HOW TO PROGRAM YOUR

‘ ucﬂou TO
‘LANGUAGE

This book is an independent production of Ing. W. HOFACKER
GMBH International. It is published as a service to all ATARI
personal computer users worldwide.

All rights reserved. No part of this book may be reproduced by
any means without the express written permission of the publisher.
Example programs are for personal use only. Every reasonable
effort has been made to ensure accuracy throughout this book,
but neither the author or publisher can assume responsibility for
any errors or omissions. No liability is assumed for any direct, or
indirect, damages resulting from the use of information contained
herein.

First Edition

First Printing

October 1982 in the Federal Republic of Germany

© Copyright 1982 by Winfried Hofacker

ISBN 3-92 1682-97-5

Reference is made to ATARI throughout this book. ATARI is a trademark of ATARI
Inc., a division of Warner Communications Company.

Publisher:
Ing. W.” HOFACKER GmbH, Tegernseerstr. 18, D-8150 Holzkirchen, W.-Germany

US-Distributor:
ELCOMP Publishing, Inc., 53 Redrock Lane, Pomona CA 91766

W TO PROGRAM YOUR
ATARI®
in 6502 Machinelanguage

[=8
%t‘r
[l

) 'l..[.

4 MR

r B]

PREFACE

ATARI Assembly Language Programming
Learning by using

Few features of a home computer confuse the novice computer
owner more than software. Many of these new owners have
studied the system manuals, they have possibly read articles or
even books on microcomputers. Many of them already pro-
grammed their ATARI computer in BASIC, FORTH, PILOT or
another high level language. After a while, they will find out that
the language used is too slow for their needs (animation, sound,
graphics, to name just a few applications). They also want to
know more about the internal things happening in the computer.
They are most likely aware of the ubiquitous O‘s and 1‘s that
control the computer. But how do those ubiquitous digits relate to
the information displayed on the screen and to the language of the
computer. How can they be put to work?

The subject of this book is to teach you how to program your
ATARI computer in 6502 machine language. You may use a
machine language monitor (like ATMONA-1, Monkey Wrench, the
Debugger from the ATARI Editor/Assemblercartridge or the built
in monitor from KDOS), to enter and start the programs listed in
this book. Later on we will find out that itis too cumbersom to do
the assembly by hand. We than use an assembler for our programs
and we will learn how to call machine language subroutines from
BASIC.

TABLE OF CONTENTS

Monitor, address, program counter, statements.
PRIBY T-ROULING .0 o6 i w5 § sniole 8 syt s sreshasede sus ot s
PART 2

Programming model of the 6502 CPU, CPU Register,

Zero page addressing, absolute addressing
PART 3

Programs with branches

Positive and negative numbers :

Relative addressing, Comparisons R
PART 4 '

How to use subroutines.t
Saving the contents of registers.
Exchange of data between main program and subroutine
INAITECE [UIMIPS S o6 65 5 5w s 5 w550 5 05 o o0 e 61 0SS 8 el 88 o0 5051
PART 5 ‘

indexed atEressing . . .« « <vooon v imnm e snyaewmdsns
Transfer of data withinmemory
PART 6

Input of text, logicflowchart.
Differences between the ATARI Editor/Assembler

Cartridge and ATAS-1 and ATMAS-1covuaen.
PART 7

Input of a hexadecimal number

Input of a decimal number

Multiplicationby 10 oot e
PART 8

Pseudo commands and address calculations.
PART 9

Stack operation, execution timeand indirect jump
EOUSTDTOUTINGS s eiie =1 o 1w maiiiniin Ko 18 12150 5130 oo 17 552 FLL 5 S GARMGTR: 3

PART 10
Comparison of equivalent BASIC and machine language

DFOGEATIISS vo x5 55,81 arm b 6118 G5 T b5 5 @SR e 6 S o U e s 2 057
Machine code examples

Printsonerowof characterC 059
A screen full of characters. 060
Setting the colorregisters, 063
Relocator for the ATARI i, 065
ReVerse Video: . .cc.c s i onmosimme s sasesssssasssssesss 071
ASETILOUIBUT . 2 o6 110 16 515 e 5 io1ah 5115, 21533 23w 54t s s s i vt s 073
RANDOM Number Generator.c.vviiinnen.. 075
Accessing Machine Language Programs from BASIC........ 079

INTRODUCTION TO NUMBER SYSTEMS

CHAPTER A

Number systemsovcn e nvnmerneeannennsnaans 081
Binary NUMDBETS: ¢ ¢t ¢t wowmws o s nbioman » b S I A 082
Hexadecimal numbers. i, 085
Hexadecimal to decimal conversion. 090
CHAPTER B

Digital concepts — Logic in programming and computer

FIATOWATE 252 it o 5 nit 800 75 6 51) Sl oniass 1 5 808018 b oot i (e 093
Logic operations and logicgates 095
Combinational logicand decoders. 101

Decoders and memory
CGRULDUSISYSEEM: madici s s o b nsmid s ol b detin] Sele | sl 2050, 105

Part 1

Most people don't realize that BASIC cammands like
IF or THEN actually are sequences of cammands in
machine language. This introduction is meant for
those who want to leave BASIC and go deeper into
their caomputer.

The 6502 microprocessor and 1its commands are the
subjects of this introduction. Once you understood
how this microprocessor works it 1is not very
difficult to learn another one. In this section we
will talk about some rudiments.

The first thing you need is the monitor. This is
not the television, but the operating system that
takes control over the camputer after power-up.

The monitor is very important for programming in
machine-language. It contains the routines needed
most, such as outputs to, and inputs fram, a device.
To get into the monitor you have to enter a certain
canmand. With the APPLE II the command would be :
CALL - 151 (in BASIC), or "M" after power up with
OHIO Cl1P. The AIM 65 is in the monitor
automatically after power up. The ATARI 400/800 is
in the EDIT-mode, if you use the ASSEMBLER EDITOR
cartridge. The samples in this booklet are written
for the machine-language monitor ATMONA-1 for ATARI
fram ELCOMP.

Programs in machine-language work directly in the
camputers memory. Each camand is stored at a
certain address. This address is the memory
location where the first statement to be executed
is stored. To start a machine-language program the

startaddress of that progam has to be stored in the
progam counter of the microprocessor.

The statements for the microprocessor are one, two,
or three bytes long. One byte is eight bits broad
and, therefore, one word for a eight bit processor.
The first byte contains the cperation code. Figure
1 shows the different commands available on the
6502 microprocessor. The left column in that figure
shows the mnemonics for the commands (assembler—

code) . One or two address bytes can follow the
operation code. There are several ways for
addressing, which will be explained later.

Examples of statements

l'
Load the accumulator with the contents of memory

location $1000 ($ means : the following number is
hexadecimal).

assembler code : LDA $1000
hex—-code < AD 00 10

This statement is three bytes long. With the 6502
the addresses are specified with first the lower,
then the higher byte.

2.
Campare the contents of the accumulator with the
contents of the very next location.

assembler code : CMP #S7F
hex-code ¢t C9 7F

This is a two-byte statement. The #-sign means
immediate addressing. The operation referes to the
memory location which immediately follows the
cammand.

3.
Shift the contents of the accumulator to the left
one position.

assembler—-code : ASL
hex-code < 0A

2

This is a one-byte statement,
in this case.

Notes to part 1 :

monitor
address
program counter
statement

1-, 2-, and 3-byte cammands

* ¥ % ¥ *

no address

is

needed

Adressing modes

condition
3 i des
s x| > X |[>|%|= -3 I il
symb. 2] |sl2]l2|=2|al|l0|&
Commands |code | Operation | = 2 § 2IRIRIRIZIZ|2|2|(%|Z|lNnzci1 DV
Transport [LDA [M~A A9 |AD [BD| B9 |AS5 |B5 A1 B1 X X = = — —
LDX M= X A2 |AE BE |A6 B6 X X = — — —
LDY |M=Y AD |AC |BC A4 | B4 X X = = = =
STA |A=M 8D (9D (99 (85 (95 81|91 = = e e =
STX | X=+M 8E 86 | . (96 ey
STY |Y=M 8c 84 (94 e e i
TAX | A= X AR M = s
TAY |A=Y ABIX X = = =
TXA | X+ A BAEN N = = =
TYA | YA 8BIX X = = = —
TXS | X—=+S oAl = = = = =
TSX |S—+X BAIX X = = == =
PLA | S+1 =S, Ms—> A 8B X = = e
PHA | A= Ms, S—1 S 48 l= = = o i
PLP [S+1—S,Ms—~P 28
PHP |P—+Ms,S—1-5S 08|- — — — — —
arithmetic- |ADC | A+M+C— A 69 |6D |7D |79 |65 |75 81|71 X X X — - X
SBC | A-M—C—~ A E9 |ED |FD|F9 |E5 |F5 E1|F1 X X X - = X
INC |M+1=>M EE |FE E6 | F6 X X = = = =
DEC | M—=1-M CE |DE C6 | D6 X X — = = =
INX | 41+ X EBIX X - - = =
DEX | X—1-+X CAIX X —-= <& -~
INY | YH1 =Y BN ¥ - = = =
DEY [Y-1-Y 88 IX X — — — —
logic- AND | AAM—A 29 |2D 3D |39 |25 |35 21|31 W o= o =
ORA [AVM=—A 09 |oD (10|19 {05 |15 01| 1 X X = = = =
EOR [A¥M~—A 49 |4D [5D |59 |45 |55 41 | 51 X X = — — =
compare- [CMP [A-M c9 [cp [pD| DY |5 | DS c1|D1 X X X = = =
CPX [X-M EO |EC E4 X X X = = =
CPY | Y-M co |cc ca X X X = = =
BIT |[AAM 2C 24 9 K o §
branch- BCC | BRANCH ON C=0 80 — 0 e
BCS | BRANCH ON C=1 BO i e
BEQ | BRANCH ON 2=1 FO | i e e
BNE | BRANCH ON Z=0 DO = e S
BMI | BRANCH ON N=1 30 S
BPL | BRANCH ON N=0 10 e]
BVC [BRANCH ON V=0 50 By . = TS
BVS | BRANCH ON V=1 70 e, e
JMP 4 6C = - - - -
JSR 20 e e =
SHIFT- ASL o€ |1E 06 |16 0A X X X — = —
LSR 4E |5E 46 | 56 aA 0 X X — = =
ROL 2E |3E 26 |36 2A X X X - - -
ROR 6E | 7E 66 | 76 6A X X X — — —
Status- CcLC | c=0 Hl= =0 = = =
CLD | D=0 Bl == = 0§ ==
Register cLl | =0 BB le = = § = =
CLV | v=0 BE e — = = — 10
SEC | C=1 ! Ml = = = e
SED | D=1 i leas s=21 =
SEI| 1=1 i B = o = § &= =
Misc. NOP [NO OPER Al = = = o =
RTS [RETURN F. SUB B0] [l et
RTI | RETURN F. INT 40
BRK | BREAK 0|- - -1 - =
Table |

READ THIS!

PRTBYT

PROGRAMMING IN MACHINE-LANGUAGE WITH THE
MICROPROCESSOR 6502

All examples are written for ATARI 400/800. They

work in conjunction with the machine-language
monitor ATMONA 1.

The samples use some routines fram the ATARI
monitor. Two examples are the output of a character

to the screen, and the input of a character from
the keyboard.

Same programs contain the command JSR PRTBYT. This
subroutine calls a routine for output of the
contents of the accumulator in the form of two
hexadecimal bytes. This routine has to be entered
together with the program that calls that routine.
PRTBYT starts at address 1000 and is called by the
OP-code 20 00 10.

The rest of the programs start at address 600. This
is an unused part of memory (page 6) and may be
used for short programs or for storage of data. Our
examples are short so that they fit in this area.

Here is the routine PRTBYT :

1000: 8D 23 10 STA $1023

1003: 4A LSR

1004: 4A LSR -
1005: 4A LSR

1006: 4A LSR

1007: 20 14 10 JSR $1014
100A: AD 23 10 LDA $1023
100D: 20 14 10 JSR $1014
1010: AD 23 10 LDA $1023
1013: 60 RTS

1014: 29 OF AND #SOF
1016: C9 0A CMP #SO0A
1018: 18 CLC

1019: 30 02 BMI $101D
101B: 69 07 ADC #$07
101D: 69 30 ADC #$30
101F: 4C A4 F6 JMP SF6A4
1022: 00 BRK

To enter the above program use the machine~language
monitor ATMONA 1.

Part 2
2-1 Programming model of the 6502 CPU

By locking at the Thardware structure of a
microprocessor you get a survey of what statements
it can execute. The structure of the 6502 is shown
in figure 2-1. There are four eight-bit registers :
the accumulator, the X-register, the Y-register,
and the status register. The program counter is 16
bit long and can represent addresses fram 0 to
65535,

7 0
Accumulator
X-Register
156 Y-Register
[Program Counter MSB Program Counter LSB

l 1 | Stack Pointer

Processor Status Flag

Figure 2-1
programming model of the 6502

Next is a stack pointer. The stack pointer points
to a special part of the memory, the stack, at
addresses $100 to $1FF. Only eight bits are wused
for addressing, the ninth bit always is one.

What are all these registers for ?

The main register is the accumulator. This is where
all calculations are executed and the results of
all calculations are stored. For addressing, one of
the index registers may be used. These registers
can be used as counters. For example the statement

7

INX increments the contents of the X-register by
one. The index register can also be used to
indicate addresses. These features will be wused in

later sample programs.

The status register indicates the present status of

the processor. Each bit marks a result of an
operation.

IENDnRn

lp carry =1 Carry from bit 7

ZERO =1 Result=0
—— IRQ =1 Nointerrupt
L————§p DECIMAL =1 Decimal arithmetic
\——) BRK =1 BRK statement executed
$ OVERFLOW =1 Overflow from bit 6
— NEGATIVE =1 Result negative

Figure 2-2

bits of the status register

The zero flag becanes 1, if the contents of the
accumulator becames zero. The carry flag becomes 1,
if a carry fram bit 7 to bit 8 occurres.

The right column of figure 1 shows which operations
affect the bits in the status register (X indicates
change possible). For example a LDA statement can
change bits N and Z; the statement STA can't change
any bit of the status register.

The stackpointer points to a free area in the stack.

You can store the contents of the accumulator there
with PHA (push accumulator; one byte statement)
then the stackpointer will be set to the next
memory location. PLA (pull accumulator) sets the
pointer back one location. At- this time the
contents of that location will be transfered to the
accumulator.

8

Note : the top of the stack is address S$1FF. The
stack builds up to address $100. Another important
task of the stack is to hold the current address in
case of a jump to a subroutine. At the return from
the subroutine this address is transferred back to
the program counter. The program counter always
holds the address of the cammand to be executed
next. Only jump-instructions change the contents of
the program counter.

Figure 2-3 shows all commands available for
transferring data between the registers and memory.
As you can see the 6502 has no command for
transferring data between the registers, or to
exchange the contents of X- and Y-register as is
possible with other processors.

If you know how to program one processor and wish
to program another one, you should study the
logical structure, concerning the effects of the
canmands.

Y -Register FLE)
STY
TYA TAY
y
il : 08 Memor
STACK || Accumulator - < Y
PLA 7y STA
TXA v TAX _ LDX
X-Register >
STX
TXS TSK
A4
Stack Pointer
PLPA
PHP | Status Register

Figure 2-3

Transfer of data between registers and memory

2-2

A first example and the paper—pencil-method.

The addition of two numbers is quite simple in a
higher programming language :

10 A=5 LDA # $05
20 B=3 B cw

30 C=A+B B ADC # $03
40 PRINT C JSR PRTBYT

To do the same 3job in machine language it is
necessary to answer the following questions first :

Where are the numbers stored ?

Are the numbers of type fixed point or floating
point ?

Is there a routine existing in the monitor, which
prints the contents of a memory location ?

Here is the program in machine-language :

LDA #S05 load the accumulator with 05 (direct
addressing) .

The number 05 1is stored immediately
after the operation code and is of the fixed point

type.

CLC clear the carry bit for the next
operation
ADC #$03 add with carry 03 (immediate). The

result is in the accumulator.

JSR PRTBYT PRTBYT is a monitor subroutine that
prints the contents of the accumulator on the
screen as two hex-numbers

BRK stop here

Figure 2-4 shows a survey of the memory. On the
left side are the addresses in decimal and on the
right side they are in hexadecimal form. The
addresses fram 0 to $400 represent 1lk of memory.
The addresses fraom $1000 to $2000 represent 4k. Now
we want to translate the program into machine
language by using the paper and pencil method. This

10

is the lowest level of programming, but it is
useful in learning the programming in machine
language.

The first problem is where to start the program. On
principle the program can start anywhere in memory.
There are however two certain areas which you
should not use. First 1is the zero-page, a very
useful area with simplified addressing, second 1is
the stack. (remember that the stack is used by the
processor itself !). For these reasons the
addresses fram 0 to $1FF are not available.

Decimal Addresses Hexadecimal Addresses
65535 $FFFFW
4k byte
61440 $F000
4k byte
57344 | l$EOOO
|
| !
8192 | 1 $2000
| I
: : 4k byte
' |
4096 — { $1000
| { \
! |
| I
} 4k byte
1024 $400
512 $200 \1K B.
256 STACK $100
0 ZERO-PAGE |0

Figure 2.4: Decimal and hexadecimal addressing of a 64 k byte memory

11

Let's place our program at $600.
Now we can translate the first cammand. If you lock
at the table you will find that LDA has the code A9.

Adjacent to that the first line locks as follows :

$0600 A9 05 LDA #S05

A9 1is the operation code and 05 is the number which
follows immediately. This command is two bytes long.
The next line is at $0602.

$0602 18 CLC

18 is the code for clear carry. It can be found in
table 1 under status register statements. The line
after that is add with carry (ADC). The carry bit
has to be cleared in this case, otherwise the
result of the addition could be wrong.

$0603 69 03 ADC #$03

69 1is the code for addition with immediate
addressing. It can be found in table 1 under
arithmetic statements. The next command calls the
subroutine PRIBYT for output to the screen. This
subroutine starts at address $1000 with our
programs. Therefore the line for output looks as
follows :

$0605 20 00 10 JSR PRTBYT
20 is the code for JSR (JUMP SUBROUTINE) .

Remempber : with the 6502 processor you first have
to enter the lower byte (LSB, least significant
byte), then the higher byte of the address (MSB,

most significant byte). After which we stop the
program with :

$0608 00 BRK

Most camputers jump back into the monitor after
they hit a BRK-instruction. The whole program locks

12

like this for the ATARI 400/800 :

$0600 A9 05 LDA #S05
$0602 18 e

$0603 69 03 ADC #$03
$0605 20 00 10 JSR PRTBYT
$0608 00 BRK

Thus a dump of these locations looks as follows :

$0600: A9 05 18 69 03 20 00 10
$0608: 00

At this point we will not talk about how to enter
that program, rather we will discuss different
techniques of addressing. Let's assume that there
is the same job, but the two numbers are stored in
‘two zero-page locations. The number 5 is stored at
location $10 and the number 3 is stored at location
$11. Our program would lock as follows :

S0600 A5 10 LDA $S10 ;load the accumulator with
the contents of location $10
$0602 18 CLC ;clear carry bit

$0603 65 11 ADC $11 ; add contents of location
$11

$0605 20 00 10 JSR PRTBYT ;output

$0608 00 BRK ;stop

A5 1is the code for LDA with the contents of a zero—
page location.

In the next example we assume, that the numbers are
stored anywhere in memory, for example at $200A and
at $3005. The program would lock as follows :

$0600 AD OA 20 LDA S$200A ; load the contents of
location $200A

$0603 18 CLe ;clear carry bit

$0604 6D 05 30 ADC S$3005 ; add the contents of
location $3005

$0607 20 00 10 JSR PRTBYT;output to screen

$060A 00 BRK ;stop

13

In this case AD is the code for LDA with the
contents of an absolute address. The code for ADC
the contents of an absolute address is 6D. This
last program is two bytes longer than the prior one.
If possible, in order to shorten the program, the
zero-page should be used for auxiliary cells.

Notes to part 2:

programming model of the 6502
CPU register

zero-page addressing
absolute addressing

* % % *

14

Part 3

In part 2 we talked about a program which flows off
straight. In this part we will talk about programs
which -contain branches.

3-1 Programs with branches

There are many programs which contain loops that
have to be traveled through until a certain
condition becames camplied with. As an example the
condition can be whether the contents of a memory
location or a register is equal to zero, or whether
a number in a register is greater than, or equal to,
or smaller than, the contents of a memory location.
The bits in the status register are influenced by
operations or camparisons (see figure 2-2). Whether
branch cammands are executed or not, depends on the
status of certain bits. An example of this is a
delay loop. The contents of the X-register is
decremented until it is zero.

Here is the program for that :

LDX #SO0A ;load the X-register with A0

M DEX ;decrement X-register by one
BNE M ;jump back to M, if not zero
BRK ;stop program, if X-register=0

In machine-language it locks as follows :

0600 A2 A0 LDX #S$SA0
0602 CA M DEX

0603 DO —— BNE M
0605 00 BRK

Location 0604 has been 1left open. The number of
bytes the program has to jump back belongs to there.

15

The branch cammands use the so-called relative
addressing. This means the current contents of the

program counter becames increased or decreased by a
certain number. The program then continues at the
new address. What is the current contents of the
program counter ? The program counter of the 6502

always points to the next cammand; in our example
this is the BRK-caommand at location 0605. To get
back to location 0602 we have to decrement the
program counter by 3. Therefore the hexadecimal
equivalent of -3 has to be stored at location 0604.
How are negative numbers displayed ?

Bit 7 is used to determine, whether a number is
positive or negative.

Bit 7 6 5 4 3 2 1 0

=) TS 4+ I J }
T L] T 1 T

SG NUMBER

If bit 7 is 1, then the number is negative, if bit
7 is zero, then the number is positive.

Positive numbers are :

0 = $00 = %0000 0000
1 = 501 = %0000 0001
2 = $02 = %0000 0010

127 = $7F = %0111 1111

Negative numbers are described by the complement on
two. To camplement a number means to turn around
all bits of that number : ones became zeros, zeros
becane ones. With the complement on two, one is
added after that. For example the number -1 :

+1 = %0000 0001 ; the complemented number :
%1111 1110
addition of 1 results in : %1111 1111 = SFF

16

Negative numbers are :

—11=
-—-2:
=3

-128

Thus

SFF
SFE

]

SFD =

$80

BL11l -J1LL
%1111 1110
$1111 1101

%1000 0000

Canmplete program :

0600 A2 AO

0602 CA

0603 DO FD

0605 00

You also can use

LDX
M DEX
BNE
BRK

M

#SA0

the following

tables

LSD

=
7]
1=

0

1

A

N OO A WN = O

32
48
64
80
96
112

17
33
49
65
81
97

18
34
50
66
82
98

19
35
51
67
83
99

113 114 1156

20
36
52
68
84
100
116

21
37
53
69
85
101
117

22
38
54
70
86

23
39
55
71
87

24
40
56
72
88

25
41
57
73
89

10
26
42
58
74
90

1"
27,
43
59
75
91

12
28
44
60
76
92

102 103 104 105 106 107 108
118 119 120 121 122 123 124

13
29
45
61
77
93

125

30
46
62
78
94
110

31
47
63
79
95
1M
127

Table

3—-1 Forward branch

-
%]
o

=
7
=]

TMOoOO®>» © ©

128
112

5288

32

127
11
95
79
63
47
31

126
110
94
78
62
46
30

125
109
93
77
61
45
29
13

124 123 122

108
92
76
60
44
28

107
97
5
59
43
27
1

106
90
74
58
42
26

121 120 119
105 104 103

89
73
57
41
25

9

88
72
56
40
24

8

87
7
55
39
23

7

118
102
86
70
54
38
22
6

117
101
85
69
53
37
21

5

116
100
84
68
52
36
20

115
99
83
67
51
35
19

3

114
98
82
66
50
34

2

113
97
81
65
49
33
17

Table 3-2 Backward

branch

relative branches can range from -128 to +127.

17

Most mistakes happen with the calculation of bytes
for relative jumps, when assembling by hand !

3-3 Camparisons

Camparisons always happen between a register
(accumulator, X- or Y-register) and a memory
location. Bits N (negative), Z (zero), and C
(carry) are influenced by comparisons.

Figure 3-3 shows how :

Comparison N 2 (63
A X, Y(M iy 0 0
A X, Y=M 0 1 1
A X, YIM o* 0 1

* camparison with twos camplement
Figure 3-3 Flags with camparisons

If the contents of the accumulator (or X-register,
Y-register) is smaller than the contents of a
memory location, then the zero flag and the carry
flag became 0. For these two flags the numbers can
be between 0 and 255. For the N flag the numbers
are campared in the twos camnplement. These numbers
can be fram =128 to +127.

For example :

The contents of the accumulator is S$FD, the
contents of a memory location is 00. A camparison A
> M (252-00) causes C to became 1 and Z to become
0. Here are different possibilities to branch :

A< M BCC LABEL
A <=M BCC LABEL
BEQ LABEL

A= M BEQ LABEL

A>=M BCS LABEL

A> M BEQ NOT LABEL
BCS LABEL

The following program is a simple example for
camparisons and branches. We want to input a
character fram the keyboard and check whether or
not it is a hexadecimal number (0-9, A-F). If the
character is hexadecimal, then we want to store it
in location INP with address S$FF. If not, we want
to leave the program ($00 in INP).

For the input we use subroutine GETCHR, which is
included in most monitors. This subroutine checks
whether or not a key 1is pressed. If a key is
pressed, the program returns fram the subroutine
with the ASCII character in the accumulator.

Figure 3-4 shows the ASCII characters

MSD 0 1 2 3 4 5 6 7
LSD 000 001 010 011 100 101 110 111
0 0000 NUL DLE SP 0 @ P P
1 0001 SOH DC1 ! 1 A Q a qQ
2 0010 STX DC2 " 2 B R b §
3 0011 ETX DC3 # 3 C 5 c s
4 0100 EOT DC4 $ 4 D T d t
5 0101 ENQ NAK % 5 E u e u
6 0110 ACK SYN & 6 [v f v
7 0111 BEL ETB ' 7 G W o] w
8 1000 BS CAN (8 H X h X
9 1001 HT EM) 9 | Y i y
A 1010 LF suB ¥ 2 J Z j z
B 1011 vT ESC + : K [k {
(o] 1100 FF FS ¥ < 1= \ | |
D 1101 CR GS - = M 1 m }
E 1110 SO RS ° > N t n ~
F 1111 SI VS ! ? (o] .= o DEL

ASCII characters

0600: A9 00 LDA #$00
0602: 85 FF STA SFF
0604: 20 DD F6 JSR $F6DD
0607 : c9 30 CMP #$30
0609: 90 13 BCC SO061E
060B: C9 47 CMP #s47
060D: BO OF BCS SO061E
060F: C9 3A CMP #S$3A
0611: 90 07 BCC S061A
0613: C9 41 CMP #$41
0615: 90 07 BCC SO061E
0617: 18 CLG
0618: 69 09 ADC #3509
061A: 29 OF AND #S0F
061C: 85 FF STA SFF
061E: 00 BRK

Figure 3-5 program ASCII HEX

19

Try to assemble the program by hand and calculate

the jumps. This is a very good mental exercise.
Canpare your branch statements with those in the
program before you start the program.

Notes to part 3 :

program branch

positive and negative numbers
relative addressing

canparisons

* ¥ * X

20

Part 4

In this section we will talk about the use of
subrautines. Subroutines are independent parts of
programs. They are called by the statement JSR
(JuMP SUBROUTINE) . With RTS (RETURN FROM
SUBROUTINE) you return to the main programn.

4-1 How to call a subroutine

As an example we use the instruction JSR GETCHAR
fram the program ASCII HEX. (GETCHAR =8F6DD on the ATARI)
The first lines there are :

0600: A9 00 LDA #S00
0602: 85 FF STA SFF

0604: 20 DD F6 JSR SF6DD
0607 : Cc9 30 CMP #S30

Location 0604 contains the command for Jjump to
subroutine. With the execution of this statement
the address of the camand to be executed after
that (decremented by one) is stored in the stack.

The stack
Before the call After the call
S— S1FF 06 $1FF
$1FE 08 $1FE
S= $1IFD

21

The stack is a defined part of memory of 6502
sytems. The TOS (top of stack) is at address $1FF.
The stack pointer always points to the next
available location in the stack.

It is possible to Jjump fram one subroutine into
another one. Figure 4-3 shows the model for that.

$1000 $1500

r__//F—JSR %1500___,///_-
JSR $100

RTS RTS

Figure 4-3 nested subroutines

The stack could hold up to 128 return addresses of
subroutines at a time, but you will never need that
many.

4-2 Saving the contents of registers

Most subroutines change the contents of the
registers. If these contents are needed later
(after RTS), they have to be saved.

This can be done either in the main program or in
the subroutine. If you know what registers are
changed by the subroutine, then you can save the
contents at an unused location. The easiest way
though, is to save the contents of all registes
within the subroutine. The beginning of that
subroutine then lodks as follows :

PHA ;ACCU => STACK
TXA ;X => ACCU
PHA ;ACCU => STACK
TYA ;Y =-> ACCU
PHA ;ACCU => STACK

22

Prior to the RTS cammand, you have to restore the
old contents of the registers. The end of the
subroutine will lock as follows :

PIA ;LOAD Y
TAY 3

PLA ;LOAD X
TAX ;

PLA ;LOAD ACCU
RTS ;JUMP BACK

The contents of the registers could also be stored
in auxiliary locations instead of the stack.

4-3 Exchange of data between main program and
subroutine

There are three ways to exchange data between main
program and subroutine.

1. Exchange via the registers. For example most
keyboard input routines have the character in the
accunulator at the return.

2. Exchange via the stack. This technique is used
often when machine language programs are used

together with high 1level languages (for example
PASCAL) .

3. The main program and the subroutine use a cammon
memory area for the data.

The method you should use depends on the problem to
be solved. If the whole program is written by one
programmer, then he will use the method he likes
best. If more than one programmer works together
then they have to arrange the kind of exchange.

Advantages with the use of subroutines :

Longer programs becane split into smaller parts.
The shorter parts are easier to understand and
debugging becames easier. You can build up a
library of subroutines and can use these
subroutines later.

23

4-4

SPECL:

24

Indirect
subroutines.

LDA
BNE
INC
LDA
BNE
LDA
AND
BEG
JMP

jumps

CART

ENSPEC

CART
CART

ENSPEC
CARTFG

#$80

ENSPEC
(CARTAD)

CHECK FOR AMOUNT

3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
37468
3769
3770

F23F
Fa242
Fa244
F247
F24A
F24C
F24F
F251
F253

and

OF

AD

EE
AD

AD
29
FO
AC

indirect jumps to

 CHECK FOR RAM OR CART

» GO IF NOTHING OR MAYBE RAM
. NOW DO RAM CHECK

IS IT ROM?

i NO

YES.,
i MASK OFF SPECIAL BIT
i BIT SET?

i YES:

RAM

FC€

a
-4

FC
FE
0A
FD
80

FE

BF

BF
BF

BF

BF

GO RUN CARTRIDGE ——

This is an indirect jump.

Part 5

5-1 Indexed addressing

Example for indexed addressing :

We have stored data (numbers and letters) at memory
locations $1000 — $101F. We now want to transfer
this data to another area starting at $2000. This
could be done by the following program :

LDA $1000
STA $2000

Please take note!
].‘:-_‘:ng\ E%ggi For DISK systems use $2B00 instead of $1000,

EDA $1002 in order to avoid overlapping with DOS.
STA $2002

LDA $101F
STA $201F

This program is long and tedious. Six bytes are
consumed for the transfer of one byte, which means
the whole program is 32* = 192 bytes 1long. With
indexed addressing this program becomes short and
simple. With the statement LDA $1000,X you 1load the
accumulator with the contents of the memory location
whose address is the sum of address $1000 and the
contents of the X-register.

For example :

If X=1, the contents of location $1001 will be
stored in the accumulator;

If X=2, the contents of location $1002 will be
stored in the accumulator.

25

It is also possible to use the Y-register. The
statement then would be : LDA $1000,Y.

Here is the program :

0600 A2 00 LDX #S00

0602 BD 00 10 M LDA $1000 ;($1000) -> A
0605 9D 00 20 STA $2000,X ;(A) => $2000
0608 E8 INX

0609 EO 20 CPX #$20 ;(X) =820 ?

060B DO F5 BNE M :CONTINUE, IF NOT
060D 00 BRK

Figure 5-1

First the X-register is loaded with zero. After that
the accumulator is loaded : LDA $1000,X then the
contents are stored at $2000,X. INX increments the X-
register. It is then checked, to see whether all
data has been transferred already. "We want to
transfer the contents of locations $1000 - $101F.
The first location that should not be tranfered is
$1020. If the contents of the X-register became $20
after INX, the program should stop.

In the comment above $1000 means the address of that
location; ($1000) means the contents of that
location.

Both index registers are 8 bit long. For that reason
it is possible to index from 0 to 255. Thus we can
transfer a maximum of 256 bytes with this method.
For the transfer of larger areas we have to use a
different technique which will be discussed later.
Here is another example :

We want to exchange the contents of locations $1000
with $10FF, $1001 with $10FE, $1002 with $10FD , etc.
(figure 5-2).

First we load X with 0 and Y with FF. Then we load
the contents of $1000 and store it in the stack.
After that we load the contents of $10FF and store
it at $1000 and next we store the value in the stack
at $10FF. Lastly the Y-register is decremented and
the X-register is incremented. The exchange is done
when X = $80.

26

0600 A2 00 LDX #S00

0602 A0 FF ILDY #SFF :FF => Y
0604 BD 00 10 M LDA $1000,X ;($S1000+X) -> A
0607 48 PHA : (A) => STACK

0608 B9 00 10 LDA $1000,Y ;($1000+Y) -> A
060B 9D 00 10 STA $1000,X - (A) -=> $1000+X

060E 68 PLA : (STACK) -> A
060F 99 00 10 STA $1000,Y ;(A) => $1000+Y
0612 88 . DEY ;(V)-1 => Y
0613 ES8 INX 1(X)41 => X
0614 EO 80 CPX #$80 ;READY ?

0616 DO EC BNE M

0618 00 BRK

Figure 5-2

The effective address with indexed addressing is the
sum of the programmed address plus the contents of
the index register used. The carry flag is noted
with these calculations. (The carry flag will be set,
if a carry appears with the calculations). With X =
$FF the contents of the accumulator will be stored
at $11DF, with the command STA $10E0,X.

The 6502 has two more ways of addressing, which
consist of indirect and indexed addressing.

Note : The final address with indirect addressing is
not the programmed address, but contents of ' that
address. For example : JMP ($2000) means a jump to
$3AFF, if the contents of $2000 and $2001 are $3AFF.

5-2 Indexed indirect addressing

With this kind of addressing the programmed address
always is an address of the 2zero page, with the
index register always the X-register. For example
LDA ($10,X).

The final address can be calculated by adding the
contents of the X-register to $10. The contents of
this and the following address is the effective
address.

27

Example :
Contents of locations S$OE - $15

(OE) = FF
(OF) = OF
(10) = 00
(11) =11
(12) = 2F
(13) = 30
§14) = 00
15) = 47

If X = 0, then IDA ($10,X) loads the contents of
location $1100; if X = 2, then LDA ($10, X) 1loads
the contents of $302F, X = 4 causes the contents of
$4700 to be loaded. No attention is payed to a carry
occurring during the calculation of the address. For

this reason the contents of location S$O0FFF will be
loaded, if X = SFE.

5-3 Indirect indexed addressing

With this kind of addressing the programmed address
is in the zero page also. Only register Y can be
used as an index register in this case. Example :
STA ($10) ,Y.

To find out the final address, add the contents of
locations $10 and $11 to the contents of register Y.

Example :
($20) = 3E
($21) = 2F

If Y = 0, then contents of the accumulator would be
stored at location $2F3E.

The last two addressing modes are used mainly as
indirect addressing, with X = 0 respectively Y = 0.
It then follows that IDA ($10,X) means : load the
accumulator with the contents of the memory location,
whose address is stored in $10 and $11.

Analogous with the statement LDA ($10),Y if Y = 0.
If the contents of these addresses are changed, you
can load the accumulator with the contents of
different locations. We will use this technique to
do a blocktransfer of not just 256, but 4k byte £from
$1000 to $2000.

28

0600 A2 00 LDX #500 0 -> X

0602 86 10 STX $10 ; (X) => LO BYTE START .

0604 86 12 STX $12 ; (X) => LO BYTE
DESTINATION

0606 A9 10 LDA #8510 7910 => A

0608 85 11 STA $11 ; (A) => HI BYTE START

060A A9 20 LDA #$20 :$20 => A

060C 85 13 STA $13 ; (A) -> HI BYTE TARGET

060E A1 10 M LDA ($10,X) ;(($10)) => A

0610 81 12 STA ($12,X) ;(A) => ($12)

0612 E6 10 INC $10 ; (S10)+1 -> S10
0614 E6 12 INC $12 : ($12)+1 -> S12
0616 DO F6 BNE M ;CONTINUE, IF <> 0
0618 E6 11 INC $11 ;ELSE ($S11)+1 -> $11
061A E6 13 INC $13 ; ($13)+1 -> $13
061C A5 11 ILDA $11

061E C9 20 CMP #$20

0620 DO EC BNE M

0622 00 BRK

0600 A2 00 86 10 86 12 A9 10
0608 85 11 A9 20 85 13 Al 10
0610 81 12 E6 10 E6 12 DO F6
0618 E6 11 E6 13 A5 11 C9 20
0620 DO EC 00 00 00 00 00 OO
0628 00 00 00 00 00 00 00 0O

Figure 5-3

In this program first the addresses for START ($10,
$11) and DESTINATION ($12, S$13) are defined. Second
we load the accumulator with the contents of $1000
by IDA ($10,X) and store it at $2000 with STA ($12,
X) . Then we increment $11 and $13 by 1 until we
reach the first address not to be moved.

Try the following two programs as an exercise :

1. Program FILL. A part of memory with the start
address in $10, $11 and the end address in $12, $13
is to be filled with the hex number, which is stored
in $14.

29

2. Program MOVE. A block of data (start address in
$10, $11; end address in $12, $13) should be moved
to another area (start address in $14, $15). This
block may be at any location, even within the area
of the block to be moved: itself. This is not
possible by the techniques used before.

Notes to part 5 :

indexed addressing

indexed indirect addressing
indirect indexed addressing
transfer of data within memory

* ¥ ¥ F

30

Part 6

In this chapter we will talk about the input of
data (characters, numbers) into the camputer. The
data should be entered with the keyboard. All
camputers with a keyboard are equipped with a
subroutine for the input of a character from the
keyboard. Most times this routine is called GETCHR.
Usually the ASCII code or a similar code (for
example ATASCII on the ATARI) is used with these
characters. An 'A' in the ASCII code for instance
is $41. This coding is used, for example, with the
ClP and the PET. The APPLE camputer uses $Cl (all
normal displayed characters have bit 8 = 1). It
follows that you have to be careful if you want to
transfer machine language programs fram one
canputer to another one !

With the ClP a check, whether 'A' was pressed looks
as follows :

JSR GETCHR (ATARI also)
CMP #S41

With the APPLE the same would lock as follows :

JSR GETCHR
CMP #$C1

If the input of data is used very often, then a
'menu' is sametimes used. This technique, that you
will know fram BASIC, is possible also in machine-
language. A text is displayed on the screen and the
program waits for an input fram the keyboard. It
then branches depending on the input. We will show

the whole program in a flowchart. A flowchart
explains the structure of a program through the use
of graphic symbols.

31

Program start. Name of the program.
Also program end.

(A)=>M Operation
@ iy Program branch
no

Figure 6-1 elements (Menue)

of a flowchart -
Output Text A

- i
Program

GETCHR Part A

Figure 6-2 Flowchart
of a menu program

32

The flowchart in figure 6-2 shows the structure of
our program. The program first prints the text and
then waits for a key to be pressed. If A, B, or E
has been pressed, the program branches to the
matching part. If another key has been pressed, the
canputer will beep and wait for another input.

This may sound simple to vyou, but a menu always
should consider these two things :

1. The end of the program should be layed down.
This means a stop of the program other than with
RESET or switching off should be possible.

2. Input errors should be tied up; a warning should
appear on the screen or an acustic sign (bell)
should mark the error.

Here is the program.

First the screen 1is cleared, then the text is
printed. The text 1is stored at memory locations
starting at $0640 and is printed by the subroutine
TXTOUT'.

The 1listing contains a few cammands which are not
CPU statements. These pseudo statements are for the

assembler. We will talk about pseudo opcodes later.
HEX-DUMP of the MENUE-program

0600 A97D20A4F6203306 ; v_3F
0608 A99B20A4F6A90020 [sv)a@
0610 DDF6C941D0062064 JvIAPF d
0618 061890E9C942D006 FXPiIBPF
0620 2073061890DFC945 sFXP_1IE
0628 DO0100A9FD20A4F6 PAQR) SV
0630 1890D2A99B20A4F6 XPR) [S$v
0638 A240A0062085F360 "@ F Es"
0640 50524F4752414D20 PROGRAM
0648 284129202050524F (A) PRO
0650 4752414D20284229 GRAM (B)
0658 2020454E44452020 ENDE
0660 2845299BA278A941 (E) ["x)A
0668 86FF20A4F6A6FFCA F Sv& J
0670 DOF460A278A94286 Pt "x)BF
0678 FF20A4F6A6FFCADO Sv& JP
0680 F460000000000000 t'@e@@ea
0688 0000000000000000 QEe@eeE@@

33

Source Code for the MENUE-program.
Note! This is ATARI Editor/Assembler cartridge syntax

0000 1O = $&O0

FE85 15 FUTLLIN $F 58S

F&DD 20 GETCHR $F 60D

FoA4 IO EQUTCH SF6A4

0600 AR7D 40 MENL LDA HE7D

Q60E Z0A4F L 50 JEH EOUTCH

06OE 20TE06 60 MENMUL JER TXTOUT

0LH08 AR 70 LDA HEOH

060A 20A4F& BO JSR EOQUTCH

O&0OD AROQO 85 DA #$00

0&60F Z0DDF& Q0 JER GETCHR

0612 €41 Q100 ChHMF #4641

0614 DOO& 0110 BNE MENUZ

NGaléd 206406 Q120 JSR AO

0619 19 0130 CLC

N&6H1A FOED 0140 RCC MENU1

061C C94% 01350 MENUZ CHMF #4642

O6H1E DO 0160 BNE MENUZ

0620 207306 QL70 J8R R

0627 18 0180 CLC

0624 Q0DF 0190 RCC MENU1

Q&L26 G945 0200 MENUE CHMF #4645

0628 DOO1L 0210 BNE MENU4

NE2A 00 Q220 BRI

O&ER ARFD O2E0 MENU4 L.DA #H4FD

QOHED 20A4F 6 0240 ISR EQUTCH

0&6I0 18 Q280 CLC

D&EL QOD2 026G RCC MENU1
Q270 3

NeEIE AYFR A7 TXTOUT L.DA HE9R

065G 20R4F6 0274 JER EOQUTCH

DAEE AR40 0280 LDX #$40

OLHEA ADOAL 020 LDY #H$04

OLEC 2083FIF OI20 JSR FUTL.IN

D&HEF &0 OZ3Z0 RTS

0640 OZ40 ¥= $0640

Q&40 50 QO350 - BYTE"FROGRAM (A) ©

0641 52

0642 4F

064 47

I

34

0644
0645
Q646
0647
0648
0649
Q64A
O64R
064C
064D
064E
Q64F
0650
0651
0652
O6EZ
0654
06ES
0656
0657
0658
0659
065A
N6SER
Q650
063D
Q63EE

065F

0660
0661
0662
QObEE
0664
0666
0668
066A
Q66D
066F
Q670
0672
0&7%
0675
0677

92
41
4D
20
28
41
29
20
20
S50 OZHO0

[—ton]
bl

4F
47

=
Wl

41
4D
20
26
47
29

20
20
45 QI70

4E
44

[

wd
20
20
28

e
wJ

29

PR 0OZBO
AZ78 QZEFO0
A4 1 Q400
B6FF 0405
20A4F & 0410
ALFF 0415
CA 0420
DOF 4 04730
&0 0440
A278 Q450
AR42 Q4 4H0
86FF 04465

[AYS]
AR

E
EER

 BYTE"FROGRASM (R

CLEYTEYENMDE (E) O

Lo BY TESYR

l.DX
DA
5TX
JER
LLDX
DEX
BNE
RTS
LDX
LDA
STX

#1220
#H41
$FF
EQUTCH
SFF

AA
#1220
HH43
$FF

35

0479 20A4F &6 G470 JER EQUTCH

Q&7 ALFF 0475 LOX HIFF
04H7E CA 0480 DEX

Q&7F DOF4 G490 BNE BE
QbHEL &0 QEHO0 RTH

0ARE ELD - END

Figure 6-3 A menu program

Notes to part 6:

* input of text

* logic flowchart

* elements of a logic flowchart

36

Differences between the
ATARI Editor/Assembler
Cartrigde and ATAS-1
and ATMAS-1

To explain the difference of some mnemonics of the ATARI
Editor/Assembler cartridge and the Editor/Assembler and ATMAS
-1 from ELCOMP Publishing we will show you the program in
ATMAS or ATAS syntax as follows:

Instead of the Asterik the ATAS uses the pseudo op-code ORG
(see first line).

Another difference is that the ATAS is screen oriented (no line
numbers needed). Instead of the equal sign ATAS uses EQU.
Additionally ATAS allows you the pseudo op-code EPZ: Equal
Zero.

There is also a difference in using the mnemonics regarding storage
of strings within the program.

ATARI ELCOMP
— BYTE “STRING"” ASC “ STRING"

Il

— BYTE B

Il

DFB & (Insertion of a byte)

— WORD = DFW (Insertion of a word
Lower byte, higher byte)

The end of string marker of the ATARI 800/400 output routine is
hex 9B.
In the listing you can see, how this command is used in the two
assemblers:

ATARI Assembler: —BYTE $9B

ATMAS from ELCOMP — DFB 9B

Depending on what Editor/Assembler from ELCOMP you use,
the stringoutput is handled as follows:

37

1. ATAS 32K and ATAS 48K Cassette Version

LDX # TEXT

LDY # TEXT/256
TEXT ASC “ STRING*

DFBS9B

2. ATMAS 48K

LDX # TEXT:L
LDY # TEXT:H

There is also a difference between other assemblers
and the ATAS-1 or ATMAS-1 in the mnemonic
code for shift and relocate commands for the
accumulator.
(ASL A =ASL) =0A
(LSR A =LSR) =4A
ROL A =ROL =2A
ROR A = ROR =6A

TEXT ASC “STRING"
DFB $9B

OHOO0 :
Q602
Q605
0608:
O60A:
OAOD:
QOH0F &
N&HE12:
0614
0616
Q619
O614A:
061C:
O61E:
Q620
0627
0624
0h2b:
D628
Q626:
Q62HE:
O62D:
0630
OhEL:

O635:

38

AP7D
20R4F6
203306

CAP9R

20R4F 6
A00
20DDF &
241
DOOs
206406
18
QOESD
co42
DOO&
207306
18
FODF
Ce4%
DOO1
QO

APFD
20AR4F 6
18
QOD2
AF9R

FUTLIN
GETCHR
EOUTCH
MENU

MENU1

MENUZ

MENUZ

MENU4

TXTOUT

ORG
EGU
EQU
EQU
LLDA
JER
JBR
LDA
JSR
L.DA
JER
CMF
ENE
JER
CLC
BCC
CMF
ENE
JSR
CL.C
ECC
CMF
ENE
ERE
L.DA
JSR
CLC
RCC
L.DA

Menu program from page 34 in ATAS
syntax

FO600
SF385
HF6HDD
sF6A4
#HE7D
EOQUTCH
TXTOUT
HEPR
EOUTCH
HEO00
GETCHR
#4641
MENUZ
AO

MENL 1
#E42

MENUZ
E

MENU 1
HE45
MENU4

#EFD
ECQUTCH

MENU1
HE9R

06ZE5: Z0A4F 6 JSR EQUTCH

0638: AZ40 LDX #TEXT:L

D6ZA: ADOG LDY #TEXT:H

063C: 2085F3 JSKR FUTLIN

06ZEF: 60 RTS

0640: SOSZ24F TEXT ASC "FROGRAM (A) 2!

064753 473241

0646: 4D2028

0649: 412920

064C: 20

064D: SO524F ASC "FROGRAM (R) =
0650: 473241

0653 4D2028

0656 422920

0659: 20

Q6SA: 454E44 ASC "ENDE (ED"
065D: 452020

0660: 284529

0663 9R DFE $%9H
0664: AZ78 A LDX #1220
Qbbb&: AF41 AA LDA #%41
0668: B6FF STX $FF
06b6A: 20A4F6 JSR EOQUTCH
066D: ALFF LDX $FF
066F: CA DEX

0&70: DOF4 ENE AA
06722 60 RTS

0673: AZ78 E LDX #1320
0675: AF42 EE LDA #$42
0677: B6FF STX &FF
0679: 20A4F6 JSR EQUTCH
067C: ALFF LDX $FF
067E: CA DEX

0&7F: DOF4 ENE ER
0681: 60 RKTS

FHYSICAL ENDADDRESS: %0682

39

*#% NO WARNINGS

FUTLLIN
EOUTCH
MEMU1
MEMUZ
TXTOUT
AO

E
GETCHR
MENU
MENUZ
MENU4
TEXT
AA

BE

QHO0
QHOE
0610
0618
0620
0628
O&6HZ0
0&78
0640
0648
D&LE0
O6EE
Ciéaéatd
0668
Q&H70
0678
0&LHB0

40

F385
$F6A4
$0605
H0L26
HOLET
%0664
$OL7E
$F&DD
HO600
$061C
HOLZE
H0H40
HOLLL
FOL7 S

AF7DE20A4FL2Q0TI06
AFFRZOAAF LAFOOZ20
DDF6C241D0O062064
0&6H18PVEQCILZ2DO0NE
20O73061890DFC?45
DOOLOOAFFD20M4F &
1890D2AYIRZ0OA4FL
AZ4OAD0OL2083F 360
SOG24F4752414D20
2841292020505 24F
4752414D20284229
20204B4E444 52020
2B4SEI9RAZ7BATAL
B&6FF Z0A4F 6ALFFCA
DOF4&0AR78ARP4286
FFE20A4F6ALFFCADD
FA460

UNUSED

) v 3F
YA $v)E
uvIAFF d
FXFi IBFF
sFXF_I1E
FAB) $v
XFEYA $v
"& F Eg”
FROGRAM
(AY PRO
GRAM (E)
ENDE
(E)A"x)A
Fosvd J
Ft " "x) BF
svi JF
£ "

Part 7

This chapter deals with the input of numbers.

7-1 Input of a hex number

For the input we use subroutine GETCHR. Subroutine
PACK then checks the input (0 - 9, A - F). If the
character is not a hex number, then the program
leaves the input mode, having the ASCII character
in the accumulator. The following figure shows the
logic flowchart of PACK.

(A)+9—~A
(A) 4 x shift
left

(A), (INL),
(INH) shift
left 4 x

RTS

Figure 7-1 Logic flowchart of PACK

41

The ASCII character has to be in the accumulator,
when the subroutine is entered. First the character
is campared to 0, then to F. If it is smaller than
0 or greater than F, it is not a hexadecimal number.
For the other characters between 0 and F, two other
camparisons are to be made. If the character is
smaller than ':', then it is a number between 0 and
9, If it is not smaller than A, then it is a number
between A and F. 1In this case 9 will be added to
the number. 'A' is $41. With the addition of 9 the
lower four bits then represent a 10. By shifting
the contents of the accumulator to the left four
times this number gets into the four higher bits.
Next the contents of the accumulator and locations
INL and INH are shifted left by ROL (four times).

Bit 7 gets shifted to bit 0 via the carry bit.
After that the four lower bits of the accumulator

are the four lower bits of location INL. The
program for that is shown in figure 7-2.

The program for the input is shown in figure 7-3.
The two memory locations INL and INH are set to 0.
For this reason you only have to enter 4F for
number 004F. For the input we use subroutine GETCHR.
GETWD (start address $0624) will be executed, until
a non-hexadecimal number is entered.

7-2 Input of a decimal number

Now we want to enter a decimal number and convert
it into a hexadecimal number.

0600: Cc9 30 CMP #$30

0602: 30 1F BMI $0623
0604: C9 46 CMP #546

0606 : 10 1B BPL $0623
0608: Cc9 3A CMP #$3A

060A: 30 07 BMI $0613
060C: Cc9 41 CMP #$41

060E: 30 13 BMI $0623
0610: 18 CLC

0611: 69 09 ADC #S09

42

0613:
0614:
0615
0616
0617:
0619:
061A:
061cC:
061E:
061F:
0621:
0623

0624:
0626
0628:
062A:
062D:
0630:
0632
0634:
0636
0639:
063B:
063C:

0A
0A
0A
0A
A0
2A
26
26
88
DO
A9
60

04

80
81

F8
00

Figure

A9
85
85
20
20
DO
A5
29
20
10
60
00

00
80
81
DD
00
09
80
OF
00
EF

ASL
ASL
ASL
ASL
LDY
ROL
ROL
ROL
DEY
BNE
LDA
RTS

7-2 PACK

F6
06

10

LDA
STA
STA
JSR
JSR
BNE
LDA
AND
JSR
BPL
RTS
BRK

#504

$80
$81

$0619
#$00

#$00

$80
$81

SF6DD
$0600
$063B

$80

#SOF
$1000
$062A

Figure 7-3 Input of a hex number

HEX-Dump from both programs (Fig. 7-2 and 7-3)

0600
0608
0610
0618
0620
0628
0630
0638

co
c9
18
04
F8
85
DO
10

30
3A
69
2A
A9
8l
09
10

30
30
09
26
00
20
A5
EF

1F
07
0A
80
60
DD
80
60

€9
C9
0A
26
A9
F6
29
00

46
41
0A
81
00
20
OF
00

10
30
0A
88
85
00
20
00

1B
13

43

The character entered is checked to see if it is a
digit, inclusive, 0 through 9. The content of the
input buffer is then multiplied by 10 and the new
number is added.

Since the 6502 CPU doesn't have a cammand for
multiplication we have to do that another way. One
way would be to add the number 10 times. We however,
use a different technique. A shift left command
corresponds with a multiplication by two.

Example : 6 = 300000110
$00001100 = 12

The number is stored and shifted left two times,
which means a multiplication by 4. Next the
original number is added so that we now have five
times the original number. The final step in
multiplying by 10 consists of one more shift left.
The program to do this is shown in figure 7-4.

Input of a decimal number

0600 A9 00 85 80 85 81 20 DD
0608 F6 20 A4 F6 C9 30 30 3B
0610 C9 39 10 37 29 OF 20 24
0618 06 18 65 80 85 80 90 02
0620 E6 81 90 E2 85 82 A5 80
0628 85 83 A5 81 85 84 26 80
0630 26 81 26 80 26 81 A5 80
0638 18 65 83 85 80 A5 81 65
0640 84 26 80 26 81 BO 03 A5
0648 82 60 00 A9 9B 20 A4 F6
0650 A5 81 20 00 10 A5 80 20
0658 00 10 00 00 00 00 00 0O

0600 A9 00 LDA #S00
0602 85 80 STA $80
0604 : 85 81 STA $81

0606 : 20 DD F6 JSR SF6DD
0609 20 A4 F6 JSR SF6A4
060C: C9 30 CMP #$30

060E: 30 3B BMI S064B

44

0610:
0612:
0614:
0616
0619:
061A:
061C:
061E:
0620:
0622:
0624:
0626 :
0628:
062A:
062C:
062E:
0630:
0632
0634:
0636
0638:
0639:
063B:
063D:
063F:
0641 :
0643 :
0645:
0647:
0649:
064A:
064B:
064D:
0650:
0652:
0655
0657:
065A:

Figure 7-4 :

c9
10
29
20
18
65
85
90
E6
90
85
A5
85
A5
85
26
26
26
26
A5
18
65
85
A5
65
26
26
BO
A5
60
00
A9
20
A5
20
A5
20
00

24 06

9B
Ad F6
81
00 10
80
00 10

CMP
BPL
AND
JSR
CLC
ADC
STA
BCC
INC
BCC
STA
LDA
STA
LDA
STA
ROL
ROL
ROL
ROL
LDA
CLC
ADC
STA
LDA
ADC
ROL
ROL
BCS
LDA
RTS
BRK
LDA
JSR
LDA
JSR
LDA
JSR
BRK

#$39
$064B
#SOF
$0624

$80
$80
$0622
$81
$0606
$82
$80
$83
$81
$84
$80
$81
$80
$81
$80

$83
$80
$81
$84
$80
$81
$064A
$82

#S9B
SF6A4
$81
$1000
$80
$1000

Input of a decimal number

45

The program PACK (figure 7-2) uses a loop four
times with ROL, ROL INL, ROL INH. This corresponds
with a multiplication by 16, which is necessary
with the input of hexadecimal numbers.

Notes to part 7 :

* input of a hexadecimal number
* input of a decimal number
* multiplication by 10

46

Part 8

When you program in machine language you will use
an assembler most times. An assembler is a program,
which translates the mnemonic code into machine
code. For example it will translate LDA #$05 into
the two bytes A9 05.

An assembler also allows you to use symbolic names.
If the name PORTA appears in a program, the
assembler has to write in the address previously
defined for PORTA. It also has to take notice of
labels.

For example :

LDA PORTA
BNE M1

LDA PORTB
M1 STA HFZ

The assembler autamatically calculates the number
of bytes fram BNE M1l to the label Ml.

Assemblers usually consist of two parts. The first
part is a text editor for entering the source-code.

There are text editors, where the source-code has
to be entered with line numbers, while others don't
require them. With most assemblers, labels have to
start with a letter and have to be in the first
position. Camands have to be in the second
position. Labels and names usually can be up to six
characters long.

After the source code has been entered, the
assembler translates it into machine-code. To do
that it needs additional information, so-called

pseudo-canmands. These pseudo-cammands only affect
the assembler, not the program itself.

47

Unfortunately these cammands are different on most

assemblers, but most assemblers use the following
pseudo-cammands :

1. ORG

The cammand ORG (ORIGIN) defines the start address
of the machine-code.

ORG $2000

means, that the code of the first line translated
will start at location $2000.

This address also 1is the base address for the
program starting there. All absolute addresses
refer to that address. An ORG cammand always has to
be at the beginning of the assembler text, but it
is possible to change it within the text. ’

Example :

ORG $2000
<TEXT 1>
ORG $500
<TEXT 2>

The code of text 1 starts at address $2000. The

code of text 2 starts at address $500. The machine
code is often called the object code.

2. OBJ

The cammand OBJ allows you to store the machine-
code at a different location in memory.

Example : or on the ATMAS:
ORG $3000, 8 A800
ORG $3000 t ik
OBJ $2500 Logical address physical address

The program will be translated with all absolute
addresses referring to $3000, but the machine-code

48

will be stored at addresses starting at $2500. If
yoa want to start the program later, you first have

to move it to $3000 with a blocktransfer.

3. END

The cammand END shows the assembler that the text
to be translated ends here.

4. EQU

With this cammand a certain address gets a symbolic
name.

Example : PORTA EQU S$C0OCO

The symbolic name PORTA corresponds with the
address $C0CO.

In this case PORTA is used as a label and, by that,
has to be in the first position in the text.

Sane assemblers need an extra command for addresses
fran the zero-page.

HFZ EPZ $10

The name HFZ corresponds with address $10 of the
zero-page.
Same assemblers use the equal sign (=) instead of

EDU'

5. HEX

With command HEX you can store hexadecimal numbers
within a program.

Example :

DATA HEX OOAFFCO05

The numbers 00 AF FC 05 are stored in four

consecutive locations starting at the symbolic
address DATA.

49

6. ASC

If you want to store text within a program, you can
use cammand ASC.

Example : TEXT ASC "THIS IS A TEXT"

The text between the quotation marks is stored in
ASCII code at address TEXT.

Same assemblers use the cammand BYT.

BYT 0045AF corresponds with HEX 0045AF.

BYT "TEXT" corresponds with ASC "TEXT".

For more information on the different pseudo
canmands please check with the manual for the
assembler.

It is possible to do calculations in the address
section. The following program portion shows a
pseudo instruction :

DATA HEX O0OAFFC05

The cammand LDA DATA will load 00, LDA DATA+2 will
load FC.

Be careful, if you use address calculation with
relative jumps.

BNE *+2
The above example causes the program to jump two
bytes, but not two lines in the text.
With same assemblers the * is a pseudo command, or
a pseudo address. It tells you the present value in
the program counter.

Example :
LDA HFZ
BNE *+2
LDA #SFF
STA HFZ

50

If the contents of HFZ is different from zero, then
the cammand LDA #SFF is jumped.
Sane assemblers allow all four basic arithmetic

operations, but in most cases addition and
subtraction will be enough.

The following is offered to the reader as a
programming hint :

when in the program there is line : H EQU $2F

then LDA H means, load the accumulator with the
contents of $2F, but LDA #H means, load the
accumulator with $2F.

Notes to part 8 :

* pseudo cammands
* address calculations

51

NOTES

52

Part 9

In this, the last chapter we will discuss sane
helpful suggestions and short cuts.

There are some programs, where you want the program
to determine, where in memory it is located. This
becanes necessary with programs which contain
absolute addresses, but can run at any location in
memory. With the APPLE for example, this trick is
used to determine into which slot a peripheral
board is plugged. Since there is no command which
enables you to read the program counter, we use the
following trick :

The program contains a JSR-cammand right to a RTS
in the monitor. The present address 1is thereby
written to the stack. You have to take into
consideration, however, that the lower byte of the
address 1s lowered by one. Figure 9-1 shows the
stack pointer before, during, and after the jump to
the subroutine.

IFF | ADH g stack Pointer before and after JSR
IFE ADL

IFD - Stack Pointer while a JSR

IFC

IFB

Figure 9-1 : stack pointer during JSR

53

After the return to the main program you can bring

the contents of the stack pointer to register X
with TSX. Then you can access address ADH as shown
in figure 2.

You also can program another way, with an indirect
jump JMP (ADR) as follows :

Let's assume, that the indirect jump should go to
$2010. This can be done with the following program

LDA #$20
PHA
LDA #SOF
PHA
RTS

You can find this technique in the operating system
of ATARI. Usually an indirect jump is programmed
the following way :

LDA #$10
STA ADR

LDA #520
STA ADR+1
JMP (ADR)

If you use an address in the zero page, then the
first program is four bytes shorter. If you use any
address, then the first program is six bytes
shorter than the second one. Here 1is a campariscon
of the execution times :

LDA#620| 2 | LDA#810 | 2 | 2
PHA 3 | STAADR 3| 4
LDA#B0F| 2 | LDA#820 | 2 | 2
PHA 3| STAADR+I| 3 | 4
RTS 61 JMP(ADR) | 51 5

16 15 16

The numbers, after the commands, means the number
of machine cycles required for this cammand. For

54

the second program, the first column is an address
in the zero page. The second column is for any
address. You can find the number of cycles for the
single canmands in the reference card of the 6502
microprocessor.

Usually one doesn't think much about execution time,
exept with loops which occure frequently.

To that a camparison of two program parts for
relocation of data. Only the part which is
different is campared. The rest is the same with
both programs.

1st program

LDA (FROM,X)
STA (TO,X)
INC FROM
BNE M

INC FROM+1
M INC TO
BNE M1

INC TO+1

ML 0 e————

N Lot OOy O

The program needs 36 cycles, 1if no branches are
executed. If a branch is executed, then one more
cycle is used.

2nd program

MEM LDA FROM
STA TO

INC MEM+1
BNE M

INC MEM+2

M INC MEM+4
BNE M1

INC MEM+5

ML e

N o DoUTE D
+
—

55

The second program requires four cycles less, but
it is a program that changes itself. Location MEM+1
contains the lower byte and location MEM+2 contains
the higher byte of the command LDA FROM. This
program does not work in ROM, it has to be in RAM.
The savings of 4 cycles, which corresponds with 4
microseconds if the clock frequency is 1 megahertz,
doesn't lock great, but it accumulates with the
transfer of large quantities of data.

If, in a subroutine, there is a call of another
subroutine immediately before the RTS cammand, then
you can save seven cycles, if you replace the JSR
canmand by a JMP command,

rather than :

JSR TO
RTS

use just :
JMP TO

The RTS cammand in subroutine TO brings you back to
the same location as the RTS after JSR TO.

The processor 6502 has an indirect jump : JMP (ADR),
but no indirect jump to a subroutine : JSR (ADR).
This 1is needed, if you want to jump to different
subroutines, depending upon conditions, similar to
the ON...GOTO instruction in BASIC.
If the program is in RAM, then you could use a self-
modifying program, which changes the address after
JSR. If the program is in ROM, then you can use the
following trick.
Samewhere in memory there is a command
JMP1 JMP(ADR) 6C XX XX.
Instead of XX XX you write in the address of the
subroutine to be executed. You call the subroutine
with

JSR JMP1
The RTS camand in the subroutine brings you back
to the cammand following JSR JMP1.

56

Some examples
in Machine Code

Some examples in Machine Code

The following short programs are examples for programming in
assembler language. With the first three programs, the equivalent
BASIC program is also listed.

The first program prints one row of character C at the top of the
screen.

The second program fills the screen with the character entered.
The third program prints the character entered enlarged.

It is a very nice exercise to print four big letters one beside the
other.

With the fourth program you can play with two color-registers.
Type B. to change the background, type F to change the fore-
ground. In each subroutine you may change the luminescence by
pressing L. R will restore the old colors.

One row of char C

100 PRINT CHRS$(125)
105 POKE 84,0

110 POKE 85,0

120 POKE 86,0

130 FOR I=0 TO 39
140 PRINT "C";

150 NEXT I

57

A screen full of characters

100
110
120
130
140
150
160
170
180
190
200

DIM AS(1)

INPUT AS

PRINT CHRS(125)
POKE 84,0

POKE 85,0

POKE 86,0

FOR I=0 TO 39
PRINT AS;

NEXT I

N=PEEK (84)

IF N<23 THEN POKE 85,0:GOTO 160

A large character

100
110
120
130
140
145
150
160
170
180
190
200
210
220
222
225
230
235
240
250

58

CS=57344

DIM AS(1)

INPUT AS
A=ASC(AS)
A=(A-32) *8+CS
PRINT CHRS$(125)
POKE 84,5

POKE 85,10
POKE 86,0

FOR I=A TO A+7
Z=PEEK (I)

FOR S=1 TO 8
Z=7%2

IF 7Z<255 THEN PRINT "
%=%-256

PRINT AS;

NEXT S

PRINT

POKE 85,10
NEXT I

"+ :GOTO 230

A800:

A803:
AB805:

A808:
ABOA:

A80D:
A810:
A8l12:
AB8l4:
AB8l6:
A818:
A81A:
A81C:
ABlE:
A821:
A823:
AB24:
A826:
A829:

4CODAS

A97D
4CA4F6

A99B
4CA4F6

2003A8
A900
8554
8555
8556
A228
86F0
A943
20A4F6
A6F0
CA
DOF4
20E2F6
00

* MACHINE CODE EXAMPLES

* PRINTS ONE

OUTCH
INCH

CLEAR

CR

START

sl

EQU
EQU
EPZ
EPZ
EPZ

ORG
JMP

LDA
JMP

LDA
JMP

JSR
LDA
STA
STA
STA
LDX
STX
LDA
JSR
LDX
DEX
BNE
JSR
BRK

ROW OF

$F6A4
SF6E2
$54
$55
SFO

$A800
START

#S7D
OUTCH

#S9B
OUTCH

CLEAR
#00

PHYSICAL ENDADDRESS: S$A82A

*%#% NO WARNINGS

CHAR C

* % % * *

* % % F ¥ ¥

*
*

*

ACCU TO SCREEN
KEYBOARD TO ACCU
CURSOR VERTICAL
CURSOR HORICONTAL
AUXILIARY

ERASES SCREEN

CARRIAGE RETURN

SET CURSOR TO
THE UPPER LEFT
CORNER

SET COUNTER
SAVE X-REG

CHAR C INTO ACCU

GET X-REG

DO IT UNTIL X-REG
IS ZERO. THEN
WAIT FOR KEYPRESS

59

A800:

A803:
A805:

A808:
A80OA:

A80D:
A810:
A813:
A815:
A817:
A819:
A81B:
A81D:
A81F:
A821:
A823:
A825:
A828:
A82A:
AB82B:
A82D:
A82F:
A831:
A833:
A836:
A839:

PHYSICAL ENDADDRESS:

4CODAS

A97D
4CAAF6

A99B
4CA4F6

2003A8
20E2F6
85F1
A900
8554
8556
A900
8555
A228
86F0
A5F1
20A4F6
AGF0
CA
DOF4
A554
C917
DOES8
20E2F6
2003A8
00

* MACHINE CODE EXAMPLES

* A SCREEN FULL OF CHARACTERS

OUTCH
INCH

CLEAR

CR

START

S0

Sl

*** NO WARNINGS

EQU
EQU
EPZ
EPZ
EPZ

ORG
JMP

LDA
JMP

LDA
JMP

JSR
JSR
STA
LDA
STA
STA
LDA
STA
LDX
STX
LDA
JSR
LDX
DEX
BNE
LDA
CMP
BNE
JSR
JSR
BRK

SF6A4
SF6E2
$54
$55
SFO

$AB00
START

#$7D
OUTCH

#S9B
OUTCH

CLEAR
INCH
AUX+1
#00
Ccv
CH+1
#00
CH
#40
AUX
AUX+1
OUTCH
AUX

sl

Ccv
#23
SO0
INCH
CLEAR

SA83A

* % % ¥ F

* ¥ ¥ F *

* F ¥ ¥ ¥ F

ACCU TO SCREEN
KEYBOARD TO ACCU
CURSOR VERTICAL
CURSOR HORICONTAL
AUXILIARY

ERASES SCREEN

CARRIAGE RETURN

GET ONE CHARACTER

CURSOR TO START
OF LINE

SET COUNTER
SAVE X-REG

CHAR INTO ACCU

GET X-REG

DO IT UNTIL X-REG
IS ZERO. THEN

CV IS INCREMENTED
AUTOMATICALLY
SCREEN FULL ?

A800:

A803:
A805:

A808:
A80A:

A80D:
A810:
A8l12:
A8l4:
A8l6:
A818:
A81B:
A81D:
AB8lE:
A820:
AB822:
A824:
AB826:
A827:
A829:
A82B:
A82D:
A82E:
A830:
A831:
A833:
AB835:
A837:
AB839:
A83B:

A83D:
A83F:

4CODAS8

A97D
4CA4F6

A99B
4CAAF6

2003A8
A900
85FA
A9EOD
85FB
20E2F6
85FC
38
E920
85F8
A900
85F9
18
A203
06F8
26F9

* MACHINE CODE EXAMPLES

* A BIG CHARACTER

OUTCH EQU $F6A4 * ACCU TO SCREEN
INCH EQU $F6E2 * KEYBOARD TO ACCU
cv EPZ $54 * CURSOR VERTICAL
CH EPZ $55 * CURSOR HORICONTAL
AUX EPZ SF8 * AUXILIARY
ADRL EPZ AUX+2 * CHAR SET LOW BYTE
ADRH EPZ AUX+3 * CHAR SET HIGH BYTE
CHAR EPZ AUX+4

ORG $A800

JMP START
CLEAR LDA #$7D * ERASES SCREEN

JMP OUTCH
CR LDA #S9B * CARRIAGE RETURN

JMP OUTCH

START JSR CLEAR
LDA #00 SET STARTING
STA ADRL ADDRESS OF CHA-
LDA #SEO * RACTER SET
STA ADRH
JSR INCH * GET ONE CHARACTER
STA CHAR
SEC * CALCULATE ADDRESS
SBC #8520 * $-520
STA AUX
LDA #00
STA AUX+1
CLC
LDX #03

S0 ASL AUX * MULTIPLY BY 8
ROL AUX+1
DEX
BNE SO
CLC * ADD STARTING
LDA AUX ADDRESS
ADC ADRL
STA ADRL
LDA AUX+1
ADC ADRH
STA ADRH

* ¥

*

LDA #10 * PRINT CHARACTER
STA CH * UPPER LEFT CORNER

61

A841: A905 LDA #05 * AT CV=5 CH=10
AB843: 8554 STA CV

A845: A000 w0 LDY #00 * GET BIT PATTERN
A847: B1FA LDA (ADRL) ,Y

A849: B85F8 STA AUX

A84B: A208 LDX #08

A84D: 86F9 wol STX AUX+l

A84F: A920 LDA #$20 * IF THERE IS A ONE
A851: 06F8 ASL AUX * PRINT CHARACTER
A853: 9002 BCC Wl * OTHERWISE A BLANK
A855: AS5FC LDA CHAR

A857: 20A4F6 W1 JSR OUTCH

A85A: A6F9 LDX AUX+1

A85C: CA DEX

A85D: DOEE BNE W01

A85F: 2008AS8 JSR CR * GET NEXT BIT PATTERN
A862: A90A LDA #10

A864: 8555 STA CH

AB66: A554 LDA CV

A868: C90D CMP #13

AB86A: F008 BEQ W2

A86C: E6FA INC ADRL

A86E: DOD5 BNE WO

A870: E6FB INC ADRH

A872: DOD1 BNE WO

A874: 20E2F6 W2 JSR INCH

A877: 2003A8 JSR CLEAR

A87A: 00 BRK

PHYSICAL ENDADDRESS: S$A87B

*** NO WARNINGS

62

A800:

A803:
A805:
A808:
A80OA:
A80B:
A80D:

AB0E:
A8l11:
A8l4:
AB8l6:
A818:
A81B:
A81D:
A8lF:
AB22:
A824:
A826:
A829:
AB82A:

A82C:
A82F:
A830:
A832:
A835:
A838:
A83A:
A83C:
A83F:
A840:
A842:
AB845:
AB847:
AB848:
A84B:
A84C:
AB4E:

4COEAS8

A204
BDC402
95F8
CA
10F8
60

2003A8
20E2F6
C942
D003
202CA8
C946
D003
2048A8
C952
D003
4C64A8
18
90E5

ADC802
18
6910
8DC802
20E2F6
c94cC
DOOB
ADC802
18
6902
8DC802
DOEE

6910
8DC602

* MACHINE CODE EXAMPLES

* SETTING THE COLOR REGISTERS

INCH
OUTCH
COLOR
AUX

COLSAV
Cl

START
S0

sl

S2

S3

BCOLOR

Bl

B9
FCOLOR

EQU
EQU
EQU
EPZ

ORG
JMP

LDX
LDA
STA
DEX
BPL
RTS

JSR
JSR
CMP
BNE
JSR
CMP
BNE
JSR
CMP
BNE
JMP
CLC
BCC

LDA
CLC
ADC
STA
JSR
CMP
BNE
LDA
CLC
ADC
STA
BNE
RTS
LDA
CLC
ADC
STA

SF6E2
SF6A4
$2C4
SF8

SA800
START

#04 * SAVE COLOR REG
COLOR,X
AUX,X

Cl

COLSAV

INCH

‘B! * CHANGE BACKGROUND ?
sl

BCOLOR

'F! * CHANGE FOREGROUND ?
s2

FCOLOR

'R* * RESTORE OLD COLORS ?
S3

RCOLOR

S0

COLOR+4 * ADD ONE TO
* COLOR REG
#%00010000
COLOR+4
INCH
'L! * CHANGE LUMINESCANCE
B9
COLOR+4

#502
COLOR+4
Bl

COLOR+2 * SAME AS BCOLOR

* EXCEPT COLOR REG
#200010000
COLOR+2

63

A851:
A854:
A856:
A858:
A85B:
A85C:
AB5E:
A861:
A863:
A864:
AB66 :
A868:
A86B:
A86C:
AB6E:

20E2F6
C94cC
DOOB
ADC602
18
6902
8DC602
DOEE
60
A204
B5F8
9DC402
CA
10F8
00

)
RCOLOR
R1

JSR
CMP
BNE
LDA
CLC
ADC
STA
BNE
RTS
LDX
LDA
STA
DEX
BPL
BRK

INCH
ILI

F9
COLOR+2

#$02
COLOR+2
Pl

#04
AUX,X
COLOR, X

Rl

* RESTORE OLD COLORS

RELOCATOR

RELOCATOR for the ATARI 400/800

This relocator for the ATARI 400/800 was developed using the
ATARI Editor/Assembler cartridge.

Before you start the relocator at 32CF hex you must enter the
start address, the end address as well as the destination address
of the program to be relocated.

Please check your program for tables and text before relocating,
because the relocator may think that this is opcode and change
some bytes.

Memory location Lable Remarks
93 hex RFLAG 0 = Relocate,
| = Blocktransfer
81 hex TEST1 LSB Lower
82 hex MSB address of available
memory
83 hex TEST2 LSB Upper address
84 hex MSB of available memory
85 hex LSB START Starting address of the
86 hex MSB program to be relocated
87 hex CSB STOP Endaddress of the program
88 hex MSB to be relocated
89 hex LSB New starting address
of relocated program.

This is the assembly text for the ATARI Editor/Assembler car-
tridge.

Type: ASM,#P:

while in the editor.

65

QOO0
Q000
0001
Q003
0005
Q007
0009
QOQR
000D
QOOF
0011

0700
2000
2002
2004
2006
2007
2009
200A
200C
200E
2011
2014
2016
2017
2019
201C
201F

2022

2024
2026

66

203
BS05
PSOR
CA
10F9
E8
AS00
FOOb&
204E20
4CSF20
Al10E
AB
D006
208220
4CaF20
204E20

Co20
DOOZ
4C7920

O § W33 I 3 I A IR

20 3% *
TO sk *
40 ;% #
S0 5% FROGRAMM *
6O 5 * RELOCATOR *
70 HE ¥*
80 % *
Q0 § 33 K A W I 36 W K KWW
5 = 700
0100 RFLAG = $0
0110 TEST1 = %1
0120 TEST2 = %3
0130 START = &5
0140 STOF = %7
0150 BEG = $9
0160 OFTR = SR
0170 TEMFZ2 = %D
0180 NFTR = &F
0190 TEMF1 = %11
0200 3

0210 *= $2000
0220 BEGIN LDX #$5
0230 510 LDA START,.X
0240 STA OFTR,X
0250 DEX

0260 BFL S10
Q270 INX

0280 MOVE LDA RFLAG
0290 BEG MO1
OZ00 JSR MOV1
0310 JMF DONE
0320 MO1 LDA (OFTR,X)
0O3ITO0 TAY

Q340 ENE MOZ2
QOZ50 JSR SKIF
0360 JMF DONE
0370 MD2 JSR MOV1
0Z80 T

0390 CMF #$20
Q0400 ENE RYTE1
0410 JMF BYTE3
0420 3 TEST FOR 1 BYTE INTRUCTION

2029 98 0430 BYTE1 TYA

202A 299F 0440 AND #$9F
202C FO031 0450 BEG@ DONE
202E 98 0460 TYA
202F 291D 0470 AND #$1D
2031 C908 0480 CMF #%8
2033 FO2A 0490 BE® DONE
2035 C918 0500 CMF #%$18
2037 F026 0510 EBE®@ DONE

0520 ;TEST FOR 3 RYTE INSTRUCTON

O%%0 3
2039 98 0540 TYA
203A 291C 0550 AND #$1C
203C C91C 0560 CMF #%1C
203E FO39 0570 BE®@ RYTES
2040 C918 0580 CMP #%$18
2042 FO3S 0590 BER RYTES
2044 C90C 0600 CMF #%0C
2046 FO31 0610 BE@ RYTES

0620 3

0630 3REMAINING 2 RYTE INSTRUCTIONS

0640 3
2048 204E20 0650 JSR MOV1
204B 4CSF20 0660 JMP DONE

. 0670 $MOVE 1 RYTE

0680 3
204E A10B 0690 MOV1 LDA (OFTR,X)
2050 B10F Q700 STA (NFTR,X)
2052 200920 0710 SKIF JSR IOFTR
2085 Z20E020 0720 JSR INFTR
2058 &0 0730 RTS

0740 3

0750 $MOVE 2BYTES

0760 3
2059 Z04E20 0770 MOV2 JSR MOV1
205C 204E20 0780 JSR MOV1
205F ASOB 0790 DONE LDA OFTR
2061 8511 0BOO STA TEMP1
2063 ASOC 0810 LDA OFTR+1
2065 8512 0820 STA TEMF1+1
2067 AS07 0830 LDA STOF
2069 850D 0840 STA TEMF2

206B AS08 0850 LDA STOFP+1
67

206D
206F
2072
2074
2076
2077
2078

2079
2078
207D
2080
2082
2084
2087
2089
208R
208D
208F
2092
2094
2096
2098
2096
2090
209K
20A1
20687

20AS
20A6
20A8
20AA
20AC
20AF
20R1
20R3

20RS
68

8E0OE
2OCE20
F096
Fo24
00

EA

EA

ALOR
8511
20D20
ALOR
a512
20E720
ASO1
850D
AESO2
850E
20CE20
FOO2
FOCE
ASOE
830D
AS04
850E
20CE20
FOO2
ROE4

a8
ALOE
ES05
850D
20D920
AL1OE
ES06
B8EHOE
20D?20

OB&LO
Q870
Qgaon
080
Q00
QP10
020
OQPE0
040
QPT0
QRLEO
070
0P80
0990
1000
1610
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280

B10

STA
JSR
ECC
BEQ
ERE
NOF
NOF

m 'SR s 'S5 'A%

LDA
STA
JSR
LDA
STA
JBR
L.DA
STA
LDA
STA
JSR
BREQ
BCC

YTE

A

8TA
LDA
8STA
JSR
REQ!
BCS

I e
rJ
r

SEC
LDA
SEC
STA
JSR
LDA
SEC
5TA
JSR

LDA -

TEMF2+1
TEST
MOVE
MOVE

SBYYTE INSTRUCTIONS

(DPTR, X)
TEMP1
I0PTR
(OFTR, X)
TEMF1+1
DOFTR
TEST1
TEMF2
TEST1+1
TEMF2+1
TEST
E10
MOVZ
TESTZ2
TEMF2
TEST2+1
TEMP2+1
TEST
EZ20
MOV2

ADRESS RECOMFUTATION

(OFTR, X)
START
TEMFZ2
I0FTR
(OFTR, X)
START+1
TEMF2+1
I0FTR

20E8
20R9
20EBE
20BD
20BF
20C2
20C4
20C6
20C8
20CE

20CE
20D0
20D2
20D4
20D6
20D8

20D9
Z0DE
20DD
20DF

20E0Q
20E2
20E4
20E6

20E7
20E9
20ER
20ED
20EF
20F1

18
ASOD
63509
810F
20EQ20
ASOE
6E30A
810F
20E020
4C5F 20

ASL2
CS0E
DOO4
AS11
Cs0D
60

E&ORB
DOO2
E&QC
60

E&OF
DOO2
E6L1O
6O

C60R
ASOR
C9FF
DOO2
CoOC
60

1290
13200
1310
1 320
1330
1740
390
1360
1370
1380
1390
1400
1410
1420
1470
1440
1450
14460
1470
1480
1490
1500
1510
1520
1530
1540
1550
1560
1570
1580
1590
1600
1610
1620
1630
14640
1650
1660
1670
1680
1690
1700
1710

CLC
LDA
ADC
STA
JSR
LDA
ADC
STA
JSR
JMF

53 33

TEST LDA
CMF
ENE
LDA
CMF
T10 RTS
: INCREMENT
IOFTR ING
ENE
ING
INC10 RTS
:
: INCREMENT
H
INFTR INC
ENE
ING
INC20 RTS
i DECREMENT
DOFTR DEC
LDA
CMP
ENE
DEC
D10 RTS
END

TEST COMFARES 2

TEMF2
BEG
(NPTR, X)
INFTR
TEMF2+1
BEG+1
(NPTR, X)
INFTR
DONE

ADRESSES

TEMF1+1
TEMFZ2+1
T10
TEMF 1
TEMFZ

OLD FOINTER

OF TR
INC10
OFTR+1

NEW FOINTER

NFTR
INC20
NFTR+1

OLD FOINTER

OF TR
OF TR
BEFF
D10
OF TR+1

69

You can enter this object-code with the ATMONA-1 from ELCOMP:

I2CF 205 BS 085 95 OB CA 10
I2D7 F? EB AS 00 FO 06 20 1D
32DF 3% 4C 2E 33 A1 OR AB DO
I2E7 06 20 21 I3 4C 2E IE 20
S2EF 1D 33 Co 20 DO 03 4C 48
I2F7 33 98 29 9F Fo 31 98 29
32FF 1D C? 08 FO 2A C9 18 FO
2307 26 98 29 1C C? 1C FO 39
S30F C? 18 FO 35 C®? OC FO 31
X317 20 1D 33T 4C 2E 33 Al OR
331F 81 OF 20 AB I3 20 AF 33
332 60 20 1D IE 20 1D 3F AL
OR 85 11 AS OC 85 12 AS
07 85 0D AL 08 B85 OE 20
9D I3 90 96 FO 94 00 EA
EA A1 OB B85 11 20 A8 =X
I34F Al OR B85 12 20 B&6 I3 AS
3357 01 85 0D AS 02X BS OE 20
S385F 9D I3 FO 02 90 C3 AS 03
3367 85 OD AS 04 85 OE 20 9D
FID6F 33 FO 02 RO E4 I8 Al OR
3377 ES 05 85 0D 20 AB I3 Al
SS7F OB ES 06 85 0NOE 20 A8 =3
2387 18 AS 0D 65 09 81 OF 20
Z38F AF I3 A5 OE 65 0A 81 OF
3397 20 AF II 4C 2E I3 A5G 12
II9F CS OE DO 04 A5 11 CS OD
33A7 60 E6 OR DO 02 E& OC &0
IIZAF E6 OF DO 02 E6 10 60 Cbh
IER7 OR AS OR C? FF DO 02 C6

IIRF QO HO QO OO0 OO0 OO OG0 Q0
33C7 00 00 00 OO0 00O 00 OO OO
3ACF QOO0 OO OO DD OO0 OO0 OO0 OO0
3I3D7 OO0 OO 00 OO0 00 00 QO OO0

70

Reverse Video

REVERSE VIDEO
You can enter this program using the ATMONA-1. Start the pro-
gram with the GOTO command

GOTO 600

A part of the screen is displayed in reverse. If you type GOTO 600
the screen will be switched back to normal operation. Instead of
RTS you can also use the BRK command.

Q600
0601
0603
Q605
0&607:
Q609
O&60R:
Q60D
Q60F 2
Q611
Q06173
Q0614
0616
0618:
0619:
061KE:

FHYSICAL ENDADDRESS:

68
ASS
85D5
AFOO
8504
ALOZE
A458
E1D4
4980
91D4
(2]
DOF7
E&DS
CA
10F2
&0

LOOF

#¥% NO WARNINGS

LOOF

ORG
FLA
LDA
8STA
LDA
S5TA
LDX
LDY
LDA
EOR
8TA
INY
ENE
INC
DEX
EBFL
RTS

$061C

$0600

$59
$DS
#$O0
$D4
$03
$58
($D4) , Y
#$80
($D4) , Y

LOOF
$DS

LOOF

71

72

0600
0608
0610
0618

68
D4
80
CA

AS
Ab
91
10

59
03
D4
Fa2

85
A4
c8
60

DS
58
DO

A9 00 85
El1 D4 49
F7 E6 DS

ASC Il Output

ASCII Output

This is a sample program, which can be typed in using the Editor/
Assembler cartridge or the ATMAS-1 (ATAS) from ELCOMP
Publishing, Inc.

a) Using ATAS (ATMAS-1)
CTRL-I = TAB =9 Blanks (column for commands)
Start all lables at the beginning of the line.

ORG %0600

EOQUTCH EQU $F6A4
0600z AF00 START LDA #%00
0602: 83D4 STA D4
0604: ASD4 REF L.LDA $D4
0606: 8ED4 STA $D4
0608: ASD4 LDA %D4
060A: 20A4F 6 JSR EOQUTCH
060D: E&D4 INC %D4
060F: DOFZ3 ENE REF
0611z OO ERE

FHYSICAL ENDADDRESS: %0612

¥¥% NO WARNINGS

EQUTCH sF6A4
REF $0604
START $0600 UNUSED

73

How to enter this program using the EDITOR from ATAS or
ATMAS-1?
Start your Editor/Assembler and type
CTRL-I

To set a TAB for

OUT LNP1
which allows you to assemble to the printer later.
Then define your label EOUTCH, the starting address of the
screen output routine in the operating system. EOUTCH has to be
written at the beginning of the line. EQU is a pseudo opcode and
has to be preceded by a CTRL-I.

It is convenient to mark the START of the program with the
label “START".
To type in the mnemonic, set the TAB with CTRL-I.

Hexdump of ASCII output:

0600 A9 00 85 D4 AT D4 85 D4
0608 AS D4 20 A4 Fb6 E6 D4 DO
0610 F=

The ASCII output program in ATARI Editor/Assembler syntax.

05 *#=%0600

10 START LDA #$003;START WITH ZERO
20 STA $D4

30 REF LDA $D4

40 STA $D43SAVE

60 STA $D4;SAVE

70 LDA $D4

80 LDA $D4;GET CHARACTER
20 JSR $F6A4;PRINT

0100 INC %D4;CHECK

0110 ENE REF

0000 05 *= $0600

0600 AS00 10 START LDA #$00 3;START WITH ZERD
0602 85D4 20 STA $D4

0604 ASD4 30 REP LDA s$D4

0606 85D4 40 STA $D4 §SAVE

0608 B8SD4 &0 STA $Da $ SAVE

060A ASD4 70 LDA $D4

060C ASD4 80 LDA $D4 $GET CHARACTER
060E 20A4F6 90 JSR $F6A4 $FPRINT

0611 E6D4 0100 INC $D4 $ CHECK

061F% DOEF 0110 BNE REP

74

RANDOM

Number Generator

RANDOM Number Generator

Randomness is required for many games like dice-games, maze-
games etc. The program is based on a pseudo random shift register
approach. Two bytes are used as a shift register. (RNDM and
RNDM+1). At least one of the locations RNDM or RNDM+1
has to be non-zero. We have chosen the zero page location $95
and $96. Before starting the program, use the monitor to set one
of these locations to a non-zero value.

After assembly you can start the program from the monitor with
the GOTO 600 command.

The following program prints only one random number before it
hits the BRK command. (If called from BASIC this BRK has to
be replaced by an RTS command.

75

ZO0%
6% Wane

ANTMAE
JLAT WOANYM 139E

NIYOY 04 3INOG LON dIF

LNIWINIZA £

MILNNOD L39S
ALAT *Z LAIHSE
LA LAIHSE

#T % £7 8413 HOX?®

JLAg 139
HALNNOD FAYSE
SNOILYMILI L3SE

aISNNN DOP0% WOangy
TY94% H31LNoO3

SONINMNYM ON #*#

Y1204 S5IHAAYANT TTYIISAHA

b=t 00 F5T90

HILNO3 NS P4PP0OI 9190

WaNe vaT S6EY R IQ0

™ INA J3304d fZTI90

Ads# 04v 4469 0120

3713 81 40?0

2714 89 3070

WanNe 1104 D698 FO0%0

T+WaNd 7104 LT YO0

10M Y& 16090

04 YZ FROF0O

Wand H03 S6SY 090

10 YT 5090

WanNM 2aT S65Y 2090

YH ™ 8t D090

80% Yadn WOanNyM 8059 0090
S6% 7443 Wane
PY94% No3 HJLNO3

QOF0GE 940

76

Q500 AS OB 48 AS 925 2A 45 95

Q&G 2R O2R 26 965 26 95 68 18
0a10 &9 FF DD EE AS 95 20 A4
0618 F& 00

The following program is also a random number generator, but it
will print 10 random numbers on the screen rather than one.

Note! If you count less than 10 random characters then one
character was a control character, for example CARRIAGE RE-
TURN.

ORG %0600

EOQOUTCH EQU $F6A4

RNDM EFPZ %95

COUNTER EFZ %98
0600 AF00 LDA #0O
0602: 8598 STA COUNTER
0604: AS08 RANDOM LDA $08 $SET ITERATIONS
0606: 48 R1 FHA § SAVE COUNTER
0607: AS9S LDA RNDM sGET RYTE
0609: 2A ROL
060A: 4599 EOR RNDM §XOR EITS 13 & 14
060C: 2 ROL
060D: 2A ROL
060E: 2696 ROL RNDM+1 sSHIFT RYTE
04610 2695 ROL RNDM §SHIFT 2. BYTE
0612: 68 FLA $ GET COUNTER
0613: 18 CLC
0614: 69FF ADC #&$FF i DECREMENT
0616: DOEE ENE R1 s IF NOT DONE DO AGAIN
0618: AS99 LDA RNDM $ GET RANDOM EYTE
Q61A: Z0A4F6 JSR EOQUTCH sPRINT
061D: E&98 INC COUNTER
061F: AR0A LDA #$0A
0621: C598 CMF COUNTER
062%: DODF ENE RANDOM
0625: 00 ERE

FHYSICAL ENDADDRESS: $0626

*%% NO WARNINGS

EOQUTCH $F6A4 RNDM 905
COUNTER $98 RANDOM $0604
R1 0606

0600 A 00 BS 98 AS 0B 48 AS

0608 95 2A 45 95 ZA 2A 26 96

0610 26 95 68 1B 469 FF DO EE

0618 AS 95 20 A4 Fb& E&6 98 A9

Q620 0A CS 98 DO DF 00

77

NOTES

78

Accessing Machine
Language Programs
from BASIC

Accessing Machine Language Programs from BASIC
The BASIC programmer often wants to speed up a program. The
best to do that, is to link a machine language subroutine to BASIC.
Therefore the machine language code has to be placed in a pro-
tected area (save from BASIC). From BASIC a machine language
subroutine can be called by the statement

10 A = USR(X) : X is the starting address of the machine

language subroutine in decimal

Let us now use the Reverse Video program to demonstrate the

technique.
ORG %0600

0600: &8 FLA

0601: ASE? LDA %59
Q603: BIDS STA $D5
0605: A00 LDA #%$00
0607: 85D4 STA D4
Q609: ALOT LDX %03
Q60EB: A458 LDY #E8
060D: E1D4 L.OOF LDA (%D4),Y
Q060F: 4980 EOR #$80
0611: 91D4 STA ($D4),Y
0613: C8 INY

0614: DOF7 ENE LOOF
0616 E6DS INC $D3
0618: CA DEX

0619: 10F2 EBEPL LOOF
0b61E: 60 RTS

FHYSICAL ENDADDRESS: $061C
¥% NO WARNINGS

79

First we have to translate the machine code from hex into decimal.
68 = 104 dec, Ab = 165 dec. etc.

600 hex = 1536 dec. = Start of our program.

Then we use the following BASIC program to poke the code into
memory starting at location 1536 dec.

10 DATA
20 DATA
30 DATA
40 DATA
SO DATA
60 FOR
70 READ
80 FOKE
90 NEXT
100 END

104 165,89,133,213,169,0

33,212, 166,3,164,88,177
”1:,7:. 28, 145,212,200
208,247,230,213,202, 16
242,96

I=1 TO 28

A
(1535+1) , A
I

200 BE=USR (1536)

To call the machine language subroutine from BASIC you type in
GOTO 200. Never forget to terminate your machine language
program with a RTS (60 hex = 96 dec.) for RETURN from sub-
routine, because BASIC uses a JSR (jump subroutine) to get to the
machine language program.

80

Number systems

CHAPTER A : NUMBER SYSTEMS

In this chapter we will develop same
straightforward mathematics, based on daily
experience, which will make it much simpler to model
the internal workings of microcamputers.

Decimal numbers

Quantity

Binary Numbers, BITS, and BYTES
Hexadecimal Numbers

DECIMAL NUMBERS, AND THE CONCEPT OF QUANTITY...

Western culture has adopted the ten arabic
symbols: 0,1,2,3,4,5,6,7,8, and 9 to represent
various quantities. Many other symbols are
available to describe a particular quantity. For
example, 'three' may be symbolized as three, 3,
trois (French), III (Roman Numerals), etc.

With the exception of the Raman Numerals, the
above examples refer to the DECIMAL, or BASE-TEN
number system which we use daily. The base-ten
system is charaterized by the ten symbols which are
available to use in constructing symbolic
representations of various quantities. For large
(multi-digit) numbers, we cambine several symbols,
and assign each symbol a multiplier based upon it's
position within the series of symbols. For example,
we represent the number of eggs in a carton with the
symbols '12'. The symbol on the far right side 1is
in what we call the ‘unit' position. The next
symbol to the left is in what we call the 'tens'
position, and represents the number of complete

81

graups of ten eggs. The total number of eggs is
equal to ten times the number in the tens position,
plus one times the number in the unit's position.
Were there another symbol to the left, that symbol
would be multiplied by ten, and then ten again.
(i.e. multiplied by one-hundred). Were there a
symbol still further to the left, then that symbol
would be accampanied by yet another multiplication
by ten. (i.e. multiplied by one-thousand).

Summarizing, the base-ten (or decimal) number
system is characterized by:

1). A basic set of TEN symbols (0-9).
2). Each digit positioned left of the
unit position are accampanied

by a multiplier, and that
multinlier increases by a factor
of TEN for every additional
digit postion to the left.

3). Decimal numbers are NOT the only
method of representing a quantity.

We will now explore some number systems
canmonly used in
association with computer systems. (They are harder
for us, but
easier for the camputer!).

BINARY NUMBERS...

Generally, computers do not deal directly with
the symbols of the decimal number system. The
canputer is made up of cambinations of circuits
capable of presenting only two basic symbols (as
opposed to ten). Logic circuits inside the camputer
represent one symbol with a high level voltage
(often about five volts), and the other symbol with
a low level voltage (often about =zero volts).These
states are often described with the symbols 'high'
or 'l' for the high voltage level, and the symbols

82

'low' or '0' for the low voltage level.
digit binary numbers can therefore be represented by
multiple wires, with each wire at either a 'l' or a

'0' voltage level.

Multiple

By drawing a parallel to the

base-ten number system, we may define this to be a

BASE-TWO (or BINARY) number system,

the following characteristics:

1). A basic set of TWO symbols (1,2).
2). Each digit positioned left of the
unit position are accampanied

by a multiplier, and that
multiplier increases by a factor
of TWO for every additional
digit postion to the left.

Significance of digit position,

versus binary numbers:

DECIMAL(10000'S) (1000's) (l00's) (10's) (1's)

BINARY (16'S

) (8'S) (4'S) (2's) (1's)
Sane examples of binary numbers follow.

TRIAL BASE-2 EXPTANATION
QUANTITY (BINARY) OF BINARY
NONE 0 0 IN UNIT'S PLACE
ONE ik 1 IN UNIT'S PLACE
TWO 10 2 TIMES ONE IN TWO'S
PIACE, PLUS ONE IN
UNIT'S PLACE.
THREE 11 2 TIMES ONE IN TWO'S
PLACE, PLUS ONE IN
UNIT'S PLACE.
FOUR 100 2 TIMES 2 TIMES ONE IN
FOUR'S PLACE, PLUS TWO
TIMES ZERO IN TWO'S
PIACE, PLUS ZERO IN
UNIT'S PLACE.
FIVE 101 AS ABOVE, BUT ONE IN

UNITS PLACE.

summarized by

decimal numbers

83

THIRTEEN 1101 AS ABOVE, BUT ADD 2
TIMES 2 TIMES 2 TIMES
ONE IN THE EIGHT'S
PLACE.

Note that in the decimal system, symbol
position was used to represent multipliers of 1, 10,
100, 1000, 10000, etc. 1In the binary number system,
symbol position is used to indicate multipliers of
1, 2, 4, 8, 16, 32, 64, 128, 256, etc.

Using the above multipliers, you should be able
to convert the following binary numbers (left
column) into the decimal numbers in the righthand
column.

BINARY NUMBER SYMBOL DECIMAL NUMBER SYMBOL

110 6
101000 40
1000000 64
111111 63
111110 62
111101 61
11111111 127

There 1is no real trick to reading binary
numbers. If you desire to get the numbers into
decimal form, then there is no avoiding the process
of multiplying the appropriate digits by 1, 2, 4, 8,
16, etc., and adding up the results.

One digit of a binary number, or cne wire in
the camputer, can represent only one of two possible
states. Thus one digit certainly does not contain a
great abundance of information. It 1is therefore
apprcpriate that we refer to one digit of a binary
number as a BIT. A bit may be either a one or a

84

zero. Carrying this madness one more step, we refer
to a graup of 8 BITS (an 8 digit binary number) as a
BYTE.

It is important to note that the binary number
system is simply an alternative way to write a
number, Jjust as Raman Numerals provide an
alternative way to write a number. 1In all cases, a
given SYMBOL represents a QUANTITY, and the method
we choose to write it is of secondary importance.

Hexadecimal Numbers

HEXADECIMAL NUMBERS. . .

The preceeding discussion of binary numbers
demonstrated that binary symbols for large
quantities became very cumbersome, due to the very
large number of digits which must be used. This is
the natural consequence of having only two possible
symbols per digit. In the decimal number system, we
had ten symbols available, and large quantities
could be represented with relatively few digits.
Ideally, we need a number system which provides us
with a large number of symbols, while retaining a
simple relationship to the on/off world of
individual wires within the camputer.

Note that a four bit number (four digit binary
number) may represent any quantity fraom zero (0000)
to fifteen (1111), for a total of sixteen possible
canbinations. Now suppose we assign a SINGLE letter
or number to each of these cambinations, as shown in
the righthand column of the table below.

85

DECIMAL BINARY HEXADECIMAL

NUMBER NUMBER NUMBER
0 0000 0
1 0001 dl
2 0010 2
3 0011 3
4 0100 4
5 0101 5
6 0110 6
7 0111)
8 1000]
9 1001 9

10 1010 A

11 1011 B

12 1100 C

13 1101 D

14 1110 E

15 1111 F

Don't be taken aback by the use of letter
symbols to represent numbers. After all, we are
making the rules here, and if we wish to use the
symbol 'D' to represent a quantity of thirteen, then
SO be it.

The above sixteen symbols (0-9, and A-F) are
the sixteen basic symbols of the HEXADECIMAL (or
BASE-SIXTEEN!) number system. For multiple digit
numbers, we once again start with the UNITS
position. But now, each time we move one digit

position to the left, we add a multiplication by
sixteen.

86

DECIMAL

BINARY HEXADECIMAL

EXPLANATION

15

16

L7

42

255

256

769

783

10

1L

1 0000

11 0000

11 0000

1111

0000

0001

1010

LLL]

0000

0001

1111

3

10

1)

FF

100

301

30F

15 IN UNIT'S
PLACE.

1 IN 16'S
PLACE.

1 IN 16'S
PLACE, PLUS
1 IN UNIT'S
PLACE.

2 IN 16'S
PLACE, PLUS
10 IN UNIT'S
PLACE.

15 IN 16'S
PLACE, PLUS
15 IN UNIT'S
PLACE.

1 IN 256'S
PLACE, PLUS
ZERO IN 16'S
PLACE, PLUS
ZERO IN UNIT'S
PLACE.

THREE IN 256'S
PLACE, PLUS
ZERO IN 16'S
PLACE, PLUS
1 IN UNIT'S
PLACE.

THREE IN 256'S
PLACE, PLUS
ZERO IN 16'S
PLACE, PLUS
15 IN UNIT'S
PLACE.

87

The HEXADECIMAL (BASE-SIXTEEN) number system
may be summarized by the following charateristics:

1l). A basic set of 16 symbols (0-9,A-F).
2). Each digit positioned left of the
unit position is accompanied by a
multiplier, and that multiplier
increases by a factor of sixteen
for every additional digit positio
to the left.
(i.e. Multipliers of 1,16,256,4096,
etc. are used).

Note that binary representations may be very

easily converted to hexadecimal representations via
the following steps:

1). Groaup the binary number into groups
of four bits, starting with the
unit's position, and proceeding
right to left.

2). Write the hexadecimal symbol for

2). Substitute the appropriate hexa-
decimal symbol for each four-bit
graup fram the original number.

3). Simply reverse this process to
convert hexadecimal numbers into
binary numbers, four bits at a time.

Hexadecimal numbers provide an extremely

canpact means of expressing multiple-bit binary
numbers.

When reading a multiple digit number, it is not
always immediately clear whether it is a binary,
decimal, or hexadecimal representation. The symbol
'1101' might be interpreted as a binary number

(thirteen), a decimal number (one-thousand
one-hundred and one), or as a hexadecimal number
(four-thousand three-hundred and fifty-three = 1 X

4096 + 1 X 256 + 0 X 16 + 1 X 1). The number '1301'
88

is clearly not a binary representation (it contains
a '3'"), but it could be interpreted as either a
decimal or hexadecimal number.

In those instances when binary numbers are
used, the writer usually calls attention to this
fact, either by using a subscript '2', or by
enclosing the notation 'binary' in the text of his
discussion. Hexadecimal numbers are often
distinguished fram decimal numbers by preceding the
hexadecimal number with a dollar sign, or by
suffixing the hexadecimal number with a capital H.
(i.e. $43C7, S$7FFF, $4020, 1AD7H, F371H, 9564H).
The dollar sign convention is the one adopted by
most users of camputers based on the 6502
microprocessor chip,including ©Ohio Scientific
Instruments, and is the convention used in this
bodk.

CHAPTER A PROBLEMS...

1l). Convert the following binary numbers into
decimal representations.

1311 3111
011l 111l
111 1111
1 0000
1000 1000
0100 0101
1111 1110

(ANSWERS: 255, 127, 127, 16,
136, 69, 254).

2). Convert the binary numbers given in
problem number (1) into hexadecimal numbers.

(ANSWERS: $FF, $7F, $7F, $10, $88,
$45, SFE).

89

Here is a subroutine in machine-language for conversion of hexa-
decimal to decimal numbers:

DRE $0600

0600: BED4 STA $D4
0602: 86DS STX %DS
0604: A00 LDA #%00
06062 BEDA STA $D6
0608: BED7 STA $D7
060A: BED8 STA D8
060C: FB SED

Q60D: ADLO LDY #%10
060F: AZ03E LOOF2 LDX #$03%
0611 O6DS ASL %DS
0613F: 26D4 ROL $D4
0615 REDS LOOF1 LDA $D5S, X
0&617: 73DS ADC D3, X
06192 28DS STA $D5, X
O61E: CA DEX

0&1C: DOF7 ENE LOOF1
O61E: 8B DEY

0&1F: DOEE ENE LOOFZ2
06212 DB CLD

0622: ABDSL LDA $Dé6
0624 ALD7 LDX D7
0626: A4DB LDY $D8
0628: 60 RTS

FHYSICAL ENDADDRESS: %0629
#¥%% NO WARNINGS

LOOFZ2 $OL0F
LLOOF1 $0O615

0&LOO0 83D486DEATOOBEDS ETFU) 8EV
0608 BED78EDBFB8A010AZR EWEXs F"
0610 OZ0D6DE26D4REDE7S CFUZTSUu
0618 DEYEDSCADOF788D0 UUUJIFwWHF
0620 EEDBASDOAGD7A4D8 NXZVEWEX
0628 60 5

90

The hexadecimal number has to be in the accumulator (higher
byte) and in the X-register (lower byte) when you jump to the
subroutine.

Example:

We want to convert 101F hex into a decimal number.

This can be done as follows:

A9 10 LDA #3510
A21F LDX # B1F
2000 06 JSR 50600
00 BRK

If ATMONA-1 hits a break BRK, it displays the contents of the
registers. The decimal number is in the X-register and in the Y-

register.
101F hex = 4127 dec.

91

- NOTES

92

Digital Concepts

CHAPTER TWO: DIGITAL CONCEPTS

In this chapter we present an overview of
digital logic concepts, and the kinds of electronic
devices used to accamplish logical operations and
data storage within your camputer.

LOGIC IN PROGRAMMING AND COMPUTER HARDWARE
LOGIC OPERATIONS AND LOGIC GATES
COMBINATIONAL LOGIC AND DECODERS

DECODERS AND MEMORY

NAND, NOR, AND EXCLUSIVE-OR GATES
Problems, Further Reading

LOGIC IN PROGRAMMING AND COMPUTER HARDWARE

"...a canputer is like a brain, a dumb brain,
it doesn't do anything unless you program it first,
and then it just follows your instructions one after
another..."

-reaction of ten-year-old to computers.

Pecple program camputers to perform sequences
of logical operations. A camputer program consists
of a sequence of instructions for the computer.
Often we wish the canputer to decide between
alternative courses of action, based upon some

information which is external to the program. For
example, a camputer might be programmed to control
the signal lights at a railway crossing. Sensor

switches would be placed some distance down the
railway, such that they can detect an oncoming
train. The camputer program might read samething
like:

93

1. START HERE

2. CHECK TO SEE IF A TRAIN IS COMING

3. IF A TRAIN IS COMING, THEN SKIP
AHEAD TO LINE 5 OF THE INSTRUCTIONS

4. GO BACK TO STEP 2 OF THE INSTRUCTIONS

5. CHECK TO SEE IF THE SAFETY BARRIER
IS LOWERED

6. IF THE SAFETY BARRIER IS UP, THEN
LOWER IT

7. CHECK TO SEE IF THE TRAIN IS STILL HERE

8. IF THE TRAIN IS STILL HERE, OR, IF
ANOTHER TRAIN IS COMING, THEN GO BACK
TO STEP 7 OF THE INSTRUCTIONS

9. RAISE THE SAFETY BARRIER

10. GO BACK TO STEP 2 OF THE INSTRUCTIONS

The above PROGRAM acts upon the DATA (or
information) supplied by the train sensor switch.:
Another example would be the word-processor program
upon which this manuscript is being typed. That
program decides which letter to code into camputer
memory, based upon which one of the keyboard
switches are pressed by the typist. Each of these
examples also has means provided to output some
result to the real world. In the case of the
railway crossing, the camputer has control of the
position of the safety barrier, and uses that
barrier to inform pecple of it's decision regarding
the presence or absence of oncaming trains. The
word processor program has control of a CRT (picture
tube) upon which it displays the text input by the
typist. It also outputs this text to computer
memory, fram whence the typist may command that it
be recalled, corrected, and output to a printer. In
summary, the camputer executes a SEQUENCE of LOGICAL
instructions upon some source of DATA input
(switches, keyboards, memory, etc.), and produces
some consistant OUTPUT as a result. In the
remainder of this chapter, we will examine some of
the fundamental electronic hardware used to
accanplish logical operations within the camputer.

94

LOGIC OPERATIONS AND LOGIC GATES...

Consider the following statements:

If (A is true) Then (Z is true)
If (A is false) Then (Z is False)

We shall assume A, Z, etc. are all either true
or false, with nothing in-between being possible.
With the above two statements, we have completely
defined the condition of the OUTPUT 2%, for all
possible conditions of the input A. Suppose that we
wish to model statements such as the above two,
using electronic circuits. Let us define:

l. TRUE is to be represented by any
voltage in the range fram
+2 volts to +5 volts.
(i.e. HIGH).

2. FALSE is to be represented by any
voltage in the range from

0 volts to +1/2 volt.
(i.e. LOW).

Now consider a short piece of plain copper
wire, the left end labeled "INPUT--A", and the right
end labeled "OUTPUT--Z." This piece of wire will

certainly model our original logical statements, as
re-written:

1. If (A is HIGH) then (Z is HIGH). Certainly,
if we connect a 'HIGH' voltage input to point A,
then the wire will carry this same high voltage to
the output at point Z.

2. If (A is LOW) then (Z is LOW). Once again,
the input fram A is carried directly to the output
at Z.

There is almost always another way to

accamplish any given task, and the above example is
no exeception. There are electronic circuits other

95

than our piece of wire which we could connect from A
to Z, and obtain the same result. The need for
these should becane apparent as we continue.

Consider the statements:

l. If (A is true), then (Z is false)
2. If (A is false), then (Z is true)
(i.e. 2 is always the opposite of A).

We cannot model this more camplicated situation
with only a piece of wire. We must use a readily
available electronic circuit called a "NOT-gate", or
"INVERTER." These devices are manufactured by many
firms in many different forms. For the time being,
it is perfectly sufficient to imagine a small box
with two wires sticking out. One wire 1is our
familiar input A, and the other wire is our output
Z. If we put a high level on the input of an
inverter, then we will get a low level at the
output. A low level on the input yields a high
level at the output. Forcing same signal INTO the
output pin is forbidden, but the output of one
inverter could certainly control the input to a
second inverter. Clearly the output of inverter #2
would be exactly the same as the input to inverter
#l. (This is a combination which could replace the
copper wire in our earlier example).

There is a standard symbol used to represent an
inverter. It is shown below in Figure 2.1.

CLLLLLKLLLKLLKLLLLKFIGURE 20155555055 555555555)
CLLLLLLLLLKLOGIC INVERTER SYMBOL> >>>5>>>>>>

CLLLLLLLLLLLLLLLLLLLDOO D000 0000055005 55555>
96

There is a standard symbol used to represent a
‘circuit which behaves as our copper wire did. This
symbol represents a logic circuit whose single
output duplicates it's single input. It 1is shown
below in Figure 2.2. Note the absence of the

"bubble" at the output, as campared with the
inverter in figure 2.1. The bubble symbolizes the
inversion process.

CLLLLLLKLKLLLLLKLLFIGURE 26 250555555555 55555)>
<<LLLLLLLKLOGIC BUFFER SYMBOL>>>>>>55555>>>?

5
o

LLLLLLLL LKL LLLKLLLLKLDDDDODDD 0000000000000

In certain situations we desire to connect the
inputs of a number of different logic gates too the
output of a single logic gate. If this number
becames too large the output of an ordinary gate
might became overloaded. To prevent this we could
connect the single output involved to the inputs of
a pair of identical logic buffers. We: could then
distribute the large number of logic gate inputs
between the two buffer outputs. Each buffer would
have to drive only half the total number of inputs,
and would not overload. More or larger buffers
could be used if nessesary.

Consider the following statement:

If (A is true) OR (B 1is true), then (Z is
true). (Otherwise Z is false).

This describes a single output (Z) controlled
by two inputs (A and B). It 1is convenient to
examine the possible outputs at Z, for all possible
input cambinations, through the use of a "truth
table." " A truth table for the current example is
shown below in Figure 2.3. Note that a 'l' is used
to represent a ‘true' condition, and that our

97

electronic circuits would represent this with the
'high' voltage level.

TRUTH TABLE
Z = (A OR B)
; INPUT A INPUT B : OUTPUT Z :
: 0 0 : 0 :
: 0 1 : 1 :
H 1 0 : 1 :
1 1 : 1 :
FIGURE 2.3

In figure 2.3 we have described the operation
of a "two-input OR-gate." This logical building
block may be thought of as a box with THREE wires
protruding. The three wires are inputs A, B, and

output Z. Such circuits are readily available, and
your microcamputer contains many, many of them.

Note that we might also create a "Three-input
OR-gate," which might have three inputs A, B, C, and
output Z. In this case, output Z would becane
'true' if any one OR more of the inputs became
'true.' :

The logical symbol for a two-input OR-gate is
shown in Figure 2.4, together with the symbol for a
3-input OR.

CLLLLKLKKLKLKLKLLLKFIGURE 2.4A55555555550005005
<<KLLLLLKLKL2=-INPUT OR GATE SYMBOL>>>>>>>>>>

Tl

DOOOOODOODDODDODDOOD 0000000000 0000555>
98

{LKLLLLLLLLLLKFIGURE 204B>>>55555555555555>
<{KLLL<3-INPUT OR GATE SYMBOL>>>>>>>>>>>>>

A
@‘—B’C_

LLLLLLLLLLLLKLLLLLLLDDDDDD DD 005055055555

In the last example, we described how a logical
output was based upon the truth of one OR another
input. Frequently we wish to base same output upon
the simultaneous truth of two inputs. For example:

If (a train is caming) AND (the safety

barrier is up), then (lower the safety
barrier).

If (A is true) AND (B is true)
then (Z is true).

As in the case of the OR gate, we could just as
easily base the truth of an output upon the
simultanecus truth of three (or many more) inputs.
Once again, the AND-gate is a readily available
electronic circuit, supplied with two or more inputs
as desired. The standard logic symbols for both two
and three input AND-gates are shown below in Figure
2.5.

CLLLLLLLLLKLLLLKLKFIGURE 20 5A>>5555 55555555555 >
<<<KKKKLKLKSYMBOL FOR 2-INPUT AND GATE>>>>>>>>
CLLLLLLLLLLLLKLKLLKTITLES> >335 5555555555555 555>

—_— —

LLLLLLLLLLLLLLLLLLLLLLDODOD0 0000000055555 5>>

99

CLLLLLLLLLLLLLLKFIGURE 205B>>>5 5555555555555 >
<<<KKLLLLKLKSYMBOL FOR 4-INPUT AND GATE>>>>>>>>
CLLLLLLLLLLLLLLKLKTITLRESD D555 5 555555555555 55 5>

ST
—_— 1
i

In summary, we have presented three principle
types of logic gates. These are the AND, OR, and
NOT gates. Each of these gates is readily
available, usually packaged as several gates within
a single plastic or ceramic cube, with input and
output wires protruding in neat rows. In addition
to the input and output wires, each package has at
least two wires which must be connected to a source
of power in order to operate it's internal
circuitry. In the very common
"Transistor-Transistor-Logic" (or W) family
which we describe, the inputs recognize voltages
above 2 volts as a "true" or "1." The inputs
recognize voltages below about 1/2 volt as "false"
or "0." The voltages in the "no man's land" between
1/2 volt and 2 volts are illegal, and result in
unpredictable performance of the gate circuit.
Furthermore, voltages less than O (negative
voltages), and voltages greater than 5 volts are
excessive, and will damage the inputs. When a gate
senses that it should send 1it's output high (or
true), it will force the output to some voltage in
the legal region between 2 and 5 volts. Otherwise
the gate holds the output false, with a voltage
between 0 and about 1/2 volt. Note that the output
levels of a gate will always fall within the legal,
recognizable voltage areas of an input. Thus it is
possible to chain these simple gates together to
perform complex logical operations built upon
camnbinations of OR's, AND's, and NOT's acting upon
some initial input(s).

100

COMBINATIONAL LOGIC AND DECODERS.. .

Problem: Given four logic inputs A, B, C, and
D, which are available on four wires within a
canputer, design a circuit which will set one logic
output true if and only if ABCD=1010. (i.e. A=1,
B=0, etc.).

Solution: Let's call our final output 'Z'. We
wish to build a circuit such that:

IF (A IS TRUE), AND
(B IS FALSE), AND
(C IS TRUE), AND
(D IS FALSE), THEN (Z IS TRUE)

The B and D terms make it impossible to solve
this problem with only a four-input AND-gate.
However, if we put inverters on B and D then we
might define two new signals:

M=NOT-B (i.e. M is the inverse of B).
N=NOT-D
We use these signals to write:

IF (A IS TRUE), AND
(M IS TRUE), AND
(C IS TRUE), AND
(N IS TRUE), THEN (Z IS TRUE)

Our design uses two inverters to derive M and N
fram B and D respectively. M, N, A, and C are then
canbined with a four-input AND-gate. This
cambination is shown in Figure 2.6.

A

M j -
B De

C Z
[:: N l""1

D
CLLLLLLLLKLLLLKFIGURE 2. 625555550555 5555555
<<COMBINATIONAL LOGIC EXAMPLE SKETCH>>>>>

101

Figure 2.6 is an example of a decoder circuit.
The circuit decodes a camplex input, and generates a
particular output for one possible state of the
input. If we regard the four-bit input ABCD as a
four bit binary number, then our decoder circuit
decodes a count of ten. (Binary 1010). Recall that
a four-bit binary number has sixteen possible
canbinations, zero thru fifteen. It 1is perfectly
possible to design a decoder with four input 1lines,
and sixteen outputs. Each output would represent
exactly one of the sixteen possible cambinations of
the four-bit binary input. Since the input must, of
course, be in one and only one of these possible
states, it follows that one and only one of the
output pins will be true at any one time. Figure
2.7 contains a truth table for such a circuit.
Figure 2.8 contains a circuit diagram. The inputs
are labeled ABCD, and the sixteen outputs are
labeled Y0 thru Y15,

TRUTH TABLE: 4-INPUT 16-OUTPUT DECODER

:INPUT: OUTPUTS Y- H
:ABCD :0 78 9 10 11 12 13 14 15:

=
[\
w
=
Ul
[e)}

:0000
:0001
:0010
:0011
<0100
:0101
:0110
:0111
1000
:1001
21010
<1011
21100
<1101 :
:1110
21000

00 oo o0 oo o

ee o0 oo

QOO COOOCOOOOCOOCO O+
[eleoloNololoNolololeololNelelal Jle]
CO0O0O000 0O OoHOO
OO0 OO O
OO0 OO0 O OO O O
QOO OCOOOCOOOHCOO OO
COOC OO OCOOHOOOOOO
COOCOODOCOCOHOOOOCOOO
COOCOODODOOHOOOOOO OO
COO OO HOOCOOOOO OO
COO OO HOOOOODOOO OO
QOO OHOOOOODOOOO OO
COOHOOCOOOOOOO OO
COFHROCOOOCDDOOODOOOO
OH O OO OOOOCOO OO0 OO
HOOOOOOOOCOOOOO OO
oo eeo oo oo

FIGURE 2.7

102

CLLLLLLLLLLLLLLLKFIGURE 20855555555 55555555)
<<KLCIRCUIT DIAGRAM. 4 TO 16 DECODER>>>>>>>
<LLLLLLLLLKKPOSITIVE LOGIC OUTPUTS>>>>>>>>5>

BLE Ao Ay A2 Ay

T T

Slelelslysle

0 On 09 O Onn Oz 0613 O O

~CEH
ra
~C

Slelcle

Go 0, 02 0 O.

e

CLLLLLLLLLLLLLLLLLLLEDDOOOODDDDDDOD555555555>

Decoders such as the one shown in Figure 2.8
are available within a single package. Such a
package measures about 2/3 inch wide, 2-1/2 inches
long, and 1/8 inch high. There are 24 pins
extending fram the package. These connections
consist of the 4 main inputs, 16 outputs, 2 power
supply connections, and 2 "enable" inputs. Both of
the enable inputs must be true, else NONE of the
outputs will go true, irrespective of the state of
the 4 main inputs. Smaller packages are available
which function as 3-to-8 decoders and 2-to-4
decoders. The outputs of these devices are often
inverted by camparison with the decoder example
above. (i.e. The one and only selected output will
be "low", and all others will be "high"). Figure
2.9 shows a sketch of a typical TTL integrated
circuit containing a few logic gates.

103

CLLLLLLLLLLLLLLLLDODODDDDD000000055555>
KLKLKLLLLKLLKLKFIGURE 2955555555 555555555
<KLLLKLTTL PACKAGE SKETCH>>>>>>>5>55555
CLLLLLLLLLLLKLKLDDODDDD0000000005550555

1819 23 22 21 20

E Ao Ay Az Ay

O3 O« Os

TITTT

o

7 Os

!

010011012017 014018

TITT181

10 11 13 14 18 16 17

»—0f0

T

® =

Vcc = Pin 24
GND = Pin 12

DECODERS AND MEMORY. ..

Decoders are important to the operation of the
memory arrays in your camputer. Memory consists of
a large number of locations wherein the camputer may
store or recall either "1's", or "0's", as needed.
In "8-bit" camputers, these locations are grouped
into sets of 8-bit BYTES as mentioned in chapter
one. Each byte has a unique "ADDRESS", often
canpared to a post office box number.

The camputer's central processing unit (CPU)

accesses a particular byte via the following
process.

1. CPU sets a READ/WRITE control line to the
proper state (high or low) to indicate a read memory
or write to memory operation.

2. CPU outputs the unique address of the byte
in question. The address is output in binary form
onto a set of wires called "the ADDRESS BUS." Most
small microcamputers use a sixteen wire address bus.

104

There are 65536 possible cambinations of the sixteen
address lines, meaning that the CPU 1is capable of
distinguishing and controlling 65536 bytes of
information. (Or 8 X 65536 = 524288 bits). a
16-to-65536 decoder. Most of this decoding is
accamplished inside the memory integrated circuits,
so it is not nessesary to imagine an integrated
circuit with over 65000 pins protruding! In the
case of a read operation, this decoder allows the 8
bits contained in a single location to be output to
the CPU via a set of 8 wires called "the DATA BUS."
In the case of a write operation, data passes FROM
the CPU INTO the 8 bits of memory indicated by the
address bus.

<KKL<FIGURE 2.10 CPU BUS SYSTEM>>>>>>

1/0 PORT

/_A_\

PROGRAM DATA PERIPHERAL
MEMORY MEMORY INTERFACE
(ROM) (RAM) DEVICE

_J (m < ADDRESS
7 BUS

— AV AV4 DATA
§) BUS
WRITE 1 i:
ENABLE =& U
CLOCK
MICROPROCESSOR
GENERATOR INTERRUPTS
| OTHER
CONTROL
[SIGNALS

CLLLLLLLLLLLLKLLLLDDODD OO0 00000005555

105

NAND, NOR, AND EXCLUSIVE-OR GATES...

- Consider the effect of adding an inverter to
the cutput of an AND gate. If we call the two
inputs A and B, and the final output 72, then we
might describe the resultingjlogic function as:

If (A is true) AND (B is true),
Then (Z is FALSE).

We call this logic function a "NAND GATE". We
might write Z = A NAND B in this case. If we added
yet another inverter, we would be back to a simple
AND function. It turns out that it 1is easier
to make NAND gates than AND gates. For this reason
NAND gates are cheaper and more cammon.

As in the case of the NAND gate, an OR gate
with an inverted output is called a NOR gate. Once
again, this is a very camon form of gate. NAND
gates are drawn as AND gates with an inversion
bubble at the output. NOR gates are drawn as OR
gates with and inversion bubble at the output. (See
Figures 2.11 and 2.12 for NAND and NOR standard
logic symbols).

In the case of 2-input OR gates, the output was
true if EITHER or BOTH inputs were true. The

"exclusive-OR" gate excludes the case where BOTH
inputs are true. Its performance could be stated:

If ((A is true) OR (B is true)) AND
((A is false) OR (B is false)),
Then (Z IS TRUE).

The standard logic symbol for the exclusive-OR
gate is shown in Figure 2.13.

= - = > =

NAND EXCLUSIV OR
Fig. 2. 11 FIG. 2.12 Fig. 2. 13

106 END

PRODUCTS FOR ATARI* 400/800
FROM ELCOMP
BOOKS:

ATARI BASIC — Learning by Using
An excellant book for the lmg[vmer Many short programs
All important features of the ATARI
ribod (screen drawings. ! sounds,
keys, paddies, mmm ialized screen routines, graphics
scund_ applications, kes, and special stutf). Also
Sdsstinns dra roade 1hat chalienge you 1o change and write
program routines.
Ordor #164
Gamas for the ATARI Computer
This book describes advanced programming techniques like
player-missilegraphics and use of the hardwaro-regiiters.
Contains many ready to run programs in BASIC and one
called GUNFIGHT in machine language
Order #162 £7.95

57.95

Programming in 6502 Machine Language on your PET+CEBM
2 complete Editor/Assomblers (Source code 3 hexdump +
Gescription plus @ powerful machina language monitor
(Hexdump))

Order #1668 519.95

How to program your ATARI in 6502 machine language
Introduction to machine language for the BASIC programmar
Order 7169 £9.95

SOFTWARE IN BASIC FOR ATARI

Invaice Writing for Small Business

This program makes writing invoices easy. Store your
products in DATA statements with order-number,
description, and price. The program later retrives the
description and price matching to the entered order-
number. The shipping cost and the discount may be
calculated automatically depending on the quantity
ordered or entered manually. The description to the
program tells you how to change the program and
adapt it 10 your own needs. Comes with a couple of
invoice forms to write your first invoices on to it.
Order #7201 cassetta version

Order #7200 disk version

Mailing List

This menu driven program allows the small business
man to keep track of vendors and customers. You can
search for a name o address of a certain town or for
an address with a certain note. 50 addresses are put

cassette version $1995

Order #7213 disk version $24.95

Inventory Control
This program is menu driven. It gives you the
following options: read/store data, define items,
enuy editing, inventory maintenance (incoming-
outgoing), reports. The products are stored with
inventory number, manufacturer, reorder level,
present level, code number, description.

Order #7214 cassatte version $1995
Order #7215 disk version $24.95
Programs from Book # 164

The programs from book no. 164 on cassette. (Book
included)

Order #7100 $20.00
Game Pack

Games on cassette. (Bomber, tennis, smart, cannon
fodder, etc.)

Order #7216 $9.95

Microcomputer Hardware
Handbook (845 pages)

port

A MUST for the hard.
ware butt,

Ordor-No. 29
514.95

Care and Feeding of the Commodore PET
Eight chapters exploring PET hardware. Includes
repair and interfacing information. Programming
tricks and schematics.

Order # 150 $9.95

Payment: check, money order, VISA, MASTER-
CHARGE, Euroscheck.

Orders from outside USA: add 15% shipping. CA
residents add 6.5% tax

"ATARI is a registered trademark of ATARI Inc.
“VIC-20 is a registered trademark of Commodore

SOFTWARE IN MACHINE LANGUAGE for ATAR|

ATMONA-1
This is a machine language monitor that provides you
with the most important commands for programming
in_machine-language. Disassemble, dump (hex and
ASCII), change memory location, block transfer, fill
memory block, save and load machine-language pro-
grams, start programs. Printer option via three
different interfaces
cassatte version
disk version

Order #7024 cartridge version
ATMONA-2
This is a tracer (debugger) that lets you explore the
ATARI RAM/ROM area. You can stop at previously
selected address, opcode, or cperand. Also very
valuable in understanding the microprocessor. At
each stop, all registers of the CPU may be changed.
Includes ATMONA-1,
Order #7049
Order #7050
ATMAS
Macro-Assembler for ATARI-B00/48k. One of the
most powerful editor assemblers on the market
Versatile editor with scrolling. Up to 17k of source-
Code. Very fast, translates 5k source-code in about 5
seconds. Source code can be saved on disk or cassette.
(Includes ATMONA-1)
Ordor #7099 k version $89.00
Order #7999 cartridge version $129.00
ATAS
Same as ATMAS but without macro-capability.
Cassette-based

rder #7098 32k RAM $49.95
Order #7998 48k RAM $49.95
ATEXT1
This wordprocessor is an excellent buy for your
money. It features screen oriented editing, scrofling,
string search (even nested), left and right margin
justification. Over 30 commands. Text can be saved

cassette version 849.95
disk version $54.00

cassette version
disk version

Order #7217 cartridge version

GUNFIGHT

This game (8k machine-language) needs two joystieks.

Animation and sound. Two cowboys fight against

each other. Comes on a bootable cassette.

Order #7207

FORTH for the ATARI

FORTH from Elcomp Publishing, Inc. is an extended
Fig-Forth-version, Editor and 1/0 package included.
Utility package includes decompiler, sector copy,Hex
dump (ASCII), ATARI Filchandling, total graphic
and sound, joystick program and player missile.
Extremely powerfull

Order #7055 disk 539.95
Floating point package with trigonometric functions

90°).

disk 529.95
Learn-FORTH from Elcomp Publishing, Inc.
A subset of Fig-Forth for the beginner. On disk
(32k RAM) or on cassette (16k RAM).
Order #7053 519.95

aszz 1/0 Board No. 608
FOM Burner No. 607
5K EPROM/MAM Hosrd

GroweyployKskid farany
o 11 0. 604
Siot rapastar board for vy Annl- w0

nd cet the book free |

COMING SOON | ORDER NOW !

A Look in the future w ATA
and_ how your own horoscope on the

KTARI a0 Order No. 171 59.95

FORTH on the ATARI — Learning by Using

Order No. 170 57.95

Books
+
Software
for
ATARI

ELCOMP PUBLISHING, INC vic20
53 Redrock Lane 0sl
Pomona, CA 91766 SINCLAIR
Phone: (714) 623 8314

Hardware — ADD—ONS for ATARI

PRINTER INTERFACE
This construction article comes with printed ci

without the ATARI printer interface. (Works with
gameports 3 and 4).

Order #7211 $19.95
RS-232 Interfaca for your ATARI 400/800

Software with connector and construction article.
Order #7291 $19.9
EPROM BURNER for ATARI 400/800

Works wilh gamaporlx No additional power supply
needed. s compl. assembled with software
(2716, 2732 "2532),

Order %7042 $179.00
EPROM BURNER for ATARI 400/800 KIT

Printed circuit board incl. Softwaro and extensive
construction article.

Order #7292 $49.00

EPROM BOARD (CARTRIDGE)
Holds two 4k EPROMs (2532). EPROMs not mcluded
Order #7043 829,

EPROM BOARD KIT
Same as above but bare board only with d:s:rlpnon
Order #7224 $14.95

ATARI, VIC-20, Sinclair, Timex and OSI

New — for your ATARI 400/800

Astrology :nd Biorythm for ATARI (cass. or disk).
Order 1{ 829.9!
Birth :wntrol with the ATARI (Knaus Ogino)

Order #7222 cass. or disk $29.95

Books + Software for VIC-20 (requires 3k RAM Exp.)
#4870 Wordprocessor for VIC-20, 8k RAM $19.95

Mailing List for VIC-20, 16k RAM

Tricks for VICs - The V[Cstory Progr.

TIC TAC VIC

GAMEPACK | (3 Games)

Dual Joystick Instruction 8
INPUT/OUTPUT Programming with your VIC

886 9.

#4896 Miniassembler for VIC-20

#4881 Tennis, Squash, Break

#4894 Runfill for VIC

Universal Experimenter Board for the VIC-20

(Save money with this great board). This board
plugs right into the expansion slot of the VIC-20.
The board contains a large prototyping area for your

expander and ROM-board.
Order #4844 X
Software for SINCLAIR ZX-81 and TIMEX moo
#2399 Machine Language Monitor 9.95
#2398 Mailing List s|9 95
Programming in BASIC and machlnu language with
the ZX-81 182) or TIMEX 10
Order # 14 mook)
Books for OS|

The First Book of Ohio

The Second Book of Ohio

The Third Book of Ohio

The Fourth Baok of Ohio

The Fifth Book of Ohio
#151 8K Microsoft BASIC Ref. Man, $9
#152 Expansion Handbook for 6502 and 6802
#153 Microcomputer Appl. Notes 89
Complex Sound Generation
New revised applications manual for the Texas
Instruments SN 76477 Complex Sound Generator.
Order # $6.95
Small Business Programs Order # 156
Complete listings for the business user. Inventory,
Invoice Writing, Mailing List and much more. Intro-
duction to Business Applications. $14.90

	Cover

	Preface

	Contents

	Monitor, address, statements

	Read This! -
PRTBYT
	Programming Model
	Branches
	Subroutines
	Indexed Adddressing
	Data
	Differences between ATAS-1, ATMAS-1, and Atari Assembler
	Input of Numbers
	Assemblers
	Short Cuts
	Small Examples
	Relocator
	Reverse Video

	ASCII Output

	Random Number Generator

	Machine Language from BASIC

	Number Systems

	Hex Numbers

	Digital Concepts

