Hands-On
. BASIC

FOR THE ATARI® 400/800/1200XL

-

-A BUTE

i HERBERT PECKHAM
with WADE ELLIS, JR.

. and ED LODI

HANDS-ON BASIC

FOR THE ATARI® 400/800/1200XL

{

HANDS-ON BASIC

FOR THE ATARI® 400/800/1200XL

HERBERT PECKHAM

with WADE ELLIS, JR.
and ED LODI

McGRAW-HILL BOOK COMPANY

NEW YORK ST LOUIS SAN FRANCISCO AUCKLAND ,
BOGOTA HAMBURG JOHANNESBURG LONDON MADRID :_A'A
MEXICO MONTREAL NEW DELHI PANAMA PARIS +a
SAQ PAULO SINGAPORE SIDNEY TOKYO TORONTO l.ﬂ .

HANDS-ON BASIC: For the ATARI® 400/800/1200XL

Copyright © 1983 by Computer Literacy. All rights reserved. Printed in the
United States of America. Except as permitted under the United States Copy-
right Act of 1976, no part of this publication may be reproduced or distributed
in any form or by any means, or stored in a data base or retrieval system,
without the prior written permission of Computer Literacy.

1234567890HALHALB9876543
ISBN 0-07-049194-1

ATARI is a registered trademark of Atari, Inc., a Warner Communications
Company. ATARI 400, ATARI 800, and ATARI 1200XL are registered
trademarks of Atari, Inc.

This book was set in Patina and Eras using the TEX composition system. The
editor was Charles E. Stewart; the production supervisor was Joe Campanella;
the book designer was Paul Quin; the cover designers were Oona Johnson
and Paul Quin. Halliday Lithograph Corporation was printer and binder.

Library of Congress Cataloging in Publication Data

Peckham, Herbert D.
Hands-on BASIC for the Atari 400/800/1200XL.

(A Computer literacy book)

Includes index.

1. Atari 400 (Computer)—Programming. 2. Atari 800
(Computer)—Programming. 3. Atari 1200XL (Computer)—
Programming. 4. Basic (Computer program language)

1. Ellis, Wade. 1II. Lodi, Ed. III. Title. IV. Series.
QA76.8.A8P43 1983 001.64'2 83-7973
ISBN 0-07-049194-1

1—2
1—3

CONTENTS

PREFACE 1
Acknowledgments 2

INTRODUCTION 5

What Is BASIC? 5

Where Did BASIC Originate? 6
How To Use This Book 6

CHAPTER 1

GETTING ACQUAINTED WITH YOUR ATARI 400/800/1200XL
COMPUTER 9

OBJECTIVES 9

Connecting the Computer to Your TV Set and Turning it
On and Off 9
Using Direct Mode 9

Learning Screen Editing 10
DISCOVERY EXERCISES 10
DISCUSSION 16

Connecting The Computer to Your TV Set and Turning it
On and Off 16

Using Direct Mode 16

Learning Screen Editing 18

PRACTICE TEST 19

vi Contents

2—1

2—2
2—3
2—4
3—1
3—2
3—3

CHAPTER 2
INTRODUCTION TO BASIC 21

OBJECTIVES 21

Correcting Mistakes 21

Learning the Requirements for BASIC Programs
Telling the Computer What to Do 21
Entering and Controlling Programs 21
Using Variable Names in BASIC 22

DISCOVERY EXERCISES 22

DISCUSSION 30

Correcting Mistakes 30

Learning the Requirements for BASIC Programs
Telling the Computer What to Do 3i
Entering and Controlling Programs 32
Using Variable Names in BASIC 33

PRACTICE TEST 35

CHAPTER 3
GRAPHICS 39

OBJECTIVES 39

Using Text and Graphics Modes 39
Drawing Lines 39

Creating and Positioning Shapes 39
Using Animation 39

Using Color 40

DISCOVERY EXERCISES 40

DISCUSSION 51

Using Text and Graphics Modes 51
Drawing Points and Lines 51
Creating and Positioning Shapes 52
Using Animation 53

Using Color 54

PRACTICE TEST 55

21

30

~——

4—1
4—2
4—3
4—4
5—1
5—2
5—3

Contents

CHAPTER 4
COMPUTER ARITHMETIC AND PROGRAM MANAGEMENT

57

OBJECTIVES 57

Doing Arithmetic on the Computer 57
Using Parentheses in Computations 57
Using E Notation for Numbers 57
Formatting a Diskette 58

Storing and Retrieving Programs 58

DISCOVERY EXERCISES 58

DISCUSSION 66

Doing Arithmetic on the Computer 66
Using Parentheses in Computations 67
Using E Notation for Numbers 68
Formatting a Diskette 69

Storing and Retrieving Programs 70

PRACTICE TEST 71

CHAPTER 5

INPUT AND OUTPUT 75

OBJECTIVES 75

Getting Numbers into a BASIC program 75
Printing out Variables and Strings 75
Spacing the Printout 75

Using the REM Statement 75

Working with Program Examples 76

DISCOVERY EXERCISES 76

DISCUSSION 85

Getting Numbers into a BASIC Program 86
Printing out Variables and Strings 87
Spacing the Printout 88

Using the REM Statement 89

vii

viii Contents

5—4 PROGRAM EXAMPLES 90
Example 1 - Unit Prices 90

Example 2 - Conwerting Temperature 92
Example 3 - Sum and Product of Numbers 93
5—5 PROBLEMS 95
5—6 PRACTICE TEST 100
CHAPTER 6
DECISIONS AND BRANCHING 103
6—1 OBJECTIVES 103
Making Transfer Decisions in Programs 103
Working with Program Examples 103
Finding Errors in Programs 103
6— 2 DISCOVERY EXERCISES 104
6—3 DISCUSSION 112
Making Transfer Decisions in Programs 112
a. Unconditional Transfers 112
b. Conditional Transfers 113
6—4 PROGRAM EXAMPLES 115
Example 1 - Printout of Number Patterns 115
Example 2 - Automobile License Fees 116
Example 3 - Averaging Numbers 121
6—5 FINDING ERRORS IN PROGRAMS 123
6—6 PROBLEMS 124
6—7 PRACTICE TEST 128
CHAPTER 7
LOOPING AND FUNCTIONS 131
7—1 OBJECTIVES 131
Using Built-in Looping Statements 131
Using Built-in Functions 131

Working with Program Examples 131

Contents

7—2 DISCOVERY EXERCISES 132

7—3

DISCUSSION 140

Using Built-in Looping Statements 140

Using Built— in Functions 144

PROGRAM EXAMPLES 147

Example 1 - Finding the Average of a Group of Numbers
Example 2 - Temperature Conversion Table 148
Example 3 - Exact Division 149

Example 4 - Depreciation Schedule 150
PROBLEMS 153

PRACTICE TEST 157

CHAPTER 8

WORKING WITH COLLECTIONS OF NUMBERS 161
OBJECTIVES 161

Learning to Use Single— and Double— Subscripted
Variables 161

Saving Space for Arrays 161

Using FOR NEXT Loops to Handle Subscripted Variables
Working with Program Examples 161

DISCOVERY EXERCISES 162

Subscripts 162

DISCUSSION 170

Learning to Use Single— and Double— Subscripted
Variables 170

Saving Space for Arrays 172

Using FOR NEXT Loops to Handle Subscripted Variables
PROGRAM EXAMPLES 174

Example 1 - Examination Grades 174

Example 2 - Course Grades 177

Example 3 - Array Operations 180

PROBLEMS 182
PRACTICE TEST 188

147

161

173

X Contents

10—1

10—2
10—3

CHAPTER 9

STRING VARIABLES 191

OBJECTIVES 191

Handling String Input and Output 191
Using String Functions 191

Working with Program Examples 191
DISCOVERY EXERCISES 192
DISCUSSION 201

Handling String Input and Output 201
Using String Functions 201

PROGRAM EXAMPLES 203

Example 1 - String Rewversal 203
Example 2 - Word Count 204
Example 3 - Replacement Code 204

PROBLEMS 206
PRACTICE TEST 207

CHAPTER 10

SOUND AND SUBROUTINES 209
OBJECTIVES 209

Creating Music 209

Exploring Subroutines 209

Working with Program Examples 209
DISCOVERY EXERCISES 209
DISCUSSION 216

Creating Music 216

Exploring Subroutines 217
PROGRAM EXAMPLES 219

Example 1 - Writing a Song 219
Example 2 - Rounding off Dollar Values to Cents
Example 3 - Carpet Estimating 222
Example 4 - Designing a House 227

220

10—5
10—6

=1

1M—2

11—3

11—4

11—5
11—6

12—1

12—2
12—3

Contents

PROBLEMS 231
PRACTICE TEST 233

CHAPTER 11

RANDOM NUMBERS AND SIMULATIONS 235
OBJECTIVES 235

Generating Random Numbers 235

Designing Sets of Random Numbers 235
Working with Program Examples 235
DISCOVERY EXERCISES 236

Setting up the Random-Number Generator 236
DISCUSSION 240

Generating Random Numbers 240

Designing Sets of Random Numbers 241
PROGRAM EXAMPLES 242

Example 1 - Flipping Coins 242

Example 2 - Random Integers 243

Example 3 - Distribution of Random Numbers 244
Example 4 - Random Walk 245

Example 5 - Birthday Pairs in a Crowd 246
PROBLEMS 247

PRACTICE TEST 249

CHAPTER 12

FILES 251

OBJECTIVES 251

Storing Information to a File 251
Retrieving Information from a File 251
Modifying Information Stored on Files 251
Working with Examples 251

DISCOVERY ACTIVITIES 251

DISCUSSION 256
Storing Information to a File 256
Retrieving Information from a File 258

xi

Xii Contents

12—4

12—5
12—6

PROGRAM EXAMPLES 259

Example 1 - Mail List Data Entry Program 259
Example 2 - Mailing Label Program 260
Example 3 - Selected Labels Program 261
Example 4 - Modifying the MAILDAT file 261
Example 5 - Menu-Driven Mailing Program 264

PROBLEMS 265
PRACTICE TEST 266

APPENDIX A
GLOSSARY 269

APPENDIX B
PRACTICE TEST SOLUTIONS 273

APPENDIX C
SOLUTIONS TO ODD-NUMBERED PROBLEMS 283

INDEX 301

PREFACE

This book is a modification of BASIC: A Hands-on Method, which
introduces students to BASIC on a number of different timesharing
computers. The earlier book has been revised and modified to be
used specifically on the personal computer manufactured by Atari,
Inc. The thinking behind and justification for the original work
remain unchanged and bear repeating.

Most BASIC programming texts have two serious drawbacks.
First, almost all the texts presuppose a knowledge of mathematics
that most of our intended readers do not have. Second, most texts re-
quire readers to spend little, if any, time on the computer. Typically,
students try to study programming like any other subject and do
not experiment with or execute programs on the computer. Our
experience indicates that people understand text material better and
more rapidly when it is preceded by a good deal of hands—on ex-
perimentation.

Most textbooks are used in classrooms and certainly many
people learn programming in this traditional setting. However, per-
sonal computers will soon be in such widespread use that many
people will learn programming outside the classroom. This text has
been designed for anyone, in or out of the classroom, who wants to
learn to program the ATARI 400, the ATARI 800, and the ATARI
1200XL computers.

This book is structured to make learning easy. Each chapter
begins with a statement of objectives. Then discovery exercises let
the student experiment with BASIC and see the language in action.
Once students acquire a feel for BASIC, they can profitably proceed
to a more traditional treatment of the concepts.

The text has twelve chapters and three appendices. Each
chapter is a module of instruction that should require about one
or two hours of computer work and perhaps one or two hours text

2 Hands—on BASIC

study. Reviews at the end of each chapter let students test their
mastery of the objectives. The book can be used in different ways: as
a self-study text, as the text for an open-entry, open-exit, self-paced
course, and in tandem with a traditional lecture course.

People at any level from junior high through graduate school
should be able to use this book to learn programming skills in BASIC
rapidly and effectively. The student needs no knowledge of mathe-
matics past introductory algebra, and the algebra used is mainly for-
mula evaluation. Students with more advanced mathematical skills
can apply them to independent work on the computer.

All students will need access to an ATARI 400/800/1200XL
computer with a BASIC language cartridge, at least one disk drive,
and a black-and-white or a color TV set. Although most of the
work in the book can be done without a disk drive, the lack of a
disk drive significantly limits the potential of the ATARI computer.

Two documents furnished with the ATARI 400/800/1200XL
computer and three documents furnished with the ATARI disk drive
are valuable to the student. The Operators Manual tells how
to connect the parts of an ATARI BASIC system. The ATARI
BASIC Reference Manual is a source of technical information. The
Disk Operating System Il Reference Manual describes the use of
a disk drive with the ATARI 400/800/1200XL computer. Two
other manuals concerning the disk drive, the Owner’s Guide and
An Introduction to the Disk Operating System, are also referenced.

Acknowledgments

I thank Wade Ellis, Jr. and Ed Lodi of the Computer Tutors of
San Jose, California for their assistance in writing this adaptation of
BASIC: A Hands-on Method. and for their typesetting and com-
position of the book using the TEX composition system. Additional
thanks go to Atari, Inc. for their generous assistance.

Herbert D. Peckham

We would like to express our deep appreciation to several sources.
The staff of the Context project at Stanford University were, as al-
ways, extremely helpful. Special thanks are due to Lincoln Ong who
helped us immensely with transfering files, Dikran Karagueuzian for
his efforts in getting the files to their final form, and Lisa Lodi for
checking most of the book.

Preface 3

Finally, we are deeply grateful to our wives, Jane and Rose
Marie, for their patience and understanding throughout the writing
and production of this book.

Wade Ellis, Jr.
Ed Lodi

~

INTRODUCTION

Computers play a part in most of our daily activities. Without com-
puters, businesses of all sizes, educational institutions, and various
branches of government would be unable to handle the bewildering
quantity of information that characterizes our society. Although the
routine use of computers has become a significant part of everyday
activities only in recent years, the trend will surely continue as the
price of computers continues to drop. More and more people will
need to know how to use computers if they are to participate fully
in our society.

What Is BASIC?

You are about to embark on the study of the computer language
called BASIC. BASIC is a very specialized language that permits
communication between you and the computer. This language is
not complicated and is certainly much easier to learn than Spanish
or French. BASIC has a simple vocabulary of a few words, a gram-
matical structure, and rules of use just like any other language. Your
main tasks will be to learn the vocabulary of BASIC, become familiar
with its rules of grammar, and begin to see how the language lets you
use the computer to do what you want. We have intentionally kept
the level of mathematics in this book simple. Don’t be too concerned
if your mathematical skills are a bit rusty. As we proceed, you will
have an opportunity to brush up on elementary mathematics.

One effective way to learn is to observe details and characteris-
tics while performing a task. We will use this “discovery” strategy.
You will begin each chapter with a session on the computer. After
following the directions and observing the computer’s response to
your instructions, you will begin to acquire a feel for BASIC. Then
you will study written material that summarizes what you have
learned.

6 Hands—on BASIC

Where Did BASIC Originate?

The original version of BASIC was designed and written at
Dartmouth College under the direction of Professors John G.
Kemeny and Thomas E. Kurtz. In September 1963 they began to
create a programming language written from the user’s point of
view. Much of the actual programming on the project was done
by Dartmouth undergraduate students. The birthday of BASIC was
May 1, 1964.

The success of this pioneering effort at Dartmouth attracted
national attention, and other institutions became interested. The
rest is history. What started as a project at a single college is now
an established part of the computer industry. Today nearly every
time-sharing computer supports some version of BASIC.

The enhanced versions have increased the power and
capability of the language significantly. The most recent develop-
ment is the adaptation of BASIC for use on small, inexpensive per-
sonal computers. ATARI BASIC for the ATARI 400/800/1200XL
computer, the language presented in this book, is a powerful and
flexible enhanced version of BASIC.

How To Use This Book

Each chapter begins with a brief statement of the objectives. Study
these objectives carefully to get a clear picture of precisely where
you're going.

The next section of each chapter is the discovery exercises.
In that section you will record the computer output in the space
provided, when appropiate, and try to answer any questions you
are asked. These activities will lead you through the ideas involved
and let you see BASIC working. Try to think about what will
happen in the situations that are set up. Your relationship with
the computer should be an active one. Whether your answers are
correct is not important. The important thing is to think carefully
about the questions and to try to answer them. The time you spend
thinking about questions will save you time later on.

Following the discovery exercises is a complete discussion of
the objectives. Since you will have already seen the ideas and con-
cepts in action on the computer, your study of this material will be
much easier and more profitable.

Introduction 7

Typical programs are included in each chapter. These are
discussed in detail to show how elements of programming are pulled
together to produce a BASIC program.

Beginning with Chapter 5, we give a set of problems at the end
of each chapter. You should work enough problems to satisfy your-
self that you can write programs at the appropriate level. Solutions
to the odd-numbered problems are in Appendix C.

Finally, each chapter has a practice test that lets you review
your understanding of the material and discover needs for further

study. The answers to the practice tests are contained in Appendix
B.

(

CHAPTER 1

GETTING ACQUAINTED
WITH YOUR
ATARI 400/800/1200XL
COMPUTER

Since the computer may seem a bit strange and complicated at first,
we will proceed slowly. After a few sessions, routine operations will
seem very natural and will cause you no trouble. Initially, though,
be prepared for a certain “confusion quotient.” Don’t hesitate to
review previously studied material if necessary.

1—1 OBJECTIVES

In this chapter you will become familiar with the computer and start
learning how it operates. You will do no BASIC programming until
the next chapter. Learning how to operate the keyboard and how
to enter and modify information is easy, but it is fundamental to all
that follows.

Connecting the Computer to Your TV Set and Turning it On and Off

Your ATARI 400/800/1200XL computer can be connected directly
to a color or black-and-white TV set. To do this, you will need to
connect the TV switch box that comes with the computer.

Using Direct Mode

One of the easiest ways to use the computer is in the direct mode.
No programming is involved; the computer carries out instructions
as they are entered. In due time you will learn how to do much more.
For the present, however, simple operations in the direct mode are a
good introduction to using the computer.

10 Hands—on BASIC

Learning Screen Editing

The information entered into a computer is rarley mistake free. You
need to know how to edit— how to change or correct material that
has been entered. A thorough knowledge of editing will save you a
great deal of time later on.

1—2 DISCOVERY EXERCISES

Before beginning work on the computer, we must establish several
important points. On a typewriter, the letter L is often used for the
numeral 1. On the computer, however, the numeral 1 is with the
other numeral keys along the top row of the keyboard. Similarly,
the letter O is sometimes used for the numeral 0 on a typewriter,
but on the computer the 0 is found on the top row of the keyboard.

[] Don't use the L for the 1!
Don't use the Oh for the 0!

The standard appearance of characters typed on ATARI com-
puters is white on a black background. There is a key that causes
characters typed to appear black on a white background instead. On
the ATARI 1200XL, this key is next to the BREAK key at the top
right hand side of the computer. On the ATARI 400/800 computers,
it is the key with the symbol Ml next to the key on the right
hand side of the keyboard. Pressing this key causes any characters
typed subsequently to appear in reverse video (background in white
and characters in black). Avoid pressing this key until you become
familar with using your ATARI computer. Reverse video can be
turned off by pressing this same key again.

You will need to know the following locations. On the ATARI
1200XL computer, the SWITCH BOX receptacle is at the rear of the
computer; the POWER IN receptacle is also at the rear; the POWER
ON/OFF switch is at the rear, left hand side; and the CHAN switch
is next to the POWER IN receptacle.

On the ATARI 400/800 computers, the POWER IN receptacle
is on the right hand side of the computer; the POWER ON/OFF
switch is also on the right hand side; and the CHAN switch is next
to the POWER ON/OFF switch.

Now you are ready to begin work. Connect the TV switch box
to your TV set and switch it to COMPUTER. Plug one end of the
power cord into the POWER IN receptacle, and the other end into

Getting Acquainted \With Your ATARI 400/800/1200XL Computer 1

a wall plug. Plug the cable found at the rear of the computer into
the TV switch box (on the ATARI 1200XL, this cable must first be
plugged into the SWITCH BOX receptacle).

Locate the key at the right hand side of the keyboard.

The BASIC language cartridge is installed by pressing it firmly into
the appropriate slot. On the ATARI 1200XL, the slot is located on
the left hand side of the computer. On the ATARI 400/800, the
slot is located beneath the cartridge door found immediately above
the keyboard. Be sure to close the door after inserting the BASIC
language cartridge. Turn on the TV set and switch to channel 2.
Now turn on the POWER ON/OFF switch. Be sure the CHAN
switch is set to 2. After a few moments, you will see

FEADY
]

displayed on the screen. If not, reseat the BASIC cartridge, double
check all the switch settings, and try again. The square M is called
a cursor. It will be displayed on the screen most of the time.

Locate the keys on the right-hand side of the keyboard that have the
following (as well as other) symbols on them: +, -, *, and /. Note

that these are obtained without use of the [SHIFT| key.
Now type

FEIHT 1+4
Has anything happened?

L

Now press |[RETURN| and record what happened.

I

Now type

1+4

and press |RETURN| . What happened?

12 Hands—on BASIC

The question mark (?) is an alternate way to enter FRIHT in ATARI
BASIC.

Now you know how to make the computer do addition. Let's explore
this further. Type

FEIMT 28454 .7

and press |[RETURN| . What happened?

L

Type
PEINT 2+4-32

and press |[RETURN| . Record the output below.

L

Type

FRIMT 122

and press |[RETURN| . What happened?

L

What arithmetic operation does the / call for?

10.

11.

12.

Getting Acquainted With Your ATARI 400/800/1200XL Computer 13

If you make a typing error, you can move the cursor, B, back to
the error by holding down the |CTRU ([CONTROY on the ATARI
1200XL) key and pressing the key with the symbol « on it. Each
time you press <, the cursor will move one place to the left. When
you reach the error, make the correction, and return to where you
left off typing. To return, hold down the key and press the key
with the symbol — on it. Then continue typing. However, you need
only press after making the correction if the remainder of
the line is complete and correct. When you press the key,
the computer may give the message ERROR. If this happens, try to
see what the problem is and retype the line.
Type the incorrect line

FRING 1+4

and press |[RETURN| . What happened?

L

Now type
FRIHG 1+4

and don'’t press |[RETURN] . Instead, move the cursor to the G using
CTRL and « and type T. Press [RETURN| . What happened?

1

Your TV screen should be fairly full now. Press the key,
holding down the key at the same time. What happened?

L

Pressing |CLEAR| clears the screen. If the screen is full and new lines
are entered, old lines will scroll off the top.

Type
FEINT zZ#5d
and press . What happened?

L

13.

14.

15.

16.

14 Hands—on BASIC

What arithmetic operation is called for by the *?

Type
FRINT (2+2 141

but don't press |[RETURN| . What do you think will happen when
you press |[RETURN| ?

Press |[RETURN| and record what happened.

L

Type
FRINT "¢2+3Z44-1"
and press . What happened?

L

What will happen if you type
FRINT "Bal DOC®

and press ?

Try it and see if you were correct.

Let's move on to a different topic. First, clear the screen. If you have
forgotten how, look back at step 11. Type and press |RETURN| .

RUIZ = =25
Then type
PEIMT QUIZ

and press |[RETURN| . What happened?

L

17.

18.

19.

Getting Acquainted With Your ATAR! 400/800/1200XL Computer 15

Take a few moments to examine the lines below.

LEHCTH=14a

WIOTH=£

HEICHT=4
VOLUME=LEHCTH¥WIDTH¥HEICHT
FREIMT UOLUME

What do you think will happen if you type in these lines?

L

Now type in the lines remembering to press |RETURN| at the end of
each line. What happened?

| I—

Study the lines below briefly.

LEHMLTH=1Z2

HIDTH=2
SEYOS=CLEMCTHEWIOTH -2
FRIHT SaybDs, "sayost

What will happen if you type in these lines?

L

Clear the screen and type in the lines, remembering to press [RETURN
after each line. What happened?

This concludes the discovery material for this chapter. Turn off your
computer and TV set.

16 Hands—on BASIC

1—3 DISCUSSION

Connecting The Computer to Your TV Set and Turning it On and Off

See the Operators Manual for instructions on connecting your
ATARI computer to the TV set. Except for parts of Chapter 3 and
a few examples, a color TV set is not required.

The computer is simplicity itself to turn ON and OFF! As you
have already seen, this is done with the switch at the left side of
the computer (right hand side on the ATARI 400/800). Be sure the
BASIC language cartridge is inserted before turning on the computer.
The

EEADY
|

that appears on the screen indicates that you are in ATARI BASIC.
This procedure will be referred to as bringing up ATARI BASIC.
One important point: If things get away from you, if you lose
touch, or if the computer seems out of control, you have a way to
regain control. Simply press the RESET key (SYSTEM RESET key
on the ATARI 400/800). This should put you back where you were
before things seemed to go out of control. If that doesn’t work, you
can also recover by turning the computer off and on again. If you
use this remedy, however, you will lose any programs or information
in memory. If neither of these remedies works, the BASIC cartridge
is probaby not seated properly in the slot. Reseat it and try again.

Using Direct Mode

In the discovery activities, you learned how to do simple arithmetic
operations using the computer like a simple calculator. This is also
known as the direct mode. As we shall see in the next chapter,
you can use BASIC to store statements and commands in a series
of numbered lines and then direct the computer to perform all the
statements at the same time. If, however, you type in the statements
without line numbers, the computer assumes you want a direct or
immediate answer and does what you asked it to do, if possible.

When you type in material, nothing happens until you press
. The key tells the computer you are through
typing a piece of information. In a few cases, the computer responds
to a single keystroke and you do not have to press .

However, such cases are the exception rather than the rule.

Getting Acquainted With Your ATARI 400/800/1200XL Computer 17

You have discovered that addition and subtraction are called
for by + and —, which probably wasn't much of a surprise!
Multiplication and division are indicated by * and /, respectively.
Parentheses can be used to group operations any way you wish. A
number of other clever operations are possible, but we will postpone
discussion of these to later chapters. If you type

FREIMT S¥3 246 3

and press [RETURN] , the computer will carry out the arithmetic and

print the result.
If you type

FRINT "AREBCDEFG®

and press , the computer is instructed to print out the
collection of characters between the quotation marks— in this case
the letters ABCDEFG. Such a collection is called a “character string,”
an important concept that we will return to throughout the book.

The computer can keep track of a number of pieces of infor-
mation in the direct mode. Thus, if you type

A=2
B=3
FEIMT A+E

the computer will print 5 on the screen. There is a very important
point in connection with this concept. If you type

FRINT TA=x

and press , the computer will display 0. Since you gave
no value to TAX, the computer assigned the value 0 and printed it
out,

The computer is very relaxed about names for quantities used
either in the direct mode or in BASIC programs. You can use long
names like DEPTH or RATE as well as short names like D or R.
However, using long names can create problems. The long names
must be typed correctly each time they are used. Also, no spaces are
allowed in names. Certain words cannot be used for variable names,
because they are reserved for use by the computer. See Appendix A
of the ATARI BASIC Reference M anual for a list of reserved words.

18 Hands—on BASIC

This very brief introduction to the notion of variable names
suffices for our discussion of the direct mode. We will discuss the
concept more completely later in the book.

Recall from the discovery exercises that you can use ? as an
abbreviation for the PRINT statement. You can also use PR. as an
abbreviation for the PRINT statement. (Note: The period in PR.
is required.) Many of the BASIC statements you will learn have
abbreviations, but for clarity, we will use the full name in this book.
If you wish to abbreviate the names, you will find a list of most
of the statements and their abbreviations on the inside of the back
cover of the book. In addition, you will find a list of most of the
error messages and their meanings, on the inside of the flap of the
book cover.

Learning Screen Editing

The ATARI 400/800/1200XL computer has line editing commands
you can use to modify BASIC programs. However, errors can also
be corrected in the direct mode. We will limit our discussion to the
two ways of making changes in a line before you press the |RETURN
key

First, you can move the cursor to the left with the
[DELETE BACK SPACE] key (key on the ATARI
400/800 computer). As the cursor moves left, the character under
the cursor is erased. When the error is reached, you can make the
correction and resume typing from that point.

The second, and perhaps more useful method is to move the
cursor to the left or right by holding down the key and then
pressing < or —. Characters do not get erased in this activity. You
make corrections by typing over the errors. If you need to delete
a character, you can hold down [CTRL and move the cursor to the
character you want to delete, then press |[DELETE BACK SPACE. You
can insert characters by moving the cursor to the character in front
of which you wish to insert a character. Then continue to hold down

the |CTRL key and press the |INSERT| key. The computer will provide

a space for the character you want to insert. (Note: The [SHIFT| key
is not used with [INSERT] when you use the [CTRU key.)

When all the corrections have been made, you can press the
RETURN]| key regardless where the cursor is at the time. If there are
many errors in a line, you may wish to press [RETURN| and retype
the line.

Getting Acquainted With Your ATARI 400/800/1200XL Computer 19

You can use these simple editing commands in the direct mode
to make changes or corrections. We will consider Further editing
features in the next chapter.

1—4 PRACTICE TEST

Take the test below to discover how well you have learned the
objectives of Chapter 2. The answers to the practice test are given
in the appendix.

How do you let the computer know that you are through typing a
line?

L

If you lose control of the computer, how can you regain it?

[

What symbol indicates multiplication on the computer?

How do you clear the screen display?

What operation does the symbol / indicate?

What will happen if you type
FRIMT 3%4-%5

and then press |[RETURN| ?

8.

20 Hands—on BASIC

What will happen if you type

FRINT "25-3+2"

and then press [RETURN] ?

L

I

If you typed PRING 2+3*4 and noticed your spelling error before
you pressed |[RETURN| , how could you correct the error?

~—

f

CHAPTER 2

INTRODUCTION TO BASIC

Now you are ready to begin learning about programming in BASIC.
In this chapter you will learn to write and execute some simple
programs.

2—1 OBJECTIVES

Correcting Mistakes

If you're like everyone else, you'll make mistakes when entering in-
formation into the computer. You will learn how to correct mistakes

even if you don’t notice them until after you've typed several other
lines.

Learning the Requirements for BASIC Programs

All BASIC programs have characteristics in common. You will look
at some very simple programs to learn about these characteristics.

Telling the Computer What to Do

Commands tell the computer to do something to or with a BASIC

program. These action words control a program. You will look at
the LIST, RUN, and NEW commands.

Entering and Controlling Programs

This objective overlaps the one above. The main thing is to become
comfortable entering and controlling programs. All the programs
you will encounter initially are short and easy to handle.

22 Hands—on BASIC

Using Variable Names in BASIC

You must know how to name either numbers or strings of characters
in BASIC programs. Fortunately, the computer has very relaxed
rules about this.

2—2 DISCOVERY EXERCISES

In the discovery activities that follow, you will enter various pro-
grams. If you see a “RETLIEH* in the instructions, press the
key. Remember from Chapter 1 that pressing the
key tells the computer that you are through typing. Now go on to
the activities below.

Turn on your computer and TV display and bring up ATARI BASIC.
(See step 3 of the discovery exercises in Chapter 1.)

Now type in
108 LET A=1 <RETURHX

This is the first line of a BASIC program.

Now type in the balance of the program as listed below.

i1 LET EB=3% <EETURHX
128 LET C=8+E <EETUREH:
138 PRINT £ <RETURHX
148 EHDO <RETURHME

If you make mistakes typing the program, either retype the line or
correct it using the methods you learned in Chapter 1.

Clear the screen by pressing the key marked |CLEAR|. Remember to
use [SHIFT|. What happened to the program you just typed in?

Fortunately, all is not lost. The computer remembers what you typed
in even though the screen is blank. Type LIST and press the |RETURN

key. What happened?

Introduction To BASIC 23

6. On the TV display you should see the program you just entered. For
the time being, ignore the line numbers at the beginning of each line.

Just read the lines in the program and try to get a sense of what they

mean. If you tell the computer to carry out the instructions, what
do you think will happen?

L

Type RUN and press the key. What did happen?

118 LET EB=5 <EETURHX

Clear the screen, type LIST, and then press the [RETURN| key. What
happened to line 110 in the program?

L

8. What do you think will happen if you tell the computer to execute
this program?

L

Type RUN, press the [RETURN] key, and record what happened.
Were you right?

| E—

9. Now type
148 <RETURHM:>

Clear the screen and display the program using the LIST command.
What happened to line 1407

10.

11.

12.

24 Hands—on BASIC

If you want to delete a line in a BASIC program, how do you do it?

Now run the program. What happened?

Does the computer need the END statement that used to be in line
1407

Experiment a bit more. Often you will want to clear a program from
the computer’s memory. This is done with the NEW command.

Type NEW and press the key. What happened?

Type LIST and press the [RETURN| key to see what the computer has

in memory. Is anything there?

You have learned to clear out a program from memory, but now
you have no program left! To get the program back, you must enter
it again. Type in the program below.

=y
AR RN

WA
L

[R S W R
Ja el T dees 0351
1

oy
.

Check all the lines to make sure you entered them correctly. If you

need to change a line, retype it. If you have to retype lines, clear
the screen by pressing |CLEAR| and redisplay the program by typing
RETURN; .

LIST and pressing

13.

14.

15.

16.

17.

Introduction To BASIC 25

Now type

25 LET D=B-#i <RETURHM:
125 PRIHT O <RETURH:

Clear the screen and display the program. What has happened?

Take a few moments to study the program. What will happen if you
RUN the program?

L

Type run, press the [RETURN! key, and record below what the

computer did.

In the original program, the lines were numbered in intervals of ten
(e.g., 100, 110, 120, 130, and 140). Why are there “gaps” in line
numbers? (Hint: See step 13.)

L

How do you insert lines in a BASIC program? (Hint: See steps 13
and 15.)

Clear the program in memory by typing NEW and pressing the

RETURN| key. Enter the program below.

1@ IHMFUT MHITE <EETURH:

118 LET REOD=MWHITE+2 <EETUREH:
126 PRIMT RED <RETURH:

138 COTO 188 JREETURH:

148 EHD <EETUEH:

18.

19.

20.

21.

22.

26 Hands—on BASIC

This new program has several features that you have not seen before.
Study the program carefully and think about what will happen if
you run the program. What does the GOTO 100 in line 130 mean?

Run the program and record what the computer did.

Type the numeral 6 and press the |RETURN| key. What happened?

L

Type the numeral 10 and press the [RETURN| key. What happened?

What line in the program do you think is generating the question
mark?

Describe in your own words what the program is doing. If necessary,
experiment some more to make sure you are correct.

Now get out of the program. Press the key located at the
top right hand side of the computer (upper right hand side of the
keyboard on the ATARI 400/800). What happened?

L

Clear out the program in memory (see step 11). Type in the follow-
ing program.

LET A=188 <RETURH:
FEIHT A <RETURH:
LET A=A+l <RETURH:
COTO 118 <RETURH:
EHDO <REETURHX

[T WO W Y
I O N I L o |
o I o T o B o B cw)

Introduction To BASIC 27

23. Run the program and record what happened.

24,

25,

—

When you get tired of watching the display, press |BREAK;. What
happened?

Try it once more. Run the program and interrupt it after a few
numbers appear on the screen. How do you stop a BASIC program
running on the computer?

L

Now type CONT and press . What happened?

L

Stop the program by pressing |BREAK|.

Clear the screen and display the program in memory. (See step 5.)
Type the line below. Note the absence of spaces in the line.

18BLETA=1 <RETURH:
Clear the screen and list the program. What happened?

L

Now type the line below. Note the extra spaces.

1

x|
[

LET#Aa=1 <RETURH:
What happened?

-

List the program. Do there seem to be more statements in the
program now?

26.

27.

28.

29.

30.

28 Hands—on BASIC

Clearly, some spaces are important in BASIC statements. Just note
the fact for now. We will return to this matter later.

Let’s try a program with some new features. Clear the program from
memory by typing NEW and then pressing the [RETURN| key. Type

in the program below.

188 FRINT "TYFE A MUMEER" <RETURH:
118 IHPUT FIRST <RETURH:

128 PRIMT "OME MORE TIME" <RETURH:
138 IHPUT SECOND <RETURH:

148 LET SUM=FIRST+SECOHD <RETURH:
158 FRIHT "THEIR SUM IS" <{RETURH:
168 PRIMT SUM <RETURH>

178 EMD <RETURHM:

Study the program for a few moments. Now run the program. What
happened?

!

Type the numeral 12, press the |[RETURN| key, and record below
what the computer did.

L

Now type the numeral 13, press the |RETURN| key, and record below
what happened.

Now type in
LIST 128 {RETURH:>

Move the cursor to the T in TIME by holding down and using
the up arrow (on the same key with the minus sign) and the right
arrow. Replace TIME” with NUMBER PLEASE”. Run the program
again.

This simple program illustrates that you can make BASIC programs
print out curt or courteous messages as well as numbers.

31.

32.

33.

34.

35.

Introduction To BASIC 29

Now let’s look at a different topic. Clear the screen. Type NEW and
press the |[RETURN| key to clear the program from memory. Then
enter the following program.

188 OIM A$CS

118 LET & = 1 <REETUEH:

128 LET A$ ="HOUSE" <{EETUEH:
128 PREINT A <RETURH:

148 PREINT "A" <RETURH:

1538 FEIHT A% {RETURHM>

148 FRINT "a$" {RETUREH:

178 EHMD <EETURH:

This program contains something new. Look at the A$ in line 120.
Note that it is set equal to a word enclosed in quotation marks. The
balance of the program has to do with variations on printing out
A and A$. You will learn more about the DIM A$(5) statement in
later chapters. Run the program and record the output.

L

Study the output carefully and identify what the computer printed
in response to each of the PRINT statements. For the time being,
just make the comparison. Later you will examine the subject in
detail. Enter the following line:

165 PEIHT B <RETUEH:
Clear the screen and display the program with the LIST command.

Note that B is mentioned only in line 165 in the PRINT statement.
What do you think will happen if you run the program?

Now run the program and record what happened.

L

As you saw in Chapter 1, even though the value of B was not defined
in the program, the computer assigned it a value of 0. This is an
important fact to remember when you write programs.

36.

30 Hands—on BASIC

This concludes the discovery activities for this chapter. Turn off the
computer and go on to the next section.

2—3 DISCUSSION

Correcting Mistakes

Since most of us make mistakes while typing, we need to be able to
correct errors. Suppose you make a mistake typing a line. How you
corrected it depends upon whether you have pressed the
key yet. If you are on the line containing the error, you can move the
cursor left using both the key (key on the ATARI
1200XL) and the left arrow key and make corrections as you learned
in Chapter 1. When all the corrections are made in a line, press the
key!

If you are not on the line that contains an error, you can
either retype the line to correct it or use LIST and the line number.
Then move to the error using the up arrow and left or right arrow
keys. You can make changes by typing over characters and using the
INSERT and DELETE keys, if necessary. Remember that you must
hold down the key when performing any editing function. In
addition, you must press the key while you are still on the

line for the corrections to be made. You should practice correcting
a line until you feel you have mastered correcting mistakes.

Learning the Requirements for BASIC Programs

You have inferred several important facts about BASIC programs.
As a point of reference, we will use the program you used earlier.

iga LET A=1
118 LET E=5
128 LET C=/+E
128 FRINT C
148 EHD

Each BASIC program consists of a group of lines called state-
ments. Each statement must have a line number. The program above
has three BASIC statements: LET, PRINT, and END. The first two
statements will be treated fully in the next chapter. For the time
being, their function in this program is clear. The END statement is
not required with the ATARI computer. The computer will execute

Introduction To BASIC 31

the program with or without the END statement. However, it is a
good practice to use it, especially in long programs, so there will
be no confusion about where the program ends. Make it a rule to
use the END statement in all programs even though the computer
doesn’t require it.

Generally the line numbers in a BASIC program are not con-
secutive (e.g., 100, 101, 102, etc.) because you may want to insert
additional statements later if you discover errors or want to modify
the program. If there were no intervals between lines, you may have
to retype the entire program to make a change. “Gaps” in the line
numbers allow you to insert statements simply by typing in the new
statements with line numbers not already in the program.

As you saw in the discovery exercises, spaces are generally
important in BASIC program statements. The computer will let you
know whenever spaces are used incorrectly. If you write readable
statements, you should have no problems with spaces.

In BASIC the order in which you enter the lines makes no
difference. If you type

148 END
128 LET C=A+E
118 LET B=2
128 PRINT C
188 LET A=1

and display this new program, the computer will sort out the state-
ments and display them in numerical order. In the same way, if you
were to execute the program as typed above, the computer would
sort the statements into the proper order before it executed them.
You can remove a BASIC statement from the program by
typing the line number and pressing the key. You can
modify statements by retyping lines or editing them as we have
shown. You can add new statements by using line numbers not
already in the program. Thus, you can add, remove, or change
BASIC statements as you wish. This ability to change programs
easily is a desirable characteristic of BASIC on the ATARI computer.

Telling the Computer What to Do

There is an important distinction between statements (lines in a
BASIC program) and commands. Commands tell the computer to
do something with a program. You have seen several of these in the
computer work, and we will briefly review the use of each.

32 Hands—on BASIC

When you enter a BASIC program, it goes into memory.
Quite often you need to see the program contained in memory,
perhaps because you want to see changes made in the program, or
perhaps because you simply need a copy of the program. In any case,
you use the LIST command. The wise programmer makes valuable
use of this command. If a program doesn't work as it should, your
first step should be to display the program in memory. You may
have the computer furnish a copy of the program stored in memory.
Use this copy to troubleshoot the program.

When you turn off the computer, the contents of memory are
cleared out automatically. When the computer is on, however, it
is possible to mix up programs. Suppose you are working on one
program and decide to go to another. If you don't clear the first
program out of memory, the second program will enter over the
first, and as a result parts of both programs may be in memory.
The way to avoid this is to clear out (or erase) a program with the
NEW command when you are through with it.

A BASIC program is simply a set of instructions on which the
computer acts. However, the computer needs to be told to start this
process. When the computer receives the RUN command, it goes
to the program statement with the lowest line number and carries
out the instructions. The computer then goes to the statement with
the next-to-lowest number and keeps on carrying out instructions in
numerical order, unless the program directs that a statement be done
out of order.

Entering and Controlling Programs

So far, when you have typed programs or commands, the

L{REETURH > prompt appeared to remind you to press the |[RETURN
ﬂ

key. Pressing |RETURN| should be a habit by now, so we will not
use the {EETURH > prompt in the future. From now on, remember
to press the key to let the computer know you are finished
typing a statement or command.

Sometimes you need to control a program that is running.
Certainly you would want to interrupt a program in a closed loop
because otherwise the program will run forever. You can break
into such a program by pressing the key. (Sometimes
you must press |BREAK| twice.) The computer then interrupts
its execution of the program and displays STOFFED AT LIHE
(whatever line was being processed when it was interrupted). The

Introduction To BASIC 33

computer resumes program execution when you type CONT and
press :

You would also interrupt when the computer is in an input
loop waiting for a number to be typed in. Again, press m

The computer will jump out of program execution and displays the
cursor l.

Using Variable Names in BASIC

A common confusion for the beginner in BASIC is the distinction
between the name of the variable and the data stored under that
name. In the BASIC statement

[y
™
[n
g
f\r

LET &=

2]

the A names a variable. Variable means that different values can
be assigned to &. Consequently, LET statements are often called
assignment statements. In this case the variable A is assigned the
value 2. What actually happens is that somewhere in the computer
memory there is a location named &, and the computer stores the
number 2 in that location, The fundamental distinction is between
the name of a location in memory and the contents of the memory
locations, much like the distinction between a post office box number
and the contents of that box. The box number does not change, but
the contents of the box may change at any time.

In ATARI BASIC, the use of LET in the assignment statement
is optional. In this book, we will always use LET in assignment
statements for the sake of consistency.

Consider the following statement.

134

Tt

!

LET C=R+E

This statement instructs the computer to get the numbers stored in
locations named & and E, add them together, and put the sum in
the storage location named . The equal sign tells the computer to
evaluate what is on the right and assign it to the variable name on
the left. Now consider the BASIC statement

128 LET E=E+1

If we consider the statement above as an algebraic equation, we have
B=B+1

34 Hands—on BASIC

If we subtract B from both sides of this equation, we have
0=1

which is very strange indeed! It is clear that in a BASIC statement
the = sign does not mean what it does in an algebraic equation.

Instead, the statement

1z LET B=E+1
instructs the computer to get the number stored in location E, add
1 to it, and put the result back in the storage location named E.

If you store a number in a location, anything that was stored

there before is lost. Consider the following statements:

1

e
[x

vl

LET @=
LET @=

[l e

1 T
i T o

bee [0
—
]

Line 100 instructs the computer to set up a location called & and
put the number 1 in that location. Line 110 tells the computer to
multiply 2 by 3 and store the product in location &. The 1 stored
previously in location F is then lost,

To be precise, the variable & above is a “numeric” variable.
The reason for including numeric in the name is that there is another
type of variable called a “‘character string.” You were introduced to
this concept briefly in the discovery activities.

It is easy to distinguish between numeric and character-string
variables. A, BOOK, M, and P would all identify numeric vari-
ables and name numeric quantities. A$, BOOK$, M$, and P$ all
name strings of characters. The $ symbol identifies the name as a
character-string variable. In the BASIC statement

1aa LET EB$="BARH"

B$ names a location in memory in which the character string
“BARN" is stored. The quotation marks set off the string, but are
not part of it.

Recall that the ATARI computer has very relaxed rules for
variable names. It allows you to use “long” names for numeric vari-
ables as well as character strings. You can use up to 110 characters
(including the $ character in the case of character strings) in long
names. The computer has a set of words that are reserved for com-
mands and statements and cannot be used to name variables. See

3.

Introduction To BASIC 35

the ATARI BASIC Reference Manual for the list of reserved words.
If you make a mistake and use one, however, the computer will often
let you know.

Let’s go over the important points once more. A variable name
in BASIC identifies a storage location in memory that can contain a
number or character string. The contents of the storage location (the
value of the variable) may be changed, but the name of the location
cannot.

The LET (or assignment) statement evaluates what is on the
right side of the equal sign and assigns it to the storage location
named on the left side. Thus,

4 LET O = A+B+C

instructs the computer to evaluate the expression (A+B+C) using
the numbers stored in memory locations named A, B, and C. The
computer stores the result in the memory location named D. We will

return to the topic of character-string variables several times in this
book.

2—4 PRACTICE TEST

How do you signal the computer that you are through typing a line
or instruction?

L

Suppose that your computer is waiting for you to enter a number
in an INPUT statement of a program. You decide that you want

to jump the computer out of the program instead. How do you do
this?

How do you interrupt a program that is running on your computer?

36 Hands~on BASIC

4. What is wrong with the following program?

igg LET A=l
i1 LET B=3
128 LET C=B-A
FEIHT C

138 EHD

5. What will happen if the program in question 4 were corrected and
run?

6. How long can variable names be?

N

How do you insert a line in a BASIC program?

8. How do you replace a line in a BASIC program?

L

9. How do you remove a line from a BASIC program?

L

10. How do you display the program in memory?

11. How do you erase the screen?

Introduction To BASIC 37

12. How do you command the computer to execute the program in
memory?

13. How do you erase a program in memory?

14. What is the difference between a numeric and a character-string
variable?

CHAPTER 3

GRAPHICS

3—1 OBJECTIVES

In this chapter we will discuss the graphics statements that are avail-
able in the ATARI BASIC language.

Using Text and Graphics Modes

ATARI BASIC has three text modes and six graphics modes. You
will learn how to enter graphics modes to begin creating drawings
with your computer.

Drawing Lines

Straight lines are the basic component of many kinds of graphics.
You will learn to draw lines easily and quickly as a first step in
learning to make complex drawings on the display screen.

Creating and Positioning Shapes

You will learn to use your ability to draw lines to create shapes and
place them where you wish on the screen.

Using Animation

Moving figures on the screen make computing more interesting and
greatly increase the effectiveness of graphics displays. You will learn
how to make figures move about the screen.

40 Hands—on BASIC

Using Color

Colors make graphics more attractive. You will learn to draw with
colors and change background and border colors.

3—2 DISCOVERY EXERCISES

Turn on the computer and bring up ATARI BASIC. Remember to
press after you have typed a line. Type

CRARPHICSE =2

What happened?

What happened?

Type
COLOR 1

What happened this time? (Look at the center of the screen.)

L

Now type
FLOT 21&.5
FLOT Z218.15%
FLOT S5.152

Where do the points appear on the screen? (Look at the corners of
your screen. If your TV set is improperly aligned, some or all of
these points may not appear.)

L

Graphics 41

What should you type in to display or plot a point in the upper
left-hand corner of the screen?

L

Try it and see if you were right.

Now type
CRAPHICS &2

Are the points still there?

L

Type
18 PRINT “HELLAO"
28 PRINT "SAILOR®
38 EMD

and list the program. What happened?

L

Now type
CRAFHICS @
and again list the program. What happened this time?

L

GRAPHICS 0 puts you back into standard text mode.
Type

GRAFHICES &

FLOT 3.5

ORaWTO 216.5
What happened?

L

10.

11.

12.

42 Hands—on BASIC

Type

135

ODRAWTO 218,
ORAMTO 5.5

Draw the figure that appears on the screen.

Are all the lines solid?

Now type
ORAKMTO 2Z26.5
What happened?

L

Error 141 means the point (in this case 320,5) is off the screen. The
first number in the DRAWTO statement cannot be larger than 319.
Actually you may not be able to see the allowable corner points such
as 0,0 and 319,0 if your set is not adjusted very well.

Clear the graphics screen by typing
CREAPHICS 2

What statements would you enter to draw a box around the entire
graphics region? (See steps 3 and 4.)

L

Enter the statements to see if you were correct.

13.

14,

15.

Graphics

43

Let’s draw a series of lines. Clear the graphics screen with the
GRAPHICS 8 statement. Type
FLOT 5.5
DRAWTO S8.5
ORAWTO 58,58
Draw the shape that appears on the screen.
L
Type
FLOT 5.5
ODRAWTO 5. 188
ORAWTO 188,144
What happened?
—
Clear the graphics screen. (See step 11.) Type

FLOT 1&a.18
ORAWTO 58,54

What happened?

16.

17.

18.

44 Hands—on BASIC

Now type

Are the lines the same length?

L

Compare the two sets of statements that draw these lines.

Type

LI
15

ODRAMTO 2608, 156

Where did this line start?

L

Where will the line start that is drawn by

ODREARWTO 10,10

{

Try it and see if you were right.

Clear the graphics screen. Type
COLOE @&
FLOT 8.8

DRAWTO S@. 58

Was anything drawn on the screen?

Graphics 45

19. Type

CoLar 1
FLOT &.8
ODEAWTO 50,50

What happened?

20. Type

21.

COLOR &
FLOT @.48:0DFRAMTO S8,

al
T

What color was used to draw this line?

COLOR 1 sets the drawing color to white. COLOR 0 sets the draw-
ing color to the background color. Drawing a line with background
color over a white line has the effect of erasing the white line.

Note that you can put more than one statement on a line if
you separate them with a colon.

Clear the graphics screen and type

COLOR 1'F'Ll'lT 18,18
ORAWMTO 18, 328:0rRAMTO 20, 328

OFEAKTO 3E .1 ORAWTO 16,10

|:|
(] |""

What was drawn?

How long is the edge of the figure?

L

Where did the figure start?

46 Hands—on BASIC

22. Now let’s use programs to draw shapes. Type
CEAFHICES @
and then type the following program.

CEAPHICE &

LET A=n

LET EBE=d

FEINT "EDRCE LEMCETH "
INPUT E

COoLoR 1

FLOT A.BE:-DRAWTO R+E.EB

ODRAWTO A+E.EB+E

ODRAWMTO A.B+E:DREAHTO ALE
LaTo 24
EHD

[SO I R T T 1 Y W %1 I % B
N e T e S o T s T % O ot B s T ot

155

Study the program. Use the points in the PLOT and DRAWTO
statements in lines 70, 80, and 90 to fill in the blanks in the following
diagram. Connect the points with lines as indicated in program lines
70, 80, and 90.

A.B A+EB

,B+E A+E, __

Run the program. Input 20, 40, 70, 100 and 150 at the question
mark prompts. What is the starting point for each figure?

L

Jump the program out of the input loop (|[BREAK|).

23.

24.

Graphics 47
Enter text mode by typing

LEAPHIC: @
Change lines 20 and 30 as follows.

28 PREINT "STARTIHG FPOIMT "
28 IMPUT A.E

Display the program. Run the program. Enter 20,70 for the starting
point and 70 for the edge. What happened?

Now enter 100, 150 for the starting point and 70 for the edge. What
happened?

Avoid illegal quantities in DRAWTO statements if you wish the
program to continue executing. When you plot a point, the largest

first number you can use is 319, and the largest second number is
191.

Now that you are able to draw shapes by using the DRAWTO
statement, let’s make the box move on the screen. Enter text mode

(see step 23) and display the program. Add lines 55, 56 and change
line 100 as follows:

LET A=A+1
LET B=B+1
7@ COTO 55

Ll
Ty 0N

Display the program. Check it against the complete program below.

18 GEAPHICS &8

28 FPRIHT "STARTIHLC FOIWHT ";
28 IHMFUT A.B

48 FPREINT "EOGE LEMETH "
38 IMPUT E

LET A=A+l

25.

48 Hands—on BASIC

26 LET EB=E+1

&8 COLOR 1

7@ PLOT A.B:DRAMTO A+E.E
28 DRAMTOD A+E.B+E

33 ODRAWTO A.EB+E:DREAWTO ALE
1@e CoTo 55

118 EHDO

Run the program. Enter a starting point of 0,0 and an edge length
of 20. What happened?

Are you in text mode now?

L

Enter text mode (see step 23) and change lines 55 and 56 as follows.

L

LET A=a+3
56 LET B=B+2

nn

Run the program entering 0,0 and 20 again at the input prompts.
Does the figure move faster?

Again, enter text mode and add the following lines to erase the box
right after it is drawn.

21 COLOR B:FLOT A.E
32 DEAWTO a+E.B:DRAMWTO A+E.EB+E
232 DEAWNTO &.B+E:DEAWTO ALE

COLOR 0 causes the DRAWTO statements in lines 92 and 93 to be
drawn in the background color. Run the program entering 0,0 for
the starting point and 20 for the edge. What happened?

26.

Graphics 49
The box appears to move down the screen. In direct mode, type

FEIMNT A+E.EB+E

Which of these numbers was the illegal quantity?

L

If you are not using a color television set, go to step 31. Let’s
investigate using color to draw lines. Enter text mode and clear the
memory and the screen. If you wish to check the color settings on
your display, type and run the following direct mode statements.

CEAFHICE 3
COLORE 1
FLOT &.4a
ORAWMTO 240.
COLor 2
FLOT @.2
CREaHTO 24,
COLORE 3
PLOT 8.4

]
SOL

)

GRAPHICS 3 puts the screen into low resolution graphics, in which
there are four colors available for drawing lines. These statements
will display three horizontal bars whose colors are orange, light
green, and dark blue, respectively.

Now type in the following direct mode statements, noting the
display as you do.

FLOT @.2
DREMTO 28,2

COLOR 0 is black, the same as the backround.

27.

28.

29.

30.

50 Hands—on BASIC

Let’s look again at high resolution graphics and color. Look at the
screen after typing each of the following direct mode statements:

CEAFHICE 5

SETCOLOR Z2.2.4
SETCOLOR 2:4.4
SETCOLOE Z2.5.4
SETCOLOR 2.8.4

Did the background colors change?

Now type in

SETCOLOE
SETCOLOR
SETCOLOR

=
Fal
=
=
o

[y O

P g e

Did the background color get brighter?

Now type in
SETCOLOR 4.4.4

What happened to the border color?

Type in

SETCOLOR 4.
SETCOLOR 4.

DOUT
f

Did the border color change?

31.

Graphics 51

Chapters 7 and 8 will present program flow controls that will help
you avoid illegal quantity errors. For now, we have completed the
discovery exercises. Turn off the computer,

3—3 DISCUSSION

Using Text and Graphics Modes

In the discovery exercises you saw two screen modes, text mode
and graphics mode. Actually, your ATARI computer has three text
modes and six graphics modes. To choose a particular mode you
must know of the attributes of each mode and what task you wish to
perform. (See Chapter 9 of the ATARI BASIC Reference M anual for
more details.) We have used the standard text mode, GRAPHICS
0, in this chapter as well as in the previous ones. You enter the
standard text mode every time you turn on your computer and bring
up ATARI BASIC. It provides a screen of 24 lines of text and 40
columns.

To enter the high resolution graphics mode, use the
GRAPHICS 8 statement. The high resolution graphics mode
provides a display of 320 points across and 160 points down. There
is also a narrow band at the bottom of the screen for 4 text lines.
This combination is called a split screen. You can obtain a full
graphics screen (320 points by 192 points by using the statement
GRAPHICS 8 +16 instead of GRAPHICS 8. Adding +16 to any of
the graphics statements will give you a full screen rather than a split
screen. A full screen allows you to plot more points at the bottom
of the screen,

To enter the low resolution graphics mode, wuse the
GRAPHICS 3 statement. This will provide 40 points by 20 points
with a split screen.

[| Use GRAPHICS 8 to enter high resolution graphics mode.
Use GRAPHICS 3 to enter low resolution graphics mode.

Drawing Points and Lines

The PLOT statement is used to draw points. For example,

FLOT 8.8

plots a point in the upper left-hand corner of the screen in the current

52 Hands—on BASIC

color. The point may not be visible if your set is not properly
aligned. The statements

-n
I""
[}
....
]
tad T

313,159

'.L'

plot a point at 0,0 and then draw a diagonal line across the screen
in the current color. The statements

FLOT 1&8.28
ODRAWTO 150,132

plot a point at 160,80 (the center of the screen) and then draw a
line down to the point 160,159. The graphics pen is positioned at
the last point it draws.

[| Use PLOT to draw points, DRAWTO to draw lines.

Creating and Positioning Shapes

As you saw in the discovery exercises, creating shapes is a simple
matter of drawing lines to produce the desired shape. For example,

CEAFHICE =2

coLor 1

FLOT @.408: DREAWTO 10.6: DRAWTO Z4. 40
DREAWTO 18.40: PFLOT 18.48: DEAMTO 18.58

draws a pine tree when entered in direct mode.
To position this pine tree near the point 160,80, you would
use the following statements:

CRAFHICS &

COLOR 1

FLOT 1&66+8,58+48: DEAWTO 168+18,28+8
ORAWTO 160+28,238+40: DRAWTO 158+0, 38+4A@
FLOT 168+1@,.2368+40: DRAWTO 1668+18.28+58

You can select a starting point A,B while the program is run-
ning by using an INPUT statement in the program. You can position
the figure anywhere you desire on the screen. Take care that no point

Graphics 53

has a first number larger than 319 or a second number larger than
191.

As you saw in the discovery exercises as well as in these last
two examples, you can put multiple statements on a single line if
separate them with the colon.

Using Animation

You can make a shape appear to move about the screen by first
drawing it at a particular position in white (or color) and then
redrawing it in the background color in the same position. Then
repeat the first two steps using a slightly different starting position.
If you continue to move the starting positions, the shape will appear
to move along the path of the starting positions. For example, the
program

188 CEAFPHICE =

118 LET A=8

128 COLOR 1

128 FLOT A+Z28.48: DRAMTO A+232.25

148 DRAMTO A+40.48: DRAWTO A+26, 48

158 PLOT A+38.48: DORAMTO A+324.45

16 PLOT A+18.45: DRAMTO A+450.45

178 DRAMTO A+45.58: DRAWTO A+15.358

128 ORAWTO A+18.45

128 COLOR 8

288 FLOT A+Z8.48: ODRAWTO A+23.25

218 DRAMTO A+40.408: ORAMTO A+28. 48

228 PLOT A+39.448: DODRAMTO A+34.45
28 PLOT A+10.4%5: ORAMTO A+58, 45

248 DRAWMTO A+45.58: DRAMTO A+15.358

258 DREAMTO A+10.45

Z2ed LET A=A+15

Zy| CoTo 124

2268 EHD

will cause a sailboat to move across the top of the screen. You might
try this program on your computer. Notice that the value of the
variable A (which is changed in line 260) sets the starting point. As
the starting point changes, the position of the figure also changes.

54 Hands—on BASIC

Using Color

In high resolution graphics, lines can be drawn in one of two colors.
COLOR 1 causes a line to be drawn in what might be called white
(changing the background color causes variations in the color of the
line). COLOR 0 causes a line to be drawn in the background color.

In low resolution graphics, there are four colors available
for drawing lines. COLOR 1 draws lines in orange, COLOR 2
draws lines in light green, COLOR 3 draws lines in dark blue, and
COLOR 0 draws lines in the background color. Again, changes in
background color will change the color of the lines.

As you saw in the discovery exercises, the SETCOLOR state-
ment can change the color and brilliance of the background and
border colors. For example, the statement SETCOLOR 2,4,6 will
make the background pink. The first number, 2, refers to the back-
ground. The second number, 4, indicates what color the background
will be, and the third number, 6, gives the brilliance or luminance
of the hue. The higher the third number, the greater the luminance.
This number can be any even number from 0 to 14. Some of the
possible color hues and their corresponding numbers are listed in the
table below. See Table 9.3 of the ATARI BASIC Reference M anual

for the complete set of colors available.

B Number Color
0 Gray
2 Orange
4 Pink
7 Blue
10 Turquoise
12 Green

The border colors are determined in the same way as the
background colors. To change border colors, use 4 as the first
number in the SETCOLOR statement. The statement SETCOLOR
4,12,6 would give a green border.

4,

Graphics 55

3—4 PRACTICE TEST

What figure will the computer draw when you enter the following
direct mode statements?

CRAFPHICS &:COLOR 1

PLOT 168.60:0RANTO 14@. 68
DRAWTO 148, 188:0RAKMTO 120,108
DRAKTO 186,608 DRAMTO 1668, 66

L

What figure will the computer draw when you enter the following
direct mode statements?

CRaGPHICS &:COLOor 1

FLOT 168.28:0REAWTO 140,180
DRAWTO 150, 188:DRAWNTO 168,20
FLOT 148.168:0RAWTO 140,140
CRAWTO 1268, 146:0FRAWTO 120, 1648

L

Wrrite direct mode statements that will instruct the computer to draw
the following diagram, with the point (160,80) as indicated.

[y
1Ty
(o]
(]
=

L

Write direct mode statements that will instruct the computer to plot
the following points in high resolution graphics.

a. The center of the screen.

-

56 Hands—on BASIC

b. The upper left-hand corner.

c. The top center point.

d. The point {240,150).

5. a. How do you get into high resolution graphics mode?

b. What color statement should you use if you want to draw an
orange line in low resolution graphics?

L

6. What does the following program do?

188 GRAPHICS 2
118 LET @=a

128 COLOR 1

126 PLOT 148.A: DRAMTO Z8@.4
148 COLOR @

156 FLOT 148.a: DRAMTO 288,64
168 LET A=A+S

175 £0TO 128

128 EHD

CHAPTER 4

COMPUTER ARITHMETIC

AND
PROGRAM MANAGEMENT

4—1 OBJECTIVES

Now that you have learned how to turn on your ATARI computer,
how to bring up ATARI BASIC, and how to communicate with the
computer, you are ready to go on to more interesting tasks. You will
need an ATARI disk drive and a blank diskette for some of these

activities.

Doing Arithmetic on the Computer

Mathematics on the computer calls for only the simplest arithmetic
operations. You will gain a clear understanding of how these arith-
metic operations are done.

Using Parentheses in Computations

You must type all mathematical expressions on a single line to enter
them into the computer. Some expressions can be handled this way
only by organizing parts of the expressions in parentheses. You will
learn to use parentheses effectively.

Using E Notation for Numbers

The computer must deal with both very large and very small num-
bers. E notation is used by the computer to describe such numbers.
You will learn to recognize and interpret E notation.

58 Hands—on BASIC

Formatting a Diskette

You must prepare or “format” new or blank diskettes for use on your
ATARI computer. You will learn how to format diskettes correctly
in order to store programs.

Storing and Retrieving Programs

You have already seen some commands. You will learn additional
commands that will permit you to store programs on and retrieve
them from a diskette.

4 —2 DISCOVERY EXERCISES

Turn on your computer and bring up ATARI BASIC. Recall from
Chapter 1 the following symbols for arithmetic operations:

+ Addition
—Subtraction

* Multiplication
/ Division

To review the arithmetic operations, type in the following program:

168 IMFUT &

118 IHFUT E

128 LET C=A%B-B-3
128 PRIMT C

i4@ EHD

Display the program and study it briefly. If we run the program
now and enter 2 for A and 3 for B, what do you think will be typed
out?

L

Run the program and write down what happened.

2.

Computer Arithmetic and Program Management 59

Clear the program in memory. Note that the symbol ~ is on the
same key with the * and requires you to use the [SHIFT] key. Now
type

188 LET A=3%3
116 LET B=3"2
1'"'E1 FEINT A

13
1c

a1l T
oy o |
'U
el
P
]
m

Display the program and make sure it is correct. Now run the
program and record what was typed out.

L

Compare the numbers printed out to the expressions in the lines
where they were computed. Notice that they are essentially the same.
See if you can figure out what is taking place.

Type

- 5
Doy I]

LE
LE

1 T
1 T
Run the program. What was typed out?

L

Type

A
JOx

[N
b
E
4
[

-l‘-n Pl

|‘|| |'||

LET a=
LET EB=

1€
1

%
N

Run the program. What was typed out?

| I

What is the ~ symbol used for?

7.

60 Hands—on BASIC

Remember from your introductory algebra course (if you haven’t
had algebra, don’t panic!) that when you want to multiply 2x2x2
for example, you can indicate this with an exponent. You would
write the expression as

23

How would this expression be written in BASIC using the ~ symbol?
(Hint: See steps 2, 3, and 4.)

L

Fill in the operators (symbols) that call for the following arithmetic
operations:

Division

L

Exponentiation

Multiplication

Clear out the program in memory. Type

188 LET A=4+24c6-3
118 LET B=04+2 %63
1268 LET C=4+{2%5 23
138 LET D=4+2%5-32
148 FRINT A

158 FEIHT E

led PRIHWHT C

iv8 PRINT D

ig2@e EHD

The two points of this program are (1) the order in which the
arithmetic is done, and (2) the effect of the parentheses. If you
look closely, you will see that the same numbers and operations are
involved in each of the calculations in lines 100, 110, 120, and 130.

-

Computer Arithmetic and Program Management 61

The only difference is the groupings within parentheses. Run the
program and record what was typed out.

Study the program and the numbers the computer typed out until
you see what is taking place in the program. The computer has
established rules for such situations. We will go over these rules
later in the chapter.

Clear out the program in memory. Now enter the following pro-
gram:

LET A=
LET B=32%
LET ¢
FEINT
FEINT
FREIHNT
EHD

o e ke

|

e
AR

)
T

-
AN o

...
5]

T
BB A R 8

I
[T B WY
I I
D AUt

o

=
M W
DoV
Do
[Wra—
-
[

o
AR

1l
Y)
L
T
A
s
o
[
Dy
D

™ T T
(R B o R
M I

forde e e pobe okt ook b
o
L

[| Y B W

Execute the program and record the output.

Can you explain the different form in which the numbers were typed
out? (Hint: Count the number of zeros in the multipliers in lines 100,
110, and 120.)

Type
igg LET A=4-16
116 LET B=d4-C10%16
128 LET C=4-<1afilgxia;:

Execute the program and record the output.

Can you understand what is happening in the output? Count the
zeros in the denominators in lines 100, 110, and 120.

10.

11.

12.

13.

14.

15.

62 Hands—on BASIC

Explain in your own words what it means when an E shows up in a
number typed out by the computer.

If you still do not fully understand the purpose of the E notation,
don’t worry. We will return to it later.

Before you can proceed with storing and retrieving programs, you
must format a diskette. (If you do not have a disk drive, go to the
discussion.} Turn off your computer and connect the disk drive (see
steps 1-6 in the first few pages of the Qwner’s Guide that came with
the disk drive). When you are asked to insert a diskette at step 5
in the Owner’s Guide, insert the diskette labeled Master Diskette II
that came in the package.

Close the disk drive door. If you removed the BASIC cartridge,
replace it and turn on the computer to bring up ATARI BASIC.
Note: Wait until the the busy light goes off before proceeding.

Now type
oos

and in a short time you will see a “menu” on the screen. This menu
gives you several options.

You are now ready to format a diskette and place the DOS files
on it. First replace the diskette in the drive with the diskette to be
formatted. This can be either a new diskette or an old one. Warning:
all programs and information on this diskette will be lost when the
diskette is formatted.

We note from the menu that I is the letter you need to select. So type

I and press [RETURN] . Type in 1 and Y, respectively, in response to
the next two questions. After about 45 seconds, the diskette will be

formatted, and the display will again show

SELECT ITEHM OR REETURH FOR MEHNU

Computer Arithmetic and Program Management 63

16. The next menu item you want is H. Type in H and press |[RETURN] .

17.

18.

19.

20.

21.

Again, type in a1 and Y in response to the next two questions. The
computer will display

HWEITIMG MEM DOS FILES

To see what files are stored on the diskette just formatted, type in

A and press |[RETURN| twice. You should now see

- (]
[3 N Y|

e WO

wed LT LEN
=
b o I n]

We are now ready to store and retrieve programs. Get back to

ATARI BASIC by typing B and . Then type in the follow-

ing program:

188 LET A=2
118 LET B=3Z
128 LET C=na%E
138 PRINT C
148 EHND

Display the program to make sure it is correct. Run the program.

Now type
SaldE "0O:-PREODUCT™

This moves the program in memory to diskette under the name
PRODUCT. You may choose any name of eight characters or less
beginning with a letter,

You can obtain the directory of files on this diskette by first typing
DOS and pressing |[RETURN] . When the busy light on the disk drive
goes off, type in A and press {RETURN| twice. You should now see
that the program PRODUCT has been added to the directory. Is it
there?

22,

23.

24,

25.

64 Hands—on BASIC

Get back to ATARI BASIC by typing B and . Now display

the memory. Is anything there?

Type in the following program.

188 LET O=2%&-8-4
118 FRINT O
126 END

Run the program. Think of a name for this program other than
PRODUCT. Limit the name to eight or fewer characters The first
character must be a letter, but the others can be digits or letters.
Record the name below.

Move the program in memory to diskette under the name you have
just chosen. (See step 20.) Now display the program in memory. Is
the program you just saved to diskette still in memory?

1

Obtain the directory of programs stored on diskette (See step 21.)
Are the two programs you just entered there?

Now, you should have stored the two programs you just entered.
The name of the first program is PRODUCT; you wrote the name
of the second in step 22. To simplify the discussion, we will refer
to this second program as PROGRAM 22. You, of course, must use
the name you selected for the second program.

Get back into ATARI BASIC with the correct menu selection. To
move PRODUCT from disk to memory, type

LapD "0O:FPEODUCT®

Display this program and verify that it is the right one. Now move
PROGRAM 22 from disk to memory. Display the program in
memory. Which one is there now?

L

26.

27.

28.

Computer Arithmetic and Program Management 65

What happened to the program PRODUCT that was in memory
when you moved PROGRAM 22 into memory from diskette?

Now type
FUH "D:FPRODOUCT™
What number is displayed on the screen?

L

What program is now in memory?

Display the program to see if you were correct.

We now have PRODUCT in memory. Remove the program
PRODUCT from diskette by typing DOS. Then select D from the
menu and in response to

OELETE FILE SFPEC
type in PRODUCT. Then type in a Y in response to

TYFE "¥" TO DELETE
O1:PROOUCT 7

Obtain a directory of the programs stored on diskette. PRODUCT
should not be there, but PROGRAM 22 should be. Inspect the listing
of programs. Is everything the way it should be?

L

Get back to ATARI BASIC. Now try to move PRODUCT from disk
to memory. (See step 25.) What happened?

66 Hands—on BASIC

Error 170 means the file is missing. Clear out PROGRAM 22 from
the diskette. (See step 26.) Turn off the computer.

4—3 DISCUSSION

Doing Arithmetic on the Computer

We are concerned with five arithmetic operations. These are ad-
dition, subtraction, multiplication, division, and exponentiation
(+, =, % /,7). The first four are familiar to you. The last
(exponentiation) may be unfamiliar, but is not nearly as complicated
as its name suggests.

The exponentiation operation is represented by the ~ symbol.
Exponentiation merely means “raised to the power.” Therefore, 374
means "3 raised to the fourth power,” or 3x3x3x3, giving 81 as the
result. (The computer actually gives 80.99999834 due to the way it
handles exponentiation.)

You need to understand the order in which the computer
performs arithmetic operations. Consider the following expression:

2+372/5—1

If the computer simply performed operations starting at the left as
they occur in the expression, it would add 2 plus 3 (giving 5), raise
5 to the second power, (giving 25), divide by 5 (giving 5), and sub-
tract 1 producing an answer of 4. However, suppose addition and
subtraction are done first, then exponentiation, then multiplication
and division. This order would give 5 raised to the second power
(25) divided by four, for an answer of 6.25.

Different rules for the order of arithmetic operations could
produce other answers. However, there are well-defined rules in
BASIC for the order and priority of arithmetic operations. They
are:

Operations are performed from left to right, using the follow-
ing priority rules.

The priority for arithmetic operations is

1. Exponentiation
2. Multiplication and division
3 Addition and subtraction

Now going back to the example:

Computer Arithmetic and Program Management 67
2+372/5-1

First you scan left to right for exponentiation. Since there is an

exponentiation indicated (372), it is done first. Now the expression
is:

2+9/5-1

You scan from left to right for exponentiation again, and finding
none, look for the operations with the next highest priority, multi-
plication and division. The division is therefore done next, with the
following result:

2+1.8—1

Since there are no more multiplications or divisions in the expres-
sion, you scan from left to right for addition and subtraction. The
addition gives

3.8—-1

and the final subtraction produces the answer of 2.8.
Review the rules for order and priority of arithmetic opera-
tions until they become second nature to you.

Using Parentheses in Computations

The rules for order and priority are not the whole issue in arithmetic
operations. Consider the following example:

((2*3+4°2)*2+5)%(3~2—4)

The difference between this expression and the ones you have been
studying is that parentheses are used here to group parts of the
expression. We will go through this example in great detail to show
you how the computer attacks the arithmetic.

68 Hands—on BASIC

The computer starts by scanning from left to right and meets
the left parenthesis of B. It then looks inside to see if there are any
more left parentheses and finds the one for A. The next parenthesis
met is a right parenthesis for A. At this point, the computer has
isolated the first group of operations to be done. This is:

2*3+472

and is evaluated using the order and priority rules. The result is 22
(check it). Now the problem has become:

B C
]
(22*2+5)%(3°2—4)

On the next scan, the computer isolates the right parenthesis of B,
does the arithmetic inside, and the problem is now

]

49%(3~2—4)
Since there are only the C parentheses left, the computer does the
arithmetic inside, giving

49*5

which produces the answer of 245.

Thus, if parentheses are nested, the computer works out from
the deepest set, scanning from left to right. When a set of parentheses
is removed, the arithmetic operations inside are done according to
the order and priority rules given in the preceding section. A very
good rule of thumb for the beginner is to use extra parentheses if
there could be any confusion about how the computer will evaluate
an expression. Too many cannot hurt, but too few certainly can.

Using E Notation for Numbers

BASIC prints numbers in different forms. In particular, BASIC uses
the E notation for very large or very small numbers. Examples of
the E notation are 2.145E+06 or 6.032E—07.

Computer Arithmetic and Program Management 69

The reason you need this special notation is that the computer
usually prints out only nine digits for a number. A problem arises
if you want to print out a variable whose value is 45612800000,
eleven digits. The computer will print this out as 4.56128E+10.
The E+10 means that the decimal point belongs ten places to the

right of its present position. You can express very small numbers in
the same way. A variable whose value is 0.0000000683 would be
printed out as 6.83E—08. The E—08 means that the decimal point
belongs eight places to the left. The table below should help you
understand how to convert from decimal to E notation or from E
notation back to decimal notation.

Decimal Form E Notation
2630000 2.63E+06
263000 2.63E4+05
26300 2.63E+04
2630 2.63E+03
263 2.63E+02
26.3 2.63E+01
2.63 2.63
0.263 2.63E—01
0.0263 2.63E—02
0.00263 2.63E-03
0.000263 2.63E—04
0.0000263 2.63E—-05
0.00000263 2.63E—06

To change from E notation to decimal notation, look at the
sign following the E. If the number is +, move the decimal point to
the right as many places as the number. If the sign after the E is —,
move the decimal point to the left. To convert from decimal to E
notation, just write E + or — however many places the decimal has
moved left or right, respectively.

Actually, you shouldn’t get very tense about the E notation,
since you will rarely use it. The main reason for bringing it up
is that the computer may print out numbers in the E notation.
Consequently, you should be able to recognize what is happening.

Formatting a Diskette

As you saw in the discovery exercises, formatting a diskette (new or
old) is a straightforward task. With the computer turned off, you
turn on the disk drive. When the busy light goes off, you place the

70 Hands—on BASIC

Master Diskette II into the drive and close the door. (Note: Make a
copy of this diskette so that you can use the copy and preserve the
original. See An Introduction to the Disk Operating System, page
12). Then you turn on the computer. DOS will be loaded. If the
BASIC cartridge is not in place, the menu of disk drive operations
will appear on the screen. If the BASIC cartridge is in place you
can display the menu of disk drive operations by typing in DOS.
At this point, you replace the diskette in the disk drive with the
one to be formatted. To accomplish this, select I from the menu,
1 for the disk drive request, and Y to complete the process. This
clears all programs and information from the diskette. Copying the
DOS files to a formatted diskette will allow you to get back and
forth between disk operations and BASIC. To copy the DOS files
right after formatting the diskette, select H from the menu and again
respond with 1 to the disk drive request, then with Y to complete
the process.

Storing and Retrieving Programs

When you turn off the computer, you lose the program in memory.
If every time you turned on the computer, you had to type in pro-
grams you wanted to use, you would get very little work done.
Fortunately, with the ATARI computer you can type in long or com-
plicated programs, troubleshoot them, and then store the programs
on a formatted diskette for future use. To retrieve a stored program
you need only turn on the disk drive, place the disk you need into
the drive, turn on the computer, and bring up ATARI BASIC.

When you wish to save a program on diskette, you need to
give it a name. You can use any name provided it starts with a letter
and is eight characters or less. From the second character on, any
letter or digit may be used in the name. For instance, you could
use PRODUCT or TEST1. You should choose meaningful names to
help you remember what each particular program does.

[] To move a program from memory to diskette, type
SAVE “D: tname of program,”

| To move a program from diskette storage to memory, type
LOAD “D: mmame of program,”’

Computer Arithmetic and Program Management 71

] To move a program from diskette storage to memory and
execute it, type RUN “D: cmame of program)”’

You might not want to keep a specific program on a diskette
forever. The disk drive operations menu provides a way to clear pro-
grams from diskette storage. To clear out a program on a diskette,
select the appropriate letter in the menu of the disk drive operations
menu. As you have seen you can obtain this menu by typing DOS
and . You can get back to ATARI BASIC by selecting B
from the menu.

You must be very careful when using the SAVE command.

For instance, suppose you wish to move a program from memory to
diskette and inadvertently type

SHUE "0O:PROOUCT®

If PRODUCT is the name of another program saved on the diskette
in the disk drive, then the program on diskette will be replaced by
the program in memory. This is fine if the program in memory is
an update of the program on diskette. If not, however, you have
destroyed a program you wanted to keep. You can avoid this kind
of problem by making back-up or spare copies of diskettes. Keeping
arecord of all the files you save on a diskette can also help you avoid
this situation.

4—4 PRACTICE TEST

Write down the symbols used to signify the following arithmetic
operations in BASIC expressions:

a. Multiplication

L

b. Exponentiation

L

c. Division

5.

6.

72 Hands—on BASIC

When evaluating arithmetic expressions, what is the computer’s
priority of operations?

a. First

b. Second

c. Third

When the computer scans arithmetic expressions, in what direction
does it search?

L

Write a BASIC statement equivalent to the following expression.
Number the line 100.

A= (4+3B/D)?

L

If the computer runs the following program, what will it type out?

LET A=
LET E=3
LET C=CA*¥B+22-2
FEINT C

EHD

ol T

ok ek ok ek ek
I < S I O r |
oy Ty B8 B oy B |

Convert the following numbers to E notation:

a. 5160000

Computer Arithmetic and Program Management 73

b. 0.0000314

L

Convert the following numbers to decimal notation.
a. 7.258E+06

L

b. 1.437E-03

In the expression below, give the order in which the computer will
perform the operations.

188 LET A=({&~-3+4 "

Xl

What commands does the computer need to carry out the following
operations?

a. Moving a program from diskette storage to memory

on

. Moving a program from memory to diskette storage

@]

. Clearing out a program in diskette storage

d. Clearing out a program in memory

L

e. Displaying the program in memory

10.

74 Hands—on BASIC

f. Executing the program in memory

g. Displaying the names of all the files saved on diskette

[

Suppose you are typing a line into the computer and have not yet
pressed RETURN. How do you correct a single character?

CHAPTER 5

INPUT AND OUTPUT

5—1 OBJECTIVES

In this chapter you will get down to the business of writing programs.
You will also increase your knowledge of BASIC by looking at some
details about input and output.

Getting Numbers into a BASIC program

There are only three ways to enter numbers into the computer for
a BASIC program. Since the computer is concerned mainly with
numbers, you need to understand how to input these numbers.

Printing out Variables and Strings

After information is computed, it must be printed out. There are
different kinds of output, but usually you will want to output strings
of characters as well as numbers. This string output is handled
essentially the same as numbers, but needs special attention.

Spacing the Printout

The computer has a built-in spacing mechanisms, but you can use
punctuation to signal the computer to space output as you desire,
for legibility and sense.

Using the REM Statement

The wise programmer includes comments in programs to help ex-

plain or interpret what is being done. The REM statement in BASIC
lets you do this.

76 Hands—on BASIC

Working with Program Examples

Your ultimate goal is to learn how to write and troubleshoot pro-
grams. In this chapter you will begin with some simple program
assignments.

5—2 DISCOVERY EXERCISES

Turn on the computer and bring up ATARI BASIC. Enter the fol-
lowing program:

16a IHFUT &

i1 IHFUT E

iz IMPUT C

128 LET O=fa+EB+C
148 FPRIWT O

138 EHD

What do you think will happen if you run this program?

L

Run the program. When the first question mark appears, (the INPUT
prompt for A), type in 2. Likewise, when the second question mark
appears, type in 3, and finally, at the last question mark, type in 5.
Record the output.

L

Note that in the program in step 1 we have three INPUT statements
(lines 100, 110, and 120). Type

o
ke (T
-

) 14}

[T
oy
Ll

What does this do to the program?

Input and Output 77

Display the program in memory and see if you are right. Then type
128 IHFUT A.E.LC
Display the program. What happened?

L

Run the program and when the INPUT prompt (?) appears, type in

What happened?

L

Can you input more than one variable at a time in a BASIC program?

L

Run the program, and when the INPUT prompt appears type

- —
- 3
[|

What happened?

What is the computer waiting for?

What happened?

78 Hands—on BASIC

Run the program and when the INPUT prompt appears, type

2.2.5.:1

o =]

What happened?

Can you type in more numbers than are called for at an INPUT
statement?

What will happen if you do?

Can you type in fewer numbers than are called for at an INPUT
statement?

L

What will happen if you do?

L

Type
128 EEAD ALB.C

Display the program. What happened?

L

Run the program and record the output.

L

Error 6 means the computer is out of data.

Input and Output 79

9. Now type

10.

11.

12.

13.

1z

©n

DATA

el

5

[}

and display the program. What happened?

L

Run the program and record the output.

L

Based on what you have just seen, when a BASIC program contains
a READ statement, there must be another type of statement in the
program. What is that statement?

L

Name two different methods (other than using a LET statement) for
getting numbers into a program. (Hint: See steps 1 and 8.)

Display the program in memory. Delete the DATA statement (line
125). Type

145 DRTA 2.2.5

and display the program again. What happened?

L

Run the program and record the output.

L

Does it make any difference where the DATA statement is in the
program?

80 Hands—on BASIC

14. Clear the program in memory. Enter the program below

18 REARD A.B

1186 LET C=A~E

128 PRINT C

138 LOTO 164

148 0ODATAR 2.1.6.2.38.,9,35.,7
158 EHD

What do you think will happen if you run the program?

L

Try it and see if you were correct. Record the output.

Is the Error 6 (out of data) message associated with the READ
statement or the DATA statement?

15. Delete the DATA statement in line 140 from the program, and enter
the following statements:

L
| kA)
Lo oon
o
. Tv T
—
I
[y
]
p
L5
]

Display the program in memory. What happened?

L

16. If you run the program, what do you think will be displayed?

Run the program to see if you were correct. Record the output.

17.

18.

19.

Input and Output 81
Can you have more than one DATA statement in a BASIC program?

L

Does it make any difference where the DATA statements are in the
program?

L

Clear out the program in memory. Enter the following program:

LET a=1d
PRIMT &
EHDO

[T S WS —
[e T
O

What will happen if you run this program?

L

Run the program and record the output.

Now type
118 PREIHT "a"
and display the program in memory. What happened?

{

What will happen if you run the program?

L

Run the program and record the output.

20.

21.

22.

82 Hands—on BASIC

Type

118 FPEINT "HOUND DOG iR

and display the program in memory. What do you think will happen
if you run this program?

L

Run the program and record the output.

Type
118 PRIMT "B = "iA

Display the program and study it carefully. What do you think will
happen if you run the program?

L

Try it and see if you were right. Record the output.

Type
2% EEM DEMO FROCREAHM

Display the program. What happened?

Run the program, and record the output.

Does the REM statement in line 95 have any effect on the program?

Input and Output

23. Clear out the program in memory. Enter the following program:

1898 REEM METRIC COHUERSIOH FPROGRAWM
116 REM COMHUERT LES. TO LREAMS

128 PRIWMT "IMPUT HO. OF LEBS. *;

128 IHPUT P

148 LET C=454%F

158 PRIMT FP:" POUMDS IS ":0:" GRAMS"
168 GOTO 128

178 EHND

Display the program to see if it is correct. Note the semicolons.
Study the program carefully and try to guess what will happen if
you run it, Run the program. When the INPUT prompt is typed out,
enter any number you desire. Note what is typed out. Repeat this
process several times, then jump the computer out of the INPUT
loop. If you have forgotten how, see Chapter 2, step 21 of the

discovery exercises. What is the purpose of the REM statement?

L

24. Type

1 INFUT F
13
1s

DR
o on

COTO 115

and then display the program in memory. What happened?

[

Will the program work in this form?

Run the program and at the INPUT prompt, type 1. What hap-

pened?

L

Jump the program out of the INPUT loop.

84 Hands—on BASIC

25. Clear the program in memory and enter it again, modified as follows:

188 REM METRIC COHUERSION PROCEAM
118 EEM COHUERT LES. TO GCEAMS

128 PRIWNT "IHFUT HO. OF LBS. ";

1328 INPUT P

148 PREIHT FP;"POUHDS IS ";G;:"GRAMS®
158 LET G=454%F

168 LOTO 128

178 EHD

Can you run the program in this form?

Run the program and at the INPUT prompt, type 2. What hap-
pened?

L

What is wrong. Remember that if a variable is not defined in your
program, your computer will define it as 0.

Jump the program out of the INPUT loop.

26. Clear out the program in memory. Enter the following program:

188 EERD A

114 PEIHT A

128 COTO 18a

128 0ATA 18,12.8,9.73.68.82
148 EHD

Run the program and record the output.

input and Output 85

27. Type

28.

29.

30.

118 FPEIHT a.

Note that all you have done is to insert a comma after the A in line
110. Execute the program and record the output.

L

Replace the comma after A with a semicolon by typing
118 PRIHT #A:
Run the program and record the output.

L

If a variable in a PRINT statement is not followed by any punctua-
tion marks, what happens after the number is printed out? (Hint:
See step 26.)

 I—

Suppose the variable is followed by a comma?

{

What happens if the variable is followed by a semicolon?

L

This concludes the computer work for now. Turn off the computer.

5—3 DISCUSSION

In this chapter you have begun to get away from the mere mechanics
of controlling the computer and to concentrate more on writing
and troubleshooting programs. This skill doesn’t come naturally to
most people, and consequently we will give the topic a great deal of
attention, both now and in later chapters.

86 Hands—on BASIC

Getting Numbers Into a BASIC Program

In Chapter 1 you learned that one way to get numbers into a program
is to assign values to a variable in the program itself. For example,

%

18@a LET A=

fan]
1T

introduces the value 6 into a program and stores the number under
the variable name A. This method has limitations, but there are two
other ways to get numbers into a BASIC program: INPUT statements
and READ and DATA statements. Let’s look first at the INPUT
statement and how it is used.

When the computer runs a line such as

268 IMHPUT G

it will type out a question mark as a prompt that input is expected
from the terminal, then it will stop and wait for you to type in the
number. In the case above, the number typed in will be known as
G.

An INPUT statement may call for more than one variable. For
example,

428 IHFUT A.B.C.D

In this case the computer uses the same INPUT prompt (?) but
now you must type in four numbers separated by commas. If you
enter fewer than four and press the RETURN key, the computer will
type another question mark and wait for the remaining numbers to
be input. If you enter more than four numbers, the program will
continue running using only the first four numbers you typed in.
The last method of providing numerical input is to use the
READ and DATA statements. The computer handles the statement

iaa EEAD A.EB.C.D

the same way it handles an INPUT statement with two exceptions,
First, the computer does not stop, and second it reads the numbers
called for from DATA statements in the program.

Consider the following program:

A3 EEAD A.B.C.D0O
ig LET E=fa+E+C+D

Input and Output 87

The program reads the four numbers from the DATA statement and
prints out the sum of the numbers. It makes no difference where
the DATA statement is in the program. There can be more than one
DATA statement, and they need not be grouped at the same place in
the program. Because numbers are called for by READ statements,
they are taken in order from the DATA statements, beginning with
the lowest-numbered statement. If you need more numbers than are
available in DATA statements, the computer will type

ERROE- & AT LIME <line #>

and then halt. Recall that many of the error messages are sum-
marized on the inside of the cover.

You will become familiar with the advantages and disad-
vantages of each of these methods as you spend more time writing
programs.

] You can put numbers into a BASIC program with:
(1) LET statements; {2) READ and DATA statements; and
(3) INPUT statements.

Printing out Variables and Strings

Output from the computer is quite simple. The computer can print
out either the numerical value of a variable or a string of characters.
To illustrate, suppose we have a variable named X and the number
2 is stored in that location. The program

1ag LET X=Z2
118 PREINMT ="
128 FPRINT

12@ EHMD

shows the difference between string and variable output. Line 110
prints out the character X, because X is enclosed in quotation marks.
Line 120 prints 2, because that is the number stored in location X.

88 Hands—on BASIC

The rule is clear. Any set of characters contained within
quotation marks is called a string. The computer prints out strings
exactly as they are listed; it does not attempt to analyze or detect
what is in the string. The computer prints out the numerical value
of any variable that is not in quotes.

It is possible to do computations with a PRINT statement.
Thus

168 PRINT A+E+C.D

will cause the computer to print out the sum of the numbers stored
in A, B, and C and the number stored in D. Of course, the variables
A, B, C, and D would have to be defined or the computer will assign
zeros for their values.

Spacing the Printout

BASIC has a built-in standard spacing mechanism that prints four
numbers equally spaced on one line. Where possible, this standard
spacing is used by the computer when quantities in a PRINT state-
ment are separated by commas. The comma signals the computer
to move to the next print position on the line. If the computer is
already at the last position on a line and encounters a comma in a
PRINT statement, it does a carriage return and prints the number
on the first position on the next line. Thus

188 FPRIMT A:.EB.C.0O:E

would cause the numerical values of A, B, C and D to be printed
equally spaced across a line in the four standard positions. The
numerical value of E would be printed on the next line and indented
two spaces. If four or more numbers are to be printed and if one of
the numbers has more than eight digits, then the number of columns
will be reduced to three.

a Commas in PRINT statements produce 4 columns per line.

Another type of spacing is produced by the semicolon between
variables. For example, in the statement

188 PRIMT RA:E:C

Input and Output 89

the numbers will be printed close together and space needs to be
provided. However, such spacing is relatively easy to do. For
example, the direct mode statement

PRIMT a:" "B

will produce a single space between the two numbers

The semicolon can also be used in an INPUT statement to
cause the program to stop and place the input prompt at the end of
the statement. For example, when the statement

138 PRIMT "WHAT IS THE PEICEY? ";

is executed, the input prompt will be placed at the end of the question
and await your input.

You can add vertical spacing to output by using an empty
PRINT statment as follows:

The computer looks for the quantity to be printed and finds none.
[t then looks for punctuation and, finding none, orders a carriage
return and moves the cursor down one line. You can add as many
empty lines to the printout as you wish by using empty PRINT
statements.

Using the REM Statement

The REM (“remark”) statement is different from the statements you
have seen previously. As soon as the computer encounters the
characters REM following the line number, it ignores the balance
of the statement and goes on to the next line. The REM statement
simply provides information to help the programmer or someone
reading the program to follow what is happeneing in the program.
The wise programmer will use REM statements liberally.

Below we present the same program with and without REM
statements. You can decide which program is easier to follow.

With REM statements:

)

EEM COMFUTE AUVEEREALE OF FOUR HUMBERS
FEM IMFUT THE FOUR HUMBERES
IHFUT ALEB.C. DO

[y
L N

R
il e 150
e
A

90 Hands—on BASIC

138 REM COMPUTE THE aUYERALE
148 LET H=0(A+BE+C+02-4

158 REM PRINT OUT THE AVERALE
168 FREINT

178 EHD

Without REM statements:

186 IHPUT A.EB.C.D
116 LET H={p+BE+C+0 374
128 FRIHNT
136 EHD
[| You can describe what is happening in a program

with a REM statement.

5—4 PROGRAM EXAMPLES

Study each of the following examples until you are certain you
understand all the details. You might want to enter the programs
into the computer and run them to verify that they work as intended.

Example 1 - Unit Prices

Your problem is to write a program to compute unit prices of su-
permarket items. If you let T stand for the total price, N for the
number of units, and U for the unit price, you can compute the unit
price with the following relationship:

U ="T/N

For example, if a case of twelve large cans of fruit juice costs $6.96,
the unit cost per can would be:

U= 696/12 = $0.58
You want the program to produce the following output:
WHAT IS THE TaOTaAL FRICEY (You enter value of T)

HUMEBER OF UHITEY (You enter value of N)
UHIT PRICE IS (Computer types out value of U)

Break the example apart to see how the program is related to
what you want to see in the output.

Input and Output 21

MHAT IS THE TOTAL FRICET (entry of T)

100 200
HUMEBER OF UMITET (entry of N)
300 400

500: Compute unit price.
UNIT PRICE IS (output of U)
600 700

You will write each line of the program so that the numbers
below each statement will be the line numbers in the program. In
line 100 you will use the PRINT command to tell the computer to
type out the message indicated.

188 FRIHT "WHAT IS THE TOTAL FPRICET "
Note the semicolon outside the closing quotation marks. The reason
for this is that you do not want a carriage return; you want the
printed line to hold there for the INPUT prompt on line 200:

2Ea INPUT T

Use a PRINT statement to get the computer to print out the message
in line 300.

@8 PRIMT "HUMBEE OF UHITEST “;

Handle the input for the total number of items the same as the total
price.

d@0 IHPUT H
Next you compute the unit price in line 500.
588 LET U=T-H

Use a PRINT statement to handle the next line, a message followed
by the unit price.

@8 FPRIMT "UHIT PRICE IS ":U

92 Hands—on BASIC

Finally, add an END statement.
rag EHD
Now put the whole program together.

FREINT "WHAT IS THE TOTAL FRICEY ";
IHFUT T

FEIHT "HUMBER OF UNITSYT ";

INPUT H

LET U=T-H

FEINT "UWIT PRICE IL ";U

EHD

b I T | Y <Y I R
Lo O T O e O ot T 0 T et
Loy T e T ot T o T s B B |

Study the program to make sure you see the purpose of each
line as related to the original statement of the problem.

Example 2 - Conwverting Temperature
The relationship between temperature measured in degrees Fahren-
heit and in degrees Celsius is

C = (5/9)(F - 32)

where C stands for degrees Celsius and F stands for degrees
Fahrenheit. If, for example, F is 212, then C is

C = (5/9)(212 - 32) = 100

As in the first example, you will write the program after
deciding how you want the output to appear. Suppose you want
to see the following:

IMFUT HO. 0OF DOEGEEES F
¥ (You enter value of F)
(Value of F) DECREES F IS (answer) DEGREES C

Split the output up into parts that will be generated by the lines in
the program.

Input and Output 93

IHFUT MO, OF DEGEEES F
100
200: Entry of F
300: Compute C
(Output of F) DEGREES F IS (Output of C) DEGCREES C
400

The corresponding program is

1ga PRIWMT "INFUT HO. OF DELGEEES F®

288 IMFUT F

288 LET C={53-2xfcF-322

48a PRIMT F;" DECREES F IS ":C;" DEGEREES C*
88 EHD

This program is a bit different from the first example. In
line 100 there is no puncuation following the string. Thus the
INPUT prompt generated by line 200 will be printed out on the
line following the initial string. The PRINT statement in line 400
prints out (1) the value of F, (2) a string, (3) the value of C, and (4)
a second string. The semicolons in line 400 are used to put space
between the variables and strings in the PRINT statements.

Example 3 - Sum and Product of Numbers

Suppose you want to compute the sum and product of two numbers.
when the program is run, you want to see:

IHFUT AT (You enter value of A)

IHFUT BT (You enter value of B)

SUM OF & AHMD B IS (Computer prints out sum)
FRODUCT OF A AHD B IS5 (Computer prints out product)
(Blank lines are inserted by the computer.)

IMFUT AY (You enter a second value of A)

(etc.)

Since you studied the first two examples in great detail, you
can proceed more rapidly with this problem. The first line of the
output can be handled by the following statements:

o

188 PRIMT "IHFUT & *;
118 INPUT @

94 Hands—on BASIC

Note that the message printed out in line 100 is window
dressing for the program and has nothing to do with the actual
calculations. The input instruction that is important to the computer
is in line 110. However, such messages are important to you because
they tell you what to do. You can generate the second line of desired
output in the same manner.

i PEIMT "IHFUT B ";
1 IHFUT E

1 [

-

(o |

-
.‘l

1
1

Use the following lines to generate the sum and product of the two
numbers.

148 FREIMT "SUM OF A AHD B IS "iA+E
SB PREINT "PRODUCT OF A AHD B IS " A%E

The spacing between the output of the original set of numbers and
the output obtained when the program loops back, as well as the
looping instructions, can be obtained with three statements.

16 PEIHT
178 FRIHT
180 COTO 1488

Of course, the final line should be the END statement.
128 EHD
The whole program is;

FRIHT "IHPUT A “:

IHNFUT &

FRINT "IHFUT B ";

IMNFUT E :

FRINT "SuUM OF g AHD B IS ":A+E
FRINT "PRODUCT OF A aHD B IS “:A%E
FRIHT

PRIHT

coTo 1aa

EHD

L o S O R I T T S
LN e T T o Y S Y I W Y et]
Do T e o I Ut T Ao o T T e

You could also compute the sum and product of the two
numbers using LET statements as in the following version.

Input and Qutput 95

188 FEINT "IHMFUT A ";

118 INFUT A

128 FREIMT "IHPUT B *:

138 IHFUT E

148 LET 5=AR+E

158 PRIWMT "SUM OF A AND B IS "%
168 LET F=R¥E

1va PREINT "PRODUCT OF A& AHD B IS5 "iF
128 PREIMT

128 FEINT

2aa COTOo 164

218 EHD

Both forms of this program will keep looping back until you
jump the the program out of the INPUT loop.

5—5 PROBLEMS

Write a program that will read the four numbers 10, 9, 1, and 2
from a DATA statement, putting the numbers in A, B, C, and D,
respectively. Add the first two numbers putting the sum in S. Then
compute the product of the last two numbers, putting the result in
P. Print out the value of S and P on the same line.

Write a three line program that will call for the input of four numbers
and then print back the numbers in reverse order. For example, if
you type in 5, 2, 11, 12, the computer should type back 12, 11, 2,
5. The program must work for any set of four numbers that you
decide to type in. Use only three lines in your program.

Write a program to read variables A, B, C, and D from numbers
of your choice in a DATA statement and print out the numbers
vertically.

What will be output if you run the following program?

READ #.%Y.Z
DATA 2.5.3
LET T=x¥v+
LET S=v"Z2
FRINT T.%
EHD

Pk ek ek ke ok fate

N e o] Pl 1)
Lo I nox I oy B oy B o I

5.

6.

10.

26 Hands—on BASIC

What is wrong with this program?

LET A=z
READ B

LET A=A+C-B
DATA 3
FRINT #

END

bk ook ok e ek et

[y [O Y O T o v]
[I I oy T o T A I

Explain in your own words what the following program does.

IHFUT A.E
LET S=a+E
LET T=A-E
LET U=rR¥E
FEIHNT =.T7.U
EHD

ke ks ok ks e ok
[y S S B S Y |
[t I oy T o s T A B |

One of the ratios used to judge the health of a business is the acid-test
ratio. The acid-test ratio is the sum of cash, marketable securities,
and receivables, divided by current liabilities. Write a program that
requests input of the necessary quantities and computes and outputs
the acid-test ratio.

Write a program to count and print out by fives beginning with 0.
The first few numbers will be 0, 5, 10, 15, and so on. Interrupt the
program manually when 40 or 50 numbers have been printed out.

The intended output of the program below is 1, 3, 5, 7, 9, and so
forth. The program below has an error. What is wrong?

LET A=1
PRINT A:" "
LET A=nA+z
GOTO 188
END

[T]
L o] P 5D
[t I o B o B o B W

If an object is dropped near the surface of the earth, the distance it
will fall in a given time can be determined by

S =16T"2

11.

12,

Input and Output 97

where S is the distance fallen (in feet) and T is the time of fall (in
seconds). Write a program that, when executed, will produce the
following output:

TIME OF FalLL (SEC® 7 (You enter T)
OBJECT FaLLS (Computer types out S) FEET

The volume of a box can be computed as

V = [WH
where L, W, and H are the length, width, and height. If these are all
measured in centimeters, for example, the volume will be in cubic

centimeters. You want a program that will produce the following
output:

LEHETH <CHM* ¥ (You enter L)
WIOTH <CHM*» ¥ (You enter W)
HEICHT <CH* ¥ (You enter H)

WOLUME IS (Computer types out V) CUEBIC CH

The program below is incorrect and will not produce the output you
want, What is wrong?

1@ PRIHT "LEMCTH CCHM> "L
118 PRIHT "WIDTH <CHM> "l
128 PRIMT "HEIGHT <CH2> ":H
138 IMFUT L,HW.H

148 LET W=L¥M¥H

158 PRIHT "UOLUME IS®

e PRIHWT U

1va PRIMT "CUBIC CH®

138 EHND

In the program below, the INPUT statement calls for two numbers,
A and B. Supply the missing statements so that when A and B are
printed out, the values have been interchanged.

IHFUT A.E

[R A N
o] [0 e 1750
e B o B B an

13.

14.

15.

16.

98 Hands—on BASIC

FEIHT A.E

45
S8 EHD

|""| [honl

i
1

Suppose the odometer on your car reads R; miles when the gas tank
is full. You drive until the odometer reading is R, at which point G
gallons of gasoline are required to fill the tank. The miles per gallon
you get on the trip is

M= (R; — R)/G

Write a program to figure out the mileage for the following data:

R, Rs G

21423 21493 5
05270 05504 13
65214 65559 11.5

There is an old tale of a wise man who invented the game of chess
and as a reward asked to receive 1 grain of wheat on the first square
of the chess board, 2 grains on the second, 4 grains on the third, 8 on
the fourth, and so on. Write a program to print out the number of the
square and the number of grains on that square. The program should
involve a loop using a GOTQO statement and should be interrupted
at the keyboard when you have seen enough. How many grains of
wheat will be on the 64th square? Run the program and find out.

It is known that a DATA statement contains examination grades
for a class of ten students. Write a program of no more than four
statements (counting the DATA and END statements) to compute
and print out the class average. Try out the program on sample
data of your choice.

Simple interest on an investment is computed according to the fol-
lowing rule:

I = (P)(R/100)(T/365)
where P is the principal invested at an annual interest rate R

(expressed in percent) for a time T (expressed in days). Write a
program that will generate the display shown below:

17.

18.

Input and Output 99

WHAT IS THE FRIHCIFPAL
(You type in the principal)

WHAT IS THE AMHUAL IMTEREST EATE X1
(You type in the interest rate)

WHAT IS THE TERM IH DAYS
(You type in the term)

FOR AH IHMUESTHENT OF

(Computer types out the principal)

AT AN aMHUAL IHTEREST RATE OF
(Computer types out the rate)

FERCEHNT IHUESTED FOR

(Computer types out the term)

Day¥s. THE IHTEREST IS

(Computer types out the interest)

If compound interest is paid, the true annual interest rate is higher
than the nominal rate which is quoted for the investment. The
following BASIC formula computes this true annual interest rate:

T = ((1+R/(100*M))*"M —1)*100

In this expression, T is the true annual interest rate in percent, R is
the nominal interest rate in percent, and M is the number of times the
interest is compounded per year. Write a program that will produce
the following output:

RUOTED IHTEREST RATE {FERCEHT:

(You type in the interest rate)
HUMEER OF TIMES COMPOUNDED FERE YEAER
7 (You type in times computed)
TRUE AHHUAL IHTEREST RATE IS
(Computer types out answer)

If an amount of money P is left to accumulate interest at I percent
compounded] times per year for N years, the value of the investment

will be

T = P*(1+1/(100*))~(J*N)

19.

100 Hands—on BASIC

Write a program that will call for the input of P, I,] and N. Run the
program as needed to get the value of $1000 invested at 8 percent
for 2 years compounded

. Annually (] = 1)
]

. Semiannually (] =
. Monthly (J] = 12)
. Weekly (] = 52)
Daily (J] = 365)

2)

e an o

If a savings and loan company conducts a big advertising campaign
about computing interest every day instead of each week, should
you get excited?

If an amount of money P is left to accumulate interest at a rate of I
percent per year for N years, the money will grow to a total amount
T given by

T = P*(1+1/100)"N
As an example, if P = $1000, [= 6 percent, and N = 5 years,

T = 1000%(1+6/100)"5 = 1338.23

Write a program that when executed will produce the following
output:

IMITIAL IHUESTMEHMT ¥ (You enter P)
AHHUAL IHTEREST EATE <X3 ¥ (You enter I)
YEARS LEFT TO ACCREUE IMTEREST 7 (Youenter N)

ToTaL UALUE IS (Computer types out T)

5—6 PRACTICE TEST

What will be the output if you run the following program?

laa LET

118 PRIMT X,

128 LET H=:+1
138 COoTo 11a

148 EHD

Input and Output 101

Describe three ways you can put numbers into a BASIC program.

L

In a PRINT statement, what is a collection of characters between
quotation marks called?

What is the purpose of the REM statement?

L

If there is a READ statement in a BASIC program, what other type
of statement must also be present in the program?

L

What will happen if you run the following program?

LET x=

[I Y A |
[I s s ot |
AN
m
]

e ke ks e

How many standard print columns per line are provided for in
BASIC when the print quantities are separated by commas?

L

How many DATA statements can you put in a program?

9.

10.

11.

102 Hands-on BASIC

What will the output look like if you run the following program?

LET A=1
LET E=3
FEINT A:E
FEINT A:EBE
ENDO

e ks focodds foosaks foanale
I N Y I N v |
[oo T e By B o

L

Suppose you're running the program:

INFUT A.E
LET C=A+E
FRINT C
END

et o ks ke
Lo [b 15D
Do B e I o |

In response to the INPUT prompt you type the numbers 10, 12, and
13 on the same line. What will be printed out?

L

You can convert miles to kilometers by multiplying by 1.609. Thus,
10 miles equals 16.09 kilometers, and so on. Write a program that
will produce the following printout.

IHFUT HO OF MILESY (You type in a number)
(Computer types your number) MILES ERUAL
(Computer types answer) KILOMETERS

CHAPTER 6

DECISIONS AND
BRANCHING

6—1 OBJECTIVES

The power of the computer rests in large part on its ability to
make decisions about quantities in programs. In this chapter we
will explore this cabability and will continue the task of learning to
program in BASIC.

Making Transfer Decisions in Programs

Decisions made in programs can cause the computer to jump to line
numbers out of numerical order. Such a transfer to a program line
may be unconditional or may depend on values of variables in the
program. You will learn to use these conditional and unconditional
transfer statements to make simple programs produce powerful and
useful results.

Working with Program Examples

As in the previous chapter, you will continue to learn how to apply
the techniques you study to BASIC programs.

Finding Errors in Programs

When first written, almost all programs have errors. You will learn
the vital skill of troubleshooting programs.

104 Hands—on BASIC

6—2 DISCOVERY EXERCISES
Turn on the computer, bring up ATARI BASIC and enter the fol-

lowing program:

188 LET ==1

118 PEIHNT :

128 LET H=H+1

138 IF =45 THEH 118
148 EHD

The < symbol in line 130 means “less than”; thus, the statement
means as “If X is less than 5 then print X.” Study the program
carefully. What do you think will be printed out if you run the
program?

Run the program and record the output.

Display the program in memory. What will the output be now?

Run the program and write down what the computer printed out.

(-

Now make another change in the program to see if you understand
what is happening. Type

120 LET H=i+Z

Display the program and study it carefully. What do you think the
program will do now?

Decisions and Branching 105

Run the program and see if you were right. Record the output.

To explore a new idea, you need to make some changes in the
program now in memory. Modify the program to make it agree

with the one below or clear the program in memory and enter the
one below.

1aa LET =k=1

118 PRINT =

128 LET H=x+1

138 IF x*=5 THEH 148
135 COTO 11l

148 EHD

Run the program and record the output.

L

Compare the output you recorded above to the output you recorded
after step 1. Is there any connection?

L

Display the program in memory. Line 130 of this program is the
assertion X > = 5, which is means "X is greater than or equal to 5.”
If, for example, X had the numerical value 6, the assertion would be
true. If X had the value 3, the assertion would be false.

Now look at the program in step 4. If the program is executed,
the computer starts with line 100, then goes to lines 110, 120, and
130. If the assertion in line 130 is true, which line number will the
computer execute next?

106 Hands—on BASIC

Only two conditions have been used so far in the programs. They
are

(Less than)

<
>= (Greater than or equal to)

How would you write the conditions for

Greater than

L

Less than or equal to

Equal to

L

Not equal to

If you can fill in the blanks above without too much trouble, fine.
If not, don’t worry. We will review everything later. The important
thing to grasp now is how the IF THEN statement works.

Let’s explore some applications of the IF THEN statement. Clear the
program in memory and enter the following program:

188 FEINT "IHFUT EITHEE 1. 2. 0OR 3 ";
118 IHFUT ¥

iza IF ¥=1 THEH 158
138 IF ¥=2 THEH 178
148 IF ¥=3Z THEH 138
158 PRIWT "EBLOOGOD®
168 COTO 188

i7d PRIHT "SHEATH
ig8 COTo 1ad

128 FEIHT “"TEARRS™
288 COTO 188

z1a EHDO

10.

Decisions and Branching 107

Display the program and check that you have entered it correctly.
Study the program briefly. Remember that when the computer
executes the program and types out the INPUT prompt, you are
supposed to type in either 1, 2, or 3. Which value of Y will let the
computer reach line 120 in the program?

[

Which value or values of Y will let the computer reach line 1307

L

How about line 1407

Suppose you wanted the computer to type “SWEAT"”. What value
of Y should you enter?

L

See if you were right. Run the program and enter the number you
wrote down. What happened?

L

What value of Y will cause the computer to type BLOOD?

L

How would you make the computer type TEARS?

Check each of your responses above to see if you were right.

The program assumes that either 1, 2, or 3 will be typed in at the
INPUT prompt. Think about the program a bit, then try to figure

out what will happen if you type 4 in response to the input prompt.
What do you think will happen?

11.

12.

13.

108 Hands—on BASIC

Run the program, type 4 in response to the input prompt, and record
the output.

You can easily explain what happened in the program by considering
what the computer does when it encounters an assertion in the IF
THEN statement. Remember, if the assertion is true, the computer
goes to the line number following the THEN. If the condition is false,
the computer goes to the next higher line number. Now jump the
computer out of the INPUT loop.

Delete lines 150 through 190 and display the program to make sure
the lines were deleted.

Now use another form of the IF THEN statement. Change lines 120,
130, and 140 as follows

1z@ IF ¥=1 THEH PRIHWT "ELOOD"
1Z@ IF ¥=2 THEH FRIHT "SHEAT"
148 IF ¥=2Z THEH PRIHT "TEars"

Run the program. Is a line number required after the THEN in an
IF THEN statement?

L

Now jump the computer out of the input loop and add line 150 as
follows

158 IF ¥>3 THEM Z18

Display the program. What will happen now if you enter 4 when
you run the program?

Decisions and Branching 109

14. You can control a program with a single keystroke by using the GET

15.

statement. Clear the program in memory and type in the following
program:

26 DIM A$cl:

98 OFEM #1.12,8."K:

188 PRIHT "PRESS & KEY"
118 GET #1.4A

128 LET A$=CHR${A

1Z@ IF Aa$="G" THEH 1&8
148 FRINT &S

158 COTO 108

168 PRINT "QUIT"

178 EHMD

Do not be concerned with the statements in lines 80, 90, 110, and
120. They will be covered later. For now, just be careful to type
them in correctly. Try pressing several keys (including the spacebar)
before you press Q. Run the program. What happened?

Press Q to stop the program. Is Q printed out by line 1307

Now let’s look at a use of the GET statement in a graphics program.
Clear the memory and type the following program.

REM POINMT MOUIHG FROGRA&M
ODIM ¥$513

OFEH #1.,12.8."K:"
CRAPHICS =

LET A=1
LET E=
REM PLOTS & MHITE POINT AT CA.BD
cCOoLorp 1

PLOT A.E

CET #1.%

LET ¥$=CHRS$(¥

REM FLOTS & ELACE FOIMT AT (@.E3
COoLoR &

FLOT &.E

1L

'.L'
D] |‘T. ||
wy

RN RN e el e e e e S e Y
oy BT I TS I T 1 O O P N I o R e

e
I T T DD S T

16.

17.

18.

110 Hands—on BASIC

228 IF ¥$ ="0" THEM B=E+3S
220 IF ¥$ ==u" THEH EBE=E-5
248 IF ¥¢ ="L" THEH A=8-5
238 IF ¥¢ ="R" THEH fa=/+5
2e8 IF Yy ="@" THEH Z&8
Ve LOTO i5g

2o8 EHD

This program allows you to use the U, D, L, and R keys to move a
point around the screen. Run the program and move the point just
off the screen by pressing U a number of times. As it disappears,
you will get an error message. To see what quantity is illegal, in
direct mode type in

FREINMT A:B

Run the program again and move the point to the upper left-hand
corner of the screen being careful not to go off the screen. Move the
point about the screen to get the feel of this program. Type Q to
end the program.

How far does the point move each time you press U, D, L, or
R? (Listing the program in text mode may be helpful.)

Save this program on a diskette under the name POINT for use at
a later time.

Enter text mode. Clear the screen and the memory. Type the
following program.

A

m
]

A
v
o
T -

L)

ORI R

ol

-

kA
b v T Y = T N

L]

e puode ke e foos s ke
[y I Y B N i v
(O s I e e 8 B e B e |

,..
=
T
_
"
-l

This program is supposed to add up numbers that are input. The
input value that causes the sum to be printed out is 11111. It is not
part of the sum.

19.

20.

21.

Decisions and Branching 11

Run the program and each time the INPUT prompt is displayed, type
in one number from the following sequence of numbers (remember

to press [RETURN| after each number).

31 6 5 11111

What value is printed out for S?

L

Is this value of S the sum of the numbers you input?

L

Let's try to find out why. Type the following line

135 PRIMT "5 = ":5
List the program. Run the program and input the same values as in
step 19 (3,1,6,5,11111). Compare the values of S in line 135 to the

values input in line 110.

L

Though you may have already discovered the logical error in the
program, trace the execution of the program by going through the
program as if you were the computer. Do this for the first one or two
input values and then for the last two of the input values. Observe
that the GOTO statement in line 140 goes to the wrong line, that
is, line 100, where S is reset to zero each time.

Delete line 135 and retype line 140 as follows
148 GOTO 11@

Run the program and input the same values (3,1,6,5,11111). Is the
printout correct this time?

L

Run the program a final time with different values to verify its
correctness,

22,

112 Hands—on BASIC

Turn off the computer and go on to the discussion of the objectives.

6—3 DISCUSSION

Making Transfer Decisions in Programs

In this chapter we are concerned mainly with transfer statements,
both conditional and unconditional, as well as their use in programs.
Before getting to the programming, we will discuss each type of
transfer statement,

a. Unconditional Transfers

From the very beginning of the book, we have been using uncondi-
tional transfer statements. The following program illustrates the use
of the unconditional transfer statement:

LET Z=2

168 z
118 PRINHT 2
1z8 LET Z=2%:2
138 coTo 11a
i4@ EHD

Recall that when ordered to execute a BASIC program, the computer
goes to the statement with the lowest line number and then executes
the statements in increasing line number order. The only way to
interrupt this is with a transfer statement (or, as you will see in
the next chapter, a loop command). In the program above, the
computer would execute line numbers as follows: 100, 110, 120,
130, 110, 120, 130, 110, 120, 130, and so on. The point is that the
statement in line 130 causes the computer to jump back to line 110
instead of going to 140. Note that there are no conditions attached
to the statement in line 130. For this reason the GOTO statement is
known as an unconditional transfer statement. It is also clear that
the GOTO statement in this case puts the program into a loop, and
there is no way out. The only way we can get the computer out of
the loop is to interrupt the program from the keyboard while it is
running.

n GOTO is unconditional

Decisions and Branching 113

To sum up, if at some point in a program you want the
computer to make an unconditional jump to another line without
any conditions attached, use the GOTOQO statement. However, be
careful that you don’t get the program “hung up” in a loop.

b. Conditional Transfers

By now you have most likely established the connection between
the IF THEN statements you saw in the discovery exercises and the
notion of the conditional transfer statement. All conditional transfer
statements have the same form. A description of this form and a
sample IF THEN statement are given below:

Line # IF <relation> < condition> <relation> THEHM Line #

4

[

-
frcn]

IF Z4¥-23¥-2 THEH Z&@
[IF THEN statements state conditions.

No matter what the assertion, all IF THEN statements have
this same format. The IF and THEN as well as the two line numbers
in the statement require no special explanation. However, the heart
of the statement lies in the two expressions separated by the condi-
tion that forms the assertion. We must look at them very carefully.

Several conditions may be used in the IF THEN statement.
The conditions and their meaning are listed below,

Condition Meaning
= Equal to
< Less than
> Greater than
<= Less than or equal to
>= Greater than or equal to
<> Not equal to

Except for the IF THEN statement above, you have seen only
simple variables and constants in IF THEN statements. This is the
type of assertion used in programs most often. Examples are

186

,_
[xx]

—
facn)

IF W<{Z THEH 254

114 Hands—on BASIC

348 IF 55T THEH 228

There are instances, however, when you might want to use
more complicated expressions in the IF THEN statements. In the
statement

248 IF ZFdx-2:Y-Z THEH Z&8
the first relation is
2FHE-2

which is fine providing that X has a value. The second relation,

1L e
i~

[

can also be used if Y and Z have values. Suppose that X has the value
1, Yis 10, and Z is 4. The computer will translate the statement

248 IF ZFxx-2>¥Y-2 THEH 3c8

by substituting the values of X, Y, and Z. This changes the statement
to

48 IF 1x& THEH Zcn

oy
hn]

Pl

Sooner or later, all IF THEN statement are reduced to this
form, from which the computer must judge whether an assertion
established by two numbers and a condition is true or false. In this
case, the assertion 1 > 6 is false. However, the assertion 4 < 10
would be true. If the assertion is true, the computer will go to the
line number following THEN. If the assertion is false, the computer
will go to the next higher line number in the program.

[| A true IF THEN statement causes the computer to branch;
a false one causes it to go to the next higher line number.

When the “statement” following the THEN is a number, the
computer will branch to the line with that number if the IF THEN
statement is true. If the statement following the THEN is another
statement, the computer will execute that statement and proceed to
the next line.

With IF THEN (or conditional) transfer statements, you can
make the computer branch anywhere you desire in a program. This
ability gives the computer its great programming potential.

Decisions and Branching 115

6—4 PROGRAM EXAMPLES

Example 1 - Printout of Number Patterns

The problem is to write a program that will make the computer print
out the following number pattern:

You must think about several characteristics of this pattern when you
write the program. The first number is 2, and succeeding numbers
are spaced across in the standard manner (four numbers to a line).
Each number is 1 greater than the previous one. The last number is
10, then the computer should stop.

Several solutions are possible. This program, though not
elegant, will work:

3.1

L
D
k]
m
al
o
=
-]
I
[y |
£
L |
Ty
|
[nx}
¥y
(A}

You might check this program to see that is does in fact produce the
correct number pattern. This program illustrates a very important
concept. There is no such thing as the correct program. The only
test that can be applied is “Does the program work?” Certainly some
programs are cleverer or may accomplish the results more efficiently
than others, but this is a separate issue.

Another way to approach the problem is to make the com-
puter print the first number in the pattern. You also want to organize
the program so that only a single print statement is required. The
solution is to have the computer print the value of a variable that
will change as it executes the program. You can start the program
with the following segment:

The value of X is set to 2, and this value is printed out in line
110. The comma causes the computer to space across to the next
standard printing position. Now you must generate the next value
to be printed out. Note that at any point in the pattern, the next

116 Hands—on BASIC

number is just 1 more than the present number. You can generate
the next number with

1248

Lo

LET =m=x+1

I

Now all that remains is to give the computer a way to make a
decision about whether to loop back to the print statement or to
stop. As long as X is less than or equal to 10, you want to loop
back, so you can use a conditional transfer statement.

1328

s

IF #<=18 THEH 118
Finish the program with an END statement.
148 EHDO

The complete program is

188 LET k=2

118 PRIMT H.

128 LET X

138 IF = THEH 1148
148 EHD

This program is simple and has little practical value other than to
illustrate how a conditional transfer statement can get you out of a
program at the proper time.

Example 2 - Automobile License Fees

In an attempt to force consumers to use lower-horsepower cars and
conserve energy, the state adopts a set of progressive annual license
fees based on the power rating of the car. The criteria and fees are
listed below.

Horsepower License Fee
Up to 50 hp $0
More than 50 but 100 hp or less 30
More than 100 but 200 hp or less 70
More than 200 but 300 hp or less 150

More than 300 hp 500

Decisions and Branching 17

You want a program that will produce the following output:

IMFUT aUTO HPT (You type in horsepower)
LICEHSE FEE IZ (Computer types out fee)

IHFUT AUTO HFT (You type in horsepower)
LICEHMSE FEE IS (Computer types out fee)

(etc.)

Clearly, the only difficult part of the program will be instructing the
computer to decide what the fee is. The I[F THEN statement is made
to order for this decision-making process. To get started, provide
for input of the power rating. Use P to stand for the power rating
of the car. The program can begin with

1048
114

it

PRIWHNT "IHPUT QUTO HE v
IHFUT F

Now, you must work out a method to have the computer
decide in which license category P lies. A logical way to do this
would be to check upward from the low horsepower ratings. First,
the computer can check whether P is 50 or less. If so, then the tax
is 0.

13

r (N]
D}

IF P<=58 THEH (Fee is 0)

Notice that there is no line number following THEN. If the number
in P is less than or equal to 50, we want the computer to jump to
a statement that will assign the value O to the fee. The problem is
that we don’t know at this point what line number should be used
for this statement. Consequently, we will leave it blank and insert
the proper value later. The note at the right is a reminder of what
the fee is supposed to be if the assertion is true and the branch is
taken.

If the assertion in line 120 is false, the computer will go to
the next higher line number. The statement in that line should have
the computer test whether P falls in the next higher category.

132 IF P<=188 THEH (Fee is $30)

118 Hands—on BASIC

Again, we don’t know what line number to use following the THEN
but can fill it in later. We need three further branch statements to
accommodate all categories of P. Now that the pattern is established,
we can include them all at once.

148 “@8 THEH (Fee is $70)
156 208 THEH (Fee is $150)
ic8 8 THEH (Fee is $500)

The program to this point is

1@ PRIMT "IHPUT AUTO HP “;
118 IHPUT P

126 =58 THEH (Fee is 0)
12a B8 THEH (Fee is $30)
14@ 208 THEH (Fee is $70)
15@ 2868 THEM (Fee is $150)
158 1 THEH (Fee is $500)

Now we can fill in the missing line number in line 120. Since
the next line number in the program would be 170, we may as well
use it.

1ga PEINT "IHFUT gUTO HFE "

118 IHF‘HT F

128 IF F<

128 IF (Fee is $30)
148 1IF (Fee is $70)
iza IF (Fee is $150)
i IF P:3d (Fee is $500)
178 LET F=8

128 COoT0O . (PRIHT statement

Again, you don’t yet know what line number to use in line
180. Use a reminder because you want the computer to jump to a
PRINT statement after it determines the fee. If the assertion in line
120 is true, the computer jumps to line 170 and assigns the value 0
to F, which stands for the fee. We can fill in the missing numbers in
lines 130, 140, 150, and 160 using the same pattern. The result is

FRINT "IHFUT &UTO HP ";
I

184
11a IMFUT F

BT o B O o T T e T o Y S) I

- e e
l"...."l 15 l:l Locn N how T o T o T T T o ot O

|'lr-l l"l P T A b e ke pook ke ok ok ok

4

Decisions and Branching

THEH 178
HEH 124

A R v

[E]
IE |
B
K]

T
T
THEH ._'_TU
HEH Z5@

(PRIHT statement)

COTO _ (PEIHT statement)
LET F=7d

COTO _ (PRIMT statement)
LET F=158

COTO (PRIHT statement)
LET F=54a

119

The next line in the program would be 260, which you may

as well use for the PRINT statement.
given below.

P S o
ot T Y T s T o T o T v T e T Bt T o O i T ey T ot x|

U R A B u

I o Y) P S I Tl o TN o T T [T) Y O 1% I A T

oy ey I

| O RO T R T N S S T RO % T R S O S g R A S oY
[}

=2

Dl

4

FREIHNT "IHFUT gUTO HP ¥%;
IHFUT F

IF P<=5" THEH 170
IF P<=180 THEH 128
IF FP<=2860 THEH 218
IF P<=3@@ THEH 238
IF P:32088 THEH 258
LET F=g

COTO 2e4

LET F=38

COTO 2:e@

LET F=78

LOTO zZ&@a

LET F=158

ZOTO 2&8

LET F=5883

FREINT "LICEHMSE FEE IS5 *;
FEIHT

COTO 1@8a

EHD

F

The rest of the program is

You may have noticed that the conditional transfer statement
in line 160 is not necessary. To see why, consider each of the

120 Hands—on BASIC

assertions in the I[F THEN statements. If the assertion in line 120 is
false, P must be greater than 50. Likewise, if each of the following
assertions is false, the computer goes to the next higher line number.
Suppose the computer reaches line 150 and determines that the
assertion is false. This directs the computer to line 160, but that
jump is unnecessary. You already know that P must be greater than
300, and the computer can therefore print out the fee without any
more testing. If you assign the license fee of $500 in line 160, you
use a slightly different program:

188 PRINT “IHPUT AUTO HF "
118 IHFUT F

128 IF P<{=5@ THEH 268

128 IF P<=188 THEH ZZ2@

148 IF P:{=208& THEH Z248@

158 IF P<{=388 THEM Z&@

1668 LET F=588

178 FRIWT “LICEMSE FEE IS ":F
128 PRINT

198 COTO 188

286 LET F=#

1@ COTO 178

z2@ LET F=3@

2Z@ COTO 17@

z4@ LET F=7@

256 COTO 178

z£@ LET F=158

278 GOTO 178

286 END

Yet another solution for this problem is listed below. Study it
to make certain you understand how it works.

i PRINT "IHPUT AUTO HE "
118 IHFUT P

128 =504

138 F=158

148 F=ra

158 TH F=28

1c8 .=58 THEHW F=0d

i7a FFIHT *LICEHSE FEE IS "GF
188 PRINT

Decisions and Branching 121

S8 COTO 184

1 A0
zZ@aa EHD

.,.

All three versions of the program will work equally well, and
you may have your own version. You can decide how you prefer to
handle the branches. The main question is whether your program
will work.

We have gone through this program in great detail because
beginners often have difficulty writing programs that use transfer
statements. You should study the program until you are convinced
that it does accomplish what is desired. Remember to leave line
numbers out when you do not know what they should be, then
return later to fill in the proper numbers. Also, use comments at the
right of each line that refers to an as yet undetermnind line number.
Those comments will help you remember what you want to happen
at that branch point in the program. In fact, consider using these
comments any time you use an [F THEN statement. When you reread
an old program, these comments remind you of what the program
is supposed to accomplish.

Example 3 - Averaging Numbers

Suppose you wish to average the numbers in a DATA statement.
The problem is that you don’t know in advance how many numbers
there are. So you will use a flag variable to mark the end of the
data. The flag will be a number that is very unlikely to occur in the
data. We will use the number 9999 as the flag here, but you could
select any unlikely number.

Here is the way it will work. The DATA statement will always
appear as follows:

Line # DATH (number),(number),....,(number), 3333

Place the flag 9999 after the last number to be averaged. Each
time the computer reads a number from the DATA statement in the
program, it checks to see if it is 9999. If not, the computer reads the
number as part of the data to be averaged. If the number is 9999
the computer goes on to the rest of the program.

An average is computed by dividing the sum of the numbers
by the number of numbers. The program must give the computer a
way to ascertain both these quantities. Use S to stand for the sum of

122 Hands—on BASIC

the numbers and N for the number of numbers. When the program
is executed, you do not know what these values will be, so set them
equal to 0. The computer will then develop their values as it reads
numbers from the DATA statements.

Begin the program by setting up the initial values of S and N.

.,..
al Ll

e
C8 I N)

1aa LET
1 LET

[l
"
A
o
eboons.
It
s
L5

Next you can program the computer to read a number from
the DATA statement and check for the flag value.

READ

1z
138 IF #=335%3% THEH __ (Compute average)

Do]

aed T

Use the method introduced in the previous example of leaving
a blank line number in the conditional transfer statement until you
know what that line number should be. In this case, if the assertion
X = 9999 is true, then the computer is signaled that all the numbers
in the DATA statement have been processed and that it can now
compute the average. If the assertion is false, the computer reads
the number as part of the data and processes that number as follows:
148 LET S=35+¥4
158 LET H=H+1

-
E- lion]

In line 140, the value of X (the number just read) is added
to the value in S. Remember that the sum of all the numbers to
be averaged is being developed in S. In line 150, the number in N
is increased by 1 to record the fact that another number has been
processed. You are now ready to program the computer to process
the next number. This statement does the job.

1ed LOTO 124

Now you can fill in the missing number in line 130, since the
next line number in the program would normally be 170. Line 170
is an instruction to compute the average, which you can identify by
A. If a typical DATA statement is included, the complete program
is

Decisions and Branching 123

1@ LET S=8

118 LET H=@

128 READ ¥

138 IF X=9333 THEN 178
148 LET S=35+H

158 LET H=H+1

1@ COTO 128

178 LET A=S-H

128 FRINT A

198 DATA 4.2.3.6.5,33393
2@ EHND

Of course, you can have as many DATA statments as needed
to accommodate the numbers to be averaged. Following the last
number in the last DATA statement we put the flag 9999 to mark
the end of the data. This gets the computer out of the READ loop
and signals it to compute the average.

The conditional transfer statement, coupled with the flag vari-
able, is a powerful programming tool.

6—5 FINDING ERRORS IN PROGRAMS

The ability to look at a program and determine whether it will ac-
complish what it is supposed to is certainly one of the most im-
portant skills a beginner can acquire. Probably more to the point,
programmers need the ability to find out what is wrong and correct
it when a program is not working as it should. Although the task
seems difficult, it is really easy.

Two separate skills are involved in troubleshooting programs.
First, you need to decide which variables you would like to see
additional information about. You can insert PRINT statements into
the program to get the computer to print the values of the variables
you want to see. Second, you need to be able to follow the logic of
the program by going through the program as the computer would
(using pencil and paper, if necessary). For loops, it is generally
sufficient to check the first couple of values and the last couple
of values. These two abilities together allow you to find logical
programming errors quickly.

124 Hands—on BASIC

6—6 PROBLEMS

Write a BASIC program that calls for the input of two numbers and
prints out the larger.

Program a computer to read three numbers from a DATA statement
and then print out the smallest.

Write a program that has the computer find and print out the sum
of all the whole numbers between 1 and 100, inclusive.

What will happen if you run the following program?

1@@ LET

118 LET

128 LET

128 LET =

148 IF X< =]
158 EHDO

In example 3 in this chapter, change line 190 as follows:

{9¢

X}
[

DATA 4.2.3.5.5,1111

Study the program with this change and write down what will be
output if the program is executed. You may wish to run the program
to see if you are correct. If the answer is not correct, it may be
helpful to insert line 155 as follows:

1535 PRINT "5= ";5

List the program before you run it again. Compare the values of
X in the DATA statement with the values of S printed out. If you
can figure out why S = 1131 in the last output, you will know the
reason for the error. If not, try tracing the logic of the program by
doing exactly what the computer would do.

Program a computer to find the average of all the positive numbers
in a list whose end is marked with the flag 999. You do not know
in advance what numbers will be part of the data; they will be typed
into the computer when the program is run.

10.

11.

Decisions and Branching 125

Suppose you are given a DATA statement that contains a list of
numbers of unknown length. However, the end of the list is marked
with the flag variable 9999. Write a BASIC program to compute
and print out the sum of the numbers in the list between —10 and
+10 inclusive.

Usually the markup of supermarket items depends on the unit cost
of the item. Suppose this markup is based on the following schedule:

Unit Cost Mark up
0 to $1.00 20%
$1.01 to $2.00 10%
over $2.00 5%

The unit cost is determined by dividing the case price by the number
of items in the case. Write a program to compute label price, which
is unit cost plus markup.

Suppose you agree to work for one cent the first day, two cents the
second, four cents the third, eight cents the fourth and so on. If
there are 22 working days in a month, write a program that will
compute your wages (in dollars) for one month.

Consider the series
1+1/2 +1/3 +1/4 + ...

Write a program to find the sum of the first N terms. Use this to
find the sum of the first 10, 100, and 1000 terms. What do you
think will happen if you let the series run on forever?

Study the following program. Can you describe what the program
does?

idd EEAD H

1id LET L=1

1z LET C=1

i38 EEaAD

14 LET C=C+1

158 IF X<L THEH 17@
16 LET L=¥4

178 IF C<H THEH 13@

126 Hands—on BASIC

1868 FRINT L

196 DATA 1@

@@ DATA 5.83.17.3.47
218 DATA 25.16.41.51.7
226 END

You can find out more about on how the program works by inserting
line 165 as follows

165 FPRIWT "L IS "L

and running the program.

12. The following program is intended to find the average of N numbers
typed in at the terminal. As it stands the program is incorrect.
What's wrong?

FREIHNT "HOW MaHyY HUMBEERS®

IHFUT H

LET Z=8

LET C=1

FEINT "TYFE IH & HUMBER"Y:;
IHFUT =

LET 5=5+%

LET C=C+1

IF C<H THEH 1483

LET a=5-H

FEIHT "THE AUEEALE IsS": A
EHD

o
CECE D =) = B ED

L

1

I I e e T e e e e e
I ot Y O o Y I O O Y S Y I Y et
-
A

-
Dol

13. The discounted price of an item can be computed by
D = L*(1 - R/100)

where L is the purchase price and R is the discount rate in percent.
Write a program that will produce the following output:

LIST PRICE <$37 (You type in price)
ODISCOUNT RATE ©X3¥ (You type in rate)
OISCOUHTED FPRICE IS

(Computer types out price) DOLLARES

14.

15.

16.

17.

Decisions and Branching 127

There is an interesting sequence of numbers called the Fibonacci
numbers. The set begins with 0, 1. Then each succeeding number
in the sequence is the sum of the two previous ones. Thus, the
Fibonacci sequence is

0,1, 1,2 3,5, 8,....

Write a BASIC program to compute and print out the first twenty
numbers in the Fibonacci sequence.

Write a program to accept the input of two numbers. If both the
numbers are greater than or equal to 10, print out their sum. If both
the numbers are less than 10, print out their product. If one number
is greater than or equal to 10 and the other is less than 10, print out
the difference between the largest and smallest.

An instructor decides to award letter grades on an examination as
follows:

90—-100 A

80—89 B

60—79 C

50—59 D

0-50 F

Write a program to produce the following output:

IMPUT E=AM CEADE Y(You type in numerical grade)
YOUR GEADE IS (Computer types out A, B, C, D, E, or F)

If you use 8 percent more electricity each year, in nine years your
consumption will double. Thus your doubling time is nine years.
There is an interesting rule called the "rule of seventy- two” that
can be used to compute doubling times. If a quantity grows by R
percent in a single period of time, then the number of periods for the
quantity to double is given approximately by 72/R. We can compute
the growth of a process directly on the computer. In a single growth
period, a quantity Q grows according to the relation

(chu' - Qold(l + R/IOO)

18.

19.

128 Hands—on BASIC

Thus we can keep track of the growth by repeated use of the relation
above. When Q is twice the original value, the corresponding num-
ber of growth periods is the doubling time. Using this approach,
write a program that will produce the following output:

CROWTH RATE ©X» T (You type in R)
HUMBER 0OF CREOWTH PERIODS TO DOUEBLE IS
(Computer types answer)

Use the program to check out the accuracy of the rule of seventy-two
for many different growth rates.

A set of integers (whole numbers) is chosen at random from the set
1, 2, 3, 4 and put in a DATA statement. The end of the set is marked
with the flag 9999. Write a BASIC program that will compute and
print out the number of 1s, 2s, 3s, and 4s in the set. Test your
program on the following DATA statement:

Write a program that draws short lines (10 units) to the left, right,
up, or down depending on which of the keys L, R, U, or D is pressed.
You should model your program after the program in step 15 of the
discovery exercises. Be sure to delete lines 190 through 210 in that
program since they draw lines in the background color. You will
need a DRAWTO statement at the appropriate place. Try running
the program to see how the program draws various lines and figures.

6—7 PRACTICE TEST

What will be output if you run the following program?

iaa LET %=3

118 LET :":‘.E"#' Y

128 FRINT =

128 LET ¥=%¥+2

148 IF Y<=18 THEH 118
158 EHD

Decisions and Branching 129

2. What will be output if you run the following program?

(O e T s e T e T e

fbe e ok ks e foonte ook b foods o
oA
o

[0 o T T o S ¢ O = o Y L I S |

Faon I ot B Aoy B N I)

FEAD =

bAT

IF &
IF =

FEI
FEI
FEI
FREI

HT "Goon®
MT "BETTER"
MT "BEST"
HT

LOTo 188

EHD

3. Suppose you decide to buy a number of widgets. The manufacturer
is pushing sales and will reduce prices if widgets are purchased in
quantity. The price reductions are given below:

#Purchased Price per Widget

20 or less $2.00
21 to 50 1.80
51 or more 1.50

Write a program that will produce the following output when ex-
ecuted:

HOW MAHY

MIOGETE ¥ (You type in purchase quantity)

FREICE FER MWIDGET IS (Computer types out unit price)
TOTalL COST OF ORDER IS (Computer types out total)

Then keep looping back through the program.

and then stop.

E]

15

=

1

[y (]

Wrrite a program that will print out the number pattern shown below

130 Hands—on BASIC

If you get a ticket for speeding, your fine is based on how much you
exceeded the speed limit. Suppose the fine is computed as follows:

Amount over Limit Fine

1-10 mi/h $5
11—-20 10
21-—30 20
31—40 40

41 or more 80

Write a BASIC program that will produce the following output:

WHAaT WAS THE SPEED LIMIT T (You type in)
SPEED AREESTED AT 7 (You type in)
FIHE I3 (Computer types out fine) OOLLARES

CHAPTER 7

LOOPING AND
FUNCTIONS

7—1 OBJECTIVES

Using Built-in Looping Statements

You have already learned how to loop programs using either the
unconditional or conditional transfer statements. Now you will
learn special BASIC statements that take care of looping automati-
cally. These statements simplify the programming task and provide
flexibility in programes.

Using Built-in Functions

BASIC contains a number of built-in functions that can be used to
perform specific tasks. You will learn to use some of the simpler of
these functions involving numerical computations.

Working with Program Examples

You will continue with activities designed to draw you into program-
ming. Remember that the overall objective of the book is to teach
you how to write BASIC language programs.

132 Hands—on BASIC

7—2 DISCOVERY EXERCISES

Turn on the computer, bring up ATARI BASIC, and enter the fol-
lowing program:

1ga LET ¥=18

ii1a PRIMT Y.

128 LET ¥=%¥+5

138 IF ¥<=5%@ THEH 1198
148 EHD

Study the program and then execute it. Record what happened.

Which statement in the program determines the difference in the
numbers that were typed out?

Clear out the program in memory and enter the following program:

FOR ¥=18 TO 58 STEF 5
i

Ll e

[A R T
[nos B o I o B e |
-
o 1

Run the program and record what happened.

L

Compare the output to that obtained from the program in step 1.

Since the two programs produce the same output, it is reasonable to
assume that the statements must be related in some way. Type

&

o

16

(]
ML

4 FOR ¥=1

™=
]

Ta 58 STEFR 1@

Display the program in memory and study it. What do you think
will happen if you run this program?

[—

4.

5.

Looping and Functions 133

See if you were right. Run the program and record the results.

Now try out a few different ideas. Type

iF

.,..

fn
e
A

FOR ¥=8 TO S STEF 1

Display the program. What do you think this program will do?

Run the program and record the output.

Now type

1 8F

[nox]
-
fun]
L

FOR ¥=

-
[x

TI

=
=]

Display the program. What do you think this program will do?

L

Run the program and record the output.

Now compare line 100 in the program just executed with line 100
in the program in step 4. If the difference between the numbers to
be printed out is 1, is the STEP part of the statement necessary?

Let's try a different tactic. Type

....
L]
D}

1 FOor ¥=z28 To i@ STEFR -Z

Display the program and study it. What do you think this program
will do?

134 Hands—on BASIC

Run the program and record the output.

Now type

ke
1950
[
M
[}
en
I}
[,
]
-
[}
1)
[wn(}
D
]
m
"1
|
[

Display the program. What do you think will happen now if you
run the program?

Run the program and record the output.

L

We have led you into a potential trap in BASIC. What seems to be
the problem?

L

So far the step sizes in the FOR NEXT statements have worked out

even. Let’s try a new step size that might not come out even given
the limits in the FOR NEXT statement. Type

Pt
-
[hcn]
—
[cn

FOrR =2 TO 9 STEFR 2

Display the program. What do you think will be printed out?

L

Run the program and record the output.

9. C(lear the program in memory and enter the following program:

10.

11.

Looping and Functions

....
)
o

[

FOrR ¥=1 7O 3
FOR ¥=1 TO 4
PRINT #.%
MEXT ¥

HE®T

EHDO

1T

e
o

[S W R IR WP IV N T
[y I < I I
[o I o I

Run the program and record the output.

L

135

Now type

13E

.....
!

FOR ==1 TO

I

Run this new program and record the output.

Compare the two number patterns you have obtained. Can you see
the connection between the patterns and the limits in the FOR NEXT

statements?

L

Let's modify the program a bit more. Type

FOE ®=1 T0O
FORE %=1 T0O

M G

Display this program and study it. What do you think will be the

output if you run it?

L

Try it and see if you were right.

12.

13.

136 Hands—on BASIC

Type

Or s=1 TO
Oor ¥=1 T0O

m ™M

T Tl

164
1o

Display the program and write down what you think will be typed
out when you run the program.

L

Run the program and record the results.

Obtain a listing of the program just executed and draw a line from
the line number of the FOR Y statement to the line number of the
NEXT Y statement. Do the same thing for the FOR X and the NEXT
X statements. Do the lines cross?

Now type

515
ia

o

oF ¥=1 T4

F
FOR #=1 TO

[

Display the program. What do you think will be output of this
program?

Run the program and record the output.

{

Obtain a listing of this program. Connect the FOR Y and the NEXT
Y line numbers with a line just as you did in step 12. Do the same
thing for the FOR X and the NEXT X statements. Do the lines cross?
Compare with the situation in step 12.

Looping and Functions 137

Does this suggest a way to avoid getting into trouble using more
than one FOR NEXT combination in a single program?

14. Clear the program in memory. Enter the program below.

CRAFPHICE &

FORF I=1 TO 158 STEFR S
FOR =1 TO &8 STEF -1
CoLoR U

FLOT I.I:0ORAWTO I+28.1
ORAWTO I+Z28.1+28

ORaMWTO I.I+28:-DRAWTO I.1
HEXT Jd

HEXT I

EHD

I S O S P T T T =
U I ot T Aoy B A |

L I T e 1 Y S Y I ' S cH
ot

e
O S S D

Study the program. What shape do you think will be drawn by lines
140 to 1607

L

Run the program. Were you right?

What two colors are used in this program?

{

15. Exit the graphics mode by typing GRAPHICS 0 Clear the program
in memory and enter the program below.

o
[uca]

IHFUT A

LET B=SQRE{AZ
FRIHT B

LOTO 188

EHDO

LA

b et ok o e
I ORI I N I S v
Do B o

Run the program and at the INPUT prompt, type in 4. What
happened?

L

138 Hands—on BASIC

Type in 9 at the INPUT prompt and record the results.

L

Type in 25. What happened?

L

Finally, type in 10. What happened?

What happens to A in the expression SQR(A) in line 110 of the
program? In other words, what does SQR do?

Jump the computer out of the input loop. Type
118 LET E=IHTCA:>

Run the program for the following values of A. In each case, record
the output of the program.

A Output

1
3.4
256.78

—-2.3 _

Examine the output you have recorded above and compare each
number with the corresponding value of A that you typed in. What
does the INT(A) function do?

Looping and Functions 139

If you had trouble understanding what was happening to the nega-
tive values of A, don’t worry at this point. We will review this
completely later.

17. Jump the computer out of the input loop. Type
118 LET B=SCH{A

Display the program and review the program structure to refresh
your memory about how the program works. Run the program for
each of the following values of A. In each case, record the output.

A Output

1.5
43
128.3

—1.2
—345.7
4.7
—5.8

Examine the output carefully. What does the SGN function do?

-

18. Jump the computer out of the input loop. Type
118 LET B=AES{A>

Execute the program for each of the values of A given below. Again,
record the output in each case.

19.

140 Hands—on BASIC

3.4 —

—3.4

—8.45
8.45

Examine the output. What does the ABS function do?

L

This concludes the computer work for now. Jump the computer out
of the input loop and turn off the computer.

7—3 DISCUSSION

Using Built-in Looping Statements

In the previous chapters you learned how to loop programs under the
control of transfer statements. The unconditional (GOTOQO) statement
was useful but could sometimes result in a loop with no way out.
The conditional (IF THEN) statement provided a way to loop the
program and also a way to get out of the loop. All of these are
good techniques. However, BASIC gives programmers a simple and
elegant way to take care of looping. We will now go over this new
method, which uses the FOR NEXT statements.

All FOR statements have the same format. This format and a
typical statement are shown below.

Line## FOR<variable> = <relation>TO0<relation> STEP<relation>

1)

A
L

1za FOR X=1 TO STEF 2
The things that can change in FOR statements are the variable and
the three relations. If the STEP is left out of the statement, the

Looping and Functions 141

computer will use a step size of 1. There are many different forms
of the FOR statement. A few of the possibilities are:

1328 FOR =2 TO B

136 FOR T=253 TO 18 STEP -Z
1326 FOR MW=-26 TO0 18 STEF 2
136 FOR X=3%2 TO A%E STEF D

In general, you can use any legal BASIC statement for the
relations if the variables are properly defined in the program.

[Use FOR NEXT statements for looping.

The FOR statement opens a loop. You close the loop with the
NEXT statement. The following example shows how this is done.

ZE@ FOR #=2 70O 12 STEF (Opens loop)

M

Program lines inside loop

2483 HEST ® (Closes loop)

In the NEXT statement, the variable must be the same as that in the
FOR statement that opened the loop.

It is important to acquire a complete understanding of how
these loops work. In the example above, when the program reaches
line 200 the first time, X is set equal to 2. Then the computer works
through the lines until it reaches line 340, which closes the loop and
directs the computer back to line 200 and the next value of X (in this
case, 4). The computer stays in the loop until the value of X exceeds
the limit of 18. Then, instead of going through the statements inside
the loop, the computer jumps to the line following line 340.

142 Hands—on BASIC

Let’s look at another example of the FOR NEXT statements in
action.

LET
FOR
LET A
FRINT
HEAT =
EHO

Gl o

1
1 TO & STER 2
2k
A,

b s fpoete ks s e
[y I O I W o]
[I o B T T oy e |

The table below shows the line numbers in the order the
computer encounters them and gives the corresponding values of the
variables at each stage.

Line Number X

100
110
120
130
140
110
120
130
140
110
120
130
140
110
150

* Jumps out of loop
** Program stops

W R RNDNDNNREE D
G G B W W W W R R

~
*

*
*

Study the sequence of line numbers and the corresponding
values of A and X until you are certain that you understand how the
FOR NEXT statements control the loop.

Quite often a program requires more complicated loop struc-
tures. The structure can be as involved as desired provided that the
loops do not cross. The example below illustrates a segment of a
program with crossed loops.

00

Another example of crossed loops is

[ST W
I e 5
[I s B x|

FOr I=da TO
FOR A=18 TO
FOrR E=1 TO

-,
[

= =

4

Looping and Functions

Outer loop OK; inner loops cross!

I S
L B |

oy
LU o

HEXT @
HEXT B

MEXT 1

143

With large complex programs containing many FOR NEXT
loops, it is easy to cross one or more of the loops. However, when

this does happen, the error message will point you quickly to it.

The following example illustrates a complicated structure in
which the loops are organized correctly:

I

.1 -

-
o]

1
1

14@

Pt
-]
[

FOR #=1 T0O
FOR ¥=2 TO
MEZT ¥
FOR Z2=1 Ta
FOR k=28 T
MEXT K
MEXT Z

14
4

144 Hands—on BASIC

In this example we have double loops and loops within loops.
Remember, any combination of loops may be used in a program
provided that lines connecting the FOR statements and their cor-
responding NEXT statements do not cross. If they do, the computer
will signal an error and stop.

| Don't cross your FOR NEXT loops!

Using Built— in Functions

Since many computing tasks are needed routinely, ATARI BASIC
has some tasks preprogrammed in the form of functions. With these
built-in functions, the programmer can perform very complicated
mathematical operations without difficulty. The functions include
the following:

Function Action

SQR(X) Square root of X
INT(X) Integer part of X
SGN(X) Sign of X

ABS(X) Absolute value of X

Let's examine the first function, SQR(X), to see how all the
functions operate in general. First, X is called the argument of the
function and can be thought of as “what the function works on.” If
you use SQR(X) in a program, you are instructing the computer to
look up the value of X and take the square root of that number. For
example,

SQR(36) = 6
SQR(64) = 8
SQR(81) = 9
SQR(2) = 1.41421356

and so on. The only limitation is that you can't take the square
root of a negative number. If you asked the computer to evaluate
SQR(—6), for example, it would signal an error and stop.

Looping and Functions 145

The argument of the function can be as complicated as needed
in the program. If the computer runs across an expression such as

SQR(X+4*Y)

it will look up the values of the variables, carry out the calculation
indicated, and take the square root of the result. This characteristic
is true for all the functions.

INT(X) takes the integer part of X. The term integer means
“whole number.” Thus, 2 is an integer while 23.472 is not. To take
the integer part of a number, you simply forget about everything
following the decimal point. Thus

INT(3.1593) = 3
INT(54.76) = 54
INT(0.362) = 0

However, negative numbers require special attention. What really
happens when you take the integer of a number is that you go to
the first integer less than or equal to the number. Using this rule,

INT(-2) = -2
INT(-.93) = —1

and so on. Note carefully that the INT function does not round off
a number. Often beginners are somewhat confused about this,

[The integer part of a number is the first integer
less than the number.

SGN(X) is a very interesting function. If X is positive, SGN(X)
is +1. If X is negative, SGN(X) is —1. If X is 0, SGN(X) is 0. In
effect, SGN(X) returns the sign of X, either +1, —1, or 0. Therefore,

SGN(4.568) = +1
SGN(375) = +1
SGN(0) =0
SGN(—5.93) = -1
SGN(-4) = -1

146 Hands—on BASIC

At this point it may not be clear how such a function could
be useful. The SGN function is very useful, however, and has many
applications. For the time being, it is enough simply to learn what
the function does.

ABS(X) tells the computer to ignore the sign of X. In effect,
it converts all values of X, other than 0, to positive numbers. For
example:

ABS(4.5) = 45
ABS(—4.5) = 4.5
ABS(95.34) = 95.34
ABS(—95.34) = 95.34
ABS(0) =0

There are many other built-in functions in BASIC. However,
most of them involve more mathematical knowledge than many
students have. If you know the mathematics necessary to understand
what the functions are doing, you will have no difficulty learning
how to use them. If you are interested, consult Chapter 6 of the
ATARI BASIC Reference Manual. We will take up some functions
that involve strings of characters in Chapter 9.

The built-in functions we have been discussing are used in
BASIC statements. Lines that use such functions might include

1
1

4
1

(A
(]

A=SaRCY 2

i ET
1 ET Z=Z%IHTLCx+aBSID0

= r~

The built-in functions can also be used within the argument of
functions such as

188

o
4l

LET ¥=IMTOCSQR{ R »+3EABEIZ 00

In this example, the computer would add the square root of X to
the absolute value of Z multiplied by 3 and express the sum as an
integer.

B Any BASIC expression can be the argument of BASIC function

Looping and Functions 147

7—4 PROGRAM EXAMPLES

Example 1 - Finding the Average of a Group of Numbers

In the previous chapter, you found an average in one of the program
examples. Let’s return to the same problem but use a different
method. We want the program to produce the following printout:

HOW MAaMY HUMBEES (You type in)

EMTER HUMEBERS. 0OHE AT A TIME

¥ (You type in the numbers)

THE AUERAGE IS (Computer types out average)

The first few lines should be easy for you to write by now.

iad PRIWMT "HOW MAMY HUMBERSY;
118 IMFUT H

126 FREIMT "EMTER HMUMEERES. OHE AT A TIHME®

Now you must arrange for the input of N numbers but must
also keep in mind that we are supposed to compute the average
of the numbers. So initially set S (which will be used to sum the
numbers) equal to 0.

13

[acw]

LET 5=

153

FOR NEXT statements are ideal for inputting numbers and
summing them.

148 FORE I=1 TO H
158 IHFUT

168 LET S5=5+H
1va HERT 1

You don’t use I, the loop variable, except to count the numbers as
they are input. When all the numbers are in, the computer will
jump out of the loop to the next line after 170. When this happens,
S will contain the sum of all the values of X that were typed in.
Since you know that N is the number of numbers typed in, you can
immediately get the program to compute the average.

1268 LET A=5+H

The rest of the program follows without difficulty.

148 Hands—on BASIC

FRINT "THE AUERALE IS ":A
268 ENDO

The complete program is

188 PEINT "HOW MaHY HUMBEES Y
118 IHPUT H

128 PRINT "EWTER HUMBERS. OHE aT g TIHE®
138 LET S5=#

148 FOR I=1 T H

158 IHPUT ¥

168 LET 5=5+34

178 HEST 1

188 LET a=5-H

128 PRINT "THE AUERACE IS ":nf
a8 EHD

Example 2 - Temperature Conversion Table

In one of the earlier programs you used the relation
C = 5/9*%(F—-32)

to convert from degrees Fahrenheit to degrees Celsius. Now let’s
generate a conversion table as follows:

Degrees F Degrees C
0 =17.77777777
5 =15
10 —12.22222222
etc.
100 37.77777777

First you'll want the column headings and a space before the
table begins.

188 PRIMT "DELEEES F"."DECREES C*¥
118 PRINT

You can use a FOR NEXT loop to generate the values of F, which
can then be converted to C and printed out.

Looping and Functions 149

126 FOR F=8 TO 188 STEP 3
1328 LET C=5¥CF-322-3

148 PRIHT F.C

138 HEXT F

Finally you need the END statement.

16E

|:|

EHD
The whole program is

FPRIHMT "DEGEEES FY."DEGREES C*
FEIHNT

FokR F=8 T0O IEE
LET C=5¥{F-322~
FEINT F.C
HEZT F

EHD

TEF =

A T A Y N e

Lo TR I T I N]

L O e O oy R oy B o O RO et
l.,L"l [Ax]

Example 3 - Exact Division

Now let’s write a program that will compute all the integers (whole
numbers) that divide exactly into another integer. To illustrate,
suppose we take N as the test integer. The problem is to find all
the integers (X) that will divide exactly into N with no remainder.
The rule to use is

If N/X = INT(N/X) then there is no remainder
If N/X <> INT(N/X) then there is a remainder

Now write a program to produce the following output when
executed:

IMPUT & POSITIUE WHOLE HUMEBEEY (You type in)
THE EXACT DIUVISORE ARE
(Computer types out first number, second number, etc.)

150 Hands—on BASIC

The program begins easily.

18 PRIMT "IMFUT A FOSITIUE WHOLE HUMBER"™:
118 IHFUT H
128 PRIMT "THE EXACT DIUISORS ARE"

Now you want the program to look at each of the whole
numbers between 1 and N. Of course, this is an ideal use of the FOR
NEXT loop. The rule given above tests whether each number divides
exactly.

128 FOR ¥=1 TO H

148 IF Mo8<:IHTOH-¥» THEH 1&0
158 PRIHT

18 HE=T

Finally you need the END statement.
178 EHDO

The complete program is

188 PRIMT "IHMPUT a POSITIUE WHOLE HUMBER ©
118 IHFUT H

128 PRIMT "THE EXACT DIUISORS AEE"

138 FOR ==1 7O H

i48 IF HeAR<FIHTOMs®> THEH 1&58

158 FEINT

1@ MEXRT

iva EHD

Try the program using fairly large values of N. How could
you make the program run in half the time?

Example 4 - Depreciation Schedule

When a company invests in equipment, the investment is depreciated
over a number of years for tax purposes. This means that the value
of the equipment decreases each year and the amount of decrease
is a tax-deductible item. One of the methods used to compute
depreciation is the “sum-of-the-years’-digits” schedule.

Looping and Functions 151

To illustrate, suppose a piece of equipment has a lifetime of 5
years. The sum of the years’ digits would be

1+2+3+4+5=15

The depreciation the first year will be 5/15 of the initial value. The
depreciation fraction the second year will be 4/15, and so on. If the

equipment had an initial value of $3000, the depreciation schedule
would be

Depreciation Current
End of Year Fraction Depreciation Value
1 5/15 1000 2000
2 4/15 800 1200
3 3/15 600 600
4 2/15 400 200
5 1/15 200 0

The problem is to write a BASIC program that will generate
depreciation schedules by the “sum-of-the-years’-digits” method.
The output should be as follows:

THE IHITIaL ASSET WaLUE IS (You type in)
THE ASSET LIFE IH YEARS IS (You type in)
EHO OF DEFRELC DEFRELC CURREHT
YEAR FRACTION ASSET UALUE
(Computer prints out table)

The first few lines of the program can be written without any
explanation:

188 FRINT “THE IMITIAL ASSET UALUE IS *
118 INFUT F

126 PRINT "THE ASSET LIFE IN YEARS IS "
12@ INFUT N

148 FRIMT

158 PRIMT “END OF";" ";"DEPREC";"
“;"ODEFREC": " "; "CURRENT"

168 PRINT " YEAR":" “;"FRACTION";"

" "ASSET UALUE"Y
178 PRINT

152 Hands—on BASIC

Next, compute the sum-of-the-years’ digits.

ig@ LET S5=8

198 FOR I=1 TO H
Z@@E LET S=5+1
218 HEXET 1

Now compute the schedule and print it out. Use the variable
P1 to keep track of the current asset value.

228 LET P1i=F

238 FOR I=1 TO H
248 LET F={H+1-10-5
258 LET O=F*F

Zed LET FPi=F1-D

2ya PRIMT I.F.0.F1
288 MHEAT I

In line 240, F is the depreciation fraction for the Ith year.
You can check this out for various values of I to ensure that the
expression does generate the correct value of F. In line 250, D is the
depreciation. The only thing missing now is the END statement.

238 EHMD

The complete program is

188 PRINT "THE INITIAL ASSET UALUE IS “;
11@ INFUT P

128 FRINT "THE ASSET LIFE IH YEARS I3 "
138 INFUT H

148 PRINT

158 PRIMT "END OF";" “;"DEFREC":"

";"OEPREECT: Y " "CUHREENTY

e PRIWHT " YEaR":" ":"FREACTIOHN":®
"iTASSET UALUEY

178 PRINT

126 LET S=d

123 FOR I=1 TO H

28 LET S5=5+1

218 HERT I

228 LET PRi=F

Looping and Functions 153

238 FOrR I=1 TO H
248 LET F=cH+1-1I3-5
238 LET D=F%F

268 LET P1=F1-D

27va PRINT I.F.D0O.FP1
288 HEXET 1

238 EHD

Try out the program with different inputs. Use $1000 and 4
years first. Other choices will generally give long fractional values
that will wrap around on the screen and be difficult to read. You
can make the table more legible by reducing the number of digits
displayed. See example 2, Chapter 10. You may be able to come
up with a solution yourself using the INT function covered in this
chapter.

Use this program to impress the Internal Revenue Service with
computer-generated depreciation schedules!

7—5 PROBLEMS

Write a program to generate a table of numbers and their square
roots. The table should look like the following:

N SORCH

2 1.41421356
z.1 1.44913767
2.2 1.48323969
etc.

3.9 1.97484176
4 2

Write a program to count from 0 to 500 by tens and print out the
results.

Write a program to accept the input of a number N, then print out
the even numbers greater than O but less than or equal to N.

Write a program to print out a conversion table from inches to
centimeters. Include the appropriate headings. Start the table at
0 and continue to 10 inches in steps of 0.5 inch. There are 2.54
centimeters in one inch.

154 Hands—on BASIC

5. What will be printed out if you run the following program?

FOR #=5 TO 1 STEP -1
FPEIMT "RBCDY:
HEST ®
END

[—
COL I N I)

el [= T
-
5

o
D)

6. Study the following program. What will be output?

FOR I=1 TO 5

READ &

LET B=INT.{a»~-SCHIAXEZ
FRIHNT E

HEHT I

OAaTa 2 . 2.-3.18.8.-1.45
EHDO

[SR A W N VO R W Sy

D I S Y I v
Lo 0 o T o O o T o O o B e |

7. What will be printed out if you run the following program?

FOR =1 TO 1@
LET =z

FOR Z
LET U=Z+Y
FOE U=1 TO
FRINT U+U
MEXT Z
MEXT U
ME®T

EMD

1}
[y
—f
s
|

[y}

[0 bt bk bk ek ek ek ek ek ek
[ncot L O T O o I S) I S 9 }
[t o T s T oo T oo T oy T ot T oy Y ot B)

8. The following program won’t work. What's wrong?

T
[an]

FOR ¥=-1G TO +1@ STEP 2
PRINT . S@RCH>

HEXT ¥

EMD

ok ke b b
[I I v |
[B o T oV B K

Looping and Functions 155

9. What does the following program do?

10.

11.

12.

13.

14.

iB@ FOR ¥=1 TO 5

118 READ ¥

128 LET Z=IHT¢188%¥+.5)-180

138 FPRINT £

148 HEXT X

158 DATE 1.@86142,27 5292, 1358 . 821
168 DaTa . 423715.51. 92132

178 EHO

Write a program to print out the following pattern of asterisks
without using more than three PRINT statements.

¥ ¥ ¥ % ¥ ¥ ¥ ¥ %
¥ ¥ ¥ ¥ % £ %
¥ ¥ ¥ % ¥
¥ ¥ %
¥

Write a graphics program that draws a grid on the screen (a set of
evenly spaced horizontal and vertical lines).

N!is read “N factorial” and means the product of all the integers

from 1 to N inclusive. For example,

3 =M2)3) =6
5! = (1)(2)(3)(4)(5) = 120

and so on. Write a program calls for the input of N and then
computes and prints out N!

Write a BASIC program that calls for the input of N grades and
computes and prints out (1) the highest grade, (2) the lowest grade,
and (3) the average of the grades.

What, if anything, is wrong with the following program?

184 FOR ==1 TO 2
118 FOR Y¥=2 TO &
128 PRINT =H+¥
1328 HEXT ¥

148 FOR Z=1 TO 2
158 PRINT ¥+2

156 Hands—on BASIC

HEXT #
HEXT 2
EHD

o ok o
[B hn]

=g

1~

15. What will be output if you run the following program?

16.

17.

FOR H=1 TO 4
FOR ¥=1 TO 23
LET Z==%Y
FRINT 2.
HEXT ¥

FEINT

HEXT =

EHDO

[IO A W TP R T S Sy)

=J L el T e 2D
[T o T o B o T ot T ot B I o |

Suppose you decide to invest $1000 on the first of each year for ten
years at an annual interest rate of 6 percent. At the end of the tenth
year, the value of the investment will be $13,971.64. To see how
this could be computed, use the following formula:

SNEW = ($OLD + I)1 + R/100).

In this formula, R is the annual interest rate in percentage. [is
the annual investment, $OLD is the value of the investment at the
beginning of each year, and $NEW is the value of the investment at
the end of the year. Thus, $SNEW becomes $OLD for the next year.
Write a BASIC program that will produce the following output.

WHAT IS THE aMHUAL THUESTHMEMTY (You type in)
THE AMHUAL IHMTEEEST RATE <X 37 (You type in)
HOW MAHY YEAESY (You type in)

AT THE EHD 0OF THE LAST YEAR THE UWaLUE OF
THE IHUESTHMEHT HILL EE (Computer types answer)

The DATA statements below contain the time worked by a number
of employees during a one—week period.

128 DATa 5

2ae DATa 2. 4.8, 8. 1. 2, 7. 14
281 DATA 5. 2.7%. 7. 8. B, &, 18
24z bAaTa 1. 32.25. 8. 18, £, 2, B
282 DATA 4. 5, 8. 18, &, 1@, &
284 DATA 2. 4.25, &, &, 8, 18, 7

18.

Looping and Functions 157

The number in line 190 gives the number of employees to follow.
Each of the DATA lines after line 190 contains a weekly record
for one employee. The data are the employee number, the hourly
rate, and the hours worked Monday through Friday. The employee
receives time and a half for everything over 40 hours per week.
Write a BASIC program using these DATA statements to compute
and print out the employee number and the gross pay for the week
for each of the employees.

Assume that the following DATA statements give the performance
of the students in an English class on three examinations:

138 DATA &

z@@ DATa 3. %8, 35, 32

z@1 DATA 1. 75. 8@, 71

zez DATA 6. 188, 32, 21
283 DATA 5. 48, 55. 43

284 DATA 2. 68, 71, 68

285 DATA 4. 38. 47, 42

The number in line 190 is the number of students in the class. Each
of the DATA statements that follow gives the performance for a
single student. The information is the student ID number, grade
1, grade 2, and grade 3. Thus, as shown in line 202, student 6 got
examination grades of 100, 82, and 81. Write a program using these
DATA statements to compute and print out each student’s ID number
and his or her course grade. Assume that the first two examination
grades are weighted 25 percent each toward the overall grade and
the last grade is weighted 50 percent.

7—6 PRACTICE TEST

What will be printed if you run the following program?

FOR ¥=zZ8 TO0 1 STEF -2
FEINT Y.

HE=T ¥

EHD

e ok ok ke
[I R I S v |
M It I et

A
M

158 Hands—on BASIC

What will be printed out if you run the following program?

FOR A=1 TO 4
FOR EB=1 TO 3
FEIHT AxE.
MEXT B

HEXT A

EHD

[T O N S R Y
Ly I R LN Y
[T 0 v o0 T o I)

Fill in the blanks.

a. SQR(36) =
b. INT(7.13) =
c. ABS(—22.8)
d. SGN(-1.3)

What, if anything, is wrong with the following program?

188 FOR I=1 TO 5
iig FOR J=2 TO 5
128 FREIHT I.
128 HE=T I

148 HEHT

18 EHD

Miles can be converted to kilometers by multiplying the number of
miles by 1.609. Write a program to produce the following output:

MILEZ EILOMETERS
i@ 1o .85

15 24 135

28 2218

etc

Looping and Functions 159

Numerical information is loaded into DATA statements as follows:

The number in line 100 gives the number of numbers to be processed
in the rest of the DATA statements. Write a program using these
statements to compute the average of the numbers excluding the one
in line 100.

Study the following program.

LEAPHICS ©

cCoLor 1

FORE UERET=8 TO 128 STEF 48

FOR HEZ=8 TO Z48 STEFP 40

FLOT HEZ.UEET:DRAMTO HEZ.UERT+15
DRAWTO HRZ+18,UVERET+15

ORAMTO HEZ.UERT

HEXT HEZ

HEXT UVERT

EHD

o
hal Ll

Pk ke ok ok fouk b b ek ke e

L R I I) I S P

ol o
Fioc T o B s T et O et T 0 T 3 O

a. What shape will be drawn when you run the program?
b. How many copies of the shape will be drawn?
c. Are the shapes drawn across first or down first?

CHAPTER 8

\XORKING WITH
COLLECTIONS
OF NUMBERS

8—1 OBJECTIVES

In this chapter you will apply some of the ideas you learned earlier
to collections of numbers. You will be introduced to new concepts
that will expand the capability of BASIC.

Learning to Use Single— and Double— Subscripted Variables

You will learn what subscripted variables are and how to use them
to create more useful programs.

Saving Space for Arrays

When you want to store a collection of numbers in the computer,
you must indicate how much space the numbers will occupy in the
memory. You will learn how to use the DIM statement to save space
in the computer’s memory.

Using FOR NEXT Loops to Handle Subscripted Variables

You will learn to apply FOR NEXT loops to the repetitive process
of naming numbers in a collection.

Working with Program Examples

You will study BASIC programs that take advantage of subscripted
variables.

162 Hands—on BASIC

8—2 DISCOVERY EXERCISES

Subscripts

When working with groups of numbers you must be able to distin-
guish members of the group from one another. This is the reason
for subscripts. Before learning about subscripts, however, add two
important words to your computer vocabulary. You could use the
word collection to describe a group of numbers, but two other words
are more commonly used: matrix and array. For our purposes they
both mean the same thing: a “collection of numbers.” Remember,
then, the terms matrix and array mean a collection of numbers.

(] MATRIX and ARRAY mean collections of numbers.

Let's look at the array below.

Y1 =9
Y, =10
Y; =7
Y, =14
Ys = 12
Yo — 15

The name of the array is Y. Its size is six, since there are six
elements (or numbers) in it. The numbers 9, 10, 7, 14, 12, and
15 are the elements in the array. The numbers printed to the right
and slightly below the Ys are called subscripts. In BASIC, subscripts
are printed in parentheses, e.g., Y(3) rather than Y3. Each subscript
merely points to one element in the array. Thus, Y(4) means the
fourth number in the array, which in this case is 14. We read Y(4)
as Y sub four.” The third number in the array would be called 'Y
sub three,” and so on..This array is one-dimensional, since it takes
only a single number (or subscript) to locate a given element in the
array.

Working With Collections of Numbers 163

Now let’s look at a more complicated example.

Ziw=4 Z1p2=9 Z13=5
Zoy =3 Zyp=8 Zy3=17

In this example, there are six elements in the array Z. However,
this is a two-dimensional array, since we must specify which row
and column we want. The first subscript gives the row number;
the second specifies the column. Z,; is read as “Z sub two one”
and means the element of Z at the second row and first column.
Likewise, the element at row 1, column 3 would be identified as Z; 3
and would be read “Z sub one three.”

In summary, you will work with two kinds of matrices or
arrays. Elements in a one-dimensional array are located with a
single number. Elements in a two-dimensional array are located
with two numbers, designating a row and a column. A location
in a one-dimensional array is designated by a single-subscripted
variable. Likewise, the double-subscripted variable is used in the
two-dimensional array. You are now ready for the computer work.

Turn on the computer, bring up ATARI BASIC, and enter the fol-
lowing program:

188 LET H413=21
118 LET ®{Z22x=13
128 LET H(3»=1¢&
138 LET Hi4>3=8
148 LET HoSx=11
158 FRIHT Hcl2
1e@ EHD

What do you think will be printed out if you run the program?

L

Run the program and record what happens.

164 Hands—on BASIC

Error 9 is a dimension error that will be considered in greater detail
later. Type in

98 DIM HOS:
Run the program again and record what happens.

L

Now modify the program to print out the fourth value of X. Run
the program. Did it work?

Now type
158 PRIHT HoZa+Ho4

Display the program and study it briefly. What do you think will
happen if you run the program?

L

Run the program and see if you were right. Record the output.

Type
156 FOR I=1 TO 5
152 PRIMT #CI2
154 HME=RT 1

Display the program. What do you think will be printed out?

L

See if you were right. Record what happens when you run the
program.

Working With Collections of Numbers 165

5. Modify this program to print out only the first three values of the
array X. Record what happens.

L

6. Again modify the program, but this time so that the first value of
the array, then every other one, will be printed out. Record what
happens.

7. Clear the program in memory. Enter the following program:

S8 DIM YOz2.30
1gg LET ¥ol.123=2
118 LET Y¥41.23=5
128 LET ¥o1,33=1
138 LET Yo2.,12=2
148 LET ¥Yo2,2x=4
158 LET Yo2,33=3
128 PRIHT Yo1.3%
i7g EHD

Display the program and make sure you have entered it correctly.
What do you think this program does?

Run the program and record the output.

8. Type
168 PRIHT Y02, 23+01.30+¥01.12

Display the program. What will this program do?

Run the program and see if you were right.

10.

166 Hands—on BASIC

Type
ied LET 5=8
162 FOR =1 TO 3
164 LET S=S+¥({1..472
166 HEST J
168 PRINT S

Display the program and study it carefully. What will happen if you
run this program?

Run the program and record the output.

Explain in your own words what is taking place.

Type
162 FORE I=1 To 2
164 LET S=5+¥({I.2%
166 HEXT 1
Display the program. What is the program doing now?

[E——

Run the program and record the output.

Again try to explain in your own words what is happening.

Working With Collections of Numbers 167

11. Now type

* PRIMT S
EHD

T I S
o =g =g T Ty Ty
[ncn I T e O T T %

m

—

o

Display the program and think a minute about it. In particular,
compare what you see now to what happened in steps 9 and 10.
What does this program do?

L

Run the program and record the output.

L

12. C(lear the program in memory. Type the following program:

1ga OIM Bod43. Yid2
i1g FOR I=1 TO 4
126 EEAD A.E

128 LET =®<IX=A

148 LET ¥<I»=E

158 HEXT I

1@ PRIMT ®O13+¥042
ire DATa 2.1

1v1 DATA -1.3

172 DATA 5.6

172 DATA 2.4

188 EHD

Display the program and check to see that you have entered it
correctly. Study the program carefully. If you run the program,
what will be typed out?

168 Hands—on BASIC

Run the program and see whether you were right. Record the output.

13. Clear the program in memory. Type the following program:

ODIM fcd. 322

FOrR I=1 TO 4

FOrR J=1 Ta =

READ T

LET AT Ja=T

HE=T J

HEXT 1

For I=1 TO 4

FOor 1=1 TO 32
FRIHNT ACI.dx: ¥
HE®T J

FRINT
FRIHNT
HE=T
DAaTA
OAaTH
0aTA
OAaTa 2.2.¢
EHDO

P L B R]

L)

] :F.. I I:-.,l

R S R I I N S T R I o e e e e i S e

o T T Ty RS PO Y Y S o Y o T Y T O o 1 O ™S P I I v |
Do B nce T B o T e T o S o T o T o Tt T 3 T ot B O S o O o O s O ey e

Make sure that you have entered the program correctly, then take a
few minutes to study it. Notice the two spaces between the quotes
in line 190. Can you see what will be printed out if you run the
program?

Run the program and record the output.

Compare what was printed out to the numbers in the DATA state-
ments in the program.

Working With Collections of Numbers 169

14. Clear the program in memory and then enter the following program:

OIM AC2.22
For I=1 71O
IHPUT &%
LET ACI.13=4
LET ACI. .2
HEXT 1

FPEINT

FPEIHNT

FOR I=1 TO
FOR d=1 TO
PRINT AdI.dx:® M
HEXT

FEINT

FEIHT

HEXT 1

EHDO

[

- -
(O]

T
s

- [1 Th2

R R R I R A I A B T e e e R e e
Pl I S S B o Y w O N e) I W I LR

iy
st I I o I U U ey B OV o o e R U

Run the program and when the INPUT prompt appears, type

2,5
3,8

What happens?

L

Compare the output to the numbers you typed in.

15. Clear the program in memory. Then enter the following program:

P el e N
T e] T D
Lo T o T T ot T o T O v §

A

m

I

L

I

HEXT 1

16.

170 Hands—on BASIC

FEIHT
FEIHT
FOR I=1 TO
FORE J1=1 T0O
FREIMT #cI.Jda:" U
HERT J

FEIHT
HEXT 1

NN |
T g
Lad 1

XY |

Y

L

AL

OAaTAa 2.
DATA 4.7,
bDaTa 1.2
EMO

[T o T o T o T o T o O ot I

!

[
Doy R

K

| T O I N I ST RO T B i]

[T T T 3 Y S o O % T o T Y o

Run the program. What happens?

Compare the output to the numbers in the DATA statements.

This concludes the computer work for this chapter. Turn off the
computer.

8—3 DISCUSSION

Most students are confused by arrays. Pay particular attention to
the discussion material to clear up any questions that might have
arisen in the computer work.

Learning to Use Single— and Double— Subscripted Variables

The need for subscripted numbers becomes obvious when you handle
large collections of numbers. If, for example, you were writing
a program that involved only four numbers, you would have no
difficulty naming them. You might call the numbers X, Y, U, and V.
But suppose you needed to work with 100 numbers. For this reason,
it is often very useful to have subscripted numbers. Fortunately,
BASIC makes provisions for subscripts.

Working With Collections of Numbers 171

Consider the following set of numbers:

4 Y;
1 14
2
3
4 11
5 16
6 20
7
8

We can refer to the entire set of numbers by the single name Y. Thus,
Y is a collection of numbers, a matrix, or an array— all of which
mean roughly the same thing for our purposes. To locate a number
in an array, we must have the array name (in this case Y) and the
number’s position in the array. The i column gives the number’s
position. Thus Y(3) (pronounced "Y sub three”) locates the third
number in the array Y. In this case, Y(3) has the value 9. Likewise,
Y(7), is 5, Y(1) is 14, and so on. Y(i) (pronounced Y sub i”), is a
general way to denote any element of the array, depending on the
value of i. In the example above, If i were 8, then Y(i) would be
3. This collection of numbers is one-dimensional, since only one
number (subscript) is needed to locate any element in the array.
Next let’s look at a two-dimensional array.

Y., 1 2 3 4
1]3 -1 10 38
212 4 5 6
3|1 -2 9 3

Now you need two numbers to [ocate an element in the array. Given
a row number and a column number, you can find any element of
the array. For example, Y(1,3) means the element of Y located at
row 1, column 3. In the example above, the element has the value
10. A general way to denote an element in the two-dimensional
array is Y(i,j). The first subscript (i) is the row number, and the
second subscript (j) is the column number.

172 Hands-—on BASIC

To make sure you understand how the double subscripts are
used, refer to the two-dimensional array in the table above and verify
that the following statements are correct:

Yao — 2
Y14 =28
Y33=9
Yo, =2
] Double subscripts define row and column numbers.

An interesting question comes up. Does X(M— N+3,5*T)
mean anything? The answer is yes provided that the computer can
convert M—N+3 and S$*T into numbers. Even Y(Y(1,1),Y(2,3)) is all
right as long as the computer can locate the numbers in Y(1,1) and
Y(2,3). However, suppose you want to locate X(A+B) where A =
2.6 and B = 1.1. Thus, A+B = 3.7. But it doesn’t make any sense
to try to look up the 3.7th number in the array X. In this case, the
computer will take only the integer in 3.7, and compute X(A+B) as
X(3), the third element in the array X.

Saving Space for Arrays

The computer must know how big an array is for two reasons.
First, it must allow sufficient space in memory to hold the array.
Next, the computer must know the size of the array in order to carry
out arithmetic operations properly.

[] Save space with a DIM statement.
An example of a DIM (for “dimension”) statement is
188 DIM BCS, 282, Y(83, 2034, 8(E, &2

Four arrays are “dimensioned” in line 100. B is a two-dimensional
array with five rows and twenty columns. Y is one-dimensional,
with eight elements. Likewise, Z is one-dimensional, with thirty-four

Working With Collections of Numbers 173

elements. Finally, X is a two-dimensional array with three rows and
six columns. It's a good practice to make the DIM statement the first
one of the program because you can see the sizes of the arrays that
will be used by glancing at the beginning of the program. However,
the DIM statement must appear before any other statement that
refers to arrays.

Using FOR NEXT Loops to Handle Subscripted Variables

Subscripts involve collections of numbers. Because operations with
collections of numbers almost always involve repetition, it is reason-
able to employ FOR NEXT statements to handle arrays. You will
use FOR NEXT loops to define the subscripts used in the arrays. For
example, the following program segment sets up a six by four array,
then load 5s into all the elements.

168 DIM Adce.42
118 FOR R=1 7O &
128 FOR C=1 TO 4
138 LET ACRE.C»=5
148 HEXT C

158 HERT E

If you study this program segment, the details of the process
become clear. When the computer reaches line 130 in the program
for the first time, R = 1 and C = 1. Then R is held constant while C
goes to 2, 3, and 4. At each step in this process, the corresponding
element of the array is set equal to 5. Then R is set equal to 2, and
C takes on the values 1, 2, 3, and 4. The process goes on until all
the elements of the array have been set equal to 5.

Either one- or two-dimensional arrays can be handled in this
tashion using subscripts. In many applications it is preferable to use
FOR NEXT loops to carry out the desired operations on arrays.

An important fact about subscripted variables is that they
cannot be used directly in INPUT or READ statements. Therefore,
it is necessary to use non subscripted variables first and then use the
LET assignment statement. For example, the program segment

168 DIM AC3)

118 FOR I=1 TO 3
128 IMFUT X

128 LET Acli=y
148 HEXT I

174 Hands—on BASIC

shows how the variable X is used to contain the value that is typed
in at the keyboard. Then the assignment statement

188 LET ACI 2=X

transfers the value to the subscripted variable A(I), This is done for

all three values. The LET statement allows you to use the INPUT
and READ statements indirectly with subscripted variables.

8—4 PROGRAM EXAMPLES

Example 1 - Examination Grades

Suppose the distribution of examination grades in a class of fifteen
students is as follows:

Student Number

‘1 2 3 4 5 6 7 8 9 101112131415
Grade‘67 8294 75 48 64 89 91 74 71 65 83 72 69 72

The problem is to write a BASIC program that allows you to
type in the grades. The format should be:

HOMW MaHyY STUDEHTSY (You type in)
STUDEHT GRADE
1 (You type in grade, etc.)

The program should instruct the computer to find the class average,
the highest grade, and the lowest grade, then print this information
out as follows:

CLASS AUERALE IS5 (Computer prints out average)
HIGCHEST LEADE IS (Computer prints out highest grade)
LOWEST GCEAaDE IS (Computer prints out lowest grade)

Let's approach the problem by steps. First, since you are going
to store the student grades in subscripted form, you must include a
DIM statement to save space for the array.

Working With Collections of Numbers 175

You are using the variable G to store grades and can insert up to
fifty grades. Next you have a message, an input, and a space.

118 FEINT "HOW MAMNY STUDEHMTS "
128 IMFUT H
128 PRIHT

Now you are ready to input the grades. First you must
generate the heading for the table.

148 PRIHT "STUDEHT". "CERDE"
158

Fx
3 PRINMT

A loop using FOR NEXT statements is ideal to control the
input of grades.

i@ FOR I=1 TO H
iva FPRIHT I.

1238 IHPUT &

128 LET CoIx=A
Z2e@ HEXRT I

The student number is printed out in line 170. In line 190, the
student number (I) is used as a subscript for the grade. This line
generates grades in the computer in the form G(1), G(2},...,G(N).
The next task is to find the average of the grades. This can be done
by summing up all the grades and dividing by the number of grades.

(]
™~
m

Al |

Thd ol

i

o B R o B

mZrrm

amom o

bt 20—

= -

s DO]

L] I
[y

.—‘
[

Now you can program the computer to find the average and print
out the results.

!

[Y]
=g T

LET M=%5-H
FPRINT "CLASES AUERALGE IS "M

ol
[

176 Hands—on BASIC

The final part of the program is to locate and print out the
highest and lowest grades in the class. H and L will stand for the
highest and lowest grades, respectively. Initially, set both H and L
equal to G(1), the first grade in the list. You know that the same
grade can't be the highest and lowest at the same time. Thus, you
will program the computer to go through the rest of the grades,
compare H and L with each grade, and make adjustments to H and
L as required.

LET H=Col2
LET L=Laotl
FOR I=2 TO H

IF L<C4Ix THEM 3328
LET L=0CdI2

IF H-COI» THEH 354
LET H=CdIz

MEXET 1

Dt

™ T T T
(R o s T ow T oy B |

ot}

el Ced) 0ad Cad Cad Tad o
[y I S Y I O T B B

N
i

The required printout can be obtained with two lines.

358 PREIMT "HIGHEST CEADE IS ":H
278 PRIMT "LOMEST CREADE IS "iL

Finally the END statement completes the program.
3Ig@ EHD
The complete program follows:

DIM CiS8l

FRINT "HOW MaMHY STUDEHTS "
IHFUT H

FREIHT

FREIMT "STUDEHT®. "GREADE"
FEINT
FOR I=1
FREINT I.
IHFUT 7

(e I W I e

S e e
O

s

T H

I I T e e e e S I e T
RV R W v R T R B O o0
o O I ot T o B e B e |
e o
omimm
R
]
pool 110 P
g
'l [
Il
I

Working With Collections of Numbers

7
SOL

LET 5=
MEXT 1
FRINT

LET H=5~H

S+CCT 0

IR
DA

=
4
=
o
£

for 3

oy
LI]

o

2588 EHMD

2
278 FPRINT "CLASS ARUERAGE IS
258 LET H=GO12
298 LET L= C{13
@ FOR I=2 TO H
318 IF L<GoI> THEH 338
328 LET L=GoI
338 IF HH>GOI» THEH 3258
348 LET H=G{I2
358 HEXT 1
3 PRIMT "HICGCHEST GRADRE IS

FRIMT "LOWEST CERDE IS

i

iH
;L

177

Turn on the computer, bring up ATARI BASIC, and run this
program using the data at the beginning of the example. If you have
any difficulty with the highest and lowest search in lines 280 through

350, trace the program in detail.

Example 2 - Course Grades

You can easily extend the ideas in example 1 to a two-dimensional
array. Suppose the class has ten students, and the course grade is
based upon five examinations. Typical results for such a class might

be
Student Number

1 2 3 4 5 6 7 8 9 10

1192 71 81 52 75 97 100 63 41 75

285 73 79 49 71 91 93 58 52 71

Exam 3189 74 80 61 79 88 97 55 51 73
496 68 84 58 80 93 95 61 47 70

5|82 72 82 63 73 92 93 68 56 74

You can use an array with a FOR NEXT statement to READ
the data from DATA statements. The computer is to find and print

out the following information:

178 Hands—on BASIC

STUDEHT COURSE AVE

1 (Computer prints average, etc.)
etc.

TEST CLASS AVE

1 (Computer prints average, etc.)
etc.

The program should start with a DIM statement although the
DATA statements can go anywhere in the program.

188 DIM Lo3.1872

This statement reserves memory space for an array with five rows
and ten columns. The row number {(R) will be the examination
number, and the column number (C) will correspond to the student
number.

i1a 71:81,52,753.37,180.,63,41.75
126 F3.73,43,71.,31.,32,52,52.,71
1324 Fd4.88,61,73,88,537,.55.31.73
140 £ 58.,88.,33.35,61.47.78
154 F2.B82,683,73,92,32, 658,56, 74

All the numbers can be read into the program with the fol-
lowing FOR NEXT statement.

168 FOR R=1 70O 5
178 FOR C=1 TO 1@
128 READ #
198 LET GOR.CI=R
208 MEXT C
218 MEAT R

You have just programmed the numbers to be read into the matrix
G by rows. Thus, the data in line 110 become row 1 of the matrix
G, and so forth. Before doing anything else, print out the required
headings.

Working With Collections of Numbers

FRINT “STUDEWT®, "COURSE AUE"
PRINT

M T4
g

oy B Y
O

Now you can compute the course average for each student.

Fud

4

—
[acn)

FOor C=1 TO 18

179

Line 230 opens a loop that will look at each column in the matrix.
For each value of C, the computer must find the column average and

print it out.

[T oo I ot T I |
-
m
i

WO 0D]

=
Fd
=
<
=
[ad

Then close the C loop.

28 HERT C

Now the process is repeated except that the averages are com-

puted on rows rather than columns.

218 FREIHT

228 PRIHT "TEST. "CLASS AUEY
330 PRINT

248 FOR E=1 TO 5

358 LET S5=8

2c8 FOR C=1 TO 18

278 LET S5=5+C{E.C2

288 HExXT C

32368 PEIHT RE.5-18

488 HEXT E

Finally the END statement,

418 EHD

180 Hands—on BASIC

The complete program follows:

in
11
iz
132
14
15
16
17
ig8
13
21

DIM GCS,1@03
DATA 92.71.81.52.75,97.100,63, 41,75
DATA 85.73.79.49.71.91,93,58,52,71
DATA 89.74.80,61.79,88,97,55.51,73
DATA 96.68.94.52.80,93,95.61.47.70
DATA 82.72,82.63,73.92,93,68.56.74
FOR R=1 TO 5

1 TO 1

FOorR C
READ A

LET GCR.C3=A

HEXT C

HEXT R

FEINT "STUDEHMT®. "COURSE AUE"
FEINT

e o
St I s T o o ot I o o O B o Y o B By |

FEINMT
FEINT "TEST". "CLASS AauE"

o o e
[s T T o 0 R o o T o O o O O o O oo B S o ot o B ot B oG B A

PR R B B AR I O

I R N BN [T B RS B

This program illustrates valuable programming techniques in-
volving arrays. It is worth studying and executing on your computer.

Example 3 - Array Operations

The final example is a series of short programs that will be given
without explanation. Study each program until you are sure you
understand what is taking place.

Working With Collections of Numbers 181

a. Write a program using FOR NEXT loops to load a three by four
array with 1s.

188 DI Hd3.42
118 FOR R=1 TO 3
128 FOR C=1 70O 4
138 LET HiE.C=1
148 HE=®T C

158 HEXT E

158 EHD

b. Write a program to generate and load the numbers
2,4, 8,16, 32, 64, 128, 256, 512, 1024, 2048

into a one-dimensional array.

188 DIM 201l

118 LET Zd1 =2

1z FOR I=2 TO 11

128 LET 201 »=2%20I-12
148 HERT I

158 EHD

c. Write a program to read in the array

[2 3 5]
1 1 2

from DATA statements and then print out the array.

OIM fAdz2. 2
FOR R=1 T
FOorR C=1 T
REaD &
LET AlR.,C =4
HEXT C

HEXET R

FOR R=1 TaO 2
FOrR C=1 TO 3
FEINT ACR.LC}.
HEXT

el Tl

[e T T T T R

Eao N o w o S I T ¢ S Y W I % T R o |

I, - .
Lo I o I oo Ty T T o T et I ot R w1

182 Hands—on BASIC

218 PEIHT

228 FPRINT

238 HNERT E

248 DARTA 2.32.5
258 0OATA 1.4.2
268 EHND

8—5 PROBLEMS

Write a program using the DATA statements

o
al
N
&
-

The program will read the size of an array from the first DATA
statement, read the elements of the array from the second DATA
statement, load them into an array X, and print out the array.

Write a program to fill a four-by-three array with 2s.

Write a program to call for the input of a square N by N matrix where
N is a whole number no larger than 10. Program the computer to
find and print out the sum of the entries on the main diagonal of
the array.

Write a BASIC program using the READ command to read twenty-
five numbers from the DATA statements into a one-dimensional
array named A. Program the computer to search the array and print
out the number of elements in the array that are greater than fifty.
Fill in the required DATA statements with any numbers you choose.

Write a program to call for the input of an M by N matrix. Assume
that both M and N are no larger than 15. Then have the computer
find and print out the sum of all the elements in the matrix.

The program below is supposed to compute and print out the sum
of the elements in a one-dimensional array that are positive but not
greater than 10. As it stands the program is incorrect. What's
wrong?

OIM pisl

FOR I=1 TO &
IHRUT T

LET ACI2=T

)) e 50
T T
(D o A

[T -
oY
!

Working With Collections of Numbers 183

STEF -1
HEH ZzZ@8#a
THEH Z@a#a
1

ol v I
n
b)

POl T Th bt bk poke ok ke oo
[S e 5ou LN o o N R ¢ Y 9

o T s T T ol T o o B e B oo |
]
ot

7. What will be output if you run the following program?

OIM Yig3

FOR I=1{ TO &
FEAD B

LET {1 2=A
HEST I
OATAa 2.
LET
LET
FOR
LET
LET
HEXT
L E T L
FRIMT
EHD

150 D
I-|._|
[y
I:-.'l
-

(R]

U R3] R e

L L I |

100

| i |
+ + 2
" Ty

-
I

[
|
N
[

| R I I R T e S e e e e ey =
I O S I N o BT o [O 4 O R Y I S Y
Do T T T I o T e Tt o s B B o B e B e B |

8. What will be output if you run the following program?

™
]

DIM Ad1a:

FOor I=1 TO 18
EEAD =

LET ACI x=x

ME®T 1

LET S=Rdl:

FORE I=1 TO %=
LET ACI»=ALI+1:
HE®T 1

LET AC182=5

FOor I=1 TO 18
PREINT ALI2

HEXT 1

0ATA 18.2.3.7.6,
EHDO

T Tl T ol o] bob fok ot ke pke s ook b ok ok
Ty
|
-
i)
3]
e

Y O b I W e T I I O P I N I v

iy -
[t I o T A ey T B o0 O R ot T e T o Rt B iy B

184 Hands—on BASIC

9. What will be printed out if you run the following program?

OIM Hid4.43
FOor I=1 TO 4
FOE J=1 TO 4
READ A

LET ®{I.J2=nR
HE=T
HE=T
DATA
0OAaTA

T

M
l:.."l el
RN
=4 A

o [
|

(TR VI AN T B WO

LET 5=9
FoR I=1 7O 4
LET S=5+801.5-112

MEXT 1
FRINT =
EHD

IO O I N I N L e i S e e
[A S T O T e o O w T A I T 1 Y O Y I ' T = o |
L o O o T s O o T o T o T o T et T 3o B o O o T o}

Wy
|

10. What will be printed out if you run the following program?

OIM o4
FOR R=1
FOR C=1
LET YiE.

D B I Y
T

[I
[DS Y

TaO 4

{00 S0 o T e T 5 T o T o R o T o T o T o B 500 I M
bl
-
m
]
ST L [I

n
ol

OR C=1
FRINT
HE®T C
FRINT
HE®ET E
EHDO

A

LU A o I B T T N e e e e e e N
OO oo T O o B o B et

b T SRy O S P ST e LT T T I T O Y I W S v

K
hal

TO 4

LD a=RED

TGO 4
TO 4
E.CH: "

Ho.
H

11.

12.

13.

14.

Working With Collections of Numbers 185

Write a BASIC program to call for the input of N (assumed to be
a whole number between 1 and 100), then input a one-dimensional
array with N elements. The program should sort the array into
descending order, and finally print out the sorted array.

Let’s assume that the first number in the DATA statements gives the
number of pieces of data to follow. Assume that the pieces of data
are all whole numbers between 1 and 10 inclusive. Write a program
that will compute the number of 1s, 2s, etc., in the data and then
print the information. (Hint: Use the data as they are read in as
a subscript to increment an element of an array used to count the
numbers.)

What will be printed out if you run the following program?

U

ODIn Z24g
FOR R=1
c=1
ZiF

L)

FOR

LET

HEXT C
HEXT R
FOR E=1 b
FOR C=F TO &
LET Z4F 1
HE=T C

HEXT R

FOR E=1 TO
FOR C=1 TO
FPRINT Z(R.CH:" "
HEXT ©

FEIHT

FRINT

HEXT R

EHD

"
hr
[T g

STEF 2

O o T o T now T o T o Oy O ot Iy B ey B
T

R R R R I A A I R I I T S e e e e S o e

[N T 3 Y S I W BT R Y e 4) I R Y B (O]

(DA I ey I I A |

)
ol

If you run the program below, what will the computer print out?

BIM ACS.53
FakE R=1 T3 5
FakE £=1 Td 5
EEAD =

LET ACR.CI=x
HEXT C

[el e]
[I SO B R e v |
30Tt T oy o B o I |

15.

16.

17.

18.

186 Hands—on BASIC

HEXT
DATH
DATA
DATA
FOR C

e B]
[nos BcH]

1
53

T o

[acr I x

LU S SN e

OO R N A
[RV W AN

[0S I o B I O R

R B B
3]

HMEXT R
MEXT C

FOE E=1 T0O
FOrR C=1 70O
PRIHT AR, Cx:" ";
HEXT C

FRINT

HEXT E

EHD

) LA fa ed Tl e B L0 D)

o

il Y
o I i T ow B oy T ot v Bt I

(8 o I O T o O T S I M T O RO I i o

et 57
[t T oy I O e

Write a program to read the following array from DATA statements,
then print out the array.

2 1 0 5 1]
3 2 1 3 1]

Write a program to read the following array from DATA statements,
then print out the array.

5 3
2 0
-1 1
4 2
2 6

Write a BASIC program that will call for the input of an M by N
array. The program should then compute and print out the sum of
the elements in each row and the product of the elements in each
column.

Write a BASIC program that will read two arrays from DATA state-
ments, Both the arrays are two by three. Then have the program
compute a third two-by-three array such that each element is the
sum of the corresponding elements in the first two arrays. Print out
the third array.

Working With Collections of Numbers 187

19. The data below represent sales totals made by salespeople over a

20.

21.

one-week period.

J Mon Tue Wed Thu Fi Sat

48 40 73 120 100 90
75 130 90 40 110 85
50 72 140 125 106 92
108 75 92 152 91 87

Salesperson

W N

Wrrite a program that will compute and print out
a. The daily sales totals

b. The weekly sales totals for each salesperson

c. The total weekly sales

Write a program to call for the input of a four-by-four matrix.
The program should compute a new matrix from the first with the
rows and columns interchanged. That is, row 1 of the input matrix
becomes column 1 of the new matrix. Row 2 of the input matrix
becomes column 2 of the new matrix, and so on. Finally, have the
program print out the new matrix.

Consider the two arrays below:

F

1 28
k! 14
4 17

Each element of P “points” to an element of X. P(1) = 1 and
X(1) = 28. P(2) = 5 and X(5) = 17. If you keep this process up,
the values of X are listed in descending order. Write a program to
set up two arrays X and P to some convenient length. Then call
for the input of arbitrary values of X from the keyboard. Construct
the array P so that its elements point to X in descending order as
illustrated above. Then print out the two arrays as shown.

188 Hands—on BASIC

8—6 PRACTICE TEST

What is the purpose of the DIM statement?

L

We have an array named X. What variable name does BASIC use to
locate the element in row 3, column 47

Use an array in a progam to input a list of numbers, then find and
print out the sum of the positive numbers in the list. The printout
should look as follows:

HalW MAHY HUMEERSZ7Y (You type in the number)

WHAT ARE THE HUMBEEST (You type them in)

THE SUM OF POSITIVE ELEMEHTS IS (Computer
types out answer)

Write a program using FOR NEXT statements to load a four by six
array with 4s.

L

What will be printed out if you run the following program?

188 DIM ACS.50
118 FOR I=1 TO 5

128 FOR J=1 TO 5

138 LET ACR.C)=@

148 HEXT J

158 HEXT I

168 FOR I=1 TO 5

178 LET AcI.Ix=2

186 HEXT I

198 FOR I=1 TO 5

z@@ FOR J=1 TO 5

218 PRINT @I, da;" »;
228 MEXT J

238 PRINT

248 FRIMT

Working With Collections of Numbers

189

a. Write a DIM statement for A.

b. What is the value of A(2,3)?

L

c. f X =1and Y = 2, what is A(X,Y)?

L

d. What is A(A(1,1),A(2,2))?

L.

CHAPTER 9

STRING VARIABLES

9—1 OBJECTIVES

Some of the most important applications of computers deal with
characters rather than numbers. In this chapter you will learn to
handle strings of characters as “string variables.”

Handling String Input and Output

Before meaningful operations can be carried out on strings you must
learn how to input and interpret output of string variables.

Using String Functions

You have already studied BASIC functions that operated on num-
bers. Now you will turn to functions that work on strings of charac-
ters.

Working with Program Examples

Your final goal is to write programs that work with string variables.

3.

192 Hands—on BASIC

9—2 DISCOVERY EXERCISES

Turn on the computer, bring up ATARI BASIC, and enter the fol-
lowing program:

"y
i

DIM ASLS
IHFUT A
FREINT
FEINT A$
FEINT AS$
EHD

=

L el e A N]
oo] Tod o= 20T
I o T s ey I v |

oy
s

The A$ in the program identifies the variable as a string variable.
Run the program and type in your full name at the input prompt
(the question mark). What happened?

Now edit line 90 to read
98 DIM Agld:

Run the program and again type in your full name at the input
prompt. What happened this time?

Clearly, the dimension of the variable must be large enough to cover
anticipated inputs.

Now modify the program as follows:

DIM A$CSE 2, BSCSA
IHFUT A$
IHFUT E$
FREINT
FEINT ES$
FEINT A%
EHD

fod sk ok ok ek ek L)
O, [X I (VRSP
[T T oo O o O e |

=

String Variables 193

If you run the program and type the words INTELLIGENT and
CONVERSATION at the input prompts, what do you think will
be printed out?

L

Try it and record the output.

L

Let's try a different variation. Clear the program and enter the
following:

S8 DIM H$C58 2. Y80 5872

188 EBEAD =.¥E$.%.Y%$

118 bDATA 16.HEEREEB.Z8,CHARLIE
128 FPRINT =.¥

138 PRIHT =$.%8%

148 EHD

This program contains several new ideas. What do you think will
happen if you run the program?

L

Run the program and record the output.

L

Now that you have seen that strings can be included in DATA
statements, you should go a bit further. Change line 100 to read

3 READ =$.H.Y.Y$

What will happen if you try to run the program in this form?

See if you were right. Record below what happened when you tried
to run the program.

194 Hands—on BASIC

Error 8 is an attempt to input a string into a numeric variable. The
type of information in the DATA statements must match the type of
variable in READ statements.

Now on to a different topic. Clear the program and enter the
following:

30 0IN C$C5a2
MFUT C$

i 1

118 LET H=LEHCC$2
128 FRINT H

128 EHD

The new feature in this program is the function LEN(C$). It works
on a string (in this case C$) rather than a number. Can you guess
what the function does?

Notice that the result of the function LEN operating on a string must
be a number since the result is assigned to a numeric variable N,

Run the program and at the input prompt type in ABCDE. What
was printed out?

{

Try it again, but this time type in AARDVARK. Record the output.

By now you should have a pretty good idea what the LEN function
does.

If you run the program and at the input prompt merely press the
RETURN]| key, what do you think will be printed out by the computer?

Try it and see if you were correct. Now run the program and at
the input prompt type in R O B E R T. Note the spaces between the
characters. Record the output.

L

10.

String Variables 195

In the LEN function, do spaces count as characters?

L

Now you want to be able to specify a substring in a given string.
That is, given a string A$, how can you specify the Mth through
Nth characters of that string? The function that gives this substring
is AS(M,N).

Now clear the program in memory and enter the one below:

OIM ASCSa 2

IHPUT
FRIHNT
IHFUT
FRINT
INFUT
FEIHT

15 T

"y
Ll

A%

nE o= v
M

HE o= v
H

ASCHM. M2

CoOTO
EHD

ii1a

[o e I o e |
b I 'R S < I T T oy B]
oA

N I o B T o T

Run the program and at the input prompt for the string, type
MISSISSIPPI. Note that the length of the string is 11. Enter 4 for
M and 8 for N. Record the output.

Now enter 7 for M and 9 for N. Again, record the output.

L

This time enter 1 for M and 4 for N and record the output.

11.

12.

13.

196 Hands—on BASIC

Jump the computer out of the input loop, clear the program from
memory, and enter the one below:

28 DIWM A% SE

18 IHPUT A$

118 THFUT I

128 PRINT A8CI. I
138 PREIHNT

148 COTO 114

1538 EHD

Run the program and at the first input prompt type in
ABCDEFGHIJKLMNOPQRSTUVWXYZ. At the second input
prompt type in 20. What happened?

[

Run the program again and type in 10 at the input prompt for I.
What happened?

Experiment with various values of I between 1 and 26. Describe in
your own words what happens when the computer is directed to
print out A$(LI).

L

Now type 30 at the input prompt for I. What happened?

L

By now you should understand fairly clearly what happens when the
computer prints out A$(I,I). Of course, in this instance, the value of
I is greater than the length of the string. We will return to this topic
in the discussion section.

Experiment on your own with this program. Try various strings and
different values of M and N until you understand exactly how the
A$(M,N) function works.

String Variables 197

14. Now on to a different topic. Clear the program in memory and enter

15.

the following:

S0 DIM ASCSD 3. B 58
1aa IHFUT AS

118 IHFUT EBS$

126 IF A$<B$ THEH 138
138 FEIHT EB$%

148 cOTa 186

158 FRIHT AS$

1ca COTO 14686

178 EHD

Take a few moments to study the program. Clearly, the interesting
part is in line 120 where the strings A$ and B$ are involved in an
[F THEN statement. In particular, what do you suppose A$ < B$
means with regard to strings?

L

The way to find out if you are right or not is to run a few test cases.
For example, run the program and at the first input prompt, type
DUCK; at the second prompt, type CHICKEN. Record the output.

This time type HOUSE followed by TELEVISION. Record the out-
put.

Keep experimenting with words or letters of your choice until you
understand exactly what the expression A$ < B$ means. Once you
understand this, it should be easy for you to see what A$ = BS$,
A$ > = B$, and A$ <> B$ mean.

16.

17.

18.

198 Hands—on BASIC

Jump the computer out of the input loop. Clear the program in
memory. Go on to the next string variable statement. Enter the
following program:

1 IHFUT H

118 PEIMT CHESOHZ
1zg COTO 184

138 EHD

Now run the program and at the input prompt, type in 65. What
happens?

L

The program will keep looping through as long as you desire. This
time try 66. What happens?

You may also wish to try 43, 49, and 50.

By now, you have probably realized that CHRS$ converts a position
number to its corresponding character in the set of characters the
computer uses. Experiment with this program trying out various
numerical inputs in the range 33 to 122. You should see that you
can refer to a character either by the character itself or by its position
number in the set of characters.

To see a portion of the total available character set, jump the com-
puter out of the input loop, clear the memory and type in the fol-
lowing program.

wn)
)
|
.
,m
—
g
1]
(|

[SV S VPR AP
e) o ==
(I oy I
-

e 1
Sl L B W
-]
oy
P =

i
m
-
e
o

You can see the entire ATASCII character set by referring to
Appendix C of the ATARI BASIC Reference Manual.

19.

20.

21.

String Variables 199

Now on to a different topic. Clear the program in memory and type
the following program:

28 DIM AgcSa

188 IHPUT A$

118 LET HE=AS5C{A%>
128 PRINT

136 COTO 166

148 EHD

Run the program and at the input prompt, type Z. What happens?

L

This new function, ASC(AS$), is just the reverse of CHR$(N). It
converts a character to its equivalent position number in the charac-
ter set used by the computer. Use various letters and numbers and
compare your results to those you obtained in step 16.

There is one more detail to be seen to. Your computer should still
be at the input prompt waiting for A$ to be typed in. This time type
in POTATQO. Record the output.

Now try PEA and note the results. The only similarity between the
two words is that they both have the same first letter. We will return
to this concept later.

Jump the computer out of the loop, clear the memory, and type in
the following program.

26 DIM ARSCSBI.BSCS
FEINT

IHFUT A$

IHFUT E$

LET ASCLEHCA$:+1 2=E3
FEINT A$

EHD

[

o O I

L
oy

Run the program. At the input prompts, type HONEY and BEE
respectively. Record the output.

22.

23.

200 Hands—on BASIC

Now edit lines 90 and 130 and add lines 125 and 135 as follows:

S8 DINM ASCSE.BSISEX, 0801 2
125 LET C$=" ¢

126 LET ASCLEHCASI+1 2=C$
135 LET ASCLEHCA$3+1 =E$

Run the program and again type in HONEY and BEE at the input
prompts. How many words are displayed?

L

Now let’s carry this idea one step further. Either modify the program
in memory or clear the memory and type in the following program.

DIM ASCSAZ, BSCSEH 2, 0801 5, 08035672
FEINT
IHFUT A%
IHFUT ES$
LET O$="HELLDO M¥"
LET I::$:|I 1
LET D$<LEMCDSs+1 5=C3
LET D$CLEHCOS+1 =A%
LET D$<LEMCD$»+1 >=E$
FEIHT 0%
EHD

e T T e T T S e Y R N]
[y I O W I T P T O o T 1
P T oo T 1 T T o T T o T oy T |

Display the program and check its accuracy. Run the program and
again input HONEY and BEE at the input prompts. Record the
output.

| —

This concludes the computer work for this chapter. Turn off the
computer and go on to the next section.

String Variables 201

9—3 DISCUSSION

Handling String Input and Output

As you have already seen, a set of characters surrounded by quota-
tion marks is called a string. (The quotation marks are not part of
the string.) The new idea in this chapter is that the string can be
treated as a variable — the string variable.

The string variable is identified by appending a dollar sign ($)
to a name. Thus, BARNS, BOX$, and B$ are string variable names.

Input and output of string variables are handled the same way
as for numeric variables except in one case. You can mix numeric
and string variables in the same BASIC statements. For example:

L2

FEINT A%.x.%.Z2%
INPUT H.HMS$
READ A$.EB$.Z2

[
| |
[I o]

However, you cannot follow a string variable with another variable
in an INPUT statement.

You must be careful that the input in either INPUT or READ
statements matches the type of variable given. In line 110 above, the
computer would be looking for a number and a string of characters
Note that the string variable follows the numeric variable. It would
not work the other way around. In addition, you must be aware
that you can type in 123456789 and if the computer is looking for
a string it will identify this quantity as a string, not as a number.
The reason is that the string, as has been pointed out, consists
of characters, and symbols 0 through 9 are part of the standard
character set that will be discussed later. If, however, the computer
is looking for a number and you type in ABCDEFGHI, you will get
an error statement.

Using String Functions

The LEN function is used to determine the length of a string. If, for
example, A$ = "HOW NOW BROWN COW" then LEN(A$) = 17.
Note that the spaces are counted as characters. You can also have
a “null” string. If A$ = *” (there is nothing inside the quotation
marks), then LEN(AS$) = 0.

[| LEN(AS$) gives the number of characters in A$.

202 Hands—on BASIC

A substring is a piece or segment of a string. Consider the
following program:

o
L
J

-
N

[S S A N]
| RO I

N
s

The expression A$(8,13) identifies the substring of A$ consisting
of six characters starting at the eighth character. If you run the
program, the output will be E. LEE.

[| A3$(M,N) gives Mth through Nth characters of A%

String variables can be compared in IF THEN statements. The
comparison is done by alphabetical ordering. Thus A < B since A
comes before B in the alphabet. CAT < DOG, HOUSE > CAR,
PEA < PEARL, and so on.

The last two functions discussed here, CHR$(N) and ASC(A¥$),
are used to handle the ATASCII standard character set. This set
consists of two-hundred and fifty-six characters numbered 0 through
255. Refer to Appendix C of the ATARI BASIC Reference Manual
for a complete listing of the ATASCII character set.

Characters 0 through 31 have special purposes and are ir-
relevant here. The numerals 0 through 9 are numbered 48 through
57. The upper-case letters A through Z are numbered 65 through
90. The lower-case letters a through z are numbered 97 through
122. The other numbered characters include punctuation marks,
arithmetic operators (+, —, *, etc.), and other special characters.

Two string functions work with the ATASCII character set.
First, CHR$(N) returns the Nth character from the ASCII character
set. For example, CHR$(65) = “A”, CHR$(90) = “Z", and so forth.
You can also turn things around and convert from a character to
its ATASCII number. This is done with the ASC(A$) function. For
example, ASC("A"} = 65 and ASC("“Z"} = 90.

Suppose that A$ = "AIRPLANE”. What is ASC(A$)? Since
the length of the string is greater than one, only the first character is
considered. In this case the first character is A and ASC(A$) = 65.

String Variables 203

Strings can be joined together (catenated) using the LEN func-
tion. Thus, for example, if you run the following program

Al

OIFM A58 2. B8 5a

LET A$="HaFPY"

LET B$=" GO LUCEY"
LET ASCLEHCAS$»+1 »=ES$
FEIHT Aas$

EHD

fl

I O S I S o

L I R N]
Do T o T I oy B o |

it will display
HAFPY GO LUCKY
Each time a string variable is used, it must be dimensioned in a

DIM statement. The DIM should be large enough for the anticipated
number of characters in the string variable.

9—4 PROGRAM EXAMPLES

Example 1 - String Rewversal

The task is to write a program to call for the input of a string and
then print it back in reverse order. Begin with the DIM statement
and the string input.

286 DIM ASCSAE
1 IHFUT A%

The next few lines print the string back in reverse order.

118 FOR H=LEHCA$: TO 1 STEP -1
128 PRIHT A$CE.=1;
138 HERT =

The loop steps backwards from the length of the string to 1. The
function A$(X,X) identifies the substring in A$ consisting of 1 charac-
ter starting at character number X. This isolates a single character.,

204 Hands—on BASIC

With an END statement added the complete program is

DIM A$CcSE
THFUT A$
FOR #=LEHNiA$: TO 1 STEF -1
PREIHT A%Cx. =2
HEXT
EHD

[e i i |
o] PO 0T
Fcos T o T o Oy B |

Try running this program using your own name as input.

Example 2 - Word Count

The number of words in a sentence can be determined from the
number of spaces (assuming that the only purpose of a space is to
separate words). The following program prints out the number of
words in the input string.

S8 DIM A$c582

i IHFPUT A

118 LET Z=8

128 FOR I=1 TO LEHCAS2

128 IF A$CI.T 243" " THEHW 158
148 LET 5=5+1

138 HEXT 1

168 PRINT "WORD COUHNT = ";5+1
i¥8a EHD

Study the program until you see exactly how it works. Try out
the program by typing in a sentence. Verify that it works correctly.

Example 3 - Replacement Code

Suppose you want a program to encode a sentence. A simple way to
construct a code (which incidentally could be broken very rapidly
with computers) is to replace each character in the message with
another. This is done most easily by reference to the ATASCII
character set. However, let’s do this one “from scratch.”

String Variables 205

The first part of the program calls for the DIM statement and
the input of the string to be coded and sets up the conversion scheme.

38 DIM ASCSEE . B34 2, CEC 342

188 LET B$="ABCDEFCHIJELMHOPQRSTUUMEYZS "
118 LET C$="ETAUZBHCH KPSYDF.CHXIMJLOHGU R"
128 IHFUT A%

B$ contains the characters that can be used in the input string
that is to be coded. C$ is the replacement key. An A in the input
string is to be replaced by an E, an F by a B, a J by a space, and so
on.

Now we can examine each character and do the replacement.

1328 FOR I=1 TO LEHC{AS$>

148 FOR J=1 TO 23

158 IF A$cI.IxoB$C 4. 0 THEN 128
168 PRINHT CSCJd.d2;

178 GOTO 1248

128 HEAT J

128 HERT 1

The outer I loop steps through each character in A$. The
inner] loop compares the Ith character of A$ to the character in B$
until a match is found at the Jth character. When this happens, the
coded Jth character of C$ is printed out, and the program goes on
to the next character in AS.

Finish the program with

28 PRINT
218 EHND

The complete program is

S8 DIM ASCSOE D, B$C 382, 0803870

188 LET B$="ABCDEFLCHIIKLMHOPQRESTUUNEYZ . 0"
118 LET C$="ETAUZBHCHW EPSYOF.CEIMJLOHGU R®
128 IHFUT AS

128 FOR I=1 TO LEH{A$:

148 FOR J1=1 ToO 22

206 Hands—on BASIC

IF ASCI.Ia<OBS$CJ. 0y THEN 188
FEINT C8$< .. d2;

COTO 124

MHEXT

MEAT 1

PREINT

EHD

e I A |

[R R o
[l o LY B
Loco T o T 0 O O o O 8 T |

The code can be changed by rearranging the characters in C$.
It might be interesting for you to try out the program and see how
a coded message looks.

9—5 PROBLEMS

Write a program that calls for the input of a string and then prints
the string out in a vertical column of characters.

If at the input prompt for the program below you type in the string
ABCDEFGH, what will be output?

30 DIM ASCS8:

1@a IHFPUT A3

118 FOR J=1 TO LEHCA$2 STEF Z
128 PRINHT A% d.Jd3;

128 HERT J

148 EHD

Write a program to count the number of vowels in an input string.

Write a program that calls for the input of a string and then prints
the words in the string in a vertical column.

Ask for a sentence to be input. Generate a new string from this
sentence that has all the spaces removed. Then print out the new
string.

You want to know how many times each of the twenty-six letters in
the alphabet (you may assume that they are all upper-case) occurs
in ten sentences to be typed in at the keyboard. Do not count spaces
or punctuation marks. Write a program to compute and print out
a table consisting of each of the letters and the number of times it
occurrs in the sentences. Do you think you could identify an author
with the use of such a table?

String Variables 207

Assume that five sentences are to be typed in one at a time. Write
a program to count the number of times the word THE appears in
the five sentences.

Write a program to count the number of spaces in an input string.

Write a program that calls for the input of a string and counts the
number of times the character I is followed by the character N.

9—6 PRACTICE TEST

How are string variables identified in BASIC?

L

If A$
false?

“KITTY” and B$ = “KITTYCAT"” then A$ > B$. True or

L

If A$ = “HOW NOW BROWN COW"”, write a function that will
extract NOW BROWN.

Write a program that calls for the input of a string and then keep
printing back the string with one character deleted each time until
nothing is left. If, for example, you typed in PIECE OF CAKE, the
computer should print out

FIECE 0OF CAKE
FIECE OF CRE
FIECE OF CA
FIECE dF C
FIECE daF
FIECE OF
FIECE O

FIECE

FIECE

FIEC

FIE

FI
F:

208 Hands—on BASIC

5. What will be printed out if you run the following program?

Pk ke ok b b ek ek

D) TS I L

-
o

ot

[nc Ty T ey O o O

FORE H=&55 TO 9@
FORE M=&3 TO N
FEINT CHRE$LHMI;
HE=T H

PEIHNT

HE®T H

EHD

~

CHAPTER 10

SOUND AND
SUBROUTINES

10— 1 OBJECTIVES

In this chapter you will learn how the computer can be programmed
to produce sound and perform suboperations. This can be done
through either program segments or special on-line instructions.

Creating Music

In order to create music, you must be able to generate notes.You will
learn to make notes of different intensity and octaves.

Exploring Subroutines

When complicated operations are to be repeated, subroutines are
often very useful. You will learn how subroutines can be set up and
used in BASIC programs.

Working with Program Examples

Sometimes it is difficult for the beginner to see the value of sub-
routines. You will learn how useful subroutines are as a program-
ming tool.

10— 2 DISCOVERY EXERCISES

Turn on the computer and bring up ATARI BASIC. Then type in
the following direct mode statement.

SOUHD . e, 18,8

210 Hands—on BASIC

Did you hear anything? If not, turn up the volume on the television
set. If you still do not hear anything, retype the line: You probably

made a typing error when you entered the statement.

Now type
SOUHD 1.81.18.8
SOUMD 2.96.18.8
SOUHD 2.121.18.8

How many "“voices” do you hear?

Type
EHD

What happened?

L

Now type the following.

IHNFUT FITCH

IF PITCH=8 THEH 144
SOUHD 8.FPITEH. 18,8
COTO 140

EHD

okt ok s ke e
ao] T e 5D
OO e I T ey I (|

)
|

Before running the program, think about what will occur. Now rur
the program and each time the input prompt is displayed, type ir
one of the numbers in the following sequence: 60, 81, 96, 121, 240

Did the notes get successively higher or lower?

An input of 0 will stop the sound.

5.

Sound and Subroutines 211

Clear the program in memory and type in the following.

188 IHPUT QUALITY

11a IF QUALITY=8 THEH 148
126 SOUMD 8.121.2UALITY. S
1328 COTO 188

148 END

Run the program and type in successive numbers from 6 to 19 each
time the input prompt is displayed. What numbers produced sound?

L

Now clear the program in memory and type in the following.

188 IMFUT LOUDHESE

118 IF LOUDHESS=0 THEH 148
128 SOUND 8.121.18,LOUDHESE
128 LOTO 144

i4@ EHMD

What effect do you think the last of the four numbers in the SOUND
statement has?

L

Run the program and enter successive numbers from 1 to 16 at each
input prompt. Did the note get louder?

1

What happened when you entered 167

L

Enter O to exit the program.

212 Hands—on BASIC

7. Now add the following lines to the program.

121 SOUHD 1.68.,168,LOUDHESS
122 S0OuUdHD 2.21.16. LOUDHESS
123 S0UNHD 3.36,18. LOUOHESS

and run the program entering the same values as above. What
happened?

t

8. Now on to something new. Clear the program in memory and enter
the following program:

FRIHNT
COsSUE
FRINT
COsSUE
FRINT
EHO

FRIMT 1.
RETURH

FRIHNT 2.
FETURH

.,..
"

(KX

Lol

L T v B B e)
o
oy -

LoV s B vy B oy B o B

o
s

LS Y I O I NI S S T
I oy)

LSS U e o 1 T P 9 % T 4 |

-
Dl

This program has two statements you haven’t seen so far. They
are GOSUB and RETURN. The program itself is intended only to
provide practice in understanding these new statements. Run the
program and record the output.

L

Compare what was printed out with the program lines that caused
the printout.

9. To which statement does the GOSUB statement in line 110 transfet
the program? (Hint: Look at the table in step 11.)

Sound and Subroutines 213

10. To which statement does the RETURN statement in line 210 transfer
the program? (Hint: Again, examine the table in step 11.)

L

11. The table below indicates the flow of the program as it is executed.

Line Number What Happens
100 Print out A
110 Transfer to line 200
200 Print out 1
210 Transfer to line 120
120 Print out B
130 Transfer to line 300
300 Print out 2
310 Transfer to line 140
140 Print out C
150 End of program

Study this flow carefully and follow through with the program. Can
you see the purpose of the GOSUB and RETURN statements yet?
What about the placement of the END statement?

L

12. Clear the program in memory. Enter the following program:

REM PROGCEAM TO DEMONSTEATE SUEBROUTIHES
ODIM H{d2

FOR I=1 TO 4

RERD A

LET #.{1Ix=8A

HERT 1

FEM SORT

COSUE 4868

EEM FRIMT OUT SORTED AREAY

FOR I=1 T4 4

T S N " Y Sy wer iy
U e e T | I S Y AN O
[T oo T o T 0 S oo O o T e T ow T oy I e |

214 Hands—on BASIC

288 PRIHT HOI ;™ ¥;

218 HEST 1

228 FREINT

228 LET #{2x=7

248 REM SORT ACAIH

258 COSUEB 488

268 BREM PRIWHT OUT SORTED akRRAY
278 FakR I=1 74O 4

288 PRIMT HoTa;® U;

298 HEXT 1

288 EHND

3218 DATA 2.1.5.6

488 REEM SUBEGUTIME TO SORET
41i@ FORE I=1 TO 2

428 IF HoI+12:8013 THEN 478
438 LET L— LI+l 2

448 LET ReI+1 =012

458 LET kol =C

458 COT0 410

478 HERT I

4268 EETURH

Display lines 100 through 200 by typing

Check that these lines are correct. Display and check the remaining
lines. This program furnishes an example of how a subroutine might
be used. The subroutine in lines 400 through 480 sorts the array X
into ascending order. Run the program and record the output.

L

Note that the original array is

You can see this by checking the DATA statement in line 310. In line
170, the program jumps to the subroutine, which sorts the numbers.
After the program returns to line 180, the sorted array is now

1 25 ¢

13.

Sound and Subroutines 215

In line 230, the third element of the array is changed. Line 150
branches the program to the subroutine again for another sorting.
After the return to line 260, the sorted array

1267

is printed out. Finally, the END command in line 300 stops the
program. Clearly, we could sort the array X as often as desired
merely by inserting a statement GOSUB 400. This is certainly more
efficient that writing out sorting instructions each time they are
needed.

Now let us look at another statement. Clear the memory and type
the following program.

)
o

FEIMT "EHTEE A HUMEERE BETHEEH 1 AHDO 5S¢
FREIHT "EHTER 5 TO @UIT."
COLOR i

IHFUT H

oH H GCOSUE 1880, 2080, 32088, 4
IF H=3 THEH EHD

LOTo 168

CEAFPHICS 2

FLOT 5.5:0EAMTO 24,

ORANTO 268.Z20:DEAWTO 5;5
EETUREH
GEAFPHIC
FLOT 5.
ORAWTO
OREAMTO
EETUEH
CEAPHICS
FLOT 5;
ORAWTO 5
OEAWTO 5; 3
EETUEH
CEAFHICS &
FLOT S8.6:
DEAWTO Z0.
FEETLUREH

,_
kN
o

[cn
—

fox

OREAMTO 24,
o, 28 DFHHTH 5:2&

(I Row T o T ot o B

o
ol

N ._r| -'_n [

I J l_I'I |||
A
_I'I f'l

IRGHTO 5.5
ORAWMTO 38,24

ODRAWTO 8.4
16:DRANTO 8,248

(O T T e ey T OO W T O T T S I T S o N N T S e O T e O o R o T o o B e

R A N) T I I o T T L O T N T e e e e e e e e
[T o T o T o T o T e o T o T ot T o T ot T oy O

oy o - g A e
[I s B ko T o T v TR oo T e o T o R e O o o T oW O O ot R o B) Y Y I W B

14.

216 Hands-on BASIC

What figure will be drawn if you enter 37

Run the program. Were you right?

Input in the other choices to see what is drawn. Input 5 to quit.

This completes the computer work for this chapter. Turn off the
computer.

10—3 DISCUSSION

Creating Music

The SOUND statement instructs the computer to play notes. The
four numbers that follow the SOUND statement allow for the varia-
tion in the notes played. The first number indicates which “voice”
is to be used. The four voices available are numbered 0 through 3.
As you saw in the discovery exercises, the effect of harmonizing can
be attained by using all four voices at the same time.

The second number indicates what note will be played. A
value of 121 will play the musical note middle C. A value of 60 will
also play a C note except that it will be one octave higher, while a
value of 243 will play a C note that is one octave lower than middle
C. A list of numbers and their corresponding notes can be found in
Table 10.1 of the ATARI BASIC Referenice Manual.

The third number refers to the quality of the note being played.
Essentially, there are two qualities of notes —'pure” tone and dis-
tortion. Distortion allows you to produce sound effects. Values of
10 and 14 produce “pure” tones, while other even values produce a
variety of distortions. Odd values produce silence.

The fourth number determines how loud the note will be;
the higher the number, the louder the note. Thus the direct mode
statement

SOUMD 2121,

[
)

produces a middle C note in voice 2 with a “normal” loudness.

[] Use the SOUND statement to play music on the computer.

Sound and Subroutines 217

Exploring Subroutines

You will almost certainly encounter complicated situations in which
you want to carry out the same process many times in a program.
Subroutines are very useful for this purpose. The diagram below
indicates how a subroutine might be used in a program.

Main program begins

288 COSUE 18688
218
258 COSUE 1668

Main program ends 428 EHD
1

Subroutine begins aod REM SUBROUTIHE

End of subroutine 1158 RETURH

When the computer reaches the GOSUB in line 200 of the
program above, it jumps to line 1000 and executes the subroutine
beginning on that line. When the computer encounters the RETURN
in line 1150, it goes back to line 210, the next higher line number
after the GOSUB that put it in the subroutine. Then the computer
proceeds through the main program until it reaches the GOSUB in
line 350, where it again branchs to the subroutine in line 1000. This
time the RETURN statement directs the computer back to line 360.

Of course, you can use GOSUB 1000 as many times as you
want in this program or can have as many subroutines as you need.

218 Hands—on BASIC

Generally, the main program is at the beginning and the subroutines
are grouped together at the end. There is a good reason for this. The
subroutines are performed only when they are called by a GOSUB.
After the main program is finished, put an END statement in the
program.

] Transfer to subroutines with GOSUB.

It is possible, and sometimes desirable, to jump to a subroutine
from a subroutine. The diagram below indicates how the computer
treats such an event.

Main program

Subroutine 1

406 COSUE 200 —P2a4
414 <4 Subroutine 2
228 GCOSUE 980 —»258
zhclz «—
ao8 EHD
— 228 REETUREH — 9933 RETURH

Note that the computer jumps from 400 to 800, then from
820 to 900, and finally arrives at the RETURN in line 990. But
where does the RETURN direct the computer —to line 410 or to line
8307 The rule is that the RETURN directs the computer back to
the next statement after the GOSUB that put it in the subroutine
containing the RETURN. The computer is in subroutine 2 because
of the GOSUB in line 820; hence the RETURN in line 990 directs it
back to line 830. The same rule applies to the RETURN in line 880.
At that point the computer is in subroutine 1 and arrived there from
the GOSUB in line 400. Thus, the RETURN in line 880 directs the
computer back to line 410.

Sound and Subroutines 219

[| Get back from subroutines with RETURN

The ON...GOSUB statement allows you to direct the computer
to one of numerous subroutines, depending on the value of a numeric
variable. For example, the statement

146 oM H COSUE 200,488,580

will go to the subroutine at 300 if N is 1, to the subroutine at 400
if N is 2, or to the subroutine at 500 if N is 3.

At this point it may not be clear to you why subroutines are
valuable. The need for subroutines becomes more evident as you
acquire more skill as a programmer. For the moment, remember
that subroutines are one of the most valuable tools available to the
programmer.

10—4 PROGRAM EXAMPLES

Example 1 - Writing a Song

To compose music on the computer, you need to know what numbers
play which notes and how to insert pauses. A simple FOR NEXT
loop can accomplish this. The READ DATA statements are the most
useful for producing songs. Start with the loop to generate the notes
and pauses as follows:

1ag FOR E=1 TO 54

118 FEEAD PITCH.LEHGTH
128 FOR L=1 TO LEHLTH
138 SOUHD @8.PITCH.18.8
148 HEXT L

198 HEXET K

This is the heart of the program because the inner FOR NEXT loop
plays the desired note for the length of time given by the variable
LENGTH. You can insert pauses easily by using a value that produces
silence. You compose the song by choosing appropiate notes and
pauses.

220 Hands—on BASIC

The complete program for the song Row, Row, Row Your
Boat follows.

iga FOR K=1 TO 54

118 READ PITCH.LENHGTH

126 FOR L=1 TO LEHETH

138 S0UMHD . FPITCH.18.8

148 HEXT L

1538 HERT K

169 DATA 121.5B.8.5,121.58.8.5
178 DATA 121.38.8.2,188.,15.8.2
128 DATA F2.,68.8,5,96,58.8.2
128 DATA 1858.28.0.2,36,268,48.18
2aa DATA 91.28.8,5,81.186.,8.18
218 DATA &8,15.8,2.,68,15.8.2
228 DATA c8.135. 21.15.8.2
2328 DATA 21.15, 21.15.8.2
248 DATA 36,15 95.15.8.2
258 DATA 25,15, »121.15.8.2
2ed DATA 121.1° . 121.15.8.2
278 DATA 21.25. 21.15.8.2
Z28 DATA 26,25 182.28.8.3
238 DATA 121,20

28 EHD

Note that you won’t know the value of 54 in line 100 until you know
how many READ statements you will need to program the song.

Example 2 - Rounding off Dollar Values to Cents

Business applications generally involve printing out the results of cal-
culations in dollars and cents. Since the computer normally handles
nine significant figures, it is not unusual for the computer to type
23.1579384 and similar amounts. Ordinarily, you would want to
round off the figure to the nearest cent, or 23.16.

You can use a subroutine to round off the numbers. Let’s write
a program that will produce the following output when executed:

AEBEL FRICEY (You type in price)

G% DISCOUMT IS (Computer prints discount price)
¥ DISCOUMT IS (Computer prints discount price)
@ DISCOUNT IS (Computer prints discount price)

Sound and Subroutines 221

All dollar values typed out should be rounded off to the nearest cent.
First set up a method to do the rounding off. A subroutine to
accomplish this is

o

I6E (=INT(HE1B6+ 51710
31@ RETURM

[xA

To see how this expression works, suppose X = 23.1597. Follow
this value through the expression to see what happens.

X*100 = 2315.97

X*100+0.5 = 2316.47
~ INT(X*100+0.5) = 2316
INT(X*100+0.5)/100 = 23.16

Therefore, 23.1597 was correctly rounded “up” to 23.16.
But suppose that X = 23.1547.

X*100 = 2315.47

X*100+0.5 = 2315.97
INT(X*100+0.5) = 2315
INT(X*100+0.5)/100 = 23.15

the computer rounds 23.1547 “down” to 23.15.
The first few lines of the program are self-explanatory.

188 PRIWT "LaBEL PRICE"
118 IHPUT 2

To obtain the first discount rounded off to the nearest cent,
use the following subroutine:

[n)

LET ®=
COSUE
FEINWT

E
24k
14

a1

Pt
A I N
= |.._| =
l"‘l |:| l.,|_'|

=
Dol

ODISCOUNT IS "sY

222 Hands—on BASIC

The remaining discount prices are determined in the same way.

The complete program is

FEIMT "LABEL FEICE™;
IHPUT £
LET x=8.3%Z
COSUE 380
FEIMT "1i@X
LET ==8.85%7
COSUE 2808
FRINT 1'5 "
LET .8¥Z

RO
s

ODISCOUNT I

I
=
kA

r-J

.,..
(O o T s T e T o) T s B M |
ste!

-|-._||

R
s

ODISCOUNT I

Do)

1]
el 0

) |:|
=

COSUE A

PREIHT

EHD

T=IHTO R¥180+ 5371
FETUREH

28y DISCOUHT 1

Lol Gad T90 TO b ot bk ek ok ok ok ek sk ek
Ca i ey TR e A o T T T £ W ¢ O < Y O S R |
e
5]
o
5]

DB o I e B VR n |

In lines 130, 160, and 190 the rounding-off subroutine is
called and used. If the discount is 10 percent, the selling price is
90 percent of the original price, Z. Thus, the computer calculates
0.9*Z, which is rounded off to the nearest cent in the subroutine.

Example 3 - Carpet Estimating

Suppose you want to write a program that

uses a subroutine to

compute the price of installed carpet. There are four grades of
carpet, and each is discounted as the quantity of carpet ordered
increases. Assume that the price structure is as follows:

1 2 3
A | $10.00 $850 $7.25
B | 13.25 12.00 9.75
Grade
C| 16.00 14.00 11.25
D 20.00 17.20 15.25

The rows represent the four grades of carpet.

The numbers at the

top of the columns represent quantities installed, as follows:

Sound and Subroutines 223

1. First 15 square yards

2. Any part of the order exceeding 15 but not more than 25 square
yards

3. Anything over 25 square yards
When executed, the program should produce the following output:
HOW MANHY RBOOMSTY (You type in)

FOE EACH EOOM. TYFE IHM LEHGTH
AMD WIOTH IW FEET SEFPARATED

BY & COMMA

ROOM ODIMEHS IONS
i (You type in)
z (You type in)

(Loop until all rooms are entered)

(Computer types out number) SEHUARE YARDS REGUIRED
CARFET GCREADE COST OF ORDER

A (Computer types out,etc.)

E

C

0

Before getting involved in the program, think a bit about the
output. Since the output is in dollars and cents, you can use the
subroutine in example 2 to round off the answers. The first few
lines follow without difficulty.

18 FPRIMT "HOW MaHY REOOMS":

118 IHPUT H

1z PRIMT "FOR EACH EOOM. TYFE IM LEMHETH®
128 PRIHT "AHD WIOTH IM FEET SEFPAEATELR"
148 PRIMT "BY A COMMAY

158 PRINT

e PRIMT "ROOM®."DIMEHSIONS®

178 PRIHT

You are ready to call for the input of the room dimensions.
Use the variable A to keep track of the area of the rooms. Remember
that the area of a room is its length times its width.

224

Hands—on BASIC

IMFUT L.H
LET A=A+L%*H
MEXT 1

[RO A I B
Lol Tt = 50 L0 00

Lo T e T o T o T % B o |
o m

el

ot

e

-

b4

Since the total room area is now in square feet, include pro-

gramming instructions to divide the area by 9 to convert to square
yards, and then to print out the quantity of carpet required.

L

248 LET A=A~
258 PRINT @A:" SOUARE YARDS REGUIRED®

=
Ll

A

At this point include the price table in the program in the form

of DATA statements.

Zed DATA 18.2.5.7 .25
2y bDATA 12 .25,12.9.75
288 DATA 16.14.11 .25
298 DAaTA 28,17 .2.15.23

Next print out the heading required for the price printout.

2B PRINT
3218 PRINHT "CREPET GERDE"."COST OF ORDER™
328 PRIHT

Now you come to the point in the program where the sub-

routine will be useful. Since you don't know precisely where the
subroutine should begin, simply use a large line number and correct
it later if needed.

EEM COMPUTE PEICE FOR GRADE A

COSUE 288

[Y |
E o]
oI

Let's write the subroutine now. First, for each of the grades

of carpet you need the three prices. Use a READ statement to get
the prices from the DATA statements.

|"

2

A REM SUBROUTIHE TO COMPUTE CARFET PRICE
18 E C

E Ealb 1., C3

1 203

Sound and Subroutines 225

Next the program should determine if the area of the carpet
is less than 15, between 15 and 25, or more than 25 square yards
and then compute the price accordingly.

228 IF AX2% THEH 2c8

228 IF AX1S THEH 2&2@

S48 LET P=C1EA

258 LOTa 358

268 LET P=153C1+18¥C2+{A-2532¥C3
2ve CoTo 294

588 LET P=153fC1+{A-152%CE

298 COSUB 1o8g

08 RETURH

Study this program segment to convince yourself that the price
is being computed correctly. Note how the rounding off subroutine
is called within this subroutine. Now return to the main program
and add a statement to print out the first price.

258 PRIHT "at.Y

Once you establish this pattern, the rest of the main program
follows easily.

260 REWM COMPUTE FPRICE FOE LCREADE E
278 COSUE 260

228 PRINT "B".¥

328 EEM COMPUTE PRICE FOE GCGRADE C
4@8 COSUE 2848

418 PRINT "C".%

428 REM COMPUTE PRICE FOR CEADE D
438 COSUER 26840

448 PRINT *D0O¢".Y

458 EHD

You need the END statement in line 450 to prevent the program
from falling into the subroutine.

The subroutine, as you see, saves programming time and
makes programs shorter. If you rewrote this program without

GOSUBs, you would need to add many statements at each point
the GOSUB is used.

226 Hands—on BASIC

The complete program is

FRINT "HOW MaHy ROOHMS"

IMFUT H

PRIHNT "FOR EACH ROOM. TYFE IM LEHGTH"
FRINT "AMD WIDTH IH FEET SEPARATED"
FRIMT "BY A COMMA"

FRINT

FRINT "ROOM"."DIMEHSIOHS"

FRINT

LET A=@

FOR I=1 TO H

FRINT I.

INPUT L. M

LET A=A+L¥M

MEXT I
LET Aa=A-

[¥%]

FREIHT A:;" SQUARE YARDS REQUIRED®
DATA 18.82.5.7V.25

ODATAR 13.25.12.2.75

DATA 1e.14.11 25

ODATA 28.17.2.15_ 25

FRIHNT

FEIHMT "CARFET CRaDE"."COST OF ORDER"
FEIHT

REM COMFUTE PRICE FOR CRADE A

COSUE Z20a

FEIHT *a".y

EEM COMFUTE FPRICE FOR CRADE E

COSUE 2488

FRIMHT "B".Y

REM COMFUTE PRICE FOR GRADE C

COSUE S@a

FREIMT "C*.%

REM COMFUTE PRICE FOR CRADE D

COSUE =246

FEINT "O".¥

EHD

FREM SUBROUTIHE TO COMPUTE CARPET FPRICE
READ C1.CZ2.C3
IF A>25 THEH &S&n
IF A>x15 THEH &880

AU N ot o T o B B o Ty O o R B T B O o0 o B o B o Iy T o ot T o I o U B n

AN < I Y B ey Y Tt o I S 0 e LS Tt I O Y O T o e LY w N Y I T 3 Y O T Y S e i
1o T o B ey T o B o o |

e
Doy I oy B |

1
1
1
1
1
i
1
1
1
1
2
3
3
4
4
4
4
4
4

!

Sound and Subroutines 227

248 LET FP=Cl¥nA

858 LOTO 2838

268 LET P=1533C1+18¥C2+0A-253%C3
grye LOTo 338

888 LET P=15¥C1+0A-1352¥C2

238 LOSUE 1888

288 RETURH

18688 LET Y=IHTC(F¥10B8+ 32188
1818 RETURH

Example 4 - Designing a House

This program draws a house. The subroutines in the program
use the graphics statements we introduced in Chapter 3. As you read
this program example, pay close attention to the REM statements.
The instructions, set up, and GOSUBs to draw the parts of the house
are at the beginning of the program. The subroutines begin in line
1000.

You draw the roof first. You select the roof position using the
POINT MOVING program you studied in Chapter 6, step 15. You
position the roof by moving the point to the location you wish using
the L, R, U, and D keys.

You draw the frame next and make decisions about the win-
dows and the door. Notice that the roof drawing subroutine (line
1000), window drawing subroutine (line 3000), and door draw-
ing subroutine (line 4000) use the POINT MOVING program (line
5000) as a subroutine. Note that, except for the roof, each object is
drawn using the subroutine in line 7000. Recall that after you posi-
tion the point on the screen with the POINT MOVING program,
you exit by typing a Q.

If you wish to enter and run this program, you may save
yourself some typing by loading the POINT MOVING program you
saved in Chapter 6 step 15 and and changing the numbering so it
begins at line 5000. Note the small modification to this program
in the listing of the complete program which follows. Again, do
not become concerned with the statement in line 110 as it will be
discussed fully in the last chapter.

228 Hands—on BASIC

EEM DESILCHIHLG n HOUSE

OFEH #1.12.8,"K:"

OIM ANSSCZ2B 2, Y801 2, ARRAYC 18,23, 5(18,22
FEINT "¥oOU CAHM MOUE THE POINT OH THE®
FEINT "SCEEEHW TO LOCATE THE BOTTOM®
FRINT "CEHTER OF THE ROOF. WIHDOMWS.®
FEIHT "aHO DOOR OMW THE HOWSE. FPRESS®
FEIHT "U.D.L.E TO WMOUE THE POIHT®
FRIHT "OH THE SCREEEHM. WHEHM YOI HAUE®
FEIHNT "THE FPOINT WHERE Y0OU WaANT IT.™
FEINT "PREESS @ %

FRINT

FEIMT "EMTER SCALE FACTOR (1 TO &2.¢
INFUT SCALE

LEAFPHICS =2

COLOR 1

FEH ODREAW ROOF

COSUE 1868

EEM DREAW HOUSE FREAME

COSUE 28408

EEM DRAMW WIHDOW

COSUE F8680

FEM DEAW DOOE

COSUE 4800

EHD

EEM ROOF DREAWIHGC SUBROUTIHE

REM GCOSUB POIWT WMOUIMG SUBROUTIHE

COSUE Soed

REM LCOSUE aRRAY READ AHD
REM SCALE SUBREOQUTIHNE

LET HOOFPTS=5

COSUE &388
FLOT A.E:DREAMWTO A+5C1.1 2, B+501 .,
FOR E=2 T0O
ODRAMTO A+S(RE:1 3. B+S(R.22
HEXT R

FLOT A.E

DATA B.8.15.8,¢
EETURH

FKEM FEARME DREAMIHG SUBROUTIHME
REM COSUE ARRAY READ AND

GO G E I

l'_|1

|:|

+=5.-15.8,

123
k]
kN
-

)

I e B S B o T Y St B OO OOTE O TR OO OUTO T T T T
[l B T VTS W T LI Y N Y I T e w O B T T ot R O O B T T B O O B o S B ¥ B o S o v B o I B o o

RN R I e e e e el o e e T e Y S I Y O I O O I E I R IR R I R B R I R I I R I e e e ooy Sy WSy W S WP Wy
o I oy B S ot T ow T ot Y w0 w Jc T ow n J ow J ow JY S Y R T o TS o T T T O 1 O < N Y Y S e o Y o 0 O o T 1 Y R o I S S
[0 T oy T on T o O o B o T o T o T 3 O

Sound and Subroutines 229

=
]

FEM SCAL
LET HOOFF
COSUE EE
FEM COsU
COSUE 7OB
OATA 8,8.-15.
FETUEH

FEM WIHMDOW DRAWIHGC SUBROUTIHE
LET HOOFFT3S=5

REM rD:UE HFFHI EEAD AND

EEN ALE SUBROUTIHE
COSUE
FREINT
INFUT
IF AHSS$<="Y" THEH 3ivs

FEM COSUE POIMT MOUING SUBROUTIHE
COSUE S8848

REM COSUE DOREAW THE OBJECT SUBROUTIHE
COSUHE Va@
PLOT A.E
DATA B.8.1.8.1. =1, —1.8,
FEINT "ANOTHER HIHDUHT inH}"
IMPUT AHSS

IF AHS$="%" THEH 28340

EETUREH

REM DOORE ODEAMWIHLGC SUBROUTIHE
LET HOOFPTE=g

REM LCOSUE AaRRAY READ AHD

REM SCALE SUBROUTIHE

COSUE &880

FREINT "0O0 YOU MAMT & DOORY (Y-H>"
IHPUT AHSS

IF AHS§<="Y" THEH 41548

FEM COSUE POIMT MOUIHG SUBROUTIHE
COSHE Sa4a

REM COSUE DRAW THE OBJECT SUEBROUTIHE
COSUE 708
FLOT A.B
ODATA B.8.1 . 5.8,1.5.-5
0DATA -1.5.-5.-1.5.8.48.8
FEETUEHN

.

L oo T o T

Ly O O T T YT Y I Ty Y U I R o R o Oy < Y 5 T L O e o 0 [S o Tt o T T T W Y < Y I

l
[coU N o T o T o o T ow T w O o T o T o B O o O T o T T o o T o S o T T O o o T O o T o O O ot T o O o T T O o B oW B

oy
o}

DEAl THE OBJECT SUBROUTIHE

)
A
=
I .:.

OV
)

J
)

i
o]
I
[
|

F.1

A
ol

o1

n

21

T
ok

£ 13,

o
D

o
™
[}
o
[x]
-
A

X}
a
6]
K]

= 1T

(R I}
-
[u] | 1l

YOU WANT MIMDOOWSY <Y-H»"

Il::l-s-
o

I:'
¥}
&L

o]

....

5

fav]
-
A

LB SN SR S T oo T T ot T oy T o T o T o T e T o T S S S S S Pt LS o T o T ot I A0 B oy

4
4
4
4
q
4
4
4
4
4
4
4
4
4
4
4

230 Hands—on BASIC

FEM FOIWNT MOUIHMG SUBEOUTIHE
LET A=1848

LET EB=3%
FEM PLOTZ A WHITE POINT AT (f.B2
COLOR 1

FLOT A.B

CET #1.%

LET Y$=CHR${ K2

EEM FLOTS & BLACKE POIMT AT JA.B2
COLOR @

FLOT a.EB

IF ¥$="D" THEHN
IF ¥$="uU" THEH
IF ¥$="L" THEH
IF ¥$="RE" THEH
IF ¥$="@" THEH
COTO 5844
COLOE 1

RETUEH

EEM AEEnY EEAD AMD
FEM SCaAalLE SUBEOUTIHE
FOR E=1 TO HOOFFTS
FOorR C=1 Ta 2
RFEAD I

LET AERaAY(E.C»=H
LET S{R.Cx=SCALE¥AREAYI(R.C 2

HEXT C

HEXT E

EETUEH

FEM DEAMWIHC THE OBJECT SUBROUTIHNE
FLOT A.B:DORAWTO A+3C1 .1 2. B+501. 20
FORE E=2 TO &

DEAWTO A+5CRE.1 2. B+5(R. 2

HE®T E

EETLUEH

T
Loy]

=

o
|

B A I
T et R 0% B 0% T et I et B A

Py
KRR
SOLR X

VI N

mm
I+

I
|

oI T mom
e T,
- T

L

.,.. ,.......,...........,..
o e o T o O 5ow S T s T o B O s B ot O et B U B
=+

.,.
AR R R
-
W

[I o I

AR A R I B

[
- g s g g
(R I T Tt O ot T o T o T B O oy T Y I B o

R I I B T Y e ' O S T O e T T Oy I T N o O A Oy o)y o Oy oy oy)
[e e e i Lo S S S Y

[I
D T S B o TR T o SN 1 N S Y I CTC o o T T T R IO O T oV Y o T I R S Y O U]

oy
ol

Note: You must be careful where you move the starting point
for the house so that lines drawn do not go off the screen. If the
program does attempt to draw lines that go off the screen, you will
get an error message and you will need to rerun the program.

Sound and Subroutines 231

10—5 PROBLEMS

1. The following sequence of pitch values are for the song Frere Jacques.
Use them and appropriate pauses to play the song. The grouping is
for convenience.

121,188,925, 121, 121.1858.36.121
26.31.81 2e.31.8

21,72,81,91.,96, 121 21.72.81.91.96.,121
121.162.121., 121.162,121

2. What will be output by the following program?

168 ODIM ACS2

119 FOR I=1 TO 5
128 EEAD =

128 LET AcI »=X
148 HEET 1

158 DATA &6.2.7.1.32
168 COSUE 588
1va LET A3 =10
120 COSUEBR Sag
138 LET ACS =2
2868 LOSUE a8
21a EHD

288 FOR I=1 7O 4
518 LET ACIX=AcI+ln
328 HEST I

328 COSUE &B8
248 EETUREH

&@@ FOR J=1 T0O 3
18 FPRINT AddX,
£28 HEST J

28 EETURH

3. What will be printed if you run the program below?

iga LET X=1@
118 COSUE 584
120 PRINT £
138 LET =wr=rs2

232 Hands—on BASIC

148 COSUER 508
158 PEIMT S
168 LET H=x+3
176 COSUE 588
126 FPREINT S
1368 EHDO

S88 LET S5=8
21 FOR ¥=1 TO =
328 LET S=5+¥
238 MHERT ¥
48 RETURH

Assume that a one-dimensional array Z contains numbers to be
added together. The first element of the array Z(1) gives the number
of elements that follow in the array and are to be summed. Write
a subroutine beginning in line 800 to compute the sum of the ele-
ments after Z(1). Assign the sum to the variable T. Terminate the
subroutine with a RETURN statement. Assume that the array Z has
been properly dimensioned and that the values in the array have
been loaded in the main program.

X is a one-dimensional array. The first element of the array X(1)
gives the number of pieces of data that follow in the array. Write
a subroutine beginning in line 500 to search through that array for
the largest value. Assign this value to the variable L. Terminate the
subroutine with a RETURN statement. Assume that the array X has
been properly dimensioned and loaded with numbers elsewhere.

Suppose that as part of a printout you need a series of seventy-two
* characters in a straight line across the page. Write a subroutine
beginning in line 1000 to do this. Terminate the subroutine with a
RETURN statement.

Assume that a one-dimensional array Y is loaded with numbers. The
first element Y(1) gives the number of elements to follow. We want
a subroutine to calculate the mean (M) and standard deviation (S)
of the numbers in the array that fellow the first element. Begin the
subroutine in line 900 and terminate with a RETURN statement.
The formulas for calculation of the mean and standard deviation
are given below.

Mean = (Sum of values)/N

Sound and Subroutines 233

Standard N X (sum of squares of values) — (sum of values)?
deviation

- Nx(N — 1)

10—6 PRACTICE TEST

Which note will be lower when the following direct mode statements
are entered?

How do you pass control from the main program to the subroutine?

How do you pass control from the subroutine back to the main
program?

[E—

What will be printed out if you run the following program?

188 LET A=l

1168 COSUE 2048

128 LET A=A+4

138 COSUE 26846

148 LET aA=Aa-2

158 COSUEB 288

1e8 EHD

Z2aEa REM SUBROUTIHE
218 IF A<2 THEH 258
228 IF A=3 THEH Z78
238 PREIWT “EEDY

248 COTo 280

258 PRIHWT "HHITE®
2l COTO 284

278 FRIHT "ELUE"
288 RETURH

CHAPTER 11

RANDOM NUMBER
AND SIMULATIONS

11—1 OBJECTIVES

One of the most interesting applications of computers concerns
simulation of events or processes that involve an element of chance.
For instance, the computer can simulate gambling games or inves-
tigate the number of bank tellers required to ensure that arriving
customers do not have to wait more than a few minutes to be served.
In this chapter we will see how the computer can be used to handle
problems of this type.

Generating Random Numbers

Your ATARI computer has a random-number generator function
that is the heart of all programs involving the element of chance, or
randomness. You will learn how these random-number generators
can be employed in BASIC programs.

Designing Sets of Random Numbers

Sometimes you will need a set of random numbers with characteris-
tics of your own choosing. You will learn how to get the computer
to generate numbers in a set you define.

Working with Program Examples

Your programming work in this chapter will involve simulations and
applications that involve the element of chance.

3.

4.

236 Hands—on BASIC

11 -2 DISCOVERY EXERCISES

Setting up the Random-Number Generator

By their very nature, random-number generators produce sequences
of numbers that appear to have no pattern or relationship. If a
random-number generator is to be useful, it must produce a a dif-
ferent sequence of numbers each time it is used in a program,

Turn on the computer and bring up ATARI BASIC.

Enter the following program:

188 FORE I=1 TO 3
118 PRIHT REHOCGE2
128 HERT I

128 EHD

Run the program. Record the largest and smallest numbers that were
printed out.

Run the program again. Did the same numbers appear?

L

What was the largest number typed out?

L

What was the smallest number?

L

Change line 110 as follows.
i18 PRIHT REHOC-12

Run the program several times. Were all the numbers different?

Random Numbers and Simulations 237
Change line 110 as follows.

118 PRINT RHOCSZ23
Run the program. Were all the numbers different?

{

5. Clear the program in memory. Enter the following program:

LET L
LET 5=.5
FoR 1
LET ®=RHD:G>

LET =
HEXT I

FREIHT "LARCEST = "L
FRIHT "SMALLEST = ";
EHD

|-3| [I o T on TR e T o T s D o O ot T o B v B o Bt I

This program examines all the numbers generated by the RND func-
tion and keeps track of the largest and smallest numbers generated.
As the program stands, it will generate 100 random numbers. Run
the program and record what was typed out.

6. Type
126 FOR I=1 TO 1888
Now the program will generate 1000 random numbers. Run the

program and record what was printed out. Be prepared to wait
about 25 seconds for the output.

238 Hands—on BASIC

Based on what you have seen thus far, what do you think is the
largest number that the RND function will generate?

What about the smallest?

Now let's go on to some other ideas associated with random num-
bers. Clear the program in memory and enter the following pro-
gram:

18 FOR I=1 TO 14

118 PRINT IHT{Z2¥RHDCE2
128 HE=®T 1

128 EHD

Run the program and record the output.

L

What were the only two numbers typed out?

L

Type
118 PRINT IMHTL3¥RHOCA2

Display the program. If you run this program, what numbers do
you think will be typed out?

Can you predict anything about the sequence or pattern in which
the numbers will be typed out?

Random Numbers and Simulations 239
9. Type
118 PRIHT IHTCZERHDCE 3+1 3
What do you think the program will do now?

L

Run the program and record the output.

L

10. Type
118 PRIHT IHTC4&RHDOC B 2+4 3
If you run the program, what do you think will be printed out?

L

Run the program and describe the output.

L

Is there a pattern in the output?

11. Type
118 PRIMT IMT(Z8¥REHDCB2>3-18

Display the program and study it carefully. What do you think this
program will print out?

L

Run the program and describe the printout.

12.

13.

240 Hands—on BASIC
Type
118 PREINT IHTCzZOB4dRHDCB 108

Display the program in memory. What do you think will happen if
you run this program?

L

See if you were right. Run the program and record the output.

L

Turn off the computer. This terminates the computer work for now.

11—3 DISCUSSION

Generating Random Numbers

The details of how random numbers are generated are not important
here; it is enough to say that several mathematical methods can be
used to produce these numbers. Remember, however, that the RNTC
function calls on the random-number generator. This function it
used like the other built-in functions of BASIC that you studied
previously, but differs in one important respect.

Recall that the argument of a function (what the function
works on) determines the result. Thus, SQR(4) is 2, INT(3.456
is 3, and so forth. The RND function also requires an argument but
seems to use no logical rules to generate numbers. Of course, this
randomness is precisely the point of the function.

The function generates numbers between 0 and 1 at random.
All the numbers in the interval have an equal chance of showing up
Actually, the range of numbers generated is from 0.0000000000 tc
0.9999999999. Zero can show up occasionally, but the number 1
never occurs.

RND function generates numbers in the range 0 to .9999999999,

Random Numbers and Simulations 241

Designing Sets of Random Numbers

Most often the random numbers in the range produced by the RND
function are not the most useful. More typically, programs call for
random integers (whole numbers) over a certain range or a set of
random numbers with a particular set of characteristics. Therefore,
it is useful to learn how to generate sets of random numbers with
characteristics you can specify.

Let’s begin with the characteristics of the RND function. RND
delivers numbers in the range O to 1, that is, from 0 to slightly less
than 1. If you multiply RND by N, you multiply the range of the
function by N. Thus, N*RND(0) produces random numbers in the
range O to N. If you wish, you can shift the numbers (keeping the
same range) by adding a number. N*RND(0)+ A produces random
numbers over the range A to (A+N) or from A to slightly less than
(A+N). Also, you can take the integer part of an expression, using
the INT function, to produce random integers. The table below
shows how the RND function might be used.

BASIC Expression Result

5*RND(0) + 10 Random numbers in the range 10 to 15
INT(5*RND(0) + 10) Random integers 10, 11, 12, 13, 14
INT(2*RND(0) + 1) Random integers 1, 2

100*RND(0) Random numbers in the range 0 to 100

You may have encountered the notion of mean and standard
deviation (see problem 7 in Chapter 10). You can use the RND
function to generate numbers that appear to be drawn from a col-
lection of numbers having a given mean and standard deviation. The
rule for generating these numbers is

X = M+S((sum of 12 numbers from RND function) — 6)

where M and S are the desired mean and standard deviation, respec-
tively. The values of X will appear to come from a collection of num-
bers with mean M and standard deviation S. The values of X would
fall along the bell curve that you have probably seen in textbooks.
A subroutine would be very useful in this application.

242 Hands—on BASIC

11 —4 PROGRAM EXAMPLES

The following examples illustrate how random numbers can be used.
Study these examples carefully and make sure you understand ex-
actly what is taking place.

Example 1 - Flipping Coins

One of the easiest applications of random numbers is a coin-tossing
simulation. The goal is to write a program that will produce the
following printout:

TOsE QUTCOME
i H
z T
3 T
o H
etc.

The outcome is to be determined randomly for each toss of
the coin, with both heads and tails having equal probability. The
program should print out the results of ten coin tosses.

The first part of the program generates the heading and the
space indicated in the printout above.

£]
1

L

A FPRIMT "TOsSg® . "OUTCOME®

iga P
118 FREIHT

Now open the loop to generate the ten tosses of the coin.

12€

=

FOaR I=1 7O 18

The next step is to generate Os and 1s randomly. Assume that
a O signifies heads and a 1 signifies tails. You should be able to
convince yourself that the following statement will produce 0s and
1s randomly.

i

[
Tl

4 LET H=IHTCZ2FREHDIG

Random Numbers and Simulations 243

Now analyze X to see whether heads (0) or tails (1) has come up.

IF ®=8 THEH 17@
PEINT I."T"
COTO 128

FEIHT I."H"
HEXT I

[PR W

Lo B I 1 R %

PO Y]

All that remains now is the END statement.
198 EHND
The complete program is listed below.

PRIHT *"TOSS"."0OUTCOME"
FEINMT

FOorR I=1 TO 18

LET ®=IHT¢Z2¥RHDCO 32

IF #=8 THEH 178

PRINT I."T"

COTo 13nm

FEIHT I."H"

MHEXT 1

EHDO

S P I o A o R T]
I T o s T o B oy T oy T o B Mot I]

[V Y I e O 1 B O Y IO ' R

"
ol

Run this program several times and count the number of tails
and heads that show up.

Example 2 - Random Integers

The next problem is to write a BASIC program to generate and
print out 50 random integers (whole numbers) over the range 10 to
15. The only part of the program that requires much thought is the
statement to generate the random integers, so concentrate on this
one statement.

Remember that RND generates numbers over the range 0 to 1.
Thus, 6*RND(0) will generate numbers in the range 0 to 6. Actually
the upper limit is 5.99999999. By using the integer function, you
can convert from random numbers to random integers. INT(6*RND)
will produce the integers 0, 1, 2, 3, 4, 5 randomly. To get integers
in the range 10 to 15, you must add 10. Thus, the expression
INT(6*RND(0)) + 10 will produce the desired numbers.

244 Hands—on BASIC

Once this line is figured out, the program follows easily.

188 FOE I=1 TO 58

116 LET Y¥=IHT{c*¥ENHDCE2+18
128 PRINT YY" *;

138 HERT 1

148 EHD

Example 3 - Distribution of Random Numbers

Suppose you generate a great number of integers at random over the
range 1 to 10. If the random-number generator on the computer is
working properly, you would expect to get the same number of each
of the integers. If you generated 1000 integers, you would expect to
get 100 1s, 100 2s, and so on. The problem is to write a BASIC
program that tallies the random integers as they are generated and
then prints out the totals. These totals will tell you how well the
computer’s random-number generator is working.

First, think about how you are going to do the tally. A good
way to do this is to use a one-dimensional subscripted array. X(1)
will contain the number of 1s generated, X(2) the number of 2s, and
so forth up to X(10). Thus, the first task is to dimension the array
and set all the values in the array equal to 0.

188 0OIM =C1832

118 FOR I=1 TO 18
128 LET =dI =06
138 HEX®T 1

Next open a loop to generate 1000 numbers, generate the
random integers, and use the integers as subscripts to increment the
appropriate counters in the array.

148 FOR I=1 TO 1888
1568 LET ¥=IHT: 1G%RHDCE s 3 +1
166 LET HeY 3=H(Y i+l

178 MEXT I

Now all that remains is to print out the contents of the array X.

FOR Jd=1 70 18
FREINMT Jd.x0d2
HEXT J

EHD

I P e s

et 10 LE 0
0O T ™
Lad 1o 150 1)

Random Numbers and Simulations 245

The complete program follows:

1@d OIKM X“ol@a

iig FOR I=1 TO 18
128 Aol =0

138 HE=RT I

148 FOR I=1 TO 18604
158 LET ¥=IHTC18¥RHDCE 3 2+1
1e@ LET Ho¥ »=HOY 1+1
178 HEET 1

138 FOR J=1 TO 1@
1928 FPRIHT J,H6C42
288 HERT J

218 EHDO

Run this program to see how well the random-number
generator works. Be prepared to wait about 30 seconds for the
results. If you decrease the number of integers generated, expect
the distribution of occurrence (the number of 1s, 2s, 3s, etc.) to be
more skewed. If you generate more random numbers, however, the
distribution will be less skewed.

Example 4 - Random Walk

Use the graphics mode in this program to simulate a random walk
on the display screen.

The program below simulates a random walk in a city where
all the blocks are of the same size (5). Line 80 places the computer
in graphics mode. Line 140 randomly assigns the values 1, 2, 3, and
4 to the variable called WHICHWAY. Lines 150 through 520 use
WHICHWAY to determine which way to go on the next part of the
random walk.

ra EEM REAMDONM HALEK

28 LEAFPHICES B

38 COLOR 1

1@ LET A=legd

11 LET B=£8

iz@a PLOT A.B

1320 FOR I=1 TO 544

148 LET WHICHMWAY=IHMTC(4¥RHDCE 2 3+1

158 OM MHICHMAY COSUE Z86.3088.408.3580

246 Hands—on BASIC

1
1

150

HEST I

EHD

LET A=n-5

ORaWTO /LB
RETUREHN

LET A=na+2

ODRAWTO ALE
RETURH

LET B=E-5

ORAWTO A-B
RETURH

LET B=E+5

ORAWTO ACB
FETUEH

SR U oy TN B 1Y

oy —
Lo I o T o T o Tt B ow O v T oy T o T it It T ow R

[B) [S R R P R L Y
RO v B AN o B W v |

Example 5 - Birthday Pairs in a Crowd

What is the probability that two people in a crowd of fifty have the
same birthday? (Consider only the day of the year, not the year
of birth.) This famous problem in probability theory has surprising
results. You can attack the problem with the following strategy.
By generating random integers over the range 1 to 365, you can
simulate a birthday for each of the strangers. If you use a one-
dimensional array for the birthdays as they are generated, it is easy to
check for identical birthdays. Beginning with the first birthday B(1),
the program checks to see if that birthday matches any remaining
birthdays. Then it does the same thing for B(2), and so on.

First look at the complete program below, then go back and
see what is taking place in each line.

1aa OIM BoS@2

118 FOR I=1 TO S8

128 LET BCI»=IHT{36S¥RNDCE 2 +1
138 HEXT 1

148 LET F=8

1538 FOR I=1 ToO 43

le@ FOR 4=I+1 TO 5@

i¥a IF BOIx<-BCdd THEH 138

126 LET F=F+1

1348 HERT J

288 HE=RT 1

218 PEIMT "HUMBER OF BIRTHOAY PAIRS IS ";F
228 EHD

Random Numbers and Simulations 247

Of course, line 100 merely dimensions an array for 50 ele-
ments. Lines 110 through 130 load the array with random integers
selected over the range 1 to 365 inclusive. In line 140, the variable
F is set equal to 0. This variable is used to keep track of the number
of birthdays to be compared with the rest of the birthdays in the
list. The value of I stops at 49 because there must be at least one
birthday left in the list against which to compare.

In line 160, the second half of the comparison is set up.]
begins at the next value past the current value of I and runs through
the rest of the list. The test for a birthday pair is made in line 170.
If no match if found, the program jumps to the next value of J. If a
match is found, the pair counter is increased by 1 in line 180. The
results are printed out in line 210. One problem with the program
is that it would record three people having the same birthday as two
birthday pairs. Can you figure out a way to fix this?

This is a very interesting program to experiment with. The
number of people in the crowd can be modified with simple changes
in the program. You can run the program many times to see how
many birthday pairs on the average will be found in a crowd of a
specified size.

11—5 PROBLEMS

Write a program to generate and print out 25 random numbers of
the form X.Y where X and Y are digits selected randomly from the
set0,1,2,3 9.

Write a program to generate and print out SO integers selected at
random from the range 13 to 25.

What will be printed out if you run the following program?

e
=)

FOR H=1 T0O 15

FEIMNT IHTC28¥RHOCD+13-188.
HEXT H

EHDO

1

ot ke ok ke
L I N o |
R
MR

Dol

What will be printed out if you run the following program?

iga FOR I=1 TO 1@

118 PRINT IHTC1803RHOCE 2210
128 HERT I

138 EHD

10.

11.

12.

248 Hands—on BASIC

Write a program that will simulate tossing a coin, 10, 50, 500, and
1000 times. In each case, print out the total number of heads and
tails that occur.

Construct a dice-throwing simulation in BASIC. The dice are to be
thrown twenty times. At each toss, the program should print out
the dice faces that are uppermost.

Write a program to generate and print out the average of 100 random
numbers selected from the range 0 to 1.

Modify the program of example 5 and run it as many times as you
need to find how large a crowd must be before there is a 50 percent
chance that at least two people in the crowd have the same birthday.

John and Bill want to meet at the library. Each agrees to arrive
at the library sometime between 1:00 and 2:00 p.m. They further
agree that each will wait ten minutes after arriving (but not after
2:00 p.m.). If after ten minutes the other person has not arrived,
the person who is waiting will leave. Write a BASIC program
to compute the probability that John and Bill will meet. Do a
simulation of the problem using the random-number generator.

Suppose a basket contains colored golf balls. There are ten red balls,
tive blue, two green, and eleven yellow. Write a BASIC program to
simulate drawing five balls at random from the bucket if they are
not replaced after being drawn in sequence.

Use the rule given in the discussion section in this chapter to generate
and print out 25 numbers selected at random from a bell curve
distribution of numbers with mean 10 and standard deviation 2.
Round off the numbers to two places past the decimal point.

Suppose a soap manufacturer decides to select a five-character brand
name. The first, third, and fifth characters are selected at random
from the letters BCDFGHJKLMNPQRSTVWXYZ. The second and
fourth letters are selected at random from the vowels AEIOU. Use
the rules above to write a program that generates and prints out one
hundred trial soap names.

4,

Random Numbers and Simulations 249

11—6 PRACTICE TEST

Write a BASIC program to generate and print out 100 random
integers selected from the set 1, 2, 3, and 4.

Write a BASIC program to generate and print out 100 random
numbers over the range 25 to 50.

What will be printed out if you run the following program?

168 FOR I=1 TO 18

118 LET M=IHTC2¥RHNOCB3+12
128 IF H=1 THEHN 1358

138 PRIHT "WHITE"

148 COTO 1e@

158 FPRINT “"RED"

168 HE=ST 1

178 EHND

L

What will be printed out if you run the following program?

igag FOR J=1 TO =

118 PRINHT IHTC 1800FRHOCE 2188
128 HEXT J

138 EHD

'

CHAPTER 12

FILES

12—1 OBJECTIVES

Files saved on diskette can be used to store and retrieve collections of
information. In this chapter you will learn to use files to manipulate
collections of information.

Storing Information to a File

You will learn to create files to store information.

Retrieving Information from a File

Once you store information, you must be able to retrieve it. You
will learn methods of retrieving information stored on files.

Modifying Information Stored on Files

It is frequently necessary to change information stored on files. You
will learn how to do this.

Working with Examples

You will learn to extract and format information stored on files.

12—2 DISCOVERY ACTIVITIES

In the past, files have been difficult to work with on computers.
Fortunately, advances in computer languages have significantly eased
the difficulties. You will find that writing programs that use files re-
quires many techniques and concepts discussed in previous chapters.

4.

252 Hands—on BASIC

You will need a formatted diskette for this activity. Turn on the disk
drive and when the busy light goes out, place the formatted diskette

in the drive and close the door. Turn on your computer and bring
up ATARI BASIC.

Type in the following program.

DIM MEMES: 2@ 5

OPEH #1.8.8."0:GIFT.DAT"
FRIHNT “"HaME: "

IMPUT HaMES

FRIHT #1.HAMES$

PRINT "GIFT AMOUNT *;
IMPUT AMT

PRIHNT #1.aMT

CLOSE #1

EHD

LY B 4 Y SO

[R T o T T R S
[aon I ow T T o T ot T o Y oo et TR hoU I v

Display the program and check it, especially the punctuation.
Run the program. Did the disk whirr?

L

Enter your name and press |[RETURN| . Then enter an appropriate
gift amount. Did the disk whirr again?

Did the print statements in lines 140 and 170 cause anything to be
displayed on the screen?

L

What happened to the information represented by NAME$ and
AMT?

Save this program as WRITE. Recall from Chapter 4, step 20 that
you can use the SAVE command and the program name:

SAUE "O:WRITE®

8.

Files 253

Type
Oos
then type A and press |RETURN| twice to obtain a list of files and

programs on your diskette. Is the program you saved as WRITE and
the data file named GIFT.DAT displayed on the screen?

Press B |RETURN| and type in the following program.

168 OIM MAMES: 282

118 OPEH #1.4.8."0:CIFT.DATY
128 IHFPUT #1.HAMES.ANMT

138 CLOSE #1

148 EHD

Display the program and check it. Run the program. Did the disk
whirr? ‘

Was a question mark placed on the screen by line 1207

L

Was anything displayed on the screen by the program?

L

Add line 125 as follows
125 PRIHT HaAMES$. aMT

Run the program. The information is read from the file in line 120.
Is that enough to make the information useful?

L

Save this program as READ (See step 4.)

10.

11.
12.

13.

254 Hands—on BASIC

You must open and close a file each time you used it. To write to
a file, use a PRINT statement. To read from a file, use an INPUT
statement. '

Now let’s move on to using files with more than one record. Load
the program WRITE. Display the program. Add the following lines.

115 PRIHT "TY¥FE QUIT FOR HAME WHEHW DOHE®
135 IF HAME$="QUIT" THEH 128
75 COTO 124

Display the program once again to check its accuracy. Run the
program. At the input prompt, enter several names and amounts
as you choose. Enter at least three records and amounts above and
below 50. (Note: The disk will whirr after four names and amounts
have been entered even if you are not finished.) What do you type
to end the information entry?

L

Try it and see if you were correct.
Save this new program with the same name: WRITE.

Load READ. Display the program. Add the following line.
122 COTO 1za&
What do you think will happen if you run the program?

L

Run the program and see if you were right.

The ERROR 136 error message signifies end of file and can be
avoided by adding the following line.

122 TRAF 138

Run the program. Did the error message occur this time?

14.

15.

16.

Files 255

Now extract some information from your file. Display the program.
Add the following line.

121 IF AMT<58 THEH 122

Run the program. Were all the names printed out?

You can also compile information from the file. Display the pro-
gram. Change lines 121 and 140 and add lines 90 and 150 as
follows:

121 IF AMT:>58 THEH C=C+1

148 PRIHT "THERE ARE ":C:;" GIFTS OQUER Sa¢
28 LET C=d

158 EHD

et

Now delete line 125. Run the program. Does the number displayed
agree with the information you wrote out to file?

L

You may wish to display the program and study it.

Now let’s add some things up. Load READ once again. Display the
program. Add the following lines.

28 LET SUM=d
122 LET SUM=SUM+aMT
135 PRINT "TOTAL CGIFT SUM IS " SUM

Delete lines 125 and 140. Display the program. Run the program.
What was the total of the gifts in the information you entered?

17.

256 Hands—on BASIC

That ends the discovery exercises. Turn off the computer and go on
to the discussion.

12—3 DISCUSSION

Several BASIC statements can be used with files. The ones you have
learned are flexible enough to cover almost every use of files. As you
saw in the discovery exercises, the OPEN statement prepares a file
so that information can be written to or read from it. The PRINT
statement causes information to be written to a file that has been
opened for output. The INPUT statement allows information to be
read from a file opened for input. All files that are opened must be
closed before you run a program or before you change the status of
the file. For instance, you must use the CLOSE statement to change
file status from open to accept information to open to be read.

Storing Information to a File

To access a file, you must use the OPEN statement. For example,
11 OFEH #1.8.8."D:-FILEOGHE"

prepares FILEONE to have information written to it. The statement
will create the file, if necessary.

The #1 in line 110 is called an input/output control block
(IOCB). For the purposes of this book, you need to know only that
an IOCB is necessary in every OPEN statement and that you can
freely use IOCB’s #1 through #5.

The second number in the OPEN statement, 8 in the example
above, determines the operation to be performed with the file. The
number 4 indicates an input operation and prepares the file to have
information read from it. The number 8 indicates an ouput opera-
tion and prepares the file to have information written to it. The
number 9 also signifies an output operation but prepares the file to
have information added to it.

In this book, the third number is always 0. The only other
value allowed, 83, causes the printer (if one is attached) to print
sideways.

The last portion of the OPEN statement indicates which file
is to be used.

Once a file is opened for output, you can write to the file. To
write to a file, a PRINT statement is required. For example,

Files 257

118 OPEH #1.8.8."0D:FILEOHE"
128 PRINT #1; HHHE$

will set up FILEONE to accept data from subsequent PRINT state-
ment. When you write to a file, the PRINT statements you use must

have an IOCB. The data contained in NAMES$ will be written to a
record in the file. The information items will be written out to the
file in the order that they appear in the program.

In the following example, a file is opened and some informa-
tion is written to it.

ODIM HﬁHE$ 25, CRADESC 1 2
OFEH #1.8.8.7"0:0UIZ DATY
FRIMT "HHHE "

INFUT HAMES

IF HAWES = "QUIT" THEH EHD
FEINT #1:HAMES

FERIMT "LETTEE CREaADE: *
INFUT CRADES

FREINT #1;:CRADES

COTO 1zZd

Lo o T T S O P % I N v |

Pk b ook ook pode ook ook ke ok o
-
[T o T ot O o N T e T o O o O % T o4 |

In line 110 the file QUIZ.DAT is opened (created if necessary).
Lines 150 and 180 write the information, in this case the student’s
name and grade, to the file QUIZ.DAT. The .DAT appended to the
file name QUIZ is an extension allowed in file names. You can
extend the file name with one to three letters following a period.
This addition to the name can be very helpful when you display the
file directory; for instance the extension DAT to the right of the file
name helps you see at a glance which files contain data.

Also note that there is no CLOSE statement in this example.
The END statement closes all files that are open. However, files are
often opened and closed several times in a program. The CLOSE
statement is necessary because the END statement does not close
files until the program stops running.

When you use the number 8 to open a file for output, any
information in that file is lost. Therefore, use number 8 only when
you don't need the information in the file or when the file is empty.
However, if you wish to add information to a file, then use a state-
ment such as

158 OPEM #1.%.8."0:FILEOHE"

258 Hands—on BASIC

This statement prepares FILEONE for output, and all information
written to the file will be added to the end of information that is

already on it. You cannot use this option unless FILEONE already
exists.

Retrieving Information from a File

To read information from a file, you must use an OPEN statement
and INPUT statements, as in the following example.

168 DIM HAMESC 25, CRADES$C 12
118 OPEH #1.4.8.7"0:QUIZ2. DATY
128 TRAF 1:&0

138 IHPUT #1:HMAMES.LREADES
148 FRIHT HAMES$.CEARDES

158 COoTo 120

1@ EHD

Recall that without line 140, nothing will be displayed on the
screen. The INPUT statement in line 130 only reads information
into the variables. What you instruct the program to do with the
variables depends on the outcome you desire.

The TRAP statement in line 120 traps the end-of-file error
that will occur in line 130. Instead of displaying the error message,
and stopping the program, the computer will branch to line 160.
Other types of errors can be treated in this way as well because the
TRAP statement takes control of the program when an INPUT error
occurs and directs execution to a specified line number.

You have been using sequential files throughout this chapter.
Sequential files are files on which records (information) are placed
one after another. When reading from a sequential file, you must
start at the beginning of the file and read each record until you reach
the one you wish to process. Another kind of file called a random
access file is also available on your ATARI computer. Random access
files allow you to read from and write to any record by indicating
which record you want to use. They are, however, more difficult
to learn than are sequential files. Sufficient versitality of sequential
files will be seen in the examples given below. Certain tasks are
better handled with sequential files than with random access files.
Information about random access files can be found in your Disk
Operating System II Reference Manual.

Files

12—4 PROGRAM EXAMPLES

259

The following set of programs can be used to create and maintain a

mailing list for advertising and billing purposes.

Example 1 - Mail List Data Entry Program

A mailing list contains names, addresses, and other information
about individuals. Thus, the program might request the following

items.

FIRST HAME: (You type in)
LAST HMAME: (You type in)
STREEET: (You type in)
CITY: (You type in)

ZIF CODE: (You type in)
BRLAHCE: (You type in)

You would request this information about every person to
be placed on the mailing list. Termination of input could be ac-
complished by entering QUIT for the first name. The information

would then be stored to a file called MAIL.DAT.
The complete program follows.

REM MAIL LIST DATA EHTRY
R

BIM FIRSTSC 1@, LASTSC 152

ODIM STREET$(25+, CITYSC 15 3. AHSSC 3 2
FEIHT "0O0 You WISH To ADOD DATA"
FEINT "TO THE CUEEENT FILEY o4%-H2
IHNPUT AHSS

IF AHSE="Y" THEHW 158

OFEN #1.8.8."D:MAIL DAT"

LOTO 128

OFEN #1.5%.8,"D0:MAIL DAT"

FEINT "USE QUIT FOR FIEST MAME TO
FEIMT "FIRST HaME: ";

IMPUT FIRSTS

IF FIRSTS="0UIT" THEH 4848

FEINT #1;FIRSTS

FEINT "LAST HAWE: "

INFUT LASTS

I N R I SN N N R e T e S T Y i]
L 5 I < R 5 S TR o o T O o T 05 T "N P N S 0 B ot Y et

o S e g e
[ncw T o T o T ot O o SO TR o O o R o O e O T 0 T Bt T o B B

EM EEFLY WITH H TO CEEATE A HEW FILE

EHO

260 Hands—on BASIC

FEINT #1:LASTS
FEIHMT "STEEET: "
IHFUT STEEETS

FEINT #1:5TEEETS
FREINT "CITY: ";
IHFUT CITYS

FRIHT #1:CITYS$
FRINT "2IF CODE: *;
IHFUT ZIF

FEINT #1:Z1IF

FRINT "PaYMEHT BaLaWCE: *;
IHFUT BAL

FEIMT #1.BaAaL

COTO 124

CLOSE #1

EHD

Lo o T ot I ot B]

!

IO O U % [A 8 Y S S I Y I N W I R K
Ll T W IO B e S N | O S S I T oo LN T WY B

- et
[T o0 T o O s T 3 T o O T ot O O 8 I o 3

Save this program under the name DATAENTR. You will be
using it again.

Example 2 - Mailing Label Program

This program will use the MAIL.DAT file to create mailing labels
The labels should have three lines as shown below.

CEORCE JOMES
234 DATAFILE DRIUE
SAM JOSE. CAa 35809

The complete program follows.

FEM MAILIHGC LAEBEL FPEOCEAH
OIM FIRSTSC 182, LASTSI 15
OIM STREET$. 25 3. CITYS$ 15
OFEH #1.4.8."0:-MAlIL . DAT"
TEAaF 2328
IHFUT #1:FIRSTS$.LASTS
INFUT #1:STREETS.CITYS
INFUT #1:;Z1IF.EBAL
FEINMNT FIRSTS: " ":LASTS
FRINT STREETS
FRINT CITYS:". CA ";2IPS

L S T o T e T o T o O et S TR |

)
ol

L N T el L T S Y]
(T S T o 1 T < Y I IO v B v

)
ol

Files 261

FEINT
FRINT
COTO 148
EHD

) Tol = G
Lo o T o O ot]

| IO O A I AN

Save this program under the name LABELS.

Example 3 - Selected Labels Program

It is fairly easy to modify the previous program to select records
in a file based on a condition. In this example, the program
generates labels for bills by selecting those customers with outstand-
ing balances. You modify the program in example 2 simply by
changing line 90 and adding line 165 so that the complete program
reads as follows.

28 REEM SELECTED LABELS FPEOGEAM
1ga OIM FIRSTS$C 182, LASTSC 15
118 OIM STREETS.CITYS

128 OFEN #1.4.0."0:MAIL.DATY
128 TRAFP 238

148 IHFPUT #1:FIRSTS.LASTS
158 THFUT #1;S5TREETS.CITYS
1ed IHFUT #1:2ZIFP.BAL

165 IF BAL=0 THEH 148

178 PRINT FIRESTS:" "iLASTS
138 PRINT STEEETS

126 PRIHT CITYS$:". CA ":ZIP$
2| PRIHT

218 PRIHT

2z28 COTO 148

238 EHND

Save this program under the name LABSEL.

Example 4 - Modifying the MAIL.DAT file

This program will allow you to modify any of the items in a record
in the MAIL.DAT file. In order to do this, the program must know
which record and item you wish to change. The program should
ask for a last name and then display all the items for a record where
the LAST$ matches the last name you enter. then it should ask you

262 Hands—on BASIC

to modify one or more items in the record if the record you wish to
modify is being displayed. If not, the program should continue to
display the other records you wish to modify.

The complete program follows.

FEM MODIFY A EECOED IM THE HMAIL LIST
OIM FIRSTSC183, LASTSC 1S

ODIM =

FRIHT
FRINT
FEINT
IHPUT
IHPUT
INFUT
IF HA
COsUE
coTa
FEIHT
FRINT
FRINT
FEINT
FRIHT
FREIHT

et e e e e
o B TV I o AU o R T U IOV o o B ot oy By By B v

G PRINT
8 PRINT
8 PRINT

IMFUT

oM H
FEINT
PRINT
INFUT

Cod Tad el ved b el Cod Usdoved P T3 Pl PO Pt Pod PO P [0 T bbbk e ek et ek ek ek ek bt L[

3NN e R) I N B W I o B T e I TR S N e T W T B) (= Y) N e 0

o oy
MY I U R O R v R AU Y AU

TRAF

FRIHT
FRINT
FRINT
FRINT
IMPUT
IF aMs
TEAFP

[OR N O (R S R Y |
U e el ol e 50LD
Lo oo I oy T et I ot It A

IF N=7

IF AN

TREET$. 253, CITYSC 1S, ANSS. 32

OFEH #1.4.8."D:MaIL.DAT"
OFEN #2.8

LB."0:TEHF . DATY
"FLEH;E ENTER THE LAST™
"HAME OF THE RECORD™
"NOoU WISH TO MODIFY™
HAMES
#1:FIRSTS. LASTS. STREETS
#1:CITYS$. ZIF.BAL

HE$ LASTSTHEH 2320

z2i

| |'._|

"1. ";FIRSTS

"2. "i:LASTS

"3. "iSTREETS

4. "iCITYS

"5 "iZIP

"&. "iBAL

" EXIT™

"EHTEF THE HUMEER OF THE"
"ITEM %O WISH TO MODIFY *;
H

[X
=)

COSUE T-" a
0o Yol
"EMTRY 1
AHSS

S$="%" THEM 228

538

_#'__:

|
_._l
“)

i]

ol

LH P , 2E0

CYoHD M

FIRSTS:-PRINT #2;LASTS
STREETS:PRINMT #2:CITYS
#23ZIF:-PRINT #2iBAL
"MODIFY AMOTHER RECORDY *;
AMES

$="%" THEHM 148
2328

L I CAR O RN Y

L T T O T T TR L (LW Y IR T (N I I T T e O I T e T O Y O 1 O T O 1 o B I

T 1 S OO O T TS o N T O o T T I S O ¢ [PR O Y I S T ST o o T o JOOW < W S O TP o LT o e A T 0 Y W O ST e O Y o O O

Files 263

IMPUT #1:FIRESTS:-FEIHNT #2Z:FIESTS
IHPUT #1:LASTS:FPRIHT #2:LASTS
IHFPUT #1:STREETS:PRIHT #Z:STREETS
IHFPUT #1:CITYWS:FPRINT #2:CITYS
IMNPUT #1:2IF:PRINT #2:;Z1IF

INFUT #1:BAL:PRIMT #Z:BAaL

COTO 4588

CLOSE #1:CLOSE #-2

OFEH #1.2.8:."0:-MAIL DATY

OFEH #z2.4.8."0:TEMP . DAT"

TEAF &48

IMFUT #Z2:FIRESTS:PRIMHT #1:FIRESTS
INPUT $2:LASTS-PEINT #1;:LASTS
IMPUT #Z2:STEEETS:FPRIHNT #1:STREETS
IHPUT #Z:CITYS:PRIHT #1:CITYS
IHFUT #2:Z2IF:PEIHNT #1:Z1IF

IMPUT #2Z:BAL:FPEIHT #1:EBAL

CoOTO S&@&
EHD
FREIHT "FIRST HaME: ";

IMPUT FIESTS

EETUEH

FEIHT "LAST HAME: *;

INFUT LASTS

EETUREH

FEINT "STEEET: “:

IHFUT STEEETS

RETUEH

FRINT "CITY: "

IHFUT CITYS

EETUEHN

FEIHNT "ZIF CODOE: ";

IHFUT ZIF

EETURH

FEIHT "BALAHCE: "

IHFUT BAL

RETUREHN

FRINT #Z2:FIRESTS:FRIHT #2:LASTS
FRINT #Z2:STEEETS:FRINT #2:CITYS
FRIHT #2:2IF:FREINT #2Z:EBaL
EETUEHN

"‘l |"-"| l‘"

’ i | ¥ T VIR By I oy B R A B ey Ty B ey T ey I S B Y B s I R 0w B A T eyt I 1 DO A B 8 I A B e
[y o I ow B oW T 0 o O I oy o W O o o O Iy R B 1 o o TR 1 R B T o T o B T O oW B oy R Rt R X ot o et R B OV At B v

Save this program under the name MODIFY.

264 Hands—on BASIC

Example 5 - Menu-Driven Mailing Program

This program will give you a menu to select any of the previous
activities. It will allow you to use this set of programs to maintain
a mailing list for use in billing individuals. This is a very effective
way to incorporate several program modules into one short program
that will accomplish a desired task.

The program should begin by printing the possible activities
that you can select. The program might print

A00D A HEW REECORD
COMFLETE SET 0OF LABELS
SELECTED SET 0OF LABELS
MODIFY & REECORD
ExIT THE FROLEAM

D) I N B R

The complete program follows.

v
]

FRINT "1. ADRD & HMEW RECOED®

FEINT "2. COMFLETE SET OF LAEBELS"
FEINMT ®*3. SELECTED SET OF LAEBELS®
FEINT "4. HWODIFY & EECORD

FRIHT "S. EXIT THE FROCEAM®

FRIMNT "CHOOSE A HUMEER "

INFUT H

IF M = 5 THEH EHD
oM H LOTO Z08.488,5680.6488
EUH "D0:DATAREHTREY

RUH "D:LAaBELS"

REUH "D:LAaBSEL"

REUH "D:MODIFY™

=

Lo Ty R O N R S e = S
D I DU IO RS N T) S Y I % I 3w

L T o T 2 B ot B o T e T ow T AW B

Save this program under the name MENU.

If you want the program to return to the main menu-driven
program above after it has called for the execution of another
program, modify the END statement in each of the programs
DATAENTR, LABELS, LABSEL, and MODIFY. For instance, you
would add the following two lines

4 RUHM "0O:MEHU"
4 EHD

iF

[oU]

Files 265

to DATAENTR program. These same lines, but with different line
numbers, should replace the END statements in the remaining pro-
grams.

12—5 PROBLEMS

Design an appropriate record structure for a file that will be used to
index your cassette tape collection. Determine valid ATARI BASIC
variable names for each item in the record structure.

Design an appropriate record structure for a file that will be used to
keep track of your checkbook entries.

Design an appropriate record structure for a file that will be used to
inventory your household possessions.

Write out an appropriate record structure for a file that will be used
to keep your personal mailing list. Remember that birthdays and
anniversaries are important to your friends.

Write a program that will use a file called CHARGE to manage your
charge cards. Each record should have the following structure.

Variable Description Approximate Length
CARD$ Name of Card 20
NAME$ Name of Store 30
DATE$ Date of Purchase 10
DESS$ Description of Purchase 50
AMT Amount of Purchase 8

The program should allow you to total the amount of money you
have charged to each card in the entire file.

Write a program that uses the record structure from problem 4 to
manage your personal mailing list. The program should allow you
to print out labels for your Christmas cards and for messages to
your friends at work.

266 Hands—on BASIC

12—6 PRACTICE TEST

1. [f you run the following program:

1gg DIM HAMEST 26 :
118 OPEH #2.2.8,."0:FILETHWO®
128 IMPUT HA

138 PRINT #=2

140 IHFUT Wi

158 PRINT $

e CLOSE

178 EHD

a. What file will be used?

L

b. How many characters are allowed in each variable name?

¢. How many items are placed in the file?

L

2. Write a program line that opens a file named TRIAL.DAT. The line
should allow information to be written to the file.

L

3. Write a program that will read and print the three information items
from variables A$, B$, and C$. Each variable has a length of 10.
The variables are in a file named TEST1.DAT. Be sure to close the
file.

Files 267

What is wrong with the following program line?

288 OPEH #1.4.68,"0.FILEOHE"

[

Will the following program line allow information to be added to
the file FILEONE?

Z2E8 OPEH #2.3.8."0:FILEQHE"

APPENDIX A
GLOSSARY

ABS[X) A BASIC function that takes the absolute value of X.
Positive values of X remain positive. Negative values of X
become positive.

Arithmetic Operators Addition +, subtraction , multiplication *,
division /, and exponentiation ™.

ASC[AS) A BASIC function that converts the first character in A$
to its equivalent position number in the ASCII character set.

BASIC An acronym for “Beginners All-Purpose Instruction Code”.
More people know how to program computers in BASIC than
any other language.

CHR$(N) A BASIC function that returns the Nth character from
the ASCII character set.

CLOSE A file statement that terminates access to a text file on the
diskette in the disk drive.

COLOR A statement that chooses the color register to be used in
color graphics.

Control Characters These are characters typed on the keyboard
while holding down the [CTRU or [CONTROU key. They are
used to send special signals to the computer.

Cursor A square displayed on the TV screen that shows where the
next typed character will be displayed.

DATA A statement used to hold information within a program.
This information is called for with the READ statement.

Deleting BASIC Statements Type the line number of the statement
to be deleted and then press [RETURN] .

270 Hands-on BASIC

DIM A statement used to specify the size and reserve space for
arrays.

Double Subscripts Indicated within parentheses following a variable
name, and separated by a comma. Used to specify a row
and column number in an array. A(3,5), for example, means
the element in the two dimensional array A at row 3 and
column 5.

DOS Diskette A diskette that has been formatted using the DOS
disk operating system. These diskettes can be used to store
programs and files.

DRAWTO A statement that draws a line from the current position
of the grtaphics pen to the point specified.

Editing Making corrections or changes in a program or data.

END Marks the end of a BASIC program or the end of the main
program.

E Notation A notation used in BASIC to express either very large
or very small numbers.

FILE A collection of information that is created and used by the
ATARI BASIC file statements.

FOR NEXT Statements used in BASIC to set up loops.

GET A statement that calls for information from the keyboard
without placing a question mark on the screen.

GOSUB A statement used to transfer program control to a sub-
routine.

GOTO An unconditional branch statement.

INPUT A statement that calls for input of information from the
keyboard.

Inserting BASIC Statements Type in the statement using a line num-
ber not already in use.

IF THEN A conditional branch statement.

INT{X} A BASIC function that takes the integer part of X. The
integer part of X is defined as the first integer less than or
equal to X.

LEN{AS$) A BASIC function used to determine the length of a string
in characters. For example, if A$ = “"DOG"” then LEN(AS$)
is 3.

Glossary 271

LET Identifies an assignment statement. It is always followed by a
variable name, an equal sign, and a BASIC expression. The
LET in the assignment statement is optional.

LIST A command used to display the program in memory.

LOAD A command that loads a file from a diskette to the memory.

NEW A command that erases the current program in memory.

Numeric Variable Names ATARI BASIC allows variable names up
to 110 characters long. The first character must be a letter.

ON N GOSUB A statement that branches to one of several sub-
routines depending upon the value of N.

ON N GOTO A statement that branches to one of several numbered
lines depending upon the value of N.

OPEN A file statement that opens the specified file for input or
output operations.

PLOT A statement that plots a point at the position specified

PRINT A statement that sends information from the computer to
the screen.

Random Numbers A sequence of numbers generated by the RND
function. They appear to have no pattern or relationship to
one another.

READ A statement that calls for input of information stored in
DATA statements within the program.

RECORD A record is a collection of information stored in a text
file created and used by the ATARI BASIC file statements.

Replacing BASIC Statements Retype the statement to be replaced
including the line number.

RETURN A statement used to transfer program control back from
a subroutine to the main program.

RND A BASIC function used to generate random numbers.

RUN A command used to tell the computer to begin execution of
the program in memory.

SAVE A command that saves a program from memory to diskette.
For example, SAVE "D:AVERAGE" would save the program

currently in memory to the diskette in the disk drive under
the name AVERAGE.

272 Hands-on BASIC

SETCOLOR Stores the hue and luminance color data in a particular
color register.

SGN([X) A BASIC function that determines the sign of X. SGN(X)
is +1, 0, —1 as X is positive, zero, or negative respectively.

Single Subscripts Indicated within parentheses following a variable
name. Used to specify a particular element in an array. A(6),
for example, means the sixth element of the one dimensional
array A.

SOUND Controls the register, sound pitch, distortion, and volume
of a tone or note.

SOR[(X) A BASIC function that takes the square root of X. X cannot
be negative.

String Variable Names BASIC string variable names are allowed to
be up to 110 characters long. They must start with a letter
and end with a § sign.

System Master Diskette A DOS diskette that contains a number of
useful programs.

APPENDIX B
PRACTICE TEST SOLUTIONS

Chapter 1

Press the key.

Press the [RESET] or [SYSTEM RESET] key.

*

Press the key.
Division.
The number 2 will be displayed on the screen.

The string 25/5+2 will be displayed on the screen.

Move the cursor to the G in PRING with the [CTRL or
key and the left arrow key («). Then type in a T and press

Chapter 2

Press the key.
Press the key.
Press m

10.

11.

12.

13.

14.

274 Hands—on BASIC

The statement FEIHT £ has no line number.
The number 2 would be displayed on the screen.

Up to 110 characters.

Type the line using a line number not already in the program.

Retype the line including the line number.

Type the line number and press .
Type LIST and press .

Press the key.

Type RUN and press .

Type NEW and press)

A character string variable always ends with a §$.

Chapter 3

A square with its center at the center of the screen.

A house with the peak of the roof at the center of the screen.

CEAPHICS &:
ODRaWdTO Zga
ORaHTO &,
a. FLOT 156,
d. FLOT 248,
a. By typing GESFHICS & b, COLOR 1

Moves a line segment down the middle of the screen

10.

Practice Test Solutions 275
Chapter 4
a.* b.” ¢/

a. Exponentiation b. Multiplication and division ¢. Addition
and subtraction

Left to right.

18 LET A = (4+3FE~0O2"~2
4

a. 5.16E+06 b. 3.14E 05

a. 7258000 b. 0.001437

/ then + then ~

a. Type LOAD "0:(name of program)” and press .
b. Type S#AUE “D:(name of program)” and press .
c¢. Type 00%, THEN O and follow directions.

d. Type HEMW and press

e. Type LIST and press .

f. Type ELUH "D (name of program)’ and press /RETURN.
g. Type D0O%, then A& and press twice.

Use the left arrow key to move the cursor to the error and type

the correct character and press |[RETURN| . Recall the |CTRL key is
required with the left arrow.
Chapter 5

1 2

=
]

L}

4

T
D]

11 1

L¥n]
foue
[on]

I

etc.

a. By assignment (e.g., 188 LET /=21 b. INPUT statements
c. READ and DATA statements

10.

11.

S A

276 Hands—on BASIC

A string.

To provide information within the program for the benefit of the

programmer Or user.

DATA.
Y — 3 will be printed out.
Four

As many as needed.

1 3
13

[

READY

FREINT "IHFUT
INFUT H

LET K=1.583%H
FREINT H:" HMILES
FRINT k:*®
EHD

= 3

ook fok ek ek et et
[

LI R el P e T

)

Chapter 6

[S S
[v}

BEZT

EETTER
BEET

coopn
BETTER
BEST

ERROR & AT LIHE 1

MO

ey
1l

OF MILES ":

Eauals

EILOMETERS®

oo
M

Practice Test Solutions 277

FEINT "HOMW MAHY WIDCETS"
IHFUT H
IF H<=Z

=28 THEH 1&8
IF H<=58 THEH 158
LET U=1.5
COTO 19a
LET U=z

COTO 134

LET U=1.35

LET FP=H#%U

FRIHY "FRICE PER WIDCET IS ";U
FRIMT "TOTAL COST OF OGRDER IS " P
FEIHT
cCOTo iaa
EHD

! ., e
.
[aco T o T o T o T o T o T o B T T o TR R ot B ot B o B ncn

LET =
FRIHNT
LET ¥=¥+15
IF #<=175 THEH 118
EHD

Pk ke e ke sk
J fn]) e
1 S

oy
A

FEINT "WHAT WAZ THE SPEED LIMITT *;
IMPUT aA

FEIHT "SFEED AREESTED aT7TT *;

IHFUT E

LET X
IF H:
IF
IF
IF ¥
IF ¥4
FEIHT
EHDO

THEH F=2
THEH F
F

|
I

m

Mm

Lo SN N |'-'|
[o e}

1 THEM F—q
‘FIME IS5 ":F:" DOLLARS®

| K e e T S e S S A S S S

LR hon TR T O A 4 Y X 1% O % i w |
D AR o DA B B oDV L B o e

Chapter 7

f.

[ax
[y
|'|]
[
[au]
Jorte
| SN
[
T
[xn}
Joute
Ty

278 Hands—on BASIC

4 g

(%]

L
oy

4

[}
[y
3

a.6 b.7 ¢ 228 d. -1
The loops are crossed.

FRINT "MILES".,"KI{OMETERS®
FRIHNT %=-=——-— LR O 1
FOR M=1& TO 188 STEF 5
FRIHT HM.1. 583%

HEXT H

EHDO

RN
BOURRROC SR NOY

LI e e ol s 1T

ke o ek o o e
1 0 %

I
A

OATH
OaTta
READ

[y X

proatll LV I

LET S=#
FOR I=1 TO H

EERD =
LET S=5+54
HE=®T 1
FRINT 5<H
END

L IO T 1 R <Y I O i e |
Eocn T 00 Ty T o TR o T s TR et R o O o I e |

Pk ks o ks ke ke sk ks e ok

a. A triangle b. 28 c. across

Chapter 8

To save space for an array.
X(3,4)

OIM RLSE:

FRIHT "HOW MaAMNY HUWBERS *
IMPUT H

FRIHT "WHAT ARE THE HUMEEERES
FOR I=1 7O H

INPUT =

LET AdIr=x

HEXT 1

= Chy LI el I T
[e T o T o o T e T o I x|

[R U A WP W Wy

2212421, 26,327,255, 24,23, 2

Practice Test Solutions

: I=1 Td H
IF ACI<=8 THEW 22@

(R O
=

M

[}

)
]

U S o BN W wx]

228 HExT I
238 PEINT "SUM OF POSITIUVE ELEMENTS
248 EHND

)

U oo I o O o A0]
[M

I

-] 3

m

- 1]

[y I R I B S
1=
m
m

oIV OV RO A)
RV

,.,.

U e I o I I

——

[acu B s I RS Ao cn]
R,
o

[o B o e v

o
i

U)

.,-
.
-
MY

188 DIM &2.3 b. A23) =4 c AXY)
CA(A(11), A2,2)) = A(L,2) = 3

ap

Chapter 9
By appending $ to a numeric variable name.

False

ODIM ASCSE?D

IMPUT A$

FORE ==LEHCA$> TO 1 STEF -1
FRINT Asdl.Xx>

HEXT =

EHD

L R e e A]
I R T L oy e |
oIy B D I |

279

IS ";5

— A(1,2) =3

280 Hands—on BASIC

AE

AREC

qBCD

AECOE
etc.

ABCOEFCHI AL MHOPGRSTUUHEY S

Chapter 10

The second note.

Type in COSUE (line number at beginning of subroutine.)
RETURH

MHITE

RED
BLUE

Chapter 11

1@ FOR I=1 TO 148

118 LET H=IHTO4¥REMNDIO3+1 2
1268 PREIHNT

138 HERT I

148 EHD

[)
Ja]) ks 10
[T o I oy B oy e

Practice Test Solutions 281

3. The output will be randomly selected from WHITE and RED. Three
program outputs are shown to indicate the random nature of the

process.

L G L2 £33
RED HHITE WHITE
FED WHITE RED
WHITE RED HMHITE
HHITE WHITE MHITE
EED MHITE WHITE
RED RED HHITE
REED RED RED
HHITE RED HHITE
RED HHITE HMHITE
EED HHITE RED

4. Five random numbers of the form X. XX over the range 0.00 to 9.99.
Three program outputs are shown below to illustrate the random
nature of the process.

; L20 L3
a. 5,639 1.15
3. 4. 84 8.87
] £.71 2.53%3
3. 2.15 2.85

Chapter 12
1. a. FILETHZ b. 20 and 50 c. 2
2. 119 OPEHW #1.8.8."0:TRIAL . DaATY
3. OIM A1, B 1@ x. 08183
OPEH #1.4.8."0:TEST1 .DAT"
IHFUT #1:A%$.E%.C$
FEIMT A$.E8.CS
LOTO 1z2G
EHD

o ke ks ks ks e
[y R R B I o)
OO B o B o B v B |

A
o

282 Hands—on BASIC

Good programming practice would call for the statement TRAP 150
just before line 120 to avoid an error message and to close the file
smoothly.

The correct program line is

288 OFEH #1.4.8,"0:FILEOHE"

Yes, the second number, 9, is exactly the value needed to add to a
file.

APPENDIX C

SOLUTIONS TO
ODD-NUMBERED
PROBLEMS

Chapter 5

. 188 REWM CHAFP 5. FEOE 1

i1 EEAD A.EB.C.D
iz DATA 18.9.1.2
138 LET 5=8+E

148 LET F=C*0DO

158 PRINT S.F

18 EHD

. 188 EEM CHAF 5. FPROE 2

119 REARD A.B.C.D
128 DATA 21.12.6,3
128 FRIHT A

144 FRIMT E

158 PRIMT C

ieg FPRIWMT O

i7a EHD

. There is no value assigned to C.

. 1@@ EEM CHAFR 5. PROE 7
118 PRIHT "CASH = *;
128 ITHPUT C

11.

13.

15.

284 Hands—on BASIC

126 PREINT "MARKETABLE SECURITIES = *;
148 IHPUT H

1538 PREINT "RECEIUARELEES = *

icd ITHRUT E

178 PEINT "LIABILITIES = *

138 IHFUT L

128 LET A=CC+M+R AL

288 PRIHT "aCID-TEST RATIO = “;A

218 EHD

The program loops back to line 100 where A is set equal to 1 after
each printout. The program can be corrected by changing line 130
as follows.

126 cat1o 118

The problem lies in statements 100, 110, and 120. The values
of L, W, and H are supposed to be printed out, but they haven’t
been defined. The computer will assign the value zero to the three
variables and these zeros are printed out by lines 100, 110, 120.
The program may be corrected by deleting line 130 and L, W, and
H at the ends of lines 100, 110, and 120. Now, the following lines
need to be added.
185 IHFUT L
115 IMPUT H

=5 IHPUT H

oy
o

E
OAaTa 214232 3
OAaTa S278.55084, 13
ODATa &5214.8555%2.11 .5
FEalD RE1.EZ. 0
LET HM=iRZ-R1 374
FRIMT H
COTO 140
EHDO

REM CHaF 5. F
1

[a T I T O 3 O S W I RO S v |
(I o T e T TR A T e B B ey

fode ok b ok [k ok ook ok el

)
KL

FEM CHaF 5. FROE 15
ODATA 4-_E?_; . 22, 72,353, 188,585.78. 8

1
L
Jrowe

READ A E.C 0. EFiGH I,
FRIMT =H+E+1+D+E+F+1+H+T+!a i3
EHO

b ok oo ok e
Joo o] Tl e T
T o I oy I e I ey |

oy
s

Solutions to Odd-Numbered Problems 285

EEM CHAF 5. PROE 17

FEINT "QUOTED IMTEREST EATE (FERCEWHT:» *
INFUT R

FEIMT"HUMEER OF TIMES COMPOUHDED FER YEAR'
IHFUT M

LET T=0< 1+R<0188%M 22 M-1 310806

FEIHT "TEUE AMHMUAL IHTEREST RATE IS®
FEINT T

EHO

ot ek e ok ke ke fmecke o foonde
Lo N T Wy [W Y o T S |
Y I non T e ou B e T v e B et]

"
ot

FEM CHAP 5. FROB 13

FEIHT "IHITIAL IHUESTHMEHNT "

IHFUT F

FEIMT "AHHUAL IHTEREST RATECx:» ";

IHFUT I

FEIHT "YEARS LEFT TO ACCRUE IHTEREST +:
INFUT H

LET T=F#{1+1-18ax"H

FRIMT *TOTaL WaLUE IS *:7T

EHDO

T O
wl A SRR G

L9 o (I3 IO N T O W o v
M IRV |

e o O T o T P Yy VPR WO Ry PR W
U A Y

%
.

Chapter 6

EEM CHAF &. PROE 1
IHFUT =.Y

IF 3% THEH 15@
FEINT ¥
LOTO 158
FEIMT =
EHD

=
KA A

s IR B

(O

ks ke oo ek ok ke e
N

[TN B N Y I W e

%
o

EEM CHAaF &. FPROE Z
LET S=&

LET =
LET 5
LET #==
IF H<=18¢g | 134
FEIMT =

EHDO

I N3 I = T I U]
Encn I ROU I s T oy T v T et B e B o)

ok pde b ek ke ok ok ol

ERRORE- & AT LIHE 1Z#

286 Hands—-on BASIC

REM CHAF &. FROE ;
LET =8

READ

IF

IF

IF

¥y
[N u]
L n]
Ly

FEINT T-1848
EHD

id8 REM CHaAFR & REOE 3
1@ LET C=1

izg LET T=8

138 LET H=1

148 LET T=T+H

158 LET C=C+1

168 LET MW=2iH

178 IF C<=22 THEH 148
188

138

LY]

The number 83 will be printed out. The program finds the largest
number contained in the two DATA statements.

EEM CHAFRP 5. PROER 132

FRIHT "LIST FPRICE ¢$2 ":
IHFUT L

FRIMNT "DISCOUHT RESTE <X ¥
IHFUT F

LET O=L#%¥¢i1-E~-188:>

FRIWT "DISCOUNTED PRICE IS®
FRIWT DO:" OOLLARS®

EHD

it sk s ot fpesde ks ook o s

[T I T 1 Y R Y I % o
g -

[t I o T ot T won T oo B B oy s o |

188 REM CHAF 5. FREOER 15
iig IHFUT A.EB

128 IF Ar=10 THEH 134
121 CoTo 158

128 IF Br=1id THEH 148
131 ca71d 158

140 PRIMT A+E

17.

19.

U o I ow B R o L o I

o
M

[0 U0 bt ok ok o ke ok oo e ke feek
U B

[RN WY I o T N B S S I I

I
.

e T I R e e e e N e]
™ "~
[T o T T e S o O o T e T e

L I S T N O 1 SO 2) I R B o |

o
[\

(R I ey)

A
Ll

R RO T R T A T e e e e o e e e e % I 0
L% I T et o T T TS T o O 1 T =N Y S ' T o oy O ot T |

Lo I o T e T o T s T o o B U I U I o)

COTO

IF A<

COTO

IF E<

COTo

FEINT

COTO

IF A<E THEH ZzZ&a

oo T O e
fcn] i
]
I
m
g
ovbrens.

3 THEW 178

bomde ot pede ek [

o I
e I

E

214

FRINT A-BE

COTO

218

FEHM
DIM

FRIHT E-#A
EHDO

FEEM CHAPF &. FPROE
FEINT "CGEOWTH EaT
INFUT R

LET H=#

LET =1

LET @=QG%{ i+RE~-188:
LET H=H+1

IF <=2 THEH
FEIMT "HUMEER
"iH

EHDO

158
oF

CHAF &,
T 12
OFEH #1.12.8."E:"
LEAPHICS 2

FROE 1

coLar 1

FLOT A.E
ODREWTO & E
CET #1.%

LET ¥$=CHRS$(%3

Solutions to Odd-Numbered Problems 287

17
E X2 "

CREOMTH PERIODS TO DOUELE

=]

IF ‘¥§="DO"
IF ‘vg="u"
IF vg="L"
IF ‘¥§="R"
IF ‘f§="q"

THEH
THEH
THEH
THEH
THEH

M Ie e T
T Te T MM
+ 11+
L e)
[B T o B |

Do) B | I TR | I

11.

288 Hands—on BASIC

COTO 168
EHDO

Dy =Y
D I x|

[X

Chapter 7

[]

REM CHAF 7. FREOE 1
FEINT "H".,"SQECH»"
FEIHT

FOR H=2 T 4 STERP .1
FEIHT H.SaRIH?

HEXT H

EHD

Ty L e) T s

[O R O B SN S AR R O R
Enon I o O B s I e |

FEM CHaAF 7. FREOEB 2
IHFUT H

FOR ¥=2 TO H STEP 2
FRINT =

HEXT =

EHD

AR A

ek poeds ek ok e
L) I N Y I L Y

[t B s B ey)

ABCOAEBCOAECOABCDAEBLCD

Since the Z and V loops are crossed, an error message will appear.

It reads and prints out five numbers rounded off to two places past

the decimal point.

REM CHAP 7. FROB 11
GCRAPHICE &

COLOR 1

FOR K=1 TO 158 STEFR 18
FLOT B.K:-DRAWTD 218K
HEXT K

ok ok ks b ke ook fok ook ook ek

WL D =g Ty £ B) T e D
Lo I N I o T S0 Tt T e T s T o Ty o |

13.

15.

17.

o
I B o o I o N B o B o B on)

pomeind
DA)

KRR 5% LN o T o S 1 T W Y S]

-
a1

AR U

(I,

| I S RN R T N T T S e e e A S Ny WAty W Wy W

=l

DO S

o Lo T s

MR B B W) I CA Y Y I el %

Do N I el R) o) ot B or B B B L B

T0) b b ook ke ke ok ok ke fonbe ok ok e ok

=T
R

I T T
e 1700 1,

Solutions to Odd-Numbered Problems

EEM CHaF 7. PROE
THFUT H
IHFUT =
LET L
LET H
LET %
FoR 1
T

FEIHT "HIGHEST oR&D
FRIMT T
FRIHT

EHD

bt 0T)

FEM CHSFE 7. PROB 17
EEAD H

FoR I=1 Ta H

FESD M.E.Di.02.02.04.05
FREINT "EMPLOY MUMEBER *:H
LET H=Di1+0O2+034+04+05

IF Ho=d48 THEH 1Z8
LET FP=R¥48+1 S¥RE{H-40:
COTD 185

LET F=R%*H

FEIHT "Fay IS ";F

HE=T
OATHA
DAaTa
OATA
OATA
OAaTa
DaTa
EHD

[< Sy I) I
[,
DO)

289

290 Hands—on BASIC

Chapter 8

REM CHAF 2. PEOE 1
ODIM =oz2@a

READ H

FOR I=1 T H

EEAD A

LET ¥0I3=4

HE=T 1

FOR I=1 TO H

FREIHT #1132

MEXT 1

bAaTa 12

DATA 2.1.4.32.2.4.5.
EHD

PR ———
Lol

Ln
Ty

[I N e O o S S Ay S A SRy

RO o B o T I T 3 B N I S T S]

LU o B ot I b o o oy sy R o B o R acn |

FEM CHAF 2.
OIM Acia, 16
IMPUT H

FOR R=1 T0 H
FORE £=1 7O H
IHFUT =

FEOE

(9]

R A

.,,.
5
o

AU oo LY o o o T N O W 3 W OV Y B % I o |

FRINT "SUM OF MAIM DIAGOHAL IS ":3S
EHD

[T e S o T o B o T o T oo T s O ot O T w0 e I oy
e
P~
I)

EEM CHAFP 2.
DIM RO15.15:
IHFUT M. H
FOR E=1 TO H
FOR C=1 TO H
IMPUT ¥

LET A{R.LC =4
HEXT

FEOE S

a8
1a
=@
28
4id
Sa
&3
7
SR E
9?

1
1
1
1
1
1
1
1
1
1

[acx

r" 0
m

- e
0wy

[n]

Solutions to Odd-Numbered Problems 291

FOR E=1 TO H

FORE C=1 Ta H

LET S=5+AadR. 02

HE®T C

HEXT R

FRIMT "SUM OF EHTRIES IS ":%
EHD

Tl [o0 Tod [l el)

o L I S Y B R I R |
Fon S e TR % T oo SO o et B e |

FEM CHAFP 2. FPROE 11

DIl =o1@@s

IHFUT H

FOR I=1 TO H

IMFUT A

LET =®i1=A

HE®T 1

FOR I=1 TO H-1

IF #eIl+1 <= H{I» THEH 238

1

—
I % TN ot T oy ot O o O e B Y

21
LET =wdI32
LOTo 17
HEXT 1
FOor I=1 TO H
FPRIMT HcIlax:"
HEXT 1

EHD

O R I T X T T A T O O e e e i S U S

Bt B T I Y I e v BT W Y TR B CRR Y
™
m
-~
-
il

D T 0w TR T o T o T s O o8 T ey)

MU
T ke

L]
I now I wo I

oy
s

A
O on T ow T S oy B

U oy TS oy

o I AU o B

,.
=
-
=
s () bt () b

o g g -
LU B AU R KL B g

.,...
A
.
s

REM CHAF 2. FROE 15
ODIM M{Z.50
FOR R

[P
| S n §
DU oy I
m

]

ot

-~ n

17.

292

[A I NI S R R T R S Ty S SN W

[) I R

[I % T) IO T S I I R S I I T R B o S S e L T S

L0 I T e SO Y T o T T N o O PR S B T oo T o O o W I O O ¢ SO O Y O I o

[e UL W Rt N R I S Y

ity Pt I,
LU o I s T ow T T o B o T o D B w0 8 T At B

Ao A O Rt B A

-
Lo T o O o T o T o TR o R o T o B oy B o B

[nc o T o T o R ow o R R

Hands—on BASIC

FOR C=1 TO
FREAD A

LET H{R.C2=
HERT |
HEST
OAaTA
OAaTAa s
FOR E= 1 T
FOrR C=1 T4
FRIHT S{R.C2.
HEXT C

FEIHT

HEXT R

EHD

.

Y
I

Y] I' '|_:| -

1

oot I::I

[R R l:-.l A
.;- .

REM CHAF £
OIM HizZ@.z203>
IMPUT HM.H
FOR RE=1 TO H
FOR C=1 TO H
IHFUT &

LET ¥
HEXT
HEXT
FOR
LET
FOR
LET
HEXT
FRINT
HEHT
FOR C
LET F=1

FOR R=1 TO H
LET P=F¥H{R.C2
HE®ET R
FRIHT
HE®T C
EHO

FEOE 17

en]
-

D=0

o e -
]
[}

[I e 0 R
D I S o B
e
-
]
o
Y -

e

[
fosede
]
I
o
wobuens

"PRODUCT OF

"SUHM OF ROM “"iR:M OIS

COLUMH "

e

Solutions to Odd-Numbered Problems 293

REM CHAF 2. FROEB 13
OIM Hod.62

FOrR E=1 TO0 4

FOR C=1 TO &
READ
LET

HEXT
HEXET
OaTa
oaTa
OaTH
OaTH
FOR

LET

FOR

LET

HEXT E

FPRIHT *ToOTalL-DbDay ":;C:;" IS5 ";%5
HEXT C

FRIHT

For E=1 To 4

LET

FOR

LETY

HEXT
FEIHT "TOTAL-SALESPERSOH "i;&:" IS "; 5
HE®T
LET

FOR

FOR

LET

HEXT
HEXT E

FRIHT

FEIMT "TOTAL ZALES FOR THE WEEE IS *;
EHDO

O I ROV I T oo O o T o T ot T o B e |
I
el
D]
I
I

Pty o
el
=l

N I Y

o]

-
2l

OO 1 B oy

0 obs O g T
L S Y]

[p B o T e e T 0 T B O
]
Lol
T

o IO I e T o B

.,.
A

[e o I B |
il

I R N N R R R B I 1 e T e o e e A o R e e

N I Y S I e o Y B T Ny PR Y B v

T E

BOLIS AL

1% T

oy
Ll

TO
AORLED

[

DU)
1l
DI oo]

+

A)
Dt

Il A

DU B o X
n

D I S S oo |
1

A By
L=]
1Ty

+
al

SRy T I I i By B

=
5]
1
4
5
&
I
g
i
1
4

4
4
4
4
4

[I oy I

FEEM CHAF 2. PROEB 21

DIM POZ8M, R0287

FEINT "HOW LOHLC ARE THE AREaYZS "
IMFUT H

[S T S VPR
Lol [s 150
U IOV |

o
A

294

o o I oy B

[Y W I) I Y

DLy | I O
IS S S S S T R I

[OUR o I oy B o R wor

(% TS B I T S O N S O SN I SN W N e S i e

3Ty ke 1508

v}

=

Hands—on BASIC

FOR I=1 TO H
LET FCIa=1
MHEXT 1

FOR E=1 7O H

IMPUT A

LET =iRE=A

HEXT E

FOR I=1 T0O H-1
IF HCPCT 22380 PCI+1 33 THEH
LET T=F{IZ

LET POIX=P{I+12
LET POI+1 =T
COTo 214

MEXT 1

FRINT "p".,"a"
FRIHMT

FaOr I=1 7O H
FEINT FoI . 5010
HEXT 1

EHD

Chapter 9

[ERFI VAR S T S W TP S

T L e) T e D
Lo s I oo T o T o B T v

LI s T O ot T o O no B ey B e |

Lo O o o T T O Y O P O NI o |

[T S PR U O S S U S TR W Y

o Iy)

FEM CHAF 2. PROE 1
GIM AScoEl

IHFUT As$

FOR I=1 TO LEHUAS$:
FPEIHT A${I.I:

HEXT 1

EHO

FEM CHAP 2. PROB 32
ODIM R$<SE

IHFUT A$

LET A
LET
LET
LET
LET
FOR K=1 TO LEM{AS:

IF ASCE,KEX»="A" THEH A=A+l

o e [T T

(R I S I oV I x|

oA
Ll

[N

.y
[cn]

~

=
O]

Y
L2

ooy
|

(LT T N 3 JO O W) IO S T S |
oI o T o T o B R I

.2

Cod 10 T T o Pode Pl T T T P

[noy I o B R

A
il
2%

I
o T s T o T o T o |

ke fomke sk fumbs fomk b fowh e e
]

Lo o I v T | Y S Y N T g%

o
DU U Y

A N]

Laou T 0w TR T O 3t e T e

Jonegiiie
CUR MU MU AV

-
M

Do)

R R R I R T T e o e S e I e e e A
xon]

[B N o SO o T T e T 2 S R Y I I S v |

Ao I Y

[R T T R - Y
o) ol w150
[ot Y I it |

Solutions to Odd-Numbered Problems 295

IF A$CE.E»="E" THEH E=E+l1
IF ASTK . K THEH I=1+1
IF A$cE. K 3="0" THEH 0=0+1
IF ASCE.E2="U" THEM U=U+1
HEXT K

FEINT "R = ";

FEINT "E =
FEINT "I = ";
FEIHNT "0
FEINT "U
EHND

|
|:';| oo |'T'| I

FEM CHAF FEOE 3

OIM AS{SB s, B 50

IMFUT AS$

FOR I=1 TO LEHMIAS$?

IF AL I, 1 =CHE${3Z2> THEH 1@
LET BSCLEHCESs+13=a8%CI.13
HEXT 1

FEIMT E$

EHD

[¥e)

EEM CHAF 2. FROEB 7

DIM A%CS8B:

LET C=d

FOkE k=1 TO S

IHFUT A%

IF AC1.43<>"THE " THEH 174
LET C=C+1

FOR I=2 TO LEHMCASI-3

IF ASCT.I+32<-"THE " THEH Zz8@
LET C=C+1

MEXT 1

HERT K

FEIHT C

EHO

REM CHAF Z. FROEB 9
OIM AsiSE

IHFUT A%

LET C=o

296

Ja

1T E Ny

]
2]

[R R S A S
LG 0D~ LN

A
hoia

Hands—on BASIC

FOR K=1 TO LEHiA$:-1

IF ASCE.E+1 3{x"IH" THEH
LET C=C+1

HEXT K

FEINMT C

EHD

iv7o

Chapter 10

oy
|

s I s B}

R IO |

oy
A

ROLAOL

SOL

it LSRR LT w I Y I T | P CR Y I N)

el el el el] T P3P0 T T T PO T Tl [l bk ek et ek ek b bk ek ke ek
300 T 5% B T o T o O o T s T o T e T ow N o T o T o O oy B

IS A N T A T S o LY W
Do I oo I oy B o |

W) = N
Ty NN

non
e T

[

FOR KE=1 TO

FEaD FPITCH.LEHLGTH

FOR L=1 TO LEHCTH

SOUHD B.FRITCH. 18,8
HEXT L

HEAT K

OaTa
OaTa
Oata
OAaTa
OAaTa
OaTa
O0aTa
OAaTha
OAaTa
OAaTa
ORaTa
OAaTH
ORTa
OATH
DATH
OAaTa
OAaTa
DAaTa
EHDO

]
et
oy
1
-
Lal ™
]
[y
[
[T
o
[xn}
-
Ll
[

.,..
[n]
iy
x]

[n)

T I]
o
Iyl ™

Fu -
£
SR o T R o T
1=
[y
[cn B o S

L ke
[V G

i
[y
DoV S

el
nou T 1o T OB o T %
-
[kn]
1=
R cu Sy I o B
[sn}
b 90 et o) e

AU
T
sce!

rarde’
()
(¥n}
[
NN
X
oY
[n)
[
Do)

Lo T non I ey I
"
5

LI e B A

[0

D]
L) |

%

- T -
(]
'
—
M

man -

LI L T R N L A T T

oy
sl

LA 'Z.ﬂ l:..ﬂ 'Z:ﬂ 'i"l 'Z."! ':-'- ';.ﬂ bk ookt
e l

S — I
JoU oy T ow B o B v T T R ey B oy T R

U

a0 g -

| IO O ey xR R o v |

o bt P92 0] = o0
. ek e

Jau
ok ke 'w
Do I

S R N R S
Do I o I oo B

50
|

T T e

) T
A
=

e
DU R
%)
oot

.

[x

S -

Ty -

(a0 S O S e o L T T e e T L T I O
[y
T
oot
o+
[n]
[un]
[
x|

En o N e TN o T o S o LY o o oo T T o Y LAY S Y Y

[T T G T
[nou T oy s s I

D B B

FEHM
LET

SUEBROUTIHE

L=H{ 23

3.

Solutions to Odd-Numbered Problems 297

FoR I=32 T4
IF L=
LET L=
HEXT I
RETURHN

TSRS
(13 THEM S5@
e %

WL LA LN on
Do Y I S I N

[acu IR v B B o B |

FEM
LET
LET
FOR
LET
LET
HEX T I
LET M=%
LET =
L0105
338 RETUEH

u",u DU I A Ay |

- e
(O s I e S 0 T o T SO o T o B e |

III
‘ovee’ Lol
e

L A W LN o Y LY LY B o B W
[| B I

)
Lo

i

Chapter 11

FEM CHaAF 11.=
FOR I=1 TO

FROE 1

l l:.ﬂ

FRINT H.
MEXT I
EHD

oode fpouske nsks sk ks oo

[I O ¥ B L 0
[cox T o I RO I O I oot B o

A typical output is:

[n}
U
B |
Dos I
(x|
(e
B
3
[I
o
15 Tl
A
M

....
5
foe
[
[V s
150
LR

38 REM CHAF 11.
FOR I=1 TO 5
READ H

LET H
LET T=&
FOR J=1 TO H

LET #=IHTCZ¥RHDCE3+1
IF ¥=1 THEH 19@

FEOE

wn

il
U U o T I oy e B e

Ty L e e Thd e

WA
Ll

LET H=IHTL 3“%5?4!} 133

Yoo
=
L)

e
[
Do]
[na

.,.
)
T e
LAt
]
-
fn

T
kN
L

T
oy B

U
o
)
N

11.

298

e T 5 I T e A |

[T T oy N W s B |
=
;A

(E]
5]
(E]
5}

r
23
=4
=l =y
il |
g =

U o B AoU I

L e e e N
]

(3 T) I N TS o

oy
MN

Qo S oo
(R I R R oy B wn

e O I e e i ol S A N |
e
A

[S o T ¢ S VR oW ' T S o I e |

[I

I e O T el ot el o R ¥]
o T I Y ¢ Y W Y O N T S wov B A |
Lo S o T O e T T 0 O o B 9 |

A

FEM CHAF 11. PROE

Hands—on BASIC

LET T=T7+1

LOTO zZasd

LET H=H+1

HE=T !

FRIMT

FREIMT "FOR ";H:" TOSSES THERE HWEERE"
FEIMNT H:" HEADS AHD ":T:" TalILse
HEXT 1

ODATa 13.3538.184, 588, 19688

EHD

TO 184
LE +REHDOCE

[¥u]

LET M=o

o
o %

THEH 154

g
wrberns

P A

T T

LU AOUR IO R

HERT I
FEIHT "FEOEREILITY OF a HMEET IZ ":M-1@&G6
EHD

FEM CHAF 11, PROEB 11

FaR I=1 ToO 2%

LET E=18+2¥{5-5

FEIHT IHTO1883RE+ Sx-108,
MEST I

EHDO

Solutions to Odd-Numbered Problems 299

Chapter 12

1. A possible record structure would be as follows.

Variable Description Approximate Length
TITLE$ Title of cassette 30
LABEL$ Record company 20
NAME$ Name of musicians 50
KIND$ Category of music 15
PRICE Price of cassette 5

3. A possible record structure would be as follows.

Variable Description Approximate Length
NAME$ Name of item 50
ROOMS Location of item 15
AMT Value of item 10

5. A program for entering a month's charges and totalling them for a
particular credit card follows.

REEM CHAFP 1Z2. FROE S

DIM CARDSC 283, HAMESC 28 . TEMPS$: 28 2
DIM DATESC 18>, DES$C S8 >, ANSEC 32
FRINT "ARE %¥0OU CREATIHMLG THE FILE"
FRIHNT "FOR THE FIREST TIMEY <Y~sH>» ";
IHFPUT AHESS

IF AHS$<>"%" THEH 130

OFEHN #1.5.8,"0:CARD.DAT™

COTa 248

FRIMT "0O0 you MISH Ta OBTAIWM CEEDIT"
FEINT "CaArD TOTALS OHLY? "

IMFUT AMHSS

IF AHS$="Y" THEHN 4Zn

OFEN #1.2.8,"0:CARD.DAT"

FREINT "HAME OF CakRD: ";

IMFUT CARDS

" T T
Dos B eI oy B oV R]

D]

U8 B ot B e

R N SO I R A e e e S T T o T T

(T O T ST o o T T B 2N SO W T S P I A e e |
=

(R U e I I o R

oy
ol

300

U o T v B o B o T A I B o B v

Ll Lot lad L

ot

-
[T v T T o T o T o R o O T o T e T e B T 8 B |

Doy R OO I U I o R T o T o O O R O O v LY R Y R <Y T LS it LY R Y

(L Iy T T ¢ O 3 T 3 QT Y "R 4l YRR S AR Y S N NS Y I o T 7 [o i S Iy o Y Y B W Y Y N T

D D I o B o0 Iy ot B v

Note:

Hands—on

IF CA
FPRIHNT
PEINT
IHNFUT
FEIMT
FEINT
IHFUT
FRIHMT
FRIHT
IHFPUT
FREIHT
FRIHT
IHFUT
FEIHT
COTO
CLOSE
OFEH
FEHM =
LET &
FRIHNT
IHPUT
IF TE
TEAF
IHFUT

BASIC

ROS="0UIIT"® THEH 418
#1:CarRbg

"HgME OF STORE: ¥

HAMES

#1;:HAMES

MO TE OF PURCHASE: v;
OATES

#1:0OATES

"OESCRIFPTION OF FURCHASE: v
OESS

#1:D0OE5$

"COST OF PURCHASE: "

aMT

#1:a8HT7
z24a

#1
#1,4.8."0:CaR0O.DaT™
UM THE CHAREGES
Hpi=g

"HAaME OF CARD TO TOTab: o
TEHMFS$
MP$="0dIT" THEHW EHD
548

#1:CARDS . HAMES. OATES

IMFUT #1;DES$.ART
IF CARD$< >TEMFSTHEH 420

LET =

LOTO

PRINT

UM=SUH+AMT
428
"TOTAL FOR "G TEMPS: " IS *;SUM

CLOSE #1

COTO

428

This program does not accumulate the information on the file.
You might want to provide for adding information to the file as was
done in Program Example 2.

ABS 139,146

Animation 47-48,53

Arithmetic in BASIC 11-14,58,66
Arithmetic priority 66,67

Array Operations program 180
Arrays 162

ASC 199,202

ATASCII character set 202
Automobile License Fees program 116
Averaging Numbers program 121

BASIC arithmetic 11-14,58,66
BASIC functions
ABS 139,144
ASC 199,202
CHR$ 198,202
INT 138,144,145
LEN 194,199,201
RND 236-241
SGN 139,144,145
SQR 137,144-145
BASIC origins 6
BASIC parentheses 67

BASIC graphics statements 40-46,
49,50-52
BASIC programs
entering and controlling 32
execution 23,65,71
retrieval 64,70
storage 63,70

BASIC program requirements 30
line numbers 30
order 30
spacing 31

BASIC language cartridge 2,11,16

INDEX

BASIC statements
CONT 27,33
COLOR 40,49,54
CLOSE 252,256
DATA 79-80,87
DIM 164,165,172,252
DOS 62
DRAWTO 41-46,50-52
END 22,257
FOR NEXT 132-137,140-144
GET 109
GOSUB 212-215,217-219
GOTO 25,26,112
GRAPHICS 40,49
[F THEN 104,113
INPUT 25,28,46,76,86,252
LET 22,30,35,86
OPEN 252,256
PLOT 40,50-52
PRINT 11,17,22,81,85,252
READ 78,80,86
REM 82,89
RETURN 212-215,217-219
SETCOLOR 50,54
STEP 132
TRADP 254,258

BASIC variables, names 33-35

Birthday Pairs in a Crowd program
246

Bringing up ATARI BASIC 16

Carpet Estimating program 222
Catenation 199-200,203

Character strings 34,192,193,
201-203

CHR$ 198,202
CLEAR key 13

302 Index

Clear screen 13
CLOSE 252,256
COLOR 40,49,54
Commands
LIST 22,28,32
LOAD 64
NEW 24
RUN 23,65,71
SAVE 63,70

Conditional transfer 105-110,113
Converting Temperature program 92
Correcting mistakes 13,18,30
Course Grades program 177
Crossed loops 136,143

Cursor 11

DATA 79-80,87

Deleting lines in a BASIC program 23
Depreciation Schedule program 150
Designing a House program 227
DIM 164,165,172,252

Direct mode 9,16

Discovery method 5-6

Disk Drive 62,69

Disk file 63

Distortion 216

Distribution of Random Numbers
program 244

DOS diskette 62,69
DOS Manual 2,70
DRAWTO 41-46,50-52

Editing 13,18,30

END 22,257

End of file 254

E Notation 61-62,68-69

Entering graphics mode 40,49
Error correction 13,18,30

Error messages 13,18

Exact Division program 149
Examination Grades program 174
Exponentiation 59-60

Finding the Average of a Group
Numbers program 147

Flipping Coins program 242

Formatting a diskette 62,69-70

FOR NEXT 132-137,140-144

Function
ABS 139,144
INT 138,144,145
RND 236-241
SGN 139,144,145
SQR 137,144-145

GET 109

GOSUB 212-215,217-219
GOTO 25,26,112
GRAPHICS 40

Graphics mode 40,49,50

IF THEN 104,113

INPUT 25,28,46,76,86,252
Input/Output Control Block 256

INT 138,144,145

Interrupting program executions 27,32
Interrupting INPUT loops 26,32
Inverse key 10

IOCB 256,257

Jumping out of loops 27,32
Jumping out of INPUT loops 26,33

Keyboard 10

Keys
BREAK 10,26,32
CLEAR 22
CONTROL 13,18,30
CTRL 13,18,30
DELETE BACK S 18
DELETE BACK SPACE 18
INSERT 18
RESET 16
RETURN 11,16,18
SHIFT 10,18
SYSTEM RESET 16
« 13
-+ 13
T 30

LEN 194,199,201

LET 22,30,35,86

Line deletion 23

LIST 22,28,32

LOAD 64,70

Loops, crossed 136,143

Loops, FOR NEXT 132-137,140-144
Loops, INPUT 33

Loudness 211

Mail List Data Entry program 259
Mailing Label program 260

Matrix 162

Mean 232,241

Menu-Driven Mailing program 264

Modifying the MAIL.DAT file
program 261

NEW 24

Numeric variable definition 34

ON/GOSUB 219
OPEN 252,256

Parentheses 67-68

Pitch 210

PLOT 40,50-52

PRINT 11,17,22,81,85,252

Printout of Number Patterns program
115

Priority of operations 66-68

Programs in book
Array Operations 180
Automobile License Fees 116
Averaging Numbers 121
Birthday Pairs in a Crowd 246
Carpet Estimating 222
Converting Temperature 92
Course Grades 177
Depreciation Schedule 150
Designing a House 227
Distribution of Random

Numbers 244

Exact Division 149
Examination Grades 174

Index 303

Finding the Average of a Group
of Numbers 147
Flipping Coins 242
Mail List Data Entry program 259
Mailing Label program 260
Menu-Driven Mailing program 264
Modifying the MAIL.DAT file
program 261
Printout of Number Patterns 115
Random Integers 243
Random Walk 245
Replacement Code 204
Rounding Off Dollar Values
to Cents 220
Selected Labels program 261
String Reversal 203
Sum and Product of Numbers 93
Tempature Conversion Table 148
Unit Prices 90
Word Count 204
Writing a Song 219

Random Integers program 243
Random file 258

Random numbers 236,240
Random Walk program 245
READ 78,80,86

Relational Operators 104-106,113,197
REM 82,89

Replacement Code program 204
Reserve words 35

RETURN 212-215,217-219
Retrieving BASIC programs 64,70
Reverse Video 10

RND 236-241

Rounding Off Dollar Values to Cents
program 220

RUN 23,65,71

SAVE 63,70

Screen editing 13,18,30
Selected Labels program 261
Sequential file 258
SETCOLOR 50,54

SGN 139,144,145

SOUND 209-212,216

304 Index

Spacing of printout 85,88
Split screen 51

SQR 137,144-145

Standard deviation 234,241
STEP 132,140-141

Storing BASIC programs 63,70
String output 87,192

String Reversal program 203
String variable definition 34
Subscripts 162-163,170-172
Subroutines 212,217-219
Substrings 195-196,202

Sum and Product of Numbers
program 93

System Master Diskette 62
System restart 16

Temperature Conversion Table
program 148

Text mode 41,50,51
Tracing programs 110-111

Transfer
conditional 105-110,113
unconditional 25,112

TRAP 254,258

Troubleshooting programs 110-111

Turning on/off your computer

10,16,62

Unconditional transfer 25,112
Unit Prices program 90

Variable names 17,33,34

Variables, subscripted 162,163,
170-172

Voice 210

Word Count program 204
Writing a Song program 219

— 13
— 13
1 30

13,18,30
11,16

SEETURH> 22
+ 11,12,58
—11,14,58

/ 11,12,58

* 11,13,58

= 14

~ 59-60

M 11,13

~—

~

)

2

Y)

)

V)

COMMANDS

CONT Restarts execution after use of the BREAK key

DOS Places the computer in a mode for certain disk
operations

LIST Displays the program in memory
LIST lists entire program
LIST 40,310 lists lines 40 through 310

STRING FUNCTIONS

ASC(string) Returns ASCII code of first character of
specified string
LET A=ASC(BS)

CHR$(number) Takes an ASCII code number and
returns the corresponding character
LET P$ = CHRS$(B5)

LEN(string) Returns the length of a string
FOR X=1 TO LEN(AS$)

STR$ (number)
a number
LET A$ =STRS$(27)

VAL(string) Converts a string of digits into a number
LET P=VAL(AS)

v8(nl,n2) Returns a substring of v$ starting with
character nl and running through character n2:

(not a proper function but included here because it
is an important implied function)

IF N$(1,4)="NAME" THEN 300

Returns the string representation of

LOAD filename Brings the specified program from
diskette into memory

LOAD "D:MENU"
NEW Erases the contents in memory
RUN

SAVE filename Puts the specified program in
memory out to diskette

SAVE: “D:LABELS”

Executes the program

NUMERIC FUNCTIONS

ABS(number) Computes absolute value
LET X=ABS(-7)
INT(number) Returns the greatest integer less than
or equal to the specified number
LETY=INT(2.7) LET D=INT(RND(@)*100)
RND(0) Returns a random number between (and
including) 0 up to (but not including) 1
LET D=1 +RND(0}*8
SGN(number) Returns the sign of the specified
numeric expression
LETP=8GNR-E)
SQR(number) Returns the square root of a number
LET C=SQR(A=A + B=B)

GRAPHICS AND SOUND STATEMENTS

COLOR n Chooses the color register to be used in
color graphics

COLOR1

DRAWTO x,y Draws a line from the current
position of the graphics pen to the point specified

DRAWTO 10,15
GRAPHICS n

Specifies which of the 8 graphics
modes are to be used

GRAPHICS 8

PLOT x,y
specified
PLOT XY PLOTS5.17

SETCOLOR register #,hue,brightness ~ Stores hue
and brightness data in specified color register
SETCOLCOR 26,4

SOUND nl1,n2,n3,n4 Controls which of 4 voices,
sound pitch, distortion, and volume of a note
SOUND 2,121,10,10.8

Causes one point to be plotted at the point

STATEMENTS

CLOSE #n
CLOSE #1
DATA datalist ~ Contains values to be assigned to
variables in a READ statement
DATA 7.2,B0Y,3,4.5

DIM v(n) Reserves space for arrays and strings
DIM A(10,20),B$(50)

END Stops program execution; closes files; turns off
sound

FOR..TO/NEXT Creates a loop
FORJ=1TOD10 FORA=2#XTOY STEP 2
NEXT J NEXTA

GOSUB line# Calls a subroutine beginning at
specified line number
GOSUB 500

GOTO line# Jumps to specified line number
(unconditional jump)
GOTO 412

IF condition THEN line# Jumps to the line number
specified after THEN when the condition is true
(conditional jump)
IF X > 10 THEN 320

IF condition THEN statement Performs the state-
ment after THEN when the condition is true
IFY-2=7 THEN END

INPUTv Causes program execution to pause for
input from keyboard
INPUTA,B INPUTD$

INPUT#n;v Causes information to be read from a
file on diskette
INPUT #1;A,G$

LET v=expression
LET X=7

Closes the specified open file

Assigns a value to a variable
LETC=C+1

SPECIAL KEYS

Move cursor

Moves cursor one space to left,
deleting whatever was there and
leaving a space

BREAK Interrupts anything in progress and
returns to command level

Clears the screen

ON v GOSUB nl,n2,.. Causes a jump to one of
several subroutines depending on the value of the °
variable after the ON

ON N GOSUB 300,350,400

ON v GOTOnl,n2,.. Causes a jump to one of
several line numbers depending on the value of the
variable after ON

ON N GOTO 100,200,252

OPEN #n1,n2,n3,filename Opens a file for input or
output operations; n1, n2, and n3 stand respectively
for the IOCB number, 1/0 mode, and rotated print-
ing control (nearly always set to 0)

OPEN# 1,4,0,"D:DATA"

PRINT list Causes output to be placed on the
specified output device; default is the screen
PRINTA,B PRINT C$,X(J)

PRINT #1;A$

READ variable list Reads the next item in the DATA
list and assigns it to a specified variable
READ B$,NUMBER,M
REM Allows insertion of a comment in a
program line
REM SUBROUTINE SCALE
RESTORE Resets data in DATA statements so it can
be read again
RESTORE restores all DATA statements
RESTORE 90 restores data in statement 90
RETURN Returns program control from a subrou-
tine to the Jine following the GOSUB that called it
TRAP line# Jumps to specified line number if an
INPUT error occurs
TRAP 790

DELETE Deletes the character under
the cursor and contracts the line

Inserts a space

Signifies end of current line; when
editing, accepts edit changes that
were made in the line.

IMPORTANT ERROR MESSAGES

ERROR
. CODE PROBLEM

Out of Memory: Insufficient room for statement or variable
Wrong Value: A negative value used where a positive one
is required or value is not within allowed range

String Too Long: Attempt to store beyond the
DIMensioned string length

Out of Data: READ statement requires more data than
supplied by the DATA statement(s)

Integer out of range: Value is not the required positive
integer or is >32767

INPUT Type Conflict: Attempt to INPUT a nonnumeric
value into a numeric variable

DIM Error: Subscript out or range; reference to an
unDIMensioned variable; attempt to reDIMension a variable;
or DIM value is >32767

Overflow/Underflow: Attempt to divide by zero or
reference to a number >1E98 or <1E—99

Line Not Found: Number after GOTO, GOSUB, or THEN
does not match any line number

NEXT Without FOR or improperly nested FOR/NEXT
statements

Line Too Long: Statement is too long or too complex
RETURN Without GOSUB

Invalid String Characters or string in VAL function

is not a numeric string

Program Too Long for LOAD

Bad Device Number: Device number not in the required
range of 1 through 7

BREAK Abort: User pressed the BREAK key during an
1/0 operation

IOCB Already Open: IOCB already in use for another file
or device

Nonexistent Device: Specified a filename without a device
(i.e. “MYFILE” instead of “D:MYFILE")

IOCB Write Only: READ command to a write-only device
Device or File Not Open: No OPEN specified for the device
Bad IOCB Number: [OCB number is not in the required
range of 1 through 7

IOCB Read Only: Attempt to write to a read-only device
or file

EOF: End of file has been reached

Device Timeout: Device does not respond

Cursor Out of Range: Cursor out of the allowed range

for the graphics mode

Protected Diskette: Attempt to write on a write-protected
diskette

RAM Insufficient: Insufficient RAM for operating selected
graphics mode

Drive Number Error: Drive number is out of the allowed
1 through 8 range or computer was switched on before

the drive was switched on

Disk Full

Unrecoverable System Data I/0 Error: Diskette or DOS
may be bad

File Number Mismatch: Problems with links on the disk
(try turning the system off and on again)

Filename Error: Filename includes illegal characters
Directory Full: Not enough room on diskette

File Not Found: File does not exist on diskette

*IOCB = Input/Output Control Block (IOCB number
corresponds to the device number)

BUTE BOIAS

HANDS-ON BASIC
FOR THE ATARI" 400/800/1200XL

AN

N

Hands-On
BASIC

FOR THE ATARI® 400/800/1200XL

ISBN 0-07-049194-1

	Cover
	Contents
	Preface
	Introduction
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12
	Glossary
	Practice Test Solutions
	Solutions to Odd-Numbered Problems
	Index

