

This book is an independent production of Ing. W. HOFACKER
GMBH International. It is published as a service to all ATARI
personal computer users worldwide.
All rights reserved . No part of this book may be reproduced by
any means without the express written permission of the publisher.
Example programs are for personal use only. Every reasonable
effort has been made to ensure accuracy throughout this book,
but neither the author or publisher can assume responsibility for
any errors or omissions. No liability is assumed for any direct, or
indirect, damages resulting from the use of information contained
herein.
First Edition
First Printing
October 1982 in the Federal Republic of Germany

© Copyright 1982 by Winfried Hofacker

ISBN 3-92 1682-97-5

Reference is made to ATARI throughout th is book. ATAR I is a trademark of ATARI
Inc. , a division of Warner Communicat io ns Company.

Publisher:
lng, W: HOFACKE R GmbH , Tegernseerstr, 18, D-8 150 Holzkirchen , W.-Germany

US-Distributor:
ELCOMP Publi sh ing, Inc., 53 Redrock Lane, Pomona CA 9 1766

PREFACE

ATARI Assembly Language Programming
Learning by using

Few features of a home computer conf use the novice computer
owner more than software. Many of these new owners have
studied the system manuals, they have possibly read articles or
even books on microcomputers. Many of them already pro­
grammed their ATARI computer in BASIC, FORTH , PILOT or
another high level language. After a while, t hey wi l l find out that
the language used is too slow for their needs (animation, sound,
graphics, to name just a few applications) . They also want to
know more about the internal things happening in the computer.
They are most likely aware of the ubiquitous O's and 1's that
control the computer. But how do those ubiquitous digits re late to
the information displayed on the screen and to the language of the
computer. How can they be put to work?

The subject of this book is to teach you how to program your
ATARI computer in 6502 machine language. You may use a
machine language monitor (like ATMONA-1, Monkey Wrench, the
Debugger from the ATARI Editor/Assemblercartridge or the built
in monitor from KDOS), to enter and start the programs listed in
this book. Later on we will find out that itis too cumbersom to do
the assembly by hand. We than use an assembler for our programs
and we will learn how to call machine language subroutines from
BASIC.

TABLE OF CONTENTS

Monitor, address, program counter, statements 001
PRTBYT-Routine 005
PART 2
Programming model of the 6502 CPU, CPU Register,
Zero page addressing, absolute addressing 007
PART 3
Programs with branches
Positive and negative numbers
Relative addressing, Comparisons ' 015
PART4
How to use subroutines 021
Saving the contents of registers 022
Exchange of data between main program and subroutine 023
Indirect jumps 024
PART 5
Indexed addressing 025
Transfer of data within memory•.. 029
PART6
Input of text, logic flow chart 031
Differences between the AT A R I Editor/Assembler
Cartridge and AT AS-l and A TMAS- ~. 037
PART 7
Input of a hexadecimal number
Input of a decimal number
Multiplication by 10 041
PART8
Pseudo commands and address calculations 047
PART9
Stack operation, execution time1md indirect jump
to subroutine 053

PART 10
Comparison of equivalent BAS IC and machine language
programs 057
Machine code examples
Prints one row of character C 059
A screen fu II of characters. .. 060
Setting the color registers 063
Relocator for the AT A R I .. 065
Reverse video 071
ASC II output . 073
RANDOM Number Generator 075
Accessing Machine Language Programs from BASIC 079

INTRODUCTION TO NUMBER SYSTEMS

CHAPTER A
Number systems 081
Binary numbers 082
Hexadecimal numbers 085
Hexadecimal to decimal conversion 090

CHAPTER B
Digital concepts - Logic in programming and computer
hardware . 093
Logic operations and logic gates : . .. 095
Combinational logic and decoders .. 101
Decoders and memory. .. 104
CPU bus system 105

Part 1

Most people don't realize that BASIC commands like
IF or THEN actually are sequences of commands in
machine language. This intrcduction is rreant for
those who want to leave BASIC and go deeper into
their computer.

The 6502 microprocessor and its commands are the
subjects of this intrcduction. Once yeo understocd
hoo this microprocessor works it is not very
difficult to learn another one. In this section we
will talk abcut sane rudiments.

The first thing yoo need is the monitor. This is
not the television , but the operating system tllat
takes control over the computer after power-up.
The monitor is very important for prograrmning in
machine-language. It contains the rootines needed
most, such as ootputs to, and inputs fram, a device.
To get into the monitor yoo have to enter a certain
camnand. wi th tlle APPLE I I tlle command weold be :
CALL - 151 (in BASIC), or "M" after power up with
OHIO CIP. The AIM 65 is in the monitor
automatically after power up. The ATARl 400/800 is
in the EDIT-mcde, if yoo use the ASSEMBLER EDI'IOR
cartridge. The samples in this booklet are written
for the machine-language monitor ATMONA-l for ATARI
fran ELCC11P.

Programs in lTIachine-language work directly in the
computers rremory . Each command is stored at a
certain address . This address is the rremory
location where the first statement to be executed
is stored. To start a machine-language program the
startaddress of that progam has to be stored in the
progam coonter of tlle microprocessor.

The statements for the microprocessor are one, two,
or three bytes long . One byte is eight bits broad
and, therefore, one word for a eight bit processor.
The first byte contains the cperation code. Figure
1 shows the different commands available on the
6502 micrcprocessor . The left column in that figure
shows the mnemonics for the commands (assembler­
code). One or two address bytes can follow the
operation code . There are several ways for
addressing, which will be explained later.

Examples of statements

1.
Load the accumulator with
location $1000 ($ means : the
hexadecimal) .

assembler code LOA $1000
hex-code AD 00 10

the contents of memory
following number is

This statement is three bytes long. With the 6502
the addresses are specified with first the lower,
then the higher byte.

2.
Compare the contents of the accumulator with the
contents of the very next location.

assembler code CMF #$7F
hex-code C9 7F

This is a two-byte statement . The #-sign means
immediate addressing. The oper ation referes to the
memory location which immediately follows the
command.

3.
Shift tile contents of the accumulator to the left
one position.

assembler-code ASL
hex-code OA

2

This is a one-byte statement, no address is needed
in this case.

Notes to part 1

* monitor
* address
* program crunter
* statement
* 1-, 2-, and 3-byte commands

3

Adressing modes condition

:E)(>- X > X >-.
::l

codes
lil' vi 0" 0 -' -' symb. lil o· o· 0 u "-

Commands Operation ::!: co 0 ~ ~ w
~

U
~ Code <{ <{ <{ N N N II: <{ N Z C , 0 V

Transport LDA M -~A A9 AD BD B9 A5 B5 Al 81 X X - - - -
LDX M~X A2 AE BE A6 B6 X X - - - -
LDY M ~ Y AO AC BC A4 B4 X X - - - -
STA A .. M BD 9ci 99 85 95 Bl 91 - - - - - -
STX X ~ M BE 86 96 - - - - - -
STY Y ~ M BC 84 94 - - - - - -
TAX A ~ X AA X X - - - -
TAY 'A-+Y AB X X - - - -
TXA X ~ A 8A X X - - - -
TYA Y ~ A 98 X X - - - -
TXS X~S 9A - - - - - -
TSX S~X BA X X - - - -
PLA 5+1-S, Ms - A 6B · X X - - - -
PHA A -+ Ms, $-1 -5 48 - - - - - -
PLP 5+1 -+ 5, Ms.-+ P 28
PHP P ~ Ms S-l - S 08 - - - - - -

arithmetic- ADC A+M+C -+ A 69 6D 7D 79 65 75 61 71 X X X - - X
SBC A-M-C~A E9 ED FD F9 E5 F5 El Fl X X X - - X
INC M+'- -+ M EE FE E6 F6 X X - - - -
DEC M-l -M CE DE C6 06 X X - - - -
INX :<+1 -+ X EB X X - - - -
DE X X-l ~X CA X X _ . - - -
INY Y+l - Y C8 X X - - - -
DEY Y-l-Y B8 X X - - - -

logic- AND A II M~A 29 20 3D 39 25 35 2 1 3 1 X X - - - -
ORA AVM-A 09 00 10 19 05 15 01 11 X X - - - -
EOR A¥M~A 49 40 50 59 45 55 41 51 X X - - - -

compare- CMP A-M C9 CD DO D9 C5 05 Cl Dl X X X - - -
CPX X - M EO EC E4 X X X - - -
CPY Y~M CO CC C4 X X X - - -
BIT A ll M 2C 24 7 X - - - 6

branch- BCC BRANCH ON C=O 90 - - - - - -
BCS BRANCH ON C· l ~~I - - - - - -
BEO BRANCH ON Z=l I - - - - - -
BNE BRANCH Ot-! Z=O Dol - - - - - -
BMI BRANCH ON N=l 30 I - - - - - -
BPL BRANCH ON N=O· 10 - - - - - -
BVC BRANCH ON V=O 50 - - - - - -
BVS BRANCH ON V= l 70 - - - - - -
JMP 4C 6C - - - - - -
JSR 20 - - - - - -

SHIFT- ASL QE l E 06 16 OA X X X - - -
LSR 4E 5E 46 56 4A 0 X X - - -
ROL 2E 3E 26 36

,
2A X X X - - -

ROR 6E 7E 66 76 6A X X X - - -
Status- CLC c =o lB - - 0 - - -

CLD D=O DB - -
,

- - 0 -
Register CLI 1=0 5B - - - 0 - -

CLV v =o BB - - - - - 0
SEC C= l 3B - - 1 - - -
SED D- l F8 - - - - 1 -
SE I 1=1 7B - ~ - 1 - -

Misc. NOP NO OPER EA - - - - - -
RTS RETURN F. SUB 60 - - - - - -
RTI RETURN F. INT 40
BRK BR EAK 00 - - - 1 - -

Table I

4

READ THIS!

PRCGRAMMING IN MACHINE-lANGUAGE WITH THE
MICROPROCESSOR 6502

All examples are written for ATARI
work in conjunction with the
monitor ATMONA 1.

400/800. They
machine-language

The samples use same routines fram the ATARI
monitor. Two examples are the output of a character
to the screen, and the input of a character fram
the keyboard.

Same programs contain the canrna.nd JSR PRI'BYT. This
subroutine calls a routine for output of the
contents of the accumulator in the form of two
hexadecimal bytes . This routine has to be entered
together with the program that calls that routine.
PRTBYT starts at address 1000 and is called by the
OP-code 20 00 10.

The rest of the programs start at address 600. This
is an unused part of ITEmory (page 6) and may be
used for short programs or for storage of data. Our
examples are short so that they fit in this area.

5

Here is the rootine PRTBYT :

1000: 8D 23 10 STA $1023
1003: 4A ISR
1004: 4A ISR
1005: 4A ISR
1006: 4A ISR
1007: 20 14 10 JSR $1014
100A: AD 23 10 Ill\. $1023
100D: 20 14 10 JSR $1014
1010: AD 23 10 Lrn $1023
1013: 60 RI'S
1014: 29 OF AND #$OF
1016: C9 OA CMP #$OA
1018: 18 CLC
1019: 30 02 8MI $lOlD
101B: 69 07 ADC #$07
101D: 69 30 ADC #$30
101F: 4C A4 F6 JMP $F6A4
1022: 00 BRI<

To enter the above program use the
monitor ATMONA 1.

machine-language

6

Part 2

2-1 Programming model of the 6502 CPU

By looking at the hardware structure of a
microprocessor you get a survey of what statements
it can execute. The structure of the 6502 is shewn
in figure 2-1. There are four eight-bit registers
the accumulator, the X-register, the Y-register,
and the status register. The program counter is 16
bit long and can represent addresses fram 0 to
65535.

7 a
Accumulator

X-Register

15 V-Register

I Program Counter MSB Program Counter LSB

I 1 Stack Pointer

Processor Status Flag

Figure 2-1
programming model of the 6502

Next is a stack pointer. The
to a special part of the
addresses $100 to $lFF. Only
for addressing, the ninth bit

stack pointer points
ITEmory, the stack, at

eight bits are used
always is one.

What are all these registers for ?

The main register is the accumulator. This is where
all calculations are executed and the results of
all calculations are stored. For addressing, one of
the index registers may be used. These registers
can be used as counters. For example the statement

7

INX increments the contents of the X-register by
one. The index register can also be used to
indicate addresses. These features will be used in
later sample programs.

The status register indicates the present status of
the processor. Each bi t marks a resul t of an
cperation.

CARRY = 1 Carry from bit 7

ZERO = 1 Result = f)
IRQ = 1 No interrupt

DECIMAL = 1 Decimal arithmetic

BRK = 1 BR K statement executed

OVERFLOW = 1 Overflow from bit 6

NEGATIVE = 1 Result negative

Figure 2-2

bits of the status register

The zero flag becomes 1, if the contents of the
accumulator becomes zero. The carry flag becomes 1,
if a carry fram bit 7 to bit 8 occurres.

The right column of figure 1 shows which operations
affect the bits in the status register (X indicates
change possible). For example a LDA statement can
change bits Nand Z; the statement STA can't change
any bit of the status register.

The stackpointer points to a free area in the stack.

You can store the contents of the accumulator there
with PHA (push accumulator; one byte statement)
then the stackpointer will be set to the next
memory location. PIA (pull accumulator) sets the
pointer back one location. At. this time the
contents of that location will be transfered to the
accumulator.

8

Note : the top of the stack is address $lFF. The
stack builds up to address $100. Another important
task of the stack is to hold the current address in
case of a jump to a subroutine. At the return fran
the subroutine this address is transferred back to
the program coonter. '!he program counter always
holds the address of the canmand to be executed
next. Only jump-instructions change the contents of
the program camter.

Figure 2-3 shows all commands available for
transferring data between the registers and memory.
As you can see the 6502 has no canmand for
transferring data between the registers, or to
exchange the contents of X- and Y-register as is
possible with other processors.

If you know how to program one processor and wish
to program another one, you should study the
logical structure, concerning the effects of the
canmands.

LDY

STY

Memory

'----..-----.----' ST A

LDX

STX

PLP

PH P Status Register

Figure 2-3

Transfer of data between registers and memory

9

2-2
A first example and the paper-pencil-method.
The addition of two numbers is quite sbnple in a
higher programming language

10 A=5
20 8=3
30 C=A+B
40 PRINT C
50 END

• •
LOA # $05
CLC
AOC # $03
JSR PRTBYT
BRK

To do the same job in machine language it is
necessary to answer the following questions first :

Where are the numbers stored ?
Are the numbers of type fixed point or floating
point?
Is there a routine existing in the monitor, which
prints the contents of a TIeHlOry location ?

Here is the program in machine-language

L~ #$05 load the accumulator witl1 05 (direct
address ing) •

The number 05 is stored immediately
after the operation code and is of the fixed point
type.
CLC clear the carry bit for the next
cperation
ADC #$03 add with carry 03 (immediate). The
result is in ti1e accumulator.
JSR PRTBYT PRTBYT is a monitor subroutine that
prints the contents of the accumulator on the
screen as two hex- numbers
BRK stop here

Figure 2-4 shows a survey of the rremory. On the
left side are the addresses in decimal and on the
right side they are in hexadecimal form. The
addresses fram 0 to $400 represent lk of nemory.
The addresses fram $1000 to $2000 represent 4k. Now
we want to translate the program into machine
language by using the paper and pencil method. This

10

is the lo.vest level of programming, but it is
useful in learning the progranuning in machine
language.
The first problem is where to start tl1e program. On
principle the program can start anywhere in memory.
There are ho.vever two certain areas which you
should not use. First is tl1e zero-page, a very
useful area with simplified addressing, second is
the stack. (remember that the stack is used by the
processor itself !). For these reasons the
addresses fram 0 to $lFF are not available.

Decimal Addresses Hexadecimal Addresses

65535 $FFFF

4k byte

61440 $FOOO

4k byte

57344 $EOOO
I
I
I

8192 I $2000

14k~" I
I
I
I

4096 I $1000
I
I

I
I

4k byte
1024 $400

512 $200 }1K 8.
256 STACK $100

0 ZERO-PAGE 0

Figure 2.4: Decimal and hexadecimal addressing of a 64 k byte memory

11

Let's place our program at $600.
Now we can translate tl1e first command. If you look
at the table you will find that LOA has the code A9.
Adjacent to that the first line looks as follows :

$0600 A9 05 Lffi #$05

A9 is the eperation code and 05 is the number which
follows immediately. This command is two bytes long.
The next line is at $0602.

$0602 18 CLC

18 is the code for clear carry. It can be found in
table 1 under status register statements. The line
after that is add with carry (AOC). The carry bit
has to be cleared in this case, otherwise the
result of the addition could be wrong.

$0603 69 03 AOC #$03

69 is the code for addition with immediate
addressing. It can be found in table 1 under
aritlunetic statements. The next cammand calls the
subrootine PR'l'BYT for ootput to the screen. This
subrootine starts at address $1000 with our
programs. Therefore the line for ootput looks as
follows :

$0605 20 00 10 JSR PRTBYT

20 is the code for JSR (JUMP SUBROUTINE).

Remember with the 6502 processor yoo first have
to enter the lower byte (LSB, least significant
byte), then the higher byte of the address (MSB,
most significant byte). After which we step the
program wi th

$0608 00 BRK

Moot canputers jump back into the monitor after
they hit a BRK-instruction. The whole program looks

12

like this for the ATARI 400/800

$0600 A9 05 ~ #$05
$0602 18 CLC
$0603 69 03 ADC #$03
$0605 20 00 10 JSR PRTBYT
$0608 00 BRK

Thus a dump of these locations looks as follows

$0600: A9 05 18 69 03 20 00 10
$0608: 00

At this p::>int we will not talk about how to enter
that program, rather we will discuss different
techniques of addressing. Let's assume that there
is the same job, but the two nwnbers are stored in

·two zero-page locations. The nwnber 5 is stored at
location $10 and the nwnber 3 is stored at location
$11. Our program would lcx::lk as follows :

$0600 AS 10 LDA $10 iload the accumulator with
the contents of location $10
$0602 18 CLC iclear carry bit
$0603 65 11 ADC $11 i add contents of location
$11
$0605 20 00 10 JSR PRTBYT ioutput
$0608 00 BRK istop

AS is the code for LQl\ with the contents of a zero­
page location.

In the next example we assume, that the nwnbers are
stored anywhere in memory, for example at $200A and
at $3005. The program would lcx::lk as follows :

$0600 AD OA 20 ~ $200A i load the contents of
location $200A
$0603 18 CLC iclear carry bit
$0604 6D 05 30 ADC $3005 add the contents of
location $3005
$0607 20 00 10 JSR PRTBYTioutput to screen
$060A 00 BRK iStop

13

In this case AD is the code for Lffi wi th the
contents of an absolute address. The code for ADC
the contents of an absolute address is 6D. This
last progrmn is two· bytes longer than the prior one.
If pa3sible, in order to shorten the program, the
zero-page should be used for auxiliary cells.

Notes to part 2:

* programming model of the 6502
* CPU register
* zero-page addressing
* absolute addressing

14

Part 3

In part 2 we talked about a program which flows off
straight. In this part we will talk about programs
which ·contain branches.

3-1 Programs with branches

There are rrany programs which contain loq:>s that
have to be traveled through until a certain
coOOition becares canplied with. As an example the
condi tion can be whether the contents of a rremory
location or a register is equal to zero, or whether
a number in a register is greater than, or equal to,
or smaller than, the contents of a rremory location.
The bits in the status register are influenced by
operations or canparisons (see figure 2-2). Whether
branch CClTlffi3.nds are executed or not, depends on the
status of certain bits. An example of this is a
delay locp. The contents of the X-register is
decremented until it is zero.

Here is the program for that :

LDX #$OA
M DEX
BNEM
BRK

;load the X-register with AO
;decrerrent X-register by one
;jump back to M, if not zero
;stop program, if X-register=O

In machine-language it looks as follows :

0600 A2 AO
0602 CA
0603 DO
0605 00

LDX #$AO
MDEX

BNEM
BRK

Location 0604 has been left open. '!he number of
bytes the program has . to jump back belongs to there.

15

The branch commands use the so-called relative
addressing. This rreans the current contents of the
program counter becomes increased or decreased by a
certain number . The program then continues at the
new address. What is the current contents of the
program counter ? The program counter of the 6502
always points to the next command; in our example
this is the BRK-cammand at location 0605. To get
back to location 0602 we have to decrement the
program counter by 3. Therefore the hexadecimal
equivalent of -3 has to be stored at location 0604.
How are negative numbers displayed ?

Bit 7 is used to determine,
positive or negative.

whether a number is

B~ 7 6 5 4 3 2 0

NUMBER

If bit 7 is 1, then the number is negative, if bit
7 is zero, then the number is positive.

Positive numbers are :

o = $00 = %0000 0000
1 = $01 = %0000 0001
2 = $02 = %0000 0010

127 = $7F = %0111 1111

Negative numbers are described by the canplement on
two. To canplerrent a number means to turn around
all bits of that number : ones became zeros, zeros
becane ones. Wi th the canplernent on two, one is
added after that. For example the number -1

+1 = %0000 0001 ; the canplernented number :
%1111 1110

addition of 1 results in : %1111 1111 = $FF

16

Negative numbers are :

-1 = $FF = %1111 1111
-2 = $FE = %1111 1110
-3 = $FD %1111 1101

-128 $80 = %1000 0000

Thus relative branches can range from -128 to +127.

Complete program

0600 A2 AO
0602 CA
0603 DO FD
0605 00

LDX #$AO
M DEX

BNEM
BRK

You also can use the following tables

~ 0 1 2 3 4 :; 6 7 8 9 A 8 C 0

MSD
0 0 1 2 3 4 5 6 7 8 9 10 11 12 13

1 16 17 18 19 20 21 22 23 24 25 26 27 28 29

2 32 33 34 35 36 37 38 39 40 41 42 43 44 45

3 48 49 50 51 52 53 54 55 56 57 58 59 60 61

4 64 65 66 67 68 69 70 71 72 73 74 75 76 77

5 80 81 82 83 84 85 86 87 88 89 90 91 92 93

E F

14 15

30 31

46 47

62 63

78 79

94 95

6 96 97 98 99100101 102103104 105 106 107 108 109 110 11 1

7 112113114 115116117 118 119 120 121 122 123 124 125 126 127

Table 3-1 Forward branch

~ 0 1 2 3 4 5 6 7 8 9 A 6 C 0 E F
MSD
6 128 127 126 125 124 123 122 121 120119 116 117 116 115 114 113

9 112 111 110 109 108 107 106 105 104 103 102 101 100 99 98 97
A 96 95 94 93 92 9; 90 89 88 87 86 85 84 83 82 81

6 8D 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65
C 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49
0 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33
E 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17
F 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

Table 3-2 Backward branch

17

Most mistakes happen with the calculation of bytes
for relative jllinpS, when assembling by hand !

3-3 Canparisons
register

memory
and C

Canparisons always happen between a
(accumulator, X- or Y-register) and a
location. Bits N (negative), Z (zero),
(carry) are influenced by comparisons.
Figure 3-3 shows how :

Comparison N Z C

A. X. Y (M 1 • 0 0

A. X. Y = M 0 1 1

A. X. Y) M O· 0 1

* comparison with twos complement

Figure 3-3 Flags with canparisons

If the contents of the accumulator (or X-register,
Y-register) is smaller than the contents of a
memory location, then the zero flag and the carry
flag became O. For tl1ese two flags the numbers can
be between 0 and 255. For the N flag the numbers
are canpared in the twos canplement. These numbers
can be fram -128 to +127.

For example :
The contents of the accumulator is $FD, the
contents of a memory location is 00. A canparison A
> M (252-00) causes C to became 1 and Z to become
O. Here are different possibilities to branch :

A < M BCC LABEL
A <= M BCC LABEL

8EQ IABEL
A = M BEQ IABEL
A >= M BCS LABEL
A > M BEQ NCYI' IABEL

BCS IABEL

18

The following program is a slinple example for
comparisons and branches. We want to input a
character fran the keyboard and check whether or
not it is a hexadecimal nwnber (0-9, A-F). If the
character is hexadeclinal, then we want to store it
in location INP with address $FF. If not, we want
to leave the program ($00 in INP).
For the input we use subroutine GETCHR, which is
included in most monitors. This subroutine checks
whether or not a key is pressed. If a key is
pressed, the program returns fran the subroutine
with the ASCII character in the accumulator.
Figure 3-4 shows tl1e ASCII characters

._ ----
6 7

~ 0 1 2 3 4 5
LSD 000 001 010 011 100 101 110 111

0 0000 NUL DLE SP 0 @ P P
1 0001 SOH DCl I 1 A Q a Q

2 0010 STX DC2 .. 2 B R b r

3 0011 ETX DC3 H 3 C S c s
4 0100 EOT DC4 $ 4 D T d I
5 0101 ENQ NAK % 5 E U e u

6 0110 ACK SYN & 6 F V I v
7 0111 BEL ETB 7 G W 9 w
8 1000 BS CAN (8 H X h x
9 1001 HT EM) 9 I Y i Y
A 1010 LF SUB J Z j z
B 1011 VT ESC + :: K I k I
C 1100 FF FS L \ I I
D 1101 CR GS - = M J m I
E 1110 SO RS . > N , n ~

F 1111 SI VS I ? 0 - 0 DEL

ASCII characters
0600: A9 00 LDA 11$00
0602: 85 FF STA $FF
0604: 20 DD F6 JSR $F6DD
0607 : C9 30 CMP 11$30
0609: 90 13 BCC $061E
060B: C9 47 CMP 11$47
060D: BO OF BCS $061E
060F: C9 3A CMP tt$3A
0611 : 90 07 BCC $061A
0613: C9 41 CMP 11$41
0615: 90 07 BCC $061E
0617 : 18 CLC
0618: 69 09 ADC 11$09
061A: 29 OF AND It$OF
061C: 85 FF STA $FF
061E: 00 BRK

Figure 3-5 program ASCII HEX

19

Try to assemble tile program by hand and calculate
the jumps. TI1is is a very good mental exercise.
Canpare your branch statements with these in the
program before you start ~1e program.

Notes to part 3 :

* program branch
* positive and negative numbers
* relative addressing
* canparisons

20

Part 4

In this section we will talk aboot the use of
subrootines. Subroutines are independent parts of
programs. They are called by the statement JSR
(JUMP SUBROlJTINE) • With RTS (RETURN FRa1
SUBROurINE) yoo return to the main prO":Jram.

4-1 How to call a subrootine

As an example we use the instruction JSR GETCHAR
fran the program ASCII HEX. (GETCHAR = SF6DD on the ATARI)

The first lines there are :

0600:
0602:
0604:
0607:

A9 00
85 FF
20 DD F6
C9 30

LDA
STA
JSR
CMP

#$00
$FF
$F6DD
#$30

Location 0604 contains the camnand for jump to
subrootine. With the execution of this statement
the address of the canmand to be executed after
that (decremented by one) is stored in the stack.

The stack

Before the call

S---+ $ lFF
1------1

$lFE
t-----4

After the call

06 $1 F F
t------i

08 $lFE
t------i

S---+ $1FD

21

The stack is a defined part of
sytems. The 'IDS (tq:> of stack) is
The stack pointer always points
available location in the stack.

ITErnory of 6502
at address $lFF.
to the next

It is possible to jump fram one subroutine into
another one. Figure 4-3 ShONS the model for that.

$1500

JSR $1500

JSR $100

RTS RTS

Figure 4-3 nested subroutines

The stack could hold up to 128 return addresses of
subroutines at a time, but you will never need that
rrany.

4-2 Saving the contents of registers

Most subroutines change the contents of the
r~Jisters. If these contents are needed later
(after RTS), they have to be saved.
This can be done either in the rrain program or in
the subroutine. If you knON what registers are
changed by the subroutine, then you can save the
contents at an unused location. The easiest way
though, is to save the contents of all registes
within the subroutine. The beginning of that
subroutine then looks as follONs :

22

PHA ;ACCU -> STACK
TXA ;X -> ACCU
PHA i ACCU - > STACK
TYA ;Y -> ACCU
PHA ; ACCU - > STACK

Pri.or to the RTS canrrand, yoo have
old contents of the registers.
subrootine will look as follows :

PIA i LOAD Y
TAY
PIA i LOAD X
TAX
PIA i LOAD ACCU
RTS i JUMP BACK

to restore the
The end of the

The contents of the registers coold also be stored
in auxiliary locations instead of the stack.

4-3 Exchange of data between main program and
subrootine

There are three ways to exchange data between main
program and subrootine.

1. Exchange via the registers. For example most
keyboard input rootines have the character in the
accumulator at the return.

2. Exchange via the stack. This technique is used
often when machine language programs are used
tCXJether with high level languages (for example
PASCAL) •

3. The main program and the subrootine use a canmon
rremory area for the data.

The rrethoo ycu shoold use depends on the problem to
be solved. If the whole program is written by one
prCXJramrrer, then he will use the rrethoo he likes
best. If more than one programrrer works together
then they have to arrange the kind of exchange.

Advantages with the use of subrootines :
Longer programs become split into smaller parts.
The shorter parts are easier to understand and
debugging becomes easier. Ycu can build up a
library of subrootines and can use these
subrootines later.

23

4-4 Indirect
subrootines.

jwnps

SPECL : LOA CART
BNE ENSPEC
INC CART
LOA CART
BNE ENSPEC
LDA CARTFG
AND .. S80
BEG ENsPEC
.JMP (CARTAD)

and indirect jumps to

. CHECK FOR RAM OR CART

.GO IF NOTHING OR MAYBE RAM

. NOW DO RAM CHECK
; IS IT ROW'
; NO
; YES.
; MASK OFF SPECIAL BIT
; BIT SET?

CHECK FOR AMOUNT OF

;YES. GO RUN CARTRIDGE~

RAM
This is an indirect jump.

3758 F23F AD FC BF
3759 F242 00 12
3760 F244 EE FC BF
3761 F247 AD Fe BF
376;,! F24A DO OA
3763 F24C AD FD BF
3764 F24F 29 80
3765 F251 FO 03
]766 F253 6C FE BF
3767
3768
3769
3770

24

Part 5

5-1 Indexed addressing

Example for indexed addressing
We have stored data (numbers and letters) at memory
locations $1000 - $lOlF. We now want to transfer
this data to another area starting at $2000. This
could be done by the following program

LDA $1000
STA $2000
LDA $1001
STA $2001
LDA $1002
STA $2002

LDA $lOlF
STA $201F

Please take note!

For DISK systems use 1)2BOO instead of 1)1000,

in order to avoid overlapping with DOS.

This program is long and tedious. Six bytes are
consumed for the transfer of one byte, which means
the whole program is 32*6 = 192 bytes long. With
indexed addressing this program becomes short and
simple. With the statement LDA $lOOO,X you load the
accumulator with the contents of the memory location
whose address is the sum of address $1000 and the
contents of the X-register.
For example :
If X=l, the contents of location $1001 will be
stored in the accumulator;
If X=2, the contents of location $1002 will be
stored in the accumulator.

25

It is also possible to use the Y-register. The
statement then would be : LOA $lOOO,y.

Here is the program :

0600 A2 00 LOX #$00
0602 BO 00 10 M LDA $1000 ;($1000) -> A
0605 90 00 20 STA $2000,X ; (A) -> $2000
0608 E8 INX
0609 EO 20 CPX #$20 ;(X) = $20 ?
060B DO F5 BNE M ; CONTINUE, IFNar
0600 00 BRK

Figure 5-1

First the X-register is loaded with zero. After that
the accumulator is loaded LOA $lOOO,X then the
contents are stored at $2000,X.INX increments the X­
register. It is then checked, to see whether all
data has been transferred already. . We want to
transfer the contents of locations $1000 - $lOlF.
The first location that should not be tranfered is
$1020. If the contents of the X-register became $20
after INX, the program should stop.
In the comment above $1000 means the address of that
location; ($1000) means the contents of that
location.
Both index registers are 8 bit long. For that reason
it is possible to index from 0 to 255. Thus we can
transfer a maximum of 256 bytes with this method.
For the transfer of larger areas we have to use a
different technique which will be discussed later.
Here is another example :
We want to exchange the contents of locations $1000
with $10FF, $1001 with $lOFE, $1002 with $lOFD , etc.
(figure 5-2) •
First we load X with 0 and Y with FF. Then we load
the contents of $1000 and store it in the stack.
After that we load the contents of $lOFF and store
it at $1000 and next we store the value in the stack
at $lOFF. Lastly the Y-register is decremented and
the X-register is incremented. The exchange is done
when X = $80.
26

0600 A2 00 LOX #$00
0602 AO FF LOY #$FF
0604 BD 00 10 M LOA $lOOO,X
0607 48 PHA
0608 B9 00 10 LOA $lOOO,Y
060B 9D 00 10 STA $lOQO,X
060E 68 PIA
060F 99 00 10 STA $lOOO,Y
0612 88 DEY
0613 E8 INK
0614 EO 80 CPK #$80
0616 DO EC BNE M
0618 00 BRK

Figure 5-2

;FF -) Y
;($lOOO+X) -) A
; (A) -) STACK
;($lOOO+Y) -) A
.; (A) -) $lOOO+X
; (STACK) -) A
; (A)-) $lOOO+Y
; (Y)-l -) Y
; (X) +1 -) X
;READY ?

The effective address with indexed addressing is the
sum of the programmed address plus the contents of
the index register used. The carry flag is noted
with these calculations. (The carry flag will be set,
if a carry appears with the calculations) • With X =
$FF the contents of the accumulator will be stored
at $llDF, with the command STA $lOEO,X.

The 6502 has two more ways of addressing, which
consist of indirect and indexed addressing.
Note : The final address with indirect addressing is
not the programmed address, but contents of · that
address. For exarrple: JMP ($2000) means a jump to
$3AFF, if the contents of $2000 and $2001 are $3AFF.

5-2 Indexed indirect addressing

With this kind of addressing the programmed address
always is an address of the zero page, wit~ the
index register always the X-register. For exarrple
LOA ($lO,X).
The final address can be calculated by adding the
contents of the X-register to $10. The contents of
this and the following address is the effective
address.

27

Example:
Contents of locations $OE - $15

(OE) = FF
(OF) = OF
(10) = 00
(11) = 11
(12) = 2F
(13) = 30
{l~) = 00
{15) = 47

If X = 0, then LOA ($lO,X) loads the contents of
loCation $1100; if X = 2, then LOA ($10 , X) l oads
the contents of $302F, X = 4 causes the contents of
$4700 to be loaded . No attentio~ is payed to a carry
occurring during the calculation of the address. For
this reason the contents of location $OFFF will be
loaded, if X = $FE.

5-3 Indirect indexed addressing
With this kind of addressing the programmed address
is in the zero page also. Cbly register Y can be
used as an index register in this case. Example :
STA ($10) ,Yo
To find out the final address, add the contents of
locations $10 and $11 to the contents of register Y.
Example:

($20) = 3E
($21) = 2F

If Y = 0, then contents of the accumulator would be
stored at location $2F3E .

The last two addressing modes are used mainly as
indirect addressing, with X = 0 respectively Y = O.
It then follows that LOA ($lO,X) means : load t he
accumulator with the contents of the memory location,
whose address is stored in $10 and $11.
Analogous with the statement LDA ($10) ,Y if Y = O.
If the contents of these addresses are changed, you
can load the . accumulator with the contents of
different locations. We will use this technique to
do a blocktransfer of not just 256, but 4k byte from
$1000 to $2000.

28

0600 A2 00 LDX #$00 ;0 -) x
0602 86 10 srx $10 ; (X) -) LO BYTE START .
0604 86 12 srx $12 ; (X) .-> LO BYTE
DESTINATION
0606 A9 10 LDA #$10 ;$10 -) A
0608 85 11 STA $11 ; (A) -> HI BYTE START
060A A9 20 LDA #$20 ;$20 -) A
060C 85 13 STA$13 ; (A) -) HI BYTE TARGET
060E Al 10 M LDA ($10,X) ;«$10)) -) A
0610 81 12 STA ($12,X) ; (A) -) ($12)
0612 E6 10 INC $10 ; ($10)+1 -) $10
0614 E6 12 INC $12 ; ($12) +1 -) $12
0616 DO F6 BNE M ; CONTINUE, IF <) 0
0618 E6 11 INC $11 ;ELSE ($11)+1 -) $11
061A E6 13 INC $13 ; ($13) +1 -) $13
061C AS 11 LDA $11
061E C9 20 CMP #$20
0620 DO EX: BNE M
0622 00 BRK

0600 A2 00 86 10 86 12 A9 10
0608 85 11 A9 20 B5 13 Al 10
0610 81 12 E6 10 E6 12 DO F6
0618 E6 11 E6 13 A5 11 C9 20
0620 DO EC 00 00 00 00 00 00
0628 00 00 00 00 00 00 00 00

Figure 5 - 3

In this program first the addresses for START ($10,
$11) and DESTINATION ($12, $13) are defined. Second
we load the accumulator with the contents of $1000
by LDA ($10,X) and store it at $2000 with STA ($12,
X). Then we increment $11 and $13 by 1 until we
reach the first address not to be moved.

Try the following two programs as an exercise :
1. Program FILL. A part of memory with the start
address in $10, $11 and the end address in $12, $13
is to be filled with the hex number, which is stored
in $14.

29

2. Program MOVE. A block of data (start address in
$10, $11; end address in $12, $13) should be moved
to another area (start address in $14, $15) • This
block may be at any location, even within the area
of the block to be moved - itself. This is not
possible by the techniques used before.

Notes to part 5 :

* indexed addressing
* indexed indirect addressing
* indirect indexed addressing
* transfer of data within memory

30

Part 6

In this chapter we will talk about the input of
data (characters, numbers) into the computer. The
data ShOlld be entered with the keyboa.rd. All
canputers wi th a keyboa.rd are equipped with a
subrOltine for the input of a character from the
keyboard. Mast times this rootine is called GE'ICHR.
Usually the ASCII code or a similar cOde (for
example ATASCI I on the ATARI) is used wi th these
characters. An ' A' in the ASCI I cOOe for instance
is $41. 'Ibis cooing is used, for example, with the
Clp and the PET. The APPLE computer uses $Cl (all
normal displayed characters have bit 8 = 1). It
follows that yoo have to be careful if yoo want to
transfer machine language programs from one
computer to another one !
Wi th the CIP a check, whether 'A' was pressed looks
as follows:

JSR GE'ICHR
CMF #$41

(ATARI alsol

With the APPLE the same woold look as follows

JSR GE'ICHR
CMF #$Cl

If the input of data is used very often, then a
'menu' is sanetimes used. This technique, that yoo
will know from BASIC, is possible also in machine­
language. A text is displayed on the screen and the
prOjram waits for an input from the keyboa.rd. It
then branches depending on the input. We will show
the whole program in a flowchart. A flowchart
explains the structure of a program thrOlgh the use
of graphic symbols.

31

Program start. Name of the program.

Also program end .

Operation

Figure 6-1 elements

of a flc::JNchart

Figure 6- 2 Flc::JNchart
of a menu program

32

yes

no

The flo.vchart in figure 6-2 sho.vs the structure of
our program. The program first prints the text and
then waits for a key to be pressed. If A, B, or E
has been pressed, the program branches to the
matching part. If another key has been pressed, the
computer will beep and wait for another input.
This may sound simple to you, but a menu always
should consider these two things :
1. The end of the program should be layed da.vn.
This means a stop of the program other than .with
RESET or switching off should be possible.
2. Input errors should be tied up; a warning should
appear on the screen or an acustic sign (bell)
should mark the error.

Here is the program.
First the screen is
pr inted. The text
starting at $0640 and
TX'IDUl'.

cleared, then the text is
is stored at memory locations
is printed by tile subroutine

The listing contains a few canmands which are not
CPU statements . These pseudo statements are for the
assembler. We will talk about pseudo opcodes later.

0600
0608
0610
0618
0620
0628
0630
0638
0640
0648
0650
0658
0660
0668
0670
0678
0680
0688

HEX.-DUMP of the MENUE-program

A97D20A4F6203306
A99B20A4F6A90020
DDF6C941D0062064
061890E9C942D006
2073061890DFC945
D00100A9FD20A4F6
1890D2A99B20A4F6
A240A0062085F360
50524F4752414D20
284129202050524F
4752414D20284229
2020454E44452020
2845299BA278A941
86FF20A4F6A6FFCA
DOF460A278A94286
FF20A4F6A6FFCADO
F460000000000000
0000000000000000

) $v 3F
) [$v) @
]vIAPF d
FXPiIBPF

sFXP_IE
PA@) $V
XPR) [$V
"@ F Es'
PROGRAM
(A) PRO
GRAM (B)

ENDE
(E)["x)A
F $v& J
Pt'''x)BF

$v& JP
t'@@@@@@
@@@@@@@@

33

Source Code for the MENUE·program.

Note! This is ATARI Editor/Assembler cartridge syntax

0000 10 *= $600
F385 10=-d PUlLIN = $F385
F60D 20 GETCHR = $F60D
F6A4 :::;;0 EOUTCH - $F6A4
0600 A9'7D 40 MENU LDA #$70
0602 20?~4F6 50 JSH EOUTCH
0605 203:::;;06 60 MENUl ~JSR TXTDUT
0608 {.~cl9B 70 LDA #$9B
060A :20A4F6 80 ,JSR EOUTCH
0600 A900 8~3 LOA #$(10
060F 2000F6 90 JSR GETCHR
0612 C941 0100 CMP #$41
0614 0006 0110 BNE MENU2
0616 206406 0120 JSF: AO

,

0619 18 0130 CLC
061A 'lOE9 0140 Bee MENU1
061C C942 01:50 MENU2 eMP #$42
061E 0006 0160 BNE MENlJ3
0620 207306 0170 JSR B
06T~; 18 0180 CLC
06::~4 900F 0190 BCC MENU1
062~l C945 0200 MENU:::;' CI"IF:' #$45
0628 0001 0210 BNE MENU4
062?~ 00 0220 BRK
062B A9FO 0230 MENU4 LOA #$FO
062D 20A4F6 0240 'JSR EOUTCH
0630 lEI ()25<) CLC
06:':;;1 90D2 0260 Bce MENUl

0270
063:':;; fW9B 027~5 TXTOUT LOA #$9B
06~::5 20A4F6 0276 JSR EOUTCH
06::)8 A240 0280 LOX #$40
06 :::::A A006 0290 LOY #$06
063C 2085F3 0:::;;20 JSR PUTLIN
06::::.F 60 0330 RTS
0640 0340 *= $0640
0640 50 0350 • BYTE"PROGRAM (A) II

0641 1:"" '-'4-

0642 4F
0643 47

34

0644 c:-'-, u..::..
0645 41
0646 4D
0647 20
0648 28
0649 41
064A 2:9
064B 20
064C 2 ()

(l64D 50
064E c:- ,....

,J .t:.

064F 4F
0650 47
0651 c:- ~\

\-o1.L

0652 41
0653 4D
0654 20
0655 28
0656 42
0657 29
0658 20
0659 ;~()

065A 45
065£1 4E
06~;C 44
065D 4~:;

06~'::;E 20
065F ~~O

0660 28
0661 4~:;

0662 29
066:::;' (rEi
0664 A278
0666 Aij4l
0668 86FF
066A 20A4F6
066D A6FF
066F CA
0670 DOF4
0672 60
067:3 A278
0675 A(r42
0677 86FF

0360

():37 0

03BO
():390 I~O

0400 AA
0405
0410
0415
0420
0430
0440
04~;O B
0460 BEt
0465

.BYTE"ENDE (E)"

. BY·TE!lir.:;B
LDX #120
LDt~ #!f;41
STX $FF
JSF, EOUTCH
LDX $FF
DEX
BNE
Fas
LDX
LDA
BTX

#120
#$42
$FF

35

o l: . .\ ~lci 20f,,4r6 04-70
067C (2)6FF 047~j

06/E C:A 0-4E1O
067F- DOF4 04"70
06Ell (~.\() (f500
06B2 0'510

Figure 6-3 A menu program

Notes to part 6:
* input of text
* logic flo.vchart

JSF<
LDX
DEX
BI\lE
rnE;
. END

* elements of a logic flo.vchart

36

EDUTCH
$F'F

DB

Differences between the

ATAR. Editorl Assembler

Cartrigde and ATAS-1

andATMAS-1

To explain the difference of some mnemonics of the AT A R I
Editor/Assembler cartridge and the Editor/Assembler and ATMAS
-1 from ELCOMP Publishing we will show you the program in
ATMAS or ATAS syntax as follows:

I nstead of the Asteri k the AT AS uses the pseudo op-code 0 R G
(see first line).
Another difference is that the AT AS is screen oriented (no line
numbers needed). Instead of the equal sign ATAS uses EQU.
Additionally AT AS allows you the pseudo op-code EPZ: Equal
Zero.
There is also a difference in using the mnemonics regarding storage
of strings within the program.

ATARI
- BYTE "STR ING"

ELCOMP
ASC " STR I NG II

- BYTE 5 DFB 5 (Insertion of a byte)

- WORD DFW (Insertion of a word
Lower byte, higher byte)

The end of string marker of the AT A R I 800/400 output routine is
hex 9B.
In the listing you can see, how this command is used in the two
assemblers:

ATARI Assembler: -.BYTE 59B
ATMAS from ELCOMP - DFB 59B

Depending on what Editor/Assembler from ELCOMP you use,
the stringoutput is handled as follows:

17

1. AT AS 32K and AT AS 48K Cassette Version

LOX #TEXT
LOY # TEXT /256

TEXT ASC "STRING"
OFB59B

There is also a difference between other assemblers
and the ATAS-1 or ATMAS-1 in the mnemonic
code for shift and relocate commands for the
accumulator.

2. ATMAS 48K

LOX # TEXT:L
LOY #TEXT:H

TEXT ASC "STRING"
OFB 59B

(ASL A = ASL) = OA
(LSR A = LSR) = 4A
ROL A = ROL = 2A
ROR A = ROR = 6A

Menu program from page 34 in AT AS
syntax

0600: A97D
0602: 20A4F6
0605: 203306
0608: .A99B
060A: 20A4F6
060D: A900
060F: 20DDF6
0612: C941
0614: DOO6
0616: 206406
0619: 18
061A: 90E9
06:L C: C942
061E~ DOO6
0620: 207306
06:2:3: 18
0624: 90DF
0626: C945
0628: DOOl
062A: 00
062B: A9FD
062D: 20A4F6
0630: 18
0631: 9002
0633: A99B

38

FurlIN
GETCHR
EOUTCH
MENU

l'1ENU 1

MENU2

MENU3

MENlJ4

TXTOUT

ORG
EDU
EQU
EQU
LDA
JSR
JSR
lOA
JSR
lOA
c1SR
CMF'
BNE
JSR
ClC
BCC
CMF'
BNE
JSR
CLC
BCC
CMF'
BNE
BRK
lOA
JSR
ClC
BCC
lOA

$0600
$F385
$F60D
$F6A4
#$70
EOUTCH
TXTOLIT
#$9B
EOUTCH
#$00
GETCHR
#$41
MENU2
AO

MENU1
#$42
MENU3
B

MENUl
#$4·5
MENU4

#$FD
EOUTCH

MENU1
#$9B

0635: 20A4F6 JSR EDUTCH
0638: A240 LDX #TEXT:L
063A: AOO6 LDY #TEXT:H
063C: 208~jF:3 JSR PUTL.IN
063F: 60 RTS
0640: 50524F TEXT ABC "PROGRAM (A) "
0643: 475241
0646: 4D2028
0649: 412920
064C: 20
064D: 50524F ASC "PROGRAM (B) "
0650: 475241
0653: 4D2028
0656: 422920
0659: 20
065A: 454E44 ASC "ENDE (E) "
065D: 452020
0660: 284529
0663: 9B DFB $9B
0664: A278 AO LDX #120
0666: A941 AA LDA #$41
0668: 86FF STX $FF
066A: 20A4F6 JSR EOUTCH
066D: A6FF LDX $FF
066F: CA DEX
0670: OOF4 BNE AA
0672: 60 RTS
0673: A278 Et LDX #120
0675: A942 BB LOA #$42
0677: 86FF STX $FF
0679: 20A4F6 JSR EOUTCH
067C: A6FF LOX $FF
067E: CA DEX
067F: DOF4 BNE BB
0681: 60 RTS

PHYSICAL ENDADORESS: $0682

39

*** NO WARNINGS

PUTl_ I N $F385
EOUTCH $F6A4
MENU1 $060::;
MENU3 $0626
TXTOUT $0633
AO $0664
B $06T5
GETCHR $F6DD
MENU $0600 UNUSED
MENU2 $061C
MENU4 <fi0628
TEXT $0640
AA $0666
BB $0675

0600 A97D20A4F6203306 $'1 :3F
0608 A99B20A4F6A90020)A $v)§
0610 DDF6C941D0062064 u v IAPF d
0618 061890E9C942DOO6 FXPiIBPF
0620 2073061890DFC945 sFXP IE -
0628 0001 OOA9FD20P,4F 6 PA§) $'1
0630 1890D2A99B20A4F6 XPF:)A $'1
06~S8 A240A0062085F3 60 "§ F Es'
0640 50524F4752414D20 PROGRAM
0648 2841292020::i0524F (A) PRO
0650 4752414D20284229 GRAI1 (En
06~5F.3 2020454E44452020 ENDE
0660 2845299BA278A941 (E)A" :-:)A
0668 86FF2 0A4F6A6FFCA F $v~(J
0670 DOF460A278A94286 Pt '" };) ElF
0678 FF20A4F6A6FFCADO $v~(JP
01.:)80 F460 t. ':

40

Part 7

This chapter deals with the input of numbers.

7-1 Input of a hex number

GE'I'CHR. Subroutine
- 9, A - F). If the

then the program
tile ASCII character

For the input we use subroutine
PACK then checks the input (0
character is not a hex number,
leaves the input mode, having
in the accumulator. The following figure shows the
logic flowchart of PACK.

No

JA
A <":"

No

Figure 7-1 Logic flowchart of PACK

41

The ASCII character has to be in the accumulator,
when the subroutine is entered. First the character
is canpared to 0, then to F. If it is smaller than
o or greater than F, it is not a hexadecimal number.
For the otl1er characters between 0 and F, two other
comparisons are to be made. If the character is
srraller tllan I: I, then it is a number between 0 and
9. If it is not smaller tllan A, then it is a number
between A and F. In this case 9 will be added to
the number. IAI is $41. With the addition of 9 tl1e
lower four bits tl1en represent a 10. By shifting
the contents of the accumulator to the left four
times this number gets into the four higher bits.
Next the contents of the accumulator and locations
INL and INH are shifted left by ROL (four times).

Bit 7 gets shifted to bit 0 via the carry bit.
After that the four lower bits of the accumulator
are the four lower bits of location INL. The
program for that is shown in figure 7-2.

The program for the input is shown in figure 7-3.
The two IreIDOry locations INL and INH are set to O.
For this reason you only have to enter 4F for
number 004F. For tlle input we use subroutine GETCHR.
GE'IWD (start address $0624) will be executed, until
a non-hexadecimal number is entered.

7-2 Input of a decimal number

Now we want to enter a decimal number and convert
it into a hexadecimal number.

0600: C9 30 CMP #$30
0602: 30 IF BMI $0623
0604: C9 46 CMP #$46
0606 : 10 IB BPL $0623
0608: C9 3A CMP #$3A
060A: 30 07 BMI $0613
060C: C9 41 CMP #$41
060E: 30 13 BMI $0623
0610: 18 CLC
0611: 69 09 ADC #$09

42

0613: OA ASL
0614: OA ASL
0615: OA ASL
0616: OA ASL
0617 : AO 04 LOY #$04
0619: 2A ROL
061A: 26 80 ROL $80
061e: 26 81 ROL $81
061E: 88 DEY
061F: DO F8 BNE $0619
0621: A9 00 LOA #$00
0623: 60 RTS

Figure 7-2 PACK

0624: A9 00 LOA #$00
0626: 85 80 STA $80
0628: 85 81 STA $81
062A: 20 DO F6 JSR $F6DD
0620: 20 00 06 JSR $0600
0630: DO 09 BNE $063B
0632: AS 80 LOA $80
0634: 29 OF AND #$OF
0636: 20 00 10 JSR $1000
0639: 10 EF BPL $062A
063B: 60 RTS
063C: 00 BRK

Figure 7-3 Input of a hex number

HEX-Dump from both programs (Fig. 7-2 and 7-3)

0600 C9 30 30 IF C9 46 10 IB
0608 C9 3A 30 07 C9 41 30 13
0610 18 69 09 OA OA OA OA AO
0618 04 2A 26 80 26 81 88 DO
0620 F8 A9 00 60 A9 00 85 80
0628 85 81 20 DO F6 20 00 06
0630 DO 09 AS 80 29 OF 20 00
0638 10 10 EF 60 00 00 00 00

43

The character entered is checked to see if it is a
digit, inclusive, 0 through 9. The content of the
input buffer is then multiplied by 10 and the new
number is added.

Since tile 6502 CPU doesn't have a command for
multiplication we have to do that another way. One
way would be to add the number 10 times. We hewever,
use a different technique. A shift left command
corresponds with a multiplication by two.

Example : 6 = %00000110
%00001100 = 12

The number is stored and shifted left two times,
which means a multiplication by 4. Next the
original number is added so that we new have five
tirres tile original number. The final step in
multiplying by 10 consists of one more shift left.
The program to do this is shewn in figure 7-4.

44

Input of a decimal number

0600
0608
0610
0618
0620
0628
0630
0638
0640
0648
0650
0658

0600:
0602:
0604:
0606:
0609:
060C:
060E:

A9 00 85 80 85 81 20 DD
F6 20 A4 F6 C9 30 30 3B
C9 39 10 37 29 OF 20 24
06 18 65 80 85 80 90 02
E6 81 90 E2 85 82 AS 80
85 83 AS 81 85 84 26 80
26 81 26 80 26 81 AS 80
18 65 83 85 80 AS 81 65
84 26 80 26 81 BO 03 A5
82 60 00 A9 9B 20 A4 F6
AS 81 20 00 10 A5 80 20
00 10 00 00 00 00 00 00

A9 00
85 80
85 81
20 DO F6
20 A4 F6
C9 30
30 3B

LOA
STA
STA
JSR
JSR
CMP
BM!

#$00
$80
$81
$F6DO
$F6A4
#$30
$064B

0610: C9 39 CMP #$39
0612: 10 37 BPL $064B
0614: 29 OF AND #$OF
0616: 20 24 06 JSR $0624
0619: 18 CLC
061A: 65 80 ADC $80
061C: 85 80 STA $80
061E: 90 02 BCC $0622
0620: E6 81 INC $81
0622: 90 E2 BCC $0606
0624: 85 82 STA $82
0626: A5 80 LDA $80
0628: 85 83 STA $83
062A: A5 81 LDA $81
062C: 85 84 STA $84
062E: 26 80 ROL $80
0630: 26 81 ROL $81
0632: 26 80 ROL $80
0634: 26 81 ROL $81
0636 : A5 80 LDA $80
0638: 18 CLC
0639: 65 83 ADC $83
063B: 85 80 STA $80
063D: A5 81 LDA $81
063F: 65 84 ADC $84
0641: 26 80 ROL $80
0643: 26 81 ROL $81
0645: BO 03 BCS $064A
0647: A5 82 LDA $82
0649: 60 RTS
064A: 00 BRK
064B: A9 9B LDA #$9B
064D: 20 A4 F6 JSR $F6A4
0650: A5 81 LDA $81
0652: 20 00 10 JSR $1000
0655: A5 80 LDA $80
0657 : 20 00 10 JSR $1000
065A: 00 BRK

Figure 7-4 Input of a decimal number

45

The prOJrarn PACK (figure 7-2) uses a loop four
times with ROL, ROL INL, ROL INH. This corresponds
with a multiplication by 16, which is necessary
with the input of hexadecimal numbers.

Notes to part 7 :

* input of a hexadecimal number
* input of a decimal number
* multiplication by 10

46

Part 8 a
When you prcgram in machine language you will use
an assembler most times. An assembler is a prcgram,
which translates the mnemonic code into machine
code. For example it will translate L~ #$05 into
the two bytes A9 05.

An assembler also allows you to use symbolic names.
If the name PORTA appears in a prQ3ram, the
assembler has to write in the address previously
defined for PORTA. It also has to take notice of
labels.
For example :

L~ PORTA
BNE Ml
L~ PORTB
Ml STA HFZ

The assembler automatically calculates the number
of bytes fram BNE MI to the label MI.

Assemblers usually consist of two parts. The first
part is a text editor for entering the source-code.

There are text editors, where the source-code has
to be entered with line numbers, while others don't
require them. With most assemblers, labels have to
start with a letter and have to be in the first
position. Commands have to be in the second
position. Labels and names usually can be up to six
characters long.

After the source code has been entered, the
assembler translates it into machine-code. To do
that it needs additional information, so-called
pseudo-commands. These pseudo-commands only affect
the assembler, not the prcgram itself.

47

Unfortunately tl1ese commands are different on most
assemblers, but most assemblers use the following
pseudo-commands

1. ORG

The canrra.nd ORG (ORIGIN) defines the start address
of the machine-code.

ORG $2000

rreans, that the code of the first line translated
will start at location $2000.

This address also is ti1e base address for the
program starting there. All absolute addresses
refer to tl1at address. An ORG command always has to
be at the beginning of the assembler text, but it
is possible to change it within the text.

Example :

ORG $2000
<TEXT 1>
ORG $500
<TEXT 2>

The code of text 1 starts at address $2000. The
code of text 2 starts at address $500. The machine
code is often called the object code.

2. OBJ

The command OBJ allows you to store the machine­
code at a different location in rremory.

Example

ORG $3000
OBJ $2500

or on t he A T MAS:
ORG S3000 , SABOO

t t
Logical add ress ph ys ical address

The program will be translated with all absolute
addresses referring to $3000, but the machine-code

48

~lill be stored at addresses starting at $2500. If
you want to start the program later, you first have
to move it to $3000 with a blocktransfer.

3. END

The command END shows the assembler that the text
to be translated ends here.

4. EQU

With this command a certain address gets a symbolic
name.

Example : PORTA EQU $COCO

The symbolic name PORTA corresponds with the
address $COCO.
In this case PORTA is used as a label and, by that,
has to be in the first position in the text.

Same assemblers need an extra command for addresses
fran the zero-page .

HFZ EPZ $10

The name HFZ corresponds with address $10 of the
zero-page.
Same assemblers use the equal sign (=) instead of
OOU.

5. HEJ{

With command HEX you can store hexadecimal numbers
~"ithin a program.

Example :

ffiTA HEX 00AFFC05

The numbers 00 AF
consecutive locations
address ffiTA.

FC 05 are stored
starting at the

in four
symbolic

49

6. ABC

If you want to store text within a prCXJram, you can
use carunand ABC.

Example : TEXT A..SC "THIS IS A TEXT"

The text between the quotation marks is stored in
ASCII code at address TEXT.

Same assemblers use the command BYT.

BYT 0045AF corresponds with HEX 0045AF.

BYT "TEX'l'" corresponds vii th ASC "TEXT".

For more information on the different pseudo
commands please check with the manual for the
assembler.
It is possible to do calculations in the address
section. The foll<J.\1ing prCXJram portion sh<J.\1S a
pseudo instruction :

D/\TA HEX OOAFFCOS
The carunand LD/\ D/\TA will load 00, LDI\ D/\TA+2 will
load FC.

Be careful, if you use address calculation with
relative jumps.

ENE *+2
The above exarrple causes the prCXJram to jump two
bytes, but not two lines in the text.
With same assemblers the * is a pseudo command, or
a pseudo address. It tells you the present value in
the prCXJram counter.

Exarrple

50

LD/\HFZ
ENE *+2
LDI\ #$FF
STA HFZ

If the contents of HFZ is different
the canrrand Lffi #$FF is jwnped.
Same assemblers allow all four
cperations, but in most cases
subtraction will be enough.

fran zero, then

basic arithmetic
addition and

The following is offered to tl1e reader as a
programming hint

\-'fuen in the program there is line : H EQU $2F

then Lffi H means, load
contents of $2F, b.lt
accumulator with $2F.

Notes to part 8 :

* pseudo commands
* address calculations

the
Lm

accumulator
#H means,

with the
load the

51

NOTES

52

Part 9

In this, the last chapter we will discuss sane
helpful suggestions and short cuts.
There are some programs, where you want the program
to determine, where in memory it is located. This
becanes necessary with programs which contain
absolute addresses, but can run at any location in
rremory. Wi th the APPLE for example, this trick is
used to determine into which slot a peripheral
board is plugged. Since there is no canmand which
enables you to read the program counter, we use the
following trick :
The program contains a JSR-cammand right to aRTS
in the monitor. The present address is ti1ereby
written to the stack. You have to take into
consideration, however, ti1at the lower byte of tile
address is lowered by ale. Figure 9-1 shows the
stack pointer before, during, and after the jump to
the subrootine.

IFF ADH Stack Pointer before and after JSR

IFE ADL

IFD
Stack Pointer while a JSR

IFe

IFB

Figure 9-1 stack pointer during JSR

53

After the return to the main program you can bring
the contents of the stack pointer to register X
with TSX. Then you can access address ADH as shawn
in figure 2.

You also can program another way, with an indirect
jwnp JHP (ADR) as foll~s :
Let I s asswne, that the indirect jwnp should go to
$2010. This can be done with the foll~ing program

LI¥\ #$20
PHA
LI¥\#$OF
PHA
RTS

You can find this technique in the operating system
of ATARI. Usually an indirect jwnp is progr~nmed

the foll~ing way :

LI¥\ #$10
STA ADR
LI¥\ #$20
STA ADR+l
JMP (ADR)

If you use an address in the zero page, then the
first program is four bytes shorter. If yoo use any
address, then the first program is six bytes
shorter than the second one . Here is a comparison
of the execution times

LOA # 520 2 LOA # 510 2 2
PHA 3 STA ADR 3 4
LOA # 50F 2 LOA # 520 2 2
PHA 3 STA ADR+I 3 4
RTS 6 JMP (ADR) 5 5

16 15 16

The nwnbers, after the camnands, means the nwnber
of machine cycles required for this command. For

!'i4

ti1e second program, tl1e first column is an address
in tl1e zero page. The second column is for any
address. You can find tl1e number of cycles for tl1e
single commands in the reference card of tl1e 6502
micrcprocessor.

Usually one doesn't tl1ink much about execution time,
exept witl1 loops which occure frequently.
To that a canparison of two program parts for
relocation of data. Only the part which is
different is compared. The rest is tl1e same witl1
botl1 programs.

1st program

Lm (FRCM,X) 6
STA (TO,X) 6
INC FRCM 5
BNEM 2 (+1)
INC FRCM+l 5
M INC TO 5
BNE Ml 2 (+1)
INC TO+l 5
Ml -------

36

The program needs 36 cycles, if no branches are
executed. If a branch is executed, tl1en one more
cycle is used.

2nd program

MEM Lm FRct-1 4
STA TO 4
INC MEM+l 5
BNEM 2 (+1)
INC MEM+2 5
M INC MEM+4 5
BNEMl 2 (+1)
INC MEM+5 5
Ml -------

32

55

The second program requires four cycles less, but
it is a program that changes itself. Location MEM+I
contains the lower byte and location MEM+2 contains
the higher byte of the command LDA FROM. This
program does not work in RCJv1, it has to be in RAM.
The savings of 4 cycles, which corresponds with 4
microseconds if the clock frequency is I megahertz,
doesn't look great, but it accumulates with the
transfer of large quantities of data.

If, in a subroutine, there is a
subroutine immediately before the
you can save seven cycles, if you
canmand by a JMP cannand ,
rather than

JSR 'TO
RTS

use just

JMP 'IO

call of another
RI'S camnand, then
replace the JSR

The RTS canmand in subrootine 'TO brings you back to
the same location as the RTS after JSR 'TO.

The processor 6502 has an indirect jump : JMP (ADR),
but no indirect jump to a subroutine: JSR (ADR).
This is needed, if yOJ want to jump to different
subroutines, depending upon conditions, similar to
the ON ••• GOID instruction in BASIC.
If the program is in RAM, then you could use a self­
modifying program, which changes the address after
JSR. If the program is in RCJv1, then you can use the
following trick.
Sanewhere in memory there is a camnand
JMPI JMP(ADR) 6C XX XX.
Instead of xx XX you write in the address of the
subrootine to be executed. You call the subrOJtine
with

JSR JMPI
The RTS camnand in the subrou tine br ings you back
to the command following JSR JMPl.

56

Some examples

in Machine Code

Some examples in Machine Code

The following short programs are examples for programming in
assembler language . With the first three programs, the equivalent
BASIC program is also listed.

The first program prints one row of character C at the top of the
screen.
The second program fills the screen with the character entered.
The third program prints the character entered enlarged.
It is a very nice exercise to print four big letters one beside the
other.
With the fourth program you can play with two color-registers.
Type B. to change the background, type F to change the fore­
ground. In each subroutine you may change the luminescence by
pressing L. R will restore the old colors.

One row of char C

100 PRINT CHR$(125)
105 POKE 84,0
110 POKE 85,0
120 POKE 86,0
130 FOR 1=0 TO 39
140 PRINT "C II

;

150 NEXT I

57

A screen fu II of characters

100 DIM A$(l)
110 INPUT A$
120 PRINT CHR$(125)
130 POKE 84,0
140 POKE 85,0
150 POKE 86,0
160 FOR 1=0 TO 39
170 PRINT A$;
180 NEXT I
190 N=PEEK(84)
200 IF N<23 THEN POKE 85,0:GOTO 160

A large character

100 CS=57344
110 DIM A$(l)
120 INPUT A$
130 A=ASC(A$)
140 A=(A-32)*8+CS
145 PRINT CHR$(125)
150 POKE 84,5
160 POKE 85,10
170 POKE 86,0
180 FOR I=A TO A+7
190 Z=PEEK(I)
200 FOR S=l TO 8
210 Z=Z*2
220 IF Z<255 THEN PRINT" ";:GOTO 230
222 Z=Z-256
225 PRINT A$;
230 NEXT S
235 PRINT
240 POKE 85,10
250 NEXT I

58

* MACHINE CODE EXAMPLES

* PRINTS ONE ROW OF CHAR C

OUTCH EQU $F6A4 * ACCU TO SCREEN
INCH EQU $F6E2 * KEYBOARD TO ACCU
CV EPZ $54 * CURSOR VERTICAL
CH EPZ $55 * CURSOR HORICONTAL
AUX EPZ $FO * AUXILIARY

ORG $A800
MIOO: 4CODA8 JMP START

A803: A97D CLEAR LDA #$7D * ERASES SCREEN
A805: 4CA4F6 JMP OUTCH

A808: A99B CR LDA #$9B * CARRIAGE RETURN
A80A: 4CA4F6 JMP OUTCH

A80D: 2003A8 START JSR CLEAR
A810: A900 LDA #00
A812: 8554 STA CV * SET CURSOR TO
A8U: 8555 STA CH * THE UPPER LEFT
A8l6: 8556 STA CH+l * CORNER
A8l8: A228 LDX #40 * SET COUNTER
A8lA: 86FO Sl STX AUX * SAVE X-REG
A8lC: A943 LDA 'c' * CHAR C INTO ACCU
A8lE: 20A4F6 JSR OUTCH
A82l: A6FO LDX AUX * GET X-REG
A823: CA DEX * DO IT UNTIL X-REG
A824: DON BNE Sl * IS ZERO. THEN
A826: 20E2F6 JSR INCH * WAIT FOR KEYPRESS
A829: 00 BRK

PHYSICAL ENDADDRESS: $A82A

*** NO WARNINGS

59

* MACHINE CODE EXAMPLES

* A SCREEN FULL OF CHARACTERS

OUTCH EQU $F6A4 * ACCU TO SCREEN
INCH EQU $F6E2 * KEYBOARD TO ACCU
CV EPZ $54 * CURSOR VERTICAL
CH EPZ $55 * CURSOR HORICONTAL
AUX EPZ $FO * AUXILIARY

ORG $A800
A800: 4CODA8 JMP START

A803: A97D CLEAR LDA #$7D * ERASES SCREEN
A805: 4CA4F6 JMP OUTCH

A808: A99B CR LDA #$9B * CARRIAGE RETURN
A80A: 4CA4F6 JMP OUTCH

A80D: 2003A8 START JSR CLEAR
A810: 20E2F6 JSR INCH * GET ONE CHARACTER
A813 : 85FI STA AUX+I
A815: A900 LDA #00
A817 : 8554 STA CV
A819: 8556 STA CH+l
A8IB: A900 SO LDA #00 * CURSOR TO START
A8ID: 8555 STA CH * OF LINE
A8IF: A228 LDX #40 * SET COUNTER
A821: 86FO Sl STX AUX * SAVE X-REG
A823: A5FI LDA AUX+l * CHAR INTO ACCU
A825: 20A4F6 JSR OUTCH
A828: A6FO LDX AUX * GET X-REG
A82A: CA DEX * DO IT UNTIL X-REG
A82B: DOF4 BNE Sl * IS ZERO. THEN
A82D: A554 LDA CV * CV IS INCREMENTED
A82F: C917 CMP #23 * AUTOMATICALLY
A831: DOE8 BNE SO * SCREEN FULL ?
A833: 20E2F6 JSR INCH
A836: 2003A8 JSR CLEAR
A839: 00 BRK

PHYSICAL ENDADDRESS: $A83A

*** NO WARNINGS

60

* MACHINE CODE EXAMPLES

* A BIG CHARACTER

OUTCH EQU $F6A4 * ACCU TO SCREEN
INCH EQU $F6E2 * KEYBOARD TO ACCU
CV EPZ $54 * CURSOR VERTICAL
CH EPZ $55 * CURSOR HORICONTAL
AUX EPZ $F8 * AUXILIARY
ADRL EPZ AUX+2 * CHAR SET LOW BYTE
ADRH EPZ AUX+3 * CHAR SET HIGH BYTE
CHAR EPZ AUX+4

ORG $ABOO
A800: 4CODA8 JMP S'l'ART

A803: A97D CLEAR LDA #$7D * ERASES SCREEN
A805: 4CA4F6 JMP OUTCH

A808: A99B CR LDA #$9B * CARRIAGE RETURN
A80A: 4CA4F6 JMP OUTCH

A80D: 2003A8 START JSR CLEAR
A810: A900 LDA #00 * SET STARTING
A812: 85FA STA ADRL * ADDRESS OF CHA-
A814: A9EO LDA #$EO * RACTER SET
A816: 85FB STA ADRH
A818: 20E2F6 JSR INCH * GET ONE CHARACTER
A81B: 85FC STA CHAR
A81D: 38 SEC * CALCULATE ADDRESS
A81E: E920 SBC #$20 * #-$20
A820: 8SF8 STA AUX
A822: A900 LDA #00
A824: 85F9 STA AUX+l
A826: 18 CLC
A827: A203 LDX #03
A829: 06F8 SO ASL AUX * MULTIPLY BY 8
A82B: 26F9 ROL AUX+l
A82D: CA DEX
A82E: DOF9 BNE SO
A830: 18 CLC * ADD STARTING
A831: ASF8 LDA AUX * ADDRESS
A833: 65FA ADC ADRL
A835: 8SFA STA ADRL
A837: ASF9 LDA AUX+l
A839: 6SFB ADC ADRH
A83B: 8SFB STA ADRH

A83D: A90A LDA #10 * PRINT CHARACTER
A83F: 8555 STA CH * UPPER LEFT CORNER

61

A841: A905 LDA #05 * AT CV=S CH=lO
A843 : 8554 STA CV
A845: MOO WO LDY #00 * GET BIT PATTERN
A847: BIFA LDA (ADRL) , Y
A849: 8SF8 STA AUX
A84B: A208 LDX #08
A84D: 86F9 WOl STX AUX+l
A84F: A920 LDA #$20 * IF THERE IS A ONE
A8S1: 06F8 ASL AUX * PRINT CHARACTER
A853: 9002 BCC WI * OTHERWISE A BLANK
A855 : A5FC LDA CHAR
A857: 20MF6 WI JSR OUTCH
A85A: A6F9 LDX AUX+l
A85C: CA DEX
A85D: DOEE BNE WOl
A85F: 2008A8 JSR CR * GET NEXT BIT PATTERN
A862: A90A LDA UO
A864: 8555 STA CH
A866: A554 LDA CV
A868: C90D CMP U3
A86A: F008 BEQ W2
A86C: E6FA INC ADRL
A86E: DOD5 BNE WO
A870: E6FB INC ADRH
A872: DODI BNE WO
A874: 20E2F6 W2 JSR INCH
A877 : 2003A8 JSR CLEAR
A87A: 00 BRK

PHYSICAL ENDADDRESS: $A87B

*** NO WARNINGS

62

* MACHINE CODE EXAMPLES

* SETTING THE COLOR REGISTERS

INCH EQU $F6E2
OUTCH EQU $F6A4
COLOR EQU $2C4
AUX EPZ $F8

ORG $A800
A800: 4COEA8 JMP START

A8 03: A204 COLSAV LDX #04 * SAVE COLOR REG
A80S: BDC402 C1 LDA COLOR, X
A808: 9SF8 STA AUX,X
A80A: CA DEX
A80B: 10F8 BPL C1
A80D: 60 RTS

A80E: 2003A8 START JSR COLSAV
A8ll : 20E2F6 SO JSR INCH
A814: C942 CMP 'B' * CHANGE BACKGROUND ?
A816: D003 BNE Sl
A818: 202CA8 JSR BCOLOR
A81B: C946 Sl CMP 'F' * CHANGE FOREGROUND ?
A81D: D003 BNE S2
A81F: 2048A8 JSR FCOLOR
A822 : C9S2 S2 CMP 'R' * RESTORE OLD COLORS ?
A824: D003 BNE S3
A826 : 4C64A8 JMP RCOLOR
A829 : 18 S3 CLC
A82A: 90ES BCC SO

A82C: ADC802 BCOLOR LDA COLOR+4 * ADD ONE TO
A82F: 18 CLC * COLOR REG
A830: 6910 ADC nOO010000
A832 : 8DC802 STA COLOR+4
A83S: 20E2F6 B1 JSR INCH
A838: C94C CMP 'L' * CHANGE LUMINESCANCE
A83A: DOOB BNE B9
A83C: ADC802 LDA COLOR+4
A83F: 18 CLC
A840: 6902 ADC #$02
A842: 8DC802 STA COLOR+4
A84S: DOEE BNE B1
A847 : 60 B9 RTS
A848: ADC602 FCOLOR LDA COLOR+2 * SAME AS BCOLOR
A84B: 18 CLC * EXCEPT COLOR REG
A84C: 6910 ADC nOO010000
A84E: 8DC602 STA COLOR+2

63

A85l: 20E2F6 Fl JSR INCH
A854 : C94C CMP ILl
A856: DOOB BNE F9
A858 : ADC602 LDA COLOR+2
A85B: 18 CLC
A85C: 6902 ADC #$02
A85E: 8DC602 STA COLOR+2
A86l: DOEE BNE Fl
A863: 60 F9 RTS
A864 : A204 RCOLOR LDX #04 * RESTORE OLD COLORS
A866: B5F8 Rl LDA AUX,X
A868: 9DC402 STA COLOR,X
A86B: CA DEX
A86C: 10F8 BPL Rl
A86E: 00 BRK

64

RELOCATOR
RELOCATOR for the ATARI 400/800
This relocator for the ATAR I 400/800 was developed using the
ATAR I Editor/Assembler cartridge.
Before you start the relocator at 32CF hex you must enter the
start address, the end address as well as the destination address
of the program to be relocated.
Please check your program for tables and text before relocating,
because the relocator may think that this is opcode and change
some bytes.

Memory location Lable Remarks
93 hex RFLAG o = Relocate,

I = Blocktransfer

81 hex TEST1 LSB Lower
82 hex MSB address of available

memory

83 hex TEST2 LSB Upper address
84 hex MSB of available memory

85 hex LSB START Starting address of the

86 hex MSB program to be relocated

87 hex CSB STOP Endaddress of the program
88 hex MSB to be relocated

89 hex LSB New starting address
of relocated program.

This is the assembly text for the ATARI Editor/Assembler car­
tridge.
Type: ASM,#P:
while in the editor.

65

0 ;******************
20 ;* *
30 ;* *
40 ;* *
50 ;* F'ROGRAMM *
60 ; * RELOCATOR *
70 ;* *
80 ;* *
90 ;******************

0000 95 *= $700
0000 0100 RFLAG = $0
0001 0110 TESTl :::2 $1
0003 0120 TEST2 = $3
0005 0130 START = $5
0007 0140 STOP = $7
0009 015(1 BEG = $9
OOOB 0160 OPTR = $B
OOOD 0170 TEMP2 = $D
OOOF 0180 NPTR = $F
0011 (1190 TEMP1 - $11

0200
0700 0210 *= $2000
2000 A205 0220 BEGIN LDX #$5
2002 B505 0230 S10 LDA START, X
2004 950B 0240 STA OPTR~X

2006 CA 0250 DEX
2007 10F9 0260 BPL S10
2009 E8 0270 INX
200A A500 0280 MOVE LDA RFLAG
200C F006 0290 BEQ MOl
200E 204E20 0300 JSR MOVl
2011 4C5F20 0310 JMP DONE
2014 AI0B 0320 MOl LDA (OPTR,X)
2016 A8 0330 TAY
2017 D006 0340 BNE M02
2019 205220 0350 JSR SKIP
201C 4C5F20 0360 JMP DONE
201F 204E20 0370 M02 JSR MOVl

0380 T
2022 C920 0390 CMP #$20
2024 D003 0400 BNE BYTEl
2026 4C7920 0410 JMP BYTE3

0420 ; TEST FOR 1 BYTE INTRUCTION

66

2029 98 0430 BYTEl TYA
202A 299F 0440 AND #$9F
202C F031 04~0 BEQ DONE
202E 98 0460 TYA
202F 2910 0470 AND #$ID
2031 C908 0480 CMF' #$8
2033 F02A 0490 BEQ DONE
2035 C918 050<1 CMF' #$18
2037 F026 0510 BEQ DONE

0520 ; TEST FOR 3 BYTE INSTRUCTON
0530

2039 98 0540 TYA
203A 291C 0550 AND #$lC
203C C91C 0560 CMF' #$lC
203E F039 0570 BEQ BYTE3
2040 C918 ·0580 CMP #$18
2042 F035 0590 BEQ BYTE3
2044 C90C 0600 CMF' #$OC
2046 F031 0610 BEQ BYTE3

0620 ;
0630 ;REMAINING 2 BYTE INSTRUCTIONS
0640

2048 204E20 0650 JSR MOV1
2048 4C5F20 0660 JMP DONE

0670 ; MOVE 1 BYTE
0680 ;

204E ,AI08 0690 MOVl LOA (OPTR~X)

2050 810F 0700 STA (NF'TR,X)
2052 200920 0710 SI<IP JSR IOF'TR
2055 20E020 0720 JSR INPTR
2058 60 0730 RTS

0740
07~0 ; MOVE 2BYTES
0760 ;

2059 204E20 0770 MOV2 JSR MOVI
205C 204E20 0780 JSR MOVl
205F A50B 0790 DONE LOA OPTR
2061 8511 0900 STA TEMPl
2063 A5<IC 0810 LDA OF'TR+l
2065 8512 0920 STA TEMF'1+1
2067 A507 0830 LDA STOP
2069 8500 0840 STA TEMP2
206B A509 0850 LDA STOF'+l

67

2060 8:'iOE 0860 STA TEMF'2+1
206F 20CE20 0870 JSR TEST
2072 9096 0880 BCC MOVE
2074 F094 0890 BEQ MOVE
2076 00 0900 BR~<

2077 EA 0910 NOP
2078 EA 0920 NOP

0930
0940 ;3BYYTE INSTRUCTIONS
0950
0960

2079 AI0B 0970 BYTE3 LDA (OPTR,X)
207B 8511 0980 STA TEMP1
2070 200920 0990 JSR IOPTR
2080 A10B 1000 LOA <OPTR, X)
2082 8512 1010 STA TEMP1+1
2084 2 0E7:20 1020 JSR OOPTR
2087 A501 1030 LDA TEST1
2089 8500 1040 STA TEMP2
208B A502 1050 LOA TEST1+1
2080 850E 1060 STA TEMP2+1
208F 20CE2(J 1070 JSR TEST
2092 F002 1080 BEQ B10
2094 90C3 1090 BCC MOV2
2096 ?-)50::::; 1100 BI0 LOA TEST2
2098 8500 111Ci STA TEMP2
209A A504 1120 LDA TEST2+1
209[; 850E 11 3 0 STA TEMP2+1
209E 20CE20 1140 ,JSR TEST
20A1 FOO2 1150 BEQ B20
20A3 BOB4 1160 BCS MOV2

1170
1180 ; AORESS RECOMPUTATION
1190

20A5 38 1200 B20 SEC
20A6 AlOB 1210 LDA (OPTR, X)
20'~B E505 1220 SBC START
20AA 850D 1230 STA TEMP2
20{'~C 20D920 1240 JSR IOPTR
20AF A10B 1250 LOA (OPTR,X)
20B1 E506 1260 SBC START+l
20B3 850E 1270 STA TEMP2+1
20B5 200920 1280 JSR IOPTR

68

20B8 18 1290 CLC
20B9 A50D 1300 LDA TEMP2
20BB 6509 1310 ADC BEG
20BD 810F 1320 STA (NPTR~X)

20BF 20E020 1330 JSR INF'TR
20C2 A50E 1340 LDA TEMF'2+1
20C4 650A 1350 ADC BEG+1
20C6 810F 1360 STA (NPTR~X)

20C8 20E020 1370 JSR INF'TR
20CB 4C5F20 1380 JMF' DONE

1390
1400 ;TEST COMF'ARES 2 ADRESSES
1410

20CE A512 1420 TEST LDA TEMF'1+1
2000 C50E 1430 CMF' TEMF'2+1
20D2 D004 1440 BNE T10
2004 A511 1450 LDA TEMP!
20D6 C50D 1460 CMF' TEMF'2
20D8 60 1470 T10 RTS

1480
1490 ; INCREMENT OLD F'OINTER
1500

20D9 E60B 1510 IOF'TR INC OF'TR
20DB 0002 1520 BNE INC10
20DO E60C 1530 INC OF'TR+1
20DF 60 1540 INC10 RTS

1550
1560 ; INCREMENT NEW POINTEF:
1570

20EO E60F 1580 INF'TR INC NPTR
20E2 0002 1590 BNE INC20
20E4 E610 1600 INC NF'TR+1
20E6 60 1610 INC20 RTS

1620
1630 ; DECREMENT OLD POINTEF:
1640

20E7 C60B 1650 DOF'TR DEC OF'TR
20E9 A50B 1660 LDA OPTR
20EB C9FF 1670 CMP #$FF
20ED D002 1680 BNE D10
20EF C60C 1690 DEC OF'TF:+1
20F1 60 1700 D10 RTS

1710 END

69

You can enter this object-code with the ATMONA-l from ELCOMP:

32CF A2 05 85 05 95 08 CA 10
3207 F9 E8 A5 00 FO 06 20 10
32DF 3::::- 4C 2E "":!" "":!"

'-" -' Ai OB A8 DO
32E7 06 20 2 1 :33 4C 2E ~ -:t'

.~, .-.. 20
32EF 10 -:r-:r --.. ...;, C9 20 00 03 4C 48
32F7 7"":'" 98 29 9F FO 31 98 29;.

32FF 10 C9 08 FO 2A C9 18 FO
3 307 26 98 29 1C C9 1C FO 39
330F C9 18 FO 7 0:-

~' .J C9 OC FO 31
3~517 20 ID ~'?

--""":' 4C 2E 33 A1 08
331F 81 OF 20 A8 33 20 AF -,. -:r --.. ...;.
3327 60 2C) 10 ~-:r 20 10 7 ..,. A5:, . ..:' ,-' .":'
332F OB 85 1 1 A5 oe 85 12 A5
3 ~:' :37 07 85 00 A::i 08 85 OE 2 C)

~~~')3F 9D -:r ":r 
".'':' '-' 90 96 FO 94 00 E{~ 

~5347 EA A1 08 85 1 1 20 A8 .. ~-::-,_1._, 

334F A1 08 85 1 . .., ..::. 20 86 ~53 A5 
3 ~557 01 85 00 A5 02 85 OE 20 
335F 9D 3 ~3 FO 02 9C> C3 A5 03 
~5367 8<= .J 00 A5 04 85 OE 20 90 
~~;36F ~5~::' FO 02 80 84 38 Al 08 
3 ~:' T7 E5 05 85 00 20 A8 :33 A1 
T57F 08 E5 06 85 OE 20 AS 33 
~5387 18 A5 00 65 09 81 OF 20 
338F AF -::- -~ --1,_' A5 OE 65 OA 81 OF 
3397 20 AF "":!'-::" 4C 2E ""';1'7 A5 12 --"-' ''';''-' 

T39F C5 OE DO 04 A"'" - .J 11 C5 OD 
33(~7 60 E6 08 DO ()2 E6 OC 60 
33{~F E6 OF DO 02 E6 10 60 C6 
3 3 8-7 08 Ac:.-,J 08 C9 FF 00 02 C6 
3 3BF oe 60 00 00 00 00 00 00 
~53C7 00 00 00 00 00 00 00 00 
3~5CF' 00 00 00 00 00 00 00 00 
33D7 00 00 00 00 00 00 00 00 

70 



Reverse Video 
REVERSE VIDEO 
You can enter this program using the ATMONA-1. Start the pro­
gram with the GOTO command 

GOTO 600 

A part of the screen is displayed in reverse. If you type GOTO 600 
the screen will be switched back to normal operation. Instead of 
RTS you can also use the BRK command. 

ORG $0600 
0600: 68 PLA 
0601 : A559 LDA $59 
0603: 85D5 STA $D5 
0605: A900 LDA #$00 
0607: 85D4 STA $D4 
0609: A603 LDX $03 
060B: A458 LDY $58 
060D: BID4 LOOP LDA ($D4)~Y 

060F: 4980 EOR #$80 
0611: 91D4 STA ($D4)~Y 

0613: C8 INY 
0614: DOF7 BNE LOOP 
0616: E6D5 INC $D5 
0618: CA DEX 
0619: 10F2 BPL LOOP 
061B: 60 RTS 

PHYSICAL ENDADDRESS: $061C 

*** NO WARNINGS 

LOOP $060D 

71 



72 

0600 
0608 
0610 
0618 

68 A5 59 85 D5 A9 00 85 
D4 A6 03 A4 58 81 D4 49 
80 91 D4 C8 DO F7 E6 D5 
CA 10 F2 60 



ASC II Output 

ASCII Output 
This is a sample program, which can be typed in using the Editor/ 
Assembler cartridge or the ATMAS-1 (AT AS) from E LCOMP 
Publishing, Inc. 

a) Using ATAS (ATMAS-1) 
CTRL-I = TAB = 9 Blanks (column for commands) 
Start all lables at the beginning of the line. 

ORG $0600 
EOUTCH EQU $F6A4 

0600: A900 START LDA #$00 
0602: 85D4 STA $D4 
0604: A504 REF' LDA $04 
0606: 8504 STA $D4 
0608: A504 LDA $D4 
060A: 20A4F6 JSR EOUTCH 
060D : E6D4 INC $D4 
060F: DOF3 BNE REF' 
0611 : 00 BRK 

PHYSICAL ENDADDRESS : $0612 

*** NO WARNINGS 

EOUTCH 
REP 
START 

$F6A4 
$0604 
$0600 UNUSED 

73 



How to enter this program using the EDITOR from ATAS or 
ATMAS-1? 
Start your Editor/Assembler and type 

CTRL-I 
To set a TAB for 

OUT LNPl 
which allows you to assemble to the printer later. 
Then define your label EOUTCH, the starting address of the 
screen output routine in the operating system. EOUTCH has to be 
written at the beginning of the line. EOU is a pseudo opcode and 
has to be preceded by a CTRL-I. 

It is convenient to mark the START of the program with the 
label "START". 
To type in the mnemonic, set the TAB with CTRL·I. 

Hexdump of ASCII output: 

0600 
0608 
0610 

A9 00 85 D4 A5 04 85 04 
A5 04 20 A4 F6 E6 04 DO 
F3 

The ASCII output program in ATARI Editor/Assembler syntax. 

05 *=$0600 
10 START LOA #$OO;START WITH ZERO 
20 STA $04 
30 REF' LOA $04 
40 STA $04;SAVE 
60 STA $04;SAVE 
70 LOA $04 
80 LOA $04;GET CHARACTER 
90 JSR $F6A4;PRINT 
0100 INC $04;CHECK 
0110 BNE REF' 
0000 05 *= 
0600 A900 10 START LOA 
0602 8504 20 STA 
0604 A504 
0606 8504 
0608 8504 
060A A504 
060C A504 
060E 20A4F6 
0611 E604 
0613 OOEF 

74 

30 REP 
40 
60 
70 
80 
90 
0100 
0110 

LOA 
STA 
STA 
LOA 
LOA 
JSR 
INC 
BNE 

$0600 
#$00 
$04 
$04 
$04 
$04 
$04 
$04 
$F6A4 
$04 
REP 

;START WITH ZERO 

,SAVE 
a SAVE 

JGET CHARACTER 
JPRINT 
JCHECK 



RANDOM 
Number Generator 

RANDOM Number Generator 
Randomness is required for many games like dice-games, maze­
games etc. The program is based on a pseudo random shift register 
approach. Two bytes are used as a shift register. (RNDM and 
RNDM+1). At least one of the locations RNDM or RNDM+1 
has to be non-zero. We have chosen the zero page location S 95 
and S 96. Before starting the program, use the monitor to set one 
of these locations to a non-zero value. 

After assembly you can start the program from the monitor with 
the GOTO 600 command. 
The following program prints only one random number before it 
hits the BRK command. (If called from BASIC this BRK has to 
be replaced by an RTS command. 

75 



-..
..J

 
O

'l 
O

RG
 

$
0

6
0

0
 

EO
U

TC
H

 
EQ

U
 

$F
6A

4 
RN

D
M

 
EF

'Z
 

$
9

5
 

0
6

0
0

: 
A

50
8 

RA
N

D
O

M
 

LD
A

 
$

0
8

 
;S

E
T

 
IT

E
R

A
T

IO
N

S
 

0
6

0
2

: 
4

8
 

R
l 

F'
H

A
 

;S
A

V
E

 
C

O
U

N
TE

R
 

0
6

0
3

: 
A

59
5 

LD
A

 
RN

D
M

 
;G

E
T

 
B

Y
T

E
 

0
6

0
5

: 
2A

 
R

O
L 

0
6

0
6

: 
4

5
9

5
 

EO
R

 
RN

D
M

 
;X

O
R

 
B

IT
S

 
1

3
 

&
 1

4
 

0
6

0
8

: 
2A

 
Fm

L 
0

6
0

9
: 

2A
 

R
O

L 
0

6
0

A
: 

2
6

9
6

 
F:

O
L 

R
N

D
M

+l
 

;S
H

IF
T

 
B

Y
T

E
 

0
6

0
C

: 
2

6
9

5
 

R
O

L 
RN

D
M

 
;S

H
IF

T
 

2
. 

B
Y

T
E

 
0

6
0

E
: 

6
8

 
F'

LA
 

;G
E

T
 

C
O

U
N

TE
R

 
0

6
0

F
: 

1
8

 
C

LC
 

0
6

1
0

: 
6

9
F

F
 

A
D

C 
#

$
F

F
 

; 
D

EC
R

EM
EN

T 
0

6
1

2
: 

D
O

EE
 

B
N

E 
R

l 
;I

F
 

N
O

T 
D

O
N

E 
D

O
 

A
G

A
IN

 
0

6
1

4
: 

A
::'

85
 

LD
A

 
RN

D
M

 
;G

E
T

 
RA

N
D

O
M

 
B

Y
T

E
 

0
6

1
6

: 
2

0
A

4
F

6
 

JS
R

 
EO

U
TC

H
 

;P
R

IN
T

 
0

6
1

9
: 

0
0

 
BR

I<
 

PH
Y

SI
C

A
L

 
E

N
D

A
D

D
R

E
SS

: 
$

0
6

1
A

 

**
* 

NO
 

W
A

R
N

IN
G

S 

EO
LJ

TC
H

 
$

F
6

A
4

 
RN

D
M

 
$

9
5

 
RA

N
D

O
M

 
$

0
6

0
0

 
U

N
U

SE
D

 
R

l 
$

0
6

0
2

 



0600 
060!3 

(')5 

2P, 
0[3 
2f; 

48 A5 95 2A 4·5 95 
26 96 2 6 95 68 18 

FF::- DC) 0610 69 EE AS 95 20 A4 
Ob18 F6 00 
The following program is also a random number generator, but it 
wi II print 10 random numbers on the screen rather than one. 
Note! If you count less than 10 random characters then one 
character was a control character, for example CARRIAGE RE­
TURN. 

ORG 
EOUT CH EDU 
RNDM EF'Z 
COUNTER EF'Z 

0600: A900 LDA 
0602: 8598 STA 
0604 : A508 RANDOM LDA 
0606: 48 R1 F' HA 
0607: A595 LDA 
0609: 2A ROL 
060A: 4595 EOR 
060C: 2A ROL 
060D: 2A ROL 
0 60E: 2696 ROL 
0610: 2695 RGL 
0612: 68 F'LA 
0613: 18 CLC 
0614: 69FF ADC 
0616: DOEE ENE 
0618: A595 LDA 
0 61A: 20A4F6 JSR 
061D: E698 INC 
0 61F: A90A LDA 
0 621 : C598 CMP 
0623: DODF ENE 
0625: 00 BRK 

PHYSICAL ENDADDRESS: $0626 

*** NO 

EOUTCH 
COUNTER 
Rl 

0 600 
0608 
0 610 
06 18 
0620 

WARNINGS 

A9 00 85 
95 2A 45 
26 95 68 
A5 95 20 
OA C5 98 

$F6A4 
$98 
$0606 

98 A5 
95 2A 
18 69 
A4 F6 
DO DF 

08 
2A 
FF 
E6 
00 

$0600 
$F6A4 
$95 
$98 
#0 
COUNTER 
$08 

RNDM 

RNDM 

RNDM+1 
RNDM 

#$FF 
R1 
RNDM 
EOUTCH 
COUNTER 
#$OA 
COUNTER 
RANDOM 

48 A5 
26 96 
DO EE 
98 A9 

;SET ITERATIONS 
;SAVE COUNTER 
;GET BYTE 

;XOR BITS 13 s~ 14 

;SHIFT BYTE 
;SHIFT 2. BYTE 
;GET COUNTER 

; DECREMENT 
; IF NOT DONE DO AGAIN 
;GET RANDOM BYTE 
; F'RINT 

RNDM 
RANDOM 

$95 
$0604 

77 



NOTES 

78 



Accessing Machine 

Language Programs 

from BASIC 

Accessing Machine Language Programs from BASIC 
The BASIC programmer often wants to speed up a program. The 
best to do that, is to link a machine language subroutine to BASIC. 
Therefore the machine language code has to be placed in a pro­
tected area (save from BASIC). From BASIC a machine language 
subroutine can be called by the statement 

10 A = USR (X) : X is the starting address of the machine 
language subroutine in decimal 

Let us now use the Reverse Video program to demonstrate the 
technique. 

ORG 
0600: 68 PLA 
0601 : A559 LDA 
0603: 85D5 STA 
0605: A900 LDA 
0607: 85D4 STA 
0609: A603 LDX 
060B: A458 LDY 
060D: B1D4 LOOP LDA 
060F: 4980 EOR 
0611: 91D4 STA 
0613: C8 INY 
0614: DOF7 BNE 
0616: E6D5 INC 
0618: CA DEX 
0619: 10F2 BPL 
061B: 60 RTS 

PHYSICAL ENDADDRESS: $061C 
*** NO WARNINGS 

$0600 

$59 
$D5 
#$00 
$D4 
$0:3; 
$::iB 
($D4)~Y 

#$80 
($D4)~Y 

LOOP 
$D5 

LOOP 

79 



First we have to translate the machine code from hex into decimal. 
68 = 104 dec, A5 = 165 dec ..... etc. 

600 hex = 1536 dec. = Start of our program. 

Then we use the following BASIC program to poke the code into 
memory starting at location 1536 dec. 

10 DATA 104~165~89~133~213~169,0 
20 DATA 133~212, 166~3~164~88~177 

30 DATA 212~73~128~145~212~200 
40 DATA 208~247,230~213,202,16 
50 DATA 242,96 
60 FOF~ 1=1 TO 28 
70 READ A 
80 POKE (1535+1),A 

. 90 NEXT I 
100 END 
200 B=USf'-: ( 153 6) 

To call the machine language subroutine from BASIC you type in 
GOTO 200. Never forget to terminate your machine language 
program with aRTS (60 hex = 96 dec.) for RETURN from sub­
routine, because BASIC uses a JSR (jump subroutine) to get to the 
machine language program . 

80 



Number systems 

CHAPI'ER A : NUMBER SYSTEMS 

sane 
daily 

to model 

In this dlapter we will develop 
straightforward mathematics, based on 
experience, which will make it much simpler 
the internal workings of microcomputers. 

Decimal numbers 
Quantity 
Binary Nwnbers, BITS, and BYTES 
Hexadecimal Numbers 

DECIMAL NUMBERS, AND THE CONCEPI' OF QUANTITY ••• 

Western culture has adopted the ten arabic 
symbols: 0,1,2,3,4,5,6,7,8, and 9 to represent 
various quantities. Many other symbols are 
available to describe a particular quantity. For 
example, 'three' may be symbolized as three, 3, 
trois (French), III (Raman Numerals), etc. 

Wi th the exception of the Raman Nwrerals, the 
above examples refer to the DECIMAL, or BASE-'rEN 
number system which we use daily. The base-ten 
system is charaterized by the ten symbols which are. 
available to use in constructing symbolic 
representations of various quantities. For large 
(multi-digit) numbers, we combine several symbols, 
and assign each symbol a multiplier based upon it's 
position within the series of symbols. For example, 
we represent the number of eggs in a carton with the 
symbols '12'. The symbol on the far right side is 
in what we call the 'unit' position. The next 
symbol to the left is in what we call the 'tens' 
position, and represents the number of complete 

81 



grou~s of ten eggs. ?he total number of eggs is 
equal to ten times the number in ti1e tens position, 
plus one times the number in the unitls position. 
Were there another symbol to the left, ti1at symbol 
would be multiplied by ten, and then ten again. 
(i.e. multiplied by one-hundred). Were there a 
symbol still further to the left, then that symbol 
would be accompanied by yet another multiplication 
by ten. (i.e. multiplied by one-thousand). 

Summarizing, the base-ten (or decimal) number 
system is characterized by: 

1). A basic set of TEN symbols (0-9). 
2). Each digit positioned left of the 

unit position are accompanied 
by a multiplier, and that 
multiplier increases by a factor 
of TEN for every additional 
digit postion to the left. 

3 ) • Decirral numbers are Nor the only 
method of representing a quantity. 

We will nav explore sane 
camronly used in 

number systems 

association with computer systems. 
for us, but 

(They are harder 

easier for the computer!). 

BINARY NUMBERS ••• 

Generally, canputers do not deal directly with 
the symbols of ti1e decimal number system. The 
computer is rrade up of combinations of circuits 
capable of presenting only two basic symbols (a's 
opposed to ten). Logic circuits inside the canputer 
represent one symbol with a high level voltage 
( of ten about five volts), and tile other symbol with 
a lal level voltage (oft.en about zero volts) .These 
states are often described with the symbols Ihighl 
or III for the high voltage level, and the symbols 

82 



'low' or '0' for the low voltage level. Multiple 
digit binary numbers can therefore be represented by 
multiple wires, with each wire at either a '1' or a 
'0' voltage level. By drawing a parallel to the 
base-ten number system, we may define this to be a 
BASE-'IWO (or BINARY) number system, surnnarized by 
the following characteristics: 

1). A basic set of TWO symbols (1,2). 
2). Each digit positioned left of the 

unit position are accompanied 
by a multiplier, and that 
multiplier increases by a factor 
of 'IWO for every additional 
digit postion to the left. 

Significance of digit position, decimal numbers 
versus binary numbers: 

DECIMAL(lOOOO'S) (1000'S) (lOO'S) (lO'S) (l'S) 
BIN/illY ( 16' S ) ( 8' S) (4' S ) ( 2' S) (1' S) 

Same examples of binary numbers follow. 

TRIAL BASE-2 EXPIANATlOO 
QUAN1'ITY (BINARY) OF BINARY 

----------------------------------------------
NOOE 0 o IN rn~IT'S PLACE 

ONE 1 1 IN UNIT'S PLACE 
'IWO 10 2 TIMES OOE IN 'ThO'S 

PLACE, PillS ONE IN 
UNIT'S PLACE. 

'l'HREE 11 2 TIMES ONE IN 'IWO' S 
PLACE, PillS ONE IN 
UN 11' 's PLACE. 

FOUR 100 2 TIMES 2 TIMES ONE IN 
FOUR'S PLACE, PillS 'IWO 
TINES ZERO IN 'IWO' S 
PLACE, PillS ZERO IN 
UNIT'S PLACE. 

FIVE 101 AS AOOVE, BUT ONE IN 
UNITS PLACE. 

83 



THIRTEEN 1101 AS AOOVE, BUT ADD 2 
TIMES 2 TIMES 2 TIMES 
ONE IN THE EIGHT'S 
PIACE. 

Note that in the decimal system, symbol 
position was used to represent multipliers of 1, 10, 
100, 1000, 10000, etc. In the binary number system, 
symbol position is used to indicate multipliers of 
1, 2, 4, 8, 16, 32, 64, 128, 256, etc. 

Using the above multipliers, you should be able 
to convert the following binary numbers (left 
column) into the decimal numbers in the righthand 
colu!lll1. 

BINARY NUMBER SYMBOL 

110 
101000 

1000000 
111111 
111110 
111101 

11111111 

DECIMAL NUMBER SYMBOL 

6 
40 
64 
63 
62 
61 

127 

There is no real trick to reading binary 
numbers. If you desire to get the numbers into 
decimal form, then there is no avoiding the process 
of multiplying the appropriate digits by 1, 2, 4, 8, 
16, etc., and adding up the results. 

One digit of a binary number, or one wire in 
the computer, can represent only one of two possible 
states. Thus one digit certainly does not contain a 
great abundance of infolTIation. It is therefore 
appropriate that we refer to ale digit of a binary 
number as a BIT. A bit nay be either a one or a 

84 



zero. Carrying tl1is madness one more step, we refer 
to a group of 8 BITS (an 8 digit binary number) as a 
BYTE. 

It is important to note tl1at tl1e binary number 
system is simply an alternative way to write a 
number, just as Raman Numerals provide an 
alternative way to write a number. In all cases, a 
given SYMOOL represents a QUAN'rrTY, and tl1e rrethod 
we dlocse to wr i te it is of secondary importance. 

Hexadecimal Numbers 

HEXADECIMAL NUMBERS •• • 

The preceeding discussion of binary numbers 
demonstrated tl1at binary symbols for large 
quantities becane very cumbersane, due to the very 
large number of digits which must be used. This is 
the natural consequence of having only two possible 
syrrbols per digit. In tl1e decimal number system, 'vIe 

had ten symbols available, and large quantities 
could be represented witl1 relatively few digits. 
Ideally, we need a number system which provides us 
witl1 a large number of symbols, while retaining a 
simple relationship to the on/off world of 
individual wires witl1in the computer. 

Note that a four bit number (four digit binary 
number) may represent any quantity fran zero (0000) 
to fifteen (1111), for a total of sixteen possible 
combinations. Now suppose we assign a SINGLE letter 
or number to each of tl1ese canbinations, as shown in 
the rightl1and column of tl1e table below. 

85 



---------------------------------
DECIMAL BINARY HEXADECIMAL 

NUMBER NUMBER NUMBER 
---------------------------------

a 0000 0 
1 0001 1 
2 0010 2 
3 0011 3 
4 0100 4 
5 0101 5 
6 0110 6 
7 Olll 7 
8 1000 8 
9 1001 9 

10 1010 A 
11 lOll B 
12 1100 C 
13 llUl D 
14 1110 E 
15 llll F 

---------------------------------

Don't be taken aback by the use of letter 
symbols to represent numbers. After all, we are 
making the rules here, and if we wish to use the 
symbol 'D' to represent a quantity of thirteen, then 
so be it. 

The above sixteen symbols (0-9, and A-F) are 
the sixteen basic symbols of the HEXADECIMAL (or 
BASE-SIXTEEN!) number system. For multiple digit 
numbers, we once again start with the UNITS 
position. But new, each time we move one digit 
pooition to the left, we add a multiplication by 
sixteen. 

86 



DECIMAL BINARY H&~ECIMAL EXPLANATION 

15 

16 

17 

42 

1111 F 

1 0000 10 

1 0001 11 

10 1010 2A 

255 1111 1111 FF 

256 1 0000 0000 100 

769 11 0000 0001 301 

783 11 0000 1111 30F 

15 IN UNIT'S 
PLACE. 
1 IN 16'S 
PLACE. 
1 IN 16'S 
PLACE, PLUS 
1 IN UNIT'S 
PLACE. 
2 IN 16'S 
PLACE, PLUS 
10 IN UNIT'S 
PLACE. 
15 IN 16'S 
PLACE, PLUS 
15 IN UNIT'S 
PLACE. 
1 IN 256'S 
PLACE, PillS 
ZERO IN 16'S 
PLACE, PLUS 
ZERO IN UNIT'S 
PLACE. 
THREE IN 256'S 
PLACE, PLUS 
ZERO IN 16'S 
PLACE, PLUS 
1 IN UN I '1' , S 
PLACE. 
'IHREE IN 256'S 
PLACE, PLUS 
ZERO IN 16'S 
PLACE, PLUS 
15 IN UNIT'S 
PLACE. 

87 



The HEXADECIMAL (BASE-SIXTEEN) number system 
may be summarized by the following charateristics: 

1). A basic set of 16 symbols (0-9,A-F). 
2). Each digit positioned left of the 

unit position is accompanied by a 
multiplier, and that multiplier 
increases by a factor of sixteen 

for every additional digit positio 
to the left. 
(i.e. Multipliers of 1,16,256 , 4096, 
etc. are used). 

Note that binary representations may be very 
easily converted to hexadecimal representations via 
the following steps: 

1) • Grcup the binary number into grcups 
of four bits, starting with the 
unit's position, and proceeding 
right to left. 

2). Write the hexadecimal symbol for 
2). Substitute the appropriate hexa­

decimal symbol for each four-bit 
grcup fram the original number. 

3). Simply reverse this process to 
convert hexadecimal numbers into 
binary numbers, four bits at a- time. 

Hexadecimal numbers provide an extremely 
compact means of expressing multiple-bit binary 
numbers. 

When reading a multiple digit number, it is not 
always immediately clear whether it is a binary, 
decimal, or hexadecimal representation. The symbol 
'1101' might be interpreted as a binary number 
(thirteen), a decimal number (one-thousand 
one-hundred and one), or as a hexadecimal number 
(four-thousand three-hundred and fifty-three = 1 X 
4096 + 1 X 256 + 0 X 16 + 1 X 1). The number '1301' 

88 



is clearly not a binary representation (it 
a '3'), but it could be interpreted as 
decimal or hexadecimal number. 

contains 
either a 

In those instances when binary numbers are 
used, the writer usually calls attention to this 
fact, either by using a subscript '2', or by 
enclosing the notation 'binary' in the text of his 
discussion. Hexadecimal numbers are often 
distinguished fram decimal numbers by preceding the 
hexadecimal number with a dollar sign, or by 
suffixing the hexadecimal number with a capital H. 
(i.e. $43C7, $7FFF, $4020, lAD7H, F371H, 9564H). 
The dollar sign convention is the one adopted by 
most users of computers based on the 6502 
microprocessor chip, including alio Scientific 
Instruments, and is the convention used in this 
bcx:k. 

CHAPI'ER A PROBLEMS ••• 

I}. Convert the following binary numbers into 
decimal representations. 

1111 1111 
0111 1111 
III 1111 

1 0000 
1000 1000 
0100 0101 
1111 1110 

(ANSWEHS: 255, 127, 127, 16, 
136, 69, 254). 

2}. Convert the binary numbers given in 
problem number (I) into hexadecimal numbers. 

(ANSWERS: $FF, $7F, $7F, $10, $88, 
$45, $FE). 

89 



Here is a subroutine in machine-language for conversion of hexa­
decimal to decimal numbers: 

OF,G $0600 
0600: 8504 STA $04 
0602: 8605 STX $05 
0604: A900 LOA #$00 
0606: 8506 STA $06 
0608: 8!:i07 STA $07 
060P,: 8508 STA $08 
060e: FB SED 
0600: A010 LOY #$10 
060F: A203 LOOP2 LOX #$0:'::; 
0611~ 06D5 ASL $05 
0613: 2604 ROL $D4 
0615: B505 L.OOP1 LDA $D5,X 
0,617: 7::m5 ADC $05,X 
0619: 9505 STA $05,X 
0618: CA OEX 
061C: 00F7 BNE LOOP1 
061E: 88 DEY 
061F: OOEE 8NE LOOP2 
0621 : 08 CLO 
(>622: A506 LOA $D6 
0624: A607 LOX $1)"7 
0626: A408 LDY $D8 
0628: 60 F:TS 

PHYSICAL. ENOAOORES~3 : $0629 

*** NO l.tJARNINGS 

LO(JP2 $060F 
LOOP1 $0615 

0600 
0608 
0610 
0618 
0620 
0628 

90 

85048605A90085D6 
850785D8F8A010A2 
0306052604850575 
D59505CADOF78800 
EE08A506A607A4D8 
60 

ETFU)§EV 
EWEX:.: P II 
CFU8~T5Uu 

UUUJPwHF' 
n X I. V~~ l.tJ~; X 



The hexadecimal number has to be in the accumulator (higher 
byte) and in the X-register (lower byte) when you jump to the 
subroutine. 
Example: 
We want to convert 101 F hex into a decimal number. 

This can be done as follows: 

A910 LDA # 510 
A2 1 F L D X # 5 1 F 
200006 JSR 50600 
00 BRK 

If ATMONA-1 hits a break BRK, it displays the contents of the 
registers. The decimal number is in the X-register and in the y : 
register. 
101 F hex = 4127 dec. 

91 



· NOTES 

92 



Digital Concepts 

CHAPTER TWO: DIGITAL CONCEPTS 

In this chapter we present an overview of 
digital logic concepts, and the kinds of electronic 
devices used to accomplish logical operations and 
data storage within your computer. 

L(X;IC IN PRCGRAMMING AND CG1PlYrER I-JARIltVARE 
LOGIC OPERATIa~S AND LOGIC GATES 
COMBINATIa~ LOGIC AND DECODERS 
DECODERS AND MEMORY 
NAND, NOR, AND EXCLUSIVE-oR GATES 
Problems, Further Reading 

LOGIC IN PRcx;RAMMING AND CCl1PlITER HARIWARE 

" ... a canputer is like a brain, a dumb brain, 
it doesn't do anything unless you program it first, 
and then it just follows your instructions one after 
another ... " 

-reaction of ten-year-old to computers. 

People program computers to perform sequences 
of logical operations. A canputer program consists 
of a sequence of instructions for the computer. 
Often we wish the computer to decide between 
alternative courses of action, based upon some 
information which is external to the program. For 
example, a canputer might be programmed to control 
the signal lights at a railway crossing. Sensor 
switches would be placed same distance down the 
railway, such that they can detect an oncoming 
train. The computer program might read something 
like: 

93 



1. START HERE 
2. CHECK 'ID SEE IF A TRAIN IS CCMING 
3. IF A TRAIN IS CCMING, THEN SKIP 

AHEAD TO LINE 5 OF 'rHE INSTRUCTIONS 
4. GO BA.CK TO STEP 2 OF 'l'HE INSTRUCTIONS 
5. CHECK 'ID SEE IF THE SAFETY BARRIER 

IS LCWERED 
6. IF THE SAFETY BARRIER IS UP, THEN 

LOiJER IT 
7. CHECK 'lD SEE IF rrHE TRAIN IS STILL HERE 
8. IF THE TRAIN IS STILL HERE, OR, IF 

ANOI'HER TRAIN IS CCMING, THEN GO BA.CK 
TO S'l'EP 7 OF THE INSTRUCTIONS 

9. RAISE THE SAFETY BARRIER 
10. GO BACK 'ill STEP 2 OF THE INSTRUCTIONS 

The above PR(X;RAM acts upon the Dl\TA ( or 
information) supplied by the train sensor switch. 
Another example would be the word-processor program 
upon which this manuscript is being typed. That 
program decides which letter to code into computer 
memory, based upon which one of the keyboard 
switches are pressed by the typist. Each of these 
examples also has means provided to output same 
resul t to the real wor ld. In the case of the 
railway crossing, the computer has control of the 
position of the safety barrier, and uses that 
barrier to infonn pecple of it's decision regarding 
the presence or absence of oncomi ng trains. The 
word processor program has control of a CRT (picture 
tube) upon which it displays the text input by the 
typist. It also outputs this text to computer 
memory, fran whence the typist may command that it 
be recalled, corrected, and output to a printer. In 
summary, the ccmputer executes a SEQUENCE of r...cx;ICAL 
instructions upon same source of Dl\TA input 
(switches, keyboards, memory, etc.), and produces 
same consistant OUTPUT as a result. In the 
remainder of this chapter, we will examine same of 
the fundamental electronic hardware used to 
accomplish logical cperations within the computer. 

94 



LOGIC OPERATIONS N~D LOGIC GATES • •• 

Consider the following statements: 

If 
If 

(A is true) Then 
(A is false) Then 

(Z is true) 
(Z is False) 

We shall assume A, Z, etc. are all either true 
or false, with nothing in-between being possible. 
With the above two statements, we have canpletely 
defined the condition of the OUTPUT Z, for all 
possible conditions of the input A. Suppose that we 
wish to model statements such as the above two, 
using electronic circuits. Let us define: 

1. TRUE is to be represented by any 
voltage in the range from 
+2 volts to +5 volts. 
(i.e. HIGH). 

2. FALSE is to be represented by any 
voltage in the range from 
o volts to +1/2 volt. 
(i.e. Iili). 

Now consider a short piece of plain copper 
wire, the left end labeled II I NPUT--A " , and the right 
end labeled "OUTPUT--Z." This piece of wire will 
certainly model our original logical statements, as 
re-written: 

1. If (A is HIGH) then (Z is HIGH). Certainly, 
if we connect a 'HIGH' voltage input to point A, 
then the wire will carry this same high voltage to 
the output at point Z. 

2. If (A is LOW) then (Z is LOW). Once 
the input from A is carried directly to the 
at Z. 

again, 
output 

There is almost always another way to 
accomplish any given task, and the above example is 
no exeception. There are electronic circuits other 

95 



than our piece of wire which we could connect from A 
to Z, and obtain the same result . The need for 
these should becane apparent as we continue. 

Consider the statements: 

1. If (A is true), then (Z is false) 
2. If (A is false), then (Z is true) 

(i.e. Z is always the opposite of A). 

We cannot model this more complicated situation 
with only a piece of wire. We must use a readily 
available electronic circuit called a "Nar-gate", or 
"INVERTER." 'These devices are manufactured by many 
firms in many different forms. For the time being, 
it is perfectly sufficient to imagine a small box 
with two wires sticking out. One wire is our 
familiar input A, and the other wire is our output 
Z. If we put a higb level on the input of an 
inverter, then we will get a lCJ.¥ level at the 
output. A low level on the input yields a high 
level at the output. Forcing sane signal IN'IO the 
output pin is forbidden, but the output of one 
inverter could certainly control the input to a 
second inverter. Clearly the output of inverter #2 
would be exactly the same as the input to inverter 
#1. (This is a combination which could replace the 
copper wire in our earlier example). 

There is a standard symbol used to represent an 
inverter. It is shown belCJ.¥ in Figure 2. 1. 

96 

«««««««<FIGURE 2.1»»»»» »» » » 
«««««<I.ffiIC INVERrER SYMBOL»»» »»> 

««« «« «««« « »»»»»»» »»»»> 



There is a standard symbol used to represent a 
" circui t which behaves as cur ccpper wire did. This 
symbol represents a logic circuit whose single 
output duplicates it's single input. It is shown 
belo.v in Figure 2.2. Note the absence of the 
"bubble" at the output, as canpared with the 
inverter in figure 2.1. The bubble symbolizes the 
inversion process. 

««««««««FIGURE 2.2»»»»»»»»> 
«««««LOGIC BUFFER SYMBOL»»»»»»»? 

««««««««««»»»»»»»»»»»> 

In certain situations we desire to connect the 
inputs of a number of different logic gates too the 
output of a single logic gate. If this number 
becomes too large the cutput of an ordinary gate 
might became overloaded. To prevent this we cculd 
connect the single cutput involved to the inputs of 
a pair of identical logic buffers. We " cculd then 
distribute the large number of logic gate inputs 
between the two buffer cutputs. Each buffer wculd 
have to drive only half the total number of inputs, 
and wculd not overload. More or larger buffers 
coold be used if nessesary. 

Consider the follo.ving statement: 

If (A is true) OR (B is true), then (Z is 
true). (Otherwise Z is false). 

This describes a single cutput (Z) controlled 
by two inputs (A and B). It is convenient to 
examine the possible cutputs at Z, for all possible 
input canbinations, thrcugh the use of a "truth 
table." " A truth table for the current example is 
shown belo.v in Figure 2.3. Note that a '1' is used 
to represent a 'true' condition, and that cur 

q7 



electronic circuits would represent this with the 
'high' voltage level. 

TRUTH TABLE 
Z = (A OR B) 

:---------------------------------: 
: INPl1r A INPUT B OUTPUT Z : 
-----------------------------------. .. 

o 
o 
1 
1 

o 
1 
o 
1 

o 
1 
1 
1 

:---------------------------------: 

FIGURE 2.3 

In figure 2.3 we have described the operation 
of a "two-input OR-gate." This logical building 
block may be thooght of as a box with THREE wires 
protruding. The three wires are inputs A, B, and 
output Z. Such circuits are readily available, and 
your microcCITIputer contains many, many of them. 
Note that we might also create a "Three-input 
OR-gate," which might have three inputs A, B, C, and 
output Z. In this case, ootput Z woold becane 
'true' if anyone OR more of the inputs became 
'true. ' 

The logical symbol for a two-input OR-gate is 
shown in Figure 2.4, together with the symbol for a 
3-input OR. 

98 

««««««<FIGURE 2.4A» »»»»»»»> 
««««<2-INPUT OR GATE SYMBOL»» »»» 

-D>---
» »»»»»»» » »»»»»»» » »»»> 



««««««FIGURE 2.4B»»»»»»»»» 
«««3-INPUT OR GATE SYMBOL»»»»»»> 

««««««««««»»»»»»»»»»> 

In the last example, we described how a logical 
output was based upon the truth of one OR another 
input. Frequently we wish to base sane output upon 
the sirnultaneoos truth of two inputs. For example: 

If (a train is carning) AND (the safety 
barrier is up), then (lower ti1e safety 
barrier) • 

If (A is true) AND (B is true) 
then (Z is true). 

As in the case of the OR gate, we could just as 
easily base the truth of an ootput upon the 
sirnultaneoos truth of three (or many more) inputs. 
Once again, the AND-gate is a readily available 
electronic circuit, supplied with two or more inputs 
as desired. The standard logic symbols for both two 
and three input AND-gates are shown below in Figure 
2.5. 

«««««««<FIGURE 2.5A»»»»»»»»» 
««««<SYMBOL FOR 2-INPUT AND GATE»»»» 
««««««««TITLES»»»»»»»»»»» 

«««««««««««»»»»»»»»»»» 

99 



«««««««<FIGURE 2.58»»»»»»»»» 
««««<SYMBOL 80R 4-INPUT AND GATE»»»» 
««««««««TITLES»»»»»»»»»»» 

---II )~l 
In swnma.ry, we have presented three principle 

types of lCX]ic fJates. These are the AND, OR, and 
Nor gates. Each of these gates is readily 
available, usually packaged as several gates within 
a single plastic or ceramic cube, with input and 
output wires protruding in neat rOdS. In addition 
to the input and output wires, each package has at 
least two \vires which must be connected to a source 
of paver in order to cperate it's internal 
circuitry. In the very cammon 
"Transistor-Transistor-LCXjic" (Qr "'Yi'L") family 
which we describe, the inputs recCX]nize voltages 
above 2 volts as a "true" or "1. " The inputs 
recCX]nize voltages belOd abaJt 1/2 volt as "false" 
or "0." The voltages in the "no man's land" between 
1/2 volt and 2 volts are illegal, and result in 
unpredictable performance of the gate circuit. 
Furthermore, voltages less than 0 (negative 
voltages), and voltages greater than 5 volts are 
excessive, and will damage the inputs. When a gate 
senses that it should send it's output high (or 
true), it will force the output to some voltage in 
the legal region between 2 and 5 volts. Otherwise 
the gate holds the output false, with a voltage 
between 0 and abaJt 1/2 volt. Note that the outpu't 
levels of a gate will always fall within the legal, 
recognizable voltage areas of an input. Thus it is 
possible to chain these simple gates tCX]ether to 
perform canplex logical cperations built upon 
canbinations of OR's, AND's, and Nar's acting upon 
some initial input(s). 

100 



COMBINATIONAL LOGIC AND DECODERS •.• 

Problem: Given four logic inputs A, B, C, and 
0, which are available on four wires within a 
c~)uter, design a circuit which will set one logic 
output true if and only if ABCD=lOIO. (i.e. A=l, 
B=O, etc.). 

Solution: Let's call our final output 'Z'. We 
wish to build a circuit such that: 
IF (A IS TRUE ), AND 

(B IS FALSE), AND 
(C IS TRUE ), AND 
(D IS FALSE), THEN (Z IS TRUE) 

to solve 
ANIrgate. 

The Band 0 terms make it ~sible 
this problem with only a four-input 
However, if we put inverters on Band 
might define two neJ signals: 

D then we 

M=NOT-B (i.e. M is the inverse of B). 
N=NOI'-D 
We use these signals to write: 

IF (A IS TRUE ), AND 
(M IS TRUE ), AND 
(C IS TRUE ), AND 
(N IS TRUE ), THEN (Z IS TRUE) 

Our design uses two inverters to derive M and N 
fran Band 0 respectively. M, N, A, and C are then 
canbined with a four-input N~D-gate. This 
combination is shown in Figure 2.6. 

A 

B 

c 

o 

M 

N 

««««««<FIGURE 2.6»»»»»»»»» 
«COMBINATIONAL U:X:;IC EXAMPLE SKE'K:H»»> 

z 

101 



Figure 2.6 is an example of a decoder circuit. 
The circuit decodes a complex input, and generates a 
particular output for one possible state of the 
input. If we regard the four-bit input ABeD as a 
four bit binary number, tilen our decoder circuit 
decodes a count of ten. (Binary 1010). Recall that 
a four-bit binary number has sixteen possible 
combinations, zero thru fifteen. It is perfectly 
possible to design a decoder with four input lines, 
and sixteen outputs. Each output would represent 
exactly one of the sixteen possible combinations of 
the four-bit binary input. Since tile input must, of 
course, be in one and only one of these possible 
states, it follows that one and only one of the 
output pins will be true at anyone time. Figure 
2.7 contains a truth table for such a circuit. 
Figure 2.8 contains a circuit diagram. The inputs 
are labeled ABeD, and the sixteen outputs are 
labeled YO thru Y15. 

TRUTH TABLE: 4- INPUT 16-oUTPur DECODER 
-------------------------------- -------------
:INPUI': OUTPUTS Y-
:ABCD :0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15: 
:------------------------------------------ -: 
:0000 :1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0: 
:0001 :0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0: 
:0010 :0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0: 
:0011 :0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0: 
:0100 :0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0: 
:0101 :0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0: 
:0110 :0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0: 
:Olll :0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0: 
:1000 :0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0: 
:1001 :0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0: 
:1010 :0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0: 
:lOll :0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0: 
:1100 :0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0: 
:1101 :0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0: 
:11l0 :0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0: 
:1111 :0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1: 

-------------------------- -------------------
FIGURE 2.7 

102 



«««««««« FIGURE 2.8»»»»»»»» > 
« <CIRCUIT DIAGRAM. 4 'IO 16 DECODER>>> >> >> 
«««« « <POSITIVE LOGIC OUTPUTS»» »»» 

00 0 . 0, 0, 0. 0. 0. 0 , 0. 0. 0'0 0.. 0 ., 0., 0.. 0 ., 

«« « «« «««««»»»»»»»» » »»> 

Decoders such as the one shown in Figure 2.8 
are available within a single package. Such a 
package rreasures abo..lt 2/ 3 inch wide, 2-1/2 inches 
long, and 1/ 8 inch high. There are 24 pins 
extending fram the package. These connections 
consist of the 4 main inputs, 16 outputs, 2 po.ver 
supply connections, and 2 "enable" inputs. Both of 
the enable inputs must be true, else NONE of the 
outputs will go true, irrespective of the state of 
the 4 main inputs. Smaller packages are available 
which function as 3-to-B decoders and 2-to-4 
decoders. The outputs of these devices are often 
inverted by comparison with the decoder example 
above. (i.e. The one and only selected output will 
be "lew", and all others will be "high") • Figure 
2.9 shews a sketch of a typical TTL integrated 
circuit containing a few logic gates. 

103 



««««««««<»»»»»»»»»» 
«« «««FIGURE 2.9»» »»»»»»> 
« ««T1~ PACKAGE SKETCH»»»»»»> 
«««««««»»» »»»»»»»»> 

... , 22 2. 

A, A, AJ 

• 2 1 • 5 • 1 • • .0 •• 1J .4 •• 11 11 

Vee· Pin 24 
GND· Pin 12 

DECODERS AND MEMORY ••• 

Deccders are important to the q:>eration of the 
memory arrays in your cOTlputer. Memory consists of 
a large number of locations wherein the canputer may 
store or recall either 1I1'sll, or 1I0'SIl, as needed. 
In 118-bitll canputers, these locations are grouped 
into sets of 8-bit BYTES as mentioned in chapter 
one. Each byte has a unique IIADDRESSII, often 
compared to a post office box number. 

The computer's central processing 
accesses a particular byte via the 
process. 

unit (CPU) 
follONing 

1. CPU sets a READ/WRI'l'E control line to the' 
proper state (high or ION) to indicate a read memory 
or write to rremory c:peration. 

2. CPU outputs the unique address of the byte 
in question. The address is output in binary form 
onto a set of wires called lithe ADDRESS BUS." Most 
small microcanputers use a sixteen wire address bus. 

104 



There are 65536 possible canbinations of the sixteen 
address lines, Ireaning that the CPU is capable of 
distinguishing and controlling 65536 bytes of 
information. (Or 8 X 65536 = 524288 bits). a 
16-to-65536 decoder. Most of this decoding is 
accomplished inside the Iremory integrated circuits, 
so it is not nessesary to imagine an integrated 
circuit with over 65000 pins protruding! In the 
case of a read operation, this decoder allows the 8 
bits contained in a single location to be output to 
the CPU via a set of 8 wires called "the Ql\TA BUS." 
In the case of a write operation, data passes FROM 
the CPU INTO the 8 bits of memory indicated by the 
address bus. 

««<FIGURE 2.10 CPU BUS SYSTEM»»» 

1/0 PORT 

!~lJ++++ 

PROGRA.\1 DATA PERIPHERAL 

MEMORY MEMORY INTERFACE 

IROMI (RAM) llEVICE 

JL • H + ] UI 

WRITE fr ENA8LE 

J t 

CLOCK 
MICROPROCESSOR 

GENERATOR INTERRUPTS 

r----. ~6~~:Ol 
I-- SIGNA LS 

««««««««<»»»»»»»»»»> 

AllllRESS 
SUS 

DATA 
BUS 

105 



NAND, NOR, AND EXCLUSIVE-GR G.n.TES ••• 

Consider the effect of adding an inverter to 
the rutput of an AND gate. If we call the two 
inputs A and B, and the final ootput Z, then we 
might describe the resulting logic function as: 

',-
If (A is true) AND (B is true), 
Then (Z is FALSE). 

We call this logic function a "NAND G.n.TE". We 
might write Z = A NAND B in this case. If we added 
yet another inverter, we woold be back to a simple 
AND function. It turns rut that it is easier 
to rrake NAND gates than AND gates. For this reason 
tn\ND gates are cheaper and more cammon. 

As in the case of the NAND gate, an OR gate 
with an inverted ootput is called a NOR gate. Once 
again, this is a very caronon form of gate. NAND 
gates are drawn as AND gates with an inversion 
bubble at the ootput. NOR gates are drawn as OR 
gates \'lith and inversion bubble at the ootput. (See 
Figures 2.11 and 2.12 - for NAND and NOR standard 
lOJic symbols). 

In the case of 2-input OR gates, the ootput was 
true if EITHER or rom inputs were true. The 
"exclusive-GR" gate excludes the case where IDlli 
inputs are true. Its performance coold be stated: 

If (A is true) OR 
( (A is false) OR 
Then (Z IS TRUE). 

(8 is t~e) ) AND 
(8 is false) ), 

The standard logic symbol for the exclusive-GR 
gate is ShONn in Figure 2.13. 

NAND 

Fig. 2.11 

106 

NOR 

FIG. 2.12 

EXCLUSIV OR 

Fig. 2. 13 

END 



O.m .. lo. , 1>0 ATARI C<lmp<"., 
Th" bool tle5c:r ilJo:l< """"",,0(1 D'og, omm'r>g 'eel""" ...... l i ~. 
plJye, .m,uil o'V"lIlhic. ~,,~ ,, '" ot ,n~ ....... d ...... a·.L'g"' ... 
Cgn ,~,n l many ' eoHly '0 'un program. ,n BASIC a<>a one 
caI1od 9.UNFIGHT ,nmx""",'a"'llU"Q" 
0.60,"'162 

IrlYoiceWriti ng forSmaliBulinaD 
This program makelwrilinginvoiceseasy. Storeyour 
producn in DATA statements with o.der-num!l-e., 
de1cription.and price. The plog.am later retrivesthe 
deteription and p.ice matching to the enterM order· 
n","be •. The shippin~ con and the discounl may be 
~leulated automatica!ly d~pendin!l on the quan tity 
ordered or entered manually. The description to the 
p.ogram t~ !ls you how 10 change the prog.am and 
ada pt it to your own need~. Comes with a coupl~ 01 
in.oicelormstowritcyou.firSlinvoicelontoit . 
Ordar#72{)1 cauatta ve"ion 129.95 
Ordar # 7200 dilkverlion 139.95 

Maiting Lin 
This menu driven program allows the small bUlinell 
ma"l to keep track 01 vendO'1 and CUSlomerl. You can 
search lora nlmeor address 01 a ce.tain town or for 
Inaddreu wilh it tertain note. SO add.esses are put 
in loone l ile. 
Order # 1212 cauattev8nion 
Or!le. # 1213 di,kverlion 

In-..entoryCorl tro l 
This program is menu dr iven. It givti you the 
fo llowing oplions: rud/Slo.e data , define items, 
entry edit ing. inven tory maintenance l incom ing­
outgoingl, rapofls . The producu are no.1Id wilh 
inv~ ntorv number, manufacturer, reorder lenl. 
present levcl,coda number, descr iption. 
Order # 1214 ..,uettave"ion 
Order#1215 disk version 

ATMONA·l 
This il ~ machine Iln9UiIgO manila' Ihl! pro~ides you 
with Ihf .mon importan t commandl for programming 
in mlKhlnl ·larlguJge. Oi \fneml>le, dump (hell and 
ASCII), changtl memory loca t ion, block Iransfer, fi ll 
memory block. save and load mlchino·langu&gep,o­
grams, lIa rt programs. Printer option via three 
dilferentinte. facel 
0.d., # 7022 cal .. tteytflion 
Or"". # 7023 di\kve .. io rl 
Order #1024 .., rt.idgoave.,ion 

ATMONA·2 
This is f tracer IdeblJ99'llrl that lell you e~plore the 
ATARI RAM / ROM a.el . You can IIOP al previously 
5Olecl~ add.ell, opcode, o. operand. Aho very 
valuable in unders tanding the mic.oprocenOI. At 
each nop. al l reginars of the CPU may be changed. 
Include, ATMONA·1. 
Ord ... # 1049 canettDYOflion 
Order # 1050 dilk vellion 

ATMAS 
Macro·Anemble. for ATAR I·800/48k. One 01 the 
mon powerful edi tor .ssemble" on the ma.ket 
Versatile edito. with scrolling. Up to 17k ofwurce· 
Code. Very flil. translates 5k 10ll.ce-code in about 5 
seconds. Source eodecan be uved on disk or cas50ne. 
Oncludet ATMONA·l1 
Order # 7099 di sk venion 
Ord ... # 1999 cartr idge vetlion 

ATEXT·1 
Thil wordprocelwr il an ellcc ileflt buy lor you. 
money . It fea tures Il:reen oriented editing.lcroHing, 
wi':'Y sa.a.ch (even nened), le ft and right margin 
junlfi~t,on . Over 30 commandl. Te~t ~n be saved 
ondiskorcalsetle. 
Order #1210 
Order # 1216 di,kvers;orl 
Order #1217 cart ridgevenion 

GUNfIGHT 

FORTH from Elcomp Publ ilhing, Inc. is an ulendad 
Fig·Forth·venion. Editor and I/O packilgO inchJded. 
Utility package includesdecompill/f,sactorcopY,Hu· 
dump ~ASCIII, ATARI Filehandling, total graphic 
antJwund.joyllickprogramlndplaycrmillilc . 
E~treme l y powerful! 
Order # 1055 

diok 
Learn·FORTH Irom Elcomp Publishing, Inc. 
A lubset 01 Fig·FOfth lor the beginner. 
132k RAM) or on casselle (16k RAMl. 
Order # 1053 

~ ",,,,~:::i"="'" ~on ... . .....".,_~ O,do<.No. 680 124.&5 

We Ar", 010< 1 " '" 1>OO,,,, ... n,,,,, 6'. 
u""U ,n " .. IK><>~ "Tn~ Cu"orn 
AO:IIM ··ft"".bCl,u.1 

- 6522 110 Doa,dNo . 605 I H.OO 

:=RE~~~~.~:n..~~ :~:: 
I'.o.o.ypi""bo.,d!o"h. 
APJlloll No . 6O<I IN.DO 

s!o,,.poo.'.,bo.,dto,.h.App'.II NO. 606 '-49.00 
0.00< ,_ ~,~. a~<I .... , 'h~ ,,<"' ~ ! ..... i 

CO,.. ,NG SOON! OROER NOW I 

EPROM BURNER for ATARI400/800 
Wo.ks with gameporu . No addi tional power lupply 
needed. Comel campI. itSsembled wit~ softw are 
(2116,2732.2532). 
Ord ... #1042 1119.00 
EPROM BURNER for ATAR1400/800 KIT 
Printed circuit board incl. Software end elltens iva 

Book. + Scftwa" lor VIC·20 trequires3k RAM Exp.1 
#4810 Wordprocenor for VIC·;'>O. 8k RAM 
#4883 Mliling Lin for VIC·:'>O. 16k RAM 
# 141 Trick~for VICs· The VICstory Progr. 
# 4880 TIC TAC VIC 
#488 1 GAMEPACK I (3 Games) 
# 4885 OualJoystick InlfrUClion 
INPUT! OUTPUT Programming with your VIC 
Order # 4886 
# 4896 Miniassembler for VIC·20 
# 4881 Tennis.Squlsh.Break 
#4894 Runfillfor VIC 
Univerllli Experimenter Boud for the V1C·20 
(Save money with Ihis great board). Th is board 
plugs right in to the expanlion IIOt o f the VIC·20. 
The board contains a large prolotyping area 
own circuit design and expans ion . The ,t 
article showl you how to b u"d y.~ ur own 
ellpenderand ROM·board . 
Order # 4844 
Software for SINCLA IR ZX·81 and TIME X 1000 
#2399 Machine Language Monilor 
# 2398 Mailing Li n 

BookslorOSI 
# 151 The Firll Book 01 Ohio 
# 158 The Secolld Book 01 Ohio 
# 159 The Third Book of Ohio 
# 160 The Four,h Book o f Ohio 
# 161 The Fift h Book 01 Ohio 

# 15 1 8K MicrolOh BASIC Ref. Man. 
# 152 Expanlion Handbook fo r 6502 Ind 6B02 
# 153 MicrocompuUtr Appl. Notes 




	Cover

	Preface

	Contents

	Monitor, address, statements

	Read This! - 
PRTBYT
	Programming Model 
	Branches 
	Subroutines 
	Indexed Adddressing 
	Data 
	Differences between ATAS-1, ATMAS-1, and Atari Assembler 
	Input of Numbers 
	Assemblers
	Short Cuts 
	Small Examples 
	Relocator 
	Reverse Video

	ASCII Output

	Random Number Generator

	Machine Language from BASIC

	Number Systems

	Hex Numbers

	Digital Concepts


