- USEFUL PROGRAMS FOR
. ATARI®* COMPUTERS

Explained, Illustrated and Debugged by
~. MICHAEL POTTS with
HERB KOHL

Homework Helper
for the ATARI®

useful programs
for ATARI computers
explained, illustrated,

and debugged by

MICHAEL POTTS

with
HERBERT KOHL

&

A Creative Pastime Book
Reston Publishing Company, Inc.
Reston, Virginia
A Prentice-Hall Company

ISBN: 0-8359-2859-4

Interior design and production by Karen Winget.

This book is published by Reston Publishing Company, which is not affiliated with
Atari, Inc. and Atari is not responsible for any inaccuracies. ATARI is a registered
trademark of Atari, Inc.

© 1984 by Reston Publishing Company
A Prentice-Hall Company
Reston, Virginia

All rights reserved. No part of this book
may be reproduced in any form or by any means,
without permission in writing from the publisher.

10 9 876 54 3 21

Printed in the United States of America

Contents

early childhood games
NUMS—a symbol recognition game
COUNTEM—a counting game

FINDME—a coordinate geometry game
ONECLAP—a word-finding game

school skills

PATTERNS—deduce math patterns
REMEMBER—polish memory skills
SPELIL—a spelling driller
MATHFAX—practice math facts
TIMELINE—historical events
MINI-WOMBATS—word problems

computer as a tool

PAINT—electronic crayons

BARS—plot data with a bar graph
SORT—elementary data processing
SUPERSORT—a list-organizing tool

CALC—a smart calculator

ANYBASE—a counting machine for any planet
Utilities for school and work

Appendix

2888 EBY

[y
—t
-

acknowledgments

Thanks to Herb Kohl for his belief
that this book could be done, and to
Rochelle Elkan, without whose patient
and thoughful collaboration this book
could not have been done.

{

preface

This book uses the computer in an unusual way: as you build the
programs in this book—computerized tools that will help you with school
and work—you will be learning some of the tricks of the programmer’s
trade. When you are done, you will have a group of useful tools, and a
good grasp on programming.

Interesting programs usually come already programmed: the real fun
of working with a computer—making programs—has been grabbed by
the packager, and you only get to use the program. In this book, you will
learn about programming while building the tools for using the computer
to learn about other things, too.

The book is designed for anyone who wants to learn programming,
wants to provide students with useful tools, or both.

The four programs in the first section of the book are meant for
younger students—they introduce the computer’s keyboard and screen
and help build symbol recognition and logic skills. But we can’t expect
young ones to program before they can read. An older person—*“the pro-
grammer,” maybe seven or older—will need to help. The first programs
are carefully designed to help the novice over some of the humps all
programmers encounter when they start, and to proceed with good pro-
gramming habits from the very first.

The six programs in the second section are more advanced computer
students; even so, programmers younger than age twelve will be able to
write these programs, which will then be of genuine use in their studies.
Some of these programs are more advanced in structure and concept, so
as you build these programs, you gain more insight into the ways pro-
fessional programmers develop working programs.

The last section contains six programs which will be of use to anyone
who wishes to use the computer as a tool for organizing and simplifying
daily life. And the writing of these programs will expose the programmer

v

to some of the more advanced techniques available to a programmer
working on the ATARL

In this book you learn to use the computer while building useful tools—
the computer is present in your learning as subject, as means, and tool. I
have been working with micro-computers in classrooms, using that
approach, since they first appeared there in the late 1970s. I have
watched seven-year-olds use this approach to learn programming. For
many students, the computer is as natural a part of the learning envir-
onment as the television and the textbook.

“Yes, but does it do anything useful?” is a question many home compu-
ter owners hear. With these programs on your computer, the answer is
clearly Yes. There are programs in this book that anyone, even big peo-
ple, can use for practical work. And again: learning the native language
of a computer, in order to teach it to do your work, is the most useful
learning of all.

T have written this book with a clear purpose always in mind: learning
and computers are fun when embarked upon in the right spirit.

Michael Potts

vi

a message to parents
and teachers

With this book, you can turn an ATARI into a Homework Helper. The
programs in the first section help pre-school and elementary students
(age four to nine) practice elementary concepts—counting, symbols, and
spelling. Very young children can play these games and learn with the
computer. (The bigger person who helps type these programs in will
learn a lot about programming in BASIC—more about that later.) The
five intelligence games in the second section are for the use of older
students—ages seven through thirteen—polishing these skills further,
but there are learning challenges here for most adults as well. The study
tools in the advanced section help you illustrate, organize, graph, and
calculate.

This is not a read-only book: you should work with it and an ATARI
computer. It doesn’t matter if you’ve never touched a computer—or even
a typewriter keyboard—Dbefore. On the way through this book, you learn to
program in BASIC. When you are done with this book, you will have a
well-trained silicon-based homework assistant, and you will know how to
use BASIC to get computers to do what you want.

Most books that teach programming remind me of high school lan-
guage textbooks: lots of word lists and verb conjugations, but no feel for
the language or the people that speak it. In this book I try to interweave
computer language with a plain-English explanation. Doing this book is
the equivalent of living for two weeks with a family in the BASIC
interpreter!

Many computers live in closets because owners find little useful to do
with them. This book tackles that problem head on: people, students
particularly, can use the programs in this book to go the extra distance
needed to be an exceptional student.

If you just bought an ATARI computer or are thinking about buying
one to help your children with school, this book will build a useful part-
nership between your children and the computer.

If you bought (or are considering) an ATARI to teach yourself pro-
gramming, this book will help you build the tools you will need to turn
the computer into a working partner.

If you are a teacher with an ATARI in your classroom, this book
should reside beside the computer as an invtiation to your students to
make the computer do useful work. Take the computer and book home on
weekends and write the programs; when you are done, you will be able to
answer most of your student’s (answerable) questions, and you will know
enough to turn the computer into your classroom partner.

If you work with words and numbers, this book will help you turn your
ATARI computer into a willing, skilled, tireless, accurate, and speedy
assistant. Machines should work, and people should think—but to make
machines work, you need to know how to ask. BASIC, the native lan-
guage of most small computers, is easy to learn: even my youngest stu-
dents have mastered it, working on tools like the ones in this book—tools
to help with their work. This book makes computers a relevant and useful
study.

viii

early
childhoo

games

Computers are like newborn children, who must be taught to
crawl, speak, and walk—skills grown people take for granted. The
four programs in the first section of this book may be more inter-
esting for their programming techniques and structure than for
what they do, unless you are fortunate enough to have a young
learner around.

Learning with a computer is especially rich and rewarding for
young children for a number of reasons. First, the current genera-
tion of home computers are well-suited to the learning tasks of the
young—shape and symbol recognition, number games, and word-
building. Second, computers represent a change as great as that
made by telephones and television for earlier generations. Compu-
ters belong in the learning environment of the young, who will
grow up to be completely at ease and in control of a technology
that seems to many of their elders to be potent and sinister. Third,
computers are growing up with our children: a child who masters
an ATARI by age six—and that is quite possible—will be chal-
lenged by more capable, as yet unimaginable machines again and
again as she grows up. Adults might view that challenge as
unpleasant, but to children who “grow up” with computers, I
expect it will be one of the most natural and enjoyable experiences
in the world.

Learning with computers takes a number of forms; learning to
program a computer is an experience much like learning a foreign
language. To me, programming is negotiation with a Silicon
Intelligence—the single-minded, literal, and logical presence
within my machine. If I tell it to tie itself in knots or chase its tail,
it does it unquestioningly and with lightning speed. Over the
years, I have learned that even the simplest program benefits
from my logical approach, or suffers when I am not sure what I
want to do. Beginning programmers, especially younger ones,
often bite off projects much larger than they can chew and find
programming quite frustrating. I am reminded of George
Washington Carver’s story of his dialogue with the Almighty: “I
want to know Everything about Everything,” George said, and
the answer came back, “How about everything about the peanut,
George. It’s more your size.”

The programs in this section are easy to write, with just enough
challenge for beginning programmers. They’re about the right
size.

NUMS

a symbol recognition game

YES!

DISCOVERING THE COMPUTER

NUMS is a very simple program, and even very simple pro-
grams have their challenge. Computers can be demanding
partners. They are extremely literal-minded. Therefore, a good
strategy for getting the job done is needed.

For this program to be useful as more than a programming
project, you will need a young person (aged 2 to 5) to play the game
when you have finished it.

The purpose of the game is to help build a quick, accurate asso-
ciation between the number keys on the computer and the sym-
bols on the video screen. Many younger children find the key-
board, with all its symbols and keys, quite bewildering. Making
friends with ten keys helps engage these young ones.

For the programmer, the purpose is to work with the computer
with a job in mind and finish with a tool usable by a young child.
The skills learned here will be useful when it comes to more com-
plicated (and interesting) challenges in the future.

In NUMS, the computer randomly chooses a number (from an
easily changed group defined within the program), and the player
presses the corresponding key. When you get it, a colorful YES
flashes on the screen.

Younger children (aged 2-5) may be able to recognize only the
numerals from one to five at first but will quickly learn the rest
playing this game.

WRITING THE PROGRAM

Here’s a flow chart and program listing for NUMS. If they
make no sense to you, don’t worry. There’s a step-by-step explana-
tion on page 8. Programming in BASIC, the native language of
your ATARI, is easy, because you can build programs a few lines
at a time and test them to make sure they work. We will use that
system—professionals call it “modular programming.”

Subroutines can be used from anywhere in a program or bor-
rowed for several programs. In later programs you’ll begin to rec-
ognize “old friends” among the program lines. You will learn to
borrow them from earlier programs, so you won’t have to type
them in more than once. That’s what computers are for: machines
should work, people should think.

So let’s get down to it, and start at the end!

!

Initialize

Get a Random Number J

JL—
AV

Display Number]
| W m

I3

Get Player’s Keystroke]
P o N

Print YES! I
C —

The last line of the program is a one-line subroutine that makes
up a random number R between a low number (LN) and a high
number (HN). You will need this line in several programs, but you
only need to type it once. If you build the program a piece at a
time, and test each piece as you build it, you know for sure that
your program works. If you type a program like this:

100 LNZ@:HNZD

110 BOSUB 1300:PRINT R,

120 BOTO 110

1308 RIINT[LN+(HN-LN+1)#RND (1] :RETURN

and RUN it, your video screen will fill with randomly chosen
numbers between zero and nine—unless you made a mistake. If it
doesn’t work, you only have four lines of code to debug. Lines 100,
110, and 120 are temporary (called a “stub” by programmers):
they test the random number subroutine at line 1300 to ensure
that it is working right.

ATARI 800 notes

Saving Your Work

It would be a good idea to practice saving your program while it’s short. If
you (or the computer) should happen to make mistake, you’d only have a
few lines to type over again. If you have a tape system, make sure your
recorder is ready, and type

SAVE “RANDOM™
If you have a disk system, type
SAVE “D s RANDOM

Dimensioning Strings

The ATARI is very picky about the way programmers use string
variables—variables that contain text instead of numbers. An example is
the N$—I call it N-string—in line 20 of NUMS. Soon it will contain the
player’s name. Line 2 tells the computer to save a place in memory 20
letters long for N$. If you forget, or I should say when you forget, to
dimension a string, the ATARI will reward you with an ERROR 5
message.

THE BEGINNING OF NUMS

Let’s plunge into the program. The first section is the
introduction:

I OREM ## i NUMS %
@ DIM A% 1)
IOPRINT CHRS$ (1

4 OFEN $#1, 4,8, "

SODATA 1,203, 4,5,6,7,8, 9,8, M0

19 FRINT (FPRINT "HELLQ."IFRINT "MY NAM
E IS MUMS. "

29 PRINT "WHAT IS YOUR NAME"S D INFLUT N$
s h=1

S READ REIIF Be="END" THEN 5

44 A (M) =R$IN=N+1.060T0Q 3@

The lines before line 10 prepare (or initialize) the computer for
the special task we have in mind for it. Line 2 sets up space for the
string variables, line 3 clears the screen, and line 4 opens com-
munications between the keyboard and the computer. Line 5 has
the DATA that the computer will display on the screen.

Lines 10 and 20 introduce the program and find out the player’s
name. Lines 30 and 40 are a “loop,” which reads the data in line 5
and stores it in an array called A$—testing every one as it goes to
see if it’s the END. Line 50 sets the low number and high number
for the random number making subroutine. It is the last line in the
set up part of the program.

ATARI notes

String Arrays

It would be nice to have a bunch of string variables to contain similar
data—Ilike the ten numbers for this program. ATARI MicroSoft BASIC
lets you work with such an array of strings, but ATARI BASIC does not.
We get around the problem by putting them all in one string (A$), which
looks like this when it’s been loaded up by lines 30 and 40:

1234567830

That wouldn’t be very useful, but fortunately we can ask for a part of a
string at a time, like this:

You Type Computer Prints
PRINT A$ 1234567890
PRINT A$(1,2) 12

PRINT A$(5,10) 567890

PRINT A$(5,8) 5678

PRINT A$(7) 7890

In the last example, the computer provided everything from the number
given er to the end of the string. With this substring-slicer, you can play
many games with the computer’s memory, as you will see as you read on.

THE MAIN PROGRAM
The main program pivots on line 50 like this:

S M= 8 HM=N-

6@ GOSUR 13 REM GETS A RANDOM NUMRER
7% GRAPHICS 2+16:FOSITION 14, S5:R$=A% (K
SRYIFRINT #&65R$3

8@ GOSUR 1@@@: BRe=CHR$ () I REM GETS EEY
9@ IF B$=R% THEM 114

1@gg GOTO 8¢

293 FOR T=1 TO 8@@:NEXT T
29¢ G0TO S¢

Line 60 sends out to the random number generating subroutine
at line 1300. Line 70 pops us into GRAPHICS 2+16 and POSI-
TIONSs the cursor ten columns over and five lines down from
HOME—the upper leftmost corner of the screen—and prints a
randomly chosen string there.

Line 80 calls another subroutine: it sends program control to
line 1000 to get a message from the keyboard and the outside
world. Don’t worry that there isn’t any line 1000 yet. We'll write it
soon. Until we do, the program won’t run.

Skip lines 110-150 for now, but type in a temporary line like
this:

110 PRIMT HE; "V E 5 1~

Line 200 is an “empty loop.” It doesn’t do anything but count to
800, holding the display long enough for you to read it. Line 290
sends the computer back to the beginning of the main program
loop at line 60.

Try it out: type RUN. If it doesn’t work, find out why Debug-
ging is the fun part.

THE KEYBOARD SUBROUTINE

The three lines of code starting with line 1000 peek and poke
around in the innermost recesses of the computer’s memory to
find out if any human has thumped on any key. This is the part
where we tell the computer how to attend to us:

tags I=FEEK (764) 1 IF =285 THEN 1@¢3
1919 GET #1,EIPOEE 764,255

1898 RE TURN

123 R=INT (LN (HN-LN-HDD) % FRND (1)) s RETURN

Line 1000 PEEKSs into the contents of memory address 764, where
the computer maintains a constant flag about pressing of keys. If
no key has been pressed since the last time we looked, we find the
number 255 there. (If you are curious why 255, you will like ANY-
BASE on page 98.) If line 1000 discovers the 255 no-change mes-
sage, then it looks again, and again, and again until someone
pokes a key. Then (764) doesn’t contain 255 anymore, and we can
GET the most recently pressed key out of a buffer we OPENed
back in line 4. Having received the keystroke, we POKE 255 back
into (764) and RETURN to the line that sent us.

SOME FANCYWORK
When you have exterminated any bugs, you have time to dress

up the program for use.
Now for more graphics.

10

11 POSITION 8, &:HN=S:.N=1

12 GOSUBR Z@@HIFRINT #6iCHR$ (89+R*32) 3
1738 GOSUR Z@@:FRINT #63 CHR$ (69+R*32) 3
14@ GOSUR IZ@@:FRINT #635 CHRS (83+R*#32) ¢
15¢ PRINT #&65m v

@8 GOSUR 13¢@d: TF R=2 THEN =@
Il IF R=3 THEN =5
399 RETURN

These lines play with the colors available for the letters in YES.

There is a copy of the whole program in the appendix so you
can list and check your work. Writing programs is a very special
kind of writing—more meticulous and exacting than any other
kind of writing. If you misspell a word, the program misbehaves.
But the payoff is that when the program runs right, you know it’s
well written.

That is, if you saved it! What if the power went off now? This
program is not quite finished, but good program practice says:
SAVE IT anyway. If you have a tape system, type

SHWE “MUmL1
and follow the directions. If you have a disk system, type
SAVE “D=MUML

Now if the power goes out, you’re covered.

by

- ——————
b e

r—
i

11

An editing trick: lines 130 and 140 are almost the same as line
120. You can LIST 120, then move the cursor up onto the listed
line, change the 2 in the line number to a 3 (or 4), move your cursor
to the right, and change the two numbers that differ, then press
< RETURN >, and you’ve got the new lines at almost no cost to
yourself. Of course, if that seems too complex, you can type the
lines from scratch.

Now you get to debug the new parts—I had to fiddle with my
colors to make them work the first time. Then BE SURE TO
SAVE! It’s a finished program now, so call it NUMS when you
save it. Test your work, and when you’re sure it’s right, find some-
one to play it.

When players get tired of the number from zero to nine, you can
change line 5’s data. Here are examples.

The most-used keys:
SDATAE.T,.0,A,I,M,R,5,END
The home row for touch typing:
5 DATH A, S,DL.F,J,kK, L, END
The beginning of the alphabet:

3 DHTR A,B,.C.0,E,F,5,H,1
4 [IHTH '—T " I‘} L] I— L] m L] H " D L] P L] I:,I L] FI
S 0ORTA S, T, U0W, W, =, v, Z2,ERD

You can use any keyboard symbols you want. Just make sure that
END is the last entry in your DATA.

12

COUNTEM

a counting game

* % % % X

HOW MANY?

A COUNTING-SKILLS PROGRAM

This program was inspired by the Count, a TV character that
delights in counting things—a delight shared by many young
children. As soon as young players have found some of the keys
they need on the computer, they are ready to strengthen associa-
tions between the keys and numbers.

For the programmer, COUNTEM is interesting because it
introduces the concept of “borrowing from yourself,” a strategy
that saves a lot of work and confusion: if you can reuse a piece of a
program (a module) that is known to work, the programming task
is much easier.

13

What happens when the player gets a wrong answer? Compu-
ter programs that TEST ONLY say “WRONGO!” (and some even
make an impolite noise!). I like programs that help the player
LEARN. The computer, and the programmer, should be smart
enough to offer help. Frequently, the help is nothing more than a
quick reminder about how to count:

X %k X %k >k
2 345

1

HOW MANY? 6
HOW MANY?

COUNTEM draws a random number of hearts on the screen,
then invites the child to count them. (The programmer chooses the
range of numbers to count.)

A simple switch, and the objects to be counted flash on the
screen for only a moment; even adult players can challenge and
build their pattern-recognition skills!

WRITING THE PROGRAM

This program uses some routines borrowed from NUMS.
Wouldn’t it be nice if you didn’t have to type them in again? Well,
you don’t!

ATARI notes
Start out with NUMS in your computer’s memory, and type
LIST 11@-266
The computer will list the code for the colorful YES! block. Then type
LIST 300-1300

14

You’'ll see the rest of YES, and the keyboard and random number genera-
tor subroutines on your screen. Now type

MEL

and NUMS will be erased from the computer’s memory, but not from the
screen! To get the lines into your new program, use the cursor control keys
to move the cursor into each line you want to borrow, and press {ENTER}.

for COUNTEM you need to borrow lines 110, 120, 130, 140, 150, 200, 300,

310, 390, 1000, 1010, 1090, and 1300. Now LIST your program. The tricki-
est parts are already done.

114 FOSITION. 8, &5 HMN=52 L.N=

120 GOSUBR 3¢ FRINT #b-LHH$(89+R**

153g GOSUR Z@@EIFRINT #63 CHR$ (HF+R*32)
14 GOSUR Z@E@iFRINT #65 CHR$ (BT+R+32)
153 PRINT #é65" !¢

291 FOR T=1 TO B@@INEXT T

Jgg GOSUR 1I3E@E IF R=2 THEN Zgo

F1@ IF R=3% THEN 3@

398 RETURN

1aa@ T=FEEF (76471 IF I=285 THEN 1@@d
1@#99 RETIURM

PE@E R=INT LN+ (HN-LNA D) #RND L)) S RETURN

‘ar s cmw

THE PROGRAM’S INTRODUCTION

REPD %539 %996 369 % 2 % % %% % % % %% %% COUNTEM *
DIM C$(1),D$(6) ,ME(12),0% (1)

Cé= LHF$(125):M$~“ "

OFEM #1,4,0, "k

FRINT CiM: "% COUNTEM »"

10 FRINT D3 "WHAT IS THE LOWEST MUMBER
"FIINFUT LL

20 PRINT " THE HIGHEST NUMBER";:
INFUT HH

SLE RS

15

Line 3 sets up a “clear the screen” string, called C$, to erase old
data and place the cursor near the screen’s center. M$ is a margin,
so that the writing isn’t crowded against the left side of your
screen. Line 5 uses both of these screen formatting strings to dis-
play the program’s name.

Lines 10 and 20 get the lowest and highest numbers for the
random number maker. When you play this program, remember
to keep the numbers adjusted to the player. If you use numbers
less than 1 or bigger than 9, the program will crash.

THE MAIN PROGRAM

A LN=LL 2 HiN=HHL GOSUR 13333 GRAFHICS 2+1
ALFOSITION 1,5

4 FOR N=1 TOQ RIFRINT #&65" #"§INEXT N
SO FOSITION I, BiFRINT #65 "HOW MANY? "3
s GOSUR 1@md

7 OIF =R THEN 11@

8 FOSITION 2,4:F0R N=1 TQ RIFRINT #63
Ma'™ "S5 IMEXT N

@ GATO &HF

290 GOTO. =6

Line 30 sends out to our old friend the random number maker
for a random number R, then prints R hearts on the screen. You
make the * in line 40 with the key above the ATARI key. Lines 50
and 60 move the cursor down a bit and ask “HOW MANY?,” then
send the program to the keyboard subroutine at line 1000 for an
answer.

There is some new code in the keyboard:

lele GET #1,EIFOKE 764,255

N Qe=CHRS$ (k)

1985 IF Q<"1 OR G$:="9" THEN 1agd
1d4¢ Q=VAL (O%) iFRINT #6356

Line 1030 checks to see if it’s a legal key—one of the numbers
between 1 and 9. If it’s not legal, the computer ignores it and goes
back to waiting for someone to press a key.

16

If it is a legal keystroke, the keyboard subroutine figures out the
number value for the key, prints the symbol, and sends control
back to line 60, the line that called the subroutine.

Line 70 checks to see if Q (the value of the key pressed) is the
same as the number of asterisks. If it is, off to the colorful YES!
box at line 140.

If not, line 80 moves the cursor back up beneath the hearts, and
numbers them to help the player count. Line 90 moves the cursor
back to the HOW MANY? then sends the computer back to line 60
for a new answer.

You need only one more line: line 290 sends the computer back
to the beginning of the main program after the YES! display.

Time to test the program, then put it to use strengthening
number concepts.

A challenge for people who know how to count: set the low
number at 5 and the high number at 9, then try to estimate—
counting is not fair—the number of hearts. After a little practice,
you’ll be amazed at how quick you get.

To speed things up a bit, change line 50 by adding a timing loop
like this:

S50 MEXT::FOR T=1 TO S5@#R:NEZT T:GRAPHICS 2+1&
If that goes by too fast, change the 50 to a larger number.

17

FINDME

coordinate geometry game

HIDE-AND-SEEK WITH A COMPUTER

Now that numbers are second nature, how about something
more difficult? Two numbers! Coordinates are two numbers that
define a location in a two-dimensional space, and this game plays
with that idea. Ordered pairs—you always type the horizontal, or
X-coordinate, first—are an important mathematical notion that
many children never wholly grasp. This game is good practice for
several classic games, including Battleship and Star Trek.

The main program for FINDME is very simple to write and
debug. For more challenge, there is a second version that employs
the computer’s sound capabilities and demands a bit more of the
programmer’s and player’s, skill.

FIMD ME1

54+ 4+ ++++++++
R S S CER SR RS
s+ +++++++++
sS4+ 4+ +++ 4+ x+++
s+ +++++++ o+
34+ +++++++++
24+ 4+ 4+ +++++++
L+ 4+ 4+ ++++++ +
o+ 4+ ++++++++

® 1 2 3 4 5 €6 7 8 3
CAN YOU FIND ME (¥,%17 —

18

FIND ME!

+H+++++++
+++++++++ 0
+H+++++++r
+++x+++++ @

+4++++++++

A+ ++++++ s

44+ +++++

+H++F++++++ o
A+ttt
+H+++++++

ol U VI T L S e

FIND ME!

CHN l\IIEII_I FIND ME | r-__l" Yl ‘-

YO FIND ME

+H+++++++
+++++++++
+++++++++

+++x+++++ @
++0++++++w
++++++++ s

4+ttt

+H++++++++ 0

e R S

+++++++++o

oMWW N

fhL B

] =

19

SSED ME!

AN YOU FIMD ME (5,4

YO M

|

FINDME makes up coordinates—pairs of numbers, like 2,3—
and plots the corresponding point with an X on the screen. The
player finds them.

A tricky variant, Sound FINDME, doesn’t mark the point, but -
gives you musical clues to help you find it: the lower the note, the
lower the number.

WRITING THE PROGRAM

1O REM 6996596533 3 % % % % % %% %% %% FINDME *
2 DIM A% (1000) ,B$(20) ,DHE(20) ,M$(12),C%
(12) RE(H0D) , I (1), TH(20),0%(20)

5 CHE=CHR$ (125) 1 M$=""

&S ME=""1FRINT M$:"* FINDME »"

10 PRINT C#,"# FINDME #":FRINT "Y"

20 FOR R=8 TO O STEF —-1:FRINT R3

2 FOR C=" TO QIFRINT " + "3;:NEXT C:PR
INT FRINT

4@ NEXT R:I:FOR Ce=g@ TO Q:FPRINT " "sCsIN
EXT CIPRINT “x"

S@ HN=9:G0SUR 13ag@; X=R:1HN=8:GOSUR 13
s Y=R

6@ UX=X1VY=Y: Z=88:GOSUR 126

74 FOSITION 1,22:FRINT "CAN YOU FIND M
E (X,Y)";

8@ INFUT QX,QY:IF X=X AND GY=Y THEN 1
tala]

Qe GOTO 200

Lines 10 through 40 print the grid on the screen. Lines 50 and
60 locate the the Hider. Line 70 prints the words “CAN YOU
FIND ME”;the INPUT in line 80 supplies the “?” gets the play-
er’s answer, and sends the program to line 100 if the answer is
right. If not, line 90 sends the program to line 200.

The subroutines are next:

1206 FOSITION 4+ (3%VX) 2+ (2% (8-VY))
121@ PRINT CHR%(Z)

1299 RETURN

1385 R=1INT (LN+ {(HN-L.N+1) #*RND (1)) tRETURN

Lines 1200-1290 calculate the screen position that corresponds
to the Video-X and -Y coordinates (1200); print the appropriate
character there (1210); and RETURN.

You recognize our old friend at line 1300—the random number
maker. It has to work twice as hard in this game, because every
answer needs two random numbers.

FINDME works now, up to the point where you give it a pair of
numbers. If it doesn’t, work on it until it does. Debugging is one of
the primary skills of the programmer: you must learn to think
linearly, like the machine. Exactly where does it stop doing the
right thing? What was it supposed to do? What did it do? When
you can answer that, list the code and exterminate the bug!

Now that the grid is drawn and the X plotted correctly, add the
lines that check the player’s guess.
1ag PRINT "YOU FOUND ME!'";

18@ FOR T=0 TO 1999:NEXT T:60T0O 16

209 PRINT " YOU MISSED ME";

218 VX=GX:VY=QY: Z=79:GOSUR 120

220 POSITION 1,23:FRINT " ";:FOR T=@ T
0 S@@:NEXT T

238 PRINT "y

248 6OTO 7@
This is how the program works:

The main program begins at line 10 by clearing the screen and
typing the game’s name. Lines 20, 30, and 40 draw a grid on the
screen. Line 50 gets random coordinates for the hider, and line 60
hides her.

Lines 70 and 80 ask the player to locate the hider, then check to
see if the location is correct. If the player gets the right answer,
lines 100 and 110 display “YOU FOUND ME!” for a decent period
before clearing the screen and circling back to line 10 for another
spot. If the player is wrong, line 90 sends program control to line
200.

Line 200 prints “YOU MISSED ME” and line 210 plots the spot
the player entered for comparison. The most common error is giv-
ing the Y answer first; when the wrong point is plotted on the
screen, it’s easy to see the reversal. Line 220 leaves the message on
the display for a moment, then line 230 wipes it out. Line 240
circles back to line 80 for another try.

21

ADVANCED PROJECT: SUPER-FINDME

In this program, the computer doesn’t put an X to mark the
hider’s spot, but issues two pairs of tones to help the player find it.
The tones are hints: the closer together the tones get, the closer
you are the hider.

Super-FINDME blends the FINDME program with another
program, or routine, called TWONOTE:

1968 FOR N=0O TO Z:READ NN:IN{(N)=NNINEXT N
1910 N1=1:N2=8:REM #*#xxkxxkkx% TWONOTE »
1920 GOSUB 28006:RETURN

2009 SOUND @,N1, 1,8

2010 FOR T=1 TO 44:NEXT T

200201 SOUND @ N1, 16,4

207@ FOR T=1 TO 4:NEXT T

2049 SOUND @,N2, 19,7

2059 FOR T=1 TO B@:NEXT T

2099 SOUND @, N2, 141, @I RETURN

2968 DATA 121,108,96,81,72,408,53,47,449,
a3

The first lines (1900-1920) are called a “programming stub”—a
sort of test-bed to make sure the program works right before it gets
incorporated in a larger program. The notes are requested as vari-
ables Notel and Note2. Be sure the numbers you supply for line
1910 are in the range from 0 to 9.

Line 2000 starts the sound generator, line 2010 keeps it on for
an interval, and then line 2020 turns it off. The last number in the
SOUND statement is the volume setting, and 0 is off. Line 2030
provides a bit of silence between the two notes, then lines 2040
through 2090 sound the second note.

When you are sure that TWONOTE is working (and saved in
case something goes wrong), you are ready to merge the module
with FINDME.

There are few changes necessary to make the sound module
work. First, you need to add

:GOSUE 190

to line 5, to initialize the sound generator. The subroutine for “dis-
playing” the hider isn’t at line 1200 anymore; we use the sound
subroutine at line 2100, so line 60 needs to change, too.

ATARI notes

Borrowing lines
To merge TWONOTE into FINDME to make Super-FINDME, make sure
TWONOTE is in the computer’s memory by typing
LIST
Now type
WNE W

and then load FINDME from disk or tape. When the computer says
READY, move your cursor to the top of the TWONOTE listing on your
screen—you should see the cursor block flashing on the 2 in line 1900 of
the listing. Now press {RETURN} once in every line of TWONOTE
remaining on the screen—that should be ten times.

If you list your program now, you should find it is ten lines longer—the
sound module from TWONOTE has been appended to FINDME.

1 REM ®#%%EH%RHHKHEREEKXXEHE%®E FINDME *
2 DIM NO1@) ,CH(1) MB(12)
S CE=CHR$ (125) : GOSUR 1900

HEG N1=N{X) IN2=N(Y) : GOBUR 2013

7¢ FOSITION 1,22:FPRINT "CAN YOU FIND M
E (X,Y)Y"j

8@ INFUT OX,0Y:IF @X=X AND @Y=Y THEN 1
@

@ GAOTO Z29e

There is some added code between lines 100 and 180, the “Cor-
rect” Fanfare:

198 PRINT "YOU FOUMD ME'"3

11 Ni=N(X) IN2=N1:IGOSUR 2009

1260 N1=N(Y) INZ=N1:GOSUR 2003

138 N1=N(X)IN2=N(35) :GOSUR Z¢¢@:GOSUR 2
alaln]

14¢ N1=N{7) :NZ=N(8) :6GOSUR 2¢g

184 FOR T=0 TO 499INEXT T

and similar changes between 200 and 290:

23

200 PRINT " YOU MISSED ME"3
21@ N1=N@X) iNZ2=N(X) :GOSUR 2069
220 N1=N(QY) :NZ2=N(Y) :GOSUR 2Za0@
274 POSITION 1,23:PRINT " "j
288 FRINT " "3
299 GOTO 7¢

You can take out the subroutine lines from 1200 to 1290; it isn’t
used anymore.

The new program should run now. Test it. There is a full listing
of SFINDME in the appendix for troubleshooting purposes.

An interesting footnote: you have written a program (SFIND-
ME) that works very nicely without the video screen. (Of course,
you can’t turn the TV off, because the computer relies on it for the
sounds as well as the picture.) Would it be possible to build a
computer that didn’t use the video at all? How would a computer
for blind people work?

24

ONECLAP

a word-discovery game

ONE CLAP ONE CLAP

CAT IS ON MY LIST DUZ 1S NOT ON MY LIST

“Is this a word, Mommy?” asks the young child, just learning
to build words out of sounds. Exploring the way letters combine
into words is an exciting quest for children aged five through
seven. But English is an illogical language, and many words that
should be spelled one way, duz for example, are spelled in quite
another, does. It takes a lot of memory to know the spellings of the
most misspelled words. But that’s no reason why your computer
can’t know and help a young child discover a smaller class of
words. At this age, children are fascinated by truly simple words
like CAT, PET, and SIT: a letter or two, then a vowel (A, E, I, O or
U) and a final consonant. I call these One-Clap words, because
when you sing or say them, clapping your hands as you go, these
words get only one clap, where other words get more: computer,
for example, gets three claps.

This program is an ambitious programming project for the
beginning programmer. It is nothing particularly complicated,
but a number of modules must cooperate to do the program’s
work. Good luck! (Accurate typing helps, too.)

ONECLAP is really two games in one program. In the first
game, the player presses any alphabet key, and the computer
shows the letter inside the box on the screen. When the player
presses < RETURN >, the computer replaces the letter with a short
wod containing that letter. The computer searches for a matching
word randomly, so pressing the same letter several times will give
the player several words containing the chosen letter. Playing
with the computer in this way, the player learns the words in the
computer’s vocabulary.

When the player is ready to move on, typing any two (or more)
letters sends the computer to the second game (or “mode” as they
say in the computer world). The child types in a simple word, and
the computer compares it to its vocabulary. If the computer finds
the word, it flashes the YES! blcok; if not, it confesses that the
word “is not on my list” and makes a note of it for future reference
by someone with a bigger vocabulary.

Children quickly learn the “one clap” concept by clapping
along with the sounds of their speaking or singing. A “one-clap”
word has only one syllable, but that’s a hard term to explain to
younger players. This program uses an even narrower definition:
a one-clap word has only one syllable, no fewer than three nor
more than four letters, and its second-to-the-last letter is A, E, I, O,
or U. It turns out that there are hundreds of such words—see how
many you can find—and they comprise a large majority of most
children’s first written words. This program only supplies a few,
but children delight in finding more. If the programmer maintains
the program by adding newfound “good words” after each ses-
sion, the program becomes a fascinating mirror of the player’s
burgeoning written vocabulary.

WRITING THE PROGRAM

Several new concepts make their appearance in this program.
We can build the program one module at a time, and the whole
thing shouldn’t take more than an evening.

The first lines prepare the computer to work with the special
kind of program we are writing. DIM A$(4000) creates space for
an array of memory locations to contain the program’s vocabu-
lary.

1 FEM 5365 5 3556 3 % 5 5 K 33985 ONECLAF *

2 DIM N$(2@),MO% (18) , A% (3BBF) , B (1 OGHH)
ST (AE) F$(A) , W (4), I$(1),08 (1), VE(S),

£ (25)

I DIM F{1a38) , W)

4 OFEN B1,4,0, K"

7 VE="AEIOU" I RT=308

18 CH=CHRS (125) 1C$ () =" *

ONECLAF *":FRINT C$:MO$="ANY KEY":MO=3

200 FRINT :PRINT "WHAT IS YOUR NAME"::

NFUT N$:GOTO I@os

30 GOSUR I@¢@: IF LEN(TS) 1 THEN 55

4% GOSUR 486:6G=6G+1:IF GI1¢ THEN 3@

Lines 3000-3200 read the vocabulary from the data lines 9000-
9990 into the array called A$(V,W), where V is the vowel number
(starting with O for A), and W is the word number. After the last
word for each vowel is stored, the computer keeps track of how
many words it has for each vowel in an array of numbers called
W(V). This module is designed to read as many as 101 words for
each vowel from the data, provided, of course, that the A words
come before the E words, and the very last data entry is ZZZ.

IOE FRINT "EXCUSE ME, "iN$
TPl FRINT "1 AM READING MY LIST NOW."
TERE FRINT We=gisl L=@:FF=@: T$=V$ (1,1):V
=30 W) =@ F (@) =0
TETH READ We:LW=LEN (W) 1 IF W$ (LW-1,LW-
1) +T$ THEN 3100
IPaAE FRINT W$s" "i:lbl=LL+LW+1: IF LL333
THEN PRINT :LL=g
THSE A (FF+1) =W$: FFP=FF+LW: W=W+ 10 B (W) =F
Fl
TH9H GOTO IH3TP
T1EE V=Vl W V) =W IF V=5 THEN 3¢
T1IH TE=VE (W1, V+1) 1GOTO G50
QuaE DATA BAT,.CAT,.EAT,FAT,HAT,MAT,FAT,
RAT,SAT, TAT, VAT, WAX
FE1E DATA BET,GET, JET,LET,MET,NET,FET,
SET.VET,YET

27

PERE DATA BIT,FIT,HIT, KIT,FIT,SIT,TIT,
WIT,ZIF,QUIT

PHTE DATA COT,DOT, GOT,HAT, JOT,L.OT,NOT,
FOT,ROT, 80T, TOT

FEdE DATA BUT, CUT, GUT, HUT, JUT, NUT, FUT,
BT

PG DATA 777

Line 3020 gets everything set for reading the data. Line 3030
READs a word—it must be a string, because it is text, not
numbers—counts the number of letters in the word, and checks to
see if the second-to-the-last letter is the same as last time. If not, it
shoots off to line 3100 to keep track of the number of words for the
current vowel. If it is the same vowel, the program moves on to line
3040 where the word is printed, the line length on the display is
tallied, and if it is greater than 33 a new line is started. Line 3050
adds the new word to the vocabulary list stored in A$, notes the
ending position of the new word, adds 1 to the word count, and
goes back to line 3030 for the next word.

You can RUN the program now to test your work so far. It
should read its vocabulary, then encounter an error at line 30—it
tries to find line 300, which isn’t written yet. If you type

FPRINT A%
after the crash, you should get something like this:
ERTCHATERTFATHATHMATFATRATSATTATYATWAZBET . . .

The next logical place to work is on lines 300-390, so the pro-
gram RUNs farther.
Bgd GRAFHICS 2414 FRINT #&635MO$
21 FPOSITION 8,5 FRINT #6323 :POSITIO
N 8,5
J2E TE=""1T=E GOSUR 165
294 RETURN
Line 300 shifts the screen display to a different GRAPHICs
mode (which clears the screen), prints the mode, positions a ?
near center-screen, repositions the cursor so the next keystroke
will wipe out the ? and then sends out to line 1000 for a keystroke.
We need our keyboard subroutine—do we have to type it in all over
again? No!

ATARI notes

Borrowing lines from other programs

It’s smart to let the computer do the work for you. If you already have a
working keyboard module—you do if you typed in NUMS or COUNTEM—
you can avoid mistyping and debugging by following this procedure:

SAVE your work. (It is time you did that anyway. If someone kicked out
the plug, you’d be sorry!) Then type
HE b

and
LOAD "D s NUMS

for a disk-storage system. If you are using a tape system, check
your ATARI manual for loading instructions.

LIST line 4 and lines 1000-1300, then type NEW again. ReLOAD
the incomplete version of ONECLAP you saved at the beginning
of the last paragraph, and move your cursor up into the lines you
listed from NUMS. Press {RETURN} in each of the listed lines; as
you do that, the line is entered into your computer’s program
memory exactly as it shows on the screen.

Zip! the keyboard subroutine has been installed in your new
program at very little cost and with a high degree of reliability.

las@ad T=FEEE {7&4)

1816 T=T+1:1IF T<RT THEN @%@

1a2a IF MOXG OF LEN(TS) =6 THEN 16566
TeiZgh FPOSITION 6, 13 FRINT #6: "FRESS [RE
TURNI"§ o T=3

1€4a POSITION 8+LEN(T$) ,5

1G58 TF I=255 THEN 169

1dbd GET #1,1IFPOKE 764,255

1878 IF E=155 THEN FRETURN

1988 IT6=CHRS$ () IFRINT #63 [1%:: TS (LEN(TS
Y+1d)=1%

1996 GOTO 1@

128 R=INT LN+ (HN=-LN+1) #RMD (1)) t RETURRN

There are some necessary additions to the keyboard subroutine
beginning at line 1000. If you're wondering what is special about

155 (in line 1070, it’'s ATARI BASIC’s internal code for the
{RETURN]} key; line 1070, for instance, translates, “if the input
key is not equal to {RETURN]} then print it and add it to the text
string.”

You can test this module directly after you have it typed: type

COSUE 109

Nothing exciting happens—the computer just sits there and
hums. Type something in, like

HELLDO, COMPUTER

and press {RETURN]}. The computer responds with READY.
Nothing very interesting? Ask the computer to print T$—you can
take a short-cut and type

?TE

The computer should respond by typing your message again: the
keyboard subroutine displayed your keystrokes, while capturing
them in the test string.)

Line 1300 is our old friend the random number maker, borrowed
already from NUMS.

Lines 400-490 match single keystrokes from the keyboard with
words containing those letters (from the first part of the game).

4@¢@ Fe=T%IG0OSUR o IF Fad THEN 424
A1 HN=W (F--1) W (F) L GOSUR 13860 WR=W (F) 1+
FrWs=na% (P IWF)Y+1,F WF-+1)) 26070 484

426 HN=41 GOSUR L1380 W@ Nl=W (F+1) ~W (R)
425 NW=W (REDY —WORD

4T WFE=W R W WE=A% (F(WF) 1, P OWF+1)) 0T
F Ts=Ws{1,1) THERN 48

44 IF TH=W$s (LEN(WH)) THEMN 489

458 W=W+1 2 TF WOpNW THENM 47%5¢

468 R=R+1IW=@ IF R<E THEN 425

47 ¢ R=@#:60T0O 425

484 POSITION B,5:FRINT #6535 WS

49@ GOSUR gdd: RETLIRN

BE@ FOR T=@ TO 75¢:NEXT T:RETURN

30

The complicated expression in line 410,
WE=RE(F[WP1+1,P[WP+1]]

extracts a single word from the vocabulary string. The storage
strategy works like this:

Fi{ o @ 1 2 Wil Wil)+1 W5]

HE BATCAT ... WAXGET .- RUT

Example: if we want the second word, its starting position is one
character to the right of the end of the previous word—P(WP)+1, or
position 4. It ends at P(WP+1)—position 6. (The WP counter starts
at 0, and lags one behind the word count, so WP=1 for the second
word.) A$(4,6)=“CAT”.

The lines from 500 to 590 set up a variable F to work with the
vowels in the words.

S0 F=—101IF Fe="A" THEN F=g
wldg IF Fé="E" THEN F=

S IF Fé="1" THEMN F=
R OIF Fé="0" THEN F=3
4@ IF Fé="U" THEN F=4
999 RETURN

With these modules typed in and debugged, the first part of
ONECLAP should work—and the hardest programming is done.
To finish the program you need:

96 MOs="0NE CLAF":MO=1:G08UR @

S5 LT=LEN(TS) D IF LT3 THEN 295

o FE=T$ (LT-1,LT-1) 1 GOSUR S@@: IF F=—1
THEN 254

78 W=@i NW=W (F+1) ~W (F)

B@ WF=W(F) +WIWs=A% (F (WF) +1,F(WF+1)) 1 IF
TE=Ws THEN 1@

B85 W=W+1:IF W<NW THEM 84

a0 GOTO 256

]mm FOSITION Z,46:FRINT #6318 ON MY LI

"I GOSUR 8@
11@ NR=NF+1IIF T$="QUIT" THEN 76
192¢ GOTO =

31

Line 200 and further take care of words not on the list.

298 FPOSITION 1,8:FRINT #65"IS NOT ON M
Y LIST.":GOsSUR gad

268 BELENES)+1)=" "IR${LEN(E$)+1)=T%
29¢ 60TO 5

Long program! But now it’s ready to test. On the next page you
will find a programming tool, called a flow chart, to help you
debug this program. Follow the lines on the chart while the com-
puter follows the program logic. If the computer does something
unexpected, you’ll know where to look for a problem. Computers
are literal to a fault: if a single character is wrong, the computer
will either complain or do the wrong thing.

Once you have ONECLAP performing the way it should, you
can add lines 700-900, which let the player QUIT the game and see
the words the computer doesn’t have on its list.

799 FRINT CsIFRINT JFRINT

719 FRINT N®: ' FOUND "iNRIFRINT ,"GOOD
WORDS. "

T2 PRINT IFRINT "WORDS NOT ON MY LIST

CUIFRINT tP=1iLEB=LEN(BS$)

730 PR=37:1F LEB-F<37 THEN 794

744 IF B (F+FF,F+FF)=" " THEN 768

759 FP=FF-1:60T0 744

768 FRINT B$ (F, F+FF-—-1) i F=F+FF+1:G0TO 7
Ry

794 PRINT B$(F,LE) 1END

There is a full listing of ONECLAP in the appendix.

32

Initialize
[1-6]

\ m

Get Player Name
[18-20]

Read Vocabulary
[3800—]

[1—

— |

“ANY LETTER"”

Mode Control

[3¢-49]

o
I

Get an Entry
[308@+]

Keyboard

Is Entry {No)

[1800+)

Longer Than 1
Character?

Find & Display a Word

[40g+]

IS

“ONE-CLAP"”

Mode Control

[58-60]

Get an Entry
[3ﬂl5+]

]

Is the
Entry on the
List?

NOT ON MY LIST

Check Vocabulary
[506+]

]

GOOD WORD
[188+]

P::>

[208+]

T

33

school
skills

b L

B
i

e
il

34

The next six programs take the computer from the crawling
and walking stage to the running and jumping stage. There
should be something interesting and useful for anyone old enough
to press the keys. There is one game that will have the quickest of
mathematicians scribbling away with pencil and paper along
with the rest of us: it’s possible, but tough.

The computer is a smart blackboard: write a “little program”
that teaches some specific lesson quickly. these six programs pol-
ish various school skills—logic memory, spelling, math, history,
and word problems—as painlessly as possible.

The programming involves several new techniques. As you
construct these programs, you will see the reasons for building
certain parts first, like building the roof and walls to keep the rain
off, but only after the foundation and floor are solid.

35

PATTERNS

8 15 16 11 2

FATTE =
PHTTE H
PATTE M5
PRTTER
FPRTTER 5
FRTTERM
PATTERNS-a pattern recognition game

This program makes up mathematical puzzles like

12+ 7 9 and 2 15 1 11 7
)

[zeries one [zeries two)

The player’s job: decipher the rule and supply the unique missing
number. Such puzzles often find their way into intelligence tests
and math textbooks; the ability to deduce the answers quickly is
often taken for intelligence.

Some patterns, of course, are easier than others: the first series
is the odd numbers, and the missing member is 5—a six-year-old
can easily find that. The second one is not quite so easy—the
answer is zero.

15 35 B4 7

WHAT I35 MISSIMG?

Houw to solve them

There is a systematic method for solving all but the alphabetic puzzles
with pencil and paper. Write out the series, then bracket each pair of
numbers and note the difference between them. Then bracket each pair of
differences and again calculate the differences. Repeat the process until
you recognize the pattern, and you’ll be able to work backwards to find
the missing number. Good luck!

PATTERN is the computer version of an age-old number game:
it presents a series of numbers with some mathematical rule
governing their relationship, and the player tries to find the rule
and supply the missing number. This program uses five different
algorithms (fancy computer talk for rules) to generate the sequen-
ces: additive, multiplicative, incremental, exponential, and alpha-
betic, to give them properly mathematical names. Mixing them up
randomly, this game can sharpen the number skills of almost
anyone. Does practice make perfect?

The program begins by asking you to select a difficulty level
from 0 (easy) to 9 (hard). The complexity of each series is based on
this level. The computer presents a series with one missing

37

member, which you calculate and type in. If you are right, the
computer makes up another series, but if you’re wrong, it shows
you the same series with a different missing number.

WRITING THE PROGRAM

PATTERNS lends itself to modular construction, because it
involves several different methods for deriving number series—
each method gets its own set of lines. Start with a framework that
includes two different series-generation algorithms, make sure
they work, and then add more modules.

The program uses our old standby, line 1300: the random
number maker. You can copy it from another program following
the procedure on page 16. The main framework of the program
goes like this:

Line 5 sets the low number variable LN for the random number
maker. Line 60 gets the difficulty level; line 70 calculates the high
number for randomly choosing the series algorithm, which is then
chosen in line 80.

1 FEM %% % %% % %X % % %- R R R RHHERE FPOATTERNS %*
2 DIM Q%3 F$(11) 1 F$="FATTERNS "

S OlLN=1

&HB FRINT "PATTERNS" :FRINT :PRINT *PRIN
T "EASY (@) OR HARD ("3 : INFUT DF

78 FRINT tHN=INT(DF/2)+ 1 IF HN>»S THEN
HMN=5

8¢ GOSUE 13@9:I0N R GOTO 1@@, 200, 366, 40
B, SO0

Lines 1000-1090 are a very simple “keyboard” to get the player’s
answer. Lines 1100-1190 leave lots of space for polishing up the
scoring routine—see the suggestions at the end of this section.

I believe we have seen line 1300 before.

1aig¢8 FRINT

1@l PRINT "WHAT IS MISSING":: INFUT Q%
132 IF Qs="" THEN 146%9d¢

193¢ IF ASC(O%) *64 THEN 149¢

1@44 Q=VAl.(Q%)

1¢9d RETURN

38

1196 FRINT "YOU ARE RIGHT."
119¢ GOTO 7d¢
138 R=INT LN+ (HN-LN+1) #RND (1)) s RETURN

The rest of the program makes up and prints the series. The
easiest module is additive, and it serves as a pattern for “knocking
off” the other algorithms.

1did HN=4% (DF-+1) 1 GOSUR 1 3@ G=R

124 HN=2% (DF+1) : GOSUR 13@@: I=FK

128 HN=27 GOSUR 13890 L =2+R

14@ HN=L:GOSUR 1368 M=K

158 FOR N=1 TO I.

168 IF N=M THEMN FRIMNT " 7 "3:60TQ 183
176 PRINT " “iB+I®(N-1)3" "3

18@ NEXT NIA=S+I#(M-1)IG0SUR 1@@gd: IF Q
=R THEN 11

190 GOTO 140

Line 100 sends out for a random starting number for the series;
120 sends for an increment (the amount to increase each time a
new series number is calculated). Line 130 gets the length of the
series, and line 140 decrees which of the series members will be
missing. The lines from 150 to 180 are a loop that checks to see if
this member is missing or printed (160), calculates and prints the
latter170),ndloops baif the series has not yet reached its allotted
length—that’s the FOR (line 150) . . . NEXT (180) loop. When you
understand what a loop does, you have perceived the power of the
computer.

S S+l S+I'2_S+I'N

~—
o' —

ATARI notes

It’s easy to duplicate lines in ATARI BASIC. All you do is LIST the
original lines, move the cursor onto the line you want to duplicate, change
its line number (and anything else you need to change to make it exactly
right). Is everything exactly right? Excellent. The last thing you do before
leaving the line is press {RETURN]. That snap-shoots another line into
the computer’s program memory.

39

You can test-drive the program as it stands (but be careful,
you’ll crash if you try any difficulty over 2!) but I wanted some-
thing a little more interesting, so I added another module: the
multiplicative:

208 HN=4*SOR(DF+1) 1 GOSUR 1396 S=R

220 HN=2% (DF+1) 1 GOSUR 130G =K

DA HN=RIGOSUR 136860 |L=2+R

243 HN=L:GOSUR 13@@: M=K

258 FOR N=1 TO L

L6@ IF N=M THEN FRINT " 7 "i:G07T0 280
279 FPRINT " "iG*[®Ns" ";

280 NEXT NiA=SkI*M:GOSUR 1¢@@: IF O=A T
HEN 11@6

299 6(07T0 24

If you have the feeling you have seen those lines before, you are
remembering the module we just finished. You won’t be surprised
by the next two modules, either.

S HN=DF : GOSUR 13@¢: G=R

2@ HN=DF+1:GOSUB 13908 I=R
HN=INT (DF /2 L:Cl"sUU 13@sn T2=R
: HN=21 GOSUR IR

-454 HN=L.2 GOSUR 134 ,".'
8@ I1=1:FOFR N=1 TO L
368 IF N=M THEM FRINT " 7 "i:Q=8+I11%(N
-1):60TO =284

378 FRINT " "§S+Ii%(N-1)5" "3

289 I1=T1+I2:NEXT N:iGOE UB 1aags IF G=A
THEN 11&3@

299 GOTO 344

This algorithm has two increments (and gets particularly nasty if
you let negative numbers in: that’s what those mean-looking lines
at 325, 326, and 327 accomplish. When you get this module work-
ing, play around with the numbers and relationships of this sec-
tion (if you’re interested in becoming a mathematician).

And now for something utterly different: letters! Words are a
kind of series, and the logic is certainly different, especially in

40

English. The module beginning at line 400 shifts the program
from the cooly numeric to the jungle of textual calculation: strings.

4p@ IF FR=@ THEN 16013
410 HN=FR:GOSUER 1306 R=R-1:A%=D% (F (R)+
1, F(R+1)) 1P=1

420 L=LEN(A%$) tHN=L: GOSUE 13#@:M=R

A4T0 HN=2:GDSUR 13@¢: I=R:IF I=1 THEN 45
@

44 I=-1:F=L

450 IF F=M THEN FRINT * 7 "j:Z%$=A%(F,F
) 1 GOTO 479

460 FRINT " "sAs(F,F)g" ";

47¢ F=F+1:IF P=@ OR F:L THEN 49@

486 GOTO 454

49¢ GOSUER 140@: IF O$=Z% THEN 11@d

495 IF I<@ THEN 44

496 FP=1:GOTO 453

The first line sends to line 1600 only the first time this module gets
called—those lines are next. The next three lines are familiar. Line
440 sets things up to step backwards through a word—like this: S
D R AW C A B. The computer language we are using, BASIC, has
a very powerful way of playing with words. We’ll see more of that
later. If the string-chopping in line 410 doesn’t make much sense,
please check the explanation of word-storage on page 29.

1ogd DIM DS 1SS AS(2E) ZH (1) ,F(1@9) :
N=

1614 READ A% IF A$="ZZZ" THEN 1&9d
1620 LD=LEN(D$) :F (W) =L.D: D% (LLD+1)=A%: W=
W+1:60T0 1619

1696 F (W) =LEN(D$) :FR=W:60TO 410

F@es DATA BIRTHDAY, WASHINGTON, FISH, COM
FUTER, HORSE, BOAT

7999 DATA ZZ1Z

There are dozens more possible algorithms that could be
included in this game—and lots of memory in the computer, too—
but I propose to give you only one more: exponents.

a1

g HN=SER (DF) @ GOSUER 130d: S=R

520 HN=2:608UR 13gd: I=R+1

53 HN=2:GOSUR 134 L =4+R

4@ HN=L.: GOSUR 134! M=R

358 FOR N=1 TO L:Z=INT (S*N™I+@.5)

6@ IF N=M THEN FRINT " 7 "3:A=Z7:60T0
wisia]

D7¢ PRINT "™ "sZs"™ "

8@ NEXT NIGOSUR 149@: IF Q=0 THEN 11409
999 6GOTO S44

(The world of numbers is so much cleaner to program in!)

A bit of fancywork to dress up the beginning of the program,
and we can wrap this one and move along to another kind of
patterning.

19 GRAFHICS 2+416iF=1:X=11Y=1:FOKE 764,

255IR=1

20 POSITION X, YiFRINT #&4&3F$(F,F)iik=FE

EK(764) 1 IF K<>255 THEN GRAFHICS ¢:60TO
&l

3@ P=F+11IF F>8+R THEN P=1

43 X=X+111IF X<19 THEM 24

96 X=1:Y=Y+1:IF Y<1@ THEN 29

99 Y=1:FPOSITION 1,5:FRINT #6&63"< FRESS
ANY EEY >"IHN=4:60SUR 134%:R=R-1:60T0O

241

This short module plays with GRAPHICS 2+16 to make pat-
terns on the screen. If you leave this display running long enough
for the color-cycling called ATARI Attract Mode to begin, you
have quite an interesting display.

There are many more interesting relationships and interrela-
tionships for making this kind of puzzle, and finding and defining
them is a superior kind of intelligence-building game.

q2

polish memory skill

7TNGQR1C

CAN YOU TYPE WHAT YOU SEE?

Another trait frequently identified as intelligence is the ability
to glimpse random strings of symbols, like

78 352 ar A] 082

then reproduce them: sort of rote-memory muscle-building. Of
course some people will be able to handle much longer strings
than others. In writing computer aided instruction, the concept of
a program’s “ceiling” defines the point past which learners can-
not benefit from a program. This program is a good example of a
game without a ceiling: the lower levels of difficulty present short
strings for a long interval, but the highest levels are much too long
and fast for me! In other words, this game should challenge
anyone.

REMEMBER times and scores the play—interesting computer
functions for any kind of gaming program. The methods and
modules that time and score can be easily transported to other
programs.

43

REMEMBER devises strings of numbers, letters, and typograph-
ical symbols, flashes them on the screen for a measured period,
then clears the screen and invites the player to reproduce the
string. Playing difficulty ranges from trios of numbers shown for
several seconds (level 0) up to nine characters displayed for less
than a second (level 9). You must pay constant, focussed attention
to the screen, and your typing must be error-free.

The program is written “open-ended” so that you can add an
elaborate timing and scoring section.

WRITING THE PROGRAM

The keyboard and random number maker appears once again
in this program; you might like to borrow it from a program
already in memory.

2 DIM CHOLZ) T (1) ,0%(18) ,M$(8) ,R$ (1)
W IH (1)

4 OFEN #1,4,8, "k "

5 CH=CHR$ (125) : C# () ="REMEMREF. . . ":FR
INT C%

b M=

@ TE=@. @15 GK=33

18 LN=@:FRINT :FRINT :PRINT

28 FRINT "@=EASY 9=HARD ...HOW TOUGH"
$2INFUT DF:TD=2@% (11~DF)

3@ L=3+(DF/3) tHN=9: IF DF*5 THEN HN=36
35 IF DF:7 THEN HN=27

4@ T$="":1FOR N=1 TO L:GOSUR 1I6@

S@ IF R>9 THEN 7

66 RE=STR$ (R) :GOTO 8¢

70 Re=CHRS (54+R)

80 TH(LEN(TE)+1)=R$*NEXT N

Lines 5-30 get the computer ready for work: getting the player’s
difficulty level and calculating the time delay (20), the length of
the strings to be devised, and setting the high number in accor-
dance with the difficulty level. The FOR ... NEXT loop from line
40 to 80 puts the test string together—line 60 adds a space and a
number produced by STR$(R) each time around, line 70 takes care
of letters and symbols.

a4

The rest of REMEMBER manages the video display:

138 PRINT CHIiDFsME; i FOR N=1 TO LEN(TS)
SFRINT " "sT$(N,N)SINEXT N

11¢8 FOR T=1 TO TDINEXT T

120 FRINT C®iDFiM$i"7"51Q$="":T=0:FOKE
764, 255

130 GOSUER 1000 T=T+1

176 IF E=15% THEN PRINT FRINT :160T0O 2
14

18 Q% (LEN(OQS) +1) =IS$IFRINT I$i" "3

199 IF Q%<:Te THEN 1734

2¢ FRINT TFRINT IFPRINT "EXACTLY!'"

218 IF Q="' THEN 0@

296 FOR T=1 TO TO:NEXT Ti6OTO 4

Lines 1000-1090 are the keyboard routine that captures the
player’s keystrokes and compares them with the computer’s string
after each one. As soon as the player has completed entering the
symbols—assuming they are exactly right—the program passes
into the scoring process. If the player isn’t precise, a {RETURN]}
submits the incorrect string for evaluation. The delay at line 290
maintains the rhythm of the program; it is exactly as long as the
viewing cycle in line 110.

lagg I=FEEF (764) i T=T+1:IF I=233 THEN 1
jutugrl

1@1¢8 GET #1,KIFORE 764,255

1920 I$=CHR% (L)

1399 RETURN

138¢ R=INT (LN+ (HN-LKN+1) *RND (1)) I RETURN

Once the program is performing properly, you can add a scor-
ing routine:

228 LT=LEN{TS) t LA=LEN{E%) 1 SC=@1FOR N=1
TO LT
23 TF N:LE THEN 25@

45

240 IF TN N)=0% (N,N) THEN SC=6C+1
259 NEXT NIFRINT "SYMEOLS RIGHT:";SC,
255 FRINT INT (1@9@%SC/LT) § %"

268 SC=INT ((SK*L) / ((T*TE) % (SC/LT))) +1
280 PRINT "TIME: “iT#TH:i" SECONDS":PRI
NT "SCORE "3SC:TS=TS+SC:NO=NE+1: TT=TT+
T*TE

2@ PRINT C$3DF i FPRINT
319 FRINT "SCORES: ™

S22 FRINT "TOTAL SCORE "§TS
338 FRINT "STRINGS ATTEMFTED ":NE
348 FRINT "AVERAGE SCORE/$ "3 TS/NG
23€ PRINT "TOTAL SECONDS "ITT
260 PRINT "AVERAGE TIME/4% "ITT/NG

39@ FOR T=1 TO Z*TD:NEXT T:60TO 44

Lines 210 to 250 count the number of correct symbols-in-position.
Line 260 calculates a “SCore” based on time and the correctness of
the entry, and line 280 displays the results and keeps track of the
score.

To see the scoreboard, press {RETURN} only (lines 300-390).

ADVANCED TOPICS

The timer (lines 120 and 130) is tricky because its count is gov-
erned by the number of computer cycles inside the timing loop—in
this program, that’s how long it takes the computer to do all the
steps between lines 130 and 190. The difficulty is compounded by
the fact that different ATARI computers seem to take different
amounts of time to accomplish these steps. The time constant TK
(in line 9) may have to be calibrated for the computer’s “seconds”
to correspond to “real time.” The easiest way to do this is by
carefully clocking the time between the appearance of the ? on the
video screen—when the clock starts—and your last keystroke.
Adjust TK until the computer time is accurate.

An adventurous programmer could adapt the scoring module to
several of the other programs in this book. Recalibration of the
clock would be required.

46

SPELL

a spelling driller

Spelling, at least in English, is not very different from remem-
bering random strings of letters. There are two ways the computer
helps. One way is with spelling-drillers, like the program in this
chapter, that present words-to-be-learned in an interesting and
instructive way.

Another way is through spelling checkers, programs that
comb through a written work for unrecognizable words, then offer
the writer a chance to survey the dictionary and, if necessary,
correct the spelling. [This book was checked for mistakes using a
program called ProofReader. See the comments about Word Pro-
cessing in the appendix.] Is it possible that the computer will
liberate future children from spelling drillers?

Everybody learns in a slightly different way. This program
uses four different ways to try to find everyone’s good side: first,
you type your list (and, if desired, a set of “hints”); next, you play
REMEMBER (from the last chapter); then you supply the correct
spelling for each hint; finally, you play Hang-Man with the spell-
ing list.

For the programmer, this program is an easy challenge,
because several different modes must work together within a sin-
gle program.

47

ENTER WORDS ZZZ TO QUIT

1: CAUGHT

HINT: | CAUGHT A COLD

2: COUGH

HINT: HE HAS A BAD COUG
*** ARE YOU SURE ?

2: COUGH

HINT: HE HAS A BAD COUGH

3: CATCH

HINT: DON'T CATCH MY COLD

4: FIRE

SPELL uses four different practice strategies to help learn
spelling. The first method is the straightforward entry of the spell-
ing list. After entering the words, you are asked for hints for each
of the words on the list—a short sentence or phrase for each word.
(You can skip the hint-entry by pressing {(RETURN]} instead of a
hint for the first word.)

48

CATCH PLAY —-——- WITH ME.
CAUGHT I -—-~-- H COLD.

When all the words are entered, SPELL goes into the “Flash”
mode; it flashes the word on the screen for a moment, then clears
the screen, and you type the word in. If you are right, you are
informed; if not, the correct spelling is shown. When you have
gotten ten words right, the program promotes you.

The “Clue” mode shows the clue, and you are invited to provide
the missing word. Again, if you get it right, the computer tells you,
but if you miss, the computer shows the right word. When you
have gotten twenty more words right you go on.

The “Hang-Man” mode is familiar to all: the computer presents
you with the right number of blanks, and you press the letters you
think belong in the word. If you are right, the computer puts the
letter in the right place, or places, if the letter occurs more than
once in the word; but if you’re wrong, the computer keeps track.
You only get twice as many wrong guesses as there are letters in
the word, so proceed thoughtfully.

WRITING THE PROGRAM

SPELL can be put together a mode at a time. The input section
and the word flasher look like this:

1 REM %% 3% % 5 96 % 3 5 % 3% % 59 3 56 %56 % % 96 %% % SFELL *
2 DIM A% (1603) ,B$ (28) ,D$(26) ,M$(12) ,C$
(12) ,R$(6E) , 16 (1), TH(20) , Q% (201 , H$ (38)
3 DIM F(3) Q) , W58, X (58), Y (25)

4 OFPEN #1,4,8,"K:"

5 C$=CHR$ (125) :FOR N=2 TO 12:C$(N)="":
NEXT N:FRINT C%$

6 M&="":PRINT M$;"* SFELL %"

8 F=1:FOR N=1 TO F:READ T$:R$ (F)=T$:F(
N) =F:P=LEN(R$) : 0 (N) =P F=F+1:NEXT N

9 TD=1@@d: LN=1:NW=1:FW=1:H=@

1¢ GOSUE S@@:REM GET DATA

2% FOR N=1 TO ND:FRINT A% (W(N), X (N))
3¢ IF H=@ THEN FRINT A$(X(N)+1,Y(N)):F
RINT

4@ NEXT N

45 H=1:GOTO 208

49

S@ FOR T=1 TO TD:NEXT T

6@ HN=ND: GOSUE 13@¢: PRINT C%:Mb5A%s (W(R
) ¢ XAR))

79 FOR T=1 TO TD:NEXT TiFRINT C$;M$;:1
NPUT 0%

80 IF Q$=A%(W(F),X(R)) THEN 1@

98 FRINT “SORRY, IT’S "$A% (W(R),X(R)):
WR=WR+1:GOTO 13

19¢ HN=3:GOSUE 130@:FRINT 1PRINT R$ (F(
R) B (R))

116 RI=RI+1

1200 FOR T=@ TO TDiNEXT T:IF H=1 THEN 2
o

133 IF RI<10 THEN &@

The code in line 8 reads the “YES” messages that flash when you
get it right; line 9 sets the time delay, the lowest number (for our
old reliable random number maker), and the length of the data.
Please adjust any of these (except LN) to please yourself. There’s
an unattached wrong-answer counter in line 90. Could you hang
anything on it?

You need two more routines to make the program work. The
lines starting at 500 allow the player to enter data for study. The
keyboard and random number maker are familiar (and could be
borrowed from another program.)

Sed FRINT (PRINT “"ENTER DATA 2727 T
o auIT”

G318 PRINT NW:i":";:INFUT T4

S2¢00 IF T#="ZZZ" THEN S9#

G340 AS(FW) =T$: W (NW) =FW: FW=LEN (A%) * X (NW
) =FWIPU=FW+1

S4@ IF H=1 THEN 58

S5 PRINT “"HINT"j:INPUT H$:IF H&="" TH
EN H=1:60T0 58%

So6@ GOTO &@:REM CHECK SFELLING

S7@ AE(FW) =H$: FW=LLEN(A$) 1 Y (NW) =FW 2 FW=F
W+1

S8 NW=NW+1:60T0 Sig

S99 ND=NW-1: RETURN

6@ FP=1:LT=LEN(T%)~1:LH=LEN (H$)

b61@ PR=FF+LT:IF H$(FF,PQ)=T$ THEN &6&0
26 PF=PF+1:1F EF<=LH-LT THEN &1@

633 PRINT "PLEASE CHECK SPELLING":GOTO
550

66@ IF PP=LH-LT THEN Q$="":GOTO &8¢

678 Qe=H$ (FO+1,LH)

68@ FOR F=FF TO PQ:H$(F)="_ "INEXT P
699 H$ (F) =0%:60TO S57¢

9@y DATA RIGHT!'!,CORRECT.,YOU GOT IT!
1098 I=FEEK(764):IF 1=255 THEN 1400
1019 GET #1,K:FOKE 764,255

1999 I$=CHR$ (K) : RETURN

133% R=INT (LN+ (HN~LN+1) #RND (1)) : RETURN

Test the “Flash” mode, and make sure it’s working right. When
building a complicated program, you want to make sure that
everything works perfectly before adding more complexity.

Adding the Clue mode requires only a few more lines:

15@ HN=ND:GOSUE 13@¢:FRINT C$5" "iA%(

X (R)+1,Y(R))
160 PRINT :PRINT M$::INFUT Q$:G0OTO 8¢

This module hitchhikes on the “Right!!” message system set up
for the “Flash” mode.

Who is in charge here?

When testing one of the advanced modes, it tries my patience to play
through earlier modes. So I write temporary detours into the program to
proceed directly to my desired module. For example, you go straight to
Hang-Man by inserting this line

55 RI=99:G0T0 20
You can take the line out for a full-playing game at any time.

51

The Hang-Man module is a bit more demanding:

14¢ IF H=1 THEN 2@

20% WE=¢: RG=:HN=ND: GOSUER 13@@: FRINT ©
HiMbs

212 Te=A% (WR) , X(F)) tLT=LEN(T$) : FOR Z=
1 TO LT

220 PRINT " "y

23¢ NEXT Z:FRINT :FRINT :FPRINT M$3;"GUE
587 "3

24¢ GOSUR 10@¢: Z=1:FRINT tFRINT "";M$;
254 IF I14$=T$(Z,Z) THEN Z1®

268 FRINT "'

278 I=Z+1:1F Z<=LT THEN 25

28¢ FRINT "":G0SUR 449@: IF FRF=1 THEN RF
=g G0TO 240

299 WE=WB+1:IF WGE<2#LT THEN 24¢

I@@ FRINT FRINT "YOU LOSE":G0TO 13@
I FPRINT Iss" "3

AXY RG=RE+1:RF=1

34 IF RG=LT THEN FRINT :FRINT :GOTO 1
e

I5@ GOTO 274

Lines 210 and 220 place the right number of blanks on the screen.
Your guess (in line 230) gets checked against all the letters in line
260, and if it isn’t found, your guess is erased (280), a strike is noted
against you, and if you’ve missed too many (290), you lose. If,
however, your guess fits into the word, the code starting at line 310
moves the cursor to the right place(s) in the display line, prints
your guess, and returns for another.

It’s easy to put the data inside the program or save it on a disk
or tape file. The program is less flexible, but in many ways it is
easier to use. The program on p. 57, TIMELIN E, deals with data
in the first way; after reading it, you could change SPELL ever so
slightly to work the same way. And SORT (p. 86) would allow
you to store several lists and call them individually into SPELL.

MATHFAX

practice math facts

A DRILLING GAME FOR FACTS

“Two and two are four; four and four are eight. . . .” The
mathematical facts of life are never easy, and everyone has a pet
bugaboo (for me, it’s eight times seven). This program helps you
perfect your grasp of those facts through drill and practice.

When we finally “know our math facts,” it is usually the pro-
duct of several learning systems working together: rote memory,
pattern recognition, and familiarity from practice. This program
helps people learn (and can be found in innumerable versions on
every computer in the world) because it combines all three
avenues to help us learn.

For the programmer, this is an interesting program because it
offers a chance to do something often done, but with our own
style. Some programmers strive to write short code—could this
program be written in one line? in five? Other programmers work
to make their programs “friendly” by error-trapping and hand-
holding. I have spent many lines on tailoring each game to the
player’s abilities and offering graphic help when the answer is
wrong.

MATHFAX quizzes you on your pluses, minuses, timeses, and
divided-byes. It even offers a little help if you get it wrong.

#MHTH FRCTS#*

1=ADD Z=SUETRACT I=SUBTRACT 4=0IVIDE 7 4
HIGHEST WUMBER FOR RDDIMG? 1@ FOR MULTIPLY-
ING? 7

53

You start out by tailoring the drill to your abilities: some play-
ers know more facts than others. You choose the highest
operation—if you choose 3 for multiply then you get adding and
subtracting too—and the highest number for adding. If you
choose multiplying or dividing, you supply the highest number
there, too. Some children will have mastered all their pluses to 7,
for example, and will know some of the simple timeses, too—to 3,
possibly. You can tailor the quiz to challenge a learner at almost
any level. Adults might wish to improve their speed by setting the
high numbers to 20 for addition and 13 for multiplication—that
would give most everyone a workout.

E*4=7249

VES

Once you’ve defined the drill, you are given random problems to
solve. If you answer right, the computer responds “YES” but if
you are wrong, the computer draws a picture that should help you
figure out the right answer for next time.

WRITING THE PROGRAM

As usual, we can sneak up on this program, and get it working
a section at a time. Since the program deals with four operations,
there are four different problem-makers. The main program and
the addition- and subtraction-maker go like this:

1 REM #%%%%%%X¥XJKEEREXRAEEREE MATHFAX *
2 DIM Ms(28) ,0% (1)

9 Me=CHR$ (125) i M$ () =" "

1@ FRINT Md:"* MATHFAX *"

54

20 PRINT "l1=add Z=subtract 3=multiply
4=divide"

23 PRINT "highest operation"i:INFUT HO
t HO=H0O-1

240 PRINT "highest number for addition®
§ S INFUT HA

I8 IF HO<K2 THEN 54

44 FPRINT " for multiplication
P2 INPUT HM

S HN=HO:GOSUR 173d9: 0F=R+1:FRINT M%5:0
N OF GOTO 68, 68,90, 94

64 HN=HA:GOSUR 136¢:NI1=R:GOSUR 13@¢@iN2
=R:0N OF GOTO 7¢,8¢

78 FPRINT Nisg" + "y 25 1A=N1+N2: GOTO 139
8@ PRINT NI+N2§" — "3N1:i:A=N2:60T0 134

You need something to deal with answers:

13¢ PRINT " = "::INFUT Q:IF QR<>A THEN
1468

14% PRINT :FRINT ,,"YES"

1569 FOR T=8 TO 999:NEXT T:GB0TO S5

You need a random number maker—it is exactly like the one
now appearing in programs from cover to cover of this book:

1380 R=INT (LN+ (HN-LN+1) #*RND (1)) I RETURN

Test the program, but be sure not to ask for anything harder
than addition yet. And don’t make any mistakes! The program
isn’t ready.

F@ HN=HM: GOSUE 1Z3¢@:N1=R:GOSUR 13@@:N2
=R:0ON OF GOTO 74,84, 1agg, 11d¢

148 PRINT N1ig*" % "'N?::A=N1*N2:GOT0 13
i

118 IF N1=#g OR NZ=¢g THEN 9d

12¢8 FRINT N1*N2:3" / "§iN1i:IA=N2:G0T0O 13
4]

Dividing by zero is risky business; in fact, zero is tricky anywhere
in division, so line 110 rejects any problems with zeroes in them.

Test again—using all the operations—but you still can’t make
any mistakes. If you do, the programs crashes. (Oh, go on, make a
mistake, just to see what happens.)

The capabilities of the ATARI are hardly touched by this little
program, so let’s add a little bit of help. Most people don’t like tests
unless right answers and maybe even hints are supplied when
you miss.

168 PRINT :PRINT ,,"NO":0N OF GOTO 170
, 165, 183, 160

165 NT=N1+N2:GOTO 175

178 NT=N2

175 FRINT ,35:G0SUEB 3@@: FRINT ,3:NT=N1:
GOSUE 3@@:60TO 158

180 NZ=@

19¢6 IF NZ<N1 THEN PRINT , :NT=N2:GOSUR
IGP:NZ=NZ+1:6OTO 194

25@ FRINT ,,"Okay”i: INFUT Q$:G0TO 5@
300 NF=@

310 IF NF<NT THEN PRINT CHR$ () ; : NF=NP
+1:60T0O 314

32¢ PRINT :RETURN

For addition and subtraction, two lines of beads are drawn on the
screen. To get the right answer in addition, you count all the
beads. In subtraction, you only count the beads that aren’t paired
in two lines of beads. For multiplication, a rectangle of beads is
drawn. To get the right answer in multiplication you count all the
beads—you may know a shortcut, called a “times-table.” In div-
ision, you know the number of beads in one side, and the total
number of beads, so you just need to count the side you don’t
know.

ADVANCED STUDIES

A timer and a scorekeeper would make this program more chal-
lenging for those of us who feel confident of our math facts. It
would be an easy matter to borrow them from REMEMBER (p.
43). You would need to change the “keyboard” at line 130 to one
that uses GET I$ and includes a timing loop.

TIMELINE

historical events

A TIME MACHINE

The “mind of the computer” is sometimes compared to the
human mind. The comparison is partly right. Microcomputers
have tens of thousands of memory locations—the ATARI has
more than 48,000, lined up in one long row, like links in a chain.
Each link can hold (and always does) one of 256 symbols. History
is the story that ties a long row of events together. The microcom-
puter’s memory can easily be made into a perfect model of events
in history. This program roves over the terrain of dates and events
like a time machine we get to drive!

Writing the program—and understanding the concepts behind
the program—are the best part of this chapter. The part of the
human mind lacking in the computer is the “relationship finder”
we humans use to spot linkages between two apparently unrelated
facts. The computer provides a smooth magic carpet to survey the
facts, but it is not very good at noting interesting coincidences. My
computer never said, “Did you know that the first steam-powered
boat didn’t run up the Hudson River until 32 years after Watt
invented the steam-engine? Is it my imagination or are things
speeding up?”

For a machine, whether made of flesh and blood or silicon and
gold, to make observations like that takes a lot of smarts. Possibly
someone who builds TIMELINE’s simple magic historical carpet
may later make key breakthroughs in teaching intelligence to
machines.

57

* TIMELINE %

1999

Leif Ericson discovers America
1522

first circumnavigation of the earth
1697

Jamestown settled in Virginia
1620

Pilgrims arrive at Plymouth Rock
1756

French and Indian War begins

- earlier + later What next?

TIMELINE provides a skeleton for a “terrain” of historical
events for you to explore. You can see what happened last,
happens next, what happened 10 years ago, what happens in 20
years—assuming you programmed the computer to know the
answer. Now that I think of it, the computer wouldn’t mind if you

made up a history of the future.

WRITING THE PROGRAM

The program reads up to 100 dates and events and stores them
in memory (lines 10 and 20). The main program begins at line 40,

where it displays five adjacent events:

1
3
4
5
I

Q

REM %93 %3 %% % %% % H % # % X% %% %% TIMELINE %
DIM C$(24),T$(39) , A% (400@) KB (1)

DIM Y(1@@) , Z (1)

OPEN #1,4,@, "K:"

CE=CHR$ (129) :CH(2) =" #* TIMEL

NE *"IPRINT C%

N=@: F=@

10 Z(N)=P:READ YR,T$:IF T$="ZZZ" THEN

30

20 LT=LEN(T$) A (F+1)=T$IN=N+1:Y (N)=YR
tLT=LEN(TS®) :P=P+LT:G0OTO 14
@ LN=NIFOR N=1 TO LN:FRINT Y(N):FRINT

AB(Z(N-1)+1,Z(N)) IPRINT :NEXT N:Y=3

4@ FRINT C$:FOR N=Y-2 TO Y+2:FRINT Y(N
JIPRINT A (Z(N-1)+1,Z(N)) :FPRINT :NEXT
N

3% FRINT " - = = = = - = e .
68 FRINT ¢ - earlier + later which
T3 iGOSUR 19@g: Y=Y+1

78 IF K&="+" THEN Y=Y+3

75 IF Y LN-2 THEN Y=_N-2

8¢ IF K$="-" THEN Y=Y-5
85 IF Y<3 THEN Y=3
Y9 GOTO 44

loed I=FEEK (764):IF I1=255 THEN 1#00
1810 GET #1,K:FOKE 764,255

1020 K$=CHRS$ (k)

1019@ RETURN

Lines 60-70 find out what you want to do next (using a keyboard
subroutine at line 1000). Lines 80 and 90 make sure you don’t run

out of facts, then loop you back to a new display in line 40.

There is lots of room for data in lines 100-999. Be sure you put

your favorite facts in order.

If you don’t have any favorite facts, here are a few of mine to

help show you the format:

1@ DATA 1@@@,leif Ericson discovers A
merica

114 DATA 1522,first circumnavigation o
f the earth

1200 DATA 1667,Jamestown settled in Vir
ginia

13@ DATA 16201, Filgrims arrive at Flymo
uth Rock

1449 DATA 1736,French % Indian War begi
ns

154 DATA 1773,James Watt invents steam
engine

169 DATA 1776,Declaration of Independe

nce
17

DATA

awaii

184

DATA

1778, Captain Cook discovers M

1787,U.5. Constitution signed

194 DATA 1791,Bill of Rights ratified
20 DATA 1887, Louwisiana Furchase

210

DATA

t up the

224

DATA

184177 ,Robert Fulton's steamboa
Hudson
1834,Charles Babbage®'s analyt

ical engine

239
iCco
244
258
le

260
27
284@

DATA
war

DATA
DATA
DATA

DATA
DATA

1846,Fotato famine % U.S.-Mex

1849,California Gold Rush
1838, first trans—-Atlantic cab

1861,Civil War begins
18465, Abraham Lincoln shot
1867,Golden spike!: railroad a

cross U.S.
299 DATA 1888, 6George Eastman invents K
odak camera

P99 DATA -1,222

The last data line must end with “ZZZ,” or else the computer will
give you an “out of data” error.

That completes the program. Test, debug, and save it.

Of course, it would be a simple matter to use a program like
SSORT to enter data, sort it, and save it, then modify this program
so it could be read from a storage device.

60

MINI-WOMBATS

for word problems

I want computer games to surprise and delight me. I invented
Wombats* watching children “tricking” computers by typing in
nonsense words and false names. Peals of laughter greeted

WELL DONE, BRTLSPY:!
NOW TRY 3 + 5 = 77

Mini-WOMBATS is a small—but expandable!—word-problem
generating game intended for experienced and/or patient pro-
grammers. WOMBATS is a small expert system; its expertise lies
in building simple English stories that ask number questions. Its
stories include the player, a friend, and an object of her choice.
Which points out a problem a computer might have telling stories:
gender! It is OK for the player to make up joke names and objects,
but the computer should speak as elegantly as it can. Pronouns
and verbs should agree with their nouns. (In this program, some
do, and some don’t).

The string-handling in this program is intense, hinting at the
incredible complexity that natural language programs will need
to understand the languages of humans.

The player chooses the names of the people and the things in
the stories, and then the computer makes up number problems
about them.

At the beginning of play, the highest level of operations (1 = add
to 4 = divide), the highest number for addition, and, if needed, the
highest number for multiplication, are chosen.

*The original version appeared in Creative Computing in October, 1981, page 2186.

61

Sample dialogue (player dialogue in italics):
Please tell me your name? Damiana
T+ =+ =4+ =+=4+=+4+=
Sienna found a bag containing 7 wombats. She already has

5 wombats at home. How many does she have now? 12

You got it!

Name a person? bob
Person’s names begin with a CAPITAL.

Remember the SHIFT key, and
please try again, Damiana.

Name a person? Bob
Is Bob a boy or a girl? boy

R T SRS
Name an object? flat bed truck

=+=+=+=+=4+=+=
Bob had 13 flat bed trucks in his pocket, and later won 15

more in a bet with Damiana. How many did he have then?
28

Well done.
= +=+=+=+=+=+=
Bob dug 4 flat bed truck traps in the forest, and caught a

total of 36 flat bed trucks. On the average, how many did he
find in each trap? 9

WRITING THE PROGRAM
Write this program in several sittings, carefully saving its parts
after each session. The program is long and takes precise typing—

kind of like putting a computer together from a kit.

The framework of the program begins with the introduction,
which prepares the computer for the problems and tailors the
problems to the player:

1 REM *%%%exxxxxexexxxt® miniWOMBATS *
< DIM Q% (25@) N$(16),J$(32) ,F$(32) ,5X$
(12) ,CH (1) '

D CH=CHR$(125) :FRINT C%

8 FOKE 7912,9

7 SX=1:F$="Sienna":J$="wombat"

1@ PRINT PRINT "% Wombats !'! %"l N=g
2@ FRINT "l1=add 2=subtract I=multiply
4=divide"

<3 FRINT "highest operation"i:INFUT HO
: HO=HO~-1

3@ FRINT "highest number for addition”
51 INFUT HA

35 1IF HO«<2 THEN S¢

44 PRINT " for multiplication”
i INFUT HM

S@ FRINT C$:PRINT sFRINT FPRINT

53 PRINT "Flease tell me your name”j:!l
NFUT N$

S5 IF ASC(N%) >9@ THEN GQOSUR 117@:60TO
53

6@ HN=3:G0SUR 134d¢: IF R=3 THEN GOSUE 1
18

7¢ GOSUR 13@d@: IF R=% THEN GOSUE 1206
8@ HN=HO:GOSUR 1Z@: 0F=R+1:1IF OF:>2 THE
N HN=HM: GOTO 9

85 HN=HA

F¢ GOSUER 13@@:iN1=R:GOSUE 13@d: N2=f20ON
OF GOTO 194, 39, S, 7035
This program requires lower-case, so the POKE in line 8 makes
sure they are on.

The addition problems are next. Lots of string handling. The
program builds strings using this technique:

H¥: Sienna found a bag containing
LEN[A%)

You can add more to A$ right here and that position is

LEN(A$)+1

63

189 HN=2:G60SUER 13@¢@:0N R+1 GOTO 11@,17

3,220

119 Q$=F4:G0S5UR 1S5@¢:Q%(Z)=" found a b

ag containing ":GOSUR 15@@

1208 Q$(Z)=8TR$(N1) : GOSUR 1S58@:Q%(2)="
"IQE(Z+1)=T%:GB0OSUER 1500

130 Q$(2)="s. ":G0SUER 140

14 GOSUR 134@:Q%(Z)="already has ":60

SUER 15@3:0%(Z)=5TR$% (N2) : GOSUER 15dg

150 Q6(Z)=" ":Q%(Z+1)=J%:GOSUR 15¢¢:0%
(Z)="s at home. How many does "

164 GOSUR 1420:GOSUR 150@: R4 (Z)="have

now":G6GOTO 294

17¢ Qe=FP$:G0SUR 15@0@:Q$(Z)=" had ":60S

UER 159304 (Z)=8TR% (N1) : GOSUE 15@®

180 Q$(Z)=" ":1Q4$(Z+1)=T%:06G0SUR 15¢¢:0%
(Z)="g in "i160OSUER 1484#:60SUE 156U

19¢ Q% (Z)="pocket, and later won ":60S

UB 158 0% (Z)=8TR$ (N2) : GOSUER 15¢1%

209 Q%(Z)=" more in a bet with ":GOSUE
15@@: 0% (Z) =Nt BOSUE 1500

219 Q$(Z)=". How many did ":GOSUE 142@
:GOSBUR 15@@: Q4 (2)="have then":G0TO 2949

224 Q%=F4$:608UR 1S4@4:0%(Z2)=" receives

2 envelopes. One contains ":G6GO0SUR 1506

23@ Q% (Z)=8TR%(N1) :GOSUR 1S5¢@:0Q%(Z)="
"IOS(Z+1)=T%:GOSUR 15@d

249 Q%(Z)="s; the other contains ":6G0S

UB 15¢2: Q46 (Z)=8TR$ (N2) : GOSUE 1S0¢

25@ a$(Z)=". How many does ":GOSUER 147

#:GOBUE 1538@¢:Q%(Z)="have now":60T0O 294
29¢ A=N1+N2Z2:60T0O 949

P$ is the name of the current person, J$ is the name of the object.
STR$(nl) changes a number into a text string—you may not see
any difference, but the computer does.

The lines from 900 to 1090 deal with right and wrong answers:

64

8@ FRINT FRINT " = + = + = + = + = +
=+ = + = + ="IPRINT

1 LO=LEN(Q$) 1L 1=1:12=364

2@ IF @$(L2,L2)=" " THEN 948

3 L2=L2-1:60T0O 929

44 PRINT Q$(L1,L2):1L1=L2+1:0L 2= 14341
F L2LE THEN 924

954 PRINT Q$L1, 163" "y

6@ INFUT @:1IF @=A THEN 1@@@

?7¢ PRINT :PRINT "Woops! That"s not ri
ght."

8% FRINT "The right answer is "j@a:"."
999 GOTO 1499

10@¢ HN=3:GOSUER 13¢@:0N R GOTO 141@, 19
20, 149734

141¢ PRINT "You got it!":60T0O 149¢
142¢ FRINT "Well done, "sN$3j".":60T0 1
234

1830 FRINT "That s right!":60T0O 1494
149@ FOR LL.S=1 TO 12:FRINT :NEXT LS:PRI
NT ""::60T0Q &9

The routines that get new persons and objects go like this:

1168 FRINT FRINT " ++ ++ ++ ++ ++ ++
++ 4+ A+ A+t A"

1114 FRINT "Name a person'"i:INFUT F$
1120 IF ASC(P$) »9¢@ THEN GOSUR 117d¢:60T
01114

1138 FRINT "Is "3F$53" & girl or a hoy”
$ D INFUT SX$:SX=diIF SX$="boy" THEN 5X=
114¢ IF SXé="girl" THEN &X=1

115¢ IF SXx>@ THEN RETURN

1164 PRINT "I*m sorry. 1 don®t know an
y questions":PRINT "about "ijSX$:3'"s. Fl
ease try again.”:607T0 113g

65

1174 PRINT "Ferson's names begin with
a CAFITAL."

1184 FRINT "Remember the SHIFT key, an
d pleage"

1194 FRINT "try again, "iN$;".":RETURN

12a18 FRINT IPRINT " —~= —m —— o me e
12148 FRINT "Name an object”si:INFUT J$
1299 RETURN

1380 R=INT (LN+ (HN=-L_N+1)*RND (1)) : RETURN

You spotted line 1300—a familiar face in the crowd.
Subroutines in the 1400s supply necessary pronouns, like this:

149 GOSUBR 150@: IF SX=1 THEN Q%(Z)="8h
e "IRETURN

141¢) Q6 (Z)="He ":RETLRN

1424 GOSUER 15@d: IF SX=1 THEN Q$(Z)="sgh
e "IRETURN

143¢ Q$(Z)="he ":RETURN

1444 GOSUR 15012 IF SX=1 THEN R%(Z)="he
rs "IRETURN

145¢ Q$(Z)="his ":RETURN

1468 GOSUR 15@@: IF SX=1 THEN @$(Z)="he
r “"IRETURN

1474 Q$(2Z)="him ":RETURN

148% GOSUE 13@3: IF SX=1 THEN Q#$(Z)="he
r "IRETURN

1493 Q$(Z)="his "IRETURN

1508 Z=l.EN(Q%)+1:RETURN

With these modules intact, you should be able to test the pro-
gram, but only in first gear: addition. When you have everything
operating correctly, we can move on to the three other operations.

Subtraction:

3@ N2=N1+N2HN=2: GOSUR 13@d:0N R+1 GO

TO J1@, 349, 404

1€ Q$=F4:B60OSUR 15@¢:04(Z)=" hides ":

OSUR 15@@: 0% (Z2)=5STR$ (N2) : GOSUR 150

329 EE(Z)=" "1Q6(Z+1)=J%:GOSUR 1564 :0Q0%
(Z)="g, and you find ":GOSUR 1S5S0

338 Q$(Z)=STR$(N1) :GOSUE 1500:0%(Z)=",
How many are still hidden":G0OTO 499

349 Q$=F$:G0SUR 1S5@¢:0$(Z)=" had too m

any "IGOSUR 154@:0% (Z)=J%:6G0SUR 15

3539 @$(Z)="s and gave you ":GOSUR 15@@
tQB(Z2)=8TR$ (N2) : GOSUER 150

S64 QA$(Z)=", Later, ":G0SUE 142¢:GOSUR
1508 Q8(Z)="]1ost all of them, "

37@¢ GOSUB 150@:0%(Z)="and you kindly g

ave ":GB0OSUR 150¢

I8¢ QH(Z)=STR$(N1):GOSUR 150@:Q%(Z)="

back. How many do you still have":G0OTO
4949

409 Qé="Yesterday, ":GOSUR 1S0@:Q0%(2)=

P$:GOSUR 152¢:0%(2)=" bought ":GOSUR 1

S8

419 Q$(Z)=8TR$(N2) :60SUE 150@: Q6 (Z) ="
"IQ$(Z+1)=J%:6OSUR 1500

42¢ Q% (Z)="g, but this morning ":GOSUR
1420: GOSUR 1539

430 Q4¥(Z)="could only find ":G0SUR 15@

WiR%(2)=8TR$ (N1) : GOSUR 1580

449 QE(Z)="., How many were missing'":60

TO 499

499 A=N2-N1:GOTO 9@

67

Multiplication:

S@@ HN=2:GOSUE 13g@: 0N R+1 GOTO 519, 56
7 atala]

51¢ Q%=F$:GOSUE 158@:0$(2) =" won ":GE0S
UB 15300:Q%(2) =8TRs (N1) : GOSUE 15¢0

S2¢ Q$(2)=" coupons at the fair. ":G60S
UER 148¢@: GOSUR 1560

I3 Qe (Z)="exchanged each coupon for "
GOSUE 150@: 04 (2) =5TR$ (N2) : GOSUR 1509
G449 @$(Z) =" "IQH(Z+1)=J4:0C0SUR 1506 0%
(Z)="5. How many does ":GOSUE 142¢

D3¢9 GOSUR 15@@:0%(Z)="have now":G0T0 &
P4

SO0 QE=F$: 605U 1S00:0%$(2)=" built a m
achine to make ":GOBUR 15w

576 QF(2)=J%:60SUE 150@:0%(2)="s. It h
ag made ":GOSUER 1503

S8 Q(Z)=8TR$ (N1) :GOSUR 150@:0$(Z) ="
each day for ":GOSUR 150@:0%(Z)=STR$ (N

2

599 GOSUR 15@@: Q% (Z) =" days. How many

has it made”":G0TO 69

6@E A%="A flying saucer deposits ":G0S

UER 150@: Q4 (Z)=8TRS (N1) : GOSUR 150

613 R$(Z)=" silvery spheres in " GOSUR
1588 0% (2) =F$: GOSBUR 1 500

626 Q$(Z)=""5 back vard, and ":GOSUR 1

SHPI 0% (Z)=8TR$ (N2) : GOSUBR 15@¢

63 QE(Z)=" "IQH(Z+1)=J%:GOSUR 15¢d:0%
(Z)="g jumped out of each one. How man
y "

649 GOSUR 15@@: O%(Z)=J%9:GO0SUR 154¢: 0% (
Z)="g are rampaging around ":G0OSUB 15¢
@

6H5E Q%(Z)=F$:608UR 134@:Q%(Z)=""5 hous
e right now":GOTO &9¢

699 A=N1*N2:60TO 9@

Division:

7@ IF Ni=¢g THEN HN=HM:GOSUE 13@@:N1=R
tGOTO 7@4

714 N2=N1#*NZ2:HN=2:G0SUE 13¢#@:0N R+1 GO

TO 720,770,824

729 O$=P$:GOSUER 15@@:0%(Z)=" dug ":60S

UB 150¢@:04 (Z)=8STR$ (N1) : GOSUE 150@

730 Q$(Z)=" ":1Q$(Z+1)=J%:GOSUR 15¢d: Q%
(Z)=" traps in the forest, and caught
a total of "

74¢ GOSUR 18@@3:Q%(Z)=8TR% (N2) : GOSUR 15

GAEIRE(Z)=" "IQ%(Z+1)=T%:B05UR 1500

75¢ @$(Z)="s. On the average, how many
did ":GOSUR 1424@:6G0OSUR 1500

769 RQ$(Z)="Find in each trap”":G0TO 89%

7749 QE=FEIGOSUR 1506 (Z)=" hbuys a pa

cket with ":GOSUER 150¢:0%(Z2)=85TR$ (N2)

78¢ GOSUR 1S5@g:Q%(Z)=" ":Q$(Z+1)=J%:60

SUR 15@d:0%(2)=" seeds in it. The dire

ctions tell "

79@ BOSUR 146@:GOSUR 15@@:0Q%(Z)="to pl

ant ":G0SUR 13@3:0%(Z)=5TR% (N1) : GOSUE
15a@

8¢ Q$(Z)=" in each hole. How many hol

es should ":IGOSUR 142¢:GOSUR 15@d

8lg Q4(Z)="dig":60TOQ 894¢

829 Q%=F4$:60SUER 15@¢:Q%(2)=" shared ":

GOSUR 15@¢: Q4% (Z)=5TR$ (N2) : GOSUER 1S5dd

830 Qb(Z)=" "I1Q$(Z+1)=J%:G0SUR 150d:0%
(Z)="s with ":GOSUE 15#@:0% (Z)=8TR$ (N1

-1)

84¢ GOSUR 15@d:Q%(Z)=" of ":1GOSUR 148
: GOSUR 15ag

8590 Qs(Z)="friends. How many did each
get":6G0TO 8949

89% A=NZ/NI

I left one particularly glaring grammatical error in: Bob had 1
flat bed trucks in his pocket. . . .” Could someone please write a few
lines of code to trap that error?

There is room for adding more questions, and a simple score-
keeping section, with a display of the score from time to time. The
original version of the program also had a diagnostic section for
teachers: the ability to print the problems as they were solved and
summaries of problems solved, and an extensive HELP capabil-
ity. Interested programmers should look up that classic October
1981 edition of Creative Computing.

70

the computer
as a tool

The last six chapters are about tools you can build to use your
computer for more serious (and helpful) jobs: as a number and
data-cruncher.

The programming is no trickier than in earlier chapters, but
some of the programs often consist of more modules, complex
looping, and other precise code. If at first it makes no sense, read
the chapter over again. Sleep on it. Understanding will dawn.

Be prepared to start thinking about all the great ways you can
rewrite these programs to do all manner of other useful things.
The nicest thing about computers is that they are willing to try
anything twice.

73

PAINT

electronic crayons

The computer makes a wonderful set of electronic color
crayons. And it’s fun to see our own pictures on the TV screen for
a change! Using this program, anybody can doodle.

For the programmer, there are two challenges: this program
fiddles with color commands and saves and retrieves data with
tape or disk. Fortunately, you can take on one challenge at a time.

They say a picture is worth a thousand words.

PAINT gives the player control over the color video capabilities
of the ATARI, to create pictures and illustrations using colored
squares. This turns out to be an enjoyable way to gain mastery
over the ATARI's cursor control keys, while making pretty
pictures.

PLAYING THE GAME

When the program starts, your “brush” is the block in the mid-
dle of the “paper.” You can move it up, down, left, and right, using
the cursor keys in the lower right-hand corner of the keyboard. To
get the “brush” where you want it takes practice.

Fortunately, you can practice moving the brush all you want
without making a mark on the paper. When you're ready for
paint, you press the space bar, and the brush begins depositing
color wherever it moves. You can change the brush’s color by
pressing the number keys at the top of the keyboard—only 1, 2, 3,
and 0 work, because there are only four colors in this GRAPHICS
mode. Color 0 is the background color, and is useful for erasing.

74

After some practice, you will be able to interlace colors easily,
turning your brush on and off using the space bar with precision.
If you’ve spoiled a painting beyond retrieval, you can zap it—just
press Z and then Y.

You can save a painting by pressing <S>. There is lengthy
number-crunching involved, turning the colored picture into terms
the computer knows how to save—it takes about a minute, so be
patient. You can tell where the crunching is taking place by the
line of blocks descending the left margin of your picture. As soon
as the crunching is done, the computer asks for a name for your
picture.

ATARI notes

Saving files to disk

When choosing a name for a painting, program, or anything else you
plan to save, it’s a good idea to make the name as descriptive as possible,
so when you look at the disk directory you will know what each file is.
And another thing: when you plan to save several versions of a file,
number them—BOAT1, BOAT2, BOAT3—and keep track of the last
number you used.

Saving files to tape

The programs in this book use the input/output commands for a disk
drive system, but all can be adapted to work with tape storage, too. Tape
commands are usually simpler than disk commands. Please check the
details in your ATARI manuals.

If you have a painting saved, you can load it by pressing <I.>.
The program asks for the name of the file to load. (If you tell it a
file that isn’t there, it will give you an error message.)

You can adjust the color and luminance of your four colors by
pressing <C>. The current color will be changed to grey. Press the
<+> and <-> keys until you have found your desired color, then
press <RETURN> to accept it. The color will then be changed to
the lowest luminance. Again, press <+> and <-> until you have
the desired brightness, then accept it by pressing <RETURN>.

You can quit the program at any time by pressing <Q>.

75

WRITING THE PROGRAM

The main framework of PAINT is quite simple.

1 REM %%ERKERERKNEREFEEXXEXEX® FOIMNT *
P GM=3IMX=39:MY=23
T ODIM KE$(1) E$(8),F$(14),5% (MX) , F$ (MX*
(MY+1))
4 OFEN #1,4,8,"K:"

o

P}

@ CF=1

1
20
RY%
v

44
S
X

&
i)
7

IF
IF
IF
IF K
IF k=47

CF=FC:GOSUR
IF
IF

L=45

k=61

k=475

=42

=m0

St i

ey

et o

THEN Y=Y~1I1IF
THEN Y=Y+10IF

THEMN X=X-1:1IF
THEN X=X+1:IF

AND FF=1 THEN
THEN FF=1

AND k52 THEN

19¢ GOTO 1w

The first few lines clear the screen and set the brush in the middle
of the paper. The main program starts at line 10. The group of
lines which all begin IF K= deal with each possible key pressed—
lines 20-50—decode the cursor keys, and change the X-Y position
of the brush in accordance with the player’s commands. Lines 60
and 65 toggle—switch on and off—the brush. Line 70 takes a

11a@d: GOSUR

GRAFHICS GM+16: X=MX/2:¥=MY/2:FC=1:CO0
LOR 1

1 ¢ediedh
Yo THEN Y=¢
Y:MY THEN Y=M

X<l THEN X=1
X MX THEN X=M

FFR=@G:G0TO 76

FC=k-48: CF=FC

number and translates it into a new paint color.

1 @8esgs
1@1a
1@353
hR4 B
15
1184
1894
1 145

I=FEEL
GET #1

IF PF=g

IF FF=
GOSUR

(764) L 1F I=255
JEIFPOEE 764

THEN CF=0C
1 THEN CF=FC
11 g

R =CHRS (KD

RETURN

LOCATE X, V,0C5COL0OR CFIFLOT

FRAWTO X,V

1199 RETURRM

76

THEN 1&g

e
6 aabod

X.Y:D

Subroutine 1000 is the “keyboard,” which gets the next com-
mand from the player. Subroutine 1100 places a brushstroke on
the screen.

With this much of the program entered, you can make pictures,
and make sure everything is working right so far. Remember: in
programming, a keystroke out of place is like a needle in a hay-
stack. The real fun is getting clues from a program that is not
quite working and eradicating those stubborn bugs.

The save module contains some fancy business to accommo-
date the ATARI’s storage scheme: the painting must be translated
into a long string of numbers that can be stored like text.

Jg@ GOSUR 490
319 FPRINT "FILE TO- SAVE": I INFUT E$
T2 Fe="DI"IF$s(J)=E$:F% (L.E.N (Fe)+1)="_F
I X 11}
3¢ OFEN #2,8,.49,F%
344 FOR SY=d TD MY:FF=1+MX¥5YI5%=F% (FPF
) FF’ IB) IFRINT #2:9%:NEXT SY
5@ PRINT #23"ZZ2Z":CLOSE #2

QQQ) LX=MXILY=MY:GOSUR 6@ GOTO 1@
45 FFR=1:F0OR SY=# T0 MY:FOR SX=1 TO MX
419 LOCATE SX,8Y.F:iF$(FF)=8TR$ (F) : FF=F
F+1
42¢ NEXT SX

3@ PLOT 1,8Y:COLOR 1:DRAWTO 1,8Y
4495 NEXT SY
493 RETURN

If you can save, you should be able to load, too:

sa3 PRINT "FILE TO LOAD";: INFUT ES$
=10 F$="D:"i1F$(3)=ESIF$ (LEN(FS)+1)="_p
IXH

S20 OFEN #2,4,9,FHILY=@:FF=1

a4 INPUT #238$11F S4="ZZ2" THEN S8¢
S0E FE(FF)=8%.LX=LEN(8%) I FF=FF+_X

S6E LY=LY+1:60T0O 544

58 CLOSE #2:Ly=LY-1

S99 GOSUER &@g: GOTO 14

6@l GRAFHICES GM+14IPP=11FOR SY= T0Q LY
sFOR BX=1 TO LX

77

61d CF=VAL (F$ (FF,PF) 1 COLOR CF

HZE FLOT 8X, 8YIDRAWTD 8X,5Y:FP=FF+1
63 NEXT SXLINEXT SY

&P RETURN

We need to be able to clear the screen for a new painting, so a
zapper looks like this:

Bad GOSUR 4@@: PRINT "ZaF 1T"4

B81@ INFUT E$:IF E$="MN" THEM LX=MXILY=M
Y:GOSUR &6@@: GOTO 14

89@ GRAFHICS GM+16:60TO 14

You also need to be able to quit:

F@d GOSUR 4@@ PRIMT "QUIT" I INFUT E$IIF
Eg="N" THEN LX=MXTLY=MY:GOSUR o&@d:GOT.
0O 14

P90 EMD

And changing color and luminance is accomplished by these
lines:

208 CV=@:FPV=FC-1:IF FVi® THEN FV=4
21% SETCOLOR FV,CVY,6:G0SUE 160@: IF K=1
55 THEN 256
220 IF K$="+" THEN CV=CV+1:IF CV>15 TH
EN CV=15
23@ IF K$="-" THEN CV=CV-1:IF CV<® THE
N CV=@
249 GOTO 214
250 LV=g
26¢ SETCOLOR FV,CV,LVIBOSUE 1068 IF K=
155 THEN 1@
276 IF KE$="+" THEN LV=LV+2:IF LV314 TH
EN LV=14
280 IF E$="-" THEN LV=LV-2:IF LV<@ THE
N LY=g
299 GOTO 2ew

8¢ IF E$="0" THEM 9@g

?¢ IF K$="Z" THEN 80

78

1o@ IF E$="8" THEN 3dg
114 IF E&="L." THEN Sgd
129 IF E$="C" THEN 203

ADVANCED TOPICS

Another way to “save” a picture is by photographing it. You
need to have a camera that can be set for long exposures, because
the light from a TV is weak, and a short exposure may have bars
across the screen.

Before you push the shutter-release button, make sure of the
following points:

¢ Eliminate screen glare. (If you can see a reflection of a window,
or a wall, or yourself, you can be sure it will be in the photo-
graph, too. Change the lighting. Taking your picture after dark
in a darkened room may be the best way.)

e Fill the frame and make sure it’s sharply focused. (If you can’t
get close enough, don’t waste film. Borrow a camera with a
longer lens.)

e Use a tripod or make a steady stand for your camera. (Humans
move a lot in half a second. You may even need to ask people to
be motionless while you make your picture, so the house doesn’t
shake.)

e Adjust your TV for its crispiest, juiciest image. (What looks good
through the camera may be different than what’s easiest to
work with on the screen.)

® Bracket your exposures. Try several different exposure times,
from as short as 1/60th of a second to as long as 2 seconds.
Experience is the best teacher.

79

BARS

plot data with a bar graph

Computer graphics are exciting, as we can tell from prime-time
TV, fantasy movies, and arcade games. Plotting graphs is a less
exciting cousin of the flashy displays we sometimes see, but it is
an excellent use for the computer. It is often easier to see relation-
ships and judge their meaning if we can view them graphically:

SEMESTER GRADES
1 2 ,) 5

ENGLISH

SCIENCE

SOCIAL STUDIES

Get the picture? For the programmer, this program is a breeze.
It includes a new trick—using the printer—but it works fine with-
out a printer.

BARS lets the user translate numerical data into bar graphs on
the computer screen. The screen can handle up to seven bars, and
a large range of possible numbers, and graphically represent the
relationships between the different classes.

There are four possible different versions of BARS, like this:

Input Data
screen BARS BARS2
printer BARS3 BARS4

The screen version displays the graph on the video screen, while
the printer version prints it on a printer. The INPUT version asks
the user to put the data in each time the program is run; in the
DATA version the data is part of the program, so a graph is
drawn automatically when the program is RUN.

All versions of the program require scaling information: what
is the lowest number you will show on the graph? the highest
number? How many bars will you show? and what is the overall
title for your graph? The program works with data pairs—a title,
and a number, like

HSA, 69

which represents the life expectancy of a male born in the United
States. When you sit down at the computer to generate a bar
graph, you will need to know all the data.

WRITING THE PROGRAM

The second version is the easiest on the programmer, because
you won’t have to keep giving the computer data for the graph, so
we start writing there:

1 REM 950 9 3096 96 3096 5 5 96 36 3696 3 00 36 % 9 K %% RARS *
2 DIM CH(48) ,BE(7), TH(IB) , 5% (3B) , A (26
&)

2 DIM L(7) ,F(7)

9 Céd=CHR$ (125) 1 CH () =" #* BARS *"
TFRINT Cs%

81

19 READ EBIIF B=-1 THEN I#@

28 BSLEN(B$)+1)=CHR$ () : GOTO 14

@ READ LN

49 READ HN

5% READ NE

&H&@ READ THILT=LEN(T®) :M=(38-LT)/2:C$(1

+M)=T%

79 P=@:N=g

8¢ READ S#,VIL(N)=VILS=LEN{S$):F (N)=F;

AL (F+1) =8I F (N) =FIP=RP+L.SIN=N+1:IF N<NRE
THEN 8¢

@ F(N)=F

This section is a simple series of READs that get DATA from
anywhere in the program. Lines 10 and 20 read the characters
that get translated into bars on your video screen. Lines 30-90 read
the data for your particular graph—low number, high number,
number of bars, title string, and an individual title-string for each
bar.

We can build a program in any order, so let’s do the DATA next:

@@ DATA @,8,18,19,79,88,123, -1
914 DATA #,75,6

92¢ DATA LIFE EXFECTANCY - MALES
%@ DATA USA, &9

4% DATA COLOMEIA, 44

5@ DATA NORWAY, 71

960 DATA JAPAN,71

97@% DATA INDIA, 42

98@ DATA AUSTRALIA, 48

Line 900 contains the codes for the letters that make up the bars.
The -1 at the end tells the READ statement in line 10 that it has
read all the color controls and can go on to the next part. Line 910
contains the low number, high number, number of bars, and title.
The next six lines contain the specific titles and data. (Of course,
there is nothing magical about my data—use any data you want.)

The bar-drawing code is next:

1@ FORKE 752, 1:FRINT C&:FPRINT

11 I=(HN-LN) /3. IB=546/ (HN-LN)

12¢0 FOR N=@ TO SIFRINT INT(LN+(N*I))3"
"3 sNEXT NIFRINT

13 FRINT FOR EN=@G TO NB-1

149 FOR L=1 TO L(EBEN)*IBIFRINT BE$(BN+1,

EN+1) § tNEXT LIPRINT " "iL (BN)

150 FRINT A (P (BN)+1,F(EBN+1))IFRINT IN

EXT EN

2¢@ GOTO 209

Lines 120-130 draw the reference line that tells what the bars
represent. If these numbers turn out strangely, you can adjust the
high number and low number to make them more pleasing. The
POKE in line 100 turns off the cursor, so all you see on the screen
is your graph.

By the way, what in the world does line 200 do? It’s easy to find
out: take it out, RUN the program, and see what happens.

The program is done. Test and debug it before we move on to
three more versions. And be sure to save this version if you want
to use it again.

To make the “plain vanilla” version of BARS, all you need to do
is change six lines at the beginning of the program, so they look
like this:

I@ PRINT "LOW NUMRER":: INFUT LN

49 PRINT "HIGH NUMERER"3: :INFUT HN

S¢ FRINT "NUMEBER OF BARS"::INFUT NE

6@ FPRINT "TITLE FOR GRAFH";:INFUT T$IL
T=LEN(T$) i M=(38~-L.T) /2:C$(1+M)=T%

78 P=@i N=@

88 FRINT "EAR "iN+13" TIiTLE"i:INFUT 9%
LS=LEN(SH) tF (N)=FP.AS (P+1)=8%:F (N)=FIF
=F+l.5

85 FRINT " VALUE"3 ¢ INFUT ViL(N)=V
tN=l+1:IF N<NE THEN 80
99 F (N)=F

83

This version of the program allows you to explore the bar-
graphing possibilities and plan your graphs carefully before sav-
ing them.

PRINTING THE BAR GRAPH
SEMESTER GRADES
i 1 2 = 4 5

8888888888888888B3B888888 3.6
ENGLISH

HUENH S HHAE RS HR R SHHHHH S 4
MATH

WA WK I HANN T
sS0C sCI

HHHHHHHHHHHHHHHHHHHHHMHE 3.3
FE

bbb bbb bR R 4
CHEMISTRY

XXXXXXXXXXKXXXXXXXXXXXXXX 3.6
SFANISH

It is easy to “hardcopy” your graph with a printer. It just takes
a print module:

244 LFRINT :FOR BN=@ T0O NE—-1:Té$=""

25¢ FOR L=1 TO L (BN)*IE:T$(LEN(TS)+1)=
F& (BN+1,BN+1) INEXT LITS(LENM(TS)+1)=" "
PTHELEN(TS) +1)=STR$ (L (BN)) :LFRINT T%
260 LFRINT A (F(BN)+1,F (BN+1)) 1 LPRINT
~NEXT EN

84

P
P94

204
INT
21a
2224

DATA ©,8,110,19,79,88,123,~1
DATA 56,35,42,72,159,88,78, -1

FRINT "PRINT IT"j:INFUT O%:N=@:LFR
T LPRINT

READ F:IIF PF=-1 THEN 234

F& (N+1)=CHR® (F) : N=N+1:60TO 21
TE=""IFOR N=@ TO S:TH(LEN(T$)+1)=5

TRE (INT (LN+(N*I))) s TH (LEN(TS) +1) ="
"INEXT NI:LPRINT T$

Line 200 replaces the earlier line (that swallowed its own tail) with
a query. Lines 210 and 220 read the codes to make graphic blocks

on the printer. Line 990 contains those codes.

Now that you have three versions of the program, it’s an easy
matter to borrow the lines between 200 and 300—and don’t forget
line 990. While you’re about it, you might play with some of the
other codes your printer can make—you might think they look

better on your graphs.

In programming, especially in BASIC, we should not concern

ourselves with what should be, but only with what works.

SORT

elementary data processing

Computers may not be good at noticing unexpected relation-
ships, but they are superb at working with lists. A lot of paper-
work consists of taking a list organized in one way and reshuf-
lling it. In this chapter, you will write a program that accepts lists
of random data and puts them into alphabetical order.

The programmer will teach the computer to remember, sort,
display, save, retrieve, and print data, useful skills for any
computer.

SORT is a simple program for alphabetizing a disorganized
list. The SORT routine itself is short and easily understood, and
can be used in other programs. In fact, it is used again in the
hot-rod version of SORT at the end of this section, and in DATE-
BOOK and ORGANIZE in the final section of the book.

SORT is menu-driven—you are presented with a list (a menu) of
options you can choose. You will usually start by choosing the
first option, ENTER DATA, because the program doesn’t do any-
thing very interesting until it has some data to sort. You enter
data one piece at a time (a single piece of data is called a datum)
until you're done. When you’ve entered all the data you want to
sort, you use the computer’s escape code, ZZZ, and the menu
reappears.

Once the computer has some data to play with, you can choose
option 3 to DISPLAY your entries, or option 2 to SORT them. If
you choose to SORT, your data will flash by as it is manipulated
by the computer. This program assumes you won’t have hundreds
of pices of data to sort, and so it uses a simple, inefficient sorting
technique.

86

SuperSORT, the upgraded version of the sorting program, adds
several more options: you can SAVE, LOAD, PRINT, and
CLEAR your data.

WRITING THE PROGRAM

If you have been working through this book a section at a time,
there will be nothing very surprising in this program. It breaks up
easily into the MENU/Control module, the SORT module, and the
DISPLAY module.

The MENU module:

1 REM %3553 85333 39 % 6% %% %% %% SORT *

2 DIM A (4@@8) , DS (480¢) , I1$(1) ,B$ (49) ,C
F(4@) ME(4) Q% (1), TS (44)

3 DIM L1@@) ,MO1@e) S 1am)

4 OFEN #1,4,@,"k2"

6 FRINT CHR$(125) :N=1:LD=4@

8 FOR N=1 TO LD:M$&E(LEN(ME)+1)=" "INEXT
NiIN=1

14 PRINT ,"SORT"

11 PRINT "1: ENTER DATA"

12 PRINT "2: SORT"

13 PRINT "3J: DISPLAY"

19 PRINT "9: QUIT"

28 PRINT "OFTION"; : INFUT ©

3@ ON Q0 GOTO 16@, 200, 308, 10, 16,160,143, 1
@, P

49 GOTO 1@

This section reminds you of your choices, and sends program con-
trol off to the other modules when you have chosen.

The ENTER DATA section uses another version of the key-
board subroutine:

198 FRINT "ENTER DATA ZZZ TO @
urT"

11 FPRINT Ns":"§:6G0SUR 1802 FRINT

12¢ IF T#="ZZZI" THEN ND=N-1:G0TO 1¢
130 AS (1+L.D*¥ (N-1)) =TH: L (N)=LEN(T%$) -1
14@ N=N+1:G0OTO 114

87

@ FPRINT "DONE":END

1o TEe=""

191@ I=PEEK(764):IF I=255 THEN 181@
192¢ GET #1,KIFOKE 764,255

1934 IF K=1355 THEN RETURN

1673 I$=CHR® (K) :FRINT 1%}

1984 TH(LEN(T$)+1)=1%

1499 GOTO 1491@

You can “test-drive” your program now, to see if it is getting data
into the string array A$(n). Check by QUITting and asking the
computer to show you your A$ like this (remember, no line
numbers):

PRINT A%
The SORT module looks like this:

204 FRINT "SORTING":FOR N=1 TQ ND:S(N)
=1INEXT NiIFl.=1

214 N=1

2209 IF SN =@ THEN N=N+1:60TQ 220

225 P=N+11LN=N;SP=1+LD%(N-1) :B%=A% (SF,
SF+L (N))

23@ IF S(F)=@ THEN 264

249 SE=1+LD* (P-1) :CH=A% (50, SO+L (F)) :FR
INT B%,C%,:IF EB${C$ THEN 269

208 TH=BIB=CHICH=THILN=F:FRINT "SWAP
FING";

260 PRINT P=F+1:IF F<=ND THEN 23&

279 SY=1+LD*¥(PL-1):D$(8Y)=R&%:M(FL)=LEN
(B$) ~1:PL=FL+1:S(L.N)=@: IF PL=ND THEN 2
84

275 6OTO 210

=28 8Y=1+LD* (ND—1) :D%(SY)=C$:M(ND)=LEN
(C#) -1

299 PRINT " = = = DONE = = =":A$=D$:F0
R N=1 TO ND:L(N)=M(N)INEXT N

The real work takes place in lines 240 and 250: Line 240 decodes
each datum and compares it with each of the data entered after it,
and if it is less than a later entry, line 250 pops the first datum into

a temporary string, pops the later datum into the earlier position,
and then shuffles the former datum into the latter’s position. All
the PRINTing in this module is diagnostic—so you can see the
work taking place inside the computer, and find out what’s wrong
during debugging. Programmers often insert PRINTSs and STOPs
to help find programming problems, then take them out when the
program is running smoothly. If you take out the diagnostics—
that would be parts of lines 240, 250, and 260—the routine will sort
lists faster, because the computer won’t have to work so hard.
The DISPLAY module is simplicity itself:

3@@ FOR N=1 TO ND

S19 SP=1+L.D* (N-1)IPRINT N3" ";A$(SF,S8
F+L (N))

I2¢ NEXT N

399 FRINT ,,"MENU";:INFUT Q%:G0TO 14

With these lines programmed in, SORT should do everything
advertised.

But wouldn’t it be nice if you could SAVE lists, and LOAD
them, and PRINT them, and MODIFY them? Read on.

SUPERSORT

a list-organizing tool

MAKING A TOY INTO A TOOL

SuperSORT is a junior version of the most important data-
management tool known to man or computer: the systematic list-
reorganization utility. When you get down to it, much of the work
computers do centers on taking a list of data in one order—
alphabetical, perhaps, so that the subscription clerk at the local
newspaper can make sure names, address, and most important,
the expiration date, are all correct—into another order—a carrier-
route sort for the postal folks, so that the newspapers can be dis-
tributed efficiently to the subscribers.

In addition to ENTERing, DISPLAYing, SORTing, and QUIT-
ting the way you can in SORT, you can now also SAVE, LOAD,
PRINT, MODIFY, and CLEAR your data. In other words, you
can do all the things one generally needs to do with data. To do it
well, you will need a disk drive.

UPGRADING THE PROGRAM

The menu now looks like this:

1 REM 969396363695 % 96 5 3 5 4 845 3% % N A XK XSSORT *
2 DIM A% (40@9) , D4 (40083) , 14 (1) RS (4@) , C
$(40) ME(4E) , 0% (1), TH(48) ,E$(B) ,F$(14)
LCL$ (1)

I DIM LQ198) MU188) , S 1a8)

4 OFEN #1,4,8, "K:"

& CL$=CHR$(125) :PRINT CL%

9 N=1:LD=4@:60T0 B3

19 PRINT ," SORT"
11 PRINT "1: ENTER DATA"

12 FPRINT "2: SORT : PRINT"
13 FRINT "3: DISFLAY 7: EDIT"
14 FRINT "4: SAVE 8: CLEAR"
15 PRINT "5 LOAD 9: aurT"

2@ PRINT ,,"OFTION"::INFUT @

38 ON @ GOTO 143,200, 300, 408, SOH, b0, 7
ol 8@F , F0E

44 GOTD 1@

The lines between 200 and 390, the ENTER, SORT, and DIS-
PLAY modules, are exactly as in SORT.

The SAVE and LOAD modules can sensibly be entered
together:

49% PRINT ,"FILENAME FOR SAVE";: INFUT
E$

410 F$="D:":F$(3)=E$:F$(LEN(F$)+1)="_D
TA":0PEN #2,8,0,F%

42¢ FOR N=1 TO ND

433 SP=1+LD%* (N-1) 1 T$=A% (SF, SP+L (N)) : FR
INT #23T$:PRINT "3";T$

449 NEXT N:PRINT #2;"ZZZ":CLOSE #2

49¢ GOTO 1@

500 PRINT ,"FILENAME TO LOAD";:INFUT E
k3

510 F$="D:":1F$(3)=E$:IF$(LEN(F$)+1)=".D
TA":OFEN #2,4,0,F%

S2@ INPUT #2,T$:IF T$="72Z" THEN 599
53¢ SF=1+LD% (N—1) A% (SF) =T#: L (N) =LEN(T
$) -1

535 PRINT "<"3iT%

S4@ N=N+1:GOTO S2¢

59@ ND=N-1:CLOSE #2:GOTO 1¢

Lines 410 and 510 inform the intelligence within the disk drive
what kind of file to expect. The program uses buffer number two,
and F$ tells it the name of the file. The other numbers in the
OPEN statement contain details for the machine—the 8 in line

91

410 prepares to write to the disk, while the 8 in line 510 prepares to
read from the disk. With that information established, the pro-
gram can then assume that the storage device will save anything
PRINTed to buffer #2, or will provide reliable data when asked to
INPUT from buffer #2. (There is no magic to the number 2, use
any reasonable number. If it’s unreasonable, be assured that the
computer’s BASIC interpreter will complain.)

The SAVE module writes (line 440) a final word, ZZZ, after your
last datum but before closing the file, to mark the end of the file.
The READ module reads from the disk until it encounters the
end-of-file marker ZZZ.

To convert this program for tape input/output, please consult
your ATARI manuals.

PRINTing your list requires this code:

6@ FRINT "PRINT LINE NUMEERS (Y/N)"j:
INFUT @s

6149 FOR N=1 TO ND

620 IF Qe<>"Y" THEN 644

63@ SF=1+LD* (N-1) :LFRINT N3;" ":A$(SF,
SF+L.(N)) 1 GOTO 654

64 SP=1+L.D* (N—-1) :LFRINT A% (5P, SF+L (N)
)

658 NEXT N

&9 GOTOD 14

You can print your list with or without line numbers, like this:

with line numbers without line numbers

1 RANGE YOLE

2 WORLD GUESS

A SNAF' ca 1f

4 PFINT does

5 EXTRA ol f

6 FIRES extra

7 YOLE field

8 (GUESS fired

Clearing data takes these lines:

843 PRINT "CLEARING MY MIND ..."
8149 FOR Z=1 TO 14@#:A%(Z)=" "“":NEXT 2
82¢ FOR Z=1 TO 14@¢:18(Z)=@:N=1

89¢ FRINT CL$:G0TO 1@

9@ FRINT “DONE":END

Modifying a datum is only slightly trickier.

78@ PRINT ,"LINE TO CORRECT";:INPUT X:
IF X=@ THEN 1@

714 SP=1+L.D* (X~1) s PRINT X3" "5 A% (SF, SF
+L (X))

72@0 PRINT " "3:G0SUR 1@0@: FRINT

734 IF TH="ZZZ" THEN 1@

744 IF Té="" THEN 7@

754 De=""¢IF X<ND THEN DE=A% (SP+LD,LEN
(A%))

768 AS(SP) =TS L(X)=LEN(T$) ~1:A% (SP+L.D)
=D%

79%¢ GOTO 7@¢

After specifying the line to correct (700), you type the correct line.
Much like the ENTRY mode, you can keep correcting data until
you select item 0 or type ZZZ. Let’s hope none of you ever really
needs a datum ZZZ!

You should be testing each module after you add it. This is a
valuable program, so don’t forget to save it.

ADVANCED TOPICS

Like all the programs in the book, superSORT is meant to be
only a starting place as you move toward customizing your com-
puter to do the work you need to do. If part of the program doesn’t
perform to your needs, fix it! For example, if you need a margin on
your printed work, lengthen the bunch of spaces in line 630, or
include them in line 640.

Borrow from this program, and modify it without fear, espe-
cially if you have a working copy saved on disk!

If this program suggests useful work to you, check the two
adaptations in the last section—DATEBOOK and ORGANIZE.
They work with three kinds of data at a time, instead of just one.

93

CALC

a smart calculator

The way people think, and the way machines think, are some-
times far apart. The way we write

+ 3 =

is a good example. A computer is much happier if we tell it all the
players, then tell it what game to play, like this:

23+ . %

But computers are supposed to be our servants, not the other way
around, so programmers have to teach them to think like people!
This program teaches the computer to behave like a four-function
calculator with a simple memory. It uses the BASIC symbols: *
means times and / means divided by.

CALC turns your computer into a very simple “expert system.”
Its expertness is just like a calculator: it’s good with numbers.

*(One computer language, FORTH, does exactly that. If BASIC feels clunky to you,
you aren’t alone: many scientists and computer specialists program exclusively in

FORTH. Check into it.

94

You can type in complex problems using the number keys, + for
plus, - for minus, * for times, and / for divided by. Like most
calculators, the order of the calculations is critical:

3% 5+

(i}

[

is not the same thing as
2+ %3

You can use your last answer in a calculation, like this: If you
calculate

the computer figures that out as 7. If you then ask for

the computer substitutes your last answer, 7, for A, and informs
you that the result is 28. This turns out to be a useful trait.

One more wrinkle: If you want to know if one of your calcula-
tions is right, but don’t want to know the answer if you're wrong,
you can type your questions like this:

4% 7 =28

the computer responds with a “YES” if you are right, and a “NO”
if you aren’t. That way you can check your homework, and learn
the lessons you are supposed to, without cheating.

WRITING THE PROGRAM

The program works by accepting a whole problem, then “pars-
ing it”—looking at it a character at a time, and planning a
solution.

The keyboard is so simple that we’ll throw in the program title
line, too:

1 REM * CALC =

2 DIM A$(1!ZHZ’)._.I$(1),V$(1IZHZ’),0(1!2’(2’),\?('1
ae)

14 MO=@:FRINT "CALC"j:INFUT A%

The “Parser”’ looks at each consecutive character:

20 LA=LEN(A%) IN=1:F=1

38 I$=A$(F,F)

4¢ IF I$="+" THEN O(N)=1:GOTO 18@
5@ IF I$="-" THEN O(N)=2:G0TO 180
&8 IF Is="%" THEN O(N)=3:G0TO 18@
70 IF I$="/" THEN O(N)=4:60T0O 18%
8@ IF I$3"/" AND I$<":" THEN 174
9@ IF I$="." THEN 17@

10@ IF I$="A" THEN 15@

119 IF Is$="=" THEN 13¢

12¢ GOTO 199

13¢ MO=1:0A=VAL (A% (F+1)) :GOTO 20
150 V$=STR$ (DA) :GOTO 194

17@ V$ (LEN(V$)+1)=1%:GOTO 199

180 V(N)=VAL (V$) 1 Vg="": N=N+1

19¢ P=F+1:1F F<{=LA THEN 3¢

When this segment is done, the problem has been broken down
into values [one for each value in a variable array called V(n)] and
Operations [one for each relationship between two values, stored
in O(n)]. There will be one less operation, we hope, than there are
values.

The next section processes the values in the manner dictated by
the operations:

2a@ VN =VAL (V$) tVE="" 1 LN=NIN=1

21¢ 1F LN=1 THEN 44¢@

220 IF O(N) =1 THEN V(N)=V(N)+V(N+1) 160
SUER 3@@:N=1:6G0TO 214

23@ IF O(N)=2 THEN V{N)=V(N)-V(N+1) IGO0
SUER Xg@:N=1:60TO 214¢

246@ N=N+1:IF N<LN THEN 21¢

259 N=1:IF LN=1 THEN 404d

268 IF OWN)Y=3 THEN V(N)=V(N)*V(N+1) 160
SUR 30g:N=1:60T0 25¢

279 IF D(N)=4 THEN V(N)=V(N)/V(N+1):I60
SUR Zg@d:N=1:60T0 254

28¢ N=N+1:IF N<LN THEN 254
29¢ N=1:1IF LN=1 THEN 44@
I FOR M=N+1 TO LN-1

J1g VM =V (M+1) :0(M-1)=0(M)
3200 NEXT M:LN=LN-1:RETURN

One by one, the results are accumulated into the first Value, V(1),
and the number of values to be processed is reduced—in computer
talk we call it decremented—by one, until there’s only one left:
that’s the answer.

The answer is displayed next:

499 FPRINT ""3:FOR F=1 TO LA+&IFRINT "*»
s *NEXT P

414 IF MO=1 THEN 5dg

420 0A=V (1) :PRINT "="3;0A:G0TO 14

o0g IF QA=V (1) THEN FRINT "YES":G60TO 1
7]

21@ PRINT "NO":G0TO 19

If we want to see an answer, line 420 prints it. If we just want to
know if we are right, lines 500 and 510 tell us. Then the program
returns for another problem.

ADVANCED TOPICS

There is lots of room to add the <UP-ARROW>> and exponenti-
ation to our calculator. Two other useful abilities would be: pro-
cessing ((paren)theses) and multiple memories. I leave this chal-
lenge to the advanced programmers.

If you start getting good using it, you can graduate to the com-
puter’s own “immediate mode” calculator, wherein you type in
problems like this:

7?2+ 3 <RETURN>
? ([32.15-4B.65)-12.5+3.21+(121.9%.03)

and the computer provides the answer. The ATARI, it turns out, is
a very sophisticated calculator.

97

ANYBASE

a counting machine for any planet

When they taught most of us to count, they forgot to mention
that the decimal system is only one of a whole galaxy of perfectly
lovely counting systems. We count with ten fingers, but computers
like the ATARI, for instance, count with eight hands, each con-
taining only one finger! And in Base 12, the Baker’s Base, 10 is
evenly divisible by 2, 3, 4, and 6!

ANYBASE contains two identical and interlocking counting
machines. You can tell one to run as if it has ten fingers, the
decimal system we use, and the second that it has only one finger,
like the binary system that computers use, and watch the counters
work together.

NOTE: If you have no notion why anyone would want to do
that, you are not required to read any more of this chapter. On the
other hand, if you know exactly what I'm talking about, skip a
page. On the third hand, if you are interested (or not quite sure)
read on:

As I was saying: on the planet, ZamoGram, all trade is con-
ducted in base 4. You count like this:

Earth ZamoGram
1 1
2 2
3 3

So far, so good. But now we get into trouble.

4 10
5 11
6 12
7 13
8 20

Are you with me? The next number after 33 would be 100, right?

If your business requires frequent translations between the
ZamoGrams and the Twist-tyes (who use base base 35—you, for
example, my friend, might weigh between 1J and 2Z pounds), you,
I say, NEED THIS PROGRAM!

WRITING THE PROGRAM

This program is exceptionally modular: two of its modules are
nearly identical. But first, the “human interface”:

1 REM * ANYBASE *

2 DIM Q$4(9) ,C$(P) ,DE{D) ,N(P) ,M(P)

3 FOR N=@ TO 9:N(N)=g@: M(N)*Io NEXT N
14 PRINT " NUMEER" § I INFUT Q%
20 PRINT " ITS BASE"; I INFUT E2

3¢ PRINT "TARGET BASE";: INFUT E1

79 PRINT "'";:608UB 34@:GOSUR 209
9@ IF Cs=@RQ% THEN FRINT "":RUN

lagigt GOTO 7¢

Line 10 gets your desired number as a string of characters, Q$,
while lines 20 and 30 get the number-base of your desired number,
and the base to translate into. Line 70 sends control to the two
counters. If the first counter has reached the target number, the
count stops; otherwise, it loops back to line 70.

The counters look like this:

20@ N=g@

21¢ N(N)=NI(N)+1:IF N(N)<E1 THEN 234

220 N(N)=@IN=N+1:60T0O 214

23¢@ IF N>HN THEN HN=N

248 FOR PP=1 TO 16:FRINT ""3iiNEXT FFIF

RINT ">»"§:FOR D=HN TO & STEF -1

2534 IF N(D)<1¢ THEN D#=8TR$% (N(D)) :G60OTO
279

268 DE=CHR$ (55+N(D))

27@ PRINT D% :NEXT D

29¢ PRINT RETURN

IPH M=@:Ch=""

S1g MM =M(M)+1IIF M(M)<B2 THEN 33¢
32¢ MM =@:M=M+1:G0TO 3I14

I3@ IF M>*HM THEN HM=M

344 FOR PP=1 TO 16:PRINT "";:NEXT PP:P
RINT ">"3:FOR D=HM TO @ STEP -1

3534 IF M(D)<1@ THEN D$=STR%(M(D)):60T0
3749

368 D$=CHR$ (S5+M(D))

37¢ PRINT D$3:CH(LEN(CS)+1)=D&:NEXT D
399 PRINT RETURN

Line 200 (and 310—the two are parallel) starts (the fancy compu-
ter term is initializes) the place counter. Line 210 checks the cur-
rent place to see if adding one to it will be less than the number-
base. (The basic rule of number-bases is that there is no numeral Z
in base Z.) If not, the program “falls through” to line 220, which
sets the current digit to 0, shifts its attention one place higher, and
takes the unexpected step of looping back on itself: recursion in a
BASIC program.

If the incremented number will be less than the number-base—
or when the recursive program finally resolves itself, finding or
creating a place it can increment—the string of digits represent-
ing the number is adjusted and displayed by lines 240 through
270. The counter then returns to the command immediately fol-
lowing where it was called.

ATARI notes

Duplicating program lines revisited

ANYBASE provides a madeto-order opportunity to perfect your line-
duplicating skills. If you type in lines 200 to 290, you have done 90% of the
work.

If you just finished typing lines 200 to 290, they are displayed on the
screen before you, and entered in program memory, as well. If you doubt
(or if you have a scrambled screen), LIST 200-290.

Move the cursor with the <SHIFT><CURSOR-UP> key until you are on
line 200. Press the <3> key to change the line number, then <CURSOR-
RIGHTS over until you are on top of the N, and overstrike it with an =M.
<M>. Position the cursor at the end of the line and type in the rest of line
300. Now press <RETURN>. With a few kesytrokes, you have modified
and borrowed the line, with efficiency and a much-reduced chance of
typing errors. This feature is called “full-screen editing,” and it certainly
the programmer’s task easier, a tool worth mastering.

100

Repeat the process, making the necessary changes and accepting each
corrected line with a <RETURN> as you go. Remember, if you accept a
line, then notice it needs another change, you can always move your
cursor back into the line, fix it, and reaccept it. The most recent accep-
tance always prevails.

ADVANCED SUBJECTS

There are much more efficient interbase translation algo-
rithms. The most elegant is based on the fact that exponents of
the number bases come into play here. The decimal number 3179,
we all agree, is made up of

= (I units)

= JRF tens)

= 1lee(l hundred)

= 3003 thousands)

add L to 3179

What you may not know is that exponents are at play here:

1@ = 19% = 1gxigixld
1936 = 14= = {@*1@
14 = 182 = 19
| = 192 = |
{ all numbers to the zero®*" power = 1

The same thing happens in binary—base 2. The binary number
1111 can be evaluated like this

27 = 8 = 2%x2%2
2% = 4 = 22
21 = 2= 2
2 = 1 = 1
+—-——
plainly adds up to 15

101

UTILITIES

for school and work

By now you know that computers can help with your work.
This chapter helps you develop programs that can help you organ-
ize the events and data in your life. When you have finished these
final pages, you can consider yourself an intermediate-grade
BASIC-language computer programmer—with a fist full of
modules to use on a variety of problems, and enough mastery over
your machine to take on any problem it can solve.

DATEBOOK and ORGANIZE are simple data-base manage-
ment systems. Both work with data that comes in three pieces—in
DATEBOOK, these fields are the date, the event, and a note about
it:

1831 HALLOWEEM FARTY B CHRDS
11794 PAPEFR ENGLISH-CHAUCER
11-1®% TEST SCIENCE

11-11 HOLIDAY BRIKER"Y

Each of these data pieces is called a field, and together form a
record. These two programs let you reorganize data by any one,
two, or three fields, so that you can view your data in the best

possible order. For me, these two programs are the most useful in
the book.

Michael Potts

29 Octoher 1933

HEADER pops a credit, date, and title line in the upper right-
hand corner of your printed work. Nothing new and exciting here,

but handy. It’s built so you can add it to anything you want
printed out.

102

DATEBOOK

The computer can be a willing and accurate helper with its
powerful memory and easy-to-program study aids. The programs
in this section are more complicated; more useful, too.

DATEBOOK helps you prepare for the inevitable: if you type in
your homework assignments (and your parties)—date, event, and
description—this program helps you track them, so you need
never be unprepared.

DATEBOOK is menu-driven: at any point your options are dis-
played for you. They are:

1: EMTER DATH

21 S0RT E: PRINT

3: DISPLAY Zr MODIFY DRTA
4: SAVE E: CLERR

S5: LOAD SQUIT

If you select option 1, you are prompted (sample responses in
italics):

DATE/TIME:12/25
EVENT:Christmas
NOTE:special dinner in Santiago

If you ask for a display or a print-out of your calendar, you will be
asked for the field number (DATE is field 1, NOTE is field 3) and
the text you wish to match. If you had entered all your paper
assignments through the end of the semester, for example, along
with parties, birthdays, games, and other important dates, you
could pop a list of due dates in order to plan your time.

WRITING THE PROGRAM

Those who have already programmed SSORT recognized the
Menu display, and you are right: you won’t have to work very
hard to get DATEBOOK running.

(For those of you who want a blow-by-blow explanation of what
the program does, the exciting part is back in the section on
SORT.)

103

Initialization and Menu:

1 REM %% %9969 % % % % % %% % %% DATEEROOK %*
2 DIM A% (4@ad) , DS (4008) , I14(1) ,B$(76),C
$(76) ME(76),0%(1) , T$(76) ,E$(76) ,F$(76
) JN$(76),CL$(1)

3 DIM LC1o@,2) ,M 188, 2) , S (186)

4 DPEN #1,4,0,"K:"

6 CL$=CHR$ (125) : PRINT CL%

9 N=1:LD=76:L1=14:L2=39:REM GOTO 8@H
1¢ PRINT ," DATEEOOK"

11 FPRINT "1: ENTER DATA"

12 FPRINT "2@ SORT 6: FRINT"
13 PRINT "3: DISFLAY 7: EDIT"®
14 PRINT "4: SAVE 8: CLEAR"
15 FRINT "5: LOAD . QuUIT"

2¢ PRINT ,,"OFTION";:INPUT @

I¢ ON @ GOTO 164,208, 300, 400, SO0, 6038, 7
o , 800, SV

4¢ GOTO 1@

Data entry:

149 PRINT "ENTER DATA ZZZ 70 @
urrT"

119 PRINT "DATE/TIME:";:GOSUR 1409:FRI
NT

1298 IF T$="Z2ZZ" THEN ND=N-1:G0TO 19

13¢ D$=T$:FPRINT EVENT: " : GOSUER 19
P@:PRINT
14¢5 E$=T$:FRINT " NOTE: "3 :GOSUER 1@
BOIPRINT

15¢ N$e=T4$:G0SUR 11d@
183 A%S (1+LD* (N-1))=T%
194 N=N+1:60T0 114

104

Sort module:

20¢ FRINT "SORTING":FOR N=1 TO ND:S(N)
=1INEXT NiPL=1

218 N=1

228 IF S(N)=@ THEN N=N+1:G0TO 229

225 F=N+1ILN=N:SP=1+LD%* (N-1):EB$=A% (SF,
SP+L2+L (N, 2)-1)

239 IF S(F)=@ THEN 264

243 HN=F:SQ=1+LD* (F—-1) :C$=A%$ (50, SO+L2+
L(FP,2)~1)IIF B$<C$% THEN 2266

250 Te¢=RIEB=CHICH=T$:LN=P:HN=N

268 P=F+1:1IF P<=ND THEN 23@

27¢ SY=1+LD#*(FLL—1) :D$(SY)=RB$:FOR ZL=0
TO 2iM(PL, ZL) =L (LN, ZL) : NEXT ZL:PL=PL+1
tS(LN)=@: IF FL=ND THEN 28@

2735 6OTO 219

28@ SY=1+LD*(ND—-1):D$(85Y)=C$:FOR Zl.=g
TO 2:M(ND, ZL) =L (HN, ZL)Y sNEXT ZL.

299 FRINT " = = = DONE = = =":A$=D%
295 FOR N=1 TO ND:FOR ZL=@ TO 2:L (N, ZL
)=MIN, ZL) :NEXT ZL:INEXT N:GOTO Z1@

Display:

39¢ GOSUE 14@¢: LM=LEN (M$)

1@ FOR N=1 TO ND:SP=1+LD* (N-1): T#=A%(
SP, SP+L.2+L (N, 2)-1)

32¢ GOSUR 115@:IF LM=@ THEN I74
33@ ON FM GOTO 340, 350, 36

344 IF LM>LEN(D$) THEN I8¢

343 IF M$=D$(1,l.M) THEN Z7@

3446 GOTO =849

354 IF LM>LENC(E$) THEN 38g

3893 IF Mé=E4(1,LM) THEN 37¢

356 GOTO IB@

J36@ IF LMXLEN(N%) THEN 28¢

I63 IF Me=N$(1,LM) THEN 378

366 GOTO 38@

37@ PRINT D$,E$:FRINT " “3iNs$
Z8¢ NEXT N
394 FPRINT ,,"MENU"3: INFUT @%:60T0 14

105

Save and Load:

4p® PRINT ,"FILENAME FOR SAVE";:: INPUT
E$

4160 F$="D:":F$ () =E$:F$(LEN(F$)+1)="_D
TA":OFEN #2,8,0,F%

42¢) FOR N=1 TO ND

43¢0 SP=1+LD%* (N-1) : T$=A% (5F, SF+L2+L (N, 2
)=1) :GOSUE 115@: IF D$="" THEN 48%

4405 FRINT #23;D$:FRINT #25E$:FRINT #23N
$:FRINT "3>";D$,E$

48@ NEXT N:PRINT #2;"zz2"

49¢ CLOSE #2:60T0 19

S@@ FRINT , "FILENAME TO LOAD";: INPUT E
+

510 F$="D:":F$(3)=E$:FH(LEN(F$)+1)=".D
TA":0FEN #2,4,0,F%

5200 INFUT #2,D%:1IF D$="27Z" THEN 59¢
S3@ INFUT #2,E$: INFUT #2,N$

549 GOSUER 110@:SP=1+LD%(N-1):A% (SF)=T%
545 PRINT “Z";D$,E%

55¢ N=N+1:G0TO S2¢

594 ND=N-1:CLOSE #2:G0TO 1@

Print module:

609 GOSUR 14@@: LM=LEN (M$)
619 FOR N=1 TO ND:SF=1+LD* (N-1):TH=A% (
SP,8FP+L2+4L (N, 2)-1)
620 GOSUR 115@: IF LM=@ THEN &7
6398 ON FM GOTO 64¢, 650, b0
640 IF LM>.EN(D$%) THEN &89
643 IF M$=D$(1,LM) THEN 67¢
646 GOTO &89
639 IF LM>LEN(ES$) THEN 68¢
633 IF M$=E$(1,L.M) THEN &7¢
656 BOTO 689
66 IF LM>LEN(N$) THEN 68@
663 IF Me=N#$(1,LM) THEN 67@
666 GOTO 4849
674 LLPRINT D#,E%,N%
688 NEXT N
694 GOTO 19
106

Reschedule:

799 GOSUR 140@:1 M=l EN(M$):IF FM=@ THEN
19

716 FOR N=1 TO ND:SF=1+LD% (N-1): T$=A% (

SP, SP+L2+L (N, 2)—1)

72@¢ GOSUE 115@:IF LM=@ THEN 77

73¢ ON FM GOTO 744,750,760

74@ IF LM>LEN(D$) THEN 79¢

743 IF M$=D$(1,LM) THEN 77@

746 GOTO 799

75¢ IF LM>LEN(E$) THEN 79¢

753 IF M$=E$(1,L.LM) THEN 779

756 GOTO 79¢

760 IF LM>LEN(N$%) THEN 79@

763 IF Ms=N$(1,L.M) THEN 77¢

766 GOTO 7940

77¢ GOSUE 17@@:IF T$="ZZZ" THEN N=ND+1

:GOTO 19

783 D$="":IF N=ND THEN 785

783 D$=A% (SF+LD,LEN(A$))

785 A% (SP)=T$:A% (SF+LD)=D%

794 NEXT N:GOTO 7¢@

8¢% PRINT "CLEARING MY MIND ..."

816 FOR Z=1 TO 142@:A$(Z)=" ":NEXT Z

82¢ FOR Z=1 TO 1@@:S(Z)=@:NEXT Z

89% N=1:PRINT CL$:GOTO 1

End and the Keyboard:

999 FRINT "DONE":END

1008 Te=""

1010 I=PEEK(764):1F 1=255 THEN 1010
19200 GET #1,K:POKE 764,255

1@3¢ IF K=155 THEN RETURN

1970 1$=CHR$ (K) :FRINT I%;

1980 T$(LEN(T$)+1)=1%

1999 GOTO 1610

107

Taking strings apart and putting them together:

110G

Té=Ds:TH (L 1)=E$: TS (L2)=N$

1110 LN, @) =LEN(D$)-1:L (N, 1)=LEN(E$)~-1

SL(N
1144
11549
1155
1164
1165
1174
1189
119d

2 2)=LEN(N%$) ~1
RETURN

D$=""1IF L(N,g) <@ THEN 1160

D$=T$ (1, 1+L (N, @))

Ed=""11IF L(N,1)<@ THEN 117@

Ee=Ts (L1,L1+L (N, 1))

N$=""1IF L(N,Z2)<@ THEN 1193

N$=Ts (L2, L2+ (N, 2))
RETURN

Matching fields and data:

1a@d: PR

1999 PR

10a8: PR

l4g@ Me=""IFRINT "FIELD TO MATCH"j
141@ INFUT F#:IF Fe="" THEN FM=@:60T0O
1490

142¢ FM=VAL (F$):FRINT " DATA TO MATCH"
143¢ INFUT M$

1494 RETURN

Data modifier:

178 FRINT D$,E$:FRINT "IN$

1714 PRINT "DATE/TIME: "3 :GOSUR

INT

172¢ IF T$="72Z7Z" THEN RETURN

1749 D#$=T%

175¢ PRINT " EVENT: "3 : GOSUR

INT IF T$="" THEN 177¢%

176@ E4=T$

177¢ PRINT " NOTE: "3 : GOSUR

INT IF Tse="" THEN 179%

1789 N$=Ts$

179d¢ GOSUBR 11¢@:RETURN

108

USING DATEBOOK

There are some tricks that may help you use DATEBOOK more
effectively. You will notice that sorting sometimes gives unex-
pected results. For example,

930
the usual abbreviation for September 30th, will sort after
1le-13

because the computer thinks 10/ is less than 9/3—and it’s right.
(Start counting at the leftmost character: 1 is less than 9, isn’t it?)
You can avoid that problem by using a leading 0, like

@9.-3@

Erase the record from the calendar by rescheduling the event’s
DATA to a blank—press <RETURN> only. You can reschedule
an event by changing the DATE, then resorting the data.

You can load lists onto the ends of lists, and save them as one
giant list simply by loading more than one file.

ORGANIZE:
TO DO FOR DATA WHAT YOU DID FOR DATES

ORGANIZE lets you work with other kinds of facts the way
DATEBOOK keeps your calendar: it’s a special-purpose data base
manager to customize for any kind of need you can imagine.

WRITING THE PROGRAM

Upgrading DATEBOOK takes a few easy changes.

Change the program name in line 1 and 10 (although this is
optional, it will cut down on confusion later.)

Change the prompts in lines 110, 130, 140, 1710, 1750, and 1770.

There is a full listing of DATEBOOK in the appendix for com-
parison and debugging.

You are finished: ORGANIZE is ready for testing and use.

109

HEADER

You can plug HEADER in to a program that you are using for
school or work to put a name, date, and title on every page, like

this:

Michael Fotts
6 November 1983
Heading Frogram

WRITING THE PROGRAM

There isn’t much to it (but it makes your work look good):

2 DIM D$(16),T$(16) , TE$ (55)

LABE
oB1@
bE2d
O3
ba4d
6HSY

PRINT "today®s date"§:INFUT D¢
PRINT " title"sIINPUT T4
FOR N=1 T0O SS5:TE${(N)=" ":NEXT N
LFRINT TB$;i"Michael Fotts"
LFPRINT TE$:D$

LPRINT TB&:iT#

You insert a subroutine call (GOSUB 6000) right at the begin-
ning of a print routine. A bit of attention to your printer—always
start typing at the same place on a clean sheet—and you have
nearly professional output.

110

appendix

Programming is one activity that uses the computer usefully,
but there are other interesting things to do.

Word processing turns your computer into a very smart type-
writer. I can help with organizing and writing papers, letters, and
other written work. You could write or buy utilities that make your
computer even smarter for writing: spelling checkers, table-of-
contents generators, fancy-printing programs. The limitation is
your time (or budget) and imagination. Atari Writer and Letter
Perfect are two word processors for the ATARI.

Spread-sheet programs turn your computer into an excellent
accountant’s helper—a sort of super calculating machine. With a
spreadsheet program loaded into your computer, you can do elab-
orate simulations and “What-if’ evaluations, or simply balance
your personal finances. Visi-Calc is such a program.

You need keyboard skills to use a computer well—knowing
which finger hits which key. Good computerized touch-typing
instruction courses and games exist that will make your dialogue
with the computer much more efficient and enjoyable.

The outside world is available to your computer, and with a
modem and communications software you can take control of
some of the most powerful computers in the world. For more
information on this, an excellent resource is the book The Com-
plete Handbook of Personal Computer Communications (Alfred
Glossbrenner, St. Martin’s Press, New York, 1983.) The Source,
CompuServe, and Dialog are three of the most interesting compu-
ters for your computer to call.

111

NUMS

REM 3969 % 3 3 96 % 3 96 % 96 3 3 6 96 56 266 % % % %% NUMS *
DIM A% (100) ,BH(3) NS (20) ,R$E (1)

FRINT LHR$(12=

OFEN #1,4,0,"kKI"

DATA i.h.u'4 S,6,7,8,92,0,END

10 PRINT (FRINT "HELLD.”:FHINT "MY NAM
E IS NUMS."

20 FRINT "WHAT IS YOUR NAME":: INFUT N$
TN=1

30 READ EB$:IF B$="END" THEN S0

40 AS (N)=R$:IN=N+1:60TC 30O

S50 LN=11HN=N~-1

460 GOSUR 13 uu REM GETS A RANDOM NUMBER
7@ GRAFHICS 2+16:FOSITION 16, 5:R$=A% (R
JRYCFRINT #&,Rﬁ,

8@ GOSLIE 18@@: Bs=CHR$ (K) :REM GETS KEY

P IF RBe=R$ THEN 11¢

16 GDTO 8@

1168 FOSITION 8, é:HN=S5:LN=1

12¢ GOSLIER Ziae: FRINT #65 CHR® (89+R*

Lﬂ B RS R

134 GOSUR @@ FRINT #6353 CHRS (69+R*32 :
149 GOSUR ZT@@:FRINT #6463 CHF\'$(8"’\‘R*'I‘2);

15¢ PRINT #6350 v

200 FOR T=1 TO @@@H:NEXT T

299 GOTO 5@

Zgd GOSUR 1363 IF R=2 THEN 3@

314 IF R=3 THEMN Zg

9@ RETLIRN

1adga IT=FEEK (764) 1 IF I=255 THEN @@
161 GET #1,FIFOKE 764,255

1696 RETURM

13@3 R=INT (LN+ (HN-LN+1) *RND (1)) t RETURN

112

COUNTEM

1 REM %%%%% %% %% %% % %% %% %6 %%% %% COUNTEM *
2 DIM C%(1),D$(6) ,M$(12),0% (1)

T CH=CHR$ (123) i M$=" "

4 OFEN #1,4,0,"EI"

5 FRINT CéiM$e:"* COUNTEM ="

10 PRINT D$;"WHAT IS THE LOWEST NUMBER
" INPUT LL

20 FRINT " THE HIGHEST NUMEBER"::
INPUT HH

70 LN=LL:HN=HH:GOSUE 1300:GRAFHICS 2+1
&:POSITION 1,5

40 FOR N=1 TO R:FRINT #&63" *"3:NEXT N
60 FOSITION 3,8:FPRINT #63 "HOW MANY? "3
:GOSUE 1000

70 IF @=R THEN 110

8% FOSITION 2,4:FOR N=1 TO R:FRINT #6;
N3 " "3 iNEXT N

9@ GOTO &b

11 FOSITION 8,a:HN=5:N=1

126 GOSUR Z@@: FRINT #63 CHR$ (89+R#*32)
170 GOSUER @@ FRINT #63 CHRSE (69+R*32)
143 GOSUR Z@8: FRINT #63 CHR$ (83+R*32)
156 FRINT #63" '

2B FOR T=1 TO 8G@:NEXT T

299 GOTO I

I@E GOSUR 136@: IF =2 THEN 3@@

T1@ IF R=3 THEN 36

790 RETURN

1038 T=FEEK (764) % IF [=255 THEN 1@6d
1019 GET #1,H:FOKE 764,255

1023 Os=CHRS ()

167@ 1F QH<"1" OR Q9" THEN 1066
104 Q=\al (Q%) tFRINT #6310

109@ RETURN

17@0 R=TNT (LN+ (HN-LN+1) *RND (1)) : RETURN

e ‘e caE

113

FINDME

T OREP #% M E KA KR AR XA X% ¥ X% E%%% FINDME %
2 DIM A (1000) BH(20), D8 (20) , M$ (129 ,C%
(12) , R (&0, Ii"i) T$("H) Oi("‘“)

5 Ce= (‘HF‘-%S(L_\.:

10 FRINT C#%:i"% FINDME *":PRINT "y©

20 FOR R=8 TO 0 STEF -1:FRINT K3

S0 FOR C=0 TO FiFRINT " + "3;:NEXT C:FR
INT tPRINT

40 NEXT R:FOR C=0 TO 9:FRINT * "ICEIN
EXT CIPRINT "x©

S0 HN=9:G0SUE 1300: X=R:HN=8:GOSUE 1300
s Y=R

60 VX=XIVY=Y: Z=88: 605U 1200

70 FOSITION 1,22:PRINT "CAN YOU FIND M
E {(X,¥)"s

80 INFUT GX,0Y:IF X=X AND QY=Y THEN 1
00

2?0 GOTO 200

100 PRINT "YOU FOUND ME!"j

180 FOR T=0 TO 1999:NEXT T:60TO 10

200 FRINT " YOU MISSED ME";

210 VX=QX:1VY=QY: Z=79: GOSUR]"t")ﬂ

220 FOSITION 1,23:PRINT " ";:FOR T=0 T
0 SOOINEXT T

230 PRINT ¢ "a

240 G0TO 70

1200 FOSITION 4+ (3%VX) , 2+ (2% (8~VY))
1210 PRINT CHR$(Z):

1290 RETURN

1300 R=INT LN+ (HN-LN+1) #*RND (1)) * RETURN

114

1 REM %%%%¥%%XEXEXEFXXEEEXXXEXSFINDME ¥
2 DIM N{10),Ce(1) , M$(12)

< Cé=CHR$ (128) : GOSUR 1900

10 PRINT CeiM$s "% FINDME *":FRINT "Y"
20 FOR R=8 T0 0 STEF -1:FRINT Rs

Z0 FOR C=0 TO 9:FRINT " + "3:iNEXT CIFR
INT FRINT

40 MNEXT R:FOR C=0 TO 2:FRINT " "3C
EXT C:FRINT "X"

=0 HN=9:G0SUER 1300 X=R:HN=8:G0O5UE 1300
t¥Y=R

HO NI=N{X) IN2=N{Y) 1 GOSUR 2000

70 FOSITION 1,22:FPRINT "CAMN YOU FIND M
E (X,¥)"s

80 INFUT GX,QY:IF @X=X AND Qy=Y THEN 1
O

90 GATO 200

100 FRINT "YOU FOUMD ME!"S

110 Ni=N(X):1N2=N1:GOSUR 2000

120 NI=NAY)sN2=N1:GOSUR 2000

130 NLI=N{3)1N2=N(5) 1 G60SUR 2000 605U 2
QOO0

140 N1=N(7):N2=N{(8) 1 G05UR 2000

180 FOR T=0 TO 499:NEXT T

1920 GOTO 10

200 FPRINT " YOU MISSED ME":

210 N1=NEX) s N2=N{X) 1 GOBUR 2000

220 M1=N{GY) s N2=NY) 1 GOSUR 2000

270 POSITION 1,230FPRINT " "3

280 PRINT » i

290 GOTO 70

900 DATA 121,108,%96,81,72,60,535,47,40,

-
35

N

115

1200 FOSITION A4+ (IHVX) , 24+ (2% (8-VY))
1210 FRINT CHR$(Z):

1290 RETURN

1300 RxINT(LN+(HN~LN+1)*RND(1)):RETURN

1900 FOR N=0 T0O 9:READ MMINN) =NN:NEXT
N

1910 N1=121:N2=E1:REM *****xTWONOTE*
1920 GOSUE 2000:60T0 1910

2000 SOUND O,N1,10,8

2010 FOR T=1 TO 40:NEXT T

2020 SOUND O,N1,10,0

2030 FOR T=1 TO 4:NEXT T

2040 SOUND 0,N2, 10,7

2050 FOR T=1 TO 80:NEXT T

2090 SOUND ©,N2, 10,0 RETURN

ONECLAP

l FE) EOR R e I R IR I R R T R A A T T ONECL. AaF %
Y DIM NS (200, MO (195 , A% (4006) , B (1 055)

.T£ 4 FE(4) JWE(4) , I$(1),08(1),V$ (5),

CH (25)

3 ODIM F(1306) , WS

4 OFEN #1,4,8, ko

7 VE="AEIOU" : RT=Tg0

18 CHF=CHR$ (125) 1 0% () =" ¥

ONECLAF *"IFPRINT C$:MOS="ANY KEY":MO=6

2 FRINT :FRINT "WHAT IS YOUR NAME"j:

NFUT N$:GOTO Iggs

3 GOSUR Z@@: IF LEN(T$) *1 THEN 55

4% GOSUE 4@6:G=G+1:[F G160 THEN =@

5S¢ MO$="0NE CLAF":MO=1:GOSUE g

S5 LT=LEN(T$):IF LT<3Z THEN 253

G Fe=T% (LT-1,L.T-1) : GOSUR S@igi: IF F=—1

THEN 258

7% W=@: NW=W(F+1) —W (F)

BG WF=W (F) +W: WE=A% (F (WE) +1, F (WF+1)) 2 IF
TH=W$ THEN 166

116

85 W=W+1:IF W<NW THEN 84

@ GOTO =56

169 FOSITION Z,4:FRINT #63"IS ON MY LI
ST. ":GOSUR Bow

113 NR=NR+1:IF T$="QUIT" THEN 7@

196 GOTO 5@

29 FOSITION 1,8:FRINT #&63"IS NOT ON M
Y LIST.":GOSUR 8ud

269 BEUENRE) +1)=" ":R&E(LEN(R$)+1)=T%
299 BOTO =

@@ GRAFHICS 2+16:FRINT #6&65M0O%

31 FOSITION 8,5:FRINT #63"?":1*FOSITIO
N 8,5

T2E Te="":T=@:GO0SUR 10850

390 RETURN

491 Fe=T$:B0SUR S@d: IF F<@ THEN 426
413 HN=W (F+1)—W(F) : GOSUR 133 WFR=W (F) +
RiWS=A% (F(WF) +1,F (WF+1)) :60T0O 48¢

423 HN=4:GOSUR 13001 W=@: NW=W (K+1) b (F)
42% NW=W (R+1)-W(R)

470 WF=W (R) +W: WS=A% (F (WF) +1, F(WF+1)) 31
F Te=W$(1,1) THEN 48

448 IF Te=W$ (LENM(W$)) THEN 484

450 W=W+1: [F WINW THEMN 43¢

468 R=R+13b=@:1F RS THEMN 425

47@ R=@:60TO 475

484 FOSITION 8,S:FRINT #6iW$

49 GOSUE 8¢¢: RETURN

S@H F=—111IF F$="A" THEN F=@

519 IF Fe="E" THEN F=1

S2@ IF Fa&="I" THEMN F=2

S3@ IF F$="0" THEN F=3

=S40 IF Fe="U" THEN F=4

590 RETURN

TEE OFRINT C$:PRINT *FRINT

71 PRINT M$3" FOUND "sNE:PRINT , "GOOD
WORDS. _
FR@ FRINMT tPRIMNT "WORDS NOT ON MY LIST
DUIFRINT 1P=11LR=LEN(B$)

TEIE PP=R7:IF LEB-F<E7 THEN 799

743 IF BS (F+FF,F+FF)=" " THEN 76&@

117

758 FP=FF-1:6G0T0Q 744

760 FRINT EB$(F,FP+FF-1) tF=F+FF+1:60T0O 7
R3v]

799 FRINT B (F,LE) IEND

Bd@ FOR T=@ TO 7S@:NEXT T:RETURN

18@d I=FEEE {74&4)

13813 T=T+1:IF T«RT THEM 1053

1426 IF MO=E OR LEN(TS) =@ THEN 165
1936 FOSITION &, 1@IFRINT #6353 "FPRESS L[RE
TURNI":: T=@

14gh FOSITION B+LEN(T$),5

1656 TF I=255 THEN 10839

1866 GET #1,F:1PQOKE 764,255

1978 1IF E=185 THEN RETURN

108 TE#=CHR® (K) ItPRINT #635I1$5:T$(LEM(TS
Y+ =14%

19 GOTO 1 agd

139 R=INT (LN+ CHN--LLM+1) *RND (1)) 2 RETURN

IgEE PRINT "EXCUSE ME, "iN$

IH19 FRINT "I AM READING MY LIST NOW."

IO PRINT W=@:LL=@:FP=@: T$=V$(1, 1)1V

=@ s W) =0z F (@) =0

IH3M READ Wé:LW=LEN(W$):IF W& (LW-1, LW~
1) >T$ THEN Z10@

P40 FRINT W$i" "jrlbl=LL+LW+1:IF LL 33
THEN FRINT :LL=g@

THSE A (FF+1) =W$: FP=FF+LW: W=W+1:F (W) =F

-

TP GOTO IO

TLEE V=Y liW(V) =W: IF V=5 THEN 3@

T11E TE=VE (VHL L, V1) 1 GOTO ZO3H

9@B@ DATA BAT,CAT.EAT,FAT,HAT,MAT,FAT,

RAT.SAT. TAT, VAT, WAX

9@1¢ DATA EBET,GET,JET,LET,MET,NET,FET,

SET.VET,YET

9B2 DATA BIT,FIT,HIT KIT,FIT,SIT,TIT,

WIT,ZIF, QUIT

9938 DATA COT,DOAT,GOT,HOT,JOT,LOT, NOT,

FOT, ROT, SOT, TOT

@4 DATA BUT,CUT,GUT, HUT, JUT, NUT, FUT,

RUT

9995 DATA ZI7

PATTERN

REEPT 99 3 36 36 36 3 3 3 3 3 3 % 96 3 3 4 3 % % FATTERNS *

DIM Q% (3) ,F${11) :F$="FATTERNS "

L=

1@ GRAFHICS 2+41é6:F=1:1X=1:Y=1:FOKE 764,

255 1R=1

20 FOSITION X,Y:FRINT #63iF$(F,F) 3§ kE=FE

EEA(764) 1 IF E<>255 THEN GRAFHICS ¢@:GOTO
=14

@ F=P+11IF Fr8+R THEN P=1

4 X=X+121F X<19 THEN 2@

@ X=10Y=Y+12IF Yol¢g THEN 20

599 Y=1: F—(WSITIDN 1,5:FRINT #63"< FRESS
ANY EEY 'k "HN 4:G0SUR 13d¢gd@: R=R~1:60T0O
<4

6E FRINT "FATTERNS" !FRINT :FRINT :FRIN

T "EASY (@) OR HARD (9)";:INFUT DF

7@ FRINT tHN=INT(DF/ ’)41 IF HN>5 THEN

HM=5%

82 GOSUE 138310M R GOTO 18, 208, 206, 46

175 o TG

1 Hi=4% (DF+1) 1 GOSUER 1363 S=R

120 HM=2% (DF+1) : GOSUR 13@d: =R

128 HN=2:G608UR 13d@: L =3+R

14@ HN=L:GQSUR 13@¢: M=R

19¢ FOR N=1 TO .

16@ IF N=M THEN FRINT " 2 ";:60T0Q 18%

17¢ FRINT " "3S+I%(M-~-1)35" 3

189 NEXT NIA=S+I%¥(M-1):1GOSUR 1@d@g: 1F @

= THEN 11¢i¢

196 GOTO 1448

2818 HN=4%SER(DF+1) : GOSUR 13¢@: S=R

228 HN=2% (DF+1) :GOSUR 13@w: I=R

230 HN=2:G6G0OSUR 13¢@:l.=3+R

244 HM=L I GOSUR 1Z686: M=K

259 FOR N=1 TO L

268 IF N=M THEN FRINT " 2 "3:60T0 280

ARy

119

278 FRINT " "sS5%I%Ng" M3

284 NMNEXT N: (—\-—5* IT#M:GOSUR 1@@@: IF O=A T
HERN 1 1¢g

299 GOTO 249

29 HMN=DF : GOSUR 13¢i¢: S=R

2@ HN=DF+1:60OSUER 1Z@@: I=R

25 HN=INT(DF/2):60SUR 13@@: I2=R

I3 HN=2:IG0SUR 13¢¢: I =3+

340 HN=_:GOSUR 13#@: M=K -

309 I1=1:FOR N=1 TO L

S6# IF N=M THEN FRINT " 7 "j:A=S+I1%(N
-1):GOTO =8¢

379 FRINT " "3S+I1%(N—-1)3" "3

I8¢ [1=I1+I2:NEXT NIGOSUR 1o@@: IF (=A
THEM 113

9@ GOTO 244

4@@ IF FR=¢ THEM 1&@@

414 HN=FR:GOSUER 13@@:R=R~11A%=D% (F (F) +
1,FiR+1)) 1P=1

42@ L=LEN(A%$) 1 HN=L:GOSUR 13#@: M=F

453 HN=2:GOSUR 13@@: I=R:IF I=1 THEN 45
i

444 I=—1:1P=L

45¢ IF F=M THEN FRINT " 7 "3:Z%=QA%(F,F
)IGOTO 479

466@ FRINT " “iASF.F)s" "3

47@ FP=pF+1:IF F' @ OR F-‘ L THEN 49

489 GOTO 456

49¢ GOSLIR 1@63: IF Q$=7% THEN 114d

495 IF I<@ THEN 444

496 F=1:60T0O 454¢

SEE HN=8ER (DF) : GOSUR 1380 : G=R

D2 HM=21GOSUR 13d@: I=R+1

B3 HN=2:GOSUR 1380 L=4+R

S49 HN=L.:GOSUR 12¢@: M=R

S0E FOR N=1 T0O 1L Z=INT(S*N"I1+@,.5)

564 IF N=M THEN FRINT " 7 "3:A=Z:60T0
586

S7@ FRINT "™ "gZs"™ "3

T8¢ NEXT NiGOSUR 14@g: IF C=A THEN 11d@

120

S99 GOTO 544

1@ PRINT

19168 FRINT "WHAT IS MISSING":: INFUT Q%
132@ IF @%="" THEN 1§94

19356 IF ASC(Q%) 64 THEN 169¢

1é40 Q=VAL (Q%)

1393 RETURN

11848 FRINT "YOU ARE RIGHT."

119¢ 60O0TO 73

136 R=INT (LLN+ (HN~LN-+1) ¥RND (1)) : RETURN

1608 DIM DB (10@3) A% (20) , Z$ (1) (F (1@438) &
M=

1619 READ AS$IIF A$="2Z7" THEN 1699
1623 LD=LEN(DS) tF (W) =D DS (LD+1) =A% W=
W+116GOTO 161

Lo F i =LEN(D$) s FR=W:GOTO 410

FEGD DATA BIRTHDAY, WASHIMNGTON « FISH, COM
FUTER, HORSE , BEOAT

P99 DATA ZZ12

REMEMBER

2 DIM CH(13) , TH (1) , 0% (1@ , ME(B) , F$ (1)
LIS

4 OFEN #1,4,0,"K:"

5 CH=CHRH (125) :CH () ="REMEMEBER. .. ":FR
INT C%

& Mg=no

9 Th=@,B315: Sk=T7

18 LN=@:FRINT :PRINT :FRINT

28 FRINT "#=EASY 9=HARD ...HOW TOUGH"
P INFUT DF: TD=206% (11-DF)

3P =34 (0F /) tHN=9: IF DF >S5 THEN HN=36
35 IF DF:7 THEN Hi=23

49 TH="":FOR N=1 TO L:GOSUR 1@

121

5@ OIF RS THEN 70

6@ RE=STR$ (R) : GOTO 89

7@ R&=CHRS$ (S4+F)

BY THILEM(TS)+1)=R$:NEXT N

1@ FRINT C$iDFiM$3:FOR N=1 TO LEN(T$)
SPRINT " "iT$(N,M) $ tNEXT N

119 FOR T=1 TO TD:MEXT T

1200 PRINT CS$DF§M$; "2 5 10$="": T=g: POKE
764, 255

130 GOSUR 1000: T=T+1

176 IF E=155 THEN FRINT :FRINT :GOTOQ =
16

186 Q% (LEN(0$)+1)=1$:FRINT I$;" ";

19¢ IF R%<>T$ THEN 178

20 PRINT. :PRINT :FRINT "EXACTLY!"

218 IF Q$="" THEN S

228 LT=LEN{T$) :LO=LEN(Q$) 1 SC=@: FOR N:=1
TO LT

233 IF N:*L@ THEN 25

240 IF T$(N,N)=0% (N,N) THEN SC=85C+1

256 NEXT N:FRINT "SYMEBOLS RIGHT:":SC,

255 PRINT INT(100%SC/LT) 3 %"

26® SC=INT ((SE*L) / ((T*TE) #(SC/LT))) +1

28@ PRINT “TIME: "iT*TH:;" SECONDS":FRI

NT "SCORE "3iSC:TS=TS+8C: NQ=N@+1: TT=TT+

T*TE

299 FOR T=1 TO TD:NEXT T:GOTO 4@

Ie FRINT C%3DF: FRINT

Z1@ FRINT "SCORES: "

I20 PRINT "TOTAL SCORE "ITS

330 FRINT "STRINGS ATTEMPTED "3iNO

349 FRINT "AVERAGE SCORE/$ "3 TS/NO

I5G FRINT "TOTAL SECONDS "ETT

T6W FRINT “AVERAGE TIME/$ "I TT /NG

I9@ FOR T=1 TO Z*TDINEXT T:GOTQ 4
1983 1=FEEK (764) s T=T+1: IF I=25%5 THEMN 1

Paral

1818 GET #1.K:1FOKEE 764,255

1323 1$=CHRS (k)

1998 FETURN

128 K= TMT LR CHN-LN+1) #RND (1)) 2 RETURN

122

SPELL

1 REM 3555 5% % 5365 9 % 3 9% 9 5 9 3 %9 % % % % % SFELL *
2 DIM As(1@@@) , BE(20) , D#(20) ,M$(12) ,C4
(12) ,R$ (69) , I$(1) T$("M) D$(“ﬂ) H$(8)
3 DIM F(S).Q(-),N(uw) X(u@) Y2 u)

4 OFEN #1,4,9,"K:"

5 Ce= CHR$(125)'FDR N=2 TO 12:CH(N)="":
NEXT N:FRINT Cs

6 ME=""IFPRINT M$;"* SFELL %"

8 P=1IFOR N=1 TO JI:READ T$:R&E(F)=T$:F (
N)=F:F=LEN(R$) :Q(N)=F:P=F+1:NEXT N

T TD=1@G@@:LN=1:INW=1:1PW=11H=@

1¢ GOSUER S@d:REM GET DATA

280 FOR N=1 TO ND:FRINT AB (WN) , X (N))
JI@ IF H=@ THEN FRINT AE (X (ND+1,Y(N)):F
RINT

49 NEXT N

45 H=1:60TO 20@

5S¢ FOR T=1 TO TD:NEXT T

6@ HN=ND:GOSUEB 13¢¢: FRINT CiM:As (W (R
) X A(R))

7¢ FOR T=1 TO TD:NEXT T:PRINT C#:Més:
NFUT 0%

8 IF Gs=A3(W(R) . X(R)) THEN 1@

P FRINT "SORRY, IT'S "iA$ (W(R) sX(R)Y):
WR=WR+1:G0TO I-M

19 HN=Z:G0SUR 13¢@:FRINT :FRINT R$(F(
R) . Q(R))

119 RI=RI+1

1200 FOR T=@ TO TD:NEXT T:IF H=1 THEN 2
el

139 IF RI<1@ THEN &¢@

14¢5 IF H=1 THEN 2@

15¢ HN=ND:GOSUER 13@@:PRINT C$31" "IAB(
X(RY+1,Y(R))

160 FRINT tFRINT M$:: INFUT Q$:G0TQO 8¢

123

209 WE=#: RG=9: HN=ND: GOSUR 13@@:FRINT C
H5MES

214 TE=AS(W(R) . X(R)) ILT=LEN(T$) :FOR Z=
1 TO LT

229 FRINT " _ g

238 NEXT Z:FPRINT :FRINT :FRINT M$; "GUE
887 "i

249 GOSUR 14@@: Z=1:FRINT :FRINT ""iM%$;
2534 IF I$=T$(Z,2) THEN 31¢

26@ FRINT ""j

2789 I=Z+1:IF Z<=LT THEN 25¢

28¢ FRINT "":G0SUR 4@@:IF RF=1 THEN RF
=31 G0T0 24¢

296 WG=WG+1:IF WG<Z2*L.T THEN 2449

3@ FRINT FRINT "YOU LOSE":G0OTO 13@
J1¢ FRINT I®s" "3

323 RE=RG+1:RF=1

24¢ 1F RG=LT THEN FRINT :FRINT :60T0O 1
4]

3536 GOTO 2749

S@g FRINT PRINT YENTER DATA ZZZ T
O aurrT"

S1¢@ FRINT NWs":"3 I INFUT T%

S29 IF T4="ZZZ" THEN 59w

D3 AS(FW) =TS WINW) =FW: FPW=LEN(A$) s X {NW
)=FWiIFW=FW+1

S4@ IF H=1 THEN 58¢

359 PRINT "HINT"3 2 INFUT H$:IF H$="" TH
EN H=1:60TO S58¢

ohE GOTO &8@:REM CHECK SFELLING

S79 A$(PW) =H$:FW=LEN(A%) I Y (NW) =FW: PW=F
W-+1

S98@ NW=NW+1:60T0O 5149

7€ ND=NW-1:RETURN

@@ FP=1:LT=LEN(T$)~1:LH=LEN(H$)

61@ FR=FF+LT:IF H&(FF,P0)=T$ THEN 664
6200 FF=FF+1:IF PP<=LH-LT THEN 6é&1¢

634 FPRINT "PLEASE CHECK SFELLING":GOTO

R

124

66@ IF FP=LH-LT THEN Q$="":GOTO 480
679 Qe=H$ (FR+1, LLH)

480 FOR F=FF TO FO:H$(F)="_":NEXT F
49¢ HE (F)=0%:G0TO S7¢

9@ DATA RIGHT!!,CORRECT.,YOU GOT IT!
1000 T=FEEK(764): IF 1=255 THEN 1 g
1019 GET #1,K:FOKE 764,255

12198 I1$=CHR$ (K) : RETURN

13@@ R=INT (LN+ (HN-LN+1) *RND (1)) : RETURN

MATHFAX

I REM #8886 R 1K EHH X RN N A %R MATHFAX %
2 DIM M$(2¢) , 0% (1)

S M$=CHR$ (125) :M$& (2) =" "

198 PRINT M$:"% MATHFAX *"

28 PRINT "l1=add Z2=subtract J=multiply

4=divide"

25 PRINT "highest operation”s: INFUT HO
: HO=HO-1

3@ FPRINT "highest number for addition"
D INPUT HA

35 IF HO<2 THEN 5@

44 FRINT " for multiplication”
$ 2 INFUT HM

34 HN=HO: GOSUR 13¢@: OF=FR+1:FRINT M&s:0
N OF GOTO &, 68, 9, 90

6@ HN=HA:GOSUR 13@d:N1=R:GOSUR 13@¢: ND
=R:0ON OF GOTO 74,80

7¢ FRINT N1i" + "iN2;:A=N1+N2:60T0 13
8@ FRINT NI+N2;" — “3N13:A=N2:G0T0 138
F@ HN=HM:GOSUR 13@@:N1=R:GOSUR 13@&: N2
=R:0ON OF GOTO 7,8, 10, 11

1 FRINT N15" * "3N2:i:A=N1*#N2:60TQ 13
@

119 IF Nil=@ 0OR NZ=@ THEN 9

1205 PRINT N1%N25" / "3iNii:A=NZ:G0TO 13
]

12@ FRINT " = "3:INFUT @:IF Q<38 THEN

164

125

14¢ FRINT :PRINT ,,"YES"

15@¢ FOR T=@ TO 999:NEXT T:GOTO 5@

16@ FRINT :PRINT ,,"NO":0ON OF GOTO 174
L 165,180, 188

165 NT=N1+N2Z:GOTO 175

173 NT=N2

175 PRINT ,3:GOSUE 3@@:PRINT ,5:NT=N1:
GOSUR Zg@: GOTO 15@

188 NZ=@

19¢ IF NZ<N1 THEN FRINT ,:NT=NZ:GOSUR
APH:INZ=NZ+1:60TO 193

25@ FRINT ,,"Qkay":: INFUT Q%:60T0 5@
2@E NF=g

T1@ IF NF<NT THEN FRINT CHR$ (%) ;i NF=NF
+1:60T0 3@

32@ FRINT :RETURN

13@@ R=INT (LN+ (HN-LN+1) *RND (1)) : RETURN

TIMELINE

REM 3963 56 5% 3% 36 % 96 3 % % ¥ 3444 %% TIMELINE *

DIM C$(24),T$(39) , A% (4333 ,K$ (1)

DIM Y (1@@) ,Z (19d)

OFEN #1,4,9,"KI"

CH=CHRS$ (125) :CH (D) =" * TIMEL
INE *¥"IFPRINT C%

9 N=i: =g

16l Z{N)=F:READ YR, T$:1IF T$="ZZZ" THEN

N34]

20 LT=LEN(T$) i A4 {P+1)=T$HIN=N+11Y (N) =YR
SLT=LEN(TS$) :P=FP+LT:E0TO 14

J@ LLN=NIFOR N=1 TO LNIPRINT Y(N):PRINT
AE(Z(N-1)+1,Z(N)) IFPRINT INEXT NIY=3
4@ FRINT C$:FOR N=Y-2 TO Y+2IFRINT Y (N
YIPRINT A (Z (N-1)+1,Z(N))IFRINT INEXT
N

S5¢ FPRINT " -~ - = = — = = = -

b b

68 FRINT - parlier + later which
P15 s GOSUR 1d@ds Y=Y+1

7@ 1IF E$="+" THEN Y=Y+3

75 IF Y LLN-2 THEN Y=LN-2

126

8@ IF K$="—" THEN Y=Y-5
853 IF Y<3I THEN Y=3
?d GOTO 49
194 DATA 160d3,leif Ericson discovers A
merica
119 DATA 1522,first circumnavigation o
f the earth
126 DATA 16W7,Jamestown settled in Vir
ginia
134 DATA 162¢,Filgrims arrive at Flymo
uth Rock
144 DATA 1736,French & Indian War beqi
ns
15 DATA 1775,James Watt invents steam
engine
16@ DATA 1776,.Declaration of Independe
nce
17@ DATA 1778,Captain Cook discovers H
awaii
18¢ DATA 1787,U.8. Constitution signed
196 DATA 1791,Fill of Rights ratified
201 DATA 18073, Louisiana Furchase
214 DATA 1807,Robert Fulton's steamboa
t up the Hudson
224 DATA 1834,Charles Babbage®’s analyt
ical engine
23@ DATA 1846,.Fotato famine & U.S. ~Mex
ico war
249 DATA 1849.California Gold Rush
258 DATA 1858,first trans—-Atlantic cab
le
269 DATA 1861,Civil War begins
279 DATA 1865,Abraham lLincoln shot
289 DATA 186F,Golden spike: railroad a
cross U.S
294 DATA 1888,George Eastman invents K

odak camera
999 DATA —-1,7272

100¢ 1=FEEK(764):IF I=25%5 THEN 14¢g
1610 GET #1,K:FOKE 764,255

102¢ K$=CHR$ (k)

1994 RETURN

127

MINI-WOMBATS

1 REM #*#%x%%#%%%%%%%%%%%%% MminiWOMEBATS *
2 DIM D (258) N$(16) ,IH(32) ,FH(32),5Xs$
(12) ,CH(1)

S CH=CHR$ (125) :FRINT C%

8 FOKE 742,40

9 SX=1:Fé="Sienna":Jé="wombat"

19 PRINT FRINT "# Wombats !! *"ILN=@
29 FPRINT "l=add Z2=subtract 3I=multiply
4=divide"

25 FPRINT "highest operation”::INFUT HO
s HO=HO-1

3@ FRINT "highest number for addition®
P INFUT HA

I8 IF HO<2 THEN S¢

44 FRINT © for multiplication"
D INPUT HM

5@ PRINT C$:FRINT (FRINT FRINT

53 FPRINT "Flease tell me your name"3:l
NFUT N%

5% IF ASC(N$) »9@ THEN GOSUER 117¢:60T0
5=

6@ HN=Z:G0SUER 1Z@gg: IF R=3 THEN GOSUER 1
19

7¢ GOSUR 17@¢@: IF R=3 THEN GOSUE 120¢
8¢ HNMN=HQ:GOSUE 1Z@@:0P=R+1:IF OF>2 THE
N HN=HM: GOTO 99

85 HN=HA

9@ GOSUR 134¢:N1=RIGOSUER 13@@:N2=RI0ON
OFP GOTO 1@g, Zad, Sod, 766

16@ HN=2:GOSUR 13¢@:0N R+1 GOTO 114,17
@, 224

119 Q%=F%:G0SUER 15d@:G4(Z)=" found & b
ag containing ":GOSUR 13@E

12¢ Q4(Z)=8TR$(N1) :GOSUER 15%@:Q%(Z)="
"1RH(Z+1)=J%:6G0SUR 1543

13@ Q% (I)="s. ":GOSUR 1404 .
14@ GOSUR 1S5gd:@s (Z)="already has ":60

128

SUR 150@: Q% (Z)=STR$ (N?) : GOSUR 15@@

154 Q&(Z)=" ":1Q%(Z+1)=J%:GOSUR 15¢@:0%
(Z)="s at home. How many does "

168 GOSUR 142¢:GOSUR 15@@:0%$(Z)="have

NOW" :BOTO 29¢

179 Q$=F$:GO0SUR 15@¢:0%(2)=" had ":G0S

UB 15@@:Q%(Z)=STR$ (N1) : GOSUB 1Sa@

180 @$(Z)=" ":1Q%(Z+1)=J%$:B0SUE 15@d:0%
(Z)="g in ":GOSUR 148¢:060SUB 1Sa#@

19¢0 Q$(Z)="pocket, and later won ":G0S

UE 150d:0%$(Z)=5TR% (N2) : GOSUER 153

200 Q$(Z)=" more in a bet with ":GOSUK
150¢: Q% (Z) =N$: GOSUR 1500

219 Q$(Z)=". How many did ":GOSUEK 142
:GOSUR 1548:0%(Z)="have then":G0TO 29¢

22¢0 Q$=F%:G0SUR 1502:0%(2)=" receives

2 envelopes. One contains ":GOSUB 1500

233 Q$(Z)=STR$(N1):GOSUB 15@0@:QE(Z) ="
"IR$(Z+1)=T%:GOSUR 1S90

249 Q%(Z)="s3 the other contains ":60S

UB 15@@: 0% (Z)=STR$ (N2) : BOSUB 150

25¢ Q$(Z)=". How many does ":GOSUE 147

@:GOSUR 15@@: 0% (2)="have now":B0TO 294

299 A=N1+N2:60T0O 9@

3G N2=N1+NZ2:HN=2:G05UR 13@%:0N R+1 GO

TO 313,349, 461@

310 Q$=F+:60SUE 150@:0%(Z)=" hides ":6

OSUER 1500:Q%(Z)=5TR$ (N2) : GOSUER 1536

I20 Q$(Z)=" "1R$(Z+1)=J%:060SUE 1500: 0%
(Z)="g, and you find ":GOSUE 1S@d

I3 AE(Z)=STR$(N1) :GOSUR 156@:QE(Z)=",
How many are still hidden":G60T0 49%

349 Q$=F$:G60SUE 1S@@:Q%(Z)=" had too m

any ":GBOSUR 15d@:0%(Z)=J%:GOSUR 15@H

IS0 Q%(Z)="s and gave you ":GOSUE 1S3
0% (Z)=8TR$ (N2) : GOSUE 15¢%

I6F Q%(Z)=". Later, ":GOSUR 142¢:G0SUR
15¢10: Q% (Z)="1ost all of them, "

37¢ GOSUER 152@:0%(Z)="and you kindly g
ave ":G0OSUR 15@d¢

129

I8¢ % (Z)=8TR$(N1):GOSUR 150@3:0Q%(Z)="

back. How many do you still have":6G0TO
494

49 Qb="Yesterday, ":GOSUER 1580:Q0%(Z2)=

F$:60SUR 158@: 0% (Z)=" bought ":GOSUR 1

Sag

41¢ Q$(Z)=8TR$ (N2):GOSUR 15@8:Q%(Z)="
"IOE(Z+1)=0%: GOSUR 1500

424 Q$(Z)="s, but this morning ":GOSUE
1424 GOSUR 15dd

43 Q%(Z)="caould only find ":GB0OSUR 15¢

R4 (2)=5TR$ (N1) : GOSUR 1550

444 Q% (Z)=". How many were missing”:G0

TO 49

49¢ A=N2-N1:GO0TO 9@

3@ HN==2:GOSUR 13¢¢:0N R+1 GOTO Si@,56

@ b

ol@ Q$=F4$:60SUR 150¢:10%(Z)=" won ":6G0S

UB 135ad: Q6 (Z)=8TR% (N1) : GOSUE 1563

920 B%(Z)=" coupons at the fair. ":60S

UR 14@: GOSUR 1569

334 Qe (Z)="exchanged each coupon for °
:GOSUER 1509 Q% (Z2) =8TR$ (N2) 1 GOSUR 15¢6

D48 Qe (Z)=" ":1Q$(Z+1)=T%:GOSUR 15@d:0%
(Z)="s. How many does ":GOSUR 14223

559¢ GOSUR 1500:0%(Z)="have now":G0TO &

@

6 QE=F$:60SUR 1S@@:0%$(Z)=" built a m

achine to make ":GOSUER 1569

9749 QF(Z)=J$:G0SUR 150d:Q%(Z)="g. It h

as made ":GOSUER 156

I8¢ QE(Z)=STR$(N1):60SUR 15@#:QE(Z)="

each day for ":GDSUER 1S5@@0:0%(Z)=STR$ (N

2)

D599 GOSUER 1544:Q%(Z)=" days. How many

has it made":GOTO &99

60 O%="A flying saucer deposits ":60S

UB 15@8@:0%(Z)=5TR%$ (N1):G0SUR 15¢d

619 QF(Z)=" silvery spheres in ":GOSUR
15@@: 046 (2) =F$: GOSUR 1565

6209 Q% (Z)=""s back yard, and ":GOSUE 1

130

B9 B (Z) =5TR$ (N2) : GOSUR 15¢g

6@ R (Z)=" "1@$(Z+1)=J%:GOSUR 1%5¢¢: 0%
(Z)="5 jumped out of each one. How man
y "

649 GOSUER 1509:Q%(2)=J%:GOSUB 1506: 04 (
Z)="8 are rampaqging around ":G0OSUEK 156
9]

658 Q% (Z)=F$:G0SUR 150 0$(Z)=""5 hous
e right now":GOTO 493

698 A=N1#*N2:GOTO 9u¢

798 IF Ni=@ THEN HN=HM:GOSUE 13@@:N1=R
-GOTO 7@a

714 N2=N1#N2:HN=2:G60SUR 130@:0N R+1 GO
TO 720,779,820

72¢ Q$6=P4$:G0SUR 153@:0%(2Z) =" dug ":60S
UB 154@:C0% (Z)=STR$ (N1) : GOSUR 1563

73¢ Q% (Z)=" ":1Q%(Z+1)=J$:GOSUR 15¢d: 0
(Z)=" traps in the forest, and caught
a total of "

74¢ GOSUER 15@03:0Q%(Z)=STR$ (N2) :GOSUE 15
BHIQE(Z)=" "10$(Z+1)=J%:G0SUR 1S@w

75¢ @$(Z)="s. On the average, how many
did ":GOSUR 1420:G0OSUB 150

760 QF(Z)="Find in each trap":GOTO 89%
77@ Q%=FP$:G0OSUR 154@:0Q%(Z)=" buys a pa
cket with "IGOSUR 150¢:0%(Z)=5TR$ (N2)
784 GOSUR 13@@:0$(Z)=" ":104(Z+1)=J%:60
SUR 1503:0%(Z)=" seeds in it. The dire
ctions tell "

7949 GOSUE 146@:GOSUR 1S50@:0Q$(Z)="to pl
ant ":GOSUER 15@@:0%(Z2)=5TR$ (N1) : GOSUR
150@

8¢ Q¥(Z)=" in each hole. How many hol
es should ":GOSUR 142¢: GOSUER 15@@¢

81d Q%(Z)="dig":60TO 894

82d Q$=F$:G0SUER 15a@:0%$(Z)=" shared ":
GOSUR 15@¢: 0% (Z)=8TR$ (N2) : GOSUE 15@d
830 Q%(Z)=" ":Q%(Z+1)=J$:GO8SUR 15du;:0%
(Z)="g with ":GOSUER 150¢:0%(Z)=STR$ (N1
-1)

B84¢ GOSUER 1S@@:Q%(Z)=" of ":GOSUE 148¢
:GOSUER 15d9¢

131

859 Q$(Z)="friends. How many did each

get":60T0 89¢

894 A=N2/N1

Q@ FRINT IFRINT " = + = + = + = + = +
= + = + = + =" FRINT

P19 LA=LENQ$) :L1=1:1.2=36

220 IF O (L2,L2)=" " THEN 944

P3P L.2=1.2-1:60T7T0 9249

4 FRINT Q$(L1,L2)tli=L2+1:L2=L1+34:1

F L2<L.Q THEN 923

QSg FRINT @61, L@)s"";

96% INFUT @:IF O=A THEN 100@

97¢ FRINT FPRINT "Woops! That’s not ri
ght."

98¢ FRINT "The right answer is "ijAi"."

P9 GOTO 14199

1o HN=3:GOSUE 130@:0N R GOTO 1@1¢, 14

29, LA350

1d1¢ FRINT "You got it!'":60T0O 1494g
142¢ FRINT "Well done, "iN$:3i".":607T0 1

e

193¢ PRINT "That®s right!":60TO 1494
1999 FOR LS=1 TO 12:FPRINT INEXT LS:FRI
NT ""3:60T0 &9

118@ FPRINT IPRINT " ++ ++ ++ ++ ++ ++

++ A+ttt A+ "

1118 PRINT "Name a person'i:INFUT F$
1120 IF ASC(F$) >9¢ THEN GOSUBR 117¢:G0T
Qo 1119

1133 FRINT "Is "3F$3" a girl or a boy"
0 INFUT SX$e:65X=@1 IF SX$="bhoy" THEN SX=
114¢ IF SX#&="girl" THEN SX=1

1158 IF SX»@ THEN RETURN

1169 FRINT "I'm sorry. I don®t know an
y questions"IFRINT "about "iSX$i"s. Fl
ease try again.”:60T0 11349

1173 FRINT "Person®s names begin with
a CAFITAL."

1180 FRINT "Remember the SHIFT key, an
d please"

132

1199 FRINT "try again, "iN$i".":IRETURN

120¢ PRINT :PRINT " —— —— e e e

12149 PRINT "Name an object"3:INPUT J¢
1290 RETURN
13@8 R=INT (LN+ (HN-LN+1)*RND (1)) :RETURN

140 GOSUER 1564: IF SX=1 THEN Q% (Z)="5h
e "IRETURN

141¢f R%(Z)="He ":RETURN

1429 GOSUR 15@d@: IF SX=1 THEN Q$(Z)="sh
e "IRETURN

143 Q%(Z)="he ":RETURN

1449 GOSUE 15@¢: IF SX=1 THEN Q$(Z)="he
re "IRETURN

145# Q% (Z)="his ":RETURN

1469 GOSUER 15¢d: IF SX=1 THEN @$(Z)="he
r ":RETURN

147¢ Q$(Z)="him ":RETURN

148¢ GOSUR 1S5g: IF SX=1 THEN Q$(Z)="he
r "IRETURN

149@ Q% (Z)="his ":RETURN

15a9@ Z=LEN(G$) +1: RETURN

PAINT

1 REP % %% 3 3% % %5 %3 9 36 3 9 333 % 39 %% FAINT =
2 BM=T:MX=39:My=23

3 ODIM K$(1) ,E${8) ,F$(14),58 (MX) , P& (MX*
(MY+13)

4 OFEN #1,4,0, "k

5 GRAFHICS GM+16: X=MX/21Y=MY/2:FC=1:00
LOR 1

9 CF=1

1@ CR=FC:GOSUR 1199: GOSUR 1 @6

20 IF K=45 THEN Y=Y~-1:IF Y<@ THEN Y=g
T OIF E=61 THEN Ys=Y+1:IF Y:MY THEN Ysb
v

133

—

4 IF E=47% THEN X=X-1:IF X<1 THEN X=1
S IF E=42 THEM X=X+1:IF X:MX THEN X=M
X

6@ IF E=3Z2 AND FF=1 THEN FF=@:60T0 7@
63 IF F=32 THEN FF=1

78 IF K47 AND <32 THEN PC=K—-48:CF=FC
8@ IF E&="Q" THEM Q@@

PO IF E$="7" THEN 8&d

1l IF E$="8" THEN I

112 IF K$="1_" THEN %5@@

126 IF E$="C" THEN 2@

194 GOTO 14

Lo CV=g PV=FC-1: IF FVLZ@ THEN FVY=4

219 SETCOLOR FV,CV,6:608UR 18d@@: IF k=1
939 THEN 259

22¢ IF EF="+" THEN CVY=CV+1:IF CV*15 TH
EN CV=1G

23 IF Es=U-- THEN CV=CVY-1:1F CV4<@ THE
N CV=g

249 GOTO Z1E

20 LV=g@

268 SETCOLOR FV,CV,LLVIGAOSUR 148@@: IF k=
155 THEN 14

27 IF Es="+" THEN LV=LV+2:IF LV>14 TH
EM LV=14

2849 IF E$="-" THEN LV=LV-2:1IF LV<@ THE
N LYY=

299 6GOTO 264

I GOSUR 4@

319 FRINT "FILE TO SAVE"::INFUT Es$

320 Fe="DI"IF$(3)=E$:F$(LEN(F$)+1)="_F
Ix"

J3@ OFEN #2,8,@,F%

344 FOR SY=@ TO MY:FF=1+MX*SY:S$=F$ (FF
»FF+IE8) IFRINT #2iS$:NEXT SY

35@ FRINT HZ2:"ZZZ":CLOSE #2

3G LX=MX:LY=MY:GOSUR &wWi:GOTO 1@

4@@ FFR=1:FOR SY=@g TO MY:FOR SX=1 TO MX
419 LLOCATE SX,8Y,FIF$(FF)=8TR$(F) 1 FFP=F

F+1

134

A4z
434
444
49
S
516
Ix"
5260
S44
S50
S
580
596
b
: FOR
b1
b2
ST
69
8@
81
Y:GO
B9
@
b=
Q 14
9%
1
1951 48
197
154
156
10560
169
116
RAWT
1194

NEXT SX

FLOT 1,8Y:COLOR 1:DRAWTO 1,SY

MEXT SY

RETURN

FRINT "FILE TO LOAD":: INFUT E4$
FeE="DI"IF$ () =E$IFH(LEN(F$)+1)=",F

OFEN #2,4,8,F$:LY=@:FF=1

INFUT #2:5%:IF S$="2ZZ" THEN 580

F$ (FF)=5%:LX=LEN(S$) : FF=FF+LX
LY=LY+1:160TD S48

CLOSE #2:LY=LY~-1

GOSUR 6@@:GOTO 18

GRAFHICS GM+16:FF=1:FOR SY=6 TO LY
g¥=1 T0O LX

CE=VAL (F$ (FF, FF)) 1 COLOR CF

FLOT SX,SY:DRAWTO SX,SY:FR=FF+1

NEXT SX:NEXT SY

RETURN

GOSUR 4@@:FRINT "ZAF IT"j

INFUT E$:IF E$="N" THEN LX=MX:LY=M

SUER 6@@:G0TO 14

GRAFHICS GM+16:G0TQ 14

GOSUER 4@@: FRINT "QUIT": INFUT K$:IF
"NYOTHEN LX=MX:LY=MY:GOSUR &@ig: GOT

END
I=FEEK (764) : IF 1=255 THEN 1@@%
GET #1,K:FOKE 764,255
IF FF=@ THEN CF=0C
IF FF=1 THEN CF=FC
GOSUER 11@e

FE=CHRS (k)

FETURN

LOCATE X,Y,0C:COLOR CF:FLOT X,Y:D
0 X,¥

RETURN

135

BARS

1 REM LA 2 X L LS LT T LT T FRR LR BARS *
2 DIM C$(4@) ,B$(7),T$(3B),5¢(38),A$ (26
6)

I DIM L(7),F(7)

S5 C$=CHR$ (125) :C$(2)=" * BARS %"
:PRINT C$

1@ READ R:IF E=-1 THEN 3@

20 EB$(LEN(B$)+1)=CHR$ (R) : GOTO 1#

@ READ LN

44 READ HN

5@ READ NE

60 READ T#:LT=LLEN(T$):M=(38-LT)/2:C%(1
+M)=T$%

7@ P=¢:N=g

8@ READ S$,V:iL(N)=V:LS=LEN(S%$):F(N)=P:

A% (F+1)=S$:F (N) =P:P=F+L5:N=N+1:IF N<NE
THEN 8¢

9% P (N)=F

199 FOKE 752,1:FPRINT C$:FRINT

11 I=(HN-LN)/S: IE=36/ (HN-LN)

12¢¢ FOR N=@ TO S:FRINT INT(LN+(N*I));"

"5 :NEXT N:PRINT

13¢ FRINT :FOR BN=¢ TO NE-1

144 FOR L=1 TO L (BN)*IB:FPRINT B#(BN+1,

EN+1) i :NEXT L:FRINT " "jL(EN)

15¢ FRINT A% (F(EN)+1,P(BN+1)) :PRINT :N

EXT EN

20¢ GOTO 200

9¢@ DATA @,8,10,19,79,88,123, -1

91% DATA #,75,6

92¢ DATA LLIFE EXFECTANCY — MALES

93¢ DATA USA, 69

4@ DATA COLOMRIA, 44

136

?Sa
P6d
97
Y84

DATA NORWAY,71
DATA JAFAN,71
DATA INDIA,42
DATA AUSTRALIA, &8

1 REM 39969 569 96 9636 36 96 3 36 % % 03 % 3 3% % %% HARS %

2 DIM Cé4a@) ,B$(7),TH(38),84(38) A6 (26

&) O (1) FE(T)

3 DIM L(7) F(7)

S Ce=CHR$ (125) 1CH(2) ="

tPRINT C%

19 READ R:IF EB=-1 THEN 34

20 BE(LEN(E$) +1)=CHR$(R) :GOTO 14

3@ READ LN

44 READ HN

5S¢ READ NE

6@ READ T$:LT=LEN(T$) i M=(38-LT)/2:C% (1

+M)=T%

7% F=@1N=g

8@ READ S$,V:L(N)=V:LS=LEN(S$):P(N)=P:

A (P+1)=58%: P (N)=F:F=F+LSiN=N+11IF N{NE
THEN 8@

Q@ F (N)=F

199 FPOKE 752, 1:FRINT C$:PRINT

110 I=(HN-LN) /S: IB=36/ (HN-LN)

120 FOR N=@ TO S:FRINT INT{LN+{(N*I))3"

" s NEXT NIFRINT

* EARS *"

137

134

FRINT :FOR EN=¢@ TO NB-1

14@ FOR I.=1 TO L(BN)*IB:PRINT B# (BN+1,
EN+1) s iNEXT LiFPRINT " "L (BN)

156 FPRINT A$(F(BN)+1,F(BN+1)):PRINT :N
EXT EN

20 FRINT "FRINT IT";:INFUT Q$:N=¢:LFR
INT T$:LFPRINT

219 READ P:IF F=-1 THEN 23¢g

220 F$ (N+1)=CHRS (F) : N=N+1:60T0 214

230 T$=""IFOR N=¢ TO S:T$(LEN(T$)+1)=8

TRE (INT LN+ (N*#I))) TS (LEN(T®) +1) ="

"o
-

240
250

NEXT NILFRINT T$

LFRINT :FOR BEN=@ TO NE-1;T$=""
FOR L=1 TO L(BN)*#IEB:TS$(LEN(TS$)+1)=

P® (EN+1,EBN+1) INEXT L:T$(LEN(T$)+1)=" »
CTHLEN(TS) +1)=STR$ (L (BN)) : LFRINT T$

264

LFRINT A$(F(EN)+1,P(BN+1)) :LPRINT

s NEXT EN

P
P19
P2
P30
P44
PSE
A=Y
P74
980
P

DATA @,8,10,1%,79,88, 123, -1
DATA @,75,6

DATA LIFE EXFECTANCY - MALES
DATA USA, 69

DATA COLOMEIA, 44

DATA NORWAY, 71

DATA JAPAN, 71

DATA INDIA, 42

DATA AUSTRALIA, 68

DATA S6,35,42,72,159,88,78, —1

138

SORT

1 REM %3 3% 36 5% 3 3 3 3 3 3 3 3 3 % 3% 2 3 9 336 % 3% % % SORT =

2 DIM As(4@d) , DS (4@aa) , I1$(1) , B (49),C
€$(40) M$(40) ,Q%(1) , T$ (44)

3 DIM L(1@g) ,M(1@d) ,S(19d)

4 OFEN #1,4,4,"K:"

é PRINT CHR$(125) :N=1:LD=4@

8 FOR N=1 70O LD:M$(LEN(ME)+1)=" ":NEXT
N:N=1

19 PRINT ,"SORT"

11 PRINT "1: ENTER DATA"

12 PRINT "2: SORT"

13 PRINT "3: DISPLAY"

19 PRINT "Q: @QUIT"

20 PRINT « "OFTION"3:: INPUT @

3¢ ON @ GOTO 199,200,300, 16,190,100, 16,1
g, FBG

44 GOTO 19

126 FRINT "ENTER DATA ZZZ 70 @
urTe

119 FRINT N3":"3:6G0SUR 100@:FPRINT

126 IF T$="ZZZ" THEN ND=N-1:G0T0O 1
130 A (1+LD* (N=-1))=T$2:L (N)=LEN(TS$) -1
14¢ N=N+1:60T0O 114

20¢ PRINT "SORTING":FOR N=1 TO ND:S(N)
=1:NEXT N:FPL=1

219 N=1

226 IF S(N)=@ THEN N=N+1:G0OT0O 229

225 P=N+1:iLN=N:SP=1+LD%* (N—-1) :B$=A% (SP,
SP+L (N))

2@ IF S{F)=@ THEN 260

249 SE=1+LD* (F—1) :C$=A%(SA, SQ+L (P)) :FR
INT EB$,C%,:IF EB$<C% THEN 260

250 T$=R$:B$=CH:CH=TH:LLN=P:PRINT "SWAF
FING":

260 PRINT :P=F+1:1IF F<=ND THEN 23g

139

279 SY=1+LD#(PL~1):D%(SY)=E$:M(FL)=_EN
(B$) -1:PL=FL+1:S(LN)=@:IF FL=ND THEN 2
84

275 6070 21e

280 SY=1+LD#(ND-1):D$(SY)=C%:M(ND)=LEN
(CH)—1

299 FRINT " = = = DONE = = =":A$=D%:F0
R N=1 TO ND:L(N)=M(N):INEXT N

J@¢@ FOR N=1 TO ND

318 SF=1+LD*(N-1) :FRINT N;" "$A% (5P, S
P+L (N))

J28 NEXT N

3@ FRINT ,,"MENU";:INFUT Q%:60TO 14
90@ FRINT “DONE":END

la@mag Te=""

1901@ I=FEEK((764):IF I1=255 THEN 1@1@
19280 GET #1,K:IFOKE 764,259

193¢ 1IF K=155 THEN RETURN

167@ 1$=CHR%$ (K) : FRINT 1%}

1080 TE(LEN(T$)+1)=1%

199¢ GOTO 141a

SUPERSORT

LOREM 90096 3636 390 3 396 3 0 3 236 % % % % % % % A #QSORT *
2 DIM At (4003) , DS (40pd) , 16 (1) , B$ (48) ,C
$(40) ME(43) 0% (1), TH(40) ,E$(B) ,F$(14)
LCL$ (1)

3 DIM L C1a@) ,M(1@3) , S (159)

4 OFEN #1,4,9,"kK:"

b6 CL$=CHR$ (125) : FRINT CL%

9 N=1:LD=44:60TO S

19 FRINT ¢ SORT"

11 PRINT "1: ENTER DATA"

12 PRINT "2: SORT 6: PRINT®
13 FPRINT "3: DISFLAY 7. EDIT®
14 FRINT "4: SAVE 8: CLEAR"
15 PRINT "5: LOAD 9: QuIiT"

2¢0 FRINT ,,"OFTION"§:INPUT Q
30 ON @ GOTO 1645, 200, 300, 400, SO0, 600, 7

140

a0, BAG , B

4¢ GOTO 1

16@ FRINT "ENTER DATA ZzZ TO @
uIT"

110 FPRINT N3i":";:GOSUR 14¢6: FRINT

1200 IF T$="ZZZ" THEN ND=N-1:G0TO 1@
130 A% (1+LD* (N-1))=T$:L (N)=LEN(T$) -1
143 N=N+1:G0TO 11¢

20 PRINT "SORTING":FOR N=1 TO ND:S(N)
=1:NEXT N:FL=1

216 N=1

229 IF S(N)=@¢ THEN N=N+1:G0TO 22

225 P=N+1:LN=N:SP=1+L.D#*(N~1) : B$=A% (SF,
SP+L (N))

238 IF S(P)=@ THEN 26

24¢ SO=1+LD* (F-1) :C$=A% (S0, SA+L (P)) I PR
INT E$,C$,:IF E$<C$ THEN 260

250 TH=B$:E$=CH:Cs=T$:LN=F:PRINT "SWAF
FING";

268 FRINT :FP=F+1:IF F<{=ND THEN 23@

27@ SY=1+LD* (FPL—1):D$(SY)=E$:M(FPL)=LEN
(B$)—1:FPL=FL+1:S(LN)=@: IF FL=ND THEN 2
8¢

275 GOTO 214

28@ SY=1+LD#* (ND—1) :D$ (SY)=C$:M(ND)=LEN
(C$) -1

299 PRINT " = = = DONE = = =":A$=D$:F0
R N=1 TO ND:L (N)=M(N):NEXT N

3@@ FOR N=1 TO ND

I1g SP=1+LD* (N-1) :PRINT Ni" "jA$(SF,S
Fal (N))

320 NEXT N

39¢ PRINT ,,"MENU";:INFUT Q$:G60TO 1@
4g@ FRINT ,"FILENAME FOR SAVE";: INFUT
Es

4100 F$="D:":F$(3) =E$:F$(LEN(F#)+1)=".D
TA":OFEN #2,8,@,F%

42@ FOR N=1 TO ND

430 SP=1+LD*(N-1): T$=A% (SF, SF+L (N)) :FR
INT #2:T$:IPRINT ":";T#

141

44¢ NEXT N:PRINT #2;"22Z":CLOSE #2

49@ GOTO 1@

5S¢0 FRINT ,"FILENAME TO LOAD"j:INFUT E
%

10 F$="D:":F$(3)=E$:F$ (LEN(F$)+1)=".D
TA":OFEN #2,4,0,F%

S2¢ INFUT #2,T$:1IF T$="ZZZ" THEN S59¢
S3@ SP=1+LD*%(N-1) 1A% (SP)=T#:L (N) =LEN(T
$)-1

535 FRINT "<"; T4

S4¢ N=N+1:60TO 524

59 ND=N-1:CLOSE #2:GOTO 1%

6% FRINT "FRINT LINE NUMBERS (Y/N)"j:
INFUT Q%

61% FOR N=1 TO ND

6201 IF Q%<>"Y" THEN 64

63% SF=1+LD% (N-1) sLPRINT N3" "jA$(SF,
SP+L (N)) : GOTO &5

64 SP=1+LD% (N~1) : LFRINT A% (SP, SF+L (N)
)

653 NEXT N

69% GOTO 1@

708 FRINT ,"LINE TO CORRECT":: INPUT X:
IF X=@ THEN 14

710 SF=1+LD*(X—1):FRINT X;" ";A$(SF,SP
+L (X))

72¢ FRINT " "3:G60SUR 10@@: PRINT
738 IF T$="ZZZ" THEN 1¢
74@ IF T#="" THEN 73

75@ D$="":IF X<ND THEN D#=As% (SP+LD,LEN
({A%$))

760 A$(SP)=TH:IL (X)=LEN(T$)~1:A% (SF+LD)
=D%

799 GOTO 7o

8¢ FRINT "CLEARING MY MIND ..."

81@ FOR Z=1 TO 180@:A$(Z)=" ":NEXT Z
820 FOR Z=1 TO 10@0:8(Z)=@1N=1

899 FRINT CL#%:G0T0O 1¢

9@ FRINT “DONE":END

19a@ Te=1n

1614 I=FEEK(764):IF I=255 THEN 1@1@

142

161290 GET #1,FIFDKE 764,235
1833 IF K=153 THEN RETURN

197¢ I$=CHR%$ (K) :FRINT I%;

1084 TH(LEN(T$)+1)=I%

169¢ GOTO 191d

ANYBASE

1 REM * ANYBASE *

2 DIM Q%(9),C%(2) ., DH(?) ,N(?) ,M(D)

3 FOR N=@ TD FIN(N) =@: M(N)=ﬁ NEXT N

19 FRINT v NUMEBER" ; : INFUT @%

240 PRINT ITS BASE";: INFUT E2

3¢9 FRINT "TARGET BASE";: INFUT EB1

79 PRINT "";:GOSUBR I¢@:GOSUER 2@

79 IF Cé=0% THEN FRINT "":RUN

1@ GOTO 74

28¢ N=g

2140 N(N)Y=N(N)+1:IF N(N)<EL THEN 23¢

220 NN) =@ N=N+1:60T0O 221¢

239 IF N>HN THEN HN=N

2440 FOR PP=1 TO 16:FRINT ""3:NEXT FF:F

RINT ">"§:FOR D=HN TO @& STEFP ~1

258 IF N(D)<1g THEN D$=STR$ (N(D)) :G0TO
274

268 DE=CHR$ (55+N(D))

279 PRINT D%;:NEXT D

298 FRINT :RETURN

I M=g:Ce=""

3216 MM =M{M) +1:IF M{M<EBZ THEN 33g

329 MIMY=@:M=M+1:(60TO 314g

338 IF MrHM THEN HM=M

34¢ FOR PF=1 TO 16:FRINT ""3:NEXT FF:F
RINT "»"§:FOR D=HM TO & STEFP -1

59 IF M(D)<1@ THEN D#$=STR$(M(D)):G0TO
374

J6@ DE=CHR$ (SS+M (D))

37¢ FRINT D$3 :CH(LEN(CS)+1)=D®:NEXT D
I9¢d FRINT RETURN

49¢ Ri=1é

Sed GOSUR 2¢19: GOTO S@d

143

CALC

1 REM * CALC *

2 DIM A% (100) , 1$(1) ,V$ (16@) ,0¢188) , V(1
g

19 MO=@:FRINT "CALC";:INPUT A%

200 LA=LEN(A%) :N=1:F=1

30 I1$=A%(F,F)

40 IF I$="+" THEN O(N)=1:GOTO 180

S¢ IF Is="-" THEN O(N)=2:60T0 18¢

6@ IF Is="#" THEN O(N)=3:60TOQ i8¢

70 IF I$="/" THEN O(N)=4:G0TO 180

B& IF I$3"/" AND I$<":" THEN 174

99 IF I$="." THEN 17@

109 IF 1$="A" THEN 1S5¢

110 IF I$="=" THEN 13@

120 GOTO 19¢

13¢ MO=1:Q0A=VAL (A% (P+1)) :GOTO 2¢@

154 V$=STR$ (DA) : GOTO 199

173 V$(LEN(V$) +1)=1%:60TO 190

180 VIN) =VAL (V$) I V=" "2 N=N+1

199 P=F+1:1F P<=LA THEN 3¢

209 V(N =VAL (V$) tV$="" 2| N=N: N=1

210 IF LN=1 THEN 4¢3

220 IF O(N)=1 THEN V(N) =Y (N)+V(N+1):60
SUB 3@@:N=1:60T0 21d

23@ IF O(N)=2 THEN V(N)=V (N) -V (N+1) : GO
SUE 3I00:N=1:60TO 214

240 N=N+1:1F N<LN THEN 21@

250 N=1:1F LN=1 THEN 40g@

260 IF O(N)=3 THEN V(N)=V(N)*V(N+1) G0
SUBR 3@@:N=1:G0T0 250

27¢ IF O(N)=4 THEN V(N)=V(N)/V(N+1) : GO
SUE 3@%:N=1:G0TO 25@

288 N=N+1:1IF N<LN THEN 2S¢

290 N=1:IF LN=1 THEN 40%

309 FOR M=N+1 TO LN-1

144

31 VM =VIM+1) :0(M-1)=0(M)

329 NEXT MiLN=LN-1:RETURN

4@ FPRINT ""3:FOR F=1 TO LA+&IFRINT "*"
$INEXT F

41@ IF MO=1 THEN S5@@

42@ 0A=V (1) tFRINT "=";0A:60T0 14

s@¢ IF QA=V (1) THEN FRINT "YES":GOTO 1
¢

Si¢g PRINT "NO":GOTO 1¢

1 REM 39959965 % % 969 % 6 % % 6% % DATERQOOK
2 DIM A% (408d) ,D$ (44@D) , I$(1) ,BE(746),C
$(76) ,ME(746) ,0%(1), T$(76) JE®(76) ,F$(76
).N$(76),PL$(1)

T DIM L(1@@,2) M100,2) ,S(198)

4 OFEN #1,4,0,"K:"

6 CL$=CHR$(125) :FRINT CL$

9 N=1:1.D=76:L1=14:L.2=39:REM GOTO B¢d
1¢ FPRINT ," DATERQOE"

11 PRINT "1: ENTER DATA"

12 FRINT *2: SORT b PRINT®
13 FPRINT "3: DISFLAY 7: EDIT"
14 FRINT "4: SAVE 8: CLEAR"
15 FRINT "5: LOAD ?: QUIT"

2¢ PRINT ,,"OFPTION";:INPUT @

30 ON @ GOTO 18,206, 300, 4638, SO0, b0H, 7
@D, BB, YOG

49 GOTD 1%

196 FRINT "ENTER DATA 227 TO @
uIT"

119 PRINT "DATE/TIME:";:GOSUB 140@:FRI
NT

12¢ IF T$="2ZZ" THEN ND=N-1:GOTO 1@

13@ DE=THiFRINT " EVENT: "3 :GOSUE 14
G FPRINT
14¢ E$=T$:FPRINT " NOTE: "; :6GOSUE 14¢
BOHIFRINT

145

15¢ N$=T$:GOSUE 115@

18% A% (1+LD*(N-1))=T$

19¢ N=N+1:G0TO 11

20@ PRINT "SORTING":FOR N=1 TO ND:5(N)
=1 :NEXT N:FL=1

2104 N=1

2200 IF S(N)=@ THEN N=N+1:G0TO 22@

225 F=N+1:LN=N:SF=1+LD* (N-1) : E$=A% (SP,
SF+L2+L (N, 2)—1)

23¢ IF S(P)=@ THEN 26¢

24@ HN=F:S@=1+LD* (F~1) : C$=A% (SO, SO+L 2+
L(P,2)-1):IF EB$<C% THEN 260

250 TH=E$:B$=C$:C$=T$: LN=F: HN=N

26@ F=F+1:1F F<=ND THEN 23g

279 SY=1+LD* (FL—1) : D$(SY) =E$:FOR ZL=g
TO 2iM(FL, ZL) =L (LN, ZL) INEXT ZL:FL=FL+1
IS(LN) =@: IF FL=ND THEN 28@

275 GBOTO 21@

289 SY=1+LD*(ND—1) : D$(SY) =C$:FOR ZL=@
TO 2:M(ND, ZL) =L (HN, ZL) :NEXT ZL

299 FRINT " = = = DONE = = =":A¢$=D$
295 FOR N=1 TO ND:FOR ZL=¢ TO 2:L (N, ZL
)=M(N,ZL) :NEXT ZL:NEXT N:GOTO X1¢

30¢ GOSUE 148@: LM=LEN (M$)

310 FOR N=1 TO ND:SP=1+LD% (N-1): T$=A% (
SF, SF+L2+L (N, 2) —1)

I2¢ GOSUE 115@:IF LM=¢ THEN 37¢

3I3¢ ON FM GOTO Z49, 350, 360

34@ IF LM>LEN(D$) THEN 38¢

347 IF M$=D$(1,L.M) THEN Z7@

346 GOTO 38

ISG IF LM>LEN(E$) THEN 380

35T IF M$=E$(1,LM) THEN =70

IS6 GOTO 8¢

366 IF LM>LEN(N$) THEN I8¢

363 IF M$=N$(1,L.M) THEN Z7¢

366 GOTO =8¢

37¢ FRINT D$,E$:FRINT " "“gNg

8@ NEXT N

39@ FRINT ,,"MENU";: INFUT 0%$:60T0 14

146

43 FRINT ,"FILENAME FOR SAVE";: INFUT

E$

4105 F$="D:":F$(3)=E$:F$(LEN(F$)+1)="_D

TA":OFEN #2,8,8,F%

42¢ FOR N=1 TO ND

43@ SF=1+LD%* (N—1): T$=A% (SF, SF+L2+L (N, 2

)~1) :GOSUE 11501 IF D$="" THEN 48¢

44% FRINT #23;D$:FRINT #23E$:PRINT #2%

$:PRINT "> ""D‘-f» Es

48¢ NEXT N:FRINT #23"272%

49¢ CLLOSE #2:6070 14

Se FPRINT , "FILENAME TO LOAD"§: INFUT E

%

516 FE="D:":F${(3)=E$:FS(LEN{(F$)+1)=",

TA":0OPEN #2,4,0,F%

523 INFUT #2,D%:IF D$="ZZZ" THEN 5%¢

S53@ INFUT #2,E4: INPUT #2,N%

S54¢i GOSUER 1101@: SP=1+LD* (N—-1) A% (SP)=T%$

545 PRINT "<";D$,E$

55¢ N=N+1:G0TO S2¢

59¢ ND=N-1:CLOSE #2:G0TO 14

609 GOSUE 1498 LM=LEN (M$)

61% FOR N=1 TO ND:SF=1+LD%* (N—1): T$=A%(

SF SF+L2+L (N, 2)-1)

62¢ GOSUR 1150 1F LM=¢ THEN &7d

&3 ON FM GOTO 644, 650, bbd

649 IF LM>LEN(D$) THEN 689

643 IF Me=Ds(1,LLM) THEN 6749

&46 GOTO 689

659 IF LMALEN(E$) THEN 68

657 IF M$=E$(1,LM) THEN &7%

&56 GOTO &89

660 IF LMHI_EN(N$) THEN 68

66T IF ME=N$(1,LM) THEN &7¢

bbb GOTO 6849

678 LFRINT D, E$,N$

688 NEXT N

699 GOTO 1a

709 GOSUE 14@@:L.M=LEN(M$):IF FM=@ THEN
19

147

714 FOR N=1 TO ND:SF=1+LD%(N—1): T$=A% (
SP, SP+L2+L (N, 2)~1)

72¢ GOSUE 115@:IF LM=@ THEN 77@

736 ON FM GOTO 74,758, 768

749 IF LM>LEN(D$) THEN 79d

743 IF M$=D$(1,LM) THEN 77¢

746 GOTO 794

756 IF LM:LEN(ES$) THEN 79@

753 IF M$=E$(1,LM) THEN 77@¢

756 GOTO 794

768 IF LM>LEN(N$) THEN 79¢

763 IF M$=N#$(1,L.M) THEN 77

766 GOTO 794

77@ GOSUE 17@@:IF T$="ZZZ" THEN N=ND+1
:6OTO 1

780 D$="":1F N=ND THEN 785

783 D$=A% (SF+LD,LEN (A%))

785 A$(SF) =T$:A% (SF+LD)=D%

794 NEXT N:GOTO 7@

80¢ FRINT "CLEARING MY MIND ..."

B1¢ FOR Z=1 TO 100@:A$(Z)=" ":NEXT 7
820 FOR Z=1 TO 16@#:S(Z)=@:NEXT Z

B89¢ N=1:FRINT ClL$:G0TO 1@

9¢@ PRINT “"DONE":END

1OS@ Te=" v

1819 I=FEEK(764):IF 1=255 THEN 101@
18200 GET #1,K:FOKE 764, 255

1630 IF k=155 THEN RETURN

1O78 I$=CHR$ () : FRINT 1%;

1089 THLEN(T$)+1)=1%

1059¢ GOTO 1@1@

1108 T$=D$:T$ (L1)=E$:TH (L2)=N%

11100 LN, #) =LEN(D$) ~1:L (N, 1) =LEN(E$) 1
$LA(N,2)=LEN(N$)—1

114@ RETURN

115¢ D$="":1IF L(N,g)<@ THEN 11660
1155 D$=TH (1, 1+L (N, @))

1160 E$="":1F L(N,1)<@® THEN 117
1165 E$=T$ (L1, L1+ (N, 1))

117¢ N$="":11F L(N,2)<@® THEN 119@

148

1184
1199
1403
1414
1494
1429
143¢@
149¢
179
171@
INT

1724
17449
1754
INT

1764
177
INT

1784
1799

NE=T$ (L2, L2+ (N, 2))

RETURN

M&=""IFRINT "FIELD TO MATCH"j
INFUT F$iIF Fé="" THEN FM=@:G0OT0O
FM=VAL (F$) :FRINT " DATA TO MATCH"
INFUT M%$

RETURN

FRINT D#®,E$:FRINT " "jiNs$

PRINT "DATE/TIME: "3 :G0OSUB 1@@d:.FR
IF T$="2ZZ7Z" THEN RETURN

Dé=T%

FRINT * EVENT: "5 : GOSUR 149@:FR
cIF Te="" THEN 177@

E€=T%

FRINT " NOTE: "3§ :GOSUE 14@d: FR
tIF T$="" THEN 179¢

N&=T%

GOSUE 1149@: RETURN

149

$6.95 =
HOMEWORK HELPER FOR THE ATARI® N
Herbert Kohl &

Most school-age children agree on at least one thing—homework -

is not fun! The very mention of this nightly ritual in most homes
elicits moans and groans along with some pretty creative excuses!
Michael Potts knows the problems associated with homework and &
has developed HOMEWORK HELPER, an exciting new group of
programs that takes the anxiety out of homework and replaces it
with logical, workable alternatives! .
This important addition to the Creative Pastimes series includes
programs to help your child with virtually all major coursework.
Spelling, vocabulary, history, and math programs can be tailored to &
suit your child’s individual study needs. In addition, valuable sections
on developing good study habits, organizing school assignments, and
important note-keeping programs maximize study time. i
Let your child benefit from a winning combination—
HOMEWORK HELPER and your Atari computer!

A Creative Pastimes Book .
RESTON PUBLISHING COMPANY, INC.

A Prentice-Hall Company
Reston, Virginia

: lll Il O
21898"28598

Atari is a registered trademark of Atari, Inc.

