9~

P v i om i O s 5 ANy 3 A WG xmmmmm‘&m

B iy, el e SR I 6.

. = .

2 s B)

& 2

5

W Q-

Wi “MWWW
P S T I e wwmwmmﬁww{

o~

S g 5 e 5 S5 e T e
N G o i e

“

IR R e — v‘-.@\'\\W"\ S s ""“‘" 0 ' "'"" s
. d AT T o T A i

i e 1

(

¢ ¢ ¢ (¢

(¢ ¢ (

C (

cc ¢ c ¢

{

From The Editor’s of COMPUTE! Magazine and
Optimized Systems Software, Inc.

INSIDE
ATARI DOS

Compiled by Bill Wilkinson,
Optimized Systems Software, Inc.

Published by COMPUTE! Books,
A Division of Small System Services, Inc,
Greensboro, North Carolina

ATARI is a registered trademark of Atari, Inc.,

Preface

This book contains the only complete and official listings for the disk
File Manager System (FMS) commonly known as “Atari DOS 2.0S.”
You will note that we have clearly stated that the purchase of this
book does not entitle you to make, sell, give, or otherwise distribute
copies of either the original Atari DOS 2.0S or any modified version
you may produce as a result of using this book.

By way of information, should you desire to produce and distribute
a modified version of this product (e.g., to support a new disk drive),
you must sign a contract and licensing agreement with the party who
owns the rights to grant such licenses for non-exclusive uses. Currently,
Optimized Systems Software is the only entity able to grant such
licenses.

Some of you may find it strange that the publishers of COMPUTE!
magazine are publishing this book. You might wonder why Atari,
Inc., hasn’t released this information before. Why can you only obtain
distribution rights from Optimized Systems Software? For the answers
to these and other questions we present the following Introduction,
an historical perspective on the development of the systems software
for the Atari Home Computers.

All reasonable care has been taken in the writing, testing, and correcting of the text and of the
software within this book. There is, however, no expressed or implied warranty of any kind from
the authors or publishers with respect to the text or software herein contained. In the event of
any damages resulting from the use of the text or the software in this book, the authors or
publ:shers shall be in no sense liable. Please review the important cautions noted in Appendix A
regarding the use of this book.

Copvright © 1982 text, Small System Services, Inc.

Copyright © 1978, 1979, 1980, 1982 program listings, Optimized Systems Software, Inc.

All rights reserved. Reproduction or translation of any part of this work beyond that permitted
by sections 107 and 108 of the United States Copyright Act without the permission of the
copyright owner is unlawful.

Printed in the United States of America
ISBN 0-942386-02-7
10 9 87 6 5 4 3 2

Table of Contents

Preface Page ii
Introduction: Being a History of Two Births: “Coleen” and “Candy” Page iv
Chapter One: Atari DOS Overview, Page 1
Chapter Two: Disk Organization Page 10
Chapter Three: FMS File Control Blocks (FCBY Page 15
Chapter Four: FMS Initialization Page 17
Chapter Five: FMS Entry oL Page 22
ChapterSDCFMSExit Page 23
Chapter Seven: Device Dependent Commands Page 25
Chapfer Eight: FMS Open Routines Page 31
Chapter Nine: FMS Close Routines Page 34
Chapter Ten: The GET BYTE Routine Page 36
Chapter Eleven: The PUT BYTE Routine Page 37
ChapterTwelve: Burst /O Page 38
Chapter Thirteen: Reading the DirectoryasaFile Page 40
Chapter Fourteen: Secror /O Routines Page 42
Chapter Fifteen: File Name Decode Routine Page 46
Chapter Sixteen: Directory Searching Page 48
Chapter Seventeen: Write Next Sector Page 50
Chapter Eighteen: Read Next Sector Page 51
Chapter Nineteen: Get and Free Sector Routines Page 53
Chapter Twenty: The Boot Process Page 55
Chapter Twenty-One: Maintaining the Boot Record Page 57
ArariDOS 2.0S .« Page 59
Appendix A: An Intermediate User's Guide To This Book Page 102

COMPUTE! Books is a division of Small System Services, Inc.,
Publishers of COMPUTE! Magazine

Editorial Offices are located at:

625 Fulton Street, Greensboro, NC 27403 USA. (919)275-9809

Optimized Systems Software, Inc., is located at:
10379 Lansdale Avenue, Cupertino, CA 95014 USA. (408)446-3099.

iii

Infroduction

BEING A
HISTORY OF
TWO BIRTHS

“COLEEN”
AND
“CANDY”

[don’t know exactly when the concept of the Atari Computer was
developed within the corporate mind of Atari, Inc., nor do I know all
of the people responsible for nursing that concept into reality. The
following history covers the relationship with Atari, Inc., during the
evalution of the system software.

Sometime in early 1978, when the Atari 800 and 400 were still
called “Coleen” and “Candy” and were still in the breadboard stages,
Atari bought a copy of the source for Microsoft 8K BASIC. This
version of BASIC was fundamentally the same product that was
implemented by Commodore in the early PETs, was used by OSI, and
was a close ancestor of Applesoft. Six months and many, many Atari
man-hours later, that 8K BASIC was almost functioning properly on
the Atari prototypes. But buying source for a program buys you just
that: source. Generally, you also receive little documentation,
sometimes obscure code, no guide to modification, and no real support.
Wkhat to do? The products were due to be shown in early January,
1979, at the Consumer Electronics Show (CES) in Las Vegas,
Nevada.

Enter Shepardson Microsystems, Inc. (SMI), my employer at
that time. Though little known by the microcomputer public, SMI
had already produced some very successful, private labeled
microcomputer software. Among our better-known efforts were the
original Apple DOS, Cromemco 16K Extended BASIC, and

iv

Cromemco 32K Structured BASIC (just being completed at that
time). Also, we had done some work for Atari on a custom game
processor. (Which used a 12-bit ROM and 5-bit RAM configuration
and was well received at Atari, but never produced.)

Coincidentally, about that same time SMI had also purchased
source for Microsoft 6502 BASIC. After producing Apple’s DOS, we
had the bright idea of mating the Apple II peripheral bus with the
KIM/SYM/AIM system bus (and it still seems like a good idea to us,
but ...). The idea was to provide a disk system (Apple’s) to the Single
Board Computer market. Needing a BASIC to sell with the system,
we plunked down a few grand and purchased Microsoft’s. Though it
looked to us like it would be difficult to modify, we were intending to
resell it with a minimum of changes, so it seemed appropriate.

A New BASIC?

Re-enter Atari, some time in the late summer of 1978, asking if SMI
could help them. With Microsoft BASIC? Well ... we really didn’t
want to, but ... Could we propose a new BASIC? We talked. And
had meetings, and a study contract, and more meetings, and finally
we wrote a specification for a 10K, ROM-based BASIC. (I still have a
copy of that spec, and it's amazing how little the final version deviated
from that original.)

Of course, in the middle of all these discussions, Atari naturally
divulged how their (truly superb) ROM-based Operating System
would interface both with BASIC and with various devices.
Somewhere in here, my memory of the sequence of events and
discussions becomes a little unclear, but suffice it to say that we found
ourselves making a bid on producing not only a BASIC for Atari, but
also the File Manager (disk device driver) which would change Atari
OS to Atari DOS.

Sometime in late September, 1978, the final proposal was made
to Atari, and it was accepted by them shortly thereafter. In mid-
October, 1978, we received the go-ahead. The project leader was Paul
Laughton, author of Apple DOS. The bulk of the work ended up
being done by Paul and Kathleen O’Brien. Though I was still involved
in the finishing touches on Cromemco BASIC, [takecredit for
designing the floating point scheme used in Atari BASIC. Paul Krasno
implemented the math library routines following guidelines supplied
to us by Fred Ruckdeschel (author of the acclaimed text, BASIC
Scientific Subroutines). And, of course, much credit must go to Mike
Peters, our combination keypuncher/computer operator/junior
programmer/troubleshooter.

Since we obviously couldn’t have the Atari machines to work on
(they hadn’t been built yet), the first step was to bring up an emulator
for Atari’s CIO (“Central Input-Output,” the true heart of Atari’s
OS) on our Apple II systems. With Paul Laughton leading the way
(and doing a lion’s share of the work), the pieces fell together quickly.
“Little” things had to be overcome: the cross-assembler was modified
to handle the syntax table pseudo-ops, the 256-byte Apple disk sectors
had to be made to look like 128-byte Atari sectors, the BASIC
interpreter seemed to function, but was waiting for the floating point
routines. And there are funny things to tell of, also. Like our cross-
assembler, running on an IMP-16P (a 1973 vintage, 16-bit, bit-sliced
PMOS microprocessor) that used keypunched cards for input, a floppy

disk (with no DOS) as temporary storage, and a paper tape punch as
ouzput.

Somehow, Kathleen and Paul guided the two programs unerringly
toward completion. On December 28, 1978, Atari’s purchasing
department at last delivered a signed copy of the final purchase order.
It called for delivery of both products by April 6, 1979. There was a
clause which provided for a $1,000 per week incentive (if we finished
early) and penalty (if we finished late). What is especially humorous
about that December 28th date is that the first working versions of
both BASIC and FMS had already been delivered to Atari over a week
betore! That is fast work.

Fortunately, then, Atari took their new Atari BASIC to CES.

Urfortunately, there was a limit on the amount of incentive money

collectible. Oh, well.

In the months that followed, SMI fixed bugs, proofread manuals,
and worked on other projects (including the Atari Assembler/Editor,
which was mostly Kathleen’s effort). The nastiest bugs in BASIC were
fixed by December, 1979, but it was too late: Atari had already
ordered tens of thousands of BASIC ROMs. The FMS bugs were
easier to get fixed, since DOS is distributed on disk.

In mid-1980, Paul Laughton once again tore into FMS. This
time, he modified it to handle the ill-fated 815 double-density disk
drive and added “burst 1/O” (and there will be much more about both
these subjects in the technical discussion that follows).

In late 1980, and early 1981, Bob Shepardson, owner of
Shepardson Microsystems, Inc., decided that the pain and trouble of
having employees wasn’t justified by the amount of extra income (if
any) that he derived. Though we still occasionally function in a loose,
cooperative arrangement, the halcyon days of SMI seem to be over.

vi

A New Beginning

[negotiated with Bob Shepardson for his rights to the Atari products
(FMS, BASIC, and the Assembler/Editor) and their Apple 11
counterparts. Thankfully, Atari had purchased from SMI only a non-
exclusive right to distribute these products. SMI had retained the
rights to license other users on a similar non-exclusive basis (and,
indeed, SMI sold a version for the Apple II during most of 1980).

So now it was frantic time again: this was February 25, 1981, and
the West Coast Computer Faire was April 3rd. But our brand new
company, Optimized Systems Software, arrived on time, bringing
with it BASIC A+, OS/A 4+ and EASMD. All three were enhanced,
disk-based versions of the original Atari programs (and, in fact, derived
some of their enhancements from the previous OSS Apple 11
products).

The products have been well received by the Atari user
community, in part due to the fact that they are truly compatible, yet
enhanced, versions of standard Atari software.

Why This Book?

The decision to publish these listings was not an easy one to make;
and it is, in its own way, an historic occasion. After all, have you ever
seen anyone offering source or listings of CP/M, the most popular of
all computer operating systems? Since Atari, to their credit, has
henored the original agreement with SMI and not released either
source or listings without permission, the responsibility for doing so
seemed to rest with OSS.

But Atari has set a powerful precedent by publishing the listings
of DUP (their portion of DOS 2.0S) and the OS ROMs. The clamor
from Actari users for the source for FMS finally even reached us, so we
hzve bowed to the inevitable, and honored the same commitment
that Atari has made: to release as much information and aid as possible
to the user community.

We hope that the users will appreciate these efforts and, in turn,
respect our rights and Copyrights. As long as there is a mutual respect
ard benefit, you, the user, can expect continued support.

About This Book

With the release of this book, the dedicated Atari enthusiast can
examine all the inner workings of Atari DOS and modify his (or her)
system to his heart’s delight. Rather than simply publish listings, we
have chosen also to provide a complete guide to the workings of FMS.
Although the listing itself is relatively clear and commented, all

vii

but the most expert would have trouble plowing through some of the
tortuous logic necessary in such a program. The guide included here
describes all aspects of the FMS, including the external view, the
charts and tables, the various interfaces, and (in copious detail) the
functions of the individual subroutines (including complete entry and
exit parameters).

There is much of value here even for the person who never
intends to modify Atari DOS. We feel that EMS is a fairly well-
structured, relatively sophisticated, system level assembly language
program. We hope that most users will gain by the insights presented
here.

We would welcome any notes you would care to send pointing
out errors either in the DOS or in this book.

Bill Wilkinson
Optimized Systems Software
Cupertino, California

February, 1982

viii

Chapter One

ATARI
DOS
OVERVIEW

The standard Atari Disk Operating System, DOS 2.0S, consists of
four separate elements, ranked as follows in order of their “visibility”
to the average DOS user.

1. DUP - Disk Utility Package

2. CIO - Central Input/Output

3. FMS — File Management System
4. SIO - Serial Input/Output

It is helpful to understand the entire Input/Output (I/O) process.
While this book is intended to give detailed information on the
workings of FMS, this overview will attempt to at least show how the
four elements of DOS are connected. To this end, we would first call
your attention to Figure 1. This figure is, itself, an overview of the
entire Atari [/O system, including indications as to how and where
data and control flows between the various elements thereof. Figures
1-1 through 1-4 show “close-ups” of portions of this diagram as they
re.ate to the four elements of DOS.

In these figures, the rectangular boxes represent system elements,
and are appropriately labeled. The wide, lettered arrows represent the
flow of data (via buffers, control blocks, or even registers) between
the various elements. The narrow, numbered arrows show how and
where control, and control information, is transferred.

1-1. Disk Utility Package
DUP (which shows as “DUP.SYS"” in a disk directory listing) is the

most obvious and visible element of Atari DOS. DUP’s function is to
provide the user with keyboard access to the various file management
functions in FMS. It does so via the menu which is displayed when,
for example, the user keys “DOS” from BASIC. Actually, the menu
offers several options which are not directly a part of the FMS (e.g.,
copy and duplicate files). Refer to the Atari Disk Operating System 11

CHAPTER ONE

Reference Manual (part number C016347) for more information.

DUP is not an integral part of FMS. DUP may be relatively easily
replaced with a program of the user’s choice. In fact, our own OS/A +
does exactly that: instead of a menu, the user is given a command-
driven keyboard interface to the other elements of DOS.

DUP is not even a privileged portion of DOS (excepting, perhaps,
for reeding to know a little of the internals of FMS when it performs a
Duplicate Disk function). Any user application program (and that
includes Atari BASIC, BASIC A +, EASMD, and many, many
more) interacts the same way DUP does. Figure 1-1 shows the “proper”
flow of control in DOS. Note that DUP transfers control only to
CIO, which, in turn, transfers control to FMS and thence to SIO. An
application program which maintains this protocol should be able to
perform correctly in any Atari system, regardless of the revision of the
OS ROMs and/or FMS.

Of course, control is not the only thing which DUP must transfer.
It must also tell CIO where its data is and what to do with it. Refer to
Figure 1-2 for a diagram of the complete application/CIO interface
(again, it is labeled in this way because DUP is just another application
program as far as the rest of DOS is concerned). CIO always expects
an Input/Output Control Block (IOCB) and usually (i.e., for all but
the simplest operations) needs a buffer into or out of which it may
perform its operations.

4-2. Central Input/Output

CIO is actually the heart of the entire Atari Computer. It is less than
800 bytes long and yet serves to handle virtually all the input and
output which takes place in the computer. CIO is a part of the Atari
“OS ROMs,” the 10K byte package which also houses the floating
point routines, the default character set, the interrupt handlers, and
several device drivers. '

The entire set of operations summarized in Figure 1-2 is covered
in detail in the Atari OS Manual (C01655) and will be covered only
briefly here. Readers of COMPUTE! will also find some helpful material
on this subject in issues #18 through #21 (November, 1981, through
February, 1982) in the “INSIGHT: ATARI” columns.

In order to allow easy control and data flow, CIO is written to
expect and provide for eight Input/Output Control Blocks (IOCBs)
which are used to pass the information needed to process the various
kinds of I/O requests. An application places the necessary command
and control information in an IOCB which it selects (data path A). If
a buffer is required, the application must provide one (data path C)

2

CHAPTER ONE

and place its address into the [OCB. When ready to execute the I/O
command, the application places the IOCB number (times 16) in the
6502’s X-register (data path C) and executes a JSR call to CIO (control
path 1). Note that a few command variations may pass data via the
6502’s A-register, but we may consider that simply a special case
location of the user’s buffer.

When CIO receives control, it examines the information in the
IOCB (and, for some operations, in the user buffer) to determine
what actions it is to perform. Generally, this action requires the
execution of a device handler routine.

A device handler (interchangeably known as a device driver) is a
system routine that performs I/O operations for a specific device (or
class of devices). Examples of device handlers include the “P:” driver
(the printer) and the “E:” driver (the screen/keyboard editor). Figure
1-3 illustrates the interface between CIO and the various device
handlers. Note that FMS is simply another device handler as far as
CIQO is concerned, having been given the name “D:”.

All device drivers are required to contain a table of address pointers
(known as the Device Vector Table) to various specific routines
within themselves, including a device OPEN routine, GET
CHARACTER routine, etc. The name of a device and the address of
this table is placed in CIO’s Device Handler Table. When an
application program makes an [/O request to CIO for a specific device,
CIO searches the Device Handler Table for the given name and
corresponding Device Vector Table address. With the thus-located
vector table, CIO can then call the appropriate device handler routine
(via a JSR, along control path two of Figure 1-3).

1-3. File Management System

As stated above, FMS is actually simply another device driver as far as
ClO is concerned. The control and data flows shown in Figure 1-3 are
equally valid for all device drivers in the Atari system. Note that
many of the drivers in the default (“as-shipped”) system reside entirely
within the so-called OS ROMs. Although it resides in RAM, what is
somewhat unique about FMS is that the Atari system initialization
code contains a segment of “boot” code which loads FMS into memory
upon power-on.

FMS is the system device handler for all I/O operations that
specify the device name “D” (including “D1:”, “D2:”, etc.). In order
to perform its functions, FMS examines the data in the specified
ICCB (data path F). It may also examine, read, or write data to or
from the user-supplied buffer (data path). Data path H is used to pass

3

CHAPTER ONE

the IOCB-designator (again, via the X-register) and single-byte transfer
data (via the A-register).

FMS is called upon to perform a variety of tasks, including all
disk [/O, file renaming, protecting, deleting, etc. Since the rest of
this book consists of a listing of FMS along with detailed explanations
of all sections thereof, we will not now dwell on the inner workings of
FMS.

However, we do need to note that, in order to perform its work,
FMS must transfer data to and from the disk. FMS accesses the disk
drive via SIO, the fourth element of DOS.

1-4. Serial Input/Output

SIO is the name given to the component of DOS which drives and
controls the Atari serial I/O bus and the various peripherals (disk,
printer, modem, etc.) which are placed on that bus. Figure 1-4
illustrates the interface between FMS and SIO, but it could just as
well serve to show (for example) how the printer driver talks to the
various Atari printers.

The SIO is primarily driven by a request placed in SIO’s Device
Control Block (DCB) by the device handler (data path K) followed
by a transfer of control (control path three) via a JSR. SIO uses the
information in the DCB (data path M) to determine what it needs to
do. If the DCB specifies a serial bus data transfer (as opposed to, for
example, a status request), then the address of the data buffer must
also be passed (via a field in the DCB). For example, the FMS buffer
shown is accessed via data paths] (from FMS) and L (from SIO).

Although SIO only understands the single system DCB, the
buffer specified may be located anywhere in memory. FMS takes
advantage of this to implement “burst I/O” (discussed in section 12),
which has SIO transferring data directly to or from the user’s buffer
(data path E).

Since the actual disk data transfer occurs in fact within the 810
disk drive and, since SIO communicates to the drive via data path N,
one might reasonably argue that the disk drive constitutes a fifth
component of DOS. However, because the disk drive functions are
preprogrammed in ROM, and because SIO implements the only
method of accessing the disk (as well as most other peripherals), then,
for all practical purposes, even machine language software may treat
SIO as the last link in the [/O chain on the Atari Computers.

Once again, we remind you to study Figure 1. In the following
dissertation and dissection of FMS, we shall refer to this chart often.

4

aAlg
Asig
0i8

MOl |04uU0D puy B[SOJ

OQm»

wn>w

DLW v

(SAS'SOQ)
SW4

<

oIS

InAINO/ANdu| [pLes

Uy

<>

[saBun RNIRTENET N a4
Dwnui™

(eua) | 8inbiy

Olo
INdinOndu) |pyus)d

SASdNd
o —
wnibold
uolDoIddy

—00x>

anLQ
#8ig
08

QOQax

[ssRun RERRVEN T Na'd A

w>wm

<>

s [

Indinonduy joues

MO} [04UOD SOJ

L~} @nbl4

(SASSOQ)
SINd

<

<

Uy

[aaBan N U UERTN N a4
Dwnw

QI

Am_._.v INAINOANAU} [oKusD

<=

{

SAS'dNd
o~

LurBo:

L8105

co_,,oo__am<

2l

[@X@):.]

<>

anlq
781g
018

o A._Mv
Amv IndnoANAU| oLeg

20D udIUl QID/UO

NNt

Z-L @by

Hooyddy

~
N

d

s

W

n 3 (SAsSOQ)

g S

<

Uy

ole]
INAINO/NAU joyueD

3|

3

4 3

3 mAmv

non

q
SASdNd
woibold
[Blslllere oo

(1O 0L011{0.10 L v;

—00x

QOQa

[aaBun R NERTEN VI N a4 A

w>Sw

(SASSOQ) A
IBIPUDH 828 %8I

[se B RUEN SISV N a4

09

OID
Indino/ndu; jpyus)

R, JVER a4

anug OIS
»sia Amv INAINOANdu pues
018
QNI il 1IAINLINLE ANIADA-MNIM
heddad it Sl BEAd | o d (] Nt Nt VS 4(C (_(

—00m

SAS'dNA
-
woIB0Id Af
Jooolddy N

QQx

0D e e WY
w>wn

08

9o0uUBIU| OIS-SINS

- ©1nDi4

(5A5'500) A
S

Uy

Ol oIS AMV
V_mm% Amv INdNO/NdU [opBs

(0]
Indino/induy [pyusD

[aaBen RWINE R ITN a4
Dwue

¢ 4

SASdNd

—00®

0 -
woibold
uoyo2lddy

Chapter Two

DISK
ORGANIZATION

The purpose of FMS is to organize the 720 data sectors available on an
810 diskette into a system of named data files. FMS has three primary
data structures that it uses to organize the disk: the Volume Table of
Conrents, the Directory, and Data Sectors. The Volume Table of
Contents is a single disk sector which keeps track of which disk sectors
are available for use in data files. The Directory consists of directory
sectors. It is used to associate file names with the location of the files’
sectors on the disk. Each Directory entry contains a file name, a
pointer to the first data sector in the file, and some miscellaneous
information. The Data sectors contain the actual data and some
control information that link one data sector to the next data sector

in the file. Figure 2-1 illustrates the relation between the Directory
and the Data files.

Disk Directory
The Directory starts at disk sector $169 and continues for eight
contiguous sectors, ending with sector $170. These sectors were
chosen for the directory because they are in the center of the disk and
therefore have the minimum average seek time from any place else on
the disk. Each directory sector has space for eight file entries. Thus, it
is possible to have up to 64 files on one disk.

A Directory entry is 16 bytes in size, as illustrated by Figure 2-2.
The directory entry flag field gives specific status information about
the current entry. The directory count field is used to store the number
of sectors currently used by the file. The last eleven bytes of the entry
are the actual file name. The primary name is left justified in the
primary name field. The name extension is left justified in the extension
tield. Unused filename characters are blanks ($20). The Start Sector
Number field points to the first sector of the data file.

Data Sectors

A Data Sector is used to contain the file’s data bytes. Each 128 byte
data sector is organized to hold 125 bytes of data and three bytes of

10

CHAPTER TWO

control information as shown in Figure 2-3. The data bytes start with
the first byte (byte 0) in the sector and run contiguously up to, and
including, byte 124. The control information starts at byte 125.

The sector byte count is contained in byte 125. This value is the
actual number of data bytes in this particular sector. The value may
range from zero (no data) to 125 (a full sector). Any data sector in a
file may be a short sector (contain less than 125 data bytes).

The left six bits of byte 126 contain the file number of the file.
This number corresponds to the location of the file’s entry in the
Directory. Directory entry zero in Directory sector $169 has the file
nuraber of zero. Entry one in Directory sector $169 has the file number
one — and so forth. The file number value may range from zero to 63
($3F). The file number is used to insure that the sectors of one file do
not get mixed up with the sectors of another file.

The right two bits of byte 126 (and all eight bits of byte 127) are
used to point to the next data sector in the file. The ten bit number
contains the actual disk sector number of the next sector. Its value
ranges from zero to 719 ($2CF). If the value is zero, then there are no
more sectors in the file sector chain. The last sector in the file sector
chain is the End-Of-File sector. The End-Of-File sector may or may
not contain data, depending upon the value of the sector byte count

field.

Volume Table Of Contents (VTOC)

The VTOC sector is used to keep track of which disk sectors are
available for data file usage. The VTOC sector is located at sector
$168. Figure 2-4 illustrates the organization of the VTOC sector. The
most important part of the VTOC is the sector bit map.

The sector bit map is a contiguous string of 90 bytes, each of
which contains eight bits. There are a total of 720 (90 x 8) bits in the
bit map — one for each possible sector on an 810 diskette. The 90
bytes of bit map start at VTOC byte ten (30A). The lefemost bit ($80
bit) of byte $OA represents sector zero. The bit just to the right of the
leftmost bit ($40 bit) represents sector one. The rightmost bit (bit
$01) of byte $63 represents sector 719.

The fact that FMS interprets the bit map as representing sectors
zero through 719 is a bug. The Atari 810 disk drive will not accept
commands for sector zero. It will accept commands for sector 720. In
other words, the bit map is skewed by one. The problem cannot be
fixed now because there are already tens of thousands of diskettes
whose bit maps are to be interpreted as representing sectors zero through
719, and because some savvy applications writers have taken advantage

11

CHAPTER TWO

of this feature. (A bug which generates useful side effects is known in
the programming profession as a feature.) Sector 720 can never be
used by FMS and is therefore available for miscellaneous purposes.

Sectors File A

Directory Sectors
Sector $169 —w{ File A o~
File B o
| [FleC
Secor$170 [| File D
| ¢

12

Figure 21

[oA

[

Sectors File B

CHAPTER TWO

Typical Directory Sector

Entry O

Entry 1

Entry 2

Entry 3

Entry 4

Entry 5

Entry 6

Entry 7

l Typical Directory Entry

0 1 3 5 . . . 13
Primary Name Extension l

Start Sector Number (Low, High)
The Sector Number of the First
Sector in the File Sector Chain

Count (Low, High)
The Number of Sectors in the File

® Fjag
$00 — Entry Has Never Been Used
$80 — Entry Has Been Deleted
$40 - Entry In Use
$20 — Entry Locked
$02 - Fite Created By DOS 2
$01 — File Opened For Output

Figure 2-2

13

CHAPTER TWO

Typical Data Sector

Data
125 Bytes

I Control —I

Byte: 125 [~———+}» Number Bytes Used In Sector (0-125)

Byte: 126 { 1 [—J—#= Next Sector Number (High Two Bits)

File Number (0-43)

Byte: 127 [———}—»= Next Sector Number (Low Eight Bits)

Figure 2-3

VTOC Sector ($168)

0-9
Misc. Info.
$0A-$63

Sector Usage
Bit Map

$64-S7F
Unused

Type Code (= 0in DOS 2.0)
Number Sectors Total ($2C3)
Number Unused Sectors
Reserved

] [1 Unused

— Each bit represents a specific sector

—The left most bit ($80) of byte $0A is sector number 0 {does not exist)
—The next bit (540) of byte $OA is sector number 1.

—The right most bit ($01) of byte $63 is sector number $719.

—If the bit is one, the sector is unused and available

— If the bit is off (zero), the sector is used

0
1
3
5
6

Figure 2-4

Chapter Three

FMS
FILE CONTROL
BLOCKS
(FCB)

The FMS File Control Blocks are used to store information about files
that are currently being processed. Each file that is being processed
concurrently by FMS requires one FCB. Since the Atari system has
eight [IOCB’s, FMS must be prepared to handle up to eight files
concurrently, thus there are eight FCBs. The FCBs were designed to
have a one-to-one correspondence with the IOCBs. When a file is to
be processed with IOCB number three, FMS will use FCB number
three for that file. When a file is to be processed with IOCB number
five, FMS will use FCB number five for that file. Each FCB is the
same size as an [OCB (16 bytes). The FCBs are located in a contiguous
RAM area just like the [OCBs. When CIO calls FMS, the X register
contains the displacement (IOCB number times 16) to the IOCB
making the request. The FMS uses this displacement value to access
both the IOCB information and the FCB information. Please refer to

the listing at location $1381 for the following discussion about the
FCBs.

FCBFNO

The file number of the file currently being processed. The value (zero
to 63) is shifted left two bits. When a file has been opened for reading,
this value will be used to check for a file number mismatch in the data
sectors. When a file is opened for write, this value will be placed in
the file number field of the data sectors.

FCBOTC

Open Type Code. This value is used as a flag to indicate which mode
the file has been opened for:

Input is $04.

15

CHAPTER THREE

Output is $08.
Update is $0C.
Append is $01.
Directory read is $02.

FCBSLT

This is a tlag used to indicate that the file being processed was created
by DOS 1 rather than DOS 2. The Data Sector length byte has a
different interpretation under DOS 1.

FCBFLG

This field is a working flag. If the value is $80, then the file is eligible
to acquire new data sectors. Files that are opened for Output or Append
are eligible to acquire new data sectors. If the value is $40, then the
sector currently is in a memory buffer, has been modified, and needs
to be written back to the disk.

FCBMNL

If the file is opened for Output or Append, this value will be either
125 or 253 depending upon the drive type. The 253 value is meant for
the Atari 815 dual density drive. If the file is opened for Read or
Update, then this value represents the number of data bytes that are
in the data sector currently in a buffer. This value is obtained from the
Data Sector data length field (byte 125 of the data sector.)

FCBDLN

This value points to the next data byte to be operated on in a data
sector. If the file is opened for Output or Append, this value points to
the next available (unused) data byte in the current data sector. If the
file is opened for Update, then this value points to the next data
sector byte to be either read or modified. If the file is opened for
Input, then this value points to the next byte to be read.

FCBBUF

This value is an index into the sector buffer table. The sector buffer
table is a list of buffer addresses. When a file is being processed, a
sector buffer is required to hold data sectors. This field tells FMS
which FMS buffer has been allocated to the file.

FCBCSN

The sector number of the sector currently in the buffer is stored in this

field.

16

FCBLSN

The sector number of the next sector in the file chain is stored in this

field.

FCBSSN

If the file has been Opened for Append, then this field contains the
sector number of the start of the sectors to be appended to the file
when the append file is closed.

Chapter Four

FMS
INITIALIZATION

DUP gets control whenever the system is booted or the RESET key is
pressed. DUP will call the FMS initialization routine, DINIT at $7EQ.

DINIT

Functions:

1) Determine how many (and what type of) disk drives will be
used.

2) Set up a drive table and allocate a drive buffer for each drive.
3) Allocate sector buffers and build the sector buffer table.

4) Clear the FCB:s to zero.

5) Set MEMLO.

6) Enter the D: device into the Device Handler Table.

7) Exit to caller via RTS.

Drive Determination

The DRVBYT byte at $70A is used to tell FMS how many disk drives
will be used and what the drive number of the drives will be. The

17

CHAPTER FOUR

rightmost bit (bit $01) indicates drive 1. The next left bit ($02)
indicated drive 2 — and so forth. If the bit is one, then the drive is to
be used. If the drive is zero then the drive is not to be used. The code
will allocate up the eight drives, even though the 810 hardware only
has switches for drives 1,2,3 and 4.

If DRVBYT indicates that a drive is to be used, then.FMS issues

a status command to that drive to determine if it is active and what

type (810 or 815) of drive it is.

Drive Allocations

The drive determination process sets up two tables (Figure 4-1). The
first table is the DRVTBL. This table is indexed into by the drive
number (minus one). If the value in the table is zero then the drive is
not to be used. If the value is one, then the drive is an active 810 and
requires one drive buffer. If the value is two, then the drive is an 815
and requires two 128 byte buffers.

The second table is the drive buffer table. The drive buffer table
contains the address of the drive buffer to be used for each drive. This
Drive Buffer will be used to hold the VTOC sector on the diskette in
the drive. The table is separated into two sections: DBUFAL contains
the least significant address byte and DBUFAH which contains the
most significant address byte. The drive buffer table is also accessed by
the drive number (minus one).

When a file is being processed, the Drive number is obtained
from the IOCB Device Number field, ICDNQ. The obtained value is
decremented by one and is then used as an index into the Drive Tables.
The Drive Type is copied from the DRVTBL entry to DRVTYP
($12FE) for easy access by FMS. The Drive Buffer address is copied
from the DBUFAL and DBUFAH table entries to the zero page drive
buffer pointer, ZDRVA ($45).

Sector Buffer Allocations

The SABYTE at location $709 is used to inform FMS about the
number of 128 areas to be allocated as sector buffers. One 128 buffer is
required for each file which is to be processed concurrently on 810
drives. Two 128 byte buffers are required for each file which is to be
prccessed concurrently on 815 drives.

The Sector Buffer Allocation table, SECTBL at $1319, is used to
indicate if a buffer is available for allocation to a file (Figure 4-2). If a
buffer is available, the entry is set to zero. If the buffer is not available,
the entry is a minus value. The table is 16 bytes in size and therefore
cart be used to allocate up to sixteen 128 byte buffers. During the

18

CHAPTER FOUR

inirialization process, entries which are to be unused are set to a minus
value.

The Sector Buffer Address Table is a table of addresses which
point to the individual sector buffers. The table is divided into two
parts: SABUFL contains the least significant address byte, SABUFH
contains the most significant address byte.

When a file is being processed, an available buffer number is
found in SECTBL by search for a zero valued entry. The located
buffer is allocated to the file by entering a minus value ($80) into the
table and placing the corresponding buffer number into the DCB
buffer number field, FCBBUF. When the file processing is done, the
buffer is deallocated by setting the SECTBL entry to zero.

Setting MEMLO

The Atari MEMLO location ($2E7) is set after the FMS buffers have
been allocated. The address of the last sector buffer allocated is
incremented by 128. This value is then placed into MEMLO.

Device Handler Table Entry

The Device Handler Table ($31A) is searched for a “D” entry or the
first (from the top) empty entry. When an appropriate entry is found,
FMS inserts (or reenters) “D” as a DEVICE NAME and sets the

DEVICE vector entry to point to the FMS Device Vector table at
DFMSDH ($7CB).

19

CHAPTER FOUR

| S7T0A DRVBYT BYIE $OF : Allocates Drive 12,34]

|

~
)
()
(N\
Drive Bits 0000[1111
[51311 DRVIBL t= 49 . Drive Table J
Drive No. Index Drive Type From Status
1 0 0 1 810 Drive)
2 1 0 1 810 Drive == J
—a 3 2 0 2 815 Drive «a—)
4 3 0 2 815 Drive -
5 4 0 0 No Drive
6 5 0 0 No Drive
7 6 0 0 No Drive
8 7 0 0 No Drive
[$1329 DBUFAL = *+8 ; Drive Buffer Address Table (Low) I
l $1331 DBUFAH = *+8 ; Drive Buffer Address Table (High) I
I $70C SASA WORD $1A7C ; Buffer Start Address J
Drive No. Index DBUFAH DBUFAL
1 0 | 1A | @—— [7C [128 Byte Buffer For Drive 1At S1A7C
2 1 1A | FC
3 2 1B | 7C | 256 Byte Buffer For Drive 3 At $1B7C
4 3 11C | 7C
5 4 100 | 00
6 5 100 | 00
7 6 100 | 00
8 7 | 00 | 00
Figure 4-1
Drive Tables

20

CHAPTER FOUR

$1319 SECTBL

»

*

+16 ; Sector Allocation Table

Buffer Number
0 [00] Buffer Is Available
1 [o0]
2 [o0]
3 [00]
——4 00
5 [00]
6 100 | Buffer is Available
7 | FF | Buffer NOT Available
8 [FE]
9 D]
10 FC|
" | FB]
12 | FA |
13 =
14 | F8]
15 | F7 |
16 | F6 | Buffer NOT Available
[5700 saBviE BviE 7 : Number Of 128 Byte Sector Buffers B

[51339 smBUFL -

[}
+
-
o

; Sector Buffer Address {Low) Table

[:;1349 SABUFH °

= +16 . Sector Buffer Address (High) Table

(Last Drive Buffer Address
Buffer Number

.

SOONOCUOAWN-=O

"
12
13
14
15

+ Drive Type (10r 2) * 128)
SABUFL SABUFH
[C] ﬁj
11D | 1 0C | (Previous Entry + 128)
1D 8C
e [oc
| 1E | 18C | Sector Buffer 4 Address = $1E8C
] [oc]
[F | E9
[20] [oc]
[00] [o0]
[00] [o0]
[o0] [00]
[00] 00
[00] [00]
[00] [00]
00 [00]
[00] [00]
Figure 4-2

Sector Allocation Tables

21

Chapter Five

FMS
ENTRY

The Device Vector Table for FMS is located at DFMSDH ($7CB).
The address of this table is placed in the Device Handler Table by the
EMS Initialization routine. When CIO needs to call an FMS function
(Figure 1, control path 2), it will locate the address of the function via
the table at DEMSDH. This table is the standard Atari Device Handler
Vector Table. The six entries are for:

Open

Close

Get Byte

Put Byte

Status

Device Dependent (XIO) Commands

Each of the six FMS entry points starts with a subroutine call to
the FMS SETUP routine. SETUP ($1164) prepares FMS parameters
to deal with the particular task to be performed.

SETUP

Address — $1164

Entry Registers — A = Possible ‘Put Data’ data byte.
X = IOCB number times 16.
Y = Don’t Care.

Exit Registers — A = Unknown.
X = IOCB number times 16.
Y = Sector Buffer Index.

Functions:

1) Initialize ERRNO to $9F. This value will be used in the FMS
exit routines to form a FMS error number in the event of error.

2) Save the X Register in CURFCB. This value will be used as

an index to the proper IOCB and the proper FCB for the current
operation.

3) Save the value of the stack register as it was upon entry to

22

FMS. This value will be used in the FMS exit routine.
4) Set up drive information values from the drive number

contained in the zero page IOCB field ICDNOZ.

5) Allocate a sector buffer to the FCB if one is not already
allocated.

Chapter Six

FMS
EXIT

There are two types of FMS exits: the normal exit and the error exits.

Both of these exit types end up calling the RETURN routine.

RETURN

Address — $12D3

Entry Registers — A = Return Code.
X = Don’t Care.
Y = Don’t Care.

Exit Registers — A = Possible ‘Get Byte’ data byte.
X = IOCB number times 16.
Y = Return Code.

Functions:

1) The X register is loaded with the current IOCB number times

16 from CURFCB.
2) The return code is placed in the IOCB status field (ICSTA).

3) The stack register is restored to point to the stack displacement

at FMS entry from the value saved in ENTSTK.

4) The possible “Get Data” data byte is loaded into the A
" register.

5) The Y register is loaded with the return code.

23

CHAPTER SiX

6) The caller (CIO) is returned to via the RTS instruction.

GREAT And FGREAT

GREAT and FGREAT are the exit points used by FMS when the
operation has terminated normally. FGREAT is located at $12EA and
is used to free the sector buffer that has been allocated to the FCB.
The FRESBUF routine is used to free the buffer. FGREAT exits
directly to GREAT ($12F0). The GREAT exit point loads the normal
return code ($01) into the A register and goes to RETURN.

Error Exits

The ERREOF exit is called when an end of file condition is found.
ERREOF loads the end-of-file condition code ($88) in the A register
and goes to RETURN.

The ERRIO exit is called if an error occurs during an I/O operation
(Figure 1, control flow 3). The error code from the DCB (control
path K) is loaded into the A register as the FMS return code and
control is passed to RETURN.

All other errors exits are at the ERxxx labels starting at $12B5.
The error code is developed by means of a series of 6502 INC
instructions which increment the ERRNO (which was initialized to
$9F at FMS entry). The final instruction at the end of the INC chain
loads the final ERRNO value into the A register and control is passed
directly to RETURN.

24

Chapter Seven

DEVICE
DEPENDENT
COMMANDS

A Device Dependent Command is any command which is not Open,
Close, Get Byte, Put Byte, or Status. When the command value in
the IOCB is greater than 15 ($0F), ClO will call the Device Handler
Device Dependent Command routine. The Device Handler must
determine if the command is a valid command for that device. The
Device Dependent Commands that for FMS are:

Rename

Delete

Lock

Unlock

Point

Note

Format

The FMS Device Dependent Command routine starts at
DEMDDC.

DFMDDC
Address — $BA7

Entry Registers — A = Don’t Care.
X = IOCB number times 16.
Y = Don't Care.
Exit Registers — A = Unknown.
X = IOCB and FCB number times 16.

Y = Unknown.

Function:
1) Call SETUP

2) If the command is Format (254), then go to the Format routine,
XFORMAT at $D18.

3) If the command is not Format, then check that the command

25

CHAPTER SEVEN

value is $20 through $26. If the command value is not in this
range then exit via the ERDVDC (Command Error) routine.

4) If the command is valid, go to the command via the DCDCVT
vector table.

XFORMAT
The XFORMAT routine executes the FORMAT Device Dependent

Command.
Address — $D18

Entry Registers — A = Don’t Care.
X = 10CB and FCB number times 16.

Y = Don’t Care.
Exit Registers — A = Unknown.

X = Unknown.

Y = Unknown.

Functions:

1) Issue the format I/O command to the drive. This will cause
the drive to perform the physical formating of the disk. If the
command returns with good status and there were no bad sectors
reported, then continue with the logical format operations. In
the event of physical format errors, exit via the ERDBAD error
exit.

2) Clear the drive buffer to zero.

3) Set the sector count values into the DVDMSN (VTOC
displacement one) and the DVDNSA (VTOC displacement
three) fields.

4) Set all 90 sector bit map bits to one (available).
5) Deallocate the first four sectors for the boot sectors.

6) Deallocate the middle nine sectors for the VTOC and the
Directory.

7) Write the VTOC to the Disk.
8) Clear the eight directory sectors to zero.
9) Exit via the FGREAT exit.

XDELETE
The XDELETE routine executes the DELETE Device Dependent

Command.
Address — $C32
Entry Registers — A = Don’t Care.

26

CHAPTER SEVEN

X = IOCB and FCB number times 16.

Y = Don’t Care.
Exit Parameters — A = Unknown.
X = Unknown.
Y = Unknown.

Functions:
1) The filename is decoded via the FNDCODE routine.
2) The first filename is searched for via the SFDIR routine.
3) The file, if found, is deleted via the XDELO routine.

4) If the file just deleted was DOS.SYS then the boot record is
re-written via the DELDOS routine.

5) The directory is searched for the next matching entry. If an
entry is found then the process repeats at step three. If no further
matching directory entries are found, then exit via FGREAT.

XDELO

The XDELO routine is used to delete the file whose directory entry is
indicated by the CDIRD (current Directory Displacement) byte
($1305).
Address — $C53
Entry Registers — A = Don’t Care.
X = IOCB and FCB number times 16.

Y = Don’t Care.
Exit Registers - A = Unknown.
X = Unknown.
Y = Unknown.

Functions:

1) The OPVTOC routine is called to insure that the disk is not

write protected.

2) The TSTLOCK routine is called to insure that the file is not
locked.

3) The file deleted bit is set in the directory entry flag and the
directory sector is written back to the disk.

4) The VTOC sector bit map bits for the sectors in the file are
set to one to make them eligible for reuse. This process is achieved
by reading each sector in the file sector chain and calling the
FRESECT routine to change the VTOC bit map.

5) The VTOC Write Required Bit is set so that the VTOC will
be written back to the disk.

27

CHAPTER SEVEN

XRENAME

The XRENAME routine executes the RENAME Device Dependent
Command.

Address — $BD9

Entry Registers — A = Don’t Care.
X = IOCB and FCB number times 16.

Y = Don’t Care.
Exit Registers— A = Unknown.
X = Unknown.
Y = Unknown.

Functions:
1) The filename is decoded via the FNDCODE routine.

2) The directory is searched for the first entry to be renamed. If
no entry is found then the ERFNF (File not found) exit is taken.

3) The TSTLOCK routine is called to insure that the file is not
locked.

4) If TSTDOS determines that the old filename is DOS.SYS
then the boot record is rewritten via the DELDOS routine.

5) If new filename is DOS.SYS, then the boot record is rewritten
via the SETDOS routine.

6) The filename in the directory is changed to the new filename.
7) The directory sector is rewritten.

8) The directory is searched for the next filename match. If a
match is found, then the process repeats at step three. If no
further match is found then, exit via FGREAT.

XLOCK And XUNLOCK

The XLOCK routine executes the LOCK Device Dependent
Command. The XUNLOCK routine executes the UNLOCK Device
Dependent Command.

Address — $C7C

Entry Registers - A = Don’t Care.
X = IOCB and FCB number times 16.

Y = Don’t Care.
Exit Registers— A = Unknown.

X = Unknown.

Y = Unknown.

28

CHAPTER SEVEN

Functions:

1) The XLOCK entry sets the LOCK bit value, DFDLOC ($20),
into TEMP4. The XUNLOCK entry sets a zero value into TEMP4.
Both routines then go to XLCOM.

2) The filename is decoded via the FNDCODE routine.

3) The directory is searched for the first file entry match. If no
match is found, the ERFNF (file not found) exit is taken.

4) The files directory flag is modified to either LOCKED or
UNLOCKED by means of the value previously set into TEMP4.

5) The Directory sector is written back to the disk.
6) The CSFDIR routine is called to find the next filename match.

If a match is found, then the process repeats at step four. If no

match is found, then exit via FGREAT.

XPOINT
The XPOINT routine executes the POINT Device Dependent

Command.
Address — $CBA

Entry Registers - A = Don’t Care.
X = [OCB and FCB number times 16.

Y = Don’t Care.
Exit Registers — A = Unknown.

X = Unknown.

Y = Unknown.

Furictions:

1) If the FCBFLG indicates that the file can acquire sectors
(Opened for Output or Append), then exit via the ERRPOT

(point error) exit.

2) If the current sector is not the same as the sector POINTed to
by the IOCB AUX3 and AUX4 fields, then write the current
sector back to the disk (if it has been changed).

3) Read the POINTed to sector into the sector buffer.

4) Set the FCB next byte pointer, FCBDLN, to the value
indicated by the user Point data in the IOCB AUX5 field.

5) Exit to FGREAT.

XNOTE
The XNOTE routine executes the NOTE Device Dependent

Command.

29

CHAPTER SEVEN

Address — $D03
Entry Registers — A = Don’t Care.
X = IOCB and FCB number times 16.

Y = Don’t Care.
Exit Registers— A = Unknown.

X = Unknown.

Y = Unknown.

Functions:
1) The current sector number and data displacement into the

sector is moved to the appropriate IOCB fields, ICAUX3,
ICAUX4, ICAUXS.

2) Exit via GREAT.

30

Chapter Eight

FMS
OPEN
ROUTINES

The FMS Open routine, DFMOPN, is called directly by CIO via the
FMS Device Vector Table, DFMSDH at $7CB.

DFMOPN
The DFMOPN routine is the FMS file open routine.
Address — $8AB

Entry Registers — A = Don’t Care.
X = IOCB number times 16.

Y = Don't Care.
Exit Registers - A = Unknown.
X = Unknown.
Y = Unknown.

Functions:

1) Initialize for this operation by calling SETUP.
2) Decode the filename via FNDCODE.

3) Examine the open code in ICAUXI for the open-for-directory-
read command. If this is a directory read command, go to
LISTDIR.

4) If not a directory read, then search the directory for the first
match on the file name and save the resulting search condition
on the stack.

5) Determine the exact type of Open operation to be performed
by examining the IOCB ACUX1 field. If INPUT, go to DFOIN.
If Output, go to DFOUT. If Update, go to DFOUPD. If Append,
go to DFOAPN. If none of the above, exit via the ERDVDC

(device command error) exit.

31

CHAPTER EIGHT

DFOIN

DFOIN ($8D8) is entered when opening a file for Input. The routine
pops the stack to determine if the directory search for the file name
was successful. If the file name was found in the directory, then go to

DFOUIL. If the search was not successful, then exit to ERENF (file not
found).

DFOUPD

DFOUPD ($8DD) is entered when opening a file for Update (Input
and Output). The routine pops the stack to determine if the file name
was found in the directory. If the file was not found, then exit to
ERENF (file not found). If the file was found, insure that the file is

nor Locked by calling TSTLOCK. If the file is unlocked, then continue
at DFOUIL.

DFOUI

DFOUI ($8E3) is entered to finish opening a file for Input or Update.
The read setup routine, DFRDSU, is called. FMS then exits via the
GREAT exit.

DFDRDSU

DFDRDSU ($9AE) is entered to set up a data file for reading. It
begins by calling SETFCB to set some standard file information into
the FCB. It continues by setting up the FCB with various other
parameters to read the first data sector in the file. This sector is read
via the RDNSO routine. When the sector has been read into the
sector buffer, the code returns to the caller.

DFOAPN
DFOAPN ($BEC) is entered to open a file for Append.

1) Pop the stack to determine if the file has been found in the
directory. If the file was not found exit via ERFNF.

2) 1f the file was created by DOS 1, then exit via ERAPO.

3) Insure the file is not locked by calling TSTLOCK.

4) Insure the diskette is not write protected by calling
OPVTOC.

5) Allocate a new sector for the start of the Append chain by
calling GETSECTOR.

6) Save the sector number of the sector obtained in FCBSSN so
that it will be available when the file is closed.

32

CHAPTER EIGHT

7) Continue opening the file as if it were being opened for

Output at DHFOX?2.

DFOOUT
The DFOOUT ($911) routine is entered when opening a file for
Output.

1) Pop the stack to determine if the file was found in the
directory.

2) If the file was found, then delete it via the XDELO ($C53)

routine.

3) If the file was not found, then make a new entry in the directory

via the code at DFOX1 ($91D).
4) Allocate a data sector for the file via the GETSECTOR

routine.

5) Put the necessary information about the file into the directory
and write the directory sector back to the disk.

6) Continue at DHFOX2.

DHFOX2

DHFOX2 ($97C) is entered to finish the Open process for files that
are being opened for Qutput or Append.

1) Finish initializing the FCB via SETFCB.
2) If the TSTDOS routine determines that the file name being
opened is DOS.SYS, then write out DOS via the WRTDOS

routine.

3} Exit via GREAT.

SETFCB
The SETFCB ($995) routine is used in the various Open file routines

to place certain common data into the FCB.

33

Chapter Nine

FMS
CLOSE
ROUTINES

The FMS close routine is called directly by CIO via the FMS Device
Vector Table, DFMSDH at $7CB.

DFMCILS
Address — $B15

Entry Registers — A = Don’t Care.
X = IOCB number times 16.

Y = Don’t Care.
Exit Registers— A = Unknown.
X = Unknown.
Y = Unknown.

Functions:
1) Initialize via call to SETUP.

2) If the file was not opened for some form of output (Output,
Update or Append) then clear the FCB open flag, FCBOTC and
exit via FGREAT.

3) If the FCBFLG indicates that the file has not acquired sectors,
then continue at CLUPDT to close the Update file.

4) Write the last data sector via WRTLSEC.

5) Read the file’s directory sector into the directory buffer via the
RRDIR routine.

6) Get the sector count from the directory.

7) If the file was opened for Output (i.e. it is not open for
Append), then continue at CLOUT.

8) Read all the data sector of the file until the end-of-file sector
is found.

9) Place the sector address of the start of the Append chain into
the link sector field of the (old) end-of-file sector.

10) Continue at CLOUT.

34

CHAPTER NINE

CLOUT
The CLOUT ($B50) routine is entered to finish closing a file that had
been opened for Output or Append.

1) The sector count field of the directory is updated.

2) The open for output flag is turned off.

3) The file in use flag is set.

4) The directory sector is written back to the disk by the DRTDIR

routine.

5) The VTOC sector is written back to the disk by the
WRTVTOC routine.

6) The FCB open code flag, FCBOTC, is cleared to zero.
7) Exit via FGREAT.

CLUPDT

The CLUPDT ($B75) is called to finish the closing of a file that had
been opened for Update.

1) If the current sector in the sector buffer has been modified

then write it back to the disk via the WRCSIO routine.
2) Clear the FCB open flag, FCBOTC, to zero.
3) Exit via FGREAT.

35

Chapter Ten

GET BYTE
ROUTINE

The FMS GET BYTE routine, DFMGET, is called directly by CIO
via the FMS Device Vector Table, DFMSDH at $7CB. The GET

BYTE routine’s function is to get and return the next sequential data

byte to CIO.

DFMGET
Address — $ABF

Entry Registers — A = Don’t Care.
Y = IOCB number times 16.

X = Don’t Care.
Exit Registers— A = Unknown.
Y = Unknown.
X = Unknown.

Functions:
1) Initialize via the SETUP routine.
2) If the FCB is opened for Directory read, then go to
GDCHAR.
3) If the current sector is empty, attempt burst /O (see Burst /O
section), then continue with number four.
4) Read the next sector via the RDNXTS routine. If the read
sector operation did not return an end-of-file condition, then
continue at step three, else exit via ERREOF (end-of-file error).
5) Get the data byte from the sector and place it in SVDBYT for
‘he exit routines.
6) If the next byte in the file is the end-of-file byte, exit via

RETURN with the impending end-of-file condition code ($03),
else exit via GREAT.

36

Chapter Eleven

PUT BYTE
ROUTINE

The FMS PUT BYTE routine, DFMPUT, is called directly by CIO
via the FMS Device Vector Table, DEMSDH at $7CB. The PUT

BYTE routine’s function is to place the single data byte transmitted by
CIO into the data sector.

DFMPUT
Address — $99C

Entry Registers — A = The “put data” data byte.
X = The IOCB number times 16.

Y = Don’t Care.
Exit Registers— A = Unknown.
X = Unknown.
Y = Unknown.

Functions:
1) The data byte in the A register is saved in SVDBYT.
2) SETUP is called to initialize for this operation.
3) If the caller was not ClO, then prevent a burst 1/O operation
from occurring.
4) If the file was not opened for output, then exit via ERDVDC
(device command error).

5) If the current data sector is full, write the sector via WRTNXS,
then attempt burst [/O (see BURST /O section). If a burst /O
operation did take place, then get the next byte after the area
just written by burst I/O and place it into the SVDBYT cell.

6) Increment the sector data byte count.

7) Move the data byte from SVDBYT to the next available data
byte in the sector.

8) Set the sector modified flag in the FCB.
9) Exit via GREAT.

37

Chapter Twelve

BURST 1/O

The CIO is designed to fill or empty a large user buffer with data bytes
sent to or received from a device handler, a byte at a time. To fill a
thousand-byte buffer, CIO would have to call FMS one thousand
times in rapid succession. While the process is simple and easy to
implement by both CIO and the Device Handlers, it can be very
slow. This is particularly true in the case of FMS which has a great
deal of overhead code to go through each time it is called. FMS
circumvents most of the CIO/FMS calls for large data transfers via the
BURST /O routines.

Burst I/O operates by reading or writing data sectors directly into
the user buffer (Figure 1, data path I). There are a number of tests
that must be passed before a burst 1/O operation can take place. If any
of the tests fail, then the CIO/FMS data transfer reverts to the normal
mode of operation.

When the PUT BYTE routine is called, it will call the WTBUR
($A1F) routine when it is ready to start filling a new data sector.
WTBUR will not allow a burst I/O operation to happen if the file has
been opened for Update. If the file has not been opened for Update,
then WTBUR goes to the common read/write burst I/O test routine,
TBURST at $A28. If the file has been opened for Update, then exit
Burs: I/O indicating that a Burst I/O did not happen. When WTBUR
calls TBURST, it has the A register set to non-zero to indicate that it
is write.

When the GET BYTE routine is called, it will call the RTBUR
($A26) routine when it is ready to read a new data sector. RTBUR

indicates that it is read by setting the A register to zero and then
enters TBURST.

TBURST
1) Save the A register in BURTYP. This value will indicate if

the burst operation is a read or a write.

2) If the I/O command in the IOCB is for text /O (a transfer
that is to end when the Atari end-of-line ($9B) character is
transferred), then TBURST will exit indicating (carry set) that a
burst I/O operation did not occur.

38

CHAPTER TWELVE

3) If the user buffer length in the IOCB is not at least a full
sector in size, then exit without doing a burst 1/0.

4) If all the above tests pass, then perform a burst I/O operation.
The first step in the burst I/O operation is to change the zero
page sector buffer pointer, ZXBA ($47) from the FMS sector
buffer address to the user buffer address.

5) If the operation is read, then read the next sector viaRDNXTS.
If the read sector operation produced an end-of-file, then go to
BUREQOF, else go to BBINC.

6) If the operation is write, then the area in the user buffer,
where the three bytes of data sector control information is to be
placed, will be saved. The data will be written via the WRTNXS
routine. The saved user data will then be copied back into the
user buffer. The code then continues at BBINC.

BBINC

The BBINC routine is entered after a single burst I/O sector has been
read or written. BBINC updates data counters in the FCB and in the
JOCB and tests for the end of the Burst 1/O.
1) The zero page sector buffer pointer is incremented by the
length of data in a sector (125 or 253).
2) The user buffer length is decremented by the length of data in
a sector. :
3) The TBLEN routine is called to determine if there is enough
room left in the user buffer to read or write another full sector
(128 or 256 bytes). If another sector can be read or written, then
the process repeats at NXTBUR ($A3E).
4) If there is not enough room in the user buffer to perform
another full sector read or write, then BUREOF is entered.

BUREOF

1) The final address in the zero page sector pointer, ZSBA ($47),
is moved to the IOCB buffer address field.

2) The value in the zero page sector buffer pointer is restored by

the SSBA routine.

3) The caller is returned to with the carry cleared to indicate
that a burst 1/O operation has happened.

39

Chapter Thirteen

READING
THE DIRECTORY
AS A FILE

A formatted subset of the data in the Directory can be read as if the
Directory were a disk file. This is accomplished by using the open
directory code ($02) in the IOCB ICAUX1 byte. When FMS
recognizes this code in the Open routine (at $8B1), it will go directly
to the LISTDIR routine. The LISTDIR routine prepares the FCB for
reading the directory as a file. The GET BYTE routine will recognize
the read directory condition from information stored in the FCBOTC
field (see $AC2) and go directly to the directory read character I[/O
routine GDCHAR.

LISTDIR
Address — $DAD

Entry Registers — A = Don’t Care.
X = [OCB and FCB number times 16.

Y = Don’t Care.
Exit Registers— A = Unknown.
X = Unknown.
Y = Unknown.

Functions:
1) The TEMP4 byte is used to count the characters that have
been transmitted by GDBYTE from the formatted line buffer.
LISTDIR sets this value to zero to indicate the start of a new
formatted line.

2) The SFDIR routine is called to start a wild card search for the

file name in the directory.

3) If a match is found then FDENT is called to format the entry
and prepare for the GDBYTE calls. Exit via GREAT.

4) If a match is not found, then LDCNT is called to prepare to
send the xxx FREE SECTORS line.

40

CHAPTER THIRTEEN

GDCHAR
GDCHAR ($DB9) is entered from GET BYTE to get a single data

byte from a formatted directory line.

1) The TEMP4 flag is tested. If the value is negative, then all
formatted information has been transmitted. Exit is via the

ERREQF (end-of-file error) exit.

2) The value in TEMP4 is used as an index into the formatted
line buffer to get the next character. The character is placed into

SVDBYT for loading into the A register by the RETURN

routine.
3) The character retrieved from the buffer is examined for the

EOL ($9B) character.
4) If the character is not an EOL, then exit is via GREAT.

5) If the character was an EOL, then the line length is examined
to see if the line was a directory entry line (i.e., if the length was
17) or the final xxx FREE SECTORS.

6) If the line was the final line, then TEMP4 is set to a negative

value ($80) to indicate that all formatted lines have been sent.

Exit is via GREAT.
7) If the line was not the final line, then CSFDIR is called to

find the next matching file name.

8) If a file name match is found, then FDENT is called to format
the found entry into the formatted line buffer. Exit is via
GREAT.

9) If a file name match is not found, then go to LDCNT to
format the final line.

LDCNT
LDDXCNT ($DE9) formats the final line of a directory read.
1) Read the VTOC.

2) Get the free sector count from the VTOC and convert it to
ATASCII via the CVDX routine.

3) Move the FREE SECTORS message to the formatted line buffer.
4) EXIT is via FGREAT.

FDENT

The FDENT ($E21) routine formats the current directory entry into
the formatted line buffer for subsequent reading by GDBYTE.

1) The directory flag is checked for the file locked condition. If

41

the file is locked, then the “*” is placed in the formatted line.

2) The file name is moved from the directory entry to the
formatted line.

3) The file sector count is converted to ATASCII and placed in
the formatted line.

4) The EOL character is placed in the formatted line.
5) Exit is via the RTS instruction.

Chapter Fourteen

SECTOR
/0
ROUTINES

The FMS performs sector 1/O by calling the SIO routine in the OS
ROM (Figure 1, control path 3). All sector [/O calls in the FMS occur
from: the BSIO routine. There are several other routines that are
designed to set up information for BSIO. These routines deal with
reading and writing sectors of a particular type such as data sectors,
directory sectors, and the VTOC sector.

BSIO
Address — $76C

Entry Registers — A = Sector number most significant byte.
Y = Sector number least significant byte.
X = If 1, then 128 byte I/O (810 drive).
If 2, then 256 byte I/O (815 drive).
Exit Registers — A = Status byte from DCB.
Y = Unknown.
X = IOCB and FCB number times 16.

42

CHAPTER FOURTEEN

Functions:
1) The sector number is stored in the DCB from the A,Y register
pair. The DCB is the interface control block for SIO calls.
2) If the carry is clear, then the DCB is set up for read data. If
the carry is set, then the DCB is set up for write data.
3) The serial bus 1D for the disk, and the disk timeout values are
placed into the DCB.
4) The error retry counter, RETRY, is set for four retries.
5) The 1/O data length is set to 128 or 256 depending upon the
data in the X register.
6) The serial I/O routine ($E459) is called to execute the 1/O.
7) If the I/O operation was good, then the X register is loaded
with the IOCB (and FCB) number times 16 from the CRFCB
cell and the status byte from the DCB is loaded into the A register.
Return is via the RTS instruction.
8) If the I/O operation was bad, then the retry counter is
decremented. If the retry value is positive, then the I/O is retried.
If the value is negative, then the routine is exited in the manner
described in step seven.

DSIO
The DSIO routine is called to perform data sector I/O operations.
Address — $11F7

Entry Registers — A = Sector number most significant byte.
Y = Sector number least significant byte.
X = I0OCB and FCB number times 16.
Exit Registers — A = [/O condition code.
Y = Unknown.

X = IOCB and FCB number times 16.

Functions:
1) The sector buffer address is obtained from the zero page sector

buffer pointer ZSBA ($47) and placed in the DCB buffer address
field, DCBBUF.

2) The drive type byte is loaded into the X register from DRVTYP.
If the drive is an 810, then the value will be one. If the drive is
an 815, then the value will be two.

3) BSIO is called.
4) The DSIO caller is returned to via the RTS instruction.

43

CHAPTER FOURTEEN

RDDIR And WRTDIR

The RDDIR and the WRTDIR routines are used to perform Directory
sector 1/O operations. The RDDIR entry ($106E) sets the carry to
indicate read. The WRTDIR entry ($1071) clears the carry to indicate
write. Both of the routines continue at DIRIO.

DIRIO

1) Save the read/write flag (carry sense) on the stack.

2) Set the address of the directory buffer into the DCB buffer
field, DCBBUF.

3) The CDIRS cell contains the number of the directory sector
to be read or written. This value ranges from zero to seven. The
DIRIO routine creates the actual sector number to read or write
by adding $169 to the CDIRS value. The resulting sector number
is placed in the A,Y register combination.

4) Continue at DSYSIQ.

RDVTOC And WRTVTOC

The RDVTOC and WRTVTOC routine are called to initiate /O to
and rrom the VTOC sector. The RDVTOC routine ($108B) first
checks the write required byte in the VTOC sector buffer. If the value
of this byte is not zero, then the VTOC is already in the buffer (and
has been changed). If the VTOC is already in the buffer, then the
read does not have to be done; therefore, the RDVTOC routine will
return to the caller. If the write-required byte is zero, then RDVTOC
will clear the carry to indicate that the operation is read. The
WRTVTOC routine ($1095) sets the write required byte to zero, then
sets the carry to indicate a write operation. Both RDVTOC and
WRTVTOC continue at VTIO.

VvTIO

1) The read/write flag is pushed onto the stack.

2) The VTOC sector buffer address is moved from the zero page
drive buffer address pointer ZDRVA ($45) to the DCB buffer
pointer, DCBBUF.

3) The A,Y register combination is loaded with the VTOC
sector number ($168).

4) Continue at DSYSIO.

DSYSIO
1) The read/write sense is popped from the stack.

44

CHAPTER FOURTEEN

2) The drive type value is loaded into the X register from
DRVTYP.

3) BSIO is called.

4) If the [/O operation was good, then return to the caller via the
RTS instruction.

5) If the I/O operation was bad, the exit via the ERRSYS exit
(fatal system /O error).

OPVTOC
The OPVTOC routine ($10BF) is used by various FMS routines to

insure that the diskette is not write protected before executing functions
that will write to the disk. This routine will read the VTOC via
RDVTOC and then attempt to write the VTOC via WRTVTOC. If
the diskette is write protected, the WRTVTOC will cause an 1/O
error exit (error number 144). If the diskette is not write protected,
then the routine will return to the caller. When OPVTOC does
return to the caller, the current disk VTOC is in the drive buffer.

45

Chapter Fifteen

- FILE NAME
DECODE
ROUTINE

The FNDCODE routine is used to transform the user supplied file
name into a form that is usable in FMS for wild card searching of the
directory. The primary and extension parts of the user file name are
padded with blanks and question marks as required. The following
examples show the types of transform performed by FNDCODE:

User File Name Transformed File Name
D:*.* mmnnnn
DI1:GLOP."* GLOP m
D1:GLOP.BAS GLOP BAS
D2:*.ASM nNMNNNASM
D:GL!P.S* GLP S
D1:G* Gmnn

FNDCODE

Address - $E9E

Entry Registers — A = Don’t Care.
X = IOCB and FCB number times 16.
Y = Don’t Care.

Exit Registers — A = Unknown.
X = IOCB and FCB number times 16.
Y = Unknown.
Functions:

1) The user file name buffer is searched for the colon (:) delimiter.
If the delimiter is not found within 256 characters then exit to
ERREFN routine (file name error).

2) The FMS file name buffer, FNAME, is cleared to blanks.
3) The EXTSW byte is set to zero. When EXTSW is zero, the
primary file name field is being processed. When EXTSW is

46

CHAPTER FIFTEEN

minus, then the extension file name field is being processed.
4) The next character in the user file name buffer is examined.

5) If the character is an asterisk (*), then the field is padded with
question mark characters to the end of the field.

6) If the character is a period and the extension field is being
processed, then exit via the RTS instruction.

7) If the character is a period and the primary field is being
processed, then switch to the extension field processing.

8) If the character is a question mark, then put it into the FNAME
via FDSCHAR.

9) If the character is alphanumeric (A through Z, or O through
9), then put it into FNAME via FDSCHAR.

10) If the character is none of the above, then assume that end
of the filename has been found and exit via the RTS instruction.

11) If a character was stored, then continue at step four.

FDSCHAR

1) If the character counter register, X, indicates that the primary
field is full, then exit without storing the character.

2) If the character counter register, X, indicates that the extension
field name is full, then exit without storing the character.

3) Store the character into FNAME indexed by the X register.
4) Increment the X register.
5) Return to caller via the RTS instruction.

47

Chapter Sixteen

DIRECTORY
SEARCHING

The Directory search routine searches the directory entries for a file
name that matches the name in FNAME. The routine has two entry
points: SFDIR which is used to begin the search at the start of the
directory, and CSFDIR, which is used to continue searching the
directory at the entry just past the previously found matching entry.

The routines have five memory cells that they use for controlling
the search operation: DHOLES, DHOLED, CDIRS, CDIRD and
SENUM. The CDIRS cell contains the current relative directory
sector number (zero through seven). The CDIRD cell contains the
displacement into the directory sector of the current entry. DHOLES
gives the relative directory sector number (zero through seven) of the
first hole or available entry in the directory. The DHOLED cell gives
the displacement to the first available entry that is the hole. The
SFNUM cell is used to contain the current file number of the entry
being examined. The value in SFNUM will be from zero through 63.

If the value of DHOLES is $FF at the end of the search, then the
directory is full.

The directory search routine will exit with the carry clear if a
match was found. It will exit with the carry set if no matching entry
was found.

The SFDIR routine ($F21) is called to start searching the directory at
the start of the directory.

1) Initialize DHOLES, CDIRS, SFNUM to $FF.
2) Initialize CDIRD to $70.
3) Continue at CSFDIR.

CSFDIR

The CSFDIR routine ($F31) is called to continue searching the
directory.

1) Increment the file number, SFNUM.

48

CHAPTER SIXTEEN

2) Increment CDIRD by the size of a directory entry (16).

3) If the CDIRD is now greater than, or equal to, 128 ($80) then
increment CDIRS by one. If the value of CDIRD is now eight,
then exit with the carry set to indicate that a match was not
found. If CDIRD is less than eight, then read the next directory
sector via RDDIR. Set CDIRD to zero.

4) If the directory entry flag field is zero then the end of the used
portion of the directory has been reached. If a hole has not been
found, then mark this entry as a hole. Exit with the carry set to
indicate that the file was not found.

5) If the directory entry flag field indicates that the file is open
for output, then skip this entry.

6) If the directory entry flag field indicates that the file has been
deleted, and a hole has not been found, then mark this entry as a
hole and continue searching the directory.

7) If the file is in use, then check the file name in the directory
entry for a match with the name in FNAME. Wild card characters
in FNAME (question marks) are assumed to match the
corresponding characters in the directory entry file name.

8) If the names match, then exit with the carry clear to indicate
that a match was found.

9) If a match was not found, then continue to search the
directory.

49

Chapter Seventeen

WRITE
NEXT
SECTOR

The write next sector routine, WRTNXS, is used to write a data
sector to disk.

Address — $F94

Entry Registers — A = Don’t Care.
X = IOCB and FCB number times 16.
Y = Don’t Care.

Exit Registers — A = Unknown.
X = IOCB and FCB number times 16.
Y = Unknown.

Functions:

50

1) If the file has been opened for update, and the sector has not
been modified, then do not write the sector. Read the next data
sector and then return to caller.

2) If the file has been opened for update, and the sector has been
modified, then write the current sector. Read the next data
sector into the sector buffer and return to the caller.

3) If the file is not opened for update, then allocate a new sector

to the file by calling GETSECTOR.

4) Move the sector byte count from the FCB FCBDLN field to
the data sector byte count field.

5) Move the address of the newly acquired sector from the FCB
FCBLSN field into the link field of the current data sector.

6) Write the current sector to the disk via WRCSIO.

7) If the I/O was bad, mark the FCB by placing a zero value into
FCBOTC as closed and exit via RETURN with the I/O error
number as the return code.

8) If the I/O was good, then increment the FCB sector counter
field, FCBCNT.

9) Call MVLSN to move the sector number of the link sector
number field of the FCB, FCBLSN, to the current sector number
field of the FCB, FCBCSN.

10) Set the current data length field of the FCB, FCBDLN, to

Z€ro.

11) Set the maximum data length field of the FCB, FCBMLN,
to 125 (if 810 drive) or 253 (if 815 drive).

12) Return to user via the RTS instruction.

Chapter Eighteen

READ
NEXT
SECTOR

The read next sector routine, RDNXTS, reads the next sector in the
file sector chain into the sector buffer. If there are no more sectors in
the chain, then the routine returns with the carry set to indicate end-
of-file. If the routine returns with the carry clear, then the next sector
has been read.

RDNXTS
Address — $100F

Entry Registers — A = Don't Care.
X = IOCB and FCB number times 16.
Y = Don’t Care.

Exit Registers— A = Unknown.
X = IOCB and FCB number times 16.

Y = Unknown.

Functions:

1) If the file has been opened for Update, then WRTNXS is

51

CHAPTER EIGHTEEN

52

called to write the current sector if it has been modified.

2) If the FCB link sector number field, FBCLSN, is zero then
there are no further sectors to read. Return to the caller with the
carry set to indicate that the end-of-file has been reached.

3) Call MVLSN to move the FCB link sector number field,
FCBLSN, the FCB current sector number field, FCBCSN.

4) Call RWCSIO with the carry set to read the next sector.

5) If the I/O operation was bad, exit via the ERRIO exit (I/O
error).

6) Insure that the file number in the sector just read agrees with
the file number in the FCB. If the file numbers are not the same,
exit via the ERFNMM exit (file number mismatch). Note: if the
routine was called by delete, return to delete indicating end-of-
file.

7) Move the link sector number from the data sector to the FCB
link sector field in the FCB, FCBLSN.

8) Move the sector data length information from the data sector
to the FCB maximum data length field, FCBMLN.

9) Reset the FCB data length field, FDBDLN, to zero.

10) Return to the caller with the carry clear to indicate that a
sector has been read.

Chapter Nineteen

GET AND
FREE
SECTOR
ROUTINES

The get sector routine, GETSECTOR, is called when a new sector is
needed. The routine searches the bit map in the VTOC for a free
sector. The sector found is deallocated from the bit map and the
sector number is returned to the caller. The free sector routine,
FRESECT, is given a sector number to be freed. FRESECT locates
the required bit map bit in the VTOC and turns it on (sets it to one).
The sector is now eligible for reuse.

GETSECTOR
Address — $1106
Entry Registers — A = Don’t Care.
X = IOCB and FCB number times 16.
Y = Don’t Care.

Exit Registers — A = Unknown.
X = IOCB and FCB number times 16.
Y = Unknown.
Functions:
1) The Y register is used as an index into the bit map bytes.

2) The bit bytes are examined sequentially from the first bit map

byte to the last bit map byte until a non-zero byte is found. The
displacement to this byte is saved in TEMP1.

3) If no bits are found in the bit map, then the ERRNSA exit
(no sectors available) is taken.

4) The number-of-sectors-available-field, in the VTOC, is
decremented by one.

5) The VTOC write required byte in the VTOC is set to a non-

53

CHAPTER NINETEEN

zero value to indicate that the VTOC has been changed and
must be written back to the disk.

6) The non-zero bit map byte that was found in the bit map
search is retrieved. The bits in this byte are shifted left until a bit
moves into the carry flag. The carry is then set clear and the bits
shifted back to their original position. The byte with the newly
allocated sector bit turned off is placed back into the bit map.

7) The number of bits shifted and the index to the bit map byte
are used to develop the sector number represented by the bit.

8) The sector number is stored in the FCB link sector field,
FCBLSN.

9) The user then returned to via the RTS instruction.

FRESECT
Address — $10C5
Entry Registers - A = Don’t Care.

X = IOCB and FCB number times 16.
Y = Don’t Care.

Exit Registers— A = Unknown.
X = IOCB and FCB number times 16.

Y = Unknown.
Furcctions:

1) The sector to be freed is in the FCB current sector field,
FCBCSN. If the sector number is zero, then FRESECT exits
back to the user via the RTS instruction.

2) The sector number is divided by eight to determine the bit
map byte which represents the sector. The remainder from this
division represents the bit within the byte.

3) The byte is retrieved from the bit map, the bit is turned on,
and the byte placed back into the bit map.

4) The number of available sectors field in the VTOC is
incremented by one.

5) The VTOC write required byte is set to non-zero to indicate
that the VTOC has been changed and needs to be written back
to the disk.

6) The caller is returned to via the RTS instruction.

54

Chapter Twenty

THE
BOOT PROCESS

When the Atari computer is turned on, the routines in the OS ROM
will (under certain conditions) read the first sector from the disk in
drive one into memory. It will then examine certain specific locations
in this record to decide how to boot the disk. In the following
discussion, refer to Figure 20-1. The OS ROM code will load BRCNT
consecutive sectors (starting with sector one) onto memory, starting
at the address contained in BLDADR. When the OS ROM code has
finished this task, it will make a JSR call to the code that is seven
bytes into the start of the boot area. In the case of FMS, this is the
JMP XBCONT instruction at $706. The XBCONT code will continue
the boot load process.

The XBCONT code examines the DFSFLG to see if a DOS.SYS
file exists. If the file exists, then the sector number of the first sector
in DOS.SYS will be in DFLINK. The routine will then read all the
sectors in the chain starting at DFLINK into the memory area pointed
to by DFLADR. When the entire DOS.SYS file is read into memory,
XBCONT returns to the OS ROM code.

The OS ROM code will eventually vector through the BINTADR
so that the FMS can initialize itself. In the DOS 2.0S system,
BINTADR points into the DUP.SYS code. DUP.SYS then receives
control from the OS ROM rather than the FMS. One of the tasks that
DUP.SYS performs during its initialization is to call the FMS

initialization routine.

XBCONT
The XBCONT routine ($714) is entered by the OS ROM code during

the boot process to allow the boot process to continue in the manner
best suited for the code being booted.

Functions:

1) If the DFSFLG indicates that a DOS.SYS file does not exist,
then the OS ROM is returned to with the carry set to indicate
that the boot has failed.

55

CHAPTER TWENTY

2) The address contained in DFLADR is moved to the zero page
address pointer, ZBUFP, and to the DCB buffer pointer field,
DCBBUF.

3) The sector number contained in DFLINK is loaded into the
A,Y register pair, the carry is cleared to indicate read, and BSIO
is called to read a DOS.SYS sector.

4) The next sector link is obtained from the link field of the data
sector just read.

5) If the sector link value is zero, then the DOS.SYS end-of-file
has been reached. The OS ROM will be returned to with the
carry clear to indicate that the boot read was good.

6) If the sector link value is not zero, then the zero page buffer
pointer and the DCB buffer pointer are incremented by the
amount of data in the sector (125 for 810 drives, 253 for 815

drives).

7) The process continues by reading the next sector into
memory.

Sector 1 $700

Sector 2 $780

Sector 3 $800

56

I s700 BFLAG Flag (=0) L
ST BRCNT Number of Consecutive Sectors to Read
§702 BLDADR Address to Load Boot Sectors at
§704 BIWTARR Initialization Address
$70%4 JMP XBCONT Boot Continue Vector
$§709 SABYTE Number of Sector Buffers to Allocate
S70A DRVBYT Drive Bits
$70B Unused
$70C SASA Buffer Start Address
$70E DFSFLG DOSFlag
S70F DFLINK Sector Pointerto DOS.SYS File
S711 BLDISP Displacement in Sector to Sector Link
§712 DFLADR Address of Start of DOS.SYS File

Figure 20-1
Boot Records

Chapter Twenty-One

MAIN_I'I_'ﬁéNING
BOOT RECORD

The boot record (sector 1) contains information about the DOS.SYS
file. When DOS.SYS is opened for output, FMS will write all of FMS
out to the disk as part of the open process. It will also modify sector
zero to indicate that a DOS.SYS file exists and to indicate where on
the disk it is. If DOS.SYS is ever Deleted or Renamed (to something
not DOS.SYS), then the boot record must be modified to indicate
that a DOS.SYS file does not exist. If a file is ever renamed to

DOS.SYS, then the boot record is modified to point to the new
DOS.SYS file.

WRTDOS

The WRTDOS routine ($120A) is used to write a new DOS.SYS file
to disk and to update the boot record to indicate that a DOS.SYS file
exists.

Functions:

1) The sector number which is contained in the FCB sector
number link field, FCBLSN, is used as the first sector of the

DOS.SYS file. This sector number is placed in the boot record
area in page seven along with the other necessary information.

2) Sectors one, two, and three are written from the memory area

from $700 through $87F.
3) The FMS is written to the DOS.SYS via the WDO routine.
4) Exit is via GREAT.

wWDO

The WDO routine ($1267) is used to write the FMS to the DOS.SYS
file.

Functions:
1) The address contained in DFLADR is moved to the zero page

57

CHAPTER TWENTY-ONE

buffer pointer, ZBUFP.

2) The FMS is copied from its area in memory to the file sector

buffer in 125 byte chunks.
3) The buffers are written to disk by the WRTNXS routine.

4) The process continues until the entire FMS area has been
written.

5) The caller is returned to via the RTS instruction.

DELDOS

The DELDOS routine ($1219) is used to modify the boot record to
indicate that DOS.SYS does not exist.

Functions:
1) The DFSFLG is set to zero to indicate that DOS.SYS does not

exist.

2) The area from $700 to $87F is written to sectors one, two,
and three.

3) The caller is returned to via the RTS instruction.

58

ATARI
DOS
2.0S

Copyright © 1982 Optimized Systems Software, Inc.

This listing is protected against unauthorized reproduction by the Copyright Law of the United
States. Any reproduction utilized for profit or other commercial advantage is precluded without
the specific prior written authorization of Optimized Systems Software, Inc., the owner of the
copyright. Any such reproduction does not constitute fair use and may subject the individual to
both civil and criminal penalties. Federal Law provides for a maximum fine of $10,000 or
imprisonment for not more than one year, or both, for infringement of this copyright.

Contact the President, Optimized Systems Software, Inc., 10379 Lansdale Avenue, Cupertino,
California, 95014, prior to reproducing or utilizing any portion of this listing. Any attempt to
change the form of publication of this listing, that is, rendering it into machine-readable form or
otherwise, is a precluded reproduction if done for profit or other financial advantage.

59

ATARI DOS 2.0S

FMS - 128/256 BYTE SECTOR (2.0S)
--—- Copyright

26230

20080

27090
2¢43
2340
0803
2300
E453
00298
231A
0920
@2E7
1540
2182
@9DF

2246

P93F

(2141
[Ju1i]7]

60

1001
1992
1083

and Author Notice ---

+.PAGE " =--- Copyright and Author Notice ---"

10604 ;COPYRIGHT (C) 1978,1979,1988,1982
1605 ;OPTIMIZED SYSTEMS SOFTWARE,
1996 ;CUPERTINO, CA.

1007 ;

16068 ;THIS PROGRAM MAY NOT BE REPRODUCED,
1999 ;STORED IN A RETRIEVAL SYSTEM, OR
1019 :;TRANSMITTED IN WHOLE OR IN PART,
1411 ;IN ANY FORM, OR BY ANY MEANS, BE IT
1012 ;ELECTRONIC,MECHANICAL, PHOTOCOPYING,
1413 ;RECORDING, OR OTHERWISE WITHOUT THE
1914 ;PRIOR WRITTEN PERMISSION OF

1915
1916
1917
1918
1919
1020
1921
1822
1923
1924
1925
1826
1927
1928 ;

System Equates

10CB

OPTIMIZED SYSTEMS SOFTWARE, INC.
16379 LANSDALE AVENUE
CUPERTINO, CALIFORNIA 95014 (U.S.A.)

PHONE: (408) 446-3099

LA RALRE 22222222 22222 X222 X222 2 2 2)

PROGRAMMER PAUL LAUGHTON
UPDATED: 19-AUG-88

H LA 2222 R 2222 S22 222222222 XX]

1629 .PAGE " System Equates"

1230 ‘.tti****t*t****t*i*****ii*l’****ii***

1931 ;

1832 ;

1833 ;

1834 FMSORG = $709

1935 FMSZPG = $43

1436 IOCBORG = $349

1237 LMASK = 23 sLINK MASK

1238 DCBORG = $300

1939 DHADR = $E453

1249 EOL = $9B

1441 DEVTAB = $31a

1942 ZICB = $20

1843 LMADR = $2E7

1244 DUPINIT = $15490 :INIT ADDR FOR DUP

1245 STAK = $162 :STACK LOC FOR PUT BYTE

1246 OSBTM = $DF sHI BYTE OF ADDR LESS THAN 0OS
SPACE

1047 DSKTIM = $246 :ADDR OF OS WORST CASE DISK
TIME OUT

1948 TIMOUT = 15 s TIME OUT VALUEE OF 15 SECS.

1949 .PAGE " I0oCB"

1950 *= IOCBORG

1851

1952 ; IOCB -~ IO CONTROL BLOCK

1853 ; THERE ARE 8 1/0 CONTROL BLOCKS

1954 ; 1 IOCB IS REQUIRED FOR EACH

1455 ; CURRENTLY OPEN DEVICE OR FILE

1956 :

ATARI DOS 2.0S

9344
9341
2342
9343
9344
2345
@345
2343
2343
B34A
2343
934cC
834D
#34E
@34F
0010

8359

2001
0002
9003
2904
2905
0006
2007
0098
Pee9
PoeA
oaeB
geecC
20¢D
QOCE
QOCE
OO¢'F

2001
2062

20153
0230
2931
2932
9933
9034
2935
7986
2987

2a21
2328
2929
0024
0925
9022
2026

IOCB

1857
1858
1259
1969
1961
1062
1063
1864
1965
1066
1867
1068
1969
19079
1071
1872
1973
1874
1475
1276
1877
10678
1879
1080
1981
1982
1983
19084
1985
1986
1987
1088
1089
1999
1991
1992
1993
1994
1895
10996
1997
1098
1699

1199
11921
1182
1103
1104
1105
1186
1197
1108
1189
1118
1111
1112
1113
1114
1115
1116
1117
1118

IOCB
ICHID
ICDNO
ICCOM
ICSTA
ICBAL
ICBAH
ICPUT
ICBLL
ICBLH
ICAUX1
ICAUX2
ICAUX3
ICAUX4
ICAUXS
ICAUX6
ICLEN

.
H

ICOIN
ICOo0UT
ICIO
ICGBR
ICGTR
ICGBC
ICGTC
ICPBR
ICPTR
ICPBC
ICPTC

ICCLOSE

ICSTAT
1CDDC
ICMAX
ICFREE

»

* % % % ok % B B % % ¥ % * %
Wow Y

»*
]

*41
*41
*41
*4]
*31
*41
*42
*41
*41
*4]
*41
241
*s1
*4]
*41
*-10CB

*+ICLEN*7

ICCOM VALUE EQUATES

$01
$@2
$03
$g4
$@5
$@6
$a7
$98
$99
SOA
$OB
$@c
$OD
SOE
SOE
$OF

: ICSTA VALUE EQUATES

ICSOK
ICSTR

ICSEOF
ICSBRK
ICSDNR
ICSNED
ICSDER
ICSIVC
ICSNOP
ICSIVN
ICSWPC

; ZERO

ICDNOZ
ICBLLZ
ICBLHZ
ICBALZ
ICBAHZ
ICCOMZ
ICPUTZ

o
1
Q
2]

$o1
$@2

$23
$80
$81
$82
$83
$84
$85
$86
$87

:DEVICE NUMBER
;DEVICE HANDLER
;s I/0 COMMAND
;I/0 STATUS

sBUFFER ADR (H,L)
;PUT CHAR DH ADDR

;BUFFER LEN (H,L)
s AUX
;sAUX
sAUX
;s AUX
;AUX
sAUX

AU bW

+SPACE FOR 7 MORE IOCB'S

$1OPEN INPUT

+OPEN OUTPUT

;OPEN UN/OUT

;GET BINARY RECORD
; GET TEXT RECORD
:+GET BINARY CHAR
:+GET TEXT CHAR
:GET BINARY RECORD
; PUT TEXT RECORD

; PUT BINARY CHAR
;PUT TEXT CHAR
;CLOSE FILE

:GET STATUS
:DEVICE DEPENDENT
sMAX VALUE

;IOCB FREE INDICATOR

s STATUS GOOD, NO ERRORS
; TRUNCAIATED RECORD

:END OF FILE

;BREAK KEY ABORT
:DEVICE NOT READY
sNON EXISTENT DEVICE
;DATA ERROR

; INVALID COMMAND
;DEVICE/FILE NOT OPEN
; INVALID IOCB #
:WRITE PROTECT

IOCB LABELS

ICDNO-IQOCB+ZICB
ICBLL-IOCB+ZICB ;BUF LEN
ICBLH-IOCB+ZICB
ICBAL-IOCB+ZICB ;BUF ADDR
ICBAH-IOCB+ZICB
ICCOM-IOCB+ZICB
ICPUT-IOCB+ZICB ;PUT RTN ADDR

61

ATARI DOS 2.0S

170
17a0

2303
9301
2382
2393
2304
9385
2303
230A

0952
2951
2053
0021

000:.
2981
2082
2283
0084
2887

238c
230C

004z
9945
0047
284¢

2242
294>

BOOT

224>
2045,

62

1119
112¢
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1148
1141
1142
1143
1144
1145
1146
1147
1148
1149
1158
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160

ZERO PAGE

RECORD

1161
1162
1163
1164
1165
1166
1167
1168
1169
15

20

2008
2001
2992
2093
20804

.PAGE " DCB"
*= DCBORG

DCB - DATA CONTROL BLOCK
THE DCB IS AN IOCB LIKE CONTROL

;
; BLOCK USED TO INTERFACE THE DISK

FILE MANAGEMENT SYSTEM TO THE

DISK HANDLER
DCB
DCBSBI *= *41 ;SERIAL BUS ID
DCBDRV *= *+1 :DISK DRIVE #
DCBCMD *= *41 ; COMMAND
DCBSTA *= *4] ;1/0 STATUS
DCBBUF *= *42 ;I/0 BUFFER ADDR (H,L)
DCBTO *= *42 ;TIME OUT CNT
DCBCNT *= *4+2 ;1/0 BYTE COUNT
DCBSEC *= *42 ;I1/0 SECTOR NUMBER

.
H

:+ DCBCMD VALUE EQUATES

DCBCRS
DCBCWS
DCBCST
DCBCFD

kR

O Ne ns N Ne we %o Ne wg ve S

DCBSOK
DCBDNR
DCBCNR
DCBDER
DCBIVC
DCBWPR

ZBUFP
ZDRVA
ZSBA

ERRNO

= ‘R ;Read sector ($52)
= 'p ;Put sector ($50)
= 's ;Status request ($53)

'l ; FORMAT DISKETTE ($21)

SPECIAL NOTE:
DCBCWS may be changed to 'W ($57)
if desired to have disk perform
a verifying read after each write.
Disk write ('W) operations will take
longer, but will be more reliable.

DCBSTA VALUE EQUATES

= $81 STATUS NORMAL

= $81 ;DEVICE NOT READY

= $82 ;CONTROLLER NOT READY
= $83 ;DATA ERROR

= $84 ; INVALID COMMAND

= $87 ; WRITE PROTECT

.PAGE " ZERO PAGE"

*= FMSZPG

*= *42 ;sBUFFER PTR

*= *42 :ZERO PG DRIVE PTR

*= *42 ;ZERO PG SECTOR BUF PTR
*= *41 +ERROR NUMBER
-INCLUDE #E:

«INCLUDE #D:ATFMS1.SRC

.PAGE "BOOT RECORD"

*= FMSORG

; THE FOLLOWING BYTES ARE STORED
; ON DISK SECTOR @ THEY COMPRISE

ATARI DOS 2.0S

27¢9
a7e1

g7¢2
2724
27¢6

2709
ATOA
276B
876C

@73E

273F
o710
2711
2712

8717

2719
271¢C
@71E
8721
0724
8726

BOOT

2729
#72C
B872F
97390
9733
@736

2738
273B
#73D
g9 3F
6740
2741
2743
@745
2747

;s THE BOOT LOAD RECORD

.BYTE @
.BYTE 3

BLDADR .WORD FMSORG
BINTADR .WORD DUPINIT
BCONT JMP XBCONT

THE FOLLOWING BYTES

;BOOT FLAG UNUSED=0

;NO CONSECTIVE BOOT RECORDS TO

READ

+BOOT LOAD ADDR
;INIT ADDR

sBOOT READ CONT PT

ARE SET BY

THE CONSOLE PROCESSOR. THEY ARE

THEY ARE PART OF THE BOOT RECORD

; ACTED UPON DURING FMS INIT ONLY.

THUS DEFINING THE DEFAULT

; INITIALIZATION PARMS

SABYTE .BYTE 3
.BYTE &1
.BYTE @
.WORD ENDFMS

;sMAX # CONCURRENT OPEN FILES

:DRIVE BITS
s STORAGE ALLOCATION DIR SW

: STORAGE ALLOCATION START ADDR

THE FOLLOWING CODE READS THE FMS
AND CONSOLE PROCESSOR (DOS) FROM
THE DOS.SYS FILE

@@ NO POS FILE

:DOS FLAG

@1 128 BYTE SECTOR DISK

DFSFLG .BYTE @

@2 256 BYTE SECTOR DISK

2095

2006 ;
1] 28@7 BFLG
83 2008 BRCNT
2087 2009
4915 2010
4C1497 20911

2012

2013

2014

2915

2016

2017

2918

2019 ;
23 2028
21 2021 DRVBYT
29 2022 SAFBFW
#9115 2623 SASA

2924

2925

2026

2027

2928
2] 2629

2030

2931

2932

2933

2034 ;
4] 2835 DFLINK
29
7D 2036 BLDISP
CBO7 20637 DFLADR

2038 ;

2039 XBCONT

93714 ACPEQ@T7 2049

F@36 2041

2042
AD1207 2043
8543 2044
8D@403 2045
AD1397 2046
8544 20647
8D@503 2048

2649 ;
RECORD

2050 ;
AD10G@7 2651
ACOF@7 2852
18 2053 XBC1l
AEQEB7 2054
206CB7 2055
3017 2056

2057 ;
ACl187 2858
B143 2959
2903 2060
48 2061
[od:] 2062
1143 2063
FACE 2064
B143 2865
A8 2066

.BYTE 8,0

.BYTE 125
.WORD DFMSDH

LDY DFSFLG

BEQ

LDA
STA
STA
LDA
STA
STA

LDA
LDY
CLC
LDX
JSR
BMI

LDY
LDA
AND
PHA
INY
ORA
BEQ
LDA
TAY

BFAIL

DFLADR
ZBUFP
DCBBUF
DFLADR+1
ZBUFP+1
DCBBUF+1

DFLINK+1
DFLINK

DFSFLG
BSIO
BFAIL

BLDISP
(ZBUFP),Y
#LMASK

(ZBUFP),Y
BGOOD
(ZBUFP),Y

;DOS FILE START SECTOR NUMBER

;DISPL TO SECTOR LINK
;ADDR START OF DOS.SYS FILE

:tGET DOS FLAG
:BR IF NO DOS.SYS FILE

;MOVE LOAD START ADDR

:TO ZERO PAGE PTR
; AND TO DCB

;GET 1ST SECTOR #

;s LOAD DISK TYPE CODE
:+GO READ BOOT SECTOR

; POINT TO LINK
:GET LINK HI
sMASK TO LINK BITS

;GET LINK LOW

63

ATARI DOS 2.0S

2748 205707 2067
2068 ;
2748 68 2069
074C 4C2F@7 2070
2871 ;
@74F A9CO 2072 BFAIL
275). DPA1 2073
2074 ;
0753 68 2875 BGOOD
2076
2754 oA 2877 XBRTN
@755 A8 2078
P756 60 2079
2089 ;
@757 18 2081 INCBA
@758 A543 2982
@75k 6D1187 2083
275D 8DP493 2084
@760 8543 2085
2762 A544 2886
2764 6900 2087
@766 8D@563 2088
@769 8544 2089
@76L 60 2090
2091 ;
SECTOR I/O
276C 2092
2993 ;
2994 ; BSIO
2095 ;
@76C 2096 BSIO
2097 ;
@76C 8DOBO3 2098
@76F BCOAG3 2099
2199 ;
@772 A952 2141 BSIOR
9774 AQG40Q 2192
2776 9904 2193
2104 ;
2778 n950 2105
@777 A9B@ 2106
2197 ;
2108 DSIO1
277C 8D@283 2109
@77F 8CO303 2110
2111 ;
2782 A931 2112
0784 AQQF 2113
2114 ;
2115 DSIO2
2786 8DOAP3 2116
2789 8C@683 2117
2118 ;
278C A9M3 2119
@78E 8DFF12 2128
2121
@791 A999 2122
@793 AO8Q 2123
2795 CA 2124
2796 FO04 2125
2126 ;
2798 A9P1 2127
@79A AQGO 2128
2129 ;
@79C 8D@993 2130 DSIO3

64

JSR

PLA
JMP

LDA
BNE

PLA

ASL
TAY
RTS

CLC
LDA
ADC
STA
STA
LDA
ADC
STA
STA
RTS

INCBA

XBC1

$$CO
XBRTN

ZBUFP
BLDISP
DCBBUF
ZBUFP
ZBUFP+1
0
DCBBUF+1
ZBUFP+1

GO INCREMENT BUF ADR

sRESTORE LINK HI
;GO READ NEXT SECTOR

;SET FOR CARRY SET
;ANY P,Y = $80

:SET FOR CARRY CLEAR

: INC BUFFER PTR
sBY DATA LINK (125)

.PAGE "SECTOR I/0O"

- DO SECTOR I/0

STA
STY

LDA
LDY
BCC

LDA
LDY

STA
STY

LDA
LDY

STA
STY

LDA
STA

LDA
LDY
DEX
BEQ

LDA
LDY

STA

*

DCBSEC+1
DCBSEC

#DCBCRS
#540
DSIO1
#DCBCWS
#s80
DCBCMD
DCBSTA
#$31
#TIMOUT
DCBSBI
DCBTO

#3
RETRY

[44
#580

DSIO3

#1
3

DCBCNT+1

¢ SET SECTOR HI
:SECTOR LO

7ASSUME READ SECTOR
sAND GET DATA

+BR IF READ

;ELSE LOAD WRITE
;AND PUT DATA

SECTOR

;SET COMMAND
:AND SIO CMD

;DISK SERIAL BUS
: TIMEOUT DEFAULT

ID
LOADED

;SET ID

:SET TIME OUT
sSET RETRY COUNT
;ASSUME 128 BYTE
s SECTOR DISK

:SO BR

;ELSE IS 256

;SET I/0O BYTE CNT

ATARI DOS 2.0S

@'79F 8C@883 2131 STY DCBCNT
2132 ;
2133 DSIO4
@782 2059E4 2134 JSR $E459 ;CALL SERIAL I1/0
@7A5 101D 2135 BPL. DSIO5 :+IF GOOD 1/0 THEN RTS
2136
@7A7 CEFFl12 2137 DEC RETRY ;TST IF ANOTHER RETRY AVAIL
@7AA 30218 2138 BMI DSIOS :NO THEN RTS WITH ERROR
2139 ;
@7AC A240 2140 LDX #$40 :DO RETRY-RESET TYPE ACTION
@7AE A952 2141 LDA #DCBCRS :ASSUME READ-CK IF IS
@7B0 CDP2@3 2142 CMP DCBCMD ;IF COMMAND GET SECTOR

SECTOR 1/0

g7B3 FOO9 2143 BEQ STRTYP ;YES THEN STORE GETSECTOR IN O
@7B5 A921 2144 LDA #DCBCFD ;TEST IF FORMAT CMD
@7B7 CDP2@3 2145 CMP DCBCMD ;IT ALSO RECIEVES DATA
@7BA F282 2146 BEQ STRTYP :YES THEN SET AS GET DATA
@7BC A288 2147 LDX #$80 sELSE STORE PUTSECTOR
@7BE B8E@383 2148 STRTYP STX DCBSTA

2149 ;
27C1 4CA207 2150 JMP DSIO4 ;RETRY THE I/0O

2151 ;
@7C4 AEQG113 2152 DSIO5 LDX CURFCB ;s RELOAD CURRENT FCB
@7C7 AD@363 2153 LDA DCBSTA ;AND I/0 STATUS SET FLAGS
@7CA 68 2154 RTS

2155 ;

FILE MANGER ENTRY POINT

P7CB 2156 .PAGE "FILE MANGER ENTRY POINT"
2157
2158 ; DFMSDH - DISK FILE MANAGEMENT DISK
2159 ; HANDLER ENTRY POINT
2169
2161 DFMSDH
#7CB AAQ8 2162 .WORD DFMOPN-1 ;OPEN FILE
B7CD 14@B 2163 .WORD DFMCLS-1 ;CLOSE FILE
97CF BEGA 2164 .WORD DFMGET-1 ;GET FILE
@7D1 CB@9 2165 .WORD DFMPUT-1 ;PUT BYTE
97D3 @90B 2166 .WORD DFMSTA-1 ;STATUS
@7D5 A6OB 2167 .WORD DFMDDC-1 ;DEVICE DEPENDENT CMD
2168
2169 ; INITIALIZATION CODE
2179 ;
2171 ; GIVE ROOM FOR BOOT EXPANSION [1!
2172 ;
27D7 2173 *= S$TEQ
Q7EQ 2174 DINIT = *
2175
2176 : SET UP DRIVE INFO
2177 :
2178 ; DRVTBL - 8 BYTES-ONE FOR EACH POSSIBLE DRIVE
2179
2188 ; @ = NO DRIVE
2181 ; 1 = 128 BYTE SECTOR DRIVE
2182 ; 2 = 256 BYTE SECTOR DRIVE
2183 ;
2184 ; DBUFA(L,H) 8 TWO BYTE ENTRYS THE
2185 ; DRIVE (VTOC) BUFFER ADR FOR A DRIVE
2186
¢7EQ ADPCO7 2187 LDA SASA ;MOVE START OF ALLOC
¢7E3 8543 2188 STA ZBUFP ;AREA TO ZBUFP
¢/'7E5 ADOD@7 2189 LDA SASA+l
¢7E8 8544 2199 STA ZBUFP+1
2191

65

ATARI DOS 2.0S

@7ER
@7ED

@7Fe

AaTF2
@TFE
@7FE

@7FA
@7FC
@7FF
2802
#80°<

FILE

2887
2809
2808

288D
@80E
2811
2813
2816

2819
@818
@81E
0820
2822

2823
2824
9827
@82A
@82C
282F
9831
2834

2837
2838

283A

283D
983E

28490
7843

@845

66

ADOADT7
8DgC13

A207

8E@D13
PESC13
BAGD

A900
9D1113
9D2913
9D3113
F@36

MANGER

AGB5
A9080
9143

E8
8E@103
A953
8D@203
2053E4

AQ82
ADEA@2
2920
D@1
88

98
AEAD13
9D1113
A543
902913
A544
9D3113
287008

88
F203

297808

CA
10B2

AC@997
A2090

A90¢9

2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2285
22086

LDA DRVBYT sTEMP 1 IS DRIVE
STA TEMP1 sEXCESS BITS FROM BOOT
7
LDX #7 +TEMP 2 IS
DIA STX TEMP2 sDR # MINUS 1
ASL TEMPl ;SHIFT DR BIT TO CARRY
BCS DIHAVE :BR IF DR EXISTS
LDA #0 DRVTBL,X ;SET NO DRIVE
STA DRVTBL, X
STA DBUFAL,X
STA DBUFAH,X
BEQ DIDDEC :GO DEC DRIVE #

ENTRY POINT

2207
2208
2209
2210
2211
2212
2213
2214
2218
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255

DIHAVE
LDY #DVDWRQ ;SET WRITE READ OFF
LDA #9
STA (ZBUFP),Y ;IN THE DRIVE BUFFER
INX :PUT DR # IN DCB
STX DCBDRV
LDA #DCBCST ;GET DRIVE STATUS
STA DCBCMD
JSR DHADR
:
LDY #2 sASSUME 256 BYTE DRIVE
LDA $2EA ;GET STATUS BYTE
AND #$20
BNE DI256 ;BR IF 256
PEY
DI256 TYA
LDX TEMP2 ;SET DR TYPE INTO
STA DRVTBL,X ;:TBL AT DRIVE DISPL
LDA ZBUFP sMOVE CURRENT ALLOC
STA DBUFAL,X :;ADDR TO DBUFA
LDA ZBUFP+1 sAND INC ALLOC
STA DBUFAH,X ;BY 128 BYTES
JSR DINCBP :VIA DINCBP
DEY ;IF DR WAS A
BEQ DIDDEC ;128 BYTES THEN DONE
JSR DINCBP ;ELSE INC PTR BY 128
DIDDEC DEX ;DEC DRIVE
BPL DIA sBR IF MORE TO TEST

SET UP SECTOR ALLOCATION TABLE

THE SECTOR ALLOCATION TABLE (SECTBL)
WAS 16 ONE BYTE ENTRIES ONE FOR
EACH POSSIBLE 128 BYTE BUFFER SABYTE
IN THE BOOT RECORD DETERMINES THE
NUMBER OF ENTRYS TO ALLOCATE
NON-ALLOCATED BYTE ARE MINUS

SABUF(L,H) CONTAINS THE ADDR OF THE SECTOR BUFFER

N0 e S8 R N6 S e e me we N we

LDY SABYTE +GET AND SAVE COUNT
LDX %0
DINXTS LDA #0@ sASSUME ALLOCATE

ATARI DOS 2.0S

9347
0348
B34A

FILE

2348
@34E
@34F

2851
2853
2856
2858
@85B

985E
@85F
2861

2863
2865
2868
286A

286D

¢870@
2871
2873
2875
€877
2879
2878
€87D

¢87E
¢87E
@880
€882
€885
€886

FILE
2888

2888
288A
888D
288F
2891
2893
2894
2895
2896
9898
289A

88
1081
98

MANGER

9D1913
98
390D

A543
9D3913
A544
9D4913
207808

E8
EZ10
DPE2

A543
8DE702
A544
8DE8@2

4C7E@8

18

A543
6980
8543
A544
6909
8544
69

AQ7F
A90P
998113
88
DOFA

MANGER

ADO9S0
B91A@3
FO0C
C944
Fo98
cs8
c8
c8
COlE
DOFO
29

2256
2257
2258

ENTRY POINT

2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2299
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2382

ENTRY POINT

2303

2304 ;

2305

2306 ADI1

23087
2308
2309
2319
2311
2312
2313
2314
2315
2316

~

DINCBP -

[ETREVEEN

) ~e ~e s

DEY
BPL, DISETS
TYA

STA SECTBL,X
TYA
BMI DISNI

LDA ZBUFP
STA SABUFL, X
LDA ZBUFP+1
STA SABUFH,X
JSR DINCBP

INX
CPX #16
BNE DINXTS

SET LOW MEM

LDA ZBUFP
STA LMADR
LDA ZBUFP+1
STA LMADR+1

JMP CLRFCB

INCBP CLC

LDA ZBUFP
ADC #128
STA ZBUFP
LDA ZBUFP+1
ADC #0

STA ZBUFP+1
RTS

CLEAR FCBS TO ZERO

- *

LDY #$7F
LDA #0
STA FCB,Y
DEY

BNE CFCBX
. PAGE

LDY #0
LDA DEVTAB,Y
BEQ ADI2
CMP #'D
BEQ ADI2
INY

INY

INY

CPY #39
BNE ADIl
BRK

:DEC COUNT OF ALLOCATED
;IF PLUS STILL ALLOCATE
;ELSE DE ALLOCATE

:SET ALLOCATE BYTE
sIF NO ALLOCATED
sTHEN DON'T ALLOCATE BUF

+MOVE BUFFEFR ADDR
:TO SECTOR BUF PTR

:+ INC SECTOR ADDR
:INC BUF #

+IF NOT ALL 16
1DO AGAIN

sMOVE FINAL ADDR
:TO LOW MEM PTR

sCONT INIT

INC ZBUFP BY 128

;128 OF FCB

:TO BE CLEARED

:FIND AH
7 UNUSED
sOR DISK
;s EMPTY

;ELSE BREAK

67

ATARI DOS 2.0S

0898
289D
2157
08A2
28AS5
28A7

O8AA

OPEN

@8AB

28AB
@8AE
28B1
28B4
28B7
A8B9
28BB

O8BE
28C1

28C2
@8C5
28C7
28C9
28CB
28CD
@8CF
28D1
28D3
#8D5

2808
#8D8
28D9
@8DB

28DD
28DD
@8DE
98EQ

@8E3
@8E3
@8E6
@8E9
OPEN
@8EC

ABEC
B8EC

68

944
991A03
A9CB
991BO3
A907
991CO3

50

206411
2P9ESE
BD4A@3
908213
2902

Fo03

4CAD@D

20210F
28

BD8213
C99%4
FOOF
Cc998
F044
co9gcC
F@0cC
C999
FO17
4CBF12

28
BOJE
20a6

28
BOA9
20ACBC

20AEQB9
4CF@12

4CBB12

28

2317
2318
2319
2320
2321
2322
2323
2324

2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2359
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370

2371
2372
2373
2374
2375
2376

ADI2 LDA #'D ;SET DISK
STA DEVTAB,Y
LDA #DFMSDH&255 ;SET FMS ADDR
STA DEVTAB+1,Y
LDA #DFMSDH/256
STA DEVTAB+2,Y
RTS
.PAGE "OPEN"
; DFMOPN - FILE OPEN EXECUTION ENTRY PT
DFMOPN
JSR SETUP ; DO FCB SET UP
JSR FNDCODE :GO DECODE FILE NAME
LDA ICAUX1,X ; GET AUX1 (OPEN TYPE CODES)
STA FCBOTC,X ;PUT INTO FCB
AND #OPDIR ; IS THIS LIST DIRECTORY
BEQ OPN1 +BR IF NOT
JMP LISTDIR ;GOTO DIR LIST CODE
OPN1 JSR SFDIR ;GO SEARCH FILE DIR
PHP
LDA FCBOTC,X ;GET OPEN TYPE CODE
CMP #OPIN ; INPUT
BEQ DFOIN
CMP #OPOUT :OUTPUT
BEQ DFOOUT
CMP #OPIN+OPOUT ;UPDATE
BEQ DFOUPD
CMP #OPOUT+OPAPND ;APPEND
BEQ DFOAPN
JMP ERDVDC ; ERROR
: DFOIN - OPEN FOR INPUT
DFOIN = *
PLP $GET SEARCH FLAG
BCS OPNERI1 ;ERROR IF NOT FOUND
BCC DFOUI
; DFOUPD - OPEN FOR UPDATA
DFOUPD = *
PLP ;GET SEARCH FLAG
BCS OPNER1 :BR NOT FOUND
JSR TSTLOCK ;TEST LOCK
DFOUI = *
JSR DFRDSU :SET UP FOR READ
JMP GREAT : DONE
OPNER1 JMP ERFNF :FILE NOT FOUND
.PAGE
; DFOAPN - OPEN APPEND
DFOAPN = *
PLP ;GET READ STATUS

ATARI DOS 2.0S

@8ED
@8EF
P8F2
@8F5
28F7
B8F9
P8FC
@8FF
2992
2995
9998
2908
GIPE

2911
2911
2912

2914
2917
G91A

291D
291D
2920
0922

2925
2928
292B
@92E
2931
2934
2937
gI3A
293C
g93E

941
2942
2943
8945

2948
2948

OPEN

234B
@I4E

2951
2954

2957

2959
295¢C
A95E
2961

2964
2966
2969
2968

BOFA

ACP513
B97114
2902

F@15

20ACHC
2¢BF10
200611
SD8E13
BD8B13
9D8D13
4C7C29
4CB712

28
BOO9

20530C
AC@O513
4C4809

AD@213
3070
8DP613

206E10
AD@313
8D@513
AD@413
8DB713
20BF18
AC@513
A20A

A920

999614

c8

CA
10F9
AE@113

200611

AC@513
990514

BD8B13
990414

A943

9990114
A900

990314
990214

A200
BD5913
C93F
F@03

2377
2378
2379
2382
2381
2382
2383
2384
2385
2386
2387
2388
2389
2399
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2491
2402
2483
2404

24085
2406
24097
2408
2409
2419
2411
2412
2413
2414

2415
2416
2417
2418
2419
2420
2421

2422
2423

2424
2425
2426
2427

2428
2429
2430
2431
2432
2433
2434
2435
2436

APOER

BCS
LDY
LDA
AND
BEQ
JSR
JSR
JSR
STA
LDA
STA
JMP
JMP

DFOOUT -

DFOOUT

DFOX1

OPN1B

OPN1A

“

OPN2

JSR

JMP

LDA
BMI
STA

JSR
LDA
STA
LDA
STA
JSR
LDY
LDX
LDA
STA

INY
DEX
BPL
LDX

JSR

LDY
STA

LDA
STA

LDA

STA
LDA
STA
STA

LDX
LDA
CMP
BEQ

OPNER1 sBR NOT FOUND
CDIRD :IF OLD.
FILDIR+DFDFL1,Y ;FILE TYPE
#DFDNLD ;s THEN

APOER s+ ERROR

TSTLOCK ;TEST LOCKED
OPVTOC :READ VTOC

GETSECTOR ;GET A SECTOR
FCBSSN+1,X :MOVE START SECTOR #
FCBLSN,X ;TO START SECTOR #
FCBSSN,X

DHFOX2 ;CONTINUE AS OPEN
ERAPO

OPEN FOR OUTPUT

*
sGET SEARCH FLAG

DFOX1

XDEL® ;DELETE THE FILE OR FILES

CDIRD

OPN1A

*

DHOLES ;WAS THERE A HOLE

OPNER?2 ;BR IF NO HOLE

CDIRS :SAVE HOLE SECTOR AS CURRENT
DIR SEC

RDDIR ;GO READ CURRENT DIR SECTOR

DHOLED :MOVE HOLE DISPL TO

CDIRD :CUR DIR DISPL

DHFNUM :MOVE HOLE FN

SFNUM :TO CURRENT

OPVTOC

CDIRD

$10

520

FILDIR+DFDPFN,Y ;BLANK FILL FILE ENTRY
FOR FILE NAME

OPN1B
CURFCB

*
GETSECTOR ;GET A SECTOR

CDIRD sGET DIR DISPL
FILDIR+DFDSSN+1,Y ;PUT SECTOR INTO DIR
REC

FCBLSN, X

FILDIR+DFDSSN,Y

¥DFDINU+DFDOUT+DFDNLD ;SET DIR ENTRY IN
USE

FILDIR+DFDFL1,Y

#0 ; SET NOT LOCKED

FILDIR+DFDCNT+1,Y ;SET COUNT = @
FILDIR+DFDCNT,Y

#0

FNAME, X sMOVE FILE NAME
#'2 s+ IF WILD CARD
OPN2A sCHANGE TO BLANK

69

ATARI DOS 2.0S

@96D 990614 2437 STA FILDIR+DFDPFN,Y ;TO DIRECTORY
2978 2438 OPN2A = *
2978 C8 2439 INY
@971 E8 2449 INX
2972 E@PB 2441 CPX #11
@974 90F@ 2442 BCC OPN2
2443 ;
@976 AEQ113 2444 LDX CURFCB sRESTORE X REG
8979 207110 2445 JSR WRTDIR ;GO WRITE DIRECTORY
297C 2446 DHFOX2 = *
A97C 289509 2447 JSR SETFCB
@97F 20E20F 2448 JSR WRTN6 sFIX UP AS IF WRITE
0982 A989 2449 OPN3 LDA #FCBFAS sSET NEW FILE
0984 9D8513 2459 STA FCBFLG,X
2987 209B12 2451 JSR TSTDOS :IF NOT DOS
298A D@G3 2452 BNE DHFOX3 :BR
§98C 4COA12 2453 JMP WRTDOS ;ELSE DO IT
@98F 2454 DHFOX3 = *
@98F 4CF@12 2455 JMP GREAT
2456 ;
9992 20BD12 2457 OPNER2 JSR ERDFULL +DIRECTORY FULL
2458 ;
2459 ;
2995 2460 SETFCB = *
2995 A9Q0 2461 LDA #0 ;CLEAR
9997 9D8513 2462 STA FCBFLG,X :FLAG
@99A AD@713 2463 OPNF1 LDA SFNUM sMOVE FILE NUM TO FCB
299D OA 2464 ASL A
@99E 2A 2465 ASL A
@99F 9D8113 2466 STA FCBFNO,X
@9A2 A990 2467 LDA #@
Q9A4 9D8713 2468 STA FCBDLN,X ;DATA LENGTH
@9A7 9DBF13 2469 STA FCBCNT,X :SET CNT =@
@9AA 9D9013 2478 STA FCBCNT+1,X
J9AD 68 2471 RTS
P9AE 209509 2472 DFRDSU JSR SETFCB ;SET UP FCB
@9B1 ACO513 2473 LDY CDIRD tMOVE START SECTOR TO LINK
OPEN
29B4 B99114 2474 LDA DFDFL1+FILDIR,Y ;SET NEW
@9B7 2902 2475 AND #DFDNLD :SECTOR
@9B9 9D8413 2476 STA FCBSLT,X ;FLAG
@9BC B99414 2477 LDA FILDIR+DFDSSN,Y
@9BF 9D8B13 2478 STA FCBLSN,X
@9C2 B99514 2479 LDA FILDIR+DFDSSN+l,Y
@9C5 9D8C13 2480 STA FCBLSN+1,X
99C8 2061710 2481 JSR RDNSO sREAD 1ST SECTOR
29CB 60 2482 RTS
@9cc 25 «INCLUDE #E:
gaocc 30 «INCLUDE #D:ATFMS2.SRC
PUT BYTE
@9cc 3000 .PAGE "PUT BYTE"
3001 ;
3982 ; DFMPUT - PUT A FILE BYTE
3903 ;
3994 DFMPUT
@9CcC 8DP813 3005 STA SVDBYT
@9CF BD4103 3006 LDA ICDNO,X
g9D2 8521 3087 STA ICDNO-IOCB+ZICB
P9D4 206411 3008 JSR SETUP
99D7 AC@013 3009 LDY ENTSTK $CHK TO SEE IF ENTRY WASN'T
FROM CIO
@9DA B90221 3010 LDA STAK,Y ;IF HI BYTE RTS IS NOT IN OS
ADDR

70

ATARI DOS 2.0S

290D
@9DF
291

9913
29KS
#IE8
[1:)14.%
29rC
A9EF
o9re
29173
29rs5
2918
@91FA
291D
@9FF
OAA1
OAR3

oA6
BAA9
PABC

OAJE
OAlD
oAl13
PAl6

OAl9
GAlC

C9DF
B@O4
A990

8522
BD8213
2908
F#2D
BC8713
28
DD8613
9011
20940F
B@22
201F0A
MO0
BAGS
B124
8D@813

FE8713
AD@813
9147

A940

1p8513
9p8513
4CF012

4CBF12
4CF412

BURST 1/0

OR1F

OA1lF
oa22
onr24

o226

2228
@2.2B
@r.2D
@2.2F

0231
or.34

2136
2238
2n3A
PA3C

@n3E
on4l

ona3
o146
on48

Pn4A
An4B

BD8513
1026
3002

A90Q@

801413
A522
2902
F@19

20AEPA
BAl4

A524
8547
A525
8548

AD1913
3909

200F10
9833
B@53

38
60

3011
3012
3013

3014
3815
3016
3017
3018
3019
3020
3021
3022
3023
3824
3025
3026
3827
3028
3029
3030
30931
3032
3933
3834
3835
3036
3037
3038
3839
3048
3041

3942
3043
3044
3045
3046
3047
3048
3849
3059
3851
3952
30953
3954
3055
3856
3057
3g58
3859
3069
3961
3062
3063
3064
3065
3066
3067
3068
3969
3978
3071
3872
3873

CMP #0SBTM :SPACE THEN A NON-CIO ENTRY

BCS FRMCIO ;BR IF FROM CIO

LDA #0 ;ELSE PREVENT FROM DOING BURST
1/0

STA ICCOMZ
FRMCIO LDA FCBOTC,X ;:;IF NOT OPEN

AND #OPOUT ;sOUTPUT

BEQ PUTER : ERROR

LDY FCBDLN,X ;GET DATA LENGTH
TYA

CMP FCBMLN,X ;IF SECTOR NOT FULL
BCC PUT1 ;THEN BR

JSR WRTNXS 1ELSE WRITE FULL SECTOR
BCS PEOF sBR IF EOF

JSR WTBUR ; TEST BURST

LDY #0

BCS PUT1 :BR IF NOT BURST
LDA (ICBALZ),Y ;PUT NEXT BYTE

STA SVDBYT :AFTER BURST AREA

PUT1 INC FCBDLN,X ;INC DATA LEN
LDA SVDBYT sGET DATA BYTE
STA (ZSBA),Y :;AND PUT IN SECTOR BUFFER
LDA #FCBFSM ;s INDICATE SECTOR MODIFIED
ORA FCBFLG,X
STA FCBFLG,X
JMP GREAT ;DONE

PUTER JMP ERDVDC
PEOF JMP ERREOF

.PAGE "BURST I/O"

TEST BURST I/0 AND DO IF POSSIBLE

WTBUR LDA FCBFLG,X ;:;IF NOT AQUIRING SECTORS

BPL NOBURST :THEN UPDATE AND
BMI TBURST :NO BURST
:
RTBUR LDA #9 :SET READ TYPE
TBURST STA BURTYP ;s SET BURST TYPE
LDA ICCOMZ ;IF CMD
AND #2 ;IS TEXT MODE
BEQ NOBURST ; THEN NO BURST
JSR TBLEN ;s IF USER BUFFER LESS
BCS NOBURST : THEN SECTOR, NO BURST
LDA ICBALZ sMOVE USER BUFFER
STA 2SBA ;ADDR TO SECTPOR
LDA ICBAHZ ;BUFFER PTR
STA ZSBA+1l
NXTBUR LDA BURTYP ;GET I/0 TYPE
BMI WRBUR :BR IF WRITE
JSR RDNXTS ;DO SECTOR READ
BCC BBINC :BR IF EOF
BCS BUREOF :BR RD EOF
NOBURST SEC s INDICATE NO BURST
RTS

71

ATARI DOS 2.0S

3874 ;
OA4C ADF812 3875 WRBUR LDA DRVMDL tWRITE FULL SECTOR
OA4F 9D8713 3076 STA FCBDLN,X ;DATA COUNT
3077 ;
@AS52 A8 3078 TAY
#AS53 B147 3879 LDA (2SBA),Y ;:SAVE DATA TO BE
#AS5 8D@913 30988 STA SVD1 :TO BE CLOBBERED
PA58 C8 30981 INY
PA59 B147 31882 LDA (ZSBA),Y ;BY WRTNXT
PASB 8DPALl3 3083 STA SVD2
OASE C8 3084 INY
@ASF Bl47 3¢85 LDA (2SBA),Y
#A61 8DOB13 3086 STA SVD3
3987 ;
BA64 20940F 3088 JSR WRTNXS sWRITE SECTOR
3089 ;
PA67 ACF812 3990 LDY DRVMDL sRESTORE CLOBBERED DATA
GA6A AD@913 3991 LDA SVD1
@A6D 9147 3992 STA (2SBA),Y
BURST I/0
PA6F C8 3893 INY
@A78 ADOGAl3 3094 LDA SVD2
BA73 9147 3095 STA (ZSBA),Y
2A75 C8 3096 INY
PA76 AD@B13 3097 LDA SVD3
BA79 9147 3998 STA (ZSBA),Y
3099 ;
3100 ;
gA7B 18 3191 BBRINC CLC
@ATC AS547 3102 LDA ZSBA ; INC SECTOR
@A7E 7D8613 3103 ADC FCBMLN,X ;BUFFER ADDR BY
PA81 8547 3104 STA ZSBA ;ACTUAL DATA LEN
OA83 A548 3185 LDA ZSBA+1 :GOT OT PUT
PA85 6909 3106 ADC #2
PA87 8548 3187 STA ZSBA+1
3108 ;
#A89 38 3109 SEC
PABA AS528 311¢ LDA ICBLLZ ;DEC USER
@A8C FD8613 3111 SBC FCBMLN,X ;BUFFER LEN BY
JABF 8528 3112 STA ICBLLZ ;sACTUAL DATA LEN
#A91 AS529 3113 LDA ICBLHZ ;GOT OR PUT
PA93 E99F 3114 SBC #0
PA95 EA 3115 NOP
PA96 8529 3116 STA ICBLHZ
3117 ;
PA98 20AEGA 3118 JSR TBLEN ;IF USER BUF LEN
PA9B 99A1l 3119 BCC NXTBUR :NOW >= SECTOR, DO AGAIN
3120 ;
ZA9D 3121 BUREOF = * ;END OF BURSTING
@A9D AS547 3122 LDA ZSBA ;MOVE FINAL ADDR BACK
PA9F 8524 3123 STA ICBALZ ;TO USER BUF PTR
@AMl AS548 3124 LDA ZSBA+1
PAA3 8525 3125 STA ICBAHZ
3126 :
@AAS5 BC8813 3127 LDY FCBBUF,X ;RESTORE ZSBA
BAAS 88 3128 DEY
#AA9 20DO11 3129 JSR SSBA
3130 ;
@AAC 18 3131 BURST CLC
@AAD 60 3132 RTS
3133 ;
3134 ; TEST USER BUF LEN FOR BURST
3135 ;
GAAE 3136 TBLEN = . *
OAAE ADFE12 3137 LDA DRVTYP ;IF DRIVE NOT

72

ATARI DOS 2.0S

GARl C991 3138 CcMP
PAE3 D@94 3139 BNE

3149 ;
GAES A528 3141 LDA
PAET 30F3 3142 BMI

3143 ;
PAR9 AS529 3144 TBL256 LDA
BURST I/0
OAEB DOEF 3145 BNE
¢AED 38 3146 SEC
OAEE 60 3147 RTS
GET BYTE
BARF 3148 .PAGE

3149 ;

3150 ;

3151 ;

3152 ;
GABF 3153 DFMGET =
GARF 266411 3154 JSR
@AC2 BD8213 3155 LDA
PACS 2902 3156 AND
OACT FO93 3157 BEQ
@AC9 4CB9OSD 3158 JIMP

3159 ;
PACC BD8713 3168 GET1 LDA
@ACF DD8613 3161 CMP
@AD2 909B 3162 BCC
OAD4 20260A 3163 JSR
BAD7 200F19 3164 JSR
GADA 99F8 3165 BCC
BADC 3166 GEOF =
PADC 4CF412 3167 JMP

3168 ;
GADF A8 3169 GET2 TAY
OAZZ B147 3172 LDA
@AZ2 8D@813 3171 STA
@Az5 C8 3172 INY
PAE6 98 3173 TYA
@AE7 9D8713 3174 STA
OAEA 3175 EFLOOK =
@AEA BC8B13 3176 LDY
@AED DOOF 3177 BNE
@AEF BC8C13 3178 LDY
@AF2 DOGA 3179 BNE
@AF4 DD8613 3188 CMP
PAF7 9905 3181 BCC
ZAF9 A983 3182 LDA
@BAFB 4CD312 3183 JMP

3184 ;
@AFE 4CF@12 3185 GET3 JMP
STATUS
o1 3186

3187 ;

3188 ;

3189

3190 DFMSTA
21361 206411 3191 JSR
oR@4 209EGE 3192 JSR
2387 20210F 3193 JSR
@30A BOG6 3194 BCS

$1 :1128 BYTE SECTOR TYPE
TBL256 :THEN DO 256 BYTE TEST
ICBLLZ
BURST

ICBLHZ sIF BUF LEN HI »>= 256
BURST s THEN CAN BURST

“"GET BYTE"

*

SETUP
FCBOTC, X
#OPDIR
GET1
GDCHAR

FCBDLN, X
FCBMLN, X
GET2
RTBUR
RDNXTS
GET1

*

ERREOF

(ZSBA),Y
SVDBYT

FCBDLN, X
*
FCBLSN, X
GET3

DFMGET - GET A FILE BYTE

1GO SET UP
:IF OPEN FOR
sDIR CNT

s THEN GO TO DIR RTN

:GET DATA LEN

:TEST EMPTY SECTOR
;BR IF NOT EMPTY

;DO BURST IF POSSIBLE
;GET NEXT SECTOR

:BR IF NOT EOF

;ELSE EOF ERROR

sGET DATA BYTE

s SAVE THE BYTE

:AND SET NEW VALUE

;DO EOF LOOK AHEAD
;IF LSN NOT ZERO

FCBLSN+1,X ;THEN

GET3
FCBMLN, X
GET3
#5003
RETURN

GREAT

.PAGE "“STATUS"

DFMSTA - GET A FILE

SETUP
FNDCODE
SFDIR
SFNF

;NOT EOF

:+IF LSN=@ THEN CHECK FOR
;LAST BYTE

;IF LAST BYTE THEN RTS

STATUS

SETUP

DECODE FILE NAME
SEARCH FOR FILE
BR NOT FOUND

H
H
H
H

73

ATARI DOS 2.08

PBAC
OBOF

oB12

CLOSE

#B1S

9B15
oBls8
oB1B
@B1D

PB1F
9B22

oB24

2B27
OB2A
OB2D
OB2E
gB31

PB32
oB35
2837

2B39
PB3C
@B3F

oB41
oB44
@B47
OB4A
@B4D

OB5@
PB53
2BS4
#B55
2B58
#B5B
#B5C
OB5F

2B62
2B64
?B67
PB6A

OB6D
OB6F

CLOSE

oB72
@B75

@B75S
@B78

4

2@ACHC
4CFP12

4CBB12

206411
BD8213
2908
F@4E

3E8513
9951

20ABOF

208008
BD9913
48
BD8F13
48

BD8213
2991
F@17

20AEQ®9
200F10
90FB

BD8D13
9D8RB13
BD8E13
9D8C13
208B30F

ACO513
18
68
790214
990214
68
799314
994314

A942

990114
207110
209510

A90P
9p8213

4CEA12

3E8513
90F3

3195
3196
3197
3198

3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
321¢
3211
3212
3213
3214
3215
3216
3217
3218
3219
3229
3221
3222
3223
3224
3225
3226
3227
3228
3229
3239
3231
3232
3233
3234
3235
3236
3237
3238
3239
3249
3241
3242
3243
3244
3245
3246
3247
3248
3249

3259
3251
3252
3253
3254

JSR
JMP

SFNF JMP

TSTLOCK :TEST LOCKED
GREAT :FILE EXISTS AND UNLOCKED
ERFNF

«PAGE "CLOSE"

DFMCLOSE - CLOSE A FILE

H

DFMCLS
JSR
LDA
AND
BEQ

ROL
BCC

JSR

JSR
LDA
PHA
LDA
PHA

LDA
AND
BEQ

JSR
APP1 JSR
BCC

LDA
STA
LDA
STA
JSR

CLOUT LDY
CLC
PLA
ADC
STA
PLA
ADC
STA

LDA
STA
JSR
JSR

CLDONE LDA
STA

JMP

CLUPDT =
ROL
BCC

SETUP

FCBOTC,X ;GET OPEN CODE
#OPOUT ;IF NOT OUTPUT
CLDONE s THEN DONE

FCBFLG,X ;IF NOT ACQUIRING SECTORS
CLUPDT :THEN IS UPDATE

WRTLSEC sWRITE LAST SECTOR

RRDIR :1GO GET DIRECTORY
FCBCNT+1,X ;GET CNT OF SECTORS

FCBCNT, X

FCBOTC,X ;GET OPEN CODE
#OPAPND :+IF NOT APPEND

CLOUT :+BR

DFRDSU :ELSE SET UP FOR READ
RDNXTS +READ TO EOF

APP1

FCBSSN,X ;MOVE START SECTOR
FCBLSN,X TO EOF LINK SECTOR
FCBSSN+1,X

FCBLSN+1,X

WRTN2 ;THEN WRITE AS NOT EOF

CDIRD :GET DIR DISPL

FILDIR+DFDCNT, Y
FILDIR+DFDCNT, Y

FILDIR+DFDCNT+1,Y
FILDIR+DFDCNT+1,Y

#DFDINU+DFDNLD ;SET ENTRY TO IN USE
FILDIR+DFDFLl,Y

WRTDIR sWRITE DIR

WRTVTOC sWRITE VTOC

0 ;CLEAR OPEN CODE
FCBOTC, X

FGREAT

*

FCBFLG,X ;IF SECTOR NOT MODIFIED
CLDONE ; THEN DONE

ATARI DOS 2.0S

#B7A
@B7D

CLOSE

B8O

oB8A
[4:1812]
2B83
9B84
2B83S

oB88
OBBB
PBSE
PB91
o894
BBY9S

2BY8
#BYB
#BYD
@BYF
PBiA2
PBA3
PBiA4
ZBA6

20F8OF
4C6DOB

BD8113
4A
4A
8D#A713

209B0B
8D@613
209B@B
209D0B
"2

8D@513

4C6E10
A9009
AQ93
1E8113
2A

88
DOF9
60

3255
3256
3257

3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3279
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283

DEVICE DEPENDENT

@BAT7

2BAT7
OBAA
@BAD
OBAF
2BB1
2BB3
@BB5
2BB6
OBB8
@BBA
?BBB
PBBC
OBBF
OBC@
?BC3
2BC4

@BCS5
@BC7
2BC9
OBCB
@BCD
OBCF
2BD1

2827

206411
BD4283
C9FE
F@25
c927
BOL1E
38
E920
9019
[4):8

A8
B9C59B
48
B9C60B
48

60

2BD8
2Cc31
@BD2
#C7B
@cs2
OCB9
D@2

3284
3285
3286
3287
3288
3289
3299
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3382
3383
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315

W3 oae we o~

H

FNSHFT
FNSHF1
FNSHF2

JSR WRCSIO
JMP CLDONE

.PAGE

RE-READ DIR RECORD

RDIR = *

LDA FCBFNO, X
LSR A

LSR A

STA SFNUM

JSR
STA

FNSHFT
CDIRS
JSR FNSHFT
JSR FNSHF1
ASL A

STA CDIRD

JMP
LDA
LDY
ASI. FCBFNO,X
ROL A

DEY
BNE
RTS

FNSHF2

COMMAND

) ve we e

.PAGE

;ELSE WRITE IT
: THEN DONE

:GET FILE NUMBER

:SET ACU=FILE NO/64
;TO GET DIR SECTOR
;SET ACU TO REM=16

:TO GET DIR DISPL

;SHIFT 3 BITS OF
;FILE NO INTO ACU

"DEVICE DEPENDENT COMMAND"

DFMDDC -~ DEVICE DEPENDENT CMD EXECUTION

FMDDC
JSR SETUP sSET UP FOR EXECUTION
LDA ICCOM,X ;GET COMMAND
CMP #254 :IS IT FORMAT
BEQ XFV ;BR IF
CMP #MAXDDC ;TEST RANGE
BCS DVDCER :BR OUT OF RANGE
SEC
SBC #$28 :+SUBTRACT BASE OF CMDS
BCC DVDCER sBR OUT OF RANGE
ASL A
TAY
LDA DVDCVT,Y
PHA ;s PUSH EXECUTION ADDR
LDA DVDCVT+1l,Y
PHA
RTS
DVDCVT
.DBYTE XRENAME-1 ;20-RENAME
.DBYTE XDELETE-1 ;21-DELETE
.DBYTE DVDCER-1 ;INVALID CMD
.DBYTE XLOCK-1 ;23-LOCK
.DBYTE XUNLOCK-1 ;24-UNLOCK
.DBYTE XPOINT-1 ;25-POINT
.DBYTE XNOTE-1 ;26-NOTE
H
MAXDDC = $27 :MAX DVDC+1

75

ATARI DOS 2.0S

OBD3
OBD6

4CBF12
4C18@D

RENAME

@BD9

@BDY9
@BDC
@BDF
@BE2
?BE4

OBE?7
OBEA
OBED
@BEF

@BF2
@BF5
OBF8
@BFB
@BFD
acog
oca3
oce4
oca7
acos
2ce9

acec
@COE

ac11
2Ccl4
2Cl6
ocl8

2C1B
aclc
@Cc1D
OC1F
gc21

2C24
oca7
@C2A
#C2D

oC2F

2(09EQE
8C@D13
20210F
9993

4CBB12

20AcCec
209B12
DO@3

201912

ACOD13
20B40E
209812
DAOF
AC@513
B99514
48
B99414
A8

68
205312

A200
AC@513

BD5913
C93F
FO23
990614

c8

E8
EQOB
90FQ
AE@113

207119
209EQE
20310F
90B8

4CEAl12

DELETE

2c32

8Cc32
#Cc35

76

209EQE
20210F

3316
3317
3318

3319
3329
3321
3322
3323
3324
3325
3326
3327
3328
3329
3332
3331
3332
3333
3334
3335
3336
3337
3338
3339
3349
3341
3342
3343
3344
3345
3346
3347
3348
3349
3358
3351
3352
3353
3354

3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367

3368
3369
3379
3371
3372
3373
3374

H

DVDCER JMP ERDVDC
XFV JMP XFORMAT
.PAGE "RENAME"

+FORMAT VECTOR

;XRENAME - RENAME A FILE OR FILES

XRENAME
JSR
STY
JSR
BCC
JMP

XRN1 JSR
JSR
BNE
JSR

XRN1A
LDY
JSR
JSR
BNE
LDY
LDA
PHA
LDA
TAY
PLA
JSR

XRN1B
LDX
LDY

XRN2 LDA
CMP
BEQ
STA

XRN3 INY
INX
CPX
BCC
LDX

JSR
JSR
JSR
BCC

JMP

. PAGE

5 ne we e

DELETE
JSR
JSR

FNDCODE
TEMP2
SFDIR
XRN1
ERFNF

TSTLOCK
TSTDOS
XRN1A
DELDOS

TEMP2
FNDCNX
TSTDOS
XRN1B
CDIRD

;DECODE FILE NAME
;SAVE FNAME INDEX
;GO FINE FILE IN DIR
1BR IF FOUND

: TEST LOCK
: IF NOT DOS

:GET INDEX FOR END FN1
GO DECODE NEXT FILE NAME
: IF NOT DOS

; THEN

FILDIR+DFDSSN+1,Y

FILDIR+DFDSSN,Y

SETDSO

*0
CDIRD

FNAME, X
#'?
XRN3

;A,Y NEW DOS

;GO WRITE SECTOR ZERO

;MOVE FILE NAME
;FROM FNAME TO DIR ENT

;BUT DON'T CHANGE WILD CARD

FILDIR+DFDPFN,Y ;CHARS INDICATED IN

#11
XRN2
CURFCB

WRTDIR
FNDCODE
CSFDIR
XRN1

FGREAT

"DELETE"

FNDCODE
SFDIR

FNAME

:RESTORE X-REG

:GO WRITE CIR DIR RECORD
GET OLD FILENAME AGAIN
CONTINUE SEARCH OF DIR
sBR IF FOUND ANOTHER

+GO TO GOOD ENDING

XDELETE - DELETE ALL FILENAMES THAT MATCH

;GO DECODE FILENAME
7SEARCH DIR FOR FILENAME

ATARI DOS 2.0S

#C38
BC3A
@C3A
@c3D
ocao
2Cc42

2Cc45
2c4s8
OC4B
2Cc4p
aCcsa

@cs53

AC56
2cs9
#C5C
OCSE

ocel
oce4

ace7
@C6A
ocec
@cecC
BC6F

2Cc72
ac72
2Cc74
2C76
oc78

ac79
LOCK

acic

acTc
BCTE
gesl

2¢83
285

2c¢8s
2C8B
BC8E
2C 90

2293
2C96
2c999
2C9B
BCOE
@CAl

PCA4
BCA7

BA3F

28530C
209B12
DOB3

201912

207118
20310F
99ED

2095190
4CEAl12

20BF10

AC@513
20ACOC
A980P

990114

20AEQ9
4C6COC

200F19
BOd6E

20C510
4C670C

AQ@5
A9FF
9145
60

4CBB12

3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3499
3401
3402
3403
3404
3405
3406
3407
3408
3499
3410
3411

AND UNLOCK

A920
8D@F13
D@@5

A909
8DOF13

209EPE
20210F
9003

4CBB12

AC@513
B92114
29DF

PDAF13
990114
207119

20310F
9QEA

3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438

XDELX

XDELY

XDEL3

XDEL®

XDEL1

XDEL2

XDEL2A

XDEL4

DFNF

5 e ve e

LOCK

BCS

JSR
JSR

JSR

JSR
JSR
BCC
JSR
JMP

JSR

LDY
JSR
LDA
STA

JSR
JMP

JSR
BCS

JSR
JMP

LDY
LDA
STA
RTS

JMP

DFNF ;BR NOT FOUND

*

XDEL®

TSTDOS

XDELY

DELDOS

WRTDIR ;sWRITE DIR ENTRY
CSFDIR ;LOOK FOR NEXT MATCH
XDELX :BR IF FOUND
WRTVTOC

FGREAT

OPVTOC

CDIRD ;GET DIR DISPL
TSTLOCK ;GO TEST LOCK
#DFDEDE ;LOAD DELETED FLAG
FILDIR+DFDFL1,Y ;DELETE FILE
DFRDSU

XDEL2A

RDNXTS ;READ NEXT SECTOR
XDELA4

*

FRESECT :FREE CURRENT SECTOR
XDEL2

*

#DVDWRQ :TURN ON WRITE REQ'D
#SFF
(ZDRVA),Y

ERFNF ;sFILE NOT FOUND

.PAGE "LOCK AND UNLOCK"

LDA
STA
BNE

XUNLOCK

XLCOM

XLC1

LDA
STA

JSR
JSR
BCC
JMP

LDY
LDA
AND
ORA
STA
JSR

JSR
BCC

XLOCK - LOCK A FILE
XUNLOCK - UNLOCK A FILE

#DFDLOC : SET LOCK

TEMP4

XLCOM ;GO TO COMMON

0 :SET UNLOCK

TEMP4

FNDCODE : DECODE FILE NAME
SFDIK ;FIND 1ST MATCH

XLC1 :BR MATCH FOUND
ERFNF :BR NOT FOUND

CDIRD sGET CURRENT DISPL
FILDIR+DFDFL1,Y :GET LOCK BYTE
#SDF : TURN OFF LOCK

TEMP4 ;OR IN LOCK/UNLOCK
FILDIR+DFDFL1,Y ;SET NEW LOCK BYTE
WRTDIR GO WRITE

CSFDIR ;s LOOK FOR NEXT MATCH
XLC1 :BR FOUND

77

ATARI DOS 2.0S

@CA9 4CEAl2 3439 JMP FGREAT sELSE DONE

3449 ;

3441 ; TSTLOCK - TEST FILE LOCKED

3442 ;

3443 TSTLOCK
OCAC ACO513 3444 LDY CDIRD +GET DIR DISPL
OCAF B9€114 3445 LDA FILDIR+DFDFL1,Y ;LOAD LOCK BYTE
BCB2 2920 3446 AND #DFDLOC sMASK LOCK BIT
9CB4 DAG1 3447 BNE TLF sBR IF LOCKED
#CB6 60 3448 RTS

3449

@CB7 4CCl12 3450 TLF JMP ERFLOCK

POIN'?
@CBA 3451 .PAGE "POINT"
3452 ;
3453 ; XPOINT - POINT REQUEST
3454 ;
3455 XPOINT
@CBA BD8513 3456 LDA FCBFLG,X ;IF ARQ SECTORS
@CBD 3941 3457 BMI PERR1 sPOINT INVALID
@CBF BD4D@3 3458 LDA ICAUX4,X ;IF REQUEST IS NOT
@CC2 DDBAl13 3459 CMP FCBCSN+1,X ;SAME AS CURRENT
@CC5 Degs 3469 BNE XP1l ; THEN BR
@CC7 BD4C@3 3461 LDA ICAUX3,X
ACCA DD8913 3462 CMP FCBCSN, X
#CCD FO1E 3463 BEQ XP2 ;ELSE NO NEED TO CHANGE
3464 ;
@CCF BD8513 3465 XP1 LDA FCBFLG,X ;IF NOT MODIFIED
@CcD2 FOO8 3466 BEQ XPlAa sBR
OCD4 20F8@F 3467 JSR WRCSIO sELSE WRITE IT
OCD7 A90Y 3468 LDA 0
9CD9 9D8513 3469 STA FCBFLG,X
acoc 3479 XP1A = *
BCDC BD4D@3 3471 LDA ICAUX4,X
@CDF 9D8C13 3472 STA FCBLSN+1,X
@CE2 BD4C@3 3473 LDA ICAUX3,X
ACE5 9D8B13 3474 STA FCBLSN, X
OCE8 201710 3475 JSR RDNSO sREAD REQ SECTOR
SCEB B@SA 3476 BCS XPERR
3477 ;
BCED BD4E@3 3478 XP2 LDA ICAUX5,X ;TEST REQ DATA LEN
@CF@ DD8613 3479 CMP FCBMLN,X :LESS THEN MAX
PCF3 9805 3489 BCC XP3
@CF5 FO93 3481 BEQ XP3
aCF7 3482 XPERR = *
@CF7 4CC312 3483 JMP ERRPDL s IF NOT THEN ERROR
3484 ;
OCFA 9D8713 3485 XP3 STA FCBDLN,X ;:SET NEW DATA LEN
@CFD 4ACF@12 3486 JMP GREAT
3487 ;

#DP? 4CB912 3488 PERR1 JMP ERRPOT

NOTE
2Do3 3489 .PAGE "NOTE"
34909 ;
3491 ; XNOTE - EXECUTE NOTE REQUEST
3492 ;
3493 XNOTE
#D@3 BD8713 3494 LDA FCBDLN,X :DATA LENGHT VALUE
@DP6 9D4ED3 3495 STA ICAUX5,X ;TO AUX 2
@D@9 BD8913 3496 LDA FCBCSN,X ;CUR SEC NO (LO)
@DAC 9D4CHA3 3497 STA ICAUX3,X ;TO AUX 3
ODOF BDB8A13 3498 LDA FCBCSN+l,X ;CUR SEC NO (HI)

78

ATARI DOS 2.0S

#D.2 9D4D@3 3499
@D.5 4CF@12 3500

FORMAT

éD18

oDL8
@D1A
oD1D
@DLF
2D22
oD24
D27
@D29
@D 2C
@D 2F
oD 31
@D 34

oD37
oD39
2D 3B

@D 3D
@D 3D
@D3F
@D41
@D43
@D45
@D46
D48
@D4A
oD4C

@D 4F

@D 52
@D 54
aD55
#D57
#D58

@D5A
#D5C
OD5E
oD682
@D61
#D63
@D6S
#D66
oD67

AS548
8pas5063
A547
8DA403
A921
8D0283
A940
8D@363
AEFE12
A931
AC46082
208607

1919
ca9g
D@12

AQP0
B147
COFF
DOg7
c8
B147
C9FF
FO@3
4CB512

4CD312

A909
A8
9145
c8
10FB

AQO0
A902
9145
c8
A9C3
9145
c8
c8
9145

FORMAT

269
AD6B
PrL6C
OL6E
OL6F
or7e

A9@2
88
9145
cs
c8
9145

3501
3502
3503
3504
3505
3506
3507
3598
3509
3510
3511
3512
3513
3514
3515
3516
3517

3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3538
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551

3552
3553
3554
3555
3556
3557

STA
JMP

ICAUX4,X
GREAT

.PAGE "FORMAT"

:TO AUX 4

XFORMAT - FORMAT A DISKETTE

?
;

XFORMAT

LDA

STA

LDA

STA

LDA

STA

LDA

STA

LDX

LDA

LDY

JSR

BPL
CPY
BNE

TSTFMT =
LDY
LDA
CMP
BNE
INY
LDA
CMP
BEQ

XFBAD JMP

XFERR JMP

XF@
LDA
TAY
XF1 STA
INY
BPL

~

LDY
LDA
STA

LDA
STA
INY
INY
STA

LDA
DEY
STA
INY
INY
STA

ZSBA+)
DCBBUF+1
ZSBA
DCBBUF
#DCBCFD
DCBCMD
$#540
DCBSTA
DRVTYP
#$31
DSKTIM
DSIO2

XF0
#5908
XFERR

*

10
(ZSBA),Y
#SFF
XFBAD
(ZSBA),Y
#SFF
XFERR
ERDBAD

RETURN

$0
(ZDRVA),Y
XF1

9

#2
(ZDRVA),Y
$scC3
(ZDRVA),Y

(ZDRVA),Y

#5062

(ZDRVA),Y

(ZDRVA),Y

tMOVE VTOC BUF ADR
:+TO DCB

;s FORMAT
:TO DCB
;TELL SIO RECIEVING DATA

sGET DR TYPE 128 OR 256

;BUS I.D.

;GET FORMAT TIME OUT VALUE
;GOTO LOCAL DISK HANDLER THEN
SIO

: IF NO ERRORS CONT FORMATING
sELSE CK FOR DEVICE DONE ERROR
sNO, THEN ERROR EXIT

+ELSE CK FOR BAD SECTOR INFO
s RETURNED BY CONTROLLER

sBAD SECTORS RET ERR MSG

;NOT BAD SEC ERR, REQ ERR EXIT

;DO ERROR EXIT

;s SET
;TYPE = 2

;SET MSN AND
:NSA=187=2C3

79

ATARI DOS 2.0S

op72
oD74
@D76
oD78
D79
@D 7E

D7D
@D7F
D81

op8:
oD8s
op87
aD8s
@D82.
2D8cC

@D8E

#D91
#D9:
@D94
#D97
@D9¢
oD92.
BD9C
@D9F
@DAZ
O@DAE
@DAT

@DAR

AOBA
A9FF
9145
c8

cae64
DAF9

A99F
AQPA
9145

A@37
A900
9145
cs8

A97F
9145

209510

A9089
A8
990114
c8
18FA

A9@7
8D@613
207118
CE@613
10F8

201912

4CEAl12

3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3599
3591
3592
3593

LIST DIRECTORY

@DAD

ODAD
BDAR
@DB2
@DB'
@DB7

#DB9
@DBC

@DBE
@DCl

80

A900
8DAF13
20210F
9@2C
BA30

2CPF13
3953

ACPF13
B147

3594
3595
3596
3597
3598
3599
3600
3601
3602
3663
3604
3605
3686
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621

LDY #DVDSMP
LDA #SFF ;SET SECTOR MAP TO
XF2 STA (ZDRVA),Y ;ALL ONES
INY
CPY #DVDSMP+98
BNE XF2
LDA #$OF :DEALOCATE 1ST 4 SECTORS
LDY #DVDSMP ;FOR BOOT
STA (ZDRVA),Y
LDY #DVDSMP+45 ;DEALLOCATE MIDDLE 9
LDA #7
STA (ZDRVA),Y :;FOR
INY ;s VTOC AND FILE DIR
LDA #S$7F
STA (ZDRVA),Y
JSR WRTVTOC ;WRITE THE VTOC
LDA #0 ;8 FILLE DIR SECTORS
TAY
XF3 STA FILDIR,Y ;USE FILE DIR BUFFER
INY
BPL XF3
LDA #7 sWRITE TO ALL 8 DIR SECTORS
STA CDIRS
XF4 JSR WRTDIR
DEC CDIRS
BPL XF4
JSR DELDOS :SET NO DOS
JMP FGREAT ; DONE

H
H
H
H
;
i
;
H
H
H
H
H
H
H

.PAGE "LIST DIRECTORY"

LISTDIR - LIST THE DIRECTORY
GDCHAR - GET NEXT DIR CHARACTER
THE DIRECTORY IS LISTED VIA OPEN
LIST DIRECTORY FUNCTION EACH DIR
ENTRY THAT MATCHES THE FILE SPEC

IS CONVERTED TO A PRINTABLE FORMAT
INTO A SECTOR BUFFER. THE GET BYTE
ENTRY IS USED TO GET THE PRINTABLE
CHARACTERS ONE AT A TIME. THE

LAST LINE PRINTED IS ALWAYS A
COUNT OF THE NUMBET OF SECTORS IN USE

AND THE NUMBER REMAINING AVAILABLE SECTORS
ISTDIR
LDA #0
STA TEMP4
JSR SFDIR ;SEARCH FOR A FILE NAME
BCC LDENT1 :BR IF FOUND
BCS LDCNT :BR IF NOT FOUND
GDCHAR
BIT TEMP4 :TEST FLAG
BMI LDDONE sBR IF ALL DONE
7
LDY TEMP4 ;GET COUNT OF CHARS SENT

LDA (2ZSBA),Y ;GET NEXT CHAR

ATARI DOS 2.0S

oDC3
@DC6
oDcCo
@DCB
oDCD
@DCF
aDpn1
oDD3

aDDé

@DD9
PDDB
@DDE
@D=1

@Dz3
@D126

oD19
@DEC
OD:E
[y]

LIST

@DF1
@DF2
ODF4
@DF5

ODF6

@DF9
@DFB
@DFD
OEDD
PEQ2
OEB3
PEO4
QEQ6

PEZ9
PEGB
OEOE

GE11l

PE1l4
PE15
PE16
2E17
OE18
PE19
OE1A
OE1B
BE1C
@E1D
OE1E
OE1F
oE.29
2¢10D
oE21
PE21

8p@813 3622
EEQF13 3623
C99B 3624
DOP9 3625
ca1l 3626
B@O8 3627
A98¢9 3628
8DAF13 3629
3630
4CF@12 3631
3632
A909 3633
8DPF13 3634
2@310F 3635
BAG6 3636
3637
20210E 3638
4CFP12 3639
3640
208B19 3641
ADB4 3642
B145 3643
48 3644
DIRECTORY
88 3645
B145 3646
A8 3647
68 3648
3649
20570E 3650
3651
A@GB3 3652
A208C 3653
BD14@E 3654
9147 3655
c8 3656
CA 3657
10F7 3658
20670E 3659
3660
A900 3661
8DPF13 3662
4CEAl2 3663
3664
3665
4CF412 3666
3667
53 3668
52
4F
54
43
45
53
29
45
45
52
46
20
3669
35
40

STA
INC
CMP
BNE
CPY
BCS
LDA
STA

GDCRTN JMP
LDENT LDA
STA
JSR
BCS
LDENT1
JSR
JMP
LDCNT JSR
LDY
LDA
PHA

DEY
LDA
TAY
PLA

JSR

LDY
LDX
MVFSCM LDA
STA
INY
DEX
BPL
JSR

LDA
STA
JMP

LDDONE
JMP

SVDBYT
TEMP4
#EOL
GDCRTN
#17
LDENT
#5890
TEMP4

GREAT

392
TEMP4
CSFDIR
LDCNT

FDENT
GREAT

RDVTOC
#DVDNSA+1
(ZDRVA),Y

(ZDRVA),Y

CVDX

#3
#FSCML-1
FSCM, X
(ZSBA),Y

MVEFSCM
CVDY
#0

TEMP4
FGREAT

ERREOF

FSCM .BYTE "SROTCES

FSCML =

*-~FSCM

.INCLUDE #$E:
.INCLUDE #D:ATFMS3.SRC

; IN SVDBYT

: INC COUNT

;TEST IF EOL DONE
s