
120 PRINT" NEED INSTRUCTIONS? <YIN> "
121 INPUT Y$
122 IF Y$="Y" THEN GoSUB 200
130 GoSUB 300:REM GET WORD
132 STOP
135 GoSUB 400:REM MAKE GUESS
140 GoSUB 500:REM TEST GUESS
145 GoSUB 700:REM TEST IF GAME IS OVER
180 GoTo 135:REM MAKE ANOTHER GUESS
188 REM 200 REM INSTRUCTIONS

write the instructions last
280 RETURN
288 REM
300 REM GET THE WORD TO GUESS

use INPUT to get a word from player 1
draw dashes for the letters to be guessed

380 RETURN
388 REM
400 REM MAKE A GUESS

player 2 guesses a letter
480 RETURN
488 REM

130

500 REM TEST IF GUESS IS RIGHT
if wrong, GOSUB 600: REM draw hangman part
if right, GOSUB 700: REM see if game is over

590 RETURN
599 REM
600 REM ADD TO THE DRAWING

add to the hangman drawing
test if drawing is done
if so, then GOSUB 800

690 RETURN
699 REM
700 REM TEST IF GAME IS OVER

see if all letters have been guessed
if yes, GOSUB 900

790 RETURN
799 REM
800 REM END GAME MESSAGE

message for when guesser loses
890 RETURN
899 REM
900 REM END OF GAME MESSAGE

message for when guesser wins
990 RETURN

Things are getting a little mixed up in my mind on how to end the game. So I will leave
that to later, and start writing and testing the first part of the program. I put a STOP
in line 132 so that only the first subroutine will be run. I will start by writing the
subroutine at 300, GET A WORD.

Assignment 248:

1. Write a short program that uses subroutines. It doesn't have to do anything
useful just print some silly things. In it put three subroutines:

Call one of them twice from the main program.
Call one of them from another of the subroutines.
Call one of them from an IF statement.

2. Write a program that writes your 3 initials on the screen, each one a different
color. Then make them jump up and down one at a time!

3. Finish the hangman game . This is a long project, and you may want to do part
of it now and SAVE it to tape and finish the game later.

131

ADVANCED PROGRAMMING

INSTRUCTOR NOTES 25 KEYBOARD, ON ... GOTO

The byte at 764 (decimal) holds a "raw" number from the keyboard. Its usefulness is
explored in this lesson.

The ON ... GO TO command is explained.

The keyboard puts a number into byte 764 when a key is pressed. The number is
latched in, and further keypresses will not change the number. You can clear the box
for the next keypress by POKEing 255 into it. The box records the combination SHIFT
+ KEY by adding 64 to the number from KEY alone.

Likewise, CTRL + KEY yields 128 plus the number from KEY alone. The advantage
to this method of reading the keyboard is that the program does not "hang" until the
key is pressed, as it would with GET or INPUT. The keyboard is read on the fly.

One disadvantage is that the number assigned to each key is not related to any more
universal code, such as ASCII.

The ON ... GOTO command is a primitive example of the CASE OF construction. ON .
... GOSUB is also supported in ATARI BASIC.

QUESTIONS:

1. What number is on the front of the keyboard's box?
2. Why do you have to empty the keyboard's box?
3. How do you find out what number belongs to each key?
4. What happens in ON V GOTO 200,300,400 if:

V = 0

V = 1

V = 3

V = 8

132

LESSON 25 KEYBOARD, ON ... GOTO ...

GAMES AND THE KEYBOARD

The GET command makes the computer wait for you to press a key. The program stops
running until you press a key.

There is another way to get a keystroke from the keyboard that does not make the
computer wait. It is used in action games.

2 GOTO 1000:REM SNAKE
100 REM MAIN LOOP
105 DR=PEEK(AR)
106 POKE AR, 255
110 IF DR=R THEN D=D-l:IF D=0 THEN D=4
111 IF DR=LL THEN D=D+l:IF D=5 THEN D=l
113 FOR T=l TO 50:NEXT T
115 ON D GO TO 120,122,124,126
120 Y=Y-l:GOTO 130
122 X=X-l:GOTO 130
124 Y=Y+l:GOTO 130
126 X=X+l
130 COLOR 3:PLOT X,Y
140 A=B:B=C:C=E:E=F:F=G:G=X
142 L=M:M=N:N=O:O=P:P=Q:Q=Y
145 COLOR 2:PLOT A,L
188 GOTO 100
888 END
1000 REM
1001 REM
1002 REM

SNAKE -----

1010 REM BY E. H. CARLSON
1011 REM
1020 GOSUB 3000
2000 GRAPHICS 3+16
2010 SET COLOR 0,8,8 :REM BORDER
2020 SET COLOR 4 ,0 ,4 :REM BACKGROUND
2025 SETCOLOR 1 ,0 ,4 :REM ERASE
2027 SETCOLOR 2,12,8:REM SNAKE
2030 COLOR 1
2040 PLOT 0,0
20112 DRAI"ITO 0,23
2044 DRAWTO 38,23
2046 DRAWTO 38, 0
2048 DRAWTO o , 0
2100 LL=6 :REM LEFT ARROW
2102 R =7 :REM RIGHT ARROW
2105 AR=764 :REM KEYBOARD'S BOX

133

2108 0=1 :REM START DIRECTION
2110 X=20:Y=12 :REM START POSITION
2115 A=X:B=X:C=X:E=X:F=X:G=X
2116 L=Y:M=Y:N=Y:O=Y:P=Y:Q=Y
2999 GOTO 100
3000 REM INSTRUCTIONS
3020 PRINT "TURN LEFT: LEFT CURSOR KEY"
3030 PRINT "TURN RIGHT: RIGHT CURSOR KEY"
3999 RETURN

THE KEYBOARD'S BOX

When a key is pressed, the computer puts a number in a special box with the name
"764" on the front.

To look into the box, use the PEEK command. The SNAKE program used line:

105 DR=PEEK(AR)

where AR = 764 (look at line 2105).

105 DR PEEK 76£! would have been easier, but

the program runs a little faster when variables are used in PEEK, instead of numerical
constants.

Line 105 looks into the keyboard's box to see if a key has been pressed since the last
time the box was emptied.

If so, the number of the key is taken from the keyboard's box and put into box DR.

These keyboard numbers are not ATASCII numbers. They are special numbers that
are used by the ATARI computers.

Line 110 asks if the key was the right arrow (number 7, see line 2102).

What does line 111 do? _______________________ _

Line 106 tells the computer to empty the keyboard's box. ("Empty" is the number 255.)
You have to empty the box after each use so that it is ready to "catch" another
keypress.

106 POKE ARt255

134

LOOKING INTO THE BOX

Try this: 10 V=PEEK(764)
20 PRINT V
30 GOTO 10

Press each key. See what number you get.

Hold down SHIFT or CTRL while you press a key. SHIFT adds 64 to the number.
CRTL adds 128. THE ON ... GOTO COMMAND

115 ON D GO TO 120,122,124,126

This means that

if D

if D

is 1
2
3
4

is something else

GOTO

GOTO

120
122
124
126
the next line

After the GOTO, you can put one, two, or as many numbers as you want. Each number
is the same as the number of a line somewhere in the program.

Assignment 25:

1. Make a table of what numbers show up in the keyboard's box when you press a
key. You want this table when you make game programs.

2. Write a program that uses GET to get a letter A to C to use in a menu. Change
the letter to a number 1 to 3. Then use the ON ... GOTO command to pick which
menu item to do.

135

INSTRUCTOR NOTES 26 SNIPPING AND GLUING STRINGS

In this lesson: The LEN function
substrings
concatenation

With these, one can cut up strings and glue them back together in any order.

Remember that the DIM statement only gives the maximum size of a string. If you try
to stuff a bigger string in, it is chopped off at the right end.

Substrings can have one or two "arguments" inside the ().

If there is one number, it means the substring from the numbered character to the end.

If there are two numbers, it means the substring is all the characters from the first
number to the last, inclusive.

Examples: 10 DIM G$(7)
12 G$="123456788" only 1234567 gets in the box
13 ? G$ prints 1234567
15 ? G$(5) prints 567
20 ? G$(2,4) prints 234
25 ? G$ (1) prints 1234567, the same as G$

Concatenation: There are a large number of legal cases. The clearest case is when you
open up a hole in the G$ that is the same size as the slice of H$ you wish to put in.

20 G$(3,5)=H$(8,10)

Other cases are treated in the lesson. Use LEN to keep track of how long the strings
are.

QUESTIONS:

1. How do you save "STAR" from B$ = "STARS AND STRIPES"?
2. How do you save "AND"?
3. If you want to count the number of characters in the string PQ$, what function

do you use? What argument?
4. How would you change "2" to "5" in the string:

D$="TAKE 2 MINUTES"?

5. Write a short program that takes the string

C$="COMPUTER" and snips and reglues it into

K$ = 'PUTERCOM'

136

LESSON 26 SNIPPING AND GLUING STRINGS

HOW LONG IS THE STRING?

Run: 10 REM --- LONG ROPE
15 DIM N$(S)
2121 PRINT "clear"
3121 PRINT"GIVE ME A STRING: ": INPUT N$
1I121 L=LEN(N$)
5121 PR I NT "THE STR I NG: '''; N$; '" "
55 PRINT:PRINT "IS ";L;" CHARACTERS LONG"

First time answer: "HUDSON"

Second time answer: "MISSISSIPPI"

The DIM command made room for 8 letters.

When you INPUT "HUDSON:' you put 6 letters in.

When you INPUT "MISSISSIPPI" the string filled up at 10 letters and threw the
"PPI" away.

SNIPPING STRINGS

There are two ways to snip a piece off a string. The piece is called a "substring."

1. Cut it off the right end of the string.
2. Cut it out of the middle of the string.
3. (If you want to snip it off the left end, use the rule for cutting it from the

middle.)

137

Run: 10 REM »> SCISSORS »>
15 DIM N$(40)
20 PRINT "clear"
30 N$="12345G788"
40 PRINT N$(3)
50 PRINT N$(3,5)

Line 40 counts 3 letters in from the left then snips and keeps the right end, including
the third letter.

Rule: If there is one number inside the ()

1. It tells you to count that number of letters from the left.
2. Take the letter you land on and all the rest to the right end of the string.

Notice that N$(1) means exactly the same as N$.

Line 50 cuts a piece out of the middle of W$, starting from the third character and
going to the fifth.

Rule: The two numbers inside the () of a string tell you:

1. The number of the first letter you want.
2. The number of the last letter you want.
3. Take the first, the last, and all in between.

138

You can cut just one letter out if you want.

Run: 10 REM - -- SNIPPING
12 PRINT "clear"
15 DIM W$(40)
20 PRINT "GIVE ME A WoRD":INPUT W$
25 L=LEN(W$)
30 PRINT "WHICH LETTER DO YOU WANT?"
31 PRINT " (GII)E ME A NUMBER)"
35 INPUT N
40 IF L(N THEN PRINT "TOO BIG":GoT030
45 PRINT W$(N,N)

Add these and run: 30 PRINT "HOW MANY LETTERS DO YOU WANT?"
32 INPUT N
33 PRINT "STARTING WHERE?"
34 INPUT ST
35 ND=ST+N-l
40 IF ND>L THEN PRINT"Too MUCH" : GoTo 30
45 PRINT W$(ST,ND)

GLUING STRINGS

Here is how to glue the substring snips back together.

The real name for "gluing" is "concatenation."

Concatenation means "make a chain." Maybe we should call them "chains" instead of
"strings."

10 REM »> SCISSORS AND GLUE »>
15 DIM G$(10), H$(5)
20 G$="123456788"
30 H$="ABCDE"
40 G$(3,5)=H$(2,4)
50 PRINT G$

Line 40 says: "Open a hole in G$ from character 3 to character 5." These just happen
to be the numbers 3,4,5 put in G$ in line 20.

Then snip a piece out of H$. It will be the letters BCD.

Then fill the hole in G$ with the substring snipped out of H$.

139

Experiment by changing line 40. Try these cases:

40 G$(3,4)=H$(2,4)

40 G$(3,8)=H$(2,4)

40 G$ =H$(2,4)

40 G$(1) =H$(2,4)

40 G$(3) =H$(2,4)

The hole in G$ is too small, and part of the
H$ snip is thrown away.

The hole in G$ is too big, and H$ only
covers part of the hole.

The old G$ string is thrown away. The new
G$ is the snip of H$.

Same as above.

The new G$ string is half and half.
Front is a snip of G$, back is snip of H$.

LOOK MA, NO SPACES

Enter: 10
1 1
15
20
30
35
40
45
50
80
70
80
82
85

REM »> NO SPACES »>
REM
DIM S$(40) ,L$(1) ,T$(40)
PRINT Iclear":PRINT
PR I NT II G I I)E ME A LONG SENTENCE II : PR I NT
INPUT S$
L=LEN(S$)
T$="I:N=l
FOR 1=1 TO L:REM LOOK AT EACH LETTER
L$=S$(ItI)
IF L${)" II THEN T$(N)=L$:N=N+l
NEXT I
PRINT:PRINT T$
PRINT:PRINT:PRINT

Line 60 snips just one letter at a time out of the middle of the string.

Line 70 glues the character into T$ if it is not a space.

140

Assignment 26:

1. Write a secret cipher making program. You give it a sentence and it finds how
long it is. Then it switches the first letter with the second, third with the
fourth, etc. Example:

THIS IS AN ATARI.

HTSII SNAA ATIR

becomes:

2. Write a question answering program. You give it a question starting with a
verb and it reverses verb and noun to answer the question. Example:

ARE YOU A TURKEY?

YOU ARE A TURKEY.

3. Write a PIG LATIN program. It asks for a word. Then it takes all of the
letters up to the first vowel and puts them on the back of the word, followed by
AY. If the word starts with a vowel, it only adds LAY. Examples:

SLAM becomes AMSLAY

A TAR I becomes A TAR I LAY

141

INSTRUCTOR NOTES 27 SWITCHING NUMBERS WITH
STRINGS

This lesson treats two functions, STR$ and VAL and reviews functions.

STR$ takes a number and makes a string that represents it.

VAL does just the opposite, taking a string and making a numerical value from it.

If VAL is given a string that cannot be made into a number, it issues an ERROR - 18.

This interconvertability of the two variable types adds great flexibility to the
treatment of numbers in programs.

Functions and their arguments are summarized in the lesson. The notion that a
function "returns a value" is treated.

QUESTIONS:

1. If your number "marches" too quickly in the program of assignment 27, how do
you slow it down?

2. Your program has the line:

2121 S$= "GEORGE WASHINGTON WAS BORN IN 1732."

Write a few lines to answer the question "How long ago was Washington born?
(You need to get the birthdate out of the string and convert it to a number.)

3. What is a "value"? What is meant by "a function returns a value"? What are
some of the things you can do with the value?

4. What is an "argument" of a function?
5. Where in the line do commands always go? Can you put a function at the start

of a line?

142

LESSON 27 SWITCHING NUMBERS WITH STRINGS

This lesson explains two functions: VAL () and STR$().

MAKING STRINGS INTO NUMBERS

We have two kinds of variables, strings and numbers. We can change one kind into the
other.

Run: 10 REM MAKING STRINGS INTO NUMBERS
15 DIM L$ (3) , M$(3)
20 PRINT "clear"
30 L$="123"
Ll0 M$="789"
50 L=I)AL (L$)
80 M=I)AL (M$)
70 PRINT L
72 PRINT M
7L1 PRINT " "
78 PRINT L+M

VAL stands for "value." It changes what is in the string to a number, if it can.

MAKING NUMBERS INTO STRINGS

Run: 10
1 1
15
20
25
30
37
80
85

STR$() makes a number into a string.

REM MAKING NUMBERS INTO STRINGS
REM
DIM N$(10)
PRINT "clear"
PRINT"GII)E ME A NUMBER": INPUT NB
N$=STR$(NB)
PRINT
PRINT"HERE IS ITS SECOND DIGIT"
PRINT:PRINT N$(2,2)

FUNCTIONS HAVE ARGUMENTS BUT DON'T FIGHT

In this book we use these functions:

RND(), INT(), LEN(), I)AL(), STR$(), ASC(), CHR$()

Rules about functions:

1. Functions always have () with an "argument" in them. Example:

ASC(D$) AS C is the function
D is the argument

The argument may be a number or a string.

143

The argument may be a constant, variable, expression or another function.

LEN("GOAT")
LEN(M$)
STR$(1982)
STR$(DATE)
STR$ (3+2*}-()
LEN(STR$(DATE»

argument is a string constant
argument is a string variable
argument is a numerical constant
argument is a numerical variable
argument is a numerical expression
argument of LEN is a function

2. A "function" is not a "command." It cannot begin a statement.

right: 1121 D=LEN$(CS$)

wrong: 1121 LEN(CS$)=5

3. A function acts just like a number or a string. We say the function "returns a value."
The value can be put into a box or printed just like any other number or string.

1121 PRINT INT(3.14)
15 W$ = STR$(2+Q)

The argument helps the function decide which value to return.
(Remember, string values go into string variable boxes, numerical values go into
numerical boxes.)

Assignment 27:

1. For each function in the list below:

Tell the name of the function.
Tell the name of its argument.
Tell whether the argument is string or numerical.
Tell whether the argument is constant, variable, expression, or function.
Tell whether the value of the function is string or numerical.

RND(9)
INT(Q)
IJAL (ER$)
STR$(INT(RND(8»)
LEN (II FUSS II)

INT(22.4/ 1»
2. Each line below has errors. Explain what is wrong.

1121 INT(Q)=G5
1121 D$=CHR(l)
1121 PW$=IJAL(F$)
1121 PRINT CHR$

3. Write a program that asks for a number. Then make another number that is
backwards from the first, and add them together. Print all three numbers like
an addition problem (with" +" sign and a line under the numbers).

4. Make a number "march" slowly across the screen. That is, write it on the
screen, then take its left digit and move it to the right. Keep repeating. Don't
forget to erase each digit when you move it.

144

INSTRUCTOR NOTES 28 JOY STICK FOR ACTION GAMES

This lesson introduces the functions STICK and STRIG.

Joy sticks are commonly used in animated graphics games. In this lesson, the joy stick
is used to move a dot around on the screen.

In the next lesson, the dot will shoot a missile upwards and hit stars.

The student will need to understand the X, Y addressing of the squares on the 40 by 24
GRAPHICS 3 screen.

When drawing moving objects, you need to erase each old image before the next image
is drawn. The erasing is best done just before the new dot is drawn, to minimize flicker
on the screen.

Graphics games may grow to be rather long. BASIC is a little slow for such games.
Maximum speed can be obtained if the "working" part of the program is first, and the
"initialization" part is at the end, reached by a call from early in the program. This
idea is further developed in the lesson on user friendly programs.

Perhaps the most important rule for gaining speed in BASIC is to avoid repeatedly
converting numbers to floating point. Rather than:

80 POSITION 33t20

it is better to write:

80 POSITION AtB

where variables A = 33, B = 20 are defined in the initialization section.

Of course, if line 60 is executed just once, it is faster to use the numbers directly in the
POSITION command because of the overhead time in initializing A and B. Time
savings come only when POSITION A,B is used often in a loop. The innermost loop of
a nested set contains, of course, the program lines most in need of careful optimization
for speed.

QUESTIONS:

1. Which numbers does the STICK function return?
2. What does the "0" in STICK(O) mean?
3. How do you tell if the button on the joy stick is being held down?

145

LESSON 28 JOY STICK FOR ACTION GAMES

Plug the joy stick into the left socket on the front.

JOY STICKS AND THEIR BUTTONS

Run: 10 REM -- - JOY STICK ---
15 DIM C$(4)
16 POKE 752tl:REM TURN OFF CURSOR
20 PRINT"clear"
30 PRINT "PUSH THE JOY STICK AROUND"
35 PRINT:PRINT "AND PUSH THE BUTTON"
38 REM CHECK THE STICK
40 S0=STICK(0)
42 POSITION 10t5:PRINT "STICK READS:
45 POSITION 10t5:PRINT "STICK READS:
55 REM CHECK THE BUTTON
60 B0=STRIG(0)
70 C$=" ": IF B0=0 THEN C$="BANG"
75 POSITION 10t7:PRINT C$;
80 FOR T=l TO 20:NEXT T
99 GOTO 40

Use the BREAK key to end the program. Save to tape.

Line 42 erases the old number before the new number is put in.

THE JOY STICKS

"
" ; S0 ;

There are 4 joy stick sockets on the front of the ATARI 800, numbered 0, 1, 2, and 3
from left to right.

(Your computer may have zero, 1, 2, 3, or 4 sticks.)

The STICK() function tells which way the stick has been pushed.

THE PUSH BUTTON

To see if the button on stick 0 is being pushed, use the STRIG(O) function. STRIG
means "stick trigger."

If the number is 0, then the button is being pushed. If the number is 1, it is not being
pushed.

146

MOVING A SPOT ON THE SCREEN

Run: 10 REM MOljE A SPOT
12 PRINT Iclear":GRAPHICS 3+18
25 SETCOLOR 0,12,8
27 SETCOLOR 4 ,0 ,0
50 >{=20:Y=12
80 GOSUB 800
84 COLOR 0:PLOT X,Y:REM ERASE OLD SPOT
87 }(=}(+O}(: Y=Y+DY
70 IF }(0 THEN }(= 0 REM AT LEFT EDGE?
71 IF '1'(0 THEN '(=0
72 IF }(>38 THEN X=38
73 IF Y>23 THEN '1'=23
80 COLOR l:PLOT X,Y:REM PUT SPOT ON SCREEN
88 GOTO 80
800 REM ASK JOY STICK
810 S=STICK(0)
815 IF S=15 THEN 0}(=0: OY=0: RETURN
820 IF S(8 THEN O}(= 1: GOTO 850
825 IF S>12 THEN 0}(=0: GOTO 885
830 0}(=-1
835 IF S=10 THEN OY=-l:RETURN
840 IF S=ll THEN 0'1'= 0:RETURN
845 IF S= 8 THEN 0'1'= l:RETURN
850 IF S= 5 THEN 0'1'= l:RETURN
855 IF S= 7 THEN DY= 0:RETURN
880 IF S= 8 THEN OY=-l:RETURN
885 IF S=14 THEN DY=-l:RETURN
870 IF S=13 THEN DY= l:RETURN

Use the BREAK key to stop the program. Save to tape.

147

ERASE AND PUT

"Erase and put, erase and put " Every time you put a dot, you have to erase it
again before putting it somewhere else. Otherwise, you will get more and more dots.
(To see this happen, remove line 64.)

Line 64 does the erasing.

Line 80 makes the dot have color 2, then puts it on the screen.

Assignment 28:

1. Make a drawing showing which numbers the STICK command returns when
pushed in each of the 8 directions. You will find this diagram useful when
making joy stick games.

2. Add a border to the MOVE A DOT program. What changes must you make in
lines 70 to 73 so that the border is not erased?

3. Make the dot change color when it moves within 3 squares of any border.

148

INSTRUCTOR NOTES 29 SHOOTING STARS

The methods of using STRIG to shoot a missile and LOCATE to detect a target are
shown. The graphics modes 3 through 8 are explained.

The graphics modes differ from each other in the size of the pixel (the little square of
color that PLOT puts down on the screen) and in the number of colors that can be used
at once.

Most ATARI computers are used with color TV s. The ATARI 800 has a monitor jack to
which a color monitor can be connected. This will usually give a somewhat clearer
graphics picture. You would also need to hook up an amplifier and speaker for the
sound.

In any event, for most dot-background color combinations, a single pixel or a vertical
line does not show up well. Horizonallines and filled in areas look better. The reason is
due to the specifications of the standard TV signal. Not enough bandwidth is allocated
to the color signal to give very high resolution.

So like many other art forms, graphics on the ATARI requires skirting around the
limitations of the medium. With practice you can pick color combinations and luminance
levels that go well together.

The color "black" is really grey (color number zero) with luminance zero.

''White'' is grey with luminance 14.

QUESTIONS:

1. In the command LOCATE 3,9,Z what point on the screen is looked at? What
goes into the variable box Z?

2. How does the program decide that a star was hit?

149

LESSON 29 SHOOTING STARS

SHOOT A LASER

Load program "MOVE A SPOT" and add these lines:

10 REM SHOOTING
28 SETCOLOR 2,4,8
62 IF STRIG(0)=0 THEN GOSUB 200
200 REM SHOOT
205 IF Y=0 THEN RETURN
210 FOR I=Y-1 TO 0 STEP - 1
215 COLOR 3:PLOT }{ , I
220 FOR T=l TO 5:NEXT T
225 COLOR 0:PLOT Xt!
250 NEXT I
288 RETURN

Run. Use the BREAK key to end the program. Save to tape.

Line 62 asks if the button on the stick is being pressed. If yes, then the subroutine at
line 200 shoots the laser.

SHOOTING STARS, THE LOCATE FUNCTION

Load the program SHOOTING and add these lines:

10 REM *** SHOOTING STARS ***
40 GOSUB 300
212 LOCATE X,I,L
213 IF L=3 THEN GOSUB 400
300 REM INITIALIZE STARS
310 COLOR = 3
311 FOR 1=1 TO 10
320 X=RNO(8)*38
330 Y=RND(8)*23
350 PLOT }{, Y
360 NEXT I
380 RETURN
400 REM HIT STAR
410 SOUND 0,200,8,8
420 FOR T=l TO 30:NEXT T
430 SOUND 0,0,0,0
480 RETURN

Run the program. Use the RESET key to stop the program. Save it to tape.

150

DRAWING THE STARS

The program calls the subroutine at 300 just once. It draws 10 stars at random on the
screen.

HAS THE LASER HIT A STAR?

While the program is drawing the laser line, it looks to see if the next square is a star
(color 3). If so, it jumps to the subroutine at line 400 and makes a "hitting" sound.

Line 212 looks at the square by using the LOCATE X,Y,L function. LOCATE looks at
point X, Y on the screen and puts the color of the spot there in the variable L.

Then line 213 says if the spot is color 3, it must be a star so go to the "hit" subroutine.

OTHER GRAPHICS MODES

FOUR COLOR GRAPHICS

These modes have 3 colors plus the background color.

Mode 3 is "coarse" (the square dots it makes are large.)

Mode 5 is finer, and mode 7 makes still smaller dots.

MODE

GRAPHICS 3+16
GRAPHICS 5+16
GRAPHICS 7+16

ACROSS

!2l TO 38
!2l TO 78
!2l TO 158

151

DOWN

!2l TO 23
!2l TO 47
!2l TO 85

Paint pots and brushes used by these modes:

POT

SET COLOR I2I,C,B
SETCOLOR 1,C,B
SETCOLOR 2,C,B
SETCOLOR 4,C,B

BRUSH IN THE POT

COLOR 1
COLOR 2
COLOR 3
COL 0 R 121, background and border

Where you see "C", you put the number (0 to 15) of the color you want.

Where you see "B", you put the even number (0 to 14) that tells the brightness.
(Actually, it is not the brightness, but the "luminance", the amount of white mixed into
the color. But the dot does look brighter for larger "B" numbers).

SETCOLOR 4 gives the background color and brightness. You cannot see a border in
these modes; it is the same color as the background.

You can use the brush named COLOR 0 to dip into the background paint pot to erase a
aot from the screen.

Run:

1121 REM FOUR COLOR GRAPHICS
12 GRAPHICS 5+18
2121 SET COLOR 12I,2,4:REM POT 121
21 SET COLOR 1 ,8,8:REM POT 1
22 SET COLOR 2,8,8 : REM POT 2
24 SET COLOR 4,8,4:REM BACKGROUND
31 COLOR l:PLOT 12I,5:DRAWTO 2121,5:REMBRUSH 1
32 COLOR 2:PLOT 12I,7:DRAWTO 2121,7:REMBRUSH 2
33 COLOR 3:PLOT 12I,8:DRAWTO 2121,8:REMBRUSH 3
4121 FOR T=l TO 1121121121:NEXT T
5121 COLOR I2I:PLOT 12I,5 : DRAWTO 1121,5:REMERASE
88 GOTO 88:REM HOLD PICTURE

TWO COLOR GRAPHICS

These modes have a background of one color and brightness and dots of another color
and brightness.

Their only advantage over modes 3, 5, and 7 is that they take up less room in memory.

MODE

GRAPHICS 4+18
GRAPHICS 8+18

ACROSS

121 TO 78
121 TO 158

152

DOWN

121 TO 47
121 TO 85

Here are your choices:

POT BR USH IN THE POT

COLOR 1 SETCoLoR 0,C,B
SETCoLoR 4,C,B COL 0 R 0, background and border

10 REM TWO COLOR GRAPHICS
12 GRAPHICS 6+16
15 SETCoLoR 4,12,8 :REM GREEN BACKGROUND AND BORDER
17 SETCoLoR O,8,10 :REM BLUE DOTS
30 COLOR I:PLoT 5,5:DRAWTo 20,5 :REM LINE
40 FOR T=1 TD 500:NEXT T
50 COLOR 0:PLoT 9,5:DRAWTo 17,5 :REM ERASE
99 GoTo 99 :REM HOLD PICTURE

HIGH RESOLUTION

A background of one color and brightness, a border of another, and dots that have the
background color but different brightness.

GRAPHICS 8+16 ° TO 319 ° TO 191

You choose a color and brightness for the background.

Then the dots must have the same color as the background. But you can choose the
brightness of the dots.

Run:

POT

SETCoLoR 1,0,B
SETCoLoR 2,C,B
SETCoLoR 4,C,B

1O REM HI-RES GRAPHICS
15 SETCoLoR 4112,8
16 SETCoLoR 2 ,8 ,4

BR USH IN THE POT

COLOR 1
COL 0 R ° background
border color

: REM GREEN
: REM BLUE

BORDER
BACKGROUND

17 SETCoLoR 1,O11O : REM BR I GHT DOTS
3O COLOR I:PLoT 5 ,5: DRAI"lTo 20,5:REM LINE
4O FOR T=T TD 500: NE><T T
50 COLOR 0:PLoT 9,5:DRAWTo 17,5: REM ERASE
99 GoTo 99 : REM HOLD PICTURE

Line 17 sets the brightness of the dots. The color "0" or "grey" in SETCOLOR 1,0,10
is not used.

153

Assignment 29:

1. Add to the "hit a star" subroutine so that a big explosion is put on the screen
when a star is hit.

2. Change the subroutine at 300 so the laser beam stops after it hits a star.
3. Make the stars of two colors, red and blue, (in the subroutine at line 300) and

then in subroutine at 200, let the laser "pop" only the red ones.
4. Change the program so it runs in graphics mode 5.

154

INSTRUCTOR NOTES 30 ARRAYS

This lesson introduces arrays. The DIM and CLR statements are described.

Arrays with one index are described first. The array itself is compared to a family, and
the individual elements of the array to family members, with the index value being the
"first name" of the member.

ATARI calls arrays having two indices "matrices!' They are conveniently pictured as
numbers arranged in a rectangle like the days on a calendar month.

ATARI BASIC does not allow higher dimensional arrays.

Array indices start with "0" which means that an array always has one more member
than would appear from the DIM statement. (The array defined by DIM A(7) has 8
members.)

By now it is obvious that ATARI BASIC treats string variables as a special kind of
array. Nevertheless, it is better to teach string variables separately from arrays as the
differences in use of each outweigh the similarities in form.

QUESTIONS:

1. What does the DIM AD(5) command do?
2. Where do you put the DIM command in the program?
3. What does the command CLR do?
4. What is the "index" or "subscript" of an array?
5. How many boxes does the command DIM SR(5,9) save?

155

LESSON 30 ARRAYS

MEET THE ARRAY FAMILY

22 F (0) = 3
2a F (1) = aa
28 F(2) = 12

Each member of the family is a numerical variable.

The family has a "last name" like F or B.

Each member has a "first name" which is a number in (). The array always starts with
the first name "0."

Instead of "family" we should say "array."

Instead of "first name" we should say "index number" or "subscript."

CAREFUL! Only numerical variables come in families like this.

As you know, string variables are already written with an index.

A $ (3 1) means the 32st letter in the string A$

THE DIM() COMMAND SAVES BOXES

When the array family goes to a movie, they always reserve seats first. They use a
DIM command to do this.

1(1) F(2)

156

The DIM ... command tells the computer to reserve a row of boxes for the array. Each
box is big enough to hold one number.

DIM stands for "dimension" which means "size."

For example, the statement

18 DIM A(3)

saves four memory boxes, one each for the variables A(O), A(1), A(2) and A(3). These
boxes contain the number "0" to start with.

Another example:

30 DIM A(3) ,6$(4)

This time, DIM reserves 4 numerical boxes for the A() array and one box for the
string B$(). The B$ box is large enough to hold 5 letters and is empty to start with.

Rule: The program must execute the DIM command before it executes any command
using the array or the string.

Rule: The program may execute only one DIM command for a given array or string.

A COMMON ERROR!

Looping the program through the DIM command more than once is a "NO NO" that
everyone does once in a while. Run this:

You get:

Change line 30 to:

THE CLR COMMAND

10 DIM Q(15)
20 Q(3)= 3/7
30 GOTO 10

ERROR- 8 AT LINE 10

30 GOTO 20 to fix it.

If you are done using the strings and arrays and want to give them new dimensions
and use them again, use the CLR command.

CLR means "clear" and it clears the memory of all string variables and numerical
arrays without erasing the numerical variables or the program.

Add this:

You see ERROR- 9 AT LINE 20

22 PRINT Q(3)
25 CLR

because the CLR erased the box A() that the DIM made.

157

and run it.

MAKING A LIST

Run: 10 REM +++ IN A ROW +++
20 PRINT "clear"
30 DIM A(5)
35 PRINT"ENTER A NUMBER "
40 FOR N=0 TO 5
45 IF N>0 THEN PRINT"ANoTHER"
50 INPUT Q

55 A(N) = Q

60 NE>(T N
70 PRINT
100 REM PUT IN A ROW
105 PRINT"HERE THEY ARE IN A ROW"
106 PRINT
110 FOR 1=0 TO 5
120 PRINT A(I);II II;
130 NE>(T I

Arrays are usually used in a loop where the index keeps changing. Lines 50 and 120
are used in loops.

158

ONE DIMENSION, TWO DIMENSION, ...

The arrays that have one index are called "one dimensional arrays."

But arrays can have 2 indices. A two dimensional array is often called a "matrix." (The
plural is "matrices.")

Two dimensional arrays have their "family members" put in a rectangle like the days in
a month on a calander.

10 REM +++ TWO - DIM ARRAY +++
18 PRINT "clear"
18 REM -------- - - - ------------- -- MAKE THE ARRAY
20 Dr"M T(4,5)
30 FOR }(=0 TO 4
40 FOR Y=0 TO 5
50 T(}{,Y)= }(+Y
80 NE>n Y
81 NE}{T }{
70 REM ---------- - -- - ------------ PRINT OUT THE ARRAY
80 FOR J=0 TO 4
82 POSITION 0,2+3*J
85 FOR 1=0 TO 5
88 REM -------- - ------ - - - -------- J="WHICH ROW"
87 PRINT" ";T(J,I);" " ;
80 NE}{T I
81 NE}{T J

Assignment 30:

1. Write a program that uses an array to store the number of days each month
has. That is D(l) = 31, D(2) = 28, etc.

2. Use a two dimensional array to make a "school calendar" program. It could use
an array made by DIM CA$(5,6) so that each day of the week could have an
entry for each school hour.

159

INSTRUCTOR NOTES 31 LOGIC: AND, OR, NOT

This lesson treats the AND, ORand NOT relations and the numerical values for
TRUE and FALSE. These are important for some types of IF statements.

The TEENAGER program in lesson 13 used a nested IF to print out "You are a
teenager." A more concise logic uses the OR relation.

There are several abstract ideas in this lesson that are difficult to grasp. The fact that
TRUE and FALSE have numerical values of 1 and 0 is bad enough. But in addition,
the computer often treats any number that is not zero as being TRUE.

QUESTIONS:

1. For each IF statement, tell if it will print anything:

10 IF 3=3 THEN PRINT "HI"
10 IF NoT(3=3) THEN PRINT "HI"
10 IF 3=3 OR 0-'" -L.. THEN PRINT "HI"
10 IF 3=3 AND 0=2 THEN PRINT "HI"
10 IF "A"="B" THEN PRINT "HI"
10 IF NoT("A"="B") THEN PRINT "HI"

2. What number will each of these lines print?

10 A=l PRINT A t NOT A
10 A=0 PRINT A t NOT A
10 A=l :B=l PRINT A AND B
10 A=0:B=1 PRINT A AND B
10 A=0:B=0 PRINT A AND B
10 A=0:B=1 PRINT A OR B
10 A=0:B=0 PRINT A OR B
10 PRINT NOT 23
10 PRINT NOT 0
10 PRINT 3 AND 7
10 PRINT 3 AND 0

160

LESSON 31 LOGIC: AND, OR, NOT

ANOTHER TEENAGER PROGRAM

Enter: 10
20
25
30
35
40
45
50
55
80
85
70

REM «< AND, OR, NOT »>
PRINT "clear"
DIM N$(40)
PRINT"yoUR FIRST NAME ":INPUT N$
PRINT
PRINT"yoUR AGE ":INPUT A
PRINT
IF (A> 12) AND (A< 20) THEN PR I NT N$;" I S A TEENAGER."
NFLAG = (A< 13) OR (A> 18)
IF NFLAG THEN PRINT N$;" IS NOT A TEENAGER."
PRINT
IF (NOT NFLAG) AND (A=18) THEN

PR I NT "AND "; N$;" I S SWEET SIXTEEN."

Run and save to tape.

WHAT DOES" AND" MEAN?

Two things are true about teenagers: they are over 12 years old and they are less than
20 years old. Look at line 50.

I F (you are over 12) AND (you are less than 20) THEN (you are a teenager).

WHAT DOES 'OR' MEAN?

In line 55 the OR is used. Two things are said: "age is under 13" and "age is over 19."

Only one of them needs to be true for you to be "not a teenager."

I F (you are under 13) 0 R (you are over 19)
THEN (you are not a teenager).

TRUE AND FALSE ARE NUMBERS

How does the computer do it? It says true and false are numbers.

Rule: TRUE is the number 1

FALSE is the number 0

(It is easy to remember that 0 is FALSE because zero is the grade you get if your
homework is false.)

161

To see these numbers, enter this in the Edit mode:

PRINT 3=7

The computer checks to see if 3 really does equal 7. It doesn't so it prints a "0"
meaning FALSE.

and this: PRINT 3=3

The computer checks to see if 3 = 3. It does, so the computer prints "I" meaning
"TRUE."

PUTTING TRUE AND FALSE IN BOXES

The numbers for TRUE and FALSE are treated just like other numbers and can be
stored in boxes with numerical variable names on the front. Run this:

10 N= (3=22)
20 PRINT N

The number 0 is stored in the box N because 3=22 is FALSE.

And this: 10 N= "6"="6"
20 PRINT N

The number 1 is stored in the box N because the two letters in the quotes are the same
so the statement "B" = "B" is TRUE.

162

THE IF COMMAND TELLS LITTLE WHITE LIES

The IF command looks like this:

1!2l I F (something A) THEN (command C)

Try these in the Edit mode:

IF !2l THEN PRINT "TRUE"

IF 1 THEN PRINT "TRUE"

Now try this: IF 22 THEN PRINT "TRUE"

What did it print?

Rule: In an IF, the computer looks at "something A."

If it is zero, the computer says "something A is FALSE," and skips what is after
THEN.

If it is not zero, the computer says "something A is TRUE," and obeys the commands
after THEN.

The IF command tells little white lies. TRUE is supposed to be the number "1," but
the IF streches the truth to say "TRUE is anything that is not FALSE." That is, any
number that is not zero is TRUE.

163

Jf11H£ 0;11£
AN!)

ONLY FALSE.'

WHAT DOES "NOT" MEAN?

NOT changes FALSE to TRUE and TRUE to FALSE. Try this:

10 REM ??? DDUBLE NEGATIVE ???
20 N=3
30 PRINT liN II ; TAB(20) ; N
40 PRINT "NDT Nil; TAB(20); NDT N
50 PRINT "NDT NDT N ";TAB(20); NDT(NDT
80 REM The computer knows that "I don't have no ... "
81 REM means "I do have

I'M NOT NDT
FALLING

[J
CJDQoaQa

The NOT also tells little white lies:

"

N was 3, which is called TRUE, (a little white lie.)

Then NOT 3 is FALSE, or the number O.

N)

Finally, NOT (NOT 3) is the same as NOT (0) or NOT (FALSE) or TRUE or the
number 1.

164

THE LOGICAL SIGNS

You can use these 6 symbols in the "something Pi' phrase:

= equal
(> not equal
< less than
> greater than
< less than or equal
> greater than or equal

You have to press two keys to make the <> sign and the < = and> = signs.

The last two are new so look at this example to see the difference between < and < = :

2<=3
3{=3
4{=3

is
is
is

TRUE
TRUE
FALSE

2<3
3<3
4<3

is
is
is

TRUE
FALSE
FALSE

These two "something Pi' phrases mean the same:

2<=(;) (2<(;) OR (2=(;)

Assignment 31 :

1. Tell what will be found in the box N if:

N=4=4
N="G"<>"S"
N=5>7
N=3>2 AND 3<2
N=4=3 OR 4=4
N=NOT 0
N=5>=4

2. Tell if the word "JELLYBEAN" will be printed:

IF 0 THEN PRINT "JELLYBEAN"
IF 1 THEN PRINT "JELLYBEAN"
IF 9 THEN PRINT "JELLYBEAN"
IF 3<>0 THEN PRINT "JELLYBEAN"
IF 2 AND 4 THEN PRINT "JELLYBEAN"
IF 0 OR 1 THEN PRINT "JELLYBEAN"
IF NOT 3 THEN PRINT "JELLYBEAN"
IF IIA II =IIZ" THEN PRINT "JELLYBEAN"
IF NOT(3) AND 2 THEN PRINT "JELLYBEAN"
IF NOT(QI) OR 0 THEN PRINT "JELLYBEAN"
IF 4<:=5

3. Write a program to detect a double negative in a sentence. Look for negative
words like not, no, don't, won't, can't, nothing and count them. If there are 2
such words there is a double negative. Test the program on the sentence
"COMPUTERS AIN'T GOT NO BRAINS".

165

INSTRUCTOR NOTES 32 USER FRIENDLY PROGRAMS

This lesson illustrates clear programs which interact with the user in a "friendly" way.

The "spaghetti" program should be discouraged. A format for writing programs is
presented in this lesson. While methods of imposing order on the task are largely a
matter of taste, the methods used in this lesson can serve to introduce the ideas.

"U ser friendly" means that the screen displays are easy to read, keyboard input is
"RETURN key free" as much as possible, and errors are "trapped." Ask if entries are
OK. If not, give an opportunity to fix things. Instructions and "HELP" should be
available. Prompts need to be given. Beginners need complete prompts, but
experienced users would rather have curt prompts.

It is hard to teach the writing of "user friendly" programs. Success depends mostly on
the attitude of the programmer. The best advice is to "turn up your annoyance
detectors to high" as you write and debug the program.

Most young students will not progress very far toward fully "friendly" programming.
To be acquainted with the desirability of "friendly" programming and to use some
simple techniques toward accomplishing it are satisfactory achievements.

QUESTIONS:

1. Should your program give instructions whether the user wants them or not?
2. What is a "prompt"? Give two examples.
3. What is "scrolling"? How can you write to the screen without scrolling?
4. If you want the user to enter a single letter from the keyboard, what command

is best? (Avoid using the RETURN key.)
5. What is an "error trap"? How would you trap errors if you asked your user to

enter a number from 1 to 5?
6. In what part of the program are most of the GOSUB commands found?
7. Why put the "STARTING STUFF" section of the program at the end of the

program (at high line numbers)?

166

LESSON 32 USER FRIENDLY PROGRAMS

There are two kinds of users:

1. Most want to run the program. They need:

instructions
prompts
clear writing on the screen
no clutter on the screen
erasing old stuff from the screen
not too much key pressing
protection from their own stupid errors

2. Some want to change the program. They need:

a program made in parts
each part with a title in a REM
explanations in the program

(Don't forget you are a user of your own programs, too! Be kind to yourself!)

PROGRAMS HAVE THREE PARTS

"STARTING STUFF": at the beginning of the program run.

MAIN LOOP:

give instructions to the user
draw a screen display
set variables to their starting values
ask the user for starting information

controls the order in which tasks are done
calls subroutines to do the tasks

SUBROUTINES:

do parts of the program

167

PROGRAM OUTLINE

1 GOTO 1000: REM *** program name ***

100 REM MAIN LOOP

199 END
1000:

calls subroutines

1001 REM *** program name ***
1002:

1999:

REM I s that give a description of the
program, variable names, etc.

2000 REM STARTING STUFF

ask for starting information
set variable values
give instructions

2999 GOTO 100

PUT THE MAIN LOOP AT THE BEGINNING OF THE PROGRAM

Put the MAIN LOOP near the front because it will run faster there.

PUT STARTING STUFF AT THE END OF THE PROGRAM

Put the STARTING STUFF near the back because it may be the biggest part of the
program, and you may keep adding to it as you write to make the program more "user
friendly." It does not need to run fast.

168

PUT SUBROUTINES IN THREE PLACES

between line 2 and line 99 for subroutines that must run fast
after line 2999 for starting stuff subroutines
between lines 200 and 999 for the rest of the subroutines

INFORMATION PLEASE

280 PRINT "DO YOU WANT INSTRUCTIONS
<YIN> "

This lets a beginner see instructions, and lets others say "no".

TIE A STRING AROUND THE USER'S FINGER

Use a "prompt" to remind users what choices they have.

Example: YIN where the choice is Y for "yes" or N for "no"

Beginners need long prompts. Other users like short prompts.

DON'T GIVE THE USER A HEADACHE

SCROLLING gives headaches!

BASIC usually scrolls. It writes new lines at the bottom of the screen and pushes old
lines up.

It is like the scrolls the Romans used for writing. They unwound from the bottom and
wound up at the top.

Avoid scrolling. Use POSITION to print just where you want. Erase by printing a
string of blanks to the same spot.

Use delay loops so the writing stays on the screen while the user reads it.

169

OUCH! MY FINGERS HURT

Use the GET command to enter single letters. This saves having to press RETURN.

100 OPEN #1,lI,0,"K:"
102 DIM A$(l)
380 PR I NT "DO YOU NEED I NSTRUCT IONS? < Y / N > "
382 GET #l,A:A$=ASC$(A)
383 IF A$="A" THEN 31100

SET TRAPS FOR ERRORS

Example: Add this line to the above lines:

3811 IF A$ <>"N" THEN GOTO 380

Line 380 asked for only two choices, Y or N. If the user presses some other key, line
384 sends him back to line 380.

Traps make your program "bomb proof" so that users will unable to goof it up!

170

Assignment 32:

1. Look at the COLOR EATER program. Add REM's to explain the lines in the
program. Fix up the program to be user friendly.

2. Write a secret cipher program. The user chooses a password and it is used to
make a cipher alphabet like this:

If the password is DRAGONETTE, remove the repeated letters, get
DRAGONET, put it at the front of the alphabet and the rest of the letters after
it in normal order

Match letters against a normal alphabet to code or decode.

DRAGONET6CFHIJKLMPQSUVWXYZ

A6CDEFGHIJKLMNOPQRSTUVWXYZ

The user chooses to code or decode from a menu.

1 GOTO 1000:REM *** COLOR EATER ***
100 NC=0
101 FOR I=X-l TO X+l
102 FOR J=Y-l TO Y+l
104 IF 1<0 THEN 1=0
105 IF 1>38 THEN GOTO 120
108 IF J<0 THEN J=0
107 IF J>23 THEN GOTO 120
108 LOCATE I,J,CC
110 IF CC=C THEN X=I:Y=J:COLOR 0:PLOT X,Y:GOTO 100
112 IF CC<>0 THEN NC=l
115 NEXT J:NEXT I
120 C=C+l:IF C>3 THEN C=l
121 SOUND 1,0,0,0
122 SOUND 0,100+C*40,10,8
125 IF NC=0 THEN GOSU6 300
188 GOTO 100
300 REM COLOR EATER HAS NO FOOD
310 X=X+l:IF X>38 THEN X=l
320 SOUND 1,30,10,8
330 SOUND 0,0,0,0
388 RETURN
1000 REM STARTING STUFF
2012 GRAPHICS 3+18
2013 SETCOLOR 0,5,8
2014 SETCOLOR 1,8,4
2015 SET COLOR 2,12,4
2018 SET COLOR 4,0,10
2020 FOR 1=0 TO 38
2030 FOR J=0 TO 23
2040 COLOR INT(RND(8)*3)+1
2050 PLOT I,J
2080 NEXT J:NEXT I
2100 X=20:Y=12
2888 GOTO 100

171

INSTRUCTOR NOTES 33 DEBUGGING, STOp, CaNT

It is difficult to drill systematically on debugging, unless you are NASA with NASA's
budget and time scale.

We present a series of small techniques and a description of how to put them together
in a debugging scheme. Only practice will serve to make debugging a chore that the
student approaches with some confidence.

QUESTIONS:

1. What two ways can you make the computer print

STOPPED AT LINE 55

while the program is running?
2. How are the STOP and the END commands different?
3. How is the STOP command different from the BREAK key?
4. What does the CONT command do?
5. Why would you put STOP commands in your program?
6. How do delay loops help you debug a program?
7. How do extra PRINT commands help you debug a program?
8. Why do you take the STOP and extra PRINT commands out of the program

after you have fixed the errors?
9. Can you pick in what line the BREAK key will stop the program? Can you pick

using the STOP command?

172

LESSON 33 DEBUGGING, STOp, CONT

THE STOP COMMAND

Enter and run: 10 REM SECRET STOP
20 PRINT "clear"
25 J = INT(RND(9)*200)
30 FOR 1=0 TO 200
40 IF I=J THEN STOP
50 NEXT I

The program will stop, and the computer will peep and print a message:

STOPPED AT LINE 40

What do you suppose the secret value of I was?

Enter: PRINT I (No line number)

and find out.

HOW TO START IT AGAIN

Enter the command CONT. Try it!

"STOP" IS LIKE "END"

STOP makes the computer stop and enter the edit mode.

It is like END except it prints the number of the line that the STOP is in.

You can have as many STOP commands in your program as you like.

STOP is used for debugging your program.

173

ANOTHER WAY TO STOP RUNNING THE PROGRAM

You can stop running the program by pressing the BREAK key.

Try it: 10 REM GO FOREI)ER
15 PRINT "clear"
20 PRINT "MUD "
21 GOSUB £10
22 PRINT " TURTLES "
23 GOSUB £10
2£1 PRINT " OF "
25 GOSUB £10
28 PRINT " THE "
27 GOSUB £10
28 PRINT " WORLD ":PRINT
28 GOSUB £10
30 PRINT "UNITE!":PRINT
31 GOSUB £10
38 GOTO 10
£10 FOR T=l TO 500:NEXT T
£18 RETURN

The BREAK key stops the program wherever it is. It prints:

S TOP P E 0 AT LIN E X X and enters the edit mode.

(where XX is the line number where it stops.)

The command CONT starts the program again at the same spot.

This program almost always stops in line 40. Why? ____________ _

WHAT DO YOU DO AFTER YOU STOP?

You put STOP in whatever part of your program is not working right.

Then you run the program. After it stops, you look to see what happened.

(Or you use the BREAK key to stop the program, but it may not stop in the spot
where the trouble is.)

Put on your thinking cap. Ask yourself questions about what happened as the program
ran.

174

You are in the edit mode. You can:

List parts of the program and study them.

Use the PRINT command to look at variables. Do they have the values you
expected?

Use the LET command to change the values of variables

Use the computer as a calculator to check what the program is doing

If you find the trouble:

You may add a line

Change a line

Delete a line.

STARTING THE PROGRAM AGAIN

There are three ways to start a program. They are:

CONT
GOTO }{X
RUN

picks up at the next line
where XX is a line number
your old friend

What is the difference between these three ways?

CONTt GOTO XX

RUN

These two way keeps the variable boxes
left over from the last time you ran.

This way throws away all the variable boxes made
the last time, then executes the program from
the beginning.

The CONT command starts the program at the next numbered line. It leaves the
values in the variable boxes the same.

CAREFUL! The program does not start at the next statement if there are several
statements in the same line. It goes on to the next numbered line. This may mean that
the program does not run correctly after CONT.

So: Do a LIST before you do a CONT, to see if the line has more than one statement.
If it does, you may not want to use CONT.

You may start running the program at a different spot by entering (without a line
number in front) the command:

GOTO XX

where XX is the line number where you want to restart.

175

DEBUGGING

Little errors in your program are called "bugs."

If your program doesn't run right, do these four things:

1. If the computer printed an ERROR MESSAGE, it tells what line it stopped
on. Careful, the mistake may really be in another line!

2. If the computer just keeps running but doesn't do the right thing, stop it and
put some PRINT lines in that will tell what is happening.

3. Or you can put STOP commands in the program.
4. If the program runs so fast that you can't tell what is happening, put in some

delay loops to slow it down.

After you have fixed the program, take the PRINT lines, the STOP's and the delay
loops out of the program.

Assignment 33:

1. Go back to the SNAKE program and fix up some of the bugs. For example, the
program "crashes" when the snake hits a wall. Add "food" for the snake. Add
score keeping. Let the game end if the snake touches a wall. (SNAKE p.age 133)

2. Go back and fix up some other program that you have written.

176

177

RESERVED WORDS IN AlAR I BASIC

ABS ADR AND ASC ATN

BYE

CLOAD CHR$ CLOG CLOSE CLR
COLOR COM CONT COS
CSAVE

DATA DEG DIM DOS DRAWTO

END ENTER EXP

FOR FRE

GET GOSUB GOTO GRAPHICS

IF INPUT INT

LEN LET LIST LOAD
LOCATE LOG LPRINT

NEW NEXT NOT NOTE

ON OPEN OR

PADDLE PEEK PLOT POINT POKE
POP POSITION PRINT PTRIG
PUT

RAD READ REM RESTORE RETURN
RND RUN

SAVE SETCOLOR SGN SIN SOUND
SQR STATUS STEP STICK
STRIG STOP STR$

THEN TO TRAP

USR

VAL

XIO

Variable names in ATARI BASIC can be any length. You should not use names that
have reserved words in them, beginning, middle, or end.

178

ANSWERS TO ASSIGNMENTS

Al-3

10 REM GREETING
20 PRINT "HI THERE"
30 PRINT "ATARI COMPUTER"

A2-1

10 REM NAMES
20 PRINT "MINOA"
30 PRINT "ANNE"
40 PRINT "inverse CARLSON"
50 REM REMEMBER "inverse" MEANS PRESS "ATARI" KEY

A2-3

10 REM NAMES
15 PRINT "clear"
16 REM "clear" MEANS "ESC SHIFT CLEAR"
20 PRINT "buzz MINOA"
30 PRJ NT" b u z zAN N E "
40 PRINT "buzz in\lerse CARLSON"
50 REM HOW 00 YOU ENTER "buzz"?

A3-5

10 REM BIRDS
15 PRINT "clear"
20 PRINT
25 PRINT "buzz ---0---"
30 PRINT
40 PRINT
50 PRINT "
60 PRINT

buzz ---0---"

70 PRINT
80 PRINT " buzz --0--"

A4-4

10 REM SMILE
12 PRINT "clear"
20 PRINT
30 PRINT

179

£10 PRINT
50 PRINT " 00
80 PRINT
81 PRINT
82 PRINT
83 PRINT " * 8£1 PRINT " * 85 PRINT " * 88 PRINT " ******

A5-2

10 REM THE STRING BOX
12 PRINT "clear"
15 DIM N$(£l0)
20 LET N$="MINDA"
30 PRINT N$
£10 LET N$="BETH"
50 PRINT N$

A8-1

10 REM COLORED NAME
12 DIM N$(£l0)
15 PRINT "clear"
20 PRINT "YOUR NAME?"
25 INPUT N$
30 SETCOLOR 2, £1,8
£10 SETCOLOR £1,12,8
50 PRINT N$

00

*
*

*

80 PRINT "LIKE THE COLORS?"

A8-2

10 REM WHAT'S IN THE BOX?
12 DIM F$(£l0) ,A$(£l0)
15 PRINT "clear"

"

"
"
"
"

20 PRINT "YOUR FAI)ORITE FOOD?"
22 INPUT F$
25 PRINT
30 PRINT "YOUR FAVORITE ANIMAL?"
32 INPUT A$
£10 F$=A$
50 PRINT "NOW THE BOX HAS "
52 PRINT

180

:55 PRINT" '";F$;'''''
60 PRINT
65 PRINT "IN IT."

A7-3

10 REM MUSIC
12 PRINT "clear"
15 DIM G$(40). T$(40)
20 PR I NT "WHAT IS YDUR FAI)oR I TE MUS I CAL GROUP?"
25 INPUT G$
30 PRINT "clear WHAT TUNE DO THEY PLAY?"
35 INPUT T$
40 PRINT "clear"
50 PRINT
52 GRAPHICS 2+16
55 PRINT G$;" PLAYS "H$
88 GoTo 88

AB-3

10 REM FRIENDS
15 PRINT "clear"
20 PRINT "MINDA"
25 PRINT
30 PRINT "NELL"
88 GoTo 20

A8B-1

2 REM PIZZA
3 REM BY CHRIS CLARK. JR. AGE 14 GOING ON (YOU FIGURE IT
OUT)
4 PRINT "clear"
5 PRINT "HALLo. AY AM MARIO. YOUR PIZZA MAN."
6 PRINT
7 PRINT "JUST TELL ME ZE GORY DETAILS AND I'LL DO ZE REST"
8 PRINT
10 PRINT "WHAT SIZE SHOULD ZIS PIZZA BE?" (S/M/L)"
15 DIM S$(1) .CH$(1)
20 INPUT S$
21 PRINT
30 IF S$="S" THEN PRINT "ON A DIET? Ho Ho!"
33 IF S$="M" THEN'PRINT "GOOD CHOICE-NOT TOO BIG. BUT
FILLING!"

181

38 IF S$="L" THEN PRINT "YOU MUST HAljE A BIG BUNCH AT
HOME!"
38 PRINT
4121 PRINT "NOW, YOU WANT DOUBLE GHEES ON ZIS (YIN)?"
42 INPUT CH$
45 REM ETC.
5121 REM MUSHROOMS, ETC.
6121 REM ANCHOVIES, ETC.
8121 REM PEPPERS, ETC.
8121 REM MEATt ETC.
15121 PRINT "inverse"
151 PRINT "HOKAY, HERE IS YOUR PIZZA!"
152 PRINT "normal"
154 IF S$="S" THEN PRINT "WAN SMALL PIZZA WITH ";
155 REM ETC.
16121 IF BASE$="P" THEN PRINT "PEPPERONI"
165 REM ETC., ETC.
238 PRINT
24121 FOR J=l TO 2121121121
242 NEXT J

A8A-2

1121 REM BOYS AND GIRLS
12 DIM A$(ll21)
15 PRINT "clear"
2121 PRINT
25 PRINT "ARE YOU A BOY OR A GIRL?"
26 PRINT "ANSWER 'BOY' OR 'GIRL'"
3121 INPUT A$
32 PRINT
35 IF A$="BOY" THEN PRINT "SNIPS AND SNAILS"
4121 IF A$:;;"GIRL" THEN PRINT "SUGAR AND SPICE"

A8B-2

1121 REM --- COLOR GUESSING GAME --
15 DIM C$(4121), G$(4121)
2121 PRINT "clear"
23 PRINT
24 PRINT
25 PRINT "PLAYER 2 TURN YOUR BACK"
3121 PRINT "PLAYER 1 ENTER A COLOR"
35 INPUT C$
4121 PRINT "clear"
42 PRINT
43 PRINT

182

50 PRINT "PLAYER 2 TURN AROUND AND GUESS"
52 PRINT
53 PRINT
54 PRINT
55 INPUT G$
60
65
67
70

IF G$<>C$ THEN PRINT "WRONG!"
IF G$ =C$ THEN PRINT "RIGHT!"

10
12

PRINT
GO TO 55

A10-1

REM BIRTH
DIM Y$ (1)

YEAR

15 PRINT "clear"
30 PRINT "HOW OLD ARE YOU?"
32 PRINT
34 INPUT A
36 PRINT
40 PRINT "AND WHAT YEAR IS IT NOW?"
45 INPUT Y
50 B=Y-A
52 PRINT
55 PRINT "HAS YOUR BIRTHDAY COME YET THIS YEAR?"
56 PRINT "<YIN>"
60 INPUT Y$
65 IF Y$="N" THEN B=B-1
70 PRINT "YOU WERE BORN IN ";B;"."

A10-2

10 REM MULTIPLICATION
15 PRINT "clear"
20 PRINT
22 PRINT
24 PRINT
30 PRINT "GIljE ME A NUMBER"
32 PRINT
35 INPUT A
37 PRINT
38 PRINT
40 PRINT "GIVE ME ANOTHER "
42 PRINT
45 INPUT B
48 C=A*B
50 PRINT
52 PRINT
60 PRINT "THEIR PRODUCT IS ";C

183

AllA-l

10 REM &%$%! INSULTS !%$%&
12 DIM N$(40)
15 PRINT "clear"
18 PRINT
17 PRINT
20 PRINT "HEY YOU!! WHAT IS YOUR NAME?"
21 PRINT
22 PRINT
25 INPUT N$
30 PRINT "clear"
31 PRINT
32 PRINT
35 PRINT N$
38 PRINT
37 PRINT
38 FOR T=l TO 1000:NEXT T
40 PRINT "BAH!!"
41 PRINT
42 PRINT "YOUR FATHER EATS LEEKS!!!"
50 PRINT "buzz"

AllB-l

10 REM SOUNDS
12 DIM Y$(1)

15 PRINT "clear"
20 PRINT
21 PRINT
22 PRINT "PITCH <1 TO 255)"
25 PRINT
28 INPUT P
27 PRINT
30 PRINT "LENGTH IN SECONDS"
31 PRINT
32 INPUT S
33 PRINT
35 T=S*500
40 SOUND 1,P,10,8
45 FOR I = 1 TO T:NEXT I
50 SOUND 1,P,10,0
80 PRINT "ANOTHER?"
81 INPUT Y$
85 IF Y$="N" THEN END
88 GOTO 15

184

A11B-2

10 REM CLOCK
15 PRINT "clear"
20 PRINT "TIME? <H, M, S)"
25 INPUT H, M, S
30 FOR T=1 TO 400;NEXT T
31 S=S+1
32 PRINT H;":";M;":";S
50 IF S<80 THEN GOTO 80
55 S=0
58 M=M+1
80 GOTO 30
70 REM 00 SAME FOR HOURS

A12B-3

10 REM I GOT YOUR NUMBER!
20 PRINT "clear"
25 PRINT
28 PRINT
27 PRINT
30 PRINT "GIVE ME A NUMBER BETWEEN ZERO AND TEN:"
35 PRINT
38 PRINT
37 PRINT
40 INPUT N
45 PRINT
48 PRINT
50 IF N=0 THEN PRINT "I GOT PLENTY OF NOTHING!"
51 IF N=1 THEN PRINT "I'M NUMBER ONE!"
52 IF N=2 THEN PRINT "TWO IS COMPANY"
53 REM ETC.
70 IF N)10 THEN GOTO 88
80 GOTO 25
88 PRINT "THAT'S ALL, FOLKS"

A13-1

10 REM ** A PAIR OF DICE **
12 DIM Y$(1)
15 PRINT "clear"
20 LET D1=1+INT(RND(8)*8)
22 LET D2=1+INT(RND(8)*8)
25 D=D1+D2
30 PRINT "THE ROLL GAVE:"

185

32 PRINT
33 PRINT " THE FIRST DIE II ;01
34 PRINT " THE SECOND II ;02
35 PRINT " THE DICE .. ; 0
47 PRINT
48 PRINT
50 PRINT "AGAIN?"
55 INPUT Y$
57 PRINT
58 PRINT
60 IF Y$="Y" THEN GOTO 15

A13-2

10 REM PAPER, SCISSORS, ROCK
12 PRINT "clear"
13 PRINT
14 PRINT
15 DIM C$(l), Y$(l)
16 PRINT "PLAY THE "
17 PRINT
18 PRINT
18 PRINT "
20 PRINT "
21 PRINT "
22 PRINT

PAP E R "
SCI S S 0 R S "

ROC K "

23 PRINT "GAME AGAINST THE COMPUTER"
24 PRINT
25 PRINT "PRESS 'BREAK' KEY TO END GAME"
26 PRINT "ENTER YOUR CHOICE <P,S,R >"
28 REM COMPUTER CHOOSES ITS MOVE
30 C=INT(RND(8)*3)+1
31 IF C=l THEN C$="P"
33 IF C=2 THEN C$="S"
34 IF C=3 THEN C$="R"
35 REM C$ IS THE COMPUTER'S CHOICE
37 INPUT Y$
38 REM Y$ IS YOUR CHOICE
38 REM
40 REM IS THERE A TIE?
41 REM
50 IF C$<>Y$ THEN GO TO 60
52 REM THERE IS A TIE
55 PRINT "
57 GOTO 30
58 REM

TIE"

60 REM NO TIE, WHO WINS?

186

61 REM
62 IF C$="P" THEN IF Y$="S" THEN 70
63 IF C$="S" THEN IF Y$="R" THEN 70
64 IF C$="R" THEN IF Y$ ="P" THEN 70
65 REM COMPUTER WINS
66 PRINT " COMPUTER
69 GOTO 30
70 REM
71 REM YOU WIN
72 REM
75 PRINT " YOU WIN"
79 GOTO 30

A15-1

10 REM !!! VACATION !!!
11 DIM M$(60), P$(60), Q$(60), Z$(60)
13 PRINT "clear"
14 PRINT
15 PRINT
16 PRINT
20 REM HEADING
21 PRINT "VACATION CHOOSING PROGRAM "
22 PRINT
23 PRINT "PICKS YOUR VACATION BY THE"
24 PRINT "AMOUNT YOU WANT TO SPEND"
25 PRINT
30 REM INSTRUCTIONS

WINS"

31 PRINT "ENTER THE AMOUNT IN DOLLARS THAT "
32 PRINT "YOU CAN SPEND"
33 PRINT
35 REM GET DOLLAR AMOUNT
37 INPUT 0
38 PRINT
40 M$="FLIP PENNIES WITH YOUR KID BROTHER"
41 P$="SPEND THE AFTERNOON IN BEAUTIFUL HOG WALLOW,
MICH."
42 Q$="ENTER A PICKLE EATING CONTEST IN SCRATCHY
BACK,TENN."
47 REM ETC.
58 Z$="BUY A COSY YACHT AND CRUISE THE CARIBBEAN SEA"
70 IF 0<0.5 THEN PRINT M$:GOTO 90
71 IF 0<1 THEN PRINT P$:GOTO 90
72 IF 0<5 THEN PRINT Q$:GOTO 90
73 REM ETC.
86 IF 0<1000000 THEN PRINT Z$:GOTO 90

187

88 PRINT "TREAT YOUR WHOLE SCHOOL TO A 'ROUND THE WORLD
TRIP!"
80 REM ENDING OF PROGRAM

A1G-l

10 REM RANDOM NAME
12 PRINT "clear"
15 DIM N$(£l0)
30 PRINT "YOUR NAME ";
32 INPUT N$
35 PRINT "clear"
3G POKE 752,1:REM CURSOR OFF
£10 X=INT(RND(8)*30)
£11 Y=INT(RND(8)*23)
50 POSITION X,Y
G0 PRINT N$
70 FOR T=l TO 50:NEXT T
80 GO TO £10
88 REM MINDA SAYS "MODEST AREN'T WE!"

A1G-2

10 REM X NAME
12 PRINT "clear"
15 DIM N$(£l0)
22 POSITION l£1,G:PRINT IIMII
23 POSITION 2G,G:PRINT "M"
32 POSITION 17,8:PRINT " I "
33 POSITION 23,8:PRINT " I "
£12 POSITION 20t12:PRINT "N"
£13 REM MIDDLE LETTER, DO FIRST
52 POSITION 23t15:PRINT
53 POSITION 17t15:PRINT
G2 POSITION l£1,18:PRINT
G3 POSITION 2Gt18:PRINT

A17A - l

10 REM COUNTING BY FIVES
12 PRINT "clear"

"0"
"0"
"A"
"A"

20 FOR 1=5 TO 100 STEP 5
30 PRINT I
35 FOR T=l TO 200:NEXT T
£10 NEXT I

188

A17B-2

10 REM SLIPPING NAME
12 PRINT "clear"
15 DEM N$(40)
20 PRINT "YDUR NAME";:INPUT N$
25 ? "clear"
28 FOR 1=0 TO 22
30 POSITION I tI
32 PRINT N$
35 FOR T=l TO 100:NEXT T
40 NEXT I

A17B-3

10 REM CLIMBING NAME
12 PRINT "clear"
13 DIM N$(40)
15 N$="STANISLAUS MAZURSKI"
20 FOR 1=23 TO 1 STEP -1
25 POSITION 10 tI
26 PRINT N$;
27 FOR T=l TO 50:NEXT T
30 PRINT "clear"
40 NEXT I

A17B-3

10 REM CROSSING FRIENDS
12 PRINT "clear"
15 DIM F$(20), Y$(20), B$(20)
20 PRINT "YOUR NAME":INPUT Y$
22 PRINT
24 PRINT "YOUR FRIEND'S NAME" : INPUT F$
26 B$="
28 PRINT "clear"
30 REM
31 REM MAIN LOOP
32 REM
40 FOR 1=1 TO 22

"

45 IF 1>16 THEN GOTO 60
50 POSITION 2*1 ,12
53 PRINT B$
55 POSITION 2*1+2,12
57 PRINT Y$
60 POSITION 12 tI

189

65 PRINT B$
70 POSITION 12 d+1
75 PRINT F$;
90 ND{T I
91 REM
92 REM DELAY AT END
93 REM
95 FOR T=l TO 1000: ND{T

A19-1

10 REM RELAT I I)ES
12 PRINT "clear"

T

15 DIM R$(40), N$(40), W$(40)
20 PRINT "clear RELATION?"
21 PRINT
22 INPUT W$
23 PRINT
24 FLAG=0
29 RESTORE
30 READ R$:READ N$
31 IF R$="END" THEN GOTO 300
32 IF R$=W$ THEN GOSUB 200
39 GOTO 30
90 DATA FATHER, WILLIAM
91 DATA MOTHER, ANNE
92 DATA SISTER, JOAN
93 DATA SISTER, SUZAN
94 DATA GRANDFATHER, JOHN
95 DATA GRANDMOTHER, ADA
96 DATA GRANDMOTHER, VIVIAN
97 DATA UNCLE, FRED
98 DATA UNCLE, GEORGE
99 DATA AUNT, MARY
100 DATA COUSIN, ROGER
110 DATA END, END
200 REM
201 REM PRINT IT
202 REM
210 PRINT R$;" ";N$
220 FLAG=l
299 RETURN
300 REM
301 REM NO RELATION
302 REM
310 IF FLAG=0 THEN PRINT "YOU DO NOT HAI)E A ";W$
320 FOR T=l TO 1000:NEXT T
399 GOTO 20

190

A20-1

10 REM SONG
15 PRINT "clear"
20 FOR 1=1 TO 10
22 READ Pto
24 SOUND 1 tP t 10 t8
26 FOR T=l TO o*100:NEXT T
28 SOUND lt0t0t0
40 ND{T I
100 DATA
121 t3 tl21 t3 tl21 t2 tl08 tl t86 t3 t86 t2 tl08 tl t86 t2 t81 tl t81 t6

A21-5

2 GoTo 1000:REM SINBAo'S MAGIC CARPET
12 PRINT "clear"
188 REM
188 REM MAIN LOOP
200 REM
201 GRAPHICS 3+16
202 SET COLOR 4tCBtBB
203 SETCoLoR 0tCl tBl
204 SETCoLoR 1 tC2tB2
203 SETCoLoR 2tC3tB3
206 A=RND(8):B=RNo(8)
207 C=RND(8)
210 FOR 1=0 TO 18:FoR J=0 TO 18
211 L=INT(I*24/40)
212 K=I+J:Q=INT(K*24/40)
216 X=X+A*(I+3*B)/(J+3)+C*(20-I-J)/53
218 IF X>3 THEN X=X-3
218 IF X<l THEN X=l
225 COLOR X
230 PLOT I tQ:PLoT KtL
232 PLOT 38-1 tQ:PLoT Kt23-Q
234 PLOT 38-KtL:PLoT I t23-Q
236 PLOT 38-1 t23-Q:PLoT 38-Kt23-L
280 NEXT J:NEXT I
800 FOR T=l TO 2000:NEXT T
888 END
1000 REM
1001 REM SINBAD'S MAGIC CARPET
1002 REM
2000 PRINT "clear"
2010 PRINT "FIRST CoLoRt
2011 PRINT "SECOND CoLoRt
2112 PRINT "THIRD CoLoRt
2013 PRINT "BACKGROUND CoLoRt
2888 GoTO 200

BRIGHTNESS":INPUT
BRIGHTNESS":INPUT
BRIGHTNESS":INPUT
BRIGHTNESS":INPUT

191

C 1 tB 1
C2tB2
C3tB3
CBtBB

A22-1

10 REM ALPHABETICAL
12 PRINT "clear"
15 DIM W$(40), H$(40)
17 POSITION 0,3
20 PRINT "THIS PROGRAM ARRANGES THE LETTERS"
21 PRINT "OF A WORD IN ALPHABETICAL ORDER."
25 POSITION 0,8
30 PRINT "GII)E ME A WORD"
31 PRINT:INPUT W$
32 PRINT
35 L=LEN(W$)
39 K=l
40 FOR 1=85 TO 85+28
41 REM TEST LETTERS IN ALPHABET
42 REM TO SEE IF IN WORD
45 FOR J=l TO L
50 G=ASC(W$(J,J»
55 IF G=I THEN H$(K)=CHR$(G):K=K+1
80 NEXT J:NEXT I
70 PRNT "HERE IT IS IN ALPHABETICAL ORDER:"
75 PRINT
80 PR I NT " "; H$

A22-2

10 REM $ 1, ! DOUBLE DUTCH ! :.\', $
12 PRINT "clear"
15 DIM S$(99) , L$(l) , SS$(99)
25 ?"GIVE ME A SENTENCE":?:INPUT S$
27 ?
30 L=LEN(S$)
40 K=l
50 FOR 1=1 TO L
51 L$=S$(ltI)
52 IF L$="A" THEN GoTo 72
53 IF L$="E" THEN GoTo 72
54 IF L$="I" THEN GoTo 72
55 IF L$="o" THEN GoTo 72
58 IF L$="U" THEN GoTo 72
89 SS$(K)=L$
70 K=K+1
72 NEXT I
78 ?"HERE IT IS IN DOUBLE DUTCH"
78 ?
80 ? SS$

192

A23-1

10 REM MENU MAKER
12 PRINT "clear"
15 DIM C$ (1)
17 OPEN -l,lI,0,"K:"
19 POSITION 0,3
20 PRINT "WHICH LoLoR DO
21 PRINT
22 PRINT " <P> PINK "
23 PRINT " <0> ORANGE"
211 PRINT " <G> GREEN
25 PRINT " BLUE
26 PRINT
30 GET +l,C:C$=CHR$(C)
35 IF C$="P" THEN C=lI
36 IF C$="O" THEN C-'? -L..

37 IF C$="G" THEN C=12
38 IF C$="B" THEN C=8
lI0 SET COLOR lI,C,8

A23-2

10 REM SILLY SENTENCES
12 PRINT "clear"
13 OPEN 6,lI,0,"K:"

"
"

YOU

15 DIM Y$(l), L$(l), S$(99)
16 ?"SILLY SENTENCES" : ?

LIKE?"

17 ?"WANT INSTRUCTIONS <Y/N>":?:GET .6,Y
18 Y$=CHR$(Y)
19 IF Y$="Y" THEN GOSUB 100
20 K=l
21 ?" THE SUBJECT: (END WITH A PER I 00) " : ?
22 GET -6,Y:L$=CHR$(Y)
211 IF L$="." THEN GO TO 30
28 S$(K)=L$:K=K+l
29 GoTo 22
30 S$(K)=" ":K=K+l
32 ?"THE I)ERB: (END WITH A PERIOD)":?
311 GET +6,Y:L$=CHR$(Y)
36 IF L$="." THEN GOTO lI2
38 S$(K)=L$:K=K+l:GOTo 311
lI2 S$(K)=" ":K=K+l
50 ?" THE OBJECT: (END WITH A PER I 00) " :?
52 GET -6,Y:L$=CHR$(Y)
511 IF L$="." THEN GO TO 70
56 S$(K)=L$:K=K+l:GoTo 52

193

70 S$(K)="."
85 ? S$
88 END
100 ?"clear"
110 ?"THREE PLAYERS ENTER PARTS OF A SENTENCE":?
115 ?"NO PLAYER CAN SEE WHAT THE OTHERS ENTER":?
120 ?"THE FIRST ENTERS THE SUBJECT"
121 ?" (THE PERSON DOING SOMETHING)":?
125 ?"THE SECOND ENTERS THE VERB"
126
130
131
132
150
188

?II (THE ACTION WORD)":?
?"THE THIRD ENTERS THE
?" (THE PERSON OR
?" THE ACTION IS
FOR T=l TO 4000:NEXT T
RETURN

A24B-l

10 REM GOSUB AND RETURN
12 PRINT "clear"
20 GOSUB 200:REM FIRST ONE
30 GOSUB 300:REM NEXT ONE
40 GOSUB 400:REM LAST ONE
50 GOSUB 200:REM AGAIN
88 END
200 REM
201 REM SUBROUTINE 1
202 REM
210 PRINT "LOOK OUT!"
215 PRINT
250 GOSUB 800
288 RETURN
300 REM
301 REM SUBROUTINE 2
302 REM
350 PRINT "RED SMOKE"
355 PRINT
360 GOSUB 800
388 RETURN
400 REM
401 REM LAST ONE
402 REM

OBJECT"
THING TO
DONE)" : ?

WHOM"

450 PRINT "IS POURING FROM YOUR ATARI!"
455 PRINT
460 GOSUB 800
488 RETURN

194

900 REM
901 REM TIMER
902 REM
950 FOR T=l TO 400:NEXT T
999 RETURN

A25-2

10 REM "ON ••• GoTo " SAMPLE
12 OPEN +8t4t0t"K : "
20 REM MAKE A MENU
22 PRINT "clear"
25 POSITION 0t3
30 PRINT "MAKE YOUR CHOIC E:"
31 PRINT:PRINT" <A> TAKE A NAP"
32 PRINT:PRINT" EAT AN APPLE"
33 PRINT:PRINT" <C> CALL A FRIEND"
40 PRINT : GET -8tX : PRINT
41 X=}{-84
50 ON X GoTo 80t70t80
52 GoTo 22
80 PRINT "YOUR BED IS NOT MADE!"
81 END
80 PRINT "YOUR SISTER ATE THE LAST ONE!"
81 END
70 PRINT "YOUR FATHER IS ON THE PHONE!"
81 END

A28 - 1

10 REM CIPHER MAKER
12 PRINT "clear"
15 DIM S$(99) t P$(2) t Q$(2) t L$(99)
20 PRINT "CODE MAKING PROGRAM"
21 PRINT
25 PRINT "ENTER A SENTENCE FOR CODING:"
28 PRINT
30 INPUT S$
35 L=LEN(S$)
38 S$(L+l)=" "
40 FOR 1=1 TO L STEP 2
45 P$=S$ (I tI+i)
50 Q$=P$(2)
51 Q$(2) =P$(1 d)
55 L$(I>=Q$
80 NE>{T I

195

84 PRINT
85 PRINT "HERE IS THE CODED SENTENCE:"
88 PRINT
70 PRINT " ";L$

A28-2

10 REM QUESTION ANSWERER
12 PRINT"clear"
15 DIM Q$(88), C$(1), S$(40), 1)$(40), P$(88)
17 POSITION 0,3
20 PRINT "ENTER A QUESTION"
22 PRINT
25 INPUT Q$
27 L=LEN(Q$)
28 PRINT
30 REM TAKE OFF THE QUESTION MARK
32 Q$(L)="."
38 REM LOOK FOR THE END OF THE FIRST WORD
40 FOR 1=1 TO L
41 C$=Q$(I,r)
45 IF C$=" " THEN S1=I: I=L
48 NEXT I
48 REM LOOK FOR THE END OF THE SECOND WORD
50 FOR I=S1 + 1 TO L
52 C$=Q$ (I ,r)
54 IF C$=" " THEN S2=I:I=L
58 NEXT I
58 REM TURN THE WORDS AROUND
80 S$=Q$(S1+1 ,S2)
82 V$=Q$(1,S1)
85 PRINT S$;V$;Q$(S2+1 ,L)

A28-3

10 REM PIG LATIN
12 DIM W$(40), L$(40)
15 PRINT "clear"
17 POSITION 0,3
20 PRINT "THIS IS A PIG LATIN PROGRAM"
25 PRINT
30 PRINT "GIVE ME A WORD"
31 PRINT
33 INPUT W$
34 L=LEN(W$)
35 PRINT

196

40 REM FIND THE FIRST IjDWEL
41 FOR 1=1 TO L
42 IF W$(1 tI)="A" THEN 50
43 IF W$(I tI)="E" THEN 50
44 IF W$(ItI)="I" THEN 50
45 IF W$(I tI)="O" THEN 50
46 IF W$(I t1)="U" THEN 513
47 NEXT I
50 IF I < > 1 THEN 60
51 L$=W$
52 L$(L+l)=ILAY"
55 GO TO 80
613 REM FOUND IT
68 L$=W$(I)
70 L$(L-1+2)=W$(1 t1-l)
72 L$(L+l)="AY"
80 PRINT II " ; L$
80 FOR T=l TO l!3!30:NEXT T
88 GOTO 15

A27-3

10 REM BACKWARD ADDED TO FORWARD
12 DIM N$(20) t B$(20) t A$(20) t L$(10)
15 PRINT "clear"
17 POSITION 0t3
20 PRINT "GIVE ME A NUMBER"
21 INPUT N
22 N$=STR$(N)
35 L=LEN(N$)
40 FOR 1=1 TO L
41 B=L-1+l
45 B$(ItI)=N$(BtB)
50 NEXT I
55 B=ljAL<B$)
57 PRINT
60 PRINT" ";N
61 PRINT II +";B
62 L$="----------"
65 PRINT II II ;L$(1 tL+l)
70 A=N+B
72 A$=STR$(A)
75 IF LEN(A$)=L THEN PRINT" ";A
76 IF LEN(A$)=L+l THEN PRINT" ";A

197

A27-a

10 REM MARCHING NUMBERS
12 DIM B$(10), N$(10)
15 PRINT "clear"
17 POSITION 0,3
20 PRINT "GIVE ME A NUMBER "
21 PRINT
22 INPUT N
25 N$=STR$(N)
26 L=LEN(N$)
35 POSTION 0 t12
36 PRINT N$
a0 FOR 1=1 TO 38-L
a2 POSITIDN 1-1 t12
a3 B$=N$(2,L)
aa B$(L)=N$(It1)
a5 N$=B$
a6 PRINT " " ;N$
50 FOR T=1 TO 100:NEXT T
60 NEXT I

A28-2

10 REM MAKE THESE CHANGES TO 'MOVE A SPOT'
70 IF X<1 THEN X=1:REM AT LEFT EDGE?
71 IF Y<1 THEN Y=1
72 IF X>38 THEN X=38
73 IF Y>22 THEN Y=22
7a REM MAKE THESE ADDITIONS TO 'MOVE A SPOT'
28 GOSUB 500:REM BORDER
500 REM BORDER
510 SETCOLOR 1,a,8
511 COLOR 2
515 FOR 1=0 TO 38
520 PLOT 1,0
521 PLOT I ,23
530 NEXT I
5a0 FOR 1=0 TO 23
5a5 PLOT 0,1
5a6 PLOT 38,1
550 NEXT 1
588 RETURN

198

A29-2

10 REM SHOOTING STARS
11 REM MAKE THIS CHANGE
213 REM CHANGE LINE NUMBER 213 TO 21Gt YOU HAVE:
21G IF L=3 THEN GOSUB 400
401 REM ADD
440 COLOR 0:PLOT XtI:REM ERASES STAR
450 I=l:REM ENDS LOOP FOR TRAVEL OF LASER PHOTON

A30-1

10 REM ARRAYS
12 DIM 0(12)
15 PRINT "clear down dO ln dO ln"
20 FOR 1=1 TO 12
22 READ 0
24 0(1)=0
29 NEXT I
30 PRINT "MONTH NUMBER? <1-12>"
31 PRINT:INPUT M
32 PRINT
35 PR I NT "MONTH NUMBER "; M;" HAS "; 0 (M) ;" DAYS."
90 DATA 31 t28 t31 t30 t31 t30 t31 t31 t30 t31 t30 t31

A31-3

10 REM ::::::::::::::: IIAIN'T GOT NO ••• 11 ::::::::::::::::::

12 DIM S$(99) t W$(40) t N$(40) t L$(1)
15 PRINT "clear dO ln down dO ln"

19 REM --------------------- GET A SENTENCE
20 PRINT "ENTER A SENTENCE:"
22 PRINT:INPUT S$:PRINT
25 L=LEN(S$)
30 REM --------------------- REMOVE ENDING PUNCTUATION
31 L$=S$(LtL)
32 C=ASC(L$)
34 IF C<35 OR C>90 THEN S$(LtL)=" "
40 NN=0:REM NUMBER OF NEGATIVE WORDS
42 S2=1:REM
45 FOR 1=1 TO L:REM
50 L$=S$(LtL):REM
54 REM

START LETTER OF WORD
TEST WORDS IN SENTENCE
GET A CHARACTER
IS IT A SPACE?

55 IF L$=" " THEN
G0 NEXT I:REM

Sl=S2:S2=I+l:GOSUB 200
NE>{T CHARACTER

199

65 PRINT:REM --------------- PRINT RESULT
REM
IF NN=0 THEN PRINT "THIS SENTENCE IS PoSITII)E. "

68
70
71 IF NN=l THEN PRINT "THIS SENTENCE IS NEGATII)E."
72 IF NN=2
73 IF NN>2
88 END
100 REM

THEN
THEN

PRINT "THIS SENTENCE HAS A DOUBLE NEGAT I I)E. "
PRINT "THIS SENTENCE I S HARD TO UNDERSTAND! "

101 REM -------------------- SOME TEST SENTENCES
102 REM
111 REM I DON'T EAT JUNK FOOD.
112 REM I NEVER EAT NO JUNK FOOD!
113 REM I DON'T NEVER EAT NO JUNK FOOD!
200 REM
201 REM ------------ - ------- IS THE WORD NEGATIVE?
202 REM
205 RESTORE
210 W$=S(S1 tS2-2):REM
215 READ N$:REM
220 IF N$="END" THEN RETURN:REM

PICK WORD FROM SENTENCE
PICK NEGATIVE WORD
LIST DONE?

225 IF N$=W$ THEN NN=NN+1:REM COMPARE TWO WORDS
230 GoTo 215:REM NEXT NEGATIVE WORD
800 REM
801 REM --------------------- NEGATIVE WORDS
802 REM
810 DATA NotNoTtNEVERtNoNEtNoTHING
811 DATA DoN'TtDDESN'TtAREN'TtAIN'T
812 DATA ISN'TtDIDN'T
813 DATA HAVEN'TtHASN'TtHADN'T
814 DATA CAN'TtCoULDN'TtSHoULDN'T
815 DATA WoULDN'TtWoN'T
820 DATA END

A32-2

2 GoTo 1000:REM **** CoDE--DECoDE ****
100 REM
101 REM MAIN LOOP
102 REM
110 GoSUB 400:REM GET PASSWORD
115 PRINT "dol..ln CODE OR DECODE? <C/D>"
116 GET #6tY:Y$=CHR$(Y)
120 IF Y$="C" THEN 500:REM CODE MESSAGE
125 IF Y$="D" THEN 600:REM DECODE MESSAGE
130 GoTo 115

200

188 END
Ll00 REM
Ll01 REM ------------ FORM CODE ALPHABET
Ll02 REM
Ll05 PRINT "INPUT PASSWORD dOl-H."
Ll0G INPUT PW$
Ll07 REM REMOVE REPEATED LETTERS
Ll08 F$=PW$(1,1)
Ll10 FOR 1=2 TO LEN(PW$)
Llll Ll$=PW$(ItI)
Ll12 FOR J=l TO LEN(F$)
Ll15 L2$=F$(J,J)
Ll20 IF Ll$=L2$ THEN Ll30
Ll21 NEXT J
Ll22 F$(LEN(F$)+l) =Ll$
Ll3 0 N E>{T I
Ll32 PW$=F$
Ll33 PRINT" dO Il-. THE SHORTENED PASSWORD IS do n"
Ll3L1 PR I NT " "; PW$
Ll35 REM REMOVE PASSWORD LETTERS FROM THE ALPHABET
Ll3G PW=LEN(PW$)
Ll38 K=l
LlLI0 FOR 1=1 TO 2G:Ll$=A$(ItI)
LlLIl FLAG=0
LlLI2 FOR J=l TO PW:L2$=PW$(J,J)
LlLI5 IF Ll$=L2$ THEN FLAG=l
LlLI5 NEXT J
LlLI7 IF FLAG=0 THEN F$(K,K)=Ll$:K=K+l
LlG0 NE>{T I
Ll70 A$=PW$
Ll71 A$(PW+1)=F$
Ll75 PRINT "do n ALPHABETS do n"
Ll80? A$; "CIPHER"
Ll85 ? B$; "NORMAL"
Ll88 RETURN
500 REM
501 REM
502 REM

FORM A CODED MESSAGE

505 ?"do n INPUT MESSAGE, END WITH '*' do n"
507 K=l
510 GET 9G,Y:Y$=CHR$(Y)
515 IF Y$="*" THEN 580
520 IF Y<G5 OR Y>80 THEN P$(K , K)=Y$:GoTo 5L10
525 Q=Y-GLI
530 P$(K,K)=A$(Q,Q)
5L10 K=K+l:? Y$
588 GoTo 510

201

590 ?:? "do,,"-In" jP$
599 END
800 REM

801 REM ------- - ------ --- - DECODE A MESSAGE
802 REM
810 ?" d 0 lAIn TY PE I N THE CODED MESSAGE"
812 ?"down END WITH A '*' SIGN dO,,"-ln"
815 GET #8,Y:Y$=CHR$(Y)
817 IF Y$="*" THEN 890
820 FOR 1=1 TO 28
825 IF Y$=A$(It!) THEN? B$(It!) j : GOTO 815
830 NEXT I
835 PRINT Y$:GOTO 815
890 END
1000 REM

1001 REM **** CODE -- DECODE ****
1002 REM
2003 PRINT "clear dOIAln"
2005 DIM A$(28) ,B$(28)
2007 OPEN #8,4,0,"K:"
2010 A$ =" ABCOEFGH I JK LMNOPQRSTUI.JW}(YZ"
2015 B$=A$
2020 DIM Y$(1) ,PW$(30) ,F$(30)
2021 DIM L1$(1) ,L2$(1) ,P$(99)
2999 GOTO 100

202

......

GLOSSARY

argument
The variable, number or string that appears in the parentheses of a function.
Like:

array

INT(N)
LEN (W$)

has
has

N
W$

as an argument
as an argument

A set of variables that have the same name. The members of the array are
numbered. The numbers appear in parentheses after the variable name. See
dimension, subscript. Examples:

A(O) is the first member of the array A
B(7) is the eighth member of the array B
CD(3,I) is a member of the array CD

arrow keys
Four keys on the ATARI computer that have arrows on them. They move the
input cursor to the left, right, up, and down.

ASCII
Stands for American Standard Code For Information Interchange. Each character
has an ASCII number. See ATASCII

assertion
The name of a phrase that can be TRUE or FALSE. The phrase we called
"something N.' in an IF statement is an assertion. An assertion is also a numerical
expression. See expression, TRUE, FALSE, logic, IF, something A. Example:

ATASCII

the assertion
the assertion

"A"< >"6"
3 = a

is TRUE
is FALSE

A 256 number code used by ATARI and similar to ASCII. Each letter, digit,
punctuation mark, and graphics character is identified by a number.

attract mode
After being unattended for about 9 minutes, the computer screen display starts to
cycle randomly through various colors. This helps even out the aging of the TV
screen color dots.

background
The area of the screen inside the border.

BASIC
Beginners's All-purpose Symbolic Instruction Code. A language originated by
John Kemeny and Thomas Kurtz at Dartmouth College in the early '60s.

203

bell
The early teletype machines had a bell (like the bell on a typewriter). The ATARI
makes a "buzz" sound instead.

bells and whistles
A phrase going back to the early days of hobby computing. It means the personal
computer was hooked up to do some interesting or spectacular things, like flash
lights or play music.

blank
The character that is a space.

boot
Means to start up the computer from scratch. An easy thing to do with modern
computers that have start up programs stored permanently in ROM memory. It
was an involved procedure in the early days. Now it usually means to read in the
disk operating system programs (DOS) from a disk.

border
The outside area on the TV screen. How much shows depends on the age and
adjustment of the TV.

branch
A point in a program where there is a choice of which statement to execute next.
An IF statement is a branch. So is an ON ... GOTO statement. A branch is not the
same as a jump where there is no choice. See jump, IF.

buffer
A storage area in memory for temporary storage of information being inputed or
outputed from the computer.

buzzer

call

A sound the ATARI makes to attract your attention. You can sound the buzzer by
an ESC CTRL 2 keypress in a PRINT command.

Using a GOSUB calls the subroutine. Putting a function in a statement calls the
function. Call means the computer goes and does what commands are in the
subroutine or does the calculation that the function is for.

carriage return
On a typewriter, you push the lever that moves the carriage carrying the paper so
a new line can begin. In computing, it means the cursor is moved to the start of
the line, but not down to the next line. See line feed, CRLF.

character
Letters, digits, punctuation marks and the space are characters.

204

checksum
In some 110 operations, the computer adds together all the character numbers.
The resulting sum is the "checksum." If the data was transmitted correctly, the
checksum calculated after the data is received will agree with that calculated
before the data was sent. See 110.

clear
Means erase. U sen in "clear the screen" and "clear memory."

coldstart
When first turned on, the computer loads certain parts of memory. Some of these
will be changed as the computer is used. See warmstart.

column
Things arranged vertically. See row.

command
In BASIC a command makes the computer do some action, such as erase the
screen and move the cursor to the upper left for the HOME command. See
statement, expression. Some commands need expressions to be complete.
Example:

COLOR 2+1

concatenation
Means sticking two strings together.

constant
A number or string that does not change as the program runs. It is stored right in
the program line, not in a box with a name on the front. See line.

CRLF
Short for "carriage return followed by line feed." This is what is called just a
"carriage return" on a typewriter. See carriage return, line feed.

cursor
A marker that shows where the next character on the screen or in a storage
buffer will be placed. Cursor means "runner." The cursor runs along the screen as
you type. There are two kinds of cursors in the ATARI:

data

1 N PUT cursor a square on the screen
P R 1 NT cursor invisible, "shows" where next

character will be printed

BASIC has two kinds of data: numerical and string. Logical data (TRUE, FALSE)
are types of numerical data.

205

debug
Means to run a program to find the errors and fix them. You fix the errors by
editing the program. See edit.

defer red execution
Means run a stored program. See immediate execution

delay loop

edit

A part of the program that just uses up time and does nothing else. Example:

FOR T=l TO 2000:NEXT T

there are two kinds: editing a line and editing a program. In either kind, you are
retyping parts of it to correct it.

enter
To put information into the computer by typing, then pushing the RETURN key.
The information goes into the input buffer as it is typed. When RETURN is
pushed, the computer uses the information.

erase
To destroy information in memory or write blanks to the screen. See clear.

error trap
Part of a program that checks for mistakes in information that the user has
entered, or checks to see if computed results make sense.

execute
To run a program or to perform a single command or statement.

expression
a portion of a statement that has a single value, either a number or a string. See
value. Examples:

7*X+l
"DOPE "<> N$

FALSE
the number o. See logic, assertion.

fork in the road
Describes a branch point in the program. See branch.

function
BASIC has a number of functions built in. Each function has a name followed by
parentheses. In the parentheses are one or more arguments. The function has a
single value (numerical or string) determined by its arguments. See value,
argument. The functions treated in this book are:

ABCt CHR$t INTt LENt PEEKt RNDt BTR$t VAL

206

garbage
A random mess of characters in memory. Usually due to human or machine error.

graphic control characters
The graphics characters you get by pressing CTRL and a letter key. They can be
used for graphics in mode 0 and modes 1 and 2 if CHBAS (756 decimal) is
modified.

graphics
Means picture drawing.

hue
One of 16 colors that the ATARI hardware can display. See luminance.

immediate execution
When a line that does not start with a number is entered from the edit mode, it is
executed as soon as the RETURN key is pressed. If the line has only one
command, you usually think of it as "entering a command." But the line may have
several statements separated by colons, and thus it is a little program. Then you
think of it as "executing a program in the immediate mode".

index
An array name is followed by one or more numbers or numerical variables in
parentheses. Each number is an index. Another word for index is "subscript".

integers
The whole numbers, positive, negative and zero.

INVERSE

I/O

Printing on the screen as black letters on white background.

Input/Output. Input from keyboard, tape recorder, etc. Output to screen, printer,
tape recorder, etc.

joy stick
A device used in games. It is like the control stick used in early airplanes. It can
detect 8 different directions, as well as "centered."

jump
The GOTO command makes the computer jump to another line in the program,
rather than execute the next line.

207

line
There are two kinds of lines in BASIC: Lines that start with a number are stored
in the program in memory. Lines that do not start with a number are executed
right away (see immediate execution). A line contains one or more statements,
separated by colons.

Parts of a line:

18 IF 7<=INT(Z) THEN PRINT LEN(Q$)+2;"RAT":GOTO 40

18
IF 7<=INT(Z) THEN ••• "RAT"
GOTO 40
IF 7(=INT(Z) THEN
PRINT LEN(Q$)=2;"RAT"
GOTO 40
7<=INT(Z)
7{=INT(Z)
LEN(Q$)+2
INT(Z)
LEN(Q$)
Z, Q$
Z, Q$
7,2, "RAT"
< =, +

line number
first statement
second statement
a command
a command
a command
an assertion
an expression
an expression
a function
a function
arguments
variables
constants
operations

line buffer
The storage space that receives the characters you type in. See buffer.

line editing
Retyping parts of a line to correct it. You do this by moving the cursor to the
wrong part and then typing the correct characters. Store the corrected line in
memory by pressing RETURN.

line feed
Moving the cursor straight down to the next line. The ASCII number 10 signals
this command to the screen or printer. See carriage return and CRLF.

line numbers
The number at the beginning of a program line. The line number tells the
computer where to store the line. Some lines don't have numbers (the ones that
will be executed in the immediate execution mode).

listing
A list of all the lines in a program.

208

load
To transfer the information ill a file on disk or tape to the memory of the computer
by using the LOAD or CLOAD command.

luminance
Called "brightness" in this book, it takes on 8 values (even numbers from 0 to 14).
It is not quite the same as brightness because the "brighter" dots are also
"whiter."

logic
The part of a program that compares numbers or strings. The relations AND,
OR, and NOT, and =, <>, <, > , < =, and> = are used. See assertion, IF,
something A.

loop
A part of the program that is done over and over again. There are two kinds of
loops: FOR. .. NEXT loops, and "home made" loops that use IF ... commands with
GOTO commands.

loop variable
Is the number that changes as the loop is repeated. For example:

FOR 1=1 TO 5:NEXT I I is the loop variable

memory
The part of the computer where information is stored. Memory is made of
semiconductor chips, but we think of it as "boxes" with a label on the front and
the information inside.

menu
A list of choices shown on the screen. Each choice has a letter or number beside
it. The program user presses a key to pick which choice is wanted.

message
A PRINT statement that tells what is expected in an INPUT statement.
Example:

PRINT "AGE?":INPUT A

missile
Part of the "missile-player" display hardware system of ATARI computers. We
have not covered this advanced system in this book. The reader is referred to the
book DE RE ATARI.

monitor
Has two meanings. We use it to mean a box with a TV type screen that is
connected to the computer. It displays text and graphics but cannot receive
television programs. In machine language programming, a monitor is a control
program.

209

nesting
When one thing is inside of another. In a program we nest loops. Inside a
statement, we can nest expressions or functions.

L = I NT (LEN (P$) +3 .1I) nested functions
X = :5 * (6 + (7 * (8 + K))) nested parentheses

number
Is one type of information in BASIC. The numbers are generally decimal
numbers. See integer, strings.

operation
In arithmetic: addition, subtraction, multiplication and division, with symbols +,
-, *, and I. The only operation for strings is concatenation.

paddle
A game device which has a knob to turn. Not discussed in this book.

pixel
Picture Element. The smallest dot that is placed on the screen in a given
GRAPHICS mode.

player-missile graphics
An advanced Atari hardware system for producing moving graphics. See missile.

pOinter
A number in memory that tells where in a list of DATA you are at the present
moment.

program
There are two kinds. The usual program is a list of numbered lines containing
statements. The computer executes the statements (commands) in order when the
R UN command is entered. The program is stored in a special part of memory, and
only one program can be stored at a time.

A one line program can be entered when the computer is in the edit mode. It does
not start with a line number and runs as soon as you press the RETURN key.
This one line program does not get mixed with the stored program. But when it
runs, it may read or change the variables (if any) that the stored program made
when it ran.

prompt
Is a little message you put on the screen with an INPUT to remind the user what
kind of an answer you expect. Its name comes from the hint that actors in a play
get from the prompter if they forget their lines.

210

psuedo-random
A number that is calculated in secret by the computer using the RND() function.
It is usually called a "random number". Pseudo-random emphasizes that the
number really is not random (since it is calculated by a known method) but just is
not predictable by the computer user.

punctuation
The characters like period, comma, I, ?, !, $, etc.

random
Numbers that cannot be predicted, like the numbers that show after the roll of
dice, or the number of heads you get in tossing a coin 10 times.

remark
A comment you make in the program by putting it in a REM statement. Example:

REM THE BORDER SETUP SUBROUTINE

reserved words
A list of words and abbreviations that BASIC recognizes as commands or
functions. The reserved words cannot be used in variable names.

return a value
When a function is used (called), its spot in the expression is replaced with a value
(a number or a string). This is called "returning a value."

RUN mode

row

The action of the computer when it is executing a program is called "operating in
the RUN mode." You get into the run mode from the edit mode by entering RUN.
When the computer ends the program for any reason, it returns to the edit mode.

Things arranged horizontally (across).

screen
The TV screen or a similar one in a monitor that is hooked up to the computer.
See monitor.

scrolling
The usual wayan ATARI writes to the full screen is to put the new line at the
bottom of the screen and push all the old lines up. This is called "scrolling".

something A
Is a phrase in this book that stands for an assertion in an IF statement. See
assertion, IF. Example:

IF A>4 THEN GOSUB 500 A > 4 is "something Pi'

211

split screen graphics
Each GRAPHICS mode except mode 0 has an option where 4 lines are reserved
at the bottom of the screen for text to be written.

stack
Is a data type used in machine language programming. The 6502 processor has a
stack in page $01 and it holds information about loops, subroutines, and nesting.

starting stuff
is the name given in this book to initialization material in a program. It includes
REM's for describing the program, input of initial values of variables, set up of
array dimensions, drawing screen graphics, and any other things that need be
done just once at the beginning of a program run.

statement
The smallest complete section of a program. It starts with a command. The
command may have expressions in it.

store
To put information in memory or to save a file on a disk.

string
A type of data in BASIC. It consists of a row of characters. See number.

subroutine
A section of a program that starts with a line called from a GOSUB command and
ends with a RETURN command. It may be called from more than one place in the
program.

subscript
A number in the parentheses of an array. It tells which member of the array is
being used. See index.

syntax
Means the way a statement in BASIC is spelled. A syntax error means the
spelling of a command or variable name is wrong, the punctuation is wrong or the
order of parts in the line is wrong .

. text window
See split screen graphics.

timing loop
A loop that does nothing except use up time. See delay loop.

title
The name of a program or subroutine. Put it in a REM statement.

212

TRUE
Has the value 1. See logic, FALSE, assertion.

typing
Pressing keys on the ATARI. It is different from "entering". See enter.

value
The value of a variable is the number or string stored in the memory box
belonging to the variable. See variable.

variable
A name given to a "box" in memory. The box holds a value. When the computer
sees a variable name in an expression, it goes to the box and takes a copy of what
is in the box back to the expression and puts it where the variable name was, and
continues to evaluate the expression. See variable name.

variable name
A variable is either a string variable or a numerical variable. The name tells
which. String variables have names ending in a "$" sign. Numerical variables do
not.

warmstart
After turning on the machine and using it, you may "get into a mess" and want to
start over. Pressing the SYSTEM RESET key will re-initialize most of the
memory, but not erase the BASIC program you have in memory. See coldstart.

213

INDEX

INDEX OF COMMANDS AND FUNCTIONS
EXPLAINED IN THIS BOOK

AND 161
ASC 118 - 121
CLOAD 78, 81
CHR$()118, 120 - 122
CLR 155,157
COLOR 112, 114, 129, 152
CONT 172, 175
CSAVE 78, 80, 82
DATA 102 - 107, 111
DIM 33, 34, 36 - 40,58, 136, 137, 155 - 157, 159
DRAWTO 112, 116, 117
END 126 - 128, 172, 173
FOR. .. TO 92, 94, 95
GET 103, 118, 120, 122 - 125, 132, 133, 135, 170
GOSUB 94,126,127,129,132,166
GOTO 41, 47, 48, 50, 51, 67, 83, 86,126,127
GRAPHICS 38,46,91, 112 - 114, 116, 145
IF ... THEN 49, 51 - 54, 56, 68, 83, 85, 86, 128
131,160,163
INPUT 38 - 40, 42 - 44, 47,50,56,58, 77, 103,
122, 123, 132, 137
INT () 73, 75
LEN 136
LET 33, 35, 37 - 39, 50, 57, 83, 84, 103, 175
LIST 23,32,85,87,97,175
LOCATE 149, 151

NEW 14,24,26,45
NEXT 64, 92, 95
NOT 164
ON 132, 135
OPEN 120, 124
OR 161, 165
PEEK 134
PLOT 112,116,117,149
POKE 90,132
POSITION 88, 89, 91, 96, 145, 169
PRINT 13,15,17,19,21,23,27,34,37,38,
43-47,50,57,58,62,63,70,84,91,100,127,
172,175,176
READ 102 - 106
REM 14,21,26,27,58,85,86,126, 167, 171
RESTORE 102, 105
RND 73, 74, 77, 83,91
RUN 48, 97 - 99,101
SETCOLOR 38, 112, 113, 152, 153
SOUND 64, 66, 107, 109
STEP 92, 94
STICK 145, 146, 148
STRIG 145, 146, 149
STOP 131, 172 -174,176
STR$() 142, 143

INDEX OF KEYS USED IN THIS BOOK

BREAK 47 - 49,90, 100, 120, 146, 150, 172, 174
CLEAR 10, 19,33
INSERT 28, 31 - 33
DELETE BACK S 28, 29, 31 - 33
ATARI KEY 18, 19,91
RETURN 11 - 14, 16, 18,30,32,33,40,97,99,120,122,123,126,127,166
ARROW KEYS 29, 32
SHIFT 10, 12, 19,33,120,132,135
ESC 19,33
CTRL 15,16,28 - 31, 33, 88, 91 , 120,132,135
SYSTEM RESET 46, 49, 50, 150

214

INDEX OF ERROR MESSAGES

Error Error Code Message and Meaning
Code No.

2 Memory Insufficient
Your program has grown too large to hold in memory.

3 Value Error
You have put a negative number where a positive one is needed. Or the
number is too large.

4 Too Many Variables
You are allowed up to 128 different variable names.

5 String Length Error
You tried to make a string longer than your DIM statement allowed.

6 Out of Data Error
You tried to READ more items than were in your DATA statements.

7 Number greater than 32767
You have a negative number where a positive one is needed, or you have an
integer larger than 32767.

8 Input Statement Error
You tried to INPUT a letter or punctuation into a numerical variable.

9 Array or String DIM Error
You did one of these things: You forgot to do a DIM command. You did DIM
twice. You used a number larger than 32767 in DIM. You used a negative
number in DIM.You used a larger number in a variable than the DIM allowed.
You used a negative number in DIM.

10 Argument Stack Overflow
You have used too many nested GOSUBs or too large an expression.

11 Floating Point Overflow or Underflow Error
You tried to divide by zero. Or you tried to use a number that was too large.

12 Line Not Found
You did a GOTO, GOSUB, or THEN to a line that you forgot to put into the
program.

13 No Matching FOR Statement
Your program reached a NEXT statement before it came to the FOR that
belongs to it.

215

14 Line Too Long Error
You wrote a line that was too complicated or too long.

15 GOSUB or FOR Line Deleted
Your program reached a RETURN statement but you had deleted its GOSUB
since the last run. Or you reached a NEXT statement but you had deleted
its FOR since the last run.

16 RETURN Error
Your program reached a RETURN before it reached its GOSUB.

17 Garbage Error
Your program tried to use some memory that had "garbage" stored in it.
The bad bytes may have come from a POKE that put stuff in the wrong place.
You may be able to heal the hurt by doing a SYSTEM RESET and then
taking the POKE statements out. If this doesn't work, you will have to turn
off, then on. You will lose the program in memory.

18 Invalid String Character
You used a string that has an invalid first character. Orin a VAL function
you used a string that was not all numerical digits.

216

INDEX
A

arithmetic .. 59,60
arrays ... 155,156,157
arrow keys ... 28,29,30
Atari key ... 18,91
ATASCII ... 118,119

B
backspace .. 28,29
bells and whistles ... 15
break key .. 47,48,49
bugs .. 176
buzzer .. 15,16,19

C
calculator .. 97, 100
CLEAR .. 10, 155, 157
colon .. 83,85,86
color graphics ... 38,41,112,113,114
comma... 43,45
concatenation ... 136,139
CaNT command ... 173,175
count-down loops ... 94
CTRL (control) ... 16,30,31
cursor ... 10

keys .. 28,29
invisible .. 90

D
DATA ... 102,106
debugging.• 176
deferred execution ... 98
delay loops ... 64,65
delete ... 28,31
DIM ... 34,36,39,155,156

E
edit mode ... 97,99,100
empty line ... 16
END .. 126,127,128
equal .. 33,55,63
erase .. 10,26
error traps.... .. 170
ESC key ... 19
execution ... 98

F
false ... 160,161,162
FOR/NEXT loops .. 92,93
forks .. 54
functions ... 143,144,145

217

G
GET .. 122,123
gluing ... 137
GOSUB ... 126,127,128
GOTO ... 47,48
graphics 43,46,149,150,151

color ... 38,41,112,113,114
jumps .. 90,91
keyboard , 91

H
hidden cursor .. 43,44

I
IFI'THEN ... 51,52,68,69
immediate execution ... 99
INPUT ... 38,40
insert ... 28,31
integer .. 73,75,77
inverse .. 18

J
joy stick 145,146
jumps

graphics 90,91
program ... 48,49

K
keyboard. .. 132

L
LEN 136
LET ... 33,37,40
lines

add 24
edit 25,30
erase ... 10,26,90

LIST 22,121
logic 157,165
loops

count-down 94
FOR/NEXT ... 92,93
nested .. 94,95
variables ... 95

lower case 15,19
M

memory .. 12,23,34-36,39,58
N

nested loops 94,95
NEW 11,14
not equal ... 55
numbering lines 14
numbers .. 57,68,69,142,143
numerical variables .. 60

218

o
ON/GOTO 132
OPEN ... 124,125

P
PEEK ... 134,
pictures ... 27
pitch .. 109
pixeL .. 149
PLOT command ... 115,116
POKE .. 133
position ... 88,89
PRINT ... 13,43,44
program .. 12,13

Q

question mark ... 83,84
R

random numbers .. 73,74,77
READ ... 102,104
REM .. 14,26
RESTORE ... 105
RETURN .. 126
RUN ... · 13
run mode .. 97,99,101

S
SA VE to tape ... 78,79
scrolling .. 169
semi-colon .. 43,45
shortcuts ... 83,84,85
snipping and gluing (strings) ... 137
sound .. 66,107,108,110
strings .. 136,142,143

constant ... 17
substrings .. 136,137
variables ... 34

STOP ... 131,173,174
subroutines .. 125,126,128
system reset ... 49

T
tape

load to ... 81
save to ... 78,79

true ... 160,161,162
U

user friendly programs .. 166,167,168
Z

zero ... 12

219

-

-

-

--

-

.....

-

-

	Cover
	Contents
	Introduction

	1: PRINT, NEW, REM, RUN

	2: BUZZ, INVERSE, STRING CONSTANTS

	3: LIST, MEMORY BOXES

	4: BACKSPACE, CURSOR KEYS, INSERT, DELETE

	5: STRING BOXES, DIM, LET
	6: INPUT
	7: TRICKS WITH PRINT

	8: GOTO, BREAK KEY

	9: The IF Command

	10: Numbers

	11: Delay Loops, Sound

	12: IF with Numbers

	13: Random Numbers, INT Command

	14: Saving to Tape

	15: Some Shortcuts

	16: Graphics Characters, Postition

	17: FOR-NEXT Loops

	18: Edit and Run Modes, The Calculator

	19: DATA, READ, RESTORE

	20: Sound

	21: Color Graphics

	22: ASCII Code

	23: Secret Writing and the GET Command

	24: Pretty Programs, GOSUB, RETURN, END

	25: Keyboard, ON... GOTO ...

	26: Snipping and Gluing Strings

	27: Switching Numbers with Strings
	28: Joystick for Action Games

	29: Shooting Stars

	30: Arrays

	31: Logic: AND, OR, NOT

	32: User Friendly Programs

	33: Debugging, STOP, CONT

	Reserverd Words in BASIC

	Answers to Assignments

	Glossary
	Index

